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Traditional wireless technologies are confronted with new
challenges in meeting the ubiquity and mobility require-
ments of cellular systems. Hostile channel characteristics and
limited bandwidths in wireless applications provide key bar-
riers that future generation systems must cope with. Ad-
vanced signal processing methods, such as

(i) the expectation-maximization (EM) algorithm,
(ii) the SAGE algorithm,

(iii) the Baum-Welch algorithm,
(iv) per-survivor processing,
(v) Kalman filters and their extensions,

(vi) hidden Markov modeling,
(vii) sequential Monte Carlo filters,

(viii) stochastic approximation algorithms,

in collaboration with inexpensive and rapid computing
power provide a promising avenue for overcoming the limi-
tations of current technologies. Applications of the advanced
signal processing algorithms mentioned above include, but
are not limited to, joint/blind/sequence detection, decod-
ing, synchronization, equalization, as well as channel estima-
tion techniques employed in advanced wireless communica-
tion systems, such as OFDM/OFDMA, space-time-frequency
coding, MIMO, CDMA, and multiuser detection in time-
and frequency-selective MIMO channels. In particular, the
development of suitable algorithms for wireless multiple-
access systems in nonstationary and interference-rich envi-
ronments presents major challenges to the system designer.

While considerable previous work has addressed many as-
pects of this problem separately, for example, single-user
channel equalization, interference suppression for multiple-
access channels, and tracking of time-varying channels, the
problem of jointly combining these impairments in wire-
less channels has only recently become significant. On the
other hand, the optimal solutions mostly cannot be imple-
mented in practice because of their prohibitively high com-
putational complexity. The statistical tools implemented by
the advanced signal processing techniques above provide
promising new routes for the design of low-complexity sig-
nal processing techniques with performance approaching the
theoretical optimum for fast and reliable communication in
the highly severe and dynamic wireless environment.

Although over the past decade such methods have been
successfully applied in a variety of communication contexts,
many technical challenges remain in emerging applications,
whose solutions will provide the bridge between the theoret-
ical potential of such techniques and their practical utility.

Key knowledge gaps here concern the following.

(i) Theoretical performance and convergence analyses of
these algorithms.

(ii) New and efficient algorithms need to be developed for
the problems mentioned above.

(iii) Computational complexity problems of these algo-
rithms when applied to on-line implementations of
some algorithms running in digital receivers must be
handled.
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(iv) Implementation of these algorithms based on batch
processing and sequential (adaptive) processing de-
pending on how the data are processed has not been
completely solved for some of the techniques men-
tioned above.

(v) Although research on sequential Monte Carlo signal
processing has only recently begun, many optimal sig-
nal processing problems found in wireless communi-
cations, such as mitigation of various types of radio-
frequency interference, tracking of fading channels, re-
solving multipath channel dispersion, space-time pro-
cessing, and exploiting coded signal structures, repre-
sent a few problems waiting to be solved under the
powerful Monte Carlo signal processing framework.

The call for papers for this issue solicited papers describ-
ing state-of-the-art research in advanced signal processing
algorithms, that is, methods and techniques specifically de-
signed for the next-generation wireless communication sys-
tems. Except for the two invited papers, the papers that fol-
low this editorial were selected on the basis of blind peer re-
view. The papers selected cover several key research topics,
and specifically, the following:

(i) EM algorithms and techniques,
(ii) sequential Monte Carlo methods,

(iii) iterative RLS techniques.

Four papers follow on the subject of EM algorithm ap-
plications. In the paper, “A receiver for differential space-
time π/2-shifted BPSK modulation based on scalar-MSDD
and the EM algorithm,” Riediger et al. address the prob-
lem of blind detection of Alamouti-type differential space-
time (ST) modulation in static Rayleigh fading channels.
They apply an iterative expectation-maximization (EM) al-
gorithm which performs joint channel estimation and se-
quence detection. To further increase receiver performance,
this algorithm uses minimum mean square estimation to ob-
tain channel estimates and the maximum likelihood princi-
ple to detect the transmitted sequence, followed by differen-
tial decoding. The next paper, “The extended-window chan-
nel estimator for iterative channel-and-symbol estimation”
by Lopes and Barry, considers the application of the EM al-
gorithm to channel estimation which results in a well-known
iterative channel-and-symbol estimator (ICSE). But, since
the EM-ICSE has high complexity, and it is prone to mis-
convergence, the authors propose a novel extended-window
(EW) channel estimator for ICSE that can be used with any
soft-output symbol estimator. Therefore, the symbol estima-
tor may be chosen according to performance or complex-
ity specifications. In the third paper, “Soft-in soft-output
detection in the presence of parametric uncertainty via the
Bayesian EM algorithm,” Gallo and Vitetta investigate the ap-
plication of the Bayesian expectation-maximization (BEM)
technique to the design of soft-in soft-out (SISO) detection
algorithms for wireless communication systems operating
over channels affected by parametric uncertainty. In partic-
ular, the authors analyze the problems of SISO detection of
spread-spectrum, single-carrier, and multicarrier space-time

block-coded signals and show that BEM-based detectors per-
form close to the maximum-likelihood receivers under per-
fect channel state information as long as channel variations
are not too fast. The last paper on EM algorithms entitled “A
theoretical framework for soft-information-based synchro-
nization in iterative (turbo) receivers,” by Noels et al., is con-
cerned with turbo synchronization by an EM algorithm. The
algorithm makes use of soft-data information to estimate
parameters like carrier phase, frequency, or timing offsets
within a turbo receiver. In the paper, a general theoretical
framework for turbo synchronization is provided, which en-
ables the derivation of parameter estimation procedures for
carrier phase and frequency offsets, timing offset, and chan-
nel gain.

Sequential Monte Carlo technique with applications to
wireless communications is examined in the following two
papers. In the first paper, “Adaptive blind multiuser de-
tection over flat fast fading channels using particle filter-
ing,” Huang et al. propose a method for blind multiuser de-
tection (MUD) in synchronous systems over flat and fast
Rayleigh fading channels employing a low-complexity par-
ticle filtering and a mixture Kalman filtering technique. To
describe the dynamics of the addressed multiuser system,
they suggest a novel time-observation state-space model
(TOSSM) by adopting an autoregressive-moving-average
(ARMA) process to model the temporal correlation of
the channels. They further propose to use a more effi-
cient PF algorithm known as the stochastic M-algorithm.
In the second paper, “Blind decoding of multiple descrip-
tion codes over OFDM systems via sequential Monte Carlo,”
the authors Z. Yang et al. develop a blind soft-input soft-
output OFDM detector, which is based on the sequential
Monte Carlo method. Multiple description scalar quanti-
zation (MDSQ) is applied first to the continuous source
signal, resulting in two correlated source descriptions. The
two descriptions are then OFDM modulated and transmit-
ted through two parallel frequency-selective fading channels.
At the receiver, a blind turbo receiver is developed for joint
OFDM demodulation and MDSQ decoding. Transformation
of the extrinsic information of the two descriptions is ex-
changed between each other to improve system performance.
Finally, they also treat channel-coded systems and develop a
novel blind turbo receiver for joint demodulation, channel
decoding, and MDSQ source decoding.

The following two papers deal with efficient design of
adaptive detectors and channel estimators based on the
least mean square, the recursive least squares, and the low-
complexity minimum mean square batch estimation tech-
niques. The first paper, “Adaptive iterative soft-input
soft-output parallel decision-feedback detectors for asyn-
chronous coded DS-CDMA systems” by Zhang et al., em-
ploys adaptive algorithms in the SISO multiuser detector in
order to avoid the need for a priori information which is
essential for the optimum and many suboptimum iterative
soft-input soft-output (SISO) multiuser detectors. After de-
riving the optimum SISO parallel decision-feedback detector
for asynchronous coded DS-CDMA systems, they propose
two adaptive versions of this SISO detector, which are based
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on the normalized least mean square (NLMS) and recursive
least squares (RLS) algorithms which effectively exploit the
a priori information of coded symbols, whose soft inputs
are obtained from a bank of single-user decoders, to fur-
ther improve their convergence performance. Furthermore,
they consider how to select practical finite feedforward and
feedback filter lengths to obtain a good tradeoff between the
performance and computational complexity of the receiver.
The second paper, entitled “A low-complexity KL expansion-
based channel estimator for OFDM systems” by Şenol et
al., proposes a computationally efficient, pilot-aided linear
minimum mean square error (MMSE) batch channel esti-
mation algorithm for OFDM systems in unknown wireless
fading channels. The approach employs a convenient repre-
sentation of the discrete multipath fading channel based on
the Karhunen-Loeve (KL) orthogonal expansion and finds
MMSE estimates of the uncorrelated KL series expansion
coefficients. Based on such an expansion, no matrix inver-
sion is required in the proposed MMSE estimator. Moreover,
optimal rank reduction is achieved by exploiting the opti-
mal truncation property of the KL expansion resulting in
a smaller computational load on the estimation algorithm.
The authors then consider the stochastic Cramér-Rao bound
and derive a closed-form expression for the random KL co-
efficients and consequently exploit the performance of the
MMSE channel estimator based on the evaluation of mini-
mum Bayesian MSE. The effect of a modeling mismatch on
the estimator performance is also analyzed.

The last six papers are concerned with the applications
of general signal processing techniques on channel equal-
ization, blind multiuser detection, direction-of-arrival esti-
mation, and wideband CDMA systems. In the invited pa-
per by H. Li and Poor, “Impact of channel estimation er-
rors on multiuser detection via the replica method”, system
performance is obtained in the large system limit for opti-
mal MUD, linear MUD, and turbo MUD, and is validated
by numerical results for finite systems. The paper by Lu et
al., entitled “Factor-graph-based soft self-iterative equalizer
for multipath channels,” considers factor-graph-based soft
self-iterative equalization in wireless multipath channels. The
performance of the considered self-iterative equalizer is an-
alyzed in both single-antenna and multiple-antenna multi-
path channels. It is concluded that when factor graphs of
multipath channels have no cycles or mild cycle conditions,
the considered self-iterative equalizer can converge to op-
timum performance after a few iterations; but it may suf-
fer local convergence in channels with severe cycle condi-
tions. In the third paper, “Estimation of directions of ar-
rival by matching pursuit (EDAMP)” by Karabulut et al., a
novel system architecture is proposed that employs a match-
ing pursuit-based basis selection algorithm for directions-
of-arrival estimation. The proposed system does not require
a priori knowledge of the number of angles to be resolved
and uses a very small number of snapshots for convergence.
The performance of the algorithm is not affected by cor-
relation in the input signals. The algorithm is compared
with well-known directions-of-arrival estimation methods
with different branch-SNR levels, correlation levels, and

different angle-of-arrival separations. The fourth paper by
T. Li et al., “Blind multiuser detection for long-code CDMA
systems with transmission-induced cyclostationarity,” con-
siders blind channel identification and signal separation in
long-code CDMA systems. A long-code CDMA system is
characterized using a time-invariant system model. Then a
multistep linear prediction method is used to reduce the
intersymbol interference introduced by multipath propaga-
tion, and channel estimation then follows by utilizing the
nonconstant modulus precoding technique with or without
the matrix-pencil approach. After channel estimation, equal-
ization is carried out using a cyclic Wiener filter. Finally, since
chip-level equalization is performed, the proposed approach
can readily be extended to multirate cases, either with mul-
ticode or variable spreading factor. The fifth paper, “Adap-
tive space-time-spreading-assisted wideband CDMA systems
communicating over dispersive Nakagami-m fading chan-
nels” by L.-L Yang and Hanzo, investigates the performance
of wideband code-division multiple-access (W-CDMA) sys-
tems using space-time-spreading (STS)-based transmit di-
versity, when frequency-selective Nakagami-m fading chan-
nels, multiuser interference, and background noise are con-
sidered. The analysis and numerical results suggest that the
achievable diversity order is the product of the frequency-
selective diversity order and the transmit diversity order. Fur-
thermore, both the transmit diversity and the frequency-
selective diversity have the same order of importance. Taking
several facts into account, an adaptive STS-based transmis-
sion scheme is then proposed for improving the throughput
of W-CDMA systems. The numerical results demonstrate
that this adaptive STS-based transmission scheme is capable
of significantly improving the effective throughput and the
bit rate of W-CDMA systems. The last paper, “Opportunis-
tic carrier sensing for energy-efficient information retrieval
in sensor networks,” is an invited paper by Zhao and Tong
which is concerned with sensor networks. The authors con-
sider distributed information retrieval for sensor networks
with cluster heads or mobile access points. A distributed op-
portunistic transmission protocol is proposed using a com-
bination of carrier sensing and backoff strategy that incorpo-
rates channel state information of individual sensors.
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In this paper, we consider the issue of blind detection of Alamouti-type differential space-time (ST) modulation in static Rayleigh
fading channels. We focus our attention on a π/2-shifted BPSK constellation, introducing a novel transformation to the received
signal such that this binary ST modulation, which has a second-order transmit diversity, is equivalent to QPSK modulation with
second-order receive diversity. This equivalent representation allows us to apply a low-complexity detection technique specifically
designed for receive diversity, namely, scalar multiple-symbol differential detection (MSDD). To further increase receiver perfor-
mance, we apply an iterative expectation-maximization (EM) algorithm which performs joint channel estimation and sequence
detection. This algorithm uses minimum mean square estimation to obtain channel estimates and the maximum-likelihood prin-
ciple to detect the transmitted sequence, followed by differential decoding. With receiver complexity proportional to the observa-
tion window length, our receiver can achieve the performance of a coherent maximal ratio combining receiver (with differential
decoding) in as few as a single EM receiver iteration, provided that the window size of the initial MSDD is sufficiently long. To fur-
ther demonstrate that the MSDD is a vital part of this receiver setup, we show that an initial ST conventional differential detector
would lead to a strange convergence behavior in the EM algorithm.

Keywords and phrases: multiple-symbol differential detection, Alamouti modulation, differential space-time codes, EM algo-
rithm.

1. INTRODUCTION

Differential detection of a differentially encoded phase-shift
keying (DPSK) signal is a technique commonly used to re-
cover the transmitted data in a communication system, when
channel information (on both the amplitude and phase) is
absent at the receiver. The performance of DPSK in tradi-
tional wireless communication systems employing one trans-
mit antenna and one or more receive antennas is well doc-
umented in the literature. In recent years, this encoding-

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

detection concept has been extended to cover the scenario
where there is more than one transmit antenna. This leads
to differential space-time block codes (STBCs), an extension
of the STBCs originally proposed in [1]. Like conventional
DPSK, differential STBCs enable us to decode the received
signal without knowledge of channel information, provided
that the channel remains relatively constant during the ob-
servation interval [2, 3, 4, 5, 6]. Another similarity between
conventional DPSK and differential STBCs is that both suf-
fer a loss in performance when compared to their respective
ideal coherent receiver.

For conventional DPSK, one approach often used to
improve receiver performance is to make decisions based
on multiple symbols, that is, multiple-symbol differential
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detection (MSDD). Previous research has demonstrated that
when there is only a single channel, that is, only one transmit
antenna and one receive antenna, the performance of MSDD
can approach that of the ideal coherent detector when N , the
observation window length in a number of symbol intervals,
is sufficiently large [7, 8]. This observation is true for both
the additive white Gaussian noise (AWGN) channel and the
Rayleigh fading channel. Moreover, the computational com-
plexity of MSDD is only N logN , provided that the channel
is constant over the observation window of the detector and
that the implementation procedure developed by Macken-
thun is employed [9]. For receive-diversity only systems, Si-
mon and Alouini demonstrated again that the performance
of an MSDD combiner approaches that of a coherent maxi-
mal ratio combining (MRC) receiver with differential decod-
ing, when N is sufficiently large [10]. The application of the
MSDD concept to detect differentially encoded STBCs has
been considered by a number of authors [11, 12, 13, 14, 15].
Their results indicate that space-time MSDD (ST-MSDD) can
provide substantial performance improvement over the stan-
dard space-time (ST) differential detector in [2]. Unfortu-
nately, for both the MSDD combiner and the ST-MSDD,
there is no known efficient algorithm for the optimal imple-
mentation of these receivers. The complexity of both optimal
receivers is exponential in N . In this paper, we will use the
term scalar-MSDD to refer to the optimal MSDD for the sin-
gle channel case [7, 9], and the term vector-MSDD to refer to
either an MSDD combiner [10] or an ST-MSDD [11].

In light of the exponential complexity of the optimal
vector-MSDD, several suboptimal, reduced-complexity vari-
ants have been proposed for detecting differential STBC. For
example, Lampe et al. implemented a code-dependent tech-
nique with a complexity that is essentially independent of
the observation window length of the detector [12, 13]. The
concept of decision feedback was employed by Schober and
Lampe in their MSDD for a system employing both transmit
and receive diversity [6]. Similar ideas were also employed by
Tarasak and Bhargava in a transmit-diversity only scenario
[14], and by Lao and Haimovich in an interference suppres-
sion and receive-diversity setting [15]. In addition, Tarasak
and Bhargava investigated reducing receiver complexity us-
ing a reduced search detection approach [14].

In this paper, we propose an iterative receiver for dif-
ferential STBC employing a π/2-shifted BPSK constellation,
two transmit antennas, and an Alamouti-type code struc-
ture [16]. By employing a novel transformation to the re-
ceived signal, it is shown that this STBC is equivalent to con-
ventional differential QPSK modulation with second-order
receive diversity. As a result, selection diversity and scalar-
MSDD can be employed in the first pass of our iterative re-
ceiver. Due to the low complexity of the scalar-MSDD, a very
large window size N (i.e., 64) can be employed to provide the
receiver with very accurate initial estimates of the transmit-
ted symbols. Successive iterations of the receiver operations
are then based on the expectation-maximization (EM) algo-
rithm [17] for joint channel estimation and sequence detec-
tion. Our results show that the iterative receiver we introduce
can essentially achieve the performance of the ideal coherent

MRC receiver, with differential encoding, in as few as a single
EM iteration (i.e., a total of two passes).

This paper is organized as follows. Section 2 presents the
STBC adopted in this investigation, the channel model, and
the transformation employed to convert this second-order
transmit-diversity system into an equivalent second-order
receive-diversity system. Details of the receiver operations,
including that of the EM algorithm, which performs joint
channel estimation and sequence detection, are described in
Section 3. The bit error performance of the proposed receiver
is given in Section 4, while conclusions of this investigation
are made in Section 5.

2. DIFFERENTIAL ST π/2-SHIFTED BPSK AND
EQUIVALENT RECEIVE DIVERSITY

2.1. System model

We consider a wireless communications system operating
over a slow, flat Rayleigh fading channel, in which space-
time block-coded symbols are sent from two transmit anten-
nas and received by a single receive antenna. The space-time
block code employed falls into the class of the popular two-
branch transmission-diversity scheme introduced by Alam-
outi [16]. Specifically, if c1[k] and c2[k] are, respectively, the
complex symbols transmitted by the first and second anten-
nas, in the first subinterval of the kth coded interval, then the
transmitted symbols in the second subinterval by the same
two antennas are, respectively, −c∗2 [k] and c∗1 [k]. Note that
throughout this paper, the notations (·)∗ and (·)† are used
to represent the complex conjugate of a complex number
and the conjugate (Hermitian) transpose of a complex vec-
tor/matrix. The various coded symbols are taken from the
π/2-shifted BPSK constellation S = {+1,−1, + j,− j}, where
the subsets S1 = {+1,−1} and S2 = {+ j,− j} are used al-
ternately in successive subintervals at each transmit antenna.
This alternation between S1 and S2 not only reduces envelope
fluctuation, but it also enables us to transform the proposed
second-order transmit-diversity BPSK system into an equiv-
alent second-order receive-diversity QPSK system. Assuming
that c1[k] is chosen from S1, it follows that c2[k] must be cho-
sen from S2. Then, the transmitted code matrix in the kth
coded interval becomes

C[k] =
 c1[k] c2[k]

−c∗2 [k] c∗1 [k]

 =
c1[k] c2[k]

c2[k] c1[k]

 , (1)

where C[k] is a member of the set V = {V1, V2, V3, V4}, with

V1 =
[

1 j
j 1

]
, V2 =

[
1 − j
− j 1

]
,

V3 =
[
−1 − j
− j −1

]
, V4 =

[
−1 j
j −1

]
.

(2)

Note that the columns of C[k] correspond to the two trans-
mit antennas, while the rows of C[k] correspond to the coded
subintervals.
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Table 1: Logic table showing the ST differential encoding rule for
C[k], given C[k − 1] and D[k].

C[k − 1]
D[k]

U1 U2 U3 U4

V1 V1 V2 V3 V4

V2 V2 V3 V4 V1

V3 V3 V4 V1 V2

V4 V4 V1 V2 V3

Since we will be using MSDD in the first pass of our iter-
ative receiver, it is necessary for the C[k]’s to be differentially
encoded ST symbols. The C[k]’s are related to the actual data
symbols, the D[k]’s, according to

C[k] = D[k]C[k − 1], (3)

where D[k] is from the set U = {U1, U2, U3, U4}, with

U1 =
[

1 0

0 1

]
, U2 =

[
0 − j

− j 0

]
,

U3 =
[−1 0

0 −1

]
, U4 =

[
0 j

j 0

]
.

(4)

Without loss of generality, the initial transmitted symbol
C[0], which carries no information and serves only as an ini-
tialized reference, is chosen to be V1. It can be easily verified
that the Un’s are unitary matrices, and that for any Vm in set
V and any Un in the set U , the product UnVm is a member
of the set V . The relations between C[k−1], D[k], and C[k],
which arise from the differential encoding rule, are explicitly
depicted in Table 1.

The transmitted symbols at each transmit antenna will
be pulse-shaped by a square-root raised cosine (SQRC) pulse,
and then transmitted over a wireless link to the receiver. Each
link introduces fading to the associated transmitted signal,
and the receiver’s front end introduces AWGN. The compos-
ite received signal from the two links is matched-filtered and
sampled, twice per encoded interval, to provide the receiver
with sufficient statistics to detect the transmitted data. As-
suming the channel gains in the two links, f1 and f2, are con-
stant within the observation window of the data detector, the
two received samples in the kth interval can be modeled as

R[k] = [r1[k], r2[k]
]T = C[k]F + N[k], (5)

where

F = [ f1, f2
]T

(6)

is the vector of complex channel gains,

N[k] = [n1[k],n2[k]
]T

(7)

is a noise vector containing the two complex Gaussian
noise terms n1[k] and n2[k], and (·)T denotes the trans-
pose of a matrix. The channel fading gains are assumed
to be independent and identically distributed (i.i.d.) zero-
mean complex Gaussian random variables, with unit vari-
ance. In addition, these channel gains are assumed to be con-
stant over the observation window of N symbol intervals.
The static fading channel has been frequently considered
when investigating systems with transmit and receive diver-
sity [10, 18, 19, 20, 21, 22, 23]. On the other hand,
the sequence of noise samples, {. . . ,n1[k],n2[k],n1[k +
1],n2[k + 1], . . . }, is a complex, zero-mean white Gaussian
process, with a variance of N0. It should be pointed out
that the fading gains and the noise samples are statistically
independent.

To recover the data contained in the R[k]’s, the receiver
can employ the ST differential detector in [2]. The met-
ric adopted by this simple detector can be expressed in the
form I = |R†[k]D̃[k]C̃[k − 1] + R†[k − 1]C̃[k − 1]|2, where
D̃[k] ∈ U represents a hypothesis for the data symbol D[k],
C̃[k − 1] ∈ V represents a hypothesis for transmitted sym-
bol C[k − 1], and | · | denotes the magnitude of a com-
plex vector. Since I is actually independent of C̃[k − 1], the
hypothesis on D[k] that maximizes the metric I is chosen
as the most likely transmitted data symbol. Though simple,
this detector was shown to exhibit a 3 dB loss in power ef-
ficiency when compared to the ideal coherent receiver. To
narrow this performance gap, a vector-MSDD can be used
instead [11]. This detector organizes the R[k]s into over-
lapping blocks of size N , with the last vector in the previ-
ous block being the first vector in the current block. For
the block starting at time zero, the decoding metric can be
expressed in the form J = |∑N−1

k=0 R†[k](
∏k

i=1 D̃[i])C̃[0]|2.
Like the metric I , this vector-MSDD metric is independent
of C̃[0]. Consequently, the detector selects the hypothesis
(D̃[1], D̃[2], . . . , D̃[N − 1]) that maximizes J , as the most
likely transmitted pattern in this interval. It is clear from
the expression of J that there are altogether 4N−1 hypothe-
ses to consider. So far, there does not exist any algorithm
that performs this search in an efficient and yet optimal
fashion.

The approach we adopt to mitigate the complexity is-
sue in the vector-MSDD is to first transform the received
signal vector in (5) into one that we would encounter in a
receive-diversity only system. Although the optimal vector-
MSDD in this latter case still has an exponential complexity
[10], we now have the option of using selection combining
in conjunction with a scalar-MSDD [18]. Although there is
still a substantial gap between selection combining MSDD
and the MRC, this gap can be closed by employing addi-
tional processing based on the iterative EM algorithm de-
scribed in the next section. In this case, the decisions made
by the selection combining MSDD are used to initialize the
EM processing unit. The following subsection provides de-
tails about the transformation required to turn our second-
order transmit-diversity system into an equivalent second-
order receive-diversity system.
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Table 2: Logic table showing the equivalent QPSK differential encoding rule for b[k], given b[k − 1] and D[k].

C[k − 1]

b[k − 1]
D[k], a[k]

U1, y1 = 1 U2, y2 = − j U3, y3 = −1 U4, y4 = j

V1, x1 = 1 + j x1 x2 x3 x4

V2, x2 = 1− j x2 x3 x4 x1

V3, x3 = −1− j x3 x4 x1 x2

V4, x4 = −1 + j x4 x1 x2 x3

2.2. From transmit diversity to receive diversity

To assist in the development of transformation, we first ex-
pand (5) to obtain

r1[k] = f1c1[k] + f2c2[k] + n1[k],

r2[k] = f1c2[k] + f2c1[k] + n2[k].
(8)

This equation clearly illustrates the structure of the received
signal samples. Moreover, we can deduce from the equation
that the average SNR in the received sample r1[k] is

γ = (1/2)E
{∣∣ f1c1[k] + f2c2[k]

∣∣2}
(1/2)E

{∣∣n1[k]
∣∣2} = 2

N0
, (9)

where E{·} is the expectation operator. The same SNR also
appears in the received sample r2[k].

Next, we introduce the new variables

p1[k] = r1[k] + r2[k] = g1b[k] + w1[k],

p2[k] = r∗1 [k]− r∗2 [k] = g2b[k] + w2[k],
(10)

where

g1 ≡ f1 + f2, g2 ≡ f ∗1 − f ∗2 (11)

are two new fading gains,

b[k] ≡ c1[k] + c2[k] (12)

is an equivalent transmitted symbol, and

w1[k] ≡ n1[k] + n2[k],

w2[k] ≡ n∗1 [k]− n∗2 [k]
(13)

are two new noise terms. It can be shown that the new fad-
ing gains g1 and g2 are independent Gaussian random vari-
ables, with a variance of 2. Similarly, it can also be shown
that the new noise samples w1[k] and w2[k] are independent
and have variance 2N0. These results mean that the SNR in
the samples p1[k] and p2[k] is also γ, in other words, the
original SNR is preserved. Of foremost interest, note the new
symbol b[k] is shared by p1[k] and p2[k]. Consequently, (10)
corresponds to the received signal encountered in a second-
order receive-diversity system. Furthermore, b[k] belongs to
the QPSK signal set X = {x1, x2, x3, x4}, where

x1 = 1 + j, x2 = 1− j,

x3 = −1− j, x4 = −1 + j.
(14)

Information
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transformation

D̂(k) Differential
decoder

B̂(k)

MRC
detection

ĝ(k)
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B̂(0) P1, P2

Selection
diversity
& scalar-
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Figure 1: Block diagram of transmitter, channel model, and EM-
based receiver performing joint channel estimation and sequence
detection. Note that the matrix multiplication and addition opera-
tions are indexed by time.

In comparing (2) with (14), we can quickly see that xi is sim-
ply the row (or column) sum of Vi. Furthermore, for all Vn =
UmVk, xn = ymxk, where ym is the row (or column) sum
of the unitary matrix Um in (4). This latter property implies
that differential encoding of ST π/2-shifted BPSK symbols is
equivalent to differential encoding of scalar QPSK symbols.
The respective QPSK encoding rule is b[k] = a[k]b[k − 1],
where a[k] ∈ {1, j,−1,− j} is the equivalent data symbol
and b[k] ∈ {±1 ± j} is the equivalent transmitted symbol.
Note that xn, the row/column sum of Vn, can be expressed as
xn = 12Vn1T

2 /2 or as xn = 12UmVk1T
2 /2, where 12 = [1, 1]

is an all-one row vector of length two. However, we can also
deduce that 12Um = ym12 and Vk1T

2 = xk1T
2 , implying that

12UmVk1T
2 /2 = ymxk. Table 2 shows this equivalent differen-

tial encoding rule. By comparing Table 1 and Table 2, it is ev-
ident that the indexings of the respective symbols are identi-
cal. The advantage of transforming the original STBC into an
equivalent second-order receive-diversity QPSK system will
be clearly demonstrated in the next section.

3. THE MSDD-AIDED EM-BASED ITERATIVE RECEIVER

The previous section demonstrated how an STBC π/2-
shifted BPSK system can be transformed into an equivalent
receive-diversity system. This section describes how an iter-
ative receiver based on selection diversity, scalar-MSDD, and
the EM algorithm [17] processes the equivalent received sig-
nal and attains the equivalent performance to that of an ideal
coherent receiver (with differential decoding). Figure 1 pro-
vides a quick overview of this proposed receiver.
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3.1. First pass—selection diversity and scalar-MSDD

Given the new received variables in (10), we can use, in prin-
ciple, an MSDD combiner [10] to detect the transmitted
data. The decoding metric of this receiver is of the form

K = ∣∣P†1 B̃
∣∣2

+
∣∣P†2 B̃

∣∣2
, (15)

where

Pi =
[
pi[0], pi[1], . . . , pi[N − 1]

]T = giB + Wi, i = 1, 2,

(16)

are the equivalent received vectors, N is the window width of
the MSDD combiner,

B = [b[0], b[1], . . . , b[N − 1]
]T

(17)

is the equivalent transmitted pattern,

Wi =
[
wi[0],wi[1], . . . ,wi[N − 1]

]T
, i = 1, 2, (18)

are the equivalent noise patterns, and B̃ represents a hypoth-
esis of B. The MSDD combiner searches through all possible
hypotheses; the hypothesis which maximizes K is declared
the most likely transmitted pattern. This most likely hypoth-
esis is then differentially decoded to obtain the data symbols.
This operation therefore makes the decision independent of
the first symbol in B̃. Consequently, we can simply assume
all hypotheses start with the symbol x1 in (14). Thus, as with
the case of the vector-MSDD, there are 4N−1 candidates to
consider. This exponential complexity prevents the use of a
large N in (15). However, for suboptimal implementation,
we can use selection diversity followed by scalar-MSDD [18],
an option which is unavailable in vector-MSDD. It will be
shown in the next section that an EM-based iterative receiver
initiated by selection diversity scalar-MSDD has better per-
formance and convergence properties than those initiated by
conventional space-time differential detection (ST-DD).

A selection-diversity scalar-MSDD receiver obtains an es-
timate of the equivalent transmitted pattern B according to

B̂(0) = arg max
B̃∈B

∣∣Z†B̃
∣∣2

, (19)

where B is the collection of all possible length-N equivalent
QPSK sequences, and

Z =
P1,

∣∣P1
∣∣2

>
∣∣P2

∣∣2
,

P2, otherwise.
(20)

The solution to (19) is easily found using the algorithm de-
veloped by Mackenthun [9], as the channel is constant over
the observation interval. It is important to stress that this al-
gorithm has a complexity of only N logN .

The decision B̂(0) in (19) is used to initialize the EM algo-
rithm described in the next section. This algorithm performs
iterative channel estimation and data detection, by passing
information back and forth between the channel estimator
and the data detector. At this point, we want to point out that

other options for initializing the EM algorithm include using
pilot symbols to acquire a channel fading estimate [19, 20],
or using differential detection to acquire a transmitted sig-
nal estimate [21]. Although using pilot symbols provides a
reliable reference to estimate the channel gains, it results in a
power loss, and even after several iterations, the performance
of coherent detection may not be reached [19, 20]. In the
case of initializing the EM algorithm with differentially de-
tected sequence [21], it was determined that the transmitted
sequence estimate reconstructed from a vector-MSDD infor-
mation sequence estimate does not yield good channel esti-
mates due to differential reencoding. Hence, there was a con-
sistent performance loss when compared to a coherent re-
ceiver.

3.2. Successive passes—joint estimation and
detection using the EM algorithm

It was shown in [18] that with a large N (i.e., 64), the
selection-diversity scalar-MSDD receiver, described in
Section 3.1, experiences a 1.5 dB degradation in power
efficiency when compared to MRC. To narrow this per-
formance gap, we propose to adopt the EM algorithm to
further process the initial estimate B̂(0) provided by the
selection-diversity scalar-MSDD receiver.

The EM algorithm was first introduced by Dempster et al.
[17]. It is suited for problems where there are random vari-
ables other than a desired component contributing to the ob-
servable data. The complete set of data consists of the desired
data and the nuisance data. In the context of the problem at
hand, the complete set of data is the (equivalent) transmit-
ted pattern B and the channel gains g1 and g2; the sequence
B is the desired data, and the channel gains are the nuisance
parameters. To initialize the EM algorithm, it is necessary to
provide an estimate of either component of the complete set.
In our case, this will be the decision B̂(0) in (19). The accu-
racy of this initial estimate often determines the effectiveness
of the EM algorithm and the average number of iterations
necessary for convergence. An excellent description of the
algorithm and the breadth of its applications can be found
in [24]. A detailed application of the EM algorithm to joint
channel estimation and sequence detection situations can be
found in [25]. The scope of the description given below is
restricted to our joint channel estimation and sequence de-
tection problem.

The EM algorithm consists of two steps per iteration; an
expectation step (E-step) and a maximization step (M-step).
At the kth E-step, the algorithm estimates the fading gains
by computing their means when conditioned on the received
data P1 and P2, and the most recent estimate B̂(k−1) of the
equivalent QPSK symbols. Using the minimum mean square
estimation (MMSE) principle, these conditional means can
be expressed as [19, 20]

ĝ(k)
i = E

{
gi|P1, P2, B̂(k−1)}

= E
{
gi|Pi, B̂(k−1)}

= 1
N + 1/γ

(
B̂(k−1))†Pi, i = 1, 2.

(21)
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Immediately following the kth E-step is the kth M-step.
Here the algorithm assumes the fading gain estimates in (21)
are perfect and performs MRC and data detection according
to

B̂(k) = arg max
B̃∈B

Re
{(
ĝ(k)

1 P†1 + ĝ(k)
2 P†2

)
B̃
}

, (22)

where Re{·} is the real operator. In other words, the M-step
updates the decision on B according to the most recent esti-
mates of the fading gains. It should be pointed out that (22)
can easily be solved on a symbol-by-symbol basis. Further-
more, the estimated symbols in B̂(k) are then differentially de-
coded to obtain estimates of the information symbols. If it is
desired to perform another EM iteration, the channel will be
reestimated using (21), and hence another sequence estimate
will be obtained using (22). The iterations cease when the
sequence estimate does not change during two subsequent
iterations, or after a prespecified number of iterations have
occurred. A maximum of 10 iterations are considered in this
research.

As the E-step is essentially an average of N variables,
and the M-step maps each derotated statistic to the near-
est QPSK signal, the complexity of each iteration is linearly
proportional to N . We note that while it is possible to im-
plement conventional ST-DD to initialize the EM algorithm,
our results in the next section show that it is not an effective
option.

4. RESULTS

This section details the results obtained via simulation of
our system. MSDD of length N = 16, 32, 64, and 128 are
considered. The results are shown in Figures 2, 3, 4, and 5,
along with the performance of conventional ST-DD, equiv-
alent to conventional equal gain combining (EGC), and the
coherent detection lower bound (i.e., MRC with differen-
tial encoding). In these figures, the integer n in the notation
EM-n refers to the number of EM iterations. When n = 0,
we simply have a selection-diversity scalar-MSDD receiver.
Note that SNR denotes the average signal-to-noise ratio per
bit. Lastly, we remind the reader that simulations were per-
formed using a complex Gaussian, static fading channel, as
outlined in Section 2.1.

The results in Figures 2, 3, 4, and 5 indicate that there
is a significant improvement in performance from the ini-
tial selection-diversity sequence estimate, to the first esti-
mate provided by the EM algorithm. Although they are not
included, it should be known that the performance curves
of the EM-2 to EM-9 receivers lie consecutively within the
curves for the EM-1 and EM-10 receivers. For N equal to
128, the first iteration of the EM receiver essentially meets
the lower bound given by coherent reception. Further simu-
lation results not included here indicate that the EM receiver
is able to meet the lower bound within a single EM iteration,
for all N greater than 128.

The authors stress that the success of this receiver de-
pends strongly on the initial sequence estimate provided by
(19), which in turn provides an excellent channel estimate
using (21). To elaborate, note in Figures 2, 3, 4, and 5 that the
performance of the conventional differential detector is com-
parable to that of the standard selection-diversity receiver.
One might suppose an EM-based receiver using an initial
conventional ST-DD sequence estimate (obtained without
using selection diversity or MSDD) could yield the same
performance results as those shown here; however, this is
not the case. The performance curves for an EM-based re-
ceiver initialized using a conventional ST-DD sequence esti-
mate are shown in Figure 6. Clearly, the performance of the
first iteration is substantially inferior to that of the conven-
tional ST-DD initialization. In this case, the observation win-
dow for the conventional detector is only 2 symbol intervals,
and the frame length from which the channel estimates are
constructed is much larger (i.e., 64 symbol intervals). The
inferior performance can be explained by noting that the
transmitted sequence must be regenerated before the chan-
nel estimates are made. Due to the differential encoding, a
single information symbol error may result in a significant
number of incorrect transmitted symbol errors and hence
a poor transmitted sequence estimate [21]. As the number
of iterations increases, the performance improves, however
it takes many iterations to approach that of a coherent re-
ceiver, and there is still a 0.25 dB performance gap after 10
iterations. This explains why using a conventional differen-
tially detected sequence as an initialization to the EM-based
receiver does not yield such good results. When the selection-
diversity MSDD sequence estimate is used as an initialization
to the EM-based receiver, the sequence decision rule is based
on the entire received sequence, and received statistics are
derotated together in an optimal fashion (19). Hence, prop-
agated errors in the regenerated transmitted sequence do not
occur.

An assumption we have made is that the channel is con-
stant (static) over N symbol intervals. In the more general
situation of a time-varying channel, the methodology pro-
posed here can still be considered, with minor modification
to the receiver structure. Firstly, the appropriate, straightfor-
ward adjustments must be made to the channel estimation
(21) and MRC detection (22) units in the iterative section
of the receiver. Secondly, as the Mackenthun algorithm can
only be applied to static channels, the scalar-MSDD com-
ponent would need to be replaced. An appropriate replace-
ment would be a low-complexity, suboptimal MSDD, suited
for a time-varying channel [26, 27]. Compared to the opti-
mal MSDD for time-varying channels in [8], these subop-
timal detectors have much lower computational complex-
ity. Although there is a small SNR penalty (in the neighbor-
hood of 1 to 2 dB), these detectors exhibit no irreducible er-
ror floor, even when the fading rate is as high as a few per-
cent of the symbol rate. Consequently, the initial sequence
decision provided by these detectors will be of reasonable
quality, and we expect good convergence properties in subse-
quent EM iterations, similar to that seen in the static fading
case.
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Figure 2: BER comparison (conventional ST-DD, selection-
diversity EM-based receiver, MRC); N = 16.
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Figure 3: BER comparison (conventional ST-DD, selection-
diversity EM-based receiver, MRC); N = 32.

Finally, we would like to draw some qualitative com-
parisons between the proposed iterative receiver and those
based on pilot symbols [19, 20]. From a bandwidth efficiency
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Figure 4: BER comparison (conventional ST-DD, selection-
diversity EM-based receiver, MRC); N = 64.
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Figure 5: BER comparison (conventional ST-DD, selection-
diversity EM-based receiver, MRC); N = 128.

point of view, our pilotless (noncoherent) receiver is more
attractive as there is no need to transmit any pilot sym-
bols for channel sounding purposes. Although the gain in
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Figure 6: BER comparison (EM-based receiver initialized with con-
ventional ST-DD, MRC); frame length of 64 ST symbols.

bandwidth efficiency is minimal for the static fading en-
vironment, it can be significant for a time-varying chan-
nel. As mentioned in the previous paragraph, the pro-
posed receiver methodology can also be used in a fast fad-
ing environment, provided that a suitable MSDD replaces
the Mackenthun MSDD. From a power efficiency point of
view, we believe our noncoherent receiver and a pilot-aided
receiver [19] will have similar performance in the steady
state (i.e., after a sufficient number of iterations). We no-
tice a performance gap, in the neighborhood of 1.5 dB, be-
tween the receiver for a coded system in [19] and the re-
spective ideal coherent bound without differential encod-
ing. Conversely, our noncoherent receiver can attain the
performance indicated by the coherent bound with differ-
ential encoding. Recall that there is a 1.5 dB difference
between the two coherent bounds for a second-order di-
versity system. The last performance measure is the com-
putational complexity. We note that the initial pass of
our noncoherent EM receiver requires approximately the
same amount of signal processing as a pilot-symbol-based
system, and the successive iterations require an identical
amount of computational resources. However, it may take
many iterations to reach the steady-state performance for
a pilot-aided system [19, 20], while the noncoherent EM
receiver can meet the coherent detection (with differential
encoding) lower bound in a single iteration. Thus it ap-
pears that the proposed receiver requires less computation,
due to its better convergence behavior arising from block
detection.

5. CONCLUSION

In summary, we present a novel transformation on a specific
Alamouti-type space-time modulation, and obtain a scalar,
receive-diversity equivalent. With this transformation, it is
simple to apply low-complexity, high-performance, receive-
diversity techniques. The results show that when using the
sequence estimate from selection-diversity scalar-MSDD as
an initialization to an iterative channel and sequence estima-
tor, it is possible to achieve the performance of coherent de-
tection.

Using STBC-MSDD to obtain the lower-performance
bound of coherent detection would require implementing an
algorithm with complexity 4N−1, where 4 is the cardinality
of the transmission symbol set and N is a large number of
transmitted space-time symbols. For the system discussed in
this paper, the coherent detection lower bound is achieved
using a receiver with complexity of essentially N logN , given
by the complexity of the scalar-MSDD [9] used to initialize
the EM algorithm. Clearly, the scalar equivalent system us-
ing the EM algorithm employed in this paper offers a low-
complexity method to achieve the performance of coherent
detection.
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The application of the expectation-maximization (EM) algorithm to channel estimation results in a well-known iterative channel-
and-symbol estimator (ICSE). The EM-ICSE iterates between a symbol estimator based on the forward-backward recursion (BCJR
equalizer) and a channel estimator, and may provide approximate maximum-likelihood blind or semiblind channel estimates.
Nevertheless, the EM-ICSE has high complexity, and it is prone to misconvergence. In this paper, we propose the extended-
window (EW) estimator, a novel channel estimator for ICSE that can be used with any soft-output symbol estimator. Therefore,
the symbol estimator may be chosen according to performance or complexity specifications. We show that the EW-ICSE, an ICSE
that uses the EW estimator and the BCJR equalizer, is less complex and less susceptible to misconvergence than the EM-ICSE.
Simulation results reveal that the EW-ICSE may converge faster than the EM-ICSE.

Keywords and phrases: blind channel estimation, EM algorithm, maximum-likelihood estimation, iterative systems.

1. INTRODUCTION

Channel estimation is an important part of communica-
tions systems. Channel estimates are required by equaliz-
ers that minimize the bit error rate (BER), and can be
used to compute the coefficients of suboptimal but lower-
complexity equalizers such as the minimum mean-squared
error (MMSE) linear equalizer (LE) [1], or the decision-
feedback equalizer (DFE) [1]. Traditionally, a sequence of
known bits, called a training sequence, is transmitted for the
purpose of channel estimation [1]. These known symbols
and their corresponding received samples are used to esti-
mate the channel. However, this approach, known as trained
estimation, ignores received samples corresponding to the
information bits, and thus does not use all the information
available at the receiver. Alternatively, semiblind estimators
[2] use every available channel output for channel estima-
tion. Thus, they outperform estimators based solely on the
channel outputs corresponding to training symbols, and re-
quire a shorter training sequence. Channel estimation is still

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

possible even if no training sequence is available, using a
technique known as blind channel estimation.

An important class of algorithms for blind and semib-
lind channel estimation is based on the iterative strategy de-
picted in Figure 1 [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], which
we call iterative channel-and-symbol estimation (ICSE). In
these algorithms, an initial channel estimate is used by a
symbol estimator to provide initial estimates of the first-
order (and possibly also the second-order) statistics of the
transmitted symbol sequence. These estimates are used by a
channel estimator to improve the initial channel estimates.
The process is then repeated. The hope is that several it-
erations between these two low-complexity estimators will
lead to estimates that nearly maximize the joint likelihood
function.

The application of the expectation-maximization (EM)
algorithm, also known as the Baum-Welch algorithm [15,
16], to the blind channel estimation problem results in
the canonical ICSE that fits the framework of Figure 1.
An EM iterative channel-and-symbol estimator (EM-ICSE)
was first reported in [4], and it has some useful proper-
ties. First, it generates a sequence of estimates with nonde-
creasing likelihood, so that the channel estimates are capa-
ble of approaching the maximum-likelihood (ML) estimates.

mailto:rlopes@decom.fee.unicamp.br
mailto:barry@ece.gatech.edu
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ĥ, σ̂

Figure 1: Iterative channel-and-symbol estimator.

Second, its symbol estimator is based on the forward-
backward recursion of Bahl et al. (BCJR) [17], which min-
imizes the probability of decision error. Third, the EM-ICSE
may be easily modified to exploit, in a natural and nearly op-
timal way, any a priori information the receiver may have
about the transmitted symbols. This a priori information
may arise because of pilot symbols (e.g., in semiblind esti-
mation) or error-control coding (e.g., in the context of turbo
equalization [6, 7, 8, 9]).

The application of iterative channel estimation to turbo
equalization is particularly important, since it leads to chan-
nel estimates that benefit from the presence of channel cod-
ing, thus performing well at low signal-to-noise ratios [6, 7,
8, 9]. This is particularly important because powerful codes
such as turbo codes [18, 19] allow reliable communication
at extremely low signal-to-noise ratios, which only exacer-
bates the estimation problem for traditional channel estima-
tors that ignore the existence of coding, as is the case with
most blind channel estimation techniques.

The EM-ICSE has two main drawbacks that we address
in this paper: its tendency to converge to inaccurate channel
estimates, and its high computational complexity. The prob-
lem of convergence to inaccurate estimates arises because the
EM-ICSE necessarily generates a sequence of estimates with
nondecreasing likelihood. This property makes the EM-ICSE
susceptible to getting trapped in a local maximum of the like-
lihood function. Also, the EM-ICSE has two sources of com-
plexity. First, the EM channel estimator involves the com-
putation and inversion of a square matrix whose order is
equal to the channel length. Second, and more important,
the complexity of the EM symbol is exponential in the chan-
nel length. In [11, 12], ICSEs are proposed that reduce the
complexity of the EM-ICSE by introducing a low-complexity
symbol estimator. However, these works focus only on the
symbol estimator, and use the same channel estimator as
the EM-ICSE, resulting in a computational complexity that
grows with the square of the channel memory.

In this work, we focus on the channel estimator of Figure
1. We will propose the simplified EM channel estimator
(SEM), a channel estimator for ICSE that avoids the matrix
inversion of the EM channel estimator. More importantly,
an ICSE based on the SEM channel estimator does not re-
quire the BCJR equalizer, and thus may be implemented with
any number of low-complexity alternatives to the BCJR al-
gorithm, such as those proposed in [20, 21]. Since the com-
plexity of the SEM channel estimator is linear in the channel
memory, the overall complexity of an ICSE based on the SEM

ak
hk

ISI

nk ∼ N (0, σ2)

rk

Figure 2: Channel model.

channel estimator is also linear if a linear-complexity equal-
izer is used.

We will also investigate the convergence of an ICSE based
on the SEM estimator. We will see that, after misconver-
gence, the SEM channel estimates may have a structure that
can be exploited to escape the local maximum of the likeli-
hood function. We then propose the extended-window (EW)
channel estimator, a simple modification to the SEM channel
estimator that exploits this structure and greatly decreases
the probability of misconvergence, without significantly af-
fecting the computational complexity.

This paper is organized as follows. In Section 2 we
present the channel model and describe the problem we
will investigate. In Section 3, we briefly review the EM-
ICSE. In Section 4, we propose the SEM estimator, a linear-
complexity channel estimator for ICSE that is not intrin-
sically linked to a symbol estimator. In Section 5, we pro-
pose the EW estimator, an extension to the SEM estimator
of Section 4 that is less likely than EM to get trapped in a lo-
cal maximum of the joint likelihood function. In Section 6,
we present some simulation results, and we draw some con-
clusions in Section 7.

2. CHANNEL MODEL AND PROBLEM STATEMENT

Consider the transmission of K zero-mean, uncorrelated
symbols ak belonging to some alphabet A, with unit energy
E[|ak|2] = 1, across a dispersive channel with memory µ and
additive-white Gaussian noise. The received signal at time k
can be written as

rk = hTak + nk, (1)

where h = (h0,h1, . . . ,hµ)T represents the channel impulse
response, ak = (ak, ak−1, . . . ,ak−µ)T , and nk represents white
Gaussian noise with variance σ2. Let a = (a0, a1, . . . ,aK−1)
and r = (r0, r1, . . . ,rN−1) denote the input and output se-
quences, respectively, whereN = K+µ. The resulting channel
model is depicted in Figure 2.

Notice that, as far as channel estimation is concerned, the
assumption that the transmitted symbols are uncorrelated is
not too restrictive. Indeed, most training sequences are cho-
sen so as to satisfy this assumption (thus minimizing the
Cramér-Rao bound [22]) and the presence of an interleaver
in most coded systems also ensures that the transmitted se-
quence is approximately uncorrelated. In other words, for
channel estimation purposes, assuming that the transmitted
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symbols are uncorrelated does not exclude the presence of a
training sequence or of a channel code. As we will see, it is
the symbol estimator in Figure 1 that exploits the presence of
a training sequence or of a channel code.

This paper concerns the joint estimation of a, h, and σ re-
lying solely on the received signal r. Ideally, we would like to
solve the joint-ML channel estimation and symbol detection
problem, that is, find

(
âML, ĥML, σ̂ML

) = arg max log ph,σ(r|a), (2)

where log ph,σ(r|a) is the log-likelihood function, defined as
the logarithm of the pdf of the received signal r conditioned
on the channel input r and parameterized by r and σ . Intu-
itively, the ML estimates are those that best explain the re-
ceived sequence, in the sense that we are less likely to observe
the channel output if we assume any other set of parameters
to be correct, that is, ph,σ(r|a) ≥ phML,σML

(r|aML) for all h, σ , a.
Besides this intuitive interpretation, ML estimates have many
interesting theoretical properties [22].

It is noteworthy that the maximization in (2) should be
performed over the set of valid transmitted sequences. Thus,
the joint-ML channel-and-symbol estimation problem in (2)
incorporates all possible scenarios: fully trained estimation
(all of a is known); semiblind estimation without coding
(parts of a are known, unknown parts of a can be any se-
quence of symbols); semiblind estimation with coding (parts
of a are known, a must be a valid codeword); blind estima-
tion without coding (none of a is known, a can be any se-
quence of symbols); and blind estimation with coding (none
of a is known, a must be a valid codeword).

Unfortunately, a direct solution to the problem in (2) is
too complex. Therefore, this paper focuses on iterative tech-
niques that provide an approximate solution to (2) with rea-
sonable computational complexity. In the sequel, we review
the EM-ICSE, an ICSE that computes a sequence of estimates
with nondecreasing likelihood and that, with proper initial-
ization or if the likelihood function is well-behaved, will con-
verge to the ML estimates.

3. THE EM-ICSE

The EM algorithm [15, 16] provides an iterative solution to
the blind identification problem in (2) that fits the paradigm
of Figure 1, as first reported in [4]. The EM channel estimator
(see Figure 1) for the (i + 1)th iteration of the EM-ICSE is
defined by

ĥ(i+1) = R−1
i pi, (3)

σ̂2
(i+1) =

1
N

N−1∑
k=0

E
[∣∣rk − ĥT

(i+1)ak
∣∣2|r; ĥ(i), σ̂2

(i)

]

= 1
N

N−1∑
k=0

∣∣rk∣∣2 − 2ĥT
(i+1)pi + ĥT

(i+1)Riĥ(i+1),

(4)

where

Ri = 1
N

N−1∑
k=0

E
[

akaTk |r; ĥ(i), σ̂2
(i)

]
, (5)

pi = 1
N

N−1∑
k=0

rk E
[

ak|r; ĥ(i), σ̂2
(i)

]
. (6)

The EM symbol estimator (see Figure 1) provides the val-

ues of ã(i)
k = E[ak|r; ĥ(i), σ̂2

(i)] and E[akaTk |r; ĥ(i), σ̂2
(i)] that are

required by (5) and (6). The a posteriori expected values in

(5) and (6) are computed assuming that ĥ(i) and σ̂2
(i) are the

actual channel parameters. Notice that ãk = E[ak|r; ĥ(i), σ̂2
(i)]

is the a posteriori MMSE estimate of ak , and we refer to ãk as
a soft symbol estimate.

Also, note that Ri and pi of (5) and (6) can be viewed
as estimates of the a posteriori autocorrelation matrix of the
transmitted sequence and the cross-correlation vector be-
tween the transmitted and received sequences, respectively.
Thus, (3) and (4) are similar to the MMSE-trained channel
estimator [22], in which Ri and pi are computed with the ac-
tual transmitted sequence.

The computation of the expected values in (5) and
(6) require the knowledge of the a posteriori probabili-

ties E[ak|r; ĥ(i), σ̂2
(i)] and E[akaTk |r; ĥ(i), σ̂2

(i)]. For an uncoded
system, these can be exactly computed with the forward-
backward recursion or BCJR algorithm [17]. Because the
computational complexity of this algorithm grows expo-
nentially with the channel length, some authors [11, 12]
have proposed lower-complexity alternatives that compute
approximations to these a posteriori probabilities. In other
words, the algorithms of [11, 12] are approximations to the
EM-ICSE that also fit the framework of Figure 1, and that are
also based on the channel estimator of (3), (4), (5), and (6).

Unfortunately, in the presence of a channel code, an
exact computation of Ri and pi is prohibitively complex.
The most common solution in this case is to modify the
EM-ICSE, using a turbo equalizer as the symbol estimator

[6]. In other words, for coded systems, E[ak|r; ĥ(i), σ̂2
(i)] and

E[akaTk |r; ĥ(i), σ̂2
(i)] are based on the decoder output. Simi-

larly, the presence of training symbols is easily handled by the
symbol estimator, which only has to set the training symbols
as deterministic constants when computing Ri and pi. Based
on these two observations, we see that the channel estimator
of the EM-ICSE always ignores the presence of a training se-
quence or of a channel code. It is the symbol estimator that
exploits the structure of the transmitted symbols to improve
their estimates.

4. A SIMPLIFIED EM CHANNEL ESTIMATOR

In this section, we propose the simplified EM estimator
(SEM), an alternative to the EM channel estimator in (3), (4),
(5), and (6) that avoids the computation of Ri and the ma-
trix inversion of (3). To derive the SEM estimator, we note
that, from channel model (1) and the uncorrelatedness as-
sumption, we get hn = E[rkak−n]. This expected value may



The Extended-Window Channel Estimator 95

be computed by conditioning on r, yielding

E
[
rkak−n

] = E
[

E
[
rkak−n|r

]] = E
[
rk E

[
ak−n|r

]]
, (7)

where the last equality follows from the fact that rk is a con-
stant given r. Note that the channel estimator has no access
to E[ak|r], which requires exact channel knowledge. How-
ever, based on the iterative paradigm of Figure 1, at the ith

iteration the channel estimator does have access to ã(i)
k =

E[ak|r; ĥ(i), σ̂2
(i)]. Replacing this value in (7), and also replac-

ing a time average for the ensemble average, leads to the fol-
lowing channel estimator:

ĥ(i+1)
n = 1

N
rkã

(i)
k−n for n = 0, 1, . . . ,µ. (8)

Notice that in (8) the channel is estimated by correlating the
received signal with the soft symbol estimates ãk. This is sim-
ilar to the fully trained channel estimator of [23, 24], known
as channel probing, except that the training symbols have
been replaced by their soft estimates.

As for estimating the noise variance, let â(i)
k be a hard

decision of the kth transmitted symbol, chosen as the el-

ement of A closest to ã(i)
k . Also, define the vector â(i)

k =
(â(i)

k , â(i)
k−1, . . . ,â(i)

k−µ)T . We propose to compute σ̂2
(i+1) using

σ̂2
(i+1) =

1
N

N−1∑
k=0

∣∣rk − ĥT
(i+1)â(i)

k

∣∣2
. (9)

Notice that in (9) we use hard instead of soft symbol esti-
mates. In our simulations, we found that doing so improved
convergence speed.

Remark 1. Combining the estimates (8) into a single vector,

we find that ĥ(i+1) = (ĥ(i+1)
0 , . . . , ĥ(i+1)

µ )T = pi. Thus, we may
view (8) as a simplification of the EM estimate R−1

i pi that
avoids matrix inversion by approximating Ri by I. This ap-
proximation is reasonable, since Ri is an a posteriori esti-
mate of the autocorrelation matrix of the transmitted vector,
which, due to the uncorrelatedness assumption, is close to
the identity for large N . Furthermore, since this approxima-
tion results in a channel estimator that is less complex than
the EM channel estimator defined in (3) and (4), we refer to
the channel estimator defined by (8) and (9) as the simplified
EM estimator (SEM).

Remark 2. The SEM channel estimator requires only the soft

symbol estimates ã(i)
k , so that an ICSE based on the SEM esti-

mator may be represented as in Figure 3. Note that any equal-
izer that produces soft symbol estimates can be used, which
allows for an even lower-complexity implementation of an
SEM-based ICSE, using equalizers such as those proposed in
[20, 21].

Remark 3. It is interesting to notice that, while substituting
the actual values of h or a for their estimates will always im-
prove the performance of the iterative algorithm, the same is
not true for σ . Indeed, substituting σ for σ̂ will often result

rk Symbol
estimator

ãk

ĥ, σ̂

SEM
estimator

Figure 3: Iterative channel-and-symbol estimation with the SEM
channel estimator.

in performance degradation. Intuitively, one can think of σ̂
as playing two roles: in addition to measuring σ , it also acts

as a measure of reliability of the channel estimate ĥ. In fact,
consider a decomposition of the channel output:

rk = ĥTak + (h− ĥ)Tak + nk. (10)

The term (h − ĥ)Tak represents the contribution to rk from
the estimation error. By using ĥ to model the channel in the
BCJR algorithm, we are in effect lumping the estimation er-
ror with the noise, resulting in an effective noise sequence
with variance larger than σ2. It is thus appropriate that σ̂

should exceed σ whenever ĥ differs from h. Alternatively, it
stands to reason that an unreliable channel estimate should
translate to an unreliable symbol estimate, regardless of how

well ĥTak matches rk. Using a large value of σ̂ in the BCJR
equalizer ensures that its output will have a small reliabil-
ity. Fortunately, the noise variance estimate produced by (9)
measures the energy of both the second and the third term

in (10). If ĥ is a poor channel estimate, ã will also be a poor
estimate for a, and convolving ã and ĥ will produce a poor
match for r, so that (9) will produce a large estimated noise
variance.

5. THE EXTENDED-WINDOW CHANNEL ESTIMATOR

Misconvergence is a common characteristic of ICSEs, espe-
cially in blind systems. To illustrate this problem, consider
estimating the channel h = (1, 2, 3, 4, 5)T with a BPSK con-
stellation and SNR = ‖h‖2/σ2 = 20 dB. An ICSE based on
the BCJR symbol estimator and the SEM channel estimator

converges to ĥ(20) = (2.1785, 3.0727, 4.1076, 5.0919, 0.1197)T

after 20 iterations, with K = 1000 bits, with initialization
ĥ(0) = (1, 0, 0, 0, 0)T and σ̂2

(0) = 1. Although the algorithm

fails, ĥ(20) is seen to roughly approximate a shifted (or de-
layed) and truncated version of the actual channel. A possi-
ble explanation for this behavior is that the channel is maxi-
mum phase, while we used a minimum phase initialization.
This phase mismatch between ĥ and the initialization ĥ(0)

introduces a delay that cannot be compensated for by the
iterative scheme. In fact, after convergence, ak is approx-
imately sign(ãk+1), and h0 can be accurately estimated by
correlating rk with ãk+1. However, because the delay n in
(8) is limited to the narrow window 0, . . . ,µ, this correla-
tion is never computed. This observation leads us to propose
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the extended-window (EW) channel estimator, in which (8)
is computed for a broader range of n.

To determine how much the correlation window must
be extended, consider two extreme cases. First, suppose h ≈
(0, . . . ,0, 0, 1)T , so that rk ≈ ak−µ + nk. Also, assume that ĥ ≈
(1, 0, 0, . . . ,0)T . In this case, assuming a BPSK constellation,
the symbol estimator output is ãk = tanh(rk/σ2). Hence, as-
suming a large SNR, ãk ≈ ak−µ, so to estimate h0 and hµ we
must compute (8) for n = −µ and n = 0, respectively. Like-

wise, if h ≈ (1, 0, 0, . . . ,0)T and ĥ ≈ (0, . . . ,0, 0, 1)T , the sym-
bol estimator output ãk is such that ãk ≈ ak+µ, so to estimate
h0 and hµ we must compute (8) for n = µ and n = 2µ, re-
spectively. These observations, based on two extreme cases,
suggest the extended-window (EW) channel estimator, which
computes

gn = 1
N

N−1∑
k=0

rkã
(i)
k−n for n = −µ, . . . ,2µ. (11)

By doing this, we ensure that g = (g−µ, . . . ,g2µ)T has µ+ 1 en-
tries that estimate the desired correlations E[rkak−n], for n ∈
{0, . . . ,µ}. Its remaining terms are an estimate of E[rkak−n]
for n /∈ {0, . . . ,µ}, and hence should be close to zero. There-
fore, we define the EW channel estimates by

ĥ(i+1) =
(
gδ , . . . ,gδ+µ

)T
, (12)

where the delay parameter δ ∈ {−µ, . . . ,µ} is chosen so

that ĥ(i+1) represents the µ + 1 consecutive coefficients of g
with highest energy. In other words, δ is chosen to maximize

‖ĥ(i+1)‖2.
Notice that after convergence we expect that gδ ≈ h0.

Comparing (7) and (11), we note that this is equivalent to

saying that ak ≈ ã(i)
k−δ . This delay must be taken into account

in the estimation of the noise variance. With that in mind,
we propose to estimate σ2 using a modified version of (9),
namely

σ̂2
(i+1) =

1
N

N−1∑
k=0

∣∣rk − ĥT
(i+1)â(i)

k−δ
∣∣2
. (13)

5.1. Computational complexity

We now compare the computational complexity of the EW
channel estimator of (11), (12), and (13) to that of the EM
channel estimator of (3) and (4). We ignore the cost of com-
puting ãk, and we consider the complexity in terms of sums
and multiplications per received symbol.

For each received symbol, the EW algorithm performs
3µ + 1 multiplications and 3µ + 1 additions to compute the
vector g in (11). The division by N , as well as the computa-
tion of δ, is done only once per block of N received symbols,
and thus can be ignored. The computation of each term in
the summation in (13) involves µ+ 2 multiplications and the
same number of sums. Hence, the total computational cost
of the EW channel estimator is 4µ + 4 multiplications and
4µ + 4 sums.

For the EM channel estimator, we consider that
E[akaTk |r; ĥ(i), σ̂2

(i)] ≈ E[ak|r; ĥ(i), σ̂2
(i)] E[ak|r; ĥ(i), σ̂2

(i)]
T . This

approximation is used in [11, 12], and allows for a simpler
complexity comparison. With this simplification, and noting

that E[akaTk |r; ĥ(i), σ̂2
(i)] is a symmetric matrix, we see that the

computation of Ri in (5) requires (µ + 1)µ/2 multiplications
and an equal number of sums per received symbol. On the
other hand, the computation of pi in (6) requires µ + 1 mul-
tiplications and sums per received symbol. The linear system
in (3) is solved only once, so that its cost can be ignored. The
same can be said about most of the operations in (4), except
for its first term, which requires 1 multiplication and sum per
received symbol. Thus, the total cost of this approximate EM
channel estimator is µ2/2+3µ/2+2 multiplications and sums
per received symbol.

6. SIMULATION RESULTS

In this section, we use simulations to compare the perfor-
mance of the fully blind EM-ICSE and the fully blind EW-
ICSE, assuming both ICSEs use the BCJR symbol estima-
tor. The results presented in this section all correct for the
aforementioned shifts in the estimates. In other words, when
computing channel estimation error or BER, the channel and
symbol estimates were shifted to best match the actual chan-
nel or the transmitted sequence. Note that this shift was done
only for the purpose of computing the errors, and hence did
not affect the estimates in the iterative procedure.

For comparison purposes, we also consider fully trained
channel estimators, in which all the transmitted bits are as-
sumed known by the channel estimator. We consider the fully
trained MMSE estimator which, as discussed in Section 3,
can be seen as a trained version of the EM channel estima-
tor. We also consider channel probing which, as discussed
in Section 4, can be seen as the trained counterpart of the
EW channel estimator. In the simulations of the trained es-
timators, we use the same block of received samples to esti-
mate the channel (assuming that all transmitted symbols are
known) and to estimate the transmitted symbols (with the
BCJR equalizer, using the trained channel estimates).

