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In this study, an incompressible two-dimensional Oldroyd-B nanofluid steady flow past a stretching sheet considering the
outcomes of magneto-hydrodynamics (MHD) and porous medium with magnetic, electrical, and thermal radiation effects is
investigated. Using a similarity transformation, the governing equations in the form of partial differential equations (PDEs) are
converted into a nonlinear ordinary differential equations (ODEs) system. The acquired system is numerically solved by the
finite element method (FEM). The effects of physical parameters like Deborah numbers “β1” and “β2”, Brownian motion “Nb”,
thermophoresis parameter “Nt”, Prandtl parameter “Pr”, Lewis number “Le”, thermal conductivity “k”, dynamic viscosity “μ”,
magnetic and electric effects as “M” and “E1”, and thermal radiation effect “Rd” on the flow are studied in detail. For higher
Nb values, regional Nusselt numbers are increasing in magnitude. The local Sherwood number’s size rises for high Nb numbers.

1. Introduction

The fluid which obeys the Newton’s law of viscosity is
known as the Newtonian fluid, whereas the non-
Newtonian fluid is recognized as to be the satisfaction of
the Newton’s law of viscosity [1, 2]. The non-Newtonian
fluid dragged the attraction of the researchers due to its sig-
nificant applications in industrial and engineering such as
mud drilling, plastic polymers, optical fiber, metal cooling
and wire of polymer plates, damping agent in braking
devices, and protective devices [3–5]. Sakiadis introduced
the concept of flow due to a stretching sheet [6]. Scientists
used this concept to develop the new results to various fluids
[7–19]. Magyar and Keller extended this concept by using it
as the exponential stretching sheet [20]. The boundary layer
flow (BLF) of an incompressible fluid over a stretching sheet
and the viscoelastic fluids is used commonly in engineering
and industrial developments. The field has attracted

researchers in the last few decades. In industries, BLF is used
like wrapping thermal, cooling plates, condensation of thin
film, fiber glass, heat exchangers, plastic processing, cos-
metics, geology composites, paint flow, adhesives, tower gen-
erators, accelerators, electrostatic filters, and droplet filters
[3, 4, 5]. By immersing them in quiescent liquids, many
metal processes need to cool continuously such as fibers.
The BLF is used by many scientists. The BLF based on the
exponential stretching is studied by Bidin and Nazar who
study the BLF due to exponential stretching sheet with ther-
mal radiations [21]. This experiment is further extended
with the partial slip effect by Mukhopadhyay and Gorla
[22]. Singh and Agarwal [23] study the thermal radiation
effect of the boundary layer flow with exponential stretching.
The BLF and heat transfer HT over a moving surface are
studied by Tsou et al. and Elbashbeshy [24, 25]. Choi pro-
posed the concept of nanofluid in 1995 [26]. The nanofluid
has many industrial and engineering applications like heat
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exchangers, engine radiators, and cooling processes [27, 28].
Khan et al. [29, 30] investigated the BLF of a nanofluid in a
porous material. The thermal effect of the nanofluid flow of
the boundary layer on the moving surface in various condi-
tions was presented by Olanrewaju et al. [31], Crane [7], Koo
and Kleinstreuer [32], and Khan et al. [29, 33]. The porous
material containing the pores and the skeletal portion of
the material is known as a matrix. The pores are filled by a
fluid under consideration. Fiza et al. studied the nanofluid
flows in a porous medium with viscoelastic properties [34].
The recent development in the study of nanofluid by consid-
ering various physical effects can be seen in [29, 33–59].
From the literature survey, it is clear that the effect of Joule
heating and thermal radiation of MHD boundary layer
Oldroyd-B nanofluid flow with heat transfer over a porous
stretching sheet is not studied. This article is aimed at study-
ing the effect of Joule heating and thermal radiation of MHD
boundary layer Oldroyd-B nanofluid flow with heat transfer
over a porous stretching sheet by a numerical computation
method known as finite element method (FEM). The basic
fundamental equations Navier-Stokes equations and conti-
nuity are used for the mathematical formulations. After
using the similarity transformation, the formulation in the
form of PDEs is converted into ODEs. The FEM is used
for the solution of the modeled problem [60–63]. The phys-
ical paramaters are discussed with the help of graphs and
tables. Organisation of the paper is as follows: Section 1 is
dedicated to introduction, Section 2 to problem formulation,
Section 3 to solution techniques, Section 4 to results and dis-
cussions, and Section 5 to conclusions.

2. Problem Formulation [57]

Consider the nanofluid motion of an incompressible two-
dimensional Oldroyd-B across a stretching sheet. Nanoparti-
cles are saturated when the sheet is stretched at y = 0, and
the flow is originated at y > 0. The fluid is electrically con-

ducted in the existence of magnetic field B
!
= ð0, B0, 0Þ and

electric field E
!
= ð0, 0,−E0Þ which follow the Ohm’s law J

!
=

σðE! +V
!
× B

!Þ. The sheet is stretched linearly uðxÞ = ax, where
“a > 0” and the sheet is considered as porous. The sheet veloc-
ity is taken parallel to the flow. The inducted magnetic field
and Hall current effects are disregarded due to the minute
magnetic field. The governing equations are as follows:

ux + vy = 0,

uux + vvy + A1 u2uxx + v2uyy + 2uvuxy
À Á

= v uyy + A2uuxyy + vuyyy − uxuyy − uyvyy
À Á
+ σ

ρ
E0B0 − B0

2u
À Á

−
v
k
u,

uFx + vFy = α Fxx + Fyy

À Á
+ τ DB CxFx + CyFy

À ÁÈ
+ Dt

F∞

� �
Fxð Þ2 + Fy

À Á2h i
+ σ

ρ
uB0 − E0ð Þ2 − ∂qr

∂y
,

uCx + vCy =DB Cxx + Cyy

À Á
+ DF

F∞

� �
Fxx + Fyy

À Á
⋅DB Cxx + Cyy

À Á
+ DF

F∞

� �
Fxx + Fyy

À Á
:

ð1Þ

Here u, v represent the velocity components, fluid density
ρ, kinematic viscosity ν, electrical conductivity σ, A1/A2 the
relaxation/retardation parameters, the thermal diffusivity α,
the temperature T, the concentration C, DB the Brownian dif-
fusions, DT the thermophoretic diffusion coefficient, and τ =
ðρcÞp/ðρcÞf the nanoparticle to fluid heat capacity. ρp repre-

sents ithe idensity iof iparticle, J
!
is the Joule current, σ is the

electrical conductivity, and V
!

is the velocity field of the flow.
iIf Y ⟶∞, then the values of F and C are, respectively,
F∞ and i C∞ as shown in Figure 1.

qr represents the radioactive heat fluctuation that is pro-
posed by Rosseland approximation like as follows:

qr = −
16φ
3Κ

∂Τ4

∂y
, ð2Þ

where K represents the mean absorption coefficient and φ
denotes the Stefan Boltzmann constant. By Taylor series
equation, we obtain the following:

Τ4 = Τ0
4 + 4Τ0

3 Τ − Τ0ð Þ2+⋯ ð3Þ

On ignoring higher-order terms, we have the following:

Τ4 = 4ΤΤ0
3 − 3Τ0

4: ð4Þ

Inserting Equation (10) in Equation (8), it reduced to the
form of the following:

∂qr
∂y

= −
16T3

Cφ

3Κ
∂2T
∂y2

: ð5Þ

The boundary conditions are as follows:

u xð Þ = ax, v = 0, C = C0, F = F0, y⟶ 0,

u ∞ð Þ = 0, v ∞ð Þ = 0, C = C∞, F = F∞, y⟶∞:
ð6Þ

Using the similarity transformation,

ψ = avð Þ1/2xF ηð Þ,

θ ηð Þ = F − F∞
Fw − F∞

,

ϕ ηð Þ = C − C∞
Cw − C∞

,

η =
ffiffiffi
a
v

r
y:

ð7Þ

Using the stream function as u = ∂ψ/∂y and v = −∂ψ/∂x,
we get the following:
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f ′′′ − f ′2 + f f ′′ + β1 f 2 f ′′′ − 2f f ′ f ′′
� �

+ β2 f f ′′′′ − f ″
� �2

� �
+M2 E1 − f ′

� �
− κ f ′

� �
= 0,

ð8Þ

1 + 4
5 Rd

� �
θ′′ + Pr θθ′ +Nb θ′ϕ′

� �
+Nt θ′

� �2
� �

+M2Pr f ′ − E1
� �2

= 0,
ð9Þ

ϕ′′ + LePr f ϕ′
� �

+ Nt

Nb
θ′′ = 0, ð10Þ

with

f 0ð Þ = 0, f ′ 0ð Þ = 1, f ′ ∞ð Þ = 0, f ′′ ∞ð Þ = 0, ð11Þ

θ 0ð Þ = 1, θ ∞ð Þ = 0, ð12Þ

ϕ 0ð Þ = 1, ϕ ∞ð Þ = 0, ð13Þ
where β1 = aA1, β2 = aA2 are the Deborah numbers, Pr = ν/
α, is the Prandtl number, Nb = ðρcÞρDBðCw − C∞Þ/vðρcÞρ
and Nt = ðρcÞρDTðTw − T∞Þ/vðρcÞρ are the Brownian and
thermophoresis parameters, respectively, and Le = α/DB is
the Lewis number.

Also,

Nux =
xqw

α Tw − T∞ð Þ , ð14Þ

Shx =
xqm

DB Cw − C∞ð Þ , ð15Þ

where qw = −αð∂T/∂yÞy=0, qm = −DBð∂C/∂yÞy=0 are the heat
and mass flux, respectively.

The dimensionless form of Equation (14) is given as
follows:

Rex−1/2Nux = −θ′ 0ð Þ,
Rex−1/2Shx = −ϕ′ 0ð Þ,

ð16Þ

where Rex = uwðxÞx/viis the Reynolds local, κ = v/k is the
porosity parameter, M2 = σB0

2/ρa is the magnetic variable,
and the electric parameter is E1 = E0/B0ax.

3. Finite Element Method

The FEM is a powerful method to evaluate the nonlinear dif-
ferential equations and can be used to engineering problems
such as fluid mechanics, biomathematics, physics, and chan-
nel process [49–51].

The important steps of FEM are as follows:

(1) Discretization into finite elements of the infinite
domain

(2) Generation of component equations

(3) Gathering component equations

(4) Imposing boundary conditions

(5) Evaluation of gathered equations

Iterative approach can be applied in the last step.
A grid sophistication experiment is performed via divid-

ing the domain in consecutive grids sized 81 × 81, 101 × 101
and 121 × 121 in z direction. Four functions are to be
assessed at each node, and assembly of element equations,
we get 404 nonlinear equations. An iterative scheme is
acquired for solving the system introduced by BCs. If the rel-
ative difference among the sequential iteration is fewer than
10−6, so the solution is considered as convergent. The code is
run for various grid sizes and observed that the solution is
free of the grid. The effect of the step size for step h = 0:01
is verified by achieving an excellent agreement for different
profiles.

4. Results and Discussion

4.1. Figures Discussions. The nonlinear system of ODEs
(Equations (8)–(13)) constrained by boundary conditions
(Equations (11)–(13)) is assessed numerically by FEM.
Figures 2–22 describe the actions of emerging parameters
like Prandtl parameter Pr, relaxation time constant β1, retar-
dation time constant β2, Brownian parameter Nb, Lewis
number Le, thermophoresis parameter Nt , and porosity
parameter κ on velocity profile f ′ðηÞ, mass fraction function
ϕðηÞ, and temperature profile θðηÞ. Figures 2–4 represent the
effect of β1 on f ′ðηÞ, θðηÞ, and ϕðηÞ. β1which is a function of
relaxation timeA1assists the flow due to the viscoelastic char-
acteristics of fluids. The BL thickness and the velocity profile
f ′ðηÞ increased by increasing the values of β1. Also by the
increase of β1, both θðηÞ and ϕðηÞ of the mass fraction
increase. The effects of β2 on f ′ðηÞ, θðηÞ, and ϕðηÞ are given
in Figures 5–7. Since the retardation time of the fluid
increases the fluid movement, so as a result, f ′ðηÞ, θðηÞ,
and ϕðηÞ increases by increasing β2. The effect of the poros-
ity number for the velocity profile is given in Figure 8. It is
noticed that by increasing the porosity parameter, the veloc-
ity profile decreases. Since in the porous medium, there exist

y

0

Boundary layer

Fluid flow

Permeable stretching surface

Heat generation/absorption

PorousB0

CT U

x

T∞ C∞

Figure 1: Schematic diagram of the flow.
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the porous holes and these holes reduce the velocity profile.
The Lewis numbers are plotted for the temperature and con-
centrations profiles in Figures 9 and 10. An increase in the
Lewis value caused to increase θðηÞ and ϕðηÞ. The impacts
on mass fraction function ϕðηÞ of Brownian motion and

temperature profile θðηÞ and thermophoresis parameters
are displayed in Figures 11, 12, 13, and 14, respectively. By
increasing the values of Nb, the temperature profile increases
while the concentration profile first decreases near the
boundary and then increases as can be seen in Figures 11
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and 12; for the effect of Nt , it is noticed that by uplifting Nt ,
the temperature profile increases while the concentration
profiles decrease can be seen in Figures 13 and 14. The
effects of the Prandtl number on the temperature and con-
centration profiles are presented in Figures 15 and 16.

Higher values of Prandtl numbers caused to decrease the
temperature and concentration profiles. It is due to the fact
that the Pr has an inverse relation with α, increasing Pr is
basically to reduce the value of α which turn to reduce the
elastic collision of the nanoparticles caused to reduce the
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profiles of concentration and temperature. The effects of the
electric field E1 on the velocity and temperature profiles are
given in Figures 17 and 18, respectively. Increase in E1
causes to increase the profiles of temperature and velocity.
Also, the effects of the magnetic field on velocity and tem-

perature profiles are given in Figures 19 and 20. Increase
in magnetic field causes to decrease the velocity profile,
whereas by increasing the magnetic field decreases the tem-
perature profile. The magnetic field is put in perpendicular
to the flow and it resisted the flow; thus, the velocity profile
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reduced. The effect of the thermal radiations on the velocity
and temperature field is given in Figures 21 and 22. Increase
in thermal radiation caused to increase/decrease the velocity
and temperature profiles. Results on the Sherwood number

of the Brownian parameter, the Nusselt number, and ther-
mophoresis parameter are given in Figures 23–26. It is
noticed that the Nusselt number falls by rising Nt , whereas
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the Nusselt number rises by rising Nb as given in Figures 23
and 24. The effects of Nt and Nb on the Sherwood number
are given in Figures 25 and 26.

4.2. Tables Discussions. In Tables 1–4, an increase inNt
caused to reduce the Sherwood numbers and an increase

in Nbcaused to rise the Sherwood number. The Nusselt
number decreases whenever the Pr is less than Le and
increases when the Pr is greater than Le for Nb andNt .
However, the Sherwood number decreases with the rise
of Nb andNt for both the cases when the Pr is greater or
less than Le. Lastly, low thermal conductivity is caused
by a high Prandtl fluid which decreases conductivity,
resulting in an increase in sheet surface heat transfer. In
the absence of non-Newtonian parameters β1 and β2, it
is observed that the effect of both temperature and concen-
tration profiles of nanoparticles brings the falling action.
Consequently, as Pr grows, the thickness of the boundary
layer shrinks. Table 5 shows a comparison of our results
to the results presented by Jawad and Saeed [58]. In the
absence of the nanoparticles and non-Newtonian parama-
ters, our results are identical to the Jawad and Saeed
results. This comparison shows the accuracy and validity
of our method.

5. Conclusion

The Oldroyd-B nanofluid model was presented across a
stretched sheet for this investigation. The quantitative
analysis of the impacts of thermophoresis parameter, elas-
tic parameter, and Brownian motion on heat and flow
transfer is studied here. Below are the key features of the
study.

(1) For the mass fraction, temperature, and speed func-
tions, β1 and β2 impacts have the opposite behav-
ior. Such anomalies arise only because of the
influence of β1 and β2 viscoelastic parameters

(2) Prandtl’s actions are the same for both the tempera-
ture and mass fraction functions. As Pr is the link
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Figure 26: Sherwood number versus Nb.

Table 1: Numerical values of the local Nusselt number Re−1/2Nux .

Nb/Nt 0.2 0.4 0.6 0.8

0.1 0.345332 0.337005 0.328932 0.321109

0.2 0.340533 0.332416 0.324528 0.316885

0.3 0.335903 0.327949 0.320241 0.312776

0.4 0.331372 0.323636 0.316071 0.308779

0.5 0.326962 0.319368 0.312013 0.304892

Table 2: Numerical values of the local Nusselt number Re−1/2Nux .

Nt/Nb 0.2 0.4 0.6 0.8

0.1 -0.344720 -0.335351 -0.326466 -0.318049

0.2 -0.340555 -0.331372 -0.322668 -0.314424

0.3 -0.336454 -0.327456 -0.318931 -0.310857

0.4 -0.332416 -0.323620 -0.315252 -0.307347

0.5 -0.328441 -0.319805 -0.311629 -0.303894

Table 3: Numerical values of the Sherwood number Re−1/2Shx .

Nb/Nt 0.2 0.4 0.6 0.8

0.1 0.555100 0.759519 0.970036 1.186100

0.2 0.457804 0.560222 0.665774 0.773986

0.3 0.425221 0.493763 0.564315 0.636564

0.4 0.408919 0.460513 0.513555 0.567815

0.5 0.399130 0.440547 0.483077 0.526535

Table 4: Numerical values of the Sherwood number Re−1/2Shx .

Nt/Nb 0.2 0.4 0.6 0.8

0.1 0.407924 0.383741 0.375666 0.359017

0.2 0.457804 0.408919 0.392597 0.371618

0.3 0.5085591 0.434520 0.409789 0.384416

0.4 0.560222 0.460513 0.427223 0.410539

0.5 0.612637 0.486868 0.444879 0.423837

Table 5: Comparison of local Nusselt results in the absence of non-
Newtonian and nanoparticle paramaters.

Re Wang [64] Present

0.7 0.4539 0.4539

2 0.9114 0.9114

7 1.8954 1.8954

20 3.3539 3.3539

70 6.4622 6.4622
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among visual and dynamic viscosity, at greater Pr
levels, the temperature profile remains under control

(3) Similar effects of Nb and Nt are seen on the temper-
ature profile as both Nb and Nt increase the
temperature

(4) For higher Nb values, regional Nusselt numbers are
increasing in magnitude

(5) The local Sherwood number’s size rises for high Nb
numbers

(6) The electric field increasement increases the veloc-
ity and temperature profile, whereas the thermal
radiation has reverse results

(7) The increases in magnetic field resist the flow, and
so the velocity profile get decreases while it assists
the temperature profile

(8) On increasing β and porosity parameters, the veloc-
ity distribution decreases

(9) Increase in the Pr thermal boundary-layer thickness
and contraction profiles is noticed to decrease

(10) Increase in the Lewis number causes to decrease the
profiles of velocity, temperature, and concentration

Abbreviations

Nomenclature

eΒ: Magnetic field ðNmA−1Þ
C: Fluid concentration
cp: Specific heat ðJ/kgKÞ
β: Non-Newtonian paramter
~Ε: Electric field intensity ðNC−1Þ
Jw: Mass flux
α1, α2, β1, β2, β3: Material constants
A1, A2,A3: Kinematic tensors
k: Thermal conductivity ðWm−1K−1Þ
M: Magnetic parameter
ne: Number density of electron
O: Origin
P: Fluid pressure (Pa)
Pr: Prandtl number
Qw: Heat flux ðWm−2Þ
qr : Radioactive heat flux (J)
Re: Viscosity parameter
S: Cauchy stress tensor
te: Flow time (s)
T: Fluid temperature ðKÞ
u, v,w: Velocity components ðms−1Þ
x, y, z: Coordinates
t: Time.

Greek Letters

α: Thermal diffusivity ðm2s−1Þ

κ
_
: Vertex viscosity ðmPaÞ

μ: Dynamic viscosity ðmPaÞ
υ: Kinematic coefficient of viscosity
ρf : Base fluid density ðkgm−3Þ
ρb: Density of the particles ðkgm−3Þ.
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The current study investigated the formation of entropy in a nanofluid flow in a wedge with thermal radiation and convective
boundary conditions. Nanoparticle aggregation is also taken into consideration. The rate of heat transmission of a water-based
aggregated fluid over a wedge has been investigated due to the effects of thermal radiation. A set of nonlinear differential
equations governs the flow process, and these are numerically solved using a helpful approach called the Runge-Kutta-Fehlberg
scheme. This method starts by breaking down the equations into a collection of first-order equations. The RK method then
solves those equations. The effects on flow and heat transmission are studied using graphical analysis. Entropy generation and
Bejan number changes are also graphically displayed, and the results are discussed in detail. These equations’ answers were
also incorporated into a dimensionless entropy generating equation. According to the findings, raising the radiation parameter
and decreasing boundary convection minimize entropy generation, while nanoparticles boost entropy production.

1. Introduction

The “nanofluid” is characterized by conventional nanofluid
papers as the scattering of solid nanoparticles, rods, and
pipes in the standard heat transfer flow, for instance, water,
lubricating oil, ethane-1,2 diols, and petrol. Many scholars
have investigated the degree to which thermophysical char-
acteristics of nanofluid boost heat dissipation by their scale,
shape, concentrating, etc. The hollow cylindrical nanostruc-
tures are carbon nanofluids, whose walls are constructed
from dense carbon sheets. (CNTs) are known as walled sin-
gle nanotubes and wall-mounted nanotubes. CNTs have
usually lots of processing and biomedical applications while
the most critical function of nanotubes in fluid dynamics is
the control of heat transfer to fluids [1]. In various engineer-
ing and science fields, the theory for boundary layers plays
an important role. The boundary layer flow of a single-
walled carbon nanotube nanofluid approaching three non-

linear thin isothermal needles of paraboloid, cone, and cylin-
der shapes with convective boundary conditions is predicted
in [2] using an artificial neural network (ANN). Under the
phenomenon of zero heat and mass flux, a single and dual
phase technique is employed to build the management
model. In ref [3], the role of Casson carbon nanotubes in
boundary layer flow is being studied, having implications
for both single-walled and multiwalled CNTs. The rate of
heat transmission is examined under convective conditions.
Various studies of nanofluid boundary layer motion around
a wedge have been found in the literature. Khan and Pop [4]
numerically analyzed the flow of the nanofluid limit layer
through a wedge. The thermal radiation, viscose dissipation,
and chemical reactions of MHD boundary layer nanofluid
flow by the wedge were investigated by Pandy and Kumar
[5]. Flows past a wedge could be used in polymer processing,
crude oil extraction, the flow of molten metals over ramped
surfaces, liquid metal flows in heat exchangers, the throwing
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of chilled air through AC panels, nuclear power plants,
designing flaps on aeroplane wings for increased lift, drag,
and maneuverability, modeling of warships and submarines,
and a variety of other scientific and engineering fields. Many
scholars have recently shown a strong interest in studying
fluid flow past a wedge surface.

The irreversibility of simple heat transfer methods is
assessed using the Second Thermodynamics Law. Entropic
generation is studied to understand the connection between
thermal energy and other energy types that influence process
matter. Malvandi et al. [6] are investigating the formation of
entropy in nanofluid on a flat plate.

In recent decades, the issue of MHD and nanofluid has
become more industrial. Initially, the magnetic field’s influ-
ence on the convection of natural heat transfer was investi-
gated by Sparrow and Cess. The hydromagnetic flow and
heat transport through the stretching layer have been inves-
tigated by Chakrabarti and Gupta [7]. Casson nanofluids,
which belong to the class of non-Newtonian fluids, have rhe-
ological properties in the shear stress-strain relationship.
These are routinely used in several processes in engineering
and technology [8].

More than one paper was then flooded and extensively
discussed in the field of nanofluid science. The transmission
of heat with fluid particulate suspension was documented
under Saeed et al. [9]. At the melting heat transfer to the
boundary nanofluid fluid layer stagnation point on to the
stretching shrinking sheet, Kumar and Bandari [10] were
recently noted. Features of double stratification on stagnation
point flow of Walter’s B nanoliquid driven through Riga
surface are examined in [11]. Via solutal stratification, radi-
ation, and thermal effects, heat and mass phenomena are
examined.

The limit layer flow was observed by Yacob et al. [12]
past a deteriorating/decreasing surface in nanofluid under
an external, consistent shear flow with a convective surface
border status. The MHD-forced layer flow of Al2O3 −H2O
nanofluid over a flat, motionless plate with convective sur-
face configuration was observed [13].

The intensive nanofluid study has undergone significant
advances and is applied to various surfaces, sizes, and condi-
tions by numerous researchers. The MHD convection and
thermal transfer over the inclined cylinder were investigated
by Dhanai et al. [14] for velocity and thermal slip effects:
Al2O3 −H2O. Nanofluid force convection in a nanoparticle
was observed by the Malvandi and Ganji [15].

The study of 3D flows is mentioned in comparison to
two-dimensional flows. The physical question is better
known. The 3D boundary layer flow caused by the extension
layer was addressed by Wang [16]. Different types of papers
were suggested for 3D flow accordingly. The three-
dimensional nanofluid flow model with the use for solar
energy was explored by Ahmad Khan et al. [17]. Some recent
demonstration on flow in circular rings and circular cylinder
can be seen in [18, 19].

At its general three-dimensional stagnation, Bachok
et al. [20] investigate the flow and heat transfer of nanofluid.
The 3D hydromagnetic point flow of stagnation to a heat
generating layer was addressed by Attia [21]. Mansur and

Ishak [22] depicted the nanofluid three-dimensional fluid
flow and thermal transmission across a permeable, convec-
tive boundary layer.

Khan et al. [23] convected exponentially expanded layers
to computer analysis of the 3D nanofluid flow. Hayat et al.
[24] have been studying 3D magneto-hydrodynamic nano-
fluid flow with slip speed and nonlinear thermal radiation.
The role of nanoparticle aggregation kinetics in thermal
conductivity is experimentally recognized by Prasher [25].
Chen et al. [26] recorded entropy characteristics to include
titanium particles. They used the nanoparticle aggregation
mechanism to predict thermal conductivity. Zhou and Keller
[27] used ZnO to describe the effect of the fractal component
of the nanoparticle aggregation. They showed the effect of
pH on the phenomenon of aggregation. Mahanthesh et al.
[28] investigated the kinematics of nanoparticle aggregation
by using modified models for thermal conductivity and
dynamic viscosity developed by Maxwell–Bruggeman and
Krieger–Dougherty. Sedighi and Mohebbi [29] have investi-
gated the thermal conductivity and basic heat characteristics
of nanolithic aggregations by adding nanoparticles. Heris
et al. [30] conducted an inspection on ZnO nanolubricants.
The development of nanoparticle aggregation in the base
fluid was demonstrated by the correlation of Krieger and
Dougherty. Chen et al. [31] conducted a comprehensive
study on impact of the nanoparticle aggregation on the
nanofluid’s radiative properties. The increment of viscosity
nanoparticle aggregation was reported by He et al. [32].

In physics and engineering challenges, heat transmission
is crucial. The influence of Newtonian heating on nanofluid
flow over a nonlinear permeable stretching/shrinking sheet
towards the stagnation point is investigated in this work.
In the heat transfer process, entropy generation analysis also
plays a vibrant role. Entropic scrutiny is focused on irrevers-
ibility of the thermal system. Any thermal and heat transfer
equipment, including the heat exchanger and heat sink, shall
obey the irreversibility. The source of irreversibility should
be established and to some degree minimized. Mustafa
et al. [33] investigated the generation of entropy by nano-
fluid flow in the vertical microchannel. They found that
the number of grash increases the rate of entropy. A porous
Al2O3/water fluid phase has been shown by Makinde and
Eegunjobi [34]. They found that the nanoparticle concentra-
tion in Bejan increased.

The thermal characteristics that define the physical situ-
ation have often been challenged by scientists and inventors.
Ibanez et al. investigated entropy generation using the sepa-
rate flow model in a nanofluid-driven microchannel. The
MHD nanofluid stream over L-shaped ribs was examined
by Torabi et al. [35]. Toghraie et al. [36] use the spectral qua-
silinearization (SQLM) approach to solve the complex dif-
ferential equations that govern nonlinear mixed convective
heat transfer of a Williamson fluid down a vertical micro-
channel. They demonstrated that the boundary conditions
of convection heating at the microchannel walls cause the
most entropy formation.

The present article addresses the entropy generation of
internal layer flow and MWCNT-containing nanofluid ther-
mal transmission. In this research project, the uniqueness
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and impact of nanoparticles, convective surfaces, and heat
radiation are calculated. The solutions are obtained by
numerical calculation. In both situations, the physical effects
of nanofluid flow, i.e., (i) without aggregating the nanoparti-
cles and (ii) with nanoparticles, are examined.

The main objectives of this work are as follows.

(i) The characteristics of flow and thermal field are
interpreted and missing by filming with nanofluid
aggregation

(ii) Examine the heat transfer phenomenon root of
irreversibility

(iii) Find out which physical factor contributes to the
generation of entropy

(iv) Find out how entropy production can be minimized
by manipulating flow parameters

2. Description of the Model

Consider a two-dimension, laminar, steady, incompressible
nanofluids of viscous flow through a wedge in a stream of
water-based nanofluid containing multiwall CNT (see
Figure 1). The set of Cartesian coordinates is used in the prob-
lem under consideration. The lower surface of the wedge is
supposed to be heated by convection from a hot fluid at a tem-
perature Tf that yields the heat transfer coefficient hf : The
nanoparticles and the base fluid (water) are also considered
to be in equilibrium, with no slip between them.

The equations that govern the nanofluid model over
wedge geometry was described in the following form [37]:

∂u
∂x

+
∂v
∂y

= 0,

u
∂u
∂x

+ v
∂u
∂y

=U∞
∂Ue

∂x
+
μnf
ρnf

∂2u
∂y2

,

u
∂T
∂x

+ v
∂T
∂y

= αnf
∂2T
∂y2

+
μnf

ρCp

� �
nf

∂u
∂y

� �2
−

1
ρCp

� �
nf

∂qr
∂y

,

ð1Þ

where u and v represent the components of velocity in the
x and y direction of the fluid flows, respectively. The coordi-
nate system and problem geometry are described in Figure 1.
T represents the temperature of nanofluid. Furthermore, μnf
and ρnf are the dynamic nanofluids viscosity and density,
and σnf is the thermal diffusivity of the nanofluid.

2.1. Thermal Physical Characteristics of Nanofluids

2.1.1. The Conventional Model without Aggregation (Case 1).
The productive hybrid nanofluid density ρnf and capacity of

heat ððρCpÞnf Þ are defined by

ρCp

� �
nf
= 1 − ϕð Þ ρCp

� �
f
+ ϕ ρCp

� �
s
, ρnf = 1 − ϕð Þρf + ϕρs,

ð2Þ

where ϕ is a nanofluid fixed volume fraction. The nano-
fluid dynamic viscosity is calculated as [38]

μnf
μf

=
1

1 − ϕð Þ2:5 : ð3Þ

The effective nanofluid thermal conductivity is deter-
mined by

knf
kf

=
ks + 2kf − 2ϕ kf − ks

� �
ks + 2kf + ϕ kf − ks

� � , ð4Þ

where knf is the nanofluid thermal conductivity, and kf
is the thermal conductivity of base fluid. Recommended
boundary conditions are implemented through the disk as

u = 0, v = 0,−knf
∂T
∂y

= hf T f − T
� �

, at y = 0,

u =Ue xð Þ =U∞xm, v = 0, T = T∞, at y⟶∞:

ð5Þ

2.1.2. The Conventional Model with Aggregation (Case 2). The
fluid model, for example, Brinkman, Einstein, and Maxwell,
depends only on the fraction of the nanoparticle volume.
The nanofluid’s normalized shear viscosity does not depend
on the temperature. The model of aggregation clarifies these
features. In addition, nanofluid thermal conductivity is higher
with experimental results than with common fluid models.
This difference is explained by the neglected effect of nanopar-
ticles [9, 10]. Therefore, consideration of the film aggregation
of nanoparticles is necessary to explore the ratio of thermal
conductivity. Thermophysical properties of base fluid and

Ue (x)
U∞

T∞

MWCNT

Hot
fluid

y x

y
x

𝜋𝛽

Figure 1: Physical model of the problem.

3Journal of Nanomaterials



nanoparticles are given in Table 1.

ρnf = 1 − ϕað Þρf + ϕaρs,

μnf

μf
= 1 −

ϕa
ϕm

� � η½ �ϕm
,

ρCp

� �
nf
= 1 − ϕað Þ ρCp

� �
f
+ ϕa ρCp

� �
s
,

knf
kf

=
ka + 2kf − 2ϕa kf − ka

� �
ka + 2kf + ϕa kf − ka

� � ,

ð6Þ

where ϕm is an extreme fraction of the volume, [η] is an
Einstein coefficient, and ϕa is an effective fraction of the vol-
ume of the aggregates.

ϕa = ϕ
ra
rp

 !3−D

: ð7Þ

Experimental values are very well agreed with the com-
monly accepted values D = 1:8, ðra/rpÞ=3.34, ϕm = 0:605,
and ½η� = 2:5. Nanoparticle aggregation is included in the
thermal conductivity deduction by Bruggeman:

knf
kf

=
1
4

3ϕm − 1ð Þ ks
kf

+ 3 1 − ϕmð Þ − 1ð Þ
(

+ 3ϕin − 1ð Þ ks
kf

+ 3 1 − ϕinð Þ − 1ð Þ
 !2

+ 8
ks
kf

" #)
,

ϕin =
ra
rp

 !D−3

: ð8Þ

By using similarity transformations,

η =
m + 1ð ÞUe xð Þ

2υbf x

 !1/2

y, u =Ue xð Þf ′ ηð Þ,

θ ηð Þ = T − T∞ð Þ
Tw − T∞ð Þ , v =

m + 1ð Þυbf Ue xð Þ
2x

� �1/2

f +
m − 1ð Þ
m + 1ð Þ

� �
ηf ′ ηð Þ

� �
:

ð9Þ

Substituting values to get

f ′′′ + 1 − ϕð Þ2:5 1 − ϕ + ϕ
ρnf
ρf

 !
f f ′′ + 2mð Þ

m + 1ð Þ 1 − f ′2
� 	� �

= 0,

ð10Þ

knf
kf

+
4

3Nr

 !
θ′′ + 1 − ϕ + ϕρnf /ρf

� 	
Pr f θ′ + Br

1 − ϕð Þ2:5 f
′′2 = 0,

ð11Þ
where Nr is the radiation parameter, and Br = Pr:Ec

(where Ec represents the Eckert number) is the Brinkman
number. Bi is the surface convection parameter, Pr = vf /αf

is the Prandtl number, and primes signify derivative w.r.t η.
The modified BCs transform into

f 0ð Þ = 0, f ′ 0ð Þ = 0, θ′ 0ð Þ = −Bi 1 − θ 0ð Þð Þ, ð12Þ

f ′ ηð Þ = 1, θ ηð Þ = 0 as ηð Þ⟶∞: ð13Þ

2.2. Entropy Generation. Entropy generation includes the
existing irreversibility of the physical phenomenon. The term
entropy is used

Sg =
knf
T2
∞

∂T
∂y

� �2
+
16σ∗T2

∞
3kbf k

∗
∂T
∂y

� �2
" #

+
μnf
T∞

∂u
∂y

� �2
= 0:

ð14Þ

The nondimensional entropy generation is given by

Ns =
Sg
Sg0

=
m + 1
2

� �
Rex

knf
kbf

1 +
4

3Nr

� �
θ′2 + Br

Ω 1 − ϕð Þ2:5 f ′′
� 	2" #

,

ð15Þ

where Sg0 = ðkbfΔT2/T2
∞x2Þ is the characteristic entropy

generation rate, and Ω−1 = T∞/ΔT is the dimensionless
temperature difference.

Table 2 shows the comparison between results of previ-
ous publications [39, 40] and some of our results with a
perfect agreement.

We are introducing the Bejan number (Be) as the
ratio between entropy and total entropy output induced by
heat transfer.

Be =
Entropy genration due to heat transfer

Total entropy generation
: ð16Þ

If Be = 1 dominates irreversibility in heat transfers, while
Be = 0 dominates irreversibility as a result of fluid friction,
Be = 1/2 dominates when fluid rubbing, and heat transfers
are irreversible.

2.2.1. Mathematical Analysis. Equations (10) and (11) rela-
tive to equation (12) are combined with nonlinear DEs to
be numerically solved by Runge-Kutta-Fehlberg scheme for
differential values of physical parameters. In order to obtain
the numerical approaches, the governing nonlinear ODEs
(10) and (11) and BCs (12) transformed to a number of
simultaneous DEs of the first order.
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3. Interpretations of the Results

In the presence of thermal radiation, the numerical results
for entropy production inside the nanofluid border layer
over the wedge are graphically represented. The results show
extraordinary agreement and therefore trust us to use the
current code. For certain values of (Bi), m, Nr, Br, and ϕ,
the nonlinear ordinary differential equations (10) and (11)
subject to boundary condition (12) is numerically solved.
Many kinds of nanoparticles are considered that are the fluid
of base Cu, CuO,Al2O3 , and H2O. Let us take into account
of the value (Pr) of 6.2 for the current analysis.

The impact of Bi for the velocity component f ′ðηÞ and
the field of temperature, θðηÞ, respectively, are shown in
Figures 2 and 3. Biot number is a dimensional quantity com-
paring relative external and internal resistance transmission.
The heated fluid heats up the lower surface of the stretch
sheet as Bi rises, causing convective heat to be transferred.
As a result of the rise in the number of Biot, the temperature
increases. Eventually, it increases the thickness of the ther-
mal boundaries. It is important to note that the inclusion
of nanoparticle aggregation leads to an enhanced tempera-
ture profile.

For velocity components f ′ðηÞ and the distribution of
the temperature field θðηÞ, respectively, the effects of the
m parameter are shown in Figures 4 and 5. The findings
are very much in agreement. The f ′ðηÞ values are reduced
and for the largerm,θðηÞ increases. Physically, the increment
in θðηÞ is due to the resistive force that occurs from the mag-
netic field. The Lorentz force, which is induced by the mag-
netic field, is the physical reason behind this. Figures 6 and 7
display the effect of Nr on f ′ðηÞ and θðηÞ temperature. f ′ðηÞ
decreases and increases the thickness of thermal boundary
layer as Nr increases. Figures 8 and 9 show that with the rise
in ϕ, both the velocity profile f ′ðηÞ and the distribution of
the temperature field θðηÞ increase. Physically, this is due
to increased dynamic viscosity and increased momentum
diffusion. The increase in the thermal conductivity of the
nanoliquid is attributable to the existence of more nanopar-
ticles. The fluid close to the nanoparticles forms a nanolayer
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Figure 4: Impact of m parameter on f ′ðηÞ.

Table 1: Thermal physical characteristics of H2O and
MWCNT [31].

Physical properties ρ kg
m3

� 	
Cp

J
kgK

� 	‘
k W

m K
� �

Pure water H2Oð Þ 997.0 4179 0.613

MWCNT 1600 796 3000

Table 2: Comparison between present result and Ref [39, 40].

m Yih [36] White [37] Present

0 0:4696 0:4696 0:4696
1
11

0:6550 0:6550 0:6550

1
5

0:8021 0:8021 0:8021

1
3

0:9276 0:9276 0:9277
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Figure 2: Impact of Bi parameter on f ′ðηÞ.
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Figure 3: Impact of Bi parameter on θðηÞ.
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since the nanoparticles are formed and serve as a bridge
between the particles and the fluid aggregates. The density
of the nanolayer plays an important part in improving ther-
mal conductivity. This nanolayer plays an important role in
the transmission of heat from solid to nearby liquid.

Br effects are shown in Figures 10 and 11 for f ′ðηÞ and θ
ðηÞ. It seems that f ′ðηÞ decreases, and the thermal limit thick-
ness increases with Br. The effect of Bi, Nr, and ϕ nanoparti-
cles on NgðηÞ is shown in Figures 12–14. It is evident that
with higher ϕ, NgðηÞ decreases and Bi increases. Increased
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radiation parameters in NgðηÞ and Nr continue to increase
the entropy generation. This action of entropy generation is
motivated by a reduction in the radiation absorption rate.
Therefore, the best way to reduce entropy production is to
increase the radiation parameter. It is illustrated that the nano-
particle aggregation model has a lower entropy generation.

The Bejan number for parameters ϕ, Nr, and Br is
shown in Figures 15 and 16. The BeðηÞ curve tends to
increase until the maximum value is reached first and then
begins to decrease unless the value is zero. It is observed
that the number of Bejan increases to increase the value
of Nr. The maximum value of BeðηÞ is increased with
greater Nr and decreased with ϕ and Br. It is known from
these graphs that the number of Bejan is greater for the
aggregation model.

4. Conclusions

This study develops a mathematical expression for the
entropy processing and heat transfer studies of
MWCNT-containing incompressible nanofluids under the
conditions of convective conditions and nanofluid thermal
radiation. A cinematic aggregation model for the analysis
of nanoliquid flow is considered. The significance of the
different speed profile parameters, thermal profile, entropy
generation, and the number of Bejan is considered. The
following fundamental conclusions are drawn from the
current study:

(i) The increase in volume phi and Biot Bi fraction
increases thickness of temperature but decreases
the radiation parameter

(ii) It is noted that the aggregation model has a higher
temperature profile than traditional models

(iii) Entropy production increases in nanofluid for a
wider volume fraction of nanoparticles

(iv) The entropy production is reduced in the aggrega-
tion model of nanoparticles

(v) The reduction of entropy can be achieved by
increasing the radiation parameter and reducing
crossborder convection

(vi) Nanofluid entropy production increases for higher
volume fraction values

(vii) The number Bejan is increased with the radiation
parameter and the number Biot

(viii) It has been emphasized that a model of aggregation
of nanoparticles shows a higher number Bejan

Nomenclature

u: Component of velocity in the x direction
v: Component of velocity in the y direction
μ: Dynamic viscosity
ν: Kinematics viscosity
Re: Local Reynolds number

T : Surface temperatures
T∞: Environmental temperatures
ðρCpÞnf : Nanofluid heat power
ρnf : Density of nanofluid
ρs: Density of solid particle
ϕ: Volume fraction of nanoparticles
kf : Conductivity of the base fluid
θ: Dimensionless temperature
η: Dimensionless variable
Nu: Nusselt number
Pr: Prandtl number
qr : Rosseland approximation
Ec: Eckert number
N : Radiation parameter
Ng: Entropy generation
Be: Bejan number
Ω: Thermal difference parameter
ka: Thermal conductivity of the aggregates
ϕa: Volume fraction of nanoparticle aggregates
ϕm: Maximum volume fraction of nanoparticles
ra, rp: Radii of aggregates and nanoparticles.
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This research study focuses on the analytical behavior and numerical computation of the fractional order Ebola model. In this
study we have calculated the conditions for the existence, uniqueness, and stability of the solution with the help of the fixed
point results. In addition to this, we calculated the numerical solution of the fractional order smoke model with the help two-
step fractional Adam’s Bashforth method using the Caputo’s fractional derivative of order μ. Furthermore, the results obtained
for different orders of the fractional derivative μ have been shown graphically with the help of Matlab.

1. Introduction

The concept of fractional calculus (FC) was raised in sev-
enteen century from famous correspondence between Leib-
niz and L’Hoptial. In the consequences of aforementioned
correspondence, Leibniz wrote a letter to Guillaume de
L’Hôpital that what will be the half order derivative of
dependent variable y w.r.t x, i.e, d1/2x/dy1/2. In the response,
he wrote that this will bear some useful consequence in near
future. Later on, it was traced that fractional calculus was
introduced by Abel in one of his papers, where the author
discussed the idea of fractional-order derivatives (FOD),
fractional-order integration (FOI), and the mutual inverse
relationship between them [1]. In 1832, one of the greatest
French mathematicians (of his era) Liouville presented the
definitions for the fractional derivative and fractional inte-
gration named as Riemann-Liouville fractional derivative
and integration [2]. Later, on in 1890, Heaviside practically
used the fractional differential operator in electrical transmis-
sion line analysis circa [3]. Recently, the researchers of the
19th and 20th century have made their significant contribu-
tions to introduce new definitions of fractional differential

and integral operators and in the study of the practical appli-
cations of FC [4].

In modern era, the uses of FC in various engineering
problems have been raised [5–7] 2014). For instance, FC
has various applications in different diffusion phenomenon
including heat transfer, gaseous exchange, and water transfer
through permeable materials [8–11]. Bagley and Torvik pre-
sented FC as an instrument for displaying tissue viscoelastic-
ity during the 1980s (Uchaikin, 2013). Study of intricacy
gives another view to a few genuine wonders which appeared
to be odd, and during the most recent years, new strategies
have been utilized to separate secret properties of complex
frameworks [12]. Further, a variety of FC tools have been
widely used in several complex phenomena [13–15]. In some
circumstances, FC has been perceived for taking care of
issues in viscoelasticity, electrochemistry, and dispersion
[16–19]. A few analysts featured FC as a tool for examination
of complex phenomenon by bringing the techniques of FC
and its applications to a more extensive crowd [20, 21] .

The technique by which a real world problem is
described in mathematical concepts or language is known
as mathematical modeling [22]. Mathematical modeling of
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infectious diseases has been the main focus for the scientists
and researchers over the last two decades. Mathematical
modelers used to model the infectious diseases in the form
of mathematical models consist of classical differential
equations (CDEs). Recently, the researchers have diverted
their focus to model the diseases in the form of fractional
differential equations (FDEs) which has the potential to
describe the real world phenomena more accurate and
considered reliable as compared to the conventional deriv-
atives. FDEs are global in nature, more realistic, and give
great degree of freedom to modelers as compared to the
CDEs. Modeling via FDEs has produced highly influential
results in the investigation of transmission of the infec-
tious diseases models [23, 24].

In the year 1976, a flare-up occurred in African nation of
the Democratic Republic of Congo (DRC), which was then
termed after the name of the lake “Ebola” flows near to the
DRC. The infection has five sorts, four out of these five
spread illnesses in people. The infection use to attack on the
immune system which then cause internal bleeding and affect
each organ of the individuals. This terrifying infection spread
by contacting directly with the tainted individuals either via
body fluids or direct skin contact. The infection can also be
pass through connection with the creatures like monkeys,
etc. Nonetheless, the infection cannot be transmit through
air and food. Later on, in 2013, the infection arose in Guck-
duo and Guinea, where 28,616 casualties were reported,
and out of these casualties, 11,310 lost their lives. Today,
where the advanced world is confronting another pandemic
flare-up as COVID-19, the investigation of such irresistible
sicknesses is still a center of focus for the researchers [25].

2. Model Formulation

In this section of the article, we have presented the formula-
tion of the model, which we will be studying in this paper.
For this, we have considered a population and divided it into
five different compartments with some assumptions. The
assumptions considered for the formulation of the model
are stated below

(i) S: the first class of the model has been named as
susceptible class. This class contains individuals
who have no symptoms or any infection of the dis-
ease but can be attacked by the virus

(ii) E: the second class of the population has been
named as exposed class. This class contains individ-
uals who have been attacked by the virus but not yet
shown the symptoms of the infection or not yet
infectious

(iii) I: this is the third class of the population containing
individuals who have been attacked by the virus and
are being able to transfer the disease to not yet
attacked individuals of the populations

(iv) V : this class has been named as vaccinated class
containing those individuals of the susceptible class
who have been vaccinated against the virus

(v) ℝ: this class is the recovered class which contains
those individuals who have survived the disease

The transition or transfer among the compartments has
been considered in the following manner

(i) S⟶
τ

E: an individual of the population S move to
the population E through the rate τ1

(ii) S⟶
β

I: an individual of the class S joins the class I
with the rate β after getting infectious

(iii) S⟶
ψ

V : the given parameter is used for the rate of
the vaccination which transfer an individual from S

to V

(iv) I⟶
ξ

ℝ: the rate of transfer of the individuals from I

to ℝ after surviving the disease

dS
dt

=Λ − d0S tð Þ − τ1S tð ÞE tð Þ − βS tð ÞI tð Þ − ψS tð Þ
dE
dt

= τ1S tð ÞE tð Þ − d0 + d1 + κð ÞE tð Þ
dI
dt

= βS tð ÞI tð Þ + κE tð Þ − ξI tð Þ − d0 + d2ð ÞI tð Þ
dV
dt

= ψS tð Þ − d0V tð Þ
dℝ
dt

= ξI tð Þ − d0ℝ tð Þ
ð1Þ

And the corresponding fractional form of the system (1)
is

cDμS tð Þ =Λ − d0S tð Þ − τS tð ÞE tð Þ − βS tð ÞI tð Þ − ψS tð Þ
cDμE tð Þ = τS tð ÞE tð Þ − d0 + d1 + κð ÞE tð Þ
cDμI tð Þ = βS tð ÞI tð Þ + κE tð Þ − ξ tð Þ − d0 + d2ð ÞI tð Þ
cDμV tð Þ = ψS tð Þ − d0V tð Þ
cDμℝ tð Þ = ξ tð Þ − d0ℝ tð Þ

ð2Þ

The paper has been organized as follows: the first section
of the paper contains introduction. The second section has
been restricted to the formulation of the model, while the
third section has been devoted to the preliminaries. The
fourth section of the paper contains the existence and
uniqueness of the solution of the model. The fifth section
of the paper includes the stability of the solution, while the
sixth section contains qualitative study where we formulated
the disease free, disease endemic, and basic reproduction
number R0 and then test the stability of the R0 locally with
the help of theorems. In the seventh section, we have formu-
lated the numerical solution of the model via Adam’s
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Bashforth scheme, and the eighth section contains the
numerical simulation of the results obtained in the section
seventh. At last, we have concluded our work in the conclu-
sion section.

3. Preliminaries

In this section of the present article, we provide some basic
definitions, theorems, and results that will be used and fruit-
ful in understanding the rest of the article.

Definition 1. (see [26]). The Caputo’s fractional differential
operator of any arbitrary order μ > 0 is defined as

cDμθ tð Þ = 1
Γ n − μð Þ

ðt
0
f s, θ sð Þð Þn t − sð Þn−μ−1ds: ð3Þ

Lemma 2. (see [27]). “The following result holds for frac-
tional differential equations

Iμ cDμθ tð Þ½ � = θ tð Þ + α0 + α1t + α2t
2+⋯+αm−1t

m−1, ð4Þ

for arbitrary αi ∈ R, i = 0, 1, 2, 3,⋯,m − 1, where m = ½μ�
+ 1 and ½μ� symbolizes the integer part of μ”.

Lemma 3. (see [28]). Let θ ∈ ACn½0, T�, μ > 0, and n = ½μ�,
then the following result holds

Iμ cDμθ ϑð Þ½ � = θ ϑð Þ − 〠
n−1

j=0

Djθ að Þ
j!

t − að Þj: ð5Þ

Lemma 4. (see [28]). In view of Lemma 3, the solution of
DμθðtÞ = yðtÞ, n − 1 < μ < n is given by

θ tð Þ = Iμy tð Þ + c0 + c1 tð Þ + c2t
2++cn−1tn−1, ð6Þ

where cj ∈ R:

Definition 5. (see [26]). Suppose we have Caputo’s fractional
differential equation of order μ

cDμθ tð Þ = f t, θ tð Þð Þ, ð7Þ

then the solution is given as

θ tn+ð Þ = θ tnð Þ + f tn, θnð Þ
hΓ μð Þ

2h
μ
tμn+1 −

tμ+1n+1
μ + 1 + h

μ
tμn −

tμ+1

μ

( )

Á f tn−1, θn−1ð Þ
hΓ μð

h
μ
tμn+1 −

tμ+1n+1
μ + 1 + tμn

μ + 1

( )
+ Rμ

n tð Þ,

ð8Þ

where Rμ
nðtÞ represent the remainder term. For the study

of convergence and uniqueness of the solution of the
scheme, we refer to ([26]).

Theorem 6. (see [29]). “Let X be a Banach space and P : X
⟶ X is compact and continuous, if the set,

E = θ ∈ X : θ =mPθ,m ∈ 0, 1ð Þf g, ð9Þ

is bounded, then P has a unique fixed point.”

4. Existence of the Solution

In this section of the paper, we construct the conditions for
the existence and uniqueness of the solution, and to get the
desired results, we construct the following function.

ϑ1 t, S, E, I, V ,ℝð Þ =Λ − d0S tð Þ − τS tð ÞE tð Þ − βS tð ÞI tð Þ − ψS tð Þ,
ϑ2 t, S, E, I, V ,ℝð Þ = τS tð ÞE tð Þ − d0 + d1 + κð ÞE tð Þ,
ϑ3 t, S, E, I, V ,ℝð Þ = βS tð ÞI tð Þ + κE tð Þ − ξI tð Þ − d0 + d2ð ÞI tð Þ,
ϑ4 t, S, E, I, V ,ℝð Þ = ψS tð Þ − d0V tð Þ,
ϑ5 t, S, E, I, V ,ℝð Þ = ξI tð Þ − d0ℝ tð Þ:

8>>>>>>>><
>>>>>>>>:

ð10Þ

Suppose that the considered space ℂ½0, T� =B be a
Banach space with norm

θ tð Þk k = sup
t∈ 0,T½ �

S tð Þj j + E tð Þj j + I tð Þj j + V tð Þj j + ℝ tð Þj j½ �,

ð11Þ

where

θ tð Þ =

S tð Þ
E tð Þ
I tð Þ
V tð Þ
ℝ tð Þ

8>>>>>>>><
>>>>>>>>:

, θ0 tð Þ =

S0

E0

I0

V0

ℝ0

8>>>>>>>><
>>>>>>>>:

,T t, θ tð Þð Þ =

ϑ1 t, S, E, I, V ,ℝð Þ
ϑ2 t, S, E, I, V ,ℝð Þ
ϑ3 t, S, E, I, V ,ℝð Þ
ϑ4 t, S, E, I, V ,ℝð Þ
ϑ5 t, S, E, I, V ,ℝð Þ

8>>>>>>>><
>>>>>>>>:

:

ð12Þ

With the help of (12), the system (1) can be written in as

cDμθ tð Þ =T t, θ tð Þð Þ, t ∈ 0, T½ �,
θ 0ð Þ = θ0,

ð13Þ

By Lemma 2, equation (13) converts into the following
form

θ tð Þ = θ0 +
ðt
0

t − sð Þμ−1
Γ μð Þ T s, θ sð Þð Þds, t ∈ J = 0, T½ �: ð14Þ

To prove the existence of the solution, we make the
following assumptions:

ðP1Þ∃ constants K∗
1 ,M∗

1∋

T t, θ tð Þð Þj j ≤ K∗
1 θj jq +M∗

1 : ð15Þ
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ðP2Þ∃L∗ > 0, ∋ for each θ, θ

T t, θð Þ −T t, θ
� ���� ��� ≤ L∗ θ − θ

 : ð16Þ

And let P : B⟶ B be an operator as

Pθ tð Þ = θ0 +
ðt
0

t − sð Þμ−1
Γ μð Þ T s, θ sð Þð Þds: ð17Þ

Theorem 7.When the assumptions ðP1Þ and ðP2Þ are true, it
verifies that the problem (13) has at least of one fixed point
which also implies that the problem of our study has also at
least one solution.

Proof. Furthermore we proceed as.

Step 1. First, we have to show that P is continuous. To
acquire the results, we suppose that Tj is continuous for
j = 1, 2, 3, 4, 5, 6. Which implies thatTðs, θðsÞÞ is also contin-
uous. Assume θn:θ ∈ X ∋ θn ⟶ θ, we must have Pθn ⟶
Pθ.

For this, we consider

Pθn −Pθk k = max
t∈J= 0,T½ �

ðt
0

t − sð Þμ−1
Γ μð Þ Tn s, θn sð Þð Þds

����
−

1
Γ μð Þ

ðt
0
t − sð Þμ−1T s, θ sð Þð Þds

����
≤ max

t∈J= 0,T½ �

ðt
0

t − sð Þμ−1
Γ μð Þ

����
���� Tn s, θn sð Þð Þ −T s, θ sð Þð Þj j

Á ds, ≤ Tt

Γ μ + 1ð Þ Tn −Tk k⟶ 0 as n⟶∞:

ð18Þ

As T is continuous, therefore Pθn ⟶Pθ, yields that P
is continuous.

Step 2. Now, to prove that P is bounded for any θ ∈X, we
make of the supposition that P satisfies the growth condi-
tion:

Pθk k = max
t∈ 0,T½ �

θ0 +
1

Γ μð Þ
ðt
0
t − sð Þμ−1T s, θ sð Þð Þds

����
����,

≤ θ0j j + max
t∈ 0,T½ �

1
Γ μð Þ

ðt
0

t − sð Þμ−1�� �� T s, θ sð Þð Þj jds,

≤ θ0j j + Tμ

Γ μ + 1ð Þ K∗
1 θk kq +M∗

1½ �:

ð19Þ

Here, we assume a S , the subset of X with the property
of boundedness, and we need to prove that PðSÞ is also
bounded. To reach our destination, we assume that for any
θ ∈ S , now as S is bounded, so ∃Kq ≥ 0 ∋

θk k ≤ Kq,∀θ ∈ S: ð20Þ

Further, for any θ ∈ S by using the growth condition, we
have

Pθk k ≤ θ0j j + Tμ

Γ μ + 1ð Þ K∗
1 θqk k +M∗

1½ �

≤ θ0j j + Tμ

Γ μ + 1ð Þ K∗
1Kq +M∗

1
Â Ã

:

ð21Þ

Therefore, PðSÞ is bounded.

Step 3. Here, we attempt to prove that the operator we
defined is equicontinuous, for this we assume that t2 ≤ t1 ∈
J = ½0, T�, then

Pθ t1ð Þ −Pθ t2ð Þj j = 1
Γ μð Þ

ðt
0
t1 − sð Þμ−1T s, θ sð Þð Þds

����
−

1
Γ μð Þ

ðt
0
t2 − sð Þμ−1T s, θ sð Þð Þds

����,
≤

1
Γ μð Þ

ðt
0
t1 − sð Þμ−1 − 1

Γ μð Þ
ðt
0
t2 − sð Þμ−1

����
����

Á T s, θ sð Þð Þj jds,
≤

Tμ

Γ μ + 1ð Þ K∗
1 θk kq +M∗

1½ � t1 − t2½ �:

ð22Þ

By taking advantage of Arzelà-Ascoli theorem, we can
say that PðSÞ is relative compact.

Step 4. In this step, we need to prove that the set defined
below is bounded

E = θ ∈ X : θ =mPθ, m ∈ 0, 1ð Þf g: ð23Þ

To prove this, we suppose that θ ∈ E, ∋ for each t ∈ J ,
where J = ½0, T� we have

θk k =m Pθk k ≤m θ0j j + Tμ

Γ μ + 1ð Þ ½�K
∗
1 θk kq +M∗

1

� �
: ð24Þ

From here, we can claim that the set defined above is
bounded. By using Schaefer’s FPT, the operator we defined,
i.e., P has atleast one fixed point, and hence, the model we
studied in this paper has at least one solution.

Theorem 8. The problem (13) is unique solution, if TμK∗
1 /Γ

ðμ + 1Þ < 1.
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Proof. Let θ, θ ∈ X, then

Pθ −Pθ
  ≤ max

t∈J= 0,T½ �

ðt
0

t − sð Þμ−1
Γ μð Þ

����
���� T s, θ sð Þð Þ −T s, θ sð Þ

� ���� ���ds,
≤

TμLT
Γ μ + 1ð Þ θ − θ

 :
ð25Þ

Hence, we can say that the fixed point is unique, and
therefore, our solution is unique.

5. Stability Results

To prove that the solution of the considered model is stable,
we use the concept of Ulam and Ulam Hyer stability. To get
the desired results we proceed as

Assume L : X⟶ X be an operator which satisfy

θ =L θð Þ, where θ ∈ X: ð26Þ

Definition 9. (see [27]). Equation (26) has UH-stability, if for
ς1 > 0 and assume any solution θ ∈L for the inequality
given by

θ −Lθk k ≤ ς1,∀t ∈ J = 0, T½ �, ð27Þ

and the unique solution θ for (25) with C∗
q > 0, such that

θ − θ
  ≤ C∗

q ς1,∀t ∈ 0, T½ �: ð28Þ

Definition 5.2. “If ∃ϑ ∈ CðR, RÞ with ϑð0Þ = 0,” for unique
result θ and any solution of equation (26) ∋

θ − θ
  ≤ ϑ ς1ð Þ, ð29Þ

then equation (26) has GUH-stability.

Remark 10. (see [27]). “If ∋ζ∗∗1 ðtÞ ∈ Cð½0, T�, RÞ, then θ ∈ X
satisfies (27) if

(i) jζ∗∗1 ðtÞj ≤ ς1, ∀t ∈ ½0, T�
(ii) LθðtÞ = θ + ζ∗∗1 ðtÞ, ∀t ∈ ½0, T�”
For further analysis, we suppose that the following is the

solution of the perturbed problem of (13)

CDμ
+0θ tð Þ =T t, θ tð Þð Þ+ζ∗∗1 tð Þ,

θ 0ð Þ = θ0:

(
ð30Þ

Lemma 11. The result stated below holds true for equation
(30),

θ tð Þ −Pθ tð Þj j ≤ aς1, where a = Tμ

Γ μ + 1ð Þ ð31Þ

Theorem 12. By making use of Lemma 11, the solution of the
problem (13) is UH-stable as well as GUH-stable, if TμLω/Γ
ðμ + 1Þ < 1.

Proof. Assume θ, θ ∈ X be any and unique solutions, respec-
tively, problem (13), then

θ tð Þ − θ tð Þ
��� ��� = θ tð Þ −Pθ tð Þ

��� ���, ≤ θ tð Þ −Pθ tð Þj j
+ Pθ tð Þ +Pθ tð Þ
��� ���, ≤ aς1

+ TμLθ
Γ μ + 1ð Þ θ tð Þ − θ tð Þ

��� ���,
≤

aς1
1 − TμLϑ/Γ μ + 1ð Þ :

ð32Þ

From here, we claim that the solution of (13) is UH and
GUH stability if

Y ς1ð Þ = aς1
1 − TμLϑ/Γ μ + 1ð Þ : ð33Þ

Such that Yð0Þ = 0.

Definition 13. The UHR-Stability of (26) is ensured for g∗

∈ Cð½0, T�, RÞ, if for ς1 > 0 and assume θ ∈ X be any solution
of the inequality expressed by

θ −Hθk k ≤ g tð Þς1: ð34Þ

∃ a unique solution θ of (26) with Kq′ > 0∋

θ − θ
  ≤Kq′g∗ tð Þς1, ∀ t ∈ 0, T½ �: ð35Þ

Definition 14. (see [27]). “For g∗ ∈ C½0, T�, R�, if ∃Kq,g′ and

for ς1 > 0, consider that θ be any solution of (34) and θ be
any solution of (26) ∋

θ − θ
  ≤Kq,g′ g∗ tð Þ,∀ t ∈ J = 0, T½ �, ð36Þ

then equation (26) is generalized UHR stable.”

Remark 15. If ∃ζ∗∗1 ðtÞ ∈ CðJ , RÞ, then for θ ∈ X (27) holds, if

(i) jζ∗∗1 ðtÞj ≤ ς1ωðtÞ, ∀t ∈ J

(ii) LθðtÞ = θ + ζ∗∗1 ðtÞ, ∀t ∈ J

Lemma 16. The stated result below holds true for (30)

θ tð Þ −Pθ tð Þj j ≤ aω tð Þς1, a = Tμ

Γ μ + 1ð Þ ð37Þ

Proof. The proof has been left for the readers.
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Theorem 17. With the help of Lemma 16, our solution is
Ulam and Generalized Ulam stable if TμLθ/Γμ + 1 < 1.

Proof. . Assume θ, θ ∈ X be two solutions such that θ is any
and any and θ is the unique solution of our problem, then

θ tð Þ − θ tð Þ
��� ��� = θ tð Þ −Pθ tð Þ

��� ���, ≤ θ tð Þ −Pθ tð Þj j

+ Pθ tð Þ +Pθ tð Þ
��� ���, ≤ aω tð Þς1 +

TμLθ
Γ μ + 1ð Þ

Á θ tð Þ − θ tð Þ
��� ���, ≤ aω tð Þς1

1 − TμLϑ/Γ μ + 1ð Þ :

ð38Þ

Hence, the solution possesses both type of the stabilities.

6. Qualitative Study

In this section of the article, we present disease free equilib-
rium, disease endemic equilibrium, the basic reproduction
number R0, and the local assymptotical stability of the R0.
To proceed, we first find the disease free equilibrium and
disease endemic equilibrium of the model. The disease free
equilibrium is given as S0 = ðΛ/d0 + ψ, 0, 0, 0, 0Þ, while the
endemic equilibrium is given below.

6.1. Endemic Equilibrium. The endemic equilibrium of the
model is given as

S∗ = d0 + d1 + κ

τ
,

E∗ = 1
τκ

τ ξ + d0 + d2ð Þ − β d0 + d1 + κð Þð ÞI∗,

I∗ = Λτ

d0 + d1 − κ
− d0 + ψð Þ

� �
κ

τ ξ + d0 + d2ð Þ − β d0 + d1 + κð Þ − κβ

� �
,

V∗ = ψ

d0

d0 + d1 − κ

τ

�
,

R∗ = ξ

d0
R∗:

ð39Þ

6.2. The Basic Reproduction Number. To find R0, we con-
struct two vectors such as

F =
f1

f2

" #
=

τS tð ÞE tð Þ
βS tð ÞI tð Þ

" #
, ð40Þ

V =
v1

v2

" #
=

d0 + d1 + κð ÞE tð Þ
ξ + d0 + d2ð ÞI tð Þ − κE tð Þ

" #
: ð41Þ

Now, we present the Jacobian of both the matrix, i.e.,

JF =
τS tð Þ 0
0 βS tð Þ

" #
, ð42Þ

JV =
d0 + d1 + κ 0

−κ ξ + d0 + d2

" #
: ð43Þ

with

JVð Þ−1 =

1
d0 + d1 + κ

0

κ

ξ + d0 + d2ð Þ d0 + d1 + κð Þ
1

ξ + d0 + d2

2
6664

3
7775 :

ð44Þ

Now, to find the next generation matrix (NGM), we find
the product of JF and ðJV Þ−1, i.e.,

NGM=

τS tð Þ
d0 + d1 + κ

0

βS tð Þκ
ξ + d0 + d2ð Þ d0 + d1κð Þ

βS tð Þ
ξ + d0 + d2

2
6664

3
7775 : ð45Þ

Clearly, the eigen values are (say) λ1 and λ2 which are
given as λ1 = τSðtÞ/d0 + d1 + κ and λ2 = βSðtÞ/ξ + d0 + d2.
Therefore, the basic reproduction number R0 = max ðλ1, λ2Þ.

Theorem 18. The basic reproduction number R0 is locally
assymptotically stable at the disease free equilibrium point
that is stable if R0 < 1:

Proof. For this purpose, we construct the following Jacobian.

Aj =

− d0 + ψð Þ −τS0 −βS0 0 0
0 τS0 − d0 + d1 + κð Þ 0 0 0

βS0 κ −ξ − d0 + d2ð Þ 0 0
ψ 0 0 −d0 0
0 0 ξ 0 −d0

2
666666664

3
777777775
:

ð46Þ

Now, let the eigen values are (say) λ1, λ2, λ3, λ4, λ5.
Clearly λ1 = λ2 = −d0, λ3 = τS0 − ðd0 + d1 + κÞ, λ4 = −ðd0 +
ψÞ, and λ5 = −β2S2 − ðd0 + ψÞðξ + d0 + d2Þ. From λ3, we
have τS0/d0 + d1 + κ < 1, and from λ5, we have d0 + ψ/βS0

< βS0/ξ + d0 + d − 2 < 1. Therefore, R0 = max ðλ3, λ5Þ < 1
and hence is locally assymptotically stable at the disease free
equilibrium point.

Theorem 6.2. The basic reproduction number R0 is locally
assymptotically stable at the endemic equilibrium point if
R0 > 1.
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Proof. The proof of this result can be obtained on the same
manner as the proof in [30].

7. Numerical Solution

This section of the article is devoted to the numerical solu-
tion of the considered model. For this, we will use the
well-known two-step fractional order Adam’s Bashforth
method. The considered model is given as

cDμS tð Þ =Λ − d0S tð Þ − τS tð ÞE tð Þ − βS tð ÞI tð Þ − ψS tð Þ,
cDμE tð Þ = τS tð ÞE tð Þ − d0 + d1ð ÞE tð Þ,

cDμI tð Þ = βS tð ÞI tð Þ +KappaE tð Þ −XiI tð Þ − d0 + d2ð ÞI tð Þ,
cDμI tð Þ = ψS tð Þ − d0V tð Þ,
cDμℝ tð Þ =XiI tð Þ − d0ℝ tð Þ:

ð47Þ

To obtain the desired results, we apply the fundamental
theorem of fractional calculus to system (3) gives

S tð Þ = S 0ð Þ + 1
Γ μð Þ

ðt
0
A1 β, S βð Þð Þ t − βð Þμ−1dβ,

E tð Þ = E 0ð Þ + 1
Γ μð Þ

ðt
0
A2 β, E βð Þð Þ t − βð Þμ−1dβ,

I tð Þ = I 0ð Þ + 1
Γ μð Þ

ðt
0
A3 β, I βð Þð Þ t − βð Þμ−1dβ,

V tð Þ = V 0ð Þ + 1
Γ μð Þ

ðt
0
A4 β, V βð Þð Þ t − βð Þμ−1dβ,

ℝ tð Þ =ℝ 0ð Þ + 1
Γ μð Þ

ðt
0
A5 β,ℝ βð Þð Þ t − βð Þμ−1dβ:

ð48Þ

The unknown terms A1,A2,A3,A4,A5 are given
below. Now, for t = tn+1, we get

S tn+1ð Þ = S 0ð Þ + 1
Γ μð Þ

ðtn+1
0

A1 t, S tð Þð Þ tn+1 − tð Þμ−1dt,

E tn+1ð Þ = E 0ð Þ + 1
Γ μð Þ

ðtn+1
0

A2 t, E tð Þð Þ tn+1 − tð Þμ−1dt,

I tn+1ð Þ = I 0ð Þ + 1
Γ μð Þ

ðtn+1
0

A3 t, I tð Þð Þ tn+1 − tð Þμ−1dt,

V tn+1ð Þ = V 0ð Þ + 1
Γ μð Þ

ðtn+1
0

A4 t, V tð Þð Þ tn+1 − tð Þμ−1dt,

ℝ tn+1ð Þ =ℝ 0ð Þ + 1
Γ μð Þ

ðtn+1
0

A5 t,ℝ tð Þð Þ tn+1 − tð Þμ−1dt:

ð49Þ

For t = tn, we get the following

S tnð Þ = S 0ð Þ + 1
Γ μð Þ

ðtn
0
A1 t, S tð Þð Þ tn − tð Þμ−1dt,

E tnð Þ = E 0ð Þ + 1
Γ μð Þ

ðtn
0
A2 t, E tð Þð Þ tn − tð Þμ−1dt,

I tnð Þ = I 0ð Þ + 1
Γ μð Þ

ðtn
0
A3 t, I tð Þð Þ tn − tð Þμ−1dt,

V tnð Þ = V 0ð Þ + 1
Γ μð Þ

ðtn
0
A4 t, V tð Þð Þ tn − tð Þμ−1dt,

ℝ tnð Þ =ℝ 0ð Þ + 1
Γ μð Þ

ðtn
0
A5 t,ℝ tð Þð Þ tn − tð Þμ−1dt:

ð50Þ

By Sðtn+1Þ − SðtnÞ, Eðtn+1Þ − EðtnÞ, Iðtn+1Þ − IðtnÞ, Vð
tn+1Þ − VðtnÞ, and ℝðtn+1Þ −ℝðtnÞ in (49) and (50), we
obtain

S tn+1ð Þ = S tnð Þ +A1
μ,1 +A1

eta,2,

E tn+1ð Þ = E tnð Þ +A2
μ,1 +A2

eta,2,

I tn+1ð Þ = I tnð Þ +A3
μ,1 +A3

eta,2,

V tn+1ð Þ = V tnð Þ +A4
μ,1 +A4

eta,2,

ℝ tn+1ð Þ =ℝ tnð Þ +A5
μ,1 +A5

eta,2,

ð51Þ

where

A1
μ,1 =

1
Γ μð Þ

ðtn+1
0

A1 t, S tð Þð Þ tn+1 − tð Þμ−1dt,

A2
μ,1 =

1
Γ μð Þ

ðtn+1
0

A2 t, E tð Þð Þ tn+1 − tð Þμ−1dt,

A3
μ,1 =

1
Γ μð Þ

ðtn+1
0

A3 t, I tð Þð Þ tn+1 − tð Þμ−1dt,

A4
μ,1 =

1
Γ μð Þ

ðtn+1
0

A4 t, V tð Þð Þ tn+1 − tð Þμ−1dt,

A5
μ,1 =

1
Γ μð Þ

ðtn+1
0

A5 t,ℝ tð Þð Þ tn+1 − tð Þμ−1dt:

ð52Þ

A1
μ,2 =

1
Γ μð Þ

ðtn
0
A1 t, S tð Þð Þ tn − tð Þμ−1dt,

A2
μ,2 =

1
Γ μð Þ

ðtn
0
A2 t, E tð Þð Þ tn − tð Þμ−1dt,

A3
μ,2 =

1
Γ μð Þ

ðtn
0
A3 t, I tð Þð Þ tn − tð Þμ−1dt,

A4
μ,2 =

1
Γ μð Þ

ðtn
0
A4 t, V tð Þð Þ tn − tð Þμ−1dt,

A5
μ,2 =

1
Γ μð Þ

ðtn
0
A5 t,ℝ tð Þð Þ tn − tð Þμ−1dt:

ð53Þ

7Journal of Nanomaterials



RE
TR
AC
TE
D

By approximating A1
μ,1, A

1
μ,2, A

2
μ,1, A

2
μ,2, A

3
μ,1, A

3
μ,2, A

4
μ,1,

A4
μ,2, A

5
μ,1, and A5

μ,2 with the help of Lagrange’s polynomials
and the plugging back in (51), we get the following solution

S tn+1ð Þ = S tnð Þ + A1 tn, S tnð Þð Þ
ℏΓ μð Þ

2ℏ
μ
tμn+1 −

tμ+1n+1
μ + 1 + ℏ

μ
tμn −

tμ+1

μ

( )

+ A1 tn−1, Sn−1ð Þ
ℏΓ μð Þ

ℏ
μ
tμn+1 −

tμ+1n+1
μ + 1 + tμn

μ + 1

( )
+ℝμ

1,n tð Þ,

E tn+1ð Þ = E tnð Þ + A2 tn, E tnð Þð Þ
ℏΓ μð Þ

2ℏ
μ
tμn+1 −

tμ+1n+1
μ + 1 + ℏ

μ
tμn −

tμ+1

μ

( )

+ A2 tn−1, En−1ð Þ
ℏΓ μð Þ

ℏ
μ
tμn+1 −

tμ+1n+1
μ + 1 + tμn

μ + 1

( )
+ℝμ

2,n tð Þ,

I tn+1ð Þ = I tnð Þ + A3 tn, Iℏ tnð Þð Þ
ℏΓ μð Þ

2ℏ
μ
tμn+1 −

tμ+1n+1
μ + 1 + ℏ

μ
tμn −

tμ+1

μ

( )

+ A3 tn−1, In−1ð Þ
ℏΓ μð Þ

ℏ
μ
tμn+1 −

tμ+1n+1
μ + 1 + tμn

μ + 1

( )
+ℝμ

3,n tð Þ,

V tn+1ð Þ = V tnð Þ + A4 tn, V tnð Þð Þ
ℏΓ μð Þ

2ℏ
μ
tμn+1 −

tμ+1n+1
μ + 1 + ℏ

μ
tμn −

tμ+1

μ

( )

+ A4 tn−1, Vn−1ð Þ
ℏΓ μð Þ

ℏ
μ
tμn+1 −

tμ+1n+1
μ + 1 + tμn

μ + 1

( )
+ℝμ

4,n tð Þ,

ℝ tn+1ð Þ =ℝ tnð Þ + A5 tn,ℝ tnð Þð Þ
ℏΓ μð Þ

2ℏ
μ
tμn+1 −

tμ+1n+1
μ + 1 + ℏ

μ
tμn −

tμ+1

μ

( )

+ A5 tn−1, Sn−1ð Þ
ℏΓ μð Þ

ℏ
μ
tμn+1 −

tμ+1n+1
μ + 1 + tμn

μ + 1

( )
+ℝμ

5,n tð Þ,

ð54Þ

where

A1 =Λ − d0S tð Þ − τS tð ÞE tð Þ − βS tð ÞI tð Þ − ψS tð Þ,
A 2 = τS tð ÞE tð Þ − d0 + d1 + κð ÞE tð Þ,

A3 = βS tð ÞI tð Þ + κE tð Þ − ξI tð Þ − d0 + d2ð ÞI tð Þ,
A4 = ψS tð Þ − d0V tð Þ,
A5 = ξI tð Þ − d0ℝ tð Þ:

ð55Þ

And ℝμ
1,nðtÞ, ℝμ

2,nðtÞ, ℝμ
3,nðtÞ, ℝμ

4,nðtÞ, and ℝμ
5,nðtÞ are the

remainder’s terms.

8. Numerical Simulation

In this section of the article, we present the graphical results
of the solution obtained in (54). For this purpose we have
simulated the results via Matlab by assigning the values
given in (Table 1) to the parameters and classes of the
model. The graphical results are shown in the following.

9. Discussion

Figure 1 describes the dynamics of susceptible population
for different values of the order of fractional derivatives.
Each curve tends to the equilibrium solution irrespective of
the value of μ. As we increase the value of μ, the rate of con-
vergence to the stated equilibrium increases. Figure 2 repre-
sents the behavior of E(t) along the time direction, and the
figure shows that for describing the slow evolution of dis-
ease, one might assume small values of μ. Infection from
the community could be rapidly eliminated by increasing
the order of the derivative as shown in Figure 3. A similar
conclusion could be drawn from Figures 4 and 5, i.e., to cap-
ture the realistic scenario of slowly spreading diseases, one
must consider the tools of fractional order derivative while
modeling such epidemics.

Table 1: The physical interpretation and numerical values of the parameters.

Parameters Physical description Numerical value Source

Λ The birth rate 0.4 Assumed

d0 Natural death rate 0.7 Assumed

d1 Disease death rate in E tð Þ 0.075 Assumed

d2 Disease death rate in I tð Þ 0.35 Assumed

τ The contact rate of S tð Þ and E tð Þ 0.14280 Assumed

κ The transference rate from E tð Þ to I tð Þ 0.048 Assumed

β The contact rate of S tð Þ and I tð Þ 0.35 Assumed

ξ Recovery rate 0.53 Assumed

ψ Vaccination rate 0.00493 Assumed
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Figure 2: The behavior of exposed population.
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10. Conclusion

In this paper, we have studied the fractional order Ebola
model containing Caputo’s fractional derivative of order μ.
The paper contains the study related to the existence of the
solution performed by using theorems of fixed point theory
for the existence of fixed point. In addition, we have proved
that the solution of the system is unique as well as Ulam sta-
ble. Apart from this, we have find the numerical solution of
the studied model with the help of two-point fractional
order Adam’s Bashforth method presented for the approxi-
mation of the fractional differential equations containing
the Caputo’s fractional derivative. In addition, we have visu-
alized the results graphically with the help of Matlab. At last,
we have discussed the dynamical behavior of the obtained
solution for all classes of the said model.
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This study reports the three-dimensional (3D) flow of Ag-MgO hybrid nanofluid (HNF) over a spinning disc of flexible thickness
in the presence of modified Fourier law. The HNF is contained of silver and magnetic nanoparticulate in the base fluid engine oil.
The energy transition has been examined in the involvement of melting heat propagation. The highly nonlinear system of partial
differential equations (PDEs) is processed by adopting the proper similarity conversions to attain the coupled ODE system. The
obtained system of modeled equations is numerically solved by employing the Parametric Continuation Method (PCM). The
nature of various constraints, as opposed to the velocities, energy, and mass transmission, is portrayed and described. In
comparison to the simple nanofluid flow, the hybrid nanoliquid flow’s velocity and heat conduction are observed to have a
significant influence. As a result, the functionality of the hybrid nanoliquid is significantly superior to that of the conventional
nanofluid. The positive variation in power-law exponent n and Reynold number Re significantly enhances the fluid velocity.
The effect of both melting coefficient and thermal relaxation term reduces fluid temperature.

1. Introduction

In the analysis of HNF due to its substantial participation in
engineering constraints and modern machinery, the exami-
nation of HNF flow over a turning disk with energy commu-
nication has taken significant interest [1, 2]. The well-
recognized uses consist of electric control techniques, cocir-
cling apparatus, aerodynamic systems, whirling machines,
biochemical reactions, supercomputer management, and
hydrothermal sectors [3]. Lv et al. [4] investigated the effects
of magnetism and Hall potential on nanofluid flow across a
revolving disc. Their target was to increase the level of heat
dissipation for technological reasons. As per the conclusions,

the modification of CNTs in water is substantially more
favorable than that of other nanoparticles due to their C–C
interaction. Li et al. [5] employed the bvp4c packages to
perform a percentage approximation for Darcy HNF flow
over a pierced rotation disc with heat slip. Khan et al. [6]
investigated the chemical reaction that influences Maxwell
fluid flow over a diagonally gyrating oscillating disc with
the magnetic flux during unstable motion. It should be
observed that the energy transference ratio raises drastically
when the disc radiation and rotation factors increase. The
unsteady slip flow with entropy production over a revolving
disc under the action of a ferromagnetic material was stud-
ied by Shuaib et al. [7] and Bilal et al. [8]. The slip factor
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seems to be effective in regulating flow and heat characteris-
tics. The Oldroyd-B fluid flow was investigated by Hafeez
et al. [9] using a whirling disc. As the relaxation time factor
is increased, the flow rate is spotted to diminish. The fluid
potential spectrum is also lowered as the thermal relaxation
phase develops. HNF flow through a swaying disc with ses-
sile microbes and chemical reactions was discovered by
Waqas et al. [10]. A concordance with previous research
and a full simple geometric presentation for key variables
aid the presented rebuttal. Tassaddiq et al. [11] created an
HNF flow over an indefinite impermeable rotating disc.
The role of magnetic flux was used to accurately analyze
the positive rotation of nanofluid flow. Their primary project
purpose was to raise public awareness about energy usage in
scientific and technological contexts. The addition of ferric
oxide Fe3O4 nanoparticles enhances the heat transition rate
considerably [12].

Nanofluids are a new type of solution that operates effi-
ciently in heat exchanger when compared to traditional
fluids. When the thermal sensitivity is high enough, nano-
composite can be used in a wide range of thermal processes,
including freezing [13–17]. Nanofluid flow is used in a vari-
ety of applications, including heat converters, geothermal
energy, heat pumps, metallurgy, climate control, the auto-
mobile sector, turbines, microelectronics, nuclear condenser
networks, ships, medicine, and circuit condensation [18–21].
The vast demand for thermal energy in the era of develop-
ment of science and technology cannot be met with widely
utilized fluids. When similar base liquids were produced
with the addition of tiny-sized particles, however, a substan-
tial improvement in thermal properties was seen [22]. In the
present analysis, we have utilized the MgO (magnesium
oxide) and Ag (silver) nanomaterials in the base fluid.
MgO is a chemical made up of Mg2+ and O2- ions at 700–
1500°C [23]. For metallurgical and electronic operations,
MgO is more practical [24]. Similarly, Ag nanoparticulates’
might be exploited to control bacterial movement in an
array of products, involving dental work, injuries and wound
therapy, surgery, and biomedical apparatus [25, 26]. Ahma-
dian et al. [27] investigate a 3D simulation of an unstable
Ag-MgO HNF flow with heat conduction induced by a
curvy spinning disc going up and downwards. With the dis-
persion of Ag-MgO nanocrystals, the HNF is created. The
issue was solved using the PCM technique. The usage of
Ag-MgO is thought to be more effective in overcoming poor
energy transfer. Among metal and metal oxide, silver and
magnesium oxide nanoparticles have been widely recorded
to have broad-spectrum antibiotic assets [28]. Silver nano-
particles are the most widely utilized inorganic nanoparti-
cles, having several applications in biomaterial detection
and antibacterial activities [29]. Anuar et al. [30] used Ag
and MgO nanocrystals in water to evaluate the energy distri-
bution of a hybrid nanoliquid through an extending sheet
with suction and buoyant force effects. The findings show
that improving the quantity of Ag nanoparticles in HNF
lowers the energy transference. Gangadhar et al. [31] arith-
metically addressed the heat transport properties of a hybrid
nanofluid mixture combining Au and MgO nanoparticulate.
Hiba et al. [32] evaluated the thermal performance of HNF

including magnesium oxide and Silver and across a highly
permeable hollow microplate under magnetic impact.
Recently, several researchers have been reported on the
study of hybrid nanofluid flow [33–36].

PCM tackles a lot of challenging nonlinear boundary
value problems that other numerical techniques cannot
solve. Convergence is subject to the relaxation variables
and initial strategy for many problems that are generally
addressed by traditional computational approaches
[37–40]. The PCM’s goal is to determine that the pro-
posed methodology can be used to solve complex nonlin-
ear problems related to industry [41]. Shuaib et al. [42]
emphasized the 3D oscillating fluid and energy conductiv-
ity across the surface of an irregular elastic revolving disc.
The fluid flow has been examined in the context of an
external magnetism flux. The phenomena of an ionic fluid
flow throughout a spinning disc were discovered by
Shuaib et al. [43]. The Poisson’s and Planck models were
used to computing the molecular interactions. Dombovari
et al. [44] investigated the robustness of nonlinear hydro-
logical systems using a parametric continuation technique.
They also looked into static bifurcation, which arises while
addressing complex initial value systems with distinctive
roots, and devised a method for efficiently determining
the points of bifurcation. Ref. [45, 46] may be used to
solve the stated challenge in the future.

The assessment was aimed at reporting the 3D flow of
Ag- and MgO-based HNF over a spinning disk of flexible
thickness. The HNF is synthesized with the composition of
silver and magnetic nanomaterials in the engine oil. The
energy transition is examined with the involvement of melt-
ing heat propagation. To evaluate the behaviors of the fluid
flow, Tiwari and Das’s model is employed. The nonlinear
system of PDEs is processed through the proper similarity
conversions to attain the coupled ODE system. The obtained
system of modeled equations is numerically solved employ-
ing the Parametric Continuation Method (PCM). In the next
section, the formulation, solution methodology, and results
and discussion have been discussed in detail.

Silver Ag

Ω

φ

w

o
r

u

v Spinning disk
Hybrid nanofluid

flow

Magnesium oxide MgO

z

Figure 1: Spinning disk geometry.
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2. Mathematical Formulation

In this study, we considered the steady and incompressible
flow of Ag-MgO hybrid nanoliquid over a gyrating disk of
variable thickness z = að1 + r∗Þ−m, moving with fixed angu-
lar velocity Ω about the z-axis. Here, u, v, and w are the
velocity component along r, θ, z direction, respectively. T∞
is the free stream temperature, and Tm is the temperature
of the melting surface. Figure 1 reveals the flow mechanism
over a spinning disk. The modeled equations can be rebound
as [47–49]

∂u
∂r

+ u
r
+ ∂w

∂z
= 0, ð1Þ

u
∂u
∂r

+ v
∂u
∂z

= νhnf
∂2u
∂z2

+ ν2

r
− σhnf B

2
0u, ð2Þ

u
∂v
∂r

+w
∂v
∂z

= νhnf
∂2v
∂z2

−
uv
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− σhnf B
2
0v, ð3Þ
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∂T
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+w
∂T
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=
khnf

ρCp

� �
hnf

∂2T
∂z2

− λ

�
u2

∂2T
∂r2

−w2 ∂
2T
∂z2

+ u
∂u
∂r

∂T
∂r

+w
∂u
∂z

∂T
∂r

� �
,

+2uw ∂2T
∂r∂z

+ ∂T
∂z

u
∂w
∂r

+w
∂w
∂z

� �
,

0
BBBB@

1
CCCCA

ð4Þ

u
∂C
∂r

+ v
∂C
∂z

=Dhnf
∂2C
∂z2

− k C − C0ð Þ: ð5Þ

Here, ðu, v,wÞ exhibit the velocity element, and νhnf ,
khnf and ðρCpÞhnf reveal the kinematic viscosity, thermal

conductivity, and volumetric heat capacity, respectively.
The boundary conditions are

u = 0,w = 0, v = rΩ, T = T∞, C = C∞at z = 0,

khnf
∂T
∂z

� �
z=a 1−r∗ð Þ−m

= ρhnf λ∗ + Cs Tm − T0ð Þð Þw r, zð Þ,
u⟶ 0, v⟶ 0, T ⟶ T∞,

C⟶ C∞when z⟶∞:

ð6Þ

Table 1 shows the thermophysical properties of nano-
fluids and hybrid nanofluids in terms of viscosity, density,
heat capacity and thermal conductivity.

Incorporating the following transformation in Equations
(1)–(5) and (6)

u =ΩrF ηð Þ, v =ΩrG ηð Þ,w = −R0Ω 1 + r∗ð Þ−m

R2
0Ωρf /μf

� �1/n+1 J ηð Þ, θ ηð Þ

= T − Tm

T∞ − Tm
, ϕ ηð Þ = C − Cm

C∞ − Cm
,

η = z
R0

1 + r∗ð Þ−m R2
0Ωρf

μf

 !1/n+1

,

ð7Þ

we get

J ′ ηð Þ + 2F ηð Þ + ηmεF ′ ηð Þ = 0, ð8Þ

μhnf
μf

 !
Re1−n/1+n 1 + r∗ð Þ2mF ′ ′ ηð Þ + ρhnf

ρf

 !

� −F2 ηð Þ − J ηð ÞF ′ ηð Þ +G2 ηð Þ − ηεmF ηð ÞF ′ ηð Þ
h i
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ð9Þ
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ð10Þ
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+J2 ηð Þθ′ ′ ηð Þ + ηmεF2 ηð Þθ′ ηð Þ
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2
6666664

3
7777775
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ð11Þ

φ″ ηð Þα2 1 + r∗ð Þ−2m −
1
Sc
d1φ ηð Þ

+ 1
Sc
maεη R0 + 1ð ÞF ηð Þφ ηð Þ

−
1
Sc

1 + r∗ð Þ−maG ηð Þφ ηð Þ = 0:

ð12Þ
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The transform conditions are

F αð Þ = 0,G αð Þ = 1,
khnf
kf

MeRe1−n/1+n 1 + r∗ð Þ2mθ′ αð Þ

+
ρhnf
ρf

Pr J αð Þ = 0, θ αð Þ = 1, φ αð Þ = 1,

F ∞ð Þ = 0, θ ∞ð Þ = 0, φ ∞ð Þ = 0, G ∞ð Þ = 0:
ð13Þ

Here, α is the disk thickness coefficient, Re is the Rey-
nold number, Me is the melting constant, ε is the constant
coefficient, r∗ is the dimensionless radius parameter, γ is
the thermal relaxation parameter, and Pr is the Prandtl
number defined as [47]

α = a
R0

R2
0Ωρf

μf

 !1/n+1

, Re =
R2
0Ωρf

μf
,

Me =
T∞ − Tmð ÞCp

Cs Tm − T0ð Þ + λ∗
, ε = r

R0 + r
,

r∗ = r
R0

, γ =Ωλ, Pr =
μf Cp

� �
nf

kf
,

ð14Þ

where F, G, and J denote the radial, tangential, and axial
velocities, and ϕ, θ show the dimensionless concentration
and temperature. The deformations are expressed as

f ξð Þ = f η − αð Þ = F ηð Þ,
j ξð Þ = j η − αð Þ = J ηð Þ,
g ξð Þ = g η − αð Þ =G ηð Þ,
θ ξð Þ = θ η − αð Þ = θ ηð Þ,
φ ξð Þ = φ η − αð Þ = φ ηð Þ:

ð15Þ

Using Equation (15), Equations (7)–(12) take the form

J ′ ξð Þ + ξmεf ′ ξð Þ + αmεf ′ ξð Þ + 2f ξð Þ = 0, ð16Þ
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khnf
kf
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Pr j 0ð Þ = 0,

f ∞ð Þ = 0, g ∞ð Þ = 0, θ ∞ð Þ = 0, φ ∞ð Þ = 0:
ð21Þ

The skin friction is stated as

Cf r =
τwr

ρf R0Ωð Þ2 , Cf θ =
τwθ

ρf R0Ωð Þ2 : ð22Þ

Shear forces are

τwr = μhnf
∂u
∂z

����
z= 1+r∗ð Þ−m

, τwθ = μhnf
∂v
∂z

����
z= 1+r∗ð Þ−m

: ð23Þ

The nondimensional form is

Ren/n+1Cf r =
μhnf
μf

1 + r∗ð Þm
" #

r∗ f ′ 0ð Þ, Ren/n+1Cf θ

=
μhnf
μf

1 + r∗ð Þm
" #

r∗g′ 0ð Þ:
ð24Þ

3. Numerical Solution

The basic steps of PCM are as follows:Step 1: simplifying
Equations (16)–(20) to 1st order with the boundary
conditions

5Journal of Nanomaterials



Step 2: introducing parameter p

χ1 = f ξð Þ, χ2 = f ′ ξð Þ, χ2 ′ =
B∗ 2 χ1ð Þ2 + χ2 χ5 +m ξ + αð Þεχ1ð Þ − χ3ð Þ2	 


A∗ 1 + r∗ð Þ2m Reð Þ1−n/1+n ,

χ3 = g ξð Þ, χ4 = g′ ξð Þ, χ4 ′ =
B∗ 2χ1χ3 + χ4 χ5 +m ξ + αð Þεχ1ð Þ − χ5χ2½ �

A∗ 1 + r∗ð Þ2m Reð Þ1−n/1+n ,

χ5 = j ξð Þ, χ5 ′ = − −2χ1 +m ξ + αð Þε χ2ð Þ2	 

, χ6 = θ ξð Þ, χ7 = θ′ ξð Þ,

χ7 ′ =

D∗ γPrð Þ∗ χ5χ6χ5 ′ + χ7

m m − 1ð Þ ξ + αð Þ εχ1ð Þ2 +mεχ5χ1 +m

ξ + αð Þε χ1ð Þ2m2 ξ + αð Þ2ε2χ1χ2 +m

ξ + αð Þεχ5χ2 +m ξ + αð Þεχ1χ5 ′ −mεχ1χ5

0
BB@

1
CCA

2
664

3
775 −m ξ + αð Þεχ1χ7 + χ5χ7

C∗C∗
1 1 + r∗ð Þ2m Reð Þ1−n/1+n χ5ð Þ2 +m2 ξ + αð Þ2ε2 χ1ð Þ2

h i ,

χ9 ′ =
1/Scd1χ8 + χ9 −1/Scmaεξ R0 + 1ð Þχ1 − 1/Scma2ε R0 + 1ð Þχ1 + 1/Sc 1 + r∗ð Þ−maχ3

� �
α2 1 + r∗ð Þ−2m ,

χ1 0ð Þ = 0, χ3 0ð Þ = 1, C∗C∗
1 1 + r∗ð Þ2mRe1−n/1+nMe
h i

χ7 +D∗Pr∗χ5,χ6 = 1,

χ1 ∞ð Þ, χ3 ∞ð Þ, χ6 ∞ð Þ, χ8 ∞ð Þ:

ð25Þ

χ1 = f ξð Þ, χ2 = f ′ ξð Þ,

χ2 ′ =
B∗ 2 χ1ð Þ2 + χ2 − 1ð Þp χ5 +m ξ + αð Þεχ1ð Þ − χ3ð Þ2	 


A∗ 1 + r∗ð Þ2m Reð Þ1−n/1+n
,

χ3 = g ξð Þ, χ4 = g′ ξð Þ,

χ4 ′ =
B∗ 2χ1χ3 + χ4 − 1ð Þp χ5 +m ξ + αð Þεχ1ð Þ − χ5χ2½ �

A∗ 1 + r∗ð Þ2m Reð Þ1−n/1+n
,

χ5 = j ξð Þ, χ5 ′ = − −2χ1 + χ5 − 1ð Þp − χ5 +m ξ + αð Þε χ2ð Þ2	 

,

χ6 = θ ξð Þ, χ7 = θ′ ξð Þ,

χ7 ′ =

D∗ γPrð Þ∗ χ5χ6χ5 ′ + χ7 − 1ð Þp
m m − 1ð Þ ξ + αð Þ εχ1ð Þ2 +mεχ5

χ1 + ξ + αð Þmε χ1ð Þ2 +m2 ξ + αð Þ2ε2χ1χ2 + ξ + αð Þmεχ5χ2 +

m ξ + αð Þεχ1χ5 ′ −mεχ1χ5

0
BB@

1
CCA

2
664

3
775 −m ξ + αð Þεχ1χ7 + χ5χ7

C∗C∗
1 1 + r∗ð Þ2m Reð Þ1−n/1+n χ5ð Þ2 +m2 ξ + αð Þ2ε2 χ1ð Þ2

h i ,

χ9 ′ =
1/Scd1χ8 + χ9 − 1ð Þp 1/Sc −maεξ R0 + 1ð Þχ1 − 1/Scma2ε R0 + 1ð Þχ1 + 1/Sc 1 + r∗ð Þ−maχ3

� �
α2 1 + r∗ð Þ−2m :

ð26Þ
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Figure 2: The nature of radial velocity f ðηÞ and tangential velocity gðηÞ profiles versus (a) volume friction ϕ1, (b) volume friction ϕ2, (c)
Reynold number Re, (d) power-law exponent n, and (e) Reynold number Re.
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Figure 3: The energy outlines θðηÞ versus (a) volume friction ϕ1, (b) volume friction ϕ2, (c) Reynold number Re, (d) melting coefficientMe,
and (e) thermal relaxation parameter γ, respectively.
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Figure 4: The nature of mass transition φðηÞ versus (a) volume friction ϕ1, (b) volume friction ϕ2, (c) Schmidt number Sc, (d) chemical
reaction d1, respectively.
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Figure 5: The comparison between PCM and Matlab built-in package bvp4c.
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Step 3: apply the Cauchy principle and discretized Equa-
tion (26)

Ui+1 −Ui

Δη
= AUi+1, W

i+1 −Wi

Δη
= AWi+1: ð27Þ

Finally, we get the iterative form as

Ui+1 = I − ΔηAð Þ−1Ui,Wi+1 = I − ΔηAð Þ−1 Wi + ΔηR
� �

:

ð28Þ

4. Results and Discussion

The discussion segment analyzed the comportment of veloc-
ity, energy, and mass-circulation as compared to the devia-
tion of numerous physical parameters for hybrid
nanoliquid consisting of Ag and magnetic nanoparticles.

The default values used while solving the set of 1st order
ODEs through PCM code are ϕ1 = ϕ2 = 0:01, Re = 0:5, n =
1:0, Me = 0:2, γ = 0:1, Sc = 0:2, d1 = 0:01 and τ = 0:4.

4.1. Velocity Profile. Figures 2(a)–2(e) expose the nature of
radial velocity f ðηÞ and tangential velocity gðηÞ profiles ver-
sus volume friction ϕ1, volume friction ϕ2, Reynold number
Re, power-law exponent n, and Reynold number Re.
Figures 2(a) and 2(b) particularize that the velocity field rises
with the growing values of volume friction of both silver and
magnetic nanoparticulates. Physically, the specific heat
capacity of engine oil is much higher than silver and magne-
sium compounds that is why the increasing quantity of such
nanomaterials reduces the average heat capacity of HNF and
causes the elevation of fluid velocity. Figures 2(c) and 2(e)
display the dominance of both radial f ðηÞ and tangential
velocity gðηÞ profiles against Reynold number Re. The
upshot of Reynold’s number increases the rotation of the
disk, which accelerates the fluid particles and exercises their
kinetic energy, which causes the improvement in the velocity

Table 6: Numerical outcomes for Sherwood number.

