
Journal of Function Spaces

Fractional Problems with Variable-
Order or Variable Exponents 2021

Lead Guest Editor: Tianqing An
Guest Editors: J. Vanterler da C. Sousa and Debarjoyti Choudhuri

 



Fractional Problems with Variable-Order or
Variable Exponents 2021



Journal of Function Spaces

Fractional Problems with Variable-
Order or Variable Exponents 2021

Lead Guest Editor: Tianqing An
Guest Editors: J. Vanterler da C. Sousa and
Debarjoyti Choudhuri



Copyright © 2022 Hindawi Limited. All rights reserved.

is is a special issue published in “Journal of Function Spaces.” All articles are open access articles distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.



Chief Editor
Maria Alessandra Ragusa, Italy

Associate Editors
Ismat Beg  , Pakistan
Alberto Fiorenza  , Italy
Adrian Petrusel  , Romania

Academic Editors
Mohammed S. Abdo  , Yemen
John R. Akeroyd  , USA
Shrideh Al-Omari  , Jordan
Richard I. Avery  , USA
Bilal Bilalov, Azerbaijan
Salah Boulaaras, Saudi Arabia
Raúl E. Curto  , USA
Giovanni Di Fratta , Austria
Konstantin M. Dyakonov  , Spain
Hans G. Feichtinger  , Austria
Baowei Feng  , China
Aurelian Gheondea  , Turkey
Xian-Ming Gu, China
Emanuel Guariglia, Italy
Yusuf Gurefe, Turkey
Yongsheng S. Han, USA
Seppo Hassi, Finland
Kwok-Pun Ho  , Hong Kong
Gennaro Infante  , Italy
Abdul Rauf Khan  , Pakistan
Nikhil Khanna  , Oman
Sebastian Krol, Poland
Yuri Latushkin  , USA
Young Joo Lee  , Republic of Korea
Guozhen Lu  , USA
Giuseppe Marino  , Italy
Mark A. McKibben  , USA
Alexander Meskhi  , Georgia
Feliz Minhós  , Portugal
Alfonso Montes-Rodriguez  , Spain
Gisele Mophou  , France
Dumitru Motreanu  , France
Sivaram K. Narayan, USA
Samuel Nicolay  , Belgium
Kasso Okoudjou  , USA
Gestur Ólafsson  , USA
Gelu Popescu, USA
Humberto Rafeiro, United Arab Emirates

Paola Rubbioni  , Italy
Natasha Samko  , Portugal
Yoshihiro Sawano  , Japan
Simone Secchi  , Italy
Mitsuru Sugimoto  , Japan
Wenchang Sun, China
Tomonari Suzuki  , Japan
Wilfredo Urbina  , USA
Calogero Vetro  , Italy
Pasquale Vetro  , Italy
Shanhe Wu  , China
Kehe Zhu  , USA

https://orcid.org/0000-0002-4191-1498
https://orcid.org/0000-0003-2240-5423
https://orcid.org/0000-0002-5629-5667
https://orcid.org/0000-0001-9085-324X
https://orcid.org/0000-0003-1472-0757
https://orcid.org/0000-0001-8955-5552
https://orcid.org/0000-0002-2270-2527
https://orcid.org/0000-0002-1776-5080
https://orcid.org/0000-0002-9232-6264
https://orcid.org/0000-0002-9927-0742
https://orcid.org/0000-0003-4507-8170
https://orcid.org/0000-0002-9096-5927
https://orcid.org/0000-0003-0966-5984
https://orcid.org/0000-0003-1270-6177
https://orcid.org/0000-0002-4709-3860
https://orcid.org/0000-0001-8973-469X
https://orcid.org/0000-0002-8259-5655
https://orcid.org/0000-0002-3511-5241
https://orcid.org/0000-0003-0935-5003
https://orcid.org/0000-0001-9381-9338
https://orcid.org/0000-0001-8175-7408
https://orcid.org/0000-0001-7984-4019
https://orcid.org/0000-0002-7485-2500
https://orcid.org/0000-0002-7328-4812
https://orcid.org/0000-0001-7949-8152
https://orcid.org/0000-0001-7391-9534
https://orcid.org/0000-0003-0549-0566
https://orcid.org/0000-0003-4679-5534
https://orcid.org/0000-0001-8287-6943
https://orcid.org/0000-0002-9433-345X
https://orcid.org/0000-0002-8595-4326
https://orcid.org/0000-0003-2844-8053
https://orcid.org/0000-0002-9307-1347
https://orcid.org/0000-0001-6626-9289
https://orcid.org/0000-0002-2524-6045
https://orcid.org/0000-0002-4829-0444
https://orcid.org/0000-0001-5836-6847
https://orcid.org/0000-0003-1777-3731
https://orcid.org/0000-0002-8772-8170
https://orcid.org/0000-0002-7498-7077


Contents

Hardy-Leindler-Type Inequalities via Conformable Delta Fractional Calculus
H. M. Rezk  , Wedad Albalawi, H. A. Abd El-Hamid, Ahmed I. Saied, Omar Bazighifan  , Mohamed S.
Mohamed, and M. Zakarya 

Research Article (10 pages), Article ID 2399182, Volume 2022 (2022)

General Decay of a Nonlinear Viscoelastic Wave Equation with Balakrishnân-Taylor Damping and a
Delay Involving Variable Exponents
Jiabin Zuo  , Abita Rahmoune  , and Yanjiao Li 

Research Article (11 pages), Article ID 9801331, Volume 2022 (2022)

Darbo Fixed Point Criterion on Solutions of a Hadamard Nonlinear Variable Order Problem and
Ulam-Hyers-Rassias Stability
Shahram Rezapour  , Zoubida Bouazza, Mohammed Said Souid, Sina Etemad  , and Mohammed K. A.
Kaabar 

Research Article (12 pages), Article ID 1769359, Volume 2022 (2022)

Qualitative Analyses of Fractional Integrodifferential Equations with a Variable Order under the
Mittag-Leffler Power Law
Mdi Begum Jeelani  , Abeer S. Alnahdi  , Mohammed A. Almalahi  , Mohammed S. Abdo  , Hanan
A. Wahash  , and Nadiyah Hussain Alharthi 

Research Article (12 pages), Article ID 6387351, Volume 2022 (2022)

3e Analysis of the Fractional-Order Navier-Stokes Equations by a Novel Approach
E. M. Elsayed  , Rasool Shah, and Kamsing Nonlaopon 

Research Article (18 pages), Article ID 8979447, Volume 2022 (2022)

3e Boundedness of Doob’s Maximal and Fractional Integral Operators for Generalized Grand
Morrey-Martingale Spaces
Libo Li  , Zhiwei Hao  , and Xinru Ding 

Research Article (9 pages), Article ID 2293384, Volume 2022 (2022)

Qualitative Analysis of a Hyperchaotic Lorenz-Stenflo Mathematical Model via the Caputo Fractional
Operator
Chernet Tuge Deressa  , Sina Etemad  , Mohammed K. A. Kaabar  , and Shahram Rezapour 

Research Article (21 pages), Article ID 4975104, Volume 2022 (2022)

Atomic Decompositions and John-Nirenberg 3eorem of Grand Martingale Hardy Spaces with
Variable Exponents
Libo Li   and Zhiwei Hao 

Research Article (7 pages), Article ID 9021391, Volume 2022 (2022)

Numerical Methods for Fractional-Order Fornberg-Whitham Equations in the Sense of Atangana-
Baleanu Derivative
Naveed Iqbal  , Humaira Yasmin, Akbar Ali, Abdul Bariq  , M. Mossa Al-Sawalha, and Wael W.
Mohammed 

Research Article (10 pages), Article ID 2197247, Volume 2021 (2021)

https://orcid.org/0000-0001-6782-7908
https://orcid.org/0000-0002-7251-9608
https://orcid.org/0000-0003-4312-8330
https://orcid.org/0000-0002-5858-063X
https://orcid.org/0000-0003-2384-2668
https://orcid.org/0000-0002-4964-7521
https://orcid.org/0000-0003-3463-2607
https://orcid.org/0000-0002-1574-1800
https://orcid.org/0000-0003-2260-0341
https://orcid.org/0000-0002-8812-2859
https://orcid.org/0000-0002-8027-2529
https://orcid.org/0000-0001-5719-086X
https://orcid.org/0000-0001-9085-324X
https://orcid.org/0000-0003-1927-7301
https://orcid.org/0000-0003-0342-491X
https://orcid.org/0000-0003-0894-8472
https://orcid.org/0000-0002-7469-5402
https://orcid.org/0000-0002-1186-0909
https://orcid.org/0000-0001-5553-3398
https://orcid.org/0000-0001-7995-6897
https://orcid.org/0000-0002-7990-9430
https://orcid.org/0000-0002-1574-1800
https://orcid.org/0000-0003-2260-0341
https://orcid.org/0000-0003-3463-2607
https://orcid.org/0000-0002-1186-0909
https://orcid.org/0000-0001-5553-3398
https://orcid.org/0000-0002-8548-7078
https://orcid.org/0000-0003-3902-1944
https://orcid.org/0000-0002-1402-7584


Research Article
Hardy-Leindler-Type Inequalities via Conformable Delta
Fractional Calculus

H. M. Rezk ,1 Wedad Albalawi,2 H. A. Abd El-Hamid,3 Ahmed I. Saied,4

Omar Bazighifan ,5 Mohamed S. Mohamed,6 and M. Zakarya 7,8

1Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
2Department of Mathematical Science, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428,
Riyadh 11671, Saudi Arabia
3Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
4Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt
5Section of Mathematics, International Telematic, University Uninettuno, Corso Vittorio Emanuele II, 39, 00186 Rome, Italy
6Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
7King Khalid University, College of Science, Department of Mathematics, P.O. Box 9004, 61413 Abha, Saudi Arabia
8Department of Mathematics, Faculty of Science, Al-Azhar University, 71524 Assiut, Egypt

Correspondence should be addressed to M. Zakarya; mzibrahim@kku.edu.sa

Received 12 January 2022; Accepted 25 April 2022; Published 6 June 2022

Academic Editor: Tianqing An

Copyright © 2022 H. M. Rezk et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this article, some fractional Hardy-Leindler-type inequalities will be illustrated by utilizing the chain law, Hölder’s inequality,
and integration by parts on fractional time scales. As a result of this, some classical integral inequalities will be obtained. Also, we
would have a variety of well-known dynamic inequalities as special cases from our outcomes when α = 1.

1. Introduction

The Hardy discrete inequality is known as (see [1])

〠
∞

r=1

1
r
〠
r

j=1
l jð Þ

 !μ

≤
μ

μ − 1

� �μ

〠
∞

r=1
lμ rð Þ,  μ > 1: ð1Þ

where lðrÞ > 0 for all r ≥ 1.
In [2], Hardy employed the calculus of variations and

exemplified the continuous version for (1) as follows:

ð∞
0

1
y

ðy
0
g sð Þds

� �μ

dy ≤
μ

μ − 1

� �μð∞
0
gμ yð Þdy, μ > 1, ð2Þ

where μ ≥ 0 is integrable over any finite interval ð0, yÞ,gμ is

convergent and integrable over ð0,∞Þ, and ðμ/ðμ − 1ÞÞμ is
a sharp constant in (1) and (2).

Leindler in [3] exemplified that if μ > 1 and λðrÞ,f ðrÞ > 0,
then

〠
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λ sð Þ
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 !

: ð4Þ

The converses of (3) and (4) are exemplified by Leindler
in [4]. Precisely, he established that if 0 < μ ≤ 1, then
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Saker [5] exemplified the time scale version of (3) and

(4), respectively, as follows: suppose that T be a time scale
and μ > 1: If ΛðτÞ≔ Ð∞

τ
λðsÞΔs,ΦðτÞ≔ Ð τl f ðsÞΔs, for any τ

∈ l,∞ÞT , thenð∞
l
λ τð Þ Φσ τð Þð ÞμΔτ ≤ μμ

ð∞
l
λ1−μ τð ÞΛμ τð Þf μ τð ÞΔτ

� �
: ð7Þ

Also, if �ΛðτÞ≔ Ð τl λðsÞΔs and �ΦðτÞ≔ Ð∞
τ
f ðsÞΔs, for any

τ ∈ l,∞ÞT , thenð∞
l
λ τð Þ �Φ τð Þ� �μ

Δτ ≤ μμ
ð∞
l
λ1−μ τð Þ �Λ

σ
τð Þ� �μ

f μ τð ÞΔτ
� �

:

ð8Þ

The converses of (7) and (8) are established by Saker [5].
Precisely, he exemplified that, if T is a time scale, 0 < μ ≤ 1,
ΩðτÞ = Ð∞

τ
λðsÞΔs, and ΨðτÞ = Ð τl f ðsÞΔs, for any τ ∈ l,∞ÞT ,

then

ð∞
l
λ τð Þ Ψσ τð Þð ÞμΔτ ≥ μμ

ð∞
l
f μ τð ÞΩμ τð Þλ1−μ τð ÞΔτ

� �
: ð9Þ

Also, if �ΩðτÞ = Ð τl λðsÞΔs and �ΨðτÞ = Ð∞
τ
f ðsÞΔs, for any

τ ∈ l,∞ÞT , thenð∞
l
λ τð Þ �Ψ τð Þ� �μ

Δτ ≥ μμ
ð∞
l
f μ τð Þ �Ω

σ
τð Þ� �μ

λ1−μ τð ÞΔτ
� �

,

ð10Þ

which are the time scale version for (5) and (6), respectively.
For developing dynamic inequalities, see the papers
([6–11]).

Our target in this article is proving some fractional
dynamic inequalities for Hardy-Leindler’s type, and it is
reversed with employing conformable calculus on time scales.
This article is structured as follows: In Section 2, we discuss the
preliminaries of conformable fractional on time scale calculus
which will be required in proving our main outcomes. In Sec-
tion 3, we will exemplify the major consequences.

2. Basic Concepts

In this part, we introduce the essentials of conformable frac-
tional integral and derivative of order α ∈ ½0, 1� on time
scales that will be used in this article (see [12–15]). For a
time scale T , we define the operator σ : T ⟶ T , as

σ τð Þ≔ inf s ∈ T : s > τf g: ð11Þ

Also, we define the function μ : T ⟶ 0,∞Þ by

μ τð Þ≔ σ τð Þ − τ: ð12Þ

Finally, for any τ ∈ T , we refer to the notation ξσðτÞ by
ξðσðτÞÞ, i.e., ξσ = ξ ∘ σ. In the following, we define conform-
able α-fractional derivative and α-fractional integral on T .

Definition 1 (see [16], Definition 3.1). Suppose that ξ : T

⟶ℝ and α ∈ ð0, 1�: Then, for τ > 0, we define DαðξΔÞðτÞ
to be the number with the property that, for any ε > 0, there
is a neighborhood V of τ s.t. ∀τ ∈ V , we have

ξσ τð Þ − ξ sð Þ� �
σ1−α τð Þ −Dα ξΔ

� �
τð Þ σ τð Þ − sð Þ

��� ��� ≤ ε σ τð Þ − sÞj j:
ð13Þ

The conformable α-fractional derivative on T at 0 is

Dα ξΔ
� �

0ð Þ = lim
τ⟶0

Dα ξΔ
� �

τð Þ: ð14Þ

Theorem 2 (see [16], Theorem 3.6). Assume 0 < α ≤ 1 and
ν, ξ : T ⟶ℝ are conformable α-fractional derivatives at τ
∈ T k: Then, we have the following.

(i) The sum ν + ξ is a conformable α-fractional deriva-
tive and

Dα ν + ξð ÞΔ
� �

τð Þ =Dα νΔ
� �

τð Þ +Dα ξΔ
� �

τð Þ ð15Þ

(ii) The product νξ : T ⟶ℝ is a conformable α-frac-
tional derivative with

Dα νξð ÞΔ
� �

τð Þ =Dα νΔ
� �

τð Þξ τð Þ + ν σ τð Þð ÞDα ξΔ
� �

τð Þ
= ν τð ÞDα ξΔ

� �
τð Þ +Dα νΔ

� �
τð Þξ σ τð Þð Þ

ð16Þ

(iii) If ξðτÞξðσðτÞÞ ≠ 0, then ν/ξ is a conformable α
-fractional derivative with

Dα

ν

ξ

� �Δ
 !

τð Þ =
Dα νΔ
� �

τð Þξ τð Þ − ν τð ÞDα ξΔ
� �

τð Þ
ξ τð Þξ σ τð Þð Þ

ð17Þ

Lemma 3 (Chain rule). Suppose that ξ : T ⟶ℝ is continu-
ous and α-fractional differentiable at τ ∈ T , for α ∈ ð0, 1� and
ν : ℝ⟶ℝ is continuously differentiable. Then, ðν ∘ ξÞ: T
⟶ℝ is α-fractional differentiable and
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Dα ν ∘ ζð ÞΔ
� �

τð Þ = ν′ ξ dð Þð ÞDα ξΔ
� �

τð Þ,where d ∈ τ, σ τð Þ½ �:
ð18Þ

Definition 4 (see [16], Definition 4.1). For 0 < α ≤ 1, then the
α-conformable Δ fractional integral of ξ is defined as

Iα ξΔ
� �

sð Þ =
ð
ξ sð ÞΔαs =

ð
ξ sð Þσα−1 sð ÞΔs, for all s ∈ T k:

ð19Þ

Theorem 5 (see [16], Theorem 4.3). Let l,m, n ∈ T ,β ∈ℝ,
α ∈ ð0, 1�, and ν, ξ : T ⟶ℝ be rd-continuous functions.
Then,

(i)
Ðm
l ½νðsÞ + ξðsÞ�Δαs =

Ðm
l νðsÞΔαs +

Ðm
l ξðsÞΔαs

(ii)
Ðm
l βνðsÞΔαs = β

Ðm
l νðsÞΔαs

(iii)
Ðm
l νðsÞΔαs = −

Ð l
mνðsÞΔαs

(iv)
Ðm
l νðsÞΔαs =

Ð n
l νðsÞΔαs +

Ðm
n νðsÞΔαs

(v)
Ð l
lνðsÞΔαs = 0

Lemma 6 (Integration by parts formula [16], Theorem 4.3).
Suppose that l,m ∈ T where m > l: If ν, ξ are rd-continuous
functions and α ∈ ð0, 1�, then

ið Þ
ðm
l
ν sð ÞDα ξΔ

� �
sð ÞΔαs = ν sð Þξ sð Þ½ �ml −

ðm
l
ξσ sð ÞDα vΔ

� �
sð ÞΔαs:

ð20Þ

iið Þ
ðm
l
vσ sð ÞDα ξΔ

� �
sð ÞΔαs = ν sð Þξ sð Þ½ �ml −

ðm
l
ξ sð ÞDα vΔ

� �
sð ÞΔαs:

ð21Þ
Lemma 7 (Hölder’s inequality). Let l,m ∈ T where m > l: If
α ∈ ð0, 1� and F,G : T ⟶ℝ, then

ðm
l
F sð ÞG sð Þj jΔαs ≤

ðm
l
F sð Þj jβΔαs

� �1/β ðm
l
G sð Þj jμΔαs

� �1/μ
,

ð22Þ

where β > 1 and 1/β + 1/μ = 1:
Through our paper, we will consider the integrals are

given exist (are finite, i.e., convergent).

3. Main Results

Here, we will exemplify our major results in this article. In
the pursuing theorem, we will exemplify Leindler’s inequal-
ity (7) for fractional time scales as follows.

Theorem 8. Suppose that T be a time scale and 0 < α ≤ 1: If
μ > 1,ΛðτÞ≔ Ð∞

τ
λðsÞΔαs and ΦðτÞ≔ Ð τl f ðsÞΔαs, for any τ ∈

½l,∞ÞT , then

ð∞
l
λ τð Þ Φσ τð Þð Þμ−α+1Δατ

≤ μ − α + 1ð Þ
ð∞
l
λ1−μ τð ÞΛμ τð Þf μ τð ÞΔατ

� �1/μ

×
ð∞
l
λ τð Þ Φσ τð Þð Þμ μ−αð Þ/μ−1Δατ

� � μ−1ð Þ/μ
:

ð23Þ

Proof. By utilizing (20) onð∞
l
λ τð Þ Φσ τð Þð Þμ−α+1Δατ, ð24Þ

with ζσðτÞ = ðΦσðτÞÞμ−α+1 and DαðνΔÞðτÞ = λðτÞ, we haveð∞
l
λ τð Þ Φσ τð Þð Þμ−α+1Δατ

= ν τð ÞΦμ−α+1 τð Þ��∞l
+
ð∞
l

−ν τð Þð ÞDα ΦΔ� �μ−α+1� �
τð ÞΔατ,

ð25Þ

where

ν τð Þ = −
ð∞
τ

λ sð ÞΔαs = −Λ τð Þ: ð26Þ

Substituting (26) into (25), we getð∞
l
λ τð Þ Φσ τð Þð Þμ−α+1Δατ

= ν τð ÞΦμ−α+1 τð Þ��∞l +
ð∞
l
Λ τð ÞDα ΦΔ� �μ−α+1� �

τð ÞΔατ:

ð27Þ

Using ΦðlÞ = 0 and Λð∞Þ = 0 in (27), we haveð∞
l
λ τð Þ Φσ τð Þð Þμ−α+1Δατ =

ð∞
l
Λ τð ÞDα ΦΔ� �μ−α+1� �

τð ÞΔατ:

ð28Þ

Utilizing the chain rule (18), we get

Dα ΦΔ� �μ−α+1� �
τð Þ = μ − α + 1ð ÞΦμ−α dð ÞDα ΦΔ� �

τð Þ
≤ μ − α + 1ð ÞDα ΦΔ� �

τð Þ Φσ τð Þð Þμ−α:
ð29Þ

Since DαðΦΔÞðτÞ = f ðτÞ, we get

Dα ΦΔ� �μ−α+1� �
τð Þ ≤ μ − α + 1ð Þf τð Þ Φσ τð Þð Þμ−α: ð30Þ

Substituting (30) into (28) yields

ð∞
l
λ τð Þ Φσ τð Þð Þμ−α+1Δατ ≤ μ − α + 1ð Þ

ð∞
l
Λ τð Þf τð Þ Φσ τð Þð Þμ−αΔατ:

ð31Þ
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Inequality (31) can be written as

ð∞
l
λ τð Þ Φσ τð Þð Þμ−α+1Δατ ≤ μ − α + 1ð Þ

ð∞
l

Λ τð Þf τð Þ
λ μ−1ð Þ/μ τð Þ

λ μ−1ð Þ/μ τð Þ Φσ τð Þð Þμ−αΔατ:

ð32Þ

Implementing Hölder’s inequality on the R.H.S of (32)
with indices μ, μ/ðμ − 1Þ, we get
ð∞
l

Λ τð Þf τð Þ
λ μ−1ð Þ/μ τð Þ

λ μ−1ð Þ/μ τð Þ Φσ τð Þð Þμ−αΔατ

≤
ð∞
l

Λ τð Þf τð Þ
λ μ−1ð Þ/μ τð Þ

 !μ

Δατ

 !1/μ ð∞
l

λ μ−1ð Þ/μ τð Þ Φσ τð Þð Þμ−α
� �μ/ μ−1ð Þ

Δατ

� � μ−1ð Þ/μ

=
ð∞
l

Λμ τð Þf μ τð Þ
λμ−1 τð Þ

Δατ

 !1/μ ð∞
l
λ τð Þ Φσ τð Þð Þ μ μ−αð Þð Þ/ μ−1ð ÞΔατ

� � μ−1ð Þ/μ
:

ð33Þ

By substituting (33) into (32), we get

ð∞
l
λ τð Þ Φσ τð Þð Þμ−α+1Δατ ≤ μ − α + 1ð Þ

ð∞
l
λ1−μ τð ÞΛμ τð Þf μ τð ÞΔατ

� �1/μ

×
ð∞
l
λ τð Þ Φσ τð Þð Þμ μ−αð Þ/μ−1Δατ

� � μ−1ð Þ/μ
,

ð34Þ

which is (23).

Corollary 9. At α = 1 in Theorem 8, then

ð∞
l
λ τð Þ Φσ τð Þð ÞμΔτ

≤ μ
ð∞
l
λ1−μ τð ÞΛμ τð Þf μ τð ÞΔτ

� �1/μ

×
ð∞
l
λ τð Þ Φσ τð Þð ÞμΔτ

� � μ−1ð Þ/μ
,

ð35Þ

where >1,ΛðτÞ≔ Ð∞
τ
λðsÞΔs, and ΦðτÞ≔ Ð τl f ðsÞΔs, for any τ

∈ l,∞ÞT :

Remark 10. In Corollary 9, if we divide both sides of (35) by
the factor

ð∞
l
λ τð Þ Φσ τð Þð ÞμΔτ

� � μ−1ð Þ/μ
, ð36Þ

and using the fact that 1 − ðμ − 1Þ/μ = 1/μ, then
ð∞
l
λ τð Þ Φσ τð Þð ÞμΔτ

� �1/μ
≤ μ

ð∞
l
λ1−μ τð ÞΛμ τð Þf μ τð ÞΔτ

� �1/μ
: ð37Þ

Elevating the last inequality to the μth power, we get

ð∞
l
λ τð Þ Φσ τð Þð ÞμΔτ ≤ μμ

ð∞
l
λ1−μ τð ÞΛμ τð Þf μ τð ÞΔτ, ð38Þ

which is (7) in Introduction.

Remark 11. If we put T =ℝ (i.e., σðτÞ = τ) in Theorem 5,
then

ð∞
l
λ τð ÞΦμ−α+1 τð Þτα−1dτ ≤ μ − α + 1ð Þ

ð∞
l
λ1−μ τð ÞΛμ τð Þf μ τð Þτα−1dτ

� �1/μ

×
ð∞
l
λ τð Þ Φ τð Þð Þμ μ−αð Þ/μ−1τα−1dτ

� � μ−1ð Þ/μ
,

ð39Þ

where α ∈ ð0, 1�,μ > 1,ΛðτÞ≔ Ð∞
τ
λðsÞsα−1ds, and ΦðτÞ≔ Ð τl f

ðsÞsα−1ds, for any τ ∈ ½l,∞Þ:

Remark 12. Clearly, for α = 1 and l = 1, Remark 12 coincides
with Remark 10 in [5].

Remark 13.When T =ℤ (i.e., σðτÞ = τ + 1),μ > 1, and l = 1 in
(23), then we get

〠
∞

r=1
λ rð Þ 〠

σ rð Þ−1

s=1
f sð Þ s + 1ð Þα−1

 !μ−α+1

r + 1ð Þα−1

≤ μ − α + 1ð Þ 〠
∞

r=1
λ1−μ rð Þ 〠

∞

s=r
λ sð Þ s + 1ð Þα−1

 !μ

f μ rð Þ r + 1ð Þα−1
 !1/μ

× 〠
∞

r=1
λ rð Þ 〠

σ rð Þ−1

s=1
f sð Þ s + 1ð Þα−1

 ! μ μ−αð Þð Þ/ μ−1ð Þ

r + 1ð Þα−1
0
@

1
A

μ−1ð Þ/μ

:

ð40Þ

If α = 1, then (40) becomes

〠
∞

r=1
λ rð Þ 〠

σ rð Þ−1

s=1
f sð Þ

 !μ

≤ μ 〠
∞

r=1
λ1−μ rð Þ 〠

∞

s=r
λ sð Þ

 !μ

f μ rð Þ
 !1/μ

× 〠
∞

r=1
λ rð Þ 〠

σ rð Þ−1

s=1
f sð Þ

 !μ !μ−1/μ

,

ð41Þ

which is Remark 11 in [5].

In the pursuing theorem, we will exemplify Leindler’s
inequality (8) on fractional time scales as follows.

Theorem 14. Suppose that T be a time scale and 0 < α ≤ 1: If
>1,�ΛðτÞ≔ Ð τl λðsÞΔαs, and ΨðτÞ≔ Ð∞

τ
f ðsÞΔαs, for any τ ∈ l,

∞ÞT , then
ð∞
l
λ τð Þ Ψ τð Þð Þμ−α+1Δατ ≤ μ − α + 1ð Þ

ð∞
l
λ1−μ τð Þ �Λ

σ
τð Þ� �μ

f μ τð ÞΔατ

� �1/μ

×
ð∞
l
λ τð Þ Ψ τð Þð Þ μ μ−αð Þð Þ/ μ−1ð ÞΔατ

� � μ−1ð Þ/μ
:

ð42Þ

Proof. By utilizing (20) on
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ð∞
l
λ τð Þ Ψ τð Þð Þμ−α+1Δατ, ð43Þ

with νðτÞ = ðΨðτÞÞμ−α+1 and DαðζΔÞðτÞ = λðτÞ, we have
ð∞
l
λ τð Þ Ψ τð Þð Þμ−α+1Δατ = ζ τð Þ Ψ τð Þð Þμ−α+1��∞l +

ð∞
l
ζσ τð Þ −Dα ΨΔ� �μ−α+1� �

τð Þ
� �

Δατ,

ð44Þ

where

ζ τð Þ =
ðτ
l
λ sð ÞΔαs = �Λ τð Þ: ð45Þ

Substituting (45) into (44), we get

ð∞
l
λ τð Þ Ψ τð Þð Þμ−α+1Δατ = �Λ τð Þ Ψ τð Þð Þμ−α+1��∞l

+
ð∞
l

�Λ τð Þ� �σ −Dα ΨΔ� �μ−α+1� �
τð Þ

� �
Δατ:

ð46Þ

Using the fact that Ψð∞Þ = 0 and �ΛðlÞ = 0, (46) became

ð∞
l
λ τð Þ Ψ τð Þð Þμ−α+1Δατ =

ð∞
l

�Λ τð Þ� �σ −Dα ΨΔ� �μ−α+1� �
τð Þ

� �
Δατ:

ð47Þ

Utilizing chain rule (18), we get

−Dα ΨΔ� �μ−α+1� �
τð Þ = − μ − α + 1ð ÞΨμ−α dð ÞDα ΨΔ� �

τð Þ
= − μ − α + 1ð Þ −f τð Þð ÞΨμ−α dð Þ

≤ μ − α + 1ð Þf τð ÞΨμ−α τð Þ:
ð48Þ

By substituting (48) into (47), we get

ð∞
l
λ τð Þ Ψ τð Þð Þμ−α+1Δατ ≤ μ − α + 1ð Þ

ð∞
l

�Λ τð Þ� �σ f τð ÞΨμ−α τð ÞΔατ:

ð49Þ

Inequality (49) can be written as

ð∞
l
λ τð Þ Ψ τð Þð Þμ−α+1Δατ ≤ μ − α + 1ð Þ

ð∞
l

�Λ τð Þ� �σ f τð Þ
λ μ−1ð Þ/μ τð Þ

λ μ−1ð Þ/μ τð ÞΨμ−α τð ÞΔατ:

ð50Þ

Implementing Hölder’s inequality on the R.H.S of (50)

with indices μ, μ/ðμ − 1Þ, we get

ð∞
l

�Λ τð Þ� �σ f τð Þ
λ μ−1ð Þ/μ τð Þ

λ μ−1ð Þ/μ τð ÞΨμ−α τð ÞΔατ

≤
ð∞
l

�Λ τð Þ� �σ f τð Þ
λ μ−1ð Þ/μ τð Þ

 !μ

Δατ

 !1/μ ð∞
l

λ μ−1ð Þ/μ τð ÞΨμ−α τð Þ
� �μ/ μ−1ð Þ

Δατ

� � μ−1ð Þ/μ

=
ð∞
l

�Λ
σ
τð Þ� �μ

f μ τð Þ
λμ−1 τð Þ Δατ

 !1/μ ð∞
l
λ τð Þ Ψ τð Þð Þ μ μ−αð Þð Þ/ μ−1ð ÞΔατ

� � μ−1ð Þ/μ
:

ð51Þ

By substituting (51) into (50), we get

ð∞
l
λ τð ÞΨμ−α+1 τð ÞΔατ ≤ μ − α + 1ð Þ

ð∞
l
λ1−μ τð Þ �Λ

σ
τð Þ� �μ

f μ τð ÞΔατ

� �1/μ

×
ð∞
l
λ τð Þ Ψ τð Þð Þμ μ−αð Þ/μ−1Δατ

� � μ−1ð Þ/μ
,

ð52Þ

which is (42).

Corollary 15. At α = 1 in Theorem 14, then

ð∞
l
λ τð Þ Ψ τð Þð ÞμΔτ ≤ μ

ð∞
l
λ1−μ τð Þ �Λ

σ
τð Þ� �μ

f μ τð ÞΔτ
� �1/μ

×
ð∞
l
λ τð Þ �Φ τð Þ� �μ

Δτ

� � μ−1ð Þ/μ
,

ð53Þ

where μ > 1,�ΛðτÞ≔ Ð τl λðsÞΔs, and ΨðτÞ≔ Ð∞
τ
f ðsÞΔs, for any

τ ∈ l,∞ÞT :

Remark 16. In Corollary 15, if we divide both sides of (53) by
the factor

ð∞
l
λ τð Þ Ψ τð Þð ÞμΔτ

� � μ−1ð Þ/μ
, ð54Þ

and using the fact that 1 − ðμ − 1Þ/μ = 1/μ, then

ð∞
l
λ τð Þ Ψ τð Þð ÞμΔτ

� �1/μ
≤ μ

ð∞
l
λ1−μ τð Þ �Λ

σ
τð Þ� �μ

f μ τð ÞΔτ
� �1/μ

:

ð55Þ

Elevating the last inequality to the μth power, we get

ð∞
l
λ τð Þ Ψ τð Þð ÞμΔτ ≤ μμ

ð∞
l
λ1−μ τð Þ �Λ

σ
τð Þ� �μ

f μ τð ÞΔτ, ð56Þ

which is (8) in Introduction.
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Remark 17. As a result, if T =ℝ (i.e., σðτÞ = τ) in Theorem
14, then

ð∞
l
λ τð ÞΨμ−α+1 τð Þτα−1dτ ≤ μ − α + 1ð Þ

ð∞
l
λ1−μ τð Þ �Λ τð Þ� �μ f μ τð Þτα−1dτ

� �1/μ

×
ð∞
l
λ τð Þ Ψ τð Þð Þμ μ−αð Þ/ μ−1ð Þτα−1dτ

� � μ−1ð Þ/μ
,

ð57Þ

where α ∈ ð0, 1�,μ > 1,�ΛðτÞ≔ Ð τl λðsÞsα−1ds, and ΨðτÞ≔ Ð∞
τ
f

ðsÞsα−1ds, for any τ ∈ ½l,∞Þ:

Remark 18. Clearly, for α = 1 and l = 1, Remark 17 coincides
with Remark 12 in [5].

Remark 19. When T =ℤ (i.e., σðτÞ = τ + 1), μ > 1, and l = 1
in (42), we get

〠
∞

r=1
λ rð Þ 〠

∞

s=r
f sð Þ s + 1ð Þα−1

 !μ−α+1

r + 1ð Þα−1

≤ μ − α + 1ð Þ 〠
∞

r=1
λ1−μ rð Þ 〠

r−1

k=1
λ kð Þ k + 1ð Þα−1

 !μ

f μ rð Þ r + 1ð Þα−1
 !1/μ

× 〠
∞

r=1
λ rð Þ 〠

∞

s=r
f sð Þ s + 1ð Þα−1

 !μ μ−αð Þ/ μ−1ð Þ
r + 1ð Þα−1

0
@

1
A

μ−1ð Þ/μ

:

ð58Þ

If α = 1, then (58) becomes

〠
∞

r=1
λ rð Þ 〠

∞

s=r
f sð Þ

 !μ

≤ μ 〠
∞

r=1
λ1−μ rð Þ 〠

r

k=1
λ kð Þ

 !μ

f μ rð Þ
 !1/μ

× 〠
∞

r=1
λ rð Þ 〠

∞

s=r
f sð Þ

 !μ ! μ−1ð Þ/μ
,

ð59Þ

which is Remark 13 in [5].

In the pursuing theorem, we will exemplify Leindler’s
inequality (9) for fractional time scales as follows.

Theorem 20. Suppose that T be a time scale and α ∈ ð0, 1�: If
0 < μ ≤ 1,ΩðτÞ = Ð∞

τ
λðsÞΔαs and Ϝ ðτÞ = Ð τl f ðsÞΔαs, for any τ

∈ l,∞ÞT , then
ð∞
l
λ τð Þ Ϝ σ τð Þð Þμ−α+1Δατ

� �μ

≥ μ − α + 1ð Þμ
ð∞
l
f μ τð ÞΩμ τð Þλ1−μ τð ÞΔατ

� �

×
ð∞
l
λ τð Þ Ϝ σ τð Þð Þμ α−μð Þ/ 1−μð ÞΔατ

� �μ−1
:

ð60Þ

Proof. By applying (20) onð∞
l
λ τð Þ Ϝ σ τð Þð Þμ−α+1Δατ, ð61Þ

with ζσðτÞ = ðϜσðτÞÞμ−α+1 and DαðνΔÞðτÞ = λðτÞ, we have
ð∞
l
λ τð Þ Ϝ σ τð Þð Þμ−α+1Δατ

= ν τð ÞϜ μ−α+1 τð Þ��l∞ +
ð∞
l

−ν τð Þð ÞDα Ϝ Δ� �μ−α+1� �
τð ÞΔατ,

ð62Þ

where

ν τð Þ = −
ð∞
τ

λ sð ÞΔαs = −Ω τð Þ: ð63Þ

Substituting (63) into (62) yields

ð∞
l
λ τð Þ Ϝ σ τð Þð Þμ−α+1Δατ

= −Ω τð ÞϜ μ−α+1 τð Þ��l∞ +
ð∞
l
Ω τð ÞDα Ϝ Δ� �μ−α+1� �

τð ÞΔατ:

ð64Þ

Using the fact that νð∞Þ = 0 and ϜðlÞ = 0, (64) became

ð∞
l
λ τð Þ Ϝ σ τð Þð Þμ−α+1Δατ =

ð∞
l
Ω τð ÞDα Ϝ Δ� �μ−α+1� �

τð ÞΔατ:

ð65Þ

Utilizing chain rule (18), we get

Dα Ϝ Δ� �μ−α+1� �
τð Þ

= μ − α + 1ð ÞϜμ−α dð ÞDα Ϝ Δ� �
τð Þ

≥ μ − α + 1ð ÞDα Ϝ Δ� �
τð Þ Ϝ σ τð Þð Þμ−α:

ð66Þ

Since DαðϜ ΔÞðτÞ = f ðτÞ, we obtain

Dα Ϝ Δ� �μ−α+1� �
τð Þ ≥ μ − α + 1ð Þf τð Þ Ϝ σ τð Þð Þμ−α: ð67Þ

By substituting (67) into (65), we have

ð∞
l
λ τð Þ Ϝ σ τð Þð Þμ−α+1Δατ

≥ μ − α + 1ð Þ
ð∞
l
Ω τð Þf τð Þ Ϝ σ τð Þð Þμ−αΔατ

= μ − α + 1ð Þ
ð∞
l

Ωμ τð Þf μ τð Þ Ϝ σ τð Þð Þμ μ−αð Þ
h i1/μ

Δατ:

ð68Þ
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Raises (68) to the factor μ, we get

ð∞
l
λ τð Þ Ϝ σ τð Þð Þμ−α+1Δατ

� �μ

≥ μ − α + 1ð Þμ
ð∞
l
λ Ωμ τð Þf μ τð Þ Ϝ σ τð Þð Þμ μ−αð Þ
h i1/μ

Δατ

� �μ

:

ð69Þ

By applying Hölder’s inequality on

ð∞
l

Ωμ τð Þf μ τð Þ Ϝ σ τð Þð Þμ μ−αð Þ
h i1/μ

Δατ

� �μ

, ð70Þ

with indices 1/μ, 1/ð1 − μÞ, and

F τð Þ = f μ τð ÞΩμ τð Þ
Ϝ σ τð Þð Þμ α−μð Þ ,

G τð Þ = λ1‐μ τð Þ Ϝ σ τð Þð Þμ α‐μð Þ,
ð71Þ

we see that

ð∞
l
F1/μ τð ÞΔατ

� �μ

=
ð∞
l

f μ τð ÞΩμ τð Þ
Ϝ σ τð Þð Þμ α−μð Þ

 !1/μ

Δατ

 !μ

≥
Ð∞
l F τð ÞG τð ÞΔατÐ∞

l G1/ 1−μð Þ τð ÞΔατ
� �1−μ

=
ð∞
l

f μ τð ÞΩμ τð Þλ1−μ τð Þ Ϝ σ τð Þð Þμ α−μð Þ
�

Ϝ σ τð Þð Þμ α−μð Þ Δατ

0
@

1
A

×
ð∞
l

λ1−μ τð Þ Ϝ σ τð Þð Þμ α−μð Þ
� �1/ 1−μð Þ

Δατ

� �μ−1

=
ð∞
l
f μ τð ÞΩμ τð Þλ1−μ τð ÞΔατ

� �

�
ð∞
l
λ τð Þ Ϝ σ τð Þð Þμ α−μð Þ/ 1−μð ÞΔατ

� �μ−1
:

ð72Þ

This implies that

ð∞
l
Ω τð Þf τð Þ Ϝ σ τð Þð Þμ−αΔατ

� �μ

≥
ð∞
l
f μ τð ÞΩμ τð Þλ1−μ τð ÞΔατ

� �

×
ð∞
l
λ τð Þ Ϝ σ τð Þð Þμ α−μð Þ/ 1−μð ÞΔατ

� �μ−1
:

ð73Þ

By substituting (73) into (69), we get

ð∞
l
λ τð Þ Ϝ σ τð Þð Þμ−α+1Δατ

� �μ

≥ μ − α + 1ð Þμ
ð∞
l
f μ τð ÞΩμ τð Þλ1−μ τð ÞΔατ

� �

×
ð∞
l
λ τð Þ Ϝ σ τð Þð Þμ α−μð Þ/ 1−μð ÞΔατ

� �μ−1
,

ð74Þ

which is (60).

Corollary 21. At α = 1 in Theorem 20, then

ð∞
l
λ τð Þ Ϝ σ τð Þð ÞμΔτ

� �μ

≥ μμ
ð∞
l
f μ τð ÞΩμ τð Þλ1−μ τð ÞΔτ

� �

×
ð∞
l
λ τð Þ Ϝ σ τð Þð ÞμΔτ

� �μ−1

,

ð75Þ

where 0 < μ ≤ 1,ΩðτÞ = Ð∞
τ
λðsÞΔs, and Ϝ ðτÞ = Ð τl f ðsÞΔs, for

any τ ∈ ½l,∞Þ:

Remark 22. In Corollary 21, if we divide both sides of (75) by
the factor

ð∞
l
λ τð Þ Ϝ σ τð Þð Þμ τð ÞΔτ

� �μ−1
, ð76Þ

then (75) can be written as

ð∞
l
λ τð Þ Ϝ σ τð Þð ÞμΔτ ≥ μμ

ð∞
l
f μ τð ÞΩμ τð Þλ1−μ τð ÞΔτ

� �
,

ð77Þ

which is (9) in Introduction.

Remark 23. As a result, if T =ℝ (i.e., σðτÞ = τ) in Theorem
20, then

ð∞
l
λ τð Þ Ϝ τð Þð Þμ−α+1τα−1dτ

� �μ

≥ μ − α + 1ð Þμ
ð∞
l
f μ τð ÞΩμ τð Þλ1−μ τð Þτα−1dτ

� �

×
ð∞
l
λ τð Þ Ϝ τð Þð Þμ α−μð Þ/ 1−μð Þτα−1dτ

� �μ−1
,

ð78Þ

where α ∈ ð0, 1�,0 < μ ≤ 1,ΩðτÞ = Ð∞
τ
λðsÞsα−1ds, and Ϝ ðτÞ =Ð τ

l f ðsÞsα−1ds, for any τ ∈ ½l,∞Þ:

Remark 24. Clearly, for α = 1 and l = 1, Remark 23 coincides
with Remark 16 in [5].
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Remark 25. When T =ℤ (i.e., σðτÞ = τ + 1), μ ≤ 1, and l = 1
in (60), then we get

〠
∞

r=1
λ rð Þ 〠

σ rð Þ−1

s=1
f sð Þ s + 1ð Þα−1

 !μ−α+1

r + 1ð Þα−1
0
@

1
A

μ

≥ μ − α + 1ð Þμ 〠
∞

r=1
f μ rð Þ 〠

∞

s=r
λ sð Þ s + 1ð Þα−1

 !μ

λ1−μ rð Þ r + 1ð Þα−1
 !

× 〠
∞

r=1
λ rð Þ 〠

σ rð Þ−1

s=1
f sð Þ s + 1ð Þα−1

 ! μ−α+1ð Þ/ 1−μð Þ

r + 1ð Þα−1
0
@

1
A

μ−1

:

ð79Þ

If α = 1, then (79) becomes

〠
∞

r=1
λ rð Þ 〠

σ rð Þ−1

s=1
f sð Þ

 !μ !μ

≥ μμ 〠
∞

r=1
f μ rð Þ 〠

∞

s=r
λ sð Þ

 !μ

λ1−μ rð Þ
 !

× 〠
∞

r=1
λ rð Þ 〠

σ rð Þ−1

s=1
f sð Þ

 !μ !μ−1

,

ð80Þ

which is Remark 17 in [5].

In the pursuing theorem, we will exemplify Leindler’s
inequality (10) for fractional time scales as follows.

Theorem 26. Suppose that T be a time scale and α ∈ ð0, 1�: If
0 < μ ≤ 1,�ΩðτÞ = Ð τl λðsÞΔαs, and ΓðτÞ = Ð∞

τ
f ðsÞΔαs, for any

τ ∈ ½l,∞ÞT , thenð∞
l
λ τð Þ Γ τð Þð Þμ−α+1Δατ

� �μ

≥ μ − α + 1ð Þμ
ð∞
l
f μ τð Þ �Ω

σ
τð Þ� �μ

λ1−μ τð ÞΔατ

� �

×
ð∞
l
λ τð Þ Γ τð Þð Þμ α−1ð Þ/1−μΔατ

� �μ−1

:

ð81Þ

Proof. By applying (20) on

ð∞
l
λ τð Þ Γ τð Þð Þμ−α+1Δατ, ð82Þ

with νðτÞ = ðΓðτÞÞμ−α+1 and DαðζΔÞðτÞ = λðτÞ, we have
ð∞
l
λ τð Þ Γ τð Þð Þμ−α+1Δατ

= ζ τð Þ Γ τð Þð Þμ−α+1��∞l +
ð∞
l
ζσ τð Þ −Dα ΓΔ� �μ−α+1� �

τð Þ
� �

Δατ,

ð83Þ

where

ζ τð Þ =
ðτ
l
λ sð ÞΔαs = �Ω τð Þ: ð84Þ

Substituting (84) into (83), we get

ð∞
l
λ τð Þ Γ τð Þð Þμ−α+1Δατ

= �Ω τð Þ Γ τð Þð Þμ−α+1��∞l +
ð∞
l

�Ω
σ
τð Þ −Dα ΓΔ� �μ−α+1� �

τð Þ
� �

Δατ:

ð85Þ

Using the fact that Γð∞Þ = 0 and �ΩðlÞ = 0, (85) became

ð∞
l
λ τð Þ Γ τð Þð Þμ−α+1Δατ =

ð∞
l

�Ω
σ
τð Þ −Dα ΓΔ� �μ−α+1� �

τð Þ
� �

Δατ:

ð86Þ

Utilizing chain rule (18), we have

−Dα ΓΔ� �μ−α+1� �
τð Þ

= − μ − α + 1ð ÞΓμ−α dð ÞDα ΓΔ� �
τð Þ

≥ − μ − α + 1ð ÞΓμ−α τð ÞDα ΓΔ� �
τð Þ:

ð87Þ

Since DαðΓΔÞðτÞ = −f ðτÞ, we get

−Dα ΓΔ� �μ−α+1� �
τð Þ ≥ μ − α + 1ð Þf τð ÞΓμ−α τð Þ: ð88Þ

By substituting (88) into (86), we get

ð∞
l
λ τð Þ Γ τð Þð Þμ−α+1Δατ

≥ μ − α + 1ð Þ
ð∞
l

�Ω
σ
τð Þf τð ÞΓμ−α τð ÞΔατ,

=
ð∞
l

�Ω
σ
τð Þ� �μ

f μ τð ÞΓμ μ−αð Þ τð Þ
� �1/μ

Δατ:

ð89Þ

Raises (89) to the factor μ, we have
ð∞
l
λ τð Þ Γ τð Þð Þμ−α+1Δατ

� �μ

≥ μ − α + 1ð Þμ
ð∞
l

�Ω
σ
τð Þ� �μ

f μ τð ÞΓμ μ−αð Þ τð Þ
� �1/μ

Δατ

� �μ

:

ð90Þ

By applying Hölder’s inequality on

ð∞
l

�Ω
σ
τð Þ� �μ

f μ τð ÞΓμ μ−αð Þ τð Þ
� �1/μ

Δατ

� �μ

, ð91Þ

with indices 1/μ,1/ð1 − μÞ, and

F τð Þ = f μ τð Þ �Ω
σ
τð Þ� �μ

Γμ α−μð Þ τð Þ ,

G τð Þ = λ1−μ τð Þ Γ τð Þð Þμ α−μð Þ,
ð92Þ
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we see that

ð∞
l
F1/μ τð ÞΔατ

� �μ

=
ð∞
l

f μ τð Þ �Ω
σ
τð Þ� �μ

Γμ α−μð Þ τð Þ

 !1/μ

Δατ

 !μ

≥
Ð∞
l F τð ÞG τð ÞΔατÐ∞

l G1/1−μ τð ÞΔατ
� �1−μ

=
ð∞
l

f μ τð Þλ1−μ τð Þ �Ω
σ
τð Þ� �μ

Γ τð Þð Þμ α−μð Þ

Γμ α−μð Þ τð Þ Δατ

 !

×
ð∞
l

λ1−μ τð Þ Γ τð Þð Þμ α−μð Þ
� �1/ 1−μð Þ

Δατ

� �μ−1

=
ð∞
l
f μ τð Þ �Ω

σ
τð Þ� �μ

λ1−μ τð ÞΔατ

� �

×
ð∞
l
λ τð Þ Γ τð Þð Þμ α−μð Þ/ 1−μð ÞΔατ

� �μ−1
:

ð93Þ

This implies that

ð∞
l

�Ω
σ
τð Þ� �μ

f μ τð ÞΓμ μ−αð Þ τð Þ
� �1/μ

Δατ

� �μ

≥
ð∞
l
f μ τð Þ �Ω

σ
τð Þ� �μ

λ1−μ τð ÞΔατ

� �

×
ð∞
l
λ τð Þ Γ τð Þð Þμ α−μð Þ/ 1−μð ÞΔατ

� �μ−1
:

ð94Þ

By substituting (94) into (90), we get

ð∞
l
λ τð Þ Γ τð Þð Þμ−α+1Δατ

� �μ

≥ μ − α + 1ð Þμ
ð∞
l
f μ τð Þ �Ω

σ
τð Þ� �μ

λ1−μ τð ÞΔατ

� �

×
ð∞
l
λ τð Þ Γ τð Þð Þμ α−μð Þ/ 1−μð ÞΔατ

� �μ−1
,

ð95Þ

which is (81).