As a first test of the EW-ICSE, we simulated the trans-
mission of K = 600 BPSK symbols over the channel
h = (−0.2287, 0.3964, 0.7623, 0.3964,−0.2287)T from [12].
To stress the fact that the EW-ICSE is not sensitive to initial
conditions, we initialized ĥ randomly using ĥ(0) = uσ̂(0)/‖u‖,
where u ∼ N (0, I) and σ̂2

(0) =
∑N−1

k=0 |rk|2/2N . By assign-
ing half of the received energy to the signal and half to the
noise, we are essentially initializing the SNR estimate to 0 dB.
In Figure 4, we show the convergence behavior of the EW-
ICSE estimates, averaged over 100 independent runs of this
experiment using SNR = ‖h‖2/σ2 = 9 dB. Only the con-

vergence of ĥ0, ĥ1, and ĥ2 is shown; the behavior of ĥ3 and

ĥ4 is similar to that of ĥ2 and ĥ0, respectively, but we show
only the coefficients with worse convergence. The shaded re-
gions around the channel estimates correspond to plus and
minus one standard deviation. For comparison, we show the
average behavior of the EM channel estimates in Figure 5.
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Figure 4: Estimates of h = (−0.2287, 0.3964, 0.7623, 0.3964,
−0.2287)T , produced by the EW-ICSE. Dashed lines correspond to
the actual channel coefficients.
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Figure 5: EM estimates of h = (−0.2287, 0.3964, 0.7623, 0.3964,
−0.2287)T . Dashed lines correspond to the actual channel coeffi-
cients.

Unlike the good performance of the EW-ICSE, the EM es-
timates even fail to converge in the mean to the correct esti-

mates, especially ĥ0. This happens because the EM-ICSE of-
ten gets trapped in local maxima of the likelihood function
[16], while the EW-ICSE avoids many of these local max-
ima. The better convergence behavior of the EW-ICSE is even
more clear in Figure 6, where we show the noise variance es-
timates. Also, Figures 4, 5, and 6 suggest that the EW-ICSE
converges faster than the EM-ICSE.

In Figure 7 we show the channel estimation error for the
EW-ICSE and the EM-ICSE estimates as a function of SNR,
after 20 iterations. The number of iterations is enough for
both the EM-ICSE and the EW-ICSE to converge in this case.
We also show the estimation errors of the trained MMSE esti-
mates and the trained channel probing estimates. The results
are averaged over 100 independent runs of this experiment.
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Figure 6: Estimates of σ2, produced by the EW-ICSE and the EM-
ICSE.
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Figure 7: Estimation error for the EM-ICSE and EW-ICSE, after 20
iterations. Also shown are the performances of the trained channel
probing and trained MMSE estimates.

In Figure 8, we show the average BER. Again, as we can see
in Figures 7 and 8, the EW-ICSE performs better than the
EM-ICSE.

It is interesting to notice in Figures 7 and 8 that for high
enough SNR the performance of the EW-ICSE approaches
that of its trained counterpart, the channel probing estima-
tor. One might also expect the performance of the EM-ICSE
to approach that of its trained counterpart, the MMSE algo-
rithm. However, as we can see from Figures 7 and 8, the EM-
ICSE performs worse than channel probing, which is in turn
worse than the MMSE estimator. The difference between the
EM and MMSE estimates may be explained by the miscon-
vergence of the EM-ICSE.

It should be pointed out that even though the channel
estimates provided by the MMSE algorithm are better than
the channel probing estimates, the BER of both estimates is



98 EURASIP Journal on Wireless Communications and Networking

1

10−1

10−2

10−3

B
E

R

0 2 4 6 8 10

SNR (dB)

EM-ICSE

EW-ICSE

Channel probing

MMSE

Figure 8: Bit error rate versus SNR using EM and EW estimates
after 20 iterations. Also shown is the performance resulting from the
use of the trained channel probing and trained MMSE estimates.
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Figure 9: WER for the EW-ICSE and the EM-ICSE, averaged over
1000 random channels.

similar. In other words, the channel probing estimates are
“good enough,” and the added complexity of the MMSE
estimator does not have much impact on the BER perfor-
mance in the SNR range considered here. Finally, we ob-
served that the BER performance of a BCJR equalizer with
channel knowledge cannot be distinguished from that of a
BCJR equalizer using the MMSE estimates.

To further support the claim that the EW-ICSE avoids
most of the local maxima of the likelihood function that trap
the EM-ICSE, we ran both the EM-ICSE and the EW-ICSE
on 1000 random channels of memory µ = 4, generated as
h = u/‖u‖, where u ∼ N (0, I). The estimates were initialized
to σ̂2

(0) =
∑N−1

k=0 |rk|2/2N and ĥ(0) = (0, . . . ,0, σ̂(0), 0, . . . , 0)T ,

that is, the center tap of ĥ(0) is initialized to σ̂(0). We used SNR
= 18 dB, and blocks of K = 1000 BPSK symbols. In Figure 9
we show the word error rate (WER) (fraction of blocks de-
tected with errors) of the EW-ICSE and the EM-ICSE versus
iteration. It is again clear that the EW-ICSE outperforms the
EM-ICSE. It should be noted that in this example the equal-
izer based on the channel probing estimates was able to detect
all transmitted sequences correctly.
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Figure 10: Histograms of estimation errors for the EW-ICSE and
the EM-ICSE over an ensemble of 1000 random channels.

The better performance of the EW estimates can also be
seen in Figure 10, where we show histograms of the estima-
tion errors (in dB) for the channel probing, the EW, and
the EM estimates, computed after 50 iterations. We see that
while only 3% of the EW estimates have an error larger than
−16 dB, 35% of the EM estimates have an error larger than
−16 dB. In fact, the histogram for the EW estimates is very
similar to that of the channel probing estimates, which again
shows the good convergence properties of the EW-ICSE. It is
also interesting to note in Figure 10 that the EM estimates
have a bimodal behavior: the estimation errors produced
by the EM-ICSE are grouped around −11 dB and −43 dB.
These groups are respectively better than and worse than the
channel probing estimates. This bimodal behavior can be ex-
plained by the fact that the EM algorithm often converges to
inaccurate estimates, leading to large estimation errors. On
the other hand, when the EM algorithm does work, it works
very well.

7. CONCLUSIONS

We presented the EW channel estimator, a linear-complexity
channel estimator for ICSE. We have shown that this tech-
nique can be seen as a modification of the EM channel es-
timator. A key feature of the EW estimator is its extended
window, which greatly improves the convergence behavior of
ICSEs based on the EW estimator, avoiding most of the local
maxima of the likelihood function that trap the EM-ICSE.
Furthermore, the computational complexity of the EW esti-
mator grows linearly with the channel memory, as opposed
to the quadratic complexity of the EM channel estimator.
Additionally, the EW estimator may be used with any soft-
output equalizer. This allows for even further complexity
reduction when compared to the EM-ICSE, which requires
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a BCJR equalizer. However, simulations show that, despite
its good convergence properties, the EW-ICSE is not glob-
ally convergent. The problem of devising an iterative strategy
that is guaranteed to always avoid misconvergence, regardless
of initialization, remains open.
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We investigate the application of the Bayesian expectation-maximization (BEM) technique to the design of soft-in soft-out (SISO)
detection algorithms for wireless communication systems operating over channels affected by parametric uncertainty. First, the
BEM algorithm is described in detail and its relationship with the well-known expectation-maximization (EM) technique is ex-
plained. Then, some of its applications are illustrated. In particular, the problems of SISO detection of spread spectrum, single-
carrier and multicarrier space-time block coded signals are analyzed. Numerical results show that BEM-based detectors perform
closely to the maximum likelihood (ML) receivers endowed with perfect channel state information as long as channel variations
are not too fast.
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1. INTRODUCTION

In recent years, many research efforts have been devoted to
the study of detection algorithms for digital signals trans-
mitted over channels affected by random parametric un-
certainty, like multipath fading channels and AWGN chan-
nels with phase jitter (see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13] and references therein). In this field the atten-
tion has been progressively shifting from maximum likeli-
hood (ML) sequence detection [2, 3, 4] to maximum a pos-
teriori (MAP) symbol detection techniques [5, 6, 7, 8, 9,
10, 11, 12, 13] producing a posteriori probabilities (APPs)
on the possible data decisions. This has been mainly due to
the need of robust receiver structures for coded modulations
and, more specifically, to the advent of the turbo processing
principle applied to efficient iterative decoding of concate-
nated coding structures [14, 15, 16, 17, 18, 19, 20, 21, 22].
Such a principle has been also exploited to design iter-
ative detection/equalization/decoding algorithms for inter-
leaved coded signals transmitted over channels with memory

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

[10, 11, 12, 13, 23]. In all these cases good error performance
is achieved by means of concatenated detection/decoding
structures exchanging among each other soft information
about the detected data. The basic building blocks of these
structures are the so-called soft-in soft-out (SISO) modules
[18, 22].

A wealth of technical papers on the design techniques
for ML sequence detectors operating on channels with para-
metric uncertainty is available (see [1, 2, 3, 4] and refer-
ences therein). Since in many problems the implementation
of the ML strategy is prohibitively complicated, general tools,
like the principle of per-survivor processing (PSP) [2] and
the expectation-maximization (EM) algorithm [3, 4, 24, 25],
have been proposed to devise quasioptimal receivers. The EM
technique is an iterative algorithm generating the ML esti-
mate of a set of deterministic unknown parameters, if prop-
erly initialized. It has been successfully applied to a number
of problems and, in particular, to the ML detection of digi-
tal signals transmitted over fading channels [3, 4, 6, 26] and
to carrier phase recovery [3, 7, 27, 28]. The EM algorithm,
however, being a technique for ML estimation, is unable to
incorporate any statistical information about the unknown
parameters to be estimated, even if such information are
available.

mailto:asgallo@unimo.it
mailto:giorgio.vitetta@unimo.it


Soft-In Soft-Output Detection 101

Recently, an extension of the EM, dubbed Bayesian EM
(BEM), has been applied to solve MAP estimation problems
and to derive SISO receivers [29, 30, 31, 32] for single-user
detection over frequency-flat Rayleigh fading channels. The
BEM algorithm allows to design SISO modules estimating
the channel state, incorporating the symbol a priori proba-
bilities (APRPs) and the statistics of the channel uncertainty,
and generating the symbol APPs. Therefore, it can be eas-
ily employed in iterative equalization/decoding structures for
coded transmissions [17, 23]. The favorable features of the
BEM technique have suggested to further investigate its ap-
plication to other communication scenarios.

This paper offers both a tutorial introduction to BEM-
based estimation techniques and some recent research results
about its applications. In fact, in its first part it describes the
BEM technique, its relationship with the EM algorithm, and
how it can be used to derive SISO algorithms for the detec-
tion of digital data transmitted over channels having memory
and affected by parametric uncertainty. Then, in the second
part of the paper, the application of the BEM approach to
some detection problems of current interest is illustrated. In
particular, we consider

(1) the multiuser detection of direct sequence spread spec-
trum (DSSS) signals in a synchronous CDMA system
[33];

(2) the detection of single-carrier space-time block coded
signals transmitted over frequency-flat fading channels
[34];

(3) the detection of multicarrier space-time block coded
signals transmitted over frequency-selective fading
channels [35].

For each specific problem, in the third scenario, a BEM-
based SISO algorithm is described and some numerical re-
sults are illustrated. Moreover, the use of a BEM-based SISO
module in an iterative receiver is described in detail.

The paper is organized as follows. The EM and BEM
techniques are described in Section 2. The use of the BEM
technique to devise SISO modules for channels with para-
metric uncertainty and memory is illustrated in Section 3.
Specific applications of the BEM tool are analyzed in
Section 4. Finally, Section 5 offers some conclusions.

2. EXPECTATION-MAXIMIZATION ALGORITHMS
FOR PARAMETER ESTIMATION

2.1. The EM algorithm

Let Θ
.= [Θ0,Θ1, . . . ,ΘL−1]T denote an L-dimensional de-

terministic vector to be estimated from an N-dimensional
received vector R

.= [R0,R1, . . . ,RN−1]T of noisy data (with
N ≥ L).1 The ML estimate of Θ is the solution of the prob-
lem [36]

θML = arg max
θ̃

Lr
(
θ̃
)
, (1)

1In the following, a random vector and its realizations are always denoted
by an uppercase letter and the corresponding lowercase letter, respectively.

where Lr(θ̃)
.= log f (r|θ̃) is a log-likelihood function and

f (x|y) denotes the probability density function (pdf) of the
random vector X conditioned on the event {Y = y}. Solving
the problem (1) in a direct fashion requires a closed form ex-
pression for Lr(θ̃) but, even if this expression is available, the
search for its maximum may entail an unacceptable compu-
tational burden. When this occurs, a feasible alternative can
be offered by the EM algorithm [3, 25]. The EM approach
develops from the assumption that a complete data vector
C = [C0,C1, . . . ,CP−1]T (with P ≥ N ) is observed in place
of the incomplete data set R. The vector C is characterized
by a couple of relevant properties: (1) it is not observed di-
rectly but, if available, would ease the estimation of Θ; (2)
R can be obtained from C through a many-to-one mapping
C → R(C). In practice, in communication problems, C is al-
ways chosen as a superset of the incomplete data [3], that is,

C = [RT , IT
]T

, (2)

where the so-called imputed data I are properly selected to
simplify the ML estimation problem [25]. In particular, when
Θ consists of all the transmitted channel symbols, I col-
lects all the unwanted random parameters (fading, phase jit-
ter, etc.) affecting the communication channel [3, 25]. These
choices lead to hard detection algorithms often having an ac-
ceptable complexity and capable of incorporating the statisti-
cal properties of the channel parameters. In the following the
complete data vector C will be always structured as in (2).

Given C, the auxiliary function

QEM
(
θ, θ̃

) .= EI
{
Lc(θ)

∣∣R = r, Θ = θ̃
}

= EI
{

log f (C|θ)
∣∣R = r, Θ = θ̃

}
=
∫

Si

log f (r, i|θ) f
(

i
∣∣r, θ̃

)
di

(3)

is evaluated, where EX{·} denotes the statistical average with
respect to a random vector X and Si is the space of I.
Then, this function is employed in the following two-step
procedure generating successive approximations {θ(k), k =
1, 2, . . .} of θML (1):

(1) expectation step—QEM(θ, θ̃) in (3) is evaluated for θ̃ =
θ(k)

EM;

(2) maximization step—given θ(k)
EM, the next estimate θ(k+1)

EM
is computed as

θ(k+1)
EM = arg max

θ
QEM

(
θ, θ(k)

EM

)
, k = 0, 1, . . . . (4)

An initial estimate θ(0)
EM of θ must be provided for

the algorithm start-up. In digital communication problems,
proper initialization of the EM algorithm is usually accom-
plished exploiting the information provided by known (pi-
lot) symbols [3]. It can be proved that, under mild condi-

tions, the sequence {θ(k)
EM} converges to the true ML estimate

θML of (1), provided that the existence of local maxima does
not prevent it. Avoiding this requires an accurate initial esti-

mate θ(0)
EM whose choice, for this reason, is critical [25].
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2.2. The BEM algorithm

The unknown vector Θ = [Θ0,Θ1, . . . ,ΘL−1]T mentioned
in the previous paragraph can be also modeled as a random
quantity, when its joint pdf f (θ) is available. In this case the
MAP estimate θMAP of Θ, given the observed data vector r,
can be evaluated as [36]

θMAP = arg max
θ̃

Mr
(
θ̃
)
, (5)

where Mr(θ̃)
.= log f (r, θ̃). Solving (5) may be a formidable

task for the same reasons previously illustrated for the ML
problem (1). In principle, however, an improved estimate of
Θ can be evaluated via the MAP approach since statistical
information about channel uncertainty are exploited.

Since there is a strong analogy between the ML prob-
lem (1) and the MAP one (5), it is not surprising that an
expectation-maximization procedure, dubbed Bayesian EM
(BEM) [29, 37], for solving the latter, is available. The BEM
algorithm evolves through the same iterative procedure as the
EM, but with a different auxiliary function [29], namely,

QBEM
(
θ, θ̃

) = EC
{
Mc(θ)

∣∣R = r, Θ = θ̃
}

= E
{

log f (C, θ)
∣∣R = r, Θ = θ̃

}
=
∫

Si

log f (r, i, θ) f
(

i
∣∣r, θ̃

)
di.

(6)

A clear relationship can be established between the BEM and
the EM algorithms. In fact, factoring the pdf f (r, i, θ) as

f (r, i, θ) = f (r, i|θ) f (θ) (7)

and substituting (7) into (6) produces

QBEM
(
θ, θ̃

) = QEM
(
θ, θ̃

)
+ I(θ), (8)

where

I(θ)
.= log f (θ). (9)

Equation (8) shows that the difference between QBEM(θ, θ̃)
(6) and QEM(θ, θ̃) (3) is simply a bias term I(θ) (9) favoring
the most likely values of Θ. It is worth noting that, if a pri-
ori information about Θ were unavailable and, consequently,
a uniform pdf was selected for f (θ), the contribution from
I(θ) would turn into a constant in (8), that is, it could be ne-
glected. Therefore, the BEM encompasses the EM as a special
case and, since the former benefits by the statistical informa-
tion about Θ, it is expected to provide improved accuracy
with respect to the latter. For the same reason, an increase in
the speed of convergence and an improved robustness against
the choice of the initial conditions could be offered by the
BEM.

3. SISO DATA DETECTION IN THE PRESENCE
OF PARAMETRIC UNCERTAINTY VIA THE
BEM TECHNIQUE

In this section we show how the BEM technique can be
employed to derive SISO algorithms for detecting digital
signals transmitted over channels with parametric uncer-
tainty and memory. A single-user transmission over a single-
input single-output channel is considered for simplicity, but,
as shown in the following section, the proposed approach
can be extended to an arbitrary number of users and to a
multiple-input multiple-output (MIMO) system without any
substantial conceptual problem.

Here we assume that the kth component of the received
data vector R can be expressed as2

Rk = gk(D, A) + Nk, (10)

where D
.= [D0,D1, . . . ,DN−1]T is a vector of indepen-

dent channel symbols belonging to a constellation Σ =
{s0, s1, . . . , sM−1} of cardinality M and average energy Es, A

.=
[A0,A1, . . . ,AL−1]T is a vector of random channel parameters
independent of D and with known statistical properties, {Nk}
is an AWGN sequence with variance σ2

N , and gk(·, ·) expresses
the known functional dependence of the channel on both
the transmitted symbols and its parametric uncertainty. In
particular, we concentrate on conditional finite memory chan-
nels, that is, on random channels such that

gk(D, A) = gk
(
Dk,Dk−1,Dk−2, . . . ,Dk−Lc , A

)
, (11)

where Lc denotes the channel memory.
Our target is devising MAP SISO detection algorithms

[18, 22], given the observed data R = r and a statistically
known parameter vector A. In data detection problems in-
volving the EM technique, two different choices have been
usually suggested for the imputed data I (see (2)) and the pa-
rameter vector Θ:

(1) I = A and Θ = D [3];
(2) I = D and Θ = A [6, 8, 29].

It is extremely important to comment now on the mean-
ing and the consequences of these choices.

In the first case, both EM and BEM-based algorithms aim
at producing hard estimates of the transmitted data. The only
substantial difference between these two classes of strategies
is that BEM allows to exploit the data statistics, that is, their
APRPs, in the detection algorithm, since I(θ) in (8) turns
into (see (9))

I(θ) = I(D) =
N−1∑
n=0

log Pr
(
dn
)
, (12)

2Here we concentrate on detection algorithms processing one sample per
channel symbol. The extension of the following ideas to multisampling de-
tection is straightforward.
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where Pr(dn) denotes the probability of the event {Dn = dn}.
In other words, employing the EM (BEM) technique leads to
hard-in (soft-in) hard-output detection algorithms.

In the second case, both EM- and BEM-based algo-
rithms estimate the random parameters of the communica-
tion channel in a direct fashion. Nonetheless, they can be
considered as SISO detectors, since they generate soft esti-
mates (i.e., the APPs) of the transmitted data as a by-product
of the estimation procedure and can also incorporate the data
APRPs. BEM-based estimators, however, also make use of
channel statistics, whereas EM-based estimators do not, that
is, they operate in a blind fashion. Since blind detection tech-
niques can be substantially outperformed by their counter-
parts exploiting channel statistics (see, e.g., [4, 38, 39]), this
offers a strong motivation for preferring BEM-based strate-
gies to EM-based ones when such statistical information are
available. To further clarify these ideas, we derive now the
BEM estimator of Θ = A, given I = D. In (6) the joint pdf
f (r, i, θ) can be factored as

f (r, i, θ) = f (r, d, a) = f (r|d, a) f (d) f (a) (13)

as the data D are independent of the channel parameters A.
Here

f (d) =
∑

dl∈Λ
Pr
(

dl
)
δN
(

d− dl
)
. (14)

Λ is the set of all the MN possible data sequences of length
N , δN (·) is the N-dimensional Dirac delta function, and
Pr(d) =∏N−1

n=0 Pr(dn) denotes the APRP of the channel sym-
bol vector d. If we define the channel state vector ∆k

.=
(dk−1,dk−2, . . . ,dk−Lc), the conditional pdf f (r|d, a) in (13)
can be expressed as

f (r|d, a) =
N−1∏
k=0

1
πσ2

N

exp

− ∣∣rk − gk
(
dk,∆k, a

)∣∣2

σ2
N

 (15)

since the kth sample rk depends on d through the couple
(dk,∆k) only, and the random variables {Rk}, conditioned
on D and A, are independent. Moreover, the conditional pdf
f (i|r, θ̃) in (6) is given by

f
(

i
∣∣r, θ̃

) = f
(

d
∣∣r, ã

) = ∑
dl∈Λ

Pr
(

dl

∣∣r, ã
)
δN
(

d− dl
)
, (16)

where Pr(dl|r, ã) is the probability of the event {d = dl},
given R = r and A = ã. Substituting (14) and (15) into (13)
and substituting (13) and (16) into (6) and dropping the un-
relevant terms produces, after some manipulations,

QBEM
(

a, ã
)

= − 1
σ2
N

N−1∑
k=0

∑
∆k∈Π

∑
dk∈Σ

Pr
(
dk,∆k

∣∣r, ã
)∣∣rk − gk

(
dk,∆k, a

)∣∣2

+ log f (a),
(17)

where Π denotes the set of MLc possible channel state
vectors. We define now the estimate vector a[k]

.=
[a0[k], a1[k], . . . , aL−1[k]]T generated, at the kth iteration,
by the BEM estimation algorithm based on QBEM(a, ã) (17).
Such an algorithm operates as follows. First, Q(a, a[k]) is
evaluated (E step). The next estimate a[k + 1] corresponds
to the maximum of Q(a, a[k]) with respect to a. Then, taking
the gradient of (17) with respect to a and setting it to zero
produces the recursive relation

1
σ2
N

N−1∑
k=0

∑
∆k∈Π

∑
dk∈Σ

Pr
(
dk,∆k

∣∣r, a[k]
)

× 2 Re
{(
g∗k
(
dk,∆k, a

)− r∗k
)

×∇agk
(
dk ,∆k, a

)}
a=a[k+1]

− 1
f (a)

∇a f (a)
∣∣∣∣

a=a[k+1]
= 0

(18)

expressing a set of nonlinear equations for evaluating a[k+1],
given a[k] (M-step). It is worth noting that complexity of
solving (18) depends on the type of functional dependence
of gk(·) on a and on the inner structure of log f (a).

We us now explain why the estimator based on (18) can
be also interpreted as a SISO algorithm. First of all, we note
that the contribution from Pr(dl) (coming from (14)), be-
ing independent of a, has been dropped in QBEM(a, ã) (17).
The contribution from the APRPs of the channel symbols,
however, has not really disappeared since such probabilities
are used in the evaluation of the APPs {P(dk,∆k|r, ã)}. This
means that, in its (k + 1)th iteration, the BEM-based esti-
mation algorithm requires the evaluation of the new APPs
starting from the available APRPs and the last estimate a[k]
of channel parameters. Generally speaking, on channels with
memory, these APPs can be evaluated by means of a forward-
backward recursive procedure operating on the trellis dia-
gram of the channel states [6, 20, 40] and which can be de-
rived as follows. To begin, we note that the couple (∆k,dk)
uniquely identifies a transition (∆k,∆k+1) in the channel
state, so that P(dk ,∆k|r, ã) = P(∆k,∆k+1|r, ã). Applying the
Bayes’ rule to the evaluation of P(∆k,∆k+1|r, ã) gives

P
(
∆k,∆k+1

∣∣r, ã
) = f

(
r,∆k,∆k+1

∣∣ã
)

f
(

r
∣∣ã
)

= f
(

r,∆k,∆k+1
∣∣ã
)∑

∆̃k ,∆̃k+1∈Π f
(

r,∆̃k, ∆̃k+1
∣∣ã
) . (19)

Following [6, 20, 40] it can be proved that

f
(

r,∆k,∆k+1
∣∣ã
)

= αk
(
∆k
)
f
(
rk
∣∣∆k,∆k+1, ã

)
βk+1

(
∆k+1

)
Pr
(
∆k+1

∣∣∆k
)

(20)

where rlj
.= [r j , r j+1, . . . , rl]T , αk(∆k)

.= f (rk−1
0 ,∆k|ã),

βk+1(∆k+1)
.= f (rN−1

k+1 |∆k+1, ã) , Pr(∆k+1|∆k) is the probability
of the state transition ∆k → ∆k+1, and f (rk|∆k,∆k+1, ã) =
[πσ2

N ]−1 exp[−|rk − gk(dk,∆k, ã)|2/σ2
N ]. The quantities

{αk(∆k)}, and {βk+1(∆k+1)} are evaluated by means of the
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following recursive equations:

αk
(
∆k
) = ∑

∆̃k−1∈S(∆̃k−1,∆k)

αk−1
(
∆̃k−1

)
f
(
rk−1

∣∣∆k, ∆̃k−1, ã)

× Pr
(
∆k

∣∣∆̃k−1
)
,

(21)

βk+1
(
∆k+1

) = ∑
∆̃k+2∈S(∆k+1,∆̃k+2)

βk+2
(
∆̃k+2

)
f
(
rk+1

∣∣∆k+1, ∆̃k+2, ã
)

× Pr
(
∆̃k+2

∣∣∆k+1
)
,

(22)

where S(∆i,∆ j) is the subset of states ∆i such that the transi-
tion ∆i → ∆ j is admissible. The initial conditions {α0(∆0) =
Pr(∆0); ∆0 ∈ Π} and {βN (∆N ) = 1; ∆N ∈ Π} need to be
fixed before starting the forward (21) and the backward iter-
ations (22), respectively.

After K iterations the BEM algorithm stops, producing a
final estimate aBEM = a[K] and the APPs {Pr(dk,∆k|r, aBEM)}
of the channel symbols. The symbol APPs {Pr(dk|r, aBEM)}
can be easily derived from these quantities as

Pr
(
dk
∣∣r, aBEM

) = ∑
∆k∈Ω(dk)

Pr
(
dk ,∆k

∣∣r, aBEM
)
, (23)

where Ω(dk) denotes the subset of all the state transitions
∆k → ∆k+1 labeled by the channel symbol dk. Then, deci-
sions on the channel symbols can be taken according to the
MAP decision strategy [6]

d̂k = arg max
dk

Pr
(
dk
∣∣r, aBEM

)
(24)

with k = 0, 1, . . . ,N − 1. Alternatively, if channel coding is
employed, the APPs {Pr(dk|r, aBEM)} can be delivered to soft
decoding stages (see, e.g., [30, 31]) to improve the error per-
formance of a digital receiver (see Section 4.4.3).

Finally, we note that substantial simplifications of the
BEM-based procedure based on (18) can be found when
the communication channel does not have memory, that is,
Lc = 1, since in this case the forward-backward procedure
is no more required. Specific examples of BEM-based algo-
rithms for memoryless channels can be found in [30, 31, 32],
where frequency-flat fading and phase jitter are considered as
channel impairments.

4. SPECIFIC APPLICATIONS

In this section, three specific applications of the BEM strat-
egy are briefly illustrated. In particular, SISO detectors
are developed for the following three different scenarios:
(1) a synchronous multiuser CDMA system; (2) a single-
carrier system employing an orthogonal space-time block code
(STBC); (3) an orthogonal frequency division multiplexing
(OFDM) system using an orthogonal STBC on a subcarrier-
by-subcarrier basis. For each scenario we provide a brief in-
troduction citing a set of key references about the specific
problem, a description of the signal and channel models, an
analysis of the corresponding BEM-based SISO algorithm,
and some numerical results.

4.1. Multiuser detection of synchronous DSSS signals
over frequency-flat fading channels

4.1.1. Introduction

One of the most challenging problems in receiver design
for DSSS-CDMA systems is the derivation of reduced-
complexity multiuser detectors. This is due to the fact that
the complexity of optimal multiuser detection grows expo-
nentially with the number of users [41]. One of the interest-
ing applications of the EM technique has been the derivation
of multiuser detectors for synchronous DS-CDMA systems
operating over frequency-flat fading channels [42, 43, 44].
However, all the solutions proposed in the cited papers pro-
duce hard estimates of the data. A BEM-based soft detector
is illustrated in the following.

4.1.2. Channel and signal models

Multiuser detection on synchronous uplink of a J-user DS-
CDMA system is considered here. In the presence of slow
frequency-flat fading the output of the receiver matched filter
bank in the lth symbol interval can be expressed as [42, 43]

Z(l) = RB[l]A[l] + N[l], (25)

where Z[l]
.= [Z1[l], . . . ,ZJ[l]]T , B[l]

.= diag(B1[l], . . . ,BJ[l])
is the channel symbol matrix, A[l]

.= [A1[l], . . . ,AJ[l]]T is
the channel fading vector, R = [rmn] (m,n = 1, 2, . . . , J) is
the J × J matrix of signature cross-correlations, and N[l] is a
complex Gaussian noise vector having zero mean and covari-

ance matrix σ2
wR, with σ2

w = 2N0. Here Bj[l] ∈ {±
√

2Eb, j}
(Eb, j is the average transmitted energy per bit) is the BPSK
channel symbol transmitted by the jth user in the lth signal-
ing interval, Aj[l] is the fading distortion affecting Bj[l], and

rmn =
∫ TS

0 pm(t)pn(t)dt (m,n = 1, 2, . . . , J), where Ts is the
symbol interval and pn(t) is the signature waveform3 of the
nth user. In the following it is assumed that the J fading pro-
cesses {Aj[l]} are independent, identically distributed and
zero mean Gaussian (Rayleigh fading) with autocorrelation
function Ra[m] (Ra[0] = 1).

If R is positive definite, it can be Cholesky factored as
R = ΓHΓ, where Γ is a lower triangular matrix. Then, pre-
multiplying Z(l) (25) by (ΓH)−1 produces [43]

Y[l]=[Y1[l], . . . ,YJ[l]
]T .=(ΓH)−1

Z[l]=CB[l]A[l] + W[l].
(26)

Here the noise vector W[l] = [W1[l], . . . ,WJ[l]]T is white
Gaussian since its covariance matrix is σ2

wIJ (IJ is the J × J
identity matrix).

Extending the one-shot model (26) to an observation in-
terval of N consecutive symbols (with l = 1, . . . ,N) yields

Y = diag(Γ)BA + W, (27)

3We assume that its support is the interval [0,Ts].
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where Y
.= [YT[1], . . . , YT[L]]T , A

.= [AT[1], . . . , AT[L]]T ,
W

.= [WT[1], . . . , WT[L]]T , and B
.= diag(B[l], l = 1, 2, . . . ,

L) is an NJ×NJ block matrix having {B[l]} on its main diag-
onal. Following [45], we decompose the noise vector W[l] as∑J

j=1 W j[l], where {W j[l], l = 1, 2, . . . ,N} are independent
Gaussian vectors having zero mean and covariance matrix
E{W j[l]WH

j [l]} = σ2
w, jIJ , with σ2

w, j = βjσ2
w. Here {βj} are

real positive coefficients satisfying the constraint
∑J

j=1 βj = 1
in order to ensure statistical equivalence. Then, Y[l] (26) can
be decomposed as

∑J
j=1 U j[l], where

U j[l] =
[
U1[l], . . . ,UJ[l]

]T .= Γ jb j[l]aj[l] + W j[l] (28)

and Γ j is the jth column ( j = 1, 2, . . . , J) of Γ.

4.1.3. The CDMA-BEM algorithm

We define now the vector U
.= [UT[1], . . . , UT[N]]T , with

U[l]
.= [U1[l], . . . ,UJ[l]]T . Then, in applying the BEM tech-

nique, we select C = {B, U} and Θ = A (see Section 2.2) as
the complete and parameter vectors, respectively. This leads
to the auxiliary function (further analythical details are avail-
able in [33])

Q
(

a, ã
) = J∑

j=1

N∑
l=1

1
σ2
w, j

∑
b̃[l]∈Ω

2 Re
{
ΓHj û j[l]a∗j [l]b̃∗j [l]

}
× Pr

(
b̃[l]

∣∣y, ã
)

−
J∑
j=1

N∑
l=1

2Eb, j

σ2
w, j

∥∥aj[l]
∥∥2 −

J∑
j=1

aHj C−1
A a j ,

(29)

where b̃ j[l] is the jth component of b̃[l] = [b̃1[l], b̃2[l], . . . ,
b̃J[l]]T , Pr(b̃[l]|y, ã) is the probability of the event {b[l] =
b̃[l]} conditioned on Y = y and A = ã, and

û j[l]
.= E

{
u j[l]

∣∣b[l] = b̃[l], y, ã
}

= Γ j ã j[l]b̃ j[l] + βj

y[l]−
J∑

i=1

Γiãi[l]b̃i[l]

. (30)

Given Q(a, ã) (29), the expectation-maximization can be
expressed as follows [33]. Given the fading estimates akj =
[akj [1], . . . , akj [N]]T , with j = 1, 2, . . . , J , at the kth iteration,

the new estimate ak+1
j is evaluated as

ak+1
j = (P j

)−1
vk
j , (31)

where

P j
.= 2Eb, jIL + σ2

w, jC
−1
A (32)

and vk
j = [vkj [1], vkj [2], . . . , vkj [L]]T , with

vkj [l]
.=

∑
b̃[l]∈Ω

ΓHj û j[l]b̃∗j [l] Pr
(

b̃[l]
∣∣y, ãk

)
. (33)

It is worth noting that the inverse of P j (32) does not need
to be recomputed as long as the channel statistics do not

change, and that such matrix depends on j, that is, on
the considered user, through Eb, j and σ2

w, j only. The APPs

Pr(b̃[l]|y, ak) in (33) can be evaluated as

Pr
(

b[l] = b̃[l]
∣∣y, ak

)
= f

(
y[l]

∣∣b̃[l], ak[l]
)

Pr
(

b̃[l]
)∑

b̆[l]∈Ω f
(

y[l]
∣∣b̆[l], ak[l]

)
Pr
(

b̆[l]
) ,

(34)

where

f
(

y[l]
∣∣b[l], a[l]

)
= 1(

πσ2
w

)J exp

(−∥∥y[l]− ΓB[l]A[l]
∥∥2

σ2
w

)
.

(35)

Moreover, the data APRP Pr(b[l]) of (34) can be expressed
as

Pr
(

b[l]
) = J∏

j=1

Pr
(
bj[l]

)
(36)

for the independence of the J users.
After K iterations the BEM-based algorithm based on

(31)–(36) (dubbed CDMA-BEM in the following) stops pro-
ducing a channel estimate aBEM = a(K+1) and the data APPs
{P(bj[l]|y, aBEM)}. Then, data decisions can be taken accord-
ing to a MAP decision strategy (see (24)) or, if channel cod-
ing is used, can be delivered to soft decoding stages.

4.1.4. Numerical results

Computer simulations have been carried out in order to as-
sess the bit error rate (BER) performance of the CDMA-BEM
multiuser detector. In the following it is always assumed that
(1) the autocovariance function of the fading process {Aj[l]}
(with j = 1, . . . , J) is Ra[m] = J0(2πmBDTs) (Clarke’s fad-
ing [46]), where J0(x) is the zeroth-order Bessel function of
the first kind and BD is the fading Doppler bandwidth; (2)
each user continuously transmits packets containing N = 14
consecutive symbols; (3) each packet consists of 12 informa-
tion symbols and is preceded by a couple of pilot symbols
(used for channel estimation), so that the pilot symbol rate
is Rp = 1/7; (4) Wiener filtering techniques are exploited at
the receiver side in order to evaluate the channel estimates
needed for the initialization of the CDMA-BEM [29]; (5) the
CDMA-BEM processes a block of (2·N+2) = 30 received sig-
nal samples corresponding to 2 consecutive packets (plus the
first two samples of the next packet) and carries out K = 3 it-
erations; (6) the signal-to-noise ratio for the jth user (SNR j)
is defined as Eb, j /N0, where Eb, j is the average received en-
ergy per bit for the jth user and N0/2 is the noise two-sided
power spectral density; (7) the receiver is provided with an
ideal estimate of the SNR for all the active users so that the
parameters {βj , j = 1, . . . , J} can be selected as [42]

βj =
Eb, j∑J
i=1 Eb,i

. (37)
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Figure 1: BER performance of the CDMA-BEM algorithm with
BDTs = 5·10−3, J = 4, N = 14, and K = 3. The BER performance
of the MLR and CDD is also shown for comparison.

In the following, we consider a four-user scenario (J = 4)
characterized by the matrix of signature cross-correlations
[43]:

R4 = 1
7


7 −1 3 3
−1 7 3 −1
3 3 7 −1
3 −1 −1 7

 . (38)

The BER performance of the CDMA-BEM receiver is il-
lustrated in Figure 1. Here it is assumed that the normal-
ized Doppler bandwith is BDTs = 5 · 10−3 and that all the
users have the same SNR. In this figure the performance
of the maximum likelihood receiver (MLR) endowed with
ideal channel state information (CSI) and that of the co-
herent decorrelator detector (CDD) [47] are also shown for
comparison. It is interesting to note that, in these scenar-
ios, the CDMA-BEM almost achieves the same performance
of the MLR and outperforms the CDD by about 1.5 dB in
SNR.

Figure 2 shows the performance of CDMA-BEM versus
the normalized Doppler bandwidth for BDTs ∈ (5·10−3, 5 ·
10−2), under the assumption that SNR j = 15, 20, 25 dB for
j = 1, . . . , 4. The error performance of the proposed algo-
rithm slightly worsens as the Doppler bandwidth increases
because of the poorer quality of the initial channel estimates.

Finally, the near-far resistance of the CDMA-BEM re-
ceiver is illustrated in Figure 3. The SNR of the first user
(SNR1) is set to 20 dB, whereas the other three SNRs (SNR j ,
j = 2, 3, 4) are equal and vary in the range (5, 25) dB.
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Figure 2: BER performance of the CDMA-BEM algorithm versus
BDTs. J = 4, Eb,k/N0 = 20 dB, N = 14, and K = 3.
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Figure 3: Near-far resistance of the CDMA-BEM algorithm. J = 4,
SNR1 = 20 dB, SNRk ∈ (5, 25) dB (k = 2, 3, 4), and BDTs = 5·10−3.

The performance of the MLR is also shown for comparison.
These results show that, in this case, the CDMA-BEM ex-
hibits a performance which is substantially independent of
the energies of the interfering users.
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4.2. SISO detection of space-time block coded signals

4.2.1. Introduction

In the last years it has been shown that the information ca-
pacity of wireless communication systems can be substan-
tially increased by employing antenna arrays [48], jointly
with proper coding [49] and signal processing techniques
[50]. One of the most promising results in this research area
has been the development of new block and trellis codes for
multiple antennas, known as space-time codes (STCs) [49,
51]. Such codes provide significant diversity gains without
bandwidth expansion. Exact knowledge of the CSI is often
assumed in devising space-time decoding algorithms even
if channel estimation may represent a serious problem, es-
pecially in time-varying environments [52]. EM-based hard
detectors for STCs have been derived in [52, 53, 54]. In this
section a BEM-based soft detector for orthogonal STBCs is
illustrated.

4.2.2. Signal and channel models

Here we focus on a space-time block coded system employing
NT transmit and NR receive antennas [49]. The set of chan-
nel symbols transmitted during the nth block4 is denoted
by the L × NT matrix S[n] = [sl,i[n]] (with l = 1, 2, . . . ,L,
i = 1, 2, . . . ,NT), where L is the overall duration of the block
in channel symbols and sl,i[n] is the channel symbol feeding
the ith antenna in the symbol interval (l + nL).

In the following we assume that the multiple channels
involved in the communication system are (a) affected by
frequency-flat Rayleigh fading and (b) quasi-static, that is,
channel variations within each block are negligible, whereas
changes from block to block are taken into account. Then the
path gain ai, j[n] (with i = 1, 2, . . . ,NT and j = 1, 2, . . . ,NR)
from the ith transmit antenna to the jth receive antenna
during the nth block is a complex Gaussian random pro-
cess having zero mean and correlation function Ra[m]

.=
E{ai, j[n + m]a∗i, j[n]} (with Ra[0] = 1). Moreover, the gain
processes {ai, j[n]} are independent (rich scatterer environ-
ment).

Let rl, j[n] denote the received signal sample taken at the
output of the jth receive antenna in the (l + nL)th symbol
interval, with j = 1, . . . ,NR and l = 1, . . . ,L. Then the L×NR

received signal matrix R[n] = [rl, j[n]] is given by [52]

R[n] = S[n]A[n] + W[n]. (39)

Here S[n] ∈ Ω, where Ω = {Sm, m = 1, . . . ,M} is an M-ary
alphabet of unitary matrices (i.e., (Sm)H Sm = INT , where In is
the n×n identity matrix) [49, 51]. Moreover A[n] = [ai, j[n]]
and W[n] = [wl, j[n]] are the NT ×NR fading matrix and the
L × NR noise matrix, respectively. The elements {wl, j[n]} of
W[n] are independent Gaussian random variables, all having
zero mean and variance σ2

w = 2N0.

4Throughout the section, the parameter n denotes the block index,
whereas k specifies the location of a channel symbol within each block.

A set of N consecutive vectors (39) (with n = 0, . . . ,N −
1) can be grouped as R

.= [RH[0], RH[1], . . . , RH[N − 1]]H

((A)T and (A)H denote transpose and conjugated transpose
of A, resp.), with

R = D(S)A + W, (40)

where A
.= [AH[0], AH[1], . . . , AH[N − 1]]H and W

.=
[WH[0], WH[1], . . . , WH[N − 1]]H , respectively, and D(S)

.=
diag{S[0], S[1], . . . , S[N − 1]}.

4.2.3. A BEM-based SISO algorithm for space-time
block coded systems

Following the same indications illustrated in the previous ap-
plication, we set Θ = A and C = {R, S} in applying the BEM
technique. Then the auxiliary function is (analytical details
can be found in [55])

Q
(

A, Ã
) = − NR∑

j=1

AH
j

[
C−1

A +
( 1
σ2
w

)
INNT

]
A j

−
( 2
σ2
w

)
Re
{

Ṽ j
HA j

}
,

(41)

where A j is the jth column of A, CA
.= E{A jAH

j } is a fading

covariance matrix, and Ṽ j is the jth column of the matrix

Ṽ
.= DH

(
S̃
)

R (42)

with S̃ = {S̃[n], n = 0, 1, . . . N − 1}. Here

S̃[n] =
∑

Sm∈Ω
Sm Pr

(
S[n] = Sm

∣∣R, Ã
)
, (43)

where Pr(S[n] = Sm|R, Ã) is the APP of the event {S[n] =
Sm}, given R and A = Ã. Starting from (41), the follow-
ing BEM-based recursive channel estimator can be derived.
Given the channel estimate A(k) at the kth iteration, the next
estimate A(k+1) is evaluated as

A(k+1)
j = [P]−1V(k)

j , (44)

where P
.= INNT + σ2

wC−1
A . The APPs {Pr(S[n] = Sm|R, Ã)}

needed for the evaluation of (42) can be computed using the
Bayes formula

Pr
(

S[n] = Sm

∣∣R, Ã
) = f

(
R[n]

∣∣Sm, Ã[n]
)

Pr
(

Sm
)∑

S̃m∈Ω f
(

R[n]
∣∣S̃m, Ã[n]

)
Pr
(

S̃m
) ,

(45)

where Pr(Sm) is the probability of the event {S[n] = Sm}, and

f
(

R[n]
∣∣Sm, Ã[n]

)
= 1

det
(
πσ2

wIL
)NR

exp

[
− h

(
R[n], Sm, Ã[n]

)
σ2
w

]
(46)

with h(R[n], Sm, Ã[n])
.= tr{(R[n] − SmÃ[n])H(R[n] −

SmÃ[n])}.
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It is important to note that (a) P does not depend on the
index of the receive antenna; (b) the inverse of P does not
need to be recomputed as long as the channel statistics do
not change; (c) (44) can be simplified factoring CA as

CA = C̃a ⊗ INT , (47)

where C̃a is the covariance matrix of the vector ai, j =
[ai, j[0], ai, j[1], . . . , ai, j[N−1]]T and⊗ is the Kronecker prod-
uct, so that P = (IN + σ2

wC̃−1
a )⊗ INT .

After K iterations the BEM algorithm stops producing
a channel estimate ABEM = A(K) and the APPs {Pr(S[n] =
Sm|R, ABEM)} which can be processed exactly like in the pre-
vious application. In the following the BEM-based estima-
tion algorithm (43)–(46) is dubbed STBC-BEM.

4.3. Numerical results

The error performance of the STBC-BEM algorithm has
been assessed by computer simulation for the Alamouti’s
space-time block code [51]. Then we have

S[n]
.=
[

s1
n s2

n

−(s2
n

)∗ (
s1
n

)∗
]

, (48)

where the symbols {s1
n, s2

n} belong to a BPSK constellation.5

In the following we assume that (1) Ra[m] = J0(2πmLBDT),
where J0(x) is the zeroth-order Bessel function of the first
kind, BD is the fading Doppler bandwidth, and T is the sig-
naling interval; (2) the SNR is defined as Eb/N0, where Eb is
the average received energy per receive antenna and informa-
tion bit; (3) each packet of (NB − 1) consecutive information
blocks is followed by one pilot block, so that the pilot symbol
rate is Rp = 1/NB .

The STBC-BEM algorithm processes a sample set R con-
sisting of N · L consecutive received signal samples, corre-
sponding to N transmitted symbol blocks. It is assumed that
the first and last L samples of R always correspond to a pi-
lot block. This entails that (a) N = NpNB + 1, if Np packets
are processed, and (b) the last block of each set is in com-
mon with the first of the next one. The information provided
by the pilot symbols is exploited to initialize the BEM algo-
rithm. In particular the initial channel estimate for the jth
receive antenna is evaluated as A j = FR j , where R j is the
jth column of R, with j = 1, 2, . . . ,NR. Here F is an opti-
mal NNT ×NL matrix that can be easily derived by standard
methods (Wiener filtering) [29, 36], under the assumptions
that (a) the information channel symbols are independent
and identically distributed and (b) the pilot symbols are ex-
actly known.

In all the following results it is assumed that the BEM
algorithm processes Np = 4 consecutive packets, each con-
sisting of NB = 10 consecutive blocks.

5Further results (not shown for space limitations) evidence that the com-
ments expressed for a BPSK system also apply to larger constellations.
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Figure 4: BER performance of various detection algorithms with
Alamouti’s STBC. NR = 1 and BDT = 2·10−2.

In Figure 4 the error performance of the STBC-BEM
(with K = 3) is compared with that provided by an ML re-
ceiver using WF channel estimation6 and an ML receiver us-
ing decision-directed least mean square (LMS) channel track-
ing with step size µ = 0.5 (the tracker is initialized for each
packet using the pilot block at its beginning in order to avoid
runaway problems) for single receive diversity (NR = 1) and
BDT = 2·10−2. The BER performance of a coherent receiver
endowed with ideal CSI is also shown. These results evidence
that (1) since the energy loss due to pilot symbols is 0.45 dB,
the BEM performs very well if the fading rate is not too large;
(2) the BEM substantially outperforms the other detectors.
Further simulations have also shown that a blind SISO de-
tector based on the EM-based approach illustrated in [6] and
initialized by a WF does not outperform the ML detector en-
dowed with the same channel estimator.

Figure 5 shows the error performance of the STBC-BEM
with a different number of iterations, that is, with K = 1,
2, and 3, in the same scenario as the previous figure. These
results evidence the usefulness of running three full iterations
in the BEM procedure, in order to approach the performance
of a coherent receiver endowed with ideal CSI. We also found,
however, that negligible gains are offered by K > 3.

The comments already expressed about the results of
Figure 4 also apply to Figure 6, referring to double receive
diversity (NR = 2), channel estimation based on WF and
BDT = 5·10−3, 10−2, and 2·10−2 for the BEM (BDT =
2·10−2 only is considered for the ML detector). This figure

6Its error performance coincides with that offered by the BEM without
iterations.
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Figure 5: BER performance of the BEM detection algorithm with
Alamouti’s STBC. The error performance of the coherent detector
is also shown for comparison. NR = 1, BDT = 2·10−2, and K = 1,
2, and 3.

also evidences that the BEM performance is not substan-
tially affected by a change in the Doppler rate, provided that
BDT ≤ 2·10−2.

In Figure 7 the BEM and the ML detector BER versus the
normalized Doppler bandwidth BDT is shown for BDT ∈
(10−2, 5·10−2) and Eb/N0 = 10 dB (WF is used in both cases).
It is worth noting that the performance degradation increases
for larger Doppler bandwidths as the quality of the initial es-
timate of the BEM becomes poorer and this prevents BEM
convergence to the global maximum, at least over some data
blocks. Simulation results have also evidenced that, in this
case, increasing the number of BEM iterations provides a
negligible improvement.

4.4. SISO detection of space-time
block coded OFDM signals

4.4.1. Introduction

The use of OFDM is often suggested to simplify channel
equalization in the presence of appreciable frequency se-
lectivity. When employed in MIMO wireless systems, the
OFDM technique can be also easily combined with channel
codes devised for multiple transmit antennas, that is, with
space-time (ST) codes. A further improvement in the sys-
tem performance can be achieved when conventional outer
channel codes, like convolutional codes [56, 57] or low-density
parity-check (LDPC) codes [58], are used in conjunction with
proper ST symbol mappers.

Decoding of ST codes usually requires an accurate knowl-
edge of CSI at the receiver. In MIMO OFDM systems, how-
ever, channel estimation may represent a serious problem,
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Figure 6: BER performance of various detection algorithms with
Alamouti’s STBC. NR = 2.

especially in time-varying environments, because of the high
complexity needed to achieve a satisfying accuracy [59], even
if simplified pilot-based channel estimators can be devised
[60]. Recently, it has been shown that, when OFDM is com-
bined with ST block coding [51] and a pilot-based channel
estimate is available at the receiver, the EM technique can be
applied to devise accurate channel estimators [61] and that
such estimators can be used for soft-in hard-output detection
[54]. In the last case, hard decisions are then converted to soft
data information which can be exploited in iterative receiver
architectures when outer coding is employed at the transmit-
ter. In this part we tackle the same problem, but from a dif-
ferent perspective. In fact, we derive a SISO module based
on the BEM technique. Preliminary simulation results sug-
gest that this algorithm offers better performance than that
derived in [54] with a lower overall computational burden.

4.4.2. Signal and channel models

In this paper we consider an ST block coded OFDM system
employing N subcarriers jointly with NT transmit and NR

receive antennas. The block diagram of the communication
system is illustrated in Figure 8a. The coding scheme results
from the concatenation of a convolutional or an LDPC code
with an orthogonal STBC. It is worth noting that that LDPC
codes have some relevant properties [62], like low decoding
complexity and excellent performance, which make them a
promising coding technique for ST coded OFDM systems
[58].

The input bit stream is partitioned into blocks, each in-
dependently encoded by means of a channel encoder. After
(optional) bit interleaving (Π) the coded bits are mapped
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Figure 7: BER versus the normalized Doppler bandwidth BDT for
various detection algorithms with STBC. Eb/N0 = 10 dB. NR = 1
and 2.

into channel symbols belonging to an M-ary PSK constel-
lation. The resulting symbol sequence feeds an ST orthog-
onal block encoder. In the following, we consider, for sim-
plicity, the Alamouti’s STBC [51], even if the proposed de-
tection algorithm can be easily extended to any orthogonal
ST block code. The output sequence of the ST encoder is
passed through a bank of NT inverse discrete Fourier trans-
form (IDFT) processors, which generate an ST-OFDM code-
word spanning L OFDM symbol intervals. For instance, with
Alamouti’s STBC, we have L = 2 and, if c0[l,n] and c1[l,n]
denote the channel symbols transmitted on the nth OFDM
subcarrier (with n = 0, . . . ,N − 1) in the lth OFDM sym-
bol interval (with l even) by the first and the second trans-
mit antenna, respectively, then c0[l + 1,n] = −c∗1 [l,n] and
c1[l + 1,n] = c∗0 [l,n] are sent in the next symbol interval. In
other words, the resulting codeword associated with the nth
subcarrier is represented by the matrix

S[n] =
[

c0[l,n] c1[l,n]
c0[l + 1,n] c1[l + 1,n]

]
(49)

belonging to an alphabet Ω = {Sp, p = 1, . . . ,P} (with P =
M2) of unitary matrices [51].

The OFDM signal is transmitted over a wide sense sta-
tionary uncorrelated scattering (WSS-US) MIMO channel
[63]. In the following it is assumed that (a) all the single-
input single-output channels associated with different trans-
mit/receive antenna pairs are mutually independent, iden-
tically distributed and are affected by Rayleigh fading; (b)
in the propagation scenario, frequency dispersion is inde-
pendent of time dispersion. Under these hypotheses a full

statistical description of the MIMO channel is provided by
its power delay profile (PDP) and its Doppler power density
spectrum (PDS) or, equivalently, by its frequency correlation
function RH( f ) and its time correlation function RD(t), re-
spectively [63]. At the receiver (see Figure 8b) a bank of NR

DFT processors (one per receive antenna) is fed by NR dis-
tinct discrete-time signal sequences produced by matched-
filtering and symbol-rate sampling. The outputs of the DFTs
are processed by a BEM-based SISO detection algorithm
(see the following paragraph) operating on a codeword-by-
codeword basis. For this reason, in the following, we con-
centrate on the detection of a single ST-OFDM codeword. In
particular, if r j[l,n] denotes the received signal sample taken
at the output of the jth DFT for the nth subcarrier frequency
in the lth OFDM symbol interval, with j = 0, 1, . . . ,NR − 1
and n = 0, . . . ,N − 1, we always take a couple of consecu-
tive received signal samples for l = 0, 2, 4, . . .. If we assume
that the fading process remains constant over an ST code-
word (i.e., over two adjacent OFDM symbol intervals with
Alamouti’s STBC), the L×NR matrix R[l,n] = [r j[l,n]] col-
lecting the received signal samples over the observation in-
terval for the nth subcarrier can be expressed as [54]

R[l,n] = S[l,n]H[l,n] + W[l,n]. (50)

Here, S[n, l] is the L×NT transmitted codeword matrix (see
(49)), H[l,n] = [Hi, j[l,n]] is an NT × NR channel response
matrix (Hi, j[l,n] represents the complex channel gain be-
tween the ith transmit and the jth receive antenna at the nth
subcarrier frequency), and W[l,n] = [wl, j[l,n]] is an L×NR

noise matrix. The elements {wl, j[l,n]} of W[l,n] are inde-
pendent complex zero mean Gaussian random variables with
variance σ2

w = 2N0. We also note that {Hi, j[l,n]} are com-
plex Gaussian random variables with zero mean and that the
correlation between Hi, j[l,n + m] and Hi, j[l,n] is given by
RH[m] = E{Hi, j[l,n + m]H∗

i, j[l,n]} = RH(m f∆), where f∆ is
the subcarrier spacing.

For a given l, the matrices (50) associated with all the dif-
ferent subcarriers (n = 0, . . . ,N − 1) can be grouped in an
LN×NR matrix R[l]

.= [RH[l, 0], RH[l, 1], . . . , RH[l,N−1]]H .
If the dependence on l is dropped, for simplicity, this vector
can be expressed as

R = D(S)H + W, (51)

where H
.= [HH[0], HH[1], . . . , HH[N − 1]]H , W

.= [WH[0],
WH[1], . . . , WH[N − 1]]H , and D(S)

.= diag{S[0], S[1], . . . ,
S[N − 1]}.

4.4.3. A BEM-based SISO algorithm for OFDM systems

Following the same approach as the previous two scenarios,
we choose Θ = H and I = S. Then, as shown in [35], the
BEM auxiliary function (6) can be expressed as

Q
(

H, H̃
) = − NR∑

j=1

HH
j MH j − 2

σ2
w

Re
{

ṼH
j H j

}
, (52)
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Figure 8: Block diagrams of the space-time block coded OFDM: (a) transmitter and (b) receiver.

where H j is the jth column of the matrix H, M
.= C−1

H +
(1/σ2

w)INI with CH = E{H jHH
j }, Ṽ j is the jth column of the

matrix Ṽ
.= DH(S̃)R, and the matrix S̃ results from the or-

dered concatenation of the matrices {S̃[n], n = 0, 1, . . . ,N −
1}, with

S̃[n]
.=
∑

Sm∈Ω
Sm Pr

(
S[n] = Sm

∣∣R, H̃
)
. (53)

The APPs {Pr(S[n] = Sm|R, H̃)} can be evaluated using the
Bayes formula

Pr
(

S[n] = Sm

∣∣R, H̃
) = f

(
R[n]

∣∣Sm, H̃[n]
)
P
(

Sm
)∑

S̃m∈Ω f
(

R[n]
∣∣S̃m, H̃[n]

)
P
(

S̃m
) ,

(54)

where

f
(

R[n]
∣∣Sm, H̃[n]

) = CR exp
[
−h

(
R[n],Sm, H̃[n]

)
σ2
w

]
(55)

with CR
.= det(πσ2

wIL)−NR and h(R[n], Sm, H̃[n])
.= tr{(R[n]

− SmÃ[n])H · (R[n] − SmÃ[n])}. The BEM algorithm oper-
ates as follows. Given the channel estimate H(k) at the kth
iteration, the next estimate H(k+1) is evaluated as

H(k+1)
j = P−1V(k)

j (56)

with P
.= INNT + σ2

wC−1
H and j = 1, 2, . . . ,NR. It is important

to note that (a) P does not depend on the index of the receive
antenna; (b) the inverse of P does not need to be recomputed
as long as the channel statistics do not change; (c) (56) can
be simplified factoring CH as

CH = C̃H ⊗ INT , (57)

where C̃H is the covariance matrix of the vector Hi, j =
[Hi, j[0],Hi, j[1], . . . ,Hi, j[N − 1]]T and ⊗ is the Kronecker
product, so that P = (IN + σ2

wC̃−1
H ) ⊗ INT . In the following

the BEM-based estimation algorithm (53)–(56) is dubbed
ST-OFDM BEM.

After K iterations the BEM algorithm stops producing a
channel estimate HBEM = H(K) and the APPs {Pr(S[n] =
Sm|R, HBEM)}. These can be exploited to take MAP deci-
sions or for soft decoding of an outer code in a concate-
nated scheme. In our work, we have considered the iter-
ative receiver structure as shown in Figure 8b. This struc-
ture operates as follows. After OFDM demodulation, the ST-
OFDM BEM module takes as input the received signal vector
R

.= [RH[0], RH[1], . . . , RH[N − 1]]H , an initial channel esti-
mate matrix H(0) (consisting of N ·NT×NR matrices H(0)[n])

and the N × P a priori information matrices {Il(1)
d,i [k] =

[(Il(1)
d,i [k])n,m]}. Here (Il(1)

d,i [k])n,m = log Pr(l)(S[n] = Sm),

where Pr(l)(S[n] = Sm) denotes the APRP that S[n] is
equal to the mth codeword of the alphabet Ω at the
kth step. After K iterations the BEM algorithm produces
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the N × P output matrices {Il(1)
d,o [k] = [(Il(1)

d,o [k])n,m]}
with (Il(1)

d,o [k])n,m = log Pr(l)(S[n] = Sm|R, HBEM), where

Pr(l)(S[n] = Sm|R, HBEM) represents the APP of the event
{S[n] = Sm} at the kth step. Then the extrinsic information

matrices {Il(1)
d,e [k]} are evaluated as Il(1)

d,e [k] = Il(1)
d,o [k]−Il(1)

d,i [k].
Since interleaving is performed at the bit level, before send-
ing the extrinsic information to the deinterleaver (Π−1) and
to the SISO decoder, the evaluation of the soft bit metrics is
needed (see [64, Section II-C]). The channel decoder pro-
duces the a posteriori bit information matrices and, after bit
interleaving and probability recombination, the a posteriori

symbol information matrices {Il(2)
d,o [k]} (in log form). Finally,

at the last iteration, the SISO decoder computes the APP
matrix {Pb} together with a bit estimate vector. Subtracting

{Il(2)
d,i [k]} from {Il(2)

d,o [k]} produces the extrinsic information

matrices {Il(2)
d,e [k]} of the channel symbols which are fed back

as input to the ST-OFDM BEM decoder.
In our simulations both convolutional and LDPC codes

have been employed. With convolutional codes the bit APRPs
produced by the ST-OFDM BEM feed a Bahl Cocke Jelinek
Raviv (BCJR) algorithm [20] implemented in its log MAP
form [65]. With LDPC codes bit log-likelihood ratios (LLRs)
are evaluated on the basis of the bit APRPs and sent to an
LDPC decoder based on the belief propagation (BP) algo-
rithm [62, 66]. It is important to point out that (a) the par-
ity check matrices of the LDPC codes employed in our work
have been generated in a random fashion [67], avoiding cy-
cles of length 4 in the code graph in order to improve the code
distance properties; (b) due to the random generation of the
encoding matrix, no external interleaver (deinterleaver) is
needed at the output (input) of the LDPC encoder (decoder)
[58].

Finally, we note that, in the proposed receiver structure,

the APPs {Il(2)
d,o [k]}, after interleaving, are also used to eval-

uate the estimate H(k+1) needed for the initialization of the
ST-OFDM BEM in the (k + 1)th iteration of the receiver. At
the beginning of the first iteration, however, no a priori in-
formation on the channel symbols is available. For this rea-
son the initial fading estimate H(0) of the ST-OFDM BEM
is evaluated by means of the pilot-based channel estimation
algorithm derived in [60].

4.5. Numerical results

In this paragraph some BER results are illustrated. In our
computer simulations the reduced complexity model for
WSS-US channels proposed in [68] has been used for the
generation of a MIMO multipath fading channel. In particu-
lar, for a given Doppler bandwidth BD, the Doppler PDS has
been defined as SD( f ) = 1 − 1.72 f 2

0 + 0.785 f 4
0 for f0 ≤ 1

and SD( f ) = 0 for f0 > 1, where f0 = f /BD [69]. More-
over, the multipath MIMO channel has been modeled as a
3-tap delay line approximating an exponential PDP Ph(τ) =
τ−1

0 exp(−τ/τ0)u(τ), with τ0 = 1.56 microseconds (the corre-
sponding frequency correlation function is RH( f ) = 1/(1 +
j2π f τ0)). Then, in accordance with the OFDM physical
layer specifications for the broadband radio access networks

(BRAN) in [70], the following parameters have been selected
for the ST block coded OFDM system: (a) the DFT order
is N = 256; (b) the number of useful OFDM subcarriers
is equal to 192, since the total number of subcarriers N in-
cludes 27 suppressed carriers on the upper frequencies, 28
suppressed carriers on the lower frequencies, 8 BPSK pilot
symbols, and 1 DC carrier set to 0; (c) the OFDM symbol in-
terval is TS = 0.125 microseconds; (d) the length of the cyclic
prefix in the OFDM modulator has been set to 64; (d) with
convolutional codes, a 4-state rate 1/2 convolutional code
with generators g1 = (5)8 and g2 = (7)8 has been adopted,
when used; (e) with LDPC codes, a regular (3,6) code with
rate R = 1/2 and a BP algorithm with a maximum num-
ber of iterations equal to 10 have been adopted, when used;
(f) QPSK modulation has been employed for both uncoded
and coded transmission; (g) a single frame consists of 9 ST
block coded OFDM information codewords plus one pilot
ST block coded OFDM codeword appended at its beginning.
Moreover a single receive antenna, that is, NR = 1 and a
Doppler bandwidth BD = 200 Hz have been chosen for our
simulations.

In addition, the following assumptions have been made
at the receive side: (a) the SNR is defined as Eb/N0, where Eb
is the average captured energy per receive antenna and in-
formation bit; (b) the BEM algorithm processes a block con-
sisting of 192 Alamouti’s space-time block codewords, and
accomplishes K = 3 complete iterations; (c) the last channel
estimate generated by the the BEM algorithm for each ST-
OFDM codeword is used as an initial estimate of the same
algorithm for the next codeword.

Figure 9 shows the ST-OFDM BEM algorithm perfor-
mance without outer channel coding. Comparison is made
with an ML detector endowed with ideal CSI (genie bound)
and with an ML detector endowed with the same pilot-based
channel estimator (CE) as the BEM [60]. These results evi-
dence that the ST-OFDM BEM algorithm substantially out-
performs a realistic ML detector. We also note that the energy
loss due to pilot symbol insertion is 0.45 dB, so that the en-
ergy gap between the genie bound and the ST-OFDM BEM
is about 1.5 dB [71].

Some simulation results referring to a convolutionally
encoded system are shown in Figure 10, comparing the BER
performance provided by the iterative receiver described in
the previous paragraph (with 0, 1, and 2 iterations) with that
offered by a BCJR decoder endowed with ideal CSI. We have
also considered a receiver structure in which the likelihoods
produced by the above-mentioned ML detector with pilot-
based CE are exploited to generate soft data information
feeding, after deinterleaving, the SISO outer decoder. The
proposed iterative architecture substantially outperforms the
latter and, if the energy loss due to pilot symbols is neglected,
it approaches closely the genie bound. It is also worth not-
ing that, in this scenario, carrying out global iterations pro-
vides a very small gain. This result can be explained as fol-
lows. The ST-OFDM BEM, starting from a pilot-based chan-
nel estimate, produces a good channel estimate and a good
estimate of the data APPs since the beginning, that is, even
in the absence of the APRPs produced by the BCJR, despite
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Figure 9: BER performance of the ST-OFDM BEM algorithm with-
out outer coding. NR = 1 and K = 3.
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Figure 10: BER performance of the ST-DFDM BEM iterative re-
ceiver. Convolutional coding, NR = 1, and K = 3.

the appreciable Doppler rate. These results are substantially
different than those illustrated in [54, page 223], evidencing,
for instance, a strong gap between the performance in the ab-
sence of iterations and that achieved after one iteration and
suggesting the use of 3–5 global iterations. On the basis of
these preliminary results, since the complexity (per iteration)

Genie bound
ML with CE
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E
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Figure 11: BER performance of the ST-OFDM BEM receiver. LDPC
coding, NR = 1, and K = 3.

of the ST-OFDM BEM and that of the EM algorithm derived
in [54] are comparable, the use of the former should be pre-
ferred to the latter, since it ensures faster convergence, that is,
a smaller overall complexity.

