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In the last several decades, the model-based diagnosis of discrete-event systems (DESs) has increasingly become an active research
topic in both control engineering and artificial intelligence. However, in contrast with the widely applied minimal diagnosis of
static systems, in most approaches to the diagnosis of DESs, all possible candidate diagnoses are computed, including nonminimal
candidates, which may cause intractable complexity when the number of nonminimal diagnoses is very large. According to the
principle of parsimony and the principle of joint-probability distribution, generally, the minimal diagnosis of DESs is preferable to
a nonminimal diagnosis. To generate more likely diagnoses, the notion of the minimal diagnosis of DESs is presented, which is
supported by a minimal diagnoser for the generation of minimal diagnoses. Moreover, to either strongly or weakly decide whether
a minimal set of faulty events has definitely occurred or not, two notions of minimal diagnosability are proposed. Necessary and
sufficient conditions for determining the minimal diagnosability of DESs are proven. .e relationships between the two types of
minimal diagnosability and the classical diagnosability are analysed in depth.

1. Introduction

In recent years, several disasters, including the nuclear leakage
that occurred in Fukushima (Japan) in 2011 and the blackout
that occurred in nearly the entire country of India in 2012,
have greatly threatened the safety of society and even the lives
of many people. To prevent such disasters, determining faulty
events/components is a very important topic. To this end,
model-based fault diagnosis techniques may be very effective.

Nonlinear science is a new interdisciplinary subject
which studies the common problems proposed by nonlinear
interaction widely existing in various disciplines, especially
in complex networks [1–4], system control [5–7], secure
communication [8–10], chaotic systems [11], random
number generators [12, 13], discrete-event systems (DESs)
[14], and other fields. .e creative work on the diagnosis/
diagnosability of DESs, presented in [15, 16], with the
originally proposed concept of a diagnoser, model-based
diagnosis, and diagnosability have attracted more and more

attention, as indicated by the large number of methods and
techniques proposed in the literature, including [17–26].
Because of the intractable complexity of reasoning of the
global DES model and the corresponding centralized
diagnoser, decentralized approaches were proposed in
[27–29]. More recently, fuzzy diagnoser/diagnosability
[30, 31] or the stochastic diagnoser/diagnosability/prog-
nosability [32–35] has been studied, with fuzzy or stochastic
information being injected into an automaton that models a
DES. In addition to diagnoser-based approaches for the
diagnosis of DESs, a history-based approach [36, 37] and a
consistency-based approach [38] to the diagnosis of DESs
have also been presented.

However, as far as we know, one of the current main
problems is that, in most approaches to diagnosing DESs, all
possible candidate diagnoses are derived, even if many
candidates are proper supersets of some other candidates. In
other words, nonminimal (redundant) diagnoses are
generated.
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In this paper, we extend the idea of a minimal diagnosis,
first presented in [39], via additional theoretical analyses,
formal proofs, examples, and comparisons with related
work.

Example 1. Among candidate diagnoses (sets of possible
faulty events) f1 , f2, f3 , f1, f2, f3 , f1, f3, f4 , and
f2, f3, f4 , only {f1} and f2, f3  are minimal according to
the set-inclusion relationship, as all other candidates contain
f1  or f2, f3  and include additional faults (f2 and/or f3
and/or f4). Minimal diagnosis differs from minimal-car-
dinality diagnosis. In our example, the only minimal-car-
dinality diagnosis is f1 . In this paper, we focus on minimal
diagnosis rather than minimal-cardinality diagnosis. In
addition, in our example, even if we cannot definitely know
whether f4 has occurred or not, we know that minimal
diagnoses {f1} and {f2, f3} are generally more probable
than others.

In theory, all possible fault sets need to be diagnosed.
However, considering a scenario like Example 1, although
there are a large number of possible candidate diagnoses that
can explain the current observation sequence, there may
exist set-inclusion relationships among some of them.

.e two principles of parsimony and joint-probability
distribution, which are briefly described as follows:

(i) .e principle of parsimony: also called “Occam’s
razor” [40], parsimony is a principle of succinctness
often adopted in logic and problem solving which
states that, among competing hypotheses, the hy-
pothesis with the fewest assumptions should be
selected. .e principle of parsimony has also been
introduced for the minimal diagnosis of static sys-
tems [41].

(ii) .e principle of joint-probability distribution: a
widely used assumption in the literature, in this
paper, a joint-probability distribution means that
each fault is independent of one another and that the
prior probability of each fault is equal.

Minimal diagnoses (based on the set-inclusion rela-
tionship (for instance, we assume that there are three
candidate diagnoses f1 , f1, f2 , and f2, f3, f4, f5 .
.en, f1  and f2, f3, f4, f5  are minimal diagnoses, even
if f2, f3, f4, f5  has a bigger cardinality than f1, f2  but
without a set-inclusion relationship between them.)) are
more likely than the corresponding nonminimal ones. As a
result, just like the minimal diagnosis of static systems
[41, 42], determining only the minimal diagnoses of DESs is
bound to reduce the complexity, as additional nonminimal
diagnoses are not considered.

.e benefit of a minimal diagnosis is related to both
cognition and computation. Cognition is relevant to the
human who is responsible for the monitoring of the DES.
Consider, for instance, the operator in the control room of a
power network, who is responsible for the correct behaviour
of the network. When a misbehaviour occurs, such as a short
circuit on a transmission line, several actions can be trig-
gered by the protection system to isolate the shorted line,

e.g., opening breakers and reconfiguring the power load to
avoid a blackout. If the reaction of the protection system is
abnormal, a possibly large number of alarms and messages
will be generated. Since the operator is expected to activate
specific recovery actions, it is essential that the (possibly
overwhelming) stream of information generated by the
system, namely, the observation, be interpreted correctly
under stringent time constraints. .is is why automated
diagnosis becomes a key factor in supporting the operator in
performing his/her critical job. To this end, the diagnosis
engine may generate diagnosis information in a relatively
short amount of time. Specifically, a set of candidate diag-
noses are presented to the operator, who is expected to make
critical decisions regarding the safety of the involved pop-
ulation. However, if the number of candidates is large, the
operator may be confused about which diagnoses should
deserve more attention. Choosing minimal diagnoses is a
good heuristic, as they are more probable and, as such, more
worthy of attention.

Computation involves the efficient generation of can-
didate diagnoses. Since a key factor in real applications of
automated diagnosis is the time response, that is, the delay
between the occurrence of a faulty event and the generation
of candidate diagnoses, it is of paramount importance that
the diagnosis engine is not only effective but also efficient.
Being free of the burden of nonminimal candidates, minimal
diagnosis allows the diagnosis engine to be more efficient
compared with nonminimal diagnosis with respect to both
processing speed and memory space.

In summary, the main contribution of the paper is that
the theoretical concepts of minimal diagnosis and minimal
diagnosability of DESs are proposed, and meanwhile, the
minimal diagnosis of DESs is not a purely academic exercise;
it may drive attention to the actual cause of a misbehaviour
effectively (cognition) and efficiently (computation).

.e rest of the paper is organized as follows. .e ter-
minology and preliminary concepts related to the model-
based diagnosis of DESs are given in Section 2. Several novel
concepts, including minimal diagnosis, minimal diagnoser,
and minimal diagnosability of DESs, are presented in Sec-
tion 3. Related work is discussed in Section 4. Conclusions
and future work are presented in Section 5.

2. Background

In this section, the classical notions of the diagnosis,
diagnoser, and diagnosability of DESs [16] are recalled.

2.1. Classical Diagnosis of DESs. A DES is a deterministic
finite state machine (FSM), namely, G� (Q, Σ, T, q0), where

Q is the set of states.
Σ is the set of events, including two disjoint sets of
observable events (Σo) and unobservable events (Σuo);
f � f1, f2, . . . , fm (for the sake of simplicity, the
classification (types) of faults in [16] is disregarded in
this paper), with f ⊆uo, is the set of faulty events to
be inferred, while (Σuo − Σf) is the set of events that are
both unobservable and nonfaulty.

2 Complexity



T⊆Q × Σ × Q is the set of transitions, where a tran-
sition from state q to state q′, when event e is activated
on state q, is equivalently denoted by (q, e, q′) ∈ T,
q⟶e

q′, or T(q, e) � q′.
q0 ∈ Q denotes the initial state of the system.

.e behaviour of G consists of all possible traces gen-
erated from q0 to some state inG, which form a prefix-closed
language L(G), abbreviated as L, with L⊆Σ∗ (Σ∗ is the set of
all possible strings composed of events in Σ, including the
empty string ε). For simplicity, we assume that language L is
live, that is,

For each state q ∈ Q, there exists at least one event
σ ∈ Σ such that q⟶σ q′ holds, where q′ ∈ Q (with q′
being nonnecessarily different from q).

In addition, similar to [16], we assume that there does
not exist any cycle of unobservable events, that is,

For any cycle q1⟶
σ1

q2⟶
σ2

· · · qk− 1⟶
σk− 1

qk⟶
σk

q1
(k≥ 1), qi ∈ Q, and σi ∈ Σ (i ∈ [1 · · · k]), there exists at
least one event σj (j ∈ [1 · · · k]) such that σj ∈ Σo.

Example 2. Outlined in Figure 1(a) is the diagrammatic
representation of a DES model G, where Σo � {α, β, c, θ, ρ},
Σf � f1, f2 , and Σuo � σuo1, σuo2 ∪Σf.

We denote the empty trace as ε and extend one transition
event to a string of transition events as follows:

q⟶ε q always holds
For s ∈ Σ∗ and σ ∈ Σ, q⟶s σ q′ holds whenever
q⟶s

q″ and q″ ⟶σ q′ hold for q″ ∈ Q

Denoting a transition in which the entered state
is missing, q⟶s

indicates that, for s ∈Σ∗, there exists at
least one state q′ ∈ Q such that q⟶s

q′ holds.
.e notation L/s represents the postlanguage of L after

string s ∈ L, that is, L/s � t | t ∈ Σ∗, st ∈ L{ }.
Two types of projection are given: PrjΣo (on observation)

and PΣf (on faults). Assuming that σ ∈ Σ and s ∈ Σ∗,
PrjΣo:Σ

∗ ⟶ Σ∗o represents how a trace is projected onto a
sequence of observable events:

PrjΣo(sσ) � PrjΣo(s)PrjΣo(σ). (1)

Conversely, Prj− 1Σo (so) � s | s ∈ L, PrjΣo(s) � so  denotes
the set of traces whose projection equals so (note here that
Prj− 1Σo (PrjΣo(so)) may not equal so).

PΣf: Σ
∗ ⟶ 2Σf denotes how a (possibly empty) trace

s ∈ Σ∗ is mapped onto a set of faults:

PΣf(s) � fi fi

 ∈ Σf, fi ∈ s . (2)

Example 3. Let s � af1bcf2, f1, f2 ⊆Σf , and a, b, c{ }⊆Σo.
We have PrjΣo(s) � abc and PΣf(s) � {f1, f2}.

Let se denote the last event of a nonempty trace s ∈ Σ+,
where Σ+ � Σ∗ − ε{ }, and F⊆Σf. .en, SF � s | s ∈ L,{

PΣf(s) � F, se ∈ F} denotes the set of all traces ending with
one fault of F and containing all the faulty events of F.

We use L(G, q) to denote all traces in G starting from
state q. Let Lo(G, q) � s | s ∈ L(G, q), s � uσ, u ∈ Σ∗uo,

σ ∈ Σo} denote all traces starting from state q up to the first
observable event and Lσ(G, q) � {s | s ∈ Lo(G, q), se � σ}
denote all traces starting from q up to the first observable
event σ.

Based on G � (Q,Σ, T, q0), an FSM Go � (Qo, Σo, To, q0)
(in general, nondeterministic (a nondeterministic FSM is a
state in G which may reach more than one state via the same
transition event. Accordingly, in Figure 1(b), state 1 can
reach four different states (2, 7, 14, and 18) via the same
observation α)) is defined as follows:

Qo � q0 ∪ q′ | q⟶σ q′ ∈ T, σ ∈ Σo} denotes both q0
and all observable states.
To ⊆Qo × Σo × Qo denotes the set of transitions, defined
as follows:

q
o
, σ, q

o′
  ∈ T

o
, iff T q

o
, s(  � q

o′
, s ∈ Lσ G, q

o
( . (3)

As such, L(Go) � t | t � PrjΣo(s), s ∈ L .

Example 4. With reference to Example 2, Figure 1(b)
presents a diagrammatic representation of Go, with G be-
ing displayed in Figure 1(a).

Based on the abovementioned notions, the notion of the
diagnosis of a DES is given in Definition 1.

Definition 1. Let G � (Q,Σ, T, q0) be a DES, L be the
corresponding language of G, and obs ∈Σ∗o be the current
observation sequence for G. A subset F⊆Σf is called a
candidate diagnosis (or just a diagnosis) of a DES for ob-
servation sequence obs (written as F⇝ obs) iff there is a
string of events s ∈ L with se ∈ Σo such that PΣf(s) �

F∧PrjΣo(s) � obs.
In other words, a diagnosis of a DES is a set of faulty

events (unlike the diagnosis of static systems (e.g., [41, 42]),
where a diagnosis is defined as a set of faulty components.) in
a trace whose mapping onto observable events equals only
the current observation sequence obs. Note that the con-
dition se ∈Σo must be satisfied in the definition, as we
generally use the currently received observation sequences
immediately after the DES fails to work properly to infer a set
of faults to explain observation obs (this is also a funda-
mental principle of finding the diagnosis of DESs).

Example 5. With reference to Example 2, for the DES G
displayed in Figure 1(a), if we get the current observation
sequence obs � αβθ, then all candidate diagnoses are ∅,
f1 , and f1, f2 , with αβθ, f1αβθ, and f1αβf2θ being the
corresponding traces of events, respectively.

2.2. Classical Diagnoser for DESs. To generate candidate
diagnoses, the diagnoser-based approach introduced in [16]
is used.

Let Δ� 2Σf ∪ A{ } be all possible fault labels, with each label
being a set of faulty events.N is used as an alias for the empty
fault set (to indicate a normal state). A is interpreted as

Complexity 3



“ambiguous” (that is, we cannot be sure that some faults
have definitely occurred).

Starting from Go � (Qo,Σo, To, q0), the classical diag-
noser Gd for G is a deterministic FSM:

Gd � qd,Σo, Td, q
0
d , (4)

where

qd ⊆ 2(Qo×Δ) is the set of states.
q0d � (q0, N)  (since the fault label associated with q0 is
N, G is assumed to be normal at the initial state.) Any
state qd ∈ qd is reachable from q0d via transitions in Td,
written as qd � {(qo

1, l1), . . ., (qo
n, ln)}, where qo

i ∈ Qo and
li ∈ Δ (that is, li is in the form of eitherN or a nonempty
subset of Σf ∪ A{ } ). In subsequent set-theoretic oper-
ations in the minimal diagnoser, we replace N with the
empty set ∅.

.e range function R: qd × Σo⟶ qd is defined as
follows:

R qd, σ(  � ∪
qo,l( )∈qd

∪
s∈Lσ G,qo( )

T q
o
, s( , LP q

o
, l, s( (  ⎛⎝ ⎞⎠,

(5)

where LP: Qo × Δ × Σ∗ ⟶ Δ denotes the fault label
propagation function. Given qo ∈ Qo, l ∈ Δ, and s ∈ Lo(G,

qo), fault label l is propagated by LP over string s from qo in
the following way:

LP q
o
, l, s(  � fi fi

 ∈ l∨fi ∈ s . (6)

.en, the label correction function LC: qd⟶ qd is
defined as follows:

LC qd(  � q
o
, l(  q

o
, l( 

 ∈ qd, and∄ q
o
, l′(  ∈ qd with l′ ≠ l ∪ q

o
, A{ }∪ li1 ∩ · · · ∩ lik   | q

o
, li1 , . . . , q

o
, lik 

∈ qd, lv ≠ lw, v, w ∈ i1, . . . , ik , v≠w, k≥ 2.
(7)

.e label correction function LC and the label A can be
explained as follows. When the system moves along trace s

and transitions from some state into a state qo with at least
two different fault labels, we cannot be sure that some faults
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Figure 1: A DES and its related variant diagnosers: (a) DES model G. (b) Nondeterministic FSM Go for G. (c) Classical diagnoser Gd for G.
(d) Revised diagnoser Gd for G. (e) Minimal diagnoser Gm for G.
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have definitely occurred; therefore, we use label A to refer to
this scenario.

.e transition function Td: qd × Σo⟶ qd is defined as
follows:

q
2
d � Td q

1
d, σ ⟺ q

2
d � LC R q

1
d, σ  . (8)

In other words, assuming that the current state in
diagnoser Gd is q1d, while the next observable event is σ, we
generate the new state q2d of Gd in the following way:

(1) For each (qo, l) ∈ q1d, compute the set S(qo, σ) of
reachable states of G from qo using observation σ:

S(qo, σ) � T(qo, uσ) | u ∈ Σ∗uo, and σ ∈ Σo (note
here that S(qo, σ) is a finite set of observable
states, as we have made an assumption (in
Section 2.1) that there does not exist any cycle of
unobservable events [16]).

(2) Given qo′ ∈ S(qo, σ) with T(qo, uσ) � qo′ , propagate
label l associated with qo to label l′ associated with qo′

according to the following rules:

(a) If l�N and s contains no faulty events, then label
l′ is kept as N.

(b) If l� {A} and s contains no faulty events, then
label l′ is kept as {A}.

(c) If l� {A} ∪ Fwith F⊆Σf and s contains no faulty
events, then label l′ is updated to F.

(d) If l�N or {A} and s contains a set F of faulty
events, then label l′ is updated to F.

(e) If either l� F or A{ }∪F with F⊆Σf and s
contains a set F′ of faulty events, then label l′ is
updated to F∪F′(in cases (c), (d), and (e) above,
we do not propagate label A from one state to the
next. As noted in [16], while this leads to a re-
duction in the state space of the diagnoser, no
information necessary for either determining the
diagnosability properties of a language or for
implementing diagnostics is lost).

(3) Let q2d be the set of all pairs (qo′ l′) generated by (1)

and (2) above for each (qo, l) ∈ q1d. Replace all (q
o′ , l′),

(qo′ , l″)∈ q2d (l′ ≠ l″) with (qo′ , {A} ∪ l′ ∪ l″)..at is, if
the same state qo′ appears more than once in q2d with
different labels, then associate all the common faults
with qo′ as well as the ambiguous label A with qo′ .

Example 6. With reference to Example 2 and Example 4,
Figure 1(c) presents the classical diagnoser Gd relevant to
DESG displayed in Figure 1(a) (where pairs (q, l) are written
as ql, while “{}” is omitted for each nonempty fault label l for
simplicity). According to Gd in Figure 1(c), we can easily
obtain the definite diagnosis {f1}, for a given observation
sequence αβθcc, online by synchronizing diagnoser Gd with
the sequence.

2.3. Classical Diagnosability of DESs. To decide whether or
not a faulty event in a DES has definitely occurred, the
classical notion of diagnosability presented by [16] is

rephrased in Definition 2 (Definition 2 is slightly different
from the original definition of diagnosability in [16]. Spe-
cifically, “∃ni(ni ∈ N)” is placed after “∀s(s ∈ L, se � fi)“,
while ni in [16] becomes the greatest ni for all s in Definition 2.
.is adjustment, while not affecting the virtual meaning of
diagnosability, allows us to provide a formalization that is
more consistent with the notions of minimal diagnosability
introduced below).

Definition 2. A prefix-closed and live language L is said to
be diagnosable iff, for any fault fi ∈ Σf, we have

∀s s ∈ L, se � fi( ∃ni ni ∈ N( ,

∀t t ∈ L/s, te ∈ Σo( ,

‖t‖≥ ni⟹D( ,

(9)

where the diagnosability condition D is defined as follows:

ω ∈ Prj− 1Σo PrjΣo(st) ⟹fi ∈ ω. (10)

In other words, if a DES G is diagnosable, then any faulty
event fi of G will definitely be detected after its occurrence,
provided that the observation sequence after fi is long
enough.

Example 7. From Definition 2, we know that DES G in
Figure 1(a) is not diagnosable, since for observation se-
quences αρk, k ∈ N, we cannot decide whether fault f2 has
definitely occurred or not.

3. Minimal Diagnosis of DESs

In this section, in a way similar to the minimal diagnosis of
static systems [41, 42], a notion of the “minimal diagnosis” of
DESs is proposed. .en, the related “minimal diagnoser” for
DESs is presented to generate all minimal diagnoses. Finally,
the relevant “minimal diagnosability” is put forward and
compared with classical diagnosability.

3.1. Minimal Diagnosis of DESs. Based on Definition 1 and
Example 5, for a given observation sequence, there are three
possible candidate diagnoses. Generally, given a DES G with
language L, there is usually more than one string in L, with
each string having a projection on the set of observable
events equal to the current observation sequence obs. Hence,
there may be more than one candidate diagnosis set
according to the different strings. However, as noted above,
minimal diagnoses are very valuable. For example, for a
batch of new products from a factory, the qualification rate is
usually very high (generally required to be more than 95%).
.e probability of a product with a fault is very low (less than
5%). According to the principles of joint probability dis-
tribution (usually, in the literature, it is assumed that faults
are independent of one another and have equal probability
of occurrence), the probability of a product with two ormore
faults is significantly lower.

To obtain more likely candidates and to reduce the space
complexity (with less space to store diagnoses with fewer
faults), we provide a definition below to formalize the
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concept of the minimal diagnosis of DESs based on set-
inclusion relationship.

Let F1 and F2 be two candidate diagnoses for an ob-
servation sequence obs, namely, (F1⇝ obs)∧ (F2⇝ obs).
.e following notation is defined:

F1 ≼F2 if F1 ⊆F2

F1 ≺F2ss if F1 ⊂ F2

F1 ≺≻F2 if (F1 ⊈F2)∧ (F2 ⊈F1)

Definition 3. Let G � (Q,Σ, T, q0) be a DES, obs be a rel-
evant observation sequence, and F be a candidate diagnosis
for obs. Candidate F is called a minimal diagnosis of G for
obs, also written as F⇝minobs, if there is no other candidate
diagnosis F′ for obs such that F′ ≺F. .e family of all
minimal candidate diagnoses for obs is F | F⇝minobs .

In other words, if a fault set F is a minimal diagnosis ofG,
then none of its proper subsets is a diagnosis. Furthermore,
according to the principle of joint-probability distribution, a
minimal diagnosis (with fewer number of faults) is more
probable than the corresponding nonminimal diagnosis
(with additional faults). As a result, some faulty events may
not appear in the minimal diagnosis, although they can also
be used to explain the current observation sequence. .e
following example explicitly verifies this conclusion.

Example 8. With reference to Example 5, for the DES G
displayed in Figure 1(a), when the current observation se-
quence is obs � αβθ, we find that all the possible candidate
diagnoses are ∅ (or N), f1 , and f1, f2 . .en, we get the
minimal diagnosis N, i.e., the system is probably working
normally. Although two fault sets f1  and f1, f2  can also
be used to explain the current observation sequence, they are
not minimal diagnoses.

3.2.MinimalDiagnoser forDESs. In this section, we propose
a type of minimal diagnoser based on a revised diagnoser.

3.2.1. Revised Diagnoser. In order to properly and briefly
define the concept of a minimal diagnoser, we first introduce
a revised diagnoser Gd based on the classical notion of
diagnoser Gd presented in [16].

Starting from Go � (Qo,Σo, To, q0), a revised diagnoser
Gd for G is a deterministic FSM:

G
d

� Q
d
,Σo, T

d
, q

d
0 , (11)

where

Qd ⊆ 2(Qo×Δ) is the set of states.
qd
0 � (q0, N) . Any state Qd ∈ Qd is reachable from qd

0
via transitions in Td, written as Qd � {(qo

1, l1), . . ., (qo
n,

ln)}, where qoi ∈Qo and li ∈Δ (that is, li is in the form of
either N or a nonempty subset of Σf ).
.e transition function Td: Qd × Σo⟶ Qd is defined
as follows:

T
d

Q
d
, σ  � ∪

qo,l( )∈Qd

∪
s∈Lσ G,qo( )

T q
o
, s( , LP q

o
, l, s( (  ⎛⎝ ⎞⎠.

(12)

In other words, assume that qd
1 is the current state in the

revised diagnoser Gd and that σ is the next observable event.
.e new state qd

2 of Gd is generated in the following way (the
revised diagnoser can also be computed by performing a
parallel composition between G and the label automaton Al,
as suggested in the book by Cassandras and Lafortune [14],
where Al is an automaton whose initial state is N, whose
remaining (2p− 1) states are nonempty subsets of
{f1, f2, . . . , fp}, with p being the number of faulty events,
and whose transition events are f1, f2, . . . , fp when
appropriate):

(1) For each (qo, l) ∈ qd
1 , compute the set S(qo, σ) of

reachable states ofG from qo over observable event σ:

S q
o
, σ(  � T q

o
, uσ( 

 u ∈ Σ∗uo, and σ ∈ Σo . (13)

(2) Given qo′ ∈ S(qo, σ) with T(qo, uσ) � qo′ , propagate
fault label l related to qo to fault label l′ related to qo′

as follows: l′ � l∪ fi | fi ∈ u .
(3) Let qd

2 be the set of all pairs (q
o′ , l′), generated by the

above steps (1) and (2), for each (qo, l) ∈ qd
1 .

According to the definitions of Gd and Gd, we can find
that for each state in Gd, there is a corresponding state in
Gd; the contrary, however, is not always the case. In ad-
dition, an important difference between Gd and Gd is that
the symbol A is not introduced in Gd. Hence, we can retain
more relevant fault information (for obtaining the minimal
diagnosis). For example, if one state Qd ∈ Gd is {(qi, fi),
(qj, fj)}, then the two minimal diagnoses {fi} and {fj} are
both kept, that is, clearer fault information is provided
compared with Gd. In fact, the fault information in Gd is
denoted only as A in this situation, and the necessary fault
information is missing (e.g., states {(18, A{ })} and {(15,
A{ })} in Figure 1(c)). Additionally, some relevant fault
information is again missing for all possible diagnoses,
according to rules (c), (d), and (e) when propagating fault
label l, including A, into l′ because the ambiguous symbol A
is omitted (see Section 2.2 and the transition from state {(5,
f1 ), (10, {A, f1})} to state {(10, {f1})} in Figure 1(c)). In
contrast, all possible fault information is preserved in the
revised diagnoser Gd.

Example 9. With reference to Example 2 and Example 4,
Figure 1(d) presents the revised diagnoser Gd relevant to the
DES G displayed in Figure 1(a) (similar to Example 6, each
pair (q, l) is written as ql, while, for the sake of simplicity,
“{}” is omitted for each nonempty fault label l).

Notice how all possible fault information is maintained
in Gd, which can be conveniently exploited by a minimal
diagnoser for the minimization of fault sets.
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3.2.2. Minimal Diagnoser. To efficiently generate all mini-
mal diagnoses of a DES online, we propose a novel notion of
minimal diagnoser, which can be generated offline.

Definition 4. Given a DES G� (Q, Σ, T, q0), the related
Go � (Qo,Σo, To, q0), and the revised diagnoser Gd � (Qd, Σo,
Td, qd

0), a minimal diagnoser for G is an FSM:

G
m

� Q
m

,Σo, T
m

, q
m
0( , (14)

where

Qm ⊆ 2(Qo×Δ) is the set of states.
qm
0 � (q0, N) . Any state qm ∈ Qm is reachable from qm

0
via transitions in Tm, written as qm � {(qo

1, l1), . . ., (qon,
ln)}, where qo

i ∈Qo and li ∈Δ (that is, li is in the form of
either N or a nonempty subset of Σf ).
Tm: Qm × Σo⟶ Qm is the transition function.

More specifically, Tm and Qm are generated as follows:

(1) For each qd
i ∈ Qd, there exists a corresponding

minimized state qm
i ∈ Qm, obtained as follows: ini-

tially, qm
i � qd

i ; then, for each (qo, l) ∈ qd
i , any other

(qo′ , l′) ∈ qd
i with l≺ l′ will be removed from qm

i (in
particular, state qo′ may equal qo). In other words, all
the pairs labelled with nonminimal fault labels will be
dropped.

(2) For each transition (qd
i ⟶

σ
q

d
j ) ∈ T

d (where σ ∈ Σo
and qd

i , qd
j ∈ Qd), there is a corresponding transition

(qm
i ⟶

σ
q

m
j ) ∈ T

m (where qm
i , qm

j ∈ Qm).
(3) All states and transitions in Gm are generated by the

abovementioned steps (1) and (2).
(4) Trim operation: if any two minimal states share not

only the same contents but also the same transitions
from them (to the same states), they will be seen as
the same state and be merged into one state. Oth-
erwise, they will not be merged even if they have the
same contents.

From the definition of minimal diagnoser, any state in
the revised Gd is transformed into a state in the minimal
diagnoserGm, though generally with the same or fewer labels
(there may be several different states in Gd that have been
transformed into one state in Gm).

In other words, theminimal diagnoserGm, with the same
number of states and the same isomorphic transition
structure as those of the classical diagnoser Gd, is a deter-
ministic (and trim) FSM, where each state is generally
smaller than the corresponding state in Gd (although the
space complexity of Gm is still exponential regarding the
number of states of the systemmodel, since only theminimal
fault labels are retained, less space is required. Although, for
simplicity, the theoretical definition of minimal diagnoser is
based on that of the revised diagnoser Gd, we would actually
like to consider some algorithms that generate a minimal
diagnoser based only on the DES G in some special situa-
tions, without the need to generate Gd again. .is is an
interesting topic that should be analysed in future research).

Remark 1. Based on the definition of a “minimal diag-
noser,” it seems that some nonminimal diagnoses will be lost
as well as the diagnosis completeness of the requirement in
model-based diagnosis. As a matter of fact, the property of
minimal-diagnosis completeness is indeed preserved by the
minimal diagnoser, that is, most probable diagnoses are
retained in the diagnosis results.

Remark 2. Like the classical diagnoser, the minimal
diagnoser can generally be built offline and used for online
efficient diagnosis.

Example 10. Figures 2(a) and 2(b) show two different DESs
and their different diagnosers Gd, Gd, and Gm. We can see
that Gm is isomorphic to the corresponding Gd. Also, note
that in Figure 2(a), two states of Gd, namely, (3N 3f1) and
(3N 3f2), are merged into one state (3N) in Gm after
minimization. By contrast, in Figure 2(b), two states of Gd,
namely, (4N 5f1) and (4N 6f2), are not merged into one
state (4N) in Gm, as they have different transitions from
themselves (to different states).

According to Definition 4, a number of relevant prop-
erties of minimal diagnoser Gm are given below (which will
be used to prove the subsequent related lemmas/
propositions):

(P1) Let qm
i ∈ Qm. For each (qo

i , li) ∈ qm
i , there is at least

a state qd
i ∈ Qd in Gd such that (qo

i , li) ∈ qd
i .

(P2) Let qm ∈ Qm. If (qo, l), (qo′ , l′) ∈ qm, then there
exist s, s′ ∈ L with se, se

′ ∈ Σo such that T(q0, s) � qo,
T(q0, s′) � qo′ , PrjΣo(s) � PrjΣo(s′), PΣf(s) � l,
PΣf(s′) � l′, and either l � l′ or l≺≻ l′.
(P3) Let qm ∈ Qm. .ere may exist (qo, l), (qo, l′) ∈ qm,
that is, the system might reach the same observable
state qo with different minimal fault labels (l≠ l′).
(P4) For each qm ∈ Qm and for each (qo, l), (qo′ , l′) ∈
qm, we have

l � l′⟺ l⊆ l′
l≠ l′⟺ l≺≻ l′

(P5) Let (qm
i ⟶

σ
q

m
j ) ∈ T

m. For each (qo
j, lj) ∈ qm

j ,
there exists (qo

i , li) ∈ qm
i such that li ⊆ lj.

After (offline) building the minimal diagnoser Gm for
DES G and assuming that the current observation is obs, we
can (online) synchronize obs with Gm to reach the corre-
sponding state in Gm to directly obtain the minimal diag-
noses within the state.

Example 11. Consider the DES G outlined in Figure 1(a)
and assume obs � αβθ. According to the minimal diagnoser
Gm outlined in Figure 1(e), we obtain the current minimal
diagnosis N, that is, no fault is produced by (4, N). In
addition, when we receive the additional observation c, we
obtain the new minimal diagnosis f1  (while the non-
minimal diagnosis f1, f2  in label (10, f1, f2 ) of Gd is
avoided).
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3.3. Minimal Diagnosability of DESs. Just as the classical
diagnosability was defined to determine whether a classical
diagnosis has definitely occurred or not, it is natural to
define minimal diagnosability to determine whether a set of
faults has definitely occurred or not.

In this section, to either strongly or weakly determine
whether a set of faults has definitely occurred or not, two
notions (strong and weak) of the minimal diagnosability of
DESs are proposed.

To introduce the formalizations for the minimal diag-
nosability of a DES G, we define the domain FL to denote
the collection of all possible fault sets ofG (with behaviour L)
as follows:

FL � ∪
s∈L∧ se∈Σo

fi

 fi ∈ s  . (15)

Obviously, FL � ∪ s∈L∧ se∈Σo PΣf(s) .

3.3.1. Strong Minimal Diagnosability of DESs

Definition 5. A prefix-closed and live language L is said to
be strongly minimally diagnosable if, for any fault set
F ∈ FL and for any string s ∈ SF, the following properties
hold:

(i) ∀t(t ∈ L/s, te ∈ Σo, PΣf(t)⊆F)∃t′(t′ ∈ L/(st), (tt′)e

∈ Σo, PΣf(t′)⊆F)((F⇝ minPrjΣo(st))⟹D1
m)

(ii) ∃n(n ∈ N)∀t(t ∈ L/s, te ∈
Σo)(‖t‖≥ n⟹ ((F⇝minPrjΣo(st))⟹D2

m))

where the strong minimal diagnosability conditions D1
m and

D2
m are defined as follows:

D
1
m: ω ∈ Prj− 1Σo PrjΣo stt′(   ⟹ F≼PΣf(ω) ,

D
2
m: ω ∈ Prj− 1Σo PrjΣo(st)  ⟹ F≼PΣf(ω) .

(16)

In other words, assume that s is a trace in G ending with
one fault of F and containing exactly the faulty events of F:

(i) For any continuation t of string s without any new
fault, the DES will always reach an observable state
after a continuation t′ of t (i.e., (tt′)e ∈ Σo), also
without any new fault, such that if F is a minimal
fault set for st, then F will be the unique minimal
diagnosis for any trace with the same observation
sequence in stt′ (here, we make an implicit as-
sumption that a faulty event may be triggered by a
string many times. In other words, if all faulty events
in F have been triggered by string s, then some faults
in F may still be triggered again in a suffix string t
after s).

(ii) In addition, it is required that there is always a
natural number n such that when any continuation t
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Figure 2: Two DESs and their minimal diagnosers: (a) the first DES and (b) the second DES.
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of s is long enough (i.e., the length of t is not less than
n), if F is a minimal fault set for st, then F will be the
unique minimal diagnosis for any trace with the
same observation sequence in st.

Note: in contrast with the notion of classical diagnos-
ability (Definition 2), here, we add two additional condi-
tions, namely, PΣf(t) ⊆ F and PΣf(t′) ⊆ F, to restrict later
subsequences, after the complete occurrence of F, such that
they do not contain any new fault, except those in F, to
ensure that F is still retained as a candidate diagnosis.

In [16], the notion of classical diagnosability is proposed
for checking any single fault fi of G (Definition 2), whereas
our notion of minimal diagnosability is proposed for a set F
of faulty events of G, which must be minimal (compared to
other related candidates). Both require that any fault fi or
any minimal fault set Fmust be definitely detected after their
occurrences (within a finite delay).

However, there is no logic entailment between the
classical diagnosability and our strong minimal diagnos-
ability, as shown in the following example.

Example 12. According to Definition 2 and Definition 5,
DES G in Figure 1(a) is strongly minimally diagnosable yet
not diagnosable (we can verify the strong minimal diag-
nosability of the DES in Figure 1(a) based on Proposition 1
below. .at is, we can check the minimal diagnoser in
Figure 1(e). It is much easier to find that the minimal
diagnoser satisfies the following two conditions in Propo-
sition 1: (1) there is no F-indeterminate cycle and (2) there is
no F-incomparable state. .us, the DES in Figure 1(a) is
strongly minimally diagnosable). By contrast, DES G3 in
Figure 3(e) is diagnosable yet not strongly minimally
diagnosable.

Before introducing the necessary and sufficient condi-
tions for the strong minimal diagnosability of DESs, a
number of related definitions and relevant lemmas are
provided below.

Definition 6. A state qm ∈ Qm is said to be F-certain if, for
any two pairs (qo, l), (qo′ , l′) ∈ qm (where qo′ can possibly
equal qo), we always have l′ � l.

A state qm ∈ Qm is said to be F-incomparable if there
exist two pairs (qo, l), (qo′ , l′) ∈ qm (where qo′ can possibly
equal qo) such that l≺≻ l′.

For instance, the state exactly labelled with 4f1, 5f2  in
Figure 3 is F-incomparable, whereas other states of minimal
diagnosers in Figure 3 are all F-certain..e basic properties of
the two types of states are described by the following lemma.

Lemma 1. For the minimal diagnoser Gm of DES G, the
following properties hold.

Let Tm(qm
0 , s) � qm, s ∈ Σ∗o . If state qm with fault label l

is F-certain, then for each ω ∈ Prj− 1Σo (s), we have
l≼PΣf(ω).
If a state qm ∈ Qm is F-incomparable, then for any two
pairs (qo, l), (qo′ , l′) ∈ qm with l≠ l′, there exist two
strings t, t′ ∈ L with te, te

′ ∈ Σo such that T(q0, t) � qo,

T(q0, t′) � qo′ , PrjΣo(t) � PrjΣo(t′), Tm(qm
0 , PrjΣo(t)) �

qm, l � PΣf(t), l′ � PΣf(t′), and l≺≻ l′.

In other words, if a state qm is F-certain, then any trace ω
with the same observation projection as observation se-
quence s will necessarily contain fault set l. Otherwise, if a
state qm is F-incomparable, then there exist at least two
different traces t and t′ having the same observation pro-
jection but with two incomparable fault sets l and l′.

Definition 7. A set of F-incomparable states qm
1 , qm

2 , . . . ,

qm
n ∈ Qm is said to form an F-indeterminate cycle if

Tm(qm
i , σi) � qm

(i+1)mod n (here, “(i + 1) mod n” represents the
modulus of (i + 1) divided by n.), where σi ∈ Σo, i ∈ [1 · · · n].

Based on Definition 7, an interesting lemma is given
below.

Lemma 2. Assume that qm
1 , qm

2 , . . ., qm
n ∈Qm are a set of

F-incomparable states forming an F-indeterminate cycle, where

q
m
i � q

o
i1

, li1 , q
o
i2

, li2 , . . . , q
o
ilen i

, lilen i
  ,

q
m
j � q

o
j1

, lj1 , q
o
j2

, lj2 , . . . , q
o
jlen j

, ljlen j
  ,

(17)

with i, j ∈ [1 · · · n] and len i, len j denoting the number of
pairs in qm

i and qm
j , respectively. @en, we have

li1, li2, . . . , lilen i
  � lj1, lj2, . . . , ljlen j

 . (18)

In other words, in an F-indeterminate cycle, any state has the
same set of different fault labels. Intuitively, on the one hand, a
fault in the current statewill stay in the next state (we assume that
the faults are persistent); on the other hand, since all states form a
cycle, the previous state of the current one can also be seen as the
next state. .erefore, all states share the same faults (in fact,
Lemma 2 is true for all kinds of cycles. .at is, the conclusion is
much clearer when all states in the cycle are F-certain).

Lemma 3. Given a prefix-closed language L, if
F⇝minPrjΣo

(s) holds for a fault set F ∈FL and a string s ∈ L

with se ∈ Σo and PΣf
(s) � F, then for any string t ∈ L/s with

te ∈ Σo and PΣf
(t)⊆F, we have F⇝minPrjΣo

(st).

In other words, if a fault set F of a trace s is a minimal
diagnosis for the observation projection of s, then F is still a
minimal diagnosis for any subsequent longer trace from s,
provided there is no new fault in the subsequent trace.

Lemma 4. Given a prefix-closed language L, F⇝minPrjΣo
(s)

holds for a fault set F ∈ FL and a string s ∈ L with se ∈ Σo

and PΣf
(s) � F. If F is the unique minimal diagnosis for

observation PrjΣo
(s), i.e.,

ω ∈ Prj− 1Σo PrjΣo(s) ⟹F≼PΣf(ω), (19)

then for each string t ∈ L/s with te ∈ Σo, the following holds:

ω′ ∈ Prj− 1Σo PrjΣo(st) ⟹F≼PΣf(ω). (20)

Complexity 9



In other words, if F is the unique minimal diagnosis for a
string s (and its projection on the observation is PrjΣo(s)),
then any trace with the same observation PrjΣo(st) will still
contain all the faults in F.

Given the definitions and lemmas introduced above, we
now present the necessary and sufficient conditions for the
strong minimal diagnosability of a DES G in Proposition 1,
based on its minimal diagnoser Gm.

Proposition 1. A language L generated by an FSM G is
strongly minimally diagnosable iff its minimal diagnoser Gm

satisfies the following two conditions:

(C1) @ere is no F-indeterminate cycle in Gm

(C2) For each F-incomparable state qm ∈ Qm and for
each pair (qo, l) ∈ qm, there exist a state qm′ ∈ Qm and a
nonempty observation sequence so ∈ Σ+

o such that
Tm(qm, so) � qm′ , and for each pair (qo′ , l′), we have
l′ � l, that is, qm′ (after qm) is an F-certain state with the
unique minimal fault label l

Remark 3. Condition (C1) is almost identical to the first
condition for checking the classical diagnosability in [16],
with the exception that “Fi-indeterminate cycle” is replaced
by “F-indeterminate cycle”. However, Condition (C2) is
more complex than the corresponding one for checking the
classical diagnosability (where only one statement is needed,
namely, “No state q ∈ qd is ambiguous”), as the strong
minimal diagnosability is conceptually more complex.

Example 13. Consider the three DES models G1, G2, and G3
in Figure 3, where f1, f2, and f3 are faults, while the other
events are observable. .eir minimal diagnosers Gm

1 , Gm
2 ,

and Gm
3 are also depicted in Figure 3. According to the three

minimal diagnosers, we can find that only G1 is strongly
minimally diagnosable. G2 is not strongly minimally diag-
nosable because it does not fulfil Condition (C1): there does

exist an F-indeterminate cycle including state (4, f1 ),

(5, f2 )} and the cyclic transition event o4 in Gm
2 . G3 is also

not strongly minimally diagnosable because it does not fulfil
Condition (C2): there does exist an F-incomparable state
qm � (4, f1 ), (5, f2 )  in Gm

3 , but there are no states such
as (4′, f1 )  or (5′, f2 )  after qm in Gm

3 .

3.3.2. Weak Minimal Diagnosability of DESs. As mentioned
above, according to Definition 5, it is required that any
minimal fault set F be the unique minimal diagnosis after a
finite delay but before a new faulty event (not in F) occurs. In
theory, the condition is very strong..erefore, we provide the
following notion of the weakminimal diagnosability of a DES.

Definition 8. A prefix-closed and live language L is weakly
minimally diagnosable if the following condition holds:

∀F F ∈ FL( ,

∀s s ∈ SF( ,

∃n(n ∈ N),

∀t t ∈ L/s, te ∈ Σo( ,

t≥ n⟹Dm( ,

(21)

where the minimal diagnosability condition Dm is defined in
the following way:

F⇝minPrjΣo(st) ⟹ ω ∈ Prj− 1Σo PrjΣo(st) ⟹F≼PΣf(ω) .

(22)

In other words, assume that s is a trace ofG ending with a
set F of faulty events. For each continuation trace t of s, there
always exists a natural number n such that when the length
of trace t is greater than or equal to n, and if F is still the
minimal fault set for st, then fault set F will be the unique
minimal diagnosis for any trace with the same observation
projection on st.
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Figure 3: DES models and minimal diagnosers. (a) DES model G1. (b) Minimal diagnoser G1
m for G1. (c) DES model G2. (d) Minimal

diagnoser G2
m for G2. (e) DES model G3. (f ) Minimal diagnoser G3

m for G3.
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If the language of a DES has the property of weakly
minimal diagnosability, when a trace is long enough (i.e., the
length of its continuation t is not less than a given integer n),
and if the set of faulty events in the trace is still minimal, then
it will definitely be the unique minimal diagnosis. According
to the above analysis, the condition of Definition 8 is weaker
than that provided in Definition 5 and Definition 2. .e
following proposition shows the relations between the
representation of classical diagnosability and our two rep-
resentations of minimal diagnosability.

Proposition 2. Let G be a DES with language L. If L is
strongly minimally diagnosable, then L is also weakly min-
imally diagnosable. If L is diagnosable, then L is also weakly
minimally diagnosable.

However, based on the following example, we can show
that the contrary of Proposition 2 does not hold.

Example 14. According to our definitions, we can see that
DES G3 in Figure 3(e) is weakly minimally diagnosable yet not
strongly diagnosable. In contrast, the DES G in Figure 1(a) is
weakly minimally diagnosable yet not diagnosable.

Remark 4. .e notion of minimal diagnosability allows
missed detection. .at is, it is possible that some of the
failures are not detected by a minimal diagnoser. For ex-
ample, the occurrence of f2 cannot be detected in the DES
model shown in Figure 1(a), although the DES is also weakly
minimally diagnosable. After all, only subset-minimal di-
agnoses are taken into account in our framework.

In the following, we give the necessary and sufficient
conditions for the weak minimal diagnosability of a DES.

Proposition 3. A language L generated by an FSM G is
weakly minimally diagnosable iff its minimal diagnoser Gm

does not include any F-indeterminate cycle.

Remark 5. Compared with the necessary and sufficient
conditions for the strong minimal diagnosability of DESs in
Proposition 1, the conditions for weak minimal diagnos-
ability for the DESs in Proposition 3 are much weaker.

Example 15. Consider the three DESs and the related
minimal diagnosers shown in Figure 3. Based on the three
minimal diagnosers, we conclude that both G1 and G3 are
weakly minimally diagnosable. Instead, G2 is not weakly
minimally diagnosable, as there is an F-indeterminate cycle
that includes the only state (4, f1 ), (5, f2 )  and the
corresponding cyclic transition event o4 in Gm

2 .

4. Related Work and Comparison

Several works aimed at finding only theminimal diagnosis of
DESs are based on either AI planning [43, 44] or SAT ap-
proaches [45]. Significantly, they require first to transform a
diagnosis problem description into the corresponding
knowledge representation, generally with the bottleneck of
quickly solving planning or SAT problems for online

diagnosis. However, we generate minimal diagnoses by
minimal diagnoser only, which is the main advantage of our
approach.

In addition, we compared our method with many other
related approaches for diagnosis in different views:

(1) Minimal diagnosis of static systems vs. minimal
diagnosis of DESs: Similarity: Like the minimal di-
agnosis of static systems [41, 42], the minimal di-
agnosis of DESs is also quite valuable.

(a) First, a diagnosis with fewer faults is more
probable than one with more faults

(b) Second, some space is saved by a minimal di-
agnosis than corresponding superset diagnoses
with very large sizes

Difference: a superset diagnosis of the static system is
still a diagnosis, but a superset may not be a diagnosis
for a given observation sequence of a DES.

(2) Minimal diagnosis vs. diagnosis with probability:

(a) Minimal diagnosis does not need probability
information, which sometimes cannot present
quite precise diagnoses.

(b) Diagnosis with explicit fault probability based on
Bayesian/probabilistic reasoning [32–35] can
offer precise diagnoses in a mathematically rig-
orous way. However, the shortcomings of these
approaches may be twofold.

(i) First, the prior probability of each faulty
event is required, which may be difficult to
obtain in practice

(ii) Second, adding the probability of each faulty
event will possibly make the diagnosis pro-
cess more complex

5. Conclusions

In this paper, to focus on the more likely diagnoses, a notion
of minimal diagnosis of DESs is proposed, where only
subset-minimal fault sets are considered as the most
probable explanations for the given observation sequences.
.en, the notion of a minimal diagnoser is proposed for the
online minimal diagnosis of DESs. Moreover, two sorts of
minimal diagnosability are presented for deciding whether a
DES is strongly/weakly minimally diagnosable or not, along
with necessary and sufficient conditions for testing the
minimal diagnosability, which are based on the notion of a
minimal diagnoser. Finally, the basic relationships among
the three types of diagnosability (classical diagnosability and
the two novel notions of minimal diagnosability) are
presented.

However, since the generation of the minimal diagnoser
requires the availability of the whole DES model, a problem
of complexity may arise if the DES is large (which is normal
for real, possibly distributed systems). To cope with this
problem, as in previous approaches to developing decen-
tralized diagnosers, a challenging goal for future research is
the decentralization/distribution of minimal diagnoses.
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.e paper is conceived to provide a theoretical/formal
foundation for the minimal diagnosis and minimal diag-
nosability of DESs. Unfortunately, as far as we know, al-
though there are several real case studies on the diagnosis of
DESs (e.g., the hydraulic circuit case [46]), there are still no
widely used artificially well-designed or widely used real-
application benchmarks for the diagnosis of DESs to be
applied for testing the diagnosis approaches. Accordingly,
practical applications are one interesting subject for future
research as well as an effective/efficient algorithm for con-
structing a minimal diagnoser of a DES with a sound space
complexity.

A polynomial “twin-plant” approach has been proposed in
[47, 48] for efficiently testing the diagnosability of DESs.
Designing similar polynomial approaches to check theminimal
diagnosability of DESs is also an interesting future topic.

Still, a number of important issues must be considered in
future research. An essential assumption of this paper is the
independence of faults. Although this may be reasonable in a
wide variety of contexts, the question remains: how will the
notion of the minimal diagnosis of DESs change when fault
dependence actually occurs? Another challenging task is the
injection of minimal diagnosis into other approaches for the
diagnosis of DESs, including those that do not require the
generation of a diagnoser (which may be impractical in real-
application domains), such as the diagnosis of active systems
[21]. Like our model-based distributed minimal diagnosis of
static systems [49] or the decentralized/distributed diagnosis
of DESs [27–29, 50], the decentralized/distributed minimal
diagnosis of DESs is also an interesting and challenging
topic. Eventually, only the application of minimal diagnosis
to real DESs will provide evidence of its practical utility.

Appendix

Proofs for Properties, Lemmas,
and Propositions

Properties of minimal diagnoser Gm:

(P1) Let qm
i ∈ Qm. For each (qo

i , li) ∈ qm
i , there is at least

a state qd
i ∈ Qd in Gd such that (qo

i , li) ∈ qd
i .

(P2) Let qm ∈ Qm. If (qo, l), (qo′ , l′) ∈ qm, then there
exist s, s′ ∈ L with se, se

′ ∈ Σo such that T(q0, s) � qo,
T(q0, s′) � qo′ , PrjΣo(s) � PrjΣo(s′), PΣf(s) � l,
PΣf(s′) � l′, and either l � l′ or l≺≻ l′.
(P3) Let qm ∈ Qm. .ere may exist (qo, l), (qo, l′) ∈ qm,
that is, the system might reach the same observable
state qo while having different minimal fault labels
(l≠ l′).
(P4) For each qm ∈ Qm and for each (qo, l),

(qo′ , l′) ∈ qm, we have

(i) l � l′⟺ l⊆ l′
(ii) l≠ l′⟺ l≺≻ l′

(P5) Let qm
i σ⟶ qm

j  ∈ Tm. For each (qo
j, lj) ∈ qm

j ,

there exists (qo
i , li) ∈ qm

i such that li ⊆ lj.

Proof.

(P1) According to case (1) of the definition (Definition
4) of a minimal diagnoser, for each qd

i ∈ Qd, there exists
a state qm

i ∈ Qm with (qo, l) ∈ qd
i , with l being the

minimal fault label in qd
i . On the contrary, for each

qm
i ∈ Qm, we can apply a backforward process to Gd to
find at least a state qd

i with (qo, li) ∈ qd
i , as well as for any

other (qo′ , li′) ∈ qd
i (if they exist), such that li ≺ li′.

(P2) According to the definitions of the revised diag-
noser (especially the two functions S and Td) and the
minimal diagnoser, for (qo, l), (qo′ , l′) ∈ qm, we can
find two corresponding traces s, s′ ∈ L, with se, se

′ ∈ Σo,
such that T(q0, s) � qo (i.e., to reach the observable
state qo), T(q0, s′) � qo′ , PrjΣo(s) � PrjΣo(s′) (since s
and s′ reach the same state qm, they may have the same
observation sequence), and PΣf(s) � l and PΣf(s′) � l′.
Because qo may equal qo′ , then l � l′ may hold; oth-
erwise, l⊄ l′ and l′ ⊄ l (i.e., l≺≻ l′). If, for example,
l ⊂ l′, then l′ will not be a minimal diagnosis. Hence
we get the conclusion.
(P3) As in (P2), when qo � qo′ , i.e., s and s′ reach the
same observable state, but with l � PΣf(s)≠PΣf(s′) �

l′ and l≺≻ l′, then l≠ l′.
(P4) Because qm is a minimal state, any two fault labels l
and l′ in qm are minimal. .en,

(a) If l⊆ l′, then l � l′, since otherwise, if, for instance,
l⊆ l′ but l≠ l′, then l ⊂ l′, that is, l is the minimal
fault set. However, l′ is not, which contradicts the
idea that l′ is in qm. On the contrary, if l � l′, then
obviously l⊆ l′. .us, l � l′⟺ l⊆ l′ holds.

(b) If l≠ l′, then suppose that l ⊂ l′ or l′ ⊂ l. In the
former case, l′ is not minimal, which contradicts
the idea that l′ is in qm; in the latter case, l is not
minimal, which also contradicts the idea that l is in
qm. .us, l≺≻ l′ holds. On the contrary, if l≺≻ l′,
then according to the definition of ≺≻ , obviously
l≠ l′. .erefore, l≠ l′⟺ l≺≻ l′ holds.

(P5) According to the method for the propagation of
labels using Td (i.e., case (2) of the definition of Td,
where l′ � l∪ fi | fi ∈ u ), l′ in the next state is a
superset of the label l in the previous state. Accordingly,
lj in qm

j is a superset of the label li in the previous state
qm

i . .us, li ⊆ lj holds. □

Lemma A.1. For the minimal diagnoser Gm of DES G, the
following properties hold:

(i) Let Tm(qm
0 , s) � qm, s ∈ Σ∗o . If state qm with fault label

l is F-certain, then for each ω ∈ Prj− 1Σo
(s), we have

l≼PΣf
(ω).

(ii) If a state qm ∈ Qm is F-incomparable, then for any two
pairs (qo, l), (qo′ , l′) ∈ qm with l≠ l′, there exist two
strings t, t′ ∈ L with te, te

′ ∈ Σo such that T(q0, t) � qo,
T(q0, t′) � qo′ , PrjΣo

(t) � PrjΣo
(t′), Tm(qm

0 ,

PrjΣo
(t)) � qm, l � PΣf

(t), l′ � PΣf
(t′), and l≺≻ l′.
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Proof.

(i) For property (i)

In the revised diagnoser Gd for DES G, consider
any pair (qo, PΣf |ω) with Qd ∈ Qd and
Td(q0, s) � Qd.

(a) On the one hand, if (qo, PΣf(ω)), then either l �

PΣf(ω) or l≺≻PΣf(ω) holds. However, if
l≺≻PΣf(ω) holds, that is, there exist at least two
different fault labels in qm, then it contradicts the
idea that qm is F-certain. .erefore, only
l � PΣf(ω) holds, which is also consistent with
property (P1) of a “minimal diagnoser”.

(b) On the other hand, if (qo, PΣf(ω)), according to
the first condition in Definition 4, we obtain
l≺PΣf(ω). In other words, PΣf(ω) is not a
minimal diagnosis for observation PrjΣo(s).
Based on the above analysis, we have l ≺ PΣf(ω).

(b) For property (ii)

It is easy to draw a conclusion from property (P2) of
a “minimal diagnoser.” □

Lemma A.2. Assume that qm
1 , q

m
2 , . . ., qm

n ∈ Qm are a set of F-
incomparable states forming an F-indeterminate cycle, where

q
m
i � q

o
i1

, li1 , q
o
i2

, li2 , . . . , q
o
ilen i

, lilen i
  ,

q
m
j � q

o
j1

, lj1 , q
o
j2

, lj2 , . . . , q
o
jlen j

, ljlen j
  ,

(A.1)

with i, j ∈ [1 · · · n] and len i and len j denotes the number of
pairs in qm

i and qm
j , respectively. @en, we have

li1, li2, . . . , lilen i
  � lj1, lj2, . . . , ljlen j

 . (A.2)

Proof. For any two adjacent states qm
i and qm

(i+1) in the F-
indeterminate cycle, according to property (P5) of a
“minimal diagnoser,” we have the following.

For any pair (qo
(i+1)j(i+1)

, l(i+1)j(i+1)

) ∈ qm
(i+1) (1≤ j(i+1) ≤

len (i + 1)), there exists (qiji

, liji

) ∈ qm
i such that

liji
⊆ l(i+1)j(i+1)

.
.en, we have

l1j1
⊆ l2j2

, l2j2
⊆ l3j3

, . . . , l(n− 1)j(n− 1)

⊆ lnjn
, (A.3)

and then we obtain

l1j1
⊆ l2j2
⊆ · · · ⊆ l(n− 1)j(n− 1)

⊆ lnjn
. (A.4)

Because qm
1 , qm

2 , . . . , qm
n form a cycle, then for a pair

(q1j1
, l1j1

) ∈ qm
1 , according to property (P5) of a “minimal

diagnoser,” there exists a pair (qnkn
, lnkn

) ∈ qm
n such that

lnkn
⊆ l1j1

. (A.5)

From formula (A.4), we obtain

l1j1
⊆ lnjn

. (A.6)

From formulas (A.5) and (A.6), we obtain

lnkn
⊆ lnjn

. (A.7)

From property (P4) of a “minimal diagnoser,” we have

lnkn
� lnjn

. (A.8)

From formulas (A.5), (A.6), and (A.8), we obtain

l1j1
� lnjn

. (A.9)

From formulas (A.4) and (A.8), we obtain

l1j1
� l2j2

� · · · � lnjn
. (A.10)

.at is, for any pair with label li in any state qm
i , there exists

the same label in each of the other states. .erefore, we have
the following conclusion:

li1, li2, . . . , lilen i
  � lj1, lj2, . . . , ljlen j

 . (A.11)
□

Lemma A.3. Given a prefix-closed language L, if
F⇝minPrjΣo

(s) holds for a fault set F ∈FL and a string s ∈ L

with se ∈ Σo and PΣf
(s) � F, then for any string t ∈ L/s with

te ∈ Σo and PΣf
(t)⊆F, we have F⇝minPrjΣo

(st).

Proof. According to the definition of a “minimal diagnosis”
(Definition 1 and Definition 3), to prove that
F⇝minPrjΣo(st), we have to prove the following two
statements:

(i) F⇝PrjΣo(st)

(ii) ∄F″ ⊆ Σf such that F″ ⇝PrjΣo(st)∧F″ ≺F

For the first statement, because PΣf(s) � F and
PΣf(t)⊆F, then F � PrjΣf(st), that is, F⇝PrjΣo(st).

For the second statement, by contradiction, assume that
there exists F″ ⊆Σf such that F″ ⇝PrjΣo(st)∧F″ ≺F (i.e.,
F″ ⊂ F). .at is, there exists a string s″ ∈ L with PrjΣo(s″) �

PrjΣo(st) and F″ � PΣf(s″).
Let s″ � s′t′ such that s′ ∈ SF, that is, se

′ ∈
Σo ∧ PrjΣo(s′) � PrjΣo(s).

Since F⇝minPrjΣo(s), we have F⇝minPrjΣo(s′).
.en, we have two possible cases regarding the relations

between F and PΣf(s′):

(A) F≼PΣf(s′) (also F⊆PΣf(s′))
(B) F≺≻PΣf(s′)

For case (A), since F⊆PΣf(s′)⊆PΣf(s′t′) �

PΣf(s″) � F″, we get F⊆F″, which contradicts the assump-
tion that F″ ⊂ F.

For case (B), from F≺≻PΣf(s′), we get PΣf(s′)⊄F, and
then PΣf(s′t′)⊄F, that is, PΣf(s″)⊄F; thus, we get F″ ⊄F,
which also contradicts the assumption that F″ ⊂ F.

.erefore, the second statement also holds.
Hence, we get the conclusion. □

Lemma A.4. Given a prefix-closed language L,
F⇝minPrjΣo

(s) holds for a fault set F ∈FL and a string s ∈ L

with se ∈ Σo and PΣf
(s) � F. If F is the unique minimal

diagnosis for observation PrjΣo
(s), i.e.,
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ω ∈ Prj− 1Σo PrjΣo(s) ⟹F≼PΣf(ω), (A.12)

then for each string t ∈ L/s with te ∈ Σo, and the following
holds:

ω′ ∈ Prj− 1Σo PrjΣo(st) ⟹F≼PΣf ω′( . (A.13)

Proof. For each ω′ ∈ Prj− 1Σo (PrjΣo(st)), we have
PrjΣo(ω′) � PrjΣo(st).

Let ω′ � s′t′ with PrjΣo(t′) � PrjΣo(t) and
PrjΣo(s′) � PrjΣo(s) with se

′ ∈ Σo; thus, s′ ∈ Prj− 1Σo (PrjΣo(s)),
and then F≼PΣf(s′) (i.e., F⊆PΣf(s′)).

.en, F⊆PΣf(s′)⊆PΣf(s′t′) � PΣf(ω′); thus, we get
F≼PΣf(ω′).

.erefore, we obtain the following conclusion:
ω′ ∈ Prj− 1Σo (PrjΣo(st))⟹F≼PΣf(ω′). □

Proposition A.1. A language L generated by an FSM G is
strongly minimally diagnosable iff its minimal diagnoser Gm

satisfies the following two conditions:

(C1)@ere is no F-indeterminate cycle in Gm

(C2) For each F-incomparable state qm ∈ Qm and for
each pair (qo, l) ∈ qm, there exist a state qm′ ∈ Qm and a
nonempty observation sequence so ∈ Σ+

o such that
Tm(qm, so) � qm′ , and for each pair (qo′ , l′), we have
l′ � l, that is, qm′ (after qm) is an F-certain state with the
unique minimal fault label l.

Proof. Necessity: firstly, we prove that if L is strongly
minimally diagnosable, then it satisfies condition (C1). By
contradiction, assume there exist qm

1 , qm
2 , . . . , qm

n ∈ Qm such
that they form an F-indeterminate cycle, and let
Tm(qm

i , σi) � qm
(i+1)mod n, σi ∈ Σo. According to Lemma A.2,

let qm
i � (q

o1
i1

, l1i1), (q
o2
i1

, l2i1), . . . , (q
olen i1
i1

, l
len i1
i1

), . . . ,

(q
o1
ik

, l1ik ), (q
o2
ik

, l2ik ), . . . , (q
olen ik

ik
, l
len ik
ik

)}, (1≤ i≤ n), where k is
the number of different fault labels in qm

i , and

l
1
ij

� l
2
ij

� · · · � l
len ij
ij

(1≤ j≤ k),

l
1
ir
≺≻ l

1
is
(1≤ r, s≤ k, r≠ s),

l
1
xj

� l
1
yj

(1≤x, y≤ n, 1≤ j≤ k).

(A.14)

For any two pairs (q
o1
1j

, l11j
), (q

o1
1m

, l11m
) ∈ qm

1 (1≤ j, m≤ k)
with l11j

≺≻ l11m
, since qm

1 is F-incomparable, according to
Lemma A.1-(ii), there exist two strings s, s′ ∈ L with
se, se
′ ∈ Σo such that l11j

� PΣf(s), l11m
� PΣf(s′), T(q0, s) �

q
o1
1j
, T(q0, s′) � q

o1
1m
, and Tm(qm

0 , PrjΣo(s)) � qm
1 . .en,

l11j
⇝minPrjΣo(s) and l11m

⇝minPrjΣo(s′).
Consider the following two traces:

ω � s s1σ1s2σ2 · · · szσz( 
p
;

ω′ � s′ s1′σ1s2′σ2 · · · sz
′σz( 

p
;

(A.15)

with p ∈ N and p≥ 1 being arbitrarily large, sq, sq
′ ∈ Σ∗uo, and

σq ∈ Σo (q ∈ [1 · · · z]).
Let PΣf(sq)⊆ l11j

and PΣf(sq
′)⊆ l11m

for each q (q ∈ [1 · · ·

z]). .en, we have

PrjΣo(ω) � PrjΣo ω′( ,

PΣf(ω) � l
1
1j

,

PΣf ω′(  � l
1
1m

.

(A.16)

Let F � l11j
and t ∈ L/s such that ω � st; then, t �

(s1σ1s2σ2 · · · szσz)p, te ∈ Σo, and PΣf(t)⊆F. By choosing p to
be arbitrarily large, we can obtain ‖t‖≥ n for any given n ∈ N,
and then we have: ω′ ∈ Prj− 1Σo (PrjΣo(st)) and l11j

⇝minPrjΣo
(st) (according to Lemma A. 3l11j

⇝minPrjΣo(s), l11j
� PΣf(s),

andPΣf(t)⊆ l11j
.) but l11j

⋠PΣf(ω′) � l11m
(because l11j

≺≻
l11m

), which contradicts condition D2
m of the definition of a

“strong minimal diagnosability” (Definition 5).
.us, for two such traces, according to Definition 5, L is

not strongly minimally diagnosable.
.erefore, condition (C1) must be satisfied.
.en, we prove that if L is strongly minimally diag-

nosable, then it satisfies condition (C2). By contradiction,
assume that there exists an F-incomparable state qm ∈ Qm

and that there also exists a pair (qo, l) ∈ qm but there does
not exist a state qm′ ∈ Qm such that Tm(qm, so) � qm′ (where
so ∈ Σ+o ), and for each (qo′ , l′) ∈ qm′ , l′ � l. .en, for each
qm′ , there exist only two possible distinct cases:

(1) For each (qo′ , l′) ∈ qm′ , l′ ≠ l

(2) .ere exist (qo′
1 , l1′), (qo′

2 , l2′) ∈ qm′ such that l1′ � l and
l2′ ≠ l

For case (1), because (qo, l) ∈ qm, according to property
(P2) of a “minimal diagnoser,” there exists s′ ∈ Σ∗ with
se
′ ∈ Σo such that T(q0, s′) � qo and PΣf(s′) � l.

Let s′ � st with se ∈ Σf, PΣf(s) � l (i.e., s ∈ sl),
te � se
′ ∈ Σo, and PΣf(t) � ∅ (⊆ l).

.en, for condition (i) of Definition 5, we cannot find a
trace t′ ∈ L/(st), (tt′)e ∈ Σo, and PΣf(t′)⊆ l such that
(l⇝ minPrjΣo(st))⟹D1

m.
By contradiction, assume that there exist t′ ∈ L/(st),

(tt′)e ∈ Σo, and PΣf(t′)⊆ l (then, according to Lemma A.3,
l⇝minPrjΣo(s′t′)). Let so � PrjΣo(t′) and Tm(qm, so) � qm′ ;
then, there must exist a pair (qo′ , l′) ∈ qm′ with l′ � l (be-
cause l⇝minPrjΣo(s′t′)), which contradicts case (1), in
which ∀(qo′ , l′) ∈ qm′ , l′ ≠ l. Even if so (i.e., PrjΣo(t′)) is ε, the
condition D1

m of Definition 5 will not be satisfied, or else qm

will be F-certain with the unique fault label l, which con-
tradicts the assumption that qm is F-incomparable.

For case (2), as in case (1), there also exists s′ ∈ Σ∗ with
se
′ ∈ Σo such that T(q0, s′) � qo and PΣf(s′) � l.

Let s′ � st with se ∈ Σf, PΣf(s) � l (i.e., s ∈ Sl),
te � se
′ ∈ Σo, and PΣf(t) � ∅ (⊆ l).

For each t′ ∈ L/(st) with PΣf(t′)⊆ l (and subsequently
PΣf(stt′)⊆ l) and PrjΣo(t′) � so, according to Case (2), we
have T(q0, stt′) � qo′

1 , l1′(� l)⇝minPrjΣo(stt′), and
l2′⇝minPrjΣo(stt′), but l1′ ⋠ l2′, which contradicts the defini-
tion of a “strong minimal diagnosability” (condition D1

m).
Even if so (i.e., PrjΣo(t′)) is ε, as in case (1), condition D1

m of
Definition 5 is not satisfied.

.erefore, condition (C2) must be satisfied.
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Sufficiency: assume that the minimal diagnoser Gm

satisfies conditions (C1) and (C2). For any fault set F ∈ FL,
pick any s ∈ L with s ∈ SF. Pick any t ∈ L/s with te ∈ Σo
(based on the assumption that there is no infinite sequence
of unobservable events in L, we let a natural number n0
denote the maximum length of any sequence of unob-
servable events; thus, t≤ (n0 + 1)).

Let T(q0, st) � qo
i , and then we get the corresponding

state qm
j � Tm(qm

0 ,PrjΣo(st)) in Gm. Since PΣf(st) � F,
according to the conditions of Definition 5, we suppose that
F⇝minPrjΣo(st), and then we get (qo

i , F) ∈ qm
j . .en, we

have two distinct cases to consider:

(a) qm
j is F-certain

(b) qm
j is F-incomparable

For case (a), in which qm
j is F-certain, according to

Lemma A.1-(i), we have

ω ∈ Prj− 1Σo PrjΣo(st) ⟹F≼PΣf(ω). (A.17)

.us, there exists t′ � ε such that t′ ∈ L/(st), (tt′)e ∈ Σo
(because tt′ � t and te ∈ Σo), and PΣf(t′)⊆F. If
F⇝minPrjΣo(st), then D1

m of Definition 5 holds:

ω ∈ Prj− 1Σo PrjΣo stt′(  ⟹F≼PΣf(ω). (A.18)

.us, the first condition (i) of Definition 5 holds
(F⇝minPrjΣo(st))⟹D1

m.
According to Lemma A.4, for each t″ ∈ L/(st) with

te
″ ∈ Σo,

ω ∈ Prj− 1Σo PrjΣo stt″(  ⟹F≼PΣf(ω). (A.19)

.en, for the second condition (ii) of Definition 5, let
n � t; for each string u with u ∈ L/s and ue ∈ Σo, when u≥ n,
we have the following:

If F⇝minPrjΣo(su), then

ω ∈ Prj− 1Σo PrjΣo(su) ⟹F≼PΣf(ω), i.e., D
2
m holds .

(A.20)

.us, the second condition (ii) of Definition 5 holds.
For case (a), since the conclusion is true for any F ∈ FL,

L is strongly minimally diagnosable.
For case (b), if qm

j is F-incomparable, according to con-
dition (C1) (there is no F-indeterminate cycle), theremust exist
m ∈ N and r ∈ Σ+o . When r≥m, the diagnoser will reach the
first F-certain state qm′

j with the unique fault label F′ via
observation sequence r only in two possible distinct scenarios:

(b1) F ⊂ F′ for each (qo′
i , F′) ∈ qm′

j

(b2) F � F′ for each (qo′
i , F′) ∈ qm′

j

For scenario (b1), because F is no longer a minimal
diagnosis, we do not care about this scenario.

Scenario (b2) is just condition (C2). According to (C2),
there exists so ∈ Σ+o such that Tm(qm

j , so) � qm′
j ; then, there

exists t′ ∈ L/(st) with PrjΣo(t′) � so, PΣf(t′)⊆F, and te
′ ∈ Σo

(also (tt′)e ∈ Σo) such that T(q0, stt′) � qo′
i and

(qo′
i , F) ∈ qm′

j . By Lemma A.1-(i), we have

ω ∈ Prj− 1Σo PrjΣo stt′(  ⟹F≼PΣf(ω). (A.21)

.at is, D1
m of Definition 5 holds.

.us, the first condition (i) of Definition 5 holds.
For any t″ ∈ L/(stt′) with te

″ ∈ Σo, according to Lemma
A.4, we have

ω ∈ Prj− 1Σo PrjΣo stt′t″(  ⟹F≼PΣf(ω). (A.22)

In other words, ∃n � tt′, ∀u(u ∈ L/s, ue ∈ Σo). When
u≥ n, we have the following. If F⇝minPrjΣo(su), then

ω ∈ Prj− 1Σo PrjΣo(su) ⟹F≼PΣf(ω). (A.23)

.at is, the second condition (ii) of Definition 5 holds.
Hence, L is strongly minimally diagnosable. □

Proposition 3.18. Let G be a DES with language L. If L is
strongly minimally diagnosable, then L is also weakly min-
imally diagnosable. If L is diagnosable, then L is also weakly
minimally diagnosable.

Proof.

(1) From the second condition (ii) of Definition 5 (“strong
minimal diagnosability”) and the condition of Defi-
nition 8 (“weak minimal diagnosability”), we can
clearly see that the former condition is just the latter
one. .erefore, if G is strongly minimally diagnosable,
then G is necessarily weakly minimally diagnosable.

(2) Let a DESGwith language L be diagnosable. Pick any
fault set F ∈ FL, with F � f1, f2, . . . , fp .
According to Definition 2, for each fi ∈ F and for
each s ∈ L, se � fi, there exists n ∈ N such that

∀t t ∈ L/s, te ∈ Σo( , (‖t‖≥ n⟹D), (A.24)

where the diagnosability condition D is defined as follows:

ω ∈ Prj− 1Σo PrjΣo(st) ⟹fi ∈ ω. (A.25)

Hence,

ω ∈ Prj− 1Σo PrjΣo(st) ⟹fi ∈ ω⟹fi ∈ PΣf(ω). (A.26)

.us, we obtain

ω ∈ Prj− 1Σo PrjΣo(st) ⟹F⊆PΣf(ω)⟹F≼PΣf(ω).

(A.27)

.us,

F⇝minPrjΣo(st) ⟹ ω ∈ Prj− 1Σo PrjΣo(st) ⟹F≼PΣf(ω) .

(A.28)

.erefore, if G is diagnosable, then G is also weakly
minimally diagnosable. □

Proposition 3.20. A language L generated by an FSM G is
weakly minimally diagnosable iff its minimal diagnoser Gm

does not include any F-indeterminate cycle.
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Proof. (sketch)Based on the proof of Proposition 3.15, we
can see that condition (C1) is only required by the second
case (ii) of “strong minimal diagnosability” (Definition 5),
which is the same as “weak minimal diagnosability” (Def-
inition 8)..erefore, only condition (C1) of Proposition 3.15
is required for the current proposition. .at is, a language L
generated by an FSM G is weakly minimally diagnosable iff
its minimal diagnoser Gm does not include any F-indeter-
minate cycle. □
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Exploring the amplitude modulation phenomenon of chaotic signal has become a subject of great concern in recent years. +is
paper mainly concentrates on the preliminary study on amplitude modulation principle of a chaotic system. First, two 3D chaotic
systems with quadratic product terms are introduced for studying the amplitude modulation phenomenon of chaotic signal. It is
found that the signal amplitude of the first system can be controlled by partial quadratic coefficient. But for the second system,
none of nonlinear coefficient can be employed to control the signal amplitude. +en, the amplitude modulation principle of
chaotic system is preliminarily studied by exploring the intrinsic relationship between nonzero equilibrium point and phase space
trajectory, and it is further validated by introducing unified parameter to the two 3D chaotic systems. As a necessary condition, the
principle provides a feasible and simple method for constructing and analyzing an amplitude modulation chaotic system.

1. Introduction

Chaos has evoked much attention in many scientific fields
due to its unique characteristics, such as sensitivity to initial
conditions and parameter deviations, strange attractor with
locally unbounded but globally bounded trajectory, un-
predictability of future behavior, and so on [1–4]. In the past
few decades, the issue of construction, analysis, and appli-
cation of chaotic systems has become a very active topic
[5–10].

+e signal amplitude of a chaotic system can be often
modulated by controlling one or more coefficients in the
dynamical equations, while the Lyapunov exponents and
power spectral density remain invariable [11–14]. Since the
variables can be rescaled by directly controlling the am-
plitude parameter to avoid the exceeding limitations of
bandwidth and amplitude, this kind of system can resolve
the contradiction of signal processing and information re-
tention in practical amplification circuit, so it is a promising
type of system for the reality of chaotic encryption, chaotic
radar, chaotic communication, and chaotic signal
processing.

Generally, for the presented amplitude modulation
systems with quadratic nonlinearity, the amplitude pa-
rameters are the coefficients of quadratic terms, which can

nonlinearly modulate the signal amplitude of partial or total
state variables [11–15]. In fact, while chaotic system holds
the only nonlinear term, the corresponding coefficient can
control the signal amplitude since it uniquely determines the
scale of the variables [16–18]. As an example, a simple
chaotic system with a single nonlinearity x1

3 is recalled as
_x1 � x2, _x2 � x3, _x3 � bx1− x2− ax3− bx1

3 [16]. Accordingly,
it holds the resulting system _x1 � x2, _x2 � x3, _x3 � bx1− x2 −

ax3 − bpx1
3 with the substitution x1⟶

��
p

√
x1,

x2⟶
��
p

√
x2, x3⟶

��
p

√
x3. +ereby, the coefficient of the

nonlinear term x1
3 can control the amplitude of x1, x2, x3

according to 1/ ��
p

√ . However, it is found in the recent work
that for the dynamical system with exponential nonlinearity,
the coefficient of quadratic term cannot provide amplitude
modulation [19]. +us, naturally, an interesting question is
raised as “whether each coefficient of nonlinear term in
chaotic system can control the signal amplitude.” Another
more important question is “what is the principle of con-
structing and analyzing amplitude modulation chaotic
system.” However, as far as we know, there is little in-
formation about this kind of system in the literature so far, so
it still remains open and challenging.

+is paper attempts to provide some answers to these
questions by introducing two carefully screened chaotic
systems. Differing from the system with a single linear or a
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single nonlinear term, the present systems have nonunique
linear terms and three quadratic cross-product terms. Basic
dynamics of these two nonlinear systems are analyzed
theoretically and numerically. Somewhat surprisingly, only
one coefficient of the quadratic nonlinearity in the first
system can be employed to control the amplitude of chaotic
signal. But for the second system, none of the coefficient of
quadratic nonlinearity can be employed to control the
amplitude of chaotic signal. +e discovery that not all co-
efficients of nonlinear term can provide amplitude control is
of interest and inspiration. As a further concern in this work,
the amplitude modulation principle of chaotic system is
addressed, based on the analysis of the intrinsic relationship
between nonzero equilibrium point and phase space tra-
jectory. Although it is not a sufficient and necessary con-
dition for amplitude modulation, the proposed principle
provides a feasible method for constructing and analyzing
amplitude modulation chaotic system. Furthermore, this
method is simple in actual operation and will hopefully
enlighten for revealing the amplitude modulation mecha-
nism of chaotic system.

+is paper is organized as follows. Following the in-
troduction, we propose a chaotic system with partial co-
efficient of nonlinearity employed to control amplitude. In

Section 3, we introduce another chaotic system with no
coefficient of nonlinearity employed to control amplitude.
+e principle of amplitude modulation is addressed in
Section 4. Finally, some concluding remarks are drawn in
Section 5.

2. Chaotic System with Partial Coefficient of
Nonlinearity for Amplitude Control

2.1. System Description. +e reported system possesses four
linear terms and three quadratic cross-product terms, which
is given by the following ordinary differential equations:

_x1 � a x2 − x1(  + dx2x3,

_x2 � bx2 − ex1x3,

_x3 � − cx3 + fx1x2.

⎧⎪⎪⎨

⎪⎪⎩
(1)

It is easy to know that the proposed system is symmetric
with respect to the x3-axis, as shown by the coordinate
transformation (x1, x2, x3)⟶ (− x1, − x2, x3).

By considering the equilibrium condition a(x2 − x1) +

dx2x3 � 0, bx2 − ex1x3 � 0, − cx3 + fx1x2 � 0, five equi-
librium points of system (1) are determined as

P0(0, 0, 0),

P1

���
bc

ef



,
− a

��
ce

√
+

��
ce

√ �����������
a2 +(4abd/e)



2d
���
bf

 ,
− a +

�����������
a2 +(4abd/e)



2d
⎛⎝ ⎞⎠,

P2

���
bc

ef



,
− a

��
ce

√
−

��
ce

√ �����������
a2 +(4abd/e)



2d
���
bf

 ,
− a −

�����������
a2 +(4abd/e)



2d
⎛⎝ ⎞⎠,

P3 −

���
bc

ef



,
a

��
ce

√
+

��
ce

√ �����������
a2 +(4abd/e)



2d
���
bf

 , −
a +

�����������
a2 +(4abd/e)



2d
���
bf

⎛⎝ ⎞⎠,

P4 −

���
bc

ef



,
a

��
ce

√
−

��
ce

√ �����������
a2 +(4abd/e)



2d
���
bf

 , −
a −

�����������
a2 +(4abd/e)



2d
���
bf

⎛⎝ ⎞⎠.

(2)

And the characteristic equation is deduced as

φ(λ) � − λ3 +(− a + b − c)λ2 + ab + bc − ac + dfx2
2

− aex3 − dex3
2

− efx1
2

 λ

+ abc − aefx1x2 − bdfx2
2

− acex3 − cdex3
2

− aefx1
2

 .
(3)

When selecting the parameter set a� 28, b� 20, c� 3,
d� 1, e� 5, and f� 1, the four nonzero equilibrium points are
calculated as P1 (3.4641, 3.0743, 3.5499), P2 (3.4641,
− 27.3230, − 31.5499), P3 (− 3.4641, 27.3230, − 31.5499), and P4
(− 3.4641, − 3.0743, 3.5499). And the corresponding char-
acteristic roots are

P0: λ1 � − 28, λ2 � 20, λ3 � − 3,

P1,4: λ1 � − 18.1945, λ2 � 3.5973 + 13.8748i,

λ3 � 3.5973 − 13.8748i,

P2,3: λ1 � − 43.6337, λ2 � 16.3169 + 22.2518i,

λ3 � 16.3169 − 22.2518i.

(4)
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Obviously, equilibrium point P0 is a saddle-node with
two-dimensional stable manifold and one-dimensional
unstable manifold. But for the remaining nonzero equilib-
rium points P1 to P4, λ1 is a negative real number and λ2 and
λ3 become a pair of complex conjugate roots with positive
real parts. Accordingly, the four equilibrium points are
saddle-focus points with two-dimensional unstable mani-
fold and one-dimensional stable manifold.

When selecting a� 28, b� 20, c� 3, d� 1, e� 5, and f� 1
and computing time 5000 s, the three finite time Lyapunov
exponents of system (1) are calculated by orthogonal method
as 3.29613> 0, 0.01355, − 19.34679< 0. And the Kaplan–
Yorke dimension is obtained as DKY � 2 + (3.29613 +
0.01355)/19.34679� 2.1711, revealing a fractional feature.
+erefore, system (1) is chaotic. +e corresponding chaotic
phase diagrams and Poincare mapping on plane x2 � 0 are
depicted in Figure 1.

2.2. Analysis of Amplitude Modulation

Theorem 1. +e parameter f in cross-product term x1x2 is a
local parameter of nonlinear amplitude modulation, which
can control the signal amplitude of x1, x2 by the power
function of index − 1/2 respectively, but the amplitude of

variable x3 remains in the same range; besides, the Lyapunov
exponent spectrum remains unchanged with the variation of
parameter f.

Proof. Considering the variable substitution x1 � u1/
��
h

√
,

x2 � u2/
��
h

√
, x3 � u3 (h> 0), system (1) is turned to

_u1 � a u2 − u1(  + du2u3,

_u2 � bu2 − eu1u3,

_u3 � − cu3 +(f/h)u1u2.

⎧⎪⎪⎨

⎪⎪⎩
(5)

+erefore, when parameter f increases linearly, the signal
amplitude of system variables x1,x2 change according to the
power function of index − 1/2, respectively, but the am-
plitude of variable x3 is in the same range.

