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In this paper, the stochastic resonance (SR) phenomenon of four kinds of noises (the white noise, the harmonic noise, the
asymmetric dichotomous noise, and the Lévy noise) in underdamped bistable systems is studied. By applying theory of
stochastic differential equations to the numerical simulation of stochastic resonance problem, we simulate and analyze the
system responses and pay close attention to stochastic control in the proposed systems. Then, the factors of influence to the SR
are investigated by the Euler-Maruyama algorithm, Milstein algorithm, and fourth-order Runge-Kutta algorithm, respectively.
The results show that the SR phenomenon can be generated in the proposed system under certain conditions by adjusting the
parameters of the control effect with different noises. We also found that the type of the noise has little effect on the resonance
peak of the output power spectrum density, which is not observed in conventional harmonic systems driven by multiplicative
noise with only an overdamped term. Therefore, the conclusion of this paper can provide experimental basis for the further
study of stochastic resonance.

1. Introduction

The concept of stochastic resonance (SR) was firstly pro-
posed by Benzi et al. [1] in the 1980s to explain the periodic
recurrence of ice ages on Earth. Since then, much attention
has been paid to SR due to its potential applications in many
fields [2–6].

In the past few years, many researchers focused the SR
phenomenon of the overdamped systems [2, 4], while in
recent years, researchers gradually shifted their views to the
underdamped systems. The SR phenomenon in under-
damped bistable system was firstly studied by Ray and
Sengupta [7]; they analyzed the difference of the dependence
of noise amplitude between underdamped bistable system
and overdamped bistable system.

In fact, the bistable systems are very important on the
noise effect of the nonlinear systems. Jia et al. [5] studied
SR in bistable systems driven by additive and multiplicative
white noise. Guo et al. [8] studied the instability probability
density evolution in bistable systems driven by Gaussian

noise and white noise, and obtained rich conclusions. Mean-
while, relevant theories have shown practical application sig-
nificance in chemistry, physics, engineering, and other fields
[9, 10]. With the further study of stochastic phenomena, SR is
gradually extended to multistable and more complex systems
[11, 12]. However, SR in bistable systems is still widely
concerned by researchers due to its practical value.

On the other hand, the studies of early SR mechanism
mainly focus on Gaussian white noise [13]. In recent years,
however, some literatures have begun to focus on the effects
of some non-Gaussian noises on SR of bistable systems [11,
14–17]. Wang et al. [11] studied the SR of the bistable system
driven by simple harmonic noise. Zhang et al. [14] studied
the stochastic resonance in the system driven by the Lévy
noise and found interesting dynamic behaviors. Gingl et al.
[15] studied the nondynamical SR with arbitrarily coloured
noise, and Shen et al. [16] studied system driven by correlated
non-Gaussian noise and Gaussian noise, while Neiman and
Schimansky-Geier studied the SR in a bistable system driven
by the harmonic noise.
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However, as the best of our knowledge, there is no
detailed horizontal comparison of the dynamical effects
among different noises in the available literature, and also
there is a lack of simulation analyses of the complex system
driven by nonwhite noise. As a matter of fact, most SR are
difficult to be expressed in analytic form [17–20], especially
for a wide range of situations in nonlinear systems. We
noticed that the numerical simulation of SR is essentially
numerically solving a stochastic differential equation. Hence,
the numerical algorithm suitable for stochastic differential
equations is more suitable for SR [21, 22].

Therefore, the main goal of this paper is to focus on the
control effects in an underdamped bistable system driven
by four kinds of noises (the white noise, the harmonic noise,
the asymmetric dichotomous noise, and the Lévy noise);
meanwhile, we will provide the vivid numerical simulation
analyses. Furthermore, since the harmonic noise can be gen-
erated by the white noise through the resonance subsystem,
we would like to control the properties of harmonic noise
by controlling the parameters of the resonance subsystem.
Thus, the control of SR is realized.

The organization of this paper is as follows. Section 2 def-
initely introduces the system model and the definition of the
four kinds of the noises and its parameters. The analyses of
the effects of different noises on system output are given in
Section 3 where we give the method to determine the number
of simulations firstly. Finally, the conclusions are discussed in
Section 4.

2. System Model

We consider the undamped bistable system driven by four
kinds of noise which is described by the following stochastic
differential equation:

d2x
dt2

+ η
dx
dt

= −
∂U xð Þ
∂x

+ A cos ωt + θð Þ + ξ tð Þ, ð1Þ

where η is the coefficient of the damping term, UðxÞis the
system potential field, with UðxÞ = −ð1/2Þax2 + ð1/4Þbx4, a
> 0 and b > 0 are the two constants of potential field UðxÞ,
A, ω, θ are the amplitude, frequency, and phase of periodic
driven force, respectively, and ξðtÞ,is the noise; in this paper,
we consider four types of noises which are the white noise,
the harmonic noise, the asymmetric dichotomous noise,
and the Lévy noise.

Firstly, we give a brief description of the four kinds of the
noises as follows:

2.1. TheWhite Noise. The white noise ξðtÞ is a stationary pro-
cess with zero mean and constant power spectral density,
respectively:

ξ tð Þh i = 0,

S ωð Þ = N0
2
, ω ∈ −∞,+∞ð Þ:

ð2Þ

Besides, the white noise ξðtÞ has the following form of the
second moment:

ξ tð Þξ t ′
� �D E

= 2αδ t − t ′
� �

: ð3Þ

Here, ω is the frequency of the white noise, N0 is a con-
stant independent with the frequency ω, α is the noise inten-
sity, and δ is the delta function.

2.2. The Harmonic Noise. The harmonic noise εðtÞ is a mono-
chromatic noise commonly used in stochastic dynamics. It
can be regarded as the output response of the resonant
subsystem driven by Gaussian white noise ξðtÞ:

€ε tð Þ + Γ_ε tð Þ +Ω2ε tð Þ =
ffiffiffiffiffiffiffiffiffi
2ΘΓ

p
ξ tð Þ: ð4Þ

Here, Γ, Ω, and Θ are the system parameters. Equation
(3) determines the two-dimensional Ornstein-Uhlenbeck
process εðtÞ and _εðtÞ with the power spectrum:

Sεε ωð Þ = ΘΓ

ω2Γ2 + ω2 −Ω2� �2 , ð5Þ

and the mean square displacements hε2ðtÞi =Θ/Ω2. From
the expression function of simple harmonic noise power
spectrum, it is not hard to know if Ω2 − Γ2/4 ≥ 0; the peak
of power spectrum function should be at ωp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − Γ2/2

p
.

When Ω2 − Γ2/2 < 0, the peak of power spectrum function
should be at ωp = 0.

2.3. The Asymmetric Dichotomous Noise. We take ξðtÞ as the
asymmetric dichotomous noise which consists of jumps
between two values: f−a, kagwith a > 0 and k > 0. The jumps
follow, in time, according to the Poisson process. k represents
the asymmetric degree of the noise. When k = 1, the noise
becomes a symmetric noise. Let λ and λ′ be the transition
rate from −a to ka and the reverse transition rate, respec-
tively. Without loss of generality, we assume that

ξ tð Þh i = kaλ − aλ′
λ + λ′

= 0: ð6Þ

Thus, we can obtain kλ = λ′. Moreover, the correlation
function of the asymmetric dichotomous noise is given by
the following:

ξ tð Þξ sð Þh i =Dγ exp −λ t − sj jf g: ð7Þ

Here, γ = λ + λ′ is the reverse of the correlation time τ of
the asymmetric noise ξðtÞ, and the definition of the strength
of ξðtÞ is as follows:

D =
1
2

ð+∞
−∞

ξ τð Þξ 0ð Þh idτ = ka2

γ
:: ð8Þ

Thus, we know that the noise strength D is not indepen-
dent, but is connected with the asymmetric degree k, the
correlation time τ, and value a.
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2.4. The Lévy Noise. Lévy noise is also well known as the alpha
stable noise, which was proposed by Lindberg Lévy. Since
neither the distribution function nor the probability density
function of Lévy noise has an explicit expression, the distri-
bution of Lévy noise is usually expressed by a characteristic
function as follows:

φ tð Þ =
exp −σα tj jα 1 − iβ

2
π

sign tð Þ log tj j
� �

+ iμt
	 


, α = 1,

exp −σα tj jα 1 − iβ
2
π

sign tð Þ tan πα

2

� �
+ iμt

	 

, α ≠ 1:

8>>><
>>>:

ð9Þ

Here, α ∈ ð0, 2� is the stability index, β ∈ ½−1, 1� is the
skewness parameter, σ > 0 is the scale parameter, and μ ∈ R
is the shift.

3. Analyses of the Effects of Different Noises on
System Output

We compare the system outputs driven by Gaussian white
noise, harmonic noise, asymmetric dichotomous noise, and
Lévy noise, which have certain guiding significance for
stochastic resonance phenomenon driven by other noises,
due to their wide applications.

3.1. The Simulation Number of Times. To obtain a stable state
of the system responses, we need to avoid the randomness of

Number of simulation times Ni
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Figure 1: The relationship between the output average displacement and simulation times of the system within time T = 1000. The x-axis is
the time, the y-axis is the number of simulation times, and the z-axis is the average displacement.
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Figure 2: The relationship between the average displacement and the number of simulation time at a certain time. x-axis is the number of
simulation time; y-axis is the average displacement.
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the noises by considering the statistical average in numerical
simulation. Therefore, we will determine the number of sim-
ulations in this paper by observing the relationship between
the average particle displacement �XðtÞ =∑Ni

i=1XðtÞ/Ni and
the number of simulations Ni.

In Figures 1 and 2, it is obvious that the average displace-
ment tends to be stable when the number of simulations is
50, which indicates that when simulation time equals to 50,
it can reveal the general rule of the system output. Therefore,
it is reasonable for us to use 50 simulations to reveal the rule
of the noise-driven dynamical phenomena in the following
simulation process.

Furthermore, without a special request, the common
simulation parameters will be used in the following table:

3.2. The System Response Driven by Different Noises.We have
compared the response of the system driven by Gaussian
white noise, harmonic noise, asymmetric binary noise, and
Lévy noise, respectively. The simulation values are set as
Table 1.

Figure 3 shows the performance of the response of the
periodic modulated underdamped system driven by different
noises in the time domain, where Figure 3(a) is the situation
driven by the white noise, Figure 3(b) is the situation driven
by the simple harmonic noise, and Figure 3(c) is the situation
driven by the asymmetric dichotomous noise. Figure 3(d)
shows the situation driven by Lévy noise. Four kinds of noise

can be found that they can cause approximately periodic
transitions between two states. And we found that the jump
frequencies of the four noise are close to the frequencies of
the input periodic forces. In other words, under the simula-
tion conditions with the same parameters as shown in
Figure 3, the particles vibrate approximately synchronously
with the input periodic force.

Besides, we found that the particles fluctuated in orbit
around the noiseless input. At the same time, the output of
the system driven by harmonic noise is obviously stronger
than the other two damping effects. The vibration of particles
is much stronger when they located in the two potential wells
during the transition and then decreases significantly. The
vibration in the potential wells is more stable than that of
harmonic noise and asymmetric binary noise. Finally, the
case driven by Lévy noise is the most special. Due to the
impulse characteristic of Lévy noise, the particle displace-
ment has great changes in some positions and then quickly
returns to orbit.

3.3. The Stochastic Resonance of the System Driven by
Different Noises. The power spectral density is the character-
istic quantity of signal energy realization in the frequency
domain, which reveals the characteristic of signal in the fre-
quency domain. In the next sections, we will observe the
influence of noise on system output through the power
spectrum of system output at the frequency point of input
periodic signal.

Table 1: The common parameters for numerical simulation of Section 3.

Parameter Value Parameter Value Parameter Value Parameter Value

T 1000s TestNum 50 Fs 200 θ 0.03

ω 0.02pi η 0.5 Ω 1 Γ 1

0 100 200 300 400 500 600 700 800 900 1000

t
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0

1

2

x 
(t)

�e output response x (t) driven by the white noise

(a) The output response xðtÞ driven by the white noise
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�e output response x (t) driven by the harmonic noise

(b) The output response xðtÞ driven by the harmonic noise
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�e output response x (t) driven by the asymmetric dichotomous noise

(c) The output response xðtÞ driven by the asymmetric dichotomous noise
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�e output response x (t) driven by the levy noise

(d) The output response xðtÞ driven by the Lévy noise

Figure 3: The system responses xðtÞ for underdamped system under different noises. The values of the parameters for the numerical
simulation are shown in Table 1. The blue line is for input sine signal. The black line is for D = 0, and red line is for D = 0:07.
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3.3.1. The System Driven by the Harmonic Noise. In this
section, we did the numerical simulation by the Euler-
Maruyama method; the results are as follows.

Figure 4 shows the impact of Ω on system response
PSD in harmonic noise (Equation (1)) model in the case
of different noise intensities. With the increase of Ω, the
power spectrum density of the system response is increas-
ing; then, it peaks and then goes down. There are obvious
resonance peaks, and there is a random resonance phe-

nomenon. Meanwhile, comparing the two pictures, it can
be found that as the noise intensity increases, the power
spectrum density of the system response also increases
first and then decreases. The value of Ω corresponds to
the peak that constantly moves to the right with the
increase of noise intensity. Therefore, by adjusting the
value of Ω in harmonic noise model, the stochastic reso-
nance phenomenon can be induced by the undamped
bistable system.
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Figure 4: The relationship between Ω and system output PSD of undamped bistable system driven by the harmonic noises. (a) Input white
noise intensity D = 0:02, 0.05, and 0.07. (b) Input white noise intensity D = 0:09, 0.12, and 0.15.
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Figure 5: The relationship between lg ðaÞ and system output of undamped bistable system driven by asymmetric dichotomous noise. (a) The
output when input white noise intensity isD = 0:02, 0.05, and 0.07. (b) The output when input white noise intensity isD = 0:09, 0.12, and 0.15.
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3.3.2. The System Driven by the Asymmetric Dichotomous
Noise. We mainly focused on the relationship between the
noise parameter a and the system response PSD, for the
two states of random telegraph noise are symmetrical. After
the numerical simulation by the Euler-Maruyama method,
the results are as follows.

Figure 5 shows the relationship between a and system
output of undamped bistable system PSD driven by asym-
metric dichotomous noise with b fixed. We find that there
is stochastic resonance in this system. When it has low noise
intensity, the resonance peak of power spectral density in
system responding is narrower. With the increase of noise

intensity, the width of the resonant peak is relatively stable,
while the height of the resonant peaks goes from low to high.

3.3.3. The System Driven by the Lévy Noise. Due to the com-
plex form of Lévy noise, it is difficult to apply the Euler-
Maruyama method and Milstein method to its numerical
simulation. Therefore, we will use the fourth-order Runge-
Kutta method for numerical simulation, to investigate the
control effect of each parameter on stochastic resonance.

In Figure 6, we find there is stochastic resonance in the
relational graph. With the increase of the noise intensity,
the resonant peak of the power spectral density curve is
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Figure 6: The relationship between characteristic exponent α and system output of undamped bistable system driven by Lévy noise. (a) The
output when input is white noise intensityD = 0:02, 0.05, and 0.07. (b) The output when input white noise intensity isD = 0:09, 0.12, and 0.15.
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Figure 7: The relationship between symmetric parameter β and system output of undamped bistable system driven by Lévy noise. (a) The
output when input white noise intensity isD = 0:02, 0.05, and 0.07. (b) The output when input white noise intensity isD = 0:09, 0.12, and 0.15.
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moving in the positive direction, that is, α reaching resonance
peak grows with the increase of the noise intensity.

Comparing Figures 7(a) and 7(b) in Figure 7, we found
that the stochastic resonance occurs in this system. With
the increase of the noise intensity, the peak value of the reso-
nant peak of the power spectral density curve increases and
then decreases. However, the position of the peak is almost
unchanged. Hence, by controlling the symmetric parameter
β = 0, we lead to phenomenon of the stochastic resonance
of the symmetric parameters of the undamped bistable sys-
tem driven by Lévy noise.

3.3.4. The Comparison of Different Noises on Stochastic
Resonance. It can be found that four kinds of noise can
induce the approximate periodic transition between the two
states. And the frequency of the four types of jumps is close
to the frequency of the input periodic forces. That is, the par-
ticle is almost synchronized with the periodic force of the
input under the same parameter simulation condition. The

particles are all moving up and down in the direction of the
noiseless input. At the same time, we also find that the output
of system output generated by harmonic noise is significantly
stronger than that of other two. The vibration of the particle
in two potential well is stronger when the transition occurs
and then significantly decreases. Compared with that, the
harmonic noise and asymmetric noise are more stable in
the potential well. The case driven by Lévy noise is the most
special one. Because of the pulse characteristic of steady
noise, the displacement of particles varies greatly in some
places and then rapidly returns to orbit.

In Figure 8, the noise intensity D can be used to guide the
occurrence of random resonance. With the undamped dou-
ble steady-state damping coefficient increasing, the resonant
peaks of noise intensity D are constantly moving to the right.
It indicates that damping has an inhibitory effect on random
forces. In four kinds of noise, the output power spectral
density of the harmonic noise at the signal frequency point
is highest, and that from white noise and asymmetric
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dichotomous noise takes second place. And that from steady
noise is the lowest. When harmonic noise, asymmetric
dichotomous noise, and white noise are at low noise inten-
sity, they are very close to the spectral density of the periodic
signal. The output power spectrum of the system output in
the undamped bistable system is basically coincident with
white noise and asymmetric dichotomous noise. The reso-
nant peak of the stochastic resonance of the Lévy noise and
the harmonic noise drive is very close to the resonant peak
driven by the other two noises. It can be found that the noise
type has little influence on the resonance peak of the
undamped bistable system on the noise intensity D.

4. Conclusion

In this paper, we mainly study the control effect of four kinds
of noise (white noise, harmonic noise, asymmetric dichoto-
mous noise, and Lévy noise) on undamped bistable system.
The random resonance phenomenon is generated by adjust-
ing the noise parameters. Since the harmonic noise can be
generated by the white noise through the resonance subsys-
tem, we can change the properties of harmonic noise by con-
trolling the parameters of the resonance subsystem and then
we can control stochastic resonance. In this paper, the con-
trol effect of harmonic noise in undamped bistable system
is studied, and the similar random resonance phenomenon
is found in the undamped bistable system.

The four kinds of noise used in stochastic resonance
research are simulated by numerical algorithms. Here, Euler
numerical algorithm and Milstein numerical algorithm are
based on stochastic differential equation and fourth-order
Runge-Kutta algorithm is based on ODE. The main object
of the analysis is the time domain diagram and the power
spectral density diagram of the system output.

In this paper, it has indicated that in the undamped bis-
table system, the stochastic resonance can be controlled by
the harmonic noise generated by the resonance subsystem.
The four kinds of noise (white noise, harmonic noise, asym-
metric dichotomous noise, and Lévy noise) can be used to
change the noise parameters and control stochastic reso-
nance under certain conditions. For these four kinds of noise,
the power spectrum density of the system output is very close
to the horizontal position of the resonant peak of the noise.
That is, the noise type has little influence on the horizontal
position of the resonant peak of stochastic resonance after
full optimization.
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The effect of the structure parameter on the compressibility of dust grains and soliton behavior in a dusty plasma system consisting
of Maxwellian electrons, ions, and dust grains charged with a negative charge has been studied. In the theoretical study, a reductive
perturbation technique was used to derive the Korteweg-de Vries (KdV) equation and employ the Hirota bilinear method to obtain
multisoliton solution. It is found that coupling and structure parameters have a clear effect on the compressibility. These changes in
the compressibility affected the amplitude and width of interactive solitons, in addition to the phase shifts resulting from the
interaction. These results can be used to understand the behavior of solitary waves that occur in various natural and laboratory
plasma environments with dust impurity situations.

1. Introduction

Study of nonlinear phenomena in dusty plasma had a great
deal of interest because of the presence of dust in various
space and astrophysical environments, for example, plane-
tary rings, comets, the Earth’s ionosphere, and interstellar
molecular clouds [1, 2]. Moreover, dusty plasma opened up
a new field of research after the possibility of crystallization
(whose temperature is low relative to the temperature of
other components) in a crystalline structure called a plasma
crystal or coulomb crystal was discovered [3, 4].

Dusty plasma is composed of ordinary plasma (electron-
ion plasma) and additional solid grains whose radius range
from 100nm-100μm. These grains are charged with a
negative charge because the thermal velocity of electrons is
greater than that of ions [2].

The Coulomb coupling parameter is one of the basic
properties of the dusty plasma system, which determines
the phase state of the system and is a dimensionless parame-
ter which represents the ratio between the electrostatic inter-
action energy and the thermal energy of the grains, and the
first investigations showed that the Coulomb coupling
parameter is given as follows [5]:

Γc =
eZdð Þ2

4πε0aTd
, ð1Þ

where a = ð3/4πndÞ1/3 interparticle distance, Td is the tem-
perature of dust grains, nd is the grain number density, and
Zdis the charge number of grains. Later, a new mathematical
formula of the coupling parameter was obtained after consid-
ering the screening of charges, using the Debye-Hückel or
Yukawa potential that is given as follows [6]:

Γ = eZdð Þ2
4πε0aTd

exp −kð Þ, ð2Þ

where k = a/λD is the structural parameter, which represents
the ratio between the interparticle distance and the Debye
screening length. Vaulina and Khrapak proposed an empiri-
cal scaling law of the coupling parameter that is compatible
with recent molecular dynamics simulations, which is given
as follows [7]:
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Γ = eZdð Þ2
4πε0aTd

1 + k + k2

2

 !1/2

exp −kð Þ: ð3Þ

The presence of dust of a relatively large mass and charge
contributes to modifying the plasma collective behavior and
generates new linear and nonlinear modes, for example,
dust-ion-acoustic (DIA) waves [8], dust-acoustic waves
(DA) [9], dust-lattice (DL) waves [10], DIA solitary waves
[11], DA solitary waves [12], and DL solitary waves [13].

Many researchers have studied the interaction of nonlin-
ear waves in dusty plasma systems using many analytical,
experimental, and numerical methods. Jaiswal et al. [14]
studied dust-acoustic solitary wave (DASW) head-on colli-
sion in strongly and weakly coupled dusty plasma, using
the extended Poincaré–Lighthill–Kuo perturbation method.
Effects of dusty plasma parameters on phase shifts of these
solitary waves are studied. They found that the phase shift
changes its sign when compressibility of the medium exceeds
the critical value for a specific set of dusty plasma parameters.
Gao et al. [15] studied the overtaking collision between two
dust-acoustic waves in dusty plasmas consisting of
Boltzmann electrons and ions, and negative dust grains by
the PIC simulation method. They compared their results
with previous theoretical studies using the Hirota method
and found a significant correlation between the results of
the two methods. Boruah et al. [16] experimentally investi-
gated the propagation and interaction of dust-acoustic multi-
solitons which unmagnetized strongly coupled dusty plasma.
By comparing their results with previous theoretical studies,
they proved that the evolution of these waves depends on
the amplitude of the initial perturbation. Tao et al. [17] stud-
ied the head-on collision between two dust-acoustic solitary
waves in an unmagnetized strongly coupled dust plasma
using the PIC simulation method. By comparing simulation
results with an analytical study, they noted that the analytical
results are correct if the amplitudes of both of the colliding
solitary waves are sufficiently small. Seadawy and Jun [18]
obtained The Zakharov–Kuznetsov–Burgers (ZKB) equa-
tions that describe the dust-ion-acoustic waves in dusty
plasma with high-energy electrons and positrons by applying
the modified direct algebraic method. They found that the
electric field potential, electric field, and quantum statistical
pressure significantly impact in the form of water wave solu-
tions for the three-dimensional ZKB equation. Arnous et al.
[19] applied the modified simple equation method to the
complex Ginzburg–Landau equation to secure soliton solu-
tions. They studied using this method the Kerr and power
laws of nonlinearity. The results of their investigation showed
that the limitation of the scheme prevents obtaining bright
soliton solutions. Seadawy [20] applied the reductive pertur-
bation procedure method on the fluid system governing
plasma, and he got the nonlinear three-dimensional modified
Zakharov–Kuznetsov (mZK) equation governing the propa-
gation of ion dynamics of nonlinear ion-acoustic waves in a
plasma comprising cold ions and hot isothermal electrons
in the presence of a uniform magnetic field. He found that
the electrostatic field potential and electric field form travel-
ing wave solutions for the three-dimensional mZK equation.

The Hirota bilinear method differs from the mathemati-
cal methods used in previous investigations (for example,
the extended modified direct algebraic method and extended
mapping method) in that it enables us to obtain multisoliton
solutions of nonlinear partial differential equations, which is
why we chose this method. Also, previous studies have exam-
ined the effect of the coupling parameter on the behavior of
the solitons in the strongly coupled dusty plasma but
neglected the effect of the structure parameter, as this param-
eter is expected to play an important role. In this scenario, we
relied on the results mentioned in Reference [20], which
showed that the internal energy is related to the coupling
parameter and the structure parameter together.

In this paper, the overtaking collision between two soli-
tons and three solitons in strongly coupled dusty plasma is
studied. The effect of the structure parameter on plasma
compressibility and the behavior of the interactive solitons
is taken into account. The reductive perturbation method is
applied to obtain the Korteweg-de Vries (KdV) equation.
The Hirota bilinear method is applied to obtain multisoliton
solutions. Computer modeling used the Maple program to
show the time development of the propagation and interac-
tion of solitons.

2. Materials and Methods

We consider an unmagnetized strongly coupled dusty
plasma system with negatively charged inertial dust grains
and inertia-less electrons and the ions that can be described
by Boltzmann distributions. The dust fluid equations that
can describe this system are given as follows [14, 21]:

∂nd
∂t

+ ∂ ndϑdð Þ
∂x

= 0, ð4Þ

∂ϑd
∂t

+ ϑd
∂ϑd
∂x

= ∂Φ
∂x

−
μ́

nd

∂nd
∂x

, ð5Þ

∂2Φ
∂x2

= μene + nd − μini, ð6Þ

where nd is the dust grain number density, ϑdis the dust fluid
velocity, Φ is the electrostatic potential, ne is the electron
number density, and ni is the ion number density. The
following normalization

nd →
nd
nd0

,Φ→ e∅
KBTi

, ϑd →
ϑd
Cd

, x→ x
λD

, t→ tωpd , ð7Þ

where λD = ðKBTi/nd0Zde
2Þ1/2 is the dust Debye length,

Cd = ðZdKBTi/mdÞ1/2 is the dust-acoustic speed, ωpd =
ðnd0Zd

2e2/mdÞ1/2 is the dust plasma frequency, and KB, nd0,
e, and md are the Boltzmann constant, the unperturbed dust
grain number density, the electron charge, and the dust grain
mass, respectively. The contribution due to the compressibil-
ity (μ) in the momentum equation, equation (5), is expressed
in terms of μ́ where μ́ = μTd/Zd Ti where Td , Ti, and Zd
denote the dust temperature, the ion temperature, and the
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number of electrons residing on the surface of the negatively
charged dust grains, respectively. The compressibility μ is
defined as [2]

μ = 1
Td

∂P
∂n

� �
Td

= 1 + u Γð Þ
3 + Γ

9
∂u Γð Þ
∂Γ

, ð8Þ

where Γ is the Coulomb coupling parameter and uðΓÞ is a
measure of the excess internal energy of the system. For a
weakly coupled plasma Γ < 1, uðΓÞ can be written as
uðΓÞ≈−ð ffiffiffi

3
p

/2ÞΓ3/2 [22], while in the case of strong coupling
(Yukawa fluid) Γ > 100 excess internal energy can be deter-
mined as a function of ðk, ΓÞ by using the following
relation [23]:

u k, Γð Þ = a kð ÞΓ + b kð ÞΓ1/3 + c kð Þ + d kð ÞΓ− 1/3ð Þ, ð9Þ

where parameters aðkÞ, bðkÞ, cðkÞ, and dðkÞ are defined as
follows:

a kð Þ = k
2 − 0:899 − 0:103 k2 + 0:003 k4

b kð Þ = 0:565 − 0:026 k2 − 0:003 k4

c kð Þ = −0:207 − 0:086 k2 + 0:018 k4

d kð Þ = −0:031 + 0:042 k2 − 0:008 k4

9>>>>>>>=
>>>>>>>;
: ð10Þ

The densities of Boltzmann distributed electrons and ions
at temperatures Te and Ti can be written in a normalized
form as

ne = μe exp σi∅ð Þ,
ni = μi exp −∅ð Þ,

ð11Þ

where σi = Ti/Te is the ratio of ion temperature and elec-
tron temperature, μe = 1/ðδ − 1Þ, and μi = δ/ðδ − 1Þ, where
δ is the ratio of equilibrium ion to electron densities.

3. Derivation of KdV Equation

Now, we derive the KdV equation from equations (4)–(6) by
employing the reductive perturbation technique. The inde-
pendent variables are stretched as

ξ = ε1/2 x − ctð Þ, τ = ε3/2t

∂
∂x

= ε1/2
∂
∂ξ

, ∂
∂t

= −cε1/2
∂
∂ξ

+ ε3/2
∂
∂τ

9>=
>;, ð12Þ

and the dependent variables are expanded as

nd = 1 + εn1 + ε2n2+⋯
ϑd = εϑ1 + ε2ϑ2+⋯
Φ = εΦ1 + ε2Φ2+⋯

9>>=
>>;: ð13Þ

ε is a small parameter proportional to the strength of the
perturbation. Substituting (12)–(13) into (4)–(6) and taking
the terms in different powers of ε, we obtain in the lowest
order of ε:

n1 = − μeσi + μið ÞΦ1,
ϑ1 = −c μeσi + μið ÞΦ1,

ð14Þ

where c the phase velocity given as follows:

c =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + μ́ μeσi + μið Þ

μeσi + μið Þ :

s
ð15Þ

Similarly, we get from the terms of order ε2 and ε5/2:

−c
∂n2
∂ξ

+ ∂n1
∂τ

+ n1
∂ϑ1
∂ξ

+ ∂ϑ2
∂ξ

+ ϑ1
∂n1
∂ξ

= 0, ð16Þ

−c
∂ϑ2
∂ξ

+ ∂ϑ1
∂τ

+ ϑ1
∂ϑ1
∂ξ

= ∂Φ2
∂ξ

+ μ́n1
∂n1
∂ξ

− μ́
∂n2
∂ξ

, ð17Þ

∂2Φ1
∂ξ2

= n2 + μeσi + μið ÞΦ2 +
μeσi

2 − μi
2

� �
∅2

1: ð18Þ

By common solution to system of equations (15)–(17),
we obtain the following Korteweg-de Vries (KdV) equation
for the first-order perturbed electrostatic potential Φ1 as
follows:

∂Φ1
∂τ

+ AΦ1
∂Φ1
∂ξ

+ B
∂3Φ1
∂ξ3

= 0, ð19Þ

where the nonlinear coefficient A and the dispersion coeffi-
cient B are given by

A = −
1
E

μeσi + μið Þ2 3 + 2μ́ μeσi + μið Þ� + μeσi
2 − μi

� ��g,���
ð20Þ

B = 1
E
, ð21Þ

where

E = μeσi + μið Þ
c

1 + 2μ́ μeσi + μið Þ�g:½
	

ð22Þ

4. Multisoliton Solutions

For obtaining the multisoliton solution of equation (16) and
to study the interaction between them, to do so, we shall
employ the Hirota bilinear method [23].

The first step: using the transformation on equation (19):

Φ1 =
12B
A

∂2 ln f ξ, τð Þð Þð Þ
∂ξ2

: ð23Þ
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We get the following equation:

−f ξ f τ + f f ξτ + Bf f ξξξξ − 4Bf ξξξ · f ξ + 3B f ξξ
� �2 = 0: ð24Þ

By using the Hirota-D operator, we get

DτDξ f , ff g = 2 f f ξτ − f ξ f τ
� �

, ð25Þ

BDξ
4 f , ff g = 2 Bf f ξξξξ − 4Bf ξ f ξξξ + 3B f ξξ

� �2
 �
: ð26Þ

Using (25) and (26) in (24), we get the Hirota bilinear
form:

DτDξ + BDξ
4� �

f , ff g = 0, ð27Þ

where D is a binary operator (because it operates on a pair of
functions) and is called the Hirota derivative.

We use Hirota’s perturbation technique, and we insert
f = 1 + εf1 where f1 = eθ1 ; substituting ε = 1, we obtain f = 1
+ f1; now substituting in equation (23), we get the single-
soliton solution as follows:

Φ1 =
12B
A

∂2 ln 1 + e k1B
− 1/3ð Þξ−k31τð Þh in o

∂ξ2
: ð28Þ

Same as the previous method, we insert f = 1 + εf1 + ε2 f2
where f1 = eθ1 + eθ2 and make some necessary mathematical
calculations. We get the relationship f2 = að1, 2Þeθ1+θ2 ; now
substituting in equation (23), we get the two-soliton solution
as follows:

Φ1 =
12B
A

∂2 ln 1 + eθ1 + eθ1 + a 1, 2ð Þeθ1+θ2� �� 

∂ξ2

, ð29Þ

where θi = kiB
−ð1/3Þξ − k3i τ − Δi, i = 1, 2 , Δi = ∓ð2B1/3/kiÞ ln jffiffiffiffiffiffiffiffiffiffiffiffiffi

að1, 2Þp j are the phase shifts að1, 2Þ = ðk1 − k2Þ2/ðk1 + k2Þ2
where k1, k2are wave numbers.

In order to get a three-soliton solution, we
insertf = 1 + εf1 + ε2 f2 + ε3 f3twheref1 = eθ1 + eθ2 + eθ3 .f2 and
f3 are determined by performing some mathematical
calculations, and we get the following two relationships:

f2 = a 1, 2ð Þeθ1+θ2 + a 1, 3ð Þeθ1+θ3 + a 2, 3ð Þeθ2+θ3 ,
f 3 = beθ1+θ2+θ3 :

ð30Þ

Substituting in equation (23), we get the two-soliton solution
as follows:

Φ1 =
12B
A

∂2

∂ξ2
ln 1 + eθ1 + eθ2 + eθ3 + a 1, 2ð Þeθ1+θ2
hn

+ a 1, 3ð Þeθ1+θ3 + a 2, 3ð Þeθ2+θ3 + beθ1+θ2+θ3
io

,
ð31Þ

where θ1 = k1B
−ð1/3Þξ − k31τ − Δ1′, θ2 = k2B

−ð1/3Þξ − k32τ − Δ2′,
and θ3 = k3B

−ð1/3Þξ − k33τ − Δ3′.
The phase shifts are given as follows:

Δ1′ = ∓
2B1/3

k1
ln b

a 2, 3ð Þ
����

����, Δ2′ = ∓
2B1/3

k2
ln b

a 1, 3ð Þ
����

����, Δ3′

= ∓
2B1/3

k3
ln b

a 1, 2ð Þ
����

����,
ð32Þ

where að1, 2Þ = ðk1 − k2Þ2/ðk1 + k2Þ2, að1, 3Þ = ðk1 − k3Þ2/
ðk1 + k3Þ2, að2, 3Þ = ðk2 − k3Þ2/ðk2 + k3Þ2, and b = að1, 2Það1,
3Það2, 3Þ.

5. Results and Discussion

In this work, we investigated the propagation and interaction
of DA multisolitons in strongly coupled dusty plasma con-
sisting of Maxwellian electrons, ions, and inertial negative
dust grains. The Korteweg-de Vries (KdV) equation (19)
was obtained using a reductive perturbation technique.
Soliton solutions are formed due to the balance between the
nonlinear coefficient A and the dispersion coefficient B. It
is important to indicate the numerical data used in this
study obtained from References [24, 25]. The range of
structure parameter and the coupling parameter values
were chosen based on experimental data, which describes
the Yukawa fluid in the case of strong coupling, taken from
References [26, 27].

5.1. Compressibility Changes. We plotted the compressibility
variations with the coupling parameter for different values of
the structure parameter and obtained Figure 1.

In Figure 1, it is shown that the compressibility decreases
with the increasing coupling parameter, while the compress-
ibility increases with the increase in the structure parameter
value. The increase in the structure parameter means an
increase of interparticle distance and a decrease of the Debye
screening length; hence, the grains would become more
mobile to move. This causes an increase of its compressibil-
ity. We compare this result with the result presented in
Figure 2 from Reference [17].

In Figure 2, the change of compressibility when the
plasma is transferred from the weak coupling state (Γ < 1)
to a strong coupling state (Γ > 1) while neglecting the effect
of the structure parameter (k = 0) is shown. By comparing
the two shapes (1) and (2), it appears that there is a great
agreement between our results and the results of the afore-
mentioned reference when the plasma becomes a strong cou-
pling state where the compressibility values become negative.

5.2. Soliton Shape Changes. We plotted the single-soliton
shape relation (28) variations for different values of the struc-
ture parameter and obtained Figure 3.

We plotted the single-soliton shape relation (25) varia-
tions for different values of the coupling parameter and
obtained Figure 4.
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Figure 3 shows that the amplitude and width of the soli-
ton increases with the increase of the structure parameter
(compressibility increasing) for a constant value of the cou-
pling parameter Γ = 170. Figure 4 shows that the amplitude
and width of the soliton decreases with the increase of the
coupling parameter (compressibility decreases) for a con-
stant value of the structure parameter k = 0:8. It is observed
from Figure 3 that the amplitude of the soliton decreases sig-
nificantly when the value of the coupling parameter increases
from Γ = 100 (dashed line) to Γ = 170 (dotted line). It is the
critical value of the plasma transmission from the fluid phase
to a quasisolid structure called the plasma crystal. These
results correspond with the simulation results in Reference
[17] and with the theoretical study that did not take into
account the effect of the structure parameter on the com-
pressibility (i.e., k = 0) in Reference [14].

5.3. Time Evolution of Multisolitons. The mathematical study
used in this investigation differs from the previous investiga-
tions [18, 19, 28], as they used the Zakharov–Kuznetsov
equation (ZK), which is an appropriate equation for studying
the (2 + 1)-dimensional systems. But the reason for using the
Korteweg-de Vries (KdV) equation in this investigation is
that the KdV equation describes multisoliton solutions
depending on the initial conditions, as well as the possibility
of applying the Hirota direct method to this equation. Thus,
this equation fulfills the required purpose of our investiga-
tion. The Hirota method is an innovative and powerful
method by which we can obtain, in principle, any number
of solutions for many nonlinear partial differential equations.

In this section, we used the Mable program to perform a
numerical simulation showing the propagation and

100

–90

–80

–70

–60

–50

–40

–30

–20

150 200 250 300
Γ

𝜇

Figure 1: Compressibility variations with the coupling parameter
for different values of the structure parameter, k = 0:4 (solid line),
k = 0:8 (dot line), and k = 1:2 (dashed line).
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Figure 3: Single-soliton shape variations for different values of the
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k = 0:4 (dashed line). σ = 0:1, δ = 10, and Γ = 170.
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interaction of solitons moving in the same direction, and we
obtained the following results.

Figure 5 shows the time evolution of two solitons with
different amplitudes and widths moving in the same direc-
tion from left to right at different times of τ. At τ = −12:5,
the larger amplitude soliton is behind the smaller amplitude
soliton. With the passage of time, a large soliton approaches
a small soliton at τ = −5 because a higher amplitude soliton
travels faster than a smaller amplitude soliton. At τ = 0, the
two solitons merge and become one soliton where the ampli-
tude of this soliton is less than the amplitude of the large
soliton and greater than the amplitude of the small soliton.
At τ = 5, they separate from each other again, and each
soliton acquires its shape and speed before the reaction, but
the large soliton comes in front.

Similarly, the two-soliton interaction scenario was
applied on the time evolution of three solitons with different
amplitudes and widths moving in the same direction from
left to right at different times of τ; the results are shown in
Figure 6. It should be noted that the results of simulation of
the time evolution of propagation and interaction of solitons
in this work correspond with the experimental results in
Reference [16].

5.4. Phase Shifts. In this section, we studied the effect of the
structure parameter on the phase shifts of interaction
solitons, and we obtained the following results.

Figures 7 and 8 show a decrease of phase shift as the
structure parameter increases. The reason for the decrease
in the phase shift value is due to the phase shift being related
to the dispersion coefficient B, which in turn is related to the
structure parameter as shown in relation (21). In other
words, the phase shifts of solitons after interaction increase
as the coupling strength between dust particles increases.
This is achieved when the value of the structure parameter
is small, that is, the interparticle distance becomes smaller.
When we neglect the effect of the structure parameter and
study the phase shift changes with compressibility, we get
results similar to the theoretical study and PIC simulation
in the Figure 5 of Reference [18]. The difference between
our study and their study is in the method used, as they used
the Poincaré–Lighthill–Kuo (PLK) method in a study of the
head-on collision between two dust-acoustic solitary waves.
Any waves moving in opposite directions, in which case the
effect of the collision is greater, cause an increase in the phase
shifts resulting from the collision. In addition, phase shifts
are decreasing with the wave number increasing. This corre-
sponds with the results in Reference [29].

6. Conclusions

In this work, the effect of the structure parameter on the
compressibility of dust grains and soliton behavior in a dusty
plasma system consisting of Maxwellian electrons, ions, and

–40 –20 0 20 40 60
𝜁

–40 –20 0 20 40 60
𝜁

–40 –20 0 20 40 60
𝜁

–40 –20 0 20 40 60
𝜁

–40 –20 0 20 40 60
𝜁

0

0.1

0.2

0.3

Ф
 (𝜁

,𝜏
)

0

0.1

0.2

0.3

Ф
 (𝜁

,𝜏
)

0

0.1

0.2

0.3

Ф
 (𝜁

,𝜏
)

0

0.1

0.2

0.3

Ф
 (𝜁

,𝜏
)

0

0.1

0.2

0.3

Ф
 (𝜁

,𝜏
)

𝜏 = –12.500 𝜏 = –5.0000

𝜏 = 5.0000 𝜏 = 12.500

𝜏 = 0

Figure 5: Time evolution of two solitons at different times, σ = 0:1, δ = 10, k = 0:8, Γ = 170, k1 = 1, and k2 = 2.
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dust grains charged with a negative charge has been studied.
In the theoretical study, a reductive perturbation technique
was used to derive the Korteweg-de Vries (KdV) equation,
employing the Hirota bilinear method for obtaining a multi-
soliton solution. The Mable program was used to perform a
numerical simulation showing the propagation and interac-

tion of solitons. The results obtained can be summarized as
follows:

(i) Coupling and structure parameters have a clear
effect on the compressibility, where the compress-
ibility increases with the increase of the structural
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Figure 6: Time evolution of three solitons at different times, σ = 0:1, δ = 10, k = 0:8, Γ = 170, k1 = 0:5, k2 = 1, and k3 = 1:5.
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parameter and decreases with increase of the cou-
pling parameter

(ii) Compressibility changes contributed to modifying
the shape of the soliton, where amplitude and width
of the soliton increases with the increase of the struc-
ture parameter and decreases with the increase of the
coupling parameter

(iii) Numerical simulation of propagation and interac-
tion of solitons showed interest corresponding with
previous relevant theoretical and experimental
works

(iv) The phase shift of the interactive solitons decreases
with structure parameter and wave number increase

Our results showed that the smaller the distance between
the grains, the more strongly coupled the dusty plasma, so
the structure parameter plays an important role in determin-
ing the phase state of the dusty plasma, which clearly affects
the behavior of the nonlinear dusty acoustic pattern propaga-
tion in this type of plasma.

Analytical and numerical solutions of nonlinear partial
differential equations are useful in enabling us to deeply

understand the behavior of nonlinear phenomena in com-
plex plasma systems. Moreover, solitons have played a very
important and useful role in communication, where optical
soliton pulses contributed running over long distances and
transmitting high data rate information in optical fiber
[30]. In biology, soliton theory has been used to describe sig-
nal and energy propagation in biomembranes as occurs, for
example, in the nervous system and to low frequency collec-
tive pattern proteins and DNA [31].
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In this paper, we show the existence of solutions for an indefinite fractional Schrödinger equation driven by the variable-order
fractional magnetic Laplace operator involving variable exponents and steep potential. By using the decomposition of the Nehari
manifold and variational method, we obtain the existence results of nontrivial solutions to the equation under suitable conditions.

1. Introduction

In this paper, we investigate the existence of solutions of the
following concave-convex fractional elliptic equation driven
by the variable-order fractional magnetic Laplace operator
involving variable exponents:

−Δð Þs ·ð ÞA u + Vλ xð Þu = f xð Þ u ∣ q xð Þ−2u + g xð Þ
��� ���u���p xð Þ−2

u inℝN ,

ð1Þ

where N ≥ 1,sð·Þ: ℝN ×ℝN → ð0, 1Þ, is a continuous func-

tion, ð−ΔÞsð·ÞA is the variable-order fractional magnetic
Laplace operator, the potential VλðxÞ = λV+ðxÞ −V−ðxÞ with
V± = max f±V , 0g, λ > 0 is a parameter, and the magnetic
field is A ∈ C0,αðℝN ,ℝNÞ with α ∈ ð0, 1�,p, q ∈ CðℝNÞ and u
: ℝN →ℂ. In [1], the fractional magnetic Laplacian has been
defined as

−Δð ÞsAu xð Þ = lim
r→0

ð
Bc
r xð Þ

u xð Þ − ei x−yð Þ·A x+y/2ð Þu yð Þ
x − yj jN+2s dy, ð2Þ

for x ∈ℝN . In [2], the variable-order fractional Laplace

ð−ΔÞsð·Þ is defined as for each x ∈ℝN ,

−Δð Þs ·ð Þu xð Þ = 2P:V
ð
ℝN

u xð Þ − u yð Þ
x − yj jN+2s x,yð Þ dy, ð3Þ

along any u ∈ C∞
0 ðΩÞ. Inspired by them, we define the

variable-order fractional magnetic Laplacian ð−ΔÞsð·ÞA as for
each x ∈ℝN ,

−Δð Þs ·ð ÞA u xð Þ = lim
r→0

ð
Bc
r xð Þ

u xð Þ − ei x−yð Þ·A x+y/2ð Þu yð Þ
x − yj jN+2s x,yð Þ dy: ð4Þ

Since sð·Þ is a function, magnetic field A ∈ C0,αðℝN ,ℝNÞ
with α ∈ ð0, 1�, we see that operator ð−ΔÞsð·ÞA is a variable-
order fractional magnetic Laplace operator. Especially, when

sð·Þ ≡ constant,ð−ΔÞsð·ÞA reduces to the usual fractional mag-

netic Laplace operator. When sð·Þ ≡ constant, A = 0,
ð−ΔÞsð·ÞA reduces to the usual fractional Laplace operator. Very
recently, when A = 0, V−ðxÞ = 0 and f ðxÞ, gðxÞ ≡ constant,
authors in [2] are given some sufficient conditions to ensure
the existence of two different weak solutions, and used the
variational method and the mountain pass theorem to obtain
the two weak solutions of problem (5) which converge to two
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solutions of its limit problems, and the existence of infinitely
many solutions to its limit problem:

−Δð Þs ·ð Þu + λV xð Þu = α uj jp xð Þ−2u + β uj jq xð Þ−2u inΩ,
u = 0 inℝN \Ω:

(

ð5Þ

In addition, authors studied the multiplicity and concen-
tration of solutions for a Hamiltonian system driven by the
fractional Laplace operator with variable-order derivative in
[3]. For sð·Þ = 1, pðxÞ, qðxÞ ≡ constant, and A = 0, in [4],
authors obtained the multiplicity and concentration of the
positive solution of the following indefinite semilinear elliptic
equations involving concave-convex nonlinearities by the
variational method:

−Δu + Vλ xð Þu = f xð Þ u ∣ q−2u + g xð Þ�� ��u��p−2u inℝN ,

u ≥ 0 inℝN :

(

ð6Þ

For sð·Þ, pðxÞ, qðxÞ ≡ constant, and A = 0, in [5], under
appropriate assumptions, Peng et al. obtained the existence,
multiplicity, and concentration of nontrivial solutions for
the following indefinite fractional elliptic equation by using
the Nehari manifold decomposition:

−Δð Þαu +Vλ xð Þu = a xð Þ uj jq−2u + b xð Þ uj jp−2u inℝN ,
u ≥ 0 inℝN :

(

ð7Þ

In [1], by using the Nehari manifold decomposition,
authors studied the concave-convex elliptic equation involv-
ing the fractional order nonlinear Schrödinger equation:

−Δð ÞsAu +Vλ xð Þu = f xð Þ uj jq−2u + g xð Þ uj jp−2u inℝN : ð8Þ

Some sufficient conditions for the existence of nontrivial
solutions of equation (8) are obtained. Nevertheless, only a
few papers see [6–12] deal with the existence and multiplicity
of fractional magnetic problems. Some papers see [8, 13–16]
deal with the solvability of Kirchhoff problems. Inspired by
above, we are interested in the existence and multiplicity of
solutions to problem (1) with variable growth and steep
potential in ℝN . As far as we know, this is the first time to
study the multiplicity of nontrivial solutions of the indefinite
fractional elliptic equation driven by the variable-order frac-
tional magnetic Laplace operator with variable exponents
and steep potential in ℝN . This result was improved in the
recent paper [1].

It is worth mentioning that in this paper, we not only
obtain the existence and multiplicity results of nontrivial
solutions of the variable-order fractional magnetic Schrodin-
ger equation with variable growth and steep well potential in
ℝN but also our main results are based on the study for the
decomposition of Nehari manifolds. On the one hand, rela-

tive to [1], we extend the exponent to variable exponent, thus
introducing the variable exponent Lebesgue space. In addi-
tion, compared with [2], we extend the range of pðxÞ to ð2,
∞Þ and the research range from the bounded region Ω to
the whole space ℝN . On the other hand, if we want to find
the nontrivial solution of the equation (1) by the variational
method, we need some geometry, such as a mountain struc-
ture and a link structure. However, the energy functional of
equation (1) does not have the mountain structure. In order
to overcome this obstacle, we seek another method, the
Nehari manifold. By decomposing the Nehari manifold into
three parts, we obtain the existence of nontrivial solutions
of each part.