Corollary 27. At α = 1 in Theorem 26, then

ð∞
l
λ τð Þ Γ τð Þð ÞμΔτ

� �μ

≥ μμ
ð∞
l
f μ τð Þ �Ω

σ
τð Þ� �μ

λ1−μ τð ÞΔτ
� �

×
ð∞
l
λ τð Þ Γ τð Þð ÞμΔτ

� �μ−1

,

ð96Þ

where 0 < μ ≤ 1,�ΩðτÞ = Ð τl λðsÞΔs, and ΓðτÞ = Ð∞
τ
f ðsÞΔs, for

any τ ∈ ½l,∞ÞT :

Remark 28. In Corollary 27, if we divide both sides of (96) by
the factor

ð∞
l
λ τð Þ Γ τð Þð ÞμΔτ

� �μ−1
, ð97Þ

then (96) can be written as

ð∞
l
λ τð Þ Γ τð Þð ÞμΔτ ≥ μμ

ð∞
l
f μ τð Þ �Ω

σ
τð Þ� �μ

λ1−μ τð ÞΔτ
� �

,

ð98Þ

which is (10) in Introduction.

Remark 29. As a result, if T =ℝ (i.e., σðτÞ = τ) in Theorem
26, then

ð∞
l
λ τð Þ Γ τð Þð Þμ−α+1τα−1dτ

� �μ

≥ μ − α + 1ð Þμ
ð∞
l
f μ τð Þ �Ω τð Þ� �μ

λ1−μ τð Þτα−1dτ
� �

×
ð∞
l
λ τð Þ Γ τð Þð Þμ α−μð Þ/1−μτα−1dτ

� �μ−1
,

ð99Þ

where α ∈ ð0, 1�,0 < μ ≤ 1,�ΩðτÞ = Ð τl λðsÞsα−1ds, and ΓðτÞ =Ð∞
τ
f ðsÞsα−1ds, for any τ ∈ ½l,∞Þ:

Remark 30. Clearly, for α = 1 and l = 1, Remark 29 coincides
with Remark 18 in [5].

Remark 31. When T =ℤ (i.e., σðτÞ = τ + 1), μ ≤ 1, and l = 1
in (81), then we get

〠
∞

r=1
λ rð Þ 〠

∞

k=r
f kð Þ k + 1ð Þα−1

 !μ−α+1

r + 1ð Þα−1
 !μ

≥ μ − α + 1ð Þμ 〠
∞

r=1
λ1−μ rð Þ 〠

r−1

k=1
λ kð Þ k + 1ð Þα−1

 !μ

f μ rð Þ r + 1ð Þα−1
 !

× 〠
∞

r=1
λ rð Þ 〠

∞

k=r
f kð Þ k + 1ð Þα−1

 !μ α−μð Þ/1−μ
r + 1ð Þα−1

0
@

1
A

μ−1

:

ð100Þ

If α = 1, then (100) becomes

〠
∞

r=1
λ rð Þ 〠

∞

k=r
f kð Þ

 !μ !μ

≥ μð Þμ 〠
∞

r=1
λ1−μ rð Þ 〠

r−1

k=1
λ kð Þ

 !μ

f μ rð Þ
 !

× 〠
∞

r=1
λ rð Þ 〠

∞

k=r
f kð Þ

 !μ !μ−1

,

ð101Þ

which is Remark 19 in [5].
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4. Conclusions and Future Work

In this article, we explore new generalizations of the integral
Hardy-Leindler-type inequalities by the utilization of the
delta conformable calculus on time scales which are used
in various problems involving symmetry. We generalize a
number of those inequalities to a general time scale measure
space. In addition to this, in order to obtain some new
inequalities as special cases, we also extend our inequalities
to a discrete and continuous calculus. In future work, we will
continue to generalize more fractional dynamic inequalities
by using Specht’s ratio, Kantorovich’s ratio, and n-tuple
fractional integral.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors extend their appreciation to the Deanship of
Scientific Research at King Khalid University for funding
this project under grant number (R.G.P. 2/29/43). The
authors are thankful to Taif University and Taif University
researchers supporting project number (TURSP-2020/160),
Taif University, Taif, Saudi Arabia.

References

[1] G. H. Hardy, “Note on a theorem of Hilbert,” Mathematische
Zeitschrift, vol. 6, no. 3-4, pp. 314–317, 1920.

[2] G. H. Hardy, “Notes on some points in the integral calculus,
LX. An inequality between integrals,”Messenger of Mathemat-
ics, vol. 54, pp. 150–156, 1925.

[3] L. Leindler, “Generalization of inequalities of Hardy and Little-
wood,” Acta Scientiarum Mathematicarum, vol. 31, p. 297,
1970.

[4] L. Leindler, “Further sharpining of inequalities of Hardy and
Littlewood,” Acta Scientiarum Mathematicarum, vol. 54,
pp. 285–289, 1990.

[5] S. H. Saker, “Hardy-Leindler type inequalities on time scales,”
Applied Mathematics & Information Sciences, vol. 8, no. 6,
pp. 2975–2981, 2014.

[6] S. H. Saker, M. R. Kenawy, G. AlNemer, and M. Zakarya,
“Some fractional dynamic inequalities of Hardy’s type via con-
formable calculus,” Mathematics, vol. 8, no. 3, p. 434, 2020.

[7] G. AlNemer, M. R. Kenawy, M. Zakarya, C. Cesarano, and
H. M. Rezk, “Generalizations of Hardy’s type inequalities via
conformable calculus,” Symmetry, vol. 13, no. 2, p. 242, 2021.

[8] M. Sarikaya and H. Budak, “New inequalities of Opial type for
conformable fractional integrals,” Turkish Journal of Mathe-
matics, vol. 41, no. 5, pp. 1164–1173, 2017.

[9] M. Sarikaya, H. Yaldiz, and H. Budak, “Steffensen’s integral
inequality for conformable fractional integrals,” International
Journal of Analysis and Applications, vol. 15, no. 1, pp. 23–
30, 2017.

[10] M. Zakarya, M. Altanji, G. H. AlNemer, H. A. El-Hamid,
C. Cesarano, and H. M. Rezk, “Fractional reverse Coposn’s
inequalities via conformable calculus on time scales,” Symme-
try, vol. 13, no. 4, p. 542, 2021.

[11] A. A. El-Deeb, S. D. Makharesh, E. R. Nwaeze, O. S. Iyiola, and
D. Baleanu, “On nabla conformable fractional Hardy-type
inequalities on arbitrary time scales,” Journal of Inequalities
and Applications, vol. 2021, no. 1, 2021.

[12] N. Benkhettou, H. Salima, and D. F. M. Torres, “A conform-
able fractional calculus on arbitrary time scales,” Journal of
King Saud University-Science, vol. 28, no. 1, pp. 93–98, 2016.

[13] M. Bohner and A. Peterson, Dynamic Equations on Time
Scales: An Introduction with Applications, Birkhäuser, Boston,
Mass, USA, 2001.

[14] M. Bohner and A. Peterson, Advances in Dynamic Equations
on Time Scales, Birkhäuser, Boston, 2003.

[15] E. R. Nwaeze and D. F. M. Torres, “Chain rules and inequal-
ities for the BHT fractional calculus on arbitrary timescales,”
Arabian Journal of Mathematics, vol. 6, no. 1, pp. 13–20, 2017.

[16] D. Zhao and T. Li, “On conformable delta fractional calculus
on time scales,” Journal of Mathematics and Computer Science,
vol. 16, no. 3, pp. 324–335, 2016.

10 Journal of Function Spaces



Research Article
General Decay of a Nonlinear Viscoelastic Wave Equation with
Balakrishnân-Taylor Damping and a Delay Involving
Variable Exponents

Jiabin Zuo ,1 Abita Rahmoune ,2 and Yanjiao Li 3

1School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China
2Laboratory of Pure and Applied Mathematics, University of Laghouat, P.O. Box 37G, 03000, Algeria
3College of Science, Hohai University, Nanjing 210098, China

Correspondence should be addressed to Jiabin Zuo; zuojiabin88@163.com

Received 7 September 2021; Accepted 21 April 2022; Published 11 May 2022

Academic Editor: Alexander Meskhi

Copyright © 2022 Jiabin Zuo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper was aimed at investigating the stability of the following viscoelastic problem with Balakrishnân-Taylor damping and
variable-exponent nonlinear time delay term utt −Mðk∇uk22ÞΔu + αðtÞÐ t0gðt − sÞΔuðsÞds + μ1jut jpð:Þ−2ut + μ2jutðt − τÞjpð:Þ−2utðt
− τÞ = 0 inΩ ×ℝ+, where Ω is a bounded domain of ℝn, pð:Þ: �Ω⟶ℝ is a measurable function, g > 0 is a memory kernel
that decays exponentially, α ≥ 0 is the potential, and Mðk∇uk22Þ = a + bk∇uðtÞk22 + σ

Ð
Ω
∇u∇utdx for some constants a > 0, b ≥ 0,

and σ > 0. Under some assumptions on the relaxation function, we use some suitable Lyapunov functionals to derive the
general decay estimate for the energy. The problem considered is novel and meaningful because of the presence of the flutter
panel equation and the spillover problem including memory and variable-exponent time delay control. Our result generalizes
and improves previous conclusion in the literature.

1. Introduction

In recent years, much attention has been paid to the study
systems with variable exponents of nonlinearities which are
models of hyperbolic, parabolic, and elliptic equations.
These models may be nonlinear over the gradient of
unknown solutions and have nonlinear variable exponents.
Researches of these systems usually use the imbedding of

Lebesgue and Sobolev spaces with variable exponents (see,
e.g., [1, 2]). Or see [3–14] and the references therein for
more details of relevant problems.

In this paper, we concentrate on the asymptotic behavior
of weak solutions for the following weakly damped visco-
elastic wave equation with Balakrishnân-Taylor damping
and variable-exponent nonlinear time delay term

utt −M ∇uk k22
� �

Δu + α tð Þ
ðt
0
g t − sð ÞΔu sð Þds + μ1 utj jp xð Þ−2ut + μ2 ut t − τð Þj jp xð Þ−2ut t − τð Þ = 0, inΩ × 0,∞ð Þ,

u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ, inΩ,
ut x, tð Þ = j0 x, t − τð Þ, inΩ × 0, τð Þ,
u x, tð Þ = 0, on ∂Ω × 0,∞ð Þ,

8>>>>>>><
>>>>>>>:

ð1Þ
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where u : �Ω × ½0,∞Þ⟶ℝ is unknown function, μ1 ≥ 0,μ2
is a real number, τ > 0 is the time delay, g > 0 is a memory
kernel, and α ≥ 0 is the potential.

Much attention has been paid to the simulation of phe-
nomena such as the vibration of elastic strings and elastic
plates, when g = 0, and μ1 = μ2 = 0; equation (1)) degrades
into the Kirchhoff’s original equation

ρh
∂2u
∂t2

= p0 +
Eh
2L

ðL
0

∂u
∂x

� �2
dx

( )
∂2u
∂x2

+ f , 0 ≤ x ≤ L, t ≥ 0,

ð2Þ

which was first introduced to study the oscillations of
stretched strings and plates in [15]. In addition, equation
(2) is also said to be the wave equation of Kirchhoff type,
where the unknown function u = uðx, tÞ represents lateral
deflection and E, ρ, h, L, p0, and f , respectively, denote
Young’s modulus, mass density, cross-section area, length,
initial axial tension, and external force. The Kirchhoff equa-
tion has been investigated in a lot of articles due to its abun-
dant physical background. At the present paper, we try to
mention some considerable efforts on this topic.

There are many important results, such as the local solu-
tions in time, well-posedness, and solvability; for the Kirch-
hoff type, equation (2) in general dimensions and domains
has been obtained in lots of articles (see, e.g., [16–24] and
the references therein).

When p > 1 identically equals to a constant, problem (1)
with the Balakrishnân-Taylor damping term ðσ > 0Þ is
related to the flutter panel equation and the spillover prob-
lem involving time delay term. Balakrishnân and Taylor in
[25] and Bass and Zes in [26] introduced Balakrishnân-
Taylor damping, which arises from a wind tunnel experi-
ment at supersonic speeds (see, e.g., [22, 27–32]).

On damping terms, we point out several excellent works:
Lian and Xu in [33] studied a class of nonlinear wave equa-
tions with weak and strong damping terms, and they estab-
lished the existence of weak solutions and related blow-up
results under three different initial energy levels and differ-
ent conditions. Yang et al. [34] investigated the exponential
stability of a system with locally distributed damping. Lian
et al. [35] were interested in a fourth-order wave equation
with strong and weak damping terms; they obtained the
local solution, the global existence, asymptotic behavior,
and blow-up of solutions under some condition.

Time delays are common phenomena in many physical,
chemical, biological, thermal, and so on (see [36–38] for
more details). Several authors have investigated existence
and stability of the solutions to the viscoelastic wave equa-
tion involving delay term under some appropriate condi-
tions on μ1, μ2, and g (see, e.g., [39]). For other related
problems, one can also refer to [40–44]. The terminology
variable exponents mean that pð:Þ is a measurable function

and not a constant. This term μ1jutjpð:Þ−2ut + μ2
jutðt − τÞjpð:Þ−2utðt − τÞ is a generalization of μ1ut + μ2utðt
− τÞ, which corresponds to pð:Þ > 1. In fact, (1) is also an
extension of the second-order viscoelastic wave equation

under variable growth conditions

utt −M ∇uk k22
� �

Δu

+ α tð Þ
ðt
0
g t − sð ÞΔu sð Þds + μ1ut + μ2ut t − τð Þ

= 0 inΩ ×ℝ+,

ð3Þ

which is obtained when considering μ1jutjpð:Þ−2ut + μ2
jutðt − τÞjpð:Þ−2utðt − τÞ: Equation (3) is a well-known elec-
trorheological fluid model that appears in fluid dynamic
treatment (see in [45]). However, the researches related to
the viscoelastic wave equation possessing delay terms,
Balakrishnân-Taylor damping, and variable growth condi-
tions are not sufficient, and the results about these equations
are relatively rare (see [46]). In particular, in [40], the
authors considered this class of equations under some suit-
able assumptions; they use suitable Lyapunov functionals
to derive general energy decay results, and one see similar
work in [44]. Mingione and Rădulescu [47] were concerned
with the regularity theory of elliptic variational problems
under nonstandard growth conditions.

This paper devotes to generalize some previous results.
In particular, in this case, we will use the relaxation function,
the specified initial data, and a special Lyapunov functional,
which depends on the behavior of the relation function and
is not necessary to decay in some polynomial or exponential
form, to get a general decay estimate of the energy.

In addition to the introduction, this paper is divided into
two parts. In Section 2, we review some basic definitions
about Lebesgue and Sobolev spaces with variable exponen-
tials and give some related properties. At the end of this sec-
tion, we present our main results. In Section 3, we prove our
results, showing that a solution of (1) possesses a general
decay with small initial values ðu0, u1Þ.

2. Functional Setting and Main Results

In this section, we will give some preliminaries and our main
results.

Without loss of generality, hereinafter, we suppose Ω ⊆
ℝn (n ≥ 1) is a bounded domain with smooth boundary Γ.
Moreover, let p : �Ω⟶ ð1,+∞Þ be a measurable function
and denote

p− ≔ essinf
x∈Ω

p xð Þ½ �,

p+ ≔ esssup
x∈Ω

p xð Þ½ �: ð4Þ

As in [1, 48, 49], we define the following variable-
exponent Lebesgue spaces and Sobolev spaces. The first
one is the variable-exponent space Lpð:ÞðΩÞ:

Lp :ð Þ Ωð Þ = ψ : Ω⟶ℝmeasurablejϱp :ð Þ,Ω ψð Þ≔
ð
Ω

ψ xð Þj jp xð Þdx<+∞
� �

,

ð5Þ

and it is obvious a Banach space with the following
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Luxemburg norm

ψk kp :ð Þ,Ω ≔ inf ν > 0j
ð
Ω

u xð Þ
ν

����
����
p xð Þ

dx ≤ 1
( )

: ð6Þ

Actually, in many respects, variable-exponent Lebesgue
spaces are very similar to classical Lebesgue spaces (see
[49]). In particular, from the above definition of the norm,
we can directly get the following results:

min uk kp−p :ð Þ, uk kp+p :ð Þ
	 


≤ ϱp :ð Þ,Ω uð Þ ≤max uk kp−p :ð Þ, uk kp+p :ð Þ
	 


:

ð7Þ

For any measurable function p : �Ω⟶ ½p−, p+� ⊂ ð2,∞Þ,
where p± are constants, we define the second space and the
variable-exponent Lebesgue space

Lp :ð Þ Ωð Þ = ϕ : Ω⟶ℝ : ϕ is measurable function onΩ,
ð
Ω

ϕ xð Þj jp xð Þdx<∞
� �

,

ð8Þ

which is a Banach space with the following Luxemburg
norm:

uk kp :ð Þ = inf ν > 0,
ð
Ω

u
ν

��� ���p xð Þ
dx ≤ 1

� �
: ð9Þ

We also assume that p satisfies the following Zhikov-Fan
condition for the local uniform continuity: there exist a con-
stantM > 0 such that for all points x,y inΩ with jx − yj < 1/2
, we have the inequality

p xð Þ − p yð Þj j ≤ M
log x − yj jj j : ð10Þ

In addition, k:kq and k:kH1ðΩÞ denote the usual LqðΩÞ
norm and H1ðΩÞ norm.

In order to obtain the main results, we give the following
lemma firstly.

Lemma 1 (see [1]).

(1) If

2 ≤ p− ≔ ess inf
x∈Ω

p xð Þ ≤ p xð Þ ≤ p+ ≔ ess sup
x∈Ω

p xð Þ <∞,

ð11Þ

then

min uk kp−p :ð Þ, uk kp+p :ð Þ
n o

≤
ð
Ω

u :ð Þj jp xð Þdx ≤max uk kp−p :ð Þ, uk kp+p :ð Þ
n o

ð12Þ

for any u ∈ Lpð:ÞðΩÞ

(2) Assume that m, n, p : �Ω⟶ ð1,+∞Þ are measurable
functions satisfying

1
m :ð Þ = 1

p :ð Þ + 1
n :ð Þ ð13Þ

Then, for all functions u ∈ Lpð:ÞðΩÞ and v ∈ Lnð:ÞðΩÞ, we
have uv ∈ Lmð:ÞðΩÞ with

uvk km :ð Þ ≤C uk kp :ð Þ vk kn :ð Þ: ð14Þ

Lemma 2. Suppose that p : Ω⟶ ½p−, p+� ⊂ ½1,+∞Þ is a mea-
surable function satisfying

ess sup
x∈Ω

p xð Þ < p∗ ≤
2n
n − 2

with p∗ =
np xð Þ

ess sup
x∈Ω

n − p xð Þð Þ : ð15Þ

Then, the embedding H1
0ðΩÞ =W1,2

0 ðΩÞ↪Lpð:ÞðΩÞ is
continuous and compact, and there is a constant c∗ = c∗ðΩ
, p±Þ such that

ϕk kp :ð Þ ≤ c∗ ∇ϕk k2 for ϕ ∈H1
0 Ωð Þ: ð16Þ

We assume that the relaxation function g and the poten-
tial α satisfy the following assumptions:

Hypothesis g, α: g, α : ℝ+ ⟶ℝ+ are nonincreasing dif-
ferentiable functions such that

g sð Þ ≥ 0, l0 =
ð∞
0
g sð Þds <∞,α tð Þ > 0, a − α tð Þ

ðt
0
g sð Þds ≥ l > 0

ð17Þ

Hypothesis ξ: there exist a positive differentiable func-
tions ξ satisfying

g′ tð Þ ≤ −ξ tð Þg tð Þ, for t ≥ 0, lim
t⟶∞

−α′ tð Þ
ξ tð Þα tð Þ = 0 ð18Þ

Hypothesis pð:Þ: the function pð:Þ satisfies

p− ≥ 2, ifn = 1, 2, 2 < p− ≤ p xð Þ ≤ p+ < n + 2
n − 2 if n ≥ 3 ð19Þ

Hypothesis μ1 and μ2: the constants μ1 and μ2 satisfy

μ2j j < p−μ1 ð20Þ

Calculating ðd/dtÞαðtÞðg ∘ uÞðtÞ with respect to t, it
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shows that

α tð Þ
ðt
0
g t − sð Þ

ð
Ω

u sð Þdsut tð Þdx =

−
α tð Þ
2 g tð Þ u tð Þk k22 −

d
dt

α tð Þ
2 g ∘ uð Þ tð Þ − α tð Þ

2 u tð Þk k22
ðt
0
g sð Þds

� �

+ α tð Þ
2 g′ ∘ u
	 


tð Þ + α′ tð Þ
2 g ∘ uð Þ tð Þ − α′ tð Þ

2 u tð Þk k22
ðt
0
g sð Þds,

ð21Þ

where

g ∘ uð Þ tð Þ =
ðt
0
g t − sð Þ u tð Þ − u sð Þk k22ds: ð22Þ

As in [38, 43], we present a new time-dependent variable
to deal with the time delay term:

z x, ρ, tð Þ = ut x, t − τρð Þ, x ∈Ω, ρ ∈ 0, 1ð Þ, t > 0: ð23Þ

Consequently, we have

τzt x, ρ, tð Þ + zρ x, ρ, tð Þ = 0, inΩ × 0, 1ð Þ × 0,∞ð Þ: ð24Þ

Therefore, problem (1) can be transformed into

By the standard methods as in Section 3 of [50], we can
easily prove the well-posedness of problem (1) presented as
follows.

Theorem 3. Let (17)–(20) be in force and ðu0, u1Þ ∈H1
0ðΩÞ

× L2ðΩÞ, j0 ∈ L2ððΩÞ × ð0, 1ÞÞ. Then, problem (1) possesses
a unique local solution u such that

u ∈ C 0, T½ � ;H1
0 Ωð Þ� �

∩ C1 0, T½ � ; L2 Ωð Þ� �
, ut ∈ C 0, T½ � ;H1

0 Ωð Þ� �
∩ L2 0, T½ � × Ωð Þð Þ:

ð26Þ

3. Main Asymptotic Theorem

Next, we will give the proof of Theorem 4.
The functional E of problem (25) is as follows:

E tð Þ = 1
2 ut tð Þk k22 +

1
2 a − α tð Þ

ðt
0
g sð Þds

� �
∇uk k22

+ b
4 ∇uk k42 + ξ

ð
Ω

1
p xð Þ

ðt
t−τ

eλ s−tð Þ ut x, sð Þj jp xð Þdsdx

+ 1
2 α tð Þ g∘∇ uð Þð Þ tð Þ,

ð27Þ

where ξ and λ are positive constants and they satisfy

μ1p
− − μ2j j > ξ > μ2j jp+ p

+ − 1
p−

, λ < 1
τ
ln μ2p

+ p+ − 1ð Þ
ξp−

����
����:
ð28Þ

The most important key to solve problem (1) is to obtain
a result that concerns the asymptotic stability of solutions.

The main result is as follows.

Theorem 4. Suppose (17)–(20) and (28) hold. Then, there
exists positive constants C0, C, and t1 > 0 such that

E tð Þ ≤ C0e
−C
Ð t

t1
v, for t ≥ t1: ð29Þ

To prove this theorem, the following technical lemmas
are necessary.

utt −M ∇uk k22
� �

Δu + α tð Þ
ðt
0
g t − sð ÞΔu sð Þds + μ1 utj jp xð Þ−2ut + μ2 z 1, tð Þj jp xð Þ−2z 1, tð Þ = 0, inΩ ×ℝ+,

τzt ρ, tð Þ + zρ ρ, tð Þ = 0, in 0, 1ð Þ × 0,∞ð Þ,
z 0, tð Þ = ut , in 0,+∞ð Þ,

z ρ, 0ð Þ = j0 −ρ τ + 1ð Þð Þ, in 0, 1ð Þ,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ, x ∈Ω:

ð25Þ
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Lemma 5. If u is a solution of problem (25). Then,

E′ tð Þ ≤ −σ
1
2
d
dt

∇uk k22
� �2

+ 1
2
α tð Þ g′∘∇u

	 

tð Þ

−
1
2
α′ tð Þ ∇uk k22

ðt
0
g sð Þds − 1

2
α tð Þg tð Þ ∇uk k22 +

1
2
α′ tð Þ g∘∇uð Þ tð Þ

− μ1 −
ξ

p−
−

μ2j j
p−

� �ð
Ω

utj jp xð Þdx

−
ξ

p+
e−λτ − μ2j j p

+ − 1
p−

� �ð
Ω

z 1, tð Þj jp xð Þdx

− λξ
ð
Ω

1
p xð Þ

ðt
t−τ

eλ s−tð Þ ut x, sð Þj jp xð Þdsdx:

ð30Þ

Proof. Using the same idea as in [50], multiply the first equa-
tion in (25) by ut and then integrate in Ω. Similarly, multiply
the second equation in (25) by ξze−λτρ and integrate in ð0,
1Þ ×Ω. Summarizing the above, we can obtain

E′ tð Þ = −σ
1
2
d
dt

∇uk k22
� �2

+ α tð Þ
2 g′∘∇u
	 


tð Þ

−
1
2 α

′ tð Þ ∇uk k22
ðt
0
g sð Þds − α tð Þ

2 g tð Þ ∇uk k22

+ α′ tð Þ
2 g∘∇uð Þ tð Þ − μ1

ð
Ω

utj jp xð Þdx

− ξ
ð
Ω

1
p xð Þ e

−λτ ut x, t − τð Þj jp xð Þdx

− μ2

ð
Ω

z 1, tð Þj jp xð Þ−2z 1, tð Þutdx

+ ξ
ð
Ω

‍
1

p xð Þ ut x, tð Þj jp xð Þdx

− λξ
ð
Ω

1
p xð Þ

ðt
t−τ

eλ s−tð Þ ut x, sð Þj jp xð Þdsdx:

ð31Þ

By zð1, tÞ = utðt − τÞ and the Young inequality, we get

−μ2
ð
Ω

z 1, tð Þj jp xð Þ−2z 1, tð Þutdx

≤ μ2j j p
+ − 1
p−

ð
Ω

z 1, tð Þj jp xð Þdx + μ2j j
p−

ð
Ω

utj jp xð Þdx:
ð32Þ

From (23), we have

−ξ
ð
Ω

1
p xð Þ e

−λτ ut x, t − τð Þj jp xð Þdx

≤ −
ξ

p+
e−λτ

ð
Ω

z 1, tð Þj jp xð Þdx:
ð33Þ

Comparing (31) and (32), we obtain

E′ tð Þ ≤ −σ
1
2
d
dt

∇uk k22
� �2

+ α tð Þ
2 g′∘∇u
	 


tð Þ

−
1
2 α

′ tð Þ ∇uk k22
ðt
0
g sð Þds − α tð Þ

2 g tð Þ ∇uk k22

+ α′ tð Þ
2 g∘∇uð Þ tð Þ − μ1 −

ξ

p−
−

μ2j j
p−

� �ð
Ω

utj jp xð Þdx

−
ξ

p+
e−λτ − μ2j j p

+ − 1
p−

� �ð
Ω

z 1, tð Þj jp xð Þdx

− λξ
ð
Ω

1
p xð Þ

ðt
t−τ

eλ s−tð Þ ut x, sð Þj jp xð Þdsdx:

ð34Þ

Setting

c0 = μ1 −
ξ

p−
−

μ2j j
p−

,

c1 =
ξ

p+
e−λτ − μ2j j p

+ − 1
p−

,
ð35Þ

by condition (28), we derived the desired inequality (30).

Remark 6. If

−
1
2 α

′ tð Þ ∇u tð Þk k22
ðt
0
g sð Þds ≥ 0 ð36Þ

holds, EðtÞ may not be nonincreasing.

Lemma 7. Assume that u be a solution of problem (25). Then,

∇uk k22 ≤
2E 0ð Þ

l
e l0/lð Þα 0ð Þ, t ≥ 0, ð37Þ

where l0 and l as in (17).

Proof. From (27) and (30), we have

E′ tð Þ ≤ −
1
2 α

′ tð Þ ∇uk k22
ðt
0
g sð Þds ≤ −

1
2 l0α

′ tð Þ ∇uk k22 ≤ −
l0
l
α′ tð ÞE tð Þ:

ð38Þ

Integrating the above inequality in ð0, tÞ, we get

E tð Þ ≤ E 0ð Þe− l0/lð Þα tð Þ+ l0/lð Þα 0ð Þ ≤ E 0ð Þe l0/lð Þα 0ð Þ: ð39Þ

From (27), we see that

∇uk k22 ≤
2
l
E tð Þ: ð40Þ

Combining it with (39), it gives (37).
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Now, we give a modified functional:

L tð Þ =NE tð Þ + ε1α tð Þφ tð Þ + ε2α tð Þψ tð Þ, ð41Þ

φ tð Þ =
ð
Ω

u tð Þut tð Þdx +
σ

4 ∇uk k42, ð42Þ

ψ tð Þ = −
ð
Ω

ut tð Þ
ðt
0
g t − sð Þ u tð Þ − u sð Þð Þdsdx, ð43Þ

where ε1, ε2, and N are positive constants. In fact, L is equiv-
alent to E by the following lemma.

Lemma 8. There exists C1, C2 > 0 such that

C1E tð Þ ≤ L tð Þ ≤ C2E tð Þ, t ≥ 0: ð44Þ

Proof. By the Poincaré theorem and Young inequality, we
have the following results through integrating by parts:

L tð Þ −NE tð Þj j = ε1α tð Þ
ð
Ω

u tð Þut tð Þdx + ε1α tð Þσ4 ∇uk k42 + ε2α tð Þψ tð Þ
����

����
≤ ε1 α tð Þj j

ð
Ω

u tð Þj j ut tð Þj jdx + ε1
σ

4 α tð Þj j ∇uk k42 + ε2
1
2 α tð Þj j utk k22

+ ε2
1
2 α tð Þj jc2∗ a − lð Þ g∘∇ uð Þð Þ tð Þ ≤ ε1

α 0ð Þ
2 c2∗ ∇uk k22 + ε1

α 0ð Þ
2 utk k22

+ ε1σ
α 0ð Þ
4 ∇uk k42 + ε2

1
2 α 0ð Þ utk k22 + ε2

1
2 α 0ð Þc2∗ a − lð Þ g∘∇ uð Þð Þ tð Þ

≤ C ε1 + ε2ð ÞE tð Þ,
ð45Þ

where c∗ as in Lemma 1, taking C1 =N − Cðε1 + ε2Þ and C2
=N + Cðε1 + ε2Þ, provided ε1 and ε2 are sufficiently small,
and the proof is completed.

Lemma 9. There exists cε, Cε > 0 fulfilling

φ′ tð Þ ≤ utk k22 −
l
2

∇uk k22 − b ∇uk k42 + α tð Þ a
2l

g∘∇uð Þ tð Þ

+ cε

ð
Ω

utj jp xð Þdx +
ð
Ω

z 1, tð Þj jp xð Þdx
� �

+ Cε

ð
Ω

uj jp xð Þdx:

ð46Þ

Proof. By the first equation of (25), we differentiate (42), and
then we have

φ′ tð Þ = utk k22 +
ð
Ω

v + σ ∇uk k22
ð
Ω

∇u∇utdx

= utk k22 − a ∇uk k22 − b ∇uk k42 + α tð Þ
ð
Ω

ðt
0
g t − sð Þ∇u sð Þds∇u tð Þdx

− μ1

ð
Ω

utj jp xð Þ−2utudx − μ2

ð
Ω

z 1, tð Þj jp xð Þ−2z 1, tð Þudx = utk k22
− a ∇uk k22 − bv42 + I1 + I2 + I3:

ð47Þ

By the Hölder inequality, Sobolev-Poincaré inequalities,

and (17), we estimate the second part of the right-hand side
in (47).

I1 = α tð Þ
ð
Ω

ðt
0
g t − sð Þ∇u sð Þds∇u tð Þdx

≤ α tð Þ
ð
Ω

∇uj j2dx
� �1/2 ð

Ω

ðt
0
‍g t − sð Þ∇u sð Þds

����
����
2
dx

 !1/2

≤ α tð Þ
ð
Ω

∇uj j2dx
� �1/2 ð

Ω

ðt
0
g sð Þds

ðt
0
g t − sð Þ ∇u sð Þj j2dsdx

� �1/2

≤ α tð Þ
ð
Ω

∇uj j2dx
ðt
0
g sð Þds

� �1/2 ð
Ω

ðt
0
g t − sð Þ ∇u sð Þj j2dsdx

� �1/2

≤
α tð Þ
2

ð
Ω

∇uj j2dx
ðt
0
g sð Þds + α tð Þ

2

ð
Ω

ðt
0
g t − sð Þ ∇u sð Þj j2dsdx

≤
α tð Þ
2

ð
Ω

∇uj j2dx
ðt
0
g sð Þds + α tð Þ

2

ð
Ω

ðt
0
g t − sð Þ ∇u sð Þj

−∇u tð Þ+∇u tð Þj

2dsdx:

ð48Þ

For every η > 0, using the Young inequality and (17), we
deduce

α tð Þ
2

ð
Ω

ðt
0
g t − sð Þ ∇u sð Þ−∇u tð Þ+∇u tð Þ½ �2dsdx

≤
α tð Þ
2

ð
Ω

ðt
0
g t − sð Þ ∇u sð Þ−∇u tð Þð Þ2 + 2 ∇u sð Þ−∇u tð Þ ∇ukj j + ∇uj j2� �

dsdx ≤ α tð Þ
2

ð
Ω

ðt
0
g t − sð Þ ∇u sð Þ−∇u tð Þj j2dsdx

+ α tð Þ
2

ð
Ω

ðt
0
g t − sð Þ ∇uj j2dsdx

+ α tð Þ
ð
Ω

ðt
0
g t − sð Þ ∇u sð Þ−∇u tð Þj j ∇uj jdsdx

≤
α tð Þ
2 g∘∇uð Þ tð Þ + α tð Þ

2

ðt
0
g sð Þds

ð
Ω

∇uj j2dx

+ η
α tð Þ
2

ðt
0
g sð Þds

ð
Ω

∇uj j2dx + α tð Þ
2η g∘∇uð Þ tð Þ

≤
α tð Þ
2 1 + ηð Þ

ðt
0
g sð Þds

ð
Ω

∇uj j2dx + α tð Þ
2 1 + 1

η

� �
g∘∇uð Þ tð Þ

≤ 1 + ηð Þ a − lð Þ
2

ð
Ω

∇uj j2dx + α tð Þ
2 1 + 1

η

� �
g∘∇uð Þ tð Þ:

ð49Þ

Summarizing the above estimates, (48) and (49), we
obtain

α tð Þ
ð
Ω

ðt
0
g t − sð Þ∇u sð Þds∇udx ≤ a − lð Þ

2

ð
Ω

∇uj j2dx

+ a − lð Þ
2 1 + ηð Þ

ð
Ω

∇uj j2dx + α tð Þ
2 1 + 1

η

� �
g∘∇uð Þ tð Þ

= 2 + ηð Þ a − lð Þ
2 ∇uk k2 + α tð Þ

2 1 + 1
η

� �
g∘∇uð Þ tð Þ:

ð50Þ
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Setting η = l/ða − lÞ, it is easy to obtain

I1j j ≤ α tð Þ
ð
Ω

ðt
0
g t − sð Þ∇u sð Þds∇udx

≤ a −
l
2

� �
∇uk k22 +

a
2l α tð Þ g∘∇uð Þ tð Þ,

ð51Þ

and by means of the Young inequality, we have

I2j j ≤ cε

ð
Ω

utj jp xð Þdx + ε max μp
−

1 , μp
+

1

	 
ð
Ω

uj jp xð Þdx≔ cε

ð
Ω

utj jp xð Þdx

+ εc2

ð
Ω

uj jp xð Þdx,

ð52Þ

I3j j ≤ cε

ð
Ω

z 1, tð Þj jp xð Þdx

+ ε max μp
−

1 , μp
+

1
	 
ð

Ω

uj jp xð Þdx≔ cε

ð
Ω

z 1, tð Þj jp xð Þdx

+ εc3

ð
Ω

uj jp xð Þdx:

ð53Þ

Substituting (51)–(53) into (47), we deduce

φ′ tð Þ ≤ utk k22 −
l
2 ∇uk k22 + Cε

ð
Ω

uj jp xð Þdx − b ∇uk k42

+ a
2l α tð Þ g∘∇uð Þ tð Þ + cε

ð
Ω

utj jp xð Þdx +
ð
Ω

z 1, tð Þj jp xð Þdx
� �

,

ð54Þ

set Cε = εðc2 + c3Þ > 0, for ε sufficiently small.

Lemma 10. There exists positive constants δ and cδ satisfying

ψ′ tð Þ ≤ −
ðt
0
g sð Þds

� �
− δ

� �
utk k22 + δ a + 2 a − lð Þ2α tð Þ
 �

∇uk k22

+ δb ∇uk k42 + δ
2σE 0ð Þ

l
e l0/lð Þα 0ð Þ 1

2
d
dt

∇uk k22
� �2

+ Cδ + 2δ + 1
4δ

� �
a − lð Þα tð Þ

� �
g∘∇uð Þ tð Þ

+ cδ

ð
Ω

utj jp xð Þdx +
ð
Ω

z 1, tð Þj jp xð Þdx
� �

−
g 0ð Þc2∗
4δ

g′∘∇u
	 


tð Þ:
ð55Þ

Proof. Similar to Lemma,9 by the first equation (25), we dif-

ferentiate (43), and it yields

ψ′ tð Þ = −
ð
Ω

utt

ðt
0
g t − sð Þ u tð Þ − u sð Þð Þdsdx

−
ð
Ω

ut

ðt
0
g′ t − sð Þ u tð Þ − u sð Þð Þdsdx

−
ðt
0
g sð Þds

� �
utk k22

= a + b ∇uk k22
� �ð

Ω

∇u
ðt
0
g t − sð Þ ∇u tð Þ−∇u sð Þð Þdsdx

+ σ
ð
Ω

∇u∇utdx
ð
Ω

∇u
ðt
0
g t − sð Þ ∇u tð Þ−∇u sð Þð Þdsdx

− α tð Þ
ð
Ω

ðt
0
g t − sð Þ∇u sð Þds

� � ðt
0
g t − sð Þ ∇u tð Þ−∇u sð Þð Þds

� �
dx

+ μ1

ð
Ω

utj jp xð Þ−2ut

ðt
0
g t − sð Þ u tð Þ − u sð Þð Þdsdx

+ μ2

ð
Ω

z 1, tð Þj jp xð Þ−2z 1, tð Þ
ðt
0
g t − sð Þ u tð Þ − u sð Þð Þdsdx

−
ð
Ω

ut

ðt
0
g′ t − sð Þ u tð Þ − u sð Þð Þdsdx −

ðt
0
g sð Þds

� �
utk k22

= 〠
6

i=1
Ii −

ðt
0
‍g sð Þds

� �
utk k22:

ð56Þ

By the Hölder inequality, Sobolev-Poincaré inequalities,
and (17), we estimate the second part of the right-hand side
in (56).

I1j j ≤ a + b ∇uk k22
� �

δ ∇uk k22 +
l0
4δ g∘∇uð Þ tð Þ

� �

≤ δa ∇uk k22 + δb ∇uk k42 +
al0
4δ + bl0E 0ð Þ

2δl e l0/lð Þα 0ð Þ
� �

g∘∇uð Þ tð Þ,

ð57Þ

I2j j ≤ δσ
ð
Ω

∇u∇utdx
� �2

∇uk k22 +
σl0
4δ g∘∇uð Þ tð Þ

≤ δ
2σE 0ð Þ

l
e l0/lð Þα 0ð Þ 1

2
d
dt ∇uk k22

� �2
+ σl0

4δ g∘∇uð Þ tð Þ,

ð58Þ

I3j j ≤ δα tð Þ
ð
Ω

ðt
0
g t − sð Þ ∇u tð Þ−∇u sð Þj j + ∇u tð Þj jð Þds

� �2
dx

+ 1
4δ α tð Þ

ð
Ω

ðt
0
g t − sð Þ ∇u tð Þ−∇u sð Þj jds

� �2
dx

≤ 2δl20α tð Þ ∇uk k22 + 2δ + 1
4δ

� �
l0α tð Þ g∘∇uð Þ tð Þ,

ð59Þ
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I4j j ≤ cδ

ð
Ω

utj jp xð Þdx + δ max μp
−

1 , μp
+

1

	 
ð
Ω

ðt
0
g t − sð Þ u tð Þ − u sð Þð Þds

� �p xð Þ
dx

≤ cδ

ð
Ω

utj jp xð Þdx + δ max μp
−

1 , μp
+

1
	 


max lp
+−1
0 , lp

−−1
0

	 

max cp

+

∗ , cp−∗
	 
n

ðt
0
g t − sð Þ ∇u tð Þ−∇u sð Þk kp xð Þ

2 ds
�

≤ cδ

ð
Ω

utj jp xð Þdx + δ max μp
−

1 , μp
+

1
	 


max cp
+

∗ , cp−∗
	 


max
n

2E 0ð Þ
l

e l0/lð Þα 0ð Þ
� � p+−2ð Þ/2

, 2E 0ð Þ
l

e l0/lð Þα 0ð Þ
� � p−−2ð Þ/2 !

g∘∇uð Þ tð Þg≔ cδ

ð
Ω

utj jp xð Þdx + δc4 g∘∇uð Þ tð Þ:

ð60Þ

Similarly,

I5j j ≤ cδ

ð
Ω

z 1, tð Þj jp xð Þdx + δc5 g∘∇uð Þ tð Þ,

I6j j ≤ δ utk k22 −
g 0ð Þc2∗
4δ g′∘∇u

	 

tð Þ:

ð61Þ

Comparing these above estimates (57)–(61), we have

ψ′ tð Þ ≤ −
ðt
0
g sð Þds − δ

� �
utk k22 + δ a + 2l20α tð Þ
 �

∇uk k22

+ δb ∇uk k42 + δ
2σE 0ð Þ

l
e l0/lð Þα 0ð Þ 1

2
d
dt ∇uk k22

� �2

+ Cδ + 2δ + 1
4δ

� �
l0α tð Þ

� �
g∘∇uð Þ tð Þ

+ cδ

ð
Ω

utj jp xð Þdx +
ð
Ω

z 1, tð Þj jp xð Þdx
� �

−
g 0ð Þc2∗
4δ g′∘∇u

	 

tð Þ,

ð62Þ

where Cδ = fal0/4δ + ðbl0Eð0Þ/2δlÞeðl0/lÞαð0Þ + σl0/4δ + δðc4
+ c5Þg:

Lemma 11. There exists positive constants C3,C4, and t0 sat-
isfying

L′ tð Þ ≤ −C3α tð ÞE tð Þ + C4α tð Þ g∘∇uð Þ tð Þ, t > t0: ð63Þ

Proof. Since g > 0 and is continuous, then for any t ≥ t0 > 0,
we get

ðt
0
g sð Þds ≥

ðt0
0
g sð Þds = g0 > 0: ð64Þ

Differentiate (41), and using Lemmas 9 and 10, we get

L′ tð Þ =NE′ tð Þ + ε1α′ tð Þφ tð Þ + ε1α tð Þφ′ tð Þ + ε2α′ tð Þψ tð Þ + ε2α tð Þψ′ tð Þ
≤ −α tð Þ ε2 g0 − δð Þ − ε1f g utk k22
− α tð Þ ε1Cε − ε2δ a + 2l20

� �
α tð Þ
 �

∇uk k22
− α tð Þ b ε1 − ε2δð Þð Þ utk k42
− α tð Þ σ − ε2δ

σE 0ð Þ
l

e l0/lð Þα 0ð Þ
� � 1

2
d
dt

∇uk k22
� �2

+ α tð Þ ε1
α tð Þ
4 + ε2Cδ + ε2 2δ + 1

4δ

� �
l0α tð Þ

� �
g∘∇uð Þ tð Þ

+ α tð Þ N
2 − ε2

g 0ð Þc2∗
4δ

� �
g′∘∇u
	 


tð Þ

− α tð Þ c0
α 0ð Þ − ε1cε − ε2cδ

� �ð
Ω

utj jp xð Þdx

− α tð Þ c1
α 0ð Þ − ε1cε − ε2cδ

� �ð
Ω

z 1, tð Þj jp xð Þdx

−
Nα′ tð Þ

2

ðt
0
g sð Þds

� �
∇uk k22 + ε1α′ tð Þ

ð
Ω

uutdx

+ ε2α′ tð Þ
ð
Ω

ut

ðt
0
g t − sð Þ u tð Þ − u sð Þð Þdsdx:

ð65Þ

Indeed,

α′ tð Þ
ð
Ω

uutdx + α′ tð Þ
ð
Ω

ut

ðt
0
g t − sð Þ u tð Þ − u sð Þð Þdsdx

≤ −α′ tð Þ c
2
∗
2 ∇uk k22 − α′ tð Þ utk k22 − α′ tð Þ c

2
∗
2

ðt
0
g sð Þds

� �
g∘∇uð Þ tð Þ:

ð66Þ

Thus,

L′ tð Þ ≤ −α tð Þ ε2 g0 − δð Þ − ε1 +
α′ tð Þ
α tð Þ

( )
utk k22

− α tð Þ ε1Cε − ε2δ a + 2l20
� �

α 0ð Þ + Nα′ tð Þ
2α tð Þ

ðt
0
‍g sð Þds

� �
+ c2∗α′ tð Þ

2α tð Þ

( )

∇uk k22 − α tð Þb ε1 − ε2δð Þ ∇uk k42 − α tð Þ σε1 − ε2δ
σE 0ð Þ

l
e l0/lð Þα 0ð Þ

� �
1
2
d
dt ∇uk k22

� �2

+ α tð Þ ε1
α tð Þ
4 + ε2Cδ + ε2 2δ + 1

4δ

� �
l0α tð Þ − c2∗α′ tð Þ

2α tð Þ
ðt
0
g sð Þds

� �( )

g∘∇uð Þ tð Þ + α tð Þ N
2 − ε2

g 0ð Þc2∗
4δ

� �
g′∘∇u
	 


tð Þ − α tð Þ
c0

α 0ð Þ − ε1cε − ε2cδ

� �ð
Ω

utj jp xð Þdx − α tð Þ c1
α 0ð Þ − ε1cε − ε2cδ

� �
ð
Ω

z 1, tð Þj jp xð Þdx:

ð67Þ

Fix δ > 0 such that

g0 − δ > 1
2g0,

δ

Cε

a + 2l20
� �

α 0ð Þ < 1
4g0, ð68Þ
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and take ε1 and ε2 small enough to satisfy

g0
4 ε2 < ε1 < ε2

g0
2 ,

c5 = ε2 g0 − δð Þ − ε1 > 0,
c6 = ε1Cε − ε2δ a + 2l20

� �
α 0ð Þ > 0:

ð69Þ

Select ε1 and ε2 small enough to make (44) and (67)
hold, and moreover

b ε1 − ε2δð Þ > 0, σε1 − ε2δ
σE 0ð Þ

l
e l0/lð Þα 0ð Þ > 0, N2 − ε2

g 0ð Þc2∗
4δ > 0

c0
α 0ð Þ − ε1cε − ε2cδ > 0, c1

α 0ð Þ − ε1cε − ε2cδ > 0:

ð70Þ

Hence, for a generic positive constant c, (67) is equal to
the following results:

L′ tð Þ ≤ −α tð Þ c + α′ tð Þ
α tð Þ

( )
utk k22

− α tð Þ c + α′ tð Þ
2α tð Þ

ðt
0
‍g sð Þds

� �
+ c2∗

2

� �( )
∇uk k22

+ α tð Þ c −
c2∗g0α′ tð Þ
2α tð Þ

( )
g∘∇uð Þ tð Þ,∀t ≥ t0:

ð71Þ

Noticing that limt⟶∞ − α′ðtÞ/ξðtÞαðtÞ = 0, so choose t1
> t0, we see

L′ tð Þ ≤ −α tð Þ c utk k22 + C ∇uk k22
� �

+ c g∘∇uð Þ tð Þ
≤ −C3α tð ÞE tð Þ + C4α tð Þ g∘∇uð Þ tð Þ,∀t ≥ t1,

ð72Þ

where C3 and C4 are positive constants.

Now, we are in the position to prove Theorem 4.

Proof of Theorem 4. According to Lemma 5, Lemma 11, and
(17), we have

ζ tð ÞL′ tð Þ ≤ −C3α tð Þζ tð ÞE tð Þ + C4α tð Þζ tð Þ g∘∇uð Þ tð Þ
≤ −C3α tð Þζ tð ÞE tð Þ − C4α tð Þ g′∘∇u

	 

tð Þ

≤ −C3α tð Þζ tð ÞE tð Þ
− C4 2E′ tð Þ + α′ tð Þ

ðt
0
g sð Þds

� �
∇uk k22

� �
:

ð73Þ

Since ζðtÞ is nonincreasing, by assumption (17) and the

definition of EðtÞ, we get

l
2 ∇uk k22 ≤ E tð Þ,

d
dt ζ tð ÞL tð Þ + 2C4E tð Þð Þ ≤ −C3α tð Þζ tð ÞE tð Þ

− C4α′ tð Þ
ðs
0
g sð Þds

� �
∇uk k22,

ð74Þ

which leads to

d
dt ζ tð ÞF tð Þ + 2C4E tð Þð Þ ≤ −C3α tð Þζ tð ÞE tð Þ

− C4α′ tð Þ
ðt
0
g sð Þds

� �
∇uk k22 ≤ −C3α tð Þζ tð ÞE tð Þ

−
2C4E tð Þ

l
α′ tð Þ

ðt
0
g sð Þds ≤ −α tð Þζ tð Þ C3 +

2C4l0α′ tð Þ
lα tð Þζ tð Þ

 !
E tð Þ:

ð75Þ

Since limt⟶∞ − α′ðtÞ/αðtÞζðtÞ = 0, we can choose t1 ≥ t0
such that C3 + 2C4l0α′ðtÞ/lαðtÞζðtÞ > 0 for t ≥ t1: Hence, if
we let

L tð Þ = ζ tð ÞL tð Þ + 2C4E tð Þ, ð76Þ

then it is obvious thatLðtÞ is equivalent to EðtÞ and satisfies

L ′ tð Þ ≤ −kζ tð Þα tð ÞL tð Þ for t ≥ t1: ð77Þ

Consequently, to integrate (77) over ðt1, tÞ, it yields

L tð Þ ≤L t1ð Þe−C
Ð t

t1
‍ζ sð Þα sð Þds

t ≥ t0: ð78Þ

Thus, the desired result yields from the equivalence relations
of LðtÞ,LðtÞ, and EðtÞ.
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The existence aspects along with the stability of solutions to a Hadamard variable order fractional boundary value problem are
investigated in this research study. Our results are obtained via generalized intervals and piecewise constant functions and the
relevant Green function, by converting the existing Hadamard variable order fractional boundary value problem to an
equivalent standard Hadamard fractional boundary problem of the fractional constant order. Further, Darbo’s fixed point
criterion along with Kuratowski’s measure of noncompactness is used in this direction. As well as, the Ulam-Hyers-Rassias
stability of the proposed Hadamard variable order fractional boundary value problem is established. A numerical example is
presented to express our results’ validity.