When substituting the equilibrium point P0 into char-
acteristic equation (3), it holds

φ(λ) � − λ3 +(− a + b − c)λ2 +(ab + bc − ac)λ + abc. (6)

In equation (6), the influence of parameter f is elimi-
nated. We can draw a similar conclusion for the other
equilibrium points. As an illustration, we insert the equi-
librium P1 into expression (3) obtaining

φ(λ) � − λ3 +(− a + b − c)λ2 +
⎧⎨

⎩ab + bc − ac +
ce 2a2 +(4abd/e) − 2a

�����������
a2 +(4abd/e)


 

4bd

− ae
− a +

�����������
a2 +(4abd/e)



2d
−
2a2e + 4abd − 2ae

�����������
a2 +(4abd/e)



4d
− bc

⎫⎬

⎭λ

+
⎧⎨

⎩abc − ae
c

��
be

√
− a +

�����������
a2 +(4abd/e)


 

2d
��
be

√ −
ce 2a2 +(4abd/e) − 2a

�����������
a2 +(4abd/e)


 

4d

− ace
− a +

�����������
a2 +(4abd/e)



2d
− cde

2a2 +(4abd/e) − 2a
�����������
a2 +(4abd/e)



4d2 − abc
⎫⎬

⎭.

(7)

+at is, parameter f does not produce effect on the
characteristic root of equation (7). +erefore, when pa-
rameter f varies in field of real number, the Lyapunov ex-
ponent spectrum remains constant. +is completes the
proof.

+e corresponding bifurcation diagram and Lyapunov
exponent spectrum versus f are shown in Figure 2, which
authenticates the theoretical results.

It is generally accepted that for the quadratic chaotic
systems, the coefficients of nonlinear terms canmodulate the
signal amplitude of partial or total state variables [11–14].
+e bifurcation diagram for e ∈ [0, 20] is shown in
Figure 3(a). Superficially, the coefficient e can modulate the
signal amplitude nonlinearly. But from the enlarged view,
one can see that there emerges a visible periodic window,
and the Lyapunov exponent spectrum further verifies the

observation, as depicted in Figures 3(b) and 3(c). +e
concrete bifurcation diagram and Lyapunov exponent
spectrum versus d also show that not all coefficients of
quadratic terms can modulate the signal amplitude, which is
illustrated in Figure 4. In spite of this, the chaos of the
reported system is still robust in a large range of parameters
d and e. Consequently, the system can be recommended as
an important candidate in secure communication. □

3. Chaotic System with Noncoefficient of
Nonlinearity for Amplitude Control

3.1. System Description. We consider another three-di-
mensional autonomous system with five linear terms and
three quadratic cross-product terms, as follows:
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_x1 � ax2 − gx1 + dx2x3,

_x2 � bx1 − ex1x3,

_x3 � kx1 − cx3 + fx1x2.

⎧⎪⎪⎨

⎪⎪⎩
(8)

System (8) possesses three equilibrium points, which are,
respectively, described by

P0(0, 0, 0),

P1 (ae + bd)
− k +

�������������������
k2 +(4bcgf/(ae + bd))



2gef
,
− k +

������������������
k2 +(4bcgf/(ae + bd))



2f
,
b

e
 ,

P2 (ae + bd)
− k −

�������������������
k2 +(4bcgf/(ae + bd))



2gef
,
− k −

�������������������
k2 +(4bcgf/(ae + bd))



2f
,
b

e
 .

(9)

When selecting the parameter set a� 24, b� 12, c� 1,
d� 1, e� 1, f� 1, k� 1, and g � 6, the two nonzero

equilibrium points are obtained as P1 (6, 1, 12) and P2 (− 12,
− 2, 12). +e corresponding characteristic roots are
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Figure 4: (a, b) Bifurcation diagram versus d; (c) finite time Lyapunov exponent spectrum versus d.
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P0: λ1 � − 1, λ2 � 14.2337, λ3 � − 20.2337,

P1: λ1 � − 9.7318, λ2 � 1.3659 + 8.0449i,

λ3 � 1.3659 − 8.0449i,

P2: λ1 � − 8.2073, λ2 � 0.6036 + 12.5517i,

λ3 � 0.6036 − 12.5517i.

(10)

Obviously, equilibrium point P0 is a saddle-node with
two-dimensional stable manifold and one-dimensional

unstable manifold. And the equilibrium points P1 and P2 are
saddle-focus points with two-dimensional unstable mani-
fold and one-dimensional stable manifold.

+e corresponding finite time Lyapunov exponents by
orthogonal method are calculated as 0.926059, 0.051479, and
− 10.972296. And the Kaplan–Yorke dimension is obtained
as DKY � 2 + (0.926059 + 0.051479)/10.972296� 2.0891, re-
vealing a fractional feature. +erefore, system (8) is chaotic.
+e typical chaotic phase diagrams and Poincare mapping
on plane x2 � 0 are depicted in Figure 5.
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Figure 6: (a, b) Bifurcation diagram versus k; (c) finite time Lyapunov exponent spectrum versus k.
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3.2.Analysis of PhaseModulation. In system (8), coefficient
k is a phase parameter, which can control the signal phase
of x1, x2 simultaneously. +e phase reversal can be
verified by the invariance of the transformation (x1, x2,

x3, a, b, c, d, e, f, g, k)⟶ (− x1, − x2, x3, a, b, c, d, e, f, g,

− k). +e bifurcation diagrams for x1 and x2 are reverse
symmetrical, and the Lyapunov exponent spectrum is
symmetrical about k � 0, as depicted in Figure 6. +is
further demonstrates that the sign of k can control the
polarity of x1 and x2, independent of the dynamics
behavior.

3.3.Analysis ofAmplitudeModulation. In the search for the
property of amplitude modulation, it is surprising to find
that for the presented system (8), there is no coefficient of
nonlinearity employed to control the signal amplitude.
+e obtained result is different from the existing qua-
dratic system [11–14] and the reported system (1). +e
most intuitive interpretation is the numerical simula-
tions of bifurcation diagram and Lyapunov exponent
spectrum versus the nonlinear parameter, as shown in
Figures 7–9. +eoretically, according to the proposed
method in [19], we cannot access appropriate variable
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Figure 8: (a) Bifurcation diagram and (b) finite time Lyapunov exponent spectrum versus e.
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substitution to realize the normalization of the system
equation and characteristic equation [19].

4. Amplitude Modulation Principle of
Chaotic System

As shown in the previous literatures [11–15], the co-
efficients of quadratic terms in smooth chaotic systems
can modulate the signal amplitude of partial or total
state variables. However, for systems (1) and (8) re-
ported in this study, it is found that not all quadratic
nonlinearity coefficients can be used to modulate the
amplitude of signals. +erefore, when investigating
dynamic properties of a chaotic system, we propose a

naturally confusing but worthwhile question: “what is
the possible principle for modulating the amplitude of
chaotic signals?”

+e physical significance of equilibrium point of dy-
namic system can be explained as zero velocity point.
When the trajectory of a chaotic attractor is rescaled, the
nonzero equilibrium point will deviate from the initial
position. On the contrary, when the nonzero equilibrium
point deviates from the initial position, the signal am-
plitude of the phase space trajectory can be rescaled.
+erefore, the amplitude modulation principle of chaotic
system with multiple equilibrium points can be described
as follows: (1) in the mathematical representation of
nonzero equilibrium point, the amplitude parameter is
axisymmetric and (2) the location of the nonzero

300

250

200

150

100

50

0

–50

–100

Si
gn

al
 am

pl
itu

de

0 5 10 15 20
d

x1max
x1min
x2max

x2min
x3max
x3min

(a)

0 5 10 15 20
d

5

0

–18.5

–19.0

Ly
ap

un
ov

 ex
po

ne
nt

s

(b)

Figure 10: (a) Signal amplitude and (b) finite time Lyapunov exponent spectrum versus d.
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Figure 11: (a) Signal amplitude and (b) finite time Lyapunov exponent spectrum versus d.
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equilibrium point in phase space can be controlled by the
amplitude parameter.

From the expression of nonzero equilibrium points of
system (1), it can be seen that the parameters d and e of
nonlinear term cannot modulate the location of equilib-
rium point P1, P2, P3, or P4. Accordingly, parameter d or e
cannot modulate the signal amplitude. When we introduce
a unified parameter d in x2x3 and x1x3, system (1) is de-
duced to

_x1 � a x2 − x1(  + dx2x3,

_x2 � bx2 − dx1x3,

_x3 � − cx3 + fx1x2,

⎧⎪⎪⎨

⎪⎪⎩
(11)

and the four nonzero equilibrium points are
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df
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Figure 12: Modulation property of signal amplitude for system (15).
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It is known that for equilibrium points P1 and P2, the set
of symmetrical axis is (0, − a

�
c

√
/2

����
bdf


, − a/2d), and the

set of symmetrical axis for equilibrium points P3 and P4 is (0,

a
�
c

√
/2

����
bdf


, − a/2d

���
bf


). In addition, the parameter d can

modulate the location of the nonzero equilibrium points
according to

���
1/d

√
,

���
1/d

√
, and 1/d, respectively. As a result,

the parameter d can modulate the amplitude of signal x1, x2,
and x3 according to

���
1/d

√
,

���
1/d

√
, and 1/d, respectively. +e

signal amplitude and Lyapunov exponent spectrum versus d
are depicted in Figure 10.

For the expression of nonzero equilibrium points of
system (8), parameters d, e, and f of quadratic terms cannot

modulate the location of equilibrium point P1 or P2. Ac-
cordingly, parameter d, e, or f cannot modulate the signal
amplitude. To realize amplitude modulation in system (8),
we introduce a unified parameter d in each nonlinear term
yielding

_x1 � ax2 − gx1 + dx2x3,

_x2 � bx1 − dx1x3,

_x3 � kx1 − cx3 + dx1x2,

⎧⎪⎪⎨

⎪⎪⎩
(13)

and the two nonzero equilibrium points are deduced as

P1 (a + b)
− k +

�����������������
k2 +(4(bcg)/(a + b))



2gd
,
− k +

�����������������
k2 +(4(bcg)/(a + b))



2d
,
b

d
 ,

P2 (a + b)
− k −

�����������������
k2 +(4(bcg)/(a + b))



2gd
,
− k −

�����������������
k2 +(4(bcg)/(a + b))



2d
,
b

d
 .

(14)

We know that for equilibrium points P1 and P2, the set of
symmetrical axis is (− k(a+ b)/2gd, − k/2d, 0). In addition,
the parameter d can modulate the location of the nonzero
equilibrium points according to 1/d, respectively. Similarly,
parameter d can modulate the amplitude of x1, x2, and x3
according to 1/d, respectively. +e signal amplitude and
Lyapunov exponent spectrum versus d are shown in
Figure 11.

5. Discussion and Conclusion

Exploring the amplitude modulation phenomenon of
chaotic signal is attractive yet recent topic of interest.
+is paper reported two chaotic systems with three
quadratic cross-product terms and analyzed the prop-
erty of amplitude modulation. By making an exhaustive
study on the characteristics of nonzero equilibrium
points, we attempt to address the possible principle for
amplitude modulation. +at is to say, the amplitude
parameter in the expression of nonzero equilibrium
point is symmetrical about some axis and can modulate
the location of the nonzero equilibrium point in phase
space.

+e addressed principle can be popularized to high-
dimensional chaotic system and other chaotic systems
except with quadratic nonlinearity [19–22], not relying
on the type of nonzero equilibrium point. However, for
the dynamical system with none, single, or an infinite
number of equilibrium points [23–26], the principle is
out of our consideration and deserves an in-depth
study.

It must be reiterated that the proposed principle is
just a prerequisite, but not a sufficient and necessary
condition for amplitude modulation. As an in-
terpretation, we consider the following system with cubic
nonlinearity:

_x1 � − ax1 + bx2x3,

_x2 � − cx2
3 + dx1x3,

_x3 � ex3 − fx1x2.

⎧⎪⎪⎨

⎪⎪⎩
(15)

System (15) holds five equilibrium points, and the
nonzero equilibrium points are described by

P1
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���
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df
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���
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df



 ,
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f

���
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bd



, −

��
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bf



, −
a

b

���
ce

df



 .

(16)

Clearly, the set of symmetrical axis for equilibrium
points P1, P2, P3, and P4 is (0, 0, 0). In addition, the pa-
rameter b can modulate the location of the nonzero equi-
librium points according to

���
1/b

√
,

���
1/b

√
, and 1/b; the

parameter c can modulate the location of the nonzero
equilibrium points according to

�
c

√
, 1, and

�
c

√
; the pa-

rameter d can modulate the location of the nonzero equi-
librium points according to

���
1/d

√
, 1, and

���
1/d

√
; and the

parameter f can modulate the location of the nonzero
equilibrium points according to 1/f,

���
1/f


, and

���
1/f


.

However, it is found from the numerical experiment that
only the nonlinear parameter d can modulate the amplitude
of x1, x2, and x3 according to

���
1/d

√
, 1, and

���
1/d

√
, respectively,

as plotted in Figure 12.
In spite of this, the principle provides a feasible mentality

for analyzing amplitude modulation of chaotic signal, which
can be briefly summarized from theoretical analysis to
numerical confirmation. We hope that our work can
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constitute a stimulus and afford a subservient reference for
further exploring the intrinsic amplitude modulation
mechanism of chaotic systems.
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�is paper reports an autonomous dynamical system, and it �nds that one nonhyperbolic zero equilibrium and two hyperbolic
nonzero equilibria coexist in this system. �us, it is di�cult to demonstrate the existence of chaos by Šil’nikov theorem.
Consequently, the topological horseshoe theory is adopted to rigorously prove the chaotic behaviors of the system in the phase
space of Poincaré map. �en, a single control scheme is designed to stabilize the dynamical system to its zero-equilibrium point.
Besides, to verify the theoretical analyses physically, the attractor and stabilization scheme are further realized via DSP-
based technique.

1. Introduction

Chaotic behaviors exist widely in biology, engineering,
economy, and many other scienti�c disciplines [1–4].
Chaotic systems have the properties of unpredictability,
topological mixing, ergodicity, and sensitivity to their initial
values and control parameters. Owing to the noise-like
spectrum and broad-band, chaotic signals are potentially
applicable in engineering such as random sequence gener-
ation [5], secure communication [6], image encryption
[7, 8], signal detection [9], radar and sonar systems [10], and
so on. �erefore, it is signi�cant to design and analyze new
chaotic systems. In 1963, Lorenz proposed the �rst three-
dimensional chaotic system when studying earth’s atmo-
spheric convection [11]. �en, many low-dimensional
mathematical models with positive Lyapunov exponents
have been introduced, along with the analysis of a rich class
of dynamical behaviors. New examples continue to be re-
ported for publication in nonlinear dynamics journals for
the physical applications. Nevertheless, it is necessary to
develop chaotic systems with simple structure and rich
dynamical behaviors from the perspective of application.

As a striking chaos theory with symbolic dynamics
obtained by Kennedy in continuous map [12], the topo-
logical horseshoe can provide an impactful tool for proving
chaotic dynamics in hyperbolic or nonhyperbolic system.
Up to present, many noteworthy theoretical progresses have
been extended in �nding the existence of horseshoe. For
example, Yang introduced the remarkable criteria for
�nding the topological horseshoe in noncontinuous map
[13, 14], which has been successfully applied to some
practical systems for verifying chaos [15, 16]. Li presented a
new method with three steps for �nding horseshoes in
dynamical systems by using several simple results on to-
pological horseshoes [17]. However, it is still a tough work to
�nd a topological horseshoe in a practical chaotic system
[18].

It is impossible to chronically predict the future behavior
of chaotic system, but one can stabilize the future behavior
into a certain range by using control technology.�e seminal
attempt of controlling chaos is the well-known OGY
method, which applies small perturbations to system pa-
rameter to keep the system close to the target periodic orbit
[19]. However, the experimental implementation of this
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method is restricted by the level of noise in the experimental
data for the sake of the discrete nature of the control signal.
,en, a continuous delayed feedback scheme is proposed
consequently [20]. ,e control signal is the perturbations of
the difference between the states of the current system and
one period of the target orbit in the past. ,erefore, the
intensity of the perturbations will vanish when the system
evolves to the desired orbit. Since then, a wide variety of
control approaches emerged for different applications, such
as backstepping control [21], sliding mode control [22],
sampled-data control [23], and multiswitching combination
control [24], just to name a few. However, the present
schemes focused on the control problem need several
controllers. From the points of both practical application
and theoretical research, it is significant to design simple yet
executable control technique.

In this paper, an autonomous chaotic system with a
simple algebraic structure of six terms is proposed. Basic
dynamical properties of the system, including equilibrium
point, phase portrait, Poincaré map, parameter bifurcation,
and Lyapunov exponent, are studied in theory and nu-
merical simulation. It is found that this system exhibits
fruitful dynamic behaviors of dense periodic windows and
coexistence of nonhyperbolic and hyperbolic equilibrium
points. And to rigorously verify the emergence of chaos of
this system in theory, the topological horseshoe is investi-
gated in the phase space of Poincaré map.,en, based on the
Lyapunov stability criterion, a single control scheme is
designed to stabilize the chaotic system to its zero-equi-
librium point. ,e implementation scheme of attractors and
control scheme are discussed in detail and realized via DSP-
based technique, confirming the validity and enforceability
of the theoretical scheme.

2. The Proposed Dynamical System

,e autonomous dynamical system considered here is given
by

_x1 � − ax1 + bx2,

_x2 � ex2 − fx1x3,

_x3 � − cx3
3 + dx1x2.

⎧⎪⎪⎨

⎪⎪⎩
(1)

Differential equations of system (1) are simple with a
cubic term and two quadratic cross-product terms. ,e
system parameters a, b, c, d, e, and f are all positive
constants.

2.1.DissipativityandExistenceofAttractor. We first consider
the general condition of dissipativity to ensure the chaotic
property:

∇V �
z _x1

x1
+

z _x2

x2
+

z _x3

x3
� − a + e − 3cx

2
3. (2)

,erefore, system (1) would be dissipative and will
converge to a subset of measure zero volume according to
dV/dt � e(− a+e− 3cx2

3), when satisfying − a + e − 3cx2
3 < 0. ,is

means that the volume will become V(0)e(− a+e− 3cx2
3)t at time

t through the flow generated by the system for an initial
volume V(0). ,erefore, there exists an attractor in system
(1) with − a + e − 3cx2

3 < 0.

2.2. Equilibrium Points and Stability. Considering the con-
dition of equilibrium point _x1 � 0, _x2 � 0, and _x3 � 0, we
obtain three equilibrium points of system (1), as follows:

P0(0, 0, 0),

P1
a

b

����
ce3

df3



,
a2

b2

����
ce3

df3



,
ae

bf
⎛⎝ ⎞⎠,

P2 −
a

b

����
ce3

df3



, −
a2

b2

����
ce3

df3



,
ae

bf
⎛⎝ ⎞⎠.

(3)

When selecting a� 1, b� 6, c� 5, d� 1, e� 3, and f� 2, the
equilibrium points and the corresponding eigenvalues are
shown in Table 1, including the type of equilibrium points.

From Table 1, it is known that the three equilibrium
points are all unstable with stable manifold and unstable
manifold. According to [25], since the characteristic value λ3
of equilibrium point P0 equals to zero, the equilibrium point
is nonhyperbolic type. However, equilibrium points P1 and
P2 are hyperbolic since all the real parts of the corresponding
eigenvalues of these two equilibrium points are nonzero.
,erefore, this is a chaotic system in which hyperbolic and
nonhyperbolic equilibrium points coexist. And, this kind of
chaotic system does not belong to Šil’nikov sense of the
chaotic system, and it is difficult to prove the existence of
chaos by Šil’nikov theorem. At present, chaotic systems with
special features, such as chaotic systems with nonequilib-
rium, with multistability and with hyperbolic and non-
hyperbolic equilibrium coexisting, have attracted extensive
attention by researchers [26, 27].

2.3. Phase Portrait and Chaotic Properties. When selecting
a� 1, b� 6, c� 5, d� 1, e� 3, f� 2, and initial values x
(0)� (0.01, 0.01, 0.05), the Lyapunov exponents of system (1)
are depicted in Figures 1(a) and 1(b) with the values as
0.123017, 0.000029, and − 11.414797. According to the three
Lyapunov exponents, the Kaplan–Yorke dimension is
DKY � 2 + (0.123017 + 0.000029)/11.414797� 2.0108. ,ere-
fore, the Kaplan–Yorke dimension is fractional. ,e cor-
responding chaotic phase diagrams further reveal that the
proposed system displays complicated chaotic behaviors, as
depicted in Figure 2.

As an important analytical technique, Poincaré map can
reflect the bifurcation and folding properties of chaos.
Selecting the parameter values a� 1, b� 6, c� 5, d� 1, e� 3,
and f� 2 and taking the crossing planes x3 � 0, x1 � 0, and
x2 � 0, we obtain the corresponding Poincaré maps illus-
trated in Figure 3. We can see the attractor structure from
the dense dots.

2.4. Influence of Parameter Variation. It is found that system
(1) exhibits complicated dynamical behaviors with the
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variation of system parameters. As explication, we only
consider the variation of parameters c and f in this
section.

When fixing parameters {a � 1, b � 6, d � 1, e � 3, f � 2}
and letting c vary from 2 to 8, the corresponding bifur-
cation diagram of state variable x3 and the maximum
Lyapunov exponent of system (1) versus c of numerical
calculation are shown in Figures 4(a) and 4(b), respec-
tively. As we know that system (1) shows rich dynamical
behaviors, ranging from stable equilibrium points, peri-
odic orbits to chaotic oscillations, depending on the pa-
rameter values. Furthermore, there emerge many visible
periodic windows in the chaotic region. ,en, we fix pa-
rameters a � 1, b � 6, c � 5, d � 1, and e � 3, while letting f
vary from 1 to 3. Figures 5(a) and 5(b) depict the bifur-
cation diagram of state variable x3 and the maximum
Lyapunov exponent of system (1) versus parameter f, re-
spectively. It is known that with the variation of parameter
f, system (1) ranges from stable equilibrium points, pe-
riodic orbits to chaotic oscillations, and there emerges
many densely distributed periodic windows in the chaotic
region, also showing the rich dynamics. ,e variation of
the properties of system (1) with system parameters c and f
is of great importance in image encryption.

3. Topological Horseshoe in the
Dynamical System

3.1. Review of Topological Horseshoe 2eorems. It is still a
challenge to find topological horseshoes in a concrete sys-
tem, especially to select a suitable quadrilateral in the cross
section. Before studying the horseshoe embedded in the
dynamical system, some theorems on topological horseshoe
are reviewed below [12–14, 17].

LetD be a compact subset of S, which is ametric space, and
there exists m mutually disjoint compact subsets D1, D2, . . .,
Dm of D.

Definition 1. Let D1
i , D2

i ⊂ Di be two fixed disjoint compact
subsets with 1≤ i≤m. If c∩D1

i and c∩D2
i are compact and

nonempty, we say that the connected subset c of Di connects
D1

i and D2
i , and denote this by D1

i↔
c

D2
i .

Definition 2. Let c be a connected subset of Di, we say that
f(c) is suitably across Di with respect to D1

i and D2
i , if there

is a connected subset ci ⊂ c satisfying f(ci) ⊂ Di, and
f(ci)∩D1

i and f(ci)∩D2
i are nonempty. In this case, it is

denoted by f(c)⟼Di.

Table 1: Equilibrium points and eigenvalues of system (1).

Equilibrium point Eigenvalues Type of equilibrium point
P0 (0, 0, 0) λ1 � − 1, λ2 � 3, λ3 � 0 Nonhyperbolic

P1 (0.6847, 0.1141, 0.25)
λ1 � 1.1087 + 0.6279i,
λ2 �1.1087 – 0.6279i,

λ3 � − 1.1549
Hyperbolic

P2 (–0.6847, -0.1141, 0.25)
λ1� 1.1087 + 0.6279i,
λ2�1.1087 – 0.6279i,

λ3� − 1.1549
Hyperbolic
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Figure 1: Lyapunov exponents of system (1) when a� 1, b� 6, c� 5, d� 1, e� 3, and f� 2.
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Definition 3. Suppose that σ: Σm⟶Σm and f: S⟶ S

are both continuous functions with topological spaces Σm
and S, respectively. If there exists a continuous surjection
h: Σm⟶ S confirming to f∘h � h∘σ, it is said that f is
topologically semiconjugate to function σ.

Lemma 1. If fp(Di)⟼Di, then we have fmp(Di)⟼Di,
where m is a positive integer.

Lemma 2. If fp(D1)⟼D1, fp(D1)⟼D2, fq(D2)

⟼D1, and fq(D2)⟼D2, then there would exist a
compact invariant set M ⊂ D, such that fp+q | M is semi-
conjugate to 2-shift dynamics and the topological entropy of f

will satisfy ent(f)≥ [1/(p + q)]log 2.

3.2. Finding Topological Horseshoe in the Dynamical System.
According to the theory above, a horseshoe will be found in
the dynamical system by three steps [17]. In this process, we
set the parameters of system (1) as a� 1, b� 6, c� 5, d� 1,
e� 3, f� 2, and initial condition x (0)� (0.01, 0.01, 0.05).

Step 1. As shown in Figure 6, we first select four vertices of
the Poincaré section P on the plane
Θ � (x1, x2, x3) ∈ R3: x2 � 0  as (–8, 0, –0.5), (–8, 0, 1.5),
(8, 0, 1.5), and (8, 0, –0.5).

Step 2. ,en, after many trial-and-error numerical simu-
lations, we carefully pick a quadrilateral D1 of quadrangle P,
with the four vertices being

(− 7.618610595, 0, 1.062250623)

(− 7.643703532, 0, 1.049345387)

(− 7.239428439, 0, 1.018765586)

(− 7.215729554, 0, 1.031951372).

(4)

Let us suppose that D1
1 denotes the left side while D2

1
denotes the right side of quadrilateralD1. It is known from the
numerical result that the third return map H3(D1

1) lies on the
left side of D1, but the third return map H3(D2

1) lies on the
right side of D1. ,ereby, under this return map, the image
H3(x) (x ∈ D1) lies wholly across the quadrangle D1 with
respect to the sides D1

1 and D2
1, seen in Figure 7(a).
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Figure 2: Chaotic phase diagrams of the proposed system.
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Figure 3: Poincaré maps on the plane of (a) x3 � 0, (b) x1 � 0, and (c) x2 � 0.
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Figure 4: (a) Bifurcation diagram and (b) Lyapunov exponents of system (1) versus parameter c.
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Step 3. Finally, we will take another quadrilateral D2 of P such
that H(D1)⟼D2, H(D2)⟼D2 and H(D2)⟼D1. By a
great deal of attempts, the four vertexes ofD2 are picked as follows:

(− 7.865357807, 0, 1.082029302)

(− 7.896026952, 0, 1.066318579)

(− 7.661826208, 0, 1.048363466)

(− 7.633945167, 0, 1.063232544).

(5)

Analogously, D1
2 and D2

2 indicate the left and right sides of
quadrilateral D2, respectively. ,e numerical simulations of
the third return Poincaré map H3(D2) and the enlarged view
are depicted in Figures 7(b) and 7(c), respectively. It is shown
from the figures that the return map H3(x) (x ∈ D2) suitably
across the quadrangles D1 and D2, with H3(D1

2) lying on the
right side of D1 and H3(D2

2) lying on the left side of D2.

,erefore, we conclude by virtue of Lemma 2 that there
would exist a compact invariant setM ⊂ D, such thatH6 | M is
semiconjugate to 2-shift dynamics, and we obtain
ent(H)≥ (log 2)/6> 0.,us, system (1) is proved to be chaotic
in theory, with the parameters of a� 1, b� 6, c� 5, d� 1, e� 3,
f� 2, and the initial condition of x (0)� (0.01, 0.01, 0.05).

4. Stabilization for the Dynamical System

4.1. Control Scheme. In order to stabilize the proposed
dynamical system, we add the single controller u on the
second equation. ,us, the controlled dynamical system is
depicted as follows:

_x1 � − ax1 + bx2,

_x2 � ex2 − fx1x3 + u,

_x3 � − cx3
3 + dx1x2.

⎧⎪⎪⎨

⎪⎪⎩
(6)

,e purpose of our design is to propose suitable control
scheme u such that all the output variables of system (6)
converge to the zero equilibrium point asymptotically.

Theorem 1. For the controlled system (6), we design the
single controller u as

u � Ksign x2( . (7)

If the control gain satisfies K≤ − ((b2/4a) + e)B2 with
B2 ≥ ‖x2‖, then the output variables of the controlled system
(6) converges to the zero equilibrium point asymptotically.

Proof. We choose the candidate Lyapunov function as

V � 0.5
x2
1 + x2

2 + fx2
3

d
 . (8)

,e corresponding time derivative of V(x) is deduced by
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Figure 5: (a) Bifurcation diagram and (b) Lyapunov exponents of system (1) versus parameter f.
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Figure 6: Poincaré cross section of the proposed system.
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_V �
x1 _x1 + x2 _x2 + fx3 _x3

d

� − ax
2
1 + bx1x2 + ex

2
2 − fx1x2x3

+ Kx2sign x2(  −
cfx4

3
d

+ fx1x2x3

� − ax
2
1 + bx1x2 + ex

2
2 + K x2


 −

cfx4
3

d

� − ax
2
1 − bx1x2 +

b

2
��
a

√ x2 

2
⎡⎣ ⎤⎦ +

b

2
��
a

√ x2 

2

+ ex
2
2 + K x2


 −

cfx4
3

d

� −
��
a

√
x1 −

b

2
��
a

√ x2 

2

+
b2

4a
+ e  x2


 + K  x2


 −

cfx4
3

d
.

(9)

,us, when K≤ − ((b2/4a) + e)B2, we find that

_V≤ −
��
a

√
x1 −

b

2
��
a

√ x2 

2

+
b2

4a
+ e B2 + K  x2


 −

cfx4
3

d

≤ −
��
a

√
x1 −

b

2
��
a

√ x2 

2

−
cfx4

3
d
≤ 0.

(10)

,erefore, the output variables of the controlled system
(6) will converge to the zero equilibrium point
asymptotically. □

4.2. Numerical Verification. In this section, numerical
simulations are executed by adopting the ODE45 method to
verify the availability of the proposed control scheme. For
comparing conveniently, we choose the system parameters
as a� 1, b� 6, c� 5, d� 1, e� 3, and f� 2, and the initial states
are set as x (0)� (0.01, 0.01, 0.01). With the parameter set,
system (6) is chaotic before the controller is put into effect.
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Figure 7: (a) ,e subset D1 and its image; (b) and (c) the subset D2 and its image.
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,e controller u is exerted at 60th second, and the
control gain is taken as K� –2 and K� –16. Figures 8(a) and
8(b) depict the control results, from which one can see that
we can obtain good control effect with only taking a short
time for the system to be stabilized at the fixed point. And, as
we can also know only small control energy is needed to
reach our control purpose.

5. DSP-Based Realization of the Attractors and
Stabilization Scheme

,e implementation of continuous chaotic systems with
electronic circuit has been widely adopted. ,e parameter
tolerance of the components of analog electronic circuit
will cause the trajectory change of the chaotic system,
which restricts its practical engineering application.
,erefore, DSP-based implement of continuous chaotic
system can overcome these problems effectively. In this
section, the attractors of system (1) and stabilization
scheme for system (6) are implemented based on the DSP
platform. In our experiments, the Texas Instrument DSP
TMS320F28335 is employed to calculate the state variable
and the control variable, which can run at 150MHz and
interfaces with a 12-bit quad-channel digital-to-analog
converter DAC7724 by parallel bus (PB) mode. Control
signals required by DAC7724 are generated by DSP and
CPLD chips. ,e block diagram of hardware platform is
shown in Figure 9.

In practice, we discretize the continuous system by the
classical fourth-order Runge–Kutta algorithm with the
sampling period ΔT. From Figure 2, we know that the
amplitude of variable x3 (|x3|< 2) is too small to affect the
computational precision. ,erefore, we proposed a general
method to rescale the system variables by scaling factors ki,
where i � 1, 2, 3.

Setting ui � kixi, i � 1, 2, 3, system (1) can be trans-
formed to

_ui � fi a, b, c, d, e, f, k1, k2, k3, u1, u2,u3 , (11)

where i � 1, 2, 3.
When introducing the linear transformation of

ui⟶ xi, the corresponding differential equation of system
(11) can be expressed as

_x1 � − ax1 +
bk1

k2
x2,

_x2 � ex2 −
fk2

k1k3
x1x3,

_x3 � −
c

k2
3
x
3
3 +

dk3

k1k2
x1x2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Discretizing system (12) using the classical fourth-order
Runge–Kutta algorithm, the following difference equations
can be obtained:

xi(n + 1) � xi(n) + ΔT
Ki,1 + 2Ki,2 + 2Ki,3 + Ki,4 

6
, (13)

where i � 1, 2, 3 and
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Figure 8: Control results of state variables with (a) K� –2 and
(b) K� –16.
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Figure 9: Block diagram for DSP implementation of chaotic
attractors and its stabilization.
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K1,1 � − ax1(n) +
bk1

k2
x2(n),

K2,1 � ex2(n) −
fk2

k1k3
x1(n)x3(n),

K3,1 � −
c

k2
3
x
3
3(n) +

dk3

k1k2
x1(n)x2(n),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

K1,j � − a x1(n) + mK1,j− 1  +
bk1
k2

x2(n) + mK2,j− 1 ,

K2,j � e x2(n) + mK2,j− 1  −
fk2

k1k3
x1(n) + mK1,j− 1  x3(n) + mK3,j− 1 ,

K3,j � −
c

k2
3

x3(n) + mK3,j− 1 
3

+
dk3

k1k2
x1(n) + mK1,j− 1  x2(n) + mK2,j− 1 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

(a) (b)

(c) (d)

(e)

Figure 10: DSP-based realization for (a)–(c) chaotic attractors; (d) stabilization process; (e) experiment platform.
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When j � 2, 3, m � 0.5, and when j � 4, m � 1.
,e digital sequences x1(n), x2(n), x3(n) are produced by

DSP according to (13)–(15) and converted into the corre-
sponding analog sequences by the DAC7724 and then trans-
mitted to oscilloscope. With the set a� 1, b� 6, c� 5, d� 1,
e� 3, f� 2, k1 � 1, k2 � 1, k3 � 2, x (0)� (0.01, 0.01, 0.01), and
the control gain K� –6, the results of DSP-based realization of
the attractor and stabilization scheme are depicted in Figure 10.
By comparing with the attractors in Figure 2 and stabilization
process in Figure 7 simulated by Matlab, it can be concluded
that they have a good qualitative agreement.

6. Conclusion

In this paper, we presented a three-dimensional dynamical
system with a simple algebraic structure. Basic dynamical
properties of the system, including equilibrium point, phase
portrait, Poincaré map, parameter bifurcation, and Lyapu-
nov exponent, are studied through theoretical analysis and
numerical simulation. And, the theory of topological
horseshoe is adopted to rigorously prove the chaotic
emergence of the system theoretically. ,en, based on the
Lyapunov stability criterion, we designed a single control
scheme to stabilize the chaotic system to its zero-equilibrium
point. ,e attractor and stabilization process are realized via
DSP-based technology, which have a good qualitative
agreement to the Matlab simulation; thus it well confirmed
the validity and enforceability of the theoretical scheme.
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Based on the integer-order memristive system that can generate two-scroll, three-scroll, and four-scroll chaotic attractors, in this 
paper, we found other phenomena that two kinds of three-scroll chaotic attractors coexist in this system with di�erent initial 
conditions. Furthermore, we proposed a coexisting fractional-order system based on the three-scroll chaotic attractors system, 
in which the three-scroll or four-scroll chaotic attractors emerged with di�erent fractional-orders �. Meanwhile, with fractional-
order � = 0.965 and di�erent initial conditions, coexistence of two kinds of three-scroll and four-scroll chaotic attractors is found 
simultaneously. Finally, we discussed controlling chaos for the fractional-order memristive chaotic system.

1. Introduction

Due to the typical characteristics of high irregularity, unpre-
dictability, and complexity of chaotic systems, chaotic sys-
tems and its applications have been attracted more and more 
attentions in the last few decades [1–16], e.g., information 
processing [11], secure communication [12, 13], image 
encryption [14, 15], machine learning [16], and so on. 
Memristor—the missing circuit element—has been discov-
ered by Leon Chua in 1971 [17], and it has been successfully 
realized in 2008 [18]. Recently, some mathematical models 
of memristor-based systems were proposed. For example, 
Muthuswamy and Chua reported a memristor-based chaotic 
system with single-scroll attractor [19], Bao et al. presented 
a memristor-based chaotic system with double-scroll attrac-
tor [20], Teng et al. reported a memristor-based chaotic sys-
tem with double-scroll and four-scroll attractors [21], Zhou 
and Ke gave a memristive-based chaotic system with two-
scroll to four-scroll attractors [1], Sun et al. suggested a mem-
ristor-based chaotic system with in¢nite chaotic attractors 
[22], and so on.

Chaotic attractors have also been reported in many frac-
tional-order nonlinear systems, e.g., the fractional-order 
Lorenz chaotic system [23], the fractional-order Chen chaotic 
system [24], the fractional-order Lu chaotic system [24], the 
fractional-order brushless DC motor chaotic system[25], the 
fractional-order micro-electro-mechanical chaotic system 
[26], the fractional order coronary artery chaotic system [27], 
etc. On the other hand, some memristor-based fractional-or-
der chaotic systems have been proposed. For example, a frac-
tional-order memristor-based simplest chaotic circuit with 
double-scroll and four-scroll attractors using fourth-degree 
polynomial [21] was reported by Teng et al. and a fraction-
al-order memristor-based chaotic system with single-scroll 
attractor and a stable equilibrium point [28] was reported by 
Prakash et al., and a fractional-order memristor-based chaotic 
system with coexisting attractors [1] was reported by Zhou 
and Ke. Moreover, some fractional-order chaotic systems have 
been implemented by electronic circuit, e.g., a fractional-order 
Lorenz hyperchaotic system has been implemented by DSP 
[29], a 4-D nonequilibrium fractional-order chaotic system 
has been implemented by EWB [30], and the fractional-order 
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chaotic systems with two equilibriums and no equilibrium 
have been realized by FPGA [31].

On the other hand, due to the important application of sta-
bility and control of chaotic systems in engineering science [9, 
10, 24–26, 32–34], the stability and control of chaotic systems 
have attracted more and more attention in recent years. Many 
control schemes have been suggested, e.g., linear and nonlinear 
feedback, scalar and vector controller, single-state variable, and 
multiple-state variables. However, control cost and control 
e�ectiveness must be considered in practice. �erefore, in the 
process of stability control of chaotic system, single-state vari-
able or scalar controller should be the ¢rst choice.

Based on the integer-order memristor-based chaotic sys-
tem [1] reported by Zhou and Ke, in this paper, we ¢nd some 
new results in the integer-order memristor-based chaotic sys-
tem [1], i.e., two kinds of three-scroll chaotic attractor coexist 
with di�erent initial conditions. Furthermore, its fraction-
al-order version is proposed. We ¢nd that not only three-scroll 
chaotic attractors but also four-scroll chaotic attractors are 
emerged in its fractional-order version. Meanwhile, two kinds 
of three-scroll and four-scroll chaotic attractors coexist with 
di�erent initial conditions for fractional order � = 0.965. To 
the best of our knowledge, our results have rarely been 
reported before. Finally, in order to stabilize the fractional- 
order version memristive chaotic system via a single-state 
variable, a control strategy is suggested.

�is article is structure as follows: we describe the inte-
ger-order memristor-based chaotic system [1] and ¢nd some 
new results in Section 2. In Section 3, based on the integer- 
order memristor-based chaotic system [1], its fractional-order 
version is suggested and the four-scroll chaotic attractors are 
found, and coexisting two kinds of three-scroll and four-scroll 
chaotic attractors for di�erent initial conditions are found. �e 
Section 4 presents a control strategy via single-state variable. 
In Section 5, the conclusion is given.

2. Two Kinds of Three-Scroll Chaotic Attractors 
Coexist in an Integer-Order Memristive System

Recently, an integer-order memristive system reported by 
Zhou and Ke [1] is as follows:

where 1 ≤ � ≤ 8.
Remark 1. �ere is only one equilibrium point in (1), i.e., 
(�1, �2, �3) = (0, 0, 0), and the equilibrium point is unstable. 
More details are in reference [1].

Zhou and Ke [1] reported that there are two-scroll to four-
scroll chaotic attractors in this system (1) with di�erent �. For 

(1)

��1
�� = �2,
��2
�� = −
[�1 + (0.5 �43 − 2.4)�2]

� ,
��3
�� = −�2 − (

3
4 − �

2
2)�3,

example [1], the two-scroll chaotic attractor is emerged for 
� = 4, the four-scroll chaotic attractor is emerged for � = 1.4,  
the three-scroll chaotic attractors are emerged for � = 1.734, 
and another type of three-scroll chaotic attractor is emerged 
for � = 1.8.

In this paper, the integer-order memristive system is fur-
ther studied. By numerical calculations, we ¢nd that two 
kinds of three-scroll chaotic attractors coexist in this system 
(1) for  � = 1.8 with di�erent initial conditions, which has 
not been reported by Zhou and Ke [1]. Some results are as 
follows.

Let  � = 1.8 and initial conditions be (2, 1, 1) and 
(−2, −1, −1), respectively, two kinds of three-scroll chaotic 
attractors coexist as shown in Figure 1(a).

Let � = 1.8 and initial conditions be (0.2, 0.1, 0.1) and 
(−0.2, −0.1, −0.1), respectively, two kinds of three-scroll cha-
otic attractors also coexist as shown in Figure 1(b).

A¨er a great deal of numerical calculations, we ¢nd that 
there are the same chaotic attractors (blue line) with initial 
conditions (2, ±1, ±1) and (0.2, ±0.1, ±0.1), and the same cha-
otic attractors (red line) with initial conditions (−2, ±1, ±1)
and (−0.2, ±0.1, ±0.1). It must be pointed out that only the 
chaotic attractors described by blue line are reported in Ref. 
[1] with  � = 1.8. In this paper, new chaotic attractors (red 
line) are found and two kinds of three-scroll chaotic attractors 
coexist in system (1) with  � = 1.8.
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Figure 1: Coexistence of two kinds of three-scroll chaotic attractors.
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3. Two Kinds of Three-Scroll and Four-Scroll 
Chaotic Attractors Coexist in Fractional-Order 
Memristive Chaotic System

Based on memristive chaotic system mentioned above with  
� = 1.8, a fractional-order memristive system is constructed, 
and coexistence of two kinds of three-scroll and four-scroll 
chaotic attractors is found. �e fractional-order memristive 
system is described as

where 0 < � ≤ 1 is fractional-order, and ����/��� =∫�0(� − �)−����(�)/�(1 − �) with �(1 − �) = ∫�0�−��−���.

(2)

���1
��� = �2,
���2
��� = −

[�1 + (0.5�43 − 2.4)�2]
1.8 ,

���3
��� = −�2 − (

3
4 − �

2
2)�3., Now, based on the Adams–Bashforth–Moulton algorithm 

[1] for fractional-order system, let �be the total time of numer-
ical calculation, � be the iterative times, the step length be 
� = �/� and �� = ��(� = 0, 1, 2 . . . , �). So, the fractional- 
order memristive system (2) is discretized as follows:

(3)

�1(� + 1) = �1(0) + �
�

�(� + 2)[�
�
2(� + 1) +

�∑
�=0
��,�+1�2(�)],

�2(� + 1) = �2(0) + �
�

�(� + 2)[[−
(��1(� + 1) + (0.5(��3(� + 1))4 − 2.4)��2(� + 1))

1.4 + �∑
�=0
��,�+1(−(�1(�) + (0.5(�3(�))

4 − 2.4)�2(�))
1.4 )]],

�3(� + 1) = �3(0) + �
�

�(� + 2)[−��2(� + 1) − (0.75 − (��2(� + 1))2)��3(� + 1) +
�∑
�=0
��,�+1(−�2(�) − (0.75 − (�2(�)2))�3(�))],
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Figure 2: �e maximum LE varies with fractional-order �.

and

In order to study the dynamical behaviors of system (2), 
we calculate the maximum Lyapunov exponents (Maximum 
LE) of system (2) ¢rstly. �e Maximum LE with respect to 
fractional-order � is displayed in Figure 2.

In Figure 2, the positive Maximum LE indicates that there 
are chaotic attractors in fractional-order memristive system 
(2). Now, some results are as follows:

3.1. Four-Scroll Chaotic Attractor Emerges in System (2) with 
Q = 0.98. Let � = 0.98, we can obtain that the Maximum LE 
is 0.2501. It indicates that the fractional-order memristive 
system (2) has a chaotic attractor. Let initial conditions be 
(2, 1, 1), it is obtained that four-scroll chaotic attractor emerges 
in system (2) as shown in Figure 3.

We note that there are only three-scroll chaotic attractors 
in integer-order memristive system (1). However, the four-
scroll chaotic attractors are generated in its fractional-order 

(4)

��1(� + 1) = �1(0) + 1�(�)
�∑
�=0
��,�+1�2(�),

��2(� + 1) = �2(0) + 1�(�)
�∑
�=0
��,�+1(−

(�1(�) + (0.5(�3(�))4 − 2.4)�2(�))
1.4 ),

��3(� + 1) = �3(0) + 1�(�)
�∑
�=0
��,�+1(−�2(�) − (0.75 − (�2(�))2)�3(�)),

�e approximation error is as follows:

where (�1(0), �2(0), �3(0)) are the initial conditions for frac-
tional-order system (2).

(5)

��,�+1 =
{{
{{
{

��+1 − (� − �)(� + 1)�, � = 0,
(� − � + 2)�+1 + (� − �)�+1 − 2(� − � + 1)�+1, 1 ≤ � ≤ �,
1, � = � + 1,

(6)��,�+1 = �� [(� − � + 1)
� − (� − �)�]
� , 0 ≤ � ≤ �.

(7)

�����1(��) − �1(�)���� = �(�1+�),�����2(��) − �2(�)���� = �(�1+�),�����3(��) − �3(�)���� = �(�1+�),
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attractors in system (2) for � = 0.965 with initial conditions 
(±0.2, ±0.1, ±0.1), i.e., there is no four-scroll chaotic attractor 
in system (2) with these initial conditions. �e coexisting two 
kinds of three-scroll chaotic attractors are shown in Figure 5.

In summary, two kinds of three-scroll chaotic attractors 
emerge in the integer-order memristive system (1) for  � = 1.8.  
�e fractional-order memristive system (2), however, can gen-
erate four-scroll chaotic attractors for � = 0.98. Moreover, 
coexisting two kinds of three-scroll and four-scroll chaotic 
attractors are found in fractional-order memristive system (2) 
for � = 0.965. It indicates that the fractional-order memristive 
system (2) has richer and more complex chaotic attractors 
than the integer-order memristive system (1).

4. Control of the Fractional-Order Memristive 
Chaotic System (2) via a Single State Variable

Firstly, in order to control the fractional-order memristive 
chaotic system (2), the following lemma for the fractional-or-
der nonlinear system is given. Consider the following frac-
tional-order nonlinear system (8),

where 0 < � ≤ 1, � = [�1, �2, . . . , ��]� is the real state vector, 
� ∈ ��×� is a constant real matrix, �� and �(�) denote the lin-
ear and nonlinear parts in nonlinear system (8).

Lemma 3 (More details are in [35]). Given the fractional-
order nonlinear system (8), if the following conditions are held,

(a)  �(�)�����=0 = 0, and lim�→0
�����(�)/����� = 0,

(b)  ����arg ��(�)���� ≥ 0.5��(� = 1, 2, . . . , �), and �‖�‖ > 1,
where ��(�)(� = 1, 2, . . . , �) are the eigenvalues of 
matrix �, and ‖�‖ is the �2-norm of matrix �, then, 
system (8) is said to be asymptotically stable.

Secondly, in order to stable the fractional-order memristive 
chaotic system (2) via single-state variable, the following con-
trolled fractional-order memristive system (9) is considered.

(8)
���
��� = �� + �(�),

version system. By numerical calculation, we ¢nd that there 
are same chaotic attractors (as shown in Figure 3) with initial 
conditions (±2, ±1, ±1) or (±0.2, ±0.1, ±0.1).
3.2. Two Kinds of �ree-Scroll, and Four-Scroll Chaotic 
Attractors Coexist in System (2) with q = 0.965. Let � = 0.965,  
we can obtain that the maximum LE is 0.2781. It indicates 
that the fractional-order memristive system (2) has a chaotic 
attractor. By numerical calculation, we ¢nd that a three-scroll 
chaotic attractor emerges with initial conditions (2, 1, 1), 
another type of three-scroll chaotic attractor emerges with 
initial conditions (−2, −1, −1), and a four-scroll chaotic 
attractor emerges with initial conditions (2, −1, −1). �erefore, 
two kinds of three-scroll chaotic attractors coexist with four-
scroll chaotic attractor in fractional-order memristive chaotic 
system (2), as shown in Figure 4.

Please note that only two kinds of three-scroll chaotic 
attractors coexist in the integer-order memristive system (1), 
while two kinds of three-scroll chaotic attractors coexist with 
four-scroll chaotic attractor in the fractional-order memristive 
system (2).

Remark 2. By numerical calculation, we ¢nd that there 
are only coexisting two kinds of three-scroll chaotic 
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Figure 4: Coexisting two kinds of three-scroll, four-scroll chaotic 
attractors in fractional-order memristive system (2).
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����arg���((�))���� ≥ 0.5��(� = 1, 2, 3) and �‖�(�)‖ > 1. According 
to the lemma, the controlled fractional-order memristive sys-
tem (9) is asymptotically stable. �is result indicates that the 
fractional-order memristive chaotic system (2) can be stability 
controlled via the single-state variable �2.

In addition, some numerical simulations are given to ver-
ify the validity of the control strategy.

For example, choosing � = 0.98, and � = −7/3, thus, the 
eigenvalues of matrix �(�) are −0.5 + √11�/6, −0.5 − √11�/6,  
−3/4, and �‖�(�)‖ = 1.7824, respectively. According to the 
lemma, the controlled fractional-order memristive system (9) 
is asymptotically stable. �e results of state variables vary with 
time as shown in Figure 6(a). Here, the initial conditions are 
�10 = 2, �20 = 1, and �30 = 1, respectively.

For example, choosing � = 0.965 and � = −2, the eigen-
values of matrix �(�) are thus (−1 + 2�)/3, (−1 − 2�)/3, and 
−3/4, respectively, as well as �‖�(�)‖ = 1.6023. According to 
the lemma, the controlled fractional-order memristive system 
(9) is still asymptotically stable. �e results of state variables 
vary with time as shown in Figures 6(b) and 6(c). In Figure 6(b), 
the black curve corresponds to the initial conditions 
(�10, �20, �30) = (2, −1, −1), and the blue curve corresponds to 
the initial conditions (�10, �20, �30) = (2, 1, 1). It should be 
mentioned that there are four-scroll chaotic attractors (the 
black curve in Figure 4) in fractional-order memristive system 
(2) with initial conditions (�10, �20, �30) = (2, −1, −1), while 
there are three-scroll chaotic attractors (the blue curve in 
Figure 4) in fractional-order memristive system (2) with initial 
conditions (�10, �20, �30) = (2, 1, 1).

where � is a real number. According to system (8), we can write out, 

Now, one can obtain �(�)�����=0 = 0 and
 

Meanwhile, it is obvious that there will be some real 
 number C, which can meet the needs of both 

(9)

���1
��� = �2,
���2
��� = ��2 −

[�1 + (0.5�43 − 2.4)�2]
1.8 ,

���3
��� = −�2 − (

3
4 − �

2
2)�3,

(10)

�(�) = ( 0 1 0− 11.8 � + 43 00 −1 −34 ),
�(�) = ( 0−5�2�4318�22�3 ).

(11)

lim
�→0
(���������(�)� ��������) = lim�→0 √{(−5�2�

4
3/18)2 + (�22�3)2}(�21 + �22 + �23)

≤ lim
�→0
√�83 + �22�23 = 0.
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Figure 6: �e results of state variables vary with time.
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order memristive system (1). It indicates that the fractional- 
order memristive system (2) generates four-scroll chaotic 
attractors while the integer-order memristive system (1) gen-
erates three-scroll chaotic attractors. To the best of our knowl-
edge, this result is rarely reported. Moreover, let fractional-order 
� = 0.965, it is obtained that the coexisting two kinds of three-
scroll and four-scroll chaotic attractors emerge for di�erent 
initial conditions. �erefore, not only three-scroll chaotic 
attractors but also four-scroll chaotic attractors are found in 
fractional-order memristive system (2).

Finally, a control strategy for the fractional-order mem-
ristive chaotic system (2) is proposed via single-state variable, 
and numerical simulations are employed to verify the validity 
of the proposed control strategy.
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where 

and then, system is said to be asymptotically stable.

Proof. By the above Lemma, this Proposition is easy to prove.

As mentioned above, the fractional-order memristive cha-
otic system (2) can be stability controlled via the single-state 
variable �2.

5. Conclusions

In this paper, some new results for the integer-order memris-
tive system [1] are found. �e coexistence of two kinds of 
three-scroll chaotic tractors emerges in the integer-order 
memristive system (1) with di�erent initial conditions, which 
Zhou and Ke have not reported in reference [1]. Furthermore, 
based on chaotic system (1), a fractional-order memristive 
system (2) is suggested. �e largest Lyapunov exponents are 
obtained by numerical algorithm, which indicates that there 
are chaotic attractors in the fractional-order memristive 
system (2).
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(12)

���1
��� = �2 + ��2,
���2
��� = −

[�1 + (0.5�43 − 2.4)�2]
1.8 ,

���3
��� = −�2 − (

3
4 − �

2
2)�3,

(13)�(�) = ( 0 1 + � 0− 11.8 43 00 −1 −34
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�is article investigates an adaptive multi-switching synchronization for two identical high-order memristor-based hyperchaotic 
systems with uncertain parameters. Firstly, the dynamic characteristics of two high-order memristor hyperchaotic systems 
with uncertain parameters are analyzed. �en, an adaptive multi-switching controller is designed to realize the multi-switching 
synchronization of the two high-order hyperchaotic systems, and the unknown parameters of the systems are identi�ed to their true 
values. Furthermore, numerical simulation results testify the e�ectiveness of the proposed strategy. Finally, the proposed algorithm 
applied in secure communication of masking encryption and image encryption is validated by statistical analysis.

1. Introduction

Chaos is a kind of irregular and unstable motion state existing 
in nonlinear system. And it has three properties: in�nite recur-
rence, bondedness, and sensitivity to initial conditions. Since 
the slight change of the initial state value will result in a large 
error in the chaotic system, chaos was considered to be harm-
ful until Pecora and Carrol proposed the concept of chaos 
synchronization in 1990, the synchronization of two coupled 
chaotic oscillators is observed for the �rst time [1]. Chaos 
synchronization means that the motion trajectory of one sys-
tem converges to the trajectory of another system and is always 
consistent. �e synchronization of chaotic systems has drawn 
attentions in many �elds including secure communication 
[2–4], electrical engineering, and biological system [5]. In 
practical engineering, there exists partially or fully uncertain 
parameters in drive or response systems, the conventional 
control methods can not be applied to synchronize the two 
chaotic systems with uncertainties. Hence, a number of control 
methods have been studied to accomplish two chaos synchro-
nization with unknown parameters or uncertain terms, such 
as sliding mode control method [6–8], impulsive control [9], 
fuzzy control scheme [10, 11], and adaptive strategies [6, 

12–14]. �e adaptive synchronization for uncertain chaotic 
system was proposed by Parlitz �rstly, the identi�cation 
method of the adaptive synchronization was employed to esti-
mation the unknown parameters in Lorenz system [15]. Later, 
this strategy has been extended to other uncertain chaotic 
systems. Adaptive synchronization methods for a class of cha-
otic systems existing in the literature are studied in [16]. 
However, the linear independence condition for some chaotic 
systems with unknown parameters is neglected to guarantee 
the true convergence of the estimated parameters. Reference 
[17] described the principle of the linear independence, the 
functions ��(�)(� = 1, 2, ⋅ ⋅ ⋅ , �) are said to be linear independ-
ent if there do not exist nonzero constants �� (� = 1, 2, ⋅ ⋅ ⋅ , �), 
such that �1(�)�1 + �2(�)�2 + ⋅ ⋅ ⋅ + ��(�)�� = 0.�e adaptive 
multi-switching synchronization was proven to be e�ective to 
solve the identi�cation of the unknown parameters in [18].

Multi-switching synchronization proposed by Ucar can 
provide more combined error spaces [19], it is bene�cial to 
prevent intruders from gaining useful informations of the cha-
otic synchronization system. Although multi-switching syn-
chronization is suitable to enhance anti-attack and resistance 
for secure communication, only a few literatures for it have 
been proposed [20–24]. Wang and S investigated the 
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multi-switching synchronization of chaotic systems with 
unknown parameters by the adaptive control techniques [20]. 
Ahmad et al. implemented multi-switching combination syn-
chronization for three chaotic systems, and introduced its 
application in secure communication [21]. Wen et al. addressed 
adaptive control method to accomplish multi-switching com-
bination synchronization of three nonidentical chaotic systems 
with unknown parameters [22]. Khan et al. designed a mul-
ti-switching synchronization strategy for di�erent switches of 
three masters and one slave hyperchaotic system [23]. Prajapati 
et al. completed multi-switching compound synchronization 
of four di�erent chaotic systems [24]. Above these analysis, 
these chaotic or hyperchaotic systems are 3D or 4D systems 
without considering memristors. It will be a challenging task 
to study chaotic synchronization with memristor. Hence, the 
adaptive multi-switching synchronization can be extend to the 
memristor-based systems with unknown parameters.

�e memristor is one of three breakthrough inventions of 
Chua in the nonlinear control systems. In 1971, Chua con-
ceived the notion of memristors based on the principle of 
symmetry and signal integrity analysis, and considered mem-
ristors to be the fourth circuit component following capacitors, 
resistors, and inductors [25]. �e researches on memristor 
have attract signi�cant attentions only recently a¤er the real-
ization of TiO2-based physical memristor by the HP 
Laboratories in 2008 [26]. Itoh and Chua developed memristor 
oscillators which was a kind of typical memristor-based cha-
otic system [27]. In recent years, many researches on memris-
tor have attracted the attention of scholars [10, 11, 13, 14, 
28–32]. Wen et al. designed an adaptive controller to solve the 
synchronization problem of the memristor-based Chua cir-
cuit. Wen et al. established a fuzzy modeling and proposed a 
fuzzy controller to solve the synchronization of di�erent mem-
ristor-based chaotic systems [10]. Wang et al. designed and 
analyzed the adaptive synchronization for two §ux-controlled 
5D memristor chaotic systems, but the unknown parameters 
of the systems can not be identi�ed to the true value for the 
linear independence condition. In [31], the analysis of the 
linear dependence condition for the parameter identi�cation 
is followed as

Finally, it is clear that �1 = 0
�����→∞ , �2 = 0

�����→∞ , �3 = 0
�����→∞ ,

�4 = 0
�����→∞ , �5 = 0

�����→∞ with the realization of synchronization 
between the drive system and the response system. We know 
� − �̂(�) = �����1 and �̂ (�) − � = �����2 according to linear 
independence, where the constant numbers ������(� = 1, 2)
can be arbitrary values. Hence, the unknown parameters can 
not be identi�ed to the true values. Based on the above anal-
ysis, memristor-based chaotic system synchronization has 
been widely studied [2, 8, 13, 33], but there are few literatures 
on the synchronization of memristor chaotic systems with 
considering the linear independence of unknown parameters, 
the unknown parameters can not be identi�ed the true values. 

(1)

̇�1 = (� − �̂(�))(�2 − �1) − �1�1,
̇�2 = −�2�2,
̇�3 = (�̂(�) − �)�3 − �3�3,
̇�4 = −�4�4,
̇�5 = −�5�5.

In order to solve the problem of unknown parameter identi-
�cation, the adaptive multi-switching synchronization is 
extent to employ in the high-order memristor-based hyper-
chaotic systems with unknown parameters.

Due to the sensitivity of initial states, unpredictability and 
the pseudo-random property, memristor-based chaotic systems 
are suitable for secure communication. �e useful signals can be 
hidden in chaotic signals to prevent being hacked and modi�ed. 
However, the image encryption process involves a large amount 
of image data, it is di«cult to accomplish image encryption by 
the traditional encryption techniques, such as RSA algorithm, 
IDEA, and AES. �erefore, researchers and engineers are com-
mitted to the researches of the new image encryption algorithm 
to enhance the information security. Sun et al. proposed an adap-
tive controller to realize compound synchronization among 4D 
chaotic oscillator systems and presented a secure communication 
method based on Chaotic Synchronization [2]. Li et al. analyzed 
the dynamic characteristics of memristor-based chaotic system 
and applied chaotic sequences of the new system to secure com-
munication [34]. However, the literature of multi-switch syn-
chronization for high-order memristor-based hyperchaotic 
systems with unknown parameters appears less, especially its 
application in secure communication.

Motivated from the above analysis, the adaptive 
multi-switching controller is designed to realize the synchro-
nization for high-order memristor hyperchaotic systems with 
uncertain parameters and its corresponding applications in 
secure communication. �e main contributions of this paper 
are as follows:

(1)    �e principle of linear independence is introduced. 
By the analysis of the linear independence condition 
for the system in [31], the unknown parameters can 
be arbitrary values and failed to be identi�ed to their 
true values.

(2)    �e nonlinear dynamic characteristics of the high-or-
der memristor-based hyperchaotic systems which 
has two Lyapunov exponents are analyzed.

(3)     In order to solve the problem of the parameter 
identi�cation in [31], the adaptive multi-switching 
synchronization scheme is proposed in the paper, 
the numerical results show that the master-slave 
system can be synchronized and the unknown 
parameters can be consistent with the given value 
simultaneously.

(4)     �e adaptive multi-switching synchronization can 
o�er various di�erent dynamic errors of the mas-
ter-slave hyperchaotic system, which is suitable for 
secure communication. An encryption algorithm 
based on multi-switching synchronization hyper-
chaotic system with memristor is presented, by the 
gray histogram and correlation analysis, the numer-
ical simulation results re§ect that the proposed 
method improved the security to prevent intruders 
from cracking and tampering during the process of 
information transmission.
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�e organization of this paper lists as follows. Section 2 ana-
lyzes the adaptive multi-switching synchronization strategy. 
Section 3 implements the adaptive multi-switching synchro-
nization for high-order memristor hyperchaotic systems with 
unknown parameters, and validates the feasibility and e�ec-
tiveness of the proposed strategy by using numerical simula-
tions. Section 4 proposes a new encryption algorithm based 
on proposed strategy to improve the security of the useful 
signals, and introduces the statistical analysis methods of the 
gray histogram and correlation. Finally, Section 5 draws the 
conclusion and prospects further works.

2. Problem Formulation

In this section, an adaptive multi-switching synchronization 
strategy is introduced for master-slave chaotic system with 
unknown parameters.

Considering three n-dimensional hyperchaotic systems 
with unknown parameters, the two master hyperchaotic sys-
tems are given by

and

where �(�) = [�1, �2, ..., ��]
�, and �(�) = [�1, �2, ..., ��]

� are 
the state vectors. �1�(�) = (�11(�), �12(�), ⋅ ⋅ ⋅ , �1�(�))

� and 
�2�(�) = (�21(�), �22(�), ⋅ ⋅ ⋅ , �2�(�))

� are nonlinear vector 
terms from �� → ��, �(�1�) ∈ ��×� and �(�2�) ∈ ��×� are the 
system matrices, and �, � ∈ �� are unknown vector 
parameters.

�e slave hyperchaotic system is described by

where �(�) = [�1, �2, . . . , ��]
� is a state vector, 

�(�) = (�1 (�), �1 (�), . . . , �1 (�))
� is a nonlinear vector func-

tion from �� → ��, �(�) ∈ ��×� is a system matrix, and � ∈ ��
is an unknown vector parameter, and � = (�1, �2, ⋅ ⋅ ⋅ , ��) is 

(2)

{{{{
{{{{{

�̇1 (�) = �11 (�1, �2, . . . , ��) + �11 (�1, �2, . . . , ��)�1,
�̇2 (�) = �12 (�1, �2, . . . , ��) + �12 (�1, �2, . . . , ��)�2,
.
.
.

�̇� (�) = �1� (�1, �2, . . . , ��) + �1� (�1, �2, . . . , ��)��,

(3)

{{{{
{{{{{

�̇1 (�) = �21 (�1, �2, . . . , ��) + �21 (�1, �2, . . . , ��)�1,
�̇2 (�) = �22 (�1, �2, . . . , ��) + �22 (�1, �2, . . . , ��)�2,
.
.
.

�̇� (�) = �2� (�1, �2, . . . , ��) + �2� (�1, �2, . . . , ��)��,

(4)

{{{{
{{{{{

�̇1 (�) = �1 (�1, �2, . . . , ��) + �1 (�1, �2, . . . , ��)�1 + �1,
�̇2 (�) = �2 (�1, �2, . . . , ��) + �2 (�1, �2, . . . , ��)�2 + �2,
.
.
.

�̇� (�) = �� (�1, �2, . . . , ��) + �� (�1, �2, . . . , ��)�� + ��,

a controller to be designed for the synchronization of mas-
ter-slave hyperchotic systems.
De�nition 1. �e slave system (3) will realize the synchroni-
zation with the two master systems (1) and (2), if there exist 
diagonal matrices �, �, � ∈ ��×�, and � ̸= 0, such that

where ‖ ⋅‖ represents the Euclidean norm, and 
� = �� + �� − �� is the error vector of the synchronization 
with master-slave systems.

Remark 1. Assume the scaling matrices �, �, � as 
� = ����(�1, �2, ⋅ ⋅ ⋅ , ��), � = ����(�1, �2, ⋅ ⋅ ⋅ , ��), and 
� = ����(ℎ1, ℎ2, ⋅ ⋅ ⋅ , ℎ�) respectively. �e error vec-
tors are obtained as ���� = ���� + ���� − ℎ���. In accord-
ance with the De�nition 1, � = � = �, � ̸= � = �, � = � ̸= �,  
(�, �, � = 1, 2, . . . , �). According to (1)–(4), the error dynam-
ics is gain by

Now, in order to achieve the synchronization of the mas-
ter-slave systems, an appropriate controller � and the unknown 
parameters �, �, and � need to design.
�̂, �̂, and �̂ are the estimated values of the parameters �, � 

and � respectively.
De�ne the estimated error parameters as

�en,

�eorem 1. �e controller �is selected as  

where sgn(�) expresses signum function. �e parameter update 
laws are designed as

Proof.   �e Lyapunov function is selected as

�en, 
  

Substituting (6–10) into (12) gains as

(5)lim
�→∞
‖�‖ = lim

�→∞
‖�� + �� − ��‖ = 0,

(6)
̇� = ��1(�) + ��1(�)� + ��2(�) + ��2(�)�
− ��(�) − �(�)� − ��.

(7)�̃ = � − �̂, �̃ = � − �̂, �̃ = � − �̂.

(8)̇̃� = − ̇̂�, ̇̃� = − ̇̂�, ̇̃� = − ̇̂�.

(9)

� = �−1��1 (�) + �−1��1 (�)�̂ + �−1��2 (�) + �−1��2 (�)�̂ − �(�)
− (�)�̂ + �−1� + �−1sgn(�) |�|�,

(10)̇̂� = �1 (�)���, ̇̂� = �2 (�)���, ̇̂� = �(�)���.

(11)�(�) = 12 (�
�� + �̃��̃ + �̃��̃ + �̃��̃),

(12)�̇(�) = ̇��� − �̃� ̇̂� − �̃� ̇̂� − �̃� ̇̂�.

(13)

�̇(�) = [��1 (�) + ��1 (�)� + ��2 (�) + ��2 (�)� − �(�) − ��(�)
 − �	]
�� − �̃� ̇̂� − �̃� ̇̂� − 
̃� ̇̂
,

= [��1 (�)(� − �̂) + ��2 (�)(� − �̂) − ��(�)(
 − 
̂) − � − sgn(�) |�|�]
�� − �̃� ̇̂� − �̃� ̇̂� − 
̃� ̇̂
,

= [��1 (�)�̃ + ��2 (�)�̃ − ��(�)
̃ − � − sgn(�) |�|�]
�� − �̃� ̇̂� − �̃� ̇̂� − 
̃� ̇̂
,

= �̃�(�1(�)��� − ̇̂�) + �̃�(�2(�)��� − ̇̂�) + 
̃�(�(�)��� − ̇̂
) − ��� − |�|�+1,
= −��� − |�|�+1.
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In line with the above de�ned §ux-controlled memristor 
formula (14), an equivalent circuit with a smooth cubic mem-
ristor is shown in Figure 1, where a = 0.1, b = 0.01 (input is 1 V 
100 Hz sinusoidal wave). Circuit diagram of C1 = C2 = 33 nf, 
R1 = R2 = 10 kΩ, R3 = R9 = 20 kΩ, R4 = 2 kΩ, R5 = R6 = 1 kΩ, 
R7 = 6.7 kΩ, R8 = 40 kΩ, R10 = 100 kΩ. �e circuit consists of 
operational ampli�ers, multipliers, resistors, and capacitors. 
�e �rst and second stage operational ampli�ers are used for 
signal reduction. �e third pole operational ampli�er using 
di�erential integrator prevents “zero dri¤”. Tow multipliers 
perform simulated multiplication. �e fourth operational 
ampli�er performs reverse addition.

Memristor is a nonlinear resistor with charge memory 
function. Applying an arbitrary periodic voltage signal to 
the ideal memristor, the V-I characteristics of the excitation 
voltage and the corresponding response current can be 
depicted as a skewed “8” shaped pinched hysteresis loop in 
Figure 2.

�e model originated from wang’s 5D hyperchaotic system 
[31] is as follows:

(16)

�̇1 = �(�2 − �1) + 4�2�3 − ��1�(�5),
�̇2 = −�1 + �4 + 16�2 − �1�3,
�̇3 = −��3 − �2�4 + �1�2 − �1�5,
�̇4 = −��3�5 − 10�2 + 0.15�1�3,
�̇5 = −�1.

�us, we can know �̇(�) < 0. In the light of the Lyapunov sta-
bility theory, if �(�) > 0 and �̇(�) < 0, the master system will 
synchronize with the slave system.
Remark 2. If � = 0 or � = 0, the synchronization problem 
becomes multi-switching modi�ed projective synchroniza-
tion. If � = 0 or � = 0 and � = 1, the synchronization problem 
turns into multi-switching synchronization. In order to facil-
itate the analysis of multi-switch synchronization of complex 
systems, the parameters � = 1, � = 0, and � = 1 are selected 
in the following sections.

3. Adaptive Multi-Switching Synchronization 
of High-Order Memristor-Based Hyperchaotic 
System

In this section, �rstly, the 5D hyperchaotic system with mem-
ristor is introduced. Secondly, two identical 5D memristor 
hyperchaotic systems with unknown parameters are compos-
ited a master-slave system. �irdly, an adaptive multi-switch-
ing synchronization strategy is proposed for the system. 
Finally, the numerical simulation results indicate that the 
synchronization of the master-slave system can be imple-
mented, and unknown parameters of the system can be iden-
ti�ed to their given values.

3.1. High-Order Memristor-Based Hyperchaotic System. 
Memristors represent the relationship between magnetic §ux 
� and charge � which is a missing circuit component with 
memory characteristic conceived by Chua in 1971 [25]. �e 
function between the magnetic §ux and the charge passing 
the memristor is not unique. Select a smooth cubic memristor 
[35] which can be expressed as

and

where � and � are positive parameters.

(14)�(�) = �� + ��3,

(15)�(�) = ��(�)�� = � + 3��
2,

Figure 1: �e equivalent circuit of the §ux-controlled smooth cubic memristor.

Figure 2: Flux-controlled memristors characteristics.
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�elds, among them, the research of chaotic synchronization 
has become a hot spot, especially in secure communication.

3.2. Multi-Switching Synchronization for the 5D Memristor 
Hyperchaotic System with Unknown Parameters. �e multi-
switching synchronization process can be extended to several 
identical schemes or di�erent structures of hyperchaotic 
system which have unknown parameters.

Here, two identical hyperchaotic systems with uncertain 
parameters composite the master-slave system.

�e master system is represented by

�e slave system is expressed as

(19)

�̇1 = �(�2 − �1) + 4�2�3 − ��1 (0.1 + 0.03�52),
�̇2 = −�1 + �4 + 16�2 − �1�3,
�̇3 = −��3 + �1�2 − �2�4 − �1�5,
�̇4 = −10�2 − ��3�5 + 0.15�1�3,
�̇5 = −�1.

(20)

�̇1 = �(�2 − �1) + 4�2�3 − ��1(0.1 + 0.03�52) + �1,
�̇2 = −�1 + �4 + 16�2 − �1�3 + �2,
�̇3 = −��3 + �1�2 − �2�4 − �1�5 + �3,
�̇4 = −10�2 − ��3�5 + 0.15�1�3 + �4,
�̇5 = −�1 + �5.

where �(�5) is the memristor model, as follows

Substituting (17) into (16) obtains

If the parameters are selected as � = 14, � = 78, � = 0.02, 
� = 0.1, � = 0.01, � = 0.3, and the initial states are given as: 
�(0) = [4, 1.2, 0.5, −3.6, 6] , the Lyapunov exponents of system 
(17) can be calculated as �1 = 0.0137, �2 = 1.0241, �3 = −0.1735,  
�4 = −2.3787, and �5 = −70.3244. Two positive Lyapunov 
exponents indicate that the system is a hyperchaotic system. 
And its 3D phase portraits and hyperchaotic attractors are 
shown in Figures 3 and 4 respectively.

Remark 3. In [21–23], third-order chaotic system is as the 
research object without considering memristor. �e high-or-
der hyperchaotic systems with memristor has complex 
dynamic characteristics, which has attracted attention in engi-
neering practice. It has good application potential in many 

(17)�(�5) = � + 3��52.

(18)

�̇1 = �(�2 − �1) + 4�2�3 − ��1(� + 3��52),
�̇2 = −�1 + 16�2 − �1�3 + �4,
�̇3 = −��3 + �1�2 − �1�5 − �2�4,
�̇4 = −10�2 + 0.15�1�3 − �3�5,
�̇5 = −�1.
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Figure 3: 3D phase portraits of the hyperchaotic system.
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Remark 4. According to the conditions of the two indices 
�, � = 1, 2, . . . , 5, this section selects two out of the several 
switches,

 Switch-1 �13 = �1 − �3, �22 = �2 − �2, �31 = �3 − �1,
�44 = �4 − �4, �55 = �5 − �5,
 Switch-2 �12 = �1 − �2, �34 = �3 − �4, �23 = �2 − �3,
�51 = �5 − �1, �45 = �4 − �5.

Corollary 1. For switch-1, the dynamic errors are calcu-
lated as

�eorem 2. �e control laws of (21) in switch-1 are chosen 
as follows

(23)

̇�13 = �(�2 − �1) + 4�2�3 − ��1(0.1 + 0.03�52)
+ �3 − 12 + 15 + 24 + �1,

̇�22 = −�1 + 1 + 16�22 + �24 − �1�3 + 13 + �2,
̇�31 = −��3 + �1�2 − �1�5 − �2�4 − �(2 − 1)
− 423 − �1(0.1 + 0.0352) + �3,

̇�44 = −10�22 + 0.15�1�3 − 0.1513 − 0.3�3�5 + 0.335 + �4,
̇�55 = −�1 + 1 + �5.

According to the De�nition 1, the parameters � = 0 and � = 1
are selected, error system is changed into ��� = �� − ��, where 
�, � = 1, 2, . . . , 5.

When � = �,

When � ̸= �,

From (21) and (22), multiple error systems are obtained, for 
example:

 Switch-1 �13 = �1 − �3, �22 = �2 − �2, �31 = �3 − �1,
�44 = �4 − �4, �55 = �5 − �5,
 Switch-2 �12 = �1 − �2, �34 = �3 − �4, �23 = �2 − �3,
�51 = �5 − �1, �45 = �4 − �5,
 Switch-3 �12 = �1 − �2, �13 = �1 − �3, �14 = �1 − �4,
�15 = �1 − �5, �21 = �2 − �1,
 Switch-4 �11 = �1 − �1, �22 = �2 − �2, �33 = �3 − �3,
�44 = �4 − �4, �55 = �5 − �5,
and so on.

(21)�11 = �1 − �1, �22 = �2 − �2, . . . , ��� = �� − ��,

(22)

�12 = �1 − �2, �13 = �1 − �3, . . . , �1� = �1 − ��,
�21 = �2 − �1, �23 = �2 − �3, . . . , �2� = �2 − ��,
.
.
.

��1 = �� − �1, ��2 = �� − �3, . . . , ���−1 = �� − ��−1,
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Figure 4: 2D projections of the hyperchaotic systems.
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the adaptive multi-switching synchronization of the mas-
ter-slave hyperchaotic system is implemented. �e analysis of 
the linear dependence condition for the parameter identi�ca-
tion is follows as

For �2 ̸= �1, �3 ̸= 0, �3 ̸= 0, �2 ̸= �1, according to the linear 
independence conditions, �̃(�) = 0, �̃(�) = 0, hence ̂�(�) = � and 
�̂(�) = �, the parameters can be identi�ed to the true values.

Remark 5. Since (24) contains a discontinuous sign func-
tion that causes an unwanted chattering. To avoid thrash-
ing, replace sign functions with continuous tanh function to 
eliminate discontinuities. �erefore, the control law (24) is 
amended as follows:

Corollary 2. For switch-2, the dynamic equation error is rep-
resented as

�eorem 3. �e control laws of (32) are chosen as follows:

(30)
�13 = 0
�����→∞ , �22 = 0

�����→∞ , �31 = 0
�����→∞ , �44 = 0

�����→∞ ,
�55 = 0
�����→∞ ,

(31)

̇�13 = �̃(�)(�2 − �1) + �̃(�)�3 − �1�13 − ℎ1sgn(�13)
�����13
����
� = 0,

̇�22 = −�22�22 − ℎ2sgn(�22)
�����22
����
� = 0,

̇�31 = −�̃(�)�3 − �̃(�)(�2 − �1) − �2�31 − ℎ3sgn(�31)
�����31
����
� = 0,

̇�44 = −�4�44 − ℎ4sgn(�44)
�����44
����
� = 0,

̇�55 = −�5�55 − ℎ5sgn(�55)
�����55
����
� = 0.

(32)

�1 = −�̂(�2 − �1) − 4�2�3 + ��1(0.1 + 0.03�52) − �̂3
+ 12 − 15 − 24 − �1�13 − ℎ1 tanh (�13)





�13





�,

�2 = �1 − 1 − 16�22 − �24 + �1�3 − 13 − �2�22 − ℎ2 tanh (�22)




�22





�,

�3 = �̂�3 − �1�2 + �1�5 + �2�4 + �̂(2 − 1) + 423
+ �1(0.1 + 0.0352) − �3�31 − ℎ3 tanh (�31)





�31





�,

�4 = 10�22 − 0.15�1�3 + 0.1513 + 0.3�3�5 − 0.335
− �4�44 − ℎ4 tanh (�44)





�44





�,

�5 = �1 − 1 − �5�25 − ℎ5 tanh (�55)




�55





�.

(33)

̇�12 = �(�2 − �1) + 4�2�3 − ��1(0.1 + 0.03�52) + �1
− 16�2 + �1�3 − �4 + �1,

̇�23 = −�1 + 16�2 − �1�3 + �4 + 
�3 − �1�2 + �1�5 + �2�4 + �2,
̇�34 = −
�3 + �1�2 − �1�5 − �2�4 + 10�2 − 0.15�1�3 + ��3�5 + �3,
̇�45 = −10�2 + 0.15�1�3 − ��3�5 + �1 + �4,
̇�51 = −�1 − �(�2 − �1) − 4�2�3 + ��1(0.1 + 0.03�52) + �5.

(34)

�1 = −�̂(�2 − �1) − 4�2�3 + ��1(0.1 + 0.03�52) − �1 + 16�2
− �1�3 + �4 − �1�12 − ℎ1 tanh (�12)





�12





�,

�2 = �1 − 16�2 + �1�3 − �4 + �̂�3 + �1�2 − �1�5 − �2�4 − �2�23
− ℎ2 tanh (�23)





�23





�,

�3 = �̂�3 − �1�2 + �1�5 + �2�4 − 10�2 + 0.15�1�3 − ��3�5
− �3�34 − ℎ3 tanh (�34)





�34





�,

�4 = 10�2 − 0.15�1�3 + ��3�5 − �1 − �4�45 − ℎ4 tanh (�45)




�45





�,

�5 = �1 + �̂(�2 − �1) + 4�2�3 − ��1(0.1 + 0.03�52)
− �5�51 − ℎ5 tanh (�51)





�51





�,

where �� (� = 1 ⋅ ⋅ ⋅ 5) and ℎ� (� = 1 ⋅ ⋅ ⋅ 5) are the positive con-
stants, 0 < � < 1, �̂(�) and �̂(�) are the estimated values of the 
unknown parameters � and �, respectively.

�e parameters update laws are designed as

Proof. Substituting (23) into (22) yields

where ̃�(�) = � − �̂(�) and �̃(�) = � − �̂(�) are parameter errors, 
correspondingly, ̇�̃(�) = − ̇�̂(�) and ̇̃�(�) = − ̇̂�(�).

A candidate Lyapunov function is considered as follows,

�en

Substituting (23) into (26) gains

where � = min {�1, �2, �3, �4, �5
������ ∈ �

+, � = 1, 2, ⋅ ⋅ ⋅ , 5 }. 
�us, it is obvious that �̇ is negative de�nite. According to the 
Lyapunov stability theory, lim

�→∞
‖�(�)‖ = 0 which means that 

(24)

�1 = −�̂(�2 − �1) − 4�2�3 + ��1(0.1 + 0.03�52) − �̂3 + 12
− 15 − 24 − �1�13 − ℎ1sgn(�13)





�13





�,

�2 = �1 − 1 − 16�22 − �24 + �1�3 − 13 − �2�22 − ℎ2sgn(�22)




�22





�,

�3 = �̂�3 − �1�2 + �1�5 + �2�4 + �̂(2 − 1) + 423
+ �1(0.1 + 0.0352) − �3�31 − ℎ3sgn(�31)





�31





�,

�4 = 10�22 − 0.15�1�3 + 0.1513 + 0.3�3�5 − 0.335
− �4�44 − ℎ4sgn(�44)





�44





�,

�5 = �1 − 1 − �5�25 − ℎ5sgn(�55)




�55





�.

(25)
̇̂�(�) = �13(�2 − �1) − �31(�2 − �1),
̇�̂(�) = �13�3 − �31�3.

(26)

̇�13 = �̃(�)(�2 − �1) + �̃(�)�3 − �1�13 − ℎ1sgn(�13)
�����13
����
�,

̇�22 = −�22�22 − ℎ2sgn(�22)
�����22
����
�,

̇�31 = −�̃(�)�3 − �̃(�)(�2 − �1) − �2�31 − ℎ3sgn(�31)
�����31
����
�,

̇�44 = −�4�44 − ℎ4sgn(�44)
�����44
����
�,

̇�55 = −�5�55 − ℎ5sgn(�55)
�����55
����
�,

(27)� = 12(�13
2 + �222 + �312 + �442 + �552 + �̃2 + �̃2).

(28)

�̇ = �13 ̇�13 + �22 ̇�22 + �31 ̇�31 + �44 ̇�44 + �55 ̇�55 + �̃ ̇̃� + �̃
̇�̃,

= �13(�̃(�2 − �1) + �̃�3 − �1�13 − ℎ1sgn(�13)
�����13
����
�) − �2�222 − ℎ2

�����22
����
�+1

+ �31(−�̃�3 − �̃(�2 − �1) − �2�31 − ℎ3sgn(�31)
�����31
����
�)

− �4�442 − ℎ4
�����44
����
�+1 − �5�552 − ℎ5

�����55
����
�+1 + �̃ ̇̃� + �̃ ̇�̃,

= −�1�132 − �2�222 − �3�312 − �4�442 − �5�552

+ �̃(�13(�2 − �1) − �31(�2 − �1))

− �̃(�13�3 − �31�3) + �̃ ̇̃� + �̃
̇�̃ − ℎ1
�����13
����
�+1

− ℎ2
�����22
����
�+1 − ℎ3
�����31
����
�+1 − ℎ4
�����44
����
�+1 − ℎ5
�����55
����
�+1,

= −�1�132 − �2�222 − �3�312 − �4�442 − �5�552

+ �̃(�13(�2 − �1) − �31(�2 − �1) − ̇̂�) − �̃(�13�3 − �31�3 −
̇�̂)

− ℎ1
�����13
����
�+1 − ℎ2
�����22
����
�+1 − ℎ3
�����31
����
�+1 − ℎ4
�����44
����
�+1 − ℎ5
�����55
����
�+1.

