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-e vehicle nonstrict priority give-way behavior (VNPGWB) is a common part of traffic interaction between motorized and
nonmotorized vehicles in many countries. -is study proposes a mixed-flow cellular automaton model to simulate the passing of
vehicles in front of bicycles at crosswalks. -e mixed-flow model combines a vehicle model with a bicycle model, using nonstrict
priority give-way and strict give-way two driving behaviors defined as relating to the decision point rule and the launching rule,
respectively. Simulation results showed that as the vehicle and bicycle inflow rates increased, a critical inflow rate divided vehicle
and bicycle traffic flow into free flow and saturated flow conditions. -e values of vehicle saturation flow decreased from 0.34 to
0.05, and the values of bicycle saturation flow decreased from 0.54 to 0.44, indicating that the mixed traffic flow has a negative
effect on vehicle and bicycle saturated flow. Results also showed that VNPGWB effectively improves vehicle saturation flow over
that of the strict give way.-e advantage of VNPGWB is more significant when vehicles and bicycles are in saturation traffic flow.

1. Introduction

In many countries in Europe and Asia, the bicycle is still an
important mode of transportation. For example, in China,
more than 38% of commuters choose bicycles as their main
travel mode [1, 2]. It is noteworthy that electric bicycles have
grown rapidly in recent years, with the number of e-bikes
exceeding 250 million in China [3, 4]. In addition, shared
bicycles also have gained tremendous popularity as a result
of their convenience [5, 6]. However, due to their vulner-
ability in a collision, cyclists are subject to higher safety risks
than drivers of vehicles [7, 8]. Collisions between bicycles
(including e-bikes) and vehicles tend to cause very severe
injuries and fatalities. Some studies show that 90% of all
cyclist fatalities are caused by collision with vehicles
[6, 9–11]. In fact, vehicles and bicycles competing for pri-
ority are a common reason for conflicts and crashes at
crosswalks [12]. Most traffic managers believe that drivers

should strictly give way to bicycles passing through a
crosswalk [3, 13, 14]. However, actual investigations have
found that drivers in many countries and regions, such as
Norway, Finland, Germany, and China, do not strictly
adhere to this rule [8, 15–19]. -at is, during the real traffic
conditions, vehicle drivers may not always assume they must
comply with the rule of giving way, and instead, they
compete for priority [17, 18]. For example, the decision a
driver makes to pass through the crosswalk or not depends
on the bicycle’s position and speed. Since it is based on the
driver’s subject assessment, the behavior is defined as vehicle
nonstrict priority give-way behavior (VNPGWB).

In the process of vehicles passing in front of bicycles at
crosswalks, drivers have only two choices: passing without
stopping or stopping to give way [17]. Drivers should
generally adapt their speeds to avoid endangering cyclists at
crosswalks, and if necessary, drivers should stop to give way
to cyclists [12]. -is rule ensures the orderly passing of
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vehicles and bicycles at the crosswalk. However, when the
vehicle and bicycle are in a condition of saturated traffic
flow, the vehicle flow is usually blocked by the bicycle flow,
which has a significant impact on the traffic capacity of the
vehicle flow, especially near unsignalized intersections
[15, 17]. Specifically, there is a great impact on traffic flow
when vehicles are waiting for bicycles at crosswalks. In this
case, nonstrict priority allows vehicles to leave the conflict
area earlier, mitigating their effects on subsequent vehicles
and thereby improving the capacity of the road and inter-
section. -erefore, despite the negative impact on traffic
safety, many countries acquiesce to nonstrict priority in the
practical management of traffic, administering no punish-
ment for violators as long as no crash occurs [17, 19].

-is study uses a cellular automaton (CA) model to
simulate a vehicle passing in front of bicycles at crosswalks
engaged in VNPGWB. In order to understand VNPGWB,
the key focus is to combine a mixed-flow model (i.e., in-
tegrating a vehicle model and a bicycle model) with driving
behaviors. Driving behaviors in this study are primarily
divided into the decision point rule and the launching rule.
By adjusting the proportion of driving behaviors (strict give
way and nonstrict priority give way) in these two rules, the
real traffic conditions for VNPGWB can be simulated.

-e rest of this paper is organized as follows: Section 2
reviews the literature; Section 3 describes the proposed
mixed method in detail; Section 4 measures numerical
simulation; and Section 5 concludes the paper.

2. Literature Review

Few previous studies explored VNPGWB, Räsänen [16] was
the first to examine the behavior of road users changed based
on their knowledge of priority regulations, such as whether a
turning vehicle needs to give way to a cyclist from the same
or opposite direction. Results showed that the effect of
priority regulations on road user behavior depended on the
characteristics of the bicycle crossings. Most subsequent
studies found that drivers choose a give-way behavior
depending on their understanding of priority order. For
example, Lin et al. [17] developed a microdriving force
model, which included safety driving force and efficiency
driving force, for right-turning drivers, who constitute the
dominant group confronted with the nonstrict priority
passing situation. Silvano et al. [7] presented a modeling
framework to describe driver-cyclist interactions when they
were approaching a conflict zone. In the framework, driver
yielding, or give-way, behavior is modeled as a function of
several explanatory variables. Ma et al. [8] established a
three-layered mathematical model, including a decision
layer, operation layer, and constraint layer, to simulate the
variation in trajectories of right-turn vehicles. Bai et al. [19]
estimated the capacity of left-turn vehicles under nonstrict
priority. Results showed that the model was valid for esti-
mating the capacity of an exclusive left lane with a permitted
phase under nonstrict priority. In summary, most studies
have assumed that all drivers follow VNPGWB; however,
drivers who choose to strictly give way coexist in mixed
traffic flow with those who do not. Further, a given driver

may make different decisions under free flow and saturated
flow conditions.

When passing bicycles at crosswalks, most drivers
constantly adjust their vehicles’ speed. In order to simulate
this behavior, this study will establish a microscopic
simulation model. -e most popular microscopic simu-
lation methods used in previous studies are car-following
models and cellular automaton (CA) models [20–22].
Because the car-following model primarily simulates the
interaction between a front and rear vehicle, the model is
only applicable to one-dimensional movement and cannot
represent the full mixed traffic flow. -e CA traffic flow
model, in contrast, can make full use of computer oper-
ations to flexibly change its rules according to various
traffic conditions. In fact, the movements of vehicles and
bicycles are discrete, and the CA model can use discrete
space-time and state variables to regulate evolution rules
and thus to describe nonlinear behavior. Additionally, the
CA model can simulate the gradual change in vehicle and
bicycle behavior as conditions change from free flow to
saturated flow [23–25]. It can be found, through long-term
simulation, whether there is a phase transformation from
free flow to saturation flow. In recent years, a large number
of studies have used CA models to simulate mixed traffic
flow. For example, Meng et al. [26] proposed a single-lane
CA model to simulate mixed traffic with motorcycles and
investigated the relationship between motorcycle lane
changing behavior and density of traffic flow. Zhao [24]
established a mixed bicycle traffic model, comprised of two
bicycle types of bicycles, that shows bicycle traffic char-
acteristics on eight physically separated bicycle paths in
China. Ren et al. [21] improved a cellular automaton model
by incorporating social forces that can describe interactions
between pedestrians, making it useful for modeling the
bidirectional pedestrian flow at crosswalks. Lu et al. [25]
proposed a simulation model to represent vehicles yielding
to pedestrians at crosswalks and demonstrated the rela-
tionship between saturated flow and yield behavior.-e CA
model can demonstrably be applied to simulate the be-
havior of vehicle drivers passing bicycles at crosswalks.