1. Introduction

Fractional calculus is fundamentally established by having
arbitrary numbers in the order of derivation operators
instead of natural numbers. This idea is considered prelimi-
nary and simple. However, it involves remarkable effects and
outcomes which describe some physical processes, dynam-
ics, mathematical modelings, control theory, bioengineering,
biomedical applications, etc. [1, 2]. The main effectiveness of
this field can be found in recent studies. For example, Thabet
et al. in [3] simulated a fractional model of pantograph in
the Caputo conformable settings. In [4], Khan et al. designed
a model of p-Laplacian FBVP in the form of a singular prob-
lem, and Matar et al. derived similar results for a new p-
Laplacian model via generalized fractional derivative [5].
The fractional Langevin impulsive equations are studied by

Rizwan et al. regarding existence property of solutions in
[6], and Zada et al. [7] analyzed the Ulam-Hyers stability
for an impulsive integro-differential equations. Etemad
et al. used a new property entitled approximate endpoint
for studying a novel fractional problem via the Caputo-
Hadamard operators [8].

Thabet et al. also modeled COVID-19 transmission by
Caputo-Fabrizio operators and analyzed its dynamical
behavior [9]. In [10], Shah et al. compared the results of
two classical and fractional models of COVID-19 and
showed the accuracy of fractional operators in simulation
of processes. Pratap et al. [11] studied finite-time Mittag-
Leffler stability criteria for fractional quaternion-valued
memristive neural networks. Along with these, Boulares
et al. [12] conducted a theoretical research on the general-
ized weakly singular integral inequalities and their
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applications to generalized FBVPs. Naifar et al. [13] studied
a global Mittag-Leffler stabilization by output feedback in
relation to a class of nonlinear systems of FBVPs.

It is notable that in recent advanced mathematical
models, constant fractional orders have not needed effective-
ness for describing the specifications of some processes and
phenomena, and consequently, some researchers had to
model their boundary problems via the fractional operators
equipped with orders as a real-valued functions. These oper-
ators are known as variable order ones [14, 15]. The investi-
gation of the variable order fractional boundary problems
(VOFBVPs) in the field of existence theory is considered as
a new and important branch of fractional calculus, which
are published limited research works in this regard. In
2018, Yang et al. presented a numerical scheme for a
VOFBVP and analyzed their system from numerical point
of view [16]. Zhang studied the solutions of a singular two-
point VOFBVP for the first time in [17]. In recent years,
Zhang et al. [18, 19] derived approximate solutions of two
different VOFIVP on the half-axis in 2018 and 2019. In
addition, a multiterm FBVP involving the nonlinear frac-
tional differential equation (NFDE) of the variable order
type was investigated in detail by Bouazza et al. in [20]. In
this paper, motivated by other related works in this regard,
we investigate the solutions’ existence of the Hadamard non-
linear VOFBVP as follows:

HD
ϑ tð Þ
1+ r tð Þ +m1 t, r tð Þð Þ = 0, t ∈U≔ 1,T½ �, ð1Þ

via boundary conditions rð1Þ = rðT Þ = 0, where 1 <T < +∞,
1 < ϑðtÞ ≤ 2, and m1 : U × S ⟶ S.

S is a continuous function (S is a real (or complex)

space) and HD
ϑðtÞ
1+ specifies the Hadamard derivative of var-

iable order ψðtÞ. For the first time, as the novelty of this
research, we here consider a FBVP in the variable order
Hadamard settings and establish the existence specifications
of solutions to mentioned system on the generalized subin-
tervals by combining the existing notions in relation to the
Kuratowski’s measure of noncompactness (KMNCS) in the
context of Darbo fixed point criterion. The piecewise con-
stant functions will play a vital role in our study for convert-
ing the Hadamard VOFBVP (1) to the standard Hadamard
FBVP. Lastly, another criterion of the behavior of solutions
like the Ulam-Hyers-Rassias stability (UHRS) is analyzed,
and a numerical illustrative example will complete the con-
sistency of our findings.

2. Essential Preliminaries

Basic definitions are discussed in this section to be used later.
Throughout the paper, the set S stands for the real numbers.

The symbol CðU , SÞ denotes a set that contains all contin-
uous functions f : U⟶ S. It is a Banach space by defining

fk k = sup f tð Þj j: t ∈Uf g, U≔ 1,T½ �: ð2Þ

Definition 1 (see [21, 22]). For 1 ≤ a1 < a2 < +∞, we consider
the mappings h1ðtÞ: ½a1, a2�⟶ ð0,+∞Þ and qðtÞ: ½a1, a2�

⟶ ðn − 1, nÞ. The Hadamard ðϑðtÞÞth variable order integral
of h1 is

HI
ϑ tð Þ
a+1

h1 tð Þ = 1
Γ ϑ tð Þð Þ

ðt
a1

log t
s

� �ϑ tð Þ−1 h1 sð Þ
s

ds, t > a1,

ð3Þ

and the Hadamard ðqðtÞÞth variable order derivative of h1 is

HD
q tð Þ
a+1

h1
� �

tð Þ = 1
Γ n − q tð Þð Þ t

d
dt

� �n

�
ðt
a1

log t
s

� �n−q tð Þ−1 h1 sð Þ
s

ds, t > a1:

ð4Þ

Obviously, in case of ϑðtÞ and qðtÞ are constant, then both
above Hadamard variable order operators are in coincidence
with the usual Hadamard constant order operators (refer to
[1, 21, 22]).

Lemma 2 (see [1]). Assume that a1 > 1, γ1, γ2 > 0, h1 ∈ L
ða1, a2Þ, and HD

γ1
a+1
h1 ∈ Lða1, a2Þ. Then, the homogeneous

differential equation

HD
γ1
a+1
h1 = 0 ð5Þ

admits the unique solution

h1 tð Þ = ω1 log t
a1

� �γ1−1

+ ω2 log t
a1

� �γ1−2

+⋯ + ωn log t
a1

� �γ1−n

,

HI
γ1
a+1

HDγ1
a+1

� �
h1 tð Þ = h1 tð Þ + ω1 log t

a1

� �γ1−1

+ ω2 log t
a1

� �γ1−2

+⋯ + ωn log t
a1

� �γ1−n

,

ð6Þ

with n = ½γ1� + 1, ωȷ ∈ℝ, and j = 1, 2,⋯, n.

Moreover, for constants αj > 0, j = 1, 2,

HD
α1
a+1

HI
α1
a+1

� �
h1 tð Þ = h1 tð Þ,

HI
α1
a+1

HI
α2
a+1

� �
h1 tð Þ= HI

α2
a+1

HI
α1
a+1

� �
h1 tð Þ= HI

α1+α1
a+1

h1 tð Þ:
ð7Þ

Remark 3. The semigroup property is not fulfilled for the
functions ϑðtÞ and qðtÞ, i.e.,

HI
ϑ tð Þ
a+1

HI
q tð Þ
a+1

� �
h1 tð Þ ≠ HI

ϑ tð Þ+q tð Þ
a+1

h1 tð Þ: ð8Þ
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Example 1. Let

ϑ tð Þ =
1, t ∈ 1, 2½ �,
2, t ∈ 2, 4� �,

(

q tð Þ =
3, t ∈ 1, 2½ �,
4, t ∈ 2, 4� �,

(
h1 tð Þ = 2t2,
t ∈ 1, 4½ �:

ð9Þ

We obtain

HI
ϑ tð Þ
1+

HI
q tð Þ
1+

� �
h1 tð Þ = 1

Γ ϑ tð Þð Þ
ðt
1

1
s

log t
s

� �Ψ tð Þ−1

� 1
Γ q sð Þð Þ

ðs
1
log s

τ

� �q sð Þ−1 h1 τð Þ
τ

dτ
� �
� ds = 1

Γ Ψ tð Þð Þ
ð2
1

1
s

log t
s

� �Ψ tð Þ−1 1
Γ q sð Þð Þ

ðs
1
log s

τ

� �q sð Þ−1 h1 τð Þ
τ

dτ
� �

� ds + 1
Γ ϑ tð Þð Þ

ðt
2

1
s

log t
s

� �ϑ tð Þ−1 1
Γ q sð Þð Þ

ðs
1
log s

τ

� �q sð Þ−1 h1 τð Þ
τ

dτ
� �

� ds = 1
Γ 1ð Þ

ð2
1

1
s

log t
s

� �0ðs
1

1
Γ 3ð Þ log s

τ

� �2
2τdτds + 1

Γ 2ð Þ
ðt
2

1
s

log t
s

� �
� 1

Γ 3ð Þ
ð2
1
log s

τ

� �2
2τdτ + 1

Γ 4ð Þ
ðs
2
log s

τ

� �3
2τdτ

� �
ds,

=
ð2
1

s
4 −

1
2s log sð Þ2 − 1

2s log sð Þ − 1
4s

� �
ds +

ðt
2

1
s

log t
s

� �
� −

2
3 log s

2
� �3

+ log s
2

� �2
+ log s

2
� �

−
1
2 log sð Þ2 − 1

2 log sð Þ + 1
8 s

2 + 1
4

� �
ds,

ð10Þ

HI
ϑ tð Þ+q tð Þ
1+ h1 tð Þ = 1

Γ ϑ tð Þ + q tð Þð Þ
ðt
1

log t
s

� �ϑ tð Þ+q tð Þ−1 h1 sð Þ
s

ds:

ð11Þ
So,

HI
ϑ tð Þ
1+

HI
q tð Þ
1+

� �
h1 tð Þjt=3 = −

1
30 log 3

2

� �5
+ 1
24 log 3

2

� �4

+ 1
12 log 3

2

� �3
+ 1
8 log 3

2

� �2
−
1
4 log 3

2

� �
−
1
6 log 2ð Þ2 log 3

2

� �2
−
1
6 log 2ð Þ log 3

2

� �3
−

log 2ð Þ3
6

−
log 2ð Þ2
4 −

log 2
4 −

1
4 log 2ð Þ log 3

2

� �2
+ 17
32 ≃ 0:0522:

ð12Þ

On the other side,

HI
ϑ tð Þ+q tð Þ
1+ h1 tð Þjt=3 =

ð2
1

1
Γ 4ð Þ log 3

s

� �3
2sds +

ð3
2

1
Γ 6ð Þ log 3

s

� �5

� 2sds = −
1
30 log 3

2

� �5
−

1
12 log 3

2

� �4
+ 1
3 log 3

2

� �3
+ 3
4 log 3

2

� �2

+ 3
4 log 3

2

� �
−
1
6 log 3ð Þ3 − 1

4 log 3ð Þ2 − 1
4 log 3ð Þ + 17

32 ≃ 0:1809:

ð13Þ

Therefore, we obtain

HI
ϑ tð Þ
1+

HI
q tð Þ
1+

� �
h1 tð Þjt=3 ≠ HI

ϑ tð Þ+q tð Þ
1+ h1 tð Þjt=3: ð14Þ

Lemma 4 (see [23, 24]). If ϑ : U⟶ ð1, 2� has the continuity
property, then for

h1 ∈Cβ U, Sð Þ
= h1 tð Þ ∈C U, Sð Þ, log tð Þβh1 tð Þ ∈C U, Sð Þ
n o

,  0 ≤ β ≤ 1,

ð15Þ

the integral HI
ϑðtÞ
1+ h1ðtÞ admits a finite value ∀t ∈U.

Lemma 5 (see [23, 24]). Assume that ϑ : U⟶ ð1, 2� has the
continuity property. Then,

HI
ϑ tð Þ
1+ h1 tð Þ ∈C U, Sð Þfor h1 ∈C U, Sð Þ: ð16Þ

Definition 6 (see [25–27]). I ⊆ℝ is termed as a generalized
interval if I is either an interval, or fa1g, or ∅. A finite set
F is defined to be a partition of I if every x ∈ I belongs to
exactly one and one generalized interval I in F . Finally, w
: I ⟶ S is piecewise constant w.r.t F as a partition of I; if
∀I ∈F , w is constant on I.

2.1. Some Properties regarding KMNCS. Here, we regard S as
a Banach space.

Definition 7 (see [28]). Suppose that ωS is a bounded set in
S . The KMNCS is the function Φ : ωS ⟶ ½0,∞� as

Φ Pð Þ = inf δ > 0 : P ⊆ ∪n
=1Pȷ,Diam Pȷ

� 	
≤ δ, P ∈ ωSð Þ
 �

,
ð17Þ

in which

Diam Pȷ

� 	
= sup x − rk k: x, r ∈Pȷ


 �
: ð18Þ

The symbol Diam denotes the diameter of the given set.
Some valid properties KMNCS are as follows.

Proposition 8 (see [28, 29]). LetP,P1,P2 be bounded in S .
Then,

(a) P is relatively compact if ΦðPÞ = 0

(b) Φð∅Þ = 0

(c) ΦðPÞ =Φð �PÞ
(d) P1 ⊂P2 ⇒ΦðP1Þ ≤ΦðP2Þ
(e) ΦðP1 +P2Þ ≤ΦðP1Þ +ΦðP2Þ
(f) ΦðλPÞ = jλjΦðPÞ, λ ∈ℝ
(g) ΦðP1 ∪P2Þ =max fΦðP1Þ,ΦðP2Þg
(h) ΦðP1 ∩P2Þ =min fΦðP1Þ,ΦðP2Þg
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(i) ΦðP + x0Þ =ΦðPÞ for any x0 ∈ℝ

Lemma 9 (see [30]). If the bounded setW ⊂CðU, SÞ is equi-
continuous, then

(i) ΦðW Þ has continuity, and

bΦ Wð Þ = sup
t∈U

Φ W tð Þð Þ ð19Þ

(ii) ΦðÐT0 rðθÞdθ : r ∈W Þ ≤ ÐT0 ΦðW ðθÞÞdθ,
where

W θð Þ = r θð Þ: r ∈Wf g, θ ∈U ð20Þ

In the next theorem, we point out the Darbo’s fixed
point criterion.

Theorem 10 (see [28]). Consider the closed, convex, and
bounded set Λ ≠∅ in S and the continuous map Ϝ : Λ
⟶Λ satisfying (k-set contractive property for Ϝ ).

Φ Ϝ Vð Þð Þ ≤ kΦ Vð Þ, ∀∅≠ V ⊂Λ, k ∈ 0, 1½ Þ: ð21Þ

Then, Ϝ admits at least a fixed point belonging to Λ.

3. Existence Criterion of Solutions

To achieve the main purpose of this section, some assump-
tions are proposed as:

(H1) Consider F = fU1 ≔ ½1,T 1�,U2 ≔ ðT 1,T 2�,U3
≔ ðT 2,T 3�,⋯,Un ≔ ðT n−1,T �g as a partition for the
interval U and ϑðtÞ: U⟶ ð1, 2� as a piecewise constant
function w.r.t F , i.e.,

ϑ tð Þ = 〠
n

i=1
ϑȷJ ȷ tð Þ =

ϑ1, if t ∈U1, 1 < ϑ1 ≤ 2,
ϑ2, if t ∈U2, 1 < ϑ2 ≤ 2,
⋅  

⋅  

⋅  

ϑn, if t ∈Un, 1 < ϑn ≤ 2,

8>>>>>>>>>>><>>>>>>>>>>>:
ð22Þ

in which J ȷ interprets the indicator of J ȷ interprets the indi-
cator of Uȷ ≔ ðT ȷ−1,T ȷ�, ∈ℕn

1 , so that T 0 = 1 and T n =T ,
and

J ȷ tð Þ =
1, for t ∈Uȷ,
0, for elsewhere:

(
ð23Þ

(H2) Let ðlog tÞβm1 : U × S ⟶ S be continuous, ð0 ≤

β ≤ 1Þ, and ∃K > 0, such that ðlog tÞβkm1ðt, rÞ −m1ðt, �rÞk
≤ Kkr −�rk, for any r, �r ∈ S and t ∈U.

Remark 11 (see [31]). Note that the inequality

Φ log tð Þβ m1 t, B1ð Þk k
� �

≤ KΦ B1ð Þ ð24Þ

is equivalent to (H2) for each B1 ⊂ S and t ∈U, where B1 is
bounded.

Further, for a supposed set W of all mappings w : U
⟶ S , define

W tð Þ = w tð Þ,w ∈Wf g, t ∈U, ð25Þ

W ðtÞ = fwðtÞ: w ∈W , t ∈Ug:
Let us now establish the solutions’ existence for the

Hadamard VOFBVP (1) via KMNCS and Darbo’s criterion
(Theorem 10).

Here, ∀ȷ ∈ f1, 2,⋯, n g, the symbol E ȷ =CðUȷ, rÞ, indi-
cated as Banach spaces of continuous mappings r : Uȷ ⟶

S is furnished with the norm

rk kEȷ
= sup

t∈Uȷ

r tð Þj j, ð26Þ

where ȷ ∈ f1, 2,⋯, n g.
First, we analyze the Hadamard VOFBVP defined in (1).

In the light of (4), the Hadamard VOFBVP (1) can be
rewritten by

1
Γ 2 − ϑ tð Þð Þ t

d
dt

� �2ðt
1

log t
s

� �1−ϑ tð Þ r sð Þ
s

ds +m1 t, r tð Þð Þ = 0, t ∈U:

ð27Þ

From (H1), equation (27) on the intervalUȷ, ∈ℕn
1 , can be

expressed as

t
d
dt

� �2 1
Γ 2 − ϑ1ð Þ

ðT 1

1
log t

s

� �1−ϑ1 r sð Þ
s

ds+⋯+ 1
Γ 2 − ϑȷ
� 	 

�
ðt
T ȷ−1

log t
s

� �1−ϑȷ r sð Þ
s

ds

!
+m1 t, r tð Þð Þ = 0, t ∈Uȷ:

ð28Þ

Definition 12. The Hadamard VOFBVP (1) admits a solu-
tion like functions rȷ, ȷ = 1, 2,⋯, n, if rȷ ∈Cð½1,T ȷ�, SÞ sat-
isfies equation (28) and rȷð1Þ = 0 = rȷðT ȷÞ.

From the above, the Hadamard VOFBVP (1) written in
(27) can be given as (28) on Uȷ, ∈ℕn

1 . For 1 ≤ t ≤T ȷ−1, put
rðtÞ ≡ 0. Then, (28) is formulated by

D
ϑȷ
T +

ȷ−1
r tð Þ +m1 t, r tð Þð Þ = 0, t ∈Uȷ: ð29Þ
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In this case, we follow our study by considering the stan-
dard Hadamard constant-order FBVP (COFBVP) as follows:

H
 D

ϑȷ
T +

ȷ−1
r tð Þ +m1 t, r tð Þð Þ, t ∈Uȷ,

r T ȷ−1
� 	

= 0, r T ȷ

� 	
= 0:

8<: ð30Þ

The fundamental part of our analysis regarding solutions
of the Hadamard COFBVP (30) is discussed below.

Lemma 13. A function r ∈E ȷ is a solution of the Hadamard
COFBVP (30) if r fulfills the integral equation

r tð Þ =
ðT ȷ

T ȷ−1

1
s
Gȷ t, sð Þm1 s, r sð Þð Þds, t ∈Uȷ, ð31Þ

where Gȷðt, sÞ stands for the Green function formulated by

where ȷ ∈ℕn
1 .

Proof. Suppose that r ∈E ȷ satisfies the Hadamard COFBVP

(30). Let us employ the operator H
 I

ψȷ

T +
ȷ−1

on both sides

(30) and using Lemma 2, we get

r tð Þ = ω1 log t
τj−1

 !ϑ j−1

+ ω2 log t
τj−1

 !ϑ j−2 H

I
ϑ j
τ+j−1

m1 t, r tð Þð Þ, t ∈ uj, j ∈ℕn
1 :

ð33Þ

From definition of m1 along with rðT ȷ−1Þ = 0, we get
ω2 = 0.

Suppose that r satisfies rðT ȷÞ = 0. Hence,

ω1 = log
T ȷ

T ȷ−1

 !1−ϑȷ
H
ȷ I

ϑȷ

T +
ȷ−1
m1 T ȷ, r T ȷ

� 	� 	
: ð34Þ

Thus,

r tð Þ = log
T ȷ

T ȷ−1

 !1−ϑȷ
log t

T ȷ−1

 !ϑȷ−1H

� I ϑȷ
T +

ȷ−1
m1 T ȷ, r T ȷ

� 	� 	
−HI

ϑȷ
T +

ȷ−1
m1 t, r tð Þð Þ,

ð35Þ

Then, the solution of the Hadamard COFBVP (30) is
given by

r tð Þ = log
T ȷ

T ȷ−1

 !1−ϑȷ
log t

T ȷ−1

 !ϑȷ−1 1
Γ ϑȷ
� 	

�
ðT ȷ

T ȷ−1

log
T ȷ

s

� �ϑȷ−1 m1 s, r sð Þð Þ
s

� ds − 1
Γ ϑȷ
� 	 ðt

T ȷ−1

log t
s

� �ϑȷ−1 m1 s, r sð Þð Þ
s

� ds = 1
Γ ϑȷ
� 	 ðt

T ȷ−1

log
T ȷ

T ȷ−1

 !1−ϑȷ
log t

T ȷ−1

 !ϑi−1
2424

� log
T ȷ

s

� �ϑȷ−1
− log t

s

� �ϑȷ−1
#
m1 s, r sð Þð Þ

s

� ds +
ðT ȷ

t
log

T ȷ

T ȷ−1

 !1−ϑȷ
log t

T ȷ−1

 !ϑȷ−1

log
T ȷ

s

� �ϑȷ−1 m1 s, r sð Þð Þ
s

ds�,

ð36Þ

and the continuity property of the Green function gives

r tð Þ =
ðT ȷ

T ȷ−1

1
s
Gȷ t, sð Þm1 s, r sð Þð Þds, t ∈Uȷ: ð37Þ

Conversely, let r ∈Eȷ be the integral equation’s (31) solu-

tion. Because of the continuity of ðlog tÞβm1 and by Lemma
2, it is simply verified that r satisfies the Hadamard COFBVP
(30) solution.

Proposition 14. Assume that ðlog tÞβm1, ð0 ≤ β ≤ 1Þ belongs
to CðU × S , SÞ and ϑðtÞ: U⟶ ð1, 2� satisfies (H1). Then,
Gȷðt, sÞ given by (32) satisfy the following: (ȷ ∈ℕn

1)

(1) 0 ≤Gȷðt, sÞ, ∀T ȷ−1 ≤ t, s ≤T ȷ

(2) maxt∈Uȷ
Gȷðt, sÞ =Gȷðs, sÞ, s ∈Uȷ

(3) Gȷðs, sÞ has a maximum value uniquely given by

Gȷ t, sð Þ = 1
Γ ϑȷ
� 	 log

T ȷ

T ȷ−1

 !1−ϑȷ
log t

T ȷ−1

 !
log

T ȷ

s

� �" #ϑȷ−1
− log t

s

� �ϑȷ−1
, T −1 ≤ s ≤ t ≤T ȷ,

log
T ȷ

T ȷ−1

 !1−ϑȷ
log t

T ȷ−1

 !
log

T ȷ

s

� �" #ϑȷ−1
, T −1 ≤ t ≤ s ≤T ȷ,

8>>>>>><>>>>>>:
ð32Þ
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maxs∈Uȷ
Gȷ s, sð Þ = 1

Γ ϑȷ
� 	 log T ȷ − log T −1

4

� �ϑȷ−1

, ð38Þ

where ȷ = 1, 2,⋯, n

Proof. Let φðt, sÞ = ðlog ðT ȷ/T ȷ−1ÞÞ1−ϑȷ
½ðlog ðt/T ȷ−1ÞÞðlog ðT ȷ/sÞÞ�ϑȷ−1 − ðlog ðt/sÞÞϑȷ−1: We see that

φt t, sð Þ = ϑȷ − 1
t

� �
log

T ȷ

T ȷ−1

 !1−ϑȷ
log

T ȷ

s

� �ϑȷ−1
log t

T ȷ−1

 !ϑȷ−2

−
ϑȷ − 1
t

� �
log t

s

� �ϑȷ−2
≤

ϑȷ − 1
t

� �
log

T ȷ

s

� �1−ϑȷ

� log
T ȷ

s

� �ϑȷ−1
log t

s

� �ϑȷ−2
−

ϑȷ − 1
t

� �
log t

s

� �ϑȷ−2
= 0,

ð39Þ

which means that φðt, sÞ is nonincreasing w.r.t t, so φðt, sÞ
≥ φðT ȷ, sÞ = 0, for T ȷ−1 ≤ s ≤ t ≤T ȷ: Thus, 0 ≤Gȷðt, sÞ for
any T ȷ−1 ≤ t, s ≤T ȷ, ȷ = 1,⋯, n: :

Since φðt, sÞ is nonincreasing w.r.t t, then φðt, sÞ ≤ φðs, sÞ
for T ȷ−1 ≤ s ≤ t ≤T ȷ:

On the other hand, for T ȷ−1 ≤ t ≤ s ≤T ȷ, we get

log
T ȷ

T ȷ−1

 ! !1−ϑȷ
log t

T ȷ−1

 !
log

T ȷ

s

� � !ϑȷ−1

≤ log
T ȷ

T ȷ−1

 ! !1−ϑȷ
log s

T ȷ−1

 !
log

T ȷ

s

� � !ϑȷ−1

:

ð40Þ

These confirm that maxt∈½T ȷ−1,T ȷ�Gȷðt, sÞ =Gȷðs, sÞ, s ∈ ½
T ȷ−1,T ȷ�, ȷ = 1,⋯, n: :

Further, we verify (3) of Proposition 14. Clearly, the
maximum points of Gȷðs, sÞ are not T ȷ−1 and T ȷ, ȷ = ∈ℕn

1 .
For s ∈ ½T ȷ−1,T ȷ�, ȷ = 1,⋯, n: , we have

dGȷ s, sð Þ
ds

=
ϑȷ − 1
s

� �
log

T ȷ

T ȷ−1

 !1−ϑȷ
log s

T ȷ−1

 !ϑȷ−2

� log
T ȷ

s

� �ϑȷ−2
log

T ȷ

s

� �
− log s

T ȷ−1

 !" #
,

=
ϑȷ − 1
s

� �
log

T ȷ

T ȷ−1

 !1−ϑȷ
log s

T ȷ−1

 !ϑȷ−2

� log
T ȷ

s

� �ϑȷ−2
log T ȷT ȷ−1
� 	

− log s2
� 	� 


,

ð41Þ

which indicates that the maximum points of Gȷðs, sÞ is
s = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T ȷT ȷ−1
p , ȷ = 1,⋯, n:

Hence, for ȷ = 1,⋯, n,

maxs∈ T ȷ−1,T ȷ½ �Gȷ s, sð Þ =Gȷ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ȷT ȷ−1

q
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ȷT ȷ−1

q� �
= 1
Γ ϑȷ
� 	 1

4 log
T ȷ

T ȷ−1

 !ϑȷ−1

= 1
Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1
:

ð42Þ

This shows the completion of the proof.

The existence criterion of solutions for the Hadamard
VOFBVP (1) in this work depends on the hypotheses of
Theorem 10 which we investigate them in this position.

Theorem 15. Suppose that both (H1) and (H2) hold, and

K log T ȷ

� 	1−β − log T ȷ−1
� 	1−β� �

log T ȷ − log T ȷ−1
� 	ϑȷ−1

4ϑȷ−1 1 − βð ÞΓ ϑȷ
� 	 < 1:

ð43Þ

Then, there is a solution to the Hadamard VOFBVP (1)
on U.

Proof. We construct the operator

Z : Eȷ ⟶E ȷ ð44Þ

by

Zr tð Þ =
ðT ȷ

T ȷ−1

1
s
Gȷ t, sð Þm s, r sð Þð Þds, t ∈Uȷ: ð45Þ

Some properties of fractional integrals along with the
continuity for the function ðlogÞβm1 imply that the operator
Z : Eȷ ⟶E ȷ defined in (45) is well-defined.

Let ∃Rȷ > 0 so that

Rȷ ≥
m⋆ log T ȷ − log T ȷ−1
� 	ϑȷ /4ϑȷ−1Γ ϑȷ

� 	
1 − K log T ȷ

� 	1−β − log T ȷ−1
� 	1−β� �

log T ȷ − log T ȷ−1
� 	ϑȷ−1/4ϑȷ−1 1 − βð ÞΓ ϑȷ

� 	� � ,
ð46Þ

with

m⋆ = sup
t∈Uȷ

m1 t, 0ð Þk k: ð47Þ

Let us consider the following set:

BRȷ
= r ∈Eȷ, rk kEȷ

≤ Rȷ

n o
: ð48Þ
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Clearly BRȷ
≠∅ contains all three properties of the con-

vexity, boundedness, and closedness.
We shall show that Z satisfies Theorem 10 in four

stages.
Step A. Claim: ZðBRȷ

Þ ⊆ ðBRȷ
Þ: For r ∈ BRȷ

, by Proposi-

tion 14 and (H2), we get

Zr tð Þk k =
ðT ȷ

T ȷ−1

1
s
Gȷ t, xð Þm1 s, r sð Þð Þds

�����
�����

≤
ðT ȷ

T ȷ−1

1
s
Gȷ t, sð Þ m1 s, r sð Þð Þk k

� ds ≤ 1
Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1

�
ðT ȷ

T ȷ−1

1
s

m1 s, r sð Þð Þk kds ≤ 1
Γ ϑȷ
� 	

� log T ȷ − log T ȷ−1
4

� �ϑȷ−1ðT ȷ

T ȷ−1

1
s

m1 s, r sð Þð Þk

−m1 s, 0ð Þkds + 1
Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1

�
ðT ȷ

T ȷ−1

1
s

m1 s, 0ð Þk kds ≤ 1
Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1

�
ðT ȷ

T −1

1
s
log sð Þ−β K r sð Þk kð Þds + m⋆ log T ȷ − log T ȷ−1

� 	ϑȷ
4ϑȷ−1Γ ϑȷ

� 	
≤

K

Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1
rk kG ȷ

ðT ȷ

T ȷ−1

1
s
log sð Þ−β

� ds + m⋆ log T ȷ − log T ȷ−1
� 	ϑȷ

4ϑȷ−1Γ ϑȷ
� 	 ≤

K

Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1

� Rȷ

log T ȷ

� 	1−β − log T ȷ−1
� 	1−β

1 − β

 !
+
m⋆ log T ȷ − log T ȷ−1
� 	ϑȷ

4ϑȷ−1Γ ϑȷ
� 	

≤
K log T ȷ

� 	1−β − log T ȷ−1
� 	1−β� �

log T ȷ − log T ȷ−1
� 	ϑȷ−1

4ϑȷ−1 1 − βð ÞΓ ϑȷ
� 	

� Rȷ +
m⋆ log T ȷ − log T ȷ−1
� 	ϑȷ

4ϑȷ−1Γ ϑȷ
� 	 ≤ Rȷ,

ð49Þ

which means that ZðBRȷ
Þ ⊆ BRȷ

.

Step B. Claim: Z is continuous.
The sequence ðrnÞ is supposed to be convergent to r in

Eȷ and t ∈Uȷ. Then,

Zrnð Þ tð Þ − Zrð Þ tð Þk k ≤
ðT ȷ

T ȷ−1

1
s
Gȷ t, sð Þ m1 s, rn sð Þð Þ −m1 s, r sð Þð Þk kds

≤
1

Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1ðT ȷ

T ȷ−1

1
s

m1 s, rn sð Þð Þ −m1 s, r sð Þð Þk kds

≤
1

Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1ðT ȷ

T ȷ−1

1
s
log sð Þ−β K rn sð Þ − r sð Þk kð Þds

≤
1

Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1
K rn − yk kG ȷ

� �ðT ȷ

T ȷ−1

1
s
log sð Þ−βds

≤
K log T ȷ

� 	1−β − log T ȷ−1
� 	1−β� �

log T ȷ − log T ȷ−1
� 	ϑȷ−1

4ϑȷ−1 1 − βð ÞΓ ϑȷ
� 	 rn − rk kG ȷ

,

ð50Þ

i.e., we get

Zrnð Þ − Zrð Þk kG ȷ
⟶ 0 as n⟶∞, ð51Þ

and the correctness of the claim in this step is confirmed for Z.
Step C. Claim: Z is bounded and equicontinuous.
From A, ZðBRȷ

Þ = fZðrÞ: r ∈ BRȷ
g ⊂ BRȷ

; thus, for each

r ∈ BRȷ
, we get kZðrÞkEȷ

≤ Rȷ; in other ways, it means that

ZðBRȷ
Þ is bounded. It remains to check the equicontinuity

of ZðBRȷ
Þ.

Now, ∀t1 < t2 ∈Uȷ, t1 < t2 and r ∈ BRȷ
, we write

Zrð Þ t2ð Þ − Zrð Þ t1ð Þk k =
ðT ȷ

T ȷ−1

1
s
Gȷ t2, sð Þm1 s, r sð Þð Þ

�����
� ds −

ðT ȷ

T ȷ−1

1
s
Gȷ t1, sð Þm1 s, r sð Þð Þds

����� ≤
ðT ȷ

T ȷ−1

� 1
s

Gȷ t2, sð Þ −Gȷ t1, sð Þ� 	
m1 s, r sð Þð Þ�� ��

� ds ≤
ðT ȷ

T ȷ−1

1
s

Gȷ t2, sð Þ −Gȷ t1, sð Þ�� �� m1 s, r sð Þð Þk k

� ds ≤
ðT ȷ

T ȷ−1

1
s

Gȷ t2, sð Þ −Gi t1, sð Þ�� �� m1 s, r sð Þð Þ −m1 s, 0ð Þk kð

+ m1 s, 0ð Þk kÞds ≤
ðT ȷ

T ȷ−1

1
s

Gȷ t2, sð Þ −Gȷ t1, sð Þ�� ��
� log sð Þ−β K r sð Þk kð Þ +m⋆
h i

ds ≤
ðT ȷ

T ȷ−1

Gȷ t2, sð Þ −Gȷ t1, sð Þ�� ��
� 1

s
log sð Þ−β K rk kEȷ

� �
+ 1

s
m⋆

� �
ds ≤

K log T ȷ−1
� 	−β

T ȷ−1
rk kEȷ

�
ðT ȷ

T ȷ−1

Gȷ t2, sð Þ −Gȷ t1, sð Þ�� ��ds + m⋆

T ȷ−1

ðT ȷ

T ȷ−1

Gȷ t2, sð Þ −Gȷ t1, sð Þ�� ��ds,
ð52Þ

using the continuity of G. Hence, kðZrÞðt2Þ − ðZrÞðt1ÞkE ȷ

⟶ 0 as jt2 − t1j⟶ 0. It yields that ZðBRȷ
Þ is

equicontinuous.
Step D. Claim: Z is k-set contraction.
This time, let W ∈ BRȷ

and t ∈Uȷ. So,

Φ Z Wð Þ tð Þð Þ =Φ Zrð Þ tð Þ, r ∈Wð Þ

≤
ðT ȷ

T ȷ−1

1
s
Gȷ t, sð ÞΦm1 s, r sð Þð Þds r ∈W

( )
:

ð53Þ

Remark 11 indicates that

Φ Z Wð Þ tð Þð Þ ≤
ðT ȷ

T ȷ−1

1
s
Gȷ t, sð Þ KΦ r sð Þ, r ∈Wf gð Þ½ �

( )

≤
1

Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1
K bΦ Wð Þ

ðT ȷ

T ȷ−1

1
s
logsð Þ−βds

" #
, r ∈W

( )

≤
K log T ȷ

1−β
� �

− log T ȷ−1
1−β

� �� �
log T ȷ − log T ȷ−1
� 	ϑȷ−1

4ϑȷ−1 1 − βð ÞΓ ϑȷ
� 	 bΦ Wð Þ,

ð54Þ

for any s ∈Uȷ.
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Therefore,

bΦ ZWð Þ ≤
K log T ȷ

1−β
� �

− log T ȷ−1
1−β

� �� �
log T ȷ − log T ȷ−1
� 	ϑȷ−1

4ϑȷ−1 1 − βð ÞΓ ϑȷ
� 	 bΦ Wð Þ:

ð55Þ

Consequently by (43), we deduce that Z admits a set
contraction.

The conclusion of Theorem 10 gives this result that the
Hadamard COFBVP (30) involves at least a solution erȷ in
BRȷ

.

Assume that

rȷ =
0, t ∈ 1,T ȷ−1

� 

,

~rȷ, t ∈Uȷ:

(
ð56Þ

We know that rȷ ∈Cð½1,T ȷ�, SÞ defined by (56) satisfies
equation

d2

dt2

ðT 1

1

t − sð Þ1−ϑ1
Γ 2 − ϑ1ð Þ rȷ sð Þds+⋯+

ðt
T ȷ−1

t − sð Þ1−ϑȷ
Γ 2 − ϑȷ
� 	 rȷ sð Þds

 !
+m1 s, rȷ sð Þ

� 	
= 0,

ð57Þ

for t ∈Uȷ, which implies that rȷ is regarded as a solution for
(28) along with rȷð1Þ = 0 and rȷðT ȷÞ =~rȷðT ȷÞ = 0.

Then,

r tð Þ

r1 tð Þ, t ∈U1,

r2 tð Þ =
0, t ∈U1,
~x2, t ∈U2,

(
:

:

:

rȷ tð Þ =
0, t ∈ 1,T ȷ−1

� 

,

~rȷ, t ∈Uȷ

(

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð58Þ

gives the solution for the Hadamard VOFBVP (1) and this
completes the argument.

4. Ulam-Hyers-Rassias Stability

The stability issue has gained substantially important atten-
tion in several research fields through applications. There are
many kinds of stability; one of them is the stability intro-
duced by Ulam in 1940. Since then, the problem is known
as Ulam-Hyers stability or simply Ulam stability. Later,
other generalizations of this notion were introduced by other
researchers. Its applications for many types of equations
have been investigated by many mathematicians. Ben Makh-
louf [32] derived sufficient conditions of different types of
stability such as uniform stability, Mittag-Leffler stability,
and asymptotic uniform stability for a nonlinear Caputo
fraction BVP via a method with respect to Lyapunov-like

functions. Ahmad et al. [33] investigated the notion of sta-
bility for a nonlinear coupled implicit switched singular frac-
tional differential system with p-Laplacian operator. Now,
we aim to accomplish an argument regarding the UHRS sta-
bility of the given Hadamard VOFBVP (1) in the framework
of Theorem 17.

Definition 16 (see [34]). Let ϱ ∈CðU, SÞ. Then, the Hada-
mard VOFBVP (1) is Ulam-Hyers-Rassias stable (UHRS)
w.r.t ϱ if ∃cm > 0, so that ∀ϵ > 0 and for every solution ς ∈
CðU, SÞ of

HD
ϑ tð Þ
1+ ς tð Þ − −m1 t, ς tð Þð Þð Þ

��� ��� ≤ ϵϱ tð Þ, t ∈U, ð59Þ

∃ a solution r ∈CðU, SÞ of (1) with

ς tð Þ − r tð Þk k ≤ cmϵϱ tð Þ: ð60Þ

Theorem 17. Let both (H1) and (H2) along with (43) hold.
Also,

(H3) Let ϱ ∈CðUȷ, SÞ is a increasing function and ∃
λϱ > 0 provided

H
 I

ϑȷ
T ȷ−1

+ϱ tð Þ ≤ λϱ tð Þϱ tð Þ, for any t ∈Uȷ: ð61Þ

Then, the Hadamard VOFBVP (1) is UHRS stable w.r.t
the function ϱ.

Proof. Assume that ϵ > 0 is chosen arbitrarily and ς from ς

∈CðUȷ,ℝÞ satisfies (59). Now, ∀ȷ ∈ℕn
1 , the following are

defined: ς1ðtÞ ≡ ςðtÞ, t ∈ ½1,T 1� and for ȷ = 2, 3,⋯, n :

ςȷ tð Þ =
0, t ∈ 0,T ȷ−1

� 

,

ς tð Þ, t ∈Uȷ:

(
ð62Þ

Taking H
 I

ϑȷ
T +

ȷ−1
on both sides (59), we get

ς tð Þ − −
ðT I

T I−1

1
s
GI t, sð Þm1 s, ς sð Þð Þds

 !�����
�����

≤
ϵ

Γ ϑIð Þ
ðt
T I−1

1
s

log t
s

� �ϑI −1
ϱ sð Þds ≤ ϵλϱ tð Þϱ tð Þ:

ð63Þ

According to the argument above, the Hadamard
VOFBVP (1) involves a solution r ∈CðU,ℝÞ formulated as
rðtÞ = rI ðtÞ for t ∈UI , ∈ℕn

1 , in which

r j =
0, t ∈ 0,T J−1

� 

,

~rj, t ∈UJ ,

( )
ð64Þ

and ~rI ∈EI is a solution of the Hadamard COFBVP (30).
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In accordance with Lemma 13, we have

~rI tð Þ = −
T I −T I−1ð Þ−1 t −T I−1ð Þ

Γ ϑIð Þ

�
ðT I

T I−1

T I − sð ÞϑI−1m1 s,~rI sð Þð Þds + 1
Γ ϑIð Þ

�
ðt
T I−1

t − sð ÞϑI−1m1 s,~rI sð Þð Þds:

ð65Þ

Suppose that t ∈UI , = 1, 2,⋯, n. Then, by equations
(64) and (65), we get

ς tð Þ − r tð Þk k = ς tð Þ − rI tð Þk k = ςI tð Þ −~rI tð Þk k

= ςI tð Þ −
ðT I

T I−1

1
s
GI t, sð Þm1 s,~rI sð Þð Þds

�����
����� ≤ ςI tð Þ −

ðT I

T I−1

�����
� 1
s
GI t, sð Þm1 s, ςI sð Þð Þdsk +

ðT I

T I−1

1
s
GI t, sð Þ m1 s, ςI sð Þð Þk

−m1 s,~rI sð Þð Þkds ≤ ςI tð Þ +
ðT I

T −1

1
s
GI t, sð Þm1 s, ςI sð Þð Þ

�����
� dsk +

ðT I

T I−1

1
s
GI t, sð Þ m1 s, ςI sð Þð Þ −m1 s,e~rI sð Þ

� ���� ���
� ds ≤ λϱ tð Þϵϱ tð Þ + 1

Γ ϑIð Þ
log T I − log T I−1

4

� �ϑI −1

�
ðT I

T I−1

log sð Þ−β K ςI sð Þ −~rI sð Þk k
s

ds ≤ λϱ tð Þϵϱ tð Þ

+ K
Γ ϑIð Þ

log T I − log T I−1
4

� �ϑI−1
ςI −~rIk kGI

ðT I

T I−1

� 1
s
log sð Þ−βds ≤ λϱ tð Þϵϱ tð Þ

+
K log T Ið Þ1−β − log T I−1ð Þ1−β
� �

log T I − log T I−1ð ÞϑI −1

1 − βð Þ4ϑI −1Γ ϑIð Þ
� ςI −~rIk kGI

≤ λϱ tð Þϵϱ tð Þ + μ ς − rk k,
ð66Þ

where

μ =maxI=1,2,⋯,n
K log T Ið Þ1−β − log T I−1ð Þ1−β
� �

log T I − log T I−1ð ÞϑI −1

1 − βð Þ4ϑI −1Γ ϑIð Þ :

ð67Þ

Then,

ς − rk k 1 − μð Þ ≤ λϱ tð Þϵϱ tð Þ, ð68Þ

and so by assuming cm1
≔ λϱðtÞ/ð1 − μÞ,

ς tð Þ − r tð Þk k ≤ λϱ tð Þϱ tð Þ
1 − μð Þ ϵ ≔ cm1

ϵϱ tð Þ: ð69Þ

Therefore, the Hadamard VOFBVP (1) is UHRS stable
w.r.t ϱ. This result completes the proof.

5. Numerical Illustrative Example

Example 2. Consider the Hadamard VOFBVP (based on the
VOFBVP (1)) as follows:

HD
ϑ tð Þ
1+ r tð Þ + log tð Þϑ tð Þffiffiffi

π
p + 1

4 log tð Þ−1/4r tð Þ = 0,

t ∈U≔ 1, e½ �, r 1ð Þ = 0, r eð Þ = 0:
ð70Þ

Hence, T = e and

m1 t, rð Þ = log tð Þϑ tð Þffiffiffi
π

p + 1
4 log tð Þ−1/4r tð Þ,  t, rð Þ ∈ 1, e½ � × 0,+∞½ Þ,

ð71Þ

ϑ tð Þ
1:2, t ∈U1 ≔ 1, 2½ �,
1:6, t ∈U2 ≔ 2, e� �:

(
ð72Þ

Then, we get

log tð Þ1/4 m t, rð Þ −m t,�rð Þj j

= log tð Þ1/4 log tð Þϑ tð Þffiffiffi
π

p + 1
4 r tð Þ − log tð Þ1/4 log tð Þϑ tð Þffiffiffi

π
p −

1
4�r tð Þ

�����
�����

≤
1
4 r tð Þ − �r tð Þj j:

ð73Þ

(H2) holds with β = 1/4 and K = 1/4.
From (72), the Hadamard VOFBVP (70) is classified

into the following:

HD1:2
1+ r tð Þ + log tð Þ1:2ffiffiffi

π
p + 1

4 log tð Þ−1/4r tð Þ = 0, t ∈U1,

HD1:6
2+ r tð Þ + log tð Þ1:6ffiffiffi

π
p + 1

4 log tð Þ−1/4r tð Þ = 0, t ∈U2:

8>>>><>>>>:
ð74Þ

For t ∈U1, the Hadamard VOFBVP (70) is equivalent to
the Hadamard COFBVP

HD1:2
1+ r tð Þ + log tð Þ1:2ffiffiffi

π
p + 1

4 log tð Þ−1/4r tð Þ = 0, t ∈U1,

r 1ð Þ = 0, r 2ð Þ = 0:

8><>:
ð75Þ

Let us now show that condition (43) is satisfied. Clearly,
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the following value is obtained

K log T 1ð Þ1−β − log T 0ð Þ1−β
� �

log T 1 − log T 0ð Þϑ1−1

4ϑ1−1 1 − βð ÞΓ ϑ1ð Þ

= 1/4 log 2ð Þ3/4 log 2ð Þ0:2
40:2
� 	

3/4Γ 1:2ð Þ ≃ 0:1941 < 1:

ð76Þ

On the other side, let ϱðtÞ = ðlog tÞ1/2. In this case,

HI
ϑ1
1+ϱ tð Þ = 1

Γ 1:2ð Þ
ð2
1

log t
s

� �1:2−1 log tð Þ1/2
s

� ds ≤ log tð Þ1/2
Γ 1:2ð Þ

ð2
1

log 2
s

� �0:2

� ds
s
≤

log 2ð Þ1:2
Γ 2:2ð Þ log tð Þ1/2 ≔ λϱ tð Þϱ tð Þ:

ð77Þ

As a result, (H3) is fulfilled with ϱðtÞ = ffiffiffiffiffiffiffiffiffiffiffiffiffiðlog tÞp
and

λϱðtÞ = ðlog 2Þ1:2/Γð2:2Þ ∈ℝ.
Theorem 15 guarantees the existence of a solution for

the Hadamard COFBVP (75) like r1 ∈E1, and from Theo-
rem 17, the Hadamard constant-order system (75) is UHRS
stable. For t ∈U2, the Hadamard VOFBVP (70) can be writ-
ten as the following COFBVP, i.e.,

HD1:6
2+ r tð Þ + log tð Þ1:6ffiffiffi

π
p + 1

4 log tð Þ−1/4r tð Þ = 0, t ∈U2,

r 2ð Þ = 0, r eð Þ = 0:

8><>:
ð78Þ

We see that

K log T 2ð Þ1−β − log T 1ð Þ1−β
� �

log T 2 − log T 1ð Þϑ2−1

4ϑ2−1 1 − βð ÞΓ ϑ2ð Þ

=
1/4 1 − log 2ð Þ3/4
� �

1 − log 2ð Þ0:6

40:6
� 	

3/4ð ÞΓ 1:6ð Þ ≃ 0:0191 < 1:

ð79Þ

Accordingly, condition (43) is achieved on the subinter-
val U2. Further,

HI
ϑ1
2+ϱ tð Þ = 1

Γ 1:6ð Þ
ðe
2

log t
s

� �1:6−1 log tð Þ1/2
s

� ds ≤ log tð Þ1/2
Γ 1:6ð Þ

ðe
2
log e

s

� �0:6
� ds
s
≤

log e/2ð Þð Þ1:6
Γ 2:6ð Þ log tð Þ1/2 ≔ λϱ tð Þϱ tð Þ:

ð80Þ

As a result, (H3) is also valid with ϱðtÞ = ffiffiffiffiffiffiffiffiffiffiffiffiffiðlog tÞp
and

λϱðtÞ = ðlog ðe/2ÞÞ1:6/Γð2:6Þ ∈ℝ.
On account of Theorem 15, the Hadamard COFBVP

(78) possesses a solution ~x2 ∈E2. Further, Theorem 17 yields
that the mentioned Hadamard system (78) is UHRS stable.
It is known that

r2 tð Þ =
0, t ∈U1,
~r2 tð Þ, t ∈U2:

(
ð81Þ

Consequently, the Hadamard VOFBVP (70) has a solu-
tion

r tð Þ =
r1 tð Þ, t ∈U1,

r2 tð Þ =
0, t ∈U1,
~r2 tð Þ, t ∈U2:

(8>><>>: ð82Þ

From Theorem 17, the Hadamard VOFBVP given by
(70) is UHRS stable.

6. Conclusions

In this paper, the nonlinear Hadamard VOFBVP (1) was
considered in which we established some theorems regard-
ing existence and stability of solutions of it by following a
new method based on the generalized subintervals and
piecewise constant functions. By applying such notions, we
converted the given Hadamard VOFBVP (1) to the standard
Hadamard COFBVP (30). After investigating some specifi-
cations of the Green function, we focused on the solutions’
existence via a combined technique in terms of KMNCS in
the context of Darbo’s fixed point criterion. The UHRS sta-
bility of the proposed Hadamard VOFBVP was also studied.
At the end, a numerical example has been discussed to vali-
date the applicability of our results. In future works, our
results can be extended to other fractional mathematical
models equipped with variable orders such as studies on
simulations and dynamical behaviors of COVID-19.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

The authors declare that the study was realized in collabora-
tion with equal responsibility. All authors read and approved
the final manuscript.

Acknowledgments

The first and fourth authors would like to thank the Azarbai-
jan Shahid Madani University.

10 Journal of Function Spaces



References

[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, “Theory and
applications of fractional differenatial equations,” in North-
Holland Mathematics Studies, vol. 204, Elsevier Science B.V,
Amsterdam, 2006.

[2] K. S. Miller and B. Ross, An Introduction to Fractional Cal-
culus and Fractional Differential Equations, Wiley, New
York, 1993.

[3] S. T. M. Thabet, S. Etemad, and S. Rezapour, “On a new structure
of the pantograph inclusion problem in the Caputo conformable
setting,” Boundary Value Problems, vol. 2020, no. 1, 2020.

[4] H. Khan, F. Jarad, T. Abdeljawad, and A. Khan, “A singular
ABC-fractional differential equation with p-Laplacian opera-
tor,” Chaos, Solitons & Fractals, vol. 129, pp. 56–61, 2019.