(29)
�̇ = �13 ̇�13 + �22 ̇�22 + �31 ̇�31 + �44 ̇�44 + �55 ̇�55 + �̃ ̇̃� + �̃

̇�̃,
= −�1�132 − �2�222 − �3�312 − �4�442 − �5�552 − ℎ1

�����13
����
�+1

− ℎ2
�����22
����
�+1 − ℎ3
�����31
����
�+1 − ℎ4
�����44
����
�+1 − ℎ5
�����55
����
�+1 ≤ −�‖�‖2 ≤ 0,
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Figure 5: Switch-1: (a) the synchronization error, (b) the error of �3 − �1, (c) the error of �2 − �2, (d) the error of �1 − �3, (e) the error of 
�4 − �4, (f) the error of �5 − �5.



9Complexity

synchronization strategy is suitable for applying in secure 
communication.

4. Applications in Secure Communication

Due to the importance of information, information con�-
dentiality is particularly important in secure communica-
tion. �e essence of secure communication is to encrypt the 
transmitted information in some way. �e concealment, 
unpredictability, high complexity, and easy implementation 
of hyperchaotic signals are especially suitable for secure 
communication. Hyperchaotic encryption is a dynamic 
encryption method, the encrypted information is di«cult 
to decipher and has a high density in this way. In order to 
recover the original information, the decryption process is 
very important and can be realized by hyperchaotic syn-
chronization scheme [36].

In the following sections, masking encryption and image 
encryption are discussed based on adaptive multi-switching 
synchronization of hyperchaotic systems with memristors.

4.1. Chaotic Masking Encryption and Decryption. �e 
schematic diagram of hyperchaotic masking secure 
communication [37] is shown in Figure 9. �e communication 
system is consisted by a transmitter which is a master system 
and a receiver which is a slave system, an output signal of 
the master system is acted as a masking signal to mask a 
message signal, the transmitted signal is a mixed output of a 
useful signal, and a hyperchaotic signal. In the receiver, the 
corresponding chaotic synchronization signal is employed to 
decrypt the mixed signals, ultimately, the original message 
signal is recovered.

In this work, the message signal is selected as a sinusoidal 
function which can be recovered in the receiver. �e chaotic 
signal � is taken as the masking signal, then the encrypted 
signal ��(�) = ��(�) + �. In the receiver, the chaotic signal � is 
taken as the decrypt signal, the �nal output signal of the 

where �� (� = 1 ⋅ ⋅ ⋅ 5) and ℎ� (� = 1 ⋅ ⋅ ⋅ 5) are the positive con-
stant, 0 < � < 1, �̂(�), and �̂(�) are the estimated value of the 
unknown parameters � and � respectively.

Meanwhile, parameters update laws of the unknown 
parameters are selected as

Remark 6. �e proof of switch-2 is the same as that of 
switch-1, and �nally �(�) → 0, the adaptive multi-switching 
synchronization for the master-slave system is implemented.

3.3. Simulation Results. �e initial values of (19) 
and (20) are taken as �(0) = [4, 1.2, 0.5, −3.6, 6]� and 
�(0) = [−5, 2, 1, −0.8, 5]� respectively. �e parmeters 
� = �� = 10 (� = 1 ⋅ ⋅ ⋅ 5), ℎ� = 2 (� = 1 ⋅ ⋅ ⋅ 5), � = 0.5 are 
selected simultaneously.
Case 1. For switch-1, the synchronization of two 5D mem-
ristor hyperchaotic systems is implemented at 2.8 s in  
Figure 5. �e unknown parameters � and � of the master-slave 
synchronization system are identi�ed to their given values 14 
and 78 respectively in Figure 6.

Case 2. For switch-2, Figure 7 demonstrates the synchroniza-
tion of two 5D memristor hyperchaotic systems, the dynamic 
error of the system can reach to zero at 1.4 s. Figure 8 indicates 
that the uncertain parameters �, � can arrive at 14, 78 respec-
tively when � = 14 and � = 78.
Remark 7. �e above description illustrates that the synchro-
nization of two 5D memristor hyperchaotic systems with 
unknown parameters is achieved by the adaptive control 
in each switching form, the uncertain parameters can con-
verge to their given values simultaneously. For multi-switch-
ing synchronization can o�er various combinations of the 
dynamics errors, which is very di«cult to get or modify use-
ful information for intruders, the adaptive multi-switching 

(35)
̇̂�(�) = �12(�2 − �1) − �51(�2 − �1),
̇�̂(�) = �23�3 − �34�3.
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Figure 6: Switch-1: (a) unknown term �, (b) unknown term �.
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Figure 7: Switch-2: (a) the synchronization error, (b) the error of �1 − �5, (c) the error of �2 − �1, (d) the error of �3 − �2, (e) the error of 
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(b)  Gain the 5-dimmensional di�erent chaotic sequences 
from � = [�1, �2, �3, �4, �5]

�, then convert each cha-
otic sequence of �1, �2, �3 into a two-dimensional 
sequence of rows and columns, and confuse them by 
ascending order or descending order, �nally get the 
cipher text matrices ��, ��, �� of the original image.

(c)  Replace the pixel values by chaotic sequence �4. First 
take two parameters � and � as follows

(d)  �e matrix of intermediate variables � is assumed 
as follows

where � and � are row and column position of the pixel 
respectively, � Gray level of the pixel.
Complete the XOR operation between ��, ��, ��, and �.

(36){ ��� = ���(�4(�, �) − �����(�4(�, �))) × 10
2,

��� = ���(�4(�, �) − �����(�4(�, �))) × 103,

(37)� = (��� × � + ��� × �)mod�,

(38)
{
{{
��� = �� ⊕ �,
��� = �� ⊕ �,
��� = �� ⊕ �,

receiver ��(�) can be calculated by �0(�) = ��(�) − �. When 
system (19) and (20) reach the adaptive synchronization, then 
� − � → 0 and �0 = ��, the numerical simulation results are 
demonstrated in Figures 10 and 11.

4.2. Image Encryption and Decryption. In 1997, Fridrich 
composited chaos theory and image encryption to propose 
a chaotic image encryption method for the �rst time [38]. 
�e potential application value of high order hyperchaotic 
system in image processing has been deeply studied, because 
it has more complex dynamics, more positive Lyapunov 
exponents, larger Kolmogorov entropy, and more sensitive 
to initial values. �is subsection veri�es the e�ectiveness 
of image encryption algorithm about the adaptive multi-
switching hyperchaotic synchronization with memristors. 
�e overall structure of image encryption and decryption 
process is shown in Figure 12.

4.2.1. �e Process of Image Encryption. �e detailed steps of 
the image encryption are as follows:

(a)  Read the 3-color data matrices �, �, � of the original 
image with 256 × 256 × 3 pixels.
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Figure 8: Switch-2: (a) unknown term �, (b) unknown term �.
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(a)  Read the 3-color cipher text matrices ����, ����, and 
���� of the encrypted image with 256 × 256 × 3 pixels.

(b)  Gain the 5-dimmensional di�erent chaotic sequences 
from � = [�1, �2, �3, �4, �5]

�, then convert each cha-
otic sequence of �3 into a two-dimensional sequence 
of rows and columns.

(c)  Recover the pixel values by chaotic sequence �3. First 
take two parameters ���� and ���� as follows

(d)  �e matrix of intermediate variables �� is assumed 
as follows

where � and � are row and column position of the pixel 
respectively, � Gray level of the pixel.

Accomplish the XOR operation between ���, ���, 
and ��� and ��.

where ���, ���, and ��� are 3-color matrices of the 
decrypted image.
XOR operation results are shown in Table 2.

(39){ �
�
�� = ���(�3(�, �) − �����(�3(�, �))) × 102,
���� = ���(�3(�, �) − �����(�3(�, �))) × 103,

(40)�� = (���� × � + ���� × �)mod�,

(41)
{
{{
��� = ���� ⊕ ��,
��� = ���� ⊕ ��,
��� = ���� ⊕ ��,

where ���, ��� and ��� are 3-color matrices of the 
encrypted image.
XOR operation results are shown in Table 1.

(e)  Convert the binary sequences into the 2-dimension 
matrices ����, ����, and ����.

(f)  Finally restructure the 2-dimension matrices ����, ����, 
and ����, then obtain an encrypted image.

4.2.2. �e Process of Image Decryption. Image encryption 
speci�c steps are as follows:

Decryption process

Encryption process

Synchronization

Plaintex
RGB

Master
system (X) 

Position
confusion

Pixel 
replacement

Plaintex
RGB

Confusion
inverse

Pixel
inverse 

Ciphertex
RGB

Slave
system (Y) 

Adaptive
Multi-switching

controller 

Original imagine

Recover imagine

Encryped image

x1, x2, x3 x4

y5, y1, y2 y3

Figure 12: �e overall structure of image encryption and decryption.

Table 1: XOR operation.

�� �� �� � ��� = �� ⊕ � ��� = �� ⊕ � ��� = �� ⊕ �
0 0 0 0 1 1 1
0 0 0 1 0 0 0
1 1 1 0 0 0 0
1 1 1 1 1 1 1

Table 2: XOR operation.

���� ���� ���� �� ��� = ���� ⊕ �� ��� = ���� ⊕ �� ��� = ���� ⊕ ��

0 0 0 0 1 1 1
0 0 0 1 0 0 0
1 1 1 0 0 0 0
1 1 1 1 1 1 1



Complexity14

methods during the process of image encryption and decryption. 
By image histogram analysis, Figures 13–15 indicated the e�ects 
and performance of image encryption and decryption. Among 
them, Figure 13 demonstrates the histograms of the original 
image with uneven distribution, but Figure 14 shows uniform 
distribution of the encrypted image. A¤er recovering the 
encrypted image, Figure 15 indicates that the decrypted image 
and its histograms is the same with Figure 13.

For the pixels are concentrated in original image with 
higher correlation distribution between adjacent pixels, in 
order to resist external attack, the correlation of adjacent pixels 
are reduced by image encryption strategy. 2000 pairs of 

(e)  Convert the binary sequences into the 2-dimension 
matrices ��, ��, and ��.

(f)  Sort the matrices of �5, �1, �2, in descending order 
and ascending order as column confusion indexes to 
recover the cipher text image from ��, ��, and ��, then 
gain �,�, � plaintext matrix.

(g)  Finally restructure the 2-dimension matrices �,�, �, 
then obtain an decrypted image.

4.3. Analysis of the Image. Image histogram analysis and 
correlation coe«cient analysis are two important statistical 
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Figure 13: �e original image with its histograms of color image (reproduced from Jing Luo et al. (2019), (under the Creative Commons 
Attribution License/public domain)).
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by multi-switching chaos synchronization, not premeditat-
ing image encryption scheme. Compare with literature [39], 
Table 1 indicates the correlation coe«cient in this section is 
lower. In this section, the adaptive multi-switching memris-
tor-based hyperchaotic system is not only applied to signal 
masking encryption but also image encryption, which improves 
the security in signal transmission and resists external attacks.
Remark 9. Image encryption and decryption process in other 
switches is the same to one in switch-1.

5. Conclusions

Researches of hyperchaotic synchronous with memristor have 
attracted great attentions in theory and engineering practice. 
According to the Lyapunov stability theory, this paper presents 
an adaptive multi-switching synchronization strategy for 
high-order hyperchaotic systems with uncertain parameters. 
�e numerical simulation results illustrate that the dynamic 
errors of the systems can quickly converge to zero and the 
unknown parameters can also be identi�ed to the true values, 
which validates the feasibility and e�ectiveness of the pro-
posed method. At last, adaptive multi-switching synchroni-
zation for high-order hyperchaotic systems is applied to image 
encryption, which is more secure than conventional encryp-
tion methods.

Unknown parameters, external disturbances, and time-de-
lay are unavoidable in engineering practice, �nite-time robust 
multi-switching synchronization control for memristor hyper-
chaotic systems with unknown parameters, external distur-
bances, and time-delay is a challenging study. In the future, 
our research will focus on designing the complex circuit of 
hyperchaotic system with memristors to accomplish the mul-
ti-switching synchronization and its application in image 
encryption.

adjacent pixels are chosen from the original image and 
encrypted image respcetively [36], the correlation coe«cient 
can be calculated by (42). An interesting phenomenon is that 
the correlation coe«cient of the original image in Table 3 is 
approximate to one. However, that of encrypted image is 
nearly equal to zero. Figures 16(b), 16(d), and 16(f) indicate 
that adjacent pixels of encrypted image are evenly distributed, 
Figures 16(a), 16(c), and 16(e) show that those of orignal 
image are higher correlation distribution.

where � and � are grey values between adjacent pixels, �(�) is 
mathematical expectation, cov(�, �) is covariance, �(�) is 
variance.

Remark 8. Literature [31] only presented adaptive synchro-
nization design and simulation without considering its appli-
cation. Literature [21] realized signal masking encryption 

(42)

�(�) = 1�
�
∑
�=1
��,

�(�) = 1�
�
∑
�=1
(�� − �(�))

2,

cov(�, �) = 1�
�
∑
�=1
(�� − �(�))(�� − �(�)),

��� =
cov(�, �)
√�(�) × √�(�) ,
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Figure 15: �e decrypted image with its histograms (reproduced from Jing Luo et al. (2019), (under the Creative Commons Attribution 
License/public domain)).

Table 3: Correlation coe«cient results.

Correlation Original 
image

Encryption 
image

Original 
image [39]

Encryption 
image [39]

Horizontal 0.9748 0.0230 0.9856 −0.0 318
Vertical 0.9511 0.0226 0.9682 0.0965
Diagonal 0.9105 0.0105 0.9669 0.0362
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In the present contribution, an asymmetric central contraction mutation (ACCM) model is proposed to enhance the Ikeda time
delay system. �e modi�ed Ikeda system model is designed by introducing a superimposed tanh function term into the sine
nonlinearity term. Stability and Hopf bifurcation characteristics of the system are analyzed theoretically. Numerical simulations,
carried out in terms of bifurcation diagrams, Lyapunov exponents spectrum, phase portraits, and two-parameter (2D) largest
Lyapunov exponent diagrams are employed to highlight the complex dynamical behaviors exhibited by the enhanced system.�e
results indicate that the modi�ed system has rich dynamical behaviors including limit cycle, multiscroll hyperchaos, chaos, and
hyperchaos. Moreover, as a major outcome of this paper, considering the fragile chaos phenomenon, the ACCM-Ikeda time delay
system has better dynamical complexity and larger connected chaotic parameter spaces (connectedness means that there is no
stripe corresponding to nonchaotic dynamics embedded in the chaos regions).

1. Introduction

Chaotic system has many speci�c properties, such as initial
state and parameters sensitivity, unpredictability, and to-
pological mixing [1–3]. Although the equation model of a
chaotic system is deterministic, it is impossible to predict its
long-term behavior. �ese meaningful properties make
chaotic systems widely studied and applied in many disci-
plines [4–10]. Specially, with the rapid development of in-
formation society chaos, secure communication has already
been established to be a good candidate for transmission of
con�dential message [11–13]. In addition, chaotic systems
have important applications in chaos-based random number
generation [14] and sensors [15].

In recent years, time delay (TD) systems have become
the subject of active research, which stems from the
following reasons: (i) the existence of TD in nonlinear
systems makes systems more complex. It has been found
that communication systems based on low-dimensional
chaotic systems (having a single positive LE) are insecure
because their dynamics can be easily reconstructed by

Takens’ embedding theorem [16]. TD chaotic systems
modelled by nonlinear delay di�erential equations
(DDEs) exhibit in�nite dimensional phase space that
cannot be anticipated by a low-dimensional system. As
such, time delay systems can provide a higher level of
computational security against embedding re-
construction. (ii) TD systems provide hyperchaos with
multiple positive Lyapunov exponents (LEs) [17]. Due to
these reasons, a number of simple and well characterized
TD systems have been designed to produce chaos and
hyperchaos [18–20]. Dynamics of nonlinear time-delay
systems have been studied [19, 21].

In this paper, we focus our attention towards the simple
and well characterized �rst-order Ikeda TD system:

_x(t) � − ax(t) + b sin xτ( ), (1)

where a ∈ R and b ∈ R are positive parameters, τ ∈ R+ is
the time delay constant, and xτ ≡ x(t − τ). From the
theoretical point of view, some works have been carried
out with the aim of inherent dynamics of the Ikeda TD
system. In [22], the chaotic dynamics of �rst-order scalar
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delay differential equations, including Ikeda equations,
have been investigated. An analytical framework for
study of dynamics of breathers in slow-fast Ikeda opto-
electronic systems was proposed in [23]. A study on the
biorhythmic behavior and its control in an optoelectronic
oscillator was presented in [24]. From the viewpoint of
engineering, some research studies have focused on the
performance enhancement of the system for random
number generation, optical chaotic secure communica-
tion, chaotic image encryption, optical secret commu-
nication, and so on [25–31].

It is noted that chaotic dynamical properties such as
high complexity and wide chaotic parameter range are
strongly required in some scenarios, including secure
communication and random number generation. But
researchers found that existing chaotic systems have
certain limitations in different aspects. One concern is that
many systems suffered from the fragile chaos phenomenon
[32]. Fragile chaos means that a system has small chaotic
parameter regions or has some nonchaotic structures
embedded in the chaotic parameter zone. Small pertur-
bation modulation of a parameter of the system is possible
to destroy the chaotic attractors and transform the chaotic
oscillator to period oscillations, as the parameter will fall
into a nonchaotic region easily. Moreover, due to the
limitation of physical devices, the range of physical pa-
rameters is always restricted, which will cause perfor-
mance degradation in many cases. A typical scenario is
chaotic secure communication. ,e security level of a
chaos-based scheme is significantly dependent on the
chaotic parameter range [33].

Considering the fragile chaos phenomenon, this paper
proposes an asymmetric central contraction mutation
(ACCM) model to enhance the Ikeda TD system. ,e
modified TD system with ACCM is studied. We carry out
stability analysis to identify the parameter zone for which
the system shows a stable equilibrium response. And we
simulate the system model numerically to show that with
the variation of delay and other system parameters, the
system exhibits stable limit cycle, chaos, hyperchaos, and
multiscroll hyperchaos over the whole three-dimensional
(3D) parameter space (given by a, b, and τ). Single pa-
rameter bifurcation diagrams, phase plots, and two-pa-
rameter (2D) Lyapunov exponent diagrams [34] are
employed to explore the dynamics of the system. ,e
ACCM model not only can enhance the dynamical
complexity of the original Ikeda TD system in the chaotic
range, but also can produce chaos in the nonchaotic
range. It is worth mentioning that the improved system
has larger chaotic parameter zones with good
connectivity.

,e rest of the paper is arranged in the following order.
Section 2 presents the related mathematical model of the
proposed ACCM-Ikeda time delay system. Analysis of
stability and Hopf bifurcation are shown in Section 3.
Simulation results of the ACCM-Ikeda time delay system
and discussions are presented in Section 4, followed by
performance comparison in Section 5. Section 6 draws
conclusion.

2. System Description

We propose the following Ikeda TD system with Asym-
metric Central Contraction Mutation (ACCM):

_x(t) � − ax(t) + b sin xτ + tanh xτ(  + tanh xτ − 2(  ,

(2)

where a> 0 and b> 0 are real positive system parameters.
xτ ≡ x(t − τ), and τ ∈ R+ is the intrinsic time delay of the
system.

Sketches of the nonlinearities sin(xτ), tanh(xτ), and
g(xτ) � sin[xτ + tanh(xτ) + tanh(xτ − 2)] are depicted in
Figures 1(a)–1(c), respectively. It can be found from
Figure 1(c) that the sketch of nonlinearity g(xτ) showing a
variation law similar to that of the sin(xτ) function, but
with asymmetric central contraction, emerging more
humps and valleys in the curve within the same parameter
range. ,erefore, we named the modified model as the
ACCM-Ikeda TD system, which will have expected dy-
namic characteristics, such as better complexity, more
larger and connected (meaning that there is no transient
nonchaotic window interspersed in the chaotic parameter
zone) chaotic parameter zone than the seed Ikeda time
delay system (will be discussed in Section 5).

3. Stability and Hopf Bifurcation Analysis

Consider the TD system (2) expressed as
_x(t) � f x, xτ( 

� − ax(t) + bg xτ( .
(3)

Equilibrium points x∗ of (3) are obtained by solving

f x
∗
, x
∗

(  � 0. (4)

3.1. Linearization near Equilibrium. Defining a small per-
turbation δ � x − x∗ in equilibrium solution and using first-
order Taylor’s approximation, we get a linearized equation of
(3) as

dδ
dt

�
dx

dt

� f x, xτ( 

� f x + δ, xτ + δτ( 

� f x
∗
, x
∗

(  + z1f x
∗
, x
∗

( δ + z2f x
∗
, x
∗

( δτ

� pδ + qδτ ,

(5)

where xτ ≡ x(t − τ), δτ ≡ δ(t − τ), p � z1f(x∗, x∗) � − a,
and q � z2f(x∗, x∗) � bg′(x∗) are partial derivatives of
f(x, xτ) with respect to variables x and xτ evaluated at (x∗,

x∗), respectively. We can get the characteristic equation as

λ � − a + qe
− λτ

. (6)

3.2. Stability of Equilibrium. For the stability analysis, we use
the methodology discussed in [22]. An equilibrium point x∗
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is asymptotically stable if all the roots λi of characteristic
equation (6) satisfy

Re λi( < 0, for∀ i. (7)

If τ � 0, then condition (7) takes the form

− a + q< 0. (8)

Write λ � u + iω, u, ω ∈ R. Stability of equilibrium will
change if λ crosses imaginary axis at λ � iω. ,e charac-
teristic equation in this case becomes

iω � − a + qe
− iωτ

. (9)

Using e− iωτ � cos(ωτ) − i sin(ωτ) and separating real
and imaginary parts in (9), we get

q cos(ωτ) � a,

q sin(ωτ) � − ω.
 (10)

,is gives
q
2

� a
2

+ ω2
. (11)

,en, we can get

ω �

������

q2 − a2


. (12)

,is is possible if and only if

|q|> a. (13)

3.3. Critical Surfaces. For |b|> a, from (10) we can obtain the
critical surfaces expressed as

τk �

cos− 1 a/bg′ x∗( )(  + 2kπ
������
q2 − a2

 , forg′ x
∗

( < 0,

2π − cos− 1 a/bg′ x∗( )(  + 2kπ
������
q2 − a2

 , forg′ x
∗

( > 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Differentiating characteristic equation (6) with respect to
τ, we get
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Figure 1: Sketches of (a) sin(xτ), (b) tanh(xτ) and tanh(xτ − 2), and (c) g(xτ) (dotted line).
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Figure 2: (a),e five largest Lyapunov exponents λ1,2,3,4,5 plotted versus the bifurcation parameter − 3≤ − a ≤ − 0.1 for parameter b � 4 and
time delay τ � 2. (b) ,e bifurcation diagram for the same parameter as in case (a).
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dλ
dτ

� qe
− λτ

− λ − τ
dλ
dτ

 . (15)

Noting that qe− λτ � λ+ a, we can have

dλ
dτ

� −
λ(λ + a)

1 + τ(λ + a)
, (16)

and hence

dλ
dτ

u�0
�

ω2 − iaω
1 + aτ + iωτ

. (17)

On critical surfaces (14),

dλ
dτ

�Re
dλ
dτ

 


u�0

�
ω2

(1 + aτ)2 +(ωτ)2
, (18)

du/dτ > 0 on each of the critical surfaces τk. ,is implies that
there does not exist any eigenvalue with negative real part
across the critical surfaces (14). ,us, there is only one
possible stability region (under condition (8)) enclosed by
τ � 0 and the critical surface τ0 closest to it.

For a> 0, we have following main results:

Theorem 1. Suppose x∗ is an equilibrium solution of the
ACCM-Ikeda TD system (3) and q � z2 f(x∗, x∗) � bg′(x∗),
then we can get the following:
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0 5–5
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(t)

0 5 10–5
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(f )

Figure 3:,e initial condition is ϕ(t) � 1 for t ∈ [− τ, 0] throughout the investigation. Parameter b� 4, and time delay τ � 2. (a) Time series
for a � 2.67, the fixed point is stable. Phase plane plots in (x(t − τ) − x(t)) plane for variable a, (b) period limit cycle for a � 2.35, (c) chaotic
attractor for a � 2.02, (d and e) hyperchaotic attractor for a � 1.57 and a � 0.61, (f ) multiscroll hyperchaotic attractor for a � 0.12.
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Figure 4: (a) ,e five largest Lyapunov exponents λ1,2,3,4,5 plotted versus the bifurcation parameter 1≤ b≤ 5 for parameter a � 1 and time
delay τ � 2. (b) ,e bifurcation diagram for the same parameter as in case (a).
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(1) If q ∈ (− ∞, − a), then the stability region of x∗ in (τ,

a, q) parameter space is located between the plane τ �

0 and τ0. İe equation undergoes Hopf bifurcation at
this value.

(2) If q ∈ (a, ∞), then x∗ is unstable for any τ ≥ 0.
(3) If q ∈ (− a, a), then x∗ is stable for any τ ≥ 0.

4. Numerical Studies

In this section, the system equation (2) is solved nu-
merically using the fourth-order Runge–Kutta algorithm
with a step size h � 0.01. ,e initial condition is ϕ(t) � 1
for t ∈ [− τ, 0] throughout the investigation. ,en, the
dynamics of the ACCM-Ikeda TD system is investigated

through bifurcation diagram, phase plots, and Lyapunov
exponent spectrum (LES) considered from different
perspectives. ,e LES is calculated using the method
proposed in [35].

4.1. Varying a for b � 4 andTimeDelay τ � 2. System (2) with
parameter b � 4 and the time delay τ � 2 is numerically
examined for the single bifurcation parameter a. ,e bi-
furcation parameter a varies in the range 0.1 ≤ a ≤ 3. Five
largest Lyapunov exponents λ1,2,3,4,5 of all the spectrum
versus the bifurcation parameter a is shown in Figure 2(a),
which reveals that,

(1) in the region a ∈ [2.18, 3], the equilibrium point x∗

is stable
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Figure 5:,e initial condition is ϕ(t) � 1 for t ∈ [− τ, 0] throughout the investigation. Parameter a� 1, and time delay τ � 2. (a) Time series
for b � 1.24, the fixed point is stable, (b) period limit cycles for b � 1.92, (c) chaotic attractors for b � 2.52, and (d) hyperchaotic attractors for
b � 4.57.
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(2) in the region a ∈ [1.9, 2.17], there is one positive LE
(λ1 > 0) meaning that chaos appears

(3) in the region a ∈ [1.44, 1.89], chaotic and hyper-
chaotic regime appears alternately

(4) in the region a ∈ [0.1, 1.43], there are two positive LE
(λ1> 0 and λ2> 0) meaning that hyperchaos appears

,ese regions of nonchaos and chaos observed in
Figure 2(a) are best visualized in the bifurcation diagram,
where we plot the maxima of x(t) versus the bifurcation
parameter a, as shown in Figure 2(b). A good consistency
can be noted between the bifurcation diagram and the
LES. ,e outcomes of this variation are shown in
Figure 3.

(i) For a � 2.67, we get equilibrium point x∗ � 1.44555
and q � bg′(x∗) � − 2.0435. By Case 3 of,eorem 1,
the time series x(t) converges to x∗, as shown in
Figure 3(a).

(ii) For a � 2.35, we get equilibrium point x∗ � 1.53665
and q � bg′(x∗) � − 3.4094. ,erefore, in view of
Case 1 of ,eorem 1, the stability region is located
between τ � 0 and τ0 � 0.7564. By setting τ � 2, the
equilibrium is found unstable leading to a limit
cycle, as depicted in Figure 3(b).

(iii) For a � 2.02, we get q � bg′(x∗) � − 4.6290.
,erefore, in view of Case 1 of ,eorem 1, the
stability region is located between τ � 0 and τ0 �

0.4294. By setting τ � 2, the equilibrium is found
unstable leading to a chaotic attractor, as depicted in
Figure 3(c).

(iv) For a � 1.57, a � 0.61, and a � 0.12, we get q �

7.5144, q � 7.8277, and q � 7.9023. In view of Case 2
of ,eorem 1, x∗ is unstable for any τ ≥ 0. We can
obtain hyperchaotic attractors (shown in
Figures 3(d) and 3(e)) and a multiscroll hyper-
chaotic attractor (Figure 3(f)), respectively.

4.2.Varying b fora � 1andTimeDelay τ � 2. System (2) with
the parameter a � 1 and the time delay τ � 2 is numerically
examined for the single bifurcation parameter b. ,e bi-
furcation parameter b varies in the range 1≤ b≤ 5. Five
largest Lyapunov exponents λ1,2,3,4,5 of all the spectrum
versus the bifurcation parameter b is shown in Figure 4(a),
which reveals that,

(1) in the region 1≤ b≤ 2.1, the equilibrium x∗ is stable
(2) in the region 2.11≤ b≤ 2.23, chaotic and hyper-

chaotic regime appears alternately
(3) in the region 2.24≤ b≤ 3, there is one positive LE

(λ1 > 0) meaning that the chaos has appeared
(4) in the region 3.1≤ b≤ 5, there are two positive LE

(λ1 > 0 and λ2 > 0) meaning that hyperchaos appears

,ese regions of nonchaos and chaos observed in
Figure 4(a) are best visualized in the bifurcation diagram,
where we plot the maxima of x(t) versus the bifurcation
parameter b, as shown in Figure 4(b). ,e outcomes of this
variation are shown in Figure 5.

(i) For b � 1.24, we get q � 0.3554. x∗ is stable in view
of Case 3 of ,eorem 1. And the solution converges
to x∗ � 1.22535, as shown in Figure 5(a).

(ii) For b � 1.92, we get q � − 2.1159. In view of Case 1 of
,eorem 1, the stability region is located between
τ � 0 and τ0 � 1.1064. By setting τ � 2, the equi-
librium is found unstable leading to a limit cycle, as
depicted in Figure 5(b).

(iii) For b � 2.52 and b � 4.57, we get q � 4.7286 and q �

8.8743. By Case 2 of ,eorem 1, we observe a
chaotic attractor in Figure 5(c) and a hyperchaotic
attractor in Figure 5(d), respectively.

4.3.VaryingTimeDelay τ fora � 1and b � 4. System (2) with
the parameter a � 1 and b � 4 is numerically examined for

–15

–25

1 2 3 4 5
τ

λ 1
,2

,3
,4

,5
a = 1, b = 4

(a)

40

20

0

–20
0 5 10 15 20

τ

a = 1, b = 4

x m
ax

(b)

Figure 6: (a) ,e five largest Lyapunov exponents λ1,2,3,4,5 plotted versus the time delay 0.1≤ τ ≤ 20 for parameters a � 1 and b � 4. (b) ,e
bifurcation diagram for the same parameter as in case (a).
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the time delay τ. ,e time delay τ varies in the range
0.1≤ τ ≤ 20. Five largest Lyapunov exponents λ1,2,3,4,5 of all
the spectrum versus the time delay τ is shown in Figure 6(a),
which reveals that there is a narrow region of chaos (λ1 > 0)
between 0.48≤ τ ≤ 0.54 and 0.7≤ τ ≤ 1.33. When τ is starting
at about 1.45, there is already a permanent hyperchaos (λ1,
λ2 > 0) range.

,ese regions of nonchaos and chaos observed in
Figure 6(a) are best visualized in the bifurcation diagram,
where we plot the maxima of x(t) versus the time delay τ, as
shown in Figure 6(b).

For a � 1 and b � 4, we get x∗ � 1.853 and q � bg′(x∗) �

− 7.3430, then x∗ is stable in view of Case 1 of,eorem 1 and
the stability region is located between 0≤ τ ≤ 0.2347. ,e
outcomes of this variation are shown in Figure 7.

(i) For τ � 0.2< τ0, x∗ is stable and the solution
converges to x∗ � 1.853, as shown in Figure 7(a)

(ii) Chaos attractors for τ � 0.5 and τ � 0.97 are shown
in Figures 7(b) and 7(c)

(iii) At τ � 2.3 a hyperchaotic attractor is exhibited in
Figure 7(d)

5. Performance Evaluations

To exhibit the effect of the ACCM in enhancing the chaotic
dynamic characteristics of the Ikeda TD system, we compare
the chaos and hyperchaos characteristics of the improved
system with that of the seed Ikeda TD system. ,e systems
are integrated with a fourth-order Runge–Kutta algorithm,
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Figure 7: ,e initial condition is ϕ(t) � 1 for t ∈ [− τ, 0] throughout the investigation. Parameters a� 1 and b � 4. (a) Period limit cycle for
τ � 0.2, (b and c) chaos attractors for τ � 0.5 and τ � 0.97, and (d) multiscroll hyperchaotic attractors for τ � 2.3.
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with a fixed time step size equal to h � 0.01. Two-parameter
(2D) Lyapunov exponent diagrams are employed to explore
the dynamics of the systems over the whole three-di-
mensional (3D) parameter space (given by a, b, and τ).

5.1. 2D Largest Lyapunov Exponent Diagrams. ,e chaotic
dynamical behaviors of the ACCM-Ikeda and seed Ikeda
TD systems over the whole (a, b), (a, τ), and (b, τ) pa-
rameter space are presented in this section. All of these 2D
parameter space diagrams are obtained by considering the
LLE value. ,e results for a cut of this 3D space at τ � 2, b �

4, and a � 1 are shown in Figures 8–10. ,e white and faint
yellow zones (noted by I) indicate the chaotic dynamics of
the system (λ1 > 0). In Figure 8(a), some stripes corre-
sponding to nonchaotic regions embedded in the chaos

region can be found. In Figure 8(b), we can find a larger
connected chaos region. ,e ACCM-Ikeda TD system has
larger connected chaos region in the (a, b) space. And from
Figures 9 and 10, we can get the same results. ,e ACCM-
Ikeda TD system has larger connected chaos region over
the whole (a, b), (a, τ), and (b, τ) parameter space.
Moreover, it is noteworthy that with increasing b smaller
time delay of the ACCM-Ikeda TD system is required to
produce chaos (Figure 10(b)).

5.2. 2D Second Largest Lyapunov Exponent. ,e hyper-
chaotic dynamical behaviors of the ACCM-Ikeda and seed
Ikeda TD systems over the whole (a, b), (a, τ), and (b, τ)

parameter space are presented in this section. Hyperchaotic
dynamical behavior is studied by using the second largest
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Lyapunov exponent (LE2) as indicators. As shown in
Figures 11–13, the white and faint yellow zones (noted by I)
indicate the hyperchaotic states of the system (λ2 > 0 and
λ1 > 0, in Figures 8–10). Clearly in Figures 11–13, the
ACCM-Ikeda TD system has larger connected hyperchaotic
regions in 2D parameter spaces (a, b), (a, τ), and (b, τ).
With parameters − a, b, and time delay τ increase, λ2 of the
enhanced ACCM-Ikeda TD system become larger and
positive when λ2 of the original Ikeda system is still negative.
As such, the ACCM model can transform the chaotic os-
cillator to hyperchaotic oscillations.

5.3. Largest Lyapunov Exponent. Moreover, the complexity
of the two systems is compared by calculating the single
parameter Largest Lyapunov Exponent. Lyapunov Exponent
can describe the average separation rate of trajectories
starting from two extremely close initial states. A positive LE
means that the two adjacent trajectories of a dynamical
system exponentially separate in each iteration. A dynamical
system with a positive LE is regarded as chaotic, and larger
LE represents higher dynamical complexity. Figures 14(a)–
14(c) compare the largest Lyapunov exponents (LLEs) of the
ACCM-Ikeda TD system and its associated seed Ikeda
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Figure 11: (a),e 2D LE diagram showing the second largest Lyapunov exponent (λ2) of the Ikeda TD system in the (a − b) space. (b),e
2D LE diagram showing the second largest Lyapunov exponent of the ACCM-Ikeda TD system in the (a − b) space.
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system. ,e largest Lyapunov exponents (LLEs) curve with
the change of parameters a, b, and time delay τ, as shown in
Figures 11(a) and 11(b), respectively. As can be observed
from these figures that the ACCM-Ikeda TD system has
larger LLEs, it proves that ACCM can enhance the chaos
complexity of the original Ikeda system.

6. Conclusion

In this paper, a new Ikeda time delay system with asym-
metric central contraction mutation (ACCM) is proposed
and examined. First, we have analyzed the stability and Hopf

bifurcation of the system. ,e results for different types of
stability regions are derived. ,e conditions on the partial
derivatives of function f at equilibrium points are provided
theoretically. ,e Hopf bifurcation value of delay τ is also
mentioned. Next, the dynamical analysis of the system is
carried out by visualizing the bifurcation diagram and
spectrum of the first five LEs as a function of system pa-
rameters a, b, and the time delay τ. In a large range of
parameters, rich dynamical behaviors including asymptotic
stability, limit cycles, chaos, hyperchaos, and multiscroll
chaos are observed. Finally, we have compared the chaotic
dynamics of the ACCM-Ikeda TD system and those of the
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seed Ikeda TD system. Two-parameter (2D) LE diagrams
are employed to explore the chaotic dynamics of the system
over the whole parameter space. Complexity of the systems
is characterized by LLE as a function of single parameter.,e
simulation results show that the ACCM-Ikeda TD system
has higher complexity and larger chaotic and hyper-
chaotic parameter zones. ,ere is no transient nonchaos
window, and the fragile chaos phenomenon is successfully

suppressed. Moreover, chaotic regime can be transformed to
hyperchaotic regime by introducing the ACCM strategy. As a
theoretical extension of the Ikeda TD system, the proposed
scheme could be realized by the combination of electrical and
optical devices according to some existing research studies
[28, 36], and the ACCM-Ikeda TD system has the potential to
be used in real world applications such as secure commu-
nications and random number generation.
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In this paper, we investigate a novel synchronization method, which consists of n (n≥ 2) cascade-coupled chaotic systems.
Furthermore, as the number of chaotic systems decreases from n to 2, the proposed synchronization will transform into bi-
directional coupling synchronization. Based on Lyapunov stability theory, a general criterion is proposed for choosing the
appropriate coupling parameters to ensure cascading synchronization. Moreover, 4 Lü systems are taken as an example and the
corresponding numerical simulations demonstrate the e�ectiveness of our idea.

1. Introduction

Since Pecora and Carrol reported the discovery of syn-
chronization for two chaotic systems by circuits imple-
mentation [1], the exciting phenomenon has gained much
attention. In various �elds, such as secure communica-
tion, signal processing, and life sciences, many types of
chaotic synchronization are proving to be increasingly
useful [2–5].  e design of novel synchronization models
is necessary in such applications and thus motivating
researchers to develop it, such as phase synchronization
[6], projective synchronization [7], generalized syn-
chronization [8], complex synchronization [9], modulus
synchronization [10], and hybrid dislocated synchroni-
zation [11].

It is known that chaotic systems are extremely sensitive
to initial values [12]. For two chaotic systems with the same
structure, minor deviations in their initial values will lead to
signi�cantly di�erent chaotic state [13]. After the trans-
mission through the cascade-coupled systems, the di�erence
becomes more di�cult to be analyzed. In these cases, when a
signal to be transmitted is loaded into a cascade of chaotic
systems, the security of the transmitted information and the
di�culty of being deciphered will be greatly enhanced.
However, the existing synchronization has been acquired for
two chaotic systems, and the synchronization problems of n
chaotic systems are yet to be investigated.

In fact, the synchronization for two chaotic systems can
be de�ned as the following two types: unidirectional cou-
pling synchronization and bidirectional coupling synchro-
nization [14]. Unidirectional coupling synchronization
includes a drive system and a response system.  e two
systems are synchronized by introducing the state of the
drive system on the response system [15–17]. However,
bidirectional coupling synchronization, also known as
mutual coupling synchronization, can be obtained by in-
troducing the state of a system to that of another system, in
which each system can be considered as drive system or
response system [18–20]. When compared with unidirec-
tional coupling synchronization, bidirectional (or mutual)
coupling synchronization is more attractive due to the fact
that it is ready to implement in practice. Recently, Sivaga-
nesh et al. proposed the synchronization of a network of
mutually coupled chaotic systems, in which the synchro-
nization behaviour changes as the coupling parameters
change [21].

Interestingly, Carroll and Pecora not only discovered
chaos synchronization phenomenon but also studied cas-
cading synchronized chaotic systems [22].  eir model
consists of a 3D drive system and two 2-D subresponse
systems, where the subresponse systems can be constructed
by copying two of the expressions of the drive systems. By
combining the cascading synchronized chaotic system with
projective synchronization schemes, An and Chen reported
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the function cascade synchronization method [23, 24],
which presented 3 chaotic systems. Indeed, the two 2-D
response systems are not chaotic systems. And, the status
signal of the response system is not fed back to the drive
system.

By the motivation of the above discussion, a novel
synchronization method is investigated in this paper, which
consists of n (n≥ 2) cascade-coupled chaotic systems. -is
implies that the chaotic systems are in linear topology and
cascade-coupled with each other. For example, the i-th
system will be synchronized with the (i − 1)-th and
(i + 1)-th systems (2≤ i≤ (n − 1)). Further, as the number
of chaotic systems decreases from n to 2, the proposed
synchronization will transform into bidirectional coupling
synchronization. Based on global control strategy, the
synchronization scheme can be realized by choosing the
appropriate coupling parameters, and the corresponding
numerical simulations are presented to verify the effec-
tiveness of our idea. In short, the proposed synchronization
of n cascade-coupled chaotic systems can provide a novel
choice for secure communication and signal processing.

-e reminder of this paper is organized as follows. In
Section 2, the principle of the synchronization for n cascade-
coupled chaotic systems is introduced. And 4 Lü systems are
chosen as an example to illustrate the effectiveness of our
idea in Section 3. Conclusions are drawn in Section 4.

2. Model Description of the Synchronization of
N Cascade-Coupled Chaotic Systems

-is section mainly introduces the principle of the syn-
chronization of N cascade-coupled chaotic systems.

We consider the following n chaotic systems.
-e first system can be depicted as

_X1 � AX1 + f X1(  − D1 X1 − X2( . (1)

-e second system can be depicted as

_X2 � AX2 + f X2(  − D1′ X1 − X2(  − D2 X2 − X3( . (2)

-e third system can be depicted as
_X3 � AX3 + f X3(  − D2′ X2 − X3(  − D3 X3 − X4( ,

⋮
(3)

-e (n − 1)-th system can be depicted as
_Xn− 1 � AXn− 1 + f Xn− 1(  − Dn− 2′ Xn− 2 − Xn− 1( 

− Dn− 1 Xn− 1 − Xn( .
(4)

-e n-th system can be depicted as
_Xn � AXn + f Xn(  − Dn− 1′ Xn− 1 − Xn( , (5)

where X1, X2, . . . , and Xn denote m-dimensional state
vectors of the chaotic systems. A denotes an m × m pa-
rameters matrix. f(X1), f(X2), . . . , f(Xn− 1), and f(Xn)

denote m × 1 continuous vector functions. D1, D1′, D2, D2′,
D3, D3′, . . . , Dn− 1 and Dn− 1′ are diagonal matrices which rule
the feedback gain.

Definition 1. For the n chaotic systems, our goal is that the
trajectory of X1 synchronizes with that of X2, and the
trajectory of X2 synchronizes with that of X3, . . . , finally the
trajectory of Xn− 1 synchronizes with that of Xn. -en

lim
t⟶∞

‖e(t)‖ � 0, (6)

where e(t) is a (m × (n − 1))-dimensional column vector
and e(t) � (e1(t), e2(t), . . . , en− 1(t))T, with e1(t) �

X1 − X2, e2(t) � X2 − X3, . . . , en− 1(t) � Xn− 1 − Xn, and ‖ · ‖

represents the Euclidean norm.

Remark 1. -e error dynamical system can be acquired from
equations (1)–(6):

_e1(t) � _X1 − _X2 � A + HX1 ,X2
− D1 − D1′(  e1(t) + D2e2(t),

_e2(t) � _X2 − _X3 � A + HX2 ,X3
− D2 − D2′(  e2(t) − D1′e1(t) + D3e3(t),

⋮

_en− 2(t) � _Xn− 2 − _Xn− 1 � A + HXn− 2 ,Xn− 1
− Dn− 2 − Dn− 2′(   en− 2(t) − Dn− 3′ en− 3(t) + Dn− 1en− 1(t),

_en− 1(t) � _Xn− 1 − _Xn � A + HXn− 1 ,Xn
− Dn− 1 − Dn− 1′(  en− 1(t) − Dn− 2′ en− 2(t),

(7)

where f(X1) − f(X2) � HX1 ,X2
· e1(t), f(X2) − f(X3) �

HX2 ,X3
· e2(t), · · ·, and f(Xn− 1) − f(Xn) � HXn− 1 ,Xn

· en− 1(t).
It is clear that f(X1), f(X2), f(X3), . . . , f(Xn− 1), f(Xn)

are bounded matrices, and thus HX1 ,X2
, HX2 ,X3

, . . . , HXn− 1 ,Xn

are also boundedmatrices. A general condition for achieving

the synchronization of n cascade-coupled chaotic systems is
given in the following theorem.

Theorem 1. If there exists a positive definite symmetric matrix
P, and n − 1 constants λ1 > 0, λ2 > 0, . . . , λn− 1 > 0, we have that
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A + HX1 ,X2
− D1 − D1′(  

T
P + P A + HX1 ,X2

− D1 − D1′(  ≤ − λ1I,

A + HX2 ,X3
− D2 − D2′(  

T
P + P A + HX2 ,X3

− D2 − D2′(  ≤ − λ2I,

⋮
A + HXn− 1 ,Xn

− Dn− 1 − Dn− 1′(  
T
P + P A + HXn− 1 ,Xn

− Dn− 1 − Dn− 1′(  ≤ − λn− 1I,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

where I is the identity matrix. +en the synchronization for
the cascade-coupled systems (1)–(5) is realized.

Proof. Construct a Lyapunov function as

V(t) � e
T
(t)Pn− 1e(t), (9)

where Pn− 1 � diag(P, P, . . . , P), with the total is n − 1. -en
it is easily known that V(t)≥ 0. And the time derivative of
V(t) is given as

_V(t) � _e
T
1 (t)Pe1(t) + e

T
1 (t)P _e(t)1 + _e(t)

T

2 Pe2(t) + e
T
2 (t)P _e2(t) + · · · + _e

T
n− 1(t)Pen− 1(t) + e

T
n− 1P _en− 1(t)

� e
T
1 (t) A + HX1 ,X2

− D1 − D1′(  
T
Pe1(t) + e

T
1 (t)P A + HX1 ,X2

− D1 − D1′(  e1(t) + e
T
2 (t)D

T
2 Pe1(t) + e

T
1 (t)PD2e2(t)

+ e
T
2 (t) A + HX2,X3

− D2 − D2′(  
T
Pe2(t) + e

T
2 (t)P A + HX2,X3

− D2 − D2′(  e2(t) − e
T
1 (t) D1′( 

T
Pe2(t)

+ e
T
3 (t)D

T
3 Pe2(t) − e

T
2 (t)PD1′e1(t) + e

T
2 (t)PD3e3(t) + · · · + e

T
n− 1(t) A + HXn− 1 ,Xn

− Dn− 1 − Dn− 1′(  
T
Pen− 1(t)

+ e
T
n− 1(t)P A + HXn− 1,Xn

− Dn− 1 − Dn− 1′(  en− 1(t) − e
T
n− 2(t) Dn− 2′( 

T
Pen− 1(t) − e

T
n− 1(t)PDn− 2′ en− 2(t)

� e
T
1 (t) A + HX1 ,X2

− D1 − D2(  
T
P + P A + HX1,X2

− D1 − D2(   e1(t) + e
T
2 (t) A + HX2,X3

− D2 − D3(  
T
P

+ P A + HX2 ,X3
− D2 − D3(  e2(t) + · · · + e

T
n− 1(t) A + HXn− 1,Xn

− Dn− 1 − Dn(  
T
P + P A + HXn− 1 ,Xn

− Dn− 1 − Dn(   

· en− 1(t) + e
T
1 (t) P D2 − D1′(  + D2 − D1′( 

T
P e2 + e

T
2 (t) P D3 − D2′(  + D3 − D2′( 

T
P e3 + · · ·

+ e
T
n− 2(t) P Dn− 1 − Dn− 2′(  + Dn− 1 − Dn− 2′( 

T
P en− 1.

(10)

As long as
D1′ � D2,

D2′ � D3,

⋮

Dn− 2′ � Dn− 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

-en, equation (12) can be represented as
_V(t) � _e

T
1(t)Pe1(t) + e

T
1(t)P _e(t)1 + _e(t)

T
2Pe2(t) + e

T
2(t)P _e2(t)

+ · · · + _e
T
n− 1(t)Pen− 1(t) + e

T
n− 1P _en− 1(t)

� e
T
1(t) A + HX1,X2

− D1 − D2(  
T
P

+ P A + HX1,X2
− D1 − D2(  e1(t)

+ e
T
2(t) A + HX2,X3

− D2 − D3(  
T
P

+ P A + HX2,X3
− D2 − D3(  e2(t) + · · ·

+ e
T
n− 1(t) A + HXn− 1,Xn

− Dn− 1 − Dn(  
T
P

+ P A + HXn− 1,Xn
− Dn− 1 − Dn(  en− 1(t)

≤ − λ1e
T
1(t)e1(t)  + − λ2e

T
2(t)e2(t)  + · · ·

+ − λn− 1e
T
n− 1(t)en− 1(t) < 0.

(12)

Equation (12) holds if and only if e(t)≠ 0. Based on
Lyapunov stability theory, system (7) is globally asymp-
totically stable. -is implies that the synchronization of n
cascade-coupled chaotic systems is achieved. -e proof is
completed. □

Remark 2. From -eorem 1, we obtain that e1(t) �

X1 − X2 � 0, e2(t) � X2 − X3 � 0, · · ·, and en− 1(t) � Xn− 1 −

Xn � 0 as t⟶∞, i.e., X1 � X2 � · · · � Xn. -is implies
that any two systems in the n chaotic systems can be
synchronized with each other. -e interesting phenom-
enon is demonstrated in Figure 1. Take the first and
second system in Figure 1 as an example. Firstly, we get
the error signal e1(t) � X1 − X2 through an adder. -en,
e1(t) is injected into the first system via multiplier − D1,
while being injected into the second system via multiplier
− D1′. -e coupling cases between the subsequent systems
are similar.

Remark 3. If the n chaotic systems are degraded to 2 chaotic
systems, then synchronization problem in this paper will
change into bidirectional coupling synchronization prob-
lem, which has been intensively revealed in previous
researches.

Complexity 3



3. Synchronization of 4 Cascade-Coupled
Lü Systems

-is section demonstrates the effectiveness and flexibility of
the model by adopting 4 Lü systems as an example.

-e first system can be presented as

_x11 � a x12 − x11(  − d11 x11 − x21( ,

_x12 � cx12 − x11x13 − d12 x12 − x22( ,

_x13 � x11x12 − bx13 − d13 x13 − x23( .

⎧⎪⎪⎨

⎪⎪⎩
(13)

-e second system can be presented as

_x21 � a x22 − x21(  − d11′ x11 − x21(  − d21 x21 − x31( ,

_x22 � cx22 − x21x23 − d12′ x12 − x22(  − d22 x22 − x32( ,

_x23 � x21x22 − bx23 − d13′ x13 − x23(  − d23 x23 − x33( .

⎧⎪⎪⎨

⎪⎪⎩

(14)

-e third system can be presented as

_x31 � a x32 − x31(  − d21′ x21 − x31(  − d31 x31 − x41( ,

_x32 � cx32 − x31x33 − d22′ x22 − x32(  − d32 x32 − x42( ,

_x33 � x31x32 − bx33 − d23′ x23 − x33(  − d33 x33 − x43( .

⎧⎪⎪⎨

⎪⎪⎩

(15)
-e fourth system can be presented as

_x41 � a x42 − x41(  − d31′ x31 − x41( ,

_x42 � cx42 − x41x43 − d32′ x32 − x42( ,

_x43 � x41x42 − bx43 − d33′ x33 − x43( ,

⎧⎪⎪⎨

⎪⎪⎩
(16)

where X1 � (x11, x12, x13)
T, X2 � (x21, x22, x23)

T, X3 �

(x31, x32, x33)
T, and X4 � (x41, x42, x43)

T are the state vec-
tors of 4 Lü systems; dij and dij

′ (i � 1, 2, 3; j � 1, 2, 3) are
coupling parameters.

Let e1i � x1i − x2i, e2i � x2i − x3i, and e3i � x3i − x4i, with
i � 1, 2, 3. From Remark 1, the error dynamical system can
be described as

_e1(t) � _X1 − _X2 � A + HX1 ,X2
− D1 − D1′(   e1 + D2e2,

_e2(t) � _X2 − _X3 � A + HX2 ,X3
− D2 − D2′(   e2 − D1′e1 + D3e3,

_e3(t) � _X3 − _X4 � A + HX3 ,X4
− D3 − D3′(  e3 − D2′e2,

(17)
where e1 � (e11, e12, e13)

T, e2 � (e21, e22, e23)
T, and e3 �

(e31, e32, e33)
T.

-e n systems model, which was presented in Section 2,
illustrates that A, f(X1), f(X2), f(X3), f(X4), HX1 ,X2

,
HX2 ,X3

, HX3 ,X4
, D1, D2, D3, and, D4 can be described as

A �

− a a 0
0 c 0
0 0 − b

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

f X1(  �

0
− x11x13
x11x12

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

f X2(  �

0
− x21x23
x21x22

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

f X3(  �

0
− x31x33
x31x32

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

f X4(  �

0
− x41x43
x41x42

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

HX1 ,X2
�

0 0 0
− x13 0 − x21
x12 x21 0

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

HX2 ,X3
�

0 0 0
− x23 0 − x31
x22 x31 0

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

HX3 ,X4
�

0 0 0
− x33 0 − x41
x32 x41 0

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

D1 � diag d11, d12, d13 ,

D1′ � diag d11′ , d12′ , d13′ ,

D2 � diag d21, d22, d23 ,

D2′ � diag d21′ , d22′ , d23′ ,

D3 � diag d31, d32, d33 ,

D3′ � diag d31′ , d32′ , d33′ .

(18)

When the coupling parameter matrices are set as D1 �

D1′ � D2 � D2′ � D3 � D3′ � 0 and the initial condition of
systems (13)–(16) are chosen as (x11, x12, x13) � (1, 1, 1),
(x21, x22, x23) � (5, 5, 5), (x31, x32, x33) � (10, 10, 10), (x41,

x42, x43) � (20, 20, 20). Figure 2 indicates that systems
(13)–(16) do not synchronize with each other.

Based on global control strategy, we choose the positive
definite symmetric constant matrix P � diag(p1, p2, p3),
with pi > 0 (i � 1, 2, 3), and positive constants λ1 > 0, λ2 > 0,
λ3 > 0, then we have

The first
system …

−D1

−D1′

−

e1

e1X1
+

X2

The
second
system

The third
system

−

e2

e2X2
+

X3

The (n – 1)-
th system −

en–1

en–1Xn–1
+

Xn

The n-th
system

−D2

−D2′ −D′n–1

−Dn–1

Figure 1: -e schematic representation of (n) cascade-coupled chaotic systems.

4 Complexity



A + Hx1 ,x2
− D1 − D1′(  

T
P + P A + Hx1 ,x2

− D1 − D1′(   + λ1I

�

− 2p1 a + d11 − d11′ −
λ1
2p1

  p1a − p2x13 p3x12

p1a − p2x13 2p2 c − d12 + d12′ +
λ1
2p2

  p3 − p2( x21

p3x12 p3 − p2( x21 − 2p3 b + d13 − d13′ −
λ1
2p3

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(19)

According to the basic algebraic theory, the matrix (19) is
negative definite as long as

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x11
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(a)

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x12
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x32
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–20
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0
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20
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50

(b)

x13
x23

x33
x43

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0
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20

30

40

50

60

(c)

Figure 2:-e graph of synchronization when the coupling parameters are all zero. (a) x11, x21, x31 and x41 vs. t. (b) x12, x22, x32 and x42 vs. t.
(c) x13, x23, x33 and x43 vs. t.
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Δ1 � − 2p1 a + d11 − d11′ −
λ1
2p1

 < 0, (20)

Δ2 �

− 2p1 a + d11 − d11′ −
λ1
2p1

  p1a − p2x13

p1a − p2x13 2p2 c − d12 + d12′ +
λ1
2p2

 





� − 4p1p2 · a + d11 − d11′ −
λ1
2p1

  c − d12 + d12′ +
λ1
2p2

  − p1a − p2x13( 
2 > 0,

(21)

Δ3 �

− 2p1 a + d11 − d11′ −
λ1
2p1

  p1a − p2x13 p3x12

p1a − p2x13 2p2 c − d12 + d12′ +
λ1
2p2

  p3 − p2( x21

p3x12 p3 − p2( x21 − 2p3 b + d13 − d13′ −
λ1
2p3

 





� − 2p3 · b + d13 − d13′ −
λ1
2p3

 Δ2 − p3x12( 
2

· 2p2 c − d12 + d12′ + λ( 1  + p3 − p2( x21 · 2p1 a + d11 − d11′(  − λ1( 

· p3 − p2( x21 + 2p3x12 p1a − p2x13( < 0.

(22)

From equations (20)–(22), we can get

d11 − d11′ > − a +
λ1
2p1

,

d12 − d12′ >
− p1a − p2x13( 

2

4p1p2 · a + d11 − d11′ − λ1/2p1( ( 
+ c +

λ1
2p2

,

d13 − d13′ > − b +
λ1
2p3

−
p3x

2
12 · 2p2 c − d12 + d12′(  + λ1 

2Δ2

+
p3 − p2( x21 · 2p1 a + d11 − d11′(  − λ1(  p3 − p2( x21 + 2p3x12 p1a − p2x13(  

2p3Δ2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

-e synchronization can be achieved easily as long as the
inequalities (23) holds, ie., we need to choose the appropriate

coupling parameters dij and dij
′ , with i � 1, 2, 3 and

j � 1, 2, 3.
For convenience, let the matrix p2 � p3, then we have

d11 − d11′ > − a +
λ1
2p1

,

d12 − d12′ >
− p1a − p2x13( 

2

4p1p2 · a + d11 − d11′ − λ1/2p1( ( 
+ c +

λ1
2p2

,

d13 − d13′ > − b +
λ1
2p3

−
p3x

2
12 · 2p2 c − d12 + d12′(  + λ1 

2Δ2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)
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In a similar way, we can get the following two
inequalities:

d21 − d21′ > − a +
λ2
2p1

,

d22 − d22′ >
− p1a − p2x23( 

2

4p1p2 · a + d21 − d21′ − λ2/2p1( ( 
+ c +

λ2
2p2

,

d23 − d23′ > − b +
λ2
2p3

−
p3x

2
22 · 2p2 c − d22 + d22′(  + λ2 

2Δ2′
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

d31 − d31′ > − a +
λ3
2p1

,

d32 − d32′ >
− p1a − p2x33( 

2

4p1p2 · a + d31 − d31′ − λ3/2p1( ( 
+ c +

λ3
2p2

,

d33 − d33′ > − b +
λ3
2p3

−
p3x

2
32 · 2p2 c − d32 + d32′(  + λ3 

2Δ″2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)
where Δ2′� − 4p1p2 · (a + d21 − d21′ − (λ2/2p1))(c − d22 + d22′ +

(λ2/2p2)) − (p1a − p2x23)
2, and Δ′′2 �− 4p1p2 ·(a +d31 −

d31′ − (λ3/2p1))(c − d32+d32′ +(λ3/2p2))− (p1a − p2x33)
2.
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Figure 3: -e graph of synchronization. (a) x11, x21, x31 and x41 vs. t. (b) x12, x22, x32 and x42 vs. t. (c) x13, x23, x33 and x43 vs. t.
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-e following numerical simulations are presented to
demonstrate the effectiveness of our idea. Let a � 36, b � 3,

c � 20, P� diag {1, 1, 1}. λj � 60, with j � 1, 2, 3. For the
purpose of satisfying above inequalities (24)–(26), the
coupling parameters are set as d11 � d12 � d13 � 10,
d11′ � d12′ � d13′ � 5, d21 � d22 � d23 � 5, d21′ � d22′ � d23′ � 5,
d31 � d32 � d33 � 1, d31′ � d32′ � d33′ � − 10. -e corre-
sponding numerical results are illustrated in Figures 3 and 4.
Figure 3 indicates that the trajectory of 4 Lü systems can be
synchronized with each other. Figure 4 illustrates that the
errors e1 � (e11, e12, e13)

T, e2 � (e21, e22, e23)
T, e3 � (e31, e32,

e33)
T are finally stabilized to 0 as t⟶∞, i.e., the synchro-

nization for 4 cascade-coupled Lü systems is realized.

Remark 4. When fixing the above coupling parameters except
d11, then we obtain d11 > − 1. Further, we select d11 ∈ (− 10, 40)

to observe the nature of the dynamical state of system (13) before
and after synchronization. Here, we note that the largest Lya-
punov exponent of system (13) is always greater than zero, which
demonstrates that system (13) operates in chaotic state within a
large range of coupling parameters (Figure 5).
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Figure 4: -e errors of synchronization. (a) e11, e21 and e31 vs. t. (b) e12, e22 and e32 vs. t. (c) e13, e23 and e33 vs. t.
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4. Conclusions

Recently, the chaos synchronization has been a subject of
increasing research interest due to its potential application in
fields of secure communication, signal processing, and life
sciences. Numerous researchers have extensively explored
the synchronization of two chaotic systems.-is paper firstly
proposes cascade-coupled synchronization of n (n≥ 2)

chaotic systems, which is proved by rigorous mathematical
analysis. Based on Lyapunov stability theory, a general
condition is presented and applied to 4 Lü systems. -is
validates the effectiveness of our idea and then motivates us
to develop cascade synchronization in different cases, such
as complex chaotic systems, fractional-order chaotic sys-
tems, and time-delayed chaotic systems. Moreover, the other
coupling parameter types are also worthy of further
investigation.
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Bursting is an important �ring activity of neurons, which is caused by a slow process that modulates fast spiking activity. Based on 
the original second-order Morris-Lecar neuron model, an improved third-order Morris-Lecar neuron model can produce bursting 
activity is proposed, in which the e�ect of electromagnetic radiation is considered as a slow process and the original equation of 
Morris-Lecar neuron model as a fast process. Extensive numerical simulation results show that the improved neuron model can 
produce di�erent types of bursting, and bursting activity shows a deep dependence on system parameters and electromagnetic 
radiation parameters. In addition, synchronization transitions of identical as well as no-identical coupled third-order Morris-
Lecar neurons are studied, the results show that identical coupled neurons experience a complex synchronization process and 
reach complete synchronization �nally with the increase of coupling intensity. For no-identical coupled neurons, only anti-phase 
synchronization and in-phase synchronization can be reached. �e studies of bursting activity of single neuron and synchronization 
transition of coupled neurons have important guiding signi�cance for further understanding the information processing of neurons 
and collective behaviors in neuronal network under electromagnetic radiation environment.

1. Introduction

�e biological or human neural system is usually composed 
of millions of neurons, which can generate, transmit, receive, 
and process information by �ring various types of electrical 
activities. Since the pioneering work of Hodgkin and Huxley 
[1], many models have been proposed for modelling and sim-
ulating the electrical activities of a neuron [2–9]. For a neuron, 
spiking and bursting are two major categories, and they may 
be periodic motion or chaotic motion. Indeed, bursting is 
considered as neuron activity alternates between a quiescent 
state and repetitive spiking, and it is a dynamical consequence 
of fast/slow dynamics. Bursting is an important �ring pattern, 
and it has been con�rmed that neurons in di�erent regions of 
brain produce bursting activities [10].

Neurons are sensitivity to many external factors, and elec-
trical activities of a neuron and collective behaviours in neu-
ronal network will be changed under certain conditions. Time 
delay [11–17], noise [18, 19], and network topology [20–23] 
are common factors being considered to investigate �ring 

behaviours of neuron and collective behaviours in neuronal 
network. It is worth noting that electromagnetic radiation is 
another one cannot be ignored. With the development of mod-
ern industry, wide utilizations of electric equipment make 
neural system are exposed to an environment full of electro-
magnetic radiation, which has a great in�uence on the dynam-
ics of a single neuron and network of neurons. In Ref. [24], 
Wang et al. suggested that the strong external electromagnetic 
�eld facilitates the neuron �ring action potentials and enhances 
the mean �ring rate of the network, but disrupts the syn-
chronicity of the activities of the neural network. In Ref. [25], 
Li et al. developed a mathematical model to describe the e�ect 
of electromagnetic radiation, the results show that electrical 
activities of a single neuron can be suppressed by electromag-
netic radiation, and spatiotemporal patterns in neuronal net-
work are also suppressed from the stable propagating wave 
state to a homogeneous resting state. Rebertson et al. [26] 
argued that low-frequency pulsed electromagnetic �eld expo-
sure can alter neuroprocessing in humans. In Ref. [27], a small 
Hop�eld neural network with the electromagnetic radiation 
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being considered is constructed, in which the previous steady 
neural network can present abundant chaotic dynamics, and 
hidden attractors can be observed.

Memory is a natural characteristic of neuron, and it has 
been considered in studies from neuron models to collective 
behaviours in neuronal network recently. For example, refer-
ences [28–30] have proved that the ionic channels of neuron 
models, e.g., Hodgkin–Huxley and Morris-Lecar neuron 
model, have memory e�ect and they can be substituted by 
�rst-order or second-order memristors. Moreover, memristive 
relation is also used to stress the memory e�ect in some mem-
ristor-based neural network [31–33]. Indeed, memristor is an 
e�ective element to characteristic the memory e�ect in neuron 
and network of neurons. From this point of view, the e�ect of 
electromagnetic radiation on neuron can be considered as a 
variation of magnetic �ux, and the �ux-controlled memristor 
is available to represent the memory e�ect of magnetic �ux. 
As a result, Ma et al. [34–36] proposed several models to 
describe the e�ect of electromagnetic radiation on the electri-
cal activities of neuron by using magnetic �ux, in which a 
memristor-like feedback is employed to realize coupling 
between magnetic �ux and membrane potential. It is found 
that multiple modes of spiking activities can be observed. 
Moreover, synchronization, noise e�ect, and spatiotemporal 
dynamics in neuron and neural networks under electromag-
netic radiation were also investigated [37–41]. �e e�ect of 
electromagnetic radiation can be described by time-varying 
magnetic �ux, the coupling of electromagnetic �eld between 

neurons can be described by exchange of magnetic �ux as well, 
which results in another e�ective way for coupling between 
neurons, i.e., �eld coupling. In Refs. [42–44], �eld coupling 
rather than synaptic coupling is considered as a coupling mode 
between neurons and neural networks, it is found that multiple 
modes of synchronization can be observed from coupled neu-
rons or neural networks.

In this paper, we propose an improved Morris-Lecar neu-
ron model with electromagnetic radiation being considered, 
in which the �uctuation of electromagnetic radiation is 
described by using magnetic �ux and considered as a slow 
subsystem. Unlike previous models, multiple modes of burst-
ing activities are observed. Furthermore, synchronization 
transitions in coupled identical bursting neurons as well as 
no-identical bursting neurons are studied. �e organization 
of this paper is as follows. In Section 2, the model setting and 
description is introduced. In Section 3, numerical results are 
discussed and analysed carefully. Section 4 summarizes and 
concludes this paper.

2. Model Setting and Description

Bursting activities are results of fast/slow dynamics, and they 
cannot be observed in original two-dimensional Morris-Lecar 
neuron model under constant external forcing current. 
Researchers [5, 45–47] have explored several improved 
Morris-Lecar neuron model, in which external forcing current 

Figure 1:  Sampled time series for membrane potential when the intensity of external forcing currents is chosen as di�erent values with �xed 
angular frequency � = 0.1. (a) � = 0.001, (b) � = 0.005, (c) � = 0.05, (d) � = 0.1, (e) � = 0.2, and (f) � = 0.5. �e e�ect of electromagnetic 
radiation is considered by setting �1 = 0.2, �2 = 0.15, and �3 = 0.15.
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is considered as a varied state variable with a very slow rate, 
and several types of bursting are obtained. Inspired by Refs. 
[35, 48–50], electromagnetic radiation is considered when 
improved Morris-Lecar neuron model is constructed, in which 
the e�ect of electromagnetic radiation is regarded as a slow 
subsystem and two-dimensional Morris-Lecar neuron model 
as a fast subsystem. As a result, the improved Morris-Lecar 
neuron model is described as follows.

where

In this model, � represents membrane potential, � represents 
recovery variable, � is magnetic �ux which is a slower variable 
than � and �. ���,��, and �� are steady state potentials for 
calcium, potassium, and leak ion channels, respectively. 
�∞(�) and �∞(�) de�ne the stable values of opening prob-
ability for calcium and potassium, where �1, �2, �3, and �4 are 

(1)

�̇ = −����∞(�)(� − ���) − ���(� − ��)
− ��(� − ��) − ��� + �1(� + ��2)�,

�̇ = �(�)(�∞(�) − �),
�̇ = �2� + �3����,

(2)

�∞(�) =
1
2(1 + tanh

� − �1
�2
),

�∞(�) =
1
2(1 + tanh

� − �3
�4
),

�(�) = 13cosh(
� − �3
2�4
).

parameters of steady states. ��� is external forcing current and 
��� = �sin(��). �e term �1(� + ��2)� de�nes the feedback 
current on membrane potential when magnet �ux is changed 
in media, and �1 is the feedback gain. �2 is a factor which 
describes the contribution of varied magnetic �ux on the for-
mation of membrane potential. �3���� is considered as leakage 
magnet �ux, and ���� is chosen as a constant value 0.2. �e rest 
system parameter are selected as ��� = 1.2, �� = 2, �� = 0.5, 
��� = 1, �� = −0.5, �� = −0.7, �1 = −0.01, �2 = 0.15, �3 = 0.1, 
�4 = 0.05, � = 0.1, and � = −0.09.

Figure 2:  Sampled time series for membrane potential when the angular frequency of external forcing currents is chosen as di�erent values 
with �xed intensity � = 0.05. (a) � = 0.005, (b) � = 0.01, (c) � = 0.06, (d) � = 0.4, (e) � = 0.7, and (f) � = 1.0. �e e�ect of electromagnetic 
radiation is considered by setting �1 = 0.2, �2 = 0.15, and �3 = 0.15.
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as shown in Figure 1(d). With the increase of external current 
intensity, the emerging type of bursting is stay behind. 
Furthermore, sampled time series for membrane potential are 
calculated with di�erent angular frequency of external forcing 
currents being used, and the results are shown in Figure 2.

In numerical simulations, the intensity of external forcing 
current is �xed at � = 0.05, and the e�ect of electromagnetic 
radiation is considered by setting �1 = 0.2, �2 = 0.15, and 
�3 = 0.15. When small angular frequency is used, the model 
presents a kind of cluster bursting, i.e., each cluster consist of 
several bursts which have di�erent number of spikes, as shown 
in Figures 2(a) and 2(b). In Figure 2(c) it is worth noting that 
three types of burst emerge alternately when the angular fre-
quency is selected as � = 0.06. Moreover, spiking, periodic 
bursting, and chaotic bursting can be also observed when 
angular frequency is chosen appropriately, as shown in Figures 
2(d)–2(f), respectively. To better understand the e�ect of angu-
lar frequency on electrical activities of neurons, bifurcation 
analysis is carried out by calculating the interspike interval 
(ISI), and the results are shown in Figure 3. It is found that the 
neuron can present bursting behaviours in a large parameter 
region, and chaotic bursting, and periodic bursting emerge 
alternately with the increase of angular frequency.

In order to discern the e�ect of electromagnetic radiation, 
external forcing current is set as � = 0, and sampled time series 
for membrane potential and phase diagrams when the system 
parameters are selected �1 = 0.2, �2 = 0.15, and �3 = 0.15 are 
shown in Figure 4. In Figure 4, period-3 bursting is obtained, 
and it belongs to a type of “Flod/Homoclinic bursting” accord-
ing to the classi�cation methods in Ref. [45]. To better under-
stand the e�ect of system parameters on �ring activities of 

3. Numerical Results and Discussion

3.1 Bursting in Improved ML Neuron Model under 
Electromagnetic Radiation. In this section, fourth order 
Runge–Kutta algorithm is used with time step ℎ = 0.01. �e 
initial values are set as (�0,�0, �0) = (−0.1, 0, −2.5). At �rst, 
sampled time series for membrane potential are detected with 
di�erent intensity of external forcing current, and system 
parameters and angular frequency are selected as �1 = 0.2,  
�2 = 0.15, �3 = 0.15, and � = 0.1. �e results are shown in 
Figure 1.

It is found that even a very small intensity of external forc-
ing current can trigger bursting activities of neuron, and they 
can be either chaotic or periodic, as show in Figures 1(a)–1(c). 
Particularly, the model can present two types of burst alter-
nately with appropriate intensity of external forcing current, 
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Figure 5: Bifurcation diagram of ISI by setting �2 as the bifurcation 
parameter with � = 0, �1 = 0.2, and �3 = 0.3.

Figure 4: Sampled time series for membrane potential and phase diagrams when the system parameters are selected as � = 0, �1 = 0.2, �2 = 0.15, and �3 = 0.15.
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a chaotic bursting activity. When parameter �2 exceeds 0.63, 
only spiking activities can be observed. Particularly, the change 
of spike number in each burst with the increase of �2 experi-
ences a parameter region that chaotic bursting emerges. 

neuron, �2 is selected as bifurcation parameter and bifurcation 
diagram is calculated, and the results are shown in Figure 5.

In Figure 5, it is found that each burst can have more spikes 
when �2 is less than 0.46, and increased �2 is accompanied by 

Figure 6:  Sampled time series for membrane potential when �2 are chosen as di�erent values with � = 0, �1 = 0.2, and �3 = 0.3. (a) Spiking 
with �2 = 0.25, (b) period-2 bursting with �2 = 0.3, (c) period-3 bursting with �2 = 0.4, (d) chaotic bursting with �2 = 0.5, (e) period-2 
bursting with �2 = 0.6, and (f) spiking with �2 = 0.7.
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Figure 7: Sampled time series for membrane potential and phase diagrams when the system parameters are selected as � = 0, �1 = 0.2, �2 = 0.15, �3 = 0.15, and �� = −300 mV.
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where �� is coupling strength, and the rest parameters are the 
same as that in Figures 4 and 7 except for ��1 and ��2. �e 
values of ��1 and ��2 determine the types of bursting of two 
neurons.

At �rst, synchronization transition of two identical cou-
pled neurons is studied with ��1 = ��2 = −0.7, i.e., two cou-
pled “Fold/Homoclinic bursting” neurons. �e path to 
synchronization is shown in Figure 8 for di�erent coupling 
strength. In Figure 8(a), two neurons present anti-phase burst-
ing synchronization, in which neuron 1 shows period-3 burst-
ing and neuron 2 shows two burst patterns alternately. For 
�� = 0.004 in Figure 8(b), two neurons present anti-phase 
bursting synchronization, while neuron 1 shows chaotic burst-
ing which is di�erent from that in Figure 8(a). As �� increases, 
such as in Figures 8(c) and 8(d), the two neurons show a 
phase-locked bursting synchronization, i.e., 1 : 3 and 1 : 2, 
respectively. As �� further increases, nearly synchronization 
occurs with only one spike in a burst, as shown in Figure 8(e). 
When the coupling strength is large enough as in Figure 8(f), 
the two neurons have a complete bursting synchronization. 
Moreover, phase diagrams of membrane potentials for two 
identical coupled neurons with di�erent coupling intensity 
values are detected in Figure 9.

Let ��1 = −0.7 and ��2 = −300, the two uncoupled neu-
rons have di�erent bursting types, i.e., “Fold/Homoclinic 
bursting” and “Fold/Homoclinic bursting” respectively, and 
the path to synchronization for two no-identical neurons is 
shown in Figure 10. When the values of coupling strength are 
small, the two neurons show anti-phase bursting 

Sampled time series for membrane potential are calculated 
when �2 are chosen as di�erent values with � = 0, �1 = 0.2, and 
�3 = 0.3, and results are shown in Figure 6. In Figure 6, mul-
tiple period bursting and chaotic bursting are obtained with 
�2 being selected carefully.

In addition, extensive numerical simulations have con-
�rmed that di�erent modes of bursting can be obtained when 
system parameters are chosen appropriately. For example, 
when �� = −300 is selected, and the rest parameters are the 
same as that in Figure 4, a type of “Fold/Hopf bursting” [45] 
is observed. Sampled time series for membrane potential and 
phase diagrams are shown in Figure 7, it is obvious that the 
bursting is signi�cantly di�erent from that in Figure 4.

3.2 Synchronization in Coupled Bursting Neurons. In this 
subsection, synchronization problems are studied, and two 
electrically coupled bursting neurons are de�ned by

(3)

�̇1 = −����∞(�1)(�1 − ���) − ���1(�1 − ��1)
− ��(�1 − ��) − ��� + �1(� + ��21)�1 + ��(�2 − �1),

�̇1 = (�1)(�∞(�1) − �1),
�̇1 = �2�1 + �3����,
�̇2 = −����∞(�2)(�2 − ���) − ���2(�2 − ��2)
− ��(�2 − ��) − ��� + �1(� + ��22)�2 + ��(�1 − �2),

�̇2 = (�2)(�∞(�2) − �2),
�̇2 = �2�2 + �3����,

Figure 8: Synchronization transition of two identical coupled neurons with di�erent coupling intensity values. (a) �� = 0.001, (b) �� = 0.004,  
(c) �� = 0.025, (d) �� = 0.09, (e) �� = 0.31, and (f) �� = 1.0. Initial conditions are selected as (−0.1, 0, −2.5) and (−0.2, 0, −2.5), 
respectively.
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Figure 9: Phase diagrams of membrane potentials for two identical coupled neurons with di�erent coupling intensity values. (a) �� = 0.001, (b) 
�� = 0.004, (c) �� = 0.025, (d) �� = 0.09, (e) �� = 0.31, and (f) �� = 1.0. Initial conditions are selected as (−0.1, 0, −2.5) and (−0.2, 0, −2.5),  
respectively.
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Figure 10: Synchronization transition of two nonidentical coupled neurons with di�erent coupling intensity values. (a) �� = 0.01, (b) �� = 0.03,  
(c) �� = 0.15, (d) �� = 0.5, (e) �� = 0.7, and (f) �� = 0.9. Initial conditions are selected as (−0.1, 0, −2.5) and (−0.2, 0, −2.5), respectively.
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bursting” and “Fold/Hopf bursting”, which are studied 
through time series and phase diagrams. Furthermore, 
Synchronization transitions in two electrically coupled iden-
tical as well as no-identical neurons are studied. For the iden-
tical coupled neurons, the two neurons experience a complex 
path to synchronization, for example, anti-phase bursting 
synchronization, phase-locked bursting synchronization, and 
complete synchronization. For no-identical coupled neurons, 
the two neurons only can reach anti-phase synchronization 
and in-phase synchronization with appropriate coupling 
strengths.

Bursting is an important �ring category of a neuron, 
which occurs in di�erent regions of neural system in the 
brain. It has been observed experimentally that the synchro-
nized �ring modes during sleeping of human are a kind of 
bursting activities of neurons [10]. Researchers [51] also 
argued that some neurological disorders are associate with 
abnormal bursting �ring activity of some speci�ed neurons. 
In addition, human body is imposed into the environment 
full of electromagnetic �eld, and the electromagnetic radia-
tion is getting stronger in modern society. It has been reported 
that electromagnetic radiation is highly related to neuronal 
pathological functions, e.g., heart disease, Alzheimer’s dis-
ease, and Parkinson’s disease [52, 53]. �erefore, it is very 
signi�cant to study the e�ect of electromagnetic radiation on 
�ring activities of neuron and collective behaviours in neu-
ronal network, which will help us deepen the understanding 
of response mechanism of neural system to external 
environment.

synchronization as shown in Figures 10(a)–10(c), respectively. 
It is worth noting that spikes in each burst for two neurons 
decrease as the values of coupling strength increase. When the 
coupling strength increases to �� = 0.5 in Figure 10(d) the two 
neurons have an in-phase synchrony with their own natural 
bursting types. As the coupling strength further increases, the 
waveform for neuron 2 distorts as shown in Figure 10(e), and 
the two neurons reach in-phase bursting synchronization, in 
which the two neurons have di�erent burst amplitude. 
Extensive numerical simulations have con�rmed that the two 
no-identical coupled neurons cannot attain complete synchro-
nization whatever the values of coupling strength are selected. 
Furthermore, synchronization transition of phase diagrams 
for two nonidentical coupled neurons with di�erent coupling 
intensity values are detected, and the results are shown in 
Figure 11.

4. Conclusions

In this paper, an improved third-order Morris-Lecar neuron 
model is proposed with the e�ect of electromagnetic radia-
tion being considered, in which the bursting activities can 
be produced. Extensive numerical simulation results show 
that bursting activities of the neuron shows a deep depend-
ence on system parameters, external forcing current and 
electromagnetic radiation parameters. For certain parame-
ters, the improved Morris-Lecar neuron model can present 
two typical modes of bursting, i.e., “Fold/Homoclinic 

Figure 11: Phase diagrams of membrane potentials of two nonidentical coupled neurons with di�erent coupling intensity values. (a) �� = 0.01, 
(b) �� = 0.03, (c) �� = 0.15, (d) �� = 0.5, (e) �� = 0.7, and (f) �� = 0.9. Initial conditions are selected as (−0.1, 0, −2.5) and (−0.2, 0, −2.5),  
respectively.
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Digital implementation of chaotic systems (CSs) has attracted increasing attention from researchers due to several applications in
engineering, e.g., in areas as cryptography and autonomous mobile robots, where the properties of chaotic systems are strongly
related. �e CSs in the continuous version (CV) need to be discretized where chaotic degradation must be analyzed to guarantee
preservation of chaos. In this paper, we present a degradation analysis of �ve three-dimensional CSs and the necessary conditions
to implement the discretized versions (DVs) of Lorenz, Rössler, Chen, Liu and Chen, and Méndez-Arellano-Cruz-Mart́ınez
(MACM) CSs. Analytical and numerical analyses of chaos degradation are conducted by using the time series method; the
maximum discrete step size and the Lyapunov Exponents (LEs) are computed by using the Euler, Heun, and fourth-order
Runge–Kutta (RK4) numerical algorithms (NAs).We conducted comparative studies of performance based on time complexity of
the �ve proposed CSs in their DVs by using four embedded systems (ESs) based on three families ofMicrochipmicrocontrollers 8-
bit PIC16F, 16-bit dsPIC33FJ, and 32-bit PIC32MZ (of low-cost electronic implementation) and a Field Programmable Gate
Array (FPGA). Based on the results, the intervals at control parameters to guarantee chaos are proposed, which improves the
performance characteristics of the �ve proposed CSs in their DVs based on digital applications.

1. Introduction

In recent years, scienti�c community has become interested in
chaotic systems (CSs) due to their potential application in
several areas of engineering, where the properties of chaos are
desired, such as high sensitivity to initial conditions, high
entropy, topology complexity, ergodicity, among others [1–6].
Electronic implementations based on chaos have been de-
veloped for digital applications, e.g., as pseudorandom se-
quence generator [7], synchronization of optical networks [8],
image encryption [9], chaotic trajectories for autonomous
mobile robot [10], chaotic radar [11], among others [12–17].
Lorenz is the �rst 3D CS reported in the literature [18]. Since
then, many CSs in 3D and 4D with di©erent features and
properties have been reported [19–29]. Moreover, literature

reports chaotic maps (discrete by nature) desirable properties
at such applications, e.g., the logistic map in 1D [5], Hénon
map in 2D [30], among others.

