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Research Article
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Sleep-related breathing disorders (SBDs) will lead to poor sleep quality and increase the risk of cardiovascular and cerebrovascular
diseases which may cause death in serious cases. Tis paper aims to detect breathing states related to SBDs by breathing sound
signals. Amoment waveform analysis is applied to locate and segment the breathing cycles. As the core of our study, a set of useful
features of breathing signal is proposed based on Mel frequency cepstrum analysis. Finally, the normal and abnormal sleep
breathing states can be distinguished by the extracted Mel-scale indexes. Young healthy testers and patients who sufered from
obstructive sleep apnea are tested utilizing the proposedmethod.Te average accuracy for detecting abnormal breathing states can
reach 93.1%. It will be helpful to prevent SBDs and improve the sleep quality of home healthcare.

1. Introduction

Healthcare-related issues have become the hot spots of
society around the world. Among them, sleep quality plays
an important role in health management. Poor sleep quality
caused by sleep-related breathing disorders will impact
peoples’ daily life seriously. SBDs mainly include obstructive
sleep apnea (OSA), central sleep apnea (CSA), and the mixed
type. OSA which means the obstruction of the upper airway
primarily due to the fabby tongue and uvula, is the most
common SBD, CSA would cause sleep breathing apnea by
the problem of the brain, and another type is the case mixed
with the OSA and CSA [1]. Te breathing abnormalities of
SBDs are apnea, hypopnea, and snore. An apnea event lasts
more than 10 seconds, and it can lead to a lower oxygen
supply to the brain [2]. Te ventilation of hypopnea will
reduce to less than 50% ofnormal ventilation, and it will
cause the value of oxygen levels to decline by more than 4%
compared with the median. Snore is generated by a partial
obstruction of the upper airway and is recognized as a vital
sign of SBDs prevention [3]. Te most harmful thing about
these abnormal breathing states is the reduction of the
oxygen supplement to the heart and brain. SBDs will lead to

the complications of cardiovascular diseases and increase the
risk of diabetes, cerebral stroke, and Alzheimer’s disease
[4, 5].

SBDs are not exclusive to the older as we thought, they
will occur for diferent age groups and the morbidity is
increasing in recent twenty years [6].Tere is much evidence
of the general population lacking awareness of SBDs, more
than 20% of adults are sufering from SBDs with diferent
levels, yet less than 25% of SBDs suferers realized that they
have been disturbed by the bad sleep health condition [1].
And the high cost of the existing clinical means keeps people
from getting tests and treatment.

In the clinic, polysomnography (PSG) is the golden
standard and the only way to provide the Apnea-Hypopnea
Index (AHI) exactly for diagnosing SBDs. However, dozens
of sensors used for PSG are not only costly but also com-
plicated for common patients [7]. Hence, a smart and
portable monitoring measure with the least sensors is im-
perative for home healthcare of SBDs.

Te smart wearable with sensors is a new trend in the
smart monitoring system of long-life diseases [8, 9], espe-
cially for the increasing demand for home healthcare. Re-
searchers have applied diferent kinds of sensors, such as
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light sensors [10] and inertial sensors, to monitor the sleep
condition by respiratory rate and breathing pattern analysis
[11]. Researchers used the ultrasonic radar to normal and
abnormal breathing activity [12] and used a thermal imaging
camera to diagnose breathing disorders [13]. Researchers
also used the sound sensors set near the nose and mouth to
record the breathing sound signal for detecting apnea and
hypopnea events by a set of pattern recognition rules [14].
Some researchers recorded tracheal signals from the throat
to acquire the respiratory rate or set the sound sensor to the
skin in a suprasternal notch to evaluate the breathing pattern
in the high-frequency range [15, 16]. In previous studies, the
sound sensors with smaller contact areas and easier oper-
ation are applied to record the breathing sound signal for
sleep breathing monitoring [17]. As described above, these
abnormal breathing states of SBDs will lead to decreasing
ventilation while inspiration and expiration. Te changes of
ventilation can be refected by diferent breathing states,
such as snoring, apnea, hypopnea, and irregular breathing
rate. Based on the production mechanism and physical
signifcance of the abnormal breathing states, it is potential
to detect the abnormality and health situation of sleep by
breathing sound signals via a smart system with sound
sensors.

In the research area of sleep monitoring based on
breathing sound signals, many researchers focused on the
respiratory rate detection based on the genetic algorithm
[18], Hilbert transform [19], and neuro-fuzzy method [20] to
analyze SBDs. In our previous study [21], a moment
waveform analysis was proposed to segment the breathing
cycles for respiratory rate detection. And snoring detection
has been discussed to evaluate the level of SBDs [22]. And
some researchers used the respiratory phase analysis to
detect apnea [23]. Xie et al. proposed a deep learning method
with a 2D spectrogram to detect snoring in various sleeping
positions, based on constant Q transformation [24]. Shen
et al. used CNN and LSTM to identify the snoring of OSAHS
patients based on MFCC, LPCC, and LPMFCC and
extracted the AHI index to evaluate the severity of
OSAHS [25].

It can be found that the segmentation of breathing sound
and the detection of breathing states are crucial for sleep
monitoring and SBDs diagnosis. However, there are two
problems. One problem is how to reduce the computational
complexity of the analysis algorithms for the long-time data,
that is, the real-time capability. Another one is how to
guarantee the accuracy of the detection results. Most of the
existed research always focused on a short period of the
breathing signal, and the accuracy of the analysis results is
not sufcient for healthcare. Our research aims to detect
abnormal breathing states related to the SBDs such as apnea,
hypopnea, and irregular breathing in a simple and fast way
by a portable system.

Tis study keeps the ventilation of oxygen and carbon
dioxide while sleep in mind and proposes a method to detect
sleep breathing states based on Mel frequency cepstrum
analysis by a portable acquisition system of breathing sound
signal. In Section 2, the acquisition of breathing sound signal

utilizing the sound sensor is introduced. Te test condition
and testers are also referred briefy. Ten, the segmentation
of breathing cycles is sketched in Section 3 as the pre-
processing for the further analysis. Section 4 describes the
proposed detection method based on Mel frequency ceps-
trum analysis in detail, including the feature extraction and
the identifed rules of diferent sleep breathing states. Ex-
periments and results can be found in Section 5. Finally, the
discussion and conclusion are summarized in Sections 6 and
7, respectively.

2. Wearable Acquisition System with
Sound Sensor

A wireless sound sensor and a commercial headset
(Plantronics, M165) were applied to record sleep
breathing data during the whole night. Te M165 is very
light and easily-operated. It is indeed a cheap and easy use
for smart sleep healthcare in daily life. Te acquired
breathing data will be transmitted to a smartphone by
Bluetooth and stored in mp3 format which is convenient
for computerized analysis. Te parameters of audio fles
can be set by an APP developed by our team. In this study,
the sampling frequency is 44.1 kHz. Te environment of
data acquisition is shown in Figure 1. Te headset is fxed
to the nose by a strip of cosmetic tape. As we mainly focus
on the changes in breathing airfow, the breathing sound
signal from the nose and mouth can be recorded as long as
the headset does not fall of and the tester is almost
unafected while sleeping whether at home or not.

At the beginning of preprocessing, the original sample
frequency will be down-sampled to 11.025 kHz to reduce the
computation amount. Te real sleep breathing sound signal
recorded by our system is shown in Figure 2. Figure 2(a) is
one-night sleep breathing sound data. Te recording lasts
about 5 hours, and the intensity of breathing changes greatly.
Figure 2(b) is a part of stable normal breathing sound data
from the ffth hour and Figure 2(c) is a part of complex
breathing sound data from the third hour. Tere are some
obvious breathing pauses shown in Figure 2(c), and they are
related to the obstruction of the airway. Hence, there is
a high potential to identify diferent abnormal breathing
states, such as apnea, hypopnea, unstable respiratory rate,
and snore, from the breathing sound signal acquired via
a portable and wireless sensor. Eight volunteers are selected
as testers, including four in twenties, two in thirties, and two
in Fifties.Te study was approved by the ethics committee of
Chengdu Region General Hospital (No. 2015 research 01).
All testers’ consent was obtained before participating in the
study. Te twenties and thirties were tested by Epworth
sleepiness score (ESS), the scores were all less than 9, which
was normal. Te elder testers are diagnosed with moderate
OSA and severe OSA by PSG with AHI � 16 and 32, re-
spectively. All the testers have monitored for the whole night
lasting more than fve hours. Te breathing cycles of one-
night data are counted, and the breathing states are manually
labeled under the guidance of a professional physician for
further analysis.
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3. Segmentation of Sleep Breathing Signal
Based on Characteristic Moment
Waveform Analysis

To identify the breathing state accurately, the breathing cycle
should be segmented for further analysis. A brief in-
troduction of the segmentation method is presented in this
section. Te details can be found in our previous work [21].

Te enhanced processing for amplitude contrast dimi-
nution has been performed frst to reduce the efect of the
weak breathing issues during the whole night’s sleep.

Te precondition assumes the noise part of the sleep
breathing sound signal as a signal with zero-mean and unit
variance. Suppose the sleep breathing sound signal is r(t),
the random noise signal is n(t), and the real output signal is
y(t) � r(t) + n(t), time characteristic waveform (TCW) of
sleep breathing sound signal, denoted by c(t, δ), defned as
the variance of the output y(t) can be given by the following
equations:

c(t, δ) � 
t+δ

t−δ
(y(t) − y(t))

2dτ � 
t+δ

t−δ
y(τ)

2dτ − 2δy(t)
2
, (1)

y(t) �
1
2δ


t+δ

t−δ
y(τ)dτ. (2)

Ten, the characteristic moment waveform (CMW) is
calculated by the thought of image shape identifcation in
image processing with another time scale l, which is rep-
resented by I(t, δ, l). It is calculated according to the fol-
lowing equation:

I(t, δ, l) � 
t+l

t−l
(τ − t)

2
c(τ, δ)dτ. (3)

For a discrete signal with length N, the computations of
TCW and CMW only need 8 N and 15 N additions and
multiplications, respectively. Te algorithm can process the
whole night data fast, and it will be helpful for real-time
motoring.

Wireless headset

Bluetooth USB/WIFI

Computer (sofware)

Acquisition
Data store and transmission

Data analysis

Figure 1: Te wearable acquisition system via a wireless sensor.
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Figure 2: Te original waveforms acquired by the portable system. (a) Te sleep breathing sound signal of one-night test; (b) the part of
normal breathing signal from recording 2(a); and (c) the part of abnormal breathing signal from recording 2(a).
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According to our experimental statistic, the scale l is
usually set to (1.5, 3), about half of the sleep breathing cycle.
Te time scale δ is set as 0.1, about 1/10 of the phase du-
ration. After choosing the suitable time scales, TCW and
CMW can be extracted by equations (1) to (3). Cmin of CMW
is the local minimum point sequence which would be cal-
culated frst. Ten, the local maximum points sequence
T max of TCW can be found by a computation windowwith
Cmin as the central points. Te local maximum point se-
quence of CMW can be obtained as the cycle segmentation
points and adjusted according to T max. Finally, the in-
correctly segmented breathing pauses will be combined
utilizing a threshold value by the average amplitude of the
test data.

Te breathing cycle segmentation result of partial nor-
mal breathing signal is shown in Figure 3.

4. Detection of Breathing States via Mel
Frequency Cepstrum Analysis

During the whole night’s sleep, the sleep breathing state
changes greatly. Besides the apnea, there are the hypopnea
events, snore events, and others as shown in Figure 4. In
Figure 4, two types of irregular breathing events are found
and shown by blue and orange boxes. Tey are all related to
the obstruction of the upper airway. Te breathing parts
marked by blue boxes display the changed respiratory rate.
By hearing, they mix with noise caused by the movements of
the nose and mouth. It is easy to fnd that the breathing parts
of orange boxes have higher amplitude with the extended or
merged inspiration/expiration. And they sound similar to
labored breathing and can be classifed as a kind of snore.

Difering from the apnea with a clear defnition in the
time domain, other complex breathing states cannot be
detected in the time domain. According to the previous
research, the distribution of frequency energy would be very
diferent between the normal and abnormal breathing states.
From the time-frequency representation, the breathing case
with apnea has much more energies below 500Hz and above
3500Hz compared with the normal case. It provides
a probable way to distinguish the diferent breathing states in
the frequency domain.

4.1. Te Conventional MFCCs Analysis. Psychophysical
studies have shown that human perception of the frequency
content of sounds does not follow a linear scale. Te Mel
frequency cepstrum coefcients (MFCCs) were proposed as
it is very similar to perceptual linear predictive analysis of
sound [26]. MFCCs were derived from the short time
spectrum of a signal and were widely used both for speech
and speaker recognition [27, 28]. MFCCs have already been
applied to extract features of respiratory sound in combi-
nation with learning machines to recognize the wheeze for
respiratory disorders [29, 30].

First of all, framing and windowing are applied for the
conventional MFCC algorithm.Ten, fast Fourier transform
(FFT) is used to transform the signal of each frame from the
time domain to the frequency domain. Ten, the energy

spectrum is calculated. Next, the energy signal is fltered by
the Mel-scale flter bank and processed in the logarithm
orderly. At last, discrete cosine transform would transform
the signal into the time domain and extract a series of
coefcients.

As the core of MFCCs, the relationship between Mel
frequency and real frequency is defned as follows:

Mel(f) �
1000∗ lg (1 +(f/700))

lg (1 +(1000/700))
, (4)

where f is the real frequency and Mel(f) is the Mel-scale
frequency. As the human perception of the frequency
content is almost linear below 1 kHz and nonlinear over
1 kHz, 1000 is a key parameter to determine the relationship
of f and Mel(f) simulating the character of the human ear.
700 is the parameter that afects the relationship’s changing
trend between f and Mel(f).

For the frequencies under 1000Hz, the Mel scale can be
approximated to a linear scale. Mel frequency can represent
the details of the low-frequency range more accurately than
the high-frequency range. Hence, it can capture formants
that lie in the low-frequency range.

Te Mel flter bank is designed based on Mel-scale
frequency. Te Mel-scale frequency distributes uniformly-
spaced in Mel scale, simulating the critical frequency bands
of the human ear. Te center of each triangle window is the
starting of the next one.

Te logarithm is used to compress the components
above 1000Hz. And it can translate the multiplicative
components into the additive ones and reduce the com-
putation complexity [26]. A logarithm can provide the
frequency energy distribution of a one-time point in the
form of addition. Finally, the Mel frequency cepstrum co-
efcients will be extracted by discrete cosine transform.

Our purpose is to fnd the relationship between the
frequency energy distribution and the monitoring time. Te
results of the processing after the logarithm should be paid
attention to in this study.

4.2. Analysis of Breathing Sound Signal Based on Mel Fre-
quency Cepstrum Analysis. Here, we proposed a method of
parameters extraction to detect diferent breathing states,
and the fowchart is displayed in Figure 5.

As shown in Figure 5, window screening is the frst step
and the length of the rectangle window is set as 1024 sample
points, about 100ms according to the sampling frequency.
Te windowmoves foreword by overlapping the half of itself
to keep enough details of the observation. Ten, the fre-
quency energy distribution of the breathing sound signal
would be calculated by power spectrum density (PSD) in the
second step. Te PSD estimation is an important part of
modern signal processing and refects the energy distribu-
tion of the frequency component of the signal. Te autor-
egressive (AR) method is the most frequently used
parametric method because the estimation of AR parameters
can be performed easily by solving the linear question. Here,
Yule–Walker’s method is used to make the power spectrum
density instead of the energy of the FFT result. Te order of

4 Journal of Healthcare Engineering



an autoregressive prediction model for the signal is set as
32 [31].

