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Sleep-related breathing disorders (SBDs) will lead to poor sleep quality and increase the risk of cardiovascular and cerebrovascular
diseases which may cause death in serious cases. This paper aims to detect breathing states related to SBDs by breathing sound
signals. A moment waveform analysis is applied to locate and segment the breathing cycles. As the core of our study, a set of useful
features of breathing signal is proposed based on Mel frequency cepstrum analysis. Finally, the normal and abnormal sleep
breathing states can be distinguished by the extracted Mel-scale indexes. Young healthy testers and patients who suffered from
obstructive sleep apnea are tested utilizing the proposed method. The average accuracy for detecting abnormal breathing states can

reach 93.1%. It will be helpful to prevent SBDs and improve the sleep quality of home healthcare.

1. Introduction

Healthcare-related issues have become the hot spots of
society around the world. Among them, sleep quality plays
an important role in health management. Poor sleep quality
caused by sleep-related breathing disorders will impact
peoples’ daily life seriously. SBDs mainly include obstructive
sleep apnea (OSA), central sleep apnea (CSA), and the mixed
type. OSA which means the obstruction of the upper airway
primarily due to the flabby tongue and uvula, is the most
common SBD, CSA would cause sleep breathing apnea by
the problem of the brain, and another type is the case mixed
with the OSA and CSA [1]. The breathing abnormalities of
SBDs are apnea, hypopnea, and snore. An apnea event lasts
more than 10seconds, and it can lead to a lower oxygen
supply to the brain [2]. The ventilation of hypopnea will
reduce to less than 50% ofnormal ventilation, and it will
cause the value of oxygen levels to decline by more than 4%
compared with the median. Snore is generated by a partial
obstruction of the upper airway and is recognized as a vital
sign of SBDs prevention [3]. The most harmful thing about
these abnormal breathing states is the reduction of the
oxygen supplement to the heart and brain. SBDs will lead to

the complications of cardiovascular diseases and increase the
risk of diabetes, cerebral stroke, and Alzheimer’s disease
[4, 5].

SBDs are not exclusive to the older as we thought, they
will occur for different age groups and the morbidity is
increasing in recent twenty years [6]. There is much evidence
of the general population lacking awareness of SBDs, more
than 20% of adults are suffering from SBDs with different
levels, yet less than 25% of SBDs sufferers realized that they
have been disturbed by the bad sleep health condition [1].
And the high cost of the existing clinical means keeps people
from getting tests and treatment.

In the clinic, polysomnography (PSG) is the golden
standard and the only way to provide the Apnea-Hypopnea
Index (AHI) exactly for diagnosing SBDs. However, dozens
of sensors used for PSG are not only costly but also com-
plicated for common patients [7]. Hence, a smart and
portable monitoring measure with the least sensors is im-
perative for home healthcare of SBDs.

The smart wearable with sensors is a new trend in the
smart monitoring system of long-life diseases [8, 9], espe-
cially for the increasing demand for home healthcare. Re-
searchers have applied different kinds of sensors, such as
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light sensors [10] and inertial sensors, to monitor the sleep
condition by respiratory rate and breathing pattern analysis
[11]. Researchers used the ultrasonic radar to normal and
abnormal breathing activity [12] and used a thermal imaging
camera to diagnose breathing disorders [13]. Researchers
also used the sound sensors set near the nose and mouth to
record the breathing sound signal for detecting apnea and
hypopnea events by a set of pattern recognition rules [14].
Some researchers recorded tracheal signals from the throat
to acquire the respiratory rate or set the sound sensor to the
skin in a suprasternal notch to evaluate the breathing pattern
in the high-frequency range [15, 16]. In previous studies, the
sound sensors with smaller contact areas and easier oper-
ation are applied to record the breathing sound signal for
sleep breathing monitoring [17]. As described above, these
abnormal breathing states of SBDs will lead to decreasing
ventilation while inspiration and expiration. The changes of
ventilation can be reflected by different breathing states,
such as snoring, apnea, hypopnea, and irregular breathing
rate. Based on the production mechanism and physical
significance of the abnormal breathing states, it is potential
to detect the abnormality and health situation of sleep by
breathing sound signals via a smart system with sound
Sensors.

In the research area of sleep monitoring based on
breathing sound signals, many researchers focused on the
respiratory rate detection based on the genetic algorithm
[18], Hilbert transform [19], and neuro-fuzzy method [20] to
analyze SBDs. In our previous study [21], a moment
waveform analysis was proposed to segment the breathing
cycles for respiratory rate detection. And snoring detection
has been discussed to evaluate the level of SBDs [22]. And
some researchers used the respiratory phase analysis to
detect apnea [23]. Xie et al. proposed a deep learning method
with a 2D spectrogram to detect snoring in various sleeping
positions, based on constant Q transformation [24]. Shen
et al. used CNN and LSTM to identify the snoring of OSAHS
patients based on MFCC, LPCC, and LPMFCC and
extracted the AHI index to evaluate the severity of
OSAHS [25].

It can be found that the segmentation of breathing sound
and the detection of breathing states are crucial for sleep
monitoring and SBDs diagnosis. However, there are two
problems. One problem is how to reduce the computational
complexity of the analysis algorithms for the long-time data,
that is, the real-time capability. Another one is how to
guarantee the accuracy of the detection results. Most of the
existed research always focused on a short period of the
breathing signal, and the accuracy of the analysis results is
not sufficient for healthcare. Our research aims to detect
abnormal breathing states related to the SBDs such as apnea,
hypopnea, and irregular breathing in a simple and fast way
by a portable system.

This study keeps the ventilation of oxygen and carbon
dioxide while sleep in mind and proposes a method to detect
sleep breathing states based on Mel frequency cepstrum
analysis by a portable acquisition system of breathing sound
signal. In Section 2, the acquisition of breathing sound signal
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utilizing the sound sensor is introduced. The test condition
and testers are also referred briefly. Then, the segmentation
of breathing cycles is sketched in Section 3 as the pre-
processing for the further analysis. Section 4 describes the
proposed detection method based on Mel frequency ceps-
trum analysis in detail, including the feature extraction and
the identified rules of different sleep breathing states. Ex-
periments and results can be found in Section 5. Finally, the
discussion and conclusion are summarized in Sections 6 and
7, respectively.

2. Wearable Acquisition System with
Sound Sensor

A wireless sound sensor and a commercial headset
(Plantronics, M165) were applied to record sleep
breathing data during the whole night. The M165 is very
light and easily-operated. It is indeed a cheap and easy use
for smart sleep healthcare in daily life. The acquired
breathing data will be transmitted to a smartphone by
Bluetooth and stored in mp3 format which is convenient
for computerized analysis. The parameters of audio files
can be set by an APP developed by our team. In this study,
the sampling frequency is 44.1 kHz. The environment of
data acquisition is shown in Figure 1. The headset is fixed
to the nose by a strip of cosmetic tape. As we mainly focus
on the changes in breathing airflow, the breathing sound
signal from the nose and mouth can be recorded as long as
the headset does not fall off and the tester is almost
unaffected while sleeping whether at home or not.

At the beginning of preprocessing, the original sample
frequency will be down-sampled to 11.025 kHz to reduce the
computation amount. The real sleep breathing sound signal
recorded by our system is shown in Figure 2. Figure 2(a) is
one-night sleep breathing sound data. The recording lasts
about 5 hours, and the intensity of breathing changes greatly.
Figure 2(b) is a part of stable normal breathing sound data
from the fifth hour and Figure 2(c) is a part of complex
breathing sound data from the third hour. There are some
obvious breathing pauses shown in Figure 2(c), and they are
related to the obstruction of the airway. Hence, there is
a high potential to identify different abnormal breathing
states, such as apnea, hypopnea, unstable respiratory rate,
and snore, from the breathing sound signal acquired via
a portable and wireless sensor. Eight volunteers are selected
as testers, including four in twenties, two in thirties, and two
in Fifties. The study was approved by the ethics committee of
Chengdu Region General Hospital (No. 2015 research 01).
All testers’ consent was obtained before participating in the
study. The twenties and thirties were tested by Epworth
sleepiness score (ESS), the scores were all less than 9, which
was normal. The elder testers are diagnosed with moderate
OSA and severe OSA by PSG with AHI = 16 and 32, re-
spectively. All the testers have monitored for the whole night
lasting more than five hours. The breathing cycles of one-
night data are counted, and the breathing states are manually
labeled under the guidance of a professional physician for
further analysis.
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FIGURE 1: The wearable acquisition system via a wireless sensor.
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FIGURE 2: The original waveforms acquired by the portable system. (a) The sleep breathing sound signal of one-night test; (b) the part of

normal breathing signal from recording 2(a); and (c) the part of abnormal breathing signal from recording 2(a).

3. Segmentation of Sleep Breathing Signal
Based on Characteristic Moment
Waveform Analysis

To identify the breathing state accurately, the breathing cycle
should be segmented for further analysis. A brief in-
troduction of the segmentation method is presented in this
section. The details can be found in our previous work [21].

The enhanced processing for amplitude contrast dimi-
nution has been performed first to reduce the effect of the
weak breathing issues during the whole night’s sleep.

The precondition assumes the noise part of the sleep
breathing sound signal as a signal with zero-mean and unit
variance. Suppose the sleep breathing sound signal is r (¢),
the random noise signal is #(t), and the real output signal is
y(t) =r(t) +n(t), time characteristic waveform (TCW) of
sleep breathing sound signal, denoted by c(t, §), defined as
the variance of the output y (t) can be given by the following
equations:

t+6 t+6
c(t,8) = JH; (y(t) -7 () *dr = L& y(1)’dr - 265 (t)>, (1)
B 1 t+6 (2)
y(t) = % Jt_6y(r)dr.

Then, the characteristic moment waveform (CMW) is
calculated by the thought of image shape identification in
image processing with another time scale I, which is rep-
resented by I(t,6,1). It is calculated according to the fol-
lowing equation:

t+l

[(,6.1) = I (e te(r,8)dr, (3)

For a discrete signal with length N, the computations of
TCW and CMW only need 8 N and 15 N additions and
multiplications, respectively. The algorithm can process the
whole night data fast, and it will be helpful for real-time
motoring.



According to our experimental statistic, the scale [ is
usually set to (1.5, 3), about half of the sleep breathing cycle.
The time scale § is set as 0.1, about 1/10 of the phase du-
ration. After choosing the suitable time scales, TCW and
CMW can be extracted by equations (1) to (3). C,;, of CMW
is the local minimum point sequence which would be cal-
culated first. Then, the local maximum points sequence
T_max of TCW can be found by a computation window with
C.in as the central points. The local maximum point se-
quence of CMW can be obtained as the cycle segmentation
points and adjusted according to T_max. Finally, the in-
correctly segmented breathing pauses will be combined
utilizing a threshold value by the average amplitude of the
test data.

The breathing cycle segmentation result of partial nor-
mal breathing signal is shown in Figure 3.

4. Detection of Breathing States via Mel
Frequency Cepstrum Analysis

During the whole night’s sleep, the sleep breathing state
changes greatly. Besides the apnea, there are the hypopnea
events, snore events, and others as shown in Figure 4. In
Figure 4, two types of irregular breathing events are found
and shown by blue and orange boxes. They are all related to
the obstruction of the upper airway. The breathing parts
marked by blue boxes display the changed respiratory rate.
By hearing, they mix with noise caused by the movements of
the nose and mouth. It is easy to find that the breathing parts
of orange boxes have higher amplitude with the extended or
merged inspiration/expiration. And they sound similar to
labored breathing and can be classified as a kind of snore.

Differing from the apnea with a clear definition in the
time domain, other complex breathing states cannot be
detected in the time domain. According to the previous
research, the distribution of frequency energy would be very
different between the normal and abnormal breathing states.
From the time-frequency representation, the breathing case
with apnea has much more energies below 500 Hz and above
3500Hz compared with the normal case. It provides
a probable way to distinguish the different breathing states in
the frequency domain.

4.1. The Conventional MFCCs Analysis. Psychophysical
studies have shown that human perception of the frequency
content of sounds does not follow a linear scale. The Mel
frequency cepstrum coefficients (MFCCs) were proposed as
it is very similar to perceptual linear predictive analysis of
sound [26]. MFCCs were derived from the short time
spectrum of a signal and were widely used both for speech
and speaker recognition [27, 28]. MFCCs have already been
applied to extract features of respiratory sound in combi-
nation with learning machines to recognize the wheeze for
respiratory disorders [29, 30].

First of all, framing and windowing are applied for the
conventional MFCC algorithm. Then, fast Fourier transform
(FFT) is used to transform the signal of each frame from the
time domain to the frequency domain. Then, the energy
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spectrum is calculated. Next, the energy signal is filtered by
the Mel-scale filter bank and processed in the logarithm
orderly. At last, discrete cosine transform would transform
the signal into the time domain and extract a series of
coefficients.

As the core of MFCCs, the relationship between Mel
frequency and real frequency is defined as follows:

1000 * 1g (1 + (f/700))
Ig (1 +(1000/700))

Mel(f) = ; (4)

where f is the real frequency and Mel( f) is the Mel-scale
frequency. As the human perception of the frequency
content is almost linear below 1kHz and nonlinear over
1kHz, 1000 is a key parameter to determine the relationship
of f and Mel ( f) simulating the character of the human ear.
700 is the parameter that affects the relationship’s changing
trend between f and Mel( f).

For the frequencies under 1000 Hz, the Mel scale can be
approximated to a linear scale. Mel frequency can represent
the details of the low-frequency range more accurately than
the high-frequency range. Hence, it can capture formants
that lie in the low-frequency range.

The Mel filter bank is designed based on Mel-scale
frequency. The Mel-scale frequency distributes uniformly-
spaced in Mel scale, simulating the critical frequency bands
of the human ear. The center of each triangle window is the
starting of the next one.

The logarithm is used to compress the components
above 1000Hz. And it can translate the multiplicative
components into the additive ones and reduce the com-
putation complexity [26]. A logarithm can provide the
frequency energy distribution of a one-time point in the
form of addition. Finally, the Mel frequency cepstrum co-
efficients will be extracted by discrete cosine transform.

Our purpose is to find the relationship between the
frequency energy distribution and the monitoring time. The
results of the processing after the logarithm should be paid
attention to in this study.

4.2. Analysis of Breathing Sound Signal Based on Mel Fre-
quency Cepstrum Analysis. Here, we proposed a method of
parameters extraction to detect different breathing states,
and the flowchart is displayed in Figure 5.

As shown in Figure 5, window screening is the first step
and the length of the rectangle window is set as 1024 sample
points, about 100 ms according to the sampling frequency.
The window moves foreword by overlapping the half of itself
to keep enough details of the observation. Then, the fre-
quency energy distribution of the breathing sound signal
would be calculated by power spectrum density (PSD) in the
second step. The PSD estimation is an important part of
modern signal processing and reflects the energy distribu-
tion of the frequency component of the signal. The autor-
egressive (AR) method is the most frequently used
parametric method because the estimation of AR parameters
can be performed easily by solving the linear question. Here,
Yule-Walker’s method is used to make the power spectrum
density instead of the energy of the FFT result. The order of
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FIGURE 4: Three parts of abnormal sleep breathing sound data.

an autoregressive prediction model for the signal is set as
32 [31].

In the third step, the energy of the signal is filtered by the
Mel frequency filter banks including 20 triangle filters. The
triangle filter bank is selected by default in speech processing
shown in Figure 6, which simulates the auditory charac-
teristics of the human ear. The mathematical expression of
the triangular window is simple, reducing the amount of
computation.

And the 20-dimension Mel-scale features are extracted
after the logarithm operation in the fourth step. The hori-
zontal of the feature matrix represents frames of observation
time. The vertical of the matrix represents the Mel-scale
filters of the filter bank.

To stand out the frequency energy distribution of each
frame, a new feature set has been proposed in the fifth step,
the core of our proposed method. The procedure of the
proposed method to extract the effective features is described
in detail. The sketch map of extraction for one breathing
cycle can be found in Figure 7 to illustrate the algorithm.

(a) Extract the Mel-scale features of one segmented
breathing cycle according to the first four steps of the
flowchart in Figure 5.

The Mel-scale features f;; can be displayed by the
stretch map shown in Figure 7(b). i is the label of the
triangle filters of the Mel frequency filter bank in the
frequency domain, from 1 to 20. j is the number of
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frames in the time domain, from 1 to N. N is the
total number of frames of each breathing cycle.

(b) Find the maximum point of each column of f;
denoted by 4, ;.

i is corresponding to the label of the Mel-scale filter
and represents a fixed Mel-scale frequency range. We
proposed it as Mel-scale label (MsL) as shown in
Figure 7(c). The X-axis is the frame number, and Y-
axis is the Msl. MsL can be explained by the main
part of frequency energy distributing in one observed
duration in the time domain.

(c) Compute the present times of each MsL to represent
the distribution of frequency energy in each cycle,
marked as Ny, which is shown in the bar chart of
Figure 7(d). MsL and N,q are proposed to detect
the abnormal breathing sound signal. For the normal
breathing cycle shown in Figure 7(a), it is found that
the label number i of MsL is from 4 to 14 in the
duration of inspiration and expiration compared
with the breathing stopping intervals as shown in
Figure 7(c). So, the frequency energy of this
breathing cycle is mainly filtered by the No. 4 to No.
14 Mel-scale filter as same as the results of Ny
shown in Figure 7(d).