Finally, in Figure 11 the performance of the ST-OFDM
BEM receiver for LDPC-coded signals is illustrated. The BER
performance of the proposed algorithm is compared with
that obtained by a BP algorithm endowed with perfect CSI.
The curve labeled as “ML with CE” represents the BER per-
formance of an ML detector endowed with pilot-based CE
and followed by the LDPC decoder. Even without turbo de-
coding , the ST-OFDM BEM algorithm brings a substantial
gain against the ML-based symbol detection approach. It is
worth noting that, in this scenario, the BER performances
given by the LDPC and convolutional coding schemes are
widely comparable. This poor behavior obtained by LDPC
coding is mainly due to the small dimension of the parity-
check matrix employed in our simulations.

5. CONCLUSIONS

In this paper the BEM technique has been proposed to solve
MAP estimation problems. In particular, we have shown that
it represents a useful tool to derive novel SISO detectors
for communication channels with random parametric un-
certainty and memory. As an application of these concepts,
SISO modules for the iterative detection of coded digital sig-
nals transmitted over fading channels have been derived in
three specific scenarios and their error performance has been
assessed. Applications of the BEM technique to other com-
munication scenarios are the subject of ongoing research ac-
tivities.



114 EURASIP Journal on Wireless Communications and Networking

ACKNOWLEDGMENTS

This work has been performed in the framework of the
project STINGRAY IST-2000-30173, which is funded by the
European Community. The authors would like to acknowl-
edge the contributions of their colleagues from the Intracom
Hellenic Telecommunications and Electronics Industry S.A.,
the University of Modena and Reggio Emilia, the Institute
of Accelerating Systems and Applications, the Technical Re-
search Centre of Finland, and the National Technical Univer-
sity of Athens.

REFERENCES

[1] D. P. Taylor, G. M. Vitetta, B. D. Hart, and A. Mämmelä,
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This contribution considers turbo synchronization, that is to say, the use of soft data information to estimate parameters like
carrier phase, frequency, or timing offsets of a modulated signal within an iterative data demodulator. In turbo synchronization,
the receiver exploits the soft decisions computed at each turbo decoding iteration to provide a reliable estimate of some signal
parameters. The aim of our paper is to show that such “turbo-estimation” approach can be regarded as a special case of the
expectation-maximization (EM) algorithm. This leads to a general theoretical framework for turbo synchronization that allows to
derive parameter estimation procedures for carrier phase and frequency offset, as well as for timing offset and signal amplitude.
The proposed mathematical framework is illustrated by simulation results reported for the particular case of carrier phase and
frequency offsets estimation of a turbo-coded 16-QAM signal.

Keywords and phrases: turbo synchronization, iterative detection, turbo codes, parameter estimation.

1. INTRODUCTION

The impressive performance of turbo codes [1] has triggered
in the last decade a lot of research addressing the applica-
tion of this powerful coding technique to digital communi-
cations [2]. More recently, the associated idea of iterative de-
coding has been extended to other receiver functions. This
led to the so-called turbo principle which enables to perform
(sub)optimal joint detection and decoding through the iter-
ative exchange of soft information between soft-input/soft-
output (SISO) stages. See [3, 4] for a review of some existing
turbo receivers.

In addition to detection/decoding a receiver has also to
perform signal synchronization, that is, to estimate a number
of parameters like carrier phase offset, frequency offset, tim-
ing offset, and so forth. Synchronization for turbo-encoded
systems is a challenging task since the receiver usually

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

operates at low SNR values (which can be defined as the ratio
between the mean bit energy and the noise spectral density).
In the technical literature a great effort is thus being devoted
to the development of efficient estimation techniques to per-
form the above-mentioned synchronization functions within
turbo receivers. We outline here at least two categories of al-
gorithms.

(i) The first category consists of algorithms that try to
modify classical SISO iterative detection/decoding in order
to embed parameter estimation. In [5, 6], for instance, com-
bined iterative decoding and estimation is performed with
modified forward and backward recursions in the SISO de-
coders using a sort of per-survivor parameter estimation
technique. In [7], the conventional turbo decoder structure
is modified through the use of a simple phase estimation er-
ror model. A different approach is pursued in [8] wherein a
method (having only polynomial complexity in the sequence
length) of generating soft-decision metrics is illustrated and
specifically applied to the problem of adaptive iterative de-
tection of LDPC codes in the presence of time-varying un-
known carrier phase offset. Further, simpler approximate
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receivers are proposed in [9] based on the insertion into each
transmitted coded block of a number of pilot symbols with
the aim of helping the joint phase estimation and decoding
process.

(ii) The second category consists of algorithms that try
to use the soft information provided at each iteration by
a conventional turbo decoder. This approach will be re-
ferred to as turbo synchronization in the sequel. In [10], a
carrier phase recovery algorithm operating in conjunction
with the SISO decoders and exploiting the extrinsic informa-
tion generated at each iteration is proposed. Furthermore,
in [11, 12], for instance, it is proposed to combine soft-
decision-directed carrier phase estimation with turbo decod-
ing. Tentative decision-aided synchronization within a turbo
decoder is reported in [13, 14].

Algorithms in the latter category seem to be promis-
ing but they often do not rely on any theoretical basis.
The purpose of this paper is therefore to give a mathemat-
ical interpretation of such turbo synchronization algorithms
and to generalize them. This can be done by means of the
expectation-maximization (EM) algorithm. Such an algo-
rithm has been applied to various problems, as in [15], for
instance, wherein it is used for channel and noise variance
estimation in combination with optimal BCJR-based detec-
tion. The same is done in [16] in combination with a subop-
timal filter-based equalizer and in [17] for a coded CPM sys-
tem. In [18], channel gain, and delay estimation is performed
in an uncoded CDMA system with a hard-output iterative se-
rial interference canceller. These ideas have been extended to
turbo receivers in [19] (see also references therein) and [20]
for channel and noise variance estimation in turbo-CDMA
and turbo-MIMO contexts, respectively.

In the present paper, we will focus on the specific prob-
lem of synchronization. Section 2 will give a general formu-
lation of iterative ML estimation of unknown parameters in
the presence of nuisance parameters by means of the EM al-
gorithm. The particular issue of synchronization (i.e., car-
rier phase, frequency offset, channel gain, and timing esti-
mation) for a digital data-modulated passband signal will
then be addressed in Section 3. This implementation will
then be extended to the turbo context by showing that the
EM algorithm iterations (for parameter estimation) can be
combined with those of a turbo receiver (for symbol detec-
tion/decoding). This will lead to a general theoretical frame-
work for turbo synchronization. In particular, it will turn out
that algorithms introduced in an ad hoc fashion, such as the
blind soft-decision-directed carrier phase turbo synchronizer
recently proposed in [11], actually correspond to a particu-
lar instance of the general scheme proposed here. In order
to illustrate the mathematical considerations, in Section 4
we consider as a case study the practical problem of carrier
phase and frequency offsets estimation for a turbo-coded 16-
QAM system. The relevant simulation results show that the
proposed scheme enables to perform blind reliable synchro-
nization and almost ideal coherent detection at very low SNR
as required in a turbo receiver. Section 5 considers the com-
putational complexity of the proposed algorithm, whereas a
concluding section eventually ends up the paper.

2. ML ESTIMATION IN THE PRESENCE
OF A NUISANCE VECTOR

We denote with r a random vector obtained by expanding
the received modulated signal r(t) onto a suitable basis, and
we indicate with b a deterministic vector of parameters to
be estimated from the observation of the received vector r.
Assume that r also depends on a random nuisance parame-
ter vector a independent of b and with a priori probability
density function (pdf) p(a). The problem addressed in this

section is to find the ML estimate b̂ of b, that is to say, the
solution of

b̂ = argmax
b̃

{
ln p

(
r|b̃)}. (1)

The likelihood function to be maximized with respect to the
trial value b̃ of b is obtained after elimination of the nuisance
parameter vector a as follows:

p
(

r|b̃) = ∫
a
p(a)p

(
r|a, b̃

)
da. (2)

In order to solve (1), we take the derivative of ln p(r|b̃) with

respect to b̃ and we equate it to zero, that is,

∂

∂b̃
ln p

(
r|b̃)

=
∫

a p(a)p
(

r|a, b̃
)(
∂/∂b̃

)
ln p

(
r|a, b̃

)
da∫

a p(a)p
(

r|a, b̃
)
da

=
∫

a

p(a)p
(

r|a, b̃
)

p
(

r|b̃) ∂

∂b̃
ln p

(
r|a, b̃

)
da = 0.

(3)

Now, it is easily seen using Bayes’ rule that the first factor in
the integrand into (3) is nothing but the a posteriori condi-

tional pdf p(a|r, b̃) of the nuisance vector

p(a)p
(

r|a, b̃
)

p
(

r|b̃) = p
(

a|r, b̃
)
. (4)

Therefore, the ML estimation problem given by (1), (2), and
(3) is turned into

∂

∂b̃
ln p

(
r|b̃) = ∫

a
p
(

a|r, b̃
) ∂

∂b̃
ln p

(
r|a, b̃

)
da

= Ea

{
∂

∂b̃
ln p

(
r|a, b̃

)∣∣r, b̃
}
= 0.

(5)

In other words, the ML estimate b̂ of b is that value that nulls
the conditional a posteriori expectation of the derivative with
respect to b̃ of the conditional log-likelihood function (LLF)

ln p(r|a, b̃).

Finding the solution of (5) is not trivial, since b̃ appears
in both factors of the integrand. Thus, we try an iterative

method that produces a sequence of values b̂(n) hopefully
converging to the desired solution. In particular, we use the

previous sequence value b̂(n−1) to resolve the conditioning
on the first factor of the integrand, and we find the current
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solution b̂(n) by solving the resulting simplified equation that
follows:∫

a
p
(

a|r, b̂(n−1))[ ∂

∂b̃
ln p

(
r|a, b̃

)∣∣
b̃=b̂(n)

]
da = 0. (6)

If the sequence of estimates b̂(n) yielded by (6) converges to a
finite value, that value is a solution of ML equation (5) [21].

Observe now that the first factor of the integrand in (6)

does not depend on b̂(n). Therefore, we can bring the deriva-
tive back out of the integral and obtain the equivalent equa-
tion

b̂(n) :
∂

∂b̃

{∫
a
p
(

a|r, b̂
(n−1))

ln p
(

r|a, b̃
)
da

}∣∣∣∣∣
b̃=b̂(n)

= 0, (7)

that is, the estimate b̂(n) maximizes the conditional a posteri-
ori expectation of the conditional LLF ln p(r|a, b̃):

b̂(n) = argmax
b̃

{
Λ
(

b̃, b̂(n−1))}, (8a)

Λ
(

b̃, b̂(n−1)) = Ea
{

ln p
(

r|a, b̃
)|r, b̂(n−1)}

=
∫

a
p
(

a|r, b̂(n−1)) ln p
(

r|a, b̃
)
da.

(8b)

Formulation (8a)-(8b) of our iterative solution can also
be derived by means of the EM algorithm [21, 22, 23]. Con-

sider r as the “incomplete” observation and z
�= (rT , aT)T

as the “complete” observation. The EM algorithm states that

the sequence b̂(n) defined by

(i) expectation step (E-step):

Q
(

b̃, b̂(n−1)) = Ea
{

ln p
(

z|b̃)|r, b̂(n−1)}, (9a)

(ii) maximization step (M-step):

b̂(n) = argmax
b̃

{
Q
(

b̃, b̂(n−1))} (9b)

converges to the ML estimate under mild conditions [21, 22].
To make (9a)-(9b) equivalent to (8a)-(8b), we observe that,
by using the Bayes rule and considering that the distribu-
tion of a does not depend on the parameter vector to be esti-
mated,

p
(

z|b̃) = p
(

r, a|b̃) = p
(

r|a, b̃
)
p
(

a|b̃)
= p

(
r|a, b̃)p(a).

(10)

Therefore, substituting (10) in (9a), we get

Q
(

b̃, b̂(n−1)) = ∫
a
p
(

a|r, b̂(n−1)) ln p
(

r|a, b̃
)
da

+
∫

a
p
(

a|r, b̂(n−1)) ln p(a)da︸ ︷︷ ︸
ζ

.
(11)

The second term ζ in (11) does not depend on b̃, and as far
as the M-step is concerned, it can be dropped. Consequently,
the estimation procedure given by (8a)-(8b) and the EM al-
gorithm, defined by (9b) and (11), yield the same sequence of
estimates. We explicitly observe that the solution of (1) can
be found iteratively by only using a posteriori probabilities

p(a|r, b̂(n−1)) and the LLF ln p(r|a, b̃).

3. APPLICATION TO SYNCHRONIZATION FOR
SOFT-INFORMATION-BASED RECEIVERS

3.1. EM-based synchronization

In this section, we will show how to apply the general frame-
work of the previous section to the estimation of the syn-
chronization parameters for a digital data-modulated band-
pass signal. In this context, the nuisance parameter vector
a contains the values of the N unknown (hence random)
transmitted symbols, that is, aT = (a0, . . . , aN−1). Those
symbols take values in an M-point constellation A (such as
M-PSK, M-QAM, etc.) according to some rule. Thus, the
vector a has a probability mass function (pmf) P(a = µ),
with µT = (µ0, . . . ,µN−1) and µ ∈ AN . The vector b con-
tains the synchronization parameters to be estimated, that
is, bT = (A, τ, ν, ϑ) where A, τ, ν, ϑ are the channel gain,
symbol timing, carrier frequency, and phase offsets, respec-
tively. Here, the synchronization parameters are assumed as
constant within the received code block. This has the ad-
vantage of simplifying notably the processing required by
the estimation algorithm while inherently is the main lim-
itation of the approach itself. However, a possible yet rea-
sonable solution to handle a time-varying phase offset (due,
e.g., to phase noise) is shown in [24]. The idea is quite sim-
ple and consists in subdividing the entire block in a num-
ber of subblocks within which the phase can be considered
approximately as constant, and then in applying to each of
them the soft-information-based estimation procedure pro-
posed above. Further, yet again for the sake of simplicity, we
will consider in the sequel an AWGN channel as well. Hence,
putting all these facts together, the baseband received signal
r(t) can be written as

r(t) = A
N−1∑
k=0

akg(t − kT − τ)e j(2πνt+ϑ) + w(t), (12)

where T is the symbol period, g(t) is a unit-energy (e.g.,
square-root raised-cosine) pulse, and w(t) is complex-valued
AWGN with power spectral density 2N0 (assumed to be
known).

Neglecting irrelevant terms independent of a and b, the
conditional LLF of (12) is

ln p
(

r|a, b̃
) = −2ÃRe


N−1∑
k=0

a∗k zk
(
ν̃, τ̃

)
e− jϑ̃


+ Ã2

N−1∑
k=0

∣∣ak∣∣2
,

(13)
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where

zk
(
ν̃, τ̃

) �= ∫∞
−∞

r(t)e− j2πν̃tg
(
t − kT − τ̃

)
dt

= [
r(t)e− j2πν̃t

]⊗ g(−t)|t=kT+τ̃

(14)

is obtained by frequency precompensating the received sig-
nal by the “trial” value −ν̃, then applying the result to the
matched filter g(−t), and finally sampling the matched filter
output at the “trial” instant kT + τ̃. Substituting (13) into

(8b) and dropping the terms which do not depend on b̃, we
get

Λ
(

b̃, b̂(n−1))
= −2ÃRe


N−1∑
k=0

[∫
a
ak p

(
a|r, b̂

(n−1))
da

]∗
zk
(
ν̃, τ̃

)
e− jϑ̃


+ Ã2

N−1∑
k=0

[∫
a

∣∣ak∣∣2
p
(

a|r, b̂
(n−1))

da

]
.

(15)

We now define ηk(r, b̂
(n−1)

) and ρk(r, b̂
(n−1)

), the a posteri-
ori mean and a posteriori mean square value of the channel
symbol ak, respectively, as follows:

ηk
(

r, b̂
(n−1)) �= ∫

a
ak p

(
a|r, b̂(n−1))da

=
∑

αm∈A
αmP

(
ak = αm|r, b̂(n−1)), (16a)

ρk
(

r, b̂(n−1)) �= ∫
a

∣∣ak∣∣2
p
(

a|r, b̂(n−1))da

=
∑

αm∈A

∣∣αm∣∣2
P
(
ak = αm|r, b̂(n−1)). (16b)

P(ak = αm|r, b̂
(n−1)

) denotes the marginal a posteriori prob-
ability (APP) of the kth channel symbol ak conditioned on

the observation r and on the estimate b̂(n−1) at the previous
(n−1)th step, and αm the M possible values taken in the con-
stellation A. Equation (15) can then be rearranged as

Λ
(

b̃, b̂(n−1)) = −2ÃRe


N−1∑
k=0

η∗k
(

r, b̂
(n−1))

zk
(
ν̃, τ̃

)
e− jϑ̃


+ Ã2

N−1∑
k=0

ρk
(

r, b̂
(n−1))

.

(17)

We emphasize the similarity between (13) and (17): the latter
is formally obtained from the former by simply replacing the
terms ak and |ak|2 by their respective a posteriori expected

values ηk(r, b̂
(n−1)

) and ρk(r, b̂
(n−1)

).

The new estimate b̂(n) at the nth step is then determined
by applying (8a) and therefore by maximizing Λ(b̃, b̂(n−1)),

given by (17), with respect to b̃. The corresponding result is[
v̂(n), τ̂(n)]
= argmax

ν̃,τ̃


∣∣∣∣∣∣
N−1∑
k=0

η∗k
(

r, b̂
(n−1))

zk
(
ν̃, τ̃

)∣∣∣∣∣∣
 ,

(18a)

ϑ̂(n) = ∠

N−1∑
k=0

η∗k
(

r, b̂
(n−1))

zk
[
v̂(n), τ̂(n)] , (18b)

Â(n) =
∣∣∣∑N−1

k=0 η∗k
(

r, b̂
(n−1))

zk
[
v̂(n), τ̂(n)

]∣∣∣∑N−1
k=0 ρk

(
r, b̂

(n−1)) . (18c)

The obtained solution can be interpreted as an iter-
ative synchronization procedure, which can be referred to
as soft-decision-directed (SDD) synchronization. What we
call here soft decisions are the a posteriori average values

ηk(r, b̂
(n−1)

) and ρk(r, b̂
(n−1)

) of each channel symbol. They
are a sort of “weighted average” over all the constellation
points according to the respective symbol APPs. Note that,
thanks to (16a) and (16b), these a posteriori average val-

ues ηk(r, b̂
(n−1)

) and ρk(r, b̂
(n−1)

) can be computed from the

marginals P(ak = αm|r, b̂
(n−1)

) only. In other words, due to
the particular structure of the digital data-modulated signal,
the implementation of the iterative ML estimation algorithm
only requires the evaluation of the marginal a posteriori sym-

bol probabilities P(ak = αm|r, b̂
(n−1)

).
We now concentrate on the evaluation of the marginal a

posteriori symbol probabilities. Whereas for uncoded trans-
mission the usual assumption is that data symbols are inde-
pendent and equally likely (yielding P(a = µ) = M−N for all
µ ∈ AN ), for a coded transmission with code rate λ, we only
have a subset B ⊂ AN of all possible sequences correspond-
ing to MλN legitimate encoder output sequences. Therefore,
taking into account that the APP of the symbol sequence a is
given by

P
(

a = µ|r, b̃
) = P

(
a = µ

)
p
(

r|a = µ, b̃
)∑

ν∈B P
(

a = ν
)
p
(

r|a = ν, b̃
) , (19)

and assuming that

P
(

a = µ
) =

M−λN , µ ∈ B,

0, µ /∈ B,
(20)

we get

P
(

a = µ|r, b̃
) =


p
(

r|a = µ, b̃
)∑

ν∈B p
(

r|a = ν, b̃
) , µ ∈ B,

0, µ /∈ B,

(21)

which relates the APP of the symbol sequence to the condi-
tional likelihood function. Note that the result for uncoded
transmission is obtained from (21) by taking B = AN . Fi-
nally, the marginal APP related to a symbol ak is obtained by
summing the symbol sequence APPs (21) over all symbols ai
with i �= k.
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Evaluation of the APPs according to (21) yields a com-
putational complexity that increases exponentially with the
sequence length N , as all possible data sequences must be
enumerated. However, in systems where the received sig-
nal can be modeled as a Markov process, (i.e., transmis-
sion over a frequency selective channel, coded systems,
MIMO or CDMA systems, etc.), the marginal symbol APPs

P(ak = αm|r, b̂
(n−1)

) can be efficiently obtained using the
BCJR algorithm [25], with a complexity that grows only lin-
early with the sequence length N . Note however that the
computations related to the BCJR algorithm must then be
carried out once per iteration of the synchronizer.

3.2. Turbo synchronization

The EM-based synchronization procedure proposed in the
previous subsection is intrinsically well suited to iterative
(turbo) receivers that perform detection/decoding through
extrinsic information exchange between SISO stages. Indeed,
one usually assumes that such receivers provide, after con-
vergence of the iterative process, soft information that equals
channel symbol APPs. This makes synchronization via the
EM algorithm and turbo receivers complementary since the
symbol APPs needed by the first one can be provided by the
second one.

As shown in the previous subsection, the estimation of
the synchronization parameters needs at each EM iteration

the knowledge of the marginal APPs P(ak = αm|r, b̂
(n−1)

)
in order to compute the a posteriori expected values

ηk(r, b̂
(n−1)

) and ρk(r, b̂
(n−1)

) required for the evaluation
of (18a), (18b), and (18c). In a strict implementation,
this means that at each EM iteration the turbo receiver
has to reinitialize the extrinsic information, and then has
to iterate until the soft information reaches a steady-state
value, in order to yield good approximations of the re-
quired symbol APPs. It is clear that the main drawback
of this approach is the considerable increase in com-
plexity and latency in comparison with the correspond-
ing ideal synchronized turbo receiver, since the turbo sys-
tem is required to converge at each EM iteration. To
deal with such a trouble, an approximate implementation
can be used: the turbo decoder is no longer reinitialized
and at each EM iteration only one detection/decoding it-
eration is performed. In other words, the synchroniza-
tion iterations (EM algorithm) are merged with the detec-
tion/decoding ones (turbo decoder). Note that this approx-
imate “merged” procedure strictly differs from the EM al-
gorithm in that performing only one detection/decoding it-
eration at each EM iteration (especially in the first ones)
leads to poorer estimations of the required symbol APPs.
To investigate the potential performance degradation that
the proposed simplified algorithm may imply, in [26] the
BER performance of both the EM-based synchronizer and
its approximate version are evaluated in the context of
a BICM (bit-interleaved-coded modulation) 8-PSK trans-
mission scheme. The difference between the two differ-
ent synchronization methods is that at each EM iteration

in the former we make additionally 5 detection/decoding
iterations whereas in the latter only 1 detection/decoding
iteration is performed. In spite of this rough simplifica-
tion, the simulation results surprisingly indicate a negli-
gible performance degradation at EM iteration 10, even
though the EM-based method exhibits a faster convergence
due to a more reliable symbol APPs estimates in the first
iterations.

When applied to the specific case of carrier phase estima-
tion for turbo-coded QAM transmission, the proposed ap-
proximate implementation leads to the algorithm introduced
earlier in an ad hoc fashion in [11, 27], wherein the symbol
APPs computed at each turbo decoding iteration are prop-
erly combined with the received samples in order to provide
a reliable estimate necessary for coherent demodulation. This
leads in this case to a sort of “bootstrapping effect,” wherein
decoding helps synchronization that in turn aids decoding
and so forth. Therefore, more generally it can be concluded
that the proposed mathematical framework provides a the-
oretical justification to the category of ad hoc algorithms
which make use of the available soft decisions in a turbo re-
ceiver for the purpose of iteratively estimating the synchro-
nization parameters. Furthermore, if one has to deal with a
parameter vector b for which more than one or two parame-
ters have to be estimated at the same time, it may happen that
the turbo receiver must be allowed to proceed for more iter-
ations between the synchronization steps. In this more de-
manding context, the number of needed detection/decoding
iterations has to be selected considering the trade-off be-
tween the requirement on providing an accurate estimation
of the APPs and the corresponding increase in complexity
and latency.

As far as the initial parameter estimate b̂(0) is concerned,
we have to point out that convergence of our iterative, EM-
like, synchronization algorithm to the true ML estimate is
not unconditional. Due to the highly nonlinear properties
shown by the turbo decoding process, a good choice of

b̂(0) certainly affects the system performance and is manda-
tory in order to enable the convergence of the joint detec-
tion and decoding scheme. However, finding a “good” ini-
tial value and then refining it through an iterative proce-
dure looks like the acquisition/tracking approach. In our
context, the issue of the initial acquisition may be solved in
general by making a data-aided preliminary estimate based
upon a preamble of pilot symbols. With respect to con-
ventional methods, it is clear that by additionally exploit-
ing the APP information, the length of the pilot sequence
may be properly reduced, thereby increasing the spectral ef-
ficiency of the transmission system. We will also show in
the next section that in some cases (e.g., phase estimation
considering turbo-coded QAM transmission) no preamble
is required, and acquisition (within a multiple of π/2) is
accomplished as well, provided that the estimate is refined
block after block. We will call this approach “time-recursive,”
and we will reserve the term “iterative” to successive esti-
mation of a parameter on a single data block as described
above.
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4. SIMULATION RESULTS

Theoretical analysis of the proposed algorithms proved to be
extremely difficult. We resorted therefore to simulation to de-
rive performance results of the different iterative SDD turbo
synchronization algorithms. As a case study, we consider a
turbo-coded QAM-modulated transmission scheme. We fo-
cus here on the simple case where the channel gain A and the
timing offset τ are known to the receiver, so that only the car-
rier frequency offset ν and phase offset ϑ, assumed to be con-
stant within the received block, have to be estimated. To be
more specific, the corresponding joint SDD phase-frequency
recovery procedure is based on (18a)-(18b), that is, assum-
ing the estimates of A and τ replaced by their a priori known
values can be written as

v̂(n) = argmax
ν̃


∣∣∣∣∣∣
N−1∑
k=0

η∗k
(

r, b̂
(n−1))

zk
(
ν̃, τ

)∣∣∣∣∣∣
 , (22a)

ϑ̂(n) = ∠

N−1∑
k=0

η∗k
(

r, b̂
(n−1))

zk
[
v̂(n), τ

] . (22b)

The required a posteriori average values ηk(r, b̂
(n−1)

) given

by (16a) are evaluated on the basis of the symbol APPs com-
puted at the output of the turbo decoder (see Section 5 for
more details). In the sequel, according to the discussion in
Section 3.2, only one decoding iteration is performed at each
synchronization iteration, in order to limit the overall com-
plexity and latency. Therefore, at the nth iteration the esti-
mate v̂(n) is found according to (22a) and used to reevaluate
the samples zk(ν̃, τ) by frequency compensating the received
signal by −v̂(n) and sampling the matched filter output at the

“exact” instant kT + τ. Then, the phase estimate ϑ̂(n) is com-
puted by applying (22b) and eventually employed for phase
compensating the matched filter output samples for the next
decoding iteration. As initial estimates for the iterative syn-

chronization procedure, we took (v̂(0), ϑ̂(0)) = (0, 0) in (22a)-
(22b).

We consider the simple rate −λ = 3/4 turbo encoder that
encompasses parallel concatenation of two identical binary
16-state rate −1/2 recursive systematic convolutional (RSC)
encoders with generators g1 = (31)8 and g2 = (33)8 [28],
via a pseudorandom interleaver with block length L = 1500
information bits, and an appropriate puncturing pattern so
that the block at the turbo-encoder output comprises 2000
coded bits. This binary turbo code is combined with con-
ventional gray-mapped 16-QAM modulation (giving rise to
a transmitted block of 500 symbols) adhering to the so-
called suboptimum “pragmatic approach” wherein coding
and modulation are performed separately, as illustrated in
[29]. Simulation results are provided assuming that the car-
rier frequency and phase offsets are time-invariant on the
transmitted data block. In addition, the above offsets change
from one block to the next only in the case of the single-
block joint SDD carrier recovery approach, whereas they
are considered invariant if the time-recursive algorithm is
applied.

The baseband-equivalent architecture of such a turbo-
coded transmission system and the encoder schematic are
depicted in Figures 1a and 1b, respectively. Note that, in con-
trast with (14), frequency correction is applied after matched
filtering. Indeed, in the case of |νT| � 1, this modification
causes a negligible performance degradation and, more no-
tably, enables a remarkable reduction in the receiver com-
plexity. At the receiver, consistently to the encoding process,
pragmatic disjoint demodulation and binary turbo decod-
ing is performed. As for the latter, to decrease its computa-
tional complexity we resort to a suboptimal solution given
by the Max-Log-MAP algorithm [30]. Further, the symbol
APPs required by the turbo synchronization algorithm can
be obtained from the coded bits log-likelihood ratios (LLRs)
made available at the output of the binary turbo decoder (see
Section 5 for more details).

The proposed synchronization algorithm’s performance
will be assessed through evaluation of the mean estimated
value (MEV) and the root-mean squared estimation error
(RMSEE). We will also investigate the overall BER perfor-
mance of the coded system with carrier recovery as compared
to ideal synchronization, taking as main design parameters
the number of decoder iterations I and the energy per bit-to-
noise spectral density ratio Eb/N0.

4.1. MEV curves

Figure 2 depicts the MEV curves (i.e., the average estimated

value E{ϑ̂} as a function of the true phase offset ϑ) for the
SDD phase recovery algorithm based on (22b) for differ-
ent numbers of decoder iterations I = 8, 10, 12, assuming
a null frequency offset and with Eb/N0 = 6 dB (roughly
corresponding to BER = 10−4 with ideal carrier recovery).
The difference between the MEV curves is not significant for
phase errors |ϑ| ≤ 20◦, whatever the number of iterations,
whereas with larger phase errors the bias of the algorithm is
negligible only for I = 10, 12. For the particular transmis-
sion scheme of Figure 1a, the rotational invariance is not de-
stroyed and the usual π/2 estimation ambiguity due to the
four-fold symmetry of the QAM constellation is apparent, as
can be found in [11]. Note that, if one can afford an increase
in complexity, the above problem can be easily handled by
evaluating the average value of the absolute soft output of
the decoder for different multiples of π/2, and choosing the
phase offset that provides the highest reliability according to
the approach illustrated in [12].

The MEV curves illustrated in Figure 2 suggest using this
estimator as a sort of phase error detector in a time-recursive
recovery scheme. This can be done on a block-by-block re-

cursive basis as follows. We denote with ϑ̂m the time-recursive
phase estimate related to the mth data block and with ϕ̂(I)

m

the phase error estimate after I decoding iterations as de-
scribed above. After a prerotation of the received samples in

the (m + 1)th data block by −ϑ̂m and a new phase error esti-

mate ϕ̂(I)
m+1, the phase estimate for the (m + 1)th data block is

computed as

ϑ̂m+1 = ϑ̂m + ϕ̂(I)
m+1 (23)
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Figure 1: (a) Turbo-coded transmission system and (b) turbo-encoder schematic.

assuming as starting condition ϑ̂0 = ϕ̂(I)
0 . We found by sim-

ulation that to accomplish an adequate acquisition only 3
blocks are sufficient (i.e., just 3 updates on m in (23)). In
doing so, the operating point of the phase error estimator is
progressively brought back to the vicinity of the origin, that
is, in a negligible-bias zone. Indeed, the results in Figure 3
obtained for I = 10 iterations show the improvement of the
recursive algorithm with respect to the one based on a single
block.

We now tackle the additional issue of carrier frequency
recovery. We have to jointly solve (22a) (where the timing off-
set is considered perfectly known) and (22b). Figure 4 shows
the MEV curves for the single-block estimation of the phase
offset, for the true values (ϑ = 0◦, 10◦, 20◦, 30◦), as a func-
tion of the true normalized frequency offset νT . Results are
provided for I = 12 decoder iterations and Eb/N0 = 6 dB.
The joint estimator works fine up to |ϑ| ≤ 20◦, but the
operating interval for frequency recovery is quite narrow,
that is, |νT| < 10−4, if compared with a conventional data-
aided method [31]. This can be easily explained if we con-
sider the following fact. For a given block length, the resid-
ual frequency offset causes a phase rotation on the received
signal samples leading to a considerable performance degra-
dation for the constituent SISO decoders. Clearly, the larger
the frequency offset, the larger will also be the phase rotation

on the block samples. Consequently, there exists a threshold
value for the frequency offset, such that the overall phase ac-
cumulated on a block will be around π, above which the re-
liability of the decoded bits, even after a few decoding iter-
ations, will stay small. This hinders joint convergence of the
(blind) frequency estimator and data decoder.

The time-recursive approach can be used to improve the
performance of joint phase-frequency recovery as well. To be
more specific, the frequency and phase estimates are used
to precorrect the received signal samples in the subsequent
block both in frequency and in phase prior to a new iterative
estimation. Unfortunately, the improvement for frequency is
not as dramatic as for phase estimation, as can be seen from
Figure 5. The operating range for the carrier frequency esti-
mator is now |νT| < 3 · 10−4 for I = 12 decoder iterations
and Eb/N0 = 6 dB. The conclusion is that some form of “fre-
quency sweeping” is required in order to perform initial fre-
quency acquisition when the offset is larger than the value
above. Further enlargement of this range can be alternatively
obtained by partitioning the code block into shorter estima-
tion windows, over which we can apply (time-recursive) joint
estimation. With shorter windows, a larger frequency oper-
ating range is obtained, but the phase estimation accuracy
decreases, so that an optimum length will exist for a given
Eb/N0.
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phase recovery, 16-QAM, λ = 3/4, L = 1500, Eb/N0 = 6 dB.

4.2. RMSEE curves

Figure 6 shows the curves of RMSEE σθ (i.e.,
√
E{(ϑ̂− ϑ)2})

of the phase SDD recovery algorithm as a function of
Eb/N0 for various values of the true offset ϑ. The curves
are compared to the modified Cramér-Rao bound (MCRB)
[31], and with ideal DA estimation that lies exactly on the
MCRB. Conversely, the RMSEE performance of SDD gets
approximately close to the bound for Eb/N0 ≥ 6 dB only,
that is, in the interval where soft-data decisions are reli-
able enough (as will be illustrated in the sequel). It is also
noted that the RMSEE curve for conventional hard-decision-
directed (HDD) phase estimation, that is, based on the de-
cisions taken at the decoder input, is catastrophic. This is
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L = 1500, Eb/N0 = 6 dB.
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Figure 5: MEV curves for time-recursive and single-block joint
SDD phase-frequency recovery, 16-QAM, λ = 3/4, L = 1500,
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easily explained by noting that the BER of hard-detected
16-QAM in our SNR range is definitely poor, leading to
an inaccurate phase estimate. On the other side, a differ-
ent solution is based on applying the proposed iterative esti-
mation algorithm (22b) using the hard-detected QAM sym-
bols taken from the decoder output at each decoding iter-
ation. This kind of scheme can be referred to as iterative
hard-decision-directed (IHDD). As illustrated in Figure 6,
the performance degradation with respect to SDD of IHDD
is small as long as the phase error is |ϑ| ≤ 10◦, but
gets more important for larger values of initial phase off-
set.
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The curves for the frequency RMSEE σνT (i.e.,√
E{(ν̂− ν)2T2}) in Figure 7 follow the same general

pattern as those for the phase. As noted for SDD phase
recovery, the frequency MCRB bound [31] is attained for
Eb/N0 ≥ 6 dB, and negligible performance degradation
is observed both for the frequency offsets νT = 0 and
νT = 10−4.

4.3. BER performance

To get a picture about the overall performance of the 16-
QAM turbo receiver equipped with the proposed SDD car-
rier synchronizer, the BER curves can be evaluated as a func-
tion of the signal-to-noise ratio Eb/N0. For each curve all sim-
ulation runs were stopped upon the detection of 100 frame
error events. Specifically, Figure 8 shows the BER curves with
time-recursive SDD phase recovery and with I = 10 itera-
tions. The curves with a phase offset ϑ = 20◦, 40◦ exhibit a
negligible performance degradation with respect to the one
with ideal phase recovery. These curves motivate the depar-
ture of the RMSEE curves of SDD synchronization from
the MCRB. The “knee point” of the RMSEE curves, which
roughly corresponds to Eb/N0 = 6 dB, is in fact located in
the so-called “waterfall region” (abrupt BER decrease). The
associated BER is then sufficiently decreased and the syn-
chronization algorithm performance tends to that of a DA
synchronizer. Further, for the sake of completeness, is wor-
thy to point out that a similar behavior is found even with
a lower rate, namely 1/2, encoder combined with a 4-QAM
modulation format, as shown in the results presented in
[11, 27].
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Figure 7: RMSEE curves for single-block joint SDD phase-
frequency recovery, 16-QAM, λ = 3/4, L = 1500, I = 12.

The BER curves for joint SDD phase-frequency recov-
ery are illustrated in Figures 9 and 10 in the case of single-
block and time-recursive estimation, respectively. The main
result which has to be pointed out is that the performance of
single-block-based joint SDD phase-frequency recovery al-
gorithm gets worse for increasing frequency offsets to be esti-
mated, while the time-recursive approach enables to achieve
turbo decoding with a negligible degradation with respect
to ideal synchronization for a frequency offset up to about
νT = 3·10−4. The increased robustness of the time-recursive
version of the proposed synchronizer is coherent with what
was already observed above in Section 4.1. Indeed, with the
iteration of (23) the carrier offset estimation error is pro-
gressively reduced despite a nonnegligible initial value due
to, for instance, the choice of employing a shorter preamble
to achieve a better efficiency.

5. COMPUTATIONAL COMPLEXITY

In this section we focus on the computational complexity of
the turbo receiver (whose performance has been evaluated
in Section 4) performing soft-decision-based iterative car-
rier synchronization. In particular, we perform a comparison
with the complexity of the turbo receiver with ideal synchro-
nization.

The computational load of both the iterative SDD
and the ideal receiver is dominated by matched filtering,
turbo decoding, and carrier synchronization (for the latter
only). Depending on the different arrangements for decod-
ing/synchronization, the above functions contribute differ-
ently to the overall complexity. For simplicity, we assume that
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Figure 8: BER for time-recursive SDD phase recovery, 16-QAM,
λ = 3/4, L = 1500, I = 10.

(as adopted in Section 4) the SDD receiver performs at each
EM iteration only 1 detection/decoding iteration, whereas
for both receivers the matched filtering is carried out only
once before applying the decoding and synchronization pro-
cedures. Our complexity evaluation is performed on the ba-
sis of the number of required floating point (FP) operations,
namely additions and multiplications, thereby leaving out (in
a first approximation) operations such as comparisons and
table lookups.

We denote with L the block length of information bits,
with S the number of states of the rate −1/2 RSC component
decoder and with N the number of transmitted 16-QAM
symbols, respectively. The following basic operations have to
be performed.

(OP0) Matched filtering is based on an FIR filter with an op-
erating frequency equal to 2/T , where T is the signal-
ing interval. Taking as impulse response a root cosine
Nyquist function in the range (−5T , 5T), which cor-
responds to 20 samples, the relevant computational
complexity amounts to C0

∼= 80N .
(OP1) Each SISO constituent decoder accomplishes MAP de-

coding by evaluating the APPs for the systematic bits
according to the BCJR algorithm [25]. Specifically,
to limit the decoder complexity and avoid multipli-
cations, we adopt the Max-Log-MAP approach illus-
trated in [30]. This involves the computation of the
metrics (related to the states transitions) αl(s), βl(s′),
and γl(s, s′) through forward and backward recursions,
with s and s′ enumerating the trellis states and 1 ≤ l ≤
L. As for each decoding iteration two SISO decoders
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Figure 9: BER for single-block joint SDD phase-frequency recov-
ery, 16-QAM, λ = 3/4, L = 1500, I = 10.
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Figure 10: BER for time-recursive joint SDD phase-frequency re-
covery, 16-QAM, λ = 3/4, L = 1500, I = 10.

are employed, assuming a total of I iterations, the com-
plexity of this operation is approximately C1 = 24S ·
L · I .
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(OP2) In the iterative synchronizer, the APPs for the parity
bits are required as well. This means that additional
calculations have to be carried out within the two con-
stituent SISO decoders, for a total additional load of
roughly C2 = 12S · L · I operations.

(OP3) The matched filter output samples after frequency and
phase compensation are exploited to evaluate the ini-
tial metrics required by the turbo decoder. Denoting
with yk, 1 ≤ k ≤ N , the sequence at the decoder in-
put, the metrics for the four bits associated to the kth
transmitted symbol are computed as follows [28]:

Γ(1)
k = Re

{
yk
}

, Γ(2)
k = ∣∣Re

{
yk
}∣∣− 2,

Γ(3)
k = Im

{
yk
}

, Γ(4)
k = ∣∣Im

{
yk
}∣∣− 2.

(24)

According to (24), the relevant computational com-
plexity can be regarded roughly negligible, that is,C3 =
2N · I .

(OP4) The APPs of both the systematic bits and the parity
bits provided by the turbo decoder are required in
the computation of the a posteriori mean value of the
transmitted symbols defined in (16a). After some alge-
bra it can be proved that

ηk
(

r, b̂
(n−1))

= tanh
Ln
(
a(k)

1

)
2

[
2 + tanh

Ln
(
a(k)

2

)
2

]

+ j tanh
Ln
(
b(k)

1

)
2

[
2 + tanh

Ln
(
b(k)

2

)
2

]
,

(25)

where [a(k)
1 , a(k)

2 , b(k)
1 , b(k)

2 ] are the four coded bits asso-
ciated with the kth transmitted symbol, and Ln(a(k)

1 ),

Ln(a(k)
2 ), Ln(b(k)

1 ), and Ln(b(k)
2 ) are the corresponding

APPs at the nth decoding iteration, with 1 ≤ n ≤ I .
Note that in (25) the evaluation of the hyperbolic
tangent may be carried out via a proper lookup ta-
ble, and consequently the complexity of this operation
amounts to C4 = 4N · I .

(OP5) Using the a posteriori averages ηk(r, b̂
(n−1)

), the fre-
quency and phase estimates are updated according to
(22). The maximization can be carried out through an
exhaustive grid search on a small number Ng of trial
values (since the operating range of the estimator is
narrow), so that the corresponding complexity equals
C5 = 6N · I ·Ng .

The complexity concerning (OP0), (OP3), (OP4), and (OP5)
is proportional to the block length N , but not to the number
of states S. This is the reason why the overall complexity is
dominated by (OP1) and (OP2). To sum up, the complexity
of the SDD receiver is given by

CSDD =
5∑
i=0

Ci
∼= 80N + 36S · L · I + 6N · I + 6N · I ·Ng.

(26)

When synchronization is known a priori, (OP2), (OP4),
and (OP5) do not apply since they are needed for SDD syn-
chronization. The metrics calculation (OP3) is carried out
only once, and the matched filtering (OP0) is clearly the
same. Therefore, the overall complexity of the ideal receiver
is

Cideal =
5∑
i=0

Ci = 80N + 24S · L · I + 2N · I , (27)

and the additional complexity introduced by the SDD itera-
tive receiver is

∆C = CSDD − Cideal

Cideal
· 100

≈ 12S · L · I + 4N · I + 6N · I ·Ng

80N + 24S · L · I + 2N · I · 100 ≈ 50%.

(28)

Summing up, the complexity of the receiver with itera-
tive synchronization is greater, namely around 50%,than that
of the receiver with ideal synchronization, because the addi-
tional complexity is due mainly to the evaluation of the APPs
of the parity bits (OP2). This price to be paid can be avoided
whether one accepts to evaluate them only once at the de-
coder input. This approximate solution entails a negligible
performance degradation in the case of high code rate, that
is, when the parity bits are substantially less in number than
the information bits, as is shown by the performance results
illustrated in Section 4. However, it has to be remarked that
for other channel coding schemes also suited to iterative de-
coding, such as SCCC (serially-concatenated convolutional
codes) and LDPC (low-density parity check), at each itera-
tion APPs are available for both systematic and parity bits
in a code block, and consequently the incremental complex-
ity due to synchronization is relatively smaller than the com-
plexity of the whole iterative decoder.

6. CONCLUSIONS

The main conclusion of the paper is that ad hoc iterative
schemes adopted in the context of joint synchronization and
decoding can be justified in a theoretical framework based
on the well-known EM algorithm. The resulting estimation
procedure can also be easily interpreted as a form of iterative
soft-decision-directed synchronization, as opposed to conven-
tional hard-decision-directed estimation that fails in a con-
dition of low signal-to-noise ratio. Iterative synchronization
comes natural in the context of decoding of channels codes
suited to iterative detection, such as turbo codes with paral-
lel and serial concatenation, and LDPC codes. This fully jus-
tifies the formulation of the so-called turbo synchronization
concept, that is, soft-decision-directed synchronization and
parameter estimation within a turbo (iterative) receiver. As a
case study, we demonstrated the application of the proposed
mathematical formulation to the particular case of joint car-
rier phase and frequency offsets estimation in a turbo-coded
16-QAM system. We showed negligible performance degra-
dation with respect to the ideal coherent system down to low
signal-to-noise ratios.
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and detection of coded CPM,” in 2000 International Zurich
Seminar on Broadband Communications, pp. 287–292, Zurich,
Switzerland, February 2000.

[18] M. Guenach and L. Vandendorpe, “Performance analysis
of joint EM/SAGE estimation and multistage detection in
UTRA-WCDMA uplink,” in Proc. IEEE International Confer-
ence on Communications (ICC ’00), vol. 1, pp. 638–640, New
Orleans, La, USA, June 2000.

[19] M. Kobayashi, J. Boutros, and G. Caire, “Successive interfer-
ence cancellation with SISO decoding and EM channel esti-
mation,” IEEE J. Select. Areas Commun., vol. 19, no. 8, pp.
1450–1460, 2001.

[20] C. Lamy, F. Boixadera, and J. Boutros, “Iterative APP de-
coding and channel estimation for multiple-input multiple-
output channels,” submitted to IEEE Trans. on Communica-
tions.

[21] T. Moon, “The expectation-maximization algorithm,” IEEE
Signal Processing Mag., vol. 13, no. 6, pp. 47–60, 1996.

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,” J.
Roy. Statist. Soc. Ser. B, vol. 39, no. 1, pp. 1–38, 1977.

[23] C. Georghiades and J. C. Han, “Sequence estimation in the
presence of random parameters via the EM algorithm,” IEEE
Trans. Commun., vol. 45, no. 3, pp. 300–308, 1997.

[24] L. Benvenuti, L. Giugno, V. Lottici, and M. Luise, “Code-
aware carrier phase noise compensation on turbo-coded
spectrally-efficient high-order modulations,” in 8th Interna-
tional Workshop on Signal Processing for Space Communica-
tions (SPSC ’03), vol. 1, pp. 177–184, Catania, Italy, September
2003.

[25] L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal de-
coding of linear codes for minimizing symbol error rate,”
IEEE Trans. Inform. Theory, vol. 20, no. 2, pp. 284–287,
1974.

[26] N. Noels, C. Herzet, A. Dejonghe, et al., “Turbo-
synchronization: an EM interpretation,” in Proc. IEEE Inter-
national Conference on Communications (ICC ’03), Anchor-
age, Alaska, USA, May 2003.

[27] L. Giugno, V. Lottici, and M. Luise, “Another “turbo-
something”: Carrier synchronization,” in 14th European Sig-
nal Processing Conference (EUSIPCO ’02), vol. 1, pp. 127–131,
Toulouse, France, September 2002.

[28] W. E. Ryan, “A turbo code tutorial,” on http://www.ece.
arizona.edu/∼ryan, 1998.

[29] S. Le Goff, A. Glavieux, and C. Berrou, “Turbo codes and high
spectral efficiency modulation,” in Proc. IEEE International
Conference on Communications (ICC ’94), pp. 645–649, New
Orleans, La, USA, May 1994.

[30] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and
sub-optimal maximum a posteriori algorithms suitable for
turbo decoding,” European Trans. on Telecomm., vol. 8, no.
March/April, pp. 119–125, 1997.

[31] U. Mengali and A. N. D’Andrea, Synchronization Tech-
niques for Digital Receivers, Plenum, New York, NY, USA,
1997.

http://www.ece.arizona.edu/~ryan
http://www.ece.arizona.edu/~ryan


General Framework for Synchronization in Turbo Receivers 129

Nele Noels received the Diploma of Elec-
trical Engineering from Ghent University,
Gent, Belgium, in 2001. She is currently
a Ph.D. student at the Department of
Telecommunications and Information Pro-
cessing, Ghent University. Her main re-
search interests are in carrier and symbol
synchronization. She is the author of several
papers in international journals and confer-
ence proceedings.

Vincenzo Lottici received the Dr.-Ing. de-
gree (cum laude) in electronic engineering
and the Best Thesis SIP Award from the
University of Pisa in 1985 and 1986, respec-
tively. From 1987 to 1993 he worked in the
design and development of sonar digital sig-
nal processing systems. Since 1993 he has
been with the Department of Information
Engineering at the University of Pisa, where
he is currently a Research Fellow and As-
sistant Professor in telecommunications. His research interests in-
clude the area of wireless multicarrier and UWB systems, with par-
ticular emphasis on synchronization and channel estimation tech-
niques.

Antoine Dejonghe was born in Ottignies,
Belgium, in 1977. He received the Electri-
cal Engineering degree in 2000 from the
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We propose a method for blind multiuser detection (MUD) in synchronous systems over flat and fast Rayleigh fading channels. We
adopt an autoregressive-moving-average (ARMA) process to model the temporal correlation of the channels. Based on the ARMA
process, we propose a novel time-observation state-space model (TOSSM) that describes the dynamics of the addressed multiuser
system. The TOSSM allows an MUD with natural blending of low-complexity particle filtering (PF) and mixture Kalman filtering
(for channel estimation). We further propose to use a more efficient PF algorithm known as the stochastic M-algorithm (SMA),
which, although having lower complexity than the generic PF implementation, maintains comparable performance.
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1. INTRODUCTION

When multiuser detection (MUD) was introduced in the
eighties, it has received a great deal of attention due to its
ability to reduce multiple access interference (MAI) and po-
tential for increasing the capacity of CDMA systems. Since
then, numerous detectors have been proposed in the litera-
ture for both synchronous and asynchronous transmission

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

and some popular ones include the decorrelating detector,
the minimum mean square error (MMSE) detector, the mul-
tistage detector, and the decision feedback detector [1].

In practice, distortion in signal strength due to time-
varying fading channels must be attended while perform-
ing MUD. Even though noncoherent detection methods as
proposed in [2] are often appealing owing to their sim-
plicity since no inference on fading channels is needed, co-
herent detection has been proved to deliver better perfor-
mance [3]. With coherent detection, estimation of chan-
nels can be obtained with or without pilot signals. Between
them, significant amount of research has been devoted to
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schemes without using pilot signals, or blind MUD methods.
Blind MUD methods are bandwidth more efficient and the
approaches proposed, to name a few, include the recursive
least square (RLS) [4, 5], subspace-based [6], expectation-
maximization [7], genetic algorithm [8] and Kalman fil-
tering [9, 10, 11, 12, 13, 14]. However, most of the ap-
proaches cited above assume slow or quasi-static fading
channels.

In this paper, we focus on blind MUD for fast flat
Rayleigh fading channels and in synchronous systems. In
particular, we assume to know a priori the second-order
statistics of the underlying channel, based on which a
mathematical tractable approximation using autoregressive-
moving-average (ARMA) model is adopted. The approx-
imation enables a dynamic state-space modeling (DSSM)
of the problem, which lends itself naturally to a Kalman-
filtering-related detection solution. The use of Kalman fil-
tering for blind MUD on similar modeling has been seen in
[11, 12, 14], where the decision-directed approach was used
to estimate the channel variable necessary for the Kalman
filtering. One inherent drawback with the decision-directed
approach is the error propagation, which greatly limits the
performance of such implementation.

Recently, the combined (mixture) Kalman filtering and
sequential importance sampling (particle filtering) algo-
rithms have been applied to blind detection of convolutional
codes [15], space-time trellis codes [16], and blind MUD
[17] over fading channels. The mixture Kalman filtering
(MKF) approach is shown to greatly reduce the error prop-
agation of the decision-directed implementations and thus
exhibits considerable performance improvement. However,
in the proposed use of the MKF to blind MUD in [17], par-
ticle filtering (PF) was mainly intended for channel tracking
and the embedded MUD at a symbol interval was achieved
by an optimum detector, which has exponential complexity
with the number of users. Consequently, the proposed MKF
algorithm becomes prohibitively complex even for systems
with moderate number of users.

In this paper, unlike all existing Kalman filtering detec-
tors, a completely different viewpoint to multiuser systems is
taken and we propose a novel time-observation state-space
model (TOSSM). Even though the TOSSM is equivalent to
the common DSSM, it allows the PF-based multiuser detec-
tion to be naturally blended with the mixture Kalman fil-
tering for channel estimation. The new mixture Kalman fil-
tering algorithm samples one user at a time and therefore
permits efficient implementation. We further propose to use
a more efficient PF algorithm known as the stochastic M-
algorithm (SMA), which has shown to attain additional com-
plexity reduction over the generic PF implementation and yet
maintain comparable performance.

The rest of the paper is organized as follows. In Section 2,
the problem of blind MUD is formulated. In Section 3, a
novel TOSSM is described and in Section 4, the optimum so-
lution is discussed. Particle filtering and SMA solutions are
proposed in Sections 6 and 7, respectively. The simulation
results are presented in Section 8. Section 9 contains some
concluding remarks.

2. PROBLEM FORMULATION

Consider a synchronous CDMA system with a processing
gain C and K users. Let T denote the symbol duration and
sk(t) the normalized deterministic signature waveform as-
signed to the kth user. Then, at the nth symbol interval, the
received signal y(t) can be expressed as a summation ofK an-
tipodally modulated synchronous signature waveforms plus
noise, that is,

y(t) =
K∑
k=1

an,kbn,ksk(t) + u(t), t ∈ [(n− 1)T ,nT
]
, (1)

where bn,k ∈ {−1, +1} is the BPSK modulated bit transmit-
ted by the kth user, ak,n the CSI (fading coefficient) of the kth
user, and u(t) the received zero mean additive complex white
Gaussian noise with variance σ2. The cross-correlation be-
tween the signature waveforms of the users is given by the
cross-correlation matrix R, where element rk1,k2 represents
the cross-correlation between the signature waveform of the
k1th and the k2th user and is defined as

rk1k2 =
〈
sk1 , sk2

〉 = ∫ nT

(n−1)T
sk1 (t)sk2 (t)dt. (2)

The channel for each user is considered as Rayleigh flat fad-
ing channel and ARMA processes can be adopted to model
its time correlation with satisfaction [11, 15, 18]. Given an
ARMA(r1, r2) process, the CSI of the kth user at the nth in-
terval ak,n can be represented as

an,k + φk,1an−1,k · · ·φk,r1an−r1,k

= ρk,0vn,k + · · · + ρk,r2vn−r2,k,
(3)

where vn,k is an i.i.d. random complex Gaussian process that
drives the ARMA process, {φk,1, . . . ,φk,r1} and {ρk,1, . . . , ρk,r2}
are the AR and MA coefficients of the model. We assume that
we know a priori the second-order statistics of the underlying
fading channel, and therefore the coefficients of the ARMA
model can be precomputed so that the power spectral density
of the ARMA process matches that of the fading channel. For
convenience, we assume that r1 = r2 = r; otherwise zeros can
be padded to the coefficients to make the orders equal.

An equivalent form of (1) consists of a set of sufficient
statistics represented by the matched filter output,

yn,k =
〈
y(t), sk(t)

〉 = ∫ nT

(n−1)T
yn(t)sk(t)dt. (4)

The set of matched filter outputs yn = [yn,1, . . . , yK ,n]T,
where (·)T stands for matrix transpose, can be represented
in vector-matrix form as

yn = RAnbn + un, (5)

where An = diag{an,1, . . . , an,K} is the diagonal matrix of the
channel state information, bn = [bn,1, . . . , bn,K ]T is the user
date vector, and un is the complex Gaussian noise vector with
independent real and imaginary components and with co-
variance matrix equal to σ2R. Our objective is to perform
sequential symbol detection without knowing the CSI an,k,
that is, blind multiuser detection.
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3. TIME-OBSERVATION STATE-SPACE
SYSTEM MODELING

A succinct mathematical representation of a time-varying
system is the dynamic state-space model (DSSM). The state-
space representation of CDMA systems in flat fading chan-
nels can be found in the existing literatures [11] and it can be
expressed as

hk,n = Qkhk,n−1 + gvk,n ∀k,

ak,n = ρT
k hk,n ∀k,

yn = RAnbn + un,

(6)

where hT
n,k = [hn,k · · · hn−r,k] is an (r + 1)× 1 channel state

vector, ρT
k = [ρk,0 · · · ρk,r],

Qk =


−φk,1 · · · −φk,r 0

1 · · · 0 0
...

...
...

...
0 · · · 1 0

 ,

g =


1
0
...
0

 .
(7)

In (6), hk,n for all k and bn are the unknowns to be esti-
mated. Note that the observation yn is not linear in hk,n for
all k and bn, and therefore the Kalman filter cannot pro-
vide the optimum solution. In fact, the optimum solution
can be obtained by a so-called splitting Kalman filter, where,
at time n, 2n Kalman filters are required. The complexity of
the splitting Kalman filter is exponential with both time and
users and thus computational prohibited. Instead, particle
filtering can be used to obtain good approximations of the
optimum solution with reduced complexity. PF algorithms
on (6) incorporated with Kalman filtering were proposed
in [17]. However, as mentioned in the introduction, due to
the structure of (6), particles of bn must be sampled jointly,
and the complexity becomes exponential with the number of
users. The prohibitive complexity on large user systems im-
plies that this PF algorithm is infeasible for practical applica-
tions. To circumvent this difficulty, in the following we intro-
duce a time-observation state-space model (TOSSM) for the
system:

p
(

b1:N , ȳ1:NK
) = p

(
ȳNK |b1:N , ȳ1:NK−1

)
p
(

b1:N , ȳ1:NK−1
)

= p
(
ȳNK |b1:N , ȳ1:NK−1

)
×p(bN ,K |bN ,1:K−1, b1:N−1, ȳ1:NK−1

)
×p(bN ,1:K−1, b1:N−1, ȳ1:NK−1

)
= p

(
ȳNK |b1:N , ȳ1:NK−1

)
p
(
bN ,K

)
×p(bN ,1:K−1, b1:N−1, ȳ1:NK−1

)
= p

(
ȳNK |b1:N , ȳ1:NK−1

)
×p(bN ,1:K−1, b1:N−1, ȳ1:NK−1

)
.

(8)

In developing the TOSSM, we start with the Cholesky
factorization of the cross-correlation matrix R as

R = FTF, (9)

where F is a uniquely defined K × K lower triangular ma-
trix. Now, right multiplying (FT)−1 with the matched filter
output, we obtain

ȳn = (FT)−1yn = FAnbn + ūn (10)

or, equivalently,

ȳn = FBnan + ūn, (11)

where Bn = diag{bn,1, . . . , bn,K} is the diagonal user data
matrix, and an = [an,1, . . . , an,K ] is the K × 1 vector of
CSI. Since the covariance matrix of ūn becomes E[ūnūT

n] =
σ2F−TRF−1 = σ2I, where I is an identity matrix, ȳn is called
the whitened matched filter (WMF) output. Next, define a
tall channel vector of K(r + 1) × 1 as hn = [hT

1,n · · ·hT
K ,n]T

and the channel transition becomes

hn = Qhn−1 + Gvn, (12)

where vn = [v1,n, . . . , vK ,n]T, Q = diag(Q1, . . . , QK ), and G =
diag(g, . . . , g︸ ︷︷ ︸

K

) are K(r+1)×K(r+1) and K(r+1)×K matrices.

We can thus express an by hn in a compact form by

an = Phn, (13)

where P = diag(ρT
1 , . . . , ρT

K ) is of dimension K × K(r + 1).
Now by replacing an in (11) by (13), we have

ȳn = FBnPhn + ūn. (14)

If we denote the kth row of F by fT
k , the kth WMF output ȳn

can be written as

ȳn,k = fT
k BnPhn + ūn,k, (15)

where ūn,k is the kth element of ūn. Now, instead of consid-
ering the system evolving only along time, we imagine a sys-
tem progressing alternately along the path of time and the
WMF observations ȳn,k. The concept is further illustrated
in Figure 1. To describe this new system, we must collapse
the time index n and the observation index k into one time-
observation index l, where l = (n− 1)K + k. This conversion
is reversible or, in other words, we can also calculate k and
n from l by k = mod(l,K) and n = (l − k)/K + 1, where
mod(k,K) is the k modulo K operation. In the following de-
scription of the TOSSM indexed by l, all k and n are assumed
to be obtained from the corresponding l. Now, we introduce
a K × K auxiliary matrix B̃l = diag{bn,1, . . . , bn,k, 0 . . . , 0}.
The state-space representation for the new time-observation
system indexed by l can be then constructed as

hl =
Qhl−1 + Gvl if k = 1,

hl−1 if k �= 1,

ȳl = fT
k B̃lPhl + ūl

(16)
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ȳ2
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ȳnk−1
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Figure 1: Illustrative plot of the TOSSM.

and we call (16) the TOSSM. Note that (16) and (6) describe
the same system. There are, however, key differences between
the two models. Unlike (6), the state transitions of hl in the
TOSSM are time (or index) varying, that is, at different l,
different transition is applied. Specifically, when k = 1 or,
equivalently, n increases by 1, hl updates according to the
ARMA channel model, and otherwise when k �= 1 and n re-
mains unchanged from l − 1, hl is assumed to be static. Ad-
ditionally, in the TOSSM, the number of the unknown user
bits changes with l and especially, only one new unknown
signal bn,k is included each time when l is incremented by
one. Therefore, if we assume perfect detection at l−1, that is,
bn,1, . . . , and bn,k−1 are known exactly, then there is only one
unknown user bit to be detected. Note that in the conven-
tional DSSM (6), K unknown users bits need to be detected
altogether as the system evolves to time n. This is the key of
the model that leads to efficient particle filtering solutions.
We, however, want to stress that the decision on bn,k (except
k = K) is not finalized at l. Since the observations from yl+1

up to yl+r with r = K − k all contain information about bn,k,
the final decision is reached only at l + r, or in general, when
k = K .

4. OPTIMUM BAYESIAN BLIND DETECTION

In a Bayesian framework, the optimum decision on bN can
be obtained by the marginalized posterior mode (MPM) cri-
terion, which is expressed as

(
b̂N ,k

)
MPM = sgn

( ∑
bN∈{−1,1}K

bn,k p
(

bN | ȳ1:NK
))

, (17)

where p(bN | ȳ1:NK ) is the posterior distribution that is es-
sential for computing (17) and the subscript 1 : NK de-
notes a collection of the variable indexed from 1 to NK ,
e.g., ȳ1:NK = { ȳ1, . . . , ȳNK}. Notice that the posterior dis-
tribution p(bN | ȳ1:NK ) is independent of b1:(N−1), that is, the
bits transmitted prior to time n. Further, the marginalization

in (17) suggests that (b̂N ,k)MPM is also independent of other
users’ bits transmitted at n. Therefore, the MPM solution is
immune to decision errors on b1:(N−1) and other users’ bits
transmitted at n.

Now, to derive p(bn| ȳ1:NK ), marginalization on p(b1:N |
ȳ1:NK ) over b1:(N−1) is needed, that is,

p
(

bN | ȳ1:NK
) = ∑

b1:N−1

p
(

b1:N | ȳ1:NK
)

=
∑

b1:N−1
p
(

b1:N , ȳ1:NK
)∑

b1:N
p
(

b1:N , ȳ1:NK
) .

(18)

Considering the TOSSM (16), we found the joint distribu-
tion in (8), where the last equation was obtained by assum-
ing the noninformative priors for bN ,K , that is, p(bN ,K =
1) = 0.5. Equation (8) indicates a recursive calculation of
p(b1:N , ȳ1:NK ) from l = 1 to NK through multiplying the
marginal likelihood p( ȳl|bn,1:k, b1:n−1, ȳ1:l) at each recursion.
These likelihoods p( ȳl|bn,1:k, b1:n−1, ȳ1:l) for l = 1, . . . ,NK
are obtained by marginalizing the channel state vector hl

from p( ȳl, hl|bn,1:k, b1:n−1, ȳ1:l), and we show in the appendix
that

p
(
ȳl|bn,1:k, b1:n−1, ȳ1:l

) = N
(
ml, cl

)
(19)

and the mean ml and variance cl can be calculated sequen-
tially through the Kalman filter. This is equivalent to say
that p( ȳl|bn,1:k, b1:n−1) can be calculated from a run of the
Kalman filter. Now, revisiting (18), we see that, to calculate
p(bN | ȳ1:NK ), p( ȳl|bn,1:k, b1:n−1) must be evaluated for 2NK

combinations of b1:N , or 2NK Kalman filters are needed, each
of which corresponding to one possible combination. As a
result, totally 2NK Kalman filters are required for the MPM
solution. The expansion of the numbers of the Kalman fil-
ters with l presents a tree structure illustrated in Figure 2.
The MPM solution has thus a complexity exponentially in-
creasing with both time n and the number of users K . This
is apparently a formidable task not possible for real applica-
tions. We, therefore, must resort to suboptimum solutions
with manageable complexity. One choice is particle filtering.