Sc d1 ϕ1, ϕ2 Dnf /Df

� �
φ′ 0ð Þ Dhnf /Df

� �
φ′ 0ð Þ

0.2 0.0632328 0.0642322

0.4 0.062932 0.0639336

0.6 0.0615843 0.0614845

0.8 0.5930261 0.5910240

0.1 0.0714336 0.0734331

0.2 0.0761427 0.0771426

0.3 0.0817223 0.0867224

0.4 0.0822516 0.0882513

0.01 0.0627612 0.0677635

0.02 0.0638732 0.0728754

0.03 0.6687450 0.7774504

0.04 0.7026718 0.7906714

Table 5: Arithmetic results for Nusselt number ðknf /kf θ′ð0Þ, khnf
/kf θ′ð0ÞÞ.

Parameters PCM PCM bvp4c
Me Re ϕ1, ϕ2 knf /kf

� �
θ′ 0ð Þ khnf /kf

� �
θ′ 0ð Þ khnf /kf

� �
θ′ 0ð Þ

0.1 0.0474535 0.0484531 0.0484340

0.5 0.0354123 0.0366122 0.0366031

1.0 0.0364852 0.0369853 0.0369542

1.5 0.0291107 0.0271407 0.0271268

0.2 0.0564588 0.0554555 0.0554463

0.3 0.0574760 0.0575961 0.0575870

0.4 0.0578962 0.0589965 0.0589834

0.01 0.0673420 0.0683460 0.0683352

0.02 0.0683241 0.0693271 0.0693160

0.03 0.0690324 0.0713142 0.0713021

0.04 0.0723419 0.0743319 0.0743237

Table 2: The experimental values of Ag, MO, and engine oil [47].

ρ kg/m3� �
Cp J/kg · Kð Þ k W/mKð Þ

Engine oil 884 1910 0.114

Magnesium oxide 3560 955 45

Silver 10,500 235 429

Table 3: Comparative analysis with the existing literature, when
n = 1 and ϕhnf = 0:.

Order of approximations f ′ 0ð Þ −g′ 0ð Þ
Present work 0.499321 0.500761

Zhang et al. [47] 0.497201 0.509623

Xun et al. [50] 0.410221 0.515911

Ming et al. [51] 0.410200 0.515901

Table 4: Statistical outcomes for skin friction ð f ′ð0Þ,−g′ð0ÞÞ.

m τ Re ϕ2 f ′ 0ð Þ −g′ 0ð Þ
0.1 0.4 1.0 0.03 0.0474535 0.0702328

0.5 0.4 1.0 0.03 0.0554123 0.0739932

1.0 0.4 1.0 0.03 0.0664852 0.0815843

1.5 0.4 1.0 0.03 0.0791107 0.1130261

1.0 0.1 1.0 0.03 0.0664588 0.0817175

1.0 0.3 1.0 0.03 0.0664760 0.0716306

1.0 0.7 1.0 0.03 0.0664968 0.0815362

1.0 0.4 1.0 0.03 0.0665151 0.0814336

1.0 0.4 0.1 0.03 0.0629418 0.1161421

1.0 0.4 0.5 0.03 0.0685427 0.0857223

1.0 0.4 1.5 0.03 0.0656935 0.0792518

1.0 0.4 2.5 0.00 0.0644128 0.0764015

1.0 0.4 1.0 0.01 0.0726520 0.1136461

1.0 0.4 1.0 0.02 0.0705745 0.0893014

1.0 0.4 1.0 0.03 0.0686036 0.0852958

1.0 0.4 1.0 0.04 0.0667325 0.0815843
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field. Similar behavior of radial velocity has been observed
versus the increment of power-law exponent n in Figure 2
(d). The positive variation in the power-law exponent signif-
icantly enhances the fluid velocity in the radial direction.

4.2. Energy Distribution Profile. Figures 3(a)–3(e) illuminate
the nature of energy transition θðηÞ versus volume friction
ϕ1, volume friction ϕ2, Reynold number Re, melting coeffi-
cient, and thermal relaxation parameter γ, respectively. As
discussed in Figure 2, the specific heat capacity of engine
oil is much higher than silver and magnesium compounds
that is why the increasing quantity of such nanomaterials
reduces the average heat capacity of hybrid nanofluid and
causes a rise in internal heat, which encourage both velocity
and energy transmission rate. Figure 3(c) reports the Rey-
nold number upshot on the energy profile. The number of
rotations enhances with the variation of Reynold number
that is why due to internal kinetic energy fluid temperature
θðηÞ also enhances. The effect of both melting coefficient
and thermal relaxation term γ reduces energy contour as
shown in Figures 3(d) and 3(e). The specific heat capacity
of fluid improves with the flourishing values of melting coef-
ficient, as a result, energy transference enhances.

4.3. Mass Transfer Profile. Figures 4(a)–4(d) spot the nature
of mass transition φðηÞ versus volume friction ϕ1, volume
friction ϕ2, Schmidt number Sc, and chemical reaction d1,
respectively. Mass transmission enhances with the rising
quantity of nanoparticles, because, as we have discussed ear-
lier, the rising values of volume friction parameters ϕ1 and
ϕ2 significantly elevated the heat and fluid velocity that is
why the mass transition also enhances their effects as shown
in Figures 4(a) and 4(b). The upshot of the Schmidt number
boosts the fluid kinetic viscosity, which results in the reduction
of concentration profile φðηÞ as illustrated in Figure 4(c). The
energy transport rate is reduced by the chemical reaction var-
iable, while the mass transport rate is increased. An increase in
the intensity ofd1indicates that the species concentration
interaction is less with the thermal boundary layer and more
with the momentum Figure 4(d).

Figure 5 reports the comparative assessment of PCM
technique with Matlab code bvp4c. From Figures 5(a) and
5(b), it can be clearly observed that both techniques show
best settlement and PCM procedure is a reliable method.
Table 2 describes the experimental values of Ag, MgO, and
engine oil. Table 3 displays the comparative analysis of the
current work with the existing literature, in which the pres-
ent work revealed the best settlement with them. Table 4
presents the numerical results for skin friction. It has been
observed that the drag force enhances along both radial
and tangential direction with the variation of parameter m
and τ while reduces the effect of Reynold number. Table 5
communicates the numerical outcomes for Nusselt number
versus melting coefficient, Reynold number, and both nano-
fluid and hybrid nanofluid. As comparative to the simple
nanofluid, hybrid nanofluid energy transition rate is faster
against volume friction coefficient ϕ1, ϕ2, respectively.
Table 6 displays the Sherwood number versus volume fric-
tion parameter ϕ1, ϕ2, Schmidt number, and chemical reac-

tion d1 constant, respectively. The mass transference rate
diminishes with the rising effect of Schmidt number while
enhances against the increasing quantity of chemical reac-
tion parameter and volume friction constants.

5. Conclusion

The 3D flow of Ag and MgO HNF past over a gyrating disk
of varying thickness has been reported in the present estima-
tion. The hybrid nanoliquid is synthesized by using silver,
magnetic nanoparticulate, and engine oil. The energy transi-
tion consequences are examined in the involvement of melt-
ing heat propagation. The highly nonlinear system of PDEs
is processed through the proper similarity conversions to
attain the coupled ODE system. The obtained system of
modeled equations is numerically solved through the PCM
technique. The key points are rebound as follows:

(i) The radial f ðηÞ and tangential gðηÞ velocities and
energy propagation enhance with the rising values
of volume friction of both silver ϕ1=Ag and magnetic
nanoparticulates ϕ2=MgO

(ii) The upshot of Reynold number Re improves the
velocity and energy transition of fluid flow, due to
an increase in the number of disk’s rotation

(iii) The positive variation in power-law exponent n sig-
nificantly enhances the fluid velocity in the radial
direction

(iv) The increasing quantity of nanomaterials reduces
the average heat capacity of hybrid nanofluid and
causes a rise in internal heat, which encourages both
velocity and heat transition rate

(v) The effect of both melting coefficient and thermal
relaxation term γ reduces fluid temperature

Data Availability

The relevant data exist in the manuscript.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Muhammad Bilal and Taza Gul contributed to the modeling
and writing manuscript and conception or design of the
work. Abir Mouldi, Safyan Mukhtar, Wajdi Alghamdi, Sou-
hail Mohamed Bouzgarrou, and Nosheen Feroz contributed
to the validation and critical revision of the article.

Acknowledgments

The authors extend their appreciation to the Deanship of
Scientific Research at King Khalid University for funding
this work through Large Groups Project under grant num-
ber (RGP2./14/43).

11Journal of Nanomaterials



References

[1] A. Ahmadian, M. Bilal, M. A. Khan, and M. I. Asjad, “The
non-Newtonian Maxwell nanofluid flow between two parallel
rotating disks under the effects of magnetic field,” Scientific
Reports, vol. 10, no. 1, pp. 1–14, 2020.

[2] K. Anantha Kumar, V. Sugunamma, and N. Sandeep, “Influ-
ence of viscous dissipation on MHD flow of micropolar fluid
over a slendering stretching surface with modified heat flux
model,” Journal of Thermal Analysis and Calorimetry,
vol. 139, no. 6, pp. 3661–3674, 2020.

[3] B. Ramadevi, K. Anantha Kumar, V. Sugunamma, J. V.
Ramana Reddy, and N. Sandeep, “Magnetohydrodynamic
mixed convective flow of micropolar fluid past a stretching
surface using modified Fourier’s heat flux model,” Journal of
Thermal Analysis and Calorimetry, vol. 139, no. 2, pp. 1379–
1393, 2020.

[4] Y. P. Lv, E. A. Algehyne, M. G. Alshehri et al., “Numerical
approach towards gyrotactic microorganisms hybrid nanoli-
quid flow with the hall current and magnetic field over a spin-
ning disk,” Scientific Reports, vol. 11, no. 1, pp. 1–13, 2021.

[5] Y. X. Li, T. Muhammad, M. Bilal, M. A. Khan, A. Ahmadian,
and B. A. Pansera, “Fractional simulation for Darcy-
Forchheimer hybrid nanoliquid flow with partial slip over a
spinning disk,” Alexandria Engineering Journal, vol. 60,
no. 5, pp. 4787–4796, 2021.

[6] M. Khan, J. Ahmed, and W. Ali, “Thermal analysis for radia-
tive flow of magnetized Maxwell fluid over a vertically moving
rotating disk,” Journal of Thermal Analysis and Calorimetry,
vol. 143, no. 6, pp. 4081–4094, 2021.

[7] M. Shuaib, R. A. Shah, and M. Bilal, “Von-Karman rotating
flow in variable magnetic field with variable physical proper-
ties,” Advances in Mechanical Engineering, vol. 13, no. 2, 2021.

[8] M. Bilal, A. Saeed, T. Gul, I. Ali, W. Kumam, and P. Kumam,
“Numerical approximation of microorganisms hybrid nano-
fluid flow induced by a wavy fluctuating spinning disc,” Coat-
ings, vol. 11, no. 9, p. 1032, 2021.

[9] A. Hafeez, M. Khan, and J. Ahmed, “Thermal aspects of chem-
ically reactive Oldroyd-B fluid flow over a rotating disk with
Cattaneo–Christov heat flux theory,” Journal of Thermal Anal-
ysis and Calorimetry, vol. 144, no. 3, pp. 793–803, 2021.

[10] H. Waqas, M. Imran, T. Muhammad, S. M. Sait, and R. Ellahi,
“Numerical investigation on bioconvection flow of Oldroyd-B
nanofluid with nonlinear thermal radiation and motile micro-
organisms over rotating disk,” Journal of Thermal Analysis &
Calorimetry, vol. 145, no. 2, pp. 523–539, 2021.

[11] A. Tassaddiq, S. Khan, M. Bilal et al., “Heat and mass transfer
together with hybrid nanofluid flow over a rotating disk,” AIP
Advances, vol. 10, no. 5, article 055317, 2020.

[12] I. Tlili, N. Sandeep, M. G. Reddy, and H. A. Nabwey, “Effect of
radiation on engine oil-TC4/NiCr mixture nanofluid flow over
a revolving cone in mutable permeable medium,” Ain Shams
Engineering Journal, vol. 11, no. 4, pp. 1255–1263, 2020.

[13] F. Jamil and H. M. Ali, “Applications of hybrid nanofluids in
different fields,” in In Hybrid nanofluids for convection heat
transfer, Academic Press, 2020.

[14] G. P. Ashwinkumar, S. P. Samrat, and N. Sandeep, “Convec-
tive heat transfer in MHD hybrid nanofluid flow over two dif-
ferent geometries,” International Communications in Heat
and Mass Transfer, vol. 127, p. 105563, 2021.

[15] N. Joshi, A. K. Pandey, H. Upreti, and M. Kumar, “Mixed con-
vection flow of magnetic hybrid nanofluid over a bidirectional

porous surface with internal heat generation and a higher-
order chemical reaction,” Heat Transfer, vol. 50, no. 4,
pp. 3661–3682, 2021.

[16] H. Upreti, A. K. Pandey, and M. Kumar, “Thermophoresis and
suction/injection roles on free convective MHD flow of Ag–
kerosene oil nanofluid,” Journal of Computational Design
and Engineering, vol. 7, no. 3, pp. 386–396, 2020.

[17] Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim, and J. R. Lee,
“Enhancement in thermal energy and solute particles using
hybrid nanoparticles by engaging activation energy and chem-
ical reaction over a parabolic surface via finite element
approach,” Fractal and Fractional, vol. 5, no. 3, p. 119, 2021.

[18] C. Fisher, E. Rider, Z. Jun Han, S. Kumar, I. Levchenko, and
K. K. Ostrikov, “Applications and nanotoxicity of carbon
nanotubes and graphene in biomedicine,” Journal of Nanoma-
terials, vol. 2012, 19 pages, 2012.

[19] M. I. Asjad, M. Zahid, Y. M. Chu, and D. Baleanu, “Prabhakar
fractional derivative and its applications in the transport phe-
nomena containing nanoparticles,” Thermal Science, vol. 25,
no. 2, pp. 411–416, 2021.

[20] K. Singh, A. K. Pandey, and M. Kumar, “Slip flow of micropo-
lar fluid through a permeable wedge due to the effects of chem-
ical reaction and heat source/sink with Hall and ion-slip
currents: an analytic approach,” Propulsion and Power
Research, vol. 9, no. 3, pp. 289–303, 2020.

[21] I. Ullah, “Heat transfer enhancement inMarangoni convection
and nonlinear radiative flow of gasoline oil conveying boehm-
ite alumina and aluminum alloy nanoparticles,” International
Communications in Heat and Mass Transfer, vol. 132,
p. 105920, 2022.

[22] X. Wang, L. Luo, J. Xiang et al., “A comprehensive review on
the application of nanofluid in heat pipe based on the machine
learning: theory, application and prediction,” Renewable and
Sustainable Energy Reviews, vol. 150, p. 111434, 2021.

[23] A. U. Khan, A. U. Khan, B. Li et al., “Biosynthesis of silver
capped magnesium oxide nanocomposite using _Olea cuspi-
data_ leaf extract and their photocatalytic, antioxidant and
antibacterial activity,” Photodiagnosis and Photodynamic
Therapy, vol. 33, p. 102153, 2021.

[24] I. Ullah, “Activation energy with exothermic/endothermic
reaction and Coriolis force effects on magnetized nanomateri-
als flow through Darcy–Forchheimer porous space with vari-
able features,” Waves in Random and Complex Media,
vol. 2022, pp. 1–15, 2022.

[25] H. Upreti, A. K. Pandey, and M. Kumar, “Assessment of
entropy generation and heat transfer in three-dimensional
hybrid nanofluids flow due to convective surface and base
fluids,” Journal of PorousMedia, vol. 24, no. 3, pp. 35–50, 2021.

[26] I. Ullah, R. Ullah, M. S. Alqarni, W. F. Xia, and T. Muhammad,
“Combined heat source and zero mass flux features on magne-
tized nanofluid flow by radial disk with the applications of
Coriolis force and activation energy,” International Communi-
cations in Heat and Mass Transfer, vol. 126, p. 105416, 2021.

[27] A. Ahmadian, M. Bilal, M. A. Khan, and M. I. Asjad, “Numer-
ical analysis of thermal conductive hybrid nanofluid flow over
the surface of a wavy spinning disk,” Scientific Reports, vol. 10,
no. 1, pp. 1–13, 2020.

[28] E. A. Algehyne, M. Areshi, A. Saeed, M. Bilal, W. Kumam, and
P. Kumam, “Numerical simulation of bioconvective Darcy
Forchhemier nanofluid flow with energy transition over a per-
meable vertical plate,” Scientific Reports, vol. 12, no. 1, pp. 1–
12, 2022.

12 Journal of Nanomaterials



[29] X. H. Zhang, A. Algehyne, M. Alshehri, M. Bilal, M. A. Khan,
and T. Muhammad, “The parametric study of hybrid nano-
fluid flow with heat transition characteristics over a fluctuating
spinning disk,” PLoS One, vol. 16, no. 8, article e0254457, 2021.

[30] N. S. Anuar, N. Bachok, and I. Pop, “Influence of buoyancy
force on Ag-MgO/water hybrid nanofluid flow in an inclined
permeable stretching/shrinking sheet,” International Commu-
nications in Heat and Mass Transfer, vol. 123, p. 105236, 2021.

[31] K. Gangadhar, R. E. Nayak, M. V. S. Rao, and T. Kannan,
“Nodal/saddle stagnation point slip flow of an aqueous con-
vectional magnesium oxide–gold hybrid nanofluid with vis-
cous dissipation,” Arabian Journal for Science and
Engineering, vol. 46, no. 3, pp. 2701–2710, 2021.

[32] B. Hiba, F. Redouane, W. Jamshed et al., “A novel case study of
thermal and streamline analysis in a grooved enclosure filled
with (Ag–MgO/Water) hybrid nanofluid: Galerkin FEM,”
Case Studies in Thermal Engineering, vol. 28, p. 101372, 2021.

[33] K. Singh, A. K. Pandey, and M. Kumar, “Melting heat transfer
assessment on magnetic nanofluid flow past a porous stretch-
ing cylinder,” Journal of the Egyptian Mathematical Society,
vol. 29, no. 1, pp. 1–14, 2021.

[34] S. Rashid, S. Sultana, Y. Karaca, A. Khalid, and Y. M. Chu,
“Some further extensions considering discrete proportional
fractional operators,” Fractals, vol. 30, no. 1, p. 2240026, 2022.

[35] N. Joshi, H. Upreti, A. K. Pandey, and M. Kumar, “Heat and
mass transfer assessment of magnetic hybrid nanofluid flow
via bidirectional porous surface with volumetric heat genera-
tion,” International Journal of Applied and Computational
Mathematics, vol. 7, no. 3, pp. 1–17, 2021.

[36] N. Joshi, H. Upreti, and A. K. Pandey, “MHD Darcy-
Forchheimer Cu-Ag/H2O-C2H6O2 hybrid nanofluid flow
via a porous stretching sheet with suction/blowing and viscous
dissipation,” International Journal For Computational
Methods In Engineering Science And Mechanics, vol. 2022,
pp. 1–9, 2022.

[37] K. Karthikeyan, P. Karthikeyan, H. M. Baskonus,
K. Venkatachalam, and Y. M. Chu, “Almost sectorial operators
onΨ-Hilfer derivative fractional impulsive integro-differential
equations,” Mathematical Methods in the Applied Sciences,
vol. 2022, 2021.

[38] M. A. Abd El Salam, M. A. Ramadan, M. A. Nassar,
P. Agarwal, and Y. M. Chu, “Matrix computational collocation
approach based on rational Chebyshev functions for nonlinear
differential equations,” Advances in Difference Equations,
vol. 2021, 17 pages, 2021.

[39] Y. M. Chu, N. A. Shah, P. Agarwal, and J. D. Chung, “Analysis
of fractional multi-dimensional Navier–Stokes equation,”
Advances in Difference Equations, vol. 2021, 18 pages, 2021.

[40] X. Qiang, A. Mahboob, and Y. M. Chu, “Numerical approxi-
mation of fractional-order Volterra integrodifferential equa-
tion,” Journal of Function Spaces, vol. 2020, 12 pages, 2020.

[41] A. Patil, AModification and Application of Parametric Continu-
ation Method to Variety of Nonlinear Boundary Value Problems
in Applied Mechanics, Rochester Institute of Technology, 2016.

[42] M. Shuaib, R. A. Shah, and M. Bilal, “Variable thickness flow
over a rotating disk under the influence of variable magnetic
field: an application to parametric continuation method,”
Advances in Mechanical Engineering, vol. 12, no. 6, 2020.

[43] M. Shuaib, R. A. Shah, I. Durrani, and M. Bilal, “Electrokinetic
viscous rotating disk flow of Poisson-Nernst-Planck equation

for ion transport,” Journal of Molecular Liquids, vol. 313,
p. 113412, 2020.

[44] Z. Dombovari, A. Iglesias, T. G. Molnar et al., “Experimental
observations on unsafe zones in milling processes,” Philosoph-
ical Transactions of the Royal Society A, vol. 377, no. 2153,
p. 20180125, 2019.

[45] Y. M. Chu, U. Khan, A. Zaib, S. H. A. M. Shah, and M. Marin,
“Numerical and computer simulations of cross-flow in the
streamwise direction through a moving surface comprising
the significant impacts of viscous dissipation and magnetic
fields: stability analysis and dual solutions,” Mathematical
Problems in Engineering, vol. 2020, 11 pages, 2020.

[46] S. B. Chen, H. Jahanshahi, O. A. Abba et al., “The effect of mar-
ket confidence on a financial system from the perspective of
fractional calculus: numerical investigation and circuit realiza-
tion,” Chaos, Solitons & Fractals, vol. 140, p. 110223, 2020.

[47] Y. Zhang, N. Shahmir, M. Ramzan, H. Alotaibi, and H. M.
Aljohani, “Upshot of melting heat transfer in a Von Karman
rotating flow of gold- silver/engine oil hybrid nanofluid with
Cattaneo-Christov heat flux,” Case Studies in Thermal Engi-
neering, vol. 26, p. 101149, 2021.

[48] G. Taza and M. Zakaullah, “A thermal performance of the gra-
phene oxide nanofluids flow in an upright channel through a
permeable medium,” IEEE Access, vol. 7, pp. 102345–102355,
2019.

[49] T. Hayat, S. Qayyum, M. Imtiaz, and A. Alsaedi, “MHD flow
and heat transfer between coaxial rotating stretchable disks
in a thermally stratified medium,” PLoS One, vol. 11, no. 5,
article e0155899, 2016.

[50] S. Xun, J. Zhao, L. Zheng, X. Chen, and X. Zhang, “Flow and
heat transfer of Ostwald-de Waele fluid over a variable thick-
ness rotating disk with index decreasing,” International Jour-
nal of Heat and Mass Transfer, vol. 103, pp. 1214–1224, 2016.

[51] C. Ming, L. Zheng, and X. Zhang, “Steady flow and heat trans-
fer of the power-law fluid over a rotating disk,” International
Communications in Heat and Mass Transfer, vol. 38, no. 3,
pp. 280–284, 2011.

13Journal of Nanomaterials



Research Article
Entropy Generation Analysis for MHD Flow of Hybrid
Nanofluids over a Curved Stretching Surface with Shape Effects

Basharat Ullah ,1 Umar Khan,1 Hafiz Abdul Wahab ,1 Ilyas Khan ,2

and Md. Nur Alam 3

1Department of Mathematics and Statistics, Hazara University, Mansehra 21120, Pakistan
2Department of Mathematics, College of Science, Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
3Department of Mathematics, Pabna University of Science & Technology, Pabna 6600, Bangladesh

Correspondence should be addressed to Hafiz Abdul Wahab; wahab@hu.edu.pk and Md. Nur Alam; nuralam.pstu23@gmail.com

Received 9 September 2021; Accepted 30 May 2022; Published 15 June 2022

Academic Editor: Iaroslav Gnilitskyi

Copyright © 2022 Basharat Ullah et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The characteristic of magnetohydrodynamic flow of viscous fluids is explained here. The energy equation behavior is studied in
the presence of heat, viscous dissipation, and joule heating. The major emphasis of this study is the physical behavior of the
entropy optimization rate. Based on the implementation of curvilinear coordinates, the basic flow equations are established.
Nonlinear partial differential expressions are reduced by appropriate transformation to the ordinary differential system. In the
engineering and industrial processes, nanoparticles and their shape have practical consequences. For this reason, we give a
detailed investigation of the shape impacts on the flow through the curved stretching surface of nanoparticles. The flow
equations are reduced into a number of nonlinear differential equations which are solved numerically using a useful numerical
approach called Runge-Kutta-4 (RK-4). The shooting method is first used to reduce the equations to a number of problems of
first order, and then the RK-4 approach is used for solution. Impacts for entropy optimization, Bejan number, velocity,
concentration, and temperature of several physical parameters are graphically studied.

1. Introduction

During the last few decades, extensive surfaces have been
received by researchers. This is due to its extensive uses in min-
ing, metallurgy, and engineering. In the production processes,
sheet stretching has certain activities with respect to product
characteristics. These applications are important in different
real-life processes due to different stretching speeds such as
rubber-plating flow generation, metal casting continuous, fiber
spinning, paper products, glass blowing and fiber, wire drawing,
and polymer sheeting. Due to viscous dissipation, the distribu-
tion of the temperature changes as a source of energy, which
results in changes in the heat conductivity. Several researchers
have recently been interested in developing and designing
new cooling/heating equipment and machines.

In magnetohydrodynamic fluid flow, Rashidi et al. [1]
highlight the impacts of thermal fluxes and the mixtures by
means of a porous stretching sheet. Swain et al. [2] have
investigated the heating transmission behaviors in a porous

medium for MHD flow in an exponentially expanding sheet.
Thermal flux effects and Eid et al. [3] present magnetohy-
drodynamics in Carreau nanomaterials, which float a
porous, nonlinear stretch sheet. Sheikholeslami et al. [4]
analyzed the stretchable and forced surface flow of nanoma-
terials from MHD. The main results of the study demon-
strate that radiation parameter improvement reduces the
heat transfer rate. Imtiaz et al. [5] examine the effect of the
chemical reaction to quartic autocatalysis in magnetohydro-
dynamic flow from a curved stretchable surface. Hayat et al.
[6] analyzed viscous fluid MHD flow over a nonlinear
curved, heat generation/absorption stretchable surface.

Usman et al. [7] demonstrate electromagnetic couple
stress film flow of hybrid nanofluid over an unsteady rotat-
ing disc. Hayat et al. [8] examine the effect of thermal rays
and chemical reactions on MHD convective flow through a
curved stretching surface. Abbas et al. [9] investigate the
flow of hydrodynamic nanomaterial by means of a curved
thermal stretching field. The first step was taken to propose
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an analytical model for the therapeutic efficiency of nano-
fluids. This model contains the concentration of nanoparti-
cles and the thermal conductivity of the base fluid and
nanoparticles.

Moreover, only spherical nanoparticle inclusions are
required. Hamilton suggested a model for nonsphere-
shaped nanoparticles to address this deficiency. Further
studies are carried out in this area with a variety of models
exploring nanoparticles sort [10–12], particulate form [13],
particle size [14], and others. Furthermore, many scientists
would also be interested in various heat transfer mecha-
nisms, including Brownian particle motion [15], accumula-
tion of particles [16, 17], and liquid layers [18].

While nanofluids can live up to the thermal efficiency thirst,
researchers are still searching for different fluid forms. Hybrid
nanofluids are hybrid nanofluid types with excellent thermal
performance compared with nanofluids. These fluids were cre-
ated by scattering into a base fluid two or more types of little
particles inside the base fluid or composite nanostructures. This
means that the homogeneous mixture of different products
hardly could be imagined in a single substance, with the physi-
cochemical properties [19]. The active role of hybrid nanofluids
in the various applications of heat transfer is as follows: elec-
tronic cooling, automotive radiators, cooling generators,
nuclear coolers, machining coolants, lubrications, solar heat,
thermal storage, building heating, biomedical treatments, drug
control, cooling, and protection. There are positive industrial
characteristics, such as chemical stability and high thermal effi-
ciency, which permit the efficient performance of nanofluids.

The measurement of entropy is used to explain the
efficiency of many engineering and industrial systems. Vari-
ous scientists and engineers therefore based their attention
on the question of entropy. The sum of any sort of energy
produced by a system or its surrounding irreversible pro-
cesses is called entropy production. It is not necessary to
use this energy for a successful operation. The second law
of thermodynamics is used for entropy production. In contrast
to the first law, Thermodynamics’ second legislation is more
effective. Irreversible processes include liquid flux due to resis-
tance flux, diffusion, game heating, viscous fluid rubbing,
chemical reaction, thermal radiation, etc. We regulated the
entropy generation rate to boost the system’s performance.
The second law of thermodynamics states that entropy values
must be null or larger within a system than 0. The enteropy
rate considering the porosity effect was discussed by Ajibade
et al. [20]. The effects of entropy production caused by heat
transmission over flat surfaces or stretching plates have exam-
ined by numerous researchers [21, 22], but few studies have
found in the literature related to the investigation about rate
of entropy production with thermal effects in the flow past
stretching cylinders. Our current article theoretically examines
transmission of thermal energy over a stretching cylinder
using heat generation/absorption and Joule heating. More-
over, this work also investigates rate of entropy generation
for the spinning flow system.

Entropy production eliminates the usable energy in the
system in many engineering and industrial processes. In
order to maximize energy in the system for efficient system
operation, it is therefore imperative to evaluate the rate of

entropy generation in a system. Under the second thermo-
dynamics theorem, all processes of flow and heat transfer
undergo irreversible changes. The main cause of these irre-
versible changes is the lack of control during the processes.
While steps to minimize these irreversible effects can be
taken, all the energy lost cannot be recovered. The entropy
of the system is increased by this process. This results in a
standard metric for the investigation of the irreversibility
effects of entropy generation rate. Bejan suggested this
approach [23, 24]. Khan et al. [25] recently studied the
entropy analysis in a curved tube.

This research is intended by means of a curved stretch-
ing surface to address entropy generation in MHD vincent
fluid flow. Fluid velocity and temperature similarity solu-
tions are obtained, and the reduced equation structure is
numerically resolved by a Runge-Kutta shooting algorithm
method. The effects of the various interesting variables are
studied on the optimization of entropy, speed, number of
Bejan, and temperature. The findings were subsequently
described in graphical form along with a quantitative discus-
sion about the embedded parameters.

2. Description of the Problem

Take a two-dimensional flow into a curved stretching sheet
from an incompressible magnetohydrodynamic (MHD) vis-
cous fluid. In a circle with radius R, the extension sheet is
curved. The s-direction is perpendicular to the fluid motion
direction along the stretching surface with the stretching
velocity UwðsÞ = as ða > 0Þ and r-direction. In the r direc-
tion, the magnetic field (B0) is applied. The flow chart is
shown in the Figure 1.
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u =Uw = as, v = 0, T = Tw = T∞ at r = 0, ð5Þ

u⟶ 0,
∂u
∂r

⟶ 0, T = T∞ at r⟶∞, ð6Þ

in which Eq. (1) reflects the preservation in the presence of
transverse magnetic fields of mass, transverse, and axial
components to preserve linear momentum in Eqs. (2) and
(3), respectively. Furthermore, the energy equation defined
in Eq. (4) will be used to analyze heat transfer. In addition,
u and v denote s-and r-direction velocity components, H
pressure, ρhnf hybrid nanofluid density, ν kinematics viscos-
ity, μ dynamic viscosity, B0 strength of the magnetic field, σ
electric conductivity, T and T∞ surface temperatures and
environmental temperatures, and Q0 heat generation,
respectively. The transformation is used [26, 27]. Moreover,
thermophysical properties of nanofluid and hybrid nano-
fluid, thermophysical properties of water, ethylene, and cop-
per are displayed in Tables 1 and 2, respectively, which
illustrate the effective property of Al2 O3 /water-based nano-
fluid and Cu/Al2 O3 hybrid nanofluid.

u = as f ′ ζð Þ, v = −
R
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ffiffiffiffiffiffi
av

p
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Tw − T∞
,
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ffiffiffi
a
v

r
r:

ð7Þ

The general relationship used to compute the density
and specific heat for nanofluids (Brikman’s model). The
dynamic effective viscosity and the effective thermal conduc-

tivity are used by several researchers for many nanofluids
and Maxwell’s effective thermal conductivity model for
two-phase mixtures.

Now, Eq. (1) is automatically verified, and Eqs. (2)–(4)
are transformed to nondimensional ordinary differential
equations as follows.
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Figure 1: Geometry of problem.

Table 1: Thermophysical properties of nanofluid and hybrid nanofluid (see ref. [28]).

Properties Nanofluid Hybrid nanofluid

Density ρnf = 1 − ϕð Þ + ϕ2ρs ρhnf = 1 − ϕ2ð Þ 1 − ϕ2ð Þρf + ϕ1ρs1

� �h i
+ ϕ2ρs2

Heat capacity ρCp

� �
nf
= 1 − ϕð Þ ρCp

� �
f
+ ϕ ρCp

� �
s ρcp

� �
hnf

= 1 − ϕ2ð Þ 1 − ϕ1ð Þ ρcp

� �
f
+ ϕ1 ρcp

� �
s1

	 

+ ϕ2 ρcp

� �
s2

Viscosity μnf =
μf

1−∅ð Þ2:5 μhnf =
μf

1 − ϕ1ð Þ2:5 1 − ϕ2ð Þ2:5

Thermal
conductivity

knf
kf

=
ks + n − 1ð Þkf − n − 1ð Þϕ kf − ks

� �
ks + n − 1ð Þkf + ϕ kf − ks

� � khnf
kb f

= ks2 + n − 1ð Þkb f − n − 1ð Þϕ2 kb f − ks2ð Þ
ks2 + n − 1ð Þkb f + ϕ2 kb f − ks2ð Þ

where kb f /kf = ks1 + n − 1ð Þkf − n − 1ð Þϕ1 kf − ks1
� �

/ks1 + n − 1ð Þkf + ϕ1 kf − ks1
� �
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in which
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Eliminating pressure H from Eqs. (8) and (9), we get
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The transformed boundary conditions are as follows:

f = 0, f ′ = 1, θ = 1 at ζ = 0 f ′ ⟶ 0, f ′′⟶ 0, θ⟶ 0 as ζ⟶∞:

ð16Þ

In the above relations, Pr = νhnf /αhnf depicts the Prandtl
number, M = ðσB0

2/aρhnf Þ the Hartmann number, Ec =
ða2s2/ðcpÞhnf ðTw − T∞ÞÞ the Eckert number, Br = ðPrEcÞ
the Brinkman number, and β = ðQ0/aðρcpÞhnf Þ the heat

generation/absorption parameter, and B =
ffiffiffiffiffiffiffi
a/ν

p
, R, is the

curvature parameter.

2.1. Skin Friction Coefficient and Local Nusselt Number. The
physical quantities of interest are skin friction coefficient Cf

and local Nusselt number Nus, which are define as follows:

Cf =
τrs

ρhnfu
2
w
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sqw
khnf Tw − T∞ð Þ , ð17Þ

where the wall fraction τrs and heat transfer qw along the
s-direction are define as follows:
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In view of Eq. (7), expressions describe in Eq. (17) pro-
vide dimensionless skin friction and Nusselt as follows:
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where Res =
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p
s elucidates local Reynolds number.

2.2. Entropy Generation Equation. Measuring any sort of
energy created in irreversible systems processes is referred
to as the generation of entropy. Entropy generation is
described in dimensional form:
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Dimensionless version satisfies
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Bejan number is expressed as follows:

Be =
Heat andmass transfer irreversibility

Total Irreversibility
ð23Þ

Table 2: Thermophysical properties of water, ethylene, and copper
(see ref. [29]).

Properties Water Al2 O3 Cu

ρ
kg
m3

� �
997.0 3970 8933

Cp
J

kgK

� �
4180 765 385

k
W
mK

� �
0.6071 40 400

4 Journal of Nanomaterials



or

Be =
α1θ′

2

α1θ′
2 +MBrf ′2 + Br f ′′2 + 1/ ζ + Bð Þ2

� �
f ′2 + 1/ζ + Bð Þf ′ f ′′

� � :
ð24Þ

Here, NG = ðSGT∞ν/akðTw − T∞ÞÞ denotes the entropy
generation rate, α1 = ðTw − T∞/T∞Þ the temperature differ-
ence parameter, and Br = μhnf ðasÞ2/kðTw − T∞Þ the Brink-
man number.

For the sake of comparison, we have also solved the same
problem by using the R-K-4 method (coupled with shooting
technique), and the results are compared in Table 3. Both
solutions show an excellent agreement with each other.
These solutions are calculated for β =M = Br = 0:1 and
ϕ1 = ϕ2 =0, and Prandtl number is taken to be 6.2.

3. Physical Description

In this section, we investigate the comportations of several
interesting parameters for entropy optimization, velocity,
number of Bejan, skin friction, and heat transfer rates.

3.1. Velocity Profile. For the velocity of different values,
Figures 2–4 are shown. Changes of the axial velocity variable
of dimensionless dimensions are shown in Figure 2, for B.
The fluid velocity is also increased as the curvature parame-
ter (B) is increased. This means that when compared to the
straight layer, the velocity of the curved layer is insufficient.
This shift in velocity is much higher in shape.

The effect of M on velocity is plotted in Figure 3.
Figure 3 shows that the parameter of M plays a role in this
point. The explanation is that the fluid movement is due to
the surface extension, and that any fluid change on the
stretching surface helps decelerate the fluid flow. Moreover,
it is apparent from this figure that for different form vari-
ables, the decrease in velocity occurs slightly greater.

Figure 4 is plotted to evaluate the effect on the velocity of
varying shape variables of volumetric fractions ϕ2. From this
figure, it is assumed that for shape variables, the velocity
profile decreases in dominant.

3.2. Temperature Profile. The influences of B, β, Br,M and ϕ2
on θðζÞ are plotted in Figures 5–9. The influence of these
parameters on θðζÞ is under discussion in the curved stretch-
ing surface. In addition, there are four distinct shape factors
plotted for each graph. Figure 5 shows that ðBÞ has a
decreasing θðζÞ role to play. This is because the fluid acceler-
ation is caused by surface stretching, and so any fluid ðBÞ
change on the stretching surface causes the fluid to deceler-
ate. Furthermore, it is evident from this figure that the
decrease in range θðζÞ is slightly more for different shape
factors results.

Figure 6 is plotted to check the parameter ðβÞ for
temperature effect. Through this calculation, it is discovered
that the temperature increases with ðβÞ. It is because the
improvement in ðβÞ value strengthens the conduction effects
and thereby increases the temperature. In the field outside

the surface, the rise is prevalent and leads to the rising heat
flux in the soil. Hybrid nanofluid-shape blade nanoparticles
have the highest temperature and the lowest temperature of
nanofluid nanoparticles formed by bricks. Furthermore,
these effects are more massive than nanofluid in the case of
hybrid nanofluids because hybrid nanofluid is more thermal
than nanofluids.

Figure 7 indicates the effect of the parameter for the
Brinkman number Br. From this figure, the parameter of
heat generation is presumed to slowly affect the distribution
of temperature. It is because it implies that the surface
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Figure 2: Impact of B on velocity.

Table 3: Comparison between present result and ref. [25]].

M B Ref [25]] Current result

0:2 0:8 6.975 6.9751
0:3 5.968 5.9683

0:4 5.123 5.1232

0:5 0:0 4.937 4.9371

0:5 5.128 5.1283

1.0 5.342 5.3422

𝛽 = 0.1, 𝜙2 = 0.05, B = 0.4, Br = 0.2
1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.5 1.0 1.5 2.0 2.5

f' 
(

)

Platelet
Cylinder

Brick
Blades
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Figure 3: Impact of M on velocity.
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temperature is above the ambient temperature, and more
heat is transferred to the fluid from the ambient, which con-
tributes to thermal boundary layer thickness and increasing
temperature. In the case of hybrid nanofluid, this tempera-
ture rise is also assumed to predominate. The maximum
temperature for blade-shaped nanofluid nanoparticles is

achieved; for brick-shaped nanofluid nanoparticles, the low-
est temperature magnitude is noted.

The variance of the Hartmann number (M) on θðζÞ is
shown in Figure 8. Here, we have found that higher (M)
values lead to an increase in θðζÞ thickness and thermal
boundaries. The implication is that the resistive force (force
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Figure 6: Impact of β on temperature.
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Figure 7: Impact of Br on temperature.
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Figure 5: Impact of B on temperature.
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Lorentz) increases with a higher value of M and therefore
increases the temperature.

Figure 9 demonstrates the influence of volumetric frac-
tions ϕ2 on temperature. It is expected that the thickness
of both the temperature and thermal boundary layer would
grow with an increase of ϕ2. That is because ϕ2 contributes
to the deceleration of fluid flow and contributes indirectly
to the magnitude of rising temperature. The temperature
magnitude for hybrid nanofluids is also evident from this
figure to be higher for the values of ϕ2 than for the nanofluid
value. In addition, hybrid nanofluid blade-shaped nanopar-
ticles have a high temperature, and brick-shaped nanofluid
nanoparticles have the lowest temperature.

3.3. Entropy Generation. Impacts on NG and Be are exam-
ined in this section of a Hartmann number (M), Brinkman
number (Br), and ϕ2 volumetric fractions. Figures 10 and
11 illustrate the impact of Hartmann number (M) on NG
and Be. Increased entropy generation ðNGÞ inM is reported.
Because of the fact that for higher (M), the force of Lorentz
creates greater resistance to fluid movement, and the
entropy ðNGÞ increases as expected. The Bejan number
(Be) was reduced compared to larger numbers (M) of
Hartmann.

The behavior of Brinkman number (Br) on NG and Be is
illustrated in Figures 12 and 13. More (Br) values are more
entropy-generated ðNGÞ. In fact, the thermal conductivity
decreases for higher estimates (Br), and thus an increase is
shown with the entropy optimization process. The counter
effect is for (Br) the Bejan number (Be). The number of
Bejan is the largest value if the number of Brinkman is zero
and decreases accordingly (Br).

Figures 14 and 15 are sketched for the impact of volu-
metric fractions ϕ2 against ðNGÞ and (Be). It is noticed that
the entropy of fluid increases for larger (NG) while Bejan
number (Be) reduces.

3.4. Engineering Quantities. In the final part of this section,
Figures 16–19 are plotted to test the effect of different shape
factor values in terms of variations of different embedded
parameters on the local Nusselt number and skin friction.
Numerous values of ϕ2 were decorated with the horizontal

axis. From Figure 16, the case where the injection is paired
with contraction, the parameter β increases the skin friction,
while the parameter ϕ2 shows a reversed behavior.

In addition, nanostructures formed by the blades possess
high heat transmission. Figure 17 is plotted for the different
values ofM, which indicate the same corresponding analysis
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Figure 10: Impact of M on entropy generation.
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Figure 12: Impact of Br on entropy generation.
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in Figure 16. Again, it has been found that nanocomposite-
shaped blades are more capable of transferring heat than
tiny particles formed by platelets, cylinders, or bricks.

Figures 18 and 19 show the effect ϕ2, M, and β on the
local heat transfer rate. Figure 18 shows that the local heat
transfer rates decrease, as the value of ϕ2 increases. For

blade-shaped nanoparticles, the rates are higher and against
β are indicated.

The changes in the local number of Nusselt due to the
increasing number of Hartmann (M) are seen in Figure 19.
It is found that nanoparticles formed by brick which
decreases in the local heat transfer rate are lower than the
others.
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Figure 14: Impact of ϕ2 on entropy generation.
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Figure 16: The variation of skin friction for varying ϕ2 and β.
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Figure 17: The variation of skin friction for varying ϕ2 and M.
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4. Conclusions

In this paper, the object of the present study is to analyze
entropy generation with a curved stretcher surface of
MHD flow of viscous fluids for several small particles. The
findings of this study are concluded.

(1) The velocity in the case of blade and brick small par-
ticles is noted to be rapidly increased

(2) The fluid temperature increases quite slowly for
platelet-shaped particles, and the rest of the nano-
particles show quit rapidly increases behavior

(3) Enhancement in the curvature parameter increases
the velocity profile, whereas the temperature profile
diminishes

(4) The heat generation parameter and Hartmann
number contribute in lowering the magnitude of
Nusselt number and increase in thermal radiation
parameter and increase the magnitude of Nusselt
number for both nano and hybrid nanofluids,
respectively. Moreover, the magnitude of Nusselt
number is slightly more in case of nanofluid as com-
pare to hybrid nanofluid

(5) Temperature and velocity profiles showed increasing
activity in order to estimate the solid volume fraction

(6) One of the essential sources of entropy production is
a curved stretching sheet

(7) For (Br) and (M), NG shows the same results

(8) For higher (M) and (Br) numbers, (Be) is reduced

Nomenclature

u: Component of velocity in the x direction
v: Component of velocity in the y direction
ρhnf : Density of hybrid nanofluid
B0: Strength of the magnetic Field
H: Pressure
μ: Dynamic viscosity
ν: Kinematics viscosity
σ: Electric conductivity
T : Surface temperatures
T∞: Environmental temperatures
Q0: Heat generation
ρnf : Density of nanofluid
ρs: Density of solid particle
ϕ1, ϕ2: Volume fraction of nanoparticles and hybrid

nanoparticles
kf : Conductivity of the base fluid
θ: Dimensionless temperature
m: Shape factor of nanoparticles
ζ: Dimensionless variable
Cf : Skin friction coefficient
Nu: Nusselt number
Br: Brinkman number
Ec: Eckert number

B: Curvature parameter
Pr: Prandtl number
M: Hartmann number
NG: Entropy generation rate
α1: The temperature difference parameter
Be: Bejan number.
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The physical phenomena of convective flow of Cross fluid containing carboxymethyl cellulose water over a stretching sheet with
convective heating were studied. Cross nanofluid containing Al2O3,Cu nanoparticles, and based fluid of CMC water is used.
Entropy generation minimization is examined in the current analysis. The system of PDEs is altered into a set of ODEs
through suitable conversion. Further, these equations are computed numerically through the MATLAB BVP4c technique. The
behavior of governing parameters on the velocity, temperature, entropy generation, and Bejan number is plotted and reported
via graphs. It is found that the larger value of unsteady variable reduced the velocity, thermal layer, and entropy production.
Surface drag frication of the Al2O3 and Cu and Al2O3 + Cu is enhanced with the more presence of unsteady parameter.
Comparison of current results in a limiting case is obtained with earlier analysis and found an optimum agreement.

1. Introduction

Carboxylmethyl cellulose (CMC) is a water-soluble cellulose
derivative [1], and it has many flow properties due to its
greater stability and high viscosity. The stability of nanopar-
ticles in CMC escalates the fluid behavior. It is engaged to
increase lubricating effects such as polymeric structures [2,
3]. These multifunction aspects of various cellulose deriva-
tives have many industrial and technical applications. To
recognize the fluid flow with CMC study, research have been
studied [4–6]. Saqib et al. [7] described the natural convec-
tive flow of CMC with carbon nanotube using a fractional
derivative approach. The effect of slip velocity and non-
Newtonian nanofluid contained with 0:5% wt CMC water
was discussed by Rahmati et al. [8]. Akinpelu et al. [9]

explored the thermophysical metal properties in CMC.
MHD flow of Casson nanofluid under heat transfer in CMC
over a solid sphere was developed by Alwawi et al. [10].

Nanotechnology has been progressively more fascinated
by the researchers because of their efficiency in several
industrial processes such as microelectronic, oil emulsion,
and molecular emulsion. Nanotechnology has the ability in
suspending nanoscale particles ð1 ≤ 100nmÞ in ordinary
fluids, like ethylene glycol, oil, and water. The origin of
nanotechnology was initiated by Choi and Eastman [11] in
1995. After, Buongiorno [12] developed a mathematical
model of heat transfer with the addition of Brownian motion
and thermophoresis effects. Tiwari and Das [13] investigated
to examine the solid volume fraction in nanofluids. Devi and
Devi [14] reported the numerical simulation of hybrid
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nanofluid over a porous surface with suction. Afridi et al.
[15] carried out the heat transfer analysis in hybrid nano-
fluid under fraction heating. The effect of second law analy-
sis with hybrid nanofluid and viscous dissipation due to
rotating disk was scrutinized by Farooq et al. [16]. Devi
et al. [17, 18] revealed the heat transfer of hybrid nanofluid
flow with two different base fluids. Gorla et al. [19]
addressed the impact of heat sink/source in the hybrid
nanofluid past the permeable surface. Chamkha et al. [20]
analyzed the time-dependent flow of mixed convective
hybrid nanofluid over half cavity. More recently, Zainal
et al. [21] disclosed the unsteady 3-D MHD stagnation point
flow of hybrid nanofluid using stability analysis. Few more
cutting edge research reports are seen in Refs. [22–28].

The study of entropy optimization has broad features in
the thermal engineering process such as heat pump, heat
engine, solar power, and refrigerator. The improvement of
the thermal system is enhanced due to the entropy produc-
tion. The Bejan number [29] is a dimensionless quantity that
represents overall entropy generation ratio of heat transmis-
sion and total entropy generation. Khana et al. [30] dis-
cussed the computational analysis of hybrid nanofluid with
entropy generation due to rotating disk between parallel
plates. Dawar et al. [31] surveyed the heat transfer analysis
through SWCNTs/MWCNTs in entropy generation and
activation energy over a moving wedge. The numerical study
of second law analysis of nanofluid due to an inclined sur-
face was discussed by Butt et al. [32]. Heat transfer in
MHD third-grade nanofluid with convective condition and
entropy generation over a stretching surface was encoun-
tered by Rashidi et al. [33]. The investigation of entropy pro-
duction for the magnetic field, thermal radiation, and porous
medium was reported by Makinde and Eegunjobi [34]. The
impact of entropy generation on two permeable stretched
surfaces was inspected by Khan et al. [35]. Afridi et al. [36]
described the hybrid nanofluid flow over a thin needle with
entropy generation. Reddy et al. [37] studied the entropy
generation on Williamson nanofluid with thermal radiation
and internal heat source over the lubricated surface.

The behavior of non-Newtonian fluid models, like sec-
ond grade, power law, and Williamson, was investigated by
many researchers in the past few years due to their vital role
in engineering and industrial applications. However, these
models cannot be recognized to analyze the behavior of fluid
at higher and lower shear rates. To illustrate the behavior of
fluid at a very low and high shear rate, the Cross fluid model
has been introduced by Cross [38]. The Cross fluid model
has optimum potential to trounce the challenges that are
overlooked while the shear rate is highly accelerated or
depreciated. Few recent developments under this direction
are collected in [39, 40]. The effect of heat source/sink on
Cross fluid with thermal radiation was studied by Nazeer
et al. [41]. Sabir et al. [42] scrutinized the heat transfer
phenomena through radiation and activation energy over
an inclined sheet. Yao et al. [43] investigated the magnetic
dipole effect for Cross fluid through spectroscopy. Khan
et al. [44] interpreted the effect of thermal radiative and
activation energy on Cross fluid near the stagnation point.
Reddy and Ali [45] constructed the MHD Cross nanofluid
under Cattaneo-Christov double diffusion theory over a
vertical stretching sheet.

The abovementioned studies reveal the focus on the heat
transport analysis of a CMC-nanofluid, but no authors
examined the CMC-hybrid nanofluid in the presence of
unsteady Cross fluid with the effect of mixed convection.
So, the authors attempted to investigate the heat transfer
analysis of CMC-based Cross hybrid nanofluid with convec-
tive heating. The system of PDEs is transformed into ODEs
through the suitable transformation, and these ODEs are
tackled through BVP4c for numerical solution. The entropy
analysis is implemented in the present study. This combina-
tion is more useful in thermal and aerospace engineering.

2. Mathematical Formulation

Let us consider the unsteady incompressible mixed convec-
tive flow of Cross hybrid nanofluid over a stretching sheet
with surface heating. Moreover, Cartesian coordinates have

Momentum layer thickness 

Thermal layer thickness 

Cu Al2O3

+

Cross Hybrid- Nanofluid 
y,v

x,v

=
,

=
h

(
−

)

Figure 1: Geometry of problem.
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been taken in the x-axis along the sheet, and y-axis is
perpendicular to surface as seen in Figure 1. The radiation
can only travel a distance within thick nanofluid; so, the
Rosseland approximation is considered into account for
radiative heat transfer.

Under the above assumptions, the flow model can be
extract as follows:

∂u
∂x

+
∂v
∂y

= 0, ð1Þ

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= vhnf
∂
∂y

∂u/∂y
1 + Γ ∂u/∂yð Þn
� �

+
g

ρhnf
ρβTð Þhnf T − T∞ð Þ = 0,

ð2Þ

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
khnf

ρCp

� �
hnf

∂2T
∂y2

−
1

ρCp

� �
hnf

∂qr
∂y

:

ð3Þ

The boundary constraints are applied as follows:

u = uw x, tð Þ, v = 0,−khnf
∂T
∂y_

= hf T f − T∞
� �

at y = 0,

u = u x, tð Þ = 0, T ⟶ T∞ as y⟶∞:

ð4Þ

Here, u, v, μhnf ,ρhnf , khnf , ðρCPÞhnf , and qr are horizontal
velocity and vertical velocity, viscosity, density, thermal con-
ductivity, specific heat capacity, and thermal radiative for
hybridnanoflud, respectively. hf is the heat transfer coefficient.

2.1. Suitable Transformation for Unsteady Flow. It is relevant
to use the following appropriate transformation:

η = y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

υf 1 − χtð Þ

s
, u =

ax
1 − χtð Þ , f ′ ηð Þ,

v =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aυf

1 − χtð Þ
r

f ηð Þ, θ ηð Þ = T − T∞
T f − T∞

:

ð5Þ

Using the suitable transformation described in Eq. (5), to
Eq. (2), Eq. (3) altered into the following ordinary differential
equations with respect to parameter η:

Π1 1 + 1 − nð Þ Wef ″
� �n� �

f ‴
h i

+Π2 f f ″ − δ f ′ + η

2
f ″

� �
− f ′
� �2	 


� 1 + Wef ″
� �n� �2

+Π3λθ 1 + Wef ″
� �n� �2

= 0,

ð6Þ

Table 1: Thermophysical properties.

Physical properties Specific heat capacity Density Thermal conductivity Coefficient of thermal expansion

CMC-water (<0.4%) 4179 997.1 0.613 21

Al2O3 765 3970 40 0.85

Cu 531.8 6320 76.5 1.80

Dynamic viscosity Π1
μhnf
μf

=
1

1 − φ1 − φ2ð Þ2:5

Density Π2
ρhnf
ρf

= 1 − φ2ð Þ 1 − φ1ð Þ + φ1ρ1s
ρf

" #
+
φ2ρ2s
ρf

Thermal expansion Π3
ρβTð Þhnf
ρβTð Þf

= 1 − φ2ð Þ 1 − φ1ð Þ + φ1 ρβTð Þ1s
ρβTð Þf

" #
+
φ2 ρβTð Þ2s
ρβTð Þf

Heat capacity Π4
ρcp
� �

hnf
ρcp
� �

f

= 1 − φ2ð Þ 1 − φ1ð Þ + φ1 ρcp
� �

1s
ρcp
� �

f

" #
+
φ2 ρcp
� �

2s
ρcp
� �

f

Thermal conductivity Π5
khnf
kf

=
k2s + 2kf − 2φ2 kf − k2s

� �
k2s + 2kf + φ2 kf − k2s

� � × knfð Þ knf =
k1s + 2kf − 2φ1 kf − k1s

� �
k1s + 2kf + φ1 kf − k1s

� �

Table 2: Validation of current results of −θ′ð0Þ with Wakif [48]
against Pr.

Pr Wakif [48] Current analysis

0.7 0.453916157 0.456051210134421

2.0 0.911357683 0.911321374513764

7.0 1.895403258 1.895381882154913

20 3.353904143 3.353886925689145

70 6.462199531 6.462184407558267

Table 3: Comparing of f ′′ð0Þ for unsteady parameter δ when
n =We = λ = 0.

δ Ali and Zaib [49] Current results

0.8 -1.261211 -1.260691

1.2 -1.377625 -1.377710
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Figure 2: (a)–(d) f ′ðηÞ, θðηÞ, NsðηÞ, BeðηÞ versus We.

Table 4: Numerical outcomes of value of skin friction coefficient and local Nusselt number.

We λ δ Bi Pr Rd Re1/2x Cf

Cu Al2O3 Cu + Al2O3

1.5 0.9 0.1 0.2 6.2 0.5 2.7247 2.3915 5.1162

2.0 0.3 1.1420 1.1102 2.2522

2.5 0.4 0.5355 0.5097 1.0452

1.0 1.4 0.2 0.2 6.8 0.7 2.7469 2.4140 5.1609

1.1 0.3 1.1550 1.1226 2.2776

1.2 0.4 0.5460 0.5102 1.0562

1.0 1.5 0.3 0.2 7.2 0.9 2.7480 2.4339 5.1819

1.1 0.3 1.1643 1.1361 2.3004

1.2 0.4 0.5507 0.5222 1.0729
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θ″ 1 +Π4Rdð Þ − Π3
Π4

η

2
δPrθ′ + PrΠ5 f θ′ = 0: ð7Þ

The transformation boundary conditions are stated as
follows:

f 0ð Þ = 0, f ′ 0ð Þ = 1,Π4θ′ 0ð Þ = −Bi 1 − θ 0ð Þð Þ, f ′ ∞ð Þ
= 0, θ ∞ð Þ = 0:

ð8Þ

Nondimensionless governing variables are Weissenberg
number Weð= Γax

ffiffiffiffiffiffi
a/v

p Þ, unsteady parameter δð= c/aÞ,
mixed convection λð= Grx/Re2xÞ, Prandtl number Prð= μf
ðcpÞx/kf Þ, radiation parameter ðRd = ð16σ∗T3

∞Þ/ðkk∗ÞÞ, the
skin friction coefficient Cf , and the local Nusselt number
which are presented by

Cf =
τw
ρf u

2
w

 !
, Nu =

xqw
kf T f − T∞
� �

 !
: ð9Þ

Wall shear stress and heat flux are as follows:

τw = μhnf
∂u
∂y

� �
y=0

, qw = −khnf
∂T
∂y

� �
y=0

: ð10Þ

In view of Eqs. (5) and (10), we get

Re1/2x Cf =Π1
f ′′ 0ð Þ

1 + We f ′′ 0ð Þ
� �n

0
B@

1
CA

y=0

, Re−1/2x Nux

= Π5 1 + Rdð Þθ′ 0ð Þ
� �

y=0
:

ð11Þ
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Figure 3: (a)–(d) f ′ðηÞ, θðηÞ, NsðηÞ, BeðηÞ versus δ.
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Figure 5: (a)–(c) θðηÞ, NsðηÞ, BeðηÞ versus Rd.
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3. Entropy Generation

The appearance of entropy production for Cross hybrid
nanoliquid over a stretching sheet is defined as [46, 47]:

EG =
kf
T2
∞

khnf
kf

+
16σ ∗ T2

∞
3kf k ∗

∂T
∂y

� �2
" #

+ μhnf
1
T∞

∂u
∂y

� �2 1
1 + Γ ∂u/∂yð Þn
� �

:

ð12Þ

The characteristics entropy generation is described below:

E0′′′ =
khnf T f − T∞

� �
xT2

∞
: ð13Þ

The dimensionless form of entropy generation is
Ns =Nh +Nv.

Nh =Π5½1 + Rd�ðθ′Þ2 is the entropy generation due to
heat transfer, and Nv=Π4½1 + ð1/ðWef ″ÞnÞ�f ″2 is the
entropy generation due to fluid friction.

Ns =
EG

E0′′′
=Π5 1 + Rd½ � θ′

� �2
+ BrΠ4 1 +

1

Wef ″
� �n

2
64

3
75f ″2: ð14Þ

The Bejan number is defined by

Be =
Π5 1 + Rd½ � θ′

� �2
Π5 1 + Rd½ � θ′

� �2
++BrΠ4 1 + 1/ Wef ″

� �n� �h i
f ″2

:

ð15Þ

4. Numerical Investigation

The set of an altered system of highly nonlinear ODE’s equa-
tions (6)–(7) with subject to the boundary condition (8) has
been numerically computed with aid of the BVP4c method.
For this purpose, first, we converted the higher order deriv-
ative into first order.

f =Λ1, f ′ =Λ2, f ″ =Λ3, f ′′′ =Λ3′ , θ =Λ4, θ′ =Λ5, θ″ =Λ5′ ,
ð16Þ
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Λ3′ =
−Π2 Λ1Λ3 − δ Λ2 + η/2ð ÞΛ3ð Þ − Λ2ð Þ2� �

1 + WeΛ3ð Þnf g2 −Π3λΛ4 1 + WeΛ3ð Þnf g2
Π1 1 + 1 − nð Þ WeΛ3ð Þnð Þ½ � ,

ð17Þ

θ″ 1 +Π4
4
3
Rd

� �
−
η

2
δ
Π3
Π4

Prθ′ + PrΠ5 f θ′ = 0,

Λ5′ =
−PrΠ5Λ1Λ5 + η/2ð Þδ Π3/Π4ð ÞPrΛ4

1 +Π4Rdð Þ

ð18Þ

Converted boundary conditions are as follows:

Λ1 0ð Þ = 0,Λ2 0ð Þ = 1,Λ5 0ð Þ = −Bi 1 −Λ4 0ð Þð Þ,Λ2 ∞ð Þ
= 0,Λ4 ∞ð Þ = 0:

ð19Þ

The iterative process has been used, and the accuracy of
the solution is obtained to 10−6.

5. Result and Discussion

In this segment, we examine the variations of f ′ðηÞ, θðηÞ,
Ns ðηÞ, and Be ðηÞ for different flow variables, such as
Weissenberg number ðWeÞ, Biot number ðBiÞ, Prandtl

number ðPrÞ, thermal radiation ðRdÞ, nanoparticle volume
fraction (ϕ1, ϕ2), and mixed convection parameter (λ). For
performing graphical study, single variable varies, whereas
all the physical variables were kept in constant values such
as We = 0:5, n = 0:4, Bi = −0:3, λ = 1:0, Pr = 6:2, δ = 0:3, Rd
= 1:7. Table 1 demonstrates the thermophysical properties
of Cu, Al2O3, and Cu+Al2O3. Tables 2 and 3 show the com-
parison outcome of −θð0Þ against Pr and f ″ð0Þ against δ
with the limiting case n =We = λ = 0. From these tables, it
is found that our computations are optimum one. Table 4
shows the impact of We,λ, δ, Bi, Pr, and Rd on skin friction
coefficient for Cu, Al2O3, and Cu+Al2O3.

Figures 2(a)–2(d) display the fluctuation of Weissenberg
(We) on velocity distribution f ′ðηÞ, temperature field θðηÞ,
entropy production NsðηÞ, and Bejan number BeðηÞ for
nanofluids (Cu&Al2O3) and hybrid nanofluid (Cu + Al2O3).
The fluid velocity and entropy generation reduce when We
augments. However, fluid temperature and Bejan number
enhance when enhancing the quantity of We. Physically, the
Weissenberg number means shear rate time which helps to rise
the fluid thickness, and this causes to depreciate fluid velocity.
The variations of δ on f ′ðηÞ, θðηÞ, NsðηÞ, and BeðηÞ are
illustrated in Figures 3(a)–3(d) for nanofluids and hybrid
nanofluid. It is seen from these figures that the fluid velocity,
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Figure 10: Stream line pattern for various values ϕ1 = 0, ϕ2 = 0 and ϕ1 = 0:02, ϕ2 = 0.
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Figure 11: Stream line pattern for (a) unsteady flow and (b) steady flow.
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fluid temperature, and entropy production decline when
increasing the magnitude of δ, and Bejan number raises when
rising the values of δ: Figures 4(a) and 4(b)present the conse-
quences of ϕ1 and ϕ2 on f ′ðηÞ and θðηÞ for nanofluids and
hybrid nanofluid for nanofluids and hybrid nanofluid. It is seen
that the fluid velocity and fluid temperature upsurge when
mounting the quantity of ϕ1 and ϕ2. The impact of radiation
on θðηÞ, NsðηÞ, and BeðηÞ was portrayed in Figures 5(a)–5(c)
for nanofluids and hybrid nanofluid. It is concluded that the
fluid temperature, entropy production, and Bejan number are
increasing function of radiation parameter. Physically radiation
parameter enhances the rate energy transport to the fluid and
thereby enriching the fluid temperature and thicken the
thermal boundary layer. Figures 6(a) and 6(b) provide the
changes of f ′ðηÞ on λ and θðηÞ on Bi for nanofluids and hybrid
nanofluid. It is detected that the momentum boundary layer
thickness escalates when enriching the λ values, see
Figure 6(a). The fluid temperature raises when raising the Biot
number, see Figure 6(b). Physically, Biot number leads to
enrich the heat transfer coefficient, this leads to enhance the
fluid thermal state, and this causes to improve the fluid temper-
ature and thicker the thermal boundary layer thickness. Figure 7
displays the effect of Pr on θðηÞ for nanofluids and hybrid
nanofluid. It is found that the fluid temperature and its associ-
ated boundary layer thickness downturn when strengthening
the Prandtl number.

Figure 8 shows the influence of δ and We on skin fric-
tion coefficient for nanofluids and hybrid nanofluid. It is
proved from this figure that the skin friction coefficient
enriches when strengthening the We values, and it is almost
fixed when changing the δ values. Further, the skin friction
coefficient is low in hybrid nanofluid than the nanofluids
case. The local Nusselt number for various values of Rd
and Bi for nanofluids and hybrid nanofluid is plotted in
Figure 9. It is seen that the heat transfer gradient depresses
when enriching the Rd and Bi for all cases. In addition, the
less local Nusselt number is attained in hybrid nanofluid
than the nanofluids case. Finally, Figures 10 and 11 present
the streamline pattern for numerous values of nanoparticle
volume fraction, Stedy and unstedy flows.

6. Final Remarks

The two-dimensional mixed convection flow of Cross fluid
is based on CMC-water with nanoparticles Cu and Al2O3
with thermal radiation over a stretching sheet. The second
law analysis has been made. The physical model is computed
via the MATLAB BVP4c function. The numerical and
graphical results for flow and energy transfer are produced
for diverse values of dimensionless variables. Moreover, skin
friction and Nusselt number have been computed. The main
findings of this work are as follows:

(i) Momentum boundary layer thickness of Cu, Al2O3,
and Cu+Al2O3 reduces as the Weissenberg number
We is enhanced.

(ii) The temperature profile Cu, Al2O3, and Cu+Al2O3
is reduced for both δ and We:

(iii) Entropy generation and Bejan number of Cu, Al2O3,
and Cu+Al2O3 are quite similar trends forWe and δ.

(iv) Temperature distribution, entropy generation, and
Bejan numberCu,Al2O3, andCu+Al2O3 are enhanced
as increases the value of thermal radiation Rd.

(v) Both Biot number and mixed convection are
enhanced for temperature and velocity distribution
of Cu, Al2O3, and Cu+Al2O3.

(vi) The drag friction and Nusselt number have an
increasing effect for nanofluid and hybrid nanofluid.

Nomenclature

a: Stretching rate
t: Time
λ: Mixed convection parameter
knf : Effective thermal conductivity
ρf : Reference density of fluid
ρs: Reference density of solid
Pr: Prandtl number
Bi: Biot number
Be: Bejan number
Ns: Total entropy generation
μf : Viscosity of fluid
We : Weissenberg number
δ: Unsteady parameter
n: Power-law index
k: Thermal conductivity of base fluid
u: Velocity along the x-axis
v: Velocity along the y-axis
ρnf : Density of fluid
μnf : Effective viscosity of nanofluid
Nux: Nusselt number
kf : Thermal conductivity of fluid
ks: Thermal conductivity of solid
Rex : Local Reynolds number
T : Fluid temperature
T f : Temperature of the hot fluid

Abbreviations

Cu: Copper
PDE: Partial differential equations
ODE: Ordinary differential equations
CMC: Carboxylmethyl cellulose.
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The natural transform decomposition method (NTDM) is a relatively new transformation method for finding an approximate
differential equation solution. In the current study, the NTDM has been used for obtaining an approximate solution of the
fractional-order generalized perturbed Zakharov–Kuznetsov (GPZK) equation. The method has been tested for three nonlinear
cases of the fractional-order GPZK equation. The absolute errors are analyzed by the proposed method and the q-homotopy
analysis transform method (q-HATM). 3D and 2D graphs have shown the proposed method’s accuracy and effectiveness.
NTDM gives a much-closed solution after a few terms.

1. Introduction

The power of applying fractional calculus to physical problems
is that, when dealing with the integer order of derivative,
which depends on the function’s behavior, the fractional
derivative produces the whole story of this function. For this
reason, studying the behavior of the function fractionally is
sometimes called the memory effect. This effect leads to many
applications of differential equations. The importance of frac-
tional differential equations (FDEs) cannot be denied in the
recent advancement of the real world. There are models which
provide a better way of managing the systems through frac-
tional differential equations. These equations may arise in
electronic circuits, physics, engineering [1, 2], bioscience, etc.
[3, 4]. Finance also deals with the fractional-order differential
equations to handle clients in more suitable and affordable

packages for dealing with financial crises [5, 6]. Other differen-
tial equation (DE) applications are image processing and sig-
nal processing [7, 8]. These equations may be linear or
nonlinear, depending upon the geometry of the problem. Sim-
ple problems can be demonstrated by ordinary differential
equations (ODEs), while complex problems can be demon-
strated through partial differential equations (PDEs). Most lin-
ear problems have the exact solution, but it is hard to find the
exact solution to complex nonlinear problems. To handle
these problems, the researchers used numerical, analytical,
and some homotopy-based methods to approximate such a
nonlinear problem. Some famous methods which handle the
DEs of fractional and integer order are the residual power
series method [9, 10], Laplace decomposition method
(LDM) [11], q-homotopy analysis method (q-HAM) [12],
Adomian decomposition method (ADM) [13], reduced
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differential transform method (RDTM) [14], variational itera-
tion method (VIM) [15], optimal homotopy asymptotic
method (OHAM) [16, 17], homotopy perturbation method
(HPM) [18], homotopy analysis method (HAM) [19], etc.
Besides these methods, many researchers have introduced
many numerical methods to handle differential equations
[20]. Transformations also help for the solution approxima-
tion of DEs. In the present study, we apply a relatively new
method named the natural transform decomposition method
(NTDM).We decompose the nonlinear terms with the help of

Adomian polynomials and then apply the natural transforma-
tion to obtain the solution to the problem. Many researchers
have applied NTDM to handle DEs of fractional order [21,
22]. The time-fractional GPZK equation (3 + 1) dimension
with the following form is taken to analyze NTDM [23].

Dα
t q + β1q

λqχ + β2qχχχ + β3qχyy + β3qχzz + ζqχχχχχ = 0, 0 < α ≤ 1, t > 0,

ð1Þ
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Figure 1: NTDM solution of the real part of problem 1.
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Figure 2: Exact solution of the real part of problem 1.
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where α is the fractional-order of the Caputo’s derivative, q is
the electrostatic potential, ζ represents the smallness parame-
ter, λ is a positive number, and β1, β2, and β3 are constants.
Equation (1) describes the nonlinear dust-ion-acoustic waves
in the magnetized plasmas [23]. The study of ion-acoustic
waves and structures in dense quantum plasmas has sparked
much interest in recent years.

The remaining paper is organized as follows: The pre-
liminary definitions are given in Section 2 contains. Section
3 introduces the core concept of NTDM. In Section 4,
NTDM is applied to three fractional-order ZK equations.

There is a conclusion to the method applications, and in
the end, the bibliography is given.

2. Preliminaries

This section introduces some basic definition including the
fractional Caputo’s definition, the fractional order
Riemann-Liouville (R-L) integral and some basic defini-
tions of transformation regarding derivative and
integration.
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Figure 3: NTDM solution of the imaginary part of problem 1.

Exact sol. of Imaginary Part

0.4

0.3

0.2 t

0.1

0.0
20

–20

u (x, t)
–0.01

0.01

0.00

10

–10

0
x

Figure 4: Exact solution of the imaginary part of problem 1.
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Definition 1. The R-L fractional integral ðΙαt Þ of order α ≥ 0,
f ðtÞ is defined as follows:

Ιαt f tð Þ = 1
Γ αð Þ

ðt
0
t − ηð Þα−1 f ηð Þdη, α > 0, t > 0ð Þ,

Ι0t f tð Þ = f tð Þ:
ð2Þ

Definition 2. Caputo’s fractional derivative of order α > 0 is

defined as follows:

Dα
t q x, tð Þ = ∂αq ℘,tð Þ

∂tα

=

1
Γ n − αð Þ

ðt
0
t − ηð Þn−α−1 ∂

nq ℘,ηð Þ
∂ηn

, if n − 1 < α < n,

∂nq ℘,tð Þ
∂tn

, if α = n ∈N:

8>>><
>>>:

ð3Þ

Definition 3. Natural transform of qðtÞ is given as [17]

ℕ+ q tð Þð Þ =ℝ s, vð Þ = 1
v

ð∞
0
e−st/v q tð Þð Þdt ; s, v > 0, ð4Þ

s and v are the transform variables.

Definition 4. Inverse natural transform of ℝðs, vÞ is written
as follows:

ℕ− ℝ s, vð Þð Þ = q tð Þ = 1
2πi

ðc+i∞
c−i∞

est/v ℝ s, vð Þð Þds, ð5Þ

the integral is along the complex plane.

Definition 5. If qnðtÞ is the nth derivative of the function qðtÞ
, then its natural transform is as follows:

ℕ+ qn tð Þð Þ =ℝn s, vð Þ = sn

vn
ℝ s, vð Þ − 〠

n−1

k=0

sn− k+1ð Þ

vn−k
qn 0ð Þð Þ, n ≥ 1:

ð6Þ

Theorem 6. If natural transform of gðtÞ and kðtÞare, respec-
tively, Gðs, vÞ and Kðs, vÞ and are defined in set A, then

ℕ g ∗ k½ � = vG s, vð ÞK s, vð Þ, ð7Þ

where ½g ∗ k� is a convolution of g and k.

3. Basic Idea of NTDM

Consider the fractional order PDE of the form

Dα
t q ℘,tð Þð Þ = f ℘,tð Þ+Lq ℘,tð Þ+ℵq ℘,tð Þ, 0 < t ≤ 1,m − 1 < α <m,m ∈N ,

ð8Þ

where α is fractional derivative, L represents linear, ℵ
shows the nonlinear operator, and f ð℘,tÞ is known function.
The initial condition is given as follows:

u ℘,0ð Þ = g ℘ð Þ: ð9Þ

When we use the natural transform on Equation (8), we
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Figure 5: Real part solution comparison for fractional values of α
for problem 1.
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Figure 6: Imaginary part solution comparison for fractional values
of α for problem 1.
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get

ℕ+ Dα
t q ℘,tð Þð Þ½ � =ℕ+ f ℘,tð Þ½ �+ℕ+ L q ℘,tð Þð Þ+ℵ q ℘,tð Þð Þ½ �:

ð10Þ

Using the natural transform’s differentiation characteristic

to Equation (10), we have

sα

vα
ℕ+ q ℘,tð Þ½ � − sα−1

vα
q ℘,0ð Þ

=ℕ+ f ℘,tð Þ½ �+ℕ+ Lq ℘,tð Þ +ℵq ℘, t
� �h i

:

ð11Þ

Exact sol. of Real Part
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Figure 8: Exact solution of the real part of problem 2.
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Figure 7: NTDM solution of the real part of problem 2.
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Equation (11), after rearranging, is

ℕ+ q ℘,tð Þ½ � = g ℘ð Þ
s

+ v
α

sα
ℕ+ f ℘,tð Þ½ �ð Þ+ v

α

sα
ℕ+ L q ℘,tð Þð Þ+ℵ q ℘,tð Þð Þ½ �ð Þ:

ð12Þ

For the NTDM solution, qð℘,tÞ expands as the infinite series

q ℘,tð Þ = 〠
∞

i=0
qi ℘,tð Þ: ð13Þ

The infinite series defines the nonlinear terms as follows:

ℵq ℘,tð Þ = 〠
∞

i=0
Ai, ð14Þ

Ai =
1
i!

di

dλi
ℵ 〠

∞

i=0
λiqi

 !" #" #
λ=0

, i = 0, 1, 2⋯ ð15Þ

The Adomian polynomials are represented by Ai. Equa-
tion (12) is modified by substituting Equations (13) and
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0.3
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Figure 9: NTDM solution of the imaginary part of problem 2.
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Figure 10: Exact solution of the imaginary part of problem 2.
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(14).

ℕ+ 〠
∞

i=0
q ℘,tð Þ

" #
= g ℘ð Þ

s
+ vα

sα
ℕ+ f ℘,tð Þ½ � + vα

sα
ℕ+ L 〠

∞

i=0
q ℘,tð Þ

 !
+ 〠

∞

i=0
Ai

" #
,

ð16Þ

using the natural transform’s linearity as follows:

ℕ+ q0 ℘,tð Þ½ � = q ℘,0ð Þ
s

+ v
α

sα
ℕ+ f ℘,tð Þ½ �,

ℕ+ q1 ℘,tð Þ½ � = vα

sα
ℕ+ L q0 ℘,tð Þð Þ + A0½ �,
⋮

ℕ+ qi+1 ℘,tð Þ½ � = vα

sα
ℕ+ Lqi ℘,tð Þ + Ai½ �, i ≥ 0:

ð17Þ

The solution components of Equation (28) are obtained
by taking the inverse natural transform as follows:

q0 ℘,tð Þ = g ℘,tð Þ,

qi+1 ℘,tð Þ =ℕ− vα

sα
ℕ+ Lqi ℘,tð Þ + Ai½ �

� �
,

ð18Þ

where the term gð℘,tÞ is derived from the specified
source term and initial condition.

The approximate m-term solution of Equations (8) and
(9) is

q ℘,tð Þ = q0 ℘,tð Þ+q1 ℘,tð Þ+q2 ℘,tð Þ+⋯+qm−1 ℘,tð Þ: ð19Þ

4. Convergence Analysis of NTDM

Theorem 7. Let H be the Hilbert space defined by H = L2ðð
α, βÞX½0, T�Þ the set of applications

q = α, βð ÞX 0, T½ �⟶ Rwith
ð

α,βð ÞX 0,T½ �
q2 x, sð Þdsdϑ < +∞:

ð20Þ

In light of the above assumptions, we now consider the
GPZK equation of fractional order and denote

L qð Þ = ∂α

∂tα
qð Þ: ð21Þ

The GPZK equation is then written in operator form

L qð Þ = −β1q
kux − β2qxxx − β3qxyy − β3qxzz − ζqxxxxx: ð22Þ

If the following hypotheses are true, the NTDM is convergent:

H1ð Þ L qð Þ − L ηð Þ, q − ηð Þ ≥ k q − ηk k2 ; k > 0,∀q, η ∈H: ð23Þ

Hð2Þ whatever maybe M > 0, there exists a constant Cð
MÞ > 0, such that for q, η ∈H with kqk ≤M, kηk ≤M, we
have for every ðLðqÞ − LðηÞ, q − ηÞ ≤ CðMÞkq − ηkkwk for
every w ∈H.

5. Applications of NTDM

5.1. Problem 1. Consider the following ð3 + 1Þ dimension
GPZK equation [23]

Dα
t q + β1qqχχ + β2qχχχ + β3qχyy + β3qχzz + ζqχχχχχ = 0,

ð24Þ

–15

3.03

3.02

3.00

3.01

u 
(x

)

2.99

2.98

2.97

–10 –5 5 10 150
x

𝛼 = 0.5
𝛼 = 0.7
𝛼 = 0.9

𝛼 = 1.0
Exact

Figure 11: Real part solution comparison for fractional values of α
for problem 2.
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Figure 12: Imaginary part solution comparison for fractional
values of α for problem 2.
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where q = qðχ, y, z, tÞ together with initial conditions

q χ, y, z, 0ð Þ = e0 −
1680ζρ4

β1 −z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− β2ρ

2/β3ð Þ − κ2
p

+ ρχ + κy + ϕ
� �4 :

ð25Þ

The exact solution is given as [23]

q χ, y, z, tð Þ = e0 −
1680ζρ4

β1 −z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− β2ρ

2/β3ð Þ − κ2
p

+ ρχ + κy − β1e0ρt + ϕ
� �4 :

ð26Þ

The (24) is rearranged as follows:

Dα
t q = −β1qqχ − β2qχχχ − β3qχyy − β3qχzz − ζqχχχχχ: ð27Þ

Apply natural transform to Equation (27), we have

ℕ+ Dα
t q½ � =ℕ+ −β1qqχ − β2qχχχ − β3qχyy − β3qχzz − ζqχχχχχ

h i
:

ð28Þ

Use the natural transform’s differentiation characteristic to
Equation (28), we have

sα

vα
q χ, y, z, tð Þ − vα−1

sα
q χ, y, z, 0ð Þ

=ℕ+ −β1qqχ − β2qχχχ − β3qχyy − β3qχzz − ζqχχχχχ
h i

:

ð29Þ

Approx. sol. of Real Part
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Figure 13: NTDM solution of the real part of problem 3.

Exact sol. of Real Part

0.4

0.3

0.2
t

0.1

0.0
20

–20

0.65805

0.65810

u (x, t)

0.65800

10

–10

0
x

Figure 14: Exact solution of the real part of problem 3.
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After the application of inverse transform, we have

q χ, y, z, tð Þ = q χ, y, z, 0ð Þ
s

+ℕ− vα

sα
ℕ+ −β1qqχ − β2qχχχ − β3qχyy − β3qχzz − ζqχχχχχ
h i� �

:

ð30Þ

Using the recursive relation and replacing the nonlinear
term qqx by Adomian polynomials, Equation (30) yields

q χ, y, z, tð Þ = q χ, y, z, 0ð Þ
s

+ℕ− vα

sα
ℕ+ −β1Ai − β2qχχχ − β3qχyy − β3qχzz − ζqχχχχχ
h i� �

, i

= 0, 1, 2,⋯

ð31Þ

We got the solution components as follows by using the

NTDM concept

q0 χ, y, z, tð Þ =ℕ− q χ, y, z, 0ð Þ
s

� �

q1 χ, y, z, tð Þ =ℕ− vα

sα
ℕ+ −β1A0 − β2q0χχχ − β3q0χyy − β3q0χzz − ζq0χχχχχ
h i� �

q2 χ, y, z, tð Þ =ℕ− vα

sα
ℕ+ −β1A1 − β2q1χχχ − β3q1χyy − β3q1χzz − ζq1χχχχχ
h i� �

q3 χ, y, z, tð Þ =ℕ− vα

sα
ℕ+ −β1A2 − β2q2χχχ − β3q2χyy − β3q2χzz − ζq2χχχχχ
h i� �

⋮

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

,

ð32Þ

where A0,, A1, and A2 are the Adomian polynomials and
can be calculated using Equation (15). By solving, we get the
solution as follows:

Approx. sol. of Imaginary Part
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Figure 15: NTDM solution of the imaginary part of problem 3.
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Figure 16: Exact solution of the imaginary part of problem 3.

q0 χ, y, z, tð Þ = e0 −
1680ζρ4

β1 −z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− β2ρ

2/β3ð Þ − κ2
p

+ ρχ + κy + ϕ
� �4

q1 χ, y, z, tð Þ = −
6720e0ζρ5tα

Γ α + 1ð Þ −z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− β2ρ

2/β3ð Þ − κ2
p

+ ρχ + κy + ϕ
� �5

q2 χ, y, z, tð Þ = −
33600β1e

2
0ζρ

6t2α

Γ 2α + 1ð Þ −z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− β2ρ

2/β3ð Þ − κ2
p

+ ρχ + κy + ϕ
� �6

q3 χ, y, z, tð Þ =
201600β1e

2
0ζp

7Γ 2α + 1ð Þt3α − β1e0 −z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− β2ρ

2/β3ð Þ − κ2
p

+ ρχ + κy + ϕ
� �4� �

/ Γ 2α + 1ð Þ + 1120ζρ4/Γ α + 1ð Þ2
� �

− 2240ζρ4/Γ 2α + 1ð Þ
� �� �� �

Γ 3α + 1ð Þ −z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− β2ρ

2/β3ð Þ − κ2
p

+ ρχ + κy + ϕ
� �11

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

: ð33Þ
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Table 1: Real part solution comparison for fractional values of α for problem 1 at t = 0:01.

x α = 0:5 α = 0:7 α = 0:9 α = 1:0 Exact Abs. error NTDM Abs. error [27]

-15 3.0034 3.0036 3.00369 3.00371 3.00371 2:007727 × 10−12 2:007727 × 10−12

-10 3.00812 3.00805 3.00798 3.00796 3.00796 1:639577 × 10−12 1:639577 × 10−12

-5 2.98107 2.97965 2.97917 2.97907 2.97907 5:8479 × 10−11 5:8479 × 10−11

0 2.99902 3.00045 3.00097 3.00108 3.00108 4:721068 × 10−11 4:721068 × 10−11

5 3.0066 3.00634 3.00623 3.00621 3.00621 6:424195 × 10−12 6:424195 × 10−12

10 3.00164 3.00152 3.00148 3.00147 3.00147 5:728751 × 10−14 5:728751 × 10−14

15 3.00023 3.0002 3.0002 3.00019 3.00019 1:092459 × 10−13 1:092459 × 10−13

Table 2: Imaginary part solution comparison for fractional values of α for problem 1 at t = 0:01.

x α = 0:5 α = 0:7 α = 0:9 α = 1:0 Exact Abs. error NTDM Abs. error [38]

-15 0.00151571 0.00146344 0.00143688 0.00143011 0.00143011 1:789912 × 10−12 1:789912 × 10−12

-10 -0.00722543 -0.00801857 -0.00835063 -0.0084304 -0.0084304 2:285489 × 10−11 2:285489 × 10−11

-5 -0.0123648 -0.0108878 -0.0102153 -0.0100505 -0.0100505 6:996747 × 10−11 6:996747 × 10−11

0 0.0175886 0.0171401 0.016905 0.0168458 0.0168458 6:948674 × 10−12 6:948674 × 10−12

5 0.000776644 0.000419639 0.000295525 0.000267266 0.000267266 4:853387 × 10−13 4:853387 × 10−13

10 -0.00160753 -0.00158678 -0.0015772 -0.00157485 -0.00157485 7:746282 × 10−13 7:746282 × 10−13

15 -0.000870554 -0.00084329 -0.000832837 -0.000830384 -0.000830384 5:348467 × 10−14 5:348467 × 10−14
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Figure 17: Real part solution comparison for fractional values of α for problem 3.
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Figure 18: Imaginary part solution comparison for different fractional values of α for problem 3.

Table 3: Real part solution comparison for fractional values of α for problem 2 at t = 0:01.

x α = 0:5 α = 0:7 α = 0:9 α = 1:0 Exact Abs. error

-15 2.9874 2.98657 2.98621 2.98612 2.98612 1:55851 × 10−9

-10 2.97838 2.97696 2.97638 2.97624 2.97624 9:833575 × 10−9

-5 2.96771 2.96659 2.96637 2.96633 2.96633 5:097527 × 10−8

0 2.97778 2.98204 2.984 2.98448 2.98448 8:531288 × 10−8

5 3.02044 3.02508 3.02652 3.02683 3.02683 4:077737 × 10−9

10 3.03291 3.03204 3.03161 3.0315 3.0315 3:67115 × 10−8

15 3.02214 3.0207 3.02016 3.02003 3.02003 2:767871 × 10−9

Table 4: Imaginary part solution comparison for fractional values of α for problem 2 at t = 0:01.

x α = 0:5 α = 0:7 α = 0:9 α = 1:0 Exact Abs. error

-15 0.00640835 0.00637269 0.00632898 0.0063165 0.0063165 5:566582 × 10−9

-10 0.00329588 0.00252435 0.00211105 0.00200535 0.00200536 1:470755 × 10−8

-5 -0.0117248 -0.0148465 -0.0162419 -0.0165841 -0.0165841 2:044629 × 10−8

0 -0.0429444 -0.0469602 -0.0481431 -0.0483942 -0.0483943 7:870128 × 10−8

5 -0.0448139 -0.0411819 -0.0396028 -0.0392184 -0.0392183 9:6700550 × 10−8

10 -0.0128468 -0.0095154 -0.00836997 -0.00811094 -0.00811095 6:485631 × 10−9

15 0.00309416 0.00400363 0.00429329 0.00435689 0.00435688 1:14261 × 10−8
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Adding the components, we obtain the 3rd order solution as
follows:

5.2. Problem 2. Consider the following ð3 + 1Þ dimension
GPZK equation [23]

Dα
t q + β1q

2qχ + β2qχχχ + β3qχyy + β3qχzz + ζqχχχχχ = 0, 0 < α ≤ 1, t > 0,

ð35Þ

and initial condition as follows:

The exact solution is given as [24]

By using basics concepts of NTDM, the solution compo-
nents obtained as follows:

q χ, y, z, tð Þ = q0 χ, y, z, tð Þ + q1 χ, y, z, tð Þ + q2 χ, y, z, tð Þ + q3 χ, y, z, tð Þ

−
33600β1e

2
0ζp

6t2α

Γ 2α + 1ð Þ −z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− β2p2/β3ð Þ − κ2

p
+ pχ + κy + ϕ

� �6
− 6720e0ζp5tα/ Γ α + 1ð Þ −z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− β2p2/β3ð Þ − κ2

p
+ pχ + κy + ϕ

� �5� �� �

+

201600β1e
2
0ζp

7Γ 2α + 1ð Þt3α
− β1e0 −z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− β2p2/β3ð Þ − κ2

q
+ pχ + κy + ϕ

� �4
 !

/Γ 2α + 1ð Þ
 !

+ 1120ζp4/Γ α + 1ð Þ2	 

− 2240ζp4/Γ 2α + 1ð Þ	 


0
BB@

1
CCA

Γ 3α + 1ð Þ −z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− β2p2/β3ð Þ − κ2

p
+ pχ + κy + ϕ

� �11
+ e0 − 1680ζp4/ β1 −z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− β2p2/β3ð Þ − κ2

p
+ pχ + κy + ϕ

� �4� �� �

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

:
ð34Þ

q χ, y, z, 0ð Þ = e0 +
6
ffiffiffiffiffi
10

p
i
ffiffiffi
ζ

p
ρ2ffiffiffiffiffi

β1
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10

p
−ið Þ ffiffiffiffiffi

β1
p

e0
ffiffiffi
ζ

p
p2 − β2ρ

2 − β3κ
2

q
/
ffiffiffiffiffi
β3

p� �
z + ρχ + κy + ϕ
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Adding the components, we get the solution as follows:

5.3. Problem 3. Consider the following ð3 + 1Þ dimension
GPZK equation [23]

Dα
t q + β1q

4qχ + β2qχχχ + β3qχyy + β3qχzz + ζqχχχχχ = 0,
ð40Þ

and initial condition as follows:

q χ, y, z, 0ð Þ =
23/4

ffiffiffiffiffiffiffiffi
−154

p ffiffiffi
ζ4

p
ρ

� �
ffiffiffiffiffi
β1

4
p tan ρχ + κy −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−20ζρ4 − β2ρ

2 − β3κ
2

q
ffiffiffiffiffi
β3

p z

0
@

1
A:

ð41Þ

The exact solution is given as [18]
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Table 5: Real part solution comparison for fractional values of α for problem 3 at t = 0:01.

x α = 0:5 α = 0:7 α = 0:9 α = 1:0 Exact Abs. error

-15 0.657972 0.6579720 0.6579720 0.6579720 0.6579720 1:354472 × 10−14

-10 0.657995 0.6579950 0.657996 0.6579960 0.657996 3:119727 × 10−14

-5 0.658078 0.658078 0.658078 0.658079 0.658079 3:108624 × 10−14

0 0.658102 0.658102 0.658102 0.658102 0.658102 1:354472 × 10−14

5 0.658033 0.658033 0.658032 0.658032 0.658032 3:885781 × 10−14

10 0.65797 0.657969 0.657969 0.657969 0.657969 8:437695 × 10−15

15 0.658002 0.658003 0.658003 0.658003 0.658003 3:397282 × 10−14

Table 6: Imaginary part solution comparison for fractional values of α for problem 3 at t = 0:01.

x α = 0:5 α = 0:7 α = 0:9 α = 1:0 Exact Abs. error

-15 -0.658012 -0.6580130 -0.658013 -0.658013 -0.658013 3:6526340 × 10−14

-10 -0.658092 -0.6580920 -0.658093 -0.658093 -0.658093 2:331468 × 10−14

-5 -0.6580930 -0.6580930 -0.6580930 -0.6580930 -0.658093 2:3425710 × 10−14

0 -0.658014 -0.658013 -0.658013 -0.658013 -0.6580130 3:663736 × 10−14

5 -0.657968 -0.657968 -0.6579680 -0.657968 -0.657968 2:775558 × 10−15

10 -0.6580210 -0.6580220 -0.658022 -0.6580220 -0.658022 3:808065 × 10−14

15 -0.658097 -0.658097 -0.658098 -0.658098 -0.658098 1:876277 × 10−14
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Using NTDM concept, the solution components are
obtained as follows:

Adding the components, we get the solution as follows:

6. Results and Discussion

This section presents the application of NTDM for solving
fractional-order nonlinear GPZK equations. The values for
the arbitrary constants have been taken as β1 = 1, β2 = 2,
β3 = 0:1, y = 2, z = 2, ζ = 0:1, eo = 3, ρ = 0:5, қ = 0:5, and ϕ
= 1 for problem 1-3. Problem 1 is approximated up to 3rd
order. Problem 2 and problem 3 are approximated up to
2nd order by the NTDM algorithm. The approximate and
exact real part of the solution is shown by Figures 1 and 2,
respectively, by 3D plots for problem 1. The 3rd order
approximate and exact solution of the imaginary part of
problem 1 has been displayed by Figures 3 and 4, respec-
tively. The solution obtained by NTDM has been compared
by plots in Figures 5 and 6 for fractional values of α.
Figures 7 and 8 display the 3D plots of the 2nd order real
part solution and exact solution, respectively, for problem
2. Figures 9 and 10 show the 2nd order imaginary part solu-
tion and exact solution, respectively, for problem 2. The
solution gained by NTDM has been compared by 2D plots
in Figures 11 and 12 for fractional values of α.

Similarly, Figures 13 and 14 display the real part solu-
tion, and Figures 15 and 16 display the imaginary part solu-
tion for problem 3. In Tables 1 and 2, the absolute error is

compared with the q-HATM solution, which shows the con-
vergence of NTDM. Figure 17 shows the real part solution
comparison for fractional values of α for problem 3.
Figure 18 shows the imaginary part solution comparison
for different fractional values of α for problem 3. In
Tables 1 and 2, the absolute error is compared with the q-
HATM solution, which shows the convergence of NTDM.
Similarly, Tables 3 and 4 are compared for problem 2, while
Tables 5 and 6 show the comparison for problem 3.

The above conversation summarizes that NTDM is
appropriate for solving DEs of fractional order.

7. Conclusion

The GPZK equation of fractional order has been solved by
NTDM in the current study. Three nonlinear cases have
been shown convergent by comparing the results with the
exact solution and q-HATM solution. The effectiveness of
NTDM has been shown by showing numerical results. The
plots for different numerical values of α confirm the conver-
gence of NTDM as α tend 1 the NTDM solution overlaps the
exact solution. This discussion summarizes that the NTDM
is suitable for approximating the complex nonlinear PDEs
and ODEs of integer and fractional order.

q0 χ, y, z, tð Þ =
23/4

ffiffiffiffiffiffiffiffi
−154

p ffiffiffi
ζ4

p
ρ

� �
ffiffiffiffiffi
β1

4
p tan ρχ + κy −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−20ζρ4 − β2ρ

2 − β3κ
2

q
ffiffiffiffiffi
β3

p z

0
@

1
A, q1 χ, y, z, tð Þ =

24 + 24ið Þ ffiffiffiffiffi
304

p
ζ5/4p6tα sec2 − z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−20ζρ4 − β2ρ

2 − β3κ
2

q
/
ffiffiffiffiffi
β3

p� �
+ ρχ + κy

� �
ffiffiffiffiffi
β1

4
p

Γ α + 1ð Þ

q2 χ, y, z, tð Þ = 1152 + 1152ið Þ ffiffiffiffiffi
304

p
ζ9/4ρ11t2αffiffiffiffiffi

β1
4
p

Γ 2α + 1ð Þ
tan −

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−20ζρ4 − β2ρ

2 − β3κ
2

q
ffiffiffiffiffi
β3

p + ρχ + κy

0
@

1
A × sec2 −

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−20ζρ4 − β2ρ

2 − β3κ
2

q
ffiffiffiffiffi
β3

p + ρχ + κy

0
@

1
A

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
:

ð43Þ

q χ, y, z, tð Þ = q0 χ, y, z, tð Þ + q1 χ, y, z, tð Þ + q2 χ, y, z, tð Þ =

23/4
ffiffiffiffiffiffiffiffi
−154

p ffiffiffi
ζ4

p
ρ

� �
ffiffiffiffiffi
β1

4
p tan ρχ + κy −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−20ζρ4 − β2ρ

2 − β3κ
2

q
ffiffiffiffiffi
β3

p z

0
@

1
A +

+
24 + 24ið Þ ffiffiffiffiffi

304
p

ζ5/4ρ6tα sec2 − z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−20ζρ4 − β2ρ

2 − β3κ
2

q
/
ffiffiffiffiffi
β3

p� �
+ ρχ + κy

� �
ffiffiffiffiffi
β1

4
p

Γ α + 1ð Þ

+ 1152 + 1152ið Þ ffiffiffiffiffi
304

p
ζ9/4ρ11t2αffiffiffiffiffi

β1
4
p

Γ 2α + 1ð Þ
tan −

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−20ζρ4 − β2ρ

2 − β3κ
2

q
ffiffiffiffiffi
β3

p + ρχ + κy

0
@

1
A ×

sec2 −
z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−20ζρ4 − β2ρ

2 − β3κ
2

q
ffiffiffiffiffi
β3

p + ρχ + κy

0
@

1
A

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

:

ð44Þ

14 Journal of Nanomaterials



Data Availability

No data available for this study.

Conflicts of Interest

The authors have declared no conflict of interest.

Acknowledgments

The authors express their gratitude to the Princess Nourah
bint Abdulrahman University Researchers Supporting Pro-
ject (Grant No. PNURSP2022R61), Princess Nourah bint
Abdulrahman University, Riyadh, Saudi Arabia.

References

[1] A. Khan, R. Zarin, U. W. Humphries, A. Akgül, A. Saeed, and
T. Gul, “Fractional optimal control of COVID-19 pandemic
model with generalized Mittag-Leffler function,” Advances in
Difference Equations, vol. 2021, no. 1, 2021.

[2] A. Saeed, M. Bilal, T. Gul, P. Kumam, A. Khan, and M. Sohail,
“Fractional order stagnation point flow of the hybrid nanofluid
towards a stretching sheet,” Scientific Reports, vol. 11, no. 1,
pp. 1–15, 2021.

[3] X.-H. Zhang, A. Ali, M. A. Khan, M. Y. Alshahrani,
T. Muhammad, and S. Islam, “Mathematical analysis of the
TB model with treatment via Caputo-type fractional deriva-
tive,” Discrete Dynamics in Nature and Society, vol. 2021, Arti-
cle ID 9512371, 15 pages, 2021.

[4] Y.-M. Chu, A. Ali, M. A. Khan, S. Islam, and S. Ullah,
“Dynamics of fractional order COVID-19 model with a case
study of Saudi Arabia,” Results in Physics, vol. 21, article
103787, 2021.

[5] A. Ali, S. Islam, M. R. Khan et al., “Dynamics of a fractional-
order Zika virus model with mutant,” Alexandria Engineering
Journal, vol. 2021, 2021.

[6] W. Ma, M. Jin, Y. Liu, and X. Xu, “Empirical analysis of frac-
tional differential equations model for relationship between
enterprise management and financial performance,” Chaos,
Solitons & Fractals, vol. 125, pp. 17–23, 2019.

[7] D. N. Tien, “Fractional stochastic differential equations with
applications to finance,” Journal of Mathematical Analysis
and Applications, vol. 397, no. 1, pp. 334–348, 2013.

[8] P. Ostalczyk,Discrete Fractional Calculus: Applications in Con-
trol and Image Processing. Vol. 4, World scientific, 2016.