After all the five steps, we can use MsL and Ny to
analyze the components of the breathing sound signal and to
detect the abnormal breathing states finally. The results of

detecting abnormal breathing states will be demonstrated in
the next section.

5. Experiment

5.1. Analysis of Breathing Sound Signal by the Proposed
Identification Method. The label of Mel-scale features, MsL,
and the corresponding N, in each segmented breathing
cycle during one-night monitoring can be extracted. The
energy of distribution in a fixed frequency range is useful to
present the features of different breathing states. We mainly
separate snoring, normal breathing, and abnormal breathing
components of the breathing signal.

It is found that the MsL in the low-frequency range can
represent the snore component. The normal breathing
component is usually represented by MsL in the middle-
frequency range. The abnormal breathing components in-
cluding apnea, hypopnea, and irregular breathing rate can be
expressed by MsL in the high-frequency range. Checking
results manually by ear and eye is the reference under the
guidance of a professional doctor.

So, three MsL sets are proposed, i.e., low-frequency label
set, middle-frequency label set, and high-frequency label set
and marked as FL, FM, and FH, respectively, in Figure 8.

For different individuals, there would be a little difference
when we partition these three MsL sets. Based on the ex-
perimental attempts, the common part of each MsL set is
selected for the further analysis, that is, MsL, for the snore
detection, MsL, to MsL, for the normal breathing state
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detection, and MsL,; to MsL,, for the abnormal breathing
state detection. To detect different breathing components in
each breathing cycle, threshold values are applied and dis-
played by red lines in Figure 8. As the time duration of in-
spiration and expiration lasts about 2.5seconds in one
breathing cycle according to our experimental dataset, the
total N equals the total number of frames, about 50 times.
Hence, according to the experiment results and observation,
the threshold values for FM and FH are set by 40% of the total
Ny of each MsL, about 20 times. And the threshold value of
FL is set by 20% of the total number C;_of each MsL, about
10 times.

If Ny is larger than the red threshold line, the cor-
responding cycle can be symbolized by 1, the opposite is 0. It
is obvious that the breathing cycles with abnormal com-
ponent always accompany the snoring component. The
abnormal component and normal component do not exist at
the same time in the usual case from Figure 8. So, it is the
potential to detect different kinds of breathing states based
on these three MsL sets.

If there is ‘1’ of FH, the breathing state can be detected as
abnormal. If there is ‘0’ of FH, combined with the detection
results of FM, heavy breathing can be identified from the
normal states which can be checked by the ear.
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The snore can be divided into the normal type and the
abnormal type. Normal snore is related to simple snoring,
and abnormal snore is related to SBDs. However, they all
should be concerned. So, the snore is detected separately
from other abnormal breathing states and listed for a useful
index. If there is ‘1’ in FL, the breathing cycle is identified as
breathing with snore.

The study focuses on the ratio of abnormal breathing
states during the monitoring for sleep healthcare manage-
ment in the early stage. Obviously, the subclassifying of
breathing types is a rough judgment now and it will be
applied to a deeper discussion of accurate analysis for SBDs
in the future work.

5.2. Application for the Sleep Breathing States Detection.
The identified results by MsL sets for an OSA tester
(AHI = 16) are shown in Figure 9. Figure 9(a) displays the
detection results of normal/abnormal sleep state. The
abnormal sleep breathing cycle is denoted by ‘1’ and the
normal sleep breathing is ‘0’ based on the identification
rules introduced in the last subsection. It is easy to
compute the time duration of normal and abnormal
breathing state lasting during the whole night. In this case,
the normal breathing lasts 2.8 hours, and the abnormal
breathing lasts 2.2 hours. Figure 9(b) displays the de-
tection result of snoring. The breathing cycle with snore is
marked as ‘1,” and the snore lasts 1.8 hours of the whole
night totally.

The time duration of breathing stop from the audio
waveforms can distinguish the apnea and typical hypopnea
from normal breathing states. For apnea, the breathing stop
is larger than 10 s. As the ventilation of hypopnea will reduce
to less than 50% of the normal ventilation, the breathing stop
of the typical hypopnea is calculated from 6s to 10s
according to the clinical definition of apnea and hypopnea
[2]. Irregular breathing rate can be picked up by comparing
with the normal parts.

From the original breathing waveforms of Al to A3
shown in Figure 10, two parts of the breathing signal in each

section are shown orderly. It can be found that there is
obvious apnea (such as Al-1, A3-1, and A3-2), hypopnea
(such as A1-2), irregular breathing (such as A1-1, A2-1, and
A2-2), and breathing with noise caused by the body
movement (such as A2-1) from the waveforms in time
domain clearly. Sections Al to A3 belong to the abnormal
breathing states with snore.

From the original breathing waveforms of N1 and N2
shown in Figure 11, these two sections are normal stable
breathing, and breathing of N2 is snoring. The red line in
Figure 10 is the envelope of the spectrum, and it is easy to
find that there is a large energy in the middle-frequency
range (500-1500Hz), representing the normal breathing
component for both N1 and N2. The amplitude of N2 is
higher than N1. And the higher ratio of frequency energy
distributes below 500 Hz is the main feature of snore shown
in section N2.

Applying the proposed method based on Mel-scale
features, the monitoring results of all the testers are listed
in Table 1. We can find the total time of the whole night
monitoring and the time durations of different breathing
states. To evaluate the sleep quality, the ratio of the normal
breathing during the night is computed by the following
equation:

TNormal

> (5)

R =
Slecp TMonitoring
where Ry, is used to test the quality of sleep by the de-
tection of normal breathing state, Ty, ma is the total time
duration of normal breathing state lasting, and Tvoyitoring 1S
the total time duration of the sleep monitoring. It will be
a meaningful index to know and manage sleep health in
one’s daily life.

According to the detected results of breathing states, the
ratio of normal breathing states is over 70% for testers no. 1,
2, 3, and 5 which is higher than the OSA testers no. 7 and 8,
which were diagnosed by PSG. Testers No. 4 and 6 have
lower ratios of normal breathing state and there are indeed
a lot of apnea and hypopnea events during the monitoring
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FiGure 10: Validation of the abnormal breathing state detection by the proposed method.

procedure by checking up on the original breathing signal.
Testers no. 4 and 6 were diagnosed as severe rhinitis by the
doctor during the experimental period. Actually, after the
relief from rhinitis symptoms, the results of monitoring are
within the normal range. The extreme cases of young testers
can also show the efficiency of the proposed method.
Moreover, it is found that the testers with a low ratio of
normal breathing state always snore with a longer time

duration. Hence, snore is really an important sign related to
the analysis and prevention of sleep breathing-related
disorders.

The accuracy of detecting normal and abnormal
breathing states can be given based on the prepared manual
labels in our experiment, and the accuracy of our proposed
method of the testers can reach 95.2% shown in Table 1, and
the average value is 93.1%.
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TaBLE 1: Detection results of sleep breathing states of testes.
Tester Time Normal Abnormal Snoring Accuracy Norl}lal Accuracy
o Years (hour) (hour) (hour) (hour) of S/N ratio of A/N
(%) (%) (%)
1 20 7.7 6 1.7 0.5 93.5 77.9 93.2
2 21 7.5 5.6 1.9 0.3 96.0 74.7 94.4
3 21 6.8 4.9 1.9 0.1 98.5 721 91.9
4 20 6 2.4 3.6 2.2 96.4 40 90.2
5 31 7.5 5.5 2 1 90.8 73.3 94.9
6 34 8 4.2 3.8 3.2 97.6 52.5 92.2
7 58 5 2.8 2.2 1.8 97.5 56 95.2
8 60 6.8 2.3 4.5 3.8 98.2 33.8 92.7

6. Discussion

In the studies of breath state detection by breath sound
signal, some researchers used the measurement of energy to
detect apnea events during the breath and breath hold [23].
From [24] in Table 2, it can be seen that the MFCC feature
parameters are the most effective in classifying snores among
the three features used. Using MFCC combined with the
LSTM method can achieve 87% accuracy. At the same time,
the AHI index was also estimated. Although there is
a particular gap with the AHI value detected by PSG, it can
be used as an auxiliary reference in the classification of
OSAHS. It can also be found that the average accuracy of
snoring recognition of OSA patients and normal people is
95.3% by combining deep learning and two-dimensional
spectral features in [25]. Literature [23] used spectral energy
and VAD criterion threshold for apnea detection for sim-
ulated apnea signals and achieved an accuracy of 97%. Still, it
is not applied to the actual breathing signals of OSA patients,
nor does it mention hypopnea detection.

The method in this paper does not use classical machine
learning and deep learning methods, so the amount of
calculation is small. Moreover, the threshold displays the fact
between the characteristic parameters and the breathing
signal. At the same time, the normal and abnormal breathing
and snoring sounds are distinguished. The accuracy rate of
93.1% can be achieved by judging normal and abnormal

breathing. The judgment of abnormal breathing includes
apnea, hypopnea, and other respiratory disturbance events.
However, due to the small amount of breathing data and
individual differences among testers, there is a state of
misjudging normal breathing as snoring in snoring de-
tection. It is necessary to refine the types of abnormal
breathing and accurately find them for the intervention in
continuous work.

Some researchers combined a sound sensor, acceler-
ometer, and pulse oximeter to get AHI index for SBDs [16].
Moreover, the degree of blood oxygen saturation (SpO2)
acquired by the pulse oximeter is a vital index for the re-
spiratory system in the clinic. The SpO2 will decrease when
there is an obstruction in the upper airway; that is, apnea,
hypopnea, and irregular breathing will accompany the lower
value of SpO2.

Hence, SpO2 has been monitored for the testers as well
and the abnormal breathing states can be evaluated by
subtracting a fixed value from the medium value of SpO2.
In our experiment, it is easy to find that the results of SpO2
are included in the scope of the proposed detection. The
comparison results with SpO2 are given in Figure 12. The
red line represents the median value of the tester’s SpO2.
It can be seen that the period when SpO2 has a significant
decrease compared to the median value is detected as an
abnormal breathing state which matches the detection
results.
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FIGUure 12: Comparison detection results with SpO2.

However, the abnormalities caused by the light ob-
struction of the airway can be pointed out by the proposed
detection, which is not clearly defined. It may be related to
the threshold values set by our proposed detection. More
types of abnormal breathing states will be discussed deeply
in future work. And because the tapes may become loose and
the microphone’s location may change occasionally, the
acquisition system should be developed. And the classifi-
cation and identification of breathing states are further
refined. The analysis of the hypopnea state is limited by the
small amount of experimental data and cannot be further
refined and analyzed.

In other words, the tester dataset should be enlarged and
the types of abnormal breathing states should be discussed in
detail. We will optimize the ranges of MsL sets to analyze the
components of breathing sound signal, such as dividing
different frequency ranges to show more precise results. The
relationship between our definitions of abnormal breathing
and the pathological characteristics of SBDs will be discussed
deeply in further study.

7. Conclusion

In this study, the sound sensor and microphone in a headset
with Bluetooth were utilized to record and transmit the
breathing sound signal during the whole night. The portable
and wireless acquisition system proposed in this paper has
less impact on sleep quality and can be operated simply
anywhere. And the MFCCs are introduced from speech
signal processing to the processing of breathing signal for
sleep monitoring in-home healthcare. The MsL representing
the main distribution of frequency energy in each frame is
proposed to detect the different sleep breathing states. In
addition, the data acquisition operation is simple, the cost of
detection is low, and the accuracy can satisty individual
monitoring needs. Recognition of respiratory status and
detection of abnormal breathing can be popularized in daily
monitoring. It can also be used as an aid for clinical di-
agnosis based on a more detailed analysis of the results. The
study is limited by the small amount of experimental data, so
the classification and identification of breathing need to be

turther improved, and the adaptability and accuracy of the
algorithm need to be further enhanced. Although it has
particular reference significance for the long-term sleep
monitoring of individuals, the algorithm is still unstable in
monitoring different people.

The core of the Mel frequency analysis is to reflect the
relationship between the monitoring time and the frequency
energy simulating the acoustic character of the human ear.
For each frame in the time domain, the MsL is extracted by
finding the maximum value of the frequency energy in each
Mel scale. Then, the present times of each MsL are computed
to show the frequency energy distribution of each segmented
breathing cycle. Three MsL sets are determined corre-
sponding to the normal breathing component, abnormal
breathing component, and snore component, denoted by
FM, FH, and FL. Finally, with the suitable threshold values
and comprehensive evaluation rules, the normal breathing
state, abnormal state, and snore state can be detected suc-
cessfully. The types of sleep breathing states should be
discussed deeply and classified accurately for examination
and analysis of SBDs. And for different individuals, long-
time monitoring and big data analysis are necessary to
acquire more precise monitoring results for the prevention
and treatment of SBDs in the future.
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The joint time-frequency analysis method represents a signal in both time and frequency. Thus, it provides more information
compared to other one-dimensional methods. Several researchers recently used time-frequency methods such as the wavelet
transform, short-time Fourier transform, empirical mode decomposition and reported impressive results in various electro-
physiological studies. The current review provides comprehensive knowledge about different time-frequency methods and their
applications in various ECG-based analyses. Typical applications include ECG signal denoising, arrhythmia detection, sleep apnea
detection, biometric identification, emotion detection, and driver drowsiness detection. The paper also discusses the limitations of
these methods. The review will form a reference for future researchers willing to conduct research in the same field.

1. Introduction

The electrocardiogram (ECG) signal has been an indicator of
human health. It is the graphical representation of the
electrical activity of the heart muscles occurring due to their
contraction and relaxation [1]. A single cardiac cycle is
labeled using different waves: P, Q, R, S, and T. The location
and amplitudes of these waves are used primarily in ECG
analysis during medical practices. It helps to predict the
onset of cardiovascular diseases, irregularities in heart
rhythm, stress levels, human emotions, and so on. A stan-
dardized ECG signal is represented via twelve leads, each
calculated using a set of limb and chest leads. Conven-
tionally, the ECG waves were visually observed and analyzed
by an expert. The evaluation includes detecting any subtle
change in the time series information that takes in mor-
phological details such as the RR interval, QT segment, ST
segment, QRS complex, and so on [2], and their statistical

variations. Unfortunately, it is not always possible to track
the minute changes in the morphological parameters (in-
tervals, peaks, and waves) of the ECG signal.

The ECG signal is nonstationary; i.e., the statistical
properties of the signal, such as mean, variance, and higher-
order moments, change with time. A nonstationary time
series of data contains systematic noise (trends, jumps, and
datum shifts) that may change its statistical values. Hence,
the time series data analysis is not enough for a meaningful
interpretation. Also, the employment of traditional signal
processing methods based on stationary assumptions is
insufficient. Therefore, the decomposition of the time-series
data into another domain, frequency or time-frequency, is
used for easy analysis [3]. Fourier transform (FT) is the most
widely employed method for frequency analysis. The tech-
nique uses the sinusoidal basis function to represent a time
series signal in the frequency domain. The amplitudes of the
measured sinusoids at different frequencies form
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a spectrum. It is one of the transformation methods that has
changed the world of signal processing and have diverse
application in feature extraction, denoising, and so on.
However, FT does not have any information in the time
domain.

Joint time-frequency analysis is a valuable method that
expresses a signal in the time-frequency distribution [4]. It
helps disclose the constituent frequency component of the
signals and their time-varying nature. Several time-
frequency analysis methods have been proposed to ana-
lyze ECG signals in various application domains. These
methods include but are not limited to the short-time
Fourier transform (STFT), continuous wavelet transforms
(CWT), discrete wavelet transforms (DWT), empirical mode
decomposition (EMD), and Wigner-Ville distribution
(WVD) [5, 6], and so on. These methods help extract the
vital signal components such as distortions, noises, and
hidden patterns of the ECG waves and have been extensively
used in various applications. Also, these methods form the
base of several advanced joint time-frequency techniques.
Typical examples are arrhythmia detection, heart disease
diagnosis, peak detection, signal denoising, and emotion
detection [7-9].

Despite the more inclusive application of the joint time-
frequency analysis, it is unfortunate that no dedicated review
is found in the literature that discusses different time-
frequency methods for the ECG application. The reason
may be that the time-frequency methods are a massive field
with various possible applications. Hence, placing a vast
amount of information in a single review is not easy.
However, based on our limited knowledge, we have
attempted to extensively review some selected time-
frequency methods and their use in various ECG signal
processing applications in this article (Figure 1). The current
paper is organized into four different sections. Section 2
gives background information on the time-frequency
methods. The usefulness of these time-frequency methods
in various ECG applications has been discussed in Section 3.
Section 4 deliberates the limitations, challenges, and future
scope, followed by Section 5, concluding the study. Table 1
contains the list of abbreviations used in this article.

2. Background Information of the Time-
Frequency Analysis Methods

The time-domain analysis gives the best time resolution but
no frequency information. Consequently, the frequency
domain analysis provides the best frequency resolution
without time-related details. A proper time-frequency
technique can overcome the disadvantage of one-
dimensional analysis and provide signal information in
the time and frequency domain. Some of the most widely
used time-frequency analysis methods have been discussed
in this section.