5. A DECISION-DIRECTED APPROACH
TO BLIND MUD

A decision-directed approach to blind MUD was proposed in
[11] based on DSSM (6). We describe in the following a cor-
responding decision-directed approach on the TOSSM (16).
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Figure 2: The tree structure of the optimum solution. Each path in the tree represents a run of the Kalman filter.

Predictive step: h̃l =
Qĥl−1 + Gul if k = 1,

ĥl−1 if k �= 1,

Σ̂l =
QΞ̂l−1QT + σ2GG� if k = 1,

Ξ̂l−1 if k �= 1.

Detection step:

b̂n,k = sgn(zn,k);

zn,k = ( ȳl −
∑k−1

j=1 fk, jai, jbi, j)a∗i,k ;

ai,k = ρkh̃l .

Update step:

K̂l = Σ̂lĈH
l /ĉl with ĉl = ĈlΣ̂lĈH

l + σ2,

ĥl = h̃l + K̂l( ȳl − Ĉlhl),

Ξ̂l = (I− K̂lĈl)Σ̂l,

where Ĉl = fT
k B̂lP and B̂l = diag{[b̂n,1, . . . , b̂n,k , 0 . . . , 0]}.

Algorithm 1: Decision-directed detector (DD).

One distinct feature of the decision-directed approach on the
TOSSM is that the decision on only one user’s bit is made at

each l. Specifically, let b̂n,k−1 and ĥl−1 represent the decisions
on bn,k−1 and hl−1 at l − 1, then the decision-directed ap-
proach at l can be summarized in Algorithm 1. Clearly, the
above decision-directed algorithm is equivalent to one run
of the Kalman filter, and therefore it is a lot simpler than
the optimum MPM solution. Nevertheless, the user bit is de-
termined based on the prediction of the channel states and
the decisions on previous users’ bits, and thus it is not op-
timum. Compared with the algorithm based on DSSM (6),
at time k with k from 1 to K , the above algorithm makes

a decision on one user at a time and updates the channel
state vector hl whenever a decision is reached. The updated hl

will then influence the decision on bn,k+1. Therefore, in both
a good and a bad way, decisions at early stages (smaller k)
would have more impact on decisions at later stages (larger
k) than those made by the algorithm on DSSM. If detec-
tion error exists in early stages, they will be propagated into
later stages. It is therefore beneficial to rank the users accord-
ing to the estimated SNR. The performance of the decision-
directed algorithm is, however, ultimately limited by error
propagation.

6. PARTICLE FILTERING DETECTOR
FOR BLIND MUD

Particle filtering belongs to the family of Monte Carlo sam-
pling which aims at using samples to approximate posterior
distribution. However, particle filtering distinguishes itself by
employing a sequential importance sampling scheme, and
in particular, it is designed for nonlinear and non-Gaussian
systems described through state-space modeling such as the
problem concerned.

In the context of the proposed problem, when yN , or
equivalently ȳN , is observed at time N , the objective of par-
ticle filtering is to draw, say, J weighted random samples

{b
( j)
1:N ,w

( j)
NK}Jj=1 from p(b1:N | ȳ1:nK ), where w

( j)
NK is the weight

of the jth sample b
( j)
1:N . With the samples, p(bN | ȳ1:NK ) can be

approximated by

p
(

b1:N | ȳ1:nK
) ≈ J∑

j=1

w
( j)
NK

NK∏
l=1

δ
(
bn,k − b

( j)
n,k

)
, (20)
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where δ(·) is the Dirac delta function, and hence the MPM
solution of b by a simple weighted summation is

(
b̂N ,k

)
MPM ≈ sgn

( J∑
j=1

w
( j)
NKb

( j)
N ,k

)
(21)

for k = 1, . . . ,K . By the law of large numbers, the approxima-
tion will converge to the true MPM solution with the increase
of the number of samples J . If these samples are taken directly
from the posterior distribution, then all the samples have
equal weights. However, direct sampling from p(b1:N | ȳ1:NK )
is prohibited since all possible combinations of b1:N must
be evaluated on p(b1:N | ȳ1:NK ), which again requires 2NK

Kalman filters. To circumvent the difficulty, importance sam-
pling is performed where samples are taken from a proposal
importance function π(b1:KN | ȳ1:KN ) and weighted according
to

w
( j)
KN =

p
(

b
( j)
1:KN | ȳ1:KN

)
π
(

b
( j)
1:KN | ȳ1:KN

) ∀ j. (22)

Notice that π(b1:KN | ȳ1:KN ) is a very high-dimensional dis-
tribution and it is burdensome to sample the variables and
calculate the weights altogether. Fortunately, the TOSSM al-
lows a Markovian factorization on the posterior distribution
as

p
(

b1:N , ȳ1:NK
)∝ p

(
ȳNK |b1:N , ȳ1:NK−1

)
p
(
bN ,K

)
× p

(
bN ,1:K−1, b1:N−1| ȳ1:NK−1

)
= p

(
ȳNK |b1:N , ȳ1:NK−1

)
× p

(
bN ,1:K−1, b1:N−1| ȳ1:NK−1

)
.

(23)

Then, if we choose the importance distribution as

π
(

b1:N |ȳ1:NK
) = p

(
bN ,k|bN ,1:K−1, b1:N−1, ȳ1:NK

)
× π

(
bN ,1:K−1, b1:N−1| ȳ1:NK−1

)
,

(24)

the weight can be calculated by

w
( j)
KN =

p
(
ȳNK |b( j)

1:N , ȳ1:NK−1
)
p
(
b

( j)
N ,K

)
p
(
b

( j)
N ,K |b( j)

N ,1:K−1, b
( j)
1:N−1, ȳ1:NK

)
× p

(
b

( j)
N ,1:K−1, b

( j)
1:N−1| ȳ1:NK−1

)
π
(

b
( j)
N ,1:K−1, b

( j)
1:N−1| ȳ1:NK−1

)
= p

(
ȳNK |b( j)

1:N , ȳ1:NK−1
)
p
(
b

( j)
N ,K

)
p
(
b

( j)
N ,K |b( j)

N ,1:K−1, b1:N−1, ȳ1:NK
)w( j)

KN−1

∝ p
(
ȳNK |b( j)

N ,1:K−1, b
( j)
1:N−1, ȳ1:NK−1

)
w

( j)
KN−1

=
∑
bN ,K

p
(
ȳNK |b( j)

1:N , ȳ1:NK−1
)
w

( j)
KN−1

= µ
( j)
KN−1w

( j)
KN−1,

(25)

where µ
( j)
KN−1 is the weight update factor. Examining (24) and

(25), we find that given w
( j)
KN−1 and p(bN ,1:K−1, b1:N−1|

ȳ1:NK−1), the importance function (24) and the

weights (25) are known exactly as long as p( ȳNK |b( j)
1:N ,

ȳ1:NK−1) can be derived. In fact, we have indicated in
Section 4 that p( ȳNK |b1:N , ȳ1:NK−1) can be calculated
through the Kalman filter as

λNK (i) = p
(
ȳNK |bN ,K = 2∗ i− 3, b

( j)
N ,1:K , b

( j)
1:N , ȳ1:NK−1

)
= Nc

(
m

( j)
NK (i), c

( j)
NK (i)

)
(26)

for i = 1, 2 where m
( j)
l (i) and c

( j)
l (i) are calculated the same

way as shown in the appendix but for a set of b1:NK given in
(26). We can therefore obtain samples and weights using a
recursive algorithm. To put the idea in concrete procedure,
we assume that at l − 1, we have obtained from a previous

recursion the trajectories (samples) {b
( j)
0:l−1}Jj=1 appropriately

weighted with the weights {w( j)
l−1}Jj=1. Using the recent ob-

servations ȳl, we update the trajectories and weights as in
Algorithm 2. This process of recursively obtaining particles

is called particle filtering. After each recursion, the mean η
( j)
l

and covariance vectors Ξ
( j)
l are passed on to the next recur-

sion. From (21), we also see that to calculate all the elements
of {bN}MPM, w

( j)
NK is required. Therefore the decision on all

the elements can only be made after recursion l = KN and
the particles for bN ,k for k = 1, 2, . . . ,K − 1 must be stored.

In the above derivation of particle filtering, the adopted
importance function is known as optimum in the sense that
minimizes the variance of the weights. The above particle fil-
tering procedure suffers from particle impoverishment, that
is, after several recursions, some weights of the samples be-
come negligible and stop contributing to the overall evalua-
tion. To prevent it, we insert a residue resampling step [15]
after every fixed recursion. Particularly, during the resam-

pling at recursion l, the particles for b
( j)
n,1:k, the mean vectors,

and covariance matrices must be treated as a set in the re-
sampling process.

7. STOCHASTIC M-DETECTOR FOR BLIND MUD

Recently, a every efficient particle filtering algorithm called
stochastic M-algorithm (SMA) was proposed in [19] for
problems with discrete unknowns. SMA can provide simi-
lar performance as generic particle filtering but with much
reduced complexity. SMA can be considered as a particle fil-
tering algorithm with the discrete delta functions as impor-
tance functions. In addition, each trajectory produces two
samples (−1 and 1) for the binary case rather than one sam-
ple as in the generic PF. A key feature with SMA is that no
two trajectories are identical, which is however rarely true
with the generic PF. As a result, the SMA can provide more
sample diversities with less trajectories than the generic PF.
Nonetheless, notice that the number of trajectories doubles
after each sampling and therefore a selection step is required
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For j = 1 to J , do as follows.

(1) Predictive step:

Calculate

µ
( j)
l =


Qη

( j)
l−1 if k = 1,

η
( j)
l−1 if k �= 1,

and

Σ
( j)
l =


QΞ

j
l−1Q� + σ2GG� if k = 1,

Ξ
( j)
l−1 if k �= 1.

(2) Sampling step.

(a) For i = 1 and −1, calculate

(i) m
( j)
l (i) = c

( j)
l (i)µ

( j)
l and

c
( j)
l (i) = cl(i)Σ

j
l c

( j)
l

H
(i) + σ2,

where c
( j)
l = fT

k B
( j)
l (i)P, B

( j)
l (i) =

diag{b( j)
n,1, . . . , b

( j)
n,k−1, i, 0, . . . , 0};

(ii) λ
( j)
l (i) = Nc(m

( j)
l (i), c

( j)
l (i)).

(b) Sample m ∈ {−1, 1} with probability

proportional to λ
( j)
l (i)∀i.

(c) Set b
( j)
l = m.

(d) Calculate µ
( j)
l =∑i∈{−1,1} λ

( j)
l (i) and the

unnormalized weight w̄
( j)
l = µ

( j)
l w

( j)
l−1.

(3) Updating step. Calculate

(i) K
( j)
l = Σ

( j)
l c( j)(m)H

l /c
j
l (m);

(ii) η
( j)
l = µ

( j)
l + Kl( ȳl − c

( j)
l (m)µ

( j)
l );

(iii) Ξ
( j)
l = (I−K

( j)
l c

( j)
l (m))Σ

( j)
l .

Form the new trajectories b
( j)
0:l = {b( j)

l , b
( j)
0:l−1} ∀ j.

Normalize the weight as w
( j)
l = w̄

( j)
l /

∑J
j=1 w̄

( j)
l .

Algorithm 2: Particle filtering detector (PFD).

to avoid the exponential increase of trajectories. Here, we use
the optimal resampling algorithm [20] since it is a sampling-
without-replacement algorithm and does not produce repli-
cates of the same trajectories, the feature that is required by
SMA. The SMA for the problem concerned at the lth recur-
sion is outlined as in Algorithm 3.

The structure of the SMA resembles the popular M-
algorithm. However, since the SMA is still a PF algorithm,
it can provide probability information about the unknowns
and thus can be applied to iterative MUD of a coded system.

7.1. Discussion on the MPM, decision-directed,
and particle filtering solutions

Comparing the PFD and the SMD with the decision-directed
algorithm, we see that the processes along each trajectory is
almost as identical as a decision-directed algorithm except
that a sampling step is used in the place of the detection step,
and they all resemble one run of Kalman filter which corre-
sponds to a path in the tree of Figure 2. There are two paths
going out at every note in the tree, and in selecting a path,

Trajectory expansion

(1) For j = 1 to J ,

(i) perform the predictive step in the PFD Algorithm;

(ii) perform (2)(a) in Algorithm PFD;

(iii) set b
(2 j−1)
l = 1 and calculate the weight by

w̄
(2 j−1)
l = λ

( j)
l (1)w

( j)
l−1;

(iv) set b
(2 j)
l = −1 and calculate the weight by

w̄
(2 j−1)
l = λ

( j)
l (−1)w

( j)
l−1;

(v) form 2J new trajectories by setting b
(2 j−1)
l =

{b(2 j−1)
l , b

( j)
0:l } and b

(2 j)
l = {b(2 j)

l , b
( j)
0:l }.

(2) Normalize the weights w̄
( j)
k to obtain w

( j)
k .

(3) Trajectory selection: select J trajectories from 2M

trajectories using the optimal resampling algorithm.

(4) Updating step: for j = 1 to J ;

perform the updating step in the PFD Algorithm.

Algorithm 3: Stochastic M detector (SMD).

the decision-directed algorithm uses a deterministic ap-
proach, while PFD and SMD adopt a soft measure which is
based on probability. What is more, each trajectory is also as-
sociated with a weight which indicates the significance of the
trajectory in final decision. Although trajectories with small
weight do not seem to contribute much to current decision
making at the present stage, they, however, might flourish in
later recursions and carry significant weights in decision. The
soft measure can apparently prevent current decision errors
from greatly influencing the future decision, a key advantage
over the decision-directed approach.

Comparing the PFD and the SMD with the optimum
MPM solution, PFD, especially the SMD, has clear edge in
complexity since it only maintains J trajectories or equiva-
lently J Kalman filter at all times, but the required Kalman
filter for the MPM grows exponentially with time. Further,
the PFD and the SMD achieve every effective and efficient
approximation to the true posterior distribution and there-
fore provide decision performance closer to optimum. Since
the two detectors produce soft (probabilistic) results, they are
readily applied in turbo MUD.

8. SIMULATION RESULTS

In this section, the bit error rate (BER) performance of the
proposed PFDs and SMDs are studied through experiments.
In all the experiments, the transmitted signal was differential
BPSK modulated. The number of users was 15. For the PFDs,
151 trajectories were maintained, whereas 4 and 32 trajecto-
ries were tested for SMDs. Further, an AR model was adopted
for the fading process, which was normalized to have a unit
power, and thus the signal-to-noise ratio (SNR) was obtained
by 10 log(1/σ2).

In Figure 3, we provide the BER versus SNR for the dif-
ferent algorithms on a scenario of Ωd = 0.03. The genie-
aided detector is included as a lower bound. We notice that
the PFDs and SMDs with 32 trajectories are of the same
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Figure 3: BERs versus SNR performance for various detectors. Ω =
0.03.
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Figure 4: BERs versus SNR performance for various detectors. Ω =
0.05.

order of magnitude as that of the genie-aided detector at
low SNR (less than 30 dB). On the other hand, the re-
sults obtained by the SMDs with 4 and 32 trajectories are
very close, especially after 20 dB, and comparable to that of
the PFD. The SMD with 4 trajectories is obviously more
favorable since it requires only about 1/35 of complexity
of the PFD. As a final note, the PFD and SMDs achieve
about 7 dB gain over the decision-directed detectors at 10−3

Decision-directed detector SM detector, 4 trajectories
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Genie

SM detector, 32 trajectories
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Figure 5: BERs versus SNR performance for various detectors for
users with different power. Ω = 0.03.

BER. In Figure 4, we provide the BER versus SNR perfor-
mance for a higher Doppler frequency of Ωd = 0.05. Simi-
lar observations can be drawn as for the previous case even
though the overall performance of the detectors is worse,
which is reasonable considering that the channels are fading
faster.

In Figure 5, we provide the BER versus SNR of the first
user for the different algorithms on a scenario of Ωd =
0.03. In addition, the users have different power. The dif-
ference between the power of the first user and that of the
last user is 10 dB and the other users’ powers are equally
spaced in between. The genie-aided detector is also included
as a lower bound. In this case, the PFDs and SMDs with 32
trajectories are approximately of the same order of magni-
tude as that of the genie-aided detector at SNRs of the first
user less than 30 dB. As in the case of equal power, the re-
sults obtained by the SMDs with 4 and 32 trajectories are
very close, especially after 30 dB, and comparable to that of
the PFD. Again, the SMD with 4 trajectories is obviously
more favorable since it requires only about 1/35 of complex-
ity of the PFD. In this experiment, the performance of the
decision-directed detector is much worse compared to the
performance of the PDF and SMDs. For example, the lat-
ter achieves about 11 dB gain over the former at 10−2 BER.
In Figure 6, we provide the BER versus SNR performance
for a Doppler frequency of Ωd = 0.05. Since the channels
considered are fading faster, the performance of the detec-
tors is worse. However, in general, similar observations to
the tested detectors can be drawn. It is important to outline
that the performance of the decision-directed detector gets
worse in this case, for example, the PFD and SMDs achieve
about 20 dB gain over the decision-directed detectors at 10−2

BER.
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Figure 6: BERs versus SNR performance for various detectors for
users with different power. Ω = 0.05.

9. CONCLUSION

In this paper, we proposed to solve blind MUD over flat fast
fading channels. We constructed a novel time-observation
state-space model, based on which efficient particle filtering
and stochastic M detectors were proposed. Particularly, the
detectors based on the SMA demonstrated greater potential
than those using generic PF. The former can provide compa-
rable performance as the latter but with much smaller com-
plexity.

APPENDIX

DERIVATION OF THE LIKELIHOOD p( ȳl|bn,1:k, b1:n−1, ȳ1:l)

The likelihood p( ȳl|bn,1:k, b1:n−1, ȳ1:l) can be obtained as

p
(
ȳl|bn,1:k, b1:n−1, ȳ1:l−1

)
=
∫
p
(
ȳl, hl|bn,1:k, b1:n−1, ȳ1:l

)
dht

=
∫
p
(
ȳl|hl, bn,1:k

)
p
(

hl|bn,1:k−1, b1:n−1, ȳ1:l−1
)
dhl,

(A.1)

where the last equality is arrived by the fact that, given hl,
and bn,1:k, ȳl is independent of other variables, and hl is in-
dependent of bn,k. In (A.1), two distributions are involved in
the integral. The first distribution is the likelihood defined by
the observation equation which is

p
(
ȳl|hl, bn,1:k

) = N
(

Clhl, σ2), (A.2)

where Cl = fT
k B̃lP. The second distribution p(hl|bn,1:k−1,

b1:n−1, ȳ1:l−1) is the predictive density which can be obtained
from the predictive step of the Kalman filter [21, 22], that is,

p
(

hl|bn,1:k−1, b1:n−1, ȳ1:l−1
) = N

(
µl,Σl

)
, (A.3)

where

µl =
Qηl−1 if k = 1,

ηl−1 if k �= 1,
(A.4)

and

Σl =
QΞl−1Q� + σ2GG� if k = 1,

Ξl−1 if k �= 1.
(A.5)

In (A.4) and (A.5), ηl−1 and Ξl−1 are computed from the
update steps of the Kalman filter expressed in terms of l as

ηl = µl + Kl
(
ȳl −ml

)
, (A.6)

and

Ξl =
(

I−KlCl
)
Σl, (A.7)

where ml = Clµl and Kl = ΣlCH
l /cl with cl = ClΣlCH

l + σ2.
Now the integration in (A.1) is readily derived as

p
(
ȳl|bn,1:k, b1:n−1, ȳ1:l

) = N
(
ml, cl

)
. (A.8)
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We consider the problem of transmitting a continuous source through an OFDM system. Multiple description scalar quantization
(MDSQ) is applied to the source signal, resulting in two correlated source descriptions. The two descriptions are then OFDM
modulated and transmitted through two parallel frequency-selective fading channels. At the receiver, a blind turbo receiver is de-
veloped for joint OFDM demodulation and MDSQ decoding. Transformation of the extrinsic information of the two descriptions
are exchanged between each other to improve system performance. A blind soft-input soft-output OFDM detector is developed,
which is based on the techniques of importance sampling and resampling. Such a detector is capable of exchanging the so-called
extrinsic information with the other component in the above turbo receiver, and successively improving the overall receiver per-
formance. Finally, we also treat channel-coded systems, and a novel blind turbo receiver is developed for joint demodulation,
channel decoding, and MDSQ source decoding.

Keywords and phrases: multiple description codes, OFDM, frequency-selective fading, sequential Monte Carlo, turbo receiver.

1. INTRODUCTION

Multiple description scalar quantization (MDSQ) is a source
coding technique that can exploit diversity communication
systems to overcome channel impairments. An MDSQ en-
coder generates multiple descriptions for a source and sends
them over different channels provided by the diversity sys-
tems. At the receiver, when all descriptions are received cor-
rectly, a high-quality reconstruction is possible. In the event
of failure of one or more of the channels, the reconstruction
would still be of acceptable quality.

The problem of designing multiple description scalar
quantizers is addressed in [1, 2], where a theoretical perfor-
mance bound is derived in [1] and practical design meth-
ods are given in [2, 3]. Conventionally, MDSQ has been

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

investigated only from the perspective of transmission over
erasure channels, that is, channels which either transmit
noiselessly or fail completely [1, 2, 4]. Recently, it was shown
in [5] that an MDSQ can be used effectively for com-
munication over slow-fading channels. In that system, a
threshold on the channel fade values is used to determine
the acceptability of the received description. The signal re-
ceived from the bad connection is not utilized at the re-
ceiver.

In this paper, we propose an iterative MDSQ decoder
for communication over fading channels, where the extrin-
sic information of the descriptions is exchanged with each
other by exploiting the correlation between the two descrip-
tions. Although the MDSQ coding scheme provided in [2]
is optimized with the constraint of erasure channels, it pro-
vides very nice correlation property between different de-
scriptions. Therefore, the same MDSQ scheme will be ap-
plied to the continuous fading environment considered in
this paper [6, 7, 8].

mailto:zigang@ti.com
mailto:guodong@ee.columbia.edu
mailto:wangx@ee.columbia.edu
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Figure 1: Continuous source transmitted through a diversity OFDM system with MDSQ.

Providing high-data-rate transmission is a key objective
for modern communication systems. Recently, orthogonal
frequency-division multiplexing (OFDM) has received a
considerable amount of interests for high-rate wireless com-
munications. Because OFDM increases the symbol duration
and transmitting data in parallel, it has become one of the
most effective modulation techniques for combating multi-
path delay spread over mobile wireless channels.

In this paper, we consider the problem of transmitting a
continuous source through an OFDM system over parallel
frequency-selective fading channels. The source signals are
quantized and encoded by an MDSQ, resulting in two cor-
related descriptions. These two descriptions are then modu-
lated by OFDM and sent through two parallel fading chan-
nels. At the receiver, a blind turbo receiver is developed for
joint OFDM demodulation and MDSQ decoding. Transfor-
mation of the extrinsic information of the two descriptions
are exchanged between each other to improve system per-
formance. The transformation is in terms of a transforma-
tion matrix which describes the correlation between the two
descriptions. Another novelty in this paper is the derivation
of a blind detector based on a Bayesian formulation and se-
quential Monte Carlo (SMC) techniques for the differentially
encoded OFDM system. Being soft-input and soft-output in
nature, the proposed SMC detector is capable of exchang-
ing the so-called extrinsic information with the other com-
ponent in the above turbo receiver, successively improving
the overall receiver performance.

For a practical communication system, channel coding is
usually applied to improve the reliability of the system. In this
paper, we also treat a channel-coded OFDM system, where
each stream of the source description is channel encoded and
then OFDM modulated before being sent to the channel. At
the receiver, a novel blind turbo receiver is developed for joint
demodulation, channel decoding, and source decoding.

The rest of this paper is organized as follows. In Section 2,
the diversity of an OFDM system with an MDSQ encoder
is described. In Section 3, the turbo receiver is discussed for

the MDSQ encoded OFDM system. In Section 4, we develop
an SMC algorithm for blind symbol detection of OFDM sys-
tems. A turbo receiver for a channel-coded OFDM system
is derived in Section 5. Simulation results are provided in
Section 6, and a brief summary is given in Section 7.

2. SYSTEM DESCRIPTION

We consider transmitting a continuous source through a
diversity OFDM system. The diversity of an OFDM sys-
tem is made up of two N-subcarrier OFDM systems, sig-
nalling through two parallel frequency-selective fading chan-
nels. Such a parallel channel structure was first introduced in
[9]. A block diagram of the system is shown in Figure 1. A
sequence of continuous sources {S( j)} is encoded by a mul-
tiple description scalar quantizer (MDSQ), resulting in two
sets of equal-length indices {(I1( j), I2( j))}, where j denotes
the sequence order. The detailed MDSQ encoder will be dis-
cussed in Section 2.1. These indices can be further described
in a binary sequence {(x1

n, x2
n)} with the order denoted by n.

The bit interleavers π1 and π2 are used to reduce the influ-
ence of error bursts at the input of the MDSQ decoder. After
the interleaved bits {a1

n}, {a2
n} are modulated by OFDM, we

use the parallel concatenated transmission scheme shown in
Figure 1; that is, one description of the source is transmit-
ted through one channel and the other description is trans-
mitted through another channel. At the receiver, the OFDM
demodulators, which will be discussed in Section 4, generate
soft information, which is then exchanged between the two
OFDM detectors in the form of a priori probabilities of the
information symbols. Next, we will focus on the structure of
the MDSQ encoder and the diversity OFDM system.

2.1. Multiple description scalar quantizer

2.1.1. Multiple description scalar quantizer
for diversity on/off channels

The multiple description scalar quantizer (MDSQ) is a sca-
lar quantizer designed for the channel model illustrated
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Figure 2: Conventional MDSQ in a diversity system.
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Figure 3: MDSQ index assignment for R = 3. A quantized source sample l( j) ∈ {1, 2, . . . ,N} is mapped to a pair of indices (I1( j), I2( j)) ⊂ C
composed of its associated row and column determined by the assignment α(·). (a) Assignment with N = 8. (b) Assignment with N = 22.
(c) Assignment with N = 34. (d) Quantizer.

in Figure 2. The channel model consists of two channels
that connect the source to the destination. Either channel
may be broken or lossless at any time. The encoder of an
MDSQ sends information over each channel at a rate of
R bits/sample. Based on the decoder structure shown in
Figure 2, the objective is to design an MDSQ encoder so as
to minimize the average distortion when both channels are
lossless (center distortion), subject to a constraint on the av-
erage distortion when only one channel is lossless (side dis-
tortion).

Next, we give a brief summary of the MDSQ design
presented in [2]. Denote an index set I = {1, 2, . . . ,M},
where M = 2R. Let C ⊂ I × I and |C| = N ≤ M2.
The MDSQ encoder consists of an N-level quantizer q(·) :
R → {1, 2, . . . ,N} followed by index assignment α(·) :
{1, 2, . . . ,N} → C. Note that N is both the size of C and
the number of the quantization levels. Specifically, a source
sample S( j) is mapped to an index l( j) ∈ {1, 2, . . . ,N} by the
quantizer q(·), which is further mapped to a pair of indices
(I1( j), I2( j)) ⊂ C by the assignment α(·).

Assume a uniform quantizer. The main issue in MDSQ
design is the choice of the set C, and the index assign-
ment α(·). Following [2], an example of good assignment

for R = 3 bits/sample is illustrated in Figure 3. We assume
that the cells of a quantizer are numbered 1, 2, . . . ,N , in in-
creasing order from left to right as shown in Figure 3d. In-
tuitively, with a larger set C, center distortion will be im-
proved at the expense of degraded side distortion. With the
same size of the set C, the center distortion is fixed, and a
diagonal-like assignment is preferred to minimize the side
distortion.

2.1.2. Multiple description scalar quantizer
for diversity fading channels

Although MDSQ was originally designed for diversity era-
sure channels, it provides a possible solution that combines
source coding and channel coding to exploit the diversity
provided by communication systems. Next, we consider the
application of MDSQ techniques in diversity fading chan-
nels.

At the transmitter, we apply the MDSQ encoder as the
conventional (cf. Figure 2). For each continuous source S( j),
a pair of indices (I1( j), I2( j)) is generated by the MDSQ, and

is further mapped to binary bits {x1
n, x2

n} jRn=( j−1)R+1. Recall that
R denotes the bit-length of each description. At the receiver,
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Figure 4: Block diagram of a baseband OFDM system.

instead of using the side decoder and central decoder, a soft
MDSQ decoder is employed for MDSQ over fading channels.
It is assumed that a soft demodulator is available at the re-
ceiver, which generates the a posteriori symbol probability for
each bit xin,

Λi[n] � log
P
(
xin = 1 | Y

)
P
(
xin = 0 | Y

) , (1)

where Y denotes the received signal which is given by (3).
Based on this posterior information, the soft MDSQ decod-
ing rule is given by

(
Î1( j), Î2( j)

) = arg max
(l,m)∈C

P
(
I1( j) = l | {Λ1[n]

}
n

)

· P
(
I2( j) = m | {Λ2[n]

}
n

)
,

(2)

which maximizes the posterior probability of the indices sub-
ject to a code structure constraint, that is, (I1( j), I2( j)) ∈ C.

2.2. Signal model for diversity OFDM system

Consider an OFDM system with N-subcarriers signaling
through a frequency-selective fading channel. The channel
response is assumed to be constant during one symbol du-
ration. The block diagram of such a system is shown in
Figure 4. The diversity OFDM system is just the parallel con-
catenation of combination of two such OFDM systems.

The binary information data {ain}n are grouped and
mapped into multiphase signals, which take values from a
finite alphabet set A = {β1, . . . ,β|A|}. In this paper, QPSK
modulation is employed. The QPSK signals {dik}N−2

k=0 are
differentially encoded to resolve the phase ambiguity in-
herent in any blind receiver, and the output is given by
Zi
k = Zi

k−1d
i
k. These differentially encoded symbols are

then inverse DFT transformed. A guard interval is inserted
to prevent possible interference between OFDM frames.
After pulse shaping and parallel-to-serial conversion, the
signals are transmitted through a frequency-selective fading

channel. At the receiver end, after matched-filtering and re-
moving the guard interval, the sampled received signals
are sent to a DFT block to demultiplex the multicarrier
signals.

For the ith OFDM system with proper cyclic extensions
and proper sample timing, the demultiplexing sample of the
kth subcarrier can be expressed as [10]

Yi
k = Zi

kH
i
k + Vi

k, k = 0, 1, . . . ,N − 1; i = 1, 2, (3)

where Vi
k ∼ Nc(0, σ2) is the i.i.d. complex Gaussian noise

and Hi
k is the channel frequency response at the kth sub-

carrier. Using the fact that Hi
k can be further expressed as a

DFT transformation of the channel time response, the signal
model (3) becomes

Yi
k = Zi

kwH
f (k)hi + Vi

k, k = 0, 1, . . . ,N − 1; i = 1, 2, (4)

where hi = [hi0,hi1, . . . ,hiL−1]T contains the time responses of

all L taps; L
�= �τm∆ f + 1� denotes the maximum number

of resolvable taps, with τm being the maximum multipath
spread and ∆ f being the tone spacing of the carriers; and

w f (k)
�= [1, e−2πk/N , . . . , e−2πk(L−1)/N ]T contains the corre-

sponding DFT coefficients.

3. TURBO RECEIVER

The receiver under consideration is an iterative receiver
structure as shown in Figure 5. It consists of two blind
Bayesian OFDM detectors, which compute the soft infor-
mation for the corresponding descriptions. At the output
of the blind detector, information about one description is
transferred to the other based on the existence of correla-
tion between the two descriptions. Such information trans-
fer is then repeated between the two blind detectors to im-
prove the system performance. Next, we will focus on the
operation on the first description to illustrate the iterative
procedure.
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Figure 5: Turbo decoding for multiple description over a diversity OFDM system; Πi and Π−1
i denote the interleaver and deinterleaver,

respectively, for the ith description.

3.1. Blind Bayesian OFDM detector

Denote Y1 � {Y 1
0 ,Y 1

1 , . . . ,Y 1
N−1} as the received signals for

the first description. The blind Bayesian OFDM detector for
the first description computes the a posteriori probabilities of
the information bits {a1

n}n,

Λ1[n]
�= log

P
(
a1
n = 1 | Y1

)
P
(
a1
n = 0 | Y1

) . (5)

The design of such a blind Bayesian detector will be discussed
later in Section 4. For now, we assume the Bayesian detector
provides us such soft information, and focus on the structure
of the turbo receiver.

The a posteriori information delivered by the blind detec-
tor can be further expressed as

Λ1[n] = log
P
[

Y1 | a1
n = 1

]
P
[

Y1 | a1
n = 0

]
︸ ︷︷ ︸

λ1[n]

+ log
P
[
a1
n = 1

]
P
[
a1
n = 0

]
︸ ︷︷ ︸

λ
p
21[n]

. (6)

The second term in (6), denoted by λ
p
21[n], represents the

a priori log-likelihood ratio (LLR) of the bit a1
n fed from

detector 2. The superscript p indicates the quantity ob-
tained from the previous iteration. The first term in (6),
denoted by λ1[n], represents the extrinsic information de-
livered by detector 1, based on the received signals Y1, the
structure of signal model (4), and the a priori informa-
tion about all other bits {a1

l }l	=n. The extrinsic information
{λ1[n]} is transformed into a priori information {λp12[n]} for
bits {a2

n}n. This information transformation procedure is de-
scribed next.

3.2. Information transformation

Assume that {ain}n is mapped to {xin}n after passing through
the ith deinterleaver Π−1

i , with xin � aiπi(n). To transfer the
information from detector 1 to detector 2, the following steps
are required.

(1) Compute the bit probability of the deinterleaved bits

P
(
x1
n = 1

) = eλ1[π1(n)]

1 + eλ1[π1(n)]
. (7)

(2) Compute the probability distribution for the first in-
dex I1 based on the deinterleaved bit probabilities

P
(
I1( j) = l

) = R∏
k=1

P
(
x1

( j−1)R+k = bk(l)
)
, l = 1, . . . , |I|,

(8)

where {bk(l), k = 1, . . . ,R} is the binary representa-
tion for the index l ∈ I. Recall that R denotes the bit
length of each description.

(3) Compute the probability distribution for the second
index I2 according to

P
(
I2( j) = m

) = |I|∑
l=1

P
(
I2( j) = m | I1( j) = l

)

· P(I1( j) = l
)
, m = 1, . . . , |I|.

(9)

(4) Compute the bit probability that is associated with in-
dex I2( j),

P
(
x2

( j−1)R+k = 1
) = ∑

m:bi(m)=1

P
(
I2( j) = m

)
. (10)

(5) Compute the log likelihood of interleaved code bit

λ12
[
π2(n)

] = log
P
(
x2
n = 1

)
1− P

(
x2
n = 1

) . (11)

It is important to mention here that the key step is the calcu-
lation of the conditional probability P(I2( j) = m | I1( j) = l)
in (9). Hence, the proposed turbo receiver exploits the cor-
relation between the two descriptions, which is measured by
the conditional probabilities in (9). From the discussion in
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the previous section, these conditional probabilities can be
easily obtained from the index assignment rule α(·) as shown
in Figure 3.

4. BLIND BAYESIAN OFDM DETECTOR

4.1. Problem statement

Denote Yi � {Yi
0,Yi

1, . . . ,Yi
N−1}. The Bayesian OFDM re-

ceiver estimates the a posteriori probabilities of the informa-
tion symbols

P
(
dik = βl | Yi

)
, βl ∈A; k = 1, . . . ,N − 1, (12)

based on the received signals Yi and the a priori symbol prob-
abilities of {dik}N−1

k=1 , without knowing the channel response
hi. Assume the bit ain is mapped to symbol diκ(n). Based on
this symbol a posteriori probability, the LLR of the code bit
as required in (5) can be computed by

Λi[n] � log
P
(
ain = 1 | Yi

)
P
(
ain = 0 | Yi

)

= log

∑
βl∈A:diκ(n)=βl ,ain=1P

(
diκ(n) = βl | Yi

)
∑

βl∈A:diκ(n)=βl ,ain=0P
(
dκ(n) = βl | Yi

) .
(13)

Assume that the unknown quantities hi, Zi � {Zi
k}N−1

k=1
are independent of each other and have a priori distribution
p(hi) and p(Zi), respectively. The direct computation of (12)
is given by

P
(
dik = al | Yi

)∝ ∑
Zi:dik=al

∫
p
(

Yi | hi, Zi
)
p
(

hi
)
p
(

Zi
)
dhi,

(14)

where p(Yi | hi, Zi) is a Gaussian density function [cf.
(4)]. Clearly, the computation in (14) involves a very high-
dimensional integration which is certainly infeasible in prac-
tice. Therefore, we resort to the sequential Monte Carlo
method for numerical evaluation of the above multidimen-
sional integration.

4.2. SMC-based blind MAP detector

Sequential Monte Carlo (SMC) is a family of methodologies
that use Monte Carlo simulations to efficiently estimate the
a posteriori distributions of the unknown states in a dynamic
system [11, 12, 13]. In [14], an SMC-based blind MAP sym-
bol detection algorithm for OFDM systems is proposed. This
algorithm is summarized as follows.

(0) Initialization. Draw the initial samples of the chan-

nel vector from h
( j)
−1 ∼ Nc(0,Σ−1), for j = 1, . . . ,m.

All importance weights are initialized as w
( j)
−1 = 1,

j = 1, . . . ,m.

The following steps are implemented at the kth recursion
(k = 0, . . . ,N − 1) to update each weighted sample. For
j = 1, . . . ,m, the following hold.

(1) For each ai ∈A, compute the following quantities:

µ
( j)
k,i = aiwH

f (k)h
( j)
k−1,

σ
2( j)
k,i = σ2 + wH

f (k)Σ
( j)
k−1w f (k),

α
( j)
k,i =

1

πσ
2( j)
k,i

exp

{
−
∥∥Yk − µ

( j)
k,i

∥∥2

σ
2( j)
k,i

}
· P(dk = aiZ

( j)∗
k−1

)
.

(15)

(2) Impute the symbol Zk. Draw Z
( j)
k from the set A with

probability

P
(
Zk = ai | Z

( j)
k−1, Yk

)∝ α
( j)
k,i , ai ∈A. (16)

(3) Compute the importance weight:

w
( j)
k = w

( j)
k−1 ·

∑
ai∈A

α
( j)
k,i . (17)

(4) Update the a posteriori mean and covariance of the

channel. If the imputed sample Z
( j)
k = ai in step (2),

set µ
( j)
k = µ

( j)
k,i , σ

2( j)
k = σ

2( j)
k,i ; and update

h
( j)
k = h

( j)
k−1 +

Yk − µ
( j)
k

σ
2( j)
k

ξ,

Σ
( j)
k = Σ

( j)
k−1 −

1

σ
2( j)
k

ξξT ,

(18)

with

ξ � Σ
( j)
k−1w f (k)Z

( j)∗
k . (19)

(5) Perform resampling when k is a multiple of k0, where
k0 is the resampling interval.

4.3. APP detection

The above sampling procedure generates a set of random

samples {(Z
( j)
k ,w

( j)
k )}mj=1, properly weighted with respect to

the distribution p(Zk | Yk). Based on these samples, an on-
line estimation and a delayed-weight estimation can be ob-
tained straightforwardly as

P
(
dk = βl | Yk

) ∼= 1
Wk

m∑
j=1

1
(
Z

( j)
k+1Z

( j)∗
k = βl

)
w

( j)
k ,

P
(
dk = βl | Yk+δ

) ∼= 1
Wk+δ

m∑
j=1

1
(
Z

( j)
k+1Z

( j)∗
k = βl

)
w

( j)
k+δ ,

(20)
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Figure 6: MDSQ over a channel-coded diversity OFDM system.

where Wk � ∑
j w

( j)
k , and 1(·) denotes the indicator func-

tion. Note that both of these two estimates are only approx-
imations to the a posteriori symbol probability P(dk = βl |
YN−1).

We next propose a novel APP estimator, where the chan-
nel is estimated as a mixture vector, based on which the sym-
bol APPs are then computed. Specifically, we have

p
(

h | YN−1
) = 1

WN−1

m∑
j=1

p
(

h | YN−1, Z
( j)
N−1

)
︸ ︷︷ ︸

Nc(h
( j)
N−1,Σ

( j)
N−1)

·w( j)
N−1. (21)

The symbol a posteriori probability is then given by

P
(
dk = βl | YN−1

)
=
∫
P
(
dk = βl | YN−1, h

)
p
(

h | YN−1
)
dh

=
∫
P
(
dk = βl | YN−1, h

)

×

 1
WN−1

m∑
j=1

p
(

h | YN−1, Z
( j)
N−1

) ·w( j)
N−1


dh

= 1
WN−1

m∑
j=1

w
( j)
N−1 ·

[∫
P
(
dk = βl | YN−1, h

)

· p(h | YN−1, Z
( j)
N−1

)
dh
]

∝ 1
WN−1

m∑
j=1

w
( j)
N−1

·

P(dk = βl

) ∑
ZkZ

∗
k−1=βl

∫
P
(

Yk
k−1 | Zk

k−1, h
)

· p(h | YN−1, Z
( j)
N−1

)
dh


,

(22)

where Yk
k−1 � [Yk−1,Yk]T, Zk

k−1 � [Zk−1,Zk]T. Note that the
integral within (22) is an integral of a Gaussian pdf with re-
spect to another Gaussian pdf. The resulting distribution is

still Gaussian, that is,

∫
P
(

Yk
k−1 | Zk

k−1, h
) · p(h | YN−1, Z

( j)
N−1

)
dh

∼ Nc
(
µk, j

(
Zk
k−1

)
,Σk, j

(
Zk
k−1

))
,

(23)

with mean and variance given, respectively, by

µk, j

(
Zk
k−1

)
=
[

µk, j
(
Zk
)

µk−1, j
(
Zk−1

)] , with µk, j(x) � xwH
k h

( j)
N−1,

(24)

Σk, j
(

Zk
k−1

)
=
[
σ2
k, j 0
0 σ2

k−1, j

]
, with σ2

k, j � wH
k Σ

( j)
N−1wk + σ2.

(25)

Equations (24) and (25) follow from the fact that condi-
tioned on the channel h, Yk and Yk+1 are independent. The
symbol a posteriori probability can then be computed in a
close form as

P
(
dk = βl | YN−1

)
≈

m∑
j=1

∑
ZkZ

∗
k−1=βl

w
( j)
N

· P
(
dk = βl

)
σ2
k, j + σ2

k−1, j

exp

{
−
∣∣Yk − µk, j

(
Zk
)∣∣2

σ2
k, j

−
∣∣Yk−1 − µk−1, j

(
Zk−1

)∣∣2

σ2
k−1, j

}
.

(26)

5. CHANNEL-CODED SYSTEMS

Although the MDSQ introduces some redundancy to the sys-
tem, it has limited capability for error correction. In order to
improve the system reliability, we next consider introducing
channel coding to the proposed MDSQ system.

A block diagram of an MDSQ system over a channel-
coded diversity OFDM system is shown in Figure 6. A stream
of source signal {S( j)} j is MDSQ encoded, resulting in two
sets of indices {I1( j), I2( j)} j . Binary descriptions of these
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Figure 7: Turbo decoding for MDSQ over a channel-coded diversity OFDM system.

indices, {b1
m, b2

m}m, are then channel encoded and OFDM
modulated. There are two sets of bit interleavers in the sys-
tem: one set, named {Πi,1}2

i=1, is applied between the MDSQ
encoder and channel encoder; the other set, named {Πi,2}2

i=1,
is applied between the channel encoder and OFDM modula-
tor.

At the receiver, a novel blind iterative receiver is devel-
oped for joint demodulation, channel decoding, and MDSQ
decoding. The receiver structure, as shown in Figure 7, con-
sists of two loops of iterative operations. For each descrip-
tion, there is an inner loop (iterative procedure) for joint
OFDM demodulation and channel decoding. At the outer
loop, soft information of the coded bits is exchanged between
the two inner loops to exploit the correlations between the
two descriptions. Next, we discuss the operation of both the
inner loop and the outer loop.

Inner loop: joint OFDM demodulation
and channel decoding

We consider a subsystem of the original MDSQ system,
which consists of the channel coding and OFDM modula-
tion for only one source description. Since the combina-
tion of a differential encoder and OFDM system acts as an
inner encoder, the above subsystem is a typical serial con-
catenated code, and an iterative (turbo) receiver can be de-
signed for such a system, which is denoted as the inner loop
part in Figure 7. It consists of two stages: the SMC OFDM
detector developed in the previous sections, followed by a
MAP channel decoder [15]. The two stages are separated
by a deinterleaver and an interleaver. Note that both the
SMC OFDM detector and the MAP channel decoder can in-
corporate the a priori probabilities and output a posteriori
probabilities of the code bits {ain}n, that is, they are soft-
input and soft-output algorithms. Based on the turbo prin-
ciple, extrinsic information of the channel-coded bits can be

exchanged iteratively between the SMC OFDM detector and
the MAP channel decoder to improve the performance of the
subsystem.

Outer loop: exploiting the correlation
between the two descriptions

In Section 3, an iterative receiver was proposed for joint
MDSQ decoding and OFDM demodulation. Extrinsic in-
formation from one description is transformed into the
soft information for the other description, and is fed into
the OFDM demodulator as the a priori information. For
channel-coded MDSQ systems, similar approaches can be
considered to exploit the correlation between the two de-
scriptions. As shown in Figure 7, the MAP channel decoder
incorporates the a priori information for the channel-coded
bits, and outputs the a posteriori probability of both channel-
coded bits and uncoded bits. On the other hand, the OFDM
detector incorporates and produces as output only the soft
information for the channel-coded bits. Taking into account
that only uncoded bits will be considered in the MDSQ
decoder, the inner loop, when considered as one unit op-
eration, is a SISO algorithm that incorporates the a priori
information of the channel-coded bits, and produces the
output a posteriori information of the uncoded bits. Al-
together, the two inner loops constitute a turbo structure
in parallel, and the transferred soft information provided
by the information transformation block (IF-T) can be ex-
changed iteratively between the two inner loops. This itera-
tive procedure is the outer loop of the system, which aims
at further improving the system performance by exploiting
the correlation between the two descriptions. It is shown
in Section 3 that this correlation can be measured by the
probability transformation matrix, and adopted by the IF-
T block. For the outer loop, the soft output of the inner
loop can be used directly as the a priori information for
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the IF-T; the soft output of IF-T, however, must be trans-
formed before being fed into the inner loop as a priori in-
formation. Specifically, a soft channel encoder by the BCJR
algorithm [15] is required to transform the soft information
of the uncoded bits into the soft information of the coded
bits.

6. SIMULATION RESULTS

In this section, we provide computer simulation results to
illustrate the performance of the turbo receiver for MDSQ
over diversity OFDM systems. In the simulations, the con-
tinuous alphabet source is assumed to be uniformly dis-
tributed on (−1, 1), and a uniform quantizer is applied. The
source range is divided into 8, 22, and 34 intervals. Two in-
dices are assigned to describe the source according the in-
dex assignment α(·) as shown in Figure 3, where each in-
dex is described with R = 3 bits. Assume the channel
bandwidth for each OFDM system is divided into N =
128 subchannels. Guard interval is long enough to pro-
tect the OFDM blocks from intersymbol interference due
to the delay spread. The frequency-selective fading chan-
nels are assumed to be uncorrelated. All L = 5 taps of
the fading channel are Rayleigh distributed with the same
variance, normalized such that E{∑L−1

n=0 ‖hn‖2} = 1, and
have delays τl = l/∆ f , l = 0, 1, . . . ,L − 1. For channel-
coded systems, a rate-1/2 constraint length-5 convolutional
code (with generators 23 and 35 in octal notation) is used.
The interleavers are generated randomly and fixed for all
simulations.

The blind SMC detector implements the algorithm de-
scribed in Section 4.2. The variance of the noise Vk in (24) is
assumed known at the detector with values specified by the
given SNR. The SMC algorithm draws m = 50 Monte Carlo
samples at every recursion with Σ−1 set to 1000IL. Two quali-
ties were used in the simulation to measure the performance
of the SMC detector: bit error rate (BER) and word error rate
(WER). Here, the bit error rate denotes the information bit
error rate and word error rate denotes the error rate of the
whole data block transferred during one symbol duration.
On the other hand, mean square error (MSE) will be used to
measure the performance of the whole system.

Performance of the SMC detector

The blind SMC detector, as a SISO algorithm for OFDM
demodulation, is an important component of the proposed
turbo receiver. Next, we illustrate the performance of the
blind SMC detector. In Figure 8, the BER and WER perfor-
mance is plotted. In the same figure, we also plot the known
channel lower bound, where the fading coefficients are as-
sumed to be perfectly known to the receiver and a MAP re-
ceiver is employed to compute the a posteriori symbol prob-
abilities.

Although the SMC detector generates soft outputs in
terms of the symbol a posteriori probabilities, only hard de-
cisions are used in an uncoded system. However in a coded
system, the channel decoder, such as a MAP decoder, requires
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Figure 8: The (a) BER and (b) WER performance in an uncoded
OFDM system.

soft information provided by the demodulator. Next, we
examine the accurateness of the soft output provided by
the SMC detector in a coded OFDM scenario. In Figure 9,
the BER and WER performance for the information bits
is plotted. In the same figure, the known channel lower
bound is also plotted. The MAP convolutional decoder is
employed in conjunction with the different detection algo-
rithms. It is seen from Figure 9 that the three SMC detec-
tor yield different performance after the MAP decoder be-
cause of the different quality of the soft information they
provide. Specifically, the APP detector achieves the best per-
formance.

Performance of turbo receiver for MDSQ system

The performance of the turbo receiver is shown in Figures 10,
11, and 12 for MDSQ systems with assignments 8, 22, and 34,
respectively, as in Figure 3. The SMC blind detector is em-
ployed. In each figure, the BER, WER, and MSE are plotted.
In the same figure, the quantization error bound s2/12, where
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Figure 9: The (a) BER and (b) WER performance in a channel-
coded OFDM system.

s denote the quantization interval, is also plotted in a dotted
line. It is seen that the BER and WER performance is signifi-
cantly improved at the second iteration, that is, 15 dB better
for N = 8, 4 dB better for N = 22 and 2 dB better for N = 34.
However, no significant gain is achieved by more iterations.
Note that the MSEs of the turbo receivers are very close to
the quantization error bound at high SNR. The quantiza-
tion error bound (5.2× 10−3) for N = 8 is achieved at about
15 dB. However, much lower quantization error bounds are
achieved at higher SNR by the turbo receiver with N = 22
and 34, that is, 6.9 × 10−4 for N = 22 at SNR = 25 dB and
2.8 × 10−4 for N = 34 at SNR = 30 dB. Moreover, due to
the different quantization error bounds determined by N and
the BER and the WER performance achieved by the turbo re-
ceiver, different MDSQ scheme should be chosen at different
SNRs to minimize the MSE. For example, the MDSQ with
N = 8 is superior to other assignments below SNR = 10 dB.
However, at SNR = 20 dB, the MDSQ scheme with N = 22
is the best choice among the three assignments considered in
this paper.
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Figure 10: Performance of iterative receiver for the MDSQ system
with N = 8. (a) BER. (b) WER. (c) MSE.
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Figure 11: Performance of iterative receiver for the MDSQ system
with N = 22. (a) BER. (b) WER. (c) MSE.
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Figure 12: Performance of iterative receiver for the MDSQ system
with N = 34. (a) BER. (b) WER. (c) MSE.
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Figure 13: Performance of iterative receiver for channel coded MDSQ system, with 1 iteration for inner loop and 4 iterations for outer loop.
(a) MSE. (b) BER of coded bits. (c) BER of information bits. (d) WER of coded bits. (e) WER of information bits.

Performance of turbo receiver for channel-coded
MDSQ system

Finally, we consider the performance of the channel-coded
MDSQ system discussed in Section 5. Performance is
compared for systems with different iterative profiles.
Specifically, the BER, WER, and MSE performance for the
information bits and coded bits are plotted in Figures 13
and 14 for the 4-inner-loop and 1-outer-loop turbo receivers
and the 3-inner-loop and 2-outer-loop turbo receivers,
respectively. In the simulation, the source range is divided
into 22 intervals as shown in Figure 3b. It is seen that the
proposed turbo receiver structure can successively improve

the receiver performance through iterative processing.
Moreover, the quantization error bounds are achieved at
very low SNR, that is, 10 dB.

7. CONCLUSIONS

In this paper, we have proposed a blind turbo receiver for
transmitting MDSQ-coded sources over frequency-selective
fading channels. Transformation of the extrinsic informa-
tion of the two descriptions are exchanged between each
other to improve the system performance. A novel blind APP
OFDM detector, which computes the a posteriori symbol
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Figure 14: Performance of iterative receiver for channel-coded MDSQ system, with 2 iterations for inner loop and 3 iterations for outer
loop. (a) MSE. (b) BER of coded bits. (c) BER of information bits. (d) WER of coded bits. (e) WER of information bits.

probabilities, is developed using sequential Monte Carlo
(SMC) techniques. Being soft-input and soft-output in na-
ture, the proposed SMC detector is capable of exchanging
the so-called extrinsic information with other component
in the above turbo receiver, and successively improving the
overall receiver performance. Finally, we have also treated
channel-coded systems, and a novel blind turbo receiver is
developed for joint demodulation, channel decoding, and
MDSQ decoding. Simulation results have demonstrated the
effectiveness of the proposed techniques.
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The optimum and many suboptimum iterative soft-input soft-output (SISO) multiuser detectors require a priori information
about the multiuser system, such as the users’ transmitted signature waveforms, relative delays, as well as the channel impulse
response. In this paper, we employ adaptive algorithms in the SISO multiuser detector in order to avoid the need for this a priori
information. First, we derive the optimum SISO parallel decision-feedback detector for asynchronous coded DS-CDMA systems.
Then, we propose two adaptive versions of this SISO detector, which are based on the normalized least mean square (NLMS)
and recursive least squares (RLS) algorithms. Our SISO adaptive detectors effectively exploit the a priori information of coded
symbols, whose soft inputs are obtained from a bank of single-user decoders. Furthermore, we consider how to select practical
finite feedforward and feedback filter lengths to obtain a good tradeoff between the performance and computational complexity
of the receiver.

Keywords and phrases: soft-input soft-output multiuser detection, adaptive multiuser detection, parallel decision-feedback de-
tection, adaptive soft-input soft-output parallel decision-feedback detection, asynchronous coded CDMA systems.

1. INTRODUCTION

Iterative soft-input soft-output (SISO) multiuser receivers
for coded multiuser systems have received widespread atten-
tion since they can provide near single-user performance in
a system with multiple-access interference (MAI) by itera-
tively combining multiuser detection and single-user decod-
ing. The optimum SISO multiuser detector employs either
the cross-entropy minimization [1] or the maximum a pos-
teriori (MAP) algorithm [2]. The computational complex-
ity of these techniques is exponentially proportional to the

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

number of users which can be prohibitive for large systems.
Therefore, much work has been done on reduced-complexity
suboptimum SISO multiuser detectors.

SISO multiuser detection based on the reduced-com-
plexity MAP algorithms which are applied to the trellis of the
multiple-access channel is proposed in [3, 4]. The simplest
SISO multiuser detector is the soft interference canceller pro-
posed in [5, 6], which has a linear computational complexity
in terms of the number of users. However, it slowly converges
to the performance of the single-user system. Linear itera-
tive SISO multiuser detectors, which employ a decorrelator
[7] or a minimum mean square error (MMSE) filter [8] on
the output of the soft interference cancellation, significantly
improve the system performance. Moreover, their compu-
tational complexity is only a cubic function of the number

mailto:weizhang@site.uottawa.ca
mailto:damours@site.uottawa.ca
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Figure 1: A general coded DS-CDMA system with an iterative receiver (I and D denote interleavers and deinterleavers, respectively).

of users. In [9, 10], nonlinear MMSE-based SISO decision-
feedback detectors are investigated.

The above optimum and suboptimum SISO multiuser
detectors require accurate a priori information about the
multiuser system, such as all users’ received signature wave-
forms which are functions of their transmitted signature
waveforms, relative delays, and the channel impulse re-
sponse. In practical situations, this information may not be
easily obtainable for time-varying fading channels.

Fortunately, if the system parameters are constant or
slowly varying, adaptive detectors (non-SISO) can success-
fully track these parameters from the received signal [11,
12, 13, 14, 15]. In [16], an adaptive SISO parallel decision-
feedback detector for synchronous direct-sequence code-
division multiple-access (DS-CDMA) systems with short
spreading sequences is presented. By employing an approxi-
mate least squares algorithm and soft symbol estimates, the
detector exploits the joint statistics of soft symbol estimates
and transmitted symbols.

In this paper, we use adaptive algorithms in the iterative
SISO parallel decision-feedback detector (PDFD) for asyn-
chronous coded DS-CDMA systems in order to avoid the
need for the a priori information about system parameters,
such as multiple users’ spreading codes and relative delays
between users. First, we derive the optimum SISO paral-
lel decision-feedback detector assuming the receiver knows
the transmitted signature waveforms and relative delays be-
tween all the users. Then, we propose two adaptive versions
of this SISO detector, which employ the normalized least
mean square (NLMS) and recursive least squares (RLS) al-
gorithms to estimate the filter coefficients of the detector. All
users are assumed to employ short spreading codes. A train-
ing sequence is required for each user. Our adaptive SISO de-
tectors effectively exploit the a priori information of coded
symbols, which is obtained from the soft outputs of a bank
of single-user decoders, to further improve their convergence
performance.

Furthermore, for adaptive implementation of the SISO
PDFD for asynchronous DS-CDMA systems, we select prac-
tical finite feedforward and feedback filter lengths to obtain
a good tradeoff between the system performance and com-
putational complexity of the receiver. We employ a feedfor-
ward filter which covers a two-symbol duration for each user
and we consider several options for the feedback filter length.

Monte-Carlo simulation results for these adaptive SISO de-
tectors are presented and compared.

The outline of the rest of this paper is as follows. A system
model of asynchronous coded DS-CDMA systems is intro-
duced in Section 2. The optimum SISO PDFD with a general
processing window for asynchronous coded DS-CDMA sys-
tems is derived in Section 3. Adaptive SISO PDFDs are pro-
posed in Section 4, which are based on the NLMS and RLS al-
gorithms. Monte-Carlo simulation results are presented and
compared in Section 5. Finally in Section 6, the conclusions
are given.

2. SYSTEM MODEL AND NOTATION

Throughout the paper, matrices and vectors are denoted as
boldface uppercases and lowercases, respectively. Notations
(·)∗, (·)H , and (·)T denote the complex conjugate, Hermi-
tian transpose, and transpose, respectively.

A general coded DS-CDMA system with an iterative re-
ceiver is shown in Figure 1. There are K active users in
the system. The information bits of each user are first en-
coded, then interleaved, modulated, and spread before they
are transmitted over the channel. The iterative receiver con-
sists of two parts, an adaptive soft-input soft-output mul-
tiuser detector and a bank of SISO single-user decoders,
which are separated by deinterleavers and interleavers. These
two parts cooperate iteratively by transferring updated ex-
trinsic soft information of coded symbols between them.

In our paper, we consider an asynchronous coded DS-
CDMA system over the additive white Gaussian noise
(AWGN) channel. The equivalent baseband received mul-
tiuser signal is

r(t) =
K∑
k=1

Nb∑
i=1

bk(i)sk
(
t − iT − τk

)
+ n(t), (1)

where K is the number of active users, Nb is the number of
symbols transmitted by each user, bk(i) is the ith coded sym-
bol of the kth user, sk(t) is its transmitted signature wave-
form, τk and T are the delay of user k and the symbol inter-
val, respectively, and n(t) is an additive white Gaussian noise
process with double-sided power spectral density N0/2. Each
user’s information bits are encoded and then BPSK modu-
lated, that is, bk(i) ∈ {+1,−1}.
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Sk =

τk/Tc

N

0

(N − τk/Tc) N(Nb + 1)×Nb

0

. . .

Figure 2: System signature matrix Sk of user k, where the nonzero
part of each column is the signature vector sk of user k.

For simple implementation, we consider a chip-synchro-
nous and symbol-asynchronous DS-CDMA system. All us-
ers’ delays are uniformly distributed in [0,T] and are mul-
tiples of Tc, which is the chip interval. In the receiver, first
we employ a chip-matched filter on the received signal r(t)
and then sample its output at frequency 1/Tc. If the system
is chip-asynchronous, we can oversample the output of the
chip-matched filter and design a fractionally spaced feedfor-
ward filter instead. Without loss of generality and for sim-
plicity of notation, we assume the delays of multiple users
satisfy the following inequality:

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τK ≤ T. (2)

The symbol vector consisting of the transmitted symbols
of all users is denoted as

b =
[

bT
1 , . . . , bT

k , . . . , bT
K

]T
KNb×1

, (3)

where

bk =
[
bk(1), bk(2), . . . , bk

(
Nb
)]T

. (4)

The received signal vector r at the output of the chip-
matched filter during the whole symbol transmission interval
can be expressed as follows:

r = Sb + n, (5)

where S is the system signature matrix and can be expressed
as

S = [S1, . . . , Sk, . . . , SK
]
N(Nb+1)×KNb

. (6)

The construction of Sk in (6) is shown in Figure 2, where the
nonzero part of each column is the signature vector sk of user
k and N is the number of chips per coded symbol. The vec-
tor n in (5) is an N(Nb + 1) × 1 column vector which repre-
sents the output noise component of the chip-matched filter.
It has zero mean and covariance matrix σ2

nI, where σ2
n is the

variance of the output noise component.

3. OPTIMUM SISO PDFD FOR ASYNCHRONOUS
DS-CDMA SYSTEMS

In general, the optimum SISO PDFD filters for asynchronous
DS-CDMA systems have infinite lengths [17]. For imple-
mentation purposes, we consider finite-length feedforward
and feedback filters. Furthermore, these filters are suitable
for use in adaptive applications. The use of these filters in our
adaptive detectors will be discussed in detail in Section 4.

In the receiver, we assume that the processing window
length is Np, which is measured in chips and is much less
than Nb × N . In each processing window, the received sig-
nal vector is denoted as rNp×1, which consists of Np rows of r
falling to this processing window. The windowed system sig-
nature matrix SNp×KNb and noise vector nNp×1 consist of Np

corresponding rows of S and n, respectively. Therefore, we
have the following equation:

r = Sb + n. (7)

We can write b as the following sum:

b = bU + bD, (8)

where bU consists of the symbols which are not fedback and
its other elements are zeros. The nonzero elements of bD con-
sist of the fedback symbols. They have no common elements.
In the same way by which we construct bU and bD, we extract
columns of S and construct the corresponding signature ma-
trices SU and SD. Therefore, the windowed received signal
vector r can also be expressed as

r = SUbU + SDbD + n. (9)

The feedforward filter of user k has Np taps and is de-
noted by a column vector m f k. The feedback filter mbk of
user k has the size KNb×1, whose nonzero elements are cor-
responding to fedback symbols. That is, its effective number
of taps is determined by the number of fedback symbols. The
optimum filters satisfy the following minimum mean square
error (MMSE) criterion:

min
m f k ,mbk

E
[
bk(i)−mH

f k · r−mH
bk · b̂D

]2
. (10)

Nonzero elements of b̂D are soft symbol estimates of those el-
ements of bD, respectively. We will introduce the soft symbol
estimate of each coded symbol in the following.

The soft inputs of a SISO multiuser detector, {λin[bk( j)],
1 ≤ k ≤ K , 1 ≤ j ≤ Nb}, are extrinsic log-likelihood ratios
(LLRs) of {bk( j)} provided by a bank of K single-user de-
coders. Based on these inputs, we can obtain the soft symbol
estimate of {bk( j)}:

b̂k( j)=E
[
bk( j)

∣∣λin
[
bk( j)

]] = tanh
(
λin
[
bk( j)

]
2

)
. (11)

Furthermore, we have the following a priori statistics (12) for
nonzero elements of bU and bD. For fedback symbols, their
mean values are their soft symbol estimates, while nonfed-
back symbols have zero mean. Note that bk(i) in (10) belongs
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to nonfedback symbols. Denote u and v as one of the nonzero
elements of bU and bD, respectively. The soft symbol estimate
of v is denoted as v̂. Thus, we have

E[u] = 0,

E
[
u2] = 1,

E[v] = v̂,

E
[
v2] = 1− (v̂)2.

(12)

We also assume that all users’ transmitted symbols are inde-
pendent of one another and of the background noise vector
n as well.

Employing the above statistics about the coded symbols,
we can get the optimum feedforward and feedback filters of
user k which satisfy the MMSE criterion in (10):

m f k =
(

RU + RD + σ2
nI
)−1 · sbk(i), (13)

mbk = −S
H
D ·m f k, (14)

where

RU = SUS
H
U ,

RD = SD

⌊
I− diag

(
b̂Db̂H

D

)⌋
S
H
D ,

(15)

and sbk(i) is a one column of SU , whose column index is the
same as the row index of bk(i) in bU . The feedforward filter
in (13) is actually a linear MMSE filter which suppresses the
interference from non-fedback symbols, as well as the resid-
ual interference after canceling the fedback symbols and the
background Gaussian noise.

From (15), we can see that the optimum feedforward and
feedback filters require the knowledge of all users’ signature
vectors and delays. In order to avoid the need for this infor-
mation, we can adaptively implement the SISO PDFD, which
will be discussed in the next section.

4. ADAPTIVE SISO PDFD FOR ASYNCHRONOUS
DS-CDMA SYSTEMS

In this section, we assume that both short spreading codes
and delays of all users are unknown to the receiver. We design
and employ adaptive SISO PDFDs to track these parameters
from the received signal directly.

It is well known that the asynchronous system perfor-
mance can be improved by using detection filters with an in-
creased number of taps. However, increasing the number of
taps increases the computational complexity of the detector.
Moreover, this will have an adverse effect on the convergence
speed. Therefore, we need to select suitable filter lengths to
achieve a good tradeoff among the system performance, de-
tector complexity, and system overhead.

In the parallel decision-feedback detector, the feedfor-
ward and feedback filters cooperate to suppress the multiple-
access interference. Specifically, the feedback filter tries to
cancel some interfering symbols, while the feedforward filter

τ1

τ2

τK

b1(i− 1)

b2(i− 1)

The processing window for the ith symbol

b1(i) b1(i + 1)

b2(i) b2(i + 1)

bK (i− 1) bK (i) bK (i + 1)

...

