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During the last decades a lot of research activities in the field
of photonics have been accomplished and today there is a
disruptive revolution underway where the photons are used
to transmit, store, and process information. Laser and optical
amplifier technology plays an important role in these events.
In particular, the advances in lasers and optical amplifiers,
enabling novel, powerful and exciting applications are based
on research results arising from different investigation fields.
This special issue is an example of these interdisciplinary
contributions to the state of the art of optical amplification.
Microresonators, interferometry, accurate modeling, grating,
nonlinear optics, and novel materials are the subjects
included in the volume.

In the paper entitled “Modeling of mid-IR amplifier based
on an erbium-doped chalcogenide microsphere” the authors
illustrate the design of an optical amplifier based on a
tapered fiber and an Er**-doped chalcogenide microsphere.
The obtained simulation results demonstrate that a high-
efficiency mid-IR amplification can be obtained by using a
quite small microsphere. The low threshold power and the
high gain in the mid-IR suggest interesting application in
sensing.

The paper “Light combining for interferometric switching”
describes a novel switching device based on three input phase
modulation ports. The interferometric switching as a routing
method in sequence of coupled optical microresonators is
investigated. Extended appendices facilitate the explanation
of the implemented model. The proposed interferometer
device shows the possibility to control a lightwave signal
with the phase of another signal with interesting and feasible
applications.

The paper “Detailed theoretical model for adjustable gain-
clamped semiconductor optical amplifier” depicts the model-
ing and the experimental characterization of an adjustable
gain-clamped semiconductor optical amplifier (AGC-SOA).
The simulations agree very well with the experimental
results. The proposed device could operate as power equal-
izer and linear amplifier in packet-based dynamic systems
such as passive optical networks (PONs).

“High-energy passive mode-locking of fiber lasers” is a
comprehensive study of achieving high-energy pulses in a
ring cavity fiber laser, passively mode-locked by a series of
waveplates and a polarizer. The obtained results may be used
as practical guidelines for designing high-power lasers.

In the paper “Tunable single-longitudinal-mode high-
power fiber laser” the authors show a novel CW tunable, high-
power, single-longitudinal-mode fiber laser. A tunable fiber
Bragg grating for wavelength selection is exploited. Due to
the narrow linewidth and high output power, this laser could
find applications in developing sensor based on nonlinear
effects such as stimulated Brillouin scattering.

The paper “New trends in amplifiers and sources via
chalcogenide photonic crystal fibers” is a review on amplifica-
tion and lasing via rare earth doped chalcogenide photonic
crystal fibers. Materials, devices, and feasible applications in
the mid-IR are mentioned.
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Rare-earth-doped chalcogenide glass fiber lasers and amplifiers have great applicative potential in many fields since they are
key elements in the near and medium-infrared (mid-IR) wavelength range. In this paper, a review, even if not exhaustive, on
amplification and lasing obtained by employing rare-earth-doped chalcogenide photonic crystal fibers is reported. Materials,
devices, and feasible applications in the mid-IR are briefly mentioned.

1. Introduction

The current laser market does not provide efficient sources
in most of the mid-IR spectrum. In particular, the shortage
in availability of powerful, coherent, robust, and compact
laser sources at wavelength longer than 3 microns constitutes
the major obstacle to a widespread advancement of mid-IR
science and technology. During the last decades, a number
of mid-IR laser sources have been developed but they
have shown low conversion efficiency, limited beam quality;
moreover they are complex, bulky, and expensive [1, 2]. In
fact, the unfavorable temperature dependence of thermal
and thermooptical parameters set limitations to the power
scalability since the large heat load can lead to glass fracture,
and the strong thermal lensing can promote pronounced
spherical aberrations [1, 2].

Over the last years, the continuing technological progress
and innovations in lasing materials, in fabrication of sophis-
ticated optical fibers and of beam-shaped high-power diode
lasers have positioned the optical fiber technology as one
of the most promising ones in order to develop a new
generation of mid-IR sources [1, 2]. The compact footprint
size, the rather cheap and simple maintenance, and the
higher lasing efficiency make mid-IR fiber lasers attractive for
ICT, industrial, and medical applications.

Silica-based fiber lasers have proved to be both efficient
and compact sources in the near-IR wavelength range, but
they are not able to provide mid-IR wavelengths because
of their high phonon energy and their limited transparency
beyond the wavelength of 2um. Various watt-level rare-
earth-doped ZBLAN fiber lasers, oscillating in the spectral
region around 2.7 microns in the CW mode, have been
developed [1, 3]. Recently, the highest single-mode output
power of about 20 W has been obtained with an Er’*-doped
fluoride glass fiber laser emitting at 2.8 ym [4]. In particular,
a passively cooled setup, a 976 nm pump source, and a
truncated circular pump cladding were employed. Moreover,
a slope efficiency higher than the Stokes efficiency was
achieved. This is the experimental confirmation of the pump
energy recycling in a fiber laser. Ho’*-doped ZBLAN fiber
is able to oscillate at 2.9 microns, but one of its significant
shortcomings is the lack of ground state absorption that
overlaps with conventional high-power pump sources [5]. As
a result, the sensitization of Ho?* with Yb3* or Pr3* has been
implemented in order to access the convenient absorption
bands and to achieve higher output power without the costly
requirement of an intermediate laser system [6-8]. Dy**-
doped ZBLAN fiber lasers also can oscillate at 2.9 micron,
but their output power and slope efficiency are low [9].
The operation of lasers at 3.22, 3.45, and 3.95 microns has



been obtained by doping ZBLAN fiber with holmium and
erbium, but an increasing of the pump threshold and some
saturation of the output power have been observed [10—
13]. This problem combined with the use of unconventional
pump sources has prevented the full utilization of these
systems. As a consequence, it is clear that the fiber laser
technology based on oxide and fluoride glasses is only useful
for laser transitions up to 3 microns.

Advances in the fabrication of rare-earth-doped opti-
cal fibers based on chalcogenide glasses have dramatically
pushed progress on active devices operating at wavelengths
higher than 3 microns [14-18]. Chalcogenide glasses are
chemically and mechanically durable, have a low toxicity,
possess reasonably large glass-forming regions, and can be
fabricated into low-loss fibers. Moreover, their high refractive
index (2 + 3) and low phonon energy (250 + 400 cm™!) result
in a larger radiative decay rates, high absorption and emis-
sion cross sections of radiative electronic transitions, and low
nonradiative multiphonon relaxation rates. These properties
result in high quantum efficiency [14]. The electronic energy
levels of rare-earth ions allow a number of useful transitions
from 2 to 12 microns. However, only a few glass hosts can
efficiently activate transitions at longer wavelengths. The
low phonon energy of the chalcogenide glasses enables an
efficient laser transition between closely spaced electronic
energy levels allowing many IR transitions. As an example,
chalcogenide glasses make possible the radiative transition
from *Iy1/; to #1153/, erbium energy levels, quenched by the
multiphonon decay in silica glasses, and from *Iy/; to #1112,
quenched in fluoride glasses. Furthermore, the high rare
earth solubility into several chalcogenide glasses facilitates
the fabrication of efficient rare earth doped lasers and
amplifiers since ion clustering and concentration quenching
effects are minimized.

The chalcogenide glasses have been used to fabricate con-
ventional optical fibers doped with a number of rare-earth
ions for mid-IR luminescence [14, 15]. Unfortunately, the
technology used to fabricate low-loss single-mode chalco-
genide fibers in step-index configuration requires significant
care and expertise. In fact, the different physical properties
of the core and cladding glasses promote crystallization,
bubbles, contamination at the core/cladding interface, and
core ellipticity. Moreover, it is difficult to fabricate step-
index fibers having very small and very large mode area,
because a fine control of the refractive index of the core and
cladding cannot be obtained. In order to overcome these
problems, the use of photonic crystal fiber (PCF) technology
is a feasible and attractive solution. In fact, it eliminates
the problems induced by the core/cladding interface since
a single materials is used. In addition, the single-heating
step used to make the PCFs allows both the reduction of
the crystallization problems and fiber losses. Lastly, the high
refractive index of the chalcogenide glass enables a better
confinement of the light by using only a few rings of air
holes [19, 20]. The first chalcogenide PCF made of only one
ring of air holes was presented in [20]. Recently, progresses
on the GasGeySb19Ses (252G) fiber fabrication using the
“Stack and Draw” procedure were illustrated in order to
build complex and regular PCFs made of several rings of
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holes [19]. Small-core PCFs made of chalcogenide glass
252G with single-mode operation for wavelength higher than
1550 nm have been obtained [21]. Moreover, the fabrication,
linear and nonlinear optical characterization, and numerical
simulations in the middle infrared of PCFs in different kinds
of chalcogenide glass have been presented [16, 17, 19].

2. Chalcogenide Photonic Crystal
Fiber for Midinfrared Amplification

A number of different rare-earth elements, such as erbium,
ytterbium, praseodymium, neodymium, samarium, and
thulium, can be used to fabricate fiber amplifiers operating
at different wavelengths. In particular, erbium doped fiber
amplifiers (EDFAs) are nowadays available for long-haul
communication systems, allowing to abandon the use of
optoelectronic and electrooptical conversions of signals.
These devices are very attractive because of their high
gain, wide optical bandwidth, high output saturation, near
quantum-limited noise, low insertion losses, high reliability
and compactness, polarization independence, immunity
to saturation-induced and to crosstalk, and possibility of
choosing the pumping laser diode at 980 nm or 1480 nm
wavelengths.

Although this kind of technology is mature and widely
employed, further researches are needed to obtain ampli-
fiers with higher gain efficiency. The optimization of fiber
transversal section is crucial to improve the amplifier
performance in terms of gain, noise, and output power
characteristics as well as device compactness and pump
power consumption. In fact, in the rare-earth-doped devices,
the fiber geometry strongly affects the pump intensity, the
overlap of the pump, and the signal propagation modes
with the doped core. As a consequence, it can lead to the
suppression of the amplified spontaneous emission (ASE),
the power scaling and the maximum inversion of rare-earth
ions as well as to the reduction of the fiber length.

Sophisticated design methods and fabrication techniques
have been developed to construct single-mode optical fiber
amplifiers. To this aim, a fine control of refractive index
profile of both core and cladding as well as more design
flexibility of fiber cross section is needed. The conventional
optical fibers are not able to completely respond to these
requirements, while the PCF technology seems to be an
attractive solution. A PCF is typically characterized by
a transverse crystal lattice (usually periodically arranged)
containing either air holes or glass strand running along the
fiber axis. As a consequence, these fibers are different with
respect to the conventional ones, and the main difference is in
the refractive index profile of both core and cladding regions.
The unique properties of PCFs are extremely attractive for a
variety of rare-earth-doped fibers and devices because they
enable more flexibility to control the interaction of both
pump and signal modes with the rare-earth-doped host.
In addition, the stacking procedure used to fabricate such
fibers offers the possibility to accurately confine the rare-
earth dopant in the central region of the fiber where the
pump and signal intensity peaks occur [15, 22, 23].
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In addition to the solid-core PCEF, typically exploited
for both optical amplification and nonlinear applications,
hollow-core photonic-bandgap-chalcogenide fibers for high
power mid-IR laser transmission and power delivery have
been successfully fabricated [15, 24]. As an example, Figure 1
shows two prototypes made by Naval Research Laboratory,
Washington, USA [15], to fabricate (a) photonic-bandgap
fiber structures and (b) PCF structures. Moreover, the
optimization procedure of both the cladding structure and
the core size to obtain the overall losses lower than the
material ones, the realization of a hollow-core PCF having six
rings of air holes, and the comparison between experimental
results and simulations are illustrated in [23].

The well-known PCF technology, allowing endless single
mode propagation and group velocity control, via a proper
design, exhibits further intriguing potentials coupled to
the broad-bandwidth transmission, typical of chalcogenide
glasses. In addition, the high quantum efficiencies of the
mid-IR transitions make rare-earth-doped chalcogenide
fibers attractive alternatives to obtain black-body sources for
generating emission in the 3-5 ym wavelength range.

As an example, Figure2 shows a diode-pumped
Pr’*-doped selenide glass fiber source, demonstrating broad-
band emission in the wavelength range 3—5 ym [15].

On the basis of the optical and spectroscopic parameters
measured on fabricated Er’*-doped solid core chalcogenide
PCFs, the design of active devices in both near and medium-
infrared wavelength range has been numerically performed
[25-27]. The feasibility of Er’*-doped, 252G chalcogenide
glass has been demonstrated in order to obtain a high-
performance optical amplifier in the third band of fiber-
optic communication [25]. In particular, the gain and
noise figure performances have been evaluated by varying
numerous parameters such as doping region radius, erbium
concentration, signal wavelength, input pump, and signal
power. Figure 3(a) shows the image of the fabricated PCF
considered in the simulations. Figures 3(b)-3(d) show the
dependence of the optimal gain, optimal length, and noise
figure as a function of the signal wavelength for the three
different input pump powers. The effect of the variation of
the erbium concentration, radius of the doped region, and
the excited state absorption (ESA) at the pump wavelength
on the amplifier characteristics has been investigated, too.
In particular, the calculated optical gain of the optimized
PCF amplifier, 2.79 m long, is close to 23 dB at the signal
wavelength of 1.538 ym, by using a pump power of 200 mW
and a signal power of 0.1uyW. This result indicates that
the proposed fiber amplifier could be a good candidate in
optical communication networks and systems. Therefore,
by considering that (i) the high refractive index and the
low phonon energy of the chalcogenide glass increase the
efficiency of transitions among rare-earth energy levels;
(ii) the excellent rare-earth solubility in chalcogenide glass
allows high dopant concentration, without ion clustering
and concentration quenching effects, fiber amplifiers based
on chalcogenide glasses, operating at 1.5 ym, exhibit higher
pump conversion efficiency and shorter fiber lengths than
those based on silicate glasses.

(b)

FIGURE 1: Attempts made by Naval Research Laboratory, Washing-
ton, USA, to fabricate (a) photonic bandgap fiber structures and (b)
PCF structures by exploiting chalcogenide glasses [14].
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FIGURE 2: Pr’*-doped chalcogenide fiber source with broadband
emission in the 3-5 ym wavelength region [15].
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Moreover, simulation results regarding the propagation
of pulse in Er3+-doped, GasGey0Sbi9Ses chalcogenide glass
amplifiers have been reported in a recent work [28]. The
authors studied the effect of gain saturation on the propa-
gation of fundamental dark soliton and verified that the dark
soliton is more stable in the presence of gain saturation and
gain dispersion effects. In particular, they showed that (i)
bright solitons with energy less than the saturation energy
are divided into many subpulses with time symmetry, (ii)
bright solitons with energy close to the saturation energy are
divided into many subpulses without time symmetry, and
(iii) dark solitons in the absence of the gain saturation are
amplified without creating any subpulses. These properties
make possible the use of chalcogenide glasses for designing
all optical devices.

Recently, a detailed spectroscopic study of Er’"-doped
252G glass has been illustrated [27]. This doped glass

(i) facilitates the optical fiber drawing, since it presents
suitable thermo-mechanical properties, (ii) provides a better
solubilization, since it contains gallium, and (iii) enables
efficient 4111/2 — 4113/2 (27 ym) and 419/2 - 4111/2 (4.5 ym)
mid-IR transitions. The radiative lifetime of *Fo,5, *Io/2, *111/2,
and *1;3/, energy levels and the related branching ratios are
determined. The estimation of Er** emission cross section in
the mid-IR spectral range was 2.85 X 1072 m? at 4.6 ym. The
*I9/, radiative quantum efficiency was estimated to be 64%.
The propagation of fluorescence signals around 2.7 ym and,
for the first time, around 4.6 ym was clearly observed in two
2G2S fibers doped with erbium ions under laser pumping at
804 nm. In Figure 4 are reported the fluorescence intensities
in (a) near-IR and (b) mid-IR emission bands with 804 nm
laser pumping of a 1000 ppm Er’*-doped 252G glass.

The design and refinement criteria pertaining to the
chalcogenide erbium-doped PCF amplifier based on a 252G
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FIGURE 4: Fluorescence spectra of 1000 ppm Er-doped 252G glasses
pumped at 804 nm. (a) 1.5 and 1.7 ym emissions and (b) 4.5 ym
emission from a bulk glass, 20 cm of a 400 ym diameter monoindex
fiber, and 20 cm of a 60 ym core diameter double index fiber [24].

glass, allowing the operation at 4.5 ym, were illustrated in
[26]. The absorption cross-section spectrum employed in the
simulation has been experimentally measured. In particular,
the fluorescence spectrum of Er’* ions around 4.5 m is exper-
imentally recorded for a 10000 ppm-doped chalcogenide
glass and the emission cross section of the *Io, — 4131,
transition is then calculated using the Fuchtbauer-Ladenburg
relation. High-gain PCF amplifier with gain values close
to 30dB, with a low value of noise figure and reduced
fiber length has been theoretically demonstrated. A good
amplification in the range 4.4-4.7 ym was calculated; thus

the amplifier, opportunely optimized, could be employed
in multichannel amplification application. These theoretical
and experimental results demonstrate the suitability and
goodness of the 252G chalcogenide glass as an attractive
candidate to construct fiber amplifiers operating in the mid-
IR spectral region.

The technological improvement in drawing chalcogenide
fibers is an important research goal since soft glasses
exhibit several drawbacks with respect to more conventional
materials as silica or fluoride glasses. As an example, a
new route to chalcogenide glass microstructured optical fibers
(MOFs) was illustrated in [29]. The work demonstrated a
flexible technology of great potential for new fiber devices
from the far-visible to midinfrared. The approach was both
scalable and adaptable. In particular, an Assy Seg glass tube
of 3.8 mm/10 mm internal diameter/outer diameter was cast
by rotation. Into this tube were stacked eight fibers: one
As Se fiber was located centrally to obtain the core; seven
Ge As Se-As Se core-cladding (core-clad) fibers that were
stacked around the core fiber. The aforesaid core-clad fibers
were drawn from a preform prepared by coextrusion. The
microstructured preform was drawn down to MOE.

The refinement of novel technological routes, devel-
oped even in other application fields, for example non-
linear optics, could find application also in the field of
lasing\amplification. In [30] the authors presented a detailed
design of a highly nonlinear chalcogenide core tellurite
cladding composite microstructured fiber. The fabrication
procedure for the microstructured fiber was illustrated. The
applications to nonlinear phenomena were demonstrated
by mean of a supercontinuum generation experiment.
The application of nonlinear optics to lasing is apparent
in the case of Raman amplification. The operation of a
chalcogenide glass Raman fiber laser was reported in [31].
In the aforesaid work, to mitigate photoinduced effects
and minimize impurity absorption, a 2051 nm Tm’*-doped
silica fiber laser was employed as the pump source. First
Stokes emission at 2062 nm was produced, an output power
of 0.64 W and a slope efficiency of ~66%. Second Stokes
output at 2074 nm was produced when the fiber length was
extended.