2.1. Short-Time Fourier Transform. In 1946, D. Gabor [10],
a Hungarian scientist, proposed the short-time Fourier
transform (STFT). In STFT, the Fourier transform (FT) is
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applied for a limited duration. The process follows a seg-
mented analysis where the original signal is first divided into
smaller segments of length “L” using a window. The Fourier
transform (FT) of each segment is then calculated. In other
words, the STFT provides the spectral information of each
segment of the signals. For a continuous-time signal x (¢),
STFT coeflicients can be represented mathematically using
the following:

[e¢]

x(Ow(t - 1)e " dt, (1)

—00

X(T,w)=J

where X (7, w) is the FT, w is the window function, 7 and w
represent the time and frequency axis.

The original signal “x (f)” can be retrieved using the
inverse STFT. It is represented using the following equation:

1 0 0 i

x(t) = — J J X (1, w)e ' drdw. (2)

21 ) -0 J -0

For calculating the STFT of a discrete-time signal,

a discrete Fourier transform (DFT) can be used in place of

FT. Mathematically, it is represented using the following
equation:

I-1 '
X[m;k] = x[m+nle ™. (3)

n=0

Here, m is the starting point of the localized DFT, k is the
DFT index, and L is the length of the window or segment. X
[m; k] are the Fourier coeflicients that depend on the time
(n) and frequency (w).

STFT is a complex-valued function of two variables and
requires a 4D plot of time, frequency, magnitude, and phase
for the proper interpretation, which is practically not pos-
sible. Thus, the phase information is not considered while
plotting the STFT spectrogram. In other words, time, fre-
quency, and magnitude values represent an STFT spectro-
gram. Furthermore, a color-coding method is applied for the
magnitude range, where a darker color represents a smaller
magnitude value and vice versa. It is important to note that
the size of the window shows a profound effect on the
frequency resolution. A wider window provides a few time
segments, resulting in lower precision in time but a high-
frequency resolution. On the other hand, a narrow time
window gives a high time resolution but a low-frequency
resolution. Since the window length is fixed in the STFT
method, the time and frequency resolution are fixed for the
entire signal length. Figure 2 is a sample representation of an
ECG segment of duration 1sec. (sampling frequency
360 Hz) and its STFT at varying window lengths (L=2, 9,
and 18). It is evident from Figure 2 that with an increase in
the window length, the changes in the time-domain values
are less visible. On the contrary, the frequency domain
changes are becoming more profound.

2.2. Continuous Wavelet Transform. The wavelet transform
(WT) is a processing tool that has been widely used in signal
and image processing and speech analysis. In 1984, two
French scientists, Grossmann and Morlet, first coined the
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FIGURE 1: Block diagram of the current study.

term “wavelet” and described it as a wave-like structure
[11]. A wavelet has an amplitude that starts and ends at
zero. The amplitude integral of the wavelets is zero. A
detailed historical background of the wavelets is presented
in [12, 13]. Several wavelet functions are available with
diverse shapes and characteristics. Some common
wavelets include Haar, Daubechies, Coiflet, and Symlet.
The WT method solves the resolution problem associated
with FT by providing a suitable resolution both in time
and frequency. It is made possible by adopting a variable
window function, wherein the window function shrinks
and widens multiple times. The continuous wavelet
transform (CWT) decomposes a given signal into dif-
ferent coeflicients. Herein, a basis function called the
mother wavelet is dilated and translated. Mathematically,
the CWT is represented using

(o)

x ()Y}, (t)dt, (4)

—00

CWT, g (x) = % J

where W, () = 1/+/s ¥ (t — 7/s) and " represents the con-
jugate function.

In equation (4), the term “1/+/s” is used to normalize the
mother wavelet (). The transformed signal generated after
employing the CWT depends on the scaling factor (s) and
the translation factor (7). The scaling factor shows an inverse
association with frequency. A lower value of s leads to a rapid
change in the wavelet and is used to detect the higher
frequencies of the signal and capture the fast-varying details.
On the contrary, a higher value of s helps perceive the lower
frequency components and captures the slow varying details
of the signal.

The reconstruction of the original signal can be obtained
using

1 o0 o0 1 _'(t_ y )
x(t) = Py J, J, 2z CWT,  y (x)e’" ™ drds.  (5)

Scalogram is the absolute value of the continuous
wavelet transform (CWT) as a function of time and fre-
quency. Compared to the spectrogram, a scalogram provides
more information as it gives the signal features at different
scales. Figure 3 represents a sample ECG signal and its
scalogram. As mentioned earlier, it is evident from the figure
that the perceived frequency band is getting narrower with
an increase in scale. ECG scalogram images are preferably
used with deep learning models and have shown potential in
various biomedical applications, including arrhythmia de-
tection, apnea detection, and fall detection. The disadvantage
of CWT is that it is highly redundant and shows a significant
overlap between the wavelets at each scale and between the
scale [14]. Furthermore, it is associated with higher com-
putational complexity.

2.3. Discrete Wavelet Transform. Stromberg [15], a Swedish
mathematician, proposed the mathematical foundation for
the discrete wavelet transform (DWT) in 1980 [16]. A
significant drawback of CWT is that the scaling factor (s) and
translation factor (7) value changes rapidly and, hence,
calculates the coefficients of the wavelet for all possible
scales. Thus, the method yields much new information [17],
which is difficult to process. On the contrary, DWT ad-
dresses the aforementioned issues of CWT by representing
the signal at a discrete time and as a set of wavelet co-
efficients. In DWT, the signal passes through a low-pass filter
(LPF) and a high-pass filter (HPF) that splits the signal into
half of the original frequency range [18, 19]. The low-pass
filter output is the approximation component (A), and the



EWT Empirical wavelet transforms

VMD Variational mode decomposition
MEMD Multivariate empirical mode decomposition
CEEMDAN  Complete ensemble EMD with adaptive noise
SVM Support vector machine

DAE Deep autoencoder

PPR Peak positive rate

ANN Artificial neural network

LDA Linear discriminate analysis

PCA Principal component analysis
LDA Linear discriminant analysis

SNR Signal to noise ratio

MSR Mean square error

PSR Phase space reconstruction

FT Fourier transforms

DFT Discrete Fourier transforms

CWT Continuous wavelet transforms
LPF Low pass filter

HPF High pass filter

A Approximation coefficients

D Detailed coefficients

ACF Autocorrelation function

IACF Instantaneous autocorrelation function
BW Baseline wander

CVD Cardiovascular diseases

AF Atrial fibrillation

VF Ventricular fibrillation

VT Ventricular tachycardia

CNN Convolutional neural network
RCNN Recurrent convolutional neural network
KNN K-nearest neighbor

PCA Principal component analysis
QDA Quadratic discriminate analysis
OSA Obstructive sleep apnea

CSA Central sleep apnea

CVMD Complex variational mode decomposition
EDR ECG-derived respiration

HBI Heartbeat interval

Res Net Residual neural network

ELM Extreme learning machine

RF Random forest
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TaBLE 1: Lists of acronyms. TaBLE 1: Continued.

ECG Electrocardiogram NB Naive Bayes

STFT Short-time fourier transform DT Decision tree

WT Wavelet transforms DTW Dynamic time wrapping

DWT Discrete wavelet transforms GOA Grasshopper optimization algorithm

WPD Wavelet packet decomposition NLM Nonlocal mean

EMD Empirical mode decomposition FIBFs Fourier intrinsic band function

WVD Wigner-Ville distribution SURE Stein’s unbiased risk estimate

PWVD Pseudo Wigner-Ville distribution

SWT Stationary wavelet transforms

IMF Intrinsic mode function high-pass filter output is the detailed component (D). The

HT Hilbert transform approximation component is further decomposed to form

HHT Hilbert-Huang transform another set of approximation and detailed components in

EEMD Ensemble empirical mode decomposition each subsequent level. Figure 4 represents the wavelet filter

CEEMD  Complete ensemble empirical mode decomposition  belts for DWT, where the x (n) is the original signal, and A

LMD Local mean decomposition and D bear their usual meaning.

FDM Fourier decomposition method DWT can be of two types based on whether each filter’s

SWT Stationary wavelet transforms output is down-sampled by two or not. If the filter output is

DTCWT Dual tree complex wavelet transforms . . .

TQWT Tunable Q-wavelet transform down—'sampled during the de@mposfuon process, it is called

LSWA Least square wavelet analysis a decimated DWT. Undecimated DWT, also known as

stationary wavelet transform (SWT), is the method that
doesn’t incorporates the down-sampling operation at the
filter output. Thus, in the case of SWT, the length of the
approximation and the detailed coefficient are the same as
the original signal. Usually, the term DWT represents the
decimated method by default and is most commonly used
due to its lower computational complexity than the unde-
cimated method.

For a time-series signal, x (n) has the number of samples
m, ie., n ranges from 0 to m—1. The scaling function
W, (jo, k) and the wavelet function Wy (j, k) for the forward
wavelet transform can be represented using the following
equations:

1
W, (joo k) = N Y x(mg; (), (6)
Wy (G, k) = \/% Y x(m¥;,(n). 7)

Then, the signal x (n) can be represented (equation (8))
using the scaling and wavelet functions.

1 (o]
x(n) = N ;qu (jo’k)(Pjo)k(”)
+ )Y Wy (o k)Y, (1), j 2 jo.
j=jo k

Equation (8) is also known as an inverse discrete wavelet
transform. Figure 5 represents a sample representation of an
ECG signal and its DWT coefficients after the 3" level of
decomposition using the db2 mother wavelet.

2.4. Wavelet Packet Decomposition (WPD). Wavelet packet
decomposition (WPD) extends the DWT, where the ap-
proximation and detailed coeflicients are decomposed in the
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FIGURE 2: A sample ECG signal and its STFT at different window lengths.

subsequent level. Hence, WPD provides a better frequency
and time resolution compared to DWT. Figure 6 represents
the wavelet filter belts for WPD, where x (1), A, and D bear
their usual meaning, as described in Section 2.3. Similar to
the DWT, the WPD can be of two types: decimated and
undecimated. Generally, WPD follows the decimated
method. A sample ECG signal and its wavelet coefficients
after the 2" level of decompositions using the db2 mother
wavelet are represented in Figure 7.

2.5. Wigner-Ville Distribution (WVD). Wigner [20],
a Hungarian physicist in the year 1932, proposed the basis of
the Wigner-Ville distribution (WVD) function. WVD is the
quantitative representation of signal energy in the time-

frequency domain. This method uses the autocorrelation
function for the calculation of the power spectrum. The
autocorrelation function (ACF) compares a signal (x (t)) to
itself for all possible time shifts (7) and is represented using
the following equation:

ACFx = Ix(t)x(t + o)t 9)

In the ACEF, the signal is integrated over a period of time,
which makes it a function dependent only on 7. However,
the WVD wuses a variation of the ACF called the in-
stantaneous autocorrelation function (IACF) to maintain
the time parameter, and it is represented using the following
equation:
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IACF = x(t + %)x*(t - 3). (10)

2
The WVD function compares the signal information
with its own at different times and frequencies. It can be
viewed as the FT of the IACF.
Mathematically, it is defined using the following equa-
tion (11):

1 (*® T\ . T\ _;
WVD, (t,w) = — I x(t +—)x (t ——)e Tdr. (11)
2 2 2
Compared to STFT, WVD gives better spectral resolu-
tion as it does not suffer from leakage. However, when
a signal has several frequency components, it may be affected
by the cross-term [21]. A cross-term occurs when multiple
parts exist in the input signal, analogous in time and fre-
quency beats. The cross-term can be minimized by modu-
lating the WVD function by applying a sliding averaging
window in the time-frequency plane. It is regarded as
pseudo-WVD (PWVD) [22] and is more widely used than
WVD. However, it reduces the effect of cross-terms to some
extent but does not eliminate it.
Mathematically, the PWVD is represented using the
following equation (12):

—00

PWVD, (t,w) = 1 JOO h(t)x(t + I)x*<t - I)e‘j“”dr. (12)
27 ) - 2 2

Figure 8 represents the PWVD of an ECG signal (360 Hz,
duration 1sec). Each data point in the WVD plot is rep-
resented with three signal variables: amplitude, time, and
frequency.

2.6. Empirical Mode Decomposition. Empirical mode de-
composition (EMD) is a local and data-driven adaptive method
that is mainly applied to nonlinear and non-stationary signals.
EMD splits a signal into many nanocomponent functions
called Intrinsic Mode Functions (IMFs) [23]. The IMF holds
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a relationship between phase and frequency. An IMF must  minima (valley) is zero. In other words, the IMF represents
satisfy two conditions: (1) For a given signal, the number of  only the simple oscillatory modes present in a signal. However,
zero crossings and the number of extrema must be equal to it does not ensure a perfect instantaneous frequency in all
zero; if not, it must differ by one. (2) The mean of the envelope conditions. In [24], Peng et al. (2005) proposed an algorithm to
created due to the local maxima (peak of a wave) and the local ~ extract the IMFs of a signal.
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After the decomposition process, the original signal is
characterized as the combination of the extracted IMFs and
the residues r;,,. Mathematically, it can be represented using
the following equation (13):

n
x(t) = ) IMF, +1,,,. (13)
i=1

Figure 9 represents a sample ECG signal and the set of
extracted IMFs and residues (Figure 8(b)). The figure also
illustrates the instantaneous frequencies (Figure 9(c)). It can
be observed from the figure that the lower IMFs capture fast
oscillatory modes. On the contrary, the higher-order IMFs
capture the slow oscillation modes. The limitation of the
traditional EMD method is mode mixing in the case of
signals with closely spaced frequencies [25].

2.7. Hilbert Huang Transform. The Hilbert Huang Trans-
form (HHT) is an extension of EMD. It is the application of
the Hilbert transform (HT) to the extracted IMFs. After
finding all the IMFs from the original signal, the HT is
applied to get the d; (¢) from each IMF,. Mathematically, it is
represented using the following equation (14):

z,(t) = IMF, + jd, (t) = A;e’, (14)

where z; (t) is the analytic signal obtained using the Hilbert
transform of the IMFs.

A; = \IMF? + d, (t)?,

o 1di(®)
(0 = tan” T (15)
R
wi - dt .

Replacing IMF; with z;(t) in equation (14) and
neglecting the value of r,,,, it yields

x(t) = Real(i Aieje(t)’ >, (16)

i=1

where 6(t); = If) w; (t)dt = arctan (d,/IMF,).

At the output, the HHT produces an orthogonal pair for
each IMF that is phase-shifted by 90°. In addition to the
orthogonal pair, the IMF calculates the instantaneous var-
iation in its magnitude and frequency over time. Hence,
HHT can be a helpful method when analyzing nonlinear and
nonstationary time series data.

2.8. Some Modified Joint Time-Frequency Methods. The
aforementioned joint time-frequency methods form the
basis of many advanced methods, which have been proposed
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in recent years. These advanced methods try to eliminate the
limitations associated with the original techniques. Hence,
these advanced methods have gained much attention in
many signal-processing applications. Initially, it has been
a general consideration that the Fourier transform method is
applicable only for the spectral analysis of stationary signals.
However, a modified Fourier transform method was recently
developed for nonlinear and nonstationary signals appli-
cation. This method is called the Fourier decomposition
method (FDM) and has been employed as a time-frequency
analysis tool [26]. Several-modified wavelet analysis
methods, including least-square wavelet analysis (LSWA)
and least-square cross wavelet analysis (LSCWA), have also
been proposed [27]. Numerous variations in wavelet
transformation methods have been reported recently. This
includes tunable Q-wavelet transform (TQWT) [28], sta-
tionary wavelet transform (SWT) [29], empirical wavelet
transform (EWT) [30], and dual-tree complex wavelet
transform (DTCWT) [31]. The advantage of the TQWT is
that it does not require the adjustment of the wavelet base
function and can easily be adjusted according to the signal
[32]. SWT shows the local time-frequency characteristics of
a signal and has multiresolution analysis capability [33]. The
EWT method is an adaptive wavelet method that uses
a wavelet subdivision scheme. The method segments a sig-
nal’s spectrum and perfectly reconstructs the input signal
[34]. DTCWT shows several advantages compared with
DWT. These include approximate shift-invariance, di-
rectional selectivity, and perfect reconstruction of the
original signal [34]. Also, compared to other numerical
methods, DTCWT is faster and more effective.

The empirical mode decomposition (EMD) method
has also received several improvements in the last decade
and has formed the base for a number of decomposition
methods [35], that include variable mode decomposition
(VMD) [36], complex variable mode decomposition
(CVMD) [37], Local mean decomposition (LMD) [38],
ensemble empirical mode decomposition (EEMD) [39],
multidimensional EEMD [40], complex EMD (CEMD)
[41], Complete EEMD with adaptive noise (CEEMDAN)
[42], and multivariate empirical mode decomposition
(MEMD) [43]. VMD is an adaptive EMD method where
the signal decomposes into many band-limited IMFs. The
main advantage of VMD over EMD is that it eliminates
the effect of mode-mixing during the decomposition
process [44]. The LMD method produces a set of product
functions after the decomposition process. Here, the
time-frequency distribution of the original signal could
be acquired from the instantaneous amplitude and fre-
quency of the product functions [45]. The EEMD and
CEEMDAN methods also eliminate the mode mixing
issues of the EMD method by performing the de-
composition over an ensemble of the signal with Gaussian
white noise [46].