In the third step, the energy of the signal is fltered by the
Mel frequency flter banks including 20 triangle flters. Te
triangle flter bank is selected by default in speech processing
shown in Figure 6, which simulates the auditory charac-
teristics of the human ear. Te mathematical expression of
the triangular window is simple, reducing the amount of
computation.

And the 20-dimension Mel-scale features are extracted
after the logarithm operation in the fourth step. Te hori-
zontal of the feature matrix represents frames of observation
time. Te vertical of the matrix represents the Mel-scale
flters of the flter bank.

To stand out the frequency energy distribution of each
frame, a new feature set has been proposed in the ffth step,
the core of our proposed method. Te procedure of the
proposedmethod to extract the efective features is described
in detail. Te sketch map of extraction for one breathing
cycle can be found in Figure 7 to illustrate the algorithm.

(a) Extract the Mel-scale features of one segmented
breathing cycle according to the frst four steps of the
fowchart in Figure 5.
Te Mel-scale features fi,j can be displayed by the
stretch map shown in Figure 7(b). i is the label of the
triangle flters of the Mel frequency flter bank in the
frequency domain, from 1 to 20. j is the number of
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frames in the time domain, from 1 to N. N is the
total number of frames of each breathing cycle.

(b) Find the maximum point of each column of fi,j,
denoted by Ai,j.

i is corresponding to the label of the Mel-scale flter
and represents a fxedMel-scale frequency range.We
proposed it as Mel-scale label (MsL) as shown in
Figure 7(c). Te X-axis is the frame number, and Y-
axis is the Msl. MsL can be explained by the main
part of frequency energy distributing in one observed
duration in the time domain.

(c) Compute the present times of each MsL to represent
the distribution of frequency energy in each cycle,
marked as NMsL which is shown in the bar chart of
Figure 7(d). MsL and NMsL are proposed to detect
the abnormal breathing sound signal. For the normal
breathing cycle shown in Figure 7(a), it is found that
the label number i of MsL is from 4 to 14 in the
duration of inspiration and expiration compared
with the breathing stopping intervals as shown in
Figure 7(c). So, the frequency energy of this
breathing cycle is mainly fltered by the No. 4 to No.
14 Mel-scale flter as same as the results of NMsL
shown in Figure 7(d).

After all the fve steps, we can use MsL and NMsL to
analyze the components of the breathing sound signal and to
detect the abnormal breathing states fnally. Te results of

detecting abnormal breathing states will be demonstrated in
the next section.

5. Experiment

5.1. Analysis of Breathing Sound Signal by the Proposed
Identifcation Method. Te label of Mel-scale features, MsL,
and the corresponding NMsL in each segmented breathing
cycle during one-night monitoring can be extracted. Te
energy of distribution in a fxed frequency range is useful to
present the features of diferent breathing states. We mainly
separate snoring, normal breathing, and abnormal breathing
components of the breathing signal.

It is found that the MsL in the low-frequency range can
represent the snore component. Te normal breathing
component is usually represented by MsL in the middle-
frequency range. Te abnormal breathing components in-
cluding apnea, hypopnea, and irregular breathing rate can be
expressed by MsL in the high-frequency range. Checking
results manually by ear and eye is the reference under the
guidance of a professional doctor.

So, three MsL sets are proposed, i.e., low-frequency label
set, middle-frequency label set, and high-frequency label set
and marked as FL, FM, and FH, respectively, in Figure 8.

For diferent individuals, there would be a little diference
when we partition these three MsL sets. Based on the ex-
perimental attempts, the common part of each MsL set is
selected for the further analysis, that is, MsL2 for the snore
detection, MsL4 to MsL7 for the normal breathing state
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detection, and MsL15 to MsL17 for the abnormal breathing
state detection. To detect diferent breathing components in
each breathing cycle, threshold values are applied and dis-
played by red lines in Figure 8. As the time duration of in-
spiration and expiration lasts about 2.5 seconds in one
breathing cycle according to our experimental dataset, the
total NMsL equals the total number of frames, about 50 times.
Hence, according to the experiment results and observation,
the threshold values for FM and FH are set by 40% of the total
NMsL of eachMsL, about 20 times. And the threshold value of
FL is set by 20% of the total number CLi

of each MsL, about
10 times.

If NMsL is larger than the red threshold line, the cor-
responding cycle can be symbolized by 1, the opposite is 0. It
is obvious that the breathing cycles with abnormal com-
ponent always accompany the snoring component. Te
abnormal component and normal component do not exist at
the same time in the usual case from Figure 8. So, it is the
potential to detect diferent kinds of breathing states based
on these three MsL sets.

If there is ‘1’ of FH, the breathing state can be detected as
abnormal. If there is ‘0’ of FH, combined with the detection
results of FM, heavy breathing can be identifed from the
normal states which can be checked by the ear.
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Te snore can be divided into the normal type and the
abnormal type. Normal snore is related to simple snoring,
and abnormal snore is related to SBDs. However, they all
should be concerned. So, the snore is detected separately
from other abnormal breathing states and listed for a useful
index. If there is ‘1’ in FL, the breathing cycle is identifed as
breathing with snore.

Te study focuses on the ratio of abnormal breathing
states during the monitoring for sleep healthcare manage-
ment in the early stage. Obviously, the subclassifying of
breathing types is a rough judgment now and it will be
applied to a deeper discussion of accurate analysis for SBDs
in the future work.

5.2. Application for the Sleep Breathing States Detection.
Te identifed results by MsL sets for an OSA tester
(AHI � 16) are shown in Figure 9. Figure 9(a) displays the
detection results of normal/abnormal sleep state. Te
abnormal sleep breathing cycle is denoted by ‘1’ and the
normal sleep breathing is ‘0’ based on the identifcation
rules introduced in the last subsection. It is easy to
compute the time duration of normal and abnormal
breathing state lasting during the whole night. In this case,
the normal breathing lasts 2.8 hours, and the abnormal
breathing lasts 2.2 hours. Figure 9(b) displays the de-
tection result of snoring. Te breathing cycle with snore is
marked as ‘1,’ and the snore lasts 1.8 hours of the whole
night totally.

Te time duration of breathing stop from the audio
waveforms can distinguish the apnea and typical hypopnea
from normal breathing states. For apnea, the breathing stop
is larger than 10 s. As the ventilation of hypopnea will reduce
to less than 50% of the normal ventilation, the breathing stop
of the typical hypopnea is calculated from 6 s to 10 s
according to the clinical defnition of apnea and hypopnea
[2]. Irregular breathing rate can be picked up by comparing
with the normal parts.

From the original breathing waveforms of A1 to A3
shown in Figure 10, two parts of the breathing signal in each

section are shown orderly. It can be found that there is
obvious apnea (such as A1-1, A3-1, and A3-2), hypopnea
(such as A1-2), irregular breathing (such as A1-1, A2-1, and
A2-2), and breathing with noise caused by the body
movement (such as A2-1) from the waveforms in time
domain clearly. Sections A1 to A3 belong to the abnormal
breathing states with snore.

From the original breathing waveforms of N1 and N2
shown in Figure 11, these two sections are normal stable
breathing, and breathing of N2 is snoring. Te red line in
Figure 10 is the envelope of the spectrum, and it is easy to
fnd that there is a large energy in the middle-frequency
range (500–1500Hz), representing the normal breathing
component for both N1 and N2. Te amplitude of N2 is
higher than N1. And the higher ratio of frequency energy
distributes below 500Hz is the main feature of snore shown
in section N2.

Applying the proposed method based on Mel-scale
features, the monitoring results of all the testers are listed
in Table 1. We can fnd the total time of the whole night
monitoring and the time durations of diferent breathing
states. To evaluate the sleep quality, the ratio of the normal
breathing during the night is computed by the following
equation:

RSleep �
TNormal

TMonitoring
, (5)

where RSleep is used to test the quality of sleep by the de-
tection of normal breathing state, TNormal is the total time
duration of normal breathing state lasting, and TMonitoring is
the total time duration of the sleep monitoring. It will be
a meaningful index to know and manage sleep health in
one’s daily life.

According to the detected results of breathing states, the
ratio of normal breathing states is over 70% for testers no. 1,
2, 3, and 5 which is higher than the OSA testers no. 7 and 8,
which were diagnosed by PSG. Testers No. 4 and 6 have
lower ratios of normal breathing state and there are indeed
a lot of apnea and hypopnea events during the monitoring
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procedure by checking up on the original breathing signal.
Testers no. 4 and 6 were diagnosed as severe rhinitis by the
doctor during the experimental period. Actually, after the
relief from rhinitis symptoms, the results of monitoring are
within the normal range. Te extreme cases of young testers
can also show the efciency of the proposed method.

Moreover, it is found that the testers with a low ratio of
normal breathing state always snore with a longer time

duration. Hence, snore is really an important sign related to
the analysis and prevention of sleep breathing-related
disorders.

Te accuracy of detecting normal and abnormal
breathing states can be given based on the prepared manual
labels in our experiment, and the accuracy of our proposed
method of the testers can reach 95.2% shown in Table 1, and
the average value is 93.1%.
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Figure 9: Monitoring results by MsL sets for an OSA tester. (a) Detection of normal and abnormal breathing states. (b) Detection of
snoring state.
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6. Discussion

In the studies of breath state detection by breath sound
signal, some researchers used the measurement of energy to
detect apnea events during the breath and breath hold [23].
From [24] in Table 2, it can be seen that the MFCC feature
parameters are themost efective in classifying snores among
the three features used. Using MFCC combined with the
LSTM method can achieve 87% accuracy. At the same time,
the AHI index was also estimated. Although there is
a particular gap with the AHI value detected by PSG, it can
be used as an auxiliary reference in the classifcation of
OSAHS. It can also be found that the average accuracy of
snoring recognition of OSA patients and normal people is
95.3% by combining deep learning and two-dimensional
spectral features in [25]. Literature [23] used spectral energy
and VAD criterion threshold for apnea detection for sim-
ulated apnea signals and achieved an accuracy of 97%. Still, it
is not applied to the actual breathing signals of OSA patients,
nor does it mention hypopnea detection.

Te method in this paper does not use classical machine
learning and deep learning methods, so the amount of
calculation is small. Moreover, the threshold displays the fact
between the characteristic parameters and the breathing
signal. At the same time, the normal and abnormal breathing
and snoring sounds are distinguished. Te accuracy rate of
93.1% can be achieved by judging normal and abnormal

breathing. Te judgment of abnormal breathing includes
apnea, hypopnea, and other respiratory disturbance events.
However, due to the small amount of breathing data and
individual diferences among testers, there is a state of
misjudging normal breathing as snoring in snoring de-
tection. It is necessary to refne the types of abnormal
breathing and accurately fnd them for the intervention in
continuous work.

Some researchers combined a sound sensor, acceler-
ometer, and pulse oximeter to get AHI index for SBDs [16].
Moreover, the degree of blood oxygen saturation (SpO2)
acquired by the pulse oximeter is a vital index for the re-
spiratory system in the clinic. Te SpO2 will decrease when
there is an obstruction in the upper airway; that is, apnea,
hypopnea, and irregular breathing will accompany the lower
value of SpO2.

Hence, SpO2 has been monitored for the testers as well
and the abnormal breathing states can be evaluated by
subtracting a fxed value from the medium value of SpO2.
In our experiment, it is easy to fnd that the results of SpO2
are included in the scope of the proposed detection. Te
comparison results with SpO2 are given in Figure 12. Te
red line represents the median value of the tester’s SpO2.
It can be seen that the period when SpO2 has a signifcant
decrease compared to the median value is detected as an
abnormal breathing state which matches the detection
results.
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Figure 11: Validation of the normal breathing state detection by the proposed method.

Table 1: Detection results of sleep breathing states of testes.

Tester
no Years Time

(hour)
Normal
(hour)

Abnormal
(hour)

Snoring
(hour)

Accuracy
of S/N
(%)

Normal
ratio
(%)

Accuracy
of A/N
(%)

1 20 7.7 6 1.7 0.5 93.5 77.9 93.2
2 21 7.5 5.6 1.9 0.3 96.0 74.7 94.4
3 21 6.8 4.9 1.9 0.1 98.5 72.1 91.9
4 20 6 2.4 3.6 2.2 96.4 40 90.2
5 31 7.5 5.5 2 1 90.8 73.3 94.9
6 34 8 4.2 3.8 3.2 97.6 52.5 92.2
7 58 5 2.8 2.2 1.8 97.5 56 95.2
8 60 6.8 2.3 4.5 3.8 98.2 33.8 92.7
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However, the abnormalities caused by the light ob-
struction of the airway can be pointed out by the proposed
detection, which is not clearly defned. It may be related to
the threshold values set by our proposed detection. More
types of abnormal breathing states will be discussed deeply
in future work. And because the tapes may become loose and
the microphone’s location may change occasionally, the
acquisition system should be developed. And the classif-
cation and identifcation of breathing states are further
refned. Te analysis of the hypopnea state is limited by the
small amount of experimental data and cannot be further
refned and analyzed.

In other words, the tester dataset should be enlarged and
the types of abnormal breathing states should be discussed in
detail. We will optimize the ranges of MsL sets to analyze the
components of breathing sound signal, such as dividing
diferent frequency ranges to show more precise results. Te
relationship between our defnitions of abnormal breathing
and the pathological characteristics of SBDs will be discussed
deeply in further study.

7. Conclusion

In this study, the sound sensor and microphone in a headset
with Bluetooth were utilized to record and transmit the
breathing sound signal during the whole night. Te portable
and wireless acquisition system proposed in this paper has
less impact on sleep quality and can be operated simply
anywhere. And the MFCCs are introduced from speech
signal processing to the processing of breathing signal for
sleep monitoring in-home healthcare. TeMsL representing
the main distribution of frequency energy in each frame is
proposed to detect the diferent sleep breathing states. In
addition, the data acquisition operation is simple, the cost of
detection is low, and the accuracy can satisfy individual
monitoring needs. Recognition of respiratory status and
detection of abnormal breathing can be popularized in daily
monitoring. It can also be used as an aid for clinical di-
agnosis based on a more detailed analysis of the results. Te
study is limited by the small amount of experimental data, so
the classifcation and identifcation of breathing need to be

further improved, and the adaptability and accuracy of the
algorithm need to be further enhanced. Although it has
particular reference signifcance for the long-term sleep
monitoring of individuals, the algorithm is still unstable in
monitoring diferent people.

Te core of the Mel frequency analysis is to refect the
relationship between the monitoring time and the frequency
energy simulating the acoustic character of the human ear.
For each frame in the time domain, the MsL is extracted by
fnding the maximum value of the frequency energy in each
Mel scale.Ten, the present times of eachMsL are computed
to show the frequency energy distribution of each segmented
breathing cycle. Tree MsL sets are determined corre-
sponding to the normal breathing component, abnormal
breathing component, and snore component, denoted by
FM, FH, and FL. Finally, with the suitable threshold values
and comprehensive evaluation rules, the normal breathing
state, abnormal state, and snore state can be detected suc-
cessfully. Te types of sleep breathing states should be
discussed deeply and classifed accurately for examination
and analysis of SBDs. And for diferent individuals, long-
time monitoring and big data analysis are necessary to
acquire more precise monitoring results for the prevention
and treatment of SBDs in the future.
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Te joint time-frequency analysis method represents a signal in both time and frequency. Tus, it provides more information
compared to other one-dimensional methods. Several researchers recently used time-frequency methods such as the wavelet
transform, short-time Fourier transform, empirical mode decomposition and reported impressive results in various electro-
physiological studies. Te current review provides comprehensive knowledge about diferent time-frequency methods and their
applications in various ECG-based analyses. Typical applications include ECG signal denoising, arrhythmia detection, sleep apnea
detection, biometric identifcation, emotion detection, and driver drowsiness detection.Te paper also discusses the limitations of
these methods. Te review will form a reference for future researchers willing to conduct research in the same feld.