Figure 3: An asynchronous system.

suppresses the remaining MAI, as well as the residual inter-
ference due to imperfect cancellation by the feedback filter
and the background Gaussian noise. Therefore, if the feed-
back filter effectively cancels most of the interference caused
by the interfering symbols, the remaining interference to be
suppressed by the feedforward filter is reduced.

On each iteration except for the first one, the SISO PDFD
can obtain soft symbol estimates of all symbols from soft in-
puts. Thus, we have both causal and noncausal soft symbol
decisions of interfering symbols for the interested symbol.
We may cancel part or all of them by the feedback filter.

In this paper, we employ a feedforward filter which covers
a two-symbol duration and consider several options for the
feedback filter length. The length of the observation interval
is 2T , which is the minimum length such that one complete
symbol of each user falls in this interval regardless of its rel-
ative delay. Figure 3 shows the processing window of the de-
tector in the ith signaling interval. The output vector r(i) of
the chip-matched filter in this processing window is

r(i) = [P− P0 P+]

b(i− 1)

b(i)
b(i + 1)


 + n(i), (16)

where b(i) = [b1(i) b2(i) · · · bK (i)]T and n(i) is a Gaus-
sian random vector with zero mean and covariance matrix
σ2
nI(2N×2N). We define the punctured signature vectors of user
k as

p−k =
[(

srk
)H

0H
]H

(2N×1)
,

p0
k =

[
0H

(1×Nr
k ) sHk 0H

(1×Nl
k)

]H
(2N×1)

,

p+
k =

[
0H

(
slk
)H]H

(2N×1)
,

(17)

where 0 is a column vector. slk and srk are denoted in Figure 4
and are parts of sk:

sk =
[(

slk
)H (

srk
)H]H. (18)
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Figure 4: Punctured signatures of the kth user in the asynchronous
system.

The matrices P−, P0, and P+ in (16) are constructed as fol-
lows:

P− = [p−1 p−2 · · · p−K
]
,

P0 = [p0
1 p0

2 · · · p0
K

]
,

P+ = [p+
1 p+

2 · · · p+
K

]
.

(19)

Thus, when multiple users’ delays are unknown to the re-
ceiver, for the symbol of interest bk(i) of user k, it has at
most (3K − 1) interfering symbols. For implementation of
the adaptive SISO multiuser detector in Figure 1, we consider
three adaptive SISO PDFDs with the same feedforward filter
length, that is, 2N taps. The feedback filter of the first de-
tector (labeled as detector1) has (K − 1) taps which tries to
cancel the current (K − 1) interfering symbols for the de-
sired symbol. Detector2 has a feedback filter with (2K − 1)
taps which tries to cancel the current (K − 1) and previous
K interfering symbols. The feedback filter of detector3 has
(3K − 1) taps and tries to cancel all possible previous, cur-
rent, and future interfering symbols.

In the following, we employ the NLMS and RLS algo-
rithms in adaptive SISO PDFDs to update the feedforward
filter m f k and feedback filter mbk. Moreover, the a priori in-
formation of coded symbols is employed efficiently to im-
prove the performance of the adaptive detector. The adaptive
SISO PDFD requires only a training sequence for each user
to estimate all filter coefficients.

The adaptive detector employing the NLMS algorithm to
resolve the MMSE criterion in (10) updates the feedforward
and feedback filters of user k as follows for m = 0, 1, 2, . . .:

m f k(m + 1) = m f k(m)− µ̃ f

a +
∥∥r(m)

∥∥2

∣∣∣b̃k(m)
∣∣∣e∗k (m)r(m),

mbk(m + 1)=mbk(m)− µ̃b

a +
∥∥∥b̃D(m)

∥∥∥2

∣∣∣b̃k(m)
∣∣∣e∗k (m)b̃D(m),

(20)

where m is the recursive index and also the time index, µ̃ f

and µ̃b ∈ (0, 2) and are step sizes for the feedforward and
feedback filters, respectively. a is a small positive constant.
The error signal for the mth recursion is

ek(m) = b̃k(m)−mH
f k(m) · r(m)−mH

bk(m) · b̃D(m), (21)

where b̃k(m) = bk(m) and b̃D(m) = bD(m) in the training

mode, b̃k(m) = b̂k(m) and b̃D(m) = b̂D(m) in the decision-

directed mode. Furthermore, in the decision-directed mode,
|b̂k(m)| is used as the reliability of the error signal ek(m) in
(20). Both filters are updated per symbol and their initial
states are m f k(0) = 0 and mbk(0) = 0.

When the detector employs the RLS algorithm, we denote
wk(m)=[mH

f k(m) mH
bk(m)]H and u(m)=[rH(m) b̃H

D (m)]H .
Then the filters are updated for m = 0, 1, 2, . . .:

gk(m + 1) = λ−1Pk(m)u(m + 1)
1 + λ−1uH(m + 1)Pk(m)u(m + 1)

,

ξk(m + 1) = b̃k(m + 1)−wH
k (m)u(m + 1),

wk(m + 1)=wk(m)+gk(m+1)
∣∣∣b̃k(m+1)

∣∣∣ξ∗k (m+1),

Pk(m+1)=λ−1Pk(m)−λ−1gk(m+1)uH(m+1)Pk(m).

(22)

The algorithm is initialized with Pk(0) = δ−1I, where δ is a
small positive number and wk(0) = 0.

Both of the adaptive detectors described above try to ex-
ploit the joint statistics of the received signal vector r, the

transmitted symbol bk or its soft estimate b̂k, and the soft

symbol estimates b̂D which are fedback. In the first iteration,
since there is no fedback information of coded symbols, we
only employ a linear MMSE feedforward filter and set the
feedback filter coefficients to zeros for each user.

The output of the adaptive SISO PDFD is

yk(m) = mH
f k(m) · r(m) + mH

bk(m) · b̂D(m). (23)

Applying the Gaussian assumption to the output in (23), we
can calculate the soft outputs of the SISO PDFD. For the mth
symbol of the kth user, the output yk(m) can be expressed as

yk(m) = µkbk(m) + ηk, (24)

where µk is a constant and ηk is a Gaussian random variable
with zero mean and variance σ2

ηk :

µk = E
[
b∗k (m)yk(m)

]
,

σ2
ηk = E

[
yk(m)− µkbk(m)

]2
.

(25)

Estimates of (25) can be obtained by the corresponding sam-
ple averages in (26), respectively, where we replace bk(m) by
b̃k(m) in these equations:

µ̂k = 1
Nb

Nb∑
m=1

b̃∗k (m)yk(m),

σ̂2
ηk =

1
Nb

Nb∑
m=1

[
yk(m)− µ̂kb̃k(m)

]2
.

(26)

The soft output, that is, the extrinsic log-likelihood ratio, of
bk(m) is

λok(m) = log
P
[
yk(m)

∣∣bk(m) = +1
]

P
[
yk(m)

∣∣bk(m) = −1
] = 2µk yk(m)

σ2
ηk

. (27)
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5. SIMULATION RESULTS

The DS-CDMA system which we simulate in this section has
12 active users. All users employ the same convolutional code
with rate 1/2, constraint length 7, and generators [1011011],
[1111001]. Each user has a randomly selected short spread-
ing code. The spreading factor is 16 chips per information
bit. The system load is 12/16 (K/spreading factor). Multiple
users’ delays are randomly selected and fixed during simula-
tion.

There are 300 training symbols which are randomly se-
lected and inserted at the beginning of coded symbol frames
of each user. SISO single-user decoders are based on the
log-MAP algorithm in [18]. Noise random variables at the
output of the chip-matched filter are identical independent
Gaussian random variables with zero mean and N0/2 vari-
ance.

At the first iteration, since there are no soft inputs from
single-user decoders, only a feedforward filter is employed
for each user. That is, at this time, a linear minimum mean
square error filter is used instead. It is initially trained by the
training symbols, and then is used for the following trans-
mitted coded symbols. For the later iterations, both the feed-
forward and feedback filters are employed. After the train-
ing mode, they are updated by fedback symbol decisions.
In the first two iterations, the filter coefficients are initial-
ized to zeros before the adaptive algorithm is employed. In
each of the following iterations, the filter coefficients are
set to the values obtained at the end of the previous itera-
tion.

We consider an asynchronous DS-CDMA system over
the additive white Gaussian noise (AWGN) channel. It is
assumed that the receiver has no knowledge of the short
spreading codes used by the users and their delays. Three
adaptive SISO PDFDs proposed in Section 4 are simulated.
Figures 5 and 6 show average bit error rates of all users in the
first, second, and tenth iterations provided by three adaptive
detectors based on the NLMS and RLS algorithms, respec-
tively. In (20) of the NLMS algorithm, we use a = 0.00001,
and step sizes µ̃ f = µ̃b = 0.2 in the training mode and
µ̃ f = µ̃b = 0.05 in the decision-directed mode. Parameters
in (22) of the RLS algorithm are λ = 1 and δ = 0.04. For
comparison, we also show the bit error rate performance of
the single-user system in these two figures, where the user’s
spreading code and delay are known to the receiver. In Fig-
ures 5 and 6, we observe that after the first iteration, all three
detectors have similar performances and their curves appear
to overlap. A similar behaviour is observed for the second it-
eration of detector1 and detector2 in Figure 5 and all three
detectors in Figure 6.

We can see that with our adaptive SISO detectors, the
system performance is improved with the increased num-
ber of iterations. Furthermore, Figure 6 shows that the per-
formance provided by the adaptive RLS receiver approaches
the performance of the single-user system after a few itera-
tions at high signal-to-noise ratios. Among the three adaptive
SISO PDFDs proposed in Section 4, detector3 provides the
best performance, though it has the highest computational
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Figure 5: Bit error rate performance provided by three NLMS adap-
tive SISO PDFDs for the asynchronous DS-CDMA system at the
first, second, and tenth iterations, and that of the single-user system
(SU).
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Figure 6: Bit error rate performance provided by three RLS adap-
tive SISO PDFDs for the asynchronous DS-CDMA system at the
first, second, and tenth iterations, and that of the single-user system
(SU).

complexity, since its feedback filter has the maximum num-
ber of taps compared with the other two detectors.
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Figure 7: Comparison between the experimental learning curves
of the adaptive SISO PDFD detector3 based on the NLMS and RLS
algorithms after the second iteration during the training mode at
SNR = 6 dB.

By comparing average bit error rates of all the users
provided by the adaptive detector based on the RLS algo-
rithm in Figure 6 and those obtained by the NLMS algo-
rithm in Figure 5, we can see that the bit error rate per-
formance provided by the adaptive SISO PDFD based on
the RLS algorithm is better than the one provided by the
detector based on the NLMS algorithm. For example, at
a bit error rate 10−3, detector3 based on the RLS algo-
rithm has about 0.7 dB gain with respect to detector3 based
on the NLMS algorithm. This is due to the faster conver-
gence property of the RLS algorithm, which is shown by
Figure 7. The averaged squared errors e2

k(m) and ξ2
k (m) af-

ter the second iteration of the adaptive detector3 during
the training mode versus the number of updates in the
NLMS and RLS algorithms, respectively, are shown and
compared in Figure 7. We set the signal-to-noise (SNR) ra-
tio of each user to 6 dB. Each curve of the squared er-
ror is averaged over 200 independent trials of the exper-
iment. However, the RLS algorithm has a greater com-
putational complexity. Denote the length of the adaptive
filter as L. The computational complexity of the RLS and
the NLMS algorithms are ∼ O(L2) and ∼ O(L) per update,
respectively.

6. CONCLUSIONS

In this paper, first we presented an optimum SISO paral-
lel decision-feedback detector for asynchronous coded DS-
CDMA systems, and then proposed an adaptive implemen-
tation of it when all users’ signature waveforms and relative
delays were unknown to the receiver. All users were assumed
to employ short spreading codes. A chip-synchronous and
symbol-asynchronous DS-CDMA system was considered.

A training sequence was required by each user. We showed
that the resulting system performance provided by adaptive
SISO PDFDs approaches that of the single-user system af-
ter a few iterations at high signal-to-noise ratios. Moreover,
the adaptive detector employing the RLS algorithm provides
a better bit error rate performance than the adaptive detec-
tor based on the NLMS algorithm, though at the expense of
higher computational complexity. For asynchronous coded
DS-CDMA systems, we further showed that the adaptive de-
tector with more feedback filter taps gives a better bit error
rate performance.
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This paper first proposes a computationally efficient, pilot-aided linear minimum mean square error (MMSE) batch channel
estimation algorithm for OFDM systems in unknown wireless fading channels. The proposed approach employs a convenient
representation of the discrete multipath fading channel based on the Karhunen-Loeve (KL) orthogonal expansion and finds MMSE
estimates of the uncorrelated KL series expansion coefficients. Based on such an expansion, no matrix inversion is required in the
proposed MMSE estimator. Moreover, optimal rank reduction is achieved by exploiting the optimal truncation property of the
KL expansion resulting in a smaller computational load on the estimation algorithm. The performance of the proposed approach
is studied through analytical and experimental results. We then consider the stochastic Cramér-Rao bound and derive the closed-
form expression for the random KL coefficients and consequently exploit the performance of the MMSE channel estimator based
on the evaluation of minimum Bayesian MSE. We also analyze the effect of a modelling mismatch on the estimator performance.
To further reduce the complexity, we extend the batch linear MMSE to the sequential linear MMSE estimator. With the fast
convergence property and the simple structure, the sequential linear MMSE estimator provides an attractive alternative to the
implementation of channel estimator.

Keywords and phrases: channel estimation, OFDM systems, MMSE estimation.

1. INTRODUCTION

With unprecedented demands on bandwidth due to the ex-
plosive growth of broadband wireless services usage, there is
an acute need for a high-rate and bandwidth-efficient digital
transmission. In response to this need, the research commu-
nity has been extensively investigating efficient schemes that
make efficient utilization of the limited bandwidth and cope
with the adverse access environments [1]. These access envi-
ronments may create different channel impairments and dic-
tate unique sets of advanced signal processing algorithms to
combat specific impairments.

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Multicarrier (MC) transmission scheme, especially or-
thogonal frequency-division multiplexing (OFDM), has re-
cently attracted considerable attention since it has been
shown to be an effective technique to combat delay spread or
frequency-selective fading of wireless or wireline channels,
thereby improving the capacity and enhancing the perfor-
mance of transmission. This approach has been adopted as
the standard in several outdoor and indoor high-speed wire-
less and wireline data applications, including terrestrial digi-
tal broadcasting (DAB and DVB) in Europe, and high-speed
modems over digital subscriber lines in the US. It has also
been implemented for broadband indoor wireless systems in-
cluding IEEE802.11a, MMAC, and HIPERLAN/2.

An OFDM system operating over a frequency-selective
wireless communication channel effectively forms a number
of parallel frequency-nonselective fading channels, thereby

mailto:hsenol@khas.edu.tr
mailto:hcirpan@istanbul.edu.tr
mailto:eepanay@isikun.edu.tr
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reducing intersymbol interference (ISI) and obviating the
need for complex equalization, thus greatly simplifying chan-
nel estimation/equalization task. Moreover, OFDM is band-
width efficient since the spectra of the neighboring subchan-
nels overlap, yet channels can still be separated through the
use of orthogonality of the carriers. Furthermore, its struc-
ture also allows efficient hardware implementations using
fast Fourier transform (FFT) and polyphase filtering [2].

Although the structure of OFDM signalling avoids ISI
arising due to channel memory, fading multipath channel
still introduces random attenuations on each tone. Further-
more, simple frequency-domain equalization, which divides
the FFT output by the corresponding channel frequency re-
sponse, does not assure symbol recovery if the channel has
nulls on some subcarriers. Hence, advanced signal process-
ing algorithms have to be used for accurate channel estima-
tion to improve the performance of the OFDM systems. Nu-
merous pilot-aided channel estimation methods for OFDM
have been developed [3, 4, 5, 6]. In particular, a low-rank ap-
proximation is applied to linear MMSE estimator for the es-
timation of subcarrier channel attenuations by using the fre-
quency correlation of the channel [3]. Two pilot-aided MLE
and MMSE schemes are revisited and compared in terms of
computational complexity in [4]. In [5], an MMSE channel
estimator, which makes full use of the time and frequency
correlation of the time-varying dispersive channel, was pro-
posed. Moreover, low-complexity MMSE doubly channel es-
timation approaches were presented in [6] based on embed-
ding Kronecker-delta pilot sequences.

Multipath fading channels have been studied extensively,
and several models have been developed to describe their
variations [7]. In many cases, the channel taps are modelled
as general lowpass stochastic processes (e.g., [8]), the statis-
tics depend on mobility parameters. A different approach ex-
plicitly models the multipath channel taps by the Karhunen-
Loeve (KL) series representation [9]. KL expansion models
have also been used previously in modelling the multipath
channel within a CDMA scenario [10]. In the case of KL se-
ries representation of stochastic process, a convenient choice
of orthogonal basis set is one that makes the expansion co-
efficient random variables uncorrelated. When these orthog-
onal bases are employed to expand the channel taps of the
multipath channel, uncorrelated coefficients indeed repre-
sent the multipath channel. Therefore, KL representation al-
lows one to tackle the estimation of correlated multipath pa-
rameters as a parameter estimation problem of the uncorre-
lated coefficients. Exploiting KL expansion, the main contri-
bution of this paper is to propose a computationally efficient,
pilot-aided MMSE channel estimation algorithm. Based on
such representation, no matrix inversion is required in the
proposed batch approach. Moreover, optimal rank reduc-
tion is achieved by exploiting the optimal truncation prop-
erty of the KL expansion resulting in a smaller computa-
tional load on the estimation algorithm. The performance
of the proposed batch approach is explored based on the
evaluation of the stochastic Cramér-Rao bound for the ran-
dom KL coefficients. We also analyze the effect of a modelling
mismatch on the estimator performance. In contrast to [3],

the proposed batch approach employs KL expansion of mul-
tipath channel parameters and reduces the complexity of the
singular value decomposition (SVD) used in eigendecompo-
sition by estimating multipath channel parameters instead of
channel attenuations on each tone. In addition, we propose
the simple sequential MMSE implementation for the estima-
tion of the KL expansion coefficients, which does not require
to perform matrix inversion as well.

The rest of the paper is organized as follows. Section 2 de-
scribes a general model for OFDM systems and briefly intro-
duces the channel estimation task. Section 3 derives a basic
and simplified approach to MMSE batch channel estimation
for OFDM systems. To show its efficiency, the performance
bounds are analyzed and the performance degradation due
to a mismatch of the estimator to the channel statistics as well
as the SNR is demonstrated. The sequential MMSE estima-
tor is introduced in Section 4 and its convergence behavior
is also analyzed. Some simulation examples are provided in
Section 5. Finally, conclusions are drawn in Section 6.

2. SYSTEM MODEL

In order to eliminate ISI arising due to multipath chan-
nel and preserve orthogonality of the subcarrier frequencies
(tones), conventional OFDM systems first take the IFFT of
data symbols and then insert redundancy in the form of a
cyclic prefix (CP) of length LCP larger than the channel order
L. CP is discarded at the receiver and the remaining part of
the OFDM symbol is FFT processed. Combination of IFFT
and CP at the transmitter with the FFT at the receiver divides
the frequency-selective channel into several separate flat-
fading subchannels. The block diagram in Figure 1 describes
the conventional OFDM system. We consider an OFDM sys-
tem withK subcarriers for the transmission of K parallel data
symbols. Thus, the information stream X(n) is parsed into
K-long blocks: Xi = [Xi(0),Xi(1), . . . ,Xi(K − 1)]T , where
i = 1, 2, . . . is the block index and the superscript (·)T in-
dicates the vector transpose. The K × 1 symbol block is then
mapped to a (K + L)× 1 vector by first taking the IFFT of Xi

and then replicating the last LCP elements as

si =
[
si(0), si(1), . . . , si

(
K + LCP − 1

)]T
. (1)

si is serially transmitted over the channel. At the receiver, the
CP of length LCP is removed first and FFT is performed on
the remaining K × 1 vector. Therefore, we can write the out-
put of the FFT unit in matrix form as

Yi = AiHi + ηi, (2)

where Ai is the diagonal matrix Ai = diag(Xi) and Hi is
the channel vector. The elements of Hi are the values of the
channel frequency response evaluated at the subcarriers.
Therefore, we can write Hi = [Hi(0),Hi exp( j2π/K),
. . . ,Hi exp( j2π(K − 1)/K)]T as Hi = F hi, where F is
the FFT matrix with (m,n) entry exp(− j2πmn/K) and
hi = [hi(0),hi(1), . . . ,hi(L − 1)]T . hi modelled as a complex
Gaussian vector with hi ∼ N (0, Chi) represents the overall
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Figure 1: OFDM system block diagram.

channel impulse during the ith OFDM block. Finally,
ηi is a K × 1 zero-mean, i.i.d. complex Gaussian vector
that models additive noise in the K subchannels (tones). We
have E[ηiη

†
i ] = σ2IK where IK represents a K × K iden-

tity matrix, σ2 is the variance of the additive noise entering
the system, and the superscript (·)† indicates the Hermitian
transpose.

Based on model (2), our main objective in this paper
is to develop both batch and sequential pilot-aided chan-
nel estimation algorithm according to MMSE criterion and
then explore the performance of the estimators. A batch ap-
proach adapted herein explicitly models the channel param-
eters by the KL series representation and estimates the un-
correlated expansion coefficients. Furthermore, the compu-
tational load of the proposed MMSE estimation technique
is further reduced with the application of the KL expansion
optimal truncation property [9]. We then introduce batch
channel MMSE approach first.

3. MMSE ESTIMATION OF KL COEFFICIENTS:
BATCH APPROACH

A low-rank approximation to the frequency-domain lin-
ear MMSE channel estimator is provided by [3] to reduce
the complexity of the estimator. Optimal rank reduction is
achieved in this approach by using the SVD of the channel
attenuations covariance matrix CH of dimension K × K . In
contrast, we adopt the MMSE estimator for the estimation
of multipath channel parameter h that uses covariance ma-
trix of dimension L×L. The proposed approach employs KL
expansion of multipath channel parameters and reduces the
complexity of the SVD used in eigendecomposition since L is
usually much less than K . We will now develop MMSE batch
estimator for pilot-assisted OFDM system in the sequel.

3.1. MMSE channel estimation

Pilot-symbol-assisted techniques can provide information
about an undersampled version of the channel that may be
easier to identify. In this paper, we therefore address the
problem of estimating multipath channel parameters by ex-
ploiting the distributed training symbols. Considering (2),
and in order for the pilot symbols to be included in the
output vector for our estimation purposes, we focus on an

undersampled signal model. Assuming that Kp pilot symbols
are uniformly inserted at known locations of the ith OFDM
block, the Kp × 1 vector corresponding to the FFT output at
the pilot locations becomes

Y = AFh + η, (3)

where A = diag[Ai(0), Ai(∆), . . . , Ai((Kp−1)∆)] is a diagonal
matrix with pilot-symbol entries, ∆ is pilot spacing interval,
F is a Kp × L FFT matrix generated based on pilot indices,
and similarly η is the undersampled noise vector.

For the estimation of h, the new linear signal model can
be formed by premultiplying both sides of (3) by A† and as-
suming that pilot symbols are taken from a PSK constellation
A†A = IKp , then the new form of (3) becomes

A†Y = Fh + A†η,

Ỹ = Fh + η̃,
(4)

where Ỹ and η̃ are related to Y and η by the linear transforma-
tion, respectively. Furthermore, η̃ is statistically equivalent to
η.

Equation (4) offers a Bayesian linear model representa-
tion. Based on this representation, the minimum variance
estimator for the time-domain channel vector h for the ith
OFDM block, that is, conditional mean of h given Ỹ, can be
obtained using MMSE estimator. We should clearly make the
assumptions that h ∼ N (0, Ch), η̃ ∼ N (0, Cη̃), and h is un-
correlated with η̃. Therefore, MMSE estimate of h is given by
[11]

ĥ = (F†C−1
η̃ F + C−1

h

)−1
F†C−1

η̃ Ỹ. (5)

Due to PSK pilot-symbol assumption together with the
result Cη̃ = E[η̃η̃†] = σ2IKp , we can therefore express (5) by

ĥ = (F†F + σ2C−1
h

)−1
F†Ỹ. (6)

Under the assumption that uniformly spaced pilot sym-
bols are inserted with pilot spacing interval ∆ and K =
∆ × Kp, correspondingly, F†F reduces to F†F = KpIL. Then
according to (6) and F†F = KpIL, we arrive at the expression

ĥ = (KpIL + σ2C−1
h

)−1
F†Ỹ. (7)
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Since MMSE estimation still requires the inversion of C−1
h ,

it therefore suffers from a high computational complexity.
However, it is possible to reduce the complexity of the MMSE
algorithm by diagonalizing channel covariance matrix with a
KL expansion.

3.2. KL expansion

Channel impulse response h is a zero-mean Gaussian pro-
cess with covariance matrix Ch. The KL transformation is
therefore employed here to rotate the vector h so that all its
components are uncorrelated. The vector h, representing the
channel impulse response during ith OFDM block, can be
expressed as a linear combination of the orthonormal basis
vectors as follows:

h =
L−1∑
l=0

glψ l = Ψg, (8)

where Ψ = [ψ0,ψ1, . . . ,ψL−1], ψ i’s are the orthonormal basis
vectors, g = [g0, g1, . . . , gL−1]T , and gl’s are the weights of the
expansion. If we form the covariance matrix Ch as

Ch = ΨΛgΨ
†, (9)

where Λg = E{gg†}, the KL expansion is the one in which
Λg of Ch is a diagonal matrix (i.e., the coefficients are uncor-
related). If Λg is diagonal, then the form ΨΛgΨ

† is called an
eigendecomposition of Ch. The fact that only the eigenvectors
diagonalize Ch leads to the desirable property that the KL
coefficients are uncorrelated. Furthermore, in the Gaussian
case, the uncorrelatedness of the coefficients renders them
independent as well, providing additional simplicity.

Thus, the channel estimation problem in this application
is equivalent to estimating the i.i.d. complex Gaussian vector
g KL expansion coefficients.

3.3. Estimation of KL coefficients

In contrast to (4) in which only h is to be estimated, we now
assume that the KL coefficient vector g is unknown. Thus the
data model (4) is rewritten for each OFDM block as

Ỹ = FΨg + η̃ (10)

which is also recognized as a Bayesian linear model, and re-
call that g ∼ N (0,Λg). As a result, the MMSE estimator of g
is

ĝ = Λg
(
KpΛg + σ2IL

)−1
Ψ†F†Ỹ

= ΓΨ†F†Ỹ,
(11)

where

Γ = Λg
(
KpΛg + σ2IL

)−1

= diag
{

λg0

λg0Kp + σ2
, . . . ,

λgL−1

λgL−1Kp + σ2

} (12)

and λg0 , λg1 , . . . , λgL−1 are the singular values of Λg.

It is clear that the complexity of the MMSE estimator in
(7) is reduced by the application of KL expansion. However,
the complexity of ĝ can be further reduced by exploiting the
optimal truncation property of the KL expansion [9]. MMSE
estimator of g requires 4L2 + 4LKp + 2L real multiplications.
From the results presented in [4], ML estimator of g is ob-
tained as follows:

ĝ = 1
Kp

Ψ†F†Ỹ. (13)

Note that, according to (13), the ML estimator of g re-
quires 4L2 + 4LKp real multiplications.

3.4. Truncated KL expansion

A truncated expansion gr can be formed by selecting r or-
thonormal basis vectors among all basis vectors that satisfy
ChΨ = ΨΛg. The optimal one that yields the smallest av-
erage mean squared truncation error (1/L)E[ε†r εr] is the one
expanded with the orthonormal basis vectors associated with
the first largest r eigenvalues as given by

1
L
E
[
ε†r εr

] = 1
L

L−1∑
i=r

λgi , (14)

where εr = g−gr . For the problem at hand, truncation prop-
erty of the KL expansion results in a low-rank approximation
as well. Thus, a rank-r approximation to Λgr is defined as

Λgr = diag
{
λg0 , λg1 , . . . , λgr−1 , 0, . . . , 0

}
. (15)

Since the trailing L− r variances {λgl}L−1
l=r are small compared

to the leading r variances {λgl}r−1
l=0 , then the trailing L−r vari-

ances are set to zero to produce the approximation. However,
typically the pattern of eigenvalues for Λg splits the eigenvec-
tors into dominant and subdominant sets. Then the choice of
r is more or less obvious. The optimal truncated KL (rank-r)
estimator of (11) now becomes

ĝr = ΓrΨ
†F†Ỹ, (16)

where

Γr = Λgr

(
KpΛgr + σ2IL

)−1

= diag
{

λg0

λg0Kp + σ2
, . . . ,

λgr−1

λgr−1Kp + σ2
, 0, . . . , 0

}
.

(17)

Since our ultimate goal is to obtain MMSE estimator for the
channel frequency response H, from the invariance property
of the MMSE estimator, it follows that if ĝ is the estimate of
g, then the corresponding estimate of H can be obtained for
the ith OFDM block as

Ĥ = F Ψĝ. (18)

Thus, from (16) and (17), the truncated MMSE estimator
of g requires 4Lr + 4LKp + 2r real multiplications.
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3.5. Performance analysis

We turn our attention to analytical performance results of
the batch MMSE approach. We first consider the CRB and
derive the closed-form expression for the random KL coeffi-
cients, and then exploit the performance of the MMSE chan-
nel estimator based on the evaluation of minimum Bayesian
MSE.

3.5.1. Cramér-Rao bound for random KL coefficients

The mean squared estimation error for unbiased estimation
of a nonrandom parameter has a lower bound, the Cramér-
Rao bound (CRB), which defines the ultimate accuracy of un-
biased estimation procedure. Suppose ĝ is an unbiased esti-
mator of a vector of unknown parameters g (i.e., E{ĝ} = g)
then the mean squared error matrix is lower bounded by the
inverse of the Fisher information matrix (FIM):

E
{

(g− ĝ)(g− ĝ)†
} ≥ J−1(g). (19)

Since the estimation of unknown random parameters g via
MMSE approach is considered in this paper, the modified
FIM needs to be taken into account in the derivation of
stochastic CRB [12]. Fortunately, the modified FIM can be
obtained by a straightforward modification of (19) as

JM(g) � J(g) + JP(g), (20)

where JP(g) represents the a priori information.
Under the assumption that g and η̃ are independent of

each other and η̃ is a zero mean, from [12] and (10), the con-
ditional PDF is given by

p
(

Ỹ|g) = 1
πKp

∣∣Cη̃

∣∣ exp
{−(Ỹ−FΨg)†C−1

η̃ (Ỹ−FΨg)
}

(21)

from which the derivatives follow as

∂ ln p
(

Ỹ|g)
∂gT

= (Ỹ− FΨg)†C−1
η̃ FΨ,

∂2 ln p
(

Ỹ|g)
∂g∗∂gT

= −Ψ†F†C−1
η̃ FΨ,

(22)

where the superscript (·)∗ indicates the conjugation opera-
tion.

Using Cη̃ = σ2IKp , Ψ†Ψ = IL, and F†F = KpIL, and tak-
ing the expected value yield the following simple form:

J(g) = −E
[
∂2 ln p(Ỹ|g)
∂g∗∂gT

]

= −E
[
− Kp

σ2
IL

]
= Kp

σ2
IL.

(23)

The second term in (20) is easily obtained as follows.
Consider the prior PDF of g as

p(g) = 1
πL
∣∣Λg

∣∣ exp
{− g†Λ−1

g g
}
. (24)

The respective derivatives are found as

∂ ln p(g)
∂gT

= −g†Λ−1
g ,

∂2 ln p(g)
∂g∗∂gT

= −Λ−1
g .

(25)

Upon taking the negative expectations, the second term
in (20) becomes

JP(g) = −E
[
∂2 ln p(g)
∂g∗∂gT

]
= −E[−Λ−1

g

]
= Λ−1

g .

(26)

Substituting (23) and (26) in (20) produces for the modified
FIM the following:

JM(g) = J(g) + JP(g)

= Kp

σ2
IL + Λ−1

g

= 1
σ2

(
KpIL + σ2Λ−1

g

)
= 1

σ2
Γ−1.

(27)

Inverting the matrix JM(g) yields

CRB(ĝ) = J−1
M (g) = σ2Γ. (28)

3.5.2. Bayesian MSE

For the MMSE estimator ĝ, the error is

ε = g− ĝ. (29)

Since the diagonal entries of the covariance matrix of the
error represent the minimum Bayesian MSE, we now derive
covariance matrix Cε of the error vector. From the perfor-
mance of the MMSE estimator for the Bayesian linear model
theorem [11], the error covariance matrix is obtained as

Cε =
(
Λ−1

g + (FΨ)†C−1
η̃ (FΨ)

)−1

= σ2(KpIL + σ2Λ−1
g

)−1

= σ2Γ

(30)

and then the minimum Bayesian MSE of the full rank esti-
mator becomes (see Appendix A)

BMSE(ĝ) = 1
L

tr
(

Cε
)

= 1
L

tr
(
σ2Γ

) = 1
L

L−1∑
i=0

λgi
1 + Kpλgi SNR

,
(31)

where SNR = 1/σ2 and tr denotes trace operator on matrices.
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Comparing (28) with (30), the error covariance matrix
of the MMSE estimator coincides with the stochastic CRB of
the random vector estimator. Thus, ĝ achieves the stochastic
CRB.

As the details are given in Appendix A, BMSE(ĝ) given in
(31) can also be computed for the truncated (low-rank) case
as follows:

BMSE
(

ĝr
) = 1

L

r−1∑
i=0

λgi
1 + Kpλgi SNR

+
1
L

L−1∑
i=r

λgi . (32)

Notice that the second term in (32) is the sum of the powers
in the KL transform coefficients not used in the truncated es-
timator. Thus, the truncated BMSE(ĝr) can be lower bounded
by (1/L)

∑L−1
i=r λgi which will cause an irreducible error floor

in the SER results.

3.6. Mismatch analysis

Once the true frequency-domain correlation, characterizing
the channel statistics and the SNR, is known, the optimal
channel estimator can be designed as indicated in Section 4.

However, in mobile wireless communications, the chan-
nel statistics depend on the particular environment, for ex-
ample, indoor or outdoor, urban or suburban, and change
with time. Hence, it is important to analyze the performance
degradation due to a mismatch of the estimator to the chan-
nel statistics as well as the SNR, and to study the choice of
the channel correlation and SNR for this estimator so that
it is robust to variations in the channel statistics. As a per-
formance measure, we use uncoded symbol error rate (SER)
for QPSK signaling. The SER expression for this case is given
in [13] as a function of the SNR and the average BMSE(ĝ) as
follows:

SERQPSK = 3
4
− µ

2
− µ

π
arctan(µ), (33)

where

µ = Ωg√(
Ωg + BMSE(ĝ)

)
(1 + 2/ SNR)

, (34)

and Ωg represents the normalized variance of the channel

gains (Ωg =
∑L−1

i=0 λgi = 1) and SNR = 1/σ2. In practice,
the true channel correlations and SNR are not known. If the
MMSE channel estimator is designed to match the correla-
tion of a multipath channel impulse response Ch and SNR,
but the true channel parameter h̃ has the correlation Ch̃ and

the true �SNR, then average Bayesian MSE for the designed
channel estimator is obtained as (see Appendices A and B)

(i) SNR mismatch:

BMSE(ĝ) = 1
L

L−1∑
i=0

λgi(
1 + Kpλgi SNR

)2

[
1 + Kpλgi

SNR2

�SNR

]
; (35)

ỹ(m + 1) +

−
∑

κm+1

σ2, u(m + 1), Mm

∑+

+

ĝm+1

Z−1

ĝm
u†(m + 1)

Figure 2: Block diagram of sequential MMSE estimator.

(ii) correlation mismatch:

BMSE(ĝ) = 1
L

L−1∑
i=0

λ̃gi + Kp SNR λgi
(
λ̃gi + λgi − 2βi

)
1 + Kp SNR λgi

, (36)

where λ̃gi is the ith diagonal element ofΛg̃=Ψ†Ch̃Ψ, and βi is
ith diagonal element of the real part of the cross-correlation
matrix between g̃ and g.

4. MMSE ESTIMATION OF KL COEFFICIENTS:
SEQUENTIAL APPROACH

We now turn our attention to the derivation of the sequen-
tial MMSE algorithm with simple structure. The sequential
MMSE approach is proposed in this paper to follow the chan-
nel variations by exploiting only channel correlations in fre-
quency. The block diagram for this is shown in Figure 2.

To begin with the algebraic derivation, we use (10) to
write mth component of Ỹ as

Ỹ[m] = u†(m)g + η̃[m], (37)

where u†(m) is the mth row of FΨ and η̃[m] is the mth ele-
ment of the noise vector η̃.

If an MMSE estimator of Ỹ[m+1] can be found based on

Ỹ[m], denoted by ̂̃Ym+1|m, the prediction error fm+1 = Ỹ[m+

1] − ̂̃Ym+1|m will be orthogonal to Ỹ[m]. We can therefore
project g onto each vector separately and add the results, so
that

ĝm+1 = ĝm + κm+1 fm+1

= ĝm + κm+1
(

Ỹ[m + 1]− u†(m + 1)ĝm
)
,

(38)

where ĝm+1 is the (m+1)th estimate of g, and κm+1 is the gain
factor given as

κm+1 = Mmu(m + 1)
u†(m + 1)Mmu(m + 1) + σ2

. (39)

It can be seen that Mm = E
[
(g− ĝm) (g− ĝm)†

]
is need-

ed in (39), hence update equation for the minimum MSE
matrix should also be given. If we substitute (38) in Mm+1 =
E
[
(g− ĝm+1) (g− ĝm+1)†

]
, we obtain an update equation
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for Mm+1 as

Mm+1 =
[

I− κm+1u†(m + 1)
]

Mm. (40)

Based on these results, the steps of the sequential MMSE
estimator for g can be summarized as follows.

Initialization. Set the parameters to some initial value
ĝ0 = 0, M0 = Λg.

(1) Compute the gain κm+1 from (39).
(2) Update the estimate of g from (38).
(3) Update the minimum MSE matrix from (40).
(4) Repeat step (1)–step (3) until m = Kp − 1.

Some remarks and observations are now in order.

(i) No matrix inversions are required.
(ii) Since the MMSE estimator (11) requires F†F to be

equal to KpI which is satisfied only when ∆ = K/Kp

is an integer, however, the sequential version of (11)
works as long as ∆ ≤ K/L.

We now analyze the complexity of the sequential MMSE
algorithm. It follows from (39) in step (1) that one needs
4L2 + 5L real multiplications to compute the gain. Similarly,
from (38) in step (2), it requires 5L real multiplications for
the estimator update. Finally, in step (3), we need 8L2 real
multiplications for the MMSE matrix update. Therefore, the
total sequential MMSE algorithm requires 12L2 + 10L real
multiplications for one iteration.

4.1. Performance analysis

We turn our attention now to the performance analysis of the
adaptive algorithm. We will try to evaluate its convergence
properties in terms of mean square error.

From (39) and (40), we conclude that

κm+1σ
2 = (I− κm+1u†(m + 1)

)
Mmu(m + 1)

= Mm+1u(m + 1).
(41)

Substituting (41) in (39), we have(
Mm+1 − σ2

u†(m + 1)Mmu(m + 1) + σ2
Mm

)
u(m + 1) = 0L×1.

(42)

Based on (42), the following recursion is obtained:

Mm+1 = σ2

u†(m + 1)Mmu(m + 1) + σ2
Mm

= δm+1|mMm.
(43)

Due to positive definite property of error covariance matrix
Mm, it follows that u†(m + 1)Mmu(m + 1) > 0. As a result,
0 < δm+1|m < 1.

Define average MSE at the mth step as MSEm =
(1/L) tr(Mm), then it follows from (43) that

MSEm+1 = δm+1|m MSEm . (44)

Thus, we observe that as m → ∞, MSEm → 0 which means
that ĝm converges to g in the mean square.

5. SIMULATIONS

In this section, the merits of our channel estimators are illus-
trated through simulations. We choose average mean square
error (MSE) and symbol error rate (SER) as our figure of
merits. We consider the fading multipath channel with L
paths given by (45) with an exponentially decaying power de-
lay profile θ(τl) = Ce−τl/τRMS with delays τl that are uniformly
and independently distributed over the length LCP. Note that
h is chosen as complex Gaussian leading to a Rayleigh fading
channel with root mean square (RMS) width τRMS and nor-
malizing constant C. In [3], it is shown that the normalized
exponential discrete channel correlation for different subcar-
riers is

r f (k) = 1− exp
(− L

(
1/τRMS + 2π jk/K

))
τRMS

(
1− exp

(− L/τRMS
))(

1/τRMS + 2π jk/K
) .
(45)

The scenario for our simulation study consists of a wire-
less QPSK-OFDM system employing the pulse shape as a
unit-energy Nyquist-root raised-cosine shape with rolloff
α = 0.2, with a symbol period (Ts) of 0.120 microsecond,
corresponding to an uncoded symbol rate of 8.33 Mbps.
Transmission bandwidth (5 MHz) is divided into 1024 tones.
We assume that the fading multipath channel has L = 40
paths with an exponentially decaying power delay profile
(45) with τRMS = 5 sample (0.6 microsecond) long.

5.1. Batch MMSE approach

A QPSK-OFDM sequence passes through channel taps and is
corrupted by AWGN (0 dB, 5 dB, 10 dB, 15 dB, 20 dB, 25 dB,
and 30 dB, respectively). We use a pilot symbol for every
twenty (∆ = 20) symbols. The MSE at each SNR point
is averaged over 1000 realizations. We compare the experi-
mental MSE performance and its theoretical Bayesian MSE
of the proposed full-rank MMSE estimator with maximum-
likelihood (ML) estimator and its corresponding Cramér-
Rao bound (CRB). Figure 3 confirms that MMSE estimator
performs better than ML estimator at low SNR. However, the
2 approaches have comparable performance at high SNRs. To
observe the performance, we also present the MMSE and ML
estimated channel SER results together with theoretical SER
in Figure 4. Due to the fact that spaces between the pilot sym-
bols are not chosen as a factor of the number of subcarriers,
an error floor is observed in Figures 3 and 4. In the case of
choosing the pilot space as a factor of number of subcarriers,
the error floor vanishes because of the fact that the orthog-
onality condition between the subcarriers at pilot locations
is satisfied. In other words, the curves labeled as simulation
results for MMSE estimator and ML estimator fit to the the-
oretical curve at high SNRs. It also shows that the MMSE
estimated channel SER results are better than ML estimated
channel SER especially at low SNRs.

5.1.1. SNR design mismatch

In order to evaluate the performance of the proposed full-
rank MMSE estimator to mismatch only in SNR design, the
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Figure 3: Performance of proposed MMSE and MLE together with
BMSE and CRB.
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Figure 4: Symbol error rate results.

estimator is tested when SNRs of 10 and 30 dB are used in
the design. The SER curves for a design SNR of 10, 30 dB
are shown in Figure 5. The performance of the MMSE esti-
mator for high SNR (30 dB) design is better than low SNR
(10 dB) design across a range of SNR values (0–30 dB). This
results confirm that channel estimation error is concealed
in noise for low SNR whereas it tends to dominate for high
SNR. Thus, the system performance degrades especially for
low SNR design.
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Simulation results: SNR design = 10 dB
Theoretical results: SNR design = 10 dB
Simulation results: SNR design = 30 dB
Simulation results: SNR design = 30 dB

Figure 5: Effects of SNR design mismatch on SER.

5.1.2. Correlation mismatch

To further analyze full-rank MMSE estimator’s performance,
we need to study sensitivity of the estimator to design errors,
that is, correlation mismatch. We therefore designed the es-
timator for a uniform channel correlation which gives the
worst MSE performance among all channels [3, 5] and evalu-
ated it for an exponentially decaying power delay profile. The
uniform channel correlation between the attenuations can be
obtained by letting τRMS →∞ in (45), resulting in

r f (k) = 1− exp(2π jLk/K)
2π jk/K

. (46)

Figures 6 and 7 demonstrate the estimator’s sensitivity to the
channel statistics in terms of average MSE and SER perfor-
mance measures, respectively. As it can be seen from Fig-
ures 6 and 7, only small performance loss is observed for low
SNRs when the estimator is designed for mismatched chan-
nel statistics. This justifies the result that a design for worst
correlation is robust to mismatch.

5.1.3. Performance of the truncated estimator

The truncated estimator performance is also studied as a
function of the number of KL coefficients. Figure 8 presents
the MSE result of the truncated MMSE estimator for SNR =
10, 20, and 30 dB. If only a few expansion coefficients are
employed to reduce the complexity of the proposed es-
timator, then the MSE between channel parameters be-
comes large. However, if the number of parameters in
the expansion is increased, the irreducible error floor still
occurs.
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Figure 6: Effects of correlation mismatch on MSE.

5.2. Sequential MMSE approach

The MSE results of the sequential full-rank MMSE algorithm
are obtained and presented as shown in Figure 9. In order
to better evaluate the performance of the proposed sequen-
tial MMSE estimation algorithm, we compare it with pre-
viously developed least mean square (LMS) and recursive
least squares (RLS) algorithms. It can be seen from simu-
lations that recursive MMSE estimator yields better perfor-
mance than LMS and RLS approaches and achieves Bayesian
MSE especially for low SNR.

For the convergence of the proposed adaptive algorithm,
MSE versus iteration is plotted for SNR = 10, 20, 30, and
40 dB in Figure 10. As expected, the proposed sequential al-
gorithm converges faster for high SNR values.

Finally, we wish to evaluate the performance of the algo-
rithm for different values of pilot spacing 10, 20, 30, 40, and
50 by plotting the MSEs and SERs with respect to SNR in
Figures 11 and 12, respectively. For the values pilot spacing ∆
larger than K/L, the SER and MSE performances decrease as
∆ increases.

6. CONCLUSION

We consider the design of low-complexity MMSE channel es-
timators for OFDM systems in unknown wireless dispersive
fading channels. We first derive the batch MMSE estimator
based on the stochastic orthogonal expansion representation
of the channel via KL transform. Based on such represen-
tation, we show that no matrix inversion is needed in the
MMSE algorithm. Therefore, the computational cost for im-
plementing the proposed MMSE estimator is low and com-
putation is numerically stable. Moreover, the performance
of our proposed batch method was first studied through
the derivation of stochastic CRB for Bayesian approach.

100
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Figure 7: Effects of correlation mismatch on SER.
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Figure 8: MSE as a function of KL expansion coefficients.

Since the actual channel statistics and SNR may vary within
OFDM block, we have also analyzed the effect of modelling
mismatch on the estimator performance and shown both
analytically and through simulations that the performance
degradation due to such mismatch is negligible for low SNR
values. The MMSE estimator is then extended to sequen-
tial implementation which enjoys the elegance of the simple
structure and fast convergence.
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Figure 9: Sequential MMSE performance.
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Figure 10: Convergence of the sequential MMSE estimator.

APPENDICES

A. BAYESIAN MSE FOR TRUNCATED MMSE KL
ESTIMATOR UNDER SNR MISMATCH

Substituting (10) in (16), the truncated MMSE KL estimator
now becomes

ĝr = KpΓrg + ΓrΨ
†F†η̃. (A.1)
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Simulation: pilot spacing = 50

Figure 11: Performance of the sequential MMSE for different pilot
spacings.
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Figure 12: Symbol error rate of the sequential MMSE for different
pilot spacings.

The estimation error

ε̂r = g− ĝr

= g− (KpΓrg + ΓrΨ
†F†η̃

)
= (IL − KpΓr

)
g− ΓrΨ

†F†η̃

(A.2)
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and then the average Bayesian MSE is

BMSE
(

ĝr
) = 1

L
tr
(

Cε̂r
)

= 1
L

tr
(
Λg(IL − KpΓr)2 + Kpσ̃

2Γ2
r

)
= 1

L

r−1∑
i=0

[
λgi

(
1− Kp

λgi
λgiKp + σ2

)2

+ Kpσ̃
2
(

λgi
λgiKp + σ2

)2
]

+
1
L

L−1∑
i=r

λgi

= 1
L

r−1∑
i=0

λgi
σ̃2Kpλgi + σ4(
Kpλgi + σ2

)2 +
1
L

L−1∑
i=r

λgi

where σ2 = 1
SNR

, σ̃2 = 1�SNR

= 1
L

r−1∑
i=0

λgi(
1 + Kpλgi SNR

)2

[
1 + Kpλgi

SNR2

�SNR

]

+
1
L

L−1∑
i=r

λgi .

(A.3)

Based on the result obtained in (A.3), Bayesian estima-
tor performance can be further elaborated for the following
scenarios.

(i) By taking �SNR = SNR, the performance result for the
case of no SNR mismatch is

BMSE
(

ĝr
) = 1

L

r−1∑
i=0

λgi
1 + Kpλgi SNR

+
1
L

L−1∑
i=r

λgi . (A.4)

(ii) As r → L in (A.3), BMSE(ĝ) under SNR mismatch re-
sults in the following Bayesian MSE:

BMSE(ĝ) = 1
L

L−1∑
i=0

λgi(
1 + Kpλgi SNR

)2

[
1 + Kpλgi

SNR2

�SNR

]
.

(A.5)

(iii) Finally, the Bayesian MSE in the case of no SNR mis-
match can also be obtained as

BMSE(ĝ) = 1
L

L−1∑
i=0

λgi
1 + Kpλgi SNR

. (A.6)

B. BAYESIAN MSE FOR TRUNCATED MMSE KL
ESTIMATOR UNDER CORRELATION MISMATCH

In this appendix, we derive the Bayesian MSE of the trun-
cated MMSE KL estimator under correlation mismatch. Al-
though the real multipath channel h̃ has the expansion corre-
lation Ch̃, we designed the estimator for the multipath chan-
nel h = Ψg with correlation Ch. To evaluate the estima-

tion error g̃ − ĝr in the same space, we expand h̃ onto the

eigenspace of h as h̃ = Ψg̃ resulting in correlated expansion
coefficients.

For the real channel, data model in (10) can be rewritten
as

Ỹ = FΨg̃ + η̃ (B.1)

and substituting in (16), the truncated MMSE KL estimator
now becomes

ĝr = KpΓrg + ΓrΨ
†F†η̃. (B.2)

For the truncated MMSE estimator, the error is

ε̂r = g̃− ĝr

= g̃− KpΓrg− ΓrΨ
†F†η̃.

(B.3)

As a result, the average Bayesian MSE is

BMSE
(

ĝr
) = 1

L
tr
(

Cε̂r
)

= 1
L

tr
(
Λg̃ + K2

pΓ
2
rΛg + σ2KpΓ

2
r − 2KpΓrβ

)
= 1

L

r−1∑
i=0

[
λ̃gi +

Kpλgi
(
λgi − 2βi

)
Kpλgi + σ2

]

+
1
L

L−1∑
i=r

λ̃gi , σ2 = 1
SNR

= 1
L

r−1∑
i=0

[
λ̃gi +

Kp SNR λgi
(
λgi − 2βi

)
1 + Kp SNR λgi

]
+

1
L

L−1∑
i=r

λ̃gi

= 1
L

r−1∑
i=0

λ̃gi + Kp SNR λgi
(
λ̃gi + λgi − 2βi

)
1 + Kp SNR λgi

+
1
L

L−1∑
i=r

λ̃gi ,

(B.4)

where β is the real part of E[g̃g†] and βi’s are the diagonal
elements of β. With this result, we will now highlight some
special cases.

(i) Letting βi = λgi = λ̃gi in (B.4) for the case of no mis-
match in the correlation of KL expansion coefficients,
the truncated Bayesian MSE is identical to that ob-
tained in (A.4).

(ii) As r → L in (B.4), Bayesian MSE under correlation
mismatch is obtained to yield

BMSE(ĝ) = 1
L

L−1∑
i=0

λ̃gi + Kp SNR λgi
(
λ̃gi + λgi − 2βi

)
1 + Kp SNR λgi

. (B.5)

(iii) Under no correlation mismatch in (B.5) where βi =
λgi = λ̃gi , Bayesian MSE obtained from (B.5) is identi-
cal to that in (A.6).

(iv) Also note that as SNR →∞, (B.4) reduces to MSE(g̃−
gr).
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For practical wireless DS-CDMA systems, channel estimation is imperfect due to noise and interference. In this paper, the impact
of channel estimation errors on multiuser detection (MUD) is analyzed under the framework of the replica method. System
performance is obtained in the large system limit for optimal MUD, linear MUD, and turbo MUD, and is validated by numerical
results for finite systems.
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1. INTRODUCTION

Multiuser detection (MUD) [1] can be used to mitigate mul-
tiple access interference (MAI) in direct-sequence code divi-
sion multiple access (DS-CDMA) systems, thereby substan-
tially improving the system performance compared with the
conventional matched filter (MF) reception. The maximum
likelihood (ML)-based optimal MUD, introduced in [2], is
exponentially complex in the number of users, thus being
difficult to implement in practical systems. Consequently,
various suboptimal MUD algorithms have been proposed
to effect a tradeoff between performance and computational
cost. For example, linear processing can be applied, based on
zero-forcing or minimum mean square error (MMSE) crite-
ria, thus resulting in the decorrelator [1] and the MMSE de-
tector [3]. For nonlinear processing, a well-known approach
is decision-feedback-based interference cancellation (IC) [1],
which can be implemented in a parallel fashion (PIC) or
successive fashion (SIC). It should be noted that the above
algorithms are suitable for systems without channel codes.
For channel-coded CDMA systems, the turbo principle can
be introduced to improve the performance iteratively using
the decision feedback from channel decoders, resulting in

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

turbo MUD [4], which can also be simplified using PIC [5].
The decisions of channel decoders can also be fed back in
the fashion of SIC, and it has been shown that SIC com-
bined with MMSE MUD achieves the sum channel capacity
[6].

It is difficult to obtain explicit expressions for the perfor-
mance of most MUD algorithms in finite systems (here, “fi-
nite” means that the number of users and spreading gain are
finite). In recent years, asymptotic analysis has been applied
to obtain the performance of such systems in the large system
limit, which means that the system size tends to infinity while
keeping the system load constant. The explicit expressions
obtained from asymptotic analysis can provide more insight
than simulation results and can be used as approximations
for finite systems. The theory of large random matrices [1, 7]
has been applied to the asymptotic analysis of MMSE MUD,
resulting in the Tse-Hanly equation [8], which quantifies im-
plicitly multiuser efficiency. However, this method is valid for
only linear MUD and cannot be used for the analysis of non-
linear algorithms. For ML optimal MUD, the performance is
determined by the sum of many exponential terms, which
is difficult to tackle with matrices. Recently, attention has
been payed to the analogy between optimal MUD and free
energy in statistical mechanics [9], which has motivated re-
searchers to apply mathematical tools developed in statistical
mechanics to the analysis of MUD. In [10, 11], the replica
method, which was developed in the context of spin glasses

mailto:hushengl@princeton.edu
mailto:poor@princeton.edu
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theory, has been applied as a unified framework to both op-
timal and linear MUD, resulting in explicit asymptotic ex-
pressions for the corresponding bit error rates and spectral
efficiencies. These results have been extended to turbo MUD
in [12]. It should be noted that the replica method is based
on some assumptions which still require rigorous mathemat-
ical proof. However, the corresponding conclusions match
simulation results and some known theoretical conclusions
well.

In practical wireless communication systems, the trans-
mitted signals experience fading. In the above MUD algo-
rithms, the channel state information (CSI) is assumed to be
known to the receiver. However, this is not a reasonable as-
sumption since channel estimation is imperfect due to the
existence of noise and interference. Therefore, it is of interest
to analyze the performance of MUD with imperfect channel
estimates. For linear MUD, the impact of channel estimation
error on detection has been studied in [13, 14, 15] using the
theory of large random matrices. In this paper, we will apply
the replica method to analyze the corresponding impact on
optimal MUD, and then extend the results to linear or turbo
MUD, under some assumptions on the channel estimation
error. The results can be used to determine the number of
training symbols needed for channel estimation.

The remainder of this paper is organized as follows. The
signal model is explained in Section 2 and the replica method
is briefly introduced in Section 3. Optimal MUD with im-
perfect channel estimation is discussed in Section 4 and the
results are extended to linear and turbo MUD in Section 5.
Simulation results and conclusions are given in Sections 6
and 7, respectively.

2. SIGNAL MODEL

2.1. Signal model

We consider a synchronous uplink DS-CDMA system, which
operates over a frequency selective fading channel of order P
(i.e., P is the delay spread in chip intervals). Let K denote the
number of active users, N the spreading gain, and β � K/N
the system load. In this paper, our analysis is based on the
large system limit, where K ,N ,P → ∞ while keeping K/N
and P/N constant.

We model the frequency selective fading channels as
discrete finite-impulse-response (FIR) filters. For simplic-
ity, we assume that the channel coefficients are real. The z-
transform of the channel response of user k is given by

hk(z) =
P−1∑
p=0

gk(p)zp, (1)

where {gk(p)}p=0,...,P−1 are the corresponding independent
and identically distributed (i.i.d.) (with respect to both k and
p) channel coefficients having variance 1/P. For simplicity,
we consider only the case in which P/N � 1. Thus we can
ignore the intersymbol interference (ISI) and deal with only
the portion uncontaminated by ISI.

The chip matched filter output at the lth chip period in a
fixed symbol period can be written as

r(l) = 1√
N

K∑
k=1

bkhk(l) + n(l), l = P,P + 1, . . . ,N , (2)

where bk denotes the binary phase shift keying (BPSK) mod-
ulated channel symbol of user k with normalized power 1,
{n(l)} is additive white Gaussian noise (AWGN), which sat-
isfies E{|n(l)|2} = σ2

n ,1 and {hk(l)} is the convolution of the
spreading codes and channel coefficients:

hk(l) = sk(l)� gk(l), (3)

where sk(l) is the lth chip of the original spreading code of
user k, which is i.i.d. with respect to both k and l and takes
values 1 and−1 equiprobably. We call the (N+P−1)×1 vec-
tor2 hk = (hk(0), . . . ,hk(N +P−2))T the equivalent spreading
code of user k. Due to the assumption that P/N � 1, we can
approximate N − P + 1 by N for notational simplicity. Then
the received signal in the fixed symbol period can be written
in a vector form

r = 1√
N
Hb + n, (4)

where r = (r(P), . . . , r(N))T , H = (h1, . . . , hK ), and b =
(b1, . . . , bK )T . It is easy to show that (1/N)‖hk‖2 → 1, as
P → ∞. Thus, we can ignore the performance loss incurred
by the fluctuations of received power in the fading channels
and consider only the impact of channel estimation error.

2.2. Channel estimation error

In practical wireless communication systems, the channel co-
efficients {gk(l)} are unknown to the receiver, and the corre-
sponding channel estimates {ĝk(l)} are imprecise due to the
existence of noise and interference. We assume that training
symbol-based channel estimation [16] is applied to provide
the channel estimates. On denoting the channel estimation
error by δgk(l) � gk(l)− ĝk(l), {δgk(l)} are jointly Gaussian-
distributed and mutually independent for sufficiently large
numbers of training symbols [16]. Therefore, it is reasonable
to assume that {δgk(l)} is independent for different values
of k and l. In this paper, we consider only the following two
types of channel estimation.

(i) ML channel estimation. It is well known that ML esti-
mation is asymptotically unbiased under some regula-
tion conditions. Thus, we can assume that the estima-
tion error δgk(l) has zero expectation conditioned on
gk(l), and is therefore correlated with ĝk(l).

1Note that σ2
n is the noise variance, normalized to represent the inverse

signal-to-noise ratio.
2Superscript T denotes transposition and superscript H denotes conju-

gate transposition.
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(ii) MMSE channel estimation. An important property of
the MMSE estimate, namely the conditional expecta-
tion E{gk(l)|Y}, where Y is the observation, is that the
estimation error δgk(l) is uncorrelated with ĝk(l), and
thus is biased.

We assume that the receiver uses the imperfect channel
estimates to construct the corresponding equivalent spread-

ing code, namely ĥk. Thus, the error of the ith chip of ĥk is
given by

δhk(i) � hk(i)− ĥk(i)

=
P−1∑
l=0

sk(i− l)δgk(l),
(5)

from which it follows that the variance of δhk(i) is given by
∆2
h = P Var{δgk(l)}.

Fixing {δgk(l)} and considering {δsk(l)} as random vari-
ables, it is easy to show that δhk(l) is asymptotically Gaussian
as P → ∞ by applying the central limit theorem to (5). Due
to the assumption that P/N � 1, for any l, δhk(l) is indepen-
dent of most {δhk(m)}m�=l since for any |l − m| > P, δhk(l)
and δhk(m) are mutually independent. Thus, it is reasonable
to assume that the elements in δhk are Gaussian and mu-
tually independent, which substantially simplifies the analy-
sis and will be validated with simulation results in Section 6.
Similarly, we can assume that the elements of hk are mutually
independent as well.

3. BRIEF REVIEW OF REPLICA METHOD

In this section, we give a brief introduction to the replica
method, on which the asymptotic analysis in this paper is
based. The details can be found in [9, 10, 11, 17].

On assuming P(bk = 1) = P(bk = −1), we consider the
following ratio:

P
(
bk = 1|r)

P
(
bk = −1|r)
=
∑
{b|bk=1} exp

(
− (1/2σ2

)∥∥r− (1/√N)Hb
∥∥2
)

∑
{b|bk=−1} exp

(
− (1/2σ2

)∥∥r− (1/√N)Hb
∥∥2
) ,

(6)

where σ2 is a control parameter. Various MUD algorithms
can be obtained using this ratio. In particular, we can obtain
individually optimal (IO), or maximum a posteriori proba-
bility (MAP), MUD (σ2 = σ2

n), jointly optimal (JO), or ML,
MUD (σ2 = 0) and the MF (σ2 = ∞).

The key point of the replica method is the computation
of the free energy, which is given by

FK (r,H) � K−1 logZ(r,H)

= lim
K→∞

∫
RN

P(r|H) logZ(r,H)dr,
(7)

where

Z(r,H) �
∑
{b}

P(b) exp

(
− 1

2σ2

∥∥∥∥r− 1√
N
Hb

∥∥∥∥2
)

, (8)

and the overbar denotes the average over the randomness of
the equivalent spreading codes. It should be noted that the
second equation is based on the self-averaging assumption
[11].

To evaluate the free energy, we can use the replica meth-
od, by which we have

FK (r,H) = lim
K→∞

(
lim
nr→0

logΞnr

K

)
, (9)

where

Ξnr =
∫

b0,...,bnr

nr∏
a=0

P
(

ba
) 1√

2πσ2
n

∫
R

exp

− 1
2σ2

n

r − 1√
N

K∑
k=1

hkb0k

2
 nr∏

a=1

exp

− 1
2σ2

r − 1√
N

K∑
k=1

hkbak

2
dr


N

, (10)

where b0 is the same as the b in (4). However, it is difficult
to find an exact physical meaning for {ba}a=1,...,nr . We can
roughly consider ba to be the ath estimates of the received
binary symbols b.

An assumption, which still lacks rigorous mathemati-
cal proof, is proposed in [11], which states that Ξnr around
nr = 0 can be evaluated by directly using the expression of
Ξnr obtained for positive integers nr . With this assumption,
we can regard nr as an integer when evaluating Ξnr , and {xa}
as nr replicas of x.

To exploit the asymptotic normality of

1√
N

K∑
k=1

hkbak, a = 0, . . . ,nr , (11)

we define variables {va}a=0,...,nr as

v0 = 1√
K

K∑
k=1

hkb0k,

va = 1√
K

K∑
k=1

hkbak, a = 1, . . . ,nr.

(12)
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The cross-correlations of {va} are denoted by parame-
ters {Qab}, where Qab � vavb. With these definitions, we can
obtain

Ξnr =
∫
R

exp
(
Kβ−1G{Q})µK{Q}∏

a<b

dQab, (13)

where3

µK{Q} =
∑

b0,...,bnr

nr∏
a=0

P
(

ba
)∏
a<b

δ
(

bH
a bb − KQab

)
, (14)

and

exp
(
G{Q}) = 1

2πσ2
n

∫
R

exp

− β

2σ2
n

 r√
β
− v0{Q}

2
× nr∏

a=1

exp

− β

2σ2

 r√
β
− va{Q}

2
dr + O

(
K−1). (15)

By applying Varadhan’s large deviations theorem [18],
Ξnr converges to the following expression as K →∞:

lim
K→∞

K−1 logΞnr = sup
{Q}

(
β−1G{Q} − I{Q}), (16)

where I{Q} is the rate function of µK{Q}, which is based on
an optimization over a set of parameters {Q̃ab}a<b.

Thus, the evaluation of the free energy FK (r,H) depends
on the optimization of (16) over the parameters {Qab} and
{Q̃ab}, which is computationally prohibitive. This problem is
tackled by the assumption of replica symmetry; that is, Q0a =
m, Q̃0a = E, for all a �= 0 and Qab = q, Q̃ab = F, for all a < b,
a �= 0. Then the optimization of (16) is performed on the
parameter set {m, q,E,F}. The optimal {m, q,E,F} are given
by solving the following implicit expressions:

m =
∫
R

tanh
(√

Fz + E
)
Dz,

q =
∫
R

tanh2 (√Fz + E
)
Dz,

E = β−1B

1 + B(1− q)
,

F = β−1B2
(
B−1

0 + 1− 2m + q
)(

1 + B(1− q)
)2 ,

(17)

where Dz = (1/
√

2π)e−z2/2dz, B0 = β/σ2
n , and B = β/σ2.

Then, the performance of MUD can be derived from the free
energy, which is determined by m, q,E,F. It is shown in [11]
that the bit error rate of MUD is given by

Pe = Q
(

E√
F

)
, (18)

where Q(z) = ∫∞
z Dt is the complementary Gaussian cumu-

lative distribution function. Thus the multiple access system

is equivalent to a single-user system operating over an AWGN
channel with an equivalent signal-to-noise ratio (SNR) E2/F.
The parameters m and q are the first and second moments,

respectively, of the soft output, b̂k = P(bk = 1)−P(bk = −1).
When B = B0 (σ2 = σ2

n), it is easy to check that m = q and
E = F using (17).