3. Chalcogenide Photonic Crystal
Fiber for Midinfrared Sources

In medical and surgical applications the output laser
properties such as power and wavelength are important
aspects to be recognized. Beyond these ones, other practical
quantities such as size, maintenance level, and input power
requirements are essential features to be taken into account
for a widespread use of the laser in the medical community.
Moreover, other laser characteristics such as beam quality
may be important for applications requiring precise and
efficient ablation of hard and soft biological materials
[32-34].

The recent technological progress in the development of
lasing materials, in the fabrication of sophisticated optical
fibers, and in the fabrication of beam-shaped high-power



diode laser has positioned the infrared fiber laser as one of
the most promising technologies in bioscience and medicine.
In surgery: cardiology bloodless operations, on abdominal
and thoracic organs, skull and brain microsurgery, corneal
surgery. In diagnostics: endoscopic investigations, confocal
scanning microscopy and optical coherence tomography.
In therapy: the treatment of cancer, spider veins, and
vascular dysfunction. In cosmetics and aesthetic medicine:
smoothing wrinkles, resurfacing the skin, and bleaching
tattoos [35]. Therefore, due to their inherent flexibility of
physical principles and design, fiber lasers have enormous
potential to bring new opportunities to biophotonics and
biosciences.

Generally, a lot of medical applications require the mid-
infrared wavelengths, in the range 2 + 10 ym. In particular,
laser emitting in the 2-3 ym range has gained, in recent years,
strong attention for accurate cutting, welding, removing, and
coagulating of soft and hard biological tissues. Moreover,
mid-IR laser is a promising technology for the study of
biomolecules because most of these ones have a specific
absorption in the mid-IR wavelength range, and the photon
energies are an order of magnitude lower than those of UV
lasers. Significant efforts have been done to develop mid-IR
fiber lasers and amplifiers, but the high cost of fabricating
fibers with sufficiently low losses in such wavelength range
has slowed down the research efforts in this field. This is
probably due to a lack of host materials having wide optical
transparency, good drawing ability, low phonon energies
of the glass matrix, good rare-earth solubility, suitable
environmental durability, and mechanical properties.

Advances in the development of rare-earth-doped optical
fiber based on chalcogenide glasses have dramatically pushed
progress in mid-IR laser devices. In particular, the good
midinfrared transparency permits them to scan the entire
spectral range of biomolecules and the chalcogenide glass
resistance to the chemical corrosion results in good biocom-
patibility with biological components.

The feasibility of a novel Er’*-doped chalcogenide PCF
laser, operating at 4.5um, was shown [36]. In order to
increase the pump efficiency, a theoretical investigation of
an innovative cascade laser source operating at 4.5m and
2.7 ym is performed by using the erbium ion concentration
Ng: = 7 X 10% ions/m>. Both erbium concentration and
fiber length were optimized to provide the maximization
of the output power for both two signal wavelengths.
In particular, the numerical results indicated that a laser
characterized by a slope efficiency close to the maximum
theoretical one, low threshold pump power, short fiber
length, and a wide tunability in the mid-IR wavelength
range can be obtained. In conclusion, both the theoretical
and experimental results demonstrated the suitability of the
252G chalcogenide glass as a very attractive candidate to
construct fiber laser sources and amplifiers operating in
the mid-IR spectral region. Moreover, the feasibility of a
novel Er’*-doped 252G chalcogenide fiber laser, pumped
at the wavelength 806 nm, designed in order to obtain
high performance at the wavelength 4.5 ym, is investigated
in [37]. In particular, the developed numerical code takes
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into account the erbium energy levels lifetimes, the emis-
sion and absorption cross section measured on 10000 ppm
Er’*-doped 252G preliminary sample. The large potential
of chalcogenide glass was also highlighted in the review
work [38], where it was briefly illustrated that the fiber laser
configuration offers better beam quality than competing
technologies, for example, than quantum cascade lasers and
transition-metal-doped selenides, and more versatility for
pulsed operation.

The performance of a continuous-wave Dy: GeAsGaSe
chalcogenide glass fiber laser, in cascade configuration, oper-
ating at 4.2—4.7 m, was investigated via numerical modeling
in [39]. Pump light at 1710nm was coupled into the
Dy: GeAsGaSe chalcogenide glass fiber. The Dy ions were
promoted to the level °H;y,,. Fluorescence from level °Hj,/,
to the level °Hj3/; occurring between 4000 and 4800 nm was
exploited to obtain the lasing via two fiber Bragg gratings.
In addition, the other fluorescence from level °H;s/, to the
ground state occurring between 2700 and 3400 nm and the
simultaneous lasing were considered by using two additional
fiber Bragg gratings with the aim to improve 4600 nm
emission. Figure 5 illustrates the output power versus the
input pump power for a fiber length L = 2.1m and
propagation loss of 1dB/m at all wavelengths. The inset
highlights that the slope efficiency strongly can be strongly
increased when the idler reaches 0.2 W.

A better understanding of the local RE-ion environ-
ment to obviate unwanted nonradiative decay will permit
to improve chalcogenide laser performance. Also a better
understanding of the impact of host chalcogenide glass native
defects on the doped RE-ion fluorescence could be a key
element to obtain more efficient chalcogenide lasers.
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It is well known that soft glasses as tellurite, bismuth-
oxide-based glasses, and chalcogenide glasses have intrinsic
nonlinearities from 10 to 100 times than those of silica glass
[39]. Moreover, the Raman gain coefficients of chalcogenide
glass fibers are very high, ~300 times than that of silica
fibers, and the Brillouin gain coefficient is more than 2 orders
of magnitude higher than that of silica-based fibers. They
show low linear absorption, low two-photon absorption,
and fast response time because of the absence of the free-
carrier effects [30]. As a result, optical fibers made of such
glasses, especially, chalcogenide glasses, are highly applicable
for generating mid-IR nonlinear phenomena, short active
fiber devices and achieving fiber Raman and Brillouin lasers
(30, 40-43].

Nonlinear optical processes such as four-wave mix-
ing, parametric oscillation, and supercontinuum generation
require high nonlinearity and zero or low group velocity
dispersion for applying in the efficient low power, short-
length fiber devices. Moreover, the group velocity dispersion
is due by both the material and waveguide dispersion.
Generally, because of the high refractive index, the dispersion
of chalcogenide glasses originates mainly from the material
dispersion and the zero-dispersion wavelength lies in the IR
region, at longer wavelengths compared to silica and far from
the wavelengths of conventional fiber-based pump lasers.
Consequently, the use of nonsilica fibers to develop super-
continuum sources having an efficient spectral broadening
up to the mid-IR often requires expensive and high-power
pump lasers. The photonic crystal fiber technology seems to
be a potential solution to these drawbacks since the design
flexibility of the microstructure in the transverse plane can
help the tuning of the chromatic dispersion, dispersion slope,
relative dispersion slope, and zero-dispersion wavelength
in a way which cannot be achieved by using conventional
fibers. In fact, the number of holes, their sizes, shapes,
orientations, and placements, as well as the nature of the bulk
dielectric material and the refractive index of the inclusions
can provide a number of possible variations enabling a fine
control of the waveguide dispersion characteristics. In this
way, the zero-dispersion wavelength can be tuned below
2um where cheaper diode-pumped solid-state lasers are
commercially available. Recently, a midinfrared extension of
supercontinuum has been experimentally demonstrated by
using a suspended core chalcogenide fiber [44]. In particular,
it has shown that by using a low-cost optical quasi-CW
source at 1.53 ym, it is possible to extend a silica-based
supercontinuum beyond 2.4 ym through the generation of
a soliton gas inside an highly nonlinear silica fiber and its
injection beyond the ZDW in a 50 cm-long chalcogenide
suspended core PCFE. Highly nonlinear chalcogenide core
tellurite cladding composite microstructured fiber has been
carefully designed and fabricated in order to achieve the
zero-flattened chromatic dispersion with zero slope of the
dispersion curve at 1.55 ym [30]. In particular, the nonlinear
coefficient for the fabricated fiber is 9.3 m~! W~! at 1.55 ym.
In addition, a supercontinuum spectrum of 20 dB bandwidth
covering 0.80-2.40 ym was generated by this fiber.

4, Conclusion

The progress and the challenges, in fabricating rare-earth-
doped chalcogenide-glass fibers for developing midinfrared
fiber amplifiers and lasers, have been reviewed. Potential
applications of midinfrared fiber lasers have been recalled. In
particular, biomedicine and sensing will be strongly favored
by these devices. New communication and remote sensing
systems operating in unexplored atmosphere wavelength
windows could become feasible. Further efforts in technol-
ogy and glass purity will permit to obtain more efficient
amplification and lasing and to fabricate reliable devices for
the market.
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An optical amplifier based on a tapered fiber and an Er**-doped chalcogenide microsphere is designed and optimized. A dedicated
3D numerical model, which exploits the coupled mode theory and the rate equations, is used. The main transitions among the
erbium energy levels, the amplified spontaneous emission, and the most important secondary transitions pertaining to the ion-ion
interactions have been considered. Both the pump and signal beams are efficiently injected and obtained by a suitable design of the
taper angle and the fiber-microsphere gap. Moreover, a good overlapping between the optical signals and the rare-earth-doped
region is also obtained. In order to evaluate the amplifier performance in reduced computational time, the doped area is partitioned
in sectors. The obtained simulation results highlight that a high-efficiency midinfrared amplification can be obtained by using a

quite small microsphere.

1. Introduction

In recent years, the micro- and nanospherical resonators have
attracted great interest for their high quality Q-factor, mate-
rial versatility, manufacturing easiness, and dopant hosting
flexibility for active devices. In rare-earth-doped micro-
spheres, Whispering Gallery Modes (WGMs) can strongly
enhance the light-matter interaction, because of their very
high Q-factor and small mode volume. A number of appli-
cation fields could exploit the intriguing WGM properties,
such as those involving polarization transmission, coupled-
resonator-induced transparency, biosensor analysis [1, 2],
nonlinear optics, cavity quantum electrodynamics (QED),
and quantum information processing [3].

Rare-earth-doped microspheres based on silica, phos-
phate, tellurite, and ZBLAN glass host materials [3-7] show
ultralow lasing thresholds and very narrow emission line-
widths. Chalcogenide glass has recently attracted significant
interest as a material for the manufacturing of active micro-
sphere resonators. In fact, they exhibit lower modal volumes,
higher refractive indices, and high absorption and emission
cross-sections [8]. Moreover, these glasses allow realizing
efficient mid-IR amplifiers, thanks to their low phonon
energy and to their high capability to host rare earth ions.

In this work, the mathematical model of a microsphere
amplifier is described. The signal wavelength is A, = 2.76 ym
and the pump wavelength is A, = 980nm. The model
appears more complete than those reported in the literature
for active [9—11] and passive [12, 13] devices and it improves
the previous work [14]. It involves the coupled mode theory
and the rate equations and it allows the simulation of a
tapered fiber coupled to the rare-earth-doped chalcogenide
glass microsphere. The following features are considered: (i)
the radiative and nonradiative rates, at both pump and signal
wavelengths, (ii) the stimulated emission at the signal wave-
length, (iii) the amplified spontaneous emission noise (ASE),
(iv) the lifetime of the considered energy levels, and (v) the
ion-ion energy transfers. The model is implemented with a
homemade 3D numerical code and the numerical results are
shown.

The paper is structured as follows: Section 2 includes the
mathematical model, Section 3 the numerical results, and
finally Section 4 the conclusions.

2. Mathematical Model

A sketch of the considered system is shown in Figure 1.
It consists of a microsphere and a tapered fiber both in



Signal
P

International Journal of Optics

Pgut
Pump
Signz l
Signa

S
Pom

FIGURE 1: Schematic of a microsphere coupled to a tapered fiber.

GasGeySbioSes chalcogenide glass. Py’ and Pi" stand for the
input pump and signal powers, respectively, P;"* and PP
for the output pump and signal powers, respectively, § is the
angle of the taper, g is the gap between the cavity and the
fiber, Ry is the sphere radius, and a is the waist fiber radius
and S is the thickness of doped area.

By assuming that the input signals are narrowband, each
one gives rise to a single [, m, n WGM within the micro-
sphere. Moreover, on the assumption that the microsphere
is only doped in the outer layer, the most amplified WGM is
the fundamental one (n = 1).

Figure 2 shows the transitions among the energy levels
considered in the developed numerical code. In particular,
the population inversion is possible between *I11/, and I3/
energy levels, by pumping at the wavelength A, = 980 nm.
As a consequence, the amplification can occur at the signal
wavelength A; = 2760 nm. Moreover, the energy transitions
due to cross-relaxation and cooperative upconversion effects
have also to be considered in the simulations, because of the
high dopant concentration and the comparable lifetime of
11372, *1112, and *Ig/; energy levels. The numerical values
of absorption, emission cross-sections, upconversion, and
cross-relaxation coefficients as well as the energy level life-
times are reported in Table 1.

The active behavior is modeled by calculating the cou-
pling coefficients, the quality factor, the mode volume, the
transition rates. These parameters are obtained with an
accurate evaluation of electromagnetic field mode properties
in both fiber and microsphere [15]. The following conditions
are considered:

(i) the energy gaps between the Stark levels of each
manifold are small when compared to the energy
separation between different manifolds;

(ii) the rates between the Stark levels are much faster than
those between two different manifolds;

(iii) the population in any manifold is in local thermal
equilibrium with the glass lattice.

The following differential equations describe the time-
variation of the field amplitude A, (signal) and A, (pump)

TaBLE 1: Spectroscopic parameters of Er’*-doped GasGe;SbyoSes
chalcogenide glass.

Values
1.32 X 10" m?
1.60 x 10" m?

Parameters

o3 at 980 nm
03 at 2760 nm

Css 20X 107 m?s~!
Cx 30 X 107 m?s7!
Cy 5% 107 m?s!
T 1.83 X 107%s
T3 137 x 107%s
Tu3 1.08 X 107%s
T54 0.13x107%s

inside the microsphere, considering both the dopant ions
and the fiber coupling:

dAs(t) _ 1( 1
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where A" and Ag‘ are the field amplitudes at the input end
of the optical fiber; being a = {s, p}, Aw?® = wiom — Wi
is the frequency detuning of the fiber input signal from the
WGM frequency wwem, T¢ = 2mRyndy/c is the circulating
time inside the microsphere (round trip time), c is the speed
of light in vacuum, and nZ is the WGM effective refractive
index. More precisely, the effective index is almost constant
in the resonance bandwidth, because of its narrowness. As a
consequence, the modal dispersion can be neglected, and the
group index results are almost equal to the effective index.
The intrinsic lifetime is 79 = 1/(k3) = Qo/wwgm, where
Qo is the intrinsic quality factor. ko is the intrinsic cavity
decay rate, which depends on the total losses due to material

(1
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FiGure 2: Diagram of energy levels.

absorption, surface scattering losses, radiative losses, and
whispering gallery losses. Both the radiative and surface scat-
tering losses can be neglected in the microspheres having the
diameter around a few tens of microns and a perfect surface.
The coupling lifetime 7oy = 1/x%, = mn/(wK?), where Key; is
the cavity decay rate or coupling coefficient, denotes the cou-
pling phenomenon between microsphere and optical fiber.
The field overlapping, K, is calculated according to the
overlap integral [15]:

K=J kg (2 — ng)
v 2By

where ko = 271/A; ns and ny are, respectively, the wave vector
in the vacuum, the microsphere, and background refractive
indices; 3 is the fiber propagation constant; E is the electric
field of the fiber fundameptal mode; E is the WGM field
both normalized on the 7 - 6 plane. Moreover, in (1) the gain/
attenuation due to the dopant ions, evaluated over a round-
trip, is defined as follows:

Ef -ES*dV, (2)

5 i-1
8= ﬁFaZZ(Ni%' ~Njow) a=lsph )
Meff  i22j=1

where Nj is ion population of the i-th energy level, oj; is
the absorption cross-section, and o;; is the emission cross-
section, T', is the overlap factor of each WGM with the rare-
earth-doped region. The N; values are obtained by using the
rate equation model, arising from the energy level diagrams
in Figure 2 and reported in [14].

The evolution of both the pump and signal field ampli-
tudes at the fiber output end is given by:

A2Ut(t) — \/jAlun(t)—f—]\/?Aa(t) a= {S)p}>
Text Text
(4)

where A, is evaluated at the nearest point between the micro-
sphere and the optical fiber (» = Ry, 8 = 0, ¢ = 7/2). Finally,

the overall gain (transmittance) of the amplifier, is calculated

by using [16]:
2
T: T: A
= [\l - =5 +j 55
' Text J Text AP

3. Numerical Results
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The developed numerical code has a low computational cost
(reduced computational time and memory) compared with
FDTD and FEM-based algorithms. Moreover, it is flexible
and it can be easily used to evaluate the amplifier perfor-
mance in several configurations. In fact, the geometrical
parameters (e.g., Ry, 8, a, g), the operational ones (e.g., mod-
ulation, frequency, power of the input signals) as well as the
physical ones (the rare earth concentration, the thickness of
the doped region, and the refractive indices) can be varied.
Moreover, the numerical code can be easily extended to the
analysis of more complex rare earth and lasing systems.

A number of simulations have been performed to
demonstrate the feasibility of 2760 nm signal amplification.
In particular, a parametric investigation is carried out to eval-
uate the amplifier performances. In the simulations, the fol-
lowing parameters are used: input signal power PI* = 10 nW,
input pump power P},n = 100 mW, thickness of doped region
S = 3um, for which the corresponding overlap factors are
Is = 0.89 for the signal and I’y = 0.99 for the pump.

Figure 3 depicts the signal gain as a function of fiber-
microsphere gap g, for three different microsphere radii Ry =
20 ym, 30 yum and 40 ym, with the taper angle § = 0.03 rad,
and dopant concentration equal to 0.5% in weight percent-
age (Niot = 5.77 X 10%° ions/m?). It can be observed that the
gain increases with the gap until a value beyond which the
transmittance drastically decreases. This is caused by the
undercoupling condition for the power signal, being low the
power coupled to the microsphere. Undercoupling condition
occurs for smaller gap by increasing the microsphere radius,
since the structure better confines the evanescent wave.

Figure 4 illustrates the signal gain as a function of the
taper angle 6, for three different fiber radii ¢ = 500nm,
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FiGure 3: Signal amplification as a function of fiber-microsphere
gap g for three different microsphere radii.
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FIGURE 4: Signal amplification as a function of the taper angle for
three different values of the waist fiber radius.