[9] G. Aubert, P. Kornprobst, and G. Aubert,Mathematical Prob-
lems in Image Processing: Partial Differential Equations and the
Calculus of Variations Vol. 147, Springer, New York, 2006.

[10] A. Kumar, S. Kumar, and S.-P. Yan, “Residual power series
method for fractional diffusion equations,” Fundamenta Infor-
maticae, vol. 151, no. 1-4, pp. 213–230, 2017.

[11] H. M. Jaradat, S. Al-Shara, Q. J. Khan, M. Alquran, and K. Al-
Khaled, “Analytical solution of time-fractional Drinfeld-
Sokolov-Wilson system using residual power series method,”
IAENG International Journal of Applied Mathematics,
vol. 46, no. 1, pp. 64–70, 2016.

[12] Y. Khan and F. Austin, “Application of the Laplace decompo-
sition method to nonlinear homogeneous and non-
homogenous advection equations,” Journal of Nature Research
A, vol. 65, no. 10, pp. 849–853, 2010.

[13] M. A. El-Tawil and S. N. Huseen, “On convergence of q-
homotopy analysis method,” International Journal of Contem-
porary Mathematical Sciences, vol. 8, no. 10, pp. 481–497,
2013.

[14] R. Rach, “On the Adomian (decomposition) method and com-
parisons with Picard’s method,” Journal of Mathematical
Analysis and Applications, vol. 128, no. 2, pp. 480–483, 1987.

[15] Y. Keskin and G. Oturanc, “Reduced differential transform
method for partial differential equations,” International Jour-
nal of Nonlinear Sciences and Numerical Simulation, vol. 10,
no. 6, pp. 741–750, 2009.

[16] Z. M. Odibat and S. Momani, “Application of variational iter-
ation method to nonlinear differential equations of fractional
order,” International Journal of Nonlinear Sciences and
Numerical Simulation, vol. 7, no. 1, pp. 27–34, 2006.

[17] L. Zada and R. Nawaz, “Solution of time-fractional order RLW
equation using optimal homotpy asymptotic method,” AIP
Conference Proceedings, vol. 2116, no. 1, 2019.

[18] L. Zada, R. Nawaz, and S. S. Bushnaq, “An efficient approach
for solution of fractional order differential-difference equa-
tions arising in nanotechnology,” Applied Mathematics E-
Notes, vol. 20, pp. 297–307, 2020.

[19] S. Momani and Z. Odibat, “Homotopy perturbation method
for nonlinear partial differential equations of fractional order,”
Physics Letters A, vol. 365, no. 5-6, pp. 345–350, 2007.

[20] I. Hashim, O. Abdulaziz, and S. Momani, “Homotopy analysis
method for fractional IVPs,” Communications in Nonlinear
Science and Numerical Simulation, vol. 14, no. 3, pp. 674–
684, 2009.

[21] A. K. Khalifa, K. R. Raslan, and H. M. Alzubaidi, “A colloca-
tion method with cubic B-splines for solving the MRLW equa-
tion,” Journal of Computational and Applied Mathematics,
vol. 212, no. 2, pp. 406–418, 2008.

[22] L. Akinyemi, M. Şenol, and S. N. Huseen, “Modified homotopy
methods for generalized fractional perturbed Zakharov–Kuz-
netsov equation in dusty plasma,” Advances in Difference
Equations, vol. 2021, no. 1, 2021.

[23] H. Eltayeb, Y. Abdalla, I. Bachar, and M. Khabir, “Fractional
telegraph equation and its solution by natural transform
decomposition method,” Symmetry, vol. 11, no. 3, p. 334, 2019.

15Journal of Nanomaterials



Research Article
Cooling a Hot Semiannulus with Constant Heat Flux by Using
Fe3O4-Water Nanofluid and a Magnetic Field: Natural
Convection Mechanism

Zhengqiang Yang,1 S. M. Bouzgarrou,2,3 Riadh Marzouki,4 Fatma Aouaini,5

M. A. El-Shorbagy ,6,7 Mahidzal Dahari,8 Said Anwar Shah,9 and D. L. Suthar 10

1School of Computer Science and Engineering, Xi’an Technological University, Xi’an 710021, China
2Civil Engineering Department, Faculty of Engineering, Jazan University, Saudi Arabia
3Higher Institute of Applied Sciences and Technologie of Sousse, Sousse University, Tunisia
4Department of Chemistry, College of Science, King Khalid University, Abha 61421, Saudi Arabia
5Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428,
Riyadh 11671, Saudi Arabia
6Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University,
Al-Kharj 11942, Saudi Arabia
7Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt
8Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
9Department of Basic Science and Islamiyat, University of Engineering and Technology, Peshawar, Pakistan
10Department of Mathematics, Wollo University, P.O. Box 1145, Dessie, Ethiopia

Correspondence should be addressed to D. L. Suthar; dlsuthar@gmail.com

Received 13 January 2022; Revised 8 February 2022; Accepted 5 April 2022; Published 26 May 2022

Academic Editor: Taza Gul

Copyright © 2022 Zhengqiang Yang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this simulation, the nanoparticle distribution and entropy generation were studied using the Buongiorno’s developed two-phase
model and magnetic field inside a porous semiannulus cavity. The influence of three terms was considered in the Buongiorno’s
developed two-phase model such as Brownian motion, thermophoresis, and magnetophoresis effects. In addition, the entropy
generation was assessed due to temperature and velocity gradient. The evidence showed that the effects of the magnetic field in
high porosities and volume fraction of nanoparticles were remarkable on the Nusselt number and entropy generation. Also,
irreversibility due to heat transfer is much greater than fluid friction.

1. Introduction

Nowadays, heat transfer processes have widely exerted for
many applications such as cooling battery, CPU, forging,
radiator in vehicles, heating the home, and powerplant
[1–5]. One method that is popular between thermal engi-
neering is injecting various nanoparticles such as metal,
nonmetal, and oxide nanoparticles and nanoencapsulated
phase change material (NEPCM) to host fluid [6–8],
because mixing nanoparticles into host fluid can changed

the thermophysical properties, specifically, thermal con-
ductivity of host fluid [9–11].

In recent years, the heat transfer rates by computational
fluid dynamics (CFD) and entropy generation are signifi-
cantly investigated by researchers and companies due to
having accurate with experimental studies [12–15]. More-
over, owing to its large specific area and higher solid thermal
conductivity, there has been growing interest in heat transfer
inside the porous media. According to previous studies,
porous structure improves thermal performance of
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nanofluid [16–19]. A numerical investigation of heat trans-
fer and fluid flow in a parabolic trough solar receiver with
internal annular porous structure and synthetic oil-Al2O3
nanofluid was carried out by Bozorg et al. [20]. According
to their results, utilization of porous structure and nano-
fluids enhances heat transfer coefficient 7% and 20%, respec-
tively. Jamal-Abad et al. [21] experimentally studied the
thermal efficiency of a solar parabolic trough collector filled
with porous media; they illustrated an enhancement in effi-
ciency of the collector by increasing the mass flow rate.

It is confirmed that in nanofluid simulation, two-phase
approach provides better accuracy compared to single-
phase approach [22–24]. A two-phase model presented by
Buongiorno [25] has received significant attention; in this
model, it is suggested that among seven slip mechanisms,
Brownian motion and thermophoresis diffusion play vital
role in nanofluid distribution. Natural convection of nano-
fluid in an inclined cavity and inside porous medium consid-
ering two-phase approach is studied by studies [6] and [15].
Their results demonstrate good agreement with experimen-
tal studies. Thermophoresis and Brownian motion effect
on boundary layer flow of nanofluid in presence of thermal
stratification due to solar energy is analyzed by Anbuchez-
hian et al. [26]. Their results highlighted that Brownian
motion and thermophoresis distribution can affect the heat
transfer properties; they reported a substantial impact on
the boundary layer flow field by Brownian motion in the
presence of thermal stratification. Kaloudis et al. [27]
numerically investigated on parabolic trough solar collector
with nanofluid using a two-phase model. They reported that
two-phase simulation of nanofluids in solar studies shows
better agreement with experimental studies. Also, the pres-
ence of nanoparticles improves collector’s efficiency.

To obtain the optimal configuration of solar collectors, it
is essential to analyze the entropy generation. Farshad and
Sheikholeslami [28] scrutinize exergy loss and heat transfer
of mixture of aluminum oxide and H2O through a solar col-
lector. Thermal performance and entropy generation analy-
sis of a high concentration ratio parabolic trough solar
collector was studied by Mwesigye et al. [29]. They reported
a decrement in entropy generation with augmentation of
nanofluid volume fraction for some ranges of Re number.
Verma et al. [30] experimentally analyzed exergy efficiency
and entropy generation in flat plate solar collectors for dif-
ferent types of nanofluids. They highlighted that rise of
Bejan number towards unity illustrates the improvement of
system performance due to efficient conversion of the avail-
able energy into useful functions. Also, Sheikholeslami et al.
[31] scrutinized impact of Lorentz forces on magnetic nano
fluid of Fe3O4 with entropy and exergy analyzing inside a
semiannulus. Afrand et al. [32] studied free convective heat
transfer and entropy generation of Al2O3-water nanofluid
in a triangular enclosure. They illustrated that the Bijan
number increases by decreasing the Ra and increasing the
Ha. The maximum heat transfer rate takes place at the
enclosure angle of 60°.

To the best knowledge of the authors, there has been no
detailed investigation of impacts of nonuniform magnetic
fields on PTC thermal performance using nanofluid, consid-

ering Brownian motion and thermophoresis distribution as
well as entropy generation. In the present work, a coil is
wrapped around semiannulus to produce a variable mag-
netic field. Also, it focuses on the local distribution of nano-
particles, entropy generation due to fluid friction and heat
transfer, and Nusselt number variation.

2. Physical Model

In the present study, 2-dimensional and steady-state natural
convection is simulated in a semiannulus enclosure. Sche-
matic presentation of the problem is presented in Figure 1.
In Figure 1, two horizontal walls are thermally insulated,
the inner semicircle wall at constant heat flux ðq}Þ, and the
outer semicircle wall is fixed at constant temperature ðTcÞ.
The working fluid is Fe3O4-water nanofluid. Natural con-
vection fluid flow is simulated based on Boussinesq’s
approximation. Also, heat transfer, nanoparticles distribu-
tion, and entropy generation in the presence of a nonuni-
form magnetic field are investigated. Therefore, it is
assumed that nanoparticle distribution is based on Buon-
giorno two-phase model. According to the aforementioned
assumption, the governing equations are presented in the
next section.

3. Relations and Hypothesis

The nondimensional parameters are as follows: X = x/L, Y
= y/L, T∗ = kf ðT − TcÞ/q′′L,V∗ =VL/vf , P∗ = PL2/ρf v

2
f ,H∗

=H/H0,M∗ =M/M0, φ∗ = φ/φAve,

u∗ = u/αf L, v∗ = v/αf L, ∇∗ = L∇, δ = kf Tc/q′′L,D∗
B =DB/DB0

,D∗
T =DT /DT0,DT0 = γμf /ρfφAve,

H0 = I/2πλ,DB0 = KBTc/3πμf dnp, andM0 = χðφAve, T f ÞH0
for φAve = 0:02, andTm = Tc + q′′L/2kf :

The dimensionless forms of continuity equations,
momentum, energy, and volume fraction are as follows:

Nondimensional continuity equation:

∇∗:V∗ = 0: ð1Þ

Nondimensional momentum equation:

1
ε2
ρnf
ρf

 !
V∗:∇∗ð ÞV∗ = −∇∗P∗ −

μnf
μf

 !
1
Da

V∗ + ∇∗:
μnf
μf

∇∗V∗

 !

+
ρβð Þnf
ρfβf

 !
Raf
Pr T∗:ê +Mn M∗:∇∗ð ÞH∗: ð2Þ
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Nondimensional heat transfer equation:

ρCPð Þnf
ρCPð Þf

V∗:∇∗T∗ = 1
Pr∇

∗ keq
kf

∇∗T∗

 !

+ ε
1
Pr

1
Le

D∗
B∇

∗φ∗:∇∗T∗ + D∗
T

NBT

∇∗T∗:∇∗T∗

1 + T∗/δð Þ −D∗
BξL ξð Þφ∗ ∇∗H∗:∇∗T∗

H∗

� �
:

ð3Þ

Nondimensional mass transfer equation:

1
ε
V∗:∇∗φ∗ = 1

Sc
∇∗

: D∗
B∇

∗φ∗ + D∗
T

NBT

∇∗T∗

1 + T∗/δð Þ −D∗
BξL ξð Þφ∗ ∇

∗H∗

H∗

� �
:

ð4Þ

The dimensionless numbers in the above relationships
are defined as:

Da = K

L2
, Pr =

vf
αf

, αf =
kf
ρcp
� �

f

, Raf =
gBf q′′L4
kf αf vf

, Rap

= Raf Da, ê =
g
g
,Mn = μ0H0M0L

2

ρf v
2
f

, Le

=
kf

ρCp

� �
np
DB0φAve

,NBT = φAveDB0δ

DT0
, Sc =

vf
DB0

:

ð5Þ

Mn is the magnetic number, which is defined as the ratio
of the Kelvin force to the kinematic viscosity. Moreover, D
a, Ra, Pr, Le, and Sc denote the Darcy, Rayleigh, Prandtl,
Lewis, and Schmitt numbers, respectively.

The average Nusselt on the constant heat flux wall (inner
cylinder wall) is calculated as follows:

Nuloc =
keq
keff

1
T∗ ,Nuave =

1
π

ðπ
0
Nuloc ζð Þdζ: ð6Þ

In this study, the entropy generation is considered due to
the irreversibility of the velocity gradients and temperature
gradients. According to Shavik et al. [33], the entropy gener-

ation is obtained as

ss =
μnf
Tm

2 ∂u
∂x

� �2
+ 2 ∂v

∂y

� �2
+ ∂u

∂y
+ ∂v
∂x

� �2
" #

+
knf
Tm

2
∂T
∂x

� �2
+ ∂T

∂y

� �2
" #

:

ð7Þ

In the mentioned equation, the first and second terms
are local entropy generation due to the fluid friction (SL,FF)
and the heat transfer (SL,HT) irreversibility, respectively.
Also, the dimensionless equation of entropy generation is
as follows:

SL,HT =
knf
kf

∂T∗

∂X

� �2
+ ∂T∗

∂Y

� �2
,

SL,FF =Χ
μnf
μf

2 ∂u∗

∂X

� �2
+ ∂v∗

∂Y

� �2
" #

+ ∂u∗

∂Y
+ ∂v∗

∂X

� �2
" #

,Χ

= μf kf Tm

αf

L2q}

� �2
,

SL,s = ss ×
kf Tm

2

q}2
= SL,FF + SL,HT : ð8Þ

Bejan number is the ratio of the entropy generation due
to the heat transfer to the total entropy generation. This is as
follows:

BeL =
SL,HT

SL,s
: ð9Þ

Figure 1: Schematic presentation of the problem.

Table 1: Comparison of total entropy generation (Sg,tot) and Bejan

number (Beave), for Pr = 0:71 and irreversibility (Χ = 10−4).

Ra = 103 Ra = 105
Sg,tot Beave Sg,tot Beave

Present work 1.154 0.97 23.2 0.193

Shavik et al. [33] 1.15 0.97 23.27 0.194
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Total entropy generation and the total Bejan number are
obtained by integrating the relations of local entropy gener-
ation and Bejan number.

ST ,HT =
ð
A
SL,HTdA, ST ,FF =

ð
A
SL,FFdA, ST ,s

=
ð
A
SL,sdA, Beave =

Ð
ABeLdAÐ
AdA

:

ð10Þ

4. CFD Setting

The presented nonlinear governing PDE equations are
solved based on finite volume method (FVM). The conti-
nuity and momentum equations are coupled and solved
in an algorithm termed SIMPLE. The energy and concen-
tration equations simultaneously solved. The advection
terms in the governing equations are discretized based
on first-order upwind schemes, and diffusion terms are
solved based on second-order central schemes. The
numerical convergence criterion was residual values. The

(a)

(b)

Figure 2: Nondimensional distribution of nanoparticles on the outer and inner cylinder walls for φAve = 0:03, Rap = 10 and 1000, and
different magnetic numbers at (a) ε = 0:4 and (b) ε = 0:7.
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residual values at convergence for velocity and pressure fields
were 10−5, and for temperature and φ were 10−6:Under relax-
ation factors for velocity, pressure, temperature, and φ were
0.4, 0.6, 0.2, and 0.01, respectively. Square uniform mesh is
selected for presented study, based on nanoparticle distribu-

tion on the hot wall 40,000 (200 × 200) numbers of mesh
selected. Moreover, for validation of the entropy generation,
the results of the present study is compared with the work of
Shavik et al. [33] (Table 1). In all cases, the results of this study
are in good agreement.

(a) (b)

Figure 3: Nondimensional distribution of nanoparticles on inner and outer walls (with angle of ζ) for (a) different magnetic numbers and
volume fraction at Rap = 1000 and ε = 0:7, (b) different porous Rayleigh number and porosity at φAve = 0:03 and Mn = 8 × 107.

(a) (b)

Figure 4: The dimensionless local entropy generation due to heat transfer (SL,HT ), fluid friction (SL,FF) and summation (SL,s) for φAve = 0:03,
ε = 0:7, and Mn = 0 and 8 × 107at (a) Rap = 10 and (b) Rap = 1000.
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5. Results and Discussion

Extended Buongiorno’s two-phase model is considered for the
distribution of nanoparticles. The numerical simulation has
investigated for porous Rayleigh number ðRap = 10 and 1000Þ
, the volume fraction of nanoparticles ðφAve = 0, 0:01 and
0:03Þ, porosity number ðε = 0:4 and 0:7Þ, and magnetic num-
ber ð0 ≤Mn ≤ 8 × 107Þ. Constant values included Pr = 4:623,
Sc = 3:55 × 104, Tc = 310K, q′′ = 48:01 ðw/m2Þ, 1:71 × 105 <
Le < 6:84 × 105, Da = 10−3ðK = 0:625 × 10−6Þ, δ = 161, NBT

= 0:245, Χ = 3 × 10−11, and Tm = Tc + Lq′′/2kf = 310:96K:
The effects of the mentioned parameters have studied

the distribution of nanoparticles and the entropy generation
contours due to fluid friction and heat transfer, and Bejan.

Figure 2 shows the nondimensional distribution of
nanoparticles on the lower and upper cylinder walls in
φAve = 0:03 and Rap = 10 and 1000 for the different magnetic
numbers. In Figure 2(a) and porous Rayleigh number 10, the
density of nanoparticles is higher on the top wall (cold) than
the down wall (hot); that is due to the thermophoresis term
in the volume fractional equation. With the rising of porous

Rayleigh number, the dimensional distribution of nanoparti-
cles is almost identical due to the increasing flow velocity on
the inner and outer walls. By increasing the magnetic num-
ber to Mn = 2 × 107 for all of the cases, the density of nano-
particles for both walls is almost equal to the unit value, and
no change occurs. But with the increasing magnetic number
to Mn = 8 × 107, the peak of nanoparticle density appears
near the wires, which is due to the absorption of nanoparti-
cles by the magnetic field. The above arguments are also true
for Figure 2(b), which the porosity has increased to 0.7.
Besides, in all graphs, the peak of nanoparticle density in
the inner wall is wider than the outer wall.

Figure 3 shows a better comparison of the effect of differ-
ent parameters on the dimensional distribution of nanopar-
ticles. Figure 3(a) is shown for magnetic numbers and
different volume fractions in Rap = 1000 and ε = 0:7. The
dimensionless nanoparticle density is the same for the vol-
ume fraction 0.01 and 0.03 in a constant magnetic number.
Therefore, the volume fraction does not affect the dimen-
sionless distribution of nanoparticles. Also, in a constant
volume fraction, the density of nanoparticles increases near

(a)

(b)

Figure 5: Dimensionless total entropy generation due to heat transfer (ST,HT) and fluid friction (ST,FF) for ε = 0:7 and different volume
fraction of nanoparticle.
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the wires due to increasing the magnetic number. Figure 3
(b) is plotted for different porosity and porous Rayleigh
number in φAve = 0:03 and Mn = 8 × 107. Porosity and
porous Rayleigh numbers do not affect on the dimensionless
distribution of nanoparticles at the high magnetic field.

Figure 4 illustrates the dimensionless local entropy gen-
eration due to heat transfer (SL,HT) and fluid friction (SL,FF
) and summation (SL,s) inside a semiannulus for φAve =
0:03, ε = 0:7, and Mn = 0 and 8 × 107 for different porous
Rayleigh number. In Figure 4(a) in the absence of a magnetic
field and Rap = 10, the SL,HT contours are similar to temper-
ature contours. The highest value of SL,HT is on the inner cyl-
inder wall (hot) due to extreme temperature gradients. In
Figure 4(b), as increasing porous Rayleigh number to 1000,
the shape of the contours SL,HT changes completely, in such
a way that the densities of the contours increase near the
inner cylinder wall and a core is created near the outer cyl-
inder wall. By adding a magnetic field, the density of SL,HT
contours increase near the wires, and, with the rise of porous
Rayleigh number, there is no change in the shape of the con-
tours. In all cases, due to gradients of high velocity on the

walls and near the wires, the maximum value of SL,FF are
in these regions. By comparing the values of SL,HT and
SL,FF , it can be seen that the effects of entropy generation
due to heat transfer are much greater than the entropy gen-
eration due to fluid friction. As a result, the contours SL,s are
very similar to SL,HT contours.

Figure 5 presents total entropy generation due to the
heat transfer (ST ,HT) and fluid friction (ST ,FF) for the ε =
0:7 and different volume fractions of nanoparticle in porous
Rayleigh numbers 10 and 1000. According to Figure 5(a), by
intensifying the magnetic field for both porous Rayleigh
numbers, ST ,HT decreases linearly for the volume fraction
of nanoparticles 0.01 and 0.03. In Figure 5(b), by intensify-
ing the magnetic field at both porous Rayleigh numbers 10
and 1000, ST ,FF decreases linearly and nonlinearly for vol-
ume fractions 0.01 and 0.03, respectively. Also, in all cases
and the absence of a magnetic field, the value of ST ,FF is
almost zero. Figure 6(a) shows the dimensionless summa-
tion total entropy generation (ST ,s) at ε = 0:7 and different
volume fraction of nanoparticles. According to the charts,
the charts of ST ,s are similar to ST ,HT charts, because of the

(a)

(b)

Figure 6: Dimensionless total entropy generation due to summation (ST ,s) and Bijan number for ε = 0:7 and different volume fraction of
nanoparticle.
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values of ST ,HT dominates the values of ST ,FF . Also, accord-
ing to Figure 6(b), with the increasing magnetic number
for both porous Rayleigh numbers, Bejan number decreases
linearly and nonlinearly for volume fractions 0.01 and 0.03,
respectively.

6. Conclusion

In present work, effects of porous Rayleigh number, the vol-
ume fraction of nanoparticles, porosity, and magnetic num-
ber are investigated on nondimensional distribution of
nanoparticles and entropy generation. The main findings
can be condensed following point:

(i) Adding a magnetic field increases the distribution of
nanoparticles near the wires and causes the forma-
tion of vortices and increasing the flow velocity

(ii) In the presence of the nonuniform magnetic field,
with the increasing porosity and porous Rayleigh
number, the distribution of nanoparticles becomes
uniform. But, in the absence of a magnetic field,
porosity and porous Rayleigh number do not affect
the dimensionless distribution of nanoparticles

(iii) By increasing magnetic number and volume frac-
tion of nanoparticles, Bejan number, entropy gener-
ation due to heat transfer, and summation decrease
but entropy generation due to fluid friction
increases

(iv) Entropy generation due to heat transfer is much
greater than the entropy generation due to fluid
friction

(v) With increasing the magnetic number, entropy gen-
eration due to fluid friction increases near the wires
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Heat transfer phenomena are used in a variety of industries, including chemical devices, shipbuilding, power plants, electronic
devices, and medicinal plants. Propylene glycol, engine oil, water, and ethylene glycol are common single-phase heat transfer
liquids used in a variety of industries, including chemical process industries and thermal power plants. Therefore, the authors
are interested in investigating the magnetohydrodynamic flow of a water-based hybrid nanofluid containing ferrous and
graphene oxide nanoparticles past a flat plate. The stagnation points, as well as the effects of magnetic field and thermal
radiation are taken into account in this analysis. The non-Newtonian tangent hyperbolic flow, which is laminar and
incompressible, is also considered to investigate the non-Newtonian behavior of the hybrid nanofluid flow. The proposed
model has been solved analytically with the help of HAM. The convergence of HAM is shown with the help of figure. The
hydrothermal characteristics of hybrid nanofluid flow past a nonisothermal flat plate at a stagnation point are affected by the
necessary parameters. The results show that the boosting volume fractions of the ferrous and graphene oxide nanoparticles
have significantly reduced the velocity field, while the thermal field has increased with the augmenting volume fractions of the
ferrous and graphene oxide nanoparticles. The increasing power-law index has augmented the viscosity of the non-Newtonian
hybrid nanofluid flow due to which the velocity field escalated. However, this impact is opposite for the thermal field. Due to
the direct relation between the Weissenberg number and relaxation time, the greater Weissenberg number has reduced the
velocity profile, while increased the thermal field.

1. Introduction

Because of various applications in healthcare and engineer-
ing, such as microelectronics, solar collectors, process
industries, cancer therapy, heat exchangers, and power pro-
duction, the mechanisms of heat exchange incorporating
nanomaterials have piqued the interest of researchers. Regu-
lar liquids such as glycol mixtures, engine oil, and water had
moderately poor thermal properties and inadequate capacity

to attain higher thermal efficiency. The use of nanoparticles
to develop the thermal conductivity of various cooling fluids
is a contemporary method. Nowadays, temperature distribu-
tion plays an essential function in a variety of scientific and
technical disciplines. Heat transfer phenomena have a wide
range of applications in sectors, shipbuilding, electronic
devices, power plants, medicinal, and chemical devices. To
design heat exchangers and discover the optimal geometry,
radiators, condensers, evaporators, and boilers, heat transfer
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analysis and the related cooling process become invaluable.
Propylene glycol, engine oil, water, and ethylene glycol are
common single-phase heat transfer liquids used in a variety
of chemical process industries and thermal power plants.
Due to its low thermal conductivity, the single-phase tradi-
tional liquids are acknowledged to have poor heat transmis-
sion ability. This improvement in working fluid heat
transport is critical for achieving energy and cost reductions.
In order to boost-up the thermal conductivity of the base
fluids, many researchers have worked to resolve these issues
and improve the thermal conductivity of the base fluids.
Solid materials have higher thermal conductivity than those
of liquids. As a result, dispersing microscopic solid particles
into a base liquid is a novel technique to increase the thermal
conductivity of the base fluids. Khan et al. [1] investigated
the Casson nanofluid flow past a rotating disk. Shah et al.
[2] addressed the applications of radius, heat flux, and mass
flux of the water-based copper nanoparticles. Gul T et al. [3]
investigated the flow of carbon nanotube nanofluid past a
rotating cone and disk. Sowmya et al. [4] addressed the
effects of convective condition and internal heat generation
in a nanofluid flow past a porous fin. Ashraf et al. [5] analyzed
the magnetohydrodynamic peristaltic flow of the blood-based
magnetite nanoparticles. Dawar et al. [6] studied the unsteady
flow of carbon nanotube nanofluid with the magnetic field
impact. Rasool and Wakif [7] examined the electromagneto-
hydrodynamic second-grade nanofluid flow over a Riga plate.
Alghamdi et al. [8] presented the magnetohydrodynamic flow
of sodium alginate-based nanofluid bounded by slender sur-
face with heat source impact. Rout et al. [9] analyzed the
water- and kerosene-based nanofluid flow with viscous dissi-
pation. Alshomrani and Gul [10] investigated the dissipative
flow of water-based Al2O3 and Cu nanoparticles past a stretch-
ing cylinder with convective condition. Further related analy-
ses can be studied in [11–14].

Hybrid nanofluid is a class of nanofluids, developed by
integrating a certain class of nanoparticles inside a func-
tional fluid which has recently been used. Two different
nanomaterials are suspended in a conventional fluid to cre-
ate hybrid nanofluids. Hybrid nanofluids are widely used
in a diversity of disciplines of engineering as well as refriger-
ation, space planes, biomedicals, machining coolant, motor
cooling, heat pipe reduction in medicine, and high-
performance boats. Jana et al. [15] investigated the conduc-
tive nanomaterials like copper and gold nanoparticles and
their hybrids. Khashi’ie et al. [16] analyzed heat transfer of
a magnetohydrodynamic flow of a water-based hybrid nano-
fluid comprehending Cu and Al2O3 nanoparticles. Their
results show that the suction factor has a significant impact
of heat transfer analysis. Additionally, they have computed
the stability analysis as well. Nawaz and Nazir [17] studied
the magnetohydrodynamic flow of an ethylene-based hybrid
nanofluid flow containing MoS2 and SiO2 nanoparticles.
They compared MoS2/ethylene-based and MoS2-SiO2/ethyl-
ene-based hybrid nanofluids. Their results showed that the
thermal performance is greater for the MoS2-SiO2/ethyl-
ene-based as compared to MoS2/ethylene-based. Manju-
natha et al. [18] presented the comparative analysis of the
magnetohydrodynamic flows of Cu-H2O nanofluid and

Cu-Al2O3/H2O hybrid nanofluid. They found that the nano-
particle volume fraction of the nanofluid and hybrid nano-
fluid has enhanced the velocity and thermal fields. Usman
et al. [19] proposed the comparative analysis of the magne-
tohydrodynamic flow of a Cu/H2O nanofluid, Al2O3/H2O
nanofluid, and Cu-Al2O3/H2O hybrid nanofluid. They
claimed that the velocity fields of Cu-Al2O3/H2O have dom-
inant role on other nanofluids; however, this impact is
reverse for thermal profile. Iqbal et al. [20] offered the com-
parative analysis of magnetohydrodynamic flows of SiO2/
H2O nanofluid and MoS2-SiO2/H2O hybrid nanofluid con-
sidering different shapes of the nanoparticles. Their results
showed that the nanofluid has slower flow as compared to
hybrid nanofluid. Additionally, the lower temperature is
observed for brick-shaped nanoparticles of the nanofluid,
while the blade-shaped nanoparticle of the hybrid nanofluid
has extreme temperature. Ghadikolaei et al. [21] offered the
comparative investigation of magnetohydrodynamic flow of
Cu/H2O and hybrid nanofluid containing TiO2-Cu/H2O at a
stagnation point. They also considered three different shapes
of the nanoparticles named as platelets, bricks, and cylin-
ders. It is clear from of this research that using platelet-
shaped nanoparticles is more effective. Gul et al. [22]
addressed the magnetohydrodynamic flow of hybrid nano-
fluid containing Cu and Fe3O4. Their results showed that
the nanoparticle volume fractions of Cu and Fe3O4 have sig-
nificantly improved the thermal transmission and velocity
field. Alghamdi et al. [23] addressed the comparative analy-
sis of the magnetohydrodynamic flows of blood-based Cu
nanofluid and blood-based Cu-CuO hybrid nanofluid. It
has been introduced that the hybrid nanofluid flow has more
effective thermal conductivity in a contracting channels.
Acharya [24] probed the application of solar energy toward
a hybrid nanofluid flow containing alumina and copper
nanoparticles. In another article, Acharya and Mabood
[25] addressed the water-based hybrid nanofluid flow con-
taining ferrous and graphene oxide nanoparticles. Thumma
et al. [26] investigated the Cu-CuO nanoparticles past a
porous extending surface. Acharya et al. [27, 28] analyzed
the nanofluid and hybrid nanofluid flows under the impact
of magnetic field.

According to the authors’ knowledge, there is no study
based on magnetohydrodynamic flow of water-based hybrid
nanofluid containing ferrous and graphene oxide nanoparti-
cles past a flat plate. The stagnation point along with the
impacts of magnetic field and thermal radiation is taken in this
consideration. The non-Newtonian tangent hyperbolic flow
which is laminar and incompressible is also considered to
investigate the non-Newtonian behavior of the hybrid nano-
fluid flow. The present analysis is composed of mathematical
modeling which is shown in Section 2. HAM solution and
convergence of HAM are presented in Sections 3 and 4,
respectively. Section 5 is composed of results and discussion.
In the last, the concluding remarks are shown in Section 6.

2. Model Formulation

Consider the stagnation point flow of a water-based hybrid
nanofluid containing graphene oxide (GO) and ferrous
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(Fe3O4) nanoparticles past a flat plate. The flat plate is cho-
sen to be a nonisothermal. The non-Newtonian tangent
hyperbolic model is taken to be laminar and incompressible.
u and v are the velocity components which are considered
along x- and y-directions, respectively. A magnetic field B
= ð0, B0, 0Þ is considered normal to the flow direction. The
ambient velocity of the fluid flow along x-direction is ueðxÞ
= cx, where c is the positive constant. The wall temperature
TwðxÞ = T∞ + bx varies linearly along x-direction in which b
is the positive constant and T∞ is the ambient temperature.
Furthermore, the Hall current and thermal radiation effects
are also considered. Following the above assumption, the
leading equations are stated. Figure 1 shows the geometry
of the hybrid nanofluid flow.

∂u
∂x

+ ∂v
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The relevance boundary conditions are defined as

u = 0, v = 0, T = Tw at y = 0,
u⟶ ue, T ⟶ T∞ as y⟶∞:

( )
ð2Þ

The radiative heat flux qr is defined as

qr = −
4σ∗
3k∗

∂T4

∂y
: ð3Þ

By using the Taylor series expansion, T4 can be written
as

T4 ≈ 4T3
∞T − 3T4

∞: ð4Þ

For the simulation of hybrid nanofluid flow, the thermo-
physical properties are defined as
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where p1 and p2 represent Fe3O4 and GO nanoparticles,
respectively, and ϕ1 and ϕ2 are the nanoparticle volume frac-
tions of Fe3O4 and GO, respectively. The numerical values of
the thermophysical properties are defined in Table 1.

Microscopic view of the
hybrid nanofluid

B0 B0

x, u

Stagnation point

Graphene nanoparticles
Ferrous nanoparticles

y, v

:
:

Figure 1: Geometry of the hybrid nanofluid flow.

Table 1: The numerical values of the thermophysical properties of
base fluids and nanoparticles [29].

Base fluids/
nanoparticles

ρ
(kg.m‑3)

Cp

(J.kg−1.K−1)
k

[W.m−1.K−1]
σ

((Ωm)−1)

H2O 997 4180 0.6071 0.005

Fe3O4 5180 670 9.7 25000

GO 2250 2100 2500 1 × 107

–3 –2 –1 0 1 2

Figure 2: h − curves for velocity and temperature profiles.
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The similarity transformations are defined as

u = cxϒ ′ ζð Þ,
u = −

ffiffiffiffiffiffiffi
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p
ϒ ζð Þ,

Θ ζð Þ = T − T∞
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,
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c
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s
:

ð6Þ

Using the above similarity transformations, the leading
equations are transformed as
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with boundary conditions

ϒ 0ð Þ = 0,ϒ ′ 0ð Þ = 0,ϒ ′ ∞ð Þ = 1,
Θ 0ð Þ = 1,Θ ∞ð Þ = 0:

( )
ð8Þ

The dimensionless parameters are defined as

Rd = 4σ∗T3
∞
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,
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νf

αf
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ffiffiffiffiffiffiffiffiffiffi
σf B

2
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ρf c
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ffiffiffi
2

p
cΓ Re1/2x ,
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,
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Cp

� �
f
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Physical quantities of importance like skin friction Cf x

and Nusselt number Nux are defined as

Table 3: Impacts of ϕ1, ϕ2,We, n, Ec, Rd, andM on ð1/ ffiffiffiffiffiffiffiRex
p ÞNux .

ϕ1 ϕ2 We n M Ec Rd 1/ ffiffiffiffiffiffiffiRex
p� �

Nux
0.01 0.42728

0.02 0.40796

0.03 0.38505

0.01 0.42748

0.02 0.40809

0.03 0.38515

0.2 0.60811

0.3 0.60089

0.4 0.59368

0.2 0.32874

0.3 0.37203

0.4 0.41532

0.2 0.32291

0.3 0.31672

0.4 0.30806

0.2 -0.34687

0.3 -0.77920

0.4 -1.21753

0.2 0.24689

0.3 0.17259

0.4 0.08544

Table 2: Impacts of ϕ1, ϕ2, We, n, and M on
ffiffiffiffiffiffiffiRex

p
Cf x .

ϕ1 ϕ2 We n M
ffiffiffiffiffiffiffiRex

p
Cf x

0.01 1.10639

0.02 1.10443

0.03 1.10381

0.01 1.05003

0.02 1.06374

0.03 1.07768

0.2 0.92856

0.3 0.95661

0.4 0.98308

0.2 1.09048

0.3 0.99856

0.4 0.89890

0.2 1.11986

0.3 1.14266

0.4 1.17459
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Using the similarity transformations defined in equation
(6), the above quantities are reduced to

Re1/2x Cf x =
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3. HAM Solution

To attain the analytical solution of the proposed model
along with the relevant boundary conditions, HAM method
which was introduced by Liao [30] is applied. The initial
guesses and linear operators are defined as

ϒ 0 ζð Þ = −1 + ζ + e−ζ,

Θ0 ζð Þ = e−ζ,

Lϒ =ϒ‴ −ϒ ′,
LΘ =Θ″ −Θ,

ð12Þ

satisfying

Lϒ R̂1 + R̂2e
−ζ + R̂3e

ζ
h i

= 0,

LΘ R̂4e
−ζ + R̂5e

ζ
h i

= 0,
ð13Þ

where R̂1 − R̂5 are constants.
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Figure 3: Impacts of ϕ1, ϕ2, We, n, and M on
ffiffiffiffiffiffiffiRex

p
Cf x .
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4. HAM Convergence

Homotopy analysis method guarantees the convergence
analysis of the highly linear and nonlinear differential equa-
tions. The auxiliary parameter h insures the convergence
area of the modeled problem. The convergence areas for
velocity and temperature profiles are −1:0 ≤ hϒ ≤ 1:0 and −
2:5 ≤ hΘ ≤ 1:5, respectively, as shown in Figure 2.

5. Results and Discussion

This part explains how the hydrothermal characteristics of
hybrid nanofluid flow past a nonisothermal flat plate at a
stagnation point are affected by the necessary parameters.
To demonstrate physically accurate effects, thermal radia-
tion and magnetic field are added. The hybrid nanofluid

flow contains ferrous (Fe3O4) and graphene oxide (GO)
nanoparticles and water (H2O) is used as base fluid. In
the present analysis, the default values are considered as
M = 1:0, n = 0:5, We = 0:6, Pr = 6:2, ϕ1 = ϕ2 = 0:05, Ec =
0:3, and Rd = 0:7.

The effects of the significant parameters on
ffiffiffiffiffiffiffiRex

p
Cf x and

Nux/
ffiffiffiffiffiffiffiRex

p
are shown in Tables 2 and 3. The augmenting

volume fraction of the Fe3O4 nanoparticles declines the sur-
face drag force, while the augmenting volume fraction of the
GO nanoparticles boosts up the skin friction coefficient. The
augmenting impacts of Fe3O4 and GO nanoparticle volume
fractions are found against heat transfer rate. The greater
Weissenberg number We augments

ffiffiffiffiffiffiffiRex
p

Cf x ; however,
Nux/

ffiffiffiffiffiffiffiRex
p

reduces with the higher We. A similar impact
of n is found for

ffiffiffiffiffiffiffiRex
p

Cf x and Nux/
ffiffiffiffiffiffiffiRex

p
. The greater
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Figure 5: (a) Effect of ϕ1 on ϒ ′ðζÞ. (b) Streamline patterns for ϕ1.
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Figure 6: (a) Effect of ϕ2 on ϒ ′ðζÞ. (b) Streamline patterns for ϕ2.
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magnetic parameter M augments
ffiffiffiffiffiffiffiRex

p
Cf x, while an oppo-

site trend is observed for Nux/
ffiffiffiffiffiffiffiRex

p
. Also, the greater Eckert

number Ec and thermal radiation parameter Rd have declin-
ing impacts on Nux/

ffiffiffiffiffiffiffiRex
p

. Figures 3 and 4 are displayed in
order to clarify the variation in

ffiffiffiffiffiffiffiRex
p

Cf x and Nux/
ffiffiffiffiffiffiffiRex

p
via different embedded parameters. Figure 5(a) shows the
impact of ϕ1 on ϒ ′ðζÞ when ϕ2 = 0:05. The augmenting ϕ1
declines ϒ ′ðζÞ. The increasing ϕ1 declines the boundary
layer thickness, which consequently reduces ϒ ′ðζÞ.
Figure 5(b) shows the streamline patterns for ϕ1 when ϕ2
= 0:05. Figure 6(a) shows the impact of ϕ2 on ϒ ′ðζÞ when
ϕ1 = 0:05. A similar impact as of Fe3O4 nanoparticle is found
here. Figure 6(b) shows the streamline patterns for ϕ2 when
ϕ1 = 0:05. Figure 7(a) signifies the consequence of M on ϒ
′ðζÞ. The escalating magnetic parameter boosts up the veloc-

ity field. As the dynamic growth upsurges, the boundary
layer of the velocity profile gets thinner, showing that the
magnetic parameter augments the flow mobility near the
heated plate. The present model is computed along with
stagnation point flow, thus the augmenting impact of the
magnetic parameter has been reported here. Figure 7(b)
shows the streamline patterns for M when ϕ1 = ϕ2 = 0:05.
Figure 8(a) signposts the effect of We on ϒ ′ðζÞ. The aug-
menting We reduces ϒ ′ðζÞ. The maximum value of the
parameter We increases ϒ ′ðζÞ, because We is directly
related to the relaxation time Γ. The relaxation time of the
examined non-Newtonian hybrid nanofluid has increased.
As a result of this physical property, the water-based flow
encounters extra barrier in developing easily across the
flow boundary, lowering the hybrid nanofluid velocity.
Figure 8(b) shows the streamline patterns for We when
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Figure 7: (a) Effect of M on ϒ ′ðζÞ. (b) Streamline patterns for M.
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Figure 8: (a) Effect of We on ϒ ′ðζÞ. (b) Streamline patterns for We.
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ϕ1 = ϕ2 = 0:05. Figure 9(a) displays the effect of n on ϒ ′ðζÞ.
The escalating n shows augmenting conduct against ϒ ′ðζÞ.
The numerical value of the power-law index parameter is
specified for two different fluids, namely, pseudoplastic
ðn < 1Þ and dilatant ðn > 1Þ. Physically, the escalating n
interconnects an important augmentation in the viscosity of
the non-Newtonian hybrid nanofluid flow. That is why the
velocity boundary layer thickness is declined; as a result, ϒ ′
ðζÞ is augmented. Figure 9(b) shows the streamline patterns
for n when ϕ1 = ϕ2 = 0:05. Figure 10 shows the effect of ϕ1
on ΘðζÞ when ϕ2 = 0:05. The increasing ϕ1 augments ΘðζÞ.
Figure 11 shows the effect of volume fraction ϕ2 on ΘðζÞ
when ϕ1 = 0:05. The increasing ϕ2 augments ΘðζÞ.
Figure 12 shows the effect of power-law index n on ΘðζÞ
when ϕ1 = ϕ2 = 0:05. The rising n declinesΘðζÞ. The increas-
ing n thickens the temperature boundary layer which dimin-
ishes the temperature of the hybrid nanofluid flow. Thus, a
declining impact is found here. Figure 13 exhibits the effect
ofWe on ΘðζÞ when ϕ1 = ϕ2 = 0:05. The increasingWe aug-
ments ΘðζÞ. The increasing We shows that the increased
quantity of thermal energy provided to the nanofluidic sys-
tem due to resistive nanofluid motion can explain this ther-
mal behavior physically. Figure 14 displays the impact of M
on ΘðζÞ when ϕ1 = ϕ2 = 0:05. The augmenting M escalates

ΘðζÞ of the hybrid nanofluid flow. Physically, as the magnetic
parameter increases, the movement of particles of hybrid
nanofluid escalates. Thus, both the thermal boundary and
temperature of the hybrid nanofluid augment. Figure 15 des-
ignates the effect of Rd on ΘðζÞ when ϕ1 = ϕ2 = 0:05. The
increasing radiation parameter boosts up ΘðζÞ. Physically,
the increasing radiation parameter augments the surface heat
of the hybrid nanofluid flow which makes the hybrid nano-
fluid hotter. Thus, the escalating conduct is observed here.
Figure 16 displays the effect of Eckert number Ec on ΘðζÞ
when ϕ1 = ϕ2 = 0:05. The increasing Eckert number aug-
ments ΘðζÞ. The link between kinetic energy and enthalpy
in a flow is described by the Eckert number. It denotes the
effort expended in converting kinetic energy to internal
energy in the face of viscous fluid forces. An increase in the
Eckert number implies that the fluid has a high kinetic
energy; consequently, the intermolecular collisions take place
which enhances the particles vibration. So, the increased
molecule collisions increase heat dissipation in the boundary
layer region, causing ΘðζÞ to climb.

6. Conclusion

The magnetohydrodynamic flow of water-based hybrid
nanofluid containing ferrous and graphene oxide nanoparti-
cles past a flat plate has been studied in this article. The stag-
nation point along with the impacts of magnetic field and
thermal radiation is taken in this consideration. The non-
Newtonian tangent hyperbolic flow which is laminar and
incompressible is also considered to investigate the non-
Newtonian behavior of the hybrid nanofluid flow. The
hydrothermal characteristics of the hybrid nanofluid flow
past a nonisothermal flat plate at a stagnation point are
affected by the necessary parameters. Key points of this anal-
ysis are as follows:

(1) The increasing volume fractions of the ferrous and
graphene oxide nanoparticles have significantly
reduced the velocity field, while the thermal field
has increased with the augmenting volume fractions
of the ferrous and graphene oxide nanoparticles
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(2) The augmenting magnetic parameter has consider-
ably enhanced the velocity and thermal fields

(3) Due to the direct relation between the Weissenberg
number and relaxation time, the greater Weissen-
berg number has reduced the velocity profile, while
increased the thermal field

(4) The increasing power-law index has augmented the
viscosity of the non-Newtonian hybrid nanofluid
flow due to which the velocity field escalated. How-
ever, this impact is opposite for the thermal field

(5) The augmenting Eckert number and thermal radia-
tion parameter have increased the thermal field

Nomenclature

Constants: b, c
Magnetic field strength: B0 (kg s−2 A−1)
Skin friction coefficient: Cf x

Specific heat: Cp (J kg
−1 K−1)

Eckert number: Ec
Mean absorption coefficient: k∗

Thermal conductivity: k (Wm−1K−1)
Magnetic parameter: M
Power-law index: n
Nusselt number: Nux
Prandtl number: Pr
Radiative heat flux: qr (Wm−2)
Radiation parameter: Rd
Local Reynolds number: Re
Temperature: T (K)
Free-stream velocity: ueðxÞ (ms−1)
Velocity components: ðu, vÞ (ms−1)
Weissenberg number: We
Cartesian coordinates: ðx, yÞ (m).

Greek Symbols

Kinetic viscosity: ν (m2s−1)
Dimensionless temperature: θ
Nanoparticle volume fraction: ϕ
Dynamic viscosity: μ (kgm−1s−1)
Time-dependent material: Γ (s)
Density: ρ (kgm−3)
Stefan–Boltzmann constant: σ∗

Electrical conductivity: σ (Sm−1)
Similarity variable: ζ.

Subscripts

Base fluid: f
Nanoparticles: p1, p2
Wall boundary condition: w
Free-stream condition: ∞.
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The fractional-order differential equations that exist in the field of science and engineering have been studied in this paper. The 2D
fluid flow problems are recommended for the classical- and fractional-order analysis. It has been found that the nonlinear
fractional-order problems are more realistic than the classical models to describe the proposed flow problems since the
behavior of the stress of the model problem is not linear. The similarity variable in this study has been used in fractional form
to transform the modeled governing equations from partial PDEs. The acquired equations are the nonlinear ordinary
differential equations (ODEs) in fractional form. The electromagnetic field has also been imposed into the fluid motion to
calculate the embedded constraints in the case of classical and noninteger orders. The nonlinear problems are attempted using
the FDE-12 technique. The important physical phenomena including Nusselt number and skin friction are also calculated in
case of the integer- and noninteger-order problems. The electric and magnetic fields are examined and discussed in the case of
fractional form and classical form.

1. Introduction

One of the demanding and competitive fields among
researchers is the modeling of noninteger-order problems
related to science and technology. The fractional models
are more realistic than classical models to describe the non-
linear phenomena because the classical models do not
completely represent all the requirements of the nonlinear
problems. Moreover, the fractional models are more appro-
priate to calculate the actual influence of the parameters in
the limited domain because the parameter impact in the

physical problems at small intervals is very necessary for
the parameter range and limitations. In 1967, the concept
of the noninteger-order derivative was introduced by
Caputo [1] to discuss problems involving a fractional differ-
ential equation with initial conditions. That idea was further
extended [2–4] to implement the noninteger-order deriva-
tive concept to the problems happening in the field of engi-
neering, biomedical, and industry. The various noninteger-
order operators were introduced and used by the scientists
[5–14] to handle the more realistic physical problems. These
problems include higher-order problems that occur in the
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field of science, wave equations and fraction hybrid differen-
tial operators, Mumps virus with optimal control, q-inte-
grodifferential equations, solution of the fractional Burgers
equation, and solution of the fractional Allen–Cahn equa-
tions. However, the initial idea of the noninteger-order
derivative was limited to the time-fractional derivative.
Later, the idea of fractional-order derivative was further
refined [15, 16] and the space variables have been introduced
to handle the noninteger-order boundary value problems
independent of time. The handling of nonlinear problems
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Table 1: ðα + 1Þf ″ð0Þ and −θ′ð0Þ. When M = 0:1, E = 0:3, and Pr
= 6:2.

α α + 1ð Þf ″ 0ð Þ −θ′ 0ð Þ
1 0.732547 1.74584

0.95 0.710179 1.73294

0.90 0.691356 1.71865

0.85 0.67608 1.70272

0.80 0.664332 1.68486
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in the form of PDEs is not an easy job so the similarity trans-
forms were implemented to convert the model PDEs into
the nonlinear classical-order ODEs [17–21]. The
noninteger-order similarity variables are used by El Rasouli
et al. [22] to alter the classical PDEs into the noninteger-
order ODEs for the gas flow model. Mohammadein et al.
[23] used a similar idea for the boundary layer flow past
an extending sheet.

The above idea is further improved in the recent study
by using the same variable idea to alter the PDEs in the
noninteger-order ODEs avoiding the separating of variable
concepts. Considering the common parameters, the recent
idea matches with the existing literature [17, 18] for the
integer-order analysis. The acquired outcomes are also con-
trasted with the classical model. The results are obtained
using the FDE-12 technique [24, 25].

Since in most of the problems the stress is not linear, that
is why the fractional-order derivative approach is very essen-
tial to handle these kinds of problems.

The recent work is the generalized form of the 2D model,
and one can easily get the existence model by putting n = 1
as an integer case. Also, the electrical and magnetic fields
are jointly used to improve the novelty.

2. Formulation of the Problem

The fluid flow is assumed in two-dimensional space consid-
ering the steady motion of the fluid towards the stretched
surface. The electromagnetic field is imposed on the flow
pattern in the vertical direction. All the assumptions are sim-
ilar to the published work [17]. The elementary equations

are displayed as

∂u
∂x

+ ∂v
∂y

= 0, ð1Þ

u
∂u
∂x

+ v
∂u
∂y

� �
= υ

∂2u
∂y2

−
1
ρ

σB2
0u − E0B0

� �
, ð2Þ

u
∂T
∂x

+ v
∂T
∂y

� �
= k
ρcp

∂T2

∂y2
: ð3Þ

The boundary conditions are

u = xb, v = 0, T = Tw at y = 0, ð4Þ

u⟶ 0, T ⟶ T∞, at y⟶∞: ð5Þ
Here, υ, ρ, cp, E0, k, σ, B0, and T stand for kinematic vis-

cosity, density, specific heat, electric conductivity, thermal
conductivity, magnetic field, and temperature distribution,
respectively. The similarity variable in fractional form with
appropriate transformations is defined as [26, 27]

ψ = x bυf
� �1/2 f ηð Þ, ð6Þ

u = ∂ψ
∂y

, ð7Þ

v = −
∂ψ
∂x

, ð8Þ

Θ ηð Þ = T − T∞ð Þ
Tw − T∞ð Þ , ð9Þ

ηα = yα

Γ α + 1ð Þ

ffiffiffiffiffi
b
υf

s
⇒ η = y

ffiffiffiffiffi
b
υf

s
: ð10Þ

Upon using Equation (6) in Equations ((1)), ((2)), ((3)),
((4)), the noninteger-order ODEs are obtained as

α2η3α−3 f α+2 + α2 α − 1ð Þ 2η2α−3 + η2α−2
� �

f α+1

+ α α − 1ð Þ2ηα−2 f α + α α − 1ð Þηα−1 f α f
+ α2η2α−2 f α+1 f − α2η2α−2 f αð Þ2 + EM − αηα−1 f αM

� �
= 0,
ð11Þ

Table 2: ðα + 1Þf ″ð0Þ and −θ′ð0Þ. When E = 0:3 and Pr = 6:2.

α,M f ″ 0ð Þ −θ′ 0ð Þ α,M f ″ 0ð Þ −θ′ 0ð Þ
α = 1,M = 0:0, E = 0:1 0.654686 1.68489 α = 0:95, E = 0:1,M = 0:0 0.6966 1.73290

M = 0:1 0.726303 1.70721 α = 0:90,M = 0:1 0.699356 1.71865

M = 0:5 0.739522 1.71849 α = 0:85,M = 0:5 0.719129 1.70257

M = 1 0.82882 1.73258 α = 0:80,M = 1 0.749324 1.68455

α = 1M = 0:1, E = 0:1 0.726303 1.70721 α = 0:90,M = 0:1 0.699356 1.71865

E = 0:3 0.7141021 1.70721 α = 0:85, E = 0:3 0.695231 1.71865

E = 0:5 0.7021202 1.70721 α = 0:80, E = 0:5 0.691452 1.71865

Table 3: 2f ″ð0Þand − θ′ð0Þ. When α = 1:.

M Pr f ″ 0ð Þ
(present)

f ″ 0ð Þ
[18]

−θ′ 0ð Þ
(present)

−θ′ 0ð Þ
[18]

0.0 6.2 0.717534 0.717984 1.74588 1.74598

0.1 0.732547 0.732995 1.74584 1.74599

0.5 0.791613 0.791874 1.74567 1.74589

1 0.863306 0.863717 1.74546 1.74587

0.1 6.4 0.863306 0.863828 1.73482 1.73498

6.6 0.863306 0.863897 1.72514 1.72568

6.8 0.863306 0.863564 1.71554 1.71567
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α2η2α−2Θα+1 + α − 1ð Þηα−2Θα + Prηα−2 fΘα = 0: ð12Þ

Reduced conditions are

f 0ð Þ = 0, ð13Þ

f α 0ð Þ = 1, ð14Þ

θ 0ð Þ = 1, ð15Þ

f ∞ð Þ = 0, ð16Þ

θ ∞ð Þ = 0: ð17Þ
α = 1 reduce the above equations into the classical order

as

f ‴ + f f ″ − f ′
� �2

+ME −Mf ′ = 0,

θ″ + Prf θ′ = 0:
ð18Þ

In Equations (11) and (12), α,M, Pr , and E stand for the
order exponent, magnetic field parameter, Prandtl number,
and electric field as

M = σB2
0

bρf
,

E = E0
B0uw

,

Pr =
νf

αf
:

ð19Þ

2.1. Physical Quantities of Interest. The physical number is
stated as

Cf x =
τw

1/2ð Þρ uwð Þ2 , ð20Þ

Nux =
xqw

k Tw − T∞ð Þ : ð21Þ

The simplified form of Equation (20) using the similarity
variable is

Cf xRex
0:5 = α + 1ð Þf ″ 0ð Þ,

NuxRex
−0:5 = −θ′ 0ð Þ:

ð22Þ

3. Caputo Fractional Derivatives

The brief and basic theory of the Caputo is displayed as
follows.

3.1. Definition 1. Let b, α, t ∈ R, b > 0, and t > b. According to
the Caputo fraction derivative, using α as the fractional

order from the function g ∈ Cn is derived as

C
b D

α
t g tð Þ = 1

Γ n − αð Þ
ðt
b

g nð Þ ςð Þ
t − ςð Þα+1−n dς, n − 1 < α < n ∈N:

ð23Þ

3.2. Property. Let gðtÞ, hðtÞ: ½a, b�⟶R be such that C
b D

α
t g

ðtÞ and C
b D

α
t hðtÞ exist almost everywhere, and let e1, e2 ∈R:

Then, Cb D
α
t fe1gðtÞ + e2hðtÞg exists almost everywhere and

C
b D

α
t e1g tð Þ + e2h tð Þf g = e1

C
b D

α
t g tð Þ + e2

C
b D

α
t h tð Þ: ð24Þ

4. Solution Methodology

Equations (11), (12), (13) are selected as

y1 = f , y2 = f ′, y3 = f ″, y4 = θ, y5 = θ′,
y1 = 0, y2 − 1 = 0, y3, y4 − 1 = 0, y5:

ð25Þ

The above-selected functions are solved using the FDE-
12 technique as mentioned in [24–27].

5. Results and Discussion

The two-dimensional flow on an extending surface is
reflected. The electromagnetic term is considered vertically
to the flow field including the momentum and energy equa-
tions. The main purpose of the research is to alter the mod-
eled PDEs equations into noninteger-order ODEs by using
similarity transformations. The fractional operator is used
as η to alter the governing equations in the noninteger-
order nonlinear ODEs. The nonlinear ODEs are then solved
with the help of the FDE-12 method. The upshot of the con-
straints is observed using the classical- and noninteger-order
systems. The noninteger-order exponent α is exhibited in
Figures 1 and 2 for the momentum and thermal boundary
layers. The results obtained show that the noninteger-order
results are compact in relation to conventional results. The
electric field parameter improves the velocity profile in both
classical- and fractional-order cases as shown in Figures 3
and 4. The result matches the existing literature in the case
of the classical models. The noninteger-order improvement
in the velocity field is comparatively compressed as dis-
played in Figure 4. The impact of the parameter M versus
the fluid motion for its increasing value is shown in
Figures 5 and 6. The fluid motion declines in both the clas-
sical shown in Figure 5 and fractional displayed in (Figure 6)
for the rising values of M. The resistive forces existing in the
magnetic field do not allow the fluid to flow freely, and the
results are compacted via using the noninteger-order deriv-
atives as shown in Figure 6. The resistance is accrued due
to the existence of the Lorentz force. The rising credit of
theMelevates the energy transferenceθðηÞas shown in
Figures 7 and 8. The impact of the parameter M is the same
for both classical (Figure 7) and fractional (Figure 8). Again,
the changes that occur in the temperature distribution are
relatively compact in the noninteger case. Fractional-order
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impact versus drag force and Nusselt number are shown in
Table 1. The parameter M drops the fluid velocity for its
larger values, and the impact is the same as shown in
Table 2 taking the values of αin both increasing and decreas-
ing forms like α = 0:95, 0:90, 0:85, and 0:80 or α = 0:80,
0:85, 0:90, and 0:95, while this retort is opposing in the case
of Nusselt number. The electric field E declines the drag
force in both classical and fractional cases as shown in
Table 2. The decline rate is comparatively small using the
noninteger form. The consequences of the parameters M
and Pr versus energy transition are shown in Table 3. The
larger magnitude of M enhances the heat transfer rate while
the larger magnitude of Pr opposes the heat propagation
rate. The variation of these parameters is also compared with
the existing literature considering classical results. The com-
parison of the classical results authenticates the obtained
results.

6. Conclusion

The fluid flow model in the form of boundary layer flow is
considered in the two-dimensional space. The basic govern-
ing equations are transformed from the PDEs into the
noninteger-order form of ODEs. The transform variable
used in this transformation is in the noninteger order, and
as a result, the high nonlinear ODE system is achieved.
The influence of the physical parameters is obtained and
shown graphically. The results obtained show that the influ-
ence of parameters is compact in comparison with conven-
tional results. Moreover, it has been observed that
fractional-order models are highly nonlinear. In very limited
models, the stress is linear and in most of the fluid flow
problems, the stress is nonlinear. Therefore, the fractional-
order derivative is more essential and appropriate to deal
the nonlinear problems.

The recent work is the generalized form of the 2D model,
and n = 1 becomes a special case for the classical model.
Electric and magnetic field parameter results are obtained
in both cases. The electric field improves the fluid motion
while the magnetic field declines the fluid velocity.
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The current investigation deliberates the consequence of the glycerin-based carbon nanotubes with velocity slip in Darcy-
Forchheimer porous medium on a convectively heated Riga plate. The Fourier heat flux theory was replaced by the Cattaneo-
Christov theory. Moreover, nonlinear facets of radiation are also included in the energy expression, and this creates the energy
expression which becomes highly nonlinear. The governing flow problems are altered into an ODE model with the help of
suitable variables. The reduced models are solved numerically by applying MATLAB bvp4c theory and analytically by HAM
idea. The impact of diverse physical parameters on velocity, temperature, skin friction coefficients, local Nusselt number,
entropy generation, and Bejan number are scrutinized through tables and graphs. It is seen that both directions of fluid motion
elevate when raising the modified Hartmann number, and it diminishes when escalating the quantity of the Forchheimer
number and porosity parameter. The fluid warmth grows when the higher magnitude of the Biot number and heat generation/
consumption parameter, and it downturns when enriching the thermal relaxation time parameter. The entropy generation
slumps when heightening the slip parameter, whereas it improves when rising the radiation parameter. The Bejan number
upturns when upgrading the Biot number and heat generation/consumption parameter.

1. Introduction

The fluid thermal conductivity performs a significant role in
many industrial and engineering procedures, especially in
the cooling and heating of thermal systems. Conventional
fluids like oil, ethylene glycol, and water transfer less heat
due to weaker thermal conductivity. Nowadays, several sci-
entists put more effort into upgrading the fluid thermal con-
ductivity. The submersion of nanometer particles like oxide,
carbides, metal oxides, carbon nanotubes (CNTs), and

graphite in conventional fluids is one of the easiest proce-
dures for enhancing the fluid thermal conductivity. In par-
ticular, CNTs have superior power of enhancing thermal
conductivity compared to other nanometer particles (see
[1, 2]). The CNTs can be classified into SWCNTs and
MWCNTs. Haq et al. [3] report the heat transfer analysis of
an MHD viscous nanofluid flow on a stretching surface via
carbon nanotubes. They noticed that the surface shear stress
was high in engine oil-based CNTs than the ethylene glycol-
and water-based CNTs. The outcome of nanofluid flow-
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suspended CNTs with the presence of activation energy and
binary chemical reaction on a non-Darcy porous medium
was addressed by Lu et al. [4]. They exposed that the solid vol-
ume fraction of nanofluid enriches the fluid velocity. Rehman
et al. [5] inspect the influence of SWCNTs on engine oil- and
water-based 3D rotating fluid on a stretching sheet. They
detected that engine oil-based fluid has a larger heat transfer
gradient compared to water-based fluid.

SWCNT MWCNT
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porous medium
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Figure 1: Physical configuration of the flow model.
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Figure 2: h-curves of (a) x-direction velocity, (b) y-direction velocity, and (c) nanomaterial volume fraction profiles for both nanotubes.

Table 1: Physical properties.

Physical characteristics SWCNTs MWCNTs Glycerin

k 6600 3000 0.286

ρ 2600 1600 1259.9

cp 425 796 2427

Pr − − 6.78
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MHD flow of SWCNTs and MWCNTs on a vertical
cone with the convective heating condition was demon-
strated by Sreedevi et al. [6]. They proved that the mass
transfer gradient is lower in MWCNTs than in the SWCNTs
for the varying values of nanoparticle volume fraction. Lu
et al. [7] investigated the time-dependent squeezing flow of
nanofluid suspended in CNTs with the Cattaneo-Christov
theory. They have seen that the nanoparticle volume friction
leads to slowing down the fluid temperature. The ferric
oxide- and carbon nanotube water-based hybrid nanofluid
on a wavy fluctuating rotating disk was discussed by Bilal
et al. [8]. Their finding shows that both CNTs are enriching
the fluid velocity. Gul et al. [9] discussed the impact of
engine oil-based CNTs on a rotating disk with a magnetic
field. They identified that the skin friction coefficient is high
for MWCNTs than for the SWCNTs when changing the
magnetic field parameter.

The fluid flow analysis through the porous medium is a
salient feature in many industries, like porous bearings,
crude oil production, fermentation processes, grain storage,
and casting solidification. Many articles associated with
porous space deal with implementing Darcy’s law. The
major demerit of this law is to apply only weaker porosity
and lesser velocity problems. Most of the physical issues
have uneven porosity and larger flow transportation. In this
situation, Darcy’s law is inadequate. Forchheimer [10] rec-
tifies this difficulty by adding a square velocity term in the
momentum expression. The forced convective flow of vis-
cous fluid on a Darcy-Forchheimer porous shrinking sheet
with multiple slip conditions was demonstrated by Bakar

et al. [11]. They proved that the fluid temperature declines
in the first solution and increases in the second solution
for changing the porosity parameter. Umavathi et al. [12]
explored the Darcy-Forchheimer-Brinkman flow of a nano-
fluid in a rectangular duct. They discovered that the fluid
temperature exalts for more quantity of the Brinkman num-
ber. The repercussion of heterogeneous/homogeneous reac-
tions of a Darcy-Forchheimer flow of water-based carbon
nanotubes on a rotating disk was studied by Hayat et al.
[13]. Their decisions show that the Forchheimer number
reinforces the skin friction coefficient. Ramzan and Shaheen
[14] investigated the effects of the nanofluid flow through
carbon nanotubes on a Darcy-Forchheimer stretching sur-
face. They disclosed that the inertia coefficient leads to
aggrandising the fluid velocity. The Darcy-Forchheimer flow
of MHD nanofluid on a nonlinear stretching surface was
evaluated by Rasool et al. [15]. They found that the surface
shear stress jumps for a higher Forchheimer number. Nayak
et al. [16] implemented the Darcy-Forchheimer law for
investing the flow analysis of copper-water nanofluid on a
disk. The 2D flow of MHD couple stress hybrid nanofluid
on a Darcy-Forchheimer porous medium was inspected by
Saeed et al. [17]. They proved that the inertia coefficient
(Fr) decimates the fluid velocity. Darcy-Forchheimer flow
of ethylene glycol-based nanofluid on a curved stretching
surface with Arrhenius activation energy was presented by
Maraj et al. [18].

Heat transfer through radiation plays a pivotal role in
many manufacturing processes, like glass blowing, rubber
sheet production, nuclear power plants, and tinning of cop-
per wires. Keeping these usages in mind, several researchers
scrutinized radiative heat transfer in different physical situa-
tions. Mehmood et al. [19] encountered the consequences of
the radiative flow of viscoplastic fluid on a porous sheet.
They detected that the thermal boundary layer thickened
when raising the radiation parameter. Thermally radiative
MHD flow nanofluid on a stretching sheet with second-
order slip condition was inspected by Mabood and Das
[20]. They observed that the fluid temperature upturns for
increasing the radiation parameter. Ramzan et al. [21] delib-
erated the influence of nonlinear thermal radiation and
chemical reaction of an MHD nanofluid on a heated plate.

Table 2: Order of approximations.

Order
SWCNTs MWCNTs

−f ′′ 0ð Þ −g′′ 0ð Þ −θ′ 0ð Þ −f ′′ 0ð Þ −g′′ 0ð Þ −θ′ 0ð Þ
1 0.391118 0.268199 0.093867 0.365128 0.259087 0.100429

5 0.395396 0.268234 0.094323 0.381107 0.262157 0.101120

10 0.395112 0.268247 0.094284 0.381126 0.262160 0.101061

14 0.395110 0.268247 0.094286 0.381132 0.262161 0.101066

15 0.395110 0.268247 0.094286 0.381132 0.262161 0.101066

20 0.395110 0.268247 0.094286 0.381132 0.262161 0.101066

25 0.395110 0.268247 0.094286 0.381132 0.262161 0.101066

30 0.395110 0.268247 0.094286 0.381132 0.262161 0.101066

35 0.395110 0.268247 0.094286 0.381132 0.262161 0.101066

40 0.395110 0.268247 0.094286 0.381132 0.262161 0.101066

Table 3: Comparison of −Cf x
ffiffiffiffiffiffiffi
Re

p
and −Cf y

ffiffiffiffiffiffiffi
Re

p
with Hayat

et al. [56] with ϕ = Fr = λ =Ha = 0.

c −Cf x
ffiffiffiffiffiffiffi
Re

p
−Cf y

ffiffiffiffiffiffiffi
Re

p
Present Ref. [56] Present Ref. [56]

0.0 1.00000 1.000000 0.00000 0.000000

0.3 1.05795 1.057955 0.243360 0.243360

0.5 1.09310 1.093094 0.465205 0.465205

0.8 1.14249 1.142488 0.866683 0.866680

1.0 1.17372 1.173722 1.173720 1.173723
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They noticed that the heat transfer gradient escalates for
enhancing the radiation parameter. The nonlinear thermal
radiation effect on Cu-Al2O3-water-based hybrid nanofluid
on the stretching surface was portrayed by Usman et al.
[22]. They noticed that the local Nusselt number suppresses
when there is more presence of nonlinear thermal radiation
parameters. Waqas et al. [23] scrutinized the impact of non-
linear thermal radiation of a micropolar nanofluid with
gyrotactic microorganisms. They uncovered that the fluid
temperature grows for a high quantity of temperature ratio
parameter. The series solution of time-dependent viscoelas-
tic micropolar nanofluid with thermal radiation and
Cattaneo-Christov heat/mass flux theory was derived by
Khan et al. [24]. Li et al. [25] revealed the radiative flow of
modified second-grade nanofluid with second-order slip
conditions. They have seen that the temperature ratio
parameter leads to the downfall of the heat transfer gradient.

Few progress about thermal radiative flow can be found in
Refs. ([26–29]).

In the past few decades, many authors have examined
entropy generation in fluid flow and heat transfer on a
surface. Various factors, like viscous dissipation, chemical
reactions, friction forces, and diffusion, are responsible
for creating entropy. The entropy generation of the ther-
mal system damages the effective work and suppresses
the system efficiency. In this situation, Bejan [30] created
a new model named as Entropy Generation Minimization
(EGM), which is useful to reduce the energy losses in heat
transfer processes and enrich the system efficiency. The
entropy analysis of a forced convective flow of MHD Cas-
son fluid in a microchannel with radiation was presented
by Makinde and Eegunjobi [31]. They noticed that the
Bejan number elevates for high magnitudes of magnetic
field parameter. Bhatti et al. [32] derived the numerical

Table 4: The HAM and numerical values of Cf x
ffiffiffiffiffiffiffi
Re

p
and Cf y

ffiffiffiffiffiffiffi
Re

p
of SWCNTs for diverge values of λ, Fr, Ha, c, K , and ϕ.

λ Fr Ha c K ϕ
SWCNTs

Cf x
ffiffiffiffiffiffiffi
Re

p
Cf y

ffiffiffiffiffiffiffi
Re

p
Numerical Analytical Numerical Analytical

0 0.4 0.5 0.6 1 0.2 -0.628909 -0.628903 -0.927277 -0.92727

0.3 -0.717409 -0.717410 -1.042841 -1.042840

0.5 -0.765947 -0.765948 -1.102898 -1.102900

0.8 -0.827006 -0.827006 -1.176055 -1.176060

1 -0.861597 -0.861597 -1.216598 -1.216600

0.2 0 0.5 0.6 1 0.2 -0.654495 -0.654495 -0.987723 -0.987722

0.5 -0.698291 -0.698291 -1.013220 -1.013222

1 -0.734473 -0.734473 -1.036740 -1.036742

1.5 -0.765175 -0.765175 -1.058400 -1.058405

2 -0.791757 -0.791757 -1.078390 -1.078390

0.2 0.4 0 0.6 1 0.2 -0.811524 -0.811526 -0.995010 -0.995011

0.3 -0.737372 -0.737372 -1.003201 -1.003200

0.5 -0.690229 -0.690229 -1.008283 -1.008280

0.8 -0.622351 -0.622351 -1.015440 -1.015440

1 -0.578733 -0.578729 -1.019946 -1.019940

0.2 0.4 0.5 0.1 1 0.2 -0.673012 -0.673013 -2.161610 -2.161610

0.3 -0.680479 -0.680478 -1.332389 -1.332390

0.5 -0.687131 -0.687130 -1.082817 -1.082820

0.8 -0.696063 -0.696063 -0.903290 -0.903291

1 -0.701499 -0.701499 -0.830992 -0.830992

0.2 0.4 0.5 0.6 0 0.2 -1.689558 -1.689560 -2.237526 -2.237530

1 -0.690229 -0.690229 -1.008283 -1.008280

2 -0.444308 -0.444309 -0.672968 -0.672969

3 -0.329252 -0.329232 -0.509501 -0.509500

0.2 0.4 0.5 0.6 1 0 -0.390100 -0.390100 -0.618400 -0.618399

0.05 -0.446787 -0.446787 -0.692571 -0.692570

0.1 -0.513787 -0.513787 -0.779871 -0.779870

0.15 -0.593754 -0.593754 -0.883625 -0.883624

0.2 -0.690229 -0.690229 -1.008283 -1.008280
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solution of radiative MHD Williamson nanofluid in a
porous shrinking sheet with entropy generation. Rashidi
et al. [33] deliberated the entropy analysis of MHD
third-grade fluid on a stretching sheet. They found that
the entropy generation exalts when escalating the Brink-
man number. The 3D double-diffusive flow of power law
fluid with entropy analysis was investigated by Zhu et al.
[34]. Jain and Gupta [35] explored the 3D flow of water-
based CNT nanofluid past a heated inclined porous
stretching sheet with entropy generation. They exposed
that the entropy generation number improves when grow-
ing the Biot and Reynolds numbers. The latest investiga-
tions for this concept are collected in Refs. [36–41].

The aforementioned literature studies divulge that none
of them inspected the Darcy-Forchheimer flow of glycerin-
based carbon nanotubes on a Riga plate subjected to heat
absorption, slip, and convective heating condition. In addi-

tion, our study includes entropy generation through differ-
ent flow parameters inside the boundary layer flow. Our
findings may find the applications in thermal extrusion phe-
nomenon, cooling processes, oceanography, missile technol-
ogy, and movement of biological fluids. Also, entropy
generation plays a vital role in controlling the heat transfer
rate in the proximity of a surface.

2. Mathematical Formulation

Let us contemplate the 3D Darcy-Forchheimer flow of
glycerin-based carbon nanotubes over a Riga plate. There
are two kinds of CNTs, like SWCNTs (single-wall carbon
nanotubes) and MWCNTs (multiwall carbon nanotubes),
which are considered. Let us choose x- and y-axes along with
the plate, and z is perpendicular to the plate. Let u = ax and
v = by be the velocity components in x and y directions. The

Table 5: The HAM and numerical values of Cf x
ffiffiffiffiffiffiffi
Re

p
and Cf y

ffiffiffiffiffiffiffi
Re

p
of MWCNTs for diverge values of λ, Fr, Ha, c, K , and ϕ.

λ Fr Ha c K ϕ
MWCNTs

Cf x
ffiffiffiffiffiffiffi
Re

p
Cf y

ffiffiffiffiffiffiffi
Re

p
Numerical Analytical Numerical Analytical

0 0.4 0.5 0.6 1 0.2 -0.597692 -0.597688 -0.896045 -0.896037

0.3 -0.695638 -0.695639 -1.022917 -1.022920

0.5 -0.748363 -0.748363 -1.087344 -1.087340

0.8 -0.813778 -0.813779 -1.164709 -1.164710

1 -0.850433 -0.850433 -1.207141 -1.207150

0.2 0 0.5 0.6 1 0.2 -0.630797 -0.630796 -0.965518 -0.965518

0.5 -0.673734 -0.673733 -0.990190 -0.990190

1 -0.709390 -0.709390 -1.012999 -1.013000

1.5 -0.739767 -0.739763 -1.034062 -1.034060

2 -0.766154 -0.766163 -1.053545 -1.053550

0.2 0.4 0 0.6 1 0.2 -0.792587 -0.792588 -0.972431 -0.972433

0.3 -0.715130 -0.715130 -0.980431 -0.980431

0.5 -0.665811 -0.665810 -0.985407 -0.985407

0.8 -0.594720 -0.594709 -0.992431 -0.992430

1 -0.548995 -0.548938 -0.996860 -0.996859

0.2 0.4 0.5 0.1 1 0.2 -0.649036 -0.649035 -2.121875 -2.121870

0.3 -0.656279 -0.656279 -1.304265 -1.304270

0.5 -0.662776 -0.662775 -1.058626 -1.058630

0.8 -0.671540 -0.671539 -0.882437 -0.882437

1 -0.676890 -0.676889 -0.811676 -0.811676

0.2 0.4 0.5 0.6 0 0.2 -1.574918 -1.574920 -2.117896 -2.117900

1 -0.665811 -0.665810 -0.985407 -0.985407

2 -0.432015 -0.432023 -0.663082 -0.663083

3 -0.321333 -0.321347 -0.503983 -0.503985

0.2 0.4 0.5 0.6 1 0 -0.390100 -0.390100 -0.618400 -0.618399

0.05 -0.441792 -0.441791 -0.688175 -0.688175

0.1 -0.503167 -0.503167 -0.770314 -0.770314

0.15 -0.576723 -0.576723 -0.867974 -0.867974

0.2 -0.665811 -0.665810 -0.985407 -0.985407
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Table 6: The HAM and numerical values of local Nusselt number for diverge values of Ha, c, K , ϕ, Hg, R, Bi, Γ, and Λ for both CNTs.

Ha c K ϕ Hg R Bi Γ Λ

Nuffiffiffiffi
Re

p
SWCNTs MWCNTs

Numerical Analytical Numerical Analytical

0 0.6 1 0.2 -0.4 0.6 0.6 0.1 1.2 0.613593 0.613593 0.617908 0.617909

0.3 0.614827 0.614827 0.619235 0.619236

0.5 0.615577 0.615577 0.620041 0.620040

0.8 0.616613 0.616610 0.621154 0.621144

1 0.617254 0.617245 0.621841 0.621819

0.5 0.1 1 0.2 -0.4 0.6 0.6 0.1 1.2 0.611117 0.611118 0.615224 0.615225

0.3 0.613118 0.613119 0.617379 0.617381

0.5 0.614813 0.614814 0.619213 0.619214

0.8 0.616973 0.616971 0.621556 0.621550

1 0.618229 0.618225 0.622918 0.622906

0.5 0.6 0 0.2 -0.4 0.6 0.6 0.1 1.2 0.623712 0.623714 0.628428 0.628455

1 0.615577 0.615577 0.620041 0.620040

2 0.612416 0.612419 0.616674 0.616679

3 0.610610 0.610612 0.614730 0.614735

0.5 0.6 1 0 -0.4 0.6 0.6 0.1 1.2 0.858530 0.858694 0.858530 0.858694

0.05 0.713177 0.713261 0.720184 0.720290

0.1 0.659079 0.659103 0.665538 0.665574

0.15 0.631681 0.631685 0.637077 0.637084

0.5 0.6 1 0.2 -0.4 0.6 0.6 0.1 1.2 0.615577 0.615577 0.620040 0.620041

-0.2 0.604723 0.604726 0.609498 0.609511

-0.1 0.596760 0.596745 0.601962 0.601933

0 0.585550 0.585552 0.591691 0.591621

0.1 0.567896 0.567951 0.576447 0.576599

0.2 0.532889 0.532766 0.550123 0.550314

0.5 0.6 1 0.2 -0.4 0 0.6 0.1 1.2 0.539505 0.539505 0.538442 0.538442

0.3 0.577581 0.577581 0.579289 0.579288

0.5 0.602920 0.602920 0.606467 0.606467

0.8 0.640862 0.640863 0.647156 0.647155

1 0.671718 0.666112 0.674229 0.674228

0.5 0.6 1 0.2 -0.4 0.6 -0.6 0.1 1.2 -0.769998 -0.769998 -0.778918 -0.778920

-0.3 -0.362449 -0.362449 -0.366205 -0.366205

0 0 0 0 0

0.3 0.324160 0.324160 0.326820 0.326819

0.6 0.615577 0.615577 0.620041 0.620040

0.5 0.6 1 0.2 -0.4 0.6 0.6 0 1.2 0.610956 0.610956 0.614983 0.614983

0.2 0.617979 0.617979 0.622673 0.622672

0.4 0.622974 0.622975 0.628155 0.628154

0.6 0.630976 0.630976 0.636956 0.636956

0.8 0.636674 0.636675 0.643239 0.643239

0.5 0.6 1 0.2 -0.4 0.6 0.6 0.1 1 0.615308 0.615309 0.619724 0.619721

1.3 0.615858 0.615860 0.620374 0.620379

1.5 0.616463 0.616472 0.621096 0.621122

1.8 0.617147 0.617132 0.621896 0.621931

2 0.617859 0.617839 0.622685 0.622704
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fluid behaves heat consumption or generation (see Rana
et al. [42]). The nonlinear thermal radiation is taken into
account. The Fourier heat flux model was replaced by the
Cattaneo-Christov model (see Punith Gowda et al. [43]).
The underneath of the plate was convectively heated fluid
by hot fluid with temperature T f , and this generates heat
transfer coefficient hc (see Figure 1). Under the above con-
siderations, the governing flow expression is as follows (see
Hayat et al. [44–45] and Zeeshan et al. [46]):

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, ð1Þ

u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂z

= νnf
∂2u
∂z2

−
νnf
k∗1

u − Fu2 +
πJ0M
8ρnf

Exp −
π

a1
z

� �
,

ð2Þ

u
∂v
∂x

+ v
∂v
∂y

+w
∂v
∂z

= νnf
∂2u
∂z2

−
νnf
k∗1

v − Fv2, ð3Þ

u
∂T
∂x

+ v
∂T
∂y

+w
∂T
∂z

= αnf
∂2T
∂z2

+
16σ∗

3k∗ ρcp
� �

nf

T3 ∂
2T
∂y2

+ 3T2 ∂T
∂z

� �2
" #

+
Q

ρcp
� �

nf

T − T∞ð Þ − λ u2
∂2T
∂x2

+ v2
∂2T
∂y2

+w2 ∂
2T
∂z2

"

+ 2uv2
∂2T
∂x∂y

+ 2vw
∂2T
∂x∂y

+ 2wu
∂2T
∂z∂x

+ u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂z

� �
∂T
∂x

+ u
∂v
∂x

+ v
∂v
∂y

+w
∂v
∂z

� �
∂T
∂y

+ u
∂w
∂x

+ v
∂w
∂y

+w
∂w
∂z

� �
∂T
∂x

�
,

ð4Þ

with interacted boundary conditions (see Hayat et al. [45]
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Figure 3: The x-direction velocity for distinct quantity of λ (a), Fr (b), Ha (c), and ϕ (d).
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and Subbarayudu et al. [47]):

u =Uw = ax +
2 − σν

σν

λ0
∂u
∂z

; v =Vw = by +
2 − σν
σν

λ0
∂v
∂z

;

w = 0;−knf
∂T
∂z

= hc T f − T
	 


at z = 0,

u⟶ 0 ; v⟶ 0 ; T ⟶ T∞ as z⟶∞:

ð5Þ

All notations are given in the nomenclature part.
The thermophysical properties of dynamic viscosity,

density, heat capacitance of the nanofluid, thermal diffusiv-
ity, and thermal conductivity are mathematically expressed
as

μnf
μf

=
1

1 − ϕð Þ2:5 ;
ρnf
ρf

= 1 − ϕ + ϕ
ρCNT

ρf
;

ρcp
� �

nf

ρcp
� �

f

= 1 − ϕ + ϕ
ρcp
� �

CNT
ρcp
� �

f

,

αnf =
knf
ρcp
� �

nf

;
knf
kf

=
1 − ϕ + 2ϕ kCNT/ kCNT − kf

� �� �
ln kCNT + kf

� �
/2kf

� �
1 − ϕ + 2ϕ kf / kCNT − kf

� �� �
ln kCNT + kf

� �
/2kf

� � :

ð6Þ

Define

u = axf ′, v = ayg′, w = −
ffiffiffiffiffiffiffi
aνf

p
f + g½ �, Ω =

ffiffiffiffiffi
a
νf

s
z, θ =

T − T∞
T f − T∞

:

ð7Þ

Applying equation (7) in equations (2)–(4), we get

A1A2 f ′′′ − f ′2 + f + g½ �f ′′ − A1A2λf ′ − Frf ′2 + HaA2Exp −βΩ½ � = 0,

ð8Þ

A1A2g′′′ − g′2 + f + g½ �g′′ − A1A2λg′ − Frg′2 = 0, ð9Þ

A3
PrA4

θ′′ + f + g½ �θ′ − Γ f + g½ �2θ′′ + f + g½ � f ′ + g′
h i

θ′
� �

+ Hg
A4

θ + 4
3
R

1
A4Pr

h
Λ − 1ð Þ3θ3θ′′ + 3 Λ − 1ð Þ3θ2θ′2

+ 3 Λ − 1ð Þ2θ2θ′′ + 6 Λ − 1ð Þ2θθ′2 + 3 Λ − 1ð Þθθ′′
+ 3 Λ − 1ð Þθ′2 + θ′′

i
= 0:

ð10Þ
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Figure 4: The y-direction velocity for distinct quantity of λ (a), Fr (b), c (c), and ϕ (d).
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The transferred boundary conditions are

f 0ð Þ = 0 ; f ′ 0ð Þ = 1 + Kf ′′ 0ð Þ ; f ′ ∞ð Þ = 0 ; g 0ð Þ = 0, ð11Þ

g′ 0ð Þ = c + Kg′′ 0ð Þ ; g′ ∞ð Þ = 0 ; θ′ 0ð Þ = −
Bi

A3
1 − θ 0ð Þ½ � ; θ ∞ð Þ = 0:

ð12Þ
All parameters are explained in Nomenclature. Here,

A1 =
1

1 − ϕð Þ2:5 ; A2 =
1

1 − ϕð Þ + ϕ ρCNT/ρf

� � ,

A3 =
1 − ϕð Þ + 2ϕ kCNT/ kCNT − kf

� �� �
ln kCNT + kf

� �
/2kf

� �
1 − ϕð Þ + 2ϕ kf / kCNT − kf

� �� �
ln kCNT + kf

� �
/2kf

� � ;

A4 = 1 − ϕð Þ + ϕ
ρcp
� �

CNT
ρcp
� �

f

:

ð13Þ

The skin friction coefficients and local Nusselt number
are defined as follows:

Cf x
ffiffiffiffiffiffiffi
Re

p
= A1 f ′′ 0ð Þ ; Cf y

ffiffiffiffiffiffiffi
Re

p
=

A1
c3/2

g′′ 0ð Þ ; Nuffiffiffiffiffi
Re

p

= − A3 +
4
3
R 1 + Λ − 1ð Þθ 0ð Þf g3

� �
θ′ 0ð Þ:

ð14Þ

3. Entropy Analysis

The entropy generation equation is expressed as (see Hayat
et al. [44])

Sgen =
kf
T2
∞

knf
kf

+
16σ∗T3

3kf k
∗

" #
∂T
∂z

� �2
+
μnf
T∞

u2 + v2
� �

+
μnf
T∞

∂u
∂z

� �2
+

∂v
∂z

� �2
" #

:

ð15Þ
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Figure 5: The temperature profile for distinct quantity of λ (a), Γ (b), Hg (c), and Bi (d).
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The converted EG equation is

EG = A3 Re θ′
2 +

4
3
R Re Λ − 1ð Þ3θ3θ′2 + 3 Λ − 1ð Þ2θ2θ′2

h
+ 3 Λ − 1ð Þθθ′2 + θ′2

i
+ A1ReBr

λ

α1
f ′2 + g′2

h i
+ A1ReBr

1
α1

f ″2 + g″2
h i

,

ð16Þ

where Re = ax2/νf is the local Reynolds number, Br = μf a
2

x2/kf ðT f − T∞Þ is the Brinkman number, and α1 = ðT f −
T∞Þ/T∞ is the temperature difference parameter.

The Bejan number is expressed as

BN =
Entropy generation due to heat transfer

Total entropy generation
,

BN =
Z1
Z2

,
ð17Þ

where

Z1 = A3 Re θ′
2 +

4
3
R Re Λ − 1ð Þ3θ3θ′2 + 3 Λ − 1ð Þ2θ2θ′2

h
+ 3 Λ − 1ð Þθθ′2 + θ′2

i
,

Z2 = A3 Re θ′
2 + 4

3
R Re Λ − 1ð Þ3θ3θ′2 + 3 Λ − 1ð Þ2θ2θ′2

h
+ 3 Λ − 1ð Þθθ′2 + θ′2

i
+ A1ReBr

λ

α1
f ′2 + g′2

h i
+ A1ReBr

1
α1

f ″2 + g″2
h i

:

ð18Þ

4. Solutions

4.1. Numerical Solutions. The rechanged models ((8)-(10))
with the associated conditions (12) are numerically solved
by applying the MATLAB bvp4c algorithm (see Rehman
et al. [48] and Eswaramoorthi et al. [49]). To solve these
equations, first, we convert higher ODE to first-order ODEs.

f =D1, f ′ =D2, f ′′ =D3, g =D4, g′ =D5, g′′ =D6, θ =D7, θ′ =D8:

ð19Þ

The systems of equations are

f ′ =D2,

f ′′ =D3,

f ′′′ = D2
2 − D1 +D4ð ÞD3 −HaA2e

−βη + A1A2λD2 + FrD2
2

A1A2
,

g′ =D5,

g′′ =D6,

g′′′ = D2
5 − D1 +D4ð ÞD6 + A1A2λD5 + FrD2

5
A1A2

,

θ′ =D8,

θ′′ = P1
P2

,

ð20Þ

where

P1 = −
1

PrA4

4
3
R 3 Λ − 1ð Þ3D3

7D
2
8 + 6 Λ − 1ð Þ2D7D

2
8 + 3 Λ − 1ð ÞD2

8
	 


− D1 +D4ð ÞD8 + Γ D1 +D4ð Þ D2 +D5ð ÞD8 −
Hg
A4

D7,

P2 =
A3
PrA4

− Γ D1 +D4ð Þ2

+
1

PrA4

4
3
R Λ − 1ð Þ3D3

7 + 3 Λ − 1ð Þ2D2
7 + 3 Λ − 1ð ÞD7 + 1

	 

:

ð21Þ
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Figure 6: Skin friction coefficient (lower plate (SWCNTs) and upper plate (MWCNTs)) for different combinations of Ha, Fr, and λ on x
-direction (a, b) and y-direction (c, d).
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With the corresponding conditions,

D1 0ð Þ = 0,D2 0ð Þ = 1 + KD3 0ð Þ,D2 ∞ð Þ = 0,

D4 0ð Þ = 0,D5 0ð Þ = c + KD6 0ð Þ,D5 ∞ð Þ = 0,

D8 0ð Þ = −
Bi
A3

1 −D7 0ð Þ½ �,D7 ∞ð Þ = 0,

ð22Þ

4.2. Analytical Solutions. The nonlinear ODE models ((8)-
(10)) with conditions (12) are analytically solved by imple-
menting the HAM logic, because this method is a powerful
tool for solving highly nonlinear problems (see Gul et al.
[50], Islam et al. [51], Saeed et al. [52], and Khan et al.
[53]. All computations are made by MATHEMATICA. Ini-
tially, we fix the initial approximation as f0ðΩÞ = ð1/ð1 + K
ÞÞð1 − ð1/eΩÞÞ, g0ðΩÞ = ðc/ð1 + KÞÞð1 − ð1/eΩÞÞ, and θ0ðΩÞ
= Bi/ðBi + A3ÞeΩ, and linear operators are Lf =D3 f −Df ,
Lg =D3g −Dg, and Lθ =D2θ − θ, where D is the differential

operator, and the property Lf ½X1 + X2e
Ω + X3ð1/eΩÞ� = 0 =

Lg½X4 + X5e
Ω + X6ð1/eΩÞ� = Lθ½X7e

Ω + X8ð1/eΩÞ�, where Xkð
k = 1 − 8Þ are constants.

After substituting the Mth-order HAM, we have

f M Ωð Þ = f +M Ωð Þ + X1 + X2e
Ω + X3

1
eΩ

,

gM Ωð Þ = g+
M Ωð Þ + X4 + X5e

Ω + X6
1
eΩ

θM Ωð Þ = θ+M Ωð Þ + X7e
Ω + X8

1
eΩ

,

ð23Þ

where f +MðΩÞ, θ+MðΩÞ, and ϕ+MðΩÞ are the particular
solutions.

The HAM solutions contain the auxiliary parameters (hf
, hg, and hθ), and these act as a key role for solution conver-
gence (see Eswaramoorthi et al. [54] and Loganathan et al.
[55]). In SWCNTs, the range values are −1:4 ≤ hf ≤ −0:1, −
1:4 ≤ hg ≤ −0:35, and −1:5 ≤ hθ ≤ −0:15, and MWCNTs are

−1:3 ≤ hf ≤ −0:1, −1:15 ≤ hg ≤ −0:1, and −1:35 ≤ hθ ≤ −0:25
(see Figures 2(a)–2(c). We fix hf = hg = hθ = −0:7 for getting
more accuracy in both CNTs.

5. Correlation Equations

The correlation equations are expressed using a recursion
formula.

For SWCNTs,

Cf x
ffiffiffiffiffiffiffi
Re

p
= −0:5751 − 1:7388ϕ − 0:2239λ − 0:0653Fr

+ 0:2325Ha − 0:0307c + 0:2032K ,

Cf y
ffiffiffiffiffiffiffi
Re

p
= −1:289 − 2:3097ϕ − 0:2520λ − 0:0305Fr

− 0:0249Ha + 0:8516c + 0:2889K ,

Nuffiffiffiffiffi
Re

p = −0:0276 − 0:7926ϕ − 0:0124λ − 0:0045Fr + 0:0036Ha

+ 0:0075c − 0:0052 − 0:1630Hg + 0:1238R + 1:1152Bi:
ð24Þ

For MWCNTs,

Cf x
ffiffiffiffiffiffiffi
Re

p
= −0:5704 − 1:6028ϕ − 0:243λ − 0:0646Fr

+ 0:2433Ha − 0:03c + 0:1936K ,

Cf y
ffiffiffiffiffiffiffi
Re

p
= −1:2696 − 2:1782ϕ − 0:2722λ − 0:0296Fr

− 0:0244Ha + 0:8372c + 0:2786K ,

Nuffiffiffiffiffi
Re

p = 0:0299 − 0:8036ϕ − 0:0084λ − 0:0020Fr + 0:0039Ha

+ 0:0081c − 0:0034K − 0:1277Hg + 0:0443R + 1:1217Bi,
ð25Þ

where ϕ ∈ ½0,0:3�, λ, Fr, Ha, c ∈ ½0, 1�, K ∈ ½0:5,3�, Hg ∈ ½−
0:6,0:3�, R ∈ ½0, 2�, and Bi ∈ ½−0:6,0:6� with maximum error
difference of 0:099.

Re

Nu

0.0

0.8

1.0

0.2

– 0.2

0.2

0.4

0.4

0.6

0.6
0.5

0.3
0.4

Hg

R

(d)

Figure 7: Local Nusselt number (lower plate (SWCNTs) and upper plate (MWCNTs)) for different combinations of Ha, Fr, λ, Hg, Γ, and R.
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6. Results and Discussion

In this section, we explain the characteristics of flow param-
eters on velocity ð f ′ðΩÞ and g′ðΩÞÞ, temperature ðθðΩÞÞ,
skin friction coefficients ðCf x ffiffiffiffiffiffiffi

Re
p

andCf y
ffiffiffiffiffiffiffi
Re

p Þ, local
Nusselt number ðNu/ ffiffiffiffiffi

Re
p Þ, entropy generation ðNsðΩÞÞ,

and Bejan number ðBNÞ through diagrams and tables.
Table 1 provides the thermophysical properties of single-
wall carbon nanotubes (SWCNTs), multiwall carbon nano-
tube (MWCNTs), and glycerin. The disparate order of
HAM is presented in Table 2. From this table, we acknowl-
edged that the 14th order is enough for all computations. The
comparison of Cf x and Cf y with Hayat et al. [56] for differ-
ent c values is illustrated in Table 3. It is seen that our
numerical and HAM results are exactly matched with Hayat
et al. [56] results. Tables 4 and 5 portrays the impact of λ, Fr,
Ha, c, K , and ϕ on skin friction coefficients ðCf x ffiffiffiffiffiffiffi

Re
p

and
Cf y

ffiffiffiffiffiffiffi
Re

p Þ for both CNTs. It is detected that the surface drag
force Cf x

ffiffiffiffiffiffiffi
Re

p
decays when improving the quantity of λ, Fr,

c, and ϕ, and it enhances when raising the values of Ha and
K . Also, Cf y

ffiffiffiffiffiffiffi
Re

p
downfalls when strengthening the pres-

ence of λ, Fr, Ha, and ϕ, and it improves when enriching
the magnitude of c and K for both CNTs. The local Nusselt
number for disparate values of Ha, c, K , ϕ, Hg, R, Bi, Γ, and
Λ for both CNTs is illustrated in Table 6. It proved that the
heat transfer gradient upsurges for enlarging the Ha, c, R, Γ,
Λ, and Bi values, and it slumps when raising the values of K ,
ϕ, and Hg for both CNTs.