3. Model

-e crosswalk is one of the most serious conflict areas
between vehicles and bicycles. Obviously, cyclists are vul-
nerable road users in this conflict area. In order to avoid a
crash, a vehicle driver’s decision process begins from up-
stream of the conflict area, where the driver confirms
whether there is a potential conflict or not. -e decision
process of giving way behavior can be divided into two
situations, as shown in Figure 1. Situation 1 (Figures 1(a)–
1(c)): the white car (red box) has observed the bicycle (red
box) at the crosswalk and chooses to pass without giving way
at all; Situation 2 (Figures 1(d)–1(f )): the blue car (red box)
has observed the bicycle (red box) at the crosswalk and stops
to give way. Based on field observation, a vehicle’s passing
through bicycles at the crosswalk can be divided into the
following steps: (1) the vehicle reaches the decision point; (2)
the vehicle stops outside the conflict area; (3) the vehicle
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passes through the conflict area. It is worth noting that
VNPGWB only occurs in Steps 1 and 2. -e schematic
diagram of these steps is depicted in (Figures 2(a)–2(c)).
When a vehicle needs to pass through a crosswalk, the
driver’s decision process begins at a certain distance up-
stream of the conflict area, a distance defined as the decision
point (Figure 2(a)). When a vehicle stops to give way to a
bicycle, the driver usually adjusts speed and stops at the
boundary of the conflict area. Once an acceptable gap exists,
the driver will finish the traverse. -e stop position in this
study is defined as the launching point (Figure 2(b)).
However, if the driver chooses to pass without giving way,
Step 2 will not occur.

3.1. Definition and Delimitation of Cellular Space. A vehicle
lane and a crosswalk were chosen as the research area for this
study. First, the cellular space is defined as a two-dimen-
sional matrix, and the nth cellular unit in the cellular space
position is (xn, yn). -en, because of the different sizes of
vehicles and bicycles, a finer cellular unit size is defined in
order to comply with the actual speed and minimum vehicle
space for each. One bicycle occupies two cellular units
(xb

n, yb
n) and one vehicle (xv

n, yv
n) occupies 6× 4 cellular

units. -e vehicle lane widths are lv m and the bicycle lane
widths are lb m; thus, the overlap area between the vehicle
lane and the bicycle lane is lv × lb m2. Finally, the conflict
area in the cellular space position is shown in Figure 3.

3.2. VehicleModel. According to the vehicle’s position in its
lane, the vehicle model can be divided into three rules: the
driving rule, the decision point rule, and the launching rule.
When following the driving rule, the driver selects an ac-
ceptable distance in understanding the interaction rules with
consideration of safety and other factors. -en, the decision

point rule is used: when drivers observe the bicycle lanes,
different drivers (strict give way and nonstrict priority give
way) make different decisions about whether to give way. If
the vehicle slows down and stops at the boundary of the
conflict area, it will be launched through the area when there
is an acceptable gap.-e launching rule is used to determine
the acceptable gap for the different types of drivers making
different decisions.

3.2.1. Vehicle Rule 1: Driving Rule. -is study assumes that
the vehicle is not affected by lane changes and reverse lanes.
All vehicles move at an expected maximum velocity, and
they adjust their velocity in order to avoid collisions with
vehicles in front of them. For a process of t⟶ t + 1, the
driving rule evolution is as follows:

Step 1: acceleration; vv
n⟶ min(vv

n + av, vv
max)

Step 2: slowing down; vv
n⟶ min(vv

n, dv
n)

Step 3: randomization with probability ps; if rand>ps,
then vv

n⟶ max(vv
n − av, 0)

Step 4: movement; xv
n⟶ xv

n + vv
n,

where xv
n and vv

n represent the position and velocity, re-
spectively, of vehicle n; av represents vehicle acceleration;
dv

n � xv
n+1 − xv

n − lvis the number of cellular spaces between
vehicle n and vehicle n+ 1; lv is the length of the vehicle; and
randis a random number between 0 and 1, where ps is the
randomization with probability.

-is model adopts an open boundary: when vehicles’
road position is updated, the positions of the head vehicle
and the tail vehicle are monitored as xv

lead and xv
last, at the

moment of t⟶ t + 1. If xv
last > vv

max, vehicles at the velocity
of vv

maxwill enter the cellular min[xv
last − vv

max, vv
max] with an

inflow rate of av. At the point of exiting the road, if
xv
lead >Lv

road, vehicles will leave the road.

(a) (b) (c)

(d) (e) (f )

Figure 1: -e process of vehicles passing bicycles at crosswalks in real traffic condition.

Journal of Advanced Transportation 3



3.2.2. Vehicle Rule 2: Decision Point Rule. -e decision point
is defined as the place where the vehicle driver needs to decide
whether or not to give way when encountering a bicycle. In
order to mirror the process of a vehicle driver’s decision, a
deceleration restriction is introduced in the decision point
rule and the decision time is a time step. avis the acceleration
and D is the deceleration. It is important to note that the
position of the decision point is not a fixed point, but varies
with different drivers and is impacted by actual conditions. At
the instant of t, the decision point is given by

h
v
n � v

v
n + 

td
n

i�1
v

v
n − D × i( ≥xv + lb − x

v
n, (1)

t
d
n �

v
v
n

D
, (2)

where xv
n and vv

n represent the position and velocity of ve-
hicle n, respectively; xv + lb is the conflict area boundary; the

summation represents the distance from deceleration to
stopping; and td

n means the time from deceleration to stop.
When a vehicle is at the decision point, the driver adjusts

to a suitable velocity to make sure the cyclist safely traverses
the conflict area. Suitable velocity is defined as a velocity that
ensures the vehicle not only can pass through the conflict
area safely but also can decelerate to a timely stop. In order to
capture the stochasticity of different drivers at the decision
point, a binary variable (cd

n) is presented as

c
d
n �

1, if rand ()> βv
1,

0, else,
 (3)

where cd
n � 1 represent the driver choosing to give way to the

cyclist; cd
n � 0 represents the driver choosing not to give way,

that is, selecting nonstrict priority give way; and βv
1 repre-

sents the proportion of nonstrict priority give-way drivers.
-us, the suitable velocity sv

n is presented at the instant of t:

s
v
n �

min xv − x
v
n, max v

v
n − D, D( ( , Case I,

1 − c
d
n  × min v

v
n + a

v
, v

v
max(  + c

d
n × max v

v
n − D, D( , Case II,

⎧⎨

⎩ (4)

Decision point

Conf lict area
x

y

Crosswalk

(xn
b, yn

b) =
(xn + 1, yn + 1)

(xn , yn)

(xn
v, yn

v) =
(xn + yn + 4), . . .,

. . ., . . ., . . .
. . .,

(xn + 6, yn + 4)

(xn , yn), (xn + 6, yn)

hn
c

dn
b1dn

b2dn
b3

sn
c

(xcon + lv, ycon), (xcon + lv, ycon + lb)

(xcon , ycon + lb)(xcon , ycon),

. . .,

. . ., . . ., . . .