650nm, and 800 nm. The choice of the range of the taper
angle takes into account the structure durability. The geo-
metrical and physical parameters are Ry = 30um, g =
540 nm, and Nio; = 5.77%10% ions/m?. If the fiber radius a =
500 nm, the gain increases by decreasing the taper angle and
also the decreasing of the coupling factor occurs. Moreover,
the amplification occurs for high coupling factor values, cor-
responding to high taper angle values. In particular, the min-
imum 6 value required for the signal amplification depends
on the fiber radius. In fact, by using a small fiber radius,
the increasing of the coupling factor occurs due to the
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FiGure 5: Signal amplification as a function of the taper angle for
three different values of the waist fiber radius.

enhancement of the output evanescent wave. In Figure 4, the
undercoupling condition is not occurring for the whole &
range, if a = 500 nm; whereas the undercoupling condition
occurs for § < 0.035rad, if a = 800 nm.

Figure 5 depicts the signal gain as a function of a fiber
radius, for three microsphere radii Ry = 20um, 30um,
40 ym, with taper angle § = 0.03 rad, and dopant concentra-
tion Niot = 5.77 X 10%° jons/m>. These fiber radii have been
considered because lower values determine a signal leakage
due to the low confinement strength at the signal wavelength.
Whereas, the greater radii induce a multimodal propagation
at the pump wavelength. The maximum gain value occurs
for the microsphere radius Ry = 40 ym and fiber radius a =
500 nm. Moreover, by increasing the fiber radius, the cou-
pling decreases leading to the undercoupling condition and
reducing the amplifier performances.

Figure 6 shows the signal gain as a function of the
erbium concentration N, for three different microsphere-
fiber gaps ¢ = 500 mm, 550 mm, 600 mm, with § = 0.03 rad,
Ry = 30pum, a = 700 nm. By increasing the ion concentra-
tion, the enhancement of the signal amplification occurs
until a threshold value. In fact, if high erbium concentrations
are used, the population inversion occurs as long as the
available power is sufficient. The threshold value can be suit-
ably increased by enhancing the coupling (e.g., by reducing
the gap) or decreased by reducing the coupling (e.g., by
increasing the gap). Low gap values induce the cavity power
reduction, reaching the value not allowing the doped ion
population inversion, thus limiting the amplifier perfor-
mances.

4. Conclusions

In this paper, an Er**-doped chalcogenide microsphere
amplifier evanescently coupled with a tapered optical fiber
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FIGURE 6: Signal amplification as a function of the erbium concen-
tration for three different values of fiber gap.

has been designed by means of a homemade 3D numerical
code. It includes both the rate equation and coupled mode
theory models. Spherical coordinates are used to find the
solution of the scalar Helmholtz equation needed for the
electromagnetic analysis of the microsphere. The homemade
numerical code allows to evaluate the amplifier performance
by changing several parameters: fiber-microsphere gap,
thickness of erbium doped region, fiber taper angle, erbium
concentration, and operative parameters such as pump and
signal power.

The microsphere resonator shows low threshold power
(=~ 80mW) and high gain (= 8 dB) at the signal wavelength
A = 2760 nm. Moreover the total size of the device is few
tens of microns. As future developments, slow light phe-
nomenon could be obtained, exploiting the coherent pop-
ulation oscillations in order to realize buffers for optical
telecommunications and optical logic gates. In addition, this
device could be used to generate low threshold pump powers.
Finally, the model can be easily extended to take into account
both the mode degeneracy and the multimodal pump and
signal, in order to match the simulation dynamics with the
realistic device one. As a drawback, a more complete calcu-
lation will require more computational time.
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Interferometric switching as a routing method in sequence of coupled optical microresonators is explored. Mach-Zhender
interferometry is extended to systems of side-coupled integrated sequences of resonators (SCISSORs) and coupled resonators
optical waveguides (CROWs). We generalized Coupled Mode Theory (CMT) to a system of three coupled waveguides. The two
bus interferometric switching functions of SCISSOR and CROW resonant structures are investigated. A novel switching device
based on three input phase modulation ports is presented. This device displays a wide range of switching behaviors which might

lead to new interesting applications.

1. Introduction

The tremendous growth of communication services and
information technologies demands new and enhanced net-
working capabilities. Switching is one of the main functions
of communication systems and networks. In particular, novel
optical switching technologies have the potential to play a
decisive role in future telecommunication and information
processing systems. The extensive deployment of wavelength
division multiplexing (WDM) technologies demands for
high-speed, scalable, and rapidly reconfigurable network
switching. Several optical switching technologies exist, like
electrooptic (EO), acoustooptic (AO), thermooptic (TO),
optomechanical (OM), and optical amplifier (OA) based
switching. Refractive index modulation, inducing phase dif-
ferences for switching functionalities, resorts especially to
EO or TO effects. These are widely used in directional
couplers, Mach-Zehnder interferometers, and multi-mode
interference (MMI) switches (for a good review see, e.g.,
[1]). The present paper focuses on some possible extensions
of these interferometric techniques by means of sequences
of microoptical resonator systems, like SCISSORs (side-
coupled integrated spaced-sequences of resonators) and
CROWSs (coupled resonator optical waveguides) [2-6]. A
particular combination of these allows to use three input
waveguides for amplitude and phase modulation. The

advantage of a system of resonators over conventional single-
resonator scheme coupling is its larger spectral band, the
possibility to operate through interferometry on several
channels and its higher design flexibility. In particular, this
latter aspect allows for a diversity of behaviors compared to
usual directional coupling switching.

The practical realization of such kind of phase switching
devices is, however, still limited by present photonic fabri-
cation tolerances. Phase shifting of light requires the same
interferometric precision as the device operation itself. For
example, the phase difference between two interfering light
beams needs to be tightly controlled at the subwavelength
level to provide efficient switching. Even more sensitive to
small deviations from the nominal parameters are devices
where coherent addition of signals is achieved by arranging
complex systems of resonator chains. These require nanome-
ter level accuracy in the fabrication of the single resonators
and their mutual spacings. For instance, coupled resonator
induced transparency (CRIT) effects emerge easily only for
few nanometer deviations [7-12]. However, while present
optical lithography still suffers of few nanometers impre-
cision needing further improvements, the next generation
optical lithography is likely to achieve an order of magnitude
leap in accuracy paving the way to novel interferometric
devices [13]. Also, the fabrication of electrooptic silicon-
photonic modulators which are capable of providing smooth



and uniform phase shifts over a broad spectrum is a topic
of intense research and promises to find a wide area of
applications [14]. Elsewhere we have demonstrated the prac-
tical realization of a novel silicon photonic interferometric
switching device showing that resonator phase switching is
indeed feasible [12]. Therefore, it is interesting to explore
from the theoretical point of view some extensions of
conventional directional coupling methods which could have
potential applications in upcoming interferometric devices.

The next section will briefly summarize the basics of cou-
pled mode theory (CMT) which will be particularly useful in
our context. Section 2 will set the stage for interferometric
switching between three waveguides which in turn will be
used in Section 3 where interferometric switching with a
dual bus waveguide resonator system is described. Section 4
will extend this to a particular arrangement of three-bus
resonator systems.

2. CMT and Phase Switching for
the Double-Sided Symmetric
Codirectional Coupler

CMT has grown to a vast subject in the last three decades (for
a good introduction see e.g., [15]). Let us quickly recall some
standard equations which describe in particular the coupling
between two waveguides.

We assume that the two waveguides have the same geom-
etry and propagation constants f3, and they are homogenous
and isotropic. Material or other types of losses are negligible.
Within these assumptions, the fields in the first and second
waveguide are given by the solution of the following coupled
differential equations:

0A1(z) _ icAs(z),

e (1)
0A>(2) =icA(2),

0z

with A;(z) and A,(z) are the z dependent parts of the fields,
and ¢ a mutual mode coupling coefficient. ¢ is obtained
from perturbation theory by the amplitudes cross-sectional
integral over the section of the two waveguides of the
codirectional coupler and has the dimension of an inverse
length. If we impose as initial conditions
A1(0) = Ajer, Ay(0) = Aye'®?, (2)
then the solutions at z are
Ai(z) = tA e + ixA,e'®, 3)
Ay(z) = ikA e + tA,e',
with
x = sin(cz)e?, t = cos(cz)e'??, (4)

being x and ¢t the cross- and through-coupling coefficients,
respectively, and e’? accounts for the phase shift. x and t are
given by

L .
= gi ipL
K sm(ZLc)e ,

L\ .
_ iBL
t COS(2L5>6 , (5)
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where
L.= A
z(neffe(A) - neffo(/\))
is the coupling length, A the wavelength, L the length of the
coupling section, while #eg and neg, are the even and odd

mode wavelength-dependent effective indexes, respectively.
Then, from (4) and (5), one obtains

s
2L

(6)

(7)

Cc =

From (3), it follows that
|A1(2) P = [t1*A1* + [k |42 |* + 21k] [t | A1 ]| A2 | sin Ag,

[A2(2)17 = [k”| A1 * + 117|421 — 21l [£] A1 1 A2 | sin Ag,
(8)

with A¢ = ¢; — ¢,. For simplicity in (8), the dependence of
the coupling coefficients on z is omitted. Power conservation
condition for the lossless system follows straightforwardly
from (5), or (8), as |t|* + |«|* = 1.

If we set A, = 0, we obtain the well-known power
exchange expressions for the single-sided codirectional cou-
pler made of two equal waveguides

|A1(2) 1> = cos’(cz)|A1]* = [t} A%,

. (9)
|Ay(2)* = sin’(cz)|A 7 = |x|*|A, |2

The Mach-Zehnder modulator is obtained when two
signals with same amplitude (A; = A, = A) are coupled into
the waveguides. In fact, (8) becomes

|A1(2)|* = |AI*(1 +2|||t] sin A¢),

10
A = ARG =2l sinag), )

which shows that, when A¢ = 0, no power exchange between
the two waveguides occurs, while, for A¢ = m(n/2) (m an
integer), the power oscillates between the two waveguides
depending on the coupling section length, L. If cL = 7/4 and
A¢ = +m/2, then all the power is transferred into one or the
other waveguide.

Let us now extend (1) to the situation of Figure 1, where
three waveguides couple. We call the central waveguide the
Drop waveguide for a reason that will be clear in the follow-
ing. We consider the case of a Drop signal Ap excited by the
fields A; and A; in the upper and lower waveguides. Then,
neglecting the direct coupling between the two outer waveg-
uides, we write a set of three coupled differential equations:

0A:(2)

= icAp(z),
0z
% =icA(2) +icAy(z), (11)
045 (2) = icAp(z).
0z
We impose the initial conditions
A1(0) = Ay,
AD(O) = AD€i¢D, (12)

Ay(0) = Aze'®,
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FIGURE 1: Double sided symmetric codirectional coupler.

where ¢1, ¢1, and ¢p express the phase of A;, Ay, and Ap,
respectively. The solutions of (11) are
Ai(z) = Y A1 + ikpApe® — k' Are'®,
Ap(z) = iKDAlei¢l + tDADEi(pD + iKDA2€i¢2, (13)
Ay(2) = =K A€ + ixpApe'® + ' Ay,

with
t' = cos? (%)eiﬁz, tp = cos(ﬂcz) ez, (14)
. ; 1 . .
K = sm2<%)e’&, kD=5 sm(ﬁcz) ez (15)

The term 1/+/2 in (15) is a consequence of the symmetry
of the system (symmetric coupling and geometry). For
simplicity, let us consider Ap = 0, then

AP = £ 121412+ [ |14, (16)
= 2|« [ [#[1A4111A2] cos A,

|Ap(@)I* = [kp > (1A + 1421 + 21411142 | cos A@), (17)

A2 = [ [P1ALP + [ 714, (8)
=2|«"| |t'|IA1]|Az] cos Ag.
If the system is lossless, power conservation implies
|k'|*+ |kp|*+|t'|* = 1. Despite not being directly coupled to
each others, (16) and (18) show a possible crosstalk between
the outer waveguides through the intermediate Drop port
(crossing of arrows through the Drop port shown in
Figure 1). This can be quantified by using as initial condition,
for example, A, = 0 which implies from (16)—(18)

czZ
A (2))? = |A1|2cos4(—),

V2
2
|Ap(2)® = %sinz(\/ﬁcz), (19)
14,(2) % = |A1|2sin4(%>.

Equation (19) is plotted in Figure 2 in normalized inten-
sity and distance. These show that the signal from the upper
(lower) waveguide is never completely recovered in the Drop
port because part of it recouples towards the lower (upper)

—
w
T

Normalized intensity
-
T
!

0 /2 T 2/31

Normalized distance (cz)

FIGURE 2: Power transfer in the waveguides of the ds-coupler for
one input signal only ((16), (17), and (18), with initial conditions
A; = 1, A, = 0). Red dashed line: amplitude A;(cz); blue dotted-
dashed line: amplitude A, (cz); black solid line: amplitude Ap(cz).

waveguide. The Drop behaves like a “power transiting” port,
and the amount of light that crosses the structure can be
considered as a measure of crosstalk. However, we will see
that this interpretation must be taken with caution.

In fact, if we consider a same input signal (A; = A, = A)
on the top and bottom waveguides, (16)—(18) simplify to

A = 142 = 14 (1 - Jsin (vV2ez) (1 + cos ag) )

|Ap(2)]* = |AI*(1 + cosAqS)sinz(\/Ecz).
(20)

The case for in phase signals (A¢ = 0) is shown in
Figure 3(a). In this case, the energy transfer between the
Drop and external ports occurs harmonically. A 100% power
transfer to the Drop port occurs when
T L.

—_. (21)

L=3h=1n

Figures 3(b) and 3(c) show this case for a phase difference
of Ap = n/4 and A¢ = (3/4)m: the power in the outer
waveguides 1 and 2 (magenta dotted-dashed line) oscillates
around the initial input value but is never zero, while the
Drop signal (black solid line) oscillates according to the
propagation length like in the previous case, but with less
maximum intensity. If instead a phase difference of A¢ = 7
is applied (Figure 3(d)), there is no power in the Drop port.

Therefore, a particularly interesting situation occurs
when a ds-coupler has a coupling section long as in (21)
(cz = (1/v/2)(/2) in Figure 3). In fact, for two equal input
signals the ds-coupler acts as an interferometric switch: for
A¢ = 0, all the power goes into the drop port (Figure 4),
while, for Ap = 7, all the power stays in waveguides 1
and 2 (Figure 5). Under these circumstances, the crosstalk
between waveguide 1 and 2 has been suppressed. At first, this
seems to be at odds with what shown in Figure 2 where a
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FIGURE 3: Power transfer in the waveguides of the ds-coupler for two equal input signals ((16), (17), and (18), with initial conditions A; = 1,
A, =1, A¢ = (0,7/4,(3/4)m, ) in (a), (b), (c), (d), resp.). Magenta dotted-dashed line: amplitude A;(cz) and A,(cz); black solid line:

amplitude Ap(cz).

g
S

FIGURE 4: The ds-coupler switch in phase: all the power goes into
the Drop port.

[Ap(L)I* = 2|A|?

significant power transfer from waveguide 1 to waveguide 2
is observed. This apparent contradiction is explained by the
fact that the signal in waveguide 1 (waveguide 2) undergoes
twice a phase change of 71/2 (evanescent waves have always a
71/2 phase difference with respect to the waveguide core field
phase) and the net 7 dephased cross coupled wave interferes

mlz L=L/\2 J

ZERR

FIGURE 5: The ds-coupler switch out of phase: no power couples
into the Drop port.

|Ap(L)12 =0

destructively in waveguide 2 (waveguide 1). This interference
effect leads to a mutual subtraction of the cross-coupled
powers.

For completeness, we mention also the case when the
light is injected only in the Drop waveguide, that is,

A1(0) =0, Ap(0) = Ap, A(0) =0, (22)
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then

A(z) = Ay(z) = %e’ﬁz, o)

Ap(z) = Ap cos(\/fcz) ehz,

whereby of course

|Apl?

2
sinz(\/icz) = |Ap|? L] ,

1A1(2)]* = |Ax(2)]* = 5

|Ap(2)I” = |Ap|® cos?(V2cz) = |Ap | Itpl™.
(24)

These show that the power is equally distributed among
the outer waveguides. Note that by imposing a coupling
section length equal to the value given by (21), it leads to
a complete power transfer into waveguide 1 and 2, that is,
the ds-coupler can be used as a splitter. Its advantage over
other splitting devices, as Y-branches or MMI splitters, is that
it is less sensitive to imbalances, provided that the spacing
difference between the waveguides arising due to fabrication
imperfections is negligible. Its disadvantage is obviously that
it is wavelength dependent.

3. Dual Bus Resonator Interferometric Switch

A further extension of the formalism is to consider a single
resonator as in Figure 6. We consider a racetrack resonator
so that we can apply the CMT extension developed in
Section 2. For simplicity, the bus-waveguide gaps and the
coupling section lengths are the same everywhere. To apply
the transfer matrix approach [16-21], a first step is to relate
the amplitudes (A{, A}) with (A}, A3) (see Figure 6 for the
definitions). From (3), we have:

2 1 . 1
(- (6 o

In order to “transfer” the signal, it is more appropriate to
write the relationships (A}, A?) — (A}, A%). For which one
obtains the coupling matrix K:

AN (AN 1 (=1t e B (Al
<A§)—K<A% = ke g Jlaz) 29

where, for the straight sections, the lossless case (| |* +
|t;1* = 1) was considered. We instead assume bending losses

—
w
T

o
n

Normalized intensity
—

y (rad)

FiGure 7: The dual-bus single resonator Fano resonance spectrum
for A¢ = n1/2 (Drop: black solid line, Through: red dashed line).

in the racetrack. The (forward and backward) internal prop-
agation matrix P is

2 1 0 aePmR 1
A? =P A% =11 —ifnR A% > (27)
Aj A3 2€ 0 A3

where a = ¢~%™R is the half round trip loss factor, « the total
loss per unit length, and R the curvature radius.
Equations (26) and (27) define a transfer matrix TFX as

A3\ _ ek (A1) _ pr (Al
<A%>—T ar) =P ). (28)

With the definition of the Input, Through, Drop, and
Add ports as in Figure 6, we define Ay, Ath, Ap, and Aag
the respective field amplitudes. Therefore,

AAd ol AIn _ PK AIn
(AD)_T (ATh)_KT ) e

By rearranging the elements of the transfer matrix T! into
the scattering matrix S!, one obtains

Ath _ A
(AD> =§! <AAd>‘ (30)

To simulate the device of Figure 6, we use the following
parameters: bent curvature radius of 3.25um, gap spacing
of 0.2um, silicon waveguides width of 0.45um, silicon
waveguide core height of 0.22 ym, SiO; cladding of 0.75 ym,
and —0.03 dB/90° bent loss in TE polarization [22].