1. Introduction

Te electrocardiogram (ECG) signal has been an indicator of
human health. It is the graphical representation of the
electrical activity of the heart muscles occurring due to their
contraction and relaxation [1]. A single cardiac cycle is
labeled using diferent waves: P, Q, R, S, and T. Te location
and amplitudes of these waves are used primarily in ECG
analysis during medical practices. It helps to predict the
onset of cardiovascular diseases, irregularities in heart
rhythm, stress levels, human emotions, and so on. A stan-
dardized ECG signal is represented via twelve leads, each
calculated using a set of limb and chest leads. Conven-
tionally, the ECG waves were visually observed and analyzed
by an expert. Te evaluation includes detecting any subtle
change in the time series information that takes in mor-
phological details such as the RR interval, QT segment, ST
segment, QRS complex, and so on [2], and their statistical

variations. Unfortunately, it is not always possible to track
the minute changes in the morphological parameters (in-
tervals, peaks, and waves) of the ECG signal.

Te ECG signal is nonstationary; i.e., the statistical
properties of the signal, such as mean, variance, and higher-
order moments, change with time. A nonstationary time
series of data contains systematic noise (trends, jumps, and
datum shifts) that may change its statistical values. Hence,
the time series data analysis is not enough for a meaningful
interpretation. Also, the employment of traditional signal
processing methods based on stationary assumptions is
insufcient. Terefore, the decomposition of the time-series
data into another domain, frequency or time-frequency, is
used for easy analysis [3]. Fourier transform (FT) is the most
widely employed method for frequency analysis. Te tech-
nique uses the sinusoidal basis function to represent a time
series signal in the frequency domain. Te amplitudes of the
measured sinusoids at diferent frequencies form
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a spectrum. It is one of the transformation methods that has
changed the world of signal processing and have diverse
application in feature extraction, denoising, and so on.
However, FT does not have any information in the time
domain.

Joint time-frequency analysis is a valuable method that
expresses a signal in the time-frequency distribution [4]. It
helps disclose the constituent frequency component of the
signals and their time-varying nature. Several time-
frequency analysis methods have been proposed to ana-
lyze ECG signals in various application domains. Tese
methods include but are not limited to the short-time
Fourier transform (STFT), continuous wavelet transforms
(CWT), discrete wavelet transforms (DWT), empirical mode
decomposition (EMD), and Wigner–Ville distribution
(WVD) [5, 6], and so on. Tese methods help extract the
vital signal components such as distortions, noises, and
hidden patterns of the ECG waves and have been extensively
used in various applications. Also, these methods form the
base of several advanced joint time-frequency techniques.
Typical examples are arrhythmia detection, heart disease
diagnosis, peak detection, signal denoising, and emotion
detection [7–9].

Despite the more inclusive application of the joint time-
frequency analysis, it is unfortunate that no dedicated review
is found in the literature that discusses diferent time-
frequency methods for the ECG application. Te reason
may be that the time-frequency methods are a massive feld
with various possible applications. Hence, placing a vast
amount of information in a single review is not easy.
However, based on our limited knowledge, we have
attempted to extensively review some selected time-
frequency methods and their use in various ECG signal
processing applications in this article (Figure 1). Te current
paper is organized into four diferent sections. Section 2
gives background information on the time-frequency
methods. Te usefulness of these time-frequency methods
in various ECG applications has been discussed in Section 3.
Section 4 deliberates the limitations, challenges, and future
scope, followed by Section 5, concluding the study. Table 1
contains the list of abbreviations used in this article.

2. Background Information of the Time-
Frequency Analysis Methods

Te time-domain analysis gives the best time resolution but
no frequency information. Consequently, the frequency
domain analysis provides the best frequency resolution
without time-related details. A proper time-frequency
technique can overcome the disadvantage of one-
dimensional analysis and provide signal information in
the time and frequency domain. Some of the most widely
used time-frequency analysis methods have been discussed
in this section.

2.1. Short-Time Fourier Transform. In 1946, D. Gabor [10],
a Hungarian scientist, proposed the short-time Fourier
transform (STFT). In STFT, the Fourier transform (FT) is

applied for a limited duration. Te process follows a seg-
mented analysis where the original signal is frst divided into
smaller segments of length “L” using a window. Te Fourier
transform (FT) of each segment is then calculated. In other
words, the STFT provides the spectral information of each
segment of the signals. For a continuous-time signal x (t),
STFT coefcients can be represented mathematically using
the following:

X(τ,ω) � 
∞

−∞
x(t)w(t − τ)e

− jωtdt, (1)

where X(τ,ω) is the FT, w is the window function, τ  and ω
represent the time and frequency axis.

Te original signal “x (t)” can be retrieved using the
inverse STFT. It is represented using the following equation:

x(t) �
1
2π


∞

−∞

∞

−∞
X(τ,ω)e

−jωtdτdω. (2)

For calculating the STFT of a discrete-time signal,
a discrete Fourier transform (DFT) can be used in place of
FT. Mathematically, it is represented using the following
equation:

X[m; k] � 
L−1

n�0
x[m + n]e

− jωnk
. (3)

Here,m is the starting point of the localized DFT, k is the
DFT index, and L is the length of the window or segment. X
[m; k] are the Fourier coefcients that depend on the time
(n) and frequency (ω).

STFT is a complex-valued function of two variables and
requires a 4D plot of time, frequency, magnitude, and phase
for the proper interpretation, which is practically not pos-
sible. Tus, the phase information is not considered while
plotting the STFT spectrogram. In other words, time, fre-
quency, and magnitude values represent an STFT spectro-
gram. Furthermore, a color-coding method is applied for the
magnitude range, where a darker color represents a smaller
magnitude value and vice versa. It is important to note that
the size of the window shows a profound efect on the
frequency resolution. A wider window provides a few time
segments, resulting in lower precision in time but a high-
frequency resolution. On the other hand, a narrow time
window gives a high time resolution but a low-frequency
resolution. Since the window length is fxed in the STFT
method, the time and frequency resolution are fxed for the
entire signal length. Figure 2 is a sample representation of an
ECG segment of duration 1 sec. (sampling frequency
360Hz) and its STFT at varying window lengths (L= 2, 9,
and 18). It is evident from Figure 2 that with an increase in
the window length, the changes in the time-domain values
are less visible. On the contrary, the frequency domain
changes are becoming more profound.

2.2. Continuous Wavelet Transform. Te wavelet transform
(WT) is a processing tool that has been widely used in signal
and image processing and speech analysis. In 1984, two
French scientists, Grossmann and Morlet, frst coined the
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term “wavelet” and described it as a wave-like structure
[11]. A wavelet has an amplitude that starts and ends at
zero. Te amplitude integral of the wavelets is zero. A
detailed historical background of the wavelets is presented
in [12, 13]. Several wavelet functions are available with
diverse shapes and characteristics. Some common
wavelets include Haar, Daubechies, Coifet, and Symlet.
Te WTmethod solves the resolution problem associated
with FT by providing a suitable resolution both in time
and frequency. It is made possible by adopting a variable
window function, wherein the window function shrinks
and widens multiple times. Te continuous wavelet
transform (CWT) decomposes a given signal into dif-
ferent coefcients. Herein, a basis function called the
mother wavelet is dilated and translated. Mathematically,
the CWT is represented using

CWTτ,s,Ψ(x) �
1
�
s

√ 
∞

−∞
x(t)Ψ∗τ,s(t)dt, (4)

where Ψτ,s(t) � 1/
�
s

√
Ψ(t − τ/s) and ∗ represents the con-

jugate function.
In equation (4), the term “1/

�
s

√
” is used to normalize the

mother wavelet (Ψ). Te transformed signal generated after
employing the CWT depends on the scaling factor (s) and
the translation factor (τ).Te scaling factor shows an inverse
association with frequency. A lower value of s leads to a rapid
change in the wavelet and is used to detect the higher
frequencies of the signal and capture the fast-varying details.
On the contrary, a higher value of s helps perceive the lower
frequency components and captures the slow varying details
of the signal.

Te reconstruction of the original signal can be obtained
using

x(t) �
1

2πΨ

∞

−∞

∞

−∞

1
s
2 CWTτ,s,Ψ(x)e

−j(t−τ/s)dτds. (5)

Scalogram is the absolute value of the continuous
wavelet transform (CWT) as a function of time and fre-
quency. Compared to the spectrogram, a scalogram provides
more information as it gives the signal features at diferent
scales. Figure 3 represents a sample ECG signal and its
scalogram. As mentioned earlier, it is evident from the fgure
that the perceived frequency band is getting narrower with
an increase in scale. ECG scalogram images are preferably
used with deep learning models and have shown potential in
various biomedical applications, including arrhythmia de-
tection, apnea detection, and fall detection.Te disadvantage
of CWT is that it is highly redundant and shows a signifcant
overlap between the wavelets at each scale and between the
scale [14]. Furthermore, it is associated with higher com-
putational complexity.

2.3. Discrete Wavelet Transform. Stromberg [15], a Swedish
mathematician, proposed the mathematical foundation for
the discrete wavelet transform (DWT) in 1980 [16]. A
signifcant drawback of CWTis that the scaling factor (s) and
translation factor (τ) value changes rapidly and, hence,
calculates the coefcients of the wavelet for all possible
scales. Tus, the method yields much new information [17],
which is difcult to process. On the contrary, DWT ad-
dresses the aforementioned issues of CWT by representing
the signal at a discrete time and as a set of wavelet co-
efcients. In DWT, the signal passes through a low-pass flter
(LPF) and a high-pass flter (HPF) that splits the signal into
half of the original frequency range [18, 19]. Te low-pass
flter output is the approximation component (A), and the
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high-pass flter output is the detailed component (D). Te
approximation component is further decomposed to form
another set of approximation and detailed components in
each subsequent level. Figure 4 represents the wavelet flter
belts for DWT, where the x (n) is the original signal, and A
and D bear their usual meaning.

DWT can be of two types based on whether each flter’s
output is down-sampled by two or not. If the flter output is
down-sampled during the decomposition process, it is called
a decimated DWT. Undecimated DWT, also known as
stationary wavelet transform (SWT), is the method that
doesn’t incorporates the down-sampling operation at the
flter output. Tus, in the case of SWT, the length of the
approximation and the detailed coefcient are the same as
the original signal. Usually, the term DWT represents the
decimated method by default and is most commonly used
due to its lower computational complexity than the unde-
cimated method.

For a time-series signal, x (n) has the number of samples
m, i.e., n ranges from 0 to m− 1. Te scaling function
Wφ(j0, k) and the wavelet function WΨ(j, k) for the forward
wavelet transform can be represented using the following
equations:

Wφ j0, k(  �
1
��
m

√ 
n

x(n)φj0,k
(n), (6)

WΨ(j, k) �
1
��
m

√ 
n

x(n)Ψj,k
(n). (7)

Ten, the signal x (n) can be represented (equation (8))
using the scaling and wavelet functions.

x(n) �
1
��
m

√ 

∞

k

Wφ j0, k( φj0,k
(n)

+ 
∞

j�j0



∞

k

WΨ j0, k( Ψj,k
(n), j≥ j0.

(8)

Equation (8) is also known as an inverse discrete wavelet
transform. Figure 5 represents a sample representation of an
ECG signal and its DWT coefcients after the 3rd level of
decomposition using the db2 mother wavelet.

2.4. Wavelet Packet Decomposition (WPD). Wavelet packet
decomposition (WPD) extends the DWT, where the ap-
proximation and detailed coefcients are decomposed in the

Table 1: Lists of acronyms.

ECG Electrocardiogram
STFT Short-time fourier transform
WT Wavelet transforms
DWT Discrete wavelet transforms
WPD Wavelet packet decomposition
EMD Empirical mode decomposition
WVD Wigner-Ville distribution
PWVD Pseudo Wigner-Ville distribution
SWT Stationary wavelet transforms
IMF Intrinsic mode function
HT Hilbert transform
HHT Hilbert–Huang transform
EEMD Ensemble empirical mode decomposition
CEEMD Complete ensemble empirical mode decomposition
LMD Local mean decomposition
FDM Fourier decomposition method
SWT Stationary wavelet transforms
DTCWT Dual tree complex wavelet transforms
TQWT Tunable Q-wavelet transform
LSWA Least square wavelet analysis
EWT Empirical wavelet transforms
VMD Variational mode decomposition
MEMD Multivariate empirical mode decomposition
CEEMDAN Complete ensemble EMD with adaptive noise
SVM Support vector machine
DAE Deep autoencoder
PPR Peak positive rate
ANN Artifcial neural network
LDA Linear discriminate analysis
PCA Principal component analysis
LDA Linear discriminant analysis
SNR Signal to noise ratio
MSR Mean square error
PSR Phase space reconstruction
FT Fourier transforms
DFT Discrete Fourier transforms
CWT Continuous wavelet transforms
LPF Low pass flter
HPF High pass flter
A Approximation coefcients
D Detailed coefcients
ACF Autocorrelation function
IACF Instantaneous autocorrelation function
BW Baseline wander
CVD Cardiovascular diseases
AF Atrial fbrillation
VF Ventricular fbrillation
VT Ventricular tachycardia
CNN Convolutional neural network
RCNN Recurrent convolutional neural network
KNN K-nearest neighbor
PCA Principal component analysis
QDA Quadratic discriminate analysis
OSA Obstructive sleep apnea
CSA Central sleep apnea
CVMD Complex variational mode decomposition
EDR ECG-derived respiration
HBI Heartbeat interval
Res Net Residual neural network
ELM Extreme learning machine
RF Random forest

Table 1: Continued.

NB Naive Bayes
DT Decision tree
DTW Dynamic time wrapping
GOA Grasshopper optimization algorithm
NLM Nonlocal mean
FIBFs Fourier intrinsic band function
SURE Stein’s unbiased risk estimate
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subsequent level. Hence, WPD provides a better frequency
and time resolution compared to DWT. Figure 6 represents
the wavelet flter belts for WPD, where x (n), A, and D bear
their usual meaning, as described in Section 2.3. Similar to
the DWT, the WPD can be of two types: decimated and
undecimated. Generally, WPD follows the decimated
method. A sample ECG signal and its wavelet coefcients
after the 2nd level of decompositions using the db2 mother
wavelet are represented in Figure 7.

2.5. Wigner-Ville Distribution (WVD). Wigner [20],
a Hungarian physicist in the year 1932, proposed the basis of
the Wigner-Ville distribution (WVD) function. WVD is the
quantitative representation of signal energy in the time-

frequency domain. Tis method uses the autocorrelation
function for the calculation of the power spectrum. Te
autocorrelation function (ACF) compares a signal (x (t)) to
itself for all possible time shifts (τ) and is represented using
the following equation:

ACFx �  x(t)x(t + τ)dt. (9)

In the ACF, the signal is integrated over a period of time,
which makes it a function dependent only on τ. However,
the WVD uses a variation of the ACF called the in-
stantaneous autocorrelation function (IACF) to maintain
the time parameter, and it is represented using the following
equation:
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IACF � x t +
τ
2

 x
∗

t −
τ
2

 . (10)

Te WVD function compares the signal information
with its own at diferent times and frequencies. It can be
viewed as the FT of the IACF.

Mathematically, it is defned using the following equa-
tion (11):

WVDx(t,ω) �
1
2π


∞

−∞
x t +

τ
2

 x
∗

t −
τ
2

 e− jωτdτ. (11)

Compared to STFT, WVD gives better spectral resolu-
tion as it does not sufer from leakage. However, when
a signal has several frequency components, it may be afected
by the cross-term [21]. A cross-term occurs when multiple
parts exist in the input signal, analogous in time and fre-
quency beats. Te cross-term can be minimized by modu-
lating the WVD function by applying a sliding averaging
window in the time-frequency plane. It is regarded as
pseudo-WVD (PWVD) [22] and is more widely used than
WVD. However, it reduces the efect of cross-terms to some
extent but does not eliminate it.