4. OPTIMAL MUD

In this section, we discuss two types of receivers distin-
guished by whether or not the receiver considers the distri-
bution of the channel estimation error. We denote the case
of directly using the channel estimates for MUD by a prefix
D, and the case of considering the distribution of the channel
estimation error to compensate the corresponding impact by
a prefix C.

4.1. D-optimal MUD

In this subsection, we discuss the D-optimal MUD, where the
receiver applies the channel estimates directly to MUD and
does not consider the distribution of the channel estimation
error. When the equivalent spreading codes contain errors
incurred by the channel estimation error, the corresponding
free energy is given by

FK
(

r, Ĥ
) = K−1 logZ

(
r, Ĥ

)
, (19)

where Ĥ is the estimation of channel coefficients H and

Z
(

r, Ĥ
)

�
∑
{b}

P(b) exp

(
− 1

2σ2

∥∥∥∥r− 1√
N
Ĥb

∥∥∥∥2
)
. (20)

We assume that the self-averaging assumption is also valid for
δH � H− Ĥ , and thus (7) still holds with the corresponding
Ξn given by

3δ(x) is the Dirac delta function.
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Ξn =
∫

b0,...,bnr

nr∏
a=0

P
(

ba
)×

 1√
2πσ2

n

∫
R

exp

− 1
2σ2

n

r − 1√
N

K∑
k=1

hkb0k

2
 nr∏

a=1

exp

− 1
2σ2

r − 1√
N

K∑
k=1

ĥkbak

2
dr


N

. (21)

We can apply the same methodology as in Section 3 to
the evaluation of the free energy with imperfect channel es-
timation. The only difference is that we need to take into ac-
count the distribution of the channel estimation error. In a
way similar to (12), we define

va = 1√
K

K∑
k=1

ĥkbak, a = 1, . . . ,nr. (22)

For ML channel estimation, δhk is uncorrelated with hk, thus
resulting in E{hkĥk} = 1 and E{ĥkĥk} = 1 + ∆2

h. Then we
have

v0va = 1
K

K∑
k=1

b0kbak ∀a > 0,

vavb = 1 + ∆2
h

K

K∑
k=1

bakbbk ∀a, b > 0.

(23)

For MMSE channel estimation, δhk is uncorrelated with
ĥk, thus resulting in E{hkĥk} = E{ĥ2

k} = 1 − ∆2
h. Then we

have

v0va = 1− ∆2
h

K

K∑
k=1

b0kbak ∀a > 0,

vavb = 1− ∆2
h

K

K∑
k=1

bakbbk ∀a, b > 0.

(24)

Thus, the free energy with imprecise channel estimation
still depends on the same parameter set {m, q,E,F} as in
Section 3. An important observation is that the existence of
{δhk} affects only the term G{Q} in (13), and µK{Q} remains
unchanged, which implies that the expressions for m and q
are identical to those in (17). Hence, we can focus on only
the computation of G{Q}. By supposing that the assumption
of replica symmetry is still valid, the asymptotically Gaussian
random variables v0 and va can be constructed using expres-
sions similar to those in [11]. For ML channel estimation, we
have

v0 = u

√
1− m2(

1 + ∆2
h

)
q
− t

m√(
1 + ∆2

h

)
q

,

va =
√

1 + ∆2
h

(
za
√

1− q − t
√
q
)

, a = 1, . . . ,nr ,

(25)

where u, t, and {za} are mutually independent Gaussian ran-
dom variables with zero mean and unit variance.

With the same definitions of u, t, and {za}, for MMSE
channel estimation, we have

v0 = u

√√√√1−
(
1− ∆2

h

)
m2

q
− t

m
√

1− ∆2
h√

q
,

va =
√

1− ∆2
h

(
za
√

1− q − t
√
q
)

, a = 1, . . . ,nr.

(26)

Substituting the above expressions into (13), we can ob-
tain the following conclusions using some calculus similar to
that of [11]. For ML channel estimation, the free energy is
given by

FK
(

r, Ĥ
) = ∫

R
log

(
cosh

(√
Fz + E

))
Dz − Em− F(1− q)

2

− 1
2β

(
log

(
1 +

(
1 + ∆2

h

)
(1− q)B

)

+
B
(
B−1

0 + 1− 2m +
(
1 + ∆2

h

)
q
)

1 + B(1− q)
(
1 + ∆2

h

) )
.

(27)

The corresponding E and F are given by

E = β−1B

1 + B(1− q)
(
1 + ∆2

h

) ,

F =
(
1 + ∆2

h

)
β−1B2

(
B−1

0 + 1− 2m +
(
1 + ∆2

h

)
q
)(

1 + B(1− q)
(
1 + ∆2

h

))2 .

(28)

For MMSE channel estimation, we can obtain

FK
(

r, Ĥ
) = ∫

R
log

(
cosh

(√
Fz + E

))
Dz − Em− F(1− q)

2

− 1
2β

(
log

(
1 +

(
1− ∆2

h

)
(1− q)B

)

+
B
(
B−1

0 + 1− (1− ∆2
h

)
(2m− q)

)
1 + B(1− q)

(
1− ∆2

h

) )
,

(29)

and the corresponding E and F are given by

E = β−1B
(
1− ∆2

h

)
1 + B(1− q)

(
1− ∆2

h

) ,

F = β−1B2
(
1− ∆2

h

)(
B−1

0 + 1− (1− ∆2
h

)
(2m− q)

)(
1 + B(1− q)

(
1− ∆2

h

))2 .

(30)
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The corresponding output signal-to-interference-plus-
noise-ratios (SINRs) of the ML and MMSE channel estima-
tion are given by the following expressions, respectively:

SINRML = 1(
1 + ∆2

h

) 1(
σ2
n + β

(
1− 2m +

(
1 + ∆2

h

)
q
)) , (31)

SINRMMSE = 1− ∆2
h(

σ2
n + β

(
1− (1− ∆2

h

)
(2m− q)

)) . (32)

Thus, we can summarize the impact of the channel esti-
mation error on the D-optimal MUD as follows.

(i) The factors 1/(1 + ∆2
h) in (31) and 1 − ∆2

h in the nu-
merator of (32) represent the impact of the error of
the desired user’s equivalent spreading codes, which is
equivalent to increasing the noise level.

(ii) The imperfect channel estimation also increases the
variance of the residual MAI, which equals β(1− 2m+
(1 + ∆2

h)q) for ML channel estimation-based systems
and β(1 − (1 − ∆2

h)(2m − q)) for MMSE channel
estimation-based systems.

(iii) The equations m = q and E = F are no longer valid
when σ2 = σ2

n . Thus, there are no simple analytical
expressions for obtaining the multiuser efficiency in a
way similar to the Tse-Hanly equation [8].

4.2. C-optimal MUD

In this subsection, we consider the C-optimal MUD, where
the distribution of the channel estimation error is exploited
to compensate for the imperfection of channel estima-
tion. For simplicity, we consider only the IO MUD (C-IO
MUD).

4.2.1. ML channel estimation

When deriving the expressions of C-IO MUD, we consider a
fixed chip period and drop the index of the chip period for

simplicity. The conditional probability P({hk}|{ĥk}) should
be taken into account to attain the optimal detection. Thus,
the a posteriori probability of the received signal r at this chip

period, conditioned on the channel estimates {ĥk} and the
transmitted symbols {bk}, is given by

P
(
r
∣∣{ĥk},

{
bk
})∝∫

RK
P
(
r
∣∣{hk},

{
bk
})
P
({
hk
}∣∣{ĥk}) K∏

k=1

dhk,

(33)

where

P
({
hk
}∣∣{ĥk}) = K∏

k=1

P
(
hk
∣∣ĥk),

P
(
hk|ĥk

)∝ exp

(
−
(
hk − ĥk

)2

2∆2
h

)
exp

(
− h2

k

2

)
.

(34)

It should be noted that the above two expressions are based
on the assumption of normality and mutual independence of
{δhk} in Section 2.2. Then we have

P
(
r
∣∣{ĥk},

{
bk
})∝ ∫

RK
exp

(
−
(
r − (1/√N)∑K

k=1 hkbk
)2

2σ2
n

)

×
K∏
k=1

p
(
hk|ĥk

)
dhk.

(35)

Let r1 = r − (1/
√
N)
∑K

k=2 hkbk, then the integral with
respect to h1 is given by

∫
R

exp

(
−
(
r1 −

(
1/
√
N
)
h1b1

)2

2σ2
n

)
exp

(
−
(
h1 − ĥ1

)2

2∆2
h

)

× exp
(
− h2

1

2

)
dh1 ∝ exp

(
−
(
r1 − b1ĥ1/

√
N
(
1 + ∆2

h

))2

2
(
σ2
n + ∆2

h/
(
1 + ∆2

h

)
N
) )

,

(36)

where the factors common for different {bk} are ignored for
simplicity.

Applying the same procedure for h2, . . . ,hK , we obtain
that

P
(
r
∣∣{ĥk},

{
bk
})

∝ exp

(
−
(
r − (1/√N(1 + ∆2

h

))∑K
k=1 bkĥk

)2

2
(
σ2
n + β∆2

h/
(
1 + ∆2

h

)) )
.

(37)

Thus the LR of IO MUD is given by

P
(
bk = 1|r)

P
(
bk = −1|r)
=
∑
{b|bk=1} exp

(
−(1/2σ2

)∥∥r−(1/√N(1+∆2
h

))
Ĥb

∥∥2
)

∑
{b|bk=−1} exp

(
−(1/2σ2

)∥∥r−(1/√N(1+∆2
h

))
Ĥb

∥∥2
) ,

(38)

where σ2 = σ2
n +β∆2

h/(1+∆2
h). Therefore, the channel estima-

tion error is compensated for merely by changing the equiv-
alent noise variance and scaling the channel estimate with a
factor of 1/(1 + ∆2

h).
Similarly to the analysis in Section 4.1, we can define

v0 = u

√
1− m2(

1 + ∆2
h

)
q
− t

m√(
1 + ∆2

h

)
q

,

va = 1√
1 + ∆2

h

(
za
√

1− q − t
√
q
)

, a = 1, . . . ,nr.

(39)
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Then we can obtain the free energy, which is given by

FK
(

r, Ĥ
) = ∫

R
log

(
cosh

(√
Fz + E

))
Dz − Em− F(1− q)

2

− 1
2β

(
log

(
1 +

B(1− q)(
1 + ∆2

h

))

+
B
((
B−1

0 + 1
)(

1 + ∆2
h

)− 2m + q
)

1 + ∆2
h + B(1− q)

)
,

(40)

where B = β/(σ2
n + β∆2

h/(1 + ∆2
h)). The corresponding E and

F are given by

E = β−1B0

1 + ∆2
h + B0

(
1 + ∆2

h − q
) ,

F = β−1B2
0

((
B−1

0 + 1
)(

1 + ∆2
h

)− 2m + q
)(

1 + ∆2
h + B0

(
1 + ∆2

h − q
))2 .

(41)

An interesting observation is that the equations m = q
and E = F are recovered in this case. Also we can obtain the
equivalent SINR, which is given by

SINRML = 1
σ2
n

(
1 + ∆2

h

)
+ β∆2

h + β(1− q)
. (42)

The corresponding multiuser efficiency η is given by solv-
ing the following Tse-Hanly style equation:

1
η

+
β

σ2
n

∫
R

tanh2

(√
η

σ2
n
z +

η

σ2
n

)
Dz = (1 + ∆2

h

)(
1 +

β

σ2
n

)
.

(43)

From (42), we can see that the impact of channel es-
timation error consists of three aspects, which are repre-
sented by the three terms in the denominator of the ex-
pression (42). The term σ2

n(1 + ∆2
h) embodies the nega-

tive impact of the channel estimation error on the user
being detected, which causes uncertainty in the equivalent
spreading codes of this user and is equivalent to scaling
the noise by a factor of (1 + ∆2

h). Besides implicitly af-
fecting the parameter q in the third term, the channel es-
timation error of the interfering users also results in the
term of β∆2

h; an intuitive explanation for this is that, since
the output of IO MUD can be regarded as the output of
an interference canceller using the conditional mean esti-
mates of all other users [10], the channel estimation er-
ror causes imperfection in the reconstruction of the sig-
nals of the other users and the variance of residual interfer-
ence equals β∆2

h when the decision feedback is free of errors.
The corresponding equivalent channel model is illustrated in
Figure 1.

1 + ∆2
h β β

Transmitted
symbols

Received
symbols

n ∆2
h 1− q

Figure 1: Bit error rate of D-IO MUD as a function of channel es-
timation error variance.

4.2.2. MMSE channel estimation

For MMSE channel estimation, the channel estimation error
δhk is uncorrelated with the estimate ĥk. Thus, we have

P
(
hk|ĥk

) = P
(
δhk + ĥk|ĥk

)
∝ exp

(
−
(
hk − ĥk

)2

2∆2
h

)
.

(44)

Applying the same procedure as ML channel estimation, we
can obtain the LR of IO MUD, which is given by

P
(
bk = 1|r)

P
(
bk = −1|r)
=
∑
{b|bk=1} exp

(
− (1/2σ2

)∥∥r− (1/√N)Ĥb
∥∥2
)

∑
{b|bk=−1} exp

(
− (1/2σ2

)∥∥r− (1/√N)Ĥb
∥∥2
) ,

(45)

where the control parameter, or equivalent noise power, σ2 =
σ2
n + β∆2

h. Substituting B = β/(σ2
n + β∆2

h) into (30), we have

E = β−1B0
(
1− ∆2

h

)
1 + B0

(
1− (1− ∆2

h

)
q
) ,

F = β−1B2
0

(
1− ∆2

h

)(
B−1

0 − (2m− q)
(
1− ∆2

h

))(
1 + B0

(
1− (1− ∆2

h

)
q
))2 .

(46)

Similarly to the case of ML channel estimation, the equations
m = q and E = F are recovered as well. The equivalent out-
put SINR is given by

SINRMMSE = 1− ∆2
h

σ2
n + β

(
1− (1− ∆2

h

)
q
) , (47)

and the corresponding multiuser efficiency is given by solv-
ing the following equation:

1
η

+
β

σ2
n

∫
R

tanh2

(√
η

σ2
n
z +

η

σ2
n

)
= 1 + β/σ2

n

1− ∆2
h

. (48)

The intuition behind (47) is similar to that of ML chan-
nel estimation. On comparing (43) and (48), an immediate
conclusion is that the C-IO MUD is more susceptible to the
error incurred by MMSE channel estimation than that in-
curred by ML channel estimation, when ∆2

h is identical for
both estimators.
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5. LINEAR MUD AND TURBO MUD

We now turn to the consideration of linear and turbo mul-
tiuser detection. For simplicity, we discuss only ML chan-
nel estimation-based systems in this section. MMSE channel
estimation-based systems can be analyzed in a similar way.

5.1. Linear MUD

The analysis of linear MUD can be incorporated into the
framework of the replica method (for MMSE MUD, σ2 =
σ2
n ; for the decorrelator, σ2 → 0) by merely regarding the

channel symbols as Gaussian-distributed random variables.
The system performance is determined by the parameter set
{m, q, p,E,F,G} and a group of saddle-point equations [11].

Particularly, when σ2 = σ2
n (MMSE MUD), the parame-

ters can be simplified to {q,E}, which satisfy q = E/(1 + E)
and E = β−1B0/(1 + B0(1 − q)). The multiuser efficiency is
determined by the Tse-Hanly equation [8].

5.1.1. D-MMSE MUD

Since the channel estimation error does not affect I{Q}, the
parameters m, q, and p are unchanged. With the same ma-
nipulation on G{Q} as in Section 4, we can obtain the pa-
rameters E, F, and G as follows:

E = β−1B

1 + B(p − q)
(
1 + ∆2

h

) ,

F =
(
1 + ∆2

h

)
β−1B2

(
B−1

0 + 1− 2m +
(
1 + ∆2

h

)
q
)(

1 + B(p − q)
(
1 + ∆2

h

))2 ,

G = F − (1 + ∆2
h

)
E.

(49)

5.1.2. C-MMSE MUD

Similarly to Section 4, the MMSE detector considering the
distribution of the channel estimation error is given by
merely scaling Ĥ with a factor of 1/(1 + ∆2

h) and changing
σ2 to σ2

n + β∆2
h/(1 +∆2

h). Then, we have E = F, G = 0, m = q,
and p = 0. The corresponding multiuser efficiency is given
implicitly by (

1 + ∆2
h +

β∆2
h

σ2
n

)
η +

βη

σ2
n + η

= 1. (50)

5.2. Turbo MUD

5.2.1. Optimal turbo MUD

For optimal turbo MUD [4], since the channel estimation er-
ror does not affect I{Q} when evaluating the free energy, the
impact of channel estimation error is similar to the optimal
MUD in Section 4, namely, the corresponding saddle-point
equations remain the same as in [12] except that the parame-
ters E and F are changed in the same way as in (28) and (41).

5.2.2. MMSE filter-based PIC

However, greater complications arise in the case of MMSE
filter-based PIC [4], where the MAI is cancelled with the de-
cision feedback from channel decoders and the residual MAI

is further suppressed with an MMSE filter. The correspond-
ing MMSE filter is constructed with the estimated equivalent

spreading codes {ĥk} and the estimated power of the residual
interference. In an unconditional MMSE filter, the power es-

timate is given by ∆2
b � E{(bk− b̂k)2}, where b̂k is the soft de-

cision feedback; and in a conditional MMSE filter, the power

estimate is given by 1− b̂2
k . However, this power estimate for

user k is different from the true value |bk−b̂k|2 since bk is un-
known to the receiver, thus making the filter unmatched for
the MAI. Hence, the analysis in [12] may overestimate the
system performance since such power estimation errors are
not considered there. Thus we need to take into account the
corresponding power mismatch. For simplicity, we consider
only unbiased power estimation. Note that this scenario can
be applied to general cases where the received signal power is
not perfectly estimated.

For the MMSE filter-based PIC, the powers of the resid-
ual interference are different for different users. Similarly to
the analysis of unequal-power systems in [17], we can divide
the users into a finite number (L) of equal-power groups,
with power {Pl}l=1,...,L, estimated power {P̂l}l=1,...,L, and the
corresponding proportion {αl}l=1,...,L, and obtain the results
for any arbitrary user power distribution by letting L → ∞.
Confining our discussion to unbiased MAI power estima-
tion, we normalize the MAI power such that

∑L
l=1 αlPl = 1

and
∑L

l=1 αlP̂l = 1. The equivalent noise variance is given
by σ2 = σ2

n/∆
2
b. Thus, the bit error rate of MUD is given by

Q(E/
√
F∆2

b) since the power of the desired user is unity.
Similarly to the previous analysis, we define

v0 = 1√
K

L∑
l=1

√
Pk
∑
k∈Cl

hkb0k,

va = 1√
K

L∑
l=1

√
P̂k
∑
k∈Cl

ĥkbak, a = 1, . . . ,nr ,

(51)

where Cl represents the set of users with power Pl. We can see
that the uneven and mismatched power distribution does not
affect the analysis of exp(G{Q}), which incorporates the im-
pact of channel estimation error. However, the rate function
I{Q} is changed to

I{Q} = sup
{Q̃}

∑
a≤b

Q̃abQab −
L∑
l=1

αl logMG
{l}{Q̃}

, (52)

where

MG
{l}{Q̃} =

1
2

∫
Rnr

exp

√PlP̂lEb0

nr∑
a=1

ba + P̂lF
∑
a<b

babb

+
GP̂l

2

nr∑
a=1

b2
a

 n∏
a=1

Dba,

(53)

in which {ba}a=1,...,nr are Gaussian random variables. Sim-
ilarly to [17], after some algebra, we can obtain the free
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energy, which is given by

FK
(

r, Ĥ
) = 1

2

L∑
l=1

αl

(
log

(
1 + (F −G)P̂l

)− P̂lF + PlP̂lE2

1 + (F −G)P̂l

)

+ Em− 1
2
Fq +

1
2
Gp

− 1
2β

(
log

(
1 +

(
1 + ∆2

h

)
(p − q)B

)

+
B
(
B−1

0 + 1− 2m +
(
1 + ∆2

h

)
q
)

1 + B(p − q)
(
1 + ∆2

h

) )
.

(54)

Letting L→∞, we can obtain that

m = E
{

PP̂E

1 + P̂(F −G)

}
,

q = E

{
P̂2
(
PE2 + F

)(
1 + P̂(F −G)

)2

}
,

p = E

{
P̂
(
P̂PE2 + 2P̂F + 1− P̂G

)(
1 + P̂(F −G)

)2

}
,

(55)

where the expectation is with respect to the joint distribution
of P and P̂.

For the unconditional MMSE filter, the expressions for
m, q, and p can be simplified to the following expressions,
since P̂ = E{P} = ∆2

b:

m =
(
∆2
b

)2
E

1 + ∆2
b(F −G)

,

q =
(
∆2
b

)2(
∆2
bE

2 + F
)(

1 + ∆2
b(F −G)

)2 ,

p =
∆2
b

((
∆2
b

)2
E2 + 2∆2

bF + 1− ∆2
bG
)

(
1 + ∆2

b(F −G)
)2 .

(56)

This implies the interesting conclusion that if the MMSE
MUD based receiver regards the received powers of different
users as being equal to the average received power, the mul-
tiuser efficiency will be identical to that of the correspond-
ing equal-power system. It should be noted that the corre-
sponding bit error rates are different although the multiuser
efficiencies are the same. Thus, the analysis of the uncondi-
tional MMSE filter-based PIC in [12] yields correct results. It
should be noted that, for IO MUD with binary channel sym-
bols, this conclusion does not hold since the expressions for
m, q, and p are nonlinear in P.

This conclusion can also be applied to frequency-flat fad-
ing channels. When the received power is perfectly known,
the multiuser efficiency of MMSE MUD is given by

η + E
{

βPη

σ2
n + Pη

}
= 1, (57)
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Figure 2: Bit error rate of D-IO MUD as a function of channel es-
timation error variance.

where the random variable P is the received power and
the expectation is with respect to the distribution of P.
When the receiver is unaware of the fading and uses equal-
power MMSE MUD, the multiuser efficiency of this power-
mismatched MMSE MUD is given by that of an equal-power
system:

η +
βE{P}η

σ2
n + E{P}η = 1. (58)

Comparing (57) and (58) and applying the fact that, for any
positive random variable x, E{x/(1 + x)} ≤ E{x}/(1 +E{x}),
we can see that this power mismatch incurs a loss in mul-
tiuser efficiency.

6. SIMULATION RESULTS

In this section, we provide simulation results to verify and
illustrate the analysis of the preceding sections.

Figure 2 shows the bit error rates versus the variance of
the channel estimation error for a D-IO MUD system with
K = 10, N = 150, P = 50, and σ2

n = 0.2. In this fig-
ure, “independent” represents the case of equivalent spread-
ing codes with mutually independent elements and “convo-
lution” represents the case in which the equivalent spread-
ing codes are the convolutions of binary spreading codes and
channel gains. From this figure, we can see that the assump-
tion of independent elements in the equivalent spreading
codes appears to be valid and the asymptotic results can pre-
dict the performance of finite systems fairly well. This figure
also shows that D-IO MUD is more susceptible to the error
of MMSE channel estimation than that of ML estimation.
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Figure 3: Bit error rate of C-IO MUD as a function of channel esti-
mation error variance.
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Figure 4: Bit error rate of MMSE MUD as a function of channel
estimation error variance.

Figure 3 compares the bit error rates in D-IO and C-IO
MUD systems with β = 0.5 and σ2

n = 0.2. For ML chan-
nel estimation, the C-IO MUD achieves considerably better
performance than the D-IO MUD. For MMSE channel es-
timation, the two IO MUD schemes attain almost the same
performance.

Figure 4 shows the bit error rates for MMSE MUD sys-
tems with the same configuration as in Figure 3. Both the nu-
merical simulations (for both independent and convolution
models of the equivalent spreading codes) and asymptotic
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Figure 5: Bit error rate of MMSE filter-based PIC as a function of
channel estimation error variance.

results are given for D-MMSE MUD, and match fairly well.
Note that C-MMSE MUD achieves marginally better perfor-
mance than D-MMSE MUD.

Figure 5 shows the bit error rates of MMSE filter-based
PIC systems with the same configurations as in Figure 4. The
decision feedback is from the channel decoder of a convolu-
tional code (23, 33, 37)8 when the input SINR is 3 dB. In this
figure, the theoretical and simulation results for the uncon-
ditional MMSE filter are represented with “mismatched” and
“simulation,” respectively; the results with the assumption
that the residual interference power is known are represented
by “optimal.” We can observe that the optimal scheme, which
assumes that the decision feedback error is known, achieves
only marginally better performance.

For Rayleigh flat-fading channels, the multiuser effi-
ciency, obtained by numerical simulations, versus SNR is
given in Figure 6. In this figure, “equal power” means the case
of equal received power. For the case of Rayleigh-distributed
received power, the results of mismatched (regarding the re-
ceived power as being equal) MMSE MUD and optimal (the
received powers are known) MMSE MUD are represented
by “Rayleigh-mismatch” and “Rayleigh,” respectively. We can
see that the numerical results verify our conclusion about
the power-mismatched MMSE MUD in Section 5.2. Also,
the knowledge of received power provides marginal improve-
ment in multiuser efficiency.

In Figure 7, we apply the results for C-MMSE MUD to
obtain the optimal proportion α of training symbols, ver-
sus the coherence time M (measured in symbol periods) and
system load β, to maximize the spectral efficiency given by
(1 − α) log(1 + η SNR), where SNR = 5 dB, η is determined
by (50), and ∆2

h = σ2
n/αM. We can see that the required pro-

portion of training data increases with the system load and
decreases with the coherence time.
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7. CONCLUSIONS

In this paper, we have discussed the impact of channel es-
timation error on various types of MUD algorithms in DS-
CDMA systems by obtaining asymptotic expressions for the
system performance in terms of the channel estimation error
variance. The analysis is unified under the framework of the
replica method. The following conclusions are of particular
interest.

(i) The performance of MUD is more susceptible to
MMSE channel estimation errors than ML ones.

(ii) The MUD schemes that consider the distribution of
channel estimation errors can improve the system per-
formance, considerably for ML channel estimation er-
rors and marginally for MMSE channel estimation
errors.

(iii) When the MMSE MUD treats different users as be-
ing received with equal power, it attains the same mul-
tiuser efficiency as the corresponding equal-power sys-
tems.
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We consider factor-graph-based soft self-iterative equalization in wireless multipath channels. Since factor graphs are able to char-
acterize multipath channels to per-path level, the corresponding soft self-iterative equalizer possesses reduced computational com-
plexity in sparse multipath channels. The performance of the considered self-iterative equalizer is analyzed in both single-antenna
and multiple-antenna multipath channels. When factor graphs of multipath channels have no cycles or mild cycle conditions, the
considered self-iterative equalizer can converge to optimum performance after a few iterations; but it may suffer local convergence
in channels with severe cycle conditions.
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1. INTRODUCTION

A multipath fading channel, which can be mathematically
described by a convolution of transmitted signals and linear
channel response, is one of many typical channel models oc-
curring in digital communications. In general, an equalizer
that makes detection based on a number of adjacent received
symbols is necessary to achieve optimal or near-optimal per-
formance in multipath channels. In classical communica-
tion theory, different representations of multipath channels
have led to equalizers with different designs. By represent-
ing multipath channels as trellis structures, the optimum se-
quence detector can be computed by the Viterbi algorithm
[1], and the optimum symbol detector can be computed
by BCJR algorithm [2]. Starting from the transfer function

This is an open-access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

representation of linear multipath systems, people proposed
various low-complexity designs such as linear zero-forcing
(ZF) equalizer, linear minimum mean-square-error (MMSE)
equalizer, nonlinear zero-forcing decision feedback equal-
izer (ZF-DFE), non-linear MMSE-DFE, and so forth. [3]. In
this work, the multipath channels are represented by factor
graphs, and soft self-iterative equalizers that execute belief
propagation algorithm on factor graphs are studied. (Please
refer to [4] for an excellent tutorial on factor graph and its
applications.)

One question might rise regarding the motivation of this
work, since we have already had both Viterbi algorithm and
BCJR algorithm as exact optimum equalizers. The answer to
this question lies in the flexibility of factor graph in char-
acterizing multipath channels to per-path level. As a well-
known fact, the computational complexity of Viterbi and
BCJR algorithms are exponential in the total number of mul-
tipaths L. In practice, there exist cases when only L′ out of
L paths (with L′ < L) have significant channel gains and

file:yueg@nec_labs.com
mailto:wangx@ee.columbia.edu
mailto:madihian@nec-labs.com
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moreover the location of these significant L′ paths can be
slowly changing in time, for example, rural wireless channels.
Then, a reduced-complexity equalizer that avoids or reduces
the computations spent on those zero multipath taps is de-
sirable. Some efforts along this direction have been made in
earlier works, for example, parallel Viterbi and parallel BCJR
algorithms in [5, 6], which however may require specifically
designed control logic for a different multipath scenario. In
the considered factor-graph-based soft iterative equalizer, the
log-likelihood probabilities are passed as messages in fac-
tor graphs between channel nodes and information nodes
only along the edges that correspond to paths with signifi-
cant gain, thus it inherently results in a complexity reduc-
tion owing to the sparseness of multipath channels. In par-
ticular, we consider three schemes to compute the messages
passed from channel nodes to information nodes, namely
the scheme based on the a posteriori probability (APP) algo-
rithm, the one based on the linear-MMSE-soft-interference-
cancelation (LMMSE-SIC), and the one based on match-
filter-soft-interference-cancelation (MF-SIC); and we ana-
lyze their performance and applicabilities in practical mul-
tipath channels.

One main focus of this paper is the effect of cycles that
existed in factor graph on the equalization performance. As
compared to the Viterbi and BCJR algorithms which them-
selves are belief propagation algorithms operating in trellis
trees of multipath channels and guarantee the optimum per-
formance, the belief propagation algorithm operating in fac-
tor graphs guarantee global optimality only if the underly-
ing factor graph is a tree. Although the condition of factor
graph being a tree (i.e., without cycles) is not always met
in practice, the factor-graph-based belief propagation algo-
rithm has achieved great success in decoding cycle-contained
linear turbo codes and low-density parity-check (LDPC)
codes. For the considered self-iterative equalizer, we quanti-
tatively analyze the cycle effect in single-input single-output
(SISO), multiple-input single-output (MISO), and multiple-
input multiple-output (MIMO) wireless systems; and discuss
an alternative representation of factor graphs that amelio-
rates the performance degradation due to cycle effects.

While it bears similarities to various iterative receivers
developed earlier, for example, [7, 8, 9, 10], we highlight
that the soft self-iterative equalizer is a self-iterative device
which successively improves the equalization performance by
taking advantage of the constraints in received signals due
to multipaths, instead of other constraints for instance im-
posed by error-control coding. Moreover, since the consid-
ered equalizer inputs prior and outputs a posteriori proba-
bilities of information symbols, it can easily concatenate with
other receiver modules to achieve the turbo receiver process-
ing gains [8].

The rest of this paper is organized as follows. In Section
2, the system model and factor graph representation of mul-
tipath channels are described. In Section 3, the factor-graph-
based soft iterative equalizer is derived. In Section 4, the per-
formance of the soft self-iterative equalizer is analyzed by
numerical simulations for both single-antenna and multiple-
antenna systems. Finally, Section 5 contains the conclusions.

2. SYSTEM MODEL AND FACTOR
GRAPH REPRESENTATION

Assume match-filtering and symbol-rate sampling, the re-
ceived signals of multipath channels are normally described
by the following time-domain equation [11]:

yt =
L−1∑
l=0

ht,lxt−l + nt, t = 1, 2 . . . ,T , (1)

where yt ∈ C and xt ∈ Ω are the receive and transmit signals
at time t, respectively; Ω is the modulation set; ht,l ∈ C is the
channel impulse response with delay of l times the symbol
rate at time t; nt ∈ C ∼ N (0, σ2) is the zero-mean σ-variance
circularly symmetrical Gaussian ambient noise that has been
properly whitened and is independent of data; L is the total
number of multipaths; T is the frame length. In this paper, we
are concerned with block signal processing, and assume that
zero prefix is inserted in each signal frame, that is, xt = 0,
t = −L + 1, . . . ,−1. For ease of comparison, we also assume
that channel gain is properly normalized: in static channels,∑L−1

l=0 |ht,l|2 = 1; and in fading channels,
∑L−1

l=0 E(|ht,l|2) = 1,
where E(·) denotes the expectation over random variables
ht,l, for all l. As mentioned earlier, we only consider uncoded
systems in this work, thus xt have equal prior probabilities
and are assumed to be independent for different t.

Equivalently, (1) can be written in a matrix form as




y1
...
yt
...
yT




=




h1,L−1 h1,L−2 · · · h1,0

. . .
. . .

. . .
ht,L−1 ht,L−2 · · · ht,0

. . .
. . .

. . .
hT ,L−1 hT ,L−2 · · · hT ,0




︸ ︷︷ ︸
H

×




x−L+2
...

xt−L+2
...
xT




+




n1
...
nt
...
nT




,

(2)

where H is aT×(T + L− 1) Toeplitz matrix. Throughout this
paper, we assume that H is perfectly known to the receiver,
and ht,l, for all t, l, can be either time invariant or time vari-
ant within each signal frame. In addition, we define IH as the
incidence matrix of H, such that {IH}i, j = 1, if |{H}i, j|2 > 0;
{IH}i, j = 0, otherwise. IH will later be used to help explain
the cycle effects of the factor-graph-based soft equalizer.

In the above, we described single-input single-output
(SISO) multipath systems. Without much difficulty, (1)



Factor-Graph-Based Soft Self-Iterative Equalizer 189

yt

yt+1

yt+2

yt+3

+

+

+

+

h4

h3

h0

h4

h3

h0

h4

h3

h0

xt−4

xt−3

xt−2

xt−1

xt

xt+1

xt+2
...

...

(a)

IH =

1 1 0 0 1

1 1 0 0 1

1 1 0 0 1

1 1 0 0 1

1 1 0 0 1

. . .

(b)

Figure 1: (a) The factor graph representation and (b) the incidence matrix of a single-antenna multipath channel: yt = h0xt + h3xt−3 +
h4xt−4 + nt .
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Figure 2: (a) The factor graph representation and (b) the incidence matrix of an nT × nR single-path MIMO channel.

and (2) as well as IH can be extended to multiple-input
single-output (MISO) and multiple-output multiple-output
(MIMO) cases, by simply replacing yt, ht,l, xt, nt with their
matrix/vector counterparts yt , ht,l, xt, nt . As a result, H and
IH now become NrT × Nt · (T + L− 1) matrices, where Nr

and Nt are the number of receive and transmit antennas, re-
spectively.

The above multipath channels in (1) and (2) can also be
depicted by factor graphs. The example of the factor graph
representations of SISO multipath and MIMO single-path
channels are given in Figures 1 and 2. There are two types
of nodes in the factor graph: the channel nodes for yt, for all
t, and the information nodes xt, for all t. An edge connects
channel node t and information node t′, only if the channel
gain is significant, that is, |ht−t′,l|2 > 0. We remark that by no

means the factor graphs shown in the figures are unique rep-
resentation of the corresponding multipath channels; indeed,
different representations of the same multipath channel lead
to different designs of the factor-graph-based soft iterative
equalizer, which we will discuss in Section 4.3.

3. SOFT SELF-ITERATIVE EQUALIZER
BASED ON FACTOR GRAPH

The considered soft self-iterative equalizer computes the
marginal probabilities of information symbol {xt}Tt=0 based
on prior probabilities of the receive signals {yt}Tt=0 and
{xt}Tt=0, by executing belief propagations in factor graphs. (As
a comparison, both Viterbi algorithm and BCJR algorithm
execute belief propagation in trellis trees.)



190 EURASIP Journal on Wireless Communications and Networking

The messages, defined as the log-likelihood ratio (LLR)
of information symbols, are iteratively passed among the
nodes in factor graphs, such as to compute the marginal
probabilities of information symbols. For BPSK modulation,
the message is 1-tuple. In this paper, we will mainly study the
complex modulation schemes such as MPSK and MQAM for

which the message is log2 |Ω|-tuple. Let m
(p)
ci be the message

passed from the channel node c to the information node i at

the pth iteration, m
(p)
ci � (m

(p)
ci,0,m

(p)
ci,1, . . . ,m

(p)
ci,log2 |Ω|−1); and it

is updated as

m
(p)
ci,k

� Fci,k
(
yc,m

(p)
i′c , ∀i′ ∈Uc

)

= log
Pr
[
bi,k=0|yc,m(p−1)

i′c , ∀i′∈Uc\{i}, m(p−1)
ic,k′ , ∀k′�=k

]

Pr
[
bi,k=1|yc,m(p−1)

i′c , ∀i′∈Uc\{i}, m(p−1)
ic,k′ , ∀k′�=k

] ,

∀k,
(3)

where the mapping function from log2 |Ω|-tuple (bi,0, . . . ,
bi,log2 |Ω|−1) to complex symbol xi is usually referred to as
modulation format; mi′c is the message sent from informa-
tion node i′ to channel node c, as explained next; Uc de-
notes the set of all information nodes incident to channel
node c, Uc\{i} denotes Uc excluding information node i;
and yc is the received signal at time c. The message update
rule in (3) follows the general principle of a belief propa-

gation algorithm, that is, the component message m
(p)
ci,k sent

from channel node c to information node i is updated based
on received signal yc and all incident messages to chan-

nel node c except for the same incident component mes-

sage m
(p−1)
ci,k . Similarly, we let m

(p)
ic be the message passed

from the information node i to the channel node c at the
pth iteration, m

(p)
ic � (m

(p)
ic,0,m

(p)
ic,1, . . . ,m

(p)
ic,log2 |Ω|−1); and it is

updated as

m
(p)
ic,k

� Gic,k
(
m(0)

i ,m
(p)
c′i , ∀c′ ∈ Vi

)

= log
Pr
[
bi,k=0|m(0)

i ,m
(p−1)
c′i , ∀c′∈Vi\{c}, m(p−1)

ci,k′ , ∀k′�=k
]

Pr
[
bi,k=1|m(0)

i ,m
(p−1)
c′i , ∀c′∈Vi\{c}, m(p−1)

ci,k′ , ∀k′�=k
] ,

∀k,
(4)

where m0
i denotes the prior probabilities of the ith informa-

tion symbol, input from other receiver modules (e.g., a chan-
nel decoder); Vi denotes the set of all channel nodes incident
to information node i.

In (4), assume that the messages m(0)
i and m

(p−1)
c′i , for all

c′ are independent random variables, then we have

Gic,k
(
m(0)

i,k ,m
(p)
c′i,k, ∀c′ ∈ Vi

) = m(0)
i,k +

∑
c′∈Vi\{c}

m
(p)
c′i,k. (5)

On the other hand, we have the following three differ-
ent approaches, that is, a-posteriori-probability- (APP-)
based scheme, linear-MMSE-soft-interference-cancellation-
(LMMSE-SIC-)based scheme, and match-filter-soft-inter-
ference-cancellation- (MF-SIC-)based scheme, to compute
(3), that is,

Fci,k
(
yc,m

(p)
i′c , ∀i′ ∈Uc

)

=




log

∑
xi′∈Q+

i,k
exp

(
− ∣∣yc −∑i′∈Uc

hc,c−i′xi′
∣∣2
/σ2 +

∑log2 |Ω|−1
k=0 bi′,k ·m(p−1)

i′c,k /2
)

∑
xi′∈Q−

i,k
exp

(
− ∣∣yc −∑i′∈Uc

hc,c−i′xi′
∣∣2
/σ2 +

∑log2 |Ω|−1
k=0 bi′,k ·m(p−1)

i′c,k /2
) −m

(p−1)
ic,k , for APP,

log

∑
xi∈S+

i,k
exp

(
− ∣∣w∗c,i

(
yc − ỹc

)− µc,ixi
∣∣2
/ν2

c,i +
∑log2 |Ω|−1

k=0 bi,k ·m(p−1)
ic,k /2

)
∑

xi∈S−i,k exp
(
− ∣∣w∗c,i

(
yc − ỹc

)− µc,ixi
∣∣2
/ν2

c,i +
∑log2 |Ω|−1

k=0 bi,k ·m(p−1)
ic,k /2

) −m
(p−1)
ic,k , for LMMSE-SIC, MF-SIC,

(6)

and for LMMSE-SIC,

w∗c,i =
h∗c,c−i∑

i′∈Uc\{i}
∣∣hc,c−i′

∣∣2(
1− ∣∣x̃c−i′

∣∣2)
+
∣∣hc,c−i

∣∣2
+ σ2

,

µc,i = w∗c,ihc,c−i, ν2
c,i = µc,i − µ2

c,i,
(7)

and for MF-SIC,

w∗c,i =
h∗c,c−i∣∣hc,c−i

∣∣2 , µc,i = 1,

ν2
c,i =

∑
i′∈Uc\{i}

∣∣hc,c−i′
∣∣2(

1− ∣∣x̃c−i′
∣∣2)

+ σ2

∣∣hc,c−i
∣∣2 ,

(8)
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Initialize: for all edges
m(0)

ic = 0
for all edges

m(0)
ci = Fci(yc,m

(0)
i′c , ∀i′ ∈Uc)

Self-iterative equalize:
for p = 1 to P

/* compute messages from channel
nodes to
information nodes */ for all edges

m
(p)
ci = Fci(yc,m

(p)
i′c , ∀i′ ∈Uc)

/* compute messages from
information nodes to channel
nodes */ for all edges

m
(p)
ic = Gic(m

(0)
i ,m

(p)
c′ i , ∀c′ ∈ Vi)

end

Output: /* compute information symbols’ a posteriori
probabilities m(P)

i */ for i = 0 to T

m(P)
i =∑c′∈Vi

m
(p)
c′ i

end

Algorithm 1: Algorithm description of the factor-graph-based soft
self-iterative equalizer.

with ỹc =
∑

i′∈Uc\{i} hc,c−i′ x̃c−i′ ,

x̃i =
∑
xi∈Ω

xi

log2 |Ω|−1∏
k=0

bi,km
(p−1)
ic,k

1 + bi,km
(p−1)
ic,k

, (9)

where S+
i,k is the set defined as {xi ∈ Ω | bi,k = 0}, and

similarly is S−i,k; Q+
i,k is the union of {xi′ ∈ Ω | for all i′ ∈

Uc\{i}} and S+
i,k, and similarly is Q−

i,k. The detailed deriva-
tion of (6) is shown in the appendix.

Finally, the whole steps of the proposed equalizer are
given in Algorithm 1.

4. NUMERICAL SIMULATIONS AND ANALYSIS

In this section, we analyze the factor-graph-based soft self-
iterative equalizer in sparse wireless multipath channels
through numerical simulations. For simplicity, we assume
that channel gains remain constant in one frame and change
independently from one to the other. The modulator uses
the QPSK constellation with Gray mapping. Each frame con-
tains 128 QPSK symbols per transmit antenna; proper zero
prefix information symbols are inserted in each frame. The
soft equalizer is a self-iterative device; and we only study
the uncoded system. The performance is evaluated in terms
of frame error rate (FER) versus the signal-to-noise ratio
(SNR).

4.1. SISO multipath fading channels

First, consider a sparse 4-path fading channel: yt = h0xt +
h3xt−3 + nt, with E{|h0|2} = 0.8, E{|h3|2} = 0.2; thus, L = 4
and L′ = 2. In Figure 3, the performance of three different
approaches, (i.e., APP, LMMSE-SIC, and MF-SIC), to com-
puting the extrinsic messages passed from channel nodes to
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Figure 3: FER performance of the factor-graph-based soft iterative
equalizer in SISO multipath fading channels (nT = 1, nR = 1, L = 4,
L′ = 2).

information nodes is presented. For each scheme, total six
iterations, that is, P = 6, are conducted in the self-iterative
equalizer. Serving as a benchmark, the performance of the
optimum maximum likelihood equalizer based on BCJR al-
gorithm is also included in the figure. Since the factor graph
of this channel is cycle free, the belief propagation algorithm
theoretically is able to achieve optimum performance. In-
deed, the soft iterative equalizer using APP-based message
update scheme achieves the optimum performance after a
few iterations. On the contrary, two low-complexity schemes,
LMMSE-SIC and MF-SIC, suffer error floors at high SNRs.
We remark that the prior probability input from other re-
ceiver modules (e.g., channel decoder) can lower but never
eradicate such error floors; henceforth we will only consider
the APP-based scheme for channel node message updating.

Now, consider a sparse 5-path fading channel: yt = h0xt+
h3xt−3+h4xt−4+nt, where E{|h0|2} = 0.7, E{|h3|2} = 0.2, and
E{|h4|2} = 0.1; thus, L = 5 and L′ = 3. As seen in Figure 1,
there exist a number of cycles with length 8 in the factor
graph, where a “cycle” is defined as a close loop in the graph
and its “length” is defined as the number of edges traversed
by that loop. This cycle condition accounts for the marginal
gap between the factor-graph-based equalization and the op-
timum performance, as shown in Figure 4.

4.2. MISO multipath fading channels

Equalization of MISO multipath channels falls into the group
of “underdetermined” problems: at each time instance a mix-
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Figure 4: FER performance of the factor-graph-based soft iterative
equalizer in SISO multipath fading channels (nT = 1, nR = 1, L = 5,
L′ = 3).

ture of plural information symbols that transmitted with
different delays and from different antennas is to be de-
tected from a single-receiver observation. Conventional lin-
ear equalization or decision-feedback-cancellation equaliza-
tion schemes would lead to unsatisfactory performance,
whereas an optimal equalizer has complexity exponential in
(L− 1) · nT . When MISO multipath channels exhibit sparse-
ness, the factor-graph-based soft equalizer becomes poten-
tially attractive, as it can reduce the complexity exponent to
(L′ − 1) · nT .

We consider a two-transmit-one-receive-antenna (2× 1)
MISO system in a sparse 3-path fading. Every transmit-
receive antenna pair follows the same multipath profile, that
is, E{|h0|2} = 0.8, and E{|h2|2} = 0.2; fading coefficients
for different paths and different antenna pairs are assumed
to be mutually independent. The performance is illustrated
in Figure 5. It is seen that after a few iterations the con-
sidered factor-graph-based equalizer performs slightly more
than one dB away from the optimum equalizer. Again, this
performance gap is due to the existence of length-4 cy-
cles in the factor graphs. It is worth to remark that the
complexity of optimum BCJR equalizer soon becomes pro-
hibitive for (2 × 1) MISO systems with QPSK modulation
and L > 3 multipaths; in comparison, the complexity expo-
nent of factor-graph-based equalizer is proportional to L′,
hence in sparse channels it is strictly lower than the origi-
nal L.

4.3. MIMO multipath fading channels

Recently, there has been increasing interest in developing
MIMO equalization schemes in multipath channels. We an-
alyze the performance of the factor-graph-based equalizer as
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Figure 5: FER performance of the factor-graph-based soft itera-
tive equalizer in MISO multipath fading channels (nT = 2, nR = 1,
L = 3).

below. First, we consider (nT × nR) MIMO systems in single
path fading channels. It is easily seen from Figure 2 that the
incidence matrix IH contains length-4 cycles everywhere; and
the cycle condition worsens as more antennas are employed.
To the best of our knowledge, little efforts have been made
to rigorously quantify the cycle condition of factor graphs.
Empirically, the cycle condition is better, if the length of cy-
cles is increased, or given the cycle length, the number of cy-
cles is reduced, or the cycles have a larger number of edges
connecting to rest of the graph. However, by and large, the
combined effect of these empirical assertions is unclear; we
then have to resort to numerical simulations. It is seen from
Figures 6 and 7 that the considered self-iterative equalizer
approaches optimum demodulation performance in (2 × 2)
MIMO channels, but it suffers considerable performance loss
in 4× 4 MIMO channels. Especially from the (4× 4) MIMO
case, we conclude that the direct application of the factor-
graph-based equalizer may not be a good option for MIMO
channels. It is seen from Figure 8 that the above observation
also holds for MIMO multipath channels—as much as 2.5 dB
performance loss is seen in a (2 × 2) MIMO with 3 multi-
paths.

Alternative factor graph representation for
MIMO multipath fading channels

The previous simulation results and analysis has identified
the difficulty in directly applying the factor-graph-based
equalizer in MIMO channels. An alternative way to ame-
liorate this problem is to reconstruct the underlying factor
graphs. Shown in Figure 9 the idea is to glue all channel
nodes in the original graph {y1,t, . . . , ynR,t} that corresponds
to different receiver antennas at the same time instance t into
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Figure 6: FER performance of the factor-graph-based soft iterative
equalizer in MIMO multipath fading channels (nT = 2, nR = 2,
L = 1).
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Figure 7: FER performance of the factor-graph-based soft iterative
equalizer in MIMO multipath fading channels (nT = 4, nR = 4,
L = 1).

a new channel node yt � [y1,t, . . . , ynR,t]T ; the channel co-
efficient on each edge is now an (nR × 1) vector instead of
a scalar. In doing so, the alternative factor graph still repre-
sents the same MIMO multipath systems, but the extensive
short cycles due to multiple receive antennas are systemat-
ically avoided. The belief propagation algorithm can be ac-
cordingly rederived; and in single-path channels, it converges
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Figure 8: FER performance of the factor-graph-based soft iterative
equalizer in MIMO multipath fading channels (nT = 2, nR = 2,
L = 3, L′ = 2).

y1,t

y2,t
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ynR ,t

� yt
+

h1,t

h2,t
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hnT ,t

x1,t

x2,t

...

xnT ,t

Figure 9: The alternative factor graph representation of an nT × nR
single-path MIMO channel. Compared to Figure 2, here all channel
nodes {y1,t , y2,t , . . . , ynR ,t} that correspond to different receiver an-
tennas at the same time instance t are glued to form a new channel
node yt .

in one iteration and coincides with the optimal APP MIMO
demodulator [12]. With this alternative factor graph repre-
sentation, we can continue to apply the self-iterative equal-
izer for MIMO multipath fading channels to improve the
performance. We now consider the case of (2 × 2) MIMO
with 3 multipaths as an example. The FER curves are shown
in Figure 10. It is seen that the resulting performance is sig-
nificantly improved and approaches the performance from
the optimum demodulation.

5. CONCLUSIONS

Since a factor graph is able to characterize multipath chan-
nels to per-path level, the factor-graph-based soft self-itera-
tive equalizer with reduced computational complexity
is a potential candidate for sparse multipath channel
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equalization. By numerical simulations, we have shown that
the cycles in factor graphs are crucial to the convergence
property of the considered soft self-iterative equalization.
While being able to achieve near-optimum performance in
single-input single-output (SISO) and multiple-input single-
output (MISO) sparse multipath channels with mild cycle
conditions, a factor-graph-based soft self-iterative equalizer
may suffer noticeable performance loss in multiple-input

multiple-output (MIMO) multipath channels, unless proper
means is taken to ameliorate the cycle conditions in factor
graphs.

APPENDIX

DERIVATION OF (6)

(i) For APP detection, we have

Fci,k
(
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(p)
i′c , ∀i′ ∈Uc
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(A.1)

(ii) For LMMSE-SIC detection, we first obtain the MMSE
filtering output, given by

zc,i = w∗c,i
(
yc − ỹc

)
. (A.2)

Based on Gaussian approximation of zci , the extrinsic mes-
sages can be computed by
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(A.3)

where

w∗c,i =
h∗c,c−i∑

i′∈Uc\{i}
∣∣hc,c−i′

∣∣2(
1− ∣∣x̃c−i′

∣∣2)
+
∣∣hc,c−i

∣∣2
+ σ2

,

µc,i = w∗c,ihc,c−i, ν2
c,i = µc,i − µ2

c,i.
(A.4)

The details for obtaining w∗c,i, µc,i, and ν2
c,i can be found in

[7].

(iii) For MF-SIC, we simply apply the match filter to the
soft interference canceled output, that is,

zc,i = w∗c,i
(
yc − ỹc

)
, w∗c,i =

h∗c,c−i∣∣hc,c−i
∣∣2 . (A.5)

We then approximate the MF-SIC output as Gaussian dis-
tributed, and compute extrinsic message in the same form in
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Figure 10: FER performance of the soft iterative equalizer based on
alternative factor graph representation in MIMO multipath fading
channels (nT = 2, nR = 2, L = 3, L′ = 2).

(6) with mean and variance given by

µc,i = 1,

ν2
c,i =

∑
i′∈Uc\{i}

∣∣hc,c−i′
∣∣2(

1− ∣∣x̃c−i′
∣∣2)

+ σ2

∣∣hc,c−i
∣∣2 .

(A.6)
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We propose a novel system architecture that employs a matching pursuit-based basis selection algorithm for directions of arrival
estimation. The proposed system does not require a priori knowledge of the number of angles to be resolved and uses very small
number of snapshots for convergence. The performance of the algorithm is not affected by correlation in the input signals. The
algorithm is compared with well-known directions of arrival estimation methods with different branch-SNR levels, correlation
levels, and different angles of arrival separations.
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1. INTRODUCTION

In recent years, the impact of adaptive antennas and array
processing to the system performance of wireless commu-
nication systems has gained intense attention. Adaptive (or
smart) antennas consist of an antenna array combined with
space and time processing. The processing of different anten-
nas helps to improve system performance in terms of both
capacity and quality, in particular by decreasing cochannel
interference. A detailed overview of adaptive antennas can be
found in [1, 2].

One of the most important problems for adaptive
antenna systems in order to perform well is to have reli-
able reference inputs. These references include array element
positions and characteristics, directions of arrivals, planar
properties and dimensionality of the incoming signals. In
this paper we investigate one of the most critical problems
of adaptive antenna systems, namely directions of arrival
(DOA) estimation.

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

For an adaptive system to be effective, it must have very
accurate estimations of the DOA for the signal and the in-
terferers. Once the directions are estimated accurately then
processing in spatial, time, or other domains can be accom-
plished in order to improve the system performance.

There are many different approaches and algorithms for
estimating DOA with various complexities and resolution
properties such as ML [3], Bartlett [4], MVDR [1], MUSIC
[5], and ESPRIT [6]. Variations to these models can also be
found in the recent literature, some of which will be referred
to in the following section.

For estimation of DOA, we consider a high-resolution
basis selection algorithm, the flexible tree-search-based or-
thogonal matching pursuit (FTB-OMP) algorithm that is
proposed in [7]. The FTB-OMP algorithm heuristically con-
verges to the maximum likelihood solution. The algorithm
selects a basis for signal decomposition by determining a
small, possibly the smallest, subset of vectors chosen from
a large redundant set of vectors to match the given data. This
problem has various applications such as time/frequency
representations [8], speech coding [9], and spectral estima-
tion [10]. For the case of DOA, this set of vectors are mod-
eled as possible outputs of the antenna array elements when
the signal is arriving from a certain direction. The problem

mailto:gkarabul@site.uottawa.ca
mailto:tkurt@site.uottawa.ca
mailto:yongacog@site.uottawa.ca
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of selecting correct linear combination of these elements is
equivalent to the problem of selecting correct DOA.

In DOA estimation, typically only a small number of di-
rections contain the signal. Hence, the solution to the DOA
estimation problem will be sparse. In this paper, we pro-
pose to use the FTB-OMP algorithm for DOA estimation,
by exploiting the sparsity property of the DOA. The pro-
posed technique is named as estimation of directions of ar-
rival by matching pursuit (EDAMP). The main advantages
of EDAMP are the flexibility and increased resolution at low
signal-to-noise ratio (SNR) levels. It also does not require the
a priori knowledge of the number of signals to be resolved,
and it is not affected by the correlation of the signals arriv-
ing from different directions. The output of the algorithm is
directly the angles of arrivals and their corresponding ampli-
tudes; hence it does not require any postprocessing of output
amplitudes at different angles as would be required in the
case of conventional DOA estimators.

In the next section, the problem statement for the DOA
estimation will be presented. In Section 3, the FTB-OMP al-
gorithm employed in EDAMP structure will be summarized.
In Section 4, the system model for estimating directions will
be given. In Section 5, the simulation results will be presented
for different scenarios. Finally in Section 6, the conclusions
will be given.

2. PROBLEM STATEMENT

Consider an antenna array consisting of N elements. The
output of these elements is a vector x of size N × 1. Gen-
erally x corresponds to a linear combination of signals from
different directions. If we consider ith and jth elements of x,
depending on DOA and the distance between them, xi and
xj contain the same signals with different phase shifts. The
problem is to identify each signal’s DOA from x which is a
weighted sum of the signals plus noise.

In the literature, different methods for achieving this goal
are presented.

(i) The first one is the maximum likelihood (ML) ap-
proach [3]. Although it is the best one in terms of per-
formance, it has formidable complexity. So other sub-
optimum algorithms which generally converge to ML
performance at high SNR are proposed.

(ii) The second approach is finding the array response in
the spectral domain for different angles, and recover-
ing the local maximas as DOA [1, 4].

(iii) The third one is the eigenstructure method. In this
method the space spanned by the eigenvectors is parti-
tioned into signal subspace and noise subspace, hence
they are referred to as subspace algorithms. After par-
titioning, signal subspace is investigated to recover
DOA. The most popular subspace algorithms are ES-
PRIT [6] and MUSIC [5]. These algorithms are more
complex than spectral domain algorithms since they
require eigenvalue decomposition. However they have
performances in between ML algorithm and spectral
domain algorithms. On the other hand, they have poor
performances in the low-SNR regions [1, 2].

Many different techniques, including independent com-
ponent analysis [11], and many modified versions of these
algorithms have been proposed in addition to the main ones
mentioned above [1, 12, 13, 14].

In this paper we propose to use the EDAMP algorithm as
a solution to the DOA estimation problem in order to achieve
high resolution with low complexity. In EDAMP, we pro-
pose to use a high-resolution basis selection algorithm FTB-
OMP. In the next section, the FTB-OMP algorithm will be
described in detail.

3. BASIS SELECTION ALGORITHMS

The basis selection problem can be stated over C as follows.
Let D = {ak}nk=1 be a set/dictionary of vectors which is
highly redundant (i.e., ak ∈ Cm and m � n with Cm =
Span(D)).

The basis selection problem can be viewed as finding the
most sparse solution to a linear system of equations. More
precisely, if we form a matrix A from the columns of the dic-
tionary D , A = [a1, a2, . . . , an], the problem can be stated as
finding an x̄, with at most r nonzero entries such that

‖x̄− x‖ ≤ ε (1)

for ε ≥ 0, and r > 1.
Even though it would give the ML solution, finding the

most sparse solution to (1) in an overcomplete dictionary
using an exhaustive search is infeasible for large dimensions.
In order to solve this problem, suboptimal methods based
on sequential and parallel basis selection have been pro-
posed. Due to high-complexity requirements of the paral-
lel basis selection algorithms [15], sequential basis selection
(SBS) methods are more frequently used for practical pur-
poses [10, 16, 17].

In the following sections, we describe the orthogonal
matching pursuit (OMP), and the tree-search-based OMP al-
gorithms. There are several other decomposition algorithms
such as best orthogonal basis [18] and method of frames
[19], which are not considered here due to their low reso-
lution and poor sparsity properties.

The algorithms are explained based on the notation in
[20]. As mentioned before, basis selection in OMP algo-
rithms is performed sequentially, that is, one at a time.

Let the residual vector after the pth iteration be denoted
by bp, with b0 = x. PSp denotes the orthogonal projection
matrix onto the range space of Sp, and P⊥Sp = I − PSp de-
notes its orthogonal complement with PS0 = 0 and P⊥S0

= I .
The projection matrix on the space spanned by ak, with
‖ak‖ = 1, is Pak = aka

T
k . The algorithm terminates after r

iterations.

3.1. Orthogonal matching pursuit algorithm

The orthogonal matching pursuit (OMP) algorithm is pro-
posed in [20, 21], independently. OMP is also called modi-
fied matching pursuit algorithm [20].
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Figure 1: L-branch search tree.

The OMP selects kp in the pth iteration by finding the
vector best aligned with the residual obtained by projecting
b onto the orthogonal complement of the range space Sp−1,
that is,

kp = arg max
l

∣∣aTl P⊥Sp−1
b
∣∣

= arg max
l

∣∣aTl bp−1
∣∣, l /∈ Ip−1.

(2)

With the initial values, â0
kp
= akp , q0 = 0, we can write

PSp = PSp−1 + qpq
T
p , (3)

where

âlkp = âl−1
kp
− (qTl−1â

l−1
kp

)
ql−1, l = 1, 2, . . . , p,

qp =
â
p
kp∥∥âpkp
∥∥ .

(4)

The residual bp is updated as follows:

bp = P⊥Spbp−1 = bp−1 −
(
qTp bp−1

)
qp. (5)

The coefficients ci change with each iteration and can be
evaluated by taking the orthogonal projection of x onto Sp.
The algorithm terminates when either p = r, or ‖bp‖ ≤ ε.

3.2. Tree-search-based orthogonal matching
pursuit algorithm

Matching pursuit algorithms with tree-based search are pro-
posed in [22]. We focus on TB-OMP algorithm.

In this algorithm, the best matching vector indices,

{k(1)
p , k(2)

p , . . . , k(L)
p } at the pth iteration are selected according

to

k(i)
p = arg max

l

∣∣aTl P⊥Sp−1
b
∣∣,

l �=
{
k(1)
p , k(2)

p , . . . , k(i−1)
p

}
, i = 1, . . . ,L.

(6)

At the end of r iterations, the search grows exponentially
to a tree with Lr leaves as shown in Figure 1. The leaf cor-
responding to the smallest residual error vector yields the
solution.
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Figure 2: L = 4, d = 2 search tree for r = 4.

3.3. Flexible tree-search-based orthogonal
matching pursuit

In [22], it is concluded that OMP algorithm offers a good
compromise between performance and running time among
the tree-search techniques, namely the matching pursuit and
the order recursive matching pursuit algorithms.

In this section, we summarize the efficient tree-search-
based OMP algorithms with branch pruning, the flexible
tree-search-based OMP (FTB-OMP), that has been recently
proposed in [7]. A maximum of L branches are searched at
each partial solution. Thus, the resolution is adaptive, since it
changes for different values of L in the algorithm. Note that
TB-OMP (proposed in [22]) also has this adaptive nature,
but has a prohibitive running time since it does not employ
tree-pruning.

Our objective is to prune the tree branches that are
heuristically believed to be unnecessary. Our heuristic is only

to keep branches among k(1)
p , k(2)

p , . . . , k(L)
p which are closely

“aligned” with the OMP first choice branch k(1)
p . We measure

this alignment by the correlation between vectors which is
defined as

ρi j =
〈
ai, aj

〉
∥∥ai
∥∥∥∥aj

∥∥ . (7)

In the algorithm, an input design parameter correlation
threshold ξ is given. A branch is assumed to be unnecessary

when the candidate vector is not aligned with k(1)
p , that is,

|ρk(1)
p ,k(i)

p
| < ξ.

In flexible tree-search-based OMP (FTB-OMP), the
branching factor L is of variable size. In the first iteration
L = M, where M is a parameter of the algorithm. At the ith
iteration L is set to �M/di	, where �·	 represents the ceiling
function. The parameter d > 0, represents the speed of the
decay in the branching factor of the search tree. The idea in
this algorithm is to start the search with a large number of
branches at the initial iteration, where an erroneous selection
is more likely to appear, and to reduce the branching factor
as the number of iterations increases. A search tree for L = 4,
d = 2 is shown in Figure 2. For the special case d = 1, the
algorithm keeps L as the branching factor.

Note that FTB-OMP is a generalization of both OMP
and TB-OMP algorithms. By choosing ξ = 1, we require

full alignment so that only k(1)
p is kept, reproducing OMP.

By choosing ξ = 0, and d = 1, we place no restriction on
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FTB-OMP (d, p, r,L, ξ, ε)
Global K = [k1, k2, . . .], Best res, Best k

Calculate bp−1 as in (5)
If ‖bp−1‖ < Best res

Best k = [k1, . . . , kp−1]
Best res← ‖bp−1‖

end
If p > r or ‖bp−1‖ < ε, then return
Calculate {k(1)

p , k(2)
p , . . . , k(L)

p } as in (6)
For each i = 1–L do
If |ρ

k
(1)
p ,k(i)

p
| ≥ ξ

kp = k(2)
p

FTB-OMP (d, p + 1, r, �L/d	, ξ, ε)
end

end

Algorithm 1: Pseudocode for FTB-OMP.

Dictionary FTB-OMP algorithm
Directions
of arrival

x
Rx-1 Rx-2 · · · Rx-N

Figure 3: EDAMP estimation of DOA.

alignment, reproducing TB-OMP. A value 0 < ξ < 1 repre-
sents a compromise between the number of nodes for OMP
(r nodes), and for TB-OMP ((Lr+1 − 1)/(L− 1)). Further re-
duction on the tree-size is achieved by using decay parame-
ter d. This reduction makes the algorithm more competitive
even without tree-pruning (ξ = 0). A pseudocode for FTB-
OMP is given in Algorithm 1.

4. SYSTEM MODEL

In our system model for DOA estimation, we consider an
adaptive antenna array of N elements as in Figure 3. The in-
put signal is assumed to be a plane wave or equivalently it can
be decomposed into plane waves.

Let x be the received vector formed by the received sig-
nal at each antenna element. For a uniform linear array the
dictionary D can be obtained as

D =




1 1 · · · 1
e jψ1 e jψ2 · · · e jψM

...
...

...
...

e j(N−1)ψ1 e j(N−1)ψ2 · · · e j(N−1)ψM




, (8)

where ψi is the phase difference between elements of array,
when the signal arrives from angle θi. The relation between
ψi and θi is given as ψi = (2πl/λ) cos(θi), where λ is the wave-
length and l is the array spacing between the antenna ele-
ments. For the case in (8), the possible range of DOA is di-
vided intoM sections. These sections form the dictionary D .
Also for presentation purposes, we stick to the notation of [2]
and define u = cos(θi).

Depending on the DOA, the received signal vector of size
N × 1 will be a linear combination of the columns of D plus
noise. Hence, detecting the DOA problem will reduce to find-
ing correct linear combination of the columns of D .

When the signal arrives from an individual angle only,
the problem is straightforward and algorithm chooses the
column of D , which has the maximum inner product with
the received vector x. However when the signal arrives from
more than one angle, x is a linear combination of columns
of D and trying every possible linear combination would
give the ML solution. On the other hand, this would bring
formidable complexity to the system. By employing the FTB-
OMP algorithm presented in the previous section, we pro-
pose a heuristic approximation to ML solution.