The first interesting situation is when we inject two input
signals, one in the Input port and the other in the Add port
such that A, = e® and Axg = €%, with ¢; and ¢, their
phases. For A¢ = ¢, — ¢1 = m/2, we obtain Figure 7.
The parameter y represents the round-trip dephasing of the
resonator given as y = 27 popt (AA/A?), where pope = (27R +
2L) nef is the optical path of the resonator, A the wavelength
shift from a racetrack resonance, and n.g the effective
index (at resonance wavelength) of the waveguides (see
Appendix A).

The y dependencies of the Drop and Through signals are
asymmetric. This is the manifestation of the Fano resonance
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FiGUre 8: The SCISSOR and CROW resonant structures.

that arises from the interference between the resonant modes
in the racetrack, where a narrow band superimposes on the
waveguide flat spectral background [23, 24].

Devices where two phase modulated incoming signals
are injected can be used for light switching functions. In
this case, a high extinction ratio is obtained. For instance,
aty = 0.6, in Figure 7, the drop and through signals have
a maximum or vanish (the maximum intensity does not
reach 2 because bent losses are considered). Now, if A¢ is
changed from 71/2, as in Figure 7, to 3/2m, a similar spectrum
is found with the two signals changed (the black solid line
would go into the red dashed line). This means that, by
phase modulation, the signal output can be switched in the
Through port or in the Drop port.

It is possible to extend this interferometric switching
functions to a parallel or serial chain of coupled resonators,
that is, in CROW or SCISSOR, Figure 8.

To model a SCISSOR, we introduce an external propaga-
tion matrix Q/ connecting the jth to the (j + 1)th resonator

A{+l) ' <AJl> <6iﬂD]j+l 0 ) (A'{)
Ll =Qi Y] = _i8Di i, (31
(AZJ A VAV

where Dii*! is the distance which separates the jth to (j +
1)th resonator. Then, (30) can be generalized to the SCISSOR
structure with a scattering matrix Sp:

Am) _ Am _ QNON-1gN-1 _ _ . el [ A
(AD)Sh<AAd)SQ S Q'S Ana) (32)

For the CROW, we simply generalize (29) to

AAd _ 7N | AIn
(AD>—T T°T Am )’ (33)

where T% (k = 1,...,N) is the transfer matrix for the kth
resonator and is given by (28). From this we obtain, the
scattering matrix Sy

Atn _ A
) o

Figure 9 shows a spectrum of a SCISSOR made of a
chain of eight racetrack resonators. Figure 9(a) represents
the spectrum when only one signal is injected: high-order
filter flat-box spectrum appears. When a second signal is
injected at the Add port with the same amplitude but with a
phase difference A¢ = /2 with respect to the signal injected
in the In port, Figure 9(b) is obtained. We call this situation,
where we have two input signals, the double bus situation.
The point y = =1.5 can be used to switch the signal from
the Through to the Drop port by controlling the phase at
the Add signal. Moving the Add signal phase from 7/2 to
3/2m switches the output from the Through to the Drop
port. Possibly, a wavelength band can be switched by using
the y = =1.75 point, though with low extinction rates.
Therefore, with this respect, the SCISSOR geometry presents
limited advantages over the single resonator case of Figure 7.

An eight racetrack CROW structure has a behavior
shown in Figure 10. As in the previous case, the left and right
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FiGure 11: The resonator pair ds-coupler switch.

graphs represent the single- and double-bus spectra for the
same dephasing. CROW are very different from SCISSOR:
given a N resonator CROW, the single bus device has N Drop
resonances (Figure 10(a)) while the double bus device has
N — 1 bands when a A¢ = n1/2 is considered (Figure 10(b)).

Also, in this case, for a dephasing of A¢ = (3/2)m, one can
flip the Through < Drop port outputs. Not all bands have
the same extinction efficiency, only the central ones exhibit
an almost ideal on-off. The CROW has the advantage with
respect to the SCISSOR and single resonator that it allows
band routing or it can be used as an optical interleaver,
that is, as a device that separates a set of channels into two
sets, routing them separately towards the Drop and Through
ports. The width of each band depends on the structural
parameters.

4. Three-Bus Resonator Interferometric Switch

A further interesting situation is to model a structure like that
of Figure 11. It shows a single pair of racetrack resonators
coupled to three-bus waveguides. This interferometric switch
works as follows: the input signals In; and In, are tuned
to a resonance wavelength and have the same amplitude.
Then, depending on their relative phase, they interfere
constructively or destructively in the Drop waveguide. In the
former case, the signal is expected to couple into the Drop
port, while, in the latter case, the signal is transmitted to
the Through ports. Experiments demonstrate this principle
(11, 12].
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In this section, we model the device as a three-bus device,
that is, we drive it with three input signals whose phase is
independently controlled. To relate the known signals A} =
Am,, A} = Apg, A} = Ap, to the unknown A? = Ary,

A} = Ap, and A3 = Ay, (Figure 11), we use a general
transfer matrix T:
Arp, T To T3\ (A, A,
Ap | =T Ty To || Aaa | =T| Aaa |,  (35)
Ay, T31 To1 Tii) \Am, App,

whose elements are reported in Appendix B. The device (and
therefore T) is symmetric: the paths In; — Through;, In; —
Drop, In; — Through, are equivalent to the paths In, —
Through,, In, — Drop, In, — Through;.

Figure 12 shows the spectral response of the device when
used in single bus configuration, that is, only one input signal
is injected (A, = 1, Aaq = 0, A, = 0), for two coupling
section lengths of L = 10 ym and L = 3 ym. The drop signal
(black line) shows a typical resonant behavior with a sharper
feature for the L = 3 um device than for the L = 10 ym device
because of its lower coupling efficiency. It is also interesting
to note that the crosstalk is much higher for L = 10uym
than for 3 ym. At resonance, the power is almost equally
distributed between the Drop and Through; ports.

Figure 13 shows the case of a device operated in a duals
bus configuration. We used L = 10um for the coupling
section. The input signals have the same amplitude and a
phase difference of A¢ = 0,7/4,3/4n,m for Figures 13(a),
13(b), 13(c), 13(d), respectively. When the two input signals
are in phase, and the wavelength is resonant with the two
racetracks, then most of the power is transferred to the
Drop port. This situation was experimentally confirmed in
[11,12].

The Through ports will not exhibit complete extinction
due to crosstalk effects (Figure 13(a)). Similarly, when the
two input signals are in antiphase (Figure 13(d)), a complete
destructive interference is achieved in the Drop waveguide
and no Drop signal is observed. Most of the power goes
straight in the Through ports. Note that the minima at reso-
nance in the Through signals are due to the resonator round

trip losses. With no dephasing, the Through signal minima
coincide, with the Drop signal maximum at resonance Ay
(Figure 13(a)). In the other case, the Through signals show
the behaviors of a Fano resonance (Figures 13(b) and 13(c)).
When there is a phase shift between the input signals, the
Through signals show characteristics of Fano resonance with
a different minimum at A = Ay = 0.8nm. This occurs
already for a small A¢ = 7/10. Moreover, the Through signal
resonance depth depends on the phase shift and vanishes
almost completely at A¢p = n/4 (Figure 13(b)). This is
potentially useful to build interferometric switching devices
with good on-off extinctions.

To highlight the phase shift dependence, we repeated the
calculations at the resonant or at the Fano wavelengths (1¢
or Ap, resp.) by varying A¢. At the same time, we varied
the intensity of the input signals. The results are shown in
Figure 14 for Ay and in Figure 15 for Ap, for |Ar,, 2 =8 x
| A, |2 with 8 = (1, 0.75, 0.25, 0). Several features can be
observed. First, for perfect input balance (Figure 14(a) and
Figure 15(a)), the Drop signal goes to zero at A¢ = 7, while
the Through signals vanish only for Ar and not for A¢. For this
reason, interferometric switching is at Ar than at A¢. Second,
for Ar (Figure 15), the three output signals (Drop, Through,
and Through,) vanish for three different values of A¢: A¢ =
7/4 the Through,, A¢ = m the Drop, and A¢ = 7/4m the
Through;. Third, the transmission of the input signals to
the through ports is more effective for Ar than for Ay, which
might be useful for practical purposes. Fourth, from Figures
14 and 15, it is clear that an interferometric switch device
must be robust against input signal imbalance.

Similar features are obtained for a device with L = 3 ym.
The main difference is that A is more near to Ay which makes
difficult the use of the Fano concepts for interferometric
routing.

A further extension of the ds-router concept is a double
SCISSOR structure as shown in Figure 16. To model it, we
transform T (35) into the “scattering matrix” S such that

AThl AInl
Ana | =S| Ap (36)
ATh2 Alnz
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FIGURE 13: Spectral response of the device in Figure 11, with Ay, = (1,4, /307 ¢im) ((a), (b), (c), (d), resp.), Aag = 0, Ap,, = 1. (Lines

as in Figure 12.)

After simple algebraic manipulation, one finds

1 (Tl = Teln To TnTn - Tl
S = o =T 1 =Ty , (37)
Z\T51Toy =TT Tra TiiTop = T2 T

where the lower indexes indicate the row X column element
of T.

Then, by introducing an external propagation matrix Q¥
which connects the Through and Add ports of the kth pair of
resonators with the In and Drop ports of the (k + 1)th pair as

Appe Ak e 0 0\ (A}
ADk+l = Qk AAdk = 0 eiiﬁDk 0 AAdk
Aln12<+1 AThIZ{ 0 0 eBD AThk2
(k=1,...,N),
(38)

we can express the general equations for the device of
Figure 16 with a total transfer matrix Sto:

ATh‘;’ Aln{ Aln{

AAdN =Sti| Apt | = SchNflst1 s -(2181 Api

Arpy A} A
(39)

And, finally, after inverting Stot (37), we get

ATh"l’ Aln}
Apt | = Ty AAdN > (40)
AThS’ AIn;

which is the generalized version of (35).

Figure 17 shows the spectral response for the 1,2,4, and
8 pair SCISSOR interferometric switch (Figures 17(a), 17(b),
17(c), 17(d), resp.) with only one input signal. The (N — 1)
central dips are not due to fabrication imperfections [11, 12]
but are intrinsic features due to the existence of the central
Drop waveguide between the two resonator chains. The
system behaves like a single SCISSOR row with asymmetric
gaps which introduce a correspondent asymmetric phase
shift at each resonator gap leading to CRIT-like features. It
is in this spectral region, near the center of the resonance
band, where light couples more efficiently into the resonators
and travels repeatedly through them producing slow light
effects. For this reason, it is also in this central CRIT-
like region where most of the attenuation occurs due to
radiation and roughness losses on the resonator bent. Note
how, aside from the flat-box spectrum, despite strong input
imbalance, the two Through ports response (red dashed
and blue dotted-dashed lines) tend to merge together inside
the mode’s spectral range with increasing the number of



10

Normalized intensity
-
—_ )

e
n

A¢ (rad)
(a)

Normalized intensity
_
— &

e
n

A¢ (rad)
(c)

International Journal of Optics

Normalized intensity
—_
— n

o
wn

Normalized intensity
— &

e
0

FiGURE 14: Phase response of the device in Figure 11 at A, with Ap,, = €®, Apxg = 0, [Apy, I* = (1, 0.75, 0.25, 0) ((a), (b), (c), (d), resp.)

(Lines as in Figure 12.)

resonator pairs. This is because in an N-pair SCISSOR the
input signals couple to the various resonator pairs, and,
while they are propagating along the sequence, their power
is progressively balanced due to the large crosstalk. This
robustness of SCISSOR devices against input imbalances
could have practical advantages where a power injection is
uncertain or difficult to tailor.

Figure 18 illustrates the use of a dual bus SCISSOR inter-
ferometric switch with two equal input signals. Increasing the
number of resonator, the response gets a flat-box shape and
a good rejection of the input signal at the two Through ports
is obtained.

Figure 19 shows the effect of a phase shift between the
two input signals. As A¢ increases, the Drop signal decreases
and vanishes for A¢ = 7. The Through signals are coincident
within the stop-band and differ outside this wavelength
region when A¢ # 0.

We studied also the effect of an imbalance between
the two input signals. A phase sweep at y = 1 for four
different intensities is shown in Figure 20. Contrary to the
single pair interferometric switch affected by Fano resonance
asymmetries and unequal Through port signal intensities
along the phase sweep, the 2 x 8 SCISSOR interferometric
switch flattens out the differences on the Through signals and
shows its robustness against imbalances.

5. Three-Bus Interferometric Switch with
Three Input Signals

Another potentially interesting application is to operate the
ds-coupler interferometric switch of Figure 11 with three
input signals, that is, to use the Add port as a third input
port. Figure 21 shows its spectral response when Ay, = €1,
Apg = €4 Ay = €2, Figure 21(a) shows the case of all
three equal input phases ((¢1, Padd, $2) = (0,0,0)): the Drop
and the two Through signals are equal with slight differences
caused by the bending losses. Figure 21(b) reproduces the
case (¢1, ¢Padd> ¢2) = (0,7/4,7/2): at the resonance
wavelength, the two Through signals are high while the Drop
signals are low. The Through signal resonances are Fano
resonances. Figure 21(c) represents the alternative case where
only a 7-shift on the Add signal is applied ((¢1, Padd, ¢2) =
(0,7,0)): the Drop signal maximizes at resonance, while the
two Through signals are low. Figure 21(d) shows the case
when a m-shift is applied to both the Add and one Input
signal (@1, Padd>¢2) = (0,7, 7): all the input signals are
addressed to the Through, port. The symmetric case where
the signals are directed to the Through, port is obtained by
applying the same phase shift to the other Input signal.

This three input signal configuration allows using the
Add signal as a control signal to drive the interferometric
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switch to different functionalities (compare Figure 13 with
Figure 21). In fact, if the phase of the Add signal is changed
from 0 to 7, the Drop signal is switched from 1 to 3 (in
absence of bending losses); while, if the phase of one of
the input is changed from 0 to 7 and ¢aqqa = 7, one can
switch off and on the Through signals. Many other sorts
of combinations in phase and intensity at the Input ports,
resonator numbers, and overall resonant device geometry for

phase switching applications could be imagined in the most
diverse configurations.

6. Conclusions

A three-bus waveguide multiple resonator-based interfer-
ometric switching device was discussed which is able to
route light over a broad range of wavelengths by phase
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modulation. To obtain its behavior, it was necessary to
analyze first the performance of the two bus waveguide
single resonator and SCISSOR and CROW systems. We
showed that extending side coupling and Mach-Zehnder
phase switching techniques to multiple waveguides and
to chains of resonators could be useful to enhance their
switching capabilities. The proposed interferometer device
shows the possibility to control a lightwave signal with the
phase of another signal. This allows to add a further degree
of freedom in designing reconfigurable optical routers and
complex networks. Simple examples can be foreseen in single
channel switches where the switch redirects the signal in two
different channels without absorbing the light (Figure 7), or
in a dual channel interleaver where the signal bands can
be alternatively directed on one or the other channels by
phase control (Figure 10(b)), or in a three channel router
where the signal is routed along three different directions by
controlling the wavelength and the phase (Figure 13(b)). It
is clear, though, that the potentiality of the scheme proposed
in this work is not exhausted by these examples and more
can be envisaged by optical network specialists. However,
we believe that herewith we outlined some proposals which
display how this is a field with vast possibilities, hopefully
inspiring further investigations of possible applications of
novel interferometric switching devices.

Appendices
A.

Instead of displaying the spectral response of a resonant
structure in terms of the wavelength, it is possible to express it
as a resonator round trip dephasing, clearly with the assump-
tion of a nondispersive system. The resonant wavelength of
the mth mode, A, is thus in general

_ popt (Am)

m

Am (A.1)

with the wavelength-dependent optical path of the racetrack
resonator popt = (2R + 2L)ncfr(Am), nef(Am) the effective
index of the resonator waveguides at the mth resonant
wavelength, and m the resonance azimutal number. In the
case of dispersionless systems, (A.1) is no longer an implicit
function, and any two modes at A; and A, are determined
solely by the optical path of the resonator (popi(Am)
Popt for all m) and by the mode azimutal number m, as

_ Popt _ _Por
A= P M—m+1' (A.2)
This means that the difference (i.e., the FSR) is
PG P . S )
m(m+1) m+1 Popt
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A, = 1, with same phase. (Lines as in Figure 12.)

Then, the parameter y representing the round-trip de-
phasing of the resonator can be defined as an “angular
deviation” from resonance at some wavelength A as

U s VR W S AL
A=A+ e A=) =X 27 popt” (A4)
and from which
A=A AL
Yy = 27Tp0pt/{172 =1 anoptﬁ' (AS)

B.

In Figure 11, we can relate (A3,A],A?) — (A} AL AL

through (13) as

Al Al t ikp —«'\ (A3
Ayl = M| Al | =|ixp tp ixp || AZ|. (B.1)
Al Al -« ikp t ) \A?

Proceeding in the same way as we have done with matrix
M of (25), we look for the coupling matrix that relates in
the interference section the upper to the lower waveguide

through the middle one, that is, (A3, A, A}) — (A2,Al, AL),
and obtain the second transfer matrix TP:

A3 A3
Al | =Tb| A2
1 1
45 45 , '  (B2)
1 t iKp -1 A3
== ikp(k' +t) tpx — Klz) —ikp || A% ].
K\ r2—«? kg +t) -t ) \Al

Due to a symmetric coupling, K of (26) can be applied
also at (A}, A2) — (AL, A%). For the same reason, the same
internal propagation matrix of (27) can be applied also at
(A2, ALy — (AL, A2). Therefore, the third transfer matrix
connects (A%, Al) — (A}, A%) in the same way as (28) (but
with the order of the propagation and coupling matrixes

inverted):
A7\ ke (A3) Al
(A%) =T Al = Kkp Al

To proceed in the inverse direction, that is, from ports
(Iny, Through;) to (In;, Through; ), note that, again because
of coupling symmetry, TPX relates also (A}, A3) — (A2, Al),
TXP does the same with (A3,A}) — (Al,A?), and T® con-
nects also (A2,A2,Al) — (A3, AL A)).

(B.3)
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FIGURE 19: Spectral response of the 2 x 8 SCISSOR switch of Figure 16 with inputs, Ay, = (1, €™, e¥47 ) ((a), (b), (c), (d) resp.),

Apd = 0, A, = 1 (Lines as in Figure 12.)

Now, we can obtain the overall device response of
Figure 11 by separating the contributions to the two Through
and the Drop ports as the sum of three different terms corre-
sponding to the three following device states.