[5] M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar,
S. Etemad, and S. Rezapour, “Investigation of the p-Laplacian
nonperiodic nonlinear boundary value problem via general-
ized Caputo fractional derivatives,” Advances in Difference
Equations, vol. 2021, no. 1, 2021.

[6] R. Rizwan, A. Zada, M. Ahmad, S. O. Shah, and H. Waheed,
“Existence theory and stability analysis of switched coupled
system of nonlinear implicit impulsive Langevin equations
with mixed derivatives,”Mathematical Methods in the Applied
Sciences, vol. 44, no. 11, pp. 8963–8985, 2021.

[7] A. Zada, J. Alzabut, H. Waheed, and I. L. Popa, “Ulam-Hyers
stability of impulsive integrodifferential equations with
Riemann-Liouville boundary conditions,” Advances in Differ-
ence Equations, vol. 2020, no. 1, 2020.

[8] S. Etemad, S. Rezapour, and M. E. Samei, “On a fractional
Caputo-Hadamard inclusion problem with sum boundary
value conditions by using approximate endpoint property,”
Mathematical Methods in the Applied Sciences, vol. 43,
no. 17, pp. 9719–9734, 2020.

[9] S. T. M. Thabet, M. S. Abdo, and K. Shah, “Theoretical and
numerical analysis for transmission dynamics of COVID-19
mathematical model involving Caputo-Fabrizio derivative,”
Advances in Difference Equations, vol. 2021, no. 1, 2021.

[10] K. Shah, R. Ud Din, W. Deebani, P. Kumam, and Z. Shah, “On
nonlinear classical and fractional order dynamical system
addressing COVID-19,” Results in Physics, vol. 24, article
104069, 2021.

[11] A. Pratap, R. Raja, J. Alzabut, J. Dianavinnarasi, J. Cao, and
G. Rajchakit, “Finite-time Mittag-Leffler stability of
fractional-order quaternion-valued memristive neural net-
works with impulses,” Neural Processing Letters, vol. 51,
no. 2, pp. 1485–1526, 2020.

[12] S. Boulares, A. Ben Makhlouf, and H. Khellaf, “Generalized
weakly singular integral inequalities with applications to frac-
tional differential equations with respect to another function,”
Rocky Mountain Journal of Mathematics, vol. 50, no. 6,
pp. 2001–2010, 2020.

[13] O. Naifar, A. Ben Makhlouf, M. A. Hammami, and L. Chen,
“Global practical Mittag Leffler stabilization by output feed-
back for a class of nonlinear fractional-order systems,” Asian
Journal of Control, vol. 20, no. 1, pp. 599–607, 2018.

[14] S. G. Samko, “Fractional integration and differentiation of var-
iable order,” Analysis Mathematica, vol. 21, no. 3, pp. 213–236,
1995.

[15] D. Valerio and J. S. da Costa, “Variable-order fractional deriv-
atives and their numerical approximations,” Signal Processing,
vol. 91, no. 3, pp. 470–483, 2011.

[16] J. Yang, H. Yao, and B. Wu, “An efficient numerical
method for variable order fractional functional differential
equation,” Applied Mathematics Letters, vol. 76, pp. 221–
226, 2018.

[17] S. Zhang, “Existence of solutions for two-point boundary-
value problems with singular differential equations of variable
order,” Electronic Journal of Differential Equations, vol. 2013,
no. 245, pp. 1–16, 2013.

[18] S. Zhang and L. Hu, “Unique existence result of approxi-
mate solution to initial value problem for fractional differ-
ential equation of variable order involving the derivative
arguments on the half-axis,” Mathematics, vol. 7, no. 3,
p. 286, 2019.

[19] S. Zhang, S. Sun, and L. Hu, “Approximate solutions to initial
value problem for differential equation of variable order,” Jour-
nal of Fractional Calculus and Applications, vol. 9, no. 2,
pp. 93–112, 2018.

[20] Z. Bouazza, S. Etemad, M. S. Souid, S. Rezapour, F. Martínez,
and M. K. Kaabar, “A study on the solutions of a multiterm
FBVP of variable order,” Journal of Function Spaces,
vol. 2021, Article ID 9939147, 9 pages, 2021.

[21] R. Almeida and D. F. M. Torres, “Computing Hadamard type
operators of variable fractional order,” Applied Mathematics
and Computation, vol. 257, pp. 74–88, 2015.

[22] R. Almeida, D. Tavares, and D. F. M. Torres, The Variable-
Order Fractional Calculus of Variations, Springer, Cham, 2019.

[23] S. Hristova, A. Benkerrouche, M. S. Souid, and A. Hakem,
“Boundary value problems of Hadamard fractional differential
equations of variable order,” Symmetry, vol. 13, no. 5, p. 896,
2021.

[24] A. Refice, M. S. Souid, and I. Stamova, “On the boundary value
problems of Hadamard fractional differential equations of var-
iable order via Kuratowski MNC technique,” Mathematics,
vol. 9, no. 10, p. 1134, 2021.

[25] J. An and P. Chen, “Uniqueness of solutions to initial value prob-
lem of fractional differential equations of variable-order,”
Dynamic Systems and Applications, vol. 28, no. 3, pp. 607–623,
2019.

[26] S. Zhang, “The uniqueness result of solutions to initial value
problems of differential equations of variable-order,” Revista
de la Real Academia de Ciencias Exactas, Físicas y Naturales.
Serie A. Matemáticas, vol. 112, no. 2, pp. 407–423, 2018.

[27] S. Zhang and L. Hu, “The existence of solutions and general-
ized Lyapunov-type inequalities to boundary value problems
of differential equations of variable order,” AIMS Mathemat-
ics, vol. 5, no. 4, pp. 2923–2943, 2020.

[28] J. Bana’s and K. Goebel, Measures of Noncompactness in
Banach Spaces, Marcel Dekker, Inc., New York, 1980.

[29] J. Bana’s and L. Olszowy, “Measures of noncompactness
related to monotonicity,” Commentationes Mathematicae,
vol. 41, pp. 13–23, 2001.

[30] D. Guo, V. Lakshmikantham, and X. Liu, Nonlinear Integral
Equations in Abstract Spaces, Springer, Boston, MA, 1996.

[31] M. Benchohra, S. Bouriah, J. E. Lazreg, and J. J. Nieto, “Nonlin-
ear implicit Hadamard’s fractional differential equations with
delay in Banach space,” Acta Universitatis Palackianae Olomu-
censis. Facultas Rerum Naturalium. Mathematica, vol. 55,
no. 1, pp. 15–26, 2016.

[32] A. BenMakhlouf, “Stability with respect to part of the variables
of nonlinear Caputo fractional differential equations,” Mathe-
matical Communications, vol. 23, no. 1, pp. 119–126, 2018.

11Journal of Function Spaces



[33] M. Ahmad, A. Zada, and J. Alzabut, “Stability analysis of a
nonlinear coupled implicit switched singular fractional differ-
ential system with p-Laplacian,” Advances in Difference Equa-
tions, vol. 2019, no. 1, 2019.

[34] I. A. Rus, “Ulam stabilities of ordinary differential equations in
a Banach space,” Carpathian Journal of Mathematics, vol. 26,
no. 1, pp. 103–107, 2010.

12 Journal of Function Spaces



Research Article
Qualitative Analyses of Fractional Integrodifferential
Equations with a Variable Order under the Mittag-Leffler
Power Law

Mdi Begum Jeelani ,1 Abeer S. Alnahdi ,1 Mohammed A. Almalahi ,2

Mohammed S. Abdo ,3 Hanan A. Wahash ,4 and Nadiyah Hussain Alharthi 1

1Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh 13314, Saudi Arabia
2Department of Mathematics, Hajjah University, Hajjah, Yemen
3Department of Mathematics, Hodeidah University, Al-Hudaydah, Yemen
4Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, M.S 431001, India

Correspondence should be addressed to Mdi Begum Jeelani; mbshaikh@imamu.edu.sa

Received 3 November 2021; Revised 31 January 2022; Accepted 25 March 2022; Published 20 April 2022

Academic Editor: Tianqing An

Copyright © 2022 Mdi Begum Jeelani et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This research paper intends to study some qualitative analyses for a nonlinear fractional integrodifferential equation with a
variable order in the frame of a Mittag-Leffler power law. At first, we convert the considered problem of variable order into an
equivalent standard problem of constant order using generalized intervals and piecewise constant functions. Next, we prove the
existence and uniqueness of analytic results by application of Krasnoselskii’s and Banach’s fixed point theorems. Besides, the
guarantee of the existence of solutions is shown by different types of Ulam-Hyer’s stability. Then, we investigate sufficient
conditions of positive solutions for the proposed problem. In the end, we discuss an example to illustrate the applicability of
our obtained results.

1. Introduction

Fractional calculus and its applications [1, 2] has recently
gained in popularity due to their applicability in modeling
many complex phenomena in a wide range of science and
engineering disciplines. Several biological models [3] and opti-
mal control problems [4] have been presented in the literature
through the development of fractional calculus. In order to
describe the dynamics of real-world problems, new methods
and techniques have been discovered. In particular, Caputo
and Fabrizio in [5] investigated a new type of fractional deriv-
atives (FDs) in the exponential kernel. There are some inter-
esting properties of Caputo and Fabrizio that were discussed
by Losada and Nieto in [6]. In [7], Atangana and Baleanu,
investigated a new type and interesting FD with a Mittag-
Leffler (ML) kernel. Atangana-Baleanu (AB) FD was extended
to higher arbitrary order by Abdeljawad in [8], along with

their associated integral operators. For some theoretical works
on AB fractional operator, we refer the reader to a series of
papers [9–13].

Variable order fractional operators can be seen as a nat-
ural analytical extension of constant order fractional opera-
tors. In recent years, variable order fractional operators
have been designed and formalized mathematically only.
After that, the applications of this effect rolled rapidly. In
this regard, Lorenzo and Hartley [14] studied the behaviors
of a fractional diffusion problem with fractional operators
in the variable order. Afterward, different applications of
variable order spaces of a fractional kind have shown up in
striking and fascinating points of interest, see [15–20]. For
instance, Sun et al. [21] introduced a comparative study on
constant and variable order models to describe the memory
identification of certain systems. The authors in [22] have
formulated a nonlinear model of alcoholism in the frame
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of FDEs with variable order and discussed the solutions of
such a model numerically and analytically. The authors in
[23] analyzed a variable order mathematical fuzzy model
through a computational approach for nonlinear fuzzy par-
tial FDEs.

The probability of formulating evolutionary control
equations has led to the effective application of these opera-
tors to model complex real-world problems going from
mechanics to transition and control processes to theory
and biology. For available applications of variable order frac-
tional operators in the overall area of engineering and scien-
tific modeling, see [24, 25]. Such broad and various
applications promptly require a progression of systematic
studies on the qualitative analyses of solutions of FDEs with
variable order such as existence, uniqueness, and stability.

Recently, Li et al. [26], by a new numerical approach,
have studied the following fractional problem

MLDϱ ϰð Þ
0+ ϑ ϰð Þ + a ϰð Þϑ ϰð Þ =K ϰ, ϑ ϰð Þð Þ, ϰ ∈ 0, 1½ �,

B ϑð Þ = 0,

(
ð1Þ

where MLDϱðϰÞ
0+ is the Atangana-Baleanu FD with a variable

order ϱðϰÞ and BðϑÞ is the linear boundary condition.
Bouazza et al. [27] established the existence and stability

results for a multiterm fractional BVP with a variable order
of the form:

CDϱ ϰð Þ
0+ ϑ ϰð Þ =K ϰ, ϑ ϰð Þ, Iϱ ϰð Þ

0+ ϑ ϰð Þ
� �

, ϰ ∈ 0, b½ �,
ϑ 0ð Þ = 0, ϑ bð Þ = 0,

8<: ð2Þ

where CDϱðtÞ
0+ , IϱðtÞ0+ are Caputo’s and Riemann-Liouville’s

operators of variable order ϱðtÞ. The existence and Ulam-
Hyers stability results of a Caputo-type problem (2) have
been obtained by Benkerrouche et al. [28]. Kaabar et al.
[29] investigated some qualitative analyses of solutions for
the following implicit FDE with variable order

CDϱ ϰð Þ
0+ ϑ ϰð Þ =K ϰ, ϑ ϰð Þ,CDϱ ϰð Þ

0+ ϑ ϰð Þ
� �

, ϰ ∈ 0, b½ �,
ϑ 0ð Þ = 0, ϑ bð Þ = 0,

8<: ð3Þ

where CDϱðϰÞ
0+ is the Caputo FD of variable order ϱðϰÞ.

Cauchy’s type of nonlocal problems can be used to
explain differential laws in the development of systems,
which is remarkable. Nonnegative quantities, such as the
concentration of a species or the distribution of mass or tem-
perature, are often described using these types of equations.
In this regard, the first question to ask before analyzing any
system or model of a real-world phenomenon is whether or
not the problem actually exists. The answer to this question
is given by the fixed point theory. We refer here to some
results that dealt with the stability approach in the concept
of Ulam-Hyers and others related to fixed point techniques,
see [30–35].

Motivated by the argumentations above, we intend to
analyze and investigate the sufficient conditions of solution
for ML-type nonlinear fractional integrodifferential equa-
tions with a variable order of the form

MLDϱ ϰð Þ
0+ ϑ ϰð Þ =K ϰ, ϑ ϰð Þ,MLIϱ ϰð Þ

0+ ϑ ϰð Þ,MLDϱ ϰð Þ
0+ ϑ ϰð Þ

� �
, ϰ ∈ E ≔ 0, bð �,

ϑ 0ð Þ = 0, ϑ bð Þ = 〠
n

j=1
τjϑ κj
� �

, κj ∈ 0, bð Þ,

8>>><>>>:
ð4Þ

where MLDϱðϰÞ
0+ and MLIϱðϰÞ0+ are the ML-type derivative and

the ML-type integral of fractional variable order ϱðϰÞ > 0,,
respectively, τ j ∈ℝ, κj,j = 1, 2,⋯, n are prefixed points satis-
fying 0 < κ1 ≤ κ2 ≤⋯≤ κi < b and K : E ×ℝ3 ⟶ℝ is a
continuous function fulfilling some later-specified
assumptions.

Let CðE,ℝÞ be a Banach space of continuous functions
ϑ : E⟶ℝ equipped with the norm kϑk = sup fjϑðϰÞj: ϰ
∈Eg:

Definition 1 (see [36]). Let ϱðϰÞ ∈ ðn − 1, n�,ϑ ∈H1ðEÞ: Then,
the ML-type FD of a variable order ϱðϰÞ for a function ϑ
with the lower limit zero is defined by

MLDϱ ϰð Þ
0+ ϑ ϰð Þ = ϒ ϱϰð Þ

1 − ϱ ϰð Þ
ðϰ
0
Eϱ ϰð Þ

ϱ ϰð Þ
ϱ ϰð Þ − 1 ϰ − θð Þϱ
� �

ϑ′ θð Þdθ, ϰ > 0,

ð5Þ

respectively. The normalization function ϒðϱðϰÞÞ satisfies
ϒð0Þ =ϒð1Þ = 1, where EϱðϰÞ is the ML function defined by

Eϱ ϰð Þ ϑð Þ = 〠
∞

i=0

ϑi

Γ iϱ ϰð Þ + 1ð Þ , Re ϱ ϰð Þð Þ > 0, ϑ ∈ℂ: ð6Þ

The correspondent ML fractional integral is given by

MLIϱ ϰð Þ
0+ ϑ ϰð Þ = 1 − ϱ ϰð Þ

ϒ ϱ ϰð Þð Þ ϑ ϰð Þ + ϱ ϰð Þ
ϒ ϱ ϰð Þð ÞΓ ϱ ϰð Þð Þ

ðϰ
0
ϰ − sð Þϱ ϰð Þ−1ϑ sð Þds:

ð7Þ

For an integer n ∈ℕ and B is a partition of the interval
E defined as

B = E1 = 0, b1½ �,E2 = b1, b2½ �,E3 = b2, b3½ �, ::⋯ ,En = bn−1, bn½ �f g:
ð8Þ

Let ϱðϰÞ: E⟶ ð1, 2� be a piecewise constant function
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with respect to B such that

ϱ ϰð Þ = 〠
n

l=1
ϱlQl ϰð Þ =

ϱ1, if ϰ ∈E1

ϱ2, if ϰ ∈E2

:

:

:

ϱn, if ϰ ∈En,

8>>>>>>>>>>><>>>>>>>>>>>:
ð9Þ

where ϱl ∈ ð1, 2� are constants, and Ql is the indicator of the
interval E l ≔ ðbl−1, bl�, l = 1, 2,⋯, n (with b0 = 0, bn = b) such
that

Ql ϰð Þ =
1, if ϰ ∈El

0, for elsewhere:

(
ð10Þ

Let CðEl,ℝÞ, l ∈ f1, 2,⋯, ng be a Banach space of con-
tinuous functions ϑ : El ⟶ℝ equipped with the norm kϑ
k = sup fjϑðϰÞj: ϰ ∈Elg. Then, for ϰ ∈El, l = 1, 2,⋯, n the
ML-type FD of variable order ϱðϰÞ for a function ϑ ∈ CðE,
ℝÞ defined by (5) can be written as a sum of left ML-type
FD of constant orders ϱl, l = 1, 2,⋯, n as follows.

MLDϱ ϰð Þ
0+ ϑ ϰð Þ = ϒ ϱ ϰð Þð Þ

1 − ϱ ϰð Þ
ðb1
0
Eϱ ϰð Þ

ϱ ϰð Þ
ϱ ϰð Þ − 1 ϰ − θð Þϱ ϰð Þ
� �

� ϑ′ θð Þdθ+:⋯⋯ + ϒ ϱ ϰð Þð Þ
1 − ϱ ϰð Þ

ðϰ
bl−1

Eϱ ϰð Þ

� ϱ ϰð Þ
ϱ ϰð Þ − 1 ϰ − θð Þϱ ϰð Þ
� �

ϑ′ θð Þdθ:

ð11Þ

Thus, according to (11), the BVP (4) can be written for
any ϰ ∈El, l = 1, 2,⋯, n in the form

ϒ ϱ ϰð Þð Þ
1 − ϱ ϰð Þ

ðb1
0
Eϱ ϰð Þ

ϱ ϰð Þ
ϱ ϰð Þ − 1 b1 − θð Þϱ ϰð Þ
� �

ϑ′ θð Þdθ+:⋯⋯

+ ϒ ϱ ϰð Þð Þ
1 − ϱ ϰð Þ

ðϰ
bl−1

Eϱ ϰð Þ
ϱ ϰð Þ

ϱ ϰð Þ − 1 b − θð Þϱ ϰð Þ
� �

ϑ′ θð Þdθ

=K ϰ, ϑ ϰð Þ,MLIϱ ϰð Þ
0+ ϑ ϰð Þ,MLDϱ ϰð Þ

0+ ϑ ϰð Þ
� �

:

ð12Þ

Let the function ϑ ∈ CðEl,ℝÞ be such that ϑðϰÞ = 0 on
ϰ ∈ ½0, bl−1� and such that it solves the integral equation
(12). Then, (12) is reduced to

MLDϱ1
b+l−1

ϑ ϰð Þ =K ϰ, ϑ ϰð Þ,MLIϱ1b+l−1ϑ ϰð Þ,MLDϱ1
b+l−1

ϑ ϰð Þ
� �

, ϰ ∈E1,

MLDϱ2
b+l−1

ϑ ϰð Þ =K ϰ, ϑ ϰð Þ,MLIϱ2b+l−1ϑ ϰð Þ,MLDϱ2
b+l−1

ϑ ϰð Þ
� �

, ϰ ∈E2,
:

:

MLDϱn
b+l−1

ϑ ϰð Þ =K ϰ, ϑ ϰð Þ,MLIϱnb+l−1ϑ ϰð Þ,MLDϱn
b+l−1

ϑ ϰð Þ
� �

, ϰ ∈En:

8>>>>>>>>>><>>>>>>>>>>:
ð13Þ

In our forthcoming analysis, we shall deal with the fol-
lowing BVP:

MLDϱl
b+l−1

ϑ ϰð Þ =K ϰ, ϑ ϰð Þ,MLIϱlb+l−1ϑ ϰð Þ,MLDϱl
b+l−1

ϑ ϰð Þ
� �

, ϰ ∈E l

ϑ bl−1ð Þ = 0, ϑ blð Þ = 〠
n

j=1
τjϑ κj
� �

, κj ∈ 0, bð Þ:

8>>><>>>:
ð14Þ

Observe that, problem (4) is more general of problems
(1), (2), and (3). In addition, it is assumed that it should be
noted that due to the complexity of the computations and
the division of the underlying time interval, not many papers
can be found in the literature in which the authors focused
on the existence and stability results of fractional variable
order integrodifferential equations. To fill this gap, we inves-
tigate some qualitative analyses for the fractional variable
order problem (14) in the frame of ML-type fractional oper-
ators. More precisely, we convert the ML-type fractional var-
iable order problem into an equivalent standard ML-type
fractional constant order problem using generalized inter-
vals and piecewise constant functions. Then, we prove the
existence and uniqueness of solutions for problem (14) via
Krasnoselskii’s and Banach’s fixed point techniques. Also,
we discuss the Ulam-Hyers stability result to the proposed
problem. Further, we establish the sufficient conditions of
positive solutions for problem (14).

The major contribution of this work is to develop the
nonlocal fractional calculus with respect to variable order
and learn more properties for the proposed ML-type frac-
tional problems, which makes use of nonsingular kernel
derivatives with fractional variable order. Already significant
amount of work on constant fractional order for different
operators has been done in literature. But to the best of
our information, variable order problems have not been well
studied so for fractional calculus. There is a waste gap
between constant and variable fractional order problems in
literature, the first one has got tremendous attention as com-
pared to the second one. Very recently, the area of variable
order has started attention to be investigated. In line with
these developments, a new approach is used in this work
to discuss some qualitative properties of solution for the
considered problem. Multiple terms can be solved using this
approach. To the best of our understanding, this is the first
work dealing with the ML-type derivative with fractional
variable order. The results of this work will therefore make
a useful contribution to the existing literature on this subject.
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The outline of our work is as follows. Some basic notions
and axiom results are presented in Section 2. Our main
results are obtained in Sections 3, 4, and 5 based on Krasno-
selskii’s and Banach’s fixed point theorems. An illustrative
example is fitted in Section 6. Concluding remarks about
our results are in the final section.

2. Auxiliary Results

Definition 2. Problem (14) has a solution in CðE,ℝÞ, if there
are functions ϑl, l = 1, 2,⋯, n, so that ϑl ∈ CðEl,ℝÞ, satisfy-
ing Equation (12), and ϑlð0Þ = 0, ϑlðbÞ =∑n

j=1τjϑðκjÞ.

Lemma 3 (see [8]). Let ϑðϰÞ be a function defined on ½0, b�
and n < ϱ ≤ n + 1, for some n ∈ℕ0, we have

MLIϱML
0+ Dϱ

0+ϑ
� �

ϰð Þ = ϑ ϰð Þ − 〠
n

i=0

ϑ ið Þ 0ð Þ
i!

ϰi: ð15Þ

Theorem 4 (see [37]). Let S be closed subspace from a
Banach space K , and let Π : S ⟶ S be a strict contraction
such that

Π xð Þ −Π yð Þk k ≤ ρ x − yk k, ð16Þ

for some 0 < ρ < 1, and for all x, y ∈ S: Then, Π has a fixed
point in S.

Theorem 5 (see [38]). Let K be a nonempty, closed, convex,
and bounded subset of the Banach space X. If there are two
operators Φ1,Φ2 such that

(1) Φ1u +Φ2v ∈X, for all u, v ∈X,
(2) Φ1 is compact and continuous

(3) Φ2 is a contraction mapping

Then, there exists a function z ∈ K such that z =Φ1z +
Φ2z:.

Remark 6. Let uðϰÞ, vðϰÞ ∈ CðE,ℝÞ be two functions. We
notice that the semigroup property is not valid, meaning that

MLIu ϰð Þ
0+

ML
Iv ϰð Þ
0+ ϑ ϰð Þ ≠ MLIu ϰð Þ+v ϰð Þ

0+ ϑ ϰð Þ: ð17Þ

Lemma 7 (see [8]). Let ϱ ∈ ð1, 2� and ℏ ∈ CðE,ℝÞ: Then, the
following ML-type linear problem,

MLDϱ
a+ϑ ϰð Þ = ℏ ϰð Þ, ϑ að Þ = c1,

ϑ′ að Þ = c2,

(
ð18Þ

is equivalent to the following integral equation

ϑ ϰð Þ = c1 + c2 ϰ − að Þ+MLIϱa+ℏ ϰð Þ, ð19Þ

where

MLIϱa+ℏ ϰð Þ = 2 − ϱ

ϒ ϱ − 1ð Þ
ðϰ
a
ℏ sð Þds + ϱ − 1

ϒ ϱ − 1ð ÞΓ ϱð Þ
ðϰ
a
ϰ − sð Þϱ−1ℏ sð Þds:

ð20Þ

Lemma 8. Let ϱl ∈ ð1, 2�, l = 1, 2,⋯, n and ℏ ∈ CðEl,ℝÞ and
let Θ = ðbl − bl−1Þ −∑n

j=1τjðκj − bl−1Þ ≠ 0, τj ∈ℝ, κj ∈ ðbl−1, bl
Þ, with b0 = 0, bn = b, j = 1, 2,⋯, n: Then, the following ML-
type linear problem,

MLDϱl
b+l−1

ϑ ϰð Þ = ℏ ϰð Þ,

ϑ bl−1ð Þ = 0, ϑ blð Þ = 〠
n

j=1
τjϑ κj
� �

,

8>><>>: ð21Þ

is equivalent to the following integral equation

ϑ ϰð Þ = ϰ − bl−1ð Þ
Θ

〠
n

j=1
τML
j Iϱlb+l−1ℏ κj

� �
−MLIϱlb+l−1ℏ blð Þ

" #
+MLIϱlb+l−1ℏ ϰð Þ,

ð22Þ

where

MLIϱlb+l−1ℏ ϰð Þ = 2 − ϱl
ϒ ϱl − 1ð Þ

ðϰ
bl−1

ℏ sð Þds + ϱl − 1
ϒ ϱl − 1ð ÞΓ ϱlð Þ

�
ðϰ
bl−1

ϰ − sð Þϱl−1ℏ sð Þds:
ð23Þ

Proof. Suppose that ϑ ∈ CðE l,ℝÞ is a solution of problem
(21). Applying the operator MLIϱlb+l−1 to both sides of (21), we

find

ϑ ϰð Þ = c1 + c2 ϰ − bl−1ð Þ+MLIϱlb+l−1ℏ ϰð Þ: ð24Þ

By the condition ϑðbl−1Þ = 0, we get c1 = 0:. Hence, Equa-
tion (24) reduces to

ϑ ϰð Þ = c2 ϰ − bl−1ð Þ+MLIϱlb+l−1ℏ ϰð Þ: ð25Þ

As per condition ϑðblÞ =∑n
j=1τjϑðκ jÞ, we obtain

c2 =
1
Θ

〠
n

j=1
τML
j Iϱlb+l−1ℏ κj

� �
−MLIϱlb+l−1ℏ blð Þ

" #
: ð26Þ

Substitute the values of c1, c2 into Equation (24), we get
Equation (22). Conversely, we assume that ϑ satisfies Equa-
tion (22). Then, by applying the operator MLDϱl

b+l−1
on both

sides of Equation (22) and using the fact MLDϱl
b+l−1

ðϰ − bl−1Þ
= 0,, we have
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MLDϱl
b+l−1

ϑ ϰð Þ= MLDϱl
b+l−1

ϰ − bl−1ð Þ
Θ

� 〠
n

j=1
τj

MLIϱlb+l−1ℏ κj
� �� �

−MLIϱlb+l−1ℏ blð Þ
" #

+MLDϱl
b+l−1

MLIϱlb+l−1ℏ ϰð Þ
� �

= ℏ ϰð Þ:

ð27Þ

As ϰ⟶ κj in (25) and multiply by τj, we get

〠
n

j=1
τjϑ κj
� �

=
∑n

j=1τj κj − bl−1
� �
Θ

� 〠
n

j=1
τML
j Iϱlb+l−1ℏ κj

� �
−MLIϱlb+l−1ℏ blð Þ

" #

+ 〠
n

j=1
τj

MLIϱlb+l−1ℏ κj
� �� �

= bl − bl−1ð Þ −Θ

Θ

� 〠
n

j=1
τML
j Iϱlb+l−1ℏ κj

� �
−MLIϱlb+l−1ℏ blð Þ

" #

+ 〠
n

j=1
τj

MLIϱlb+l−1ℏ κj
� �� �

= ϑ blð Þ:

ð28Þ

Thus, nonlocal conditions are satisfied.

Theorem 9. Let ϱl ∈ ð1, 2�, l = 1, 2,⋯, n and K : El ×ℝ3

⟶ℝ be continuous function and Θ = ðbl − bl−1Þ −∑n
j=1τj

ðκj − bl−1Þ ≠ 0,τ j ∈ℝ, κj ∈ ðbl−1, blÞ, with b0 = 0, bn = b, j = 1,
2,⋯, n: If ϑ ∈ CðE l,ℝÞ is a solution of the following ML-
type problem

MLDϱl
b+l−1

ϑ ϰð Þ =K ϰ, ϑ ϰð Þ,MLIϱlb+l−1ϑ ϰð Þ,MLDϱl
b+l−1

ϑ ϰð Þ
� �

, ϰ ∈E l

ϑ bl−1ð Þ = 0, ϑ blð Þ = 〠
n

j=1
τjϑ κj
� �

,

8>>><>>>:
ð29Þ

then, ϑ satisfies the following fractional integral equation

ϑ ϰð Þ = P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þds −
ðbl
bl−1

Kϑ sð Þds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ 〠

n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1Kϑ sð Þds

 

−
ðbl
bl−1

bl − sð Þϱl−1Kϑ sð Þds
!
+ P3

ðϰ
bl−1

Kϑ sð Þj j

� ds + P4

Γ ϱlð Þ
ðϰ
bl−1

ϰ − sð Þϱl−1Kϑ sð Þds,

ð30Þ

where

Kϑ ϰð Þ =K ϰ, ϑ ϰð Þ,MLIϱlb+l−1ϑ ϰð Þ,MLDϱl
b+l−1

ϑ ϰð Þ
� �

,

P1 =
2 − ϱl

Θϒ ϱl − 1ð Þ , P2 =
ϱl − 1

Θϒ ϱl − 1ð Þ ,

P3 =
2 − ϱl

ϒ ϱl − 1ð Þ , P4 =
ϱl − 1

ϒ ϱl − 1ð ÞΓ ϱlð Þ :

ð31Þ

3. Existence and Uniqueness of Solutions

This section is devoted to proving the existence and unique-
ness theorems for the ML-type problem (14). For simplicity,
we set

M = 2 − ϱlð Þ bl − bl−1ð Þ
Y ϱlð Þ + ϱl − 1ð Þ bl − bl−1ð Þ

Y ϱl − 1ð ÞΓ ϱl + 1ð Þ
� 	

,

RP = P1 bl − bl−1ð Þ 〠
n

j=1
τj κj − bl−1
� �

+ bl − bl−1ð Þ
 !

+ P2 bl − bl−1ð Þ
Γ ϱl + 1ð Þ 〠

n

j=1
τj κj − bl−1
� �ϱl + bl − bl−1ð Þϱl

 !

+ P3 bl − bl−1ð Þ + P4
Γ ϱl + 1ð Þ bl − bl−1ð Þϱl

� �
,

Ω =RP

Nf 1 +Mð Þ
1 −Nf

:

ð32Þ

Theorem 10. Suppose that

H1ð Þ: K ϰ, x, y, zð Þ −K ϰ, �x, �y, �zð Þj j
≤Nf x − �xj j + y − �yj j + z − �zj jð Þ,N f > 0,

ð33Þ

for all x, y, z, �x, �y, �z ∈ CðE l,ℝÞ. Then, problem (14) has a
unique solution provided that Ω < 1.

Proof. As per Theorem 9, we define the operator Π : CðE l,
ℝÞ⟶ CðEl,ℝÞ

Πϑð Þ ϰð Þ = P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þds −
ðbl
bl−1

Kϑ sð Þds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ 〠

n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1Kϑ sð Þ

 

� ds −
ðbl
bl−1

bl − sð Þϱl−1Kϑ sð Þds
!

+ P3

ðϰ
bl−1

Kϑ sð Þj jds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1 Kϑ sð Þj jds:

ð34Þ
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Let us consider a closed ball Πφ as

Kηl
= ϑ ∈ C E l,ℝð Þ: ϑk k ≤ ηlf g, ð35Þ

with the radius ηl ≥Ω1/1 −Ω, where

Ω =RPωf , ð36Þ

and ωf =maxϰ∈El
jKϑð0Þj: Now, we show that ΠKηl

⊂Kηl
:

For all ϑ ∈Kηl
and ϰ ∈E l, we have

Πϑð Þ ϰð Þj j = P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þj jds +
ðbl
bl−1

Kϑ sð Þj jds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ 〠

n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1 Kϑ sð Þj j

 

� ds +
ðbl
bl−1

bl − sð Þϱl−1 Kϑ sð Þj jds
!

+ P3

ðϰ
bl−1

Kϑ sð Þj jds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1 Kϑ sð Þj jds:

ð37Þ

By ðH1Þ and definition of MLIϱlb+l−1 in the case of ϱl ∈ ð1, 2�
defined as Equation (23), we have

K ϰ, ϑ ϰð Þ,MLIϱlb+l−1ϑ ϰð Þ,MLDϱl
b+l−1

ϑ ϰð Þ
� �


 




= K ϰ, ϑ ϰð Þ,MLIϱlb+l−1ϑ ϰð Þ,MLDϱl
b+l−1

ϑ ϰð Þ
� �

− f ϰ, 0, 0, 0ð Þ



 



+ f ϰ, 0, 0, 0ð Þj j ≤ Nf 1 +Mð Þ

1 −Nf
ϑ ϰð Þj j + ωf :

ð38Þ

Hence,

Πϑk k ≤ P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þj jds +
ðbl
bl−1

Kϑ sð Þj jds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ 〠

n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1 Kϑ sð Þj j

 

� ds +
ðbl
bl−1

bl − sð Þϱl−1 Kϑ sð Þj jds
!

+ P3

ðϰ
bl−1

Kϑ sð Þj jds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1 Kϑ sð Þj jds

≤Ωηl +Ω1 ≤ ηl:

ð39Þ

Thus Πϑ ∈Dl. Now, we need to prove that Π is a con-

traction map. Let ϑ, bϑ ∈Dl and ϰ ∈El .Then, we have

Πϑð Þ ϰð Þ − Πbϑ� �
ϰð Þ




 


 ≤ P1 ϰ − bl−1ð Þ

� 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þ −Kbϑ sð Þ



 


ds + ðbl

bl−1

Kϑ sð Þ −Kbϑ sð Þ



 


ds !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ 〠

n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1 Kϑ sð Þ −Kbϑ sð Þ




 


 

� ds +
ðbl
bl−1

bl − sð Þϱl−1 Kϑ sð Þ −Kbϑ sð Þ



 


ds! + P3

ðϰ
bl−1

Kϑ sð Þj

−Kbϑ sð Þjds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1 Kϑ sð Þ −Kbϑ sð Þ



 


ds:

ð40Þ

From our assumption, we obtain

Kϑ sð Þ −Kbϑ sð Þ



 


 ≤Nf ϑ sð Þ − bϑ sð Þ




 


 + MLIϱlb+l−1ϑ ϰð Þ−MLIϱlb+l−1
bϑ ϰð Þ




 


�
+ Kϑ sð Þ −Kbϑ sð Þ



 


� ≤ Nf 1 +Mð Þ

1 −Nf
ϑ − bϑ��� ���:

ð41Þ

Hence,

Πϑ −Πbϑ��� ��� ≤Ω ϑ − bϑ��� ���: ð42Þ

Due to Ω < 1, we conclude that Π is a contraction map-
ping. Hence, by the Banach fixed point Theorem 4, Π has a
unique fixed point.

Theorem 11. Under the hypotheses of Theorem 10, the ML-
type problem (14) has at least one solution.

Proof. Let us consider the operator Π defined by Theorem
10. Now, we will divided the operator Π into two operators
Π1,Π2 such that ðΠϑÞðϰÞ = ðΠ1ϑÞðϰÞ + ðΠ2ϑÞðϰÞ, where

Π1ϑð Þ ϰð Þ = P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þds −
ðbl
bl−1

Kϑ sð Þds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ

� 〠
n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1Kϑ sð Þds −

ðbl
bl−1

bl − sð Þϱl−1Kϑ sð Þds
 !

,

Π2ϑð Þ ϰð Þ = P3

ðϰ
bl−1

Kϑ sð Þj jds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1Kϑ sð Þds:

ð43Þ

Consider a closed ball Kηl
defined as in Theorem 10. In

order to fulfill the conditions in Theorem 5, we split the
proof into the following steps:
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Step 1. Π1ϑ +Π2
bϑ ∈Kηl

for all ϑ, bϑ ∈Kηl
. First, in order to

operator Π1: For ϑ ∈Kηl
and ϰ ∈E l, we have

Π1ϑð Þ ϰð Þj j ≤ P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þj jds +
ðbl
bl−1

Kϑ sð Þj jds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ 〠

n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1 Kϑ sð Þj jds +

ðbl
bl−1

bl − sð Þϱl−1 Kϑ sð Þj jds
 !

:

ð44Þ

By Equation (38), we have

Π1ϑk k ≤ P1 bl − bl−1ð Þ 〠
n

j=1
τj κj − bl−1
� �

+ bl − bl−1ð Þ
 !"

+ P2 bl − bl−1ð Þ
Γ ϱl + 1ð Þ 〠

n

j=1
τj κj − bl−1
� �ϱl + bl − bl−1ð Þϱl

 !#

� Nf 1 +Mð Þ
1 −Nf

ηl + ωf

 !
:

ð45Þ

Next, for the operator Π2, we have

Π2ϑk k ≤ P3 bl − bl−1ð Þ + P4
Γ ϱl + 1ð Þ bl − bl−1ð Þϱl

� �
Nf 1 +Mð Þ
1 −Nf

ηl + ωf

 !
:

ð46Þ

Inequalities (45) and (46) give

Π1ϑ +Π2ϑk k ≤ Π1ϑk k + Π2ϑk k < ηl: ð47Þ

Thus, Π1ϑ +Π2bϑ ∈Kηl
.

Step 2. Π2 is a contraction map. Due to the operator Π is a
contraction map, we conclude that Π1 is contraction too.

Step 3. Π1 is continuous and compact. Since Kϑ is continu-
ous, Π1 is continuous too. Also, by Equation (45), Π1 is uni-
formly bounded on Kηl

. Now, we show that Π1ðKηl
Þ is an

equicontinuous. For this purpose, let ϑ ∈Kηl
, a ≤ ϰ1 < ϰ2 ≤ b

. Then, we have

Π1ϑð Þ ϰ2ð Þ − Π1ϑð Þ ϰ1ð Þj j ≤ P1 ϰ2 − bl−1ð Þ − ϰ1 − bl−1ð Þ½ �

� 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þds −
ðbl
bl−1

Kϑ sð Þds
 !

+ P2 ϰ2 − bl−1ð Þ − ϰ1 − bl−1ð Þ
Γ ϱlð Þ

� 〠
n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1Kϑ sð Þds −

ðbl
bl−1

bl − sð Þϱl−1Kϑ sð Þds
 !

:

ð48Þ

Thus,

Π1ϑð Þ ϰ2ð Þ − Π1ϑð Þ ϰ1ð Þk k⟶ 0 as ϰ2 ⟶ ϰ1: ð49Þ

In view of the previous steps along with the theorem
of Arzela-Ascoli, we deduce that ðΠ1Kηl

Þ is relatively com-
pact. Consequently, Π1 is completely continuous. Hence,
by Theorem 5, there exists a solution ϑl of problem (14).
For l ∈ f1, 2,⋯, ng, we define the function

ϑl =
0, ϰ ∈ 0, bl−1½ �,
~ϑl, ϰ ∈El:

(
ð50Þ

As a result of this, it is well known that ϑl ∈ CðE l,ℝÞ
given by Equation (50) satisfies the following problem

ϒ ϱ ϰð Þð Þ
1 − ϱ ϰð Þ

ðb1
0
Eϱ ϰð Þ

ϱ ϰð Þ
ϱ ϰð Þ − 1 ϰ1 − θð Þϱ ϰð Þ
� �

ϑl′ θð Þdθ+⋯⋯ + ϒ ϱ ϰð Þð Þ
1 − ϱ ϰð Þ

�
ðϰ
bl−1

Eϱ ϰð Þ
ϱ ϰð Þ

ϱ ϰð Þ − 1 b − θð Þϱ ϰð Þ
� �

ϑl′ θð Þdθ

=K ϱ, ϑl ϱð Þ,MLIϱ ϰð Þ
0+ ϑl ϱð Þ,MLDϱ ϰð Þ

0+ ϑl ϱð Þ
� �

,

ð51Þ

where ϑl is a solution to Equation (12) equipped with
ϑlð0Þ = ϑlðblÞ = ~ϑlðblÞ = 0. Then,

ϑ ϰð Þ =

ϑ1 ϰð Þ, ϰ ∈E1,

ϑ2 ϰð Þ =
0, ϰ ∈E1,
~ϑ2, ϰ ∈E2,

(
:

:

:

ϑn ϰð Þ =
0, ϰ ∈ 0, bl−1½ �,
~ϑn, ϰ ∈En,

(

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð52Þ

is the solution of problem (14).

4. Stability Results for ML-Type Problem (14)

In this section, we discuss Ulam-Hyers (UH) and general-
ized Ulam-Hyers (GUH) stability results for problem (14).
Let ε > 0 and ϑ be a function such that ϑðϰÞ ∈ CðEl,ℝÞ sat-
isfies the following inequations:

MLDϱ ϰð Þ
0 ϑ ϰð Þ −Kϑ ϰð Þ




 


 ≤ ε, ϰ ∈E: ð53Þ

Define the functions ϑlðϰÞ, bϑ lðϰÞ, klðϰÞ,ϰ ∈El as follows.

ϑl ϰð Þ =
0, ifϰ ∈ 0, bl−1½ �,
ϑ ϰð Þ ifϰ ∈El,

(
ð54Þ
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bϑ l ϰð Þ =
0, if ϰ ∈ 0, bl−1½ �,bϑ ϰð Þ if ϰ ∈El,

(
ð55Þ

kl ϰð Þ =
0, if ϰ ∈ 0, bl−1½ �,
k ϰð Þ if ϰ ∈El:

(
ð56Þ

Definition 12. Problem (14) is UH stable if there exists a real
number CK > 0 such that, for each ε > 0 and for each solu-

tion bϑ ∈ CðEl,ℝÞ of inequality (53), there exists a unique
solution ϑ ∈ CðE l,ℝÞ of problem (14) with

bϑ ϰð Þ − ϑ ϰð Þ



 


 ≤ CKε, ð57Þ

where ϑ and bϑ are defined by Equation (54) and Equation
(55), respectively.

Remark 13. Let bϑ ∈ CðEl,ℝÞ be the solution of inequality
(53) if and only if we have a function k ∈ CðEl,ℝÞ which
depends on ϑ such that

(i) jkðϰÞj ≤ ε for all ϰ ∈El

(ii) MLDϱl
b+l−1
bϑðϰÞ =Kbϑ ðϰÞ + kðϰÞ, for all ϰ ∈E:

Lemma 14. If ϑ ∈ CðEl,ℝÞ is a solution of inequality (53),
then ϑ satisfies the following inequality

bϑ ϰð Þ −Ψbϑ − P3

ðϰ
bl−1

Kbϑ sð Þds − P4

Γ ϱlð Þ
ðϰ
bl−1

ϰ − sð Þϱl−1Kbϑ sð Þds












 ≤ εRP,

ð58Þ

where

Ψbϑ = P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kbϑ sð Þds −
ðbl
bl−1

Kbϑ sð Þds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ 〠

n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1Kbϑ sð Þds −

ðbl
bl−1

bl − sð Þϱl−1Kbϑ sð Þds
 !

:

ð59Þ

Proof. As per Remark 13, we have

MLDϱl
b+l−1
bϑ ϰð Þ =Kbϑ ϰð Þ + k ϰð Þ, ϰ ∈Elbϑ bl−1ð Þ = bϑ blð Þ = 0:

8<: ð60Þ

Then, by Lemma 8, we get

bϑ ϰð Þ =Ψbϑ + P3

ðϰ
bl−1

Kbϑ sð Þds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1Kbϑ sð Þ

� ds + P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

k sð Þds −
ðbl
bl−1

k sð Þds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ

� 〠
n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1k sð Þds −

ðbl
bl−1

bl − sð Þϱl−1k sð Þds
 !

+ P3

ðϰ
bl−1

k sð Þds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1k sð Þds,

ð61Þ

which implies

bϑ ϰð Þ −Ψbϑ − P3

ðϰ
bl−1

Kbϑ sð Þds − P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1Kbϑ sð Þds












 ≤ εRP:

ð62Þ

Theorem 15. Suppose that ðH1Þ holds. If

P3 bl − bl−1ð Þ + P4 bl − bl−1ð Þϱl
Γ ϱl + 1ð Þ

� �
Nf 1 +Mð Þ
1 −Nf

< 1, ð63Þ

then the ML-type problem (14) is UH and GUH stable.

Proof. Let ε > 0 and bϑ ∈ CðEl,ℝÞ be a function that satisfies
the inequality (53), and let ϑ ∈ CðE l,ℝÞ be the unique solu-
tion of the following problem.

MLDϱl
b+l−1

ϑ ϰð Þ =Kϑ ϰð Þ, ϰ ∈El

ϑ bl−1ð Þ = bϑ bl−1ð Þ = 0

ϑ blð Þ = bϑ blð Þ = 0:

8>>><>>>: ð64Þ

Then, by Lemma 8, the solution of Equation (64) is given
by

ϑ ϰð Þ =Ψbϑ + P3

ðϰ
bl−1

Kϑ sð Þds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1Kϑ sð Þds:

ð65Þ

Hence, by Lemma 14, we have

bϑ ϰð Þ − ϑ ϰð Þ ≤ bϑ ϰð Þ −Ψbϑ − P3

ðϰ
bl−1

Kbϑ sð Þds − P4
Γ ϱlð Þ














�
ðϰ
bl−1

ϰ − sð Þϱl−1Kbϑ sð Þdsjj + P3

ðϰ
bl−1

Kbϑ sð Þ −Kϑ sð Þ



 




� ds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1 Kbϑ sð Þ −Kϑ sð Þ



 


ds ≤ εRP

+ P3 bl − bl−1ð Þ + P4
Γ ϱl + 1ð Þ bl − bl−1ð Þϱl

� �
Nf 1 +Mð Þ
1 −Nf

bϑ − ϑ
��� ���:

ð66Þ

8 Journal of Function Spaces



Thus,

bϑ − ϑ
��� ��� ≤ CKε, ð67Þ

where

CK = RP

1 − P3 bl − bl−1ð Þ + P4/Γ ϱl + 1ð Þð Þ bl − bl−1ð Þϱlð Þ Nf 1 +Mð Þ/1 −Nf

� � > 0:

ð68Þ

Therefore, the ML-type problem (14) is UH stable.
Finally, by choosing CKðεÞ = CKε such that CKð0Þ = 0, then
the ML-type problem (14) has GUH stability.

5. Existence of Positive Solution for ML-Type
Problem (14)

In this section, we extend and develop the sufficient condi-
tions of the existence and uniqueness of positive solution
for problem (14). For the forthcoming analysis, the following
assumptions must be satisfied:

ðV1Þ: K : E l ×ℝ3 ⟶ℝ is continuous function.
ðV2Þ: There exists constants numbers n1, n1 > 0,n1 ≠ n2

such that

n1 ≤Kϑ ϰð Þ ≤ n2:

V3ð Þ: Ω =RP

Nf 1 +Mð Þ
1 −Nf

:
ð69Þ

Define the cone P ⊂ CðE l,ℝÞ as

P = ϑ ∈ C E l,ℝð Þ: ϑ ϰð Þ ≥ 0, ϰ ∈ 0, b½ �f g: ð70Þ

Lemma 16. Assume that ðV1Þ-ðV2Þ hold. Then, Π : P ⟶
P is completely continuous.

Proof. By Theorem 11, we conclude Π : P ⟶P is
completely continuous due to Π : CðE l,ℝÞ⟶ CðE l,ℝÞ is
completely continuous, since P ⊂ CðE l,ℝÞ.

Theorem 17. Assume that ðV1Þ-ðV3Þ hold. Then, (14) has at
least one positive solution.

Proof. First, we have Π is compact due to Lemma 16. Next,
we define two sets A1,A2 such that A1 = fϑ ∈ CðE l,ℝÞ: kϑ
k ≤ n1Ωg and A2 = fϑ ∈ CðE l,ℝÞ: kϑk ≤ n2Ωg. Now, for ϑ
∈P ∩ ∂A2, we have 0 ≤ ϑðϰÞ ≤ n2Ω, ϰ ∈El: Since KϑðϰÞ ≤
n2, we have

Πϑð Þ ϰð Þj j ≤ P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þj jds +
ðbl
bl−1

Kϑ sð Þj jds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ 〠

n

j=1
τ j

ðκ j
bl−1

κj − s
� �ϱl−1 Kϑ sð Þj jds +

ðbl
bl−1

bl − sð Þϱl−1 Kϑ sð Þj jds
 !

+ P3

ðϰ
bl−1

Kϑ sð Þj jds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1 Kϑ sð Þj jds ≤RP

Nf 1 +Mð Þ
1 −Nf

n2 ≤Ωn2:

ð71Þ

Hence, kΠϑk ≤Ωn2. Next, for ϑ ∈P ∩ ∂A1, we have 0
≤ ϑðϰÞ ≤ n1Ω, ϰ ∈ ½0, b�. Since KϑðϰÞ ≥ n1, we have kΠϑk ≥
Ωn1: Thus, the operator Π has a fixed point in P ∩ ð �A2 \
A1Þ: ,which implies that the ML-problem (14) has a positive
solution.

Theorem 18. Let ϱl ∈ ð1, 2�, l = 1, 2, 3, :⋯ , n
andK : El ×ℝ3 ⟶ℝ is nondecreasing continuous function
for each ϰ ∈El and let ϑ∗, ϑ∗ ∈P such that 0 < ϑ∗ < ϑ∗ < b,
ϰ ∈El, satisfying MLDϱl

b+l−1
ϑ∗ðϰÞ ≤ ϑ∗ and MLDϱl

b+l−1
ϑ∗ðϰÞ ≥ ϑ∗.

Then, problem (14) has a positive solution.

Proof. Let ϑ∗, ϑ∗ ∈P such that 0 < ϑ∗ < ϑ∗ < b: Then, we
have

Πϑ∗ð Þ ϰð Þ = P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kϑ∗
sð Þds +

ðbl
bl−1

Kϑ∗
sð Þds

 !
+ P2 ϰ − bl−1ð Þ

Γ ϱlð Þ

� 〠
n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1 Kϑ∗

sð Þ

 

ds + ðbl
bl−1

bl − sð Þϱl−1Kϑ∗
sð Þds

 !