Modifications in the Wigner—Ville distribution func-
tions resulted in pseudo-Wigner—Ville distribution
(PWVD) [47] and smoothed pseudo-Wigner—Ville distri-
bution (SPWVD) [48]. The HHT, as mentioned above, is
also an advanced method of EMD, where the Hilbert spectral
analysis is employed for each IMFs. The following section
reports applying the aforementioned time-frequency
methods in various ECG signal processing studies.
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FIGURE 9: (a) A sample ECG signal, (b) IMFs and residue of the ECG signal after EMD, and (c) the instantaneous frequency of each IMF.

3. Applications in ECG Signal Analysis

The advancement in ECG signal processing methods has
diversified its applications, both biological and non-
biological. Including various joint time-frequency methods
in ECG processing has made the process efficient to a sig-
nificant extent. The biological applications may include, but
are not limited to, detecting abnormalities in heart rhythm,
the onset of a seizure, sleep apnea, and so on. On the other
hand, the nonbiological applications may consist of emotion
detection, biometric identification, drug and alcohol de-
tection, the removal of noise from the ECG signal, and so on.
This section contains some of the most notable applications
of joint time-frequency methods in ECG analysis.

3.1. Noise Removal. The acquisition of the clinical ECG
signal is a noninvasive procedure that involves amplifying
the biopotential signals using high-gain amplifiers obtained
with surface electrodes placed over the skin. A conducting
gel is also applied between the skin and electrode surfaces
to reduce the skin-contact impedance and maintain proper
conductivity. During the acquisition of the ECG signals, the

signal may get contaminated with different noises. The
primary noise sources in an ECG signal are power line
interference, electrode instability due to improper adher-
ence of the surface electrodes to the skin surface, and
muscle activity. These noises are correlated with the
original signal with a similar temporal distribution.
However, they differ by intensity level. The noise signal
possesses a variety of frequency bands, where the low,
medium, and high-frequency bands signify the baseline
wander (BW), power line interference, and electromyo-
graphic noise, respectively.

3.1.1. Baseline Wanders. The BW noise is prominent in the
ECG signal at less than 1 Hz. Several factors may lead to this
noise, including changes in electrode-skin polarization
voltage, respiration, motion artifacts, and electrode, and
cable movement. The peak amplitude and duration may vary
according to electrode properties, skin contact impedance,
electrolytes used, and electrode movement. This noise causes
a shift in the isoelectric line during recording, hence, the
name BW. The baseline drift is usually seen at a shallow
frequency of 0.014 Hz in the ECG recordings.
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3.1.2. Powerline Noise. The power line noise is mainly as-
sociated with the signal-carrying cables of the device. These
cables are prone to electromagnetic interference at 50 Hz or
60 Hz. The two allied mechanisms that aid in powerline
interference are capacitive and inductive coupling. However,
in the case of the ECG, inductive coupling is more
significant.

3.1.3. EMG Noise. The ECG data are acquired using surface
electrodes placed over the human skin. It is important to
note that various muscles are present underlying the human
skin tissue. The contraction and relaxation of these muscles
lead to the corruption of the ECG signals with the EMG
signals from the underlying muscle tissues. The EMG noise
is more defined in the case of differentlyabled persons, kids,
and persons with tremor issues.

3.1.4. Electrode Contact Noise. As mentioned above, a con-
ductive gel is usually used on the skin surface before the
electrode placement, which acts as a dielectric medium and
ensures good conductivity between the two electrodes (the
skin surface and the measuring electrode). Electrode contact
noise occurs when there is a change in the contact position of
the electrodes to the skin. The loosening of the electrode
contact may also contribute to the noise. Additionally, poor
conductivity between the electrode and the skin surface
decreases the amplitude and increases the probability of
disturbance by reducing the signal-to-noise ratio (SNR).
Maintaining the skin contact impedance as low as possible is
advisable to ensure better conductivity between the skin
surface and the measuring electrode.

The noise components in the signal contribute to its
wrong interpretation, faulty observation, and inefficient
feature extraction. Hence, removing the contaminants from
the signal is crucial before further processing. Initially,
moving average filters were used for this purpose, but they
lost a lot of information due to averaging [49]. Various
digital and adaptive filters were reported for baseline wander
removal and motion artifacts [50]. However, determining
the correct filter parameter is a difficult task. Again, these
methods primarily focus on a single noise source. Time-
frequency methods became popular as they can help remove
multiple noises simultaneously. Various time-frequency
methods, including wavelet transforms [51], EMD [52],
WPD [53], and their variants, have been used in the liter-
ature for noise reduction. The conventional denoising steps
include signal decomposition, identifying the decomposed
signals where most of the noise is content, filtering these
noises, and reconstructing the original signal. Figure 10
represents the basic steps involved in ECG denoising. Table 2
contains a comprehensive list of published papers that
employed time-frequency-based methods to denoise the
ECG signals in recent years.

3.2. Arrhythmia Detection. Cardiovascular disease (CVD) is
one of the prime reasons for human death. As per reports, it
contributed to 31% of the worldwide death in 2016. Out of

11

Denoising based on
Time-frequency
Methods

. . Signal Smooth Signal

F1GuRre 10: The basic signal processing steps involved in ECG signal
denoising.

Noisy ECG signal Pre-processing

these, 85% are due to a heart attack. Timely and early de-
tection of the onset of the disease can help in reducing these
statistics. Arrhythmia is a common manifestation of CVD
known as heart rhythm disorder. It happens when there is an
anomaly in the electrical conduction pattern of the heart.
Though there are several forms of arrhythmia, namely, sinus
node arrhythmia, atrial arrhythmia, junctional arrhythmia,
and atrioventricular block [77], atrial fibrillation/arrhythmia
is the most common. Usually, the irregular heartbeat does
not show any harmful symptoms until it reaches a higher
state, leading to a stroke, congestive heart failure, long-term
or short-term paralysis, and sometimes even death. Thus,
early detection of the progression of AF is crucial. The
conventional way of diagnosing CVD is through a patient’s
medical history and clinical tests. However, this method
requires highly heterogeneous data and a medical expert for
accurate prediction and interpretation, making the process
inefficient. Also, the problem is more significant in places
with a shortage of proper medical facilities. Therefore, for
decades, researchers have been opting for a machine-based
automatic system that uses physiological signals (ECG) for
monitoring and diagnosis. Most of these diagnostic pro-
cedures follow a standard method, including ECG signal
acquisition, decomposition, feature extraction, and classi-
fication for arrhythmia. The current section addresses dif-
ferent time-frequency-based methods in arrhythmia
detection and their present status. Although several time-
frequency methods have been employed for arrhythmia
detection, wavelet-based methods have been widely explored
in recent years. The discrete wavelet transform (DWT) is
most prevalent due to its easy implementation. Figure 11
represents the block diagram of a DWT-based beat classi-
fication method, followed by Rizwan et al. (2022) [78].
Besides DWT, other methods, such as WPD and CWT, have
also been employed. The CWT method is not widely used as
the inverse CWT is not available in many standard toolboxes
(MATLAB, Python, etc.) due to its high computational cost
[79]. However, in many studies, the DWT and CWT were
combined to improve classification accuracy. WPD, on the
other hand, resulted in a larger feature set compared to the
DWT method and showed potential in classifying ar-
rhythmia. However, it is associated with high computational
complexity. Some other time-frequency methods and their
variants that have also been recently explored include EMD,
HHT, WVD, and STFT. The STFT has been combined with
deep neural networks such as recurrent neural networks
(RNN) and convolutional neural networks (CNN) to obtain
efficient results. Table 3 lists some of the recently published
articles and discusses the time-frequency methods used, the
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FIGURE 11: Block diagram of a DWT-based Beat classification method (reproduced from [78]).

features computed, and the classification method followed
for automatic cardiac arrhythmia detection.

3.3. Sleep Apnea Detection. A good quality of sleep is crucial
for leading a healthy life. Sleep apnea is the most common
pathological condition that affects sleep quality [118]. It
arises due to repetitive airflow obstruction and causes dis-
turbed breathing during sleep time [119]. As per a recent
report, around 1 billion people across the globe are affected
by sleep apnea [120]. Nine hundred thirty-six million people
aged between 30 and 69 have mild to severe obstructive sleep
apnea (OSA), whereas 425 million have moderate-to-severe
OSA. It has been reported that sleep apnea raises the cardiac
disease risk by three times, the accident rate by seven times,
and stroke by four times. OSA in the later stage can cause
severe cardiovascular and neurocognitive problems if left
untreated. Hence, early and timely detection of the disease is
crucial. The conventional way of measuring sleep apnea is by
performing polysomnography, in which the patient is asked
to sleep after attaching several electrodes and sensors for the
measurement. The test was performed in a controlled en-
vironment. However, the procedure is highly uncomfortable
for the patient and may degrade sleep quality. Also, a ded-
icated person is required who can continuously monitor
various physiological signals associated with brain activity,
eye movement, muscle activity, etc. The process is time-
consuming and expensive [121]. Accordingly, there is a need
for a simple, low-cost, and automated method for its
detection.

In recent years, researchers have implemented various
physiological signals to detect OSA. However, the ECG
signal is the most widely used physiological signal for the
said purpose. This is because the acquisition of the ECG
signal requires only a single-lead recording, which makes the
measurement process simpler than other methods. Figure 12
describes the basic steps involved in sleep apnea detection.
The current section discusses the application of different
time-frequency analysis methods to the ECG signals to

detect OSA. Hassan et al. (2015) used a single-lead ECG
signal to classify the OSA in their research. They employed
EMD, higher-order statistical features, and an extreme
learning machine (ELM) for classification purposes. The
authors reported a maximum accuracy of 83.77%. In [123],
the authors used an eight-level wavelet packet analysis
method on a short-duration (5 s) ECG signal to differentiate
between central sleep apnea (CSA) and obstructive sleep
apnea (OSA). CSA occurs when the brain is unable to send
proper signals to the muscles associated with breathing. It is
different from OSA, where normal breathing is hindered due
to upper airway obstruction. In a similar study [124], the
authors used wavelet-based ECG features to differentiate the
CSA and OSA using an auto-regressive ANN classifier. They
achieved a classification accuracy of 78.3%. Several other
time-frequency methods, including DWT, and HHT, have
also been used to classify sleep apnea. Table 4 summarizes
some recently published articles in the field that use time-
frequency methods during ECG processing.

3.4. Biometric Identification. Identification technologies are
crucial in safety, security, and information protection [138].
The earlier approaches, including security keys, passwords,
and certificates, are no longer secure as there is a high chance
that they may be stolen or forgotten. Hence, biometric
identification technology has emerged with great efficiency,
considering the anatomical and physiological differences
[138, 139]. Typical biometric examples include fingerprints,
iris, and face IDs [140]. Even though these methods have
been used with great popularity, they are not perfect enough
as they can be forged. Recently, it has been found that the
ECG signal can be used as a biometric as it is universal,
stable, and easily measurable [141]. Again, the ECG of an
individual solely depends upon the body shape, gender, age,
emotional and the heart’s physiological status. It makes the
ECG a unique signal. In general, visually differentiating the
ECG signal of two individuals is very challenging due to the
subtle changes in amplitude and duration. Hence, this
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FIGURE 12: Steps in sleep apnea detection using an ECG signal (modified from [122]).

method of pattern recognition has been employed for easy,
quick, and reliable identification. The ECG signals used for
biometric authentication are either one-channel, two-
channel, three-channel, or 12-channel. Among these, the
single-lead ECG is the most common due to its simplicity.
However, it is unclear whether simplicity leads to better
performance; hence, in some of the studies, 12 lead ECG data
has also been used.

The ECG biometric identification process follows three
crucial steps: preprocessing, feature extraction, and classi-
fication. In [142, 143], the authors showed that ECG exhibits
a unique and discriminatory pattern and can be categorized
according to the classifier employed. However, it is essential
to note that the performance of a classifier relies on feature
extraction methods [144, 145], where the raw ECG signal is
used to extract informative features. In general, the features
extracted for the biometric methods can be divided into two
broad categories: fiducial and nonfiducial [144]. The fiducial
method uses the characteristics of the ECG waves, such as
different peaks, waves, and intervals, whereas the nonfiducial
method does not use these characteristics.

Several feature extraction methods have been explored in
the past. Though there is no generalized rule for determining
the significant boundaries of the waves that helps in efficient
biometric identification [146], the nonfiducial-based method
is preferable. It is the reason that no reference detection is
needed in this method [147]. Some examples of the most
widely used nonfiducial methods include autocorrelation
coefficients [148], wavelet coefficients [149], principal
components [150], and time-frequency decomposition
methods [151]. In this section, the application of time-
frequency decomposition methods in biometric analysis
has been discussed. Table 5 represents a recent publication
that used different time-frequency decomposition methods
for biometric identification. It is evident from the table that
empirical mode decomposition (EMD), and discrete wavelet
transform (DWT) are the two most widely used methods
recently. Some researchers have also followed hybrid
methods that combine two different time-frequency features
or multiple features, including nonfiducial and fiducial
features. The time-frequency method has used several
classification methods, such as CNN, SVM, LDA, DT, and
CNN. However, in most cases, the CNN model showed good
performance compared to the other classifiers. The reason

can be most of the deep learning models generate their own
representative features during training.

3.5. Other Applications

3.5.1. Emotion Detection. Emotion is the consistent and
separated response to external or internal events. The human
emotional state can be defined using eight basic emotions:
pleasure, sadness, anger, joy, curiosity, fear, and surprise. All
other emotions can be a mixture of these primary emotional
states. It has been reported in the literature that physiological
signals are affected mainly by emotion. Hence, it can be used
to detect and classify emotional states. Several studies have
used the ECG signal to detect emotional changes [162-165].
In the research of Dissanayake et al. (2019) [166], the authors
used three ECG signal-based techniques and the EMD
method to recognize the primary human emotions: anger,
joy, sadness, and pleasure. They achieved an accuracy gain of
6.8% as compared to the other methods. Another study
employed a wavelet-based approach to obtain features at
different time scales [167]. The proposed method showed an
accuracy of 88.8% in detecting the valence state and 90.2% in
detecting the arousal state, respectively. Chettupuzhakkaran
and Sindhu (2018) have performed a comparative analysis in
different time-frequency methods to detect happy and sad
emotions. The authors reported a higher accuracy in DWT’s
case than in other methods (EMD, HHT, etc.) [168]. Wavelet
transform and second-order difference plots were used in
[169] to differentiate two emotional states: rest and fear, with
a maximum accuracy of 80.24% using an SVM classifier.

3.5.2. Epileptic Seizures Detection. A seizure can be repre-
sented as an abrupt electrical disturbance in the brain ac-
tivity that leads to a change in behavior, movement, and level
of consciousness. Also, the onset of seizures affects auto-
nomic nervous system activities. The literature suggests
a significant difference in the physiological signals such as
ECG and EEG has been observed during a seizure episode.
The EEG signals have been used as a potential biomarker for
seizure detection. However, significant ECG morphological
changes have also been observed during a seizure episode. A
shortened QT interval, ST-segment elevation, and T-wave
inversion are typical changes in the ECG morphology
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[170, 171]. Nevertheless, a few research studies found in the
literature only uses ECG signals for seizure detection. Most
papers have extracted the time-frequency features from the
EEG signal or ECG and EEG signals [172-175]. But, in
a recent study [176], Yang et al. found that the ECG signal
was more efficient than the EEG signal in seizure detection.
The authors used the spectrographic images of a short-
duration ECG signal using the short-time Fourier trans-
form (STFT). The images were used as the input to the CNN
model for automatic seizure detection. Yet, more research
based on the ECG-based features of epilepsy detection is
needed in the future.

3.5.3. Driver Distraction Detection. Distracted driving is
a severe concern for the safety of passengers and drivers. The
three primary causes of distraction are taking the eye off the
road, taking the hands off the steering, and a disturbed mind
while driving. The secondary reasons may include conver-
sations on the phone and active conversations with a pas-
senger. Though social awareness and enhanced government
rules have reduced the accident rate, the steps are in-
sufficient. Hence, there is a need for real-time driver dis-
traction detection. The ECG signal has shown potential
application in real-time monitoring due to its properties:
higher SNR, minimal implementation, easy to wear, and
simple recording technology. Moreover, it does not show
any latency issues compared to the camera-based detection
system. The most crucial step in real-time ECG monitoring
is the selection of features. Several time-frequency analysis
methods have been reported in this regard. In [177], the
authors have used the ECG subbands after decomposition
using WPD. A set of WPD coefficients were selected, and
three essential features, namely, power, mean, and standard
deviation, were extracted from each coefficient. In the study,
PCA was used as a dimensionality reduction method. The
final feature set was used to classify the driver distraction
using LDA and a quadratic discriminate analysis (QDA)
classifier. In a similar study [178], the wavelet packet
transform detected distraction during a phone call or
conversation with a passenger. Dehzangi et al. (2018) have
employed fused features extracted from the ECG signal
[179]. It includes HRV parameters, spectro-temporal pa-
rameters, and power spectral density parameters. STFT was
used for the spatiotemporal analysis. The optimal set of
features was chosen using a feature selection method and
various classifiers. The maximum detection accuracy of the
driver distraction was 99.8%. Many studies have combined
the ECG signal with other physiological signals such as EEG
[180], EMG [181], and EOG.