Inspired by the above works, we assume
(S1) There exist two constants 0 < s0 < s1 < 1 such that

s0 < sðx, yÞ < s1 for all ðx, yÞ ∈ℝN ×ℝN .
(S2) sð·Þ is symmetric, that is, sðx, yÞ = sðy, xÞ for all ðx, yÞ

∈ℝN ×ℝN .
(V1) V+ is a continuous function on ℝN and V− ∈

LN/2ðℝNÞ.
(V2) There exists k > 0 such that the set fV+ < kg = fx

∈ℝN : V+ðxÞ < kg is a nonempty and has finite measure.
In addition, M2 ∣ fV+ < kg ∣ <1, where ∣· ∣ is the Lebesgue
measure and M is the best Sobolev constant (see Lemma 9).

(V3) Ω = fx ∈ℝN , V+ðxÞ = 0g is nonempty and has a
smooth boundary with �Ω = int fx ∈ℝN , V+ðxÞ = 0g.

(V4) There exists a constant ϑ0 > 1 such that

inf
u∈Ds ·ð Þ

A ℝN ,ℂð Þ\ 0f g

Ð
ℝ2N u xð Þ − ei x−yð Þ·A x+y/2ð Þu yð Þ�� ��2/ x − yj jN+2s x,yð Þdxdy + λ

Ð
ℝNV+u2dxÐ

ℝNV−u2dx
≥ ϑ0,

ð9Þ

for all λ > 0, where Dsð·Þ,
A ðℝN ,ℂÞ is the Hilbert space related

to the magnetic field A (see Section 2).
(V5) ∣fV+ < kg ∣ >max fA1, A2, A3, A4g > 0 where

A1 =
p− − 2ð Þq−

2 p− − q−ð Þ∥f ∥L∧ 2/ 2−q xð Þð Þð Þ ℝNð Þ

 ! 2
q+−2 2 − q+

p+ − q+ð Þ∥g∥∞

� � 2
2−p+

� ϑ0 − 1ð Þθ
ϑ0

� � 2 p+−q+ð Þ
p+−2ð Þ q+−2ð Þ,

A2 =
p− − 2ð Þq−

2 p− − q−ð Þ∥f ∥L∧ 2/ 2−q xð Þð Þð Þ ℝNð Þ

 ! 2 p−−2ð Þ
2−p+ð Þ 2−q+ð Þ ϑ0 − 1

ϑ0

� � 2 p−−q+ð Þ
2−p+ð Þ 2−q+ð Þ

� 2 − q+

p+ − q+ð Þ∥g∥∞

� � 2
2−p+

· θ
2p+−q+p++q+p−−2q+

2−p+ð Þ 2−q+ð Þ M
2 p+−p−ð Þ

2−p+ ,

A3 =
p− − 2ð Þq−

2 p− − q−ð Þ∥f ∥L∧ 2/ 2−q xð Þð Þð Þ ℝNð Þ

 ! 2
q−−2 ϑ0 − 1ð Þθ

ϑ0

� � 2 p+−q−ð Þ
p+−2ð Þ q−−2ð Þ

� 2 − q+

p+ − q+ð Þ∥g∥∞

� � 2
2−p+

,
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A4 =
p− − 2ð Þq−

2 p− − q−ð Þ∥f ∥L∧ 2/ 2−q xð Þð Þð Þ ℝNð Þ

 ! 2 p−−2ð Þ
2−p+ð Þ 2−q−ð Þ 2 − q+

p+ − q+ð Þ∥g∥∞

� � 2
2−p+

� ϑ0 − 1
ϑ0

� � 2 p−−q−ð Þ
2−p+ð Þ 2−q−ð Þ · θ

2p+−q−p++q−p−−2q−
2−p+ð Þ 2−q−ð Þ M

2 p+−p−ð Þ
2−p+ :

ð10Þ

To the best of our knowledge, this type of hypothesis is
the first introduced by Bartsch andWang in [17]. In addition,
we recall the potential Vλ satisfied the conditions ðV1Þ −
ðV3Þ as the steep well potential.

Concerning pðxÞ, qðxÞ and f ðxÞ, gðxÞ, we suppose
(H1) A measurable function p : ℝN → ð2,+∞Þ satisfy

2 < p− ≔ essinf x∈ℝN p xð Þ ≤ p+ = esssupx∈ℝN p xð Þ <∞: ð11Þ

(H2) A measurable function q : ℝN → ð1, 2Þ satisfy

1 < q− ≔ essinf x∈ℝN q xð Þ ≤ q+ = esssupx∈ℝN q xð Þ < 2: ð12Þ

(H3) f ∈ L2/2−qðxÞðℝN ,ℂÞ and ∥f ∥L2/2−qðxÞðℝN ,ℂÞ > 0, where
LpðxÞðℝN ,ℂÞ will be given in Section 2.

(H4) g ∈ L∞ðℝN ,ℂÞ and ∥g∥∞ ≔ ∥g∥L∞ðℝN ,ℂÞ > 0:(13)
In what follows, it will always be assumed that the

hypothesis ðS2Þ holds. Then, we will give the following defini-
tion of weak solutions for problem (1).

Definition 1. We say that u ∈ Xλ is a weak solution of equa-
tion (1), if

R

ð
ℝ2N

u xð Þ − ei x−yð Þ · A x + y/2ð Þu yð Þ� � �
v xð Þei xyð
� �

· A x + y/2ð Þv yð Þ
�

x − yj jN+2s x,yð Þ dxdy

+ λR
ð
ℝN

V+u�vdx −R

ð
ℝN

V−u�vdx −R

ð
ℝN

f xð Þ uj jq xð Þ−2u
�

+ g xð Þ uj jp xð Þ−2u
�
�vdx = 0,

ð13Þ

for any v ∈ Xλ, where Xλ will be given in Section 2.
Our main results are as follows.

Theorem 2. Under (V1)–(V4), (H1)–(H4), and (H5), there
exists a nonempty open set Ωg ⊂Ω such that gðxÞ > 0 in Ωg:

Then, equation (1) allows at least a nontrivial solution for
all λ > 1/kM ∣ fV+ < kg ∣ .

Theorem 3. Suppose that (S1), (S2), (V1)–(V2), and (H1)–(H4
) are satisfied. Then, there exists λ∗ ≥ 0 such that for every λ
> λ∗, equation (1) has at least two nontrivial solutions.

Remark 4. Generally speaking, if sð·Þ: ℝN ×ℝN → ð0, 1Þ is a
continuous function, magnetic field A ∈ C0,αðℝN ,ℝNÞ with
α ∈ ð0, 1�, then the variable-order fractional magnetic Lapla-
cian can be defined as for each given

u ∈ C∞
0 ðℝN ,ℂÞ,

−Δð Þs ·ð ÞA u, v
D E

=R

ð
ℝ2N

u xð Þ − ei x−yð Þ·A x+y/2ð Þu yð Þ� � �
v xð Þei xyð Þ·A x+y/2ð Þv yð Þ
� �

x − yj jN+2s x,yð Þ dxdy,

ð14Þ

along any v ∈ C∞
0 ðℝN ,ℂÞ.

2. Preliminaries and Notations

For the reader’s convenience, we first review some necessary
definitions that we are later going to use of variable exponent
Lebesgue spaces. We refer the reader to [2, 3, 18–20] for
details. Furthermore, we give the variational setting for equa-
tion (1) and some preliminary results.

Denote

p+ = esssupx∈ℝN p xð Þ, p− = essinf x∈ℝN p xð Þ: ð15Þ

If p+ <∞, then p is said to be bounded. If ð1/pðxÞÞ + ð1/
p′ðxÞÞ = 1, then p′ðxÞ = pðxÞ/pðxÞ − 1 is called the dual vari-
able exponent of pðxÞ. The variable exponent Lebesgue space
can be defined as

Lp xð Þ ℝN ,ℂ
� �

= u : ℝN →ℂ is ameasurable function ; ρp xð Þ uð Þ
n

=
ð
ℝN

u xð Þj jp xð Þdx<∞
	

ð16Þ

with the norm

∥u∥Lp ·ð Þ ℝN ,ℂð Þ = inf μ > 0 : ρp xð Þ μ−1u
� �

≤ 1
n o

, ð17Þ

then LpðxÞðℝN ,ℂÞ is a Banach space. When p is bounded, we
have

min ∥u∥p
−

Lp xð Þ ℝN ,ℂð Þ,∥u∥
p+

Lp xð Þ ℝN ,ℂð Þ

 	

≤
ð
ℝN

u xð Þj jp xð Þdx ≤max ∥u∥p
−

Lp xð Þ ℝN ,ℂð Þ,∥u∥
p+

Lp xð Þ ℝN ,ℂð Þ

 	

:

ð18Þ

For bounded exponent, the dual space ðLpðxÞðℝN ,ℂÞÞ′
can be identified with Lp′ðxÞðℝN ,ℂÞ, where p′ðxÞ is called
the dual variable exponent of pðxÞ. Especially,

L2 ℝN ,ℂ
� �

= u : ℝN →ℂ is ameasurable function ;
ð
ℝN

u xð Þj j2dx<∞

 	

ð19Þ

with the real scalar product hu, viL2ðℝN ,ℂÞ ≔R
Ð
ℝN u�vdx, for

all u, v ∈ L2ðℝN ,ℂÞ. By Lemma 11, 20 of [20] and ∥·
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∥LpðxÞðℝN ,ℂÞ = ∥ ∣ · ∣∥LpðxÞðℝN ,ℝÞ, we know that in the variable
exponent Lebesgue space, the H€older inequality is still valid.

For all u ∈ LpðxÞðℝN ,ℂÞ, v ∈ Lp′ðxÞðℝN ,ℂÞ with pðxÞ ∈ ð1,∞Þ
, the following inequality holds

ð
ℝN

uj j vj jdx ≤ 1
p−

+ 1
p′
� �−

0
@

1
A∥u∥Lp xð Þ ℝN ,ℂð Þ∥v∥Lp ′ xð Þ ℝN ,ℂð Þ

≤ 2∥u∥Lp xð Þ ℝN ,ℂð Þ∥v∥Lp ′ xð Þ ℝN ,ℂð Þ:
ð20Þ

Define

Ds ·ð Þ ℝN ,ℂ
� �

= u ∈ L2 ℝN ,ℂ
� �

:
ð
ℝN

ð
ℝN

u xð Þ − u yð Þj j2
x − yj jN+2s x,yð Þ dxdy<∞

( )
:

ð21Þ

Equip Dsð·ÞðℝN ,ℂÞ with the inner product

u, vh is ·ð Þ =
ð
ℝN

ð
ℝN

u xð Þ − u yð Þð Þ v xð Þ − v yð Þð Þ
x − yj jN+2s x,yð Þ dxdy +

ð
ℝN

u xð Þv xð Þdx,

ð22Þ

and the corresponding norm ∥u∥2sð·Þ = hu, uisð·Þ. Especially, if
sð·Þ ≡ constant, then the space Dsð·ÞðℝN ,ℂÞ is the usual frac-
tional Sobolev space DsðℝN ,ℂÞ.

Lemma 5 (see [3] Lemma 5). Let p ∈ ½2, 2∗s0 �, 2∗s0 = 2N/N − 2s0,

if N > 2; 2∗s0 =∞ if N ≤ 2. The embedding Ds1ðℝN ,ℝÞ↪Dsð·Þ

ðℝN ,ℝÞ↪Ds0ðℝN ,ℝÞ↪LpðℝN ,ℝÞ are continuous.
For each function u : ℝN →ℂ, set

u½ �2s ·ð Þ,A ≔
ð
ℝ2N

u xð Þ − ei x−yð Þ·A x+y/2ð Þu yð Þ�� ��2
x − yj jN+2s x,yð Þ dxdy, ð23Þ

and the corresponding norm is defined as ∥u∥2sð·Þ,A = ∥u
∥2L2ðℝN ,ℂÞ + ½u�2sð·Þ,A: Set D be the space of measurable functions

u : ℝN →ℂ such that ∥u∥sð·Þ,A <∞; then, ðD, h·, · isð·Þ,AÞ is a
Hilbert space. If we let Dsð·Þ

A ðℝN ,ℂÞ as the closure of C∞
c ðℝN

,ℂÞ in D, then Dsð·Þ
A ðℝN ,ℂÞ is a Hilbert space.

Lemma 6. For each compact subset W ⊂ℝN , the embedding

Dsð·Þ
A ðℝN ,ℂÞ↪Dsð·ÞðW,ℂÞ is continuous.

Proof. Fixed any compact subset W ⊂ℝN , for any u ∈
Dsð·ÞðW,ℂÞ, we have

∥u∥2Ds ·ð Þ W,ℂð Þ =
ð
W

u xð Þj j2dx +
ð
W

ð
W

u xð Þ − u yð Þj j2
x − yj jN+2s x,yð Þ dxdy

≤
ð
ℝN

u xð Þj j2dx + 2
ð
W

ð
W

u xð Þ − ei x−yð Þ·A x+y/2ð Þu yð Þ�� ��2
x − yj jN+2s x,yð Þ dxdy

+ 2
ð
W

ð
W

u yð Þj j2 ei x−yð Þ·A x+yð Þ/2ð Þ − 1
�� ��2
x − yj jN+2s x,yð Þ dxdy

≤ 2
ð
ℝN

u xð Þj j2dx + 2
ð
ℝN

ð
ℝN

u xð Þ − ei x−yð Þ·A x+y/2ð Þu yð Þ�� ��2
x − yj jN+2s x,yð Þ dxdy

+ 2
ð
W

ð
W

u yð Þj j2 ei x−yð Þ·A x+y/2ð Þ − 1
�� ��2
x − yj jN+2s x,yð Þ dxdy ≤ 2∥u∥2s ·ð Þ,A + 2J ,

ð24Þ

where

J ≔
ð
W

ð
W

u yð Þj j2 ei x−yð Þ·A x+y/2ð Þ − 1
�� ��2
x − yj jN+2s x,yð Þ dxdy

=
ð
W

u yð Þj j2
ð
W∩ ∣x−y∣>1f g

ei x−yð Þ·A x+y/2ð Þ − 1
�� ��2

x − yj jN+2s x,yð Þ dx

 !
dy

+
ð
W

u yð Þj j2
ð
W∩ ∣x−y∣≤1f g

ei x−yð Þ·A x+y/2ð Þ − 1
�� ��2

x − yj jN+2s x,yð Þ dx

 !
dy

= J1 + J2:

ð25Þ

Since ∣eit − 1 ∣ ≤2, we have

J1 ≤ 4
ð
W

u yð Þj j2
ð
W∩ ∣x−y∣>1f g

1
x − yj jN+2s x,yð Þ dx

 !
dy

≤ 4
ð
W

u yð Þj j2
ð
W∩ ∣x−y∣>1f g

1
x − yj jN+2s0

dx

 !
d

= 4
ð
W

u yð Þj j2
ð
W∩ ∣z∣>1f g

1
zj jN+2s0

dz

 !
dy ≤ C1

ð
W

u yð Þj j2dy

≤ C1

ð
ℝN

u yð Þj j2dy = C1∥u∥
2
L2 ℝN ,ℂð Þ:

ð26Þ

By Lemma 6 of [21], we know that A is locally

bounded, and W ⊂ℝN is compact, jeiðx−yÞ·Aðx+y/2Þ − 1j2 ≤
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C2jx − yj2, for ∣ x − y ∣ ≤1, x, y ∈W: Thus, we obtain

J2 =
ð
W

u yð Þj j2
ð
W∩ ∣x−y∣≤1f g

ei x−yð Þ·A x+y/2ð Þ − 1
�� ��2

x − yj jN+2s x,yð Þ dx

 !
dy

≤
ð
W

u yð Þj j2
ð
W∩ ∣x−y∣≤1f g

C2
x − yj jN+2s x,yð Þ−2 dx

 !
dy

≤
ð
W

u yð Þj j2
ð
W∩ ∣x−y∣≤1f g

C2
x − yj jN+2s1−2

dx

 !
dy

≤ C2

ð
W

u yð Þj j2
ð
W∩ ∣z∣≤1f g

1
zj jN+2s1−2

dz

 !
dy

≤ C3

ð
W

u yð Þj j2dy ≤ C3

ð
ℝN

u yð Þj j2dy = C3∥u∥
2
L2 ℝN ,ℂð Þ:

ð27Þ

By (24)-(27), we can easily get that

∥u∥2Ds ·ð Þ W,ℂð Þ ≤ 2∥u∥2s ·ð Þ,A + 2C1∥u∥
2
L2 ℝN ,ℂð Þ + 2C3∥u∥

2
L2 ℝN ,ℂð Þ ≤ C4∥u∥

2
s ·ð Þ,A,

ð28Þ

which implies that the embedding Dsð·Þ
A ðℝN ,ℂÞ is continu-

ously embedded into Dsð·ÞðW,ℂÞ.

Through the above lemma, we know that Dsð·Þ
A ðℝN ,ℂÞ

↪Dsð·ÞðW,ℂÞ, and from Theorem 2.1 of [2], we know that
for Ω be a bounded subset of ℝN and p : �Ω→ ½1,∞Þ is con-
tinuous functions, Dsð·ÞðΩ,ℂÞ is continuously embedded into
LpðxÞðΩ,ℂÞ, so we seek another method to prove the size rela-

tionship between
Ð
ℝN juðxÞjpðxÞdx,

Ð
ℝN juðxÞjqðxÞdx, and ∥u∥λ.

Lemma 7 (see [6] Lemma 10). For every u ∈Dsð·Þ
A ðℝN ,ℂÞ, it

holds ∣u ∣ ∈Dsð·ÞðℝN ,ℝÞ. More precisely, °Í

∥∣u∣∥s ·ð Þ ≤ ∥u∥s ·ð Þ,A, for every u ∈D
s ·ð Þ
A ℝN ,ℂ
� �

: ð29Þ

Remark 8 (see [6] Remark 9). There holds

∣u xð Þ − ei x−yð Þ·A x+y
2ð Þu yð Þ∣ ≥ u xð Þ∣−∣u yð Þk k, for a:e:x, y ∈ℝN :

ð30Þ

Lemma 9. Let p ∈ ½2, 2∗s0 �, where 2∗s0 = 2N/N − 2s0 if N > 2;

2∗s0 =∞ if N ≤ 2. Dsð·Þ
A ðℝN ,ℂÞ is continuously embedded into

LpðℝN ,ℂÞ. Moreover, if s0 ∈ ð1/2, 1Þ, then Dsð·Þ
A ðℝN ,ℂÞ can

be continuously embedded into L∞ðℝN ,ℂÞ; that is, there
exists a constant M > 0 such that

∥u∥∞ ≤M∥u∥s ·ð Þ,A: ð31Þ

Proof. By Lemma 7, we know that for every u ∈Dsð·Þ
A ðℝN ,ℂÞ,

it holds ∣u ∣ ∈Dsð·ÞðℝN ,ℝÞ. By Lemma 5, we know that for

Dsð·ÞðℝN ,ℝÞ↪LpðℝN ,ℝÞ is continuous. In light of Remark
8, one has

∥u∥Lp ℝN ,ℂð Þ = ∥∣u∣∥Lp ℝN ,ℝð Þ ≤~c∥∣u∣∥s ·ð Þ

=~c
ð
ℝN

uk k2dx +
ð
ℝN

ð
ℝN

u xð Þ∣−∣u yð Þk k2
x − yj jN+2s x,yð Þ dxdy

 !1
2

≤~c
ð
ℝN

uj j2dx +
ð
ℝN

ð
ℝN

u xð Þ − ei x−yð Þ·A x+y/2ð Þu yð Þ�� ��2
x − yj jN+2s x,yð Þ dxdy

 !1
2

=~c∥u∥s ·ð Þ,A:

ð32Þ

From the above inequality, we immediately obtain the

embedding Dsð·Þ
A ðℝN ,ℂÞ↪LpðℝN ,ℂÞ which is continuous.

For λ > 0, define

u, vh iλ ≔R

ð
ℝ2N

u xð Þ − ei x−yð Þ·A x+y/2ð Þu yð Þ� � �v xð Þei xyð Þ·A x+y/2ð Þv yð Þ
� �

x − yj jN+2s x,yð Þ dxdy

+Rλ
ð
ℝN

V+u�vdx,

∥u∥λ ≔ u, uh i
1
2
λ: ð33Þ

Set E = fu ∈Dsð·Þ
A ðℝN ,ℂÞ: ÐℝNV+u2dx<∞g be equipped

with the inner product hu, viE = hu, vi1(i.e., λ = 1 in hu, viλ).
Obviously, ∥u∥E ≤ ∥u∥λ for λ ≥ 1. Set Xλ = ðX,∥ · ∥λÞ. Combin-
ing condition ðV4Þ and fractional Sobolev inequality, we
could getð

ℝN
u xð Þj j2dx =

ð
V+<kf g

u xð Þj j2dx +
ð

V+≥kf g
u xð Þj j2dx

≤ ∥u∥2∞∣ V+ < kf g∣ + 1
k

ð
ℝN

V+ xð Þ u xð Þj j2dx

≤M2∥u∥2s ·ð Þ,A∣ V+ < kf g∣ + 1
k

ð
ℝN

V+u2dx

=M2∣ V+ < kf g∣
ð
ℝN

u xð Þj j2dx + u½ �2s ·ð Þ,A
� �

+ 1
k

ð
ℝN

V+u2dx,

ð34Þ

which shows that

ð
ℝN

u xð Þj j2dx ≤ 1
1 −M2 ∣ V+ < kf g ∣ M2 ∣ V+ < kf g ∣ u½ �2s ·ð Þ,A

h

+ 1
k

ð
ℝN

V+u2dx
�

≤
max M2 ∣ V+ < kf g∣, 1/kð Þ� 


1 −M2 ∣ V+ < kf g ∣ u½ �2s ·ð Þ,A +
ð
ℝN

V+u2dx
� �

= max M2 ∣ V+ < kf g∣, 1/kð Þ� 

1 −M2 ∣ V+ < kf g ∣ ∥u∥2X :

ð35Þ
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From the above inequality, it holds that

u½ �2s ·ð Þ,A +
ð
ℝN

u xð Þj j2dx ≤ 1 + max M2 ∣ V+ < kf g∣, 1/kð Þ� 

1 −M2 ∣ V+ < kf g ∣

� �
∥u∥2X ,

ð36Þ

which shows that X is continuously embedded into Dsð·Þ
A ð

ℝN ,ℂÞ. Similarly, for all λ ≥ 1/kM2 ∣ fV+ < kg ∣ , there holds
ð
ℝN

u xð Þj j2dx ≤ 1
1 −M2 ∣ V+ < kf g ∣
� M2 ∣ V+ < kf g ∣ u½ �2s ·ð Þ,A + λM2 ∣ V+ < kf g ∣

ð
ℝN

V+u2dx
� �

= M2 ∣ V+ < kf g ∣
1 −M2 ∣ V+ < kf g ∣ u½ �2s ·ð Þ,A + λ

ð
ℝN

V+u2dx
� �

= M2 ∣ V+ < kf g ∣
1 −M2 ∣ V+ < kf g ∣ ∥u∥

2
λ =

1
θ
∥u∥2λ,

ð37Þ

where θ = 1 −M2jfV+ < kgj/M2jfV+ < kgj. In addition, we
have

ð
ℝN

u xð Þj jp xð Þdx =
ð
ℝN

u xð Þj jp xð Þ−2 · u xð Þj j2dx

≤max ∥u∥p
+−2
∞ ,∥u∥p−−2∞

n oð
ℝN

u xð Þj j2dx

≤max Mp+−2
ð
ℝN

u xð Þj j2dx + u½ �2s ·ð Þ,A
� �p+−2

2
,Mp−−2

(

�
ð
ℝN

u xð Þj j2dx + u½ �2s ·ð Þ,A
� �p−−2

2
)

M2 ∣ V+ < kf g ∣
1 −M2 ∣ V+ < kf g ∣ ∥u∥

2
λ:

ð38Þ

This together M2 ∣ fV+ < kg ∣ <1 yields that

ð
ℝN

u xð Þj jp xð Þdx ≤max Mp+−2 M2 ∣ V+ < kf g ∣
1 −M2 ∣ V+ < kf g ∣ ∥u∥

2
λ+∥u∥2λ

� �p+−2
2

,Mp−−2

8<
:

� M2 ∣ V+ < kf g ∣
1 −M2 ∣ V+ < kf g ∣ ∥u∥

2
λ+∥u∥2λ

� �p−−2
2
)

M2 ∣ V+ < kf g ∣
1 −M2 ∣ V+ < kf g ∣ ∥u∥

2
λ ≤ ∣ V+ < kf g∣

� 1
1 −M2 ∣ V+ < kf g ∣
� �p+

2
max Mp+∥u∥p

+

λ ,Mp−∥u∥p
−

λ

n o

= 1
θp

+/2Mp+ V+ < kf gj jp+−2/2
max Mp+∥u∥p

+

λ ,Mp−∥u∥p
−

λ

n o

= 1
θp

+/2 V+ < kf gj jp+−2/2
max ∥u∥p

+

λ ,Mp−−p+∥u∥p
−

λ

n o
:

ð39Þ

For the sake of notational simplicity, we let ∥u∥2λ,V ≔
½u�2sð·Þ,A +

Ð
ℝNVλu

2dx. Hence, by condition ðV4Þ, we have

∥u∥2λ ≥ ∥u∥2λ,V ≥
ϑ0 − 1
ϑ0

∥u∥2λ, for all λ ≥ 0: ð40Þ

Related to equation (1), we think the functional Ψλ : Xλ
→ℝ,

Ψλ uð Þ = 1
2 ∥u∥

2
λ −

1
2

ð
ℝN

V−u2dx −
ð
ℝN

f xð Þ
q xð Þ uj jq xð Þ + g xð Þ

p xð Þ uj jp xð Þ
� �

dx

= 1
2 ∥u∥

2
λ,V −

ð
ℝN

f xð Þ
q xð Þ uj jq xð Þ + g xð Þ

p xð Þ uj jp xð Þ
� �

dx:

ð41Þ

In fact, we can easily verify thatΨλ is well-defined of class
C1 in Xλ and

Ψλ
′ uð Þ, v

D E
= u, vh iλ −R

ð
ℝN

V−u�vdx −R

ð
ℝN

f xð Þ uj jq xð Þ−2u
�

+ g xð Þ uj jp xð Þ−2u
�
�vdx

= u, vh iλ,V −R

ð
ℝN

f xð Þ uj jq xð Þ−2u
�

+ g xð Þ uj jp xð Þ−2u
�
�vdx,

ð42Þ

for all u, v ∈ Xλ. Therefore, if u ∈ Xλ is a critical point of Ψλ,
then u is a solution of equation (1). Since the energy func-
tional Ψλ is unbounded below on Xλ, in order to overcome
this problem, we use the Nehari manifold N λ = fu ∈ Xλ \ f
0g: hΨλ

′ðuÞ, ui = 0g to study the energy functional. In addi-
tion, we also note that N λ contains every nonzero solution
of equation (1). Especially, all critical points of must be
located in N λ, and the local minimizers on N λ are usually
critical points of Ψλ.

3. Main Results

To start with, we can get an estimate ofΨλ. Then, we will dis-
cuss some basic properties ofN λ. Finally, we prove Theorem
2 and Theorem 3 using the variational methods.

Lemma 10. Ψλ is coercive and bounded below on N λ. Fur-
thermore, one has

Ψλ uð Þ ≥max −
2 − q+

2p−
ϑ0q

+

θ ϑ0 − 1ð Þ p− − 2ð Þ
� � q+

2−q+
(

� p− − q−ð Þ∥f ∥L2/2−q xð Þ

q−

� � 2
2−q+

,− 2 − q−

2p−q−

� ϑ0
θ ϑ0 − 1ð Þ p− − 2ð Þ
� � q−

2−q−

p− − q−ð Þ∥f ∥
L

2
2−q xð Þ

� � 2
2−q−

)
:

ð43Þ

Proof. If u ∈N λ, in view of (37), (40), and H€older inequality,
it gains
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Ψλ uð Þ =Ψλ uð Þ − 1
p−

Ψλ
′ uð Þ, u

D E

= 1
2 −

1
p−

� �
∥u∥2λ,V −

ð
ℝN

1
q xð Þ −

1
p−

� �
f xð Þ uj jq xð Þdx

−
ð
ℝN

1
p xð Þ −

1
p−

� �
g xð Þ uj jp xð Þdx ≥

1
2 −

1
p−

� �
∥u∥2λ,V

−
1
q−

−
1
p−

� �ð
ℝN

f xð Þ uj jq xð Þdx ≥
1
2 −

1
p−

� �
∥u∥2λ,V

−
1
q−

−
1
p−

� �
∥f ∥

L
2

2−q xð Þ ℝNð Þ
ð
ℝN

uj j2dx
� �q xð Þ

2

≥
1
2 −

1
p−

� �
∥u∥2λ,V −

1
q−

−
1
p−

� �
∥f ∥

L
2

2−q xð Þ ℝNð Þ
1

θq xð Þ/2 ∥u∥
q xð Þ
λ

≥
p− − 2
2p− ∥u∥2λ,V −

1
q−

−
1
p−

� �
∥f ∥

L
2

2−q xð Þ ℝNð Þ max 1
θq

+/2 ∥u∥
q+

λ ,



1
θq

−/2 ∥u∥
q−

λ

	
≥
p− − 2
2p−

ϑ0 − 1
ϑ0

∥u∥2λ

−
1
q−

−
1
p−

� �
∥f ∥

L
2

2−q xð Þ ℝNð Þ max 1
θq

+/2 ∥u∥
q+

λ , 1
θq

−/2 ∥u∥
q−

λ


 	

≥max −
2 − q+

2p−
ϑ0q

+

θ ϑ0 − 1ð Þ p− − 2ð Þ
� � q+

2−q+
(

�
p− − q−ð Þ∥f ∥L2/2−q xð Þ ℝNð Þ

q−

 ! 2
2−q+

,− 2 − q−

2p−q−

� ϑ0
θ ϑ0 − 1ð Þ p− − 2ð Þ
� � q−

2−q−

p− − q−ð Þ∥f ∥
L

2
2−q xð Þ ℝNð Þ

� � 2
2−q−
)
:

ð44Þ

Therefore, Ψλ is coercive and bounded below on N λ.

We know that N λ is linked to the behavior of the func-
tion of the form LuðtÞ: t→ΨλðtuÞ for t > 0. This map is
called as the fibering map which can be traced back to basic
works [1, 22, 23]. If u ∈ Xλ, then

Lu tð Þ = t2

2 ∥u∥2λ,V −
ð
ℝN

f xð Þ
q xð Þ tuj jq xð Þdx −

ð
ℝN

g xð Þ
p xð Þ tuj jp xð Þdx,

Lu′ tð Þ = t∥u∥2λ,V −
ð
ℝN

f xð Þtq xð Þ−1 uj jq xð Þdx −
ð
ℝN

g xð Þtp xð Þ−1 uj jp xð Þdx ;

Lu′′ tð Þ = ∥u∥2λ,V −
ð
ℝN

f xð Þ q xð Þ − 1ð Þtq xð Þ−2 uj jq xð Þdx

−
ð
ℝN

g xð Þ p xð Þ − 1ð Þtp xð Þ−2 uj jp xð Þdx:
ð45Þ

After observation, we can get that

tLu′ tð Þ = ∥tu∥2λ,V −
ð
ℝN

f xð Þ tuj jq xð Þdx −
ð
ℝN

g xð Þ tuj jp xð Þdx

ð46Þ

and thus, for u ∈ Xλ \ f0g and t > 0, Lu′ðtÞ = 0 if and only if t
u ∈N λ, i.e., positive critical points of Lu correspond points

on the Nehari manifold. Especially, Lu′ð1Þ = 0 if and only if
u ∈N λ. We found that N λ can be divided into three parts
corresponding local minimal, local maximum, and points
of inflection. Based on the above, we can define

N +
λ = u ∈N λ : Lu′′ 1ð Þ > 0
n o

;

N 0
λ = u ∈N λ : Lu′′ 1ð Þ = 0
n o

;

N −
λ = u ∈N λ : Lu′′ 1ð Þ < 0
n o

:

ð47Þ

For each u ∈N λ, we can find that

Lu′′ 1ð Þ = ∥u∥2λ,V −
ð
ℝN

q xð Þ − 1ð Þf xð Þ uj jq xð Þdx

−
ð
ℝN

p xð Þ − 1ð Þg xð Þ uj jp xð Þdx:
ð48Þ

Now, we will deduce some results of N +
λ ,N 0

λ, and N −
λ .

Lemma 11. Assume u0 is a local minimizer of Ψλ on N λ and
u0 ∉N

0
λ, then Ψλ

′ðu0Þ = 0 in X−1
λ .

Proof. If u0 is a local minimizer of Ψλ on N λ, then u0 is a
solution of the optimization problem

minimizerΨλ uð Þ subject toK uð Þ = 0, ð49Þ

where KðuÞ = ∥u∥2λ,V −
Ð
ℝN f ðxÞjujqðxÞdx −

Ð
ℝNgðxÞjujpðxÞdx.

Consequently, by the theory of Lagrange multipliers, there
exists ν ∈ℝ such that Ψλ

′ðu0Þ = νK ′ðu0Þ. Therefore,

Ψλ
′ u0ð Þ, u0

D E
= ν K ′ u0ð Þ, u0
D E

: ð50Þ

It follows from u0 ∈N λ that

∥u0∥
2
λ,V −

ð
ℝN

f xð Þ u0j jq xð Þdx −
ð
ℝN

g xð Þ u0j jp xð Þdx = 0: ð51Þ

Thus,

K ′ u0ð Þ, u0
D E

= 2∥u0∥2λ,V −
ð
ℝN

q xð Þf xð Þ u0j jq xð Þdx

−
ð
ℝN

p xð Þg xð Þ u0j jp xð Þdx = ∥u0∥
2
λ,V

−
ð
ℝN

q xð Þ − 1ð Þf xð Þ u0j jq xð Þdx −
ð
ℝN

p xð Þð

− 1Þg xð Þ u0j jp xð Þdx:

ð52Þ

If u0 ∉N
0
λ, then hK ′ðu0Þ, u0i ≠ 0. In view of (50), it gains

ν = 0.
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Lemma 12.

(1) ∀u ∈N +
λ ∪N 0

λ, one has
Ð
ℝN f ðxÞjujqðxÞdx > 0

(2) ∀u ∈N −
λ , one has

Ð
ℝNgðxÞjujpðxÞdx > 0

Proof. By the definitions of N +
λ and N 0

λ, we can obtain

0 ≤ Lu′′ 1ð Þ = ∥u∥2λ,V −
ð
ℝN

q xð Þ − 1ð Þf xð Þ uj jq xð Þdx

−
ð
ℝN

p xð Þ − 1ð Þg xð Þ uj jp xð Þdx = ∥u∥2λ,V

−
ð
ℝN

q− − 1ð Þf xð Þ uj jq xð Þdx

−
ð
ℝN

p− − 1ð Þg xð Þ uj jp xð Þdx < 2 − p−ð Þ∥u∥2λ,V

− q− − p−ð Þ
ð
ℝN

f xð Þ uj jq xð Þdx:

ð53Þ

It is easy to get that
Ð
ℝN f ðxÞjujqðxÞdx > p− − 2/p− − q−∥u

∥2λ,V ≥ 0. It follows from the definition of N −
λ that

0 > Lu′′ 1ð Þ = ∥u∥2λ,V −
ð
ℝN

q xð Þ − 1ð Þf xð Þ uj jq xð Þdx

−
ð
ℝN

p xð Þ − 1ð Þg xð Þ uj jp xð Þdx ≥ ∥u∥2λ,V

−
ð
ℝN

q+ − 1ð Þf xð Þ uj jq xð Þdx

−
ð
ℝN

p+ − 1ð Þg xð Þ uj jp xð Þdx

= 2 − q+ð Þ∥u∥2λ,V − p+ − q+ð Þ
ð
ℝN

g xð Þ uj jp xð Þdx,

ð54Þ

which implies that
Ð
ℝNgðxÞjujpðxÞdx > 2 − q+/p+ − q+∥u∥2λ,V

≥ 0.

Lemma 13. Let the condition (H3), (H4), and (V1)-(V5) are
satisfied. Then, for all λ ≥ 1/kM2 ∣ fV+ < kg ∣ , one has N 0

λ =
∅.

Proof. If the conclusion does not hold, then there exists λ ≥
1/kM2 ∣ fV+ < kg ∣ , such that N 0

λ ≠∅. Then, for u ∈N 0
λ, by

(40), (48), and the H€older inequality, we have

0 = Lu′′ 1ð Þ = ∥u∥2λ,V −
ð
ℝN

q xð Þ − 1ð Þf xð Þ uj jq xð Þdx

−
ð
ℝN

p xð Þ − 1ð Þg xð Þ uj jp xð Þdx < 2 − p−ð Þ∥u∥2λ,V

− q− − p−ð Þ
ð
ℝN

f xð Þ uj jq xð Þdx:

ð55Þ

This means that

q−

2
ϑ0 − 1
ϑ0

∥u∥2λ ≤
ϑ0 − 1
ϑ0

∥u∥2λ ≤ ∥u∥2λ,V < p− − q−

p− − 2

ð
ℝN

f xð Þ uj jq xð Þdx

< p− − q−

p− − 2 ∥f ∥
L

2
2−q xð Þ ℝNð Þ

ð
ℝN

uj jq xð Þdx

< p− − q−

p− − 2 ∥f ∥
L

2
2−q xð Þ ℝNð Þ max 1

θq
+/2 ∥u∥

q+

λ , 1
θq

−/2 ∥u∥
q−

λ


 	
:

ð56Þ

Thus, we have

∥u∥λ ≤min
2ϑ0 p− − q−ð Þ∥f ∥L2/2−q xð Þ ℝNð Þ
q− ϑ0 − 1ð Þ p− − 2ð Þθq+/2

 ! 1
2−q+

,

8<
:

�
2ϑ0 p− − q−ð Þ∥f ∥L2/2−q xð Þ ℝNð Þ
q− ϑ0 − 1ð Þ p− − 2ð Þθq−/2

 ! 1
2−q−
9=
;:

ð57Þ

From (48), we seem to easily get that

2 − q+ð Þ∥u∥2λ,V − p+ − q+ð Þ
ð
ℝN

g xð Þ uj jp xð Þdx ≤ ∥u∥2λ,V

−
ð
ℝN

q xð Þ − 1ð Þf xð Þ uj jq xð Þdx −
ð
ℝN

p xð Þ − 1ð Þg xð Þ uj jp xð Þdx

= Lu′′ 1ð Þ = 0,
ð58Þ

which implies that

2 − q+

p+ − q+
∥u∥2λ,V ≤

ð
ℝN

g xð Þ uj jp xð Þdx: ð59Þ

Combining (39) and (40) with the Sobolev inequality, we
have

ϑ0 − 1ð Þ 2 − q+ð Þ
ϑ0 p+ − q+ð Þ ∥u∥2λ ≤

2 − q+

p+ − q+
∥u∥2λ,V ≤

ð
ℝN

g xð Þ uj jp xð Þdx

≤
∥g∥∞

θp
+/2 V+ < kf gj jp+−2/2

max

� ∥u∥p
+

λ ,Mp−−p+∥u∥p
−

λ

n o
:

ð60Þ

This means that

∥u∥λ ≥max ϑ0 − 1ð Þ 2 − q+ð Þθ ∧ p ∧ +/2ð Þ ∣ V+ < kf g ∣ ∧ p ∧ +−2ð Þ/2ð Þ
ϑ0 p+ − q+ð Þ∥g∥∞

� � 1
p+−2

,
(

� ϑ0 − 1ð Þ 2 − q+ð Þθ ∧ p ∧ +/2ð Þ ∣ V+ < kf g ∣ ∧ p ∧ +−2ð Þ/2ð Þ
ϑ0 p+ − q+ð Þ∥g∥∞Mp−−p+

� � 1
p−−2
)
:

ð61Þ
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Hence, combining (57) and (61), we have

∣ V+ < kf g∣ <min A1, A2, A3, A4f g ≤max A1, A2, A3, A4f g,
ð62Þ

which is a contradictive with (V5). Therefore, for all λ ≥ 1/k
M2 ∣ fV+ < kg ∣ , one has N 0

λ =∅:

By Lemma 13, λ ≥ 1/kM2 ∣ fV+ < kg ∣ , we can easily get
that N λ =N +

λ ∪N −
λ and define

c+λ = inf
u∈N +

λ

Ψλ uð Þ and c−λ = inf
u∈N −

λ

Ψλ uð Þ: ð63Þ

Furthermore, we derive the following results.

Lemma 14. Under the condition (H3), (H4), and (V1)-(V5).
Then, for all λ ≥ 1/kM2 ∣ fV+ < kg ∣ , there exists C5 such that
c+λ < 0 < C5 < c−λ . Particularly, c

+
λ = inf

u∈N λ

ΨλðuÞ.

Proof. Our proof is decoupled in the following two steps:

Step 1.We claim that there exist u ∈N +
λ such that ΨλðuÞ < 0.

Indeed, let tv0 ∈N
+
λ ⊂N λ, where t ∈ ð0, 1Þ small enough. It is

follows from (48) that

0 < Ltv0′′ 1ð Þ = ∥tv0∥
2
λ,V −

ð
ℝN

q xð Þ − 1ð Þf xð Þ tv0j jq xð Þdx

−
ð
ℝN

p xð Þ − 1ð Þg xð Þ tv0j jp xð Þdx < 2 − p−ð Þ∥tv0∥2λ,V

− q− − p−ð Þ
ð
ℝN

f xð Þ tv0j jq xð Þdx:

ð64Þ

This shows that

0 ≤ p− − 2
p− − q−

∥tv0∥
2
λ,V <

ð
ℝN

f xð Þ tv0 ∣ q xð Þdx < tq
−
ð
ℝN

f xð Þ
����

����v0
����
q xð Þ

dx:

ð65Þ

This yields at once that

ð
ℝN

f xð Þ v0j jq xð Þdx > 0: ð66Þ

Similarly,

0 < Ltv0′′ 1ð Þ = ∥tv0∥
2
λ,V −

ð
ℝN

q xð Þ − 1ð Þf xð Þ tv0j jq xð Þdx

−
ð
ℝN

p xð Þ − 1ð Þg xð Þ tv0j jp xð Þdx < 2 − q−ð Þ∥tv0∥2λ,V

− p− − q−ð Þ
ð
ℝN

g xð Þ tv0j jp xð Þdx:

ð67Þ

From (67), we can easily get that

2 − q−

p− − q−
∥tv0∥

2
λ,V >

ð
ℝN

g xð Þ tv0j jp xð Þdx: ð68Þ

Consequently, it derives from (67) and (68) that

Ψλ tv0ð Þ =Ψλ tv0ð Þ − 1
p−

Ψλ
′ tv0ð Þ, tv0

D E
< 1
2 ∥tv0∥

2
λ,V

−
1
q+

ð
ℝN

f xð Þ tv0j jq xð Þdx −
1
p+

ð
ℝN

g xð Þ tv0j jp xð Þdx

−
1
p−

∥tv0∥
2
λ,V + 1

p−

ð
ℝN

f xð Þ tv0j jq xð Þdx

+ 1
p−

ð
ℝN

g xð Þ tv0j jp xð Þdx = 1
2 −

1
p−

� �
∥tv0∥

2
λ,V

−
ð
ℝN

1
q+

−
1
p−

� �
f xð Þ tv0j jq xð Þdx

+ 1
p−

−
1
p+

� �ð
ℝN

g xð Þ tv0j jp xð Þdx

< 1
2 −

1
p−

� �
∥tv0∥

2
λ,V −

ð
ℝN

1
q+

−
1
p−

� �
f xð Þ tv0j jq xð Þdx

+ 1
p−

−
1
p+

� � 2 − q−

p− − q−
∥tv0∥

2
λ,V = 1

2 −
1
p−

� ��

+ 1
p−

−
1
p+

� � 2 − q−

p− − q−

�
∥tv0∥

2
λ,V

−
ð
ℝN

1
q+

−
1
p−

� �
f xð Þ tv0j jq xð Þdx < t2

1
2 −

1
p−

� ��

+ 1
p−

−
1
p+

� � 2 − q−

p− − q−

�
∥v0∥

2
λ,V − tq

+
ð
ℝN

� 1
q+

−
1
p−

� �
f xð Þ v0j jq xð Þdx:

ð69Þ

Hence, c+λ < 0.

Step 2.We assert that there exist u ∈N −
λ such thatΨλðuÞ > 0.

In fact, let u ∈N −
λ ⊂N λ. From (48), we seem to easily get that

2 − q+ð Þ∥u∥2λ,V − p+ − q+ð Þ
ð
ℝN

g xð Þ uj jp xð Þdx ≤ ∥u∥2λ,V

−
ð
ℝN

q xð Þ − 1ð Þf xð Þ uj jq xð Þdx −
ð
ℝN

p xð Þ − 1ð Þg xð Þ uj jp xð Þdx

= Lu′′ 1ð Þ < 0,
ð70Þ

which implies that

2 − q+

p+ − q+
∥u∥2λ,V <

ð
ℝN

g xð Þ uj jp xð Þdx: ð71Þ

Combining (39), (40), and (71) with Sobolev inequality,
we have
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ϑ0 − 1ð Þ 2 − q+ð Þ
ϑ0 p+ − q+ð Þ ∥u∥2λ ≤

2 − q+

p+ − q+
∥u∥2λ,V <

ð
ℝN

g xð Þ uj jp xð Þdx

≤
∥g∥∞

θp
+/2 V+ < kf gj jp+−2/2

max ∥u∥p
+

λ ,Mp−−p+∥u∥p
−

λ

n o
ð72Þ

and so

∥u∥λ ≥max ϑ0 − 1ð Þ 2 − q+ð Þθ ∧ p ∧ +/2ð Þ ∣ V+ < kf g ∣ ∧ p ∧ +−2ð Þ/2ð Þ
ϑ0 p+ − q+ð Þ∥g∥∞

� � 1
p+−2

,
(

� ϑ0 − 1ð Þ 2 − q+ð Þθ ∧ p ∧ +/2ð Þ ∣ V+ < kf g ∣ ∧ p ∧ +−2ð Þ/2ð Þ
ϑ0 p+ − q+ð Þ∥g∥∞Mp−−p+

� � 1
p−−2
)

≔ C6:

ð73Þ

It follows from (44) that

Ψλ uð Þ ≥ p− − 2
2p−

ϑ0 − 1
ϑ0

∥u∥2λ −
1
q−

−
1
p−

� �
∥f ∥

L
2

2−q xð Þ ℝNð Þ max

� 1
θq

+/2 ∥u∥
q+

λ , 1
θq

−/2 ∥u∥
q−

λ


 	
>max

� Cq+

6
p− − 2
2p−

ϑ0 − 1
ϑ0

C2−q+
6 −

1
q−

−
1
p−

� �
∥f ∥

L
2

2−q xð Þ ℝNð Þ
1

θq
+/2

� �
, Cq−

6




� p− − 2
2p−

ϑ0 − 1
ϑ0

C2−q−
6 −

1
q−

−
1
p−

� �
∥f ∥

L
2

2−q xð Þ ℝNð Þ
1

θq
−/2

� �	
:

ð74Þ

Consequently, if λ > 1/kM2 ∣ fV+ < kg ∣ , then c−λ > C5 for
some C5 > 0.

We note that if f , g and Vλ satisfy the hypotheses in The-

orem 3, we can choose φ ∈ C∞
0 ðΩg,ℂÞ, such that LφðtÞ =

ΨλðtφÞ = t2/2∥φ∥2λ,V −
Ð
Ωg
ð f ðxÞ/qðxÞÞjtφjqðxÞdx − Ð

Ωg
ðgðxÞ/

pðxÞÞjtφjpðxÞdx have t0 > 0 and C0 which are independent of
λ that satisfy t0φ ∈N −

λ for all λ > λ∗ and

sup
t≥0

Lφ tð Þ = Lφ t0ð Þ = C0 > 0, ð75Þ

which shows c−λ ≤ C0 for all λ > λ∗.

Lemma 15. Assume that the conditions (H1)-(H5) and (V1
)-(V5) hold, then there exists λ∗ ≥ 1/kM2 ∣ fV+ < kg ∣ such
that Ψλ satisfies the ðPSÞc condition in Xλ for all c < C0 and
λ > λ∗.