Mathematically, the PWVD is represented using the
following equation (12):

PWVDx(t,ω) �
1
2π


∞

−∞
h(t)x t +

τ
2

 x
∗

t −
τ
2

 e
− jωτdτ. (12)

Figure 8 represents the PWVD of an ECG signal (360Hz,
duration 1 sec). Each data point in the WVD plot is rep-
resented with three signal variables: amplitude, time, and
frequency.

2.6. Empirical Mode Decomposition. Empirical mode de-
composition (EMD) is a local and data-driven adaptivemethod
that is mainly applied to nonlinear and non-stationary signals.
EMD splits a signal into many nanocomponent functions
called Intrinsic Mode Functions (IMFs) [23]. Te IMF holds
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a relationship between phase and frequency. An IMF must
satisfy two conditions: (1) For a given signal, the number of
zero crossings and the number of extrema must be equal to
zero; if not, it must difer by one. (2)Te mean of the envelope
created due to the local maxima (peak of a wave) and the local

minima (valley) is zero. In other words, the IMF represents
only the simple oscillatory modes present in a signal. However,
it does not ensure a perfect instantaneous frequency in all
conditions. In [24], Peng et al. (2005) proposed an algorithm to
extract the IMFs of a signal.
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Figure 5: (a) A sample ECG signal and (b-d) its DWT coefcients after the 2nd level of decomposition using a db2 mother wavelet.
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After the decomposition process, the original signal is
characterized as the combination of the extracted IMFs and
the residues ri+1. Mathematically, it can be represented using
the following equation (13):

x(t) � 
n

i�1
IMFi + ri+1. (13)

Figure 9 represents a sample ECG signal and the set of
extracted IMFs and residues (Figure 8(b)). Te fgure also
illustrates the instantaneous frequencies (Figure 9(c)). It can
be observed from the fgure that the lower IMFs capture fast
oscillatory modes. On the contrary, the higher-order IMFs
capture the slow oscillation modes. Te limitation of the
traditional EMD method is mode mixing in the case of
signals with closely spaced frequencies [25].

2.7. Hilbert Huang Transform. Te Hilbert Huang Trans-
form (HHT) is an extension of EMD. It is the application of
the Hilbert transform (HT) to the extracted IMFs. After
fnding all the IMFs from the original signal, the HT is
applied to get the di(t) from each IMFi. Mathematically, it is
represented using the following equation (14):

zi(t) � IMFi + jdi(t) � Aie
jθi , (14)

where zi(t) is the analytic signal obtained using the Hilbert
transform of the IMFs.

Ai �

������������

IMF2i + di(t)
2
,



θi(t) � tan− 1di(t)

IMFi

,

ωi �
dθi

dt
.

(15)

Replacing IMFi with zi(t) in equation (14) and
neglecting the value of ri+1, it yields

x(t) � Real 
n

i�1
Aie

jθ(t)i⎛⎝ ⎞⎠, (16)

where θ(t)i � 
t

0 ωi(t)dt � arctan (di/IMFi).
At the output, the HHTproduces an orthogonal pair for

each IMF that is phase-shifted by 90°. In addition to the
orthogonal pair, the IMF calculates the instantaneous var-
iation in its magnitude and frequency over time. Hence,
HHTcan be a helpful method when analyzing nonlinear and
nonstationary time series data.

2.8. Some Modifed Joint Time-Frequency Methods. Te
aforementioned joint time-frequency methods form the
basis of many advanced methods, which have been proposed
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Figure 7: (a) A sample ECG signal and (b-e) its WPD coefcients after the 2nd level of decomposition using the db2 mother wavelet.
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in recent years. Tese advanced methods try to eliminate the
limitations associated with the original techniques. Hence,
these advanced methods have gained much attention in
many signal-processing applications. Initially, it has been
a general consideration that the Fourier transformmethod is
applicable only for the spectral analysis of stationary signals.
However, a modifed Fourier transformmethod was recently
developed for nonlinear and nonstationary signals appli-
cation. Tis method is called the Fourier decomposition
method (FDM) and has been employed as a time-frequency
analysis tool [26]. Several-modifed wavelet analysis
methods, including least-square wavelet analysis (LSWA)
and least-square cross wavelet analysis (LSCWA), have also
been proposed [27]. Numerous variations in wavelet
transformation methods have been reported recently. Tis
includes tunable Q-wavelet transform (TQWT) [28], sta-
tionary wavelet transform (SWT) [29], empirical wavelet
transform (EWT) [30], and dual-tree complex wavelet
transform (DTCWT) [31]. Te advantage of the TQWT is
that it does not require the adjustment of the wavelet base
function and can easily be adjusted according to the signal
[32]. SWT shows the local time-frequency characteristics of
a signal and has multiresolution analysis capability [33]. Te
EWT method is an adaptive wavelet method that uses
a wavelet subdivision scheme. Te method segments a sig-
nal’s spectrum and perfectly reconstructs the input signal
[34]. DTCWT shows several advantages compared with
DWT. Tese include approximate shift-invariance, di-
rectional selectivity, and perfect reconstruction of the
original signal [34]. Also, compared to other numerical
methods, DTCWT is faster and more efective.

Te empirical mode decomposition (EMD) method
has also received several improvements in the last decade
and has formed the base for a number of decomposition
methods [35], that include variable mode decomposition
(VMD) [36], complex variable mode decomposition
(CVMD) [37], Local mean decomposition (LMD) [38],
ensemble empirical mode decomposition (EEMD) [39],
multidimensional EEMD [40], complex EMD (CEMD)
[41], Complete EEMD with adaptive noise (CEEMDAN)
[42], and multivariate empirical mode decomposition
(MEMD) [43]. VMD is an adaptive EMD method where
the signal decomposes into many band-limited IMFs. Te
main advantage of VMD over EMD is that it eliminates
the efect of mode-mixing during the decomposition
process [44]. Te LMD method produces a set of product
functions after the decomposition process. Here, the
time-frequency distribution of the original signal could
be acquired from the instantaneous amplitude and fre-
quency of the product functions [45]. Te EEMD and
CEEMDAN methods also eliminate the mode mixing
issues of the EMD method by performing the de-
composition over an ensemble of the signal with Gaussian
white noise [46].

Modifcations in the Wigner—Ville distribution func-
tions resulted in pseudo-Wigner—Ville distribution
(PWVD) [47] and smoothed pseudo-Wigner—Ville distri-
bution (SPWVD) [48]. Te HHT, as mentioned above, is
also an advancedmethod of EMD, where the Hilbert spectral
analysis is employed for each IMFs. Te following section
reports applying the aforementioned time-frequency
methods in various ECG signal processing studies.
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3. Applications in ECG Signal Analysis

Te advancement in ECG signal processing methods has
diversifed its applications, both biological and non-
biological. Including various joint time-frequency methods
in ECG processing has made the process efcient to a sig-
nifcant extent. Te biological applications may include, but
are not limited to, detecting abnormalities in heart rhythm,
the onset of a seizure, sleep apnea, and so on. On the other
hand, the nonbiological applications may consist of emotion
detection, biometric identifcation, drug and alcohol de-
tection, the removal of noise from the ECG signal, and so on.
Tis section contains some of the most notable applications
of joint time-frequency methods in ECG analysis.

3.1. Noise Removal. Te acquisition of the clinical ECG
signal is a noninvasive procedure that involves amplifying
the biopotential signals using high-gain amplifers obtained
with surface electrodes placed over the skin. A conducting
gel is also applied between the skin and electrode surfaces
to reduce the skin-contact impedance and maintain proper
conductivity. During the acquisition of the ECG signals, the

signal may get contaminated with diferent noises. Te
primary noise sources in an ECG signal are power line
interference, electrode instability due to improper adher-
ence of the surface electrodes to the skin surface, and
muscle activity. Tese noises are correlated with the
original signal with a similar temporal distribution.
However, they difer by intensity level. Te noise signal
possesses a variety of frequency bands, where the low,
medium, and high-frequency bands signify the baseline
wander (BW), power line interference, and electromyo-
graphic noise, respectively.

3.1.1. Baseline Wanders. Te BW noise is prominent in the
ECG signal at less than 1Hz. Several factors may lead to this
noise, including changes in electrode-skin polarization
voltage, respiration, motion artifacts, and electrode, and
cable movement.Te peak amplitude and duration may vary
according to electrode properties, skin contact impedance,
electrolytes used, and electrode movement.Tis noise causes
a shift in the isoelectric line during recording, hence, the
name BW. Te baseline drift is usually seen at a shallow
frequency of 0.014Hz in the ECG recordings.
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Figure 9: (a) A sample ECG signal, (b) IMFs and residue of the ECG signal after EMD, and (c) the instantaneous frequency of each IMF.
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3.1.2. Powerline Noise. Te power line noise is mainly as-
sociated with the signal-carrying cables of the device. Tese
cables are prone to electromagnetic interference at 50Hz or
60Hz. Te two allied mechanisms that aid in powerline
interference are capacitive and inductive coupling. However,
in the case of the ECG, inductive coupling is more
signifcant.

3.1.3. EMG Noise. Te ECG data are acquired using surface
electrodes placed over the human skin. It is important to
note that various muscles are present underlying the human
skin tissue. Te contraction and relaxation of these muscles
lead to the corruption of the ECG signals with the EMG
signals from the underlying muscle tissues. Te EMG noise
is more defned in the case of diferentlyabled persons, kids,
and persons with tremor issues.

3.1.4. Electrode Contact Noise. As mentioned above, a con-
ductive gel is usually used on the skin surface before the
electrode placement, which acts as a dielectric medium and
ensures good conductivity between the two electrodes (the
skin surface and the measuring electrode). Electrode contact
noise occurs when there is a change in the contact position of
the electrodes to the skin. Te loosening of the electrode
contact may also contribute to the noise. Additionally, poor
conductivity between the electrode and the skin surface
decreases the amplitude and increases the probability of
disturbance by reducing the signal-to-noise ratio (SNR).
Maintaining the skin contact impedance as low as possible is
advisable to ensure better conductivity between the skin
surface and the measuring electrode.

Te noise components in the signal contribute to its
wrong interpretation, faulty observation, and inefcient
feature extraction. Hence, removing the contaminants from
the signal is crucial before further processing. Initially,
moving average flters were used for this purpose, but they
lost a lot of information due to averaging [49]. Various
digital and adaptive flters were reported for baseline wander
removal and motion artifacts [50]. However, determining
the correct flter parameter is a difcult task. Again, these
methods primarily focus on a single noise source. Time-
frequency methods became popular as they can help remove
multiple noises simultaneously. Various time-frequency
methods, including wavelet transforms [51], EMD [52],
WPD [53], and their variants, have been used in the liter-
ature for noise reduction. Te conventional denoising steps
include signal decomposition, identifying the decomposed
signals where most of the noise is content, fltering these
noises, and reconstructing the original signal. Figure 10
represents the basic steps involved in ECG denoising. Table 2
contains a comprehensive list of published papers that
employed time-frequency-based methods to denoise the
ECG signals in recent years.

3.2. Arrhythmia Detection. Cardiovascular disease (CVD) is
one of the prime reasons for human death. As per reports, it
contributed to 31% of the worldwide death in 2016. Out of

these, 85% are due to a heart attack. Timely and early de-
tection of the onset of the disease can help in reducing these
statistics. Arrhythmia is a common manifestation of CVD
known as heart rhythm disorder. It happens when there is an
anomaly in the electrical conduction pattern of the heart.
Tough there are several forms of arrhythmia, namely, sinus
node arrhythmia, atrial arrhythmia, junctional arrhythmia,
and atrioventricular block [77], atrial fbrillation/arrhythmia
is the most common. Usually, the irregular heartbeat does
not show any harmful symptoms until it reaches a higher
state, leading to a stroke, congestive heart failure, long-term
or short-term paralysis, and sometimes even death. Tus,
early detection of the progression of AF is crucial. Te
conventional way of diagnosing CVD is through a patient’s
medical history and clinical tests. However, this method
requires highly heterogeneous data and a medical expert for
accurate prediction and interpretation, making the process
inefcient. Also, the problem is more signifcant in places
with a shortage of proper medical facilities. Terefore, for
decades, researchers have been opting for a machine-based
automatic system that uses physiological signals (ECG) for
monitoring and diagnosis. Most of these diagnostic pro-
cedures follow a standard method, including ECG signal
acquisition, decomposition, feature extraction, and classi-
fcation for arrhythmia. Te current section addresses dif-
ferent time-frequency-based methods in arrhythmia
detection and their present status. Although several time-
frequency methods have been employed for arrhythmia
detection, wavelet-basedmethods have been widely explored
in recent years. Te discrete wavelet transform (DWT) is
most prevalent due to its easy implementation. Figure 11
represents the block diagram of a DWT-based beat classi-
fcation method, followed by Rizwan et al. (2022) [78].
Besides DWT, other methods, such as WPD and CWT, have
also been employed. Te CWTmethod is not widely used as
the inverse CWTis not available in many standard toolboxes
(MATLAB, Python, etc.) due to its high computational cost
[79]. However, in many studies, the DWT and CWT were
combined to improve classifcation accuracy. WPD, on the
other hand, resulted in a larger feature set compared to the
DWT method and showed potential in classifying ar-
rhythmia. However, it is associated with high computational
complexity. Some other time-frequency methods and their
variants that have also been recently explored include EMD,
HHT, WVD, and STFT. Te STFT has been combined with
deep neural networks such as recurrent neural networks
(RNN) and convolutional neural networks (CNN) to obtain
efcient results. Table 3 lists some of the recently published
articles and discusses the time-frequency methods used, the

Noisy ECG signal Pre-processing

Denoised Signal Signal Smooth
Filter

Signal
Reconstruction

Denoising based on
Time-frequency

Methods

Figure 10:Te basic signal processing steps involved in ECG signal
denoising.
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features computed, and the classifcation method followed
for automatic cardiac arrhythmia detection.

3.3. Sleep Apnea Detection. A good quality of sleep is crucial
for leading a healthy life. Sleep apnea is the most common
pathological condition that afects sleep quality [118]. It
arises due to repetitive airfow obstruction and causes dis-
turbed breathing during sleep time [119]. As per a recent
report, around 1 billion people across the globe are afected
by sleep apnea [120]. Nine hundred thirty-six million people
aged between 30 and 69 have mild to severe obstructive sleep
apnea (OSA), whereas 425 million have moderate-to-severe
OSA. It has been reported that sleep apnea raises the cardiac
disease risk by three times, the accident rate by seven times,
and stroke by four times. OSA in the later stage can cause
severe cardiovascular and neurocognitive problems if left
untreated. Hence, early and timely detection of the disease is
crucial. Te conventional way of measuring sleep apnea is by
performing polysomnography, in which the patient is asked
to sleep after attaching several electrodes and sensors for the
measurement. Te test was performed in a controlled en-
vironment. However, the procedure is highly uncomfortable
for the patient and may degrade sleep quality. Also, a ded-
icated person is required who can continuously monitor
various physiological signals associated with brain activity,
eye movement, muscle activity, etc. Te process is time-
consuming and expensive [121]. Accordingly, there is a need
for a simple, low-cost, and automated method for its
detection.