3.5.4. Drug and Alcohol Detection. Early and timely drug
overdose detection is crucial to maintaining health and
avoiding major health problems. As per reports, nearly half
of the emergency ward cases in the United States are due to
drug-related overdose. It has been reported that most drugs
influence cardiac functioning. The drug overdose may later
lead to adverse cardiovascular events in many cases. Hence,
the changes in the ECG signal can be a good indicator of this
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drug overdosage and can be used for its detection. Early
research suggests changes in the ECG signal’s morphological
parameters after consuming various drugs (e.g., benzodi-
azepines, acetaminophen, and opioids). In their study,
Manini et al. (2017) evaluated the effects of an acute drug
overdose on the electrophysiological parameters. A prom-
inent R peak and QT dispersion were detected after the drug
overdose [182]. In a recent study [183], QT interval pro-
longation was observed due to the overdose of hydroxy-
chloroquine in COVID patients [183]. Similar findings were
reported in the case of other drugs also. Some of the drugs
include antidysrhythmic (sotalol), antidepressants (escita-
lopram, bupropion, citalopram, trazodone, and so on),
antipsychotics (haloperidol, quetiapine), sodium channel
blockers  (amitriptyline, doxepin, imipramine, di-
phenhydramine, and nortriptyline, and so on), and the
antiemetic serotonin antagonist ondansetron [184]. Apart
from drugs, alcohol also showed a similar effect on the heart
[185]. Recently, a few researchers have attempted to use ECG
signals for automatic drug detection. Pradhan and Pal (2020)
have reported that it is possible to use time-domain sta-
tistical and entropy-based features extracted from the ECG
signal to automatically detect the presence of a psychoactive
drug, “caffeine,” in the body [186]. In a recent study [187],
the authors employed three different time-frequency
methods, EMD, DWT, and WPD, to automatically detect
the caffeinated coffee-inducedshort-term effect in the ECG
signal. The application of ECG signals in seeing the impact of
drugs and alcohol is new, and hence, a limited study is
available in the literature. The exploration of joint-time
frequency methods is insufficient and may be explored
extensively in future research.

4. Limitations, Challenges, and Suggestions for
Future Research

The main limitation of using the STFT method is that it does
not show optimal time-frequency precision. Another dis-
advantage of the STFT method is that it is used primarily for
short-duration ECG signal processing. However, short re-
cordings are preferred during critical heart surgery to initiate
the treatment process instead of investigating the longer-
duration ECG signals [188]. In such cases, STFT-based
signal processing has been proposed with definite success.
Also, the STFT method is associated with varying spectral
leakage due to applying different window functions. Another
critical parameter while using the STFT method is choosing
the correct window size. A limited time window shows
a good time resolution but degrades the frequency resolu-
tion. Likewise, broader windows offer poor time resolution
but a good frequency resolution. Hence, many employ more
suitable techniques, such as the wavelet transform method
(CWT, DWT, WPD, and so on). The wavelet transform can
eliminate the problem of the fixed window size by using
a varying window length and improving the time-frequency
resolution [189]. However, it is unable to capture the edges
of the signal adequately. Also, a trade-off exists amid WT’s
accuracy and computational complexity. Choosing a suitable
mother wavelet in the WT is crucial as the accuracy of
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a classification task is also affected by the choice of the
mother wavelet.

The empirical mode decomposition (EMD) can over-
come these limitations. EMD decomposes the signals into
several IMF independent of the instantaneous frequency.
The method delivers valuable data when little information
about the underlying dynamic is available. However, careful
application of the technique to any scientific research is
required, as it lacks a proper theoretical background and is
also associated with mode mixing [189]. Some extensions to
the EMD method (including EEMD and VMD) were made
to eliminate the disadvantages associated with EMD. VMD
is more suitable for the analysis of nonstationary and
nonlinear signals. The method shows a high operational
efficiency and avoids information loss.

Several studies have implemented advanced time-
frequency methods for analyzing and processing bio-
potential signals, such as EMG and EEG. For example, the
tunable Q-wavelet transform (TQWT), combined with time-
frequency features, was used to detect epileptic seizures
using the EEG signal [190]. A recent study used the TQWT
method to differentiate seven hand movements using the
surface-EMG signal [191]. Ahmed et al. (2022) employed the
LSWA method and computed the differential entropy fea-
tures from each EEG segment. The calculated features were
then used as input in the CNN model to detect different
emotional states [192]. In a recent study, the authors used
the EWT and deep learning methods to detect coronavirus
disease (COVID) [193]. Despite their diverse applications,
these advanced time-frequency methods in ECG signal
processing are limited. Hence, in the future, these methods
may be employed more efficiently.

Real-time implementation of the time-frequency
method in different ECG applications is another big chal-
lenge. Most of the available research is based on offline
analysis that excludes noisy data. Many recent articles have
employed physiological data to monitor epileptic seizures
[194], dynamic changes in the brain [195], vigilance [196],
sleep quality [197], fatigue [198], and abnormal driving
[199]. These methods have primarily used either the brain or
muscle signals. Therefore, the real-time implementations of
the afore-discussedtime-frequency methods in the ECG
analysis may be explored in the future.

The current study has reviewed the application of various
time-frequency decomposition methods for extracting ECG
features. These features were then employed for various
ECG-based applications, including arrhythmia detection,
sleep apnea detection, biometric identification, noise elim-
ination, and so on. A limitation of applying the feature
extraction method is that the new features generated in the
process are not always interpretable. Again, when there is
a vast dataset, the conventional machine learning models do
not perform satisfactorily due to the curse of dimensionality,
which later needs feature selection methods. The deep
learning models eliminate these issues as they can efficiently
handle large datasets. Also, these models create their fea-
tures, identify the correlated features, and then combine
them to promote fast learning without providing explicit
instruction. Though many studies have employed deep
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learning models with the 2D-ECG data (spectrogram, sca-
logram, and so on) or the decomposed signals, the field
demands extensive analysis. It may be explored in the future.

5. Conclusion

The current study provides a background idea about dif-
ferent time-frequency methods and their biomedical ap-
plications in ECG analysis. The study also discusses the
recently published articles that have used these methods in
various ECG applications. Though it is hard to include such
a vast area in a single article, the present paper stresses the
current status and recently published articles in the last five
years. The following observations can be made based on the
current review: DWT is recently the most widely used
method, irrespective of its applications. The EMD and its
varjants are more suitable methods for noise elimination.
The 2D-image-based methods such as spectrogram, scalo-
gram, and frequency plots are most widely used with the
deep learning models and report higher classification ac-
curacy in arrhythmia detection. However, its use in other
ECG-based applications is still limited and needs more at-
tention. Also, the applications of some of the advanced time-
frequency methods mentioned in this review demand more
consideration in future research. The current review will
form a reference and provide a comprehensive idea about
applying the time-frequency methods in the ECG signal
analysis. Some of the typical applications include detecting
arrhythmia and sleep apnea. Also, some nonbiological ap-
plications include biometric identification, drug and alcohol
detection, driver distraction, emotion detection, and so on.
The facts discussed in this review will provide information
about the current status of the time-frequency methods. The
study will help future researchers to fill in the gaps and
overcome the challenges in the said field. The knowledge
shared in this review will benefit society by bringing more
advanced technologies for disease detection, diagnostic
applications, and other nonbiological applications in the
future.
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In sports, fatigue management is vital as adequate rest builds strength and enhances performance, whereas inadequate rest exposes
the body to prolonged fatigue (PF) or also known as overtraining. This paper presents PF identification and classification based on
surface electromyography (EMG) signals. An experiment was performed on twenty participants to investigate the behaviour of
surface EMG during the inception of PF. PF symptoms were induced in accord with a five-day Bruce Protocol treadmill test on
four lower extremity muscles: the biceps femoris (BF), rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL). The
results demonstrate that the experiment successfully induces soreness, unexplained lethargy, and performance decrement and also
indicate that the progression of PF can be observed based on changes in frequency features (AF,,eq and AF,c,n) and time features
(ARMS and AMAYV) of surface EMG. This study also demonstrates the ability of wavelet index features in PF identification. Using
a naive Bayes (NB) classifier exhibits the highest accuracy based on time and frequency features with 98% in distinguishing PF on
RF, 94% on BF, 9% on VL, and 97% on VM. Thus, this study has positively indicated that surface EMG can be used in identifying

the inception of PF. The implication of the findings is significant in sports to prevent a greater risk of PF.

1. Introduction

Surface electromyography (sEMG) is an electrical field of
human skeletal musculature [1]. It is acquired by placing
electrodes on the skin surface near the human muscle. The
frequency and amplitude of the signals represent the be-
haviour and condition of the muscle’s motor unit, con-
duction velocity, and ionic alteration of the muscle. Fatigue
can be determined by the changes in its frequency content
and amplitude either during an activity by analyzing every
interval time length [2], at the beginning and ending of the
activity [3, 4], or before and after the activity [5-8].

In fatigue detection, frequency shifting represents the
changes in muscle fibre conduction velocities and

subsequent changes in the duration of the motor unit action
potential waveform and fluctuations of muscle force and
muscle fibre types as well as their decomposition [8, 9]. Most
of the opinions agree that fatigue can be identified when its
frequency shifts to a lower value to indicate that the muscle
conduction velocities are slowing down [10, 11]. Other than
frequency, fatigue can be detected through the amplitude of
SsEMG signals. The changes in the sSEMG amplitude depend
on the number of active motor units [12], discharge or firing
rates, and the shape and propagation velocity of the intra-
cellular action potential [10]. The amplitude of SEMG tends
to increase during submaximal voluntary contraction
(during motor unit recruitment) and decrease during
maximal voluntary contraction [10, 13-16].
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Other than time and frequency features, a new time-
frequency feature representation to track fatigue was in-
troduced and is known as the wavelet index (WI) method
[17]. WI was introduced since it is more suitable to deal with
nonstationary signals such as SEMG [17]. There are five WI
features introduced by Malanda and Izquierdo, including
the wavelet index ratio between moment —1 at scale 5 and
moment 5 at scale 1 (WIRM1551), wavelet index of the ratio
between moment -1 at the maximum energy scale and
moment 5 at scale 1 (WIRM1Mb51), wavelet index of the ratio
between moment —1 at scale 5 and moment 2 at scale 2
(WIRM1522), wavelet index of the ratio of energies at scale 5
and 1 (WIRE51), and wavelet index ratio between square
waveform lengths at different scales (WIRW51). Through
WI, the distribution shifting of SEMG energy can be assessed
based on its scale and frequency band of decomposition.

In normal conditions, fatigue usually disappears by itself
after a while. Recovering from fatigue indicates that bio-
chemical reactions during sports activity are able to return to
a normal level [18]. Under normal fatigue (NF) conditions,
most opinions agree that the degree of fatigue begins with an
increment in amplitude, followed by unchanged and de-
creased trends, as well as accompanied by a decrement in
frequency centers. WI features tend to increase, indicating
the distribution of energy shifting to a lower value under NF
conditions.

However, high-intensity training activity will commonly
lead to more biochemical reactions such as releasing of stress
hormones (cortisol, epinephrine, and prolactin) [19, 20],
glycogen depletion [21], and the existence of lactate [22].
Fatigue due to intense training will require a longer recovery
period than normal physical activity. It is crucial for im-
provement and recuperation [23]. During the period, it will
enable hormones to return to a normal level [18] and allow
physiological adaptation to a cardiovascular and muscular
system to provide a higher level of performance [24]. If the
training load is imbalanced with an inadequate recovery
period, fatigue can be continuous and accumulated. This
situation leads to prolonged fatigue (PF). Under this con-
dition, more biochemical or maladaptive hormonal re-
sponses may occur [24, 25]. The alteration in biochemicals,
which leads to PF, can be signified by reduced performance,
lethargy, soreness, insomnia, psychological disturbance,
restlessness, hypertension, and increased incidence of injury
[21, 26]. It commonly requires several days to a week to
recover from [23, 27]. This condition needs to be treated
accordingly to avoid a more severe condition, known as
chronic fatigue syndrome. A report shows that about
20-60% of athletes, 60% of elite runners, and 33% of nonelite
runners experienced chronic fatigue syndrome at least once
in their career life [23, 26, 28].

In current practice, PF signs can be assessed invasively or
noninvasively. Blood tests are invasive and used to inves-
tigate biochemical concentrations associated with PF such as
lactate, glycogen depletion, creatine kinase, and iron levels
[22, 28]. Meanwhile, muscle biopsies are utilized to evaluate
the condition of the injured muscle and ionic concentration
in the muscle layer. During the collection of muscle tissue,
numbing medicine is required. Although both blood tests
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and biopsies are reliable and accurate, they cause discomfort
and are not suitable for frequent measurement. Further-
more, these methods are time-consuming, need to be an-
alyzed in a laboratory environment, and require full
supervision from an expert [29].

Due to the limitation of invasive methods, PF can also be
traced through noninvasive diagnostic tools because the
alteration in biochemicals can be observed physically. For
example, glycogen depletion and lactate accumulation are
commonly associated with a decline in performance, the
oxidative stress increment leads to muscle pain, and cytokine
leads to unexplained lethargy, decreased appetite, depres-
sion, and sleep disturbance [26, 28]. The commonly used
noninvasive tools are interviews, athlete-coach monitoring
approaches [18], questionnaires [26, 28], training logs [30],
and perceived exertion ratings. The current practice requires
more than one diagnostic tool to comprehensively screen off
PF signs. Diagnostic tools such as interviews, training logs,
and questionnaires often require close supervision by the
practitioner and personal coach. Nevertheless, using many
tools for the PF identification process is ineffective, par-
ticularly, in monitoring a large group of athletes because
these tools are time-consuming and have many procedures.
Even so, many agree that PF condition prevention is the best
solution [26]. The reason is that the treatment of PF is time-
consuming and cost-ineffective, depending on the degree of
PF. Furthermore, PF signs endured are too risky for athletes.

Later, findings reveal that the center frequency shifting of
SEMG to the upper value was attributed to the alteration of
ionic concentrations such as lactate and glycogen and the
existence of soreness following high-intensity exercise
[6, 31]. This finding is opposed to the earlier findings that
state a decrement in the center frequency of SEMG following
short duration and light exercise refers to fatigue conditions.
This situation demonstrates that duration, the intensity of
exercise, biochemical reactions, and the existence of PF signs
may affect the sSEMG signal behaviour. This situation also
demonstrates the potential of SEMG as a new tool which is
noninvasive, comfortable, fast, easy to use, and quantifiable
to detect signs of PF. The detection at the earliest stage helps
prevent a more serious state of PF.

Therefore, this paper aims to investigate the ability of
SsEMG signals to identify the inception of PF in four muscles
with different percentages of muscle activation. This paper
also investigates the ability of wavelet index features in PF
identification. The performance of the surface EMG features
was evaluated by the naive Bayes classification accuracy in
predicting the PF condition.

2. Materials and Methods

2.1. Study Protocol. Twenty participants (age + standard
deviation (SD): 24+3 vyears old; body mass index:
22.7 +2kg/m”) were recruited for this study. Participants
were screened using a Physical Activeness Questionnaire
(PAR-Q and You) (Supplementary Appendix S1) to rule out
any pre-existing health contraindications and risk factors for
exercise. The exclusion criteria were participants with dia-
betes, high blood pressure, heart disease, any chronic
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disease, joint or bone problems, and taking any medication
to control blood pressure and blood sugar. The approval, to
conduct the experiment procedure, was obtained from the
Ethical Committee, Universiti Putra Malaysia (UPM/
TNCPI/RMC/1.4.18.1(JKEUPM)/F2).

The participants were given a written and verbal ex-
planation, including the potential risks and discomfort that
they might experience. The participants signed written in-
formed consent before the experiment began. As a pre-
caution, the participants were also protected by insurance
(policy number: P809067176) during the whole experiment
period.

2.2. Procedure. The experimental design was divided into two
phases: Phase I was meant for familiarization and Phase II was
for intensive training. Each participant had to take part in both
phases. Phase I enabled the participants to familiarize them-
selves with the equipment and procedures, while Phase II was
designed to induce PF signs. Between Phase I and Phase I, the
participants were requested to rest and refrain from exercising
or doing any heavy physical activity. Phase I was carried out on
alternate days to avoid the emergence of PF, and Phase II was
carried out on five consecutive days (see Supplementary
Table S1. Schedule of Experiment).

The participants were instructed to refrain from any
heavy physical exercise, alcohol, and caffeine consumption
24 hours before the running test in both phases. They also
required taking meals two hours before the assessment to
avoid lack of energy and dehydration. The experiment was
conducted in accordance with the Bruce Protocol treadmill
test (see Supplementary Table S2). In the protocol, the in-
clination and speed of the treadmill were increased every
three minutes. The total duration of the protocol was 21
minutes. The participants were required to run for five
consecutive days and requested to improve their perfor-
mance daily. As individual fatigue response is highly vari-
able, no specific distance and time duration were fixed [32].