Figures 3(a)–3(d) display the consequences of λ, Fr, Ha,
and ϕ on the x-direction velocity profile. It is noticed that
the x-direction velocity exalts when escalating the quantity
of Ha and ϕ, and its downfalls when raising the values of
λ and Fr. The effectuates of λ, Fr, c, and ϕ on the y-direc-
tion velocity profile are shown in Figures 4(a)–4(d). It is
noted that the y-direction velocity surges when enhancing

the amount of c and ϕ, and it decays when raising the values
of λ and Fr. Physically, the higher amount of porosity leads
to enriching the fluid resistance, which suppresses the fluid
motion and reduces the corresponding boundary layer
thickness. From Figures 5(a)–5(d), it is concluded that the
fluid temperature booms up when adding more quantities
of λ, Hg, and Bi, and it weakens when strengthening the Γ
values. The larger magnitude of the Biot number leads to
enhancing the heat transfer coefficient, and this causes to
reinforce the fluid warmness, which leads to the thickening
of the thermal boundary layer. Figures 6(a)–6(d) illustrate
the outcomes of Ha, Fr, and λ on skin friction coefficients
ðCf x ffiffiffiffiffiffiffi

Re
p

andCf y
ffiffiffiffiffiffiffi
Re

p Þ. It is seen that the Cf x
ffiffiffiffiffiffiffi
Re

p
rises

when raising the Ha values, and the opposite behavior was
attained for more presence of Fr and λ. Also, Ha, Fr, and λ
leads to suppressing the Cf y

ffiffiffiffiffiffiffi
Re

p
. In addition, the surface

shear stress is lower in SWCNTs than in MWCNTs. The
local Nusselt number for different combinations of Ha, Fr,
λ, Hg, Γ, and R is plotted in Figures 7(a)–7(d). It is proven
that the heat transfer gradient ascents when enriching the
Ha, Γ, and R, and it declines when increasing the λ, Fr,
and Hg values. The larger values of the radiation parameter
enhance the heat transfer rate from high-temperature places
to low-temperature places, and this causes to rise in the heat
transfer gradient. In addition, a higher heat transfer gradient
occurs in MWCNTs compared to SWCNTs. Figures 8(a)–
8(d) delineate the effects of Fr, Ha, K , and R on the entropy
generation profile. It is noticed that the entropy generation
profile increases (decreases) near the plate, and it diminishes
(grows) away from the plate for changing the Fr (Ha) values.
The entropy generation profile enhances when enriching the
radiation parameter, and it weakens when raising the slip
parameter. The variations of the Bejan number for disparate
values of Bi, Hg, K , and R are presented in Figures 9(a)–9(d).
It is exposed that the Bejan number progresses when
upgrading the magnitude of Bi, Hg, K , and R.
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Figure 8: The entropy generation profile for distinct quantity of Fr (a), Ha (b), K (c), and R (d).
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Figure 9: Continued.
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7. Conclusions

Here, we provide the impact of the Darcy-Forchheimer flow
of glycerin-based carbon nanotubes with velocity slip over a
heated Riga plate with heat absorption/generation. The
Cattaneo-Christov heat flux theory is used to formulate the
energy equation. In addition, nonlinear facets of radiation
are also included in the energy expression. The obtained
flow models are converted into an ODE model with the help
of suitable variables. The ODE models are solved numeri-
cally and analytically by applying MATLAB bvp4c and
HAM ideas, respectively. The main outputs of our investiga-
tion are summarized below:

(i) The fluid motion in both directions is suppressed
when adding more quantity of porosity parameter
and Forchheimer number

(ii) The fluid temperature aggravates when enriching
the heat absorption/generation and convective heat-
ing parameters

(iii) Both porosity parameter and Forchheimer number
lead to curtailing the surface shear stress in both
directions

(iv) The thermal relaxation time parameter leads to
exaggerating the heat transfer gradient, and heat
absorption/generation parameters act opposite to
the local Nusselt number

(v) The thermal radiation parameter boosts up the
entropy generation, and the slip parameter helps
to cut down the entropy generation

(vi) The Bejan number upgrades when there is more
quantity of the Biot number and radiation
parameter

Nomenclature

a, b: Positive constants (s-1)
α: Thermal diffusivity (m2 s-1)
a1: Magnets positioned in the interval

separating the electrodes (-)
Cf x

ffiffiffiffiffiffiffi
Re

p
&Cf y

ffiffiffiffiffiffiffi
Re

p
: Skin friction coefficients (-)

cp: Capacity of specific heat (m2 s-2) K-1

F: Inertia coefficient of porous medium
(-)

hc: Heat transfer coefficient (-)
J0: Current density applied to the elec-

trodes (Am-2)
k ∗: Thermal conductivity (-)
M: Magnetic property of the permanent

magnets that are organized on top of
the plate surface (kg s-2A-1)

nf , f : Subscript represents nanofluid and
base fluid

ν: Kinematic viscosity (m2 s-1)
Ω: Dimensionless variable
Q: Heat consumption/generation coeffi-

cient (Wm-3K-1)
ρ: Fluid density (kgm-3)
T : Nondimensional temperature (K)
T f : Temperature of the hot fluid (K)
Tw: Surface temperature (K)
T∞: Ambient temperature (K)
τw: Surface shear stress
θ: Dimensionless temperature
u, v,w: Velocity components
Uw, Vw: Surface stretching velocities (m2 s-1)
x, y, z: Cartesian coordinates (m)
α1ð= T f − T∞/T∞Þ: Temperature difference parameter
Bið= ðhc/kf Þ

ffiffiffiffiffiffiffiffiffi
vf /a

p Þ: Biot number
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Figure 9: The Bejan number profile for distinct quantity of Bi (a), Hg (b), K (c), and R (d).
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βð= ðπ/a1Þ
ffiffiffiffiffiffiffiffiffi
νf /a

p Þ: Dimensionless parameter

Brð= μf a
2x2/kf ðT f −

T∞ÞÞ:
Brinkman number

Frð= cb/
ffiffiffiffiffi
k∗1

p Þ: Forchheimer number
Γð= λaÞ: Thermal relaxation time parameter
Hað= πJ0M/8ρf a

2xÞ: Modified Hartmann number

Hgð=Q/ðρcpÞf aÞ: Heat consumption/generation
parameter

Λð= νf /k
∗
1aÞ: Porosity parameter

Prð= ðμcpÞf /kf Þ: Prandtl number

Re ð= ax2/νf Þ: Local Reynolds number.

Abbreviations

HAM: Homotopy analysis method
CNTs: Carbon nanotubes
ODE: Ordinary differential equations
MHD: Magnetohydrodynamics
MWCNTs: Multiwall carbon nanotubes
SWCNTs: Single-wall carbon nanotubes.
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In this study, the natural convection nanofluids flow through a channel formed by two vertical parallel plates having distance d
between them has been examined under the influence of the ramped velocity. Sodium alginate is considered as base fluid, and
nanoparticles of titania (TiO2) and alumina (Al2O3) are added to it. Analytical and semianalytical results for temperature and
velocity profiles are obtained with Laplace transform and inverse Laplace algorithms (Tzou, Stehfest, Talbot, Honig and Hirdes,
and Fourier series), respectively. Furthermore, the impacts of nanoparticles, Prendtl number, heat absorption, and time on
velocity and temperature are drawn graphically and discussed. The outcomes show that the high thermal conductivity of
particles increases the temperatures, and the high density of particles decreases the velocities of the nanofluids. The current
findings are compared to previous findings in the literature. In the tables, the effect of volume fraction on Nusselt numbers
and skin frictions is explored.

1. Introduction

The study of viscous fluid between parallel plates is signif-
icant due to its vast applications in the science and engi-
neering fields. Sahebi et al. [1] presented the analysis of
the free convection non-Newtonian nanofluid flow in a
vertical channel numerically and described its significance.
Many engineers studied the flow of non-Newtonian fluids
with constant physical properties and heat transport,
manipulating problems related to fluid mechanics and heat
transfer. Adesanya [2] studied the unsteady free convec-
tion flow with absorbing generation between two infinite
parallel plates with a temperature jump and velocity slip
in the slip flow regime. Boulama and Galanis [3] provided
the exact results for mixed convection nanofluid flow
between two plates with mass and heat transfer. Ajibade

and Bichi [4] studied an unsteady incompressible convec-
tive fluid flow that is optically dense through an upright
channel due to the collective effect of thermal radiation
and variable viscosity and concluded that by increasing
the viscosity variation parameters and thermal radiation,
the velocity of fluid increases and temperature also
increases with a boost in thermal radiation. Rajkumar
et al. [5] investigated the numerical results of the inner
convection of heat sources in tandem planar. Nada [6]
studied the heat transport rate of free convection flow in
horizontally and vertically closed narrow heated finned
base plates, and the outcomes confirmed that the fins
increase the rate of heat exchange with fin array geometries.
Usually, the concentration disparity in the mass transfer
influences the rate of heat relocation. The buoyancy effects
are the driving forces for natural convection.
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Several researchers discussed their work on nanofluids.
The idea of nanofluid was given by Eastman and Choi [7].
Nanofluid allocates the fluid in which the nanoparticles are
hanging in the traditional fluid. Because of the rapid
advancement of nanotechnology [8], various models of
nanofluids are being implemented in the field of thermal
engineering. So nanofluid shows more effective thermal con-
ductivity as compared with the base fluid. Suspended compo-
nents raise thermal conduction and heat conveyance
processes as the solid bimetallic particles bear more caloric
conductivity than the base fluid. High viscosity and more
static with better diffusion, wetting, and propagation through
solid aerofoils, even for minor nanoparticle addition, are sig-
nificant features of nanofluids [9]. Nanofluids are comprised
of super-fine nanoparticles (size < 100 nm) mixed in water or
organic solvent [10].

Generally, nanoparticles of chemically stable materials
like copper (Cu), gold (Au), silicon oxide (SiO2) or silica, zir-
conium oxide (ZrO2), titania (TiO2), copper oxide (CuO),
alumina (Al2O3), metallic nitrides (SiN, AlN), and carbon
nanotubes (CNTs) are used. These solid-liquid specks
quickly drop down, filled the flow ducts, serious pressure fail-
ure, and causing erosion of pipelines. Therefore because of
these defects, ordinary solid-fluid fusions for heat change at
micro levels are used instead of nanofluids. Nanofluids can
increase critical temperatures and surfactants, or standard
emulsifiers cannot increase thermal conductivity. Cooling
plays important role in providing comfort for required func-
tioning and well-founded results of developing products
especially computers, electronic circuits, X-ray generators,
automobile engines, high energy lasers, etc. Improvement
of heat transferal characteristics of nanofluids stimulates
the attainable development in the heating system or consign-
ment and heat flows caused by power in small-scaled
products elevated its applications in defensive structure,
microelectronics, fabricating, transportation, metrology,
and engine cooling system.

The researchers have conducted extensive studies in this
field. Some investigations are experimental, while others are
computational, and only a small amount of research has
been undertaken on the analytical side. The efficacy of car-
bon nanostructures and water-based nanoliquids as coolants
was investigated by Halelfadl et al. [11]. They looked at how
low nanoparticle volume fractions (varying from 0.0055% to
0.278%) affected nanofluid density, thermal conductivity,
and viscosity.

Solar thermal devices’ efficiency and performance could be
improved. The use of nanotechnology in solar collectors has
been the subject of extensive research. Solar cells are heat
engines that capture sunlight and transmit the heat to a
liquid running past them. Tyagi et al. [12] discovered that add-
ing nanoparticles to a collector improves its efficiency. His
findings reveal that by changing the volume fraction from
0.1% to 2% and the size of the fraction, the efficiency increases
dramatically. When compared to water, Yousefi et al. [13] dis-
covered that nanofluid (with 0.2% wt.) had a higher efficiency.
When they added surfactant to their trials, they saw a 15.63%
improvement [14, 15], and the references therein include
examples of nanoparticles in solar energy applications.

Fluid flow and linked mass and energy transmission
through a channel have received less attention than the situ-
ation of a single plate. This design may be found in a wide
range of fields, such as petroleum reservoirs, fire engineer-
ing, combustion modeling, and nuclear energy, to name a
few. Many engineering systems show transport phenomena
that combine the effects of concentration and thermal
buoyancy. Modern thermal protection devices, chemical
distilleries, building ventilation systems, solar panels, heat
exchangers, and electric circuits all contain them [16, 17].
Gupta et al. [18] used Marangoni convection to study the
flow of two separate nanofluids over a stretched surface in
a porous medium. Gohar et al. [19] investigated a Darcy-
Forchheimer flow of Casson hybrid nanofluid via a curved
surface that was constantly growing. The viscous fluid flow
in a porous medium is expressed by the Darcy-
Forchheimer effect. Adnan et al. [20] investigated the flow
of Cu-water and Cu-kerosene oil through two Riga plates,
taking into account surface convection and radiation effects.
Zaka Ullah et al. [21] studied the flow of a hybrid nanofluid
in a diverging and a converging channel. The effects of
ramped temperature, ramped concentration, chemical reac-
tion, heat production, and magnetic force on Casson nano-
fluid flow via a conduit were studied by Sadiq et al. [22].
The influence of various fluid dynamical processes and flow
geometry is the focus of the bulk of the study. In addition,
the bulk of previous research was conducted using either
experimental or numerical methods.

The energy storage devices are beneficial for regulating
power and energy demand in concentrated solar power facil-
ities. It is expected that increasing the capacity of materials
used in total energy storage will increase their performance.
As a result, the leading objective of this dissertation is to
establish a solution to the problem of natural convection
flow of two different nanofluids in a vertical channel under
the influence of ramped velocity. Ramped wall velocity is
useful to control the flow of the fluid. To the best of the
author’s knowledge, ramped velocity is not considered for
this model. Sodium alginate (SA) is taken as a base fluid
having nanoparticles of titania (TiO2) and alumina (Al2O3)
is studied. Analytical and semianalytical results for velocity
field and temperature distribution are obtained by using
the Laplace transform method and inverse numerical algo-
rithms (Stehfest’s [23], Tzou’s [24], Talbot [25], Honig and
Hirdes [26], and Fourier series [27]). Finally, the effects of
nanoparticles, Prandtl number, heat absorption, and time
on temperature and velocity profiles are graphically illus-
trated and discussed. The current findings are compared to
previous findings in the literature. In the tables, the effect
of volume fraction on Nusselt numbers and skin frictions
is explored. The findings of this study are predicted to have
a significant impact on solar thermal devices.

2. Mathematical Formulation

Consider the convective flow of two different nanofluids
with ramped velocity in a vertical channel formed by two
parallel infinite plates separated by a distance d in the pres-
ence of the source/sink effect. The left plate is considered
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along the x’-axis as shown in Figure 1. At t ′ = 0, the nano-
fluid and plates are at rest at a moderate temperature T0.
At t ′ > 0, the right plate which is situated at y′ = d begins
to accelerate along x’-direction with A0t ′, and temperatures
of left and right plate are remained constant T1 and T2
(T2 > T1), respectively. The slippage between nanoparticles
and base fluid is neglected.

The heat and momentum are only the functions of y′
and t ′ as the walls of the channel are extended infinitely.
Sodium alginate (SA) is considered as a conventional base
fluid having nanoparticles of titania (TiO2) and alumina
(Al2O3). The thermophysical characteristics of SA and
nanoparticles are given in Table 1.

Under the above assumptions, the governing equations
are [30]

ρnf

∂u′ y′, t ′
� �
∂t ′

= μnf

∂2u′ y′, t ′
� �
∂y′2

+ g ρβð Þnf T ′ y′, t ′
� �

− T1

h i
,

ð1Þ

ρcp
� �

nf

∂T ′ y′, t ′
� �
∂t ′

= knf
∂2T ′ y′, t ′

� �
∂y′2

−Q0 T ′ y′, t ′
� �

− T1

h i
,

ð2Þ

with corresponding conditions

u′ y′, 0
� �

= 0, T ′ y′, 0
� �

= T1, 0 ≤ y′ ≤ d, ð3Þ

u′ 0, t ′
� �

= 0, u′ d, t ′
� �

= A0t ′, t ′ > 0, ð4Þ

T ′ 0, t ′
� �

= T1, T ′ d, t ′
� �

= T2, t ′ > 0: ð5Þ

The thermal physical features of nanofluid are described
by

ρnf = φρs + 1 − φð Þρf , μnf 1 − φð Þ2:5 = μf ,

knf =
kf − ks
� �

φ + 2kf + ks
ks − 2 kf − ks

� �
φ + 2kf

kf ,

ρβð Þnf
ρβð Þf

= 1 − φð Þ + φ
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,
ρcp
� �

nf

ρcp
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f
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s

ρcp
� �

f

:

ð6Þ

Introducing the following non-dimensional parameters
into Eqs. (1)–(5).

u =
u′νf

A0d
2 , y =

y′
d
, t =

νf

d2
t ′, T =

T ′ − T1
T2 − T1

, ð7Þ

we get

∂u y, tð Þ
∂t

= p1
∂2u y, tð Þ

∂y2
+ p2T y, tð Þ, ð8Þ

∂T y, tð Þ
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− p4T y, tð Þ, ð9Þ

with corresponding conditions,

T y, 0ð Þ = 0, u y, 0ð Þ = 0 ; 0 ≤ y ≤ 1, ð10Þ

T 0, tð Þ = 0, u 0, tð Þ = 0 ; t > 0, ð11Þ

T 1, tð Þ = 1, u 1, tð Þ = t ; t > 0, ð12Þ

where

p1 =
μnf
ρnf vf

, p2 =Gr
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3. Solution of the Problem

3.1. Temperature Profile. Applying the Laplaceitransformito
Eqs. (9), (11)1, and (12)1, using Eq. (10)1, we obtain

s�T y, sð Þ = p3
∂2�T y, sð Þ

∂y2
− p4�T y, sð Þ, ð14Þ

T 0, sð Þ = 0, �T 1, sð Þ = 1
s
: ð15Þ

Solution of Eq. (14) with the conditions in Eq. (15) is as

�T y, sð Þ = sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s + p4/p3

p
y

s:sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s + p4/p3

p , ð16Þ

y′

x′

g

z′

u′(0, t′) = 0 u′(d, t′) = A0t′

T′(d, t′) = T2T′(0, t′) = T1

Figure 1: Flow geometry.
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or
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The inverse Laplace transform of Eq. (17) is
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3.2. Velocity Field. Applying the Laplace transform to Eqs.
(8), (11)2, and (12)2, using Eq. (10)2, we obtain

s�u y, sð Þ = p1
∂2�u y, sð Þ

∂y2
+ p2�T y, sð Þ: ð19Þ

�u 0, sð Þ = 0, �u 1, sð Þ = 1
s2
: ð20Þ

Putting the value of �Tðy, sÞ from Eq. (16) in Eq. (19),
we have

s�u y, sð Þ = p1
∂2�u y, sð Þ

∂y2
+ p2

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s + p4/p3

p
y

s:sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s + p4/p3

p : ð21Þ

Solution of Eq. (21) with the conditions in Eq. (20) is as

�u y, sð Þ = p2p3s + p1p4 − p3 − p1ð Þs
p1p4 − p3 − p1ð Þsð Þs2

sinh y
ffiffi
s

p
/ ffiffiffiffiffi

p1
p� �� �

sinh
ffiffi
s

p
/ ffiffiffiffiffi

p1
p� �

−
p2p3

p1p4 − p3 − p1ð Þsð Þs
sinh y

ffiffiffiffiffiffiffiffiffiffiffi
s + p4

p / ffiffiffiffiffi
p3

p� �� �
sinh ffiffiffiffiffiffiffiffiffiffiffi

s + p4
p / ffiffiffiffiffi

p3
p� � ,

ð22Þ

or

�u y, sð Þ = 1
s

sinh y/ ffiffiffiffiffi
p1

p� � ffiffi
s

p� �
s:sinh

ffiffi
s

p
/ ffiffiffiffiffi

p1
p� � −

a1
s − a2

sinh y/ ffiffiffiffiffi
p1

p� � ffiffi
s

p� �
s:sinh

ffiffi
s

p
/ ffiffiffiffiffi

p1
p� �

+
a1

s − a2
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p3

p� �
y

� �
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s + p4
p / ffiffiffiffiffi

p3
p� � ,

ð23Þ

where a1 = p2p3/p3 − p1,a2 = p1p4/p3 − p1:
The inverse Laplace transform of Eq. (23) is

u y, tð Þ = 1 − a1e
a2t

� �
∗ 〠

∞

n=0
ψn

yffiffiffiffiffi
p1

p , t, 0,
1ffiffiffiffiffi
p1

p
� �	

− ψn −
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p1

p , t, 0,
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p1

p
� �


+ a1e
a2t

� �
∗ 〠

∞

n=0
ψn
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p3

p , t, p4,
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p3

p
� �	

− ψn −
yffiffiffiffiffi
p3

p , t, p4,
1ffiffiffiffiffi
p3

p
� �


,

ð24Þ

where

ψn x, τ, y, zð Þ = 1
2

e− 2n+1ð Þz−x½ � ffiffi
y

p
erfc

2n + 1ð Þz − x

2
ffiffiffi
τ

p −
ffiffiffiffiffi
yτ

p� �	

+ e 2n+1ð Þz−x½ � ffiffi
y

p
erfc

2n + 1ð Þz − x

2
ffiffiffi
τ

p + ffiffiffiffiffi
yτ

p� �

:

ð25Þ

Table 1: Thermophysical characteristics of nanoparticles and SA [28, 29].

Material k W/m:Kð Þ β × 105 K−1� �
Cp J/Kg:Kð Þ ρ Kg/m3� �

Sodium alginate C6H9NaO7 (SA) 0.6376 0.99 4175 989

Titania (TiO2) 8.9538 0.90 686.2 4250

Alumina (Al2O3) 40 0.85 765 3970

Table 2: Variation of Nusselt numbers.

φ t
TiO2 Al2O3

y = 0 y = 1 y = 0 y = 1
0 0.5 -0.118 -2.989 -0.118 -2.989

0.01 0.5 -0.129 -3.024 -0.131 -3.031

0.05 0.5 -0.185 -3.164 -0.197 -3.198

0.10 0.5 -0.273 -3.344 -0.305 -3.413
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Figure 2: Variation of temperature fields.

Table 3: Variation of skin frictions.

φ t
TiO2 Al2O3

y = 0 y = 1 y = 0 y = 1
0 0.5 -0.52 -0.085 -0.52 -0.085

0.01 0.5 -0.53 -0.108 -0.532 -0.106

0.05 0.5 -0.576 -0.207 -0.583 -0.197

0.10 0.5 -0.647 -0.344 -0.659 -0.327
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4. Nusselt Numbers and Skin Frictions

The Nusselt numbers and skin frictions on both walls of the
channel can express as

Nusseltnumbers =Nu0,1 = −
knf
kf

L−1
∂θ y, sð Þ

∂y

( )
y=0,1

,

skinfrictions = Sk0,1 = −
μnf
μf

L−1
∂�u y, sð Þ

∂y

� �
y=0,1

: ð26Þ

5. Numerical Results and Discussions

The flow of two different SA-based nanofluids with natural
convection and ramped velocity is compared in this section.
The influence of volume fraction and time on flow and
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Figure 3: Variation of the velocity fields.
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temperature is highlighted graphically and discussed. Fur-
thermore, the results of this problem are compared by using
different numerical inversion algorithms in Tables 2–3. In
the graphical comparison, all parameters Q = 1:1, Pr = 6:2,
φ = 0:04, t = 0:5, and Gr = 3:8 are fixed.

Figure 2(a) illustrates the variation and comparison of
temperature profiles of two different nanofluids. The tem-
peratures increase by increasing φ. The inclusion of nano-
particles increases the heat transport rate of nanofluids.
Figure 2(b) depicts that the temperatures of nanofluids rise
as time rises. The temperature of nanofluid-containing par-
ticles of Al2O3 is higher due to greater thermal conductivity.
Figures 2(c) and 2(d) show the influence of Prandtl number
and heat absorption on temperatures. The temperature fields
of the nanofluids are shown to be lower when Pr and Q are
increased.

Figure 3(a) indicates that the thickness of nanofluids
increases with an increase of φ due to the higher density of
nanoparticles as a result velocities reduce. The velocity of
SA + TiO2 is higher than SA + Al2O3 due to the low density
of TiO2. Figure 3(b) illustrates that the velocities of both

fluids increase with increasing time. The influence of Prandtl
number and heat absorption on the velocity profiles is seen
in Figures 3(c) and 3(d). The velocities of nanofluids
decrease with an increase in Pr and Q.

The authenticity of our results obtained for temperature
and velocity is presented in Figure 4 by comparing them to
the results of Hajizadeh et al. [30]. These figures show that
for t = 1, our outcomes are equivalent to those found in
[30]. The coinciding curves demonstrate the veracity of our
findings.

Table 2 shows that when the volume fraction of nano-
particles rises, the heat transfer rate decreases on both plates.
Table 3 displays the quantitative data of skin friction, which
is decreased when the volume fraction values on both plates
rise for two nanofluids.

Tables 4 and 5 show the comparison of our analytical
solutions (18) and (24), with the semianalytical solutions
obtained by different numerical inverse Laplace transform
algorithms (Stehfest’s [23], Tzou’s [24], Fourier series [25],
Talbot [26], and Honig and Hirdes [27]). From these figures
and tables, it can be seen that all the numerical inverse
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Figure 4: Comparison of results.

Table 4: Comparison of temperature profile with different Laplace inversion algorithms.

y Results Eq. (18) Stehfest’s Tzou’s Honing and Hirdes Fourier series Talbot

0 0 0 0 0 0 0

0.1 3 × 10−10 5:2 × 10−8 2:4 × 10−6 1:1 × 10−8 3 × 10−9 3 × 10−10

0.2 1:1 × 10−7 3:3 × 10−7 6 × 10−6 1:59 × 10−7 1:3 × 10−7 1 × 10−7

0.3 4:1 × 10−6 4:6 × 10−6 1:8 × 10−5 4:06 × 10−6 4 × 10−6 4 × 10−6

0.4 7:7 × 10−5 9 × 10−5 1:1 × 10−4 7:75 × 10−5 7:7 × 10−5 7 × 10−5

0.5 9:9 × 10−4 9 × 10−4 1 × 10−3 9:1 × 10−4 9:8 × 10−4 9 × 10−4

0.6 9 × 10−3 8:4 × 10−3 8:5 × 10−3 8:41 × 10−3 8:4 × 10−3 9 × 10−3

0.7 0.048 0.048 0.048 0.048 0.048 0.048

0.8 0.188 0.188 0.188 0.188 0.188 0.188

0.9 0.51 0.51 0.51 0.51 0.51 0.51

1 1 1.001 1.003 0.949 1 1
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Laplace transform algorithms have good agreement with our
obtained results.

6. Conclusion

The focus of this work is to examine the results of the
convective flow of two nanofluids in an upright channel
with ramped velocity. Analytical results of temperature
and velocity fields are attained by using the Laplace trans-
form technique. Sodium alginate is considered a base fluid,
and nanoparticles of TiO2 and Al2O3 are added to it. Ana-
lytical and semianalytical results are compared. The effects
of time, Prandtl number, heat absorption, and volume
fraction are discussed in detail. The current findings are
compared to previous findings in the literature. In the
tables, the effect of volume fraction on Nusselt numbers
and skin frictions is explored. The main observations are
as follows:

(i) The temperature profiles increase for higher values
of φ due to greater thermal conductivities

(ii) The velocity fields decrease for greater values of φ
due to high densities

(iii) The velocity and temperature fields are increasing
function of time t

(iv) The nanoparticles (Al2O3) increase temperature
much more than the nanoparticles (TiO2)

(v) The velocity is less when the nanoparticles alumina
(Al2O3) is added in base fluid than by adding the
nanoparticles titania (TiO2)

(vi) The velocity can be controlled and predicted with
ramped velocity conditions

(vii) The thickness of nanofluids increases due to higher
viscosity caused by greater values of Pr in return
velocity and temperature reduces

(viii) The momentum and energy of nanofluids are
reduced for higher values of Q

(ix) Nusselt numbers and skin frictions decrease on
both walls of channel for both nanofluids by
increasing φ

(x) The solutions obtained by different methods are in
good agreement

Nomenclature

u’: Velocity
T ’: Temperature
g: Gravitational acceleration
ρnf : Density
Gr: Grashof number
βnf : Thermal expansion
μnf : Dynamic viscosity
Q0: Source/sink effect
ðcpÞnf : Specific heat

Pr: Prandtl number
d: Distance between plates
Q: Dimensionless source/sink effect
φ: Volume fraction
Sk: Skin friction
Nu: Nusselt number
s: Solid particles
nf : Nanofluid
f : Fluid.
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Table 5: Comparison of velocity profile with different Laplace inversion algorithms.

y Results Eq. (24) Stehfest’s Tzou’s Honing and Hirdes Fourier series Talbot

0 0 0 0 0 0 0

0.1 0.964 0.964 0.965 0.976 0.967 0.964

0.2 1.93 1.93 1.93 1.954 1.934 1.93

0.3 2.898 2.898 2.899 2.934 2.904 2.898

0.4 3.869 3.869 3.87 3.918 3.878 3.869

0.5 4.845 4.845 4.847 4.906 4.856 4.845

0.6 5.827 5.827 5.829 5.9 5.84 5.827

0.7 6.816 6.816 6.819 6.901 6.831 6.816

0.8 7.81 7.81 7.812 7.906 7.826 7.81

0.9 8.758 8.758 8.76 8.866 8.776 8.758

1 9.379 9.379 9.381 9.497 9.399 9.379
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The hybrid nanofluid is extensively used in manufacturing commercial applications due to its high exceptional capacity to
increase the heat transfer rate. As a result, in the existence of nonlinear convection, the hybrid nanofluid is considered to flow
on an inclined plane. The nonlinear convection has many applications in real life and is more relevant to the natural flow
avoiding the flow restrictions. The focus has been executed on the thermal and mass Grashof numbers to analyse the fluid
motion in the presence of these parameters for nonlinear nature. Moreover, the hybrid nanofluid flow analysis has been done
to investigate the heat transfer analysis. The modelled equations are solved through an analytical approach. The heat and mass
transfer rates and drag force are calculated under the influence of various physical parameters. The new parameter of the
Grashof numbers improves the fluid motion for its larger values, and consequently, the fluid rapidly falls down from the
inclined plane. The obtained outputs show that hybrid nanofluids are more effective in heat transfer analysis as compared to
other conventional fluids.

1. Introduction

In the past few years, the utilization of thin-film liquid flow
has fascinated researchers in the different area like engineer-
ing, technology, and industry; consequently, the study of
thin-film liquid flow analysis regarding their application in
many fields is necessary such as shipment through the flow
in human lung and a lubricating process in the industry.
These and a few more are considered to be the biggest sub-
class of thin-film liquid flow-related issues. The study of
thin-film liquid flow in many active applications is a nice
combination of structural mechanics, fluid mechanics, and
theology. One of its main applications is the cable fiber
undercoat. In addition, polymer and metal extrusion, food
straightening, permanent formulation, elastic sheet drawing,
and device fluidization, exchange, and chemical treatment
apparatus are some of the well-known uses. Observing these
applications, it became the principal subject for the investi-

gator to study and analyse the behaviour of thin-film liquid
flow at stretching surfaces. The flow behaviour for the first
time regarding thin-film was investigated through Newto-
nian liquids and then expanded to non-Newtonian liquids.
The non-Newtonian thin-film flow of nanoliquids has been
analysed by Sandeep et al. [1]. Wang [2] has examined the
transient thin-film liquid flow at the stretching surface.
The motion of thin-film finite fluid at the time-dependent
stretching surface was analysed by Usha et al. [3]. Liu et al.
[4] have studied the movement of thin-film liquid regarding
heat transfer behaviours at a stretching surface. Aziz et al. [5]
examined thermal generation within thin-film liquid flow at
a stretching sheet. The thin-film liquid motion with heat
radiation regarding the behaviour of heat transmission has
been analysed by Tawade et al. [6]. They solved their pro-
posed model using Runge-Kutta-Fehlberg and Newton
method. The analysis of heat transfer through thin-film liq-
uid flow at a stretching surface has been done by Anderssona
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et al. [7]. Many researchers have worked independently on
power-law liquid motion using thin-film time-dependent
stretching sheets [8–11]. Megahe [12] has studied the flow
of thin film of Casson liquid with heat transfer on a transient
stretching sheet. In the proposed model, they also consid-
ered the slip velocity impact with heat flux and viscous dis-
sipation. In the recent past, Tahir et al. [13] and Khan
et al. [14] analysed the motion of thin-film nanoliquid
through innovative approach. The growing interest in
energy reserves is one of the most complicated issues for
current researchers to fulfill the augmenting requirements
for energy in modern scientific practices. Researchers are
attempting to introduce new channel of energy that are con-
venient and reasonable for cooling and thermal applications.
The most readily approachable means of renewable energy
in the universe is solar energy. Solar energy is a good source
of clean and renewable energy, so it will not cause environ-
mental adulteration which is generated by conventional
energy such as coal, oil during the process of use. The nega-
tive impacts of pollution on the earth cause global warming
and lung and cancer disease. Solar energy is a good alterna-
tive to surmount this problem and reduce its detrimental
impacts. Over the past 30 years, many developed and devel-
oping industrialized countries have focused on advancing
solar technology. When there is oil, energy crisis, solar
energy becomes more attractive. The oil crisis in general is
a crisis of higher prices as OPEC countries raise fuel prices,
so options include solar thermal, solar photovoltaic, wind
energy, geothermal, marine, and wave energy. So scientists
and researchers paid attention to all these things, and an
interesting reality is that the energy that approaches the
earth from 20 days of sunlight is equal to the energy stored
in all the earth’s storages of fossil fuels such as petroleum,
coal, and natural gas. In this way, they play a prominent role
in meeting the needs of the people in the world. Flat plates
(solar collectors) use heat transfer liquids to transform solar
energy into thermal energy. Rising energy needs around the
world, including nonrenewable energy sources like fossil
fuels, have minimal production of such resources, resulting
in huge, detrimental effects on the environment, like global
warming, climate change, and air pollution. To mitigate such
losses, scientific approach has focused on improving the pro-
ductivity of renewable energy processes, like solar energy.
Solar energy is the cheapest and cleanest option of renewable
energy, which converts solar energy into environmentally
friendly electrical and thermal energy. For the conversion
of solar energy into heat energy, a heat-changing liquid can
be used in flat plate-type solar collectors [15]. Solar collec-
tors receive solar rays through absorbing plates and convert-
ing such rays into a useful form of the energy (primarily
water, water composition, and EG). Nevertheless, the major
shortcomings are the low thermal properties of these con-
ventional liquids, as they offer low thermal efficiency in the
transformation process. Converting conventional working
liquids into nanoliquids is one of the initiatives, which has
received more attention over the past few years in enhancing
the thermal efficiency of this technology. A stable synthesis
of solids components between 1nm and 100nm is referred
to nanoliquids [16]. Nanoliquid is also widely utilized in

solar energy depots [17, 18], heat exchangers [19], and freez-
ing methods [20]. Mebarek-Oudina [21] studied nanofluid
using various basic fluids. An analytical study of MHD
nanoliquid motion, for heat transfer analysis, was done by
Saeed and Gul [22]. Rehman et al. [23] analysed the motion
of nanofluids by implementing the induced changeable mag-
netic field using the liquid film flow model. The motion of
Darcy–Forchheimer nanoliquid through a mathematical
model at the curved surfaces was analysed by Sajjad et al.
[24]. Several recent analyses have been done in different
energy and thermal environments using analytical and
numerical methods, for handling heat exchanges and nano-
liquid flow behaviour, by Sheikholeslami [25], Zhang et al.
[26], and Gul et al. [27]. The magnetic properties of an elec-
trically conducting liquid are referred to as MHD. In the nat-
ural and industrial spheres, we can notice that the behaviour
of liquid motion is influenced by magnetic fields. The MHD
phenomenon occurs when the velocity and magnetic field
are combined. Instances of these kinds of fluids are liquid
metals, electrolytes, plasma, etc. The concept of magnetohy-
drodynamic has been invented by Hannes Alfven [28]. On
this great success, he was given the Nobel Prize in Physics
in 1970. MHD has many applications in engineering and
technologies such as MHD generators, plasma, and nuclear
reactors. The use of solar energy collectors also plays a sig-
nificant role in medicine such as cancer therapy and MRI.
This study is about the movements of ionized atoms or
components and their liaison with the electric fields and
neighbouring liquids. This safeguards against particle
(atoms or molecules) and fluid transport phenomena such
as electrorotation, dielectrophoresis, electro-osmosis, and
electrokinesis. This has wide range of applications in many
areas including gas pumps, drag reduction, increasing dry-
ing rate, and plasma actuators. At the outset, electrohydro-
dynamic fluid motion has been examined by Woodson
and Melcher [29]. The impact of substitutive current and
thermal transport on the dielectric viscous peristaltic fluid
motion has been examined by Sayed et al. [30]. Khan et al.
[31] investigated the irreversible behaviour of the electro-
magnetic hydrodynamic convective flow of viscous fluid.
Rashid et al. [32] scrutinized the micro polar electro-
magnetohydrodynamic radiative fluid flow with convection
state at a stretchable permeable sheet. In the recent past,
scientists have focused on the fluids flowing at the perme-
able space and particles of various shapes inside the
porous region. Their use can be understood in the multi-
ple fields like nuclear engineering, environmental sciences,
solar thermal engineering, bioinformatics, and construc-
tion engineering. Several processes that require the move-
ment of fluids in a porous region include the utilization
of geothermal energy, the flow of blood to lungs or veins,
below-ground power lines, porous heating pipes, and
chemically catalytic combiners. To understand the move-
ments of fluid in porous space, Darcy’s law is used fre-
quently. Darcy’s notion of high velocity and turbulent
impacts in the porous space is wrong. Mebarek-Oudina
et al. [21, 33–35] investigated the MHD hybrid nanofluid
flow through various configuration and geometries in the
presence of different nanomaterials.
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Forchheimer [36] updated the momentum expression
through the inclusion of second-order polynomial to adjust
the impact of inertia on relative permeability. To analyse the
impacts of inertia at relative permeability, a term of second-
order polynomial in the momentum equation has been intro-
duced by Forchheimer [36]. Muskat [37] pointed out that com-
ponent as a Forchheimer component. Many researchers have
investigated the fluid motion via porous media by utilizing the
Darcy–Forchheimer idea in various geometries. Few of them
are presented here. Saif et al. [24] explained themotion of nano-
liquid in the porous gap and concluded that the fluctuation in
the fluid flow forms the surface of the stretchable curve. The
behaviour of nanofluid motion regarding Darcy–Forchheimer
effects produced through a stretching sheet, as explored by
Rasool et al. [38]. ADarcy–Forchheimer flow of liquid at a spin-
ning disc has been explored by Sadiq et al. [39]. A non-Darcy
liquid flow within a transparent gap is explained by Sheikhole-
slami et al. [40]. The impacts of Darcy–Forchheimer and
EMHD on the movement of viscous liquid in the presence of
Joule heating and heat flux at a stretching surface were scruti-
nized by Hayat et al. [41, 42]. In addition, they studied the pro-
cess of entropy generation with the aid of the second law of
thermodynamics. Kumar et al. [43] calculated the numerical
outcomes of CNT nanofluids movement by the numerical
scheme in divergent and convergent channels under the effects
of thermal radiation. Akgül et al. [44–49] presented different
novel technique for investigating fractional differential equa-
tions including the Atangana-Baleanu fractional derivative.
The relevant and latest literature can be seen as [50–52].

The main objective of the ongoing research is to analyse
the impact of electro-hydrodynamic Darcy–Forchheimer
liquid movement and its use in augmenting the capacity of
solar collectors through inclined plates. The energy equation
has been developed under Joule heating, heat radiation, and
viscous dissipation. The proposed model of the fluid flow
has been formulated through PDEs and subsequently solved
analytically in Mathematica using HAM technique. The
analysis of different significant emerging parameters is eluci-
dated in terms of temperature, velocity, and concentration.
The numerical findings of the proposed model have been
validated through findings in the literature. It reveals that
the outcomes of the model are real and applicable in many
fields of engineering and science.

The newness of the proposed model is as follows.

(I) The inclined plane with nonlinear mixed convec-
tion is used for the first time

(II) The nanoparticles TiO2 and SiO2 are used

(III) The skin friction and Nusselt numbers are dis-
played through charts for the impact of different
parameters

(IV) HAM method has been used for the solution

2. Mathematical Formulation

A 2D steady fluid motion at a stretchable inclined plate is
studied, which makes θ angle along with vertical axis, as

shown in Figure 1, as a solar collector schematic outlook.
The space is presumed as a porous Darcy–Forchheimer.
In addition, the energy equation is updated through the
inclusion of heat radiation, viscous dissipation, and Joule
heating.

The term J
!
× B

!
is referred to as Lorentz force, where

B
!

and J
!

are the magnetic field and current density,

respectively. Ohm’s law can be stated as J
!
= σðE! +V

!
× B

!

Þ, E stands for electric field, and it is presumed that E
!
=

0. In addition, Tw, T∞, Cw, and C∞ are wall’s tempera-
ture, free-stream temperature, wall’s concentration, and
free-stream concentration, respectively. Using the above
principles, the mathematical formulation of the proposed
model is [21, 22, 25, 53]

∂u
∂x

+
∂v
∂y

= 0, ð1Þ

ρhnf u
∂u
∂x

+ v
∂u
∂y

� �
= μhnf

∂2u
∂y2

 !
± g cos θ T − T∞ð Þ ρβTð Þhnf + T − T∞ð Þ2 ρβTð Þ2hnf

�
+ C − C∞ð Þ ρβCð Þhnf + C − C∞ð Þ2 ρβCð Þ2hnf

�
,

ð2Þ

ρcp
� �

hnf u
∂T
∂x

+ v
∂T
∂y

� �
= khnf

∂T2

∂y2
, ð3Þ

u
∂C
∂x

+ v
∂C
∂y

� �
=Dhnf

∂C2

∂y2
: ð4Þ

Acceptable boundary conditions are

u = bx = uw xð Þ, v = 0, C = Cw, T = Tw, aty = 0, ð5Þ

u = 0 = v, C⟶ C∞, T ⟶ T∞, at y⟶∞, ð6Þ

where K represents the porous medium permeability
and u and v denote the velocity components in the x and
y direction.

Using the following pertinent transformation variables,

u = F ′ ηð Þbx, v = −
ffiffiffiffiffiffiffi
bυf

q
F ηð Þ, Tw − T∞ð ÞΘ ηð Þ = T − T∞,

ð7Þ

Cw − C∞ð ÞΦ ηð Þ = C − C∞, η = y

ffiffiffiffiffi
b
υf

s
: ð8Þ

The reduced form of Equations (1),(2),(3),(4),(5) in the
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light of Equation (7) is as follows:

F‴ + ρhnf
ρf

μf

μhnf
FF″ − F ′2
h i

+
μf

μhnf
cos θ

ρβTð Þhnf
ρβTð Þf

GrΘ +
ρβTð Þhnf
ρβTð Þf

 !2

Gr∗Θ2

" #

±
ρβCð Þhnf
ρβCð Þf

GcΦ +
ρβCð Þhnf
ρβCð Þf

 !2

Gc∗Φ2

" #
26666664

37777775 = 0,

ð9Þ

khnf
kf

Θ″ + Pr
ρCpð Þhnf
ρCpð Þf

FΘ′ = 0, ð10Þ

μf

μhnf
Φ″ + ScFΦ′ = 0: ð11Þ

With interrelated boundary conditions,

Gr =
gβT f Tw − T∞ð Þ

buw
, ð12Þ

Gr∗ =
gβ2

T f Tw − T∞ð Þ2
buw

, ð13Þ

Gc =
gβCf Cw − C∞ð Þ

buw
, ð14Þ

Gc∗ =
gβ2

Cf Cw − C∞ð Þ2
buw

, ð15Þ

Pr =
νf

αf
, ð16Þ

Sc =
υf
DB

: ð17Þ

The above physical quantities are Grashof number,
Prandtl number, heat source/sink factor, and Schmidt
number.

νhnf =
μhnf
ρhnf

, ð18Þ

μhnf =
μf

1 − ϕSiO2

	 
5/2
1 − ϕTiO2

	 
5/2 , ð19Þ

ρhnf = 1 − ϕTiO2

	 

1 − 1 −

ρTiO2

ρf

 !
ϕSiO2

( )
+
ρAg
ρf

ϕTiO2
,

ð20Þ

gβTð Þhnf = 1 − ϕTiO2

	 

1 − 1 −

ρβTð ÞSiO2

ρβTð Þf

 !
ϕSiO2

( )

+
ρβTð ÞTiO2

ρβTð Þf
ϕTiO2

,

ð21Þ

gβcð Þhnf = 1 − ϕTiO2

	 

1 − 1 −

ρβcð ÞSiO2

ρβcð Þf

 !
ϕSiO2

( )

+
ρβcð ÞTiO2

ρβcð Þf
ϕTiO2

,
ð22Þ

ρCp

� �
hnf

ρCp

� �
f

= 1 − ϕTiO2

	 

1 − 1 −

ρCp

� �
SiO2

ρCp

� �
f

 !
ϕSiO2

( )

+
ρCp

� �
TiO2

ρCp

� �
f

ϕTiO2
,

ð23Þ

khnf
knf

=
kTiO2

+ 2knf − 2ϕTiO2
knf − kTiO2

� �
kTiO2

+ 2knf + ϕTiO2
knf − kTiO2

� � !
,
knf
kf

=
kSiO2

+ 2kf − 2ϕSiO2
kf − kSiO2

� �
kSiO2

+ 2kf + ϕSiO2
kf − kSiO2

� � !
:

ð24Þ

Furthermore, the additional most key physical number
are skin friction coefficient (Cf x), Nusselt number (Nux),
and Sherwood number written as

Cf x =
τw

1/2ð Þρ uwð Þ2 ,

Nux =
xqw

k Tw − T∞ð Þ ,

Shx =
xjw

DB Tw − T∞ð Þ ,

ð25Þ

where τw is the shear stress and qw denotes heat flux
near the surface. Utilizing Equation (7), Equation (18)

x

y

g

Ω

Figure 1: Geometry of the problem.
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yields

Cf xRex0:5 = 2
μhnf
μf

F″ 0ð Þ,

NuxRex−0:5 = −
khnf
kf

Θ′ 0ð Þ,

ShxRex−0:5 = −Φ′ 0ð Þ:

ð26Þ

3. Solution Methodology (HAM)

The optimal technique is used for the solution of the pro-
posed model. The system of Equations (10),(11),(12) along
with condition (18) is solved in Mathematica software via
HAM. The method was first introduced by Liao [54, 55],
and this method is frequently used in recent research [53,
56–62]. The HAM algorithm in Mathematica software is
outlined as follows:

F
_

ηð Þ = 1 − e−η,Θ
_

ηð Þ = e−η,Φ
_

ηð Þ = e−η, ð27Þ

Linear operators L
F
_, L

Θ
_ , and L

Φ
_ are presumed as

follows:L
F
_ðF_Þ = F‴

_

, L
Θ
_ðΘ_Þ =Θ

_″, L
Φ
_ðΦ_Þ =Φ

_″:

L
F
_ ℕ1 +ℕ2η +ℕ3η

2� �
= 0,

L
Θ
_ ℕ4 +ℕ5ηð Þ = 0,

L
Φ
_ ℕ6 +ℕ7ηð Þ = 0:

ð28Þ

Here, we point out nonlinear terms that are specifically
named as N

F
_, N

Θ
_ , and N

Φ
_ in the algorithm:

N
F
_ F

_
η ; ζð Þ

h i
= F

_

ηηη + F
_
F
_

ηη − F
_2

ηη

� �
+ cos θ GrΘ

_
+ Gr∗ Θ

_	 
2
+ GcΦ

_
+ Gc∗ Φ

_	 
2� �
,

N
Θ
_ F

_
η ; ζð Þ,Θ_ η ; ζð Þ

h i
=Θ

_

ηη + PrF
_
Θ
_

η,

N
Φ
_ F

_
η ; ζð Þ,Φ_ η ; ζð Þ

h i
=Φ

_

ηη + ScF
_
Φ
_

η:

ð29Þ

For Equations (1),(2),(3), the zero-order system is

1 − ζð ÞLF
_ F

_
η ; ζð Þ − F

_

0 ηð Þ
h i

= pℏ
F
_N

F
_ F

_
η ; ζð Þ

h i
,

1 − ζð ÞL
Φ
_ Φ

_
η ; ζð Þ −Φ

_

0 ηð Þ
h i

= pℏ
Φ
_N

Φ
_ F η ; ζð Þ,Φ_ η ; ζð Þ
h i

,

1 − ζð ÞL
Θ
_ Θ

_
η ; ζð Þ −Θ

_

0 ηð Þ
h i

= pℏ
Θ
_N

Θ
_ F η ; ζð Þ,Θ_ η ; ζð Þ
h i

,

ð30Þ

while BCs are

F
_

η ; ζð Þ

η=0

= 0,
∂F
_

η ; ζð Þ
∂η


η=0

= 1,

Θ
_

η ; ζð Þ

η=0

= 1,Φ
_

η ; ζð Þ

η=0

= 1,

F
_

η ; ζð Þ

η=∞

⟶ 0,Θ
_

η ; ζð Þ

η=∞

⟶ 0,Φ
_

η ; ζð Þ

η=∞

⟶ 0:

ð31Þ
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Figure 2: Velocity profile h curve.
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Figure 10: Skin friction versus thermal Grashof number.
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Now,

RF
_

n ηð Þ = F‴
_

n−1 + 〠
w−1

j=0
F
_

w−1−j F
_

j″− F ′
_ 2

n−1

" #

+ cos θ 〠
w−1

j=0
GrΘ

_

w−1−j + Gr∗ Θ
_

n−1

	 
2"

+ 〠
w−1

j=0
GcΦ

_

n−1 + 〠
w−1

j=0
Gc∗ Φ

_

n−1

	 
2#
= 0,

RΘ
_

n ηð Þ =Θ″
_

n−1 + Pr 〠
w−1

j=0
F
_

w−1−jΘ′
_

j = 0,

RΦ
_

n ηð Þ =Φ
_

n−1″ + Sc 〠
w−1

j=0
F
_

w−1−jΦ
_

j′= 0, ð32Þ

while

χn =
0, if ζ ≤ 1,

1, if ζ > 1:

(
ð33Þ

3.1. Convergence of HAM Solution. The secondary condi-
tions ℏ~f , ℏeθ, andℏeϕ totally become a source for the conver-

gence of Equations (5),(7),(9); this is why the series
solution has been chosen for controlling and merging. The

probability sector of ℏ is generated different ℏ curves of ff ″
ð0Þ, eθ′ð0Þ, and eϕ′ð0Þ in the approximated 20th order HAM-
based solution using Mathematica. The effective region of
ℏ is −1:5 < ℏ~f < 0:0, −1:5 < ℏeθ < 0:0, and − 2:5 < ℏeϕ < 0:0.
The convergence of HAM algorithm via ℏ curves for the
three important profiles like temperature, velocity, and con-
centration has been sketched in various graphs (2–4), corre-
spondingly. Figure 2 is the h curve for the velocity profile,
Figure 3 is the h curve for the temperature field, and
Figure 4 is the h curve for the concentration profile.

Figure 5 explains the behaviour of the proposed flow
model through the various values of Grashof number (Gr).
The sketch reveals that an increment in the value of Gr aug-
ments the liquid velocity. The reality furthers is, since (Ther-

mal Grashof Number) integrates both hydrodynamic forces
and the thermal buoyancy force, which occurs in the bound-
ary layer due to variation in temperature. Therefore, increas-
ing the thermal buoyancy effect of the liquid permits the
specified fluid to cool the hot plate.

The impact of the Grashof number (Gr∗) which is
caused by nonlinear convection enhances the movement of
fluid relatively larger and more related to natural phenom-
ena and shown in Figure 6.

Figure 7 explains the flow properties at various values of
mass Grashof number (Gc). It reveals that a rise in the value
of mass Grashof number increments the fluid velocity.

Figure 8 explains the flow properties at various values of
mass Grashof number (Gc∗). It reveals that a rise in the
value of mass Grashof of number (Gc∗) increments the
velocity of the fluid.

The influence of Sc (Schmidt number) at the concentra-
tion profile is sketched in Figure 9, indicating that the
enhancement of the value of Sc decrements the liquid con-
centration profile. The ratio of two properties such as
momentum diffusion to mass diffusion is referred to as Sc.
Therefore, for the larger value of Sc, the mass diffusion is
due to momentum diffusion. While Sc increments, because
of less mass diffusion and smaller DB, the ΦðηÞ profile
diminishes.

The thermal Grashof number and nonlinear thermal
Grashof enhance the fluid motion and consequently decline
the skin friction as shown in Figures 10 and 11.
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Figure 11: Skin friction versus nonlinear thermal Grashof number.
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Figure 12: Skin friction versus mass Grashof number.
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Furthermore, the effect is comparatively more impressible
using the hybrid nanofluid.

The mass Grashof number and nonlinear mass Grashof
strengthen the fluid velocity and consequently decline the
skin friction as shown in Figures 12 and 13. Furthermore,
the effect is comparatively more impressible using the hybrid
nanofluid.

The hybrid nanofluids have the tendency to improve the
thermal efficiency as shown in Figure 14. The heat transfer
rate is comparatively more effective using the hybrid nano-
fluids. Physically, the thermal combined thermal conductiv-
ity of these nanoparticles is more reliable for the
enhancement of heat transfer.

The mass transfer declines with the increasing amount of
Sc as shown in Figure 15. The Schmidt number also declines
the concentration for its increasing values; that is why the
mass transfer also declines.

The present work is compared with the published work
[60] as shown in Table 1 by considering the common
parameters. It is concluded that the obtained results closely
agreed with the published work.

4. Conclusion

In the present section, we evaluated the nonlinear con-
vective fluid flow over an inclined plane considering heat
and mass transfer analysis. The nonlinear convection is
mainly focused to study the flow field down the inclined
plane.

The highlights of the current work are as follows:
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Table 1: Comparison of the present work with published work [63]
considering −ðkηf /kf ÞΘ′ð0Þ.

− kηf /kf
� �

Θ′ 0ð Þ
[65]

Pr − kηf /kf
� �

Θ′ 0ð Þ
Present

6 0.789320421 0.789331322

7 0.77842876231 0.7784421573

8 0.76776543212 0.7677432641
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(i) The nonlinear convection provides two Grashof
numbers that represent linear and nonlinear phe-
nomena. The greater values of both the thermal
Grashof numbers increase the fluid motion for its
larger values

(ii) The mass Grashof numbers also used nonlinear and
are more relevant to the natural phenomena. The
increasing values of these parameters improve the
fluid motion

(iii) The obtained results illustrate that hybrid nano-
fluids are more affective for the heat transfer
analysis

(iv) The concentration field reduces with the greater
value of Sc
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This manuscript studies the impact of the heat and mass flow and chemical reaction with electromagnetic field and heat flow of
non-Newtonian Walter-B nanofluid via the uniform magnetic field. A mathematical model is used to simulate the arisen
nonlinear partial differential equations (PDEs). By employing the suitable transformations, the system of PDEs is then
transformed to a nonlinear system of ordinary differential equations (ODEs). The impact of the pertinent parameters on the
velocity profile, energy, and concentration distribution has been discussed. These nonlinear coupled equations were addressed
analytically by implementing an efficient and validated analytical method, where Mathematica 11.0 programming code is
established for simulating the flow system. Stability and convergence analysis have been performed in order to improve the
accuracy of the flow system. In order to gain physical insight, the effects of dimensionless parameters on flow fields are
investigated. In addition, the impression of system parameters on skin-friction, heat transfer coefficient, and mass flow rate
profiles is also debated.

1. Introduction

Nanomaterials have been of great interest to engineers as
well as to scientists during the previous decades. As a matter
of fact, nanomaterials are known to enhance the thermal
conductivity of base fluids. The first one who suggested the
addition of carbon nanotubes and solid particles in base
fluids was Maxwell [1]. The results achieved were motiva-
tional; however, some problems were raised such as pressure
drop enhancement and pipe erosion. Then, Choi et al. [2]
proposed the notion of carbon nanotubes and nanoscaled
particles in base fluids and named them as nanofluids.

Metals, such as Ag and Cu, and metal oxides, such as
Al2O3 and CuO, are the most widely used nanoparticles.
Improved nanofluids’ thermal conductivity has important
applications not only in domestic heating but also in heat
exchangers and cooling systems. Nanofluids, discovered by
Choi [3], are colloids composed of nanoparticles and base
fluid. Nanoparticles have thermal conductivity, typically
greater in magnitude than base fluids and significantly
smaller in size than 100nm. The work of nanoparticles
greatly improves the heat transfer efficiency of the base
fluids. Basic fluids can be water, synthetic liquids, fats, lubri-
cants and blood. Nanoparticles are synthetic materials with
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substantial use in biomedicine because of the special manner
in which they interact with matter. Hybrid nanofluids are a
particular type of nanofluid. Hybrid nanofluids are formed
by the suspension in the base fluid of two or more kinds of
nanoparticles with hybrid nanoparticles. Hybrid nanoparti-
cle is a specific substance that integrates the physical and
chemical characteristics of different materials at the same
time and has been commonly used in the production of anti-
tumor medicines. Some studies that discuss nanofluids and
hybrid nanofluids are reported in the refs. [4–10]. Magnetic
fluid flow due to the rotating body has potential applications
in biomedical sciences, electronic devices, and aerodynamics
[11]. Hafeez et al. investigated the flow of an Oldroyd-B fluid
type’s magnetic fluid in a rotating system using modified
Fourier’s law [12]. Reddy et al. reported the influence of
hybrid nanoparticles in a swirling flow using an activation
energy model [13]. Fluid flow investigation in biomicroflui-
dic systems is implemented by the electroosmosis process.
The latter is the principal instrument for the stream activa-
tion in a wide scope of utilization. This electroosmotic tran-
sition takes place in such a way that, as long as the polar
outer layer is connected to the electrolyte device, the coun-
terparts of the electrolyte should be allowed to pass through
the surface of the capacitor and ultimately to build a mem-
brane with a high convergence of counteractors, which is
commonly named after the Stern layer. In addition to the
exterior diffuse coat, the Electric Double Layer (EDL) is
produced in the area of the charged board. Applying the
ambient electrical field to the electroosmotic flow (EOF),
the functional particles in the dispersed area of the EOF
are induced to travel and accomplish fluid displacement,
which is typically known as the “EOF.” Propelled by the
monumental use of the stream of the electroassimilation,
various experiments are investigated [14–18]. Christopher
et al. [19] discussed the chemical reaction consequence on
the flow of hybrid nanoliquid on an SS with Cattaneo–

Christov heat flux. Gowda et al. [20] examined the convec-
tive stream of second grade fluid on a coiled SS with Dufour
and Soret effects. Alhadhrami et al. [21] pondered the LTNE
impact on the flow of Casson liquid on an SS with a porous
medium. Recently, Ali et al. [22–26] conferred the flow of dif-
ferent fluid past stretching surfaces with several influencing
factors by considering different nanoparticles’ suspension.
Another significant nonmechanical micropump is the
electromagnetohydrodynamic (EMHD) which has different
applications, some of which, fluid mixing and pumping along
with flow control in microfluidic systems [27–29]. Lorentz
force is generated because of an electric field force applied
across the channel in the presence of a perpendicular mag-
netic field force. Reddy et al. reported the influence of hybrid
nanoparticles in a swirling flow using an activation energy
model [13]. Khan demonstrated the transportation of hybrid
nanoparticles in convective flow due to a rotating plate [30].
Hayat et al. considered the viscous dissipation and Joule heat-
ing in the flow due to a rotating plate with variable thickness
[31]. The following references [32–37] provide more about
thermal radiation and activation energy.

In this study, we explored the nature of stagnation point
flow of nanoliquid driven by stretching surface. The role of
Brownian motion and thermophoresis is also considered in
modeling the flow system. The mechanisms of heat and
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Figure 1: (a) ℏ − curves for FðςÞ and θðςÞ functions. (b) ℏ − curves for φðςÞ function.

Table 1: The allowable ranges for convergence solutions.

Approximate
solutions

Auxiliary
parameters

Convergent
intervals

F ςð Þ ℏF −1:4 ≤ ℏF ≤ −0:4
θ ςð Þ ℏθ −1:2 ≤ ℏθ ≤ −0:5
φ ςð Þ ℏφ −0:7 ≤ ℏφ ≤ −0:3
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mass flow are also are examined. The arisen nonlinear
partial differential equations are altered to ODEs via trans-
formations and then solved analytically [38–40]. Following
are the key points of this investigation:

(i) The main goal of this study is to examine the two-
dimensional incompressible Walters-B nanofluid
flow over a stretching sheet. Furthermore, the graphs
are also used to discuss the variations in detailed
profiles as a consequence of several dimensionless
parameters

(ii) To study time subservient Walter-B fluid flow
resulting from the impression of heat and mass
transfer

(iii) Mathematical modeling of the fundamental flow
equations comprises momentum, energy, and diffu-
sion balances

2. Problem Formulation

Consider the magnetohydrodynamic MHD flow of a
Walter-B non-Newtonian nanofluid with heat transfer tran-
sient through a two-dimensional conduit. The impact of
Brownian and thermophoretic effects is considered into the
account. Additionally, the thermal radiation, Joule heating,
viscous dissipation, and heat generation/absorption charac-
teristics are taken into consideration. The fluid is electrically
conductive in nature along with uniform magnetic field B0
in normal direction. Based on these assumptions with the
approximations of the boundary layer, the basic equations
of Walter-B fluid reduced as follow [31]:

∂�u
∂�x

+ ∂�v
∂�y

= 0, ð1Þ

0 1 2 3 4 5

0.0

0.2

0.4

0.6

M = 0.3

(ς)

F′
 (ς

)

M = 0.6
M = 1.1
M = 1.6

0.8

1.0

Figure 2: Plot of F ′ðςÞ via diverse M.
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�u
∂�u
∂�x

+ �v
∂�u
∂�y

= ue
∂ue
∂�x

+ ν
∂2�u
∂ �yð Þ2 −

k0
ρf

�u
∂3�u

∂�x∂ �yð Þ2 + �v
∂3�u
∂ �yð Þ3

 

+ ∂�u
∂�x

∂2�u
∂ �yð Þ2 −

∂�u
∂�y

∂2�u
∂�x∂�y

!
+ σB2

0
ρf

ue − �uð Þ

+ gβT
�T − �T∞
� �

− gβC
�C − �C∞
� �

,
ð2Þ

�u
∂�T
∂�x

+ �v
∂�T
∂�y

= α
∂2�T
∂�y2

−
1
ρcð Þf

16σ∗
3k∗

∂
∂�y

�T3 ∂�T
∂�y

� �
+ σB2

0�u
2

ρcð Þf

+ τ DB
∂�C
∂�y

∂�T
∂�y

+ DT
�T∞

∂�T
∂�y

� �2" #

+ Q0
ρcð Þf

�T − �T∞
� �

,

ð3Þ

�u
∂�C
∂�x

+ v∗
∂�C
∂�y

=DB
∂2�C
∂ �yð Þ2

 !
+ DT

�T∞

∂2�T
∂ �yð Þ2

 !

− k2r e
−Ea/kT∗ �T

�T∞

� �m

�C − �C∞
� �

,
ð4Þ

with boundary postulates [31]

�u = uw �xð Þ = c1�x, v = 0,−k ∂
�T
∂�y

= �Ts − �T
� �

h1,−DB
∂�C
∂�y

= �Cs − �C
� �

h2 : �y = 0

�u = ue = c2�x, �T ⟶ �T∞, �C⟶ �C∞ : �y⟶∞,
ð5Þ

whereas ð�u, �vÞ are velocity component in �x − and �y − direc
tion, ue is the free stream velocity, DB Brownian motion,
DT thermophoretic coefficient, g gravitational acceleration,
�C fluid concentration, �T temperature; α = k/ρcf thermal
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Figure 5: Plot of F ′ðςÞ via diverse λ.
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diffusion coefficient, ν = μ0/ρf kinematic viscosity, σ∗ is
the Stefan-Boltzmann constant, k∗ absorption coefficient,
β�C denote the solutal expansion coefficient, β�T thermal
expansion coefficient, τ heat capacity ratio, σ electrical
conductivity, Q0 heat generation/absorption, Ea activation
energy, �Ts surface temperature, �Cssurface concentration,
h1 heat transfer coefficient, h2 mass transfer coefficient,
m fitted rate constant, kr reaction rate, �T∞ ambient tem-
perature, �C∞ ambient concentration, and k0 short memory
coefficient.

Adopting the local transformation similarity [31]:

�u = c1�xF ′ ςð Þ, �v = − c1νð Þ1/2F ςð Þ, ς =
ffiffiffiffi
c1
ν

r
�y, θ =

�T − �T∞
�Ts − �T∞

, φ =
�C − �C∞
�Cs − �C∞

,

ð6Þ

After incorporating Equation (6), one gets the dimen-
sional Equations (2)–(5) into dimensionless form:

F ′′′ − F ′2 + FF ′′ +We F ′′2 − 2F ′F ′′′ + FF ′′′′
� �

+M A − F ′
� �

+ A2 + λ θ +Nφð Þ = 0,
ð7Þ

1 + 3
4R 1 + θf − 1

� �
θ

� �3� �
θ′

� �
′

+ Pr Fθ′ +Nbθ′φ′ +Ntθ′2 +MEcF′2 + Sθ
� �

= 0,
ð8Þ
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Figure 7: Impact of M on temperature field.
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φ′′ + ScFφ′ + Nt
Nb

� �
θ′′ − Scσ 1 + δ1θð Þmφ exp −E1

1 + δ1θ

	 

= 0,

ð9Þ

F = 0, F ′ = 1, θ′ = −α 1 − θð Þ, φ′ = −β 1 − φð Þ:
ς = 0 and F ′ = A, θ = 0, φ = 0 : ς =∞

ð10Þ

where We = k0c1/μ0 is the Weissenberg number, λ = gβ�T /c21
�xð�Ts − �T∞Þ mixed convection parameter, M = σB2

0/ρf c1
magnetic parameter, N = gβ�C/c21�xð�Cs − �C∞Þ ratio of thermal
to concentration buoyancy forces, Nt = τDT /T∗

∞νð�Ts − �T∞Þ
thermophoresis force, Nb = τDB/νð�Cs − �C∞Þ Brownian

motion, δ1 = �Ts − �T∞/�T∞ temperature difference, R = 4σ∗
ðT∞Þ3/kk∗ radiation factor, S =Q0/ðρcÞf c1 heat generation

factor, Ec = �u2w/cf ð�Ts − �T∞Þ Eckert number, B1 = h1/k
ffiffiffiffiffiffi
v/yp

thermal Biot number, B2 = h2/DB
ffiffiffiffiffiffi
v/yp

Biot number, Pr =
μcp/k Prandtl number, Sc = ν/DB Schmidt number, σ = k2r /
c1 dimensionless reaction rate, A = c2/c1 ratio of constants,
θF = �Tw/�T∞ temperature ratio parameter, and E1 = Ea/κ�T∞
activation energy.

The physical quantities for the engineering practical and
usefulness are the local skin friction, temperature gradient,
and concentration gradient. The dimensionless form of these
quantities is, respectively, expressed as follows

ffiffiffiffiffiffiffi
Rex

p
Cf x = 1 − 3B dF

dς
d2F
dς2

 !
ς=0

, ð11Þ

NuxffiffiffiffiffiffiffiRex
p = − 1 + 4

3R 1 + T f − 1
� �

T
� �3� �

dθ
dς

����
ς=0

, ð12Þ
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Figure 9: Impact of Nb on temperature field.
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One can obtain the Cf x in nondimensional form by
substituting Equation (12) in Equation (12):

ShxffiffiffiffiffiffiffiRex
p = −

dφ
dς

����
ς=0

, ð13Þ

Rex = c1x
2/ν is the local Reynold number.

3. Convergence and Stability Analysis

The series solutions developed by the homotopic analysis
method (HAM) comprise the convergence control parame-
ters ℏF , ℏθ and ℏφ [36–38]. These convergence control
parameters are effective at regulating and controlling the
series solution convergence region. The admissible values
are attained by the flat parts of the ℏ − curves. Figure 1 dis-
plays the acceptable ranges of ℏF , ℏθ and ℏφ are −1:4 ≤

ℏF ≤ −0:4, −1:2 ≤ ℏθ ≤ −0:5 and −0:7 ≤ ℏφ ≤ −0:3. Table 1
display the convergence region for the approximate solutions.

4. Discussions

This section discusses the graphical implications of the phys-
ical dimensionless quantities on the relevant profiles. By
selecting appropriate similarity variables, the equations that
reflect the specified flow are converted first into ODEs. To
clearly understand the behavior of flow profiles, an analytical
scheme is adopted, which is strategized and debated using
graphs.

Figure 2 portrays the sway of M on velocity F ′ðςÞ por-
traits of stagnation point flow of nanofluids. It is noticed that
velocity distributions diminish with higher values of mag-
netic parameter M. In reality, the fluid viscosity increases
as M apply to any fluid due to which magnetic field power
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increase. In consequences, Lorentz force is produced which
slows down the fluid flow significantly. It is observed from
Figure 3 that the velocity sketches are enhance in the entire
flow domain of nanofluid with the increasing values of ratio
parameter A. Figure 4 reveals the sway of Weissenberg
number We on velocity sketches of stagnation point flow
of nanofluid. It is pointed out that in the intensification in
F ′ðςÞ field with step up values ofWenumber. The sketches
of velocity fields with augmented values of mixed convection
parameter λ in the flow domain are illustrated through
Figure 5. This is owing to the fact that the increasing values
of λ increase the buoyancy force. Consequently, F ′ðςÞ pro-
files increase. It is detected from Figure 6 that the F ′ðςÞ pro-
files of the nanofluid intensify in the fluid region with higher
estimation of ratio of thermal to concentration buoyancy
forces N .

The distribution of θðςÞ temperature of nanofluid with
step up values of M is presented in Figure 7. It is observed

that boundary layer thickness improves with incrementing
values of M. This is due to the fact that Lorentz force which
acts against the fluid flow direction, hence the enhancement
in θðςÞ profiles with increasing values ofM in the entire fluid
flow. Attributes’ features of radiation parameter R on θðςÞ
are exposed in Figure 8. It is perceived from this plot that
the θðςÞ sketches enhance in the entire flow of nanofluid
with increasing data of R. The sketches of θðςÞ field with
augmented values of Nb in the flow region are describes
through Figure 9. The energy sketches are enlarged with
increasing data of Nb. This owes due to the motion of nano-
particles in the base fluid that is influenced by the motion of
particles, and it moves from hot surface region and is related
to the size and agglomeration of molecules. It is observed in
Figure 10 that θðςÞ intensify subject to increasing value of Nt
parameter. In reality, the thermophoretic forces and the
nanoscale solid particles in the base liquid produce warm
surfaces in the boundary layer region. Thus, θðςÞ of nano-
fluid in the entire fluid flow boosts. The effect of thermal
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Biot number B1 on θðςÞ is portrayed in Figure 11. It is cog-
nized that temperature profiles of nanofluid increase with
rising values of B1. Figure 12 explains the effect of heat gen-
eration parameterS on θðςÞ thermal curves. The energy field
of the nanofluid increases with larger estimation of S. Phys-
ically, upsurging values of S add extra thermal energy to the
entire flow domain. Variation in θðςÞ energy profiles is
shown in Figure 13. The thermal field θðςÞ sketches enhance
in the entire flow of nanofluid with increasing data of Ec.
Figure 14 discloses the sway of Pr on θðςÞ sketches of

nanofluid. It is noticed that thermal diffusivity decreases
with the incrementing values of Pr. Hence, θðςÞ curves
decline.

Figure 15 describes the power of E1 on φðςÞ concentra-
tion distribution nanofluids. It is pointed out that φðςÞ aug-
mented with upsurging values of E1. Figure 16 shows the
role of Sc on φðςÞ. The improving values of Sc diminish
the concentration profiles. The lower values of Sccorre-
spond to the uppermost φðςÞ of nanoscale materials. In an
increment in theSc, there is a decline in theφðςÞdue to the
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mass diffusion. The impression of B2 on φðςÞ is revealed
in Figure 17. The increasing data of B2 enhances φðςÞ pro-
files. One can observe that φðςÞ is the increasing function
of B2. Figure 18 displays the variation of Cf x for diverse
values of M and A. As expected, both parameter the sur-
face drag force with larger estimation of these factors.

Figure 19 shows the variation of Nux for unlike values
of Nb and Nt. It has been detected from this plot that
Nux gets dwindled for higher values of these parameters.
Figure 20 shows the deviation in mass flow rate coefficient
Shx . As witnessed, mass transfer rate increases for increas-
ing data of Nb and Sc.
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5. Conclusions

From this study, the following conclusions can be drawn:

(i) It has been noticed that boundary layers in F ′ðςÞ
profiles diminish for incrementing data of M and
We, whereas increasing the A, N , and λ caused
the F ′ðςÞ profiles to upsurge

(ii) The thermal field curves and heat transfer rates got
boost due to augmentation inM, R, S, and Ec along
with Nb, Nt, and B1

(iii) With the upsurge in the Pr, the fluid thermal energy
and related thickness dwindle

(iv) The fluid concentration curves increase owing to
increase B2, E1, and Nt. Moreover, increasing Nb
and Sc caused the temperature profiles to diminish

(v) The surface drag force coefficient Cf x enhances
with higher data of M and A parameters

(vi) It has been found that the heat transfer coefficient
Nux decays via increasing values of Nb and Nt
parameters

(vii) Uprising of mass flow rate Shx is detected for the
increasing values of Sc and Nb parameters
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The goal of the current research is to evaluate a 3D stagnation point flow of Darcy Forchheimer’s hybrid nanofluid (NF) through a
heated wavy flexible cylinder under the influence of slip conditions and varying thickness. A numerical model is developed for the
purpose to magnify the energy and mass transmission rate and maximize the efficiency and performance of thermal energy
conduction for a variety of commercial and biological purposes through methanol-based hybrid NF flow consisting of cobalt
ferrite and copper nanoparticles. Due to their inclusive range of applications, copper and cobalt iron oxide nanoparticles are
gaining a lot of attention in medical and technical research. The model has been articulated in the form of a set of PDEs,
which are reduced by the resemblance substitutions to the system of ODEs. The obtained 1st-order differential equations are
further processed by the computational strategy PCM. For the sake of accuracy and credibility, the values are verified with the
bvp4c package. The findings are physically exhibited and analyzed. It has been observed that the induced magnetic field lessens
with the upshot of the magnetic term and enhances under the action of magnetic Prandtl number M. The energy profile
declines due to the variation of thermal jump constraint and boosts with the absorption and generation term.

1. Introduction

The flow around convex and concave bodies have been stud-
ied extensively in order to ensure the safety of the buildings
by minimizing vortex-flaking, which causes a substantial
amount of drag, noise, and vibration. Shape alteration is
used as a flow control strategy as geometric interruptions
[1]. Flow within a circular cylinder is used in many engineer-
ing mechanisms, but far less study has been conducted on

flow over a cylinder in a constrained domain, such as flow
in a horizontal channel or pipe flow. Many circumstances,
such as blood flow via surgical supplies in veins and flow
through cylindrical items near walls, necessitate consider-
ation of wall effects while scaling a problem. Furthermore,
whereas unstructured and random forms of external rough-
ness, such as those seen in nature, have been studied, other
types of organized roughness have not. A 3D printed solid
with regular sinusoidal ridges may take curliness on its
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exterior [2]. When heat generation is created, Salahuddin
et al. [3] investigated the differently designed nanomaterials
that influenced the thermodynamic effectiveness and flow
performance of nanoliquid flow owing to rigid and sinusoi-
dal barriers. To assess the aerodynamic workloads of a 5 : 1
rectangular sinusoidal radius cylinder, Wu et al. [4] used a
wind tunnel with numerous active mechanisms. Changing
the amplitude and frequency results in a streamwise
sequence that is completely coherent, Bilal et al. [5] investi-
gated a nonuniform Maxwell nanoliquid flow across a
stretched cylinder accompanied by a nonfluctuating suc-
tion/injection. It has been shown that the angular momen-
tum of mass propagation grows considerably when the
thermophoresis ratio is increased, but radial and angular
velocity declines as the viscosity element is improved. Seo
et al. [6] demonstrated a numerical estimation of a 3D flow
through a rectangular enclosure. In comparison to a circular
cylinder, the sinusoidal cylinder was tested to see if it might
enhance total heat conduction efficiency. The influence of
the cylinder shape on heat transition was noticeable, with
performance improving by up to 27%. Bilal et al. [7] use
up an angled extendable tube to explore the iron oxide
Fe3O4 and carbon nanotube (CNT) hybrid nanofluid
(HNF). The conclusions reveal that hybrid NF is the best
heat enhancer and may be used for both heat transmission
and cooling purposes. Some further applications, uses, and
flow models can be found in [8–10].

In comparison to common fluids like gasoline, freshwa-
ter, solo nanoparticle nanofluids, and acetylene, HNF is a
revolutionary type of fluid that excels at energy conversions.
HNFs can be used for a variety of thermal applications, as
well as freezing in high-heat environments [11]. Hybrid
NFs are used in solar energy, heat pumps, heat converters,
air conditioners, automobile industry, electrical coolers, gen-
erators, radioactive systems, transmitters, ships, and biosci-
ence. In this work, we are focusing on copper (Cu) and
cobalt ferrite (CoFe2O4) NPs in the universal solvent water.
Copper NPs in plant water extracts may be generated using
a “green” chemical method called electrodeposition. Copper
nanoparticles are being used as carriers for new antitubercu-
lar drugs [12]. Copper acts as an antifungal, antibiotic, and
antimicrobial agent when it is added to freshwater for coat-
ings, polymers, and textiles. Dietary supplements containing
copper have a high absorptivity. Copper alloys and metals
have high tensile strength [13]. Cobalt (Co) and iron (Fe)
are metals. Fe lowers interstitial resistance, allowing for
charge/ion mobility on the surface and a considerable
increase in specific capacitance [14]. The use of imaging
techniques like MRI, PET, and CT scan, among others, has
proved crucial in detecting diseases efficiently. MRI is the
most versatile of them all since it can provide both func-
tional and morphological information while keeping excel-
lent image quality. To make it more functional, bimagnetic
particles are used. Bimagnetic core-shell cobalt ferrite NPs
have emerged as a feasible option for generating new MRI
contrast agents with improved magnetization. Bimagnetic
NPs may also be used for drug transport and photothermal
treatment, making them suitable entrants for the progress
of novel nanotheragnostic drugs. Magnetic hydrotherapy is

used to treat tumors because cancer cells are more sensitive
to tiny temperature variations than healthy tissue. As a
result, a rise in local temperature generated by the accumu-
lation of magnetic NPs can kill cancer cells in the tumor
while having little effect on normal tissues [15].

Several mathematicians and researchers address the
mathematical approach to the abovementioned applications
and challenges. Bilal et al. [16], for example, looked at the
effects of electric and magnetic forces on the flow of water-
based ferrous oxides and carbon nanotubes hybrid NFs over
two revolving surfaces. The electric factor boosts the
momentum boundary layer while lowering the thermal fac-
tor. Ramesh et al. [17] performed the covalent bonding reac-
tion and activation energy characteristics in the flow of HNF
through a stream-wise location using CoFe2O4 and Fe3O4 in
EG+water. Wang et al. [18] employed an MWCNT-Fe3O4
hybrid nanoliquid to model the effects of metallic foam
and nanomaterial on a typical solid heat sink’s thermal effi-
ciency. Ibrahim et al. [19] assessed the effect of turbulators
on enhancing energy efficiency, as well as the hydraulic effi-
ciency of Cu water HNF in a solar accumulator, using
numerical simulations and ANSYS software. The influence
of concave and convex shape on the flow of a radiative
hybrid NF (SiO2-MoS2/water) was investigated by Yaseen
et al. [20]. The thermal efficiency boosts by 15.47 percent
for flow over convex-shaped sheets and 14.28 percent for
flow over beveled edge sheets when the volume percentage
of SiO2 nanocrystals is raised from 1% to 5%. Wang et al.
[21] experimentally and technically assessed the FeZn4Co/
CNF electrocatalyst and discovered these nanomaterials.
References [22–25] contain some relevant literature and
applications of Cu and CoFe2O4 NPs in water for biomedical
and engineering objectives.

Magnetization is among the most essential factors in
manufacturing and engineering, with numerous uses. The
interplay of fluid nanomaterials with magnetic fields affects
the quality of various industrial items such as heat
exchangers, gearboxes, and compressors. The impact of
magnetic fields can regulate and make accessible the rate of
cooling of numerous industrial devices. Magnetic fields are
vital in interplanetary and astronomical magnetosphere
applications, as well as aeronautic technologies and chemical
science. The strength and distribution of the administered
magnetics have a significant impact on the flow properties.
Many academics submitted research articles in fluid
mechanics that described the flow features under the influ-
ence of MHD. Hayat and Noreen [26] explored the role of
thermal expansion and a generated MHD on the oscillatory
transport of a 4th-order fluid across a vertical tunnel. Raju
et al. [27] considered the cumulative implications of heat
exchange and the exponential component on MHD flow
across a semiplate. Some recent literature related to MHD
hybrid nanofluid exists in [28–30].

The objective of this study is to build on a concept pro-
posed by Salahuddin et al. [31] by investigating the effects of
methanol-based hybrid NFs consisting of Cu and CoFe2O4
nanoparticles on heat and mass transmission. The fluid flow
has been examined in a heated wavy flexible cylinder under
the upshot of slip condition, variable thickness, Darcy
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Forchheimer, heat absorption/generation, and chemical
reaction. The second intention is to improve thermal energy
conduction productivity and performance for a variety of
commercial and biological applications. The PCM approach
is used to simulate the problem, and the results are com-
pared to those obtained using the Matlab software bvp4c.

2. Mathematical Formulation

We supposed the steady 3D stagnation point flow of HNF
flow over a heated stretchy wavy cylinder. The hybrid NF
is a solution of copper Cu and cobalt ferrite CoFe2O4 nano-
material in methanol fluid. The cylinder is located on xy
-surface where the fluid is considered at z > 0. We suppose
that the cylinder radius is extreme at point A called the nod-
dle point through which fluid flow passes. Along the y-axis
the wavy side of the cylinder is fixed, where the z-axis and
x-axis are normal and upright to the wavy cylinder surface.
Functions ue = ax and ve = bx epitomize the component of
velocity at the stagnation point A. Here a and b are con-
stants, in such a way jbj ≤ jaj, 0 < a (see Figure 1).

Furthermore, we are analyzing the comportment of
hybrid NF flow under the act of persistent magnetic field
partaking uniform strength M0. We suppose that M1, M2,
and M3 are the magnetic field components in the directions
of x, y, and z, respectively. At the cylinder surface, M1 and
M2 approach to MeðxÞ and MeðyÞ, where M3 has vanished.
Here, T1 and Tw are the surface and wall temperatures of
the cylinder. The fundamental calculations that regulate
the fluid flow are defined as follows [31]:

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0, ð1Þ

∂M1
∂x

+ ∂M2
∂y

+ ∂M3
∂z

= 0, ð2Þ

u
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∂x

+ v
∂u
∂y

+w
∂u
∂z

−
μe

4πρhnf
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∂M1
∂x

+M2
∂M1
∂y

+M3
∂M1
∂z

� �

= ρhnf
∂2u
∂z2

+ a2x −
μe

4πρhnf

Me xð Þ dMe xð Þ
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ν
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∂T
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∂T
∂y
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� �
= αhnf
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� �
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 !
− Kc C − C∞ð Þ:

ð8Þ

Here, Kr is chemical reaction rate, R1 and R2 are the slip
terms, Q0 is the heat source term, k∗ is the porosity term,
MeðxÞ = xM0 and MeðyÞ = yM0 show the magnetic strength
in x, y direction, and F = xCb/rk∗1/2 is the nonuniform iner-
tia factor constant.

Here Equation (1) describes the conservation of mass.
Equation (2) shows the magnetic flux. Equations (3) and
(4) are the momentum equations that pronounce the con-
duct of fluid flow. Equations (5) and (6) represent magnetic
induction. Equations (7) and (8) are the energy and mass
equations that describe the energy and mass transference
around and near the wavy surface of the cylinder.

The initial and boundary conditions are as follows:

u = uw + μhnfR1
∂u
∂z

, v = vw + μhnfR1
∂v
∂z

,w = 0,M1 =M2

=M3 = 0, T = Tw + khnfR2
∂T
∂z

, C = C0 at z = 0

u⟶ ue, v⟶ ve,M1 ⟶Me xð Þ,M2 ⟶Me yð Þ,
T ⟶ T∞, C⟶ C∞ at z⟶∞:

ð9Þ

C B A

+ + =

Bo

Cu CoFe2O4 Methanol Hybrid nanofluid

Figure 1: The hybrid nanofluid flows in a wavy heat cylinder.
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The transformation variables are as follows:

u = axf ′ ηð Þ, v = byg′ ηð Þ,w + f ηð Þ + cg ηð Þð Þ ffiffiffiffiffi
av

p
= 0,

M1 = xM0h1 ηð Þ = 0,M2 = yM0h2 ηð Þ = 0,

M3 +
νf

a

� �1/2
h1 + h2ð ÞM0 = 0, η =

ffiffiffiffiffi
a
νf

s
z, T = T∞

+ Tw − T∞ð ÞΘ ηð Þ, C = C∞ + Cw − C∞ð ÞΦ ηð Þ
ð10Þ

By incorporating Equation (10), we get the following:

ℏ1
ℏ2

1 + cg + fð Þf ″ − β

ℏ2
h1h″

2
1 + h2h1″ + 1

� �
+ 1 − Frf ′2 = 0,

ð11Þ

ℏ1
ℏ2

1 + cg + fð Þg″ − β

ℏ2
h2h″

2
2 + h1h2 + 1

� �
+ c − Frcg′2 = 0,

ð12Þ

h1″ + h1′ f − f ″h1 − f ″h2 + ch1′g
� �

M = 0, ð13Þ

h2″ + h2′ f − cg″h1 − cg″h2 + ch2′g
� �

M = 0, ð14Þ

ℏ4
ℏ3

Θ″ ηð Þ +Θ′ ηð Þ + cΘ′ ηð Þg +Q0Θ ηð Þ = 0, ð15Þ

ℏ6φ″ ηð Þ + φ′ ηð Þ + cφ′ ηð Þg + Krφ ηð Þ = 0: ð16Þ

The transform conditions are as follows:

f 0ð Þ = 0, f ′ 0ð Þ = δ1 ℏ1 f ″ ηð Þη=0, g 0ð Þ = 0, g′ 0ð Þ = ℏ1 δ1 g″ ηð Þη=0, h1 0ð Þ = 0, h2 0ð Þ = 0

Θ 0ð Þ = δ2 ℏ4,Φ 0ð Þ = 1 at η = 0
f ′ ηð Þ⟶ 0, g′ ηð Þ⟶ 0, h1 ηð Þ⟶ 1, h2 ηð Þ⟶ 1,Θ ηð Þ⟶ 0,Φ ηð Þ⟶ 0 as η =∞

9>>=
>>;:

ð17Þ

Here, ℏ1 = μhnf /μbf , ℏ2 = ρhnf /ρbf , ℏ3 = ðρCpÞhnf /ðρCpÞbf ,
ℏ4 = khnf /kbf , ℏ5 = σhnf /σbf , ℏ6 =Dhnf /Dbf .

Here, h1 and h2 are magnetic field dimensionless terms. δ1
and δ2 are the velocity and thermal slip coefficient, where β is
the magnetic parameters,Kr is the chemical reaction term, λ is
the porosity term, Fr is the Forchheimer number, and Q1 is
the heat absorption and generation term defined as follows:

β = μe
4πρf

M0
a

� �2
,M =

νf

η0
, Kr = Kc 1 − λtð Þ

c
, λ = ν

k∗Ω
, Fr = Cb

k∗1/2
,Q1 =

xQ0
ρCp

:

ð18Þ

Here, μe and η0 are the magnetic absorptivity and
diffusivity.
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Figure 2: The presentation of velocity ð f ðηÞ, gðηÞÞ profile versus (a, b) magnetic parameter β and (c, d) velocity slip parameter δ1.
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The interest physical quantities are as follows:

Cf x
= τwxjz=0

u2wρf
, Cf y
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τwy
��
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v2wρf
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The dimensionless form of Equation (19) is as follows:

Re1/2Cf x =
cy
xℏ1

f ″ 0ð Þ, Cf y =
cy
xℏ1

g″ 0ð Þ, Re1/2Nux

= −
khnf
kf

Θ′ 0ð Þ, Re−1/2Sh = −Φ′ 0ð Þ:
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3. Numerical Solution

The main phases, while employing the parametric method-
ology, are as follows [34–38]:

Step 1. Simplifying the modeled equations

ϑ1 = f ηð Þ, ϑ2 = f ′ ηð Þ, ϑ3 = g ηð Þ, ϑ4 = g′ ηð Þ, ϑ5 = h1 ηð Þ, ϑ6 = h1′ ηð Þ,
ϑ7 = h2 ηð Þ, ϑ8 = h2′ ηð Þ, ϑ9 ηð Þ =Θ ηð Þ, ϑ10 =Θ′ ηð Þ, ϑ11 =Φ ηð Þ, ϑ12 =Φ′ ηð Þ

)
:

ð22Þ

By putting (22) in (11)–(16) and (17), we get the follow-
ing:

ℏ1
ℏ2

1 + cϑ3 + ϑ1ð Þϑ2′ −
β

ℏ2
ϑ5ϑ′

2
6 + ϑ7ϑ1′ + 1

� �
+ 1 − Frϑ2

2 = 0,

ð23Þ

ℏ1
ℏ2

1 + cϑ3 + ϑ1ð Þϑ4′ −
β

ℏ2
ϑ7ϑ′

2
8 + ϑ5ϑ7 + 1

� �
+ c − Frcϑ4

2 = 0,

ð24Þ

0.8

0.6

0.4

0.2

0.0

0 2 4 6 8 10

f ′
 (𝜂

)

𝜂

𝜙1 = 0.01, 0.02, 0.03, 0.04.𝜙1 = 0.01, 0.02, 0.03, 0.04.

(a)

𝜂

0.8

0.6

0.4

0.2

0.0

0 2 4 6 8 10

f ′
 (𝜂

)

𝜙1 = 0.01, 0.02, 0.03, 0.04.𝜙1 = 0.01, 0.02, 0.03, 0.04.

(b)

0.8

0.6

0.4

0.2

0.0

0 2 4 6 8 10

f ′
 (𝜂

)

𝜂

Fr = 1.1, 1.3, 1.5, 1.7.Fr = 1.1, 1.3, 1.5, 1.7.r

Cu/Methonal
Fe2 O4/Methonal

(c)

Figure 3: The performance of velocity f ðηÞ profile versus (a) copper ϕ1 nanoparticles, (b) cobalt ferrite ϕ2 nanoparticles, and (c) Darcy
Forchheimer Fr.
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ϑ6′ + ϑ6ϑ1 − ϑ2′ϑ5 − ϑ2′ϑ7 + cϑ6ϑ3
� �

M = 0, ð25Þ

ϑ8′ + ϑ8ϑ1 − cϑ4′ϑ5 − cϑ4′ϑ7 + chϑ8ϑ3
� �

M = 0, ð26Þ

ℏ4
ℏ3

ϑ10′ ηð Þ + ϑ10 ηð Þ + cϑ10 ηð Þg +Q0ϑ9 ηð Þ = 0, ð27Þ

ℏ6ϑ12′ ηð Þ + ϑ12 ηð Þ + cϑ12 ηð Þϑ3 + Krϑ11 ηð Þ = 0, ð28Þ
and the transform conditions are as follows:

ϑ1 0ð Þ = 0, ϑ2 0ð Þ = δ1 ℏ1 ϑ2′ ηð Þη=0, ϑ3 0ð Þ = 0, ϑ4 0ð Þ = δ1 ℏ1 ϑ4′ ηð Þη=0, ϑ5 0ð Þ = 0, ϑ7 0ð Þ = 0,

ϑ9 0ð Þ = δ2 ℏ4, ϑ11 0ð Þ = 1 at η = 0,
ϑ2 ηð Þ⟶ 0, ϑ4 ηð Þ⟶ 0, ϑ5 ηð Þ⟶ 1, ϑ7 ηð Þ⟶ 1, ϑ9 ηð Þ⟶ 0, ϑ11 ηð Þ⟶ 0 as η =∞

9>>=
>>;:

ð29Þ

Step 2. Introducing parameter p

ℏ1
ℏ2

1 + cϑ3 + ϑ1ð Þϑ2′ −
β

ℏ2
ϑ5ϑ′

2
6 + ϑ7ϑ1′ + 1

� �
+ 1 − Fr ϑ2

2 − 1
� 	

p = 0,

ð30Þ

ϑ6′ + ϑ1 ϑ6 = 1ð Þp − ϑ2′ϑ5 − ϑ2′ϑ7 + cϑ6ϑ3
� �

M = 0, ð31Þ

ϑ8′ + ϑ1 ϑ8 − 1ð Þp − cϑ4′ϑ5 − cϑ4′ϑ7 + chϑ8ϑ3
� �

M = 0, ð32Þ

ℏ4
ℏ3

ϑ10′ ηð Þ + ϑ10 ηð Þ −ð Þp + cϑ10 ηð Þg +Q0ϑ9 ηð Þ = 0, ð33Þ

ℏ6ϑ12′ ηð Þ + ϑ12 ηð Þ − 1ð Þp + cϑ12 ηð Þϑ3 + Krϑ11 ηð Þ = 0:
ð34Þ

Step 3. Differentiating by parameter “p”
By differentiating Equations (30)–(34) w. r. t parameter p

, we get the following:

V ′ = AV + R, ð35Þ

dζi
dτ

, ð36Þ

where i = 1, 2,⋯⋯ ⋯ 11.

Step 4. Applying the superposition principle

V = aU +W: ð37Þ

For each element, resolve the two Cauchy problems
listed below.
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Figure 4: The performance of induced magnetic field ðh1′ðηÞ, h2′ðηÞÞ profile versus (a, b) magnetic parameter β and (c, d) magnetic Prandtl
number M.
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U = aU , ð38Þ

W ′ = AW + R: ð39Þ
By putting Equation (39) in Equation (37), we get

aU +Wð Þ′ = A aU +Wð Þ + R: ð40Þ

Step 5. Solving the Cauchy problems
By utilizing implicit scheme,

Ui+1 −Ui

Δη
= AUi+1, W

i+1 −Wi

Δη
= AWi+1: ð41Þ

The final iterative form is as follows:

Ui+1 = Ui

I − ΔηAð Þ ,W
i+1 = Wi + ΔηR

� 	
I − ΔηAð Þ : ð42Þ

4. Result and Discussion

The preceding is some of the findings that have been
noticed:

Velocity profile ð f ðηÞ, gðηÞÞ

Figures 2(a)–2(d) particularize the presentation of
velocity ð f ðηÞ, gðηÞÞ profile against the variation of mag-
netic parameter β and velocity slip term δ1, respectively.
Figures 2(a) and 2(b) reveal that the fluid velocity profile
reduces under the upshot of the magnetic term β. Phys-
ically, it is clear that the magnetic field creates resistive
force around its self, which provides hurdles (Lorentz
force) to the flow field, and as a result, fluid flow
declines. Figures 2(c) and 2(d) show that the fluid veloc-
ity diminishes with the varying effect of velocity slip term
δ1.

Figures 3(a)–3(c) illustrate the performance of velocity
f ðηÞ profile against the variation of copper ϕ1 nanoparticles,
cobalt ferrite ϕ2 nanoparticles, and Darcy Forchheimer Fr,
respectively. Figures 3(a) and 3(b) expose that the velocity
field substantially boosts with the action of copper ϕ1 and
cobalt ferrite ϕ2 nanoparticles. The specific heat capacity of
methanol is remarkably greater, while the thermal conduc-
tivity is less than the copper and cobalt ferrite nanomaterials,
that is why the inclusion of hybrid nanoparticles, especially
copper, reduces its average heat-absorbing efficiency, which
results in the enhancement of velocity field. The upshot of
Darcy Forchheimer’s number degenerates the velocity distri-
bution as shown in Figure 3(c).

Induced magnetic field ðh1′ðηÞ, h2′ðηÞÞ
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Figure 5: The performance of energy ΘðηÞ profile versus (a) copper ϕ1 nanoparticles, (b) cobalt ferrite ϕ2 nanoparticles, (c) thermal jump
parameter δ2, (d) heat source term Q1.

7Journal of Nanomaterials



Figures 4(a)–4(d) highlight the presentation of ðh1′ðηÞ,
h2′ðηÞÞ profiles versus β (magnetic constraint) and M.
Figures 4(a) and 4(b) show that the induced magnetic field
profile decreases with the effect of the magnetic parameter
β. Actually, the improving values of magnetic term sup-
pressed the induced magnetic field which indicates deterio-
rating conduct of the induced magnetic field. Figures 4(c)
and 4(d) report that the positive influence of M encourages
the ðh1′ðηÞ, h2′ðηÞÞ profiles. The fundamental reason for this
is that multiplying the ratios of M corresponds to a reduced
magnetic diffusive, resulting in a loss of magnetic field
strength. It improves the curve. Hence, the rising credit of
M improves the induced magnetic field profile.

Temperature profile ΘðηÞ
Figures 5(a)–5(d) illustrate the performance of energy

ΘðηÞ profile against the variation of copper ϕ1 nanoparticles,
cobalt ferrite ϕ2 nanoparticles, thermal jump parameter δ2,
and heat source term Q1. Figures 5(a) and 5(b) explain that
the energy ΘðηÞ profile boosts with the positive variation of
copper ϕ1 and cobalt ferrite ϕ2 nanoparticles. We have dis-
cussed before that the thermal conductivity of fluid
enhances, while specific heat capacity is condensed under
the action of copper ϕ1 and cobalt ferrite ϕ2 nanoparticles.
That is why such a situation has been noticed in Figures 5
(a) and 5(b). Figures 5(c) and 5(d) show an opposite behav-
ior of energy profile versus thermal jump parameter δ2 and
heat source term Q1. The energy profile declines due to the
variation of thermal jump constraint. To put it another
way, the energy field is a diminishing function δ2. Logically,
increasing δ2 enables the wavy cylinder to expand. As a
result of this, the thickness of the cylinder rises, reducing
the energy field curvature. Heat is emitted as energy by
nanosized particles in practice. The more the input of micro-
particles, the greater the heat production as energy. The heat
absorption and generation term Q1 boost the temperature
field because its effect generates heat, which causes the rises
in energy profile as shown in Figure 5(d).
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Figure 6: The performance of concentration ΦðηÞ profile versus (a) copper ϕ1 nanoparticles, (b) cobalt ferrite ϕ2 nanoparticles, and (c)
chemical reaction term Kr.

Table 1: The statistical properties of copper, cobalt iron oxide, and
methanol [32, 33].

ρ (kg/m3) Cp (j/kgK) k (W/mK) σ (S/m)

Methanol 792 2545 0.2035 0:5 × 10−6

Copper (Cu) 8933 385 401 5:96 × 107

CoFe2O4 4907 700 3.7 5:51 × 109
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Concentration profile ΦðηÞ
Figures 6(a)–6(c) report the performance of concentration

ΦðηÞ profile versus copper ϕ1 nanoparticles, cobalt ferrite ϕ2
nanoparticles, and chemical reaction term Kr, respectively.
Figures 6(a) and 6(b) describe that the mass transferΦðηÞ pro-
file improves with the positive deviation of copper ϕ1 and
cobalt ferrite ϕ2 nanoparticulate. We have reviewed earlier
that the thermal conductivity of fluid enhances, while specific

heat capacity is condensed under the action of copper ϕ1 and
cobalt ferrite ϕ2 nanoparticles. That is why such a situation has
been noticed in Figures 6(a) and 6(b). The chemical reaction
coefficient positively affects the mass transfer, because it also
encourages fluid particles to move fast, which results in the
positive variation as elaborated in Figure 6(c).

Tables 1 and 2 exemplify the thermochemical posses-
sions and model of base fluid, copper, and cobalt iron oxide

Table 2: The thermal properties of the hybrid nanofluid ðϕ1 = ϕCu, ϕ2 = ϕCoFe2O4
Þ [32, 33].

Properties

Viscosity μhnf /μbf = 1/ð 1 − ϕCu − ϕCoFe 2O4Þ2

Density ρhnf /ρ bf = ϕCu ρð Cu/ρbf Þ + ϕCoFe2O4
ρCoFe2O4

/
�

ρbf Þ + 1 − ϕCu − ϕð CoFe2O4
Þ

Thermal capacity ρCp

� 	
hnf / ρCp

� 	
bf
= ϕCu ρCðð pÞCu/ ρCp

� 	
bf
Þ + ϕCoFe2O4

ρCp

� 	
CoFe2

�
O4/ ρCp

� 	
bf Þ + 1 − ϕCu − ϕCoFeð 2O4Þ

Thermal
conductivity

khnf /kbf = ϕCukCu + ϕð½ CoFe2O4
kCoFe2 O4/ϕCu + ϕCoFe2 O4Þ + 2kbf + 2 ϕCuð kCu + ϕCoFe2O4

kCoFe2O4
Þ − 2 ϕCu +ð ϕCoFe2O4

Þ
kbf / ϕCukCu + ϕCoFe2O4

�
kCoFe2O4

/ϕCu + ϕCoFe2O4
Þ + 2 kbf − 2 kCuϕCu + kð CoFe2O4

ϕCoFe2 O4Þ + ϕCu + ϕð CoFe2O4
Þ2kbf �

Electrical
conductivity

σhnf /σbf = ϕCuσð½ Cu + σCoFe2O4
ϕCoFe2O4

/ϕCoFe2 O4 + ϕCuÞ + 2σbf + 2 ϕCuσCu + ϕCoFeð 2O4σCoFe2O 4Þ − 2 ϕCu + ϕCoFe2

�
O4Þσbf / ϕCuσCu + ϕCoFe2

�
O4σCoFe2O4

/ϕCu + ϕCoFe2O4
Þ + 2σbf − ϕCuσCuð + ϕCoFe2O4

σCoFe 2O4Þ + ϕCu + ϕð CoFe2O4
Þσbf �

Table 3: Statistical results for Nusselt number.

PCM bvp4c PCM bvp4c
δ2 Q1 ϕ1, ϕ2 knf /kf

� 	
Θ′ 0ð Þ knf /kf

� 	
Θ′ 0ð Þ khnf /kf

� 	
Θ′ 0ð Þ khnf /kf

� ÞΘ′ 0ð Þ
0.2 0.0475535 0.0474435 0.0484531 0.0484431

0.4 0.0355123 0.0354042 0.0366122 0.0366023

0.6 0.0365852 0.0364743 0.0369853 0.0369752

0.8 0.0292107 0.0291003 0.0271407 0.0271323

0.0 0.0565588 0.0564476 0.0554555 0.0554456

0.4 0.0575760 0.0574652 0.0575961 0.0575854

0.8 0.0579962 0.0578861 0.0589965 0.0589846

1.2 0.01 0.0674420 0.06734310 0.0683460 0.0683350

0.02 0.0684241 0.0683220 0.0693271 0.0693160

0.03 0.0691324 0.0690313 0.0713142 0.0713041

0.04 0.0722419 0.0723407 0.0743319 0.0743217

Table 4: Numerical outcomes for Sherwood number.