+ P3

ðϰ
bl−1

Kϑ∗
sð Þds + P4

Γ ϱlð Þ
ðϰ
bl−1

ϰ − sð Þϱl−1Kϑ∗
sð Þds ≤ P1 ϰ − bl−1ð Þ

� 〠
n

j=1
τj

ðκ j
bl−1

Kϑ∗ sð Þds +
ðbl
bl−1

Kϑ∗ sð Þds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ

� 〠
n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1 Kϑ∗ sð Þj jds +

ðbl
bl−1

bl − sð Þϱl−1Kϑ∗ sð Þds
 !

+ P3

ðϰ
bl−1

Kϑ∗ sð Þds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1Kϑ∗ sð Þds = Πϑ∗ð Þ ϰð Þ:

ð72Þ

Thus, ðΠϑ∗ÞðϰÞ ≤ ðΠϑ∗ÞðϰÞ. According to Theorem 1.3
in [39], the operator Π is compact and hence Π has a fixed
point in the ordered Banach space hϑ∗, ϑ∗i: Thus, Π : hϑ∗,
ϑ∗i⟶ hϑ∗, ϑ∗i is compact. Accordingly,Π has a fixed point
ϑ ∈ hϑ∗, ϑ∗i. Thus, problem (14) has at least one positive
solution.

Corollary 19. Let K : E l ×ℝ3
+ ⟶ℝ+ be nondecreasing

continuous function in E l: If

0 < lim
ϑ⟶∞

Kϑ ϰð Þ <∞,ϰ ∈E l, ð73Þ

then problem (14) has at least one positive solution.

Corollary 20. Let K : E l ×ℝ3
+ ⟶ℝ+ be nondecreasing

continuous function in E l: If

0 < lim
ϑk k⟶∞

Kϑ ϰð Þ
ϑk k <∞,ϰ ∈El, ð74Þ

then problem (14) has at least one positive solution.

Corollary 21. If there exist constants m1,m2 > 0, ρ ∈ ð0, 1�
such that KϑðϰÞ =m1ϑðϰÞ +mρ

1 , then problem (14) has at
least one positive solution.
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Corollary 22. If the function K : E l ×ℝ3
+ ⟶ℝ+ is contin-

uous and there is a constant Nf > 0 and

K ϰ, x, y, zð Þ −K ϰ, �x, �y, �zð Þj j ≤Nf x − �xj j + y − �yj j + z − �zj jð Þ,Nf > 0,

ð75Þ

for all x, y, z, �x, �y, �z ∈ CðEl,ℝ+Þ such that RPðNf ð1 +MÞ/1
−N f Þ < 1, then problem (14) has a positive solution (Theo-
rem 10).

Corollary 23. Assume that there exists two continuous functions
f1, f2 such that 0 < f1ðϰÞ ≤KϑðϰÞ ≤ f2ðϰÞ, ϰ ∈El: Then, prob-
lem (14) has at least one positive solution ϑðϰÞ ∈ CðEl,ℝÞ.

6. An Example

Example 24. Let ϱ ∈ ð1, 2� and let us consider the following
ML-type problem.

MLDϱ ϰð Þ
0+ ϑ ϰð Þ = ϰ2

20eϰ e−ϰ + ϑ ϰð Þj j
1 + ϑ ϰð Þj j +

MLIϱ ϰð Þ
0+ ϑ ϰð Þ




 



1+MLIϱ ϰð Þ

0+ ϑ ϰð Þ
+

MLDϱ ϰð Þ
0+ ϑ ϰð Þ

1+MLDϱ ϰð Þ
0+ ϑ ϰð Þ

0@ 1A
ϑ 0ð Þ = 0, ϑ 1ð Þ = 0:

8>>><>>>:
ð76Þ

Here, a = 0, b = 2 and

Kϑ ϰð Þ = ϰ2

10eϰ e−ϰ + ϑ ϰð Þj j
1 + ϑ ϰð Þj j +

MLIϱ ϰð Þ
0+ ϑ ϰð Þ

1+MLIϱ ϰð Þ
0+ ϑ ϰð Þ

+ %MLDϱ ϰð Þ
0+ ϑ ϰð Þ

1+MLDϱ ϰð Þ
0+ ϑ ϰð Þ

 !
:

ð77Þ

Let ϰ ∈ ½0, 2�, and ϑ, �ϑ ∈ CðE l,ℝÞ. Then,

Kϑ ϰð Þ −K�ϑ ϰð Þj j ≤ 1
20 ϑ ϰð Þ − �ϑ ϰð Þ

 

�

+ MLIϱ ϰð Þ
0+ ϑ ϰð Þ−MLIϱ ϰð Þ

0+
�ϑ ϰð Þ




 


 + MLDϱ ϰð Þ
0+ ϑ ϰð Þ−MLDϱ ϰð Þ

0+
�ϑ ϰð Þ




 


Þ:
ð78Þ

Therefore, (H1) holds with Nf = 1/20: Here,

ϱ ϰð Þ =
3
2 , if ϰ ∈ 0, 1ð �,
5
2 if ϰ ∈ 1, 2ð �:

8>><>>: ð79Þ

For l = 1, we have

MLD
3
2
0+ϑ ϰð Þ = ϰ2

20eϰ e−ϰ + ϑ ϰð Þj j
1 + ϑ ϰð Þj j +

MLI3/20+ ϑ ϰð Þ

 


1+MLI

3
2
0+ϑ ϰð Þ +

MLD3/2
0+ ϑ ϰð Þ

1+MLD3/2
0+ ϑ ϰð Þ

 !
, ϰ ∈ 0, 1ð �

ϑ 0ð Þ = 0, ϑ 1ð Þ = 0

8>><>>:
ð80Þ

Also, Ω = 0:68 < 1: Thus, all conditions of Theorem 10
are satisfied, and hence, the ML-type problem (14) has a
unique solution. For every ε =max fε1, ε2g > 0 and eachbϑ ∈ CðE l,ℝÞ satisfies

MLDϱ ϰð Þ
0 ϑ ϰð Þ −Kϑ ϰð Þ




 


 ≤ ε: ð81Þ

There exists a solution ϑ ∈ CðE l,ℝÞ of the ML-type
problem (14) with

bϑ − ϑ
��� ��� ≤ CKε, ð82Þ

where

CK = RP

1 − P3 bl − bl−1ð Þ + P4 bl − bl−1ð Þϱl /Γ ϱl + 1ð Þð Þð Þ N f 1 +Mð Þ/1 −Nf

� � > 0:

ð83Þ

Therefore, all conditions in Theorem 15 are satisfied,
and hence, the ML-problem (14) is UH stable.

Next, for l = 2,, we have

MLD
5
2
0+ϑ ϰð Þ = ϰ2

20eϰ e−ϰ + ϑ ϰð Þj j
1 + ϑ ϰð Þj j +

MLI5/20+ ϑ ϰð Þ

 


1+MLI5/20+ ϑ ϰð Þ +

MLD5/2
0+ ϑ ϰð Þ

1+MLD5/2
0+ ϑ ϰð Þ

 !
, ϰ ∈ 1, 2ð �

ϑ 0ð Þ = 0, ϑ 1ð Þ = 0,

8>><>>:
ð84Þ

and Ω = 0:55 < 1: Thus, all conditions of Theorem 10 are
satisfied, and hence, the ML-type problem (14) has a unique

solution. For every ε =max fε1, ε2g > 0 and each bϑ ∈ CðE l,
ℝÞ satisfies

MLDϱ ϰð Þ
0 ϑ ϰð Þ −Kϑ ϰð Þ




 


 ≤ ε: ð85Þ

There exists a solution ϑ ∈ CðE l,ℝÞ of the ML-type
problem (14) with

bϑ − ϑ
��� ��� ≤ CKε, ð86Þ

where

CK = RP

1 − P3 bl − bl−1ð Þ + P4 bl − bl−1ð Þϱl /Γ ϱl + 1ð Þð Þð Þ Nf 1 +Mð Þ/1 −Nf

� � > 0:

ð87Þ

7. Conclusion Remarks

AB fractional operators are very fertile and interesting topic
of research recently; thus, there are some researchers who
studied and developed some qualitative properties of solu-
tions of FDEs involving such operators. Already significant
amount of work on fractional constant order for various
operators has been done in literature. But to the best of
our information, fractional variable order problems have
not been well studied so for fractional calculus. There is a
waste gap between constant and variable fractional order
problems in literature, the first one has got tremendous
attention as compared to the second one. Very recently,
the area of variable order has started attention to be investi-
gated. In line with these developments, we developed and
investigated sufficient conditions of the existence and
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uniqueness of solutions for fractional variable order integro-
differential equations in the frame of a ML power law. Our
approach was based on the reduction of the proposed prob-
lem into the fractional integral equation and using some
standard fixed point theorems as per the Banach-type and
Krasnoselskii-type. Furthermore, through mathematical
analysis techniques, we have analyzed the stability results
in UH and GUH sense. An example has been provided to
justify the main results. Due to the wide recent investigations
and applications of the ML power law, we believe that
acquired results here will be interesting for future investiga-
tions on the theory of fractional calculus.

In future studies, it would be interesting to study the cur-
rent problem using a Mittag-Leffler power law with respect
to another function introduced by Fernandez and
Baleanu [40].
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This article introduces modified semianalytical methods, namely, the Shehu decomposition method and q-homotopy analysis
transform method, a combination of decomposition method, the q-homotopy analysis method, and the Shehu transform
method to provide an approximate method analytical solution to fractional-order Navier-Stokes equations. Navier-Stokes
equations are widely applied as models for spatial effects in biology, ecology, and applied sciences. A good agreement between
the exact and obtained solutions shows the accuracy and efficiency of the present techniques. These results reveal that the
suggested methods are straightforward and effective for engineering sciences models.

1. Introduction

Many investigations have provided unique solutions that
meet the needs of various fields, making fractional differen-
tial equation resolution lucrative mathematical models.
Caputo and Riemann-Liouville derivatives were the most
acceptable method to model the different natural processes
that required noninteger derivatives. However, their limits
led to the search for additional derivatives. Singular kernels
exist in both fractional derivatives of Riemann-Liouville and
Caputo. Furthermore, the constant’s Riemann-Liouville
derivative does not equal zero. To outcome the problem of
the unique kernel, Caputo and Fabrizio [1] suggested without
a singular kernel of the fractional derivative operator.
Through several applications, Caputo Fabrizio has proven
to be an efficient operator [2–5]. By using the Mittag-Leffler
function, the authors suggested an actual new fractional
derivative in [6]. The Atangana-Baleanu Riemann derivative
(Riemann-Liouville sense) is one, whereas the Atangana-
Baleanu Caputo derivative is the other (Caputo sense). The
Atangana-Baleanu Caputo and Riemann derivatives feature
all fractional derivative properties except the semigroup

property, additionally to the fact that the kernel is nonsingu-
lar and nonlocal. However, these new fractional operators
have recently been identified in a newly constructed frac-
tional operator categorization [7–10].

Fluid mechanics, mathematical biology, viscoelasticity,
electrochemistry, life sciences, and physics all use
fractional-order partial differential equations (PDEs) to
explain various nonlinear complex systems [11–14]. For
example, fractional derivatives can be used to describe non-
linear seismic oscillations [15], and fractional derivatives can
be used to overcome the assumption’s weakness in the fluid-
dynamic traffic model [16]. Furthermore, based on actual
results, [17, 18] offer fractional partial differential equations
for the propagation of shallow-water waves and seepage flow
in porous media. In most circumstances, obtaining the right
behavior of fractional differential equations is extremely
difficult. Much work has gone into developing strategies
for calculating the approximate behavior of these kinds
of equations. The fractional model is the most potential
candidate in nanohydrodynamics, where the continuum
assumption fails miserably. The homotopy perturbation
Sumudu transform method [19], homotopy perturbation
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method [20], Adomian decomposition method [21], homo-
topy analysis method [22], fractional reduced differential
transform method [23, 24], and variation iteration method
[25] have all been proposed in recent years for solving
fractional PDEs.

The Navier-Stokes equation, which depicts the viscous
fluid’s flow motion, was developed by Navier in 1822. They
used numerous physical processes as examples of fluid
movements, such as blood flow, ocean currents, liquid flow
in pipelines, and airflow around airplane arms. Due to its
nonlinear character, it can only be solved exactly in a few
circumstances. In these situations, we must consider a sim-
ple flow pattern configuration and make assumptions about
the fluid’s state. The central equation of viscous fluid flow
movement, known as the Navier-Stokes equation, was pub-
lished in 1822 [26]. This equation depicts a few projections,
including sea streams, fluid flow in channels, blood flow, and
wind current around an airship’s wings. There are numerous
methods for solving fractional-order Navier-Stokes equa-
tions in the literature. El-Shahed and Salem published the
first fractional version of the Navier-Stokes equation in
2005 [27]. Kumar et al. [28] used a mixture of homotopy
perturbation method and the Laplace transform to solve a
nonlinear fractional Navier-Stokes problem analytically.
Ragab et al. [29] and Ganji et al. [30] used the homotopy
analysis method to solve the same Navier-Stokes equation.
For the solution of fractional Navier-Stokes equations,
Birajdar [31] and Maitama [32] used the Adomian decom-
position method. Kumar et al. [33] used the Adomian
decomposition method and Laplace transform algorithms
to obtain the analytical answer of the fractional Navier-
Stokes problem. In contrast, Jena et al. [34] used the
Laplace transform and finite Hankel transform algorithm
to solve the same equation. The current paper uses the
homotopy perturbation transform method to provide a
precise or approximate solution to the stated problem.

Hashim et al. were the first to introduce the homotopy
analysis method (HAM) [35, 36]. A continuous mapping is
created in HAM by constructing it from a preliminary calcu-
lation to get close to the right solution of the considered
equation. To make such a continuous mapping, an auxiliary
linear operator is chosen, and the convergence of the series
solution is ensured through an auxiliary parameter. The
effect of higher-order wave dispersion can be investigated
using time-fractional Korteweg-De Vries equations. The
Korteweg-De Vries-Burgers equation describes the waves
on shallow water surfaces. The nonlocal property of the frac-
tional Korteweg-De Vries [37, 38] equation is its strength.

The Adomian decomposition technique [39, 40] is a
well-known systematic technique for solving deterministic
or stochastic operator equations, such as integral equations,
integro-differential equations, ordinary differential equations,
and partial differential equations. In real-world implementa-
tions in engineering and applied sciences, the Adomian
decomposition method is vital for approximation analytic
solutions and numeric simulations. It enables us to solve non-
linear initial value problems and boundary value problems
without relying on nonphysical assumptions such as lineariza-
tion, perturbation, and beliefs, estimating the starting function

or a set of fundamental terms [41, 42]. Furthermore, because
Green’s functions are difficult to determine, the Adomian
decomposition method does not necessitate their use, which
would complicate such analytic calculations in most cases.
The accuracy of the approximate analytical answers obtained
can be verified using direct substitution [43] emphasized the
ADM’s benefits over Picard’s iterated method. More benefits
of the Adomian decomposition method over the variational
iteration approach were highlighted in [44, 45]. Adomian
polynomials, which are tailored to the specific nonlinearity
to solve nonlinear operator equations, are essential ideas.

2. Preliminaries Concepts

Definition 1. The Sumudu transformation is achieved across
the function set [46, 47]

A = v Ið Þ: ∃N , τ1, τ2 > 0,∣v Ið Þ∣<Ne ∣I∣/τið Þ, ifI ∈ −1ð Þi × 0,∞½ Þ
n o

,

ð1Þ

by

S f Ið Þ½ � =G uð Þ =
ð∞
0
f uIð Þe −Ið ÞdI, u ∈ −τ1, τ2ð Þ: ð2Þ

Many researchers have identified and applied this trans-
form to models in various scientific areas and [46, 48]. The
link between Laplace and Sumudu transformations is
demonstrated in the next theorem.

Theorem 2. Let G and F be the Laplace and the Sumudu
transformations of f ðIÞ ∈ A. Then [49],

G uð Þ = F 1/uð Þ
u

: ð3Þ

The Shehu transformation was developed in [50] general-
izes the Laplace and the Sumudu integral transformations;
they have applied it to the analysis of ODEs and PDEs.

Definition 3. The Shehu transformation is achieved over the
set A by the following [50]:

ℍ f Ið Þ½ � =V s, uð Þ =
ð∞
0
e −sI/uð Þ f Ið ÞdI: ð4Þ

It is evident that the Shehu transformation is linear as
the Laplace and Sumudu transforms. The function Mittag-
Leffler EδðIÞ is a straightforward generalized form of the
exponential series. For δ = 1, we get EδðIÞ = eðIÞ. It is
expressed as [51]

Eδ zð Þ = 〠
∞

k=0

zk

Γ δk + 1ð Þ , δ ∈ℂ, Re δð Þ > 0: ð5Þ

Definition 4. Let f ∈H1ða, bÞ, b > a; then, for δ ∈ ð0, 1Þ, the
fractional derivative of Atangana-Baleanu in the sense
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Caputo is define as [6]

ABC
a Dδ

I f Ið Þð Þ = B δð Þ
1 − δ

ðI
a
f ′ xð ÞEδ −δ

I − xð Þδ
1 − δ

 !
dx: ð6Þ

Definition 5. Let f ∈H1ða, bÞ, b > a; then, for δ ∈ ð0, 1Þ, the
fractional derivative of Atangana-Baleanu in the sense
Riemann-Liouville is expressed as [6]

ABR
a Dδ

I f Ið Þð Þ = B δð Þ
1 − δ

d
dI

ðI
a
f xð ÞEδ −δ

I − xð Þδ
1 − δ

 !
dx: ð7Þ

Under the constraints Bð0Þ = Bð1Þ = 1, BðδÞ is a normal-
ising function.

Theorem 6. The Laplace transformation of fractional deriva-
tive Atangana-Baleanu in sense of Caputo is define as [6]

L ABC
0 Dδ

I f Ið Þð Þ
n o

sð Þ = B δð Þ
1 − δ

sδF sð Þ − sδ−1 f 0ð Þ
sδ + δ/1 − δ

, ð8Þ

and the Laplace transformation of the fractional deriva-
tive Atangana-Baleanu in sense of Riemann-Liouville is
define as

L ABC
0 Dδ

I f Ið Þð Þ
n o

sð Þ = B δð Þ
1 − δ

sδF sð Þ
sδ + δ/1 − δ

: ð9Þ

3. Main Solutions

In what follows, we suppose that f ∈H1ða, bÞ, b > a, δ ∈ ð0, 1Þ
and f ðIÞ ∈ A.

Theorem 7. The fractional derivative of Atangana-Baleanu
Sumudu transformation in Caputo sense is define as [8]

S ABC
0 Dδ

I f Ið Þð Þ
� �

= B δð Þ
1 − δ + δuδ

G uð Þ − f 0ð Þð Þ: ð10Þ

Proof. Applying (8) and (3), we achieve

S ABC
0 Dδ

t f Ið Þð Þ
� �

= 1
u

B δð Þ
1 − δ

1/uð ÞδF 1/uð Þ − 1/uð Þδ−1 f 0ð Þ
1/uð Þδ + δ/1 − δ

 !

= 1
u

� �δ B δð Þ
1 − δ

G uð Þ − f 0ð Þ
1/uð Þδ + δ/1 − δ

:

ð11Þ

Then, we achieve the desired outcome

S ABC
0 Dδ

I f Ið Þð Þ
� �

= B δð Þ
1 − δ + δuδ

G uð Þ − f 0ð Þð Þ: ð12Þ

Theorem 8. The Sumudu transformation of fractional deriv-
ative Atangana-Baleanu in sense of Riemann-Liouville is

define as [8]

S ABR
0 Dδ

I f Ið Þð Þ
� �

= B δð Þ
1 − δ + δuδ

G uð Þ: ð13Þ

Proof. Using (9) and (3), we obtain

S ABR
δ Dδ

I f Ið Þð Þ
n o

sð Þ = 1
u
B δð Þ
1 − δ

1/uð ÞδF 1/uð Þ
1/uð Þδ + δ/1 − δ

= 1
u
B δð Þ
1 − δ

1/uð ÞδuG uð Þ
1/uð Þδ + δ/1 − δ

= B δð Þ
1 − δ

G uð Þ
1 + δ/1 − δuδ

:

ð14Þ

Then, we achieve the desired outcome

S ABR
0 Dδ

I f Ið Þð Þ
� �

= B δð Þ
1 − δ + δuδ

G uð Þ: ð15Þ

The Sumudu and Shehu transformations are demon-
strated in the following theorem.

Theorem 9. Let GðuÞ and Vðs, uÞ be the Shehu and the
Sumudu transformations of f ðIÞ ∈ A. Then [8],

V s, uð Þ = u
s
G

u
s

� �
: ð16Þ

Proof. If f ðIÞ ∈ A, then

V s, uð Þ =
ð∞
0
e −sI/uð Þf Ið ÞdI: ð17Þ

If we set τ = sI/uðI = uτ/sÞ, then the right hand side can
be represent as

V s, uð Þ =
ð∞
0
e −τð Þf u

s τ
� � u

s dτ =
u
s

ð∞
0
e −τð Þf u

s τ
� �

dτ: ð18Þ

The right side integral is obviously Gðu/sÞ, thus obtain-
ing (16). It is obvious that

V s, 1ð Þ = 1
sG

1
s

� �
= F sð Þ, ð19Þ

where FðsÞ is the Laplace transformation of f ðIÞ.

The following significant properties are achieved by
applying the relationship among Sumudu and Shehu trans-
formations (16).

Theorem 10. The Shehu transformation of Ix−1 is [8]

V s, uð Þ = Γ xð Þ u
s

� �x
, x > 0: ð20Þ
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Proof. When x > 0, the Sumudu of Ix−1 is define as

G uð Þ = Γ xð Þux−1, ð21Þ

where ΓðxÞ is the Gamma function expressed as

Γ xð Þ =
ð∞
0
Ix−1e−IdI: ð22Þ

Then, by applying (16), we get the achieved solution.

Theorem 11. Let δ, ω ∈ℂ, with Re ðδÞ > 0. Shehu transform
of EδðωIδÞ is given by [8]

H Eδ ωIδ
� �� �

= u
s

1 − ω
u
s

� �δ� �−1

: ð23Þ

Proof. Based on the reference [52], we get

S Eδ ωIδ
� �� �

= 1 − ωuδ
� �−1

, ð24Þ

and then, by applying (16), we get

H Eδ ωIδ
� �� �

= u
s

� �
1 − ω

u
s

� �δ� �−1
: ð25Þ

Theorem 12. Let GðuÞ and Vðs, uÞ be the Shehu and the
Sumudu transformations of f ðIÞ ∈ A. Then, the fractional
derivative of Atangana-Baleanu Shehu transform in sense of
Caputo is define as ℍ

H ABC
0 Dδ

I f Ið Þð Þ
� �

= B δð Þ
1 − δ + δ u/sð Þδ

V s, uð Þ − u
s
f 0ð Þ

� �
:

ð26Þ

Proof. Applying (10) and the relationship among Shehu and
Sumudu transformations, we achieve

H ABC
0 Dδ

I f Ið Þð Þ
� �

= u
s

B δð Þ
1 − δ + δ u/sð Þδ

G
u
s

� �
− f 0ð Þ

� �

= B δð Þ
1 − δ + δ u/sð Þδ

V s, uð Þ − u
s
f 0ð Þ

� �
:

ð27Þ

Theorem 13. Let GðuÞ and Vðs, uÞ be the Shehu and the
Sumudu transformations of f ðIÞ ∈ A. Then, the fractional
derivative of Atangana-Baleanu Shehu transform in sense of
Riemann-Liouville is define as

H ABR
0 Dδ

I f Ið Þð Þ
� �

= B δð Þ
1 − δ + δ u/sð Þδ

V s, uð Þ − u
s
f 0ð Þ

� �
:

ð28Þ

Proof. Applying (13) and the relationship among Shehu and
Sumudu transformations (16), we achieve

H ABR
0 Dδ

I f Ið Þð Þ
� �

= u
s

B δð Þ
1 − δ + δ u/sð Þδ

G
u
s

� �

= B δð Þ
1 − δ + δ u/sð Þδ

V s, uð Þ:
ð29Þ

4. The Procedure of SDM

In this section, we describe the SDM procedure for fractional
PDEs.

Dδ
Iμ χ,Ið Þ +R1 μ, νð Þ +N 1 μ, νð Þ −P 1 χ,Ið Þ = 0,

Dδ
Iν χ,Ið Þ +R2 μ, νð Þ +N 2 μ, νð Þ −P 2 χ,Ið Þ = 0, 0 < δ ≤ 1,

ð30Þ

with initial condition

μ δ, 0ð Þ = g1 χð Þ, ν δ, 0ð Þ = g2 χð Þ, ð31Þ

where Dδ
I = ∂δ/∂Iδ is the Caputo derivative of

fractional-order δ, R1 and R2 and N 1 and N 2 are linear
and nonlinear terms, respectively, and P 1 and P 2 are source
functions.

Applying the Shehu transform to Equation (30),

S Dδ
Iμ χ,Ið Þ

h i
+ S R1 μ, νð Þ +N 1 μ, νð Þ −P 1 χ,Ið Þ½ � = 0,

S Dδ
Iν χ,Ið Þ

h i
+ S R2 μ, νð Þ +N 2 μ, νð Þ −P 2 χ,Ið Þ½ � = 0:

ð32Þ

Applying the Shehu transformation of differentiation
property, we have

S μ χ,Ið Þ½ � = u
s
μ χ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ S P 1 χ,Ið Þ½ �

−
1 − δ + δ u/sð Þδ

B δð Þ S R1 μ, νð Þ +N 1 μ, νð Þf g�,

S ν χ,Ið Þ½ � = u
s
ν χ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ S P 2 χ,Ið Þ½ �

−
1 − δ + δ u/sð Þδ

B δð Þ S R2 μ, νð Þ +N 2 μ, νð Þf g�:

ð33Þ
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SDM defines the result of infinite series μðχ,IÞ and
νðχ,IÞ.

μ χ,Ið Þ = 〠
∞

m=0
μm χ,Ið Þ, ν χ,Ið Þ = 〠

∞

m=0
νm χ,Ið Þ: ð34Þ

The nonlinear functions defined by Adomian polyno-
mials N 1 and N 2 are expressed as

N 1 μ, νð Þ = 〠
∞

m=0
Am,N 2 μ, νð Þ = 〠

∞

m=0
Bm: ð35Þ

The Adomian polynomials can be expressed as

Am = 1
m!

∂m

∂λm
N 1 〠

∞

k=0
λkμk, 〠

∞

k=0
λkνk

 !( )" #
λ=0

,

Bm = 1
m!

∂m

∂λm
N 2 〠

∞

k=0
λkμk, 〠

∞

k=0
λkνk

 !( )" #
λ=0

:

ð36Þ

Putting Equations (34) and (36) into (33) gives

S 〠
∞

m=0
μm χ,Ið Þ

" #
= u

s
μ χ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ S P 1 χ,Ið Þf g

−
1 − δ + δ u/sð Þδ

B δð Þ

� S R1 〠
∞

m=0
μm, 〠

∞

m=0
νm

 !
+ 〠

∞

m=0
Am

( )
,

S 〠
∞

m=0
νm χ,Ið Þ

" #
= u

s
ν χ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ S P 2 χ,Ið Þf g

−
1 − δ + δ u/sð Þδ

B δð Þ

� S R2 〠
∞

m=0
μm, 〠

∞

m=0
νm

 !
+ 〠

∞

m=0
Bm

( )
:

ð37Þ

Using the inverse Shehu transform of Equation (37),

〠
∞

m=0
μm χ,Ið Þ = S−1

u
s
μ χ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ S P 1 χ,Ið Þf g
" #

− S−1
1 − δ + δ u/sð Þδ

B δð Þ S R1 〠
∞

m=0
μm, 〠

∞

m=0
νm

 !
+ 〠

∞

m=0
Am

( )" #
,

〠
∞

m=0
νm χ,Ið Þ = S−1

u
s
ν χ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ S P 2 χ,Ið Þf g
" #

− S−1
1 − δ + δ u/sð Þδ

B δð Þ S R2 〠
∞

m=0
μm, 〠

∞

m=0
νm

 !
+ 〠

∞

m=0
Bm

( )" #
,

ð38Þ

and we expressed the following terms:

μ0 χ,Ið Þ = S−1
u
s
μ χ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ S P 1 χ,Ið Þf g
" #

,

ν0 χ,Ið Þ = S−1
u
s
μ χ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ S P 2 χ,Ið Þf g
" #

,

μ1 χ,Ið Þ = −S−1
1 − δ + δ u/sð Þδ

B δð Þ S R1 μ0, ν0ð Þ +A0f g
" #

,

ν1 χ,Ið Þ = −S−1
1 − δ + δ u/sð Þδ

B δð Þ S R2 μ0, ν0ð Þ +B0f g
" #

:

ð39Þ

The general for m ≥ 1 is given by

μm+1 χ,Ið Þ = −S−1
1 − δ + δ u/sð Þδ

B δð Þ S R1 μm, νmð Þ +Amf g
" #

,

νm+1 χ,Ið Þ = −S−1
1 − δ + δ u/sð Þδ

B δð Þ S R2 μm, νmð Þ +Bmf g
" #

,

ð40Þ

5. Solution of SDM

Example 1. Consider the two dimensional fractional-order
Navier-Stokes equation

Dδ
I μð Þ + μ

∂μ
∂χ

+ μ
∂μ
∂ξ

= ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

" #
+ q,

Dδ
I νð Þ + μ

∂ν
∂χ

+ ν
∂ν
∂ξ

= ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

" #
− q,

ð41Þ

with initial conditions

μ χ, ξ, 0ð Þ = − sin χ + ξð Þ,
ν χ, ξ, 0ð Þ = sin χ + ξð Þ:

(
ð42Þ

Using Shehu transform of Equation (41), we have

S
∂δμ χ, ξ,Ið Þ

∂Iδ

( )
= −S μ

∂μ
∂χ

+ μ
∂μ
∂ξ

− ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

" #
+ q

" #
,

S
∂δν χ, ξ,Ið Þ

∂Iδ

( )
= −S μ

∂ν
∂χ

+ ν
∂ν
∂ξ

− ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

" #
− q

" #
,
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B δð Þ
1 − δ + δ u/sð Þδ

S μ χ, ξ,Ið Þ − u
s
μ χ, ξ, 0ð Þ

n o

= −S μ
∂μ
∂χ

+ μ
∂μ
∂ξ

− ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

" #
+ q

" #
,

B δð Þ
1 − δ + δ u/sð Þδ

S ν χ, ξ,Ið Þ − u
s
ν χ, ξ, 0ð Þ

n o

= −S μ
∂ν
∂χ

+ ν
∂ν
∂ξ

− ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

" #
− q

" #
:

ð43Þ

The above equations can be written as

S μ χ, ξ,Ið Þf g = u
s

μ χ, ξ, 0ð Þf g − 1 − δ + δ u/sð Þδ
B δð Þ

� S μ
∂μ
∂χ

+ μ
∂μ
∂ξ

− ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

" #
+ q

" #
,

S ν χ, ξ,Ið Þf g = u
s

ν χ, ξ, 0ð Þf g − 1 − δ + δ u/sð Þδ
B δð Þ

� S μ
∂ν
∂χ

+ ν
∂ν
∂ξ

− ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

" #
− q

" #
:

ð44Þ

Using inverse Shehu transform, we have

μ χ, ξ,Ið Þ = μ χ, ξ, 0ð Þ − S−1
1 − δ + δ u/sð Þδ

B δð Þ S q½ �
" #

− S−1
1 − δ + δ u/sð Þδ

B δð Þ S μ
∂μ
∂χ

+ μ
∂μ
∂ξ

− ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

 !( )" #
,

ν χ, ξ,Ið Þ = ν χ, ξ, 0ð Þ − S−1
1 − δ + δ u/sð Þδ

B δð Þ S q½ �
" #

− S−1
1 − δ + δ u/sð Þδ

B δð Þ S μ
∂ν
∂χ

+ ν
∂ν
∂ξ

− ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

 !( )" #
:

ð45Þ

Suppose that the unknown functions μðχ, ξ,IÞ and
νðχ, ξ,IÞ infinite series solution are as follows:

μ χ, ξ,Ið Þ = 〠
∞

m=0
μm χ, ξ,Ið Þ,

ν χ, ξ,Ið Þ = 〠
∞

m=0
νm χ, ξ,Ið Þ:

ð46Þ

Note that μμχ =∑m = 0∞Am, νμξ =∑m = 0∞Bm,

μνχ =∑m = 0∞Cm, and ννξ =∑∞
m=0Dm are the Adomian

polynomials, and the nonlinear terms were described. Apply-
ing such terms, Equation (45) can be rewritten in the form

〠
∞

m=0
μm χ, ξ,Ið Þ = μ χ, ξ, 0ð Þ + S−1

1 − δ + δ u/sð Þδ
B δð Þ S qf g

" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − 〠
∞

m=0
Am + 〠

∞

m=0
Bm

 !""

+ ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

( )##
,

〠
∞

m=0
νm χ, ξ,Ið Þ = ν χ, ξ, 0ð Þ − S−1

1 − δ + δ u/sð Þδ
B δð Þ S qf g

" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − 〠
∞

m=0
Cm + 〠

∞

m=0
Dm

 !""

+ ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

( )##
:

ð47Þ

〠
∞

m=0
μm χ, ξ,Ið Þ = − sin χ + ξð Þ + q

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − 〠
∞

m=0
Am + 〠

∞

m=0
Bm

 !" #" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S ρ 〠
∞

m=0

∂2μm
∂χ2 + 〠

∞

m=0

∂2μm
∂ξ2

( )" #" #
,

〠
∞

m=0
νm χ, ξ,Ið Þ = sin χ + ξð Þ − q

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − 〠
∞

m=0
Cm + 〠

∞

m=0
Dm

 !" #" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S ρ 〠
∞

m=0

∂2νm
∂χ2 + 〠

∞

m=0

∂2νm
∂ξ2

( )" #" #
:

ð48Þ

According to Equation (36), the Adomian polynomials
can be expressed as

A0 = μ0
∂μ0
∂χ

,A1 = μ0
∂μ1
∂χ

+ μ1
∂μ0
∂χ

,

B0 = ν0
∂μ0
∂χ

,B1 = ν0
∂μ1
∂ξ

+ ν1
∂μ0
∂ξ

,

C0 = μ0
∂ν0
∂χ

,C1 = μ0
∂ν1
∂χ

+ μ1
∂ν0
∂χ

,

D0 = ν0
∂ν0
∂χ

,D1 = ν0
∂ν1
∂χ

+ ν1
∂ν0
∂χ

:

ð49Þ

Thus, we can easy achieve the recursive relationship
Equation (48).
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μ0 χ, ξ,Ið Þ = − sin χ + ξð Þ + q
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
, 

ν0 χ, ξ,Ið Þ = sin χ + ξð Þ − q
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
:

ð50Þ

For m = 0,

μ1 χ, ξ,Ið Þ = sin χ + ξð Þ 2ρ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
, 

ν1 χ, ξ,Ið Þ = − sin χ + ξð Þ 2ρ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
:

ð51Þ

For m = 1,

μ2 χ, ξ,Ið Þ = − sin χ + ξð Þ 2ρð Þ2
B δð Þð Þ2 1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
,

ν2 χ, ξ,Ið Þ = sin χ + ξð Þ 2ρð Þ2
B δð Þð Þ2 1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
:

ð52Þ

For m = 2,

μ3 χ, ξ,Ið Þ = sin χ + ξð Þ 2ρð Þ3
B δð Þð Þ3 1 − δð Þ3 + 3δ 1 − δð Þ2Iδ

Γ δ + 1ð Þ

"

+ δ2 1 − δð ÞI2δ+1

Γ 2δ + 2ð Þ + 2δ2 1 − δð ÞI2δ

Γ 2δ + 1ð Þ + δ3I2δ+1

Γ 2δ + 2ð Þ

#
,

ν3 χ, ξ,Ið Þ = − sin χ + ξð Þ 2ρð Þ3
B δð Þð Þ3

1 − δð Þ3 + 3δ 1 − δð Þ2Iδ

Γ δ + 1ð Þ

"

+ δ2 1 − δð ÞI2δ+1

Γ 2δ + 2ð Þ + 2δ2 1 − δð ÞI2δ

Γ 2δ + 1ð Þ + δ3I2δ+1

Γ 2δ + 2ð Þ

#
⋮

ð53Þ

In the same method, the remaining μm and νmðm ≥ 3Þ
components of the SDM solution can be obtained seam-
lessly. Consequently, we describe the series of alternative
solutions as

μ χ, ξ,Ið Þ = 〠
∞

m=0
μm χ, ξð Þ = μ0 χ, ξð Þ + μ1 χ, ξð Þ

+ μ2 χ, ξð Þ + μ3 χ, ξð Þ+⋯,

ν χ, ξ,Ið Þ = 〠
∞

m=0
νm χ, ξð Þ = ν0 χ, ξð Þ + ν1 χ, ξð Þ

+ ν2 χ, ξð Þ + ν3 χ, ξð Þ+⋯,

μ χ, ξ,Ið Þ = − sin χ + ξð Þ + q
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ sin χ + ξð Þ 2ρ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

− sin χ + ξð Þ 2ρð Þ2
B δð Þð Þ2 1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #

+ sin χ + ξð Þ 2ρð Þ3
B δð Þð Þ3 1 − δð Þ3 + 3δ 1 − δð Þ2Iδ

Γ δ + 1ð Þ

"

+ δ2 1 − δð ÞI2δ+1

Γ 2δ + 2ð Þ + 2δ2 1 − δð ÞI2δ

Γ 2δ + 1ð Þ + δ3I2δ+1

Γ 2δ + 2ð Þ

#
−⋯,

ν χ, ξ,Ið Þ = sin χ + ξð Þ − q
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

− sin χ + ξð Þ 2ρ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ sin χ + ξð Þ 2ρð Þ2
B δð Þð Þ2 1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #

− sin χ + ξð Þ 2ρð Þ3
B δð Þð Þ3 1 − δð Þ3 + 3δ 1 − δð Þ2Iδ

Γ δ + 1ð Þ

"

+ δ2 1 − δð ÞI2δ+1

Γ 2δ + 2ð Þ + 2δ2 1 − δð ÞI2δ

Γ 2δ + 1ð Þ + δ3I2δ+1

Γ 2δ + 2ð Þ

#
+⋯:

ð54Þ

The exact result of Equation (41) at δ = 1 and q = 0 is
as follows:

μ χ, ξ,Ið Þ = −e−2ρI sin χ + ξð Þ,
ν χ, ξ,Ið Þ = e−2ρI sin χ + ξð Þ:

ð55Þ

Example 2. Consider the two dimensional fractional-order
Navier-Stokes equation

Dδ
I μð Þ + μ

∂μ
∂χ

+ ν
∂μ
∂ξ

= ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

" #
+ q,

Dδ
I νð Þ + μ

∂ν
∂χ

+ ν
∂ν
∂ξ

= ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

" #
− q,

ð56Þ

with the initial conditions

μ χ, ξ, 0ð Þ = −eχ+ξ,

ν χ, ξ, 0ð Þ = eχ+ξ:

 
ð57Þ

Using Shehu transform of Equation (56), we have

S
∂δμ
∂Iδ

( )
= S − μ

∂μ
∂χ

+ ν
∂μ
∂ξ

� �
+ ρ

∂2μ
∂χ2 + ∂2μ

∂ξ2

( )
+ q

" #
,

S
∂δν
∂Iδ

( )
= S − μ

∂ν
∂χ

+ ν
∂ν
∂ξ

� �
+ ρ

∂2ν
∂χ2 + ∂2ν

∂ξ2

( )
− q

" #
,
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B δð Þ
1 − δ + δ u/sð Þδ

S μ χ, ξ,Ið Þ − u
s
μ χ, ξ, 0ð Þ

n o

= S − μ
∂μ
∂χ

+ ν
∂μ
∂ξ

� �
+ ρ

∂2μ
∂χ2 + ∂2μ

∂ξ2

( )
+ q

" #
,

B δð Þ
1 − δ + δ u/sð Þδ

S ν χ, ξ,Ið Þ − u
s
ν χ, ξ, 0ð Þ

n o

= S − μ
∂ν
∂χ

+ ν
∂ν
∂ξ

� �
+ ρ

∂2ν
∂χ2 + ∂2ν

∂ξ2

( )
− q

" #
:

ð58Þ

The above equations can be written as

S μ χ, ξ,Ið Þf g = u
s

μ χ, ξ, 0ð Þf g + 1 − δ + δ u/sð Þδ
B δð Þ

� S − μ
∂μ
∂χ

+ ν
∂μ
∂ξ

� �
+ ρ

∂2μ
∂χ2 + ∂2μ

∂ξ2

( )
+ q

" #
,

S ν χ, ξ,Ið Þf g = u
s

ν χ, ξ, 0ð Þf g = 1 − δ + δ u/sð Þδ
B δð Þ

� S − μ
∂ν
∂χ

+ ν
∂ν
∂ξ

� �
+ ρ

∂2ν
∂χ2 + ∂2ν

∂ξ2

( )
− q

" #
:

ð59Þ

Applying inverse Shehu transformation, we get

μ χ, ξ,Ið Þ = μ χ, ξ, 0ð Þ + S−1
1 − δ + δ u/sð Þδ

B δð Þ S qf g
" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − μ
∂μ
∂χ

+ ν
∂μ
∂ξ

� ��"

+ ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

( )##
,

ν χ, ξ,Ið Þ = ν χ, ξ, 0ð Þ − S−1
1 − δ + δ u/sð Þδ

B δð Þ S qf g
" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − μ
∂ν
∂χ

+ ν
∂ν
∂ξ

� ��"

+ ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

( )##
:

ð60Þ

Suppose that the unknown functions μðχ, ξ,IÞ and
νðχ, ξ,IÞ infinite series result as follows:

μ χ, ξ,Ið Þ = 〠
∞

m=0
μm χ, ξ,Ið Þ,

ν χ, ξ,Ið Þ = 〠
∞

m=0
νm χ, ξ,Ið Þ:

ð61Þ

Note that μμχ =∑m = 0∞Am, νμξ =∑m = 0∞Bm,

μνχ =∑m = 0∞Cm, and ννξ =∑∞
m=0Dm are the Adomian

polynomials, and the nonlinear terms were described.
Applying such terms, Equation (60) can be rewritten in
the form

〠
∞

m=0
μm χ, ξ,Ið Þ = μ χ, ξ, 0ð Þ + S−1

1 − δ + δ u/sð Þδ
B δð Þ S qf g

" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − 〠
∞

m=0
Am + 〠

∞

m=0
Bm

 !""

+ ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

( )##
,

〠
∞

m=0
νm χ, ξ,Ið Þ = ν χ, ξ, 0ð Þ − S−1

1 − δ + δ u/sð Þδ
B δð Þ S qf g

" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − 〠
∞

m=0
Cm + 〠

∞

m=0
Dm

 !""

+ ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

( )##
:

ð62Þ

〠
∞

m=0
μm χ, ξ,Ið Þ = − sin χ + ξð Þ + q

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − 〠
∞

m=0
Am + 〠

∞

m=0
Bm

 !" #" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S ρ 〠
∞

m=0

∂2μm
∂χ2 + 〠

∞

m=0

∂2μm
∂ξ2

( )" #" #
,

〠
∞

m=0
νm χ, ξ,Ið Þ = sin χ + ξð Þ − q

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − 〠
∞

m=0
Cm + 〠

∞

m=0
Dm

 !" #" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S ρ 〠
∞

m=0

∂2νm
∂χ2 + 〠

∞

m=0

∂2νm
∂ξ2

( )" #" #
:

ð63Þ
According to Equation (36), the Adomian polynomials

can be expressed as

A0 = μ0
∂μ0
∂χ

,A1 = μ0
∂μ1
∂χ

+ μ1
∂μ0
∂χ

,B0 = ν0
∂μ0
∂β

,B1 = ν0
∂μ1
∂β

+ ν1
∂μ0
∂β

,

C0 = μ0
∂ν0
∂χ

,C1 = μ0
∂ν1
∂χ

+ μ1
∂ν0
∂χ

,D0 = ν0
∂ν0
∂χ

,D1 = ν0
∂ν1
∂χ

+ ν1
∂ν0
∂χ

:

ð64Þ

Thus, we can quickly achieve the recursive relationship
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Equation (63)

μ0 χ, ξ,Ið Þ = −eχ+ξ + q
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
,

ν0 χ, ξ,Ið Þ = eχ+ξ −
q

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
:

ð65Þ

For m = 0,

μ1 χ, ξ,Ið Þ = eχ+ξ
2ρ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
,

ν1 χ, ξ,Ið Þ = −eχ+ξ
2ρ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
:

ð66Þ

For m = 1,

μ2 χ, ξ,Ið Þ = −eχ+ξ
2ρð Þ2
B δð Þð Þ2

1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
,

ν2 χ, ξ,Ið Þ = eχ+ξ
2ρð Þ2
B δð Þð Þ2 1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
:

ð67Þ

For m = 2,

μ3 χ, ξ,Ið Þ = eχ+ξ
2ρð Þ3I3δ

Γ 3δ + 1ð Þ , ν3 χ, ξ,Ið Þ = −eχ+ξ
2ρð Þ3I3δ

Γ 3δ + 1ð Þ :

⋮
ð68Þ

In same method, the remaining μm and νmðm ≥ 3Þ
components of the SDM solution can be obtained seamlessly.
Consequently, we describe the series of alternative solutions as

μ χ, ξ,Ið Þ = 〠
∞

m=0
μm χ, ξð Þ = μ0 χ, ξð Þ + μ1 χ, ξð Þ + μ2 χ, ξð Þ + μ3 χ, ξð Þ+⋯,

ν χ, ξ,Ið Þ = 〠
∞

m=0
νm χ, ξð Þ = ν0 χ, ξð Þ + ν1 χ, ξð Þ + ν2 χ, ξð Þ + ν3 χ, ξð Þ+⋯,

μ χ, ξ,Ið Þ = −eχ+ξ + q
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ eχ+ξ
2ρ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

− eχ+ξ
2ρð Þ2
B δð Þð Þ2 1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #

+ eχ+ξ
2ρð Þ3I3δ

Γ 3δ + 1ð Þ−⋯,

ν χ, ξ,Ið Þ = eχ+ξ −
q

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

− eχ+ξ
2ρ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ eχ+ξ
2ρð Þ2
B δð Þð Þ2

1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #

− eχ+ξ
2ρð Þ3I3δ

Γ 3δ + 1ð Þ+⋯:

ð69Þ

The exact result of Equation (56) at δ = 1 and q = 0 is as
follows:

μ χ, ξ,Ið Þ = −eχ+ξ+2ρI,

ν χ, ξ,Ið Þ = eχ+ξ+2ρI:
ð70Þ

6. The Methodology of q-HATM

Consider a nonlinear nonhomogeneous fractional partial
differential equation:

Dδ
Iμ χ, ξ,Ið Þ + Rμ χ, ξ,Ið Þ +Nμ χ, ξ,Ið Þ = f χ, ξ,Ið Þ, n − 1 < δ ≤ n:

ð71Þ

Here, Dδ
Iμ is the Caputo derivative, and R and N are lin-

ear and nonlinear functions, respectively. f ðχ, ξ,IÞ is the
source operator.

Now, using the Shehu transformation on Equation (71),
we get

S μ χ, ξ,Ið Þ½ � − u
s
μ χ, ξ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ
� S Rμ χ, ξ,Ið Þ½ � + S NL χ, ξ,Ið Þ½ � − S f χ, ξ,Ið Þ½ �f g = 0:

ð72Þ

The nonlinear function is

N ϕ χ, ξ,I ; �qð Þ½ � = S ϕ χ, ξ,I ; �qð Þ½ � − u
s
ϕ χ, ξ,I ; �qð Þ 0+ð Þ

+ 1 − δ + δ u/sð Þδ
B δð Þ S Rϕ χ, ξ,I ; �qð Þ½ �f

+ S Nϕ χ, ξ,I ; �qð Þ½ � − S f χ, ξ,Ið Þ½ �g:
ð73Þ

Here, ϕðχ, ξ,I ; �qÞ is an unknown term, and �q ∈ ½0, 1/4�
is the embedding parameter, n ≥ 1. Construct a homotopy as

1 − n�qð ÞS ϕ χ, ξ,I ; �qð Þ − μ0 χ, ξ,Ið Þ½ �
= ℏqH χ, ξ,Ið ÞN ϕ χ, ξ,I ; �qð Þ½ �, ð74Þ

where μ0 is an initial condition and ℏ ≠ 0 is an auxiliary
parameter. The following solutions hold for = 0, 1/n =
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ϕ χ, ξ,I ; 0ð Þ = μ0 χ, ξ,Ið Þ,

ϕ χ, ξ,I ; 1
n

� �
= μ χ, ξ,Ið Þ:

ð75Þ

Elevating q, ϕ converges from U0 to U . Intensifying ϕ
about q by Taylor’s theorem, we get

ϕ χ, ξ,I ; �qð Þ =U0 + 〠
∞

m=1
μm χ, ξ,Ið Þ�qm, ð76Þ

where

μm = 1
m!

∂mϕ χ, ξ,I ; �qð Þ
∂�qm

����
�q=0

: ð77Þ

By an appropriate selection of auxiliary linear operator,
U0, n, ℏ and H, series (76) converges at �q = 1/n, thereby
providing a result

μ χ, ξ,Ið Þ = μ0 + 〠
∞

m=1
μm χ, ξ,Ið Þ 1

n

� �m

: ð78Þ

Now, differential Equation (74) m times, divide by m!
and taking �q = 0,

S μm χ, ξ,Ið Þ − kmμm−1 χ, ξ,Ið Þ½ �, ð79Þ

where the vector is described as

μ
!

m = μ0 χ, ξ,Ið Þ, μ1 χ, ξ,Ið Þ,⋯, μm χ, ξ,Ið Þf g: ð80Þ

Applying the inverse transform on Equation (80),

μm χ, ξ, Ið Þ = kmμm−1 χ, ξ, Ið Þ + ℏS−1 H χ, ξ, Ið ÞRm μ
!

m−1

� �h i
:

ð81Þ

Here,

Rm μ
!

m−1

� �
= 1

m − 1ð Þ!
∂m−1N ϕ χ, ξ,I ; �qð Þ½ �

∂�qm−1

�����
�q=0

,

kr =
0, r ≤ 1,
n, r > 1:

 
ð82Þ

Lastly, by solving Equation (81), the elements of the q-
HATM result are readily available.