2.3. Data Collection. In this study, training logs (see Sup-
plementary Appendix S2) were used to record measure-
ments before, during, and after the running activity. The
measurements were used to monitor the daily performance
and identify the emergence of PF conditions during Phase II
of the experiment. The flowchart of the experiment pro-
cedure and measurements is shown in Supplementary
Figure S1, and the equipment utilized throughout the ex-
periment was the COSMED T170 treadmill, Polar chest strap
heart rate monitor, Watsons blood pressure monitor, and
custom-made surface EMG data collection tool (see Sup-
plementary Figures S2(a) and S2(b) for the schematic circuit
of surface EMG systems).

The recorded measurements during Phase II were as
follows:

(a) Percentage of the maximal heart rate

Percentage of the maximal heart rate (%HR,,,) is
recorded to indicate running efforts performed by
the participant. %HR ., is determined as

HR,,,, (running) X 100
(220 — Age)

%HR,_, =

(b) Percentage of endurance time

Endurance time of running on the treadmill is cal-
culated [33] based on the following equation:

_ Trecorded X100

endurance —

%T (2)

21minutes

(c) Prolonged fatigue sign identification

The participants were also requested to fill in a 24-hour
training distress questionnaire (see Supplementary Ap-
pendix S3) daily [28]. The questionnaire was used to identify
sleeping and psychological disturbance and muscle soreness.
During the experiment, the participants were also inter-
viewed before the running activity. The interview session was
conducted to identify whether the participants experienced
lethargy. After running, the participant requested to scale the
running activity experiment to indicate the difficulty of the
experiment. The emergence of PF signs was monitored based
on noninvasive diagnostic tools, as summarized in Table 1.

The prolonged fatigue diagnosis was important as sur-
face EMG signals were then grouped and classified based on
PF signs experienced by the participants. Due to ethical
reasons and potential risks endured by the participants, only
symptoms developed within five days of the experiment were
monitored. The earliest PF signs that appeared during the
training were sufficient to indicate the emergence of PF. The
participants were also reminded about two symptoms of
fatigue. The symptoms were observed based on two con-
ditions as follows:

(a) Fatigue symptom 1 (monitored before the running
activity)

The participant was not allowed to run and was
terminated from the experiment if any of the fol-
lowing fatigue symptoms were observed before the
assessment:

(i) Heart rate >100 bpm
(ii) Blood pressure >140/90
(iii) Showing performance decrements in the pre-
vious experiment
(iv) Psychology scores in the 24-hour training dis-
tress questionnaire >14 for at least three days
(v) Collapsing in the previous experiment
(b) Fatigue symptom 2 (monitored during running
activity)
The participant must stop running if the fol-
lowing symptoms are observed while running:
(i) Lack of energy
(ii) Feel dizzy
(iii) Blurred vision

2.4. Surface Electromyography. SEMG signals were collected
from the biceps femoris (BF), rectus femoris (RF), vastus
lateralis (VL), and vastus medialis (VM). These muscles were



selected based on the activation muscles during running and
suffer a high rate of injury in sports involving running
[35, 36]. Running at 10° grade inclination activates 79 + 7%
of BF, 76 +14% of vastus, and 44+20% of RF, and the
activation is elevated as the inclination increases [36, 37].
The sEMG signals were collected using the custom-built
sEMG acquisition system, as shown in Figure 1.

The sEMG system was designed based on an AD620
instrumentation amplifier system. AD620 was selected as it
provides a 130 dB common-mode rejection ratio (CMRR),
low power consumption, that is, 1.3 mA, and comprises a
low input voltage noise of 9nV/+/Hz at 1 kHz and 0.28 uV
p-p in the 0.1 Hz-10 Hz band. The full system offers a signal-
to-noise ratio (SNR) of 25 dB and gains an amplifier at 248.
The 50 Hz notch filter is designed according to the following
equation:

1
F,=——,
2nRC

where R=68k Q and C=47nF.

The schematic diagram of the sSEMG data acquisition
board is depicted in Supplementary Figures S2(a) and S2(b).
The analog signals of surface EMG were digitized into 12 bits
by using National Instrument Data Acquisition (NI-DAQ)
6008 with frequency sampling, F, at 1kHz. 1k Hz was se-
lected to avoid aliasing as suggested by De Luca. Then, the
collected data were filtered using a digital finite impulse
response (FIR), a high-pass filter (HPF), 301 taps, and a
cutoft at 20 Hz. This HPF is essential for removing baseline
wander during data acquisition. F; and HPF specifications
were set using data logger software, LabVIEW.

Ag/Ag Cl electrodes from Kendall MediTrace 200 were
used to acquire the signals. Bipolar electrodes with 20 mm
inner distance were attached to the involved muscles, and
one reference electrode was placed at the knee of the par-
ticipants. The electrodes were positioned at BF, RF, VL, and
VM based on the Surface EMG for the Noninvasive As-
sessment of Muscles (SENIAM) standard [38]. The RF
muscle was determined by 50% distance between the patella
upper borders and the anterior iliac spine (AIS), VL was at
25% distance from Gerdy prominence to AIS, and VM was at
25% distance from the joint space to AIS. After measuring
and marking the muscle, palpation of the involved muscle
was carried out to ensure that the electrodes were placed
correctly. During palpation, the participants were asked to
flex and extend knee movements to activate the muscles, as
shown in Supplementary Table S3 [38, 39].

In data collection, the participants were asked to move
their legs to activate the observed muscles. Only one leg was
involved in data collection, and it was observed that the
participants were comfortable using the left leg in the study.
The investigation on one leg was enough in this study to
observe PF conditions based on surface EMG. RF, VL, and
VL were activated when the hip was flexed, while the knee
was extended to 180. As shown in Figure 2(a), the partic-
ipants were asked to sit on a chair and were requested to
move their legs from Point A to Point B to activate the
quadriceps muscle group. They were asked to stay at each
point for ten seconds and then repeat the movement three

(3)
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times. It was discovered that the RF, VL, and VM muscles
contracted when the leg was at Point B and were at rest when
the leg was at point A, as suggested by Konrad.

Other than RF, VL, and VM, surface EMG signals were
also collected from the BF muscle. The location of the
electrodes for BF was at 50% distance from the lateral
epicondyle of the tibia to the ischial tuberosity. To collect
surface EMG signals from BF, the participants were asked to
stand and move their legs from Point D to Point E, as shown
in Figure 2(b). Before that, the participants needed to place
one (1) of their legs one foot (1 ft) away from Point C, which
was Point D. BF contracted when the hip was extended,
while the knee flexed [34]. When the body gesture was about
30 forward, the knee flexed until the leg was lifted about
15 cm to Point E. This distance was chosen as it provides the
maximum activation of BF during movement [40]. The
participants were requested to move their legs from Point D
to Point E three times at (10) seconds intervals. The SEMG
signals were collected during before and after running ac-
tivities. Figure 3 shows the example of SEMG signals when
the knee is flexed and extended during the position and
movement in Figures 2(a) and 2(b).

2.5. Feature Extraction. A nonoverlapping windowing
technique was employed with samples # = 5000, as shown in
Figure 4. The moment at which the muscles started to
contract and relax was ignored because the dynamic
movement during data collection might result in false in-
formation [41]. The number of n was selected because the
authors of [2] have demonstrated that segmentation length
is suitable for muscle fatigue identification. The features were
extracted at each contraction and averaged.

Specific features were extracted based on the frequency,
time, and wavelet index (WI). The spectral content of surface
EMG was determined according to the Fourier transform,
and the frequency parameter was quantified based on its
median (F,,.q) in (4) and mean (Fpe,,) in (5):

1 M
Frmed = Y. P (4)
i
M
M ¢ p.
Fmean = 721_1\1{] L (5)
z]‘:le

where f;=frequency of the spectrum at frequency bin j,
P, =EMG power spectrum at frequency bin j, and
M =length of the frequency bin.

The time features can be quantified based on the mean
absolute value (MAV) in (6) and the root mean square
(RMS) [42] in (7) [42]:

MAY = % 2|l (6)

RMS = 7)
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TaBLE 1: Prolonged fatigue sign identification.

Identification

Tools Prolonged fatigue signs
Performance decrement
Training log Restlessness
Hypertension

Endurance time previous workout better
HR > 100 before running
BP > 140/90 before running

Sleeping disturbance
24-hour training distress
questionnaire [28]

Muscle soreness

Psychological disturbance

The different time duration between before and during
intensive training
Psychological score >14
Soreness scale (scale 4: tender but not sore to scale, 7: very
sore)

Interview Unexplained lethargy

Feel lethargy before running

Borg Scale CR10 [34]

The difficulty level of exercise

Increasing of the scale

increases
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FIGURE 1: Block diagram of the sSEMG data acquisition system.

where x =signals and n=number of samples [43].

This study also investigates the ability of WI features in
PF [43] identification since it was never tested in deter-
mining fatigue under high-intensity conditions. WT fea-
tures were used to evaluate the distribution shifting of
sEMG energy based on its scale and frequency band
decomposition. WI was calculated based on the discrete
wavelet transform (DWT) which was decomposed into
five levels by using symlet 5 (sym5) and Daubechies (db5)
as the mother wavelet [17]. The decomposition process
consisted of a series of filter banks, where at every i level of
decomposition, the signal was filtered into half of the
frequency band [44]. The low-pass filter produced an
approximation coefficient, while the high-pass filter
produced a detail coeflicient (D;) (scales). Figure 5 shows
the five levels of sEMG decomposition details and the
power spectra of decomposition details at scales 1-5 that
are determined based on the Fourier transform.

The wavelet index ratios between moments at different
scales were then determined based on the power spectrum of
wavelet details, D;.

The five WI features were tested as follows:

(a) The WI ratio is between moment —1 at scale 5 and
moment 5 at scale 1 (WIRM1551).

Dy (f).df

WIRM1551 = 7 s ,
f]f.Lh(f)~df

(8)

where y(t) used was sym5, fl=10Hz and
f2=500Hz, and Ds(f) and D;(f) are the power
spectra of the five and first scales of decomposition
details [14].

(b) The W1 ratio is between moment —1 at the maximum
energy scale and moment 5 at scale 1 (WIRM1M51).

" Do () df
N UR

where y(t) used was db5, f; =10 Hz and f, = 500 Hz,
and D,,, in this work was scale 4 [14].

WIRM1M51 =

(c) The WI ratio is between moment —1 at scale 5 and
moment 2 at scale 2 (WIRM1522).
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FIGURE 2: Leg movement to activate (a) RF, VL, and VM muscles and (b) BF.

1Dy (f).df

WIRM1522:J,22—,

(10)

where y(f) used was db5 and f;=10Hz and
f>=500 Hz. [14]

(d) The WI ratio of energy at scales 5 and 1 (WIRE51) is
Z;\;Dé [n]

Z;\Iﬂ D% [n]

(11)

where y(t) used was sym5 [14].

(e) The WI ratio is between square waveform lengths at
different scales (WIRW51).

Y, |Ds 1l - Ds[j - 1]
YLD [l - Dyl 1]

2
WIRW51 = |

|2 , (12)

where y(t) used was sym5 [14].

During the extraction of WI features, frequency sampling
F,=1k Hz [44] and n = 1024 were used. The WI features were
then log-transformed to follow the normal distribution.

Fatigue identification always refers to the increment or
decrement in the features before and after the activity [45].
The changes and shift of the features (F) in this study were
quantified by

AF = Fpost - Fpre. (13)

The positive value of AF indicates a feature increment for
postexercise, whereas the negative value indicates feature
decrements.

2.6. Statistical Analysis. The features of BF, RF, VL, and
VM were preliminarily grouped into two categories:
normal fatigue (NF) and prolonged fatigue (PF). They
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Knee flexed Knee extended Knee flexed Knee extended Knee flexed
\ | A
[ \[ \
Biceps Femoris (BF)
0.05 T T T T T T
0
_005 1 1 1 1 1 1
0 0.5 1 1.5 2.5 3 35 4
x10*
Rectus Femoris (RF)
0-1 T T T T T T
0
-0.1 I I I I I I
0 0.5 1 1.5 2 2.5 3 3.5 4
x10*
Vastus Lateralis (VL)
0.1 T T T T T T
0
-0.1 I I I I I I
0 0.5 1 1.5 2 2.5 3 3.5 4
x10*
Vastus Medialis (VM)
0.05 T T T T T T
0
_005 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 35 4
Time (ms) x10*

FIGURE 3: Example of SEMG signals collected from BF, RF, VL, and VM.

5000 samples
Feature Contraction 1

5000 samples
Feature Contraction 2

FIGURE 4: Nonoverlapping windowing technique in feature extraction.

were distinguished based on PF signs explained in Table 1.
While the features of the participants who did not ex-
perience PF conditions were grouped into NF, the features
of the participants who experienced PF conditions were
grouped into PF. A t-test was conducted, and a significant
value was set at P <0.05.

2.7. Daily Plot of Surface EMG Behaviour. The daily plot of
SEMG behaviour for NF and PF conditions was performed
to investigate the progression of fatigue in different muscles
with different activation percentages. It was plotted based on
AFeq and ARMS since these two features commonly rep-
resent time and frequency information on surface EMG in
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FIGURE 5: (a) SEMG wavelet details at scales 1-5. (b) Power spectra using the Fourier transform of wavelet details at scales 1-5.

fatigue identification. A daily plot was also conducted based
on five AWI features. To identify the changing behaviour of
the features during the emergence of PF, the features were
normalized by plotting them from a day before the emer-
gence of PF and the first three days under PF conditions. The
reasons were the individual’s responses to PF signs that
varied, and the normalization will help understand the trend
line of SEMG features during the intensive training period
specifically under PF conditions.

2.8. Classification. The classification process began with
selecting features and reducing the dimension of the fea-
tures. The classification was performed based on different
feature selections to investigate the optimum classification
performance based on the selection. The feature selections
were based on the following features:

(a) Time features: AMAV and ARMS
(b) Frequency features: AF,.q and AF,can

(c) Time and frequency features: AMAYV, ARMS,
AFmed, and AFmean

(d) Wavelet index features: AWIRM1551, AWIRM1Mb51,
AWIRM1522, AWIRES51, and AWIRW51

(e) Time, frequency, and wavelet index features: AMAYV,

ARMS, AFmed, AFmean, AWIRM1551,
AWIRMI1MS51, AWIRMI1522, AWIRE51, and
AWIRWS51

From the feature selection, dimensionality reduction was
employed to reduce the complexity and computation time of
the classification algorithm, increase accuracy, and decrease
overfitting problems [46]. Data reduction in this work was
carried out based on linear discriminant analysis (LDA).
This method maximizes the intercluster distance between
classes and minimizes the intracluster distance within classes
in the transformation of reduced features. In LDA, the
original dimensional feature space was transformed into a
lower dimensional feature space, without losing any im-
portant information [46].

In the classification stage, the naive Bayes (NB) tech-
nique was applied to discriminate NF and PF classes. This
method was selected as it was previously utilized in ex-
periments studying fatigue classification [36, 37]. NB is one
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of the established statistical pattern recognition methods
[46]. NB classifier functions are based on the probability
distribution of the feature vector, x. x belongs to class w,,
which is computed from probability distribution condi-
tioned on the class w,, P(x|w,,), by assuming class-condi-
tional independence of the features:

d

P(x|w,,) = HP(x(k)Iwm), (14)

k=

—

where d is a dimension of the feature instance x. Equation
(13) requires that the k-th features of the instance, which is
x™®, are independent of all other features, given the class
information.

The probability of the x class itself is characterized by

d
P(x) =[] P(x"). (15)
k=1

The classification rule was computed from the dis-
criminant function g,,(x) to represent posterior probabilities
as

d
I (X) = P(wm)HP(y(k)Iwm). (16)
k=1

It was represented for each m-class. Meanwhile, the x
class is determined by the largest g,,(x) computation.

In this work, k-fold cross-validation (CV) was adopted
for training the classifier. The performance of the classifi-
cation was evaluated for the accuracy, specificity, precision,
and average CV error (CVErr).

3. Results and Discussion

3.1. Physiological Measurements. Table 2 shows a daily %
HRmax record. It indicates that about 18 participants ran at
their maximal effort by showing %HRmax >80%, based on
the Edwards Intensity Zone 1992. Running at this rate
caused the participants to experience heavy breathing and
muscular fatigue. It proves that the Bruce Protocol treadmill
test provides the high training intensity required in this
experiment. High-intensity exercise is essential for inducing
faster PF signs. Physiological fatigue responses under PF
conditions are tabulated in Table 3. It shows that the first PF
sign developed was muscle soreness, which was on day 2
(D,) of the assessment. This situation was found to be similar
to other studies in [6, 47], whereby soreness developed as
early as 24 hours after strenuous exercise.

Table 3 also indicates that PF signs accumulated with
performance decrement starting at day 4 (D4) of intensive
training. The results agree with [16] as the untreated PF
condition develops more PF signs. Apart from that, the
results suggest that only three PF signs appeared within five
days of intensive training including soreness and perfor-
mance decrement. Moreover, the results reveal that these are
the earliest signs of PF developed in the study. The result in
Table 3 further shows that none of the participants expe-
rienced psychological and sleeping disturbance, restlessness,

and hypertension following intensive training. Hence, the
classification of collected surface EMG signal features was
based on physiological responses identified in Table 3. The
term PF condition afterward refers to muscle soreness,
performance decrement, and lethargy.