. . .,

Figure 3: Schematic diagram of mixed-flow cellular space.

Decision point Conf lict area

(a)

Launching point Conf lict area

(b)

Conflict area

(c)

Figure 2: Schematic diagram of vehicles passing bicycles at crosswalks.
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where “Case I” is the vehicle’s maximum velocity that will
avoid a crash with the bicycle; “Case II” represents the
choices of different drivers to give way or not; and D is the
deceleration of vehicles.

3.2.3. Vehicle Rule 3: Launching Rule. -e vehicle stops at
the launching point and waits for an acceptable gap. Once an
acceptable gap exists, the driver will take the opportunity to
finish the traverse. -e acceptable gap is defined as the time
interval in which a vehicle successfully traverses the conflict
area. In order to capture the stochasticity of different drivers
at the launching point, another binary variable (cl

n) is
presented as

c
l
n �

1, if rand()> βv
2,

0, else,
 (5)

where cd
n � 1 represents the driver who needs to give way and

waits for bicycles to traverse the conflict area; cd
n � 0 represents

the driver who chooses nonstrict priority to give way, for whom
the acceptable gap is equal to the launching time of the vehicles;
and βv

2 represents the proportion of VNPGWB drivers. -us,
the acceptable gap is given by

t
l
n � c

l
n + 1 − c

l
n 

�����

2 × l
b

a
v



. (6)

In order to prevent vehicles from remaining static for a
long period of time, a threshold vehicle waiting time T is
defined. If the waiting time of a vehicle is longer than T, the
vehicle will launch into the conflict area, and bicycles will be
forced to stop.

3.3. BicycleModel. -ere is great flexibility in the movement
of bicycles, including both lateral and vertical movement.
-is study chose a new cellular type of bicycle model to
simulate one-way bicycle travel in order to explore the in-
terference between bicycles and vehicles in conflict areas.
-is model consists of two steps, lateral movement and
vertical movement, as shown in Figure 3. Both the two steps
adopt parallel rules. A bicycle can move to the left, forward,
and right: d

la1
n , d

la2
n , and d

la3
n describe the number of empty

cellular units on the left front, front, and right front, re-
spectively; and d

ve1
n , dve2

n describe the number of empty cell on
the perpendicular left and right, respectively. -e bicycle
cellular coordinate is represented by bn � (xb

n, yb
n), where

bn � 0means that there is no bicycle occupying this cell; and
bn � 1means that there is a bicycle occupying this cell;
v

bla
n represents the lateral velocity of the bicycle; vbve

n represents
the vertical velocity of the bicycle, and v

bve
n � −vmeans the

bicycle moves to the left; v
bve
n � v means the bicycle moves to

the right; abla is the lateral acceleration of the bicycle; and
abve is the vertical acceleration of the bicycle.

3.3.1. Bicycle Rule 1: Lateral Movement. For the process of
t⟶ t + 1, the lateral movement rules are as follows:

Step 1: acceleration; v
bla
n ⟶ min(v

bla
n + abla + v

bla
max)

Step 2: slow down; db
n⟶ max(d

la1
n , d

la2
n , d

la3
n ),

v
bla
n ⟶ min(v

bla
n + db

n)

Step 3: randomization with probability ps; if rand()>ps,
then v

bla
n ⟶ max(v

bla
n + abla , 0)

Step 4: movement; yb
n⟶ yb

n + v
bla
n

-is model adopts an open boundary: when the vehicles’
road position is updated, the positions of the head vehicle
and the tail vehicle are monitored as yb

lead and yb
last, at the

moment of t⟶ t + 1. If yb
last > vb

max, bicycles at the speed of
vb
max will enter the cellular min[yb

last − vb
max, vb

max] with an
inflow rate of ab. At the exit point of the road, if yb

lead >Lb
road,

the bicycles will exit the road.

3.3.2. Bicycle Rule 2: Vertical Movement. In this study, there
are two main situations in which bicycles can move per-
pendicularly. First, if there is no space in the front, a cyclist
can choose vertical movement. Second, if a bicycle moves
laterally, vertical movement can be chosen if the number of
empty cells on either side is more than or equal to the
number in front. -e two situations are illustrated in detail
as follows:

Situation 1. If d
la1
n � d

la2
n � d

la3
n � 0, the cyclist chooses ver-

tical movement in order to pass the crosswalk as soon as
possible, and v

bve
n ⟶ max(d

ve1
n , d

ve2
n ). If d

ve1
n � d

ve2
n , then

δve �
−1 if rand()≤p

1
ve

1 if rand()>p
1
ve

 , and v
bve
n � δve · dve

n .

Situation 2. If d
la1
n , d

la2
n , and d

la3
n are not all zero, then the

cyclist chooses the largest space in front as far as possible,

and v
bve
n �

−1 if d
b
n � d

la1
n

0 if d
b
n � d

la2
n

1 if d
b
n � d

la3
n

⎧⎪⎪⎨

⎪⎪⎩
. If there are two or more

choices with the same maximum number of cells, then

δve �

−1 if rand()<p
2
ve

0 if p
2
ve ≤ rand()≤p

3
ve

1 if rand()>p
3
ve

⎧⎪⎪⎨

⎪⎪⎩
, and v

bve
n � δve · dve

n .

3.4. Algorithm for the Mixed-Flow CA Model. In order to
simulate the mixed-flow CA model, the abovementioned
methods are integrated into one executable algorithm, which
is processed in a parallel computing setting using the Python
programming environment. -e algorithm (Algorithm 1)
calculates the process of t⟶ t + 1. In each step, the fol-
lowing three rules are conducted in order from first to last,
and all are applied to every vehicle. When the algorithm
ends, the updates are applied to all vehicles and bicycles in
parallel. -e complete framework of this algorithm’s four
steps is shown in Figure 4.