PCM bvp4c PCM bvp4c
Kr ϕ1, ϕ2 Dnf /Dð f ÞΦ′ 0ð Þ Dnf /Dð f ÞΦ′ 0ð Þ Dhnf /Df

� 	
Φ′ 0ð Þ Dhnf /Df

� 	
Φ′ 0ð Þ

0.2 0.0632428 0.0632228 0.0642421 0.0642220

0.4 0.0629422 0.0629210 0.0639437 0.0639234

0.6 0.0615944 0.0615742 0.0614946 0.0614743

0.8 0.5930362 0.5930160 0.5910341 0.5910141

0.01 0.0627713 0.0627511 0.0677736 0.0677634

0.02 0.0638833 0.0638631 0.0728855 0.0728651

0.03 0.6687551 0.6687340 0.7774605 0.7774402

0.04 0.7026619 0.7026617 0.7906815 0.7906613
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individually. Tables 3 and 4 report the statistical assessment
of PCM and bvp4c techniques, to confirm the legality of the
current report. The energy field and mass transition profile
are associated with the determination. Tables 3 and 4 also
reveal the comparative assessments between simple and
hybrid NF. It has been clearly perceived that the mass and
heat transfer ratio of hybrid NF as compared to simple NF
or ordinary fluid is greater.

5. Conclusion

The objective of this research is to build a computational
model to investigate the effects of methanol-based hybrid
NFs consisting of Cu and CoFe2O4 nanoparticles on heat
and mass communication. The fluid flow has been examined
in a heated wavy flexible cylinder under the impact of slip
condition, variable thickness, Darcy Forchheimer, heat
absorption/generation, and chemical reaction. The PCM
approach is used to simulate the problem, and the results
are compared to those obtained using the Matlab software
bvp4c. The key observations are as follows:

(i) The velocity profile reduces with the effect of the
magnetic parameter β, velocity slip constant δ1,
and Darcy Forchheimer’s number Fr

(ii) The velocity and energy field significantly boosts
with the inclusion of copper ϕ1 and cobalt ferrite
ϕ2 nanoparticulates in the base fluid methanol

(iii) The ðh1′ðηÞ, h2′ðηÞÞ profile decreases with the effect
of the β, while enhances under the action of param-
eter M

(iv) The energy profile declines due to the variation of
thermal jump constraint and boosts with the
absorption and generation term Q1

(v) The mass propagation rate can be significantly
enhancing with the effect of chemical reaction
parameter Kr

(vi) The hybrid NF has greater tendency to enhance the
energy and velocity of base fluid as compared to the
ordinary NF
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In this study, the new iterative method has been applied to a coupled system of fractional-order Drinfeld–Sokolov–Wilson
(FDSW) and fractional shallow water (FSW) equations. The fractional-order derivatives are taken in the Caputo sense whose
order is between 0 and 1. The suggested method is capable to handle the FDEs without any transformation and discretization.
The obtained results have been compared with the exact solution and with the q-homotopy analysis transform method. The
outcomes show the efficiency and effectiveness of NIM by comparing through tables and graphs.

1. Introduction

Differential equations (DEs) can be used to model the
majority of physical occurrences on the planet. The DEs
are divided into many categories. They may be in the form
of ordinary differential equations (ODEs) or partial differen-
tial equations (PDEs). Due to significant advancements in
mathematics, a new discipline known as fractional calculus
was introduced which has new concepts and operations for
handling derivatives and integrations. Fractional calculus
deals with the DEs of noninteger order known as
fractional-order differential equations (FDEs). Linear differ-
ential equations model the simple phenomenon while non-
linear equations are used in a variety of research and
engineering applications including plasma physics, hydrody-
namics, fluid dynamics, solid-state physics, acoustics, and

optical fibers. In many fields of engineering and biosciences,
the DEs occur in the form of coupled systems. The solution
of a differential equation may depend on the linearity of the
DE. The coupled systems in linear cases may be solved using
basic analytical methods. However, due to the higher degree
of nonlinearity, solving nonlinear differential equations by
simple methods is not always practicable. As a result of the
complexity for obtaining a solution of nonlinear DEs,
researchers initiated some new approaches for approximat-
ing the solution of nonlinear DEs. They may be perturbation
methods [1, 2], numerical methods [3, 4], iterative methods
[5, 6], etc. Sometimes these techniques apply some transfor-
mation to reduce the equations into more simple equations
or even a system of equations while some other techniques
offer the solution in the form of series that converges to
the exact solution [7, 8]. Besides, some other techniques
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which employ a trial function in an iterative scheme con-
verge quickly. The concept of homotopy from topology
and conventional perturbation methods introduced new
methods such as the optimal homotopy asymptotic method,
homotopy perturbation method, homotopy analysis method
suggest a general analytic solution [9–11]. Therefore, these
techniques are independent of the availability of a small
parameter. On the other hand, a relatively new method
known as the new iterative method (NIM) [12, 13] is a mod-
ified form of the Adomian decomposition method (ADM)
[14] in which the Adomian polynomials are replaced by DJ
polynomials in the nonlinear terms.

In the present work, coupled system of fractional-order
differential equations will be solved using NIM. FDEs have
been solved using NIM with the help of fractional derivative
and integral operators [13, 15–17]. In this paper, we will find
the solution of the Fractional Drinfeld–Sokolov–Wilson
(FDSW) coupled system and fractional shallow water
(FSW) coupled system. The fractional-order DSW equation
is used to add memory effects and genetic consequences into
the system, and these features let us grasp important physi-
cal properties of complex issues. The fractional DSW
coupled system is of the form [18]

Dβ
t φ x, tð Þ + 3ψ x, tð Þψ x, tð Þx = 0, ð1Þ

Dβ
t ψ x, tð Þ + 2ψ x, tð Þxxx + 2φ x, tð Þψ x, tð Þx + φ x, tð Þxψ x, tð Þ = 0,

ð2Þ

where 0 < β ≤ 1 is the fractional order of derivative of the
system and is defined with Caputo’s fractional derivative
operator.

The second coupled system presented in this paper is the
fractional-order shallow water (FSW) equation which
describes a thin layer of fluid in hydrostatic equilibrium with
a constant density. The equivalent wave motion is the
coupled SW equation. The time-fractional SW coupled sys-
tem is of the form [19]

Dβ
t φ x, tð Þ = −ψ x, tð Þφ x, tð Þx − φ x, tð Þψ x, tð Þx, ð3Þ

Dβ
t ψ x, tð Þ = −ψ x, tð Þψ x, tð Þx − φ x, tð Þx, ð4Þ

where φðx, tÞ and ψðx, tÞ denote the free surface and the
horizontal velocity component.

Many researchers pay attention to fractional DSW and
fractional SW equations by using different approaches
[20–23].

The remaining article is planned as follows: Section 2
contains some basics from fractional calculus relevant to
our study. The essential concepts of the NIM are presented
in Section 3. The proposed approach is used to solve the
fractional DSW and fractional SW coupled systems in Sec-
tion 4. The numerical results by NIM are presented in Sec-
tion 5 with the help of graphs and Tables 1–4. The final
paragraph contains the conclusion.

2. Fractional Calculus

We will present some essential definitions from fractional
calculus that are relevant to our work [24].

Definition 1. The fractional integral operator in Riemann-
Liouville (R-L) sense is defined as

Iβt =
1

Γ βð Þ
ðt
0
t − γð Þβ−1 f γð Þdγ if β > 0, t > 0,

f γð Þ if β = 0,

8><
>: ð5Þ

where Γ is the gamma function.

Definition 2. The Caputo fractional derivative operator of
order β is described as follows:

Dβ
t φ tð Þ = 1

Γ n − βð Þ
ðt
0
t − γð Þn−β−1 f n γð Þdγ

� �
if n − 1 < β ≤ n, n ∈N:

ð6Þ

Definition 3. Relationship of the Caputo’s fractional deriva-
tive and the R-L integral is defined as follows:

If m − 1 < β ≤m,m ∈N , then

Iβt Dβ
t φ tð Þ

h i
= φ tð Þ + 〠

m−1

j=0
φ jð Þ γð Þ t − γð Þj

Γ j + 1ð Þ , t > 0, φ ∈ Cμ
β, μ ≥ −1:

ð7Þ

3. New Iterative Method

Assume a nonlinear equation of the form [12]

ψ χ, t
� �

= h χ, t
� �

+ Lψ χ, t
� �

+ℵψ χ, t
� �

, ð8Þ

where χ = χ1, χ2,⋯, χn, hðχ, tÞ, L, and ℵ indicate the
source term, linear operator, and nonlinear operator, respec-
tively. The solution of Equation (8), according to NIM, can
be expanded as follows:

ψ χ, t
� �

= 〠
∞

m=0
ψm χ, t
� �

: ð9Þ

Due to the linearity of L, ψðχ, tÞ is expressed as

L 〠
∞

m=0
ψm χ, t
� � !

= 〠
∞

m=0
L ψm χ, t

� �� �
: ð10Þ

The nonlinear operator N presented by Daftardar-Geiji
and Jaffari is expressed as

ℵ 〠
∞

m=0
ψm χ, t
� � !

=ℵ ψ0 χ, t
� �� �

+ 〠
∞

m=1
ℵ 〠

i

j=0
ψj χ, t
� � !

−ℵ 〠
m−1

j=0
ψj χ, t
� � !( )

:

ð11Þ
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Table 1: The absolute error of the 2nd-order NIM and 2nd-order q-HATM solution for φðx, tÞ the FDSW coupled system.

x t β = 0:5 β = 0:7 β = 0:9 β = 1:0 Exact sol. NIM error Error [18]

2.5

0.025 0.0880367 0.0880367 0.0880367 0.0880367 0.0880429 6:13333 × 10−6 1:23436 × 10−5

0.05 0.0971 0.0971 0.0971 0.0971 0.0971513 5:13081 × 10−5 1:00990 × 10−4

0.075 0.107004 0.107004 0.107004 0.107004 0.107185 1:809556 × 10−4 3:48632 × 10−4

0.1 0.117785 0.117785 0.117785 0.117785 0.118233 4:479405 × 10−4 8:45395 × 10−4

5

0.025 0.0880367 0.0880367 0.0880367 0.0880367 0.0880429 6:13333 × 10−6 9:30466 × 10−8

0.05 0.0971 0.0971 0.0971 0.0971 0.0971513 5:13081 × 10−5 7:63637 × 10−7

0.075 0.107004 0.107004 0.107004 0.107004 0.107185 1:809556 × 10−4 2:64499 × 10−6

0.1 0.117785 0.117785 0.117785 0.117785 0.118233 4:479405 × 10−4 6:43687 × 10−6

7.5

0.025 4:05657 × 10−6 4:05657 × 10−6 4:05657 × 10−6 4:05657 × 10−6 4:05689 × 10−6 3:215065 × 10−10 6:27408 × 10−10

0.05 4:48085 × 10−6 4:48085 × 10−6 4:48085 × 10−6 4:48085 × 10−6 4:48356 × 10−6 2:702048 × 10−9 5:14926 × 10−9

0.075 4:94552 × 10−6 4:94552 × 10−6 4:94552 × 10−6 4:94552 × 10−6 4:95510 × 10−6 9:576419 × 10−9 1:78358 × 10−8

0.1 5.45240× 10-6 5.4524× 10-6 5.4524× 10-6 5.45240× 10-6 5.47623× 10-6 2.382852× 10-8 4.34062× 10-8

10

0.025 5:37770 × 10−8 3:49043 × 10−8 2:87695 × 10−8 2:7333 × 10−8 2:73351 × 10−8 2:166307 × 10−12 4:22746 × 10−12

0.05 7:37214 × 10−8 4:34152 × 10−8 3:28010 × 10−8 3:01918 × 10−8 3:02100 × 10−8 1:820637 × 10−11 3:46956 × 10−11

0.075 9:27727 × 10−8 5:2151 × 10−8 3:71170 × 10−8 3:33227 × 10−8 3:33872 × 10−8 6:452584 × 10−11 1:20177 × 10−10

0.1 1:11597 × 10−7 6:12942 × 10−8 4:17686 × 10−8 3:67380 × 10−8 3:68986 × 10−8 1:605564 × 10−10 2:92470 × 10−10

Table 2: The absolute error of the 2nd-order NIM and 2nd-order q-HATM solution for ψðx, tÞ the FDSW coupled system.

x t β = 0:5 β = 0:7 β = 0:9 β = 1:0 Exact sol. NIM error Error [18]

2.5

0.025 0.474805 0.385607 0.351313 0.342621 0.342623 1:595560 × 10−6 5:67484 × 10−6

0.05 0.558666 0.429127 0.374743 0.359897 0.35991 1:308247 × 10−5 4:57167 × 10−5

0.075 0.63306 0.470474 0.398436 0.377993 0.378038 4:519525 × 10−5 1:55336 × 10−4

0.1 0.703019 0.511305 0.422738 0.396935 0.397044 1:095138 × 10−4 3:70588 × 10−4

5

0.025 0.0392622 0.0319312 0.0290606 0.0283316 0.0283322 5:654244 × 10−7 5:67870 × 10−7

0.05 0.0459425 0.0355452 0.0310238 0.0297801 0.0297847 4:581037 × 10−6 4:60060 × 10−6

0.075 0.051697 0.038937 0.0330033 0.0312959 0.0313116 1:565947 × 10−5 1:57255 × 10−5

0.1 0.0569726 0.0422418 0.0350246 0.0328792 0.0329168 3:759878 × 10−5 3:77553 × 10−5

7.5

0.025 0.00322299 0.00262123 0.00238556 0.00232572 0.00232577 4:667055 × 10−8 4:66719 × 10−8

0.05 0.00377121 0.0029179 0.00254673 0.00244463 0.00244501 3:781143 × 10−7 3:78125 × 10−7

0.075 0.00424335 0.00319632 0.00270924 0.00256908 0.00257037 1:292494 × 10−6 1:29253 × 10−6

0.1 0.00467611 0.00346756 0.00287517 0.00269905 0.00270215 3:103259 × 10−6 3:10335 × 10−6

10

0.025 0.000264559 0.000215164 0.000195819 0.000190907 0.000190911 3:831095 × 10−9 3:83110 × 10−9

0.05 0.00030956 0.000239516 0.000209049 0.000200668 0.000200699 3:103867 × 10−8 3:10387 × 10−8

0.075 0.000348315 0.00026237 0.000222388 0.000210883 0.000210989 1:060983 × 10−7 1:06098 × 10−7

0.1 0.000383838 0.000284635 0.000236009 0.000221552 0.000221806 2:547404 × 10−7 2:54740 × 10−7
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Table 3: Numerical comparison of different values of β and absolute error of the 2nd-order NIM solution of φðx, tÞ for the FSW system.

x t β = 0:5 β = 0:7 β = 0:9 β = 1:0 Exact sol. NIM error

2.5

0.025 0.380492 0.298803 0.269985 0.262974 0.262985 1:092004 × 10−5

0.05 0.461865 0.337071 0.289279 0.276917 0.277008 9:164358 × 10−5

0.075 0.536682 0.374877 0.309367 0.291859 0.292184 3:24701 × 10−4

0.1 0.608701 0.413306 0.330496 0.307833 0.308642 8:08642 × 10−4

5

0.025 2.70572 2.12482 1.91989 1.87004 1.87011 7:765359 × 10−5

0.05 3.28437 2.39695 2.05709 1.96919 1.96984 6:516877 × 10−4

0.075 3.81641 2.66579 2.19994 2.07544 2.07775 2:308985 × 10−3

0.1 4.32854 2.93907 2.3502 2.18904 2.19479 5:750343 × 10−3

7.5

0.025 7.1448 5.61085 5.06972 4.93807 4.93827 2:05054 × 10−4

0.05 8.6728 6.32945 5.43201 5.19988 5.2016 1:720863 × 10−3

0.075 10.0777 7.03935 5.80922 5.48047 5.48657 6:097163 × 10−3

0.1 11.43 7.76097 6.20598 5.78043 5.79561 1:51845 × 10−2

10

0.025 13.6977 10.7569 9.71947 9.46706 9.46746 3:931213 × 10−4

0.05 16.6271 12.1346 10.414 9.969 9.9723 3:299169 × 10−3

0.075 19.3206 13.4956 11.1372 10.5069 10.5186 1:168923 × 10−2

0.1 21.9132 14.879 11.8979 11.082 11.1111 2:911111 × 10−2

Table 4: Numerical comparison of different values of β and absolute error of the 2nd-order NIM solution of ψðx, tÞ for the FSW system.

x t β = 0:5 β = 0:7 β = 0:9 β = 1:0 Exact sol. NIM error

2.5

0.025 -1.23094 -1.09261 -1.03916 -1.02563 -1.02564 1:255342 × 10−5

0.05 -1.35945 -1.16031 -1.07566 -1.05253 -1.05263 1:038012 × 10−4

0.075 -1.47213 -1.22437 -1.11257 -1.08072 -1.08108 3:623311 × 10−4

0.1 -1.57702 -1.28731 -1.15038 -1.11022 -1.11111 8:888889 × 10−4

5

0.025 -3.2825 -2.91362 -2.7711 -2.73501 -2.73504 3:347578 × 10−5

0.05 -3.62521 -3.09415 -2.86844 -2.80674 -2.80702 2:768031 × 10−4

0.075 -3.92569 -3.26498 -2.96685 -2.88192 -2.88288 9:662162 × 10−4

0.1 -4.20538 -3.43283 -3.06769 -2.96059 -2.96296 2:37037 × 10−3

7.5

0.025 -5.33406 -4.73464 -4.50304 -4.44439 -4.44444 5:439815 × 10−5

0.05 -5.89096 -5.028 -4.66121 -4.56095 -4.5614 4:498051 × 10−4

0.075 -6.37925 -5.30559 -4.82113 -4.68311 -4.68468 1:570101 × 10−3

0.1 -6.83374 -5.57835 -4.98499 -4.81096 -4.81481 3:851852 × 10−3

10

0.025 -7.38562 -6.55566 -6.23498 -6.15377 -6.15385 7:532051 × 10−5

0.05 -8.15671 -6.96184 -6.45399 -6.31517 -6.31579 6:22807 × 10−4

0.075 -8.83281 -7.3462 -6.67542 -6.48431 -6.48649 2:173986 × 10−3

0.1 -9.4621 -7.72387 -6.9023 -6.66133 -6.66667 5:333333 × 10−3
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Equations (9)–(11) are substituted in Equation (8) to
obtain

〠
∞

i=1
ψi = h + 〠

∞

m=0
L ψmð Þ +ℵ ψ0ð Þ + 〠

∞

m=1
ℵ 〠

m

j=0
ψj

 !
−ℵ 〠

m−1

j=0
ψj

 !( )
: ð12Þ

We define the recursive relation as follows:

ψ0 χ, t
� �

= h,

ψ1 χ, t
� �

= L ψ0ð Þ +ℵ ψ0ð Þ,

ψ2 χ, t
� �

= L ψ1ð Þ +ℵ ψ0 + ψ1ð Þ −ℵ ψ0ð Þ,
⋮

ψm χ, t
� �

= L ψm−1ð Þ +ℵ ψ0 + ψ1+⋯+ψm−1ð Þ −ℵ ψ0 + ψ1+⋯+ψm−2ð Þ,
 m = 1, 2, 3⋯ ,

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð13Þ

and then,

ψm χ, t
� �

= L ψ0 + ψ1+⋯+ψm−1ð Þ +ℵ ψ0 + ψ1+⋯+ψm−1ð Þ,
 m = 1, 2, 3,⋯,

〠
∞

m=0
ψm χ, t
� �

= h χ, t
� �

+ L 〠
∞

m=0
ψm χ, t
� � !

+ℵ 〠
∞

m=0
ψm χ, t
� � !

:

ð14Þ

The n-term NIM solution of Equations (8) and (9) is

ψ χ, t
� �

= ψ0 + ψ1+⋯+ψn−1: ð15Þ

3.1. NIM Convergence. In this section, the conditions for the
convergence of NIM are given in the following theorems for
the series ∑∞

m=0ψmðχ, tÞ.

3
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Approx. sol. of 𝜑 (x, t) 

0

x

–5

5 0.00

0.05

0.10

Figure 1: 2nd-order NIM solution of φðx, tÞ FDSW system.

3

2

1

0

0

𝜑
 (x

, t
)

x

t

Exact. sol. of 𝜑 (x, t) 

–5

5 0.00

0.05

0.10

0

x

0.05

Figure 2: Exact solution of φðx, tÞ FDSW system.
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Theorem 4. If ℵ is Cð∞Þ in a neighborhood of ψ0 and kℵnð
ψ0Þk ≤ L, for some real L > 0 and any n
kψjk ≤M < 1/e, j = 1, 2,⋯, then the series ∑∞

n=0Gn is conver-
gent, and moreover, kGnk ≤ LMnen−1ðe − 1Þ, n = 1, 2,⋯.

Theorem 5. If ℵ is C∞ and kℵnðψ0Þk ≤M ≤ e−1∀n, then the
series ∑∞

n=0Gn is convergent. The detail of NIM convergence
can be seen in article written by Bhalekar and Daftardar-
Geiji in [25].

4. Implementation of NIM

In this section, we implement NIM firstly to the fractional
Drinfeld–Sokolov–Wilson coupled system and then to the
fractional shallow water coupled system. The implementa-
tion is done by considering the fractional derivative in Capu-

to’s sense, and the R-L integral is applied to the equations.
The method is applied directly for obtaining an approximate
solution.

4.1. Fractional Drinfeld–Sokolov–Wilson (FDSW) Coupled
System. Consider the FDSW system of the form by rearran-
ging Equation (1), and we write [18]

Dβ
t φ x, tð Þ = −3ψ x, tð Þψ x, tð Þx, ð16Þ

Dβ
t ψ x, tð Þ = −2ψ x, tð Þxxx − 2φ x, tð Þψ x, tð Þx − φ x, tð Þxψ x, tð Þ,

ð17Þ
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Figure 3: 2nd-order NIM solution of ψðx, tÞ FDSW system at c = 2.
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Figure 4: Exact solution of ψðx, tÞ FDSW system at c = 2.
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together with the initial condition

φ x, 0ð Þ = 1
2 3cð Þ sech2

ffiffiffi
c
2

r
x

 !
,

ψ x, 0ð Þ = c sech
ffiffiffi
c
2

r
x

 !
:

ð18Þ

Equation (16) has the exact solution for β = 1 as

φ x, tð Þ = 1
2 3cð Þ sech2

ffiffiffi
c
2

r
x − ctð Þ

 !
,

ψ x, tð Þ = c sech
ffiffiffi
c
2

r
x − ctð Þ

 !
:

ð19Þ

Applying Iβt to Equation (16), we have

Iβt D
β
t φ x, tð Þ = φ x, 0ð Þ + Iβt −3ψ x, tð Þψ x, tð Þx

� �
,

Iβt D
β
t ψ x, tð Þ = ψ x, 0ð Þ + Iβt −2ψ x, tð Þxxx − 2φ x, tð Þψ x, tð Þx − φ x, tð Þxψ x, tð Þ� �

:

ð20Þ

By substituting the initial condition, we get

φ x, tð Þ = 1
2 3cð Þ sech2

ffiffiffi
c
2

r
x − ctð Þ

 !
+ Iβt −3ψ x, tð Þψ x, tð Þx

� �
,

ψ x, tð Þ = c sech
ffiffiffi
c
2

r
x − ctð Þ

 !
+ Iβt −2ψ x, tð Þxxx − 2φ x, tð Þψ x, tð Þx − φ x, tð Þxψ x, tð Þ� �

:

ð21Þ

By NIM algorithm, the zeroth-order component of φðx, tÞ
and ψðx, tÞsolution is as follows:

φ0 x, tð Þ = 1
2 3cð Þ sech2

ffiffiffi
c
2

r
x

 !

ψ0 x, tð Þ = c sech
ffiffiffi
c
2

r
x

 !

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð22Þ

The first-order component of solution is as follows:

φ1 x, tð Þ =
3c5/2tβ tanh ffiffi

c
p

x/
ffiffiffi
2

p� �
sech2 ffiffi

c
p

x/
ffiffiffi
2

p� �
ffiffiffi
2

p
Γ β + 1ð Þ

ψ1 x, tð Þ =
c5/2tβ tanh ffiffi

c
p

x/
ffiffiffi
2

p� �
sech ffiffi

c
p

x/
ffiffiffi
2

p� �
ffiffiffi
2

p
Γ β + 1ð Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
:

ð23Þ

The second-order component of solution is as follows:
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Figure 5: 2nd-order NIM and exact solution of φðx, tÞ at t = 0:1 of
FDSW equation and for fractional values of β.
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Figure 11: Exact solution of ψðx, tÞ DSW system.

φ2 x, tð Þ =
3c4 sech5 ffiffi

c
p
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ffiffiffi
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p� �
16Γ β + 1ð Þ2

ffiffiffi
2

p
c3/2Γ 2β + 1ð Þt3β

sinh 3
ffiffi
c

p
x/

ffiffiffi
2
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−7 sinh
ffiffi
c

p
x/
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2

p� �
0
B@

1
CA

Γ 3β + 1ð Þ +
4Γ β + 1ð Þ2t2β cosh 3 ffiffi
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ffiffiffi
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− 3 cosh ffiffi

c
p
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ffiffiffi
2

p� �� �
Γ 2β + 1ð Þ

0
BBBBBBBB@

1
CCCCCCCCA

ψ2 x, tð Þ =
c4 sech3 ffiffi

c
p

x/
ffiffiffi
2

p� �
4Γ β + 1ð Þ2

3
ffiffiffi
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p
c3/2Γ 2β + 1ð Þt3β

sinh 3
ffiffi
c

p
x/

ffiffiffi
2
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−6 sinh
ffiffi
c

p
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ffiffiffi
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B@
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p
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9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

: ð24Þ
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Figure 12: 2nd-order NIM solution and exact solution of φðx, tÞ at
t = 0:1 of FSW equation and for fractional values of β.
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By combining the zeroth, first, and second-order compo-
nents of φðx, tÞ and ψðx, tÞ the solution, we obtain the 2nd-
order NIM solution as

4.2. Fractional Shallow Water (FSW) Coupled System. Con-
sider the nonlinear FSW coupled system by rearranging
Equation (3), and we have [19]

Dβ
t φ x, tð Þ = −ψ x, tð Þφ x, tð Þx − φ x, tð Þψ x, tð Þx, ð26Þ

Dβ
t ψ x, tð Þ = −ψ x, tð Þψ x, tð Þx − φ x, tð Þx, ð27Þ

together with the initial condition

φ x, 0ð Þ = 1
9 x2 − 2x + 1
	 


,

ψ x, 0ð Þ = 2 1 − xð Þ
3 ,

ð28Þ

where c is the wave front’s velocity. The exact solution of
Equation (26) is given as

φ x, tð Þ = x − 1ð Þ2
9 t − 1ð Þ2 ,

ψ x, tð Þ = 2 x − 1ð Þ
3 t − 1ð Þ :

ð29Þ

Applying Iβt to Equation (30), we have

Iβt D
β
t φ x, tð Þ = φ x, 0ð Þ + Iβt −ψ x, tð Þφ x, tð Þx − φ x, tð Þψ x, tð Þx

� �
,

ð30Þ

Iβt D
β
t ψ x, tð Þ = ψ x, 0ð Þ + Iβt −ψ x, tð Þψ x, tð Þx − φ x, tð Þx

� �
:

ð31Þ

φ x, tð Þ = φ0 + φ1 + φ2 =

3
2 c sech

2
ffiffi
c

p
xffiffiffi
2

p
� �

+
3c5/2tβ tanh ffiffi

c
p

x/
ffiffiffi
2

p� �
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c
p

x/
ffiffiffi
2

p� �
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2

p
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p
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>>>>>>>>>>>>>>>>>;

ψ x, tð Þ = ψ0 + ψ1 + ψ2 =

c sech
ffiffi
c

p
xffiffiffi
2

p
� �

+
c5/2tβ tanh ffiffi

c
p

x/
ffiffiffi
2

p� �
sech ffiffi

c
p

x/
ffiffiffi
2

p� �
ffiffiffi
2

p
Γ β + 1ð Þ

+
c4 sech3 ffiffi

c
p

x/
ffiffiffi
2

p� �
4Γ β + 1ð Þ2

3
ffiffiffi
2

p
c3/2Γ 2β + 1ð Þt3β

sinh 3
ffiffi
c

p
x/

ffiffiffi
2

p� �

−6 sinh
ffiffi
c

p
x/

ffiffiffi
2

p� �
0
B@

1
CA sech3 ffiffi

c
p

x/
ffiffiffi
2

p� �

Γ 3β + 1ð Þ

+
Γ β + 1ð Þ2t2β cosh

ffiffiffi
2

p ffiffi
c

p
x

� �
− 3

� �
Γ 2β + 1ð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

: ð25Þ

ψ (x,t)
φ (x,t)

–2 –1 0

0

1 2

x

2.5×10–6

2.×10–6

1.5×10–6

1.×10–6

5.×10–7

Ab
so

lu
te

 er
ro

r

Figure 14: Comparison of the absolute error of the 2nd-order NIM
solution for φðx, tÞ and ψðx, tÞ at t = 0:01 for the fractional SW
equations.
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By substituting the initial condition, we get

φ x, tð Þ = 1
9 x2 − 2x + 1
	 


+ Iβt −ψ x, tð Þφ x, tð Þx − φ x, tð Þψ x, tð Þx
� �

,

ψ x, tð Þ = 2 1 − xð Þ
3 + Iβt −ψ x, tð Þψ x, tð Þx − φ x, tð Þx

� �
:

ð32Þ

Using the procedure of NIM, we have the zeroth-order com-
ponent of the solution as

φ0 x, tð Þ = 1
9 x2 − 2x + 1
	 


ψ0 x, tð Þ = 2 1 − xð Þ
3

8>><
>>:

9>>=
>>;
: ð33Þ

The first-order component of solution is as follows:

φ1 x, tð Þ = 2 x − 1ð Þ2tβ
9Γ β + 1ð Þ

ψ1 x, tð Þ = −
2 x − 1ð Þtβ
3Γ β + 1ð Þ

8>>>><
>>>>:

9>>>>=
>>>>;
: ð34Þ

The second-order component of solution is as follows:

By NIM algorithm, the zeroth-order component of φðx, tÞ
and ψðx, tÞ solution is as follows:

5. Numerical Results and Discussion

The fractional DSW and fractional SW coupled systems of
PDEs have been solved by NIM. We calculated the approx-
imate solution up to 2nd order and observed the convergence
of the method. The results have been plotted with the help of
2D and 3D graphs and also shown in the tables through a
numerical comparison for different values. The following
discussion shows the detail of figures and tables.

Figures 1 and 2 show the 2nd-order NIM and the exact
solution, respectively, in 3D plots φðx, tÞ while Figures 3
and 4 show the 2nd-order NIM and the exact solution,
respectively, ψðx, tÞ for the fractional DSW equations. In
Figures 5 and 6, the different fractional values of β of the
2nd-order NIM solution are compared for φðx, tÞ and ψðx,

tÞ, respectively. In Figure 7, the 2D plot shows the absolute
error for the 2nd-order NIM solution for both φðx, tÞ and
ψðx, tÞ of the fractional DSW equation. Similarly, the frac-
tional SW coupled system of equations is discussed in
Figures 8–14. The 3D plots of Figures 8 and 9 represent
the 2nd-order NIM solution and the exact solution, respec-
tively, φðx, tÞ. Figures 10 and 11 show the 2nd-order approx-
imate solution and exact solution for ψðx, tÞ of the fractional
SW equations. The 2D plots in Figures 12 and 13 compare
the different fractional values of β for the 2nd-order approx-
imate solution of φðx, tÞ and ψðx, tÞ, respectively. In
Figure 14, the absolute errors are compared for the 2nd-order
NIM solution of the fractional SW equations. In all these fig-
ures, we noted that as the fractional order of differential
equation tends to 1, the approximate solution converges to

φ2 x, tð Þ = 2 x − 1ð Þ2 3Γ β + 1ð Þ2t2β/Γ 2β + 1ð Þ + 2Γ 2β + 1ð Þt3β/Γ 3β + 1ð Þ	 

9Γ β + 1ð Þ2

ψ2 x, tð Þ = −
4 x − 1ð Þ 3Γ β + 1ð Þ2t2β/Γ 2β + 1ð Þ + Γ 2β + 1ð Þt3β/Γ 3β + 1ð Þ	 


9Γ β + 1ð Þ2

8>>>><
>>>>:

9>>>>=
>>>>;
: ð35Þ

φ x, tð Þ = φ0 + φ1 + φ2 =
1
9 x2 − 2x + 1
	 


+ 2 x − 1ð Þ2tβ
9Γ β + 1ð Þ + 2 x − 1ð Þ2 3Γ β + 1ð Þ2t2β/Γ 2β + 1ð Þ + 2Γ 2β + 1ð Þt3β/Γ 3β + 1ð Þ	 


9Γ β + 1ð Þ2
( )

ψ x, tð Þ = ψ0 + ψ1 + ψ2 =
2 1 − xð Þ

3 −
2 x − 1ð Þtβ
3Γ β + 1ð Þ −

4 x − 1ð Þ 3Γ β + 1ð Þ2t2β/Γ 2β + 1ð Þ + Γ 2β + 1ð Þt3β/Γ 3β + 1ð Þ	 

9Γ β + 1ð Þ2

( )

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

ð36Þ
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exact solution and for β = 1, the approximate solution over-
laps the exact solution which verifies the accuracy of our
proposed method.

6. Conclusion

We implemented new iterative method (NIM) for the solu-
tion of the fractional Drinfeld–Sokolov–Wilson equations
and fractional-order shallow water equations. The numerical
comparison is made with the q-homotopy analysis trans-
form method. The results show that NIM is conveniently
convergent and provides an accurate approximate solution.
The tables and figures show that as the value of β approaches
the classical value (1 for these systems) of the differential
equation, the approximate solution converges to the exact
solution. Comparisons in tables and graphs verify that
NIM converges more rapidly and is widely useful for obtain-
ing the approximate solution of differential equations.
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Time-dependent viscosity and thermal conductivity have been studied in relation to flow and thermal energy propagation along a
vertical turning cone. Except the density variance, the other fluid’s properties are assumed to be constant. Using the similarities
procedure, the nonlinear system of differential equations is simplified to dimensionless ODEs. The resultant nonlinear ODEs
system is computed while using fractional code FDE12, and the findings are quantitatively examined using the bvp4c approach
for accuracy and consistency. In form of figures and tables, the behavior of momentum, energy, and mass is interpreted versus
the physical constraints. The axial and radial velocity, both declines with the variation of unsteadiness parameter S. The axial
velocity of the fluid is considerably increased when the mixed convection parameter is elevated, but the radial velocity is
reduced. Similarly, when the variable viscosity increases, the velocity profile develops.

1. Introduction

The results of this study show that disk-cone appliances are
used in a variety of technical applications, including deter-
mining the viscosity of a fluid (viscosimetry), convective dif-
fusion, medical devices, and biomedicine for oxygen
measurement [1]. The heat transfer through a spinning cone
is also addressed in this research. Many academics are drawn
to this sort of study to investigate its properties, behavior,
and applications. Turkilmazoglu [2] investigated a steady
Newtonian viscous fluid over a rotating cone using the
homotopy analysis technique. The mixed convective simula-
tion with momentum and heat distribution across a perfo-
rated upward spinning cone in an ambient liquid was
numerically calculated by Chamkha and Al-Mudhaf [3].
They hypothesized that when cone angular velocity varies,
axial, and tangential velocity increases considerably. Garrett
et al. [4] investigated the fluid flow across a turning cone
(half angle) in axial direction. The MHD (magnetohydrody-

namics) nanoliquid flow with Brownian motion and ther-
mophoresis influence over a revolving cone was deled by
Nadeem and Saleem [5] and Towers and Garrett [6]. It is
worth noting that surface temperature and Mach number
destabilise the system, whereas suction stabilises it. Hayat
et al. [7] used a shooting method to emphasize the MHD
chemical reactivity of an unsteady viscous fluid over a turn-
ing cone. Chamkha et al. [8] evaluated the influence of a
rotating cone on a 3D CNT hybrid nanofluid in a trapezoid
permeable cavity, considering MHD interactions.

The upshot of unsteady viscosity on viscous fluid charac-
teristics causes some variation. The viscosity of liquids, for
example, decreases as temperature goes up, but the viscosity
of gases improves. The rises in thermal energy cause friction
in oily fluids, which affects fluid viscosity, and the viscosity
no longer holds consistent. In light of this deficiency, a
growing number of researchers are focusing their efforts on
demonstrating the impact of changing viscosity phenomena
under various situations. The effects of fluctuating viscosity
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of third-grade dispersed fluid flow via a conduit have been
explored by Christie and Massoudi [9]. The numerical out-
puts were discovered using the finite difference method. Sed-
deek [10] investigated unstable free convection MHD flow
across an infinite plate under the influence of a magnetic
field and changing viscosity. The computational solution of
the simulated equations is done using the finite difference
method. MHD boundary layer flow over an extending
heated surface with variable viscosity is reported by Pantok-
ratoras [11]. Their analysis also included a graphical repre-
sentation of viscosity variations. Mukhopadhyay and Layek
[12] looked studied heat exchange across a stretched vertical
porous surface with changing fluid viscosity. They discov-
ered that increasing the viscosity, enhances the velocity
while decreasing the energy field. Using a discrete variant
of HAM known as spectral homotopy evaluation over a
stretched surface, Dada and Onwubuoya [13] addressed
mass and energy distribution through fluid flow with chan-
ging viscosity and activation energy. Hazarika et al. [14] eval-
uated the upshots of changing viscosity, thermal radiation,
and MHD on fluid flow through a vertical cone.

The thermal transition rates are affected by viscous dissi-
pation, which acts as an energy source. The relevance of vis-
cous dissipation is determined by whether the cone is
freezing or warmed. Reddy et al. [15] estimated MHD flow
and energy propagation across a stretched substrate as a
function of heat source and viscous dissipation. Mabood
et al. [16] evaluated the MHD flow, energy transport, and
chemical reaction of a nanofluid containing copper Cu and
aluminium oxide particulates in a porous media under the
viscous dissipation influence. Deebani et al. [17] assessed
the role of viscous dissipation and MHD across a revolving
cone. Gayatri et al. [18] studied viscous dissipation in 2D
fluid flow with varying thickness and slip coefficients across
a stretched surface. They discovered that the slip parameters
increase friction while lowering fluid velocity. Using the
Atangana-Baleanu fractional method, Saqib et al. [19] inves-
tigated electro-osmotic nanofluid flow.

Fractional calculus, which is an extension of regular cal-
culus, has a 300-year history. This field has exploded in
popularity in recent years. Almost all activities in applied
sciences are described by signal processing, fluid flow in
permeable substances, wave transference in mechanical
properties, finance theory, and biological system electric
conductance [20, 21]. Many definitions exist for the frac-
tional derivative; however, the Caputo and Riemann Liou-
ville fractional derivatives are particularly important in
terms of applicability [22]. We know that the kernel was sin-
gle in both fractional definitions. To overcome this difficulty,
Caputo and Fabrizio presented a new point of view of non-
integer order derivative with nonsingular kernel [23] in
2016, which is highly beneficial for a variety of physical pro-
blems. Manzoor et al. [24] analyzed the uniqueness and exis-
tence of solutions of fractional order differential equations
with Caputo derivatives. They came up with a set of require-
ments to assure solution validity while maintaining Hyers-
Ulam stability. The fractional assessments for Darcy hybrid
nanoliquid flow over a perforated spinning disc were elabo-
rated by Li et al. [25]. The proposed model has been put up

using Matlab fractional code Fde12 to produce the fractional
solution. The outputs are compared to the fast-approaching
numerical Matlab scheme boundary value solver for correct-
ness and validity of the resultant framework.

We generalized the approach of [26] based on the afore-
mentioned literature and its application in the actual world.
The goal of this study is to assess the upshots of time-
dependent viscosity on flow, thermal energy, and mass
transfer in a vertical rotating cone. The spinning phenom-
enon is arranged in the format of a system of PDEs for this
reason. Which are solved using the fractional code FDE12,
and the results are checked for validity and correctness using
the Matlab numerical software boundary value solver
(bvp4c). The findings are depicted graphically and shortly
reviewed.

2. Mathematical Formulation

We considered axisymmetric, an incompressible and
unsteady fluid flow with an angular velocityΩ across a rotat-
ing cone. The u, v, and w are the velocity component has
been considered along x, y, z direction. The gravity g impact
is downward, and the buoyancy force exist due to the tem-
perature variation. The tangential direction influences tem-
perature Twvariability near the cone’s edge, while
temperature T∞ away from the cone kept fixed. Fluid flow
mechanism over a rotating cone is depicted through
Figure 1. Furthermore, the variable thermal conductivity
and viscosity are expressed as [26]: the variable viscosity
model used here is the Reynold’s model. The Taylor series
expansion has been used to obtain.

μ = μ0 1 − Aθð Þ, μ = μ0e
−η T−T∞ð Þ,

k = k0e
−c T−T∞ð Þ, k = k0 1 − εθð Þ:

ð1Þ

Where

A = Tw − T∞ð Þη and ε = − Tw − T∞ð Þc: ð2Þ

Here, k0 and μ0 is the fluid conductivity and dynamic
viscosity.

The governing system of nonlinear PDEs for momen-
tum, mass, and energy may be written as by utilising Boussi-
nesq approximation boundary layer theory and the
aforementioned assumption [26]:

∂ xuð Þ
∂x

+ ∂ xvð Þ
∂z

= 0: ð3Þ

∂u
∂t

+ u
∂u
∂x

+w
∂u
∂z

−
v2

x
= 1
ρ

∂
∂z

μ
∂u
∂z

� �
+ g T − T∞ð Þβ cos α∗,

ð4Þ

∂v
∂t

+ u
∂v
∂x

+w
∂v
∂z

+ uv
x

= 1
ρ

∂
∂z

μ
∂v
∂z

� �
, ð5Þ
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∂T
∂t

+ u
∂T
∂x

+w
∂T
∂z

= 1
ρCp

∂
∂z

k
∂T
∂z

� �
+ μ

ρCp

∂u
∂z

� �2
+ ∂v

∂z

� �2
" #

:

ð6Þ

∂C
∂t

+ u
∂C
∂x

+w
∂C
∂z

=D
∂2C
∂z2

: ð7Þ

Where α∗, β, k, ρ, and g are the cone vertical angle, ther-
mal expansion, thermal conductivity, density, and gravity,
respectively.

The boundary conditions are:

u 0ð Þ = 0, v 0ð Þ = 1
1 − st∗ð ÞΩ x sin α∗, T 0ð Þ = Tw, C 0ð Þ = Cw,

u ∞ð Þ⟶ 0, v ∞ð Þ⟶ 0, T ∞ð Þ⟶ T∞, C ∞ð Þ⟶ C∞:

ð8Þ

To simplify the PDEs to ODES, we commence the pre-
ceding similarity variables [26]:

u = 1
2 1 − st∗ð ÞΩx sin α∗ f ′ ηð Þ,

w = 1
1 − st∗ð ÞΩx sin α∗

� �1
2
f ηð Þ, η = Ω sin α∗

v0 1 − st∗ð Þ
� �1

2
z,

T = T∞ + Tw − T∞ð Þθ ηð Þ, Tw − T∞ = T0 − T∞ð Þ
1 − st∗ð Þ2

x
l
,

v = 1
1 − st∗ð ÞΩx sin α∗g ηð Þ,

C = C∞ + Cw − C∞ð Þϕ ηð Þ, where t∗ = Ω sin α∗ð Þt, ð9Þ

By plunking Equation (9) in Equation (3)–(8), we track
down:

f ′′′ 1 − Aθð Þ − f ′′Aθ′ + 1
2 f ′
� �2

− 2g2 − f f ′′

− 2λθ − s
η

2 f
′′ + f ′

� �
= 0,

ð10Þ

g′′ð1 − AθÞ − Ag′θ′ + gf ′ − f g′ − sððη/2Þg′ + gÞ = 0,
(11)ð1/PrÞðεðθ′Þ2 + ð1 + εθÞθ}Þ − f θ′ + 1/2f ′θ − sððη/2Þθ +
2θÞ + Ecððg′Þ2 + 1/4ð f ′′Þ2Þð1 − AθÞ = 0,(12)

ϕ″ − Sc gϕ′
� �� �

= 0: ð11Þ

The reduced conditions are:

f 0ð Þ = 0, g 0ð Þ = 1, f ′ 0ð Þ = ϕ 0ð Þ = 0, θ 0ð Þ = 0,
f ′ ∞ð Þ⟶ 0, g ∞ð Þ⟶ 0, ϕ ∞ð Þ⟶ 0, θ ∞ð Þ⟶ 0,

ð12Þ

x
u

y
v w

g

o

Tw

𝛼⁎

z

Figure 1: Fluid flow mechanism over a rotating cone.

Table 1: Comparative analysis with [26] α = 1.

Ref. [26] Present work
η f ″ ηð Þ g′ ηð Þ θ′ ηð Þ f ″ ηð Þ g′ ηð Þ θ′ ηð Þ
1.0 0.5666 1.2994 1.5036 0.5667 1.2996 1.5039

4.0 0.6616 1.3526 1.3883 0.6635 1.3740 1.3911

8.0 0.6633 1.3738 1.3909 0.6642 1.3761 1.3909

12 0.6642 1.3758 1.3903 0.6645 1.3761 1.3899

16 0.6645 1.3761 1.3899 0.6645 1.3761 1.3899

20 0.6645 1.3761 1.3899 0.6645 1.3761 1.3899

Table 2: Comparative analysis between fractional and numerical
outcomes.

Numerical (bvp4c) Fractional (FDE12)
Pr λ Cf xRex1/2 0:5Cf yRex1/2 Cf xRex1/2 0:5Cf yRex1/2

0 1.1254 0.7153 1.1256 0.7155

1.7 1 2.3008 0.9492 2.3009 0.9494

10 8.6042 1.4990 8.6045 1.4993

0 1.1256 0.7157 1.1257 0.7161

9 1 1.5627 0.7835 1.5630 0.7845

10 5.1821 0.9941 5.1823 0.9950

Table 3: Comparative analysis between fractional and numerical
outcomes.

Numerical (bvp4c) Fractional (FDE12)
Pr λ NuRex−1/2 Re−1/2Shr NuRex−1/2 Re−1/2Shr

0 0.3255 0.5276 0.3257 0.5278

1.7 1 0.6121 0.7123 0.6126 0.7127

10 1.0097 1.2099 1.0099 1.2102

0 1.4110 1.5112 1.4121 1.5121

9 1 1.5660 1.6662 1.5678 1.6671

10 2.3581 2.5583 2.3593 2.5592
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Figure 2: Viscosity parameter A effect on axial velocity profile f ′ðηÞ.
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Figure 3: Mixed convection parameter λ effect on axial velocity profile f ′ðηÞ.
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Figure 4: Unsteadiness parameter S effect on axial velocity profile f ′ðηÞ.
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The parameters generated are rebound as:

Pr = υ

α
, ReL =Ω sin α∗

L2

v0
,Gr = g T0 − T∞ð Þ L

3

v20
β cos α∗,

λ = Gr
ReL

, Ec = xL Ω sin α∗ð Þ2
Cp T0 − Twð Þ , Sc =

υf
Df

:

ð13Þ

Where Pr, Sc, and Ec are the Prandtl, Schmidth, and
Eckert number, respectively. While S is the unsteadiness
and λis the mixed convection coefficient.

The skin friction, mass transfer, and Nusselt number are
written as:

Cfx =
2τxzjz=0

ρ Ω sin α∗/ 1 − st∗ð Þ½ �2 , Cfy =
−2τyz

��
z=0

ρ Ω sin α∗/ 1 − st∗ð Þ½ �2 ,

ð14Þ

Shr = −
x ∂C/∂zð Þjz=0
Cw − C∞ð Þ ,Nux =

x ∂T/∂zð Þjz=0
Tw − T∞ð Þ : ð15Þ
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Figure 5: Viscosity parameter A effect on radial velocity profile gðηÞ.
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Equations (14) and (15) dimensionless set up are:

Cf x Re
1
2
x = − 1 − Aθð Þf ′′ ηð Þ

h i
η=0

,

Cf y Re
1
2
x = − 1 − Aθð Þg′ ηð Þ

h i
η=0

,

Nux Re−1/2x = −θ′ ηð Þη=0, Re−1/2Shr = −ϕ′ 0ð Þ: ð16Þ

Where

Rex =
1

v0 1 − st∗ð ÞΩx2 sin α∗: ð17Þ

3. Preliminaries

Definition 1. For a function g : R+ ⟶R, the fractional
integral of order α ≻ 0 is defined as:

Iαt g tð Þð Þ = 1
Γ αð Þ

ð
t − χð Þα−1g χð Þdχ: ð18Þ

Definition 2. For function g ∈ Cn, the Caputo noninteger
order derivative is defined as:

cDα
t g tð Þð Þ = In−αDng tð Þ = 1

Γ n − αð Þ
ðt
0

gn χð Þ
t − χð Þα+n−1 dχ: ð19Þ

Clearly cDα
t ðgðtÞÞtends to g′ðtÞas α⟶ 1:
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Figure 6: Mixed convection parameterλeffect on radial velocity profilegðηÞ.
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4. Problem Solution

By defining the preceding variables, the system of ODEs
(10))–(13) and (14) are reduced to a dimensionless first
order differential equations (DE):
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Figure 7: Unsteadiness parameter S effect on radial velocity profile gðηÞ.

η = γ1, f = γ2, f ′ = γ3, f″ = γ4, g = γ5, g′ = γ6, θ = γ7, θ′ = γ8, ϕ = γ9, ϕ′ = γ10:
o

γ1 = 1, γ2 = γ3, γ3 = γ4

γ4 =
1

1 −Aγ7
Aγ8γ4 −

1
2 γ3ð Þ2 + γ2γ4 + 2 γ5ð Þ2 + 2λγ7 + S γ3 +

η

2 γ4
� �� �

,

γ5 = γ6, Dα
t γ6 =

1
1 −Aγ7

Aγ8γ6 + γ2γ6 − γ5γ3 + S γ5 +
η

2 γ6
� �n o

, γ7 = γ8,

γ8 =
1

1 + εγ7
Pr γ2γ8 −

1
2 γ3γ7 + S

η

2 γ7 + 2γ7
� �

− Ec
1
4 γ4ð Þ2 + γ6ð Þ2

� �
1 −Aγ7ð Þ

	 

− ε γ8ð Þ2

� �
,

γ9 = γ10,γ10 = Sc γ5γ10ð Þ:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð20Þ
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We now use the Caputo fractional derivative to extend
the previous system of first order DEs to noninteger order:
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Figure 8: Viscosity parameter A effect on energy profile θðηÞ.
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5. Result and Discussion

The purpose of this section is to quantify and compare the
functionality of energy and mass transition rate based on
various physical factors. The findings are produced using
Matlab fractional package (fde12), and a fast-approaching
numerical technique bvp4c, has been applied to ensure the
validity and correctness of the outcomes.

Table 1 shows the adequacy of the current study when
compared to [26]. While the fractional and numerical meth-
ods have been compared in Tables 2 and 3, respectively. For
mixed convection and Prandtl number Pr, the numerical out-

comes of tangential and azimuthal skin friction is shown in
Table 2. For mixed convection and Prandtl number, Table 3
shows the quantitative results of Sherwood Nusselt number.

The schematic drawing of a revolving cone is depicted in
Figure 1. Figures 2–12(a) depict the behavior of various flow
entities when α = 1, whereas Figures 2–12(b) describe the
fractional behavior of basic constraints when α = 0:8:

The upshot of A (variable viscosity) on the velocity field
is noticed in Figure 2. At t = 0, the velocity at the cone sur-
face is assumed to be zero, and with increasing credit of visc-
osity variation, the fluid velocity rises in both Figures 2(a)
and 2(b).
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Figure 9: Prandtl number Pr effect on enery profile θðηÞ.
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Figures 3(a) and 3(b) demonstrate the distribution of the
mixed convection λ vs the axial velocity profile f ′ðηÞ. Physi-
cally, mixed convection has a beneficial influence on bound-
ary layer thickness, resulting in an increase in fluid axial
velocity. Convection decreases fluid density, causing fluid
particles to move as a result of forces and pressure.

Figures 4(a) and 4(b) show that increasing the value of
the unsteadiness parameter S lowers fluid velocity.
Figures 5(a) and 5(b) exhibit the radial velocity features ver-
sus the variable viscosity coefficient A. It has been discovered
that when the variable viscosity A increases, the fluid’s radial
velocity decreases. Figures 6(a) and 6(b) depict the effect
of the convection component on radial velocity. The con-
vection component has a significant impact on fluid
motion, and as a result, the velocity drops. In the presence

of the unsteadiness parameter S, the radial velocity
responds similar as an axial velocity. The radial velocity
decreases with the increment in S as elaborated through
Figures 7(a) and 7(b).

Figures 8(a) and 8(b) show a reduction in thermal gradi-
ent when the variable viscosity factor is increased. The inter-
action forces within fluid molecules grow as the amount of
variable viscosity rises, which results in the lowering fluid
energy profile. It is self-evident that when the Prandtl num-
ber Pr increases, the fluid temperature significantly reduces.
Because a fluid with a higher Prandtl number has a lower
thermal diffusivity (Figures 9(a) and 9(b)).

In Figures 10(a) and 10(b), an increase in energy profile
is observed against the Eckert number Ec. The Eckert num-
ber describes a fluid’s self-rising thermal rate as a result of
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Figure 10: Eckert number Ec effect on energy profile θðηÞ.
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viscous dissipation. The fluid temperature is efficiently
increased using a variable thermal conductivity as revealed
through Figures 11(a) and 11(b). The result of Schmidt
number vs mass transmission rate is shown in
Figures 12(a) and 12(b). The fluid’s mass transfer rate is
reduced as the Schmidt number is increased.

6. Conclusion

The rotating flow of a viscous fluid with time-dependent
viscosity and thermal conductivity across a vertical cone is
evaluated in this study. A comparison of the numerical
bvp4c method and fractional fde12 package is also empha-
sized. The study’s compelling observations are listed below:

(i) With a positive increase in unsteadiness entity S,
both the axial and radial velocity declines

(ii) As the value of the mixed convection component
improves, the fluid axial velocityf ′ðηÞ appears to
increase substantially, but the secondary velocity g
ðηÞ gradient decreases

(iii) Similarly, the main velocity f ′ðηÞ increases as the
viscosity variability component A grows, while the
radial velocitygðηÞoperates transversely as A
increases

(iv) Improvements in thermal conductivity, Eckert
number Ec and viscosity constraint A, limit the rate
of thermal energy transference NuRex−1/2
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Figure 11: Variable thermal conductivity ε effect on energy profile θðηÞ.
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(v) Mixed convection has a beneficial influence on
boundary layer thickness, resulting in an increase
in fluid primary velocity. Convection reduces the
density of the fluid, causing fluid particles to flow
owing to forces and pressure

Nomenclature

S: Unsteadiness parameter
α∗: Semi vertical angle of cone
T : Fluid temperature (K)
T∞: Temperature away from cone surface
ε: Variable thermal conductivity coefficient
η: Similarity variable
μ0: Dynamic viscosity
ν0: Kinematic viscosity

Pr: Prandtl number
θ: Dimensionless temperature
ρ: Density
cp: Specific heat
z-axis: Axial or normal to cone
Cf x: Skin friction
Nux: Nusselt number
Bvp4c: Boundary value solver
u, v,w: Velocity component
α: Fractional order
Tw: Wall temperature
β: Temperature expansion coefficient
g: Gravity
λ: Mixed convection
t∗: Dimensionless time
k: Thermal conductivity
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Figure 12: Schmidth number effect on mass profile ϕðηÞ.
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Ω: Angular velocity of disk ðr s−1Þ
ϕ: Dimensionless concentration
k0: Fluid conductivity
Ec: Eckert number
A: Variable viscosity coefficient
Cf y : Skin friction
Shx: Sherwood number
FDE12: Matlab fractional package.
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The present article summarized the effects of double magnetic dipole for chemically reactive viscoelastic fluid in the presence of
two different ferromagnetic particles, namely, nickel zinc ferrite ðNiZnFe2O4Þ and magnetite ferrite (Fe3O4). Due to double
magnetic dipole, an external magnetic field is applied normal to the flow. Blood is used as base fluid due to its viscoelastic fluid
properties. The Cattaneo-Christov heat flux model is used for heat transport phenomena. The physical model is formulated in
the form of partial differential equations which are then converted into ordinary differential equations using the suitable
transformations. The system is solved numerically using shooting method along with Runge-Kutta-Fehlberg method. The
characteristics of different parameters like the strength of homogeneous-heterogeneous reactions (k1 and k2),
ferrohydrodynamic interaction (β1), Schmidt number (Sc), Deborah number (α1a), and thermal relaxation time (α1c) on
velocity, temperature, and concentration profiles are analyzed through graphs and in tabular form. It has been observed that as
magnetic dipole creates a force which attracts the ferrite particles, hence, it slows down the velocity profile. Concentration field
depresses due to the presence of strength of heterogeneous reaction parameter k2.It is also noted that by expanding values of
thermal relaxation time (α1c), the temperature profile shows a reverse behavior.

1. Introduction

Ferrofluids lie in the category of smart materials those con-
sist of micron-sized colloidal magnetic nanoparticles that
are saturated in a nonmagnetic base fluid. The most fascinat-
ing feature of these fluids is its highly magnetizing ability
when an external magnetic field is applied. Pappell [1] ini-
tially highlighted the characteristic of ferrofluid in 1963.
He utilized ferrofluid in a weightless atmosphere in terms
of liquid rocket fuel, which is pinched near a pump inlet
by applying an external magnetic field. Ferrofluids have
many appealing applications in electrical instruments such
as in hard disk, rotating X-ray tubes, shafts, and rods. The
role of ferrofluids in biomedical equipment’s is no doubt
incredible, which is helpful in the process of wound treat-

ment, asthma treatment, removal of cancer with hyperther-
mia, and many more. For these kinds of procedures, the
homogeneous and heterogeneous have great importance.
The homogenous and heterogeneous reactions take places
in the bulk and occur on the catalyst surface, respectively.
Whether the process is homogeneous or heterogeneous
depends upon the situation that they exist in the absolute
majority of the fluid or a part of catalytic surfaces. In
essence, the homogeneous process is continuously intact
within the given phase, whereas heterogeneous reactions
have restricted boundaries. There are also a variety of chem-
ically reacting structures that involve both h-h reactions
termed as such as catalysis, burning, and biochemical react-
ing systems. In this flow, due to an external flow applied on
the outer region of boundary layer, there exists a reaction in
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that region as explained by [2, 3]. Initially, Andersson and
Valnes [4] studied the viscous ferrofluid with magnetic
dipole effects on the stretching surface. They examined
the influence of magnetothermomechanical coupling on
the fluid. Numerical studies related to ferrofluid inside a
channel with cold walls focusing on a line source dipole
delineated by Ganguly et al. [5]. In a porous medium,
Sharma et al. [6] specified the attributes of convection by
focusing dust particles on a ferromagnetic fluid. The
results corresponding to characteristics of heat transfer in
a Darcy number ferrofluid flow with porous wall is ana-
lyzed by Strek [7]. The dipole effects in a ferrofluid flow
origin below the channel with isothermal wall were stud-
ied by Strek and Jopek [8]. They focused on time depen-
dent heat transfer and analyzed the spatial alteration
creating magnetization because of gradient effects, depend-
ing temperature magnetic susceptibility for ferrofluids.
Sadiq et al. [9] studied the Casson fluid model to study
the thermal performance under the Brownian and thermo-
heretic effects of hybrid nanoparticles. The dipole’s magne-
tization in the series flow of ferrofluid taking elongated
surface highlighting thermal radiation is explored by
Makinde and Aziz [10]. Aminfar et al. [11] implement a
non-acting magnetic field inside a vertical tube during
the numerical studies of mixed convection of ferrofluid.
During his studies, he used both + and - types of magnetic
gradients; the (-) gradient of magnetic field reacts the
same as the buoyancy forces and boosts the Nusselt num-
ber, whereas the magnetic field with a (+) gradient decel-
erates it. A stagnation point flow along elongated sheet
in the presence of heterogeneous-homogeneous reactions
that is analyzed by Bachok et al. [12] analyzed a chemi-
cally reactive stagnation point flow over the elongated
sheet. In his paper, he discussed the case of fluid having
less kinetic viscosity in which he observed that when the
extending velocity is low as compared to free steam veloc-
ity, a boundary layer is achieved, whereas the inverted
boundary layer attains in the case when stretching the
velocity exceeds the free steam velocity. Affixing 2-phase
mixture model and effecting control volume method,
Aminfar et al. [13] executed the transversal non acting
magnetic field accomplishing electric current during the
inspection of flowing ferrofluid inside a duct. They showed
the flourishing behavior of average heat transfer coeffi-
cient. The shrinking surface is taken by Kameswaran
et al. [14] during the investigation of homogeneous-
heterogeneous reaction in a porous medium. By taking
into account the radiation effect in an extended sheet,
Titus and Abraham [15] used ferrofluid. It also concludes
that due to magnetic field local vortex vary the advection
energy transport also boosting heat transfer ability. Shei-
kholeslami et al. [16] conferred the aspects of non-
uniform magneto hydrodynamic flow of ferroliquid utiliz-
ing convective heat transport. Hayat et al. [17] also
detailed the effects of MHD nanofluid with
heterogeneous-homogeneous reaction and velocity slip
condition. It is concluded that in the case of concentra-
tion, both homogeneous and heterogeneous parameters
show a reverse behavior. Imtiaz et al. [18] reflected the

impact of homogeneous and heterogeneous reactions in
the examination of MHD flow in a curved stretchable sur-
face. He depicted the increasing behavior between curva-
ture parameter and fluid velocity. Due to many
applications, the boundary layer flow of non-Newtonian
fluids with different effects has added an enormous attrac-
tion in the recent years [19–33].

The ultimate goal of this research is to scrutinize the
effects of magnetic double dipole in the examination of
Maxwell ferrofluid which is composed of base fluid blood,
whereas ferrite particles were used as ðNi ZnFe2O4 and
Fe3O4Þ under the high lightening impact of homogenous
and heterogeneous reaction. Also, the concentration levels
of these particles are about 20% into the base fluid. The
basic theme of including these ferrite particles is to
enhance the strength of heat transferring phenomena
which is the inspiration of this research. Brief literature
survey is summarized in Section 1. Section 2 is focused
on the mathematical formulation of problem. In Section
3, the computational procedure is discussed in details.
The possible outcomes of the current study are deliberated
in Section 4. Section 5 presents the key features of this
article.

2. Mathematical Formulation

Consider a steady 2D flow of an incompressible non-
Newtonian Maxwell electrically conducting a ferromagnetic
fluid running on a flat surface in x direction as shown in
Figure 1. The location of dipole is set in theydirection as
the displacement between the dipole and surface is taken
asd, while the magnetic fieldðHÞgenerated with the presence
of magnetic dipole directions asx -axis. The scalar potential
of permanent magnetic dipole which influences ferrofluid
defined in [2] is

δa = −
I0
2π

Tan−1
y + d
x

� �
+ Tan−1

y + d
x

� �� �
, ð1Þ

where I0 is the representation of dipole moment per unit
length. The relation between gradient of magnetic scalar
potential δa and applied magnetic field is held as H1 = −∇

d
o x

H = Hd + H–d

l
d

T = Tc

T = Tc (1–—)l
x

Figure 1: Geometry of flow model.
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δa. The components of H1 are

Hx = ‐ ∂δa
∂x

= ‐ I0
2π

y + d

x2 + y + dð Þ2 +
y − d

x2 + y − dð Þ2
" #

,

Hy = ‐ ∂δa
∂y

= ‐ I0
2π

x

x2 + y − dð Þ2 +
x

x2 + y + dð Þ2
" #

:

ð2Þ

The force field strength has a resultant magnitude H,
with their element forms that are termed as

H =
∂δa
∂x

� �2
+

∂δa
∂y

� �2
" #1

2

, ð3Þ

∇Hð Þx =
∂δa/∂x ∂2δa/∂x2

� �
+ ∂δa/∂yð Þ ∂2δa/∂x∂y

� �
∂δa/∂xð Þ2 + ∂δa/∂yð Þ2� 	1/2 , ð4Þ

∇Hð Þy =
∂δa/∂x ∂2δa/∂x∂y

� �
+ ∂δa/∂yð Þ ∂2δa/∂y2

� �
∂δa/∂xð Þ2 + ∂δa/∂yð Þ2� 	1/2 :

ð5Þ
Experiencing Equation (1) in Equations (4)-(5), we get

the following form by expanding up to order x2:

∇Hð Þy = 0: ð6Þ

The assuming effects of surface’s wall is ð∂δa/∂xÞy=0 =

ð∂2δa/∂y2Þy=0 = 0, with including assumption that x≫ d
We get the transformed form of equation (4)

∇Hð Þx = ‐ I0
π

1
x2

: ð7Þ

The change in magnetization M can be expressed as

M = K1 Tc‐Tð Þ: ð8Þ

2.1. Analysis of Flow. We have considered a viscoelastic fluid
flow over a flat surface with double magnetic dipoles, which
are placing at a space (d) from the wall and perpendicular to
the surface. Consider l as the length of plate ðl>>dÞ with the
wall. The temperature changes linearly with the plate length
that is defined as Tw = Tcð1 − x/lÞ. In the boundary layer
flow, the connection between homogeneous and heteroge-
neous reactions adding 2-species chemically, named, A and
B, are taken following Chaudhary and Merkin [2] as

A + 2B⟶ 3B, rate = kcab
2:

A⟶ B, rate = ksa
ð9Þ

Concentrations A and B are represented by a and b, and
ki ði = c, sÞ are termed as rate constants. The process is con-
sidered to be isothermal for both reactions.

The corresponding flow equations in the presence of
magnetic dipole are

The admissible flow conditions are

ujy=0 = 0, v y=0 = 0, T


 



y=0 = Tc 1 −
x
l

� �
, DA

∂a
∂y y⟶0 = ksa 0ð Þ, DB

∂a
∂y











y⟶0

= −ksa 0ð Þ,
u y⟶∞ = u0, T


 



y⟶∞
= Tc, a y⟶∞ ⟶ a0, b



 


y⟶∞

⟶ 0:

ð11Þ

where (u,v) is the velocity components alongxandydirec-
tions, (μ0) is the magnetic permeability, (μnf ) is the dynamic

viscosity, (vnf ) is the kinematic viscosity of nanofluid, (ρnf )

is the nanofluid density,ðρcpÞnf is the specific heat, (knf ) rep-
resented as thermal conductivity of the nanofluid, (λa) is the
relaxation time of fluid, and (λc) identifies as the relaxation
time of heat flux.

∂u
∂x

+
∂v
∂y

= 0,

u
∂u
∂x

+ v
∂u
∂y

� �
+ λa u2

∂2u
∂x2

+ v2
∂2u
∂y2

+ 2uv
 !

=
μ0
ρnf

M
∂H
∂x

+
μnf
ρnf

∂2u
∂y2

,

u
∂T
∂x

+ v
∂T
∂y

� �
+ λc u

∂u
∂x

∂T
∂x

+ v
∂v
∂y

∂T
∂y

+ u
∂v
∂x

∂T
∂y

+ v
∂u
∂y

∂T
∂x

+ 2uv
∂2T
∂x∂y

+ u2
∂2T
∂x2

+ v2
∂T2

∂y2

 !
=

knf
ρcp
� �

nf

∂2T
∂y2

,

u
∂a
∂x

+ v
∂a
∂y

= DA
∂2a
∂y2

‐kcab2,

u ∂b
∂x

+ v
∂b
∂y

= DB
∂2a
∂y2

+ kcab
2:

ð10Þ
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2.2. Thermophysical Properties. Using similarity transform as
defined by [23],

η =
u0
vx

� �1
2
y, T = Tc 1 −

x
l
θ ηð Þ

� �
,

u = u0 f ′ ηð Þ, v = vu0
x

� �1
2 ηf ′ ηð Þ

2
−
f ηð Þ
2

 !
,

a = a0 g ηð Þ, b = a0 h ηð Þ:

ð12Þ

By implementing similarity variables express in Eq. (12),
our modified equations take the subsequent form:

1

1 − ϕð Þ2:5 1 − ϕ + ϕ ρs/ρf

� �� � −
α1a f

2

4

0
@

1
Af ‴

+
f f ″
2

−
α1a
4

f ′2 f ″η + 2f f ′ f ″
� �

−
β1θ

1 − ϕ + ϕ ρs/ρf

� �� � = 0,

ð13Þ

knf /kf
1 − ϕ + ϕ ρCp

� �
s
/ ρCp

� �
f

� �� � −
α1c Pr f

2

4

0
@

1
Aθ1″

+ Pr f θ′
2

− f ′θ + α1c
4

2f f ″ + 2f f ′θ′
� � !

= 0,

ð14Þ

1
Sc
g″ + f g′ − k1gh

2 = 0, ð15Þ

δ

Sc
h″ + f h′ + k1gh

2 = 0, ð16Þ

with nondimensional boundary conditions:

f ηð Þ = f ′ ηð Þ = 0, θ ηð Þ = 1, g′ ηð Þ = k2 g ηð Þ, δh′ ηð Þ = −k2g ηð Þ at η = 0,

f ′ ηð Þ⟶ 1, θ ηð Þ⟶ 0, g ηð Þ = 1, h ηð Þ = 0 as η⟶∞:

ð17Þ

In Eqs. (13)-(16), β1 is the ferrohydrodynamic inter-
action, Pr defines the Prandtl number, α1a mean the
Deborah number, α1c is represented here as a

Table 1: Thermophysical properties of blood, nickel zinc ferrite,
and magnetite ferrite.

ρ kg/m3� �
Cp J/kgKð Þ k W/mKð Þ

Blood 1060.0 3770 0.52

Nickel zinc ferrite 4800 710 6.3

Magnetite ferrite 5180 670 9.7

Table 2: Grid independence for Nusselt number and skin friction
for β = 0:1, λ = 0:01, γ = 1:0, Pr = 6:0:.

ζ Nusselt number Skin friction

10‐2 3.9475 2.5523

10‐4 3.9471 2.5514

10‐6 3.9471 2.5514

Table 3: Obtained values of ‐θ′ð0Þ by altering values of β and Pr.

β Pr ‐θ′ 0ð Þ
NiZnFe2O4ð Þ
0.0 3.0554

1.0 5 3.0180

2.0 3.0074

4 3.0000

1.0 5 3.0180

6 3.1079

Fe3O4ð Þ
0.0 3.0904

1.0 5 3.0489

2.0 3.0093

4 3.0060

1.0 5 3.0489

6 3.1479

Table 4: Obtained values of g′ð0Þ by altering values of k1, k2 and Sc
.

k1 k2 Sc g′ 0ð Þ
NiZnFe2O4ð Þ
0.1 1.3726

0.3 0.1 1.3931

0.5 1.4145

0.1 1.3726

0.1 0.2 1.1121

0.3 0.8977

0.1 1.3726

0.3 0.1 2.0805

0.5 2.5090

0.1 1.3726

0.1 0.2 1.1121

0.3 0.8977

Fe3O4ð Þ
0.1 1.2858

0.3 0.1 1.3051

0.5 1.3253

0.1 1.2858

0.1 0.2 1.0510

0.3 0.8555

0.1 1.2858

0.3 0.1 1.9481

0.5 2.3486

0.1 1.2858

0.1 0.2 1.0510

0.3 0.8555
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nondimensional thermal relaxation time, Sc the shows
Schmidt number, and k1 and k2 describe the strength of
homogeneous and heterogeneous reaction parameters,
which are defined here as

β1 =
I0μ0KTc

πρlμ0
2 , Pr =

ρcpν

k
, α1a = λ1au0x−1, α1c = λ1cu0x

Sc =
νf

DA
, k1 =

kca
2
0

S
, k2 =

ks
DA

ffiffiffiffiffi
νf

S

r
:

ð18Þ

DA andDB are equivalent, i.e., δ = 1; then, we can
write as

g ηð Þ + h ηð Þ = 1: ð19Þ

Utilizing Eqs. (15)-(16), we get the equation as

1
Sc
g″ + f g′ − k1g 1 − gð Þ2 = 0: ð20Þ
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Figure 2: Velocity profile with fluctuation in β1.
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The corresponding boundary equation of the concen-
tration field yields the following form:

g′ ηð Þ = k2g ηð Þ, η⟶ 0, g ηð Þ = 1, η⟶∞: ð21Þ

The conversions of the wall drag and convective heat

transfer into a nondimensional form are scaled as

Cf =
−2τw
ρnf u

2
0
,Nu =

x knf
kf Tc − Twð Þ

∂T
∂y






y=0

: ð22Þ

The wall shear stress is termed as

τw = μnf
∂u
∂y

� �
y=0, qw = −knf

∂T
∂y

� �









y=0

: ð23Þ

0
0 0.5 1 31.5 2 4 4.5 52.5 3.5

0.1

0.3

0.8

0.2

0.4

0.5

0.6

0.7

0.9

1

𝛼1a=0.0,0.2,0.3

Pr=21,𝛽1 = 0.1, 𝛼1c,= 0.1, k1=0.1, k2 = 0.3, Sc=0.4

Ni ZnFe2O4
Fe3O4

𝜂

f ‘
 (𝜂

)

Figure 4: Velocity profile with fluctuation in α1a.
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The dimensionless expressions of Eq. (22) are
attained:

1
2
Re12x Cf =

1
1 − ϕð Þ−2:5 f ′′ 0ð Þ, Re−12 x Nux = −

knf
kf

θ1 ′ 0ð Þ,

ð24Þ

where,

Rex =
ρnf u0x

μnf
: ð25Þ

3. Numerical Methodology

The saturation of two ferrite particles into Maxwell fluid
under the action of a double magnetic dipole is examined
with homogeneous and heterogeneous reactions. The trans-
formed nonlinear systems of ODEs are solved numerically
using the shooting method along with the RK-45 algorithm.
For the implementation of the shooting method, one should
convert the boundary value problem into an initial value
problem. The reduce initial value problem is further con-
verted into a system of first order differential equations
and then solved by choosing the missing conditions as an
initial guess. Therefore, the suitable transformations are used
to obtain initial value problem. The new set of variables for
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Figure 9: Temperature profile with fluctuation in Pr.
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first order system of equations is defined as

y
1, y 2, y 3, y 4, y 5, y 6, y 7=f ,f ′ ,f ″ ,θ,θ′ ,g,g

′
� �

: ð26Þ

This substitution yields

y1′ = y2, y1 ′ = y2, ð27Þ

y2′ = y3, ð28Þ

y3′ = 1/
1

1 − ϕð Þ2:5 1 − ϕ + ϕ ρs/ρf

� �� � −
α1ay

2
1

4

0
@

1
A

∗ −
y1y3
2

+
α1a
4

y22y3η + 2y1y2y3
� �

+
βy4

1 − ϕ + ϕ ρs/ρf

� �� �
0
@

1
A,

ð29Þ

y4′ = y5 ð30Þ

y5′ = 1/
knf /kf

1 − ϕ + ϕ∗ ρCpð Þs/ ρCpð Þfð Þ −
α1c Pr f

2

4

 !

∗ Pr∗ −
y1y5
2

+ y2y4 −
α1c
4

2y1y3 + 2y3y2y5ð Þ
� �� �

,

ð31Þ

y6′ = y7 ð32Þ

y6′ = ‐Sc y1y7 − k1 y6 1 − y27
� �2� ��

: ð33Þ

which are subject to the following conditions:

y1 0ð Þ = 0, y2 0ð Þ = 0, y3 0ð Þ = ω1 unknown initial conditionð Þ,
y4 0ð Þ = 1, y5 0ð Þ = ω2 unknown initial conditionð Þ,

y7 0ð Þ = k2y6 0ð Þ, y8 0ð Þ = ω3 unknown initial conditionð Þ:
ð34Þ

To solve the above system of Eqs. (27)-(33), the values of
ω1, ω2, and ω3 are unknown, so by taking a suitable initial
guess, the convergent numerical solution is obtained. It is
important to note that if the boundary residuals are fewer
than the tolerance error 10-6, the calculated solution
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converges. If the computed results do not satisfy this
requirement, the initial estimates are changed by using New-
ton’s technique, and the procedure is repeated until the solu-
tion fulfills the specified convergence threshold. The
thermophysical properties of the base fluid and ferrite parti-
cles for numerical procedure are defined in Table 1.

4. Results and Discussion

The mathematical model of chemically reactive viscoelastics
fluid over the stretching surface is solved numerically. The
numerical solutions are checked by applying the grid inde-
pendence test. The analysis is performed at different toler-
ance levels for Nusselt number and skin friction coefficient.
The numerical values of Nusselt number and skin friction
are presented in Table 2.

Table 3 represents the performance of quantity of engi-
neering interest (Nusselt number) against ferrohydrody-
namic interaction (β) and Prandtl number (Pr) in both
cases nickel zinc ferrite ðNiZnFe2O4Þ and magnetite ferrite
ðFe2O4Þ. It is depicted that the increment occurs in the Nus-
selt number due to the increasing values ofPr, with better
results of magnetite ferriteðFe2O4Þas compared to nickel
zinc ferriteðNiZnFe2O4Þ. Table 4 displays the response of
mass flux coefficient against the strength of homogeneous
and heterogeneous parameters and Schmidt number. It is
perceived that the mass flux coefficient shows a positive
trend towards the strength of homogeneous (k1) and hetero-
geneous parameters (k2) while an opposite behavior seen in
the case of the Schmidt number (Sc). The higher magnitude
was observed in the case of nickel zinc ferrite.

The analyzation of ferrohydrodynamic interaction (β1)
on velocity field is seen in Figure 2. It is depicted that the
velocity decreases due to the increasing values of ferrohydro-
dynamic interaction parameter (β1). This opposite behavior

is due to the action of Lorentz forces which resist the flow
and provide more resistance to transportation phenomena.
From the graph, it is cleared that the magnetite ferrite offers
more resistance due to which the velocity profile decreases in
the case of magnetite ferrite ðFe3O4Þ. Figure 3 results an
inclination in temperature with altering values of β1. It is
detected that the temperature profile boosts up as soon as
the ferrohydrodynamic interaction parameter (β1) enhances.
Reasoned is that Lorentz forces which produces under the
action of magnetic field have the potential to produce resis-
tance which in term produce heating among the layers of
fluids hence thermal boundary layer thickness rises. It is also
perceived that the magnetite ferrite ðFe3O4Þ offers more
resistance due to which the rapid temperature enhancement
occurred in the case of the magnetite ferrite ðFe3O4Þ. The
sketch of velocity with augmenting values of Deborah num-
ber (α1a) is displayed in Figure 4. It is detected that the
increasing Deborah number results in a decreasing velocity
profile. As (α1a) precisely relate to relaxation time of fluid,
immediately (α1a) increasing fluid relaxation time shot up
and provide extra blocking to the fluid motion which results
in thinning momentum boundary layer thickness. The max-
imum velocity is depicted in the case of nickel zinc ferrite ð
NiZnFe2O4Þ. The graph of Deborah number (α1a) against
the temperature field is seen in Figure 5. It is perceived that
the augmented values of the Deborah number (α1a)
amplifies the temperature field. This phenomena can be
depicted as the enlarging Deborah number (α1a) tends to
have a larger relaxation time of fluid which directly means
to offer resistance and generates heat which enhances the
temperature profile. The effects of the thermal relaxation
parameter (α1c) upon the velocity profile is observed in
Figure 6. It is clear from the figure that the increasing ther-
mal relaxation parameter (α1c) is responsible for the increas-
ing velocity profile. This fact is explained as by up surging
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thermal relaxation parameter (α1c) momentum of fluid par-
ticles also enhances which in term increase kinetic energy
and velocity profile. Figure 7 enlightened the conduct of
thermal relaxation time (α1c) on the temperature field. By
expanding values of (α1c) temperature profile show reverse
behavior, because enlarging thermal relaxation time implies
materials particles demand extra pace to exchanging energy
to their connecting particles, thus cause reduction in tem-
perature profile. The impression of Prandtl number on
velocity is realized in Figure 8. The increasing behavior of
velocity is observed by the altering values of the Prandtl
number, which is due to straight forward relation between
the Prandtl number and momentum diffusivity. As soon as
the Prandtl increases, the momentum diffusivity also
increases; thus, in the result, fluid motion and momentum
boundary layer thickness also boost up. Association between
Prandtl number and temperature field clearly delineated in
Figure 9, the contrary response of temperature towards
Prandtl number, actually Prandtl number exhibit inverse
relation to thermal diffusivity of fluid, So by enhancing
Prandtl number directly means to lessen diffused heat
betwixt fluid layers hence reduces temperature profile. The
response of Schmidt number (Sc) towards the concentration
field is characterized in Figure 10. The increase in Schmidt
number (Sc) consequently increases the concentration field
because the concentration field relates with a viscous diffu-
sion rate to molecular diffusion rate, so when the Schmidt
number (Sc) magnifies the viscous diffusion rate, it also mag-
nifies which in turn enhances the concentration field.
Figure 11 shows the connection between the strength of
homogeneous reaction parameter ðk1Þ and concentration
field. It is observed by enhancing the strength of homoge-
neous parameterðk1Þconcentration field that is going to
shrink. This conduct is explained as reactants are consumed

during the process of homogeneous reaction which
depresses concentration profile. Also, the minimum concen-
tration was observed in case of magnetite ferrite ðFe3O4Þ.
The graph of concentration field against the altering values
of strength of heterogeneous reaction parameter ðk2Þ is dis-
played in Figure 12. An increase in ðk2Þ causes a reduction
in concentration field, while higher concentration is found
in the case of nickel zinc ferrite ðNiZnFe2O4Þ. Figure 13
shows the impact of Pr number upon a heat transfer rate.
As we increase the Prandtl number, the Nusselt number also
increases because by increasing Prandtl number rate of
momentum, the diffusivity also increases which gives rise
to the kinetic energy and also the heat transfer through con-
vection. The impact of strength of homogeneous parameter
ðk1Þ and Schmidt number (Sc) in the mass flux coefficient
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g′ð0Þ is carried out in Figure 14. It is seen that (Sc) shows a
negative response, while ðk1Þ displays an augmented ampli-
tude against (g′ð0Þ). Figure 15 depicts the trend of (g′ð0Þ)
that relates with the strength of the heterogeneous parameter
and Schmidt number (Sc). As it is remarked because of the
amplification in (k2), the mass flux coefficient (g′ð0Þ) mag-
nifies due to the accumulation of particles by the generation
of the heterogeneous mixture. Also in the case of (Sc), we
observed that as soon as (Sc) increases, the Sherwood num-
ber (g′ð0Þ) reduces by reducing the mass diffusivity.

5. Concluding Remarks

In this article, we have examined the response of double
magnetic dipole in a chemically reactive viscoelastic fluid
over a flat sheet by considering the two nanomagnetic ferrite
particles. For heat transfer rate, we used the Cattaneo-
Christov heat flux model which is the generalization of Fou-
rier law by including thermal relaxation term. The thermal
relaxation time converts the energy transport in form of
thermal waves with finite speed. The modeled PDEs are con-
verted into the system of ODEs and then solved numerically
by shooting method. The results are depicted graphically
with the impact of important parameters. The major out-
comes of this study are as follows:

(i) Due to the force generated by magnetic dipoles, the
velocity of the fluid reduces, and the temperature
increases by increasing the ferrohydrodynamic
interaction parameter β1

(ii) For the large value of Deborah number (α1a), the
velocity profile decreases

(iii) The thermal relaxation parameter (α1c) shows a
positive response towards velocity while the nega-
tive response towards temperature because particles
take a surplus time to shifting energy

(iv) The strength of homogeneous reaction parameter
k1 undermines concentration

(v) The concentration field depresses due to the pres-
ence of strength of heterogeneous reaction parame-
ter k2

(vi) It has been observed that heat transfer rate
increases in the presence of magnetite ferrite ð
NiZnFe2O4Þ as compared to nickel zinc ferrite ð
NiZnFe2O4Þ by increasing Pr

(vii) From physical point of view, Pr is the proportion of
momentum diffusivity to thermal diffusivity. The
contrary response of temperature towards the
Prandtl number is observed; actually, the Prandtl
number exhibits an inverse relation to thermal dif-
fusivity of the fluid, so by enhancing Prandtl num-
ber directly means to lessen the diffused heat
between fluid layers and hence reduce the tempera-
ture profile

Nomenclature

u, v: Velocity components
l: Length of plate
Tw: Surface temperature
Tc: Curie temperature
μ0: Magnetic permeability
μnf : Dynamic viscosity of nanofluid
μf : Dynamic viscosity of base fluid
knf : Thermal conductivity of nanofluid
ρnf : Density of nanofluid
ðρcpÞf : Heat capacitance of fluid

ðρcpÞs: Heat capacitance of solid particle
ðρcpÞnf : Heat capacitance of nanofluid

Hx: Magnetic field intensity along x direction
Hy: Magnetic field intensity along y direction
M: Magnetization
υ: Kinematic viscosity
τw: Wall shear stress
λ1a: Relaxation time of fluid
λ1c: Relaxation time of heat flux
α1a: Deborah number in case of double dipole
α1c: Thermal relaxation in case of double dipole
Sc: Schmidt number
k1: Strength of homogeneous reaction
k2: Strength of heterogeneous reaction
ζ: Tolerance rate
δ: Ratio of mass diffusion coefficients
δa: Magnetic scalar potential.
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In this study, the unsteady squeezing nanofluid flow between two plates with thermal radiation has been investigated. The
governing equations of the flow model have been transformed to a set of nonlinear ordinary differential equations (ODEs)
from a set of partial differential equations (PDEs) using a suitable similarity variable. The optimal auxiliary function method
(OAFM) and Runge–Kutta method of order 4 (RK method of order 4) are used for the solution of the modeled problem. The
variation of the squeezing number, Prandtl number, Eckert number, and thermal radiation has been presented. The magnetic
field resists the flow velocity, and the Prandtl number resists the temperature distribution. The increase in volume fraction
decreases the velocity profile whereas increases the temperature profile. The skin friction coefficient and the Nusselt number
are inversely proportional to S. The effect of increasing values of Ec is to decrease the skin friction coefficient Cf and the heat
transfer rate Nux . The increasing value of φ increases the skin friction coefficient and decreases the heat transfer rate.

1. Introduction

The nanofluid consists of the nanometer particle size of the
fluid having less than 10^-9nm, such as copper, aluminum,
silver, silicon, aluminum oxides, and graphite. The base
fluids are water, oil, and ethylene glycol. Choi et al. [1] intro-
duced the term nanofluid and heat transfer features of the
fluids, such as thermal conductivity is enriched by the addi-
tion of nanoparticles into it [2, 3]. The study of heat and
mass transfer for squeezing unsteady viscous flow between
two parallel plates has a wide range of physical applications,
including lubrication systems, polymer processing, food pro-
cessing, hydrodynamical machines, compression, and crop
damage due to freezing, formation, and dispersion. Squeeze
flow, also known as squeezing flow, squeezing film flow, or
squeeze flow theory, is a flow in which a material is squeezed
out between two parallel plates. Josef Stefan studied it in
1874 for the first time. There are several squeeze flow models
that may be used to explain Newtonian and non-Newtonian
fluids that are squeezed under various geometries and condi-

tions. Squeeze flow is used in a variety of scientific and engi-
neering areas, including welding engineering, and materials
science, to name a few. Sheikholeslami et al. [4] used heat
line analysis to simulate a two-phase simulation of nanofluid
flow and heat transfer. Moreover, Sheikholeslami et al. [5]
investigated the unsteady flow of a nanofluid squeezing
between two parallel plates using the Adomian decomposi-
tion method (ADM). Also, the problem of squeezing flow
between rotating disks has been studied by Hamza [6] and
Bhattacharyya [7]. Magnetohydrodynamics (MHD) is the
information of the magnetic assets of electrically conducting
fluids. Plasmas, electrolytes, water, and liquid metals are
examples of magneto fluids. Hannes Alfven [8] was the first
who introduced the field of MHD. MHD has several appli-
cations in the field of industries and engineering such as
plasma, crystal growth, MHD sensors, liquid-metal cooling
of MHD casting, MHD power generation, and magnetic
drug targeting. MHD depends on the strength of the mag-
netic field; the stronger the magnetic field, the greater is
MHD effects and vice versa. MHD includes plasmas, molten
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metals, saltwater, and electrolytes. [9–13]. Seddiqui,
Domairy, and Aziz et al. [14, 15] explored two-dimensional
MHD squeezing flow between parallel plates and parallel
disc. Magnetic nanofluid is a one-of-a-kind material that
combines the qualities of a liquid with a magnetic material
[16]. Magneto-optical wavelength filters [17, 18], optical
modulators, [19], nonlinear optical materials [20], tunable
optical fiber filters [21], optical gratings, and optical switches
have all been discovered to use such fluids [22]. Changing the
magnetic field can change a lot of the physical features of
these fluids. They also served as an excellent model system
for fundamental investigations. Manipulation of nanoparti-
cles with carbon nanotubes has recently been shown to result
in increased thermal conductivity. The thermal characteris-
tics of nanofluids are the parameters that are critical to the
performance of nanofluids. Thermal conductivity, specific
heat, viscosity, and heat transfer coefficient are the four vari-
ables. Solar collector thermal performance is mostly deter-
mined by how thermal characteristics behave under various
operating situations. Temperature, environmental condi-
tions, type of base fluid, particle size and form of the nano-
particle, and volume concentration are all operating
parameters. Taking into account all of these factors, choosing
the right nanofluid is critical for optimum performance.
Based on this idea, scientist studies many important flow
models for various physical aspects [23–26]. Explicit
Runge–Kutta techniques have become popular for wave sim-
ulations due to their great accuracy and low memory require-
ments [27]. The traditional fourth-order Runge–Kutta
technique requires three memory places per dependent vari-
able [28]; however, low-storage approaches may be con-
structed that only require two memory sites per dependent
variable [29]. A third-order Runge–Kutta technique can
readily accomplish this characteristic, while a fourth-order
approach requires an additional stage [30]. Because the eval-
uation of the derivative function is the fundamental cost of
integration, and each level necessitates a function evaluation,
the new stage implies a large rise in cost. Some of the recent
development in the related field can be seen in [26, 31–42].
In this paper, we propose the OAFM [43, 44] for the
squeezed unsteady MHD nanofluid flow in the presence of
thermal radiation. The validity of OAFM is based on the aux-
iliary function which optimally controls the convergence of
the solution. The efficiency of OAFM is proved in compari-
son to the numerical solutions obtained by Runge–Kutta
method of order 4. In the present work, we show how solu-
tions to the modeled problem can be obtained using OAFM,
without the need for complex and complicated calculations
with low specification of computer with high accuracy.
Moreover, OAFM presented here is less computational work
and simple in applications at the first iteration. Up to now,
the squeezed unsteady MHD nanofluid flow in the presence
of thermal radiation has not been studied. The purpose of
this study is to provide an analytical solution of the squeezed
unsteady MHD nanofluid flow in the presence of thermal
radiation by using the newly developed method OAFM. In
the above-mentioned problem, analytical and numerical
methods are used for the solution of the problem. The
numerical methods required the linearization and discretiza-

tion techniques and huge computer memory with operating
time; we show how solutions to the boundary value problem
can be obtained using OAFM, without the need for complex
and involvedmathematical algorithms, and at a relatively low
computing memory and easy approach with high accuracy at
the first iteration.

2. Basic Mathematical Theory of OAFM [43, 44]

Let us look at the OAFM for the differential equation

L f ηð Þð Þ + s ηð Þ +N f ηð Þð Þ = 0, ð1Þ

where L,N denotes the linear and nonlinear operators; s
denotes the source function, f ðκÞ, and is an unknown func-
tion at this stage; the initial/boundary conditions are

B f ηð Þ, df ηð Þ
dη

� �
= 0: ð2Þ

Because finding an accurate solution to severely nonlin-
ear equations is extremely difficult, the proposed approxima-
tion is as follows:

f η, Ekð Þ = f u ηð Þ + f1 η, Ecð Þ, k = 1, 2,⋯s: ð3Þ

Using Equation (3) in Equation (1), we have

L f0 ηð Þð Þ + L f1 η, Ekð Þð Þ + s ηð Þ +N f0 ηð Þ + f1 η, Ekð Þð Þ = 0,
ð4Þ

where Ek, k = 1, 2⋯ s are control convergence parameters to
be determined.

The initial approximation is determined as

L f0 ηð Þð Þ + s ηð Þ = 0, B f0 ηð Þ, f0 ηð Þ
dη

� �
= 0: ð5Þ

The first approximation is obtained as

L f1 η, Ekð Þð Þ +N f0 ηð Þ + f1 η, Ekð Þð Þ = 0, B f1 ηð Þ: f1 ηð Þ
dη

� �
= 0:

ð6Þ

The nonlinear term is expressed as

D1,D2N f o ηð Þ + f1 η, Ekð Þð Þ =N f o ηð Þð Þ + 〠
∞

i=1
u t, Ekð ÞN f o ηð Þð Þ:

ð7Þ

The last term in Equation (7) seems difficult to solve, so
to avoid this difficulty and to fast the convergence of the

2 Journal of Nanomaterials



solution. Equation (6) can be written as

L f1 η, Ekð Þð Þ +D1 f0 ηð Þ, Emð ÞF N f0 ηð Þð Þð Þð Þ +D2 f0 ηð Þ, Enð Þ
= 0,

B f1 η, Ekð Þ df 1 ηð Þ, EkÞ
dη

� �
= 0, n = 1, 2⋯ q,m = q + 1, q + 2,⋯s,

ð8Þ

where D1, D2 are optimal auxiliary which depends on f0ðκÞ
and En, Em and FðNð f0ðκÞÞÞ is a function which depends
on the expression appearing within the nonlinear term
of Nð f0ðκÞÞ. The optimal auxiliary function should be
expressed in the sum form of f oðκÞ such as if f oðκÞ are poly-
nomial. Exponential and trigonometric then D1,D2 would be
the sum of polynomial, exponential, and trigonometric,
respectively. Also f oðκÞ would be the exact solution of the
original problem, if Nð f oðκÞÞ = 0. The optimal auxiliary
functions can be obtained frommethod of least square, collo-
cation method Galerkan Ritz methods.

2.1. Convergence of the Method. In order to obtain the
convergent solution, we calculate the optimal constants also
known as control convergence constant by method of least
squares: These optimal constants are resubmitted into origi-
nal equation to get the series solution.

J E1,E2,⋯Eð Þ =
ð
1
R2 η, E1, E2,⋯Esð Þdη, ð9Þ

where I is equation domain.
The unknown constants are established as

∂J
∂E1

= ∂J
∂E2

=⋯
∂J
∂En

= 0: ð10Þ

The mth order approximate solution can be obtained by
these constants so obtained.

3. Formulation of the Problem

The flow and heat transfer of two-dimensional unsteady
squeezing nanofluid via the lateral plates is observed in this
study, as shown in Figure 1.

At any nondimensional time t, the distance between the
two plates is given as

z = ±l 1 − atð Þ12 = ±h tð Þ, for a > 0: ð11Þ

The two plates are squeezed until they touch each other
at 1/α, whereas at α < 0, the two plates are separated. Here, α
is a constant, l is the initial position (at t = 0), and z is the
axial coordinate, which is obviously zero from the flow zone,
with the flow model evaluated along the x and y axes. The
nondimensional time throughout the flow is represented
by the variable t. The heat source and viscous dissipation
effect as a result of friction caused by fluid flow shear are

both protected. As a result, this behavior occurs when the
Eckert number is very high. Meanwhile, the copper material
was enclosed in a nanofluid. A uniform magnet is used
perpendicular to the flow. The following are the govern-
ing equations:

∂u
∂x

+ ∂v
∂y

= 0, ð12Þ

∂u
∂x

+ u
∂v
∂y

+ v
∂u
∂y

= −
1
ρnf

∂p
∂y

+
μnf
ρnf

∂2v
∂x2

+ ∂2u
∂y2

 !
−
σB0

2

ρnf
u,

ð13Þ

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −
1
ρnf

∂p
∂y

+
μnf
ρnf

∂2v
∂x2

+ ∂2v
∂y2

 !
, ð14Þ

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= knf
ρCpð Þnf

∂2T
∂x2

+ ∂2T
∂y2

 !

+
μnf

ρCpð Þnf
4 ∂u

∂y

� �2
 !

−
1

ρCp
∂qr
∂y

:

ð15Þ

The velocities in the x and y directions are represented by
u and v, respectively. While p, T , T∞, f , and knf are the effec-
tive density, dynamic viscosity, heat capacity, and thermal
conductivity of the nanofluid; ρnf , μnf , (ρCp), and knf are
the effective density, dynamic viscosity, heat capacity, and
thermal conductivity of the nanofluid, respectively.

ρnf = 1 − ϕð Þρf + ϕρp′, ð16Þ

ρCp

� �
nf
= 1 − ϕð Þ ρCp

� �
f
+ ϕ ρCp

� �
p′, ð17Þ

μnf =
μf

1 − ϕð Þ2:5′
Brinkmanð Þ, ð18Þ

knf
kf

=
ks + 2kf − 2ϕ kf − ks

� �
ks + 2kf + 2ϕ kf − ks

� � Maxwell‐Garnettð Þ: ð19Þ

h(t)
y

x

D

2l(1-at)0.5

Nanofluid

Figure 1: Geometry of the flow problem.
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Subject to the following boundary conditions

v = vw = dh

dt ′
T = TH at y = h tð Þ, v = ∂u

∂y
= ∂T

∂y
= 0 at y = 0:

ð20Þ

The radiative heat flux in Equation (4) is given by the
Rosseland formula as

qr = −
4σ∗
3k∗

∂T4

∂y
: ð21Þ

The Stefan-Boltzmann constant and the mean absorption
number, respectively, are σ ∗ and k ∗. We assume that the
temperature variation among the flow is greatly constrained,
and that the expression T4 may be regarded a linear function
of temperature, based on various research, As a result, T4 is
enlarged by disregarding the higher-order terms and utilizing
Taylor series expansion about T .

T44T∞
3 − 3T4

∞: ð22Þ

Substituting Equations (21) and (22) into Equation (15),
we obtain

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
knf

ρCp

� �
nf

∂2T
∂x2

+ ∂2T
∂y2

 !

+
μnf

ρCp

� �
nf

4 ∂u
∂x

� �2
 !

+ 32σ∗T3
∞∂2T

3ρCpk
∗∂y2

:

ð23Þ

To begin, introduce the following quantities:

η = y

l 1 − αtð Þ1/2� � , u = ax
2 1 − αtð Þ½ � f ′ ηð Þ,

v = −
al

2 1 − αtð Þ½ � f ηð Þ, θ = T
TH

,

A1 = 1 − ϕð Þ + ϕ
ρs
ρf

,N = 4σ∗T3
∞

kfρCpk
∗ ,

ð24Þ

f iv − SA1 1 − ϕð Þ2:5 ηf ′′′ + 3f ′′ + f ′ f ′′ − f f ′′′
� 	

−M2 f ′ = 0,

ð25Þ

12A3 + 16A2Nð Þθ′′ + 3 Pr SA2 f θ′ − ηθ′
� 	

+ 3 Pr Ec

1 − ϕð Þ2:5 f ′′
2
+ 4δ2 f ′2

� �
= 0:

ð26Þ

where N denotes heat/thermal radiation as defined by
Equation (10), and A2 and A3 denote dimensionless con-
stants as defined by

A2 = 1 − ϕð Þ + ϕ
ρCp

� �
s

ρCp

� �
f

, A3 =
knf
kf

: ð27Þ

Equations (25) and (26) must now bsssssse solved in the
context of

f 0ð Þ = 0, f 1ð Þ = 1, f ′ 1ð Þ = 0, θ′ 0ð Þ = 0, θ 1ð Þ = 1: ð28Þ
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Figure 2: Effect of the A1 on the f .
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Here, S is the squeezing integer; Pr and Ec are the Prandtl
and Eckert numbers, respectively.