Example 3. Consider the two dimensional fractional-order
Navier-Stokes equation

Dδ
Iμ + μ

∂μ
∂χ

+ ν
∂μ
∂ξ

= ρ0
∂2μ
∂χ2 + ∂2μ

∂ξ2

 !
+ g,

Dδ
Iν + μ

∂ν
∂χ

+ ν
∂ν
∂ξ

= ρ0
∂2ν
∂χ2 + ∂2ν

∂ξ2

 !
− g,

 0 < δ ≤ 1

8>>>>><
>>>>>:

,

ð83Þ

with initial conditions

ν χ, ξ, 0ð Þ = sin χ + ξð Þ,
μ χ, ξ, 0ð Þ = − sin χ + ξð Þ:

ð84Þ

Using the Shehu transformation on Equation (83) and
applying Equation (84), we have

S μ χ, ξ,Ið Þ½ � + u
s
sin χ + ξð Þ + 1 − δ + δ u/sð Þδ

B δð Þ

� S μ
∂μ
∂χ

+ ν
∂μ
∂ξ

− ρ0
∂2μ
∂χ2 + ∂2μ

∂ξ2

 !
− g

( )
= 0,

S ν χ, ξ,Ið Þ½ � − u
s
sin χ + ξð Þ + 1 − δ + δ u/sð Þδ

B δð Þ

� S μ
∂ν
∂χ

+ ν
∂ν
∂ξ

− ρ0
∂2ν
∂χ2 + ∂2ν

∂ξ2

 !
+ g

( )
= 0:

ð85Þ

Define the nonlinear operators

N l ϕ1 χ, ξ,I ; �qð Þ, ϕ2 χ, ξ,I ; �qð Þ½ �

= S ϕ1 χ, ξ,I ; �qð Þ½ � + u
s
sin χ + ξð Þ + 1 − δ + δ u/sð Þδ

B δð Þ
� S ϕ1 χ, ξ,I ; �qð Þ ∂ϕ1 χ, ξ,I ; �qð Þ

∂χ
+ϕ2 χ, ξ,I ; �qð Þ

�

� ∂ϕ1 χ, ξ,I ; �qð Þ
∂ξ

− ρ0
∂2ϕ1 χ, ξ,I ; �qð Þ

∂χ2
∂2ϕ1 χ, ξ,I ; �qð Þ

∂ξ2

 !
− g

)
,

N2 ϕ1 χ, ξ,I ; �qð Þ, ϕ2 χ, ξ,I ; �qð Þ½ � = S ϕ2 χ, ξ,I ; �qð Þ½ �

−
u
s
sin χ + ξð Þ + 1 − δ + δ u/sð Þδ

B δð Þ
� S ϕ1 χ, ξ,I ; �qð Þ ∂ϕ2 χ, ξ,I ; �qð Þ

∂χ

�
+ϕ2 χ, ξ,I ; �qð Þ

� ∂ϕ2 χ, ξ,I ; �qð Þ
∂ξ

− ρ0
∂2ϕ2 χ, ξ,I ; �qð Þ

∂χ2 + ∂2ϕ2 χ, ξ,I ; �qð Þ
∂ξ2

 !
+ g

)
,

ð86Þ
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and the Shehu operators as

S μm χ, ξ,Ið Þ − kmμm−1 χ, ξ,Ið Þ½ � = ℏR1,m μ
!
m−1, ν

!
m−1

h i
,

S νm χ, ξ,Ið Þ − kmνm−1 χ, ξ,Ið Þ½ � = ℏR2,m μ
!

m−1, ν
!

m−1
h i

,

ð87Þ

R1,m μ
!

m−1, ν
!
m−1

h i
= S μm−1 χ, ξ,Ið Þ½ � + 1 − km

n

� �
u
s
sin χ + ξð Þ

+ 1 − δ + δ u/sð Þδ
B δð Þ S 〠

m−1

i=0
μi
∂μm − 1 − i

∂χ

(
+ 〠

m−1

i=0
ν
∂μm−1 − i

∂ξ

− ρ0
∂2μm−1
∂χ2 + ∂2μm−1

∂ξ2

 !
− g

)
,

ð88Þ

R2,m μ
!

m−1, ν
!
m−1

h i
= S νm−1 χ, ξ,Ið Þ½ � − 1 − km

n

� �
u
s
sin χ + ξð Þ

+ 1 − δ + δ u/sð Þδ
B δð Þ S 〠

m−1

i=0
μi
∂νm−1 − i

∂χ

(
+ 〠

m−1

i=0
νi
∂νm−1 − i

∂ξ

− ρ0
∂2νm−1
∂χ2 + ∂2νm−1

∂ξ2

 !
+ g

)
:

ð89Þ
Using the inverse Shehu transformation on Equation

(87), we have

μm χ, ξ, Ið Þ = kmμm−1 + ℏS−1 R1,m μ
!

m−1, ν
!

m−1
h in o

,

νm χ, ξ, Ið Þ = kmνm−1 + ℏS−1 R2,m μ
!
m−1, �νm−1

h in o
:

ð90Þ

Using μ0 and ν0 in Equation (90), we get

μ1 = −
2ρ0ℏ sin χ + ξð Þ

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
,

ν1 =
2ρ0ℏ sin χ + ξð Þ

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
,

μ2 = −
2 n + nð Þρ0ℏ sin χ + ξð ÞIδ

Γ δ + 1½ � −
4ρ20ℏ2 sin χ + ξð Þ

B δð Þð Þ2

� 1 − δð Þ2 + 2δ 1 − δð ÞIδ
Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
,

ν2 =
2 n + hð Þρ0ℏ sin χ + ξð ÞIδ

Γ δ + 1½ � + 4ρ20ℏ2 sin χ + ξð Þ
B δð Þð Þ2

� 1 − δð Þ2 + 2δ 1 − δð ÞIδ
Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
,

μ3 = −
2 n + ℏð Þ2ρ0ℏ sin χ + ξð ÞIδ

Γ δ + 1½ � −
8 n + ℏð Þρ20ℏ2 sin χ + ξð Þ

B δð Þð Þ2

� 1 − δð Þ2 + 2δ 1 − δð ÞIδ
Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #

−
8ρ30ℏ3 sin χ + ξð ÞI3δ

Γ 3δ + 1½ � ,

ν3 =
2 n + ℏð Þ2ρ0ℏ sin χ + ξð ÞIδ

Γ δ + 1½ � + 8 n + ℏð Þρ20ℏ2 sin χ + ξð Þ
B δð Þð Þ2

� 1 − δð Þ2 + 2δ 1 − δð ÞIδ
Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #

+ 8ρ30ℏ3 sin χ + ξð ÞI3δ
Γ 3δ + 1½ � ,

ð91Þ

and so forth. The rest of the components are discovered
in the same way. The q-HATM result of Equation (83) is
then determined:

μ χ, ξ,Ið Þ = μ0 + 〠
∞

m=1
μm

1
n

� �m

,

ν χ, ξ,Ið Þ = 20 + 〠
∞

w=1
νm

1
n

� �m

:

ð92Þ

For δ = 1, n = −1, n = 1 and g = 0, solutions ∑N
m=1μmðχ,

ξ,IÞð1/nÞm and ∑N
m=1νmðχ, ξ,IÞð1/nÞm are convergent to

exact solutions as N ⟶∞:

μ χ, ξ,Ið Þ = − sin χ + ξð Þ 1 − 2ρ0I
1! + 2ρ0Ið Þ2

2! −
2ρ0Ið Þ3
3! +⋯

" #

= −e−2ρ0I sin χ + ξð Þ,

ν χ, ξ,Ið Þ = sin χ + ξð Þ 1 − 2ρ0I
1! + 2ρ0Ið Þ2

2! −
2ρ0Ið Þ3
3! +⋯

" #

= e−2ρ0I sin χ + ξð Þ:
ð93Þ

Example 4. In Equation (83), we take

ν χ, ξ, 0ð Þ = eχ+ξ, μ χ, ξ, 0ð Þ = −eχ+ξ: ð94Þ

Using the Shehu transformation on Equation (83) and
applying Equation (94), we have
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S μ½ � + u
s
eχ+ξ + 1 − δ + δ u/sð Þδ

B δð Þ S μ
∂μ
∂χ

+ ν
∂μ
∂ξ

− ρ0
∂2μ
∂χ2 + ∂2μ

∂ξ2

 !
− g

( )
= 0,

S ν½ � − u
s
eχ+ξ + 1 − δ + δ u/sð Þδ

B δð Þ S μ
∂ν
∂χ

+ ν
∂ν
∂ξ

− ρ0
∂2ν
∂χ2 + ∂2ν

∂ξ2

 !
+ g

( )
= 0:

ð95Þ

Define nonlinear operators as

N1 ϕ1, ϕ2½ � = S ϕ1½ � + u
s
eχ+ξ + 1 − δ + δ u/sð Þδ

B δð Þ

� S ϕ1
∂ϕ1
∂χ

+ ϕ2
∂ϕ1
∂ξ

− ρ0
∂2ϕ1
∂χ2 + ∂2ϕ1

∂ξ2

 !
− g

( )
,

N2 ϕ1, ϕ2½ � = S ϕ2½ � − u
s
eχ+ξ + 1 − δ + δ u/sð Þδ

B δð Þ

� S ϕ1
∂ϕ2
∂χ

+ ϕ2
∂ϕ2
∂ξ

− ρ0
∂2ϕ2
∂χ2 + ∂2ϕ2

∂ξ2

 !
+ g

( )
,

ð96Þ

and Shehu operators as

S μm χ, ξ, Ið Þ − kmμm−1 χ, ξ, Ið Þ½ � = ℏR1,m μ
!

m−1, ν
!

m−1
h i

,

S νm χ, ξ, Ið Þ − kmνm−1 χ, ξ, Ið Þ½ � = ℏR2,m μ
!
m−1, ν

!
m−1

h i
,

ð97Þ

where

R1,m μ
!
m−1, ν

!
m−1

h i
= S μm−1½ � + 1 − km

n

� �
eχ+ξ

s
+ 1 − δ + δ u/sð Þδ

B δð Þ

� S 〠
m−1

i=0
μi
∂μm − 1 − i

∂χ
+ 〠

m−1

i=0
νi
∂μm−1 − i

∂ξ
−ρ0

∂2μm−1
∂χ2 + ∂2μm−1

∂ξ2

 !
− g

)
,

(

R2,μ μ
!

m−1, ν
!
m−1

h i
= S νm−1½ � − 1 − km

n

� �
u
s
eχ+ξ + 1 − δ + δ u/sð Þδ

B δð Þ

� S 〠
m−1

i=0
μi
∂νm−1−i
∂χ

+ 〠
m−1

i=0
νi
∂νm−1−i

∂ξ
−ρ0

∂2νm − 1
∂χ2 + ∂2νm − 1

∂ξ2

 !
+ g

)(
:

ð98Þ

By the inverse Shehu transformation on Equation (97),
we get

μm χ, ξ, Ið Þ = kmμm−1 + ℏS−1 R1,m μ
!

m−1, ν
!

m−1
h in o

,

νm χ, ξ, Ið Þ = kmνm−1 + ℏS−1 R2,m μ
!
m−1, ν

!
m−1

h in o
:

ð99Þ

Using μ0 and ν0, we get from Equation (99),

μ1 =
2ρ0ℏeχ+ξIδ

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
,

ν1 = −
2ρ0ℏeχ+ξIδ

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
,

μ2 =
2 n + ℏð Þρ0ℏeχ+ξ

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
−
4ρ20ℏ2eχ+ξ
B δð Þð Þ2

� 1 − δð Þ2 + 2δ 1 − δð ÞIδ
Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
, ν2

= −
2 n + ℏð Þρ0ℏeχ+ξ

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
+ 4ρ20ℏ2eχ+ξ

B δð Þð Þ2

� 1 − δð Þ2 + 2δ 1 − δð ÞIδ
Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
, μ3

= 2 n + ℏð Þ2ρ0ℏeχ+ξ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
−
8 n + ℏð Þρ20ℏ2eχ+ξ

B δð Þð Þ2

� 1 − δð Þ2 + 2δ 1 − δð ÞIδ
Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
+ 8ρ30ℏ3eχ+ξI3δ

Γ 3δ + 1½ � ,

ν3 = −
2 n + ℏð Þ2ρ0ℏeχ+ξ

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ 8 n + ℏð Þρ20ℏ2eχ+ξ
B δð Þð Þ2 1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #

−
8ρ30ℏ3eχ+ξI3δ
Γ 3δ + 1½ � ,

ð100Þ

and so on. Accordingly, rest of the components are iden-
tified. The q-HATM result of Equation (42) is

μ χ, ξ,Ið Þ = μ0 + 〠
∞

m=1
μm

1
n

� �m

,

ν χ, ξ,Ið Þ = ν0 + 〠
∞

i=1
νm

1
n

� �m

:

ð101Þ

For δ = 1 = n, ℏ = −1 and g = 0, solutions ∑N
m=1μmð1/nÞm

and ∑N
m=1νmð1/nÞm are convergent to exact results as N

⟶∞

μ χ, ξ,Ið Þ = −eχ+ξ 1 + 2ρ0I
1! + 2ρ0Ið Þ2

2! + 2ρ0Ið Þ3
3! +⋯

" #
= −eχ+ξ+2ρ0I,

ν χ, ξ,Ið Þ = eχ+ξ 1 + 2ρ0I
1! + 2ρ0Ið Þ2

2! + 2ρ0Ið Þ3
3! +⋯

" #
= eχ+ξ+2ρ0I:

ð102Þ
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7. Results and Discussion

In this section, we analyze the solution-figures of the problem,
which have been investigated by applying the q-homotopy
analysis transform method and Adomian decomposition
transformmethod in the sense of the Atangana-Baleanu oper-
ator. Figure 1 represents the three-dimensional solution-
figures for variable μ of Example 1 at fractional-order δ = 1,
respectively, Figure 2 shows different fractional order of δ =
0:8 and 0:6, and Figure 3 shows that δ = 0:4. It is observed that
the q-homotopy analysis transform method and Adomian
decomposition transform method solution-figures are identi-
cal and in close contact with each other. In the same way,
Figures 4–6 show the different fractional-order graphs of δ
at ν of Example 1. In similar way, Figure 7 represents the
three-dimensional solution-figures for variable μ of Example
2 at fractional-order δ = 1, respectively, Figure 8 shows differ-
ent fractional-order of δ = 0:8 and 0:6, and Figure 9 shows that
δ = 0:4. In the same way, Figures 4–6 show the different
fractional-order graphs of δ at ν of Example 2. The same
graphs of the suggested methods are attained and confirm
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Figure 1: (a) Actual and (b) SDM/q-HATM result of μðχ, ξ,IÞ at δ = 1.
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Figure 2: The different fractional-order result of μðχ, ξ,IÞ at δ = (a) 0:8 and (b) 0.6 of example.
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Figure 3: Analytical result of μðχ, ξ,IÞ at δ = 0:4 of example.

13Journal of Function Spaces



the applicability of the present techniques. In Figures 7–9, the
q-homotopy analysis transform method and Adomian
decomposition transform method solutions are plotted in

three dimensional at fractional-order δ = 1, 0:8, 0:6, and 0:4
of Example 2. Similarly Figures 10–12 show the exact and dif-
ferent fractional-order behavior of analytical solutions. The
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Figure 4: (a) Actual and (b) SDM/q-HATM result of νðχ, ξ,IÞ at δ = 1.

–5

1
2

–1
–2

0 0

5

–0.05

–0.1

0.05

0.1

0

(a)

–5

1
2

–1
–2

0 0

5

–0.05
–0.1
–0.15

0.05

0.1
0.15

0

(b)

Figure 5: The different fractional-order result of νðχ, ξ,IÞ at δ = (a) 0:8 and (b) 0:6 of example.
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Figure 6: Analytical result of μðχ, ξ,IÞ at δ = 0:4 of example.
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Figure 7: (a) Actual and (b) SDM/q-HATM result of μðχ, ξ,IÞ at δ = 1.
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Figure 8: The different fractional-order result of μðχ, ξ,IÞ at δ = (a) 0:8 and (b) 0:6 of example.
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Figure 9: (a) Actual and (b) SDM/q-HATM result of νðχ, ξ,IÞ at δ = 1.
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convergence phenomenon of the fractional solutions towards
integer-solution is observed. The same accuracy is achieved
by using the present techniques.

8. Conclusion

This article calculates a result of the fractional system of
Navier-Stokes equations determined numerical solution
using the suggested q-homotopy analysis transform method
and Shehu decomposition method. The result is obtained in
quick convergent series. The test samples provided demon-
strate the approach’s strength and efficacy. The proposed
algorithm includes a parameter ℏ that allows us to control
the series solution’s convergence region. As q-homotopy
analysis transform method and Shehu decomposition
method do not necessarily require small perturbation linear-
ization or discretisation, it decreases computations signifi-
cantly. In comparison with other techniques, q-homotopy
analysis transform method and Shehu decomposition
method are competent tools to obtain mathematical result
of system nonlinear fractional partial differential equations.

Data Availability

The numerical data used to support the findings of this
study are included within the article.
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Figure 11: The graph of different approximate solution of Ψðχ, φ, ηÞ at ϒ = (a) 0:8 and (b) 0:6 of example 2.
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In this paper, we introduce the generalized grand Morrey spaces in the framework of probability space setting in the spirit of the
martingale theory and grand Morrey spaces. The Doob maximal inequalities on the generalized grand Morrey spaces are
provided. Moreover, we present the boundedness of fractional integral operators for regular martingales in this new framework.

1. Introduction

A real-valued function f is said to belong to the Morrey
space Lp,λðℝNÞ on the N-dimensional Euclidean space ℝN

provided the following norm is finite:

fk kLp,λ ℝNð Þ = sup
x,rð Þ∈ ℝN×ℝ+ð Þ

rλ−N
ð
B x,rð Þ

f yð Þj jpdy
0
@

1
A

1/p

: ð1Þ

Here 1 ≤ p <∞, 0 ≤ λ ≤N , ℝ+ = ð0,∞Þ, and Bðx, rÞ are a
ball in ℝN centered at x of radius r. This class of functions
was first introduced by Morrey [1] in order to study regular-
ity problem arising in Calculus of Variations, describe local
regularity more precisely than Lebesgue spaces. In the past,
Morrey spaces have been studied heavily, such as the maxi-
mal operators, fractional integral operators, and singular
operators. The results are extensively applied not only in
partial differential equations but also in harmonic analysis.
We refer the readers to [2, 3] and the references therein.

The Morrey spaces on Euclidean spaces have been devel-
oped to the generalization versions, for example, the gener-
alized Morrey spaces [4, 5], the Orlicz-Morrey spaces [6,
7], the Triebel-Lizorkin-Morrey spaces [8], and the variable
exponent Morrey spaces [9]. Especially, Meskhi [10] intro-
duced the grand Morrey spaces and established the bound-
edness of the Hardy-Littlewood maximal, Calderón-

Zygmund, and potential operators in these spaces. The gen-
eralized grand Morrey spaces in a general setting of the
quasi-metric measure spaces are studied by Kokilashvili
et al. [11, 12].

Moreover, in probability theory, Nakai and Sadasue [13]
introduced Morrey spaces of martingales as the following:

Let ðΩ,F ,ℙÞ be a probability space and fFngn≥0 be a
nondecreasing sequence of sub-σ-algebras of F such that
F = σð ∪

n≥0
FnÞ.

We assume that every σ-algebra Fn is generated by
countable atoms, where B ∈Fn is called an atom, if any A
⊂ B with A ∈Fn satisfies ℙðAÞ = 0 or ℙðAÞ =ℙðBÞ. Denote
by AðFnÞ the set of all atoms in Fn. For p ∈ ½1,∞Þ and μ
∈ ð−∞,∞Þ, martingale Morrey space Lp,μðΩÞ consists of
all f ∈ L1ðΩÞ having the finite norm

fk kLp,μ Ωð Þ = sup
n≥0

sup
B∈A Fnð Þ

1
ℙ Bð Þμ

1
ℙ Bð Þ

ð
B
fj jpdℙ

� �1/p
: ð2Þ

They introduced some basic properties of the martingale
Morrey spaces. Furthermore, the Doob maximal inequality
was established, and the mapping properties for the frac-
tional integral operators were investigated on these spaces.
Two generalized versions of them introduced in [14, 15].
Ho [16] presented atomic decompositions of martingale
Hardy-Morrey spaces. Later on, he [17] introduced a version
of martingale Morrey spaces equipping with Banach
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function spaces. Jiao et al. [18] studied the maximal opera-
tor, atom decompositions, and fractional integral operators
on martingale Morrey spaces with variable exponents.

Recently, Deng and Li [19] studied the Doob maximal
operator and fractional integral operator in the framework
of grand Morrey-martingale spaces associated with an
almost decreasing function. Moreover, compared with clas-
sical martingale spaces, the grand martingale spaces have
not of absolutely continuous norm based on [20]. Conse-
quently, we need a further research about grand martingale
spaces. Motivated by the works of this and [11], the paper
is to investigate the generalized grand Morrey space theory
for the martingale setting. More precisely, we first introduce
the generalized grand Morrey-martingale spaces and then
establish the Doob maximal inequality in this new frame-
work. As an application, we discuss the boundedness of frac-
tional integral operators for regular martingales in the
generalized grand Morrey-martingale spaces.

2. Preliminaries

Now we recall some standard notations from martingale
theory. Refer to [21, 22] for more information on martingale
theory. The expectation is denoted by E with respect to ðΩ
,F ,ℙÞ. Recall that the conditional expectation operator rel-
ative to Fn is denoted by En, i.e., Eð f jFnÞ = Enð f Þ. A
sequence of measurable functions f = ð f nÞn≥0 ⊂ L1ðΩÞ is
called a martingale with respect to ðFnÞn≥0 if Enð f n+1Þ = f n
for every n ≥ 0: Let M be the set of all martingale f =
ð f nÞn≥0 relative to ðFnÞn≥0 such that f0 = 0. For f ∈M,
denote its martingale difference by dnf = f n − f n−1 (n ≥ 0,
with convention d0 f = 0).

The maximal function of f ∈M is defined by

Mmf = sup
n≤m

f nj j,Mf = sup
n≥0

f nj j: ð3Þ

For p > 1 and f ∈ LpðMÞ, we have

Mfk kLp ≤
p

p − 1 fk kLp , ð4Þ

which is well known in the literature as the Doob maximal
inequality (see [22]).

Hence, it follows from the above inequality that if p ∈ ð
1,∞Þ, then Lp-bounded martingale converges in Lp. More-
over, if p ∈ ½1,∞Þ, then, for any f ∈ Lp, its corresponding
martingale ð f nÞn≥0 with f n = Enf is an Lp-bounded martin-
gale and converges to f in Lp (see [21]). For this reason, a
function f ∈ L1 and the corresponding martingale ð f nÞn≥0
will be denoted by the same symbol f .

It is convenient for us to state the generalized grand
Morrey-martingale spaces, we first need to recall the defini-
tion of martingale Morrey spaces Lp,λ =Lp,λðΩÞ as follows.

Definition 1. For p ∈ ½1,∞Þ and λ ∈ ð−∞,∞Þ, let

Lp,λ = f ∈M : fk kLp,λ
<∞

n o
, ð5Þ

where

fk kLp,λ
= sup

n≥0
sup

B∈A Fnð Þ

1
ℙ Bð Þλ

ð
B
fj jpdℙ

 !1/p

: ð6Þ

Remark 2. If λ = pu + 1, the above definition of k·kLp,λ
is

equivalent to k·kLp,μ (see (2)), which introduced by Nakai

and Sadasue [13].
If λ = 0 and F0 = f∅,Ωg, then the Morrey-martingale

space Lp,λ is Lp by the above definition.

Now we introduce a new type Morrey-martingale spaces
as follows.

Definition 3. Let 1 < p <∞, 0 ≤ λ < 1, φ be a nondecreasing
real-valued nonnegative function defined on ð0, p − 1� with
lim

x⟶0+
φðxÞ = 0, and δ be a positive number. The generalized

grand Morrey-martingale space L
δ,φ
pÞ,λÞðΩÞ consists of f ∈

M such that

fk k
L

δ,φ
pÞ,λÞ

= sup
0<ε≤s

s=min p−1,αf g

εδ/ p−εð Þ sup
n≥0

sup
B∈A Fnð Þ

� 1
ℙ Bð Þλ−φ εð Þ

ð
B
fj jp−εdℙ

 !1/ p−εð Þ
ð7Þ

is finite, where α = sup fx > 0 : φðxÞ ≤ λg.

Notice that, in the above condition, k·k
L

δ,φ
pÞλÞ

is a norm

and can be expressed as

fk k
L

δ,φ
pÞ,λÞ

= sup
0<ε≤s

s=min p−1,αf g

εδ/ p−εð Þ fk kLp−ε,λ−φ εð Þ
:

ð8Þ

Remark 4. If λ > 0 and φ ≡ 0, then L
δ,φ
pÞ,λÞðΩÞ is called grand

Morrey-martingale space, which was introduced in [19]. If
λ = 0, δ = 1, and φ ≡ 0, we recover the grand Lebesgue spaces
for martingales introduced in [23]. In this case, if consider
Ω = ½0, 1Þ, we have grand Lebesgue spaces introduced in
[24]. We mention that there exists a martingale f = ð f nÞn≥0
such that it does not converge in LpÞð½0, 1ÞÞ. Indeed, LpÞð½0
, 1ÞÞ is a rearrangement-invariant Banach function space,
LpÞð½0, 1ÞÞ ≠ L1ð½0, 1ÞÞ, but is not of absolutely continuous
norm from [20]. According to Theorem 3.3 in [25], there
exists a martingale f = ð f nÞn≥0 such that it does not converge
in LpÞð½0, 1ÞÞ.
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The stochastic basis fFngn≥0 is said to be regular, if there
exists a constant R ≥ 2 such that

f n ≤ Rf n−1 ð9Þ

holds for all nonnegative martingale ð f nÞn≥0 adapted to
fFngn≥0.

For regular stochastic basis, there has the following
property, proved in [13].

Lemma 5. Let fFngn≥0 be regular. Then, for every sequence

Bn ⊂ Bn−1 ⊂⋯ ⊂ Bk ⊂⋯ ⊂ B0, Bk ∈ A Fkð Þ, ð10Þ

we have

Bk = Bk−1 or 1 + 1
R

� �
ℙ Bkð Þ ≤ℙ Bk−1ð Þ ≤ Rℙ Bkð Þ 1 ≤ k ≤ nð Þ,

ð11Þ

where R is the positive constant in (9).

3. The Doob Maximal Operator

In this section, we present the boundedness of Doob’s max-
imal operator on generalized grand Morrey-martingale
spaces.

Theorem 6. Let 1 < p <∞, δ > 0, and 0 ≤ λ < 1. Then,

Mfk k
L

δ,φ
pÞ,λÞ

≤ C fk k
L

δ,φ
pÞ,λÞ

, ð12Þ

where the constant C satisfies

C = inf
0<θ<s

sδ/ p−εð Þθ−δ/ p−θð Þ p − θ

p − θ − 1
+ 1

� �
, ð13Þ

which only depends on the parameters p, λ, δ, φ for s =min
fp − 1, αg and α = sup fx > 0 : φðxÞ ≤ λg.

In order to prove Theorem 6, we need the following use-
ful lemma:

Lemma 7. Let f = ð f nÞn≥0 ∈ L1, 1 < p <∞, 0 ≤ λ < 1. Then,

Mfk kLp,λ
≤

p
p − 1

+ 1
� �

fk kLp,λ
: ð14Þ

Proof. For any B ∈ AðFmÞ and m ≥ 0, suppose that f = g + h
and g = fχB.

Then, according to the well-known Doob’s maximal
inequality, that is,

Mfk kLp ≤
p

p − 1 fk kLp , ð15Þ

we have

ð
B
Mgj jpdℙ ≤

ð
Ω

Mgj jpdℙ ≤
p

p − 1

� �pð
Ω

gj jpdℙ

= p
p − 1

� �pð
B
fj jpdℙ:

ð16Þ

Hence,

1
ℙ Bð Þλ

ð
B
Mgj jpdℙ

 !1/p

≤
p

p − 1 fk kLp,λ
: ð17Þ

Next, take Bn ∈ AðFnÞ, n = 0, 1,⋯,m, such that B = Bm
⊂ Bm−1 ⊂⋯ ⊂ B0. Then, for a.e. ω ∈ B,

Enh ωð Þ =
0, if n ≥m,
1

ℙ Bnð Þ
ð
Bn

hdℙ, if n <m:

8><
>: ð18Þ

If n <m, according to Jensen’s inequality, then

Enh ωð Þj j ≤ 1
ℙ Bnð Þ

ð
Bn

hj jpdℙ
 !1/p

≤ ℙ Bnð Þ λ−1ð Þ/p fk kLp,λ

≤ ℙ Bð Þ λ−1ð Þ/p fk kLp,λ
,

ð19Þ

where the last inequality dues to 0 ≤ λ < 1 and ℙðBÞ ≤
ℙðBnÞ. This means

Mhð Þ ωð Þ ≤ ℙ Bð Þ λ−1ð Þ/p fk kLp,λ
for any ω ∈ B: ð20Þ

Then, we obtain

1
ℙ Bð Þλ

ð
B
Mhj jpdℙ

 !1/p

≤ fk kLp,λ
: ð21Þ

Combining inequalities (17) and (21) and Mf ≤Mg +
Mh, we can get

1
ℙ Bð Þλ

ð
B
Mfð Þpdℙ

 !1/p

≤
p

p − 1 + 1
� �

fk kLp,λ
: ð22Þ

The proof is complete.

Note that Nakai and Sadasue [13] proved that, for 1 < p
<∞ and −1/p ≤ μ < 0,

Mfk kLp,μ ≤ Cp fk kLp,μ : ð23Þ

The proof of Lemma 7 is devoted to determination of the
constant Cp. Now we prove Theorem 6:
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Proof. Let 0 < θ < s, and we have

Mfk k
L

δ,φ
pÞ,λÞ

= sup
0<ε≤s

s=min p−1,αf g

εδ/ p−εð Þ Mfk kLp−ε,λ−φ εð Þ

=max sup
0<ε<θ

εδ/ p−εð Þ Mfk kLp−ε,λ−φ εð Þ
, sup

θ≤ε<s
s=min p−1,αf g

εδ/ p−εð Þ Mfk kLp−ε,λ−φ εð Þ

8>>>><
>>>>:

9>>>>=
>>>>;
,

ð24Þ

where α = sup fx > 0 : φðxÞ ≤ λg. Let

I = sup
θ≤ε<s

s=min p−1,αf g

εδ/ p−εð Þ Mfk kLp−ε,λ−φ εð Þ
:

ð25Þ

Note that the function hðεÞ≔ εδ/ðp−εÞ is increasing in 0
< ε < p, which means

I ≤ sδ/ p−sð Þ sup
θ≤ε<s

s=min p−1,αf g

sup
n≥0

sup
B∈A Fnð Þ

� 1
ℙ Bð Þλ−φ εð Þ

ð
B
Mfj jp−εdℙ

 !1/ p−εð Þ

≤sδ/ p−sð Þ sup
θ≤ε<s

s=min p−1,αf g

sup
n≥0

sup
B∈A Fnð Þ

� 1
ℙ Bð Þ λ−φ εð Þ−1ð Þ/ p−εð Þ

1
ℙ Bð Þ

ð
B
Mfj jp−εdℙ

� �1/ p−εð Þ

≤sδ/ p−sð Þ sup
θ≤ε<s

s=min p−1,αf g

sup
n≥0

sup
B∈A Fnð Þ

� θ
δ/ p−θð Þθ−δ/ p−θð Þ

ℙ Bð ÞΔ ε,θð Þ
1

ℙ Bð Þλ−φ θð Þ

ð
B
Mfj jp−θdℙ

 !1/ p−θð Þ
,

ð26Þ

where

Δ ε, θð Þ≔ λ − φ εð Þ − 1
p − ε

−
λ − φ θð Þ − 1

p − θ
: ð27Þ

Note that for θ ≤ ε,

Δ ε, θð Þ = ε − θð Þ λ − 1ð Þ + φ θð Þ p − εð Þ − φ εð Þ p − θð Þ
p − εð Þ p − θð Þ

≤
ε − θð Þ λ − 1ð Þ + φ εð Þ p − εð Þ − φ εð Þ p − θð Þ

p − εð Þ p − θð Þ
≤

ε − θð Þ λ − 1ð Þ + φ εð Þ θ − εð Þ
p − εð Þ p − θð Þ ≤ 0:

ð28Þ

Then, 0 < 1/ℙðBÞΔðε,θÞ ≤ 1, and we obtain I ≤ sδ/ðp−sÞ

θ−δ/ðp−θÞðθδ/ðp−θÞkMf kLp−θ,λ−φðθÞ
Þ. Obviously, sδ/ðp−sÞθ−δ/ðp−θÞ >

1 as 0 < θ < s. Thus, according to Lemma 7, we deduce that

Mfk k
L

δ,φ
pÞ,λÞ

≤ sδ/ p−sð Þθ−δ/ p−θð Þ sup
0<ε≤θ

εδ/ p−εð Þ Mfk kLp−ε,λ−φ εð Þ

≤ sδ/ p−sð Þθ−δ/ p−θð Þ sup
0<ε≤θ

εδ/ p−εð Þ p − ε

p − ε − 1 + 1
� �

fk kLp−ε,λ−φ εð Þ

≤ sδ/ p−sð Þθ−δ/ p−θð Þ p − θ

p − θ − 1 + 1
� �

fk k
L

δ,φ
pÞ,λÞ

:

ð29Þ

Taking the infimum over all θ, we obtain that

Mfk k
L

δ,φ
pÞ,λÞ

≤ C fk k
L

δ,φ
pÞ,λÞ

, ð30Þ

where

C = inf
0<θ<s

s=min p−1,αf g
α=sup x>0 : φ xð Þ≤λf g

sδ/ p−sð Þθ−δ/ p−θð Þ p − θ

p − θ − 1 + 1
� �

∈ 1,∞ð Þ:

ð31Þ

4. The Fractional Integral Operator

In this section, we present the boundedness of the fractional
integral operator in the new type grand Morrey-martingale
spaces. In martingale theory, Chao and Ombe [26] intro-
duced the fractional integrals for dyadic martingales. The
fractional integrals in this section are defined for more gen-
eral martingale setting as in [13, 14] (see also [15, 27–32]).

Definition 8. Let f = ð f nÞn≥0 ∈M and ι > 0, and the fractional
integral Iι f = ððI ι f ÞnÞn≥0 of martingale f is defined by

I ι fð Þn = 〠
n

k=0
bιk−1dkf , ð32Þ

where bk is an Fk-measurable function such that

bk ωð Þ = 〠
B∈A Fkð Þ

ℙ Bð ÞχB ωð Þ, ω ∈Ω: ð33Þ

Remark 9. Obviously, bk is bounded in above definition;
there I ι f = ððI ι f ÞnÞn≥0 is a martingale transform of f .

The following lemma was shown in [13]. Here we focus
on more accurate upper boundedness.

Lemma 10. Suppose that fFngn≥0 is regular. Let 1 < p <∞,
1 ≤ q ≤ ðv/uÞp, −1/p ≤ v < 0, and u = v + ι < 0. Then, for f ∈
L1,

M I ι fð Þk kLq,u ≤ Cq,u,p,v fk kLp,v , ð34Þ
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where Cq,u,p,v = ½ð1 + ð1/RÞvÞ/ð1 − ð1 + 1/RÞuÞ + 2�
ðp/ðp − 1Þ + 1Þp/q and R is the constant in formula (9).

Proof. Since k f kLq1,λ ≤ k f kLq2,λ for q1 ≤ q2 by Hölder’s

inequality, it is enough to prove it in the case where q = ðv/
uÞp. Without loss of generality, we let k f kLp,v ≠ 0.

First, we prove the following inequality holds for any n
≥ 1, and any Bn ∈ AðFnÞ,

I ι fð Þn ωð Þ�� �� ≤ 1 + 1/Rð Þv
1 − 1 + 1/Rð Þu + 2
� �

Mf ωð Þð Þu/v fk k−ι/vLp,v
, ω ∈ Bn:

ð35Þ

Choose Bk ∈ AðFkÞ and 0 ≤ k < n, such that Bn ⊂ Bn−1 ⊂
⋯⊂ B0, and let

K = k : 0 < k ≤ n, Bk ≠ Bk−1f g = k1, k2,⋯,khf g, ð36Þ

where 0 = k0 < k1 < k2 <⋯ < kh.
Since fFngn≥0 is regular, according to Lemma 5, we have

1 + 1
R

� �
bkj ≤ bkj−1 ≤ R bkj onBn: ð37Þ

So, for k ∉ K , we have bk = bk−1 and dkf = 0. Hence, we
obtain

I ι fð Þn = 〠
0<kj≤n

bιkj−1dkj f = 〠
h

j=1
bιkj−1dkj f onBn: ð38Þ

For ω ∈ Bn,

dkj f ωð Þ
��� ��� = f kj ωð Þ − f kj−1 ωð Þ

��� ��� ≤ f kj ωð Þ
��� ��� + f kj−1 ωð Þ

��� ���
= 1

ℙ Bkj

� � ð
Bkj

f dℙ

������
������ +

1
ℙ Bkj−1

� � ð
Bkj−1

f dℙ

������
������

≤
1

ℙ Bkj

� � ð
Bkj

fj jpdℙ
0
@

1
A

1/p

+ 1
ℙ Bkj−1

� � ð
Bkj−1

fj jpdℙ
0
@

1
A

1/p

≤ ℙ Bkj

� �v
+ℙ Bkj−1

� �v� �
fk kLp,v

≤ 1 + 1
R

� �v� �
bkj−1 ωð Þv fk kLp,v :

ð39Þ

Then, for ω ∈ Bn and when 0 < k ≤m where m ≤ n,

〠
m

k=0
bk−1 ωð Þιdkf ωð Þ

�����
����� ≤ 1 + 1

R

� �v� �
〠

0<kj≤m
bkj−1 ωð Þv+ι fk kLp,v

= 1 + 1
R

� �v� �
〠

0<kj≤m
bkj−1 ωð Þu fk kLp,v

≤
1 + 1/Rð Þv

1 − 1 + 1/Rð Þu bm ωð Þu fk kLp,v :

ð40Þ

For ω ∈ Bn and when m + 1 ≤ k < n, let jðkÞ =min fj : k
< kjg, and we have

〠
n

k=m+1
bk−1 ωð Þιdk f ωð Þ

�����
�����

= 〠
h

j=j kð Þ
bkj−1 ωð Þιdkj f ωð Þ

�����
�����

= 〠
h

j=j kð Þ
bkj−1 ωð Þι f kj ωð Þ − 〠

h

j=j kð Þ
bkj−1 ωð Þι f kj−1 ωð Þ

�����
�����

= bkh−1 ωð Þι f kh ωð Þ + 〠
h−1

j=j kð Þ
bkj−1 ωð Þι − bkj ωð Þι
� �

f kj ωð Þ − bkj kð Þ−1
ωð Þι f kj kð Þ−1

ωð Þ
�����

�����
≤ bkh−1 ωð ÞιMf ωð Þ + 〠

h−1

j=j kð Þ
bkj−1 ωð Þι − bkj ωð Þι
��� ���Mf ωð Þ + bkj kð Þ−1

ωð ÞιMf ωð Þ

≤ 2bkj kð Þ−1
ωð ÞιMf ωð Þ = 2bm ωð ÞιMf ωð Þ:

ð41Þ

Now let

Λ1 = ω ∈Ω :
Mf ωð Þ
fk kLp,v

 !1/v

≤ b0 ωð Þ
( )

andΛ2 =Ω \Λ1:

ð42Þ

Next we estimate ðI ι f Þn from the following cases. For the
first case, if ω ∈Λ1 ∩ Bn and

Mf ωð Þ
fk kLp,v

 !1/v

≤ bn ωð Þ, ð43Þ

then, by formula (40) and u = v + ι < 0, we have

Iι fð Þn ωð Þ�� �� ≤ 1 + 1/Rð Þv
1 − 1 + 1/Rð Þu bn ωð Þu fk kLp,v

≤
1 + 1/Rð Þv

1 − 1 + 1/Rð Þu
Mf ωð Þ
fk kLp,v

 !u/v

fk kLp,v

= 1 + 1/Rð Þv
1 − 1 + 1/Rð Þu Mf ωð Þð Þu/v fk k−ι/vLp,v

:

ð44Þ
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For the second case, if ω ∈Λ1 ∩ Bn and

bn ωð Þ < Mf ωð Þ
fk kLp,v

 !1/v

, ð45Þ

then there exists m such that

1
R
bm ωð Þ < Mf ωð Þ

fk kLp,v

 !1/v

≤ bm ωð Þ: ð46Þ

Combining (46) with formulas (40) and (41), we have

Iι fð Þn ωð Þ�� �� ≤ 1 + 1/Rð Þv
1 − 1 + 1/Rð Þu bm ωð Þu fk kLp,v + 2bm ωð ÞιMf ωð Þ

≤
1 + 1/Rð Þv

1 − 1 + 1/Rð Þu
Mf ωð Þ
fk kLp,v

 !u/v

fk kLp,v + 2 Mf ωð Þ
fk kLp,v

 !ι/v

Mf ωð Þ

≤
1 + 1/Rð Þv

1 − 1 + 1/Rð Þu + 2
� �

Mf ωð Þð Þu/v fk k−ι/vLp,v
:

ð47Þ

For the third case, if ω ∈Λ2 ∩ Bn, then by (41), we have

Iι fð Þn ωð Þ�� �� ≤ 2b0 ωð ÞιMf ωð Þ

≤ 2 Mf ωð Þ
fk kLp,v

 !ι/v

Mf ωð Þ = 2 Mf ωð Þð Þu/v fk k−ι/vLp,v
:

ð48Þ

Formulas (44), (47), and (48) give that

Iι fð Þn ωð Þ�� �� ≤ 1 + 1/Rð Þv
1 − 1 + 1/Rð Þu + 2
� �

Mf ωð Þð Þu/v fk k−ι/vLp,v
, ω ∈ Bn,

ð49Þ

which implies that

1
ℙ Bð Þ

ð
B
M Iι f ωð Þð Þj jqdℙ

� �1/q

≤
1 + 1/Rð Þv

1 − 1 + 1/Rð Þu + 2
� � 1

ℙ Bð Þ
ð
B
Mf ωð Þð Þqu/vdℙ

� �1/q
fk k−ι/vLp,v

= 1 + 1/Rð Þv
1 − 1 + 1/Rð Þu + 2
� � 1

ℙ Bð Þ
ð
B
Mf ωð Þð Þpdℙ

� � 1/pð Þ p/qð Þ
fk k1−p/qLp,v

:

ð50Þ

Moreover, by Lemma 7, we have

1
ℙ Bð Þ

ð
B
Mf ωð Þð Þpdℙ

� � 1/pð Þ p/qð Þ

≤ ℙ Bð Þv Mfk kLp,v
� �p/q

≤
p

p − 1 + 1
� �p/q

ℙ Bð Þu fk kp/qLp,v
:

ð51Þ

It follows from the above inequality and (50) that

1
ℙ Bð Þ

ð
B
M Iι f ωð Þð Þj jqdℙ

� �1/q

≤
1 + 1/Rð Þv

1 − 1 + 1/Rð Þu + 2
� �

p
p − 1 + 1
� �p/q

ℙ Bð Þu fk kLp,v ,

ð52Þ

that is to say,

M I ι fð Þk kLq,u ≤
1 + 1/Rð Þv

1 − 1 + 1/Rð Þu + 2
� �

p
p − 1 + 1
� �p/q

fk kLp,v :

ð53Þ

The proof is complete.

Theorem 11. Let 1 < q <∞, 0 ≤ λ < 1, 0 < ι < ð1 − λÞ/q, 1/q
− 1/p = ι/ð1 − λÞ, δ2 > 0, and δ1 ≥ δ2ð1 + ιp/ð1 − λÞÞ. Suppose
that φ1 and φ2 are continuous nonnegative and nondecreas-
ing real-valued functions on ð0, p − 1� and ð0, q − 1�, respec-
tively, satisfying

(i) φ1 ∈ C
1ð0, κ� for some positive κ > 0

(ii) lim
x⟶0+

φ1ðxÞ = 0

(iii) 0 ≤ lim
x⟶0+

dφ1ðxÞ/dx < ð1 − λÞ2/ðιp2Þ

(iv) φ2ðηÞ = φ1ðϕ−1ðηÞÞ, where ϕ−1 is the inverse of ϕ on
ð0, κ� for κ > 0, and ϕðxÞ = q − ðp − xÞð1 − λ + φ1ðxÞ
Þ/½1 − λ + φ1ðxÞ + ιðp − xÞ�. Then, for f ∈Lδ2 ,φ2

qÞ,λÞ ,

M I ι fð Þk k
L

δ1 ,φ1
pÞ,λÞ

≤ C p, δ1, δ2, φ1, λð Þ fk k
L

δ2 ,φ2
qÞ,λÞ

, ð54Þ

where Cðp, δ1, δ2, φ1, λÞ only depends on p, δ1, δ2, φ1, and λ.

Proof. The equation 1/q − 1/p = ι/ð1 − λÞ and lim
x⟶0+

φ1ðxÞ = 0
give that lim

x⟶0+
ϕðxÞ = 0. The condition (iii) ensures that

lim
x⟶0+

dϕðxÞ/dx > 0. Then, there exists small positive number

ϵ <min f1, κg such that ϕ is increasing in ð0, ϵ� and ϕðϵÞ
< ðq − 1Þ/2. Now fix

θ ∈ 0, min s, ϵf gð Þ, ð55Þ

where s =min fp − 1, αg and α = sup fx > 0 : φ1ðxÞ ≤ λg.
Firstly, we consider the case of ε ∈ ðθ, sÞ. In this situation,

let

I εð Þ≔ εδ1/ p−εð Þ 1
ℙ Bð Þλ−φ1 εð Þ

ð
B
M I ι fð Þj jp−εdℙ

 !1/ p−εð Þ
: ð56Þ
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Since p − ε < p − θ, then it follows from Jensen’s inequal-
ity that

I εð Þ = εδ1/ p−εð Þℙ Bð Þ φ1 εð Þ+1−λð Þ/ p−εð Þ 1
ℙ Bð Þ

ð
B
M I ι fð Þj jp−εdℙ

� �1/ p−εð Þ

≤ εδ1/ p−εð Þℙ Bð Þ φ1 εð Þ+1−λð Þ/ p−εð Þ 1
ℙ Bð Þ

ð
B
M I ι fð Þj jp−θdℙ

� �1/ p−θð Þ
:

ð57Þ

Note that ½φ1ðxÞ + 1 − λ�/ðp − xÞ is a nonnegative and
nondecreasing function on ðθ, s�; hence,

I εð Þ ≤ εδ1/ p−εð Þℙ Bð Þ φ1 θð Þ+1−λð Þ/ p−θð Þ 1
ℙ Bð Þ

ð
B
M I ι fð Þj jp−θdℙ

� �1/ p−θð Þ

≤ sδ1/ p−sð Þθ−δ1/ p−θð Þ sup
0<t≤θ

tδ1/ p−tð Þ sup
n≥0

sup
B∈A Fnð Þ

� 1
ℙ Bð Þλ−φ1 tð Þ

ð
B
M I ι fð Þj jp−tdℙ

 !1/ p−tð Þ
:

ð58Þ

Since sδ1/ðp−sÞθ−δ1/ðp−θÞ > 1 for θ < s, then the following
inequality holds

M I ι fð Þk k
L

δ1,φ1
pÞ,λÞ

≤ sδ1/ p−sð Þθ−δ1/ p−θð Þ sup
0<t≤θ

tδ1/ p−tð Þ sup
n≥0

sup
B∈A Fnð Þ

� 1
ℙ Bð Þλ−φ1 tð Þ

ð
B
M I ι fð Þj jp−tdℙ

 !1/ p−tð Þ
:

ð59Þ

Next, we consider t ∈ ð0, θ� in the following discussion.
Since 1/q − 1/p = ι/ð1 − λÞ, we can choose η and t satisfying

1
q − η

−
1

p − t
= ι

1 − λ + φ1 tð Þ : ð60Þ

Obviously we know that t⟶ 0 if and only if η⟶ 0,
and we obtain η with respect to t as follows:

η = q −
p − tð Þ 1 − λ + φ1 tð Þð Þ

1 − λ + φ1 tð Þ + ι p − tð Þ = ϕ tð Þ: ð61Þ

Let

~p = q − η, ~q = p − t, ~v = λ − φ1 tð Þ − 1
q − η

,

~u = λ − φ1 tð Þ − 1
p − t

:

ð62Þ

It is not hard to see that 1 ≤ ~q = ð~v/~uÞ~p, −1/~p ≤ ~v < 0, ~v
+ ι = ~u ≤ −ð1 − λÞ/ðp − tÞ < 0, and

q − η = q − ϕ tð Þ ≥ q − ϕ ϵð Þ ≥ q + 1
2 > 1: ð63Þ

Moreover,

C~q,~u,~p,~v =
1 + 1/Rð Þ~v

1 − 1 + 1/Rð Þ~u
+ 2

 !
~p

~p − 1 + 1
� �~p/~q

≤
1 + R1+φ1 θð Þ

1 − R/ R + 1ð Þð Þ 1−λð Þ/p + 2
 !

q − ϕ εð Þ
q − ϕ εð Þ − 1 + 1
� �q

≤
1 + R1+φ1 θð Þ

1 − R/ R + 1ð Þð Þ 1−λð Þ/p + 2
 !

q − ϕ θð Þ
q − ϕ θð Þ − 1 + 1
� �q

≕ C θð Þ:
ð64Þ

Notice that φ1ðθÞ ≤ φ1ðsÞ and q − ϕðθÞ − 1 ≥ q − ϕðϵÞ −
1 ≥ ðq − 1Þ/2. This implies that CðθÞ <∞.

Thus, according to the inequalities (59) and (64) and
Lemma 10, we have

M I ι fð Þk k
L

δ1,φ1
pÞ,λÞ

≤ sδ1/ p−sð Þθ−δ1/ p−θð Þ sup
0<t≤θ

tδ1/ p−tð Þ sup
n≥0

sup
B∈A Fnð Þ

� 1
ℙ Bð Þ λ−φ1 tð Þ−1ð Þ/ p−tð Þ

1
ℙ Bð Þ

ð
B
M Iι fð Þj jp−tdℙ

� �1/ p−tð Þ

= sδ1/ p−sð Þθ−δ1/ p−θð Þ sup
0<t≤θ

tδ1/ p−tð Þ M I ι fð Þk kL~q,~u
≤ C θð Þsδ1/ p−sð Þθ−δ1/ p−θð Þ sup

0<t≤θ
tδ1/ p−tð Þ fk kL~p,~v

= C θð Þsδ1/ p−sð Þθ−δ1/ p−θð Þ sup
0<t≤θ

tδ1/ p−tð Þ sup
n≥0

sup
B∈A Fnð Þ

� 1
ℙ Bð Þλ−φ1 tð Þ−1/q−η

1
ℙ Bð Þ

ð
B
fj jq−ηdℙ

� �1/ q−ηð Þ

= C θð Þsδ1/ p−sð Þθ−δ1/ p−θð Þ sup
0<t≤θ

tδ1/ p−tð Þ sup
n≥0

sup
B∈A Fnð Þ

� 1
ℙ Bð Þλ−φ1 tð Þ

ð
B
fj jq−ηdℙ

 !1/q−η

≤ C θð Þsδ1/ p−sð Þθ−δ1/ p−θð Þ sup
0<t≤θ

tδ1/ p−tð Þη−δ2/ q−ηð Þ fk k
L

δ2,φ2
qÞ,λÞ

,

ð65Þ

where the last inequality holds because of φ2ðηÞ = φ1ðϕ−1ðη
ÞÞ = φ1ðtÞ.