In recent years, researchers have implemented various
physiological signals to detect OSA. However, the ECG
signal is the most widely used physiological signal for the
said purpose. Tis is because the acquisition of the ECG
signal requires only a single-lead recording, which makes the
measurement process simpler than other methods. Figure 12
describes the basic steps involved in sleep apnea detection.
Te current section discusses the application of diferent
time-frequency analysis methods to the ECG signals to

detect OSA. Hassan et al. (2015) used a single-lead ECG
signal to classify the OSA in their research. Tey employed
EMD, higher-order statistical features, and an extreme
learning machine (ELM) for classifcation purposes. Te
authors reported a maximum accuracy of 83.77%. In [123],
the authors used an eight-level wavelet packet analysis
method on a short-duration (5 s) ECG signal to diferentiate
between central sleep apnea (CSA) and obstructive sleep
apnea (OSA). CSA occurs when the brain is unable to send
proper signals to the muscles associated with breathing. It is
diferent fromOSA, where normal breathing is hindered due
to upper airway obstruction. In a similar study [124], the
authors used wavelet-based ECG features to diferentiate the
CSA and OSA using an auto-regressive ANN classifer. Tey
achieved a classifcation accuracy of 78.3%. Several other
time-frequency methods, including DWT, and HHT, have
also been used to classify sleep apnea. Table 4 summarizes
some recently published articles in the feld that use time-
frequency methods during ECG processing.

3.4. Biometric Identifcation. Identifcation technologies are
crucial in safety, security, and information protection [138].
Te earlier approaches, including security keys, passwords,
and certifcates, are no longer secure as there is a high chance
that they may be stolen or forgotten. Hence, biometric
identifcation technology has emerged with great efciency,
considering the anatomical and physiological diferences
[138, 139]. Typical biometric examples include fngerprints,
iris, and face IDs [140]. Even though these methods have
been used with great popularity, they are not perfect enough
as they can be forged. Recently, it has been found that the
ECG signal can be used as a biometric as it is universal,
stable, and easily measurable [141]. Again, the ECG of an
individual solely depends upon the body shape, gender, age,
emotional and the heart’s physiological status. It makes the
ECG a unique signal. In general, visually diferentiating the
ECG signal of two individuals is very challenging due to the
subtle changes in amplitude and duration. Hence, this

ECG Signal Wavelet
Decomposition

Treshold selectionDetection of R peak

On and Of peak
detection Feature extraction Classifcation

High freq. noise elimination
by discarding D1 and D2

Low freq. noise elimination
by discarding A10

Selection D3, D4, and D5
for QRS complex

Figure 11: Block diagram of a DWT-based Beat classifcation method (reproduced from [78]).
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method of pattern recognition has been employed for easy,
quick, and reliable identifcation. Te ECG signals used for
biometric authentication are either one-channel, two-
channel, three-channel, or 12-channel. Among these, the
single-lead ECG is the most common due to its simplicity.
However, it is unclear whether simplicity leads to better
performance; hence, in some of the studies, 12 lead ECG data
has also been used.

Te ECG biometric identifcation process follows three
crucial steps: preprocessing, feature extraction, and classi-
fcation. In [142, 143], the authors showed that ECG exhibits
a unique and discriminatory pattern and can be categorized
according to the classifer employed. However, it is essential
to note that the performance of a classifer relies on feature
extraction methods [144, 145], where the raw ECG signal is
used to extract informative features. In general, the features
extracted for the biometric methods can be divided into two
broad categories: fducial and nonfducial [144]. Te fducial
method uses the characteristics of the ECG waves, such as
diferent peaks, waves, and intervals, whereas the nonfducial
method does not use these characteristics.

Several feature extractionmethods have been explored in
the past.Tough there is no generalized rule for determining
the signifcant boundaries of the waves that helps in efcient
biometric identifcation [146], the nonfducial-basedmethod
is preferable. It is the reason that no reference detection is
needed in this method [147]. Some examples of the most
widely used nonfducial methods include autocorrelation
coefcients [148], wavelet coefcients [149], principal
components [150], and time-frequency decomposition
methods [151]. In this section, the application of time-
frequency decomposition methods in biometric analysis
has been discussed. Table 5 represents a recent publication
that used diferent time-frequency decomposition methods
for biometric identifcation. It is evident from the table that
empirical mode decomposition (EMD), and discrete wavelet
transform (DWT) are the two most widely used methods
recently. Some researchers have also followed hybrid
methods that combine two diferent time-frequency features
or multiple features, including nonfducial and fducial
features. Te time-frequency method has used several
classifcation methods, such as CNN, SVM, LDA, DT, and
CNN. However, in most cases, the CNNmodel showed good
performance compared to the other classifers. Te reason

can be most of the deep learning models generate their own
representative features during training.

3.5. Other Applications

3.5.1. Emotion Detection. Emotion is the consistent and
separated response to external or internal events.Te human
emotional state can be defned using eight basic emotions:
pleasure, sadness, anger, joy, curiosity, fear, and surprise. All
other emotions can be a mixture of these primary emotional
states. It has been reported in the literature that physiological
signals are afected mainly by emotion. Hence, it can be used
to detect and classify emotional states. Several studies have
used the ECG signal to detect emotional changes [162–165].
In the research of Dissanayake et al. (2019) [166], the authors
used three ECG signal-based techniques and the EMD
method to recognize the primary human emotions: anger,
joy, sadness, and pleasure.Tey achieved an accuracy gain of
6.8% as compared to the other methods. Another study
employed a wavelet-based approach to obtain features at
diferent time scales [167]. Te proposed method showed an
accuracy of 88.8% in detecting the valence state and 90.2% in
detecting the arousal state, respectively. Chettupuzhakkaran
and Sindhu (2018) have performed a comparative analysis in
diferent time-frequency methods to detect happy and sad
emotions. Te authors reported a higher accuracy in DWT’s
case than in other methods (EMD, HHT, etc.) [168].Wavelet
transform and second-order diference plots were used in
[169] to diferentiate two emotional states: rest and fear, with
a maximum accuracy of 80.24% using an SVM classifer.

3.5.2. Epileptic Seizures Detection. A seizure can be repre-
sented as an abrupt electrical disturbance in the brain ac-
tivity that leads to a change in behavior, movement, and level
of consciousness. Also, the onset of seizures afects auto-
nomic nervous system activities. Te literature suggests
a signifcant diference in the physiological signals such as
ECG and EEG has been observed during a seizure episode.
Te EEG signals have been used as a potential biomarker for
seizure detection. However, signifcant ECG morphological
changes have also been observed during a seizure episode. A
shortened QT interval, ST-segment elevation, and T-wave
inversion are typical changes in the ECG morphology

Pre-processing

Feature
ExtractionClassifcation

Normal

OSA data

ECG Signal AcquisitionPatient

Figure 12: Steps in sleep apnea detection using an ECG signal (modifed from [122]).
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[170, 171]. Nevertheless, a few research studies found in the
literature only uses ECG signals for seizure detection. Most
papers have extracted the time-frequency features from the
EEG signal or ECG and EEG signals [172–175]. But, in
a recent study [176], Yang et al. found that the ECG signal
was more efcient than the EEG signal in seizure detection.
Te authors used the spectrographic images of a short-
duration ECG signal using the short-time Fourier trans-
form (STFT). Te images were used as the input to the CNN
model for automatic seizure detection. Yet, more research
based on the ECG-based features of epilepsy detection is
needed in the future.

3.5.3. Driver Distraction Detection. Distracted driving is
a severe concern for the safety of passengers and drivers.Te
three primary causes of distraction are taking the eye of the
road, taking the hands of the steering, and a disturbed mind
while driving. Te secondary reasons may include conver-
sations on the phone and active conversations with a pas-
senger. Tough social awareness and enhanced government
rules have reduced the accident rate, the steps are in-
sufcient. Hence, there is a need for real-time driver dis-
traction detection. Te ECG signal has shown potential
application in real-time monitoring due to its properties:
higher SNR, minimal implementation, easy to wear, and
simple recording technology. Moreover, it does not show
any latency issues compared to the camera-based detection
system. Te most crucial step in real-time ECG monitoring
is the selection of features. Several time-frequency analysis
methods have been reported in this regard. In [177], the
authors have used the ECG subbands after decomposition
using WPD. A set of WPD coefcients were selected, and
three essential features, namely, power, mean, and standard
deviation, were extracted from each coefcient. In the study,
PCA was used as a dimensionality reduction method. Te
fnal feature set was used to classify the driver distraction
using LDA and a quadratic discriminate analysis (QDA)
classifer. In a similar study [178], the wavelet packet
transform detected distraction during a phone call or
conversation with a passenger. Dehzangi et al. (2018) have
employed fused features extracted from the ECG signal
[179]. It includes HRV parameters, spectro-temporal pa-
rameters, and power spectral density parameters. STFT was
used for the spatiotemporal analysis. Te optimal set of
features was chosen using a feature selection method and
various classifers. Te maximum detection accuracy of the
driver distraction was 99.8%. Many studies have combined
the ECG signal with other physiological signals such as EEG
[180], EMG [181], and EOG.

3.5.4. Drug and Alcohol Detection. Early and timely drug
overdose detection is crucial to maintaining health and
avoiding major health problems. As per reports, nearly half
of the emergency ward cases in the United States are due to
drug-related overdose. It has been reported that most drugs
infuence cardiac functioning. Te drug overdose may later
lead to adverse cardiovascular events in many cases. Hence,
the changes in the ECG signal can be a good indicator of this

drug overdosage and can be used for its detection. Early
research suggests changes in the ECG signal’s morphological
parameters after consuming various drugs (e.g., benzodi-
azepines, acetaminophen, and opioids). In their study,
Manini et al. (2017) evaluated the efects of an acute drug
overdose on the electrophysiological parameters. A prom-
inent R peak and QTdispersion were detected after the drug
overdose [182]. In a recent study [183], QT interval pro-
longation was observed due to the overdose of hydroxy-
chloroquine in COVID patients [183]. Similar fndings were
reported in the case of other drugs also. Some of the drugs
include antidysrhythmic (sotalol), antidepressants (escita-
lopram, bupropion, citalopram, trazodone, and so on),
antipsychotics (haloperidol, quetiapine), sodium channel
blockers (amitriptyline, doxepin, imipramine, di-
phenhydramine, and nortriptyline, and so on), and the
antiemetic serotonin antagonist ondansetron [184]. Apart
from drugs, alcohol also showed a similar efect on the heart
[185]. Recently, a few researchers have attempted to use ECG
signals for automatic drug detection. Pradhan and Pal (2020)
have reported that it is possible to use time-domain sta-
tistical and entropy-based features extracted from the ECG
signal to automatically detect the presence of a psychoactive
drug, “cafeine,” in the body [186]. In a recent study [187],
the authors employed three diferent time-frequency
methods, EMD, DWT, and WPD, to automatically detect
the cafeinated cofee-inducedshort-term efect in the ECG
signal.Te application of ECG signals in seeing the impact of
drugs and alcohol is new, and hence, a limited study is
available in the literature. Te exploration of joint-time
frequency methods is insufcient and may be explored
extensively in future research.

4. Limitations, Challenges, and Suggestions for
Future Research

Temain limitation of using the STFTmethod is that it does
not show optimal time-frequency precision. Another dis-
advantage of the STFTmethod is that it is used primarily for
short-duration ECG signal processing. However, short re-
cordings are preferred during critical heart surgery to initiate
the treatment process instead of investigating the longer-
duration ECG signals [188]. In such cases, STFT-based
signal processing has been proposed with defnite success.
Also, the STFT method is associated with varying spectral
leakage due to applying diferent window functions. Another
critical parameter while using the STFTmethod is choosing
the correct window size. A limited time window shows
a good time resolution but degrades the frequency resolu-
tion. Likewise, broader windows ofer poor time resolution
but a good frequency resolution. Hence, many employ more
suitable techniques, such as the wavelet transform method
(CWT, DWT, WPD, and so on). Te wavelet transform can
eliminate the problem of the fxed window size by using
a varying window length and improving the time-frequency
resolution [189]. However, it is unable to capture the edges
of the signal adequately. Also, a trade-of exists amid WT’s
accuracy and computational complexity. Choosing a suitable
mother wavelet in the WT is crucial as the accuracy of
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a classifcation task is also afected by the choice of the
mother wavelet.

Te empirical mode decomposition (EMD) can over-
come these limitations. EMD decomposes the signals into
several IMF independent of the instantaneous frequency.
Te method delivers valuable data when little information
about the underlying dynamic is available. However, careful
application of the technique to any scientifc research is
required, as it lacks a proper theoretical background and is
also associated with mode mixing [189]. Some extensions to
the EMD method (including EEMD and VMD) were made
to eliminate the disadvantages associated with EMD. VMD
is more suitable for the analysis of nonstationary and
nonlinear signals. Te method shows a high operational
efciency and avoids information loss.

Several studies have implemented advanced time-
frequency methods for analyzing and processing bio-
potential signals, such as EMG and EEG. For example, the
tunable Q-wavelet transform (TQWT), combined with time-
frequency features, was used to detect epileptic seizures
using the EEG signal [190]. A recent study used the TQWT
method to diferentiate seven hand movements using the
surface-EMG signal [191]. Ahmed et al. (2022) employed the
LSWA method and computed the diferential entropy fea-
tures from each EEG segment. Te calculated features were
then used as input in the CNN model to detect diferent
emotional states [192]. In a recent study, the authors used
the EWT and deep learning methods to detect coronavirus
disease (COVID) [193]. Despite their diverse applications,
these advanced time-frequency methods in ECG signal
processing are limited. Hence, in the future, these methods
may be employed more efciently.

Real-time implementation of the time-frequency
method in diferent ECG applications is another big chal-
lenge. Most of the available research is based on ofine
analysis that excludes noisy data. Many recent articles have
employed physiological data to monitor epileptic seizures
[194], dynamic changes in the brain [195], vigilance [196],
sleep quality [197], fatigue [198], and abnormal driving
[199]. Tese methods have primarily used either the brain or
muscle signals. Terefore, the real-time implementations of
the afore-discussedtime-frequency methods in the ECG
analysis may be explored in the future.

Te current study has reviewed the application of various
time-frequency decomposition methods for extracting ECG
features. Tese features were then employed for various
ECG-based applications, including arrhythmia detection,
sleep apnea detection, biometric identifcation, noise elim-
ination, and so on. A limitation of applying the feature
extraction method is that the new features generated in the
process are not always interpretable. Again, when there is
a vast dataset, the conventional machine learning models do
not perform satisfactorily due to the curse of dimensionality,
which later needs feature selection methods. Te deep
learning models eliminate these issues as they can efciently
handle large datasets. Also, these models create their fea-
tures, identify the correlated features, and then combine
them to promote fast learning without providing explicit
instruction. Tough many studies have employed deep

learning models with the 2D-ECG data (spectrogram, sca-
logram, and so on) or the decomposed signals, the feld
demands extensive analysis. It may be explored in the future.