Proof. First, we assume fung is a ðPSÞc sequence with c < C0.
In view of Lemma 10, there exists a positive constant Ĉ
related to λ such that ∥un∥λ ≤ Ĉ. Consequently, there is a sub-

sequence which is still denote as fung and u0 in Xλ such that

un ⇀ u0 inXλ,
un → u0 in Lrloc ℝN ,ℂ

� �
, for 2 ≤ r ≤∞,

g xð Þ unj jp xð Þ−2un ⇀ g xð Þ u0j jp xð Þ−2u0 in Lp
′ xð Þ ℝN ,ℂ
� �

:

ð76Þ

Besides, Ψλ
′ðu0Þ = 0: Let vn = un − u0. Making use of the

Vitali theorem, it holds that

lim
n→∞

ð
ℝN

f xð Þ vnj jq xð Þdx = 0: ð77Þ

In fact, note that f ∈ L2/2−qðxÞðℝN ,ℂÞ, for any 0 < ε < 1;
then, there exists rðεÞ > 0 such that for ζ ∈ℝN and r > rðεÞ,

ð
ℝN\Br ζð Þ

f xð Þj j 2
2−q xð Þdx < ε

2
2−q+ : ð78Þ

For each Ω0 ⊂ BrðζÞ, one has

ð
Ω0

f xð Þ vnj jq xð Þdx ≤max
ð
Ω0

f xð Þj j 2
2−q xð Þdx

 !2−q−
2

,

8<
:

�
ð
Ω0

f xð Þj j 2
2−q xð Þdx

 !2−q+
2
9=
; max

�
ð
Ω0

vnj j2dx
 !q−

2

,
ð
Ω0

vnj j2dx
 !q+

2
8<
:

9=
;

≤ Ĉ max
ð
Ω0

f xð Þj j 2
2−q xð Þdx

 !2−q−
2

,

8<
:

�
ð
Ω0

f xð Þj j 2
2−q xð Þdx

 !2−q+
2
9=
;:

ð79Þ

It is easy to get that f f ðxÞjvnjqðxÞg is a equi-integrable on

BrðζÞ. Besides, f ðxÞjvnjqðxÞ → 0, a.e., in BrðζÞ. It follows from
the Vitali theorem that

lim
n→∞

ð
Br ζð Þ

f xð Þ vnj jq xð Þdx = 0: ð80Þ
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Hence, there holds

ð
ℝN

f xð Þ vnj jq xð Þdx =
ð
Br ζð Þ

f xð Þ vnj jq xð Þdx

+
ð
ℝN \Br ζ0ð Þ

f xð Þ vnj jq xð Þdx ≤ Ĉε

+
ð
Br ζð Þ

f xð Þ vnj jq xð Þdx,

ð81Þ

which implies that lim
n→∞

Ð
ℝN f ðxÞjvnjqðxÞdx = 0:

Next, we assert that un → u0 in Xλ. In fact, by (V2), we
obtain

ð
ℝN

v2ndx =
ð

V+≥kf g
v2ndx +

ð
V+<kf g

v2ndx ≤
1
λk

ð
V+≥kf g

λV+v2ndx

+
ð

V+<kf g
v2ndx ≤

1
λk

∥vn∥
2
λ + o 1ð Þ:

ð82Þ

In light of the H€older inequality with the Sobolev inequal-
ity, we have

ð
ℝN

vnj jp xð Þdx =
ð
ℝN

vnj jp xð Þ−2 · vnj j2dx ≤max

� ∥vn∥
p+−2
∞ , ∥vn∥

p−−2
∞

n oð
ℝN

vnj j2dx ≤max

� Mp+−2∥vn∥
p+−2
s ·ð Þ,A, Mp−−2∥vn∥

p−−2
s ·ð Þ,A

n oð
ℝN

vnj j2dx

≤max Mp+−2 ∥vn∥
2
L2 ℝNð Þ + vn½ �2s ·ð Þ,A

� �p+−2
2 , Mp−−2

(

� ∥vn∥
2
L2 ℝNð Þ + vn½ �2s ·ð Þ,A

� �p−−2
2
	ð

ℝN
vnj j2d ≤max

� Mp+−2 1
λk

∥vn∥
2
λ+∥vn∥2λ + o 1ð Þ

� �p+−2
2
, Mp−−2

(

� 1
λk

∥vn∥
2
λ+∥vn∥2λ + o 1ð Þ

� �p−−2
2
)ð

ℝN
vnj j2dx ≤max

� Mp+−2 λk + 1
λk

� �p+−2
2
∥vn∥

p+−2
λ + o 1ð Þ,Mp−−2

(

� λk + 1
λk

� �p−−2
2
∥vn∥

p−−2
λ + o 1ð Þ

)ð
ℝN

vnj j2dx

≤
1
λk

max Mp+−2∥vn∥
p+−2
λ , Mp−−2∥vn∥

p−−2
λ

n o

� λk + 1
λk

� �p+−2
2
∥vn∥

2
λ + o 1ð Þ:

ð83Þ

By Bre′is-Lieb Lemma, we have

∥un∥
2
λ,V = ∥un − u0∥

2
λ,V+∥u0∥2λ,V + o 1ð Þ: ð84Þ

By applying a Bre′is-Lieb type result on variable expo-
nent Lebesgue space (see [24]) and (H3)-(H4), it is easy to
obtain that

ð
ℝN

f xð Þ unj jq xð Þdx =
ð
ℝN

f xð Þ un − u0j jq xð Þdx +
ð
ℝN

f xð Þ u0j jq xð Þdx + o 1ð Þ:

ð85Þ

Similarly,

ð
ℝN

g xð Þ unj jp xð Þdx =
ð
ℝN

g xð Þ un − u0j jp xð Þdx +
ð
ℝN

g xð Þ u0j jp xð Þdx + o 1ð Þ:

ð86Þ

Then, overall, we can get that ΨλðvnÞ =ΨλðunÞ −Ψλðu0
Þ + oð1Þ and Ψλ

′ðvnÞ = oð1Þ. Then, by virtue of (77) and
Lemma 10, we get that

C0 + C7 + o 1ð Þ > c −Ψλ u0ð Þ + o 1ð Þ =Ψλ vnð Þ − 1
p−

Ψλ
′ vnð Þ, vn

D E

+ o 1ð Þ ≥ p− − 2
2p− ∥vn∥

2
λ,V −

1
q−

−
1
p−

� �ð
ℝN

f xð Þ vnj jq xð Þdx + o 1ð Þ

≥
p− − 2
2p− ∥vn∥

2
λ,V −

1
q−

−
1
p−

� �
∥f ∥

L
2

2−q xð Þ
max 1

θq
+/2 ∥u∥

q+

λ ,



1
θq

−/2 ∥u∥
q−

λ

	
+ o 1ð Þ ≥ p− − 2

2p−
ϑ0 − 1
ϑ0

∥vn∥
2
λ

−
1
q−

−
1
p−

� �
∥f ∥

L
2

2−q xð Þ
max 1

θq
+/2 ∥u∥

q+

λ , 1
θq

−/2 ∥u∥
q−

λ


 	
+ o 1ð Þ,

ð87Þ

where

C7 = min 2 − q+

2p−
ϑ0q

+

θ ϑ0 − 1ð Þ p− − 2ð Þ
� � q+

2−q+ p− − q−ð Þ∥f ∥L2/2−q xð Þ

q−

� � 2
2−q+

,
(

2 − q−

2p−q−
ϑ0

θ ϑ0 − 1ð Þ p− − 2ð Þ
� � q−

2−q−

p− − q−ð Þ∥f ∥
L

2
2−q xð Þ

� � 2
2−q−

)
:

ð88Þ

Suppose by contradiction that fvng is not bounded in Xλ.
Then, there exists a subsequence still denoted by fvng such
that ∥vn∥λ →∞ as n→∞. Hence, by virtue of (87), we have

C0 + C7
∥vn∥

2
λ

+ o 1ð Þ 1
∥vn∥

2
λ

≥
p− − 2
2p−

ϑ0 − 1
ϑ0

−
1
q−

−
1
p−

� �
∥f ∥

L
2

2−q xð Þ
max

� 1
θq

+/2 ∥vn∥
q+−2
λ , 1

θq
−/2 ∥vn∥

q−−2
λ


 	
+ o 1ð Þ 1

∥vn∥
2
λ

,

ð89Þ

which is contradictory since 1 < q− ≤ q+ < 2 < p−. Thus, fvng
is bounded in Xλ for all λ > λ∗ ≥ 1/kM2 ∣ fV+ < kg ∣ . That is,
there exist a constant M1 > 0 such that ∥vn∥λ ≤M1. From
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(83), we can get that

ð
ℝN

vnj jp xð Þdx ≤
1
λk

max MM1ð Þp+−2, MM1ð Þp−−2
n o

� λk + 1
λk

� �p+−2
2
∥vn∥

2
λ + o 1ð Þ:

ð90Þ

Together hΨλ
′ðvnÞ, vni = oð1Þ with (77)-(90), there holds

o 1ð Þ = Ψλ
′ vnð Þ, vn

D E
= ∥vn∥

2
λ,V −

ð
ℝN

g xð Þ vnj jp xð Þdx

≥
ϑ0 − 1
ϑ0

∥vn∥
2
λ−∥g∥∞

ð
ℝN

vnj jp xð Þdx ≥
ϑ0 − 1
ϑ0

∥vn∥
2
λ

−
∥g∥∞
λk

max MM1ð Þp+−2, MM1ð Þp−−2
n o

� λk + 1
λk

� �p+−2
2
∥vn∥

2
λ + o 1ð Þ:

ð91Þ

We find that there exists λ∗ ≥ 1/kM2 ∣ fV+ < kg ∣ large
enough such that

∥g∥∞
λk

max MM1ð Þp+−2, MM1ð Þp−−2
n o λk + 1

λk

� �p+−2
2
< ϑ0 − 1

ϑ0
,

ð92Þ

for all λ > λ∗. It follows from (91) that vn → 0 in Xλ for all
λ > λ∗.

Theorem 16. Assume that (H1)-(H5) and (V1)-(V5) hold,
then there exists λ∗ ≥ 0 such that for every λ > λ∗, Ψλ has a
minimizer u+λ in N +

λ satisfying that

Ψλ u+λð Þ = c+λ = inf
u∈N +

λ

Ψλ uð Þ, ð93Þ

(1) u+λ is a nontrivial solution of equation (1).

Proof. Combining Lemma 14 and the Ekeland variational
principle in [25], there exists fung ⊂N +

λ such that fung is a
ðPSÞc+

λ
sequence for Ψλ. Furthermore, using Lemma 10, we

can get that fung is bounded in Xλ. Consequently, there
exists a subsequence of fung (we still denote as fung) and
u+λ in Xλ such that

un ⇀ u+λ inXλ,
un → u+λ in Lrloc ℝN ,ℂ

� �
, for 2 ≤ r ≤∞:

ð94Þ

Besides, Ψλ
′ðu+λÞ = 0: In view of Lemma 15, we know that

un → u+λ in Xλ and Ψλðu+λÞ = c+λ . In other words, u+λ is a solu-
tion of equation (1).

Now, we will check that u+λ ≠ 0. On the contrary, by com-
bining (40), (H3), the Egoroff theorem and the H€older
inequality, there holds

Ð
ℝN f ðxÞjunjqðxÞdx→ 0 as n→∞,

which shows that

∥un∥
2
λ,V =

ð
ℝN

g xð Þ unj jp xð Þdx + o 1ð Þ

Ψλ unð Þ = 1
2 ∥un∥

2
λ,V −

ð
ℝN

f xð Þ
q xð Þ unj jq xð Þdx −

ð
ℝN

g xð Þ
p xð Þ unj jp xð Þdx

≥
1
2 ∥un∥

2
λ,V −

1
q−

ð
ℝN

f xð Þ unj jq xð Þdx −
1
p−

ð
ℝN

g xð Þ unj jp xð Þdx

= 1
2 ∥un∥

2
λ,V −

1
p−

∥un∥
2
λ,V + o 1ð Þ = p− − 2

2p− ∥un∥
2
λ,V + o 1ð Þ

≥
p− − 2ð Þ ϑ0 − 1ð Þ

2p−ϑ0
∥un∥

2
λ + o 1ð Þ ≥ 0:

ð95Þ

This is contradictive with lim
n→∞

ΨλðunÞ = c+λ < 0. Hence,

u+λ ≠ 0; that is, u+λ is a nontrivial solution of equation (1).

Proof of Theorem 17. The result of Theorem 2 is immediately
available from Theorem 20.

Theorem 18. Assume that the conditions (H3), (H4), and (V1
)-(V5) are satisfied, then there exists λ∗ ≥ 0 such that for every
λ > λ∗, Ψλ has a minimizer u−λ in N −

λ satisfying that

Ψλ u−λð Þ = c−λ , ð96Þ

(1) u−λ is a nontrivial solution of equation (1).

Proof. According to Lemma 14 and the Ekeland variational
principle in [25], there exists fung ⊂N −

λ such that fung is a
ðPSÞc−

λ
sequence for Ψλ. Furthermore, using Lemma 10, we

can get that fung is bounded in Xλ. Consequently, there
exists a subsequence of fung (we still denote as fung) and
u−λ in Xλ such that

un ⇀ u−λ inXλ,
un → u−λ in Lrloc ℝN� �

, for 2 ≤ r ≤∞:
ð97Þ

Besides, Ψλ
′ðu−λÞ = 0: In view of Lemma 15, we know that

un → u−λ in Xλ and Ψλðu−λÞ = c−λ . In other words, u−λ is a solu-
tion of equation (1).

Now, we will check that u−λ ≠ 0. Suppose the contrary,
combining (39), (40), Egoroff theorem, and (H4), there holdsÐ
ℝN gðxÞjunjpðxÞdx→ 0 as n→∞, which shows that

unk k2λ,V =
ð
ℝN

f xð Þ unj jq xð Þdx + o 1ð Þ
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Ψλ unð Þ = 1
2 unk k2λ,V −

ð
ℝN

f xð Þ
q xð Þ unj jq xð Þdx −

ð
ℝN

g xð Þ
p xð Þ unj jp xð Þdx

≤
1
2 unk k2λ,V −

1
q+

ð
ℝN

f xð Þ unj jq xð Þdx −
1
p+

ð
ℝN

g xð Þ unj jp xð Þdx

= 1
2 unk k2λ,V −

1
q+

unk k2λ,V + o 1ð Þ = q+ − 2
2q+ unk k2λ,V + o 1ð Þ

≤
q+ − 2ð Þ ϑ0 − 1ð Þ

2q+ϑ0
unk k2λ + o 1ð Þ ≤ 0:

ð98Þ

This is contradictive with lim
n→∞

ΨλðunÞ = c−λ > 0. Hence,

u−λ ≠ 0; that is, u−λ is a nontrivial solution of equation (1).

Proof of Theorem 19. It derives from Theorem 20, Theorem
22, and Lemma 14 that equation (1) has two nontrivial solu-
tions u+λ and u−λ such that u+λ ∈N

+
λ and u−λ ∈N

−
λ with Ψλðu+λ

Þ = c+λ < 0 < C5 <Ψλðu−λÞ = c−λ .

Theorem 20. Assume that (H3), (H4), and (V1)-(V5) hold,
then for all λ ≥ 1/kM2 ∣ fV+ < kg ∣ , Ψλ has a minimizer u+λ
in N +

λ satisfying that

Ψλ u+λð Þ = c+λ = inf
u∈N +

λ

Ψλ uð Þ ; ð99Þ

(1) u+λ is a nontrivial solution of equation (1).

Proof. Combining Lemma 14 and the Ekeland variational
principle in [25], there exists fung ⊂N +

λ such that fung is a
ðPSÞc+

λ
sequence for Ψλ. Furthermore, using Lemma 10, we

can get that fung is bounded in Xλ. Consequently, there
exists a subsequence of fung (we still denote as fung) and
u+λ in Xλ such that

un ⇀ u+λ inXλ,
un → u+λ in Lrloc ℝN� �

, for 2 ≤ r ≤∞:
ð100Þ

Besides, Ψλ
′ðu+λÞ = 0: In view of Lemma 15, we know that

un → u+λ in Xλ and Ψλðu+λÞ = c+λ . In other words, u+λ is a solu-
tion of equation (1).

Now, we will check that u+λ ≠ 0. On the contrary, by com-
bining (40), (H3), the Egoroff theorem, and the H€older
inequality, there holds

Ð
ℝN f ðxÞjunjqðxÞdx→ 0 as n→∞,

which shows that

∥un∥
2
λ,V =

ð
ℝN

g xð Þ unj jp xð Þdx + o 1ð Þ

Ψλ unð Þ = 1
2 ∥un∥

2
λ,V −

ð
ℝN

f xð Þ
q xð Þ unj jq xð Þdx −

ð
ℝN

g xð Þ
p xð Þ unj jp xð Þdx

≥
1
2 ∥un∥

2
λ,V −

1
q−

ð
ℝN

f xð Þ unj jq xð Þdx −
1
p−

ð
ℝN

g xð Þ unj jp xð Þdx

= 1
2 ∥un∥

2
λ,V −

1
p−

∥un∥
2
λ,V + o 1ð Þ = p− − 2

2p− ∥un∥
2
λ,V + o 1ð Þ

≥
p− − 2ð Þ ϑ0 − 1ð Þ

2p−ϑ0
∥un∥

2
λ + o 1ð Þ ≥ 0:

ð101Þ

This is contradictive with lim
n→∞

ΨλðunÞ = c+λ < 0. Hence,

u+λ ≠ 0; that is, u+λ is a nontrivial solution of equation (1).

Proof of Theorem 21. The result of Theorem 2 is immediately
available from Theorem 20.

We note that if f , g and Vλ satisfy the hypotheses in The-

orem 3, we can choose φ ∈ C∞
0 ðΩgÞ, such that LφðtÞ =Ψλðt

φÞ = t2/2∥φ∥2λ,V −
Ð
Ωg
ð f ðxÞ/qðxÞÞjtφjqðxÞdx − Ð

Ωg
ðgðxÞ/pðxÞÞ

jtφjpðxÞdx have t0 > 0 and C8 which are independent of λ that
satisfy t0φ ∈N −

λ for all λ > λ∗ and

sup
t≥0

Lφ tð Þ = Lφ t0ð Þ = C8 > 0, ð102Þ

which shows c−λ ≤ C8 for all λ > λ∗.

Theorem 22. Assume that the conditions (H3), (H4), and (V1
)-(V5) are satisfied, then for all λ > 1/kM2 ∣ fV+ < kg ∣ , Ψλ
has a minimizer u−λ in N −

λ satisfying that

Ψλ u−λð Þ = c−λ ; ð103Þ

(1) u−λ is a nontrivial solution of equation (1).

Proof. According to Lemma 14 and the Ekeland variational
principle in [25], there exists fung ⊂N −

λ such that fung is a
ðPSÞc−

λ
sequence for Ψλ. Furthermore, using Lemma 10, we

can get that fung is bounded in Xλ. Consequently, there
exists a subsequence of fung (we still denote as fung) and
u−λ in Xλ such that

un ⇀ u−λ inXλ,
un → u−λ in Lrloc ℝN� �

, for 2 ≤ r ≤∞:
ð104Þ

Besides, Ψλ
′ðu−λÞ = 0: In view of Lemma 15, we know that

un → u−λ in Xλ and Ψλðu−λÞ = c−λ . In other words, u−λ is a solu-
tion of equation (1).

Now, we will check that u−λ ≠ 0. Suppose the contrary,
combining (39), (40), Egoroff theorem, and (H4), there holds
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Ð
ℝNgðxÞjunjpðxÞdx→ 0 as n→∞, which shows that

unk k2λ,V =
ð
ℝN

f xð Þ unj jq xð Þdx + o 1ð Þ

Ψλ unð Þ = 1
2 unk k2λ,V −

ð
ℝN

f xð Þ
q xð Þ unj jq xð Þdx −

ð
ℝN

g xð Þ
p xð Þ unj jp xð Þdx

≤
1
2 unk k2λ,V −

1
q+

ð
ℝN

f xð Þ unj jq xð Þdx −
1
p+

ð
ℝN

g xð Þ unj jp xð Þdx

= 1
2 unk k2λ,V −

1
q+

unk k2λ,V + o 1ð Þ = q+ − 2
2q+ unk k2λ,V + o 1ð Þ

≤
q+ − 2ð Þ ϑ0 − 1ð Þ

2q+ϑ0
unk k2λ,V + o 1ð Þ ≤ 0:

ð105Þ

This is contradictive with lim
n→∞

ΨλðunÞ = c−λ > 0. Hence,

u−λ ≠ 0; that is, u−λ is a nontrivial solution of equation (1).

Proof of Theorem 23. It derives from Theorem 20, Theorem
22, and Lemma 14 that equation (1) has two nontrivial solu-
tions u+λ and u−λ such that u+λ ∈N

+
λ and u−λ ∈N

−
λ with Ψλðu+λÞ

= c+λ < 0 < C5 <Ψλðu−λÞ = c−λ.
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In this paper, we report a novel memristor-based cellular neural network (CNN) without equilibrium points. Dynamical behaviors
of the memristor-based CNN are investigated by simulation analysis. The results indicate that the system owns complicated
nonlinear phenomena, such as hidden attractors, coexisting attractors, and initial boosting behaviors of position and amplitude.
Furthermore, both heterogeneous multistability and homogenous multistability are found in the CNN. Finally, Multisim circuit
simulations are performed to prove the chaotic characteristics and multistability of the system.

1. Introduction

The cellular neural network (CNN) was proposed by Chua
and Yang in 1988 for processing signals in real time, which
is constituted of an array of the basic circuit units called cells
[1]. The CNN has received widespread attention in academia
because of its extensive applications, such as image process-
ing, parallel computation, and complicated optimization
problems [2, 3]. Chua and Yang used CNN to realize image
processing and pattern recognition [2]. For solving the con-
strained optimization problem, Shen et al. designed the
utility-based radio resource scheduler by employing CNN
[3]. Ref. [4] proposed a random weight change (RWC)
algorithm to construct CNN weight and to make the
hardware-based learning on CNN templates feasible. Based
on a fuzzy cellular neural network (FCNN), an image encryp-
tion method was put forward in Ref. [5].

Ref. [6] further presented a state-controlled cellular neu-
ral network (SC-CNN), and a generalized Chua’s circuit is
constructed by three SC-CNN cells. A Colpitts-like oscillator
also is implemented by SC-CNN [7]. An SC-CNN-based cir-
cuit could produce strange nonchaotic attractors in Ref. [8].

With the advent of memristors, many types of artificial
neural networks have been improved by memristors, such

as Cellular neural network (CNN) and Hopfield neural
network (HNN) [9–20]. The research on CNN mainly lies
in its application [10–12]. A memristor-based CNN was pre-
sented in Ref. [9], which could generate chaotic attractors
and whose chaotic behaviors were studied. However, a
memristor-based CNN without equilibrium points is never
proposed. Therefore, a memristor-based CNN without equi-
librium points is introduced in this paper, and its dynamical
behaviors are investigated. The memristor-based CNN not
only has chaotic features but also shows multistability.

To explore multistability, initial boosting behaviors and
attractor coexistence are investigated. Since the memory
devices depend on its history, initial boosting behaviors were
found in some memristor-based or meminductor-based
systems [21–23]. Ref. [21] employed a memristor with sine
memductance to construct a memristive jerk system. This
novel memristive jerk system had four line equilibrium sets
and periodical initial boosting. In Ref. [22], a memristor-
meminductor system was presented, which produced the
amplitude, frequency, and position boosting. These systems
have infinitely many equilibrium points. The initial boosting
behaviors of a memristor-based system without equilibrium
points are not put forward. Hence, we study the initial boost-
ing behaviors in this memristor-based CNN. Moreover,
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multistability is divided into heterogeneous multistability
and homogenous multistability [22, 24]. This multistability
is heterogeneous multistability if there exist coexisting attrac-
tors with different shapes. In contrast, the system owns
homogenous multistability if it generates the same shape
coexisting attractors with different positions and amplitudes
or even frequencies.

This paper is organized as follows: Section 2 proposes the
model of a novel memristive neural network. Its nonlinear
dynamics is presented in Section 3, while its circuital imple-
mentation is completed in Section 4. Finally, conclusions
are drawn in the last section.

2. A Memristor-Based Cellular Neural Network

The standard SC-CNN cell is defined as [6]

_xi = −xi + 〠
n

k=1
aikyk + 〠

n

k=1
sikxk + ik, ð1Þ

where xi and xk are the state variables and always are the volt-
age of capacitors, yk is the output variable, ik is the indepen-
dent current source, aik and sik are the feedback coefficient
and state coefficient, respectively. A memristor-based cellular
neural network is presented, which consists of one
memristor-based CNN cell and two standard SC-CNN cells.
The memristor-based CNN cell is shown as Figure 1, from
which the state equation is obtained as

_xi = −M φð Þxi + 〠
n

k=1
sikxk,

_φ = xi,
ð2Þ

where a memristor is select as [25]

M φð Þ = dq φð Þ
dφ

= aφ2 + bφ + c,

φ = v:

ð3Þ

The memristor-based CNN cell is selected as the first cell,
while the second and third ones are the standard SC-CNN
cells. The state variables of two standard SC-CNN cells are
independent of the output variable, and the state variable of
the second cell does not relate to the independent current
source. Therefore, the proposed CNN can be expressed as

_x1 = − aφ2 + bφ + c
� �

x1 + s11x1 + s12x2 + s13x3,
_x2 = −x2 + s21x1 + s22x2 + s23x3,

_x3 = −x3 + s31x1 + s32x2 + s33x3 + i3,
φ = x1:

ð4Þ

In order to better explore the feature of the memristor-
based CNN, we let three cells own different numbers of state
variables. Set s11 = s12 = s21 = 0, Equation (4) can be simpli-
fied as

_x1 = − aφ2 + bφ + c
� �

x1 + s13x32,
x2 = −x2 + s22x2 + s23x3,
x3 = −x3 + s31x1 + s32x2 + s33x3 + i3,
φ = x1:

ð5Þ

Obviously, if i3 = 0, the equilibrium point of the CNN is a
line equilibrium set Oð0, 0, 0, φÞ. When s11 = s12 = s21 = 0,
s13 = 7, s22 = 1:75, s23 = −1:1, s31 = −1:3, s32 = 1:1, s33 = 0:85,
a = 20, b = −10, c = −6, and the initial condition is ð0:1,0,
0:1,0:3Þ, the eigenvalues are λ1 = 0, λ2:3 = 1:0455 ± j1:2192,
and λ4 = 5:7089. Thereby, the equilibrium of the CNN is an
unstable saddle-focus equilibrium.

If i3 ≠ 0 and s22 ≠ 1, it is easy to see that the neural
network is a system without equilibrium. This case will be
analyzed below. When s11 = s12 = s21 = 0, s13 = 7, s22 = 1:75,
s23 = −1:1, s31 = −1:3, s32 = 1:1, s33 = 0:85, a = 20, b = −10,
c = −6, i3 = −0:0001, and the initial condition is chosen as
ð0:1,0, 0:1,0:3Þ; the Lyapunov exponent is obtained as LE
1 = 0:16, LE2 = 0, LE3 = 0, and LE4 = −27:23. The CNN is
in a chaotic state, whose chaotic attractor and Poincaré
mapping are exhibited in Figures 2 and 3, respectively.
Since the memristor-based CNN in this case has no equi-
librium points, this chaotic attractor is a hidden attractor.

3. Dynamics of the Memristor-Based
Neural Network

3.1. Influence of the Parameter of the System. In a survey of
the dynamical behaviors of the memristor-based CNN, with
the parameter a increasing from 9 to 50, and the other
parameters and the initial condition set as in Section 2, the
Lyapunov exponent spectrum is shown in Figure 4(a), where
LE1-3 represent the first three Lyapunov exponents, and the
fourth Lyapunov exponent is neglected owing to its large
negative value; the corresponding bifurcation diagram is
depicted in Figure 4(b). From Figure 4(a), it is easy to observe
that the memristor-based CNN keeps a chaotic state.
Figure 4(b) shows that the amplitude of x1 reduces nonli-
nearly with the increase of a.

3.2. Attractor Coexistence of the Memristor-Based CNN. The
memristor-based CNN not only possesses hidden chaotic
attractors but also exhibits the phenomenon of attractor
coexistence. Setting s11 = s12 = s21 = 0, s22 = 1:75, s23 = −1:1,
s31 = −1:3, s32 = 1:1, s33 = 0:85, a = 20, b = −10, c = −6 and i3
= −0:0001, and varying s13, the phenomenon of attractor
coexistence is depicted in Figure 5, where the blue orbits start

xi

vi

M C xn
x1 sin

si1

+

+

-

yi

Figure 1: A memristor-based CNN cell.
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Figure 2: Chaotic attractors of the memristor-based CNN. (a) x1‐x2 phase diagram, (b) x2‐x3 phase diagram, (c) x3‐φ phase diagram, and (d)
φ‐x1 phase diagram.
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from the initial condition of ð0:1, 0, 0:1, 0:3Þ, the red ones
from the initial condition of ð0, 0, 0:3,0Þ. The coexisting cha-
otic attractors are observed at s13 = 7 and 20, whereas the
coexisting attractors are periodic at s13 = 50 and 200. The dis-
tance of the periodic attractors increases with the increase of
s13. Moreover, since the memristor-based CNN has coexist-
ing attractors with different shapes, it owns heterogeneous
multistability.

Coexisting attractors illustrate that the memristor-based
CNN has multistability. To explore its multistability nature,
the attractive basins are drawn in Figure 6. Figure 6(a) is
the attractive basin in the cross-section of x3ð0Þ = 0:1 and φ
ð0Þ = 0:3, and the other is in the cross-section of x1ð0Þ = 0:1

and x2ð0Þ = 0. There are multiple colors in the given value
region, which implies several different types of attractors.

3.3. Initial Boosting Behaviors of Position and Amplitude. Ini-
tial boosting behavior is a kind of special phenomenon of
multistability. Initial boosting behaviors of position and
amplitude reveal the attractor’s position and amplitude
changing with the initial conditions, respectively. When the
parameters are chosen as s11 = s12 = s21 = 0, s13 = 8, s22 = 1:6,
s23 = −1:1, s31 = −1:3, s32 = 1:1, s33 = 0:85, a = 1:9, b = −3:5,
c = −6, and i3 = −0:0001, the initial boosting behaviors
are depicted in Figure 7, where the initial conditions
areð0,−0:1, 0, φð0ÞÞ. From Figure 7(a), the initial boosting
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Figure 7: Initial boosting behaviors of position and amplitude with respect to φð0Þ: (a) initial boosting behaviors of position and (b) initial
boosting behaviors of amplitude.
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Figure 6: Attractive basins on the cross-section of s11 = s12 = s21 = 0, s13 = 7, s22 = 1:75, s23 = −1:1, s31 = −1:3, s32 = 1:1, s33 = 0:85, a = 20,
b = −10, c = −6, and i3 = −0:0001: (a) the attractive basin in the cross-section of x3ð0Þ = 0:1 and φð0Þ = 0:3 and (b) the attractive basin in
the cross-section of x1ð0Þ = 0:1 and x2ð0Þ = 0.
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behaviors of position can be observed. The mean values
of the variables x1 and φ nonlinearly increase, while the
other mean values almost do not change, in the range

of φð0Þ ∈ ½−0:25,0:44�. When the offset boosting controller
is φð0Þ = 0:44, there exists a jump for all the mean values.
In the region of φð0Þ ∈ ð0:44,3:9�, the mean values of the
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Figure 8: Multistability of the memristor-based CNN: (a) heterogeneous multistability and (b) homogenous multistability.
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Figure 9: Time-domain waveforms and frequency spectra of the chaotic signals with φð0Þ = 1:08 and 2.04: (a) time-domain waveforms and
(b) frequency spectra.
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variables xð1Þ and φ irregularly change, whereas the mean
values of the variables x2 and x3 still hardly change. Obvi-
ously, the route differs from Refs. [21–23].

Moreover, the initial variable φð0Þ is not only the booster
of position but also of amplitude. The initial boosting behav-
iors of amplitude are shown in Figure 7(b). We can divide the
figure into two parts. In the first part ð−0:25, 0:44�, the mean
absolute value of the variable φ almost keeps unchanged, but
the other values nonlinearly decrease; in the second part

ð0:44, 2:5�, all the mean absolute values increase. When
the initial value φð0Þ is 0.44, all the mean absolute values
have a jump, which is the same as the mean values.

For better illustrating the offset boosting, several coex-
isting attractors are plotted in Figure 8, whose positions
and amplitudes are related to the initial variable φð0Þ. From
Figure 8(a), three attractors with different shapes are
observed, including two chaotic attractors and one periodic
attractor, and thus, this system has heterogeneous
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Figure 10: Initial boosting behaviors of position and amplitude with respect to x2ð0Þ: (a) initial boosting behaviors of position induced by
x2ð0Þ and (b) initial boosting behaviors of amplitude induced by x2ð0Þ.
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multistability. Comparing with Figure 8(a), Figure 8(b)
shows the same shape attractors with different positions
and amplitudes as shown in Figure 7. Furthermore, if the
ODE45 method with the time span ½0,500� is used to solve
Equation (5), the time-domain waveforms of φðtÞ are
shown in Figure 9(a), illustrating different frequencies with
different initial variable φð0Þ. The corresponding frequency

spectra of the chaotic signals are depicted in Figure 9(b).
Therefore, the multistability is homogenous multistability.
This memristor-based CNN owns not only heterogeneous
multistability but also homogenous multistability.

The initial variable φð0Þ is an offset impact factor, but not
only. Fixing the parameters, when the initial conditions are
set as ð0, x2ð0Þ, 0, 0Þ, the initial boosting behaviors of position

6.0

4.0

2.0

0.0

–2.0

–4.0

–6.0
–25.0 –15.0 –5.0 5.0

x1 (v)
x 2 (v

)
15.0 25.0

(a)

x2 (v)

x 3 (v
)

–6.0
–10.0 –6.0 –2.0 2.0 6.0 10.0

–4.0

–2.0

0.0

2.0

4.0

6.0

(b)

–10.0
–3.0

–2.0

–1.0

0.0

1.0

2.0

3.0

–6.0 –2.0 2.0 6.0 10.0
x3 (v)

𝜑
 (v

)

(c)

–15.0
–5.0 –3.0 –1.0 1.0 3.0 5.0

–10.0

–5.0

0.0

x 1 (v
)

5.0

10.0

15.0

𝜑 (v)

(d)
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and amplitude are shown in Figure 10. From Figure 10, it is
clear to see that the offset adjuster x2ð0Þ also can control
the attractor’s position and amplitude, but this change pro-
cess is different from the offset adjuster φð0Þ.

4. Circuit Design and Experiment Result

The memristive CNN can be implemented by the circuit.
When the parameters are chosen as s11 = s12 = s21 = 0,
s13 = 7, s22 = 1:75, s23 = −1:1, s31 = −1:3, s32 = 1:1, s33 = 0:85,
a = 20, b = −10, c = −6, and i3 = −0:0001, and as we introduce
the time scale factor K = 100, the circuit is established as
Figure 11. Let R = 100 kΩ, and the state equations are
yielded as

_x1 =
1

RC1
−

R
R4

φ2 + R
R3

φ + c
� �

x1 +
R
R1

+ c
� �

x1 +
R
R2

x3

� �
,

_x2 =
1

RC2

R
R5

x2 −
R
R6

x3

� �
,

_x3 =
1

RC3

R
R9

x1 +
R
R8

x2 −
R
R7

x1 −
R
R10

V1

� �
,

_φ = 1
R1C4

x1:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð6Þ

Employing Multisim to simulate the circuit, the exper-
imental results show that the circuit is in chaos as
Figure 12. By giving different initial values and changing

the value of the resistor R2, the phenomenon of coexisting
attractors is obtained as shown in Figure 13. With the
resistor R2 = 14:286 kΩ, the coexisting attractors in
Figure 13(a) are caught by the oscilloscope of Multisim.
The red orbit comes from the initial value of ð0:1V, 0,
0:1V, 0:5VÞ, while the blue one comes from the initial
value of ð0, 0, 0:1V, 0Þ. When the resistor R2 is selected
as 5 kΩ, Figure 13(b) demonstrates the other phenomenon
of attractor coexistence.

5. Conclusions

In this paper, we introduce a memristor-based CNN without
equilibrium points, which contains a memristor-based CNN
cell and two standard SC-CNN cells. By analyzing its dynam-
ical behaviors, the coexisting hidden attractors are found.
More interestingly, heterogeneous multistability and homog-
enous multistability are observed in the CNN. The presented
system owns initial boosting behaviors of position and ampli-
tude. Then, the equivalent circuit of the memristor-based
CNN is designed, with which its chaotic and multistable
characteristic is verified. Owing to its rich dynamical charac-
teristics, the memristor-based CNN can be utilized in the
information encryption field.

Data Availability

The data used to support the findings of this study are
included within the article.
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Our objective of this investigation is to mainly focus on the behavior of a plasma gas that is bounded by a moving rigid flat plate; its
motion is damping with time. The effects of an external magnetic field on the electrons collected with each other, with positive ions,
and with neutral atoms in the plasma fluid are studied. The BGK type of the Boltzmann kinetic equation is used to study the gas
dynamics various regimes with Maxwellian velocity distribution functions. An analytical solution of the model equations for the
unsteady flow was given using the moment and the traveling wave methods. The manner of the mean velocity of plasmas is
illustrated, which is compatible with the variation of the shear stress, viscosity coefficient, and the initial and boundary
conditions. Besides, the thermodynamic prediction is investigated by applying irreversible thermodynamic principles and
extended Gibbs formula. Finally, qualitative agreements with previous related papers were demonstrated using 3-dimensional
graphics for calculating the variables. The significance of this study is due to its vast applications in numerous fields such as in
physics, engineering, commercial, and industrial applications.

1. Introduction

From basic research in plasma science to manufacturing,
rapid developments in that field have often been preceded
by revolutions in new technologies, such as low-
temperature plasmas, or novel applications, such as plasma
medicine, plasma biological systems, and microelectronics
[1]. For example, Miller et al. [2] have used the nonequilib-
rium plasma to induce immunogenic cell death in tumors
as a therapeutic way for diseases of body systems exposed
to the plasma. Plasma–surface interactions have gained
immense interest in the last few decades in the context of
promising industrial applications in the world’s global com-
mercial products, manufacturing processes, and, more
recently, microelectronics, medical, and biotechnologies,
which are discussed elsewhere in [3].

It is well known that there are two kinetic methods for
mathematical modeling of the behavior of a particle popula-
tion. These methods deal with differential equations that

describe the variations of the phase space distribution func-
tion φðt, r, vÞ:. In the case of collisionless plasma, this model
equation is the “Vlasov-equation” [4]. In the collisional case,
Boltzmann’s kinetic equation describes the collisional plasma
motion considering microscopic effects. To treat the diffi-
culty of studying the collision term in Boltzmann’s kinetic
equation, we should use approximate modeling. One of the
essential approximate models is the Bhatnagar-Gross-
Krook (BGK) model, which saves the computational cost of
the collision term of Boltzmann’s kinetic equation [5].

Many theoretical and numerical contributions are inter-
ested in developing the methods to obtain reasonable solu-
tions to the Boltzmann equation [6, 7]. Also, many
approximations have suggested solving the kinetic equation
based on the moment method [8–10]. For larger values of
Knudsen number (Kn), the Boltzmann kinetic equations
and the popular methods depend on the kinetic theory that
has to be applied [8–10]. The high magnitude of Kn occurs
in rarified gases for the high values of the mean free path or
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of the minimal value of the identified length that occurs in
the micro-electro-mechanical system (MEMS) or nano-
electro-mechanical system (NEMS) devices [11–13]. That
property donates the Boltzmann equation a fantastic advan-
tage and many commercial applications [14, 15]. Several
papers were treated with Boltzmann equation and its applica-
tions in many physical severe situations such as thermal field
and microgas sensor [16, 17], irreversible thermodynamics
and plasma with kinetic regime [18–22], oscillating flow
[23, 24], thermal radiation [25–27], plasma [28], ultrarelati-
vistic heavy-ion collisions [29], photon gas [30], granular
fluids [31], and electron energy distribution function [32, 33].

In the Chapman–Enskog method, transport equations
are constructed at successive levels of approximation by
expanding the distribution function for the parameters
around the equilibrium distribution function, while in Grad’s
method, the transport equations for macroscopic molecular
averages are carried out by taking velocity moments of the
distribution function, which is approximated by an expan-
sion in orthonormal polynomials [34, 35].

Interaction between moving plasmas and solid surfaces
in modern technological applications has a rich history
throughout plasma technologies. For example, Chang and
Chang [36] have studied the kinetic problem for plasma
boundary layer flow in an incompressible viscous case under
the effect of an applied magnetic field. Wahid [25] presented
an exact solution of the Boltzmann kinetic equation with 4
collision frequency terms. The plasma flow characteristics
of a rarefied electron gas generated by neutral atoms have
been identified and explained in [27]. Further, they explained
the behavior of the gas system but with an approximate solu-
tion and an inaccurate collision frequency formula. Aboura-
bia and Tolba [37] investigated the behavior of a rarefied
electron gas generated from noble gases using the method
of moments in case of a discontinuous distribution function.
They obtained an approximate solution for the shear stress
and the mean flow velocity.

Furthermore, they considered that the immobile ions are
kept as uniform and neutralizing background. Yan [38]
designed a hybrid method with deviational particles using
three methods (Monte Carlo, particle in cell, and macro-
microdecomposition) for the inhomogeneous Vlasov–Pois-
son–Landau model in plasma. He divides the distribution
function into a Maxwellian part generated by a grid-based
fluid solver and a deviation part modeled by numerical devia-
tional and coarse particles. A new model was proposed by
Juno et al. [23] for the discretization of the kinetic Vlasov–
Maxwell equations in a plasma with time using the FEM
and Runge–Kutta method. They derived accurate solutions
for the distribution function of the plasma. Pan et al. [19]
used the charged particle transport by the electric field in
the electric acceleration term of Boltzmann’s equation in
the BGK regime of the collision term. They discovered that,
in discrete velocity space, once the nonequilibrium distribu-
tion function is produced, the probability distribution func-
tions of the gas are discretized using the finite volume
method. Using the discrete unified gas kinetic scheme, Liu
et al. [39] developed a novel method for the Vlasov–Poisson
equations with the BGK approximation at a wide range of Kn

and Debye length. They simulated multiscale plasma using
an asymptotic preserving scheme to investigate the electrical
potential in all regimes. In our work, we obtain an exact solu-
tion for the model equations and study the problem thor-
oughly, considering the influence of electron-ion and
electron-atom collisions in the Boltzmann equation collision
term. In this study, we treat the complete collision frequen-
cies of the Boltzmann kinetic equation and introduce a par-
ticular form of the model solution to avoid the
discontinuity of the solutions. Also, we deal with the full
values of variables without any cutoff caused by the small
parameters’ method implemented in [28]. The great advan-
tage of our study is the consideration of the displacement
current terms in the Maxwell equations, which are ignored
in all mentioned papers previously (see [24–28, 37]), where
they solved the differential equation system using this
approximation, whereas in the current study, the term of
the displacement current was taken into account because of
the applied unsteady external magnetic field that gave this
term great importance in our calculations. It cannot be
ignored at all. The analytical results provided good agree-
ment with the movement of helium plasma on a moving
plate introduced by Wahid and Morad in Ref. [40].

The benefit of treating the Boltzmann kinetic equation
enables us to consider the concepts of the linear nonequilib-
rium irreversible thermodynamics [10]. Besides, the use of
Gibbs formulae with the distribution functions gives
researchers the possibility to determine the entropy and
entropy production of the plasma systems and illustrate the
physical interpretation of the nonequilibrium thermody-
namic properties [10, 38].

1.1. The Physical Situation and Mathematical Formulation.
Assume that the upper half of the space at y ≥ 0 is bounded
by an illimitable plane plate at y = 0. The space is filled with
a plasma gas under the influence of an unsteady nonuniform
external magnetic field (BzE) normal to the direction of the
flow. The plasma gas is initially in equilibrium. Considering
this plasma in an applied magnetic field, we utilize the cus-
tomary geometry. The electric field direction is along the x
-axis, and the applied magnetic field direction is along the z
-axis. The plane plate suddenly moves in its plane with a
damping velocity (V0e

−αt) along the x-axis.
Moreover, the plane plate is considered an insulator,

uncharged, and impermeable. The system components (the
plane plate +electrons + positive ions + neutral atoms) are
kept at a constant temperature. We treated a frequency
regime such that we can neglect ion currents compared to
electron currents. Therefore, one can neglect the motion of
ions and pay his attention to the electron motion.

The Lorentz force F
!
e acting on each electron can be

acquired by the following:

F
!

e = −eE
!
− e/cð Þ ξ

!
∧ B

!
� �

, ð1Þ

where B
!
= Bz k

!
= ðBzE + BzIÞk

!
, asBzE = B0e

ϕðky−ωtÞ.
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Here, BzE is the applied nonuniform unsteady external
magnetic field, and BzI is the induced magnetic field.
They are functions of y, and t while ϕ, ω, and κ are
constants. Here,

V
!
≡ Vx, 0, 0ð Þ, ð2Þ

J
!
≡ qnVx, 0, 0ð Þ, ð3Þ

E
!
≡ Ex, 0, 0ð Þ, ð4Þ

B
!
≡ 0, 0, Bzð Þ, ð5Þ

as Vx, Ex, Bz , and Jx are functions of y and t. In partic-
ular, this preference satisfies Maxwell’s equations. In our

model, the distribution function φeð r!, ξ
!
, tÞ of the elec-

trons in the plasma gas can be acquired by the Boltz-
mann kinetic equation that can be written in the BGK
model in the form [5]

∂φe r!, ξ
!
, t

� �
∂t

+ ξ
!
⋅
∂φe r!, ξ

!
, t

� �
∂ r*

+
F
!
e

me
⋅
∂φe r!, ξ

!
, t

� �
∂ξ
!

=
φ0e r!, ξ

!
, t

� �
− φe r!, ξ

!
, t

� �
τee

0
BB@

1
CCA

+
φ0i r!, ξ

!
, t

� �
− φe r!, ξ

!
, t

� �
τei

0
BB@

1
CCA +

φ0n − φe

τen

� �
asφα0

= nα 2πRTαð Þ− 3/2ð Þ exp
− ξ

!
− V

!
α

� �2

2RTα

0
BBB@

1
CCCA:

ð6Þ

The primary arguments nα, V
!

α, andTαthat possess the
character of the fundamental equations of motion can be
obtained by taking moments of the kinetic equation for
the distribution functions. Particles are reflected in full
velocity accommodation from the plate, which means that
the plasma particles are reflected from the plate with its
velocity. Thus, the boundary conditions are [28] Vx2ð0, t
Þ = V0e

−Ωt for t > 0, as Vx =Vx2 as ξy > 0, and Vxis finite
as y→∞.

Substituting from Equations (1) and (2)–(5) inside Equa-
tion (6), one gets

∂φe

∂t
+ ξy

∂φe

∂y
−
eBez

mec
ξy
∂φe

∂ξx
− ξx

∂φe

∂ξy

 !
+
eEex

me

∂φe

∂ξx

=
φ0e − φe

τee

� �
+

φ0i − φe

τei

� �
+

φ0n − φe

τen

� �
,

ð7Þ

as τee,τei, and τen are electron-electron, electron-ion, and
electron-neutral relaxation times, respectively, that are
acquired by [41, 42]

τee =
3 ffiffiffiffiffiffi

me
p

KB
3/2Te

3/2

4
ffiffiffi
π

p
nee4Log Λee½ �

� �
,

τei =
3 ffiffiffiffiffiffi

me
p

KB
3/2Te

3/2

4
ffiffiffiffiffiffi
2π

p
nie4Z

2Log Λei½ �

 !
,

τen =
3meKB

3/2Te
3/2

4 ffiffiffiffiffiffiffiffiffi
πmn

p
nee4Log Λen½ �

� �
: ð8Þ

Here, Log½Λ� = Log½4πnλ3D� and Z are the Coulomb Log-
arithm and the degree of ionization, respectively, and λDe =
λDi = λDis the Debye length.

The pattern of the cone of influence suggested by Lee [42,
43] for the solution of the Boltzmann kinetic equation is
used. The solution of Equation (7) can be written in the form

φ =

φ1 = n 2πRTð Þ− 3/2ð Þ 1 +
ξxVx1
RT

� �
exp

−ξ2

2RT

 !
 for ξy < 0↓,

φ2 = n 2πRTð Þ−3
2 1 +

ξxVx2
RT

� �
exp

−ξ2

2RT

 !
 for ξy > 0↑:

8>>>>><
>>>>>:

ð9Þ

Here, Vx1 and Vx2 are two underdetermined functions of
time t and the single space variable y. Utilizing Grad’s

moment method in Ref. [7], multiplying Equation (7) by ψj

ðξ!Þ, and integrating overall values of ξ!, we get the significant
transfer equations for electrons in the following form:

∂
∂t

ð
ψjφedξ +

∂
∂y

ð
ξyψjφedξ +

eExe

me

ð
φe

∂ψj

∂ξx
dξ −

eBze

mec

ð

� ξx
∂ψj

∂ξy
− ξy

∂ψj

∂ξx

 !
dξ = νee

ð
φ0e − φeð Þψjdξ

+ νei

ð
φ0i − φeð Þψjdξ + νen

ð
φ0n − φeð Þψjdξ:

ð10Þ

All integrals over the velocity dimension are evaluated
using the relations below [7]:

ð
ψj C

!� �
φdξ =

ð∞
−∞

ð0
−∞

ð∞
−∞

ψjφ1dξ+
ð∞
−∞

ð∞
0

ð∞
−∞

ψjφ2dξ,

ð11Þ

where ψj = ψjðξ
!Þ, j = 1, 2 and dξ = dξxdξydξz and ξx , ξy and

ξzare the particle velocities components along x, y, and z -axes,
respectively. The electric and magnetic fields E andB can also
get from Maxwell’s equations for electrons as follows:
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∂Exe

∂y
−
1
c
∂Bze

∂t
= 0,

∂Bze

∂y
−
1
c
∂Exe

∂t
−
4πene
c0

Vxe = 0: ð12Þ

Here, n =
Ð
φdξ, nVx =

Ð
ξxφdξ,and the initial and

boundary conditions

Ex y, 0ð Þ = 0,

Bz y, 0ð Þ = B0,

Ex y, tð Þ,
Bz y, tð Þ are finite as y→∞:

9>>>>>=
>>>>>;

ð13Þ

We offered the nondimensional variables defined by

t = t∗τee,

y = y∗ τeecð Þ,
Vx =V∗

x c,

τxy = τ∗xyc,

M =
V0
c
,

Ex = E∗
x

mec
eτee

� �
,

ρ = nm,

Bz = B∗
z

mec
eτee

� �
,

γ =
me

mi
,

dU = dU∗ KBTeð Þ,
φj = φ∗

j ne 2πRTeð Þ− 3/2ð Þ, j = 0, 1, 2:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð14Þ

The change in density and temperature is negligible for
small values of Mach number, i.e., at M2 = 1; therefore, we
can assume that nα = 1 +OðM2Þ and Tα = 1 +OðM2Þ. Then,
we can write the mean velocity and shear stress in the follow-
ing form:

Vx =
1
2

Vx1 + Vx2ð Þ,

τxy =
Pxy

ρV0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RTe/2π

p = Vx2 −Vx1ð Þ: ð15Þ

Here, Pxy is defined by the relation Pxy =m
Ð ðξx −VxÞξy

ϕdξ [42].