3.2. Surface Electromyography. The daily plot of sEMG
feature behaviour is displayed in Figure 6, while the bar plot
represents standard deviation, “0,” and “x,” symbols rep-
resent the mean value of features in NF and PF conditions,
respectively. The features under NF conditions were plotted
from day 1 to day 5 (D;-Ds) of the assessment, whereas the
plots under PF conditions were normalized from the day
before the emergence of PF (Dyg) to the first three days of
the occurrence of PF signs (D;-D53).

3.2.1. Frequency Feature. Theoretically, the frequency in-
formation changes in SEMG describe the behaviour of
conduction velocities inside the muscle and subsequent
changes in the duration of the motor unit action potential
waveform and fluctuation of muscle force and muscle fibre
types as well as their decomposition [8, 9]. The frequency
spectrum  shift information is represented by its mean
(Fmean) and median (Fp,.q) in assessing muscle fatigue [42].

Figure 6 shows that AF,.4 resulted in a negative value for
BF, RF, VL, and VM under NF conditions. The negative
values of AF,,.q demonstrate that F,.q was decreasing
postrunning activities. The decrement in F,.q was like the
most dominant opinion where frequency tends to shift to a
lower value to characterize fatigue. The decrease in the centre
of frequency as a result of reduced muscle conduction ve-
locity and a change in the frequency spectrum was brought
on by the absence of high threshold motor unit recruitment.
However, AF,,.q shows positive values for BF, VL, and VM
on day 4 (D,) and day 5 (Ds) under the NF condition. The
positive values of AF, .4 indicate that the median frequency
spectrum was shifted upwards. An increase in F,,.q was also
identified on the day before PF signs appeared (Dyg) for the
BF, VL, and VM muscles, and this behaviour was sustained
throughout the PF condition.

The plot in Figure 6 also indicates that the positive values
of AF,eq only occurred in RF during PF conditions. Sta-
tistical analysis reveals that an increment in AF,,,.q under PF
is significant at P < 0.05 for BF, RF, VL, and VM, as tabulated
in Table 4. An increase in Fp,.q of SEMG during fatigue was
rarely reported. The increasing center of frequency was once
reported by [48] during the first 30 minutes of recovery from
dynamic exercise at a load of 80% of the VO, max. The
increasing center of the frequency was reported following
the elevation of temperature and lactate after high-intensity
dynamic exercise [48]. The relationship between the skin and
muscle temperature and the increasing center of the sSEMG
frequency spectrum was later confirmed in [49]. The positive
linear relationship between the temperature and median
frequency might be due to an increase in the muscle con-
duction velocity to increase the power output [49, 50]. The
relationship between the frequency of SEMG and temper-
ature was also discussed in [51].
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TaBLE 2: Intensity of training based on percentage of the maximal
heart rate.

Intensity zone %

HRmax Day_1 Day_ 2 Day_3 Day_ 4 Day_5
Very hard 90-100 10 8 8 11 10
Hard 80-89 8 9 7 5 4
Moderate 70-79 — 1 3 2 1
Light < 69 2 2 2 2 2
Mean + SD 86+13 86+12 84+14 85+15 87+14

In [51], the authors demonstrated that there is a less
effect of temperature on muscle strength and frequency of
sEMG but related other possibilities that affected the fre-
quency features such as different recruitment properties of
the motor units and the percent of fats and slow twitch
motor units under electrodes. Heavy dynamic exercise might
also contribute to the substitution of muscle groups fol-
lowing an effect on the alpha motor neuron pool through
reflex inhibition that alters recruitment properties. The effect
of the neural drive on the muscle and its motor unit action
potential was also identified as one of the factors that affect
sEMG components [52].

The neural drive for the muscle factor might be related to
fatigue induced in the peripheral and central systems. Fa-
tigue in the central system occurs when neurochemical in the
brain is altered and stress hormones are secreted. When this
happens, it will modify the peripheral information in the
contracting muscles and affect the characteristic of SEMG
[53-56].

The increment in frequency information features AF,,.q
under PF conditions also might be due to fatigue at the
peripheral system. Fatigue at the peripheral system arises
from the muscle itself when there is impairment of the
peripheral mechanism due to high-intensity exercise as
demonstrated by participants in this experiment [45, 49, 50].
High-intensity exercise reduces blood flow due to intense
muscle contraction which causes the inadequacy of oxygen
supply to the muscle. This situation is also known as an
anaerobic condition [54]. The inability to get enough oxygen
triggers a biochemical reaction in allowing muscle con-
traction [57, 58]. An inadequate recovery period causes the
inability of ionic alteration during high-intensity exercise to
return to its normal level and continue to accumulate. This
situation is signified by the emerging PF signs such as
soreness and performance decrement. The ionic changes
most probably involve glycogen breakdown and the pres-
ence of lactate concentration. It is supported by the recorded
%HRmax during the running activity, of which 80% and
above commonly involves anaerobic contraction. In an-
aerobic contraction, glycogen and lactate concentration play
important roles in ensuring muscle continuous contraction
[57, 58]. Furthermore, the alteration in glycogen stores
normally leads to soreness and performance decrement due
to inadequate fuel for workload [22, 31], and the release of
lactate contributes to fatigue and muscle pain, as experi-
enced by the participants in this study. This situation is
supported in [31, 48] that also demonstrated that the
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alteration of both concentrations led the frequency of sSEMG
to shift to the upper value.

Figure 6 also demonstrates that there were different
increment trends in AF,,.4 among the investigated muscles.
The trends that happened might be related to muscle acti-
vation during running activity. Running at a higher slope
such as in the Bruce Protocol treadmill test requires more
muscle activation from BF, VL, and VM than from RF, as
demonstrated in [36, 37]. A previous study shows that more
muscle activation leads to faster progression of fatigue [59].
This study has demonstrated that changes in AF,,.q happen
faster in more activated muscles than in less activated ones.
The fast changes in the frequency made the observation of PF
signs through more activated muscles rather difficult. The
reason was the frequency feature increased even without the
emergence of PF signs. Indirectly, an increase in the median
frequency might be due to an increase in the muscle tem-
perature and muscle conduction velocity to increase the
power output, substitution of the muscle group and re-
cruitment properties, and alteration of ionic concentration
underlying the muscle that progressed faster in muscle
activation during running. This study has also proved that
PF conditions could be easily observed from less activated
muscles such as RF because the increment in frequency only
occurred under PF conditions. It indicates that PF can be
easily identified when frequency from less activated muscles
starts to increase.

3.2.2. Time Features. Muscle activity can be observed
through its amplitude during the contraction in time-do-
main representations. In fatigue identification, changes in its
amplitude signify the degree of fatigue experienced by the
subjects. As exhibited in Figure 6, ARMS of BF, RF, and VM
under NF conditions increased on D, and decreased on the
following days. This progression is similar to dominant
opinions that with an increment in amplitude, the decre-
ment in behaviour in characterizing the degree of fatigue
soon follows [10].

However, the ARMS increased again, as shown in D5, in
the BF and VM muscles (Figure 6). Theoretically, in normal
conditions, when the load increases, the amplitude tends to
have a larger decrement. In this study, the load refers to the
endurance time, for which the participants were asked to
improve their performance daily. Based on the plot of AF,,.4
on similar days Ds on BF and VM, the median frequency
shows an increment. In the previous section, the increments
in AF,.q were related to an increase in temperature.
However, the findings in [48, 49] have shown that the in-
crement in the muscle and skin temperature will reduce the
amplitude of SEMG signals. The increment in ARMS indi-
cated by the BF and VL muscles in D5 might be due to the
release of free-resting calcium which resulted in force po-
tentiation and led to the increment in EMG, as demonstrated
by [60].

The increment in ARMS especially under PF might
also be due to the changes in ionic concentration. The
changes in the ionic concentration were observed through
frequency feature behaviour in the precious section. The
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TaBLE 3: Number of participants under prolonged fatigue conditions based on physiological responses.

Day 1 Day 2 Day 3 Day 4 Day 5
Performance improvement 20 20 17 12
Performance decrement — — 3 5
1 (excellent) 2 1 1 1 1
2 (very good) 6 5 4 2 3
Muscle scale 3 (good) 12 12 10 11 8
4 (tender, but not sore) — 1 3 4 7
5 (sore) — 1 2 2 2
Psychology score<14 20 20 20 20 20
No sleeping disturbance 20 20 20 20 20
No lethargy 20 20 17 16 15
Lethargy — — 3 4 5
HR before run <100 20 20 20 20 20
BP before run <140/90 20 20 20 20 20
AF,_, (Hz) ARMS (V) AW o AW s AW ion AW, AW
20 - - 0.01 10 - - 10 5
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FIGURE 6: Daily plot of changes in muscle features under NF and PF conditions.

findings in [61] reported that there was a curvilinear
positive relationship between lactate concentration (after
reaching a certain lactate threshold) and the amplitude of
sEMG.

Apart from that, Figure 6 discloses that ARMS started to
decrease again on D, of PF, specifically in BF and VL. The
decrement in ARMS under PF conditions was discovered in
[31, 62]. Both studies have proved that amplitude decreases
during the emergence of soreness. Nevertheless, another
study reveals that the amplitude increases under similar
conditions [63]. Therefore, it is reliable to state that the
amplitude increases or decreases under PF conditions. The

increment and decrement in amplitude under PF also show
the degree of fatigue experienced by the muscle. This is
attributed to the decrement in amplitude under PF which
occurred in highly activated muscles like BF, VL, and VM.
High activation led to the fast progression of fatigue. It began
when the frequency features started to increase, followed by
the amplitude which also increased. Then, it continued with
the decreased behaviour to show a certain degree of fatigue
experience. This finding was also supported by the pro-
gression of fatigue mapped on RF, which was less activated
in the study. Figure 6 demonstrates that the RF muscle under
NF conditions for ARMS continued to decrease (by showing
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TABLE 4: Statistical analysis on the four muscle features.
Features (mean + SD)
Muscles AFpen  AFpeq AMAV ARMS A A A a AWIRWS51
WIRMI1551 WIRMIMS51 WIRMI1522 WIRES]
biceps NP *(Ig:g;* *(;%2)5 _(%%%%3)4 _(00'%00%3 *0.80 (2.36) *0.75 (233)  0.09 (0.82) (0072;) (008202)
s 7 SO e o ozow 07
Rectus NF *(;_A;f; *(;.26;)7 *(_0%%01%? *(_0%%02(16)6 *1.02 (2.60) *1.03 (2.64) *0.36 (1.11) ;1%120) *0.10 (1.13)
s ST W W e asaa om0
Vastas NF *(;.242)7 *(;_20'(1)5 _(8:88(2);)8 _(8:88333 0.40 (2.74)  *0.66 (2.66) 0.17 (0.94) (*0%173) 0.11 (0.88)
s o3 SN 0M g o oo S5 8
Ve NE (;(;;)5 (;(Zé;) 8)%%021) 85%()0()31) 0.58 (2.74) 054 (3.17) 024 (1.02) (8_';2) 0.1 (0.95)
s GG om0 g s OB 09

*The differences differ significantly tested using the t-test at P < 0.05.

a negative value) and only increased for ARMS under PF
conditions. The transition behaviour of ARMS in the RF
muscle was actually similar to that of the AF,,.4 situation,
whereby the shifts (from decreasing to increasing) only
occurred under PF conditions. The behaviour of ARMS for
the RF muscle, which decreased under NF and increased
under PF conditions, is statistically significant at P <0.05
(Table 4). The statistical test also indicates that the behaviour
of ARMS under both conditions for BF, VL, and VM is not
significant at P <0.05 due to the fluctuation trend in the
daily plot (see Figure 6).

3.2.3. Wavelet Indices. 'This study also investigates the ability
of WI features in PF identification. The five WI features were
studied, as proposed by [43]. WI features tended to have
similar behaviour and response to BF, RF, VL, and VM, as
observed in Figure 6. They also tended to increase under NF
conditions and decrease under PF conditions.

Figure 6 for AWIRMI1551, AWIRMIMS51, and
AWIRM1522 illustrates the transition of the increment and
decrement in WI features under NF conditions. It is also
important to note that the features were constantly de-
creased under PF conditions. The increment (positive value)
in WI features under NF in Figure 6 is similar to the results
demonstrated in [17]. The increment in the features specifies
that the energy distribution shifted to a lower frequency
band indicating similar behaviour of frequency, which
tended to decrease to show fatigue conditions [10].

Figure 6 also demonstrates that the increment and
decrement transitions occurred faster in high-activated
muscles such as BF and VL. These situations can be observed
under NF conditions on D, and D5 for AWIRM1551,
AWIRMI1MS51, and AWIRM1522. AWIRM1551,
AWIRMI1MS51, and AWIRM1522 features also demonstrate
that PF could be easily identified in RF, as it occurred on the
AF 04 and ARMS daily plot. The decrement in AWI features

was caused by energy distribution which slowly shifted to a
higher frequency band, which caused the energy distribution
at the lower frequency band of decomposition to decrease.

The WIRESI feature was quantified in accord with its
coefficient details D of decomposition. The increment in
AWIRES] features showed a higher value of D at level 5
postexercise than preexercise. Figure 6 indicates that similar
trends also appeared in another daily plot of WI features, of
which AWiggs; gradually decreased under NF plots. Fur-
thermore, the value constantly decreased under PF condi-
tions. Although D indicates the time representation of
decomposition, AWIRES] proved that the behaviour of the
features did not rapidly fluctuate as demonstrated by ARMS
behaviour. The robustness and sensitivity of WI in dealing
with nonstationary behaviour in sSEMG were exhibited.

AWIRWS5I was used to show accumulated changes in the
waveform length ratio at D level 5 to D level 1. Through
waveform length behaviour, the duration, frequency, and
amplitude of the surface EMG signals were effectively
compressed [17]. The increment in AWIRW5I in Figure 6
under NF suggests that the surface EMG waveform fluc-
tuated faster postexercise than preexercise. The features
gradually decreased to indicate the fluctuation of the surface
EMG waveform at D level 5 which was getting slower during
postexercise. AWIRW51 persistently decreased under PF
conditions. Hence, it signifies that, apart from the amplitude
and energy distribution in the spectra, the waveform
characteristic of surface EMG also changed due to PF.

Although BF, RF, VL, and VM demonstrate similar be-
haviour of WI features under NF and PF conditions, statistical
results indicate that all five AWT features are only significant
at P<0.05 for the RF muscle, as tabulated in Table 4.

3.3. Classification. Table 5 indicates the classification results
based on the NB method in identifying PF conditions. This
result reveals the ability of SEMG features to distinguish
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TaBLE 5: Classification results of prolonged fatigue based on the naive Bayes method.

Parameter

Features

Muscles
Performance BF RF VL VM

Time features (AMAV, ARMS)

Accuracy (%) 70 78 64 56
Specificity
(%) 100 84 83 97
Precision (%) 0 67 36 0
CVErr 0.31 0.25 043 0.44

Frequency features (AFpyed> AFmean)

Accuracy (%) 86 95 68 77
Specificity
(%) 88 94 89 83
Precision (%) 79 96 36 69
CVErr 0.15 0.04 0.39 0.23

Time and frequency features (AMAV, ARMS, AFe4> AFmean)

Accuracy (%) 94 98 95 97
Specificity
(%) 97 100 100 97
Precision (%) 86 96 88 96
CVErr 0.06 0.01 0.07 0.02

Wavelet index features (AWIRM1551, AWIRM1M51, AWIRM1522, AWIRE51, AWIRW51) (%)

Accuracy (%) 82 91 80 66

Specificity 85 93 78 71
Precision (%) 77 89 84 58

CVErr 0.18 0.09 0.23 0.38

Time, frequency, and wavelet index features (AMAV, ARMS, AFmed, AFmean, AWIRM1551,

AWIRMIMS51, AWIRM1522, AWIRE51, AWIRWS51)

Accuracy 87 88 77 90

Specificity 8 91 79 83

Precision 89 8 80 100
CVErr 016 0.15 0.23 0.2

between NF and PF based on the naive Bayes (NB) classi-
fication method. Table 5 tabulates the lowest accuracy results
from time features of BF, VL, and VM, due to fast fluctuation
and overlapping plots of time feature values displayed in
Figure 6. This condition makes predicting PF conditions
through these features quite difficult. The results revealed in
Table 5 indicate that the frequency features had better
classification accuracy than time features. Better accuracy
was assisted by the significant statistical test results and daily
plots to distinguish between NF and PF of frequency
features.

The results in Table 5 reveal that the feature selection based
on time and frequency offers high-performance accuracy,
specificity, and precision in comparison with other feature
selections. Thus, it can be concluded that both the time and
frequency features of SEMG are significant for PF identifica-
tion. In this study, the combination of time and frequency
feature selections offers accuracy at a rate of 94% on BF, 98% on
RF, 95% on VL, and 98% on VL in distinguishing PF con-
ditions. The classification of performances in Table 5 proves the
ability of WI features in PF detection. The result shows that W1
features produced good classification accuracy in BF (82%), RF
(91%), and VL (80%) and less in VM (66%).