S = al
2vf

, Pr =
μf ρCp

� �
f

ρf kf
, Ec =

ρf

ρCp

� �
f

ax
2 1 − αtð Þ
� �2

,

δ = 1
x
:M2 = σB0

2

ρnf

ax
2 1 − αtð Þ
� �

, f ′′ 0ð Þ = 0,
ð29Þ

The following quantities are categorically used for practi-
cal interest as defined

Cf =
μnf ∂u/∂yð Þy=h tð Þ

ρn f
v2w

,Nu =
−lknf ∂T/∂yð Þy=h tð Þ

kTH
: ð30Þ

Equation (24) provides the following result:

Cf =
l2

x2 1 − αtð Þ RexCf
= A1 1 − ϕð Þ2:5 f ′′ 1ð Þ,

Nu∗ =
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − αt

p
Nu = −A3θ′ 1ð Þ:

ð31Þ

The linear and nonlinear operators of Equations (11) and
(12) are

L f κð Þð Þ = f iv κð Þ ð32Þ

L θ κð Þð Þ = θ′′ κð Þ ð33Þ
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Figure 4: Effect of S on f ′.
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N f κð Þð Þ = −SA 1 − ϕð Þ2:5 ηf ′′′ + 3f ′′ + f ′ f ′′ − f f ′′′
� 	

−M2 f ′

ð34Þ

N θ κð Þð Þ = 3 Pr SA2 f θ′ − ηθ′
� 	

+ 3 Pr Ec
1 − ϕð Þ2:5 f ′′

2
+ 4δ2 f ′2

� �
ð35Þ

From Equation (5), we have

f iv κð Þ = 0 f 0ð Þ = 0, f ′′ 0ð Þ = 0, f 1ð Þ = 1, f ′ 1ð Þ = 0,

θ′′ κð Þ = 0 θ′ 0ð Þ = 0, θ 1ð Þ = 1,
ð36Þ

has solution as

f0 κð Þ = 1
2 3κ − κ3
� �

,

θ0 κð Þ = 1:
ð37Þ

Based on Equation (23), we get

N f o κð Þð Þ = −SA1 1 − ϕð Þ2:5 18κ2 − 18κ − 6η
� �

,

N θo κð Þð Þ = 3 Pr Ec

1 − ϕð Þ2:5 36δκ4 + 36κ2 + 9δ
� �

:
ð38Þ
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In the first approximation based on Equations (8), (32),
(33), and (24), we get

f iv κð Þ +D1 κ, κ2, κ3, Em

� �
−SA1 1 − ϕð Þ2:5 18κ2 − 18κ − 6η

� �� �
+D2 κ, κ2, κ3, En

� �
= 0,

θ′′ κð Þ +D3 κ, κ2, κ3, Ep

� � 3 Pr Ec

1 − ϕð Þ2:5 36δκ4 + 36κ2 + 9δ
� � !

+D4 κ, κ2, κ3, Er

� �
= 0:

ð39Þ

with boundary conditions

f 0ð Þ = 0, f ′′ 0ð Þ = 0, f 1ð Þ = 1, f ′ 1ð Þ = 0,

θ′ 0ð Þ = 0, θ 1ð Þ = 1:
ð40Þ

The OAF can be chosen freely as

D1 f o κð Þ, Emð Þ = − E1 + E2κð Þ,

D2 f o κð Þ, Enð Þ = − E1 + E2κð Þκ − E5 + E6κ + E7κ
2� �
κ2,
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Figure 10: Effect of δ on Ѳ:
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D3 f o κð Þ, Ep

� �
= 0,

D4 f o κð Þ, Erð Þ = − E8 + E9κð Þκ − E10 + E11κ + E12κ
2� �
κ2:

ð41Þ

We obtained the first approximate solution

f iv κð Þ +D1 κ, κ2, κ3, Em

� �
−SA1 1 − ϕð Þ2:5 18κ2 − 18κ − 6η

� �� �
+D2 κ, κ2, κ3, En

� �
= 0,

θ′′ κð Þ +D3 κ, κ2, κ3, Ep

� � 3 Pr Ec

1 − ϕð Þ2:5 36δκ4 + 36κ2 + 9δ
� � !

+D4 κ, κ2, κ3, Er

� �
= 0:

ð42Þ

And its solution is given as by putting the values of the opti-
mal constants obtained from the method of least square.

f κð Þ = −
1
280 κ 140 −3 + κ2

� �
+ chst −26 + κ2

� �
−1 + κ2
� �2� 	

,
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θ κð Þ = 20t + 3h −1 + κ2
� �

15 Pr Q 1 + κ2
� �

+ 2t 11 − 4κ2 + κ4
� �

δ2
� �

20t :

ð43Þ

4. Numerical Method of Solution

The differential Equations (25) and (26) along with the side
condition (28) have been solved using the fourth-order
Runge–Kutta method (FORKM) along with the shooting
technique. The nonlinear Equations (25) and (26) of fourth
and second order are reduced to a set of six first-order
simultaneous equations as follows:

f1 = f , f2 = f ′, f3 = f ′′, f4 = f ′′′, f5 = θ, f6 = θ′, f 4′ = f ′′′′, f 6′ = θ′′,
ð44Þ

f 4′ = SA1 1 − ϕð Þ2:5 ηf4 + 3f3 + f2 f3 − f1 f4ð Þ −M2 f ′, ð45Þ

f 6′ = −3 Pr SA2 f1 f6 − ηf6ð Þ − 3 Pr Ec
1 − ϕð Þ2:5

f 23 + 4δ2 f 22
� �
12A3 + 16A2N

:

ð46Þ
The boundary condition now became

f1 0ð Þ = 0, f3 0ð Þ = 0, f 1ð Þ = 0, f2 1ð Þ = 0, f4 1ð Þ = 1, f3 0ð Þ = 0:
ð47Þ

Solving of this system, six initial conditions are needed,
while only three conditions are available. Some initial condi-
tions are not given in the problem. Here, the values of f , f ′
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Figure 12: Effect of M on f ðηÞ.

𝜂

N = 1
N = 2
N = 3

N = 4
N = 5

0.85

0.90

0.95

1.00

𝜃
 (𝜂

)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 11: Effect of N on Ѳ:

9Journal of Nanomaterials



and f ′′′ are known as η⟶ 1. These three-end conditions
are used to produce the three unknown initial conditions
by applying the shooting technique.

5. Results and Discussion

5.1. Graphical Discussion. The main focus of the study is to
develop a mathematical model of an unstable nanofluid flow
squeezed between parallel plates, as illustrated in Figure 1.
Figure 2 shows the effect of A1 on the velocity profile f .
An increase in A1 causes to increase the velocity profile f .
Figures 3 and 4 demonstrate the influence of the squeeze
number on the velocity profile. The motion of the plates rep-
resented by squeezing flow is indicated by the squeeze num-
ber S. When S > 0, the plates are moving separately, but
when S < 0, the plates are moving collectively. Positive and

negative squeezing values have distinct effects on the velocity
profile. The velocity rises when the absolute value of the
squeeze number is 0.5, but drops when it is >0.5. An increase
in the stretching parameter causes to increase the velocity
profile. The strecthing parameter assists the flow velocity.
Figure 5 shows the effect of A2 on the temperature profile
θðηÞ. The temperature profile increases by increasing A2.
Also, the effect of A3 on the temperature profile θðηÞ is given
in Figure 6. By increasing the values of A3, a reverse effect as
compared to A2 has been observed. The influence of the
Prandtl number Pr on temperature distributions is seen in
Figure 7. With a large number of Pr , the temperature dis-
tribution obviously decreases, whereas with a small number
of Pr , it grows. Fluids with a low Prandtl number have a
higher thermal diffusivity than fluids with a high Prandtl
number. A high Pr causes the thermal boundary layer to
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decrease as a result. The impact is muchmore noticeable for a
small number of Pr because the thermal boundary layer
thickness is so high. The impact of Eckert number and
Prandtl number on the temperature profile is shown in
Figure 8. It is observed that the temperature rises substan-
tially with rising Ec. The effect of s and δ on the temperature
profile is given in Figures 9 and 10. Again, an increase in s
and δcauses to decrease the temperature profile. The effect
of the thermal radiationN on the temperature profile is given
in Figure 11. The increase in thermal radiations causes to
increase the temperature profile, since the thermal radiations
increase the kinetic energy of the particles and their collision
is caused to rise the temperature profile. The effect of mag-
netic field on the velocity profile is presented in Figure 12.
The increase in magnetic fieldM reduces the velocity profile,
since the magnetic field is applied perpendicular to the flow,
and hence the conducting fluid particles feel the opposite
force of magnetic field and hence reduce the velocity profile.
The effect of volume fraction of nanofluid on the velocity and
temperature profiles is given in Figures 13 and 14, respec-
tively. The increase in volume fraction ϕ decreases the veloc-
ity profile whereas increases the temperature profile.

5.2. Tables’ Discussion. The results of OAFM are validated in
comparison with the results obtained from the Runge–Kutta
method of order 4 along with absolute errors as given in
Tables 1 and 2. The OAFM results obtained at just one iter-
ation provide us a simple way to control the convergence
and nearly identical to the results obtained from RKM
fourth-order method. The effects of the squeeze number S
on the skin friction coefficient, Cf , and the Nusselt number,
Nux , are given in Table 3. From Table 3, it is obvious that the
skin friction coefficient and the Nusselt number are inversely
proportional to S. Table 4 displays the effects of the skin
friction coefficient and the Nusselt number for different
values of the Eckret number. It is noticed from the table that
the effect of increasing values of Ec is to decrease the skin
friction coefficient, Cf , and the heat transfer rate Nux. Fur-

ther, from Table 5, it is concluded that the increasing value
of M decreases the skin friction coefficient and increases
the heat rate. The effects of the nanoparticle volume fraction
φ on the skin friction coefficient Cf Nusselt number (the

Table 2: Comparison of the value of rate of velocity profile ϕðηÞ for
different value of η when S = 0:90, Pr = 0:3, Ec = 0:5, A1 = 0:1,
A2 = 0:5, A3 = 0:7, δ = 0:6,M = 1.

η OAFM 4th RKM
Absolute
error

0 0 0 0

0.1 0.14866782146738375 0.14866782146738370 5:3241 × 10−17

0.2 0.29447924328271025 0.29447924328271020 5:3243 × 10−17

0.3 0.4345297029288129 0.4345297029288122 5:3246 × 10−17

0.4 0.5658641096465703 0.5658641096465697 5:3247 × 10−17

0.5 0.6854800169389675 0.6854800169389669 5:3249 × 10−17

0.6 0.7903318397285185 0.7903318397285178 5:3253 × 10−17

0.7 0.8773361110067814 0.8773361110067808 5:3256 × 10−17

0.8 0.9433777722643691 0.9433777722643686 5:3259 × 10−17

0.9 0.9853174912829916 0.9853174912829909 5:3262 × 10−17

1 1.0000000000000002 1.00000000000000007 1:3263 × 10−16

Table 3: Comparison of skin friction and Nusselt numbers for
various values of s.

s Cf Nux
1 -1.24578 0.145875

2 -2.65862 0.0254863

3 -3.54879 0.0354856

4 -3.998547 0.0421586

5 -4.214585 0.0015482

Table 4: Comparison of skin friction and Nusselt numbers for
various values of Ec.

Ec Cf Nux
1 -1.56896 0.025486

2 -2.48523 0.052463

3 -2.012458 0.078563

4 -2.000458 0.0965482

Table 1: Comparison of the value of rate of velocity profile f ðηÞ for
different value of η when S = 0:90, Pr = 0:3, Ec = 0:5, A1 = 0:1,
A2 = 0:5, A3 = 0:7, δ = 0:6,M = 1:

OAFM 4th RKM Absolute error

0 0. 0. 0.00000000

0.1 0.119482 0.119482 1:245789 × 10−17

0.2 0.241044 0.241044 1:02145 × 10−17

0.3 0.365079 0.365079 3:21458 × 10−17

0.4 0.490248 0.490248 2:01245 × 10−17

0.5 0.613586 0.613586 1:02158 × 10−17

0.6 0.730601 0.730601 3:12458 × 10−17

0.7 0.835395 0.835395 2:32489 × 10−17

0.8 0.920813 0.920813 2:87963 × 10−17

0.9 0.97866 0.97866 1:98756 × 10−17

1 1. 1. 1:05896 × 10−16

Table 5: Comparison of skin friction and Nusselt numbers for
various values of M.

M Cf Nux
1 -1.53624 0.0215463

2 -1.68459 0.0020012

3 -1.89654 0.015362

4 -2.12546 0.012156
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heat transfer rate) Nu are given in Table 6. From this table, it
is concluded that the increasing value of φ increases the skin
friction coefficient and decreases the heat transfer rate.

6. Conclusions

In this study, a new analytical method is suggested for the
solution of the model problem. We obtain the first-order
series solution for the governing equations of the model
problem and achieved the first-order solution with high
accuracy. For the accuracy and validity of OAFM, results
are compared with numerical method. For comparison, it
is concluded that the OAFM is very accurate and simple
in application. OAFM is very easy in applicable to high
nonlinear initial and boundary value problems even if
the nonlinear initial/boundary value problem does not
contain the small parameter. In comparison with other
analytical methods, OAFM is very easy in applicability
and provides us good results of more complex nonlinear
initial/boundary value problems. OAFM contains the opti-
mal auxiliary constants through which we can control the
convergence as OAFM contains the auxiliary functions
D1,D2,D3, E4 in which the optimal constants Em, En, Er ,
Ep and the control convergence parameters exist to play
an important role to get the convergent solution which is
obtained rigorously. The computational work in OAFM
is less when compared to other methods, and even a low
specification computer can do the computational work
easily. The less computational work and rapid convergent
solution at just the first iteration enable us to implement
this efficient method in our future work for more complex
models arising from real-world problems. The numerical
method required maximum space and time as compared
to OAFM is the short method and is very rapidly conver-
gent. Numerical methods required to have large
computational work and required the latest computer for
computational work.

Based on the results and discussion, some points are
presented here:

(i) The motion of the plates represented by squeezing
flow is indicated by the squeeze number S. When
S > 0, the plates are moving separately, but when
S < 0, the plates are moving collectively. Positive
and negative squeezing values have distinct effects
on the velocity profile. The velocity rises when
the absolute value of the squeeze number is 0.5,
but drops when it is >0.5

(ii) With a large number of Pr , the temperature distri-
bution obviously decreases, whereas with a small
number of Pr , it grows. Fluids with a low Prandtl
number have a higher thermal diffusivity than
fluids with a high Prandtl number. A high Pr
causes the thermal boundary layer to decrease as
a result. The impact is much more noticeable for
a small number of Pr because the thermal bound-
ary layer thickness is so high

(iii) The increase in magnetic field M reduces the
velocity profile, since the magnetic field is applied
perpendicular to the flow, and hence, the con-
ducting fluid particles feel the opposite force of
magnetic field and hence reduce the velocity
profile

(iv) The increase in volume fraction ϕ decreases the
velocity profile whereas increases the temperature
profile

(v) An increase in s and δcauses to decrease the
temperature profile

(vi) The skin friction coefficient and the Nusselt
number are inversely proportional to S

(vii) The effect of increasing values of Ec is to decrease
the skin friction coefficient, Cf , and the heat trans-
fer rate, ssNux

(viii) The increasing value ofφ increases the skin friction
coefficient and decreases the heat transfer rate

Abbreviations

a, b, c: ConstantseΒ: Magnetic field ðNmA−1Þ
C: Fluid concentration
cp: Specific heat ðJ/kgKÞ
Cf : Skin friction coefficient
DB: Brownian diffusion of nanofluids
DT : Thermophoretic diffusion of nanofluids
~Ε: Electric field intensity ðNC−1Þ
F
_

1, F
_

2:
Homotopic functions

h: Distance between the plates
Jw: Mass flux
k: Thermal conductivity (Wm−1K−1)
Kr: Rotation parameter
k: The boundary parameter
M: Magnetic parameter
m: Hall parameter
ne: Number density of electron
Nb: Brownian motion
Nt: Thermophoretic parameter
Νu: Nusselt number
O: Origen
P: Fluid pressure ðPaÞ
Pr: Prandtl number
Qw: Heat flux ðWm−2Þ

Table 6: Comparison of skin friction and Nusselt numbers for
various values of φ.

φ Cf Nux
0.10 -1.214655 0.045236

0.20 -1.284562 0.041256

0.30 -1.2954632 0.031256

0.40 -2.59632 0.021548
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qr : Radioactive heat flux ðJÞ
Re: Viscosity parameter
Rd: Radiation parameter
Rex : Local Reynolds number
S: Cauchy stress tensor
Sc: Schmidt number
Sh: Sherwood number
te: Flow time ðsÞ
T : Fluid temperature ðKÞ
u, vw: Velocities components ðms−1Þ
uw: Stretching velocity ðms−1Þ
x, y, z: Coordinates
X,Y : Topological space

Greek Letters:

α: Thermal diffusivity ðm2s−1Þ
η: Similarity variable
κ
_
: Vertex viscosity ðmPaÞ

κm: Constants where m = 1, 2, ::
μ: Dynamic viscosity ðmPaÞ
υ: Kinematic coefficient of viscosity
ρf : Base fluid density ðKgm−3Þ
ρb: Density of the particles ðKgm−3Þ
σnf : Electrical conductivity of nanofluid ðSm−1Þ
τ∗: Ratio of nanoparticles and heat capacity
φ: Stefan Boltzmann constant
h: Assisting parameter
Φ: Dimensional concentration profile
ωe: Oscillating frequency of the electron ðS−1Þ
Ω: Angular velocity ðms−1Þ.
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In the present work, the natural transform iterative method (NTIM) is implemented to solve the biological population model
(BPM) of fractional order. The method is tested for three nonlinear examples. The NTIM is a combination of a new iterative
method and natural transform. We see that the solution pattern converges to the exact solution in a few iterations. The
method handles an extensive range of differential equations of both fractional and integer order. The fractional order derivative
is considered in Caputo’s sense. For mathematical computation, Mathematica 10 is used.

1. Introduction

The globe and our everyday lives have been revolutionized by
modern technologies. Technology is being used in a wide
range of engineering applications, including aerodynamics,
fluid dynamics, medical sciences, and finance. The essence of
technology is influenced and designed by mathematical
modeling. The modeling might take the form of mathematical
models that can be described using differential equations.
These differential equations may have been used to represent
the transmission of electromagnetic waves, which is at the root
of many present technologies. A variety of applications rang-
ing from wireless communications to radar, medical imaging,
and remote sensing have played a great role in our life [1, 2].
Mathematics and biosciences have also numerous practical
applications related to real life [3, 4]. Several diseases can be
modeled through mathematical calculations and can be con-
trolled by collecting data and making precise analysis [5].
There is a strong and interesting relationship between biology
and mathematics utilizing differential equations. The noninte-
ger order differential equations are termed as fractional order

differential equations (FDEs) [32–35]. The branch of mathe-
matics dealing with FDEs is known as fractional calculus [6].
Depending on the nature of the problem, differential equa-
tions can be linear or nonlinear. Simple analytical methods
may be used to analyze linear differential equations, but inves-
tigators have developed several ways for solving nonlinear
differential equations as their exact solutions are not always
feasible. The importance of the FDEs can be discussed inmany
fields of sciences [7, 23–27]. Many operators for fractional
derivatives have been given by several researchers. The most
famous is Caputo’s fractional derivative operator [8]. Li et al.
introduced the fractional order integral operator for handling
differential equations [9]. Recently, many transformations
have been used to solve fractional order differential equations.
Some of them are the Laplace transform, Sumudu transform,
Elzaki transform, etc. [10–12, 28–31]. In this work, we will
deal with the natural transform iterative method (NTIM), a
combination of the natural transform and the new iterative
method (NIM). The proposed techniques have been recently
applied by Nawaz et al. for solving noninteger order differen-
tial equations [13]. Many other researchers have applied NIM
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and natural transform for handling the FDEs [14–17]. In this
article, we will consider fractional biological population model
(FBPM) as [18]

Dβ
t ϕ = ϕ2

� �
xx
+ ϕ2
� �

yy
+ f ϕð Þ = 0, 0 < β ≤ 1, t > 0, x, yð Þ ∈ R2,

f ϕð Þ = hϕa 1 − rhb
� �

, ϕ x, y, 0ð Þ = g x, yð Þ:

8><
>:

ð1Þ

In Equation (1), ϕ = ϕðx, y, tÞ is the population density
and f is the supply of population due to births and deaths.
The h, a, b, and r are the real numbers and gðx, yÞ is the initial
condition. The detailed solution of Equation (1) can be found
in [19, 20]. FBPM is a mathematical model of biology which
will be thoroughly investigated in this paper. FBPM aids in
the understanding of the dynamical procedure of population
changes in biological population models, as well as providing
useful predictions.

The remaining paper is structured as follows: Prelimi-
nary definitions from fractional calculus are contained in
Section 2. The notion of NTIM is introduced in Section 3.
The NTIM is used to solve three FBPM in Section 4. In Sec-
tion 5, some results have been discussed. Lastly, a concrete
conclusion is given.

2. Preliminaries

Definition 1. Riemann-Liouville (R-L) fractional integral is
defined as

Jβt f tð Þ = 1
Γ βð Þ

ðt
0
t − τð Þβ−1 f τð Þdτ, β > 0, t > 0ð Þ,

J0t f tð Þ = f tð Þ,
ð2Þ

where Γð:Þ is the gamma function.

Definition 2. Caputo’s time-fractional derivative operator of
order β > 0is defined as

Dβ
t ϕ ℘,tð Þ = ∂βϕ ℘,tð Þ

∂tβ
=

1
Γ n − βð Þ

ðt
0
t − τð Þn−β−1 ∂

nϕ ℘,τð Þ
∂τn

, if n − 1 < β < n,

∂nϕ ℘,tð Þ
∂tn

, if β = n ∈N:

8>>><
>>>:

ð3Þ

Definition 3. Natural transform of ϕðtÞ is defined as [21]

ℕ+ θ tð Þð Þ = R s, vð Þ = 1
v

ð∞
0
e
−st
v ϕ tð Þð Þdt ; s, v > 0, ð4Þ

where s and v are the transform variables.

Definition 4. The inverse of natural transform of Rðs, vÞ is
defined as

ℕ− R s, vð Þð Þ = ϕ tð Þ = 1
2π i

ðc+i∞
c−i∞

e
st
v R s, vð Þð Þds, ð5Þ

where c ∈ R and the integral are taken in the complex plane
s = a + bi along s = c.

Definition 5. If the nth derivative of ϕðtÞ is ϕnðtÞ, then its
natural transform is given as

ℕ+ ϕn tð Þð Þ = Rn s, vð Þ = sn

vn
R s, vð Þ − 〠

n−1

k=0

sn− k+1ð Þ

vn−k
ϕn 0ð Þð Þ, n ≥ 1:

ð6Þ

Theorem 6. If the natural transform of hðtÞ and kðtÞ are h
ðs, vÞ and kðs, vÞ respectively, defined on set A, then

ℕ h ∗ k½ � = vH s, vð ÞK s, vð Þ, ð7Þ

where ℕ½h ∗ k� is convolution the functions h and k.

3. Natural Transform Iterative Method
(NTIM) [13]

Consider FDE of the form

Dβ
t ϕ ℘,tð Þð Þ = f ℘,tð Þ+Lϕ ℘,tð Þ+ℵϕ ℘,tð Þ, 0℘,t > 0,m − 1 < α <m,

ð8Þ

where ℘ = x1, x2,⋯, xn andm ∈N: The linear operator, non-
linear operator, and the source term are L, ℵ, and f , respec-
tively. The initial condition is given as

ϕ ℘,0ð Þ = g ℘ð Þ: ð9Þ

By applying the natural transform to Equation (8), we have

ℕ+ Dβ
t ϕ ℘,tð Þð Þ

h i
=ℕ+ f ℘,tð Þ½ �+ℕ+ L ϕ ℘,tð Þð Þ+ℵ ϕ ℘,tð Þð Þ½ �:

ð10Þ

Using the natural transform differentiation property, Equa-
tion (10) can be written as

sβ

vβ
ℕ+ ϕ ℘,tð Þ½ � − sβ−1

vβ
ϕ ℘,0ð Þ =ℕ+ f ℘,tð Þ½ �+ℕ+ Lϕ ℘,tð Þ +ℵϕ ℘, t

� �h i
:

ð11Þ

By rearranging Equation (11), we have

ℕ+ ϕ ℘,tð Þ½ � = g ℘ð Þ
s

+ vβ

sβ
ℕ+ f ℘,tð Þ½ �ð Þ+ v

β

sβ
ℕ+ L ϕ ℘,tð Þð Þ+ℵ ϕ ℘,tð Þð Þ½ �ð Þ:

ð12Þ

For the NTIM solution, ϕð℘,tÞ is expanded as

u ℘,tð Þ = 〠
∞

i=0
ϕi ℘,tð Þ, ð13Þ
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and ℵðϕð℘,tÞÞ, the nonlinear term, is defined as

ℵ 〠
∞

m=0
ϕm ℘,tð Þ

 !
=ℵ ϕ0 ℘,tð Þð Þ + 〠

∞

m=1
ℵ 〠

i

j=0
ϕj ℘,tð Þ

 !
−ℵ 〠

m−1

j=0
ϕj ℘,tð Þ

 !( )
:

ð14Þ

Using Equation (13) and Equation (14) in Equation (12), we
obtain

ℕ+ 〠
∞

i=1
ϕi

" #
= g ℘ð Þ

s
+ v

β

sβ
ℕ+ f ℘,tð Þ½ �ð Þ

+ vβ

sβ
ℕ+ 〠

∞

m=0
L ϕmð Þ +ℵ ϕ0ð Þ + 〠

∞

m=1
ℵ 〠

m

j=0
ϕj

 !
−ℵ 〠

m−1

j=0
ϕj

 !( )" #" #
:

ð15Þ

Using the recursive relation,

ℕ+ ϕ0 ℘,tð Þ½ � = g ℘ð Þ
s

+ v
β

sβ
ℕ+ f ℘,tð Þ½ �,

ℕ+ ϕ1 ℘,tð Þ½ � = vβ

sβ
ℕ+ L ϕ0ð Þ +ℵ ϕ0ð Þ½ �,

ℕ+ ϕ2 ℘,tð Þ½ � = vβ

sβ
ℕ+ L ϕ1 x, tð Þð Þ +ℵ ϕ0 + ϕ1ð Þ −ℵ ϕ0ð Þ½ �

⋮

ℕ+ ϕi+1 ℘,tð Þ½ � = vβ

sβ
ℕ+ L ϕið Þ +ℵ ϕ0 + ϕ1+⋯+ϕið Þ −ℵ ϕ0 + ϕ1+⋯+ϕi−1ð Þ½ �:i ≥ 0:

ð16Þ

Now by taking the inverse natural transform of Equation
(16), we have

ϕ0 ℘,tð Þ =ℕ− g ℘ð Þ
s

+ vβ

sβ
ℕ+ f½ �

� �
,

ϕ1 ℘,tð Þ =ℕ− vβ

sβ
ℕ+ L ϕ0ð Þ +ℵ ϕ0ð Þ½ �

� �
,

ϕ2 ℘,tð Þ =ℕ− vβ

sβ
ℕ+ L ϕ1ð Þ +ℵ ϕ0 + ϕ1ð Þ −ℵ ϕ0ð Þ½ �

� �
,

⋮

ϕi+1 ℘,tð Þ =ℕ− vβ

sβ
ℕ+ L ϕið Þ +ℵ ϕ0 + ϕ1+⋯+ϕið Þ −ℵ ϕ0 + ϕ1+⋯+ϕi−1ð Þ½ �

� �
, i ≥ 0:

ð17Þ

Then by adding the components, the approximate solu-
tion of Equations (8) and (9) by NITM is given as

ϕ ℘,tð Þ = ϕ0 ℘,tð Þ+ϕ1 ℘,tð Þ+⋯+ϕm−1 ℘,tð Þ,m ∈N: ð18Þ

Convergence of NTIM is as a convergence of NIM and is
proved by Bhalekar and Daftardar-Gejji [22].

4. Applications of NTIM

In this section, we apply the natural transform iterative method
NTIM for handling the three nonlinear cases of FBPM. The
method is applied directly to the problems without any discre-
tization by using the given initial conditions. Then, the com-
parison is made with the help of plots and numerical tables

with the existing methods which shows the effectiveness of
the proposed method [18].

Problem 7. Consider the population model as [18]

Dβ
t ϕ = ϕ2

� �
xx
+ ϕ2
� �

yy
+ hϕ, t > 0, 0 < β ≤ 1, ð19Þ

where ϕ = ϕðx, y, tÞ together with initial conditions

ϕ x, y, 0ð Þ = ffiffiffiffiffi
xy

p , ð20Þ

and the exact solution is

ϕ x, y, z, tð Þ = ffiffiffiffiffi
xy

p
eht : ð21Þ

Taking natural transformation of Equation (19), we have

ℕ+ Dβ
t ϕ

h i
=ℕ+ ϕ2

� �
xx
+ ϕ2
� �

yy
+ hϕ

h i
: ð22Þ

Applying the natural transform differentiation property to
Equation (22), we get

sβ

vβ
ϕ x, y, tð Þ − vβ−1

sβ
ϕ x, y, 0ð Þ =ℕ+ ϕ2

� �
xx
+ ϕ2
� �

yy
+ hϕ

h i
:

ð23Þ

Taking the inverse natural transform of Equation (23), we
have

ϕ x, y, tð Þ = ϕ x, y, 0ð Þ
s

+ℕ− vβ

sβ
ℕ+ ϕ2

� �
xx
+ ϕ2
� �

yy
+ hϕ

h i� �
:

ð24Þ

Using the idea of NTIM and the recursive relation of Equa-
tion (16), we obtained the solution components as

ϕ0 x, y, tð Þ =ℕ− ϕ x, y, 0ð Þ
s

� �
,

ϕ1 x, y, tð Þ =ℕ− vα

sα
ℕ+ ϕ20

� �
xx
+ ϕ20
� �

yy
+ hϕ0

h i� �
,

ϕ2 x, y, tð Þ =ℕ− vα

sα
ℕ+ ϕ0 + ϕ1ð Þ2xx + ϕ0 + ϕ1ð Þ2yy + hϕ1 − ϕ20

� �
xx
+ ϕ20
� �

yy

� �h i� �
,

ϕ3 x, y, tð Þ =ℕ− vα

sα
ℕ+

ϕ0 + ϕ1 + ϕ2ð Þ2xx + ϕ0 + ϕ1 + ϕ2ð Þ2yy + hϕ2

− ϕ0 + ϕ1ð Þ2xx + ϕ0 + ϕ1ð Þ2yy

2
4

3
5

2
4

3
5,

⋮

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð25Þ

By using the software package, the solution components are
obtained as
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ϕ0 x, y, tð Þ = ffiffiffiffiffiffi
x y

p , ϕ1 x, y, tð Þ = htβ
ffiffiffiffiffiffi
x y

p
Γ β + 1ð Þ ,

ϕ2 x, y, tð Þ = h2t2β
ffiffiffiffiffiffi
x y

p
Γ 2β + 1ð Þ , ϕ3 x, y, tð Þ = h3t3β

ffiffiffiffiffiffi
x y

p
Γ 3β + 1ð Þ ,

ϕ4 x, y, tð Þ = h4t4β
ffiffiffiffiffiffi
x y

p
Γ 4β + 1ð Þ ,

⋮

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð26Þ

Combining the components, the 4th order approximate
solution is given as

ϕ x, y, tð Þ = ϕ0 + ϕ1 + ϕ2 + ϕ3 + ϕ4+

=⋯
ffiffiffiffiffi
xy

p + htβ
ffiffiffiffiffi
xy

p
Γ β + 1ð Þ + h2t2β

ffiffiffiffiffi
xy

p
Γ 2β + 1ð Þ + h3t3β

ffiffiffiffiffi
xy

p
Γ 3β + 1ð Þ +

h4t4β
ffiffiffiffiffi
xy

p
Γ 4β + 1ð Þ+⋯

( )
:

ð27Þ

Equation (27) can be simplified as

ϕ x, y, tð Þ = ffiffiffiffiffi
xy

p htβ

Γ β + 1ð Þ + h2t2β

Γ 2β + 1ð Þ + h3t3β

Γ 3β + 1ð Þ +
h4t4β

Γ 4β + 1ð Þ+⋯
 !

:

ð28Þ

15

Approx. solution

φ
 (x

,y) 10

5

0
0

1

2
x

3

4 0

1

2 y

3

4

Figure 1: NTIM solution of problem 1 at h = 1, t = 1:5, and β = 1.

15

Exact solution
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4 0
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2 y

3

4

φ
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,y)

Figure 2: Exact solution of problem 1 at h = 1, t = 1:5, and β = 1.
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For β = 1, Equation (28) converges as

ϕ x, y, tð Þ = ffiffiffiffiffi
xy

p 1 + ht + h tð Þ2
2! + h tð Þ3

3! + h tð Þ4
4! +⋯

 !
, ð29Þ

which converges to the exact solution given by Equation
(21).

Problem 8. Consider the biological population model as [18]

Dβ
t ϕ = ϕ2

� �
xx
+ ϕ2
� �

yy
+ ϕ, t > 0, 0 < β ≤ 1, ð30Þ

where ϕ = ϕðx, y, tÞ together with initial conditions

ϕ x, y, 0ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þ

p
, ð31Þ

and the exact solution is

ϕ x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þ

p
et: ð32Þ

Taking natural transform of Equation (30), we have

ℕ+ Dβ
t ϕ

h i
=ℕ+ ϕ2

� �
xx
+ ϕ2
� �

yy
+ ϕ

h i
: ð33Þ

0

0

5

10

15

1

β = 0.5
β = 0.7
β = 0.9

β = 1.0
Exact

2

x

3 4

φ
 (x

)

Figure 3: Comparison of an approximate solution by NTIM for different values of β at h = 1, t = 1:5, and y = 1 for Problem 7.

20
15
10

5
0
0

1

x 2

3 0

1

2 y

3

4

Apporx. solution

φ
 (x

,y
)

Figure 4: NTIM Solution of problem 1 at t = 1:5 and β = 1.
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Using the natural transform differentiation property, we
obtain

sβ

vβ
ϕ x, y, tð Þ − vβ−1

sβ
ϕ x, y, 0ð Þ =ℕ+ ϕ2

� �
xx
+ ϕ2
� �

yy
+ ϕ

h i
:

ð34Þ

Taking the inverse natural transform, we have

ϕ x, y, tð Þ = ϕ x, y, 0ð Þ
s

+ℕ− vβ

sβ
ℕ+ ϕ2

� �
xx
+ ϕ2
� �

yy
+ ϕ

h i� �
:

ð35Þ

Using the recursive relation, the solution components
can be obtained as

ϕ0 x, y, tð Þ =ℕ− ϕ x, y, 0ð Þ
s

� �
,

ϕ1 x, y, tð Þ =ℕ− vα

sα
ℕ+ ϕ20

� �
xx
+ ϕ20
� �

yy
+ ϕ0

h i� �
,

ϕ2 x, y, tð Þ =ℕ− vα

sα
ℕ+ ϕ0 + ϕ1ð Þ2xx + ϕ0 + ϕ1ð Þ2yy + ϕ1 − ϕ20

� �
xx
+ ϕ20
� �

yy

� �h i� �
,

ϕ3 x, y, tð Þ =ℕ− vα

sα
ℕ+

ϕ0 + ϕ1 + ϕ2ð Þ2xx + ϕ0 + ϕ1 + ϕ2ð Þ2yy + ϕ2

− ϕ0 + ϕ1ð Þ2xx + ϕ0 + ϕ1ð Þ2yy

2
4

3
5

2
4

3
5,

⋮

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð36Þ

20

Exact solution

15
10

5
0
0

1

x 2

3 0

1

2 y
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4

φ
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)

Figure 5: Exact solution of problem 1 at t = 1:5 and β = 1.
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Figure 6: Comparison of the approximate solution by NTIM for different values of β at t = 1:5 and y = 1 for Problem 8.
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By using the software package, the solution components
are obtained as

ϕ0 x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þ

p
, ϕ1 x, y, tð Þ = tβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þp
Γ β + 1ð Þ ,

ϕ2 x, y, tð Þ = t2β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þp
Γ 2β + 1ð Þ , ϕ3 x, y, tð Þ = t3β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þp
Γ 3β + 1ð Þ ,

ϕ4 x, y, tð Þ = t4β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þp
Γ 4β + 1ð Þ ,

⋮

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð37Þ

Combining the components, the 4th order approximate
solution is given as

ϕ x, y, tð Þ = ϕ0 + ϕ1 + ϕ2 + ϕ3 + ϕ4+⋯

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þ

p
+ tβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þp
Γ β + 1ð Þ + t2β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þp
Γ 2β + 1ð Þ

+ t
3β ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin xð Þ cosh yð Þp
Γ 3β + 1ð Þ + t4β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þp
Γ 4β + 1ð Þ +⋯,

8>>>><
>>>>:

9>>>>=
>>>>;

ð38Þ

Equation (38) can be simplified as

ϕ x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þ

p tβ

Γ β + 1ð Þ + t2β

Γ 2β + 1ð Þ + t3β

Γ 3β + 1ð Þ + t4β

Γ 4β + 1ð Þ+⋯
	 


:

ð39Þ
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Approx. solution
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Figure 7: NTIM solution of Problem 7 at h = 1, t = 1:5, and β = 1.
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Figure 8: Exact solution of Problem 7 at h = 1, t = 1:5, and β = 1.
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For β = 1, Equation (39) converges as

ϕ x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þ

p
1 + t + t2

2! +
t3

3! +
t4

4!+⋯
	 


,

ð40Þ

which yields the exact solution given by Equation (32).

Problem 9. Consider the biological population model as [18]

Dβ
t ϕ = ϕ2

� �
xx
+ ϕ2
� �

yy
+ h ϕ 1 − r ϕð Þ, t > 0, 0 < β ≤ 1, ð41Þ

where ϕ = ϕðx, y, tÞ subject to the initial condition

ϕ x, y, 0ð Þ = e
ffiffiffiffiffiffi
hr/8

pð Þ x+yð Þ, ð42Þ

and the exact solution is
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Figure 9: Comparison of the approximate solution by NTIM for different values of β at h = 1, t = 1:5, and y = 1 for Problem 9.

Table 1: Comparison of the different values of β and the absolute error of the 6th order NTIM solution with the 6th order MGTFSM solution
for Problem 7.

x, y t β = 0:5 β = 0:7 β = 0:9 β = 1:0 Exact NTIM error Error [18]

0.1

0.1 0.778064 0.6135 0.492898 0.110517 0.110517 2:009212 × 10−12 1:4090 × 10−10

0.3 0.778064 0.6135 0.492898 0.134986 0.134986 4:507600 × 10−9 1:0576 × 10−7

0.5 0.778064 0.6135 0.492898 0.164872 0.164872 1:652645 × 10−7 2:3354 × 10−6

0.7 0.778064 0.6135 0.492898 0.201373 0.201375 1:788941 × 10−6 1:8129 × 10−5

0.9 0.778064 0.6135 0.492898 0.24595 0.24596 1:067487 × 10−5 8:4486 × 10−5

0.3

0.1 2.33419 1.8405 1.47869 0.331551 0.331551 6:027678 × 10−12 4:2269 × 10−10

0.3 2.33419 1.8405 1.47869 0.404958 0.404958 1:352280 × 10−8 3:1727 × 10−7

0.5 2.33419 1.8405 1.47869 0.494616 0.494616 4:957934 × 10−7 7:0062 × 10−6

0.7 2.33419 1.8405 1.47869 0.60412 0.604126 5:366824 × 10−6 5:4387 × 10−5

0.9 2.33419 1.8405 1.47869 0.737849 0.737881 3:202460 × 10−5 2:5346 × 10−4

0.5

0.1 3.89032 3.0675 2.46449 0.552585 0.552585 1:004596 × 10−11 7:0449 × 10−10

0.3 3.89032 3.0675 2.46449 0.674929 0.674929 2:253800 × 10−8 5:2879 × 10−7

0.5 3.89032 3.0675 2.46449 0.82436 0.824361 8:263223 × 10−7 1:1677 × 10−5

0.7 3.89032 3.0675 2.46449 1.00687 1.00688 8:944707 × 10−6 9:0645 × 10−5

0.9 3.89032 3.0675 2.46449 1.22975 1.2298 5:337433 × 10−5 4:2243 × 10−4
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Table 2: Comparison of the different values of β and the absolute error of the 6th order NTIM solution with the 6th order MGTFSM solution
for Problem 8.

x, y t β = 0:5 β = 0:7 β = 0:9 β = 1:0 Exact NTIM error Error [18]

0.1

0.1 2.46455 1.94329 1.56127 0.350067 0.350067 6:364298 × 10−12 1:4090 × 10−10

0.3 2.46455 1.94329 1.56127 0.427573 0.427573 1:427800 × 10−8 1:0576 × 10−7

0.5 2.46455 1.94329 1.56127 0.522238 0.522239 5:234815 × 10−7 2:3354 × 10−6

0.7 2.46455 1.94329 1.56127 0.637858 0.637864 5:666541 × 10−6 1:8129 × 10−5

0.9 2.46455 1.94329 1.56127 0.779055 0.779089 3:381305 × 10−5 8:4486 × 10−5

0.3

0.1 4.32451 3.40986 2.73955 0.614259 0.614259 1:116729 × 10−11 4:2268 × 10−10

0.3 4.32451 3.40986 2.73955 0.750258 0.750258 2:505345 × 10−8 3:1726 × 10−7

0.5 4.32451 3.40986 2.73955 0.916366 0.916367 9:185473 × 10−7 7:0059 × 10−6

0.7 4.32451 3.40986 2.73955 1.11924 1.11925 9:943018 × 10−6 5:4385 × 10−5

0.9 4.32451 3.40986 2.73955 1.367 1.36706 5:933139 × 10−5 2:5345 × 10−4

0.5

0.1 5.72082 4.51084 3.6241 0.812592 0.812592 1:477307 × 10−11 7:0425 × 10−10

0.3 5.72082 4.51084 3.6241 0.992502 0.992502 3:314275 × 10−8 5:2860 × 10−7

0.5 5.72082 4.51084 3.6241 1.21224 1.21224 1:21513 × 10−6 1:1673 × 10−5

0.7 5.72082 4.51084 3.6241 1.48063 1.48064 1:315344 × 10−5 9:0614 × 10−5

0.9 5.72082 4.51084 3.6241 1.80838 1.80846 7:848841 × 10−5 4:2228 × 10−4

Table 3: Comparison of the different values of β and the absolute error of the 6th order NTIM solution with the 6th order MGTFSM solution
for Example 1.

x, y t β = 0:5 β = 0:7 β = 0:9 β = 1:0 Exact NTIM error Error [18]

0.1

0.1 8.59894 6.78023 5.44736 1.2214 1.2214 2:220490 × 10−11 1:5572 × 10−9

0.3 8.59894 6.78023 5.44736 1.49182 1.49182 4:981669 × 10−8 1:1688 × 10−6

0.5 8.59894 6.78023 5.44736 1.82212 1.82212 1:826455 × 10−6 2:5810 × 10−5

0.7 8.59894 6.78023 5.44736 2.22552 2.22554 1:977086 × 10−5 2:0036 × 10−4

0.9 8.59894 6.78023 5.44736 2.71816 2.71828 1:179755 × 10−4 9:3372 × 10−4

0.3

0.1 10.5028 8.28139 6.65342 1.49182 1.49182 2:712142 × 10−11 1:9019 × 10−9

0.3 10.5028 8.28139 6.65342 1.82212 1.82212 6:084624 × 10−8 1:4276 × 10−6

0.5 10.5028 8.28139 6.65342 2.22554 2.22554 2:230837 × 10−6 3:1525 × 10−5

0.7 10.5028 8.28139 6.65342 2.71826 2.71828 2:414818 × 10−5 2:4472 × 10−4

0.9 10.5028 8.28139 6.65342 3.31997 3.32012 1:440956 × 10−4 1:1404 × 10−3

0.5

0.1 12.8281 10.1149 8.12651 1.82212 1.82212 3.312617× 10-11 2:3230 × 10−9

0.3 12.8281 10.1149 8.12651 2.22554 2.22554 7:431777 × 10−8 1:7436 × 10−6

0.5 12.8281 10.1149 8.12651 2.71828 2.71828 2:724750 × 10−6 3:8504 × 10−5

0.7 12.8281 10.1149 8.12651 3.32009 3.32012 2:949466 × 10−5 2:9890 × 10−4

0.9 12.8281 10.1149 8.12651 4.05502 4.0552 1:759988 × 10−4 1:3929 × 10−3
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ϕ x, y, z, tð Þ = e
ffiffiffiffiffiffi
hr/8

pð Þ x+yð Þ+ht: ð43Þ

Using the same procedure as for Problems 7 and 8, we
obtain the solution as

ϕ0 x, y, tð Þ = e
ffiffiffi
hr
8

p
x+yð Þ, ϕ1 x, y, tð Þ = htβe

ffiffiffiffi
hr

p
x+yð Þ/2 ffiffi2p

Γ β + 1ð Þ ,

ϕ2 x, y, tð Þ = h2t2βe
ffiffiffiffi
hr

p
x+yð Þ/2 ffiffi2p

Γ 2β + 1ð Þ , ϕ3 x, y, tð Þ = h3t3βe
ffiffiffiffi
hr

p
x+yð Þ/2 ffiffi2p

Γ 3β + 1ð Þ ,

ϕ4 x, y, tð Þ = h4t4βe
ffiffiffiffi
hr

p
x+yð Þ/2 ffiffi2p

Γ 4β + 1ð Þ ,

⋮

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;
ð44Þ

Combining the components, the 3rd order approximate
solution is given as

ϕ x, y, tð Þ = ϕ0 + ϕ1 + ϕ2 + ϕ3 + ϕ4+⋯

= e
ffiffiffi
hr

p
x+yð Þ

2 ffiffi2p + htβe
ffiffiffiffi
hr

p
x+yð Þ/2 ffiffi2p

Γ β + 1ð Þ + h2t2βe
ffiffiffiffi
hr

p
x+yð Þ/2 ffiffi2p

Γ 2β + 1ð Þ + h3t3βe
ffiffiffiffi
hr

p
x+yð Þ/2 ffiffi2p

Γ 3β + 1ð Þ + h4t4βe
ffiffiffiffi
hr

p
x+yð Þ/2 ffiffi2p

Γ 4β + 1ð Þ
⋮

8><
>:

9>=
>;:

ð45Þ

Equation (27) can be simplified as

ϕ x, y, tð Þ = e
ffiffiffi
hr

p
x+yð Þ

2 ffiffi2p htβ

Γ β + 1ð Þ + h2t2β

Γ 2β + 1ð Þ + h3t3β

Γ 3β + 1ð Þ + h4t4β

Γ 4β + 1ð Þ+⋯
 !

:

ð46Þ

For β = 1, Equation (29) converges as

ϕ x, y, tð Þ = e
ffiffiffiffi
hr

p
x+yð Þð Þ/ 2 ffiffi2pð Þ 1 + h t + h tð Þ2

2! + h tð Þ3
3! + h tð Þ4

4! +⋯
 !

,

ð47Þ

which converges to the exact solution given by Equation
(43).

5. Results and Discussions

The biological population model of fractional order has been
investigated in the present work. We observe that the solu-
tion pattern for Examples 1-3 converges very rapidly to the
exact solution in a few iterations. The results have been com-
pared through graphs and tables which confirms the conver-
gence of NTIM. Figure 1 is the NTIM approximate solution,
and Figure 2 is the exact solution for β = 1 of Example 1. The
6th order approximate solution for different fractional values
of β for Example 1 is depicted in Figure 3. Furthermore,
Figures 4 and 5 show the 6th order NTIM solution and the
exact solution, respectively, for Example 2 by mean of 3D
plots. The comparison for different fractional values of β
and exact solution is made in Figure 6 for Example 2. Simi-
larly Figures 7 and 8 show, respectively, the 6th order NTIM
solution and exact solution for Example 3. Figure 9 is the

comparison of fractional values of β and exact solution for
Example 3. In Table 1–3, the approximate solution has been
compared in tabular form for β = 0:5, β = 0:7, β = 0:9, and
β = 1:0, with the exact solution. The value β = 1:0 converts
the FDE to the classical PDE. The absolute error by the pro-
posed NTIM in Tables 1–3 has been compared with the
absolute error obtained by the modified generalized Taylor
fractional series method (MGTFSM) for Examples 1-3. It is
concluded from the results of Examples 1-3 that as the frac-
tional value of β reaches 1, the NTIM approximate solution
meets with the exact solution. We also observe that NTIM
yields an excellent approximate solution.

6. Conclusion

Three nonlinear problems of fractional order biological pop-
ulation model have been investigated by the natural trans-
form iterative method in the current study. The method is
applied to nonlinear problems without any discretization.
We found that NTIM converges very rapidly to the exact
solution. The advantage of the method is that it is free of
any large or small parameter assumptions or to find any
constant at the end of the solution. The obtained results of
the FBPM have been compared through 3D and 2D plots,
and also, the numerical values have been compared in tabu-
lar form for different values of β. The comparison between
absolute errors of the NTIM approximate solution and mod-
ified generalized Taylor fractional series method solution is
done with the help of tables. In each case, NTIM reveals
an efficient approximate solution as compared with other
methods in the literature.

Data Availability

No data were generated or analyzed during the study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors extend their appreciation to the Deanship of
Scientific Research at King Khalid University for funding
this work through research groups under grant number
R.G.P.2/14/43.

References

[1] T. Rabczuk, H. Ren, and X. Zhuang, “A nonlocal operator
method for partial differential equations with application to
electromagnetic waveguide problem,” Computers, Materials
& Continua, vol. 59, no. 1, pp. 31–55, 2019.

[2] D. H. Staelin, A.W. Morgenthaler, and J. A. Kong, Electromag-
netic Waves, Pearson Education, India, 1994.

[3] D. Tripathi and O. A. Bég, “Mathematical modelling of peri-
staltic propulsion of viscoplastic bio-fluids,” Proceedings of
the Institution of Mechanical Engineers, Part H: Journal of
Engineering in Medicine, vol. 228, no. 1, pp. 67–88, 2014.

10 Journal of Nanomaterials



[4] A. Dumas, J. Dijkstra, and J. France, “Mathematical modelling
in animal nutrition: a centenary review,” The Journal of Agri-
cultural Science, vol. 146, no. 2, pp. 123–142, 2008.

[5] D. Baleanu, H. Mohammadi, and S. Rezapour, “A mathe-
matical theoretical study of a particular system of Caputo–
Fabrizio fractional differential equations for the Rubella dis-
ease model,” Advances in Difference Equations, vol. 2020,
no. 1, 2020.

[6] R. Hilfer, Applications of Fractional Calculus in Physics, World
scientific, Covent Garden, London, 2000.

[7] R. Almeida, “A Caputo fractional derivative of a function
with respect to another function,” Communications in Non-
linear Science and Numerical Simulation, vol. 44, pp. 460–
481, 2017.

[8] N. H. Tuan, H. Mohammadi, and S. Rezapour, “A mathemat-
ical model for COVID-19 transmission by using the Caputo
fractional derivative,” Chaos, Solitons & Fractals, vol. 140, arti-
cle 110107, 2020.

[9] C. Li, D. Qian, and Y. Chen, “On Riemann-Liouville and
Caputo derivatives,” Discrete Dynamics in Nature and Society,
vol. 2011, 15 pages, 2011.

[10] L. Kexue and P. Jigen, “Laplace transform and fractional differ-
ential equations,” Applied Mathematics Letters, vol. 24, no. 12,
pp. 2019–2023, 2011.

[11] D. S. Bodkhe and S. K. Panchal, “On Sumudu transform of
fractional derivatives and its applications to fractional differ-
ential equations,” Asian Journal of Mathematics and Computer
Research, vol. 11, no. 1, pp. 69–77, 2016.

[12] Y. Singh, V. Gill, S. Kundu, and D. Kumar, “On the Elzaki
transform and its applications in fractional free electron laser
equation,” Acta Universitatis Sapientiae, Mathematica,
vol. 11, no. 2, pp. 419–429, 2019.

[13] R. Nawaz, N. Ali, L. Zada, K. S. Nisar, M. R. Alharthi, and
W. Jamshed, “Extension of natural transform method with
Daftardar-Jafari polynomials for fractional order differential
equations,” Alexandria Engineering Journal, vol. 60, no. 3,
pp. 3205–3217, 2021.

[14] R. Nawaz, N. Ali, L. Zada, Z. Shah, A. Tassaddiq, and N. A.
Alreshidi, “Comparative analysis of natural transform decom-
position method and new iterative method for fractional foam
drainage problem and fractional order modified regularized
long-wave equation,” Fractals, vol. 28, no. 7, article 2050124,
2020.

[15] L. Zada, R. Nawaz, S. Ahsan et al., “New iterative approach for
the solutions of fractional order inhomogeneous partial differ-
ential equations,” AIMS Mathematics, vol. 6, no. 2, pp. 1348–
1365, 2021.

[16] S. Bhalekar and V. Daftardar-Gejji, “New iterative method:
application to partial differential equations,” Applied Mathe-
matics and Computation, vol. 203, no. 2, pp. 778–783, 2008.

[17] H. Eltayeb, Y. T. Abdalla, I. Bachar, and M. H. Khabir, “Frac-
tional telegraph equation and its solution by natural transform
decomposition method,” Symmetry, vol. 11, no. 3, p. 334, 2019.

[18] A. Khalouta, A. Kadem, and Laboratory of Fundamental and
Numerical Mathematics, Department of Mathematics, Faculty
of Sciences, Ferhat Abbas University of Setif 1, Sétif 19000,
Algeria, “A new numerical technique for solving Caputo
time-fractional biological population equation,” AIMS Mathe-
matics, vol. 4, no. 5, pp. 1307–1319, 2019.

[19] M. Zellal and K. Belghaba, “An accurate algorithm for solving
biological population model by the variational iteration

method using He’s polynomials,” Arab Journal of Basic and
Applied Sciences, vol. 25, no. 3, pp. 142–149, 2018.

[20] A. M. A. El-Sayed, S. Z. Rida, and A. A. M. Arafa, “Exact solu-
tions of fractional-order biological population model,” Com-
munications in Theoretical Physics, vol. 52, no. 6, pp. 992–
996, 2009.

[21] R. Shah, H. Khan, S. Mustafa, P. Kumam, and M. Arif, “Ana-
lytical solutions of fractional-order diffusion equations by nat-
ural transform decomposition method,” Entropy, vol. 21, no. 6,
p. 557, 2019.

[22] S. Bhalekar and V. Daftardar-Gejji, “Convergence of the new
iterative method,” International journal of differential equa-
tions, vol. 2011, 10 pages, 2011.

[23] A. Khan, R. Zarin, U. W. Humphries, A. Akgül, A. Saeed, and
T. Gul, “Fractional optimal control of COVID-19 pandemic
model with generalized Mittag-Leffler function,” Advances in
Difference Equations, vol. 2021, no. 1, 2021.

[24] A. Saeed, M. Bilal, T. Gul, P. Kumam, A. Khan, and M. Sohail,
“Fractional order stagnation point flow of the hybrid nanofluid
towards a stretching sheet,” Scientific Reports, vol. 11, no. 1,
pp. 1–15, 2021.

[25] T. Gul, M. Altaf Khan, A. Khan, and M. Shuaib, “Fractional-
order three-dimensional thin-film nanofluid flow on an
inclined rotating disk,” The European Physical Journal Plus,
vol. 133, no. 12, article 500, 2018.

[26] T. Gul, H. Anwar, M. A. Khan, I. Khan, and P. Kumam, “Inte-
ger and non-integer order study of the GO-W/GO-EG nano-
fluids flow by means of Marangoni convection,” Symmetry,
vol. 11, no. 5, p. 640, 2019.

[27] T. Gul, M. Khan, W. Noman, I. Khan, T. Abdullah Alkanhal,
and I. Tlili, “Fractional order forced convection carbon nano-
tube nanofluid flow passing over a thin needle,” Symmetry,
vol. 11, no. 3, p. 312, 2019.

[28] W. Jamshed, N. A. A. M. Nasir, S. S. P. M. Isa et al., “Thermal
growth in solar water pump using Prandtl–Eyring hybrid
nanofluid: a solar energy application,” Scientific Reports,
vol. 11, no. 1, pp. 1–21, 2021.

[29] W. Jamshed, K. S. Nisar, R. W. Ibrahim, F. Shahzad, and M. R.
Eid, “Thermal expansion optimization in solar aircraft using
tangent hyperbolic hybrid nanofluid: a solar thermal applica-
tion,” Journal of Materials Research and Technology, vol. 14,
pp. 985–1006, 2021.

[30] W. Jamshed, S. U. Devi, and K. S. Nisar, “Single phase based
study of ag-cu/EO Williamson hybrid nanofluid flow over a
stretching surface with shape factor,” Physica Scripta, vol. 96,
no. 6, article 065202, 2021.

[31] W. Jamshed, K. S. Nisar, R. W. Ibrahim, F. Shahzad, and M. R.
Eid, “Thermal expansion optimization in solar aircraft using
tangent hyperbolic hybrid nanofluid: a solar thermal applica-
tion,” Journal of Materials Research and Technology, vol. 14,
pp. 985–1006, 2021.

[32] X.-H. Zhang, A. Ali, M. A. Khan, M. Y. Alshahrani,
T. Muhammad, and S. Islam, “Mathematical analysis of the
TB model with treatment via Caputo-type fractional deriva-
tive,” Discrete Dynamics in Nature and Society 2021,
vol. 2021, pp. 1–15, 2021.

[33] A. Ali, F. S. Alshammari, S. Islam, M. A. Khan, and S. Ullah,
“Modeling and analysis of the dynamics of novel coronavirus
(COVID-19) with Caputo fractional derivative,” Results in
Physics, vol. 20, article 103669, 2021.

11Journal of Nanomaterials



[34] A. Ali, Q. Iqbal, J. K. K. Asamoah, and S. Islam, “Mathematical
modeling for the transmission potential of Zika virus with
optimal control strategies,” The European Physical Journal
Plus, vol. 137, no. 1, pp. 1–30, 2022.

[35] Y. M. Chu, A. Ali, M. A. Khan, S. Islam, and S. Ullah, “Dynam-
ics of fractional order COVID-19 model with a case study of
Saudi Arabia,” Results in Physics, vol. 21, article 103787, 2021.

12 Journal of Nanomaterials



Research Article
Evaluating the Higher-Order Slip Consequence in Bioconvection
Nanofluid Flow Configured by a Variable Thick Surface of Disk

Hassan Waqas ,1 Sumeira Yasmin,1 Nesreen Althobaiti,2 Ebenezer Bonyah ,3

Ahmed Alshehri ,4 and Zahir Shah 5

1Department of Mathematics, Government College University Faisalabad, Layyah Campus 31200, Pakistan
2Department of Mathematics and Statistics, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
3Department of Mathematics Education, University of Education Winneba Kumasi Campus, Kumasi 00233, Ghana
4Department of Mathematics, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
5Department of Mathematical Sciences, University of Lakki Marwat, Lakki Marwat, 28420 Khyber Pakhtunkhwa, Pakistan

Correspondence should be addressed to Ebenezer Bonyah; ebbonya@gmail.com

Received 2 October 2021; Accepted 24 January 2022; Published 14 February 2022

Academic Editor: Amir Khan

Copyright © 2022 Hassan Waqas et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For innovations in manufacturing and engineering scientific fields, the devices (electrical and computer systems) with large
thermal effectiveness are needed. As a result, their thermal efficiency has become a very hot problem for many canvassers.
With the novelty of this analysis, a mathematical study is performed to estimate the Darcy-Forchheimer flow of viscous
magnetized fluid with Arrhenius activation energy and bioconvection effects through a variable thick surface of a rotating disk.
The impact of thermal conductivity, heat source, and nonlinear thermal radiation is considered. The higher-order velocity slip
impacts are also scrutinized. The system of partial differential equations (PDEs) and specific boundary restrictions is altered
into a system of ODEs by adopting the suitable similarity transformations. The reduced ODE’s system is tackled with the aid
of shooting scheme under (bvp4c) built-in tool commercial software MATLAB. Moreover, the effects of different parameters
over velocity components, thermal conductivity, concentration, and microorganism’s fields are also examined. The
confirmation of our findings is also explained through tables and graphical results. The results revealed that the radial velocity
increases with the growing estimations of mixed convection parameter. The second-order velocity slip in radial direction
causes a decrement in the estimation of axial velocity. Temperature distribution increases with a larger temperature ratio
parameter. The concentration field of species and microorganism profile is reduced via a Brownian motion parameter and
Peclet number, respectively.

1. Introduction

1.1. Literature Survey. Nanofluid is a fluid constructed with
nanosized (1 to 100nm) materials or molecules, named
“nanomaterials” and otherwise “nanoparticles.” Such sub-
stances are designed colloidal suspension of nanopowders
in a continuous phase fluid. Nanoparticles utilized in nano-
fluids are constructed with oxidations, metals, and carbon
nanotubes including carbides. Continuous phase fluids
include ethanol glycol oil as well as water. Nanofluids have
novel characteristics that build them potentially helpful in
a broad range of heat transformation applications such as
fuel cells, microprocessors, hybrid powered engines, phar-

macological mechanisms, cooling equipment, chillers, refrig-
erators, and heat radiators in grinding, among others.
Nanofluids are combinations of nanoparticles and the base
fluids that can generate numerous heterogeneous nanofluids
that are described for their thermophysical characteristics
(thermal diffusivity and thermal conductivity, as well as vis-
cosity) as a cooling system in heat transmission in compari-
son to base fluid, which increased with growing volumetric
fraction of nanomaterials. Choi and Eastman [1] were firstly
introduced to the basic idea of nanoparticles in constant
phase fluids. Buongiorno [2] addressed nanoparticle study
by developing a model to evaluate the thermal properties
of continuous phase fluids. He predicted that the increased
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conductance of constant phase fluid would be caused by the
tiny-sized and lower volume fraction of supporting nanoele-
ments. Nanotechnology is extremely important in numerous
fields including chemical as well as metallurgical operating
systems, transportation, macroscopic objects, cancer treat-
ment, and electricity generation. Eid and Mabood [3]
reported the suspending magnetohydrodynamic (MHD)
flowing of micropolar dusty nanoparticles impinging on a
permeability expanding sheet. Umar et al. [4] studied
numerically the 3-dimensional incompressible Eyring-
Powell nanofluid flow across a stretched surface including
velocity slip as well as activation energy. Muhammad et al.
[5] explored numerical simulations for 3-D Eyring–Powell
(EP) nanoliquid under the nonlinear thermal radiation with
changed heat and solutal fluxes. Rasool et al. [6] researched
the Marangoni convective Casson-type flow of nanofluid
impacted by the existence of Lorentz forces introduced into
the modeling by an organized arrangement of magnets in
the shape of the Riga configuration. Mahanthesh et al. [7]
described the effect of quadratic thermal radiation as well
as convection on the boundary layer 2-phase flowing of a
dusty flow of nanoliquid through a vertical surface. Aaiza
et al. [8] evaluate the magneto-nanoliquid flow across a
channel in the presence of different nanoparticle shape fac-
tors. Hussanan et al. [9] investigate the thermal transporta-
tion phenomenon in micropolar water-based fluid. Khalid
et al. [10] scrutinized the exact solution of nanofluid flow.
Ali et al. [11] discussed the Brinkman-type nanofluid flow
through vertical surface. Zin et al. [12] introduced the free
convection behavior in Jeffery fluid through vertical porous
surface.

The word activation energy plays a significant role in
chemical reactions. The scientist Svante Arrhenius was the
principal who initiated the description on activation energy
in 1889 and that it is the minimum amount of energy
required to initiate chemical reactions to a state in which
they could experience material change. The application
includes compound construction, food processing, transpor-

tation structures, a geothermal stored, and businesses. Heat
and mass distribution aspects manage various mechanisms
that were reacting synthetically which include the species
composite reactions as well as codification strength having
application in oil production and geothermal configuration.
In actuality, it is the least amount of energy required to
transform the reactants into substances. Activation energy
can take the shape of kinetic and potential energy. It is
essential to generate theoretical observations in addition to
experimental contributions to measure the flow influence
of activation energy. There have been very several theoretical
efforts on this discussion. Indeed, the relationship between
mass transfer and chemical reaction becomes tiresome. Such
interactions can be observed both within the fluid and in
mass transmission during the production process and
employ of reactants at various levels. Bestman [13] clarified
that viscoelastic fluid flow of thermal and mass moved in
which restricts divider movements in its own plane utilizing
a simplistic scientific theory of twofold material reaction
with Arrhenius actuation energy. In this inspection, he
obtained an analytical curriculum of action for the problem
by employing an irritation method. Guo et al. [14] examined
the kinetic model and thermodynamic of oxidant pyrolysis
of microalgae wastes using a double distribution activation
energy concept and simulating annealing. Hayat et al. [15]
evaluated the effect of activation energy on entropy genera-
tion (EG) in a 3-dimensional magnetohydrodynamic
(MHD) rotational flowing of nanofluids containing a binary
chemical process. Araújo et al. [16] scrutinized the kinetic
modeling and Arrhenius activation energy distributions in
complicated systems with Hopfield Neural Network-based
system. Elangovan and Natarajan [17] reported the primary
treatment influences on qualitative characteristics, hydration
diffusivity, and Arrhenius activation energy of solar drying
gourd. The numerical analysis of unsteady Maxell nanofluid
is simulated by Bilal et al. [18]. The effect of magneto nano-
fluid flow over disk with viscous dissipation is analyzed by
Saeed et al. [19].

Figure 1: Schematic configuration of the flow problem.
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Microorganism molecules have been widely used in the
production of manufacturing and industrial products such
as ethanol, waste-derived biofuel, and fertilizers. They are
also utilized in water therapeutic facilities. These microor-
ganisms generate hydrogen gas and biofuel, a favorable dis-
patchable energy source. As a result, we must investigate the
swimming structures and mass transmission properties of

microorganisms in order to make their applications more
successful, profitable, and widespread for the benefit of
humanity. Bioconvection is the production of various types
of irregular fluid structures at the microscopic level therefore
of the unexpected swimming of self-propelled microorgan-
isms found in water or those certain denser fluids. Natural
hypotheses such as searching for nutrients, oxygen for

Table 1: Dimensionless prominent parameters.

Reynolds number Re =ΩR2
0ρf /μf

Mixed convection variable λ = β∗∗g ∗ 1 − C∞ð Þ T f − T∞
� �

/rΩ2

Buoyancy ratio parameter Nr = ρp − ρf

� �
Cf − C∞
� �

/ρf 1 − C∞ð Þ T f−T∞
� �

β∗∗

Bioconvection Rayleigh number Nc = γ ∗ ρm − ρf

� �
Nf −N∞
� �

/ρf 1 − C∞ð Þ T f −T∞
� �

β∗∗

Dimensionless constants r∗ = r/R2
0, ε = r∗/ 1 + r∗ð Þ� �

Magnetic parameter M = σfβ
2
0/ρfΩ

Local porosity parameter K∗
1 = νf /k∗Ω

Forchheimer number Fr = Fr, Fr = C∗
b /

ffiffiffiffiffi
k∗

p

Eckert number Ec = r2Ω2/cp T f − T∞
� �

Brownian motion parameter Nb = τDB Cf − C∞
� �

/νf

Prandtl number Pr = ρcpνf

� �
/kf

Thermal source parameter Q =Q∗/ ρcp
� �

f
Ω

� �
Nonlinear thermal radiation parameter Rd = 4σ∗T3

∞/k∗

Thermophoretic parameter Nt = τDT T f − T∞
� �

/νf T∞

Activation energy parameter E1 = Ea/κT∞

Schmidt number Sc = νf /DB

Stretching rate to angular frequency A1 = a/Ω

First-order slip parameters in radial direction
L1 = λ1/R0ð Þ 1 + r∗ð Þς ΩR2

0ρf /μf

� �1/ n+1ð Þ
> 0,

L3 = λ3/R0ð Þ 1 + r∗ð Þς ΩR2
0ρf /μf

� �1/ n+1ð Þ
> 0

Tangential directional second-order slip parameters
L2 = λ2/R2

0
� �

1 + r∗ð Þ2ς ΩR2
0ρf /μf

� �2/ n+1ð Þ
< 0,

L4 = λ4/R2
0

� �
1 + r∗ð Þ2ς ΩR2

0ρf /μf

� �2/ n+1ð Þ
< 0

Thermal Biot number Ω1 = h1/kf
� �

R0/ 1 + r∗ð Þςð Þ μf /ΩR2
0ρf

� �1/ n+1ð Þ

Solutal Biot number Ω2 = h2/Dmð Þ R0/ 1 + r∗ð Þςð Þ μf /ΩR2
0ρf

� �1/ n+1ð Þ

Microorganism Biot number Ω3 = h3/Dmð Þ R0/ 1 + r∗ð Þςð Þ μf /ΩR2
0ρf

� �1/ n+1ð Þ

Chemical reaction parameter K1 = k2r /Ω
Temperature ratio parameter α1 = T f − T∞

� �
/T∞

Disk thickness coefficient α = a/R2
0

� �
ΩR2

0ρf /μf

� �−1/ n+1ð Þ

Bioconvective Lewis number Lb = ν/Dm

Peclet number Pe = bWc/Dm

Microorganism difference number Ω0 =N∞/Nf −N∞,

3Journal of Nanomaterials



breathing, and improving light absorption for photosynthe-
sis influence the swimming of such microorganisms. Platt in
1961 [20] introduced the term “bioconvection” to illustrate
the methodology of improvement of manners in depth sus-
pensions of motile microorganisms at constant tempera-
tures, in comparison to those reported under convectional
conditions. Kuznetsov [21] proposed the concept of biother-
mal convection caused by temperature gradients as well as
microorganism swimming. Tlili et al. [22] scrutinized the
effect of bioconvection micropolar nanoliquid flow includ-
ing gyrotactic motile microorganisms on thermal and solutal
stratifications at the boundary layer. Al-Mubaddel et al. [23]
examined Sisko-based nanofluid under the bioconvection
radiation flow with specific thermal and solutal fluxes.
Abbasi et al. [24] illustrated the flow of viscoelastic nanopar-
ticles containing gyrotactic motile microorganisms across a
rotating stretched disk under convective and zero mass flux
conditions. Shehzad et al. [25] scrutinized the bioconvection
of a Maxwell-based nanoliquid above an isolated rotational
disk under the effect of double diffusional Cattaneo–Chris-
tov (C-C) concepts. Aziz et al. [26] evaluated the effects of
motile microorganisms on unstable Williamson nanoliquid
caused by a bidirectional accelerating surface. Alizadeh and
Ganji [27] analyzed the two-phase thermosyphon utilizing
RSM. The thermal transportation features and thermal resis-
tance are discussed by Alizadeh and Ganji [28]. Some
important research work about fluid flow and heat transfer
can be studied in [29–31].

Taking the higher-order velocity slip consider, this com-
munication extends the bioconvection nanofluid flow
through a stretching disk. The Darcy-Forchheimer porous
medium is considered. The heat transfer is incorporated in
the presence of nonlinear thermal radiation, joule heating,
thermophoresis, and Brownian diffusion. The significance
of Arrhenius activation energy is considered. The dimen-
sionless system is tackled by utilizing a shooting scheme with
the bvp4c function of MATLAB. The effects of flow control-
ling parameters are analyzed.

2. Mathematical Description

2.1. Flow Analysis. Here, our main purpose is to scrutinize
the steady three-dimensional, incompressible, and axially
symmetric laminar flow of nanofluid including bioconvec-
tion with motile microorganism over a stretching disk sur-
face. The schematic view of flow problem and the system
of coordinates is depicted in Figure 1; here, the surface of
the disk is stretchable through the rate of α and moving
along own axis under an angular frequency Ω. Due to the
stretchable and angular frequency as well as electrical con-
duction in the presence of electromagnetic field, the flow is
produced. The suitable boundary conditions are applied at
the disk surface. Here, no suction/injection is present at
the disk surface, that is, w = 0. The velocity components
denoted as ðu, v, andwÞ are along the ðr, φ, and zÞ axis,
respectively. The temperature of fluid T f , nanoparticle con-
centration of fluid Cf , bioconvection fluid Nf , ambient tem-
perature T∞, and ambient volumetric concentration C∞ as

well as ambient swimming organisms N∞ are also presented
at the surface of a stretching disk.

The governing partial deferential equations are
expressed as [32, 33]

ur +
u
r
+wz = 0, ð1Þ

u∂r uð Þ − v2

r
+wz uð Þ = νf uzz −

σfβ
2
0

ρf

u −
νf

k∗
u − Fu2 + 1

ρf

1−Cf

� �
ρfβ

∗∗g ∗ T − T∞ð Þ

− ρp − ρf

� �
g∗ C − C∞ð Þ

− N −N∞ð Þg∗γ ρm − ρf

� �

2
66664

3
77775,

ð2Þ

uvr +
uv
r

+wz vð Þ = νf vzz −
σfβ

2
0

ρf
v −

νf

k∗
v − Fv2, ð3Þ

ur Tð Þ +w Tzð Þ = 1
ρcp

K Tzð ÞTzz½ � + kf
ρcp
� �

f

Tzz +
σf β

2
0

ρcp
� �

f

u2 + v2
� �

+
μf

ρcp
� �

f

uzð Þð Þ2 + vzð Þ2� �
+ τ DB Tzð Þ∂z Cð Þ + DT

T∞
Tzð Þ2

	 


+ 16σ∗

3k∗ ρcð Þf
Tz

3Tzz

� �
+ Q∗

ρcp
� �

f

T − T∞ð Þ,

ð4Þ

uCr +wCz =DB Czz½ � + DT

T∞
Tzz½ � − kr2 C − C∞ð Þ T

T∞

	 
m

exp −Ea

κT

	 

,

ð5Þ

uNr +wNz + Nz Czzð Þð Þ½ � bWc

Cw − C∞ð Þ =Dm Nzzð Þ: ð6Þ

2.2. With Boundary Restrictions.

u = ra + λ1 uzð Þ + λ2 uzzð Þ,
v = rΩ + λ3 vzð Þ + λ4 vzzð Þ,

w = 0,
−k Tzð Þ = h1 T f − T

� �
,

−DB Czð Þ = h2 Cf − C
� �

,

−Dm Nzð Þ = h3 Nf −N
� �

,

at z = a∗
r
R0

+ 1
	 
−ς

,

ð7Þ

u⟶ 0,
v⟶ 0,

T ⟶ T∞,
C⟶ C∞,
N ⟶N∞,

ð8Þ

when z⟶∞.
In the above governing equations, the velocity compo-

nents are u, v, andw along r, φ, and z directions, νf repre-
sent the kinematic viscosity; σf is the electrical
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conductivity of momentum; ρf is the fluid density of micro-
organism; K∗ demonstrate the porous space permeability; β0
is the magnetic field strength; Fð= C∗

b /r
ffiffiffiffiffiffi
K∗

p Þ illustrate the
coefficient of nonuniform inertia; g is the gravity; volume
expansion coefficient is indicated by β∗∗; Dm represents the
microorganism diffusion parameter; m exemplify the power
law index; chemotaxis constant is expressed as b; the cell
swimming speed is identified as We; C

∗
b display the drag

coefficient; T , C, andN are the basic temperature, volumet-
ric concentration, and swimming bioconvection of fluid; kf
signify the thermal conductivity; cp represents specific heat
capacity; the heat capacitance ratio is symbolized by τ =
ðρcpÞp/ðρcpÞf ; DT represents thermophoresis diffusion coef-

ficient; T∞ stand for ambient temperature; m is the fitted
rate constant; DB represent the Brownian motion coefficient;
the dynamic viscosity is μf , C∞ andN∞ are ambient con-
centration and ambient density microorganism, respectively;
the rate of chemical reaction is k2r ; β1, β2, β3, and β4 are lin-
ear/nonlinear thermal-based and nanoparticle concentration
expansions; the exponential function is exp; the angular fre-
quency is Ω; the activation energy is symbolized by Ea; the
stretching constant is a; κ = 8:61 × 10−5 eV/K expressed the
Stefan Boltzmann constant; λ1ðλ2 < 0Þ and λ3ðλ4 < 0Þ are
the first- and second-order slip coefficients, respectively;
and h1 and h2 are the heat mass transfer coefficient and
the mass transfer coefficient, respectively.

2.3. Similarities. The similarity variables are

u = r∗R0ΩF ηð Þ,
v = r∗R0ΩG ηð Þ,

w = R0Ω 1 + r∗ð Þ−ς ΩR2
0ρf

μf

 !−1/ n+1ð Þ
H ηð Þ,

Θ = T − T∞
T f − T∞

,

Φ = C − C∞
Cf − C∞

,

Χ = N −N∞
Nf −N∞

,

η = z
R0

1 + r∗ð Þς ΩR2
0ρf

μf

 !1/ n+1ð Þ
:

ð9Þ

In above transformations, radius is R0; the power law
index is n; the thickness power law index is ς; the compo-
nents of velocity (radial, tangential, and axial) are symbol-
ized by F, G, and H; and r∗ is the constant of
nondimensional radius. The temperature variable conduc-
tivity is addressed as

K Tð Þ = k∞ 1 + ∈1
T − T∞
ΔT

	 
� �
: ð10Þ

2.4. Reduced Equations. The governing dimensionless equa-
tions after applying the suitable similarity transformation
are expressed as

2F +Hη + ηεςFη = 0, ð11Þ

Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ςFηη − 2Fη
2 +G2 −HF − FFηςηε −MF

− K∗
1 F − FrF

2 + λ Θ −NrΦ −NcΧð Þ = 0,
ð12Þ

Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ςGηη − 2FG −HGη − FGηςηε −MG − K∗
1G − FrG

2 = 0,

ð13Þ
1
pr

Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ς 1 + ∈1ð ÞΘηη + ∈1Θη
2

+ 4
3 Rd

Θηη + θw − 1ð Þ3 3Θ2Θη
2 +Θ3Θηη

� �
+3 Θw − 1ð Þ2 2ΘΘη

2 +Θ2Θηη

� �
+3 Θw − 1ð Þ Θη

2 +ΘΘηη

� �

2
66664

3
77775 −HΘη

− FΘηςηε + Nt Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ςΘη
2

+ Nb Reð Þ 1−nð Þ/ 1+nð ÞΘηΦη +MEc F2 +G2� �
+ Ec Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þς Fη

2 +Gη
2� �

+QΘ = 0,
ð14Þ

Nt
Nb

	 

Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ςΘηη + Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ςΦηη

− ScςηεFΘη − ScHΦη − K1Φ 1 + α1Θð Þm exp −E1
1 + α1Θð Þ

� �
= 0,

ð15Þ
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Figure 2: Fluctuation in axial velocity component against two
different parameters.
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Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ςΧζζ − LbHΧζ + LbςηεFΧη − Pe Φηη Χ +Ω0ð Þ +ΧηΦη

� �
= 0,

ð16Þ

with

F αð Þ = A + L1Fη αð Þ + L2Fηη αð Þ,
G αð Þ = 1 + L3Gη αð Þ + L4Gηη αð Þ,

H αð Þ = 0,
Θη αð Þ = −Ω1 1 −Θ αð Þð Þ,
Φη αð Þ = −Ω2 1 −Φ αð Þð Þ,
Χη αð Þ = −Ω3 1 −Χ αð Þð Þ,

ð17Þ

F ∞ð Þ⟶ 0,
G ∞ð Þ⟶ 0,
Θ ∞ð Þ⟶ 0,
Φ ∞ð Þ⟶ 0,
Χ ∞ð Þ⟶ 0:

ð18Þ

The following are currently considered for introducing
the innovative similarity transformation to modify the origin

from α to 0, that is,

H ηð Þ = h η − αð Þ = h ζð Þ,
F ηð Þ = f η − αð Þ = f ζð Þ,
G ηð Þ = g η − αð Þ = g ζð Þ,
Θ ηð Þ = θ η − αð Þ = θ ζð Þ,
Φ ηð Þ = ϕ η − αð Þ = ϕ ζð Þ,
Χ ηð Þ = χ η − αð Þ = χ ζð Þ:

ð19Þ

We get

2f + hζ + ζ + αð ÞςεFζ = 0, ð20Þ

Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ς f ζζ − 2f ζ2 + g2 − hf − f f ζς η + αð Þε −Mf − K∗
1 f − Fr f

2

+ λ θ −Nrϕ −Ncχð Þ = 0,

ð21Þ

Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ςgζζ − 2f g − hgζ − f gζς η + αð Þε −Mg − K∗
1g − Frg

2 = 0,

ð22Þ

1
pr

Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ς 1 + ∈1ð Þθζζ + ∈1θζ
2 + 4

3Rd

θζζ + θw − 1ð Þ3 3θ2θζ2 + θ3θζζ
� �

+3 θw − 1ð Þ2 2θθζ2 + θ2θζζ
� �

+3 θw − 1ð Þ θζ
2 + θθζζ

� �

2
66664

3
77775

− hθζ − f θζς ζ + αð Þε +Nt Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ςθζ2 + Nb Reð Þ 1−nð Þ/ 1+nð Þθζϕζ
+MEc f 2 + g2

� �
+ Ec Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þς f ζ

2 + gζ
2� �

+Qθ = 0,

ð23Þ
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Figure 3: Fluctuation in tangential velocity component against two different parameters.
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Nt
Nb

	 

Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ςθζζ + Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ςϕζζ − Scς ζ + αð Þεf θζ

− Schϕζ − K1ϕ 1 + α1θð Þm exp −E1
1 + α1θð Þ

� �
= 0,

ð24Þ

Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ςχζζ − Lbhχζ + Lbς ζ + αð Þεfχζ − Pe ϕζζ χ +Ωð Þ + χζϕζ
� �

= 0,

ð25Þ
through boundary conditions

f 0ð Þ = A1 + L1 f ζ 0ð Þ + L2 f ζζ 0ð Þ,
g 0ð Þ = 1 + L3gζ 0ð Þ + L4gζζ 0ð Þ,

h 0ð Þ = 0,
θζ 0ð Þ = −Ω1 1 − θ 0ð Þð Þ,
ϕζ 0ð Þ = −Ω2 1 − ϕ 0ð Þð Þ,
χζ 0ð Þ = −Ω3 1 − χ 0ð Þð Þ,

ð26Þ

f ∞ð Þ⟶ 0,
g ∞ð Þ⟶ 0,
θ ∞ð Þ⟶ 0,
ϕ ∞ð Þ⟶ 0,
χ ∞ð Þ⟶ 0:

ð27Þ

2.5. Dimensionless Prominent Parameters. Now, the dimen-
sionless prominent parameters are given in Table 1.

2.6. Physical Quantities. Here, the local skin friction coeffi-
cient (LSF) Cf , local Nusselt number (LNN) Nux , local Sher-
wood number (LSW) Shx, and density motile
microorganism (LMN) Snx are represented as follows:

Local skin friction coefficient

Cf =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2zr + τ2zθ

p
ρf Ωrð Þ2 : ð28Þ

Here, τzr and τzθ are expressed as

τzr = μf uzð Þ

z=0

= μf r
∗Ω1 1 + r∗ð Þς ΩR2

0ρf

μf

 !1/ n+1ð Þ
f ζ 0ð Þ,

ð29Þ

τzθ = μf vzð Þ

z=0

= μf r
∗Ω1 1 + r∗ð Þς ΩR2

0ρf

μf

 !1/n+1

gζ 0ð Þ:

ð30Þ
Here, τw is identified as

τw =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2zr + τ2zθ

q
: ð31Þ

Finally, local skin friction coefficient

Cf x Re n−1ð Þ/ n+1ð Þ = τwjz=0
ρf rΩð Þ2 = 1

r∗
1 + r∗ð Þς f ζ 0ð Þ� �2 + gζ 0ð Þ� �2h i1/2

:

ð32Þ

Here, τzr denoted the shear stress along the radial direc-
tion, τzθ represent the shear stress along the direction of tan-
gential, and τw denoted the shear stress.

Local Nusselt number

Nux =
R0qw

kf T f − T∞
� �


z=0

: ð33Þ

Here, qw is symbolized as

qwjz=0 = −kf Tzð Þ
z=0 = −kf T f − T∞

� �
1 + r∗ð Þς ΩR2

0ρf

μf

 !1/ n+1ð Þ
θζ 0ð Þ:

ð34Þ

Finally, the local Nusselt number

Re−1/ n+1ð ÞNux = − 1 + r∗ð Þςθζ 0ð Þ: ð35Þ

Local Sherwood number

Shx =
R0qm

DB Cf − C∞
� �


z=0

: ð36Þ

Here, qm is denoted as

qm = −DB Czð Þjz=0: ð37Þ

Finally, the local Sherwood number

Shx Re−1/ n+1ð Þ = − 1 + r∗ð Þςϕζ 0ð Þ: ð38Þ

Density motile microorganism number

Snx =
R0qn

Dm N f −N∞
� �


z=0

: ð39Þ

Here, qn is identified as

qn = −Dm Nzð Þjz=0: ð40Þ

Finally, the density motile microorganism number

Snx Re−1/ n+1ð Þ = − 1 + r∗ð Þςχζ 0ð Þ: ð41Þ

3. Numerical Scheme

Significantly, the method of finding the exact solution for
momentum, temperature, nanoparticle concentration, and
bioconvection equations through corresponding initial
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conditions is very complicated and doubtful about the sig-
nificance of results. Researchers have attempted to mathe-
matically research the nanoliquid flowing past the
stretching disk. Chemical processes, including activation
energy, are also used to research the characteristics of mass
transformation. Choose the initial guesses, and the dimen-
sionless highly linear governing equations ((20))–((25)) with
the related boundary conditions ((26))-((27)) are numeri-

cally integrated by utilizing the computational software
MATLAB through built-in rule bvp4c (shooting method).
The bvp4c method is a powerful way of resolving an initial
value problem and a well-known methodology to find more
than one solution. In order to solve these equations, first, we
converted the higher-order differential equation into a first-
order system by using the following technique.
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Figure 6: Fluctuation in thermal field against two different
parameters.
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We identify new variables as

4. Result and Discussion

The aim of this portion is to envisage variations in velocity
components, thermal field, concentration of nanoparticles,
and microorganism profile due to interesting involved
parameters introduced during the flow of bioconvective
nanofluid that are demonstrated in Figures 2–10. Figure 2
explains the effects of second-order slip parameter and
stretching rate to angular frequency. The escalating estima-

tions of stretching rate to frequency exaggerate the axial
velocity component. From this scenario, it can be detected
that axial velocity of nanofluid decays via larger variations
in second-order velocity slip parameter. Figure 3 communi-
cates the impacts of second-order velocity slip as well as
magnetic parameter versus tangential velocity. It can be
observed that tangential velocity boosts up via larger
second-order velocity slip parameter. Here, we also observe
that the larger estimations in magnetic parameter diminishes

h = r1,
hζ = r1 ′,
f = r2,
f ζ = r3,

f ζζ = r3 ′,
g = r4,
gζ = r5,

gζζ = r5 ′,
θ = r6,
θζ = r7,

θζζ = r7 ′,
ϕ = r8,
ϕζ = r9,

ϕζζ = r9 ′,
χ = r10,
χζ = r11,

χζζ = r11 ′,

ð42Þ

r1 ′ = −2r2 − ζ + αð Þςεr3, ð43Þ

r3 ′ =
2r32 − r4

2 + r1r2 + r2r3ς ζ + αð Þε +Mr2 + K∗
1 r2 + Frr2

2 − λ r6 −Nrr8 −Ncr10ð Þ
Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ς

, ð44Þ

r5 ′ =
2r2r4 + r1r5 + r2r5ς ζ + αð Þε +Mr4 + K∗

1 r4 + Frr4
2

Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ς
, ð45Þ

r7 ′ =
r1r7 − ∈1r27 + r2r7ς ζ + αð Þε −Nt Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ςr72 −Nb Reð Þ 1−nð Þ/ 1+nð Þr7r9 −MEc r2

2 + r4
2� �

− Ec Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þς r3
2 + r5

2� �
− 4/3ð ÞRd θw − 1ð Þ3 3r62r72

� �
+ 3 θw − 1ð Þ2 2r6r7ζ2

� �
+ 3 θw − 1ð Þ r7

2� �� �
−Qr6

1ð Þ/pr Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ς 1 + ∈1ð Þ + 4/3ð ÞRd 1 + θw − 1ð Þ3r63 + 3 θw − 1ð Þ2r62 + 3 θw − 1ð Þr6
� � ,

ð46Þ

r9 ′ =
− Nt/Nbð Þ Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ςr7 ′ + Scς ζ + αð Þεr2r7 + Scr1r9 + K1r8 1 + α1r6ð Þm exp −E1/ 1 + α1r6ð Þ½ �

Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ς
, ð47Þ

r11 ′ =
Lbr1r11 − Lbς ζ + αð Þεr2r11 + Pe r9 ′ r10 +Ωð Þ + r11r9

� �
Reð Þ 1−nð Þ/ 1+nð Þ 1 + r∗ð Þ2ς

, ð48Þ

r2 0ð Þ = A1 + L1r3 0ð Þ + L2r3 ′ 0ð Þ,r4 0ð Þ = 1 + L3r5 0ð Þ + L4r5 ′ 0ð Þ, r1 0ð Þ = 0,r7 0ð Þ = −Ω1 1 − r6 0ð Þð Þ,r9 0ð Þ = −Ω2 1 − r8 0ð Þð Þ,r11 0ð Þ = −Ω3 1 − r10 0ð Þð Þ, ð49Þ
r2 ∞ð Þ⟶ 0,r4 ∞ð Þ⟶ 0,r6 ∞ð Þ⟶ 0,r8 ∞ð Þ⟶ 0,r10 ∞ð Þ⟶ 0: ð50Þ
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the tangential velocity of nanofluid flow. In terms of physics,
the magnetic parameter is associated to the Lorentz force,
which is a resistive force to the fluid flow. As the magnetic
parameter increases, the resistance forces increase, and the
velocity decreases. Figure 4 demonstrates the features of
mixed convection parameter as well as bioconvection Ray-
leigh number over a radial velocity component. It is noticed
that velocity is improved by growing the estimations of
mixed convection parameter while it depresses via a greater
bioconvection Rayleigh number. The features of buoyancy

ratio parameter and second-order velocity slip parameter
versus radial component of velocity are elaborated through
Figure 5. The radial velocity is a decreasing function of
second-order velocity slip parameter and buoyancy ratio
parameter. Physically, for a given buoyancy impact, biocon-
vection inhibits the up movement of solid particles that arise
in nanofluid; however, for a higher buoyancy impact, the
fluid resists the fluid, resulting in fluid movement decline.

Figure 6 examines the behavior of thermal conductivity
and temperature ratio parameter via thermal distribution
of nanomaterials. It is witnessed that temperature field
upsurges due to an increment in thermal conductivity and
temperature ratio parameter. Figure 7 portrays the impres-
sion of Prandtl number and thermal Biot number versus
temperature field. It is mentioned that improving Prandtl
number reduces the temperature distribution. From this
communication, we analyzed that enhancing the thermal
Biot number escalates thermal field. Physically, when the
Prandtl number rises, the thermal diffusivity diminishes.
Fluid temperature drops as a result of the lower thermal dif-
fusivity. Figure 8 presents the trend of the Brownian motion
coefficient and Prandtl number against solutal field. Here,
concentration reduces via a greater amount of Brownian
motion coefficient as well as Prandtl number. Micromixing
and heat conduction in the nanofluid are aided by enhancing
the Brownian motion parameter, causing the temperature to
rise and the nanoparticles to scatter more widely.

Figure 9 shows the nature of bioconvection Lewis num-
ber and Peclet number over a microorganism’s field. It is
concluded that the microorganism field diminishes by
increasing the variations of bioconvection Lewis number
and Peclet number. The bioconvection Lewis number has
an converse relationship with microorganism diffusivity.
As the bioconvection Lewis number rises, the diffusivity
decreases, and the microorganism profile drops. The features
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Figure 8: Fluctuation in concentration field against two different parameters.

0
0 1 2 3 4

0.05

0.1

0.15

0.2

0.25

0.3

𝜁

Lb = 1.0, 1.4, 1.8, 2.2
Pe = 0.1, 0.5, 1.0, 1.5

X

Figure 9: Fluctuation in the microorganism’s field against two
different parameters.

10 Journal of Nanomaterials



of microorganism Biot number and bioconvection Rayleigh
number are mentioned in Figure 10. It is noted that larger
magnitudes of microorganism Biot number and bioconvec-
tion Rayleigh number increases the microorganism’s profile.
Here, it was analyzed that good validation in results between
published literature and current outcomes is presented in
Table 2.

5. Conclusion

Computational analysis is conducted on bioconvective vis-
cous nanofluid flow past a stretching disk with higher-
order slips and nonlinear thermal radiation. The main out-
comes are listed as follows:

(i) Axial velocity component escalates versus a larger
amount of stretching rate to angular frequency

(ii) Tangential velocity is increases against a second-
order slip parameter

(iii) The increment in radial velocity has been analyzed
along with increments in mixed convection
parameter

(iv) The larger slip parameter and buoyancy ratio
parameter reduce the radial velocity of nanofluid

(v) Thermal field of species rises against temperature-
dependent thermal conductivity

(vi) Temperature distribution is increased via the tem-
perature ratio parameter

(vii) Greater values of the thermal Biot number boost
the temperature field

(viii) Concentration is reduced against the Brownian
motion parameter

(ix) The microorganism’s profile boosts via the micro-
organism’s Biot number while it diminishes
against the Peclet number

(x) The microorganism’s field is depressed against the
bioconvection Lewis number

Nomenclature

ðu, v,wÞ: Velocity components (m·s−1)
ðr, φ, zÞ: Coordinates of system (m)
νf : Kinematic viscosity
F: Inertia coefficient
k∗: Porous permeability
b: Chemotaxis constant
σf : Electrical conductivity
g∗: Gravitational acceleration
β∗∗: Volume expansion coefficient
DT : Thermophoretic diffusion coefficient
Dm: Microorganism coefficient
τ: Capacity ratio
σ∗: Stefan Boltzmann number
kr2: Chemical reaction coefficient
Ea: Coefficient of activation energy
N∞: Ambient microorganisms
Wc: Cell swimming speed
Nf : Surface microorganisms
K∗

1 : Chemical reaction parameter
K1: Chemical reaction parameter
Fr : Darcy Forchheimer parameter
λ: Mixed convection parameter
M: Magnetic parameter
Nr: Buoyancy ratio parameter
Nc: Bioconvection Rayleigh number
Lb: Bioconvection Lewis number
α1: Temperature ratio parameter
τzr : Radial directional shear stress
τzθ: Tangential directional shear stress
Pe: Peclet number
Ω0: Microorganism difference parameter
A: Stretching ratio to angular frequency
L1: Radial direction first-order velocity slip
Shx: LSN
Snx: LMN
ρf : Fluid density ðkg/m3Þ
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Figure 10: Fluctuation in the microorganism’s field against two
different parameters.

Table 2: Validation in results between published literature and
current outcomes are present.

f ″ 0ð Þ g′ 0ð Þ θ′ 0ð Þ
Xun et al. [29] 0.51023 0.61592 0.39627

Anderson et al. [30] 0.510 0.616 0.3963

Ming et al. [31] 0.51021 0.61591 0.39632

Khan et al. [33] 0.51082 0.61595 0.3958

Current results 0.51084 0.61598 0.3958
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ρp: Nanoparticle density
ρm: Microorganism density
kf : Thermal conductivity ðWm−1K−1Þ
cp: Specific heat ðJ/KÞ
ðρcpÞf : Heat capacity ðJm−3K−1Þ
T∞: Ambient temperature
β0: Magnetic field strength (N·m−1·A−1)
DB: Brownian diffusion coefficient
k∗: Mean absorption coefficient
λ3, λ4: Coefficient of velocity slips
h1, h2, h3: Heat, mass, microorganism transfer coefficient
Nb: Brownian motion parameter
C∞: Ambient concentration
T f : Surface temperature
Cf : Surface concentration
Re: Reynolds number
Pr: Prandtl number
Rd: Thermal radiation parameter
θw: Temperature difference parameter
E1: Activation energy parameter
Nt: Thermophoresis parameter
Ec: Eckert number
Sc: Schmidt number
L2: Radial direction second-order velocity slip
L3: Tangential direction first-order velocity slip
L4: Tangential direction second-order velocity slip
Ω1: Thermal Biot number
Ω2: Mass Biot number
Ω3: Microorganism Biot number
Cf : Skin friction coefficient
Nux : LNN
Nux : Nusselt number
τw: Shear stress
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In this work, the optimal homotopy asymptotic method (OHAM) has been used to find approximate solutions to the nonlinear
fractional-order Kawahara and modified Kawahara equations. The method convergence is controlled by a flexible function known
as the auxiliary function. The values of the unknown arbitrary constants in the auxiliary function are computed using the Caputo
derivative fractional-order and the well-known approach of least squares. Fractional-order derivatives are taken in the Caputo
sense with numerical values in the closed interval ½0, 1�. The suggested method is directly applied to fractional-order Kawahara
and modified Kawahara equations, with no need for small or large parameter assumptions. The numerical results obtained by
the proposed method are compared to the new iterative method (NIM). Results reveal that the proposed method converges
faster to the exact solution than other methods in the literature.

1. Introduction

Fractional computation was established as an important
subject of mathematics in 1695. Fractional calculus ideas
have recently been successfully expanded to numerous sec-
tors, and academics have increasingly realized that fractional
calculus may well reflect many nonlocal occurrences in the
fields of natural science and architecture. Rheology, liquid
flow, dispersion diffusion transport, dynamic cycles in self-
compatible and porous materials, viscoelasticity, and optics
are some of the key areas of fractional calculation today.
Very few researchers have drawn on the successful use of
fractional systems in these fields to examine their mathemat-
ical approximation methods, since diagnostic frameworks
are usually difficult to obtain. A variety of real-world prob-
lems can be modeled using fractional-order differential
equations. These equations have many applications in fluid

mechanics, electromagnetic theory, electric grids, diffuse
transport, groundwater problems, biological sciences, etc.
[1–9]. The exact solution for nonlinear problems is very
hard to obtain, and an alternative way is to find the approx-
imate solution. Some familiar approximation methods are
used in the series of papers [9–21], etc. Similarly, we extend
the well-known optimal homotopy asymptotic method
(OHAM) to fractional-order Kawahara and modified Kawa-
hara equations.

The proposed approach was presented by Marinca and
Herisanu and applied to resolve nonlinear differential equa-
tions in the literature series [22–26]. Recently, Sarwar et al.
extended the idea of OHAM fractional-order partial differ-
ential equations and used them for different problems hav-
ing fractional-order derivatives [27, 28]. Nawaz et al.
applied the suggested approach to the fractional-order
Zakharov-Kuznetsov equations [29]. Likewise, Zada et al.
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applied the proposed approach to various fractional PDEs in
the series of articles [30, 31]. In this article, the application of
OHAM is extended to the modified Kawahara and Kawa-
hara equations together with initial conditions:

∂αϒ ξ, τð Þ
∂τα

+ϒ ξ, τð Þ ∂ϒ ξ, τð Þ
∂ξ

+ϒ ξ, τð Þ − ∂5ϒ ξ, τð Þ
∂ξ5

= 0, 0 < α ≤ 1,

ϒ ξ, 0ð Þ = 105
169 sec h4 ξ

2
ffiffiffiffiffi
13

p
� �

,

ð1Þ

∂αϒ ξ, τð Þ
∂τα

+ϒ 2 ξ, τð Þ ∂ϒ ξ, τð Þ
∂ξ

+ ρ
∂3ϒ ξ, τð Þ

∂ξ3

+ μ
∂5ϒ ξ, τð Þ

∂ξ5
= 0, 0 < α ≤ 1,

ϒ ξ, 0ð Þ = 3ρffiffiffiffiffiffiffiffiffiffiffi
−10μp sec h2 kξð Þ, k = 1

2

ffiffiffiffiffiffi
−ρ
2μ

r
:

ð2Þ

Here, ρ and μ are constants. Equations (1) and (2) have
become the subject of active and wide research topics in
recent times [32–34].