Utilizing the nondimensional variable, Equation (10)
with ψ1 = ξx and ψ2 = ξxξy becomes

∂V∗
ex

∂t∗
+
∂τ∗exy
∂y∗

− E∗
ex = 0 ð16Þ

∂τ∗exy
∂t∗

+ 2π
∂V∗

ex

∂y∗
+ τ∗exy = 0: ð17Þ

Moreover, the initial and boundary conditions take the
form

V∗
ex y∗, 0ð Þ = τ∗exy y∗, 0ð Þ = 0,

2V∗
ex 0, t∗ð Þ + τ∗ex 0, t∗ð Þ = 2Me−εt

∗ ,

V∗
ex and τ

∗
exy are finite as y→∞,

ε =wτee:

9>>>>>=
>>>>>;

ð18Þ

Henceforth, for the sake of notational simplicity, we will
drop the star on the non-dimensional variables. Thus, we
have the next system of equations representing the boundary
value problem for electrons:

∂Vex

∂t
+
∂τexy
∂y

− Eex = 0, ð19Þ

∂τexy
∂t

+ 2π
∂Vex

∂y
+ 1 +

νei
νee

+
νen
νee

� �
τexy = 0, ð20Þ

∂Eex

∂y
−
∂Bez

∂t
= 0, ð21Þ

∂Bez

∂y
−
∂Eex

∂t
−we0Vex = 0, we0 =

nee
2

meν
2
ee

� �
: ð22Þ

The traveling wave solution method [44–46] was utilized
considering the new variable θ as

θ = ky − ωt: ð23Þ

This procedure will transform the dependent variables as
functions of the new variable θ. Also, the transformation con-
stants k and ω can be measured from the boundary and initial
conditions [45, 46].

The partial derivatives of Equations (19)–(22) can be
determined from Equation (23) as follows:

∂
∂t

= −ω
∂
∂θ

,

∂
∂y

= k
∂
∂θ

,

∂n

∂tn
= −1ð Þnωn ∂n

∂θn
,

∂n

∂yn
= kn

∂n

∂θn
ð24Þ
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Substituting from Equations (23) and (24) into Equations
(19)–(22), after various calculus manipulations, the obtained
equations can be reduced to one equation:

ω2 − k2
� � 2πk2

ω
− ω

 ! !
d3Vex θð Þ

dθ3
+wc ω2 − k2

� � d2Vex θð Þ
dθ2

+we0ω
dVex θð Þ

dθ
+we0wcVex θð Þ = 0, wc = 1 +

νei
νee

+
νen
νee

� �
:

ð25Þ

The initial and boundary conditions after dropping the
stars from the nondimensional variables are introduced:

Eex θ = 0ð Þ = τexy θ = 0ð Þ = 0,

Bez θ = 0ð Þ = B0,

2Vex θ = −ωð Þ + τexy θ = −ωð Þ = 2Me−ε at y = 0, e:g:,t = 1,

Vex, τexy, Eex, andBez are finite as θ→ −∞:

9>>>>>=
>>>>>;
ð26Þ

As a result of calculations on the model equations, we get
the differential equation (25) with the conditions in Equation
(26). This model equation is a third-order ordinary homoge-
neous differential equation that can be solved precisely with
any symbolic software using the initial and boundary condi-
tions Equation (26). When using these solutions, a more
detailed description can be provided for the flows of labora-
tory argon plasma.

1.2. The Nonequilibrium Thermodynamic Investigations. The
problem of the nonequilibrium thermodynamics of irrevers-
ible processes is fundamental when modeling any gas flow,
and it continues to present considerable significance in the
plasma dynamics. As a result of intensive research efforts in
this field, scientists have found that the theoretical major of
that theory and its applications in numerous branches of sci-
ence starts from the thermodynamic laws and H-theorem
essentials. Now, we can evaluate the entropy per unit mass
S in a nondimensional form as in the following relation
(see, e.g., Refs. [24–26, 47, 48]):

S = −
ð
φe ln φedξ

= −
ð
φe1 ln φe1dξ+

ð
φe2 ln φe2dξ

� �
= −π

3
2 Vx1

2 + Vx2
2� �

− 0:66
	 


:

ð27Þ

As a consequence, we can get the entropy flux component
in the y-direction:

Jy
Sð Þ = −

ð
ξyφe ln φedξ

= −
ð
ξyφe1 ln φe1dξ+

ð
ξyφe2 ln φe2dξ

� �
= π Vx1

2 +Vx2
2� �	 


:

ð28Þ

From the entropy balance relation, one can define the
entropy production in a local form [47, 48]:

σ =
∂S
∂t

+∇
!
•J Sð Þ�!: ð29Þ

Taking into account the electromagnetic field energy, we
can investigate the internal energy change of the entire sys-
tem using the extended Gibbs formula [49] that includes
the entire energy balance. The plasma gas magnetization’s
main types are paramagnetic and diamagnetic. Now, we
can use the 1st law of thermodynamics to formulate the total
energy change for both kinds of magnetization. This includes
the electromagnetic field energy balance as follows:

(i) In the paramagnetic case: the internal energy change
can be written in terms of the entropy, S; polariza-
tion, P; and specific magnetization, M, which are
the thermodynamic coordinates due to the tempera-
ture, T ; electric field, E; and magnetic field, B, respec-
tively. As a consequence, the extensive three
participants of the internal energy change in the
Gibbs relation: dU = dUS + dUpol + dUpara, in which
dUS = TdS is the internal energy change according
to the change in entropy. dUpol = E dP is the internal
energy change according to change in polarization.
Moreover, dUpara = B dM is the internal energy
change according to the change in magnetization,
where M is calculated from the equation [37, 49]: ∂
S/∂MB = −ðB/TÞ⇒MB = −

Ð ððT/BÞð∂S/∂yÞÞtdy.
Using the nondimensional variables U∗ =U/mec

2,
M∗

B =MBðνee/ecÞ, and p∗ = pðνee/ecÞ in the Gibbs
relation, we can get (after dropping the star) dU =
dSe + f1Exdp + f1BzdMB

(ii) In the diamagnetic case: the internal energy change
can be written in terms of the extensive thermody-
namic quantities S and P and the induced magnetic
field, B, which symbolize the thermodynamic coordi-
nates due to the intensive quantities T , E, and MB,
respectively; thus, we have three participants in the
internal energy modified in the Gibbs formula
acquired by

dU = dUS + dUpol + dUdia, ð30Þ

as dUdia = −MBdB is the internal energy change according to
the change in the generated magnetic field induction, as MB
= Tð∂S/∂BÞ [37, 49]. In the present case, the internal energy
dU , in a nondimensional form, is written in the compact form
as dU = dS + Edp −MBdB and dS = ð∂S/∂rÞ δ y + ð∂S/∂tÞδ t.

2. Discussion

In the present study, we have investigated the unsteady man-
ner of plasma gas based on the Boltzmann’s kinetic theory
and irreversible thermodynamics using the Boltzmann equa-
tion’s exact traveling wave solution with the accurate values
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of electron-electron, electron-ion, and electron-atom colli-
sion frequencies in the BGK technique of the collision terms.
The results are clarified in figures for dilute plasma argon gas.
It is shown that the computations due to the methods of solu-
tion are well performed using standardized data for electron
gas in an argon plasma. The analytical results fit very well
with the plasma laboratory [28, 41] in the following two
cases: in the paramagnetic medium, based on the ionizing
potential of the atoms, the argon gas loses single electrons,
while in the diamagnetic case, the argon gas loses electron
pairs.

We present the solutions of the model equation using the
idea of the shooting numerical calculation method to esti-
mate the transformation constants k = 0:85 and ω = 0:1 and
the Mach number of the plate M = 1:0 × 10−2 as presented
in [15]. The calculations are carried out for the problem
according to the following plasma fluid properties and condi-
tions: Boltzmann constant, initial temperature, electron con-
centration, and diameter of the argon atom are given by
kB = 1:3807 × 10−16erg/K,T0 = 200K, ne = 1017cm‐3, and d =
3:84 × 10−8cm. The electron rest mass and electron charge
are given by me = 9:093 × 10−28g and e = 4:8 10−10 esu, which
are used to determine the dimensionless control parameter
α0 = 1:6 × 10−12. Besides, the electron-ion, electron-electron,
and electron-neutral atom collision frequency values are νei

= 1:46 × 1015 sec−1, νee = 1:033 × 1015 sec−1, and νen = 1:199
× 104 sec−1, respectively. Finally, the plasma’s mean free path

λ = ð ffiffiffi
2

p
πned

2Þ−1 = 1:526 × 10−3 cm , which is large com-
pared with one of the most fundamental properties, which
is the electron Debye length λDe =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KBT0/4πnee2

p
= 3:086

× 10−7 cm.
The behavior of solutions that appear in Figures 1(a) and

1(b) reveals that the effect of the plate motion on the electron
velocity distribution function is very considerable. Figure 1(b)
displays the perturbed electron velocity distribution function
in the nearby area of the flat plate that suddenly sets in motion
with Mach number equals to 0.01. As shown in Figure 1(b),
the deviation from equilibrium decreases with time as the sys-
tem tries to reach an equilibrium state as expected from Le
Chatelier’s principle. Therefore, the electron velocity distribu-
tion function Fe approaches to equilibrium velocity distribu-
tion function F0 as t = 10, a result that strengthens the
interpretation of the equilibrium principle. According to Le
Chatelier, the position of equilibrium at a certain point in time
for the perturbed electron velocity distribution functions F1
and F2 approaches to the equilibrium distribution function
F0, which is of interest to our problem (see Figure 1(b)).

Figures 2–6 show, respectively, the graphics of the veloc-
ity, shear stress, viscosity, applied magnetic field, and the
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Figure 1: (a) The perturbed electron velocity distribution functions φe [φ1 (green), φ2 (red)] at (t = 0:001 and 1.25) for a fixed y value (y = 1)
with the Mach number of the plateM = 0:01. (b) The combination of the perturbed electron velocity distribution functions φe: φ1 (green) and
φ2 (red) compared to the equilibrium velocity distribution function φo (grid) at t = 2:5, 5, and 10 with the Mach number of the plateM = 0:01
at y = 1.
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induced electric field according to it. We see that near the
moving plate, the mean velocity of the electrons in Figure 2
has a value equal to Mach number M = 0:01 of the flat plate
as ðy, tÞ = ð0, 0Þ. It decreases exponentially with time, which
gives a good agreement with the results presented in [28,

37]. The shear stress decreases with time, as shown in
Figure 3. The viscosity coefficient follows the equilibrium
law by counteracting the change such that the system tends
to equilibrate with increasing viscosity, as seen in Figure 4.
We shed light upon the behavior of the generated electric
and applied magnetic fields in Figures 5 and 6. They illustrate
that the electric and magnetic fields are decreasing in magni-
tudes that tend to zero value over time. That is due to our
assumption of the applied external magnetic field and due
to the dependency of the generated electric field to the exter-
nal magnetic field as they connected by Maxwell’s equations.
Away from the plate, the generated electric field increases
with time (see Figure 5). However, the magnetic field has
the maximum value at the beginning of time, and then, it
decreases nonlinearly towards zero for all y values, as shown
in Figure 6. In such a way, the effects of the electromagnetic
fields are dominant compared with dynamic effects in the
plasma flow model.

From the results for velocity, density, and temperature,
which were obtained from the solution of the mathematical
model, we can demonstrate the nonlinear behavior of the
entropy, as seen in Figure 7. The entropy S increases for
argon plasma with time, which gives a good agreement with
the 2nd law of thermodynamics [38]. The entropy production
σ decreases once the system goes towards the equilibrium till
it reaches the state of equilibrium, i.e., σ=0 and S is maximum
(see Figures 7 and 8). The entropy production of the plasma
model satisfies the fundamental laws of thermodynamics and
the Boltzmann H-theorem as σ≥0 for all values of the posi-
tion y and the time t, as shown in Figure 8.

As shown in Figure 9, the change in the internal energy
due to the variation of entropy nonlinearly decreases with time
and space. For the paramagnetic plasma cases of dUpol = E dP
and dUpara = B dM, the internal energy changes are plotted in
Figures 10 and 11. We note that the internal energy polariza-
tion and magnetization change is nonlinearly increased.

An investigation of the stability requires to study the
time rate of change (time derivatives) of the internal energy
Uð lim

Δt→0
ðΔU/ΔtÞ = lim

Δt→0
ðΔUS/ΔtÞ + lim

Δt→0
ðΔUpol/ΔtÞ + lim

Δt→0
ðΔ

2
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Figure 2: Spatiotemporal velocity profile Vx .
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Upara/ΔtÞÞ. The right-hand side terms can be positive, nega-
tive, or null. The positive values indicate an increase in time
of internal energy, whereas negative values indicate a
decrease in internal energy. On the other side, if the sum of
the terms is equal to null, then the rate of change in the inter-
nal energy vanishes. Besides, the necessary and sufficient
condition for the system to be in the equilibrium state is σ
= 0 and dU = 0, which is indicated in Figures 8–11.

The electron gyrofrequency, which is the angular fre-
quency of the circular motion of a charged particle in the
plane perpendicular to the applied magnetic field, gradually
decreases with time for argon plasma and increases away
from the plate (see Figure 12), whereas in plate vicinity, elec-
tron Larmor radius or gyroradius, which is the radius of the
circular motion of an electron in the plane perpendicular to
the applied magnetic field, has the maximum value for argon.
Then, it vanishes away from the vicinity of the plate, as
shown in Figure 13.

3. Conclusions

In this paper, a detailed calculation of the effect of the colli-
sions of the electrons with positive ions and neutral atoms
operating with argon plasma has been made. Further, the
current displacement term in the Maxwell equations is taken
into consideration, which was ignored in the previous works
(see [24–28, 37]). We have elaborated a model to calculate
the distribution functions, velocities, and electromagnetic
fields of the plasma flow under the effect of an external mag-
netic field.

All graphics presented in the text have shown excellent
agreement within the investigated ranges of the governing
parameters and initial and boundary conditions. This fact
supports the following idea: based on the BGK model, the
collisionless plasma flow problem can be studied in the
framework of the Boltzmann kinetic equation supplemented
by theMaxwell equations. Also, we can investigate the behav-
ior of electron gas, which is generated from noble gases under
the effect of a nonuniform unsteady external magnetic field
using the method of moments of the kinetic equation for

B
Z 102

3

2
1
0

0

2

4
0

20

40

t

y

20

4

t

Figure 6: The applied magnetic field Bz vs. space y and time t.
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the two-sided distribution functions of the velocity. From a
thermodynamic viewpoint, collisions between plasma com-
ponents (ions, electrons, and atoms) are characterized by
the fluctuation between loss and gain part of the energy of
the charged particles (electrons).

The calculated distribution functions are used to estimate
entropy and entropy production that are compatible with the
nonequilibrium thermodynamic laws. These properties are

deeply discussed. After drawing the solutions, a good consis-
tency between them was found with the thermodynamic
laws. Finally, it should be added that the discovered behavior
of the collision processes between electrons and ions in argon
plasma based on the BGK technique of the Boltzmann kinetic
equation might depend on the velocity of the moving plate in
the rarefied gas dynamics. This point has been examined
minutely in this paper.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This study is supported by the Egyptian Academy of Scien-
tific Research and Technology by the associated grant num-
ber (No. 6508), under the program of Science UP Faculties
of Science.

References

[1] C. G. N. Lee, K. J. Kanarik, and R. A. Gottscho, “The grand
challenges of plasma etching: a manufacturing perspective,”
Journal of Physics D: Applied Physics, vol. 47, no. 27,
p. 273001, 2014.

[2] V. Miller, A. Lin, and A. Fridman, “Why target immune cells
for plasma treatment of cancer,” Plasma Chemistry and
Plasma Processing, vol. 36, no. 1, pp. 259–268, 2016.

[3] K. Weltmann, J. Kolb, M. Holub et al., “The future for plasma
science and technology,” Plasma Processes and Polymers,
vol. 16, article e1800118, 2019.

[4] G. Belmont, R. Grappin, F. Mottez, F. Pantellini, and
G. Pelletier, Collisionless Plasmas in Astrophysics, WILEY-
VCHVerlag GmbH & Co. KGaA, Boschstr, Weinheim, Ger-
many, 2014.

[5] P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for col-
lision processes in gases. I. Small amplitude processes in

0

dUpol 103

y

0

20

40

t0

2 

4

−2

−1

y

20

40

t0

2 

4

Figure 10: The internal energy change dUpol vs. space y and time t.

dUdia 102

y

0

20

40

t0

2 

4

0

−4

−2

y

0

20

40

t0

2

4

Figure 11: The internal energy change dUdia vs. space y and time t.

y
0

20

40

t0

2 

4

1.5
1.0
0.5
0.0

𝛺c102

20

4

t

Figure 12: The gyrofrequency Ωc vs. space y and time t.

𝜌
102

y
0

20

40

t0

2 

4

0.0
0.1

0.2
0.3

y
0

20

4

t

2

4

Figure 13: The gyroradius  versus space y and time t.

9Advances in Mathematical Physics



charged and neutral one-component systems,” Physical review,
vol. 94, no. 3, pp. 511–525, 1954.

[6] Z. Donko and N. Dyatko, “First-principles particle simulation
and Boltzmann equation analysis of negative differential con-
ductivity and transient negative mobility effects in xenon,”
European Physical Journal D: Atomic, Molecular, Optical and
Plasma Physics, vol. 70, no. 6, p. 135, 2016.

[7] H. Struchtrup, “Grad's moment method,” in Macroscopic
Transport Equations for Rarefied Gas Flows, Interaction of
Mechanics and Mathematics, Springer, Berlin, Heidelberg,
2005.

[8] A. M. Abourabia and T. Z. A. Wahid, “Solution of the Krook
kinetic equation model and non-equilibrium thermodynamics
of a rarefied gas affected by a nonlinear thermal radiation
field,” Journal of Non-Equilibrium Thermodynamics, vol. 36,
pp. 75–98, 2011.

[9] A. M. Abourabia and T. Z. A. Wahid, “Kinetic and thermody-
namic treatment for the Rayleigh flow problem of an inhomo-
geneous charged gas mixture,” Journal of Non-Equilibrium
Thermodynamics, vol. 37, no. 1, pp. 1–25, 2012.

[10] T. A. Wahid, Kinetic Irreversible Thermodynamic Study of
Plasma and Neutral Gases, LAP LAMBERT Academic Pub-
lishing, Germany, 2014.

[11] V. Shahabi, T. Baier, E. Roohi, and S. Hardt, “Thermally
induced gas flows in ratchet channels with diffuse and specular
boundaries,” Scientific Reports, vol. 7, no. 1, p. 41412, 2017.

[12] J. Zhao, J. Yao, M. Zhang et al., “Study of gas flow characteris-
tics in tight porous media with a microscale lattice Boltzmann
model,” Scientific Reports, vol. 6, no. 1, p. 32393, 2016.

[13] H. Xiao and K. Tang, “A unified framework for modeling con-
tinuum and rarefied gas flows,” Scientific Reports, vol. 7, no. 1,
p. 13108, 2017.

[14] B.-Y. Cao, J. Sun, M. Chen, and Z.-Y. Guo, “Molecular
momentum transport at fluid-solid interfaces in MEM-
S/NEMS a review,” International Journal of Molecular Sci-
ences, vol. 10, no. 11, pp. 4638–4706, 2009.

[15] T. Z. A.Wahid, “Kinetic and thermodynamic treatment for the
exact solution of the unsteady Rayleigh flow problem of a rar-
efied homogeneous charged gas,” Journal of Non-Equilibrium
Thermodynamics, vol. 37, no. 2, pp. 119–141, 2012.

[16] H. A. Tighchi, M. Sobhani, and J. A. Esfahani, “Effect of volu-
metric radiation on natural convection in a cavity with a hor-
izontal fin using the lattice Boltzmann method,” The European
Physical Journal Plus, vol. 133, no. 1, p. 8, 2018.

[17] M. Barzegar Gerdroodbary, D. D. Ganji, M. Taeibi-Rahni, and
S. Vakilipour, “Effect of Knudsen thermal force on the perfor-
mance of low-pressure micro gas sensor,” The European Phys-
ical Journal Plus, vol. 132, no. 7, p. 315, 2017.

[18] M. Lesur, “Method- and scheme-independent entropy pro-
duction in turbulent kinetic simulations,” Computer Physics
Communications, vol. 200, pp. 182–189, 2016.

[19] D. Pan, C. Zhong, C. Zhuo, and W. Tan, “A unified gas kinetic
scheme for transport and collision effects in plasma,” Applied
Sciences, vol. 8, no. 5, p. 746, 2018.

[20] K. Tang and H. Xiao, “Entropy conditions involved in the non-
linear coupled constitutive method for solving continuum and
rarefied gas flows,” Entropy, vol. 19, no. 12, p. 683, 2017.

[21] L. Ferrari, “Comparing Boltzmann and Gibbs definitions of
entropy in small systems,” The European Physical Journal Plus,
vol. 132, no. 11, p. 487, 2017.

[22] D. Kalempa and F. Sharipov, “Sound propagation through a
binary mixture of rarefied gases at arbitrary sound frequency,”
European Journal of Mechanics-B/Fluids, vol. 57, pp. 50–63,
2016.

[23] J. Juno, A. Hakim, J. TenBarge, E. Shi, and W. Dorland, “Dis-
continuous Galerkin algorithms for fully kinetic plasmas,”
Journal of Computational Physics, vol. 353, pp. 110–147, 2018.

[24] T. Z. A. Wahid and S. K. Elagan, “Kinetic treatment for the
exact solution of the unsteady Rayleigh flow problem of a rar-
efied homogeneous charged gas bounded by an oscillating
plate,” Canadian Journal of Physics, vol. 90, pp. 987–998, 2012.

[25] T. Z. A. Wahid, “Travelling waves solution of the unsteady
flow problem of a rarefied nonhomogeneous charged gas
bounded by an oscillating plate,” Mathematical Problems in
Engineering, vol. 2013, Article ID 503729, 13 pages, 2013.

[26] A. M. Abourabia and T. Z. A. Wahid, “Kinetic and thermody-
namic treatments of a neutral binary gas mixture affected by a
nonlinear thermal radiation field,” Canadian Journal of Phys-
ics, vol. 90, no. 2, pp. 137–149, 2012.

[27] T. Z. A.Wahid, “Travelling wave solution of the unsteady BGK
model for a rarefied gas affected by a thermal radiation field,”
Sohag Journal of Mathematics, vol. 2, no. 2, pp. 75–87, 2015.

[28] T. Z. A. Wahid, “Travelling waves solution of the unsteady
flow problem of a collisional plasma bounded by a moving
plate,” Fluid Mechanics, vol. 4, no. 1, pp. 27–37, 2018.

[29] L. Oliva, “Impact of the pre-equilibrium stage of ultra-
relativistic heavy ion collisions: isotropization and photon pro-
duction,” The European Physical Journal Plus, vol. 134, no. 6,
p. 306, 2019.

[30] P. Ma, Y. Zheng, and G. Qi, “The nonextensive Bose-Einstein
condensation and photon gas with parameter transformation,”
The European Physical Journal Plus, vol. 134, no. 10, p. 502,
2019.

[31] A. M. Abourabia and A.M.Morad, “Exact traveling wave solu-
tions of the van der Waals normal form for fluidized granular
matter,” Physica A, vol. 437, pp. 333–350, 2015.

[32] Ž. Mladenović, S. Gocić, D. Marić, and Z. L. Petrović, “Influ-
ence of space charge density on electron energy distribution
function and on composition of atmospheric pressure
He/O2/air plasmas,” The European Physical Journal Plus,
vol. 133, no. 8, p. 344, 2018.

[33] T. Z. A. Wahid, “Exact solution of the unsteady Krook kinetic
model and nonequilibrium thermodynamic study for a rare-
fied gas affected by a nonlinear thermal radiation field,” Cana-
dian Journal of Physics, vol. 91, no. 3, pp. 201–210, 2013.

[34] W. Marques and A. R. Méndez, “On the kinetic theory of
vehicular traffic flow: Chapman–Enskog expansion versus
Grad's moment method,” Physica A, vol. 392, no. 16,
pp. 3430–3440, 2013.

[35] G. M. Kremer,An Introduction to the Boltzmann Equation and
Transport Processes in Gases, Springer-Verlag, Berlin Heidel-
berg, 2010.

[36] T. S. Chang and C. M. Chang, “Rayleigh's problem in collision-
less plasmas,” Plasma Physics, vol. 13, no. 9, pp. 695–714, 1971.

[37] A. M. Abourabia and R. E. Tolba, “On the irreversible thermo-
dynamics of an electron gas in the vicinity of a suddenly mov-
ing rigid plate,” The European Physical Journal Plus, vol. 127,
no. 58, pp. 1–11, 2012.

[38] B. Yan, “A hybrid method with deviational particles for spatial
inhomogeneous plasma,” Journal of Computational Physics,
vol. 309, no. 18–36, pp. 18–36, 2016.

10 Advances in Mathematical Physics



[39] H. Liu, F. Shi, J. Wan, X. He, and Y. Cao, “Discrete unified gas
kinetic scheme for a reformulated BGK–Vlasov–Poisson sys-
tem in all electrostatic plasma regimes,” Computer Physics
Communications, vol. 255, no. 107400, p. 107400, 2020.

[40] T. Z. A. Wahid and A. M. Morad, “Unsteady plasma flow near
an oscillating rigid plane plate under the influence of an
unsteady nonlinear external magnetic field,” IEEE Access,
vol. 8, pp. 76423–76432, 2020.

[41] J. D. Huba, NRL Plasma Formulary, Naval Research Labora-
tory, Washington, DC, 2019.

[42] S. I. Braginskii, Transport processes in a plasma. Reviews of
Plasma Physics, Volume 1. Authorized translation from Rus-
sian by Herbert Lashinsky, University of Maryland, USA, M.
A. Leontovich, Ed., Published by Consultants Bureau, New
York, 1965.

[43] L. Lees, “Kinetic theory description of rarefied gas flow,” Jour-
nal of the Society for Industrial and Applied Mathematics,
vol. 13, no. 1, pp. 278–311, 1965.

[44] A. M. Abourabia, T. S. El-Danaf, and A. M. Morad, “Exact
solutions of the hierarchical Korteweg–de Vries equation of
microstructured granular materials,” Chaos, Solitons & Frac-
tals, vol. 41, no. 2, pp. 716–726, 2009.

[45] J. Gratton, S. M. Mahajan, and F. Minotti, Non-Newtonian
gravity creeping flow, International Centre for Theoretical
Physics, Trieste (Italy), 1988.

[46] G. Nugroho, A. M. S. Ali, and Z. A. Abdul Karim, “Towards a
new simple analytical formulation of Navier-Stokes equa-
tions,” World Academy of Science, Engineering and Technol-
ogy, vol. 39, pp. 197–201, 2009.

[47] G. Lebon, D. Jou, and J. Casas-Vàzquez, Understanding Non-
equilibrium Thermodynamics: Foundations, Applications,
Frontiers, Springer-Verlag, Berlin, Heidelberg, Germany, 2008.

[48] T. Z. Abdel Wahid, The Effect of Lorentz and Centrifugal
Forces on Gases and Plasma, LAMBERT Academic Publishing,
Germany, 2017.

[49] P. Van der Linde, “Thermodynamic stability of dia-and para-
magnetic materials,” Periodica Polytechnica Chemical Engi-
neering, vol. 12, p. 97, 1998.

11Advances in Mathematical Physics



Research Article
Fractal Ion Acoustic Waves of the Space-Time Fractional Three
Dimensional KP Equation

M. A. Abdou,1,2 Saud Owyed,3 S. Saha Ray,4 Yu-Ming Chu ,5,6 Mustafa Inc ,7,8

and Loubna Ouahid1

1Physics Department, College of Science, University of Bisha, Bisha 61922, P.O. Box 344, Saudi Arabia
2Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
3Mathematics Department, College of Science, University of Bisha, Bisha 61922, P.O. Box 344, Saudi Arabia
4Department of Mathematics, National Institute of Technology, Rourkela, 769008 Odisha, India
5Department of Mathematics, Huzhou University, Huzhou 313000, China
6Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science
and Technology, Changsha 410114, China
7Department of Mathematics, Science Faculty, Firat University, 23119 Elazig, Turkey
8Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

Correspondence should be addressed to Yu-Ming Chu; chuyuming2005@126.com and Mustafa Inc; minc@firat.edu.tr

Received 3 August 2020; Revised 29 August 2020; Accepted 22 September 2020; Published 17 October 2020

Academic Editor: Xiao-Ling Gai

Copyright © 2020 M. A. Abdou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Methods known as fractional subequation and sine-Gordon expansion (FSGE) are employed to acquire new exact solutions of some
fractional partial differential equations emerging in plasma physics. Fractional operators are employed in the sense of conformable
derivatives (CD). New exact solutions are constructed in terms of hyperbolic, rational, and trigonometric functions. Computational
results indicate the power of the method.

1. Introduction

Nonlinear propagation of electrostatic excitations in
electron-positron ion plasmas and nonthermal distribution
of electrons is an important research area in astrophysical
and space plasmas [1–6].

Many important phenomena such as the effective behav-
ior of the ionized matter, magnetic field near the surfaces of
the sun and stars, emission mechanisms of pulsars, the origin
of cosmic rays and radio sources, dynamics of magneto-
sphere, and propagation of electromagnetic radiation
through the upper atmosphere required the study of plasma
physics. Equations such as Korteweg de Vries (KdV), Bur-
gers, KdV-Burgers, and Kadomtsev-Petviashvili (KP) were
highly used models in the description of plasma systems.

We study the physical phenomena for space-time frac-
tional KP equation with the aid of fractional calculus and
examine the resulting solutions in detail. The factional calcu-
lus [7–13] has a wide range of applications and is deeply
rotted in the field of probability, mathematical physics, dif-
ferential equations, and so on. Very recently, fractional dif-
ferential equations have got a lot of consideration as they
define many complex phenomena in various fields. Several
fractional-order models play very important roles in different
areas including physics, engineering, mechanics and dynam-
ical systems, signal and image processing, control theory,
biology, and materials [14–18].

The paper is summarized as follows. Definitions and
properties of conformable derivatives are discussed. In
Section 2, a discussion about the two algorithms method,
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namely, fractional subequation method and sine-Gordon
expansion method for solving FPDEs arising in plasma phys-
ics are given. In Section 3, two schemes are employed for
some new exact solutions for the FKPE. We presented a
graphical description of some of the solutions with a fixed
value of fractal order α in a brief conclusion at the end of
the article.

Definition 1. Let ψ : ð0,∞Þ⟶ R. Some definitions, useful
properties, and a theorem about conformable derivatives
are given as follows:

Uα ψð Þ tð Þ = limε⟶0
ψ t + εt1−α
� �

− ψ tð Þ
ε

, t > 0, 0 < α < 1,

Uα bψ + chð Þ = BUα ψð Þ + CUα hð Þ, B, C ∈ R,

Uαt
λ = λtλ−α, λ ∈ R,

Uα ψhð Þ = ψUα hð Þ + hUα ψð Þ,

Uα

ψ

h

� �
= hUα ψð Þ − ψUα hð Þ

h2
:

ð1Þ

If ψ is differentiable, then UαðψÞðtÞ = t1−αðdψ/dhÞ.

Theorem 2. Let ψ : ð0,∞Þ⟶ R be a differentiable function.
Then,

Uα ψ ∗ hð Þ = t1−αh′ tð Þψ′ h tð Þð Þ: ð2Þ

2. Solution Method

2.1. Extended Fractional Subequation Method. For a given
nonlinear FPDE as

χ u1 uk,Dα
t u1 D

α
t uk,Dα

x1
u1 D

α
x1
uk

� �
= 0, 0 < α < 1: ð3Þ

in which χ is a polynomial of u. Using wave transformation
as

ui t, x1, x2,⋯xnð Þ =Ui ξð Þ, ξ = ct+⋯+knxn, ð4Þ

Eq. (3) reads

ϕ U1 ⋯Uk, cαDα
ξU1 ⋯ cαDα

ξUk, kα1Dα
ξU1 ⋯ kα1D

α
ξUk ⋯ , kαnDα

ξU1
� �

= 0, 0 < α < 1:

ð5Þ

Thus,

Ui ξð Þ = 〠
M

i=0
ai

Dα
ξw ξð Þ
w ξð Þ

� �i

, ð6Þ

where w =wðξÞ satisfies

Aw ξð ÞD2α
ξ w ξð Þ − Bw ξð ÞDα

ξw ξð Þ − C Dα
ξw ξð Þ� 	2 − Ew ξð Þ2 = 0,

ð7Þ

where Dα
ξwðξÞ is a RL fractional operator of order α. To solve

Eq. (7), assume wðξÞ = zðηÞ, with the fractional complex
transformation, then

Az ηð Þð Þz′′ ηð Þ − Bz ηð Þz′ ηð Þ − C z′ ηð Þ
h i2

− Ez2 ηð Þ = 0: ð8Þ

SinceDα
ξwðξÞ =Dα

ξzðηÞ = z′ðηÞ. The general solutions Eq.
(7) is as follows:where ν1 = B2 + 4EðA − CÞ, ν2 = EðA − CÞ, L1,
and L2 are arbitrary constants and η = ξα/Γð1 + αÞ. Inserting
Eq. (6) into (5) knowing Eq.(7), collecting the same order
terms ðDα

ξwðξÞ/wðξÞÞ, then equating it to zero, k and c are
obtained. As long as the solutions are obtained with the gen-
eral expression ½Dα

ξwðξÞ/wðξÞ�, admits several solutions of
Eq. (3).

Family 1. As long as B ≠ 0, ν1 > 0, admits to

Dα
ξw ξð Þ
w ξð Þ


 �
= B
2 A − Cð Þ

+
ffiffiffiffiffi
ν1

p
2 A − Cð Þ

L1 sin h
ffiffiffiffiffi
ν1

p
η/2 A − Cð Þ� �

+ L2 cos h
ffiffiffiffiffi
ν1

p
η/2 A − Cð Þ� �

L1 cos h
ffiffiffiffiffi
ν1

p
η/2 A − Cð Þ� �

+ L2 sin h
ffiffiffiffiffi
ν1

p
η/2 A − Cð Þ� �

" #

:

ð9Þ

Family 2. Limiting case B ≠ 0, ν1 < 0 gains

Dα
ξw ξð Þ
w ξð Þ


 �
= B
2 A − Cð Þ

+
ffiffiffiffiffiffiffiffi−ν1

p
2 A − Cð Þ

−L1 sin
ffiffiffiffiffiffiffiffi−ν1

p
η/2 A − Cð Þ� �

+ L2 cos
ffiffiffiffiffiffiffiffi−ν1

p
η/2 A − Cð Þ� �

L1 cos
ffiffiffiffiffiffiffiffi−ν1

p
η/2 A − Cð Þ� �

+ L2 sin
ffiffiffiffiffiffiffiffi−ν1

p
η/2 A − Cð Þ� �

" #

:

ð10Þ

Family 3. For B ≠ 0, ν1 = 0,

Dα
ξw ξð Þ
w ξð Þ


 �
= B
2 A − Cð Þ + L2

L1 + L2η
: ð11Þ

Family 4. When B = 0, ν2 > 0,

Dα
ξw ξð Þ
w ξð Þ


 �
=

ffiffiffiffiffi
ν2

p
2 A − Cð Þ

L1 sin h
ffiffiffiffiffi
ν2

p
η/2 A − Cð Þ� �

+ L2 cos h
ffiffiffiffiffi
ν2

p
η/2 A − Cð Þ� �

L1 cos h
ffiffiffiffiffi
ν2

p
η/2 A − Cð Þ� �

+ L2 sin h
ffiffiffiffiffi
ν2

p
η/2 A − Cð Þ� �

" #

:

ð12Þ

Family 5. When B = 0, ν2 < 0, then

Dα
ξw ξð Þ
w ξð Þ


 �
=

ffiffiffiffiffiffiffiffi−ν2
p

2 A − Cð Þ
−L1 sin

ffiffiffiffiffiffiffiffi
−Δ2

p
η/2 A − Cð Þ

� �
+ L2 cos

ffiffiffiffiffiffiffiffi−ν2
p

η/2 A − Cð Þ� �

L1 cos
ffiffiffiffiffiffiffiffi−ν2

p
η/2 A − Cð Þ� �

+ L2 sin
ffiffiffiffiffiffiffiffi−ν2

p
η/2 A − Cð Þ� �

2

4

3

5,

ð13Þ

2.2. Analysis of the Fractional Sine-Gordon Expansion (FSGE)
Method. Let us first consider the fractional sine-Gordon
equation as

Vxx −D2α
t V =m2 sin Vð Þ, ð14Þ

m is constant.
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By using the transformation V =VðξÞ, ξ = aðx − νðtα/αÞÞ.
Then Eq. (14) yields

d2 V/2ð Þ
dξ2

= m2

a2 1 − ν2ð Þ sin
2 V/2ð Þ + C, ð15Þ

where C is an integration constant to be zero. Setting χðξÞ =
VðξÞ/2, b2 =m2/a2ð1 − ν2Þ. Then Eq. (15) reads

d χw ξð Þð
dξ

= b sin χð Þ, ð16Þ

Setting b = 1, we have

sin χ ξð Þð Þ = 2deξ
d2e2ξ + 1

= sec h ξð Þ,  cos χ ξð Þð Þ = d2e2ξ − 1
d2e2ξ + 1

= tan h ξð Þ,

ð17Þ

sin χ ξð Þð Þ = i csc h ξð Þ,  cos χ ξð Þð Þ = cot h ξð Þ, d = 1:
ð18Þ

In view of this method, we assume the trail solutions by

V ξð Þ = 〠
N

j=1
tan hj−1 ξð Þ Bj sec h ξð Þ + Aj sec h ξð Þ� 	

+ A0,

ð19Þ

V ξð Þ = 〠
N

j=1
cot hj−1 ξð Þ jBj csc h ξð Þ + Aj cot h ξð Þ� 	

+ A0:

ð20Þ
Making use of Eq. (18), then Eq. (19) can be rewritten as

follows

V ξð Þ = 〠
N

j=1
cosj−1 ξð Þ Bj sin ξð Þ + Aj cos ξð Þ� 	

+ A0, ð21Þ

where N can be obtained by balancing principle. Inserting Eq.
(21) into (15) and the collecting the same power of cosiðξÞsi
njðξÞ, admitting the system of algebraic equation, by solving
them by Maple, the coefficient values Aj, Bj, ν can be deter-
mined. Inserting these values into Eq. (19), the exact solutions
of Eq. (14) are determined.

3. New Applications

In this part of our research, we apply a novel computational
approach mentioned above to illustrate the advantages for
finding analytical solutions of (3 + 1)-dimension space-time
FKPE which is as follows

Dα
xD

α
t u x, y, z, tð Þ + dDα

x u x, y, z, tð ÞDα
xu x, y, z, tð Þ½ �

+ νDαααα
y u x, y, z, tð Þ + βDαα

z u x, y, z, tð Þ
+ νDαα

x u x, y, z, tð Þ = 0,
ð22Þ

where uðξÞ =Uðx, y, z, tÞ is the field function, ν, δ, d, andβ∈ℝ.
Let uðx, y, z, tÞ =UðξÞ, where ξ = kx + ct + ly +mz + ξ0, k, l, c,
m, ξ0 then

Dα
xU =Dα

xU ξð Þ = Dα
ξU

� �
ξx′

� �α
= kαDα

ξU ,

Dα
t U =Dα

t U ξð Þ = Dα
ξU

� �
ξt′

� �α
= cαDα

ξU :

ð23Þ

Then, Eq. (22) reduces to

cαkαDαα
ξ U ξð Þ + dk2αDα

ξ U ξð ÞDα
ξU ξð Þ� 	

+ νk4αDαααα
ξ U ξð Þ

+ δl2αDαα
ξ U ξð Þ +m2αβDαα

ξ U ξð Þ = 0:
ð24Þ

Now, we assume the solution of Eq. (24) as

U ξð Þ = 〠
M

i=0
ai

Dα
ξw ξð Þ
w ξð Þ

� �i

, ð25Þ

wherew =wðξÞ. Using the proposed algorithm for Eq. (24), we
haveM = 2.

Then,

U ξð Þ = a0 + a1
Dα
ξw ξð Þ
w ξð Þ

� �
+ a2

Dα
ξw ξð Þ
w ξð Þ

� �2
: ð26Þ

Inserting (26) into (24) and collecting the terms with a
similar degree of ðDα

ξwðξÞ/wðξÞÞ, equating it to zero, we have
two values of ai, ði = 0, 1, 2::Þ, k, c, l, and m

a0 =
− k−2αA2m2αβ + k−2αA2δl2α + k−2αA2cαkα − 8k2ανEA + k2ανB2 + 8k2ανEC
� �

dA2 ,

ð27Þ

a1 =
12 −C + Að Þνk4αB

dk2αA2 ,

a2 =
−12 C2 − 2AC + A2� �

νk4α

dk2αA2 ,

cα = cα, kα = kα:

ð28Þ

From Eqs. (28) and (26), we gain

U ξð Þ = − k−2αA2m2αβ + k−2αA2δl2α + k−2αA2cαkα − 8k2ανEA + k2ανB2 + 8k2ανEC
� �

dA2 ,

+ 12 −C + Að Þνk4αB
dk2αA2

" #
Dα
ξw ξð Þ
w ξð Þ

� �
+ −12 C2 − 2AC + A2� �

νk4α

dk2αA2

" #
Dα
ξw ξð Þ
w ξð Þ

� �2
:

ð29Þ

In view of Family 1–5 in (26), we obtain the following
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Family 6. When B ≠ 0, ν1 > 0

Family 7. When B ≠ 0, ν1 < 0

Family 8. When B ≠ 0, ν1 = 0

Family 9. For B = 0, ν2 > 0

U1 ξð Þ = − k−2αA2m2αβ + k−2αA2δl2α + k−2αA2cαkα − 8k2ανEA + k2ανB2 + 8k2ανEC
� �

dA2

+ 12 −C + Að Þνk4αB
dk2αA2

" #
B

2 A − Cð Þ +
ffiffiffiffiffi
ν1

p
2 A − Cð Þ

L1 sin h
ffiffiffiffiffi
ν1

p
η/2 A − Cð Þ� �

+ L2 cos h
ffiffiffiffiffi
ν1

p
η/2 A − Cð Þ� �

L1 cos h
ffiffiffiffiffi
ν1

p
η/2 A − Cð Þ� �

+ L2 sin h
ffiffiffiffiffi
ν1

p
η/2 A − Cð Þ� �

" #" #

+ −12 C2 − 2AC + A2� �
νk4α

dk2αA2

" #
B

2 A − Cð Þ +
ffiffiffiffiffi
ν1

p
2 A − Cð Þ

L1 sin h
ffiffiffiffiffi
ν1

p
η/2 A − Cð Þ� �

+ L2 cos h
ffiffiffiffiffi
ν1

p
η/2 A − Cð Þ� �

L1 cos h
ffiffiffiffiffi
ν1

p
η/2 A − Cð Þ� �

+ L2 sin h
ffiffiffiffiffi
ν1

p
η/2 A − Cð Þ� �

" #" #2

:

ð30Þ

U2 ξð Þ = − k−2αA2m2αβ + k−2αA2δl2α + k−2αA2cαkα − 8k2ανEA + k2ανB2 + 8k2ανEC
� �

dA2

+ 12 −C + Að Þνk4αB
dk2αA2

" #
B

2 A − Cð Þ +
ffiffiffiffiffiffiffiffi−ν1

p
2 A − Cð Þ

−L1 sin
ffiffiffiffiffiffiffiffi−ν1

p
η/2 A − Cð Þ� �

+ L2 cos
ffiffiffiffiffiffiffiffi−ν1

p
η/2 A − Cð Þ� �

L1 cos
ffiffiffiffiffiffiffiffi−ν1

p
η/2 A − Cð Þ� �

+ L2 sin
ffiffiffiffiffiffiffiffi−ν1

p
η/2 A − Cð Þ� �

" #" #

+ −12 C2 − 2AC + A2� �
νk4α

dk2αA2

" #
B

2 A − Cð Þ +
ffiffiffiffiffiffiffiffi−ν1

p
2 A − Cð Þ

−L1 sin
ffiffiffiffiffiffiffiffi−ν1

p
η/2 A − Cð Þ� �

+ L2 cos
ffiffiffiffiffiffiffiffi−ν1

p
η/2 A − Cð Þ� �

L1 cos
ffiffiffiffiffiffiffiffi−ν1

p
η/2 A − Cð Þ� �

+ L2 sin
ffiffiffiffiffiffiffiffi−ν1

p
η/2 A − Cð Þ� �

" #" #2

:

ð31Þ

U3 ξð Þ = − k−2αA2m2αβ + k−2αA2δl2α + k−2αA2cαkα − 8k2ανEA + k2ανB2 + 8k2ανEC
� �

dA2

+ 12 −C + Að Þνk4αB
dk2αA2

" #
B

2 A − Cð Þ + L2
L1 + L2η


 �
+ −12 C2 − 2AC + A2� �

νk4α

dk2αA2

" #
B

2 A − Cð Þ +
L2

L1 + L2η


 �2
:

ð32Þ

U4 ξð Þ = − k−2αA2m2αβ + k−2αA2δl2α + k−2αA2cαkα − 8k2ανEA + 8k2ανEC
� �

dA2

+ −12 C2 − 2AC + A2� �
νk4α

dk2αA2

" # ffiffiffiffiffi
ν2

p
2 A − Cð Þ

L1 sin h
ffiffiffiffiffi
ν2

p
η/2 A − Cð Þ� �

+ L2 cos h
ffiffiffiffiffi
ν2

p
η/2 A − Cð Þ� �

L1 cos h
ffiffiffiffiffi
Δ2

p
η/2 A − Cð Þ

� �
+ L2 sin h

ffiffiffiffiffi
ν2

p
η/2 A − Cð Þ� �

2

4

3

5

2

4

3

5

2

:

ð33Þ
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Family 10. In case of B = 0, ν2 < 0

where ν1 = 4EðA − CÞ, ν2 = EðA − CÞ, η = ξα/Γðα + 1Þ, and
ξ = kx + ct +mz + ly + ξ0. It is clearly seen that the solutions
depend on α, and when α = 1, we have the solutions that are
obtained for normal derivative. The results introduce free
parameters. Hence, five solutions are essential in handling
initial and boundary problems. To solve the reduced Eq.
(24) by the sine-Gordon expansion (FSGE) method, assume
the solution of Eq. (24) as

U ξð Þ = A0 + B1 sin ξð Þ + A1 cos ξð Þ + A2cos2 ξð Þ + B2 cos ξð Þ sin ξð Þ:
ð35Þ

Inserting Eq. (35) into (24) and the collecting the same
power of cosiðχðxiÞÞsinjðχðxiÞÞ, admitting the system of
algebraic equation, by solving them by Maple, admits to

Set 1.

kα = kα, cα = cα, A1 = 0, B1 = 0, B2 = ± 6ik2αν
d

, A2 = −
6νk4α

dk2α
,

A0 =
5k2αν − k−2αδL2α − k−2αcαkα − k−2αm2αβ
� �

d
,

ð36Þ

Set 2.

kα = kα, cα = cα, A1 = 0, B1 = 0, B2 = 0, A2 =
−12νk4α

dk2α
,

A0 =
8k2αν − k−2αcαkα − k−2αδL2α − k−2αm2αβ

d
:

ð37Þ

Inserting Set 1 into (35), we obtain the exact solution of
Eq. (22) as

u1 ξð Þ = 5k2αν − k−2αδL2α − k−2αcαkα − k−2αm2αβ
�

d

" #

−
6νk4α

dk2α

" #

tan h2 ξð Þ ± 6ik2αν
d

" #

tan h ξð Þ sech ξð Þ,

ð38Þ

u2 ξð Þ = 5k2αν − k−2αδL2α − k−2αcαkα − k−2αm2αβ
� �

d

" #

−
6νk4α

dk2α

" #

cot h2 ξð Þ ± 6ik2αν
d

" #

i coth ξð Þ csc h ξð Þ,

ð39Þ
where ξ = kx + ct + ly +mz + ξ0. Knowing Set 2 and Eq. (35),
we gain the exact solution of Eq. (22) as follows:

u3 ξð Þ = 8k2αν − k−2αcαkα − k−2αδL2α − k−2αm2αβ
� �

d

" #

−
12νk4α

d k2α
�

" #

tan h2 χ ξð Þð Þ,

ð40Þ

u4 ξð Þ = 8k2αν − k−2αcαkα − k−2αδL2α − k−2αm2αβ
� �

d

" #

−
12νk4α

dk2α

" #

cot h2 χ ξð Þð Þ,

ð41Þ
where ξ = kx + ct + ly +mz + ξ0. It is to be noted that, the 3D
graph represent the obtained solutions with fixed y = z = 1 of
Eqs. (38) and (40) are shown graphically (see Figures 1–7) for
fixed parameter with a different choice of fractal order α.

4. Concluding Remarks

In this article, the extended fractional subequation method
and sine-Gordon expansion (FSGE) method have been pro-
posed for finding exact solutions of fractional partial differ-
ential equations (FPDEs) in the sense of conformable
derivative. This paper studies (3 + 1)-dimensions space-
time FKPE which appears in plasma physics in the sense of
conformable derivatives via two algorithms, namely, the
extended fractional subequation method and FSGE method
to obtain sets of exact solutions. Using suitable wave trans-
form, the equations are reduced to some ODEs. Then, the
admissible solutions are substituted into the resultant ODE.
Equating the coefficients of ðDα

ξwðξÞ/wðξÞÞ in extended

U5 ξð Þ = − k−2αA2m2αβ + k−2αA2δl2α + k−2αA2cαkα − 8k2ανEA + 8k2ανEC
� �

dA2

+ −12 C2 − 2AC + A2� �
νk4α

dk2αA2

" # ffiffiffiffiffiffiffiffi−ν2
p

2 A − Cð Þ
−L1 sin

ffiffiffiffiffiffiffiffi
−Δ2

p
η/2 A − Cð Þ

� �
+ L2 cos

ffiffiffiffiffiffiffiffi−ν2
p

η/2 A − Cð Þ� �

L1 cos
ffiffiffiffiffiffiffiffi−ν2

p
η/2 A − Cð Þ� �

+ L2 sin
ffiffiffiffiffiffiffiffi−ν2

p
η/2 A − Cð Þ� �

2

4

3

5

2

4

3

5

2

,
ð34Þ
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fractional subequation method and cosine and sine functions
and their multiplications in FSGE method to zero leads to
some algebraic system of equations. Solving this system gives
the relations among the parameters. Some 3-D solution
graphs are presented in some finite domains to comprehend
the effects of α.