�e 3D CSs can be implemented electronically in their
continuous or discretized versions; their continuous ver-
sions (CVs) can be implemented using operational ampli-
�ers [27–29, 31]. On the nother hand, distinct numerical
algorithms (NAs) are used to implement the discretized
versions (DVs) of the 3D CSs [32–34]. Software tools, such
as Matlab or Labview, allow to simulate and reproduce the
CSs in their DVs using NAs as Euler, Heun, and RK4 [35],
where a small step size is considered to compare their DV
versus their CV [32–34].

�e literature reports digital implementations of CSs in
their DVs for di©erent applications by using embedded
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systems (ESs) such as microcontrollers where the main cores
are 8-bit PIC18F microcontroller [36]; 16-bit dsPIC
microcontroller [37]; 32-bit microcontrollers such as PIC32
[29, 38], ARM Cortex-M3 [39], DSP [40], and Altera and
Xilinx FPGAs [7, 32–34, 41, 42]; system on chip (SoC) that
contains fast processors as NanoPC-T3 Plus [43]; and
Raspberry Pi 3 [44], among others.

Recently, the literature reports degradation studies of 3D
CSs in their DVs by using the NA of Euler; a robustness
diagram for control parameters guarantee chaos is pre-
sented, and its digital implementation is conducted in a
microcontroller PIC32 [29].

0e methods equivalent used to conduct arithmetic and
logical calculations inside of a microprocessor—or its
equivalent microcontroller as main core of an ES—are based
on numerical standards. Microchip Technology Inc. is the
manufacturer of PIC, dsPIC, and PIC32 microcontrollers;
their numerical results are based by the IEEE-754 Compliant
Floating Point Routines [45]. On the other hand, Altera-
Intel is an FPGA manufacturer, and their numerical results
of simulations are represented in IEEE-754 (2008) [46, 47].
0e NAs are simulated by using Matlab, and its results are
similar in comparison with the compilers used by Microchip
microcontrollers and software for design used by Altera-
Intel FPGA because both are based on IEEE-754 [35, 46, 47].

0e FPGA has powerful simulation tools to reproduce
chaotic dynamics of CSs in their DVs by using digital signal
processing (DSP) modules as a complementary tool for
Matlab/Simulink software, e.g., Altera Simulink/DSP
Builder and Xilinx System Generator BlockSet [48, 49].

In this paper, we present a degradation analysis of the
five 3D CSs in their DVs to determine the performance of
implementation in four versions of an ES, the time com-
plexity, and the intervals of control parameters to guarantee
chaos are obtained. 0e results of this paper can be of great
interest for digital applications of chaos in engineering. To
our knowledge, the literature does not report comparative
studies of digital degradation of five 3D CSs in their DVs by
using the NAs of Euler, Heun, and RK4, where its perfor-
mance is conducted in microcontrollers of 8, 16, and 32 bits,
and FPGA.

0e paper is organized as follows: In Section 2, the
normalized version of five three-dimensional CSs are pre-
sented, numerical analyses calculating the Lyapunov ex-
ponents are conducted to verify the chaotic behavior using
the Euler, Heun, and RK4 NAs where a Root-Mean-Square
Error (RMSE) analysis is conducted to compare their
continuous and DVs. Section 3 presents the digital imple-
mentation on ES with 8-bit PIC16F, 16-bit dsPIC33, 32-bit
PIC32MZ microcontrollers, and the Altera FPGA Cyclone
IV GX, where the performance and the robustness digital
diagram to guarantee the chaos is proposed. Finally, con-
clusions of this work are reported in Section 4.

2. Degradation Analysis

In this section, we describe the normalized equations of the
3D Lorenz, Rössler, Chen, Liu and Chen, andMACMCSs to
obtain their DVs by using the NAs of E, H, and RK4. 0e

time series method is used to obtain the degradation limits
by calculating the LEs of the five 3D CSs in their continuous
and DVs [50, 51]. We analyzed the accuracy of the trajec-
tories of state variable x of the 3D Lorenz, Rössler, Chen, Liu
and Chen, and MACM CSs by calculating the RMSE. All the
numerical results and methods described in this section are
conducted by using Matlab [35].

2.1.Normalized 3DCSs. 0is subsection briefly describes the
normalized version of the Lorenz, Rössler, Chen, Liu and
Chen, and MACM CSs, and the difference between them is
given by the complexity of their dynamics, the represen-
tation of their nonlinear functions, and parameters.

First, we consider the Lorenz system, which is a well-
known example of a CS. Lorenz’s three-variable model
provides a practical test case with qualitatively realistic
properties [18]; it is represented by the nonlinear state
equations described as

_x � σ(y − x),

_y � rx − xz − y,

_z � xy − bz,

(1)

where x, y, and z are the state variables and the standard
parameter values for Lorenz’s chaotic attractor are σ � 10,
r� 28, and b� 8/3. We also consider the Rössler system
introduced by Rössler in 1976 [19], which is described by

_x � − y − z,

_y � x + ay,

_z � b + z(x − c),

(2)

where x, y, and z are the state variables, the Rössler system
presents chaotic behavior for the following parameter values:
a� 0.2, b� 0.2, and c� 5.7. Similarly, the Chen system is
introduced as a dual system of the Lorenz system in 1999
[23] and is described by

_x � a(y − x),

_y � (c − a)x − xz + cy,

_z � xy − bz,

(3)

where x, y, and z are the state variables and the Chen system
presents chaotic behavior for the following parameter
values: a � 35, b� 3, and c � 28. Moreover, the Liu and Chen
system was introduced in 2002, and its description is given
by [24]

_x � ax + d1yz,

_y � cy + d2xz,

_z � bz + d3xy,

(4)

where x, y, and z are the state variables, this nonlinear system
presents a chaotic behavior when the following condition
ab+ ac+ bc≠ 0 is met. It can create a complex 2-scrolls
attractor from the following parameter values: d1 � − 1,
d2 � d3 �1, a� 5, c� − 10, and b� − 3.4. Recently, the MACM
CS was proposed in 2017 [29], which is described by
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_x � − ax − byz,

_y � − x + cy,

_z � d − y
2

− z,

(5)

where x, y, and z are the state variables and the MACM
system presents chaotic behavior for the following param-
eter values: a� b� 2, c� 0.5, and d� 4.

In this study, we use the same initial conditions (ICs)
x0 � y0 � z0 �1 for the CSs (1)–(5). Table 1 shows the sum-
mary of control parameters, critical parameters, non-
linearities, and ICs of the five 3D CSs (1)–(5) [29].

0e literature reports the validation of chaos calculating
the limits of the LEs by using the time series method by
Wolf and Briggs [50, 51], and the LEs and fractal di-
mension, commonly known as Kaplan–Yorke dimension
DKY, of the five 3D CSs (1)–(5) in their CVs are computed
by using the proposed time series method. Table 2 shows
the LEs and the fractal dimension results of CSs (1)–(5) in
their CVs.

2.2. Numerical Algorithms. NAs of Euler, Heun, and RK4
are used to obtain the DV of the CSs (1)–(5), the step size as
referred to as τ, and n is the iteration number that rep-
resents the time in DV. 0e nonlineal functions f, g, and h
of the five 3D CSs of Lorenz, Rössler, Chen, Liu and Chen,
and MACM in their DVs describe the states x, y, and z,
respectively.

Euler algorithm presents just one step, and it is easy to
implement because it requires less arithmetic operations
[35]. 0e Euler NA is described by

x(n+1) � x(n) + τf x(n), y(n), z(n) ,

y(n+1) � y(n) + τg x(n), y(n), z(n) ,

z(n+1) � z(n) + τh x(n), y(n), z(n) .

(6)

0e Heun is the second NA implemented [35]; this
method is known as trapezoidal in two steps where the first
step predicts and the second step corrects. 0e NA of Heun
is described as follows:

x
∗
(n+1) � x(n) + τf x(n), y(n), z(n) ,

y
∗
(n+1) � y(n) + τg x(n), y(n), z(n) ,

z
∗
(n+1) � z(n) + τh x(n), y(n), z(n) ,

(7)

where

x(n+1) � x(n) +
τ
2

f x(n), y(n), z(n)  + x
∗
(n+1) ,

y(n+1) � y(n) +
τ
2

g x(n), y(n), z(n)  + y
∗
(n+1) ,

z(n+1) � z(n) +
τ
2

h x(n), y(n), z(n)  + z
∗
(n+1) .

(8)

0e third NA is the RK4; this algorithm is one of the
most widely used methods for solving differential equations
[35]. 0e NA of RK4 is given by

x(n+1) � x(n) +
τ
6

k1 + 2k2 + 2k3 + k4( ,

y(n+1) � y(n) +
τ
6

l1 + 2l2 + 2l3 + l4( ,

z(n+1) � z(n) +
τ
6

m1 + 2m2 + 2m3 + m4( ,

(9)

where k1, k2, k3, and k4 are referred to as coefficients of the first
equation, similarly, the parameters l1, l2, l3, and l4 are referred
to as coefficients of the second equation, and the parameters
m1, m2, m3, and m4 are referred to as coefficients of the third
equation.0e coefficients described in system (9) are given by

k1 � f x(n), y(n), z(n) ,

l1 � g x(n), y(n), z(n) ,

m1 � h x(n), y(n), z(n) ,

(10)

k2 � f x(n) +
τ
2
k1, y(n) +

τ
2
l1, z(n) +

τ
2
m1 ,

l2 � g x(n) +
τ
2
k1, y(n) +

τ
2
l1, z(n) +

τ
2
m1 ,

m2 � h x(n) +
τ
2
k1, yr(n) +

τ
2
l1r, zr(n) +

τ
2
m1 ,

(11)

k3 � f x(n) +
τ
2
k2, y(n) +

τ
2
l2, z(n) +

τ
2
m2 ,

l3 � g x(n) +
τ
2
k2, y(n) +

τ
2
l2, z(n) +

τ
2
m2 ,

m3 � h x(n) +
τ
2
k2, y(n) +

τ
2
l2, z(n) +

τ
2
m2 ,

(12)

k4 � f x(n) + τk3, y(n) + τl3, z(n) + τm3 ,

l4 � g x(n) + τk3, y(n) + τl3, z(n) + τm3 ,

m4 � h x(n) + τk3, y(n) + τl3, z(n) + τm3 .

(13)

Finally, the coefficients described in (10)–(13) are
placed in (9); they as whole represent the NA of RK4
(9)–(13).

2.3. Degradation Analysis of the 3D CSs in4eir DVs. In this
subsection, the maximum step size is referred to as τmax, and
it is computed by using the time series method considering
one positive LE as the condition to guarantee chaos in the
DV of the five 3D CSs [50, 51]. LEs to obtain the chaotic
degradation of the five CSs in their DVs are computed by
using the NAs of Euler (6), only the τmax were reported in
[29]; in this study, the LEs and DKY are added, and their
results are presented in Table 3. In addition, we computed
LEs, τmax, and DKY of the five CSs in their DVs by using the
NAs of Heun (7) and (8) and RK4 (9)–(13), and their results
are presented in Tables 4 and 5, respectively.

0e results obtained in Tables 3–5 show that MACM CS
presents the higher τmax, and Chen and Liu and Chen CSs
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present the smallest τmax in comparison with Lorenz. In the
case of Rössler system, we recommend to use τmax � 0.005
because, for higher values, the dynamical chaotic behavior is
lost and dynamic behavior of limit cycle for step sizes within
the intervals 0.006≤ τ ≤ 0.091 is shown; for higher values of
τ � 0.091, the LEs cannot be computed using the time series
method with the NA (6). Rössler system supports an interval
small of τmax, because the chaotic dynamics diverges.
Nevertheless, Rössler system presents a high interval in
comparison Lorenz system by using the NAs of Heun (7)
and (8) and RK4 (9)–(13), and their results are described in
Tables 4 and 5.

Figure 1 illustrates the comparison of τmax obtained with
the results of the NAs described in Tables 3–5. NA of RK4
presents higher τmax in comparison of the NAs of Euler, and
Heun.0e DV of MACM system presents a higher τmax than
the DV of the CSs of Lorenz, Rössler, Chen, and Liu and
Chen systems.

2.4. Performance of Chaotic Behavior. We use RMSE to
compare the performance and accuracy of the trajectory of
state x of the CSs (1)–(5) in their CVs respect to their DVs by
using the NAs of Euler (6), Heun (7) and (8), and RK4
(9)–(13). 0e RMSE is defined as follows:

RMSE �

����������������

1
n



n

i�1
xe(n) − x(n) 

2




, (14)

where the state variable xe(n) is referred to as the estimator
value of the CV of CSs (1)–(5), the state variable x(n) is
referred to as the predicted estimated value of DV of CSs
(1)–(5), and n is referred to as the total number samples. 0e
Ordinary Differential Equation (ODE) function number 45
(ODE45) of MATLAB is considered to reproduce the CV of
the CSs (1)–(5), although strictly it is also a discretized rep-
resentation, this algorithm is based on an explicit Runge–Kutta

Table 3: Analysis of chaos degradation for DV of 3D CSs by using
the NA of Euler (6).

CS τmax LE1 LE2 LE3 DKY

Lorenz ≤0.024 0.039 − 62.8 μ − 0.389 2.101
Rössler ≤0.005 49 μ 34.9 μ − 5.53 2.0142
Chen ≤0.002 3.8m 0.11m − 23.1m 2.169
Liu and Chen ≤0.002 197 μ − 53.21 μ − 18.72m 2.1029
MACM ≤0.085 0.05 − 64.58 μ − 0.243 2.099

Table 4: Analysis of chaos degradation for DV of 3D CSs by using
the NA of Heun (7) and (8).

CS τmax LE1 LE2 LE3 DKY

Lorenz ≤0.068 86.6m − 2.016m − 0.6231 2.1358
Rössler ≤0.191 0.0273 196 μ − 0.24122 2.1141
Chen ≤0.017 38.7m 23.67 μ − 0.19558 2.1984
Liu and Chen ≤0.017 17.41m − 17.88 μ − 0.15542 2.112
MACM ≤0.228 95.29m 315.64 μ − 0.476 2.2006

Table 5: Analysis of chaos degradation for DV of 3D CSs by using
the NA of RK4 (9)–(13).

CS τmax LE1 LE2 LE3 DKY

Lorenz ≤0.1076 64.17m − 4.03m − 1.1924 2.0504
Rössler ≤0.251 35.53m 339.62 μ − 0.402 2.0891
Chen ≤0.057 97.48m − 2.949m − 0.6509 2.1452
Liu and Chen ≤0.057 55.52m − 1.83m − 0.389 2.0974
MACM ≤0.547 0.23081 − 48.55m − 1.0098 2.1805

Table 1: Parameters, characteristics, and ICs of the five 3D CSs (1)–(5).

CS Control parameter Critical parameter Nonlinearities Initial condition (x0, y0, z0)

Lorenz (1)
σ � 10,
r� 8/3,
b� 28

σ 2 (1, 1, 1)

Rössler (2)
a� 0.2,
b� 0.2,
c� 5.7

c 1 (1, 1, 1)

Chen (3)
a� 35,
b� 3,
c� 28

a 2 (1, 1, 1)

Liu and Chen (4)

a� 5,
c� − 10,
b� − 3.4,
d1 � − 1,

d2 � d3 �1.

c 3 (1, 1, 1)

MACM (5)
a� b� 2,
c� 0.5,
d� 4.

c, d 2 (1, 1, 1)

Table 2: LEs of the CSs (1)–(5) in their CVs.

CS LE1 LE2 LE3 DKY

Lorenz (1) 0.91 0 − 14.47 2.062
Rössler (2) 0.07 0 − 5.39 2.012
Chen (3) 2.02 0 − 12.02 2.168
Liu and Chen (4) 0.87 0 − 9.27 2.093
MACM (5) 0.24 0 − 2.74 2.087
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4-5 formula, it is a single-step solver and needs only the so-
lution at the immediately preceding point time [52, 53].

Numerical tests of the 3D Lorenz, Rössler, Chen, Liu and
Chen, and MACM CSs in their DVs are conducted for each
Euler (6), Heun (7) and (8), and RK4 (9)–(13) NA, re-
spectively; we considered n� 30000 samples, a small step size
τ � 0.001, and same parameters and initial conditions are
shown in Table 1.

0e error calculation is compared with respect to state
variable x(n) of the five 3D CSs in their DVs, and their
trajectory errors are referred to as follow: e1 represents the
difference between ODE45 and Euler algorithm (6), e2
represents the difference between ODE45 and Heun algo-
rithm (7) and (8), and e3 represents the difference between
ODE45 and RK4 algorithm (9)–(13).

Figure 2 shows the comparison of the evolution of the
state variable x(n) of the Lorenz, Rössler, Chen, Liu and
Chen, and MACM CSs in their continuous version using
ODE45 and DVs using the NAs of (6)–(13). Figure 3 shows
the trajectory errors e1–e3 of the trajectories of set of CSs
shown in Figure 2. Figure 2(b) shows that the trajectories of
the Rössler system (2) have no changes; they are practically
the same trajectories for the DVs with respect to the
continuous version (2), and Figure 3(b) shows that the
Rössler system has minimal errors for e1− e3. Considering
the numerical results of the trajectories of state x of the set
of five 3D CSs shown in Figures 2 and 3, the RMSE
comparison is obtained by using (14), and its result is
shown in Figure 4. Chen and Liu and Chen systems show
high RMSE, and to a lesser extent in the Lorenz system,
followed by this value, the MACM system exhibits a low
RMSE value, but the Rössler system exhibits the lowest
RMSE (see Figure 4).

Rössler system guarantees a better conservation of the
chaos considering the proposed n samples and τ step size by
using the NAs of Euler (6), Heun (7)–(8), and RK4 (9)–(13).

3. Digital Implementation

In this section, we present the necessary conditions to
implement the NAs of the five 3D CSs in their DVs con-
sidering the described studies in Section 2.

0e digital implementation is carried out in an ES which
main core is represented in four different hardware versions:
8-bit PIC16F, 16-bit dsPIC33, and 32-bit PIC32MZ micro-
controllers, and one Cyclone IV GX FPGA. Table 6 shows the
hardware description of the four versions of the ES.

Microcontrollers U1–U3, FPGA U4, and DACs U5–U7
are configured according to the performance recommended
by their manufacturers—the SPI protocol was configured in
the master mode from specification of U1–U4 by using 12
bits of resolution. 0e DAC U5, U6, and U7 represent the
state variables x(t), y(t), and z(t), respectively, and its software
configuration is given from U1–U4. Figure 5 shows the
hardware description for the four versions of ES. Version 1
(V1) represents the hardware implementation by using U1,
Version 2 (V2) represents the hardware implementation by
using U2, Version 3 (V3) represents the hardware imple-
mentation by using U3, and Version 4 (V4) represents the
hardware implementation by using U4.

Initially, the NAs Euler (6), Heun (7) and (8), and RK4
(9)–(13) of the 3D Lorenz, Rössler, Chen, Liu and Chen, and
MACM CSs in their DVs are simulated by using Matlab, the
numerical standard of Matlab is based on IEEE-754 standard
for floating point representation [35]. 0e compilers used to
program and implement the NAs Euler (6), Heun (7) and
(8), and RK4 (9)–(13) of the 3D Lorenz, Rössler, Chen, Liu
and Chen, andMACMCSs in their DVs inside of U1-U4 are
based on C language, the microcontrollers U1–U3 have
similar standard IEEE-754 which is referred to as Compliant
Floating Point Routines AN575 [45]. According to the
Altera-Intel manufacturer, the FPGA U4 is based on the
IEEE-754 standard (2008) [46, 47]. 0e compilers of the
manufacturer Mikroelektronika are used to programU1–U3
[54]. 0e FPGA U4 is programmed by using the set tools of
Quartus II to design the hardware, and Eclipse compiler is
used to design the software. 0erefore, the numerical results
conducted in the proposed four versions V1–V4 of the ES
are similar because Matlab and the C compilers to program
U1–U3 and U4 have the IEEE-754 standard [35, 44–46].

In order to conduct the simulations of the NA, we used
the Proteus Virtual System Modeling (VSM) Software, in
special, the VSM for Microchip version that contains the
device libraries of some families of 8-bit PIC and 16-bit
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Figure 1: τmax summary of chaotic degradation of the five 3D CSs in their DVs.
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dsPIC33 microcontrollers, and the schematic capture tool
was used to simulate the complete V1 and V2 ESs [55]. 0e
numerical results of V1–V4 proposed and their equivalences
between simulation and implementation are carried out by
using the methods described in [29, 37, 38].

0e total quantity of iterations QT is referred to as the
maximum number of n iterations generated in 1 second,

and it is represented in time units (tu), and the CSs (2)–(6)
are represented in three dimensions, i.e., we are consid-
ering N � 3 dimensions, and the QT representation is given
by

QT � τ
1

TTd
� τfTd � τ

1
tc + tTg

� τ
1

tc + 
N
j�1tTdac(j)

, (15)
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Figure 2: Evolution of state variable x(n) of the CSs: (a) Lorenz (2), (b) Rössler (2), (c) Chen (3), (d) Liu and Chen (4), and (e) MACM (5) in
their CVs with respect to their DVs by using the NAs of Euler (6), Heun (7)–(8), and RK4 (9)–(13).
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where the time period TTd is considered as the total-
decoding-time that the algorithm needs to reproduce an
iteration n, and fTd represents the maximum number of

iterations n that the ES generates in 1 second (ips); the
frequency fTd is the reciprocal of TTd. 0e time complexity tc
is the time that NA need to reproduce one iteration n by
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Figure 3: Errors e1, e2, and e3 shown in Figure 2 for the CSs: (a) Lorenz (1), (b) Rössler (2), (c) Chen (3), (d) Liu and Chen (4), and (e)MACM (5).
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using the main core of U1, U2, U3, or U4; the total-graphic
time tTg is the time that the three DACs U5–U7 need to
represent the state variables x(t), y(t), and z(t), and the time
required for each DAC (U5–U7) is referred by tTdac(1–3),
respectively.

0e measurement of the iterations fTg and the time TTd
are obtained experimentally when the program of NA used is
executed in the 4 versions of the ES. Only tc depends on the
size of the NA used. 0e size of tTg depends of the con-
figuration of SPI protocol used in U1–U4.

0e equation (15) is a reference to determine the per-
formance of the proposed ES in their four versions V1–V4. In
this study, we need to obtain a smaller period of time to
determine a greater number of iterations n and a higher step
size to guarantee the chaos proposed in Tables 3–5; their
values depend on the NA of the CSs proposed and the version
of the ES that will be implemented. Given these consider-
ations, we will obtain a higher QT. 0is means that the state
variables of the 3D Lorenz, Rössler, Chen, Liu and Chen, and
MACM CSs in their DVs by using the NAs (6)–(13) have a
better representation of fTd, which is very attractive for ap-
plications based in chaos such as: master key definition,
encryption, and secure communications [9, 37, 43, 56].

3.1. Embedded System with 8-Bit PIC Microcontroller.
First, we implemented the ES in the V1 by using the
microcontroller PIC16F874A U1. We used Proteus to
conduct the electronic simulations of the NAs of the CSs

proposed, and the schematic diagram is shown in
Figure 6.

Euler algorithm (6) is used to obtain the DV of the
Lorenz system and its corresponding system is given by

x(n+1) � x(n) + τ σ y(n) − x(n)  ,

y(n+1) � y(n) + τ rx(n) − x(n)z(n) − y(n) ,

z(n+1) � z(n) + τ x(n)y(n) − bz(n) .

(16)

Figure 7 shows the results of the Lorenz system simu-
lation in its DV (16), we considered the higher step size
τmax � 0.024 according to the results shown in Table 3. 0e
voltage supplied for the ES in V1 is Vdd �+5V and Vss � 0V,
and an external crystal of 16MHz is used according to the
datasheet of U1. 0e test in the version 1 on the ES is
conducted, and we obtained TTd � 2046 μs and fTd � 488.7
ips; this means that we can obtainQT �11.7 tu in 1 second by
using V1 in the Proteus simulator.

To conduct the hardware implementation on V1 of ES,
we used the same electrical parameters used in the simu-
lation of CS (16). Figure 8 illustrates the implementation
results of the algorithm (16) by using the 8-bit PIC
microcontroller U1. Figure 8(b) shows the time evolution of
the state variables x(n) and z(n) of Lorenz system (16) for 1
second. We experimentally obtained tc � 1989 μs, tTg � 57 μs,
TTd � 2046 μs, and fTd � 488.7 ips considering the same
τmax � 0.024; this means that the simulation conducted by
using Proteus and the hardware implementation in the
version 1 is consistent, because both have the same units of
QT �11.7 time in 1 second.

0eNAs of Euler (6), Heun (7) and (8), and RK4 (9)–(13) of
the 3D Lorenz, Rössler, Chen, Liu and Chen, and MACM CSs
in their DVs are executed in the V1 of the ES; the NA of RK4
(9)–(13) cannot be executed using U1 because the size of its
program flash memory is small and it only supports 4K bytes.
We obtained the performance of the ES in the V1, and the time
complexity and the iterations per second are detailed in Table 7.
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Figure 4: RMSE comparison of trajectory performance of state x of five 3D CSs (1)–(5) in their CVs with respect to their DVs using the NAs
(6)–(13).

Table 6: Hardware description of the ES for V1–V4.

Peripheral
number SPI mode, hardware description

U1 Master, 8-bit PIC16F874A microcontroller
U2 Master, 16-bit dsPIC33FJ32MC204 microcontroller
U3 Master, 32-bit PIC32MZ2048ECM064 microcontroller
U4 Master, EP4CGX150DF31C7 Cyclone IV GX FPGA
U5 Slave 1, DAC MCP4921 shows x(t)
U6 Slave 2, DAC MCP4921 shows y(t)
U7 Slave 3, DAC MCP4921 shows z(t)

8 Complexity



3.2. Embedded System with dsPIC Microcontroller. Second
implementation is conducted; the NAs of Euler (6), Heun (7)
and (8), and RK4 (9)–(13) of the 3D Lorenz, Rössler, Chen,
Liu and Chen, and MACM CSs in their DVs are imple-
mented by using the ES in its version 2. Figure 9 illustrates
the simulation and implementation of dsPIC33 U2 in
Proteus by using the V2 of the ES. 0e voltage supplied for
the ES in V2 is Vdd �+3.3V and Vss � 0V, and an external
crystal of 10MHz is used according to the datasheet of U2.
We conducted an example to implement the Liu and Chen

CS in its DV by using the Euler algorithm (6), and its al-
gorithm is described as follows:

x(n+1) � x(n) + τ ax4(n) + d1y(n)z(n) ,

y(n+1) � y(n) + τ cy4(n) + d2x(n)z(n) ,

z(n+1) � z(n) + τ bz(n) + d3x(n)y(n) .

(17)

Figure 10 shows the simulation results conducted in
Proteus of the DV of Liu and Chen CS (17) by using dsPIC33
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U2. According to the results shown in Table 3, the higher
step size τmax � 0.002 was chosen, we obtained tc � 237 μs,
tTg � 8 μs, TTd � 245 μs, and fTd � 4082 ips; this means that we
can reproduce QT � 8.164 tu in 1 second. Figure 11(a) il-
lustrates the digital oscilloscope of Proteus simulator, it only
allows a reduced quantity of samples to show the plane phase
x(n) versus z(n).

Figure 11 shows the implementation results of the al-
gorithm (17) of the ES in its V2 considering the same
τmax � 0.002, we obtained tc � 86 μs, tTg � 3 μs, TTd � 89 μs,

Phase plane x(n) versus z(n).

(a)

Channel A : State x(n)
Channel B : State z(n)

(b)

Figure 7: Simulation of ES in the V1 of Lorenz system in its DV by using τmax � 0.024. (a) Phase plane x(n) versus z(n) and (b) evolution of
state variables x(n) and z(n).

(a) (b)

Figure 8: Implementation of Lorenz CS (15) in its DV by using the V1 of ES: (a) Phase plane x(n) versus z(n) and (b) evolution of state
variables x(n) and z(n).

Table 7: Performance of ES in the V1 of the 3D Lorenz, Rössler,
Chen, Liu and Chen, and MACM CSs in their DVs by using Euler
(6), and Heun (7) and (8) NAs.

CS
Euler Heun

TTd (μs) fTd (ips) TTd (μs) fTd (ips)
Lorenz 2046 488.7 3450 289.8
Rössler 1720 581.3 2760 362.3
Chen 2046 488.7 3450 289.8
Liu and Chen 2480 403.2 4420 226.2
MACM 2046 488.7 3450 289.8
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and fTd � 11236 ips; this means that the hardware imple-
mentation in the V2 shows better performance because we
obtained QT � 22.5 tu in 1 second.

Table 8 shows the summarized performance of the 3D
Lorenz, Rössler, Chen, Liu and Chen, and MACM CSs in
their DV by using the NAs of Euler (6), Heun (7) and (8),
and RK4 (9)–(13)—the values of time complexity and its

equivalence are defined in ips. All the NAs can be executed
by using dsPIC33U2 because its program flashmemory is 32
Kbytes, and it allows to execute large NAs.

3.3. Embedded System with PIC32 Microcontroller. A novel
family of PIC32MZ microcontrollers is used to implement the
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Figure 9: Schematic of the simulation of ES in V2 by using Proteus.

Complexity 11



V3 of ES. 0e PIC32MZ is not supported by the Proteus
simulator; only Mikro C for PIC32 compiler was used to
simulate and execute theNAs. ChenCS in its DVwas chosen to
carry out the test in the V3 of the ES by using Heun algorithm
(7) and (8), and its algorithm is given by

x
∗
(n+1) � x(n) + τ a y(n) − x(n)  ,

y
∗
(n+1) � y(n) + τ (c − a)x(n) − x(n)z(n) + cy(n) ,

z
∗
(n+1) � z(n) + τ x(n)y(n) − bz(n) ,

(18)

where

x(n+1) � x(n) +
τ
2

a y(n) − x(n)  + x
∗
(n+1) ,

y(n+1) � y(n) +
τ
2

(c − a)x(n) − x(n)z(n) + cy(n) + y
∗
(n+1) ,

z(n+1) � z(n) +
τ
2

x(n)y(n) − bz(n) + z
∗
(n+1) .

(19)

0e performance of the algorithm (18) and (19) in the
version 3 is tc � 13.3 μs, tTg � 3 μs, TTd � 16.3 μs, and

(a) (b)

Figure 11: Implementation of ES in V2 of Liu and Chen CS (16) in its DV. (a) Phase plane x(n) versus z(n) and (b) evolution of state variables
x(n) and z(n).

Phase plane x(n) versus z(n).

(a)

Channel A : State x(n)
Channel B : State z(n)

(b)

Figure 10: Simulation of ES in V2 of Liu and Chen in its DV by using τmax � 0.002. (a) Phase plane x(n) versus z(n) and (b) evolution of state
variables x(n) and z(n).
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fTd � 61349 ips. In order to obtain a comparison between
the step sizes obtained, Figure 12 shows two imple-
mentations of the algorithm (18) and (19). For the first
test, we considered a small step size τ � 0.001; this means
that we obtained QT � 20 time units in 1 second as is
shown in Figure 12(b). For the second test, we used the
higher step size τmax � 0.017 as it was described in Table 4.
0e maximum chaotic degradation is obtained for
QT � 340 time units in 1 second, as is shown in
Figure 12(d).

Table 9 shows the time complexity and frequency,
expressed in ips, and the performance of ES in V3 by
using the NAs of Euler (6), Heun (7) and (8), and RK4
(9)–(13).

3.4. Embedded System Implemented with FPGA byUsing Nios
Microcontroller. We introduce a novel method to design an
embedded microcontroller in FPGA U4 considering the

Table 8: Performance of ES in the V2 of the 3D Lorenz, Rössler, Chen, Liu and Chen, andMACMCSs in their DVs by using Euler (6), Heun
(7) and (8), and RK4 (9)–(13) NAs.

CS
Euler Heun RK4

TTd (μs) fTd (ips) TTd (μs) fTd (ips) TTd (μs) fTd (ips)
Lorenz 84 11905 138 7246 245 4082
Rössler 81 12345 132 7575 233 4291
Chen 84 11905 138 7246 245 4082
Liu and Chen 89 11236 143 6993 271 3690
MACM 84 11905 138 7246 245 4082

(a) (b)

(c) (d)

Figure 12: Implementation of ES in the V3 of Chen CS (18) and (19) in its DV. (a) Phase plane x(n) versus z(n), (b) evolution of state variables
x(n) and z(n) by using τ � 0.001, (c) phase plane x(n) versus z(n), and (d) evolution of state variables x(n) and z(n) by using τmax � 0.017.

Table 9: Performance of ES in the V3 of the 3D Lorenz, Rössler,
Chen, Liu and Chen, and MACM CSs in their DVs by using Euler
(6), Heun (7) and (8), and RK4 (9)–(13) NAs.

CS
Euler Heun RK4

TTd (μs) fTd (ips) TTd (μs) fTd (ips) TTd (μs) fTd (ips)
Lorenz 10.6 94339 16.3 61349 30 33333
Rössler 9.7 103092 12.5 80000 25.8 38759
Chen 10.6 94339 16.3 61349 30 33333
L. and Ch. 10.9 91743 17.1 58479 31.5 31746
MACM 10.6 94339 16.3 61349 30 33333
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similar software and hardware conditions used in the pre-
vious implementations of ESs. We create a project in
Quartus II (version 12.1) by using the Qsys tool to obtain the
hardware design in FPGA U4. 0e Qsys tool is used to define
the specifications of hardware described in a complex ar-
rangement of modules inside FPGA U4; this hardware
specification is named Entity, and it can be conducted using
the block diagram of Quartus II, e.g., the hardware design of
Entity U4 includes a microcontroller as the main processor
(its fast version is referred to as Nios II/f which internal clock
is configured to 150MHZ), one program memory, pe-
ripherals of control, and external ports, among others; to
carry out the implementation of the Entity in an FPGA using
the Nios II microcontroller, control modules, and other Qsys
tools, we recommend reviewing [47]. 0e hardware
implementation is based on the specifications of the FPGA
U4 that is included in the hardware of the Terasic DE2i-150
board.

Once the Entity is defined on the FPGAU4, the pins of the
SPI control-bus are configured and addressing using the
expansion header of the DE2i-150 board where the global
peripheral input-output (GPIO) port is configured to write
the DACs U4–U6 because the DE2i-150 board does not
contain internal DACs. Figure 13 shows the block diagram
and the result of the Entity design using Qsys of Quartus II.

Once the hardware structure on FPGAU4 is finished, the
Eclipse compiler (version IDE for C/C++ developers) is used
to program and implement the NAs of the DV of the 3D
Lorenz, Rössler, Chen, Liu and Chen, andMACMCSs in the
V4 of the ES. For this example, we used the RK4 algorithm
(9)–(13) to obtain the DV of the MACMCS; the algorithm is
given by

k1 � − ax(n) − by(n)z(n),

l1 � − x(n) + cy(n),

m1 � d − y
2
(n) − z(n),

(20)

where

k2 � − a x(n) +
τ
2
k1  − b y(n) +

τ
2
l1  z(n) +

τ
2
m1 ,

l2 � − x5(n) +
τ
2
k15  + c y5(n) +

τ
2
l15 ,

m2 � d − y(n) +
τ
2
l1 

2
− z(n) +

τ
2
m1 ,

(21)

k3 � − a x(n) +
τ
2
k2  − b y(n) +

τ
2
l2  z(n) +

τ
2
m2 ,

l3 � − x(n) +
τ
2
k2  + c y(n) +

τ
2
l2 ,

m3 � d − y(n) +
τ
2
l2 

2
− z(n) +

τ
2
m2 ,

(22)

k4 � − a x(n) + τk3  − b y5(n) + τl3  z(n) + τm3 ,

l4 � − x(n) + τk3  + c y(n) + τl3 ,

m4 � d − y(n) + τl3 
2

− z(n) + τm3 ,

(23)

x(n+1) � x(n) +
τ
6

k1 + 2k2 + 2k3 + k4( ,

y(n+1) � y(n) +
τ
6

l1 + 2l2 + 2l3 + l4( ,

z(n+1) � z(n) +
τ
6

m1 + 2m2 + 2m3 + m4( .

(24)

0e performance of the algorithm (20)–(24) in the V4 is
tc � 156 μs, tTg � 3 μs, TTd � 159 μs, and fTd � 6289 ips. As in
the previous case, we conduct a comparison between the step
sizes obtained. Figure 14 shows the result of two imple-
mentations of the algorithms (20)–(24) in the V4. For the
first test, we considered a small step size τ � 0.01;
Figure 14(b) shows a fewer number of QT � 62.89 time units
generated in 1 second. For the second test, we used the
higher step size τmax � 0.547 described in Table 5, a large
number of time units are obtained QT � 3440.1 in one
second, and the maximum chaotic degradation is illustrated
in Figure 14(d).

Table 10 shows the results of the ES in the V4; the time
complexity and frequency, expressed in ips, were obtained
by using the NAs of Euler (6), Heun (7) and (8), and RK4
(9)–(13).

3.5. Results of Embedded System for V1–V4. In order to
summarise the studies presented in the previous section, we
conducted a comparison considering the performance of the
4 versions in the ES of the 3D Lorenz, Rössler, Chen, Liu and
Chen, and MACM CSs in their DVs. We used (15) to obtain
the time units QT generated in 1 second considering the
results obtained of τmax shown in Tables 3–5, and the results
of TTd and fTd shown in Tables 7–10. We obtained the best
performance of QT considering τmax of the 3D Lorenz,
Rössler, Chen, Liu and Chen, and MACM CSs in their DVs
using the NA of Euler, Heun, and RK4, and the summarized
results are presented in Tables 11 and 12.

For a better understanding, Figure 15 illustrates the
trajectories of the first state x(n) of the 3D Lorenz, Rössler,
Chen, Liu and Chen, and MACM CSs in their DVs by using
the NA of Euler (8); the performance of each state x(n) is
implemented in the V1-PIC of ES—the results are expressed
in the time-units quantity QT that the ES in the V1 generates
in 1 second, and the t axe is included to compare the
performance of CSs used. Figures 15(a), 15(d), and 15(e)
show chaotic dynamics more compactly in the trajectories of
state x(n). Otherwise, Figures 15(b) and 15(c) show trajec-
tories of the state x(n) less compact.

Figure 16 shows the same trajectories of the first state x(n)
of the 3D Lorenz, Rössler, Chen, Liu and Chen, and MACM
CSs in their DVs by using the same Euler algorithm (8); now
the performance is conducted in the V2-dsPIC of the
ES—the results also are expressed in the time-units quantity
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QT that the ES in its version 2 generates in t� 1 second.
Rössler system presents only one nonlinearity, Figures 15(b)
and 16(b) illustrate slow changes in their chaotic dynamics,
which means that Rössler system is not tempting to be

implemented in ESs slower like the 8-bit microcontrollers.
Figures 15(e) and 16(e) show that MACM CS (represented
by (5) in its CV) is most rich in chaos, i.e., it is verified that
this CS in its DV presents more rich chaotic dynamics than
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Figure 13: Schematic diagram of ES in V4 to implement the Nios II Entity and pins distribution on the FPGA U4.

(a) (b)

(c) (d)

Figure 14: Implementation of ES in V4 of the MACMCS (20)–(24) in its DV. (a) Phase plane x(n) versus z(n), (b) evolution of state variables
x(n) and z(n) using τ � 0.01, (c) phase plane x(n) versus z(n), and (d) evolution of state variables x(n) and z(n) using τmax � 0.057.
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Table 10: Performance of ES in the V4 of the 3D Lorenz, Rössler, Chen, Liu and Chen, and MACM CSs in their DVs by using Euler (6),
Heun (7) and (8), and RK4 (9)–(13) NAs.

CS
Euler Heun RK4

TTd (μs) fTd (ips) TTd (μs) fTd (ips) TTd (μs) fTd (ips)
Lorenz 40 25000 70 14286 159 6289
Rössler 37 27027 53 18868 135 7407
Chen 40 25000 70 14286 159 6289
L. and Ch. 45 22222 83 12048 167 5988
MACM 40 25000 70 14286 159 6289

Table 11: Performance of the ES expressed inQTof the 3D Lorenz, Rössler, Chen, Liu and Chen, andMACMCSs in their DVs using (6)–(8)
for V1, and (6)–(13) for V2.

CS
QT for V1-PIC QT for V2-dsPIC

Euler Heun Euler Heun RK4
Lorenz 11.729 6.9552 285.7 492.7 432.7
Rössler 2.9065 1.8115 61.7 1446.8 1077
Chen 0.977 0.5796 23.8 123.2 232.7
L. and Ch. 0.8064 0.4524 22.5 118.9 210.3
MACM 41.05 24.3432 1011.9 1652.1 2232.9

Table 12: Performance of the ES expressed inQTof V3-V4 for 3D Lorenz, Rössler, Chen, Liu and Chen, and MACMCSs in their DVs using
(6)–(13).

CS
QT for V3—PIC32 QT for V4—FPGA

Euler Heun RK4 Euler Heun RK4
Lorenz 2264 4172 3533 600 971.4 666.6
Rössler 515 15280 9729 135 3603.8 1859.2
Chen 189 1043 1900 50 242.9 358.5
L. and Ch. 183 994 1810 44 204.8 341.3
MACM 8019 13988 18233 2125 3257.2 3440.1
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Figure 15: Continued.
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Figure 15: Time series of the five CSs of Lorenz, Rössler, Chen, Liu and Chen, and MACM in their DVs by using the Euler NA to compare
the performance of version 1 PIC of ES expressedQT for t� 1 second: (a) x(n) of Lorenz, (b) x(n) of Rössler, (c) x(n) of Chen, (d) x(n) of Liu and
Chen, and (e) x(n) of MACM.
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the others, Lorenz, Rössler, Chen, and Liu and Chen CSs, in
their DVs [29].

4. Robustness in Digital Implementation of
CSs in DV

0e literature reports robustness in ESs considering the
characteristics of software and hardware [57]. Regarding the
hardware used in the 4 versions of the ES, it has two ways of
powering: the first way is through the USB port connected to
a laptop or desktop PC, e.g., for the V4 of FPGA device; the
second way is using an external power supply for the V1–V3.
0e ESs V1–V4 energized using an external battery makes
them portable, which allows the autonomy of each of them.

On the other hand, a robustness diagram based on the
variation of two critical parameters in the five 3D CSs in
their DVs using the NAs (6)–(13) was conducted. Figure 17
shows the diagram that determines the regions for two
parameters which the existence of chaos is guaranteed for a
specific step size obtained in Tables 3–5, each point in the
diagram represents the maximum Lyapunov exponent
(LEmax). If we have LEmax> 0, the dynamics are chaotic
denoted in yellow color; otherwise, the blue color is used,
previous work was reported in [29]. Figures 17(a)–17(c)
represent the variation of the parameters σ versus r of the
Lorenz system in its DV, the parameter b was fixed in 8/3.
Figures 17(d)–17(f) represent the variation of the param-
eters b versus c of the Rössler system in its DV (the pa-
rameter a was fixed in 0.2). Figures 17(g)–17(i) represent the
variation of the parameters b versus c of the Chen CS in its
DV (the parameter a was fixed in 35). Figures 17(j)–17(l)
represent the variation of the parameters b versus c of the Liu
and Chen CS in its DV (the parameters were fixed with a� 5,
d1 � − 1, and d2 � d3 �1). Finally, Figures 17(m)–17(o) rep-
resent the variation of the parameters b versus d of the
MACM CS in its DV (the parameters were fixed with a� 2
and c� 0.5). To generate Figures 17(a), 17(d), 17(g), 17(j),
and 17(m), we use the Euler NA (6), for Figures 17(b), 17(e),
17(h), 17(k), and 17(n), we use the Heun algorithm (7) and

(8), and for Figures 17(c), 17(f), 17(i), 17(l), and 17(o), we
used the NA of RK4 (9)–(13).

Furthermore, it is easy to note that if a value of step size τ
less than that considered in yellow color is used, then the
chaos regions increase. Taking into account the fact that the
preservation of chaos in the DV of the set of 5 CSs in their
DVs is robust for the variation of two parameters, considering
the characteristics of software and hardware the proposed ES
in V1–V4, and the benefits of digital systems, as the elimi-
nation of the typical wear of the analog systems, it is stated
that the electronical/digital implementation presented in this
work is robust.

5. Conclusions

In this paper, we have presented analytical, numerical, and
experimental studies of chaos degradation of the Lorenz,
Rössler, Chen, Liu and Chen, and MACM three-di-
mensional chaotic systems (CSs) in their discretized ver-
sions (DVs) by using the numerical algorithms (NAs) of
Euler, Heun, and fourth-order Runge–Kutta (RK4). We
obtained a novel robustness diagram with the variation of
two parameters of the five CSs in their DVs to guarantee the
chaos existence where the maximum step size was found by
using Euler, Heun, and fourth-order Runge–Kutta (RK4)
NAs, the degradation studies showed that the DV of
MACM CS exhibits higher chaotic degradation, while the
Chen and Liu Chen presented a lower degradation. 0e
step-size values founded can be used, e.g., for encryption
applications, as one more parameter, considering the in-
tervals shown in this paper to guarantee chaos. In addition,
the step size obtained can be used in others families of 8-,
16-, and 32-bit microcontrollers, DSP, or FPGA where the
DVs of these five 3D CSs studied are desired for general
purposes.

0e numerical studies of Root-Mean-Square Error
(RMSE) have shown better performance in the Rössler
system, it provided interesting and attractive results
with respect to the DVs of the Lorenz, Chen, Liu and
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Figure 16: Time series of the five CSs of Lorenz, Rössler, Chen, Liu and Chen, and MACM in their DVs by using the Euler NA to compare
the performance of version 2 dsPIC of ES expressed QT for t� 1 second: (a) x(n) of Lorenz, (b) x(n) of Rössler, (c) x(n) of Chen, (d) x(n) of Liu
and Chen, and (e) x(n) of MACM.
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Chen, and MACM CSs using the numerical algorithms
Euler, Heun, and RK4; it had slow changes in their
dynamics and showed small variations in their trajec-
tories to same initial conditions considering 30000
samples. Similar results of RMSE and step sizes were
obtained from Chen and Liu and Chen systems although
the Liu and Chen system has 3 nonlinearities, one more
than Chen system.

All the results of the three-dimensional five chaotic
systems in their discretized versions were implemented by
using four versions of the embedded system (ES) where the
16-bit dsPIC33 showed better alternative to simulate, re-
produce, and implement the numerical algorithms of Euler,
Heun, and RK4. 0e 32-bit PIC32MZ presented the best
performance in time complexity and is an interesting al-
ternative to implement and obtain good performance for
applications where iteration speed is desirable such as
synchronization and multimedia encryption, among
others.

As future work, complementary degradation studies of
4D hyperchaotic systems will be conducted for encryption
and synchronization applications and their implementation
in other families of the ESs.
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[8] A. Arellano-Delgado, R. López-Gutiérrez, C. Cruz-Hernán-
dez, C. Posadas-Castillo, L. Cardoza-Avendaño, and
H. Serrano-Guerrero, “Experimental network synchroniza-
tion via plastic optical fiber,” Optical Fiber Technology, vol. 19,
no. 93, pp. 93–98, 2016.

[9] M. Murillo-Escobar, C. Cruz-Hernández, F. Abundiz-Pérez,
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By introducing a �ux-controlled memristor with quadratic nonlinearity into a 4D hyperchaotic system as a feedback term, a novel
5D hyperchaotic four-wing memristive system (HFWMS) is derived in this paper. �e HFWMS with multiline equilibrium and
three positive Lyapunov exponents presented very complex dynamic characteristics, such as the existence of chaos, hyperchaos,
limit cycles, and periods. �e dynamic characteristics of the HFWMS are analyzed by using equilibria, phase portraits, poincare
map, Lyapunov exponential spectrum, bifurcation diagram, and spectral entropy. Of particular interest is that this novel system
can generate two-wing hyperchaotic attractor under appropriate parameters and initial conditions. Moreover, the FPGA re-
alization of the novel 5D HFWMS is reported, which prove that the system has complex dynamic behavior. Finally, syn-
chronization of the 5D hyperchaotic system with di�erent structures by active control and a secure signal masking application of
the HFWMS are implemented based on numerical simulations and FPGA. �is research demonstrates that the hardware-based
design of the 5D HFWMS can be applied to various chaos-based embedded system applications including random number
generation, cryptography, and secure communication.

1. Introduction

Nonlinear science is a new interdisciplinary subject to study
the universality of nonlinear phenomena, which runs
through almost every subject of meteorology [1, 2], math-
ematics [3–6], �uid mechanics [7, 8], complex network
[9–12], electronics [13–15], and social science [16, 17]. Chaos
is one of the most important achievements of nonlinear
science. Its random-like and sensitive initial values make
chaos have good potential applications in the ¤elds of
random number generation [18–20], cryptosystem [21, 22],
image encryption [23–25] and secure communication
[26–29]. In recent years, many new multiwing (or multi-
scroll) chaotic systems have been discovered and proposed
[30–35]. �e continuous introduction of various complex
chaotic attractor models not only provides research basis for

the development of chaotic system theory, but also provides
rich subjects for the practical application of chaotic theory.

Since Rossler proposed the ¤rst hyperchaotic system
with two positive Lyapunov exponents [36], a large number
of researchers have begun to devote themselves to the study
of hyperchaotic systems [37–42]. Hyperchaotic systems are
more sensitive, pseudorandom, and have larger key space,
which makes them more suitable for applications such as
secure communication and image encryption than chaotic
systems. In order to construct more complex chaotic
attractors, a large number of literatures have recently re-
ported the multiwing hyperchaotic systems [43–46]. In [43],
in order to overcome the inherent di¦culties of iteratively
adjusting multiparameters in traditional multiparameter
control, a uni¤ed step function for single-parameter control
is proposed to construct a nonequilibrium multiwing
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hyperchaotic system. In [45], by introducing mirror sym-
metric transformation into the hyperchaotic system, various
hyperchaotic attractors with mirror symmetric grids are
obtained. In [46], a five-dimensional (5D) autonomous
hyperchaotic attractor with four wing is introduced, which
has only eight parameters to be controlled and only one
equilibrium point.

Memristor is an electronic device that describes the
relationship between charge and magnetic flux, which was
proposed in 1971 by Chua [47] and for the first time realized
by HP Labs in 2008 [48]. Because of its strong nonlinear
characteristics, memristors have potential applications in
many engineering fields, and their research has attracted
more and more attention [49, 50]. Recently, many nonlinear
memristive oscillators have been proposed [51–53], creating
amemristive hyperchaotic systemwith a multiwing attractor
having a practical significance, which has become a research
hotspot [54–57]. In [55], by introducing a flux-controlled
memristor into a multiwing system, a multiwing hyper-
chaotic attractor is observed in a no-equilibrium memristive
system. In [56], a hyperchaotic system is constructed by
adding only a smooth flux-controlled memristor to the 3D
pseudo four-wing chaotic system, which can generate a real
four-wing hyperchaotic attractor with a line of equilibrium.
In [57], flux-controlled memristors are used to replace the
resistors in the circuit of the modified Lü system, and this
new memristive system can exhibit the hyperchaotic mul-
tiwing attractor with two relatively large positive Lyapunov
exponents. However, a review of literature revealed there are
no research studies that examined the four-wing behavior
and three-positive Lyapunov exponents in memristive
hyperchaotic systems with dimensions greater than four.
*is kind of high-dimensional hyperchaotic systems cannot
be ignored. Because of their complexity, signal generation is
usually used for random number generation and secure
communication just to name a few.

In recent years, the main methods to realize chaotic or
hyperchaotic attractors are analog circuits, such as bread-
boards based on discrete components [55–57] and in-
tegrated circuits (ICs) based on CMOS technology
[14, 33, 34, 37]. With the change of time and temperature in
analog circuit, the device will have temperature drift and
poor control accuracy. *erefore, it is difficult to realize the
chaotic system with high precision by analog circuit, and the
breadboard is not easy to carry and digitally store.*e design
of high-dimensional chaotic systems using CMOS tech-
nology generally requires multipliers, which are difficult to
design. At the same time, ICs have the shortcomings of long
development cycle and high cost [58–60]. *erefore, re-
searchers began to focus on digital circuits with low cost,
short design cycle, fast speed, low power consumption, and
high accuracy, such as digital signal processor (DSP) [61, 62]
and field programmable gate array (FPGA) [63–66]. It takes
a long time for DSPs to generate chaotic signals at high
frequencies and DSP chips to perform operations in order to
calculate the value of output signals. On the other hand,
FPGA chips have a relatively flexible architecture to achieve
parallel operation, and the design and test cycles of the chips
is particularly low [67]. In order to increase and expand

engineering applications based on chaos, chaotic systems are
diversified and need flexible architecture support. With the
digitalization and reconfigurability of the FPGA, chaotic
systems and their applications can be more flexible. *us,
different forms of signals can be easily generated with the
change of parameters of chaotic systems. In addition, the
related memristive chaotic system can also be realized al-
ternately by various memristor functions. At present, there
are several studies related to designs of chaotic systems based
on FPGA. Tuna et al. [63] implemented the Liu-Chen
chaotic system on the Xilinx virtex-6 FPGA chip using the
32-bit IQ-Math fixed-point number Heun algorithm.
Ahmadi et al. [64] designed a 5D chaotic system on the
Xilinx Kintex-7 KC-705 kit FPGA chip using the IEEE 754
32-bit fixed-point number Euler’s method. Xu et al. [65]
designed a 3D memristive chaotic system on the Xilinx
Spartan-6 FPGA chip using the Euler’s method of IEEE 754
32-bit floating-point number standard. As far as we know,
few literatures have reported the realization of the 5D
memristive hyperchaotic system based on FPGA.

Synchronization of chaotic systems has attracted much
attention in recent years due to their applications in chemical
reactors, secure communication, and the development of
secure cryptosystems [68, 69]. Aiming at chaotic synchro-
nization, several methods such as linear feedback control [70],
sliding mode control [71], adaptive control [72–74], back-
stepping nonlinear control [75], shape control [76, 77], and
active control [78–80] have been proposed for synchroni-
zation of chaotic systems. Compared with other synchroni-
zation methods, the active control method is simple, efficient,
and flexible which has been successfully applied to the syn-
chronization of chaotic systems. In [79], the synchronization
and antisynchronization of the fractional-order chaotic fi-
nancial system with market confidence are studied by using
the active control method. *e results show that the speed of
synchronization (antisynchronization) increases with the
increase of the order. In [80], the synchronization of chaotic
systems with different orders under the influence of unknown
model uncertainties and external disturbances is studied by
using robust generalized active control approach. With the
rapid development of computer technology, more and more
attention has been paid to information security [81–91].
Secure communication based on chaotic synchronization is
an important branch of information security research, which
has been widely studied by many scholars [92–96]. Because of
the pseudorandomness, unpredictability, and initial sensi-
tivity of memristive chaotic systems, the encrypted in-
formation can be hidden in chaotic signals which are highly
similar to the noise. In [97], based on the synchronization of
the memristive chaotic system, the encrypting and decrypting
of information signals are carried out to realize the secure
communication with the help of LabVIEW. However,
whether chaotic synchronization is achieved by the active
control method [78–80] or secure communication based on
chaotic synchronization [92–96], numerical simulations is
used to achieve these designed methods. In some chaotic
information systems, such as chaotic-based CDMA com-
munications and many other chaotic digital information
systems, digital implementation may be required [98–100].
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Motivated by the above discussions, based on a flux-
controlled memristor model and the 4D hyperchaotic sys-
tem introduced in [39], a 5D hyperchaotic system is pro-
posed. Most importantly, the new system generates four-
wing and two-wing hyperchaotic attractor phenomenon
with three and two positive Lyapunov exponents, re-
spectively and exhibits hyperchaos with multiline equilib-
rium. Complete dynamic properties of this new system are
studied. Also, with the help of FPGA implementation, this
5D hyperchaotic four-wing memristive system (HFWMS) is
realized. Finally, active control synchronization of the 5D
hyperchaotic system with different structures and a secure
signal masking application of the 5D HFWMS are imple-
mented based on numerical simulations and FPGA.

*is paper is organized as follows. In Section 2, the novel
5DHFWMSwithmultiline equilibrium is introduced and its
dynamic properties are discussed. Section 3 is devoted to
design, test, and analysis results of FPGA-based HFWMS. In
addition, the active control synchronization and chaotic
secure communication design of the 5D HFWMS are
achieved, and the FPGA experimental results are presented.
Section 4 concludes this paper with a summary of the main
results.

2. Novel 5D HFWMS and Its
Dynamic Properties

2.1. &e 5D HFWMS. Recently, Volos et al. [39] have an-
nounced a novel 4D four-wing hyperchaotic system, which
is described by

_x � ax + y + yz − cw,

_y � yz − xz,

_z � − z − mxy + b,

_w � x,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where a, b, c, and m are all constants and x, y, z, andw are
the state variables. System (1) has two positive Lyapunov
exponents, showing the four-wing hyperchaotic attractor.
Unlike most existing hyperchaotic systems, this hyper-
chaotic system has a saddle-focus equilibrium and the
second equation of the system has no linear term.

In this paper, by introducing a flux-controlled mem-
ristor to the first equation of system (1), a novel 5D HFWMS
is derived by

_x � ax + dW(φ)y + yz − cw,

_y � yz − xz,

_z � − z − mxy + b,

_w � x,

_φ � y,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where d is a positive parameter, expressed as memristor
strength and W(φ) is a memductance function, defined as
W(φ) � dq(φ)/dφ. Here, the φ − q characteristic curve of
the memristor is given by a smooth continuous cubic
monotone increasing nonlinearity [46–49], and then the
memductance is given by

W(φ) �
dq(φ)

dφ
�

d eφ + nφ3( 

dφ
� e + 3nφ2

, (3)

where e and n are two positive constants. *is flux-con-
trolled memristor is easier to analyze and implement. At
present, many researchers use the special nonlinear dynamic
characteristics of this memristor to construct complex
chaotic oscillators [54–57].

2.2. Equilibria and Stability. *e equilibria of system (2) are
obtained by setting its right-hand side to zero, that is,

ax + d e + 3nφ2( y + yz − cw � 0,

yz − xz � 0,

− z − mxy + b � 0,

x � 0,

y � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

*rough equation (4), we can easily observe that the
equilibria of system (2) is a multiline equilibrium point
O � (x, y, z, w)|x � y � w � 0, z � b, φ � η , where b is an
integer and η is an arbitrary real constant.

*e Jacobian matrix of system (2) at the multiline
equilibrium point is

JO �

a d e + 3nφ2(  + z y − c 6nφ dy

− z z y − x 0 0

− my − mx − 1 0 0

1 0 0 0 0

0 1 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

According to the Jacobian matrix (5), we can obtain the
characteristic equation of system (2) as follows:
λ(λ + 1) λ3 − (a + b)λ2 + b

2
+ dbe + 3 dbnφ2

+ c + ab λ − bc  � 0.

(6)

Equation (6) can be rewritten to as follows:

λ(λ + 1) λ3 + m1λ2 + m2λ + m3  � 0, (7)

where
m1 � − (a + b),

m2 � b2 + dbe + 3 dbnφ2 + c + ab( ,

m3 � − bc.

⎧⎪⎪⎨

⎪⎪⎩
(8)

From the eigenvalue equation (7), it can be seen that
Jacobian matrix (5) has one zero eigenvalue, one negative
eigenvalue, and three nonzero eigenvalues. To judge whether
system (2) is stable, it is necessary to discriminate the three
nonzero eigenvalues. According to the Routh–Hurwitz
stability criterion, the need equation (8) satisfies

m1> 0,

m3> 0,

m1m2 − m3> 0.

⎧⎪⎪⎨

⎪⎪⎩
(9)
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If all three conditions in equation (9) are satisfied, the
multiline equilibrium point O is stable, otherwise it is un-
stable. *e unstable equilibrium of the system will lead to
chaotic behavior. When a � 1, b � 1, c � 0.7, m � 1, d � 0.2,

e � 0.1, n � 0.01, m1, and m2 are both less than zero, so we
can judge that system (2) is unstable.

2.3. Symmetry and Dissipativity. *e proposed 5D HFWMS
has the same symmetry as system (1), and both of them are
invariant with respect to z-axis symmetry under coordinate
transformation (x, y, z, w,φ)⟶ (− x, − y, z, − w, − φ).

Furthermore, by calculating

∇V �
z _x

zx
+

z _y

zy
+

z _z

zz
+

z _w

zw
+

z _φ
zφ

� a + z − 1, (10)

when a + z< 1, system (2) is dissipative and converges
exponentially.

2.4. Analysis of the 5D HFWMS. Here, the dynamic be-
havior of the 5D HFWMS is numerically investigated by the
use of several tools such as the phase portraits, poincare map,
Lyapunov exponentials, and bifurcation diagram.

2.4.1. Four-Wing Hyperchaotic Attractor. When the system
parameters are selected a � 1, b � 1, c � 0.7, m � 1, d � 0.2,

e � 0.1, and n � 0.01 and the initial condition is set to
[1, − 1, 1, 1, 1], the phase portraits of system (2) shown in
Figure 1 are obtained by Matlab simulation, which is a
typical four-wing chaotic attractor, and the time variations
of state equations x, y, z, andw are provided in Figure 2.

*e Lyapunov exponent is used to measure the per-
turbation caused by initial conditions. If there are slight
differences in the system, two adjacent trajectories in the
phase space are separated exponentially with time. *e
Lyapunov exponent is a useful tool for measuring chaotic
systems, in particular, it is usually determines whether a
chaotic system is chaotic or hyperchaotic according to the
number of positive Lyapunov exponents. According to the
given system parameters and initial conditions, the Lya-
punov exponent of a ∈ [− 1, 1] is simulated by the Jacobi
matrix method. *e numerical results are shown in
Figure 3(a) (the five LE5 is out of plot). From Figure 3(a), we
can clearly see that the system has complex dynamic be-
haviors such as periodic orbit, chaos, and hyperchaos. When
a ∈ [− 1, − 0.03] and a ∈ (0.22, 0.3), the system is a periodic
orbit, and Figure 4 are the phase portraits of system (2) when
a � − 1 (the LEs are 0, − 0.0424, − 0.4394, − 0.6696, and
− 3.4835). When a � 0.2, the LEs are 0.0790, − 0.0078,
− 0.0627, − 0.1078, and − 1.9274, with a positive Lyapunov
exponent, so system (2) is in chaotic state (a ∈ [0.3, 0.48)

and a ∈ (− 0.03, 0.22]). When a ∈ [0.48, 1], the system is
hyperchaotic, and the typical four-wing hyperchaotic
attractor is shown in Figure 1. When a � 0.78, the LEs
are LE1 � 0.1712, LE2 � 0.0907, LE3 � 0.0107, LE4 � 0,

and LE5 � − 2.3243, and it can be judged that system (2) is
hyperchaotic and has three positive Lyapunov exponents.

Figure 3(b) describes the bifurcation diagram of system (2)
varying with parameter a. With the increase of a, the system
changes from period to chaos.*e Kaplan–Yorke dimension
of system (2) can be calculated by the following formula:

DL � j + 

j

i�1

Lj

|Lj + 1|
� 4 +

0.1712 + 0.0907 + 0.0107 − 0
2.3243

� 4.1172,

(11)

where j is the largest integer satisfying 
j
i�1Lj≥ 0 and


j
i�1Lj< 0. It can be seen from DL � 4.1172 that the Lya-

punov dimension of system (2) is fractional. *erefore, the
proposed 5D FWMHS is a real hyperchaotic system with
strong complexity.

As an important analytical tool, the Poincare map is used
to further study the dynamic characteristics of the 5D
HFWMS. Figure 5(a) shows the Poincare map of the x − y

plane at z � 0 and four branches can be seen; Figure 5(b)
shows the Poincare map of the x − z plane at y � 0 and has
many branches; Figure 5(c) shows the Poincare map of the
y − z plane at w � 0 and the outline of the four wings can be
seen, indicating the existence of the four-wing phenomenon.
Figure 5 shows that system (2) has a four-wing chaotic
attractor with fractal structure.

2.4.2. Two-Wing Hyperchaotic Attractor. When the system
parameters are chosen as a � 11, c � 0.7, m � 1, d � 0.2, e �

0.1, and n � 0.01 and the initial condition is set to
[0, 1, 0, 0, 0], and the numerical results of the Lyapunov
exponent varying with the system parameter b is shown in
Figure 6(a). Figure 6(b) is a bifurcation diagram corre-
sponding to Figure 6(a). From Figure 6, we can see that
system (2) has more complex dynamic behavior in the
parameter b ∈ [− 10, 0] interval, such as quasi-periodicity,
period, chaos, and hyperchaos. Table 1 classifies these dy-
namical behaviors and then makes a detailed analysis of LEs
and their dynamical behaviors varying with parameter b as
follows:

(i) When b ∈ (− 4.4, 0], the Lyapunov exponents of
system (2) at b � − 1 are 0.5791, 0.1087, − 0.0316,
− 0.2607, and − 4.5443. *e system is in a hyper-
chaotic state, and the corresponding phase portraits
are shown in Figure 7(a).

(ii) When b ∈ [− 5.55, − 4.4], the Lyapunov exponents of
system (2) at b � − 5 are 0, − 0.0132, − 0.2670,
− 0.4978, and − 2.1754. *e system is in a period-5
state, and the corresponding phase portraits are
shown in Figure 7(b).

(iii) When b ∈ [− 7, − 6.6] and b ∈ [− 10, − 7.2], the Lya-
punov exponents of system (2) at b � − 8 are 0.0279,
− 0.0271, − 0.2093, − 0.3481, and − 1.9681. *e phase
portraits shown in Figure 7(c) show that the system
is in a quasi-periodic state.

(iv) When b ∈ (− 6.6, − 5.55) and b ∈ (− 7.2, − 7), the
Lyapunov exponents of system (2) at b � − 6.15 are
0.0918, − 0.0091, − 0.16–0.3278, and − 2.2332. *e
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system shows a chaotic state, and the corresponding
phase portraits are shown in Figure 7(d).

2.4.3. Complexity Analysis by Spectral Entropy. *e com-
plexity of spectral entropy (SE) is based on the discrete
Fourier transformation. *e distribution of energy in
Fourier transform domain is calculated, and then the SE
value is calculated by Shannon entropy, which reflects the

disorder of time series in frequency domain [61, 101, 102].
*e chaotic diagram using the complexity of SE usually
reflects the spatial complexity of chaotic system parameters.
In this section, the SE algorithm is used to analyze the
complexity of system (2). Figure 8 shows the complexity of
SE of system (2) under initial condition [1, − 1, 1, 1, 1]. It can
be seen that Figure 8(a) corresponds well to the maximum
Lyapunov exponent in Figure 3. *e control parameters a
and b of the chaotic system are divided into 101 × 101 parts,
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including a ∈ [− 1, 1] and b ∈ [0, 5]. *en, calculate the SE of
each point (a, b) in the parameter space, as shown in
Figure 8(b). *e results show that with the increase of pa-
rameter a, the more complex the chaotic system is, and the
higher the complexity of the system is mainly concentrated
in a ∈ [0.5, 1]. Figure 9 is the SE diagram of system (2) under
initial condition [0, 1, 0, 0, 0], where a ∈ [10, 20] and
b ∈ [− 10, 0]. Figure 9(a) corresponds well to the maximum
Lyapunov exponent in Figure 6. Figure 9(b) shows the
complexity of SE in the plane of control parameters a and b.
*e results show that when a � 11, with the increase of

parameter b, the larger the SE value is, and the higher the
complexity of the system is mainly concentrated in
b ∈ [− 3.8, 0].

3. The FPGA-Based Model of the Novel
5D HFWMS

Devices in analog circuits are easy to aging and inflexible,
which makes more and more researchers begin to pay at-
tention to digital devices on the FPGA. With the charac-
teristics of high-speed operation, high integration, and free

Table 1: *e LEs and dynamical behavior under different parameter range of b.

b (LE1, LE2, LE3, LE4, LE5) Dynamic
(− 4.4, 0] (+, +, 0, − , − ) Hyperchaotic
[− 5.55, − 4.4] (0, − , − , − , − ) Periodic
(− 6.6, − 5.55) (+, 0, − , − , − ) Chaotic
[− 7, − 6.6] (0, 0, − , − , − ) Torus
(− 7.2, − 7) (+, 0, − , − , − ) Chaotic
[− 10, − 7.2] (0, 0, − , − , − ) Quasi-periodic
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Figure 7: Simulated phase portraits of system (2) with different b: (a) b � − 1, (b) b � − 5, (c) b � − 8, and (d) b � − 6.15.
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design, FPGA can easily generate chaotic signals. Nowadays,
many numerical algorithms are used to solve the nonlinear
differential equations of chaotic systems. *e Euler algo-
rithm is the simplest of all algorithms, but its accuracy is not
high [64, 65]. *e Heun algorithm is more sensitive than the
Euler method [63]. *e Runge–Kutta algorithm is better
than other algorithms in operation effect, with high accu-
racy, stable calculation process, and easy realization. RK-4 is
easier to implement than RK-5, so RK-4 is widely used to
solve chaotic systems [103]. Equation (12) gives the formula
for calculating K1, K2, K3, andK4, which represents the
slope value of [y0, yi]:

ti+1 � ti + h,

K1 � f ti, yi( ,

K2 � f ti +
h

2
, yi +

h

2
K1 ,

K3 � f ti +
h

2
, yi +

h

2
K2 ,

K4 � f ti + h, yi + hK3( .

(12)
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Figure 8: *e complexity of SE of system (2): (a) SE versus a when b � 1 and (b) in the a − b plane.
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For the designed HFWMS, the initial conditions x(0) �

1, y(0) � − 1, z(0) � 1, w(0) � 1, andφ(0) � 1 and the step
size h � 0.01 are given. Five equations in HFWMS are
calculated according to the RK-4 algorithm flow chart and
equation (12). By using the RK-4 algorithm of Verilog, the
designed HFWMS is implemented on FPGA. *e central
idea of designing a chaotic signal generator with FPGA is to
divide the whole system into several functional modules,
including RK-4 solving module, data selector module, ys

module, and numerical conversion module. *e function
module contains many arithmetic units, including multi-
plier, adder, and subtractor. *ese arithmetic units are
created in cooperation with the IP core generator and follow
the standard of IEEE 754.

*e top-level block diagram of the chaotic signal gen-
erator based on FPGA using the RK-4 algorithm is shown in
Figure 10. As can be seen from Figure 10, the design system
has three inputs and six outputs. *e output signal consists
of five 32-bit output signals (X out, Y out, Z out, W out,
and φ out) and 1 bit flag signal XYZWφ ready. When the
calculation produces X out, Y out, Z out, W out, and
φ out, the signal XYZWφ ready will be set to a valid bit.
Clock signal (Clk) and Reset are both 1 bit signals, which are
used to ensure synchronization between the system and
other modules; 32 bit Δh represents step size, which is used
to determine the sensitivity of the algorithm.

*e second block diagram of the chaotic signal generator
based on FPGA using the RK-4 algorithm is displayed in
Figure 11, which consists of a Multipler (MUX) and 5D
HFWMS oscillator. As can be seen from that the MUX unit
is used to obtain the initial condition signal at the first
operation. *ese signals were initially defined by the de-
signer, and then obtained as feedback signals by the output
signals (X out, Y out, Z out, W out, and φ out). Figure 12
is the third block diagram of the chaotic signal generator
based on FPGA using the RK-4 algorithm, which consists of
three parts: MUX unit, HFWMS oscillator unit, and data
processing unit. K1 unit, K2 unit, K3 unit, K4 unit, and ys

are important components of the HFWMS oscillator, which
are pipelined structures used in the calculation of Runge–
Kutta algorithm. ys unit can make the chaotic oscillator
produce output signal in a definite clock period. I.C. (initial
conditions) are initially defined by the designer. When
HFWMS generates a set of output values, the value of
XYZWφ ready is set to a valid bit and the values of
x(k + 1), y(k + 1), z(k + 1), w(k + 1), and φ(k + 1) gener-
ated by the oscillator are fed back to MUX as the initial
values of the next operation. *e data processing unit has
two functions: (1) converting 32-bit floating-point signals
(X out, Y out, Z out, W out, and φ out) generated by the
oscillator into 14-bit fixed-point signals and (2) converting
signed fixed-point signals into unsigned fixed-point signals.
*e digital-to-analog converter AN9767 (DAC) converts 14-
digit digital signals into analog signals for easy display on the
oscilloscope.

*e digital hardware implementation of the 5D hyper-
chaotic oscillator based on RK-4 has been synthesized on the
Xilinx ZYNQ-XC7Z020 FPGA chip. *is design is imple-
mented, synthesized, and downloaded using Vivado 2018.3.

*e parameter statistics of the related resource utilization of
the FPGA and the clock speed of each module are calculated.
In order to better analyze the experimental results, we
convert the experimental data into hexadecimal. Figure 13
shows a discrete time series (X out, Y out, Z out, W out,
and φ out) obtained for the HFWMS oscillator based on
FPGA, which corresponds to the x, y, z, w, and φ signals of
the continuous chaotic system. Figure 14 are the phase
portraits of Y out andZ out which are displayed by the 5D
HFWMS on the oscilloscope. From Figure 14, it can be seen
that several kinds of phase portraits designed based on
FPGA are consistent with the Matlab simulation diagrams,
which means that the designed HFWMS based on FPGA can
be implemented well. Table 2 provides statistical data on
resource utilization, chip speed, and performance of the
Xilinx ZYNQ-XC7Z020 FPGA chip. *e minimum clock
period and maximum operating frequency of HFWMS
based on FPGA are 6.763 ns and 147.863MHz.

3.1. Active Control Synchronization and Secure
Communication of the Novel 5D HFWMS

3.1.1. Synchronization of the Novel 5D HFWMS by the Active
Control Method. Synchronization design is the key to secure
communication.*erefore, it is necessary to synchronize the
designed chaotic system before realizing secure communi-
cation. A synchronization system consists of two parts, one
is the master system and the other is the slave system. In this
section, the active control method is used to synchronize
system (2), and system (2) is set as the master system and
rewritten as

_x1 � ax1 + dW φ1( y1 + y1z1 − cw1,

_y1 � y1z1 − x1z1,

_z1 � − z1 − mx1y1 + b,

_w1 � x1,

_φ1 � y1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Here, the slave system uses a 5D hyperchaotic system
proposed by Yang and Bai [104], which is described as

Reset

Clk

∆h (31 : 0)

X_out (31 : 0)
Y_out (31 : 0)
Z_out (31 : 0)

W_out (31 : 0)
φ_out (31 : 0)

XYZWφ_ready

FPGA-based
5D HFWMS

oscillator

Figure 10: *e top-level block diagram of the FPGA-based 5D
HFWMS.
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M
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Figure 11: *e second-level block diagram of the FPGA-based 5D HFWMS.

FPGA-based
5D HFWMS

oscillator

Data
processing

unit

I.C.

k1
unit

k2
unit

k3
unit

k4
unit

MUX
Reset
Clk

ys Floating
to fixed DAC

X
Y
ZX_out (31 : 0)

Y_out (31 : 0)
Z_out (31 : 0)

X_out (31 : 0)
Y_out (31 : 0)
Z_out (31 : 0)

W_out (31 : 0)
φ_out (31 : 0)

XYZWφ_ready

∆h (31 : 0)

x (k + 1) y (k + 1) z (k + 1) w (k + 1) φ (k + 1)

Figure 12: *e third-level block diagram of the FPGA-based 5D HFWMS.

Figure 13: Simulation results of the FPGA-based HFWMS signal generator with the RK-4 algorithm.
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_x2 � a1 y2 − x2(  + u1,

_y2 � c1x2 + d1y2 − x2z2 + φ2 + u2,

_z2 � − b1z2 − x2
2 + u3,

_w2 � g1y2 + f1w2 + u4,

_φ2 � − r1x2 − k1φ2 + u5,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where a1, b1, c1, d1, g1, f1, r1, and k1 are the system param-
eters and u � [u1, u2, u3, u4, u5]

T is the active controller of
synchronous systems, which can make the master and slave

systems gradually synchronize under different initial con-
ditions. Define the errors as

e1 � x2 − x1,

e2 � y2 − y1,

e3 � z2 − z1,

e4 � w2 − w1,

e5 � φ2 − φ1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

*en, the error dynamic system can be obtained as

(a) (b)

(c) (d)

Figure 14: Implementation platform and exemplificative phase portraits generated by the FPGA implementation of the proposed HFWMS:
(a) four-wing hyperchaotic attractor, (b) two-wing hyperchaotic attractor, (c) period-5 state, and (d) quasi-periodic state.

Table 2: Xilinx ZYNQ-XC7Z020 FPGA chip hardware usage statistics of the 5D HFWMS.

Resource Used Available Utilization (%)

Slice register 26893 106400 25
Number of slice LUTs 23173 53200 43
Number of bonded IOBs 30 125 24
Number of BUFG 1 32 3
Max. clock frequency 147.863MHz — —
Latency 13.53 ns — —
*roughput 59.15Mbit/s — —
Power 0.275W — —
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_e1 � a − a1( e1 + a1 + dg( e2 − ce4 + cw2 − ax2 − dgy2 + a1 y1 − x1(  − y1z1 − 3dnφ2
1y1 + u1,

_e2 � c1e1 + d1e2 + e5 + φ1 − x2z2 + x1z1 − y1z1 + c1x1 + d1y1 + u2,

_e3 � − b1e3 − e3 + x2
2 + mx1y1 − b + z2 − b1z1 + u3,

_e4 � g1e1 + g1y1 + f1e4 + f1w1 + e1 − x2 + u4,

_e5 � − r1e1 − k1e5 − r1x1 − k1φ1 − y2 + e2 + u5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

By simplifying the linear term of equation (16), the active
controller can be obtained as

u1 � − cw2 + ax2 + dgy2 − a1 y1 − x1(  + y1z1 + 3dnφ2
1y1 + v1,

u2 � − φ1 + x2z2 − x1z1 + y1z1 − c1x1 − d1y1 + v2,

u3 � − x2
2 − mx1y1 + b − z2 + b1z1 + v3,

u4 � − g1y1 − f1w1 + x2 + v4,

u5 � r1x1 + k1φ1 + y2 + v5,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where v � [v1, v2, v3, v4, v5]
T is the control input. *e sub-

stitution of (17) in (16) leads to a linear error dynamics
equation without the active controller:

_e1 � a − a1( e1 + a1 + dg( e2 − ce4 + v1,

_e2 � c1e1 + d1e2 + e5 + v2,

_e3 � − b1e3 − e3 + v3,

_e4 � g1e1 + f1e4 + e1 + v4,

_e5 � − r1e1 − k1e5 + e2 + v5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

In order to achieve synchronization of different struc-
tures, it is necessary to

lim
x⟶∞

ei � 0, i � 1, 2, 3, 4, 5. (19)

Equation (17) shows that if system (18) tends to be stable
over time and under the control of input v � [v1,

v2, v3, v4, v5]
T, the error variable e � [e1, e2, e3, e4, e5]

T tends
to zero, and then the master system (12) and the slave system
(13) realize the synchronization with different structures. To
achieve this goal, we define a matrix A to represent the re-
lationship between the error system and the control input,
which can be expressed as

v � A · e. (20)

According to the stability criterion, if equation (20) is
stable, all eigenvalues of matrix A are negative. *us,
equation (20) can be expressed as

v1

v2

v3

v4

v5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

a1 − a − 1 − a1 − dg 0 c 0

− c1 − d1 − 1 0 0 − 1

0 0 b1 0 0

− 1 − e1 0 − f1 − 1 0

r1 − 1 0 0 k1 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e1

e2

e3

e4

e5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(21)

where matrix A is
a1 − a − 1 − a1 − dg 0 c 0

− c1 − d1 − 1 0 0 − 1

0 0 b1 0 0

− 1 − e1 0 − f1 − 1 0

r1 − 1 0 0 k1 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

*erefore, equation (21) can be transformed into
v1 � a1 − a − 1(  x2 − x1(  + c w2 − w1(  − a1 + dg(  y2 − y1( ,

v2 � − c1 x2 − x1(  − d1 + 1(  y2 − y1(  − u2 − u1( ,

v3 � b1 z2 − z1( ,

v4 � − x2 − x1(  − g1 y2 − y1(  − f1 + 1(  w2 − w1( ,

v5 � − y2 − y1(  − k1 φ2 − φ1(  + r1 x2 − x1( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

By substituting equations (23) and (17) into equation
(14), the expression of slave system is obtained as follows:

_x2 � − x2 + 2x1 + d g + 3nφ2
1( y1 + y1z1 − cw1,

_y2 � y1z1 − x1z1 − y2 + y1,

_z2 � − z2 − mx1y1 + b,

_w2 � x1 − w2 + w1,

_φ2 � y1 − φ2 + φ1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

(1) Numerical Simulation Results Based on Matlab. *e ef-
fectiveness of synchronization results of active control for
different structures is verified by numerical simulation. Choose
the parameters of system (13) as a � 1, b � 1, c � 0.7, m � 1,

d � 0.2, g � 0.1, and n � 0.01 and initial states as [1, − 1, 1,

1, 1]; the parameters of system (14) as a1 � 35, b1 � 7, c1 �

35, d1 � − 5, g1 � 10.6, f1 � 1, r1 � 5, and k1 � 0.05 and ini-
tial states as [0.01, − 0.01, 0.01, 0.01, 0.01]. Figure 15 shows the
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time behaviors of the error states. As we can see, the error states
converge to 0 in 3 seconds, which means that the two
hyperchaotic systems with different structures can achieve
synchronization.

(2) Implementation Results Based on FPGA. Because of the
aging and temperature change of analog devices, the device
values are easy to change. Synchronization requires that the
parameters of the transmitter and the receiver be highly
matched. *is indicates that there are a series of problems in
synchronization using analog devices. It is an ideal choice to
synchronize the chaotic system with FPGA, which has high
reliability because it does not have the problem of tem-
perature drift of components. In this section, according to
the principle of active control synchronization, two different
5D hyperchaotic systems with different structures are syn-
chronized on ModelSim. *e Verilog design is simulated by
Vivado’s built-in simulator. *e simulation results of syn-
chronization errors in FPGA are shown in Figure 16. From
the graph, it can be seen that all synchronization errors tend
to zero. *is is the same as the Matlab simulation in Fig-
ure 15 of synchronization errors. *erefore, the synchro-
nization of 5D hyperchaotic systems with different
structures designed by FPGA can work normally on
hardware.

3.1.2. Chaotic Masking Communication of the Novel 5D
HFWMS. *e main idea of chaotic masking secure
communication design is to superimpose the signal
generated by the chaotic system on the useful signal to
form a modulation signal, and then use the channel for
transmission. *e receiver demodulates the modulated
signal by the output signal of the chaotic system

synchronized with the transmitter and recovers the
original useful signal. *e application of secure com-
munication studied in this paper is based on active
control synchronization between two 5D hyperchaotic
systems with different structures. *e schematic diagram
of the designed secure communication scheme is shown
in Figure 17, where s(t) is the information signal, m(t) is
the chaotic signal generated by the master system, p(t) is
the mixed signal encrypted by m(t) to s(t), n(t) is the
chaotic signal generated by the slave system, and d(t) is
the decrypted signal. *e signal transmitted in the
channel is a kind of chaotic signal similar to noise, from
which it is difficult to obtain useful signals. *e controller
unit can synchronize the master system and slave system,
which is the key of chaotic secure communication. *e
original useful signal can be recovered effectively by
using the signal generated by the synchronized chaotic
system of the controller to decrypt the encrypted signal.
Set the information signal to be encrypted at the
transmitter as

s(t) � 0.125 sin(0.1πt). (25)

*e encryption function and decryption function of the
chaotic masking communication are, respectively, adopted
as

p(t) � s(t) · [1 + km(t)],

d(t) �
p(t)

[1 + kn(t)]
.

(26)

*e error signal between the information signal and the
decrypted signal is

e(t) � s(t) − d(t). (27)

(1) Numerical Simulation Results Based on Matlab. *rough
the encryption function, decryption function, and syn-
chronization-related parameters, the numerical simula-
tion results are shown in Figure 18 with k � 10. As can be
seen that the signal p(t) is really difficult to be decrypted;
the signal d(t) generated by the decryption function
corresponds well with the information signal, which
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Figure 15: *e trajectories of the synchronization errors
e1, e2, e3, e4, and e5 based on Matlab.

e1

e2

e3

e4

e5

Figure 16: *e trajectories of the synchronization errors
e1, e2, e3, e4, and e5 based on FPGA.
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means that the receiver can recover the information signal
very well.