4. Numerical Simulation

4.1. Simulation Parameter Setting. -e data inputs in the
following simulations are set as follows. -e cellular size is
1m × 1m; the vehicle lane length (Lv) is 100 cell units, which
therefore corresponds to 100m; vehicle lane width (lv) is 4
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cells, which corresponds to 4m; the crosswalk length (Lb) is
100 cell units, and it corresponds to 100m; crosswalk width
(lb) is 6 cell units, and it corresponds to 6m and the size of
the conflict area is 6× 4 cell, and it corresponds to 6× 4m2.
-e simulation parameters are shown in Table 1. In order to
obtain vehicle and bicycle traffic flow data, the virtual de-
tectors are set at the boundaries of the vehicle and crosswalk.
When a vehicle or bicycle leaves the lane, the detector’s
counter adds one. Moreover, qv and qb are the vehicle and
bicycle flow, respectively, and the unit is veh/(time× lane).
-e simulation steps are 100,000 s, and the preceding
20,000 s are abandoned.

4.2. Model Validation. To verify the reliability of the mixed-
flow CA model, the traffic flux-density relationship is the
fundamental diagram that describes driver-cyclist interac-
tions. With settings of βv

1 � 0.1, βv
2 � 0.1, and T� 30 s,

Figures 5(a) and 6(a) show the microscopic fundamental
relationships between flow and inflow rate for the vehicle
and bicycle. When the bicycle’s inflow rate αb � 0, there is no
bicycle passing the crosswalk, and the vehicle flow qv shows
an upward trend and remains stable at 0.34 (Figure 5(b)).
When bicycle’s inflow rate αb � 1, the maximal point of
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Figure 4: Complete mixed-flow CA model framework.

Step 1: driving rule.
Step 1.1: input the current vehicle position (xv

n, yv
n); current vehicle velocity vv

n; a randomization with probability ps.
Step 1.2: if the vehicle position is at decision point (equation (1)), then go to Step 2.
Step 1.3: if the vehicle position xv

n+vv
n>Lv

road boundary, then vehicles will leave the road.
Step 1.4: the vehicle adjusts velocity vv

n according to the distance dv
n to the front vehicle; go to Step 4.

Step 2: decision point rule.
Step 2.1: input the current bicycle positions(xb

n, yb
n) and current bicycle velocities v

bla
n and v

bve
n .

Step 2.2: assume that there exists a time t1n, 1≤ tn ≤ td
n + 1. If xcon ≤ xb

n + v
bla
n t1n ≤xcon + lv and ycon ≤yb

n + v
bve
n t1n ≤ycon + lb, then the

vehicle will crash with bicycles. -is vehicle needs to stop at the conflict area boundary and go to Step 3.
Step 2.3: if the driver chooses to give way, then go to Step 2.2; if the driver chooses nonstrict priority give way, then go to Step 4.-e

vehicle velocity is given by equation (4).
Step 3: launching rule.
Step 3.1: input the current bicycle positions(xb

n, yb
n), current bicycle velocitiesvbla

n and v
bve
n , and waiting time tw.

Step 3.2: assume that there exists another time t2n and the acceptable gap tl
n is given by equation (6). If the driver chooses to give way

and xcon ≤xb
n + v

bla
n (t2n + tl

n)≤xcon + lvycon ≤yb
n + v

bve
n (t2n + tl

n)≤ycon + lb, then the vehicle continues to wait; for waiting time, add 1; if
the driver chooses nonstrict priority give way, then go to Step 4. -e vehicle velocity vv

n � (1 − cl
n)av

n.
Step 3.3: if the waiting time tw is longer than T, the vehicle will launch into the conflict area, and bicycles will be forced to stop.

Step 4: movement.
Update the position of vehicles (xv

n, yv
n) and bicycles (xb

n, yb
n) based on their velocities vv

n and v
bla
n ,vbve

n . For the vehicle,
xv

n(t + 1) � xv
n(t) + vv

n, yv
n(t + 1) � yv

n(t). For the bicycle, xb
n(t + 1) � xb

n(t) + v
bla
n ,yb

n(t + 1) � yb
n(t) + v

bve
n .

ALGORITHM 1: -e algorithm of mixed-flow CA model.

Table 1: -e simulation parameters in mixed-flow CA model.

Variable Vehicle Bicycle
Lane length (m) Lv � 100 Lb � 50
Lane width (m) lv � 4 lb � 6

Max velocity (m/s) vv
max � 20 v

bla
max � 6

v
bve
max � 2

Acceleration (m/s2) ac � 4 abla � 2
Deceleration (m/s2) D� 10 —

Randomization with probability
ps � 0.5 p1

ve � 0.5
p2

ve � 0.1
p3

ve � 0.9
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vehicle flow qv
o is 0.05 (i.e., saturation flow), which is ob-

viously lower than αb � 0. With more and more bicycles
entering the mixed-flow cellular space, drivers must slow
down and stop outside the conflict area to avoid crashes.-us,
only a few vehicles cross the conflict area. However, this
situation does not occur for bicycle flow qc, because bicycles
have priority in passing over the crosswalk. -e saturation
flow rate of bicycles drops only slightly when bicycles are
waiting for vehicles to cross the conflict area. -us, in the
proposed mixed-flow CA model, the transition phase from

the free flow to saturation is observed (Figure 7(a)). As shown
in Figure 7(a), conflicts between vehicles and bicycles in the
traffic system result in a drop in saturated flows, demon-
strating that the model can reveal the interactions between
vehicles and bicycles in the mixed traffic system.

4.3.Vehicle andBicycleFlowTransitionPhase. As can be seen
in Figures 5(a) and 6(a), each curve has an obvious turning
point (i.e., critical inflow rate) αv

o(αb
o), which divides the flow

0

0.4
0.6

0.2

0.8
0

0.4
0.6

0.2

0.8

1

1

0.5

0.4

0.3

0.2

0.1

0

qv

αvαb

(a)

αv
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

qv

αov = 0.08 αov = 0.38

αb = 0
αb = 0.2

αb = 0.58
αb = 1

(b)

Figure 5: -e relationship between the vehicle flow and the vehicle and bicycle inflow rate.
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into two regions: the free flow and saturated flow. -is
section mainly analyzes the transition phase between the
vehicle flow qv

o and bicycle flow qc.
For αv<αv

o, the vehicle flow is free flow, and the vehicle
flow only depends on its own inflow rate αv. Conversely, for
αv>αv

o, the vehicle flow is saturation flow, the vehicle flow qv

is independent of its own rate, and it reaches its saturation
flow qv

o, as shown in Figure 5(a). However, with an increase
of bicycle inflow rate αb, both the critical value of the inflow
rate αv

oand the saturation flow value qv
odiminish until a

minimum value is reached. To illustrate the relationship
between the inflow rate αv and the vehicle flow qv,
Figure 5(b) shows four curves of different bicycle inflow rates
αb. From this diagram, it is evident that the values of vehicle
saturation flow qv

o decrease from 0.34 to 0.05, and the critical
values of inflow rate αv

o decrease from 0.38 to 0.08. -e drop
ratio of qv

o is about 85%. Similarly, for αb<αb
o, the bicycle flow

is free flow, and for αb>αb
o, the bicycle flow is saturation flow.