4. Conclusions

In conclusion, this study has demonstrated that the presence
of PF can be identified using the surface EMG signals. The
study also introduced a new quantitative noninvasive
method to monitor the progression of fatigue, specifically in
the muscle of athletes. This monitoring method can provide

information to athletes on their performance, and they can
perform at their optimum energy. This noninvasive method
is suitable to be applied in the sports field for fatigue
management and prevent chronic fatigue syndrome for
athletes.

Data Availability

The surface electromyography physiology data used to
support the findings of this study have not been made
available because they involve the third-party right and
participant privacy.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by Universiti Putra Malaysia under
IPS Putra Grant.

Supplementary Materials

Table S1: schedule of the experiment. Table S2: Bruce
Protocol treadmill test. Table S3: prolonged fatigue sign
identification. Table S4: quadriceps muscle movement based
on the flexed and extended knee. Appendix S1: PAR-Q and
You. Appendix S2: training log data collection form. Ap-
pendix S3: 24-hour history training distress questionnaire.
Figure S1: flowchart of the experimental procedure and data



14

collection. Figure S2: schematic circuit of the surface EMG
data acquisition system. (Supplementary Materials)

References

[1] E. J. D. J. H. Nagel, Bronzino, and B. Amplifiers, The Bio-
medical Engineering Handbook, CRC Press LLC, Boca Raton,
FL, USA, 2000.

[2] N. A. Mohd Ishak, P. I. Khalid, N. H. Mahmood, and
M. Harun, “Determination of epoch length and regression
model for 15-second segment of SEMG signal used in joiny
analysis of spectrum and amplitude,” Jurnal Teknologi, vol. 5,
no. 78, pp. 7-13, 2016.

[3] J. B. Dingwell, J. E. Joubert, F. Diefenthaeler, and J. D. Trinity,
“Changes in muscle activity and kinematics of highly trained
cyclists during fatigue,” IEEE Transactions on Biomedical
Engineering, vol. 55, no. 11, pp. 2666-2674, 2008.

[4] M. Z. C. Hassan, P. I. K.-I. Member, N. A. Kamaruddin, and

N. A. Ishak, “Derivation of Simple Muscle Fatigue Index for

Biceps Muscle Based on Surface Electromyography Temporal

Characteristics,” in Proceedings of the IEEE Conference on

Biomedical Engineering and Sciences, pp. 8-10, Kuala Lumpur,

Malaysia, December 2014.

I. Cosic, S. L. Giudice, J. Hawley, D. K. Kumar, and

V. P. Singh, “Strategies to identify changes in SEMG due to

muscle fatigue during cycling,” in Proceedings of the 27th

Annual Conference IEEE Engineering in Medicine and Biology

Shanghai, China, 2005.

N. Hedayatpour, D. Falla, L. Arendt-Nielsen, and D. Farina,

“Effect of delayed-onset muscle soreness on muscle recovery

after a fatiguing isometric contraction,” Scandinavian Journal

of Medicine & Science in Sports, vol. 20, no. 1, pp. 145-153,

2010.

[7] D. H. Gates, The Role of Muscle Fatigue on Movement Timing
and Stability during Repetitive Tasks, University of Texas,
Austin, TX, USA, 2009.

[8] M. Gonzilez-Izal, A. Malanda, E. Gorostiaga, and
M. Izquierdo, “Electromyographic models to assess muscle
fatigue,” Journal of Electromyography and Kinesiology, vol. 22,
no. 4, pp. 501-51212, 2012.

[9] E.J. Kupa, S H. Roy, S. C. De Luca, CJ. Kupa, S. H. Roy, and
S. C. Kandarian, “Effects of muscle fiber type and size on EMG
median frequency and conduction velocity,” Journal of Ap-
plied Physiology, vol. 79, no. 1, pp. 23-32, 1995.

[10] N. A. Dimitrova and G. Dimitrov, “Interpretation of EMG
changes with fatigue: facts , pitfalls , and fallacies,” Journal of
Electromyography and Kinesiology, vol. 13, no. 1, pp. 13-36,
2003.

[11] M. Gonzélez-Izal, A. Malanda, I. Navarro-Amezqueta et al.,
“EMG spectral indices and muscle power fatigue during
dynamic contractions,” Journal of Electromyography and
Kinesiology, vol. 20, no. 2, pp. 233-24040, 2010.

[12] T. Moritani and M. Muro, “Motor unit activity and surface

electromyogram power spectrum during increasing force of

contraction,” European Journal of Applied Physiology and

Occupational Physiology, vol. 56, no. 3, pp. 260-265, 1987.

S. Cobb and A. Forbes, “Electromyographic studies of mus-

cular fatigue in man,” American Journal of Physiology-Legacy

Content, vol. 65, no. 2, pp. 234-251, 1923.

[14] M. Gonzilez-Izal, I. Rodriguez-Carreno, A. Malanda et al.,
“sEMG wavelet-based indices predicts muscle power loss
during dynamic contractions,” Journal of Electromyography
and Kinesiology, vol. 20, no. 6, pp. 1097-1106106, 2010.

[5

—_
)

[13

Journal of Healthcare Engineering

[15] J. R. Potvin and L. R. Bent, “A validation of techniques using
surface EMG signals from dynamic contractions to quantify
muscle fatigue during repetitive tasks,” Journal of Electro-
myography and Kinesiology, vol. 7, no. 2, pp. 131-1399, Jun.
1997.

[16] L. Arendt-Nielsen and T. Sinkjeer, “Quantification of human
dynamic muscle fatigue by electromyography and kinematic
profiles,” Journal of Electromyography and Kinesiology, vol. 1,
no. 1, pp. 1-8, 1991.

[17] A.Malanda and M. Izquierdo, “New wavelet indices to assess
muscle fatigue during dynamic contractions,” World Acad-
emy of Science, Engineering and Technology, vol. 3, pp. 456-
461, 2009.

[18] P. Z. Pearce, “A practical approach to the overtraining syn-
drome,” Current Sports Medicine Reports, vol. 1, no. 3,
pp. 179-18383, 2002.

[19] C.-Y. Guezennec, “Review overtraining syndrome,” Bulletin
de I’Académie nationale de médecine, vol. 188, no. 6,
pp. 923-931, 2004.

[20] J. C. Ka Brooks, “Overtraining, exercise, and adrenal insuf-
ficiency,” Journal of Novel Physiotherapies, vol. 3, no. 125,
pp. 1-10, 2013.

[21] A.E.Jeukendrup, “Overtraining: how to monitor and how to
prevent?” Sport Nutrition Conference, vol. 5, pp. 12-15, 2010.

[22] H.Ishii and Y. Nishida, “Effect of Effect of Lactate Accumulation
during Exercise-induced Muscle Fatigue on the Sensorimotor
Cortexactate accumulation during exercise-induced muscle fa-
tigue on the sensorimotor cortex,” Journal of Physical Therapy
Science, vol. 25, no. 12, pp. 1637-1642, 2013.

[23] K. M. Myrick and D. N. P. Aprn, “Syndrome in Overtraining
and Overreaching Syndrome in Athletesthletes,” The Journal
for Nurse Practitioners, vol. 11, no. 10, pp. 1018-1022, 2015.

[24] C. Y. Guezennec, “Overtraining [Overtraining syndro-
me].yndrome,” Bulletin de ’Académie nationale de médecine,
vol. 188, no. 6, pp. 923-930, 2004.

[25] M. Hug, P. E. Mullis, M. Vogt, N. Ventura, and H. Hoppeler,
“Training modalities: over-reaching and over-training in
athletes , including a study of the role of hormones,” Best
Practice & Research Clinical Endocrinology & Metabolism,
vol. 17, no. 2, pp. 191-209, 2003.

[26] J. B. Kreher and J. B. Schwartz, “Overtraining Overtraining
Syndromeyndrome: a practical guide,” Sports Health: A
Multidisciplinary Approach, vol. 4, no. 2, pp. 128-13838, 2012.

[27] R. Meeusen, M. Duclos, C. Foster et al., “European College of
Sport Science, American College of Sports Medicine. Pre-
vention, diagnosis, and treatment of the overtraining syn-
drome: joint consensus statement of the European College of
Sport Science and the American College of Sports Medicine,”
Medicine and science in sports and exercise, vol. 45, no. 1,
pp. 186-205, 2013.

[28] D. Purvis, S. Gonsalves, and P. A. Deuster, “Physiological and
psychological fatigue in extreme conditions: overtraining and
elite athletes,” PMeamp;Rhe Journal of Injury, Function, and
Rehabilitation, vol. 2, no. 5, pp. 442-450, 2010.

[29] V.P. Singh, “Strategies to identify muscle fatigue from SEMG
during cycling,” in Proceedings of the 2004 Intelligent Sensors,
Sensor Networks and Information Processing Conference,
pp- 547-552, Melbourne, Australia, December 2004.

[30] M. Haddad, A. Chaouachi, D. P. Wong et al., “Influence of
fatigue, stress, muscle soreness and sleep on perceived ex-
ertion during submaximal effort,” Physiology & Behavior,
vol. 119, pp. 185-189, 2013.

[31] J. P. Gavin, S. D. Myers, and M. E. T. Willems, “Neuro-
muscular responses to mild-muscle damaging eccentric


https://downloads.hindawi.com/journals/jhe/2023/1951165.f1.docx

Journal of Healthcare Engineering

exercise in a low glycogen state,” Journal of Electromyography
and Kinesiology, vol. 25, no. 1, pp. 53-60, 2015.

[32] K. Birch and K. George, “Overtraining the female athlete,”
Journal of Bodywork and Movement Therapies, vol. 3, no. 1,
pp. 24-29, 1999.

[33] S. M. Fox,]J. P. Naughton, and W. L. Haskell, “Physical activity
and the prevention of coronary heart disease,” Annals of
Clinical Research, vol. 3, no. 6, pp. 404-432, 1971.

[34] G. Borg, An Introduction to Borg’s RPE-Scale, Mouvement
Publication, New York, 1985.

[35] D.R. Armfield, D. H. M. Kim, J. D. Towers, J. P. Bradley, and
D. D. Robertson, “Sports-related muscle injury in the lower
extremity,” Clinics in Sports Medicine, vol. 25, no. 4,
pp. 803-84242, Oct. 2006.

[36] M. A. Sloniger, K. J. Cureton, B. M. Prior, and E. M. Evans,
“Lower extremity muscle activation during horizontal and
uphill running,” Journal of Applied Physiology, vol. 83, no. 6,
pp. 2073-2079, 1997.

[37] W. B. Edwards, “Biomechanics and Physiology of Uphill and
Downhill Running,” Sports Medicion, pp. 1-16, 2016.

[38] D. Stegeman and H. Hermens, “Standards for Surface Elec-
tromyography: The European Project Surface EMG for Non-
invasive Assessment of Muscles (SENIAM),” 2007, http://
www.seniam.org/%5Cnhttp://www.med.uni-jena.de/
motorik/pdf/stegeman.pdf.

[39] E. Kwatny, D. H. Thomas, and H. G. Kwatny, “An application
of signal processing techniques to the study of myoelectric
signals,” IEEE Transactions on Biomedical Engineering, vol. 17,
no. 4, pp. 303-31313, 1970.

[40] P. Konrad, “The ABC of EMG: A Practical Introduction to
Kinesiological Electromyography. Noraxon Inc., Scottsdale,
AZ, USA,” 2005.

[41] G. Pioggia, G. Tartarisco, G. Ricci, L. Volpi, G. Siciliano, and
S. Bonfiglio, “A wearable pervasive platform for the intelligent
monitoring of muscular fatigue,” in Proceedings of the 2010
10th International Conference On Intelligent Systems Design
And Applications, pp. 132-135, Cairo, Egypt, November 2010.

[42] A.Phinyomark, S. Thongpanja, and H. Hu, “The usefulness of
mean and median frequencies in electromyography analysis,”
Computational Intelligence in Electromyography Analysis-A
Perspective on Current Applications and Future Challenges,
vol. 23, pp. 195-220, 2012.

[43] A. June, M. Cifrek, V. Medved, and S. Tonkovic, “Surface
EMG Based Muscle Fatigue Evaluation in Biomechanics,”
Clinical Biomechanics, 2009.

[44] M. Sarillee et al., “Classification of muscle fatigue condition
using,” IEEE International Conference on Control System,
Computing and Engineering, pp. 27-29, 2015.

[45] S. Kattla and M. M. Lowery, “Fatigue related changes in
electromyographic coherence between synergistic hand
muscles,” Experimental Brain Research, vol. 202, no. 1,
pp- 89-99, Apr. 2010.

[46] R. Polikar, Pattern Recognition, pp. 1-22, Wiley Encyclopedia
of Biomedical Engineering, New Jersey, NJ, USA, 2006.

[47] A. McKune, S. Semple, and E. Peters-Futre, “Acute exercise-
induced muscle injury,” Biology of Sport, vol. 29, no. 1,
pp. 3-10, 2012.

[48] J. S. Petrofsky, “Applied Frequency and amplitude analysis of
the EMG during exercise on the bicycle ergometerhysiology
during exercise on the bicycle ergometer,” European Journal
of Applied Physiology and Occupational Physiology, vol. 41,
no. 1, pp. 1-15, 1979.

[49] D. Stewart, A. Macaluso, and G. De Vito, “The effect of an
active warm-up on surface EMG and muscle performance in

15

healthy humans,” European Journal of Applied Physiology,
vol. 89, no. 6, pp. 509-513, 2003.

[50] K.Watanabe, T. Sakai, S. Kato et al., “Conduction Conduction
Velocity of Muscle Action Potential of Knee Extensor Muscle
During Evoked and Voluntary Contractions After Exhaustive
Leg Pedaling Exercise.elocity of muscle action potential of
knee extensor muscle during evoked and voluntary con-
tractions after exhaustive leg pedaling exercise,” Frontiers in
Physiology, vol. 11, pp. 546-8, 2020.

[51] J. Petrofsky and M. Laymon, “The relationship between
muscle temperature , MUAP conduc- tion velocity and the
amplitude and frequency components of the surface EMG
during isometric contractions,” Basic and Applied Myology,
vol. 15, no. 2, pp. 61-74, 2005.

[52] D. Farina, R. Merletti, and R. M. Enoka, “The extraction of
neural strategies from the surface EMG: The extraction of
neural strategies from the surface EMG: an updaten update,”
Journal of Applied Physiology, vol. 117, no. 11, pp. 1215-1230,
2014.

[53] B. Sesboiié and J.-Y. Guincestre, “Muscular fatigue,” Annales
de Réadaptation et de Médecine Physique: revue scientifique de
la Societe francaise de reeducation fonctionnelle de readapt-
ation et de medecine physique, vol. 49, no. 6, pp. 257-264,
2006.

[54] M. P. Davis, D. Walsh, and F. Edin, “Mechanisms of fatigue,”
Journal of Supportive Oncology, vol. 8, no. 4, pp. 164-174,
2010.

[55] S. C. C. Gandevia, “Spinal and Spinal and Supraspinal Factors
in Human Muscle Fatigueupraspinal factors in human muscle
fatigue,” Physiological Reviews, vol. 81, no. 4, pp. 1725-1789,
2001.

[56] S.Zakynthinos and C. Roussos, “Respiratory muscle fatigue,”
Physiologic Basis of Respiratory Disease, vol. 9, pp. 289-306,
2005.

[57] M. S. Tenan, J. T. Blackburn, and G. Robert, “Exercise-in-
duced glycogen reduction increases muscle activity,” Inter-
national Journal of Exercise Science, vol. 9, no. 3, pp. 336-346,
2016.

[58] J. Finsterer, “Biomarkers of peripheral muscle fatigue during
exercise,” BMC Musculoskeletal Disorders, vol. 13, no. 1,
p. 218, 2012.

[59] C. Hernandez, E. Estrada, L. Garcia, G. Sierra, and
H. Nazeran, “Traditional SEMG fatigue indicators applied to a
real-world sport functional activity: roundhouse kick,” Elec-
tronics, Communications and Computer, vol. 55, pp. 154-158,
2010.

[60] T.I. Arabadzhiev, V. G. Dimitrov, and G. V. Dimitrov, “The
increase in surface EMG could be a misleading measure of
neural adaptation during the early gains in strength,”
pp. 1645-1655, 2014.

[61] C.T. Candotti, J. Loss, M. Melo et al., “Comparing the lactate
and EMG thresholds of recreational cyclists during incre-
mental pedaling exercise,” Canadian Journal of Physiology
and Pharmacology, vol. 86, no. 5, pp. 272-278, 2008.

[62] H. Nie, L. Arendt-nielsen, A. Kawczynski, and P. Madeleine,
“Gender effects on trapezius surface EMG during delayed
onset muscle soreness due to eccentric shoulder exercise,”
Journal of Electromyography and Kinesiology, vol. 17, no. 4,
pp. 401-409, 2007.

[63] H. A.D. Vries, “Quantitative electromyographic investigation
of the spasm theory of muscle pain,” Journal of Physical
Medicin, vol. 45, p. 119, 1967.


http://www.seniam.org/%5Cnhttp://www.med.uni-jena.de/motorik/pdf/stegeman.pdf
http://www.seniam.org/%5Cnhttp://www.med.uni-jena.de/motorik/pdf/stegeman.pdf
http://www.seniam.org/%5Cnhttp://www.med.uni-jena.de/motorik/pdf/stegeman.pdf