(2) Implementation Results Based on FPGA. In order to verify
the correctness of the proposed chaotic masking secure
communication scheme, ModelSim is selected as the ex-
perimental platform of FGPA. According to the scheme
shown in Figure 17, the hardware experiment results of the
FPGA are shown in Figure 19. From Figure 19, we can see
that the effective information signal s(t) can be completely
hidden in the chaotic sequence, the encrypted signal has
strong concealment, and the received decrypted signal has
good restoration quality, which is the same as the pre-
encrypted signal.

s(t) p(t)

m(t)

p(t)

n(t)

d(t)Function
decryption

Function
encryption

Master
system

Slave
systemController

Transmitter Receiver

Channel

Figure 17: *e schematic diagram of chaotic masking communication.
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Figure 18: (a) Original signal s(t), (b) transmitted signal p(t), (c) recovered signal d(t), and (d) error e(t) � s(t) − d(t).
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Figure 19: Experimental results of chaotic masking secure com-
munication based on FPGA.

14 Complexity



4. Conclusion

In this study, a novel 5D continuous time HFWMS with
multiline equilibrium and three positive Lyapunov expo-
nents are first introduced. Dynamical analysis is performed
in terms of equilibrium points, phase portraits, Poincare
map, Lyapunov exponential spectrum, bifurcation diagram,
and spectral entropy. *en, the four-wing, two-wing, pe-
riod-5, and quasi-periodic phase portraits of the novel 5D
hyperchaotic memristive system are carried out on FPGA,
and a discrete time FPGA-based design of the 5DHFWMS is
implemented on ModelSim using the RK-4 algorithm. *e
maximum operating frequency of the designed chaos-based
system reaches 147.863MHz. Finally, an active control
synchronization of the 5D hyperchaotic system with dif-
ferent structures and a secure chaotic masking communi-
cation application are implemented on the platform of
Matlab and FPGA, respectively. All these results justify the
successful applications of the novel 5D HFWMS in active
control synchronization and various chaos-based embedded
secure chaotic masking communication systems. Our future
work is to study whether the system hasmultistability, and to
apply the system to image encryption and random number
generator.
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High peak-to-average power ratio (PAPR), a main problem of 5G Filtered-Orthogonal Frequency Division Multiplexing (F-
OFDM) system, seriously a�ects the system’s transmission e�ciency. Aiming at the shortcomings of the traditional selective
mapping (SLM) algorithm, the grid scroll chaotic extended sequence (GSCES) algorithm is proposed to solve the high PAPR
problem.�e proposed grid multiscroll chaotic maps are used as random phase sequence vectors instead of the traditional pseudo
random sequence, which provide a large number of random sequences with good correlation characteristics, random char-
acteristics, and high security. �e proposed random phase sequence vectors can meet the needs of 5G mass connections. �e
original input signals are divided into real part and imaginary part, which are, respectively, dot produced with the proposed grid
multiscroll chaotic maps. �e numerical simulation results show that the proposed GSCES algorithm e�ectively increases the
number of candidate sequences, reduces the PAPR values, and improves the transmission e�ciency and security. Moreover, the
hardware experimental results produce at 2× 2× 2-grid multiscroll chaotic attractor, which further proves the physical realization
of the proposed system. �e proposed schemes have a broad application prospect in 5G multicarrier modulation technology.

1. Introduction

In 2015, Filtered-OFDM (F-OFDM) technology was �rst put
forward publicly at the World Mobile Communication
Congress. It is an adaptive airport waveform modulation
technology whose subcarrier bandwidth can be adjusted
according to speci�c application scenarios. F-OFDM tech-
nology has many advantages, such as no need for strict
synchronization, reduced out-of-band energy leakage, the
di�erent waveform modulation, multiple access technology
and frame structure based on the mobile communication
application scene and business requirements, the dynamic
soft interface parameter con�guration according to the 5G
business needs, and packet tra�c transmission suitable for
Internet of things [1–5]. In the F-OFDM system, when
subcarriers of sub-band are superimposed after IFFT op-
eration, multiple subcarriers will reach the peak value at the
same time, resulting in higher peak-to-average power ratio

(PAPR) of synthetic signal, which seriously a�ects the
system performance and limits its application in 5G.

�e characteristics of selective mapping (SLM) scram-
bling technology are simple structure and obvious e�ect, but
there are a large side band information and high compu-
tational complexity. Many researchers have improved the
traditional SLM algorithm. �e cyclic-SLM scheme is pro-
posed to omit the side information (SI) and apply only one
IFFT. In the time domain, the original signal and its periodic
shift signal are added and the minimum PAPR is selected as
the candidate signal [6]. �e time-frequency domain en-
cryption technique is proposed based on the multichaos and
SLM PAPR suppression algorithm. �e Lozi and Logistic
maps are used to interfere the carrier in the time-frequency
domain. In a 100 kilometer single-mode �ber, 8.9Gb/s
encrypted OFDM signal is transmitted safely [7]. A method
is proposed to decrease the PAPR of the 16-QAM OFDM
system, which combines the chaotic map and SLM algorithm
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so that the phase rotation factors are controlled by chaotic
sequence [8]. /e improved SLM algorithm based on the
Lehmer random phase sequence vector is proposed to
embed side band information into the 16-PSK transmit
signal [9]. /e improved SLM algorithm is proposed to
reduce PAPR, combining interlaced IDCT transform with
pulse forming technology [10]. /e low complexity im-
proved SLM algorithm and μ-law compression scheme are
proposed to reduce the PAPR and computational com-
plexity of the OFDMA system [11]./e low-complexity SLM
improvement algorithmwithout SI is proposed to reduce the
PAPR of the coherent light OFDM system [12]. /e blind
differential improved SLM algorithm is proposed to reduce
the PAPR of Alamouti DSFBC-OFDM system [13].

In this paper, a model of the new system is constructed to
produce gird multiscroll chaotic attractors, using different
sign functions acted as nonlinear function. Moreover, the
design of the hardware circuit produces at 2× 2× 2-grid
multiscroll hardware experimental results. /e produced
grid multiscroll chaotic maps are used as random phase
sequence vectors instead of the traditional pseudo random
sequence. /e grid scroll chaotic extended sequence
(GSCES) algorithm is proposed to solve the high PAPR
problem. /e numerical simulation results show that the
proposed GSCES algorithm effectively increases the num-
bers of candidate sequences, reduces the PAPR values, and
improves the transmission efficiency and security.

2. Methods

2.1. F-OFDM System Modes. F-OFDM system dynamically
configures suitable waveform parameters such as bandwidth,
cycle prefix (CP) length, subcarrier spacing, and FFT points
for each sub-band according to service requirements, which
improves the flexibility and scalability of 5G communication
system. /e downlink of the F-OFDM system is shown in
Figure 1.

As shown in Figure 1, the frequency bands of the system
are divided into M sub-bands, which are subcarrier map-
ping, IFFT transformation, and plus CP operation, re-
spectively, and each sub-band is filtered through the sub-
band filter for coupling transmission. /e biggest difference
between the F-OFDM system and traditional OFDM system
is the sub-band filter added at the transmitter and receiver.
For each sub-band, at the transmitter, the input signal of the
sub-band filter is the traditional OFDM signal. /e function
of the sub-band filter is to complete the baseband shaping of
each sub-band, and its output signal is the F-OFDM signal.
At the receiving end, the function of sub-band filter is to
filter each sub-band signal and complete sub-band
decoupling.

/e data symbol of the ith sub-band of the F-OFDM
system is given by

xi(n) � gi(n)∗fi(n), i � 1, 2, . . . , M, (1)

where gi(n) is the ith sub-band symbol before filtering, fi(n)
is the impulse response of the ith sub-band filter at the
beginning, and M is the number of sub-band.

/e transmit signal of the F-OFDM system is as follows:

x(n) � 
M− 1

i�0
xi(n). (2)

/e channel output signal is given by

r(n) � x(n)∗ h(n) + z(n)

� 
M− 1

i�0
xi(n)∗ h(n) + z(n)

� 
M− 1

i�0
gi(n)∗fi(n)∗ h(n)  + z(n).

(3)

2.2. Construction of Grid Multiscroll Chaotic System. In this
paper, the new grid multiscroll chaotic system is constructed
with the combination of sign functions, which act as non-
linear functions. So, the dimensionless equation of the state
is constructed by the following equation:

dx

dt
� y − a · sgn(y),

dy

dt
� z − b · sgn(z),

dz

dt
� − cx − cy − dz + e · sgn(x + y).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

When control parameters a� 1.4, b� 1.4, c� 1.5, d� 0.8,
and e� 3.9, the grid multiscroll chaotic system is in a state of
chaos.

2.3. Grid Scroll Chaotic Extended Sequence Algorithm.
/e traditional SLM algorithm is a kind of PAPR sup-
pression algorithm without signal distortion. However, the
receiver needs to know the selected random phase sequence
to demodulate, so it also needs to transmit the corre-
sponding random phase sequence information in addition
to the data information. It is restricted in practical appli-
cation. In this paper, the pseudo random sequences are
generated by the proposed grid multiscroll chaotic maps.
/e pseudo random sequences are generated by the initial
value iterations. It only needs to transmit its initial value,
which reduces the complexity of the operation and the side
band information transmission. Aiming at the shortcomings
of the traditional SLM algorithm, the grid scroll chaotic
extended sequence (GSCES) algorithm is proposed in this
paper. /e original signals are divided into real part and
imaginary part, the proposed grid multiscroll chaotic maps
are used as random phase sequence vectors, the IFFT
transforms are performed, respectively, the PAPR is cal-
culated by linear superposition, and the minimum PAPR is
selected for transmission as shown in Figure 2.

As shown in Figure 2, the 5G F-OFDM data block is x(t),
the serial input signal x(t) is symbol mapped, which is di-
vided into 2M subchannels with serial-to-parallel conver-
sion, the signal x(t) is divided into the real part and the
imaginary part, and the transmission is carried out on theM

2 Complexity



subchannel, respectively. /e proposed grid multiscroll
chaotic maps are used to generate random phase sequence
vector P with different N lengths, and then the mth random
phase sequence vector is Pm � (Pm,0, Pm,1, . . . , Pm,N− 1),

0≤m≤M − 1. /e lth data block xl(t) is divided into the
real part xl_r(t) and the imaginary part xl_i(t), which are,
respectively, dot produced with the mth random phase
sequence vector Pm, then IFFT transforms are performed,
and the candidate transmission sequences sm

l r(t) and sm
l i(t)

are produced:
s

m
l r(t) � IFFT xl r(t)⊗Pm( 

� IFFT xl r,0(t)Pm,0, xl r,1(t)Pm,1, . . . , xl r,N− 1(t)Pm,N− 1 ,

0≤m≤M − 1,

s
m
l i(t) � IFFT xl i(t)⊗Pm( 

� IFFT xl i,0(t)Pm,0, xl i,1(t)Pm,1, . . . , xl i,N− 1(t)Pm,N− 1 ,

0≤m≤M − 1,

(5)

where ⊗ is dot product operation between two vectors, IFFT
is discrete Fourier inverse transformation, sm

l r(t) is the real
part of the candidate sequence, and sm

l i(t) is the imaginary
part of the candidate sequence.

/e candidate sequence s
k,q

l (t) are obtained by linear
combination of the real part sk

l r(t) and imaginary part
s

q

l i(t):

s
k,q

l (t) � αks
k
l r(t) ± jβgs

q

l i(t)

� αkIFFT xl r(t)⊗Pk(  ± jβgIFFT xl i(t)⊗Pq .

(6)

If αkPk ± jβgPg is the unit phase sequence vector, that is
|αk| � |βg| � 1/

�
2

√
, and the positive and negative polarity

have the same PAPR, then

s
k,q

l (t) �
1
�
2

√ IFFT xl r(t)⊗Pk ± jxl i(t)⊗Pq 

�
1
�
2

√ s
k
l r(t) ± js

q

l i(t) .

(7)

According to equation (7), the number of expanded
candidate transmission sequences sel(t) increases from
original M to M2, and it is expressed as

sel(t) � s
0
l (t), s

1
l (t), . . . , s

n
l (t), . . . , s

M2− 1
l (t) ,

0≤ n≤M
2

− 1.

(8)
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Figure 2: Schematic diagram of the grid scroll chaotic extended sequence algorithm.
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In the candidate transmission sequence of lth data block,
the minimum PAPR is selected as Dl, namely,

Dl � argmin
0≤n≤M2− 1

PAPR s
n
l (t)(  , 0≤ l≤M − 1. (9)

So, the output sequence is as follows:

D � 
M− 1

l�0
Dl. (10)

3. Experiment

According to the modular circuit design method, equation
(4) has been carried out by the differential-integral trans-
forms; we have the following equation:

x � [y − a · sgn(y)]dτ,

y � [z − b · sgn(z)]dτ,

z � [− cx − cy − dz + e · sgn(x + y)]dτ.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(11)

According to equation (11), the design of the circuit is
shown in Figure 3. /e model of the operational amplifier is
TL082. /e power supply voltage of all active devices is
±15V. All resistors are precision adjustable resistors or
precision adjustable potentiometers.

4. Results and Discussion

4.1. Dynamics of Lyapunov Exponents. For the system cor-
responding equation (4), the Runge–Kutta integration
method is used with the length of time t� (0, 200), initial
values (x, y, z)� (0.02, 0.01, 0.03), and the numerical sim-
ulation result of the Lyapunov exponents is shown in
Figure 4.

/e Lyapunov exponents of the proposed system are given
as LE1 � 0.055545, LE2 � 0.025606, and LE3 � − 0.881151,
also LE1 + LE2 + LE3 � − 0.8. Moreover, the fractal dimension
is given by

LD � j +
1

LEj+1






j

i�1
LEi � 2 +

0.055545 + 0.025606
0.881151

� 2.0921.

(12)

/e proposed system has positive Lyapunov exponent
and the dimension of Lyapunov is fractional, which further
confirms that the system is in the state of chaos and the
calculated Lyapunov exponent is reasonable. Moreover, this
system produces strange attractor dimension LD� 2.0921, in
line with the geometric characteristics of the chaotic
attractor.

4.2. Poincare Map of Grid Multiscroll Chaotic System.
For the system corresponding equation (4), the Runge–
Kutta integration method is used with the length of time
t� (0, 2600) and initial values (x, y, z)� (0.02, 0.01, 0.03)./e

Poincare map of the grid multiscroll chaotic system is shown
in Figure 5.

A Poincare section is selected in the phase space, which is
used to cut off all the motion trajectories for observing
section cut point. From Figure 5, we can see that the
Poincare map of the grid multiscroll chaotic system is a piece
of dense point set and has a hierarchical structure, which
verifies the system’s chaotic motion state.

4.3. Hardware Results. /e hardware circuits shown in
Figure 3 can be obtained, and experimental results are
shown in Figure 6.

From Figure 6, it can be seen that the hardware circuit
experiment results of the analog oscilloscope generate
2× 2× 2-grid multiscroll chaotic attractors, which verifies
the physical feasibility of the proposed system. /e phase
rails of the proposed grid multiscroll chaotic attractor are
separated in more directions and have more complex dy-
namic characteristics. /erefore, the grid multiscroll chaotic
map is used as random phase sequence vectors. Compared
with the traditional pseudo random sequences, the proposed
grid multiscroll chaotic sequence can provide a large
number of random sequences with good correlation char-
acteristics, random characteristics, and high security, which
meet the requirement of 5G mass connection.

4.4. PAPRPerformance SimulationResults. In this paper, the
QPSK modulation is adopted, the subcarrier number equals
to 128, and the complementary cumulative distribution
function (CCDF) is used to describe the PAPR distribution
of the proposed system. In paper [6], the selected data
utilization (SDU) algorithm is proposed to rotate the phase
factor with specific selection conditions, which improves the
PAPR performance of the traditional SLM algorithm. /e
PAPR performance comparison between the proposed
GSCES algorithm and the traditional SLM algorithm and the
SDU algorithm is shown in Figure 7.

In Figure 7, the variable original is the PAPR value
calculated by 1× 128 original signal.

In the traditional SLM algorithm, the 1× 128 original
signal is input data, L groups input data are copied and are
dot product of random phase vectors, IFFT transforms are
calculated, and the PAPR values are obtained, and the
variable SLM is the minimum PAPR value of the L candidate
sequences. /e traditional SLM algorithm using random
phase vectors requires the transmission of phase in-
formation of subchannel, so the side band information is
very huge, which not only increases the complexity but also
reduces the efficiency of the system.

In the proposed GSCES algorithm, the 1× 128 original
signal is the input data, L groups input data are copied, the
real part and the imaginary part of input data are separated,
L random phase vectors are generated by the proposed grid
multiscroll chaotic maps, the real part and the imaginary
part are separately dot product with the random phase
vectors, IFFT transforms are calculated, and real and
imaginary data are linearly added. /e proposed GSCES
algorithm extends the candidate sequence to L2 groups, and
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variable LSLM is the minimum PAPR value of L2 candidate
sequences.

In Figure 7, compared with the traditional SLM algo-
rithm and SDU algorithm, the proposed GSCES algorithm
e�ectively reduces the PAPR of the 5G F-OFDM system,
increases the candidate sequences, reduces calculation, and
transmits data more e�ciently.

4.5. BER Performance Simulation Results. �e F-OFDM
signal divides the frequency band of the system into several
di�erent sub-bands, which can be con�gured with di�erent
link parameters according to the actual service requirements,
such as di�erent subcarrier spacing, IFFT/FFT size, and CP

length. In this section, we evaluate the bit error rate (BER)
performance of the proposed GSCES algorithm in the
F-OFDM system. In the additive white Gaussian noise
(AWGN) channel, the system performance test is carried out,
and the speci�c simulation parameter con�guration of the
F-OFDM system is shown in Table 1.

�e con�guration of link parameters in this paper is
shown in Table 1. In the F-OFDM system, the BER per-
formance of the proposed GSCES algorithm is shown in
Figure 8.

From Figure 8, it can be seen that the BER performance
of the proposed GSCES algorithm has a certain degree of
degradation compared with the original signal, but the
degree of degradation is not large. Combining with Figure 7,
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it can be seen that the proposed GSCES algorithm can ef-
fectively improve the PAPR performance of the system, and
when the transmission signal meets certain signal-to-noise
ratio (SNR) conditions, it will not affect the BER perfor-
mance of the system.

4.6. Computational Complexity Analysis. Assuming that
both the SLM algorithm and the proposed GSCES algorithm
generate L2 candidate sequences, the number of subcarriers
is R, the oversampling rate isQ, and the IFFT transformation
of RQ points requires (RQ/2)log2 RQ complex

multiplications and RQ log2 RQ complex additions. /e
SLM algorithm needs L2 IFFT transforms to generate L2
phase sequences, i.e., a total of (L2RQ/2)log2 RQ complex
multiplications and L2RQ log2 RQ complex additions. For
the proposed GSCES algorithm, the Lth IFFT transform
generates the real and imaginary parts of L candidate
sequences.

/at is to say, (LRQ/2)log2 RQ complex multiplications
and LRQ log2 RQ complex additions are needed. /en, the
linear combination of the real and imaginary parts of L
candidate sequences is used to generate L2 candidate se-
quences, which requires L2RQ complex additions.

When the number of the candidate sequence equals to
L2, the computational complexity of the proposed GSCES
algorithm is compared with that of the SLM algorithm as
shown in Table 2.

Table 2 shows that when the numbers of candidate se-
quences are all L2, the number of complex multiplication
needed by the proposed GSCES algorithm is 1/L of that of
the SLM algorithm and the number of complex addition is
((1/L) + (1/log2 RQ)) of the SLM algorithm. With the in-
crease of the number of candidate sequences, the ratio
decreases continuously. So, the proposed GSCES algorithm
expands the number of candidate sequences by using the
segmentation method and linear combination trans-
formation. Compared with the SLM algorithm, the com-
putational complexity is greatly reduced and the data can be
transmitted more efficiently.

Table 1: Simulation setup.

Parameter Value/description
Subcarrier size 64
IFFT/FFT size 1024
Baseband modulation mode QPSK
Subcarrier spacing 15KHz
CP length 16
Symbol duration 66.7 μs
Channel model AWGN
Type of filters Square root raised cosine
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Figure 7: /e PAPR performance comparison results.

Figure 6: Hardware circuit experimental results.

Table 2: Computational complexity comparison of different
algorithms.

Algorithm Number of complex
multiplications

Number of complex
additions

SLM (L2RQ/2)log2 RQ L2RQ log2 RQ

GSCES (LRQ/2)log2 RQ LRQ log2 RQ + L2RQ

GSCES/SLM 1/L (1/L) + (1/log2 RQ)
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5. Conclusions

Aiming at the shortcomings of the traditional SLM algo-
rithm, the GSCES algorithm is proposed to solve the high
PAPR problem of 5G F-OFDM systems. /e proposed grid
multiscroll chaotic maps instead of the traditional pseudo
random sequence are used as random phase sequence
vectors, which provide a large number of random sequences
with good correlation characteristics, random characteris-
tics, and high security. /e proposed random phase se-
quence vectors can meet the needs of 5G mass connections.
/e original input signals are divided into real part and
imaginary part, which are, respectively, multiplied by the
proposed grid multiscroll chaotic sequences. /e IFFT
transforms are performed, respectively, the PAPR values are
calculated by linear superposition, and the minimum PAPR
value is selected for transmission. /e numerical simulation
results show that the proposed GSCES algorithm effectively
increases the numbers of candidate sequences, reduces the
PAPR values, the redundant information transmission, and
the side band information transmission, and improves the
transmission efficiency and security of the 5G F-OFDM
system. Moreover, the hardware experimental results pro-
duce at 2× 2× 2-grid multiscroll chaotic attractor, which
further proves the physical realization of the proposed
system. /e proposed schemes have a broad application
prospect in 5G multicarrier modulation technology.

Abbreviations

PAPR: Peak-to-average power ratio
F-OFDM: Filtered-orthogonal frequency division

multiplexing
SLM: Selective mapping
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CCDF: Cumulative distribution function
BER: Bit error rate
AWGN: Additive white Gaussian noise
SNR: Signal-to-noise ratio
SDU: Selected data utilization.
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In this paper, a four-dimensional (4-D) memristor-based Colpitts system is reaped by employing an ideal memristor to substitute
the exponential nonlinear term of original three-dimensional (3-D) Colpitts oscillator model, from which the initials-dependent
extrememultistability is exhibited by phase portraits and local basins of attraction. To explore dynamical mechanism, an equivalent
3-D dimensionality reduction model is built using the state variable mapping (SVM) method, which allows the implicit initials of
the 4-D memristor-based Colpitts system to be changed into the corresponding explicitly initials-related system parameters of the
3-D dimensionality reduction model. The initials-related equilibria of the 3-D dimensionality reduction model are derived and
their initials-related stabilities are discussed, upon which the dynamical mechanism is quantitatively explored. Furthermore, the
initials-dependent extreme multistability is depicted by two-parameter plots and the coexistence of infinitely many attractors is
demonstrated by phase portraits, which is confirmed by PSIM circuit simulations based on a physical circuit.

1. Introduction

Chua’s circuit [1] and Colpitts oscillator [2] are two important
physical circuits used for generating chaos. In the Chua’s
circuit, the unique nonlinear negative resistor is generally
realized based on operational amplifier [3], which makes
the oscillating frequency limited. By contrast, in the Colpitts
oscillator, the nonlinear circuit element is implemented by
a bipolar junction transistor [2], which allows the oscillat-
ing frequency to be adjusted from a few hertz up to the
microwave region (gigahertz), depending on the technology.
Due to the natural nonlinearities [4], memristors can be
introduced into some existing circuits or systems to easily
achieve chaotic oscillations. In the past few years, various
memristor-based nonlinear oscillating circuits and systems
were proposed, such as memristive Hindmarsh-Rose neuron
model [5], memristive cellular nonlinear/neural network [6],
memristive band-pass filter circuit [7], memristive spiking
and bursting neuron circuit [8], memristive jerk circuit
[9], memristive hypogenetic jerk system [10], memristive
hyper-jerk system [11], memristive Twin-T oscillator [12],

memristive Chua’s circuit [13], memristive canonical Chua’s
circuit [14], memristive multi-scroll Chua’s circuit [15], and
memristive Chua’s hyperchaotic circuit [16]. However, rela-
tively little attention has been received on the memristor-
based Colpitts oscillator [17–19]. In addition, the memristive
Colpitts oscillator implemented by replacing the bipolar
junction transistor with memristor has not yet been reported.
Because of the nanosized property, memristor is character-
ized by small size and low power consumption, leading to
the fact that memristor-based Colpitts oscillator could have
a good application prospect under some certain conditions.

The careful dynamical analyses of these constructed
memristive systems show that the memristor initials do
play a crucial role in dynamical characteristics of these
systems [20, 21]. Particularly, memristive systems based on
ideal memristors can produce the extreme multistability
phenomenon of coexisting infinitely many attractors [22, 23].
Such a special phenomenon is commonly triggered in the
systemswith no equilibrium [24] or infinitelymany equilibria
[16, 25–28], entirely different from those generated from
the offset-boostable flow by introducing an extra periodic
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signal [29–31]. In [17], a memristor-based Colpitts chaotic
oscillator was proposed by introducing a nonideal extended
memristor into original Colpitts oscillator [2]. This mem-
ristive system only had unique equilibrium and exhibited
the rich parameters-dependent dynamics. Like the reported
ideal memristor-based systems, when an ideal memristor is
introduced into original Colpitts oscillator, a natural question
to ask is whether it will produce extreme multistability.
Therefore, it is necessary to seek this special phenomenon in
the ideal memristor-based Colpitts system.

The initials-dependent multistability [32, 33], or extreme
multistability [34–36], pushes forward an immense influence
on the study of dynamical characteristics in many nonlinear
systems. Under the fixed system parameters, the solution
trajectories of the systems can be represented by diverse stable
states with the varied initials. Such a special phenomenon
not only renders a nonlinear dynamical circuit or system to
supply great flexibility for its potential uses in chaos-based
information engineering applications [37], but also leads to
new challenges for its control of the existing multiple stable
states [32]. One might argue that this special phenomenon
can hardly be achieved in practical engineering applications,
as it is highly dependent on the initials. Moreover, due to
the existence of zero eigenvalue at the equilibrium, it also
presents new impediments for the traditional theoretical
analysis of dynamical mechanisms. Interestingly enough,
these problems can be solved by simplifying themathematical
models using proper state variables or applying reasonable
approximation and simplification [38, 39].

Latterly, to solve the abovementioned problem, flux-
charge analysis method [13, 14, 22, 23] for the memristor-
based dynamical circuits and state variable mapping (SVM)
method [11, 40] for the memristor-based dynamical sys-
tems were proposed to achieve an equivalent dimensionality
reduction model, leading to the fact that the circuit goes
from high-order to low-order or the system goes from high-
dimensional to low-dimensional. With these methods, the
implicit initials in the original circuit or system can be
changed into explicitly initials-related circuit/system param-
eters appearing in the dimensionality reduction model, and
multiple stable states can be controlled by changing the
initials-related circuit/system parameters [14], upon which
the mechanism explanation for initials-dependent dynamics
can be realized. Moreover, dimensionality reduction model-
ing can reduce the complexity of quantitative analyses and
numerical simulations, which is of theoretical significance
and engineering application value.

The aforementioned analytic strategies have been pre-
liminarily verified in several memristor-based Chua’s circuits
[13, 14, 22] and memristor-based hyperjerk system [11].
However, for memristor-based Colpitts system, applicability
and effectivity of the state variable mapping method still need
comprehensive investigations and the concept of dimen-
sionality reduction reconstitution is insistent to be clarified.
Enlightened by the above ideas, a novel four-dimensional (4-
D) memristor-based Colpitts system is reaped by employing
an ideal memristor [24] to substitute the exponential non-
linear term of the original three-dimensional (3-D) Colpitts
oscillator model [2, 41]. The proposed memristive Colpitts

system exhibits the initials-dependent extreme multistability.
To focus on the revelation and reconstitution of this special
phenomenon, an equivalent 3-D dimensionality reduction
model is obtained using the SVMmethod reported in [11] and
several determined isolated equilibria are thereby yielded.
Consequently, the implicit initials of the 4-D memristor-
based Colpitts system are transformed into the explicitly
initials-related system parameters of the 3-D dimensionality
reduction model. Meanwhile, the initials-dependent extreme
multistability in the 4-D memristor-based Colpitts system
is reconstituted by the initials-related parameters-dependent
dynamics in the dimensionality reduction model through
traditional quantitative analyses.

The rest of this paper is organized as follows. In Section 2,
a 4-D memristor-based Colpitts system is presented and
the initials-dependent extreme multistability is revealed by
phase portraits and two-dimensional (2-D) local basins of
attraction. Thereafter, the equivalent 3-D dimensionality
reductionmodel for the proposedmemristiveColpitts system
is built by the SVM method. In Section 3, to explore the
dynamical mechanism, the initials-related equilibria of the
3-D dimensionality reduction model are derived and the
initials-related stabilities are evaluated quantitatively. Fur-
thermore, the initials-dependent extreme multistability is
depicted by two-parameter bifurcation plots and the coexis-
tence of infinitely many attractors is demonstrated by phase
portraits. In Section 4, with the circuit implementation of the
dimensionality reduction model, PSIM circuit simulations
are used to validate the numerical simulations. The conclu-
sion is drawn in Section 5.

2. Memristor-Based Colpitts System and
Dimensionality Reduction Modeling

2.1. 4-D Memristor-Based Colpitts System and Initials-
Dependent Extreme Multistability. The constructing scheme
is adopted through imitating the method narrated in [10]. For
the input x and output y, an incoming ideal memristor with
an inner state variable 𝜑 can be modeled as

𝑦 = 𝑊(𝜑) 𝑥
�̇� = 𝑥 (1a)

Inspired by [24], the memductance W(𝜑) chosen here is
quadratic in 𝜑, which is characterized by

𝑊(𝜑) = 𝛼 − 𝛽𝜑2 (1b)

where the parameters 𝛼 and 𝛽 are two positive constants.
Note that the circuit module of W(𝜑) can be synthesized by
referring to [24].
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Table 1: Attractor types with different initials of system (3).

Initials Attractor types Phase portraits
(10−9, 0, 0, ±3.6) Asymmetric chaotic double-scroll attractors Figure 1(a)
(10−9, 0, 0, ±3.3) Period-2 limit cycles Figure 1(b)
(−1, 2, 0, 2.55) Spiral chaotic attractor Figure 1(c) (red)
(10−9, 0, 0, 0) Symmetric chaotic double-scroll attractor Figure 1(c) (blue)
(10−9, −1.5, 0, −2) Period-2 limit cycle Figure 1(d) (red)
(10−9, 0, 0, −0.8) Period-3 limit cycle Figure 1(d) (blue)
(−1, 0, 0, −3.4) Period-1 limit cycle Figure 1(e) (red)
(−1, 0, 0, −3.2) Point attractor Figure 1(e) (blue)
(−1, 2, 0, 2.2) Unbounded orbit Figure 1(f)

A classic 3-D Colpitts oscillator model with an expo-
nential nonlinear term was reported in [2, 41], which was
described as

�̇�1 = 𝑔𝑄 (1 − 𝑘) [𝑥3 − 𝑛 (𝑥2)]
�̇�2 = 𝑔𝑄𝑘𝑥3
�̇�3 = −𝑄𝑘 (1 − 𝑘)𝑔 (𝑥1 + 𝑥2) − 1𝑄𝑥3

(2a)

where Q and g are positive real constants, k = 0.5, and the
exponential nonlinear term

𝑛 (𝑥2) = 𝑒−𝑥2 − 1 (2b)

is used to characterize the voltage-current relation of the
bipolar junction transistor in theColpitts oscillator.When the
parameters appearing in (2a) are set asQ= 1.415 and g =3.1623
[2], the 3-D Colpitts oscillator model (2a) and (2b) is chaotic
and displays a spiral attractor.

Based on the 3-D Colpitts oscillator model presented in
(2a), a novel 4-D memristor-based Colpitts system is reaped
by employing the proposed memristor given in (1a) and (1b)
to substitute the exponential nonlinear term described in
(2b), whose mathematical model is formulated as

̇𝑥1 = 𝑎𝑥3 − 𝑎𝑊(𝑥4) 𝑥2
̇𝑥2 = 𝑎𝑥3
̇𝑥3 = −0.5 (𝑥1 + 𝑥2)𝑎 − 𝑏𝑥3
̇𝑥4 = 𝑥2

(3)

where 𝑊(𝑥4) = 𝛼 − 𝛽𝑥2
4
and two positive parameters a =

2g/Q, b = 1/Q are introduced for simplicity [41]. To focus
on the revelation and reconstitution of extrememultistability,
the parameters are determined as a = 5.2, b = 0.9, 𝛼 = 0.5, and𝛽 = 0.1.

The ideal memristor (1a) and (1b) causes system (3)
to possess line equilibrium therein, leading to the emer-
gence of complex and sensitive initials-dependent extreme
multistability with coexisting infinitely many attractors [22,
23]. To show the intriguing phenomenon, some intuitions
about the extreme multistability of system (3) are exhibited
by phase portraits, as shown in Table 1 and Figure 1,
where the point attractor in Figure 1(e) is marked as five-
pointed star. Apparently, a variety of disconnected attractors
with different topologies, periodicities, and locations are
coined in system (3) under different initials. Particularly,
asymmetric chaotic double-scroll attractors (Figure 1(a)),
symmetric chaotic double-scroll attractor, and chaotic spiral
attractor (Figure 1(c)) can be observed in Figure 1, which are
completely different from the chaotic spiral attractor reported
in the original 3-DColpitts oscillator model (2a) and (2b) [2].
It is demonstrated that system (3) has more complex attractor
structure.

The phase portraits of coexisting infinitely many attrac-
tors in Figure 1 demonstrate that dynamical behaviors of
system (3) are extremely depended on their initials. To
inspect the dynamical behaviors distributed in the initial
planes, 2-D local basins of attraction in different initial
planes are drawn, as shown in Figure 2, where only the
periodicities of the state variable x1 are considered and the
topologies and locations of the attractors are ignored here.
The red regions marked by CH represent chaotic behaviors.
The black and blue regions labeled by DE and P0 denote
unbounded divergent and stable point behaviors respectively.
Whereas the other color regions labeled by P1 ∼ P4 stand for
periodic behaviors with different periodicities. Therefore, the
emergence of extreme multistability is disclosed, indicating
the coexistence of infinitely many attractors in the 4-D
memristor-based Colpitts system.

In addition, lots of unbounded divergent behaviors can
be observed in Figure 2, which is rarely reported in a general
memristive chaotic system [14], indicating that the proposed
4-D memristor-based Colpitts system (3) is less robust to the
initials.

2.2. Dimensionality Reduction Modeling. To explore dynam-
ical mechanism of the initials-dependent extreme multista-
bility emerged in system (3), an equivalent dimensionality
reduction model for system (3) needs to be built [11, 13, 14, 22,
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Figure 1: Phase portraits of coexisting infinitely many attractors in the x3− x4 plane for different initials (x1(0), x2(0), x3(0), x4(0)). (a)
Asymmetric chaotic double-scroll attractors for (10−9, 0, 0, ±3.6). (b) Period-2 limit cycles for (10−9, 0, 0, ±3.3). (c) Chaotic attractors with
different topologies for (10−9, 0, 0, 0) and (−1, 2, 0, 2.55). (d) Period-2 and period-3 limit cycles for (10−9, −1.5, 0, −2) and (10−9, 0, 0, −0.8). (e)
Period-1 limit cycle and point attractor for (−1, 0, 0, −3.2) and (−1, 0, 0, −3.4). (f) Unbounded orbit for (−1, 2, 0, 2.2).

23]. Pursuant to the SVM method [11], integrating the four
equations of (3) from 0 to 𝜏, one gets

𝑥1 (𝜏) − 𝛿1 = −𝑎𝛼𝑋2 + 𝑎𝑋3 + 𝑎𝛽∫𝜏
0

𝑥2
4
(𝜉) 𝑥2 (𝜉) d𝜉

𝑥2 (𝜏) − 𝛿2 = 𝑎𝑋3
𝑥3 (𝜏) − 𝛿3 = −0.5 (𝑋1 + 𝑋2)𝑎 − 𝑏𝑋3
𝑥4 (𝜏) − 𝛿4 = 𝑋2

(4)

where

𝑋𝑖 (𝜏) = ∫𝜏
0

𝑥𝑖 (𝜉) d𝜉,
𝛿𝑖 = 𝑥𝑖 (0)
(𝑖 = 1, ⋅ ⋅ ⋅ , 4)

(5)

Recalling the forth equation of (3), there exists d𝑥4(𝜉) =𝑥2(𝜉)d𝜉. Thus the integral term in (4) is signified as

∫𝜏
0

𝑥2
4
(𝜉) 𝑥2 (𝜉) d𝜉 = ∫𝜏

0

𝑥2
4
(𝜉) d𝑥4 (𝜉) = 𝑥3

4
(𝜏)3 − 𝛿343

= (𝑋2 + 𝛿4)33 − 𝛿343
= 𝑋3
23 + 𝛿4𝑋22 + 𝛿24𝑋2

(6)

Then system (4) can be rewritten as

�̇�1 = −𝑎𝛼𝑋2 + 𝑎𝑋3 + 𝑎𝛽(𝑋323 + 𝛿4𝑋22 + 𝛿24𝑋2) + 𝛿1
�̇�2 = 𝑎𝑋3 + 𝛿2
�̇�3 = −0.5 (𝑋1 + 𝑋2)𝑎 − 𝑏𝑋3 + 𝛿3
�̇�4 = 𝑋2 + 𝛿4

(7)

From (7), it is not difficult to find that the right-hand sides of
the first three equations do not depend on X4, i.e., the forth
equation of (7) is independent of the other three equations.
Therefore, an equivalent 3-D dimensionality reductionmodel
can be described as

�̇�1 = (𝑎𝛽𝛿24 − 𝑎𝛼)𝑋2 + 𝑎𝑋3 + 𝑎𝛽𝑋
3

23 + 𝑎𝛽𝛿4𝑋22 + 𝛿1
�̇�2 = 𝑎𝑋3 + 𝛿2
�̇�3 = −0.5 (𝑋1 + 𝑋2)𝑎 − 𝑏𝑋3 + 𝛿3

(8)
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Figure 2: Two-dimensional local basins of attraction of system (3) in different initial planes for four sets of the initials (x1(0), x2(0), x3(0),
x4(0)). (a) The x3(0) – x4(0) initial plane with x1(0) = x2(0) = 0. (b)The x1(0) – x2(0) initial plane with x3(0) = x4(0) = 0. (c)The x2(0) – x4(0)
initial plane with x2(0) = x3(0) = 0. (d) The x1(0) – x4(0) initial plane with x2(0) = x3(0) = 0.

Similar to [11], there are correspondences between the
state variables of systems (3) and (8) such that

𝑥1 = �̇�1,
𝑥2 = 𝑎𝑋3 + 𝛿2,
𝑥3 = �̇�3,
𝑥4 = 𝑋2 + 𝛿4

(9)

Based on the relations in (9), the dynamical behaviors in (8)
can be transformed back into those in (3).

Noteworthily, the implicit initials xi(0) of the 4-D
memristor-based Colpitts system are mapped as explicitly
initials-related system parameters 𝛿i appearing in the 3-
D dimensionality reduction model. What needs illustration
is that, under the situation X1(0) = X2(0) = X3(0) = 0,
system (8) exhibits the completely same dynamical behaviors
as the proposed system (3) [11]. To easily distinguish the
different system parameters in system (8), we call a, b, 𝛼, 𝛽
as the intrinsic system parameters and 𝛿1, 𝛿2, 𝛿3, 𝛿4 as the
extrinsic initials-related system parameters. It follows that the
aforementioned 3-D dimensionality reduction model can be
utilized for quantitatively investigating the initials-dependent

dynamics of the 4-D memristor-based Colpitts system by
changing the initials-related system parameters 𝛿i.

System (8) is a 3-D nonlinear system, whose initials can
also influence the dynamical behaviors. Similar to [11, 42],
under the fixed initials-related system parameters, system
(8) only exhibits two kinds of oscillating states. Taking 𝛿1
= 10−9 and 𝛿2 = 𝛿3 = 𝛿4 = 0 as an illustration, a bounded
chaotic behavior under the initials (0, 5, 0) and an unbounded
behavior under (−9, 0, 0) are coexisted in the X1− X3 plane,
as shown in Figure 3(a). Furthermore, the local basin of
attraction in the X1(0) − X2(0) initial plane with X3(0) = 0
is depicted, as shown in Figure 3(b); it can be easily observed
that there are only two oscillating states, namely, the bounded
chaotic behavior (red) and unbounded divergent behavior
(yellow), respectively. Consequently, the 3-D dimensionality
reduction model is less sensitive than the 4-D memristor-
based Colpitts system to the initials.

3. Dynamical Mechanism Illustrations for
Extreme Multistability

3.1. Equilibria and Stabilities Depending on the Initials-Related
System Parameters. By setting �̇�1 = �̇�2 = �̇�3 = 0 and solving
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Figure 3: Illustrations for the bounded chaotic behavior (red) and unbounded divergent behavior (yellow). (a) Phase portraits under the
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Table 2: The equilibrium of the dimensionality reduction model (8).

Δ 𝑋2 𝑋1 Equilibrium
Δ > 0 𝑋2,1 −𝑋2,1 + 2𝑏𝛿2 + 2𝑎𝛿3 𝑆1 = (−𝑋2,1 + 2𝑏𝛿2 + 2𝑎𝛿3, 𝑋2,1, −𝛿2/𝑎)
Δ = 0 𝑋2,1, − 3√−0.5𝑄 −𝑋2,1 + 2𝑏𝛿2 + 2𝑎𝛿3 𝑆2,1 = (−𝑋2,1 + 2𝑏𝛿2 + 2𝑎𝛿3, 𝑋2,1, −𝛿2/𝑎)

3√−0.5𝑄 + 2𝑏𝛿2 + 2𝑎𝛿3 𝑆2,2 = ( 3√−0.5𝑄 + 2𝑏𝛿2 + 2𝑎𝛿3, − 3√−0.5𝑄, −𝛿2/𝑎)
Δ < 0 𝑋2,1,𝑋2,2,𝑋2,3

−𝑋2,1 + 2𝑏𝛿2 + 2𝑎𝛿3 𝑆3,1 = (−𝑋2,1 + 2𝑏𝛿2 + 2𝑎𝛿3, 𝑋2,1, −𝛿2/𝑎)−𝑋2,2 + 2𝑏𝛿2 + 2𝑎𝛿3 𝑆3,2 = (−𝑋2,2 + 2𝑏𝛿2 + 2𝑎𝛿3, 𝑋2,2, −𝛿2/𝑎)−𝑋2,3 + 2𝑏𝛿2 + 2𝑎𝛿3 𝑆3,3 = (−𝑋2,3 + 2𝑏𝛿2 + 2𝑎𝛿3, 𝑋2,3, −𝛿2/𝑎)

for the equilibrium of system (8), one gets

𝑆 = (−𝑋2 + 2𝑏𝛿2 + 2𝑎𝛿3, 𝑋2, −𝛿2𝑎 ) (10)

in which𝑋2 is solved by

𝑋3
2
+ 3𝛿4𝑋22 + 3(𝛿24 − 𝛼𝛽)𝑋2 +

3 (𝛿1 − 𝛿2)𝑎𝛽 = 0 (11)

Define P and Q as

𝑃 = −3𝛼𝛽 (12a)

𝑄 = 3 (𝛿1 − 𝛿2)𝑎𝛽 − 3𝛿4 (𝛿24 − 𝛼𝛽) + 2𝛿34 (12b)

In pursuance of the classical Cardan discriminant Δ = (Q/2)2
+ (P/3)3 [14, 43], the roots of (11) are derived as

𝑋2,1 = 3√−0.5𝑄 + √Δ + 3√−0.5𝑄 − √Δ − 𝛿4 (13a)

𝑋2,2 = 0.5 (−1 + j√3) 3√−0.5𝑄 + √Δ
+ 0.5 (−1 − j√3) 3√−0.5𝑄 − √Δ − 𝛿4

(13b)

𝑋2,3 = 0.5 (−1 − j√3) 3√−0.5𝑄 + √Δ
+ 0.5 (−1 + j√3) 3√−0.5𝑄 − √Δ − 𝛿4

(13c)

The detailed breakdowns of the equilibrium S are given in
Table 2. With reference to these results, it can be found that
system (8) has only one determined equilibrium when Δ > 0
and only two determined equilibria when Δ = 0. In contrast,
system (8) has three determined equilibria when Δ < 0.
Based on the characteristic polynomial at the determined
equilibrium S of system (8), the stability analysis of system (8)
can be effectively performed. By theRouth-Hurwitz criterion,
if and only if

√𝛼𝛽 < 𝑋2 + 𝛿4 < √ (𝑎𝛼 + 2𝑏)𝑎𝛽 (14)
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Figure 4: Dynamics with the variation of 𝛿4 at 𝛿1 =10−9, 𝛿2 = 𝛿3 = 0. (a) The 𝑋2 coordinates and stabilities of the three equilibria. (b)
Bifurcation diagram of X1, the upper: 𝛿4 ∈ [−4, 0]; the lower: 𝛿4 ∈ [0, 4].

is satisfied, the determined equilibrium S is stable and a
point attractor will be prevailed in its neighborhood. The
intuition of Table 2 and (14) is that, under the fixed intrinsic
system parameters, the equilibrium locations and stabilities
are decided by the initials-related system parameters 𝛿i (i =
1, 2, 3, 4). Thus, the initials-dependent extreme multistability
presented in 4-D memristor-based Colpitts system can be
deduced from the evolutions of the determined equilibrium
in the 3-D dimensionality reduction model [40, 42].

Take 𝛿1 = 10−9 and 𝛿2 = 𝛿3 = 0 as an example. When
the initials-related system parameter 𝛿4 varies within [−4, 4],
system (8) invariably has three equilibria S3,1, S3,2, and S3,3;
the 𝑋2 coordinates of the determined equilibria are depicted
in Figure 4(a). Stabilities of these three determined equilibria
are evaluated by their eigenvalues and denoted with different
colored lines, where the red dash, blue solid, and black dash-
dot lines denote the unstable saddle-focus (USF), stable node-
focus (SNF), and unstable node-focus (UNF), respectively.
More specifically, the USF denotes the equilibrium S has one
negative real root and a pair of conjugated complex roots with
positive real parts; the SNF indicates the equilibrium S is of
one negative real root and a pair of conjugated complex roots
with negative real parts; the UNF represents the equilibrium
S has one positive real root and a pair of conjugated complex
roots with negative real parts. The corresponding bifurcation
diagram of the state variable X1 is presented in Figure 4(b),
in which [X1(0), X2(0), X3(0)] = [0, 0, 0] are determined; the
upper is the bifurcation diagram such that 𝛿4 varies from −4
to 0, and the lower is bifurcation diagram such that 𝛿4 varies
from 0 to 4. It can be seen that the representing dynamics in
Figure 4(b) matches with the stabilities of three determined
equilibria stated in Figure 4(a).

Since the trajectory of system (8) starts from the original
point, its evolution route is mainly elicited by the stability
of the equilibrium neighboring to the original point and

somewhat affected by the other equilibria. The bifurcation
behaviors are symmetric for the negative and positive 𝛿4
in the region I, but are asymmetric in the regions II and
III. More narrowly, in the region I, when 𝛿4 varies within[−4, −2.9488], the three equilibria S3,1, S3,2, and S3,3 are all
unstable, such that the system orbit may be randomly pushed
toward one of these three unstable equilibria. And system
(8) starts from the chaotic state and goes into the periodic
state via reverse period-doubling bifurcation route. In the
region [−2.9488, −2.2592] of I and region II, S3,2 becomes a
stable equilibrium, 𝑆3,1 and 𝑆3,3 are still unstable equilibria.
Thedynamical behaviors of system (8) aremainly determined
by the stable equilibrium 𝑆3,2, leading to the occurrence of
point attractors. In the region III, the three equilibria are
all unstable and the system orbit will randomly push toward
one of these unstable equilibria, resulting in the generation
of limit cycle, chaotic attractor, or unbounded orbit. In the
region [2.2592, 4], system (8) displays the almost symmetric
dynamical behaviors as those in [−4, −2.2592]. Accordingly,
the stability distributions of these three determined equilibria
related to the initials-related system parameter 𝛿4 lead to the
emergence of complex dynamical behaviors in system (8).

3.2. Extreme Multistability Reconstitution. Observed from
Figure 4(b), we know that system (8) can display rich
dynamical behaviors hinging on the initials-related system
parameters 𝛿1, 𝛿2, 𝛿3, and 𝛿4. For intuitively manifesting
the coexistence of infinitely many attractors, two-parameter
bifurcation plots in different initials-related parameter planes
are plotted, as shown in Figure 5. Here the two-parameter
bifurcation plots are depicted by examining the period-
icities of the state variable X1, which are different from
the parameter-space plots given in [44]. Similar to the
color regions shown in Figure 2, the red region labeled
by CH represents chaos, the black region by DE indicates
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Figure 5: Two-parameter bifurcation plots depicted by the periodicities of the state variable X1 in different initials-related parameter planes
for four sets of the initials-related system parameters (𝛿1, 𝛿2, 𝛿3, 𝛿4). (a) Bifurcation plot in the 𝛿3 – 𝛿4 plane with 𝛿1 = 𝛿2 = 0. (b) Bifurcation
plot in the 𝛿1 – 𝛿2 plane with 𝛿3 = 𝛿4 = 0. (c) Bifurcation plot in the 𝛿2 – 𝛿4 plane with 𝛿1 = 𝛿3 = 0. (d) Bifurcation plot in the 𝛿1 – 𝛿4 plane
with 𝛿2 = 𝛿3 = 0.

divergence, the blue region by P0 denotes stable point, and
the other color regions by P1 ∼ P4 stand for periodic limit
cycles with different periodicities. Comparing the numerical
results in Figure 5 with those in Figure 2, the similarity
of dynamical behaviors can be observed and the fact that
the 3-D dimensionality reduction model can be utilized for
quantitatively investigating the initials-dependent dynamics
of the 4-D memristor-based Colpitts system by changing
the initials-related system parameters is further validated.
As the original state variables in the system (3) are the
derivatives of the new state variables in system (8) and the
computational errors always exist in numerical simulations
[45], there are some slight differences between the numerical
results in Figures 2 and 5. Therefore, it can be concluded
that the 3-Ddimensionality reductionmodel is the equivalent
representation of the 4-D memristor-based Colpitts system.

When the initials-related system parameters 𝛿1 = 𝛿2 =
0, the coexistence of infinitely many attractors in the 𝛿3−𝛿4 parameter plane can be observed in Figure 5(a). In the
regions [−5, −3] and [3, 5] of 𝛿4, the system can generate
asymmetric chaotic double-scroll attractors. In contrast, the
intuition of the region [−1, 1] of 𝛿4 is that the system can

generate symmetric chaotic double-scroll attractors. Further-
more, when 𝛿3 = 𝛿4 = 0, 𝛿1 = 𝛿3 = 0, and 𝛿2 = 𝛿3 = 0,
Figures 5(b), 5(c), and 5(d) reveal the coexistence of infinitely
many attractors in different initials-related system parameter
planes, respectively, and the emerged dynamical distributions
are completely different from those shown in Figure 5(a).

Corresponding to the part of different color areas in
Figure 5, different types of coexisting attractors are listed
in Table 3. Automatically, referring to Figure 1, for eleven
sets of different initials-related system parameters (𝛿1, 𝛿2,𝛿3, 𝛿4) in different color areas of Figure 5, the phase
portraits of coexisting attractors in the X1− X2 plane are
numerically simulated, as displayed in Figure 6, where the
point attractor in Figure 6(e) is marked as five-pointed
star homogeneously. Obviously, Figure 6 shows exactly the
same dynamical characteristics as Figure 1. It can be seen
that many different kinds of disconnected attractors, such
as chaotic attractors with different topologies, limit cycles
with different topologies and periodicities, stable point, and
unbounded orbit, can be observed in system (8). As a result,
the initials-related parameters-dependent dynamics featured
by Figure 6 intuitively verify the initials-dependent extreme
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Figure 6: MATLAB simulated phase portraits of coexisting infinitely many attractors in the X1− X2 plane for different initials-related system
parameters (𝛿1, 𝛿2, 𝛿3, 𝛿4). (a) Upper- and lower-asymmetric chaotic double-scroll attractors. (b) Upper- and lower-period-2 limit cycles. (c)
Chaotic attractor with different topologies. (d) Period-2 and period-3 limit cycles. (e) Period-1 limit cycle and point attractor. (f) Unbounded
orbit.

multistability in the proposed 4-D memristor-based Colpitts
system.

4. PSIM Circuit Simulations

The 3-D dimensionality reduction model described by (8)
is equivalently implemented in an analog circuit form, as
manifested in Figure 7, where the gains of two multipliers
M1 andM2 are set as 1. According to basic circuit theory, the
circuit state equations are formulated in a general form as

𝑅𝐶V̇1 = (𝑎𝛽𝛿24 − 𝑎𝛼) V2 + 𝑎V3 + 𝑎𝛽V
3

23 + 𝑎𝛽𝛿4V22 + 𝛿1
𝑅𝐶V̇2 = 𝑎V3 + 𝛿2
𝑅𝐶V̇3 = −0.5 (V1 + V2)𝑎 − 𝑏V3 + 𝛿3

(15)

where v1, v2, and v3 represent the state variables and RC
is the integrating time constant. The initials-related system
parameters 𝛿1, 𝛿2, 𝛿3, and 𝛿4 are implemented by additional
DC voltage sources or directly linking to the ground. Note
that the R6 in Figure 7 is only a negative feedback resistor
to ensure the dissipativity of the physical circuit without
self-excited oscillation, which is used to implement the self-
feedback term in Equation (15).More details about the circuit
design principle can refer to the operational amplifier stability
in [46, 47].
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Figure 7: Physical circuit implementing the 3-D dimensionality
reduction model (8).

To better confirm the extreme multistability generated
from the equivalent circuit in Figure 7, PSIM circuit sim-
ulations are considered to confirm the phase portraits of
coexisting attractors given in Figure 6.The circuit parameters
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Figure 8: PSIM simulated phase portraits of coexisting infinitely many attractors in the v1− v2 plane for different initials-related system
parameters (𝛿1, 𝛿2, 𝛿3, 𝛿4). (a) Upper- and lower-asymmetric chaotic double-scroll attractors. (b) Upper- and lower-period-2 limit cycles. (c)
Chaotic attractor with different topologies. (d) Period-2 and period-3 limit cycles. (e) Period-1 limit cycle and point attractor. (f) Unbounded
orbit.

Table 3: Different color regions and the coexisting attractor types.

Colors in Figure 5 Coexisting attractor types Examples in Figure 6

Red Upper- and lower-asymmetric chaotic
double-scroll attractors Figure 6(a)

Cyan Upper- and lower-period-2 limit cycles Figure 6(b)

Red Symmetric chaotic double-scroll attractor
and chaotic spiral attractor Figure 6(c)

Cyan and yellow Period-2 and period-3 limit cycles Figure 6(d)
Cadet blue and blue Period-1 limit cycle and point attractor Figure 6(e)
Black Unbounded orbit Figure 6(f)

shown in Figure 7 are taken as R = 10 kΩ, R1 = R/(a𝛽𝛿2
4
− a𝛼),

R2 = R/a = 1.9231 kΩ, R3 = R/a𝛽𝛿4, R4 = 3R/a𝛽 = 57.6923 kΩ,
R5 = 2aR = 104 kΩ, R6 = R/b = 11.1111 kΩ, and C = 100 nF.
The initials [v1(0), v2(0), v3(0)] are assigned as (0 V, 0 V, 0 V)
and the initials-related system parameters (𝛿1, 𝛿2, 𝛿3, 𝛿4) are
assigned as the same values by referring to those in Figure 6.
PSIM intercepted phase plane plots in the v1− v2 plane are
shown in Figure 8. Ignoring the computational errors in
PSIM simulations, PSIM simulated results in Figure 8 verify
the complex phenomenon revealed in Figure 6 and illustrate
that extreme multistability does exist in the proposed 4-D
memristor-based Colpitts system.What needs to be specified
is that the initials of the 4-Dmemristor-based Colpitts system
are in the explicit form in the physical circuit of the 3-D
dimensionality reduction model described by (8), which can
be used to easily achieve the controllable strategy for extreme

multistability in the 4-D memristor-based Colpitts system
[14, 23].

5. Conclusion

In this paper, a dimensionality reduction reconstitution
scheme for extreme multistability in memristor-based Col-
pitts system was introduced. By employing an ideal memris-
tor to substitute the exponential nonlinear term of original
3-D Colpitts oscillator model, a novel 4-D memristor-based
Colpitts systemwas obtained.The initials-dependent extreme
multistability of the proposed system was exhibited via
phase portraits and local basins of attraction. To explore
dynamical mechanism, an equivalent 3-D dimensionality
reduction model was constructed using SVM method. As a
consequence, the implicit initials of the 4-Dmemristor-based
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Colpitts system were transformed into the explicitly initials-
related system parameters of the 3-D dimensionality reduc-
tion model. Meanwhile, the dynamical mechanism was
quantitatively explored by deriving the initials-related equi-
libria and discussing the equilibrium stabilities in the 3-D
dimensionality reduction model. Furthermore, the initials-
dependent extreme multistability was verified by two-
parameter bifurcation plots and the coexistence of infinitely
many attractors was demonstrated by phase portraits and
confirmed by PSIM circuit simulations based on a physical
circuit. To sum up, this work has multiple advantages: (1)
the proposed 4-Dmemristor-based Colpitts system has great
practical importance, as it has much smaller size, lower
power consumption, and more complex attractor structure;(2) the dimensionality reduction model greatly reduces the
computational overhead, as the system goes from the 4-D to
3-D; (3) the traditional quantitative analyses can be used for
exploring the extreme multistability phenomenon, because
the implicit initials of the 4-D memristor-based Colpitts sys-
tem are transformed into the explicitly initials-related system
parameters of the 3-D dimensionality reduction model; (4)
the physical control and mechanism explanation for extreme
multistability are realized through dimensionality reduction
reconstitution.
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A fractional-order locally active memristor is proposed in this paper. When driven by a bipolar periodic signal, the generated
hysteresis loop with two intersections is pinched at the origin. �e area of the hysteresis loop changes with the fractional order.
Based on the fractional-order locally active memristor, a fractional-order memristive system is constructed. �e stability
analysis is carried out and the stability conditions for three equilibria are listed.�e expression of the fractional order related to
Hopf bifurcation is given. �e complex dynamical behaviors of Hopf bifurcation, period-doubling bifurcation, bistability and
chaos are shown numerically. Furthermore, the bistability behaviors of the di�erent fractional order are validated by the
attraction basins in the initial value plane. As an alternative to validating our results, the fractional-order memristive system is
implemented by utilizing Simulink of MATLAB. �e research results clarify that the complex dynamical behaviors are at-
tributed to two facts: one is the fractional order that a�ects the stability of the equilibria, and the other is the local activeness of
the fractional-order memristor.

1. Introduction

Nonlinear electronic circuits provide powerful and analyt-
ical platforms for people to realize and understand the
complex dynamical behaviors in physics [1]. Chaotic circuits
especially have become e�ective tools for studying chaos
theory. �e memristor, originally de�ned as the forth ele-
ment of the circuit by Chua in 1971 [2], is a nonlinear circuit
device besides the nonlinear resistor, capacitor, and in-
ductor. As a result, many novel memristive circuits have
been constructed by integrating the memristors with ver-
satile nonlinearities into some existing linear or nonlinear
circuits [3–11]. In these memristive circuits, rich dynamical
behaviors have been reported and tested by numerical
simulations and hardware experiments, such as chaos and
hyperchaos [12, 13], hyperchaotic multiwing attractors
[14, 15], coexisting multiple attractors [16, 17], hidden

attractors [18, 19], and complex transient chaos and
hyperchaos [20]. It should be noted that the simplest chaotic
circuit has been proposed based on a locally active nonlinear
memristive element [4]. Compared to the chaotic circuit
shown in [21], the simplest chaotic circuit has following
characteristics: (1) the circuit components are connected in a
single way, i.e., in series; (2) the number of the circuit
components is decreased from four to three; (3) the
memristor is locally active.

At a given moment, the resistance of an ideal memristor
is represented by the integration of all states before the
current moment.�is means that the ideal memristor has no
memory loss. But the work [22] shows that the width of the
doped layer of the HP TiO2 linear model cannot be equal to
zero or the whole width of the model. �e HP TiO2 linear
memristor has memory loss. From the de�nition, the
fractional-order derivative depends on the previous history

Hindawi
Complexity
Volume 2019, Article ID 2051053, 13 pages
https://doi.org/10.1155/2019/2051053

mailto:baobc@cczu.edu.cn
https://orcid.org/0000-0002-2329-6890
https://orcid.org/0000-0003-3063-287X
https://orcid.org/0000-0001-6413-3038
https://orcid.org/0000-0002-7422-5988
https://orcid.org/0000-0003-1841-7608
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/2051053


of the variable and is not a strictly local operator [23]. *e
order of the fractional-order derivative is related to the
memory loss or the “proximity effect” of some character-
istics [12]. *en the nonideal memristor with memory loss
mentioned in [22] can be modeled by a fractional-order
derivative with the order between 0 and 1 [24]. According to
this, there are many memristors modeled with the frac-
tional-order derivative [25–27]. As shown in [24], the
fractional-order memristor in the series circuits has ca-
pacitive properties or inductive properties by choosing a
suitable fractional order; i.e., the fractional order can be
regarded as a parameter which is used to control the memory
strength and dynamics of the circuit. In [25], the fractional
order can be used to control the time period in which the
resistance of thememristor increases from the initial value to
its maximum. In addition, a noncommensurate fractional-
order autonomous memristor-based circuit is proposed in
[27], where the chaotic behavior can be suppressed by ap-
plying periodic impulses. In addition, the dynamical system
with the locally active equipment can exhibit complexity and
emergent behaviors [28, 29]. *en, it is significant to model
the memristor or locally active memristor with the frac-
tional-order derivative and display the dynamics induced by
these fractional-order memristors.

*e main purpose of this paper is to study the complex
dynamical behaviors of a fractional-order system based on a
locally active voltage-controlled memristor. By theoretical
analyses, the stability conditions of the fractional-order
memristive system are listed. *e complex dynamical be-
haviors, such as Hopf bifurcation, period-doubling bi-
furcation, bistability, and chaos, are displayed numerically.
*e rest of the paper is organized as follows. In Section 2, the
mathematical model of the fractional-order memristor is
presented.*e fractional-order memristor’s fingerprints and
local activeness are addressed. In Section 3, an integer-order
locally active memristive system is generalized into a frac-
tional-order locally active memristive system. *e stability
conditions are listed. *e complex dynamical behaviors are
stated, and numerical simulations are displayed. As an al-
ternative to validating the numerical results, the fractional-
order memristive system is implemented by utilizing
Simulink of MATLAB. In Section 4, the effect of the local
activeness on complex dynamical behaviors is stated. Section
5 ends with some concluding remarks.

2. Fractional-Order Locally Active
Nonlinear Memristor

2.1. .e Model of the Fractional-Order Memristor.
Generally, the memristor can be seen as a sliding resistor
whose resistance changes with the charge crossing it. Driven
by a bipolar periodic signal, the memristor exhibits a hys-
teresis loop pinched at the origin in the current-voltage
plane. An integer-order nonlinear voltage-controlled
memristor is stated as follows [30]:

i � W xm( v � x2
m − xm − 1( v,

_xm � p1xm − p2x
3
m + p4v − p4xmv,

⎧⎨

⎩ (1)

where v and i are the voltage and current of the memristor,
respectively, xm is the internal state of the memristor and
W(xm) � x2

m − xm − 1 is the memductance, and p1, p2, p3,
and p4 are the system parameters. By using the trial and error
method [30], the parameters are decided as p1 � 1.8, p2 � 3.9,
p3 �1.4, and p4 �1.5. Considering the memory effect from
the memristor, a fractional-order voltage-controlled mem-
ristor Mα corresponding to (1) is modeled as follows:

i � Wα xm( v � x2
m − xm − 1( v,

C
0 D

α
t xm � 1.8xm − 3.9x3

m + 1.4v − 1.5xmv,

⎧⎨

⎩ (2)

where

C
0 D

α
t xm(t) �

1
Γ(1 − α)


t

0

_xm(τ)

(t − τ)α
dτ, 0 < α≤ 1, (3)

is α-order derivative of xm(t) in the sense of Caputo’s
definition given in [23], _xm(τ) denotes the first-order de-
rivative of xm(τ) with respect to τ, and Wα(xm) � x2

m −

xm − 1 is the memductance of α-order memristor Mα. *e
integral process in (3) is the memory process of the
memristor. In the circuits, the proposed fractional-order
memristor is marked as Figure 1(a).

2.2. .e Characteristics of the Fractional-Order Memristor.
Driven by a sinusoidal voltage source v(t) � sin(ωt), hys-
teresis loops generated in the current-voltage plane are
plotted numerically in Figure 2, where ω is the stimulus
frequency. One has the following:

(1) Under different stimulus frequencies or different
fractional orders, the hysteresis loops of the frac-
tional-order memristor are pinched at the origin.

(2) *e larger the area of the hysteresis loop, the stronger
the memory [31]. Let the order α� 0.98. Figure 2(a)
shows that the smaller the stimulus frequency ω, the
stronger the memory. As ω� 1 rad/s, there is another
intersection in the hysteresis loop besides the origin
and another area S∗ is displayed. Currently, there are
few reports on the new intersection which reflects the
nonlinearity of the memristor.

(3) As fixingω� 1 rad/s and decreasing α from 1 to 0, the
area of the hysteresis loop increases; i.e., the strength
of the memory increases, referring to Figure 2(b).
Simultaneously, the quadrants which the hysteresis
loops lie in change from II and IV to II, III, and IV.

2.3. Local Activeness of the Fractional-Order Memristor. A
component being capable of providing a power gain is called
an active component. If the component provides the power
gain within the local range of its variables, the component is
locally active.

Based on (2), as (1 −
�
5

√
)/2< xm < (1 +

�
5

√
)/2, one has

Wα(xm) � x2
m − xm − 1< 0, the power p � v · i � Wα(xm)·

v2 < 0, and the memristor can provide the power gain; as
xm < (1 −

�
5

√
)/2 or xm > (1 −

�
5

√
)/2, one has Wα(xm) �

x2
m − xm − 1> 0, the power p � v · i � Wα(xm) · v2 > 0, and
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the memristor cannot provide the power gain. So the mem-
ristor is locally active.

*e above statement implies that the local activeness of
the memristor can be decided by the sign of the mem-
ductance Wα(xm). Referring to Figure 2, the slope of the
hysteresis loop is thememductance. Obviously, the changing
of the quadrants of the hysteresis loops changes the sign of
the slope or the sign of the memductance Wα(xm). Re-
membering the characteristics shown in Figure 2(b), it is
easy to know that the fractional order has influences on the
activeness of the memristor.

3. Fractional-Order Memristor-Based System

Besides the memristor can be modeled by the fractional-
order derivative, the capacitor and the inductor can also be
modeled by the fractional-order derivative due to the
memory effect [12, 32]. With the fractional-order locally
active memristor, a fractional-order memristive circuit is
generalized from an integer-order memristive circuit [30], as
shown in Figure 1(b), which is modeled by Caputo’s frac-
tional-order derivative

C
0 D

α
t vC � − a x2

m − xm − 1( vC + iL ,

C
0 D

α
t iL � bvC,

C
0 D

α
t xm � 1.8xm − 3.9x3

m + 1.4vC − 1.5xmvC,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where 0< α≤ 1, a � 1/C> 0, b � 1/L> 0, and C, L, vC, and iL
are the capacitance, inductance, capacitor voltage, and in-
ductor current, respectively. Letting α� 1, model (4) is
changed into the integer-order model stated in [30].

Denoting x � vC, y� iL, and z� xm, (4) is converted into
the dimensionless form

C
0 D

α
t x � − a z2 − z − 1( x + y ,

C
0 D

α
t y � bx,

C
0 D

α
t z � 1.8z − 3.9z3 + 1.4x − 1.5zx.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

For any values of the parameters a and b, system (5) has
three equilibria: E1 � (0, 0, − 0.6794), E2 � (0, 0, 0), and
E3 � (0, 0, 0.6794). For simplicity, the three equilibria are
denoted uniformly by Ez0

, where Ez0
� (0, 0, z0). *us,

Ez0
� E1 as z0 � − 0.6794, Ez0

� E2 as z0 � 0, and Ez0
� E3 as

z0 � 0.6794.

Mα

i

v

(a)

Mα (x)

iMα

C

iCiL

L vC

(b)

Figure 1: (a) *e fractional-order memristor Mα; (b) the fractional-order memristive circuit.

S∗

v (t)

i (
t)

1.5

1

1

0.5

0.5

0

0

–0.5

–0.5

–1

–1
–1.5

ω = 1 rad/s ω = 5 rad/s

(a)

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
–1.5

–1

–0.5

0

0.5

1

1.5
I

III IV

II

v (t)

i (
t)

ω = 1 rad/s

α = 0.98

α = 0.8

α = 0.5

(b)

Figure 2: v(t) versus i(t) of the fractional-order memristor. (a) *e order α� 0.98 with two different frequencies; (b) the frequency
ω� 1 rad/s with three different fractional orders.
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3.1. .e Stability of the Equilibria. *e Jacobian matrix of
system (5) at Ez0

is

JE �

− a z2
0 − z0 − 1(  − a 0

b 0 0

1.4 − 1.5z0 0 1.8 − 11.7z2
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (6)

*e characteristic polynomial equation of system (5) at
Ez0

is yielded as

λ − 1.8 + 11.7z
2
0  λ2 + a z

2
0 − z0 − 1 λ + ab  � 0, (7)

which indicates that roots of (7) depend on the three
equilibria. *e roots of (7) are called the eigenvalues of
Jacobian matrix JE. *e following lemma is needed.

Lemma 1 [33]. .e fractional-order nonlinear system
C
0 D

α
t X � f(X), 0< α≤ 1, (8)

is asymptotically stable at the equilibrium E� (x0, y0, z0) if all
eigenvalues λ of Jacobian matrix JE satisfy the condition

|arg(λ)|>
απ
2

, (9)

where X � (x, y, z)T, f(X) � [f1(X), f2(X), f3(X)]T,
fi(X) � fi(x, y, z)(i � 1, 2, 3), and arg(λ) is the principal
argument of the eigenvalue λ.

Obviously, equation (7) has a real root λ1 � 1.8 − 11.7z2
0.

Considering the sign of λ1, two cases are discussed hereinafter.

Case 1. λ1 is positive
If λ1> 0, one has |z0|< 0.3922 and the equilibrium Ez0

is
unstable. Besides the positive root λ1, equation (7) has
another two roots:

λ2,3 �
− a z2

0 − z0 − 1(  ±
������������������

a2 z2
0 − z0 − 1( 

2
− 4ab



2
. (10)

It is easy to know that − 0.454< z2
0 − z0 − 1< − 1.2384 as

|z0|< 0.3922. Two cases are listed:

(1) λ2 and λ3 are the real roots and (z2
0 − z0 − 1)2 ≥ 4b/a

holds. Based on (10), one has λ1> 0, λ2> 0, and λ3> 0.
(2) λ2 and λ3 are the complex roots; i.e., (z2

0 − z0 − 1)2

< 4b/a holds.*e real parts of the conjugate complex
roots are Re(λ2,3) � − a(z2

0 − z0 − 1)/2> 0.

Case 2. λ1 is negative
As λ1 � 1.8 − 11.7z2

0 < 0, one has |z0|> 0.3922. Similar to
Case 1, two cases are stated as follows:

(1) λ2 and λ3 are the real roots.*en (z2
0 − z0 − 1)2 ≥ 4b/a

holds and

sgn λ2(  � sgn λ3(  � sgn − a z
2
0 − z0 − 1  , (11)

where sgn(·) is the symbolic function. Due to

g z0(  � z
2
0 − z0 − 1 � z0 −

1 −
�
5

√

2
  z0 −

1 +
�
5

√

2
 ,

(12)

one has

− a z
2
0 − z0 − 1 

< 0, z0 < − 0.618 or z0 > 1.618,

> 0, − 0.618< z0 < − 0.3299 or 0.3299< z0 < 1.618.
 (13)

where (1 −
�
5

√
)/2 ≈ − 0.618 and (1 +

�
5

√
)/2 ≈

1.618. *e inequalities − 0.618< z0< − 0.3299 and
z0>1.618 can be neglected because z0 of the three
equilibria is not in these regions. As z0< − 0.618, one has
λ2<0 and λ3<0. As 0.3229< z0<1.618, one has λ2>0
and λ3>0.

(2) λ2 and λ3 are the complex roots. *e inequality
(z2

0 − z0 − 1)2 < 4b/a holds. As z0< − 0.618, λ2 and λ3
are the conjugate complex roots with negative real
parts Re(λ2,3) � − a(z2

0 − z0 − 1)/2< 0. As 0.3229 <
z0 < 1.618, λ2 and λ3 are the conjugate complex roots

with positive real parts Re(λ2,3) � − a(z2
0 − z0 − 1)

/2> 0.

*e above discussion can be concluded in Tables 1 and 2.
Tables 1 and 2 show that E1 � (0, 0, − 0.6794) is stable and

E2 � (0, 0, 0) is unstable for any a> 0, b> 0, and any order
α ∈ (0, 1]. But for E3 � (0, 0, 0.6794), two cases are stated:

(1) if 1.4831≥ 4b/a, E3 is unstable for any order α be-
cause λ2> 0 and λ3> 0;

(2) if 1.4831< 4b/a, there are two conjugated complex
roots at E3 as

λ2,3 � Re λ2,3  ± jIm λ2,3  �
− a z2

0 − z0 − 1(  ± j

������������������

4ab − a2 z2
0 − z0 − 1( 

2


2
, (14)
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where j2 � − 1. If |arg(λ2,3)|> (απ)/2 holds, one has
�������������
4ab − 1.4831a2

√

1.2178a
> tan

απ
2

. (15)

By Lemma 1, E3 � (0, 0, 0.6794) is stable as�������������
4ab − 1.4831a2

√
/(1.2178a)> tan(απ/2) holds; E3 is un-

stable as
�������������
4ab − 1.4831a2

√
/(1.2178a)> tan(απ/2) does not

hold.
Based on the above discussion, the following theorem is

established.

Theorem 1. For system (5) (α ∈ (0, 1]), the stabilities of three
equilibria E1, E2, and E3 are as follows:

(1) Equilibrium E1 � (0, 0, − 0.6794) is stable for any a> 0,
b> 0 and any order α ∈ (0, 1];

(2) Equilibrium E2 � (0, 0, 0) is unstable for any a> 0,
b> 0 and any order α ∈ (0, 1];

(3) As 1.4831≥ 4b/a, E3 is unstable for any order
α ∈ (0, 1]; as 1.4831< 4b/a, E3 is stable if�������������
4ab − 1.4831a2

√
/(1.2178a)> tan(απ/2), and E3 is

unstable if
�������������
4ab − 1.4831a2

√
/(1.2178a)< tan(απ/2).

Remark 1. For a fractional-order system, at a parameter
ε� ε0, a pair of conjugated complex eigenvalues λ1,2 satisfy
|arg(λ1, 2)| � (απ)/2 and other eigenvalues are in stable
zones. While the parameter ε> ε0, |arg(λ1, 2)|< (απ)/2, Hopf
bifurcation is generated at ε� ε0 [34].

For system (5), based on Table 2, at E3 � (0, 0, 0.6794), as
1.4831< 4b/a holds, one has

(1) λ1< 0;
(2) |arg(λ2, 3)|> (απ)/2 as α< (2/π)arctan

(
�������������
4ab − 1.4831a2

√
/1.2178a);

(3) (arg(λ2, 3))< (απ)/2 as α> (2/π)arctan
(

�������������
4ab − 1.4831a2

√
/1.2178a). *is means that Hopf

bifurcation is generated as the order
α � (2/π)arctan(

�������������
4ab − 1.4831a2

√
/1.2178a) at the

equilibrium E3.

Remark 2. For simplicity, the eigenvalues (λ1, λ2, λ3) are
denoted as (c, σ + jω, σ − jω), where c, σ, and ω are all real

numbers. A saddle-focus point is called a saddle-focus point
of index 1 if c> 0 and σ < 0, and a saddle-focus point is called
a saddle-focus point of index 2 if c< 0 and σ > 0 [35]. As
pointed out in [35], the saddle-focus points of index 2 are
crucial to the generation of chaotic attractors. Usually, in
chaotic systems, scrolls are generated around the saddle-
focus points of index 2, and the saddle-focus points of index
1 are responsible only for connecting the scrolls.

3.2.Numerical Illustrations. For better comparisons with the
integer-order memristive circuit systems, in this section, the
parameter is chosen as a � 10/3 [30].

Case 1. a� 10/3, and b� 10.
In this case, a� 10/3 (C� 300mF) and b� 10 (L� 100

mH) satisfy 4b/a � 12> 1.4831. To make E3 stable, by
*eorem 1, the order α is satisfied as

α<
2
π

 arctan
�������������
4ab − 1.4831a2

√

1.2178a
 

�
2
π

 arctan

��������������������������

4 · (10/3) · 10 − 1.4831 · (10/3)2


1.2178 · (10/3)
⎛⎜⎜⎝ ⎞⎟⎟⎠

� 0.7713.

(16)

*en equilibrium E3 � (0, 0, 0.6794) is stable as the order
α< 0.7713, and E3 is unstable as the order α> 0.7713. By
Remark 1, at equilibrium E3, Hopf bifurcation is generated
as α� 0.7713.

At the equilibrium E2, the two complex eigenvalues are

λ2,3 �
− a z2

0 − z0 − 1(  ± j

������������������

4ab − a2 z2
0 − z0 − 1( 

2


2

�
5 ± 5

��
11

√
j

2
, j

2
� − 1 .

(17)

If tan(arg(λ2,3)) �
��
11

√
> tan(απ/2), one has α< 0.8136.

*is means that the two complex eigenvalues λ2,3 of the
equilibrium E2 lie in the stable zone. Due to λ1> 0 and
Remark 2, E2 is an unstable saddle-focus with index 1 and E3
is an unstable saddle-focus with index 2. While α> 0.8136,
the two complex eigenvalues λ2,3 of the equilibrium E2 lie in
the unstable zone, E2 is an unstable node-focus, and E3 is an
unstable saddle-focus with index 2. *e types of three
equilibria are listed in Table 3. One has the following:

(1) As 0< α< 0.7713, there are two steady states of E1
and E3.

(2) As 0.7713< α< 0.8136, there are two steady states of
E1 and the limit cycle bifurcated from unstable
saddle-focus E3.

(3) As 0.8136< α< 1, the stability of E1 is unchanged. E2
is changed from unstable saddle-focus into unstable
node-focus because the two complex roots λ2,3 of E2
enter into the unstable zone.

Table 1: *e eigenvalues as (z20 − z0 − 1)2 ≥ 4b/a.

z0 (− ∞, − 0.618) (− 0.3299, 0.3299) (0.3299, 1.618)
λ1 λ1< 0 λ1> 0 λ1< 0
λ2 λ2< 0 λ2> 0 λ2> 0
λ3 λ3< 0 λ3> 0 λ3> 0
Equilibrium E1 E2 E3

Table 2: *e eigenvalues as (z20 − z0 − 1)2 < 4b/a.

z0 (− ∞, − 0.618) (− 0.3299, 0.3299) (0.3299, 1.618)
λ1 λ1< 0 λ1> 0 λ1< 0
λ2 Re(λ2)< 0 Re(λ2)> 0 Re(λ2)> 0
λ3 Re(λ3)< 0 Re(λ3)> 0 Re(λ3)> 0
Equilibrium E1 E2 E3
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Remark 3. It is found that E3 is an unstable saddle-focus
with index 2 as the order α> 0.7713. Due to Remark 2, for
system (5), chaotic attractors may be generated as the order
α> 0.7713.

Fix the initial values (0.1, 0.1, 0.2). Figure 3(a) is the bi-
furcation diagram of the local maxima of the variable z about the
order α, which shows that Hopf bifurcation is generated at
α� 0.7713. As 0.7713<α<0.8136, system (5) displays a limit
cycle bifurcated from the equilibrium E3. As 0.8136<α<0.84,
the limit cycle induced by Hopf bifurcation disappears and the
phase portrait limits to the stable point E1. Increasing α from
0.84 to 1, the period-doubling bifurcation occurs in system (5).
Figure 3(b) is the first two Lyapunov exponents of system (5)
according to the MATLAB code of [36]. As α>0.97, the first
Lyapunov exponent LE1>0 and system (5) enters into the chaos.

Case 2. α� 0.99, and a� 10/3.
In this case, if the inequality 4b/a> 1.4831 holds, one has

b> 1.2359. Same as the integer-order case [30], the pa-
rameter L is set in [70mH; 100mH]; i.e., the parameter b is
in [10, 100/7]. If E3 is stable, by *eorem 1, the parameter b
should be satisfied as

b>
1.21782 · a · tan2(απ/2) + 1.4831a 

4

�
1.21782 · (10/3) · tan2(0.99π/2) + 1.4831(10/3) 

4

� 5009.2.

(18)

*is means that E3 is a saddle-focus with index 2 for any
b ∈ [10, 100/7] or any L ∈ [70mH, 100mH]. *us, chaotic
attractors may be generated at E3 as L increases from 70mH
to 100mH.

At the equilibrium E2, two complex eigenvalues are

λ2,3 �
− a z2

0 − z0 − 1(  ± j

������������������

4ab − a2 z2
0 − z0 − 1( 

2


2

�
(10/3) ± j

���������������

4(10/3)b − (10/3)2


2
.

(19)

If tan(arg(λ2,3)) �
���������
120b − 100

√
/10> tan(0.99π/2), one

has b> 3377.65 or L< 0.2961mH. *is means that two

complex eigenvalues λ2,3 of the equilibrium E2 lie in the
unstable zone as L ∈ [70mH, 100mH]. Due to λ1> 0, E2 is
an unstable node-focus which is that same as the former case
of 0.8136< α< 1.

*e bifurcation diagram of the variable z about the
parameter L is plotted numerically in Figure 3(c). *e first
two Lyapunov exponents are shown in Figure 3(d). It is
found that system (5) goes into chaos by the period-doubling
bifurcation. After system (5) enters into chaos, there sud-
denly appears several periodic windows (PWs) as L> 86mH.
Compared to the integer-order model in [30], the fractional-
order memristive system described by system (5) has more
periodic windows. *e minimum of the parameter L for
system (5) entering into chaos is larger than the minimum of
the parameter L shown in [30].

*erefore, the generated complicated dynamical be-
haviors of system (5) are related to the coexistence of the
stable point E1, the unstable node-focus E2, and the saddle-
focus E3.

3.3. Bistability Behaviors. Fixing the parameter values and
choosing different initial values, a nonlinear system shows
two steady states. *is behavior is called the bistability
behavior. *e bistability behavior reflects the sensitivity of
the system to its initial values. For different order α or
different inductance L, different bistability behaviors appear
in system (5), which is listed in Tables 4 and 5.

Bistability behaviors for different fractional orders are
plotted numerically in Figure 4. Figure 4(a) is two steady
states of the stable points E1 and E3, Figure 4(b) is two steady
states of the stable point E1 and period-2 cycle, Figure 4(c) is
two steady states of the stable point E1 and period-4 cycle,
and Figure 4(d) is two steady states of the stable point E1 and
chaotic attractor. Compared to the bistability of stable point
and chaotic attractor in the integer-order model, a con-
clusion that the fractional-order derivative can enrich the
bistability behaviors is drawn.

Furthermore, the attraction basins in the x(0) − z(0)

plane are used to validate the bistability behaviors of system
(5) for four different orders α, as shown in Figure 5, where
y(0) � 0.1.*e light blue, green, yellow, andmagenta regions
represent the initial value regions for generating period-2,
period-4, chaotic, and stable point behaviors, respectively.