-e bicycle flow qb is independent of its own rate and reaches
its saturation flow value qb

o, as shown in Figure 6(b). -e
values of bicycle saturation flow qb

o decrease from 0.54 to
0.44, and the critical values of inflow rate αb

o decrease from
0.64 to 0.48. -e drop ratio of qb

ois about 19%.
It is noteworthy that the vehicle (bicycle) critical inflow

rate αv
o (αb

o) gradually decreases with the bicycle (vehicle)
inflow rate αb(αv). Moreover, the collective effect of vehicles
and bicycles only appears when αv and αb surpass their
critical value.-e critical inflow rate αv

o (α
b
o) is calculated and

presented in the phase diagram in Figure 7. -is transition
phase can be classified into four zones; for example, line1 and
line3 are the boundaries of Zone I (III) and Zone II (IV),
which correspond to the critical value of the vehicle inflow
rate αv

o. In Zone I and Zone III, the vehicle is in free flow,
whereas in Zone II and Zone IV, it is in saturation flow. As
the bicycle inflow rate (b

α) increases, the vehicle critical inflow
rate (αv

o) first decreases and then remains stable. Similarly,

the bicycle critical inflow rate αb
o shows the same trend (line2

and line4). With the gradual interaction between the two
traffic flows, the vehicle’s critical inflow rate αv

o and bicycle’s
critical inflow rate αb

o reach equilibrium at cross point
o(αb

coα
v
co).

In a word, the mixed-flow CA model effectively illus-
trates the transition phase from free flow to saturation for
both vehicles and bicycles. It is interesting that the collective
effect of the vehicle flow qv and bicycle saturation flow qb

only appears when qv
o and qb

o surpass their critical inflow rate.

4.4. Comparison between Give-Way and Nonstrict Priority
Give-Way Behavior. Demonstrating the effects of
VNPGWB in mixed traffic flow, the proportion of
VNPGWB drivers βv

1 and βv
2 has increased from 0.1 to 0.9,

respectively. Figure 8(a) shows the relationships between
flow and inflow rate for the vehicle and bicycle in the case of
βv
1 � 0.9, βv

2 � 0.9, and T� 30 s. -e vehicle saturation flow
increases from 0.34 to 0.36 when αb � 0, while the vehicle
saturation flow increases from 0.08 to 0.12 when αb � 1.
When the bicycle inflow rate is low, the VNPGWB driver
will quickly pass through the crosswalk, whereas the strict
give-way driver will slow down to pass through the cross-
walk due to caution. -us, the vehicle saturation flow
resulting from nonstrict priority behavior is slightly higher
than from strict give-way behavior.With the further increase
of the bicycle traffic flow rate, the VNPGWB driver can pass
through the crosswalk more easily than can the strict give-
way driver. In this way, VNPGWB can indeed improve the
vehicle saturation flow, as the vehicle saturation flow of
nonstrict priority is 1.5 times larger than that of strict give
way. Figure 8(b) shows the effect of VNPGWB on vehicle
saturation flow in the decision point rule and launching rule.
-e vehicle saturation flow decreases nonlinearly with an
increasing proportion of VNPGWB drivers, with the
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Figure 7: Phase diagram of vehicle and bicycle critical inflow rates.
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advantage of VNPGWB being more significant in the de-
cision point rule than in launching rule. As shown in
Figure 7(b), VNPGWB also affects the vehicle and bicycle
critical inflow rates. For βv

1 � 0.9 and βv
2 � 0.9, the boundary

of line1 and line3 moves up and boundary of line2 and line4
moves down. In other words, the proportion of free flow
vehicle traffic increases with the increase of VNPGWB.

To further verify that the proposed model can simulate
VNPGWB in the real world, the space-time trajectory di-
agrams for the vehicle lane are shown in Figures 9 and 10.
Obviously, the microscopic model proposed in this study is
primarily used to describe different microlevel driving be-
haviors. When the vehicle and bicycle are in free flow

(Figure 9), most vehicles pass through the crosswalk nor-
mally, while some drivers choose to slow down and tem-
porarily stop to give way to bicycles at cellular spaces
between 40 and 60. As mentioned in Section 3.2.2., the
decision point is not a fixed point, which is also depicted in
the space-time trajectory diagrams. When the vehicle and
bicycle are in free flow, only βv

1 � 0.1 produces congestion at
cellular space 60, and it dissipates very quickly (Figures 9(a)
and 9(b)). On the other hand, when vehicles and bicycles are
in saturation flow, most vehicles need to slow down and stop
outside the conflict area, as shown in Figure 10. In this case,
the congestion cannot dissipate immediately. -e βc

2 in the
launching rule has a more significant effect on vehicle
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Figure 8: Relationship between vehicle flow and vehicle and bicycle inflow rate under different driving behaviors.
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saturation flow than does βc
1 in the decision point rule. Due

to bicycle saturation flow, the vehicles form a long queue and
waiting for an acceptable gap. For βc

2 � 0.1, the stopped
vehicle can only be launched when its waiting time exceeds
the waiting threshold (Figures 10(a) and 10(c)). For βc

1 � 0.9,
some of the space trajectories continue to pass into the
conflict area, primarily due to nonstrict priority drivers
sometimes choosing to follow the front vehicle through the
crosswalk when the bicycle flow is high.

Overall, the space-time trajectory diagrams show that the
proposed model in this study effectively simulates the in-
terference between vehicles and bicycles. It is further
demonstrated that VNPGWB can improve vehicle flow over
strict give way. Especially, when the vehicle and bicycle are in
saturation flow, this advantage of VNPGWB is significant.
-ese conclusions can provide support for acquiescence to
nonstrict priority behavior for practical management in
those countries (e.g., China).

5. Conclusions

-e crosswalk is one of the most serious conflict areas
between vehicles and bicycles. With the aim of improving
traffic flow without compromising safety, this study pro-
posed a new mixed-flow cellular automaton model (CA) to
simulate the vehicle nonstrict priority give-way behavior
(VNPGWB) in the crosswalk conflict area. To consider the
driving behaviors in the appropriate proportions, the pro-
posed model simulates VNPGWB in real traffic conditions.
-is model was divided into three rules: the driving rule, the
decision point rule, and the launching rule; VNPGWB
occurs in the decision point rule and the launching point
rule.-emain results of the simulation model are as follows:

(1) -e mixed-flow CA model effectively illustrated the
transition phase from free flow to saturation flow for

both vehicles and bicycles. As the vehicle and bicycle
inflow rate increased, there is a critical inflow rate in
each curve which divided the traffic flow between
free flow and saturated flow. Moreover, the collective
effect of vehicles and bicycles appeared only when
the inflow rate surpassed its critical value.

(2) Phase diagrams showed that the mixed traffic flow
had a negative effect on the saturated flow of both
vehicles and bicycles. When the bicycle inflow rate
increased from 0 to 1, vehicle saturation flow values
decreased from 0.34 to 0.05, and the critical values of
inflow rate decreased from 0.38 to 0.08. When ve-
hicle inflow rate increased from 0 to 1, bicycle sat-
uration flow values decreased from 0.54 to 0.44, and
the critical values of inflow rate decreased from 0.64
to 0.48.