State (I). Input signal in In; only is injected and propagated
from the top to the bottom of the device

AInl = |AIH1 |ei¢1 ATh(ll)
AAd =0 — AD(I) (B.4)
Amm, =0 Ay
Schematically, this goes as follows (from the right to the
left):
(A3 = e[ A (B.5)
A% - AThgn :
A3 A3
— |Apo | =TP| O | — (B.6)
Al Aj
0 _ TKP A3
L)-m(E) - e

This means that the first set of equations from the first
transferral of (B.5)

A3 = T0R A, + T Agyo,

(B.8)
AL = T8 Ay, + THR Ao,
have to be inserted into (B.6) to obtain
A2 = (T TFK + TS TER) A, 59
+ (THTEE + THTI) Ay, '
Apw = (T4 TEE + T4 TER) Ay,
(B.10)
+ (T4 TE + TS TEN) Ay,
AL = (T4 TR + TS TER) A,
(B.11)

b TPK , b TPK
+ (T31T12 + 15515, )ATh(l”'

Proceeding further with the next transfer, we have from
(B.7) that

0=TKPAZ + TKP AL,
B.12
Ao = TKPA2 £ TSP AL (B.12)

Th,"
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which, through (B.9), (B.10), and (B.11), leads to

Ao = T11Am,,
Apn = T9Am,» (B.13)
Ao = T51Am,
with
T, = - TEA + TI{:{B)
T3 C+T3 D
To1 =E+FTy,
T51 = G+ HTyy,
A= THTI + TH TS,
B = TH T + THT5E,
(B.14)

C=THTH + THT5,
D = T} T + THTSS,
E = TH Ti + TH T3,
F = T} TES + TH T3S,
G =TS A+ TB,
H =Ty C+TyD.

State (II). Input signal in In, only is injected and propagated
from the bottom to the top of the device.

AIm =0 ATh(lm)
Apxg=0 ' — | Apam (B.15)
AIn; = |AIH2 |el¢2 ATh(Zm)

One proceeds exactly as for State (I), but in the opposite
direction. The only difference in the final result is that in
(B.13) the ports (Iny, Through(ll), Throughg)) have to be
exchanged with (In,, Throughgm), Through(lm)):

Ay = Ti3Am,

ADrop“”) = T23A1n2) (B16)

ATh(znn = T33A1n2,

with T13 = T31, Tz = Ta1, and Ts3 = T

State (III). Add port signal only is injected and propagated
from the central Add waveguide towards the Drop and upper
and lower Through ports.

In the transfer matrix of (35), only one coefficient is
missing, namely, T5,. This is fixed by the other matrix ele-
ments and power conservation criteria. Expressing explicitly
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in Figure 12.)

with the matrix elements of T the power balance between the
input and output intensities of the waves, it must hold:

| A, |* + A, | + | Apal?
= |Amn, |2 +|Ap|* + | A, |2 + Loss
= (ITn P+ 1T P + 1T *) (A, |2 + | A7)
+ (20Tl + 1Tl ) | Anal?
(TuT§ +1Tul? + T T3 ) (A, Afy, + Afy Am, )
(T T3 + T T + T51T5) (A, + Ay )AXg
(

Tl*l Tz] + TZ*I T22 + T3*1 T21) (Al*n] +AIn2)AAd + LOSS,
(B.17)

+
+
+

with the last term indicating the losses of the structure. This
implies the following conditions:

IT 2+ | Tn I + 1 T5|* = 1, (B.18)

21Ty > + [Tl = 1, (B.19)

TuTi + | To 1>+ T3, T, = 0, (B.20)

Tl*l Ty + T2*1 Ty + T3*1T2] =0. (BZI)

Conditions (B.18) and (B.20) are already satisfied by
the coefficients found in the two previous cases (very
cumbersome and long calculations). From (B.21), we finally
obtain the last coefficient for matrix (35):

(B.22)

which satisfies also (B.19) through (B.20).
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The adjustable gain-clamped semiconductor optical amplifier (AGC-SOA) uses two SOAs in a ring-cavity topology: one to amplify
the signal and the other to control the gain. The device was designed to maximize the output saturated power while adjusting gain
to regulate power differences between packets without loss of linearity. This type of subsystem can be used for power equalisation
and linear amplification in packet-based dynamic systems such as passive optical networks (PONs). A detailed theoretical model
is presented in this paper to simulate the operation of the AGC-SOA, which gives a better understanding of the underlying gain
clamping mechanics. Simulations and comparisons with steady-state and dynamic gain modulation experimental performance

are given which validate the model.

1. Introduction

Semiconductor optical amplifiers (SOAs) have attracted
considerable attention during the last two decades, for use
in evolving optical communication networks. SOAs can be
used as not only optical amplifiers, but also signal processing
devices such as wavelength converters [1], optical switches
[2], and electro-optical mixers [3]. In terms of optical ampli-
fication, the key issue of operating SOAs is the management
of the input optical signal power, which must be maintained
within the linear regime of operation; otherwise the device
would be driven into saturation causing unwanted inter-
symbol interference (ISI) or patterning. In order to solve
this implementation problem, many different types of gain-
clamped semiconductor optical amplifiers (GC-SOAs) have
been proposed [4, 5]. Recently, an adjustable gain-clamped
semiconductor optical amplifier (AGC-SOA) designed to
maximize the output saturated power at a clamped gain
which can be adjusted was reported [6].

2. AGC-SOA

The AGC-SOA is a semiconductor optical amplifier topology
which has the unique capability to provide variable gain and

maintain linear operation through gain clamping over a wide
(40 dB) dynamic range, without compromising the saturable
output power of the device [6]. A key advantage of this
approach is that there are no mechanical tuning elements,
and hence the gain can be adjusted via direct electrical con-
trol at ns timescales. While the operation of this device has
been presented previously for the static gain case [6], and
its behaviour under dynamic gain modulation conditions
[7], the underlying mechanics is not well understood. Here,
a theoretical model for an AGC-SOA has been established,
based on the wideband steady-state numerical model of
a SOA [8]. The travelling amplified spontaneous emission
(ASE) power and spectrum within a ring cavity, steady-state,
and dynamic gain modulation have been studied. Simula-
tions are in broad agreement with experiment results.

Figure 1 illustrates conceptually the design of the adjust-
able gain clamped SOA (AGC-SOA). The architecture com-
prises two active (gain) regions defining a data path through
the signal SOA (SOA1) and a laser cavity containing SOA1
and a control SOA (SOA2). SOA1 amplifies light in the signal
path. The lasing mode derives gain from both SOA1 and
SOA2. The composite gain provided by both SOAs regulates
the condition for the onset of lasing. This in turn defines
the carrier concentration (gain) of the signal SOA. Hence,
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by controlling the drive to SOA2, the gain imparted by SOA1
can be adjusted. SOAL is continually operated at full current,
and therefore, the AGC-SOA allows signals to be amplified
by SOALI at a clamped gain which is varied by SOA2. This
maximises the saturation output power thereby maintaining
an extended linear regime [6].

The key advantage that the AGC-SOA offers over other
optical amplifiers is that it enables the gain to be adjusted
directly through the drive current to the clamping SOA
without the dramatic loss of Pg,. Hence, linear operation is
maintained over a wider range of input signals. In standard
SOAs, it is possible to adjust the gain by altering the drive
current however, as is demonstrated in the experimental
measurement shown in Figure 2, and this leads to a dramatic
loss in Pgy.

At high gains, where the SOA is highly inverted, the Py
value is at its highest. However, in this region, adjusting the
small signal gain through bias current has a dramatic effect
on the Py, value. In the example depicted in Figure 2, at high
gains the P changes with gain at a rate of ~3dBm/dB i.e.,
for every dB that the gain is reduced, the Py, value drops
by 3 dBm. As the drive current is further reduced, the drop
in Py with gain is weaker at ~0.4 dBm/dB. However, by the
time that this point has been reached, the Py, value is already
significantly compromised (5dBm compared to the high
gain value of 10 dBm). The AGC-SOA enables gain modu-
lation to be achieved without this dramatic loss of P, value.

Figure 3 depicts the gain of AGC-SOA as a function of
output power for a set of different clamping currents ranging
from 0 mA to 200 mA. The Py, values are constant over the
range of clamping currents despite significant gain reduction
(>20dB), demonstrated in Figure 4.
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Additional steady-state experimental results such as gain,
Noise Figure (NF), and Pg, value were demonstrated in [6].
The dynamic gain modulation performance of AGC-SOA
was further studied in [7]. In a dynamic packet equalisation
scenario, the AGC-SOA is able to adjust and stabilise its gain
in less than 2 ns, within the period of the guard band of the
passive optical network (PON) transmission at 1.25 Gbit/s
on the upstream direction, 32 bit periodsis equates to 26 ns.
Similarly for 10-Gigabit-capable, PON system, the guard
time is 64 bits at 2.5 Gbit/s on the upstream direction [9],
this equates to 26 ns [9].

3. Model of AGC-SOA

Several numerical models have been developed to investigate
the characteristics of both conventional SOAs [8] and gain-
clamped SOAs using either an external [10, 11] or internal
[12, 13] lasing mode. However, the underlying mechanism
of gain clamping achieved by adjusting wideband amplified
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TaBLE 1: Device parameters used in AGC-SOA simulation.
Symbol Parameters SOA1 SOA2
L, Central active region length 400 ym 840 ym
L, Tapered active region length 200 ym 160 ym
d Active region thickness 0.4 ym 0.1 ym
w Active region width 0.4 ym 1.1 pym
y Molar fraction of arsenide 0.892 0.816
r Confinement factor 0.15 0.15
R Input facet reflectivity 5x107° 1x107°
R, Output facet reflectivity 5x107° 1x107°
Hin Input coupling loss 3dB 2dB
Hout Output coupling loss 3dB 2dB
Ko Carrier-independent absorption loss coefficient 6200m™! 3000 m™!
K Carrier-dependent absorption loss coefficient 7.5x 107! m? 6.83 X 1072 m?
1 Active region refractive index 3.22 3.56
C 3.7x10%s7!
G Recombination coefficients 5.6 X 107 m3/s
G 3% 107" m®/s
Ocoupler WDM coupler pass band insertion loss 0.5dB
Input SOA1 Output counterclockwise ASE generated by both SOAs accounts for
signals signals gain clamping. In this model, the two SOAs are simulated as
independent modules using different sets of material param-
Crn - i > T > Output eters summarised in Table 1. (Typical bulk SOA parame-
1 .
i from 1 i " ASE ters from [8, 14, 15]). Both SOAs generate ASE in the forward
1 SOA2 and backward directions in the active regions. In each SOA,
I .
R - Dl N Sl the ASE profile extends over 1300 nm ~1650nm and is
- SOA2 titi d into di te f band
L forward ! partitioned into discrete frequency bands. .
i1 SOAI ASE ! In order to simulate the wideband ASE profile for a single
! ibackward testpoint! SOA, the material gain coefficient of the SOA active region in
R /;\SE, | an InGaAsP direct bandgap bulk material is given by [8, 16]
;| testpoin I
S S S e Y 3
i () c? ( 2MeMph )3/2
1 1 ; , —
i J " &m 421323192 \ Bi(m, + myp)
1
PO - k- - ke KOS - =(  E\" ) ,
Output <] (V=) xR0 - £6)
ASE 0 h
SOA2

F1GURE 5: Schematic of the simulation model for an AGC-SOA.

spontaneous emission (ASE) power still remains largely un-
known. In this study, the wideband steady-state SOA model
[8] is adapted to form a ring cavity; the evolution of travelling
ASE power and spectrum within the ring cavity, important
for gain clamping, is then characterised. The gain, Noise
Figure (NF), and maximum output power at gain saturation
(Pgat) of an AGC-SOA under different clamping currents are
also studied. Based on this model, the timescale for adjusting
and stabilising the gain, crucial for dynamic packet equalisa-
tion, is evaluated.

As shown in Figure 5, ASE circulating within the AGC-
SOA travels in clockwise and counterclockwise directions,
however, the isolator in the ring cavity ensures that ASE trav-
elling in the clockwise direction is not amplified. Thus, the

2Ty ,
8 (1—1—(1/’ —v)2(2nT0)2>dv ()

- 2 ( 2 Mot >3/2
42323192 \ i(m, + myp)

E 172
X (V }f) X (fc(v) 7f1/(v))a

where ¢ is the velocity of light in vacuum, v is the optical fre-
quency, n; is the active region refractive index, 7 is the radia-
tive carrier recombination lifetime,  is the normalized Plan-
ck constant, m, is the effective mass of an electron in conduc-
tion band (CB), mn is the effective mass of a heavy hole in
valence band (VB), E, is the band gap energy of the material,
To is the mean lifetime for the coherent interaction of elec-
trons with a monochromatic field, and f, and f, are the
Fermi-Dirac distributions for the conduction and valence
bands, respectively.



The gain coefficient can be divided into two parts: stimu-
lated emission rate R, and stimulated absorption rate R,

gm(vs1) = Re(v,n) — Ry(v, n), (2)

where

R.(v,n) =

2 ( 2, )3/2
427322ty \ h(m, + mpn)

o\ 2
x (v— ,f) X (1= £0)),
(3)
R,(v,n) =

2 ( 2m e )3/2
4/2132n3 92 \ Bi(m, + mpn)

E 1/2
X (v— }f) X f,(0)(1 = fe(v)).

The propagation of optical field in the SOA can be des-
cribed as

dAT o1 H
S| S g - ) |4,
dA7 . 1 -

=B S - |45,

(4)

where A7 and A; are the forward and backward travelling
waves of the jth active region section, respectively, f3 is the
propagation constant, I' is the confinement factor, and « is
the internal loss coefficient.

The propagation of the spontaneous emission field is pre-
sented as

ds; ;
g = [rgm(vk) n) — ‘X]Sk +Rsp(vk) n), 5)
5
das;
—r = ~[Tgnton) — a]S; = R (v m).

Sf and S are the forward and backward amplified spontane-
ously emitted photon densities per unit frequency spacing
centred at frequency vk. Ry,(vk,7n) is the ASE noise cou-
pled into Sf or S, and it is expressed as Ryp(vp,n) =
TR, (vk, n)Av, Ay is frequency spacing.

The carrier rate equation is presented by

dn(zZ) 1 e Lgmnn)
dt - qV R(n(Z)) ]:z:l Across <AJ +A])
(6)
< 2Lgm (Vi n) _
-y gAi" (st +55).
k:I Cross

The recombination rate term R(n(z)) is given by
R(n) = Cin+ Con® + Gy, (7)

where C;, C,, and C; are the nonradiative recombination,
bimolecular radiative recombination, and auger recombina-
tion coefficients, respectively.

The numerical model for the whole system of Figure 5 is
achieved using iterative circulations. In the first iteration, the
ASE in both directions of SOA2 is calculated assuming no

International Journal of Optics

12

0'\,3

ASE power (dBm)
o)

o)}
T

0 5 10 15 20 25 30 35
Loops

—e— SOA1 backward ASE power
—%— SOA2 forward ASE power

FiGgure 6: Counterclockwise ASE power after N loops. Cross: SOA2
output ASE power. Circle: SOA1 output ASE power.

ASE power is coupled in. Then the ASE generated by SOA2
travels in both clockwise and counterclockwise order towards
SOAL. Under this boundary condition, the ASE originated
from SOA2 together with the one generated by SOA1 is amp-
lified by SOAL as it travels through; however, only the back-
ward ASE inside the SOA1 is input to SOA2. For any succes-
sive iterations, the ASE from SOAI couples into SOA2 be-
fore SOA2 generates ASE. When ASE travels inside the ring
cavity, the facet reflectivity and coupling loss of both SOAs,
the insertion loss for the isolator, and WDM couples are
taken into account. The round trip time is ~1.67 ns namely,
the fibre length is about 0.5m. Therefore, fibre loss and
dispersion are neglected. The iterative procedure is terminat-
ed when the maximum difference of the ASE powers at each
discrete frequency band between successive iterations is less
than the desired tolerance. The numerical model is impleme-
nted using Matlab.

4. Simulation Results and Discussions

The characteristics of AGC-SOA were studied from the initial
state when no input signal is introduced. The ASE power
after every counterclockwise ASE round trip is recorded.
In Figure 6, the counterclockwise output ASE powers from
SOA2 and SOAL are displayed after each loop transit.

The ASE power increases rapidly within the first 3 loops
and then stabilises. Since the cavity round trip time is
~1.7 ns, stabilising the travelling ASE power in the loop takes
between 1.7 and 5.1 ns (several round trips). The ASE spec-
trum within the clamping mode was examined after every
circulation. Figure 7 shows the SOA2 output ASE spectr-
um at different loop transits. In the first loop, the output ASE
power from SOA2 is relatively low, and the whole spectrum
is divided into two parts falling outside the C-band due to
presence of the WDM coupler in the ring cavity.

Initially, the ASE power within the S-band is greater than
that within the L-band. However, as the lasing mode becomes
established, the output ASE power develops as predicted in
Figure 6. With the ASE power within the S-band decreasing
significantly, the spectrum becomes sharp and narrow.
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As ASE circulations progress, ASE emission in the S-band
is further restrained becoming negligible, and ASE within the
L-band accounts for gain clamping. This results from the fact
that the lasing threshold is lower at longer wavelengths hence
once lasing action is established, the shorter wavelength
energy states are depleted. The results agree well with experi-
mental observation.

Having established the steady-state conditions of model
operation, an input optical signal was introduced after the
ASE inside the AGC-SOA cavity stabilizes. The gain of
1550 nm CW light as a function of travelling ASE loop num-
bers is depicted in Figure 8. An optical signal power of
—20 dBm was injected into SOA1. The drive current of SOA1

was set at 200mA, and SOA2 at 65mA. The simulation
demonstrates that the signal gain settles within the first ASE
loop transit and then remains unchanged; thus, after AGC-
SOA stabilizes from the initial state (shown in the evolution
depicted in Figure 7), it takes <2 ns (within one loop time)
for the gain to settle.

The variation of the gain with clamping SOA drive cur-
rent was modelled over a range of clamping currents to cor-
roborate that the model faithfully reproduced the experim-
ental behaviour of the AGC-SOA. The model outputs
(Figure 9) indicate broadly that the model is predicting the
trends. There is no significant loss of Py with gain reduc-
tion, however, the exact values of gain and Py differ slightly
from experimental measurements. This difference most like-
ly derives from small differences between the physical para-
meters used in the model and the real device.

The DC parametric operation of the AGC-SOA can be
estimated using the above model. CW light (1550 nm) was
introduced into AGC-SOA once the steady-state operation
was established. The input signal power was then increased
steadily from —35dBm to 20 dBm, and the normal perfor-
mance metrics of gain, maximum output power at gain satu-
ration (Psy), and noise figure (NF) were recorded for a given
clamping current condition; the clamping current is changed
from 0mA to 200 mA. The simulation results are presen-
ted as a function of clamping current in Figure 10. The over-
all trends given by the models are in good agreement with
previously reported experimental characterizations [6]. Gain
clamping begins at a clamping bias current of greater than
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dot: experimental results of NE. Blue line: simulation results of
gain. Blue cross: experimental results of gain. Green line: simulation
results of Pg,. Green star: experimental results of Pg,.