3.4. Block Designs of System (5) in Simulink of MATLAB.
By utilizing Simulink of MATLAB, the fractional-order
system (5) can be implemented to confirm the above nu-
merical plots.

Figure 6 is the block diagrams in Simulink of MAT-
LAB. Figure 6(a) is the α-order differentiator block design.
*e top in Figure 6(a) is the masked block of the α-order
derivative and the bottom in Figure 6(a) is the filter in
fractional-order differentiator (here the Oustaloup re-
cursive filter is used). *e masking technique of
fo_diff.mdl is provided in [37]. Double clicking the block
of Fractional Der sα, the order α can be changed by the
parameter dialog box. Furthermore, if

Table 3: *e types of the equilibria.

α E1 E2 E3

(0, 0.7713) Stable Unstable saddle-
focus Stable

0.7713 Stable Unstable saddle-
focus

Hopf bifurcation
point

(0.7713, 0.8136) Stable Unstable saddle-
focus

Unstable saddle-
focus

0.8136 Stable Unstable point Unstable saddle-
focus

(0.8136, 1) Stable Unstable node-
focus

Unstable saddle-
focus
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C
0 D

α
t x(t) � f(t), 0< α< 1, (20)

one has [38]

C
0 D

1− α
t

C
0 D

α
t x(t)  �

dx(t)

dt
, (21)

or
dx(t)

dt
�

C
0 D

1− α
t f(t). (22)

*en in the block diagram of the fractional-order
memristor or in Figure 6(b), the α-order fractional-order
derivative of the state is obtained by an integrator.mdl and
the fo_diff.mdl of Fractional Der s(1− α).

*e input voltage in Figure 6(b) is v(t) � sin(ωt). Fixing
the order α� 0.98, the hysteresis loops of different input
frequency ω obtained in the scope (XY graph) are shown in
Figure 7(a). Fixing the input frequency ω� 1 rad/s, the
hysteresis loops of different order α obtained in the scope
(XY graph) are shown in Figure 7(b). Figure 7 plotted in
Simulink of MATALB is consistent with Figure 2.

*e block diagram of system (5) in Simulink of MAT-
LAB is designed in Figure 8. By using (22), the α-order
fractional-order derivative of the state is obtained by an
integrator.mdl and the fo_diff.mdl of Fractional Der s(1− α).
*e initial values of the states are set in three integrators.
Setting 1 − α� 0.25 in Figure 8, bistability behaviors of
α� 0.75 obtained in the scope (XZ graph) are shown in
Figure 9(a). Setting 1 − α� 0.01 in Figure 8, bistability be-
haviors of α� 0.99 obtained in the scope (XZ graph) are
shown in Figure 9(b).
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Figure 3: Numerical simulations of system (5), a� 10/3, b� 10, and the initial values (0.1, 0.1, 0.2). (a) Bifurcation diagram of the local
maxima of the variable z about the order α; (b) first two Lyapunov exponents of Case 1; (c) bifurcation diagram of the local maxima of the
variable z about the parameter L; (d) first two Lyapunov exponents of Case 2.

Table 4: Bistability in the case of a� 10/3 and b� 10.

α Two steady states
(0, 0.7713) Two stable points of E1 and E2
(0.7713, 0.84) Stable point E1 and limit cycle
(0.84, 0.97) Stable point E1 and limit cycle
(0.97, 1) Stable point E1 and chaotic attractor

Table 5: Bistability in the case of α� 0.99 and a� 10/3.

L mH Two steady states
(70, 86) Stable point E1 and limit cycle
(86, 100) Stable point E1 and chaotic attractor
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Figure 4: Bistability behaviors with different fractional orders. (a) α� 0.75, two sets of the initial values (0.1, 0.1, 0.2) and (0.1, 0.1, − 0.2);
(b) α� 0.96 and two sets of the initial values (4, 0.1, 4) and (− 2, 0.1, 1); (c) α� 0.97 and two sets of the initial values (4, 0.1, 4) and (− 2, 0.1, 1);
(d) α� 0.99 and two sets of the initial values (− 4, 0.1, 4) and (0, 0.1, − 1).
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Figure 5: Continued.
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Figure 5: Bistability behaviors demonstrated by the attraction basins in the x(0) − y(0) plane for four different fractional orders with
y(0) � 0.1. (a) Attraction basin for α� 0.96; (b) attraction basin for α� 0.97; (c) attraction basin for α� 0.98; (d) attraction basin for α� 0.99.
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Figure 6: Block diagrams in Simulink of MATLAB. (a) Differentiator block design4 of the order α; (b) block diagram of the fractional-order
memristor.
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different frequencies; (b) the frequency ω� 1 rad/s with three different fractional orders.
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To obtain the bistability behaviors of α� 0.96 and
α� 0.97 in Simulink of MATLAB, the values of (1 − α) in
Figure 8 are set at 1 − α� 0.04 and 1 − α� 0.03, which are
omitted here.

4. Local Activeness and Stability

A locally active kinetic equation can exhibit complex
dynamics such as limit cycles or chaos. *e passive (not
locally active) kinetic equation must converge to a unique
steady state [39]. Furthermore, the time t can be set to be
large when the steady states of the system are concerned.

As parameters a � 10/3 and b � 10, for the fractional-order
memristor in system (5) with the large time t, one has the
following.

Fix the initial values (0.1, 0.1, 0.2). As α� 0.75, the
memristor is active because the power p � W0.75(xm) · v2

keeps negative, which is shown in Figure 10(a); as α� 0.82,
the memristor is passive because the power p � W0.82(xm) ·

v2 keeps positive for time t> t0 (such as t0� 50), which is
shown in Figure 10(b). As mentioned before, system (5) with
α� 0.75 or α� 0.82 converges to stable points. As α� 0.9 or
α� 0.99, the memristor is locally active because the power
p � Wα(xm) · v2 changes between the positive and the
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Figure 8: *e block diagram of system (5) in Simulink of MATLAB.
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Figure 9: Bistability behaviors obtained in Simulink of MATLAB, the running time t� 100 s. (a) α� 0.75, two sets of the initial values (0.1,
0.1, 0.2) and (0.1, 0.1, − 0.2); (b) α� 0.99, two sets of the initial values (− 4, 0.1, 4) and (0, 0.1, − 1).
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negative, as shown in Figures 10(c) and 10(d). When the
locally active memristor is included in system (5), the limit
circle is generated as α� 0.9 and chaos is generated as α� 0.99.

It is found that the complex dynamics of the limit cycle
and chaos are not displayed in system (5) when thememristor
is active (α� 0.75) or thememristor is passive (α� 0.82), while
the complex dynamics of the limit cycle and the chaos are
generated when the memristor is locally active (α� 0.9 and
α� 0.99). As stated at the beginning of this section, complex
dynamics of limit cycle and chaos in system (5) are related to
the local activeness of the memristor.

5. Conclusions

In this paper, a chaotic system with a fractional-order locally
active memristor is discussed. *e fractional order in the
memristive system makes the equilibrium vary from un-
stable to stable, leading to the occurrence of Hopf bi-
furcation. Moreover, the fractional-order memristive system
enters into chaos via period-doubling bifurcation route and
triggers more periodic windows than the corresponding
integer-order system. Given the suitable parameters, say, a
and b, the fractional-order memristive system shows bist-
ability behaviors. For different fractional order and different
inductance, the fractional-order memristive system displays
different bistability behaviors. *e fractional order of the
system and the local activeness of the memristor are the

main reasons for the complicated dynamical behaviors.
Besides, the fractional-order memristive system is imple-
mented using the block diagram of Simulink of MATLAB
and its hardware implementation and corresponding ex-
periments will be our future works.
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Time delays and fractional order play a vital role in biological systems with memory. In this paper, we propose an epidemic model
for Zika virus infection using delay di�erential equations with fractional order. Multiple time delays are incorporated in the model
to consider the latency of the infection in a vector and the latency of the infection in the infected host. We investigate the necessary
and su�cient conditions for stability of the steady states and Hopf bifurcation with respect to three time delays τ1, τ2, and τ3.  e
model undergoes a Hopf bifurcation at the threshold parameters τ∗1 , τ

∗
2 , and τ

∗
3 . Some numerical simulations are given to show the

e�ectiveness of obtained results.  e numerical simulations con�rm that combination of fractional order and time delays in the
epidemic model e�ectively enriches the dynamics and strengthens the stability condition of the model.

1. Introduction

Zika infection is a mosquito-borne disease, transmitted to
humans through the bite of an infectedAedesmosquito. It was
�rst discovered in Uganda in 1947 in rhesus monkey. e �rst
human cases were reported in Nigeria in 1954. Zika was
thought to cause mild symptoms in humans, including mild
fever, skin rashes, conjunctivitis, muscle and joint pain, and
headache, which lasts for three to twelve days normally.
However, the World Health Organization (WHO) has con-
cluded that Zika virus infection during pregnancy is also
a cause of congenital brain abnormalities, including micro-
cephaly [1].Moreover, Zika virus is a trigger of Guillain–Barre
syndrome [2].  ere is no doubt that mathematical modeling
of Zika infection plays an important role in gaining un-
derstanding of transmission of disease and to predict the
behaviour of any outbreak [3, 4].

Recently, mathematical modeling of dynamics of in-
fectious diseases, using di�erential equations with memory
(time-delay terms or fractional orders), has attracted much
attention of many researchers (see, e.g., [5] and references
therein). Time delay in models of population dynamics and

in particular in macroscopic models of the immune response
are natural and common [6]. Naturally, time delay or
memory is an unavoidable factor in dynamics of most real-
life phenomena. Time delay has in¥uence on dynamical
behaviours of biological systems in various aspects.  ere-
fore, considering time delays in the investigation of bi-
ological systems is signi�cant in both theoretical and
practical point of views. In fact, when immune system works
against the non-self-cells, it may take some time (time lag) to
interact with the pathogen.  erefore, time delays cannot be
ignored in models for immune response. Accordingly, the
analysis of dynamical properties of system with time delays
is important (see [5, 7–12]). Dengue fever is analyzed in [13],
using a system of four nonlinear di�erential equations with
two time delays. In [12], the authors considered the vector-
borne epidemic model with time delay.  e authors in-
tensively discussed the impact of time delay in the host-to-
vector transmission term that can destabilize the system.
Periodic solutions can also be raised through Hopf
bifurcation.

In the existing literature, most of the biological problems
are studied through the integer-order mathematical modeling

Hindawi
Complexity
Volume 2019, Article ID 4178073, 20 pages
https://doi.org/10.1155/2019/4178073

mailto:frihan@uaeu.ac.ae
https://orcid.org/0000-0003-0809-2782
https://orcid.org/0000-0003-3855-5944
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/4178073


by using ordinary, partial, and delay differential equations
[9, 10, 14]. In the last few decades, fractional-order models
have been incorporated in several areas of science, engi-
neering, appliedmathematics, economics, and bioengineering
[15–20]. One advantage of the fractional-order differential
equation is that they provide a powerful instrument for in-
corporation of memory and hereditary properties of the
systems as opposed to the integer-order models, where such
effects are neglected or difficult to incorporate. In addition,
when fitting data, the fractional models have one more degree
of freedom than the integer-order model (see [21]). Based on
these advantages, some authors have developed interesting
applications to investigate the dynamics of such fractional-
order models with systems of memory [22–26]. In [5, 22], the
authors studied fractional-order cancer immune systems. In
[25], a fractional-order model for HIV with nonlinear in-
cidence has been considered and stability for various equi-
librium points has also been discussed. )e authors in [27]
investigated the dynamics of Ebola virus with time delay and
fractional order and reported that combination of time delay
and fractional order can effectively enrich the dynamics and
strengthen the stability condition of the infection model.
Analysis and dynamics of Zika transmission have been ex-
amined by many researchers (see, e.g., [3, 28, 29]. In [3],
a mathematical model for transmission of Zika virus has been
proposed with control measures of Zika virus. Stability
properties of the Zika infection model have been investigated
in [30]. )e authors in [31] have compared the Zika infection
model with dengue to show effect of the virus on population.
)e dynamical analysis of the SIS model is studied by con-
sidering bifurcation parameters in [32].)e authors [33] have
discussed absence and presence of diffusion in the Zika virus
disease model. )e stability analysis and Hopf bifurcation
point for various generalized epidemic models have been
discussed in the literature [33–35]. However, the dynamics of
fractional order with multiple time-delay models for Zika
virus infection has not been yet studied in mathematical
epidemiology.

Herein, we demonstrate that a nonlinear fractional-or-
der differential equations model, with multiple time delays,
can simulate the dynamics of Zika virus infection much
more than the classical epidemic models. )e application of
fractional derivatives is in several cases justified because they
provide a better model than integer-order derivative models
do [36, 37]. One important feature of fractional derivatives is
that they are nonlocal opposed to the local behaviour of
integer derivatives. In this way, the next state of a fractional
system depends not only upon its current state but also upon
all of its historical states [38–40].

Motivated by the above discussion, in this paper, we
investigate the dynamics of Zika virus infection with
fractional order and time delays. In Section 2, we formulate
the model and study the nonnegativity of the solutions. In
Section 3, we investigate the asymptotic stability analysis
and Hopf bifurcation properties by taking time-delay pa-
rameters as bifurcation parameters. Sufficient conditions
are derived to ensure the asymptotic stability and Hopf
bifurcation behaviours of the addressed model. Finally,
some numerical simulations are provided with various

fractional orders and time delays to demonstrate the ef-
fectiveness of our theoretical findings in Section 4. We then
conclude in Section 5.

Before we start analysis, we provide some useful
preliminaries.

1.1.Preliminaries. Herein, we provide some basic definitions
and properties of integration and differentiation with
fractional-order (free order) α (see [41]).

Definition 1. Let α ∈ (0,∞), the operator Iαa on L1[a, b] is
defined by

I
α
af(t) �

1
Γ(α)


t

a
(t − s)

α− 1
f(s)ds, f ∈ L1[a, b], t ∈ [a, b],

(1)

which is called the fractional integral (or Riemann–Liouville
integral) of order α, where I0a � Id is the identity operator.

Definition 2. Let α ∈ [0,∞) and n � [α], where
[x] � min k ∈ Z : k≥x{ }, and the operator RLDα

a is defined
for f ∈ L1[a, b] by

RLD
α
af(t) �

1
Γ(n − α)

d
dt

 

n


t

a
(t − s)

n− α− 1
f(s)ds, (2)

which is called the Riemann–Liouville fractional derivative
of order α.

Definition 3. Let α ∈ [0,∞) and f is such that In− α
a f(n) exists,

where n � [α], f ∈ An[a, b] (the set of all function
f : [a, b]⟶ R provided that f(n− 1) be absolutely contin-
uous), then we define the operator CDα

a by

CD
α
af(t) �

1
Γ(n − α)


t

a
(t − s)

n− α− 1
f

(n)
(s)ds, (3)

which exists for almost everywhere x ∈ [a, b]. )e operator
CDα

af(t) is called the Caputo fractional derivative of order α.
In particular, when 0< α≤ 1, we have

CD
α
af(t) �

1
Γ(1 − α)


t

a

f′(s)

(t − s)α
ds. (4)

Remark 1. Let β, c ∈ R+ and α ∈ (0, 1). )en,

(i) If Iβa : L1⟶ L1 and if f(t) ∈ L1, then
IβaIc

af(t) � Iβ+c
a f(t)

(ii) limβ⟶nIβaf(x) � In
af(t) uniformly on [a, b],

n � 1, 2, 3, . . ., where I1af(t) � 
t

a
f(s)ds

(iii) limβ⟶0I
β
af(t) � f(t) weakly

(iv) If f(t) is absolutely continuous on [a, b], then
limα⟶1D

α
af(t) � df(t)/dt

(v) )us, Dα
af(t) � (d/dt)I1− α

a f(t) (Riemann–
Liouville sense) and Dαf(t) � I1− α

a (d/dt)f(t)

(Caputo sense)
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Remark 2. We notice that the fractional derivatives involve
an integration and are nonlocal operators, which can be used
for modeling systems with memory.

We should mention here that Caputo’s definition of
fractional derivative is a modification of the Riemann–
Liouville definition and has the advantage of dealing with
initial value problems in a proper way.

2. Model Formulation

)e literature reveals that most mathematical modeling of
biological systems with memory is based either on delay
differential equations (DDEs) with integer-order or frac-
tional-order differential equations without a delay. However,
fractional-order calculus is more suitable, than integer-order
ones, in modeling biological systems with intrinsic memory
and long-range interactions such as epidemic evolution
systems [42]. Modeling of such systems by fractional-order
differential equations has more advantages than classical
integer-order mathematical modeling, in which the effects of
memory or long-range interactions are neglected. Indeed,
memory effects play an essential role in the spreading of
diseases. Including memory effects in the susceptible-in-
fected-recovered (SIR) epidemic models seems very ap-
propriate for such an investigation (see Remark 2). Herein,
we investigate the impact of combining both time delays and
fractional order in an epidemic model for Zika virus
infection.

)e underlying model is governed by a system of
fractional-order differential equations with multiple time
delays for Zika virus infection. )e model includes the
dynamics of susceptible individuals, HS(t), with Zika
symptoms and infected portion, HI(t), and recovered
portion, HR(t), individuals recovered from Zika, the sus-
ceptible mosquitoes, MS(t), in infected mosquitoes, MI(t).
)us, the total human population NH(t) � Hs(t) +

HI(t) + HR(t). )e overall vector (mosquito) population, at
time t, is Nm(t) � Ms(t) + MI(t). Assume that βh is the
transmission rate from humans to mosquitoes. βm is the
transmission rate of Zika from the vector (mosquitoes) to
humans. Natural death rate of host is denoted by dh. )e
recruitment rate into susceptible population is denoted by
λh. Natural death rate of vector is denoted by dm. η is the
recovery rate from treatment. λm is the recruitment rate into
susceptible mosquito population. Also, c is the average
infectious period for humans. We use time delays in the
model to consider the latency of the infection in a vector and
the latency of the infection in an infected host. In our model,
we consider time-delay τ1 to represent the transferring of the
infection from infected mosquitoes into suspected humans.
)e incubation period (time delay) τ2 is incorporated to
represent the time required for an individual/susceptible to
become infectious, after becoming infected. τ3 is the in-
cubation period of susceptible mosquitoes to become in-
fectious (see Figure 1). )e memory of the earlier times,
which are represented by time lags, could have less effect on
the present situation, as compared to more recent times.
However, it is expected that long-range memory,

represented by fractional order, effects decay in time more
slowly than an exponential decay but can typically behave
like a power-law damping function. )e model then takes
the following form:

D
α
HS(t) � λh − βhHS t − τ1( MI t − τ1( 

− βhHS t − τ2( HI t − τ2(  − dhHS,

D
α
HI(t) � βhHS t − τ1( MI t − τ1( 

+ βhHS t − τ2( HI t − τ2(  − dhHI − cHI,

D
α
HR(t) � cHI − dhHR + ηHI,

D
α
MS(t) � λm − βmMS t − τ3( HI t − τ3(  − dmMs,

D
α
MI(t) � βmMS t − τ3( HI t − τ3(  − dmMI.

(5)

)e initial conditions for system (5) should be provided
so that HR(0) � HR0

, HS(t) � ϕ1(t), HI(t) � ϕ2(t),
MS(t) � ϕ3(t), and MI(t) � ϕ4(t), when t ∈ [max − τi , 0]

for i � 1, 2, 3., time lag, τi ≥ 0.

Remark 3. )e fractional derivative α ∈ (0, 1] is defined by
Caputo sense (4), so that introducing a convolution integral
with a power-law memory kernel is useful to describe
memory effects in dynamical systems. )e decaying rate of
the memory kernel (a time correlation function) depends on
α. A lower value of α corresponds to more slowly decaying
time-correlation functions (long memory). )erefore, as
α⟶ 1, the influence of memory decreases.

2.1. Nonnegative Solution. Since model (5) monitors the
dynamics of human populations, therefore, all the param-
eters are assumed to be nonnegative. Furthermore, it can be
shown that all state variables of the model are nonnegative
and bounded for all time t≥ 0 (see [42]).

Lemma 1. 4e closed set Ω � (Hs, HI, HR, MS, MI) ∈ R5
+ :

HS + HI + HR ≤ (λh/dh), MS + MI ≤ (λm/dm)} is positively
invariant with respect to model (5).

Proof. In order to prove the nonnegativity of system (5), it is
assumed that there exists a t∗ > t0 such that HS(t∗) � 0 and
HS(t)< 0 for t ∈ (t∗, t1] where t1 is sufficiently close to t∗. If
HS(t) � 0,

D
α
HS t∗(  � λh. (6)

)us, one obtains DαHS(t)> 0 for all t ∈ [t∗, t1] and
DαHS > ϵHS, where ϵ> 0. Hence, one derives

HS(t)>HS t∗( Eα ϵ t − t∗( 
α

( , t ∈ t∗, t1 . (7)

Since HS(t∗) � 0, one gets HS(t)> 0, t ∈ [t∗, t1], which
contradicts the assumption. Hence, HS(t)> 0 for any t> t0.
In the same manner, we have HI(t), HR(t),

MS(t), andMI(t) are nonnegative.
To show that the system is bounded, we add the first

three equation of System (5), and we get
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D
α

HS + HI + HR(  � λh − dhHs − dhHI − dhHR + ηHI.

(8)

We know that all parameters value is positive, and one
can obtain

D
α

HS + HI + HR( ≤ λh − dh HS + HI + HR( ,

D
α
NH ≤ λh − dhNH,

(9)

where NH � HS(t) + HI(t) + HR(t), and solving this
equation, we have

NH(t)≤ −
λh

dh

+ NH(0) Eα − dht
α

(  +
λh

dh

. (10)

)e solution is given by NH(t) � NH(0)Eα,1
(− dhtα) + λhtαEα,α+1(− dhtα), where Eα,β is the Mittag-Leffler
function. Considering the fact that Mittag-Leffler function
has an asymptotic behaviour,

Eα,β(z)∼ − 

ω

K�1

z− K

Γ(β − αK)
+ O |z|

− 1− ω
 ,

|z|⟶∞,
απ
2
< |arg(z)|≤ π.

(11)

One can observe that NH(t)⟶ λh/dh as t⟶∞. )e
proof of the mosquitoes (vector) population is similar to
human (host) population, and we obtain NM(t)⟶ λm/dm.
)erefore, all solutions of the model with initial conditions
inΩ remain bounded in the positively invariant regionΩ for
all t ∈ [0,∞). )e region Ω is positively invariant with
respect to model (5). □

)e equilibrium points (steady states) are obtained by
setting DαHS � DαHI � DαHR � DαMS � DαMI � 0, in
model (5). )e model has two equilibrium points: (i)
disease-free equilibrium point E0 � (H0

S, H0
I , H0

R, M0
I , M0

R)

� ((λh/dh), 0, 0, (λm/dm), 0) and (ii) endemic steady state
E∗, which is

E
∗ λh

βh βmλmH∗I /dm βmH∗I + dm( (  + βhH∗I + dh

,

H
∗
I ,

H∗I (η + c)

dh

,
λm

βmH∗I + dm

,
βmλmH∗I

dm βmH∗I + dm( 
.

(12)

Here, H∗I is the positive root of the following equation:

βh

λh

βh βmλmH∗I /dm βmH∗I + dm( (  + βhH∗I + dh

βmλmH∗I
dm βmH∗I + dm( 

  +

βh

λh

βh βmλmH∗I /dm βmH∗I + dm( (  + βhH∗I + dh

H
∗
I  − dhH

∗
I − cH

∗
I � 0.

(13)

Human

Mosquitoes

λh

λm

γβhHSHI

βhHSMI βmMSHI

dh

dmdm

dhdh

HS HI

MI MS

HR

η

Figure 1: Transmission and dynamics of Zika virus infection between the host (human) and the vector (mosquitoes).
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3. Stability and Bifurcation Analysis

To study the stability of model (5), suppose
E∗(H∗S , H∗I , H∗R, M∗S , M∗I ) is the steady state of the linearized
system:

D
α
HS(t) � − βhH

∗
S MI t − τ1(  − βhM

∗
I HS t − τ1(  − βhH

∗
S HI t − τ2(  − βhH

∗
I HS t − τ2(  − dhHS,

D
α
HI(t) � βhH

∗
S MI t − τ1(  + βhM

∗
I HS t − τ1(  + βhH

∗
S HI t − τ2(  + βhH

∗
I HS t − τ2(  − dhHI − cHI,

D
α
HR(t) � cHI + ηHI − dhHR,

D
α
MS(t) � − βmM

∗
S HI t − τ3(  − βmH

∗
I MS t − τ3(  − dmMS,

D
α
MI(t) � βmM

∗
S HI t − τ3(  + βmH

∗
I MS t − τ3(  − dmMI.

(14)

Taking Laplace transform [43] on both sides of the
linearized system (14), we obtain

s
α
X1(s) � s

α− 1φ1(0) + βhH
∗
S e

− sτ1 − X5(s) − 
0

− τ1
e

− stφ5(t)dt 

+ βhM
∗
I e

− sτ1 − X1(s) − 
0

− τ1
e

− stφ1(t)dt  + βhH
∗
S e

− sτ2 − X2(s) − 
0

− τ2
e

− stφ2(t)dt 

+ βhH
∗
I e

− sτ2 − X1(s) − 
0

− τ2
e

− stφ1(t)dt  − dhX1(s),

s
α
X2(s) � s

α− 1φ2(0) + βhH
∗
S e

− sτ1 X5(s) + 
0

− τ1
e

− stφ5(t)dt 

+ βhM
∗
I e

− sτ1 X1(s) + 
0

− τ1
e

− stφ1(t)dt  + βhH
∗
S e

− sτ2 X2(s) + 
0

− τ2
e

− stφ2(t)dt 

+ βhH
∗
I e

− sτ2 X1(s) + 
0

− τ2
e

− stφ1(t)dt  − dhX2(s) − cX2(s),

s
α
X3(s) � s

α− 1φ3(0) + cX2(s) + ηX2(s) − dhX3(s),

s
α
X4(s) � s

α− 1φ4(0) + βmM
∗
S e

− sτ3 − X2(s) − 
0

− τ3
e

− stφ2(t)dt 

+ βmH
∗
I e

− sτ3 − X4(s) − 
0

− τ3
e

− stφ4(t)dt  − dmX4(s),

s
α
X5(s) � s

α− 1φ5(0) + βmM
∗
S e

− sτ3 X2(s) + 
0

− τ3
e

− stφ2(t)dt 

+ βmH
∗
I e

− sτ3 X4(s) + 
0

− τ3
e

− stφ4(t)dt  − dmX5(s),

(15)

where X1(s), X2(s), X3(s), X4(s), and X5(s) are Laplace
transforms of HS, HI, HR, MS, and MI, respectively, with
X1(s) � L HS(t) , X2(s) � L HI(t) , X3(s) � L HR(t) ,
X4(s) � L MS(t) , and X5(s) � L MI(t) . )en, (15) can
be written in the following matrix form as

Δ(s)

X1(s)

X2(s)

X3(s)

X4(s)

X5(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

k1(s)

k2(s)

k3(s)

k4(s)

k5(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)
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in which

Δ(s) �

sα + a1e
− sτ1 + a2e

− sτ2 + a3 a4e
− sτ2 0 0 a4e

− sτ1

− a1e
− sτ1 − a2e

− sτ2 sα − a4e
− sτ2 + a5 0 0 − a4e

− sτ1

0 a6 sα + a3 0 0

0 a7e
− sτ3 0 sα + a8e

− sτ3 + a9 0

0 − a7e
− sτ3 0 − a8e

− sτ3 sα + a9

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

k1(s) � s
α− 1φ1(0) − βhe

− sτ1H
∗
S 

0

− τ1
e

− stφ5(t)dt − βhe
− sτ1M

∗
I 

0

− τ1
e

− stφ1(t)dt

− βhe
− sτ2H
∗
S 

0

− τ2
e

− stφ2(t)dt − βhe
− sτ2H
∗
I 

0

− τ2
e

− stφ1(t)dt,

k2(s) � s
α− 1φ2(0) + βhe

− sτ1H
∗
S 

0

− τ1
e

− stφ5(t)dt + βhe
− sτ1M

∗
I 

0

− τ1
e

− stφ1(t)dt

+ βhe
− sτ2H
∗
S 

0

− τ2
e

− stφ2(t)dt + βhe
− sτ2H
∗
I 

0

− τ2
e

− stφ1(t)dt,

k3(s) � s
α− 1φ3(0),

k4(s) � s
α− 1φ4(0) − βmM

∗
S e

− sτ3 
0

− τ3
e

− stφ2(t)dt − βme
− sτ3H
∗
I 

0

− τ3
e

− sτ3φ4(t)dt,

k5(s) � s
α− 1φ5(0) + βmM

∗
S e

− sτ3 
0

− τ3
e

− stφ2(t)dt + βme
− sτ3H
∗
I 

0

− τ3
e

− sτ3φ4(t)dt,

(17)

where a1 � βhM∗I , a2 � βhH∗I , a3 � dh, a4 � βhH∗S , a5 � dh+

c, a6 � − η − c, a7 � βmM∗S , a8 � βmH∗I , and a9 � dm and
Δ(s) is considered as the characteristic matrix of system (5)
)e characteristic polynomial is then

P(s) � P1(s) + P2(s)e
− sτ1 + P3(s)e

− sτ2 + P4(s)e
− sτ3

+ P5(s)e
− 2sτ1 + P6(s)e

− 2sτ2

+ P7(s)e
− s τ1+τ2( ) + P8(s)e

− s τ2+τ3( )

+ P9(s)e
− s τ1+τ3( ) + P10(s)e

− 2sτ1− sτ3

+ P11(s)e
− 2sτ2− sτ3 + P12(s)e

− s τ1+τ2+τ3( ).

(18)

)e coefficients Pi(s), i � 1, . . . , 12, are estimated by
Mathematica and given in Appendix.

Case 1. τ1 > 0, τ2 � 0, and τ3 � 0.

When τ1 > 0, τ2 � 0, and τ3 � 0, the characteristic
equation (18) becomes

P1(s) + P2(s)e
− sτ1 + P3(s)e

− 2sτ1 � 0, (19)

where

P1(s) � P1(s) + P3(s) + P4(s) + P6(s) + P8(s) + P11(s)

� s
5α

+ D1s
4α

+ D2s
3α

+ D3s
2α

+ D4s
α

+ D5,

P2(s) � P2(s) + P7(s) + P9(s) + P12(s)

� G1s
4α

+ G2s
3α

+ G3s
2α

+ G4s
α

+ G5,

P3(s) � P5(s) + P10(s) � H1s
3α

+ H2s
2α

+ H3s
α

+ H4.

(20)

Now, we prove that the characteristic equation (19) has
no pure imaginary roots for any τ1 > 0. Assume that char-
acteristic equation (19) has pure imaginary root, and let it be
s � iξ � ξ(cos(π/2) + i sin(π/2)), ξ > 0. If we multiply esτ1 on
both sides of equation (19), we get

P1(s)e
sτ1 + P2(s) + P3(s)e

− sτ1 � 0. (21)

Now, we substitute the expression of s into (21) to have

A1 + iB1( e
sτ1 + A2 + iB2 + A3 + iB3( e

− sτ1 � 0. (22)

)e coefficients A1,A2, andA3 and B1,B2, andB3
are real and imaginary parts of P1(s),P2(s), and P3(s),
respectively, so that

6 Complexity



A1 � ξ5α cos
5απ
2

+ D1ξ
4α cos

4απ
2

+ D2ξ
3α cos

3απ
2

+ D3ξ
2α cos

2απ
2

+ D4ξ
α cos

απ
2

+ D5,

B1 � ξ5α sin
5απ
2

+ D1ξ
4α sin

4απ
2

+ D2ξ
3α sin

3απ
2

+ D3ξ
2α sin

2απ
2

+ D4ξ
α sin

απ
2

,

A2 � G1ξ
4α cos

4απ
2

+ G2ξ
3α cos

3απ
2

+ G3ξ
2α cos

2απ
2

+ G4ξ
α cos

απ
2

+ G5,

B2 � G1ξ
4α sin

4απ
2

+ G2ξ
3α sin

3απ
2

+ G3ξ
2α sin

2απ
2

+ G4ξ
α sin

απ
2

,

A3 � H1ξ
3α cos

3απ
2

+ H2ξ
2α cos

2απ
2

+ H3ξ
α cos

απ
2

+ H4,

B3 � H1ξ
3α sin

3απ
2

+ H2ξ
2α sin

2απ
2

+ H3ξ
α sin

απ
2

.

(23)

Separating real and imaginary parts yields

A1 cos ξτ1 − B1 sin ξτ1 � − A3 cos ξτ1 + B3 sin ξτ1 + A2( ,

A1 sin ξτ1 − B1 cos ξτ1 � − B3 cos ξτ1 − A3 sin ξτ1 + B2( .

(24)

It follows from (14) that

A
2
1 + B

2
1 − A

2
2 − B

2
2 − A

2
3 − B

2
3 � 2 B3 A2 sin ξτ1(

+ B2 cos ξτ1 + A3 A2 cos ξτ1 − B2 sin ξτ1( .

(25)

Using the fact that cos2 θ + sin2 θ � 1, we have
sin ξτ1 �

����������
1 − cos2 ξτ1


, and then (25) can be written in the

following form:

A
2
1 + B

2
1 − A

2
2 − B

2
2 − A

2
3 − B

2
3 − 2 B2B3 + A2A3( cos ξτ1 

2

� 2
����������

1 − cos2 ξτ1


B3A2 − A3B2(  
2
.

(26)

It can be concluded from (26) that

Q1cos
2 ξτ + Q2 cos ξτ + Q3 � 0, (27)

where

Q1 � 4A2
2A

2
3 + 4A2

3B
2
2 + 4A2

2B
2
3 + 4B2

2B
2
3,

Q2 � 4 B2B3 + A2A3(  − A
2
1 − B

2
1 + A

2
2 + B

2
2 + A

2
3 + B

2
3 ,

Q3 � A
2
1 − A2 − B3( 

2
− A3 − B1 + B2(  A3 + B2 + B1(  

· A
2
1 − A2 + B3( 

2
− A3 − B1 − B2(  A3 + B1(  − B2 .

(28)

)e quadratic equation (27) has roots, so we can obtain
the expression of cos ξτ1 and denote cos ξτ1 � f1(ξ), where
f1(ξ) is a function of ξ.

Substituting the expression of cos ξτ1 �

����������

1 − sin2 ξτ1


into (27), we can get expression of sin ξτ1. Assume that
sin ξτ2 � f2(ξ). Moreover, we have f2

1(ξ) + f2
2(ξ) � 1.

)us, it follows from cos ξτ1 � f1(ξ) that

τ1 �
1
ξ

arccos f1(ξ)(  + 2kπ , k � 0, 1, 2, . . . . (29)

We suppose that f2
1(ξ) + f2

2(ξ) � 1 has at least one
positive root, and thus, the bifurcation point is defined as

τ∗1 � min τ(k)
1 , k � 0, 1, 2, . . . . (30)

Now, differentiating equation (21) with respect to τ1, we
obtain

P1′(s)e
sτ1 ds

dτ1
+ P1e

sτ1 τ1
ds

dτ1
+ s  + P2′(s)

ds

dτ1

+ P3′(s)e
− sτ1 ds

dτ1
+ P3e

− sτ1 − τ1
ds

dτ1
− s  � 0,

(31)

where P1′(s),P2′(s), and P3′(s) are derivatives of
P1(s),P2(s), and P3(s), respectively. It follows that

ds

dτ1
�

− sP1(s)esτ1 + sP3(s)e− sτ1

P1′(s)esτ1 + τ1P1(s)esτ1 + P2′(s) + P3′(s)e− sτ1 − τ1P3(s)e− sτ1
�

M(s)

N(s)
. (32)

From (32), by some computation, we deduce that

Re
ds

dτ1
 

τ1�τ∗1 ,ξ�ξ0

�
M1N1 + M2N2

N2
1 + N2

2
, (33)

where M1, N1 and M2, N2 are the real and imaginary parts
of M(s), N(s). Also, ξ0 stands for the critical value and τ∗1
denotes the bifurcation point. Here,

Complexity 7



M1 � A1ξ0 sin ξ0τ
∗
1 + B1ξ0 cos ξ0τ

∗
1 + A3ξ0 sin ξ0τ

∗
1 − B3ξ0 sin ξ0τ

∗
1 ,

M2 � − A1ξ0 cos ξ0τ
∗
1 + B1ξ0 sin ξ0τ

∗
1 + ξ0A3 cos ξ0τ

∗
1 − B3ξ0 cos ξ0τ

∗
1 ,

N1 � A
∗
1 cos ξ0τ

∗
1 − B

∗
1 sin ξ0τ

∗
1 + τ∗1A1 cos ξ0τ

∗
1 − τ∗1B1 sin ξ0τ

∗
1 + A

∗
2 + A

∗
3 cos ξ0τ

∗
1 + B
∗
3 sin ξ0τ

∗
1

− τ∗1A3 cos ξ0τ
∗
1 − τ∗1B3 sin ξ0τ

∗
1 ,

N2 � A
∗
1 sin ξ0τ

∗
1 + B

∗
1 cos ξ0τ

∗
1 + τ∗1A1 sin ξ0τ

∗
1 + τ∗1B1 cos ξ0τ

∗
1 + B

∗
2 − A

∗
3 sin ξ0τ

∗
1 + B
∗
3 cos ξ0τ

∗
1

+ τ∗1A3 sin ξ0τ
∗
1 − τ∗1B3 cos ξ0τ

∗
1 ,

A
∗
1 � 5αξ5α− 1

0
cos(5α − 1)π

2
+ 4αD1ξ

4α− 1
0

cos(4α − 1)π
2

+ 3αD2ξ
3α− 1
0

cos(3α − 1)π
2

+ 2αD3ξ
2α− 1
0

cos(2α − 1)π
2

+ αD4ξ
α− 1
0

cos(α − 1)π
2

,

B
∗
1 � 5αξ5α− 1

0
sin(5α − 1)π

2
+ 4αD1ξ

4α− 1
0

sin(4α − 1)π
2

+ 3αD2ξ
3α− 1
0

sin(3α − 1)π
2

+ 2αD3ξ
2α− 1
0

sin(2α − 1)π
2

+ αD4ξ
α− 1
0

sin(α − 1)π
2

,

A
∗
2 � 4αG1ξ

4α− 1
0

cos(4α − 1)π
2

+ 3αG2ξ
3α− 1
0

cos(3α − 1)π
2

+ 2αG3ξ
2α− 1
0

cos(2α − 1)π
2

+ αG4ξ
α− 1
0

cos(α − 1)π
2

,

B
∗
2 � 4αG1ξ

4α− 1
0

sin(4α − 1)π
2

+ 3αG2ξ
3α− 1
0

sin(3α − 1)π
2

+ 2αG3ξ
2α− 1
0

sin(2α − 1)π
2

+ αG4ξ
α− 1
0

sin(α − 1)π
2

,

A
∗
3 � 3αH1ξ

3α− 1
0

cos(3α − 1)π
2

+ 2αH2ξ
2α− 1
0

cos(2α − 1)π
2

+ αH3ξ
α− 1
0

cos(α − 1)π
2

,

B
∗
3 � 3αH1ξ

3α− 1
0

sin(3α − 1)π
2

+ 2αH2ξ
2α− 1
0

sin(2α − 1)π
2

+ αH3ξ
α− 1
0

sin(α − 1)π
2

.

(34)

Case 2. τ1 � 0, τ2 > 0, and τ3 � 0.

When τ1 � 0, τ2 > 0, τ3 � 0, the characteristic equation
(18) becomes

P4(s) + P5(s)e
− sτ2 + P6(s)e

− 2sτ2 � 0, (35)

where

P4(s) � P1(s) + P2(s) + P4(s) + P5(s) + P9(s)

+ P10(s) � s
5α

+ J1s
4α

+ J2s
3α

+ J3s
2α

+ J4s
α

+ J5,

P5(s) � P3(s) + P7(s) + P8(s) + P12(s) � L1s
4α

+ L2s
3α

+ L3s
2α

+ L4s
α

+ L5,

P6(s) � P6(s) + P11(s) � R1s
3α

+ R2s
2α

+ R3s
α

+ R4.

(36)

Now, we prove that the characteristic equation (35) has
no pure imaginary roots for any τ2 > 0. Assume that char-
acteristic equation (35) has pure imaginary root, and let it be
s � iξ � ξ(cos(π/2) + i sin(π/2)), ξ > 0. Now, multiplying
esτ2 on both sides of equation (35), we get

P4(s)e
sτ2 + P5(s) + P6(s)e

− sτ2 � 0. (37)

Substitute the expression of s into (37) to have

A4 + iB4( e
sτ2 + A5 + iB5 + A6 + iB6( e

− sτ2 � 0, (38)

where A4,A5,A6 and B4,B5,B6 are real and imaginary
parts of P4(s),P5(s), and P6(s), respectively. Here,

8 Complexity



A4 � ξ5α cos
5απ
2

+ J1ξ
4α cos

4απ
2

+ J2ξ
3α cos

3απ
2

+ J3ξ
2α cos

2απ
2

+ J4ξ
α cos

απ
2

+ J5,

B4 � ξ5α sin
5απ
2

+ J1ξ
4α sin

4απ
2

+ J2ξ
3α sin

3απ
2

+ J3ξ
2α sin

2απ
2

+ J4ξ
α sin

απ
2

,

A5 � L1ξ
4α cos

4απ
2

+ L2ξ
3α cos

3απ
2

+ L3ξ
2α cos

2απ
2

+ L4ξ
α cos

απ
2

+ L5,

B5 � L1ξ
4α sin

4απ
2

+ L2ξ
3α sin

3απ
2

+ L3ξ
2α sin

2απ
2

+ L4ξ
α sin

απ
2

,

A6 � R1ξ
3α cos

3απ
2

+ R2ξ
2α cos

2απ
2

+ R3ξ
α cos

απ
2

+ R4,

B6 � R1ξ
3α sin

3απ
2

+ R2ξ
2α sin

2απ
2

+ R3ξ
α sin

απ
2

.

(39)

Separating real and imaginary parts yields

A4 cos ξτ2 − B4 sin ξτ2 � − A6 cos ξτ2 + B6 sin ξτ2 + A5( ,

A4 sin ξτ2 − B4 cos ξτ2 � − B6 cos ξτ2 − A6 sin ξτ2 + B5( .

(40)

It follows from (40) that

A
2
4 + B

2
4 − A

2
5 − B

2
5 − A

2
6 − B

2
6 � 2 B6 A5 sin ξτ2(

+ B5 cos ξτ2 + A6 A5 cos ξτ2 − B5 sin ξτ2( .

(41)

We know that cos2 θ + sin2 θ � 1; by using it, we have
sin ξτ2 �

����������
1 − cos2 ξτ2


, and then (41) can be written in the

following form:

A
2
4 + B

2
4 − A

2
5 − B

2
5 − A

2
6 − B

2
6

− 2 B5B6 + A5A6( cos ξτ2
2

� 2
����������

1 − cos2 ξτ2


B6A5 − A6B5(  
2
.

(42)

It can be concluded from (42) that

Q4cos
2 ξτ + Q5 cos ξτ + Q6 � 0, (43)

where

Q4 � 4A2
5A

2
6 + 4A2

6B
2
5 + 4A2

5B
2
6 + 4B2

5B
2
6,

Q5 � 4 B5B6 + A5A6(  − A
2
4 − B

2
4 + A

2
5 + B

2
5 + A

2
6 + B

2
6 ,

Q6 � A
2
4 − A5 − B6( 

2
− A6 − B4 + B5(  A6 + B5 + B4(  

· A
2
4 − A5 + B6( 

2
− A6 − B4 − B5(  A6 + B4(  − B5 .

(44)

As we know, the quadratic equation (43) has roots, we
can obtain the expression of cos ξτ2 and denote
cos ξτ2 � f1(ξ), where f1(ξ) is a function of ξ.

Substituting the expression of cos ξτ2 �

����������

1 − sin2 ξτ2


into (43), we can get expression of sin ξτ2. Let us denote
sin ξτ2 � f2(ξ), where f2(ξ) is a function with respect to ξ.
Moreover, f2

1(ξ) + f2
2(ξ) � 1.)us, it follows from cos ξτ2 �

f1(ξ) that

τ2 �
1
ξ

arccos f1(ξ)(  + 2kπ , k � 0, 1, 2, . . . . (45)

Clearly, f2
1(ξ) + f2

2(ξ) � 1 has at least one positive root.
)e bifurcation point is defined as

τ∗2 � min τ(k)
2 , k � 0, 1, 2, . . . . (46)

We obtain the transversality condition of the occurrence
for Hopf bifurcation at τ2 � τ∗2 .

Differentiating equation (37) with respect to τ2 yields

P4′(s)e
sτ2 ds

dτ2
+ P4(s)e

sτ2 τ2
ds

dτ2
+ s  + P5′(s)

ds

dτ2

+ P6′(s)e
− sτ2 ds

dτ2
+ P6(s)e

− sτ2 − τ2
ds

dτ2
− s  � 0,

(47)

where P4′(s),P5′(s), and P6′(s) are derivatives of
P4(s),P5(s), and P6(s), respectively. It follows that

ds

dτ2
�

− sP4(s)esτ2 + sP6(s)e− sτ2

P4′(s)esτ2 + τ2P4(s)esτ2 + P5′(s) + P6′(s)e− sτ2 − τ2P6(s)e− sτ1
�
M(s)

N(s)
. (48)

From (48), by some computation, we deduce that

Re
ds

dτ2
 

τ2�τ∗2 ,ξ�ξ0

�
M1N1 + M2N2

N2
1 + N2

2
, (49)

whereM1,N1 andM2,N2 are the real and imaginary parts
of M(s),N(s). Also ξ0 stands for the critical value and τ∗2
denotes bifurcation point. Here,

Complexity 9



M1 � A4ξ0 sin ξ0τ
∗
2 + B4ξ0 cos ξ0τ

∗
2 + A6ξ0 sin ξ0τ

∗
2 − A6ξ0 sin ξ0τ

∗
2 ,

M2 � − A4ξ0 cos ξ0τ
∗
2 + B4ξ0 sin ξ0τ

∗
2 + ξ0A6 cos ξ0τ

∗
2 − B6ξ0 cos ξ0τ

∗
2 ,

N1 � A
∗
4 cos ξ0τ

∗
2 − B

∗
2 sin ξ0τ

∗
2 + τ∗2A4 cos ξ0τ

∗
2 − τ∗2B4 sin ξ0τ

∗
2 + A

∗
5 + A

∗
6 cos ξ0τ

∗
1 + B

∗
6 sin ξ0τ

∗
2

− τ∗2A6 cos ξ0τ
∗
2 − τ∗2B6 sin ξ0τ

∗
2 ,

N2 � A
∗
4 sin ξ0τ

∗
2 + B

∗
4 cos ξ0τ

∗
2 + τ∗2A4 sin ξ0τ

∗
2 + τ∗2B4 cos ξ0τ

∗
2 + B

∗
5 − A

∗
6 sin ξ0τ

∗
2 + B

∗
6 cos ξ0τ

∗
2

+ τ∗2A6 sin ξ0τ
∗
2 − τ∗2B6 cos ξ0τ

∗
2 ,

A
∗
4 � 5αξ5α− 1

0
cos(5α − 1)π

2
+ 4αJ1ξ

4α− 1
0

cos(4α − 1)π
2

+ 3αJ2ξ
3α− 1
0

cos(3α − 1)π
2

+ 2αJ3ξ
2α− 1
0

cos(2α − 1)π
2

+ αJ4ξ
α− 1
0

cos(α − 1)π
2

,

B
∗
4 � 5αξ5α− 1

0
sin(5α − 1)π

2
+ 4αJ1ξ

4α− 1
0

sin(4α − 1)π
2

+ 3αJ2ξ
3α− 1
0

sin(3α − 1)π
2

+ 2αJ3ξ
2α− 1
0

sin(2α − 1)π
2

+ αJ4ξ
α− 1
0

sin(α − 1)π
2

,

A
∗
5 � 4αL1ξ

4α− 1
0

cos(4α − 1)π
2

+ 3αL2ξ
3α− 1
0

cos(3α − 1)π
2

+ 2αL3ξ
2α− 1
0

cos(2α − 1)π
2

+ αL4ξ
α− 1
0

cos(α − 1)π
2

,

B
∗
5 � 4αL1ξ

4α− 1
0

sin(4α − 1)π
2

+ 3αL2ξ
3α− 1
0

sin(3α − 1)π
2

+ 2αL3ξ
2α− 1
0

sin(2α − 1)π
2

+ αL4ξ
α− 1
0

sin(α − 1)π
2

,

A
∗
6 � 3αR1ξ

3α− 1
0

cos(3α − 1)π
2

+ 2αR2ξ
2α− 1
0

cos(2α − 1)π
2

+ αR3ξ
α− 1
0

cos(α − 1)π
2

,

B
∗
6 � 3αR1ξ

3α− 1
0

sin(3α − 1)π
2

+ 2αR2ξ
2α− 1
0

sin(2α − 1)π
2

+ αR3ξ
α− 1
0

sin(α − 1)π
2

.

(50)

Case 3. τ1 � 0, τ2 � 0, and τ3 > 0.

When τ1 � 0, τ2 � 0, and τ3 > 0, the characteristic
equation (18) becomes

P7(s) + P8(s)e
− sτ3 � 0, (51)

where
P7(s) � P1(s) + P2(s) + P3(s) + P5(s) + P6(s) + P7(s)

� s
5α

+ U1s
4α

+ U2s
3α

+ U3s
2α

+ U4s
α

+ U5,

P8(s) � P4(s) + P8(s) + P9(s) + P10(s) + P11(s) + P12(s)

� V1s
4α

+ V2s
3α

+ V3s
2α

+ V4s
α

+ V5.

(52)

Again, we prove that the characteristic equation (51)
has no pure imaginary roots for any τ2 > 0. Here, we
assume that characteristic equation (51) has pure imag-
inary root, let it be s � iξ � ξ(cos(π/2) + i sin(π/2)), ξ > 0.

Now, we substitute the expression of s into (51), and we
have

A7 + iB7 + A8 + iB8( e
− sτ3 � 0, (53)

where A7,A8 and B7,B8 are real and imaginary parts of
P7(s) and P8(s), respectively. Here,
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A7 � ξ5α cos
5απ
2

+ U1ξ
4α cos

4απ
2

+ U2ξ
3α cos

3απ
2

+ U3ξ
2α cos

2απ
2

+ U4ξ
α cos

απ
2

+ U5,

B7 � ξ5α sin
5απ
2

+ U1ξ
4α sin

4απ
2

+ U2ξ
3α sin

3απ
2

+ U3ξ
2α sin

2απ
2

+ U4ξ
α sin

απ
2

,

A5 � V1ξ
4α cos

4απ
2

+ V2ξ
3α cos

3απ
2

+ V3ξ
2α cos

2απ
2

+ V4ξ
α cos

απ
2

+ V5,

B5 � V1ξ
4α sin

4απ
2

+ V2ξ
3α sin

3απ
2

+ V3ξ
2α sin

2απ
2

+ V4ξ
α sin

απ
2

.

(54)

Separation of real and imaginary parts yields

A8 cos ξτ3 + B8 sin ξτ3 � − A7,

− A8 sin ξτ3 + B8 cos ξτ3 � − B7.
(55)

From (14), we have

cos ξτ3 �
− A7A8 − B7B8

A2
8 + B2

8
� f1(ξ),

sin ξτ3 �
B7A8 − A7B8

A2
8 + B2

8
� f2(ξ).

(56)

It is clear that cos2 θ + sin2 θ � 1; from (56),

f1(ξ) 
2

+ f2(ξ) 
2

� 1. (57)

Hence, it follows from cos ξτ3 � f1(ξ) that

τ3 �
1
ξ

arccos f1(ξ)  + 2kπ , k � 0, 1, 2, . . . . (58)

We suppose that (57) have at least one positive root. )e
bifurcation point is defined as

τ∗3 � min τ(k)
3 , k � 0, 1, 2, . . . . (59)

We obtain the transversality condition of the occurrence
for Hopf bifurcation at τ3 � τ∗3 .

Now, differentiating equation (51) with respect to τ3, we
obtain

P7′(s)
ds

dτ3
+ P8′(s)e

− sτ3 ds

dτ3
+ P8(s)e

− sτ3 − τ3
ds

dτ3
− s  � 0,

(60)

whereP7′(s) andP8′(s) are derivatives ofP7(s) andP8(s),
respectively. It follows that

ds

dτ3
�

− sP8(s)esτ3

P7′(s) + P8′(s)e− sτ3 − τ3P8(s)e− sτ3
�
M(s)

N(s)
. (61)

From (61), by some computation, we deduce that

Re
ds

dτ3
 

τ3�τ∗3 ,ξ�ξ0

�
M1N1 + M2N2

N2
1 + N2

2
, (62)

whereM1,N1 andM2,N2 are the real and imaginary parts
of M(s),N(s). Also ξ0 stands for the critical value and τ∗3
denotes bifurcation point. Here,

M1 � A8ξ0 sin ξ0τ
∗
3 − B8ξ0 cos ξ0τ

∗
3 ,

M2 � A8ξ0 cos ξ0τ
∗
3 + B8ξ0 sin ξ0τ

∗
3 ,

N1 � A
∗
7 + A

∗
8 cos ξ0τ

∗
3 + B

∗
8 sin ξ0τ

∗
3 − τ∗3 A8 cos ξ0τ

∗
3 + B8 sin ξ0τ

∗
3 ,

N2 � B
∗
7 + B

∗
8 cos ξ0τ

∗
3 − A

∗
8 sin ξ0τ

∗
3 − τ∗3 B8 cos ξ0τ

∗
3 − A8 sin ξ0τ

∗
3 ,

A
∗
7 � 5αξ5α− 1

0
cos(5α − 1)π

2
+ 4αU1ξ

4α− 1
0

cos(4α − 1)π
2

+ 3αU2ξ
3α− 1
0

cos(3α − 1)π
2

+ 2αU3ξ
2α− 1
0

cos(2α − 1)π
2

+ αU4ξ
α− 1
0

cos(α − 1)π
2

,

B
∗
7 � 5αξ5α− 1

0
sin(5α − 1)π

2
+ 4αU1ξ

4α− 1
0

sin(4α − 1)π
2

+ 3αU2ξ
3α− 1
0

sin(3α − 1)π
2

+ 2αU3ξ
2α− 1
0

sin(2α − 1)π
2

+ αU4ξ
α− 1
0

sin(α − 1)π
2

,

A
∗
8 � 4αV1ξ

4α− 1
0

cos(4α − 1)π
2

+ 3αV2ξ
3α− 1
0

cos(3α − 1)π
2

+ 2αV3ξ
2α− 1
0

cos(2α − 1)π
2

+ αV4ξ
α− 1
0

cos(α − 1)π
2

,

B
∗
5 � 4αV1ξ

4α− 1
0

sin(4α − 1)π
2

+ 3αV2ξ
3α− 1
0

sin(3α − 1)π
2

+ 2αV3ξ
2α− 1
0

sin(2α − 1)π
2

+ αV4ξ
α− 1
0

sin(α − 1)π
2

.

(63)
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Case 4. τ1 � τ2 � τ3 � 0.

When τ1 � τ2 � τ3 � 0, the characteristic equation (18)
becomes

ω5α
+ Z1ω

4α
+ Z2ω

3α
+ Z3ω

2α
+ Z4ω

α
+ Z5 � 0. (64)

Here,

Z1 � 2a3 + a5 + 2a9 + a1 − a4 + a2 + a8,

Z2 � a
2
3 + 4a3a9 + 2a3a5 + 2a5a9 + a

2
9 + a1a3 − 2a3a4 + a1a5 + 2a1a9 − 2a4a9 + a2a3 + a2a5 + 2a2a9 + 2a3a8

+ a5a8 + a8a9 − a1a4 + a2a4 + a1a4 − a2a4 + a2a8 − a4a7 + a1a8 − a4a8,

Z3 � 2a3a
2
9 + a5a

2
9 + 2a

2
3a9 + a

2
3a5 + 4a3a5a9 − a

2
3a4 + a1a3a5 + 2a1a3a9 − 4a3a4a9 + 2a1a5a9 + a1a

2
9 − a4a

2
9

+ a2a3a5 + 2a2a3a9 + 2a2a5a9 + a2a
2
9 + a

2
3a8 + 2a3a5a8 + 2a3a8a9 + a5a8a9 − a1a3a4 − 2a1a4a9 + a2a3a4

+ 2a2a4a9 + a1a3a4 − a2a3a4 + 2a1a4a9 − 2a2a4a9 + a2a3a8 + a2a5a8 + a2a8a9 − 2a3a4a7 + a1a3a8 − 2a3a4a8

+ a1a5a8 − a4a7a9 + a1a8a9 − a4a8a9,

Z4 � a
2
3a

2
9 + 2a3a5a

2
9 + 2a

2
3a5a9 − 2a

2
3a4a9 + 2a1a3a5a9 + a1a3a

2
9 − 2a3a4a

2
9 + a1a5a

2
9 + a2a3a

2
9 + a2a5a

2
9

+ 2a2a3a5a9 + a
2
3a5a8 + a

2
3a8a9 + 2a3a5a8a9 − a1a4a

2
9 − 2a1a3a4a9 + 2a2a3a4a9 + a1a4a

2
9 − a2a4a

2
9 + a2a3a5a8

+ a2a3a8a9 + a2a5a8a9 − a
2
3a4a7 + a1a3a5a8 − a

2
3a4a8 − 2a3a4a7a9 + a1a3a8a9 − 2a3a4a8a9 + a1a5a8a9 − a1a3a4a8

− a1a4a8a9 + a2a3a4a8 + a2a4a8a9 + a1a3a4a8 − a2a3a4a8 + a1a4a8a9 − a2a4a8a9,

Z5 � a
2
3a5a

2
9 − a

2
3a4a

2
9 + a1a3a5a

2
9 + a2a3a5a

2
9 + a

2
3a5a8a9 − a1a3a4a

2
9 + a2a3a4a

2
9 − a2a3a4a

2
9 + a2a3a5a8a9 − a

2
3a4a7a9

+ a1a3a5a8a9.

(65)

From the Routh–Hurwitz criteria, if we choose
Zi > 0, i � 1, 2, 3, 4, 5, Z1Z2Z3 >Z2

3 + Z2
1Z4 and (Z1Z4 −

Z5)(Z1Z2Z3 − Z2
3 − Z2

1Z4) >Z5(Z1Z2 − Z3)
2 + Z1Z

2
5, then

the five eigenvalues of the characteristic equation (64) have
negative real parts. Hence, the steady state fractional-order
system (5) is asymptotically stable when τ1 � τ2 � τ3 � 0
(without time delays).

We arrive at the following theorem.

Theorem 1. If α ∈ (0, 1] and an endemic equilibrium point
E∗ exists for system (5), then the following results hold:

(i) When τ1 > 0, τ2 � 0, and τ3 � 0, the endemic steady
state E∗ is asymptotically stable for τ1 ∈ [0, τ∗1 ) and
the system undergoes a Hopf bifurcation at the origin
at τ1 � τ∗1 and the transversality condition holds,
Re(ds/dτ1)|τ1�τ∗1 ,ξ�ξ0 ≠ 0

(ii) When τ1 � 0, τ2 > 0, and τ3 � 0, the endemic steady
state E∗ is asymptotically stable for τ2 ∈ [0, τ∗2 ) and

system undergoes a Hopf bifurcation at the origin
when τ2 � τ∗2 and the transversality condition holds,
Re(ds/dτ2)|τ2�τ∗2 ,ξ�ξ0 ≠ 0

(iii) When τ1 � 0, τ2 � 0, and τ3 > 0, E∗ of is asymp-
totically stable for τ3 ∈ [0, τ∗3 ) and system (5) un-
dergoes a Hopf bifurcation at the origin at τ3 � τ∗3
and transversality condition holds, Re(ds/
dτ3)|τ3�τ∗3 ,ξ�ξ0 ≠ 0

(iv) When Z1Z2Z3 >Z2
3 + Z2

1Z4 and (Z1Z4 − Z5)

(Z1Z2Z3 − Z2
3 − Z2

1Z4)>Z5(Z1Z2 − Z3)
2 + Z1Z

2
5

holds, the endemic steady state E∗ is asymptotically
stable for τ1 � τ2 � τ3 � 0

Remark 4. )eorem 1 reports the asymptotic stability of
the endemic equilibrium point E∗. )e analysis can be
extended to investigate the stability of infection-free
equilibrium points E0 for the fractional-order model.

Table 1: ξ0 values and τ∗1 values for different fractional-order α.

Fractional order (α) Critical frequency (ξ0) Bifurcation point (τ∗1 )

1 0.30125 1.2104
0.9 0.17811 4.5874
0.8 0.09392 11.8356
0.7 0.04573 23.2562
0.6 0.00152 744.420
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Figure 2: State trajectories for model (5) with α � 0.9, 0.8, and 0.7 and τ1 � 10, τ2 � 0.0, and τ3 � 0.0. For α � 0.9 and τ1 � 10> τ∗1 , the
equilibrium point is unstable (red trajectory) for (5); however, for τ1 < τ∗1 and α � 0.8, 0.7, it is asymptotically stable (blue and green
trajectories).
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4. Numerical Simulations and Observations

In this section, we provide some numerical simulations for
system (5) to demonstrate the effectiveness of our main
results. )e simulations have been done by using stable
implicit Euler approximation scheme, discussed in [44]. Of
course, many other methods have been used for fractional-
order delay differential equations such as the Adams–
Bashforth–Moulton scheme [45]. )e parameter values of
system (5) are taken as follows:

λh � 0.5,

λm � 4.58,

βh � 0.05,

βm � 0.09,

η � 0.01,

c � 0.2,

dh � 0.714,

dm � 0.437.

(66)

Case 1. τ1 > 0, τ2 � 0, and τ3 � 0. In this case, time-delay τ1
is chosen as the bifurcation parameter. We then discuss the
dynamic effect of system (5) with the above parameter
values. We calculate the critical frequency ξ0 and bifurcation
point τ∗1 of various fractional-order α. Figure 2 shows the
numerical simulations of model (5) when τ1 � 10, τ2 � 0.0,
and τ3 � 0.0, with different fractional orders α �

0.9, 0.8, and 0.7 and estimated bifurcation point τ∗1 � 4.587,

11.835, and 23.256 (see Table 1). Here, τ1 � 10 ∉ [0, τ∗1 ) for
the fractional-order α � 0.9 and whereas τ1 � 10 ∈ [0, τ∗1 )

which satisfies the condition (i) in )eorem 1. )e equi-
librium E∗ of the model (5) is asymptotically stable for
α � 0.8, 0.7. When τ1 � 10 ∉ [0, τ∗1 ), which does not satisfies
the condition (i) of)eorem 1, the system undergoes a Hopf
bifurcation for the functional-order α � 0.9.

Case 2. τ1 � 0, τ2 > 0, and τ3 � 0. We choose time-delay τ2
as a bifurcation parameter of system (5) with parameter
values:

λh � 0.5,

λm � 4.58,

βh � 0.05,

βm � 0.08,

η � 0.05,

c � 0.2,

dh � 0.3,

dm � 0.78.

(67)

We then calculate the critical frequency ξ0 and bi-
furcation point τ∗2 of various fractional-order α (see Table 2).
Figure 3 shows the dynamics of system (5) for τ1 �

0.0, τ2 � 14, and τ3 � 0.0, with values of α � 1, 0.9, and 0.8.

)e corresponding bifurcation point is τ∗2 � 11.176,

14.293, and 35.797. τ2 � 14 ∈ [0, τ∗2 ) satisfies the condition
(ii) of)eorem 1.)erefore, the equilibrium E∗ of the model
(5) is asymptotically stable for α � 0.9 and 0.8, which is
shown in Figure 3. However, for τ2 � 14 ∉ [0, τ∗2 ), a Hopf
bifurcation occurs for the functional-order α � 1.

Case 3. τ1 � 0, τ2 � 0, and τ3 > 0. We consider time-delay τ3
as a bifurcation parameter of system (5) with parameter
values:

λh � 0.5,

λm � 10,

βh � 0.05,

βm � 0.4,

η � 0.05,

c � 0.2,

dh � 0.714,

dm � 0.437.

(68)

We calculate the critical frequency ξ0 and bifurcation
point τ∗3 of various fractional-order α. When τ1 � 0.0,

τ2 � 0.0, and τ3 � 8.0, the dynamics of system (5) is shown
in Figure 4 with different fractional-order α � 1, 0.9, and 0.8,
its corresponding bifurcation points τ∗3 � 2.255, 3.281,

and 4.912 (see Table 1). Here, τ3 � 8 ∉ [0, τ∗3 ) and a Hopf
bifurcation occurs for the factional-order α � 1, 0.9, and 0.8
which not satisfies the condition (iii) in )eorem 1.
)erefore, the equilibrium point E∗ is of model (5) is un-
stable, which is shown in Figure 4.

Case 4. τ1 � 0, τ2 � 0, and τ3 � 0, without time delays. As-
sume the parameter values:

Table 2: ξ0 values and τ∗2 values for different fractional-order α.

Fractional order (α)
Critical

frequency (ξ0)
Bifurcation point (τ∗2 )

1 0.12290 11.1762
0.9 0.09602 14.2931
0.8 0.05174 35.797
0.7 0.0363 47.963
0.6 0.0158 131.001

Table 3: ξ0 values and τ∗3 values for different fractional-order α.

Fractional order (α)
Critical

frequency (ξ0)
Bifurcation point (τ∗3 )

1 0.3777 2.255
0.9 0.2943 3.281
0.8 0.2172 4.912
0.7 0.01490 7.755
0.6 0.0920 13.404
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Figure 3: State trajectories for model (5) for α � 1, 0.9, and 0.8 and τ1 � 0.0, τ2 � 14, and τ3 � 0.0, when α � 1 and τ2 � 14> τ∗2 ; the
equilibrium point is unstable (red trajectory) for (5). However, for τ2 < τ∗2 with α � 0.9 and 0.8, it is asymptotically stable (blue and green
trajectories).
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Figure 4: State trajectories for the model (5) for various values of α � 1, 0.9, and 0.8 and τ1 � 0.0, τ2 � 0.0, and τ3 � 8.)e equilibrium point
E∗ is unstable when τ3 ∉ [0, τ∗3 ).
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Figure 5: State trajectories of model (5) for various values of α � 0.9, 0.8, and 0.7, when τ1 � τ2 � τ3 � 0. )e steady state of the system is
asymptotically stable.
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λh � 0.5,

λm � 10,

βh � 0.05,

βm � 0.4,

η � 0.05,

c � 0.2,

dh � 0.714,

dm � 0.437.

(69)

Hence, system (5) is asymptotically stable, which is
shown in Figure 5.

5. Conclusion

Fractional derivatives have the unique property of capturing
the history of the variable; that is, they have short and long
memory.)is cannot be easily done by means of the integer-
order derivatives. In this paper, we proposed a fractional-
order model for Zika virus infection with multiple time
delays τ1, τ2, and τ3. We studied the asymptotic stability and
Hopf bifurcation properties for the model. Time delays and

fractional order play a vital role in the stability and com-
plexity of the model. By evaluating the characteristics, some
sufficient conditions have derived to ensure the asymptotic
stability in terms of the fractional order and time delays.
Moreover, we estimated the thresholds bifurcation param-
eters: τ∗1 , τ∗2 , and τ∗3 . )e transversality conditions have been
obtained to confirm the existence of Hopf bifurcations for
different values at the threshold parameters and particular
values of fractional orders. Our findings illustrate that using
the time delays as bifurcation points, one can conclude that
when time delay increases, the equilibrium loses its stability
and Hopf bifurcation occurs. )ese models can be used to
understand key aspects of the viral life cycle and to predict
antiviral efficacy. Finally, numerical simulations show that
a combination of fractional order and time delays in the
model effectively enriches the dynamics and strengthens the
stability condition of the model.

Including control variables in the model is desirable to
determine the best strategy of treatment and control and
eliminate the infection, which will be considered in future
work.

Appendix

)e coefficients of equation (18) are as follows:

P1(s) � s
5α

+ s
4α

a3 + 2a9(  + s
3α

a
2
3 + 2a3a5 + 2a5a9 + a

2
9  + s

2α
a
2
3a5 + 4a3a5a9 + 2a3a

2
9 + a5a

2
9 

+ s
α 2a

2
3a5a9 + 2a3a5a

2
9  + a

2
3a

2
9,

P2(s) � s
4α

a1 + s
3α

a1a3 + a1a5 + 2a1a9(  + s
2α

a1a3a5 + 2a1a3a9 + 2a1a5a9 + a1a
2
9  + s

α 2a1a3a5a9 + a1a3a
2
9 + a1a5a

2
9 

+ a1a3a5a
2
9,

P3(s) � s
4α

a2 − a4(  + s
3α

a2a3 − 2a3a4 + a2a5 + 2a2a9 − 2a4a9(  + s
2α

− a
2
3a4 + a2a3a5 + 2a2a3a9 − 4a3a4a9 + a2a5a9

+ a2a
2
9 − a4a

2
9 + s

α
− 2a

2
3a4a9 + 2a2a3a5a9 + a2a3a

2
9 − 2a3a4a

2
9 + a2a5a

2
9  + a2a3a5a

2
9 − a

2
3a4a

2
9,

P4(s) � s
4α

a8 + s
3α 2a3a8 + a5a8 + a8a9(  + s

2α
a
2
3a8 + 2a3a5a8 + 2a3a8a9 + a5a8a9  + s

α
a
2
3a5a8 + a

2
3a8a9 + a3a5a8a9 

+ a
2
3a5a8a9,

P5(s) � s
3α

a1a4(  + s
2α

a1a3a4 − 2a1a4a9 − a1a3a5a9(  + s
α

a1a3a4a7 + a1a4a
2
9 ,

P6(s) � s
3α

a2a4(  + s
2α

a2a3a4 + 2a2a4a9(  + s
α

a2a4a
2
9 + a2a3a4a9  + a2a3a4a

2
9,

P7(s) � s
4α

− a4(  + s
3α

− a2a4 + a1a8 − a4a7(  + s
2α

a2a3a5 + 2a1a5a9 + a4a
2
9  + s

α
a2a

2
9 + a1a4a

2
9  + a1a3a4a

2
9 − a2a3a4a

2
9,

P8(s) � s
3α

− a4a7 + a2a8 − a4a8(  + s
2α

− 2a3a4a7 + a2a3a8 + a3a4a8 + a2a5a8 − a4a7a9 + a2a8a9 + a4a8a9( 

+ s
α

− a
2
3a4a7 − a

2
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3a4a7a9 + a2a3a5a8a9,

P9(s) � s
3α

a1a8 + s
2α

a1a4a7 + a1a3a8 + a1a5a8 + a1a8a9(  + s
α

a1a3a5a8 + a1a3a8a9 + a1a5a8a9(  + a1a3a5a7a9,

P10(s) � s
α

a1a3a4a7 + a1a4a7a9(  + a1a3a4a7a9,

P11(s) � s
α

− a2a4a7 − a2a3a4a7 − a2a4a7a9(  − a2a3a4a7a9,

P12(s) � s
2α

− a1a4a7 + a2a4a7(  + s
α
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(A.1)

18 Complexity



Data Availability

Data sharing is not applicable to this article as no new data
were created or analyzed in this study.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is manuscript was funded from the project no. 31S265
(UAE University) and DST-SERB Project # SB/FTP/MS-
045/2013 (Bharathiar University).

References

[1] G. Calvet, R. S. Aguiar, A. S. O. Melo et al., “Detection and
sequencing of zika virus from amniotic fluid of fetuses with
microcephaly in Brazil: a case study,” 4e Lancet Infectious
Diseases, vol. 16, no. 6, pp. 653–660, 2016.

[2] F. Krauer, M. Riesen, L. Reveiz et al., “Zika virus infection as
a cause of congenital brain abnormalities and Guillain–Barré
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Time delay is a frequently encountered phenomenon in some practical engineering systems and introducing time delay into a
system can enrich its dynamic characteristics. ere has been a plenty of interesting results on fractional-order chaotic systems or
integer-order delayed chaotic systems, but the problem of synchronization of fractional-order chaotic systems with time delays is
in the primary stage. Combination synchronization of three di�erent fractional-order delayed chaotic systems is investigated in
this paper. It is an extension of combination synchronization of delayed chaotic systems or combination synchronization of
fractional-order chaotic systems. With the help of stability theory of linear fractional-order systems with multiple time delays, we
design controllers to achieve combination synchronization of three di�erent fractional-order delayed chaotic systems. In addition,
numerical simulations have been performed to demonstrate and verify the theoretical analysis.

1. Introduction

Since it was reported that nature and engineering �elds
existed in many fractional dimensions in 1983 [1], fractional
calculus has attracted researchers from academia and in-
dustry. More and more researches have shown that frac-
tional-order di�erential equations are useful tools to
investigate complex dynamical behaviors and describe
various physical and engineering systems. Time delays are
found to exist widely in real world systems, such as elec-
tronic circuits, chemical, and economical systems [2–7]. It is
very necessary to include time delays into a system to model
a real-world application. erefore, scientists from various
�elds begin to focus on the study of fractional-order delayed
di�erential equations (FDDEs), due to their wide potential
applications. Many chaotic systems of FDDEs were pro-
posed and their synchronizations were studied. e frac-
tional-order delayed Liu system was presented and the
existence of chaos was investigated in [8], and the impulsive
synchronization and robust predictive synchronization
were investigated in [9, 10], respectively. e nonlinear
dynamics and chaos were studied for the fractional-order
delayed �nancial system in [11], and the sliding-mode

synchronization was investigated in [12]. In [13], hybrid
projective synchronization between the two aforementioned
systems was done.e fractional-order delayed Chen system
was considered in [14], and its adaptive synchronization was
investigated in [15].

All the synchronization schemes mentioned above are
based on the usual drive-response method, which only has
one drive system and one response system. In [16], Luo et al.
generalized the usual drive-response synchronization
scheme to combination synchronization, which has two
drive systems and one response system. Combination
synchronization has stronger antidecode and antiattack
ability than that of the drive-response synchronization in
secure communication, because the origin message can be
divided into two segments and each segment can be sepa-
rated into two distinct drive systems. e authors [17] ap-
plied robust adaptive sliding-mode control method to
investigate combination synchronization of Lorenz system
with time delay. In [18], phase and antiphase combination
synchronization of three delayed systems were studied using
active control.e adaptive function projective combination
synchronization of three fractional-order chaotic systems
was investigated in [19]. Jiang et al. [20] analyzed complex
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combination synchronization of three fractional-order
chaotic complex-variable systems. Delavari and Moha-
deszadeh [21] proposed adaptive sliding-mode control
method for synchronization of nonidentical fractional-order
chaotic and hyperchaotic systems. In [22], combination
synchronization of a new fractional-order Lorenz-like sys-
tem with two stable node-foci was analyzed with the help of
nonlinear feedback control method. Although fractional-
order delayed chaotic systems were considered in the lit-
erature [23], the method used for synchronization was not
combination synchronization. .e generalization of com-
bination-combination synchronization of chaotic n-di-
mensional fractional-order dynamical systems is studied in
[24]. .ere exist many works focusing on the combination
synchronization of integer-order delayed chaotic systems;
however, the conclusions on those works cannot be used on
fractional-order delayed chaotic system directly. .e
problem of combination synchronization of fractional-order
delay chaotic system is still an open challenging problem.

Motivated by the above analysis, we consider combi-
nation synchronization of three fractional-order delayed
chaotic systems, which is an extension of combination
synchronization of delayed chaotic systems or combination
synchronization of fractional-order chaotic systems. .e

Adams-Bashforth-Mounton method is used for numerical
solutions of fractional-order delay chaotic system.

2. Preliminaries

Fractional calculus is an old mathematical topic and is an
extension of integration and differentiation to noninteger-
order fundamental operator aDr

t , which is described by

aD
r
t �

dr

dtr
, r> 0,

1, r � 0,


t

a
(dτ)

− r
, r< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1)

One of the commonly used definitions for the fractional-
order differential operator is the Caputo definition [25, 26],
which is defined as

aD
r
t f(t) �

1
Γ(n − r)


t

a

f(τ)

t − τ
 

r− n+1

dτ, (2)

where 1< r< n.
.e following is the n-dimensional linear fractional-

order differential system with multiple time delays:

Dα1x1(t) � a11x1 t − τ11(  + a12x2 t − τ12(  + · · · + a1nxn t − τ1n( ,

Dα2x2(t) � a21x1 t − τ21(  + a22x2 t − τ22(  + · · · + a2nxn t − τ2n( ,

⋮

Dαn xn(t) � an1x1 t − τn1(  + an2x2 t − τn2(  + · · · + annxn t − τnn( ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where αi is the order of the fractional derivative, which is real
and lies in (0, 1), xi(t) is the state variable, τij > 0 is the time
delay, the initial value xi(t) � ϕi(t) is given by − max τij �

− τmax ≤ t≤ 0, A � [aij] ∈ Rn×n is the coefficient matrix.
In order to study the stability of system (3), we first take

Laplace transform on system (3) and have

Δ(s) · X(s) � b(s), (4)

where X(s) � (X1(s), X2(s), . . . , Xn(s))T is the Laplace
transform of x(t) � (x1(t),x2(t), . . . ,xn(t))T,b(s) � (b1(s),

b2(s), . . . ,bn(s))T is the remaining nonlinear part, and the
characteristic matrix of system (3) is

Δ(s) �

sα1 − a11e
− sτ11 − a12e

− sτ12 · · · − a1ne− sτ1n

− a21e
− sτ21 sα2 − a22e

− sτ22 · · · − a2ne− sτ2n

⋮ ⋮ ⋱ ⋮

− an1e
− sτn1 − an2e

− sτn2 · · · sαn − anne− sτnn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(5)

Here are some results for system (3).

Theorem 1 (see [27]). If all the roots of the characteristic
equation det(Δ(s)) � 0 have negative real parts, then the zero

solution of system (3) is Lyapunov globally asymptotically
stable.

Corollary 1 (see [27]). If α1 � α2 � · · · � αn � β ∈ (0, 1), all
the eigenvalues λ of the coefficient matrix A satisfy
|arg(λ)|> βπ/2, and the characteristic equation det(Δ(s)) �

0 has no purely imaginary roots for any τij > 0, i,

j � 1, 2, . . . , n, then the zero solution of system (3) is Lya-
punov globally asymptotically stable.

3. Combination Synchronization of Three
Fractional-Order Delayed Systems

In this section, we investigate combination synchronization
of three different fractional-order delayed systems.

.e following system is considered as the first drive
system:

D
α
x(t) � x(t) + x(t − τ) + A(x(t), x(t − τ)),

x(t) � x(0), t ∈ [− τ, 0].
(6)

.e following system is taken as the second drive system:
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D
α
y(t) � y(t) + y(t − τ) + B(y(t), y(t − τ)),

y(t) � y(0), t ∈ [− τ, 0].
(7)

And the following system is used as the response system:

D
α
z(t) � z(t) + z(t − τ) + C(z(t), z(t − τ)) + U,

z(t) � z(0), t ∈ [− τ, 0],
(8)

in which α ∈ (0, 1) is the order of the fractional differential
equations, τ > 0 is the time delay, U � (U1, U2, U3) is the
controller vector to be designed later, x � (x1, x2, . . . ,

xn)T ∈ Rn, y � (y1, y2, . . . , yn)T ∈ Rn, and z � (z1, z2, . . . ,

zn)T ∈ Rn are state vectors, and A : R2n⟶ Rn, B :

R2n⟶ Rn, and C : R2n⟶ Rn are continuous vector
functions.

.e error state vector is defined as

e(t) � Fz(t) − Gx(t) − Hy(t), (9)

where e(t) � (e1, e2, . . . , en)T ∈ Rn, F � diag f1, f2, . . . ,

fn} ∈ Rn×n, G � diag g1, g2, . . . , gn  ∈ Rn×n, and H �

diag h1, h2, . . . , hn} ∈ Rn×n are real scaling matrix.

Definition 1 (see [21]). .e drive systems (6) and (7) and the
response system (11) are defined to be combination syn-
chronization if there are three constant matrixes,
F, G, H ∈ Rn and F≠ 0 such that

lim
t⟶+∞

‖Fz(t) − Gx(t) − Hy(t)‖ � 0, (10)

where ‖ · ‖ stands for the matrix norm.

Remark 1. If the scaling matrix G � 0 or H � 0, the com-
bination synchronization mentioned above is correspond-
ingly simplified to hybrid synchronization.

Remark 2. When τ � 0, the combination synchronization
scheme of fractional-order delayed systems is simplified to
the combination synchronization scheme of fractional-order
systems.

To achieve combination synchronization of the above
systems, a nonlinear controller is constructed:

U � Ke(t) + GA(x(t), x(t − τ)) + HB(y(t), y(t − τ))

− FC(z(t), z(t − τ)),

(11)

where K � K − I, I is an n-dimensional identity matrix, and
K � diag k1, k2, . . . , kn  is a feedback gain matrix.

From equations (6)–(8) and (11), we can get the fol-
lowing error system:

D
α
e(t) � (k + I)e(t) + e(t − τ) � Ke(t) + e(t − τ). (12)

When we use the controllerU to control fractional-order
delay-delayed response system, the combination synchro-
nization problem of the two fractional-order delayed drive
systems (6) and (7) and fractional-order delayed response
system (8) is changed into the analysis of the asymptotical
stability of system (15).

According to Corollary 1, we can have the following
sufficient condition to achieve combination synchronization
between systems (6) and (7) and system (8).

Theorem 2. Combination synchronization between the drive
systems (6) and (7) and the response system (8) can be
achieved if there exists a matrix K � diag k1, k2, . . . , kn  in
equation (15) such that ki < (− 1/sin(απ/2))(i � 1, 2, . . . , n).

Proof. A � K + I is the coefficient matrix for the fractional-
order delayed error system (12). Because ki <
(− 1/sin(απ/2)), α ∈ (0, 1), the eigenvalues of A are
λi � ki + 1< 0 (i � 1, 2, . . . , n). .erefore, |arg(λ)|> π/2>
απ/2 holds.

Taking Laplace transform on equation (15) gives

Δ(s) · E(s) � s
α− 1

e(0) + e(0)e
− sτ


0

− τ
e

− sτdx, (13)

where E(s) is the Laplace transform of e(t), e(0) �

Fz(0) − Gx(0) − Hy(0), and Δ(s) � saI − K − e− sτI is the
characteristic matrix. Consequently

det(Δ(s)) � s
α
I − K − e

− sτ
I


 � s

a
− k1 − e

− sτ
( 

· s
a

− k2 − e
− sτ

(  . . . s
a

− kn − e
− sτ

(  � 0.

(14)

Suppose

s
a

− ki − e
− sτ

(  � 0, i � 1, 2, . . . , n, (15)

has a root s � wi � |w|(cos(π/2) + i sin( ±π/2)). .en

|w|
α cos

απ
2

 + isin
±απ
2

   − ki − cos(ωτ)+ isin(ωτ) �0.

(16)

Separating the real and imaginary parts in system (16)
yields

|w|
α cos

απ
2

  − ki � cos(ωτ),

|w|
α sin
±απ
2

  � − sin(ωτ).

(17)

From system (17), we have

|w|
2α

− 2ki cos
απ
2

 |w|
α

+ k
2
i − 1 � 0. (18)

Because ki < (− 1/sin(απ/2)), α ∈ (0, 1), then the dis-
criminant of the roots satisfies

Δ � − 2ki cos
απ
2

  
2

− 4 k
2
i − 1 

� 4 1 − k
2
i sin

2 απ
2

  

< 0,

(19)

which means that equation (18) has no real solutions.
Consequently, equation (14) has no purely imaginary roots.
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According to Corollary 1, the zero solution of the fractional-
order delayed error system (12) is globally asymptotically stable;
i.e., combination synchronization is obtained between the drive
systems (6) and (7) and the response system (8).

.e completes the proof. □

4. Numerical Simulations

In what follows, numerical simulations are performed to
illustrate the above-proposed combination synchronization
of three different fractional-order delayed systems.

.e fractional-order delayed financial system [14] is
considered as the first drive system:

Dαx1 � x3 − a1x1 + x1x2(t − τ),

Dαx2 � 1 − b1x2 − x2
1(t − τ),

Dαx3 � − x1(t − τ) − c1x3.