5. Conclusion

Te current study provides a background idea about dif-
ferent time-frequency methods and their biomedical ap-
plications in ECG analysis. Te study also discusses the
recently published articles that have used these methods in
various ECG applications. Tough it is hard to include such
a vast area in a single article, the present paper stresses the
current status and recently published articles in the last fve
years. Te following observations can be made based on the
current review: DWT is recently the most widely used
method, irrespective of its applications. Te EMD and its
variants are more suitable methods for noise elimination.
Te 2D-image-based methods such as spectrogram, scalo-
gram, and frequency plots are most widely used with the
deep learning models and report higher classifcation ac-
curacy in arrhythmia detection. However, its use in other
ECG-based applications is still limited and needs more at-
tention. Also, the applications of some of the advanced time-
frequency methods mentioned in this review demand more
consideration in future research. Te current review will
form a reference and provide a comprehensive idea about
applying the time-frequency methods in the ECG signal
analysis. Some of the typical applications include detecting
arrhythmia and sleep apnea. Also, some nonbiological ap-
plications include biometric identifcation, drug and alcohol
detection, driver distraction, emotion detection, and so on.
Te facts discussed in this review will provide information
about the current status of the time-frequency methods. Te
study will help future researchers to fll in the gaps and
overcome the challenges in the said feld. Te knowledge
shared in this review will beneft society by bringing more
advanced technologies for disease detection, diagnostic
applications, and other nonbiological applications in the
future.
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In sports, fatigue management is vital as adequate rest builds strength and enhances performance, whereas inadequate rest exposes
the body to prolonged fatigue (PF) or also known as overtraining.Tis paper presents PF identifcation and classifcation based on
surface electromyography (EMG) signals. An experiment was performed on twenty participants to investigate the behaviour of
surface EMG during the inception of PF. PF symptoms were induced in accord with a fve-day Bruce Protocol treadmill test on
four lower extremity muscles: the biceps femoris (BF), rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL). Te
results demonstrate that the experiment successfully induces soreness, unexplained lethargy, and performance decrement and also
indicate that the progression of PF can be observed based on changes in frequency features (ΔFmed and ΔFmean) and time features
(ΔRMS and ΔMAV) of surface EMG.Tis study also demonstrates the ability of wavelet index features in PF identifcation. Using
a näıve Bayes (NB) classifer exhibits the highest accuracy based on time and frequency features with 98% in distinguishing PF on
RF, 94% on BF, 9% on VL, and 97% on VM.Tus, this study has positively indicated that surface EMG can be used in identifying
the inception of PF. Te implication of the fndings is signifcant in sports to prevent a greater risk of PF.

1. Introduction

Surface electromyography (sEMG) is an electrical feld of
human skeletal musculature [1]. It is acquired by placing
electrodes on the skin surface near the human muscle. Te
frequency and amplitude of the signals represent the be-
haviour and condition of the muscle’s motor unit, con-
duction velocity, and ionic alteration of the muscle. Fatigue
can be determined by the changes in its frequency content
and amplitude either during an activity by analyzing every
interval time length [2], at the beginning and ending of the
activity [3, 4], or before and after the activity [5–8].

In fatigue detection, frequency shifting represents the
changes in muscle fbre conduction velocities and

subsequent changes in the duration of the motor unit action
potential waveform and fuctuations of muscle force and
muscle fbre types as well as their decomposition [8, 9]. Most
of the opinions agree that fatigue can be identifed when its
frequency shifts to a lower value to indicate that the muscle
conduction velocities are slowing down [10, 11]. Other than
frequency, fatigue can be detected through the amplitude of
sEMG signals. Te changes in the sEMG amplitude depend
on the number of active motor units [12], discharge or fring
rates, and the shape and propagation velocity of the intra-
cellular action potential [10]. Te amplitude of sEMG tends
to increase during submaximal voluntary contraction
(during motor unit recruitment) and decrease during
maximal voluntary contraction [10, 13–16].
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Other than time and frequency features, a new time-
frequency feature representation to track fatigue was in-
troduced and is known as the wavelet index (WI) method
[17]. WI was introduced since it is more suitable to deal with
nonstationary signals such as sEMG [17]. Tere are fve WI
features introduced by Malanda and Izquierdo, including
the wavelet index ratio between moment −1 at scale 5 and
moment 5 at scale 1 (WIRM1551), wavelet index of the ratio
between moment −1 at the maximum energy scale and
moment 5 at scale 1 (WIRM1M51), wavelet index of the ratio
between moment −1 at scale 5 and moment 2 at scale 2
(WIRM1522), wavelet index of the ratio of energies at scale 5
and 1 (WIRE51), and wavelet index ratio between square
waveform lengths at diferent scales (WIRW51). Trough
WI, the distribution shifting of sEMG energy can be assessed
based on its scale and frequency band of decomposition.

In normal conditions, fatigue usually disappears by itself
after a while. Recovering from fatigue indicates that bio-
chemical reactions during sports activity are able to return to
a normal level [18]. Under normal fatigue (NF) conditions,
most opinions agree that the degree of fatigue begins with an
increment in amplitude, followed by unchanged and de-
creased trends, as well as accompanied by a decrement in
frequency centers. WI features tend to increase, indicating
the distribution of energy shifting to a lower value under NF
conditions.

However, high-intensity training activity will commonly
lead to more biochemical reactions such as releasing of stress
hormones (cortisol, epinephrine, and prolactin) [19, 20],
glycogen depletion [21], and the existence of lactate [22].
Fatigue due to intense training will require a longer recovery
period than normal physical activity. It is crucial for im-
provement and recuperation [23]. During the period, it will
enable hormones to return to a normal level [18] and allow
physiological adaptation to a cardiovascular and muscular
system to provide a higher level of performance [24]. If the
training load is imbalanced with an inadequate recovery
period, fatigue can be continuous and accumulated. Tis
situation leads to prolonged fatigue (PF). Under this con-
dition, more biochemical or maladaptive hormonal re-
sponses may occur [24, 25]. Te alteration in biochemicals,
which leads to PF, can be signifed by reduced performance,
lethargy, soreness, insomnia, psychological disturbance,
restlessness, hypertension, and increased incidence of injury
[21, 26]. It commonly requires several days to a week to
recover from [23, 27]. Tis condition needs to be treated
accordingly to avoid a more severe condition, known as
chronic fatigue syndrome. A report shows that about
20–60% of athletes, 60% of elite runners, and 33% of nonelite
runners experienced chronic fatigue syndrome at least once
in their career life [23, 26, 28].

In current practice, PF signs can be assessed invasively or
noninvasively. Blood tests are invasive and used to inves-
tigate biochemical concentrations associated with PF such as
lactate, glycogen depletion, creatine kinase, and iron levels
[22, 28]. Meanwhile, muscle biopsies are utilized to evaluate
the condition of the injured muscle and ionic concentration
in the muscle layer. During the collection of muscle tissue,
numbing medicine is required. Although both blood tests

and biopsies are reliable and accurate, they cause discomfort
and are not suitable for frequent measurement. Further-
more, these methods are time-consuming, need to be an-
alyzed in a laboratory environment, and require full
supervision from an expert [29].

Due to the limitation of invasive methods, PF can also be
traced through noninvasive diagnostic tools because the
alteration in biochemicals can be observed physically. For
example, glycogen depletion and lactate accumulation are
commonly associated with a decline in performance, the
oxidative stress increment leads tomuscle pain, and cytokine
leads to unexplained lethargy, decreased appetite, depres-
sion, and sleep disturbance [26, 28]. Te commonly used
noninvasive tools are interviews, athlete-coach monitoring
approaches [18], questionnaires [26, 28], training logs [30],
and perceived exertion ratings. Te current practice requires
more than one diagnostic tool to comprehensively screen of
PF signs. Diagnostic tools such as interviews, training logs,
and questionnaires often require close supervision by the
practitioner and personal coach. Nevertheless, using many
tools for the PF identifcation process is inefective, par-
ticularly, in monitoring a large group of athletes because
these tools are time-consuming and have many procedures.
Even so, many agree that PF condition prevention is the best
solution [26]. Te reason is that the treatment of PF is time-
consuming and cost-inefective, depending on the degree of
PF. Furthermore, PF signs endured are too risky for athletes.

Later, fndings reveal that the center frequency shifting of
sEMG to the upper value was attributed to the alteration of
ionic concentrations such as lactate and glycogen and the
existence of soreness following high-intensity exercise
[6, 31]. Tis fnding is opposed to the earlier fndings that
state a decrement in the center frequency of sEMG following
short duration and light exercise refers to fatigue conditions.
Tis situation demonstrates that duration, the intensity of
exercise, biochemical reactions, and the existence of PF signs
may afect the sEMG signal behaviour. Tis situation also
demonstrates the potential of sEMG as a new tool which is
noninvasive, comfortable, fast, easy to use, and quantifable
to detect signs of PF. Te detection at the earliest stage helps
prevent a more serious state of PF.

Terefore, this paper aims to investigate the ability of
sEMG signals to identify the inception of PF in four muscles
with diferent percentages of muscle activation. Tis paper
also investigates the ability of wavelet index features in PF
identifcation. Te performance of the surface EMG features
was evaluated by the naı̈ve Bayes classifcation accuracy in
predicting the PF condition.

2. Materials and Methods

2.1. Study Protocol. Twenty participants (age± standard
deviation (SD): 24± 3 years old; body mass index:
22.7± 2 kg/m2) were recruited for this study. Participants
were screened using a Physical Activeness Questionnaire
(PAR-Q and You) (Supplementary Appendix S1) to rule out
any pre-existing health contraindications and risk factors for
exercise. Te exclusion criteria were participants with dia-
betes, high blood pressure, heart disease, any chronic
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disease, joint or bone problems, and taking any medication
to control blood pressure and blood sugar. Te approval, to
conduct the experiment procedure, was obtained from the
Ethical Committee, Universiti Putra Malaysia (UPM/
TNCPI/RMC/1.4.18.1(JKEUPM)/F2).

Te participants were given a written and verbal ex-
planation, including the potential risks and discomfort that
they might experience. Te participants signed written in-
formed consent before the experiment began. As a pre-
caution, the participants were also protected by insurance
(policy number: P809067176) during the whole experiment
period.

2.2. Procedure. Te experimental design was divided into two
phases: Phase I was meant for familiarization and Phase II was
for intensive training. Each participant had to take part in both
phases. Phase I enabled the participants to familiarize them-
selves with the equipment and procedures, while Phase II was
designed to induce PF signs. Between Phase I and Phase II, the
participants were requested to rest and refrain from exercising
or doing any heavy physical activity. Phase I was carried out on
alternate days to avoid the emergence of PF, and Phase II was
carried out on fve consecutive days (see Supplementary
Table S1. Schedule of Experiment).

Te participants were instructed to refrain from any
heavy physical exercise, alcohol, and cafeine consumption
24 hours before the running test in both phases. Tey also
required taking meals two hours before the assessment to
avoid lack of energy and dehydration. Te experiment was
conducted in accordance with the Bruce Protocol treadmill
test (see Supplementary Table S2). In the protocol, the in-
clination and speed of the treadmill were increased every
three minutes. Te total duration of the protocol was 21
minutes. Te participants were required to run for fve
consecutive days and requested to improve their perfor-
mance daily. As individual fatigue response is highly vari-
able, no specifc distance and time duration were fxed [32].

2.3. Data Collection. In this study, training logs (see Sup-
plementary Appendix S2) were used to record measure-
ments before, during, and after the running activity. Te
measurements were used to monitor the daily performance
and identify the emergence of PF conditions during Phase II
of the experiment. Te fowchart of the experiment pro-
cedure and measurements is shown in Supplementary
Figure S1, and the equipment utilized throughout the ex-
periment was the COSMEDT170 treadmill, Polar chest strap
heart rate monitor, Watsons blood pressure monitor, and
custom-made surface EMG data collection tool (see Sup-
plementary Figures S2(a) and S2(b) for the schematic circuit
of surface EMG systems).

Te recorded measurements during Phase II were as
follows:

(a) Percentage of the maximal heart rate
Percentage of the maximal heart rate (%HRmax) is
recorded to indicate running eforts performed by
the participant. %HRmax is determined as

%HRmax �
HRmax(running)X100

(220 − Age)
. (1)

(b) Percentage of endurance time
Endurance time of running on the treadmill is cal-
culated [33] based on the following equation:

%Tendurance �
Trecorded X 100
21minutes

. (2)

(c) Prolonged fatigue sign identifcation

Te participants were also requested to fll in a 24-hour
training distress questionnaire (see Supplementary Ap-
pendix S3) daily [28]. Te questionnaire was used to identify
sleeping and psychological disturbance and muscle soreness.
During the experiment, the participants were also inter-
viewed before the running activity.Te interview session was
conducted to identify whether the participants experienced
lethargy. After running, the participant requested to scale the
running activity experiment to indicate the difculty of the
experiment.Te emergence of PF signs was monitored based
on noninvasive diagnostic tools, as summarized in Table 1.

Te prolonged fatigue diagnosis was important as sur-
face EMG signals were then grouped and classifed based on
PF signs experienced by the participants. Due to ethical
reasons and potential risks endured by the participants, only
symptoms developed within fve days of the experiment were
monitored. Te earliest PF signs that appeared during the
training were sufcient to indicate the emergence of PF. Te
participants were also reminded about two symptoms of
fatigue. Te symptoms were observed based on two con-
ditions as follows:

(a) Fatigue symptom 1 (monitored before the running
activity)
Te participant was not allowed to run and was
terminated from the experiment if any of the fol-
lowing fatigue symptoms were observed before the
assessment:

(i) Heart rate >100 bpm
(ii) Blood pressure >140/90
(iii) Showing performance decrements in the pre-

vious experiment
(iv) Psychology scores in the 24-hour training dis-

tress questionnaire >14 for at least three days
(v) Collapsing in the previous experiment
(b) Fatigue symptom 2 (monitored during running

activity)
Te participant must stop running if the fol-
lowing symptoms are observed while running:

(i) Lack of energy
(ii) Feel dizzy
(iii) Blurred vision

2.4. Surface Electromyography. SEMG signals were collected
from the biceps femoris (BF), rectus femoris (RF), vastus
lateralis (VL), and vastus medialis (VM).Tese muscles were
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selected based on the activation muscles during running and
sufer a high rate of injury in sports involving running
[35, 36]. Running at 10° grade inclination activates 79± 7%
of BF, 76± 14% of vastus, and 44± 20% of RF, and the
activation is elevated as the inclination increases [36, 37].
Te sEMG signals were collected using the custom-built
sEMG acquisition system, as shown in Figure 1.

Te sEMG system was designed based on an AD620
instrumentation amplifer system. AD620 was selected as it
provides a 130 dB common-mode rejection ratio (CMRR),
low power consumption, that is, 1.3mA, and comprises a
low input voltage noise of 9 nV/√Hz at 1 kHz and 0.28 μV
p-p in the 0.1Hz–10Hz band.Te full system ofers a signal-
to-noise ratio (SNR) of 25 dB and gains an amplifer at 248.
Te 50Hz notch flter is designed according to the following
equation:

Fn �
1

2πRC
, (3)

where R� 68 k Ω and C� 47 nF.
Te schematic diagram of the sEMG data acquisition

board is depicted in Supplementary Figures S2(a) and S2(b).
Te analog signals of surface EMGwere digitized into 12 bits
by using National Instrument Data Acquisition (NI-DAQ)
6008 with frequency sampling, Fs at 1kHz. 1kHz was se-
lected to avoid aliasing as suggested by De Luca. Ten, the
collected data were fltered using a digital fnite impulse
response (FIR), a high-pass flter (HPF), 301 taps, and a
cutof at 20Hz. Tis HPF is essential for removing baseline
wander during data acquisition. Fs and HPF specifcations
were set using data logger software, LabVIEW.

Ag/Ag Cl electrodes from Kendall MediTrace 200 were
used to acquire the signals. Bipolar electrodes with 20mm
inner distance were attached to the involved muscles, and
one reference electrode was placed at the knee of the par-
ticipants. Te electrodes were positioned at BF, RF, VL, and
VM based on the Surface EMG for the Noninvasive As-
sessment of Muscles (SENIAM) standard [38]. Te RF
muscle was determined by 50% distance between the patella
upper borders and the anterior iliac spine (AIS), VL was at
25% distance fromGerdy prominence to AIS, and VMwas at
25% distance from the joint space to AIS. After measuring
and marking the muscle, palpation of the involved muscle
was carried out to ensure that the electrodes were placed
correctly. During palpation, the participants were asked to
fex and extend knee movements to activate the muscles, as
shown in Supplementary Table S3 [38, 39].