The presence of parameters makes our results useful for
the IVBVP with fractional order. For α = 1, our solutions go
back to that previously obtained solution. The performance
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Figure 2: The 3D graph represents of Eq. (38) via sine-Gordon
expansion method with a fixed values m = 0:05, l = 1 ; k = 0:5, v = 1,
y = z = 1, c = 0:05, d = 1, β = 1, δ = 1, L = 0:5, 10 < x < 10, 10 < t < 10
with fractal order α = 0:55
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Figure 1: The 3D graph represents of Eq. (38) via sine-Gordon
expansion method under the fixed values m = 0:05, l = 1 ; k = 0:5,
v = 1, y = z = 1, c = 0:05, d = 1, β = 1, δ = 1, L = 0:5, 10 < x < 10, 10 <
t < 10 with fractal order α = 1:
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Figure 3: The 3D graph represents of Eq. (38) via sine-Gordon
expansion method with a fixed values m = 0:05, l = 1 ; k = 0:5, v = 1,
y = z = 1, c = 0:05, d = 1, β = 1, δ = 1, L = 0:5, 10 < x < 10, 10 < t < 10
with fractal order α = 0:85
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Figure 4: The 3D graph represents of Eq. (38) via sine-Gordon
expansion method under the values m = 0:05, l = 1 ; k = 0:5, v = 1,
y = z = 1, c = 0:05, d = 1, β = 1, δ = 1, L = 0:5, 10 < x < 10, 10 < t < 10
with fractal order α = 0:45
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Figure 5: The 3D graph represents of the wave solutions of Eq. (40)
via sine-Gordon expansion method with a fixed values m = 0:05,
l = 1 ; k = 0:5, v = 1, y = z = 1, c = 0:05, d = 1, β = 1, δ = 1, L = 0:5,
10 < x < 10, 10 < t < 10 with fractal order α = 1
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Figure 6: The 3D graph represents of Eq. (40) via sine-Gordon
expansion method with a fixed values m = 0:05, l = 1 ; k = 0:5, v = 1,
y = z = 1, c = 0:05, d = 1, β = 1, δ = 1, L = 0:5, 10 < x < 10, 10 < t < 10
with fractal order α = 0:35
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Figure 7: The 3D graph represents of Eq. (40) via sine-Gordon
expansion method with a fixed values m = 0:05, l = 1 ; k = 0:5, v = 1,
y = z = 1, c = 0:05, d = 1, β = 1, δ = 1, L = 0:5, 10 < x < 10, 10 < t < 10
with fractal order α = 0:55
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of these approaches shows the ability for applying on var-
ious space-time fractional nonlinear equations in nonlinear
science.
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We have analyzed the squeezing and statistical properties of the cavity light beam produced by a coherently driven degenerate
three-level laser with a degenerate parametric amplifier (DPA) in an open cavity and coupled to a vacuum reservoir via a single-
port mirror. We have carried out our analysis by putting the noise operators associated with the vacuum reservoir in normal
order. Applying the solutions of the equations of evolution for the expectation values of the atomic operators and the quantum
Langevin equation for the cavity mode operator, the mean photon number and the quadrature squeezing of the cavity light are
calculated. And a large part of the mean photon number is confined in a relatively small frequency interval. Furthermore, we
also obtain the antinormally ordered characteristic function defined in the Heisenberg picture. With the aid of the resulting
characteristic function, we determine the Q function which is then used to calculate the photon number distribution.

1. Introduction

Three-level cascade lasers have received considerable interest
in connection with its potential as a source of light with inter-
esting nonclassical features [1–22]. The quantum properties
of the light, in this device, are attributed to atomic coherence
that can be induced either by preparing the atoms initially
in a coherent superposition of the top and bottom levels
[3, 12, 13, 22] or coupling these levels by an external radia-
tion [7, 8, 10] or using these mechanisms together [23].

Moreover, some authors have studied quantum proper-
ties of light generated by the three-level laser whose cavity
contains parametric amplifier [10, 11]. Parametric amplifier
involves three different modes of the radiation fields the sig-
nal, the idler, and the pump which are coupled by a nonlinear
medium. In this device a pump photon interacts with a non-
linear crystal inside a cavity and is down converted into two
highly correlated photons of different frequencies [12]. These
works indicated the cavity radiation is found to be in a
squeezed and entangled states under certain conditions. In
addition, the mean and variance of the photon number for
a degenerate [11, 12, 17] and nondegenerate [13–16] three-

level cascade laser whose cavity contains parametric ampli-
fier have been determined for different cases.

In the paper, we wish to study the squeezing and statisti-
cal properties of the light generated by a degenerate paramet-
ric amplifier (DPA) and coherently driven degenerate three-
level laser with an open cavity coupled to a vacuum reservoir
via a single-port mirror. We carry out our calculation by put-
ting the noise operators associated with the vacuum reservoir
in normal order [6, 8, 24, 25]. We thus first determine the
master equation for a coherently driven degenerate three-
level laser in an open cavity coupled to a vacuum reservoir
and the quantum Langevin equation for the cavity mode
operator. In addition, employing the master equation and
the large-time approximation scheme, we obtain equations
of evolution of the expectation values of atomic operators.
Moreover, we determine the solutions of the equations of
evolution of the expectation values of the atomic operators
and the quantum Langevin equation for cavity mode opera-
tor. Then, applying the resulting solutions, we calculate the
photon statistics and the quadrature squeezing of the two-
mode light beams. Furthermore, applying the same solutions,
we determine the antinormally ordered characteristic
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function defined in the Heisenberg picture [17, 24, 26]. With
the aid of the resulting characteristic function, we determine
the Q function which is then used to calculate the photon
number distribution.

2. The Model

We consider a coherently pumped degenerate three-level
laser with DPA coupled to a vacuum reservoir whose cavity
contains N three-level atoms in cascade configuration as
shown in Figure 1. The interaction of a degenerate three-
level atom with the cavity mode a can be described by the
Hamiltonian.

Ĥ1 = ig bσ†k
a + bσ†k

b

� �
â − a∧† bσk

a + bσk
b

� �h i
, ð1Þ

where g is the coupling constant between the atom and cavity
mode a, and âða∧†Þ are the annihilation (creation) operators
for cavity light mode. We also define that Ω = 2μλ, in which
μ considered to be real and constant, is the amplitude of the
driving coherent light, and λ is the coupling constant
between the driving coherent light and the three-level atom.
We also define that bσk

a = bj ikk ajh , ð2Þ

bσk
b = cj ikk bjh , ð3Þ

are lowering atomic operators.
On the other hand, a pump mode photon of frequency,

ω′ = 2ω, directly interacts with a parametric amplifier
(DPA) to produce two signal photons having the same fre-
quency. Furthermore, we consider the case for which the
pump mode emerging from a DPA does not couple the top
and bottom levels. This could be realized by putting on the
right-hand side of the DPA a screen which absorbs the pump
mode. With the pumpmode treated classically, the process of
a single-mode subharmonic generation can be described by
the Hamiltonian [22, 26].

Ĥ2 =
iε
2 a∧2 − a∧†2� �

, ð4Þ

in which ε = 2βλ0 with λ0 is the coupling constant between
the pump mode and nonlinear crystal, and β is proportional
to the amplitude of the coherent light driving pump mode.
The coupling of the top and bottom levels of a three-level
atom by coherent light can be described by the Hamiltonian
[7, 8, 24].

Ĥ3 =
iΩ
2 bσ†k

c − bσk
c

h i
: ð5Þ

Here, Ω = 2μλ1 where μ, considered to be real and
constant, is the amplitude of the driving coherent light, and
λ1 is the coupling constant between the driving coherent light

with the three-level atom and bσk
c = jcikkhaj. Thus, upon com-

bining Eqs. (1), (4), and (5), we have

Ĥ = ig bσ†k
a + bσ†k

b

� �
â − a∧† bσk

a + bσk
b

� �h i
+ iε

2 a∧2 − a∧†2� �
+ iΩ

2 bσ†k
c − bσk

c

h i
:

ð6Þ

In addition, the master equation for a coherently driven
degenerate three-level laser with a one-mode subharmonic
generator coupled to a vacuum reservoir in an open cavity, fol-
lowing the procedure described in Ref. [7, 24], is found to be

d
dt

bρ tð Þ = −i ĤS, bρ tð Þ� �
+ γ

2 2bσk
abρbσ†k

a − bσ†k
a bσk

abρ − bρbσ†k
a bσk

a

h i
+ γ

2 2bσk
bbρbσ†k

b − bσ†k
b bσk

bbρ − bρbσ†k
b bσk

b

h i
,

ð7Þ

where γ, considered to be the same for all the three levels, is the
spontaneous emission decay constant. In view of Eq. (6), Eq.
(7) turns out to be

d
dt

bρ tð Þ = g bσ†k
a âbρ − a∧†bσk

abρ + bσ†k
b âbρ − a∧†bσk

bbρ − bρbσ†k
a â

h
+ bρa∧†bσk

a − bρbσ†k
b â + bρa∧†bσk

b

i
+ γ

2 2bσk
abρbσ†k

a − bσ†k
a bσk

abρ − bρbσ†k
a bσk

a

h i
+ γ

2 2bσk
bbρbσ†k

b − bσ†k
b bσk

bbρ − bρbσ†k
b bσk

b

h i
+ ε

2 a∧2bρ − bρa∧2 + bρa∧†2 − a∧†2bρ� �
+ Ω

2 bσ†k
c bρ − bσk

c bρ + bρbσ†k
c − bρbσk

c

h i
:

ð8Þ

D

P

A

N–atomsε

𝜇
Vacuum
reservoir

ε
ε

a〉k

b〉k

c〉k

k

Figure 1: Schematic representation of a degenerate three-level laser
with a degenerate parametric amplifier (DPA) and coupled to a two-
mode vacuum reservoir. Here, ε, considered to be real and constant,
is proportional to the amplitude of the pump mode that drives the
nonlinear crystal (NLC), and μ is the amplitude of the driving
coherent light that couples the top and bottom levels of the atom.
And also κ is the cavity damping constant, and it is assumed the
same for both transitions. The top, middle, and bottom levels of
the three-level atom are denoted by jaik, jbik, and jcik,
respectively, where as k = 1, 2,⋯N are the number of atoms inside
the cavity. When the atom makes a transition from level jaik →
hbjk and from levels jbik → hcjk two photons with the same
frequencies, ω, are emitted.
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We recall that the laser cavity is coupled to a single-mode
vacuum reservoir via a single-port mirror. In addition, we
carry out our calculation by putting the noise operators asso-
ciated with the vacuum reservoir in normal order. Thus, the
noise operators will not have any effect on the dynamics of
the cavity mode operators [7, 8]. We can therefore drop the
noise operators and write the quantum Langevin equations
for the operator â as

dâ
dt

= −
κ

2 â − i â, Ĥ
� �

, ð9Þ

where κ is the cavity damping constant. Then, in view of Eq.
(6), we see that

dâ
dt

= −
κ

2 â − g bσk
a + bσk

b

� �
− εa∧†: ð10Þ

We see that Eqs. (A.4)-(A.8) are nonlinear differential
equations and hence it is not possible to find exact time-
dependent solutions of these equations. We intend to over-
come this problem by applying the large-time approximation
[7, 8, 24, 25, 27]. Therefore, employing this approximation
scheme, we get from Eq. (10) the approximately valid relation.

â = −
2g
κ

bσk
a + bσk

b

� �
−
2ε
κ
a∧†: ð11Þ

Evidently, this turns out to be exact relation at steady state.
Employing the adjoint of this equation into Eq.(10), one easily
verify that

dâ
dt

= −
1
2

κ2 − 4ε2
κ

� �
â − g bσk

a + bσk
b

� �
−
2εg
κ

bσ†k
a + bσ†k

b

� �
:

ð12Þ

The solution of this equation is

â = −
4εg

κ2 − 4ε2 bσk
a + bσk

b

� �
−

2gκ
κ2 − 4ε2 bσ†k

a + bσ†k
b

� �
: ð13Þ

In the presence ofN three-level atoms, we rewrite Eq. (12)
as

dâ
dt = −

1
2

κ2 − 4ε2
κ

� �
â + λ′ m̂a + m̂bð Þ + λ′′ m̂†

a + m̂†
b

� 	
: ð14Þ

in which λ′ and λ′′ are constants whose values remain to be
fixed. Then, using the definition m̂ = m̂a + m̂b [27], we obtain

dâ
dt

= −
1
2

κ2 − 4ε2
κ

� �
â + λ′m̂ + λ′′m∧†: ð15Þ

Moreover, employing Eq. (13), the commutation relations
of the cavity mode operators are

â, a∧†� �
k
= γcκ

κ2 − 4ε2 κ2 bηkc − bηk
a

h i
+ 4ε2 bηka − bηk

c

h ih i
, ð16Þ

and on summing over all atoms, we have

â, a∧†� �
= γcκ

κ2 − 4ε2 κ2 N̂c − N̂a

� �
+ 4ε2 N̂a − N̂c

� �� �
, ð17Þ

where ½â, a∧†� =∑N
k=1 ½â, a∧†�k. We note that Eq. (17) stands

for the commutators â and a∧† when the cavity mode is inter-
acting with all the N three-level atoms. On the other hand,
using the steady-state solution of Eq. (15), one can easily verify
that

â, a∧†� �
= 4λ′2κ2N

κ2 − 4ε2ð Þ N̂c − N̂a

� �
+ 4λ′′2κ2N

κ2 − 4ε2ð Þ N̂a − N̂c

� �
:

ð18Þ

Upon comparing Eqs. (17) and (18), one can see that

λ′ = ± gffiffiffiffi
N

p , λ′′ = ± 2gε
κ

ffiffiffiffi
N

p : ð19Þ

Hence, in view of these results, the equation of evolution of
the cavity mode operator given by Eq. (15) can be written as

dâ
dt

= −
1
2

κ2 − 4ε2
κ

� �
â + gffiffiffiffi

N
p m̂ + 2gε

κ
ffiffiffiffi
N

p m∧†: ð20Þ

The steady-state solution of Eq. (20) is

â = 2gκffiffiffiffi
N

p
κ2 − 4ε2ð Þ

m̂ + 4gεffiffiffiffi
N

p
κ2 − 4ε2ð Þ

m∧†: ð21Þ

The expectation value of the solution the annihilation
operator for the cavity mode evolves in time according to the
quantum Langevin equation given by Eq. (20) can be
expressed as

â tð Þh i = â 0ð Þh ie−ηt/2 + gffiffiffiffi
N

p e−ηt/2
ðt
0
eηt′/2 m̂ t ′

� �D E
dt ′

+ 2gε
κ

ffiffiffiffi
N

p e−ηt/2
ðt
0
eηt′/2 m∧† t ′

� �D E
dt ′,

ð22Þ

where η = ðκ2 − 4ε2Þ/κ. Thus, applying the large-time
approximation scheme, we find the adjoint solution of Eq.
(A.10) to be

m̂†
b tð Þ� �

= −
ζ+
ν

m̂a tð Þh i: ð23Þ

Now, on substituting Eq. (23) into Eq. (A.9), it is not
difficult to see that

d
dt

m̂a tð Þh i = −
1
2 η0 m̂a tð Þh i, ð24Þ

where η0 = ð2ν2 − ζ−ζ+Þ/ν. With the atoms considered to be
initially in the bottom level, the solution of Eq. (24) is
found to be
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m̂a tð Þh i = m̂b tð Þh i = 0: ð25Þ

In view of these results together with m̂ = m̂a + m̂b, one
can see that

m̂ tð Þh i = 0: ð26Þ

With the help of Eq. (26) and the assumption that the
cavity light is initially in a vacuum state, Eq. (22) turns
out to be

â tð Þh i = 0: ð27Þ

In view of the linear equation described by Eq. (20)
along with (27), we claim that âðtÞ is a Gaussian variable
with zero mean. Finally, the steady-state solutions of the
atomic operators are found to be

m̂ch iss =
2ν ξ +Ωð Þ

4ν2 + 2Γ 2ξ +Ωð Þ + 2Ω + ξð Þζ+


 �
N , ð28Þ

N̂a

� �
ss =

ζ+ ξ +Ωð Þ
4ν2 + 2Γ 2ξ +Ωð Þ + 2Ω + ξð Þζ+


 �
N , ð29Þ

N̂b

� �
ss =

2Γν ξ +Ωð Þ
4ν2 + 2Γ 2ξ +Ωð Þ + 2Ω + ξð Þζ+


 �
N , ð30Þ

N̂c

� �
ss =N −

ζ+ + 2Γνð Þ ξ +Ωð ÞN
4ν2 + 2Γ 2ξ +Ωð Þ + 2Ω + ξð Þζ+

, ð31Þ

where ss stands for steady state and

Γ = ζ+ ν − γð Þ − 4ξν
2ν2 : ð32Þ

3. Quadrature Squeezing

The squeezing properties of the cavity light are described by
two quadrature operators defined by

â+ = a∧† + â, ð33Þ

â− = i a∧† − â
� 	

, ð34Þ
where â+ and â− are Hermitian operators representing the
physical quantities called plus and minus quadrature. With
the aid of Eqs. (33) and (34) along with (21), the two quadra-
ture operators satisfy the commutation relation

â−, â+½ � = 2i γc
k

κ2

κ2 − 4ε2

 �

N̂a − N̂c

� �
: ð35Þ

An interesting application of the commutator algebra is
to derive a relation giving the uncertainties product of two
operators Â and B̂, i.e, ΔAΔB ≥ 1/2jh½Â, B̂�ij. Hence, in view
of this, the uncertainty relation of the two quadrature opera-
tors can be written as

Δa+Δa− ≥
γc
k

κ2

κ2 − 4ε2

 �

N̂a

� �
− N̂c

� ��� ��: ð36Þ

On account of Eqs. (29) and (31), Eq. (36) takes the form

Δa+Δa− ≥
γc
k

κ2

κ2 − 4ε2

 �

N × 1 − ζ+ + ξ + 2Γνð Þ ξ +Ωð Þ
4ν2 + 2Γ 2ξ +Ωð Þ + 2Ω + ξð Þζ+

���� ����:
ð37Þ

It is interesting to consider some special cases. We first
inspect the case in which the nonlinear crystal is removed
from the cavity. Thus, upon setting β = 0 in Eq. (37), we get

Δa+Δa− ≥
γc
κ
N

δ3

δ3 + γc + 2δð ÞΩ2

�����
�����, ð38Þ

where δ = γ + γc.
In addition, we consider the case in which the top and

bottom levels of the atoms do not coupled by the pump
mode. Hence, upon setting Ω = 0 in Eq. (38), we see that

Δa+Δa− ≥
γc
k
N , ð39Þ

which is the minimum uncertainty relation for vacuum state.
Next, we proceed to calculate the quadrature variance of

the cavity light. The variance of the plus and minus quadra-
ture operators of the cavity light are defined by

Δa2± = â2±
� �

− a∧±h i2: ð40Þ

It then follows that

Δa2± = âa∧†� �
+ a∧†â
� �

± a∧2� �
± a∧†2� �

: ð41Þ

Therefore, with the help of Eq. (21), one can readily
establish that

a∧†â
� �

= γc
k

ν − γð Þ2 N̂a

� �
+ N̂b

� �
+ 4ε m̂ch i� �

+ 2ξ
γc

� �2
N̂b

� �
+ N̂c

� �� �" #
,

ð42Þ

âa∧†� �
= γc

k
ν − γð Þ2 N̂b

� �
+ N̂c

� �
+ 4ε m̂ch i� �

+ 2ξ
γc

� �2
N̂a

� �
+ N̂b

� �� �" #
,

ð43Þ

a∧2� �
= γc

k
ν − γð Þ2 + 4ξ2

h i
m̂ch i + 2ξ

γc

� �2
N + N̂b

� �� �" #
: ð44Þ

Furthermore, on account of Eqs. (42)–(44), the quadra-
ture variances takes the form

Δa2± =
γc
k



ν − γð Þ2 N + N̂b

� �
+ 8ε m̂ch i ± 2 m̂ch i� �

+ 2ξ
γc

� �2
N + N̂b

� �� �
1 ± 2ð Þ ± 8ξ2 m̂ch i

� ð45Þ
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It is indicated in Figure 2 that squeezing exhibits in a
different manner from a single cavity radiation, for values
of Ω between 0 and 1, with differing degree of squeezing.
Moreover, it is possible to realize that the degree of
squeezing increases with the spontaneous emission decay
constant, γ. Hence, one can observe that a light produced
by a degenerate three-level laser with a parametric amplifier
can exhibit different degrees of squeezing when, for example,
compared to the light generated by a three-level laser in
which the three-level atoms available in a closed cavity are
pumped to the top level by means of electron bombardment
[24, 25] as well as by coherent light [7, 8].

In Figure 3, we plot the intracavity quadrature variance of
the cavity light vs.Ω for γ = 0:2, γc = 0:4, κ = 0:8, N = 50, and
for different values of the amplitude of the pump mode that

drives the NLC, ε. This figure indicates that the system under
consideration exhibits a single-mode squeezing, and the
degree of squeezing increases with the parameter ε. In this
figure, the presence of parametric amplifier decreases the
degree of squeezing. Furthermore, it is vividly presented in
Figures 2 and 3 that the degree of squeezing is significantly
degraded by the decreasing of spontaneous emission (γ)
and the increasing of the amplitude of the driving light on
the parametric amplifier (ε).

4. The Mean Photon Number

To learn about the brightness of the generated light, it is nec-
essary to study the mean photon number of the cavity
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Figure 2: Plot of Δa2− at steady state for Eq. (45) versus Ω for γc = 0:4, k = 0:8, N = 50, and for different values of γ.
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Figure 3: Plot of Δa2− at steady state for [Eq. (45)] versus Ω for γc = 0:4, k = 0:8, N = 50, and for different values of γ.
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radiation that can be defined as

�n = a∧†â
� �

: ð46Þ

Hence, using Eq. (21) together with Eqs. (29) and (30),
Eq. (46) takes the form

�n = γcN
k

ν − γð Þ2 2Γν + ζ+ + 8ενð Þ ξ +Ωð Þ
4ν2 + 2Γ 2ξ +Ωð Þ + 2Ω + ξð Þζ+


 ��
+ 2ξ

γc

� �2
1 − ζ+ ξ +Ωð Þ

4ν2 + 2Γ 2ξ +Ωð Þ + 2Ω + ξð Þζ+


 ��
:

ð47Þ

Next, we consider the case in which the nonlinear crystal
is removed from the cavity. Thus, upon setting β = 0 in
Eq. (47), we get

�n = γc
k
N

� � Ω2 γc + δð Þ
δ3 + γc + 2δð ÞΩ2

" #
: ð48Þ

This result is the same as the result found by Abebe
[7].

In Figure 4, we plot the mean photon number of a cavity
mode light versus Ω in the absence and presence of the
spontaneous emission, γ. We observe from the plots in figure
that the mean photon number of the cavity light beam is
greater when γ ≠ 0 than when γ = 0 for 0 ≤Ω ≤ 2:3. This
implies that the mean photon number increases when γ
increases. It is easy to see from this figure that the presence
of the spontaneous emission increases the mean photon
number in region where there is strong squeezing. Hence,
this system generates a bright and highly squeezed light.

In Figure 5, we plot the stead-state mean photon number
versus Ω for γc = 0:4, κ = 0:8, N = 50, γ = 0:2, and for differ-
ent values of ε. When we see these plots that the mean photon
number increases as the parametric amplifier increases for
Ω is small. Hence, the presence of parametric amplifier
enhances the brightness of the cavity light.

5. The Q Function

We now consider a two-mode cavity light beams represented
by the operators â and a∧† subject to the commutation
relations

â, a∧†� �
= λ, ð49Þ

where

λ = γc
k

κ2

κ2 − 4ε2

 �

N̂c

� �
− N̂a

� �� � ð50Þ

is a constant c number. Then, theQ function for a cavity light
is expressible as [24]

Q α∗, αð Þ = λ

π2

ð
d2zϕa z∗, zð Þ exp z∗α − zα∗½ �, ð51Þ

in which

ϕa z∗, zð Þ = Tr bρe−z∗a∧ tð Þeza∧
† tð Þ

� �
ð52Þ

is the antinormally ordered characteristic function. Using the
identity
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Figure 4: Plots of the steady-state mean photon number versus Ω for γc = 0:4, κ = 0:8, N = 50, ε = 0:3, and for different values of γ.
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eA∧eB∧ = eA∧+B∧+
1
2 A∧,B∧½ � ð53Þ

along with Eqs. (49), one can put Eq. (52) in the form

ϕa z∗, zð Þ = e−
λ
2z

∗z e za∧† tð Þ−z∗a∧ tð Þ½ �D E
: ð54Þ

Since âðtÞ is a Gaussian variable with zero mean, we can
rewrite Eq. (54) as

ϕa z∗, zð Þ = exp −
z∗z
2 λ + a∧† tð Þâ tð Þ� �

+ â tð Þa∧† tð Þ� �� ��
+ z2

2 a∧†2 tð Þ� �
+ z∗2

2 a∧2 tð Þ� ��
:

ð55Þ

On account of Eqs. (42)-(44), and (50), we see that

ϕa z∗, zð Þ = exp −az∗z + b z∗2 + z2
� 	
2


 �
, ð56Þ

where

a = γc
k

ν − γ

γc

� �
N̂c

� �
− N̂a

� �� �
+ 2ξ ν − γð Þ

γ2c


 �
m̂ch i

�
+ ν − γð Þ2 + 2 ζ+ −Ωð Þ

γ2c

" #
N + N̂b

� �� ��
,

ð57Þ

b = γc
k

2 ν − γð Þ ζ+ −Ωð Þ
γ2c


 �
N + N̂b

� �� ��
+ ν − γð Þ2 + 2 ζ+ −Ωð Þ

γ2c

" #
m̂ch i

�
:

ð58Þ

Now, by substituting Eq. (56) into Eq. (51), we have

Q α∗, αð Þ = λ

π2

ð
d2z exp −az∗z + z∗α − zα∗ + b

z∗2

2 + z2

2


 �

:

ð59Þ

Carrying out the integration using the relation [24].

ð
d2z
π

e−az
∗z+bz+cz∗+Az2+Bz∗2

= 1
a2 − 4AB


 �2
× exp abc + Ac2 + Bb2

a2 − 4AB

" #
, a > 0,

ð60Þ

one can easily verify that

Q α∗, α, tð Þ = χ

π
exp −pα∗α + q

α∗2

2 + α2

2

� �
 �
, ð61Þ

where χ = λ/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
, p = a/ða2 − b2Þ, and q = b/ða2 − b2Þ.
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Figure 5: Plots of the steady-state mean photon number versus Ω, for γc = 0:4, κ = 0:8, N = 50, γ = 0:2, and for different values of ε.
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6. The Photon Number Distribution

The photon number distribution for a single-mode light
defined by

P n, tð Þ = n ∣ bρ a∧†, â
� 	

∣ n
� � ð62Þ

is expressible in terms of the Q function as [17, 24, 26].

P n, tð Þ = π

n!
∂2n

∂α∗n∂αn
Q α∗, α, tð Þ exp α∗α½ �½ �α∗=α=0: ð63Þ

On account of Eq. (61), we see that

P n, tð Þ = λ

n!
p2 − q2
� 	1/2 ∂2n

∂α∗n∂αn
× exp

: 1 − pð Þα∗α + q
α∗2

2 + α2

2

� �
 ������
α∗=α=0

:

ð64Þ

Moreover, on expanding the exponential in power series

e 1−pð Þα∗α = 〠
∞

k

1 − pð Þk
k!

α∗kαk, ð65Þ

e
qα∗2
2 = 〠

∞

l

ql

2l l!
α∗2l, ð66Þ

e
q∗α2
2 = 〠

∞

m

q∗m

2mm!
α2m, ð67Þ

expression (64) can be put in the form

P n, tð Þ = λ

n!
p2 − q2
� 	1/2 〠

k,l,m

1 − pð Þk
k!

q∗l

l!
qm

m!

∂n

∂αn
αk+2l × ∂n

∂α∗n
α∗k+2m

�����
α∗=α=0

:

ð68Þ

Upon carrying out the differentiation with the help of the
relation

∂m

∂xn
= n!

n −mð Þ! δn,m, ð69Þ

we get

P n, tð Þ = λ

n!
p2 − q2
� 	1/2 〠

k,l,m

1 − pð Þk
k!

q∗l

l!
qm

m!

× k + 2lð Þ!
k + 2l − nð Þ!

k + 2mð Þ!
k + 2m − nð Þ! × δk+2l,nδk+2m,n:

ð70Þ

Now, applying the property of the Kronecker delta,
l =m = ðn − kÞ/2, the photon number distribution for the
signal mode can be written as

P n, tð Þ = λ p2 − q2
� 	1/2 〠n

k=0
n!

1 − pð Þkq∗ n−k/2ð Þq n−k/2ð Þ

k!ð Þ2 n − k/2ð Þ!½ �2 , ð71Þ

where ½n� = n/2 for even n and ½n� = ðn − 1Þ/2 for odd n [26].
From this result, we note that there is a finite probability of
finding odd number of signal photons. This is due to the fact
that, although the signal photons are generated in pairs, there
is a possibility for an odd number of signal photons to leave
the cavity via the port mirror. This must be then the reason
for the possibility to observe an odd number of signal pho-
tons inside the cavity.

7. Conclusion

In this paper, we have studied the squeezing and statistical
properties of the light produced by the coherently driven
degenerate three-level laser with an open cavity and coupled
to a two-mode vacuum reservoir via a single-port mirror. We
have carried out our analysis by putting the vacuum noise
operators in normal order and applying the large-time
approximation scheme. Applying the solutions of the equa-
tions of evolution for the expectation values of the atomic
operators and the quantum Langevin equations for the cavity
mode operators, we have determined the mean photon num-
ber and the quadrature squeezing.

We have found that the light generated by the three-level
laser is in a squeezed state, and the squeezing occurs in the
minus quadrature. We have seen that the presence of sponta-
neous emission increases the degree of squeezing of the cavity
light. On the other hand, the brightness of the cavity light
enhanced in the presence of both the spontaneous emission
and the parametric amplifier. The maximum mean photon
number occurs for both cases at Ω near to zero. Finally, we
have calculated with the aid of the Q function, the photon
number distribution for the cavity light beams. Therefore,
there is a finite probability of finding odd number of signal
photons. This is due to the fact that, although the signal pho-
tons are generated in pairs, there is a possibility for an odd
number of photons to leave the cavity through the port
mirror.

Appendix

A.1. Equations of Evolution of the
Atomic Operators

Here, we seek to obtain the equations of evolution of the
expectation values of the atomic operators by applying the
master equation and the large-time approximation scheme.
To this end, making use of the master equation described
by Eq. (8) for any operator Â and the fact that

d
dt

Â
� �

= Tr
dbρ tð Þ
dt

Â
� �

, ðA:1Þ
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it is not difficult to verify that

d
dt

bσk
a

D E
= gTr bσ†k

a âbρbσk
a − a∧†bσk

abρbσk
a + bσ†k

b âbρbσk
a

h
− a∧†bσk

bbρbσk
a − bρbσ†k

a âbσk
a + bρa∧†bσk

abσk
a

− bρbσ†k
b âbσk

a + bρa∧†bσk
bbσk

a

i
+ γ

2Tr 2bσk
abρbσ†k

a bσk
a − bσ†k

a bσk
abρbσk

a − bρbσ†k
a bσk

abσk
a

h i
+ γ

2Tr 2bσk
bbρbσ†k

b bσk
a − bσ†k

b bσk
bbρbσk

a − bρbσ†k
b bσk

bbσk
a

h i
+ ε

2Tr a∧2bρbσk
a − bρa∧2bσk

a + bρa∧†2bσk
a − a∧†2bρbσk

a

h i
+ Ω

2 Tr bσ†k
c bρbσk

a − bσk
c bρbσk

a + bρbσ†k
c bσk

a − bρbσk
c bσk

a

h i
:

ðA:2Þ

Now, applying the cyclic property of the trace operation
on the above equation results in

gTr bρbσk
abσ†k

a â
� �

= g bηk
bâ

D E
: ðA:3Þ

Following the same procedure on the remaining terms,
one can readily establish that

d
dt

bσk
a

D E
= g bηk

bâ
D E

− bηkaâD E
+ a∧†bσk

c

D E� �
+ Ω

2 bσ†k
b

D E
− γ bσk

a

D E
,

ðA:4Þ

d
dt

bσk
b

D E
= g bηkc âD E

− a∧†bσk
c

D E
− bηk

bâ
D E� �

−
Ω

2 bσ†k
a

D E
−
γ

2 bσk
a

D E
,

ðA:5Þ

d
dt

bσk
c

D E
= g bσk

bâ
D E

− bσk
aâ

D E� �
+ Ω

2 bηk
c

D E
− bηkaD Eh i

−
γ

2 bσk
c

D E
,

ðA:6Þ
d
dt

bηk
a

D E
= g bσ†k

a â
D E

+ a∧†bσk
a

D E� �
+ Ω

2 bσk
c

D E
+ bσ†k

c

D Eh i
− γ bηk

a

D E
,

ðA:7Þ
d
dt

bηk
b

D E
= g bσ†

bâ
D E

− bσ†k
a â

D E
− a∧†bσk

a

D E
+ a∧†bσk

b

D E� �
− γ bηk

b

D E
,

ðA:8Þ

where bηka = jaikkhaj, bηkb = jbikkhbj, and bηk
c = jcikkhcj are the

probabilities of the atoms on the top, middle, and bottom
levels, respectively.

Now, introducing Eq. (19) into Eqs. (A.4)-(A.8) and sum
over the N three-level atoms, we get

d
dt

m̂ah i = −ν m̂ah i − 1
2 ζ− m̂†

b

� �
, ðA:9Þ

d
dt

m̂bh i = −
ν

2 m̂bh i − 1
2 ζ+ m̂†

a

� �
, ðA:10Þ

d
dt

m̂ch i = −
ν

2 m̂ch i + ξ N̂c

� �
− N̂b

� �� �
+ Ω

2 N̂c

� �
− N̂a

� �� �
,

ðA:11Þ

d
dt

N̂a

� �
= −ν N̂a

� �
+ 1
2 ζ+ m̂ch i + m̂†

c

� �� �
, ðA:12Þ

d
dt

N̂b

� �
= −ν N̂b

� �
− ξ m̂ch i + m̂†

c

� �� �
+ ν − γ½ � N̂a

� �
,

ðA:13Þ
where γc = 4g2/κ is the stimulated emission decay constant,
whereas

ν = γ + γcκ
2

κ2 − 4ε2 ,
ðA:14Þ

ζ± =
2γcεκ
κ2 − 4ε2 ±Ω, ðA:15Þ

ξ = γcεκ

κ2 − 4ε2 : ðA:16Þ

For N number of atoms, we see that m̂j =∑N
k=1 bσk

j and

N̂ j =∑N
k=1 bηkj , (where j = a, b, c). Hence, the operators N̂a,

N̂b, and N̂c represent the number of atoms in the top, middle,
and bottom levels, respectively. In addition, employing the
completeness relation

bηk
a + bηk

b + bηk
c = Î, ðA:17Þ

we easily arrive at

N̂a

� �
+ N̂b

� �
+ N̂c

� �
=N: ðA:18Þ

Furthermore, using the definition bσk
a = jbikkhaj and set-

ting for any k, bσk
a = jbihaj , we have m̂a =Njbihaj. Following

the same procedure, one can also easily establish that m̂b =
Njcihbj, m̂c =Njcihaj, N̂a =Njaihaj, N̂b =Njbihbj, and N̂c
=Njcihc. Using the definition m̂ = m̂a + m̂b, [27] it can be
readily established that

m∧†m̂ =N N̂a + N̂b

� 	
,

m̂m∧† =N N̂b + N̂c

� 	
,

m∧2 =Nm̂c:

8>><>>: ðA:19Þ
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With the help of Maple, the precise traveling wave solutions of three fractal-order model equations related to water waves, including
hyperbolic solutions, trigonometric solutions, and rational solutions, are obtained by using function expansion method. An isolated
wave solution is selected from the solution of each nonlinear dispersive wave model equation, and the influence of fractional order
change on these isolated wave solutions is discussed. The results show that the fractional derivatives can modulate the waveform,
local periodicity, and structure of the isolated solutions of the three model equations. We also point out the construction rules of the
auxiliary equations of the extended (G′/G)-expansion method. In the “The Explanation and Discussion” section, a more
generalized auxiliary equation is used to further emphasize the rules, which has certain reference value for the construction of
the new auxiliary equations. The solutions of fractional-order nonlinear partial differential equations can be enriched by
selecting other solvable equations as auxiliary equations.

1. Introduction

Because of many phenomena, integer-order differential
equations cannot be well described, which makes fractional
nonlinear differential equations have research significance.
As an effective mathematical modeling tool, it is widely used
in the mathematical modeling of nonlinear phenomena in
biology, physics, signal processing, control theory, system
recognition, and other scientific fields [1–4]. In order to
better understand the mechanism behind the phenomena
described by nonlinear fractional partial differential equa-
tions, it is necessary to obtain the exact solution, which also
provides a reference for the accuracy and stability of the
numerical solution. With the rapid development of computer

algebraic system-based nonlinear sciences like Mathematica
or Maple, divers’ effective methods have been pulled out to
acquire precise solutions to nonlinear fractional-order partial
differential equations, such as the fractional first integral
method [5, 6], the fractional simplest equation method
[7, 8], the improved fractional subequation method [9], the
Kudryashov method [10], the fractional subequation method
[11, 12], the generalised Kudryashov method [13], the frac-
tional exp-function method [14–19], the sech-tanh function
expansion method [20, 21], the fractional (G′/G)-expansion
method [22–29], the generalized Sinh-Gorden expansion
method [30], the fractional functional variable method [31],
the rational (G′/G)-expansion method [32], the modified
Khater method [33–36], and the fractional modified trial
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equation method [37, 38]. Many of these methods are
constructed by fractional complex transform [39, 40] and
use of the solutions of some solvable differential equations.
However, there is no one way to solve all kinds of nonlinear
problems, and for the same nonlinear differential equation,
different methods will give you different forms of solutions.
There are many articles about solving different equations by
different methods, but the effect of fractional order on the
solution is rarely discussed.

The first model equation we want to solve is the
fractional-order Boussinesq equation in space and time,
which is suitable for studying the propagation of water in
heterogeneous porous media [41].

D2α
t u x, tð Þ + AD2β

x u x, tð Þ½ �2 + BD2β
x u x, tð Þ + ED4β

x u x, tð Þ = 0,
 0 < α, β ≤ 1, t > 0,

ð1Þ

for the case of β = α [42]:

D2α
t u x, tð Þ + AD2α

x u x, tð Þ½ �2 + BD2α
x u x, tð Þ + ED4α

x u x, tð Þ = 0:
ð2Þ

where uðx, tÞ represents displacement. A, B, and E are con-
stant coefficients. α and β are fractional derivatives. When
α = β = 1, equation (1) curtails to the Boussinesq equation
of the form

utt + A u2
� �

xx
+ Buxx + Euxxxx = 0: ð3Þ

Equation (3) was first derived by Boussinesq when he
studied the propagation of nonviscous shallow water waves
[43–45]. Darvishi et al. obtained solitary wave solutions of
some equations similar to Boussinesq in literature [46]. Com-
bined with fractional complex transformation, we obtain
multiple traveling wave solutions of equation (2) using
extended (G′/G)-expansion method and show the effect of
fractional order parameters on the waveform of an isolated
wave solution of these solutions.

The second model equation we solved was a diffusion
model describing shallow water waves (the time fractional-
order Boussinesq-Burgers equation) [47].

Dα
t u x, tð Þ − 1

2 vx x, tð Þ + 2ux x, tð Þ = 0,

Dα
t v x, tð Þ − 1

2 uxxx x, tð Þ + 2 uvð Þx x, tð Þ = 0,

 0 < α ≤ 1:

ð4Þ

There are several ways to solve this equation. For exam-
ple, Javeed et al. solved it by the first integral method [47],
and Kumar et al. solved it by the residual power series
method [48].

Combined with fractional complex transformation, we
obtain multiple traveling wave solutions of equation (4) using
(G′/G)-expansion method and show the effect of fractional
order parameters on the waveform of an isolated wave solu-
tion of these solutions.

Finally, the third model equation that we want to solve
can simulate the propagation of surface water waves with a
depth far less than the horizontal scale, which is the fractional
coupled Boussinesq equations in space and time [49].

Dα
t u x, tð Þ +Dβ

x v x, tð Þ = 0,

Dα
t v x, tð Þ + ADβ

x u2 x, tð Þ� �
− ED3β

xxxu x, tð Þ = 0,
ð5Þ

 0 < α, β ≤ 1:
There are several ways to solve this system of equations.

For example, Yaslan and Girgin solved it by the first integral
method [49], Hosseini and Ansari obtained its solution by
the modified Kudryashov method [50], and Hoseini et al.
solved it by the exp ð−ϕ ðεÞÞ-expansion method [51]. Com-
bined with fractional complex transformation, we obtain
multiple traveling wave solutions of equation (5) using
extended (G′/G)-expansion method and show the effect of
fractional order parameters on the waveform of an isolated
wave solution of these solutions.

Given a function f : ½0,∞�⟶ R. Then, the conform-
able fractional derivative of f of order 0 < α < 1 is defined
as [52]

Dα
x fð Þ xð Þ = lim

ε→0

f x + εx1−α
� �

− f xð Þ
ε

: ð6Þ

The derivative has the following properties [53].

Dα
xC = 0,

Dα
xx

γ = γxγ−α, for all γ ∈ R,

u xð Þv xð Þð Þ αð Þ = u αð Þ xð Þv xð Þ + u xð Þv αð Þ xð Þ,
f u xð Þ½ �ð Þ αð Þ = x1−α f u′ uð Þu′ xð Þ:

8>>>>><
>>>>>:

ð7Þ

2. The (G′/G)-Expansion Method
Combined with Fractional Complex
Transformation and Its Extension Method

Consider nonlinear fractional partial differential equations

P u,Dα
t u,Dβ

xu,Dα
t D

α
t u,Dβ

xD
α
t u,Dβ

xD
β
xu; ;⋯

� �
= 0, 0 < α, β ≤ 1,

ð8Þ

where u is the unsolved function of the variables x and t. P is
a polynomial function, which consists of u and its fractional
derivatives.
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The fractional ðG′/GÞ-expansion method and extended
fractional ðG′/GÞ-expansion method are used to solve equa-
tion (8); the steps are listed as follows:

Step 1. Under the fractional complex transform,

u x, tð Þ =U ξð Þ, ξ = xβ

β
−
ctα

α
, ð9Þ

where c is a constant, and it cannot be zero. When α = β = 1,
equation (9) is the usual travelling wave variation.

In the complex fraction transformation, we get

Dα
t ⋅ð Þ = −c

d ⋅ð Þ
dξ

,

Dβ
x ⋅ð Þ = d ⋅ð Þ

dξ
,

D2α
xx ⋅ð Þ = c2

d2 ⋅ð Þ
dξ2

,

Dβ
xD

α
x ⋅ð Þ = −c

d2 ⋅ð Þ
dξ2

,

D2β
xx ⋅ð Þ = d2 ⋅ð Þ

dξ2
⋯:

ð10Þ

Substituting (9) and (10) into (8), a nonlinear ordinary
differential equation is formulated

P U ,−cU ′,U ′, c2U″,−cU″,U″,⋯
� �

= 0, ð11Þ

where }U ′} = dU/dξ. If the form of equation (11) allows, we
can integrate first and set the integral constant to zero, which
will help simplify the following calculation.

Step 2. For the fractional (G′/G)-expansion method, we
assume that equation (11) has a quasisolution of equation
(11) of the following form

U ξð Þ = 〠
m

i=0
ai

G′
G

 !i

: ð12Þ

For the extended fractional (G′/G)-expansion method,
we assume that equation (11) has a quasisolution of the
following form

U ξð Þ = 〠
m

i=0
ai

G′
G

 !i

+ 〠
m

i=1
bi

G

G′

� �i

, ð13Þ

where aiði = 0, 1,⋯,mÞ and biði = 1, 2,⋯,mÞ are undeter-
mined constants. In combination with the form of equation
(12) or (13), the highest derivative term and the nonlinear
term in equation (11) are balanced by the homogeneous
equilibrium principle, and the value of the positive inte-
ger in equation (12) or (13) can be obtained. Let us say
that the degree of UðξÞ is DðUðξÞÞ =m, and then, we
can easily derive the degrees of other forms of terms
as follows:

D
dqU
dξq

� �
=m + q,D Up dqU

dξq

� �s� 	
= pm + s m + qð Þ: ð14Þ

Thus, the value of m in equation (12) or equation
(13) can be determined. The G =GðξÞ appearing in
equation (12) or (13) is the solution of the second-
order differential equation below.

G″ + λG′ + μG = 0, ð15Þ

where λ and μ are undetermined constants. In addition,
the derivative of (G′/G) is

d
ξ

G′
G

 !
=
G″G − G′

� �2
G2 = G″G

G2 −
G′
G

 !2

: ð16Þ

Equation (16) reveals that we can set the ordinary
differential equation (15) to the following form or some
other ordinary differential equation can make equation
(11) in polynomial form of (G′/G) [54].

G″G = λ G′
� �2

+ μGG′ + ωG2, ð17Þ

where λ, μ, and ω are undetermined constants.

Step 3. Substitute equation (12) or (13) into equation (11),
use ordinary differential equation (15) concerning (G′/G)
to combine the same power terms of (G′/G), then set the
coefficients of all powers of (G′/G) to zero, we get a nonlinear
algebraic system of equations concerning the unknowns
ai, bi, λ, μ, and c.

Step 4.We can use Maple to solve the equations obtained
in the third step. By substituting the obtained results
into equation (12) or (13) and using the general solu-
tions of equation (15) in different situations, multiple
exact solutions of different types of equation (8) can
be obtained.
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The solutions of equation (15) under different conditions
are shown below.

where C1 andC2 are free constants. When C1 and C2 satisfy different conditions, these results
can be further written in simpler forms.

The solutions of equation (17) under different conditions
are shown below.

G′
G

 !
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
2

C1 sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
/2

� �
ξ

� �
+ C2 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
/2

� �
ξ

� �
C1 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
/2

� �
ξ

� �
+ C2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
/2

� �
ξ

� �
0
@

1
A −

λ

2 , λ2 − 4μ > 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ − λ2

p
2

−C1 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ − λ2

p
/2

� �
ξ

� �
+ C2 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ − λ2

p
/2

� �
ξ

� �
C1 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ − λ2

p
/2

� �
ξ

� �
+ C2 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ − λ2

p
/2

� �
ξ

� �
0
@

1
A −

λ

2 , λ2 − 4μ < 0,

C2
C1 + C2ξ

−
λ

2 , λ2 − 4μ = 0,

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð18Þ

G′
G

 !
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
2 tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
2 ξ + ξ0

 !
−
λ

2 , λ2 − 4μ > 0, tanh ξ0ð Þ = C2
C1

, C2
C1

����
���� < 1,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
2 coth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
2 ξ + ξ0

 !
−
λ

2 , λ2 − 4μ > 0, coth ξ0ð Þ = C2
C1

, C2
C1

����
���� > 1,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ − λ2

p
2 cot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ − λ2

p
2 ξ + ξ0

 !
−
λ

2 , λ2 − 4μ < 0, cot ξ0ð Þ = C2
C1

,

C2
C1 + C2ξ

−
λ

2 , λ2 − 4μ = 0:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð19Þ

G′
G

 !
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 + 4ω − 4λω

p
2 1 − λð Þ

C1 sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 + 4ω − 4λω

p
/2

� �
ξ

� �
+ C2 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 + 4ω − 4λω

p
/2

� �
ξ

� �
C1 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 + 4ω − 4λω

p
/2

� �
ξ

� �
+ C2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 + 4ω − 4λω

p
/2

� �
ξ

� �
0
@

1
A + μ

2 1 − λð Þ μ2 − 4 λ − 1ð Þω > 0, λ ≠ 1
� �

,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λω − 4ω − μ2

p
2 1 − λð Þ

−C1 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λω − 4ω − μ2

p
/2

� �
ξ

� �
+ C2 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λω − 4ω − μ2

p
/2

� �
ξ

� �
C1 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λω − 4ω − μ2

p
/2

� �
ξ

� �
+ C2 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λω − 4ω − μ2

p
/2

� �
ξ

� �
0
@

1
A + μ

2 1 − λð Þ μ2 − 4 λ − 1ð Þω < 0, λ ≠ 1
� �

,

1
1 − λ

C1
C1ξ + C2

+ μ

2

� �
μ2 − 4 λ − 1ð Þω = 0, λ ≠ 1
� �

:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð20Þ
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3. Applications of Fractional (G′/G)-Expansion
Method and Its Extended Methods

3.1. Precise Solutions of the Fractional Boussinesq Equation
in Space and Time with Generalised Fractional (G′/G)-
Expansion Method. Equation (2) is written as follows.

D2α
t u x, tð Þ + AD2α

x u x, tð Þ½ �2 + BD2α
x u x, tð Þ + ED4α

x u x, tð Þ = 0:
ð21Þ

Under the fractional complex transform,

u x, tð Þ =U ξð Þ, ξ = xα

α
−
ctα

α
: ð22Þ

Substituting (22) into (21), we convert our problem into a
nonlinear ordinary differential equation.

c2U″ + A U2� �″ + BU″ + EU″″ = 0, ð23Þ

where }U ′} = dU/dξ. By integrating twice with respect to
travelling wave variable factor ξ and setting the constant
from the integral to 0, you get the following equation.

c2 + B
� �

U + AU2 + EU″ = 0: ð24Þ

Applying the homogeneous equilibrium principle to
equation (24), we get 2 +m = 2m⟹m = 2. By taking m to
be 2 in equation (13), we get the form of the proposed solu-
tion of equation (24) as follows.