⎧⎪⎪⎨

⎪⎪⎩
(20)

System (20) exhibits a chaotic attractor, as shown in
Figure 1.

System (20) can be rewritten as

D
α
x(t) � x(t) + x(t − τ) + A(x(t), x(t − τ)),

x(t) � x(0), t ∈ [− τ, 0],
(21)

where

A(x(t),x(t − τ)) �

x3 − a1 +1( x1 + x1x2(t − τ) − x1(t − τ)

1 − b1 +1( x2 − x2
1(t − τ) − x2(t − τ)

− x1(t − τ) − c1 +1( x3 − x3(t − τ)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠.

(22)

.e fractional-order delayed Liu system [11] is con-
sidered as the second drive system:

Dαy1 � a2 y2 − y1( ,

Dαy2 � b2y1(t − τ) − y1y3,

Dαy3 � − c2y3(t − τ) + 4y2
1.

⎧⎪⎪⎨

⎪⎪⎩
(23)

System (23) displays a chaotic attractor, as shown in
Figure 2.

System (23) can be rewritten as

D
α
y(t) � y(t) + y(t − τ) + B(y(t), y(t − τ)),

y(t) � y(0), t ∈ [− τ, 0],
(24)

where

B(y(t), y(t − τ)) �

a2 y2 − y1(  − y1 − y1(t − τ)

b2y1(t − τ) − y1y3 − y2 − y2(t − τ)

− c2 + 1( y3(t − τ) + 4y2
1 − y3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(25)

.e fractional-order delayed Lorenz system [15] is the
response system given by

Dαz1 � a3 z2 − z1(  + U1,

Dαz2 � c3z1 − z2 − z1z3 + U2,

Dαz3 � z1z2 − b3z3(t − τ) + U3,

⎧⎪⎪⎨

⎪⎪⎩
(26)

where U1, U2, and U3 are controllers to be determined later.
Without the controllers, system (26) displays a chaotic
attractor, as shown in Figure 3.

System (26) can be rewritten as

D
α
z(t) � z(t) + z(t − τ) + C(z(t), z(t − τ)) + U,

z(t) � z(0), t ∈ [− τ, 0],
(27)

where

C(z(t), z(t − τ)) �

a3 z2 − z1(  − z1 − z1(t − τ)

c3z1 − 2z2 − z1z3 − z2(t − τ)

z1z2 − b3 + 1( z3(t − τ) − z3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(28)

In the following analysis, we suppose that F � diag(f1,

f2, f3), G � diag(g1, g2, g3), andH � diag(h1, h2, h3).
.e error states are defined by

e1 � f1z1 − g1x1 − h1y1,

e2 � f2z2 − g2x2 − h2y2,

e3 � f3z3 − g3x3 − h3y3,

⎧⎪⎪⎨

⎪⎪⎩
(29)

such that

lim
t⟶∞

f1z1 − g1x1 − h1y1
����

���� � 0,

lim
t⟶∞

f2z2 − g2x2 − h2y2
����

���� � 0,

lim
t⟶∞

f3z3 − g3x3 − h3y3
����

���� � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(30)

5
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Figure 1: Chaotic attractor of financial system: α � 0.92, τ � 0.01.
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Figure 2: Chaotic attractor of Liu system: α � 0.92, τ � 0.01.
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Subtracting (20) and (23) from (26), the error dynamical
systems are obtained as follows:

Dαe1 � f1D
αz1 − g1D

αx1 − h1D
αy1,

Dαe2 � f2D
αz2 − g2D

αx2 − h2D
αy2,

Dαe3 � f3D
αz3 − g3D

αx3 − h3D
αy3.

⎧⎪⎪⎨

⎪⎪⎩
(31)

Substituting equations (20), (23), and (26) into equation
(31) gives

Dαe1 � f1 a3 z2 − z1(   − g1 x3 − a1x1 + x1x2(t − τ) 

− h1 a2 y2 − y1(   + f1U1,

Dαe2 � f2 c3z1 − z2 − z1z3(  − g2 1 − b1x2 − x2
1(t − τ)( 

− h2 b2y1(t − τ) − y1y3(  + f2U2,

Dαe3 � f3 z1z2 − b3z3(t − τ)(  − g3 − x1(t − τ) − c1x3( 

− h3 − c2y3(t − τ) + 4y2
1(  + f3U3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

Here are our results.

Theorem 3. Combination synchronization between the
driven systems (20) and (23) and the response system (26) can
be obtained by presenting controllers as follows:

U1 �
1

f1
k1 − 1(  f1z1 − g1x1 − h1y1(  + g1 x3 − a1 + 1( x1 + x1x2(t − τ) − x1(t − τ)( 

+ h1 a2 y2 − y1(  − y1 − y1(t − τ)(  − f1 a3z2 − a3 + 1( z1 − z1(t − τ)( ,

U2 �
1

f2
k2 − 1(  f2z2 − g2x2 − h2y2(  + g2 1 − b1 + 1( x2 − x

2
1(t − τ) − x2(t − τ) 

+ h2 b2y1(t − τ) − y1y3 − y2 − y2(t − τ)(  − f2 c3z1 − 2z2 − z1z3 − z2(t − τ)( ,

U3 �
1

f3
k3 − 1(  f3z3 − g3x3 − h3y3(  + g3 − x1(t − τ) − c1 + 1( x3 − x3(t − τ)( 

+ h3 − c2 + 1( y3(t − τ) + 4y2
1 − y3(  − f3 z1z2 − b3 + 1( z3(t − τ) − z3( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

Corollary 2
(i) Suppose that g1 � g2 � g3 � 0, and f1, f2, and f3

are nonzero, projective synchronization between the

drive system (23) and the response system (26) can be
obtained by presenting controllers as follows:

U1 �
1

f1
k1 − 1(  f1z1 − h1y1(  + h1 a2 y2 − y1(  − y1 − y1(t − τ)(  − f1 a3z2 − a3 + 1( z1 − z1(t − τ)(  ,

U2 �
1

f2
k2 − 1(  f2z2 − h2y2(  + h2 b2y1(t − τ) − y1y3 − y2 − y2(t − τ)(  − f2 c3z1 − 2z2 − z1z3 − z2(t − τ)(  ,

U3 �
1

f3
k3 − 1(  f3z3 − h3y3(  + h3 − c2 + 1( y3(t − τ) + 4y

2
1 − y3  − f3 z1z2 − b3 + 1( z3(t − τ) − z3(  .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)
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Figure 3: Chaotic attractor of Lorenz system: α � 0.92, τ � 0.1.
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(ii) Accordingly, suppose that h1 � h2 � h3 � 0, and
f1, f2, and f3 are nonzero, projective synchroni-
zation between the drive system (20) and the

response system (26) can be obtained by presenting
controllers as follows:

U1 �
1

f1
k1 − 1(  f1z1 − g1x1(  + g1 x3 − a1 + 1( x1 + x1x2(t − τ) − x1(t − τ)(  − f1 a3z2 − a3 + 1( z1 − z1(t − τ)(  ,

U2 �
1

f2
k2 − 1(  f2z2 − g2x2(  + g2 1 − b1 + 1( x2 − x

2
1(t − τ) − x2(t − τ)  − f2 c3z1 − 2z2 − z1z3 − z2(t − τ)(  ,

U3 �
1

f3
k3 − 1(  f3z3 − g3x3(  + g3 − x1(t − τ) − c1 + 1( x3 − x3(t − τ)(  − f3 z1z2 − b3 + 1( z3(t − τ) − z3(  .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

Corollary 3. Suppose that g1 � g2 � g3 � 0, h1 � h2 �

h3 � 0, and f1, f2, and f3 are nonzero, system (26) can be
stabilized to its equilibrium O(0, 0, 0) with the following
controllers:

U1 �
1

f1
k1 − 1(  f1z1(  − f1 a3z2 − a3 + 1( z1 − z1(t − τ)(  ,

U2 �
1

f2
k2 − 1(  f2z2(  − f2 c3z1 − 2z2 − z1z3 − z2(t − τ)(  ,

U3 �
1

f3
k3 − 1(  f3z3(  − f3 z1z2 − b3 + 1( z3(t − τ) − z3(  .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

In the numerical simulations, the system parameters are
set as a1 � 3, b1 � 0.1, c1 � 1, a2 � 10, b2 � 40, c2 � 2.5,

a3 � 10, b3 � 8/3, and c3 � 28, respectively. For simplicity,
suppose f1 � f2 � f3 � 1, g1 � g2 � g3 � 1, and h1 � h2 �

h3 � 1. Ce initial values for all of the systems are set as

(x1(0), x2(0), x3(0)) � (0.1, 4, 0.5), (y1(0), y2(0), y3(0)) �

(1.2, 2.4, 11), and (z1(0), z2(0), z3(0)) � (− 8, 2, 3), re-
spectively. Figures 4–6 display time responses of the combi-
nation synchronization errors e1, e2, and e3. From
Figures 4–6, we can observe that error states converge to zero;

t

e1

–30

–20
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10

0 1 2 3 4 5 6 7

Figure 4: Combination synchronization errors e1 between drive systems (20) and (23) and response system (26).
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Figure 5: Combination synchronization errors e2 between drive systems (20) and (23) and response system (26).
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Figure 6: Combination synchronization errors e3 between drive
systems (20) and (23) and response system (26).
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Figure 9: Time responses for state x3 + y3 versus z3.
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i.e., combination synchronization is achieved. Figures 7–9
illustrate the time responses of the states x1 + y1 versus z1,
x2 + y2 versus z2, x3 + y3 versus z3, respectively.

5. Conclusions

In this paper, we investigate combination synchronization of
three different fractional-order delayed chaotic systems by
generalizing combination synchronization of delayed cha-
otic systems or combination synchronization of fractional-
order chaotic systems. With the help of the stability theory
for linear fractional-order systems with multiple time delays,
controllers are proposed to achieve combination synchro-
nization of three different fractional-order delayed chaotic
systems. In addition, projective synchronization [28] of
three different fractional-order delayed chaotic systems is a
special case of our work. Numerical simulations are pre-
sented to demonstrate and verify the applicability and
feasibility of our theoretical analysis.
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Nonlinear Dynamics, vol. 80, no. 1-2, pp. 855–869, 2015.

[4] Y. Fan, X. Huang, Y. Li, J. Xia, and G. Chen, “Aperiodically
intermittent control for quasi-synchronization of delayed
memristive neural networks: an interval matrix and matrix
measure combined method,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 49, no. 11, pp. 2254–2265,
2019.

[5] Y. Fan, X. Huang, H. Shen, and J. Cao, “Switching event-
triggered control for global stabilization of delayed mem-
ristive neural networks: an exponential attenuation scheme,”
Neural Networks, vol. 117, pp. 216–224, 2019.

[6] L. Xiong, J. Cheng, J. Cao, and Z. Liu, “Novel inequality with
application to improve the stability criterion for dynamical
systems with two additive time-varying delays,” Applied
Mathematics and Computation, vol. 321, pp. 672–688, 2018.

[7] J. Jia, X. Huang, Y. Li, J. Cao, and A. Alsaedi, “Global sta-
bilization of fractional-order memristor-based neural

networks with time delay,” IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–13, 2019.

[8] S. Bhalekar and V. Daftardar-Gejji, “Fractional ordered Liu
system with time-delay,” Communications in Nonlinear Science
and Numerical Simulation, vol. 15, no. 8, pp. 2178–2191, 2010.

[9] D. Li and X. Zhang, “Impulsive synchronization of fractional
order chaotic systems with time-delay,” Neurocomputing,
vol. 216, pp. 39–44, 2016.

[10] A. Mohammadzadeh, S. Ghaemi, O. Kaynak, and
S. K. Mohammadi, “Robust predictive synchronization of
uncertain fractional-order time-delayed chaotic systems,” Soft
Computing, vol. 23, no. 16, pp. 6883–6898, 2019.

[11] Z. Wang, X. Huang, and G. Shi, “Analysis of nonlinear dy-
namics and chaos in a fractional order financial system with
time delay,” Computers & Mathematics with Applications,
vol. 62, no. 3, pp. 1531–1539, 2011.

[12] H. Liu and J. Yang, “Sliding-mode synchronization control for
uncertain fractional-order chaotic systems with time delay,”
Entropy, vol. 17, no. 6, pp. 4202–4214, 2015.

[13] S. Wang, Y. Yu, and G. Wen, “Hybrid projective synchro-
nization of time-delayed fractional order chaotic systems,”
Nonlinear Analysis: Hybrid Systems, vol. 11, pp. 129–138, 2014.

[14] V. Daftardar-Gejji, S. Bhalekar, and P. Gade, “Dynamics of
fractional-ordered Chen systemwith delay,” Pramana, vol. 79,
no. 1, pp. 61–69, 2012.

[15] X. Song, S. Song, and B. Li, “Adaptive synchronization of two
time-delayed fractional-order chaotic systems with different
structure and different order,” Optik, vol. 127, no. 24,
pp. 11860–11870, 2016.

[16] R. Luo, Y. Wang, and S. Deng, “Combination synchronization
of three classic chaotic systems using active backstepping
design,” Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 21, no. 4, Article ID 043114, 2011.

[17] A. Khan, “Combination synchronization of time-delay cha-
otic system via robust adaptive sliding mode control,” Pra-
mana, vol. 88, no. 6, p. 91, 2017.

[18] G. M. Mahmoud, A. A. Arafa, and E. E. Mahmoud, “On phase
and anti-phase combination synchronization of time delay
nonlinear systems,” Journal of Computational and Nonlinear
Dynamics, vol. 13, no. 11, p. 111001, 2018.

[19] H. Xi, Y. Li, and X. Huang, “Adaptive function projective
combination synchronization of three different fractional-
order chaotic systems,” Optik, vol. 126, no. 24, pp. 5346–5349,
2015.

[20] C. Jiang, S. Liu, and D. Wang, “Generalized combination
complex synchronization for fractional-order chaotic com-
plex systems,” Entropy, vol. 17, no. 8, pp. 5199–5217, 2015.

[21] H. Delavari and M. Mohadeszadeh, “Robust finite-time
synchronization of non-identical fractional-order hyper-
chaotic systems and its application in secure communication,”
IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 1,
pp. 228–235, 2019.

[22] Z. Alam, L. Yuan, and Q. Yang, “Chaos and combination
synchronization of a new fractional-order system with two
stable node-foci,” IEEE/CAA Journal of Automatica Sinica,
vol. 3, no. 2, pp. 157–164, 2016.

[23] S. He, K. Sun, and H. Wang, “Synchronisation of fractional-
order time delayed chaotic systems with ring connection,”Ce
European Physical Journal Special Topics, vol. 225, no. 1,
pp. 97–106, 2016.

[24] G. M. Mahmoud, T. M. Abed-Elhameed, and M. E. Ahmed,
“Generalization of combination-combination synchroniza-
tion of chaotic n-dimensional fractional-order dynamical

8 Complexity



systems,” Nonlinear Dynamics, vol. 83, no. 4, pp. 1885–1893,
2016.

[25] I. Podlubny, Fractional Differential Equations: An In-
troduction to Fractional Derivatives, Fractional Differential
Equations, to Methods of Ceir Solution and Some of Ceir
Applications, Academic Press, New York, USA, 1999.

[26] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional
Integrals and Derivatives: Ceory and Applications, Taylor &
Francis, New York, USA, 1993.
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�is paper focuses on the robust control of fractional-order economical chaotic system (FOECS) with parametric uncertainties
and external disturbances. �e dynamical behavior of FOECS is studied by numerical simulation, and circuit implementations of
FOECS are also given. Based on fractional-order Lyapunov stability theorems, a robust adaptive controller, which can guarantee
that all signals remain bounded and the tracking error tends to a small region, is designed. �e proposed method can be used to
control a large range of fractional-order systems with system uncertainties. Fractional-order adaptation laws are constructed to
update the estimation of adaptive parameters. Finally, the robustness and e�ectiveness of our control method are indicated by
simulation results.

1. Introduction

It has been shown that fractional-order nonlinear systems
(FONSs) have been investigated by a lot of engineers and
physicists because FONSs have wide potential applications in
many domains [1–3]. In fact, the fractional calculus
brings some advantages in modeling nonlinear systems. �e
fractional calculus can model real-world models in the whole-
time domain, and it has memory. It should be mentioned that
the integer-order one does not have these abilities. �us, the
fractional calculus will play a great role in modeling many
actual systems, for example, stochastic di�usion, molecular
spectroscopy, control theory, viscoelastic dynamics, quantum
mechanics, and many research results can be seen in [4–8]
and the references therein. On the contrary, it is well known
that chaotic system is a supremely intricate nonlinear system
that has been widely investigated due to its successful ap-
plications in signal processing, combinatorial optimization,
secure communication, andmany others. Especially, a chaotic
system has the property that it is sensitive to the changing of

initial conditions and the variations of the system parameters.
Consequently, a large number of meritorious results on
control and synchronization of fractional-order chaotic dy-
namics of nonlinear systems have become a hot research topic
and a lot of interesting results have been reported, for ex-
ample, in [9–13].

In the last two decades, the study of economical system
has become more and more popular [14–24]. A lot of works
have been done to describe properties of economical date
and the dynamic behavior of economical systems. Recently,
many researchers have made a lot of e�orts to investigate
main features of economic theory, e.g., overlapping waves of
structural changes or commercial demand and irregular and
erratic economic �uctuations. In fact, economists usually
consider a model that has a simple behavior and composed
of only endogenous variables. �us, they can consider ex-
ogenous shock variables based on weather variables, political
events, and other human factors. To describe the compli-
cated economical behavior, somemathematical models were
also introduced, for example, the van der Pol model [25] and
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the IS-LM model [26]. Actually, there are many kinds of
nonlinear systems that show chaotic behavior [27]. *us, if
economical systems show chaotic phenomenon, it is hard for
people to provide feasible economic decision making.*at is
to say, it is advisable to study and control economical chaotic
systems.

*e remainder of our work is organized as follows:
Section 2 presents the development of research in this field,
the existing research gaps, and the contributions of this
study. Section 3 gives some preliminaries about the frac-
tional calculus and the description and dynamical behavior
of fractional-order economical chaotic systems (FOECSs).
Section 4 presents the controller design procedure and the
stability analysis. Simulation results are shown in Section 5.
Finally, Section 6 gives a brief conclusion of this paper.

2. Literature Review

*e chaotic dynamics in economical systems were first
founded in 1985, and after that, many control and syn-
chronization methods for economical chaotic systems have
been reported [16, 28–30]. In [16], a robust adaptive con-
troller was given to control chaos in FOECSs, where the
matched system uncertainties were considered, whereas in
[16], the sign(·) function was used in the controller design
which will lead to chattering phenomenon. In order to
control a representative chaotic fractional finance system, an
adaptive fuzzy control approach was given in [31] where
fuzzy systems were used to approximate nonlinear func-
tions. A new aspect of robust synchronization of a FOECS
has been addressed in [32]. *e fixed points and chaotic and
periodic motions are given in [33], and dynamical behavior
of a FOECS with time delay was studied in [34]. Dadras and
Momeni [28] provided an adaptive control method to study
the synchronization problem of FOECSs based on a sliding
surface. *e system studied in [28] was known, but it is
impossible to accurately model an actual system in real life.
And in the controller design, in order to make the sliding
mode exist at every point of the sliding mode surface, the
control law was constructed by using the sign function so
that the chattering was unavoidable. In the final stability
analysis, the integer-order Lyapunov stability theory was
applied. *erefore, compared with [16], Dadras and
Momeni [28] did not completely study the fractional-order
economic chaotic system with the fractional-order stability
theory. It should be mentioned that in the above literature
considering the control or synchronization of FOECSs, the
system model should be known in advance. However, it is
well known that most systems suffer from system un-
certainties and disturbances in nature. In actual life, we
know that economical systems may suffer from weather
changes, the limited size of transport, political influence,
monetary policy, and many other human factors. Conse-
quently, we should take system uncertainties and external
disturbances into consideration when we investigate the
control of FOECSs.

Due to limitations of available theoretical tools for
analyzing the stability of nonlinear fractional systems, the
number of research studies in this field is still low in
comparison to that of integer-order systems. Based on the
above discussion, in this paper, we investigate the control
of FOECSs with unmatched system uncertainties and
external disturbances. *e fractional Lyapunov stability
method is utilized to design the robust controller and
analyze the system’s stability. Compared with some related
works, the main contribution of our work can be con-
cluded as follows. (1) A robust adaptive controller is
designed for FOECSs with unmatched system un-
certainties. *e system uncertainties model we considered
is representative, and many models used in the literature,
for example, in [16], can be seen as a special case of our
model. (2) *e stability analysis is proven strictly. *e
stability analysis method we used is very similar to that of
the integer-order systems. It should be pointed out that
our main result (see, *eorem 1) of our method provides
a framework which can be easily referenced to analyze
stability of fractional-order systems.

3. Preliminaries

3.1. FractionalCalculus. *e α-th fractional-order integral is

D
− α
t f(t) �

1
Γ(α)


t

0
(t − τ)

α− 1
f(τ)dτ, (1)

where Γ(·) represents Euler’s function.
Caputo’s α-th derivative is given as

D
α
t f(t) �

1
Γ(n − α)


t

0
(t − τ)

n− α− 1
f

(n)
(τ)dτ, (2)

where n − 1≤ α< n.
For fractional calculus, we give the following results to

facilitate the controller design as well as the stability
analysis.

Definition 1 (see [1]). *e Mittag-Leffler function is given as

Eα,β(z) � 
∞

k�0

zk

Γ(αk + β)
, (3)

with α, β> 0 and z ∈ C.
*e Laplace transform of (3) can be given as

L t
β− 1

Eα,β − at
α

(   �
sα− β

sα + a
, (4)

where a ∈ R+ is a constant.

Lemma 1 (see [1]). Let β ∈ C, 0< α< 2, μ ∈ R, and

πα
2
< μ<min π, πα{ }, (5)
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and then it holds

Eα,β(z) � − 
n

j�1

1
Γ(β − αj)zj

+ o
1

|z|n+1 , |z|⟶∞,

(6)

where n ∈ N and μ≤ |arg(z)|≤ π.

Lemma 2 (see [1]). Suppose that 0< α< 2 and β ∈ R. For
μ> 0 and (πα/2)< μ≤min π, πα{ }, it holds

Eα,β(z)


≤
a

1 +|z|
, (7)

with a> 0 and μ≤ |arg(z)|≤ π and |z|≥ 0.

Lemma 3 (see [35]). Let x(t) be a smooth function. Suppose
that x(t) � 0 is an equilibrium of

D
α
t x(t) � f(x), (8)

where f(x) is a continuous nonlinear function. If

g1(||x||)≤V(t, x(t))≤g2(‖x‖),

D
β
t V(t, x(t))≤ − g3(‖x‖),

(9)

with 0< β< 1 and g1(·), g2(·), and g3(·) being class-k
functions, then system (8) is asymptotically stable.

Lemma 4 (see [7, 36]). Suppose that x(t) ∈ Rn is a smooth
function. For 0< α< 1, it holds

1
2
D

α
t x

T
(t)x(t) ≤x

T
(t)D

α
t x(t). (10)

Lemma 5 (see [1]). Let x(t) ∈ C1[0, T] with T> 0 and
0< α≤ 1, then it holds

D
− α
t D

α
t x(t) � x(t) − x(0),

D
α
t D

− α
t x(t) � x(t).

(11)

In the following parts, we will use an algorithm to solve
fractional-order differential equations. A brief explanation
of this algorithm is given below.

Consider
Dα

t y(t) � f(t, y(t)),

y(0) � y0.
 (12)

Based on Lemma 5, (12) can be rewritten as

y(t) � y0 +
1
Γ(α)


t

0
(t − τ)

α− 1
f(τ, y(τ))dτ. (13)

Define h � (T/N), N ∈ Z, tn � nh, n � 0, 1, . . . , N.

*us, (13) is estimated as [1]

yh tn+1(  � y0 +
hα

Γ(α + 2)
f tn + 1, y

p

h tn+1(  

+
hα

Γ(α + 2)


n

j�0
aj,n+1f tj, yh tj  ,

(14)

with aj,n+1 � nα+1 − (n − α)(n + 1)α for j � 0 and aj,n+1 �

(n − j + 2)α+1 + (n − j)α+1 − 2(n − j + 1)α+1 for 1≤ j≤ n, y
p

h

(tn+1) � y0 +(1/Γ(α))
n
j�0bj,n+1f(tj, yh(tj)), p � α + 1, and

bj,n+1 � (hα/α)((n + 1 − j)α − (n − j)α).
*e approximation error can be obtained as max|y(tj) −

yh(tj)| � o(hp) [1].

3.2. @e FOECS. *e FOECS can be described by

Dα
t ζ1(t) � ζ3(t) + ζ2(t) − a( ζ1(t) + a1ζ4(t),

Dα
t ζ2(t) � 1 − bζ2(t) − ζ21(t) + a2ζ4(t),

Dα
t ζ3(t) � − ζ1(t) − cζ3(t) + a3ζ4(t),

Dα
t ζ4(t) � − ζ1(t)ζ2(t)ζ3(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

where 0< α≤ 1 is the fractional order, ζ1(t) represents the
interest rate of the market, ζ2(t) is the investment demand,
ζ3(t) corresponds to the price index, ζ4(t) is the confidence
of the market, a stands for the saving amount, b is the cost in
each investment, c represents the demand elasticity, and
a1, a2, and a3 are impact parameters. Let ζ(t) � [ζ1(t),

ζ2(t), ζ3(t), ζ4(t)]T be the state vector.
Let a � 2.10, b � 0.01, c � 2.61, a1 � 8.41, a2 � 6.40,

a3 � 2.21, and the initial condition be ζ(0) � [1.0, 5.0,

4.1, 3.0]T.
It has been shown in [37] that, under above parameters,

when α> 0.88, the system (15) exhibits chaotic behavior.
Figure 1 shows the chaotic behavior of system (15) for
α � 0.90.

Now, let us consider the circuit implementation of the
FOECS. Just as the results in [38], the approximation of
(1/s0.9) can be given by

1
s0.9 ≈

2.2675(s + 1.292)(s + 215.4)

(s + 0.01292)(s + 2.154)(s + 359.4)
. (16)

*us, an unit circuit is designed to implement the
function (1/s0.9) which is shown in Figure 2. Here, the chain
fractance consists of three resistors Ra, Rb, andRd and three
capacitors Ca, Cb, andCd. *e transfer function FC(s) of
this chain can be given by

FC(s) �
C0/Ca( 

s + 1/RaCa( 
+

C0/Cb( 

s + 1/RbCb( 
+

C0/Cd( 

s + 1/RdCd( 
.

(17)

Let C0 � 1μF; from (16) and (17), we can gain Ra �

62.84MΩ, Rb � 250 kΩ, Rd � 205 kΩ, Ca � 1.23 μF, Cb �

1.835 μF, Cd � 1.1 μF, and FC(t) ≈ (1/t0.9).
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To implement the FOECS, an electronic circuit is con-
structed by using R-C components, analog multipliers, and

operational amplifiers. *e circuit diagram is depicted in
Figure 3, whose mathematical equations are given as follows:

Dα
t ζ1(t) �

1
R6C1

ζ3(t) +
1

R1R2C1
ζ1(t)ζ2(t) +

1
R5R12C1

ζ4(t) −
1

R3R4C1
ζ1(t),

Dα
t ζ2(t) � 1 −

1
R7C2

ζ2(t) −
1

R8C2
ζ21(t) +

1
R9R13C2

ζ4(t),

Dα
t ζ3(t) � −

1
R10C3

ζ1(t) −
1

R11R14C3
ζ3(t) +

1
R15R16C3

ζ4(t),

Dα
t ζ4(t) � −

1
R17C4

ζ1(t)ζ2(t)ζ3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)
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Figure 1: Chaotic phenomenon of (15) with α � 0.92.

Ra

Ca Ca Cd

Rb Rd

Figure 2: Unit circuit for realizing (1/s0.9).
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where C1, C2, andC3 are three fractional capacitors, and
they are implemented by Ra, Rb, Rd, Ca, Cb, andCd. In order
to satisfy the FOECS, we choose the values of resistors and
capacitors as R1 � R2 � 1 kΩ, R3 � R5 � 4 kΩ, R4 � 120Ω,

R6 � R8 � R10 � R17 � 1MΩ, R7 � 100MΩ, R16 � 90Ω,

R9 � R11 � R12 � 30Ω, R13 � R15 � 5 kΩ, R14 � 12 kΩ, and
C1 � C2 � C3 � C4 � 1μF.

Remark 1. In the circuit implementation of the FOECS, the
order of the system is set as α � 0.9. Noting that the system
parameters in (15) are very hard to be approximated by the
circuit, the parameters in (18) are different with those in (15)
(in fact, we used the approximate quantity of the parameters
in (15)).

Remark 2. Based on [18], we know that the financial vari-
ables of financial systems could have long memory, such as
stock market prices, gross domestic product, interest rates,
and foreign exchange rates. Compared with the integer-
order calculus, the fractional-order calculus introduced into
the system (15) can more accurately describe the long-term
memory effect in the financial system.

4. Controller Design and Stability Analysis

Taking uncertain parameters and disturbances into con-
sideration, the controlled FOECS can be described as

Dα
t ζ1(t) � ζ3(t) + ζ2(t) − a( ζ1(t) + a1ζ4(t) + u1(t) + d1(t) + φT

1 (ζ(t))θ1,

Dα
t ζ2(t) � 1 − bζ2(t) − ζ21(t) + a2ζ4(t) + u2(t) + d2(t) + φT

2 (ζ(t))θ2,

Dα
t ζ3(t) � − ζ1(t) − cζ3(t) + a3ζ4(t) + u3(t) + d3(t) + φT

3 (ζ(t))θ3
Dα

t ζ4(t) � − ζ1(t)ζ2(t)ζ3(t) + u4(t) + d4(t) + φT
4 (ζ(t))θ4,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

where ui(t) ∈ R represents the controller, di(t) ∈ R denotes
the external disturbance, φi(ζ(t)): R4↦Rmi is a known
bounded nonlinear function, and θi ∈ Rmi is an unknown
constant vector with i � 1, 2, 3, 4 and mi ∈ N.

Remark 3. In fact, the economical systems usually suffer
from system uncertainties and unknown disturbances,
for example, unknown price and cost fluctuation, mar-
ket’s human intervention, and system model un-
certainties. Note that we assume that φ1(·), φ2(·),φ3(·),
and φ4(·) can have different dimensions, and it is easy to
know that the uncertain terms considered in system (19)

stand for a large range of system uncertainties. *us, the
economical model considered in some recent literature,
for example, [10, 16, 18, 37–39], is a special case of our
model (19).

Our objective here is to design a proper controller ui(t)

such that the state vector ζ(t) could track the desired signal
ζd(t) � [ζd1(t), ζd2(t), ζd3(t), ζd4(t)]T ∈ R4. *e tracking
error is defined as e(t) � [e1(t), e2(t), e3(t), e4(t)]T �

ζ(t) − ζd(t). To proceed, we need the following assumption.

Assumption 1. *e nonlinear function di(t) is bounded, i.e.,
there exists a constant d∗i > 0 such that
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Figure 3: Simulation circuit of the FOECS.
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di(t)


≤d
∗
i . (20)

Assumption 2. *e referenced signal ζd(t) is a known
continuous bounded function and has bounded known
continuous first-order derivative.

Lemma 6 (see [40]). If a is a positive constant, it holds
|x| − x tanh(x/a)≤ 0.2785a � a′.

According to the definition of e(t), it follows from (15)
that

Dα
t e1(t) � ζ3(t) + ζ2(t) − a( ζ1(t) + a1ζ4(t) + u1(t) + φT

1 (ζ(t))θ1 − Dα
t ζd1(t) + d1(t),

Dα
t e2(t) � 1 − bζ2(t) − ζ21(t) + a2ζ4(t) + u2(t) + d2(t) − Dα

t ζd2(t) + φT
2 (ζ(t))θ2,

Dα
t e3(t) � − ζ1(t) − cζ3(t) + a3ζ4(t) + u3(t) + d3(t) + φT

3 (ζ(t))θ3 − Dα
t ζd3(t),

Dα
t e4(t) � − ζ1(t)ζ2(t)ζ3(t) + u4(t) + d4(t) + φT

4 (ζ(t))θ4 − Dα
t ζd4(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

*us, the controller can be designed as

u1(t) � − k1e1(t) − ζ3(t) − ζ2(t) − a( ζ1(t) − a1ζ4(t) − φT
1 (ζ(t))θ1(t) + Dα

t ζd1(t) − tanh
e1(t)

a1
 ,

u2(t) � − k2e2(t) + ζ21(t) − a2ζ4(t) − tanh
e2(t)

a2
  − φT

2 (ζ(t))θ2(t) + Dα
t ζd2(t) − 1 + bζ2(t),

u3(t) � − k3e3(t) + ζ1(t) − tanh
e3(t)

a3
  − φT

3 (ζ(t))θ3(t) + Dα
t ζd3(t) + cζ3(t) − a3ζ4(t),

u4(t) � − k4e4(t) + ζ1(t)ζ2(t)ζ3(t) − tanh
e4(t)

a4
  − φT

4 (ζ(t))θ4(t) + Dα
t ζd4(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where ki > 0 is a design parameter, ai > 0 is a constant, and
d
∗
i (t) and θi(t) are the estimation of di

∗ and θi, respectively.

Remark 4. In this work, an adaptive controller (22) which
seems complicated is designed. In this controller, all inputs,
i.e., ui(t), i � 1, 2, 3, 4, have the same structure. Take u1(t) as
an example; it contains four parts, i.e., a nonlinear function
− ζ3(t) − (ζ2(t) − a)ζ1(t) − a1ζ4(t) consisting of system
variables, a feedback term of the tracking error
− k1e1(t) − tanh(e1(t)/a1), an adaptive term − φT

1 (ζ(t))θ1(t),
and a smooth function of the referenced signal Dα

t ζd1(t). It
can be observed that all inputs are easy to be implemented.

Substituting (22) into (21) gives

Dα
t ei(t) � − kiei(t) + di(t) − tanh

ei(t)

ai

  − ϕT
i (ζ(t))θi(t),

(23)

with i � 1, 2, 3, 4, and
θi(t) � θi(t) − θi, (24)

is the estimation error of the unknown constant vector θi.

Multiplying ei(t) to both sides of (23), and according to
Assumption 1 and Lemma 6, we have

ei(t)D
α
t ei(t) � − kie

2
i (t) + ei(t)di(t) − ei(t)tanh

ei(t)

ai

 

− ei(t)φT
i (ζ(t))θi(t)

≤ − kie
2
i (t) + ei(t)


d
∗
i − ei(t)tanh

ei(t)

ai

 

− ei(t)φT
i (ζ(t))θi(t)

≤ − kie
2
i (t) + ei(t)


 − ei(t)tanh

ei(t)

ai

 

− ei(t)φT
i (ζ(t))θi(t)

� − kie
2
i (t) − ai

′ − ei(t)φT
i (ζ(t))θi(t),

(25)

where ai
′ > 0.
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Let the fractional-order adaptation laws be

D
α
t θ̂i(t) � σi1ei(t)φ

T
i (ζ(t)) − σi1σi2θ̂i, (26)

D
α
t d̂
∗
i (t) �

λi1
d̂
∗
i (t)

ai′ − λi1λi2d̂
∗
i (t), (27)

with i � 1, 2, 3, 4, λi1, λi2, σi1, σi2 > 0, and d̃
∗
i (t) � d̂

∗
i (t) − d

∗
i

is the estimation error of the unknown constant d∗i . �e
structure of the proposed method is shown in Figure 4.

Based on above discussion, we can give the following
theorem.

Theorem 1. Based on Assumptions 1 and 2, the controller
(22) of the system (19) together with the fractional-order
adaptation laws (26) and (27) can guarantee that all variables
remain bounded and the tracking error e(t) converges to
a small neighborhood of the origin.

Proof. Let the Lyapunov function be

V(t) �
1
2
∑
4

i�1
e2i (t) +

1
2
∑
4

i�1

1
σi1

θ̃
T
i (t)θ̃i(t) +

1
2
∑
4

i�1

1
λi1
d̃
∗2
i (t).

(28)

From (25)–(27) and Lemma 4, one has

D
α
t V(t) �

1
2
∑
4

i�1
D

α
t e

2
i (t) +

1
2
∑
4

i�1

1
σi1

D
α
t θ̃
T
i (t)θ̃i(t)

+
1
2
∑
4

i�1

1
λi1

D
α
t d̃
∗2
i (t)

≤ ∑
4

i�1
ei(t)D

α
t ei(t) +∑

4

i�1

1
σi1

θ̃
T
i (t)D

α
t θ̃i(t)

+∑
4

i�1

1
λi1
d̃
∗
i (t)D

α
t d̃
∗
i (t)

� − ∑
4

i�1
kie

2
i (t) − ∑

4

i�1
ei(t)φ

T
i (ζ(t))θ̃i(t)

+∑
4

i�1

1
σi1

θ̃
T
i (t)D

α
t θ̃i(t) +∑

4

i�1

1
λi1
d̃
∗
i (t)D

α
t d̃
∗
i (t) − ∑

4

i�1
ai′.

(29)

It follows from (29) that

D
α
t V(t)≤ − ∑

4

i�1
ai′ − ∑

4

i�1
ei(t)ϕ

T
i (ζ(t))θ̃i(t) +∑

4

i�1
θ̃
T
i (t)

· ei(t)ϕ
T
i (ζ(t)) − σi2θ̂i(t)[ ] − ∑

4

i�1
kie

2
i (t)

+∑
4

i�1
d̃
∗
i (t)

ai′

d̃
∗
i (t)

− λi2d̂
∗
i (t) 

� − ∑
4

i�1
kie

2
i (t) − ∑

4

i�1
λi2d̃
∗
i (t)d̂
∗
i (t) − ∑

4

i�1
σi2θ̃

T
i (t)θ̂i(t)

� − ∑
4

i�1
kie

2
i (t) − ∑

4

i�1
λi2d̃
∗
i (t) d̃

∗
i (t) + d

∗
i( )

− ∑
4

i�1
σi2θ̃

T
i (t) θ̃i(t) + θi( )

� − ∑
4

i�1
kie

2
i (t) − ∑

4

i�1
λi2d̃
∗2
i (t) − ∑

4

i�1
λi2d̃
∗
i (t)d
∗
i

− ∑
4

i�1
σi2θ̃

T
i (t)θi − ∑

4

i�1
σi2θ̃

T
i (t)θ̃i(t)

≤ − ∑
4

i�1
kie

2
i (t) − ∑

4

i�1

λi2
2
d̃
∗2
i (t) +∑

4

i�1

λi2
2
d∗2i

+∑
4

i�1

σi2
2
θTi θi − ∑

4

i�1

σi2
2
θ̃
T
i (t)θ̃i(t)

≤ − k∑
4

i�1
e2i (t) −

λ2
2
i �∑

4

1
d̃
∗2
i (t)

−
σ2
2
∑
4

i�1
θ̃
T
i (t)θ̃i(t) + A

≤ − BV(t) + A,
(30)

where k � min1≤i≤4 ki{ }, σ2 � min1≤i≤4 λi2{ }, σ2 � min1≤i≤4
σi2{ }, B � min 2 k, λ2λ1, σ2σ1{ }, λ1 � max1≤i≤4 λi1{ }, σ1 �
max1≤i≤4 σi1{ }, and A � ∑4

i�1(λi2/2)d
∗2
i +∑4

i�1(σi2/2)θ
T
i θi.

According to (30), we have

D
α
t V(t) + y(t) � − BV(t) + A, (31)

where y(t)> 0.

Adaptive robust controller (23)

Controlled system (20)Referenced
signal ζd(t)

ζ(t)

ζd(t) e(t)

–

+

Fractional adaptation laws
(27)

(28)

Dt
αθi(t) = σi1ei(t)φiT(ζ(t)) – σi1σi2θi(t)

Dt
αd∗i(t) = αi′ – λi1λi2θi(t)

d∗i(t)
λi1

Figure 4: �e structure of the proposed method.
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*e Laplace transform of (31) is given as

V(s) �
sα− 1

sα + B
V(0) +

A

s sα + B( )
−

Y(s)

sα + B

�
sα− 1

sα + B
V(0) +

sα− (1+α)A

sα + B( )
−

Y(s)

sα + B
.

(32)

According to (4), we can solve (32) as

V(t) � V(0)Eα,1 − Bt
α

(  + At
α
Eα,1+α − Bt

α
( 

− y(t)∗ t
− 1

Eα,0 − Bt
α

( ,
(33)

where ∗ represents the convolution operator. Noting
t− 1Eα,0(− Btα)≥ 0 and y(t) ≥ 0, we have y(t)∗ t− 1Eα,0
(− Btα)≥ 0.

*en, we obtain

V(t)≤V(0)Eα,1 − Bt
α

(  + At
α
Eα,1+α − Bt

α
( . (34)

Because arg(− Btα) � − π, | − Btα|≥ 0, and 0< α≤ 1,
based on Lemma 2, it holds

Eα,1 − Bt
α

( 


≤
C

1 + Btα
, (35)

where C> 0. *en, we have

lim
t⟶∞

V(0)Eα,1 − Bt
α

(  � 0. (36)

*at is to say, with respect to any μ> 0, one can find t1 > 0 so
that

V(0)Eα,1 − Bt
α

( < μ. (37)

It follows from Lemma 1 that

t
α
Eα,α+1 − Bt

α
( ≤

A

B
+ μ. (38)

Noting that we can find proper design parameters such
that (A/B)≤ μ, according to (34), (37), and (38), we know

V(t) < 3μ. (39)

Based on the definition of V(t), it is easy to know that the
boundedness of all signals can be guaranteed. On the
contrary, the tracking error can be arbitrarily small. □

Remark 5. In this paper, we design adaptation laws (26) and
(27) to update θi(t) and d

∗
i (t), respectively. *ese laws

update the parameters by using fractional differential
equations. In fact, this kind of laws can also be seen in some
literature, e.g., in [41–44]. However, in the abovementioned
literature, the fractional adaptation laws only have one term,
i.e., the positive term. Noting that the fractional derivatives
of the updated parameters are greater than zero, and thus,
according to the properties of the fractional derivative, the
updated parameters are monotonically increasing. *at is to
say, the boundedness of the updated parameters cannot be
guaranteed. However, in this work, by introducing the
second term − σi1σi2

θi in (26), we can guarantee the
boundedness of the updated parameter.

Remark 7. In the proof of *eorem 1, we can see that
‖e(t)‖≤

��
6μ


. To drive the tracking error e(t) as small as

possible, we can set (A/B) as small as possible. To obtain this
objective, according to the form of A and B, we can choose
large ki, λi1, and σi1 and small σi2 and λi2.

Remark 8. To analyze the fractional-order system’s stability,
a commonly used Lyapunov function is V(t) � eT(t)e(t). It
should be emphasized that its fractional derivative is [45]

D
α
t V(t) � 

∞

i�1

Γ(1 + α)

Γ(1 + i)Γ(1 − i + α)
D

i
te(t)D

α− i
t e(t)

+ 2e
T
(t)D

α
t e(t).

(40)

In fact, this complicated form is very hard to be used.
However, in this paper, by using our method, it is not
necessary to use (40) in the stability analysis.

5. Simulation Studies

In the simulation, the parameters are a � 2.10, b � 0.01, c �

2.61, a1 � 8.41, a2 � 6.40, and a3 � 2.21 and the distur-
bances are chosen as d1(t) � cos(ζ1(t)), d2(t) � cos(ζ2
(t)), d3(t) � cos(ζ3(t)), and d4(t) � cos(ζ4(t)) which are
activated when t � 5. Let the initial condition be ζ(0) �

[1.5, − 2, 3, − 3]T. *e fractional order is α � 0.95.
*e parametric uncertain vectors are chosen as

θ1(t) � [1.1, − 0.5, 2, 1.5]T, θ3(t) � [2, 1, − 0.5]T, and θ2(t) ≡
θ4(t) ≡ 0, and the basis functions are chosen as φ1(ζ(t)) �

[ζ1(t), ζ2(t), ζ3(t), ζ4(t)]T and φ3(ζ(t)) � [ζ1(t)sin ζ2(t),

cos ζ3(t), sin ζ4(t)]T.
*e controller design parameters are given as ki �

0.2, λi1 � σi1 � 5, and λi2 � σi2 � 0.005 with i � 1, 2, 3, 4.
First, let the desired signal be ζd(t) ≡ [0, 0, 0, 0]T. *e

simulation results are given in Figures 5–9. Figure 5 shows
the time response of the state variables ζ1(t), ζ2(t),

ζ3(t), and ζ4(t). We can see these variables tend to zero in
about 2 s and stay in a very small neighborhood of zero
thereafter. *e control inputs are depicted in Figure 6. *e
estimations for θ1(t) as well θ3(t) are given in Figures 8 and
9, respectively. According to Figures 7–9, we can see that the
boundedness of the updated parameters can be guaranteed,
just like the results in *eorem 1 and the statements in
Remark 5. *ese simulation results indicate that our control
method has satisfactory control performance and good
robustness.

Let the desired signal be ζd(t) � [cos t, sin t, cos t,

sin t]T. *e other parameters and values are chosen as the
same as above. *e simulation results can be seen in
Figures 10–12.

Remark 9. *e simulation results of [16] are that the
designed controllers were activated at t� 30 s, whereas in our
paper, the proposed controllers are activated at about t� 2 s.
Compared with the simulation results in [16], it is not
difficult to see that the controller we designed does not use
the symbolic function cited in [16]. *erefore, there is no
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chattering phenomenon in our simulation results. Although
arctan (10·) was used to approximate sign(·) in the simu-
lation of [16], the controller designed by us can work more
effectively in terms of comparing the convergence rate of
simulation results. Since we directly use the proposed
controller to obtain simulation results, our simulation re-
sults can more effectively prove the theory of this paper.

6. Conclusions

In this paper, an adaptive robust control method of FOECSs
subject to unmatched system uncertainties as well as external
disturbances is investigated. It has been shown by our work
that (1) the quadratic Lyapunov function can be used in the
stability analysis of FOECSs based on the fractional stability
criterion and (2) the parameters can be updated by frac-
tional-order differential equations. *e proposed method
gives an easy way to analyze the stability of fractional-order
systems. Simulation results have verified the feasibility of our
control method. On the contrary, it is assumed that the
unknown parameter is a constant vector, i.e., when the

uncertain term is time-varying, the method presented in this
paper is powerless. In addition, four control inputs are used,
which reduce the real-world applications of our approach.
How to solve aforementioned problems is one of our future
research directions.
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“Fractional order financial models for awareness and trial
advertising decisions,” Computational Economics, vol. 48,
no. 4, pp. 555–568, 2016.

[21] W. Gu, Y. Yu, and W. Hu, “Artificial bee colony algorithm
based parameter estimation of fractional-order chaotic system
with time delay,” IEEE/CAA Journal of Automatica Sinica,
vol. 4, no. 1, pp. 107–113, 2017.

[22] Z. Ke, W. Zhi-Hui, G. Li-Ke, S. Yue, and M. Tie-Dong,
“Robust sliding mode control for fractional-order chaotic
economical system with parameter uncertainty and external
disturbance,” Chinese Physics B, vol. 24, no. 3, p. 30504, 2015.

[23] A. Hajipour, M. Hajipour, and D. Baleanu, “On the adaptive
sliding mode controller for a hyperchaotic fractional-order
financial system,” Physica A: Statistical Mechanics and Its
Applications, vol. 497, pp. 139–153, 2018.

[24] J. Chen, J. Mi, and Y. Lin, “A graph approach for fuzzy-rough
feature selection,” Fuzzy Sets and Systems, 2019.

[25] K. Sasakura, “On the dynamic behavior of schinasi’s business
cycle model,” Journal of Macroeconomics, vol. 16, no. 3,
pp. 423–444, 1994.

[26] L. De Cesare and M. Sportelli, “A dynamic is-lm model with
delayed taxation revenues,” Chaos, Solitons and Fractals,
vol. 25, no. 1, pp. 233–244, 2005.

[27] M. S. Tavazoei and M. Haeri, “Chaotic attractors in in-
commensurate fractional order systems,” Physica D: Non-
linear Phenomena, vol. 237, no. 20, pp. 2628–2637, 2008.

[28] S. Dadras and H. R. Momeni, “Control of a fractional-order
economical system via sliding mode,” Physica A: Statistical
Mechanics and Its Applications, vol. 389, no. 12, pp. 2434–
2442, 2010.

[29] N. Wang, M. J. Er, J.-C. Sun, and Y.-C. Liu, “Adaptive robust
online constructive fuzzy control of a complex surface vehicle
system,” IEEE Transactions on Cybernetics, vol. 46, no. 7,
pp. 1511–1523, 2016.

[30] R. Babaghasabha, M. A. Khosravi, and H. D. Taghirad,
“Adaptive robust control of fully-constrained cable driven
parallel robots,” Mechatronics, vol. 25, pp. 27–36, 2015.

[31] I. Pan, A. Korre, S. Das, and S. Durucan, “Chaos suppression
in a fractional order financial system using intelligent
regrouping pso based fractional fuzzy control policy in the
presence of fractional Gaussian noise,” Nonlinear Dynamics,
vol. 70, no. 4, pp. 2445–2461, 2012.

[32] A. Jajarmi, M. Hajipour, and D. Baleanu, “New aspects of the
adaptive synchronization and hyperchaos suppression of
a financial model,” Chaos, Solitons and Fractals, vol. 99,
pp. 285–296, 2017.

[33] W.-C. Chen, “Nonlinear dynamics and chaos in a fractional-
order financial system,” Chaos, Solitons and Fractals, vol. 36,
no. 5, pp. 1305–1314, 2008.

[34] Z. Wang, X. Huang, and G. Shi, “Analysis of nonlinear dy-
namics and chaos in a fractional order financial system with
time delay,” Computers and Mathematics with Applications,
vol. 62, no. 3, pp. 1531–1539, 2011.

12 Complexity



[35] Y. Li, Y. Chen, and I. Podlubny, “Mittag–leffler stability of
fractional order nonlinear dynamic systems,” Automatica,
vol. 45, no. 8, pp. 1965–1969, 2009.

[36] N. Aguila-Camacho, M. A. Duarte-Mermoud, and
J. A. Gallegos, “Lyapunov functions for fractional order
systems,” Communications in Nonlinear Science and Nu-
merical Simulation, vol. 19, no. 9, pp. 2951–2957, 2014.

[37] C. Huang and J. Cao, “Active control strategy for synchro-
nization and anti-synchronization of a fractional chaotic fi-
nancial system,” Physica A: Statistical Mechanics and Its
Applications, vol. 473, pp. 262–275, 2017.

[38] V.-T. Pham, S. T. Kingni, C. Volos, S. Jafari, and
T. Kapitaniak, “A simple three-dimensional fractional-order
chaotic system without equilibrium: dynamics, circuitry
implementation, chaos control and synchronization,” AEU-
international Journal of Electronics and Communications,
vol. 78, pp. 220–227, 2017.

[39] P. Balasubramaniam, P. Muthukumar, and K. Ratnavelu,
“*eoretical and practical applications of fuzzy fractional
integral sliding mode control for fractional-order dynamical
system,” Nonlinear Dynamics, vol. 80, no. 1-2, pp. 249–267,
2015.

[40] Y. Wang, L. Cao, S. Zhang, X. Hu, and F. Yu, “Command
filtered adaptive fuzzy backstepping control method of un-
certain non-linear systems,” IET Control @eory and Appli-
cations, vol. 10, no. 10, pp. 1134–1141, 2016.

[41] H. Liu, S. Li, J. Cao, G. Li, A. Alsaedi, and F. E. Alsaadi,
“Adaptive fuzzy prescribed performance controller design for
a class of uncertain fractional-order nonlinear systems with
external disturbances,” Neurocomputing, vol. 219, pp. 422–
430, 2017.

[42] N. Bigdeli and H. A. Ziazi, “Finite-time fractional-order
adaptive intelligent backstepping sliding mode control of
uncertain fractional-order chaotic systems,” Journal of the
Franklin Institute, vol. 354, no. 1, pp. 160–183, 2017.

[43] K. M. Owolabi, “Robust and adaptive techniques for nu-
merical simulation of nonlinear partial differential equations
of fractional order,” Communications in Nonlinear Science
and Numerical Simulation, vol. 44, pp. 304–317, 2017.

[44] H. Liu, Y. Pan, S. Li, and Y. Chen, “Adaptive fuzzy back-
stepping control of fractional-order nonlinear systems,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
vol. 47, no. 8, pp. 2209–2217, 2017.

[45] G. Li, J. Cao, A. Alsaedi, and B. Ahmad, “Limit cycle oscil-
lation in aeroelastic systems and its adaptive fractional-order
fuzzy control,” International Journal of Machine Learning and
Cybernetics, vol. 9, no. 8, pp. 1297–1305, 2018.

Complexity 13



Research Article
Master-Slave Synchronization of Chaotic Φ6 Duffing
Oscillators by Linear State Error Feedback Control

Ke Ding 1,2

1School of Information Management, Jiangxi University of Finance and Economics, Nanchang 330013, China
2Jiangxi E-Commerce High Level Engineering Technology Research Centre, Nanchang 330013, China

Correspondence should be addressed to Ke Ding; keding@jxufe.edu.cn

Received 18 July 2019; Accepted 10 September 2019; Published 30 October 2019

Guest Editor: Viet-�anh Pham

Copyright © 2019 Ke Ding. �is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

�is paper is concerned with master-slave synchronization of chaotic Φ6 Du�ng oscillators by using linear state error feedback
control. Compared with some existing methods and results, this paper estimates the bound of the �rst trajectory (variable) of the
controlled slave system and uses this bound to derive synchronization criteria for two chaotic Φ6 Du�ng oscillators. �e ef-
fectiveness of synchronization criteria is illustrated by three simulation examples.

1. Introduction

Synchronization of chaotic systems has received consider-
able attention due to its theoretical importance and practical
applications in secure communication and signal processing
(see for example, [1–31] and references therein).

As is well known, some models for damped and driven
oscillators, such as sti�ening springs, beam bulking, and
superconducting Josephson parametric ampli�ers, can be
described as Φ6 Du�ng oscillators which have been widely
used in mechanical and electrical systems [1, 9–11, 32–36].
With proper parameters, Du�ng oscillators have exhibited
chaotic behaviors. For chaotic Φ6 Du�ng oscillators, Njah
[10, 11] used the active control to achieve master-slave
synchronization, in which the active control removed all
nonlinear terms of the error system. For chaotic Φ4 Du�ng
oscillators which is the special case ofΦ6 Du�ng oscillators,
synchronization criteria were derived by the active control in
[32–34, 37] and [35] in which the linear error system and
synchronization criteria were derived. It should be pointed
out that chaoticΦ6 Du�ng oscillators are nonlinear systems
in which the nonlinear terms play a key role in the gen-
eration of chaotic attractors. �us, how to use the nonlinear
properties of the error system and how to use linear state
error feedback control to derive synchronization criteria for

chaotic Φ6 Du�ng oscillators is one motivation of this
paper.

�e bounds of trajectories of the master system and slave
system have been widely used to derive the synchronization
criteria for chaotic systems (see for example, [36, 38–40]).
But it was di�cult to estimate the bounds of slave systems.
�erefore, how to derive the bound of some (not all) tra-
jectories of the controlled slave system before the master
system and the slave system achieve synchronization and
how to use the derived bound to achieve synchronization
criteria for the chaotic Φ6 Du�ng oscillators is another
motivation of this paper.

In this paper, we will construct a master-slave syn-
chronization scheme for chaotic Φ6 Du�ng oscillators by
using linear state error feedback control. We will use the
linear state error feedback control to derive the bound of the
�rst trajectory of the slave system before the master system
and the slave system achieve synchronization and use this
bound to obtain synchronization criteria. Moreover, we will
use three examples to illustrate the e�ectiveness of our
synchronization criteria.

�e rest of this paper is as follows. In Section 2, the
related problems and concepts will be introduced. In Section
3, the synchronization results for chaotic Φ6 Du�ng os-
cillators will be given. As applications, the synchronization

Hindawi
Complexity
Volume 2019, Article ID 3637902, 10 pages
https://doi.org/10.1155/2019/3637902

mailto:keding@jxufe.edu.cn
https://orcid.org/0000-0001-5090-1139
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/3637902


results for classic Φ4 Duffing oscillators and parametrically
excited Φ4 Duffing oscillators will be provided in Section 4.
In Section 5, three simulation results will be given. Con-
clusions and future works will be presented in Section 6.

2. Problem Statement

,e mathematical model of Φ6 Duffing oscillator is

€x(t) � − c _x(t) − dx(t) − lx
3
(t) − ax

5
(t) + q cosωt, (1)

where x(t) is the displacement of rotation angle; _x(t) �

dx(t)/dt; €x(t) � d2(x(t))/dt2; a, c, d, l, q, and ω are con-
stants; q cosωt is the excitation; c _x(t) is the linear damping
term; dx(t) + lx3(t) is a nonlinear force; and the initial
condition is x(0) � x0 and _x(0) � x0′. ,e potential of (1) is
W6(x) � (1/2)dx2(t) + (1/4)lx4(t) + (1/6)ax6(t), which is
the reason why system (1) is called Φ6 Duffing oscillator.

Remark 1. If a � 0, system (1) reduces to the following Φ4
Duffing oscillator:

€x(t) � − c _x(t) − dx(t) − lx
3
(t) + q cosωt, (2)

with the potential W4(x) � (1/2)dx2(t) + (1/4)lx4(t).

Let y1(t) � x(t) and y2(t) � _y1(t). ,e non-
autonomous system (1) can be written as the following
dimensionless system:

_y1(t) � y2(t),

_y2(t) � − dy1(t) − cy2(t) + g y1(t)(  + p(t),
 (3)

where

p(t) � q cosωt,

g y1(t)(  � − ly
3
1(t) − ay

5
1(t).

(4)

,e initial condition of system (3) is given by
y1(0) � y10, y2(0) � y20.

Let y(t) �
y1(t)

y2(t)
  ∈ R2. Write the system described

by (3) as
_y(t) � Ay(t) + φ(y(t)) + r(t), (5)

where

A �
0 1

− d − c
 ,

r(t) �
0

p(t)
 ,

φ(y(t)) �
0

g y1(t)( 
 .

(6)

Let z(t) �
z1(t)

z2(t)
  ∈ R2. We can construct the fol-

lowing synchronization scheme for the system described

by (5):

M : _y(t) � Ay(t) + φ(y(t)) + r(t), (7)

S : _z(t) � Az(t) + φ(z(t)) + r(t) + u(t), (8)

C : u(t) � K(y(t) − z(t)), (9)

with the master system described byM and the slave system

described by S, where u(t) �
u1(t)

u2(t)
  ∈ R2 is the con-

troller and K �
k1 1
k2 k3

  in which k1 > 0, k2, and k3 are

gains which can be determined later. ,e initial condition of
system (8) is given by z1(0) � z10 and z2(0) � z20.

Defining a signal e(t) � y(t) − z(t) �
e1(t)

e2(t)
  ∈ R2,

one can obtain the error system

_e1(t) � − k1e1(t),

_e2(t) � − k2 + d( e1(t) − k3 + c( e2(t) + g y1(t)( 

− g z1(t)( .

⎧⎪⎪⎨

⎪⎪⎩

(10)

In view of differential mean theorem, one can have

g y1(t)(  − g z1(t)(  � g′(ξ(t)) y1(t) − z1(t)( , (11)

where

g′(ξ(t)) �
dg(ρ)

dρ

ρ�ξ(t)

� − 3lξ2(t) + 5aξ4(t) , (12)

for ξ(t) ∈ (min y1(t), z1(t) , max y1(t), z1(t) ), which
results in

_e(t) � K(t)e(t), (13)

where

K(t) �
− k1 0

− k2 + d(  + g′(ξ(t)) − k3 + c( 
 . (14)

,e initial condition of system (10) is
e1(0) � y10 − z10, e2(0) � y20 − z20.

Notice that the master system described by (7) is chaotic.
,us, there exist two scales m1 > 0 and m2 > 0 for any y10 and
y20 in the attracting area such that

yi(t)


≤mi, i � 1, 2, ∀t> 0. (15)

From the first equation of system described by (10), we
have

e1(t) � y10 − z10 exp − k1t( , (16)

which indicates that

z1(t) � y1(t) − y10 − z10 exp − k1t( . (17)

From the equation described by (17), we have
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z1(t)


≤ y1(t)


 + y10 − z10





≤m1 + y10 − z10



, ∀t> 0, k1 > 0.
(18)

From inequalities (15) and (18) and equation (11), there
exists a scale λ> 0 such that

g′(ξ(t))


≤ λ, (19)

where

λ � (3|l| + 5|a|σ)σ,

σ � max ζ2(t) ,

∀ζ(t) ∈ min y1(t), z1(t) , max y1(t), z1(t) ( .

(20)

Remark 2. Since the bounds of y1(t) and z1(t) for any t> 0
are given by (15) and (18), respectively, and g(·) and g′(·)

are defined and differentiable, the bound of |g′(ξ(t))| for
ξ(t) ∈ (min y1(t), z1(t) , max y1(t), z1(t) ) can be esti-
mated by (19).

Remark 3. For the cascaded system described by
_ζ1(t) � ϕ1 t, ζ1(t)(  + χ t, ζ1(t), ζ2(t)( , (21)

_ζ2(t) � ϕ2 t, ζ2(t)( , (22)

where ϕ1,ϕ2, and χ are smooth, the origin (0, 0) is uniformly
globally asymptotically stable if _ζ1(t) � ϕ1(t, ζ1(t)) and
_ζ2(t) � ϕ2(t, ζ2(t)) are uniformly globally asymptotically
stable and the solutions of (21) and (22) are uniformly
globally bounded (Lemma 2, [41]). ,e system described by
(10) can be regarded as a cascaded system. Although, it is
easy to obtain the conditions to ensure that _ζ1(t) � − k1e1(t)

and _ζ2(t) � − (k3 + c)e2(t) are uniformly globally asymp-
totically stable, we cannot directly claim that the solutions of
(10) are uniformly globally bounded. ,us, we cannot di-
rectly use Lemma 2 of [41] to study the stability of the error
system (10).

,e purpose of this paper is to investigate the master-
slave synchronization for the system described by (1) and to
find the controller gain K, such that the system described by
(10) is globally asymptotically stable, which indicates that the
system described by (7)–(9) synchronizes.

3. Main Results: Master-Slave
Synchronization Criteria

In this section, we give some stability criteria for the error
system described by (10), which ensures that the system
described by (7)–(9) synchronizes.

Choosing the following Lyapunov function:

V(t) � e
T
(t)Pe(t), (23)

where P �
p11 p12
p12 p22

  ∈ R2×2 is a real positive matrix, we

state and establish the following result.

Proposition 1. 4e error system described by (10), (15), and
(19) is globally asymptotically stable, i.e., the master system
described by (7) and the slave system described by (8) achieve
synchronization if

Θ1 � − k2 + d( p12 − p11k1 + λ p12


< 0,

Θ2 � − p22 k3 + c( < 0,

− k1 + k3 + c( p12 − k2 + d( p22


 + λp22 
2
≤ 4Θ1Θ2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

Proof. Taking the derivative of V(t) with respect to t along
the trajectory of (10) yields

_V(t) � e
T
(t)L(t)e(t), (25)

where

L(t) � K
T
(t)P + P K(t) �

l11(t) l12(t)

l12(t) l22(t)
 , (26)

with

l11(t) � 2 g′(ξ(t)) − k2 − d( p12 − p11k1( ,

l12(t) � − k1 + k3 + c( p12 + g′(ξ(t)) − k2 − d( p22,

l22(t) � − 2p22 k3 + c( .

(27)

Conditions

l11(t)< 0,

l22(t)< 0,

l
2
12(t)< l11(t)l22(t),

(28)

can ensure
_V(t)< 0, ∀e1(t), e2(t)≠ 0. (29)

It follows from (19) and (27) that
l11(t)

2
� g′(ξ(t))p12 − k2 + d( p12 − p11k1

≤ − k2 + d( p12 − p11k1 + g′(ξ(t))


 p12




≤ − k2 + d( p12 − p11k1 + λ p12




� Θ1,

l22(t)

2
� − p22 k3 + c(  � Θ2,

l
2
12(t) � − k1 + k3 + c( p12 + g′(ξ(t)) − k2 − d( p22( 

2

≤ − k1 + k3 + c( p12 − k2 + d( p22


 + g′(ξ(t))


p22 
2

≤ − k1 + k3 + c( p12 − k2 + d( p22


 + λp22 
2
.

(30)

From (30), one can see that inequalities (24) can guarantee
inequalities (28). ,us, it follows from inequalities (19), (24),
and (29) that the error system described by (10) is globally
asymptotically stable. ,is completes the proof. Q.E.D.
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Let P �
1 0
0 1 . One can derive the following syn-

chronization result by Proposition 1.

Proposition 2. 4e error system described by (10), (15), and
(19) is globally asymptotically stable, i.e., the master system
described by (7) and the slave system described by (8) achieve
synchronization if

k1 > 0, c + k3 > 0,

2
���������
k1 c + k3( 


− d + k2


> λ.

⎧⎪⎨

⎪⎩
(31)

If k1 � k3 � k, we have the following corollary.

Corollary 1. 4e error system described by (10), (15), and
(19) is globally asymptotically stable, i.e., the master system
described by (7) and the slave system described by (8) achieve
synchronization if

k> 0, c + k> 0,

2
�������
k(c + k)


− d + k2


> λ.

⎧⎨

⎩ (32)

If k1 � k3 � k and k2 � 0, the following result is
obtained.

Corollary 2. 4e error system described by (10), (15), and
(19) is globally asymptotically stable, i.e., the master system
described by (7) and the slave system described by (8) achieve
synchronization if

k> 0, c + k> 0,

2
�������
k(c + k)


− |d|> λ.

 (33)

In some applications, one can only measure the position
variables for a chaotic system, which means that we only use
y1(t) − z1(t) in the feedback control. In this situation, one can
obtain k3 � 0. ,e corresponding result is given as follows.

Corollary 3. 4e error system described by (10), (15), and
(19) is globally asymptotically stable, i.e., the master system
described by (7) and the slave system described by (8) achieve
synchronization if

k1 > 0, c> 0,

2
���
k1c


− d + k2


> λ.

⎧⎨

⎩ (34)

Furthermore, in the case of k2 � k3 � 0, one can have the
following result.

Corollary 4. 4e error system described by (10), (15), and
(19) is globally asymptotically stable, i.e., the master system
described by (7) and the slave system described by (8) achieve
synchronization if

k1 > 0, c> 0,

2
���
k1c


− |d|> λ.

 (35)

Remark 4. Njah [10, 11] constructed the master-slave
synchronization scheme for the Φ6 Duffing equation and
studied master-slave synchronization by the active control,

in which the active controller u(t) �
u1(t)

u2(t)
  ∈ R2 was

u1(t) � − ae1(t) − be2(t),

u2(t) � − a y5
1(t) − z5

1(t)(  − l y3
1(t) − z3

1(t)( 

− η1e1(t) − η2e2(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(36)

where a, b, η1, and η2 are parameters for control inputs.
,en, one can have the error system

_e1(t) � ae1(t) +(1 + b)e2(t),

_e2(t) � − d − η1( e1(t) − c − η2( e2(t).

⎧⎨

⎩ (37)

Obviously, a linear error system described by (37) can be
perfectly derived by the control (36) in [10, 11] which re-
moved all nonlinear terms of the error system, and the
stability criterion for the linear error system described by
(37) can be easily obtained. However, the original Duffing
oscillator (1) was completely canceled. Compared with
control (36) in [10, 11], control (9) in this paper has two
advantages. ,e first advantage is that the nonlinear term
y3
1(t) − z3

1(t) of the error system described by (10) is kept
which means that the error system described by (10) is a
nonlinear system, rather than a linear error system (37) in
[10, 11]. ,e second advantage is that it is easy to estimate
the bounds for z1(t) and g′(ξ(t)) by using (18) and (19),
respectively, which are necessary for deriving the stability
criterion for the error system described by (10).

Remark 5. In this paper, we only use the bound of z1(t)

because it can be estimated by (18).

4. Applications to Master-Slave
Synchronization of Chaotic Φ4

Duffing Oscillators

4.1. Master-Slave Synchronization of Classic Φ4 Duffing
Oscillators. Now, we can study the synchronization of
classic Φ4 Duffing oscillator (2). Let y1(t) � x(t) and
y2(t) � _y1(t). One can derive the dimensionless system (3),
in which g(y1(t)) is replaced by − ly3

1(t). From (19), the
bound of g′(·) can be estimated as

g′(ξ(t))


≤ λ, (38)

where λ � 3|l|σ in which σ � max ζ2(t) ,

∀ζ(t) ∈ (min y1(t), z1(t) , max y1(t), z1(t) ). One can
construct the synchronization scheme described by (7)–(9)
for the system described by (2) and derive the error system
described by (13), where g(y1(t)) is replaced by − ly3

1(t).
Employing the Lyapunov function described by (23), one
can have the following synchronization criterion for the Φ4
Duffing oscillator described by (2).

Proposition 3. 4e error system described by (13), (15), and
(38) is globally asymptotically stable, i.e., the master system

4 Complexity



described by (7) and the slave system described by (8) achieve
synchronization if

Θ1 � − k2 + d( p12 − p11k1 + λ p12


< 0,

Θ2 � − p22 k3 + c( < 0,

− k1 + k3 + c( p12 − k2 + d( p22


 + λp22 
2
≤ 4Θ1Θ2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(39)

If P �
1 0
0 1  in (23), one can obtain the following

synchronization criterion for Φ4 Duffing oscillator (2).

Proposition 4. 4e error system described by (13), (15), and
(38) is globally asymptotically stable, i.e., the master system
described by (7) and the slave system described by (8) achieve
synchronization if

k1 > 0, c + k3 > 0,

2
���������
k1 c + k3( 


− d + k2


> λ.

⎧⎪⎨

⎪⎩
(40)

Remark 6. Jiang [3] and Nijmeijer and Berghuis [9] studied
the tracking control for Duffing oscillators which can be
equivalent to master-slave synchronization for Duffing os-
cillators. ,e stability criteria for the error system were
derived by using the control u(t) � Ke(t) − ς(t) [3], where

K �
0 0
k4 k5

  and ς(t) �
0

3k6z
2
1(t)e1(t)

  in which

k4, k5, and k6 are gains, and the control u(t) � Ke(t) − υ(t)

[9], where K �
0 0
k7 k8

  and υ(t) �
0

3y1(t)z1(t)e1(t)
 

in which k7 and k8 are gains. It should be pointed out that
those controls in [3, 9] were nonlinear feedback controls.
Our control (9) u(t) � K(y(t) − z(t)) is a linear feedback
control.

Remark 7. Han et al. [32] and Njah and Vincent [37] used
the active control to derive synchronization criteria for
chaotic Φ4 Duffing oscillators, in which the active controller

u(t) �
u1(t)

u2(t)
  ∈ R2 was

u1(t) � − z1(t) + y1(t) + �k1e1(t),

u2(t) � dz1(t) + cz2(t) + lz31(t) − dy1(t) − cy2(t)

− ly3
1(t) + �k2e2(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(41)

where �k1and �k2 are feedback gains. ,us, the error system
was

_e1(t) � − �k1e1(t),

_e2(t) � − �k2e2(t).

⎧⎨

⎩ (42)

As discussed in Remark 4, the error system described by
(42) was a linear system. Compared with the control method
in [32, 37], we keep the linear and nonlinear terms and fully

use the term − dy1(t) − cy2(t) − ly3
1(t) to derive the syn-

chronization criterion Proposition 3.

4.2. Master-Slave Synchronization of Parametrically Excited
Φ4 Duffing Oscillators. Wu et al. [36] studied the following
parametrically excited Φ4 Duffing oscillator:

_y1(t) � y2(t),

_y1(t) � (1 + μ sinωt)y1(t) − y3
1(t) − cy2(t),

 (43)

where μ and ω are constants, which can be rewritten as

_y(t) � �A(t)y(t) + �φ(y(t)), (44)

where

y(t) �
y1(t)

y2(t)
  ∈ R2

,

�A(t) �
0 1

1 + μ sinωt − c
 ,

�φ(y(t)) �
0

− y3
1(t)

 .

(45)

In [36], the master-slave scheme was constructed as
follows:

M : _y(t) � �A(t)y(t) + �φ(y(t)), (46)

S : _z(t) � �A(t)z(t) + �φ(z(t)) + u(t), (47)

C : u(t) � �K(y(t) − z(t)), (48)

where z(t) �
z1(t)

z2(t)
  ∈ R2 and �K �

�k11
�k12

�k21
�k22

  is a gain

matrix which can be determined. ,e initial conditions of
the master and slave system were y1(0) � y10, y2(0) � y20,
and z1(0) � z10, z2(0) � z20, respectively. ,e error system
was

_e(t) � (�A(t) + M(t) − �K)e(t), (49)

where

e(t) � y(t) − z(t) �
e1(t)

e2(t)

⎛⎝ ⎞⎠ �
y1(t) − y2(t)

z1(t) − z2(t)

⎛⎝ ⎞⎠,

M(t)e(t) � �φ(y(t)) − �φ(z(t))withM(t) �
0 0

− F(t) 0
⎛⎝ ⎞⎠,

F(t) � y
2
1(t) + z

2
1(t) + y1(t)z1(t) .

(50)

,e initial conditions of the error system were
e1(0) � e10 � y1(0) − z1(0), e2(0) � e20 � y2(0) − z2(0).

Choosing ourmethod, one can use the control as follows:

C : u(t) � K(y(t) − z(t)), (51)
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where K �
k1 1
k2 k3

  in which k1 > 0, k2, and k3 can be

determined later. From master-slave schemes (46), (47), and
(51), one can have the following error system:

_e1(t) � − k1e1(t),

_e2(t) � 1 + μ sinωt − k2 e1(t) + g y1(t)(  − g z1(t)( ( 

− c + k3 e2(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(52)

where

g y1(t)(  � − y
3
1(t), (53)

and the initial condition is e1(0) � e10 and e2(0) � e20. From
(19), one can obtain

g y1(t)(  − g z1(t)(  � − y
3
1(t) + z

3
1(t) � g′(ξ(t))

· y1(t) − z1(t)( ,

g′(ξ(t)) � − 3ξ2(t), ξ(t) ∈ min y1(t), z1(t) ,(

max y1(t), z1(t) .

(54)

,en, the error system described by (52) can be rewritten
as

_e(t) � �K(t)e(t), (55)

where

�K(t) �
− k1 0

1 + μ sinωt − k2 + g′(ξ(t)) − c − k3

⎛⎝ ⎞⎠. (56)

It follows from (19) that there exists a scale λ> 0 such
that

g′(ξ(t))


≤ λ, (57)

where

λ � 3σ,

σ � max ζ2(t) ,
(58)

∀ζ(t) ∈ (min y1(t), z1(t) , max y1(t), z1(t) ). By using
the similar proof of Proposition 1, one can have the syn-
chronization result for (43).

Proposition 5. 4e error system described by (52) is globally
asymptotically stable, i.e., the master system described by (46)
and the slave system described by (47) achieve synchroni-
zation if

k1 > 0, c + k3 > 0,

2
���������
k1 c + k3 


− 1 +|μ| + k2


> λ.

⎧⎪⎨

⎪⎩
(59)

5. Simulation Study

5.1. Simulation for Chaotic Φ6 Duffing Oscillators.
Consider the chaotic Φ6 Duffing oscillator (1) with a � 0.1,
c � 0.4, d � 1.1, l � 0.4, q � 1.8, and ω � 2.1. If we choose
the initial condition of (1) as y10 � 0 and z10 � − 1, there is an
attractor which is demonstrated in Figure 1. From Figure 1,
one can obtain that the bound of |y1(t)| is 1.4, i.e., m1 � 1.4.

For the master-slave scheme (7)–(9) with (1), one can
choose the initial condition of the slave system as z10 � 0.1
and z20 � − 1.5. By virtue of (18), one can obtain
|z1(t)|≤ 1.4 + 0.1 � 1.5. It follows from (19) that
|g′(ξ(t))|≤ 5.2313 � λ. Let k2 � 0 and k1 � k3. From Cor-
ollary 2, we have

���������
k1(c + k1)


> ((λ + d)/2), which implies

that k1 ≥ 2.97. We choose k1 � 2.98.
Figures 2–4 give the simulation results for the master

system, the slave system, and the error systemwith k1 � 2.98,
k2 � 0, and k3 � 2.98, respectively, from which one can see
that the error system (10) is globally asymptotically stable;
i.e., the master-slave synchronization scheme described by
(7)–(9) indeed achieves synchronization.

5.2. Simulation for Classic Φ4 Duffing Oscillators. For the
classic Φ4 Duffing oscillator (2), parameters c, d, l, q, andω
are the same as those defined in the abovementioned Φ6
Duffing oscillators. If we choose the initial condition of (1) as
y10 � 0 and z10 � − 1, there is an attractor which is dem-
onstrated in Figure 5. From Figure 5, we have that the bound
of |y1(t)| is 1.4, i.e., m1 � 1.4.

Consider the master-slave scheme (7)–(9) with (2),
where the initial condition of the slave system is z10 � 0.1
and z20 � 1.5. From (18), we have |z1(t)|≤ 1.4 + 0.1 � 1.5. It
follows from (38) that |g′(ξ(t))|≤ 2.7 � λ. Let k2 � 0
and k1 � k3. From Proposition 4, we have

���������
k1(c + k1)


>

((λ + d)/2), which implies that k1 ≥ 1.71. We choose
k1 � 1.72.

Figures 6–8 give the simulation results for the master
system, the slave system, and the error systemwith k1 � 1.72,
k2 � 0, and k3 � 1.72, respectively. It follows from
Figures 6–8 that the error system (10) is globally asymp-
totically stable; i.e., the master-slave synchronization scheme
described by (7)–(9) indeed achieves synchronization.

5.3. Simulation for Parametrically Excited Φ4 Duffing
Oscillators. Now, we study the synchronization of para-
metrically excited Φ4 Duffing oscillators (43) where c � 0.2,
μ � 0.5, and ω � 1. ,e initial conditions of master system
(46) and slave system (47) are y1(0) � 1.6, y2(0) � 0.2 and
z1(0) � 2, z2(0) � 1.4, respectively. It follows from Figure 9
that the up bound of |y1(t)| is 1.66. However, we can see that
the up bound of |z1(t)| is larger than 2 because z1(0) � 2.

It follows from (57) that |z1(t)|≤ 1.66 + 0.4 � 2.06 and
|g′(ξ(t))|≤ 3 × 2.062 � 12.7308 � λ. Let k1 � k3 and k2 � 0.
Using Proposition 5, one can have k1 � k3 > 7.01. Let
k1 � k3 � 7.1. Figure 10 illustrates that the error system
is globally asymptotically stable; i.e., the master-slave
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synchronization scheme described by (46), (47), and (51)
indeed achieves synchronization.

6. Conclusion

We have constructed amaster-slave synchronization scheme
for chaotic Φ6 Duffing oscillators by using linear feedback
control. By estimating the first trajectory of the controlled
slave system and keeping the nonlinear property of the error
system, we have derived some synchronization criteria.
,en, we have used three examples to illustrate the effec-
tiveness of synchronization criteria for Duffing oscillators. In
this paper, master and slave systems are all Φ6 Duffing
oscillators. ,e synchronization between Φ6 and Φ4 Duffing
oscillators and the synchronization between Φ6 Duffing
oscillators with different parameters are our future research
interests. Moreover, how to design the time delayed feedback
control to achieve synchronization between Φ6 Duffing
oscillators with different parameters can be our future re-
search interest as well.
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Dynamical properties of a two-dimensional airfoil model with higher-order strong nonlinearities are investigated. Firstly, a state-
space model is derived considering the plunge and pitch sti�nesses as generalized functions.  en, a sti�ness function having
square, cubic, and �fth-power nonlinearities is considered for both plunging and pitching sti�nesses, and the dimensionless state
equations are derived. Various dynamical properties of the proposedmodel are investigated using equilibrium points, eigenvalues,
and Lyapunov exponents. To further analyze the dynamical behavior of the system, bifurcation plots are derived. It is interesting to
note that the new airfoil model with higher-order nonlinearities shows multistability with changing airspeed, and there are
in�nitely countable number of coexisting attractors generally called as megastability. Both multistability and megastability
features of the airfoil model were not captured earlier in the literatures. To be clear, it is the �rst time a megastable feature is
exposed in a physical system. Finally, to analyze the multifrequency e�ects of the airfoil model, we have presented the
bicoherence plots.

1. Introduction

Many literatures have shown that the airfoil (aeroelastic)
systems show more complex dynamical behaviors such as
limit cycles and chaotic oscillations [1–4]. A persistent
�utter in an aeroelastic structure such as an aircraft wing
may create dangerous e�ects to the structure and may
cause structural unstability [1, 2]. Hence, controlling
such unwanted and persistent oscillations has attracted
importance among researchers [2–4]. A dynamical
model of an airfoil system with cubic nonlinearity
considered for the pitching sti�ness was proposed in
[5, 6], and it is shown that the system exhibits chaotic
oscillations when the airspeed crosses a critical limit. A
rigid wing supported by a nonlinear spring shows limit
cycles as discussed in [7].  e authors investigated
piecewise nonlinearities in aeroelastic systems, and the
authors address continuous nonlinearities such as those

found in structural systems that exhibit spring hardening
or softening e�ects.

A nonlinear active control method is adopted to
control the limit cycle oscillations of an aeroelastic sys-
tem with quasi-steady aerodynamic models [8, 9].
However, the results are limited to the elevation condi-
tion, and the real case should also be considered the
actual vibration state and hence, the dynamic state must
be set within an internal dynamic state when the non-
linear controller is designed [10]. In [11], a two-di-
mensional airfoil system with pitch and plunge sti�nesses
using subsonic aerodynamics theory and classical non-
linearities, namely, cubic, freeplay, and hysteresis is in-
vestigated. Several cases of aerodynamic nonlinearities
arising from transonic �ow and dynamic stall are dis-
cussed, and numerical simulations are conducted.
Poincaré mapping method and Floquet theory are
adopted to analyze the limit cycle oscillation �utter and
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chaotic motion of a two-dimensional airfoil system with
combined freeplay and cubic pitch stiffnesses in super-
sonic and hypersonic flows [12]. It is shown that the
Floquet theory can effectively predict the occurrence of
limit cycles in the system.

In [13, 14], the aeroelastic airfoil system with freeplay
is investigated and the transonic flow characteristics are
discussed. -e effect of hardening and nonlinearities on
aeroelastic system is analyzed in [15]. -e chaotic be-
havior and prediction of it with various methods and its
robustness are presented in [16]. -e comparative study
reveals the effectiveness of Runge–Kutta method over
other methods. A two-degree-of-freedom model of airfoil
system is derived, and analysis is carried out to study the
consequences of cubic nonlinearities [17]. Drastic
changes are observed while the system entered to su-
personic flow. Using precise integration method the
nonlinear effect on airfoil system is simulated in [18]. -e
results show the presence of intricate behaviors of the
system. -e investigation on limit cycle oscillation and
other aeroelastic responses is described in [19, 20] for
system with freeplay in pitch. Challenges and compli-
cations during control and design of vibration absorber
are discussed elaborately for the aeroelastic model with
nonlinearities in [21, 22].

An airfoil model with multiple strong nonlinearities
for both pitch and plunge stiffnesses was studied, and
incremental harmonic balance method was used to an-
alyze the periodic state of the airfoil flutter [26]. Simi-
larly, to analyze such periodic oscillations in an airfoil
system, Monte Carlo method was adopted in [27]. A
nonlinear adaptive control technique is used to suppress
the flutter and limit cycle oscillations assuming that one
state is known and the other states are compensated [28].
A terminal sliding-mode control technique is used to
suppress the limit cycle oscillations with an exclusive
choice between the plunge displacement and the pitch
angle [29]. Differential transformation method (DTM) to
examine the nonlinear dynamic response of a typical
aeroelastic system with cubic nonlinearities for pitch
stiffness under realistic operating parameters was pro-
posed in [30], and the dynamical properties are in-
vestigated with bifurcation plots and Lyapunov
spectrum. A nonlinear sliding-mode controller was
designed to suppress the chaotic oscillations of an airfoil
system proposed in [10], and the stability of the con-
trollers was derived using the Lyapunov stability theorem
[31]. A nonlinear energy sink (NES) is used to suppress
the aeroelasticity of an airfoil with a control surface
considering the freeplay and cubic stiffnesses in pitch.
-e harmonic balance method is used to determine the
limit cycle oscillations occurring in the airfoil-NES
system [32].