In data collection, the participants were asked to move
their legs to activate the observed muscles. Only one leg was
involved in data collection, and it was observed that the
participants were comfortable using the left leg in the study.
Te investigation on one leg was enough in this study to
observe PF conditions based on surface EMG. RF, VL, and
VL were activated when the hip was fexed, while the knee
was extended to 180. As shown in Figure 2(a), the partic-
ipants were asked to sit on a chair and were requested to
move their legs from Point A to Point B to activate the
quadriceps muscle group. Tey were asked to stay at each
point for ten seconds and then repeat the movement three

times. It was discovered that the RF, VL, and VM muscles
contracted when the leg was at Point B and were at rest when
the leg was at point A, as suggested by Konrad.

Other than RF, VL, and VM, surface EMG signals were
also collected from the BF muscle. Te location of the
electrodes for BF was at 50% distance from the lateral
epicondyle of the tibia to the ischial tuberosity. To collect
surface EMG signals from BF, the participants were asked to
stand and move their legs from Point D to Point E, as shown
in Figure 2(b). Before that, the participants needed to place
one (1) of their legs one foot (1 ft) away from Point C, which
was Point D. BF contracted when the hip was extended,
while the knee fexed [34]. When the body gesture was about
30 forward, the knee fexed until the leg was lifted about
15 cm to Point E. Tis distance was chosen as it provides the
maximum activation of BF during movement [40]. Te
participants were requested to move their legs from Point D
to Point E three times at (10) seconds intervals. Te sEMG
signals were collected during before and after running ac-
tivities. Figure 3 shows the example of sEMG signals when
the knee is fexed and extended during the position and
movement in Figures 2(a) and 2(b).

2.5. Feature Extraction. A nonoverlapping windowing
technique was employed with samples n� 5000, as shown in
Figure 4. Te moment at which the muscles started to
contract and relax was ignored because the dynamic
movement during data collection might result in false in-
formation [41]. Te number of n was selected because the
authors of [2] have demonstrated that segmentation length
is suitable for muscle fatigue identifcation.Te features were
extracted at each contraction and averaged.

Specifc features were extracted based on the frequency,
time, and wavelet index (WI).Te spectral content of surface
EMG was determined according to the Fourier transform,
and the frequency parameter was quantifed based on its
median (Fmed) in (4) and mean (Fmean) in (5):

Fmed �
1
2



M

j�1
Pj, (4)

Fmean �


M
j�1fjPj


M
j�1Pj

, (5)

where fj � frequency of the spectrum at frequency bin j,
Pj �EMG power spectrum at frequency bin j, and
M � length of the frequency bin.

Te time features can be quantifed based on the mean
absolute value (MAV) in (6) and the root mean square
(RMS) [42] in (7) [42]:

MAV �
1
n



n

j�1
xj



, (6)

RMS �

�������

1
n



n

j�1
xj

2




, (7)
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where x= signals and n=number of samples [43].
Tis study also investigates the ability of WI features in

PF [43] identifcation since it was never tested in deter-
mining fatigue under high-intensity conditions. WI fea-
tures were used to evaluate the distribution shifting of
sEMG energy based on its scale and frequency band
decomposition. WI was calculated based on the discrete
wavelet transform (DWT) which was decomposed into
fve levels by using symlet 5 (sym5) and Daubechies (db5)
as the mother wavelet [17]. Te decomposition process
consisted of a series of flter banks, where at every i level of
decomposition, the signal was fltered into half of the
frequency band [44]. Te low-pass flter produced an
approximation coefcient, while the high-pass flter
produced a detail coefcient (Di) (scales). Figure 5 shows
the fve levels of sEMG decomposition details and the
power spectra of decomposition details at scales 1–5 that
are determined based on the Fourier transform.

Te wavelet index ratios between moments at diferent
scales were then determined based on the power spectrum of
wavelet details, Di..

Te fve WI features were tested as follows:

(a) Te WI ratio is between moment −1 at scale 5 and
moment 5 at scale 1 (WIRM1551).

WIRM1551 �


f2
f1 f

−1
D5(f) . df


f2
f1 f

5
D1(f) . df

, (8)

where ψ(t) used was sym5, f1 = 10Hz and
f2 = 500Hz, and D5(f) and D1(f) are the power
spectra of the fve and frst scales of decomposition
details [14].

(b) TeWI ratio is betweenmoment −1 at themaximum
energy scale and moment 5 at scale 1 (WIRM1M51).

WIRM1M51 �


f2
f1 f

−1
Dmax(f) . df


f2
f1 f

2
D2(f) . df

, (9)

where ψ(t) used was db5, f1 = 10Hz and f2 = 500Hz,
and Dmax in this work was scale 4 [14].

(c) Te WI ratio is between moment −1 at scale 5 and
moment 2 at scale 2 (WIRM1522).

Acquisition circuit

IA Notch Filter, 
50 Hz

Integrator

HPF, 20 Hz

NI-DAQ, 
12 bits

Fs =1 kHz

Data Logger

ref

+

-

GND

Data Logger System

V out

Figure 1: Block diagram of the sEMG data acquisition system.

Table 1: Prolonged fatigue sign identifcation.

Tools Prolonged fatigue signs Identifcation

Training log
Performance decrement Endurance time previous workout better

Restlessness HR> 100 before running
Hypertension BP> 140/90 before running

24-hour training distress
questionnaire [28]

Sleeping disturbance Te diferent time duration between before and during
intensive training

Psychological disturbance Psychological score >14

Muscle soreness Soreness scale (scale 4: tender but not sore to scale, 7: very
sore)

Interview Unexplained lethargy Feel lethargy before running

Borg Scale CR10 [34] Te difculty level of exercise
increases Increasing of the scale
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WIRM1522 �


f2
f1 D5(f) . df


f2
f1 f

2
D2(f) . df

, (10)

where ψ(t) used was db5 and f1 = 10Hz and
f2 = 500Hz. [14]

(d) Te WI ratio of energy at scales 5 and 1 (WIRE51) is

WIRE51 �


N
j�1D

2
5[n]


N
j�1 D

2
1[n]

, (11)

where ψ(t) used was sym5 [14].
(e) Te WI ratio is between square waveform lengths at

diferent scales (WIRW51).

WIRW51 �


N
j�2 D5[j] − D5[j − 1]


2


N
j�2 D1[j] − D1[j − 1]



2 , (12)

where ψ(t) used was sym5 [14].

During the extraction of WI features, frequency sampling
Fs � 1kHz [44] and n� 1024 were used. TeWI features were
then log-transformed to follow the normal distribution.

Fatigue identifcation always refers to the increment or
decrement in the features before and after the activity [45].
Te changes and shift of the features (F) in this study were
quantifed by

ΔF � Fpost – Fpre. (13)

Te positive value of ΔF indicates a feature increment for
postexercise, whereas the negative value indicates feature
decrements.

2.6. Statistical Analysis. Te features of BF, RF, VL, and
VM were preliminarily grouped into two categories:
normal fatigue (NF) and prolonged fatigue (PF). Tey

Point A

Point B

Point A

(a)

30°

Point C

Point E

1 feet

15 cm

f

Point D

(b)

Figure 2: Leg movement to activate (a) RF, VL, and VM muscles and (b) BF.
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were distinguished based on PF signs explained in Table 1.
While the features of the participants who did not ex-
perience PF conditions were grouped into NF, the features
of the participants who experienced PF conditions were
grouped into PF. A t-test was conducted, and a signifcant
value was set at P< 0.05.

2.7. Daily Plot of Surface EMG Behaviour. Te daily plot of
sEMG behaviour for NF and PF conditions was performed
to investigate the progression of fatigue in diferent muscles
with diferent activation percentages. It was plotted based on
ΔFmed and ΔRMS since these two features commonly rep-
resent time and frequency information on surface EMG in

5000 samples
Feature Contraction 1

5000 samples
Feature Contraction 2

Figure 4: Nonoverlapping windowing technique in feature extraction.
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Figure 3: Example of sEMG signals collected from BF, RF, VL, and VM.
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fatigue identifcation. A daily plot was also conducted based
on fve ΔWI features. To identify the changing behaviour of
the features during the emergence of PF, the features were
normalized by plotting them from a day before the emer-
gence of PF and the frst three days under PF conditions.Te
reasons were the individual’s responses to PF signs that
varied, and the normalization will help understand the trend
line of sEMG features during the intensive training period
specifcally under PF conditions.

2.8. Classifcation. Te classifcation process began with
selecting features and reducing the dimension of the fea-
tures. Te classifcation was performed based on diferent
feature selections to investigate the optimum classifcation
performance based on the selection. Te feature selections
were based on the following features:

(a) Time features: ΔMAV and ΔRMS
(b) Frequency features: ΔFmed and ΔFmean

(c) Time and frequency features: ΔMAV, ΔRMS,
ΔFmed, and ΔFmean

(d) Wavelet index features: ΔWIRM1551, ΔWIRM1M51,
ΔWIRM1522, ΔWIRE51, and ΔWIRW51

(e) Time, frequency, and wavelet index features: ΔMAV,
ΔRMS, ΔFmed, ΔFmean, ΔWIRM1551,
ΔWIRM1M51, ΔWIRM1522, ΔWIRE51, and
ΔWIRW51

From the feature selection, dimensionality reduction was
employed to reduce the complexity and computation time of
the classifcation algorithm, increase accuracy, and decrease
overftting problems [46]. Data reduction in this work was
carried out based on linear discriminant analysis (LDA).
Tis method maximizes the intercluster distance between
classes andminimizes the intracluster distance within classes
in the transformation of reduced features. In LDA, the
original dimensional feature space was transformed into a
lower dimensional feature space, without losing any im-
portant information [46].

In the classifcation stage, the naı̈ve Bayes (NB) tech-
nique was applied to discriminate NF and PF classes. Tis
method was selected as it was previously utilized in ex-
periments studying fatigue classifcation [36, 37]. NB is one
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Figure 5: (a) sEMG wavelet details at scales 1–5. (b) Power spectra using the Fourier transform of wavelet details at scales 1–5.
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of the established statistical pattern recognition methods
[46]. NB classifer functions are based on the probability
distribution of the feature vector, x. x belongs to class ωm
which is computed from probability distribution condi-
tioned on the class ωm,P(x|ωm), by assuming class-condi-
tional independence of the features:

P x |ωm(  � 
d

k�1
P x

(k)
|ωm , (14)

where d is a dimension of the feature instance x. Equation
(13) requires that the k-th features of the instance, which is
x(k), are independent of all other features, given the class
information.

Te probability of the x class itself is characterized by

P(x) � 
d

k�1
P x

(k)
 . (15)

Te classifcation rule was computed from the dis-
criminant function gm(x) to represent posterior probabilities
as

gm(x) � P ωm( 

d

k�1
P y

(k)
|ωm . (16)

It was represented for each m-class. Meanwhile, the x
class is determined by the largest gm(x) computation.

In this work, k-fold cross-validation (CV) was adopted
for training the classifer. Te performance of the classif-
cation was evaluated for the accuracy, specifcity, precision,
and average CV error (CVErr).

3. Results and Discussion

3.1. Physiological Measurements. Table 2 shows a daily %
HRmax record. It indicates that about 18 participants ran at
their maximal efort by showing %HRmax >80%, based on
the Edwards Intensity Zone 1992. Running at this rate
caused the participants to experience heavy breathing and
muscular fatigue. It proves that the Bruce Protocol treadmill
test provides the high training intensity required in this
experiment. High-intensity exercise is essential for inducing
faster PF signs. Physiological fatigue responses under PF
conditions are tabulated in Table 3. It shows that the frst PF
sign developed was muscle soreness, which was on day 2
(D2) of the assessment.Tis situation was found to be similar
to other studies in [6, 47], whereby soreness developed as
early as 24 hours after strenuous exercise.

Table 3 also indicates that PF signs accumulated with
performance decrement starting at day 4 (D4) of intensive
training. Te results agree with [16] as the untreated PF
condition develops more PF signs. Apart from that, the
results suggest that only three PF signs appeared within fve
days of intensive training including soreness and perfor-
mance decrement. Moreover, the results reveal that these are
the earliest signs of PF developed in the study. Te result in
Table 3 further shows that none of the participants expe-
rienced psychological and sleeping disturbance, restlessness,

and hypertension following intensive training. Hence, the
classifcation of collected surface EMG signal features was
based on physiological responses identifed in Table 3. Te
term PF condition afterward refers to muscle soreness,
performance decrement, and lethargy.

3.2. Surface Electromyography. Te daily plot of sEMG
feature behaviour is displayed in Figure 6, while the bar plot
represents standard deviation, “o,” and “x,” symbols rep-
resent the mean value of features in NF and PF conditions,
respectively. Te features under NF conditions were plotted
from day 1 to day 5 (D1–D5) of the assessment, whereas the
plots under PF conditions were normalized from the day
before the emergence of PF (DNF) to the frst three days of
the occurrence of PF signs (D1–D3).

3.2.1. Frequency Feature. Teoretically, the frequency in-
formation changes in sEMG describe the behaviour of
conduction velocities inside the muscle and subsequent
changes in the duration of the motor unit action potential
waveform and fuctuation of muscle force and muscle fbre
types as well as their decomposition [8, 9]. Te frequency
spectrum shift information is represented by its mean
(Fmean) and median (Fmed) in assessing muscle fatigue [42].

Figure 6 shows thatΔFmed resulted in a negative value for
BF, RF, VL, and VM under NF conditions. Te negative
values of ΔFmed demonstrate that Fmed was decreasing
postrunning activities. Te decrement in Fmed was like the
most dominant opinion where frequency tends to shift to a
lower value to characterize fatigue.Te decrease in the centre
of frequency as a result of reduced muscle conduction ve-
locity and a change in the frequency spectrum was brought
on by the absence of high threshold motor unit recruitment.
However, ΔFmed shows positive values for BF, VL, and VM
on day 4 (D4) and day 5 (D5) under the NF condition. Te
positive values of ΔFmed indicate that the median frequency
spectrum was shifted upwards. An increase in Fmed was also
identifed on the day before PF signs appeared (DNF) for the
BF, VL, and VM muscles, and this behaviour was sustained
throughout the PF condition.

Te plot in Figure 6 also indicates that the positive values
of ΔFmed only occurred in RF during PF conditions. Sta-
tistical analysis reveals that an increment in ΔFmed under PF
is signifcant at P< 0.05 for BF, RF, VL, and VM, as tabulated
in Table 4. An increase in Fmed of sEMG during fatigue was
rarely reported. Te increasing center of frequency was once
reported by [48] during the frst 30 minutes of recovery from
dynamic exercise at a load of 80% of the VO2 max. Te
increasing center of the frequency was reported following
the elevation of temperature and lactate after high-intensity
dynamic exercise [48].Te relationship between the skin and
muscle temperature and the increasing center of the sEMG
frequency spectrumwas later confrmed in [49].Te positive
linear relationship between the temperature and median
frequency might be due to an increase in the muscle con-
duction velocity to increase the power output [49, 50]. Te
relationship between the frequency of sEMG and temper-
ature was also discussed in [51].
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In [51], the authors demonstrated that there is a less
efect of temperature on muscle strength and frequency of
sEMG but related other possibilities that afected the fre-
quency features such as diferent recruitment properties of
the motor units and the percent of fats and slow twitch
motor units under electrodes. Heavy dynamic exercise might
also contribute to the substitution of muscle groups fol-
lowing an efect on the alpha motor neuron pool through
refex inhibition that alters recruitment properties.Te efect
of the neural drive on the muscle and its motor unit action
potential was also identifed as one of the factors that afect
sEMG components [52].

Te neural drive for the muscle factor might be related to
fatigue induced in the peripheral and central systems. Fa-
tigue in the central system occurs when neurochemical in the
brain is altered and stress hormones are secreted. When this
happens, it will modify the peripheral information in the
contracting muscles and afect the characteristic of sEMG
[53–56].