U ξð Þ = a0 + a1
G′
G

+ a2
G′
G

 !2

+ b1
G′
G

 !−1

+ b2
G′
G

 !−2

:

ð25Þ

By using equation (15), from equation (25), we have

U2 ξð Þ = b2
2 G′

G

 !−4

+ 2b1
G′
G

 !−3

b2 + 2a0b2 + b1
2� � G′

G

 !−2

+ 2a0b1 + 2a1b2ð Þ G′
G

 !−1

+ a0
2 + 2a1b1 + 2a2b2

+ 2a0a1 + 2a2b1ð Þ G′
G

 !1

+ 2a0a2 + a1
2� � G′

G

 !2

+ 2a1a2
G′
G

 !3

+ a2
2 G′

G

 !4

,

ð26Þ

U″ ξð Þ = 6b2μ2
G′
G

 !−4

+ 2b1μ2 + 10b2λμ
� � G′

G

 !−3

+ 3b1λμ + 4b2λ2 + 8b2μ
� � G′

G

 !−2

+ b1λ
2 + 2b1μ + 6b2λ

� � G′
G

 !−1

+ 2a2μ2 + a1λμ + b1λ + 2b2

+ 6a2λμ + a1λ
2 + 2a1μ

� � G′
G

 !1

+ 4a2λ2 + 8a2μ + 3a1λ
� � G′

G

 !2

+ 10a2λ + 2a1ð Þ G′
G

 !3

+ 6a2
G′
G

 !4

:

ð27Þ
Equations (25), (26), and (27) are substituted into equa-

tion (24), and then, we can rearrange and combine equation
(24) with respect to (G′/G) and set the coefficients of all pow-
ers of (G′/G) to be zero. The resulting nonlinear algebraic
system with respect to the unknowns a0, a1, a2, b1, b2, and c
is as follows.

G′
G

 !−4

: 6Eμ2b2 + Ab22 = 0,

G′
G

 !−3

: 2Eμ2b1 + 10Eμλb2 + 2Ab1b2 = 0,

G′
G

 !−2

: 3Eμλb1 + 4Eλ2b2 + 2Aa0b2 + Ab21

+ 8Eμb2 + c2b2 + Bb2 = 0,

G′
G

 !−1

: 2Aa1b2 + c2b1 + 2Aa0b1 + 6Eb2λ

+ Bb1 + Eb1λ
2 + 2Eb1μ = 0,

G

G′

� �0
: 2Eb2 + c2a0 + Ba0 + 2Ea2μ2 + Ea1λμ

+ 2Aa2b2 + 2Aa1b1 + Aa20 + Eb1λ = 0,

G′
G

: 2Ea1μ + 2Aa2b1 + c2a1 + Ba1 + 6Ea2λμ

+ Ea1λ
2 + 2Aa0a1 = 0,
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G′
G

 !2

: 4Eλ2a2 + 2Aa0a2 + Aa21 + 8Eμa2 + 3Eλa1

+ c2a2 + Ba2 = 0,

G′
G

 !3

: 2Aa1a2 + 10Eλa2 + 2Ea1 = 0,

G′
G

 !4

: Aa22 + 6Ea2 = 0: ð28Þ

The nonlinear algebraic equations were solved by using
Maple symbol computing system, and the following solu-
tions were obtained.

Case 1.

c = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Eλ2 + 4Eμ − B

q
, a0 = −

6Eμ
A

,
�

a1 = −
6Eλ
A

, a2 = −
6E
A

, b1 = 0, b2 = 0


:

ð29Þ

Case 2.

c = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eλ2 − 4Eμ − B

q
, a0 = −

E λ2 + 2μ
� �

A
,

(

a1 = −
6Eλ
A

, a2 = −
6E
A

, b1 = 0, b2 = 0


:

ð30Þ

Substituting the values from (29) or (30) and equation
(18) into (25), the exact solutions of equation (21) in different
forms can be obtained under different parameter constraints.

Case 1. When λ2‐4μ > 0, the exact solution of equation (21)
in hyperbolic form is as follows.

U1
1,2 ξð Þ = −

6E
A

μ + λ −
λ

2 + η1
C1 sinh η1ξð Þ + C2 cosh η1ξð Þ
C1 cosh η1ξð Þ + C2 sinh η1ξð Þ
� �� 	�

+ −
λ

2 + η1
C1 sinh η1ξð Þ + C2 cosh η1ξð Þ
C1 cosh η1ξð Þ + C2 sinh η1ξð Þ
� �� 	2#

,

ð31Þ

where ξ = ðxα/αÞ ∓ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Eλ2 + 4Eμ − B

p
tα/αÞ, and η1 = 1/2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − 4μ
p

. C1 andC2 are constants that can take any number.
If C1 ≠ 0, andC2 = 0, then U1

1,2ðξÞ become

u11,2 x, tð Þ =U1
1,2 ξð Þ

= −
6E
A

μ + λ −
λ

2 + η1 tanh η1ξð Þ
� 	�

+ −
λ

2 + η1 tanh η1ξð Þ
� 	2#

:

ð32Þ

Again, using (19), the general solutions for U1
1,2ðξÞ in

simplified forms are written as

_U
1
1,2 ξð Þ = −

6E
A

μ + λ −
λ

2 + η1 tanh η1ξ + ξ0ð Þ
� 	�

+ −
λ

2 + η1 tanh η1ξ + ξ0ð Þ
� 	2#

,
ð33Þ

when jC2/C1j < 1, and ξ0 = tanh−1ðC2/C1Þ.

€U
1
1,2 ξð Þ = −

6E
A

μ + λ −
λ

2 + η1 coth η1ξ + ξ0ð Þ
� 	�

+ −
λ

2 + η1 coth η1ξ + ξ0ð Þ
� 	2#

,
ð34Þ

when jC2/C1j > 1, and ξ0 = coth−1ðC2/C1Þ.
When λ2‐4μ < 0, the exact solution of equation (21) in

trigonometric form is as follows.

U1
3,4 ξð Þ = −

6E
A

μ + λ −
λ

2 + η2
−C1 sin η2ξð Þ + C2 cos η2ξð Þ
C1 cos η2ξð Þ + C2 sin η2ξð Þ

� �� 	�

+ −
λ

2 + η2
−C1 sin η2ξð Þ + C2 cos η2ξð Þ
C1 cos η2ξð Þ + C2 sin η2ξð Þ

� �� 	2#
,

ð35Þ

where ξ = ðxα/αÞ ∓ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Eλ2 + 4Eμ − B

p
tα/αÞ, and η2 = 1/2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4μ − λ2
p

. C1 andC2 are constants that can take any number.
In particular, if C1 ≠ 0, andC2 = 0, then U1

3,4ðξÞ become

u13,4 x, tð Þ =U1
3,4 ξð Þ

= −
6E
A

μ − λ
λ

2 + η2 tan η2ξð Þ
� 	�

+ λ

2 + η2 tan η2ξð Þ
� 	2#

:

ð36Þ

When λ2‐4μ = 0, the exact solution of equation (21) in
rational form is as follows.

U1
5,6 ξð Þ = −

6E
A

μ + λ −
λ

2 + C2
C1 + C2ξ

� 	
+ −

λ

2 + C2
C1 + C2ξ

� 	2" #
,

ð37Þ

where ξ = ðxα/αÞ ∓ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Eλ2 + 4Eμ − B

p
tα/αÞ. C1 andC2 are

constants that can take any number.
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Case 2. When λ2‐4μ > 0, the exact solution of equation (21)
in hyperbolic form is as follows.

U2
1,2 ξð Þ = −

6E
A

λ2 + 2μ
� �

6

"

+ λ −
λ

2 + η1
C1 sinh η1ξð Þ + C2 cosh η1ξð Þ
C1 cosh η1ξð Þ + C2 sinh η1ξð Þ
� �� 	

+ −
λ

2 + η1
C1 sinh η1ξð Þ + C2 cosh η1ξð Þ
C1 cosh η1ξð Þ + C2 sinh η1ξð Þ
� �� 	2#

,

ð38Þ

where ξ = ðxα/αÞ ∓ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eλ2 − 4Eμ − B

p
tα/αÞ, and η1 = 1/2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − 4μ
p

. C1 andC2 are constants that can take any number.
If C1 ≠ 0, andC2 = 0, then U2

1,2ðξÞ become

u21,2 x, tð Þ =U2
1,2 ξð Þ

= −
6E
A

λ2 + 2μ
� �

6 + λ −
λ

2 + η1 tanh η1ξð Þ
� 	"

+ −
λ

2 + η1 tanh η1ξð Þ
� 	2#

:

ð39Þ

Again, using (19), the general solutions for U2
1,2ðξÞ in

simplified forms are written as

_U
2
1,2 ξð Þ = −

6E
A

λ2 + 2μ
� �

6 + λ −
λ

2 + η1 tanh η1ξ + ξ0ð Þ
� 	"

+ −
λ

2 + η1 tanh η1ξ + ξ0ð Þ
� 	2#

,

ð40Þ

when jC2/C1j < 1, and ξ0 = tanh−1ðC2/C1Þ.

€U
2
1,2 ξð Þ = −

6E
A

λ2 + 2μ
� �

6 + λ −
λ

2 + η1 coth η1ξ + ξ0ð Þ
� 	"

+ −
λ

2 + η1 coth η1ξ + ξ0ð Þ
� 	2#

,

ð41Þ

when jC2/C1j > 1, and ξ0 = coth−1ðC2/C1Þ.
When λ2‐4μ < 0, the exact solution of equation (21) in

trigonometric form is as follows.

U2
3,4 ξð Þ = −

6E
A

λ2 + 2μ
� �

6

"

+ λ −
λ

2 + η2
−C1 sin η2ξð Þ + C2 cos η2ξð Þ
C1 cos η2ξð Þ + C2 sin η2ξð Þ

� �� 	

+ −
λ

2 + η2
−C1 sin η2ξð Þ + C2 cos η2ξð Þ
C1 cos η2ξð Þ + C2 sin η2ξð Þ

� �� 	2#
,

ð42Þ

where ξ = ðxα/αÞ ∓ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eλ2 − 4Eμ − B

p
tα/αÞ, and η2 = 1/2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4μ − λ2
p

. C1 andC2 are constants that can take any number.
In particular, if C1 ≠ 0, andC2 = 0, then U2

3,4ðξÞ become

u23,4 x, tð Þ =U2
3,4 ξð Þ

= −
6E
A

λ2 + 2μ
� �

6 − λ
λ

2 + η2 tan η2ξð Þ
� 	"

+ λ

2 + η2 tan η2ξð Þ
� 	2#

:

ð43Þ

When λ2‐4μ = 0, the exact solution of equation (21) in
rational form is as follows.

U2
5,6 ξð Þ = −

6E
A

λ2 + 2μ
� �

6 + λ −
λ

2 + C2
C1 + C2ξ

� 	"

+ −
λ

2 + C2
C1 + C2ξ

� 	2#
,

ð44Þ

where ξ = ðxα/αÞ ∓ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eλ2 − 4Eμ − B

p
tα/αÞ. C1 andC2 are

constants that can take any number.

Similarly, if the auxiliary equation (17) and its solution
(20) are used in the process of solving, we should also be able
to get exact solutions, which we can prove later.

3.2. Precise Solutions of the Fractional Coupled Boussinesq-
Burger Equation with Fractional (G′/G)-Expansion Method.
Equation (4) is written as follows.

Dα
t u x, tð Þ − 1

2 vx x, tð Þ + 2ux x, tð Þ = 0, ð45aÞ

Dα
t v x, tð Þ − 1

2 uxxx x, tð Þ + 2 uvð Þx x, tð Þ = 0: ð45bÞ

Under the fractional complex transformations,

u x, tð Þ =U ξð Þ, ð46Þ

vðx, tÞ =VðξÞ,
 ξ = x − ctα/α:
We get the following output.

Dα
t ⋅ð Þ = −c

d ⋅ð Þ
dξ

,

∂ ⋅ð Þ
∂x

= d ⋅ð Þ
dξ

,

∂2 ⋅ð Þ
∂x2

= d2 ⋅ð Þ
dξ2

,

ð47Þ

∂3ð⋅Þ/∂x3 = d3ð⋅Þ/dξ3:

7Advances in Mathematical Physics



Substituting (46) and (47) into (45a) and (45b), we
convert our problem into nonlinear ordinary differential
equations:

−cU ′ − 1
2V

′ + 2UU ′ = 0, ð48aÞ

−cV ′ − 1
2U

′″ + 2 UVð Þ′ = 0, ð48bÞ

where }U ′} = dU/dξ. By integrating once with respect to
travelling wave variable factor ξ and setting the constant
from the integral to 0, you get the following equation.

−cU −
1
2V +U2 = 0, ð49aÞ

−cV −
1
2U

″ + 2UV = 0: ð49bÞ

From equation (49a), we get

V = 2 U2 − cU
� �

: ð50Þ

Surrogating equation (50) in equation (49b)

−
1
2U

″ + 4U3 − 6cU2 + 2c2U = 0: ð51Þ

Applying the homogeneous equilibrium principle to
equation (51), we get 2 +m = 3m⟹m = 1. By taking m to
be 1 in equation (12), we get the form of the proposed solu-
tion of equation (51) as follows.

U ξð Þ = a0 + a1
G′
G

: ð52Þ

By using equations (15) and (52), from equation (51),
we have

4a03 − 6ca02 − 1/2a1λμ + 2c2a0 + 12a02a1 + 2c2a1 − 1/2a1λ2
�

− 12ca0a1 − a1μÞ
G′
G

+ 12a0a12 − 6ca12 − 3/2a1λ
� � G′

G

 !2

+ 4a13 − a1
� � G′

G

 !3

= 0:

ð53Þ

The coefficients before all powers of (G′/G) in equation
(53) are set as 0, and the resulting nonlinear algebraic system
with respect to the unknowns a0, a1, and c is as follows.

G

G′

� �0
: 4a03 − 6ca02 −

1
2 a1λμ + 2c2a0 = 0,

G′
G

: 12a02a1 + 2c2a1 −
1
2 a1λ

2 − 12ca0a1 − a1μ = 0,

G′
G

 !2

: 12a0a12 − 6ca12 −
3
2 a1λ = 0,

G′
G

 !3

: 4a13 − a1 = 0: ð54Þ

The symbolic computing system Maple was used to solve
the nonlinear algebraic equations, and four sets of solutions
were obtained.

Case 1.

c = −
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

q
, a0 = −

1
4 λ −

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

q
,

�

a1 = −
1
2

λ2 λ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p� �
λ2 − 4μ
� �3/2 + λ3 + 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
μ

9=
;:

ð55Þ

Case 2.

c = −
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

q
, a0 =

1
4 λ −

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

q
,

�

a1 =
1
2

λ2 −λ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p� �
λ2 − 4μ
� �3/2 − λ3 + 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
μ

9=
;:

ð56Þ

Case 3.

c = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

q
, a0 = −

1
4 λ +

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

q
,

�

a1 = −
1
2

λ2 −λ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p� �
λ2 − 4μ
� �3/2 − λ3 + 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
μ

9=
;:

ð57Þ

Case 4.

c = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

q
, a0 =

1
4 λ +

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

q
,

�

a1 =
1
2

λ2 λ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p� �
λ2 − 4μ
� �3/2 + λ3 + 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
μ

9=
;:

ð58Þ

Substituting the values from (55), (56), (57), or (58) and
equation (18) into (52), the exact solutions of equations
(45a) and (45b) in different forms can be obtained under dif-
ferent parameter constraints.
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Case 1.When λ2‐4μ > 0, the exact solution of equations (45a)
and (45b) in hyperbolic form is as follows.

U1
7 ξð Þ = −

1
4 λ −

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

q

−
1
2

λ2 λ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p� �
λ2 − 4μ
� �3/2 + λ3 + 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
μ

� −
λ

2 + η1
C1 sinh η1ξð Þ + C2 cosh η1ξð Þ
C1 cosh η1ξð Þ + C2 sinh η1ξð Þ
� �� 	

,

V1
7 = 2 U1

7 ξð Þ� �2 − cU1
7 ξð Þ

� �
,

ð59Þ

where ξ = x + ð1/2Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
tα/αÞ, η1 = 1/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
, and

C1 andC2 are constants that can take any number.
If C1 ≠ 0, andC2 = 0, then U1

7ðξÞ become

u17 x, tð Þ =U1
7 ξð Þ = −

1
4 λ −

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

q

−
1
2

λ2 λ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p� �
λ2 − 4μ
� �3/2 + λ3 + 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
μ

� −
λ

2 + η1 tanh η1ξð Þ
� 	

,

ð60aÞ

v17 x, tð Þ = V1
7 = 2 u17 x, tð Þ� �2 − cu17 x, tð Þ

� �
: ð60bÞ

Again, using (19), the general solutions for U1
7ðξÞ in

simplified forms are written as

_U
1
7 ξð Þ = −

1
4 λ −

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

q

−
1
2

λ2 λ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p� �
λ2 − 4μ
� �3/2 + λ3 + 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
μ

� −
λ

2 + η1 tanh η1ξ + ξ0ð Þ
� 	

,

_V
1
7 = 2 _U

1
7 ξð Þ

� �2
− c _U

1
7 ξð Þ

� �
,

ð61Þ

when jC2/C1j < 1, and ξ0 = tanh−1ðC2/C1Þ.

€U
1
7 ξð Þ = −

1
4 λ −

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

q

−
1
2

λ2 λ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p� �
λ2 − 4μ
� �3/2 + λ3 + 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
μ

� −
λ

2 + η1 coth η1ξ + ξ0ð Þ
� 	

,

€V
1
7 = 2 €U

1
7 ξð Þ

� �2
− c€U

1
7 ξð Þ

� �
,

ð62Þ

when jC2/C1j > 1, and ξ0 = coth−1ðC2/C1Þ.

When λ2‐4μ < 0, the exact solution of equation (45a) and
(45b) in trigonometric form is as follows.

U1
8 ξð Þ = −

1
4 λ −

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

q

−
1
2

λ2 λ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p� �
λ2 − 4μ
� �3/2 + λ3 + 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
μ

� −
λ

2 + η2
−C1 sin η2ξð Þ + C2 cos η2ξð Þ
C1 cos η2ξð Þ + C2 sin η2ξð Þ

� �� 	
,

V1
8 = 2 U1

8 ξð Þ� �2 − cU1
8 ξð Þ

� �
,

ð63Þ

where ξ = x + ð1/2Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
tα/αÞ, η2 = 1/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ − λ2

p
, and

C1 andC2 are free constants that can take any number.
If C1 ≠ 0, andC2 = 0, then U1

3,4ðξÞ become

u18 x, tð Þ =U1
8 ξð Þ

= −
1
4 λ −

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

q

−
1
2

λ2 λ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p� �
λ2 − 4μ
� �3/2 + λ3 + 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
μ

� −
λ

2 − η2 tan η2ξð Þ
� 	

,

ð64Þ

v18ðx, tÞ =V1
8 = 2ððu18ðx, tÞÞ2 − cu18ðx, tÞÞ:

When λ2‐4μ = 0, the exact solution of equation (45a) and
(45b) in rational form is as follows.

U1
9 ξð Þ = −

1
4 λ −

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

q

−
1
2

λ2 λ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p� �
λ2 − 4μ
� �3/2 + λ3 + 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
μ

� −
λ

2 + C2
C1 + C2ξ

� 	
,

V1
9 = 2 U1

9 ξð Þ� �2 − cU1
9 ξð Þ

� �
,

ð65Þ

where ξ = x + ð1/2Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
tα/αÞ, and C1 andC2 are free

constants.
For Case 2, Case 3, and Case 4, we can similarly obtain

the exact solutions of equations (45a) and (45b). For simplic-
ity, they are unnecessary to repeat. If the auxiliary equation
(17) and its solution (20) are used in the process of solving,
we should also be able to get exact solutions, which we can
prove later.

9Advances in Mathematical Physics



3.3. Precise Solutions of the Fractional Coupled Boussinesq
Equations in Space and Time with Generalised Fractional
(G′/G)-Expansion Method. Equation (5) is written as follows.

Dα
t u x, tð Þ +Dβ

x v x, tð Þ = 0,

Dα
t v x, tð Þ + ADβ

x u2 x, tð Þ� �
− ED3β

xxxu x, tð Þ = 0,
ð66Þ

 0 < α, β ≤ 1:
Under the fractional complex transformations:

u x, tð Þ =U ξð Þ,
v x, tð Þ = V ξð Þ,

 ξ = xβ

β
−
ctα

α
,

ð67Þ

where c is a nonzero constant. We get the following output.

Dα
t ⋅ð Þ = −c

d ⋅ð Þ
dξ

, ð68Þ

Dβ
x ð⋅Þ = dð⋅Þ/dξ,

D3β
xxxð⋅Þ = d3ð⋅Þ/dξ3:

Substituting (67) and (68) into (66), we convert our
problem into nonlinear ordinary differential equations

−cU ′ + V ′ = 0, ð69aÞ

−cV ′ + A U2� �′ − EU‴ = 0, ð69bÞ

where }U ′} = dU/dξ. By integrating once with respect to
travelling wave variable factor ξ and taking the integral con-
stant to be zero, we get

−cU +V = 0, ð70aÞ

−cV + AU2 − EU″ = 0: ð70bÞ
From equation (70a), we get

V = cU : ð71Þ

Surrogating equation (71) in equation (70b)

−c2U + AU2 − EU″ = 0: ð72Þ

Applying the homogeneous equilibrium principle to
equation (72), we get 2 +m = 2m⟹m = 2. By taking m to
be 2 in equation (13), we get the form of the proposed solu-
tion of equation (72) as follows.

U ξð Þ = a0 + a1
G′
G

+ a2
G′
G

 !2

+ b1
G

G′
+ b2

G

G′

� �2
: ð73Þ

By substituting equations (73) and (15) into ordinary
differential equation (72), we can rearrange and combine
equation (72) with respect to (G′/G) and set the coefficients
before all powers of (G′/G) to be 0. The resulting nonlinear
algebraic system with respect to the unknowns a0, a1, a2, b1,
b2, and c is as follows.

G′
G

 !−4

: −6Eμ2b2 + Ab22 = 0,

G′
G

 !−3

: −2Eμ2b1 − 10Eμλb2 + 2Ab1b2 = 0,

G′
G

 !−2

: −3Eμλb1 − 4Eλ2b2 + 2Aa0b2 + Ab21

− 8Eμb2 − c2b2 = 0,

G′
G

 !−1

: −Eλ2b1 + 2Aa0b1 + 2Aa1b2 − 2Eμb1

− 6Eλb2 − c2b1 = 0,

G

G′

� �0
: −2Eb2 + Aa20 − 2Ea2μ2 + 2Aa1b1 − Eb1λ − Ea1λμ

+ 2Aa2b2 − c2a0 = 0,

G′
G

: −6Eμλa2 − Eλ2a1 + 2Aa0a1 + 2Aa2b1
− 2Eμa1 − c2a1 = 0,

G′
G

 !2

: −4Eλ2a2 + 2Aa0a2 + Aa21 − 8Eμa2

− 3Eλa1 − c2a2 = 0,

G′
G

 !3

: 2Aa1a2 − 10Eλa2 − 2Ea1 = 0,

G′
G

 !4

: Aa22 − 6Ea2 = 0:

ð74Þ

The nonlinear algebraic equations were solved by using
Maple symbol computing system, and the following solutions
were obtained.

Case 1.

c = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eλ2 − 4Eμ

q
, a0 =

E λ2 + 2μ
� �

A
, a1 =

6Eλ
A

,
(

a2 =
6E
A

, b1 = 0, b2 = 0


:

ð75Þ
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Case 2.

c = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Eλ2 + 4Eμ

q
, a0 =

6Eμ
A

, a1 =
6Eλ
A

,
�

a2 =
6E
A

, b1 = 0, b2 = 0


:

ð76Þ

Substituting the values from (75) or (76) and equation
(18) into (73), the exact solutions of equation (66) in different
forms can be obtained under different parameter constraints.

Case 1.When λ2 − 4μ > 0, the exact solution of equation (66)
in hyperbolic form is as follows.

U1
10,11 ξð Þ = 6E

A

λ2 + 2μ
� �

6

"

+ λ −
λ

2 + η1
C1 sinh η1ξð Þ + C2 cosh η1ξð Þ
C1 cosh η1ξð Þ + C2 sinh η1ξð Þ
� �� 	

+ −
λ

2 + η1
C1 sinh η1ξð Þ + C2 cosh η1ξð Þ
C1 cosh η1ξð Þ + C2 sinh η1ξð Þ
� �� 	2#

,

ð77Þ

where ξ = ðxβ/βÞ ∓ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eλ2‐4Eμ

p
tα/αÞ, η1 = 1/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
, and

C1 andC2 are constants that can take any number.
If C1 ≠ 0, andC2 = 0, then U1

10,11ðξÞ become

u110,11 x, tð Þ =U1
10,11 ξð Þ

= 6E
A

λ2 + 2μ
� �

6 + λ −
λ

2 + η1 tanh η1ξð Þ
� 	"

+ −
λ

2 + η1 tanh η1ξð Þ
� 	2#

:

ð78Þ

Again, using (19), the general solutions for U1
10,11ðξÞ in

simplified forms are written as

_U
1
10,11 ξð Þ = 6E

A

λ2 + 2μ
� �

6 + λ −
λ

2 + η1 tanh η1ξ + ξ0ð Þ
� 	"

+ −
λ

2 + η1 tanh η1ξ + ξ0ð Þ
� 	2#

,

ð79Þ

when jC2/C1j < 1, and ξ0 = tanh−1ðC2/C1Þ.

€U
1
10,11 ξð Þ = 6E

A

λ2 + 2μ
� �

6 + λ −
λ

2 + η1 coth η1ξ + ξ0ð Þ
� 	"

+ −
λ

2 + η1 coth η1ξ + ξ0ð Þ
� 	2#

,

ð80Þ

when jC2/C1j > 1, and ξ0 = coth−1ðC2/C1Þ.

When λ2 − 4μ < 0, the exact solution of equation (66) in
trigonometric form is as follows.

U1
12,13 ξð Þ = 6E

A

λ2 + 2μ
� �

6

"

+ λ −
λ

2 + η2
−C1 sin η2ξð Þ + C2 cos η2ξð Þ
C1 cos η2ξð Þ + C2 sin η2ξð Þ

� �� 	

+ −
λ

2 + η2
−C1 sin η2ξð Þ + C2 cos η2ξð Þ
C1 cos η2ξð Þ + C2 sin η2ξð Þ

� �� 	2#
,

ð81Þ

where ξ = ðxβ/βÞ ∓ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eλ2 − 4Eμ

p
tα/αÞ, η2 = 1/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ − λ2

p
,

and C1 andC2 are constants that can take any number.
If C1 ≠ 0, andC2 = 0, then U1

12,13ðξÞ become

u112,13 x, tð Þ =U1
12,13 ξð Þ

= 6E
A

λ2 + 2μ
� �

6 − λ
λ

2 + η2 tan η2ξð Þ
� 	"

+ λ

2 + η2 tan η2ξð Þ
� 	2#

:

ð82Þ

When λ2‐4μ = 0, the exact solution of equation (66) in
rational form is as follows.

U1
14 ξð Þ = −

6E
A

λ2 + 2μ
� �

6 + λ −
λ

2 + C2
C1 + C2ξ

� 	"

+ −
λ

2 + C2
C1 + C2ξ

� 	2#
,

ð83Þ

where ξ = ðxβ/βÞ ∓ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eλ2‐4Eμ

p
tα/αÞ, and C1 andC2 are con-

stants that can take any number.

Using the obtained result formula (76), we can similarly
obtain the exact solution of equation (66). For simplicity,
they are unnecessary to repeat. If the auxiliary equation
(17) and its solution (20) are used in the process of solving,
we should also be able to get exact solutions, which we can
prove later.

4. The Explanation and Discussion

By calculating the operation of Maple software, we obtained
the exact travelling wave solutions of three fractional-order
equations. Literature [34] uses the simplest Riccati equation
of a fractional order as an auxiliary function, directly solving
space-time fractional Boussinesq equation, and the coeffi-
cients and functions in the obtained solution contained
fractional order, which was quite different from the solution
obtained by using complex transformation. In addition,
literature [34] only obtained a set of solutions of algebraic
equations composed of quasisolution coefficients, and we
obtained four sets of solutions. For equation (4), literature
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[40] uses the first integral method to obtain its two sets of
solutions, both of which are kinked in the image, which is
similar to the solution shown in Figure 1. We obtain four sets
of solutions of algebraic equations, each of which contains
three types of solutions, one kink, one period, and one ratio-
nal function. For equation (5), reference [42] obtained a set of
solutions of algebraic equations by using the exp-function
method, which was illustrated as bell-shaped isolated waves.
We obtain four sets of solutions of algebraic equations, each
containing three types of solutions, one of which is the kink
solution shown in Figure 2 or 3.

In general, there are many solutions to nonlinear partial
differential equations, only some of which can be obtained in
different ways, and our work enriches the solutions to these
equations. The three model equations we studied are all water
wave-related models, which are nonlinear dispersive wave
equations. We are more concerned with the isolated wave
solutions resulting from the equilibrium of the nonlinear and
dispersion effects, so we select an isolated wave solution from
each equation we study to discuss the effect of fractional order
on its waveform. The results are shown in Figures 1, 2, 3, 4,
and 5. Figure 4 shows the isolated wave solution of the first
model equation. Figures 1 and 5 are the isolated wave solu-
tions of the second model equation. Figures 2 and 3 are the
isolated wave solutions of the third model equation. Let us
look at each of these results in more details.

Solution (32) of equation (2) represents bell-type soliton
solutions, which is the result of the equilibrium between the
nonlinear term and the dispersion term in equation (2). When
c = +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Eλ2 + 4Eμ − B

p
, A = 3, B = −1, E = 0:5, λ =

ffiffiffi
2

p
, and

μ = 0:4, the graphical form of solution (32) changing with
α is shown in Figure 4. After setting values for other param-
eters, Figure 4 explains the perspective view of solution (32),
when the values of α are 0.9, 0.8, 0.7, 0.6, 0.5, and 0.4 in turn.
You can see in Figure 4 that with the decrease of α, the width
of the waveform is increasing, and the waveform surface is
gradually transitioning from concave to convex. We might
conclude that the fractional order modulates the waveforms
of the isolated waves of this equation.
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Figure 1: 3D plot of solutions (60a) and (60b) for various values of α, and c = 1/2
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λ2 − 4μ,

p
λ −
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2,

p
μ = 0:4.
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Figure 2: 3D plot of solution (78) for various values of α, and β = 1,
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When c = −1/2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4μ

p
, λ =

ffiffiffi
2

p
, and μ = 0:4, the graph-

ical form of solutions (60a) and (60b) of equation (4) chang-
ing with α is shown in Figure 1. Solution (60a) in Figure 1
represents kink soliton solutions. Solution (60b) in Figure 1
represents bell-type soliton solutions. They are the result of
the balance between the nonlinear term and the dispersion
term in equation (4). The detailed expansion of the graphical
form of solution (60b) is shown in Figure 5. After setting

values for other parameters, Figure 5 explains the perspective
view of the Solution (60b), when the values of α are 0.1, 0.5,
0.7, and 0.9 in turn. As you can see from Figure 5, the wave-
form of the solution changes from the form of an isolated
wave to the form of a local period, which shows that for some
solutions, fractional-order changes can change the structure
of the waveform. In other words, the fractional order may
modulate the local periodicity of some solutions.

0.10

0.08

0.06

0.04

0.02

0
0 10

10 020 2030 40 50

𝛼 = 0.9 𝛼 = 0.8

t t

u u

x x40 30

0.10

0.08

0.06

0.04

0.02

0
0

10
10 020

2030
40

50 40 30

𝛼 = 0.6

t

u

x

0.10

0.08

0.06

0.04

0.02

0
0

10
10 020

2030
40

50 40 30

𝛼 = 0.7

t

u

x

0.10

0.08

0.06

0.04

0.02

0
0

10
10 020

2030
40

50 40 30

𝛼 = 0.4

t

u

x

0.10
0.09
0.08
0.07
0.06

0.04
0.03

0.05

0.02
0.01

0
10

10 020
2030

40
50 40 30

𝛼 = 0.5

t

u

x

0.10
0.09
0.08
0.07
0.06

0.04
0.03

0.05

0.02
0.01

0
10

10 020
2030

40
50 40 30

Figure 4: Snapshots of solution (32) for various values of α, and c = +
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When β = 1, c =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eλ2 − 4Eμ

p
, λ =

ffiffiffi
2

p
, μ = 0:4, A = 3, and

E = 0:5, the graphical form of solution (78) of equation (5)
changing with α is shown in Figure 2. When α = 1, c =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eλ2 − 4Eμ
p

, λ =
ffiffiffi
2

p
, μ = 0:4, A = 3, and E = 0:5, the graphi-

cal form of solution (78) of equation (5) changing with β is
shown in Figure 3. Solution (78) in Figures 2 and 3 represent
kink soliton solutions. For an equation with two fractional-
order parameters, we fix one fractional-order parameter and
then look at the effect of the other fractional-order parameter
on the isolated wave solution waveform. For the case that the
fractional-order parameter satisfies a certain relation, it needs
further study in the future. The effect of fractional order on
other solutions can be similarly graphically analysed.

Remark 1. When G =GðξÞ satisfies equation (17), we have

G′ ξð Þ
G ξð Þ

 !
′ =

G″ ξð ÞG ξð Þ − G′ ξð Þ
� �2

G2 ξð Þ

= λ − 1ð Þ G′
G

 !2

+ μ
G′
G

 !
+ ω:

ð84Þ

In this way, the Riccati equation satisfied by the
extended (G′/G)-expansion method can be regarded as
more generalised.

5. Conclusion

Combined with fractional complex transformation, the
(G′/G)-expansion method and its extended generalised form
are used to obtain abundant travelling wave solutions for
three fractal-order model equations related to water waves.
For the nonlinear dispersive wave model equations, we are
more concerned about their soliton solutions, so we choose
a soliton solution from the travelling wave solution of each
model equation to illustrate and discuss the effect of
fractional order parameters on it. The results show that the
fractional derivatives can modulate the waveform, local peri-
odicity, and structure of the isolated solutions of the three
model equations. Of course, our discussion of fractional
derivatives is not enough. For example, in the future, we will
further discuss how to modulate the waveform of a soliton
solution when multiple fractional parameters are coupled.
With the further discussion of the influence of fractional
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Figure 5: Snapshots of soliton solution to periodic solution of solution (60b) for various values of α, and c = 1/2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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derivatives on the waveform of the solution of the equation,
we may have a better understanding of the formation and
properties of the waveform of the solution of the fractional
equation. In addition, in this paper, we point out the rule that
the auxiliary equation of the extended (G′/G)-expansion
method should satisfy, that is, the result of the differential
operation of (G′/G) should be in the polynomial form of
(G′/G), which is the basis for the formation of algebraic
equations by collecting (G′/G) power term coefficients later.
According to the rules satisfied by the auxiliary equations,
we can choose other solvable equations as auxiliary equa-
tions, which is also helpful to understand the selection of
auxiliary equations in other methods.
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The Neimark-Sacker bifurcation of a forced vibration system is considered in this paper. The series solution to the motion equation
is obtained, and the Poincaré map is established. The fixed point of the Poincaré map is guaranteed by the implicit function
theorem. The map is transformed into its normal form at the fifth-order resonance case. For some parameter values, there exists
the torus T1. Furthermore, the phenomenon of phase locking on the torus T1 is investigated and the parameter condition under
which there exists subharmonic motion on the torus T1 is determined.

1. Introduction

In this article, we investigate the torus and subharmonic
motions of the following system:

_y1 = −y2,
_y2 = y1 + a1μy2 + by22 + sy31 + cy32 + εf q + δð Þtð Þ + h:o:t:,

(

ð1Þ

where μ, ε, and δ are small parameters; f is a 2π periodic
function; and a1, s, b, and c are constants. ðq + δÞ is the fre-
quency of the external force. If q is a positive integer with q
≥ 5, we say that the system (1) is in 1 : q weak resonance.
For q being a positive integer satisfying q ≤ 4, the system (1)
is referred to as 1 : q strong resonance. h:o:t: represents the
“higher-order terms” than those that have been written out,
and the same is true below. There are some mechanical
models whose dynamical behaviors can be described by
Equation (1), for example, the system shown in Figure 1,
see Ref. [1] for more information. In this paper, we investi-
gate abstractly system (1) and give a method for analyzing
its Neimark-Sacker bifurcation. The value of relevant param-

eters and constants depends on some specific mechanical
models whose dynamics can be described by Equation (1).
Therefore, we do not introduce the given parameters or con-
stants here, and only choose several sets of values for numer-
ical simulations in Section 4.

For ε = 0, Equation (1) undergoes the Hopf bifurcation
under certain conditions, and then, for ε ≠ 0 and jεj, suffi-
ciently small torus or the qth order subharmonic motions
can occur to Equation (1). The problem of 1 : q resonance
of a closed orbit in R3 (or in C × S1) leads to the study of
the Zq-equivariant planar vector (see Refs. [2, 3]) whose ver-
sal unfolding has been studied for q ≠ 4 and been conjectured
for q = 4 by Arnold [2]. Bifurcation sequence inventory at
1 : 4 resonance has been presented by Krauskopf [3]. Gam-
baudo [4] considered the general study of the periodic per-
turbation of a one family of autonomous differential
equations in the plane satisfying conditions for a generic
Hopf bifurcation. Iooss [5] investigated the subharmonic
motion in the 1 : 3 and 1 : 4 resonance case. Wan [6] analyzed
the Neimark-Sacker bifurcation in the 1 : 4 strong resonance
case for the planar map. The width of the resonance tongue
at a distance σ from the unit circle given by Arnold [2, 7] is
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of the order of σðq−2Þ/2. Shilnikov et al. [8] and Iooss [9] com-
puted the Arnold tongue in weak resonance case for the pla-
nar map. The Neimark-Sacker bifurcation of an oscillator
with dry friction was observed in Ref. [1]. Periodic-impact
motions and bifurcations of vibroimpact systems near the
1 : 4 strong resonance point are considered in Ref. [10].
Results on other types of forced vibrations can be found in
some literatures, see, for example, Refs. [11–16].

Judging from the above statement, we know that there is
a lack of efficient criteria depending on the coefficients of the
original differential equations, based on which we can talk
about the asymptotic behaviors of trajectory. In this paper,
we will restrict our attention to the case of 1 : 5 resonance,
namely, q = 5 in Equation (1), and obtain criteria. For
higher-order resonance, the procedure is essentially the same
as this case but needs tedious computation.

This paper is organized as follows. In Section 2, the Poin-
caré map is established according to power series solution to
Equation (1). The map is further transformed into its normal
form. In Section 3, the Neimark-Sacker bifurcation is investi-
gated. When there is a circle bifurcating from the fixed point,
the phenomenon of phase locking on the invariant circle is
studied and the parameter region in which subharmonic
motion can occur is determined. In Section 4, choosing a
set of parameters, the theoretical results stated above are
verified by numerical simulations.

2. The Poincaré Map

Let z = y1 + iy2, Equation (1) takes the form

_z = iz + a1μ
2 z − �zð Þ − ib

4 z − �zð Þ2 + is
8 z + �zð Þ3 − c

8 z − �zð Þ3

+ iεf 5 + δð Þtð Þ + h:o:t:
ð2Þ

By the procedure applied in Ref. [1], the solution of Equa-
tion (2) satisfying zðη, 0, μ, εÞ = η can be written as

z η, t, μ, εð Þ = z0 η, tð Þ + μz10 η, tð Þ + εz01 η, tð Þ + h:o:t:, ð3Þ

where

z0 = L10η + L01�η + L20η
2 + L11η�η + L02�η

2 + L30η
3 + L21η

2�η + L12η�η
2 + L03�η

3 + L04�η
4,

z10 =
a1
2 eit ηt + i�η

2 1 − e−2it
� �� �

,

z01 = ieit
ðt
0
e−iτ f 5 + δð Þτð Þdτ,

8>>>>>><
>>>>>>:
L10 = eit ,

L01 = 0,

L20 =
b
4 −e2it + eit
� �

,

L11 =
b
2 eit − 1
� �

,

L02 =
b
12 −eit + e−2it
� �

,

L30 =
b2

12 + s
16 + ic

16

 !
e3it −

b2

8 e2it −
s
16 + ic

16

� �
eit + b2

24 ,

L21 = −
b2

4 e2it + 3c
8 + 3si

8 −
b2

6 i

 !
teit + 23b2

36 eit −
3
8 b

2 −
b2

72 e
−2it ,

L12 =
b2

24 e
2it + b2

6 + 3s
16 + 3c

16 i
 !

eit −
3b2
8 + b2

12 −
3s
16 −

3c
16 i

 !
e−it + b2

12 e
−2it ,

L03 = −
b2

24 −
s
32 + ic

32

 !
eit + b2

24 + b2

24 e
−2it −

b2

24 + s
32 −

ic
32

 !
e−3it ,

L04 = −
b3

576 e
2it + −

7
480 b

3 + 23
1920 bs −

11
480 bci

� �
eit + b3

32 −
bs
64 + bci

128

 !

+ −
b3

144 + bs
64 + bc

64 i
 !

e−it + b3

192 −
bs
96 + bc

96 i
 !

e−2it

+ −
b3

32 −
3bs
128 + 3bc

128 i
 !

e−3it + 13b3
720 + 7bs

320 −
11bc
320 i

 !
e−4it:

ð4Þ

Let t = 2π/ð5 + δÞ [1] in (3), we can get the Poincaré map

η⟶ z η, 2π
5 + δ

, μ, ε
� �

, ð5Þ

z η, 2π
5 + δ

, μ, ε
� �

= z0 η, 2π
5 + δ

� �
+ μz10 η, 2π

5 + δ

� �

+ εz01 η, 2π
5 + δ

� �
+ h:o:t:

= λ0 1 − 2πδ
25 i

� �
η + μa1

2 λ0
2π
5 η + i�η

2 1 − �λ0
2� 	� �

+ εiλ0

ð2π/5
0

e−iτ f 5 + δð Þτð Þdτ + g20
2 η2

+ g11η�η +
g02
2 �η2 + g30

6 η3 + g21
2 η2�η + g12

2 η�η2

+ g03
6 �η3 + g04

24 �η4 + h:o:t:,

ð6Þ

m

x

𝜀0f((q + 𝛿)t)

𝜅

v

Figure 1: Schematic diagram of the dynamic model in Ref. [1].
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where λ0 = eð2π/5Þi, g20/2, g11, g02/2, g30/6, g21/2, g12/2, g03/6,
and g04/24 are given by L20, L11, L02, L30, L21, L12, L03, and L04,
all of which are evaluated at t = 2π/ð5 + δÞ.

Because zð0, 2π/5, 0, 0Þ = 0, and

D z η, 2π
5 + δ

, μ, ε
� �

− η

� �




η=0,δ=0,μ=0,ε=0

 !
ς = λ0 − 1ð Þς,

ð7Þ

λ0 − 1 ≠ 0, by the implicit function theorem, we know
that (6) has a fixed point Fðδ, μ, εÞ which depends on δ, μ,
and ε continuously.

Fðδ, μ, εÞ = F1 + h:o:t: where F1 = ðεiλ0/ð1 − λ0ÞÞ
Ð 2π/5
0

e−iτ f ðð5 + δÞτÞdτ.
Making a translation of coordinate ξ = η − Fðδ, μ, εÞ,

map (6) becomes

ξ′ = λ0 1 + μa1π
5 + g20F1 + g11�F1

λ0
−
2πδ
25 i

� �
ξ + c1�ξ

+ g20
2 ξ2 + g11ξ

�ξ + g02
2

�ξ
2 + g30

6 ξ3 + g21
2 ξ2�ξ + g12

2 ξ�ξ
2

+ g03
6

�ξ
3 + g04

24
�ξ
4 + h:o:t:

ð8Þ

With a change of coordinate ξ = ð1 +Oðδ, μ, εÞÞζ, we can
eliminate the linear term of �ξ and not change the others in
map (8). It follows that

ξ′ = λ0 1 + μa1π
5 + g20F1 + g11�F1

λ0
−
2πδ
25 i

� �
ξ + g20

2 ξ2

+ g11ξ
�ξ + g02

2
�ξ
2 + g30

6 ξ3 + g21
2 ξ2�ξ + g12

2 ξ�ξ
2 + g03

6
�ξ
3

+ g04
24

�ξ
4 + h:o:t:

ð9Þ

By the theory of a normal form for a map, we can cancel
all of the nonresonant terms, and map (9) is equivalent to

ω′ = λ0 1 + μa1π
5 + g20F1 + g11�F1

λ0
−
2πδ
25 i

� �
ω + g21′

2 ω2�ω

+ g04′
24 �ω4 + h:o:t:

ð10Þ

The coefficients of g21′ /2 and g04′ /24 are determined

by Iooss [5]

g21′
2 = g21

2 − g20γ11 − g11 �γ11 +
γ20
2

� 	
− g02

�γ02
2

+ λγ20 g11 − λγ11ð Þ + γ11
�λ

g20
2 −

λγ20
2

� �

+ γ11λ �g11 − �λ�γ11
� �

+ γ02
�λ

�g02
2 −

�λ�γ02
2

� �

+ λ γ20γ11 + γ11
γ20
2 + �γ11

� 	
+ γ02�γ02

2

� �
, g04′
24

= −λγ11
γ11γ02
2 + γ02�γ20

2

� �
− λγ02

�γ220
2 + �γ11γ02

2

� �

−
λγ20
2

γ202
4 − λγ11

γ02�γ20
4 −

λγ02
2

�γ220
4 + g20

2
γ202
4

+ g11
γ02
2

�γ20
2 + g02

2
�γ220
4 + g11

γ11γ02
2 + γ02�γ20

2

� �

+ g02
�γ220
2 + �γ11γ02

2

� �
−
g12
2

γ02
2 −

g03
2

�γ20
2

+ γ20
2

g02
2 −

λγ02
2

� �2
+ γ11 λ�λ

γ11γ02
2 + γ02�γ20

2

� ��

− �λg11
γ02
2 − �λg02

�γ20
2 + �λ

g03
6 + g02�g20

4 − �λ
g02
2

�γ20
2

− λ
�g20
2

γ02
2 + λ�λ

γ02
2

�γ20
2

�
+ γ02

2 2�λ2 �γ220
2 + �γ11γ02

2

� ��

− 2�λ�g20
�γ20
2 − 2�λ�g11

γ02
2 +

�λ�g30
3 + �g20

2

� �2

+ �λ
2 �γ20

2

� �2
− �λ�g20

�γ20
2

#
+ g04

24 ,

ð11Þ

where λ = λ0ð1 + ðμa1π/5Þ + ððg20F1 + g11�F1Þ/λ0Þ − ð2πδ/
25ÞiÞ, and

γ20 =
g20

λ − λ2
,

γ11 =
g11

λ − λ�λ
,

γ02 =
g02

λ − �λ
2 :

ð12Þ

After computing straightly, we have

g21′ 0ð Þ
2 = 3c

8 + 3si
8 −

b2i
6

 !
2π
5 λ0,

g04′ 0ð Þ
24 = −

bc
128 i +

bc
128 iλ0:

ð13Þ
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3. Invariant Circle and Phase Locking

For convenience, let us write (10) as

ω′ = λω + αω2�ω + γ�ω4 + h:o:t:, ð14Þ

where α = g21′ /2 and γ = g04′ /24. Let λ = λ0ð1 + ~λ1Þ, α0 =
αjμ=ε=δ=0, and γ0 = γjμ=ε=δ=0.

As we know, the dynamic behavior of map (14) is corre-
sponding to that of Equation (1). If Re ðα0�λ0Þ ≠ 0 and the
derivation of Re ð~λ1Þ with respect to parameters is nonzero,
the Neimark-Sacker bifurcation takes place for map (14).

We further study the phenomenon of phase locking on
an invariant circle bifurcating from the fixed point of map
(14). By changing variables ω = reiφ and ω′ = ReiΦ, map
(14) is described by Shilnikov et al. [8]

R = 1 + Re ~λ1
� 	h i

r + Re α0
�λ0

� �
r3 + Re γ0

�λ0e
−5iφ� �

r4 + h:o:t:,

ð15Þ

Φ = φ + θ + Im α0
�λ0

� �
r2 + Im γ0

�λ0e
−5iφ� �

r3 + h:o:t:,
ð16Þ

where θ = arg ðλÞ.
Let us note l1 = Re ðα0�λ0Þ,m1 = Im ðα0�λ0Þ,A = Re ðγ0�λ0Þ,

B = Im ðγ0�λ0Þ, and ψ = arctan ðA/BÞ. Equations (15) and (16)
can be written as

R = 1 + Re ~λ1
� 	h i

r + l1r
3 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 + B2

p
cos 5φ + ψð Þr4 + h:o:t:,

ð17Þ

Φ = φ + θ +m1r
2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 + B2

p
sin 5φ + ψð Þr3 + h:o:t:

ð18Þ
In order to find the fifth-order subharmonic solution, iter-

ating Equations (17) and (18) five times, then we obtain

R = 1 + 5 Re ~λ1

� 	h i
r + 5l1r3 + 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 + B2

p
cos 5φ + ψð Þr4 + h:o:t:,

Φ = φ + 5θ + 5m1r
2 − 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 + B2

p
sin 5φ + ψð Þr3 + h:o:t:

ð19Þ

Solutions of equations

R = r,
Φ = φ mod 2πð Þ

(
ð20Þ

are corresponding to the period 5 points of map (14).
Solving the first equation of (20), we get

R =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re ~λ1
� 	
l1j j

vuut +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 + B2

p
Re ~λ1
� 	

2l21
cos 5φ + ψð Þ + h:o:t:

ð21Þ

Substituting the second equation of (20) with (21), and
considering that θ is close to 2π/5, we have

θ −
2π
5 +m1

Re ~λ1
� 	
l1j j + m1

l1j j cos 5φ + ψð Þ
�

− sin 5φ + ψð Þ
� Re ~λ1

� 	
l1j j

2
4

3
5
3/2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 + B2
p

+ h:o:t: = 0:

ð22Þ

If for some φ = φ0,

θ −
2π
5 +

Re ~λ1
� 	

m1

l1j j

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 + l21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 + B2

p
Re ~λ1
� 	h i3/2

l1j j5/2
sin 5φ0 + ψ1ð Þ = 0

ð23Þ

together with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 + B2

p
≠ 0, “h.o.t.” in Equation (22) can be

offset by adjusting φ near φ0.
For the boundedness of sinusoidal function and θ = ð2π

/5Þ − ð2πδ/25Þ, we assert that if

Re ~λ1
� 	

m1

l1j j −
2πδ
25














 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 + l21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 + B2

p
Re ~λ1
� 	h i3/2

l1j j5/2
,

ð24Þ

there exist two sets of values of φ denoted by ðφ1
1, φ1

2, φ1
3, φ1

4
, φ1

5Þ and ðφ2
1, φ2

2, φ2
3, φ2

4, φ2
5Þ which satisfy Equation (22).