2. Preliminaries

Definition 1. The Riemann-Liouville fractional integral oper-
ator of an order α ≥ 0 of a function G ∈ Cμ, μ ≥ −1 is pre-
sented by

IαaG ξð Þ = 1
Γ αð Þ

ðξ
a
ξ − μð Þα−1G μð Þdμ, α > 0, ξ > 0,

I0aG ξð Þ =G ξð Þ:

8><
>: ð3Þ

Definition 2. The fractional derivative GðξÞ according to
Caputo is presented by

Dα
aG ξð Þ = Im−α

a DmG ξð Þ = 1
Γ m − að Þ

ðξ
a
ξ − μð Þm−α−1Gm μð Þdμ,

m − 1 < α ≤m,m ∈N , ξ > 0,G ∈ Cm
−1:

8><
>:

ð4Þ

Definition 3. If m − 1 < α ≤m,m ∈N , and G ∈ Cm
μ , μ ≥ −1,

then Dα
aI

α
aGðξÞ = GðξÞ and Dα

aI
α
aGðξÞ =GðξÞ − ∑m−1

k=0 G
ðkÞðξ −

aÞ/k!, ξ > 0:

The properties of operator Iα are found in [3, 11]. We intro-
duce the subsequent.

For G ∈ Cm
μ , α, β > 0, μ ≥ −1, and γ ≥ −1,

(1) IαaGðξÞ exist for almost every ξ ∈ ½a, b�
(2) IαaI

β
aGðξÞ = Iα+βa GðξÞ

(3) Iαa J
β
aGðξÞ = Iβa JαaGðξÞ

(4) Iαaðξ − aÞγ = ðΓðγ + 1Þ/Γðα + γ + 1ÞÞðξ − aÞα+γ

3. OHAM Methodology to Fractional-Order
PDEs [27, 28]

To extend the basic theory of OHAM for fractional-order
PDEs, we assume that the subsequent general fractional dif-
ferential system

∂αϒ ξ, τð Þ
∂τα

= A ϒ ξ, τð Þ + F ξ, τð Þα > 0ð , ð5Þ

with initial condition

Dα−κ
0 ϒ ξ, 0ð Þ = hκ rð Þ, κ = 0, 1, 2,⋯, n − 1ð Þ,Dα−n

0 ϒ ξ, 0ð Þ = 0, n = α½ �,
Dκ
0ϒ ξ, 0ð Þ = gκ rð Þ, κ = 0, 1, 2,⋯, n − 1ð Þ,Dn

0ϒ ξ, 0ð Þ = 0, n = α½ �:
ð6Þ

In the above equation, ∂α/∂τα represents the Caputo
fractional derivative operator, A stands for the differential
operator, and ϒðξ, τÞ represents an unknown function.
Fðξ, τÞ is a function that serves as an analytical function.

The homotopy using OHAM for equation (5) is ϕðξ,
τ ; pÞ: Ω × ½0, 1�⟶ R which is satisfied:

1 − pð Þ ∂αϕ ξ, τð Þ
∂τα

− F ξ, τð Þ
� �

−H ξ, pð Þ

� ∂αϕ ξ, τð Þ
∂τα

− A ϕ ξ, τð Þð Þð + F ξ, τð Þ
� �

= 0:
ð7Þ

Hence, p ∈ ½0, 1� which is an embedding parameter and
Hðξ, τÞ shows the auxiliary function such that

H ξ, τð Þ ≠ 0 for p ≠ 0 andH ξ, 0ð Þ = 0: ð8Þ

Remark 4. The approximate solution ϕðξ, τÞ approaches to
the closed solution when the numerical values of p varies
for 0 to 1 in the closed interval ½0, 1�. The convergence
of the OHAM purely depends on the auxiliary function.

The auxiliary function Hðξ, pÞ is set out below:

H ξ, pð Þ = pk1 ξ, Cið Þ + p2k2 ξ, Cið Þ + p3k3 ξ, Cið Þ+⋯+pmkm ξ, Cið Þ:
ð9Þ

In equation (9), Ci, i = 1, 2,⋯, convergence control
parameters kiðξÞ, i = 1, 2,⋯, is a function of ξ.

By extending ϕðξ, τ ; p, CiÞ in Taylor’s series about p, one
can obtain

ϕ ξ, τ ; Cið Þ =ϒ 0 ξ, τð Þ + 〠
m

k=1
ϒ k ξ, τ ; Cið Þpk, i = 1, 2, 3,⋯:

ð10Þ
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Putting p = 1, in the above equation, we have

ϒ ξ, τ ; Cið Þ =ϒ 0 ξ, τð Þ + 〠
∞

k=1
ϒ k ξ, τð Þ ; CiÞ, i = 1, 2, 3,⋯:

ð11Þ

By substituting equation (10) in equation (7) and equat-
ing the coefficient of the same powers of p, we acquire the
series of problems:

p0 :
∂αϒ 0 ξ, τð Þ

∂τα
− F = 0,

p1 :
∂αϒ 1 ξ, τ, C1ð Þ

∂τα
− 1 + C1ð Þ ∂

αϒ 0 ξ, τð Þ
∂τα

+ 1 + C1ð ÞF + C1A ϒ 0 ξ, τð Þð Þ = 0,

p2 :
∂αϒ 2 ξ, τ, C1, C2ð Þ

∂τα
− 1 + C1ð Þ ∂

αϒ 1 ξ, τ, C1ð Þ
∂τα

− C2
∂αϒ 0 ξ, τð Þ

∂τα
+ C1A ϒ 1 ξ, τ, C1ð Þð Þ + C2 F + A ϒ 0 ξ, τð Þð Þð = 0⋯ :

ð12Þ

The above problems contain fractional-order derivatives.
So, we apply the inverse of the operator Iα on both sides of
the above problems:

ϒ 0 ξ, τð Þ = Iα F½ �,

ϒ 1 ξ, τ ; C1ð Þ = Iα 1 + C1ð Þ ∂
αϒ 0 ξ, τð Þ
∂τα

− 1 + C1ð ÞF − C1A ϒ 0 ξ, τð Þð Þ
� �

,

ϒ 2 ξ, τ ; C1, C2ð Þ = Iα 1 + C1ð Þ ∂
αϒ 1 ξ, τ ; C1ð Þ

∂τα
+ C2

∂αϒ 0 ξ, τð Þ
∂τα

�

− C1A ϒ 1 ξ, τ ; C1ð Þð Þ − C2 F + A ϒ 0 ξ, τð Þð Þð Þ
�
⋯ :

ð13Þ

By using these solutions in equation (11), we obtain the
approximate solution:

~ϒ ξ, τ ; Cið Þ =ϒ 0 ξ, τð Þ +ϒ 1 ξ, τ ; C1ð Þ +ϒ 2 ξ, τ ; C1, C2ð Þ+⋯:

ð14Þ

The residual Rðξ, τ ; CiÞ is acquired by using equation
(14) into equation (5).

C1, C2,⋯ can be found by using either the Ritz method,
the least squared method, the collocation method, or Galer-
kin’s method. The least-square approach is used here. Here,
we introduce the functional

χ Cið Þ =
ðt
0

ð
Ω

R2 ξ, τ ; Cið Þdξdτ, ð15Þ

then calculate the optimal values for auxiliary constants Ci
by solving the following equation system:

∂χ
∂C1

= ∂χ
∂C2

=⋯ = ∂χ
∂Cm

= 0: ð16Þ

3.1. Convergence Theorem. If the series (11) converge to

ϒðξ, τÞ, where ϒ kðξ, τÞ ∈ LðR+Þ is generated by the zero-
order system and the K-order deformation, then ϒðξ, τÞ
is the exact solution of (5).

Proof. The following series

〠
∞

k=1
ϒ i,k ξ, τ ; C1, C2,⋯, Ckð Þ ð17Þ

converges and is presented by

ψi ξ, τð Þ = 〠
∞

k=1
ϒ i,k ξ, τ ; C1, C2,⋯, Ckð Þ, ð18Þ

which satisfies the following:

lim
k⟶∞

ϒ i,k ξ, τ ; C1, C2,⋯, Ckð Þ = 0: ð19Þ

Indeed, the subsequent equation is fulfilled:

ϒ i,1 ξ, τ ; C1ð Þ + 〠
n

k=2
ϒ i,k ξ, τ ; C

!
k

� �
− 〠

n

k=2
ϒ i,k−1

� ξ, τ ; C
!
k−1

� �
=ϒ i,2 ξ, τ ; C

!
2

� �
−ϒ i,1 ξ, τ ; C1ð Þ+⋯+ϒ i,n ξ, τ ; C

!
n

� �
−ϒ i,n−1 ξ, τ ; C

!
n−1

� �
=ϒ i,n ξ, τ ; C

!
n

� �
:

ð20Þ

Now, we have

Li,1 ϒ i,1 ξ, τ ; C1ð Þð + 〠
∞

k=2
L1 ϒ i,k ξ, τ ; C

!
k

� �� �

− 〠
∞

k=2
Li ϒ i,k−1 ξ, τ ; C

!
k−1

� �� �

= Li ϒ i,1 ξ, τ ; C1ð Þð Þ + 〠
∞

k=2
Li ϒ i,k ξ, τ ; C

!
k

� �� �

− 〠
∞

k=2
Li ϒ i,k−1 ξ, τ ; C

!
k−1

� �� �
= 0,

ð21Þ

which satisfies

Li,1 ϒ i,1 ξ, τ ; C1ð Þð + Li 〠
∞

k=2
ϒ i,k ξ, τ ; C

!
k

� �� �

− Li 〠
∞

k=2
ϒ i,k−1 ξ, τ ; C

!
k−1

� �� �

= 〠
∞

k=2
Cm Li ϒ i,k−m ξ, τ ; C

!
k−m

� �� ��h

+Ni,k−m ϒ i,k−1 ξ, τ ; Ck−1ð Þð Þ
i
+ gi ξ, τð Þ = 0:

ð22Þ
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Now, if Cm,m = 1, 2, 3,⋯, is correctly selected, then the
equation leading to

Li ϒ i ξ, τð Þð + A = 0 ð23Þ

is the exact solution.

4. Main Results

We test our adopted procedure OHAM for finding the
approximate solution of the fractional-order Kawahara
equation. For most of the computational work, we used
MathType and Mathematica 10.

4.1. Numerical Solution of Fractional Kawahara Equation.
First, we assume that the time-fractional Kawahara equation
is given in [35]:

∂αϒ ξ, τð Þ
∂τα

+ϒ ξ, τð Þ ∂ϒ ξ, τð Þ
∂ξ

+ ∂3ϒ ξ, τð Þ
∂ξ3

−
∂5ϒ ξ, τð Þ

∂ξ5
= 0, 0 < α ≤ 1:

ð24Þ

Subject to I.C.,

ϒ ξ, 0ð Þ = 105
169 sech4 ξ

2
ffiffiffiffiffi
13

p
� �

: ð25Þ

For α = 1, an exact solution for equation (24) is found by
[35] as

ϒ ξ, τð Þ = 105
169 sech4 1

2
ffiffiffiffiffi
13

p ξ −
36τ
169

� �� �
: ð26Þ

Recall the OHAM preparation given in Section 3, we
obtain the subsequent problems:

Zero-order problem:

∂αϒ 0 ξ, τð Þ
∂τα

= 0,ϒ 0 ξ, τð Þ = 105
169 sech4 ξ

2
ffiffiffiffiffi
13

p
� �

: ð27Þ

First-order problem:

∂αϒ 1 ξ, τð Þ
∂τα

= ∂αϒ 0 ξ, τð Þ
∂τα

+ C1
∂αϒ 0 ξ, τð Þ

∂τα
− C1ϒ 0

∂ϒ 0 ξ, τð Þ
∂ξ

+ C1
∂3ϒ 0 ξ, τð Þ

∂ξ3
− C1

∂5ϒ 0 ξ, τð Þ
∂ξ5

:

ð28Þ

Table 1: Numerical values of C1, C2 for time-fractional Kawahara
equation for several values of α.

α C1 C2

1.0 ‐0:9999983031706354 0:000002:417505787703306
2
3 ‐0:9999609966319342 0:000030849221963805824

Table 2: Numerical values of C1 for time-fractional modified
Kawahara equations for several values of α.

α C1

1.0 ‐0:4647234979611254
2
3 ‐0:9999609966319342

Table 3: Comparison of second-order OHAM solution with third-
order NIM solution for time-fractional Kawahara equation for
different values of α.

ξ τ
OHAM
α = 2/3

OHAM
α = 1

Exact
α = 1

-5

0.02 0.252877 0.253985 0.253985

0.04 0.252017 0.253625 0.253625

0.06 0.251298 0.253265 0.253265

0.08 0.250657 0.252905 0.252905

0.1 0.250069 0.252546 0.252546

0

0.02 0.621292 0.621301 0.621301

0.04 0.621277 0.6213 0.6213

0.06 0.621259 0.621298 0.621298

0.08 0.621239 0.621295 0.621295

0.1 0.621217 0.621291 0.621291

5

0.02 0.255821 0.254707 0.254707

0.04 0.256691 0.255068 0.255068

0.06 0.257422 0.255429 0.255429

0.08 0.258076 0.255791 0.255791

0.1 0.258678 0.256153 0.256153

Table 4: Comparison absolute errors of 2nd-order OHAM solution
with 3rd-order NIM solution for time-fractional Kawahara
equations for different values of α.

ξ τ
Residual
α = 0:5

NIM [35]
α = 1

OHAM
α = 1

-5

0.02 −1:31504 × 10−6 2:27500 × 10−10 8:04633 × 10−10

0.04 −3:18365 × 10−6 1:81933 × 10−9 1:20722 × 10−9

0.06 −5:04947 × 10−6 6:13795 × 10−9 8:08547 × 10−10

0.08 −6:91298 × 10−6 1:45438 × 10−8 7:88584 × 10−10

0.1 −8:77447 × 10−6 2:83953 × 10−8 3:97934 × 10−9

0

0.02 −8:08613 × 10−8 1:76636 × 10−13 1:29552 × 10−12

0.04 −2:14003 × 10−7 2:82618 × 10−12 3:06177 × 10−12

0.06 −3:84142 × 10−7 1:43068 × 10−11 1:05937 × 10−12

0.08 −5:84492 × 10−7 4:52161 × 10−11 2:1665 × 10−11

0.1 −8:11039 × 10−7 1:10391 × 10−10 7:35924 × 10−11

5
0.02 1:33389 × 10−6 2:27670 × 10−10 8:05429 × 10−10

0.04 3:22731 × 10−6 1:82204 × 10−9 1:20837 × 10−9

0.06 5:12378 × 10−6 6:15166 × 10−9 8:03524 × 10−10

0.08 7:02284 × 10−6 1:45871 × 10−8 8:16471 × 10−10

0.1 8:92419 × 10−6 2:85011 × 10−8 4:061 × 10−9
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Second-order problem:

∂αϒ 2 ξ, τð Þ
∂τα

= C2∂
αϒ 0 ξ, τð Þ
∂τα

+ ∂αϒ 0 ξ, τð Þ
∂τα

+ C1
∂αϒ 1 ξ, τð Þ

∂τα

+ C2ϒ 0 ξ, τð Þ ∂ϒ 0 ξ, τð Þ
∂x

ξ + C1ϒ 0 ξ, τð Þ ∂ϒ 0 ξ, τð Þ
∂ξ

+ C1ϒ 0 ξ, τð Þ ∂ϒ 1 ξ, τð Þ
∂ξ

+ C2
∂3ϒ 0 ξ, τð Þ

∂ξ3

+ C1
∂3ϒ 1 ξ, τð Þ

∂ξ3
− C2

∂5ϒ 1 ξ, τð Þ
∂ξ5

:

ð29Þ

Apply the inverse operator Iα, the solution of the above
problems is given as follows:

ϒ 0 ξ, τð Þ = 105
169 sech4 ξ

2
ffiffiffiffiffi
13

p
� �

,

ϒ 1 ξ, τ, C1ð Þ =
−7560C1τ

α sech4 ξ/2
ffiffiffiffiffi
13

p� �
tan ξ/2

ffiffiffiffiffi
13

p� �
28561

ffiffiffiffiffi
13

p
Γ 1 + αð Þ

,

ϒ 2 ξ, τ, C1, C2ð Þ = 1
62748517Γ 1 + αð Þ

� 1890e−ξ/
ffiffiffiffi
13

p
τα −169

ffiffiffiffiffi
13

p
C1 + C2

1 + C2
	 


−1 + e2ξ/
ffiffiffiffi
13

p� �� ��

+ 923−2αC2
1 1 − 3eξ/

ffiffiffiffi
13

p
+ e2ξ/

ffiffiffiffi
13

p	 
 ffiffiffi
π

p
ταffiffiffiffiffi

13
p

Γ 1 + αð Þ

!
sech6 ξ

2
ffiffiffiffiffi
13

p
� �

Þ:

ð30Þ

The second-order OHAM solution is presented as follows:

~ϒ ξ, τ, Cið Þ =ϒ 0 ξ, τð Þ +ϒ 1 ξ, τ, C1ð Þ +ϒ 2 ξ, τ, C1, C2ð Þ:
ð31Þ

For α = 1, second-order OHAM solution for Kawahara
equation is

Table 5: Comparison of 1st-order OHAM solution with 3rd-order NIM solution for time-fractional modified Kawahara equations For
different values of α.

ξ τ Exact solution OHAM solution
Absolute error NIM for [35]

α = 1 Absolute error OHAM for α = 1

-5

0.02 9:474889415 × 10−4 9:474984314 × 10−4 9:48992 × 10−9 9:48992 × 10−9

0.04 9:474794138 × 10−4 9:474984314 × 10−4 1:90176 × 10−8 1:90176 × 10−8

0.06 9:474698483 × 10−4 9:474984314 × 10−4 2:8583 × 10−8 2:8583 × 10−8

0.08 9:474602454 × 10−4 9:474984314 × 10−4 3:81862 × 10−8 3:81862 × 10−8

0.1 9:474506042 × 10−4 9:474984314 × 10−4 4:78271 × 10−8 4:78271 × 10−8

0

0.02 9:486832790 × 10−4 9:486832980 × 10−4 1:89737 × 10−11 1:89737 × 10−11

0.04 9:486832221 × 10−4 9:486832980 × 10−4 7:58947 × 10−11 7:58947 × 10−11

0.06 9:486831272 × 10−4 9:486832980 × 10−4 1:70763 × 10−10 1:70763 × 10−10

0.08 9:486829944 × 10−4 9:486832980 × 10−4 3:03579 × 10−10 3:03579 × 10−10

0.1 9:486828237 × 10−4 9:486832980 × 10−4 4:74342 × 10−10 4:74342 × 10−10

5

0.02 9:475078835 × 10−4 9:474984314 × 10−4 9:45216 × 10−9 9:45216 × 10−9

0.04 9:475172979 × 10−4 9:474984314 × 10−4 1:88666 × 10−8 1:88666 × 10−8

0.06 9:475266744 × 10−4 9:474984314 × 10−4 2:82432 × 10−8 2:82432 × 10−8

0.08 9:475360132 × 10−4 9:474984314 × 10−4 3:75821 × 10−8 3:75821 × 10−8

0.1 9:475453144 × 10−4 9:474984314 × 10−4 4:68832 × 10−8 4:68832 × 10−8
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Figure 1: 3D surface obtained by OHAM solution for fractional
Kawahara equation at α = 0:5.
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For α = 2/3, second-order OHAM solution for Kawahara
equation is

4.2. Numerical Solution of Fractional Modified Kawahara
Equation. Assume the following time-fractional modified
Kawahara system presented by

∂αϒ ξ, τð Þ
∂τα

+ϒ 2 ξ, τð Þ ∂ϒ ξ, τð Þ
∂ξ

+ p
∂3ϒ ξ, τð Þ

∂ξ3
+ q

∂5ϒ ξ, τð Þ
∂ξ5

= 0, 0 < α ≤ 1,

ð34Þ

with I.C.,

ϒ ξ, 0ð Þ = 3ρffiffiffiffiffiffiffiffiffiffiffi
−10μp sech2 kξð Þ, k = 1

2

ffiffiffiffiffiffi
−ρ
2μ

r
: ð35Þ

When α = 1, the exact solution is given by [35] as

ϒ ξ, τð Þ = 3ρffiffiffiffiffiffiffiffiffiffiffi
−10μp sech2 k ξ − ψtðð Þ, ψ = 25μ − 4ρ2

25μ : ð36Þ

Following the OHAM procedure, we have the following.

Zero-order problem:

∂αϒ 0 ξ, τð Þ
∂τα

= 0,ϒ 0 ξ, 0ð Þ = 3ρffiffiffiffiffiffiffiffiffiffiffi
−10μp sech2 kξð Þ, k = 1

2

ffiffiffiffiffiffi
−ρ
2μ

r
:

ð37Þ

First-order problem:

∂αϒ 1 ξ, τð Þ
∂τα

= ∂αϒ 0 ξ, τð Þ
∂τα

+ C1
∂αϒ 0 ξ, τð Þ

∂τα
− C1ϒ 0

∂ϒ 0 ξ, τð Þ
∂ξ

+ C1
∂3ϒ 0 ξ, τð Þ

∂ξ3
− C1

∂5ϒ 0 ξ, τð Þ
∂ξ5

:

ð38Þ

Apply the inverse operator Iα, the solution of the above
problems is given as follows:

The 1st-order OHAM solution is given by the following
expression:

~ϒ ξ, τ, Cið Þ =ϒ 0 ξ, τð Þ +ϒ 1 ξ, τ, C1ð Þ: ð40Þ

5. Results and Discussion

We implemented OHAM to provide approximate numerical
solutions to fractional and modified Kawahara equations.

Numerical values are tabulated for the auxiliary constants
in Tables 1 and 2 for Kawahara and modified Kawahara
equations at various values of α: Table 3 gives the estimation
of the second-order OHAM solution and the third-order
NIM solution for the Kawahara fractional equation.
Table 4 compares the absolute errors of the second-order
OHAM solution for various α values. Table 4 presents the
values of the first-order OHAM solution and the third-
order NIM solution for the various values of α. Table 5

~ϒ ξ, τð Þ =
105 sech4 ξ/2

ffiffiffiffiffi
13

p� �
371293 + 72τ −9C1

2τ −4 + 5 sech2
		

ξ/2
ffiffiffiffiffi
13

p� �
− 169

ffiffiffiffiffi
13

p
C1 2 + C1ð Þ + C2ð Þ tanh ξ/2

ffiffiffiffiffi
13

p� �� �
62748517 :

ð32Þ

~ϒ ξ, τð Þ =
105 sech4 ξ/2

ffiffiffiffiffi
13

p� �
371293 + 72τ2/3 −18C1

2τ2/3 −4 + 5 sech2 ξ/2
ffiffiffiffiffi
13

p� �� �
/Γ 7/3ð Þ − 169

ffiffiffiffiffi
13

p
C1 2 + C2ð Þð tanh ξ/2

ffiffiffiffiffi
13

p� �
/Γ 5/3ð Þ

� �� �
62748517 :

ð33Þ

ϒ 0 ξ, τð Þ = 3ρffiffiffiffiffiffiffiffiffiffiffi
−10μp sech2 1

2

ffiffiffiffiffiffi
−ρ
2μ

r� �
ξ

� �
,

ϒ 1 ξ, τ, C1ð Þ =
3C1ρ7/2τα sech5

ffiffiffi
ρ

p
ξ/2

ffiffiffi
5

p ffiffiffi
μ

p� �
−59 sin ffiffiffi

ρ
p

ξ/2
ffiffiffi
5

p ffiffiffi
μ

p� �
+ sin ffiffiffi

ρ
p

ξ/2
ffiffiffi
5

p ffiffiffi
μ

p� �� �
tan ξ/2

ffiffiffiffiffi
13

p� �
500 ffiffiffiffiffiffi−μp

μ3/2
ffiffiffi
2

p
αΓα

� :

ð39Þ
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compares first-order OHAM solution with third-order NIM
solution for time-fractional modified Kawahara equations
for different values of α.

Figures 1–3 depict the 3D surfaces obtained by second-
order OHAM as well as the accurate solutions to fractional
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Figure 2: 3D surface obtained by OHAM solution for fractional
Kawahara equation at α = 1.
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Figure 3: 3D surface obtained by exact solution for fractional
Kawahara equation at α = 1.
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Figure 7: 3D surface obtained by OHAM solution for fractional
modified Kawahara equation at α = 1.
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Kawahara equation at α = 0:5 and 1. Figure 4 shows the
residual for α = 0:5, whereas Figure 5 shows the 2D surface
of the second-order OHAM solution for various values of
α. Figures 6–8 show the 3D plots for the first-order OHAM
solution and exact solution for the fractional modified
Kawahara equation at α = 0:5 and 1. Figure 9 depicts a
two-dimensional graph of the first-order OHAM solution
for different values of α. The residual for α = 0:5 is shown
in Figure 10.

The results obtained by the second-order OHAM solu-
tion for the Kawahara fractional equation agree with both
the closed and the NIM solution. Similarly, for fractional
modified Kawahara equation, the results achieved by the
first-order OHAM solutions are exactly the same as for the
third-order NIM solutions.

6. Conclusions

We observe that OHAM converges rapidly towards the closed
solution with a lower sequence of approximation of fractional
orders of the Kawahara equations and modified Kawahara
equations based on the calculated results. The results achieved
with the proposed approach are highly encouraging compared
to the new iterative method (NIM). This proposed approach
is capable of providing the greatest accuracy within the lowest
approximation sequence. This approach does not require
choices between small and large parameter assumptions in
problems. The results are analyzed and explained with the help
of graphs by considering different values of parameters. Results
reveal that as the value of fractional-order derivatives
approaches to 1, the approximate solution converges to the
exact solution. The convergence of this approach is indepen-
dent of initial assumptions. The precision of the proposed
approach can be improved by assuming high approximations,
and therefore, it may be highly attractive for researchers to
use our approach to solve fractional-order systems emerging
in the science of technology.
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The current paper describes a Darcy-Forchheimer flow of Casson hybrid nanofluid through an incessantly expanding curved
surface. Darcy-Forchheimer influence expresses the viscous fluid flow in the porous medium. Carbon nanotubes (CNTs) with a
cylindrical form and iron-oxide are utilized to make hybrid nanofluids. Using Karman’s scaling, the principal equations are
rearranged to nondimensional ordinary differential equations. The “Homotopy analysis method” is used to further build up the
analytic arrangement of modeled equations. The impact of flow variables on the velocity and temperature profiles has been
tabulated and explained. The flow velocity is raised when both the curvature and volume fraction parameters are elevated. The
temperature and velocity profiles exhibit the opposite tendency when the Forchheimer number is increased, since the fluid
velocity decreases while the energy profile grows. The addition of CNTs and iron nanocomposites improves the
thermophysical characteristics of the base fluid significantly. The obtained consequences show that hybrid nanofluids are more
efficient to improve the heat transfer rate. Using CNTs and nanomaterials in the base fluid to control the coolant level in
industrial equipment is a wonderful idea.

1. Introduction

The flow over an extending surface has received much
importance due to its significant role in several sectors of
industry and engineering, such as condensation process,
spinning of fiber and continuous casting of fiber, plastic
sheet extraction, paper production, and many others. Crane
[1] was the first to study the flow over an expanding planar
surface. Many researchers have since followed the concept of
the crane [2–5], expanding the sheets to investigate various
aspects of this form of flow. Sajid et al. [6] addressed bound-
ary layer flow and micropolar fluid, concluding that the cur-
vature effect leads to a reduction in boundary layer size. Gul
et al. [7] have investigated the flow of the boundary layer on
the stretching surface using the Fractional Order Derivatives

Scheme. Imtiaz et al. [8] demonstrated the fluid flow under
the upshots of the magnetic field over an extending curved
surface. It has been noticed that with the action of curvature
coefficient, the energy profile is enhanced. Rosca et al. [9]
have analyzed the flow caused by contracting and expanding
sheets. Saeed et al. [10] offered a complete investigation of
the Darcy hybrid nanoliquid flow through a curved surface
that is exponentially expanding. The outcomes signify using
SWCNTs, MWCNTs, and Fe3O4 nanomaterials for the
increase in the nusselt number. Ali et al. [11] analyzed the
hydrological importance of wave propagation of hybrid
nanofluid over a warmed extended curved surface with the
impacts of a magnetic field using bvp4c. The suspension of
carbon nanotubes in a magnetite nanoliquid promotes local
surface drag but reduces local heat flow. Kumar et al. [12]
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have reported the radiation impact on the Casson fluid
across the exponentially curved sheet. Hayat et al. [13]
explored ferroliquid flow with the mass and heat transition
across a curved stretching surface. Hussain et al. [14]
reported the findings of their investigation on hybrid nano-
fluid flow across a curved sheet. The outcomes of the survey
revealed that the energy transference efficiency in hybrid
nanocrystals is higher than that in nanofluids for large fre-
quencies of the curvature index. Qian et al. [15] and Khan
evaluated that how heat transmission and radiation were
affected by the conducting flow over a curved extending sur-
face. Their study was found to be in good accord with a pre-
viously published finding.

The heat transmission in carbon nanofluids has gotten
a lot of interest from researchers in a variety of fields in
the last few years. CNTs are carbon nanotubes with a fun-
damental chemical structure and a carbon atom formation
wrapped in a cylindrical shape. CNTs have superior chem-
ical, thermophysical, and mechanical characteristics, mak-
ing them ideal for usage as a particulate in a base fluid.
They offer various advantages over other nanomaterials
due to their tiny size, structure, configuration, dimension,
and hardness. Haq et al. [16] evaluated the computational
findings for conductive fluid using carbon nanomaterials
along an extensive surface. Ahmadian et al. [17] addressed
a 3D model of an unsustainable hybrid nanofluid flow
with fluid and momentum transmission caused by surface
accelerating displacement. The use of hybrid nanoparticles
is thought to have enhanced the carrier fluid’s thermal
properties substantially. Because of the C–C link, CNTs
are more effective than other forms of nanoparticles in
the carrier fluid. CNTs nanofluid may be further function-
alized to get the desired result, which may be used in a
range of applications through noncovalent and covalent
manipulation [18]. Saeed et al. [19] have considered the
nanofluid containing CNTs and iron oxide nanomaterials
using the flow of fluid over a curved surface. Gul et al.
[20, 21] studied the flow of nanofluids to enhance heat
transfer and thermal applications. Alghamdi et al. [22]
have observed the flow of hybrid nanofluid through a
blood artery for medications. Using the bvp4c tool, Li
et al. [23], and Ding et al. [24] used (MWCNTs) in the
base liquid to evaluate heat transmission. Akbar et al.
[25] described the influence of a magnetic field on the
flow of CNT nanofluids through a moving permeable
channel. Gul et al. [26] and Bilal et al. [27] used an
inclined extending cylinder to examine the Darcy-
Forchhemier hybrid nanoliquid flow. They examined the
carbon nanotubes (CNTs) and iron oxide Fe3O4 as two
distinct nanomaterials. Ahmed et al. [28] represented tem-
perature propagation in a wavy-wall impermeable enclo-
sure through nanofluids. It was discovered that
increasing the waviness of the sheet boosts both the heat
transmission rate. Yarmand et al. [29] investigated how
graphene nanoplatelets/platinum hybrid nanofluids with
diverse properties may improve heat transfer rates. Sajid
et al. [30] examined the thermophysical characteristics of
hybrid and single-form nanotubes using numerical
methods. They determined that the size, type, concentra-

tion, and temperature fluctuation of nanoparticles had a
significant impact on the thermophysical characteristics
of nanofluid. Kumar et al. [31] examined the solar radia-
tion impact on the flow of ferromagnetic hybrid nanofluid.
Gowda et al. [32] studied the flow of nanofluid over the
stretched and curved surface using (KKL) relation. Kumar
et al. [33] have used the concept of the magnetic dipole
for the flow of nanofluid over a cylinder. Zeeshan et al.
[34] have studied the couple stress nanofluid flow using
the paraboloid model.

The curved surface for the fluid flow has many applica-
tions in the mechanical and automotive industry. Sanni
et al. [35], Jawad et al. [36], and Saeed et al. [37] have studied
the fluid flow on a curved surface using various kinds of
nanofluids for the heat transfer enhancement. Hayat et al.
[9, 38], Rosca, and Pop [39] have explained the
homogeneous-heterogeneous reaction phenomena using
the curved surface for the flow pattern. Okechi et al. [40],
Asghar et al. [41], and Hayat et al. [42] have used the none-
wtonian fluid flow over the curved surface with various
extensions considering Darcy-Forchheimer flow medium.
The related work to the proposed model can be seen in the
References [9, 35, 43–45].

The inertia effect is taken into account by incorporat-
ing a squared component to the momentum equation,
called Forchheimer’s modification [46]. Muskat [47] used
the term “Forchheimer factor” to describe this new con-
cept. It is critical to include non-Darcy consequences in
convective transport analysis to properly represent real-
world challenges. The novelty of the model has been pre-
sented as

(i) For the hybrid nanofluid flow, heat and mass trans-
mission is examined simultaneously

(ii) The ðCNTs + Fe3O4/H2OÞ hybrid nanoliquid flow
across a stretching surface with the mass and heat
transition has been addressed

SWCNTs

MWCNTs

y

r, v

R

Tw

T

8

s, u

x

Ue(x) = ae x/L

Figure 1: Physical sketch.
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(iii) The non-Newtonian Casson hybrid nanofluid has
been used as another extension in the existing
literature

(iv) Heat obsorption\omisson has also been considered
in the flow regime

(v) This study intends to evaluate and simulate the
Darcy-Forchheimer water-based hybrid nanoliquid
flow induced by a curved surface that extends

(vi) The second priority is to modify the Saba et al. [48]
and Xue [49] model for hybrid nanofluid flow

(vii) The proposed model has been solved by the homo-
topy analysis method

2. Mathematical Formulation

The Darcy-Forchheimer flow considers CNTs and Fe3O4
nanomaterials across an expanding curved sheet. The viscous
fluid flow has been expressed in the permeable space by the
Darcy-Forchheimer effect. The flow is assumed across the
stretching sheet, with radius R, as depicted in Figure 1. The

term ðr, sÞ is taken as the space coordinate and ðu, vÞ is the
velocity component. Here, UwðsÞ = aes/L is the exponential
stretching velocity, Tw is the curved surface, and T∞ is the
ambient temperature. Keeping in view, the above superposi-
tion, the energy, and momentum equations along with their
boundary conditions are expressed as [9, 36–39, 46]
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Figure 2: (a)–(c) HAM solution, Casson parameter, and heat absorption\omission parameter influence.
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The basic flow conditions are
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Here,K∗ and F = Cb/sK∗1/2, are the permeability and iner-

tia factors.
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Figure 3: (a, b) Porosity parameter λ impact on the velocity f ′ðηÞ and temperature profile θðηÞ. (c, d) Curvature parameter k effect on
velocity f ′ðηÞ and temperature profile, respectively.
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The khnf is the thermal conductivity, ϕ1 and ϕ2 are the vol-
ume friction parameters, ðCpÞMS is the specific heat capacity,
ρMS and ρCNT are specified densities of Fe3O4 and CNTs,
and Sc is the Schmidt number, respectively.

The transformation variables are [50]

η =
aes/L

2υf L

 !1/2

r, v = −
R

r + R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aνf es

/L

2L

s
f ηð Þ + ηf ′ ηð Þ
	 


,

u =Uw = aes/L f ′ ηð Þ,

p = ρf a
2e2s/LH ηð Þ, T = T∞ + T0e

As
2L

Θ ηð Þ, C = C∞ + C0e
As
2L

Φ ηð Þ:
ð8Þ

Thus, by using Eq. (8), Eqs. (2)–(7) yield

H ′ = ρð Þhnf
ρð Þf

 !
1

η + K
f ′2, ð9Þ

1 +
1
β

� �
f ‴ +

1
η + K
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η + Kð Þ2 f

′ − 2λf ′
 !

− 1 − ϕ1ð Þ2:5 1 − ϕ2ð Þ2:5 ρð Þhnf
ρð Þf
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η + 2K
η + Kð Þ2 K f ′

	 
2
−

K
η + K

f f ″ − K

η + Kð Þ2 + 2Frf ′2
 !

= 1 − ϕ1ð Þ2:5 1 − ϕ2ð Þ2:5 K
η + K

4H + ηHð Þ,

ð10Þ
khnf
kf

Θ″ + 1
η + K

Θ′
� �

+
ρCp

� �
hnf

ρCp

� �
f

 !

� Pr K
η + K

fΘ′ − Af ′Θ
	 


+ δΘ

� �
= 0,

ð11Þ

1 − ϕ1ð Þ 1 − ϕ2ð Þ Φ″ + 1
η + K

Φ′
� �

+ Sc
K

η + K
fΦ′

� �
= 0:
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Figure 4: (a)–(d) Volume friction parameters ϕ1 and ϕ2 impact on the velocity f ′ðηÞ and temperature profiles θðηÞ, respectively.
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By eliminating H from Eqs. (9) and (10), we get

1 +
1
β

� �
f ′v + 2

η + K
f ‴ −

1
η + Kð Þ2 f

″ + 1
η + Kð Þ3

"

� f ′ − 2λ f ″ + 1
η + Kð Þ f ′

� �#

+
ρð Þhnf
ρð Þf

K

η + Kð Þ2 f f
″ + K

η + Kð Þ f f
‴ −

K

η + Kð Þ3
"

� f f ′ 3K
η + Kð Þ2 f ′2

−
3K
η + Kð Þ

� f ′ f ″ − 2Fr 2f ′ f ″ + 1
η + K

f ′2
� �#

= 0: ð13Þ

The transform conditions are

f = 0, f ′ = 1,Φ = 1,Θ = 1atη = 0,

f ′ ⟶ 0, f ″ ⟶ 0,Φ⟶ 0,Θ⟶ 0atη⟶∞,
ð14Þ

where Fr, λ, and k are the Forchheimer, porosity, and
curvature parameters, respectively, which can be rebound
as

Fr = Cb

K∗1/2 , Pr =
υf
αf

, δ = 2QL
Uw ρcp
� � , k = aes/L

2υf L

 !
,

λ =
υf L

K∗Uw
, Sc =

υf
Df

:

ð15Þ

The local Nusselt number, Sherwood Number, and
Skin friction are expressed as
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Figure 5: (a, b) Forchheimer parameter Fr impact on the velocity f ′ðηÞ and temperature profiles θðηÞ, (c) temperature exponent coefficient,
and (d) Prandtl number Pr effects on temperature.
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where local Reynolds number is

Rex =
u0x

2

vl
: ð17Þ

3. Problem Solution

For analytical findings, the HAM approach has been utilized
to solve the modeled equations, which was firstly introduced
by Liao [51–53]. The initial guesses for velocity f0 and tem-
perature Θ0 are given as

f0 ηð Þ = e−η − e−2η,Θ0 ηð Þ = e−η,Φ0 ηð Þ = e−η: ð18Þ

The linear terms are

L f fð Þ = f ′v and LΘ Θð Þ =Θ″: ð19Þ

The expanded form of L f ,LΘ and LΦ is

L f χ1 + χ2η + χ3η
2 + χ4η

3� �
= 0,

LΘ χ5 + χ6η½ � = 0,LΦ χ7 + χ8η½ � = 0:
ð20Þ

3.1. OHAM Convergence. The converging of the OHAM
approach was achieved employing Liao’s concept [51–61].
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2
4

3
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2
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The sum of residual error is εtm = εfm + εΘm + εΦm.

4. Results and Discussion

The goal of this portion is forward to see how the tempera-
ture and velocity profiles function under the effect of the
predicted factors. The flow configuration is shown in
Figure 1. The OHAM technique’s progress has been
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Figure 6: (a) Schmidt number Sc, (b) curvature parameter, and (c, d) volume friction parameters effects on mass transfer profile, respectively.
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computed and is depicted in Figure 2(a). Figure 2(b) displays
the influence of velocity field versus M. The Lorentz force
augments the resistance against the fluid motion and as a
result, the velocity reduces with the greater value of the mag-
netic parameter. The augmentation in the Casson parameter
declines the velocity profile. The Casson parameter at the
infinity tends to the Newtonian fluid. The larger value of

the heat absorption and omission parameter improves the
temperature distribution as shown in Figure 2(c). The
greater value of the parameter δ improves the temperature
distribution. Figure 3 illustrates the effects of the (porosity
term) and k on velocity and temperature. This conclusion
can be drawn that the velocity f ′ðηÞ decrease, while the tem-
perature field is increased versus rising values of porosity
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Figure 7: (a) Skin friction
ffiffiffiffiffiffiffiffiffi
Re/2

p
Cf x for Fr and k, (b) skin friction

ffiffiffiffiffiffiffiffiffi
Re/2

p
Cf x for λ and ϕ2, (c) Nusselt number ðL/SÞðRe/2Þ−1/2Nux for λ and

ϕ2, (d) Nusselt number ðL/SÞðRe/2Þ−1/2Nux for λ and Pr, and (e) Sherwood number ðL/SÞðRe/2Þ−1/2Shx for k and Sc.

8 Journal of Nanomaterials



parameter λ as illustrated in Figures 3(a) and 3(b). Practi-
cally, the kinetic viscosity and length of the extending sur-
face are enhanced with the action of the porosity
parameter; therefore, such a phenomenon has been
observed. On the other hand, the action of curvature param-
eter k enhances the velocity field and declines the tempera-
ture propagation as illustrated in Figures 3(c) and 3(d).

Figures 4(a)–4(d) are sketched to illustrate the conse-
quences of volume friction coefficients ϕCNT and ϕFe3O4

on
velocity and energy propagation. The specific heat capacity
of H2O is greater than much iron and carbon nanoparticles.
The addition of nanoparticles in the water reduces its heat-
absorbing capacity, which results in an excessive amount of
heat in the fluid. These factors cause the enhancement of
fluid velocity and thermal energy transition.

Figures 5(a) and 5(b) revealed the influence of Forchhe-
mier number Fr on velocity and temperature profiles,
respectively. The increment in the Forchhemier term
reduces the fluid velocity and enhances the thermal energy
profile. Because the permeability of fluid reduces by the
action of the Forchhemier term, therefore, such a phenome-
non has been observed. The energy profile declines with the
effect of temperature exponent coefficient A and Prandtl
number Pr as displayed in Figures 5(c) and 5(d). The ther-
mal diffusivity of fluid rises with the increasing credit of
Prandtl number, which results in declination of fluid tem-
perature θðηÞ as shown in Figure 5(d). The thickness of the
boundary layer improved with the increasing value of Pr

and consequently, the temperature profile reduces.
Figures 6(a) and 6(b) illustrate to elaborate the consequences
of curvature parameter k and Schmidt number Sc on mass
transport ΦðηÞ profile. The mass transition rate reduces with
the influence of Schmidt number while enhancing with the
positive effects of curvature term, because the fluid mean vis-
cosity becomes thick as the number of carbon and iron oxide
particulates continues to increase.

The surface drag force
ffiffiffiffiffiffiffiffiffi
Re/2

p
Cf x for carbon nanoliquid

and Fe3O4 is declared via Figures 7(a) and 7(b). It is been
evidenced that as the curvature and the volumetric parame-
ters are increased, the skin friction drops. Figures 7(c) and
7(d) demonstrate the numerical results for the Nusselt num-
ber ðL/SÞðRe/2Þ−1/2Nux. It has been discovered that the heat
conversion rate accelerated as the number of carbon nano-
materials in the conventional fluids and the Prandtl number
expanded. Figure 7(e) indicates that the Sherwood number
ðL/SÞðRe/2Þ−1/2Shx is an enhancing factor of the Schmidt
number. Table 1 displays the thermophysical properties of
solid substrates and basic fluids. The OHAM technique’s
consolidation has been computed up to the 30th iteration
and is reported in Table 2. Table 3 offers a comparative anal-
ysis of the current study to the existing literature.

5. Conclusion

We addressed the Darcy-Forchheimer flow of Casson hybrid
nanoliquid induced by an extended curved surface in this
problem. The momentum and energy equations are
included in the flow model, which is set up as a system of
partial differential equations. The “Homotopy analysis
method” is used to further build up the analytic arrangement
of modeled equations. This mathematical model attempts to
highlight the dominance of nanofluid in heat and mass
transmission in advanced technologies and industries. The
following are the core findings:

(i) The velocity and temperature fields both show posi-
tive behaviors against the increasing values of ϕ1
and ϕ2 (volume fraction parameters) of CNTs
andFe3O4

The accumulative values of the Casson parameter decline the
hybrid nanofluid motion.

(ii) The employment of CNT and Fe3O4 nanomaterials
in the base fluid, to regulate the coolant level in
industrial equipment, is quite beneficial

(iii) The thermal energy profile shows a reducing trend
versus larger values of temperature exponent coeffi-
cient A

(iv) High fluid velocity is achieved by increasing the
value of k (curvature parameter), while the fluid
temperature drops

(v) The temperature and velocity profiles exhibit the
opposite tendency when the Forchheimer number

Table 1: The numerical properties of nanomaterials and base
fluid [27].

ρ kg/m3� �
Cp j/kgKð Þ k W/mKð Þ

Pure water 997.1 4179 0.613

Fe3O4 5200 670 6

SWCNTs 2600 425 6600

MWCNTs 1600 796 300

Table 2: The total residual errors, when Fr = k = 0:6, ϕ1 = 0:02, ϕ2
= 0:2, λ = 0:2, Pr = 6:3, and A = 0:4:.

m εtmSWCNTs εtmMWCNTs εtmFe3O4

5 1:8168 × 10−4 1:9479 × 10−4 1:4257 × 10−4

13 1:1223 × 10−5 1:2354 × 10−5 1:18312 × 10−5

23 1:3599 × 10−6 0:4698 × 10−6 0:4489 × 10−6

30 3:2578 × 10−7 4:3689 × 10−7 4:1464 × 10−7

Table 3: The comparative analysis with the published work, when
ϕ1 = ϕ2, Fr = k = 0:6, λ = 0:2,Pr = 6:3, and A = 0:4:.

Hayat et al. [35] Present

f ″ 0ð Þ 0.735 0.7352130

−Θ′ 0ð Þ -1.375 -1.3752410

−Φ′ 0ð Þ …………. -1.3620189
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is elevated since the fluid velocity decreases,
whereas the temperature profile improves

(vi) The temperature distribution increases for the
larger values of the absorption parameter

(vii) The comparison of the recent work with the pub-
lished work authenticates the obtained results
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The aim of this study is to investigate the flow of two distinct nanofluids over a stretching surface in a porous medium with
Marangoni convection. This investigation is studied under the effect of thermal radiation. Here, we have considered Fe3O4 and
ZrO2 nanosized particles suspended in engine oil (EO) base fluid. For the numerical simulation of the flow, the fourth-order
Runge-Kutta method and suitable similarity solutions were used. Numerical solutions with graphical representation are
presented. Fe3O4/EO nanofluid is more significant in the cooling process in comparison to ZrO2/EO nanofluid. With increased
radiation and temperature ratio parameters, a decrement in the temperature field has been noticed for both nanofluids. For
increased values of volume friction parameter, a decrement is noticed for velocity profile and increment is noted for
temperature profiles for both nanofluids. Also, a reduced velocity profile can be obtained with increased porosity parameter.

1. Introduction

In the past two decades, nanofluids got the vast attention of
researchers due to their proven efficiency in thermal conduc-
tivity. A base fluid with suspended nanometer-sized particles
with different shapes and sizes is called nanofluids. These
nanoparticles can be metallic or nonmetallic or oxidic, for
example, Al, Cu, Ag, SiO2, Al2O3, Fe3O4, and ZrO2, and
base fluids can be H2O, C2H6O2, and engine oil. Initially,
Choi [1] investigated this phenomenon and named these
fluids as “nanofluids.” Afterward, Xuan and Roetzel [2] stud-
ied the correlation between heat transfer and nanofluids and
presented a numerical model. The heat transfer capacity of
nanofluids is much higher than that of conventional fluid
because the thermal conductivity of a fluid can be optimized
by adding nanosized particles; a number of studies have
been presented by researchers proving this concept for the
nanofluids using different sizes, shapes, and concentrations

of nanoparticles with different base liquids, on different
geometries [3–13]. Some key applications of nanofluids are
in the field of nuclear plants, micropolymer films, heat
exchangers, electronic devices, space technology, and
production of heat pipes.

The convection characterized by the surface tension
differences at the interface is defined as Marangoni convec-
tion. This interface dissipative flow can be relevant where
different surface tension exists at interfaces, and by changing
the temperature or concentration, this difference can be
created. Marangoni convective boundary layer flows of nano-
liquids have their applications in various fields like thin film,
melting of crystals, welding, semiconductors, vapor bubbles,
material sciences, soap films, silicon wafers, and microgravity
conditions. Napolitano [14] was the first who gave this phe-
nomenon and named it. Christopher and Wang [15] studied
the Prandtl number effects for Marangoni convective flow
through a flat surface. Furthermore, Aly and Ebaid [16]
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investigated radiative Marangoni convective flow of three
different hybrid nanofluids with porosity and MHD effects.
The thermal performance of glycerol/water mixture in the
microchannel with Marangoni convection is studied by Yang
et al. [17]. Afterward, this phenomenon is studied with differ-
ent parameters, nanofluids, and geometries by some
researchers [18–20].

Although nanofluids have been studied by many
researchers with different nanoparticles suspended in differ-
ent base fluids, in this study, engine oil base fluid is consid-
ered which is rare in the literature. Marangoni convection is
an important aspect of determining fluid motion and
material processing, particularly in low-gravity hydrody-
namics, for analyzing heat transfer interactions, and nano-
particles can improve the flow’s thermal performance. As
per the best knowledge of the authors, the present study
of Marangoni convective radiative flow of nanosized parti-
cles suspended in engine oil (EO) base fluid is novel. A
comparative analysis for both nanofluids is also presented
by the graphs and discussed and obtained a strong agree-
ment with the existing literature.

2. Mathematical Model

Marangoni convective boundary layer flow of two different
viscous, compressible nanofluids with thermal radiation,
along the stretched surface, is studied in 2D. Engine oil is
considered the base fluid with suspension of Fe3O4 and
ZrO2 nanoparticles. Base fluid and nanosized particles of
laminar flow are assumed to be thermally stable. The fluid
flow is considered at y ≥ 0; here, the x-axis is chosen parallel
to the surface, and the y-axis is considered perpendicular to
the stretching surface. Tw is the temperature at the surface,
and T∞ is the ambient temperature. Likewise, as Marangoni
convection is considered, a linear relation of surface tension
with temperature is given by [19]

γ = γ0 1 − �γ T − T∞ð Þ½ �: ð1Þ

Here, γ0 is the surface tension and �γ is the rate of change
of surface tension along T (temperature). Taking these
assumptions, the equation of the governing convective flows
of the nanofluid is described as follows [19]:

∂u
∂x

+ ∂v
∂y

= 0, ð2Þ

u
∂u
∂x

+ v
∂v
∂y

= μnf
ρnf

∂2u
∂y2

−
μnf
ρnfk

u, ð3Þ

u
∂T
∂x

+ v
∂T
∂y

= knf
ρCp

� �
nf

∂2T
∂y2

−
1

ρCp

� �
nf

∂qr
∂y

� �
, ð4Þ

with the boundary condition:

v = 0, T = T∞ + ax2, μnf
∂u
∂y

� �
= ∂σ
∂T

∂T
∂x

at y = 0,

u⟶ 0, T ⟶ T∞ as y⟶∞:

ð5Þ

Here, velocity notations in x and y directions are chosen
as u and v accordingly. Radiative heat flux is represented by
qr. The Rosseland approximation takes into account radia-
tive heat flux which is reported by [20]

qr = −
4σ∗
3k∗

∂T4

∂y
= −

16σ∗
3k∗ T3 ∂T

∂y
: ð6Þ

In the above equation, the mean absorption coefficient is
denoted by k∗ and σ∗ denotes the Stefan-Boltzmann con-
stant. After substituting this qr into equation (4), the reduced
equation is given as follows:

u
∂T
∂x

+ v
∂T
∂y

= knf
ρCp

� �
nf

∂2T
∂y2

+ 16σ∗

3 ρCp

� �
nfk

∗
∂
∂y

T3 ∂T
∂y

� �
:

ð7Þ

Here, μnf is the viscosity, ρnf is the density, κnf is the
thermal conductivity, and ðρCpÞnf is the heat capacity of
nanofluids. Subscripts f and nf are used to denote base fluids
and nanofluids accordingly. Also, the volume fraction is ϕ;
also, m = 3 is chosen for spherical-type nanoparticles. Phys-
ical constraints and thermophysical value of nanoliquids and
base fluid are reported in Tables 1 and 2, respectively.

3. Similarity Solutions

The following similarity transformation is used to solve our
model [19]:

η = ζ1y, φ = ζ2xf ηð Þ, θ ηð Þ = T − T∞
Tw − T∞

, ð8Þ

where ζ1 = ðγ0�γaρf /μ2f Þ1/3, ζ2 = ðγ0�γaμf /ρ2f Þ1/3, u = ∂φ/∂y,
and v = −∂φ/∂x.

Following the foregoing transformations, equations (3)
and (7) are turned into nonlinear ordinary differential
equations as follows:

f ‴ + 1 − ϕ + ϕ
ρs
ρf

� �
1 − ϕð Þ2:5 f f ″ − f ′2

� �
− Kf ′ = 0, ð9Þ

θ″ 1 + RdA θ θw − 1ð Þ + 1ð Þ3� 	

+ RdA 3θ′2 θw − 1ð Þ θ θw − 1ð Þ + 1f g2
h i

+ B f θ′ − 2θf ′
� �

= 0:

ð10Þ

Here, A = κf /κnf = fðκs + ðm − 1Þκf + ðκf − κsÞϕÞ/ðκs + ðm
− 1Þκf − ðm − 1Þðκf − κsÞϕÞg, B = Prf ð1 − ϕ + ϕðρs/ρf ÞÞ
ð1 − ϕÞ2:5, and C = ð1 − ϕÞ2:5.
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The above equations are with the modified boundary
conditions:

θ 0ð Þ = 1, f 0ð Þ = 0, f ″ 0ð Þ = −2C, θ ∞ð Þ = 0, f ′ ∞ð Þ = 0, ð11Þ

where Rd = 16σ∗T3
∞/3k∗kf is the radiation parameter,

Pr = ðρCpÞfυf /κf is the Prandtl number, K = 1/ψ2
1k is the per-

meability parameter, and θw = Tw/T∞ is the temperature
ratio parameter.

4. Numerical Solution

With the help of the above-described similarity transforma-
tion, the governing equation of the flows has been converted
into a set of the ordinary differential equations. Moreover, in
order to tackle these equations using the Runge-Kutta
method with a shooting technique, equations (9) and (10)
together with the boundary conditions (11) turned into an
initial value problem, as shown below.

f = h1, f ′ = h2, f ″ = h3, θ = h4, and θ′ = h5, where h3 ′ =
ð1 − ϕÞ2:5ð1 − ϕ + ϕðρs/ρf ÞÞðh22 − h1h3Þ + Kh2 and h5′ = ð−Rd

A½3h25ðθw − 1Þfh4ðθw − 1Þ + 1g2� − Bðh1h5 − 2h4h2ÞÞ/ð1 + Rd

Afh4ðθw − 1Þ + 1g3Þ.
The above equations are with the following transformed

boundary conditions, h1ð0Þ = 0, h3ð0Þ = −2C, and h4ð0Þ = 1.
The best approximated numerical results are obtained by
some initial guesses with the shooting method. To get exact
results up to 10−7 accuracy, an iterated approach is used in
this method. The Prandtl number for EO is 6450, and the
step size Δη = 0:01 is considered.

5. Results and Discussion

The comparative investigation of Marangoni convection of
Fe3O4 and ZrO2 nanofluid flow is studied. This investigation
is studied under the effect of thermal radiation over the
stretching surface. Numerical simulation is performed with
the above-described method, and results are presented
graphically to illustrate the impacts of several nondimen-
sional physical parameters for f ′ðηÞ (temperature profile)
and θðηÞ (velocity profile).

The impact of K on f ′ðηÞ for Fe3O4/EO and ZrO2/EO
nanofluids, respectively, is depicted in Figure 1. It is
observed that with increased K , a decrement in f ′ðηÞ is seen
for both nanofluids. With the fact K ∝ 1/k, hence if we raise
the coefficient of porosity, the permeability of the porous
media decreases, resulting in a drop in fluid velocity.

The effect of volume friction ϕ on f ′ðηÞ is depicted in
Figure 2. It is noticed that with increased ϕ, we get a
decreased velocity profile. With rising ϕ, there is a significant
influence of ϕ on the velocity profiles, with the speed of fluid
being reduced at the vicinity of the surface and the reverse
effect being visible further from the surface. It is also worth
noting that the ZrO2/EO nanofluid has a larger velocity than
the Fe3O4/EO nanofluid. This is due to the fact that density
of ZrO2 is lower than that of Fe3O4, implying that ZrO2 is
lighter in motion than Fe3O4.

The impact of ϕ on θðηÞ is depicted in Figure 3. It is
observed that with increased ϕ, an increased temperature
profile for both nanofluids is seen. With increased nanopar-
ticles of both nanofluids, the temperature of fluid is
increased; as a result, the temperature field may rise.

The impact of Rd on θðηÞ is depicted in Figure 4. It is
concluded that with increased Rd along with θðηÞ, an
increased temperature profile is observed. Radiations create
additional heat within the fluids, which results in higher
temperature fields. Furthermore, Rd has no substantial effect
on the velocity fields. The radiation parameter, which is the
inverse of the Stephan number, is used to determine the rel-
ative significance of thermal radiation versus conductive
heat transmission. As a result of the thermal radiation’s
dominance over conduction, it may be employed to regulate
the thermal boundary layers rather well.

The impact of the temperature ratio parameter θw on θðηÞ
is depicted in Figure 5. It is concluded that with increased θw
along with θðηÞ, an increased temperature profile is observed.
As a recognizable outcome, it is likewise seen that the
temperature profile of the Fe3O4/EO nanoliquid remains
consistently greater than that of the ZrO2/EO nanoliquid.

6. Code of Verification

For the validation of this research, comparison with Das et al.
[21] and Jamshed et al. [4] was made for local Nusselt
numbers using several values of Pr as shown in Table 3. To
do this, the remaining parameters in our simulation approach
are set to zero (Rd = K = ϕ = θw = 0). The calculated findings
are found to be in good match with the previous results.

Table 1: Table of physical constraints of nanofluids used.

μnf = μf / 1 − ϕð Þ2:5 Effective dynamic viscosity

ρnf = 1 − ϕð Þρf + ϕρs Effective density

κnf = κs + m − 1ð Þκf − m − 1ð Þ κf − κsð Þϕ/κs + m − 1ð Þκf + κf − κsð Þϕf gκf Thermal conductivity

ρCp

� �
nf = ρCp

� �
s
ϕ + ρCp

� �
f 1 − ϕð Þ Heat capacitance

Table 2: Thermophysical properties [19, 20].

ρ kgm−3� �
Cp J kg‐1 K‐1� �

k Wm‐1 K‐1� �
Pr

EO 884 1910 0.144 6450

Fe3O4 5810 670 6 —

ZrO2 5680 502 1.7 —
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7. Conclusions

Marangoni convection of Fe3O4 and ZrO2 nanofluid flow
past a stretching surface with thermal radiation embedded
in porous media is considered. The flow’s governing
model is encountered with the Runge-Kutta fourth-order
technique and suitable similarity transformations. These
results can be used to study the thermal performance with
other boundary conditions.

The following important outcomes are obtained.

(i) The Fe3O4/EO nanofluid is more significant in the
cooling process in comparison to the ZrO2/EO
nanofluid

(ii) With increased porosity parameter K , a decrement
in the velocity field has been noticed for both
nanofluids

(iii) With increased Rd and θw parameters, a decrement
in the temperature field has been noticed for both
nanofluids

(iv) For the increased values of ϕ, a decrement is noticed
for the velocity profile and opposite behavior is
observed for temperature profiles for Fe3O4/EO
and ZrO2/EO nanofluids
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The analysis of nanofluid dynamics in a bounded domain attained much attention of the researchers, engineers, and industrialists.
These fluids became much popular in the researcher’s community due to their broad uses regarding the heat transfer in various
industries and fluid flowing in engine and in aerodynamics as well. Therefore, the analysis of Cu-kerosene oil and Cu-water is
organized between two Riga plates with the novel effects of thermal radiations and surface convection. The problem reduced in
the form of dimensionless system and then solved by employing variational iteration and variation of parameter methods. For
the sake of validity, the results checked with numerical scheme and found to be excellent. Further, it is examined that the
nanofluids move slowly by strengthen Cu fraction factor. The temperature of Cu-kerosene oil and Cu-water significantly rises
due to inducing thermal radiations and surface convection. The behaviour of shear stresses is in reverse proportion with the
primitive parameters, and local Nusselt number increases due to varying thermal radiations, Biot number, and fraction factor,
respectively.

1. Introduction

The heat transfer caused troubles for industrialists and engi-
neers because reasonable amount of it required to cope
many industrial and engineering processes. Therefore, a sec-
ond generation of the fluid was developed called nanofluids
[1]. These fluids are the composition of two or more than
two nanoscaled particles in the host liquid. Due to reason-
able thermal performance of these fluids, researchers focused
on the study of nanofluids and its advancements. The appli-
cations of these fluids fall in the field medical sciences, elec-
tronic devices, paint industries, drug delivery system, the
study of bionanofluids in human veins and arteries, the reac-
tion of nanomaterials by taking blood as a host fluid, coating
of various aircraft parts, and in many other potential fields of
interest. Therefore, it is imperative to address the compara-
tive heat transfer analysis in different nanofluids.

To improve the heat transport in nanofluids, many the-
oretical models have been suggested; some of them are
Hamilton and Crossers model, Maxwell Garnett model,
KKL model, Buongiorno’s model, etc. By utilizing aforemen-
tioned thermal conductivity models, many researchers
explored the problems of nanofluids in various geometries
and studied their dynamics under various conditions. In
2016, Mohyud-Din et al. [2] discussed the mass and heat
transfer analysis in opening (diverging) and narrowing (con-
verging) channel. They assumed that walls of the channel
capable to stretching and shrinking. The investigation of
heat transfer over a stretchable surface by inducing an
MHD and thermal radiation examined by Khan et al. [3]
in 2016.

Sheikholeslami [4] explored the behaviour of nanofluid
under the governing parameters and Lorentz forces. The
effect of Lorentz forces on the nanoliquid past a porous
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cylinder with the help of Darcy model was reported in [5].
Adnan et al. [6] explored the second-grade fluid problem
between opening/narrowing walls by inducing cross diffu-
sion effects in the constitutive model. Also, they demon-
strated the effects of other flow parameters ingrained in the
flow model on the velocity, temperature, and concentration
fields. The analysis of two phase nanoliquid model by plug-
ging the effects of Lorentz forces is presented in [7]. Another
imperative inspection of the nanoliquid dynamics is
reported in [8]. For thermal enhancement, they induced
KKL correlation in the model.

Influence of thermal radiation between oblique walls was
reported by Adnan et al. [9]. They assumed that the bound-
aries of the channel are capable to stretching and shrinking.
Furthermore, they solved the model and explored the effects
of various flow parameters in the flow field. The significant
analysis regarding the heat transfer in nanoliquids under
multiple flow scenarios is reported in [10, 11]. The dynamics
of radiative nanoliquid by considering combined convection
is reported by Gul et al. [12]. The important analysis of the
nanoliquids under imposed magnetic field and other gov-
erning quantities is conducted in [13, 14], respectively.

The analysis of the squeezing flow has great significance
in the light of its applications in different industries. These
applications comprised in the field of biomechanics,
mechanical engineering, chemical engineering, and in the
food industries. The earlier work in this era was done by Ste-
fan [15]. The behaviour of squeezed fluid was investigated by
Rashidi et al. [16]. Another analysis related to squeezed flow
is done by Khan et al. [17]. Gailitis and Lielausis [18] pre-
sented the study of fluid flowing between Riga plates. The
model is solved via suitable technique and then explained
the physical results deeply.

The dynamics of bioconvection nanoliquid regarding the
heat transfer are examined in [19]. They organized the study
in 3D, and the problem is developed by Buongiorno nanoli-
quid model and then found the solution analytically. In
2019, Shamshuddin et al. [20] reported the novel influences
of ohmic heating and magnetic field in the flow of nanoli-
quid between two Riga sheets. They analyzed the model ana-
lytically and provided pictorial results against the pertinent
flow quantities. The investigation of local heat transport
mechanism in the nanoliquid and transportation of the
shears stresses at the walls are also reported in their study.
The effect of partial slip in the nanoliquid flow over a spin-
ning geometry is reported in [21]. They used the nanoliquid
composed by MgO and discussed the heat transport proper-
ties. Another imperative heat transfer treatment in biocon-
vection nanoliquid under the influences of Lorentz forces
and internal heat source is explored in [22]. Some significant
investigations related to nanoliquids under multiple condi-
tions are reported in [23–25].

Thermal diffusion and heat generation are very impor-
tant physical phenomena that play significant role in the
nanofluid heat transport performance. In this regard, a
potential study is reported in [26] past through porous oscil-
lating plate placed in vertical plane. The authors computed
the results and for the shear stresses, Nusselt number and
furnished graphical results for the velocity and temperature

distribution. Another potential work for the heat transfer
in the nanofluid under the effects of imposed Lorentz forces
is discussed in [27]. Thin film flows attained much attention
of the industrialists due to their broad applications in many
industries. The analysis of heat transport in the nanofluids
over a thin film is very prominent. Therefore, a recent study
in this regard is reported in [28]. Theoretical study of the
flow models under varying flow conditions has its own
importance, and researchers paved their attentions to ana-
lyze the dynamics of fluids through theoretical approaches.
In this regard, a study is reported in [29] by considering
the flow inside the cavity filled with nanoliquid. The authors
treated the model numerically and authenticate their results
with previously published work. The study of different flow
parameters and their impacts on the heat transfer is orga-
nized in [30]. It is reported that the temperature drops due
higher thermophoresis effects.

From the available science literature, it is noted that the
analytical heat transport mechanism in water and kerosene
oil saturated by Cu nanomaterials is not investigated so far.
Therefore, the analysis is organized to examine the nanofluid
characteristics between Riga plates. The model is obtained
via similarity transforms, and then for solution purpose,
two different analytical techniques (VIM and VPM) are
implemented. The solutions are tabulated successfully and
discussed the graphical results comprehensively within
desired domain.

2. Modelling of the Flow Configuration

In this study, we consider the squeezed flow of copper nano-
fluids between Riga plates. The plates are situated at y = 0
(lower plate) and y = hðtÞ = ða/νf ð1 − γtÞÞ−1/2 (upper plate).
The lower Riga plate is capable to stretching with velocity
Uw = axð1 − γtÞ−1. The base liquids diluted with Cu nano-
particles flow with velocity vh = dh/dt between Riga plates.
Furthermore, thermal radiation effects are under consider-
ation. Figure 1 demonstrates flow scenario for the nanofluids
between Riga plates.

The squeezing flow of nanofluids past a Riga plate
described by the following system [31]:

∂u
∂x

+ ∂v
∂y

= 0, ð1Þ

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= 1
ρnf

−
∂p
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+ μnf
∂2u
∂x2

+ ∂2u
∂y2

 !" #
+ πj0M0e

−πy/bð Þ

8ρnf
,

ð2Þ
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+ u
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+ v
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∂y
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ρnf

−
∂p
∂y

+ μnf
∂2v
∂x2

+ ∂2v
∂y2

 !" #
, ð3Þ

∂T
∂t

+ u
∂T
∂x
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∂T
∂y

=
knf

ρCp

� �
nf

∂2T
∂x2

+ ∂2T
∂y2

" #
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1
ρCp

� �
nf

∂
∂y

qrð Þ:

ð4Þ
Equation (1) is the mathematical expression for
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conservation of mass. Equations (2) and (3) presenting the x
and y components of the momentum equation and energy
equation are described by Equation (4). The term qr com-
prised in energy equation is defined as:

qr = −
4σ∗
3k∗

∂
∂y

T4� �
: ð5Þ

Here, σ∗ denotes the Stefan-Boltzmann constant, and qr
denotes the radiative heat flux. By expanding T4 in well-
known Taylor series centered at Th, we arrived with the fol-
lowing form:

T4= ~ 4T3
h − 3T4

h: ð6Þ

By utilizing above expressions, updated version of energy
equation is as follows:

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
knf

ρCp

� �
nf

∂2T
∂x2

+ ∂2T
∂y2

" #
−

1
ρCp

� �
nf

16σ∗
3k∗ T3

h
∂2T
∂y2

:

ð7Þ

For under consideration flow model of nanofluid, the
flow conditions are as follows [31]:

u =Uw xð Þ = 1 − γtð Þ−1ax, ð8Þ

v = 0,− k∂T
∂y

= k1
T f − T
� �−1 , ð9Þ

u = 0, v = dh
dt

= −
γ

2
a 1 − γtð Þ

νf

 !−1/2

, T = Th: ð10Þ

In Equations (8) and (10), ρnf represents the nanofluid
density, μnf represents the effective dynamic viscosity, and
ðρCpÞnf represents the effective heat capacity. Here, we used

Brinkman and Maxewell Garnett model for effective
dynamic viscosity and thermal for the thermal conductivity
of the nanofluid [32]:

ρnf =
1 − ϕð Þ
ρ−1f

+ ϕ

ρ−1s
,

μnf =
μf

1 − ϕð Þ2:5 ,

ρCp

� �
nf
= 1 − ϕð Þ

ρCp

� �−1
f

+ ϕ

ρCp

� �−1
s

,

knf = kf
ks + 2kf − 2ϕ kf − ks

� �
ks + 2kf + ϕ kf − ks

� �
" #

:

ð11Þ

In above expressions, ϕ is called the nanoparticle volume
fraction.

The dimensionless feasible transformations for the flow
model are given by the following expressions:

ψ =
aνf

1 − γt

� �1/2
xF ηð Þ, η = y

h tð Þ ,

u =UwF ′ ηð Þ,

v = −
aνf

1 − γt

� �1/2
,

θ ηð Þ = T − T f

Th − T f

 !
:

ð12Þ

Applying these transformations and suitable differentia-
tion in Equations (2)–(7), the following system is attained:

N
S

N
S

N

z
X

Y
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y=h(t)

y=0

NanofluidH
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N+ +
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–
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N
S

N
S

N
S

N
S

Figure 1: The flow scenario between Riga plates.

F ′′′′ ηð Þ + 1 − ϕð Þ + ϕ
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Supporting boundary conditions for above flow model in
dimensionless form is given in Equations (14) and (15) for
upper and lower Riga plates:

F ′ η = 0ð Þ = 1, F η = 1ð Þ = β

2 , F
′ η = 1ð Þ = 0, F η = 0ð Þ = 0,

ð14Þ

θ η = 1ð Þ = 0, θ′ η = 0ð Þ = −Bi 1 − θ η = 0ð Þð Þ: ð15Þ
Also, squeeze number β, Prandtl number Pr, and

radiation parameter Rd are described by the following
expressions:

β = γ

a
, Pr =

μf Cp

� �
f

kf
, Rd = 16σ∗T3

h

3k∗kf
, Bi = −

h1
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νf 1 − γtð Þ

q
/a:

ð16Þ

The dimensional expressions for local heat transport
rate and walls shear stresses are

CF =
τw

ρnf U
2
w

,

Nux =
xqw

kf T − Thð Þ + qr:
ð17Þ

Here, τw = μnf ð∂u/∂yÞ↓y=hðtÞ and qw = −knf ð∂T/∂yÞ
↓y=hðtÞ:

Finally got the following version:

Cˇ
F

ffiffiffiffiffiffiffiffiffiffiffi
Rexð Þ

p
= 1
A1 1 − ϕð Þ2:5 F

′′ η = 1ð Þ:

Nux

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γtð Þ
Rexð Þ

s
= − A3 + Rdð Þθ′ η = 1ð Þ:

ð18Þ

where Rex is called the local Reynolds number and is Rex
= xUw/νf . Furthermore, A1 and A3 are as follows:

A1 = 1 − ϕð Þ + ϕ

ρs/ρf

� �−1 ,

A3 =
ks + 2kf
� �

− 2ϕ kf − ks
� �

ks + 2kf
� �

+ ϕ kf − ks
� �

" #
:

ð19Þ

3. Solution of the Model

In this section, solutions for the model are performed. For
said purpose, we employed analytical and numerical
methods. First subsection deals with the study of solutions
found by variation of parameters method, and the second
one deals with the study of solutions found by variational
iteration method. Numerical solution and error analysis
are also tabulated.

3.1. Solution Using VPM. The solution for the model by uti-
lizing VPM is performed in this subsection. The procedure is
adopted by the following steps:

Fn+1 ηð Þ = F 0ð Þ + ηF ′ 0ð Þ + η2

2! F
′′ 0ð Þ + η3

3! F
′′′ 0ð Þ

−
ðη
0

sη − s + −ηs + ηð Þð Þ3
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ds, n ≥ 0,

ð20Þ

where A∗ = fð1 − ϕÞ + ϕfðρCpÞs/ðρCpÞf gg
By using the conditions ðη = 0Þ and putting F″ð0Þ = α∗1

, F‴ð0Þ = α∗2 , and θð0Þ = α∗3 , above recursive relation takes
the following form:
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In more comprehensive form, Equations (21) and (22)
become:

Fn+1 ηð Þ = F0 ηð Þ −
ðη
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θn+1 ηð Þ = θ0 ηð Þ − 1
1 + Rd/A3ð Þ

ðη
0

η2s − s + η − sη2
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1!

� A∗

A3
Pr Fn sð Þθn′ sð Þ −

βs
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Here,

F0 ηð Þ = η + η2

2! α
∗
1 +

η3

3! α
∗
2 , ð24Þ

θ0 ηð Þ = α∗3 + η −Bi 1 − θ 0ð Þð Þð Þ, ð25Þ
and α∗1 , α∗2 , and α∗3 are unknown constant and can be deter-
mined by utilizing remaining boundary conditions. Other
approximations of the solution can be calculated for
varying n.

3.2. Solution Using VIM. The solution procedure by using
VIM is followed as follows:

Fn+1 ηð Þ = Fn ηð Þ +
ðη
0
−1ð Þ4 sη + s + −ηs − ηð Þð Þ3

3!

� Fn′′′′ sð Þ + 1 − ϕð Þ + ϕ
ρs
ρf

( )" #
1 − ϕð Þ2:5

"

� Fn′ sð ÞFn′′ sð Þ − Fn sð ÞFn′′′ sð Þ −
β

2 3Fn′′ sð Þ + sFn′′′ sð Þ
� �� 		

− 1 − ϕð Þ2:5Z∗B∗Exp −B∗ηð Þds, n ≥ 0,

θn+1 ηð Þ = θn ηð Þ +
ðη
0

η2s + s + −η − sη2
� �� �
1!

� 1 + Rd
A3

� �
θn′′ sð Þ +

A∗

A3
Pr Fn sð Þθn′ sð Þ −

βs
2 θn′ sð Þ


 �� 	
ds, n ≥ 0:

ð26Þ

In order to initiate the recursive relation for variational
iteration method, we need initial guesses F0ðηÞ and θ0ðηÞ.
These initial trials are same as given in Equations (24) and
(25) for velocity and temperature, respectively.

Tables 1 and 2 show the comparative analysis among the
solutions calculated by adopting variation of parameters and
variational iteration methods. Furthermore, these solutions
are compared with numerical solutions to check the validity
of the both applied methods (VPM and VIM). It is easy to
see that both analytical solutions are in magnificent agree-
ment with numerical solutions. The error for VPM and
VIM is also discussed and given by Tables 3 and 4 for veloc-
ity and temperature fields, respectively.

4. Results with Comprehensive Discussion

This subsection is organized to investigate the behaviour of
the nanoliquid motion, temperature, shear stresses, and local
thermal performance rate over the region of interest. The
results are captured by altering the governing parameter

within physical domain. These results are plotted for both
sort of nanoliquids.

Figure 2 elaborates the behaviour of Cu-kerosene oil and
Cu-water against the squeeze number β and Cu fraction fac-
tor ϕ. It is examined that the fluid motion rises due to higher
β. Physically, the acceleration of the plates exerts pressure
force on the fluid particles due to which these particles move
rapidly in the region of interest. The rapid increment in the
motion is observed in the locality of the upper Riga plate. On
the other hand, higher fraction factor opposes the fluid
velocity in Figure 2(b). The core reason behind this behav-
iour is the density of the nanofluid. By increasing the
strength of ϕ, the nanofluid becomes more thicker, and ulti-
mately, the internal fluid forces become dominant which
resists the motion.

The effects of thermal radiation, Cu fraction factor, and
Biot number on the thermal performance of Cu-water and
Cu-kerosene oil are furnished in Figures 3 and 4, respec-
tively. The results plotted in Figure 3(a) ensure that the ther-
mal performance of Cu-water and Cu-kerosene oil can be
augmented by imposing thermal radiation effects. Physically,
thermal radiation provides the heat energy to the fluid parti-
cles which leads to increment in the temperature. Similarly,
the higher volumetric fraction also favors the nanofluid tem-
perature, and these effects are pictured in Figure 3(b).

Convectively heated surface is a big source of heat transfer
augmentation in the nanofluid. Therefore, the temperature
alterations due to convective surface (Biot number) are deco-
rated in Figure 4. It can be that augmentations in the heat
transfer are more rapid due convectively heated surface. Near
the surface, these effects are very prominent because of maxi-
mum amount of heat transfer at the surface. The particles
attached to the surface transfer the energy to rest of the parti-
cles; as a result, the fluid temperature goes up.

The study of shear stresses in Cu-water and Cu-kerosene
oil is imperative for industrial and engineering applications.
Therefore, Figure 5 is designed to explore the trends of shear
stresses for varying β and ϕ. From the results, it is

Table 1: Comparison of the solution for the velocity field.

η
Cu/water Cu/kerosene oil

VPM VIM Num VPM VIM Num

0:0 0 0 0 0 0 0

0:1 0.084124 0.084124 0.084124 0.089562 0.089562 0.089562

0:2 0.139400 0.139400 0.139400 0.159755 0.159755 0.159755

0:3 0.170301 0.170301 0.170301 0.212844 0.212844 0.212844

0:4 0.181418 0.181418 0.181418 0.251099 0.251099 0.251099

0:5 0.177425 0.177425 0.177425 0.276795 0.276795 0.276795

0:6 0.163070 0.163070 0.163070 0.292230 0.292230 0.292230

0:7 0.143176 0.143176 0.143176 0.299751 0.299751 0.299751

0:8 0.122658 0.122658 0.122658 0.301797 0.301797 0.301797

0:9 0.106544 0.106544 0.106544 0.300949 0.300949 0.300949

1:0 0.100000 0.100000 0.100000 0.299999 0.299999 0.299999
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Table 2: Comparison of the solutions for the temperature.

η
Cu/water Cu/kerosene oil

VPM VIM Num VPM VIM Num

0:0 0.137213 0.137213 0.137213 0.289725 0.289725 0.289725

0:1 0.120072 0.120072 0.120072 0.247533 0.247533 0.247533

0:2 0.103522 0.103522 0.103522 0.207552 0.207552 0.207552

0:3 0.087895 0.087895 0.087895 0.171065 0.171065 0.171065

0:4 0.073295 0.073295 0.073295 0.138484 0.138484 0.138484

0:5 0.059663 0.059663 0.059663 0.109623 0.109623 0.109623

0:6 0.046852 0.046852 0.046852 0.083962 0.083962 0.083962

0:7 0.034670 0.034670 0.034670 0.060841 0.060841 0.060841

0:8 0.022917 0.022917 0.022917 0.039574 0.039574 0.039574

0:9 0.011409 0.011409 0.011409 0.019499 0.019499 0.019499

1:0 -1.60000e-10 -1.60000e-10 0 4.3e-09 0 0

Table 3: Error analysis between VPM and VIM for velocity.

η
Cu-water Cu-kerosene oil

Error VPM Error VIM Error VPM Error VIM

0:0 0 0 0 0
0:1 4:053854336e − 010 3:553854294e − 010 07:56226369e − 009 7:522263687e − 009
0:2 1:140821326e − 009 1:040821318e − 009 2:681196706e − 008 2:681196706e − 008
0:3 2:15307891e − 009 2:053078901e − 009 5:202073416e − 008 5:222073418e − 008
0:4 3:044108965e − 009 3:044108965e − 009 7:806090879e − 008 7:81609088e − 008
0:5 3:994240744e − 009 3:694240719e − 009 9:931656803e − 008 9:961656799e − 008
0:6 4:081787769e − 009 3:981787761e − 009 1:094292154e − 007 1:095292154e − 007
0:7 3:710801472e − 009 3:410801475e − 009 1:033390067e − 007 1:034390067e − 007
0:8 2:277394731e − 009 2:477394734e − 009 7:577738309e − 008 7:58773831e − 008
0:9 3:673078369e − 010 3:269216842e − 011 3:079392602e − 008 3:139392601e − 008
1:0 9:999999717e − 010 5:999999664e − 010 1:000002303e − 010 2:000002386e − 010

Table 4: Error analysis between VPM and VIM for temperature.

η
Cu-water Cu-kerosene oil

Error VPM Error VIM Error VPM Error VIM

0:0 2.917453946e-007 2.916453946e-007 2.270226419e-005 2.269216419e-005

0:1 2.9763384e-007 2.9753384e-007 2.405097907e-005 2.404027907e-005

0:2 3.030928012e-007 3.029928012e-007 2.532916947e-005 2.531796947e-005

0:3 3.084416274e-007 3.083416274e-007 2.649541049e-005 2.648381049e-005

0:4 3.128298272e-007 3.127198272e-007 2.751250899e-005 2.750040899e-005

0:5 3.131458008e-007 3.130458008e-007 2.821819169e-005 2.820559169e-005

0:6 3.011267026e-007 3.009967026e-007 2.804527177e-005 2.803227177e-005

0:7 2.650793188e-007 2.649293188e-007 2.586572549e-005 2.585322549e-005

0:8 1.982127418e-007 1.980027418e-007 2.043576037e-005 2.042346037e-005

0:9 1.054550512e-007 1.050350512e-007 1.140035168e-005 1.139085168e-005

1:0 1.600000001e-010 6.94690402e-010 4.3e-009 5.4e-009
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noteworthy that the shear stresses drop against the stronger
β. For Cu-kerosene oil, these are very rapid than Cu-water in
which thermophysical values of the base liquid and guest
nanoparticles playing significant role. The slow decline in
the shear stresses can be examined from Figure 5(b).

The local thermal performance in the nanofluids is of
much interest due to their broad applications in the mod-
ern world. For this purpose, Figures 6–8 are decorated by
considering different values of the pertinent flow parame-
ters. It is investigated that the Biot number and thermal
radiation are very beneficial for thermal performance in
Cu-water and Cu-kerosene oil. The nanofluids gained
much energy from Biot and thermal radiation parameters
due to which the heat transfer rate rises. Furthermore, β
and volumetric fraction are playing important role in ther-
mal rate of Cu-water and Cu-kerosene oil. Thermophysical
values of the guest nanoparticles and host liquid are
described in Table 5.
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5. Comparison with Existing Literature

It is very imperative to authenticate the present analysis with
previously published work. Therefore, a useful comparison is
made by taking ϕ = 0, Z = 1:5. The computed results are then
compared with the results reported in [31]. From Table 6, it
is noted that the results reported in the study are valid under
aforementioned assumption which is evidence of the reli-
ability of the study.

6. Conclusions

The study of nanofluids synthesized by water and kerosene
oil in the presence of Cu guest nanoparticles is organized
between two Riga plates. The similarity relations are used
for the conversion of dimensional model into dimensionless
form and then performed mathematical analysis. Two well-
known effective analytical techniques are adopted for the
solution purpose and then decorated the results against the
flow parameters over the desired region. Form the study, it
is concluded as follows:

(i) The velocity reduces by increasing the volumetric
fraction of the nanoparticles

(ii) The temperature significantly rises for stringer ther-
mal radiations and fraction factor ϕ for both Cu-
H2O and Cu-kerosene oil nanofluids

(iii) The convectively heated plate produces extra heat to
the nanofluid particles due to which it enhances
rapidly

(iv) The decreasing trends in the shear stresses are rapid
for Cu-kerosene oil than Cu-H2O

(v) The local Nusselt number increases against thermal
radiations, Bi and ϕ

(vi) The VPM is more effective than VIM for such non-
linear nanofluid models

Nomenclature

ðu, vÞ: Velocity components
p: Pressure
T : Temperature
μnf : Nanoliquid dynamic viscosity
knf : Nanoliquid thermal conductivity
σ∗: Stefan Boltzmann constant
k∗: Mean absorption coefficient
ϕ: Fraction factor of Cu
ρf : Fluids density
ρs: Cu density
Ψ: Stream function
η: Self-similar variable
nf : Stands for nanoliquid
FðηÞ: Dimensionless velocity
θ: Dimensionless temperature
Rd: Radiation number
Pr: Prandtl number
Bi: Biot number.
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Table 5: Thermo-physical values of carbon nanotubes and the
regular liquids [33].

ρ (kg/m3) Cp (J/kgK) k (W/mK) Pr
Pure water 997.1 4179 0.613 6.2

Kerosene oil 783 2090 0.145 21

Copper 8933 385 401 —

Table 6: Comparison with existing literature.

β F ′′ 1ð Þ
Present Hayat et al. [31]

0.1 1.69208 1.69635

0.3 1.08117 1.08543

0.5 0.46327 0.467511
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The nanofluids can be used in the subsequent precise areas like chemical nanofluids, environmental nanofluids, heat transfer
nanofluids, pharmaceutical nanofluids, drug delivery nanofluids, and process/extraction nanofluids. In short, the number of
engineering and industrial applications of nanofluid technologies, as well as their emphasis on particular industrial
applications, has been increased recently. Therefore, this exploration is carried out to analyze the nanofluid flow past a rotating
disk with velocity slip and convective conditions. The water-based spherical-shaped nanoparticles of copper, alumina, and
titanium have been considered in this analysis. The modeled problem has been solved with the help of homotopic technique.
Convergence of the homotopic technique is shown with the help of the figure. The role of the physical factors on radial and
tangential velocities, temperature, surface drag force, and heat transfer rate are displayed through figures and tables. The
outcomes demonstrate that the surface drag force of the water-based spherical-shaped nanoparticles of Cu, Al2O3, and TiO2
has been reduced with a greater magnetic field. The radial and tangential velocities of the water-based spherical-shaped
nanoparticles of Cu, Al2O3, and TiO2, and pure water have been augmented via magnetic parameter. The radial velocity of the
water-based spherical-shaped nanoparticle of Cu has been augmented via nanoparticle volume fraction, whereas reduced for
the Al2O3 and TiO2 nanoparticles. The tangential velocity of the water-based spherical-shaped nanoparticles of Cu, Al2O3, and
TiO2 has reduced via nanoparticle volume fraction. Also, the variations in radial and tangential velocities are greater for slip
conditions as compared to no-slip conditions.

1. Introduction

The suspension of nanosized (between 1nm and 100nm)
material into conventional fluids such as oil, ethylene glycol,
water, and sodium alginate is called nanofluids. Nanofluids
with their innovative and advanced ideas have intriguing ther-
mal transfer properties as opposed to traditional heat transfer
fluids. There has been a great deal of research into nanofluids’
dominant heat transfer properties, especially convective heat
transfer and thermal conductivity. With these properties,
nanofluid implementations in industries like heat exchange

systems look promising. The nanofluids can be used in the
subsequent precise areas like chemical nanofluids, environ-
mental nanofluids, heat transfer nanofluids, pharmaceutical
nanofluids, drug delivery nanofluids, and process/extraction
nanofluids. In short, the number of engineering and industrial
applications of nanofluids technologies, as well as their
emphasis on particular industrial applications, has been
increased recently [1–7]. The capability of thermal transmis-
sion of nanofluids can be quantified by their properties like
specific heat, density, viscosity, and thermal conductivity.
The thermal properties are contingent on the shape, base fluid,
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particle size, material, and concentration. To utilize the appli-
cations towards engineering and industries, researchers are
working on the evaluation and characterization of the thermo-
physical properties of nanofluids for heat transfer analysis [8].
Sheikholeslami [9] analyzed the different shapes of aluminum
oxide using the Darcy porous medium with thermal radiation.
Hayat et al. [10] investigated the nanofluid flow with Hall and
Ohmic influences. They deliberated the thermal convective and
velocity slip boundary conditions. The Hall and Ohmic param-
eters have reduced the velocity and heat transfer rate. Sheikho-
leslami [11] presented the analysis different shapes of
nanoparticles of copper oxide water with Brownian motion. It
has been introduced that the platelet shape nanoparticles has
leading impression as associated to other shapes of nanoparti-
cles. Thumma et al. [12] investigated the non-Newtonian nano-
fluid flow containing water-based CuO and Cu nanoparticles
past porous extending sheet with entropy optimization and
velocity condition. A non-Fourier has been implemented to
analyze the heat transfer rate. Hayat et al. [13] examined the
Cu, Fe2O3, and Au nanoparticles with Hall and Ohmic effects
using constant and variable viscosities. Sheikholeslami et al.
[14] addressed the Al2O3-water nanoparticles through a chan-
nel with Brownian motion impact. Thumma et al. [15] deliber-
ated the radiative boundary layer nanofluid flow past a
nonlinear extending surface with viscous dissipation. Rout
et al. [16] analyzed the water-based Cu and kerosene oil-based
Cu between two parallel plates with thermal radiation. Further
studies related to nanofluids are mentioned in [17–26].

The flow behavior of a flowing conducting liquid is
described by magnetohydrodynamic (MHD), which polar-
izes it. In industrial activities such as nuclear power plants,
crystal manufacture, electric generators, and fuel industry,
the impact of magnetic fields is assessed. Tamim et al. [27]
addressed the MHD mixed convective flow of nanofluid on
a vertical plate. They studied both opposing and assisting
flows. The water-based Cu, Al2O3, and TiO2 are examined.
Ghadikolaei et al. [28] implemented the induced magnetic
field on hybrid nanofluid flow through an extending surface.
Hayat et al. [29] explore the unsteady MHD viscous fluid flow
with Joule heating, thermal radiation, and thermal stratifica-
tion influences. Ahmad et al. [30] expressed the MHD flow
of ferrofluid past an exponentially extending surface. Singh
et al. [31] investigated the MHD flow of water-based alumina
nanofluid past a flat plate with slip condition. Mliki et al. [32]
evaluated the convective nanofluid flow with MHD effect.
Upreti et al. [33] presented the CNT nanofluids past an
extending surface with nonuniform heat source/sink and
Ohmic heating. Pandey et al. [34] presented the MHD
water-based copper nanofluid flow inside a convergent/diver-
gent channel. Upreti et al. examined theMHDAg-kerosene oil
nanofluid with suction/injection roles. Turkyilmazoglu [35]
presented the viscous fluid flow with magnetic field impact
past a spinning disk. The MHD viscous fluid flow considering
wall slip conditions has been investigated by Hussain et al.
[36]. Dawar et al. [19] presented the highly magnetized and
nonmagnetized non-Newtonian fluid flow past an extending
cylinder. Further related results can be seen in [18, 37–45].

Magnetic nanoparticles pique the researchers’ interest in
various fields, including homogeneous and heterogeneous

catalysis, magnetic fluids, environmental remediation, bio-
medicine, data storage, and magnetic resonance imaging
(MRI) for instance purification of water. The literature proves
that the nanoparticles of size less than the critical value (i.e., 10-
20nm) perform best [46]. Nanoparticles’ magnetic properties
effectivelymonopolize at such a small scale, rendering them ben-
eficial and helpful in a wide range of applications [46–49]. In
light of the abovementioned applications, we have considered a
mathematical model for the flow of nanofluid containing the
nanoparticles of Cu-H2O, Al2O3-H2O, and TiO2-H2O, and pure
water with a strong magnetic field. According to the authors
knowledge, there is no study based on spherical-shaped nano-
particles of the Cu, Al2O3, and TiO2 using water as a based fluid
past a rotating disk. Furthermore, the velocity slip and convective
conditions are considered to analyze the flow behavior in the
presence and absence of slip conditions. The mathematical
model is solved with the help of the homotopic approach.

2. Physical Model

We consider the water-based nanomaterials (Cu, Al2O3, and
TiO2) past a rotating disk. The velocity components ~u1,~u2, and
~u3 are taken along ~r,ϕ, and ~z directions, respectively. The disk
rotates with an angular velocityΩ at ~z = 0 (see Figure 1). Amag-
netic field of strength B0 is applied normal to the fluid flow. The
flow is subjected to velocity slip and thermal convective condi-
tions. The leading equations are defined as follows [35]:
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The thermophysical properties of the nanofluids are defined
as [50]

In the above equations, μ is the dynamic viscosity, ρ is
the density, cp is the heat capacitance, L is the wall slip
parameter, ~p is the pressure, k is the thermal conductivity,
and φ represents the volume fraction of the nanoparticles.
Furthermore, the subscript f indicates the base fluid, nf
shows the nanofluids, and np is used for nanoparticles.

The correspondence variables are defined as [53–55]

~u1 =~rΩf ηð Þ, ~u2 =~rΩg ηð Þ, ~u3 =
ffiffiffiffiffiffiffiffi
Ωνf

p
h ηð Þ

~p = ~p∞ + 2Ωμf ~P ηð Þ, ~T = ~T∞ + ~T f − ~T∞

� �
θ ηð Þ, η =

ffiffiffiffiffi
Ω

νf

s
~z

8>><
>>:

9>>=
>>;:

ð4Þ

The above system is transformed as

h′ + 2f = 0,
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−
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where

�M1 =
μnf
μf
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, �M3 =
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, �M4 =
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, �M5 =
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f

( )
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ð6Þ

with

f 0ð Þ = αf ′ 0ð Þ, g 0ð Þ = 1 + αg′ 0ð Þ, h 0ð Þ = 0, knf
kf

θ′ 0ð Þ = Bi θ 0ð Þ − 1ð Þ

f η⟶∞ð Þ⟶ 0, g η⟶∞ð Þ⟶ 0, θ η⟶∞ð Þ⟶ 0
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Here, M = σf B
2
0/ρfΩ is the magnetic parameter, Pr = νf

/αf is the Prandtl number, α = L~r
ffiffiffiffiffiffiffiffiffiffi
Ω/νf

p
is the wall slip

parameter, and Bi = ðhf /kf Þ
ffiffiffiffiffiffiffiffiffiffi
Ω/νf

p
is the thermal Biot

number.
The surface drag force Cf~r and heat transfer rate Nur are

defined as [53, 55]
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The dimensionless form of Equation (7) is:

ffiffiffiffiffi
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p
Cf~r = �M1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ′2 0ð Þ + g′2 0ð Þ

q
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Re
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where Re =Ω~r2/νf is the local Reynolds number.

3. HAM Solution

The initial guesses and linear operators are defined as
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where ciði = 1 − 6Þ are called arbitrary constants.

μnf
μf

= 1
1 − φð Þ2:5 ,

ρnf
ρf

= 1 − φð Þ + φ
ρnp
ρf

,
ρcp
� �

nf
ρcp
� �

f
= 1 − φð Þ + φ

ρcp
� �

np
ρcp
� �

f

σnf
σf

= 1 +
3 σnp/σf
� �

− 1
� �

φ

σnp/σf
� �

+ 2
� �

− σnp/σf
� �

− 1
� �

φ
, knf
kf

=
knp + n − 1ð Þkf − n − 1ð Þ kf − knp

� �
φ

knp + n − 1ð Þkf + kf − knp
� �

φ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð3Þ

3Journal of Nanomaterials



4. HAM Convergence

Figure 2 is displayed for the convergence of series solutions.
The auxiliary parameters ℏf , ℏg, and ℏθ are responsible for
the adjustment and controlling of the series solutions.
Therefore, the acceptable values for velocities and thermal
profiles are −2:1 ≤ ℏf ≤ −0:1, −1:9 ≤ ℏg ≤ 0:0, and −2:5 ≤ ℏθ
≤ 0:2.

5. Results and Discussion

This segment compacts with the impressions of different
embedded factors on velocities and temperature, surface
drag force and heat transfer rate. We have considered the
spherical-shaped three different nanoparticles like Cu,
Al2O3, and TiO2 with a base fluid H2O. Since water is used
as a base fluid, therefore, Pr = 6:2. The thermophysical prop-
erties of Cu, Al2O3, TiO2, and H2O are presented in Table 1.
The shape factor and sphericity of the different nanoparticles
are presented in Table 2. In Table 3, we have presented the
numerical values of skin friction via magnetic parameter
for different water-based spherical-shaped nanoparticles
and pure water. Both slip and no-slip conditions are consid-
ered here. The greater magnetic parameter augments the
skin friction coefficient. Actually, the magnetic parameter
drops off the velocity function due to Lorentz force. The
heightening Lorentz force means the skin friction coefficient
augments which has been seen for the spherical-shaped Cu,
Al2O3, and TiO2 nanoparticles and pure water for the case of
no-slip condition. For the case of slip condition, interesting
results have been introduced here. Physically, the presence
of slip parameter reduces the velocity of the fluid due aug-
menting skin friction coefficient as occurs which allow more
fluid to past the disk as found for pure water. However, for
the spherical-shaped Cu, Al2O3, and TiO2 nanoparticles,
the presence of slip and magnetic parameters have diverse
impact on surface drag force. In addition, the greater impact
of magnetic parameter occurs in the absence of slip effect.
Table 4 shows the numerical values of surface drag force
via spherical-shaped nanoparticle volume fraction for the
different water-based nanoparticles. Physically, the increas-
ing nanoparticle volume fraction means that the nanoparti-

cles and the base fluid collide with each other which
accelerates the fluid motion; consequently, the momentum
boundary layer thickness decreases and upsurges the surface
drag force. Also, the impact of spherical-shaped nanoparti-
cles volume fraction is the same for the local Nusselt number
as portrayed in Table 5. Additionally, the surface drag force
is greater for the case of no-slip condition. The increasing
thermal Biot number augments the heat transfer rate.
Tables 6–8 show the comparison of analytical and numerical
techniques for f ðηÞ, gðηÞ, and θðηÞ. Here, a close agreement
between both techniques is found. Figure 3 shows the impact
of nanoparticle volume fraction on spherical-shaped Cu,
Al2O3, and TiO2 nanoparticles. Figure 4 shows the variation
in radial velocity of the spherical-shaped Cu, Al2O3, and
TiO2 nanoparticles and pure water (H2O) via a magnetic
parameter for the case of no-slip condition. The greater
magnetic factor diminishes the radial velocity of the
spherical-shaped Cu, Al2O3, and TiO2 nanoparticles and
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Figure 2: ℏ-curves for f ′ð0Þ, g′ð0Þ, and θ′ð0Þ.

Table 1: Numerical values of the thermophysical properties of
H2O, Cu, Al2O3, and TiO2 [13, 51, 52].

Base fluid and
nanoparticles

ρ kg/m3� �
cp J/kgKð Þ k W/mKð Þ σ 1/Ωmð Þ

H2O 997.1 4179 0.613 0.05

Al2O3 3970 765 40 1 × 10−10

Cu 8933 385 401 5:96 × 107

TiO2 4250 685.2 8.9539 2:6 × 106

Table 2: Shape factor and sphericity of different particle shapes
[56, 57].