In [29], the authors mentioned that a constant de-
terioration of wing structure influences on stiffness be-
havior, which demands higher-order nonlinearity in the
dynamic model. In [33], influence of higher-order
stiffness on aeroelastic model was discussed but no
special properties are analyzed. Motivated by the above

discussions, we are interested in exploring the airfoil
system considering both plunge and pitch stiffnesses to
be higher-order nonlinearities. -is paper reports some
new complex behaviors of the airfoil system like mul-
tistability and megastability which have not been re-
ported earlier in the literatures. -e proposed
investigation falls under category 1 and 2 as described in
[34].

2. Two-Dimensional Airfoil System with
Higher-Order Nonlinear Spring (ASHS)

2.1.MathematicalModel. -e dynamical model of an airfoil
with cubic pitching stiffness and viscous damping as shown
in Figure 1 was proposed in [5, 6]. ρ is the air density,m is the
mass, b is the semichord length, ab is the distance of the
elastic axis E from the midchord point, (0.5 + a)b is the
distance of E from the aerodynamic focus F, xαb is the
distance of the center of gravity from E, rab is the radius of
gyration of the airfoil with respect to E, and ωh and ωα are
the eigenfrequencies of the constrained one-degree-of-
freedom system associated with the linear plunging and the
pitching springs, respectively. -e parameter values are
considered as follows: a � − 0.1, b � 1m, xa � 0.25, r2a � 0.5,
ωh � 28.1Hz, and ωα � 62.8Hz.

-e bifurcation analysis of the proposed model [5, 6] was
investigated using harmonic balance method. It is to be
noted that the literatures have investigated the dynamical
behavior of the airfoil system using cubic nonlinearity
stiffness. Such approximations of the nonlinear stiffness have
not been useful in identifying the more complex behavior of
the system. Hence, we propose a modified dynamical
equation of the airfoil system as

€h + 0.25€α + 0.1 _h + 0.2h + 0.1βα + f(h) � 0,

0.25€h + 0.5€α + 0.1 _α + 0.5α− 0.04βα + f(α) � 0,
(1)

where f(α) is the pitching stiffness and f(h) is the plunging
stiffness. -e state h represents the plunging displacement,
and α represents the pitching angle. -e parameter
β � (V/bωα)2, where V is the airspeed and ωα is the
eigenfrequency.

With higher-order nonlinear stiffness in an aeroelastic
system, limit cycle oscillations occur, which leads to a
fatigue in the wing structure as the consequence of a long-
term vibration with constant amplitude at an invariant
frequency [29]. In [35], the 5th order nonlinearity is in-
troduced and its effects are analyzed; the authors observed
that the resonant frequency is shifted toward higher fre-
quency and the bandwidth of higher-order stiffness is wider
for frequency up-sweeps. It is very clear that the 5th order
nonlinearity increases the complexity, and its effects need
to be studied.

In this paper, we consider higher-order pitching and
plunging stiffnesses in order to investigate the complex
behaviors which have not been reported earlier.

Using x � α, _x � y, z � h, and _z � w, we derive the di-
mensionless model as
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dx

dt
� y,

dy

dt
�

1
1.75

(4x(0.065β − 0.5) + 0.1w + 0.2z + f(z)

− 4f(x) − 0.4y),

dz

dt
� w,

dw

dt
� −

1
1.75

(x(0.24β − 0.5) + 0.2w + 0.4z + 2f(z)

− f(x) − 0.1y),

(2)

where f(z) � 5z2 + 10z3 + 40z5 and f(x) � 5x2 + 20x3

+ 40x5 are the higher-order stiffnesses. -e parameter β is
considered as the bifurcation parameter, and for a fixed
value of the airspeed, β � 7.5, and for the initial conditions
[0.1, 0, 0.1, 0], the phase portraits of the system are shown in
Figure 2.

2.2. Existence of Attractor. It has been proved in the lit-
eratures that nonlinear dissipative systems can produce
chaotic attractors. Hence, to show that the ASHS is dis-
sipative, we have computed the corresponding volume
contraction rate Vc, using summation of Lyapunov ex-
ponents (i.e., Vc � L.E1 + L.E2 + L.E3 + L.E4), and thus, if
Vc < 0, the system is dissipative, thus experiences or
presents attractors. For Vc � 0, phase space volume is
conserved and the dynamical system is conservative. If
Vc > 0, the volume in phase space expands, and hence
there exist only unstable cycles or possibly chaotic
repellors.

For ASHS, L.E1 � 0.2014, L.E2 � 0, L.E3 � 0.1852, and
L.E4 � 0.1852. It can be observed that Vc � − 0.169< 0
for all state vectors; thus, the introduced system is
dissipative.

2.3. Stability of Equilibrium Points. In order to obtain the
equilibrium of our model, let _x � _y � _z � _w � 0; then, the
only real equilibrium point of ASHS is at the origin.

-e Jacobian matrix of the ASHS system evaluated at any
equilibrium is given by

J(X) �

0 1 0 0

a1 a2 a3 a4

0 0 0 1

a5 a6 a7 a8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

a1 �
26β
175

−
160x

7
−
960x2

7
−
3200x4

7
−
8
7
,

a2 �
− 8
35

,

a3 �
800z4 + 120z2 + 40z

7
+

4
35

,

a4 �
2
35

,

a5 �
800x4 + 240x2 + 40x

7
−
24β
175

+
2
7
,

a6 �
2
35

,

a7 � −
80z − 240z + 1600z4( 

7
−

8
35

,

a8 �
− 4
35

.

(3)

-e eigenvalues associated with the above Jacobian
matrix are obtained by solving the following characteristic
equation (det(MJ − λId) � 0), where Id is the identity
matrix:

Li�

F

D

ab

b b

hb

C.GEV

α

0.5b
Xa b

Figure 1: Two-degree-of-freedom airfoil model.
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λ4 + 0.342λ3 +(1.39 − 0.148β)λ2 +(0.16 − (9.14e − 3)β)λ

− 0.0182β + 0.229 � 0.

(4)

Figure 3 shows the stability of the equilibrium point for
various values of β. It is to be noted that the system shows
unstable oscillations when the airspeed exceeds the critical
divergent speed β≥ 4.08015 which agrees with the results
described in [5].

From the Routh–Hurwitz stability criterion, the stability
conditions of all the principal minors need to be positive for
the ASHS system to be stable. -e principal minors are as
folows:

Δ1 � δ1 > 0,

Δ2 �
δ1 δ0
δ3 δ2




> 0,

Δ3 �>

δ1 δ0 0

δ3 δ2 δ1
0 0 δ3





> 0,

(5)

that is, δ1 > 0, δ1δ2 − δ3 > 0, and δ3 > 0, where δ1 � 0.342,
δ2 � (1.39 − 0.148β), and δ3 � 0.16 − (9.14e − 3)β, where
the conditions are satisfied; then, ASHS is stable, leading to
the situation of point attractor; otherwise, the system is

unstable, and the model can experience periodic or chaotic
oscillations.

3. Numerical Simulation

3.1. Bifurcation andMultistability. -e bifurcation plots are
derived and investigated to study the impact of the pa-
rameters on the system behavior. -e parameter β is con-
sidered as the bifurcation parameter with the other
parameters fixed at their respective chaotic values.-e initial
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Figure 2: 2D phase portraits of the ASHS.
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condition for the first iteration is taken as [0.1, 0, 0.1, 0].
Multistability in physical systems is already discussed in the
literatures [36, 37], and it is shown that such coexisting
oscillations are dangerous and can affect the structural
stability of a system.

To show the existence of multistability, we use a robust
way to plot the bifurcation plots where the initial conditions
are changed in every iteration to the end values of the state
variables wherein the parameter is increased or decreased in
tiny steps. It is to be noted that the airfoil system shows
multistability as shown in Figure 4 which was not reported
earlier in the literatures.

Figure 4 (blue) shows the forward continuation where the
parameter β is increased from minimum to maximum, and
Figure 4 (red) shows the backward continuation where the
parameter β is decreased frommaximum tominimum, and the
local maxima of the state variables are plotted. -e corre-
sponding Lyapunov exponents (LEs) are calculated using
Wolf’s algorithm [38] for a finite time of 40,000 s. It should be
noted that we used the same forward and backward contin-
uation to generate the Lyapunov spectrum for β. Figures 5(a)
and 5(b) show the LEs for forward and backward continuation.

-e ASHS system takes a period-doubling route to chaos
as shown in Figure 6. Also, we could see the period-doubling
route to chaos for β≥ 6 and an inverse period-doubling exit
from chaos for 4.7≤ β≤ 5.3. Such a phenomenon of period
doubling and inverse period doubling occurring in a bi-
furcation diagram is termed as antimonotonicity [39].

Different two-dimensional projections of the ASHS
attractor are presented in Figure 6. We can easily note that
there is no linear dependency between the state variables of the
ASHS and also such dependencies between state vectors can be
nonlinear and can involve several of the variables.

From Figures 4 and 5, it is evident that the ASHS shows
coexisting attractors.We have plotted the 2Dphase portraits of
the coexisting attractors for different values of initial condi-
tions and parameter β. It can be seen that a period-1 limit cycle
(red) coexists with a chaotic attractor (blue) (Figure 7).

3.2. Megastability. It was Sprott et al. who introduced the
term “megastability” which is defined as the coexistence of a
countable infinity of attractors in a system. He proposed a
system which is a periodically-forced oscillator with a
spatially-periodic damping term [40].-e system looks like a
cross-sectioned cabbage with multiple layers of periodic,
quasiperiodic, and chaotic attractors. A new oscillator with
infinite coexisting asymmetric attractors with the mega-
stability property was proposed in [41], in which the
attractors are a combination of self-excited and hidden
attractors. A two-dimensional chaotic oscillator producing a
whirlpool of attractors was proposed in [42]. Similarly, Tang
et al. proposed a chaotic system with coexisting attractors
which forms a carpet-like structure [43]. To show the
controllability of such megastable oscillators, the authors in
[44] have proposed a fuzzy-based control algorithm to
suppress chaotic oscillations. Most of these oscillators use a
periodic forcing term and it was in [45], the forcing term was
modified to a quasiperiodic function and was proved that the

quasiperiodic forcing can also produce megastable oscilla-
tors. It is to be noted that, in the entire literatures on
megastable oscillators, there were no discussions on such
megastability in a real physical system. -e proposed ASHS
model discussed in this paper shows such megastability as
shown in Figure 8 for β � 7 and different initial conditions.

3.3. Bicoherence. Bispectral analysis or bicoherence is a
powerful tool in signal processing which offers a way to
analyze the nonlinear coupling between frequencies and
helps us in areas where linear power spectral analysis
provides insufficient information [46]. Bicoherence analysis
was used to investigate the nonlinearities in the aeroelastic
systems [47]. -e nonlinear aspects of the aerodynamic
loading are determined from estimates of higher-order
spectral moments, namely, the auto- and cross-bispectrum
through which the quadratic nonlinear interaction between
two frequency components are calculated and are used to
detect a quadratic coupling or interaction among different
frequency components of a signal [47].

Bicoherence is the squared normalized version of bis-
pectral density. Bicoherence gives a measure of phase cou-
pling between signals at three different frequencies.
Bicoherence is mostly used in fault diagnosis because of its
ability to trace and analyze multifrequency components. It is
most effective in analyzing systems with nonlinear coupling
between frequencies and is useful in detecting and quantifying
the presence of nonlinearity, thus indicating the severity of the
fault in themachine [48, 49]. Bicoherence is also considered as
a tool to analyze the coupling effects between states of a
dynamical system at different frequencies [50–52].

-e power spectrum of a discrete time series x(n) is
given by

Pxx(k) � E x(k)x∗(k) , (6)

where k is the discrete frequency variable. -e bispectrum
can be defined by

Bx(k, l) � E x(k)x(l)x∗(k + l) . (7)

-e bicoherence is the normalized bispectrum given by

b
2
(k, l) �

E x(k)x(l)x∗(k + l)  
2

E[x(k)x(l)]2E[x(k + l)]2
. (8)
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Figure 4: Maximum of ASHS with forward (red) and backward
(blue) continuation.
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-e cross bicoherence can be calculated by using the
following definition:

bxy
2
(k, l) �

E x(k)x(l)y∗(k + l)  
2

E[x(k)x(l)]2E[y(k + l)]2
. (9)

-e bicoherence at any frequency pair k + l can be
interpreted as the fraction of power at frequency k + l

which is phase coupled to the component at k + l. We have

used the Welch periodogram method to estimate the
bispectrum of the airfoil system (ASHS) and then the
bicoherence, but the lengths of data required to obtain
consistent estimates are longer than those required for
power spectrum estimation; hence, we sampled the time
series data generated from the ASHS state equations at
1 KHz and have used 30,000 samples for the bicoherence
analysis.
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Figure 5: Lyapunov exponents for (a) forward continuation and (b) backward continuation.
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Figure 6: Phase portraits in the X-Y plane for various values of β: (a) point attractor; (b) period-1 limit cycle; (c) period-2 limit cycle;
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We have presented the bicoherence plots of the ASHS for
different values of the parameter β as shown in Figure 9. We
could see that the coupling between states are much weaker
for β � 4.1 but becomes stronger (yellow spots) for β � 4.6
and β � 5 and forms multiple islands of small bandwidths
for β � 7 indicating the strength of the coupling effects of the
frequencies. We have used a fixed initial condition of

[0.1, 0, 0.1, 0]. -e bicoherence spectrum of surface eleva-
tions at the first measured location (Figure 9) far from the
focal location indicates that many wavemodes were involved
in the wave-wave interactions. -e bicoherence (β � 5) at
b2(0.16, 0.16) � 1.4 denotes a self wave-wave interactions,
while b2(0.16, 0.12) � 1.4 denotes a nonlinear coupling
between two different frequencies.
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Figure 7: Coexisting attractors for different values of β: for β� 5 and initial conditions for (a, b) blue [− 0.012, − 0.055, 0.009, − 0.125]; red
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4. Conclusion

We have modified the dynamics of the well-known airfoil
system by introducing higher-order nonlinearity in
plunging and pitching stiffnesses. Chaotic motions exist in
an airfoil system when the airspeed exceeds the critical
divergent speed. -e dynamical analysis of the proposed
model shows unique characters of multistability and in-
finitely coexisting attractors known as megastability. Such
features of an airfoil system were not captured earlier in the
literatures. Bicoherence plots are investigated to know the
impact of multifrequency terms and coupled nonlinearities
on the system.
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In order to further improve the complexity of chaotic system, a new four-dimensional chaotic system is constructed based on
Sprott B chaotic system. By analyzing the system’s phase diagrams, symmetry, equilibrium points, and Lyapunov exponents, it is
found that the system can generate not only both two-wing and four-wing attractors but also the attractors with symmetrical
coexistence, and the dynamic characteristics of the new system constructed are more abundant. In addition, the system is
simulated by Multisim software, and the simulation results show that the results of circuit simulation and numerical simulation
analysis are basically the same.

1. Introduction

Chaos is a complex, apparently random, and often sur-
prising behavior in simple nonlinear dynamical systems [1].
Chaos, as a unique form of motion in nonlinear dynamic
systems, is widely used in electronic engineering [2], in-
formation engineering [3], and other �elds [4–6] because of
its initial value sensitivity, boundedness, and inherent
randomness [7]. In 1963, American meteorologist Lorenz
put forward the �rst chaotic system model [8], which
attracted wide attention of the scienti�c community, and
then, new chaotic systems were constantly discovered. In
1976, Rössler proposed a new system named Rössler chaotic
system [9], which had a di�erent topology from Lorenz
system. Chua proposed Chua’s circuit in 1986 [10, 11], which
was one of the simplest chaotic oscillation circuits. In 1994,
Sprott constructed several di�erent simple chaotic systems
[12]. In 1999, Chen and Ueta . discovered the Chen system
while studying the anticontrol of chaos [13]. In 2002, Lü et al.
proposed a kind of transition system named Lü system
which connected Lorenz and Chen systems [14]. In 2003, Liu
and Chen constructed the �rst four-wing butter�y chaotic
attractor [15], which attracted many researchers’ attention.
To improve the security of chaotic secure communication
and chaotic information encryption, more and more

researchers began to �nd chaotic systems with more com-
plex dynamic behaviors [16–21].

In recent years, coexisting attractors had gradually be-
come a research hotspot [22–24]. Compared with general
chaotic attractors, the dynamic behaviors of coexisting
attractors are more complex. In order to improve the se-
curity of information and reduce the possibility of in-
formation being decoded, coexisting attractors are more and
more used in the �eld of encryption [25, 26]. In 2013, Li and
Sprott proposed a multistable system with coexisting
attractors [27] and found that the dynamic of the equilib-
rium points of the system depended on its stability and
system structure. In 2014, Li and Sprott discovered a coex-
isting hidden attractor on a simple 4D Lorenz system [28],
which had a large parameter region on a quasiperiodic torus.
In 2017, Lai et al. proposed a unique 4D autonomous system
with a signum function term [29], which can generate
various types of coexisting attractors. In 2019, Zhou et al.
proposed a chaotic system with multiple asymmetric
coexisting attractors [30] and carried out circuit simulation
and pulse synchronization research.

In this paper, a new 4D chaotic system based on Sprott B
system is proposed. It includes the following elements: (i) It
contains eight terms, including three nonlinear terms and
one constant term. (ii) It is symmetric about the z-axis.
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(iii) It can produce two-wing and four-wing attractors at the
same time. (iv) It can also produce symmetric coexisting
attractors. (v) ,e realization of the system circuit in physics
is verified by the circuit simulation software, which is fa-
vorable for future engineering applications. ,is paper is
organized as follows: In Section 2, a new chaotic system is
proposed, and the coexistence of two-wing and four-wing
attractors is observed through phase diagrams. In Section 3,
we analyze its dynamic behaviors by symmetry, equilibrium
points, bifurcation diagrams, Lyapunov exponents, and
trajectory diagrams and introduce its symmetric coexisting
attractors. An electronic circuit is designed in Section 4, and
the correctness of the theoretical analysis is verified by
circuit simulation experiment. Finally, the conclusion of this
paper is given in Section 5.

2. A New Four-Dimensional Chaotic System

In this section, wemainly design the new chaotic system, and
the new system proposed in this paper is described as
follows:

_x � a(y − x),

_y � xz + w,

_z � b − xy,

_w � yz − cw,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where positive real numbers a, b, and c are system pa-
rameters and x, y, z, and w are state variables. ,e new
system (1) adds a state-feedback controller on the Sprott B
chaotic system. Set a � 6, b � 11, and c � 5; the chaotic
system can be generated. By calculation, the Lyapunov
exponents are LE1 � 0.5162, LE2 � − 0.0001, LE3 � − 4.9208,
and LE4 � − 6.5954. ,e corresponding Lyapunov expo-
nential dimension is as follows:

DL � j +
1

LEj+1






j

i�1
LEi

� 3 +
LE1 + LE2 + LE3

LE4




� 3 +
0.5162 − 0.0001 − 4.9208

| − 6.5954|

� 2.3322.

(2)

,erefore, the attractor of the new system is a strange
attractor with fractal dimension. Select the initial value
(x, y, z, w) � (10, 10, 0, 0). ,rough numerical simulation,
we can get the chaotic attractors of system (1) as shown in
Figure 1. As can be seen from Figure 1, system (1) presents
two-wing butterfly chaotic attractors in the x − y, x − z,
y − z, and z − w phase planes. ,e four-wing butterfly
chaotic attractors appear in the x − w and y − w phase
planes. ,is coexistence can be better observed in
Figures 1(g)–1(h). It can be concluded that system (1) can
generate chaotic butterfly attractors of two-wing and four-
wing at the same time.

3. Some Basic Properties of New System

3.1. Symmetric and Dissipative Properties. ,e Sprott B
system is symmetric about the z-axis, and system (1) is also
symmetric about the z-axis. A simple proof is shown in the
following equation:

_x � a(y − x)

_y � xz + w

_z � b − xy

_w � yz − cw

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⟺

− _x � a(− y − (− x)) � − a(y − x),

− _y � (− x)z +(− w) � − xz − w,

_z � b − (− x)(− y) � b − xy,

− _w � (− y)z − c(− w) � − yz + cw.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

,e state space of system (1) is four-dimensional, so the
vector field of system (1) is defined as follows:

f[X] �

f1(X)

f2(X)

f3(X)

f4(X)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

ay − ax

xz + w

b − xy

yz − cw

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

,e divergence of system (1) is obtained from the vector
field as follows:

∇V �
zf1

zx
+

zf2

zy
+

zf3

zz
+

zf4

zw
� − (a + c). (5)

According to equation (5), as long as (a + c)> 0, system
(1) is dissipative, and the system converges in exponential
form dV/dt � e− (a+c)t. As t⟶∞, all trajectories of the
system will eventually be restricted to a set with a volume
of zero, and the extreme motion will converge to an
attractor, thus proving the existence of the attractors of the
system.

3.2. Equilibria and Stability. In order to obtain the equi-
librium points of system (1), let the right side of the equation
be equal to zero. ,e system of equations is as follows:

a(y − x) � 0,

xz + w � 0,

b − xy � 0,

yz − cw � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

By calculation, we get that the two equilibrium points of
system (1) are S1 � (

�
b

√
,

�
b

√
, 0, 0) and S2 � (−

�
b

√
, −

�
b

√
,

0, 0). System (1) has the same characteristic equation at S1,2:

λ4 +(a + c)λ3 +(b + ac)λ2 +(2ab + bc + b)λ + 2abc + 2ab � 0.

(7)

According to the classical Routh–Hurwitz stability cri-
terion, if a> 0, b> 0, and c> 0, the equilibrium points S1,2 is
unstable.

Let a � 6, b � 11, and c � 5, we can get the equilibrium
points S1 � (

��
11

√
,

��
11

√
, 0, 0) and S2 � (−

��
11

√
, −

��
11

√
, 0, 0).

For the first equilibrium point S1 � (
��
11

√
,

��
11

√
, 0, 0), system

(1) is linearized to Jacobian matrix as follows:
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Figure 1: ,e two-wing butterfly chaotic attractors of system (1): (a) x − y, (b) x − z, (c) y − z, and (d) z − w. ,e four-wing butterfly
chaotic attractors of system (1): (e) x − w and (f) y − w. ,e coexisting chaotic attractors of system (1): (g) x − y − w and (h) y − z − w.
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J1 �

− a a 0 0

z 0 x 1

− y − x 0 0

0 z y − c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

− 6 6 0 0

0 0
��
11

√
1

−
��
11

√
−

��
11

√
0 0

0 0
��
11

√
− 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Let |λI − J1| � 0, the eigenvalues of Jacobian matrix are
as follows:

λ1 � 0.7301 + 4.4609i,

λ2 � 0.7301 − 4.4609i,

λ3 � − 6,

λ4 � − 6.4602.

(9)

It can be seen that λ3 and λ4 are negative real numbers, λ1
and λ2 are a pair of conjugate complex numbers, and the real
part is positive, so the equilibrium point S1 is a saddle-focus,
and system (1) is unstable at S1.

For the second equilibrium point S2 � (−
��
11

√
,

−
��
11

√
, 0, 0), system (1) is linearized to Jacobian matrix as

follows:

J2 �

− a a 0 0

z 0 x 1

− y − x 0 0

0 z y − c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

− 6 6 0 0

0 0 −
��
11

√
1

��
11

√ ��
11

√
0 0

0 0 −
��
11

√
− 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

In the same way, let |λI − J2| � 0, the eigenvalue ob-
tained is shown in equation (9), so the equilibrium point S2 is
also a saddle-focus, and system (1) is unstable at S2. Ob-
viously, two saddle-foci are the key to the chaotic motion of
system (1).

3.3. Bifurcation Diagrams, Lyapunov Exponents, and Period-
Doubling Bifurcation Process. ,e dynamic behaviors of
system (1) can be further analyzed by bifurcation diagrams,
Lyapunov exponents, and period-doubling bifurcation
process.

Let a � 6, c � 5, and b ∈ [9, 20]. We draw the bifurcation
diagrams of the z peak of system (1) changing with b, as
shown in Figure 2(a). In Figure 2(a), the red and blue
branches represent the different attractors generated from
different initial values X+ � (10, 10, 0, 0) and X− � (− 10,

− 10, 0, 0), and the overlapped parts represent the same
attractors generated. As b increases in [12, 20], the bi-
furcation diagrams clearly show the trajectory of system (1)
from classical period-doubling bifurcation to chaos.
Figures 2(b) and 2(c) show the Lyapunov exponents of
system (1) which changes with the increase of parameter b,
where LE1 > LE2 > LE3 > LE4. By comparing the three dia-
grams, it can be seen that the bifurcation diagrams are
completely consistent with the dynamic behaviors described
by Lyapunov exponents.

Figures 3(a)–3(d) describe in detail the main orbital
states through which system (1) operates. When b � 13.6,
system (1) has a pair of period-1 attractors. When b � 14.5,
system (1) has a pair of period-2 attractors. When b � 15,

system (1) has a pair of strange attractors. When b � 18.5,
system (1) has a strange attractor.

Table 1 shows the comparison of the Lyapunov expo-
nents of the new system with the literature [12, 28–30]. It can
be seen that the maximum LE1 of the new system is larger. It
indicates that the chaotic characteristics of the new system
are more obvious, the chaotic degree is higher, and the
dynamic characteristics of the system are more difficult to
predict.

3.4. Coexisting Attractors. Let a � 10, b � 10, and c ∈ [0, 6],
and we draw the bifurcation diagrams of the x peak of system
(1) changing with parameter c. Similarly, the red and blue
branches in Figure 4(a), respectively, represents the different
attractors generated from different initial values of X+ �

(10, 10, 0, 0) and X− � (− 10, − 10, 0, 0), and the overlaps
represent the same attractors generated. Figures 4(b) and
4(c) show the Lyapunov exponents of system (1) changing
with the increase of parameter c. It is obvious that
LE1 > LE2 > LE3 > LE4. Figure 4 shows that periodic attrac-
tors, chaotic attractors, and coexisting attractors exist in
system (1).

Figure 4(a) not only shows that system (1) has coexisting
attractors but also shows that with the increase of c in
[1, 4.18], system (1) shows a trajectory from reverse period-
doubling bifurcation to chaos. Figures 5(a)–5(d) describe the
major orbital states of ergodic when symmetrically coex-
isting attractors appear in system (1). When c � 1.55, the
system gets a pair of strange attractors. When c � 1.92, the
system has a pair of period-2 attractors. When c � 2.01, the
system has a pair of period-1 attractors. When c � 4.3, the
system also has a pair of strange attractors. Figures 4(b)–4(c)
Lyapunov exponents verify the above process and determine
the property of the attractors.

Figure 6 is a dynamical map, mainly depicting the
influence of changing parameters b and c on the dy-
namical map characteristics of the system. Taking the
relationship between the maximum Lyapunov exponent
and 0 as the standard, the blue region represents the
chaotic state of the system, and the maximum Lyapunov
exponent is greater than 0; the yellow region represents
the periodic state, and the maximum Lyapunov exponent
is equal to 0; and the red region represents the system is
stable under this parameter condition, and the maximum
Lyapunov exponent is less than 0. It can be seen from the
figure that as the parameter c increases, the system state
alternates between chaotic state and periodic state and
occasionally tends to be stable.

4. Circuit Implementation

In order to verify the dynamic behaviors of chaotic system,
an actual circuit is designed to realize the chaotic system
according to equation (1). ,e circuit is mainly realized by
linear resistances of different resistance values, linear ca-
pacitances, operational amplifier TL082IP, and multiplier
AD633. However, it should be noted that in the actual
circuit, the allowable voltage range of the analog multiplier is

4 Complexity
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Figure 2: Bifurcation diagrams and Lyapunov exponential spectrums of system (1) when a � 6, c � 5, and b ∈ [9, 20]: (a) bifurcation
diagrams of z peak changing with parameter b; (b) LE1 and LE2; (c) LE3 and LE4.
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±10V and the allowable voltage range of the operational
amplifier is ±18V. ,e dynamic range of variables x, y, z,
and w are approximately [− 15, 15], [− 20, 20], [− 20, 15],
and [− 20, 20], respectively. It is beyond the allowable
voltage range of analog multipliers and operational am-
plifiers, so it is necessary to make appropriate variable
proportional compression transformation to the system
state variables, so as to facilitate the implementation of the
circuit. System (1) is transformed by proportional com-
pression of uniform variables, so that x, y, z, and w are
compressed to the original 1/5, which is (x, y, z, w)⟶
(5x, 5y, 5z, 5w). ,e chaotic system equation after trans-
formation is as follows:

dx

dt
� a(y − x)

dy

dt
� xz + w

dz

dt
� b − xy

dw

dt
� yz − cw

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

d(5x)

dt
� a(5y − 5x)

d(5y)

dt
� 5x · 5z + 5w

d(5z)

dt
� b − 5x · 5y

d(5w)

dt
� 5y · 5z − 5cw

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
� ay − ax,

dy

dt
� 5xz + w,

dz

dt
�

b

5
− 5xy,

dw

dt
� 5yz − cw.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)
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Figure 3: Attractors of system (1) with a � 6 and c � 5: (a) b � 13.6, (b) b � 14.5, (c) b � 15, and (d) b � 18.5.

Table 1: ,e Lyapunov exponents of five systems.

Name System Parameter values Lyapunov exponents

Sprott B system _x � yz

_y � x − y

_z � 1 − xy

None LE1 � 0.210
LE2 � 0
LE3 � − 1.210

Li system

_x � y − x

_y � − xz + u

_z � xy − a

_u � − by

a � 2.6
b � 0.44

LE1 � 0.070
LE2 � 0.013
LE3 � 0
LE4 � − 1.083

Lai system

_x � a(y − x)

_y � xz − xw

_z � b − xy

_w � csgn(z) − kw

a � 1
b � 1
c � 9
k � 2

LE1 � 0.211
LE2 � 0
LE3 � − 1.210
LE4 � − 2

Zhou system

_x � a(w − x)

_y � − by + zw

_z � cx − xw

_w � dy − z + xz

a � 2
b � 3.9
c � 3
d � 1

LE1 � 0.092
LE2 � 0
LE3 � − 1.988
LE4 � − 4.004

New system

_x � a(y − x)

_y � xz + w

_z � b − xy

_w � yz − cw

a � 6
b � 11
c � 5

LE1 � 0.516
LE2 � 0
LE3 � − 4.921
LE4 � − 6.595
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Figure 4: Bifurcation diagrams and Lyapunov exponential spectrums of system (1) when a � 10, b � 10, and c ∈ [0, 6]: (a) bifurcation
diagrams of x peak changing with parameter c; (b) LE1 and LE2; (c) LE3 and LE4.
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In this way, the amplitude of the output chaotic signal
can be reduced to 1/5 of the original system.

Make time-scale transformation of equation (11), and
transform t into τ0t in the equation, where τ0 � 100, and the
results are as follows:

dx

dt
� 100ay − 100ax,

dy

dt
� 500xz + 100w,

dz

dt
� 20b − 500xy,

dw

dt
� 500yz − 100cw.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

,e modular circuit is designed according to the above
formula, as shown in Figure 7.

According to the circuit schematic diagrams, the cor-
responding self-excited oscillation circuit equation is ob-
tained as follows:

dx

dt
� −

R3

R2R4C1
(− y) −

R3

R1R4C1
x,

dy

dt
� −

R9

R7R10C2
(− w) −

R9

10R8R10C2
(− x)z,

dz

dt
� −

R15

R13R16C3
(− 1) −

R15

10R14R16C3
xy,

dw

dt
� −

R21

R19R22C4
w −

R21

10R20R22C4
y(− z).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

By comparing equation (12) with equation (13), we can
get

a �
R3

100R1R4C1
�

R3

100R2R4C1
,

500 �
R9

10R8R10C2
,

100 �
R9

R7R10C2
,

b �
R15

20R13R16C3
,

500 �
R15

10R14R16C3
,

500 �
R21

10R20R22C4
.

c �
R21

100R19R22C4
,

(14)

In this paper, Multisim software is used for circuit
simulation, in which the output scaling factor of the analog
multiplier AD633 is set as 100mV/1V and the power supply
voltage is ±12V. ,e integral time constant of the four
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Figure 5: Attractors of system (1) with a � 10 and b � 10: (a) c � 1.55, (b) c � 1.92, (c) c � 2.01, and (d) c � 4.3.
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circuit channels can be changed by adjusting the capaci-
tance; set C1 � C2 � C3 � C4 � 10 nF, R4 � R10 � R16 �

R22 � 50 kΩ, and R3 � R5 � R6 � R9 � R12 � R15 � R17 �

R18 � R21 � R23 � R24 � 100 kΩ. When a � 6, b � 11, and
c � 5, it can be obtained from equation (14) that
R1 � R2 � 333 kΩ, R7 � 2000 kΩ, R8 � R14 � R20 � 40 kΩ,
R13 � 909 kΩ, and R19 � 400 kΩ. Circuit simulation results
are shown in Figure 8. ,ese trajectories are consistent with
numerical simulation results.

Similarly, we can use circuit simulations to observe the
orbital states of system (1) as it moves towards chaos. Keep
other parameters unchanged, and control the value of pa-
rameter b by changing R13. Figures 9(a)–9(d) describe the
trajectories starting from the initial value X+(10, 10, 0, 0),
where R13 � 735 kΩ corresponds to parameter b � 13.6,
R13 � 690 kΩ corresponds to parameter b � 14.5, R13 �

667 kΩ corresponds to parameter b � 15, and R13 � 540 kΩ
corresponds to b � 18.5. By comparing with Figure 3, it can

be seen that the results of circuit simulation and numerical
simulation are consistent.

,e following circuit simulation is used to verify the
symmetric coexisting attractors in system (1), mainly veri-
fying the first three orbital states. Because the parameters
have changed, the value of the corresponding resistances in
the circuit should also be changed. Equation (14) can be used
to calculate the corresponding resistances R1 � R2 � 200 kΩ
and R13 � 1000 kΩ when a � 10 and b � 10.,e parameter c
is controlled by the resistance R19. c � 1.55⟶ R19 �

1290 kΩ, c � 1.92⟶ R19 � 1042 kΩ, and c � 2.01⟶ R19
� 995 kΩ. ,e left graph of Figure 10 shows the attractors
starting from initial value X+(10, 10, 0, 0), and the right
graph of Figure 10 shows the attractors starting from initial
value X− (− 10, − 10, 0, 0). By comparing the circuit simu-
lation diagrams with the numerical simulation diagrams in
the previous section, we can see that the experimental results
of the two are in good agreement.
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Figure 7: Schematic diagrams of chaotic circuit: (a) variable x equivalent circuit, (b) variable y equivalent circuit, (c) variable z equivalent
circuit, and (d) variable w equivalent circuit.
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5. Conclusion

In this paper, a new four-dimensional chaotic system is
designed by adding a state-feedback controller to the Sprott
B system. It contains three nonlinear terms and one constant
term and is symmetric about z-axis. ,rough the analysis of
system diagrams, bifurcation diagrams, and Lyapunov ex-
ponents, it is found that the new system can generate not
only two-wing and four-wing attractors but also symmet-
rical coexisting attractors, and the complexity of the system
is further improved. We also design the electronic circuit,
and the results of the circuit simulation experiment are
consistent with those of the numerical simulation experi-
ment, which proves the correctness of the theoretical
analysis and the realizability of the system. ,e dynamic
characteristics of the new system are more abundant, and it
has great prospects in the fields of image encryption and
secure communication.
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�e topics of memristive system and synchronization are two hot �elds of research in nonlinear dynamics. In this paper, we
introduce a memristor-based chaotic systemwith no equilibrium. It is found that the memristor-based system under investigation
exhibits fruitful dynamic behaviors such as coexisting bifurcation, multistability, transient chaos, and transient quasiperiod.�us,
it is di�cult to reproduce the accurate dynamics of the system, which is highly advantageous in encryption and communication.
�en, a simple intermittent control scheme with adaptive mechanism is developed to achieve complete synchronization for the
introduced system. Because the output signal is transmitted intermittently to the receiver system, more channel capacity can be
saved and the security performance can be improved naturally in practical communication.

1. Introduction

As the fourth basic circuital element along with resistor,
inductor, and capacitor, the memristor was postulated by
Chua in 1971 [1], and it was then successfully fabricated by
the HP laboratories in 2008 [2]. Since then, the memristor
was recognized to perfect the symmetry of the four fun-
damental circuital variables and has aroused wide interest in
academia [3–5]. �e memristor is commonly de�ned as a
two-terminal nonlinear component with controllable re-
sistance called memristance that varies according to the
amount of charge or �ux �owing through it [6]. �e �n-
gerprint of a memristor is composed of a current-voltage
characteristic curve, which shows a pinched hysteresis loop
whose shape varies with frequency and converges to a
straight line with the increase of frequency [7].

�e memristor is currently used to design �ash memory,
improve neural networks, and construct chaotic circuits, for
the intrinsic characteristics of memory, nanoscale device,
and inherent nonlinearity. Itoh and Chua constructed the
memristive chaotic oscillator in 2008, by replacing Chua’s
diodes in Chua’s circuit with the piecewise linear memristor

[8]. Afterwards, many memristor-based chaotic oscillators
were constructed. For example, by replacing the single diode
with a memristor in the original circuit, Pelap postulated an
emendatory Tamasevicius oscillator [9]. Bi-Rong designed a
simple chaotic circuit consisting of an inductor, a capacitor,
and a voltage-controlled memristor [10]. Zhao et al. pro-
posed a memristor-based chaotic system by replacing the
nonlinear diode in the Chua circuit with an active �ux-
controlled memristor [11]. In order to increase the com-
plexity of memristor-based system, Teng et al. used a fourth-
degree polynomial memristance to produce a multiscroll
chaotic attractor [12]. By replacing Chua’s diode with a
physical SBT memristor and a negative conductance in the
canonical Chua’s circuit, a new memristor-based modi�ed
Chua’s circuit is constructed [13]. �ere usually emerges
special dynamics in this kind of memristive systems, such as
initial sensitivity, coexisting bifurcation, coexistence
attractors, and transient dynamics. �erefore, the mem-
ristive chaotic system will provide more complex dynamics
and facilitates the engineering applications of information
encryption, secure communication, and signal processing
[14–17].
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Meanwhile, close attention was paid to chaotic system
without equilibrium [18–20]. From the computer-process-
ing perspective, it is challenging to numerically localize the
attractor in such system since there is no transient process
leading from the vicinity of unstable equilibrium point. In
other words, the attracting basin of such system does not
intersect with any small neighborhood of its equilibrium
point, or the attractor is “hidden” [21–24]. Up to now, little
information is known about the dynamical behavior in such
system, and what is worse is that the Shilnikov criteria
cannot be employed to prove the chaos for the absence of
heteroclinic or homoclinic orbit [25, 26].

Because of its application in secure communication,
digital signal, neural network, and other fields, the syn-
chronization of chaotic system is a fashionable subject in
nonlinear science. Since the first scheme was carried out by
Pecora and Carroll for the synchronization of two identical
chaotic systems [27], a great diversity of methods have been
proposed to synchronize chaotic systems, such as active
control, adaptive control, impulsive control, sliding mode
control, intermittent control, pinning control, and hybrid
control [28–31]. Generally, a chaotic communication system
can be constructed based on master-slave synchronization,
where the message is modulated by the transmitting system
and is then sent to the receiving system. Also, in the receiver,
the designed synchronization scheme is used to demodulate
the received signal and extract the message [32]. (e in-
termittent synchronization implies that the slave system
receives the demodulated information from the master
system intermittently. (erefore, the intermittent synchro-
nization scheme will decrease the amount of conveyed in-
formation and the communication channel capacity will be
reserved for more message transmission. Also, accordingly,
the security of the chaotic communication system will be
improved since the redundancy of the synchronization in-
formation in the channel is reduced. (erefore, the in-
termittent synchronization scheme is especially fit for the
design of practical chaos-based communication system.

In this paper, we introduce a memristor-based chaotic
system with no equilibrium. (e dynamical evolution of the
memristive system is studied by using phase diagram, time-
domain trajectory, bifurcation diagram, and Lyapunov ex-
ponent. It is found that by changing system parameters or
initial condition, the reported system exhibits different to-
pological structures of coexisting bifurcation, multistability,
transient dynamics. (e coexisting hidden attractors signify
that the system has fruitful and complex dynamic behaviors,
which is highly advantageous in encryption and commu-
nication for the difficulty of reproducing the accurate dy-
namics of the system. (en, a simple intermittent control
scheme with adaptive mechanism is developed to achieve
complete synchronization for the introduced memristive
system. Since the output signal is transmitted intermittently
to the receiver system, more channel capacity can be saved
and the security performance of the communication system
can be improved naturally in practical communication.
(eoretical analysis and illustrative examples are executed to
verify the effectiveness of the proposed synchronization
scheme.

2. Memristor-Based Chaotic System with
No Equilibrium

2.1. Model Description. Based on Sprott A system, the
constructed memristive chaotic system can be described by
the following differential equations:

_x � y,

_y � − Wx + yz,

_z � c − y2,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where x, y, z are state variables; the function W represents
the model of a flux-controlled memristor, depicted as
W � 3ax2 + b; and a, b, c are positive parameters.

(e dissipativity is decided by ∇V � (z _x/x)+ (z _y/y) +

(z _z/z) � z; thus, system (1) is non-Hamiltonian conservative of
phase volume [33]. It is palpable that there exists no equilibrium
in system (1). (erefore, the strange attractor is “hidden” in the
sense of classification method described by Leonov et al. [21],
and the Shilnikov method cannot be employed to verify the
emergence of chaos since there is no heteroclinic or homoclinic
orbit in this system. It is easy to know that the system is
symmetric with respect to the y-axis in the sense of coordinate
transformation (x, y, z, t)⟶ (− x, y, − z, − t).

When choosing the parameters a� 3, b� − 1, and c� 1
and initial condition (0.2, 0.15, 0), system (1) appears a
chaotic state with the Lyapunov exponents 0.1062, 0,
− 0.1062, as illustrated by the phase portrait in Figure 1.

2.2. Coexisting Bifurcation and Multiple Attractors. It is
found that the memristive system under consideration can
experience rich bifurcation structures when continuously
monitoring the bifurcation parameter. Also, the memristive
system has completely different bifurcation behaviors when
the initial conditions are set to different values.

We assign the parameters b and c of system (1) as b� − 1
and c� 1, and select parameter a serving as the representative
bifurcation parameter. (e coexisting bifurcation diagrams,
produced by the local maxima of the state variable z in terms
of control parameter a, are depicted in Figure 2(a) when the
system starts with the initial states (0.1, 0, 0) and (0.2, 0, 0).
Also, the corresponding maximal Lyapunov exponents are
depicted in Figure 2(b). (is strategy represents a convenient
and intuitive approach to identify the window in which the
multiple coexisting attractors arise. We further draw in
Figure 3 the enlarged bifurcation diagrams of Figure 2(a) to
show the typical regions of multiple coexisting attractors. By
taking different initial conditions (0.1, 0, 0) and (0.2, 0, 0),
respectively, we plot the coexisting multiple attractors with
different parameter a in Figure 4. It is found that there may
emerge rich dynamical structures of coexisting chaos, qua-
siperiod or period with different shape for the same parameter
a when starting from different initial states.

We also study the dynamics evolution of system (1) by
using the initial value x(0) served as the bifurcation pa-
rameter. (e system parameters are fixed as a� 3, b� − 1,
c� 1, and the rest initial conditions are assigned to be
y(0) � 0, z(0) � 0. (e bifurcation diagram and spectra of
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Figure 1: Phase portrait projected onto the plane of (a) x–y; (b) y–z; (c) x–z.
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for blue diagrams and (0.2, 0, 0) for red diagrams.
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Lyapunov exponent are depicted in Figures 5(a) and 5(b),
respectively. It can be found that when increasing initial value
x(0) from − 2 to 2, there emerge periodic windows embedded
in the chaotic region, and the dynamics is symmetrically

distributed with respect to zero value. In fact, the dynamics is
also symmetrically distributed with respect to y-axis and z-
axis, as depicted by the dynamical map of x(0) versus y(0)

and the dynamical map of y(0) versus z(0) in Figures 6(a)
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Figure 3: Enlargement of the bifurcation diagrams of Figure 2(a) in ranges of (a) [0.8, 1.2] and (b) [3, 4]; the initial conditions are (0.1, 0, 0)
for blue diagrams and (0.2, 0, 0) for red diagrams.
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and 6(b), respectively. In the dynamical map, the system is
chaotic in the cyan region and periodic in the pink region.
Some representative coexistence attractors of symmetric
distribution with respect to x(0) are displayed in Figure 7.

2.3. TransientDynamics. It is surprising to see in Figure 2(b)
that a periodic window appears in the parameter region of
2.586≤ a≤ 2.688, but it does show the chaotic behavior in
Figure 2(a). (e emergence of different dynamical modes is
due to the transition from the long term transient period to
steady chaos with the time evolutions of system. (e
transient dynamics can be represented by chaotic orbit
before entering the final nonchaotic behavior, and the in-
verse process is also correct.

Firstly, the case of system parameters a� 3, b� − 1, and c� 1
and initial condition x(0) � 0.1, y(0) � 0.15, z(0) � 0.1 is
considered. (e time trajectory in the region of [0 s, 800 s] and
the phase diagrams in two different time intervals of [0 s, 400 s]
and [450 s, 800 s] are depicted in Figure 8, which illustrates the
dynamics transformation from transient period to steady chaos.

(en we take the selection of system parameters a� 3,
b� − 1, and c� 1 and initial condition x(0) � 0.3, y(0) � 0.1,
z(0) � 0.6.(e time trajectory in the region of [0 s, 2000 s] and
the phase diagrams in two different time intervals of [0 s, 900 s]
and [1100 s, 2000 s] are depicted in Figure 9. It is observed in
Figure 9 that the trajectory of system (1) starts from a qua-
siperiodic orbit for a long time and then it transforms into a
chaotic state at t� 1050 s. Similarly to transient chaos, we call
this dynamic phenomenon as transient quasiperiod.
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Figure 5: (a) Bifurcation diagram; (b) Lyapunov exponent spectrum versus x(0).
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3. SynchronizationControl ofMemristor-Based
Chaotic System

3.1. Synchronization Scheme. We consider the master-slave
synchronization scheme for the introduced chaotic system,
and the corresponding master-slave systems are described
by the compact form:

master system
dx

dt
� f(x),

x � x1, x2, x3(  � (x, y, z),

(2)

slave system
dy

dt
� f(y),

y � y1, y2, y3(  � x′, y′, z′( .

(3)

In which, f(·) ∈ R3 is the smooth vector field satisfying
the Lipschitz condition:

fi(x) − fi(y)
����

����≤ k xi − yi

����
����≤ k‖x − y‖∞,

‖x − y‖∞ � maxi xi − yi

����
����,

i � 1, 2, 3.

(4)

To realize the synchronization of systems (2) and (3), we
add a single linear controller to the i-th equation of the slave
system, as depicted by

dy

dt
� f(y) + ui,

ui � μ xi − yi( .

(5)

(e synchronization error is defined by ei � xi − yi, i �

1, 2, 3. Also, we construct the candidate Lyapunov function as
V � (1/2)

3
i�1(xi − yi)

2. (e time derivative of V along the
synchronization error is deduced by
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Figure 9: (a) Time-domain waveform of z in the region of [0 s, 2000 s]; (b) the phase portrait in time interval of [0 s, 900 s]; (c) the phase
portrait in time interval of [1100 s, 2000 s].
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_V � 
3

i�1
xi − yi(  _xi − _yi( 

� 
3

i�1
xi − yi(  fi(x) − f(y) − ui( 

� 
3

i�1
xi − yi(  fi(x) − f(y)(  − μ xi − yi(  

3

i�1
xi − yi( 

≤ (3k − μ)‖x − y‖∞
2
.

(6)

When μ≥ 3k, we have _V≤ 0. (us, the controlled slave
system will asymptotically synchronize with the master
system with the simple controller ui � μ(xi − yi) when
μ≥ 3k.

In fact, to reduce the control consumption, we can
optimize the controller as

ui � μ xi − yi(  · H xi − yi


 − ε , (7)

where ε is a small positive constant; the function H(·) is
described as H(z) � 1 when z≥ 0 and H(z) � 0 when z< 0.
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Figure 10: (a) Phase diagram and (b) state trajectories with x(0) � (0.1, 0, 0) and y(0) � (− 0.1, 0, 0).
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(e practical significance of the optimized control scheme
is that one imposes the controller μ(xi − yi) to the slave
system when |xi − yi|≥ ε, but the controller does not work
when |xi − yi|< ε. (us, the controller can realize the system
synchronization intermittently with the adaptive mechanism,
according to the characteristics of motion trajectories.
(erefore, compared with continuous synchronization
schemes, intermittent synchronization will reduce the amount
of conveyed information, which is of significance in the
practical communication since the communication channel

capacity will be reserved for more message transmission. In
addition, the security of chaotic communication systemwill be
improved due to the reduction of redundancy of synchro-
nization information in the channel.

3.2. Numerical Simulation. We impose the controller
μ(x2 − y2) · H(|x2 − y2| − ε) to the second term of the slave
system. (e system parameters are set as a � 3, b � − 1, and
c � 1.
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Figure 12: (a) Phase diagram and (b) state trajectories with x(0) � (0.1, 0, 0) and y(0) � (0.1, 1, 0).
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We first choose the initial condition of system (2) as
x(0) � (0.1, 0, 0) with which system (2) is chaotic, and the
initial states of system (4) are taken as y(0) � (− 0.1, 0, 0) for
also displaying chaotic, as shown in Figure 10. (e syn-
chronization result is shown in Figure 11 when the con-
troller gain μ equals 3 and ε is set to be 0.02.

(en, we also set x(0) � (0.1, 0, 0) with which system (2)
is chaotic, but the initial states of system (4) are taken as
y(0) � (0.1, 1, 0) for displaying quasiperiodic, as shown in
Figure 12. (e synchronization result is shown in Figure 13
when controller parameters μ� 2 and ε� 0.02.

We know that no matter what the dynamic state of the
memristive system is, the synchronization control of the
memory system can be easily realized by adopting the
designed method.

4. Conclusions

In this paper, we introduce a memristor-based chaotic system
with no equilibrium. Various tools including phase diagram,
time-domain trajectory, bifurcation diagram, and Lyapunov
exponent are exploited to establish the connection between the
system parameters and dynamical behaviors. It is found that
the reported system exhibits complex dynamics such as
coexisting bifurcation, multistability, symmetric coexisting
attractors, and transient dynamics, which is helpful for the
security improvement of encryption and communication due
to the difficulty of reproducing the accurate dynamics. (en, a
simple control schemewith single linear couple is developed to
achieve complete synchronization for the memristive system.
Since the output signal is transmitted intermittently to the
receiver system with the adaptive mechanism, the commu-
nication channel capacity will be reserved for more message
transmission. Also, the security of chaotic communication
system will be improved for the reduction of redundancy of
synchronization information in the channel.
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Based on the structures of unmanned aerial vehicle (UAV) wings, nonlinear dynamic analysis of macro�ber composite (MFC)
laminated shells is presented in this paper. �e e�ects of piezoelectric properties and aerodynamic forces on the dynamic stability
of the MFC laminated shell are studied. Firstly, under the �ow condition of ideal incompressible �uid, the thin airfoil theory is
employed to calculate the e�ects of the mean camber line to obtain the circulation distribution of the wings in subsonic air �ow.
�e steady aerodynamic lift on UAV wings is derived by using the Kutta–Joukowski lift theory. �en, considering the geometric
nonlinearity and piezoelectric properties of the MFC material, the nonlinear dynamic model of the MFC laminated shell is
established with Hamilton’s principles and the Galerkin method. Next, the e�ects of electric �eld, external excitation force, and
nonlinear parameters on the stability of the system are studied under 1 :1 internal resonance and the e�ects of material parameters
on the natural frequency of the structure are also analyzed. Furthermore, the in�uence of the aerodynamic forces and electric �eld
on the nonlinear dynamic responses of MFC laminated shells is discussed by numerical simulation. �e results indicate that the
electric �eld and external excitation have great in�uence on the structural dynamic responses.

1. Introduction

MFC material, which was invented by NASA in 1996, has
great application prospect in many engineering structures,
especially in aviation and aerospace �eld. MFC materials are
composed of twomain parts: rectangular piezoceramic �bers
and interdigitated electrodes. �e sheet of aligned rectan-
gular piezoceramic �bers is used to improve �exibility and
damage tolerance in comparison with the traditional
monolithic piezoceramic. Interdigitated electrode patterns
are attached to the top and bottom of a polyamide �lm to
permit in-plane poling and actuation of the piezoelectric
�bers. MFCs mainly have two di�erent types, namely, d31
and d33 modes, based on di�erent laying directions of the
piezoelectric �ber material.

Because of the great potential of piezoelectric composite
materials, piezoelectric materials become the most com-
monly used smart materials in active vibration and noise

control, energy harvest, and so on. Tan et al. [1] studied the
dynamic characteristics of a beam system with active pie-
zoelectric �ber-reinforced composite layers. �en, more
researches are reported on the MFCmaterials as sensors and
actuators in di�erent structures to adjust the deformation or
vibration of the system, such as rotating composite thin-
walled beams [2], thin beams [3], cylindrical shells [4], and
smart composite plates [5].

Recently, the dynamic behaviors of the classical MFC
structure are attracting more and more scholars from all over
the world. Park and Kim [6] investigated the material prop-
erties of MFCs by using classical lamination theory and uni-
form �eld model. Bilgen et al. [7] built a linear distributed
parameter electromechanical model for frequency-response
analysis of MFC actuated clamped-free thin beams and
compared their results with experimental results. Cook andVel
[8, 9] considered di�erent stresses of a simply supported
laminated plate consisting of an MFC shear actuator
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sandwiched between graphite/polymer layers, which were
subjected to an electric field perpendicular to the poling
direction.

'e nonlinear dynamical simulations considering large
displacements are taken into account for different MFC
structures, such as circular plates [10], functionally graded
plates [11], laminated composite plates [12], and thin-walled
structures [13]. 'e effects of different parameters of the
structures on the natural frequencies and vibration modes are
discussed in these articles. Similarly, actuation properties of
MFCs under strong voltages were investigated by Williams
et al. [14] through using the theoretical piezoelectric consti-
tutive model with higher-order electric field. Zhang and Shen
[15] conducted the three-dimensional analysis for rectangular
1–3 piezoelectric fiber-reinforced composite laminates with
the interdigitated electrodes under electromechanical loadings.
Belouettar et al. [16] investigated active control of nonlinear
vibrations of piezoelectric-elastic-piezoelectric sandwich
beams using the method of harmonic balance.

Rafiee et al. [17] investigated the nonlinear vibration and
dynamic behavior of simply supported piezoelectric func-
tionally graded shells under electrical, thermal, mechanical,
and aerodynamic loadings. Hosseini et al. [18] analyzed the
nonlinear free and forced vibrations of cantilever structures
resting on a nonlinear elastic foundation with a piecewise
piezoelectric actuator layer bonded on the top surface. 'e
effects of various parameters on the free and forced non-
linear responses of the system were discussed. Mareishi et al.
[19] considered the geometric nonlinearity of the piezo-
electric fiber-reinforced laminated composite beams and
analyzed the nonlinear frequencies of the beams with simply
supported and clamped boundary conditions. Rafiee et al.
[20] provided numerical simulation about the nonlinear
dynamics of piezoelectric nanotubes/fibers/polymer multi-
scale composite plates, including the effects of different
parameters of single-walled carbon nanotubes (SWCNTs)
andmultiwalled carbon nanotubes (MWCNTs) on the linear
and nonlinear natural frequencies. Ninh and Bich [21]
studied the electrothermal mechanical vibration of func-
tionally graded carbon nanotube-reinforced composite (FG-
CNTRC) cylindrical shells by the numerical analytical
method. Lu et al. [22] investigated the nonlinear dynamic
characteristics of the time-varying piezoelectric laminated
composite plate.

In regard to the analysis methods for laminated com-
posite plates with integrated piezoelectric actuators, several
studies have been performed using the classical lamination
theory [23], first-order shear deformation theory [24],
higher-order theories [25], and the finite element method
[26]. Moreover, Prasath and Arockiarajan [27, 28] studied
the effect of bonding layer volume fraction on the effective
thermo-electro-elastic constants of both d33- and d31-type
MFCs by using the finite element method and experiments.
Zhang et al. [29] investigated the structural deformation of
composite laminated thin-walled structures bonded with
orthotropic MFCs by establishing the finite element (FE)
model based on linear piezoelectric constitutive equations.

'ere are many researches on the aerodynamic force of
different structures. Kouchakzadeh et al. [30] analyzed the

aerodynamic modeling of structures by applying the classical
plate theory along with the von Karman nonlinear strains
and linear piston theory. Li et al. [31] used the piezoelectric
material to increase the flutter velocities of the supersonic
beams and adopted the supersonic piston theory to evaluate
the aerodynamic pressure. Kuo [32] investigated the in-
fluence of variable fiber spacing on the supersonic flutter of
rectangular composite plates and later also [33] discussed the
effects of hybrid fiber distribution on the critical buckling
temperature, natural frequencies, and flutter boundary of
composite laminates by using the finite element method.
Zhang et al. [34] considered the aerodynamics of a deploying
wing in subsonic air flow and investigated the nonlinear
dynamic behaviors of deploying wings in numerical
simulations.

Motivated by the above considerations, the nonlinear
dynamic analysis of the MFC laminated shell subjected to
aerodynamic force is presented here. 'e effects of pie-
zoelectric properties and aerodynamic force on the dy-
namic stability of the structure are studied. Nonlinear
dynamic equations of the cantilever MFC laminated shell
are built based on UAV wings. 'e effect of different forces
on the dynamic behaviors of MFC laminated shells is in-
vestigated in numerical simulation. Moderating effects of
piezoelectric performance on the stability of the system are
also presented here, which would provide guidance in
controlling strategy of the nonlinear vibration for UAV
wings.

2. Derivation of the Aerodynamic Force on the
Deploying Wing

Considering the work situation of UAVs in subsonic air
flow, the thin airfoil theory is applied here to calculate
aerodynamic forces. Based on the thin airfoil theory, the
potential function of the flow field can be divided into two
parts: one is the potential function of the original uniform
flow and the other is the disturbance potential function
generated by the perturbation of the airfoil convection field,
which also satisfies Laplace equations. Moreover, the per-
turbed potential function can be obtained according to the
boundary condition of the typical airfoil and the infinite
boundary condition of velocity approaching zero, as shown
in Figure 1.

'erefore, the boundary condition can be given as
follows:

α +
Vn

V∞
�

dy

dx
, (1)

where α is the angle of attack, Vn is the normal induced
velocity, V∞ is the uniform flow velocity in direction α, and
dy/dx means the slope at any point in the middle arc of the
airfoil.

Furthermore, the disturbance potential function equa-
tions and boundary conditions can be expressed in terms of
the airfoil thickness and velocity potential caused by the
camber curvature and attacked angle. When the curvature of
the camber line is very small, the vorticity gradient in the y
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direction is small with respect to a small camber or cur-
vature, as shown in Figure 2.

'erefore, the total circulation of the entire airfoil is
expressed as follows:

Γ � 
c

0
c dξ, (2)

and the boundary condition is transformed into the fol-
lowing form:

α +
1

V∞


c

0

c(ξ)dξ
2π(ξ − x)

�
dy

dx
, (3)

where c(ξ) can be expanded to a Fourier series of c(θ):

c(θ) � 2V
∞

A0 cot
θ
2

  + 
∞

1
An sin(nθ)⎛⎝ ⎞⎠. (4)

Moreover, the boundary conditions are obtained as
follows through the transformation x � (b/2)(1 − cosΘ):

α − A0 �
1
π


π

0

dy

dx
dΘ, (5a)

An �
2
π


π

0

dy

dx
 cos(nΘ)dΘ. (5b)

'erefore, the total circulation can be rewritten as

Γ � 
c

0
c(x)dx � V∞b 

π

0
A0(1 + cosΘ)

+ 
∞

1
An sin(nΘ)sinΘ � παbV∞,

(6)

and the lift per unit wingspan is expressed as

L � παρbV
2
∞. (7)

Finally, the total lift on wingspan can be obtained
according to the typical airfoil shape modeled in the fol-
lowing sections.

3. Mechanical Model

Generally, the induced strain of the d33 piezoelectric constant
is larger than that of the d31 piezoelectric constant for MFC
materials. 'erefore, a d33 MFC laminated hyperbolic shell is
considered here to establish the mechanical model of the
high-aspect-ratio wings for UAVs. 'e cylindrical coordinate
system is described here with curvatures α and β on the
middle surface and perpendicular to the middle surface of the
shell, as shown in Figure 3. 'e Cartesian coordinate system
Oxyz is located in the tangent plane of the thin shell. Geo-
metric dimensions of the shell are the lengths a and b and the
thickness h, and the principal radii of the curvatures are R3
and R4. 'e displacements of an arbitrary point within the
shell are expressed as u, v, and w, respectively. w is taken as a
positive vector going outward from the center of the smallest
radius of the curvature. 'e shell is subjected to the aero-
dynamic force as q � f cos(Ω2t). A dynamic electric field is
expressed as E � E cos(Ω1t) and applied in the longitudinal
direction of the piezoelectric fibers, as shown in Figure 4.

All piezoelectric fibers are considered to be poled in the α
and β directions, which can be assumed that out-of-plane
electric fields vanish (that is, e33 � 0). 'erefore, three sets of
material coefficients are used to address the constitutive
characteristics of the mechanical and electrical fields as well
as the coupling between these fields, as follows:

σp � Cpqεq − ekpEk,

Di � eiqεq + kikEk,
(8)

where Ek is the electric field intensity, σp is the stress, εq is the
strain, Cpq is the coefficient of elasticity, Di is the electric dis-
placement, and ekp and kik represent the piezoelectric constants.

Using the nonlinear von Karman’s geometric relation-
ship for the thin shell, the strain can be expressed as

ε1 � ε01 + ηε11 + η3ε21,

ε2 � ε02 + ηε12 + η3ε22,

ε4 � ε04 + η2ε14,

ε5 � ε05 + η2ε15,

ε6 � ε06 + ηε16 + η3ε26,

(9)

where ε01, ε
1
1, and ε

2
1 are described as

p

y

x
V∞

tan–1(–(dy/dx))

tan–1(–(dy/dx))

α

α

Figure 1: Normal velocity of the free stream in the middle curve.

y

α
V∞

o b

γ(s)

γ(ξ)

o
ξ dξ

Figure 2: Circulation distribution along the airfoil.
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ε01 �
zu0

zx
+

w0

R3
+
1
2

zw0

zx
 

2

,

ε11 �
zϕ1
zx

,

ε21 � − c1
zϕ1
zx

+
z2w0

zx2 −
1

R3

zu0

zx
 ,

ε02 �
zv0

zy
+

w0

R4
+
1
2

zw0

zy
 

2

,

ε12 �
zϕ2
zy

,

ε22 � − c1
zϕ2
zy

+
z2w0

zy2 −
1

R4

zv0

zy
 ,

ε04 � ϕ2 +
zw0

zy
−

v0

R4
,

ε14 � − c2 ϕ2 +
zw0

zy
−

v0

R4
 ,

ε05 � ϕ1 +
zw0

zx
−

u0

R4
,

ε15 � − c2 ϕ1 +
zw0

zx
−

u0

R3
 ,

ε06 �
zu0

zy
+

zv0

zx
+

zw0

zx

zw0

zy
,

ε16 �
zϕ1
zy

+
zϕ2

zx
,

ε26 � − c1
zϕ1
zy

+
zϕ2
zx

+ 2
z2w0

zx zy
−

1
R3

zu0

zy
−

1
R4

zv0

zx
 .

(10)

'e Lame coefficients of the shells A1 andA2 are
expressed as

A1 � a1 1 +
η

R3
  �

���
Λ11


,

A2 � a2 1 +
η

R4
  �

���
Λ22


,

(11)

where ai(1, 2) is the surface tensor of the shell.
'e displacement of an arbitrary point in the composite

shell can be expressed as R and be calculated as follows:

dR �
���
Λ11


dα +

���
Λ22


dβ + ndη , (12)

where n is the unit vector perpendicular to the middle plane
of the shell, which is expressed as follows:

n �
g1 × g2

a1a2
. (13)

Here, gi (1, 2) is the vector tangent to the cylindrical co-
ordinate axis.

Since the following analysis is carried out in the Car-
tesian coordinate system, it needs the relations between the
cylindrical coordinate system and the Cartesian coordinate
system:

dx

dy

dz

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

�

a1 0 0

0 a2 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dα

dβ

dη

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (14)

'e displacement field at an arbitrary point in the
composite shell is given as follows based on Reddy’s third-
order theory:

u � u0(x, y, t) + zϕ1(x, y, t) −
4
3h2z

3 ϕ1 +
zw0

zα
 , (15a)

v � v0(x, y, t) + zϕ2(x, y, t) −
4
3h2z

3 ϕ2 +
zw0

zβ
 , (15b)

w � w0(x, y, t), (15c)

α

η

q

R3 R4

β

Figure 3: Model of the MFC thin shell.
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where u0, v0, and w0 are the original displacements at the
midplane of the MFC shell in the Cartesian coordinate
directions and ϕ1 and ϕ2 represent the rotations of trans-
verse normal at the midplane about the y and x axes.

'e aerodynamic force in the shell structure can be
calculated as follows:

q � 
l
L ds � παρbV

2
∞a. (16)

Substituting these transformations into equations
(15a)–(15c) and applying Hamilton’s principle, the non-
linear governing equations of motion in terms of generalized
displacements for the MFC thin shell can be obtained as
follows:

− a11
z3w0

zx3 + a12
zw0

zx

z2w0

zx2 + a13
zw0

zy

z2w0

zx zy
+ a14

zw0

zx

z2w0

zy2

− a15
z3w0

zx zy2 + a16
zw0

zx
+ a17

z2u0

zx2 + a18
z2u0

zy2 + a19
z2v0

zx zy

+ a20
z2ϕ1
zx2 + a21

z2ϕ1
zy2 + a22

z2ϕ2
zx zy

+ a23u0 + a24ϕ1

− a25E1 cos Ω1t(  � I0 €u0,

(17a)

− b11
z3w0

zy3 + b12
zw0

zy

z2w0

zy2 + b13
zw0

zx

z2w0

zx zy
+ b14

zw0

zy

z2w0

zx2

− b15
z3w0

zy zx2 + b16
zw0

zy
+ b17

z2v0

zx2 + b18
z2v0

zy2 + b19
z2u0

zx zy

+ b20
z2ϕ2
zx2 + b21

z2ϕ2
zy2 + b22

z2ϕ1
zx zy

+ b23v0 + b24ϕ2

− b25E2 cos Ω1t(  � I0€v0,

(17b)

− c11
z4w0

zx4 − c12
z4w0

zy4 − c13
z4w0

zx2zy2 + c14
z2w0

zx2

+ c15
z2w0

zy2 + c16
zw0

zx
 

2

+ c17
zw0

zy
 

2

+ c18
z2w0

zx2
zv0

zx

+ c19
z2w0

zy2
zv0
zy

+ c20
zw0

zx

z2u0

zx2 + c21
zw0

zy

z2v0
zy2

+ c22w0
z2w0

zx2 + c23w0
z2w0

zy2 + c24
zw0

zx
 

2
z2w0

zx2

+ c25
zw0
zy

 
2z2w0

zy2 + c26
zw0

zy
 

2
z2w0

zx2 + c27
zw0

zx
 

2
z2w0

zy2

+ c28
z2w0

zx2
zv0

zy
+ c29

z2w0

zy2
zu0

zx
+ c30

zw0

zx

z2v0

zx zy

+ c31
zw0

zy

z2u0

zx zy
+ c32

zw0

zx

zw0

zy

z2w0

zx zy
+ c33

z2w0

zx zy

zv0

zx

+ c34
z2w0

zx zy

zu0

zy
+ c35

zw0

zy

z2v0
zx2 + c36

zw0

zx

z2u0

zy2

− c37
zw0

zy

z3w0

zx2zy
− c38

z3w0

zx zy2
zw0

zx
+ c39

z3u0

zx3

+ c40
z3v0

zy3 − c41
zu0

zx
− c42

zv0

zy
+ c43

z3u0

zx zy2 + c44
z3v0

zx2zy

+ c45
z3ϕ1
zx3 + c46

z3ϕ2
zy3 + c47

z3ϕ1
zx zy2 + c48

z3ϕ2
zx2zy

+ c49
zϕ1
zx

+ c50
zϕ2
zy

− c51w0 + f cos Ω2t(  − μ _w0 � I0 €w0

+ c1I4 − c31I6( 
z€ϕ1
zx

+
z€ϕ2
zy

) + c
3
1I6

z2 €w0

zx2 +
z €w0

zy2 ,

(17c)
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Figure 4: MFC-d33 material.
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d11
z3w0

zx3 + d12
z3w0

zx zy2 + d13
zw0

zx

z2w0

zy2

+ d14
zw0

zy

z2w0

zx zy
+ d15

zw0

zx
+ d16

z2u0

zx2 + d17
z2u0

zy2

+ d18
z2v0

zx zy
+ d19

z2ϕ1
zx2 + d20

z2ϕ1
zy2 + d21

z2ϕ2

zx zy
+ d22u0

+ d23ϕ1 + d24E1 cos Ω1t( 

� I2
€ϕ1 − c1I4

€ϕ1 − c1I4
z €w0

zx
+ c1− I4

€ϕ1 + c1I6
€ϕ1 + c1I6

z €w0

zx
,

(17d)

e11
z3w0

zy3 + e12
z3w0

zx2zy
+ e13

zw0

zy

z2w0

zx2 + e14
zw0

zx

z2w0

zx zy

+ e15
zw0

zy
+ e16

z2v0

zx2 + e17
z2v0

zy2 + e18
z2u0

zx zy
+ e19

z2ϕ2
zx2

+ e20
z2ϕ2
zy2 + e21

z2ϕ1
zx zy

+ e22v0 + e23ϕ2 + e24E2 cos Ω1t( 

� I2
€ϕ2 − c1I4

€ϕ2 − c1I4
z€w0

zy
+ c1− I4

€ϕ2 + c1I6
€ϕ2 + c1I6

z €w0

zy
,

(17e)

where μ in equation (17c) is the damping coefficient.
'e boundary conditions of the cantilever thin shell are

expressed as

x � 0 : Nxy � Mxx � Mxy − c1Pxy � Qx � 0, (18a)

x � a : Nxy � Mxx � Mxy − c1Pxy � Qx � 0, (18b)

y � 0 : u0 � v0 � w0 � ϕ1 � ϕ2 � 0, (18c)

y � b : Nyy � Nxy � Myy � Mxy

− c1Pxy � Qy � 0,
(18d)

x � 0,

a : 
(h/2)

− (h/2)
Nxxdz � ± 

(h/2)

− (h/2)
fdz.

(18e)

4. Effects of the Piezoelectric Parameters

Since the polarization of MFC-d33 is located in the plane,
the vibration amplitudes of the shell in the x direction also
need to be analyzed as those in the z direction. Here, the
nonlinear coupled vibrations are considered between the
in-plane and out-of-plane of the cantilever shell in the
following studies. 'e displacements u0, v0, w0, ϕ1, and ϕ2,
which satisfy the boundary conditions for the shell, are
expressed as

u0 � u1 sin
πx

2
cos πy,

v0 � v1 sin
πx

2
sin πy,

ϕ1 � ϕ11 sin
πx

2
cos πy,

ϕ2 � ϕ21 1 − cos
πx

2
 sin πy,

w0 � w1(t)X(x)Y(y),

(19a)

X(x) � sin λ1x − sinh λ1x
+ α1 cosh λ1x − cos λ1x( ,

Y(y) �
�
3

√
1 −

2y

b
 ,

(19b)

cos λ1a cosh λ1a + 1 � 0. (19c)

'en, taking all these derived expressions in equations
(18a)–(18e) and (19a)–(19c) into equations (17a)–(17e) and
applying the Galerkin procedure, two-degree-of-freedom
nonlinear ordinary differential equations of the MFC lam-
inated shell with dimensionless variables are obtained as
follows:

€u1 + ω2
1u1 + α11w

2
1 + α12E1 cos Ω1t(  � 0, (20a)

€w1 + μ1 _w1 + ω2
2w1 + α21u1 + α22u1w1 + α23w1E1 cos Ω1t( 

+ α24w
2
1 + α25w

3
1 + α26E1 cos Ω1t(  � α27f cos Ω2t( .

(20b)

'e structural properties are taken as follows: the shell
has 7 laminae and the total thickness is 0.002∗ 7m. 'e
elastic constants of the fiber and matrix are 2.1 × 1011 Pa and
3.5 × 109 Pa, respectively. 'e destiny of the shell is
1.96 kg/m3, and Poisson’s ratio is 0.36.'e electric inductivity
is 1296, and piezoelectric coefficients are d33 � 509 pC/N and
d31 � − 156 pC/N.

Firstly, the effects of the piezoelectric parameters on the
deflection (K � x1/b) of the shell are analyzed. Let voltage be
40 kV/cm along the y direction, the volume of the fiber
content be 18%, and K be 15°.'e radii R3 andR4 are divided
into two groups: (i) R3 � 1.5m and R4 � 1.5 ∼ 2.5m and (ii)
R3 � 3m and R4 � 3 ∼ 5m. 'e relations between the radii
of curvature R3 and R4 and K are described in Figure 5,
which shows that the curves are nearly straight when
R3 andR4 increase. 'erefore, the piezoelectric parameters
would not affect the deflection of the thin shell directly.

'en, the voltage is increased from 20 kV/cm to 60 kV/
cm and the radii are set as R3 � 1.5m and R4 � 2m, as
shown in Figure 6. It indicates that the deflection of the thin
shell will be amplified with the increasing voltages. 'e
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deflection of the thin shell is also affected by the volume of
macrofibers, as shown in Figure 7.'e deflection K increases
from 1.2 to 11.7 when the volume of macrofibers varies from
0 to 20%.

It is summarized from the above results that the voltage
and volume of macrofibers play an important role in the
deflection of the MFC shell, which could adjust the natural
frequency of the shell. It also indicts that voltage and volume
of macrofibers are useful controlling parameters for the
dynamic responses of the shell.

5. Nonlinear Characteristic Analysis under 1 :1 Internal
Resonance. Since the resonance of the system has great
influence on the structural stability, the primary param-
eter resonance and 1 : 1 internal resonance are considered
here, and the resonance relationships are expressed as
follows:

ω1 � Ω1 − εσ1,

ω2 � Ω2 − εσ2,

Ω1 � Ω2 � 1,

(21)

where σ1 and σ2 are two detuning parameters, respectively.
'e solution of equations (20a) and (20b) can be written

as follows according to the method of multiscale:

u1 � u10 T0, T1(  + εu11 T0, T1(  + · · · , (22a)

w1 � w10 T0, T1(  + εw11 T0, T1(  + · · · . (22b)

Equations (21), (22a), and (22b) are introduced into
equations (20a) and (20b) to obtain the following conditions.

ε0 order:

D
2
0u10 + u10 � 0, (23a)

D
2
0w10 + w10 � 0. (23b)

ε1 order:

D
2
0u11 + u11 � − 2D0D1u10 − α11w

2
10

− α12E1 cos Ω1t(  + 2σ1u10,
(24a)

D
2
0w11 + w11 � − 2D0D1w10 − μ1D0w10 − α21u10

− α22u10w10 − α23w10E1 cos Ω1t( 

+ 2σ2w10 − α24w
2
10 − α25w

3
10

− α26E1 cos Ω1t(  + α27F cos Ω2t( .

(24b)

Assume that the solutions of equations (24a) and (24b)
are as follows:

u10 � 
1

T1( e
iT0 + cc, (25a)

w10 � 
2

T1( e
iT0 + cc, (25b)

where Π1 � (1/2)ς1eiβ1 and Π2 � (1/2)ς2eiβ2 , in which ςi(i �

1, 2) is the amplitude of vibration and βi (i � 1, 2) is the
initial phase.

Substituting equations (25a) and (25b) into equations
(24a) and (24b) and eliminating the long term, the average
equations of the polar form are obtained as follows:

_ς1 � −
α12
2

E1 sin β1( , (26a)

ς1 _β1 � −
α12
2

E1 cos β1(  − ς1σ1, (26b)

_ς2 � −
1
2
μς2 −

1
2
α21ς1 sin β1 − β2( 

−
1
2

α27f − α26E1( sin β2( ,

(26c)

ς2 _β2 �
1
2
α21ς1 cos β1 − β2(  − ς2σ2

+
3
8
α25ς

3
2 +

1
2

α27f − α26E1( cos β2( .

(26d)
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Figure 5: K-curve radius map.
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When the amplitude achieves a constant nontrivial
value, a steady-state vibration exists. 'erefore, let the left-
hand side of equations (26a)–(26d) equals to zero and
eliminate β1 − β2 by using the relations between trigono-
metric functions, and then the frequency-response functions
can be obtained:

α212
4

E
2
1 � ς21σ

2
1, (27a)

−
1
2
μς2 −

1
2

α27f − α26E1( sin β2(  
2

+ − ς2σ2 +
3
8
α25ς

3
2 +

1
2

α27f − α26E1( cos β2(  
2

�
1
4
α221ς

2
1.

(27b)

Based on equations (27a) and (27b), the effects of electric
field, transversal excitation, and nonlinear parameters (α25)
on the nonlinear amplitudes are investigated by numerical
simulation. Fixing the parameters of the shell as mentioned
above, and after the dimensionless calculation, the fol-
lowing parameters are obtained: α12 � 6.7, α25 � 14.2,
α26 � 9.9, α27 � 6.9, α28 � 12.5, and E1 � 20. Figure 8 il-
lustrates that the resonance regions in the x direction in-
crease with the increasing electric field. 'e resonance
region moves to the left in the z direction and the resonance
frequency decreases, as shown in Figure 9. Meanwhile, the
system shows the hardening spring characteristic, as shown
in Figure 9. Figure 10 expresses the relationship between
the resonance region and the transversal excitation, which
is similar to that shown in Figure 9. 'e nonlinear pa-
rameters can change the soft and hard spring properties of
the system, as shown in Figure 11, and the hard spring
characteristic is prominent with the nonlinear parameter
increase.

6. Nonlinear Dynamic Analysis

In this section, the nonlinear dynamic behavior of the MFC
laminated thin shell subjected to the aerodynamic force is
conducted. A series of numerical experiments are performed
through the Runge–Kutta algorithm according to the
nonlinear governing equations (20a) and (20b). After the
dimensionless calculation of the structural parameters, the
following parameters are obtained: α11 � 8.2, α12 � 6.7,
α13 � 4.7, μ � 0.5, α21 � 12.7, α22 � 5.2, α23 � 8.0, α24 � 12.0,
α25 � 14.2, α26 � 9.9, α27 � 6.9, α28 � 12.5, E1 � 20, x1 � 0.8,
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0.094 0.105 0.118
0.132 0.145 0.158

20 25 30 35 40 45 50 55 60
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Figure 6: K-voltage map.
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Figure 7: K-volume of macrofibers.
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Figure 9: Frequency-response curves in the z direction with the
electric field.
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x2 � 1.0, x3 � 0.2, and x4 � 0.9. With the disturbance force
f increased from 0 to 300, the bifurcation diagrams of
Poincare sections in the z direction for the displacements of
the middle surface of the shell are shown in Figure 12. It is
found that the nonlinear responses of the shell are very
complex with the increasing disturbance force f. 'e in-
stability of the structure would last a long time during the
process as f increases from 0 to 180, and then after short
windows of periodic n motions occurring in 180–230, the
motions of the system become chaotic again through the
path of periodic doubling bifurcation. 'erefore, the
motion form of the structure can be changed by controlling

the amplitude of the external excitation in the resonance
case.

To reveal the specific forms of different sections in the
bifurcation diagram, phase portraits, power spectra, and
waveforms of the shell are depicted as shown in the following
figures. In Figures 13–15, x1 and x2 represent the displacement
and velocity in the x direction and x3 and x4 represent the
displacement and velocity in the z direction. Furthermore,
Figures 13(a), 14(a), and 15(a) and Figures 13(b), 14(b), and
15(b) show, respectively, the waveforms in the planes (t, x1)

and (t, x3), and Figures 13(c), 14(c), and 15(c) and
Figures 13(d), 14(d), and 15(d) show, respectively, the
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Figure 10: Frequency-response curves in the z direction with transversal excitation.
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Figure 11: Frequency-response curves in the z direction with the nonlinear parameter.
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two-dimensional phase portraits in the planes (x1, x2) and
(x3, x4). Figures 13(e), 14(e), and 15(e) show the three-
dimensional phase portraits in the space (x1, x2, x3), while
Figures 13(f ), 14(f ), and 15(f ) present the Poincare dia-
gram. Figure 13 shows a group of characteristics of the
chaotic motion for the system when f equals 100. It also
indicates that there exists energy transform between the
responses of the shell in two different directions in
Figure 13(e), which is caused by the nonlinear coupled
terms of equations (20a) and (20b).

'e periodic n motions of the system are shown in
Figure 14 when f increases to 205, and the phenomenon of
energy transition between two modes of the shell also exists
in Figure 14(e).

'en, when the aerodynamic disturbance force increases
to 270, the system enters into chaos, and the specific shape of

the response is shown in Figure 15, which is similar to the
chaotic motion in Figure 13.

From the above analysis, it can be seen that the aero-
dynamic force plays a key role in the dynamic behavior of the
structure. 'en, the piezoelectric parameters are used to
adjust the nonlinear responses of the system. Fixing the above
parameters and letting the aerodynamic disturbance force
f � 270, the bifurcation diagrams of Poincare sections are
obtained in the x and z directions for the displacements of the
middle surface of the shell when the electric field E increases
from 0 to 40 in Figure 16. It is found that the motion of the
system can be adjusted from chaos to the period when E is
close to 20, and when the value of E is continuously increased,
the system returns back to chaotic motion again.

From the above results of the numerical simulation, it is
indicted that the piezoelectric parameters could adjust the
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Figure 15: Chaotic motion of the composite shell when f increases to 270. (a) Waveform in the plane (t, x1). (b) Waveform in the plane
(t, x3). (c) Two-dimensional phase portrait in the plane (x1, x2). (d) Two-dimensional phase portrait in the plane (x3, x4). (e) 'ree-
dimensional phase portrait in the plane (x1, x2, x3). (f ) Poincare diagram.
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Figure 16: Bifurcation diagram of the composite shell with the electric field increase. (a) x1 − E. (b) x3 − E.
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vibration responses of the structure effectively. 'e electric
field can change the piezoelectric performance of the shell
through varying the stiffness of the structure, and the res-
onance of the shell would be restrained.

7. Conclusion

Considering the large geometrical deformation and piezo-
electric material properties of the shell, nonlinear dynamic
behaviors of a cantilever d33 MFC shell are investigated. 'e
aerodynamical force and the electric field are introduced and
calculated. 'en, the Galerkin method is employed to
transform the partial differential equations into two nonlinear
ordinary differential equations. Next, the influence of the
electric field, external excitation force, and nonlinear pa-
rameters on the stability of the system is analyzed under 1 :1
internal resonance. Furthermore, the effects of the material
parameters on the deflection are discussed, and the complex
nonlinear vibration responses of the MFC shell are simulated,
including the periodic and chaotic motions.

'is paper innovatively analyses the coupled vibration in
two directions and points out that the energy transition
exists between two coupled vibration directions. It is also
revealed that the electric field of the MFC shell could adjust
the dynamic stability of the structure from unstable to stable
which would be an effective way to control responses for
MFC structures. 'is research work may provide a way to
use the MFC material in designing the wings of UAVs in the
engineering field. 'e dynamic behavior of the wing in
subsonic air flow conditions can be controlled by adjusting
the electric field when the wing is made of the MFCmaterial.
'erefore, it could ensure the stability of the wingmovement
and the flight safety of the UAV.
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