0mA. Experimentally this value was observed to be nearer
10 mA before there was sufficient gain within the clamping
SOA to overcome loop losses and allow the lasing mode to
stabilize. This difference is mainly due to the overestimation
of ASE noise within the model [8]. Strong clamping is ob-
served when the control SOA is operated at high gain levels;
here, the AGC-SOA is driven into attenuation. As the gain is
clamped, the NF increases, but in the main, the Py, value re-
mains relatively constant when the clamping current is
<100 mA.

The theoretical model could also be used to better under-
stand the dynamic behaviour of the AGC-SOA. In order to
do this, the model was run under the following conditions.
Firstly, stable operation of the AGC-SOA was ensured by
running the simulation with only ASE for the first 30 loop
iterations and at an SOA2 (clamping SOA) bias of 20 mA.
At this point, a 0 dBm input signal was introduced, and it
can be seen that the gain of the AGC-SOA is around 10 dB.
The clamping SOA bias current was then increased every 10
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FiGure 11: Dynamic gain variation as a function of clamping
current.

loops, from 20 mA to 200 mA, in steps of 20 mA and the gain
change observed (Figure 11). It is clear from these simula-
tions that the gain is indeed adjusted and stabilized within 1
or 2 loops of the model iteration. This implies therefore that
the gain can be adjusted within nanosecond timescales which
agree with experimental results [7].

5. Conclusion

A detailed wideband model for adjustable gain-clamped
semiconductor optical amplifier (AGC-SOA) has been estab-
lished, which can be used to analyse steady-state and dyna-
mic gain modulation performance of the device. The simula-
tions agree with the experimental results, showing the advan-
tage of AGC-SOA not only lies in extended linear amplifica-
tion regime and adjustable device gains, but also the ability
of adjusting and stabilising its gain within nanosecond time-
scales. This feature could enable the device to work as power
equalizer and linear amplifier in packet-based dynamic sys-
tems such as passive optical networks (PONs).
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Mode-locking refers to the generation of ultrashort optical pulses in laser systems. A comprehensive study of achieving high-energy
pulses in a ring cavity fiber laser that is passively mode-locked by a series of waveplates and a polarizer is presented in this paper.
Specifically, it is shown that the multipulsing instability can be circumvented in favor of bifurcating to higher-energy single pulses
by appropriately adjusting the group velocity dispersion in the fiber and the waveplate/polarizer settings in the saturable absorber.
The findings may be used as practical guidelines for designing high-power lasers since the theoretical model relates directly to the

experimental settings.

1. Introduction

The invention of the laser by Maiman in 1960 is a historical
landmark of advanced scientific innovation. Lasers serve
as lightwave sources for pulsed electromagnetic energy and
have a large variety of applications, ranging from small-scale
problems such as ocular surgeries and biological imaging to
large-scale problems such as optical communication systems
and nuclear fusion. In the context of telecommunications
and broadband sources, the laser is required to robustly pro-
duce optical pulses on the scale of picoseconds or even femto-
seconds. The generation of such short pulses is often referred
to as mode-locking. Depending on the design of the laser
cavity, mode-locking can be classified as either active or pas-
sive. The active mode-locking mechanism uses an external
signal to induce a modulation on the propagating electro-
magnetic field inside the laser cavity, whereas the passive
mode-locking mechanism relies on placing some discrete
element(s) into the laser cavity which causes self-amplitude
modulation of the field. This paper discusses some of the
latest theoretical developments in high-power passive mode-
locked lasers.

A common feature to all mode-locked lasers is the inten-
sity discrimination that is achieved by the mode-locking

mechanism [1-3]. Such intensity discrimination, also known
as saturable absorption, is the underlying mechanism res-
ponsible for passive mode-locking [4]. Figure 1 shows a typ-
ical passively mode-locked fiber laser that utilizes a ring con-
figuration [1, 5, 6]. The laser cavity consists a piece of single-
mode fiber (SMF), an output coupler that extracts the signal
out of the cavity after each round trip, and a bandwidth-limi-
ted energy pump that compensates the energy lost during
propagation. The saturable absorber considered here consists
of a linear polarizer and a series of waveplates. When com-
bined with the laser cavity polarization rotation, bandwidth-
limited saturating gain, chromatic dispersion, and self-phase
modulation, a uniform train of stable mode-locked pulses
may be formed from white noise after a certain number of
round trips. Saturable absorption can also be achieved by
a variety of other physical mechanisms including nonlinear
polarization rotation [7-10], nonlinear interferometry [11—
14], graphene-based lattices [15, 16], and nonlinear mode-
coupling [17-20], but the primary focus in this paper is the
saturable absorption achieved by the polarizer and wave-
plates.

Since its first proposed use in the early 90s, the fiber ring
cavity laser mode-locked by a passive polarizer and a series of
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FiGurek 1: Experimental configuration of a ring laser cavity that in-
cludes quarter-waveplates (QWP), passive polarizer, half-waveplate
(HWP), ytterbium-doped amplification, and output coupler. The
Yb-doped section of the fiber is fused with standard single-mode
fiber and treated in a distributed fashion. The angles a;, a,, a3, and
a, of the discrete mode-locking elements can all be measured with
reasonable accuracy. The dotted lines denote free space (from [6]).

quarter- and half-waveplates (see Figure 1) has become one
of the most reliable and compact sources for robust ultra-
short optical pulses [1, 3, 7-9]. Such fiber lasers offer major
practical advantages over solid-state configurations. For exa-
mple, they are relatively cheap and compact and do not
require careful alignment of the optical cavity since the light
is contained in a waveguide. The possibility of using fibers
in short-pulse laser devices has motivated research for nearly
two decades. However, limitations in the energy output have
limited their impact in comparison to their solid-state coun-
terparts. Indeed, fiber lasers have lagged well behind solid-
state lasers in the key performance parameters—pulse energy
and duration. Recently, new insights into pulse-propaga-
tion physics [21-23] have provided glimpses of order-of-
magnitude increases in the pulse energy and peak power
in femtosecond fiber lasers. However, the design and opti-
mization of high-performance fiber devices is impeded by
the so-called multipulsing instability (MPI), which ultimately
imposes a fundamental limitation on a single mode-locked
pulse energy [5, 24].

To compete directly with solid-state technologies, it is cri-
tical to understand the limiting effects of the MPI. A number
of theoretical and computational models have been intro-
duced over the past two decades in an attempt to quantify
the mode-locking dynamics in a laser cavity with a passive
polarizer. The master mode-locking equation first proposed
by Haus [1] is the most well-known and recognized model to
date. This model, later augmented by a quintic nonlinearity
to account for the experimentally observed robust nature of
the mode-locked pulses [3, 6, 25], is also known as the cubic-
quintic Ginzburg-Landau equation (CQGLE). In this model,
the discrete laser dynamics are averaged out and replaced
by a truncated Taylor expansion addressing the Kerr non-
linearity and saturable absorption. Although the CQGLE
gives good qualitative descriptions of the averaged mode-
locking dynamics that are consistent with experiments [5, 6]
and allows for extensive theoretical and numerical analysis
[26-28], it is shown that the model fails to capture the poten-
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tial high-energy pulses that are practically important to the
community [29].

This paper gives an overview of the theoretical models
that are used to describe the pulse propagation in the laser
cavity [1, 3]. The primary focus is to exploit the system
parameters with the aim of circumventing the MPI in
favor of bifurcating to high-energy single-pulse solutions
of the mode-locking models. The analysis and numerical
simulations presented here provide mathematical insights
into the underlying mode-locking dynamics and, more
importantly, guidelines for experimentalists to optimize the
performance in the mode-locked laser.

2. Governing Equations

As with all other electromagnetic phenomena, the propaga-
tion of the electric field in the laser cavity shown in Figure 1
is governed by Maxwell’s equations. A multiscale asymptotic
expansion of the solution to Maxwell’s equation can be
performed to separate the slowly varying envelope from the
transverse dependence of the electric field [30, 31]. To descri-
be the propagation of the electric field envelope, the dom-
inant physical effects must be accounted for. These include
chromatic dispersion, fiber birefringence, Kerr nonlinearity,
cavity attenuation, bandwidth-limited saturable gain, and
the discrete effects of the waveplates and polarizer. Under cer-
tain choice of the angles a1, &, a3, and «, the waveplates and
the polarizer provide an effective intensity discrimination
(saturable absorption) to shape the electric field circulating
in the cavity [6, 25].

2.1. Full Governing Equations. The full governing equations
for modeling the pulse evolution in the laser shown in
Figure 1 can be divided into two parts: (i) the intra-cavity
dynamics induced by the interactions of chromatic disper-
sion, Kerr nonlinearity gain saturation, and so forth and (ii)
the discrete application of the waveplates and polarizer after
each cavity round trip. It has been shown that the intracavity
evolution is described by a pair of dimensionless coupled
nonlinear Schrodinger equations (CNLS) [30-33]:

ou D od*u 2 2 2% _
S0+ S Ku (Juf + AP )ut B = iR,
ov Do ;
lfaz + Eﬁ-’—KV—F <A|u|2+ |V|2)V+Bu2V* = ZRV'

(1)

In the above system, u(z, t) and v(z, t) represent the two orth-
ogonally polarized electric field envelopes in an optical fiber
with birefringence K and are usually referred to as the fast
and slow components of the electric field, respectively. The
z coordinate denotes the propagating distance normalized
by the length of the cavity, and ¢ denotes the retarded time
normalized by the full width at half-maximum of the pulse.
D is the averaged group velocity dispersion of the cavity and
is positive for anomalous dispersion and negative for normal
dispersion. The material properties of the optical fiber
determine the values of the nonlinear coupling parameters A
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(cross-phase modulations) and B (four-wave mixing). These
parameters satisfy A + B = 1 by axisymmetry and, for the
silica fiber considered, take on the specific values A = 2/3 and
B = 1/3 [32, 33]. The dissipative terms R, and R,, account-
ing for the saturable, bandwidth-limited gain (from the Yb-
doped amplification) and attenuation, take the form

Ry = G(z)(1 +19?)0 — T'a, (2)

with

2g0
G(z) = : 3
o 1+ (1/e0) [ (1ul + 1vI?) dt )

Here, gy and e are the nondimensional pumping strength
and the saturating energy of the gain medium, respectively.
The parameter 7 characterizes the bandwidth of the pump,
and T' measures the distributed losses caused by the output
coupling and the fiber attenuation.

The discrete effect of the waveplates and passive polarizer
after each cavity round trip can be modeled by the corre-
sponding Jones matrices [5, 6]. The standard Jones matrices
for the quarter-waveplate, half-waveplate, and polarizer are
given, respectively, by

e—in/4 0
W’V4 - ( 0 ein/4)’

v S0y (1o
22 o i) TP o o)

These matrices are valid only when the principal axes of the
devices are aligned with the fast field of the cavity. For arbi-
trary orientation «; (j = 1, 2, 3, p) shown in Figure 1, the
matrices are modified according to

Ji = R(a;)WR(~a), (5)

where W is the Jones matrix of the device given in (4) and R
is the rotation matrix

R(og-) _ (cosocj —sin(xj)' ©)

sina; cosa;

The field (u,v)" immediately after any mode-locking ele-
ment J; can be related back to the field (u,v)  immediately
before the element by

o)

To help make clear the modeling of the laser cavity
dynamics subject to (1)—(6), consider a single round trip
passage through the cavity. The propagation of the field starts
immediately after the polarizer with orientation «;, for which
the pulse is linearly polarized. The quarter-waveplate (with
angle a;) to the left of the polarizer converts the polariza-
tion state from linear to elliptical, thus creating a polarization

ellipse. The two polarization components u and v then pro-
pagate through the fiber as governed by (1). At the end of
the fiber, the half-waveplate (with angle a3) further rotates
the polarization ellipse through a certain angle. The quarter-
waveplate (with angle a,) converts the polarization state
from elliptical back to linear, and the polarizer finally aligns
the field with its own principal axis.

The CNLS (1) together with Jones matrices (5) gives a
full description of pulse propagation in the laser system. We
first apply a fast Fourier transform to convert the temporal
domain of the CNLS to the spectral domain. An adaptive
step-size fourth-order Runge-Kutta algorithm is then used to
propagate the initial data (in the spectral domain) over one
cavity round trip. The Jones matrices of the waveplates and
polarizer are then applied to the end data sequentially, and
the entire procedure is repeated. The discrete application of
Jones matrices after each cavity round trip acts like a filter
that can be tuned to control the mode-locking behavior.
Depending on their orientations, the waveplates and the pol-
arizer can either destabilize the field propagating in the cavity
or provide an effective intensity discriminating mechanism
to lock it into a robust pulse. Figure 2 shows how stable,
self-starting mode-locking can be achieved in the laser cavity
shown in Figure 1. At a pumping strength go = 1 (Figures
2(a) and 2(b)), the initial white noise is mode-locked into
a stable pulse after about two hundred cavity round trips.
When the pumping strength is increased to gy = 2.7 (Figures
2(c) and 2(d)), stable single-pulse mode-locking cannot
be achieved. Specifically, the increased pumping strength
broadens the frequency spectrum of the pulse, which even-
tually exceeds the bandwidth of the pump. In this case the
initial white noise quickly evolves into the next energetically
favorable state of two identical pulses. The bifurcation of
a single pulse into multiple pulses (multipulsing instability
(MPI)) is the main focus of this paper.

2.2. The Master Mode-Locking Equation. Although it is not
difficult to simulate the full governing system (1)—(5) [21, 23,
26, 34-38], extracting analytic results remains a mathemati-
cal challenge due to the discrete nature of the implementa-
tion of the waveplates and polarizer. This has led to the
consideration of averaged evolution models that distribute
all the lumped effects over the entire cavity while retaining
the key mode-locking dynamics [39, 40]. The master mode-
locking equation proposed by Haus [1, 7-9] was the first
theoretical model used to describe the mode-locking dyna-
mics in the ring cavity laser shown in Figure 1. This model is
essentially the complex Ginzburg-Landau equation (CGLE)
where a cubic nonlinearity is used to describe the action of
the saturable absorber. A quintic term is usually added to the
master mode-locking equation to account for the robustness
of the pulses observed in experiments, and the resulting
equation, generally known as the cubic-quintic Ginzburg-
Landau equation (CQGLE), takes the form

. D 2 4
e+ Syatyly[Ty ey [y

= ig(2) (1 + 1)y — idy + By Py +iu|y | *y.
(8)
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FI1GURE 2: Self-starting mode-locking from white noise. (a) and (b) Stable single-pulse mode-locking when gy = 1. (¢) and (d) Stable double-
pulse mode-locking when gy = 2.7. The rest of the parameters are D = 0.4, K = 0.1,¢9 = 1,7 = 0.1, = 0.1, 41 = 0, a; = 0.827, a3 = 0.17,

and a, = 0.457.

Here, y represents the overall envelope of the electric field
and the saturating gain is

1+ (Veo) |5 || dt

g(2) )

The derivation of the CQGLE that relates the coefficients to
the experimental setup in Figure 1 was first given by Koma-
rov et al. [5, 25]. In the derivation they assumed that the ori-
entations of the two quarter-waveplates add up to zero (a; +
a; = 0) and that the field is polarized along the fast com-
ponent, that is, a, = 0. Here, we will use a more general
approach that can be found in [6, 29].

The key idea in deriving the CQGLE is to separate the
linear and nonlinear effects in the CNLS (1), assuming that
these effects occur on a length scale much longer than the
fiber length [5, 6, 25, 29]. We follow the circulating electric
field in the laser cavity coming out from the polarizer. Ignor-
ing the birefringence K (which will be treated separately), the
linear terms in (1) alone yield the evolution equation

D
i, + S Vi = ig(z)(1+102)y — iT'y. (10)

The field envelope  is related to the two orthogonally polar-
ized components in the CNLS through the transformation
u = ycosa, and v = ysina,, where «, is the orientation of
the polarizer. On the other hand, the nonlinear evolution

i% + (\u\z +A|v|2)u+Bv2u* =0,

0z

5 (11)
iy (Alul2 + Ivlz)v+Bu2v* =0

0z

can be solved analytically to get

u- ) Uy, ) cosw sinw) [u,
=t =t , (12)
v Vn —sinw cosw/ \ v,

where I, = |u,|? + |v,|? is the total power of the field at
the beginning of the fiber section during the nth round-trip
and w = BI,sin2(a; — «,). The above map shows that the
field undergoes an intensity-dependent polarization rotation
(governed by /1) as it propagates along the fiber. The effect

of the fiber birefringence K alone is

v
i— — Ku = i— + Kv =0, 1
laz u=0, laz y=0 (13)
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which leads to u(z,t) = u(0,t)exp(—iKz) and v(z,t) =
v(0,t) exp(iKz), respectively. In other words, the birefrin-
gence induces a 2K-phase shift between the two polariza-
tion components at the end of the fiber segment, that is, at
z = 1. Therefore, we approximate the birefringence using

the matrix
e K 0
Jk = ( 0 eiK)' (14)

Applying this birefringent matrix and the Jones matrices
given in (5) to (12) results in the scalar map

Vntl = ei‘w"‘zQ(In)Wm
(15)
_ ei\wn\2+10gme

where the complex function Q is given by

Q =%{e’”< [cos(Zocz — 203 — ocp) + icos(2a3 — ocp)]
X [icos(Zm —ap — W) — cos(ocp - w)]
+ K [sin(Z(xz — 203 — ocp) - isin<2(x3 - (xp>]

X [sin(ocp — w) — isin(20c1 -y — w)]}
(16)

This complex quantity is explicitly related to the birefrin-
gence as well as the settings of the waveplates and polarizer.
Equations (10) and (15) are the leading order approxima-
tion to the pulse propagation in the laser cavity shown in
Figure 1. The initial data is first evolved forward over one
round trip according to the linear equation (10). The discre-
te, nonlinear map (15) is then applied to the resulting field
and the process is repeated.

The effect of the nonlinear transfer function Q can be
averaged into the evolution by taking a continuous limit of
(15), yielding the differential equation [6]

v = (ily|* +logQ(lv|?))y- (17)

The leading order approximation to the overall evolution is
obtained by combining (10) and (17), that is,

D
iyt Syt |y |y = ig(2) (1 +13})y — iTy + ilog(Q)y.
(18)

We refer to this equation as the sinusoidal Ginzburg-Landau
equation (SGLE) [29]. The coefficients in the CQGLE (8)
can be related to the experimental settings by expanding
the logarithmic term in the SGLE as power series in |y|?