Then, the second equation of (20) follows and map (14) pos-
sesses two sets of period 5 solutions, one of which is stable,
another is unstable.

4. The Numerical Simulations

To illustrate the results stated above, numerical simulations
will be presented in this section. As mentioned in the
introduction, f is a 2π periodic function. For simplicity, let
f ðð5 + δÞtÞ = sin ðð5 + δÞtÞ in Equation (1), which is a simple
form of f ðð5 + δÞtÞ. It follows from (6)–(14) that

ω′ = λ0 1 + μa1π
5 −

5bε
24 sin 2π

5 −
2πδ
25 i

� �
ω + αω2�ω

+ γ�ω4 + h:o:t:
ð25Þ

Furthermore, we take the set of parameters a1 = 2, b = 1,
s = 0, c = −4: We can calculate that Re ðα0�λ0Þ = −1:8850 < 0
and the derivation of Re ð~λ1Þ with respect to parameters μ
and ε is nonzero, which means that the supercritical
Neimark-Sacker bifurcation takes place for map (25) [17].
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Figure 2: (a) Poincaré map; (b) Poincaré map (last 5000 points); (c) phase diagram; (d) phase diagram (last 10000 points).
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Figure 3: (a) Poincaré map; (b) Poincaré map (last 5000 points); (c) phase diagram; (d) phase diagram (last 10000 points).
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Figure 4: (a) Poincaré map; (b) Poincaré map (last 5000 points); (c) phase diagram; (d) phase diagram (last 10000 points).
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Choosing ε = −0:3, μ = −0:2, and δ = 0, we get Re ð~λ1Þ
= −0:1919 and then assert that map (25) possesses a stable
fixed point (see Figures 2(a) and 2(b)), namely, a stable peri-
odic solution of Equation (1) (shown in Figures 2(c) and
2(d)). If the dynamic behaviors of the model in Figure 1
can be described by Equation (1) with the present parame-
ters, the period of vibration of the mass body is the same as
the external force.

Choosing ε = −0:3 and μ = 0:2, we have Re ð~λ1Þ = 0:3108
and then assert that map (25) possesses a stable invariant cir-
cle [17], namely, a stable torus motion of Equation (1).
Because the limitation of map (25) on the stable invariant cir-
cle is a circle diffeomorphism, the trajectory on the torus is
quasiperiodic or subharmonic motion, which depends on
expression (24). As will be investigated below.

For δ = 0, By straight computation, we obtain

Re ~λ1
� 	

m1

l1j j −
2πδ
25 = −0:0345,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 + l21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 + B2

p
Re ~λ1
� 	h i3/2

l1j j5/2
= 0:0025,

ð26Þ

which invalidate (24), there is no period 5 points for map
(25) (see Figures 3(a) and 3(b)), and the solution of Equation
(1) is quasiperiodic (shown in Figures 3(c) and 3(d)). If the
dynamic behaviors of the model in Figure 1 can be described
by Equation (1) with the present parameters, the vibration of
the mass body is quasiperiodic, which is not periodic motion
even though the external force is periodic.

For δ = −0:13, calculation shows

Re ~λ1
� 	

m1

l1j j −
2πδ
25 = −0:0019,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 + l21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 + B2

p
Re ~λ1
� 	h i3/2

l1j j5/2
= 0:0025:

ð27Þ

Expression (24) follows, map (25) possesses period 5
points (see Figures 4(a) and 4(b)), and Equation (1) yields a
subharmonic motion (shown in Figures 4(c) and 4(d)). If
the dynamic behaviors of the model in Figure 1 can be
described by Equation (1) with the present parameters, the
vibration of the mass body is subharmonic, whose period is
five times than that of the external force.

Because the analysis method of this paper is for system
(1) with abstract coefficients, it can be applied in other
mechanical models whose dynamics can be described by
Equation (1), for example, the forced Van der Pol equations
[6], the forced dry friction system [18], the vibration of rail-
way bow net, and the forced vibration of cantilevered flow-
conveying pipe.

5. Conclusions

In this paper, we study the Neimark-Sacker bifurcation of a
forced vibration system by theoretical analysis and numerical
simulations in the 1 : 5 resonance case. The Poincaré map is
established by the analytical method. By means of analyzing
the map, it is shown that there exist quasiperiodic and sub-
harmonic solutions on the torus. Numerical simulations
agreed with the theoretical results. It is certain that the
method applied in this paper can be applied to some other
analogous systems.
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In this research paper, our work is connected with one of the most popular models in quantum magnetoplasma applications.
The computational wave and numerical solutions of the Atangana conformable derivative (1 + 3)-Zakharov-Kuznetsov (ZK)
equation with power-law nonlinearity are investigated via the modified Khater method and septic-B-spline scheme. This
model is formulated and derived by employing the well-known reductive perturbation method. Applying the modified
Khater (mK) method, septic B-spline scheme to the (1 + 3)-ZK equation with power-law nonlinearity after harnessing
suitable wave transformation gives plentiful unprecedented ion-solitary wave solutions. Stability property is checked for our
results to show their applicability for applying in the model’s applications. The result solutions are constructed along with
their 2D, 3D, and contour graphical configurations for clarity and exactitude.

1. Introduction

In the existence of a magnetized e-p-i plasma [1], the ZK
equation is one of the widely common methods to character-
ize the ion-acoustic solitary waves. The magnetized load-
varying dusty plasma is the best location to look for alternate
placed dust ion acoustic waves of nonthermal electrons with
a vortex-like spread of velocity [2]. In a comprehensive com-
putational analysis, the ZK method was used to spread the
dust-acoustic waves in a magnetized dusty plasma [3] and
to excite the electrostatic ion-acoustic lone wave in two
dimensions of negative ion magnetoplasmas of superthermal
electrons [4]. This plasma comprises of nonthermal ions and

negatively charged mobile dust crystals, and q-distributed
temperature electrons of distinct nonextensivity power [5].
The ZK equation’s mathematical formula found by the
well-known reductive disruption process [6] is given by

Dα
t B +LBBz +Bz z z +Q Bx x z +By y z

� �
= 0, ð1Þ

where Dα
t = dα/d tα, 0 < α < 0,B =Bðx, y, z, tÞ, L = 2, Q =

1 − ðH2
e/8Þ, He = ðH ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωc i ωc e
p Þ/2KB T F e, H = 2π, ωc i =

eB0/2KB T F e, and ωc e = eB0/me, c. Additionally, H is
Planck’s constant;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωc i ωc e

p
is the lower-hybrid resonance

frequency; ωc i = eB0/Mi c, ωc e = eB0/Me c are the ion
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(electron) gyrofrequency; Mi is the ion mass; and c is the
speed of light in vacuum.

Solving this kind of models has attracted many
researchers in various areas, chemical physics [7], geochem-
istry [8], plasma physics [8], fluid mechanics [9], optical fiber
[10], solid-state physics [11], and so on [12–15]. Conse-
quently, constructing the exact solutions of these mathemat-
ical models is an indispensable tool for detecting novel
properties of them that can be used in their various applica-
tions. However, finding the exact solutions of them are not
easy to process but is also considered a hard and complex
process where there is no unified computational or numerical
technique that is able to be applied to all nonlinear evolution
(NLE) equations. Almost all computational and numerical
techniques depend on an auxiliary equation that is consid-
ered a pivot tool in these techniques where all obtained solu-
tions via these schemes are special cases of its general
solutions [16–24].

For the fractional models, many analytical and numerical
methods with various fractional operators have been derived
such as the exponential expansion method, Khater method,
Kudryashov method, simplest equation method, ðΨ′/ΨÞ
-expansion method, Riccati expansion method, first integral
method, tanh method, and the functional variable method
[25–34].

This paper studies the analytical and numerical solutions
of the Atangana conformable derivative (1 + 3)-ZK equation
with power-law nonlinearity that is given by [35–38].

Dα
t B + aBn Bx + b Bx x x +By y x +Bz z x

� �
= 0, ð2Þ

where a, b, respectively, represent the nonlinearity and dis-
persion real valued constants. Also, Bt is the evolution term
while n represents the power law nonlinearity parameter.
Using the following wave transformation [39, 40] ½B =Bðx
, y, z, tÞ =PðFÞ,F= x + y + z + ðλ/αÞ ðt + ð1/ΓðαÞÞÞα� on
Equation (1) where λ is an arbitrary constant yields

λP′ + a
n + 1 PnP′ + b 3P″

� �
= 0: ð3Þ

Integrating Equation (3) once with zero constant of the
integration leads to

λP + a
n + 1 Pn+1 + 3 bP″ = 0: ð4Þ

Through the balancing principle, the termsPn+1 andP″
force that m = 2/n. Thus, we employ another transformation
P =U2/n on Equation (1) gives

λU2 + a
n + 1 U4 + 3 b 4 − 2 nð Þ

n2
U′2 + 6 b

n
UU″ = 0: ð5Þ

Balancing between the terms of Equation (5) leads to
m = 1:

The outline of this research paper is given as follows. Sec-
tion 2 employs the mKmethod and septic B-spline scheme to
get the abundant explicit wave and numerical solutions of the

Atangana conformable derivative (1 + 3)-ZK equation with
power-law nonlinearity. Section 3 investigates the stability
of the results solutions. Section 4 shows and discusses the
obtained results in our research paper. Section 5 gives the
graphical demonstration of some of our solutions. Section 6
explains the conclusion of our study.

2. Implementation

In this section, we employ three recent analytical schemes to
find the explicit wave solutions of the Atangana conformable
derivative (1 + 3)-ZK equation with power-law nonlinearity.

2.1. Ion-Acoustic Solitary Waves Solutions. This section gives
a transitory elucidation of the mKmethod. We now explore a
nontrivial solution for Equation (5) in the form

U = 〠
m

i=1
ai K

iF Fð Þ + 〠
m

i=1
bi K

−iF Fð Þ + a0

= a1 K
F Fð Þ + a0 + b1 K

−F Fð Þ,
ð6Þ

where a0, a1, and b1 are arbitrary constants while FðFÞ is a
function that satisfies the next ODE

F ′ Fð Þ = uK−F Fð Þ + ρKF Fð Þ + δ

ln Kð Þ : ð7Þ

where u, ρ, and δ are arbitrary constants. Exchanging the
values of U,U″ with Equation (6) along (7) and aggregation
of all terms with the same power of K jFðFÞ, ðj = −4,−3,⋯,3
, 4Þ then equating the gathering terms with zero lead to a sys-
tem of equations. Solving this system yields

Family I

a0 ⟶
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
+ a1δ

2ρ ,

b1 ⟶ 0,

λ⟶
1
4 −3ð Þ bδ2 − 4bρu

� �
,

a⟶ −
9bρ2
4a21

,

n⟶ −4:

ð8Þ

Family II

a0 ⟶
b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
+ b1δ

2u ,

a1 ⟶ 0,

λ⟶
1
4 −3ð Þ bδ2 − 4bρu

� �
,

a⟶ −
9bu2
4b21

,

n⟶ −4:

ð9Þ
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Family III

a1 ⟶
a0ρ
δ

,

b1 ⟶
a0u
δ

,

λ⟶
1
4 −3ð Þ bδ2 − 4bρu

� �
,

a⟶ −
9bδ2
4a20

,

n⟶ −4:

ð10Þ

Family IV

a0 ⟶
a1δ
2ρ ,

b1 ⟶ 0,

λ⟶
3
2 bδ2 − 4bρu
� �

,

a⟶ −
18bρ2
a21

,

n⟶ 2:

ð11Þ

Family VI

a0 ⟶
b1δ
2u ,

a1 ⟶ 0,

λ⟶
3
2 bδ2 − 4bρu
� �

,

a⟶ −
18bu2
b21

,

n⟶ 2:

ð12Þ

Thus, using the above families leads to the new exact sol-
itary wave solutions to the Atangana conformable derivative
(1 + 3)-ZK equation with power-law nonlinearity in the next
formulas.

For δ2 − 4ρ u < 0, ρ ≠ 0, we get

BI,1 x, tð Þ =
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
4αH − 3bϕ δ2 − 4ρu

� �� �� �
/8α

� �
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p� �� �
/ρ

r ,

BI,2 x, tð Þ =
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
cot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
4αH − 3bϕ δ2 − 4ρu

� �� �� �
/8α

� �
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p� �� �
/ρ

r ,

BII,1 x, tð Þ =
ffiffiffi
2

p

b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
+ δ

� �
/u

� �
− 4ρ/ δ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
4αH − 3bϕ δ2 − 4ρu

� �� �� �
/8α

� �� �� �� �r ,

BII,2 x, tð Þ =
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
+ δ

� �
/u

� �
− 4ρ/ δ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
cot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
4αH − 3bϕ δ2 − 4ρu

� �� �
/8α

� �� �� �� �r ,

BIII,1 x, tð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 δ2 − 4ρu
� �� �

/ δ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
H − 3bϕ δ2 − 4ρu

� �
/4α

� �� �� �
+ δ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
H − 3bϕ δ2 − 4ρu

� �
/4α

� �� �� �
+ δ

� �� �r ,

BIII,2 x, tð Þ = 
− a0 δ2 − 4ρu

� �� �
/ δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
H − 3bϕ δ2 − 4ρu

� �
/4α

� �� �� �
+ δ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
H − 3bϕ δ2 − 4ρu

� �
/4α

� �� �� �
− δ

� �� �r ,

BIV,1 x, tð Þ =
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
3bϕ δ2 − 4ρu
� �

+ 2αH
� �� �

/4α
� �

2ρ ,

BIV,2 x, tð Þ =
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
cot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
3bϕ δ2 − 4ρu
� �

+ 2αH
� �� �

/4α
� �

2ρ ,

BV,1 x, tð Þ = 1
2 b1

δ

u −
4ρ

δ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
3bϕ δ2 − 4ρu
� �

+ 2αH
� �� �

/4α
� �

0
@

1
A,

BV,2 x, tð Þ = 1
2 b1

δ

u −
4ρ

δ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
cot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρu − δ2

p
3bϕ δ2 − 4ρu
� �

+ 2αH
� �� �

/4α
� �

0
@

1
A:

ð13Þ
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For ρδ2 − 4ρu < 0, ≠ 0, we get

For ρ u > 0, u ≠ 0, ρ ≠ 0, δ = 0, we get

BI,3 x, tð Þ =
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
4αH − 3bϕ δ2 − 4ρu

� �� �� �
/8α

� �
− 1

� �� �
/ρ

r ,

BI,4 x, tð Þ =
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
coth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
4αH − 3bϕ δ2 − 4ρu

� �� �� �
/8α

� �
− 1

� �� �
/ρ

r ,

BII,3 x, tð Þ =
ffiffiffi
2

p

b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
+ δ

� �
/u

� �
− 4ρ/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
4αH − 3bϕ δ2 − 4ρu

� �� �� �
/8α

� �
+ δ

� �� �� �r ,

BII,4 x, tð Þ =
ffiffiffi
2

p

b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
+ δ

� �
/u

� �
− 4ρ/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
coth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
4αH − 3bϕ δ2 − 4ρu

� �� �� �
/8α

� �
+ δ

� �� �� �r ,

BIII,3 x, tð Þ = 
a0 δ2 − 4ρu
� �� �

/ δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
H − 3bϕ δ2 − 4ρu

� �
/4α

� �� �� �
+ δ cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
H − 3bϕ δ2 − 4ρu

� �
/4α

� �� �� �
+ δ

� �� �r ,

BIII,4 x, tð Þ = 
− a0 δ2 − 4ρu

� �� �
/ δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
H − 3bϕ δ2 − 4ρu

� �
/4α

� �� �� �
+ δ cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
H − 3bϕ δ2 − 4ρu

� �
/4α

� �� �� �
− δ

� �� �r ,

BIV,3 x, tð Þ = −
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
3bϕ δ2 − 4ρu
� �

+ 2αH
� �� �

/4α
� �

2ρ ,

BIV,4 x, tð Þ = −
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
coth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
3bϕ δ2 − 4ρu
� �

+ 2αH
� �� �

/4α
� �

2ρ ,

BV,3 x, tð Þ = 1
2 b1

δ

u −
4ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 − 4ρu
p

tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
3bϕ δ2 − 4ρu
� �

+ 2αH
� �� �

/4α
� �

+ δ

0
@

1
A,

BV,4 x, tð Þ = 1
2 b1

δ

u −
4ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 − 4ρu
p

coth
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ρu

p
3bϕ δ2 − 4ρu
� �

+ 2αH
� �� �

/4α
� �

+ δ

0
@

1
A:

ð14Þ

BI,5 x, tð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

ffiffiffiffiffiffi
ρup tan ffiffiffiffiffiffi

ρup 3bρuϕð Þ/α +Hð Þ� �
+

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þp� �� �

/ρ
r ,

BI,6 x, tð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þp

− ffiffiffiffiffiffi
ρup cot ffiffiffiffiffiffi

ρup 3bρuϕð Þ/αð Þ +Hð Þ� �� �� �
/ρ

r ,

BII,5 x, tð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

ffiffiffiffiffiffi
ρup cot ffiffiffiffiffiffi

ρup 3bρuϕð Þ/αð Þ +Hð Þ� �
+

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þp� �� �

/u
r ,

BII,6 x, tð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þp

− ffiffiffiffiffiffi
ρup tan ffiffiffiffiffiffi

ρup 3bρuϕð Þ/αð Þ +Hð Þ� �� �� �
/u

r ,

BIV,5 x, tð Þ = a1u tan ffiffiffiffiffiffi
ρup

H − 6bρuϕð Þ/αð Þð Þ� �
ffiffiffiffiffiffi
ρup ,

BIV,6 x, tð Þ = −
a1u cot ffiffiffiffiffiffi

ρup
H − 6bρuϕð Þ/αð Þð Þ� �
ffiffiffiffiffiffi
ρup ,

BV,5 x, tð Þ = b1ρ cot ffiffiffiffiffiffi
ρup

H − 6bρuϕð Þ/αð Þð Þ� �
ffiffiffiffiffiffi
ρup ,

BV,6 x, tð Þ = −
b1ρ tan ffiffiffiffiffiffi

ρup
H − 6bρuϕð Þ/αð Þð Þ� �
ffiffiffiffiffiffi
ρup :

ð15Þ
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For ρ u < 0, u ≠ 0, ρ ≠ 0, δ = 0, we get

BI,7 x, tð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1u tanh

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þp

3bρuϕ/αð Þ +Hð Þ
� �

− 1
� �� �

/
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þpr ,

ð16Þ

BI,8 x, tð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1u coth

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þp

3bρuϕ/αð Þ +Hð Þ
� �

− 1
� �� �

/
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þpr ,

ð17Þ

BII,7 x, tð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þp

coth
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þp

3bρuϕ/αð Þ +Hð Þ
� �

+ 1
� �� �

/u
r ,

ð18Þ

BII,8 x, tð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þp

tanh
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þp

3bρuϕ/αð Þ +Hð Þ
� �

+ 1
� �� �

/u
r ,

ð19Þ

BIV,7 x, tð Þ =
a1u tanh

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þp

H − 6bρuϕð Þ/αð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þp , ð20Þ

BIV,8 x, tð Þ =
a1u coth

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þp

H − 6bρuϕð Þ/αð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þp , ð21Þ

BV,7 x, tð Þ = b1
ffiffiffi
ρ

p cot ffiffiffi
ρ

p ffiffiffiup
H − 6bρuϕð Þ/αð Þ� �
ffiffiffiup , ð22Þ

BV,8 x, tð Þ =
b1

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þp

tanh
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ −uð Þp

H −H − 6bρuϕð Þ/αð Þ
� �

u :

ð23Þ

For δ = u/2 = κ, ρ = 0, we get

BII,9 x, tð Þ = 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 4/ eκH− 3bκ3ϕð Þ/4αð Þ − 2

� �� �
+ κ/

ffiffiffiffiffi
κ2

p� �
+ 1

� �r ,

BIII,9 x, tð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 2/ eκH− 3bκ3ϕð Þ/4αð Þ − 2

� �
+ 1

� �q ,

BVI,9 x, tð Þ = 1
4 b1

4
e 3bκ3ϕð Þ/2αð Þ+κH − 2

+ 1
� �

:

ð24Þ

For δ = ρ = κ, u = 0, we get

BI,10 x, tð Þ =
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 κ/

ffiffiffiffiffi
κ2

p� �
− coth κH /2ð Þ − 3bκ3ϕð Þ/8αð Þð Þ

� �r ,

BIII,10 x, tð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a0/eκH− 3bκ3ϕð Þ/4αð Þ − 1

p ,

BIV,10 x, tð Þ = −
1
2 a1 coth

3bκ3ϕ
4α + κH

2

� �
:

ð25Þ

For u = 0, δ ≠ 0, ρ ≠ 0, we get

BI,11 x, tð Þ =
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 δ −4/ ρeδH− 3bδ3ϕð Þ/4α − 2

� �
− 1

� �
+

ffiffiffiffiffi
δ2

p� �� �
/ρ

r ,

BIII,10 x, tð Þ = 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a0/ ρe δH− 3bδ∧3 3ϕð Þ/4αð Þð Þ − 2

� �q ,

BIV,10 x, tð Þ = a1δ 4/ 2 − ρe 3bδ∧3ϕð Þ/2α+δHð Þ� �
− 1

� �
2ρ :

ð26Þ

For δ = ρ = 0, u ≠ 0, we get

BII,10 x, tð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1/λtu + xu

p ,

BV,10 x, tð Þ = b1
λtu + xu :

ð27Þ

For δ = 0, u = ρ, we get

BI,11 x, tð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 tan 3bu3ϕ/αð Þ + C +Huð Þ + ffiffiffiffiffiffi

−up / ffiffiffiup� �� �q ,

BII,11 x, tð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 cot 3bu3ϕ/αð Þ + C +Huð Þ + ffiffiffiffiffiffi

−up / ffiffiffiup� �� �q ,

BIV,11 x, tð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 cot 3bu3ϕ/αð Þ + C +Huð Þ + ffiffiffiffiffiffi

−up / ffiffiffiup� �� �q ,

BV,11 x, tð Þ = a1 tan −
6bu3ϕ
α

+ C +Hu

� �
,

BVI,11 x, tð Þ = b1 cot −
6bu3ϕ
α

+ C +Hu

� �
:

ð28Þ
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For ρ = 0, δ ≠ 0, u ≠ 0, we get

BII,12 x, tð Þ = 1
2 b1

2δ
δeδH− 3bδ3ϕ/4αð Þ − u

+
ffiffiffiffiffi
δ2

p
+ δ

u

 !
,

BIII,12 x, tð Þ = a0
u

δeδH− 3bδ3ϕ/4αð Þ − u
+ 1

� �
,

BVI,12 x, tð Þ = 1
2 b1δ

2
δe 3bδ3ϕ/2αð Þ+δH − u

+ 1
u

� �
:

ð29Þ

where H = x + y + z, ϕ = ðt + ð1/ΓðαÞÞÞα.
2.2. Numerical Solutions. Here, we use three different ana-
lytical solutions Equations (16), (19) and (20) to evaluate

the numerical solutions of the Atangana conformable
derivative (1 + 3)-ZK equation with power-law nonlinear-
ity. Employing the septic spline technique to Equation
(5) with the following conditions a1 = 3, a0 = −6, a = −5/4,
b = 5, b1 = 0, δ = 0, λ = −60, n = −4, ρ = −1, u = 4&a0 = −25,
a1 = 0, a = −9/20, b1 = 5, b = 2, δ = 0, λ = −150, n = −4, ρ = 25
, u = −1&a1 = 3, a0 = 0, a = −4, b = 2, b1 = 0, δ = 0, λ = 108, n
= 2, ρ = −1, and u = 9 gives its numerical solutions in the
next form

B Fð Þ = 〠
M+1

T=−1
CM EM, ð30Þ

where cM,EM follow the next conditions, respectively:

For T ∈ ½−3,M + 3�, we get

BT Fð Þ =CT−3 + 120CT−2 + 1191CT−1
+ 2416CT + 1191CT+1 + 120CT+2 +CT+3:

ð32Þ

Substituting Equation (32) into Equation (5) gives
ðM + 7Þ of equations. Resolving this system leads to
the following values of exact, numerical, and absolute
values or error.

3. Stability Characteristics

In this section, the stability property has been tested of the
obtained results based on the Hamiltonian system character-
istics. This system imposes a single condition to ensure the

stability of the solution. This condition is given by

∂M
∂ λ

				
λ=G

> 0, ð33Þ

where M = ð1/2Þ ÐE−E B2 dF where E is an arbitrary con-
stants, λ is the frequency, and G is an arbitrary constant.

Applying the stability check of Equation (20) with the fol-
lowing values of the parameters a1 = 3, a0 = 0, a = −4, b = 2,
b1 = 0, δ = 0, λ = 108, n = 2, ρ = −1, and u = 9, leads to

∂M
∂ λ

				
λ=6

= −2:3447910280083306 × 10−13 < 0: ð34Þ

Consequently, this solution is not stable and applying the

LB Fð Þ =F FM,B FMð Þð Þwhere M = 0, 1,⋯, nð Þ

ET Fð Þ = 1
S5

F−FT−4ð Þ7, F∈ FT−4,FT−3½ �,
F−FT−4ð Þ7 − 8 F−FT−3ð Þ7, F∈ FT−3,FT−2½ �,
F−FT−4ð Þ7 − 8 F−FT−3ð Þ7 + 28 F−FT−2ð Þ7, F∈ FT−2,FT−1½ �,
F−FT−4ð Þ7 − 8 F−FT−3ð Þ7 + 28 F−FT−2ð Þ7 + 56 F−FT−1ð Þ7, F∈ FT−1,FT½ �,
FT+4 −Fð Þ7 − 8 FT+3 −Fð Þ7 + 28 FT+2 −Fð Þ7 + 56 FT+1 −Fð Þ7, F∈ FT,FT+1½ �,
FT+4 −Fð Þ7 − 8 FT+3 −Fð Þ7 + 28 FT+2 −Fð Þ7, F∈ FT+1,FT+2½ �,
FT+4 −Fð Þ7 − 8 FT+3 −Fð Þ7, F∈ FT+2,FT+3½ �,
FT+4 −Fð Þ7, F∈ FT+3,FT+4½ �,
0, otherwise:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð31Þ
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same steps to other obtained solutions investigates their sta-
bility property.

4. Result and Discussion

Here, we discuss our obtained solutions of the Atangana con-
formable derivative (1 + 3)-ZK equation with power-law non-
linearity that have been obtained through one of the most
recent computational schemes in nonlinear evolution equation
field (the mK method) via two main axes which are a compar-

ison between our obtained computational solutions and other
previous obtained solutions, while the second axis of this discus-
sion is studying our exact and numerical solutions.

(i) Computational solutions

(1) Applying the modified Khater method to the
Atangana conformable derivative (1 + 3)-ZK
equation with power-law nonlinearity has
obtained sixty distinct traveling wave solutions
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Figure 1: Exact, and numerical solutions based on the obtained analytical solution Equation (16) and septic B-spline scheme.
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Figure 2: Exact and numerical solutions based on the obtained analytical solution Equation (19) and septic B-spline scheme.
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Figure 3: Exact and numerical solutions based on the obtained analytical solution Equation (20) and septic B-spline scheme.

7Advances in Mathematical Physics



(2) The difference between our obtained solutions
and that have been obtained in [41] by Amini-
khah et al. who had used the functional variable
method; however, they have just found three
solutions and accurate in their and our solutions,
we can figure out the complete difference
between these solutions that thing makes our
solutions are novel

(ii) Numerical solutions

(1) Applying the septic B-spline scheme to the Atan-
gana conformable derivative (1 + 3)-ZK equation
with power-law nonlinearity by using three of
our obtained solutions in evaluating the initial
and boundary conditions that give the ability of
employing the septic B-spline scheme to the frac-
tional model

5. Figure and Table Interpretation

This section illustrates our explained Figures 1–3 and
Tables 1–3 with the abovementioned values of the parameters.

(i) Figure 1 and Table 1 show the value of the exact and
numerical solutions and absolute error of Equation
(5) with Equation (16) in three distinct types of
sketches to explain the convergence between the
two types of solutions

(ii) Figure 2 and Table 2 show the value of exact and
numerical solutions and absolute error of Equation
(5) with Equation (19) in three distinct types of
sketches to illustrate the closer between the two
types of solutions

(iii) Figure 3 and Table 3 explain the value of exact,
numerical solutions and absolute error of Equation
(5) with Equation (20) in three distinct types of
sketches to show the matching between the two
types of solutions

6. Conclusion

This paper has succeeded in the implementation of the mK
method and septic B-spline scheme to the Atangana con-
formable derivative (1 + 3)-ZK equation with power-law
nonlinearity. Sixty distinct novel computational solutions
have been obtained. Three of these solutions have been used
to evaluate the initial and boundary conditions that have
allowed the application of the numerical scheme. Calculating
the absolute value of error between the exact and numerical is
the aim of our study. Moreover, the stability of our obtained
solutions has been illustrated based on the Hamiltonian sys-
tem characteristics. The effectiveness and power of our two
used schemes have been verified, and all obtained solutions
have been also verified by putting them back in the original
equation via Mathematica 12 software.

Table 1: Exact and numerical value of the Atangana conformable
derivative (1 + 3)-ZK equation with power-law nonlinearity
through the obtained analytical solutions via the modified Khater
method Equation (16) and septic B-spline scheme.

Value of F Exact Numerical Absolute error

0 0. -0.408248 I 0. -0.0000110311 I 0.408237

0.0001 0. -0.408289 I 0. -8.37587 × 10−6 I 0.408281

0.0002 0. -0.40833 I 0. -5.50221 × 10−6 I 0.408324

0.0003 0. -0.408371 I 0. -2.53611 × 10−6 I 0.408368

0.0004 0. -0.408412 I 0. -1.13958 × 10−6 I 0.408411

0.0005 0. -0.408453 I 0. +1.58999 × 10−7 I 0.408453

0.0006 0. -0.408493 I 0. -1.01297 × 10−6 I 0.408492

0.0007 0. -0.408534 I 0. -2.41857 × 10−6 I 0.408532

0.0008 0. -0.408575 I 0. -5.26488 × 10−6 I 0.40857

0.0009 0. -0.408616 I 0. -7.96518 × 10−6 I 0.408608

0.001 0. -0.408657 I 0. -0.0000103138 I 0.408647

Table 2: Exact and numerical value of the Atangana conformable
derivative (1 + 3)-ZK equation with power-law nonlinearity
through the obtained analytical solutions via the modified Khater
method Equation (19) and septic B-spline scheme.

Value of F Exact Numerical Absolute error

0 0. -0.2 I 0. -0.0000794823 I 0.199921

0.0001 0. -0.19995 I 0. -0.0000595992 I 0.19989

0.0002 0. -0.1999 I 0. -0.0000399605 I 0.19986

0.0003 0. -0.19985 I 0. -0.0000214 I 0.199829

0.0004 0. -0.1998 I 0. -8.76169 × 10−6 I 0.199792

0.0005 0. -0.19975 I 0. +1.47924 × 10−6 I 0.199752

0.0006 0. -0.199701 I 0. -7.5007 × 10−6 I 0.199693

0.0007 0. -0.199651 I 0. -0.0000199929 I 0.199631

0.0008 0. -0.199601 I 0. -0.0000376969 I 0.199564

0.0009 0. -0.199552 I 0. -0.000056177 I 0.199495

0.001 0. -0.199502 I 0. -0.0000736582 I 0.199428

Table 3: Exact and numerical value of the Atangana conformable
derivative (1 + 3)-ZK equation with power-law nonlinearity
through the obtained analytical solutions via the modified Khater
method Equation (20) and septic B-spline scheme.

Value of F Exact Numerical Absolute error

0 0 3.46945 × 10−17 3.46945 × 10−17

0.0001 0.0027 0.000779236 0.00192076

0.0002 0.0054 -8.67362E-18 0.0054

0.0003 0.0081 0.00489544 0.00320455

0.0004 0.0108 0 0.0108

0.0005 0.0135 6.50521E-19 0.0135

0.0006 0.0162 0 0.0162

0.0007 0.0189 -4.33681E-19 0.0189

0.0008 0.0216 -8.67362E-19 0.0216

0.0009 0.0242999 0.0141565 0.0101435

0.001 0.0269999 0.0269999 3.46945 × 10−18
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Nonlinear hydroelastic interaction among a floating elastic plate, a train of deepwater waves, and a current which decays
exponentially with depth is studied analytically. We introduce a stream function to obtain the governing equation with the
dynamic boundary condition expressing a balance among the hydrodynamic, the shear currents, elastic, and inertial forces. We
use the Dubreil-Jacotin transformation to reformulate the unknown free surface as a fixed location in the calculations. The
convergent analytical series solutions for the floating plate deflection are obtained with the aid of the homotopy analysis method
(HAM). The effects of the shear current are discussed in detail. It is found that the phase speed decreases with the increase of
the vorticity parameter in the opposing current, while the phase speed increases with the increase of the vorticity parameter in
the aiding current. Larger vorticity tends to increase the horizontal velocity. In the opposing current, the horizontal velocity
under the wave crest delays more quickly as the depth increases than that of waves under the wave trough, while in the aiding
current case, there is the opposite effect. Furthermore, the larger vorticity can sharpen the hydroelastic wave crest and smooth
the trough on an opposing current, while it produces an opposite effect on an aiding current.

1. Introduction

Hydroelastic interaction between a floating deformable
plate and water flows has been a long-standing and hot
issue under the rapidly growing demand for exploiting
ocean resources and utilizing marine space. For example,
hydroelastic interaction has become an indispensable factor
during designing a very large floating structure (VLFS) as a
storage facility, a mobile offshore base, or even an aircraft
airport, which also is available to analyze the floating ice
sheet in the polar region, ice-breaking with air-cushioned
vehicles, and marine climate.

There is an extensive literature on the theory of nonlinear
hydroelastic interaction between a floating elastic plate and
the water waves. Most of the relevant research is under the
hypothesis that there is no current in oceanic environments,
such as Refs. [1–6]. In fact, there are various reasons such as
wind, thermal, earth rotation, tidal effects, the vertical varia-
tion of water salinity, and temperature which frequently gen-
erate ocean currents. Some authors have considered the

problem of hydroelastic waves propagating on a current.
Schulkes et al. [7] first built the governing equation with
the boundary conditions to research the effect of the uniform
flow in the underlying water on a floating ice plate. It is found
that the flow with constant velocity had an apposite influence
slightly the dispersion at very short wavelengths and the ice
profile was no longer aligned with the source velocity but
rotated through an angle. Bhattacharjee and Sahoo [8] ana-
lyzed the interaction between current and flexural gravity
waves generated due to a floating elastic plate under the
assumptions of linearized theory and studied the effect of
current on the wavelength, phase velocity, and group velocity
of the flexural gravity waves in detail. Bhattacharjee and
Sahoo [9] extended their study [8] to the generation of flex-
ural gravity waves resulting from initial disturbances at a
point and derived asymptotic depressions for the transient
flexural gravity for large distances and times by the applica-
tion of the method of the stationary phase. Mohanty et al.
[10] studied a combined effect of the uniform current and
compressive force on time-dependent flexural gravity wave
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motion in both the cases of single and two-layer fluids and
derived the integral forms of Greens function and the velocity
potential by using the method of stationary phase. Lu and
Yeung [11] studied unsteady hydroelastic waves generated
by point loads in a uniform current and found the flexural
gravity wave motion depended on the ratio of current speed
to phase or group speeds. Wang et al. [12] considered nonlin-
ear hydroelastic waves generated due to a floating elastic
plate in an underlying uniform current and studied analyti-
cally the effects of the uniform current on the nonlinear
hydroelastic waves.

All the aforementioned literatures were based on the
assumption that the underlying current is uniform in the
fluid and hence ignore the effects of the vorticity distribution.
However, in many situations, the current velocity in the ver-
tical direction is mostly nonuniform and the vorticity
appears (e.g., wind-driven current and tidal current). Hydro-
elastic waves with a linear shear or constant-vorticity current
were investigated by many authors. Bhattacharjee and Sahoo
[13] analyzed the effect of a linear shear current on the prop-
agation of flexural gravity waves is analyzed in the frame of
linearized shallow-water theory and derived the reflection
and transmission coefficients based on the conservation of
energy flux and the continuity of the vertical deformation
of the ice sheet. Gao et al. [14] studied hydroelastic solitary
waves in the presence of a linear shear current in the limit
of deep water, and traveling solitary waves on water of infi-
nite depth were computed for different values of vorticity
and new generalised solitary waves were discovered.
Recently, Gao et al. [15] investigated hydroelastic waves on
water of finite depth interacting with a linear shear current
in inviscid flows and derive a nonlinear Schrodinger equation
for quasimonochromatic wavetrains and discuss the various
behaviors of the coefficient of the nonlinear term from the
NLS at different parameter values by employing a conformal
mapping technique.

It is noted that the homotopy analysis method (HAM)
[16, 17], which does not rely on any small physical parame-
ter, has been applied to solve analytically the problem of
the nonlinear wave-current interaction. Cheng et al. [18]
investigated a train of periodic deepwater waves propagating
on a steady shear current with a vertical distribution of vor-
ticity by using the HAM and analyzed the influences of an
exponential shear current on a train of waves in detail. Cang
et al. [19] extend Cheng et al.’s study [18] on the effect of a
background shear flow on periodic water waves by introduc-
ing a new parameter which measures the depth of the
background shear current, and the impact of the depth
parameter on the wave phase speed, the velocity profiles,
and the maximum wave height were given. These works
encouraged us to apply the HAM to the complex nonlinear
problem of hydroelastic interaction among a floating elastic
plate, water waves, and exponential shear currents.

In this work, our aim is to obtain accurate analytic
approximations of nonlinear hydroelastic waves generated
due to a floating elastic plate in a current which decays expo-
nentially with depth. The influences of the exponential shear
current on the hydroelastic wave profile, the wave phase
speed, and the horizontal velocity profile are investigated

and discussed in detail with the aid of the HAM. The
remainder of the paper is organized as follows: In Section
2, the mathematical model of nonlinear hydroelastic interac-
tion among a floating elastic plate, water waves, and expo-
nential shear currents is formulated, and the Dubreil-
Jacotin transformation is introduced to reformulate the orig-
inal moving boundary problem into a fixed one. In Section 3,
we present the solution procedure and the approximation
and iteration of solutions in the frame of the HAM. In Sec-
tion 4, the results of numerical calculations and the influence
of the shear current are shown. Finally, concluding remarks
are given in Section 5.

2. Mathematical Description

Consider an incompressible flow of an inviscid but rotational
fluid with a two-dimensioned case, we choose Cartesian
coordinates oxz in which the x-axis coincides with the
undisturbed fluid-plate interface, while the z-axis points
vertically upward. The floating elastic plate extends to
the infinity along the x-axis. When the traveling waves
exist, we use the moving coordinates ðx − ct, zÞ⟶ ðx, zÞ
to eliminate time from the fluid-plate region, where c is
the wave speed. The conservation of mass for a two-
dimensional incompressible fluid is

∂ u +U − cð Þ
∂x

+ ∂v
∂y

= 0, ð1Þ

where ðu, vÞ are the motions related to wave-current inter-
action in the ðx, yÞ directions, U is the mean x-directed
current, and the wave speed c appears as negative due to
the translation of the coordinate axis. We introduced a
stream function ψðx, zÞ, which satisfies exactly

u +U − c = −
∂ψ x, zð Þ

∂y
,

v = ∂ψ x, zð Þ
∂x

:

ð2Þ

Substituting the stream function into the governing
equation derived by Lamb [20], we denote the vorticity
distribution Ω as

∂v
∂x

−
∂ u +U − cð Þ

∂y
= ∇2ψ = −Ω ψð Þ,  z ≤ ζ xð Þð Þ: ð3Þ

Here, we study the shear current decay exponentially
with depth, and let ΩðψÞ = μ exp ð−ψÞ, where μ is a phys-
ical parameter determining the strength of the fluid vortic-
ity. When μ < 0, the current moves in the same direction
of wave propagation and then is called the aiding current.
When μ > 0, the current is called the opposing current
which moves in the opposing direction of wave propaga-
tion [21].
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The impermeable bottom condition at deep water can be
written as

∂ψ
∂x

= 0,  z = −∞ð Þ: ð4Þ

With the assumption that there is no cavitation between
the fluid and the plate with on draft, the unknown fluid-
plate interface z = ζðxÞ is a streamline. Without loss of gener-
ality, the kinematic boundary conditions on z = ζðxÞ can be
written as

ψ = 0: ð5Þ

The nonlinear dynamic boundary conditions on the
unknown fluid-plate interface streamline is described as

1
2 ∇ψj j2 + pe

ρ
+ gζ =Q, ð6Þ

where pe is the pressure on the plate-water interface, Q an
unknown Bernoulli’s constant on the fluid-plate interface
streamline, ρ is the uniform densities of the fluid, and g is
the gravitational acceleration.

As the surface pressure is equal to the pressure of the
plate, we model the floating elastic plate as a linear Kirch-
hoff–Love plate [5].

pe =D
∂4ζ
∂x4

+meg, ð7Þ

where the flexural rigidity of the plate is expressed by
D = Ed3/½12ð1 − ν2Þ� with Young’s modulus E, the constant
thickness d, and Poisson’s ratio ν of the plate, respectively.
með= ρedÞ is the mass of the plate in a unit length with the
uniform densities ρe of an elastic plate. Substituting Equation
(7) into Equation (6) yields the full form of the dynamic
boundary condition as

1
2 ∇ψj j2 + gζ + 1

ρ
D
∂4ζ
∂x4

+meg

 !
=Q: ð8Þ

It is difficult to directly solve the above Equations (3),
(4), (5), and (8) in which the boundary conditions (5) and
(8) satisfy the unknown fluid-plate interface z = ζðxÞ. So
we use the Dubreil-Jacotion transformation [18, 19, 21] to
convert Cartesian coordinates oxz into Cartesian coordi-
nates oxψ in which the z-axis points vertically downward,
and then, the unknown interface z = ζðxÞ is reformulated
as the fixed location ψ = 0, as shown in Figure 1. Here, we

consider that zðx, ψÞ is a periodic function in the x direction
with the period 2π.

For the sake of clarity, we introduce the following dimen-
sionless quantities

x∗ = kx, z∗ = kz, ψ∗ = k
c
ψ,Ω∗ ψð Þ = Ω ψð Þ

kcð Þ ,m∗
e =

kme

ρ
,

ρ∗e =
ρe
ρ
,D∗ = k4

D
ρgð Þ , E

∗ = kE
ρgð Þ ,H

∗ = kH,

ð9Þ

where variables with ∗ are dimensionless. By the Dubreil-
Jacotion transformation and the nondimensionalization
(9), Equations (3), (8), and (4) are reformulated as (after
omitting the ∗)

∂2z
∂x2

∂z
∂ψ

� �2
− 2 ∂z

∂x
∂z
∂ψ

∂2z
∂x∂ψ

+ 1 + ∂z
∂x

� �2
" #

∂2z
∂ψ2

= ∂z
∂ψ

� �3
Ω ψð Þ,  ψ > 0ð Þ,

ð10Þ

1
2 δ 1 + ∂z

∂x

� �2
" #

+ z +D
∂4z
∂x4

+me − κ

 !
∂z
∂ψ

� �2
= 0,  ψ = 0ð Þ,

ð11Þ

∂z
∂x

= 0,  ψ = +∞ð Þ, ð12Þ

respectively, where both δ = c2/c20 and κ = kQ/g are unknown
constants, and c20 = g/k is known linear phase speed without
any background current.

3. Analytical Approach Based on the HAM

3.1. Solution Expressions. From physical points of view, our
hydroelastic problem is made of a train of deepwater hydro-
elastic waves, a uniform current due to the moving coordi-
nates, and shear currents with exponential decay on depth.
In case of the pure deepwater hydroelastic waves, the periodic
wave deflection can be expressed by

z = 〠
+∞

m=0
αm cos mxð Þ, ð13Þ

xz
z = 0

z = −∞

O

𝜓 (x, z)

x

𝜓

𝜓 = 0

𝜓 = +∞

O

z (x, 𝜓)

Figure 1: The coordinate transformation.
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where αm is an unknown coefficient to be derived [5].
Considering the shear currents with vorticity distribution
ΩðψÞ = μ exp ð−ψÞ, Equation (10) contains the term exp
ð−ψÞ, so it is suitable that zðx, ψÞ should contain the term
exp ð−nψÞ, where n is an integer. As hydroelastic wave
deflections with shear currents are still periodic in the x direc-
tion, then zðx, ψÞ should also contain the term cos ðmxÞ.
Besides, the uniform currents caused by the coming coordi-
nates do not give rise to the interaction between the hydroelas-
tic waves and the currents. So we consider the solution
expression of the hydroelastic wave deflection as

z x, ψð Þ = −ψ + 〠
+∞

n=0
〠
+∞

m=0
αm,n exp −nψð Þ cos mxð Þ, ð14Þ

where αm,n is an unknown coefficient to be derived.
According to the solution expressions (14), we may con-

struct the initial estimation of the hydroelastic wave deflec-
tion as

z0 x, ψð Þ = −ψ + H
2 exp −ψð Þ cos xð Þ, ð15Þ

where H is an unknown dimensionless wave height to be
derived [18].

3.2. Deformation Equations. We construct three homotopies
Zðx, ψ ; qÞ, ΔðqÞ, and ΓðqÞ. These homotopies are governed
by the following zeroth-order deformation equations for
the governing equation (10) and two boundary conditions
(11) and (12) as

1 − qð ÞL1 Z x, ψ ; qð Þ − z0 x, ψð Þ½ � = qc0N1 Z x, ψ ; qð Þ½ �,  ψ > 0ð Þ,
ð16Þ

1 − qð ÞL2 Z x, ψ ; qð Þ − z0 x, ψð Þ½ � = qc0N2 Z x, ψ ; qð Þ, Δ qð Þ, Γ qð Þ½ �, 
ψ = 0ð Þ,

ð17Þ

∂Z x, ψ ; qð Þ
∂x

= 0,  ψ = +∞ð Þ, ð18Þ

respectively, with the wave height

Z 0, 0 ; qð Þ − Z π, 0 ; qð Þ =H: ð19Þ

where q ∈ ½0, 1� is the embedding parameter. When q
increases from 0 to 1, Zðx, ψ ; qÞ varies continuously from
its initial estimation z0ðx, ψÞ to the exact solution zðx, ψÞ, Δ
ðqÞ deforms continuously from its initial estimation δ0 to
the exact solution δ, and ΓðqÞ is from κ0 to κ. c0 is a nonzero
convergence-control parameter. Based on the governing

equation (10) and the boundary condition (11), N 1½⋅� and
N 2½⋅� are the nonlinear operators defined by

N 1 Z x, ψ ; qð Þ½ � = ∂2Z
∂x2

∂Z
∂ψ

� �2
−
∂Z
∂x

∂Z
∂ψ

∂2Z
∂x∂ψ

+ 1 + ∂Z
∂x

� �2
" #

∂2Z
∂ψ2 −

∂Z
∂ψ

� �3
Ω ψð Þ,

N 2 Z x, ψ ; qð Þ, Δ qð Þ, Γ qð Þ½ � = 1
2Δ 1 + ∂Z

∂x

� �2
" #

+ Z +D
∂4Z
∂x4

+me − Γ

 !
∂Z
∂ψ

� �2
,

ð20Þ

respectively.
If we only choose the unique linear term ∂2/∂ψ2 in the

equation (10) as the auxiliary linear operators L1, we would
get a solution zðx, ψÞ in the power series of ψ which cannot
satisfy the impermeable bottom condition (12). We can obey
the solution expression (14) under the physical consider-
ations to choose the following auxiliary linear operator

L1 u½ � = ∂2u
∂ψ2 + ∂2u

∂x2
, ð21Þ

where L1½0� = 0.
The nonlinear boundary condition (11) does not contain

any linear term. Here, we still follow the solution expression
(14) to choose another auxiliary linear operator

L2 u½ � = u + ∂u
∂ψ

, ð22Þ

where L2½0� = 0.

c0
–1 –0.5 0 0.5

–6

–4

–2

0

lo
g 1

0T m𝜀

m = 1
m = 2

m = 3
m = 5

Figure 2: Residual squares of log10εTm of the mth order homotopy
approximation c0.
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Expanding the unknown function Zðx, ψ ; qÞ and the two
unknown constants ΔðqÞ and ΓðqÞ into the Maclaurin series
about q at q = 0,

Z x, ψ ; qð Þ = 〠
+∞

m=0
zm x, ψð Þqm, ð23Þ

Δ qð Þ = 〠
+∞

m=0
δmq

m, ð24Þ

Γ qð Þ = 〠
+∞

m=0
κmq

m, ð25Þ

where

zm x, ψð Þ, δm, κmf g = 1
m!

∂m

∂qm
Z x, ψ ; qð Þ, Δ qð Þ, Γ qð Þf g∣q=0:

ð26Þ

We substitute these series (23), (24), and (25) into the
zeroth-order deformation equations (16) and (17) and differ-
entiate the zero-order deformation equations m times about
q, then divide them by m!. Setting q = 0, we can obtain the
linear PDEs (i.e., high-order deformation equations in the

H
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Figure 5: The influence of the wave amplitude H on the phase
velocity δð= c2/c20Þ for different vorticity parameter μ.
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HAM) for the unknown function zmðx, ψÞ and the unknown
constants δm and κm. In order to make our equations closed,
we consider

zn 0, 0ð Þ − zn π, 0ð Þ =H,  n ≥ 0ð Þ, ð27Þ

to relate the solutions and the wave height H.