Finally, we shall show that sup
0<t≤θ

tδ1/ðp−tÞη−δ2/ðq−ηÞ is

bounded. Since lim
x⟶0+

ϕðxÞ = 0, by l’Hospital’s rule, we have

lim
x⟶0+

ϕ xð Þ
x

= lim
x⟶0+

ϕ′ xð Þ
x′

= lim
x⟶0+

1 − λð Þ2 − ιp2φ1′ xð Þ
1 − λ + ιpð Þ2

: ð66Þ

Combining with the condition (iii), we have ϕðxÞ ~ x as
x⟶ 0+. This implies

η−δ2/ q−ηð Þ ~ t−δ2/ q−ηð Þ, as t⟶ 0+: ð67Þ
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Moreover, using δ1 ≥ δ2ð1 + ιp/ð1 − λÞÞ, 0 < t ≤ θ < 1,
and formula (60), we obtain

tδ1/ p−tð Þη−δ2/ q−ηð Þ ≤ Ctδ2 1+ιp/ 1−λð Þð Þ/ p−tð Þt−δ2 1/ p−tð Þ+ι/ 1−λ+φ1 tð Þð Þð Þ

= Ctιδ2 p/ 1−λð Þ p−tð Þð Þ−1/ 1−λ+φ1 tð Þð Þ½ �:

ð68Þ

Obviously, p/½ð1 − λÞðp − tÞ� − 1/½1 − λ + φ1ðtÞ� > 0,
which implies that sup

0<t≤θ
tδ1/ðp−tÞη−δ2/ðq−ηÞ ≤ C is bounded.

To sum up, we have

M I ι fð Þk k
L

δ1,φ1
pÞ,λÞ

≤ C p, δ1, δ2, φ1, λð Þ fk k
L

δ2,φ2
qÞ,λÞ

, ð69Þ

where

C p, δ1, δ2, φ1, λð Þ = Csδ1/ p−sð Þ inf
θ∈ 0,min s,ϵf gð Þ

C θð Þθ−δ1/ p−θð Þ:

ð70Þ

Remark 12. Recently, new results concerning the grand var-
iable exponent Lebesgue spaces for martingales have
emerged (see [33]).
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The Lorenz-Stenflo mathematical model describes a complex dynamical behavior related to atmospheric acoustic-gravity waves.
In this study, qualitative analysis of the four-dimensional hyperchaotic Lorenz-Stenflo system via the Caputo fractional derivative
is implemented. By using the Matignon stability criterion, the local stability analysis of the system showed that all the equilibrium
points of the system are locally unstable. Calculation of the Lyapunov exponents along with the relevant bifurcation diagrams with
respect to different fractional orders exposed the hyperchaotic dynamical behavior for the system. Bifurcation diagrams for all the
four parameters in the system also showed the hyperchaotic nature of the Lorenz-Stenflo system. Different phase attractors of the
system corresponding to different fractional derivatives and parameters are presented to specify the dynamical nature of the
system. The Lorenz-Stenflo system showed sensitivity to initial conditions. The master and slave systems showed a strong
correlation among themselves, as verified by graphs of time series solutions of the two systems.

1. Introduction

In recent years, fractional operators have been applied to
develop mathematical models for which we can investigate
different dynamical systems in some areas such as mathe-
matical biology, epidemiology, and engineering [1].

Different researchers introduced several concepts of frac-
tional derivatives. Some of them are the Caputo fractional-
order derivative [2–4], the Riemann Liouville fractional-order
derivative [4], the Caputo-Fabrizio fractional-order derivative
[5], and the Atangana-Baleanu fractional derivatives [6].

In the mathematical models with integer derivatives, the
derivative orders give the instantaneous rate of change of the
function. On the other hand, in the case of mathematical
models with fractional derivatives, the parameters of dynam-

ical systems represent the memory index of variation of the
function [7].

Thus, the advantage of using the memory index of a
dynamical system with fractional derivative made fractional
derivatives advantageously applied in the fields of chaotic
dynamics, epidemiological modeling, and several other fields.
In particular, one can see these applications in the modeling
of COVID-19 based on real information from Pakistan [8],
designing the SEIR model of COVID-19 [9], the modeling of
the memristor-based hyperchaotic circuit via nonsingular
operator [10, 11], the thermostat model via Bernstein polyno-
mials [12], the modeling of coronavirus by the Caputo opera-
tor [13], the optimal control of nonsingular tumor-immune
surveillance [14], the SEIRAmodel [15], designing a bank data
with fractal-fractional operators [16], the nonlinear modeling
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of the Navier system [17], analyzing an Atangana–Baleanu
SEAIR model [18], compartmental disease modeling [19],
and the references therein.

Lorenz developed the famous three-dimensional mathe-
matical model to study the dynamics and behaviors of the
atmosphere in 1963 [20–22]. Later on, in 1996, Lennart Stenflo
modified the Lorenz system, adding a fourth parameter to con-
sider the evolution of finite-amplitude acoustic-gravity waves in
a rotating atmosphere, and developed a new four-dimensional
Lorenz-Stenflo mathematical model. Since then, many studies
have been conducted on the complex dynamical behaviors of
the system by applying both integer and fractional derivatives.
For further information, see [21] and the references therein.

Some of the studies conducted on the complex dynam-
ics of Lorenz-Stenflo systems are reviewed as follows:
Zhang et al. [22] investigated the qualitative properties of
the higher integer-order Lorenz-Stenflo Chaotic system
which appeared in mathematical physics. The authors proved
that the higher-order Lorenz-Stenflo system is globally stable.
A globally attractive set of Lorenz-Stenflo systems indicating
the evolution of a finite amplitude of acoustic gravity waves
contained in the rotating atmosphere is investigated by Zhang
et al. [20]. Adaptive control synchronization and circuit imple-
mentation of the ordinary Lorenz-Stenflo system with an inte-
ger order was established by Yang andWu [23]. An analysis on
the dynamics of the Lorenz-Stenflo system via fractional oper-

ators along with sets of parameters is done through the spectra
of the Lyapunov exponent type, bifurcation graphs, and 0-1
test.

The complex dynamics of Lorenz-Stenflo dynamical
systems are analyzed with Lyapunov exponents, bifurcation
diagrams, and the 0-1 test by using the Adomian decomposi-
tion numerical scheme and fractional-order representation of
the model in the sense of the Riemann-Liouville integral [24].
A robust chaos suppression control is designed and applied
via sliding mode control to the integer-order Lorenz-Stenflo
system constrained to uncertainties and nonlinearities [25].

There is only limited literature devoted to studying the
complex dynamics of the Lorenz-Stenflo systems by using
integer-order derivatives and fractional-order derivatives.
Moreover, to the best of the authors’ knowledge, no study
is conducted on the qualitative analysis of the Lorenz-
Stenflo mathematical model in the sense of the Caputo frac-
tional derivative and by using a numerical scheme developed
by Garrappa [26], which is the main focus of this study.

Among the several notions of fractional derivatives pre-
sented above, the Caputo fractional derivative gives the oppor-
tunity of including the classical initial conditions in a
mathematical model and the Caputo fractional derivative of
a constant is zero, which is not the case for instance in the
Riemann-Liouville fractional derivative. Moreover, it has a
MATLAB code that can obtain phase portraits and time series

Table 1: LEs for different fractional orders η.

η 0.856 0.857 0.866 0.868 0.888 0.9 0.956 0.98 0.988 0.999 1

LE1 14.1773 14.1214 13.6282 13.5211 12.4969 11.9217 9.5811 8.7302 8.4644 8.1127 8.0815

LE2 1.0824 1.0788 1.0461 1.039 0.9704 0.9313 0.7682 0.707 0.6877 0.662 0.6597

LE3 −5.5673 −5.553 −5.4255 −5.3973 −5.1187 −4.9549 −4.2295 −3.9409 −3.8478 −3.7225 −3.7113
LE4 −9.6713 −9.6712 −9.6592 −9.654 −9.5574 −9.4648 −8.7868 −8.4139 −8.2829 −8.0987 −8.0818
Sum 0.0211 −0.024 −0.4104 −0.4912 −1.2088 −1.5667 −2.667 −2.9176 −2.9786 −3.0465 −3.0519
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Figure 1: Bifurcation diagram of (5) due to orders from 0.93 to 1.
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solutions of chaotic or hyperchaotic systems using a numerical
scheme named the predictor-corrector method reported by
Garrappa and applied in several studies on chaotic systems
[27–29].

The manuscript is organized as follows: Section 2
involves the statement of the problem. In this section, the
fractional representation of the Lorenz-Stenflo system (LS)
is designed via the Caputo derivatives after recalling some
critical preliminary definitions of fractional operators. Sec-
tion 3 is devoted to analyzing the local stability of the men-

tioned LS system. In Section 4, the numerical scheme for the
fractional-order LS system is developed based on a research
reported by Garrappa [26]. The broader part of the manu-
script is devoted to Lyapunov exponents, bifurcation, and
chaos of the LS system in Section 5, followed by sensitivity
analysis to initial conditions in Section 6. In Section 7, the
development of the master and slave system to create a
strong relationship between the systems using a coupling
function is considered. Finally, a conclusion and a reference
list are provided.
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Figure 2: Phase portraits of (5) for η = 0:950 projected on three planes: (a) x-y, (b) y-w, and (c) y-z.
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2. Statement of the Problem

The Lorenz-Stenflo (LS) system of differential equations is
given by [30, 31].

_x = a y − xð Þ + cw,
_y = rx − y − xz,
_z = −kz + xy,
_w = −x − aw:

ð1Þ

The variable x is the intensity of motion of the fluid; y
and z denote the horizontal and vertical direction tempera-
ture variations of the atmosphere. Parameters a, r, and k
are all positive real numbers and are the Prandtl number, c
is the rotation number, r is the Rayleigh number, and k is
a geometric parameter. Parameters a and k depend on the
material and geometrical properties of the layer of the fluid.
Parameter r is proportional to the difference in temperature.

We used fractional operators to find the hidden proper-
ties of the nature of solution of the LS system that are not
observable via integer-order derivatives.

2.1. The Formulation of the LS System via the Caputo
Fractional Derivative. Here, we shortly give several defini-
tions of fractional operators pertinent to our study.

Definition 1 (see [2, 3]). The Riemann-Liouville fractional
integral for a continuous function f : ½0,+∞Þ⟶ℝ is
defined by

RL
0 I

η
t f tð Þ = 1

Γ ηð Þ
ðt
0
t − τð Þη−1 f τð Þdτ, η ∈ 0, 1ð Þ, t > 0: ð2Þ

Definition 2 (see [2, 3]). The Riemann-Liouville fractional
derivative for a continuous function f : ½0,+∞Þ⟶ℝ is
defined by

RL
0 D

η
t f tð Þ = 1

Γ 1 − ηð Þ
d
dt

ðt
0
t − τð Þ−η f τð Þdτ, η ∈ 0, 1ð Þ, t > 0:

ð3Þ

Definition 3 (see [2, 3]). The Caputo fractional derivative for
a continuous function f : ½0,+∞Þ⟶ℝ is defined by

C
0D

η

t f =
1

Γ 1 − ηð Þ
ðt
0
t − τð Þ−η d

dτ
f τð Þdτ, η ∈ 0, 1ð Þ, t > 0:

ð4Þ

This section develops the fractional order representation
of the LS system (1). The Caputo fractional derivative is used
because it can incorporate customary initial conditions in
the model, unlike the Riemann-Liouville fractional deriva-
tive. Furthermore, the Caputo fractional derivative of a con-
stant is zero, which is not the case in the Riemann-Liouville
fractional derivative. Accordingly, the Caputo fractional rep-
resentation of the LS system (1) is given by

C
0D

η
t x = L1 x, y, z,wð Þ,

C
0D

η
t y = L2 x, y, z,wð Þ,

C
0D

η

t z = L3 x, y, z,wð Þ,
C
0D

η

t w = L4 x, y, z,wð Þ,

ð5Þ

where

L1 t, x, y, z,wð Þ = a y − xð Þ + cw,
L2 t, x, y, z,wð Þ = rx − y − xz,
L3 t, x, y, z,wð Þ = −kz + xy,
L4 t, x, y, z,wð Þ = −x − aw,

ð6Þ
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Figure 3: Time series trajectories of the LS system (5) for the fractional order η = 0:950:
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with the initial value conditions xð0Þ = 0:5, yð0Þ = 0:5, zð0Þ
= 5, and wð0Þ = 0:5:

The fractional-order derivative η ∈ ð0, 1� and the param-
eter values are a = 10, r = 30, k = 0:7, and c = 4:

The specific objectives of this study are to analyze the local
stability of system (5), to investigate the chaotic behavior of
system (5) via Lyapunov exponents, and to plot the bifurcation
diagrams, attractors, and time series trajectories of the system
by variation of fractional orders and four parameters of system
(5). In addition, sensitivity to initial conditions and synchroni-
zation of the LS fractional system are considered.

3. Stability Analysis of the LS System (5)

In this section of the manuscript, analysis of the local stability
of the mentioned system (5) is conducted. There are several
methods for performing local stability analysis of systems.

Some of these methods are the Laplace transform techniques
and the Matignon criterion. For the local stability analysis of
the LS system (5), we used the Matignon method, because it
is most commonly used in literature [30, 31]. The Matignon
condition for fractional stability is given by

∣ arg λ Jð Þ∣ > ηπ

2 , ð7Þ

where J is the Jacobian matrix of the system, λðJÞ denotes the
class of all eigenvalues of J, and η ∈ ð0, 1� is the order of the LS
system (5). The LS system (5) is said to be locally asymptoti-
cally stable whenever all the eigenvalues of J satisfy the
Matignon criterion. Firstly, we considered the equilibrium
points of (5), given by E0 = ð0, 0, 0, 0Þ, and constant values
of the parameters given by k = 0:7, r = 30, c = 4, and a = 10.
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Figure 4: Attractors of the hyperchaotic LS system (5) projected on the planes: (a) x-y, (b) x-z, (c) x-w, (d) y-z, and (e) y-w.
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The matrix J at E0 = ð0, 0, 0, 0Þ is given by

J0 =

−a a 0 c

r −1 0 0
0 0 −k 0
−1 0 0 −a

2
666664

3
777775: ð8Þ

The eigenvalues of the matrix J0 are λ1 = 12:3287, λ2 = −
23:2066,λ3 = −10:1221, and λ4 = −0:7000, and the corre-
sponding arguments of the eigenvalues are 0 for λ1 and π for
the remaining eigenvalues. It is easy to conclude that E0 is
locally unstable, because the absolute value of the arguments
does not satisfy the Matignon criteria (7). The presence of an

eigenvalue with a positive real part, λ1 = 12:3287, is necessary
for the SL system to exhibit a double-scroll attractor [31].

The general equilibrium points of the system in terms of
the parameters are given by

∓aθ,∓ a2 + c
a

� �
θ, a

2r − a2 + c
� �
a2

,±θ
� �

, θ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k a2r − a2 + cð Þð Þ

a2 a2 + cð Þ

s
:

ð9Þ

Substituting the parameter values k = 0:7, r = 30, c = 4, and
a = 10, the equilibrium points are given by E1 = ð−4:4150,−
4:5916,28:9600,+0:4415Þ and E2 = ð+4:4150,+4:5916,28:9600
,−0:4415Þ.
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Figure 5: Time series trajectories of system (5) for the fractional order η = 0:974:

20

15

10

5

0

–5

–10

–15

–20

–25
29.5 29.6 29.7 29.8 29.9 30 30.1 30.2 30.3 30.4 30.5

y-
m

ax

r

Figure 6: Bifurcation diagram for r ∈ ½29:5,30:5� and η = 0:974.

7Journal of Function Spaces



40

45

50

35

30

25

20

15

10

–5 0 5 10 15 2520

5

–20 –15 –10
0

z (
t)

y (t)

y-z plane

(a)

1.5

1

0.5

0

–0.5

–5 0 5 10 15 2520

–1

–20 –15 –10
–1.5

w
 (t

)

y (t)

y-w plane

(b)

1.5

1

0.5

0

–0.5

15 20 25 30 35 45 5040

–1

0 5 10
–1.5

w
 (t

)

y (t)

z-w plane

(c)

Figure 7: Attractors of the LS system (5) for r = 29:6 projected on the planes: (a) z-y, (b) y-w, and (c) z-w.

8 Journal of Function Spaces



25

20

15

10

–5

0

5

–10

–5 0 5 10 15 20

–15

–15 –10
–20

y 
(t)

x (t)

x-y plane

(a)

60

50

40

30

20

–5 0 5 10 15 20

10

–15 –10
0

z (
t)

x (t)

x-z plane

(b)

1

0.5

0

–0.5

–5 0 5 10 15 20

–1

–15 –10
–1.5

w
 (t

)

x (t)

x-w plane

(c)

Figure 8: Attractors of the LS system (5) for r = 30:4 projected on the planes: (a) x-y, (b) x-z, and (c) x-w.

9Journal of Function Spaces



25
20
15
10

5
0

–5
–10

–20
–15

–25
3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

y-
m

ax

c

Figure 9: Bifurcation diagram for c ∈ ½3:5,4:5� and η = 0:974.

1.5

1

0.5

0

–0.5

–10 –5 0 5 10 20 2515

–1

–20 –15
–1.5

w
 (t

)

y (t)

y-w plane

(a)

60

50

40

30

20

–10 –5 0 5 10 2015

10

–15
0

z (
t)

x (t)

x-z plane

C = 3.6
C = 4.4

(b)

Figure 10: Attractors of the LS system (5) for c = 3:6 and 4.4 projected on the planes: (a) y-w, (b) x-z, and (c) x-w.

10 Journal of Function Spaces



The Jacobian matrix corresponding to the equilibrium
point E1 = ð−4:4150,−4:5916,28:9600,+0:4415Þ is given by

J1 =

−10 10 0 4
1:04 −1 4:415 0

−4:5916 −4:415 −0:7 0
−1 0 0 −10

2
666664

3
777775: ð10Þ

The eigenvalues of J1 are λ1,2 = 0:2026 ± 5:7129i and
λ3,4 = −11:0526 ± 1:3824i: The arguments of the eigenvalues
are ±1:5353 for λ1,2 and ±3:0172 for λ3,4. It can then be
inferred that the Matignon criterion of local stability is satis-
fied for λ3,4, since ∣±3:0172 ∣ >ηπ/2, ∀η ∈ ð0, 1�: On the other
hand, the Matignon criterion is not satisfied for λ1,2 since ∣
±1:5353 ∣ >ηπ/2 only for η < 0:9774: That is, the equilibrium
point E1is unstable for η ≥ 0:9774:

The Jacobian matrix corresponding to the equilibrium
point E2 = ð+4:4150,+4:5916,28:9600,−0:4415Þ is given by

J2 =

−10 10 0 4
1:04 −1 −4:415 0
4:5916 4:415 −0:7 0
−1 0 0 −10

2
666664

3
777775: ð11Þ

The eigenvalues and their corresponding arguments of
Jacobian matrix J2 are identical to those of Jacobian matrix
J1. Hence, the conclusion in relation to the local stability
of equilibrium point E2 is the same as that in equilibrium
point E1.

In summary, the equilibria of the fractional-order system
(5) are unstable for the fractional order of η ∈ ½0:9774,1�,
k = 0:7, r = 30, c = 4, and a = 10:
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Figure 11: Bifurcation diagram of the LS system (5) for parameter k in the interval [0.5, 1].
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4. Numerical Solution

This section presents the numerical method used to obtain the
phase portraits and time series solutions of the fractional-
order LS system (5). To solve fractional-order systems, there
are several numerical and analytical methods such as the
predictor-corrector method, Homotopy method, and Ado-
mian decomposition method. In this study, we use the
predicator-corrector method, because it has a MATLAB code
that can be used to obtain phase portraits and time series solu-
tions of chaotic or hyperchaotic systems.

The numerical method in [26] is applied to our system as
follows: by starting from the first equation of (5) and apply-

ing the Reimann-Liouville fractional integral given by (2),
we obtain the following system

x tð Þ = x 0ð Þ + RL
0 I

η
t L1 t, x, y, z,wð Þ,

y tð Þ = y 0ð Þ + RL
0 I

η
t L2 t, x, y, z,wð Þ,

z tð Þ = z 0ð Þ + RL
0 I

η
t L3 t, x, y, z,wð Þ,

w tð Þ =w 0ð Þ + RL
0 I

η
t L4 t, x, y, z,wð Þ:

ð12Þ

Applying the predictor-corrector method to (12), the
integral terms are approximated and it becomes
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Figure 13: Attractors of the LS system (5) for different values of a in [0.5, 1] projected on: (a) x-y-z space, (b) x-w-z space, (c) z-w plane,
and (d) y-w plane.

x tð Þ = x 0ð Þ + hη κηmL1 0ð Þ + 〠
m−1

j=1
ψ
η
m−jL1 t j, xj, yj, zj,wj

� �
+ ψ

η
0L1 t j, xpm, ypm, zpm,wp

m

� �" #
,

y tð Þ = y 0ð Þ + hη κηmL2 0ð Þ + 〠
m−1

j=1
ψ
η
m−jL2 t j, xj, yj, zj,wj

� �
+ ψ

η
0L2 t j, xpm, ypm, zpm,wp

m

� �" #
,

z tð Þ = z 0ð Þ + hη κηmL3 0ð Þ + 〠
m−1

j=1
ψ
η
n−jL3 t j, xj, yj, zj,wj

� �
+ ψ

η
0L3 t j, xpm, ypm, zpm,wp

m

� �" #
,

w tð Þ =w 0ð Þ + hη κηmL4 0ð Þ + 〠
m−1

j=1
ψ
η
m−jL4 t j, xj, yj, zj,wj

� �
+ ψ

η
0L4 t j, xpm, ypm, zpm,wp

m

� �" #
,

ð13Þ
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where L1, L2, L3, and L4 are defined by (5)

Li 0ð Þ = Li x 0ð Þ, y 0ð Þ, z 0ð Þ,w 0ð Þð Þ, i = 1, 2, 3, ð14Þ

and

κηm = m − 1ð Þη −mη m − η − 1ð Þ
Γ 2 + ηð Þ ,

ψη
m = m − 1ð Þη+1 − 2mη+1 +mη m + 1ð Þ

Γ 2 + ηð Þ , m = 1, 2, 3,⋯,

ψη
0 =

1
Γ 2 + ηð Þ :

ð15Þ

Moreover, the predictors are given as follows:

xp tmð Þ = x 0ð Þ + hη 〠
m−1

j=1
ψ
η
m−j−1L1 t j, xj, yj, zj,wj

� �
,

yp tmð Þ = y 0ð Þ + hη 〠
m−1

j=1
ψ
η
m−j−1L2 t j, xj, yj, zj,wj

� �
,

zp tmð Þ = z 0ð Þ + hη 〠
m−1

j=1
ψ
η
m−j−1L3 t j, xj, yj, zj,wj

� �
,

wp tmð Þ =w 0ð Þ + hη 〠
m−1

j=1
ψ
η
m−j−1L4 t j, xj, yj, zj,wj

� �
:

ð16Þ

By Garrappa [26], the discretization method applied in
this study is stable and convergent. Thus, the advantages of
this discretization method are that it is both stable and con-
vergent, and of course, it has a MATLAB code that can be

used for plotting the attractors of the LS system (5). Several
other advantages of the method are described in [27].

As mentioned above, in this research, the predictor-
corrector technique is utilized to obtain the attractors and
time series trajectories of the LS system (5). Moreover, the
Lyapunov exponents are obtained using an algorithm by
Danca et al. [32]. The code is developed to determine all
Lyapunov exponents of a class fractional-order system mod-
eled by the Caputo derivative. The predictor-corrector
Adams-Bashforth-Moulton numerical method is the under-
lying numerical method used in this code.

5. Lyapunov Exponents, Bifurcation Diagrams,
and Hyperchaotic Behavior of the LS System

This section is devoted to investigating the chaotic or hyperch-
aotic nature of the LS system (5). The magnitude of the chaos
is quantified via the Lyapunov exponents (LE). Furthermore,
bifurcation diagrams caused by the variation of the parameters
of (5) are portrayed using the values of the parameters and the
initial value condition presented in (5).

5.1. Lyapunov Exponents for the Fractional Order η. Based
on the Danca algorithm mentioned above, some of the Lya-
punov exponents corresponding to different fractional
orders of the LS system (5) are shown in Table 1. The simu-
lation is made to run for 300 s.

Based on the LE values in Table 1, it is followed that the
dynamical system (5) possibly exhibits hyperchaotic behav-
ior for η ∈ ½0:857,1�, because in each column of Table 1, there
are two positive LEs. The positive Lyapunov exponent
ensures the sensitive dependence on the choice of initial
conditions (local instability of the system in the state space),
which is only one property of a chaotic system. Crudely, for
a given dynamical system to be chaotic, it must have the fol-
lowing properties: sensitivity to initial values, topological
transitivity, and also dense periodic orbits.
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Figure 19: Time series orbits of wðtÞ and wsðtÞ.
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System (5) is dissipative for η ∈ ½0:857,1� as the sum of
the LEs in every column of Table 1 is negative. The dissipa-
tivity of the system ensures the existence of an attractor.
From the experimental result in Table 1, it is observed that
for values of η ∈ ð0,0:857Þ, the system is not dissipative.
For instance, the sum of LEs for the fractional order η =
0:856 is 0.0211. Therefore, to get a dissipative hyperchaotic
system in this study, we considered the fractional order η
∈ ½0:857,1�.

The Kaplan-Yorke dimension denoted by dim ðLEÞ of sys-
tem (5) for η ∈ ½0:857,1� can be calculated. For instance, for the
fractional order η = 0:856, the Kaplan-Yorke dimension is

dim LEð Þ = 3 + 14:1214 + 1:0788 − 5:5530
−9:6712j j = 3:9975: ð17Þ

The Kaplan-Yorke dimension corresponding to η = 0:888
is

dim LEð Þ = 3 + 12:4969 + 0:9704 − 5:1187
−9:5574j j = 3:8735: ð18Þ

The Kaplan-Yorke dimension corresponding to η = 0:988
is

dim LEð Þ = 3 + 8:4644 + 0:6620 − 3:7225
−8:2829j j = 3:6524: ð19Þ

The Kaplan-Yorke dimension corresponding to η = 1 is

dim LEð Þ = 3 + 8:0815 + 0:6597 − 3:7113
−8:0818j j = 3:6224: ð20Þ

From the above dim ðLEÞs, it can be said that the Kaplan-
Yorke dimension is decreased from 3.9975 to 3.6224, as the
fractional order is increased from 0.857 to 1. Note that the
Kaplan-York dimension determines the upper bound of the
Hausdorff dimensions. In this study, the Hausdorff dimen-
sions of the attractors corresponding to different fractional
orders are nonintegers and system (5) has strange attractors
with fractal structures. Moreover, in Table 1 and the Kaplan-
Yorke dimensions calculated above, one can find that the sig-
nificance of the hyperchaotic attractors decreases as the frac-
tional order increases from 0.857 to 1. The loss of
significance is described by decreasing the sum of the positive
LEs in Table 1 and also by decreasing the dimensions as the
fractional order increases from 0.857 to 1. The loss of signifi-
cance is also observable from the bifurcation diagram of the
fractional orders shown in Figure 1 in the next section.

5.2. Bifurcation for the Fractional Order η. The bifurcation
diagram of the fractional order η is obtained by varying its
value in the interval ð0:857,1:00Þ with a time step of h =
0:001. The bifurcation diagram due to the variations of the
order is illustrated in Figure 1. According to this figure, for
values of η ∈ ð0:933,0:953Þ, the given system exhibits oscilla-
tion with stability and the system excites a chaotic behavior
for fractional values η ≥ 0:953.

The simulation results corresponding to different frac-
tional orders are portrayed in Figures 2–4 to verify the con-
clusion made in Figure 1.

It can be seen in Figures 2(a)–2(c) that the system
exhibits oscillation with stability for the fractional order η
= 0:95 ∈ ð0:933,0:953Þ, which is in agreement with the con-
clusion in Figure 1. The time series solution of system (5) is
shown for η = 0:95 in Figure 3, where the solution trajecto-
ries have the property of oscillation and stability as claimed
from the bifurcation diagram shown in Figure 1. Moreover,
Figures 4 and 5 characterize that system (5) exhibits a
hyperchaotic behavior at η = 0:974 confirming what is pre-
dicted by the bifurcation diagram in Figure 1.

5.3. Bifurcation for Parameter r. To get the bifurcation dia-
gram of parameter r of the hyperchaotic system (5), the frac-
tional order used is η = 0:97 and k = 0:7, c = 4, a = 10, and
r ∈ ½29:5,30:5� with a time step of h = 0:001 and the initial
value condition is y0 = ½0:5, 0:5, 5, 0:5�. The simulation is
made to run for 100 s. The bifurcation graph due to the var-
iation of r is illustrated in Figure 6.

It can be inferred in Figure 6 that system (5) exhibits a
hyperchaotic behavior for the parameters considered in the
simulation for r ∈ ½29:5,30:5�. The phase portraits of system
(5) shown in Figures 7 and 8 for r = 29:6 and r = 30:4 verify
the conclusion from the bifurcation diagram of Figure 6.

5.4. Bifurcation for Parameter c. For the bifurcation diagram
of parameter c of the hyperchaotic system (5), the fractional
order used is η = 0:974, k = 0:7, and a = 10 and the bifurca-
tion parameter is made to vary in the interval [3.5, 4.5] with
a time step of h = 0:001, with initial value condition y0 = ½
0:5 ; 0:5 ; 5 ; 0:5�, and the simulation is made to run for
100 s. The bifurcation diagram due to the variation of
parameter c is illustrated in Figure 9.

It is observable in Figure 5 that system (5) shows
hyperchaotic dynamics for parameter c in [3.5, 4.5]. More-
over, the phase portraits of system (5) for c = 3:6 and 4:4
shown in Figure 10 verify the conclusion drawn in Figure 9.

5.5. Bifurcation for Parameter k. To obtain the bifurcation
diagram due to parameter k of the hyperchaotic system
(5), the fractional order used is η = 0:974. The values of the
remaining parameters are k = 0:7 and a = 10, and the bifur-
cation parameter k is made to vary in the interval [0.5, 1]
with a time step of h = 0:001. The initial value condition is
y0 = ½0:5 ; 0:5 ; 5 ; 0:5� and the simulation is made to run for
100 s. The bifurcation graph due to the variation of k is illus-
trated in Figure 11.

It is clear in Figure 11 that system (5) shows hyperchaotic
dynamics for parameter k of the interval [0.5, 1], the given
values of the parameters, and fractional orders. Moreover, the
attractors of system (5) for values of parameter k in [0.5, 1]
are approximately similar to the figures shown in Figure 10.

5.6. Bifurcation for Parameter a. To obtain the bifurcation
diagram due to parameter a of the hyperchaotic system
(5), the fractional derivative, the initial condition, the time,
and the values of the remaining parameters are the same as
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those used in Section 5.5. The bifurcation diagram due to the
variation of parameter a is illustrated in Figure 12.

It is clear in Figure 12 that system (5) shows the hyperch-
aotic dynamics for parameter a in [9.5,10.5], the given param-
eters, and the fractional orders. Moreover, the attractors of
system (5) for different values of a are shown in Figure 13,
verifying the hyperchaotic nature of system (5).

6. Sensitivity to Initial Conditions

This section examines the effect of different initial values on
the dynamics of the hyperchaotic system (5). Since sensitiv-
ity to initial conditions is one of the important properties of
chaotic or hyperchaotic systems, it is necessary to examine
this property for the LS system (5) using different initial con-
ditions. In this study, to examine sensitivity to initial condi-
tions, we used the parameter values indicated in (5) and
η = 0:974. The initial condition considered is ðx0, 0:5,5, 0:5Þ
. The different values of x0 are shown in Figure 14.

It can be observed in Figure 14 that all the trajectories
coincided for about the first 5.1 seconds and they were
divided into two for about 10.1 seconds. At about 15.1 sec-
onds, they divided into three, diverging from each other.
The values of x0 of two trajectories that overlapped for the
first 15.1 seconds are closer to each other than the value of
x0 of the third trajectory.

7. Synchronization of the Lorenz-
Stenflo System

In this part of the study, we developed amaster-slave system of
the dynamic system (5). Firstly, two identical copies of system
(5) are associated via a coupling function. Then, we performed
a simulation of the coupled systems using different initial con-
ditions. Finally, the error dynamics showed asymptotic stabil-
ity and the phase portraits of the master and slave system
showed a strong correlation.

Let the master hyperchaotic model be given by

C
0D

q
t x tð Þ = a y − xð Þ + cw,

C
0D

q
t y tð Þ = rx − y − xz,

C
0D

q
t z tð Þ = −kz + xy,

C
0D

q
t w tð Þ = −x − aw,

ð21Þ

and the slave system be given by

C
0D

q
t xs tð Þ = a ys − xsð Þ + cws,

C
0D

q
t ys tð Þ = rxs − ys − xszs,

C
0D

q
t zs tð Þ = −kzs + xsys,

C
0D

q
t ws tð Þ = −xs − aws,

8>>>>>><
>>>>>>:

+ H −
∂F
∂X

� �
Xs − Xð Þ,

ð22Þ

where the coupling function is ðH − ð∂F/∂XÞÞðXs − XÞ,
∂F/∂X is the Jacobian matrix of the system, H is a Hermitian

matrix of appropriate size, X = ðx, y, z,wÞ, and Xs = ðxs, ys,
zs,wsÞ. Moreover, the coupling function is given by

H −
∂F
∂X

� �
Xs − Xð Þ =

0 0 0 −5:5
z − 32 −2 x 0
−y −x −2:6 0
−0:5 0 0 7

2
666664

3
777775

xs − x

ys − y

zs − z

ws −w

2
666664

3
777775,

ð23Þ

where a Hermitian matrix H is chosen to be

H =

−10 10 0 −1:5
−2 −3 0 0
0 0 −3:3 0

−1:5 0 0 −3

2
666664

3
777775: ð24Þ

It can be shown that all the real parts of the eigenvalues
of H are negative. Thus, the Matignon criterion is satisfied;
H is a Hermitian matrix.

Now, considering the coupling function (23), the slave
system becomes

C
0D

q
t xs tð Þ = a ys − xsð Þ + cws − 5:5 ws −wð Þ,

C
0D

q
t ys tð Þ = rxs − ys − xszs + −32 + zð Þ xs − xð Þ − 2 ys − yð Þ + x zs − zð Þ,
C
0D

q
t zs tð Þ = −kzs + xsys − y xs − xð Þ − x ys − yð Þ − 2:6 zs − zð Þ,

C
0D

q
t ws tð Þ = −xs − aws − 0:5 xs − xð Þ + 7 ws −wð Þ:

ð25Þ

Defining the error as

e1 = xs − x,
e2 = ys − y,
e3 = zs − z,
e4 =ws −w,

ð26Þ

the error dynamics is shown in

C
0D

q
t e1

C
0D

q
t e2

C
0D

q
t e3

C
0D

q
t e4

0
BBBBBB@

1
CCCCCCA

=He =

−10 10 0 −1:5
−2 −3 0 0
0 0 −3:3 0

−1:5 0 0 −3

0
BBBBB@

1
CCCCCA

e1

e2

e3

e4

0
BBBBB@

1
CCCCCA:

ð27Þ

To verify if the master and slave systems in equations
(21) and (25) are correlated, the time series trajectories of
the two systems, including the graphs of the dynamics of
the error, are illustrated in Figures 15–19. The values of
the parameters used are k = 0:7, r = 30, c = 4, and a = 10
together with the fractional order η = 0:978: Moreover, the
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initial value conditions used for the master and the slave sys-
tem are y0m = ½0:5,0:5,5, 0:5� and y0s = ½5, 5, 5, 5�, respectively.

It can be observed in Figure 15 that there is a robust
correlation between the master and slave systems because
the error graphs converge to zero approximately in the first
2.5 seconds, as shown in Figure 15.

8. Conclusion

This research study implemented a qualitative analysis on
the four-dimensional Lorenz-Stenflo mathematical model
in the sense of the Caputo operator. The Matignon local sta-
bility criterion showed that the equilibrium points of the LS
system are locally unstable, implying that the LS system led
to hyperchaotic dynamical behavior. The scheme developed
by Garrappa approximated the numerical solution, and the
corresponding MATLAB code was used to obtain all the fig-
ures in the study. The authors believe that the qualitative
analysis made in this manuscript, the displayed figures,
and the synchronization systems developed have revealed
complex dynamical behaviors of the Lorenz-Stenflo system
that are not obtained earlier by other studies on the system.
It is also worth mentioning that this study have been done
by including other concepts of fractional derivatives and
comparing the results to the results obtained due to the
Caputo fractional derivative, to be treated in the future by
the authors or interested researchers in the area.
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Let θ ≥ 0 and pð·Þ be a variable exponent, and we introduce a new class of function spaces Lpð·Þ,θ in a probabilistic setting which
unifies and generalizes the variable Lebesgue spaces with θ = 0 and grand Lebesgue spaces with pð·Þ ≡ p and θ = 1. Based on the
new spaces, we introduce a kind of Hardy-type spaces, grand martingale Hardy spaces with variable exponents, via the
martingale operators. The atomic decompositions and John-Nirenberg theorem shall be discussed in these new Hardy spaces.

1. Introduction

The martingale theory is widely studied in the field of math-
ematical physics, stochastic analysis, and probability. Weisz
[1] presented the atomic decomposition theorem for martin-
gale Hardy spaces. Herz [2] established the John-Nirenberg
theorem for martingales. Since then, the study of martingale
Hardy spaces associated with various functional spaces has
attracted a steadily increasing interest. For instance, martin-
gale Orlicz-type Hardy spaces were investigated in [3–6],
martingale Lorentz Hardy spaces were studied in [7–9], and
variable martingale Hardy spaces were developed in [10–14].

Let 1 < p <∞, and the grand Lebesgue space LpÞðEÞ
introduced by Iwaniec and Sbordone [15] is defined as the
Banach function space of the measurable functions f on
finite E such that

fk kLpÞ = sup
0<η<p−1

η
1

∣E ∣

ð
E
f xð Þj jp−ηdx

� �1/ p−ηð Þ
<∞: ð1Þ

Such spaces can be used to integrate the Jacobian under
minimal hypotheses [15]. The grand Lebesgue spaces as a
kind of Banach function space were investigated in the
papers of Capone et al. [16, 17], Fiorenza et al. [18–21],

Kokilashvili et al. [22, 23], and so forth. In particular,
grand Lebesgue spaces with variable exponents were studied
in [24, 25].

We find that the framework of grand Lebesgue spaces
with variable exponents has not yet been studied in martin-
gale theory. This paper is aimed at discussing the variable
grand Hardy spaces defined on the probabilistic setting
and showing the atomic decompositions and John-
Nirenberg theorem in these new Hardy spaces. More pre-
cisely, we first present the atomic characterization of grand
Hardy martingale spaces with variable exponents. To do
so, we introduce the following new notations of atom.

Definition 1. Let pð·Þ be a variable exponent and θ ≥ 0. A
measurable function a is called a ð1, pð·Þ, θÞ -atom (resp. ð2,
pð·Þ, θÞ -atom, ð3, pð·Þ, θÞ -atom) if there exists a stopping
time τ such that

ða1ÞEna = 0, ∀ n ≤ τ

ða2Þ∥sðaÞ∥L∞ðresp:∥SðaÞ∥L∞ , kMakL∞Þ ≤ kχfτ<∞gk−1Lpð·Þ,θ :

See Section 2 for the notation Lpð·Þ,θ. Denote by Asðpð·Þ,
∞Þ (resp. ASðpð·Þ,∞Þ, AMðpð·Þ,∞Þ) the collection of all
sequences of triplet ðak, τk, μkÞ, where ak are ð1, pð·Þ, θÞ
-atoms (resp. ð2, pð·Þ, θÞ-atoms, ð3, pð·Þ, θÞ-atoms), τk are
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stopping times satisfying ða1Þ and ða2Þ in Definition 1, and
μk are nonnegative numbers and also

〠
k∈ℤ

μk
χ τk<∞f g

∥χ τk<∞f g∥Lp ·ð Þ,θ

�����
�����
Lp ·ð Þ,θ

<∞: ð2Þ

Under these definitions, we show the atomic decomposi-
tions of the grand Hardy martingale spaces with variable
exponents (see Section 3). To be precise, we prove that for
any f = ð f nÞn≥0, f ∈Hs

pð·Þ,θ (resp. Qpð·Þ,θ, Dpð·Þ,θ) iff there exists

a sequence of triplet ðak, τk, μkÞ ∈Asðpð·Þ,∞Þ (resp. ASðpð·Þ,
∞Þ, AMðpð·Þ,∞Þ) so that for each n ≥ 0,

f n = 〠
k∈ℤ

μkEna
k a:e:,

〠
k∈ℤ

μk
χ τk<∞f g

∥χ τk<∞f g∥Lp ·ð Þ,θ

�����
�����
Lp ·ð Þ,θ

≈ fk kHs
p ·ð Þ,θ

resp: fk kQp ·ð Þ,θ
, fk kDp ·ð Þ,θ

� �
:

ð3Þ

Moreover, we extend the classical John-Nirenberg theo-
rem to the grand variable Hardy martingale spaces. To be pre-
cise, under suitable conditions, we present the following one:

fk kBMOp ·ð Þ,θ
≈ fk kBMO1

: ð4Þ

See Theorem 11 for the details. This conclusion improves
the recent results [12, 26], respectively.

Throughout this paper, ℤ, ℕ, and ℂ denote the integer
set, nonnegative integer set, and complex numbers set,
respectively. We denote by C the absolute positive constant,
which can vary from line to line. The symbol A ≲ B stands
for the inequality A ≤ CB. If we write A ≈ B, then it stands
for A ≲ B ≲ A.

2. Preliminaries

2.1. Grand Lebesgue Spaces with Variable Exponents. Let
ðΩ,F ,ℙÞ be a probability space. An F-measurable func-
tion pð·Þ: Ω⟶ ð0,∞Þ which is called a variable exponent.
For convenience, we denote

p− ≔ essinf p ωð Þ: ω ∈Ωf g, p+ ≔ esssup p ωð Þ: ω ∈Ωf g,
p− Bð Þ = essinf p ωð Þ: ω ∈ Bf g and
p+ Bð Þ = esssup p ωð Þ: ω ∈ Bf g:

ð5Þ

Denote by P =P ðΩÞ the collection of all variable
exponents pð·Þ satisfying with 1 < p− ≤ p+ <∞. The vari-
able Lebesgue space Lpð·Þ = Lpð·ÞðΩÞ consists of all F-mea-
surable functions f such that for some λ > 0,

ρ
f
λ

� �
=
ð
Ω

∣f wð Þ ∣
λ

� �p wð Þ
dℙ <∞: ð6Þ

This leads to a Banach function space under the
Luxemburg-Nakano norm

fk kLp ·ð Þ
≡ inf λ > 0 : ρ

f
λ

� �
≤ 1

� �
: ð7Þ

Based on this, we begin with the definition of the
grand Lebesgue space with variable exponent.

Definition 2. Suppose that pð·Þ ∈P and θ ≥ 0. We define the
grand Lebesgue space with variable exponent Lpð·Þ,θ = Lpð·Þ,θ
ðΩÞ as the set of all F -measurable functions f satisfying

fk kLp ·ð Þ,θ
≔ sup

0<η<p−−1
ηθ/ p−−ηð Þ fk kLp ·ð Þ−η

<∞: ð8Þ

The Grand Lebesgue space with variable exponent can
unify and generalize the various function spaces. To be pre-
cise, if θ = 0, Lpð·Þ,θ degenerates to the variable Lebesgue
space Lpð·Þ. If θ = 1 and pð·Þ ≡ p, Lpð·Þ,θ becomes the grand
Lebesgue space LpÞ.

2.2. Martingale Grand Hardy Spaces via Variable Exponents.
Let fFngn≥0 be a nondecreasing sequence of sub-σ-algebras
of F sets with F = σðSn≥0FnÞ. The expectation operator
and the conditional expectation operator relative to Fn are
denoted by E and En, respectively. A sequence f = ð f nÞn≥0
of random variables is said to be a martingale, if f n is
Fn-measurable, Eð∣f n ∣ Þ <∞, and Enð f n+1Þ = f n for every
n ≥ 0: Denote M to be the set of all martingales f = ð f nÞn≥0
with respect to fFngn≥0 such that f0 = 0. For f ∈M, write
its martingale difference by dnf = f n − f n−1ðn ≥ 0, f −1 = 0Þ.
Define the maximal function, the square function, and the
conditional square function of f , respectively, as follows:

Mmf = sup
n≤m

f nj j,Mf = sup
n≥0

f nj j,

Sm fð Þ = 〠
m

n=0
df nj j2

 !1/2

, S fð Þ = 〠
∞

n=0
df nj j2

 !1/2

,

sm fð Þ = 〠
m

n=0
En−1 df nj j2

 !1/2

, s fð Þ = 〠
∞

n=0
En−1 df nj j2

 !1/2

:

ð9Þ

Let Γ be the set of all sequences ðλnÞn≥0 of nondecreasing,
nonnegative, and adapted functions, and λ∞ ≔ lim

n⟶∞
λn. For

f ∈M, pð·Þ ∈P , and θ ≥ 0, denote

Γ Qp ·ð Þ,θ
h i

fð Þ = λnð Þn≥0 ∈ Γ : Sn fð Þ ≤ λn−1 n ≥ 1ð Þ, λ∞ ∈ Lp ·ð Þ,θ
n o

,

Γ Dp ·ð Þ,θ
h i

fð Þ = λnð Þn≥0 ∈ Γ : ∣f n∣≤λn−1 n ≥ 1ð Þ, λ∞ ∈ Lp ·ð Þ,θ
n o

:

ð10Þ

Now we introduce the grand martingale Hardy spaces
associated with variable exponents as follows:

2 Journal of Function Spaces



H∗
p ·ð Þ,θ = f ∈M : Mf ∈ Lp ·ð Þ,θ

n o
,∥f ∥H∗

p ·ð Þ,θ
= ∥Mf ∥Lp ·ð Þ,θ

,

HS
p ·ð Þ,θ = f ∈M : S fð Þ ∈ Lp ·ð Þ,θÞ

n o
,∥f ∥HS

p ·ð Þ,θ
= ∥S fð Þ∥Lp ·ð Þ,θ

,

Hs
p ·ð Þ,θ = f ∈M : s fð Þ ∈ Lp ·ð Þ,θ

n o
,∥f ∥Hs

p ·ð Þ,θ
= ∥s fð Þ∥Lp ·ð Þ,θ

,

Qp ·ð Þ,θ = f ∈M : ∥f ∥Qp ·ð Þ,θ
<∞

n o
,∥f ∥Qp ·ð Þ,θ

= inf
λnð Þn≥0∈Γ Qp ·ð Þ,θ½ � fð Þ

∥λ∞∥Lp ·ð Þ,θ
,

Dp ·ð Þ,θ = f ∈M : ∥f ∥Dp ·ð Þ,θ
<∞

n o
,∥f ∥Dp ·ð Þ,θ

= inf
λnð Þn≥0∈Γ Dp ·ð Þ,θ½ � fð Þ

∥λ∞∥Lp ·ð Þ,θ
:

ð11Þ

The bounded Lpð·Þ,θ-martingale spaces

Lp ·ð Þ,θ = f = f nð Þn≥0 : sup
n≥0

∥f n∥Lp ·ð Þ,θ
<∞

� �
, ð12Þ

where

∥f ∥Lp ·ð Þ,θ
= sup

n≥0
∥f n∥Lp ·ð Þ,θ

: ð13Þ

Remark 3. If θ = 0, then we obtain the definitions of H∗
pð·Þ,

HS
pð·Þ, H

s
pð·Þ, Qpð·Þ, and Dpð·Þ, respectively (see [10, 12, 27]). If

we consider the special case θ = 1 and pð·Þ ≡ p with the nota-
tions above, we obtain the definitions of H∗

pÞ, H
S
pÞ, H

s
pÞ, QpÞ,

and DpÞ, respectively (see [26]). In addition, if pð·Þ ≡ p
and θ = 0, we obtain the martingale Hardy spaces H∗

q ,

HS
q, H

s
q, Qq, and Dq, respectively (see [28]).

Refer to [29, 30] for more information on martingale
theory.

3. Atomic Characterization

The method of atomic characterization plays an useful tool
in martingale theory (see for instance [1, 4, 6, 31–33]). We
shall construct the atomic characterizations for grand Hardy
martingale spaces with variable exponents in this section.

Theorem 4. Let pð·Þ ∈P and θ ≥ 0. If the martingale f ∈
Hs

pð·Þ,θ, then there exists a sequence of triplet ðak, τk, μkÞ ∈As

ðpð·Þ,∞Þ so that for each n ≥ 0,

〠
k∈ℤ

μkEna
k = f n, a:e:, ð14Þ

〠
k∈ℤ

μk
χ τk<∞f g

∥χ τk<∞f g∥Lp ·ð Þ,θ

�����
�����
Lp ·ð Þ,θ

≲ fk kHs
p ·ð Þ,θ

: ð15Þ

Conversely, if the martingale f has a decomposition of
(14), then

∥f ∥Hs
p ·ð Þ,θ

≲ inf 〠
k∈ℤ

μk
χ τk<∞f g

∥χ τk<∞f g∥Lp ·ð Þ,θ

�����
�����
Lp ·ð Þ,θ

, ð16Þ

where the infimum is taken over all the admissible representa-
tions of (14).

Proof. Let f ∈Hs
pð·Þ,θ. Now consider the stopping time for

each k ∈ℤ:

τk = inf n ∈ℕ : sn+1 fð Þ > 2k
n o

: ð17Þ

It is easy to see that the sequence of these stopping times
is nondecreasing. For each stopping time τ, denote f τn = f n∧τ.
It is easy to write that

f n = 〠
k∈ℤ

f τk+1n − f τknð Þ: ð18Þ

For each k ∈ℤ, let μk = 3 · 2kkχfτk<∞gkLpð·Þ,θ . If μk ≠ 0, we
set

akn =
f τk+1n − f τkn

μk
, n ∈ℕ: ð19Þ

If μk = 0, we set akn = 0 for each n ∈ℕ. For each fixed k
∈ℤ, ðaknÞn≥0 is a martingale. Since sð f τkÞ = sτkð f Þ ≤ 2k, we
get

s akn
� �

≤
s f τk+1ð Þ + s f τkð Þ

μk
≤ χ τk<∞f g
��� ���−1

Lp ·ð Þ,θ
: ð20Þ

We can easily check that ðaknÞn≥0 is a bounded L2-mar-
tingale. Hence, there exists an element ak ∈ L2 such that En

ak = akn. If n ≤ τk, then akn = 0, and sðakÞ ≤ kχfτk<∞gk−1Lpð·Þ,θ .
Consequently, it implies that ak is really a ð1, pð·Þ, θÞ-atom.