FTB-OMP algorithm selects the columns of D which
are estimated to form x, and these columns correspond to
the DOA. FTB-OMP also returns to the coefficients of these
columns, which represent the amplitude of the correspond-
ing DOA.

There are three main advantages of the application of
FTB-OMP.

(i) It does not require the number of directions to be es-
timated. By comparing the amplitude in x and am-
plitude of the resolved signals defined by the space
spanned by the columns of D , which have already
been chosen by the algorithm, it is capable of decid-
ing whether all the components are resolved or not.
Considering that most of the spectral and subspace al-
gorithms require the number of directions as an input,
this is a very important advantage.

(ii) The algorithm allows flexibility between complex-
ity and resolution property. By increasing the search
depth, a closer solution to ML can be achieved, by de-
creasing the search depth algorithm running time can
be decreased. But for both cases, it is computation-
ally advantageous to the subspace-based algorithms,
since it works on spectral domain and does not require
eigenvalue decomposition.

(iii) In EDAMP, not the signal subspaces but the ampli-
tudes of the received signals are used. As a result, sys-
tem performance is robust to correlation between the
inputs from different angles.

In the next section we support these advantages by simu-
lation results.

5. SIMULATION RESULTS

In the simulations we consider a 10-element uniform linear
array (ULA) that has element separation of λ/2 as shown in
Figure 4. The SNR values correspond to the signal-to-noise
ratios at the input of each antenna element and they are as-
sumed to be the same. However the noise at each element
is assumed to be independent identically distributed (i.i.d.)
additive white Gaussian noise (AWGN). The system SNR is
much higher than the SNR at each element. Hence, low-SNR
results presented in the paper are of practical interest as well.
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Figure 6: Subarrays for ESPRIT: first five elements of the original
array form the first subarray, and last five elements of the original
array form the second subarray.

Unless stated otherwise, two different signal directions
with u1 = 0.0433 and u2 = −0.0433 (the minimum distance
that can be resolved for a 10-element ULA [2]) are consid-
ered. The amplitudes in both directions are assumed to be
the same. These u values correspond to 87.52◦ and 92.48◦.
As shown in Figure 5, the range of estimation is between 0◦

and 180◦.
In the subspace-based algorithms, for the convergence of

the eigenvalues, 100 independent snapshots are used. The re-
sults are averaged over 1000 Monte Carlo simulations.

Other than the proposed EDAMP algorithm as described
in the previous section, Bartlett [4], MVDR [2], MUSIC [5],
and ESPRIT [6] algorithms have also been considered. These
algorithms have been simulated with the parameters defined
above, and all of the results presented in this work about
these algorithms have been calibrated with the results on
their performances presented in the literature prior to this
work [1, 2].

Bartlett algorithm is generated as a traditional beam-
former with 10 elements, steered along different angles and
acquiring the maximum amplitude points. Application of
MVDR is simply using MVDR beamformer coefficients in-
stead of uniform coefficients of Bartlett. For MUSIC, the pa-
rameters described in [2, 5] are employed for 10 antenna
elements.

For the ESPRIT algorithm, the antenna array is divided
into two subarrays, one being the shifted version of the other
in space. The constant phase shift between two subarrays
is employed for the resolution. For simulations, 5-element-
shifted ESPRIT is considered as shown in Figure 6.

Table 1: Parameters of FTB-OMP algorithm used in EDAMP sim-
ulations.

Parameter Value

Tree-pruning (ξ) 0.25

Number of branches (L) 100

Decaying parameter (d) 10

Maximum iteration (r) 3
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Figure 7: Probability of resolution versus SNR for uncorrelated in-
puts.

In Table 1, the parameters used for FTB-OMP algorithm
employed in the simulations are given. With these parame-
ters, EDAMP requires much less computational time when
compared to ESPRIT and MUSIC. In terms of floating point
operations in MATLAB simulation platform, EDAMP re-
quires approximately half the number of flops required by
ESPRIT, and one fourth the number of flops required by
MUSIC.

5.1. Uncorrelated inputs

We first look at the case when the signals arriving from dif-
ferent angles are uncorrelated. In Figure 7, the novel EDAMP
algorithm is compared with all four algorithms mentioned
above. As can be seen in Figure 7, EDAMP performs well es-
pecially in the low-SNR region and the probability of resolu-
tion increases linearly with SNR. For uncorrelated channels
at low SNR, EDAMP outperforms every other algorithm, and
at high SNR, ESPRIT performs the best.

In Figure 8, root mean square error (RMSE) in the esti-
mated angles is shown. RMSE is normalized by the null-to-
null beamwidth (BWNN) of the 10-element antenna array. As
it is seen in Figure 8, at low SNR EDAMP outperforms ES-
PRIT and at high SNR, ESPRIT is better in terms of RMSE
performance.
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Figure 8: RMSE of DOA normalized by null-to-null beamwidth for
uncorrelated inputs.

Next, the effect of angular separation on the probability
of resolution is investigated. In Figure 9, it is depicted that
for SNR = 3 dB, EDAMP can resolve more closely separated
signals when compared to ESPRIT. Also in Figure 9, we can
see another limitation of ESPRIT. In ESPRIT algorithm, the
antenna array is divided into two symmetric subarrays. The
resolution property is highly dependent on the distance be-
tween the first element of the first array and first element of
the second array, which is denoted by ls [2]. The ESPRIT
scheme that we employ in our simulations is the one with
highest resolution available for a 10-element antenna array
[2]. However, in ESPRIT algorithm, the resolvable angles are
limited by the relation

− 1
ls
< u <

1
ls
. (9)

For the scheme employed which is shown in Figure 6, ls = 5.
Since

−1
5
< u <

1
5

, (10)

the largest value of ∆u, for resolution is 1/5 + 1/5 = 0.4. It
is clearly seen that for u > 0.4, the performance of ESPRIT
degrades very fast. On the other hand, EDAMP has no such
limitation. One could select an ESPRIT scheme with smaller
ls hence increasing the resolvable range, but this would result
in lower probability of resolution and worse RMSE in the re-
solvable range [2, 6].

5.2. Correlated inputs

Above we considered the case when two signals arriving from
different angles were uncorrelated. Here, we investigate the
effect of correlation on the system performance. The perfor-

EDAMP
ESPRIT

0 5.7 11.5 17.3 23 29 35 41 47 53.5 60

Angular separation (∆θ) (deg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

of
re

so
lu

ti
on

Figure 9: Probability of resolution versus angular separation for
uncorrelated inputs for SNR = 3 dB.

mance of subspace algorithms, namely MUSIC and ESPRIT
are highly dependent on the correlation between input sig-
nals arriving from different angles [1, 2, 5, 6]. This is a natu-
ral outcome of subspace algorithms making use of eigenspace
decomposition in order to separate noise, signal, and inter-
ference.

On the other hand, the performance of EDAMP is in-
dependent of correlation in the signals, since its resolving
power depends solely on the amplitudes in different direc-
tions. This is supported by the results of Figures 10 and 11.
Even for 90% correlation, the performance of EDAMP is the
same as its performance with uncorrelated channels. How-
ever, as shown in Figures 10 and 11, the performances of
MUSIC and ESPRIT are severely degraded with increased
correlation.

It is seen that for highly correlated signals EDAMP reso-
lution performance is much better than subspace algorithms
such as MUSIC and ESPRIT.

5.3. Effect of number of snapshots

In wireless communications, especially for real-time applica-
tions, delays in the system are very critical. In DOA estima-
tion, a number of snapshots is required for the estimation to
be accurate [1]. When the number of snapshots increases, the
delay in the system increases. It is well known that with in-
sufficient number of snapshots, traditional DOA algorithms
perform poorly. In EDAMP, snapshots are only utilized for
running the algorithm again and averaging the estimations.
For known signals, the snapshots can be utilized to decrease
the SNR by averaging the signals from different snapshots.
The number of snapshots, therefore, is not very critical as in
the case of subspace algorithms. Here we investigate the effect
of number of snapshots by decreasing it from 100 to 10, and
the effect of number of snapshots when the SNR is 15 dB.
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Figure 10: RMSE of DOA normalized by null-to-null beamwidth
for 90%-correlated inputs.
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Figure 11: Probability of resolution versus SNR for 90%-correlated
inputs.

In Figures 12, 13, and 14 it is clearly depicted that
EDAMP performs much better for low number of snap-
shots. Even at 10 snapshots, EDAMP shows acceptable per-
formance, which makes EDAMP even more valuable for ap-
plications requiring short delays.

6. CONCLUSIONS

In this paper, we have presented a novel DOA estimator,
EDAMP, which employs a based basis selection algorithm,

EDAMP
ESPRIT

−20 −15 −10 −5 0 5 10 15

SNR (dB)

−7

−6

−5

−4

−3

−2

−1

0

1

2

10
lo

g(
R

M
SE
/B

W
N

N
)

Figure 12: RMSE of DOA normalized by null-to-null beamwidth
for 90%-correlated inputs with 10 snapshots.
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Figure 13: Comparison of probabilities of resolution of 90%-
correlated inputs for 10 and 100 snapshots.

namely FTB-OMP. Many advantages of EDAMP when com-
pared to the traditional algorithms are presented, which can
be summarized as follows.

The EDAMP algorithm gives directions of arrival and
their corresponding amplitudes as output, so it does not re-
quire postprocessing to detect amplitudes after detecting di-
rections. On the other hand, the algorithm does not need
preprocessing since it does not require the number of DOA
as input.
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Figure 14: Probability of resolution versus number of snapshots for
90%-correlated inputs with SNR = 15 dB.

EDAMP is not affected by the correlations in the signals
from different DOA, hence it is expected to perform better
in multipath situations when compared to traditional tech-
niques.

Since it is a heuristic approach to ML solution, it gives
good resolution properties even at low-SNR situations. It
also requires very few snapshots, when compared to subspace
algorithms, thus decreasing processing time.

Many different variations of basis selection algorithms
can be utilized for DOA estimation or similar estimation
problems employing overcomplete sets and sparse solutions.
Hence the idea presented in this paper promises many possi-
ble future research areas in several areas of signal processing,
other than DOA estimation.
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Abbas Yongaçog̃lu received the B.S. degree
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We consider blind channel identification and signal separation in long-code CDMA systems. First, by modeling the received signals
as cyclostationary processes with modulation-induced cyclostationarity, long-code CDMA system is characterized using a time-
invariant system model. Secondly, based on the time-invariant model, multistep linear prediction method is used to reduce the
intersymbol interference introduced by multipath propagation, and channel estimation then follows by utilizing the nonconstant
modulus precoding technique with or without the matrix-pencil approach. The channel estimation algorithm without the matrix-
pencil approach relies on the Fourier transform and requires additional constraint on the code sequences other than being a
nonconstant modulus. It is found that by introducing a random linear transform, the matrix-pencil approach can remove (with
probability one) the extra constraint on the code sequences. Thirdly, after channel estimation, equalization is carried out using a
cyclic Wiener filter. Finally, since chip-level equalization is performed, the proposed approach can readily be extended to multirate
cases, either with multicode or variable spreading factor. Simulation results show that compared with the approach using the
Fourier transform, the matrix-pencil-based approach can significantly improve the accuracy of channel estimation, therefore the
overall system performance.

Keywords and phrases: long-code CDMA, multiuser detection, cyclostationarity.

1. INTRODUCTION

In addition to intersymbol and interchip interference, one of
the key obstacles to signal detection and separation in CDMA
systems is the detrimental effect of multiuser interference
(MUI) on the performance of the receivers and the over-
all communication system. Compared to the conventional
single-user detectors where interfering users are modeled as

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

noise, significant improvement can be obtained with mul-
tiuser detectors where MUI is explicitly part of the signal
model [1].

In literature [2], if the spreading sequences are peri-
odic and repeat every information symbol, the system is
referred to as short-code CDMA, and if the spreading se-
quences are aperiodic or essentially pseudorandom, it is
known as long-code CDMA. Since multiuser detection re-
lies on the cyclostationarity of the received signal, which is
significantly complicated by the time-varying nature of the
long-code system, research on multiuser detection has largely
been limited to short-code CDMA for some time, see, for
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Figure 1: Block diagram of a long-code DS-CDMA system.

example, [3, 4, 5, 6, 7] and the references therein. On the
other hand, due to its robustness and performance stabil-
ity in frequency fading environment [2], long code is widely
used in virtually all operational and commercially proposed
CDMA systems, as shown in Figure 1. Actually, each user’s
signal is first spread using a code sequence spanning over
just one symbol or multiple symbols. The spread signal is
then further scrambled using a long-periodicity pseudoran-
dom sequence. This is equivalent to the use of an aperiodic
(long) coding sequence as in long-code CDMA system, and
the chip-rate sampled signal and MUIs are generally mod-
eled as time-varying vector processes [8]. The time-varying
nature of the received signal model in the long-code case
severely complicates the equalizer development approaches,
since consistent estimation of the needed signal statistics can-
not be achieved by time-averaging over the received data
record.

More recently, both training-based (e.g., [9, 10, 11]) and
blind (e.g., [8, 12, 13, 14, 15, 16, 17, 18, 19]) multiuser detec-
tion methods targeted at the long-code CDMA systems have
been proposed. In this paper, we will focus on blind chan-
nel estimation and user separation for long-code CDMA sys-
tems. Based on the channel model, most existing blind algo-
rithms can roughly be divided into three classes.

(i) Symbol-by-symbol approaches. As in long-code sys-
tems, each user’s spreading code changes for every in-
formation symbol, symbol-by-symbol approaches (see
[8, 17, 18, 19], e.g.) process each received symbol indi-
vidually based on the assumption that channel is in-
variant in each symbol. In [8, 17, 18], channel estima-
tion and equalization is carried out for each individ-
ual received symbol by taking instantaneous estimates
of signal statistics based on the sample values of each
symbol. In [19], based on the BCJR algorithm, an iter-
ative turbo multiuser detector was proposed.

(ii) Frame-by-frame approaches. Algorithms in this cate-
gory (see [15, 20], e.g.) stack the total received signal
corresponding to a whole frame or slot into a long vec-
tor, and formulate a deterministic channel model. In
[15], computational complexity is reduced by breaking
the big matrix into small blocks and implementing the
inversion “locally.” As can be seen, the “localization”
is similar to the process of the symbol-by-symbol ap-
proach. And the work is extended to fast fading chan-
nels in [20].

(iii) Chip-level equalization. By taking chip-rate informa-
tion as input, the time-varying effect of the pseudo-
random sequence is absorbed into the input sequence.

With the observation that channels remain approxi-
mately stationary over each time slot, the underlying
channel, therefore, can be modelled as a time-invariant
system, and at the receiver, chip-level equalization is
performed. Please refer to [14, 21, 22, 23] and the ref-
erences therein.

In all these three categories, one way or another, the time-
varying channel is “converted” or “decomposed” into time-
invariant channels.

In this paper, the long-code CDMA system is character-
ized as a time-invariant MIMO system as in [14, 23]. Actu-
ally, the received signals and MUIs can be modeled as cyclo-
stationary processes with modulation-induced cyclostation-
arity, and we consider blind channel estimation and signal
separation for long-code CDMA systems using multistep lin-
ear predictors. Linear prediction-based approach for MIMO
model was first proposed by Slock in [24], and developed by
others in [25, 26, 27, 28]. It has been reported [26, 28] that
compared with subspace methods, linear prediction methods
can deliver more accurate channel estimates and are more ro-
bust to overmodeling in channel order estimate. In this pa-
per, multistep linear prediction method is used to separate
the intersymbol interference introduced by multipath chan-
nel, and channel estimation is then performed using non-
constant modulus precoding technique both with and with-
out the matrix-pencil approach [29, 30]. The channel esti-
mation algorithm without the matrix-pencil approach relies
on the Fourier transform, and requires additional constraint
on the code sequences other than being nonconstant mod-
ulus. It is found that by introducing a random linear trans-
form, the matrix-pencil approach can remove (with proba-
bility one) the extra constraint on the code sequences. After
channel estimation, equalization is carried out using a cyclic
Wiener filter. Finally, since chip-level equalization is per-
formed, the proposed approach can readily be extended to
multirate cases, either with multicode or variable spreading
factor. Simulation results show that compared with the ap-
proach using the Fourier transform, the matrix-pencil-based
approach can significantly improve the accuracy of channel
estimation, therefore the overall system performance.

2. SYSTEM MODEL

Consider a DS-CDMA system with M users and K re-
ceive antennas, as shown in Figure 2. Assume the process-
ing gain is N , that is, there are N chips per symbol. Let
uj(k) ( j = 1, . . . ,M) denote user j’s kth symbol. Assume
that the code sequence extends over Lc symbols. Let c j =
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Figure 2: Block diagram of a MIMO system.

[cj(0), cj(1), . . . , cj(N − 1), cj(N), . . . , cj(LcN − 1)] denote
user j’s spreading code sequence. For notations used for each
individual user, please refer to Figure 1. When k is a multiple
of Lc, the spread signal (at chip rate) with respect to the signal
block [uj(k), . . . ,uj(k + Lc − 1)] is[

r j(kN), . . . , r j
(
(k + Lc)N − 1

)]
= [

uj(k)cj(0), . . . ,uj(k)cj(N − 1), . . . ,

uj
(
k + Lc − 1

)
cj
((
Lc − 1

)
N
)
, . . . ,

uj
(
k + Lc − 1

)
cj
(
LcN − 1

)]
.

(1)

The successive scrambling process is achieved by[
s j(kN), . . . , s j

((
k + Lc

)
N − 1

)]
= [

r j(kN), . . . , r j
((
k + Lc

)
N − 1

)]
·∗[dj(kN),dj(kN + 1), . . . ,dj

((
k + Lc

)
N − 1

)]
,
(2)

where “·∗” stands for point-wise multiplication, and
[dj(kN),dj(kN+1), . . . ,dj(kN+N−1)] denotes the chip-rate
scrambling sequence with respect to symbol uj(k). Defining[

vj(kN), . . . , vj
((
k + Lc

)
N − 1

)]
�
[
uj(k)dj(kN), . . . ,uj(k)dj(kN + N − 1), . . . ,

uj
(
k + Lc − 1

)
dj
((
k + Lc − 1

)
N
)
, . . . ,

uj
(
k + Lc − 1

)
dj
((
k + Lc

)
N − 1

)]
,

(3)

we get[
s j(kN), s j(kN + 1), . . . , s j

((
k + Lc

)
N − 1

)]
= [

vj(kN), vj(kN + 1), . . . , vj
((
k + Lc

)
N − 1

)]
·∗ [cj(0), cj(1), . . . , cj

(
LcN − 1

)]
.

(4)

If we regard the chip rate vj(n) as the input signal of user j,
then s j(n) is the precoded transmit signal corresponding to
the jth user and

s j(n) = vj(n)cj(n), n ∈ Z, j = 1, 2, . . . ,M, (5)

where cj(n) = cj(n + LcN) serves as a periodic precoding
sequence with period LcN . We note that this form of peri-
odic precoding has been suggested by Serpedin and Gian-
nakis in [31] to introduce cyclostationarity in the transmit
signal, thereby making blind channel identification based on
second-order statistics in symbol-rate-sampled single-carrier
system possible. More general idea of transmitter-induced
cyclostationarity has been suggested previously in [32, 33].
In [34], nonconstant precoding technique has been applied
to blind channel identification and equalization in OFDM-
based multiantenna systems.

Based on Figures 1 and 2, the received chip-rate signal at
the pth antenna (p = 1, 2, . . . ,K) can be expressed as

yp(n) =
M∑
j=1

L−1∑
l=0

g
(p)
j (l)s j(n− l) + wp(n), (6)

where L − 1 is the maximum multipath delay spread in

chips, {g(p)
j (l)}L−1

l=0 denotes the channel impulse response
from jth transmit antenna to pth receive antenna, and
wp(n) is the pth antenna additive white noise. Let s(n) =
[s1(n), s2(n), . . . , sM(n)]T be the precoded signal vector. Col-
lect the samples at each receive antenna and stack them into
a K × 1 vector, we get the following time-invariant MIMO
system model:

y(n) = [
y1(n), y2(n), . . . , yK (n)

]T = L−1∑
l=0

H(l)s(n− l) + w(n),

(7)

where

H(l) =



g(1)
1 (l) g(1)

2 (l) · · · g(1)
M (l)

g(2)
1 (l) g(2)

2 (l) · · · g(2)
M (l)

...
...

. . .
...

g(K)
1 (l) g(K)

2 (l) · · · g(K)
M (l)


K×M

(8)

and w(n) = [w1(n),w2(n), . . . ,wK (n)]T .
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Defining H(z) =∑L−1
l=0 H(l)z−l, it then follows that

y(n) =H(z)s(n) + w(n) � ys(n) + w(n). (9)

In the following section, channels are estimated based on
the desired user’s code sequence and the following assump-
tions.

(A1) The multiuser sequences {uj(k)}Mj=1 are zero mean,
mutually independent, and i.i.d. Take E{|uj(k)|2} = 1
by absorbing any nonidentity variance of uj(k) into
the channel.

(A2) The scrambling sequences {dj(k)}Mj=1 are mutually in-
dependent i.i.d. BPSK sequences, independent of the
information sequences.

(A3) The noise is zero mean Gaussian, independent of the
information sequences, with E{w(k + l)wH(k)} =
σ2
wIKδ(l) where IK is the K × K identity matrix.

(A4) H(z) is irreducible when regarded as a polynomial
matrix of z−1, that is, Rank{H(z)} = M for all com-
plex z except z = 0.

3. BLIND CHANNEL IDENTIFICATION BASED ON
MULTISTEP LINEAR PREDICTORS

In this section, first, multistep linear prediction method is
used to resolve the intersymbol interference introduced by
multipath channel. Secondly, based on the ISI-free MIMO
model, two channel estimation approaches are proposed by
exploiting the advantage of nonconstant modulus precoding:
one uses the Fourier analysis, and the other is based on the
matrix-pencil technique.

3.1. ISI reduction and separation based on multistep
linear predictors

Based on the results in [6, 28, 35], it can be shown that under
(A1), (A2), (A3), and (A4), finite length predictors exist for
the noise-free channel observations

ys(n) =H(z)s(n) =
L−1∑
l=0

H(l)s(n− l) (10)

such that it has the following canonical representation:

ys(n) =
Ll∑
i=l

A(l)
n,i ys(n− i) + e

(
n|n− l

)
, l = 1, 2, . . . , (11)

for some Ll ≤M(L− 1) + l− 1, where the l-step ahead linear
prediction error e(n|n− l) is given by

e
(
n|n− l

) = l−1∑
i=0

H(i)s(n− i) (12)

satisfying

E
{

e
(
n|n− l

)
yH
s (n−m)

} = 0 ∀m ≥ l. (13)

Therefore, based on (11) and (13), the coefficient matrices
A(l)
n,i’s can be determined from

E
{

ys(n)yH
s (n−m)

}= Ll∑
i=l

A(l)
n,i E

{
ys(n−i)yH

s (n−m)
} ∀m≥ l.

(14)

Actually, consider

Rs(n, k) � E
{

s(n)sH(n− k)
}

= diag
[∣∣c1(n)

∣∣2
, . . . ,

∣∣cM(n)
∣∣2
]
δ(k).

(15)

It follows that Rs(n, k) is periodic with respect to n:

Rs(n, k) = Rs
(
n + LcN , k

)
(16)

(where N is the processing gain) since cj(n) = cj(n + LcN)
for j = 1, 2, . . . ,M. Note that Rs(n, k) = 0 for any k �= 0.
Defining Rs(n) � Rs(n, 0), then

Rs(n) = Rs
(
n + LcN

)
. (17)

It follows that the K ×K autocorrelation matrix of the noise-
free channel output

Rys(n, k) � E
{

ys(n)ysH(n− k)
}

=
L−1∑
l=0

H(l)Rs(n− l)HH(l − k)
(18)

is also periodic with period LcN in this circumstance. In (14),
letting m = l, l + 1, . . . ,Ll, we have

[
A(l)
n,l,A

(l)
n,l+1, . . . ,A(l)

n,Ll

]
= [

Rys(n, l), . . . , Rys

(
n,Ll

)]
R#(n, l,Ll

)
,

(19)

where # stands for pseudoinverse and R(n, l,Ll) is a (Ll − l +
1)K×(Ll−l+1)K matrix with its (i, j)th K×K block element
as Rys(n− l− i+1, j− i) = E{ys(n− l− i+1)ysH(n− l− j+1)}
for i, j = 1, . . . ,Ll− l+1. And Rys(n, k) can be estimated from

Ry(n, k) � E
{

y(n)yH(n− k)
} = Rys(n, k) + σ2

nIKδ(k)
(20)

through noise variance estimation, please see [6, 28] for more
details.

Now define el(n) � e(n|n− l)− e(n|n− l + 1) and let

E(n) �



ed+1(n + d)
ed(n + d − 1)

...
e2(n + 1)

e
(
n|n− 1

)

 . (21)
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It then follows from (12) that

E(n) =


H(d)

H(d − 1)
...

H(0)

 s(n) � H̃s(n), (22)

where

H̃ �


H(d)

H(d − 1)
...

H(0)

 . (23)

Thus, we obtained an ISI-free MIMO model (22).

3.2. Channel estimation through the Fourier analysis

Consider the correlation matrix of E(n),

RE(n) � E
{

E(n)EH(n)
} = H̃Rs(n)H̃H

= H̃ diag
{∣∣c1(n)

∣∣2
,
∣∣c2(n)

∣∣2
, . . . ,

∣∣cM(n)
∣∣2}

H̃H.
(24)

Note that cj(n) = cj(n + LcN), j = 1, 2, . . . ,M, so RE(n) is
periodic with period LcN . The Fourier series of RE(n) is

SE(m) =
LcN−1∑
n=0

RE(n)e−i(2πmn/LcN)

= H̃Cs(m)H̃H ,

(25)

where

Cs(m) � diag

( LcN−1∑
n=0

∣∣c1(n)
∣∣2
e−i(2πmn/LcN), . . . ,

LcN−1∑
n=0

∣∣cM(n)
∣∣2
e−i(2πmn/LcN)

)
= diag

(
Cs1 (m), . . . ,CsM (m)

)
.

(26)

The basic idea of this channel estimation algorithm
is to design precoding code sequences {cj(n)}LcN−1

n=0 ( j =
1, 2, . . . ,M) such that for a given cycle m = mj , Csj (mj) �= 0
and Csk (mj) = 0 for all k �= j. That is, all but one entries in
Cs(m) are zero. Choosing a different cycle mj for each user
(obviously, we need LcN > M), blind identification of each
individual channel can then be achieved through (25).

In fact, if for m = mj , Csj (mj) �= 0, but Csk (mj) = 0, for
all k �= j, then

SE
(
mj

) = H̃ diag
(
0, . . . , 0,Csj

(
mj

)
, 0, . . . , 0

)
H̃H. (27)

It then follows from (8), (23), and (27) that

g j =
[
g(1)
j (d), . . . , g(K)

j (d), . . . , g(1)
j (0), . . . , g(K)

j (0)
]T

(28)

can be determined up to a complex scalar from the K(d+1)×
K(d+1) Hermitian matrix g jgH

j . In other words, the channel
responses from user j to each receive antenna p = 1, 2, . . . ,K
can be identified up to a complex scalar. This ambiguity can
be removed either by using one training symbol or using dif-
ferential encoding.

3.3. Channel estimation using the
matrix-pencil approach

Noting that RE(n) = RE(n + LcN), we form a matrix pencil
{S1, S2} based on linear combination of {RE(n)}LcN−1

n=0 with
random weighting. Let αi(n) be uniformly distributed in in-
terval (0,1), where i = 1, 2. Define

Si=
LcN−1∑
n=0

αi(n)RE(n)

=H̃ diag

( LcN−1∑
n=0

αi(n)
∣∣c1(n)

∣∣2
, . . . ,

LcN−1∑
n=0

αi(n)
∣∣cM(n)

∣∣2
)

H̃H

� H̃ΓiH̃H for i = 1, 2.
(29)

According to the definition,

Γi = diag

( LcN−1∑
n=0

αi(n)
∣∣c1(n)

∣∣2
, . . . ,

LcN−1∑
n=0

αi(n)
∣∣cM(n)

∣∣2
)

, i = 1, 2,

(30)

are two positively-definited matrices.
Consider the generalized eigenvalue problem

S1x = λS2x ⇐⇒ H̃
(
Γ1 − λΓ2

)
H̃Hx = 0. (31)

If H̃ is of full column rank (which is ensured by assumption
(A4)), then (31) reduces to

(
Γ1 − λΓ2

)
H̃Hx = 0. (32)

By using random weighting, all the generalized eigenvalues
corresponding to (32),

λj =
∑LcN−1

n=0 α1(n)
∣∣cj(n)

∣∣2∑LcN−1
n=0 α2(n)

∣∣cj(n)
∣∣2 , j = 1, 2, . . . ,M, (33)

are distinct eigenvalues with probability 1. In this case, since
Γ1 and Γ2 are both diagonal, the generalized eigenvector x j

corresponding to λj should satisfy

H̃Hx j = βjI j , (34)

where βj is an unknown scalar, and I j = [0, . . . , 1, . . . , 0]T

with 1 in the jth entry is the jth column of theM×M identity
matrix I [29].
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It then follows from (31) and (34) that

S1x j = H̃Γ1H̃Hx j = βj

LcN−1∑
n=0

α1(n)
∣∣cj(n)

∣∣2
g j , (35)

where g j is as in (28). And g j can be determined up to a scalar
once the generalized eigenvector x j is obtained.

Remark 1. It should be noticed that the channel estimation
algorithm based on the Fourier analysis requires an addi-
tional condition on the coding sequences, which actually im-
plies that for a given cycle, all antennas, except one, are nulled
out. More specifically, this constraint on the code sequences
implies that for each user, there exists at least one narrow fre-
quency band over which no other user is transmitting. When
using the matrix-pencil approach, on the other hand, ran-
dom weights, hence a random linear transform, is introduced
instead of the Fourier transform, resulting in that the condi-
tion on the code sequences can be relaxed to any nonconstant
modulus sequences which make λj ’s in (33) be distinct from
each other for j = 1, 2, . . . ,M.

4. CHANNEL EQUALIZATION USING
CYCLIC WIENER FILTER

After the channel estimation, in this section, equaliza-
tion/desired user extraction is carried out using an MMSE
cyclic Wiener filter. Without loss of generality, assume user
1 is the desired user. We want to design a chip-level K × 1
MMSE equalizer {fd(n, i)}Le−1

i=0 of length Le (Le ≥ L) which
satisfies

fd(n, i) = fd
(
n + LcN , i

)
, i = 0, 1, . . . ,Le − 1. (36)

The equalizer output can be expressed as

v̂1(n− d) =
Le−1∑
i=0

fHd (n, i)y(n− i). (37)

With the above equalizer, the MSE between the input signal
and the equalizer output is

E
{∣∣e(n)

∣∣2
}
= E

{∣∣∣∣∣
Le−1∑
i=0

fHd (n, i)y(n−i)−v1(n−d)

∣∣∣∣∣
2}

. (38)

Applying the orthogonality principle, we obtain

E

{[ Le−1∑
i=0

fHd (n, i)y(n− i)− v1(n− d)

]
yH(n− k)

}
= 0

(39)

for k = 0, 1, . . . ,Le − 1.
Recall that (see (5)) if we define

C(n) � diag
{
c1(n), c2(n), . . . , cM(n)

}
,

v(n) �
[
v1(n), v2(n), . . . , vM(n)

]T
,

(40)

then

s(n) = [
s1(n), s2(n), . . . , sM(n)

]T = C(n)v(n). (41)

It then follows from (7) that

y(n) =
L−1∑
l=0

H(l)C(n− l)v(n− l) + w(n). (42)

Stacking Le successive y(n) together to form the KLe× 1 vec-
tor

Y(n) =


y(n)

y(n− 1)
...

y
(
n− Le + 1

)

 � HC,nV(n) + W(n), (43)

where

HC,n =


H(0)C(n) · · · H(L− 1)C(n− L + 1) · · · 0

...
. . .

...
. . .

...
0 · · · H(0)C

(
n− Le + 1

) · · · H(L− 1)C
(
n− Le − L + 2

)
 (44)

is a KLe × [(L + Le − 1)M] matrix, V(n) = [vT(n), vT(n −
1), . . . , vT(n− Le − L+ 2)]T and W(n) is defined in the same
manner as Y(n). It follows from (A1), (A2), and (A3) that

RY (n) � E
{
Y(n)YH(n)

} =HC,nH
H
C,n + σ2

wIKLe ,

Rv1Y (n,d) � E{v1(n− d)YH(n)} = IHd HH
C,n,

(45)

where Id = [0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
(d+1)′sM×1 block

, . . . , 0]H is the (Md + 1)th

column of the M(L+Le−1)×M(L+Le−1) identity matrix.
Define

f̃d(n) �
[

fHd (n, 0), fHd (n, 1), . . . , fHd
(
n,Le − 1

)]H
(46)
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as the KLe × 1 equalizer coefficients vector. Then (39) can be
rewritten as

RY (n) f̃d(n) =HC,nId. (47)

It then follows that for n = 0, . . . ,LcN − 1,

f̃d(n) = R#
Y (n)HC,nId, (48)

where # denotes pseudoinverse.

5. EXTENSION TO MULTIRATE CDMA SYSTEMS

To support multimedia services with different quality of
services requirements, multirate scheme is implemented in
3G CDMA systems by using multicode (MC) or variable
spreading factor (VSF). In MC systems, the symbols of a high-
rate user are subsampled to obtain several symbol streams,
and each stream is regarded as the signal from a low-rate vir-
tual user and is spread using a specific signature sequence. In
VSF systems, users requiring different rates are assigned sig-
nature sequences of different lengths. Thus in the same pe-
riod, more symbols of high-rate users can be transmitted.

Since chip-level channel modeling and equalization are
performed, the proposed approach can readily be extended
to multirate case. As an MC system with high-rate users is
equivalent to a single-rate system with more users, extension
of the proposed approaches to MC multirate CDMA systems
is therefore trivial. For VSF systems, letN be the smallest pro-
cessing gain and let Lc, jN denote the length of the jth user’s
spreading code. Defining

Lc = LCM
(
Lc,1, . . . ,Lc,M

)
(49)

as the least common multiple of {Lc,1, . . . ,Lc,M}, the gener-
alization of the proposed algorithm to VSF systems is then
straightforward.

6. SIMULATION EXAMPLES

We consider the case of two users and four receive antennas.
Each user transmits QPSK signals. The spreading gain is cho-
sen to be N = 8 or N = 16, and three cases are considered.
(1) Both users have spreading gain N = 8. (2) Both users
have spreading gain N = 16. (3) Two users have different
data rates, the spreading gain for the low-rate user is N = 16,
and for the high-rate user is N = 8.

The nonconstant modulus channelization codes spread
over 32 chips (i.e., 2 to 4 symbols depending on the user’s
spreading gain). Both randomly generated codes which
are uniformly distributed within the interval [0.8, 1.2] and
codes that satisfy the additional constraint (as described in
Section 3.2) are considered. In the simulation, “codes with

constraint” are chosen to be

c1 =
[
0.6857, 0.7145, 0.6356, 0.6849, 0.8433, 0.8036, 0.7597,

0.5856, 0.7488, 0.5641, 0.7300, 0.7542, 0.7482, 0.5870,

0.7902, 0.6172, 0.5409, 0.5474, 0.6425, 0.7834, 0.7520,

0.6743, 0.6904, 0.8114, 0.5829, 0.6913, 0.5939, 0.7339,

0.8608, 0.6380, 0.8207, 0.8808
]
,

c2 =
[
0.6670, 0.7275, 0.8540, 0.6100, 0.7518, 0.6363, 0.5545,

0.6887, 0.7092, 0.6143, 0.6313, 0.7625, 0.5210, 0.8036,

0.7582, 0.6979, 0.8136, 0.6944, 0.6902, 0.6660, 0.6536,

0.6908, 0.6010, 0.8078, 0.7622, 0.5486, 0.6005, 0.6395,

0.6176, 0.8070, 0.6382, 0.8265
]
.

(50)

The multipath channels have three rays and the multipath
amplitudes are Gaussian with zero mean and identical vari-
ance. The transmission delays are uniformly spread over 6
chip intervals. Complex zero mean white Gaussian noise was
added to the received signals. The normalized mean-square-
error of channel estimation (CHMSE) for the desired user is
defined as

CHMSE = 1
KIL

I∑
i=1

K∑
p=1

∥∥∥ĝ
(p)
1 − g

(p)
1

∥∥∥2

∥∥∥g
(p)
1

∥∥∥2 , (51)

where I stands for the number of Monte-Carlo runs, and K
is the number of receive antennas. And SNR refers to the
signal-to-noise ratio with respect to the desired user and is
chosen to be the same at each receiver. The result is averaged
over I = 100 Monte-Carlo runs. The channel is generated
randomly in each run, and is estimated based on a record of
256 symbols. In the case of multirate, we mean 256 lower-
rate symbols. The equalizer with length Le = 6 is constructed
according to the estimated channel, and is applied to a set
of 1024 independent symbols in order to calculate the sym-
bol MSE and BER for each Monte-Carlo run. Blind channel
estimation based on nonconstant modulus precoding is car-
ried out both with and without the matrix-pencil approach.
Without the matrix-pencil approach, channel estimation is
obtained directly through the second-order statistics of E(n)
(see (22)) based on the nonconstant precoding technique
and the Fourier transform, as presented in Section 3.2. Sim-
ulation results show that by introducing a random linear
transform, the matrix-pencil approach delivers significantly
better results for both single-rate and multirate systems. Fig-
ures 3 and 4 correspond to the single-rate cases, where both
users have spreading gain N = 8 or N = 16, and the codes
in (50) are used. In the figures, “MP” stands for “matrix pen-
cil”. Figures 5 and 6 compare the performances of the matrix-
pencil-based approach when different codes are used. In the
figures, “codes with constraint” denote the codes in (50), and
we choose N = 8 for the high-rate user and N = 16 for the
low rate user. Optimal spreading code design and random
linear transform design will be investigated in future work.
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Figure 3: Normalized MSE of channel estimation versus SNR,
single-rate cases with N = 8 and N = 16, respectively.
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Figure 4: Comparison of BER versus SNR, single-rate cases with
N = 8 and N = 16, respectively.

7. CONCLUSIONS

In this paper, blind channel identification and signal separa-
tion for long-code CDMA systems are revisited. Long-code
CDMA system is characterized using a time-invariant system
model by modeling the received signals and MUIs as cyclo-
stationary processes with modulation-induced cyclostation-
arity. Then, multistep linear prediction method is used to re-
duce the intersymbol interference introduced by multipath
propagation, and channel estimation is performed by ex-
ploiting the nonconstant modulus precoding technique with
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Figure 5: Normalized MSE of channel estimation versus SNR for
matrix-pencil-based approach with different codes, multirate con-
figuration with N = 8 for the high-rate user and N = 16 for the
low-rate user, respectively.
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Figure 6: Comparison of BER versus SNR for matrix-pencil-based
approach with different codes, multirate configuration with N = 8
for the high-rate user and N = 16 for the low-rate user, respectively.

and without the matrix-pencil approach. It is found that by
introducing a random linear transform, the matrix-pencil-
based approach delivers a much better result than the one re-
lying on the Fourier transform. As chip-level channel model-
ing and equalization are performed, the proposed approach
can be extended to multirate CDMA systems in a straight for-
ward manner.
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In this contribution, the performance of wideband code-division multiple-access (W-CDMA) systems using space-time-
spreading- (STS-) based transmit diversity is investigated, when frequency-selective Nakagami-m fading channels, multiuser in-
terference, and background noise are considered. The analysis and numerical results suggest that the achievable diversity order is
the product of the frequency-selective diversity order and the transmit diversity order. Furthermore, both the transmit diversity
and the frequency-selective diversity have the same order of importance. Since W-CDMA signals are subjected to frequency-
selective fading, the number of resolvable paths at the receiver may vary over a wide range depending on the transmission en-
vironment encountered. It can be shown that, for wireless channels where the frequency selectivity is sufficiently high, transmit
diversity may be not necessitated. Under this case, multiple transmission antennas can be leveraged into an increased bitrate.
Therefore, an adaptive STS-based transmission scheme is then proposed for improving the throughput of W-CDMA systems. Our
numerical results demonstrate that this adaptive STS-based transmission scheme is capable of significantly improving the effective
throughput of W-CDMA systems. Specifically, the studied W-CDMA system’s bitrate can be increased by a factor of three at the
modest cost of requiring an extra 0.4 dB or 1.2 dB transmitted power in the context of the investigated urban or suburban areas,
respectively.

Keywords and phrases: CDMA, space-time spreading, Nakagami-m fading, transmit diversity.

1. BACKGROUND ON LINK ADAPTATION

It is widely recognised that the channel quality of wire-
less systems fluctuates over a wide range and hence it is
irrealistic to expect that conventional nonadaptive systems
might be able to provide a time-invariant grade of ser-
vice. Hence in recent years various near-instantaneously
adaptive-coding-and-modulation- (ACM-) assisted arrange-
ments have been proposed [1, 2], which have found their
way also into the high-speed downlink packet access (HS-
DPA) mode of the third-generation wireless systems [3] and
in other adaptively reconfigurable multicarrier orthogonal

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

frequency division multiplex (OFDM) systems [4] as well as
into single-carrier and multi-carrier DS-CDMA schemes [5].
The family of multi-carrier systems is now widely considered
to be the most potent candidate for the next-generation sys-
tems of wireless communications. The taxonomy of ACM
schemes and a plethora of open research problems was de-
tailed in [5, Chapter 1], hence here we refrain from detail-
ing these issues. The philosophy of these ACM schemes is
that instead of dropping a wireless call, they temporarily
drop their throughput [3], when the instantaneous chan-
nel quality quantified in terms of the signal to interference-
plus-noise ratio (SINR) [5] is too low and hence the re-
sultant bit error ratio (BER) happens to be excessive. In
this contribution, we will focus our attention on a less
well-documented area of link adaptivity, namely, on the ef-
fects on multipath-induced dispersion-controlled adaptivity
[5]. Achieving these ambitious objectives requires efficient

mailto:lly@ecs.soton.ac.uk
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cross-layer design,1 which supports the agile and prompt li-
aison of the OSI layers concerned, potentially requiring an
interaction between the physical, network, and service lay-
ers, as it was exemplified in [3, 5]. More explicitly, in or-
der to be able to pass on the benefits of the increased sys-
tem throughput of these cross-layer optimised ACM-aided
transceivers to the service layer in terms of improved video or
speech quality, near-instantaneously adaptive speech codecs
[6] and video codecs [7] are required. These speech and
video codecs must have the ability to reconfigure them-
selves under the control of the near-instantaneous chan-
nel quality, such as the advanced multirate (AMR) speech
codec or the H.26L multimedia source codec [8]. The in-
teractions and performance benefits of cross-layer-optimised
third-generation wireless systems employing adaptive beam-
forming were quantified in [3], while a host of further cross-
layer optimisation issues were treated in [9, 10, 11, 12, 13,
14].

Against this background, in this contribution we fo-
cus our attention on a specific channel-quality controlled
link adaptation algorithm, which allows the system to in-
crease its effective throughput, as a function of the instanta-
neous channel quality with the aid of a novel combination of
multiple-antenna-assisted transmitter and receiver diversity
schemes. The capacity and the achievable data rate of wireless
communication systems is limited by the time-varying char-
acteristics of the channels. An efficient technique of com-
bating the time-varying effects of wireless channels is em-
ploying diversity. In recent years, space-time coding has re-
ceived much attention as an effective transmit diversity tech-
nique used for combating fading in wireless communica-
tions [15, 16, 17, 18]. Space-time-block-coding-assisted [16]
transmit diversity has now been adapted as an optional di-
versity mode in the third-generation (3G) wireless systems
known as IMT2000 using wideband code-division multiple-
access (W-CDMA) [19, 20]. Inspired by space-time codes, in
[21], an attractive transmit diversity scheme based on space-
time spreading (STS) has been proposed by Hochwald et al.
for employment in CDMA systems. The simple spreading
philosophy of this scheme is portrayed in the schematic of
Figure 1 and exemplified with the aid of the signal wave-
forms seen in Figure 2, both of which will be discussed in
detail during our further discourse. An STS scheme designed
for supporting two transmission antennas and one receiver
antenna has also been included in the cdma2000 W-CDMA
standard [20]. In [21], the performance of CDMA systems
using STS has been investigated by Hochwald et al., when
the channel is modelled either as a flat or as a frequency-
selective Rayleigh fading channel in the absence of multiuser

1Cross-layer design constitutes a novel area of wireless system research,
which is motivated by the fact that some elements of wireless systems, such
as handovers and power control, do not fit into the classic seven-layer open
system interconnection (OSI) architecture and hence an improved system
performance may be achieved by jointly optimising several layers. In this
contribution, the service layer, namely, the achievable data rate or video
quality and voice quality, would be improved by the increased bitrate at-
tained by the proposed system.

interference. It was argued that the proposed STS scheme
is capable of attaining the maximal achievable transmit di-
versity gain without using extra spreading codes and with-
out an increased transmit power. Furthermore, the results
recorded for transmission over frequency-selective Rayleigh
fading channels by Hochwald et al. [21, Figure 4] show that
when there is a sufficiently high number of resolvable paths,
a CDMA system using a single transmit antenna and a con-
ventional RAKE receiver is capable of achieving an adequate
diversity gain.

Wideband CDMA channels are typically frequency-
selective fading channels, having a number of resolvable
paths. Therefore, in this contribution, first we investigate the
performance of W-CDMA systems using STS-based transmit
diversity, when encountering multipath Nakagami-m fad-
ing channels, multiuser interference, and background noise.
A BER expression is derived, when Gaussian approxima-
tion [22, 23] of the multiuser interference and that of the
multipath interference is invoked. This BER expression im-
plies that the diversity order achieved is the product of the
transmit diversity order and the frequency selective diversity
order. Furthermore, the analysis and the numerical results
show that both the STS and the frequency selectivity of the
channel appear to have the same order of importance, espe-
cially when the power decay factor of the multipath intensity
profile (MIP) [24] is low.

The frequency-selective frequency-domain transfer func-
tion of W-CDMA wireless channels may vary slowly, but
often over a wide dynamic range when roaming in urban
and suburban areas [25]. Therefore, the number of resolv-
able paths at the receiver can be modelled as a random
variable distributed over a certain range, depending on the
location of the receiver, where the number of resolvable
paths varies slowly, as the receiver moves. Consequently, STS
schemes designed on the basis of a low number of resolvable
paths or based on the premise of encountering a constant
number of resolvable paths may not achieve the maximum
communication efficiency in terms of the effective through-
put.

Motivated by the above arguments, in the second part
of this contribution an adaptive STS-based transmission
scheme is proposed and investigated, which adapts the mode
of operation of its STS scheme and its corresponding data
rate according to the near-instantaneous frequency selectiv-
ity information fed back from the receiver to the transmitter.
Our numerical results show that this adaptive STS scheme is
capable of efficiently exploiting the diversity potential pro-
vided by the channel’s frequency selectivity, hence signifi-
cantly improving the effective throughput of W-CDMA sys-
tems.

The remainder of this paper is organized as follows. In the
next section, the W-CDMA system’s model using STS and the
channel model are described. Section 3 considers the detec-
tion of STS-based W-CDMA signals. In Section 4, we derive
the corresponding BER expression and summarize our nu-
merical results, while in Section 5 we describe the proposed
adaptive STS scheme and investigate its BER performance.
Finally, our conclusions are offered in Section 6.
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Figure 1: (a) Transmitter and (b) receiver block diagram of the W-CDMA system using space-time spreading.

2. SYSTEM MODEL

2.1. Transmitted signal

The W-CDMA system considered in this paper consists of
U transmitter antennas and one receiver antenna. The trans-
mitter schematic of the kth user and the receiver schematic
of the reference user are shown in Figure 1, where real-
valued data symbols using BPSK modulation and real-valued
spreading [21] were assumed. Note that the analysis in this
contribution can be extended to W-CDMA systems using U
transmitter antennas and more than one receiver antenna,
or to W-CDMA systems using complex-valued data symbols
as well as complex-valued spreading. As shown in Figure 1a,
at the transmitter side the binary input data stream having
a bit duration of Tb is serial-to-parallel (S/P) converted to
U parallel substreams. The new bit duration of each paral-
lel substream, in other words the symbol duration, becomes
Ts = UTb. After S/P conversion, the U number of paral-
lel bits are direct-sequence spread using the STS schemes
proposed by Hochwald et al. [21] with the aid of U num-
ber of orthogonal spreading sequences—for example, Walsh
codes—having a period of UG, where G = Tb/Tc represents
the number of chips per bit and Tc is the chip duration of
the orthogonal spreading sequences. The STS scheme will
be further discussed in detail during our forthcoming dis-
course in this section. As seen in Figure 1a, following STS,
theU parallel signals to be mapped to theU transmission an-
tennas are scrambled using the kth user’s pseudonoise (PN)

sequence PNk(t), in order that the transmitted signals be-
come randomised, and to ensure that the orthogonal spread-
ing sequences employed within the STS block of Figure 1 can
be reused by the other users. Finally, after the PN-sequence-
based scrambling, theU number of parallel signals are carrier
modulated and transmitted by the corresponding U number
of antennas.

As described above, we have assumed that the number of
parallel data substreams, the number of orthogonal spread-
ing sequences used by the STS block of Figure 1, and the
number of transmission antennas is the same, namely U .
This specific STS scheme constitutes a specific subclass of
the generic family of STS schemes, where the number of par-
allel data substreams, the number of orthogonal spreading
sequences required by STS block, and the number of trans-
mission antennas may take different values. The impressive
study conducted by Hochwald et al. [21] has shown that the
number of orthogonal spreading sequences required by STS
is usually higher than the number of parallel substreams. The
STS scheme having an equal number of parallel substreams,
orthogonal STS-related spreading sequences, as well as trans-
mission antennas constitutes an attractive scheme, since this
STS scheme is capable of providing maximal transmit diver-
sity without requiring extra STS spreading codes. Note that
for the specific values of U = 2, 4 the above-mentioned at-
tractive STS schemes have been specified by Hochwald et al.
[21]. In this contribution, we only investigate these attractive
STS schemes.
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Figure 2: Illustration of STS using four transmission antennas transmitting 4 bits within 4Tb duration, where b1 = b2 = b3 = b4 = +1 were
assumed. Furthermore, c1, c2, c3, c4 are four STS-related orthogonal codes having a period of 4Tb. In this example, the STS-codes were chosen
as follows: c1 = −1− 1 + 1 + 1 + 1 + 1− 1− 1 − 1− 1 + 1 + 1 + 1 + 1− 1− 1, c2 = −1− 1 + 1 + 1 + 1 + 1− 1− 1 + 1 + 1− 1− 1 − 1− 1 + 1 + 1,
c3 = −1− 1 + 1 + 1 − 1− 1 + 1 + 1 + 1 + 1− 1− 1 + 1 + 1− 1− 1, c4 = −1− 1 + 1 + 1 − 1− 1 + 1 + 1 − 1− 1 + 1 + 1 − 1− 1 + 1 + 1. We
note however that the codes used in Figure 3 could be also employed after repeating them four times without the loss of orthogonality.
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Figure 3: Illustration of the transmitted waveforms of the trans-
mission scheme without using STS, that is, the four transmission
antennas transmit their data independently. In this figure, we as-
sumed that b1 = b2 = b3 = b4 = +1, b5 = b6 = b7 = b8 = −1,
b9 = b10 = +1, b11 = b12 = −1, b13 = +1, b14 = +1, b15 = +1,
b16 = −1. Furthermore, c1, c2, c3, c4 are four STS-related orthogonal
codes that have a reduced period of Tb, rather than 4Tb as it was in
Figure 2 or 2Tb as in Figure 4. In this example, the STS-codes were
chosen as follows: c1=+1+1+1+1, c2=+1+1−1−1, c3=+1−1+1−1,
c4=+1− 1− 1 + 1.

Based on the philosophy of STS as discussed in [21] and
referring to Figure 1a, the transmitted signal of the kth user
can be expressed as

sk(t) =
√

2P
U2

c(t)BU(t)× PNk(t) cos
(
2π fct
)
, (1)

where P represents each user’s transmitted power, which is
constant for all users, sk(t) = [sk1(t) sk2(t) · · · skU(t)

]
represents the transmitted signal vector of the U trans-
mission antennas, while PNk(t) and fc represent the DS-
scrambling-based spreading waveform and the carrier fre-
quency, respectively. The scrambling sequence waveform is
given by PNk(t) =∑∞j=−∞ pk jPTc(t− jTc), where pk j assumes
values of +1 or −1 with equal probability, while PTc(t) is the
rectangular chip waveform, which is defined over the interval
[0,Tc). In (1), the vector c(t) = [c1(t) c2(t) · · · cU(t)

]
is

constituted by the U number of orthogonal signals assigned
for the STS, ci(t) =

∑∞
j=−∞ ci jPTc(t− jTc), i = 1, 2, . . . ,U , de-

notes the individual components of the STS-based orthog-
onal spread signals, where {ci j} is an orthogonal sequence
of period UG for each index i; BU(t) represents the U × U-
dimensional transmitted data matrix created by mapping U
input data bits to the U parallel substreams according to the
specific design rules outlined by Hochwald et al. [21], so that
the maximum possible transmit diversity is achieved, while
using relatively low-complexity signal detection algorithms.
Specifically, BU(t) can be expressed as

BU(t) =




a11bk,11 a12bk,12 · · · a1Ubk,1U

a21bk,21 a22bk,22 · · · a2Ubk,2U

...
...

. . .
...

aU1bk,U1 aU2bk,U2 · · · aUUbk,UU




(t), (2)

where the time dependence of the (i, j)th element is indicated
at the right-hand side of the matrix for simplicity. In (2), ai j
represents the sign of the element at the ith row and the jth
column, which is determined by the STS design rule, while
bk,i j is the data bit assigned to the (i, j)th element, which is
one of theU input data bits {bk1, bk2, . . . , bkU} of user k. Each
input data bit of {bk1, bk2, . . . , bkU} appears only once in any
given row and in any given column. For U = 2, 4, B2(t), and
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Figure 4: Illustration of STS using two transmission antennas transmitting 2 bits within 2Tb duration. Hence, four transmission antennas
transmit 8 bits within 4Tb duration, where b1 = b2 = b3 = b4 = +1 and b5 = b6 = b7 = b8 = −1 were assumed. Furthermore, c1, c2, c3, c4 are
four STS-related orthogonal codes that have a reduced period of 2Tb, rather than 4Tb as it was in Figure 2. In this example, the STS codes
were chosen as follows: c1 = +1 + 1 + 1 + 1 − 1 − 1 − 1 − 1, c2 = +1 − 1 + 1 − 1 − 1 + 1 − 1 + 1, c3 = +1 + 1 − 1 − 1 − 1 − 1 + 1 + 1,
c4 = +1 − 1 − 1 + 1 − 1 + 1 + 1 − 1. We note however that the codes used in Figure 3 could be also employed after repeating them twice
without the loss of orthogonality.

B4(t) are given by [21]

B2(t) =
(
bk1 bk2

bk2 −bk1

)
(t),

B4(t) =




bk1 bk2 bk3 bk4

bk2 −bk1 bk4 −bk3

bk3 −bk4 −bk1 bk2

bk4 bk3 −bk2 −bk1


 (t).

(3)

Based on (1) and (2) the signal transmitted by the uth
antenna to the kth user can be explicitly expressed as

sku(t) =
√

2P
U2

[
c1(t)a1ubk,1u(t) + c2(t)a2ubk,2u(t)

+ · · · + cU(t)aUubk,Uu(t)
]

× PNk(t) cos
(
2π fct
)
, u = 1, 2, . . . ,U.

(4)

2.2. Channel model
The U number of parallel subsignals

sk(t) = [sk1(t) sk2(t) · · · skU(t)
]

(5)

is transmitted by the U number of antennas over frequency-
selective fading channels, where each parallel subsignal ex-
periences independent frequency-selective Nakagami-m fad-
ing. The complex lowpass equivalent representation of the
impulse response experienced by the uth parallel subsignal
of user k is given by [24]

huk(t) =
L∑
l=1

huklδ
(
t − τkl

)
exp
(
jψukl
)
, (6)

where hukl, τkl, and ψukl represent the attenuation factor, de-
lay and phase shift of the lth multipath component of the
channel, respectively, while L is the total number of resolv-
able multipath components and δ(t) is the Kronecker delta
function. We assume that the phases {ψukl} in (6) are in-
dependent identically distributed (i.i.d.) random variables
uniformly distributed in the interval [0, 2π), while the L
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multipath attenuations {hukl} in (6) are independent Nak-
agami random variables with a probability density function
(PDF) of [22, 23, 24, 25, 26, 27]

p
(
hukl
) =M

(
hukl,m

(u)
kl ,Ωu

kl

)
,

M(R,m,Ω) = 2mmR2m−1

Γ(m)Ωm
e(−m/Ω)R2

,
(7)

where Γ(·) is the gamma function [24], and m(u)
kl is the

Nakagami-m fading parameter, which characterises the
severity of the fading over the lth resolvable path [28] be-
tween the uth transmission antenna and user k. Further-
more, the parameter Ωu

kl in (7) is defined as Ωu
kl = E[(αukl)

2],
which is assumed to be a negative exponentially decaying
multipath intensity profile (MIP) given by Ωu

kl = Ωu
k1e

−η(l−1),
η ≥ 0, where Ωu

k1 is the average signal strength corresponding
to the first resolvable path and η is the rate of average power
decay, while (αukl)

2 represents the individual coefficients of
the MIP.

When supporting K asynchronous CDMA users and as-
suming perfect power control, the received complex lowpass
equivalent signal can be expressed as

R(t) =
K∑
k=1

L∑
l=1

√
2P
U2

c
(
t − τkl

)
BU
(
t − τkl

)
hkl

× PNk(t − τkl) +N(t),

(8)

where N(t) is the complex-valued lowpass-equivalent addi-
tive white Gaussian noise (AWGN) having a double-sided
spectral density of N0, while

hkl =




h1
kl exp

(
jψ1

kl

)
h2
kl exp

(
jψ2

kl

)
...

hUkl exp
(
jψUkl
)




, k = 1, 2, . . . ,K , l = 1, 2, . . . ,L,

(9)

represents the channel’s complex impulse response in the
context of the kth user and the lth resolvable path, where
ψukl = φukl − 2π fcτkl. Furthermore, in (8) we assumed that
the signals transmitted by the U number of transmission an-
tennas arrive at the receiver antenna after experiencing the
same set of delays. This assumption is justified by the fact
that in the frequency band of cellular system the propagation
delay differences among the transmission antenna elements
are on the order of nanoseconds, while the multipath delays
are on the order of microseconds [21], provided that U is a
relatively low number.

2.3. Receiver model

Let the first user be the user of interest and consider a receiver
using space-time despreading as well as diversity combining,
as shown in Figure 1b, where the subscript of the reference
user’s signal has been omitted for notational convenience.
The receiver of Figure 1b carries out the inverse processing

of Figure 1a, in addition to multipath diversity combining.
In Figure 1b, the received signal is first down-converted us-
ing the carrier frequency fc, and then descrambled using the
DS scrambling sequence of PN(t−τl) in the context of the lth
resolvable path, where we assumed that the receiver is capa-
ble of achieving near-perfect multipath-delay estimation for
the reference user. The descrambled signal associated with
the lth resolvable path is space-time despread using the ap-
proach of [21]—which will be further discussed in Section 3,
in order to obtain U separate variables, {Z1l,Z2l, . . . ,ZUl},
corresponding to the U parallel data bits {b1, b2, . . . , bU},
respectively. Following space-time despreading, a decision
variable is formed for each parallel transmitted data bit of
{b1, b2, . . . , bU} by combining the corresponding variables
associated with the L number of resolvable paths, which can
be expressed as

Zu =
L∑
l=1

Zul, u = 1, 2, . . . ,U. (10)

Finally, the U number of transmitted data bits {b1, b2, . . . ,
bU} can be decided based on the decision variables {Zu}Uu=1

using the conventional decision rule of a BPSK scheme.
Above we have described the transmitter model, the

channel model, as well as the receiver model of W-CDMA
using STS. We will now describe the detection procedure of
the W-CDMA scheme using STS.

3. DETECTION OF SPACE-TIME SPREAD
W-CDMA SIGNALS

Let dl =
[
dl1 dl2 · · · dlU

]T
, l = 1, 2, . . . ,L, where T de-

notes vector transpose, represent the correlator’s output vari-
able vector in the context of the lth (l = 1, 2, . . . ,L) resolvable
path, where

dul =
∫ UTb+τl

τl
R(t)cu

(
t − τl
)

PN
(
t − τl
)
dt. (11)

When substituting (8) into (11), it can be shown that

dul =
√

2PTb
[
au1bu1h

1
l exp
(
jψ1

l

)
+ au2bu2h

2
l exp
(
jψ2

l

)
+ · · · + auUbuUh

U
l exp

(
jψUl
)]

+ Ju(l), u = 1, 2, . . . ,U ,
(12)

where

Ju(l) = JSu(l) + JMu(l) +Nu(l), u = 1, 2, . . . ,U , (13)

and JSu(l) is due to the multipath-induced self-interference of
the signal of interest inflicted upon the lth path signal, where
JSu(l) can be expressed as

JSu(l) =
L∑

j=1, j�=l

√
2P
U2

∫ UTb+τl

τl
c
(
t−τj
)

BU
(
t−τj
)

h j PN
(
t − τj

)

× cu
(
t − τl
)

PN
(
t − τl
)
dt,

(14)
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JMu(l) represents the multiuser interference due to the signals
transmitted simultaneously by the other users, which can be
expressed as

JMu(l) =
K∑
k=2

L∑
j=1

√
2P
U2

∫ UTb+τl

τl
c
(
t − τk j

)
BU
(
t − τk j

)

×hk j PNk
(
t − τk j

)
cu
(
t − τl
)

PN
(
t − τl
)
dt,

(15)

and finally Nu(l) is due to the AWGN, which can be written
as

Nu(l) =
∫ UTb+τl

τl
N(t)cu

(
t − τl
)

PN
(
t − τl
)
dt, (16)

which is a Gaussian distributed variable having zero mean
and a variance of 2UN0Tb.

Let J(l) = [J1(l) J2(l) · · · JU(l)
]T

. Then, the correla-
tor’s output variable vector dl can be expressed as

dl =
√

2PTbBUhl + J(l), l = 1, 2, . . . ,L, (17)

where BU is the reference user’s U × U-dimensional trans-
mitted data matrix, which is given by (2), but ignoring the
time dependence, while hl is the channel’s complex impulse

response between the base station and the reference user, as
shown in (9) in the context of the reference user.

The attractive STS schemes of Hochwald et al. have the
property [21] of BUhl = HUb, that is, (17) can be written as

dl =
√

2PTbHUb + J(l), (18)

where b = [b1 b2 · · · bU
]T

represents the U number of
transmitted data bits, while HU is a U ×U-dimensional ma-
trix with elements from hl. Each element of hl appears once
and only once in a given row and also in a given column of
the matrix HU [21]. The matrix HU can be expressed as

HU(l) =




α11(l) α12(l) · · · α1U(l)

α21(l) α22(l) · · · α2U(l)

...
...

. . .
...

αU1(l) αU2(l) · · · αUU(l)




, (19)

where αi j(l) takes the form of di jhml exp( jψml ), and di j ∈
{+1,−1} represents the sign of the (i, j)th element of HU ,
while hml exp( jψml ) belongs to the mth element of hl. For
U = 2, 4, with the aid of [21], it can be shown that

H2(l) =

 h1

l exp
(
jψ1

l

)
h2
l exp
(
jψ2

l

)
−h2

l exp
(
jψ2

l

)
h1
l exp
(
jψ1

l

)

 ,

H4(l) =




h1
l exp
(
jψ1

l

)
h2
l exp
(
jψ2

l

)
h3
l exp
(
jψ3

l

)
h4
l exp
(
jψ4

l

)
−h2

l exp
(
jψ2

l

)
h1
l exp
(
jψ1

l

) −h4
l exp
(
jψ4

l

)
h3
l exp
(
jψ3

l

)
−h3

l exp
(
jψ3

l

)
h4
l exp
(
jψ4

l

)
h1
l exp
(
jψ1

l

) −h2
l exp
(
jψ2

l

)
−h4

l exp
(
jψ4

l

) −h3
l exp
(
jψ3

l

)
h2
l exp
(
jψ2

l

)
h1
l exp
(
jψ1

l

)



.

(20)

With the aid of the analysis in [21], it can be shown that
the matrix HU(l) has the property of Re{H†

U(l)HU(l)} =
h†l hl · I, where † denotes complex conjugate transpose and I
represents a U × U-dimensional unity matrix. Letting hu(l)
denote the uth column of HU(l), the variable Zul in (10) can
be expressed as [21]

Zul = Re
{

h†u(l)dl
} = √2PTbbu

U∑
u=1

∣∣hul ∣∣2
+ Re
{

h†u(l)J(l)
}

,

u = 1, 2, . . . ,U.
(21)

Finally, according to (10) the decision variables associated

with the U parallel transmitted data bits {b1, b2, . . . , bU} of
the reference user can be expressed as

Zu =
√

2PTbbu
L∑
l=1

U∑
u=1

∣∣hul ∣∣2
+

L∑
l=1

Re
{

h†u(l)J(l)
}

,

u = 1, 2, . . . ,U ,

(22)

which shows that the receiver is capable of achieving a diver-
sity order of UL, as indicated by the related sums of the first
term.

Above we have analysed the detection procedure applica-
ble to W-CDMA signals generated using STS. We will now
derive the corresponding BER expression.
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4. BER PERFORMANCE

4.1. BER analysis

In this section, we derive the BER expression of the STS-
assisted W-CDMA system by first analysing the statistics of
the variable Zu, u = 1, 2, . . . ,U , with the aid of the Gaus-
sian approximation [23]. According to (22), for a given set
of complex channel transfer factor estimates {hul }, Zu can be
approximated as a Gaussian variable having a mean given by

E
[
Zu
] = √2PTbbu

L∑
l=1

U∑
u=1

∣∣hul ∣∣2
. (23)

Based on the assumption that the interferences imposed by
the different users, by the different paths, as well as by the
AWGN constitute independent random variables, the vari-
ance of Zu can be expressed as

Var
[
Zu
] = E

[( L∑
l=1

Re
{

h†u(l)J(l)
})2]

=
L∑
l=1

E
[(

Re
{

h†u(l)J(l)
})2]

= 1
2

L∑
l=1

E
[(

h†u(l)J(l)
)2]

.