(3) -e simulation results showed that the vehicle sat-
uration flow of nonstrict priority behavior is 1.5
times larger than that of the strict give way, indi-
cating that VNPGWB can improve the vehicle sat-
uration flow. -e space-time trajectory diagrams
confirmed these results and thereby demonstrate the
reliability of the simulation model. -e advantage of
VNPGWB over strict give way is most significant
when the vehicle and bicycle are in saturation flow.

-e simulation results, however, still require calibration
of observed data to confirm the model’s accuracy. Using field
data to verify the model’s association of parameters is
recommended in the future study. In addition, the lack of
variation in the size and speed of the simulated vehicles and
bicycles in this study was a limitation that will be improved
upon in future models. Moreover, the proposed model can
also consider machine learning methods such as logistic
regression and random forest to predict driving behavior.
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Finally, similar studies can be conducted for the purpose of
implementing traffic control at crosswalks with devices such
as signal lights or stop signs. Nonetheless, this model pro-
vides insights that can be beneficial to traffic engineers and
managers.
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Traffic safety has always been an important issue in sustainable transportation development, and the prediction of traffic accident
severity remains a crucial challenging issue in the domain of traffic safety. A huge variety of forecasting models have been
proposed to meet this challenge. )ese models gradually evolved from linear to nonlinear forms and from traditional statistical
regression models to current popular machine learning models. Recently, a machine learning algorithm called Deep Forests based
on the decision tree ensemble has aroused widespread concern, which was proposed for the first time by a research team of
Nanjing University. )is algorithm was proved to be more accurate and robust in comparison with other machine learning
algorithms. Motivated by this benefit, this study employs the UK road safety dataset to propose a novel method for predicting the
severity of traffic accidents based on the Deep Forests algorithm. To verify the superiority of our proposed method, several other
machine learning algorithm-based perdition models were implemented to predict traffic accident severity with the same dataset,
and the prediction results show that the Deep Forests algorithm present good stability, fewer hyper-parameters, and the highest
accuracy under different level of training data volume. It is expected that the findings from this study would be helpful for the
establishment or improvement of effective traffic safety system within a sustainable transportation system, which is of great
significance for helping government managers to establish timely proactive strategies in traffic accident prevention and effectively
improve road traffic safety.

1. Introduction

Traffic safety has always been an important issue in sus-
tainable transportation development. Traffic accidents will
have some negative impacts on society, including casualties,
traffic jams, and environmental pollution, which are not
conducive to the sustainable and healthy development of the
transportation system.With the gradual improvement of the
level of automated information systems, in recent years,
some government agencies and transportation industry
companies have been committed to the development of
intelligent transportation systems to help the sustainable
development of transportation. Traffic accident prediction is
a crucial and challenging issue in the domain of intelligent
traffic safety management system; it is of great significance
for analyzing the future development trend of traffic

accidents and implementing proactive prevention measures
under existing road traffic conditions. To improve traffic
safety management and control, it is necessary to seek timely
and accurate methods for predicting traffic accident severity.
In recent years, with the rapid development of science and
technology, the advanced technology used in transportation
has been strengthened at an unprecedented level. Unfor-
tunately, these advanced technologies have no obvious
advantages for the reduction of traffic accidents. Save
LIVES-A road safety technical package 2017, issued by
World Health Organization (WHO), indicated that road
traffic accidents lead to the loss of over 1.2 million lives and
cause nonfatal injuries to as many as 50 million people
around the world each year, which are estimated to be the
ninth leading cause of death across all age groups globally
[1]. Road traffic crashes may be an everyday occurrence, but
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they are predictable and preventable. )erefore, every traffic
researcher has the responsibility to think over the causes of
traffic accidents and help the administration in solving the
problem of reducing the probability of traffic accidents. Over
the years, researchers have tried various traffic accident
severity analysis models from different perspectives. )ese
modeling analyses are to explore the relationship between
accident severity and its influencing factors, among which
the most widely used is the discrete selection model based on
the Logit or Probit model (e.g., [2–6]). )ese studies have
shown that accurate traffic accident severity prediction plays
an important role in improving traffic safety management,
because, based on accurate prediction, the prominent
influencing factors in high-risk road sections could be found
out to provide beneficial suggestions for improving road
safety.

Latterly, with the advancement of computer science, the
era of big data has come. Many scholars began to try to apply
some intelligent classification models based on knowledge
discovery for accident degree analysis modeling, such as the
Bayesian model, neural network model, decision tree model,
and random forest model [7–11]. All of these models have
one common characteristic that they do not require any
assumptions on the relationship between the independent
variables and dependent ones. Mujalli et al. [7] used
Bayesian networks to improve classifying the traffic accident,
which results in a reduction in the misclassification of deaths
and serious injuries. Garćıa de Soto et al. [8] found that
Artificial Neural Networks (ANNs) can be used as a feasible
method to predict the frequency of road traffic accidents.
Zhang and Fan [9] presented a data mining model using ID3
and C4.5 decision tree algorithms to analyze the traffic
collision data. Pu et al. [10] conducted Full Bayesian before-
after analysis of safety effects (crash severity levels, crash
types, and crash causes) of variable speed limit system based
on crashes data. Dadashova et al. [5] estimated the impact of
the influencing factors on road traffic accident severity
through random forests. It is worth noting that, in the above
methods, random forest is an integrated learning method for
classification, regression, and other tasks, which is more
accurate and robust than other existing algorithms and
effective for large databases. )erefore, in recent years, this
method has been widely applied to various traffic problems
[12–16]. Liu and Wu [12] established a traffic congestion
prediction model using the machine learning classification
algorithm, random forest. Mudali [13] analyzed the traffic
big data using two comparative parallel algorithms M5P
rules and random forest regression from the regression
model for determining the nature of traffic big data.
Nadarajan et al. [14] predicted a probabilistic space-time
representation of complex traffic scenarios by using random
forest algorithms. Kwon and Park [16] analyzed the impact
of weather factors on traffic safety levels using k-means
clustering and random forest techniques, and the result
showed that the proposed model outperforms the conven-
tional traffic safety prediction models.

)ere are certainly some shortcomings in the random
forest model. Some researchers try to continuously improve
the RFs (random forests) even though it already has many

advantages. Gao and Ke [17] employed a random survival
forests model to analyze the incident duration analysis
model and make a comparison with the traditional random
forests model. )e result shows that the random survival
forests models are more accurate. Several researchers have
proposed to incorporate RFs into the deep neural system
[18–22]. )e most representative of which is Deep Forests
proposed by Zhou and Feng [18] in 2017. )is algorithm
with much fewer hyper-parameters was proved to achieve
excellent performance in various domains by using the same
parameter setting. Since this algorithm was recently pro-
posed, there are almost no applications in the transportation
field.