Te increment in frequency information features ΔFmed
under PF conditions also might be due to fatigue at the
peripheral system. Fatigue at the peripheral system arises
from the muscle itself when there is impairment of the
peripheral mechanism due to high-intensity exercise as
demonstrated by participants in this experiment [45, 49, 50].
High-intensity exercise reduces blood fow due to intense
muscle contraction which causes the inadequacy of oxygen
supply to the muscle. Tis situation is also known as an
anaerobic condition [54]. Te inability to get enough oxygen
triggers a biochemical reaction in allowing muscle con-
traction [57, 58]. An inadequate recovery period causes the
inability of ionic alteration during high-intensity exercise to
return to its normal level and continue to accumulate. Tis
situation is signifed by the emerging PF signs such as
soreness and performance decrement. Te ionic changes
most probably involve glycogen breakdown and the pres-
ence of lactate concentration. It is supported by the recorded
%HRmax during the running activity, of which 80% and
above commonly involves anaerobic contraction. In an-
aerobic contraction, glycogen and lactate concentration play
important roles in ensuring muscle continuous contraction
[57, 58]. Furthermore, the alteration in glycogen stores
normally leads to soreness and performance decrement due
to inadequate fuel for workload [22, 31], and the release of
lactate contributes to fatigue and muscle pain, as experi-
enced by the participants in this study. Tis situation is
supported in [31, 48] that also demonstrated that the

alteration of both concentrations led the frequency of sEMG
to shift to the upper value.

Figure 6 also demonstrates that there were diferent
increment trends in ΔFmed among the investigated muscles.
Te trends that happened might be related to muscle acti-
vation during running activity. Running at a higher slope
such as in the Bruce Protocol treadmill test requires more
muscle activation from BF, VL, and VM than from RF, as
demonstrated in [36, 37]. A previous study shows that more
muscle activation leads to faster progression of fatigue [59].
Tis study has demonstrated that changes in ΔFmed happen
faster in more activated muscles than in less activated ones.
Te fast changes in the frequencymade the observation of PF
signs through more activated muscles rather difcult. Te
reason was the frequency feature increased even without the
emergence of PF signs. Indirectly, an increase in the median
frequency might be due to an increase in the muscle tem-
perature and muscle conduction velocity to increase the
power output, substitution of the muscle group and re-
cruitment properties, and alteration of ionic concentration
underlying the muscle that progressed faster in muscle
activation during running. Tis study has also proved that
PF conditions could be easily observed from less activated
muscles such as RF because the increment in frequency only
occurred under PF conditions. It indicates that PF can be
easily identifed when frequency from less activated muscles
starts to increase.

3.2.2. Time Features. Muscle activity can be observed
through its amplitude during the contraction in time-do-
main representations. In fatigue identifcation, changes in its
amplitude signify the degree of fatigue experienced by the
subjects. As exhibited in Figure 6, ΔRMS of BF, RF, and VM
under NF conditions increased on D1 and decreased on the
following days. Tis progression is similar to dominant
opinions that with an increment in amplitude, the decre-
ment in behaviour in characterizing the degree of fatigue
soon follows [10].

However, the ΔRMS increased again, as shown in D5, in
the BF and VM muscles (Figure 6). Teoretically, in normal
conditions, when the load increases, the amplitude tends to
have a larger decrement. In this study, the load refers to the
endurance time, for which the participants were asked to
improve their performance daily. Based on the plot of ΔFmed
on similar days D5 on BF and VM, the median frequency
shows an increment. In the previous section, the increments
in ΔFmed were related to an increase in temperature.
However, the fndings in [48, 49] have shown that the in-
crement in the muscle and skin temperature will reduce the
amplitude of sEMG signals. Te increment in ΔRMS indi-
cated by the BF and VL muscles in D5 might be due to the
release of free-resting calcium which resulted in force po-
tentiation and led to the increment in EMG, as demonstrated
by [60].

Te increment in ΔRMS especially under PF might
also be due to the changes in ionic concentration. Te
changes in the ionic concentration were observed through
frequency feature behaviour in the precious section. Te

Table 2: Intensity of training based on percentage of the maximal
heart rate.

Intensity zone %
HRmax Day_1 Day_2 Day_3 Day_4 Day_5

Very hard 90–100 10 8 8 11 10
Hard 80–89 8 9 7 5 4
Moderate 70–79 — 1 3 2 1
Light< 69 2 2 2 2 2
Mean± SD 86± 13 86± 12 84± 14 85± 15 87± 14
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fndings in [61] reported that there was a curvilinear
positive relationship between lactate concentration (after
reaching a certain lactate threshold) and the amplitude of
sEMG.

Apart from that, Figure 6 discloses that ΔRMS started to
decrease again on D2 of PF, specifcally in BF and VL. Te
decrement in ΔRMS under PF conditions was discovered in
[31, 62]. Both studies have proved that amplitude decreases
during the emergence of soreness. Nevertheless, another
study reveals that the amplitude increases under similar
conditions [63]. Terefore, it is reliable to state that the
amplitude increases or decreases under PF conditions. Te

increment and decrement in amplitude under PF also show
the degree of fatigue experienced by the muscle. Tis is
attributed to the decrement in amplitude under PF which
occurred in highly activated muscles like BF, VL, and VM.
High activation led to the fast progression of fatigue. It began
when the frequency features started to increase, followed by
the amplitude which also increased. Ten, it continued with
the decreased behaviour to show a certain degree of fatigue
experience. Tis fnding was also supported by the pro-
gression of fatigue mapped on RF, which was less activated
in the study. Figure 6 demonstrates that the RFmuscle under
NF conditions for ΔRMS continued to decrease (by showing
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Figure 6: Daily plot of changes in muscle features under NF and PF conditions.

Table 3: Number of participants under prolonged fatigue conditions based on physiological responses.

Day 1 Day 2 Day 3 Day 4 Day 5
Performance improvement 20 20 17 12
Performance decrement — — 3 5

Muscle scale

1 (excellent) 2 1 1 1 1
2 (very good) 6 5 4 2 3
3 (good) 12 12 10 11 8
4 (tender, but not sore) — 1 3 4 7
5 (sore) — 1 2 2 2

Psychology score<14 20 20 20 20 20
No sleeping disturbance 20 20 20 20 20
No lethargy 20 20 17 16 15
Lethargy — — 3 4 5
HR before run <100 20 20 20 20 20
BP before run <140/90 20 20 20 20 20
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a negative value) and only increased for ΔRMS under PF
conditions. Te transition behaviour of ΔRMS in the RF
muscle was actually similar to that of the ΔFmed situation,
whereby the shifts (from decreasing to increasing) only
occurred under PF conditions. Te behaviour of ΔRMS for
the RF muscle, which decreased under NF and increased
under PF conditions, is statistically signifcant at P< 0.05
(Table 4). Te statistical test also indicates that the behaviour
of ΔRMS under both conditions for BF, VL, and VM is not
signifcant at P< 0.05 due to the fuctuation trend in the
daily plot (see Figure 6).

3.2.3. Wavelet Indices. Tis study also investigates the ability
of WI features in PF identifcation.Te fveWI features were
studied, as proposed by [43]. WI features tended to have
similar behaviour and response to BF, RF, VL, and VM, as
observed in Figure 6. Tey also tended to increase under NF
conditions and decrease under PF conditions.

Figure 6 for ΔWIRM1551, ΔWIRM1M51, and
ΔWIRM1522 illustrates the transition of the increment and
decrement in WI features under NF conditions. It is also
important to note that the features were constantly de-
creased under PF conditions. Te increment (positive value)
in WI features under NF in Figure 6 is similar to the results
demonstrated in [17]. Te increment in the features specifes
that the energy distribution shifted to a lower frequency
band indicating similar behaviour of frequency, which
tended to decrease to show fatigue conditions [10].

Figure 6 also demonstrates that the increment and
decrement transitions occurred faster in high-activated
muscles such as BF and VL.Tese situations can be observed
under NF conditions on D4 and D5 for ΔWIRM1551,
ΔWIRM1M51, and ΔWIRM1522. ΔWIRM1551,
ΔWIRM1M51, and ΔWIRM1522 features also demonstrate
that PF could be easily identifed in RF, as it occurred on the
ΔFmed and ΔRMS daily plot. Te decrement in ΔWI features

was caused by energy distribution which slowly shifted to a
higher frequency band, which caused the energy distribution
at the lower frequency band of decomposition to decrease.

Te WIRE51 feature was quantifed in accord with its
coefcient details D of decomposition. Te increment in
ΔWIRE51 features showed a higher value of D at level 5
postexercise than preexercise. Figure 6 indicates that similar
trends also appeared in another daily plot of WI features, of
which ΔWIRE51 gradually decreased under NF plots. Fur-
thermore, the value constantly decreased under PF condi-
tions. Although D indicates the time representation of
decomposition, ΔWIRE51 proved that the behaviour of the
features did not rapidly fuctuate as demonstrated by ΔRMS
behaviour. Te robustness and sensitivity of WI in dealing
with nonstationary behaviour in sEMG were exhibited.
ΔWIRW51was used to show accumulated changes in the

waveform length ratio at D level 5 to D level 1. Trough
waveform length behaviour, the duration, frequency, and
amplitude of the surface EMG signals were efectively
compressed [17]. Te increment in ΔWIRW51 in Figure 6
under NF suggests that the surface EMG waveform fuc-
tuated faster postexercise than preexercise. Te features
gradually decreased to indicate the fuctuation of the surface
EMG waveform atD level 5 which was getting slower during
postexercise. ΔWIRW51 persistently decreased under PF
conditions. Hence, it signifes that, apart from the amplitude
and energy distribution in the spectra, the waveform
characteristic of surface EMG also changed due to PF.

Although BF, RF, VL, and VM demonstrate similar be-
haviour ofWI features under NF and PF conditions, statistical
results indicate that all fve ΔWI features are only signifcant
at P< 0.05 for the RF muscle, as tabulated in Table 4.

3.3. Classifcation. Table 5 indicates the classifcation results
based on the NB method in identifying PF conditions. Tis
result reveals the ability of sEMG features to distinguish

Table 4: Statistical analysis on the four muscle features.

Features (mean± SD)

Muscles ΔFmean ΔFmed ΔMAV ΔRMS Δ
WIRM1551

Δ
WIRM1M51

Δ
WIRM1522

Δ
WIRE51 ΔWIRW51

Biceps
femoris

NF
∗−2.04
(10.4)

∗−0.45
(9.74)

−0.00034
(0.003)

−0.00043
(0.004)

∗0.80 (2.36) ∗0.75 (2.33) 0.09 (0.82)
∗0.24
(0.78)

∗0.22
(0.80)

PF 7.55
(8.23)

5.11
(6.46)

−0.00033
(0.0028)

−0.00049
(0.0037) −0.70 (2.69) −0.80 (2.30) −0.22 (0.85) −0.27

(0.92)
−0.34
(0.98)

Rectus
femoris

NF
∗−4.67
(9.91)

∗−2.37
(6.67)

∗−0.00061
(0.0018)

∗−0.00066
(0.0024)

∗1.02 (2.60) ∗1.03 (2.64) ∗0.36 (1.11)
∗0.10
(1.02)

∗0.10 (1.13)

PF 5.77
(10.22)

6.43
(8.56)

0.001388
(0.0020)

0.0017
(0.0024) −2.29 (2.51) −2.36 (2.61) −0.75 (0.76) −0.66

(1.01)
−0.74
(1.14)

Vastus
lateralis

NF
∗−2.07
(8.45)

∗−2.15
(9.00)

−0.00038
(0.0022)

−0.00054
(0.0029) 0.40 (2.74) ∗0.66 (2.66) 0.17 (0.94)

∗0.13
(0.87) 0.11 (0.88)

PF 6.34
(7.85)

4.64
(7.58)

−0.00052
(0.0024)

−0.00064
(0.0031) −0.59 (2.38) −0.60 (2.41) −0.21 (0.83) −0.26

(0.85)
−0.25
(0.92)

Vastus
medialis

NF
∗−0.75
(7.59)

∗−0.30
(7.42)

0.0001
(0.002)

0.0001
(0.003) 0.58 (2.74) 0.54 (3.17) 0.24 (1.02) 0.12

(0.96) 0.11 (0.95)

PF 4.06
(4.81)

4.28
(5.77)

0.00022
(0.0024)

0.000246
(0.0032)

−0.330
(1.75) −0.38 (1.73) −0.10 (0.96) −0.02

(0.66)
−0.01
(0.58)

∗Te diferences difer signifcantly tested using the t-test at P< 0.05.
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between NF and PF based on the naı̈ve Bayes (NB) classi-
fcation method. Table 5 tabulates the lowest accuracy results
from time features of BF, VL, and VM, due to fast fuctuation
and overlapping plots of time feature values displayed in
Figure 6. Tis condition makes predicting PF conditions
through these features quite difcult. Te results revealed in
Table 5 indicate that the frequency features had better
classifcation accuracy than time features. Better accuracy
was assisted by the signifcant statistical test results and daily
plots to distinguish between NF and PF of frequency
features.

Te results in Table 5 reveal that the feature selection based
on time and frequency ofers high-performance accuracy,
specifcity, and precision in comparison with other feature
selections. Tus, it can be concluded that both the time and
frequency features of sEMG are signifcant for PF identifca-
tion. In this study, the combination of time and frequency
feature selections ofers accuracy at a rate of 94% onBF, 98% on
RF, 95% on VL, and 98% on VL in distinguishing PF con-
ditions.Te classifcation of performances in Table 5 proves the
ability ofWI features in PF detection.Te result shows thatWI
features produced good classifcation accuracy in BF (82%), RF
(91%), and VL (80%) and less in VM (66%).

4. Conclusions

In conclusion, this study has demonstrated that the presence
of PF can be identifed using the surface EMG signals. Te
study also introduced a new quantitative noninvasive
method to monitor the progression of fatigue, specifcally in
the muscle of athletes. Tis monitoring method can provide

information to athletes on their performance, and they can
perform at their optimum energy. Tis noninvasive method
is suitable to be applied in the sports feld for fatigue
management and prevent chronic fatigue syndrome for
athletes.
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Table 5: Classifcation results of prolonged fatigue based on the näıve Bayes method.

Parameter Muscles
Features Performance BF RF VL VM

Time features (ΔMAV, ΔRMS)

Accuracy (%) 70 78 64 56
Specifcity

(%) 100 84 83 97

Precision (%) 0 67 36 0
CVErr 0.31 0.25 0.43 0.44

Frequency features (ΔFmed, ΔFmean)

Accuracy (%) 86 95 68 77
Specifcity

(%) 88 94 89 83

Precision (%) 79 96 36 69
CVErr 0.15 0.04 0.39 0.23

Time and frequency features (ΔMAV, ΔRMS, ΔFmed, ΔFmean)

Accuracy (%) 94 98 95 97
Specifcity

(%) 97 100 100 97

Precision (%) 86 96 88 96
CVErr 0.06 0.01 0.07 0.02

Wavelet index features (ΔWIRM1551, ΔWIRM1M51, ΔWIRM1522, ΔWIRE51, ΔWIRW51)

Accuracy (%) 82 91 80 66
Specifcity

(%) 85 93 78 71

Precision (%) 77 89 84 58
CVErr 0.18 0.09 0.23 0.38

Time, frequency, and wavelet index features (ΔMAV, ΔRMS, ΔFmed, ΔFmean, ΔWIRM1551,
ΔWIRM1M51, ΔWIRM1522, ΔWIRE51, ΔWIRW51)

Accuracy 87 88 77 90
Specifcity 86 91 79 83
Precision 89 85 80 100
CVErr 0.16 0.15 0.23 0.2
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collection. Figure S2: schematic circuit of the surface EMG
data acquisition system. (Supplementary Materials)
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