(24)

Substituting hu(l), which is the uth column of Hu(l) in (19),
and J(l) having elements given by (13) into the above equa-
tion, it can be shown that for a given set of channel estimates
{hul }, (24) can be simplified as

Var
[
Zu
] = 1

2

L∑
l=1

U∑
u=1

|hul |2E
[(
Ju(l)
)2]

= 1
2

L∑
l=1

U∑
u=1

∣∣hul ∣∣2
Var
[
Ju(l)
]
,

(25)

where Ju(l) is given by (13). In deriving (25) we exploited the
assumption of Var[J1(l)] = Var[J2(l)] = · · · = Var[JU(l)].

As shown by Hochwald et al. in (13), Ju(l) consists
of three terms, namely the AWGN Nu(l) having a vari-
ance of 2UN0Tb, JSu(l), which is the multipath-induced
self-interference inflicted upon the lth path of the user
of interest, and JMu(l) imposed by the (K − 1) inter-
fering users. By careful observation of (14), it can be
shown that JSu(l) consists of U2 terms and each term takes
the form of

∑L
j=1, j�=l

√
2P/U2

∫UTb+τl
τl cm(t − τj)amnbmn(t −

τj)hnj exp( jψnj ) PN(t − τj) × cu(t − τl) PN(t − τl)dt. Assum-

ing that E[(hnj )
2] = Ω1e−η( j−1), that is, that E[(hnj )

2] is in-
dependent of the index of the transmission antenna, and
following the analysis in [22], it can be shown that the
above term has a variance of 2Ω1EbTb[q(L,η) − 1]/(GU),
where q(L,η) = (1 − e−Lη)/(1 − e−η), if η �= 0 and
q(L,η) = L, if η = 0. Consequently, we have Var[JSu(l)] =

U2 × 2Ω1EbTb[q(L,η) − 1]/(GU) = 2UΩ1EbTb[q(L,η) −
1]/G. Similarly, the multiuser interference term JMu(l) of
(15) also consists of U2 terms, and each term has the
form of

∑K
k=2

∑L
j=1

√
2P/U2

∫UTb+τl
τl cm(t − τk j)amnbmn(t −

τk j)hnk j exp( jψnk j) PNk(t − τk j)cu(t − τl) PN(t − τl)dt. Again,
with the aid of the analysis in [22], it can be shown that this
term has the variance of (K − 1)4Ω1EbTbq(L,η)/(3GU), and
consequently the variance of JMu(l) is given by Var[JMu(l)] =
(K − 1)4UΩ1EbTbq(L,η)/(3G). Therefore, the variance of
Ju(l) can be expressed as

Var
[
Ju(l)
] = 2N0UTb +

2UΩ1EbTb
[
q(L,η)− 1

]
G

+
(K − 1)4UΩ1EbTbq(L,η)

3G
,

(26)

and the variance of Zu for a given set of channel estimates
{hul } can be expressed as

Var
[
Zu
] = L∑

l=1

U∑
u=1

∣∣hul ∣∣2
[
N0UTb +

UΩ1EbTb
[
q(L,η)− 1

]
G

+
(K − 1)2UΩ1EbTbq(L,η)

3G

]
.

(27)

Based on (23) and (27), the BER conditioned on hul for
u = 1, 2, . . . ,U and l = 1, 2, . . . ,L can be written as

Pb
(
E|{hul }) = Q



√√√√ E2
[
Zu
]

Var
[
Zu
]

 = Q



√√√√√2 ·

L∑
l=1

U∑
u=1

γlu


,

(28)

where Q(x) represents the Gaussian Q-function, which can
also be represented in its less conventional form as Q(x) =
(1/π)

∫ π/2
0 exp(−x2/2 sin2 θ)dθ, where x ≥ 0 [28, 29]. Fur-

thermore, γlu in (28) is given by

γlu = γc ·
(
hul
)2

Ω1
,

γc =
1
U

[
(2K + 1)q(L,η)− 3

3G
+
(
Ω1Eb
N0

)−1]−1

.

(29)

The average BER, Pb(E), can be obtained by averaging
the conditional BER of (28) over the joint PDF of the in-
stantaneous SNR values corresponding to the L multipath
components and to the U transmit antennas {γlu : l =
1, 2, . . . ,L;u = 1, 2, . . . ,U}. Since the random variables {γlu :
l = 1, 2, . . . ,L;u = 1, 2, . . . ,U} are assumed to be statistically
independent, the average BER can be expressed as [30, (23)]

Pb(E) = 1
π

∫ π/2
0

L∏
l=1

U∏
u=1

Ilu
(
γlu, θ
)
dθ, (30)
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Figure 5: BER versus the SNR per bit, Eb/N0, performance com-
parison between the space-time-spreading-based transmit diver-
sity scheme and the conventional RAKE receiver arrangement us-
ing only one transmission antenna when communicating over
flat-fading (for space-time spreading) and multipath (for RAKE)
Rayleigh fading (ml = mc = 1) channels evaluated from (35)
by assuming that the average power decay rate was η = 0. The
solid line indicates the BER of the receiver-diversity-aided schemes,
while the dashed line that of the transmit-diversity-assisted schemes
(G = 128,K = 10).

where

Ilu
(
γlu, θ
) =
∫∞

0
exp
(
− γlu

sin2 θ

)
pγlu
(
γlu
)
dγlu. (31)

Since γlu = γc · ((hul )2/Ω1) and hul obeys the Nakagami-
m distribution characterised by (7), it can be shown that the
PDF of γlu can be expressed as

pγlu
(
γlu
) =
(
m(u)
l

γlu

)m(u)
l γm

(u)
l −1

Γ(m(u)
l )

exp

(
− m(u)

l γlu
γlu

)
, γlu ≥ 0,

(32)

where γlu = γce
−η(l−1) for l = 1, 2, . . . ,L.

Upon substituting (32) into (31) it can be shown that
[28]

Ilu
(
γlu, θ
) =
(

m(u)
l sin2 θ

γlu +m(u)
l sin2 θ

)m(u)
l

. (33)

Finally, upon substituting (33) into (30), the average BER
of the STS-assisted W-CDMA system using U transmission
antennas can be expressed as

Pb(E) = 1
π

∫ π/2
0

L∏
l=1

U∏
u=1

(
m(u)
l sin2 θ

γlu +m(u)
l sin2 θ

)m(u)
l

dθ, (34)
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Figure 6: BER versus the SNR per bit, Eb/N0, performance com-
parison between the space-time-spreading-based transmit diver-
sity scheme and the conventional RAKE receiver arrangement us-
ing only one transmission antenna when communicating over
flat-fading (for space-time spreading) and multipath (for RAKE)
Rayleigh fading (ml = mc = 1) channels evaluated from (35)
by assuming that the average power decay rate was η = 0.2. The
solid line indicates the BER of the receiver-diversity-aided schemes,
while the dashed line that of the transmit-diversity-assisted schemes
(G = 128,K = 10).

which shows that the diversity order achieved is LU—the
product of the transmit diversity order and the frequency-

selective diversity order. Furthermore, if we assume that m(u)
l

is independent of u, that is, that all of the parallel transmit-
ted subsignals experience an identical Nakagami fading, then
(34) can be expressed as

Pb(E) = 1
π

∫ π/2
0

L∏
l=1

(
ml sin2 θ

γlu +ml sin2 θ

)Uml

dθ. (35)

4.2. Numerical results and discussions

In Figures 5, 6, 7, 8, and 9 we compare the BER perfor-
mance of the STS-assisted W-CDMA system transmitting
over flat-fading channels and that of the conventional RAKE
receiver using only one transmission antenna, but commu-
nicating over frequency-selective fading channels. The re-
sults in these figures were all evaluated from (35) by as-
suming appropriate parameters, which are explicitly shown
in the corresponding figures. In Figures 5, 6, and 7 the
BER was drawn against the SNR/bit, namely Eb/N0, while
in Figures 8 and 9 the BER was drawn against the num-
ber of users, K , supported by the system. From the re-
sults we observe that for transmission over Rayleigh fading
channels (ml = 1), as characterised by Figures 5, 6, and
8, both the STS-based transmit diversity scheme transmit-
ting over the frequency-nonselective Rayleigh fading chan-
nel and the conventional RAKE receiver scheme commu-
nicating over frequency-selective Rayleigh fading channels
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Figure 7: BER versus the SNR per bit, Eb/N0, performance com-
parison between the space-time-spreading-based transmit diver-
sity scheme and the conventional RAKE receiver arrangement us-
ing only one transmission antenna when communicating over
flat-fading (for space-time spreading) and multipath (for RAKE)
Nakagami-m fading channels evaluated from (35) by assuming that
the average power decay rate was η = 0.2, where m1 = 2 indicates
that the first resolvable path constitutes a moderately fading path,
while the other resolvable paths experience more severe Rayleigh
fading (mc = 1). The solid line indicates the BER of the receiver-
diversity-aided schemes, while the dashed line that of the transmit-
diversity-assisted schemes (G = 128,K = 10).

having the same number of resolvable paths as the num-
ber of transmission antennas in the STS-assisted scheme
achieved a similar BER performance, with the STS scheme
slightly outperforming the conventional RAKE scheme. For
transmission over general Nakagami-m fading channels, if
the first resolvable path is less severely faded, than the
other resolvable paths, such as in Figures 7 and 9 where
m1 = 2 and m2 = m3 = · · · = mc = 1, the STS-
based transmit diversity scheme communicating over the
frequency-nonselective Rayleigh fading channel may signif-
icantly outperform the corresponding conventional RAKE-
receiver-assisted scheme communicating over frequency-
selective Rayleigh fading channels. This is because the STS-
based transmit diversity scheme communicated over a single
nondispersive path, which benefited from having a path ex-
periencing moderate fading. However, if the number of re-
solvable paths is sufficiently high, the conventional RAKE re-
ceiver scheme is also capable of achieving a satisfactory BER
performance.

Above we assumed that the number of resolvable paths
was one, if the STS using more than one antenna was con-
sidered. By contrast, the number of resolvable paths was
equal to the number of transmit antennas of the correspond-
ing STS-based system, when the conventional RAKE receiver
was considered. However, in practical W-CDMA systems the
number of resolvable paths of each antenna’s transmitted
signal depends on its transmission environment. The num-
ber of resolvable paths dynamically changes, as the mobile
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Figure 8: BER versus the number of users, K , performance com-
parison between the space-time-spreading-based transmit diver-
sity scheme and the conventional RAKE receiver arrangement us-
ing only one transmission antenna when communicating over
flat-fading (for space-time spreading) and multipath (for RAKE)
Rayleigh fading channels evaluated from (35) by assuming that the
average power decay rate was η = 0 (G = 128,Eb/N0 = 20 dB,
m1 = mc = 1).
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Figure 9: BER versus the number of users, K , performance com-
parison between the space-time-spreading-based transmit diver-
sity scheme and the conventional RAKE receiver arrangement us-
ing only one transmission antenna when communicating over the
flat-fading (for space-time spreading) and multipath (for RAKE)
Nakagami-m fading channels evaluated from (35) by assuming that
the average power decay rate was η = 0.2, where m1 = 2 indicates
that the first resolvable path constitutes a moderately fading path,
while the other resolvable paths experience more severe Rayleigh
fading (mc = 1); G = 128,Eb/N0 = 20 dB.
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traverses through different transmission environments.
Specifically, in some scenarios the number of paths may be
as low as L = 1, and in other scenarios it may be as high
as L > 10. When the number of resolvable paths is as low
as L = 1 or 2, employing STS-based transmit diversity is
particularly valuable. However, when the number of resolv-
able paths is reasonably high, for example, L > 4, the em-
ployment of STS-based transmit diversity may not be neces-
sary. An attractive approach is to adapt the mode of opera-
tion of the STS scheme, which is discussed in the following
section.

5. DISPERSION-CONTROLLED ADAPTIVE
SPACE-TIME SPREADING

The main philosophy behind the proposed channel-induced
dispersion-controlled adaptive STS scheme is the real-time
balancing of the link budget through the adaptive control of
the STS-based transmission scheme, in order that the sys-
tem achieves its maximum throughput, while maintaining
the required target BER performance. More specifically, in
this treatise we will aim for maintaining a target BER of
10−4, regardless of the instantaneous channel quality expe-
rienced and exploit the improved channel quality provided
by a higher number of resolvable multipath components ex-
perienced in scattering rich outdoor channels for increasing
the system’s effective throughput, ultimately leading to a po-
tentially better speech [6] or video [7] quality for the users of
the system.

In the context of the STS-assisted W-CDMA system, the
delay spread of the wireless channels, and hence the num-
ber of resolvable paths, varies slowly over a range span-
ning from one to dozens of paths. The STS scheme de-
signed based on a low number of resolvable paths, or even
based on a relatively high but constant number of resolv-
able paths, cannot maximise the achievable throughput. For
example, if the STS scheme is designed based on a low
number of resolvable paths, in order to guarantee a re-
quired quality of service (QoS), the practically achieved
QoS may be excessive, when the number of resolvable paths
is high, provided that these resolvable paths are efficiently
combined. However, if only a low but constant number of
resolvable paths is combined, the diversity potential pro-
vided by the high number of resolvable paths is inevitably
wasted. A high-efficiency STS-based communication scheme
must be capable of combining the transmitted energy, which
was scattered over an arbitrary number of resolvable paths,
and the mode of operation of the STS scheme can be
adaptively controlled according to the receiver’s detection
performance.

When the number of resolvable paths is low and hence
the resultant BER is higher than the required BER, then a
low throughput STS-assisted transmitter mode is activated,
which exhibits a high transmit diversity gain, as it will be
demonstrated below with the aid of an example. By con-
trast, when the number of resolvable paths is high and hence
the resultant BER is lower than the required BER, then

a higher throughput STS-assisted transmitter mode is acti-
vated, which has a lower transmit diversity gain.2

Specifically, the principle of implementing channel-
dispersion-controlled adaptive rate transmission using adap-
tive STS may be readily interpreted by referring to the follow-
ing example. Let the transmitter employ a total of four trans-
mission antennas. If the number of resolvable paths experi-
enced by the receiver is low, the transmitter is instructed by
the receiver to employ an STS scheme based on four transmit
antennas, using the STS scheme described as [21]

S = [c1 c2 c3 c4
]


b1 b2 b3 b4

b2 −b1 b4 −b3

b3 −b4 −b1 b2

b4 b3 −b2 −b1


 , (36)

where c1, c2, c3, c4 are four STS-related orthogonal codes hav-
ing a period of 4Tb. The above STS scheme transmits U = 4
parallel data bits during the interval of 4Tb, and hence the
effective transmission rate becomes Rb = 4 × 1/4Tb = 1/Tb,
as seen in Figure 2. By contrast, when the number of resolv-
able paths increases, the transmitter is instructed by the re-
ceiver to employ four separate STS schemes, each based on
two transmit antennas, as seen in Figure 4, which can be for-
mulated as

S =



[
c1 c2
](b1 b2

b2 −b1

) [
c3 c4
](b3 b4

b4 −b3

)

[
c1 c2
](b5 b6

b6 −b5

) [
c3 c4
](b7 b8

b8 −b7

)

 , (37)

which, again, constitutes the four independent two-antenna-
based STS schemes B2(t) of (3), where c1, c2, c3, c4 are the
U = 4 STS-related orthogonal codes having a period of 2Tb.
Based on the above four two-antenna-assisted STS schemes,
U = 4 parallel data bits are transmitted during the first 2Tb-
duration interval using the STS scheme B2(t) of (3). Specif-
ically, antennas 1 and 2 are activated with the aid of c1, c2,
while activating antennas 3 and 4 using c3, c4, as portrayed
in Figure 4. During the following 2Tb-duration slot another

2The transmitter does not necessarily have to have the explicit knowledge
of the number of resolvable paths, there is a range of other criteria, which
may be used for controlling the activation of the different antenna configu-
rations. Firstly, since most existing systems employ explicit training for es-
timating the channel’s impulse response (CIR), the significant-energy CIR
taps explicitly quantify the number of resolvable multipath components.
Another practical metric that may be used for activating the required an-
tenna configuration is the bit error ratio (BER) estimated, for example, by
the channel decoder’s soft metrics. When the estimated BER is higher than
the target BER, the transmitter is instructed to increase its spreading gain
and hence reduce its throughput, as well as vice versa. The activation regime
has to be conservative for the sake of maintaining the target BER even if the
BER was underestimated. Finally, the Doppler frequency does not dramat-
ically affect the system’s performance, since the amount of dispersion, that
is, the CIR duration, changes only, when traversing from an indoor-type
nondispersive environment to an outdoor scenario and then to a rural sce-
nario, which may require 10 minutes for the dispersion to change substan-
tially. However, the system’s increased throughput is achieved at the cost of
an increased complexity.
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four data bits are transmitted using the same scheme as
outlined above. Consequently, the above four two-antenna-
based STS schemes transmit a total of eight data bits dur-
ing two consecutive 2Tb-duration time slots having a total
duration of 4Tb, and the effective transmission rate is now
doubled to 2Rb. Furthermore, if the number of resolvable
paths is sufficiently high, which results in requiring no trans-
mit diversity at all, then the four transmission antennas can
transmit their information independently, as demonstrated
in Figure 3 and the corresponding transmission mode can be
described as

S =



c1b1 c2b2 c3b3 c4b4

c1b5 c2b6 c3b7 c4b8

c1b9 c2b10 c3b11 c4b12

c1b13 c2b14 c3b15 c4b16


 , (38)

which implies that each of the 16 bits is transmitted inde-
pendently using an antenna within a duration Tb, where
c1, c2, c3, c4 are four orthogonal codes having a period of Tb,
each mapped to one antenna. Explicitly, this scheme is capa-
ble of transmitting a total of 16 data bits during an interval
of 4Tb, and hence we achieve a transmission rate of 4Rb, as
exemplified in Figure 3.

The PDF of the delay spread in a wireless communica-
tion channel can be approximated by a negative exponential
distribution given by [31]

f (τ) = 1
Tm

exp
(
− τ − τ0

Tm

)
, τ ≥ τ0, (39)

where the minimum delay τ0 is the time required for the
signal to propagate directly following the line of sight from
the transmitter to the receiver, and Tm represents the mean
square of the distribution, which is also the average value
of the delay spread. Some typical examples of Tm in differ-
ent environments are [25] Tm < 0.1 microseconds for an in-
door environment, Tm < 0.2 microseconds for an open ru-
ral area, Tm ≈ 0.5 microseconds for a suburban area, and
Tm ≈ 3 microseconds for a typical urban area. In (39), we let
τr = (τ − τ0)/Tc. Then the PDF of τr can be expressed as

f
(
τr
) = 1

Tm/Tc
exp
(
− τr
Tm/Tc

)
, τr ≥ 0, (40)

where Tm/Tc represents the average delay spread to chip-
duration ratio, and �Tm/Tc� + 1—where �x� represents the
largest integer not exceeding x—is the average number of
resolvable paths, which has been widely used in the perfor-
mance analysis of DS-CDMA systems transmitting over mul-
tipath fading channels.

Let the number of resolvable paths associated with the
reference signal be Lr . For DS-CDMA signals having a chip
duration of Tc, the number of near-instantaneous resolvable
paths Lr = �(τ − τ0)/Tc� + 1 can be modelled as a discrete
random variable, which varies slowly depending on the com-
munication environment encountered. For a given BER, let
the maximum throughput conditioned on the number of re-
solvable paths Lr be B(Lr). Ideally, assuming that the receiver

is capable of combining an arbitrary number of resolvable
paths and that the transmitter has the perfect knowledge of
the number of resolvable paths with the aid of a feedback
channel, and that the feedback delay is negligible, the uncon-
ditional throughput, B, using adaptive STS can be written as

B =
∞∑

Lr=1

P
(
Lr
) · B(Lr), (41)

where P(Lr) is the probability that there are Lr resolvable
paths at the receiver. With the aid of (40), this probability
can be approximated as

P
(
Lr
) =
∫ Lr−1+0.5

max{0,Lr−1−0.5}
f
(
τr
)
dτr

=
∫ Lr−1+0.5

max{0,Lr−1−0.5}
1

Tm/Tc
exp
(
− τr
Tm/Tc

)
dτr

=exp

(
−max

{
0,Lr−1−0.5

}
Tm/Tc

)
−exp

(
− Lr − 1+0.5

Tm/Tc

)
,

(42)

where [Lr−1−0.5,Lr−1+0.5] is the normalised delay spread
range having Lr resolvable paths. In (41), B(Lr) represents
the maximum possible throughput conditioned on having Lr
number of resolvable paths. For example, for the proposed
adaptive STS scheme using four-antenna-based STS, two-
antenna-based STS, as well as conventional single-antenna-
based transmission, as characterised in (36), (37), and (38),
B(Lr) may achieve values of Rb, 2Rb, or 4Rb, respectively, de-
pending on the specific number of resolvable paths encoun-
tered.

Figures 10 and 11 show the throughput versus SNR/bit
performance of the STS-assisted W-CDMA system using a
maximum of four antennas. The maximum dispersion of the
propagation environment was Tm = 0.1, 0.2, 0.5, and 3 mi-
croseconds. The corresponding number of resolvable multi-
path components at the 3.84 Mchip/s chip rate of the third-
generation systems [3] became (Tm/Tc) + 1 = 1, 2, 3, and 16,
respectively. Depending on the number of resolvable paths at
the receiver and on the corresponding achievable BER per-
formance, the transmitter may activate one of the transmis-
sion schemes described by (36), (37), and (38). In our re-
lated investigations, the target BER was set to 0.01. Specifi-
cally, if a sufficiently high number of resolvable paths is en-
countered by the receiver, which results in a BER of less than
0.01 for the scheme described by (38), then the transmitter
supports a bitrate of 4Rb. If the number of resolvable paths
is in a range, where the BER using the scheme described by
(38) is higher than 0.01, but that of the STS scheme described
by (37) is lower than 0.01, then the transmitter transmits at
a rate of 2Rb. Finally, if the number of resolvable paths is
in a range, where the BER using the STS scheme described
by (37) is higher than 0.01, but that described by (36) is
lower than 0.01, then the transmitter transmits at a rate of
Rb. Otherwise, if the number of resolvable paths is too low,
which results in BER > 0.01 for the STS scheme described
by (36), then the transmitter simply disables transmissions.
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Figure 10: Normalized throughput versus the SNR per bit, Eb/N0,
performance of the adaptive space-time-spreading-assisted W-
CDMA system using four-antenna-based STS of (36), the two-
antenna-aided STS of (37), and the conventional single-antenna
scheme for transmission over four typical wireless channels expe-
riencing Rayleigh fading (m = 1). The target BER of the refer-
ence user is 0.01 and there are no interference users, that is, K = 1
(G = 128,η = 0,Rchip = 3.686 Mcps/s).

In the context of Figure 10 we assumed that the number of
users was K = 1, and that the fading associated with each re-
solvable path obeyed the Rayleigh distribution (m = 1). By
contrast, in Figure 11 we assumed that the number of users
was K = 10, and that the fading associated with the first re-
solvable path obeyed the Nakagami-m distribution in con-
junction with m = 2, while the fading of the other resolvable
paths obeyed the Rayleigh distribution (mc = 1).

From the results of Figures 10 and 11 we observe that
with the aid of the adaptive STS scheme, the system’s effec-
tive throughput is significantly increased, if the average delay
spread of the channel is sufficiently high or, in other words,
if the number of resolvable paths varies over a sufficiently
wide range. We will highlight the significance of this obser-
vation in more detail. Using Tm = 0.5 microseconds and
3 microseconds as examples and by observing Figure 10 we
find that the SNR/bit required for transmitting at the data
rate of Rb is about 5.2 dB for Tm = 0.5 microseconds and
4.6 dB for Tm = 3 microseconds. Similarly, the SNR/bit re-
quired for supporting the data rate of 3Rb is about 6.4 dB for
Tm = 0.5 microseconds and 5 dB for Tm = 3 microseconds.
Hence, the adaptive STS-assisted W-CDMA system increased
the achievable transmission rate by a factor of three, while
requiring only a modest transmitted power increase of about
1.2 dB for Tm = 0.5 microseconds and 0.4 dB for Tm = 3 mi-
croseconds. Similar results can also be observed in Figure 11,
where an extra 0.4 dB or 1.2 dB transmitted power is required
for achieving a data rate of 3Rb instead of Rb. However, if
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Figure 11: Normalized throughput versus the SNR per bit, Eb/N0,
performance of the adaptive space-time-spreading-assisted W-
CDMA system using the four-antenna-based STS of (36), the two-
antenna-aided STS of (37), and the conventional single-antenna
scheme for transmission over four typical wireless channels obey-
ing the Nakagami-m distribution (m1 = 2, mc = 1). The target
BER of the reference user is 0.01, while the interfering users com-
municate using the four-antenna-based STS of (36) and each in-
terfering signal has an average of LA number of resolvable paths
(G = 128,K = 10,η = 0,Rchip = 3.686 Mcps/s).

the number of resolvable paths varies over a relatively low
range, the required increase of the transmitted power be-
comes higher. For example, for the case of Tm = 0.1 mi-
croseconds in Figures 10 and 11 an extra 2.2 dB (Figure 10)
or 1.2 dB (Figure 11) transmitted power must be invested, in
order to achieve a data rate of 2Rb instead of Rb. In this sce-
nario, due to the associated extra complexity of the adaptive
STS-assisted scheme required by the channel dispersion es-
timation and feedback, and due to the control channel re-
quirement of the dispersion feedback, the adaptive STS-aided
scheme might not constitute a more attractive alternative.
The system’s increased effective throughput ultimately leads
to a potentially better speech [6] or video [7] service quality
for the users of the system.

6. CONCLUSIONS

In this contribution, we have investigated the performance of
STS-assisted W-CDMA systems, when multipath Nakagami-
m fading, multiuser interference, and background noise-
induced impairments are considered. Our analysis and nu-
merical results demonstrated that the achievable diversity
order is the product of the frequency selective diversity or-
der and the transmit diversity order. Furthermore, both the
transmit diversity and the frequency selective diversity have a
similar influence on the BER performance of the W-CDMA
systems considered. Since W-CDMA signals typically experi-
ence high-dynamic frequency-selective fading in both urban
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and suburban areas, the proposed adaptive transmit diver-
sity scheme will result into an increased throughput and ul-
timately in a potentially better speech [6] or video [7] service
quality for the users of the system. Based on the above sce-
narios, we proposed an adaptive STS transmission scheme,
which adapts its STS configuration using (36), (37), and
(38) according to the frequency selectivity information fed
back from the receivers. The numerical results show that
by efficiently exploiting the channel’s frequency selectivity,
the proposed adaptive STS scheme is capable of significantly
improving the throughput of W-CDMA systems. For W-
CDMA systems transmitting at a data rate of 3Rb instead of
Rb, only an extra of 0.4 dB and 1.2 dB transmitted power is
required in the urban and suburban areas considered, respec-
tively, which results in a substantially increased speech [6] or
video [7] service quality. Alternatively, a potentially higher
number of users may be supported within the same band-
width, as a benefit of cross-layer optimisation.

A number of related open research problems may be
identified, such as the design of more sophisticated STS-
aided multicarrier CDMA transceivers. The design of new
STS codes is also a promising research area. A particularly
promising research topic is designing large area synchronous
(LAS) STS schemes, which exhibit a so-called interference-
free window (IFW). Provided that the interfering signals ar-
rive within this IFW, no multiuser interference is inflicted.
Finally, quantifying the achievable network-layer benefits [3]
of STS-aided CDMA systems is an important open problem.
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We consider distributed information retrieval for sensor networks with cluster heads or mobile access points. The performance
metric used in the design is energy efficiency defined as the ratio of the average number of bits reliably retrieved by the access point
to the total amount of energy consumed. A distributed opportunistic transmission protocol is proposed using a combination of
carrier sensing and backoff strategy that incorporates channel state information (CSI) of individual sensors. By selecting a set
of sensors with the best channel states to transmit, the proposed protocol achieves the upper bound on energy efficiency when
the signal propagation delay is negligible. For networks with substantial propagation delays, a backoff function optimized for
energy efficiency is proposed. The design of this backoff function utilizes properties of extreme statistics and is shown to have mild
performance loss in practical scenarios. We also demonstrate that opportunistic strategies that use CSI may not be optimal when
channel acquisition at individual sensors consumes substantial energy. We show further that there is an optimal sensor density
for which the opportunistic information retrieval is the most energy efficient. This observation leads to the design of the optimal
sensor duty cycle.

Keywords and phrases: sensor networks, distributed information retrieval, opportunistic transmission, energy efficiency.

1. INTRODUCTION

A key component in the design of sensor networks is the
process by which information is retrieved from sensors. In
an ad hoc sensor network with cluster heads/gateway nodes,
sensors send their packets to their cluster heads using a cer-
tain transmission protocol [1, 2, 3]. For sensor networks with
mobile access [4, 5], data are collected directly by the mobile
access points (see Figure 1). In both cases, a population of
sensors (those in the same coverage area of an access point)
must share a common wireless channel. Thus, an informa-
tion retrieval protocol that determines which sensors should
transmit and the rates of transmissions needs to be designed
for efficient channel utilization.

Distributed information retrieval allows each sensor, by
itself, to determine whether it should transmit and the rate
of transmission. One such example is ALOHA in which each
sensor flips a coin (possibly biased by its channel state) to

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

determine whether it should transmit [6, 7]. Another exam-
ple is a fixed TDMA schedule by which each sensor trans-
mits in a predetermined time slot. A centralized protocol,
in contrast, requires the scheduling by the access point. A
particularly relevant technique is the so-called opportunistic
scheduling [8, 9] by which the access point determines which
sensor should transmit according to the channel states of the
sensors. In this paper, we are interested in distributed infor-
mation retrieval which, in the context of sensor networks, has
many advantages: less overhead, more robust against node
failures, and possibly more energy efficient.

1.1. Energy-efficient opportunistic transmission

By opportunistic transmission we mean that the informa-
tion retrieval protocol utilizes the channel state information
(CSI). Specifically, suppose that the channel states of a set of
activated sensors are obtained. An opportunistic transmis-
sion protocol chooses, according to some criterion, a subset
of activated sensors to transmit and determines their trans-
mission rates. Knopp and Humblet [8] showed that, to max-
imize the sum capacity under the average power constraint,
the opportunistic transmission that allows a single user with

mailto:qzhao@ece.ucdavis.edu
mailto:ltong@ece.cornell.edu
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Figure 1: Information retrieval in sensor networks.

the best channel to transmit is optimal. Other opportunistic
schemes include [6, 7, 9, 10, 11, 12, 13] and the references
therein.

The idea of opportunistic information retrieval, at the
first glance, is appealing for sensor networks where energy
consumption is of primary concern. If the channel realiza-
tion of a sensor is favorable, the sensor can transmit at a
lower power level for the same rate or at a higher rate us-
ing the same power. If the sensor has a poor channel, on
the other hand, it is better that the sensor saves the energy
by not transmitting (and not creating interference to oth-
ers). What is missing in this line of argument, however, is the
cost of obtaining channel states and the cost of determining
opportunistic scheduling. If it takes a considerable amount
of energy to estimate the channel at each sensor and if de-
termining the set of sensors with the best channels requires
additional communications among sensors, it is no longer
obvious that an opportunistic information retrieval is more
energy efficient than a strategy—for example, using a prede-
termined schedule—that does not require the channel state
information.

It is necessary at this point to specify the performance
metric used in the design of information retrieval protocols.
For sensor networks, we use energy efficiency (bits/Joule) de-
fined by the ratio of the expected total number of bits reliably
received at the access point and the total energy consumed.
Here we will include both the energy radiated at the trans-
mitting antenna and the energy consumed in listening, com-
putation, and channel acquisition (when an opportunistic
strategy is used). For sensor networks, it has been widely rec-
ognized that energy consumption beyond transmission can
be substantial [3, 4, 14].

Using energy efficiency as the metric, we aim to address
the following questions. If channel acquisition consumes en-
ergy, is opportunistic transmission strategy optimal? What
would be an energy-efficient distributed opportunistic infor-
mation retrieval? What network parameters affect the energy
efficiency? Can these parameters be designed optimally?

While it is debatable whether the information theoretic
metric of energy efficiency is appropriate for sensor net-
works, our goal is to gain insights into the above fundamental
questions. It should also be emphasized that the distributed
opportunistic protocol developed in this paper applies also

Λ
Λ∗

S

Figure 2: Energy-efficiency characteristics.

to noninformation theoretic metrics such as throughput and
throughput per unit cost.

1.2. Summary of results

The contribution of this paper is twofold. First, we demon-
strate that when the cost of channel acquisition is small as
compared to the energy consumed in transmission, the op-
portunistic transmission is optimal. However, when the aver-
age number of activated sensors exceeds a certain threshold,
the opportunistic strategy looses its optimality; its energy ef-
ficiency approaches zero as the average number of activated
sensors approaches infinity. Figure 2 illustrates the generic
characteristics of the energy efficiency of the opportunistic
transmission where Λ denotes the average number of acti-
vated sensors. When Λ is small, the gain in sum capacity due
to the use of the best channel dominates the increase in en-
ergy consumption. As Λ increases beyond a certain value, the
energy cost for acquiring the channel state of every activated
sensor overrides the improvement in sum capacity. It is thus
critical that the average number Λ of activated sensors be op-
timized. In Section 5, we study possible schemes of control-
ling Λ by the design of the sensor duty cycle.

Second, we propose opportunistic carrier sensing—a dis-
tributed protocol that achieves a performance upper bound
assumed by the centralized opportunistic transmission. The
key idea is to incorporate local CSI into the backoff strat-
egy of carrier sensing. Specifically, a decreasing function is
used to map the channel state to the backoff time. Each sen-
sor, after measuring its channel, generates the backoff time
according to this backoff function. When the propagation
delay is negligible, the decreasing property of the backoff
function ensures that the sensor with the best channel state
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seizes the channel. To minimize the performance loss caused
by propagation delay, the backoff function is constructed to
balance the energy consumed in carrier sensing and the en-
ergy wasted in collision. This protocol also provides a dis-
tributed solution to the general problem of finding the max-
imum/minimum.

1.3. Related work
The metric of energy efficiency considered in this paper can
be traced back to capacity per unit cost [15, 16]. For sen-
sor networks, such a metric captures important design trade-
offs. However, the literature on using this metric for sensor
networks is scarce. Our results explicitly include energy con-
sumed in channel acquisition and listening.

The idea of using CSI was sparked by the work of Knopp
and Humblet [8]. Exploiting CSI induces multiuser diver-
sity as the performance increases with the number of users
[9, 10]. Throughput optimal scheduling for downlink over
time-varying channels by a central controller has been con-
sidered in [17, 18], all assuming the knowledge of the chan-
nel states at no cost. Decentralized power allocation based on
channel states was investigated by Telatar and Shamai under
the metric of sum capacity [12]. Viswanath et al. [19] have
shown the asymptotic optimality of a decentralized power
control scheme for a multiaccess fading channel that uses
CDMA with an optimal receiver. The effect of decentralized
power control on the sum capacity of CDMA with linear re-
ceivers and single-user decoders was studied by Shamai and
Verdú in [20]. All the work along this line uses rate, not the
energy efficiency, as the performance metric. Using channel
state information in random access has been considered in
[6, 7, 21]. Qin and Berry, in particular, aimed to schedule
the sensor with the best channel to transmit by a distributed
protocol—channel-aware ALOHA [7]. The throughput of
channel-aware ALOHA, however, is limited by the efficiency
of the conventional ALOHA protocol.

1.4. Organization of the paper
In Section 2, we state the network model. The performance
of the opportunistic transmission is addressed in Section 3
where we obtain a performance upper bound and character-
ize the optimal number of transmitting sensors in the oppor-
tunistic transmission. In Section 4, we propose opportunistic
carrier sensing. A backoff function is constructed and its ro-
bustness to propagation delay is demonstrated. In Section 5,
we focus on the optimality of the opportunistic transmission.
Optimal sensor activation schemes are discussed. Section 6
concludes the paper.

2. THE NETWORK MODEL

2.1. The sensor network
We assume that the sensor nodes form a two-dimensional
Poisson field1 with mean λ. The number M of active sensors

1As shown in [22], the difference (in terms of network connectivity) be-
tween a Poisson field and a uniformly distributed random field is negligible
when the number of nodes is large. For the simplicity of the analysis, we
assume a Poisson distributed sensor network.

that share the wireless channel to an access point is thus a
Poisson random variable with mean Λ = aλ where a denotes
the coverage area of the mobile access point or the size of the
cluster, that is,

P[M = m] = e−ΛmΛ

m!
. (1)

For a sensor network with mobile access, we consider a
single access point. For a sensor network under the structure
of clusters, we focus on the information retrieval within one
cluster. We assume that there is no interference among adja-
cent clusters (which can be achieved by, for example, assign-
ing different frequencies to adjacent clusters) and the sen-
sors within the cluster transmit directly to the cluster head
as considered in [3]. Thus, information retrieval for a sensor
network with mobile access or cluster heads can be modeled
as a many-to-one communication problem. Aiming at pro-
viding insights to fundamental questions on opportunistic
transmission, we further assume that sensors within the cov-
erage area of the mobile access point or the same cluster can
hear each other’s transmission.

2.2. The wireless fading channel

The physical channel between an active sensor and the access
point is subject to flat Rayleigh fading with a block length of
T seconds, which is also the length of transmission slot. The
channel is thus constant within each slot and varies indepen-
dently from slot to slot.

Consider the first slot where n nodes transmit simulta-
neously. The received signal y(t) at the access point can be
written as

y(t) =
n∑
i=1

hixi(t) + n(t), 0 ≤ t ≤ T , (2)

where hi is the channel fading process experienced by sensor
i, n(t) the white Gaussian noise with power spectrum density
N0/2, and xi(t) the transmitted signal with fixed power Pout.
We point out that the power constraint used here is differ-
ent from the long-term average power constraint considered
in [8]. We assume that sensors can only transmit at a fixed
power level Pout and do not have the capability of allocating
power over time. Define

ρ � Pout

WN0
. (3)

Let

γi �
∣∣hi∣∣2 ∼ exp

(
γi
)

(4)

denote the channel gain from sensor i to the access point.
Under independent Rayleigh fading, γi is exponentially dis-
tributed with mean γi. The average received SNR of sensor i
is thus given by ργi.



234 EURASIP Journal on Wireless Communications and Networking

2.3. The energy consumption model

In each slot, energy consumed by active sensors may come
from three operations: transmission, reception, and schedul-
ing.

Let Er and Et denote, respectively, total energy consumed
in receiving and transmitting in one slot. We have [14]

Er = E
[
Prx

M∑
i=1

Trx(i)

]
, (5)

Et = E
[
Ptx

M∑
i=1

Ttx(i)

]
, (6)

where the expectation is with respect to M, Trx(i), and Ttx(i)
are the average reception and transmission time of node i,
Prx is the sensor’s receiver circuitry power, Ptx is the power
consumed in transmission which consists of transmitter cir-
cuitry power and antenna output power Pout.

In the distributed opportunistic transmission, active sen-
sors perform synchronization and channel acquisition using
a beacon signal broadcast by the access point2 and determine
who should transmit and at what rate. The expected total cost
Ec of scheduling transmissions based on the channel states of
the active sensors is lower bounded by

Ec ≥ Λec, (7)

where ec is the amount of energy consumed by one sen-
sor in estimating its channel state from the beacon sig-
nal. This lower bound holds for both centralized and dis-
tributed implementations of the opportunistic transmission.
It is achieved when the active sensors, each with access only to
its own channel state, can determine the set of transmitting
sensors at no cost. We show in Section 4 that when the prop-
agation delay among active sensors is negligible, the schedul-
ing cost of the proposed opportunistic protocol achieves the
lower bound given in (7).

3. OPPORTUNISTIC TRANSMISSION FOR
ENERGY EFFICIENCY

In this section, we address the performance of the oppor-
tunistic transmission under the metric of energy efficiency.
As a performance measure, energy efficiency is first defined
and the underlying coding scheme specified. We then obtain
an upper bound on the performance of the opportunistic
transmission and characterize the optimal number of trans-
mitting sensors.

3.1. Sum capacity and coding scheme

Given that the channel fading process hi is independent
among sensors, and strictly stationary and ergodic, the sum

2We assume reciprocity. The channel gain from a sensor to the access
point is the same as that from the access point to the sensor.

capacity achieved by an information retrieval protocol which
enables n sensors in each slot is given by [23]

R =WE

[
log

(
1 + ρ

n∑
i=1

γi

)]
, (8)

where W is the transmission bandwidth and the expectation
is over the fading process γi (see (4)). To achieve this rate,
the CSI is used in decoding. The information rate is constant
over time and each codeword sees a large number of channel
realizations.

An alternative coding scheme is to use different transmis-
sion rates according to the channel states of the transmitting
sensors. In this case, each codeword experiences only one
channel realization, resulting in a smaller coding delay. When
the block length T is sufficiently large, the achievable sum
rate averaged over time can be approximated by (8). Note
that using a variable information rate in each slot requires
the CSI in both encoding and decoding. If more than one
sensor is enabled for transmission, each transmitting sensor
must know not only its own channel state, but also the chan-
nel states of other simultaneously transmitting sensors in or-
der to determine the rate of transmission. In Section 4, we
show that with the proposed opportunistic carrier sensing,
each transmitting sensor obtains the channel states of other
sensors at no extra cost. The proposed protocol is thus ap-
plicable to both coding schemes. Without loss of generality,
we assume, for the rest of the paper, this alternative coding
scheme which uses variable information rate. We point out
that under this coding scheme, (8) is only an approximation
to the achievable sum rate. A more rigorous formulation is
to use error exponents [15].

3.2. n-TDMA

As a benchmark, we first give an expression of energy effi-
ciency for a predetermined scheduling where n sensors are
scheduled for transmission in each slot. At the beginning of
each slot, n sensors wake up, measure their channel states,
and transmit. Referred to as n-TDMA, this scheme with op-
timal n has the energy efficiency

STDMA = max
n

WTE
[

log
(
1 + ρ

∑n
i=1 γi

)]
nec + nTPtx

, (9)

where expectation3 is over M and {γi}ni=1. Since n � Λ in
general, we have ignored the rare event of M < n. The above
optimization can be obtained numerically.

3.3. Opportunistic transmission

3.3.1. A performance upper bound

With the opportunistic strategy, n sensors with the best chan-

nels are enabled for transmission in each slot. Let γ(i)
M denote

3To be precise, the numerator of (9) should be written as

WTEM{Eγ(i) [log(1 + ρ
∑min{n,m}

i=1 γ(i)
m )|M = m]}.
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the ith best channel gain among M sensors. The energy effi-
ciency of the opportunistic strategy with optimal n is

Sopt = max
n

WTE
[

log
(

1 + ρ
∑n

i=1 γ
(i)
M

)]
Ec + nTPtx

, (10)

where expectation is over M and {γ(i)
M }ni=1. Using the lower

bound on Ec given in (7), we obtain a performance upper
bound for the opportunistic strategy:

Sopt ≤ max
n

WTE
[

log
(

1 + ρ
∑n

i=1 γ
(i)
M

)]
Λec + nTPtx

. (11)

3.3.2. The optimal number of transmitting sensors

Since the performance upper bound given in (11) is achieved
by the opportunistic carrier sensing proposed in Section 4,
we can use this upper bound to study the optimal number
n∗ of transmitting sensors and the optimality of the oppor-
tunistic transmission.

It has been shown by Knopp and Humblet [8] that the
optimal transmission scheme for maximizing sum capacity
under a long-term average power constraint is to enable only
one sensor (the one with the best channel) to transmit. Un-
der the metric of energy efficiency with a fixed transmission
power, however, allowing more than one transmission may
be optimal when the cost in channel acquisition becomes
substantial.

Proposition 1. For a fixed slot length T , transmission power
Ptx, and the channel acquisition cost ec, the optimal number
n∗ of transmitting sensors for the opportunistic transmission is
given by

n∗ = 1 if Λ <
TPtx

(
2C1 − C2

)
ec
(
C2 − C1

) ,

n∗ > 1 otherwise,

(12)

where Cn =WTE[log(1 + ρ
∑n

i=1 γ
(i)
M )].

For the proof of Proposition 1, see Appendix A.
In Figure 3, we plot the energy efficiency of the oppor-

tunistic transmission for different numbers n of transmitting
sensors. In Figure 3a, the average number Λ of active sensors
is 500 while, in Figure 3b, it is set to 5 000. We can see that
n∗ increases from 1 to 2 when Λ increases. The intuition be-
hind this is that the cost in channel acquisition dominates
when Λ = 5 000; allowing one more transmission improves
the sum rate without inducing significant increase in energy
consumption. The performance of n-TDMA is also plotted
in Figure 3 for comparison. For this simulation setup, the op-
timal number of transmitting sensors for n-TDMA equals 1.
We observe that the opportunistic transmission is inferior to
the simple predetermined scheduling at Λ = 5 000. Indeed,
we show in Section 5 that the opportunistic transmission
strategy looses its optimality when Λ exceeds a threshold.

4. OPPORTUNISTIC CARRIER SENSING

In this section, we propose opportunistic carrier sensing, a
distributed protocol whose performance approaches to the
upper bound of the opportunistic strategy given in (11). We
first present the basic idea of the opportunistic carrier sens-
ing under the assumption of negligible propagation delay
among active sensors. In Section 4.2, we study the design
of the backoff function to minimize the performance loss
caused by propagation delay.

4.1. The basic idea

We now present the basic idea of the opportunistic carrier
sensing by considering an idealistic scenario. We assume that
the transmission of one sensor is immediately detected by
other active sensors. In the next subsection, we discuss how
to circumvent the propagation delay among active sensors.

The key idea of opportunistic carrier sensing is to ex-
ploit CSI in the backoff strategy of carrier sensing. First con-
sider n∗ = 1, that is, in each slot, only the sensor with the
best channel transmits. After each active sensor measures
its channel gain γi using the beacon of the access point, it
chooses a backoff τ based on a predetermined function f (γ)
which maps the channel state to a backoff time and then lis-
tens to the channel. A sensor will transmit with its chosen
backoff delay if and only if no one transmits before its back-
off time expires. If f (γ) is chosen to be a strictly decreasing
function of γ as shown in Figure 4, this opportunistic carrier
sensing will ensure that only the sensor with the best chan-
nel transmits. Under the idealistic scenario where the trans-
mission of one sensor is immediately detected by other ac-
tive sensors, f (γ) can be any decreasing function with range
[0, τmax], where τmax is the maximum backoff. Since τmax

can be chosen as any positive number, the time required for
each sensor listening to the channel can be arbitrarily short.
Hence, energy consumed in each slot comes only from each
sensor estimating its own channel state (the lower bound on
Ec given in (7)) and the transmission by one sensor; oppor-
tunistic carrier sensing thus achieves the performance upper
bound of the opportunistic strategy.

We now consider n∗ > 1. If the energy detector of each
sensor is sensitive enough to distinguish the number of si-
multaneous transmissions, the opportunistic carrier sens-
ing protocol stated above can be directly applied—a sensor
transmits with its chosen backoff if and only if the number
of transmissions at that time instant is smaller than n∗. Note
that by observing the time instant τ at which the number of
simultaneous transmissions increases (energy-level jumps)
and mapping this time instant back to the channel gain us-
ing γ = f −1(τ), a sensor obtains the channel states of other
transmitting sensors and can thus determine its transmission
rate. Note that the channel gain of a transmitting sensor is
learned by measuring the backoff of the transmission, not
the signal strength.

If, however, sensors can not obtain the number of simul-
taneous transmissions, we generalize the protocol as follows.
We partition each slot into two segments: carrier sensing and
information transmission (see Figure 5). During the carrier
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Figure 3: The optimal number n∗ of transmitting sensors (W = 1 kHz, ργi = 3 dB, T = 0.01 second, Ptx = 0.181 W, ec = 1.8 nJ): (a)
Λ = 500 and (b) Λ = 5 000.

γγ1γ2

τ1
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τmax

τ = f (γ)

Figure 4: Opportunistic carrier sensing.

sensing period, sensors transmit, with backoff delay deter-
mined by f (γ), a beacon signal with short duration. A sen-
sor transmits a beacon if and only if the number of received
beacon signals is smaller than n∗. By measuring the time in-
stant at which each beacon signal is transmitted, those n∗

sensors with the best channels can also obtain all n∗ chan-
nel states from f −1(τ) and thus encode their messages ac-
cordingly. Shown in Figure 5 is an example with n∗ = 2.
During the carrier sensing segment [0, τmax], two beacon sig-
nals are transmitted at τ1 and τ2 by two sensors with the best
channel gains. Based on τ1, τ2, and f −1(τ), these two sensors
obtain each other’s channel state (see Figure 4). They then
encode their messages for transmissions in the second seg-
ment of the slot. One possible encoding scheme, as shown
in Figure 5, is based on the idea of successive decoding. The
sensor with the higher channel gain γ1 encodes its message
at rate W log(1 + ργ1) as if it was the only transmitting node.

Beacon

Rate W log(1 + ργ1)

Rate W log(1 + ρ′γ2)

0 τ1 τ2 τmax T

Figure 5: Opportunistic carrier sensing for n∗ = 2.

The other sensor with channel gain γ2 encodes its message by
treating the transmission from the sensor with channel γ1 as
noise. It transmits at rate W log(1 + ρ′γ1) where

ρ′ = Pout

N0W + Poutγ1
. (13)

We point out that the idea of opportunistic carrier sens-
ing provides a distributed solution to the general problem
of finding maximum/minimum. By substituting the channel
gain γ with, for example, the temperature measured by each
sensor, the distance of each sensor to a particular location,
or the residual energy of each sensor, we can retrieve infor-
mation of interest (the highest/lowest temperature, the mea-
surement closest/farthest to a location) from sensors of inter-
est (those with the highest energy level or those with the best
channel gain) in a distributed and energy-efficient fashion.
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Figure 6: Backoff function under significant propagation delay.

4.2. Backoff design under significant delay

We now generalize the basic idea of opportunistic carrier
sensing to scenarios with significant delay which may include
both the propagation delay and the time spent in the detec-
tion of transmissions. Without loss of generality, we focus on
the case of n∗ = 1.

In the idealistic case considered in the previous subsec-
tion, energy consumed in carrier sensing is negligible due to
the arbitrarily small carrier sensing time τmax. Furthermore,
using any decreasing function as the backoff function f (γ)
avoids collision, an event where several nodes transmit si-
multaneously while no information is received at the access
point. When there is substantial delay, however, collision and
energy consumed by carrier sensing4 are inevitable. To main-
tain the optimal performance achieved under the idealistic
scenario, f (γ) needs to be designed judiciously to minimize
both the occurrence of collision and the energy consumed in
carrier sensing. Unfortunately, these are two conflicting ob-
jectives. On one hand, choosing a larger τmax makes it more
likely to map channel gains to well-separated backoff times,
thus reducing collisions. On the other hand, a larger τmax re-
sults in less transmission time and more energy consumption
of carrier sensing.

To balance the tradeoff between collision and energy con-
sumption of carrier sensing, we propose f (γ) as illustrated in
Figure 6. This backoff scheme is a linear function on a finite
interval [γl, γu) where the channel gain is mapped to a back-
off time in (0, τmax]. Sensors with channel gains greater than
γu transmit without backoff (τ = 0) while sensors with chan-
nel gains smaller than γl turn off their radios until next slot
(τ = T), without even participating in the carrier sensing
process.

The proposed backoff function is completely determined
by γl, γu, and τmax. The choice of a finite γu allows better
resolution among highly likely channel realizations. The op-
tion of a nonzero γl avoids the listening cost of sensors whose
channels are unlikely to be the best. For a relatively large Λ,
a large percentage of active sensors can be freed of carrier

4Listening to the channel requires the receiver being turned on, which
consumes energy as given in (5).

Opportunistic carrier sensing with/without delay
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n-TDMA
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Figure 7: Performance of opportunistic carrier sensing under sig-
nificant delay (Λ = 100, W = 1 kHz, ργi = 3 dB, T = 0.01 second,
Ptx = 0.181 W, Prx = 0.18 W, ec = 1.8 nJ).

sensing cost with a carefully chosen γl. The maximum back-
off time τmax is chosen to balance collision and energy con-
sumption of carrier sensing. It is jointly optimized with γl
and γu to maximize energy efficiency:

{
γ∗l , γ∗u , τ∗max

} = arg max S
(
γl, γu, τmax

)
. (14)

The optimal {γ∗l , γ∗u , τ∗max} can be obtained via numeri-
cal evaluation or simulations. To narrow the search range
of γl and γu, asymptotic extreme-order statistics given in
Lemma 1 (see Section 5.1) can be exploited. For a relatively
large Λ, the best channel gain γ(1) is on the order of logΛ.

We now consider a simulation example to evaluate the
performance of opportunistic carrier sensing with the back-
off function f (γ) given in Figure 6 using numerically opti-
mized parameters {γ∗l , γ∗u , τ∗max}. We focus on information
retrieval by a mobile access point and model the coverage
area of the mobile access point as a disk with radius r (see
Figure 1). The maximum propagation delay β is then given
by

β = 2r
vl

, (15)

where vl is the speed of light.5 Shown in Figure 7 is the energy
efficiency of opportunistic carrier sensing as a function of
the radius r of the coverage area which determines the maxi-
mum propagation delay. Compared with the performance in
the ideal scenario (no propagation delay), the performance
of opportunistic carrier sensing degrades gracefully with

5We have ignored the delay in the detection of transmission at sensor
nodes. It can be easily accommodated by adding a constant to the propaga-
tion delay.
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propagation delay. Even with a coverage radius of 500 me-
ters, the performance degradation due to propagation delay
is less than 5%.

5. OPTIMAL SENSOR ACTIVATION

In this section, we demonstrate that the energy efficiency of
the opportunistic transmission vanishes as the number Λ of
active sensors approaches infinity. Possible schemes for opti-
mizing the number of active sensors are discussed.

5.1. Tradeoff between sum capacity
and energy consumption

Since the extreme value of i.i.d. samples increases with the
sample size, it is easy to show that the sum capacity achieved
by n sensors with the best channels increases with Λ. Unfor-
tunately, larger Λ also leads to higher energy consumption
in channel acquisition (see (7)). Proposition 2 shows that the
gain in sum capacity does not always justify the cost in ob-
taining the channel states.

Proposition 2. For a fixed slot length T , transmission power
Ptx, and the channel acquisition cost ec > 0,

lim
Λ→∞

Sopt = 0. (16)

A direct consequence of Proposition 2 is that, as summa-
rized in Corollary 1, the opportunistic strategy looses its op-
timality when Λ exceeds a threshold.

Corollary 1. There exists Λ0 <∞ such that Sopt < STDMA when
Λ > Λ0.

The proof (see Appendix B) of Proposition 2 is based on
the following result on asymptotic extreme-order statistics
[24].

Lemma 1. Let X1,X2, . . . be i.i.d. random variables with con-
tinuous distribution function F(x). Let x0 denote the upper
boundary, possibly +∞, of the distribution: x0 � sup{x :
F(x) < 1}. If there exists a function R(t) such that for all x,

lim
t→x0

1− F
(
t + xR(t)

)
1− F(t)

= e−x, (17)

then

X (1)
m − am
bm

d−−→ exp
{− e−x

}
, (18)

where X (1)
m = maxi≤m Xi, 1− F(am) = 1/m, bm = R(am), and

d−→ denotes convergence in distribution.

Common fading distributions such as Rayleigh and
Ricean satisfy the assumptions of Lemma 1. For Rayleigh fad-
ing considered in this paper, we have am = logm and bm = 1,
that is,

X (1)
m − logm

d−−→ exp
{− e−x

}
. (19)
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Figure 8: Tradeoff between sum capacity and energy consumption
(W = 1 kHz, ργi = 3 dB, T = 0.01 second, Ptx = 0.181 W, ec =
1.8 nJ).

Shown in Figure 8 are simulation results on the energy
efficiency of the opportunistic transmission as compared to
the predetermined scheduling. Since both the sum rate and
the energy consumption of n-TDMA are independent of Λ,
the energy efficiency is constant overΛ. For the opportunistic
strategy, the energy efficiency increases with Λ when Λ is rel-
atively small. In this region, the energy consumption is dom-
inated by transmission; the increase in the cost of channel ac-
quisition does not significantly affect the total energy expen-
diture. The energy efficiency thus improves as the sum ca-
pacity increases with Λ. When Λ increases beyond 100 where
the cost in channel acquisition contributes more than 10%
of the total energy expenditure, the increase in energy con-
sumption overrides the improvement in sum rate; the energy
efficiency starts to decrease. Eventually, the gain in sum ca-
pacity achieved by exploiting CSI can no longer justify the
cost in obtaining CSI, and the opportunistic strategy is infe-
rior to the predetermined scheduling.

5.2. The optimal number of active sensors

As shown in Figure 8, the performance of the opportunistic
transmission depends on the average number of active sen-
sors’s. To achieve the best performance of the opportunistic
strategy, the average number Λ of active sensors should be
carefully chosen.

The average number of active sensors can be controlled
via the sensor duty cycle or the size of the coverage area of
the mobile access point (or the cluster). Assume that each
sensor with probability p wakes up independently to detect
the beacon signal of the access point. For a coverage area of
size a, the average number of active sensors is given by Λ =
apλ, where λ is the node density defined in Section 2. The
average number of active sensors can thus be controlled by
varying either a or the duty cycle p.
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Figure 9: The optimal number of active sensors (W = 1 kHz, T =
0.01 second, Ptx = 0.181 W, ec = 1.8 nJ).

In Figure 9, we plot the optimal average number Λ∗ of
the active sensors as a function of the average SNR. Without
loss of generality, we normalize γi to 1. The average received
SNR is thus given by ρ. We observe that Λ∗ is a decreasing
function of ρ. The reason for this is that the larger the average
SNR, the smaller the impact of γ(1) on the sum rate (see (10)).
Thus, the threshold beyond which the channel acquisition
cost overrides the gain in sum rate decreases with ρ, resulting
in decreasing Λ∗.

6. CONCLUSION

In this paper, we focus on distributed information retrieval
in wireless sensor networks. Energy efficiency is introduced
as the performance metric. Measured in bits per Joule, this
metric captures a major design constraint—energy—of sen-
sor networks.

We examine the performance of the opportunistic trans-
mission which exploits CSI for transmission scheduling. Tak-
ing into account energy consumed in channel acquisition, we
demonstrate that sum-rate improvement achieved by oppor-
tunistic transmission does not always justify the cost in chan-
nel acquisition; there exists a threshold of the average num-
ber of activated sensor nodes beyond which the opportunis-
tic strategy looses its optimality. Sensor activation schemes
are discussed to optimize the energy efficiency of the oppor-
tunistic transmission.

We propose a distributed opportunistic transmission
protocol that achieves the performance upper bound as-
sumed by the centralized opportunistic scheduler. Referred
to as opportunistic carrier sensing, the proposed protocol
incorporates CSI into the backoff strategy of carrier sens-
ing. A backoff function which maps channel state to backoff
time is constructed for scenarios with substantial propaga-
tion delay. The performance of opportunistic carrier sens-
ing with the proposed backoff function degrades gracefully
with propagation delay. The proposed protocol also provides
a distributed solution to the general problem of finding the
maximum/minimum.

A number of issues are not addressed in this paper. We
have used the information theoretic metric of energy effi-
ciency that implicitly assumes that data from different sen-
sors are independent. For applications in which data are
highly correlated, distributed compression techniques may
be necessary [25]. Fairness in transmission is another issue
that needs to be considered in practice. For sensor networks
with mobile access points or networks with randomly ro-
tated cluster heads, the probability of transmission can be
made uniform. For networks with fixed cluster heads, sensors
closer to the cluster head tend to have stronger channel, thus
transmit more often. This, however, can be easily equalized
by using the normalized channel gain in the backoff strategy.

APPENDICES

A. PROOF OF PROPOSITION 1

Let Sn denote the energy efficiency of the opportunistic strat-
egy which enables n sensors with the best channels in each
slot. We have

Sn = Cn

Λec + nTPtx
. (A.1)

To prove Proposition 1, we need to show that for Λ <
TPtx(2C1 − C2)/ec(C2 − C1), S1 ≥ Sn for all n. Since

C1

Λec + TPtx
≥ Cn

Λec + nTPtx

=⇒ Λec
(
Cn − C1

)
≤ TPtx

(
nC1 − Cn

)
,

(A.2)

we only need to show that there exists Λ > 0 that satisfies
(A.2). This reduces to the positiveness of nC1−Cn which fol-
lows directly from the concavity of the logarithm function.

B. PROOF OF PROPOSITION 2

Let Sopt(m) denote the energy efficiency of the opportunistic
transmission where exactly m sensors are active in each slot.
We first show, based on Lemma 1, that limm→∞ Sopt(m) = 0:

lim
m→∞ Sopt(m) = lim

m→∞ max
1≤n≤m

E
[
WT log

(
1 + ρ

∑n
i=1 γ

(i)
m

)]
mec + nTPtx

(B.1)

≤ lim
m→∞

E
[
WT log

(
1 + mργ(1)

m

)]
mec

(B.2)

≤ lim
m→∞

WT log
(

1 + mρE
[
γ(1)
m

])
mec

(B.3)

≤ lim
m→∞

WT log
(
1 + m2ρ

)
mec

(B.4)

= 0, (B.5)
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where γ(i)
m denotes the ith-order statistics over m samples; the

expectations in (B.1) and (B.2) are with respect to {γ(i)
m }ni=1

and γ(1)
m , respectively. Jensen’s inequality is used to obtain

(B.3), and Lemma 1, which shows that γ(1)
m ∼ log(m) <

m, for large m, is used to obtain (B.4). Combining (B.5)
and the fact that Sopt(m) > 0 for all m, we conclude that
limm→∞ Sopt(m) = 0. Thus,

∀ε > 0, ∃M0 > 0, s.t. Sopt(m) < ε ∀m > M0. (B.6)

That Sopt(m) vanishes with m also implies that

∃S <∞, s.t. Sopt(m) < S ∀m. (B.7)

It is easy to show that for Poisson distributed random
variable M,

lim
Λ→∞

P
[
M ≤M0

] = lim
Λ→∞

∑M0
i=1(Λ)i/i!
eΛ

= 0. (B.8)

Thus, for ε and M0 given in (B.6), we have

∃M1 > 0, s.t. P
[
M ≤M0

]
< ε ∀Λ > M1. (B.9)

Combining (B.6), (B.7), and (B.9), we have, for Λ > M1,

Sopt =
∞∑

m=1

P[M = m]Sopt(m)

=
M0∑
m=1

P[M = m]Sopt(m) +
∞∑

m=M0+1

P[M = m]Sopt(m)

< εS + ε.
(B.10)

We thus obtain Proposition 2 from the arbitrariness of ε.
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[20] S. Shamai and S. Verdú, “The impact of frequency-flat fad-
ing on the spectral efficiency of CDMA,” IEEE Trans. Inform.
Theory, vol. 47, no. 4, pp. 1302–1327, 2001.

[21] S. Adireddy and L. Tong, “On the use of channel state in-
formation for slotted ALOHA in CDMA networks with linear
MMSE multi-user receivers,” in Proc. IEEE International Sym-
posium on Information Theory (ISIT ’03), Yokohama, Japan,
June–July 2003.

[22] P. Gupta and P. R. Kumar, “Critical power for asymptotic con-
nectivity in wireless networks,” in Stochastic Analysis, Control,
Optimization and Applications: A Volume in Honor of W. H.
Fleming, pp. 547–566, Birkhauser, Boston, Mass, USA, 1998.

[23] S. Shamai and A. D. Wyner, “Information-theoretic consid-
erations for symmetric, cellular, multiple-access fading chan-
nels. i,” IEEE Trans. Inform. Theory, vol. 43, no. 6, pp. 1877–
1894, 1997.

[24] T. Ferguson, A Course in Large Sample Theory, Chapman &
Hall, London, UK, 1996.

[25] S. S. Pradhan, J. Kusuma, and K. Ramchandran, “Distributed
compression in a dense microsensor network,” IEEE Signal
Processing Mag., vol. 19, no. 2, pp. 51–60, 2002.

Qing Zhao received the B.S. degree in 1994 from Sichuan Univer-
sity, Chengdu, China, the M.S. degree in 1997 from Fudan Univer-
sity, Shanghai, China, and the Ph.D. degree in 2001 from Cornell
University, Ithaca, NY, all in electrical engineering. From 2001 to
2003, she was a Communication System Engineer with Aware, Inc.,
Bedford, Mass. She returned to academy in 2003 as a Postdoctoral
Research Associate with the School of Electrical and Computer En-
gineering, Cornell University. In 2004, she joined the Department
of Electrical and Computer Engineering, UC Davis, where she is
currently an Assistant Professor. Her research interests are in the
general area of signal processing, communication systems, wire-
less networking, and information theory. Specific topics include
adaptive signal processing for communications, design and analy-
sis of wireless and mobile networks, fundamental limits on the per-
formance of large-scale ad hoc and sensor networks, and energy-
constrained signal processing and networking techniques. She re-
ceived the IEEE Signal Processing Society Young Author Best Paper
Award.

Lang Tong is a Professor in the School of Electrical and Computer
Engineering, Cornell University, Ithaca, New York. He received the
B.E. degree from Tsinghua University, and the M.S. and Ph.D. de-
grees from the University of Notre Dame. He was a Postdoctoral
Research Affiliate at the Information Systems Laboratory, Stanford
University. Prior to joining Cornell University, he was on the faculty
at the University of Connecticut and the West Virginia University.
He was also the 2001 Cor Wit Visiting Professor at the Delft Uni-
versity of Technology. He received the Young Investigator Award
from the Office of Naval Research in 1996, and the Outstanding
Young Author Award from the IEEE Circuits and Systems Society.
His areas of interest include statistical signal processing, wireless
communications, communication networks and sensor networks,
and information theory.