Road traffic accidents are the process of simultaneous
damage to people or things caused by the miscoupling of
dynamic and static factors (e.g., people, vehicles, roads, and
the environment) [23–27]. )e historical data of road traffic
accidents can directly reflect the relationship between these
factors during the accident. Benefitting from the excellent
performance of Deep Forests, in this paper, we propose a
traffic accident severity prediction method based on the
Deep Forests algorithm, including data preprocessing, data
feature selection, and accident severity perdition. After the
data preprocessing is completed, we use the method of
Random Forests to select the data features, which will be
finally trained in Deep Forests algorithm. To the best of the
authors’ knowledge, this is the first time that the Deep
Forests algorithm is used to predict the severity of traffic
accidents. )e correlations between each feature are in-
herently considered in the modeling. In addition, the final
prediction results demonstrate that the proposed method for
accident severity prediction has superior performance
comparing with other machine learning algorithms.

)e rest of this paper is organized as follows. Section 2
describes the dataset and the verification of its reliability.
Section 3 presents the traffic accident severity prediction
method based on the Deep Forests algorithm in this work,
including the data preprocessing, which is of great impor-
tance for eliminating redundancies in the data and reor-
ganizing the data efficiently. And the basic theory of feature
selection and Deep Forests algorithm are introduced in this
section as well. )e experimental results are presented and
discussed in Section 4, the application of this method is
presented in Section 5, and conclusion and some future
scopes are given in Section 6.

2. Data Description and Its
Reliability Verification

)is section firstly presents the data source adopted in this
study. As this dataset has never been applied to severity
prediction of a traffic accident, the reliability verification of
this dataset is also conducted in this section.

2.1.DataDescription. )e analyses in this study are based on
the road safety dataset of the United Kingdom in 2016. )e
data was obtained from the Kaggle website, a data prediction
competition platform that allows data analysts to compete
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with each other to solve real and complex data science
problems. )e local characteristics of traffic accident data
include 18 items in total, for example, longitude and latitude
of the accident point, time characters of accident, type of the
vehicle, gender of the driver, age of the driver, age of the
vehicle, speed limit, light conditions, weather conditions,
road surface conditions, and the other data characteristics.
We use simple statistical analysis to perform a simple de-
scriptive statistical analysis of the entire dataset. )e age of
driver ranges from 1 to 97 with an average of 36; the vehicle
age is on average 5 ranging from 1 to 84 years. 70% of the
drivers are male and others are female.)emost vehicle type
is car, accounting for 71%, followed by pedal cycle, occu-
pying about 7%. As for the accident severity, about 85% are
slight accident; fatal accidents account for only about 1%.
Figure 1 shows the structure of this dataset.

2.2. Data Reliability Verification. As this dataset has never
been applied to severity prediction of a traffic accident, the
reliability verification of this dataset should be conducted
before preprocessing of the data. Reasonable data distri-
bution is an important manifestation of reliable data.
)erefore, three dimensions (latitude and longitude distri-
bution, date, and time) of data distribution are considered in
this paper to verify the data reliability.

According to the latitude and longitude information of
the original dataset, we use the visual plotting tools for
intuitive analysis. Figure 2 shows the latitude and longitude
distribution of the data, in which Figure 2(a) is a scatter plot
based only on the longitude and latitude information of the
dataset, while Figure 2(b) is obtained bymatching the scatter
plot with the real-world map. )rough the visualization of
data, we can obtain a general macroscopic understanding of
the distribution of the entire accident data. Furthermore, we
can easily find that the latitude and longitude information of
the traffic accident is consistent with the map information,
and there is no deviation beyond the range of themap, which
indicates that the dataset is reliable in accident position
distribution dimension.

Besides the location dimension, the “date” dimension
and the “time” dimension are also two important dimen-
sions for analyzing the dataset reliability. As for the measure
index, we choose the month for the “date” dimension and
week for the “time” dimension in this study. As is shown in
Figure 3(a), the data is equally distributed through all
months. From Figure 3(b), it is not difficult to find that the
accidents occurred mostly on Friday, and the accidents on
Saturday and Sunday were relatively mild, which is fully
compatible with the actual situation. Additionally, in order
to explore the law of traffic accident occurrence at a different
time of the day, we separate the day’s hours from the “time”
dimension and combine with the week index. )e heat map
of the accident occurring in different hours of one day is
shown in Figure 4, from which we can find that most of the
accidents occurred in the morning and evening peak hours
of the working day. )is is completely consistent with
people’s travel characteristics during the weekday, which
indicates that the data is therefore reliable.

3. Methodology

)is section discusses the method used for our prediction
study. To ensure and improve the prediction accuracy, data
preprocessing including data cleansing and data normali-
zation is carried out before the feature selection and severity
prediction. Random Forests algorithm is applied to extract
the significant features of traffic accidents based on the
preprocessed data. Finally, the Deep Forests algorithm is
applied to predict the severity of a traffic accident. )e flow
diagram of traffic accident severity prediction in this paper is
depicted in Figure 5.

3.1. Data Correlation Verification. Before we use machine
learning to predict the severity of an accident, we must
confirm the necessity to choose the machine learning
method to deal with such a problem. If the data is highly
correlated, we can directly use the simpler linear model to
directly predict, and then there is no need to use machine
learning to solve the problem. )us, we conduct the data
correlation relationship verification in this section.

As well as giving details of date, time, and location, the
dataset gives a summary of all reported vehicles and pe-
destrians involved in road accidents and other related ac-
cident features. 18 variables are taken into account in this
paper, including accident severity, month of year, hour of
day, vehicle reference, vehicle type, vehicle manoeuvre,
journey purpose of driver, sex of driver, age band of driver,
engine capacity, propulsion code, age of vehicle, driver home
area type, day of week, speed limit, light conditions, weather
conditions, and road surface conditions. )e correlation
relationship between all the features in the data is analyzed.
As a consequence, a Pearson correlation matrix was plotted
to identify the amount of linear relationship between var-
iables and to determine whether linear-based algorithms are
suitable through gaining insight into data. )e matrix is
color-coded, the numerical value one expressed in dark blue
represents a completely positive linear correlation between
two features, while turquoise represents a zero, suggesting
no linear correlation. As is shown in Figure 6, the accident
severity is independent of any of the other 17 features, which
means that we cannot directly predict the accident severity
with a simple linear model. )erefore, this paper considers a
smarter machine learning approach to deal with this
problem.