(assuming it is small) and truncating at the term |y|*.
Specifically, the CQGLE coefficients are calculated as

8 =T —log|Q(0)l,
y =1+ Im (Q(0)/Q(0)),
B = Re (Q'(0)/Q(0)), (19)

v=Im [(QO)Q"(0) - Q*(0))/Q*0) ]2,
i = Re [(QO)Q"(0) - Q*0)/Q*(0)]/2,

where the derivatives are taken with respect to |1//|2 . In the
case of the master mode-locking model (CGLE), the quintic
coefficients v and y are set to zero. When the parameters are
appropriately chosen, the CQGLE model supports solitary
wave solutions that are known as dissipative solitons in the
optics community [17]. It should be noted that in what
follows the term soliton is used in a much broader sense than
the strict mathematical definition of the localized solution of
a completely integrable nonlinear evolution equation [41].
The form of the dissipative soliton is solely determined by
the system parameters rather than by the initial condition as
in the classical soliton theory.

In the CGLE, one has to adjust the orientations of the
waveplates and polarizer in order that the cubic dissipation
p is always positive so that self-amplitude modulation
(intensity discrimination) is possible. There is, however,
only a small range of 3 values that allows stable mode-
locking to occur [42, 43]. Outside this range, the cubic
gain is either too low for pulse formation or too large so
that the pulse amplitude blows up to infinity after several
cavity round trips. In reality, the pulse governed by the full
equations (1) and (5) can never blow up since it always
experiences a net loss upon passing through the mode-
locking elements (waveplates and polarizer). The CQGLE
prevents the pulse from blowing up by saturating the cubic
gain with a quintic loss (¢ < 0). This is a better description of
the saturable absorption process, which makes the CQGLE
a physically more relevant model than the master mode-
locking equation. In the regime where both the cubic and
quintic dissipations are positive, there is no higher-order
saturation in the model to prevent the blow-up of pulses, and
thus the CQGLE becomes suspect as it admits a large number
of unphysical behaviors. Therefore, the condition

B>0>pu (20)

is considered for the CQGLE to be a physically relevant
model that does not exhibit blow-up. With an appropriate
choice of parameters, the real part of the transfer function
Q provides an effective intensity discriminating mechanism
(saturable absorption) to shape the circulating field. In
this process the saturable absorber sifts out those inten-
sities whose polarization state is commensurate with the
orientation of the waveplates and polarizer, thus forming
a stable mode-locked pulse. Figure 3 shows the experimen-
tally (Figure 3(a)) and numerically predicted (Figure 3(b))
operating regimes of the laser depicted in Figure 1. In
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FIGURE 3: (a) Experimental operating regimes (red) of the laser shown in Figure 1. (b) Predicted operating regimes (red) of the CQGLE (8).
The green region satisfies condition (20) but no stable pulses are found. Here B = 1/3, K = 0.1, g = §, D = 0.3, 7 = 0.2, and &, = 0.457

(from [6]).

the numerical result, mode-locking is only achievable in the
red region. The green region satisfies condition (20), but
stable mode-locked pulses cannot be found. This suggests
that condition (20) alone is not sufficient to guarantee mode-
locking. A quantitative comparison between experiment and
theory is difficult as the birefringence K and the orientation
of the fast axis of the fiber are hard to measure in practice.
However, the theory reproduces the islands of stable regions,
which are a key feature that is also observed in experiments.

3. Dissipative Soliton Resonance

When more energy is injected into the laser cavity, the mode-
locked pulse splits into multiple pulses (see Figure 2) instead
of becoming a more intense single pulse. When the full set
of cavity parameters that includes chromatic dispersion is
taken into account, it is possible to find a certain region in
the laser cavity vast parameter space for which the mode-
locked pulse becomes wider instead of splitting into multiple
pulses as the cavity energy is increased. This specific method
of using the cavity dispersion to circumvent MPI is referred
to as dissipative soliton resonance (DSR) [44—46].

The CQGLE (8) is the standard theoretical model des-
cribing the averaged pulse dynamics in a ring cavity laser [1,
3, 5, 6, 37]. Previous studies on DSR were phenomenological
while the parameters in the CQGLE were chosen randomly.
Comparing to the previous works on DSR [45, 46], the
results here present two important additional features that
pave the way for experimental investigations [44]. First, the
parameters in the governing model are explicitly related to
the waveplate/polarizer angles through expressions (19), al-
lowing for a connection between theory and experiment.
Second, a saturable, instead of a constant, gain is studied.
This provides a more physically realistic picture that takes
into account the finite pumping power budget [1, 3].

Without loss of generality, the self-phase modulation y in
the CQGLE (8) can be normalized to one. Figure 4 shows the
normalized cubic-quintic nonlinearities as functions of the
quarter-waveplate angle «; while the other parameters are
fixed. Mode-locking dynamics, and in particular DSR, will

be explored in regions where § > 0 > u (see condition (20)).
Other regions are considered as physically irrelevant since
either the pulse will experience a blow-up in amplitude, or
there is a lack of intensity discrimination [6]. The saturating
gain is considered here, namely,

2go
=——° (21)
T e

This is a more physically realizable model than the constant
gain model since the pump cannot maintain a fixed gain
at arbitrary high cavity energy. In fact, it has been shown
that the pulse solution of the master mode-locking equation
(CQGLE with v = py = 0) with constant gain is always
unstable [27, 28, 42, 43].

In order to investigate the energy limiting effects of the
saturable gain dynamics on the DSR, we use both D and
the saturating energy e, as control parameters with the
results summarized in Figure 5. Usually for a fixed disper-
sion, the mode-locked pulse will become unstable when e
is too large. Such an instability is usually characterized by
a Hopf bifurcation and marks the onset of MPI [24]. The
cavity dispersion D is the crucial factor in determining the
dominant effect in the competition between DSR and MPI.
Specifically, there is a critical limit D = D, such that the sys-
tem favors DSR when D < D, and MPI when D > D.. For the
parameters considered in Figure 5, we found (numerically)
that D, ~ —1.2. Consider, for instance, the case where D =
—1.6 < D.. The Gaussian-looking pulse (blue solid curve)
at low ey values first grows in amplitude until a saturating
amplitude is reached (red dashed curve) and then in width
to form a high-energy, flat-top structure (green dash-dot
curve) at high ey values. The observed transformations in
pulse shape and the chirp profile are signatures of the DSR
although now infinite pulse energy cannot be achieved due
to the finite saturation energy e). However, the physically
unrealistic infinite pulse energy solutions of the constant gain
DSR [45, 46] were key for motivating the present work with
saturating, finite energy behavior. Remarkably, the onset of
MPI is not observed even when the saturating energy is
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(bottom), respectively. The rest of the parameters are gy = 2.3991, 7 = 0.1667, a; = 0.7863m, a; = 0.3m, a3 = & = 0, K = 0.1,and ' = 0.1.
(b) The corresponding pulse shape (top) and frequency chirp profile (bottom) at ey = 5 (blue solid curves), ey = 58 (red dashed curves),
and ey = 180 (green dash-dot curves) along the D = —1.6 line, respectively (from [44]).

as large as eg = 200. On the other hand, the Gaussian- 4. Periodic Transmission: The Sinusoidal
looking mode-locked pulse becomes unstable long before Ginzburg-Landau Equation

the formation of the high-energy, flat-top pulse when D =

—0.8 > D.. The simulations here show that DSR can be used It was shown in Section 2.2 that the CQGLE (8) can be
as an effective mechanism to circumvent MPI, provided the ~ obtained from the sinusoidal Ginzburg-Landau equation
dispersion D is appropriately chosen. (18) by Taylor expanding the logarithmic term with Q(|y|?)
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(from [29], 2011, IEEE).

being the periodic transmission produced by the saturable
absorber (waveplates and polarizer). One has to choose
the waveplate/polarizer settings such that the cubic-quintic
coefficients satisfy condition (20) in order for the model to
be physically relevant. Specifically, f > 0 provides an effective
pulse shaping mechanism in the laser cavity and y < 0 satu-
rates the cubic growth when the pulse amplitude becomes
too large [3, 6]. Condition (20) is an artificial constraint
that arises solely from mathematical considerations and is
the byproduct of using a truncated Taylor series. However, a
series representation of the transmission function can lead to
the elimination of important high-energy solution branches
since the fundamental periodic transmission function is
destroyed by the finite truncation. This fact has motivated
the incorporation of the full logarithmic term rather than
using its Taylor series in the averaged model, that is, using
the SGLE (18) as the governing equation in the laser cavity.
We will show that this model is able to support high-energy
pulses that are not captured by the CQGLE [29].

4.1. Principle of Operation. To illustrate the key idea of
the SGLE model, consider the generic transmission curves
shown in Figure 6, which summarizes the main findings in
the recent work of Li et al. [24]. The red dash-dot line and the
blue dashed line represent the typical transmission function
of the SGLE and the CQGLE, respectively. The black solid
lines, on the other hand, denote the saturating gain curves
in the cavity [1, 24, 29, 47]. The intersection of the gain
curve and the transmission curve describes a mode-locked
solution where the cavity energy is in equilibrium. The points
A and B along the gain curves represent the single mode-
locked solution of the CQGLE and SGLE, respectively. When
the saturation energy is increased, the power of the mode-
locked pulse acquires a larger value which in turn shifts gain
curve 1 towards gain curve 2 [24]. Eventually the power of the

mode-locked solution exceeds the maximum value allowed
(the green circles) in the laser system as computed from
numerical simulations. In the case of CQGLE, the solution
jumps to the next most energetically favorable configuration
of a multipulse solution (not shown). For the SGLE, however,
the solution is expressed as a stable single high-energy
pulse at the point C, which is not captured by the CQGLE
transmission.

The advantage of incorporating the full sinusoidal trans-
mission in the mode-locking model is twofold. First, since
the transmission is not approximated by series expressions,
the SGLE is able to give a more accurate description of
the underlying mode-locking dynamics. Second, as shown
above, high-energy pulses are possible only when a full
analysis of the sinusoidal transmission curve is used [24,
29]. Thus, the SGLE model can serve as a design tool to
maximize the energy output by adjusting the orientations of
the waveplates and polarizer. Although analytical results are
nontrivial due to the complexity of the equation, the SGLE is
relatively easy to analyze with efficient numerical algorithms
and reduction techniques [48-50].

4.2. Comparison of the SGLE with Different Mode-Locking
Models. In this section, we will first establish that the SGLE is
a valid mode-locking model that exhibits the essential dyna-
mics in the nonlinear polarization rotation laser. Then, we
will show that it is able to reproduce the high-energy pulses
of the full governing system, solutions which are precluded
from the master mode-locking theory and the CQGLE
model.

4.2.1. Stable Mode-Locking and Multipulsing. We first com-
pare the mode-locking performance governed by the full
lumped mode-locking system (1)—(6) (CNLS in conjunction
with the Jones matrices) and the SGLE (18). Figure7
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FIGURE 7: Numerical simulations of the full discrete governing system ((a) and (b), recall that |y|?> = |u|? + |v|?) and the SGLE ((c) and (d))
at different gain values g, in the anomalous dispersion regime. (a) and (c) Stable single-pulse evolution starting from white noise at gy = 1.
(b) and (d) The initial white noise quickly evolves into two identical pulses per cavity round trip at g = 2.7. The rest of the parameters in
the simulations are D = 0.4, a; = 0, a, = 0.827, a3 = 0.17, &, = 0.457, K = 0.1, T = 0.1, ¢y = 1, and 7 = 0.1(from [29], 2011, IEEE).

demonstrates the self-starting behavior of the laser from a
white noise initial condition in the anomalous dispersion
regime (D > 0) with a particular waveplate/polarizer setting.
In Figures 7(a) and 7(c), the pumping strength is set at
g0 = 1, and the initial white noise is dynamically locked into
a stable stationary pulse after several hundred cavity round
trips in both the full system (Figures 7(a) and 7(b)) and
the SGLE (Figures 7(c) and 7(d)). The temporal location at
which the pulse forms is completely arbitrary since random
initial data is used. When the energy injected into the system
is increased by increasing the gain gy, the laser undergoes the
commonly observed MPI [24]. In this situation, the initial
condition quickly evolves into two or more pulses with iden-
tical energies, depending on the strength of the gain. It can be
seen that the SGLE is capable of capturing qualitatively the
MPI that occurs in the full system (Figures 7(b) and 7(d)) at
a high gain level (e.g., g = 2.7).

Qualitative matching between the SGLE model and full
evolution is also achieved in the normal dispersion regime
(D < 0), as shown in Figure 8. For the parameters considered,
a single mode-locked pulse can be formed in both the full
governing equations and the SGLE at gy = 1 (Figures 8(a)
and 8(c)). When the gain is increased to gy = 3, the laser
cavity no longer supports a stable single-pulse solution and
a double-pulse configuration is observed (Figures 8(b) and
8(d)). From Figures 7 and 8, one can see that the two main
differences between the full dynamics and the SGLE dynam-
ics are (i) the duration of the transient evolution and (ii) the
mode-locked amplitude. In the case of anomalous disper-
sion, for instance, it takes approximately 300 and 350 cavity
round trips for the full system and the SGLE to mode-
lock into a stable pulse, respectively. The mode-locked peak
amplitude is 0.52 for the full model and 0.81 for the
SGLE. The discrepancy is intrinsic for the averaged evolution
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FIGURE 8: Numerical simulations of the full governing system ((a) and (b)) and the SGLE ((c) and (d)) at different gain values g in the
normal dispersion regime. (a) and (c) Stable single-pulse evolution starting from white noise at gy = 1. (b) and (d) The initial white noise
evolves into two identical pulses per cavity round trip at go = 3. The rest of the parameters in the simulations are D = —0.4, a; = 0.17,
oy = 0.554m, a3 = 0.237, a, = 0.437, K = 0.1, = 0.1, ¢g = 1, and 7 = 0.2 (from [29], 2011, IEEE).

equations (including the CGLE and CQGLE). Nevertheless,
this does not impact the usefulness of the SGLE model as it
captures the self-starting nature of the laser and is easier to
analyze than the full governing equations, that is, it is one
scalar equation versus two coupled equations with discrete
application of four Jones matrices.

4.2.2. Transition Dynamics. When the waveplate/polarizer
angles a1, ay, a3, and &, are chosen appropriately such
that mode-locking is achievable, the initial data can evolve
into an arbitrary number of stable pulses depending on the
pumping strength go. In general, the transition from an n-
pulse solution to an (n + 1)-pulse solution is not a dis-
crete process. Various types of transition dynamics can be
obtained by modifying the waveplate/polarizer settings as
well as other system parameters, as confirmed by theory and
experiments [24, 51, 52]. Usually these transitional states are

difficult to capture as they often happen in a small para-
meter regime, and fine tuning of the parameters is required
to visualize them. Figure 9 shows a typical transition state
of the laser cavity in the anomalous dispersion regime
(D > 0). The pumping strength g is chosen to be between
the stable single- and double-pulse operations shown in
Figure 7. Note that the g values used in the full and SGLE
models are different as one cannot expect an averaged or
approximated model to match the original model at the exact
same parameter values. The transitional state contains a tall
pulse at the origin and one short pulse on each side of it.
These side pulses are developed from the background. The
entire structure undergoes small amplitude oscillations (at
the order of 107*). A remarkable agreement between the full
governing equations (Figures 9(a) and 9(b)) and the SGLE
mode (Figures 9(c) and 9(d)) is observed. This periodic state
is stable and persists over long propagating distances. When
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FIGURE 9: Transition dynamics observed in the anomalous dispersion regime. (a) and (b) Simulations of the full governing equations at
go = 1.9 ((a) and (¢)) and the corresponding pulse profile ((b) and (d)). (c) and (d) Simulations of the SGLE at gy = 2.25 ((a) and (¢)) and
the corresponding pulse profile ((b) and (d)). The rest of the parameters in the simulations are D = 0.4, &y = 0, a; = 0.827, a3 = 0.17,
ap = 0.45m, K = 0.1,T = 0.1, ¢p = 1, and 7 = 0.1. The initial conditions in all the simulations are y(0,¢) = sech 0.5¢ (from [29], 2011,

IEEE).

Qo exceeds a critical value, the tall central pulse experiences
a slight decrease in amplitude. At the same time, one of the
side pulses is attenuated while the other one is amplified to
the height of the central pulse, thus forming a double-pulse
solution. The results found here match with those in a recent
study on the CQGLE [49].

The transition dynamics are more subtle in the normal
dispersion regime as depicted in Figure 10. Similar to the
case of anomalous dispersion, a periodic structure with a tall
central pulse and two flat side pulses is quickly developed (see
Figures 10(a) and 10(b)). However, this periodic structure
is unstable and eventually loses its stability after several
thousand cavity round trips. A transient chaotic evolution
is then observed followed by a stable copropagation of two

well-separated pulses with different amplitudes. While the
CQGLE (Figures 10(c) and 10(d)) is able to give a general
qualitative approximation to the transitional state observed
in the full simulation (Figures 10(a) and 10(b)), the SGLE
model (Figures 10(e) and 10(f)) additionally gives a precise
description of the transient chaotic behavior. This feature
of the SGLE dynamics clearly demonstrates the improved
description of the true discrete cavity dynamics.

4.2.3. Unphysical Blow-Up of Pulses. As mentioned in the
beginning of the section, the field ¢ governed by the CQGLE
may experience a blow-up with certain waveplate/polarizer
settings when condition (20) is not satisfied. This blow-up is
unphysical since energy is always lost when the electric field
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F1Gure 10: Periodic evolution observed in the full governing equations ((a) and (b), gy = 2.27), CQGLE ((c) and (d), go = 2.2), and SGLE
((e) and (f), g = 2.2). The simulated evolutions are shown in (a), (c), and (e) and the corresponding pseudocolor plots are shown in (b),
(d), and (f). The rest of the parameters in the simulations are D = —0.4, a; = 0.17, a; = 0.5547, a3 = 0.237, a, = 0.437, K = 0.1, = 0.1,
eo = 1,and 7 = 0.2. The initial conditions in all the simulations are (0, t) = sech 0.5¢ (from [29], 2011, IEEE).

passes through the mode-locking elements and is a result of
the finite truncation of the periodic transmission function
log Q. It is our intent to show that the artificial restriction
(20) is unnecessary for modeling the laser cavity.

To show that the SGLE does not have the above limita-
tions, we study the transmission function T(|y|?) which can
be defined as the sum of the linear loss and the nonlinear
dissipation. The transmission function of the CQGLE (Tq)
and the SGLE (T5) are given by

T (lw1?) = =0+ Blyl* +ulyl’,

T(ly|*) = -T+ Re (logQ(|v[?) ).