Shape of the nanoparticle Sphericity Shape factor

Sphere 1.0 3.00

Cylinder 0.62 4.84

Blade 0.36 8.33

Platelet 0.52 5.77

Brick 0.81 3.70
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r
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Figure 1: Geometrical representation of the flow problem.
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pure water (H2O). Physically, the applied magnetic field cre-
ates Lorentz force during the fluid flow which opposes the
motion of the flow nanoparticles; consequently, a reducing
impact is observed. For the case of slip condition, a similar
impact of magnetic parameter is observed for radial velocity
of the spherical-shaped Cu, Al2O3, and TiO2 nanoparticles
and pure water (H2O) as displayed in Figure 5. Furthermore,
the presence of a slip parameter reduces the velocity of the
fluid due to augmenting skin friction coefficient occuring
which allows more fluid to past the disk. So, the combination
of magnetic and slip parameters has greater impact on veloc-
ity profile of the spherical-shaped Cu, Al2O3, and TiO2
nanoparticles and pure water (H2O) as compared to no-
slip condition. Figure 6 displays the variation in radial veloc-
ity f ðηÞ of the spherical-shaped Cu, Al2O3, and TiO2 nano-
particles via φ for the case of no-slip condition. The greater
φ augments the radial velocity of the spherical-shaped Cu
nanoparticle, while it reduces the radial velocity of the
spherical-shaped Al2O3 and TiO2 nanoparticles. Physically,
the greater φ opposes the motion of the spherical-shaped
Al2O3 and TiO2 nanoparticles which augments the bound-
ary layer thickness and slows down the velocity profile, while
this impact is opposite for Cu nanoparticle. For the case of
slip condition, the greater φ augments the radial velocity of
the spherical-shaped Cu nanoparticle, while it reduces the
velocity profile for Al2O3 and TiO2 nanoparticles next to
the surface of the rotating disk and moderates the increasing
effect as η⟶∞ (see Figure 7). Figures 8 and 9 portray the
variation in gðηÞ of the spherical-shaped Cu, Al2O3, and
TiO2 nanoparticles via a magnetic parameter for the case
of no-slip and slip conditions, respectively. For both no-

Table 3: Numerical values of the skin friction via magnetic parameter for different water-based spherical-shaped nanoparticles and pure
water.

Magnetic parameter Values No-slip condition Cu Al2O3 TiO2 Pure water

M

1.0
α = 0:0

0.97455 0.95901 0.97484 0.94904

2.0 1.33931 1.30845 1.34076 1.30432

3.0 1.70971 1.66292 1.71184 1.66454

Slip condition

1.0
α = 0:5

0.69813 0.69369 0.69740 0.82172

2.0 0.78174 0.77365 0.78104 0.57823

3.0 0.86542 0.85368 0.86475 0.33615

Table 4: Numerical values of the skin friction via spherical-shaped nanoparticle volume fraction for different water-based nanoparticles.

Nanoparticles volume fraction Values No-slip condition Cu Al2O3 TiO2

φ

0.1
α = 0:0

0.97455 0.95901 0.97484

0.2 1.00105 0.96960 1.00142

0.3 1.02854 0.98086 1.02879

Slip condition

0.1
α = 0:5

0.69813 0.69369 0.69740

0.2 0.71727 0.70832 0.71578

0.3 0.73702 0.72352 0.73397

Table 5: Numerical values of the local Nusselt number via the Biot
number and spherical-shaped nanoparticle volume fraction for
different water-based nanoparticles and pure water.

Parameters Values Cu Al2O3 TiO2 Pure water

Bi
0.1 0.08433 0.08449 0.08504 0.08787

0.2 0.15021 0.15050 0.15146 0.15648

0.3 0.20882 0.20321 0.20450 0.21124

φ

0.1 0.16124 0.15782 0.14667 —

0.2 0.29520 0.28292 0.24451 —

0.3 0.54998 0.51512 0.41199 —

Table 6: Analytical and numerical solutions for f ðηÞ.
η HAM Shooting Absolute error

0.0 1:277200 × 10−17 0.048458 0.048458

0.5 0.079926 0.157846 0.077921

1.0 0.092998 0.199663 0.106666

1.5 0.083715 0.203372 0.119657

2.0 0.068544 0.186409 0.117866

2.5 0.053523 0.159724 0.106202

3.0 0.040535 0.129866 0.089330

3.5 0.029738 0.100012 0.070274

4.0 0.020472 0.070470 0.049998

4.5 0.011394 0.038415 0.027021

5.0 8:673620 × 10−19 -0.004014 0.004014
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slip and slip conditions, similar impacts are found here as
seen in Figures 4 and 5. However, the impact of slip condi-
tion is greater for f ðηÞ as compared to gðηÞ. Figure 10 shows
the variation in velocity profile gðηÞ of the spherical-shaped
Cu, Al2O3, and TiO2 nanoparticles via φ for the case when
α = 0:0. The greater φ augments the velocity profile gðηÞ of
the spherical-shaped Cu, Al2O3, and TiO2 nanoparticles.
Physically, the greater φ opposes the motion of the
spherical-shaped Cu, Al2O3, and TiO2 nanoparticles which
augments the boundary layer thickness and slows down
the velocity profile. For the case when α = 0:5, the greater
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Figure 5: Variation in f ðηÞ via M when α = 0:5.
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Figure 4: Variation in f ðηÞ via M when α = 0:0.

Table 7: Analytical and numerical solutions for gðηÞ.
η HAM Shooting Absolute error

0.0 1.000000 0.918880 0.081120

0.5 0.622565 0.730215 0.107650

1.0 0.401548 0.588991 0.187443

1.5 0.263876 0.474205 0.210329

2.0 0.175398 0.377681 0.202282

2.5 0.117530 0.296126 0.178596

3.0 0.079169 0.227544 0.148375

3.5 0.053275 0.169557 0.116282

4.0 0.035073 0.118368 0.083296

4.5 0.020845 0.067299 0.046454

5.0 0.006738 0.003395 0.003343

Table 8: Analytical and numerical solutions for θðηÞ.
η HAM Shooting Absolute error

0.0 0.520728 0.514973 0.005755

0.5 0.407258 0.303778 0.103477

1.0 0.316987 0.170961 0.146029

1.5 0.248884 0.098508 0.150376

2.0 0.196218 0.059782 0.136436

2.5 0.153566 0.038072 0.115494

3.0 0.117379 0.024878 0.092501

3.5 0.085413 0.016085 0.069328

4.0 0.056215 0.009652 0.046563

4.5 0.028772 0.004487 0.024285

5.0 0.002246 -0.000105 0.002351
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Figure 3: Impact of nanoparticle volume fraction on spherical-
shaped nanoparticles of water-based Cu, Al2O3, and TiO2.
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φ reduces the velocity profile gðηÞ of the spherical-shaped
Cu, Al2O3, and TiO2 nanoparticles (see Figure 11). Addi-
tionally, the reducing impact of φ is greater for α = 0:5 as
compared to α = 0:0. Figure 12 shows the variation in tem-
perature profile θðηÞ of the spherical-shaped Cu, Al2O3,
and TiO2 nanoparticles via φ. The greater φ augments the
temperature profile. Physically, the greater φ upsurges the
thermal conductivity of the Cu, Al2O3, and TiO2 nanoparti-
cles and thermal transfer rate. Therefore, the nanoparticle
which has high thermal conductivity has the dominant
impact on temperature profile and heat transfer rate as

shown in Figure 3 and Table 5. Here, Cu nanoparticle has
greater thermal conductivity than Al2O3 nanoparticle, and
Al2O3 nanoparticle has greater thermal conductivity than
TiO2 nanoparticle. So, the greatest impact of Cu nanoparti-
cle is found here. Figure 13 shows the variation in tempera-
ture profile θðηÞ of the spherical-shaped Cu, Al2O3, and
TiO2 nanoparticles via the thermal Biot number. The greater
Biot number augments the thermal profile θðηÞ of the
spherical-shaped Cu, Al2O3, and TiO2 nanoparticles. Physi-
cally, the heat transfer coefficient caused by the hot fluid is
directly related to the Biot number. Therefore, the greater
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Figure 9: Variation in gðηÞ via M when α = 0:5.
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7Journal of Nanomaterials



Biot number raises the convection and thermal profile sig-
nificantly. Additionally, the spherical-shaped Cu nanoparti-
cle has greater impact on thermal profile as compared to
Al2O3 and TiO2 nanoparticles.

6. Conclusion

In this work, we have examined the water-based spherical-
shaped nanoparticles of copper-water, aluminum oxide-
water, titanium dioxide-water, and pure water past a rotat-
ing disk. Slip and no-slip conditions are considered in order
to examine the variations in radial and tangential velocities
due to the magnetic field, nanoparticle volume fraction,
and thermal Biot number. The final points are mentioned
below:

(a) For α = 0:5, the surface drag force of Cu, Al2O3, and
TiO2 have reduced with the increasing magnetic
parameter, while for α = 0:0, the surface drag force
of the Cu, Al2O3, and TiO2 nanoparticles have aug-
mented with the increasing magnetic parameter.
Additionally, the greater impact of magnetic param-
eter occurs when α = 0:5

(b) The surface drag force and heat transfer rate of
spherical-shaped nanoparticles of Cu, Al2O3, and
TiO2 is augmented via nanoparticle volume fraction

(c) For α = 0:5 and α = 0:0, the radial and tangential
velocities of the spherical-shaped nanoparticles of
Cu, Al2O3, and TiO2 and pure water have aug-
mented via a magnetic parameter. Additionally, the
impact of magnetic field is greater for radial velocity
as compared to tangential velocity

(d) For α = 0:5 and α = 0:0, the tangential velocity of the
spherical-shaped nanoparticle of Cu, Al2O3, and
TiO2 has reduced via nanoparticle volume fraction.
Additionally, the reducing impact of nanoparticle
volume fraction is greater for α = 0:5 as compared
to α = 0:0

(e) The greater nanoparticle volume fraction and ther-
mal Biot number have increased the temperature

profile of the spherical-shaped nanoparticles of Cu,
Al2O3, and TiO2

Nomenclature

B0: Strength of magnetic field
Bi: Thermal Biot number
Cf : Skin friction coefficient
ciði = 1 − 6Þ: Arbitrary constants
cp: Heat capacitance
f0, θ0, g0: Initial guesses
k: Thermal conductivity
L: Wall slip parameter
Lf , Lg, Lθ: Linear operators
M: Magnetic parameter
Nu: Nusselt number
~p: Pressure
Re: Reynolds number
Pr: Prandtl number
~r,ϕ, ~z: Coordinates
~u1, ~u2, ~u3: Velocity components

Greek Letters

Ω: Angular velocity
σ: Electrical conductivity
ρ: Density
μ: Dynamic viscosity
α: Dimensionless wall slip parameter
φ: Volume fraction of the nanoparticles

Subscripts

f : Fluid
nf : Nanofluids
np: Nanoparticles.
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This research work is aimed at scrutinizing the mathematical model for the hybrid nanofluid flow in a converging and diverging
channel. Titanium dioxide and silver are considered solid nanoparticles while blood is considered as a base solvent. The couple
stress fluid model is essentially used to describe the blood flow. The radiation terminology is also included in the energy
equation for the sustainability of drug delivery. The aim is to link the recent study with the applications of drug delivery. It is
well-known from the available literature that the combination of TiO2 with any other metal can vanish more cancer cells than
TiO2 separately. Governing equations are altered into the system of nonlinear coupled equations the similarity variables. The
Homotopy Analysis Method (HAM) analytical approach is applied to obtain the preferred solution. The influence of the
modeled parameters has been calculated and displayed. The confrontation to wall shear stress and hybrid nanofluid flow growth
as the couple stress parameter rises which improves the stability of the base fluid (blood). The percentage (%) increase in the
heat transfer rate with the variation of nanoparticle volume fraction is also calculated numerically and discussed.

1. Introduction

The flow of fluids in converging/diverging channels has par-
ticularly significant applications in science and technology,
such as flows in cavities and channels. The converging/di-
vergent channels also relate to the blood flow in the arteries
and capillaries. The stretching converging and diverging
channels are also very significant to the blood flow due to
the occurrence of stress effects. The researcher has worked
in the same model for other industrial applications. Sheikho-
leslami et al. [1] demonstrated the effect of nanoparticles
considering Jeffery fluid. Turkyilmazoglu [2], Dogonchi
and Ganji [3], Xia et al. [4], and Mishra et al. [5] have con-
sidered the same model for the fluid flow using the concept
of shrinking/stretching in converging/diverging channels.

Nanotechnology has refined and expanded the horizons
of today’s scientific world owing to its unpredicted results
occurring in the field of energy, biotechnology, drugs, and
therapeutics. It has also been demonstrated that stenosis is

a damaging and potentially fatal disease, so researchers
attempted to eliminate the problem using nanotechnology.
Researchers believe that nanotechnology can deliver innova-
tion in treating these kinds of problems since nanoparticles
can pass through tissues and cells. Following that, there is
a noticeable increase in research related to the advanced
progress of nanoparticles in drugs [6–9].

Shahzadi and Bilal [10] pioneered nanoparticles by
revealing their dynamic and abnormal properties. Nadeem
and Ijaz [11] described the use of nanoparticles to transport
blood through a stenosis artery with a permeable wall. Ellahi
et al. [12] reported blood flow to arteries consisting of the
composite when nanoparticles were used. Nadeem and Ijaz
[13] studied the effect of nanoparticles on stenotic artery
hemodynamics and found them to be very helpful in reduc-
ing wall pressure with a shear rate.

There is dispersion of more nanoparticles with different
thermophysical properties from hybrid nanofluids that have
attracted researchers because they are widely used in the
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fields of energy and medicine [14]. The case of bionanotech-
nology, which is a renovation and an open and innovative
horizon in medicine, is one of the most auspicious applica-
tions of hybrid fluids. Numerous studies have demonstrated
the effectiveness of nanoparticles in tumor targeting, therapy,
and diagnosis process. Many studies have shown how effective
nanoparticles are in tumor targeting, diagnosis, and treatment.
It should be noted that nanoparticles have eliminated some of
the shortcomings of traditional chemotherapy [15]. Liu et al.
[16] investigated the use of Pt/TiO2 and Au/TiO2 nanocom-
posites, which are useful for cancer cell treatment. It was
observed that the combination of TiO2 with any other metal
can vanish more cancer cells than TiO2 separately. Silver has
a wide range of biomedical uses due to its exclusive properties.
The product containing silver is usually used for antimicrobial
activity versus a broad spectrum of microorganisms. More-
over, experimental data suggest that Ag nanoparticles are a
more ecological and biocompatible substitute to standard anti-
cancer medicines [17].

Blood, the most important biological fluid, is a liquid
composed of various cell types suspended in a matrix of
aqueous fluid (the plasma). It should be noted that red blood
cells in plasma contribute to rotary motion in the occurrence
of a velocity gradient. Body tissues have an angular gyration
moment as well as an angular orbital moment. As a result,
blood may be assumed a non-Newtonian fluid with a con-
stant density. Stokes’ theory is one of several polar fluid the-
ories that take into consideration [18].

Couple stress fluid applications in biological problems
are gaining popularity, and they are critical from both a the-
oretical and practical standpoint. Blood flow can be con-
trolled with adequate couple stress. The theory of couple
stress is first time introduced by Stokes [19] in the blood
flow and claimed that blood is very reasonably flowing in
the vessels due to the occurrence of the couple stresses.
Devakar and Iyengar [20] suggested using a couple-stress
term to regulate blood flow through the human system. Sim-
ilarly, the idea was further extended by Devakar and Iyengar
using the isothermal conditions and have found the exact
solution. Recently, Saeed et al. [21], Ahmad et al. [22], and
Gul et al. [23, 24] have used the couple stress fluid terminol-
ogy in the hybrid nanofluids for drug transport and medica-
tion. They have also studied the heat transfer enhancement
effect on the blood flow in various geometries.

In the light of the above discussion, the novelty of this
study is highlighted as follows:

(i) According to the best of the author’s knowledge, no
one has tried to investigate the flow through a con-
verging/diverging stretchable/shrinkable channel
with blood as the base fluid and TiO2‐Ag as
nanoparticles

(ii) This article examines a suitable background of cou-
ple stress hybrid nanofluid flow through conver-
ging/diverging stretchable/shrinkable channels

(iii) Heat absorption/omission and thermal radiation
terminologies also strengthen the novelty of the
work

(iv) The system of equations is then analytically solved
by HAM

(v) The statistical analysis is also performed and pre-
sented through bar charts

2. Formulation

Assume the steady, laminar, incompressible, and couple
stress ðTiO2‐AgÞ hybrid nanofluid, while the fluid motion
is caused by the thermal radiation and a source or sink
among the binary contracting/expanding channel, such that
2α is the angle between them. The walls of the channel are
also assumed to be stretchable along the radial direction.

u =
s
r
= uw: ð1Þ

Here, u = uðr, θÞ, s stands for the velocity of the hybrid
nanofluids and extending/contracting phenomena, respec-
tively. The conditions ðα > 0, α < 0Þ are used to show that
the channels are divergent and convergent correspondingly.
The velocity for the fluid motion is the function of both ðr
, θÞ. The couple stress terminology is imposed to the flow
field whereas the other assumptions of [3–5] are used; the
basic constituent dimensional equations of the hybrid nano-
fluid are taken into account.

ρhnf
u
r
+
∂u
∂r

� �
= 0, ð2Þ

ρhnf u
∂u
∂r

� �
+

∂P
∂r

� �
= μhnf

∂
∂r

u
r
+
∂u
∂r

� �
+

1
r2
∂2u
∂θ2

 !
− η0

∂4u
∂r4

,

ð3Þ
∂P
∂θ

− 2μhnf
1
r2
∂u
∂θ

= 0, ð4Þ

ρCp

� �
hnf u

∂T
∂r

� �
= khnf

1
r
∂
∂r

r
∂T
∂r

� �
+

1
r2
∂2T
∂θ2

 !

−
1
r

1
r
∂
∂θ

qθ,rad
� �

+
∂
∂r

rqr,rad
� �� �

:

ð5Þ
The pressure of fluid, electromagnetic field, and radiative

heat flux are presented byP, B0, qr,rad, qθ,rad.
The radiation terms are further written as

qθ,rad =
−16σ∗T0

3

3kf ∗

 !
∂T
∂θ

, ð6Þ

qr,rad =
−16σ∗T0

3

3kf ∗

 !
∂T
∂r

: ð7Þ

Here, knf ∗ and σ∗are the absorption term and Stefan-
Boltzmann constants.
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Putting the values of equation (7) into equation (5), we
have

ρCp

� �
hnf u

∂T
∂r

� �
= khnf +

16σ∗T∞
3

3k∗ f

 !
1
r
∂
∂r

r
∂T
∂r

� �
+

1
r2
∂2T
∂θ2

" #
:

ð8Þ

In the above equations, η0 is the couple stress term; also,
ρhnf , μhnf , ðρCpÞhnf , and khnf represent density, viscosity,
density, and specific heat; the thermal conductivity of the
hybrid nanofluids such that hnf stands for hybrid nanofluid.

2.1. Properties of the Materials. Initially, nanoparticles (tita-
nium) are dispersed in the bloodstream (base fluid) to pro-
duce one (mono-nano fluid). (Silver) is then distributed as
an additional nanoparticle to form the (hybrid nanofluid).
On this occasion, TiO2 represents (titanium dioxide nano-
material) and silver (Ag nanoparticles) and subscript f
describes blood (base fluid). In Tables 1 and 2, ϕ1 and ϕ2
state the volume fraction of TiO2 and Ag nanoparticles,
where ϕ1 = ϕ2 = 0 refers to the base fluid.

2.2. Initial and Boundary Conditions. The auxiliary condi-
tions at boundaries are

u = r−1uc,
∂T
∂θ

= u
∂T
∂r

= 0, atθ⟶ 0, r ≠ 0

u = r−1s = uw, T = r−2Twasθ⟶±α

9=
;: ð9Þ

2.3. Introduction of Nondimensional Variables. In the case of
the radial flow, equation (1) reduced to

F θð Þ = ru r, θð Þ: ð10Þ

The nondimensional transformation is defined as

F ηð Þ = ucð Þ−1F θð Þ,Θ ηð Þ = r2T
� �

T−1
w , η = θα−1: ð11Þ

The use of (10) and (11) and thermophysical properties
alter equations (3)–(5) in the simplified form as

F‴ + 2α Re
ρhnf
ρf

μf

μhnf
FF ′ + 4α2F ′ − 24α2k∗F ′ = 0, ð12Þ

khnf
kf

+ Rd

 !
Θ″ + α2

ρCp

� �
hnf

ρCp

� �
f

2 Pr FΘ + 4 + 4RdΘ
" #

= 0:

ð13Þ

The simplified form of the physical conditions are stated
as

F = 1,Θ′ = F ′ = 0, atη = 0

F = λ,Θ = 1, atη = ±1

)
: ð14Þ

Here, λ = s/uc > 0 is the stretching parameter, λ = s/uc
< 0 is a shrinking parameter, Rd = 16σ∗T3

∞/3kf k
∗
f is radi-

ation parameter, Re = rαuc/υf is the Reynolds number, Pr
= ðμCpÞf /kf is the Prandtl number, and k∗ = η0/μr2 is the

couple stress parameter.

2.4. Drag Force and Heat Transfer Rate. The significant
parameters of curiosity are defined as

u2cρf Cf = μhnf
1
r
∂u
∂θ

� �����
θ=±α

, ð15Þ

Table 2: Various thermophysical properties of TiO2‐Ag are stated as [18].

Viscosity μhnf = μf 1 − ϕ1ð Þ−2:5 1 − ϕ2ð Þ−2:5

Density ρhnf = 1 − ϕ2ð Þ ϕ1ρTiO2
+ 1 − ϕ1ð Þ ρf

n o
+ ϕ2ρTiO2

Specific heat ρCp

� �
hnf = ρCp

� �
f
1 − ϕ2ð Þ 1 − ϕ1ð Þ + ϕ1 ρCp

� �
TiO2

� �
+ ϕ2 ρCp

� �
Ag

� �

Thermal conductivity
khnf = kf kTiO2

+ 2knf + 2ϕ2 knf − kTiO2

� �� �−1 kTiO2
+ 2knf − 2ϕ2 knf − kTiO2

� �� �n o
×

kAg + 2kf − 2ϕ1 kf − kAg
� �� �−1 kAg + 2kf − 2ϕ1 kf − kAg

� �� �n o

Table 1: Properties of TiO2 and blood nanofluid [18].

Viscosity μnf = μf / 1 − ϕ1ð Þ2:5

Density ρnf = ρf 1 − ϕ1ð Þ + ρf ϕ1 ρTiO2

� �n o
Specific heat ρCp

� �
nf
= ρCp

� �
f
1 − ϕ1ð Þ + ϕ1 ρCp

� �
TiO2

� �h i
Thermal conductivity knf = kf kTiO2

+ 2kf + 2ϕ1 kf − kTiO2

� �� �−1 kTiO2
+ 2kf − 2ϕ1 kf − kTiO2

� �� �
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TwNu =
16σ∗T3

∞

3kf k
∗
f

+
khnf
kf

 !
∂T
∂θ

�����
θ=±α

: ð16Þ

The alteration used for equation (16) and the simplified
form is attained as

Cf =
1
Re

μhnf
μf

f ′ ±1ð Þ�� ��,
Nu =

1
α

Rd +
khnf
kf

 !
Θ′ ±1ð Þ

�����
�����:

ð17Þ

3. Solution Methodology

The series solution is one of the valued methods to handle
nonlinear problems. Nonlinear problems usually arise in
the field of science and engineering. HAM is one of the latest
and fast convergence techniques and is frequently used in
the solution of nonlinear and coupled equations. The BVPh
1.0 and BVPh 2.0 are the latest packages of HAM that
enhance the convergence of the proposed problems. These
packages are very helpful in the rapid convergence, and
one can use the BVPh 2.0 package up to the 100th iterations
easily. The idea of HAM was first introduced by Liao [25].
The idea is further improved by the same author by intro-
ducing the new packages [26]. These packages are frequently
used like [27–32].

The feedback problem (12)–(18) was resolved by the
HAM-BVPh 2.0 technique. The estimate of the iterations is
utilized up to the 30th order. The trial solution or initial
solution is required for the HAM solution. The zeroth-
order solution is obtained as

F0 ηð Þ = 1 − η2 1 − λð Þ&Θ0 ηð Þ = 1: ð18Þ

Equations (12)–(14) are set under the planned packaging
and presented as

ƛFp =
1

p + 1
〠
p

k=1
ΦF 〠

l

j=1
F ηð Þ

 !
η=kjp

2
4

3
5
2

,

ƛΘp = 1
p + 1

〠
p

k=1
〠
l

j=1
F ηð Þ

 !
η=kjp

ΦΘ 〠
l

j=1
Θ ηð Þ

 !
η=kjp

2
4

3
5
2

:

ð19Þ

The sum of the two components in the form of square
residual errors is displayed as

ƛTotalp = ƛFp + ƛΘlp: ð20Þ

The numerical results of the converging parameter are
obtained as

0:130021 ≤ hf ≤ −1:203417,

0:120432 ≤ hθ ≤ −0:8992310:
ð21Þ

The range of convergence control parameters is used to
find out the physical and numeric results.

4. Results and Discussion

The flow of the blood-based hybrid nanofluid consisting of
TiO2 andAg has been considered in the converging and
diverging channel. The heat transfer mechanism and medi-
cation are the main purposes of the proposed model. The
main finding of the obtained results is shown physically
and numerically. The geometry of the problem and conver-
gence controlling sketches are demonstrated in Figures 1(a)

Magnetic Field

Source or Sink

Ag+TiO2
Hybrid nanofluid

Stretchable Wall

u(r,θ)

θ

αStretchable Wall

TiO2 Ag

(a)

Er
ro

r

0.10

0.05

0.02

0.01

5 10 15 20 25 30
m

(b)

Figure 1: (a) The geometry of the problem and (b) the HAM method.

Table 3: Numerous thermophysical properties are defined as [18].

Solid material and base fluid cp J/kgKð Þ k W/mKð Þ ρ Kg/m3� �
TiO2 (titanium dioxide) 686.2 8.954 4250

Silver: Ag 235 429 10500

Blood 3594 0.492 1063
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and 1(b). The thermophysical properties of the materials are
presented in Tables 1–3.

Table 4 shows the assessment of the current work with the
available literature and the closed agreement to authenticate
the validation of the problem. The drag force on the upper
and lower walls is calculated for the embedding parameters
and demonstrated in Table 5. The accumulative growth in the
values of the constraints is used to keep the convergent range
of the proposed problem. The drag force rises with the incre-
ment in these parameters (ϕ1, ϕ2, Re, and k

∗) for both nano-
fluids and hybrid nanofluids. The calculated increase shows
that the resistive force is more effective by using the hybrid
nanofluid TiO2 + Ag at both the lower and upper walls of the
channels. Furthermore, the friction force is efficiently working
in the converging channel as compared to the other one.

The heat transfer rate is calculated numerically using the
embedded parameters, and the results are exhibited in
Table 6. The augmentation in the values of the parameters
Rd, ϕ1, and ϕ2 progresses the heat transfer rate ultimately.
The attained results show that the heat transfer rate is more

immediate by using the ðTiO2 + AgÞ hybrid nanofluids. The
heat transfer rate stimulates fluid motion by controlling the
viscous effect. The TiO2 material works as the treatment
material in cancer therapy while the stability in the blood
is controlled through silver. The (%) wise increase in the
heat transfer rate versus the nanoparticle volume fraction
has been calculated and displayed in Table 7. The hybrid
nanofluid improves the heat transfer analysis as compared
to the other traditional fluids.

Figures 1–4 describe the influence of the physical param-
eters ðϕ1, ϕ2, Re, k∗Þ, on the velocity FðηÞ considering both
converging and divergent channels. The parts (a, b) and (c,
d) of each figure show the same effect in 2D and 3D expres-
sions. The parameters ðϕ1, ϕ2Þ decline the fluid motion FðηÞ
for its higher values using the extending/convergent and
contracting/divergent channels as revealed in Figures 2(a)–
2(d). The nanoparticle dispersion in the base fluid enhances
the viscous effect of the base solvent and improves the cohe-
sive forces among the fluid molecules to resist the fluid
motion.

Table 6: Nusselt number Nux versus physical parameters.

Rd ϕ1, ϕ2

−Nu

TiO2&Ag

α > 0

−Nu

TiO2

α < 0

−Nu

TiO2&Ag

α > 0

−Nu

TiO2

α < 0
0.2 0.01 9.41571 9.33102 11.39253 11.29123

0.4 9.47321 9.37321 11.50320 11.32134

0.6 9.53631 9.41241 11.63103 11.53161

0.02 9.44645 9.24609 11.45708 11.38163

0.03 9.65435 9.58479 11.78790 11.67849

Table 4: Comparison between the present work with previous work considering common parameters only.

Re

F″ ±1ð Þ,
α = 50
� �

3½ �

F″ ±1ð Þ
α = 50
� �

4½ �

F″ ±1ð Þ
α = 50
� �

5½ �

F″ ±1ð Þ
α = 50
� �
Present½ �

F″ ±1ð Þ,
α = −50
� �

3½ �

F″ ±1ð Þ
α = −50
� �

4½ �

F″ ±1ð Þ
α = −50
� �

5½ �

F″ ±1ð Þ
α = −50
� �
Present½ �

1 1.86420 1.86431 1.86412 1.86701 0.77420 0.77432 0.77411 0.77703

2 1.88644 1.88652 1.88631 1.88912 0.79531 0.79542 0.79520 0.79821

3 1.90422 1.90434 1.90412 1.907 0.80214 0.80223 0.80205 0.80501

Table 5: Influence of parameter versus −Re Cf .

ϕ1, ϕ2 Re k∗
−Re Cf

α > 0ð Þ
TiO2 + Ag

F ηð Þ
−Re Cf

α < 0ð Þ
TiO2 + Ag

−Re Cf

α < 0ð Þ
TiO2

0.00 0.1 0.1 0.39586 0.37369 1.29495 1.27531

0.01 0.41871 0.40651 1.27122 1.24531

0.01 0.434932 0.413731 1.28712 1.2661

0.2 0.49638 0.47416 1.38542 1.36321

0.4 0.597493 0.575294 1.49615 1.42402

0.2 0.46735 0.44513 1.35621 1.13032

0.4 0.515401 0.504021 1.40487 1.38612
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Figures 3(a)–3(d) show the effect of Re on FðηÞ in the
case of extending/convergence and narrowing/diverging. It
can be witnessed that the increases in Reynolds number
cause an increase in extending/convergent case, which can
be observed from Figures 3(a) and 3(b) while a reverse result
is obtained in the contracting/divergent case because the

growth in Reynolds number causes a decline in the fluid
motion, in this case, that can be seen in Figures 3(c) and
3(d). Figures 3(a)–3(d) show the effect of Re on FðηÞ in
the case of extending/convergence and narrowing/diverging.
It can be witnessed that the increases in Reynolds number
cause an increase in extending/convergent case, which can
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Figure 2: FðηÞ versus ϕ1, ϕ2 in stretching/convergent circumstance with α = −5∘, 5∘.

Table 7: % analysis versus Nux .

ϕ1, ϕ2

−Nu

α > 0ð Þ
TiO2&Agð Þ

% α > 0ð Þ
−Nu

α > 0ð Þ
TiO2

% α > 0ð Þ
−Nu

α < 0ð Þ
TiO2&Ag

%

α < 0ð Þ

−Nu

α < 0ð Þ
TiO2

%

α < 0ð Þ

0.0 9.23445 …… 9.23445 ……. 11.14515 …… 11.14515 …….

0.01 9.41871 1.997 9.33402 0.909 11.39553 2.249 11.30423 1.429

0.02 9.52403 3.138 9.4261 2.078 11.54584 3.598 11.44363 2.68

0.03 9.63442 4.334 9.50511 2.933 11.68721 4.866 11.57623 3.87

0.04 9.74832 5.568 9.61612 4.136 11.80628 5.935 11.68198 4.82
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Figure 3: (a–d) FðηÞ versus Re stretching/convergent circumstance with α = −5∘, 5∘.
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Figure 4: (a–d) FðηÞ versus k∗ in stretching/convergent circumstance with α = −5∘, 5∘.
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be observed from Figures 3(a) and 3(b) while a reverse result
is obtained in the contracting/divergent case because the
growth in Reynolds number causes a decline in the fluid
motion, in this case, that can be seen in Figures 3(c) and
3(d).

Figures 4(a)–4(d) indicate the influence of ðk∗Þ on FðηÞ
in extending/convergent and contracting/divergent cases.
The fluid motion decays as increasing the value of ðk∗Þ, that
is, fluid motion decline with the improvement in the values
of ðk∗Þ.

Figures 5(a)–5(d) and 6(a)–6(d) represent the special
effects of α and ðϕ1, ϕ2Þ temperature distribution ΘðηÞ for
extending/converging and contracting/divergent cases.

The larger values of α augmented the temperature distri-
bution in each case as shown in Figures 5(a)–5(d). The
enlarging values of the parameters ϕ1 and ϕ2 in the specific

domain enhance the temperature distribution and are
revealed in Figures 6(a)–6(d). In each case, the accumulative
growth provides the increasing effect, and this improvement
is more effective using the hybrid nanofluids.

The comparison of the obtained results is compared with
the available literature [3–5] and displayed in Figures 7(a)
and 7(b) considering diverging and converging cases of the
channel. The closed agreement has been achieved while
choosing the common parameter Re. The influence of the
nanoparticle volume fraction versus the skin friction has
been shown in Figures 7(c) and 7(d) for both cases. The aug-
mentation in the values of ϕ1, ϕ2 improves the resistive force
to rise the drag force at the upper and lower walls. The influ-
ence is relatively strong using the hybrid nanofluids.

The percentage increase in the heat transfer rate has
been revealed in Figures 8(a)–8(d). The values of the
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nanoparticle volume fraction are used up to 3% as ðϕ1, ϕ2
= 0:0, 0:01, 0:02, 0:03Þ. The comparative analysis of the
nanofluid and hybrid nanofluid is shown in Figures 8(a)
and 8(c) for the diverging and converging cases of the chan-
nel, while the % analysis has been performed in Figures 8(b)
and 8(d) for the same cases, respectively. The % increase is
more appropriate by using the hybrid nanofluids in both α
> 0 and α < 0.

5. Conclusions

The current article explores the blood flow across a conver-
ging/diverging channel with stretchable/shrinkable walls
with couple stress for the application of drug delivery. The
consequences of the converging/diverging parameter, couple
stress parameter, and solid nanoparticles are incorporated.

To the best of our knowledge and belief, the converging/-
diverging channel including blood as a base fluid does not
exist in the existing literature. Furthermore, the work also
extended using the Ag and TiO2 hybrid nanofluid. Couple
stress terminologies are also used as a novelty in the current
problem.

The key conclusions of the existing study are as follows:

(i) The rising values of solid nanoparticles ϕ1, ϕ2
enhance the energy transmission rate, and the
impact is relatively larger in the case of hybrid
nanofluid

(ii) The velocity field declines with the accumulative
values of the parameters ϕ1, ϕ2, and Re

(iii) The couple stress parameter k∗ has a significant role
in blood flow analysis and declines the hybrid nano-
fluid motion

(iv) TiO2 + Ag hybrid nanofluids have an important role
in the Escherichia coli culture to evaluate their anti-
bacterial strength

(v) The % analysis shows that hybrid nanofluids are
more efficient for heat transfer analysis

(vi) The pH values improve with the increment in heat
transfer. That is why the purpose of the recent study
is to use the TiO2 + Ag hybrid nanofluids for
medication
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Schnakenberg model is known as one of the influential model used in several biological processes. The proposed model is an
autocatalytic reaction in nature that arises in various biological models. In such kind of reactions, the rate of reaction speeds
up as the reaction proceeds. It is because when a product itself acts as a catalyst. In fact, model endows fractional derivatives
that got great advancement in the investigation of mathematical modeling with memory effect. Therefore, in the present paper,
the authors develop a scheme for the solution of fractional order Schnakenberg model. The proposed model describes an auto
chemical reaction with possible oscillatory behavior which may have several applications in biological and biochemical
processes. In this work, the authors generalized the concept of integer order Schnakenberg model to fractional order
Schnakenberg model. We provided the approximate solution for the underlying generalized nonlinear Schnakenberg model in
the sense of Caputo differential operator via Laplace Adomian decomposition method (LADM). Furthermore, we established
the general scheme for the considered model in the form of infinite series by the aforementioned technique. The consequent
results obtained by the proposed technique ensure that LADM is an effective and accurate techniques to handle nonlinear
partial differential equations as compared to the other available numerical techniques. Finally, the obtained numerical solution
is visualized graphically by MATLAB to describe the dynamics of desired solution.

1. Introduction

Since the biological processes are not linear systems by
nature, which happen at various time scales, therefore, sev-
eral complex problems arise as a result of fast or slow
responds with following interventions or treatment. Thus,
to capture an appropriate individual trajectories, the study
underconsideration depends on a sequential sample over in
appropriate time course. Although various classical methods
give a significant insight for the better understanding of a
variety of biological processes, but due to some properties
like localizing, quantifying and pressibility of measuring rev-
olutionized our thoughts and motivated the researchers and

scientists to construct some dynamical methods to tackle
various biological phenomena. Most of dynamical and bio-
logical phenomena that are involved in the study of chemical
theory, fluid dynamics, and mathematical biology have more
importance due to explaining the processes related to real
life. Such phenomena are usually modulated by linear or
nonlinear partial differential equations (PDEs). DEs have
ability to predict about the dynamical phenomena around
the globe and also used to describe the exponential growth
and decay over the time. DEs are having a diverse range of
applications in several field, such as physics, engineering,
and biology. The researchers use the tool of differential
equation, to modulate aforesaid phenomena. Furthermore,
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some useful applications of DEs to modulate the engineering
and chemical phenomena can be found in some recent arti-
cles (see [1–5]). PDEs often model multidimensional
dynamical system, i.e., it can be used to formulate natural
phenomena, such as sound, heat, electrostatics, electrody-
namics, quantum mechanics, and flow of fluid (see [6, 7]).

It is important to note that reaction-diffusion systems
have been used over decades to study the deep insights of
biological systems. More precisely, these models have been
used in several biological, physical, environmental, and
chemical processes of real life. In reaction-diffusion systems,
Brusselator, Lengyel-Epstein, and Schnakenberg models are
the most famous due to its applicability and reliable results.
These models are used for generating patterns for both bio-
logical and chemical systems and so called turning type
models. The Schnakenberg model is one of the well-known
chemical reaction-diffusion model which was introduced
by Schnakenberg in 1979. It is important to note that an auto
chemical reaction having oscillatory behavior is precisely
described by Schnakenberg model with a verity of the bio-
logical and biochemical processes like pattern formations
in skin analysis and embryogenesis. Further in biology, it
also models the spatial distribution of a morphogen. Science
in several biological systems, these types of models involve
auto catalytic reactions which natural arises. Therefore, in
such reactions, the rate of reaction boost with the reaction
proceeds, due to the role of a product acts as catalysts. In
tri-molecular reaction, the reaction under consideration
plays a role of two species models. Such types of reaction
between chemical sources A and B and products Φ and Ψ
are described as:

A⇌Φ, B⟶Ψ, 2Φ +Ψ⟶ 3Φ, ð1Þ

where A and B are two chemical sources and Φ and Ψ are
products. A system of reaction-diffusion equations is
obtained by using law of mass of action, for the concentra-
tions ϕðx, tÞ and ψðx, tÞ of the products Φ and Ψ described
in (1). The derived nondimensional form of the system [8, 9]
is given by

∂ϕ x, tð Þ
∂t

= α − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ +D1
∂2ϕ x, tð Þ

∂x2
,

∂ψ x, tð Þ
∂t

= β − ϕ2 x, tð Þψ x, tð Þ +D2
∂2ψ x, tð Þ

∂x2
,

8>>><
>>>:

ð2Þ

where ϕ = ϕðx, tÞ and ψ = ψðx, tÞ represent the concentration
and α and β are positive arbitrary constants and represent the
concentration of A and B. D1 and D2 are the diffusion coeffi-
cients of the chemicals Φ and Ψ, for detail study (see [8–11]).

In modern era, the researchers paid keen interest to
investigate nonlinear PDEs due to its wide range of applica-
tions in physics, engineering, and modern sciences. In last
two decades, a considerable number of efforts have been
made to investigate field of the fractional order partial differ-
ential equations (FOPDEs) in all aspects, such as theoretical,
numerical, and applications. These equations provide the

hereditary properties and description of memory effect of
different phenomena. Fractional order differential operator
has the advantage of being a nonlocal operator and possesses
greater degree of freedom as compared to conventional dif-
ferential operator. Fractional calculus has got the consider-
ation of researchers, due to its extensive applications in the
aforesaid fields. The mathematical models involving frac-
tional order derivatives are more reliable and great degree
of freedom and accuracy as compared to traditional deriva-
tives. In some situation, a mathematical model involving
integer order derivative does not describe the real situation.
In such circumstances, fractional order derivatives are more
reliable to describe these real word problems, (see [12–19]).
In this regard, the proposed model has been studied by var-
ious researchers from both analytical and numerical points
of view (see [11, 20, 21]).

After the comprehensive literature review, it was found
that mathematical models consist of Caputo fractional order
operators that are more accurate and reliable instead of inte-
ger order model. Keeping the aforementioned applications
of FDEs, the researchers investigated different aspects of
various mathematical models. In this continuation, the
researchers well explored different aspects of mathematical
modeling and published variety of articles (see [2, 22, 23]).
Therefore, the researchers investigated different features of
aforementioned model. An important class of biochemical
model known as Schnakenberg model represents a chemical
process, where sudden fluctuation occurs during the reaction.
The considered model can be well described by Caputo frac-
tional differential operator instead of integer order derivatives.
Therefore, the author used the idea of Caputo fractional order
derivatives to generalize the concept of model (2) into
Caputo fractional order Schnakenberg model given by

∂σϕ x, tð Þ
∂tσ

= α − βϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ +D1
∂2ηϕ x, tð Þ

∂x2η
,

∂σψ x, tð Þ
∂tσ

= γ − ϕ2 x, tð Þψ x, tð Þ +D2
∂2ηψ x, tð Þ

∂x2η
,

0 < σ, η ≤ 1,

8>>>>><
>>>>>:

ð3Þ

subjected to the initial conditions (ICs)

ϕ x, 0ð Þ = h xð Þ,
ψ x, 0ð Þ = g xð Þ:

ð4Þ

We have established the numerical scheme for aforemen-
tioned model with the help of well-known numerical tech-
nique called LADM. The proposed technique consists of
special polynomial known as Adomian polynomial. The spe-
cific class of this polynomial decomposes the nonlinear term
involving in the model in the form of series. With the help of
Adomian polynomial, the nonlinear term is decomposes as

H w x, tð Þð Þ = 〠
∞

m=0
Am, ð5Þ
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where Am’s are called Adomian polynomials introduced by
Adomian and defined as

Am = 1
Γ m + 1ð Þ

dm

dλm
H〠

m

i=0
λiwi x, tð Þ

" #
λ=0

: ð6Þ

The technique of Laplace Adomian decomposition is the
tool to obtain the approximate solution of nonlinear PDEs.
LADM is the combination of two powerful techniques, i.e.,
Adomian decomposition method and Laplace transform.
The main advantage of LADM is that it can provide both
analytic and numerical solution to a class of nonlinear differ-
ential equations (DEs). The considered technique is more
superior as compared to the other available techniques,
because it gives us particular solutions without finding gen-
eral solution for DEs. Furthermore, it does not require prede-
fined size declaration like Runge-Kutta method, possess less
parameters, and requires no discretization and linearization.
In comparison with other analytical techniques, the proposed
technique is an efficient and simple tool to investigate
numerical solution of nonlinear fractional partial differential
equations. The results obtained by this method, ensure the
capability and reliability of the proposed method for nonlin-
ear fractional partial differential equations (for detail, see [16,
24, 25]).

In present paper, the authors have generalized the idea of
integral order Schnakenberg model to fractional order
model in the terms of singular kernal operator. Moreover,
we have developed the scheme for the considered fractional
model via LADM in the form of infinite series. We have
obtained the semianalytical solution for the considered non-
linear model with the help of proposed techniques. The
results obtained by the proposed technique ensure that the
consider technique is very effective and easy to implement.
The numerical simulation is visualized graphically via
MATLAB to explain the dynamical behavior of aforemen-
tioned model.

2. Preliminaries

The concerned section is devoted to the well-known defini-
tions related to fractional calculus and semianalytic tech-
niques, which are helpful in further corresponding in this
work.

Definition 1 (see [25]). The LT of a function gðx, tÞ, defined
∀t≥0, is denoted by Gðx, sÞ =Lfgðx, tÞg and is given as

G x, sð Þ =L g x, tð Þf g =
ð∞
0
e−stg x, tð Þdt, ð7Þ

where “L” is called LT operator or Laplace transforma-
tion and “s” is the transformed variable.

Definition 2 (see [25]). The noninteger order derivative for
the function ψ on the interval ð0,∞Þ × ð0,∞Þ in Caputo

sense is defined such as

cDαψ x, tð Þ = 1
Γ m − αð Þ

ðt
0
t − sð Þm−α−1ψm x, sð Þds,

α ∈ m − 1,mð Þ,m ∈ℕ,
ð8Þ

where m = ½α� + 1, ½α� is the integeral part of α, and α
denotes real number. Now, for α⟶m, the Caputo frac-
tional derivative becomes conventional nth order derivative
of the function.

Particularly for α ∈ ð0, 1Þ,

cDαψ x, tð Þ = 1
Γ m − 1ð Þ

ðt
0

1
t − sð Þα

∂
∂s

ψ x, sð Þds: ð9Þ

Definition 3 (see [25]). The LT of Caputo derivatives is given
by

L cDαψ x, tð Þf g = sαψ x, sð Þ − 〠
m−1

k=0
sα−k−1ψk x, 0ð Þ,

α ∈ m − 1,mð Þ,m ∈N ,
ð10Þ

where m = ½α� + 1 and ½α� denote the nonfractional part
of α.

3. General Scheme for the Solution
Schnakenberg Model

This section is committed to the general scheme for the solu-
tion of fractional order Schnakenberg model via LADM. The
fractional order nondimensional Schnakenberg model is
given by

∂σϕ x, tð Þ
∂tσ

= α − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ +D1
∂2ηϕ x, tð Þ

∂x2η ,

∂σψ x, tð Þ
∂tσ

= β − ϕ2 x, tð Þψ x, tð Þ +D2
∂2ηψ x, tð Þ

∂x2η
,

0 < σ, η ≤ 1,

8>>>>><
>>>>>:

ð11Þ

subjected to ICs:

ϕ x, 0ð Þ = h xð Þ,
ψ x, 0ð Þ = g xð Þ,

ð12Þ

where ϕ = ϕðx, tÞ and ψ = ψðx, tÞ represent the con-
centrations,α and β that are positive arbitrary constants
and D1 and D2 are the diffusion coefficients of the
substances.
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Applying Laplace transform on (11), we have

L
∂σϕ x, tð Þ

∂tσ

� �
=L α − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ +D1

∂2ηϕ x, tð Þ
∂x2η

( )
,

L
∂σψ x, tð Þ

∂tσ

� �
=L β − ϕ2 x, tð Þψ x, tð Þ +D2

∂2ηψ x, tð Þ
∂x2η

( )
:

8>>>>><
>>>>>:

ð13Þ

By using properties of Laplace transform, (13) becomes

Φ x, sð Þ − 1
s
ϕ x, 0ð Þ = 1

sσ
L α − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ +D1

∂2ηϕ x, tð Þ
∂x2η

( )
,

Ψ x, sð Þ − 1
s
ψ x, 0ð Þ = 1

sσ
L β − ϕ2 x, tð Þψ x, tð Þ +D2

∂2ηψ x, tð Þ
∂x2η

( )
:

8>>>>><
>>>>>:

ð14Þ

Now applying inverse Laplace transform on (14) and
using ICs, we get

ϕ x, tð Þ = h xð Þ +L−1 1
sσ
L α − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ +D1

∂2ηϕ x, tð Þ
∂x2η

( )" #
,

ψ x, tð Þ = g xð Þ +L−1 1
sσ
L β − ϕ2 x, tð Þψ x, tð Þ +D2

∂2ηψ x, tð Þ
∂x2η

( )" #
:

8>>>>><
>>>>>:

ð15Þ

The nonlinear term ϕ2ðx, tÞψðx, tÞ presenting in (15) is
decomposed as

ϕ2 x, tð Þψ x, tð Þ = 〠
∞

n=0
Am, ð16Þ

where Am is called Adomian polynomial and defined as

Am = 1
Γ m + 1ð Þ

dm

dλm
〠
m

i=0
λiϕi x, tð Þ

 !2

〠
m

i=0
λiψi x, tð Þ

 !" #
λ=0

:

ð17Þ

For m = 0

A0 = ϕ20 x, tð Þψ0 x, tð Þ: ð18Þ

For m = 1

A1 = ϕ20 x, tð Þψ1 x, tð Þ + 2ϕ0 x, tð Þψ0 x, tð Þϕ1 x, tð Þ: ð19Þ

The assumed solutions ϕðx, tÞ and ψiðx, tÞ are in the
form of

ϕ x, tð Þ = 〠
∞

i=0
ϕi x, tð Þ,

ψ x, tð Þ = 〠
∞

i=0
ψi x, tð Þ:

ð20Þ

Plugging these values in system (15), we have

〠
∞

i=0
ϕi x, tð Þ = h xð Þ +L−1 1

sσ
L α − 〠

∞

i=0
ϕi x, tð Þ + 〠

∞

n=0
An +D1

∂2η

∂x2η
〠
∞

i=0
ϕi x, tð Þ

( )" #
,

〠
∞

i=0
ψi x, tð Þ = g xð Þ +L−1 1

sσ
L β − 〠

∞

n=0
An +D2

∂2η

∂x2η
〠
∞

i=0
ψi x, tð Þ

( )" #
:

8>>>>><
>>>>>:

ð21Þ

Comparing both sides of system (21), we have

ϕ0 x, tð Þ = h xð Þ,
ψ0 x, tð Þ = g xð Þ,

(

ϕ1 x, tð Þ =L−1 1
sσ
L α − ϕ0 x, tð Þ + A0 +D1

∂2η

∂x2η
ϕ0 x, tð Þ

( )" #
,

ψ1 x, tð Þ =L−1 1
sσ
L β − A0 +D2

∂2η

∂x2η
ψ0 x, tð Þ

( )" #
,

8>>>>><
>>>>>:
ϕn x, tð Þ =L−1 1

sσ
L α − ϕn−1 x, tð Þ + An−1 +D1

∂2η

∂x2η
ϕn−1 x, tð Þ

( )" #
,

ψn x, tð Þ =L−1 1
sσ
L β − An−1 +D2

∂2η

∂x2η
ψn−1 x, tð Þ

( )" #
:

8>>>>><
>>>>>:

ð22Þ

In this manner, we obtain the desired solution given by

ϕ x, tð Þ = 〠
∞

i=0
ϕi x, tð Þ,

ψ x, tð Þ = 〠
∞

i=0
ψi x, tð Þ:

8>>>><
>>>>:

ð23Þ

By simple computational work, we get

ϕ0 x, tð Þ = h xð Þ,
ψ0 x, tð Þ = g xð Þ,

(

ϕ1 x, tð Þ = α − ϕ0 x, tð Þ + ϕ20 x, tð Þψ0 x, tð Þ +D1
∂2η

∂x2η
ϕ0 x, tð Þ

 !
tσ

Γ σ + 1ð Þ ,

ψ1 x, tð Þ = β − ϕ20 x, tð Þψ0 x, tð Þ +D2
∂2η

∂x2η
ψ0 x, tð Þ

 !
tσ

Γ σ + 1ð Þ ,

8>>>>><
>>>>>:

ϕ2 x, tð Þ = α
tσ

Γ σ + 1ð Þ − ξ − ϕ20 x, tð Þζ − 2ϕ0 x, tð Þψ0 x, tð Þξ −D1
∂2η

∂x2η
ξ

 !
t2σ

Γ 2σ + 1ð Þ ,

ψ2 x, tð Þ = β
tσ

Γ σ + 1ð Þ − ϕ20 x, tð Þζ + 2ϕ0 x, tð Þψ0 x, tð Þξ −D2
∂2η

∂x2η
ζ

 !
t2σ

Γ 2σ + 1ð Þ ,

8>>>>><
>>>>>:

ð24Þ

where

ξ = α − ϕ0 x, tð Þ + ϕ20 x, tð Þψ0 x, tð Þ +D1
∂2η

∂x2η
ϕ0 x, tð Þ,

ζ = β − ϕ20 x, tð Þψ0 x, tð Þ +D2
∂2η

∂x2η
ψ0 x, tð Þ:

ð25Þ
Thus, the three term solutions are given by
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4. Numerical Discussion

In this section of research work, we provide some numerical
example to illustrate the main work.

Example 1. Let α = β = η = 1 and D1 =D2 = 2, so the pro-
posed model becomes

∂σϕ x, tð Þ
∂tσ

= 1 − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ + 2 ∂2

∂x2
ϕ x, tð Þ,

∂σψ x, tð Þ
∂tσ

= 1 − ϕ2 x, tð Þψ x, tð Þ + 2 ∂2

∂x2
ψ x, tð Þ,

0 < σ,≤1,

8>>>>><
>>>>>:

ð27Þ

subjected to ICs:

ϕ x, 0ð Þ = ex sin x,
ψ x, 0ð Þ = xex:

ð28Þ

Applying Laplace transform to system (27), we get

L
∂σϕ x, tð Þ

∂tσ

� �
=L 1 − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ + 2 ∂

2ϕ x, tð Þ
∂x2

( )
,

L
∂σψ x, tð Þ

∂tσ

� �
=L 1 − ϕ2 x, tð Þψ x, tð Þ + 2 ∂

2ψ x, tð Þ
∂x2

( )
:

8>>>>><
>>>>>:

ð29Þ

By using properties of Laplace transform, system (29)
becomes

Φ x, sð Þ − 1
s
u x, 0ð Þ = 1

sσ
L 1 − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ + 2 ∂

2ϕ x, tð Þ
∂x2

( )
,

Ψ x, sð Þ − 1
s
v x, 0ð Þ = 1

sσ
L 1 − ϕ2 x, tð Þψ x, tð Þ + 2 ∂

2ψ x, tð Þ
∂x2

( )
:

8>>>>><
>>>>>:

ð30Þ

Now applying inverse Laplace transform on (30) and
using ICs, we obtain

ϕ x, tð Þ = ex sin x +L−1 1
sσ
L 1 − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ + 2 ∂

2ϕ x, tð Þ
∂x2

( )" #
,

ψ x, tð Þ = xex +L−1 1
sσ
L 1 − ϕ2 x, tð Þψ x, tð Þ + 2 ∂

2ψ x, tð Þ
∂x2

( )" #
:

8>>>>><
>>>>>:

ð31Þ

The nonlinear term ϕ2ðx, tÞψðx, tÞ involved in (31) is
decomposed by Adomian polynomial

ϕ2 x, tð Þψ x, tð Þ = 〠
∞

n=0
Am: ð32Þ

Plugging these valves in system (31), we have

〠
∞

i=0
ϕi x, tð Þ = ex sin x +L−1 1

sσ
L 1 − 〠

∞

i=0
ϕi x, tð Þ + 〠

∞

m=0
Am + 2 ∂2

∂x2
〠
∞

i=0
ϕi x, tð Þ

( )" #
,

〠
∞

i=0
ψi x, tð Þ = xex +L−1 1

sσ
L 1 − 〠

∞

m=0
Am + 2 ∂2

∂x2
〠
∞

i=0
ψi x, tð Þ

( )" #
:

8>>>>><
>>>>>:

ð33Þ

Comparing both sides of system (33), we have

ϕ0 x, tð Þ = ex sin x,
ψ0 x, tð Þ = xex,

(

ϕ1 x, tð Þ =L−1 1
sσ
L 1 − ϕ0 x, tð Þ + A0 + 2 ∂2

∂x2
ϕ0 x, tð Þ

( )" #
,

ψ1 x, tð Þ =L−1 1
sσ
L 1 − A0 + 2 ∂2

∂x2
ψ0 x, tð Þ

( )" #
,

8>>>>><
>>>>>:
ϕn x, tð Þ =L−1 1

sσ
L 1 − un−1 x, tð Þ + Rn−1 + 2 ∂2

∂x2
ϕn−1 x, tð Þ

( )" #
,

ψn x, tð Þ =L−1 1
sσ
L 1 − Rn−1 + 2 ∂2

∂x2
ψn−1 x, tð Þ

( )" #
:

8>>>>><
>>>>>:

ð34Þ

Assume the solution in the form of

ϕ x, tð Þ = 〠
∞

i=0
ϕi x, tð Þ,

ψ x, tð Þ = 〠
∞

i=0
ψi x, tð Þ:

8>>>><
>>>>:

ð35Þ

By simple computational work, we obtain

ϕ x, tð Þ = h xð Þ + 2α − ϕ0 x, tð Þ + ϕ20 x, tð Þψ0 x, tð Þ +D1
∂2η

∂x2η
ϕ0 x, tð Þ

 !
tσ

Γ σ + 1ð Þ − ξ − ϕ20 x, tð Þζ − 2ϕ0 x, tð Þψ0 x, tð Þξ −D1
∂2η

∂x2η
ξ

 !
t2σ

Γ 2σ + 1ð Þ+⋯

ψ x, tð Þ = g xð Þ + 2β − ϕ20 x, tð Þψ0 x, tð Þ +D2
∂2η

∂x2η
ψ0 x, tð Þ

 !
tσ

Γ σ + 1ð Þ− ϕ20 x, tð Þζ + 2ϕ0 x, tð Þψ0 x, tð Þξ −D2
∂2η

∂x2η
ζ

 !
t2σ

Γ 2σ + 1ð Þ+⋯

8>>>>><
>>>>>:

ð26Þ
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Figure 1: (a, b) Spatial numerical solution of ψðx, tÞ in 3D and 2D, respectively.
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Figure 2: (a, b) Spatial numerical solution of ϕðx, tÞ in 3D and 2D, respectively.

ϕ1 x, tð Þ = 1 − ex sin x + xe3xsin2x + 4ex cos x
� � tσ

Γ σ + 1ð Þ ,

ψ1 x, tð Þ = 1 − xe3xsin2x + 2xex + 4ex
� � tσ

Γ σ + 1ð Þ ,

8>>><
>>>:

ϕ2 x, tð Þ = tσ

Γ σ + 1ð Þ + 17xe3xsin2x − 1 − 15ex sin x − 8ex cos x + e2xsin2x − xe5xsin4x + 16e3xsin2x + 2xe2x sin x + 2x2e5xsin3x + 16xe3x sin 2x + 4xe3x cos 2x + 4e3x sin 2x
� � t2σ

Γ 2σ + 1ð Þ ,

ψ2 x, tð Þ = tσ

Γ σ + 1ð Þ − e2xsin2x − xe5xsin4x + 16e3xsin2x + 2xe2x sin x + 2x2e5xsin3x + 4xe3x cos 2x + 16xe3x sin 2x + 4e3x sin 2x + 18xe3x sin x − 4xex − 16ex
� � t2σ

Γ 2σ + 1ð Þ :

8>>><
>>>:

ð36Þ
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Continuing the similar fashion, the solution terminated
after three terms is given by

For classical order σ = 1, the solution become

The Schnakenberg mathematical model actually repre-
sents the three steps biochemical processes. In such process,
the final product is in the form of ϕðx, tÞ, whose details are
given in the introduction of this work. As evident form,
the graphical solution of Figures 1(a) and 1(b) shows that
the concentration of ψðx, tÞ increases and then decreases.
While from Figures 2(a) and 2(b), the graph shows that
the concentration of ϕðx, tÞ decreases and then increases.
This is a clear evidence that the final product will be
obtained in terms of ϕðx, tÞ with the passage of times which
justify the aforementioned three-step process.

5. Conclusion

The authors have successfully established the numerical
scheme for the generalized fractional order Schnakenberg
biochemical model. In order to obtain the desired results,
we utilized the tools of well-known numerical technique
called Laplace Adomian decomposition method. We have
obtained the semianalytic solution for the nonlinear Schna-
kenberg model in the sense of Caputo differential operator
with the help of proposed method. To elaborate our main
results, we have provided a numerical example to illustrate
our main work. The numerical simulation has been visual-
ized graphically via MATLAB to explain the model’s dynam-
ical behavior.
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The mass and heat transport of Casson nanofluid flow in a channel under the influence of the magnetic field, heat generation,
chemical reaction, ramped concentration, and ramped temperature is studied. Nanoparticles of copper (Cu) are inserted in
sodium alginate (SA) to make nanofluid. The definition of time-fractional Caputo derivative is applied to have the fractional
model. The analytical results of concentration, temperature, velocity, skin friction, Sherwood numbers, and Nusselt numbers
for ramped and isothermal boundary conditions are obtained in the form of summation after applying the Laplace inverse
transform. The effects of the fractional parameter (ξ) and physical parameters are depicted graphically. For higher values of ξ
the velocity, concentration and temperature reduce. The fractional model is a better choice to control velocity, concentration,
and temperature profiles. The energy enhances by increasing volume fraction (ϕ), whereas mass and flow of nanofluid reduce.
The Sherwood and Nusselt numbers for both isothermal and ramped conditions increase by increasing ϕ. Ramped conditions
can control the flow, mass, and heat of the nanofluid.

1. Introduction

Non-Newtonian fluids have attracted several scientists and
researchers due to their industrial applications such as cos-
metics, synthetic lubricants, clay coating, certain oils, paint,
synthetic lubricants, certain oils, biological fluids, pharma-
ceuticals, and drilling muds. The flow features of non-
Newtonian cannot be defined briefly by the Navier-Stokes
equation due to the complex formulation of the problem.
Thus, according to qualities, different models of non-
Newtonian fluids are categorized such as Seely, Bulky, Jeffry,
Eyring-Powell, Oldroyd-B, Burger, Oldroyd-A, Carreau,
Maxwell, and Casson. For the expectancy of flow tendency
of balanced pigment oil, Casson [1] introduced the model
of Casson fluid in 1959. Casson fluid is a shear-thinning
fluid with endless and zero viscosity at zero and infinite
shear, respectively [2]. Tomato sauce, jelly, human blood,
soup, and honey are examples of Casson fluids.

Many researchers and scientists are investigating
nanofluids due to their common uses in industrial and
engineering fields. They have revealed the significant ther-
mal characteristics and ways to boost the thermal con-
ductivity of nanofluids. The addition of nanofluids and
biotechnological apparatus may give proficient applica-
tions in agriculture, pharmaceuticals, and biosensors. Sev-
eral nanomaterials are used in biotechnology, for instance,
nanowires, nanostructures, nanoparticles, and nanofibers.
The significance of microfluidics and nanofluids is unques-
tionable in biomedical devices. MHD nanofluids have mag-
netic and liquid characteristics; it has several applications,
for instance, optical controls, modulators, and adjustable
fiber filters. Magnetic nanoparticles are very significant for
the treatment of cancer in medicine. The researchers are
using nanofluids to improve the efficiency of and thermal
conductivity of conventional fluids [3–6]. Zari et al. [7]
numerically investigated Casson nanofluid flow on an
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inclined plate with double stratification. Ali et al. [8] dis-
cussed the numerical results of Carreau flow of Casson
nanofluid with magnetohydrodynamics. Shafiq et al. [9]
analyzed Casson nanofluid flow on a rotating disk.

Daily life problems frequently have arbitrary wall condi-
tions. It is practical to study such problems in which wall
temperature changes step-wise. Researchers are making a
lot of efforts to investigate such problems. The flow of heat
in fluids demonstrates a vital role in extensive engineering
and industrial procedures, such as nuclear operations, gas
turbines, processes of heating and cooling, scheming of
devices, and supervision of high-tech thermal systems. The
studies of the flow of MHD nanofluid with ramped concen-
tration and temperature conditions in the literature cur-
rently are not discussed analytically in detail due to its
complicated relations. Hayday et al. [10], Schetz [11], and
Malhotra et al. [12] have established the idea of ramped tem-
perature. The most significant use of ramped heat is to raze
cancer cells during thermal therapy. Ramped conditions
help to control the temperature rise caused by natural condi-
tions [13]. The impact of ramped heating on an incompress-
ible visually thin fluid flow above a plate was examined by
Das et al. [14]. Nandkeolyar et al. [15] evaluated and com-
pared MHD natural convection flow and diverse movements
of the plate having uniform velocity, periodic acceleration,
and single acceleration due to ramped and constant bound-
ary conditions. Seth et al. [16–19] investigated mass and heat
transport in the existence of various parameters like chemi-
cal reaction, heat absorption, Darcy’s law, thermal radiation,
porous medium, and Hall current with ramped concentra-
tion and temperature on a vertical plate. Zin et al. [20] ana-
lyzed the effects of ramped temperature, thermal radiation,
and magnetic field on the natural convection Jeffrey fluid
flow.

Narahari [21] investigated the effects of ramped heating
and thermal radiation through a channel. Khalid et al. [22]
compared the ramped and isothermal boundary conditions
of convective nanofluid flow. Mahanthesh et al. [23] evalu-
ated the analytical results of nanofluid flow over a plate in
the existence of heat generation and magnetic field. Jha
and Gambo [24] examined mass and heat transport of tran-
sient free convective flow affected by the Dufour and Soret
effect through a channel with ramped temperature and con-
centration. Arif et al. [25] studied fractionalized Casson fluid
flow on a plate with ramped concentration and temperature.
Anwer et al. [26] discussed MHD Oldroyd-B convective flow
of nanofluid with ramped velocity and ramped temperature.
The MHD Casson nanofluid flow with ramped concentra-
tion and temperature through a channel is not investigated
in literature yet.

The mathematical models described by fractional differ-
ential equations are useful because such models include the
memory effects, therefore offering more information regard-
ing the complex diffusive processes. Also, for some experi-
ments, the adequate fractional model could be chosen that
gives the best agreement between analytical results and those
experimental. Therefore, researchers are using fractional
models instead of classical ones to meet the growing demand
of modern technology. Fractional calculus is very effective in

diffusion, electrochemistry, relaxation processes, and visco-
elasticity. Fractional models help to understand memory
and hereditary properties that were not possible with inte-
gral models. Fractional models are applicable in modern sci-
ences like mathematical biology, applied sciences, physics,
and fractals. Various definitions of fractional derivatives
are available in the literature. Riemann-Liouville defined
Caputo derivative [27] for physical problems like viscoelas-
ticity, electrohysteresis, and damage and fatigue. Riemann-
Liouville [28] used fractional derivatives to solve complex
problems. For example, the nonzero result fractional deriva-
tive of constant.

Motivated by the above literature focus of this work is to
scrutinize the results of chemical reaction, heat generation,
and magnetic force with ramped concentration and temper-
ature unsteady flow of Casson nanofluid. The nanofluid is
prepared by adding nanoparticles of Cu into SA. The analyt-
ical results of velocity, skin friction, temperature, Nusselt
numbers, concentration, and Sherwood numbers for isother-
mal and ramped wall boundary conditions are calculated by
using the Laplace transform. The significant results are illus-
trated graphically and discussed in detail.

2. Mathematical Model

Consider the Casson nanofluid flow through a vertical chan-
nel with heat and mass transport under the effect of mag-
netic force, chemical reaction, and heat generation. The
nanoparticles of Cu are suspended uniformly into SA. Ini-
tially, the walls of the channel and nanofluid are at rest at
fixed temperature fTl and concentration fCl at ~t = 0. At time
~t = 0+, the concentration and temperature of the left wall rise
momentarily to fCl + ðfC0 −fCl Þ~t/et0 and fTl + ðfT0 −fTl Þ~t/et0,
respectively, for 0 <~t < et0; the concentration and temperature
are maintained at C0 and T0 when ~t > et0: The initial concen-
tration fCl and temperature fTl will remain unchanged on
the right wall at ~y = l. A constant magnetic force B0 is applied
perpendicularly on the left wall externally (see Figure 1).

Thermophysical characteristics SA and Cu are assumed
constant and shown in Table 1. The slippage between SA
and Cu is negligible due to thermal equilibrium. The addi-
tion of nanoparticles of Cu in SA makes the fluid thick
and reduces the flow.

By the above assumptions, the governing equations of
unsteady flow are [31, 32]

ρnf
∂~u ~y,~t
� �
∂~t

= μnf 1 + 1
γ

� � ∂2~u ~y,~t
� �
∂~y2

+ g ρβCð Þnf ~C ~y,~t
� �

−fCl

� �
+ g ρβTð Þnf ~T ~y,~t

� �
−fTl

� �
− σnf B0

2~u ~y,~t
� �

,

ð1Þ

ρcp
� �

nf

∂~T ~y,~t
� �
∂~t

= knf
∂2~T ~y,~t

� �
∂~y2

+Q0 ~T ~y,~t
� �

−fTl

� �
, ð2Þ

∂~C ~y,~t
� �
∂~t

=Dnf
∂2~C
∂~y2

− KC
~C ~y,~t
� �

−fCl

� �
, ð3Þ
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with corresponding initial and boundary conditions

~u ~y, 0ð Þ = 0, ð4Þ

~T ~y, 0ð Þ =fTl , ð5Þ

~C ~y, 0ð Þ =fCl , ð6Þ

0 ≤ ~y ≤ l, ð7Þ

~u 0,~t
� �

= 0, ~T 0,~t
� �

=
fTl + fT0 −fTl

� � ~tet0 , 0 <~t ≤ et0,
fT0, ~t > et0,

8><>:
ð8Þ

~C 0,~t
� �

=
fCl + fC0 −fCl

� � ~t
t0
, 0 <~t ≤ et0,

fC0, ~t > et0,
8><>: ð9Þ

~u l,~t
� �

= 0, ð10Þ

~T l,~t
� �

=fTl , ð11Þ

~C l,~t
� �

=fCl : ð12Þ

The expressions of nanofluid are defined by [33, 34].

μnf
μf

= 1
1 − ϕð Þ2:5 ,

ρnf
ρf

= 1 − ϕð Þ + ϕ
ρs
ρf

,

ρcp
� �

nf

ρcp
� �

f

= 1 − ϕð Þ + ϕ
ρcp
� �

s

ρcp
� �

f

,

ρβTð Þnf
ρβTð Þf

= 1 − ϕð Þ + ϕ
ρβTð Þs
ρβTð Þf

,

ρβCð Þnf
ρβCð Þf

= 1 − ϕð Þ + ϕ
ρβCð Þs
ρβCð Þf

,

Dnf = 1 − ϕð ÞDf ,

σnf

σf
= 1 +

3 σs/σf

� �
− 1

� �
ϕ

σs/σf

� �
+ 2

� �
− σs/σf

� �
− 1

� �
ϕ

" #
,

knf
kf

=
ks + 2kf − 2ϕ kf − ks

� �
ks + 2kf + ϕ kf − ks

� �" #
: ð13Þ

Introducing the dimensionless parameters, functions,
and variables,

u = ~u
U0

, ð14Þ

t =
~tet0 ,

et0 = l2

vf
,

y = ~y
l
,

θ =
~T −fTlfT0 −fTl

,

C =
~C −fClfC0 −fCl

,

ψ1 =
1

1 − ϕð Þ2:5
ρf

ρnf
1 + 1

β

� �
,

ψ2 =Gm
βCð Þnf
βCð Þf

,

ψ3 = Gr
βTð Þnf
βTð Þf

,

ψ4 =M
σnf ρf

σf ρnf
,

ψ5 =
1
Pr

knf ρcp
� �

f

kf ρcp
� �

nf

,

ψ6 =Q
ρcp
� �

f

ρcp
� �

nf

,

ψ7 =
1 − ϕ

Sc
,

ψ8 = K = KCl
2

vf
,

Gm =
g βCð Þf C0 − Clð Þd2

U0vf
,

x

g

l

z

y

u

Tl

B0

(0,t)=0

, 0<t≤t0+(T0–Tl)
t

~

~ ~

T0’
~

~
~

t

~

> t0

t0
~~

C0’
~

C
~

t> t0
~~

~~

~

Cl , 0<t≤t0+(C0–Cl)
t~ ~ ~

~
t0

~~
(0,t)=~

T
~(0,t)=~

C
~ ~(l,t)=Cl

~

T
~ ~(l,t)=Tl

~

u
~(l,t)=0~

Figure 1: Flow geometry.
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Gr =
g βTð Þf T0 − Tlð Þd2

U0vf
,

M =
σf B0

2l2

μf
,

Q = Q0l
2

ρcp
� �

f
νf

,

Pr =
ρcp
� �

f
vf

kf
,Sc =

vf
Df

: ð15Þ

By substituting equation (15) to equations (1)–(12), we get

∂u y, tð Þ
∂t

= ψ1
∂2u y, tð Þ

∂y2
+ ψ2C y, tð Þ + ψ3θ y, tð Þ − ψ4u y, tð Þ,

ð16Þ

∂θ y, tð Þ
∂t

= ψ5
∂2θ y, tð Þ

∂y2
+ ψ6θ y, tð Þ, ð17Þ

∂C y, tð Þ
∂t

= ψ7
∂2C y, tð Þ

∂y2
− ψ8C y, tð Þ: ð18Þ

u y, 0ð Þ = 0, θ y, 0ð Þ = 0, C y, 0ð Þ = 0, 0 ≤ y ≤ 1, ð19Þ
u 0, tð Þ = 0,

θ 0, tð Þ = C 0, tð Þ =
t, 0 < t ≤ 1,
1, t > 1,

(
=H tð Þt −H t − 1ð Þ t − 1ð Þ,

ð20Þ
u 1, tð Þ = 0,
θ 1, tð Þ = 0,
C 1, tð Þ = 0:

ð21Þ

The researchers used Caputo time-fractional derivatives of
order ξ to develop fractional models in equations (16)–(18).

Dt
ξu y, tð Þ = ψ1

∂2u y, tð Þ
∂y2

+ ψ2C y, tð Þ + ψ3θ y, tð Þ − ψ4u y, tð Þ,

ð22Þ

Dt
ξθ y, tð Þ = ψ5

∂2θ y, tð Þ
∂y2

+ ψ6θ y, tð Þ, ð23Þ

Dt
ξC y, tð Þ = ψ7

∂2C y, tð Þ
∂y2

− ψ8C y, tð Þ: ð24Þ

Where Dξ
t uðy, tÞ represents the time-fractional Caputo

derivative,

Dξ
t u η, τð Þ =

1
Γ 1 − ξð Þ

ðτ
0
τ −wð Þξ ∂u η,wð Þ

∂w
dw, 0 ≤ ξ < 1 ;

∂u η, τð Þ
∂τ

, ξ = 1:

8>><>>:
ð25Þ

3. Solution of the Problem

3.1. Concentration. Applying Laplace transform (LT) to
equations (24), (20)3, and (21)3 and using (19)3, we obtain

ψ7
∂2�C y, sð Þ

∂y2
− sξ + ψ8

� �
�C y, sð Þ = 0, ð26Þ

�C 0, sð Þ = s−2 1 − e−sð Þ,
�C 1, sð Þ = 0:

ð27Þ

The solution of equation (26) subject to equation (27)
gives

�C y, sð Þ = 1 − e−sð Þ
sinh 1 − yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ + ψ8ð Þ/ψ7

ph i
s2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ + ψ8ð Þ/ψ7

ph i : ð28Þ

This expression can be written as

�C y, sð Þ = 1 − e−sð Þ 1
s2−ξ

+ ψ8
s2

� �
� 〠
∞

k=0

e− 2k+yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ+ψ8ð Þ/ψ7

p

sξ + ψ8
−
e− 2k+2−yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sξ+ψ8ð Þ/ψ7
p

sξ + ψ8

" #
:

ð29Þ

Taking inverse LT of equation (29), we get

C y, tð Þ = C0 y, tð Þ −H t − 1ð ÞC0 y, t − 1ð Þ, ð30Þ

where

C0 y, tð Þ = 〠
∞

k=0

ðt
0

t − pð Þ1−ξ
Γ 2 − ξð Þ + ψ8 t − pð Þ

 !

� g
2k + yffiffiffiffiffi

ψ7
p , ψ8, p

� �
− g

2k + 2 − yffiffiffiffiffi
ψ7

p , ψ8, p
� �� �

dp,

g a, b, pð Þ =
ð∞
0
e−bu erfc a

2 ffiffiffi
u

p
� � 1

p
Φ 0,−ξ,−up−ξ
� �

du: ð31Þ

Table 1: Thermophysical characteristics of Cu and SA [29, 30].

Material ρ (kg/m3) Cp (J/kg·K) k (W/m·K) β × 105 K−1� �
σ Ωmð Þ−1

Sodium alginate C6H9NaO7(SA) 989 4175 0.6376 0.99 5:5 × 10−6

Copper (Cu) 8933 385 401 1.67 59:6 × 106
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3.2. Temperature Distribution. Applying LT to equations
(23), (20)2, and (21)2 and using (19)2, we obtain

ψ5
∂2θ y, sð Þ

∂y2
− sξ − ψ6

� �
θ y, sð Þ = 0, ð32Þ

θ 0, sð Þ = s−2 1 − e−sð Þ,
θ 1, sð Þ = 0:

ð33Þ

The solution of equation (32) subject to equation (33)
gives

�θ y, sð Þ = 1 − e−sð Þ
sinh 1 − yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ − ψ6ð Þ/ψ5

ph i
s2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ − ψ6ð Þ/ψ5

ph i : ð34Þ

This expression can be written as

�θ y, sð Þ = 1 − e−sð Þ 1
s2−ξ

−
ψ6
s2

� �
� 〠
∞

k=0

e− 2k+yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ−ψ6ð Þ/ψ5

p

sξ − ψ6
−
e− 2k+2−yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sξ−ψ6ð Þ/ψ5
p

sξ − ψ6

" #
:

ð35Þ

Taking inverse LT of equation (35), we get

θ y, tð Þ = θ0 y, tð Þ −H t − 1ð Þθ0 y, t − 1ð Þ, ð36Þ

where

θ0 y, tð Þ = 〠
∞

k=0

ðt
0

t − pð Þ1−ξ
Γ 2 − ξð Þ − ψ6 t − pð Þ

 !

� g
2k + yffiffiffiffiffi

ψ5
p ,−ψ6, p

� �
− g

2k + 2 − yffiffiffiffiffi
ψ5

p ,−ψ6, p
� �� �

dp:

ð37Þ

3.3. Velocity Field. Applying LT to equations (22), (20)1, and
(21)1 and using (19)1, we obtain

ψ1
∂2�u y, sð Þ

∂y2
− sξ + ψ4

� �
�u y, sð Þ = −ψ2�C y, sð Þ − ψ3θ y, sð Þ,

ð38Þ

�u 0, sð Þ = 0,
�u 1, sð Þ = 0:

ð39Þ

The solution of equation (38) subject to equation (39) gives

�u y, sð Þ = 1 − e−sð Þ a1
sξ + a2

+ a3
sξ + a4

� � sinh 1 − yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ + ψ4ð Þ/ψ1

ph i
s2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ + ψ4ð Þ/ψ5

ph i
− 1 − e−sð Þ a1

sξ + a2

� � sinh 1 − yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ + ψ8ð Þ/ψ7

ph i
s2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ + ψ8ð Þ/ψ7

ph i
− 1 − e−sð Þ a3

sξ + a4

� � sinh 1 − yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ + ψ6ð Þ/ψ5

ph i
s2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ + ψ6ð Þ/ψ5

ph i :

ð40Þ
This expression can be as

�u y, sð Þ = 1 − e−sð Þ
"

a1 + a3
s2

+ a1 ψ4 − a2ð Þ
s2 sξ + a2
� � + a3 ψ4 − a4ð Þ

s2 sξ + a4
� � !

� 〠
∞

k=0

e− 2k+yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ+ψ4ð Þ/ψ1

p

sξ + ψ4
−
e− 2k+2−yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sξ+ψ4ð Þ/ψ1
p

sξ + ψ4

 !

−
a1
s2

+ a1 ψ8 − a2ð Þ
s2 sξ + a2
� � !

〠
∞

k=0

 
e− 2k+yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sξ+ψ8ð Þ/ψ7
p

sξ + ψ8

−
e− 2k+2−yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sξ+ψ8ð Þ/ψ7
p

sξ + ψ8

!
−

a3
s2

−
a3 ψ6 + a4ð Þ
s2 sξ + a4
� � !

� 〠
∞

k=0

e− 2k+yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ+ψ6ð Þ/ψ5

p

sξ − ψ6
−
e− 2k+2−yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sξ+ψ6ð Þ/ψ5
p

sξ − ψ6

 !#
:

ð41Þ
Taking inverse LT of equation (41), we get

u y, tð Þ = u0 y, tð Þ −H t − 1ð Þu0 y, t − 1ð Þ, ð42Þ
where

u0 y, tð Þ = 〠
∞

k=0

ðt
0

a1 + a3ð Þ t − pð Þ + a1 ψ4 − a2ð Þf1 t − pð Þð

+ a3 ψ4 − a4ð Þf2 t − pð ÞÞ
 
g

2k + yffiffiffiffiffi
ψ1

p , ψ4, p
� �

− g
2k + 2 − yffiffiffiffiffi

ψ1
p , ψ4, p

� �!
dp − 〠

∞

k=0

ðt
0
ða1 t − pð Þ

+ a1 ψ8 − a2ð Þf1 t − pð ÞÞ
 
g

2k + yffiffiffiffiffi
ψ7

p , ψ8, p
� �

− g
2k + 2 − yffiffiffiffiffi

ψ7
p , ψ8, p

� �!
dp − 〠

∞

k=0

ðt
0
ða3 t − pð Þ

− a3 ψ6 + a4ð Þf2 t − pð ÞÞ
 
g

2k + yffiffiffiffiffi
ψ5

p ,−ψ6, p
� �

− g
2k + 2 − yffiffiffiffiffi

ψ5
p ,−ψ6, p

� �!
dp,
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f1 tð Þ =
ðt
0
wξEξ,ξ+1 −a2w

ξ
� �

dw,

f2 tð Þ =
ðt
0
wξEξ,ξ+1 −a4w

ξ
� �

dw:

ð43Þ

3.4. Sherwood Numbers, Skin Friction, and Nusselt Numbers.
Skin friction at y = 0 is defined as

Cf0
= −

μnf
μf

∂u y, tð Þ
∂y

				
y=0

= − 1 − ϕð Þ−2:5L−1 ∂�u y, sð Þ
∂y

				
y=0

( )
:

ð44Þ

By using equation (41) in equation (44),

Cf0
= 1

1 − ϕð Þ2:5 u1 tð Þ −H t − 1ð Þu1 t − 1ð Þ½ �, ð45Þ

where

u1 tð Þ = 1ffiffiffiffiffi
ψ1

p 〠
∞

k=0

ðt
0

a1 + a3ð Þ t − pð Þ + a1 ψ4 − a2ð Þf1 t − pð Þð

+ a3 ψ4 − a4ð Þf2 t − pð ÞÞ
 
L′ kffiffiffiffiffi

ψ1
p , ψ4, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ1

p , ψ4, p
� �!

dp −
1ffiffiffiffiffi
ψ7

p 〠
∞

k=0

ðt
0
ða1 t − pð Þ

+ a1 ψ8 − a2ð Þf1 t − pð ÞÞ
 
L′ kffiffiffiffiffi

ψ7
p , ψ8, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ7

p , ψ8, p
� �!

dp −
1ffiffiffiffiffi
ψ5

p 〠
∞

k=0

ðt
0
ða3 t − pð Þ

− a3 ψ6 + a4ð Þf2 t − pð ÞÞ
 
L′ kffiffiffiffiffi

ψ5
p ,−ψ6, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ5

p ,−ψ6, p
� �!

dp,

L′ a, b, pð Þ =
ð∞
0

1ffiffiffiffiffiffiffi
πw

p e− a2/4wð Þ+bwð Þ 1
p
Φ 0,−ξ,−wp−ξ
� �

dw:

ð46Þ

Skin friction at y = 1 is defined as

Cf1
= −

μnf
μf

∂u y, tð Þ
∂y

				
y=1

= − 1 − ϕð Þ−2:5L−1 ∂�u y, sð Þ
∂y

				
y=1

( )
:

ð47Þ

By using equation (41) in equation (47),

Cf1
= 1

1 − ϕð Þ2:5 u2 tð Þ −H t − 1ð Þu2 t − 1ð Þ½ �, ð48Þ

where

u2 tð Þ = 1ffiffiffiffiffi
ψ1

p 〠
∞

k=0

ðt
0

a1 + a3ð Þ t − pð Þ + a1 ψ4 − a2ð Þf1 t − pð Þð

+ a3 ψ4 − a4ð Þf2 t − pð ÞÞ 2L′ 2k + 1ffiffiffiffiffi
ψ1

p , ψ4, p
� �� �

dp

−
1ffiffiffiffiffi
ψ7

p 〠
∞

k=0

ðt
0
a1 t − pð Þ + a1 ψ8 − a2ð Þf1 t − pð Þð Þ

� 2L′ 2k + 1ffiffiffiffiffi
ψ7

p , ψ8, p
� �� �

dp −
1ffiffiffiffiffi
ψ5

p

� 〠
∞

k=0

ðt
0
a3 t − pð Þ − a3 ψ6 + a4ð Þf2 t − pð Þð Þ

� 2L′ 2k + 1ffiffiffiffiffi
ψ5

p ,−ψ6, p
� �� �

dp:

ð49Þ

Nusselt numbers

Nu0 = −
knf
kf

∂θ
∂y

				
y=0

= −
knf
kf

L−1
∂θ
∂y

					
y=0

8<:
9=;: ð50Þ

By using equation (36) in equation (50),

Nu0 =
knf
kf

θ1 tð Þ −H t − 1ð Þθ1 t − 1ð Þ½ �, ð51Þ

where

θ1 tð Þ = 1ffiffiffiffiffi
ψ5

p 〠
∞

k=0

ðt
0

t − pð Þ1−ξ
Γ 2 − ξð Þ − ψ6 t − pð Þ

 !

� L′ kffiffiffiffiffi
ψ5

p ,−ψ6, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ5

p ,−ψ6, p
� �� �

dp,

ð52Þ

Nu1 = −
knf
kf

∂θ
∂y

				
y=1

= −
knf
kf

L−1
∂θ
∂y

					
y=1

8<:
9=;, ð53Þ

By using equation (36) in equation (53),

Nu1 =
knf
kf

θ2 tð Þ −H t − 1ð Þθ2 t − 1ð Þ½ �, ð54Þ
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where

θ2 tð Þ = 1ffiffiffiffiffi
ψ5

p 〠
∞

k=0

ðt
0

t − pð Þ1−ξ
Γ 2 − ξð Þ − ψ6 t − pð Þ

 !

� 2L′ 2k + 1ffiffiffiffiffi
ψ5

p ,−ψ6, p
� �� �

dp,
ð55Þ

Sh0 = −
Dnf

Df

∂C
∂y

				
y=0

= −
Dnf

Df
L−1

∂�C
∂y

				
y=0

( )
: ð56Þ

By using equation (29) in equation (56),

Sh0 =
Dnf

Df
C1 tð Þ −H t − 1ð ÞC1 t − 1ð Þ½ �, ð57Þ

where

C1 tð Þ = 1ffiffiffiffiffi
ψ7

p 〠
∞

k=0

ðt
0

t − pð Þ1−ξ
Γ 2 − ξð Þ + ψ8 t − pð Þ

 !

� L′ kffiffiffiffiffi
ψ7

p , ψ8, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ7

p , ψ8, p
� �� �

dp,

ð58Þ

Sh1 = −
Dnf

Df

∂C
∂y

				
y=1

= −
Dnf

Df
L−1

∂�C
∂y

				
y=1

( )
: ð59Þ

By using equation (29) in equation (59),

Sh1 =
Dnf

Df
C2 tð Þ −H t − 1ð ÞC2 t − 1ð Þ½ �, ð60Þ

where

C2 tð Þ = 1ffiffiffiffiffi
ψ7

p 〠
∞

k=0

ðt
0

t − pð Þ1−ξ
Γ 2 − ξð Þ + ψ8 t − pð Þ

 !

� 2L′ 2k + 1ffiffiffiffiffi
ψ7

p , ψ8, p
� �� �

dp:

ð61Þ

3.5. Solution of Problem for Isothermal Conditions. For isother-
mal conditions equation (20) becomes θð0, tÞ = Cð0, tÞ = 1, u
ð0, tÞ = 0:

C y, tð Þ = 〠
∞

k=0

ðt
0

t − pð Þ−ξ
Γ 1 − ξð Þ + ψ8

 ! 
g

2k + yffiffiffiffiffi
ψ7

p , ψ8, p
� �

− g
2k + 2 − yffiffiffiffiffi

ψ7
p , ψ8, p

� �!
dp,

θ y, tð Þ = 〠
∞

k=0

ðt
0

t − pð Þ−ξ
Γ 1 − ξð Þ − ψ6

 ! 
g

2k + yffiffiffiffiffi
ψ5

p ,−ψ6, p
� �

− g
2k + 2 − yffiffiffiffiffi

ψ5
p ,−ψ6, p

� �!
dp,

u y, tð Þ = 〠
∞

k=0

ðt
0

a1 + a3ð Þ + a1 ψ4 − a2ð Þ
a2

f3 t − pð Þ
�

+ a3 ψ4 − a4ð Þ
a4

f4 t − pð Þ
� 

g
2k + yffiffiffiffiffi

ψ1
p , ψ4, p

� �

− g
2k + 2 − yffiffiffiffiffi

ψ1
p , ψ4, p

� �!
dp

− 〠
∞

k=0

ðt
0

a1 +
a1 ψ8 − a2ð Þ

a2
f3 t − pð Þ

� �
� g

2k + yffiffiffiffiffi
ψ7

p , ψ8, p
� �

− g
2k + 2 − yffiffiffiffiffi

ψ7
p , ψ8, p

� �� �
dp

− 〠
∞

k=0

ðt
0

a3 −
a3 ψ6 + a4ð Þ

a4
f4 t − pð Þ

� �
� g

2k + yffiffiffiffiffi
ψ5

p ,−ψ6, p
� �

− g
2k + 2 − yffiffiffiffiffi

ψ5
p ,−ψ6, p

� �� �
dp,

ð62Þ

where

f3 tð Þ = a2t
ξEξ,ξ+1 −a2w

ξ
� �

,

f3 tð Þ = a4t
ξEξ,ξ+1 −a4w

ξ
� �

:

ð63Þ

3.6. Sherwood Numbers, Skin Friction, and Nusselt Numbers
(for Isothermal). Skin friction at y = 0 is defined as

Cf0
= 1

1 − ϕð Þ2:5 ffiffiffiffiffi
ψ1

p 〠
∞

k=0

ðt
0

a1 + a3ð Þ + a1 ψ4 − a2ð Þ
a2

f3 t − pð Þ
�

+ a3 ψ4 − a4ð Þ
a4

f4 t − pð Þ
� 

L′ kffiffiffiffiffi
ψ1

p , ψ4, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ1

p , ψ4, p
� �!

dp −
1

1 − ϕð Þ2:5 ffiffiffiffiffi
ψ7

p

� 〠
∞

k=0

ðt
0

a1 +
a1 ψ8 − a2ð Þ

a2
f3 t − pð Þ

� �
� L′ kffiffiffiffiffi

ψ7
p , ψ8, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ7

p , ψ8, p
� �� �

dp

−
1

1 − ϕð Þ2:5 ffiffiffiffiffi
ψ5

p 〠
∞

k=0

ðt
0

a3 −
a3 ψ6 + a4ð Þ

a4
f4 t − pð Þ

� �
� L′ kffiffiffiffiffi

ψ5
p ,−ψ6, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ5

p ,−ψ6, p
� �� �

dp:

ð64Þ
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Figure 2: Variation of concentration.
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Figure 3: Variation of temperature.
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Figure 4: Continued.
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Figure 4: Continued.
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Skin friction at y = 1 is defined as

Cf1
= 1

1 − ϕð Þ2:5 ffiffiffiffiffi
ψ1

p 〠
∞

k=0

ðt
0

 
a1 + a3ð Þ + a1 ψ4 − a2ð Þ

a2
f3 t − pð Þ

+ a3 ψ4 − a4ð Þ
a4

f4 t − pð Þ
!

2L′ 2k + 1ffiffiffiffiffi
ψ1

p , ψ4, p
� �� �

dp

−
1

1 − ϕð Þ2:5 ffiffiffiffiffi
ψ7

p 〠
∞

k=0

ðt
0

a1 +
a1 ψ8 − a2ð Þ

a2
f3 t − pð Þ

� �
� 2L′ 2k + 1ffiffiffiffiffi

ψ7
p , ψ8, p

� �� �
dp −

1
1 − ϕð Þ2:5 ffiffiffiffiffi

ψ5
p

� 〠
∞

k=0

ðt
0

a3 −
a3 ψ6 + a4ð Þ

a4
f4 t − pð Þ

� �
� 2L′ 2k + 1ffiffiffiffiffi

ψ5
p ,−ψ6, p

� �� �
dp:

ð65Þ

Nusselt numbers

Nu0 =
1ffiffiffiffiffi
ψ5

p knf
kf

〠
∞

k=0

ðt
0

t − pð Þ−ξ
Γ 1 − ξð Þ − ψ6

 !

� L′ kffiffiffiffiffi
ψ5

p ,−ψ6, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ5

p ,−ψ6, p
� �� �

dp,

Nu1 =
1ffiffiffiffiffi
ψ5

p knf
kf

〠
∞

k=0

ðt
0

t − pð Þ−ξ
Γ 1 − ξð Þ − ψ6

 !

� 2L′ 2k + 1ffiffiffiffiffi
ψ5

p ,−ψ6, p
� �� �

dp:

ð66Þ

Sherwood numbers

Sh0 =
1 − ϕffiffiffiffiffi
ψ7

p 〠
∞

k=0

ðt
0

t − pð Þ−ξ
Γ 1 − ξð Þ + ψ8

 !

� L′ kffiffiffiffiffi
ψ7

p , ψ8, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ7

p , ψ8, p
� �� �

dp,

Sh1 =
1 − ϕffiffiffiffiffi
ψ7

p 〠
∞

k=0

ðt
0

t − pð Þ−ξ
Γ 1 − ξð Þ + ψ8

 !
2L′ 2k + 1ffiffiffiffiffi

ψ7
p , ψ8, p

� �� �
dp:

ð67Þ

4. Graphical Results and Discussions

In this section, the influences of dimensionless parameters
on fluid flow are discussed. The impact of ramped tempera-
ture, ramped concentration and volume fraction, and frac-
tional and physical parameters on Casson nanofluid in a
channel is analyzed.

For comparison, the graphs of nondimensional concen-
tration, temperature, and velocity profiles corresponding to
Casson parameter ðγÞ, magnetic parameter ðMÞ, nanoparti-
cle volume parameter ðϕÞ, Grashof numbers (Gr and Gr),
Schmidt number ðScÞ, Prandtl number ðPrÞ, heat generation
ðQÞ, chemical reaction ðKÞ, and fractional parameters ðξÞ
are shown in Figures 2–4. In the entire comparison all
Casson parameter, γ = 2:5, ϕ = 0:04, ξ = 0:5, t = 0:8, Pr =
6:2, Gm = 3:6, Gr = 3:5, Q = 0:2, M = 1:5, and K = 0:5 are
fixed except the deviation in the respective figures.

Figures 2(a), 3(a), and 4(a) show the influence of ξ on
concentration, temperature, and velocity fields. Velocity,
concentration, and temperature obtained with derivatives
are the better choice to have controlled results. The concen-
tration, temperature, and velocity profiles reduce for higher
values of ξ with ramped boundary conditions. Figures 2(b),
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Figure 4: Variation of velocity.
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3(b), and 4(b) depict the influence of ϕ on concentration,
temperature, and velocity profiles. From Figures 2(b) and
4(b), it is noticed that the concentration and velocity of
nanofluid decreases for higher values of ϕ. The increasing
values of ϕ enhance the thickness and dynamic viscosity
that reduce concentration and velocity of the nanofluid.
Figure 3(b) illustrates that the temperature field of nano-
fluid increases due to the collision of nanoparticles for
greater values of volume fraction. Also, the temperature
increases due to the higher thermal conductivity of Cu
nanoparticles.

Figures 2(c) and 4(i) demonstrate that the rise in Sc is
similar to a poor solute diffusion which lets shallower disper-
sion of solute outcome. Consequently, the concentration and
velocity reduce. Thus, the larger of Sc reduces the thickness

of the boundary layer. Figures 2(d) and 4(g) indicate that
the concentration and velocity fields reduce rapidly as K
increases. The solute molecules increase under the influence
of chemical reaction parameter.

Figures 3(c) and 4(g) show the impact of Pr on temper-
ature and velocity. The higher values of Pr increase the vis-
cosity of the nanofluid and reduce the heat transport rate
of the nanofluid that reduces velocity and temperature.
Figures 3(d) and 4(h) illustrate that by increasing Q > 0,
the heat is discharged due to which temperature and velocity
increase.

Figure 4(c) demonstrates the impact of the Casson
parameter on velocity. The flow increases by increasing γ.
Figure 4(d) reflects the influence of magnetic parameter
(M) on the velocity field. An increase in M reduces the
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Figure 5: Comparison for velocity, temperature, and concentration fields with isothermal and ramped conditions.

13Journal of Nanomaterials



thickness of the flow boundary and decreases the velocity.
Figures 4(e) and 4(f) show that the velocity increases for
increasing Grashof numbers (Gr and Gm). Grashof numbers
indicate the relative significance of viscous force to buoyancy
force. The viscous effect in velocity reduces by large Grashof
numbers.

Figure 5 illustrates the comparison of velocity, concen-
tration, and temperature with constant and ramped bound-
ary conditions. It established that ramped velocity,
concentration, and temperature are lower than acquired by
isothermal conditions. Thus, the ramped boundary condi-
tions are more stable.

Figure 6 shows the variations in Nusstle and Sherwood
numbers on both plates with ramped and isothermal condi-
tions. The Sherwood numbers decrease and Nusselt num-
bers increase by increasing volume fraction.

Figure 7 illustrates the comparison of present results
with existing results of Ramzan et al. [31]. It is concluded
that in the absence of ϕ, porosity and Dufour effects the
results are identical.

5. Conclusions

An unsteady Casson nanofluid flow within a channel with
ramped concentration and temperature is investigated. Fur-
thermore, chemical reaction, heat generation, and magnetic
effects are considered. The problem is generalized by Caputo
time-fractional derivative, and Laplace transform is used to
find analytical results of ramped and isothermal boundary
conditions. In this work, SA is considered as a base fluid
containing the nanoparticles of Cu. The significant results
for velocity, concentration, temperature, Nusselt numbers,
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and Sherwood numbers are graphically underlined and dis-
cussed in detail.

The major points of this work are as follows:

(i) Velocity, concentration, and temperature are lesser
for ramped boundary conditions than isothermal

(ii) Ramped wall velocity is increasing for greater
values of γ, Gr, Gm, and Q and decreasing for
higher values of ξ, ϕ, M, Pr, Sc, and K

(iii) Ramped wall temperature is decreasing for higher
values of ξ and Pr and decreasing for growing
values of ϕ and Q

(iv) Ramped wall concentration is decreasing for increas-
ing values of ξ, ϕ, Sc, and K

(v) Sherwood and Nusselt numbers both are increasing
function of ϕ for both isothermal and ramped
conditions

(vi) Velocity, concentration, and temperature obtained
with ordinary derivatives are higher than that
obtained by fractional derivatives. Thus, the fractional
derivative is a better choice to have controlled results

(vii) Ramped boundary conditions are useful to manage
velocity, concentration, and temperature profiles
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Figure 7: Comparison of results.
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Appendix
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Γ ξð Þ :

ðA1Þ

Nomenclature

~uð~y,~tÞ: Velocity (m s-1)
~Cð~y,~tÞ: Concentration (kgm-3)
~Tð~y,~tÞ: Temperature (K)
Q0: Heat generation coefficient (W m-3 K-1)
k: Thermal conductivity (W m-1 K-1)
g: Gravitational acceleration (m s-2)
Q: Dimensionless heat generation
D: Mass diffusivity (m2 s-1)
R: Chemical reaction coefficient (s-1)
Gm: Mass Grashof number
cp: Specific heat (J kg-1 K-1)
K : Dimensionless chemical reaction
Gr: Thermal Grashof number
Sc: Schmidt number
Pr: Prandtl number
Cf : Skin friction
Sh: Sherwood number
Nu: Nusselt number.

Greek Symbols

γ: Casson parameter
ρ: Density (kg m-3)
βC : Mass volumetric coefficient (m3 kg-1)
ν: Kinematic viscosity (m2 s-1)
βT : Thermal expansion coefficient (K-1)
θ: Dimensionless temperature
μ: Dynamic viscosity (kg m-1 s-1)
ϕ: Nanoparticle volume fraction
σ: Electric conductivity (Ωm)-1.

Subscript

nf : Fluid
nf : Nanofluid
s: Solid particles.
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