3.3. Optimal Convergence-Control Parameters. To ensure the
accuracy of our HAM-based series solutions, we define the
total squared error εTm as follows:

εTm = εm,1 + εm,2, ð28Þ

where

εm,1 =
1

1 +Mð Þ2 〠
M

i=0
〠
M

j=0
N 1 Z x, ψ ; qð Þ½ � x=iΔx,ψ=jΔψ

��� �2,
εm,2 =

1
1 +M

〠
M

i=0
N 2 Z x, ψ ; qð Þ, Δ qð Þ, Γ qð Þ½ � x=iΔx,ψ=0

��� �2,
ð29Þ

where εm,2 are the residual square errors of Equations (10)
and (11), respectively. Δx = Δψ = π/M. In this paper, we
choose M = 10. The optimal convergence-control parameter
c0 can be acquired by the minimum value of εTm in the resid-
ual plot as shown in Figure 2
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Figure 6: The influence of Young’s modulus E on the phase velocity δð= c2/c20Þ for different wave amplitude μ.

6 Advances in Mathematical Physics



3.4. Iteration of Solutions. Substituting the initial estimation
of hydroelastic wave deflection (15) into the high-order
deformation equations, we can obtain every order analytic
solution from these deformation equations by performing
symbolic computation using Mathematica 8.0. First, one-
order solution for the unknown function zðx, ψÞ is acquired
from the one-order deformation equations as follows:

z1 x, ψð Þ = μ exp −ψð Þ − 1
4H

2 exp −2ψð Þ + 3
8H

2μ exp −3ψð Þ
� �

c0

+ −1 − 1
2D −

1
2 δ0 + κ0 −

3
32H

2 −
3
32DH

2
� �

exp −ψð Þ
�

−
3
2μ exp −2ψð Þ + 1

16H
2 exp −3ψð Þ

−
3
32H

2μ exp −4ψð Þ
�
c0H cos t xð Þ

+ −
5
24 −

1
8D −

1
16me −

1
32 δ0 +

1
16 κ0

� ��

+ 1
24 −

1
8μ

� �
exp −ψð Þ + 1

16 exp −2ψð Þ
�
c0H

2

× exp −2ψð Þ cos 2xð Þ + −
7
384 + 1

96D
� �

−
1
256 μ exp −ψð Þ

�

+ 1
384 exp −2ψð Þ + 1

768 μ × exp −3ψð Þ
�
c0H

3 exp −3ψð Þ cos 3xð Þ,

ð30Þ

where the initial solutions δ0 of δ and κ0 of κ are still
unknown. We use the relation (27) for the wave amplitude
and the vertical displacement to determine δ0 and κ0 as
follows:
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Figure 7: The influence of the plate’s thickness d on the phase velocity δð= c2/c20Þ for different wave amplitude μ.

7Advances in Mathematical Physics



δ0 = 2 + 1
c0

+D 1 − H2

6 + 5H4

192

� �
+ μ 1 − 35H2

192 + 37H4

1536

� �

+ 3c0 + 32
256c0

H4 + 11
32H

2,

κ0 = 2 + 1
c0

+D 1 − H2

48 + 5H4

384

� �
+ μ 2 + H2

192 + 37H4

3072

� �

+me
7c0 + 2
32c0

H2 + 3
512H

4,

ð31Þ

respectively. Once the convergence control parameter c0
and important physical parameters H, D, μ, and me are
given, we can get the corresponding solutions for our
hydroelastic problem. If we continue with the one-order
approximations by utilizing the high-order deformation
equations, the higher-order approximations can be
acquired iteratively.

4. Result Analysis

First, we illustrate the total squared residual error εTm of our
solutions at several different orders versus c0 with the case
of μ = 0:1, H = 0:1, d = 0:01, ρe = 0:9, E = 12822:8 (i.e., the
dimensional E = 109Pa), and ν = 0:33 and take these data
hereinafter for computation unless otherwise stated. As
shown in Figure 2, we find that ε in Equation (28) decreases
firstly and then increases in the interval [−1.0, 0]. And as the
order m increases, ε decreases gradually about −0.4. Then,
the optimal value of c0 can be chosen as −0.4. This illustrates

that our HAM-based series solutions are accurate and con-
vergent for the nonlinear hydroelastic interaction.

The plate deflections at the crest and the trough in the
case of H = 0:1 and −0:25 ≤ μ ≤ 0:25 are shown in
Figures 3(a) and 3(b), respectively. It is found that, for a given
wave height H, the aiding exponential shear current (μ < 0)
tends to sharpen the crest and smoothen the trough, while
the opposing shear current (μ > 0) has the opposite effect.
And the effect of the shear current on plate deformation is
more obvious at the trough than at the crest. This might
explain why the aiding exponential shear current tends to
shorten the maximum wave height while the opposing one
tends to enlarge it.

In Figure 4, we show a fourth-order dispersion relation
for the phase speed δð= c2/c20Þ as a function of the vorticity
parameter μ with several given wave heights H. And
Figure 5 shows the phase speed δð= c2/c20Þ as a function of
the wave heights H with several given vorticity parameter
μ. It is found that, for both an opposing current and an aid-
ing current, the larger value of the wave height increases
the wave phase speed, while the phase speed decreases with
the increase of the vorticity parameter in the opposing cur-
rent, but the phase speed increases with the increase of the
vorticity parameter in the aiding current. As shown in
Figures 4 and 5, the phase speed δ is close to 1 when H
is very small (linear waves) and μ (no current). It is demon-
strated that our result is compatible with the dispersion
relation in deep water δ = ð1 +DÞ/ð1 +mÞ [22] from the
linearized theory of hydroelastic waves with no current.

The effects of Young’s modulus of the plate are shown in
Figure 6, from which we can see that for both an opposing
current and an aiding current, the phase speed δ increases
with increasing Young’s modulus. The effects of the plate
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(a) Horizontal velocity u near the crest
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Figure 8: The influence of the aiding shear currents on horizontal velocity profile u of propagating periodic waves for different vorticity
parameter μ by means of c0 = −0:4. Solid line: μ = −0:25; dashed line: μ = −0:20; dash dot line: μ = −0:15; long dash line: μ = −0:10; dash
dot dot: μ = −0:05.
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thickness d on the phase speed δ are studied. Figure 7 shows
that a larger d increases the phase speed, which is similar to
effects for Young’s modulus of the plate in Figure 6.

Figure 8 shows the horizontal velocity profiles uð= 1 +
zψðx, ψÞ−1Þ in the aiding shear currents for different vorticity
parameters μ. We find that the horizontal velocity under
the wave crest is in the same direction, while the horizon-
tal velocity under the wave trough changes from the same
direction into the opposing direction when the absolute
value of μ decreases to about 0.05. Figure 9 shows the hor-
izontal velocity profiles in the opposing shear currents for
different vorticity parameters μ. We observe that the hor-
izontal velocity under the wave trough is in the opposing
direction, while the horizontal velocity under the wave
crest changes from the opposing direction into the same
direction when the value of μ decreases to about 0.05.
As shown in Figures 8 and 9, we observe that for both
an opposing current and an aiding current, a larger μ
tends to increase the horizontal velocity u. Besides, in
the opposing current, the horizontal velocity u under the
wave crest delays more quickly as ψ increases than that
of waves under the wave trough, while in the aiding cur-
rent case, we observe the opposite effect.

5. Conclusions

In this work, we are concerned with nonlinear hydroelastic
waves generated due to a floating elastic plate interacting
with a shear current which decays exponentially with depth.
We introduce a stream function to obtain the governing
equation with the boundary conditions expressing a balance
among the hydrodynamic, the shear currents, elastic, and
inertial forces. In order to simplify the algorithm, we transfer
the nonlinear boundary value problem from an unknown

free surface into a known boundary by means of Dubreil-
Jacotin transformation. In the frame of the HAM, we
consider the solution expression of the hydroelastic wave
deflection as a series with a set of base functions exp ð−nψÞ
cos ðmxÞ based on physical points of view. Numerical results
demonstrate the validity and convergence of our HAM-based
analytical solutions for the nonlinear hydroelastic interaction
a wave-current coexisting fluid.

The effects of some important physical parameters on
the plate deflections, the phase speed, and the horizontal
velocity profiles are considered in detail. We find that a
larger aiding shear current tends to sharpen the crest
and smoothen the trough of the plate deflections, while
the opposing shear current has the opposite effect, and
both opposing and aiding current on plate deformation
all have a more obvious effect on the trough than on
the crest.

For both an opposing current and an aiding current, the
larger wave height H increases the wave phase speed δ, while
the aiding exponential shear currents tend to increase the
wave phase velocity, but the opposing exponential shear cur-
rents tend to decrease it. It is noted that our result is compat-
ible with the dispersion relation in deep water from the
linearized theory of hydroelastic waves with no current.

The horizontal velocity under a shear current is in the
same direction, while the velocity’s direction changes as
the value of vorticity parameters μ decreases. But in the
case of an opposing current, the horizontal velocity under
the wave crest delays more quickly as ψ increases than
that of waves under the wave trough, while in the aiding
current case, there is an opposite effect. All of those results
obtained here can help us further understand hydroelastic
interaction between a floating elastic plate and wave cur-
rent in the real ocean.
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Figure 9: The influence of the opposing shear currents on the horizontal velocity profile u of propagating periodic waves for different vorticity
parameter μ by means of c0 = −0:4. Solid line: μ = 0:25; dashed line: μ = 0:20; dash dot line: μ = 0:15; long dash line: μ = 0:10; dash dot dot:
μ = 0:05.
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In this paper, we are concerned with the following coupled Schrödinger equations

−λ2Δu + a1ðxÞu = cðxÞv + a2ðxÞjujp−2u + a3ðxÞjuj2
∗−2u, x ∈ℝN ,

−λ2Δv + b1ðxÞv = cðxÞu + b2ðxÞjvjp−2v + b3ðxÞjvj2
∗−2v, x ∈ℝN ,

(
where 2 < p < 2∗,2 < q < 2∗,2∗ = 2N/ðN − 2Þ, andN ≥ 3; λ > 0

is a parameter; and a1, a2, a3, b1, b2, b3, c ∈ CðℝN ,ℝÞ and u, v ∈H1ðℝNÞ. Under some suitable conditions that a01 = inf a1 = 0 or
b01 = inf b1 = 0 and jcðxÞj2 ≤ ϑa1ðxÞb1ðxÞ with ϑ ∈ ð0, 1Þ, the above coupled Schrödinger system possesses nontrivial solutions if λ
∈ ð0, λ0Þ, where λ0 is related to a1, a2, a3, b1, b2, b3, and N .

1. Introduction

We consider the following coupled Schrödinger equations in
this paper:

−λ2Δu + a1 xð Þu = c xð Þv + a2 xð Þ uj jp−2u + a3 xð Þ uj j2∗−2u, x ∈ℝN ,

−λ2Δv + b1 xð Þv = c xð Þu + b2 xð Þ vj jp−2v + b3 xð Þ vj j2∗−2v, x ∈ℝN ,

(

ð1Þ

where 2 < p < 2∗, 2 < q < 2∗, N ≥ 3, and 2∗ = 2N/ðN − 2Þ are
the Sobolev critical exponent;λ > 0 is a parameter; and a1,
a2, a3, b1, b2, b3, c ∈ CðℝN ,ℝÞ and u, v ∈H1ðℝNÞ.

As it is known in [1], this type of systems arises in nonlin-
ear optics. In the past years, under different kinds of assump-
tions on the potentialV and the nonlinearity f , many authors
[2–8] focus on the following kind of Schrödinger equation:

−λ2Δu +V xð Þu = f x, uð Þ, x ∈ℝN : ð2Þ

As one knows, single-mode optical fibers are not really
“single mode” but actually bimodal because of the presence

of birefringence. So recently, the coupled Schrödinger sys-
tems are investigated by the authors [9–12]. For more related
results and physical background on Schrödinger systems,
please see [13–23] and references therein.

In [11], the authors investigated standing waves for the
following kind of coupled Schrödinger equations:

−λ2Δu + a1 xð Þu = cv + uj jp−2u, x ∈ℝN ,

−λ2Δv + b1 xð Þv = cu + vj j2∗−2v, x ∈ℝN ,

(
ð3Þ

where a1, b1 ∈ CðℝN ,ℝÞ, N ≥ 3, u, v > 0, u, v ∈H1ðℝNÞ, and
uðxÞ, vðxÞ→ 0 as ∣x ∣→∞. Under the following conditions,

(A0) there exist positive constants a01 > 0 and b01 > 0 such
that a1ðxÞ ≥ a01, b1ðxÞ ≥ a01, and 0 < c ≤

ffiffiffiffiffiffiffiffiffi
a01b

0
1

q
; they obtained

the existence of a positive solution for (3) if λ is sufficiently

small. But, if a01 = inf a1 = 0 or b01 = inf b1 = 0, then 0 < c ≤ffiffiffiffiffiffiffiffiffi
a01b

0
1

q
cannot hold. So in the very recent paper [12], Peng

et al. investigated the following coupled Schrödinger
equations and generalize the result in [11]:
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−λ2Δu + a1 xð Þu = c xð Þv + uj jp−2u, x ∈ℝN ,
−λ2Δv + b1 xð Þv = c xð Þu + vj jq−2v, x ∈ℝN ,

(
ð4Þ

where a1, b1 are the same as in (3), N ≥ 3. Under the fol-
lowing conditions,

(A1) a1ðxÞ ≥ a1ð0Þ = 0 and b1ðxÞ ≥ 0, and there exist con-
stants a01 > 0 and b01 > 0 such that the measure of the sets
Aa01

≔ fx : a1ðxÞ < a01g and Bb01
≔ fx : b1ðxÞ < b01g are finite

(A2) there exists a constant ϑ ∈ ð0, 1Þ such that jcðxÞj2 ≤
ϑa1ðxÞb1ðxÞ for all x ∈ℝN ; Peng et al. proved that system
(4) has at least one nontrivial solution. An interesting ques-
tion is what will happen if the nonlinearity is also critical
growth in system (4)? Motivated mainly by the above-
mentioned results, we will answer this question and prove
that system (1), under conditions (A1) and (A2), and

(A3) there exist constants a02, a
1
2, a

0
3, a

1
3, b

0
2, b

1
2, b

0
3, b

1
3 > 0

such that

a02 ≤ a2 xð Þ ≤ a12, a03 ≤ a3 xð Þ ≤ a13, b02 ≤ b2 xð Þ ≤ b12,
b03 ≤ b3 xð Þ ≤ b13, ∀x ∈ℝN ,

ð5Þ

possesses nontrivial solutions if λ ∈ ð0, λ0Þ, where λ0 is
related to a1, a2, a3, b1, b2, b3, and N . As far as we know, sim-
ilar results for system (1) with a critical exponent have not
been investigated by variational methods in the literature.
The following condition is similar to condition (A1):

(A1’) b1ðxÞ ≥ b1ð0Þ = 0 and a1ðxÞ ≥ 0, and there exist con-
stants a01 > 0 and b01 > 0 such that the measure of the sets
Aa01

≔ fx ∈ℝN : a1ðxÞ < a01g and Bb01
≔ fx ∈ℝN : b1ðxÞ < b01g

are finite.
Since ðq − 2ÞN − 2q < 0 and ðp − 2ÞN − 2p < 0, one can

choose d0 ≥ 1 such that

C1a
1
2α

p−2ð Þ/p + C2b
1
2β

q−2ð Þ/q + C3a
1
3α

2/N + C4b
1
3β

2/N ≤
1
2 1 − ϑð Þ,

ð6Þ

where

α = ωNa
0
2 p − 2ð Þ
2Np

N2 + 2 N + 2ð Þ
N + 2ð Þ 1 − 2−N

� �2
( )p/ p−2ð Þ

d p−2ð ÞN−2p½ �/ p−2ð Þ
0 ,

β = ωNb
0
2 q − 2ð Þ
2Nq

N2 + 2 N + 2ð Þ
N + 2ð Þ 1 − 2−N

� �2
( )q/ q−2ð Þ

d q−2ð ÞN−2q½ �/ q−2ð Þ
0 ,

C1 =
2p η0η2∗ð ÞN
p − 2ð Þa02

" # p−2ð Þ/p
a01
� � p N−2ð Þ−2N½ �/2p,

C2 =
2q η0η2∗ð ÞN
q − 2ð Þb02

" # q−2ð Þ/q
b01
� � q N−2ð Þ−2NÞ½ �/2q,

C3 =
22∗ η0η2∗ð ÞN
2∗ − 2ð Þa03

" #2/N
,

C4 =
22∗ η0η2∗ð ÞN
2∗ − 2ð Þb03

" #2/N
,

ð7Þ

η0 and η2∗ are embedding constants and ωN is the volume
of the unit ball in ℝN . From (A1’) and (A1), using b1ð0Þ = 0
and a1ð0Þ = 0, one can let μ0 > 1 such that

sup
μ1/2∣x∣≤2d0

b1 xð Þj j ≤ d−20 , sup
μ1/2∣x∣≤2d0

a1 xð Þj j ≤ d−20 , ∀μ ≥ μ0: ð8Þ

Let w = ðu, vÞ and λ−2 = μ, then system (1) can be rewrit-
ten as

−Δu + μa1 xð Þu = μc xð Þv + μa2 xð Þ uj jp−2u + μa3 xð Þ uj j2∗−2u, x ∈ℝN ,

−Δv + μb1 xð Þv = μc xð Þu + μb2 xð Þ vj jp−2v + μb3 xð Þ vj j2∗−2v, x ∈ℝN ,

8>><
>>:

ð9Þ

and the functional of (9) is given by

Sμ wð Þ = 1
2

ð
ℝN

Δuj j2 + Δvj j2 + μa1 xð Þ uj j2 + μb1 xð Þ vj j2� �
dx

−
μ

p

ð
ℝN

a2 xð Þ uj jpdx − μ

q

ð
ℝN

b2 xð Þ vj jqdx

−
μ

2∗
ð
ℝN

a3 xð Þ uj j2∗dx − μ

2∗
ð
ℝN

b3 xð Þ vj j2∗dx

− μ
ð
ℝN

c xð Þuvdx:

ð10Þ

As is known, the solutions of (1) are the critical points of
Sλ−1/2ðwÞ. The main results are the following.

Theorem 1. Suppose that (A1)–(A3) or (A1’)–(A3) hold. Then,
(9) possesses at least one nontrivial solution wμ = ðuμ, vμÞ such
that 0 < SμðwμÞ ≤ βμ1−N/2 for μ ≥ μ0.

Theorem 2. Suppose that (A1)–(A3) or (A1’)–(A3) hold. Then,
(1) possesses at least one nontrivial solution wλ = ðuλ, vλÞ such
that 0 < Sλ−1/2ðwλÞ ≤ βλN−2 for 0 < λ < μ−1/20 .

Remark 3. Since the presence of the terms a2ðxÞjujp−2u, a3
ðxÞjuj2∗−2u, b2ðxÞjvjp−2v, and b3ðxÞjvj2

∗−2v, system (1) is
more general than (4), and it is more difficult to deal with
the nontrivial solutions. In order to prove that system (1)
has nontrivial solutions, we need to find some conditions
to restrict a2ðxÞ, a3ðxÞ, b2ðxÞ, and b3ðxÞ. It seems that there
is no literature considering system (1).

2. Preliminaries

Let

E = u, vð Þ:
ð
ℝN

a1 xð Þ uj j2 + b1 xð Þ vj j2� �
dx<∞,u, v ∈H1 ℝN� �� �

,

ð11Þ
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wk kμ† =
ð
ℝN

Δuj j2 + Δvj j2 + μa1 xð Þ uj j2 + μb1 xð Þ vj j2� �
dx

� �1/2
,

 ∀ w = u, vð Þ ∈ E:
ð12Þ

From Lemma 1 of [17], by (A1) or (A1’) and the Sobolev
inequality, there exists a positive constant η0 > 0 independent
of μ such that

wk kH1 ≔
ð
ℝN

Δuj j2 + Δvj j2 + uj j2 + vj j2� �
dx

� �1/2
≤ η0 wk kμ† ,

 ∀w = u, vð Þ ∈ E, μ ≥ 1,
ð13Þ

where H1 ≔H1ðℝNÞ. Then, ðE, k·kμ†Þ is a Banach space for
μ ≥ 1 equipped with the norm given by (12). Moreover, for
s ∈ ½2, 2∗�, one has

wk ks ≤ ηs wk kH1 ≤ ηsη0 wk kμ† , ∀w ∈ E, μ ≥ 1, ð14Þ

where kwks is the usual norm in space LsðℝNÞ. From (12), we
rewrite Sμ as

Sμ wð Þ = 1
2 wk k2μ† −

μ

p

ð
ℝN

a2 xð Þ uj jpdx − μ

q

ð
ℝN

b2 xð Þ vj jqdx

−
μ

2∗
ð
ℝN

a3 xð Þ uj j2∗dx − μ

2∗
ð
ℝN

b3 xð Þ vj j2∗dx

− μ
ð
ℝN

c xð Þuvdx, ∀w ∈ E:

ð15Þ

It is not difficult to see that Sμ ∈ C1ðE,ℝÞ and

S′μ wð Þ, �w
D E

=
ð
ℝN

Δu · �u + Δv · �v + μa1 xð Þu�u + μb1 xð Þv�v½ �dx

− μ
ð
ℝN

c xð Þ u�v + v�uð Þdx − μ
ð
ℝN

a2 xð Þ uj jp−2u�udx

− μ
ð
ℝN

b2 xð Þ vj jq−2v�vdx − μ
ð
ℝN

a3 xð Þ uj j2∗−2u�udx

− μ
ð
ℝN

b3 xð Þ vj j2∗−2v�vdx, ∀w = u, vð Þ, �w = �u, �vð Þ ∈ E:

ð16Þ

As in [12, 22], let

θ xð Þ =

1
d0

, ∣x∣ ≤ d0,

dN−1
0

1 − 2−N xj j−N − 2d0ð Þ−N
h i

, d0 < ∣x∣ ≤ 2d0,

0, ∣x∣ > 2d0:

8>>>>><
>>>>>:

ð17Þ

Then, θ ∈H1ðℝNÞ; moreover,

∇θk k22 =
ð
ℝN

∇θ xð Þj j2dx ≤ NωNd
N−4
0

N + 2ð Þ 1 − 2−N
� �2 , ð18Þ

θk k22 =
ð
ℝN

θ xð Þj j2dx ≤ 2ωNd
N−2
0

N 1 − 2−N
� �2 : ð19Þ

In the next section, we will prove the main results.

3. Proof of the Main Results

Proof of Theorem 1. The proof of Theorem 1 is divided into
four steps.

Step 1. We first prove that for any μ ≥ μ0 > 1, one has

sup Sμ 0, teμ
� �

: t ≥ 0
	 


≤ βμ1−N/2,
  sup Sμ teμ, 0

� �
: t ≥ 0

	 

≤ αμ1−N/2,

ð20Þ

where eμðxÞ = θðμ1/2xÞ. From (8), (9), (17), (18), (19), and
(A3), we have

Sμ 0, teμ
� �

= t2

2

ð
ℝN

∇eμ
�� ��2 + μb1 xð Þ eμ

�� ��2h i
dx −

μ

q

ð
ℝN

b2 xð Þ teμ
�� ��qdx

−
μ

2∗
ð
ℝN

b3 xð Þ teμ
�� ��2∗dx = μ1−N/2 t2

2

ð
ℝN

∇θj j2 + b1 μ−1/2x
� �

θj j2� �
dx

�

−
1
q

ð
ℝN

b2 μ−1/2x
� �

tθj jqdx − 1
2∗
ð
ℝN

b3 μ−1/2x
� �

tθj j2∗dx



≤ μ1−N/2 t2

2 ∇θk k22 + θk k22 sup
∣x∣≤2d0

b1 μ−1/2x
� ���� �� !"

−
1
q

ð
∣x∣≤d0

b2 μ−1/2x
� � t

d0

����
����
q

dx −
1
2∗
ð
∣x∣≤d0

b3 μ−1/2x
� � t

d0

����
����
2∗

dx

#

≤ μ1−N/2 t2

2 ∇θk k22 + d−20 θk k22
� �

−
ωNb

0
2

qN
tqdN−q

0 −
ωNb

0
3

2∗N t2
∗
dN−2∗
0

" #

≤ μ1−N/2 t2

2 ∇θk k22 + d−20 θk k22
� �

−
ωNb

0
2

qN
tqdN−q

0

" #

≤ μ1−N/2 q − 2ð Þ ∇θk k22 + d−20 θk k22
� �q/ q−2ð Þ 2qð Þ−1 ωNb

0
2d

N−q
0

N

 !−2/ q−2ð Þ

≤ μ1−N/2 ωNb
0
2 q − 2ð Þ
2Nq

N2 + 2 N + 2ð Þ
N + 2ð Þ 1 − 2−N

� �2
( )q/ q−2ð Þ

� d q−2ð ÞN−2q½ �/ q−2ð Þ
0 ≔ βμ1−N/2:

ð21Þ

Similarly, from (8), (9), (17), (18), (19), and (A3), we have

Sμ teμ, 0
� �

≤ μ1−N/2 ωNa
0
2 p − 2ð Þ
2Np

N2 + 2 N + 2ð Þ
N + 2ð Þ 1 − 2−N

� �2
( )p/ p−2ð Þ

� d p−2ð ÞN−2p½ �/ p−2ð Þ
0 ≔ αμ1−N/2,

ð22Þ

which together with (21) implies that (20) holds.
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Step 2. Let c∗μ =min fSμðteμ, 0Þ, Sμð0, teμÞg, we should prove
that there exists a constant cμ ∈ ð0, c∗μ� and a sequence fwng
⊂ E satisfying

Sμ wnð Þ→ cμ, S′μ wnð Þ�� ��
E∗ 1 + wnk kμ†
� �

, as n→∞:

ð23Þ

By a standard argument, one can obtain (23) by employ-
ing the mountain-pass lemma without the (PS) condition, so
we omit the details here.

Step 3. We prove that any sequence fwng ⊂ E satisfying (23)
is bounded in E. From (A2) and Young’s inequality, we have

μ
ð
ℝ3

c xð Þunvnj jdx ≤ μϑ
ð
ℝ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 xð Þb1 xð Þ

p
unvnj jdx

≤
ϑ

2

ð
ℝ3

μa1 xð Þu2n + μb1 xð Þv2n
� �

dx

≤
ϑ

2 wnk k2μ† :

ð24Þ

For 2 < p ≤ q < 2∗, from (15), (16), (23), and (24), we have

cμ + o 1ð Þ = Sμ wnð Þ − 1
p

S′μ wnð Þ,wn

D E
= 1

2 −
1
p

� �
wnk k2μ†

+ 1
p
−
1
q

� �
μ
ð
ℝN

b2 xð Þ vnj jqdx

+ 1
p
−

1
2∗

� �
μ
ð
ℝN

a3 xð Þ unj j2∗dx

− 1 − 2
p

� �
μ
ð
ℝN

c xð Þunvndx

+ 1
p
−

1
2∗

� �
μ
ð
ℝN

b3 xð Þ vnj j2∗dx

≥
1
2 −

1
p

� �
1 − ϑð Þ wnk k2μ† :

ð25Þ

For 2 < q ≤ p < 2∗, from (15), (16), (23), and (24), we
obtain

cμ + o 1ð Þ = Sμ wnð Þ − 1
q

S′μ wnð Þ,wn

D E
= 1

2 −
1
q

� �
wnk k2μ†

+ 1
q
−
1
p

� �
μ
ð
ℝN

a2 xð Þ vnj jpdx + 1
q
−

1
2∗

� �

� μ
ð
ℝN

a3 xð Þ unj j2∗dx − 1 − 2
q

� �
μ
ð
ℝN

c xð Þunvndx

+ 1
q
−

1
2∗

� �
μ
ð
ℝN

b3 xð Þ vnj j2∗dx

≥
1
2 −

1
q

� �
1 − ϑð Þ wnk k2μ† :

ð26Þ

It follows from (25) and (26) that fwng is bounded in E.

Step 4. We show that there exists a nontrivial solution. By
Steps 1–3, we know that there exists a bounded sequence
fwng ⊂ E satisfying (23) with

cμ ≤ c∗μ , ∀μ ≥ μ0: ð27Þ

Passing to a subsequence, one can suppose that wn =
ðun, vnÞ⇀wμ = ðuμ, vμÞ in ðE, k·kμ†Þ and S′μðwnÞ→ 0, as
n→∞. Now, we verify that wμ ≠ ð0, 0Þ. Arguing by con-
tradiction, assume that wμ = ð0, 0Þ, that is, wn ⇀ ð0, 0Þ in

E, so by [24], we have wn → ð0, 0Þ in LslocðℝNÞ, s ∈ ½2, 2∗�,
and wn → ð0, 0Þ a.e. on ℝN . Since Aa01

and Bb01
are sets

with finite measure, we have

∥un∥
2
2 =
ð
ℝN \Aa01

unj j2dx +
ð
Aa01

unj j2dx =
ð
ℝN \Aa01

unj j2dx

+
ð
Aa01

unj j2dx ≤
ð
ℝN\Aa01

1
μa01

μa1 xð Þ unj j2dx

+
ð
Aa01

unj j2dx ≤ 1
μa01

wnk k2μ† + o 1ð Þ,

ð28Þ

vnk k22 =
ð
ℝN\Bb01

vnj j2dx +
ð
Bb01

vnj j2dx =
ð
ℝN \Bb01

vnj j2dx

+
ð
Bb01

vnj j2dx ≤
ð
ℝN\Bb01

1
μb01

μb1 xð Þ vnj j2dx

+
ð
Bb01

vnj j2dx ≤ 1
μb01

wnk k2μ† + o 1ð Þ:

ð29Þ

Similar to [12], from (14), (28), (29), and the Hölder
inequality, we obtain

unk kss =
ð
ℝN

unj jsdx ≤
ð
ℝN

unj j2 2∗−sð Þ/ 2∗−2ð Þdx
� �

�
ð
ℝN

unj j2∗ s−2ð Þ/ 2∗−2ð Þdx
� �

≤ η0η2∗ð Þ2∗ s−2ð Þ/ 2∗−2ð Þ

� μa01
� �− 2∗−sð Þ/ 2∗−2ð Þ wnk ksμ† + o 1ð Þ, s ∈ 2, 2∗ð Þ

ð30Þ

vnk kss =
ð
ℝN

vnj jsdx ≤
ð
ℝN

vnj j2 2∗−sð Þ/ 2∗−2ð Þdx
� �

�
ð
ℝN

vnj j2∗ s−2ð Þ/ 2∗−2ð Þdx
� �

≤ η0η2∗ð Þ2∗ s−2ð Þ/ 2∗−2ð Þ

� μb01
� �− 2∗−sð Þ/ 2∗−2ð Þ

wnk ksμ† + o 1ð Þ, s ∈ 2, 2∗ð Þ:
ð31Þ
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It follows from (15), (16), (23), and (A3) that

cμ + o 1ð Þ = Sμ wnð Þ − 1
2 S′μ wnð Þ,wn

D E
= 1

2 −
1
p

� �
μ
ð
ℝN

a2 xð Þ unj jpdx + 1
2 −

1
q

� �
μ
ð
ℝN

b2 xð Þ vnj jqdx

+ 1
2 −

1
2∗

� �
μ
ð
ℝN

a3 xð Þ unj j2∗dx + 1
2 −

1
2∗

� �

� μ
ð
ℝN

b3 xð Þ vnj j2∗dx ≥ p − 2ð Þμa02
2p unk kpp +

q − 2ð Þμb02
2q vnk kqq

+ 2∗ − 2ð Þμa03
22∗ unk k2∗2∗ +

2∗ − 2ð Þμb03
22∗ vnk k2∗2∗ :

ð32Þ

From (14), (30), (31), and (32), we have

μ unk kpp = μ unk kp−2p unk k2p ≤ μ μa01
� �−2 2∗−pð Þ/ p 2∗−2ð Þ½ �

� η0η2∗ð Þ22∗ p−2ð Þ/ p 2∗−2ð Þ½ � 2pcμ
μa02 p − 2ð Þ
� 
 p−2ð Þ/p

wnk k2μ†

+ o 1ð Þ≔ C1 μ N−2ð Þ/2cμ
h i p−2ð Þ/p

wnk k2μ† + o 1ð Þ,
ð33Þ

μ vnk kqq = μ unk k2q vnk kq−2q ≤ μ μb01
� �−2 2∗−qð Þ/ q 2∗−2ð Þ½ �

� η0η2∗ð Þ22∗ q−2ð Þ/ q 2∗−2ð Þ½ � 2qcμ
μb02 q − 2ð Þ

" # q−2ð Þ/q
wnk k2μ†

+ o 1ð Þ≔ C2 μ N−2ð Þ/2cμ
h i q−2ð Þ/q

wnk k2μ† + o 1ð Þ:
ð34Þ

From (14) and (32), we have

μ unk k2∗2∗ = μ unk k22∗ unk k2∗−22∗ ≤ μ η0η2ð Þ2 22∗cμ
2∗ − 2ð Þμa03

� 
 2∗−2ð Þ/2∗

� wnk k2μ† + o 1ð Þ = η0η2ð Þ2 22∗cμ
2∗ − 2ð Þa03

� 
 2∗−2ð Þ/2∗

� μ N−2ð Þ/Ncμ
h i2/N

wnk k2μ† + o 1ð Þ

≔ C3 μ N−2ð Þ/Ncμ
h i2/N

wnk k2μ† + o 1ð Þ,
ð35Þ

μ vnk k2∗2∗ = μ vnk k22∗ vnk k2∗−22∗ ≤ μ η0η2ð Þ2 22∗cμ
2∗ − 2ð Þμb03

" #2∗−2
2∗

� wnk k2μ† + o 1ð Þ = η0η2ð Þ2 22∗cμ
2∗ − 2ð Þb03

" #2∗−2
2∗

� μ
N−2
N cμ

h i 2
N
wnk k2μ† + o 1ð Þ≔ C4 μ

N−2
N cμ

h i 2
N
wnk k2μ† + o 1ð Þ:

ð36Þ
It follows from (6), (16), (20), (33), (34), (35), and (36)

that

o 1ð Þ = S′μ wnð Þ,wn

D E
= wnk k2μ† − μ

ð
ℝN

a2 xð Þ unj jpdx

− μ
ð
ℝN

b2 xð Þ vnj jqdx − μ
ð
ℝN

a3 xð Þ unj j2∗dx

− μ
ð
ℝN

b3 xð Þ vnj j2∗dx − 2μ
ð
ℝN

c xð Þunvndx

≥ 1 − ϑð Þ wnk k2μ† − C1a
1
2 μ N−2ð Þ/2cμ
h i p−2ð Þ/p�

+ C2b
1
2 μ N−2ð Þ/2cμ
h i q−2ð Þ/q

+C3a
1
3 μ N−2ð Þ/Ncμ
h i2/N

+ C4b
1
3 μ N−2ð Þ/Ncμ
h i2/N�

wnk k2μ† + o 1ð Þ

≥ 1 − ϑð Þ wnk k2μ† − C1a
1
2α

p−2ð Þ/p + C2b
1
2β

q−2ð Þ/q
h

+ C3a
1
3α

2/N + C4b
1
3β

2/N
i
wnk k2μ† + o 1ð Þ

≥
1 − ϑ

2 wnk k2μ† + o 1ð Þ:
ð37Þ

Hence, we obtain

lim
n→∞

wnk k2μ† = 0: ð38Þ

From (15), (23), and (38), we have

0 < cμ = lim
n→∞

Sμ wnð Þ ≤ 1
2 wnk k2μ† = 0, ð39Þ

a contradiction, which implies that wμ ≠ ð0, 0Þ. We can

easily check that S′μðwnÞ = 0 and SμðwnÞ ≤ cμ by a stan-
dard argument. Hence, wμ is a nontrivial solution for (9).

It is easy to see that Theorem 2 is a direct consequence of
Theorem 1.
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In this paper, a mathematical model for describing the solid-fluid transformation of ice water is put forward based on the special
geometry cases. The correctness of the obtained model is verified through comparison with numerical analysis and experiments.
The good agreement indicates that the obtained model is available for the study of the solid-fluid transformation of ice water.
The theory derived in this paper lays a foundation for the research of solid-fluid transformation phenomena of other materials
and may have important applications in engineering areas such as rheology, creep, and instability of materials.

1. Introduction

The phenomena of solid-fluid transformation exist in the
processes of ice melting, metal melting, rheology, and so on
[1–7]. On September 11, 2001, the secondary collapse of
the world trade center in the terrorist attack is a typical prob-
lem of creep under the action of thermal flow. The metals and
concrete supports of the building crept under the action of
thermal flow after a period of time, which led to the strength
loss and collapse. Although the rheology and creep of mate-
rials have been hot topics in the engineering science, the
mathematical aspect of the solid-fluid transformation has
not been pointed out clearly. Starting from the Newton’s
law of cooling, the theory of the solid-fluid transformation
of ice water will be derived in this paper. That can be a theo-
retical foundation for the solid-fluid transformation problem
and may have important applications in the field of engineer-
ing science.

2. The Mathematical Model for the Ice Water’s
Solid-Fluid Transformation

Firstly, we take the ice ball as a special example to facilitate
the deduction. Assume the radius of the ice ball as r, then

the surface area of the ball as 4πr2. Newton’s law of cooling
states that the rate of heat loss of a body is directly propor-
tional to the difference between its own temperature and
the temperature of its surroundings [8]. Therefore, the heat
transferred through the surface of the ball within Δt time
can be expressed as follows:

ΔQ = 4πr2κ T − T0ð ÞΔt, ð1Þ

where κ is the heat transfer coefficient, T0 is the temperature
of ice ball, and T is the temperature of its surroundings. It
should be noted that we assume T0 and T are both constant
and T0 < 0°C < T . Within Δt time, there are ΔV volumes of
ice melting into water:

ΔV = 4πr2Δr: ð2Þ

Dividing the both sides of the above equation by Δt and
taking the limit, we have

lim
Δt→0

ΔV
Δt

= 4πr2 lim
Δt→0

Δr
Δt

: ð3Þ
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The above equation can be rewritten as

dV
dt

= 4πr2 dr
dt

: ð4Þ

The density of ice is set to be ρ; then the quality of melted
ice is Δm = −ρΔV , where the negative sign signifies that the
quality of ice ball decreases. The heat needed to convert T0
ice to 0°C ice is

ΔQ1 = cΔm 0 − T0ð Þ = −ρcΔV 0 − T0ð Þ = 4πr2ρcΔrT0, ð5Þ

where c denotes the specific heat of ice, namely, the heat
needed to raise 1°C per unit mass of ice. The heat needed to
melt 0°C ice to 0°C water can be calculated as follows:

ΔQ2 = γΔm = −ργΔV = −4πr2ργΔr, ð6Þ

where γ is the latent heat per unit mass of ice. Thus, the total
amount of heat is

ΔQ = ΔQ1 + ΔQ2 = 4πr2ρ cT0 − γð ÞΔr: ð7Þ

By combining Equations (1) and (7), we have

4πr2ρ cT0 − γð ÞΔr = 4πr2κ T − T0ð ÞΔt: ð8Þ

When Δt→ 0, the following differential equation could
be derived:

dr
dt

= κ T − T0ð Þ
ρ cT0 − γð Þ : ð9Þ

In order to integrate the above equation, we assume that
the thermal parameters c and γ are both constant. Thus, we
have

r = κ T − T0ð Þt
ρ cT0 − γð Þ + C, ð10Þ

with C as a constant of integration. When t = 0, r = r0, thus,
we have C = r0. When the ice ball is completely melted, i.e.,
r = 0, the time of melting can be expressed as

t = ρ cT0 − γð Þ
κ T − T0ð Þ r0: ð11Þ

The denominator in the above equation is positive
because T > T0, while the numerator is negative because T0
< 0°C. Therefore, the time of melting t is positive.

In fact, Equation (11) can also be obtained by the calculus
relations. We assume that the thickness of ice ball melted
within dt time is dr; then the mass of ice melted is dm = −ρ
dV = −4πr2ρdr. The heat of melting needed is

dQ = βdm = −4πr2ρβdr, ð12Þ

where β is the heat of melting needed per unit mass of ice,
with the unit J/kg. Based on Newton’s law of cooling, the heat
transferred through the surface of the ball within dt time is

dQ = 4πr2κ T − T0ð Þdt: ð13Þ

The following equation can be derived according to the
conservation of energy:

dQ = −4πr2ρβdr = 4πr2κ T − T0ð Þdt: ð14Þ

Then, the decreasing rate for the ice ball’s radius with
time t is

dr
dt

= κ T − T0ð Þ
ρβ

: ð15Þ

The reduced surface area of ice ball within dt time can be
calculated as

dS = 4π r + drð Þ2 − r2
� �

= 4π 2rdr + dr2
� �

: ð16Þ

By ignoring the two-order infinitesimal, Equation (16)
could be simplified as

dS = 8πrdr: ð17Þ

By dividing both sides of the above equation by dt, we
can get the decreasing rate for the ice ball’s surface area
with time t:

dS
dt

= 8πr dr
dt

: ð18Þ

Substituting Equation (15) into Equation (18), the fol-
lowing equation can be obtained:

dS
dt

= −8πr κ T − T0ð Þ
ρβ

: ð19Þ

Although Equations (11), (15), and (19) are derived
from the melting process of ice ball, they could apply to
the general melting cases. For the cylinder, cone, and other
shapes of ice, the corresponding equations can be derived
in a similar way. In the following, we will take the ice cyl-
inder as another example to derive the corresponding
equations. Assume that the height of the ice cylinder is h
and the radius is r, then the surface area of the cylinder
is 2πr2 + 2πrh. The heat transferred through the surface
of the cylinder within dt time can be expressed as

dQ = κ 2πr2 + 2πrh
� �

T − T0ð Þdt: ð20Þ

Within dt time, there are dV volumes of ice melting
into water:

dV = 2πrhdr + πr2dh: ð21Þ
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The heat needed to convert T0 ice to 0°C ice is

dQ1 = cdm 0 − T0ð Þ = −ρcdV 0 − T0ð Þ = ρc 2πrhdr + πr2dh
� �

T0:

ð22Þ

The heat needed to melt 0°C ice to 0°C water can be
calculated as

dQ2 = γdm = −ργ 2πrhdr + πr2dh
� �

: ð23Þ

Thus, the total amount of heat is

dQ = dQ1 + dQ2: ð24Þ

By combining Equations (20), (22), (23), and (24), we
have

κ 2πr2 + 2πrh
� �

T − T0ð Þdt = 2πrhρ cT0 − γð Þdr + πr2ρ cT0 − γð Þdh:
ð25Þ

The above mathematical relationships can be used as a
unified theory of the solid-fluid transformation of ice
water. That can be a theoretical foundation for the solid-
fluid transformation problem and may have important
applications in the field of engineering science.

3. Experimental Results on Ice Water’s Solid-
Fluid Transformation

Ice melting is an unsteady heat transfer process, including
not only heat conduction, convection, and radiation but also
phase transformation. As for the influence factors regarding
ice melting, the external influence factors such as environ-
ment temperature, humidity, pressure, convective heat trans-
fer coefficient, and thermal radiation field play important
roles, while the internal factors such as the temperature,
shape, and size of ice also have nonnegligible effects [9].
The melting experiments were carried out by testing ice of
different sizes and shapes in a RPH-80 thermotank, in which
the environment temperature was set to be 25°C. Specimens
were prepared by pouring purified water into containers of
different shapes and sizes, and then the containers were put
in the freezer for 24 hours. The initial temperature of ice is
set at -18°C. Table 1 shows the records of melting time of
the ice with different shapes and sizes under the same exper-
imental conditions.

4. Comparison between the Mathematical
Models with Experimental Results

By processing the experimental data using Origin software,
the linear fitting curves (as shown in Figure 1) and nonlinear
(quadratic function) fitting curves (as shown in Figure 2) for
the three types of specimens can be obtained, respectively. It
can be seen that the experimental data agree well with the
melting time of ice predicted through Equation (11). The
melting time and diameter have similar relationship for three
types of specimens, which further shows that Equation (11)

also works for the cases of the cylinder and circular truncated
cone. The differences on slopes and curvatures of fitting
curves show that the heat transfer coefficient is a comprehen-
sive parameter, which changes with the shape and size of
specimen. Two kinds of fitting are analyzed by the way of
comparative error analysis, as shown in Figure 3, from which
it can be seen that the nonlinear fitting error is smaller than
the linear fitting case for the relationship between the melting
time and the diameter of the ice ball cylinder and circular
truncated cone. The heat transfer coefficients for the ice ball,
cylinder, and circular truncated cone are unrelated to their
diameters.

5. Numerical Analysis on the Solid-Fluid
Transformation of Ice Water

In the following, ANSYS and fluent analyses will be
employed to study the process of ice melting numerically
[10, 11]. The mesh size used in the software is 3mm, and
the number of nodes for the ice ball is 1766, the ice cylinder
is 5888, and the ice circular truncated cone is 8014.

5.1. ANSYS Numerical Simulation Analysis. Ice melting is a
process related to the phase transformation. The latent heat
must be taken into consideration when the phase transfor-
mation is involved, because the latent heat is defined from
the concept of enthalpy, which will be taken as an attribute
definition of material. The curve that enthalpy changes with
temperature can be obtained. According to the definition,
solid temperature ðTsÞ and fluid temperature ðTlÞ will
divide the enthalpy curve into three areas, i.e., the solid area
ðT < TsÞ, phase-transition area ðTs < T < TlÞ, and fluid area
ðTl < TÞ. The phases can be distinguished by the tempera-
tures in different time. The temperature of ice for phase
transformation is 0°C in the atmospheric circumstances.

Table 1: The melting time for three kinds of shapes.

Shape
Diameter
(mm)

Height
(mm)

Time of
melting (min)

Cylinder

25 77

35 96

45 100 120

55 155

65 179

Circular truncated
cone

25 (Φ1), 40 (Φ2) 91

35 (Φ1), 50 (Φ2) 116

45 (Φ1), 60 (Φ2) 100 144

55 (Φ1), 70 (Φ2) 175

65 (Φ1), 80 (Φ2) 215

Ball

25 42

35 63

45 81

55 101

65 125
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When the temperature is higher than 0°C, the material will
melt from ice to water [10].

The melting process of ice in the thermotank is mainly
influenced by the heat convection and radiation. Typical
parameters for the thermotank wall are shown in Table 2.
The temperature is set to be 25°C in the thermotank, and
the initial temperature of ice is −18°C. Considering the heat-
ing principle and the heat transfer process of ice in thermo-
tank, we set the mixed boundary condition on the surface
of ice that contacts with air and selects the convective heat
transfer coefficient as 20W/(m2·K) [10].

From the numerical simulation results worked by
ANSYS, we find that the temperature of ice ball reduces from
the external to the inner on the melting nephogram at
60min, which agrees perfectly with the experimental results
in the thermotank. The temperature of the ice cylinder and
circular truncated cone also reduces from the external to

the inner part on the melting nephogram at 60min, and the
temperature at the edges and angles remains the highest,
indicating that the melting process starts from the edges
and angles to the inner gradually. The results of the numeri-
cal simulation also agree well with that of the corresponding
experiments in the thermotank. Table 3 shows the melting
time in the numerical simulation and the thermotank exper-
iment, respectively. It can be seen from Table 3 that the
agreement degree between numerical and experimental
results on the melting time for ice ball, cylinder, and circular
truncated cone reaches 92.6%, 92.5%, and 95.3%, respec-
tively. The melting time for the numerical simulation is
shorter than that for the experiment, which can be attributed
to the loss of heat during the experiment.

5.2. Fluent Numerical Simulation Analysis. In order to fur-
ther verify the correctness of the theoretical model and make
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Figure 1: The linear fit between the melting time and diameter: (a) ice cylinder, (b) ice circular truncated cone, and (c) ice ball.
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a comparison with the results of ANSYS simulation, fluent
analysis is employed to simulate the melting process of ice.
The air medium in the box is set to be ideal gas, and environ-
mental pressure is set as a standard atmospheric pressure.
The latent heat of ice medium is 333146 J/kg, and the melting
point of ice and freezing point of water are the same
(273.15K) [11].

Fluent analysis uses the heat enthalpy technology to han-
dle with the melting and solidification processes. The melting
process is characterized by the changing of the liquid fraction
without tracing on the interface [11]. The simulation results
are shown in Figure 4 and Table 4, from which it can be seen
that the melting processes start from the corners, then carry
on from the outside to the inside. The simulation results by
fluent analysis also agree well with experiments and are con-
sistent with the results worked out by ANSYS.

It can be seen from Table 4 that the melting time for the
ice ball, cylinder, and circular truncated cone by the Fluent
simulation is less than that by the experiments and the rates
of agreement reach 91.4%, 95.8%, and 97.2% for the ice ball,
cylinder, and circular truncated cone, respectively. The rea-
son for this phenomenon is that in the numerical simulation,
the boundary conditions and material properties are in the
ideal conditions and there is no heat loss.

6. Conclusion

In this paper, the theory of the solid-fluid transformation of
ice water with special shapes such as the ball, cylinder, and
circular truncated cone has been derived and the mathemat-
ical relationships of ice water’s solid-fluid transformation
have been presented. The unified theory and formulas of
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Figure 2: The nonlinear fit between the melting time and diameter: (a) ice cylinder, (b) ice circular truncated cone, and (c) ice ball.
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Figure 3: The comparative error analysis for the two kinds of fitting: (a) ice cylinder, (b) ice circular truncated cone, and (c) ice ball.

Table 2: Typical parameters for the thermotank wall.

Coefficient of thermal
conductivity [W/(m·K)]

Density
(kg/m3)

Modulus of
elasticity (Pa)

Poisson’s
ratio (1)

Specific heat
capacity [J/(kg·K)]

60.64 7850 2e11 0.3 96

Table 3: The comparison of melting time between ANSYS simulation and experimental results.

Shape Size (mm) ANSYS (min) Experiment (min) Difference (%)

Ball Diameter 45 75 81 7.4

Cylinder Diameter 45 111 120 7.5

Height 100

Circular Top 45

Truncated Root 60 137 144 4.7

Cone Height 100
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ice water’s solid-fluid transformation are validated through
simulation analysis and corresponding experiments. It is
expected that the theory derived in this paper could lay a
foundation for the research of solid-fluid transformation
phenomena of other materials and may have important
applications in engineering areas.
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