(22)

In the last equation, the imaginary part of the logarithmic
term is neglected since it is not responsible for intensity
discrimination and energy transfer. The imaginary terms
only act to shift the intensity-dependent index of refraction
response due to the field intensity. Shown in Figure 11 are
the transmission curves for the CQGLE (blue dotted line)
and SGLE (red solid line) at two different quarter-waveplate
angles (Figure 11(a): a, = 0.554m, Figure 11(b): a; = 0.47).
The transmission function Tcq of the CQGLE is quadratic in
the field power |y|2. It curves downward at &, = 0.5547 and
upward at a; = 0.471. Figure 12 illustrates the pulse evolu-
tions for the full governing equations (Figures 12(a) and
12(b)), CQGLE (Figures 12(c) and 12(d)), and the SGLE
(Figures 12(e) and 12(f)) corresponding to the two a, values
considered in Figure 11. At a; = 0.5547 (Figures 12(a),
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F1GURE 11: The transmission curve for the CQGLE (blue dashed line) and SGLE (red solid line) for a, = 0.5547 (a) and a, = 0.4 (b). The
rest of the parameters are a; = 0.17, a3 = 0.237, a, = 0.437, I = 0.1, ¢9 = 1, and K = 0.1 (from [29], 2011, IEEE).

12(c), and 12(e)), the evolutions governed by all three
models are always of finite amplitude. Blowing up of pulses
is observed in the CQGLE at a; = 0.47 since self-satura-
tion is impossible when both the nonlinear coefficients f3
and p are positive (Figures 12(b), 12(d) and 12(f)). For
both «, values considered, the SGLE does not have the pro-
blem of unphysical blow-up since it incorporates the full
transmission log Q induced by the waveplates and polarizer.
This allows for a drastically broader and more realistic range
of waveplate/polarizer settings for which stable solutions can
be achieved.

4.2.4. High-Energy Mode-Locking. As illustrated in Figure 6,
the CQGLE uses a quadratic polynomial in the field power
ly|? (see (22)) to approximate the full sinusoidal trans-
mission. This can severely restrict the maximum amplitude
a single pulse can reach before it splits. Figure 13 shows the
tallest possible stable pulse generated by the full governing
equations (black dash-dot line), CQGLE (red dashed line),
and SGLE (green solid line) at two different half-waveplate
angles az. These pulses are recorded right before the MPI
occurs when the pumping strength gy exceeds the multipuls-
ing threshold. At a5 = 0.27 (Figure 13(a)), the full and the
SGLE models produce pulses with amplitudes of about 3.1.
The total cavity energy, which is given by the L?>-norm

B= [ Iyl

is calculated for each model. For the SGLE, the limiting
pumping strength gy = 3.58 gives a pulse energy of E = 4.52.
For the full model, the tallest pulse has an energy of E = 3
with pumping strength of go = 3.38. One can see that the
limiting gp value for a stable single-pulse operation in the
present case is higher than that for a double-pulse opera-
tion (go = 2.7) shown in Figure 7. The energy confined in
each individual pulse of the double-pulse solution shown

(23)

in Figure7 is E = 2.37 for the SGLE and E = 1.11 for
the full governing equations, which is significantly less than
the energy output in the present case. The limiting pumping
strength for the CQGLE model is only gy = 2.51, and the
resulting pulse does not match well with the full simulation
and the SGLE since it is much shorter and wider. With the
same set of parameters, the maximum energy in the single-
pulse solution of the CQGLE is E = 2.87, which is only
approximately 60% of the SGLE model.

At az = 0.257 (Figure 13(b)), the maximum pulse
amplitudes allowed in both the full and the SGLE models
increase to about 4. The corresponding pulse energies are
E =6.58 (g = 11.7) and E = 8.516 (go = 15.4), respectively,
which are about twice the total energy of the double-pulse
solutions shown in Figure 7. This is a remarkable achieve-
ment in terms of maximizing the energy output of the laser
without going through multi pulsing. On the other hand,
such a high-intensity pulse is not supported by the CQGLE
with the parameters considered. In particular, expressions
(19) reveal that the transmission Teq of the CQGLE (c.f.
(22)) is characterized by f = —0.63 and y = 5.74. At
high intensities, the quintic gain always dominates the cubic
loss and consequently leads to an unphysical blow-up of the
solution, as happens in this case.

The above simulations show that, indeed, the SGLE can
support high-intensity pulses with enormous energies ob-
served in the full governing system, including those that are
unpredicted by the CQGLE model. Although these simula-
tions are done with anomalous dispersion, similar trends are
also observed in the normal dispersion regime. Given the vast
parameter space of the SGLE, it is possible to obtain other
types of interesting mode-locking dynamics such as soliton
shaking and period doubling bifurcation [24, 53]. The ability
to support, model, and characterize high-intensity and high-
energy mode-locked solutions is the key reason for our
development of the proposed SGLE theory. In the work
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FIGURE 12: Pulse evolution predicted by the full governing equations ((a) and (b)), CQGLE ((c) and (d)), and SGLE ((e) and (f)). The
plots on the left ((b), (d), and (f)) column correspond to the left (b) in Figure 11. The initial conditions for the plots on the left are y(0,t) =
2 sech 0.5¢ , while those for the right plots are y/(0, t) = 6sech 0.5¢. The dispersion and pumping strength in all the simulations are D = —0.4

and gy = 2 (from [29], 2011, IEEE).

by Renninger et al. [37], it was found that a number of
high-energy pulsed solutions existed in the CQGLE with
both positive cubic () and quintic (4) nonlinearities. The
SGLE discussed here may provide for an effective way to
stabilize such high-energy solutions. Ultimately, it is critical
in modern mode-locked lasers to understand how to achieve
pulses with maximal energy. The SGLE theory provides a
basis for exploring such pulses.

5. Summary

We have studied the phenomenon of dissipative soliton reso-
nance (DSR) in the context of the CQGLE and have extended
previous findings to coefficients that can be explicitly related
to the settings of the ring cavity laser depicted in Figure 1.
In addition to the constant gain model, which was studied
previously [45, 46], DSR is also achievable in the physically

relevant case of saturating gain, but it is subjected to the onset
of MPI if the cavity is not carefully engineered. Specifically,
we found that there is a critical normal cavity dispersion D,
above which the DSR phenomenon is favored over MPI. Due
to its linear chirp profile, the wide pulse created by DSR may
be compressed effectively by linear dispersive delay lines, thus
forming a short, intense pulse with enormous amount of
energy.

In addition to varying the cavity dispersion D, high-ener-
gy mode-locked pulses can also be achieved by carefully
adjusting the waveplate/polarizer settings, which in turn
alters the characteristics of the sinusoidal transmission.
The SGLE (sinusoidal Ginzburg-Landau equation) theory
predicts that one can significantly increase the maximum
pumping strength g, allowed before pulse splitting occurs.
The resulting high-intensity single pulses can deliver signifi-
cantly more energy than previous theoretical predictions by
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F1GURE 13: Stable single-pulse solution with the largest possible am-
plitude of the full governing system (black dash-dot curve), CQGLE
(red dashed curve), and SGLE (green solid curve) at a3 = 0.27 (a)
and a3 = 0.257 (b). The rest of the parameters are D = 0.4, 7 = 0.1,
e =1T=01,0a =0,a = 0497, a, = 0.457m, and K = 0.1. The
initial conditions are y(0,¢) = 0.5 secht (from [29], 2011, IEEE).

the conventional CQGLE and are thus practically important
to high-power applications. These pulses can exist in the
parameter regime that is not allowed by the existing theories
[6]. Thus, the SGLE can be used as an excellent design tool
for enhancing the energy output of the laser. The current
theoretical treatment of DSR and periodic transmission illu-
strate how the orders of magnitude increase in pulse energy
can be achieved in order to make fiber lasers directly com-
petitive with leading solid state mode-locking configurations.
The tremendous benefits of fiber lasers in terms of cost,
readily available technology, and ease of use lend importance
to the theoretical developments proposed in this dissertation.
DSR in the context of the SGLE will be investigated in the

15

future in order to bring the pulse energy to an even higher
level.
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We report a novel CW tunable high-power single-longitudinal-mode fiber laser with a linewidth of ~9 MHz. A tunable fiber Bragg
grating provided wavelength selection over a 10 nm range. An all-fiber Fabry-Perot filter was used to increase the longitudinal mode
spacing of the laser cavity. An unpumped polarization-maintaining erbium-doped fiber was used inside the cavity to eliminate
mode hopping and increase stability. A maximum output power of 300 mW was produced while maintaining single-longitudinal-

mode operation.

1. Introduction

Fiber lasers are established as robust and reliable devices
with a variety of applications in industry and medicine
due to their unique characteristics, such as all-fiber designs,
compact size, cost-effective production and operation, and
the no need for realignment or external cooling. High-power
single-wavelength and multiwavelength infrared fiber lasers
are very attractive for applications in optical communi-
cations, sensing, spectroscopy, biomedical instrumentation,
and nonlinear optics. The continued progress in fiber
pumping techniques, advanced fiber designs, and fabrication
processes, as well as the availability of high-power pump
diodes, has assisted in the development of high-power
fiber lasers [1-5]. Fiber lasers have found applications in
temperature and strain sensors [6—11], medical diagnostics
[12-14], and industrial processing [15]. High-power fiber
lasers using erbium-ytterbium codoped fibers as the gain
medium, which operates in the eye-safe (1.5 ym to 1.6 ym)
spectral range, can now compete with traditional solid-state
bulk lasers. The applications of recently reported single-
wavelength [16, 17] and multiwavelength [18, 19] high-
power fiber lasers were limited due to large linewidth of
the lasing wavelength, multi-longitudinal-mode oscillations,
small tuning range, and complex designs.

In this paper we present a novel tunable, high-power,
single-wavelength, single-longitudinal-mode, fiber ring laser.

2. Experimental Setup

The experimental setup of the fiber laser is shown in Figure 1.
The resonant cavity consists of a high-power polarization-
independent optical isolator (OI), which guaranteed the
unidirectional propagation and thus eliminated the spatial
hole-burning effects [20]; an all-fiber polarization controller;
a commercially available tunable fiber Bragg grating (TFBG)
with a tuning range of 10 nm (1565 nm-1575nm); a 4 m long
double-clad erbium-ytterbium codoped (DC-EYDF) fiber
with core/cladding diameters of 10/131 ym which was used
as the gain medium. In general to produce high output power
from a ring laser, a longer length of the active medium is
required which leads to a smaller longitudinal-mode spacing
and a narrower laser linewidth. A double-clad erbium-
ytterbium codoped fiber (DC-EYDF), with high conversion
efficiency, as an active medium eliminated the requirement
for a long length of the active medium. The DC-EYDF
(CorActive) had much greater absorption and coupling
efficiency compared to that of a circularly symmetric double-
clad fiber due to its hexagonal inner cladding [21]. An un-
pumped polarization-maintaining erbium-doped fiber (PM-
EDF) was used as a saturable absorber (SA) inside the cavity
to reduce the mode hopping of the lasing wavelength. The SA
had an elliptical core with dimensions, peak absorption, cut-
off wavelength, and a numerical aperture of 3.8 x 14.8 ym,
10.8 dB/m at 1535nm, 1371 nm, and 0.15, respectively. To
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increase the effective longitudinal-mode spacing and stability
of the laser wavelength, an all-fiber Fabry-Perot filter with
wide free spectral range (FSR) was used within the cavity.
The Fabry-Perot filter was formed by splicing two 2 X 2
single-mode fused fiber couplers (split ratio 99:1) together
(Figure 2), which helped to eliminate the mode hopping of
the laser wavelength by increasing the effective longitudinal-
mode spacing of the laser cavity [22]. In general the length
of the ring cavity is longer than the FP filter cavity; thus,
the presence of the filter inside the cavity produces the
vernier effect and increases the longitudinal-mode spacing
of the cavity [23-25]. In our experiment the length of the
Fabry-Perot filter was ~0.4 m, which corresponds to a free
spectral range of FSRpp ~ 514 MHz. A multimode laser
diode at 976 nm with a maximum output power of 10 W
was used to pump the laser cavity. A multimode fused
fiber coupler (6 X 1 multimode pump power combiner)
was used as a 976/1550 nm wavelength division multiplexing
coupler to couple power from the pump laser into the DC-
EYDF fiber. The fiber Bragg grating, saturable absorber,
Fabry-Perot filter, and the ring together formed an over-
lapping cavity configuration, where the output of the ring
resonator was modulated by the output of the Fabry-Perot
cavity. The output of the laser was obtained from the
90% port of a 90:10 fused fiber coupler. A polarization-
independent optical isolator was used to reduce any back
reflection from the output port. The output of the laser
was monitored using an optical spectrum analyzer with a
resolution of 1.25GHz, a scanning Fabry-Perot spectrum
analyzer (SFPSA) of resolution 6.7 MHz and a power meter.

3. Results and Discussions

Figure 3 shows the tunable characteristics of the laser for an
input pump power of ~700 mW at a wavelength of 976 nm.
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FIGURE 3: Output power of the laser at ~0.6 nm intervals from
1565 nm to 1575 nm.

The laser was tunable from 1565 nm to 1575 nm, which was
limited by the tunability of the grating, and the minimum
tunable interval was 0.01 nm. The nonuniform output power
over the wavelength range is due to the erbium-ytterbium
codoped fiber emission, which decreases in this region.

Figure 4(a) shows the output of the laser obtained by the
OSA without any saturable absorber inside the cavity, and
Figure 4(b) is the input-output characteristics of the laser.
The maximum power obtained from the laser was ~600 mW
for a pump power of ~1300mW at A = 1565.52 nm.
The threshold pump power and efficiency of the laser were
~200mW and ~49%, respectively. The effective length of
our ring cavity and the length of the FP filter were ~9m
and ~0.4m, respectively. The corresponding FSR of the
ring cavity was ~24 MHz and of the Fabry-Perot filter was
~514 MHz. The theoretical resonance linewidth (FWHM) of
the FP filter was 2 MHz. The presence of this filter resulted in
an effective longitudinal-mode spacing of 514 MHz for the
laser cavity.

To study the longitudinal-mode structure of the laser,
a scanning Fabry-Perot spectrum analyzer (FSR = 2 GHz)
of resolution 6.7 MHz and NuView software developed by
EXFO was used. The maximum output power with single-
longitudinal-mode oscillation was less than 50 mW with a
4m DC-EYDE The experiment was repeated using 1 m of
DC-EYDF fiber to reduce the effective cavity length to 6 m,
which corresponds to longitudinal-mode spacing of 34 MHz.
This allowed us to maintain a lasing wavelength that was
single-longitudinal-mode and free from mode hopping to a
maximum output of 100 mW. Figure 5 was obtained using
the scanning Fabry-Perot spectrum analyzer (SFPSA) and
confirmed the single-longitudinal-mode oscillation of the
laser. At high output powers, the laser suffered from mode
hopping and oscillations of multiple longitudinal modes.

In order to improve the stability of the laser output
at high power, we incorporated an unpumped polarization
maintaining erbium-doped fiber as a saturable absorber
into the cavity. A series of experiments were carried out
using 1 m, 3m, and 5m of PM-EDF to find the optimum
length of the SA, which would increase the stability of the
lasing wavelength, by reducing mode hopping, and without
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largely attenuating the laser output power. We found that
the 5m PM-EDF provided the stability needed while still
allowing a high output power. Figure 6 shows the input-
output characteristics of the laser with a SA inside the cavity.
The polarization controller and polarization-maintaining
EDF helped to produce and maintain quasilinearly polarized
light inside the saturable absorber and thus increased the
stability of the transient grating. The maximum output
power achieved while maintaining single-longitudinal-mode
operations was more than 300 mW with the SA.

The counter-propagating light waves inside the saturable
absorber formed a transient grating with a reflection band-
width of 20 MHz. The transient grating acted as a tracking
filter, where the central frequency tracked the lasing mode
and thus eliminated mode hopping. The transient grating
was capable of adjusting itself, within a few milliseconds,
to any sudden changes in the laser cavity, such as changes
in temperature or other environmental fluctuations [26].
The effective cavity length of the laser was ~19m, which
corresponds to a longitudinal-mode spacing of ~10 MHz.
Though the longer cavity length decreased the longitudinal-
mode spacing of the cavity, the presence of the Fabry-
Perot filter increased the longitudinal-mode spacing to 514
MHz.

Figure 7 shows the input-output characteristics of the
laser with and without the SA, which shows the effect of
SA on the output of the laser. The laser was oscillating
in single-longitudinal-mode when more than 300 mW of
output power was produced.

The 3-dB linewidth of the laser at lower power
(~100 mW) was ~8.75 MHz as measured by the SFPSA and
NuView software. The linewidth of the laser at high pump
power was larger when compared to the theoretical value

based on the Schawlow-Townes formula [27]. We found
that the linewidth of the laser increased with increasing
pump power. It was reported that the wider linewidth in
the erbium-ytterbium-co-doped fiber laser is due to the
temperature fluctuations induced by the pump intensity
noise inside the core of the fiber or due to four-wave mixing
between various longitudinal modes in the laser cavities [28—
31].

We found that it was possible to maintain the relative
phases of the modes by adjusting the polarization controller
plates inside the cavity when the laser was oscillating in
multiple longitudinal modes. This phenomenon is referred
to as passive mode locking and produced periodic pulses
at the output of the laser. Figure 8 shows the output of the
laser at high power obtained from the scanning Fabry-Perot
spectrum analyzer, after achieving mode locking through
adjustments of the polarization controller plates inside the
cavity. At the optimum location of the polarization controller
plates all the modes collapsed into a single pulse with a large
bandwidth (~60 MHz). This result was due to the presence
of the saturable absorber inside the cavity and is known
as passive mode locking. We also found that even without
the presence of the saturable absorber the laser produces
pulses at high powers when the polarization controller plates
were adjusted properly. This is another type of passive mode
locking known as nonlinear polarization rotation mode
locking.

Figure 9 is the output of the laser when operated at high
power and was obtained with a high-speed photo detector
(2.5GHz) and an oscilloscope with a 1 GHz bandwidth.
Thus, we could operate the laser in either CW or pulsed
mode by adjusting the polarization controller plates inside
the cavity.
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4. Conclusion

We have demonstrated a high-power single-wavelength,
single-longitudinal-mode fiber laser. The laser was free from
mode hopping to a maximum output power of ~300 mW.
The laser was tunable over 1565nm to 1575nm and had a
linewidth of ~9 MHz. The presence of SA inside the cavity
increased the stability of the laser. The laser could be operated
in the CW and pulsed mode through manipulation of the
polarization controller. Due to the narrow linewidth and
high output power, this laser could find applications in
developing sensor based on nonlinear effects such as stim-
ulated Brillouin scattering.
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