Denote Λk ≔ fτk<∞g. Knowing that fτk<∞g = fsð f Þ
> 2kg and τk is nondecreasing for each k ∈ℤ, we obtain
Λk+1 ⊆Λk. Now, we point out that

〠
k∈ℤ

3 · 2kχΛk
xð Þ = 2〠

k∈ℤ
3 · 2kχΛk\Λk+1

xð Þ: ð21Þ

Indeed, for a fixed x0 ∈Ω, there is k0 ∈ℤ so that x0 ∈Λk0
and x0∈Λk0+1, then we have

〠
k∈ℤ

3 · 2kχΛk
x0ð Þ = 〠

k0

k=−∞
3 · 2kχΛk

x0ð Þ = 〠
k0

k=−∞
3 · 2k = 3 · 2k0+1,

〠
k∈ℤ

3 · 2kχΛk\Λk+1
x0ð Þ = 〠

k0

k=−∞
3 · 2kχΛk\Λk+1

x0ð Þ = 3 · 2k0 :

ð22Þ
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This means

〠
k∈ℤ

μkχ τk<∞f g
∥χ τk<∞f g∥Lp ·ð Þ,θ

�����
�����
Lp ·ð Þ,θ

= 〠
k∈ℤ

3 · 2kχ τk<∞f g

�����
�����
Lp ·ð Þ,θ

= 6 〠
k∈ℤ

2kχΛk\Λk+1

�����
�����
Lp ·ð Þ,θ

= 6 sup
0<η<p−−1

ηθ/ p−−ηð Þ inf λ > 0 :

ð
Ω

〠
k∈ℤ

2kχΛk\Λk+1
xð Þ

λ

 !p xð Þ−η
dℙ ≤ 1

8<
:

9=
;

2
4

3
5

= 6 sup
0<η<p−−1

ηθ/ p−−ηð Þ inf λ > 0 : 〠
k∈ℤ

ð
Λk\Λk+1

2k
λ

� �p xð Þ−η
dℙ ≤ 1

( )" #

= 6 sup
0<η<p−−1

ηθ/ p−−ηð Þ inf λ > 0 : 〠
k∈ℤ

ð
Λk\Λk+1

s fð Þ
λ

� �p xð Þ−η
dℙ ≤ 1

( )" #

≤ 6 sup
0<η<p−−1

ηθ/ p−−ηð Þ inf λ > 0 :

ð
Ω

s fð Þ
λ

� �p xð Þ−η
dℙ ≤ 1

( )" #

= 6 sup
0<η<p−−1

ηθ/ p−−ηð Þ∥s fð Þ∥Lp ·ð Þ−η
= 6∥f ∥Hs

p ·ð Þ,θ
:

ð23Þ

For the converse part, according to the definition of
ð1, pð·Þ, θÞ-atom, we easily conclude

s ak
� �

= s ak
� �

χ τk<∞f g ≤ s ak
� ���� ���

L∞
χ τk<∞f g ≤ χ τk<∞f g

��� ���−1
Lp ·ð Þ,θ

χ τk<∞f g,

ð24Þ

where ak is the ð1, pð·Þ, θÞ-atom and τk is the stopping
time associated with ak which, when combined with the
subadditivity of the operator s, yields

s fð Þ ≤ 〠
k∈ℤ

μks ak
� �

≤ 〠
k∈ℤ

μk
χ τk<∞f g

∥χ τk<∞f g∥Lp ·ð Þ,θ

: ð25Þ

This implies

∥f ∥Hs
p ·ð Þ,θ

= ∥s fð Þ∥Lp ·ð Þ,θ
≤ 〠

k∈ℤ
μk

χ τk<∞f g
∥χ τk<∞f g∥Lp ·ð Þ,θ

�����
�����
Lp ·ð Þ,θ

: ð26Þ

Taking over all the admissible representations of (14)
for f , we obtain the desired result.

Next, we will characterize Qpð·Þ,θ and Dpð·Þ,θ by atoms,
respectively. The proof is similar to the proof of Theorem
4. For the completeness of this paper, we provide some
details.

Theorem 5. Suppose pð·Þ ∈P and θ ≥ 0. If the martingale
f = ð f nÞn≥0 ∈Qpð·Þ,θ (resp. Dpð·Þ,θ), then there exists a sequence

of triplet ðak, τk, μkÞ ∈ASðpð·Þ,∞Þ (resp.AMðpð·Þ,∞Þ) so that
for each n ∈ℕ,

f n = 〠
k∈ℤ

μkEna
k, ð27Þ

〠
k∈ℤ

μk
χ τk<∞f g

∥χ τk<∞f g∥Lp ·ð Þ,θ

�����
�����
Lp ·ð Þ,θ

≲ ∥f ∥Qp ·ð Þ,θ
resp:∥f ∥Dp ·ð Þ,θ

� �
:

ð28Þ

Conversely, if the martingale f = ð f nÞn≥0 has admissible
representation (27), then f ∈Qpð·Þ,θ (resp. Dpð·Þ,θ) and

∥f ∥Qp ·ð Þ,θ
resp: fk kDp ·ð Þ,θ

� �
≲ inf 〠

k∈ℤ
μk

χ τk<∞f g
∥χ τk<∞f g∥Lp ·ð Þ,θ

�����
�����
Lp ·ð Þ,θ

,

ð29Þ

where the infimum is taken over all the admissible representa-
tions of (27).

Proof. The proof follows the ideas in Theorem 4, so we omit
some details. Suppose f = ð f nÞn≥0 ∈Qpð·Þ,θ (resp. Dpð·Þ,θ). We
define stopping times as follows:

τk = inf n ∈ℕ : λn > 2k
n o

, inf ∅ =∞, ð30Þ

where ðλnÞn≥0 is an adapted, nondecreasing sequence such
that almost everywhere ∣Snð f Þ ∣ ≤λn−1 (resp.∣f n ∣ ≤λn−1) and
λ∞ ∈ Lpð·Þ,θ:

Let ðakÞk∈ℤ and ðμkÞk∈ℤ be defined as in the proof of
Theorem 4. And replace Λk = fτk<∞g = fsð f Þ > 2kg by the
Λk = fτk<∞g = fλ∞ > 2kg. Then, we obtain that f n =∑k∈ℤ
μkEna

k and (28) still hold.
For the converse part, write

λn = 〠
k∈ℤ

μk∥S ak
� �

∥L∞χ τk≤nf g resp:λn = 〠
k∈ℤ

μk∥M ak
� �

∥L∞χ τk≤nf g

 !
:

ð31Þ

Clearly, ðλnÞn≥0 is a nonnegative, nondecreasing, and
adapted sequence with Sn+1ð f Þ ≤ λn (resp.∣f n ∣ ≤λn). Thus,
we get

∥f ∥Qp ·ð Þ,θ
resp: fk kDp ·ð Þ,θ

� �
= λ∞k kLp ·ð Þ,θ

≤ 〠
k∈ℤ

μk
χ τ<∞f g

∥χ τ<∞f g∥p ·ð Þ,θ

�����
�����
p ·ð Þ,θ

:

ð32Þ

Taking over all the admissible representations of (27) for
f , we obtain the desired result.

Remark 6. Suppose pð·Þ ∈P and θ ≥ 0. We conclude that the
sum ∑N

k=Mμka
k in Theorem 4 converges to f in Hs

pð·Þ,θ as M
⟶ −∞, N ⟶∞. Indeed, it follows by the subadditive
of the operator s, we get, for any M,N ∈ℤ with M <N ,
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s f − 〠
N

k=M
μka

k

 !
≤ s f − f τN+1ð Þ + s f τMð Þ: ð33Þ

Moreover, sð f − f τN+1Þ is decreasing and convergent to 0
(a.e.) as N ⟶∞, and sð f τM Þ is decreasing and convergent
to 0 (a.e.) as M⟶ −∞. From this and the dominated con-
vergence theorem in Lpð·Þ−ε for 0 < ε < p− − 1 (see [34], The-
orem 2.62), it follows that

∥f − 〠
N

k=M
μka

k∥Hs
p ·ð Þ,θ

≤ ∥s f − f τN+1ð Þ + s f τMð Þ∥Lp ·ð Þ,θ

≤ sup
0<η<p−−1

ηθ/ p−−ηð Þ∥s f − f τN+1ð Þ∥Lp ·ð Þ−η
+ sup

0<η<p−−1

� ηθ/ p−−ηð Þ∥s f τMð Þ∥Lp ·ð Þ−η
⟶ 0 asM⟶ −∞,N ⟶∞:

ð34Þ

Furthermore, we can also show the norm convergence of
the summation ∑N

k=Mμka
k in Theorems 5 as M⟶ −∞,

N ⟶∞.

4. The Generalized John-Nirenberg Theorem

In the sequel of this section, we will often suppose that every
Fn is generated by countably many atoms. Recall that B ∈
Fn is called an atom, and if for any A ⊆ B with A ∈Fn satis-
fying ℙðAÞ <ℙðBÞ, we have ℙðAÞ = 0. We denote by AðFnÞ
the set of all atoms in Fn. We shall present the generalized
John-Nirenberg theorem on grand Lebesgue spaces with
variable exponents. For each 1 ≤ p <∞, the Banach space
BMOp (bounded mean oscillation [35]) is defined as

BMOp = f ∈ Lp : fk kBMOp
= sup

n≥1
En f − En−1 fj jp	 
�� ��1/p

L∞
<∞

� �
:

ð35Þ

It can be easily shown that the norm of BMOp is equiv-
alent to

fk kBMOp
= sup

τ∈T

∥f − f τ−1∥Lp
∥χ τ<∞f g∥Lp

, ð36Þ

where T consists of all stopping times relative to fFngn≥0.
It follows immediately from the John-Nirenberg theorem
[2, 30] that

BMOp = BMO1, 1 < p <∞: ð37Þ

What is more, in [2], there has

C · p fk kBMO1
≥ fk kBMOp

≥ fk kBMO1
: ð38Þ

Definition 7. For pð·Þ ∈P and θ ≥ 0, the generalized BMO
martingale space is defined by

BMOp ·ð Þ,θ = f ∈ Lp ·ð Þ,θ : ∥f ∥BMOp ·ð Þ,θ
<∞

n o
, ð39Þ

where

∥f ∥BMOp ·ð Þ,θ
= sup

τ∈T

∥f − f τ−1∥Lp ·ð Þ,θ

∥χ τ<∞f g∥Lp ·ð Þ,θ

: ð40Þ

Remark 8. If θ = 0, BMOpð·Þ,θ degenerates to the variable
exponent BMO martingale space BMOpð·Þ introduced and
studied in [12]. If θ = 1 and pð·Þ ≡ p, BMOpð·Þ,θ becomes
the grand BMO martingale space BMOpÞ studied in [26].

In order to establish the generalized John-Nirenberg the-
orem in the framework of BMOpð·Þ,θ, we need the following
lemmas and notations.

Lemma 9 (Hölder’s inequality, see [34]). Let pð·Þ, qð·Þ, rð·Þ
∈P satisfy

1
p ωð Þ +

1
q ωð Þ = 1

r ωð Þ , a:e:ω ∈Ω: ð41Þ

Then, there exists a constant C such that for all f ∈ Lpð·Þ
and g ∈ Lqð·Þ, we have f g ∈ Lrð·Þ and

∥f g∥Lr ·ð Þ
≤ C fk kLp ·ð Þ

∥g∥Lq ·ð Þ
: ð42Þ

We mention that if the variable exponent pðxÞ meets the
log-Hölder continuity condition in Euclidean spaces, the
inverse Hölder’s inequality holds for characteristic functions
in Lpð·ÞðℝnÞ (see [36]). Compared with Euclidean space ℝn,
the probability space ðΩ,ℙÞ has no natural metric structure.
Fortunately, Jiao et al. [11, 27] put forward the following
condition: there exists an absolute constant κ ≥ 1 depending
only on pð·Þ such that

ℙ Bð Þp− Bð Þ−p+ Bð Þ ≤ κ,∀B ∈
[
n≥0

A Fnð Þ: ð43Þ

Lemma 10 (see [27]). Suppose pð·Þ ∈P satisfying (43).

(1) For each B ∈
S

n≥0AðFnÞ, we get

ℙ Bð Þ ≈ ∥χB∥Lp ·ð Þ
∥χB∥Lp′ ·ð Þ : ð44Þ

(2) Let qð·Þ ∈P satisfy (43). If rð·Þ satisfies

1
r ωð Þ =

1
p ωð Þ + 1

q ωð Þ , a:e:ω ∈Ω, ð45Þ

then rð·Þ also satisfies condition (43). Moreover, for each B
∈
S

n≥0AðFnÞ, we deduce
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∥χB∥Lr ·ð Þ
≈ ∥χB∥Lp ·ð Þ

∥χB∥Lq ·ð Þ
: ð46Þ

Theorem 11. Suppose that pð·Þ ∈P satisfies (43) and θ ≥ 0.
Then, for every f ∈ BMO1, there has

fk kBMO1
≲ fk kBMOp ·ð Þ,θ

≲ fk kBMO1
: ð47Þ

Proof. If pð·Þ ∈P satisfies (43), then we clearly get that pð·Þ
− η also satisfies (43) for 0 < η < p− − 1. It follows from
Lemmas 9 and 10 that

∥f − f τ−1∥L1
χ τ<∞f g
��� ���

L1

≤
∥f − f τ−1∥Lp ·ð Þ−η

∥χ τ<∞f g∥L p ·ð Þ−ηð Þ ′

χ τ<∞f g
��� ���

L1

≈
∥f − f τ−1∥Lp ·ð Þ−η

χ τ<∞f g
��� ���

Lp ·ð Þ−η

,

ð48Þ

for any 0 < η < p− − 1. Here, the variable exponent ðpð·Þ − ηÞ′
is defined by

1
p ωð Þ − ηð Þ′

+ 1
p ωð Þ − η

= 1, a:e:ω ∈Ω: ð49Þ

This is equivalent to the following inequality:

∥f − f τ−1∥L1
χ τ<∞f g
��� ���

L1

· χ τ<∞f g
��� ���

Lp ·ð Þ−η
≲ ∥f − f τ−1∥Lp ·ð Þ−η

: ð50Þ

Hence, we have

∥f − f τ−1∥L1
χ τ<∞f g
��� ���

L1

=
sup

0<η<p−−1
ηθ/ p−−ηð Þ ∥f − f τ−1∥L1 / χ τ<∞f g

��� ���
L1

� �
· χ τ<∞f g
��� ���

Lp−η

sup
0<η<p−−1

ηθ/ p−−ηð Þ∥χ τ<∞f g∥Lp ·ð Þ−η

≲
sup

0<η<p−−1
ηθ/ p−−ηð Þ∥f − f τ−1∥Lp ·ð Þ−η

sup
0<η<p−−1

ηθ/ p−−ηð Þ∥χ τ<∞f g∥Lp ·ð Þ−η

=
∥f − f τ−1∥Lp ·ð Þ,θ

χ τ<∞f g
��� ���

Lp ·ð Þ,θ

:

ð51Þ

Taking the supremum over all stopping times, we deduce

∥f ∥BMO1
≤ ∥f ∥BMOp ·ð Þ,θ

: ð52Þ

Conversely, from the definition of Lpð·Þ,θ, we get

∥f − f τ−1∥Lp ·ð Þ,θ

χ τ<∞f g
��� ���

Lp ·ð Þ,θ

=
sup

0<η<p−−1
ηθ/ p−−ηð Þ∥f − f τ−1∥Lp ·ð Þ−η

sup
0<η<p−−1

ηθ/ p−−ηð Þ∥χ τ<∞f g∥Lp ·ð Þ−η

≤ sup
0<η<p−−1

ηθ/ p−−ηð Þ∥f − f τ−1∥Lp ·ð Þ−η

ηθ/ p−−ηð Þ∥χ τ<∞f g∥Lp ·ð Þ−η

( )

= sup
0<η<p−−1

∥f − f τ−1∥Lp ·ð Þ−η

∥χ τ<∞f g∥Lp ·ð Þ−η

( )
:

ð53Þ

It follows from Lemma 9 that

∥f − f τ−1∥Lp ·ð Þ−η

∥χ τ<∞f g∥Lp ·ð Þ−η

≤
∥f − f τ−1∥L2p+ ∥χ τ<∞f g∥Lq ·ð Þ

∥χ τ<∞f g∥Lp ·ð Þ−η

≈
∥f − f τ−1∥L2p+
∥χ τ<∞f g∥L2p+

,

ð54Þ

where qð·Þ satisfies
1

p ωð Þ − η
= 1
2p+

+ 1
q ωð Þ , a:e:ω ∈Ω: ð55Þ

Hence, by (38), we deduce that

∥f ∥BMOp ·ð Þ,θ
= sup

τ∈T

∥f − f τ−1∥Lp ·ð Þ,θ

χ τ<∞f g
��� ���

Lp ·ð Þ,θ

≲ sup
τ∈T

sup
0<η<p−−1

∥f − f τ−1∥L2p+
∥χ τ<∞f g∥L2p+

= sup
τ∈T

∥f − f τ−1∥L2p+
∥χ τ<∞f g∥L2p+

= ∥f ∥BMO2p+
≤ C · 2p+∥f ∥BMO1

:

ð56Þ

From what has been discussed above, we draw the con-
clusion that

∥f ∥BMO1
≲ ∥f ∥BMOp ·ð Þ,θ

≲ ∥f ∥BMO1
: ð57Þ

Theorem 11 improves the recent results [12, 26], respec-
tively. More precisely, if we consider the case θ = 0, then the
following result holds:

Corollary 12. If pð·Þ satisfies (43) with 1 < p− ≤ p+ <∞, then
for f ∈ BMO1,

fk kBMOp ·ð Þ
≈ fk kBMO1

: ð58Þ

And especially for θ = 1 and pð·Þ ≡ p, we get the conclu-
sion as follows.

Corollary 13 (see [26]). Suppose 1 < p <∞, then for f ∈
BMO1,

fk kBMOpÞ
≈ fk kBMO1

: ð59Þ
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In this paper, we investigate the numerical solution of the Fornberg-Whitham equations with the help of two powerful techniques:
the modified decomposition technique and the modified variational iteration technique involving fractional-order derivatives with
Mittag-Leffler kernel. To confirm and illustrate the accuracy of the proposed approach, we evaluated in terms of fractional order
the projected models. Furthermore, the physical attitude of the results obtained has been acquired for the fractional-order different
value graphs. The results demonstrated that the future method is easy to implement, highly methodical, and very effective in
analyzing the behavior of complicated fractional-order linear and nonlinear differential equations existing in the related areas
of applied science.

1. Introduction

The analysis of the Fornberg-Whitham equation (FWE) is a
significant mathematical equation of mathematical physics.
The Fornberg-Whitham equation is defined as [1, 2]

DIμ −DζζIμ +Dζμ = μDζζζμ − μDζμ + 3DζμDζζμ: ð1Þ

This model was invented to evaluate the nonlinear
breaking dispersive ocean waves. The Fornberg-Whitham
equation is shown to yield peakon solutions as a physical
equation for waves of restricting height and the occurrences
of wave breaking. Fractional calculus is now widely used and
accepted, owing to its well-known uses in a variety of fields
of seemingly disparate sectors of science and engineering
[3, 4]. Many scholars, including Gupta and Singh [5] and
Alderremy et al. [6], have examined the fractional of the
Fornberg-Whitham equation relevant to the fractional
Caputo derivative, Sunthrayuth et al. [7], Singh et al. [8],
etc. Because of the singular kernel of the fractional Caputo

derivative, its implementations are limited. Caputo and
Fabrizio [9] created derivatives of any (real or complex)
order with a nonsingular kernel. Caputo and Fabrizio’s
derivative has been used to a variety of real-world situations,
including fractional nonhomogeneous heat models [10], El
Nino-Southern fractional oscillations models [11], and
arbitrary-order system of smoking models [12]. Atangana
and Baleanu [13] devised a novel fractional-order derivative
called the Atangana-Baleanu (AB) fractional derivative,
which has the kernel of aMittag-Leffler-type function. Kumar
et al. [14] investigated the regularised long-wave equation
with a Mittag-Leffler-type kernel incorporating the fractional
operator. A Mittag-Leffler-type kernel is used in the chemical
kinetics system connected with a fractional derivative which
was investigated by Singh et al. [15]. Baleanu et al. [16]
recently proposed optimal fractionalmodelswith nonsingular
Mittag-Leffler kernels. As we all know, the Mittag-Leffler
function is more beneficial in expressing physical difficul-
ties than the power function or the exponential function;
as a result, the AB fractional derivative is well suited to
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unravelling material heterogeneities and structures or
media with different scales.

George Adomian was introduced to and established a
technique for “solving integro-differential, differential equa-
tions, delay differential, and partial differential equations”
[17, 18]. The result is discovered as an infinite sequence that
quickly converges to precise solution. This method has been
shown to be effective in solving both linear and nonlinear
models. The method for solving a nonlinear operator
problem is to use decomposition equations in a series of
functions. Each expression’s sequence is derived from a
polynomial derived from the expansion of an approximate
solution into power sequences. The Adomian decomposition
method technique is really simple in theory, but the diffi-
culty arises when it comes to determining polynomials and
illustrating the convergence of a series of functions [19].
Lesnic [20] analyzed the convergent of the Adomian decom-
position method when using heat and wave models for both
backward and forward time evolution. Gaber and El-Sayed
used the Adomian method of solving fractal-order partial
differential equations on a finite domain in [21]. Ghoreishi
et al. [22] investigated the Adomian decomposition method’s
ability to investigate nonlinear wave problems with changing
coefficients, demonstrating that the Adomian decomposition
method can solve these equations without the need for
dissertation, linearization, transformation, or perturbation.

The variational iteration approach [23, 24] was pub-
lished in the late 1990s to solve a seepage flow with fractional
derivatives and a nonlinear oscillator, and it has since been
widely utilized as a primary analytical tool for solving a
variety of nonlinear problems. It has fully grown into a fully
fledged mathematical approach as a result of considerable
research by a number of authors, including He [25, 26],
Ganji and Sadighi [27], Ozis and Yildirim [28], and Noor
and Mohyud-Din [29]. On November 24, 2018, we searched
Clarivate’s Web of Science for “variational iteration
approach” and got 3761 hits. The technique’s identification
of the Lagrange multiplier necessitates the understanding
of variational theory [30], and the technique’s sophisticated
identification process may limit its implementation to real-
world issues.

2. Preliminary Concepts

Definition 1. The Caputo fractional derivative is given as [31]

C
0D

γ

I
f ζ,Ið Þ = 1

Γ n − γð Þ
ðI
0
I − θð Þn−γ−1 f nð Þ ζ, θð Þdθ, n − 1 < γ ≤ n:

ð2Þ

Definition 2. The Laplace transformation connected with
fractional Caputo derivative LCDγ

If f ðIÞg is expressed by [31]

L LCDγ
I f Ið Þf g� �

sð Þ = sγL f x,Ið Þ½ � sð Þ − sγ−1 f x, 0ð Þ: ð3Þ

Definition 3. In Caputo sense, the Atangana-Baleanu deriva-
tive is defined as [31]

ABCDγ
I f Ið Þf g = A γð Þ

1 − γ

ðI
a
f ′ kð ÞEγ −

γ

1 − γ
1 − kð Þγ

� �
dk, ð4Þ

where AðγÞ is a normalization function such that Að0Þ =
Að1Þ = 1, f ∈H1ða, bÞ, b > a, γ ∈ ½0, 1�, and Eγ represent the
Mittag-Leffler function.

Definition 4. The Atangana-Baleanu derivative in the
Riemann-Liouville sense is defined as [31]

ABCDγ
I f Ið Þf g = A γð Þ

1 − γ

d
dI

ðI
a
f kð ÞEγ −

γ

1 − γ
1 − kð Þγ

� �
dk:

ð5Þ

Definition 5. The Laplace transform connected with the
Atangana-Baleanu operator is defined as [31]

ABDγ
I f Ið Þf g sð Þ = A γð ÞsγL f Ið Þf g sð Þ − sγ−1 f 0ð Þ

1 − γð Þ sγ + γ/ 1 − γð Þð Þð Þ : ð6Þ

Definition 6. Consider 0 < γ < 1, and f is a function of γ;
then, the fractional-order integral operator of γ is given
as [31]

ABCIγI f Ið Þf g = 1 − γ

A γð Þ f Ið Þ + γ

A γð ÞΓ γð Þ
ðI
a
f kð Þ I − kð Þγ−1dk:

ð7Þ

3. The Methodology of Variational
Iteration Method

This section introduces the solution of fractional partial
differential equations with the help of the variational
iteration method.

ABCDγ
Iν ζ,Ið Þ + �G ζ,Ið Þ +N ζ,Ið Þ −P ζ,Ið Þ = 0, ϕ − 1 < γ ≤ ϕ:

ð8Þ

The initial condition is

ν ζ, 0ð Þ = g ζð Þ, ð9Þ

where ABCDγ
I = ∂γ/∂Iγ is the fractional derivative Caputo

order γ, �G and N are linear and nonlinear terms,
respectively, and P is the source function.

The Laplace transformation is applied to equation (8);
we get

L ABCDγ
Iν ζ,Ið Þ� �

+ L �G ζ,Ið Þ +N ζ,Ið Þ −P ζ,Ið Þ� �
= 0:
ð10Þ
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The Lagrange multiplier iterative method is

L ABCDγ
Iν ζ,Ið Þ� �

+ L �G ζ,Ið Þ +N ζ,Ið Þ −P ζ,Ið Þ� �
= 0:
ð11Þ

A Lagrange multiplier is as

λ sð Þ = −
sγ 1 − γð Þ + γð Þ

sγ
: ð12Þ

Applying inverse Laplace transform L−1, equation (11)
can be written as

νϕ+1 ζ,Ið Þ = νϕ ζ,Ið Þ − L−1
sγ 1 − γð Þ + γð Þ

sγ
−L �G ζ,Ið Þ���

+N ζ,Ið Þg� − L P ζ,Ið Þ½ �
�
:

ð13Þ

4. The Conceptualization of MDM

In this section, we discuss the solution of fractional partial
differential equations with the help of the modified decom-
position method.

ABCDγ
Iν ζ,Ið Þ + �G ζ,Ið Þ +N ζ,Ið Þ −P ζ,Ið Þ = 0, m − 1 < γ ≤m:

ð14Þ

The initial condition is

ν ζ, 0ð Þ = g ζð Þ, ð15Þ

where ABCDγ
I = ∂γ/∂Iγ is the fractional derivative of Caputo

order γ, �G and N are linear and nonlinear terms, respec-
tively, and P is the source term.

Using Laplace transformation to equation (14), we get

L ABCDγ
Iν ζ,Ið Þ� �

+ L �G ζ,Ið Þ +N ζ,Ið Þ −P ζ,Ið Þ� �
= 0:
ð16Þ

Taking the Laplace transform of differentiation property,
we have

L ν ζ,Ið Þ½ � = 1
s
ν ζ, 0ð Þ + sγ 1 − γð Þ + γð Þ

sγ
L P ζ,Ið Þ½ �

−
sγ 1 − γð Þ + γð Þ

sγ
L �G ζ,Ið Þ +N ζ,Ið Þ� ��

:

ð17Þ

MDM result of infinite series νðζ,IÞ,

ν ζ,Ið Þ = 〠
∞

ϕ=0
νϕ ζ,Ið Þ: ð18Þ

N nonlinear function is defined as

N ζ,Ið Þ = 〠
∞

ϕ=0
Aϕ: ð19Þ

The nonlinear terms can be analyzed with the aid of
Adomian polynomials. So the Adomian polynomial formula
is expressed as

Aϕ =
1
j!

∂ϕ

∂λϕ
N 〠

∞

ϕ=0
λϕνϕ

 !( )" #
λ=0

: ð20Þ

Then, put equations (18) and (19) into (17), which gives

L 〠
∞

ϕ=0
νϕ ζ,Ið Þ

" #
= 1

s
ν ζ, 0ð Þ + sγ 1 − γð Þ + γð Þ

sγ
L P ζ,Ið Þf g

−
sγ 1 − γð Þ + γð Þ

sγ
L �G 〠

∞

ϕ=0
νϕ

 !
+ 〠

∞

ϕ=0
Aϕ

( )
:

ð21Þ

Applying the inverse Laplace transformation to equation
(21), we get

〠
∞

ϕ=0
νϕ ζ,Ið Þ = L−1

1
s
ν ζ, 0ð Þ + sγ 1 − γð Þ + γð Þ

sγ
L P ζ,Ið Þf g

�

−
sγ 1 − γð Þ + γð Þ

sγ
L �G 〠

∞

ϕ=0
νϕ

 !
+ 〠

∞

ϕ=0
Aϕ

( )�
:

ð22Þ

Define the terms as follows:

ν0 ζ,Ið Þ = L−1
1
s
ν ζ, 0ð Þ + sγ 1 − γð Þ + γð Þ

sγ
L P ζ,Ið Þf g

� �
,

ν1 ζ,Ið Þ = −L−1
sγ 1 − γð Þ + γð Þ

sγ
L �G1 ν0ð Þ +A0
� �� �

:

ð23Þ

In general, ϕ ≥ 1 is defined as

νϕ+1 ζ,Ið Þ = −L−1
sγ 1 − γð Þ + γð Þ

sγ
L �G νϕ

� 	
+Aϕ

� �� �
: ð24Þ

5. Application of Techniques

Example 7. Consider the time-fractional nonlinear
Fornberg-Whitham equation

Dγ
Iν −DζζIν +Dζν = νDζζζν − νDζν + 3DζνDζζν, 0 < γ ≤ 1,

ð25Þ

with the initial condition
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ν ζ, 0ð Þ = e ζ/2ð Þ: ð26Þ

Taking Laplace transformation of (25),

sγ

sγ 1 − γð Þ + γð Þ L ν ζ,Ið Þ½ � − 1
s
ν ζ, 0ð Þ


 �
= L DζζIν −Dζν + νDζζζν − νDζν + 3DζνDζζν
� �

:

ð27Þ

Using inverse Laplace transformation

ν ζ,Ið Þ = L−1
ν ζ, 0ð Þ

s
−

sγ 1 − γð Þ + γð Þ
sγ

L DζζIν −Dζν
��

+ νDζζζν − νDζν + 3DζνDζζν
��
:

ð28Þ

Applying Adomian procedure, we have

ν0 ζ,Ið Þ = L−1
ν ζ, 0ð Þ

s

� �
= L−1

e ζ/2ð Þ

s

" #
,

ν0 ζ,Ið Þ = e ζ/2ð Þ,

〠
∞

ϕ=0
νϕ+1 ζ,Ið Þ = L−1

sγ 1 − γð Þ + γð Þ
sγ

L 〠
∞

ϕ=0
DζζIν
� 	

ϕ
− 〠

∞

ϕ=0
Dζν
� 	

ϕ

""

+ 〠
∞

ϕ=0
Aϕ − 〠

∞

ϕ=0
Bϕ + 3〠

∞

ϕ=0
Cϕ

##
, ϕ = 0, 1, 2,⋯,

A0 νDζζζν
� 	

= ν0Dζζζν0,

B0 νDζν
� 	

= ν0Dζν0,

A1 νDζζζν
� 	

= ν0Dζζζν1 + ν1Dζζζν0,

B1 νDζν
� 	

= ν0Dζν1 + ν1Dζν0,

A2 νDζζζν
� 	

= ν1Dζζζν2 + ν1Dζζζν1 + ν2Dζζζν0,

B2 νDζν
� 	

= ν1Dζν2 + ν1Dζν1 + ν2Dζν0,

C0 DζνDζζν
� 	

=Dζν0Dζζν0,

C1 DζνDζζν
� 	

=Dζν0Dζζν1 +Dζν1Dζζν0,

C2 DζνDζζν
� 	

=Dζν1Dζζν2 +Dζν1Dζζν1 +Dζν2Dζζν0, ð29Þ

for ϕ = 1,

ν1 ζ,Ið Þ = L−1
sγ 1 − γð Þ + γð Þ

sγ
L DζζIν0 −Dζν0 + A0 − B0 + 3C0
� �� �

= −
1
2 e

ζ/2ð Þ 1 − γð Þ + γIγ

Γ γ + 1ð Þ
� 


,

ð30Þ

for ϕ = 2,

ν2 ζ,Ið Þ = L−1
sγ 1 − γð Þ + γð Þ

sγ
L DζζIν1 −Dζν1 + A1 − B1 + 3C1
� �� �

,

ν2 ζ,Ið Þ = −
1
8 e

ζ/2ð Þ I
2γ−1

Γ 2γð Þ + 1
4 e

ζ/2ð Þ 1 − γð Þ2 + γ2I2γ

Γ 2γ + 1ð Þ + 2 1 − γð ÞγIγ

Γ γ + 1ð Þ
� 


,

ð31Þ

for ϕ = 3,

ν3 ζ,Ið Þ = L−1
sγ 1 − γð Þ + γð Þ

sγ
L DζζIν2 −Dζν2 + A2 − B2 + 3C2
� �� �

,

ν3 ζ,Ið Þ = −
1
32 e

ζ/2ð Þ I3γ−2

Γ 3γ − 1ð Þ +
1
8 e

ζ/2ð Þ I
3γ−1

Γ 3γð Þ
−
1
8 e

ζ/2ð Þ 1 − γð Þ3 + γ 1 − γð Þ 1 + γ + 2γ2
� 	 Iγ

Γ γ + 1ð Þ



+ 3γ2 1 − γð ÞI2γ

Γ 2γ + 1ð Þ + γ3Γ 2γ + 1ð ÞI3γ

Γ 3γ + 1ð Þ
�
:

ð32Þ

The modified decomposition method solution of
example (1) is

ν ζ,Ið Þ = e ζ/2ð Þ −
1
2 e

ζ/2ð Þ 1 − γð Þ + γIγ

Γ γ + 1ð Þ
� 


−
1
8 e

ζ/2ð Þ I
2γ−1

Γ 2γð Þ

+ 1
4 e

ζ/2ð Þ 1 − γð Þ2 + γ2I2γ

Γ 2γ + 1ð Þ + 2 1 − γð ÞγIγ

Γ γ + 1ð Þ
� 


−
1
32 e

ζ/2ð Þ I3γ−2

Γ 3γ − 1ð Þ + 1
8 e

ζ/2ð Þ γ
3γ−1

Γ 3γð Þ −
1
8 e

ζ/2ð Þ

� 1 − γð Þ3 + γ 1 − γð Þ 1 + γ + 2γ2
� 	 Iγ

Γ γ + 1ð Þ



+ 3γ2 1 − γð ÞI2γ

Γ 2γ + 1ð Þ + γ3Γ 2γ + 1ð ÞI3γ

Γ 3γ + 1ð Þ
�
−⋯:

ð33Þ

The simplification of equation (33)

ν ζ,Ið Þ = e ζ/2ð Þ 1 − 2 1 − γð Þ + γIγ

Γ γ + 1ð Þ
� �

−
1
8
I2γ−1

Γ 2γð Þ
�

+ 1
4 1 − γð Þ2 + γ2I2γ

Γ 2γ + 1ð Þ +
2 1 − γð ÞγIγ

Γ γ + 1ð Þ
� 


−
1
32

I3γ−2

Γ 3γ − 1ð Þ + 1
8
I3γ−1

Γ 3γð Þ
−
1
8 1 − γð Þ3 + γ 1 − γð Þ 1 + γ + 2γ2

� 	 Iγ

Γ γ + 1ð Þ



+ 3γ2 1 − γð ÞI2γ

Γ 2γ + 1ð Þ + γ3Γ 2γ + 1ð ÞI3γ

Γ 3γ + 1ð Þ
�
+⋯
�
:

ð34Þ
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Apply the variational method to obtain series form
solution. The iteration formulas for equation (25), we get

νϕ+1 ζ,Ið Þ = νj ζ,Ið Þ − L−1
sγ 1 − γð Þ + γð Þ

sγ
L DζζIνϕ +Dζνϕ
��

− νϕDζζζνϕ + νϕDζνϕ − 3DζνϕDζζνϕ
��

,

ð35Þ

where

ν0 ζ,Ið Þ = e ζ/2ð Þ: ð36Þ

For ϕ = 0, 1, 2,⋯,

ν1 ζ,Ið Þ = ν0 ζ,Ið Þ − L−1
sγ 1 − γð Þ + γð Þ

sγ
L DζζIν0 +Dζν0
��

− ν0Dζζζν0 + ν0Dζν0 − 3Dζν0Dζζν0
��

,

ν1 ζ,Ið Þ = e ζ/2ð Þ −
1
2 e

ζ/2ð Þ 1 − γð Þ + γIγ

Γ γ + 1ð Þ
� 


,

ν2 ζ,Ið Þ = ν1 ζ,Ið Þ − L−1
sγ 1 − γð Þ + γð Þ

sγ
L DζζIν1 +Dζν1
��

− ν1Dζζζν1 + ν1Dζν1 − 3Dζν1Dζζν1
��

,

ν2 ζ,Ið Þ = e ζ/2ð Þ −
1
2 e

ζ/2ð Þ 1 − γð Þ + γIγ

Γ γ + 1ð Þ
� 


−
1
8 e

ζ/2ð Þ I
2γ−1

Γ 2γð Þ

+ 1
4 e

ζ/2ð Þ 1 − γð Þ2 + γ2I2γ

Γ 2γ + 1ð Þ + 2 1 − γð ÞγIγ

Γ γ + 1ð Þ
� 


,

ν3 ζ,Ið Þ = ν2 ζ,Ið Þ − L−1
sγ 1 − γð Þ + γð Þ

sγ
L DζζIν2 +Dζν2
��

− ν2Dζζζν2 + ν2Dζν2 − 3Dζν2Dζζν2
��

,

ν3 ζ,Ið Þ = e ζ/2ð Þ −
1
2 e

ζ/2ð Þ 1 − γð Þ + γIγ

Γ γ + 1ð Þ
� 


−
1
8 e

ζ/2ð Þ I
2γ−1

Γ 2γð Þ

+ 1
4 e

ζ/2ð Þ 1 − γð Þ2 + γ2I2γ

Γ 2γ + 1ð Þ + 2 1 − γð ÞγIγ

Γ γ + 1ð Þ
� 


−
1
32 e

ζ/2ð Þ I3γ−2

Γ 3γ − 1ð Þ + 1
8 e

ζ/2ð Þ I
3γ−1

Γ 3γð Þ −
1
8 e

ζ/2ð Þ

� 1 − γð Þ3 + γ 1 − γð Þ 1 + γ + 2γ2
� 	 Iγ

Γ γ + 1ð Þ



+ 3γ2 1 − γð ÞI2γ

Γ 2γ + 1ð Þ + γ3Γ 2γ + 1ð ÞI3γ

Γ 3γ + 1ð Þ
�
,

ν ζ,Ið Þ = e ζ/2ð Þ −
1
2 e

ζ/2ð Þ 1 − γð Þ + γIγ

Γ γ + 1ð Þ
� 


−
1
8 e

ζ/2ð Þ I
2γ−1

Γ 2γð Þ

+ 1
4 e

ζ/2ð Þ 1 − γð Þ2 + γ2I2γ

Γ 2γ + 1ð Þ + 2 1 − γð ÞγIγ

Γ γ + 1ð Þ
� 


−
1
32 e

ζ/2ð Þ I3γ−2

Γ 3γ − 1ð Þ + 1
8 e

ζ/2ð Þ γ
3γ−1

Γ 3γð Þ −
1
8 e

ζ/2ð Þ

� 1 − γð Þ3 + γ 1 − γð Þ 1 + γ + 2γ2
� 	 Iγ

Γ γ + 1ð Þ



+ 3γ2 1 − γð ÞI2γ

Γ 2γ + 1ð Þ + γ3Γ 2γ + 1ð ÞI3γ

Γ 3γ + 1ð Þ
�
−⋯:

ð37Þ

The exact solution of equation (25) at γ = 1,

ν ζ,Ið Þ = e ζ/2ð Þ− 2I/3ð Þð Þ: ð38Þ

In Figure 1, the analytical results of MDM/MVITM
example 1 graphs show close contact with each other at
γ = 1 and 0.8. It is investigated that analytical results are
in close relation with the actual results of example 1. In
Figure 2, the results of example 1 at different fractional-
order of the derivative are plotted at γ = 0:6 and 0.4.
Figure 3 shows the different fractional of two and three
dimensional. The graphical representation has shown the
convergence phenomena of fractional-order results
towards the result at integer-order of example 1.

Example 8. Consider the time-fractional nonlinear
Fornberg-Whitham equation is given as

Dγ
Iν −DζζIν +Dζν = νDζζζν − νDζν + 3DζνDζζν, I > 0, 0 < γ ≤ 1:

ð39Þ

The initial condition is

ν ζ, 0ð Þ = cosh2 ζ

4

� 

: ð40Þ

Applying Laplace transformation of (39), we get

sγ

sγ 1 − γð Þ + γð Þ L ν ζ,Ið Þ½ � − 1
s
ν ζ, 0ð Þ


 �
= L DζζIν −Dζν + νDζζζν − νDζν + 3DζνDζζν
� �

:

ð41Þ

Using inverse Laplace transformation,

ν ζ,Ið Þ = L−1
ν ζ, 0ð Þ

s
−

sγ 1 − γð Þ + γð Þ
sγ

L DζζIν −Dζν
��

+ νDζζζν − νDζν + 3DζνDζζν
��

:

ð42Þ
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Figure 1: The solution graph of MDM/MVITM at γ = 1 and 0.8 of example 1.
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Using ADM procedure, we get

ν0 ζ,Ið Þ = L−1
ν ζ, 0ð Þ

s

� �
= L−1

exp cosh2 ζ/4ð Þ� 	
s

" #
,

ν0 ζ,Ið Þ = cosh2 ζ

4

� 

,

〠
∞

ϕ=0
νϕ+1 ζ,Ið Þ = L−1

sγ 1 − γð Þ + γð Þ
sγ

L 〠
∞

ϕ=0
DζζIν
� 	

ϕ
− 〠

∞

ϕ=0
Dζν
� 	

ϕ

""

+ 〠
∞

ϕ=0
Aϕ − 〠

∞

ϕ=0
Bϕ + 3〠

∞

ϕ=0
Cϕ

##
, ϕ = 0, 1, 2,⋯,

ð43Þ

for ϕ = 0,

ν1 ζ,Ið Þ = L−1
sγ 1 − γð Þ + γð Þ

sγ
L DζζIν0 −Dζν0 + A0 − B0 + 3C0
� �� �

= −
11
32 sinh ζ

4

� 

1 − γð Þ + γIγ

Γ γ + 1ð Þ
� 


,

ð44Þ

for ϕ = 1,

ν2 ζ,Ið Þ = L−1
sγ 1 − γð Þ + γð Þ

sγ
L DζζIν1 −Dζν1 + A1 − B1 + 3C1
� �� �

, ν2 ζ,Ið Þ

= −
11
28 sinh ζ

4

� 

1 − γð Þ + γIγ

Γ γ + 1ð Þ
� 


+ 121
1024 cosh ζ

4

� 

1 − γð Þ2 + γ2I2γ

Γ 2γ + 1ð Þ + 2 1 − γð ÞγIγ

Γ γ + 1ð Þ
� 


,

ð45Þ

for ϕ = 2,

ν3 ζ,Ið Þ = L−1
sγ 1 − γð Þ + γð Þ

sγ
L DζζIν2 −Dζν2 + A2 − B2 + 3C2
� �� �

, ν3 ζ,Ið Þ

= −
11
512 sinh ζ

4

� 

1 − γð Þ + γIγ

Γ γ + 1ð Þ
� 


+ 121
2048 cosh ζ

4

� 

1 − γð Þ2 + γ2I2γ

Γ 2γ + 1ð Þ + 2 1 − γð ÞγIγ

Γ γ + 1ð Þ
� 


−
1331
49152 sinh ζ

4

� 

1 − γð Þ3 + γ 1 − γð Þ 1 + γ + 2γ2

� 	 Iγ

Γ γ + 1ð Þ



+ 3γ2 1 − γð ÞI2γ

Γ 2γ + 1ð Þ + γ3Γ 2γ + 1ð ÞI3γ

Γ 3γ + 1ð Þ
�
:

ð46Þ

The MDM solution of example (8) is

ν ζ,Ið Þ = ν0 ζ,Ið Þ + ν1 ζ,Ið Þ + ν2 ζ,Ið Þ + ν3 ζ,Ið Þ + ν4 ζ,Ið Þ+⋯,

ν ζ,Ið Þ = cosh2 ζ

4

� 

−
11
32 sinh ζ

4

� 

1 − γð Þ + γIγ

Γ γ + 1ð Þ
� 


−
11
28 sinh ζ

4

� 

1 − γð Þ + γIγ

Γ γ + 1ð Þ
� 


+ 121
1024 cosh ζ

4

� 

1 − γð Þ2 + γ2I2γ

Γ 2γ + 1ð Þ + 2 1 − γð ÞγIγ

Γ γ + 1ð Þ
� 


−
11
512 sinh ζ

4

� 

1 − γð Þ + γIγ

Γ γ + 1ð Þ
� 


+ 121
2048 cosh ζ

4

� 

1 − γð Þ2 + γ2I2γ

Γ 2γ + 1ð Þ + 2 1 − γð ÞγIγ

Γ γ + 1ð Þ
� 


−
1331
49152 sinh ζ

4

� 

1 − γð Þ3 + γ 1 − γð Þ 1 + γ + 2γ2

� 	 Iγ

Γ γ + 1ð Þ



+ 3γ2 1 − γð ÞI2γ

Γ 2γ + 1ð Þ + γ3Γ 2γ + 1ð ÞI3γ

Γ 3γ + 1ð Þ
�
⋯:

ð47Þ

Apply the variational method to find the analytical
solution.

The iteration formulas for equation (39), we get

νϕ+1 ζ,Ið Þ = νj ζ,Ið Þ − L−1
sγ 1 − γð Þ + γð Þ

sγ
L DζζIνϕ +Dζνϕ
��

− νϕDζζζνϕ + νϕDζνϕ − 3DζνϕDζζνϕ
��

,

ð48Þ

where

ν0 ζ,Ið Þ = cosh2 ζ

4

� 

, ð49Þ

for ϕ = 0, 1, 2,⋯,

ν1 ζ,Ið Þ = ν0 ζ,Ið Þ − L−1
sγ 1 − γð Þ + γð Þ

sγ
L DζζIν0 +Dζν0
��

− ν0Dζζζν0 + ν0Dζν0 − 3Dζν0Dζζν0
��

,

ν1 ζ,Ið Þ = cosh2 ζ

4

� 

−
11
32 sinh ζ

4

� 

1 − γð Þ + γIγ

Γ γ + 1ð Þ
� 


,

ν2 ζ,Ið Þ = ν1 ζ,Ið Þ − L−1
sγ 1 − γð Þ + γð Þ

sγ
L DζζIν1 +Dζν1
��

− ν1Dζζζν1 + ν1Dζν1 − 3Dζν1Dζζν1
��

,

ð50Þ

ν2ðζ,IÞ = cosh2ðζ/4Þ − 11/32 sinh ðζ/4Þðð1 − γÞ + ðγIγ

/Γðγ + 1ÞÞÞ − 11/28 sinh ðζ/4Þðð1 − γÞ + ðγIγ/Γðγ + 1ÞÞÞ +
121/1024 cosh ðζ/4Þ ðð1 − γÞ2 + ðγ2I2γ/Γ ð2γ + 1ÞÞ + ð2ð1 −
γÞγIγ/Γ ðγ + 1ÞÞÞ,

ν3 ζ,Ið Þ = ν2

ðζ,IÞ − L−1½ðsγð1 − γÞ + γÞ
sγ L fDζζIν2 +Dζν2 − ν2D ζζζν2 + ν2

7Journal of Function Spaces



Dζν2 − 3 Dζν2Dζζν2g�,ν3 ðζ,IÞ = cosh2ðζ4Þ − 11
32 sinh ðζ4Þðð1

− γÞ + γIγ

Γðγ + 1ÞÞ − 11
28 sinh ðζ4Þðð1 − γÞ + γIγ

Γðγ + 1ÞÞ + 121
1024 cosh ðζ4

Þðð1 − γÞ2 + γ2I2γ

Γ ð2γ + 1Þ + 2ð1 − γÞγIγ

Γðγ + 1Þ Þ − 11
512 sinh ðζ4Þ ðð1 − γ

Þ + γIγ

Γðγ + 1ÞÞ + 121
2048 cosh ðζ4Þðð1 − γÞ2 + γ2I2γ

Γ ð2γ + 1Þ +
2ð1 − γÞγIγ

Γðγ + 1Þ Þ − 1331
49152 sinh ðζ4Þfð1 − γÞ3 + γð1 − γÞ ð1 + γ + 2γ2Þ

Iγ

Γðγ + 1Þ +
3γ2ð1 − γÞI2γ

Γð2γ + 1Þ + γ3Γð2γ + 1Þ
I3γ

Γð3γ + 1Þg,νðζ, IÞ = cosh2ðζ4Þ − 11
32 sinh ðζ4Þðð1 − γÞ + γIγ

Γ

ðγ + 1ÞÞ − 11
28 sinh

ðζ4Þðð1 − γÞ + γIγ

Γðγ + 1ÞÞ + 121
1024 cosh ðζ4Þðð1 − γÞ2 + γ2I2γ

Γð2γ + 1Þ +
2ð1 − γÞγIγ

Γðγ + 1Þ Þ − 11
512 sinh ðζ4Þðð1 − γÞ + γI

γ

Γðγ + 1ÞÞ + 121
2048 cosh ðζ4Þðð1 − γÞ2 + γ2I2γ

Γð2γ + 1Þ +
2ð1 − γÞγIγ

Γðγ + 1Þ Þ − 1331
49152 sinh

ðζ4Þfð1 − γÞ3 + γð1 − γÞð1 + γ + 2γ2Þ Iγ

Γ

ðγ + 1Þ + 3γ2ð1 − γÞI2γ

Γð2γ + 1Þ + γ3Γð2γ + 1ÞI3γ

Γð3γ + 1Þ g+⋯: The exact solu-

tion of equation (39) at γ = 1,

ν ζ,Ið Þ = cosh2 ζ

4 −
11I
24

� 

: ð52Þ

In Figure 4, the analytical results of MDM/MVITM
example 2 graphs show that close contact with each other
at γ = 1 and 0.8. It is investigated that analytical results are
in close relation with the actual results of example 2. In
Figure 5, the results of example 2 at different fractional-
order of the derivative are plotted at γ = 0:6 and 0.4.
Figure 6 shows the different fractional of two and three
dimensional. The graphical representation has shown the
convergence phenomena of fractional-order results towards
the result at integer-order of example 2.
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Figure 5: The solutions graph of MDM/MVITM at γ = 0:6 and 0.4 of example 2.
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6. Conclusion

In this paper, we have been successfully applied two modified
methods to investigate the approximate solutions of frac-
tional Fornberg-Whitham equations. Agreement between
numerical results obtained by the modified decomposition
method and modified variational iteration method involving
fractional-order derivatives with Mittag-Leffler kernel with
exact result appears very appreciable by means of illustrative
results in figures. The proposed techniques are easy to imple-
ment, effective, and suitable for achieving the results of
nonlinear fractional Fornberg-Whitham equations. More-
over, both the modified decomposition method and varia-
tional iteration method provide the convergent series
results with easily calculated components without applying
any linearization, perturbation, or limiting assumptions.
Finally, we can conclude the suggested methods are more
accurate and highly methodical and which can be applied
to investigate nonlinear models that arise in applied sciences.
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