Additionally, it is worth noting that, in Figure 6, most of
the characteristic variables are linearly independent, except
for weather conditions, road surface, and light condition, the
light condition and hour of day, vehicle type, and engine
capacity. It can be easily and reasonably explained for these
results. When it rained, the road conditions will become wet
and the light condition will change to some extent. Similarly,
with the advent of the night, light and environment will
change according to the characteristics of time. Besides,
different types of vehicles have different engine capacities.
)erefore, the interactive relationship between these vari-
ables also proves the reliability of this dataset on the other
hand.
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Age_of_
driver

Sex_of_
driver Journey_purpose_of_driver

45 1 (male) 2 (commuting to/from work)
21 2 (female) 1 (journey as part of work)
36 1 (male) 3 (taking pupil to/from school)
15 2 (female) 4 (pupil riding to/from school)
…… …… ……

Vehicle_type Age_of_
vehicle

Engine_
capacity Vehicle_manoeuvre

8 (taxi) 1 1896 9 (turning right)
4 (motorcycle) 15 689 2 (parked)
11 (bus or coach) 6 5883 11 (changing lane)
9 (car) 10 1995 18 (going ahead other)
…… …… …… ……

Accident_index Date Time Day of week Accident_severity

201506E098757 2015-03-09 12:56 2 3 (slight)

201506F006668 2015-07-04 21:33 7 1 (fatal)

201506F003976 2015-07-22 8:40 4 2 (serious)
…… …… …… …… ……

Speed_
limit Light_conditions Road_surface_

conditions Weather conditions

30 1 (daylight) 2 (wet/damp) 1 (fine without high winds)
40 4 (darkness-lights lit) 1 (dry) 2 (raining without high winds)
20 6 (darkness-no lighting) 3 (snow) 3 (snowingwithout high winds)
50 5 (darkness-lights unlit) 4 (frost/ice) 7 (fog or mist)
…… …… …… ……

Information of driver

Information of vehicle

Information of road and environment

Accident information

Figure 1: Structure of the road safety dataset of the United Kingdom.
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Figure 2: (a) )e longitude and latitude map of the accident point and (b) the map-matching graph.
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Figure 3: Date dimension and time dimension of the accident bar chart.
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Figure 5: )e flow diagram of traffic accident severity prediction method in this paper.
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3.2. Preprocessing. It is of great importance to understand
the nature of the available data and try to perform in-depth
data analysis. Data preprocessing is very useful for mean-
ingful data analysis; what we need to do is data cleaning, data
normalization, and data selection in different class before
our prediction analysis.

3.2.1. Data Cleaning. Data cleaning is the process of
identifying incomplete, incorrect, inaccurate, or irrelevant
parts of the data and then replacing, modifying, or deleting
the dirty or coarse data from a record set, table, or database.
)e categorization criteria of all features in the dataset are
listed, and the categorization criteria are defined by actual
statistical results. So first, we need to observe the catego-
rization criteria of each feature. However, due to the limited
space, only a part of the categorization criteria of features is
listed below. )e categorization criteria of light conditions,
weather conditions, and road surface conditions are shown
in Table 1.

)rough the statistical analysis of each feature of the
original dataset, we found some obvious outliers and also
some missing data that is labeled as “unknown” or “−1”
needs to be cleaned up.

For some dimensions, the proportion of missing data
exceeds 10%, and the average value replacement method was
adopted. For example, in the dimension of Age_of_Vehicle,
there are approximately 20% missing data labeled as “−1”;
we adopted an average vehicle age of 5 to replace these
missing values. For those dimensions with few missing data,
we take a direct deletion method to clean them up, such as
Road_Surface_Condition, where the missing data accounts
for only 0.5%.

As for the obvious outliers, the same principle is adopted
for the missing data processing method. For example, the
Age_of_Driver is ranging from 1 to 97 with an average of 36;
this age distribution is obviously unreasonable, because
driving in the UK is only allowed for those over 17 years old.
Because only 1% of the tags are under 17 years old, we thus
directly delete them for the following processing.

3.2.2. Data Normalization. In the multi-index evaluation
system, each evaluation index usually has different dimen-
sions and orders of magnitude due to its different nature.
When the levels between the indicators differ greatly if the
analysis is performed directly with the original index values,
the role of the higher-value indicators in the comprehensive
analysis will be highlighted, and the effect of the low-level
indicators will be relatively weakened. )erefore, in order to
ensure the reliability of the results and to improve the
convergence speed and accuracy of the model, the original
indicator data needs to be normalized. Logarithm function
conversion is adopted in this paper to conduct the nor-
malization of all the given features to make sure features are
on a similar scale. For example, for the feature Age of
Vehicle, the age of the vehicle is between 1 and 84; the
logarithmic method is used to standardize the distribution of
the variable values so as to make the distribution of the
variable values more “normal.” Figure 7(a) depicts the

distribution of Age_of_Vehicle before normalization, from
which it can be easily found that the data shows obvious long
tail characteristics. Normalization involves taking the log-
arithm of the given features.)is is done because high values
for certain variables computationally skew results more in
favor of that variable than their actual contribution. In this
case, age of the vehicle, for example, has values ranging from
1 to 84, when the majority of other categorical variables are
binary or limited within 1–8 categories. After taking the log,
one can notice that the values range from approximately 1 to
4, shown in Figure 7(b). )is increases the performance of
machine learning algorithms, as the numerical values do not
have disproportionate amounts of computing value com-
pared to all the other categorical variables.

3.2.3. Class Balance Verification. In the dataset, accident
severity is listed as a classified label for prediction. Table 2
shows the criteria for categorizing accident severity and its
distribution.

As can be seen from the distribution of data, the number
of slight accidents is far greater than the number of fatal
accidents, showing a long-tailed data distribution. In terms
of model evaluation, accuracy was employed in this paper to
compare the prediction performance. However, the accident
severity level is unbalanced among three levels; therefore, the
traditional classification algorithm with the overall classi-
fication accuracy as the learning goal will pay too much
attention to the majority class, which will cause the accuracy
paradox and deteriorate the classification performance of the
minority class samples. )is is why the data balance work
should be conducted. )e random sampling method was
adopted in this paper. Both oversampling and under-
sampling have their own disadvantages, but this is the
common problem of the imbalance of the dataset, which
cannot be completely avoided.

After weighing the amount of data and enhancing the
robustness of the model itself, we finally decided to take a
combination of oversampling and undersampling to deal
with this problem. Oversampling was adopted for training
set to ensure as much training data as possible, trying re-
peated sampling to generate new rare samples to alleviate
data imbalance. In addition, undersampling was adopted for
test set to ensure that there are no duplicate samples in the
test set, thereby improving the validity of the results.

After all this work was completed, 120,000 pieces of data
for each category were obtained as the whole dataset. With
the consideration of limited computational resources, 40000
pieces of data for each category were randomly selected as
the training set and 2000 pieces of data for each category
were screened out from the dataset as the test data for
evaluating the performance of the model.

3.3. Feature Selection. An object usually has multiple
properties, including related features, irrelevant features,
and redundant features. Only these related features will
improve the effectiveness of our learning algorithm. Since we
are not aware which feature is effective for our prediction,
dimensional disasters often occur in algorithmic
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applications. So, it is of great significance to select relevant
features from all features to improve the efficiency of the
learning algorithm, especially for the analysis of complex
data. A vast number of feature selection strategies have been
proposed for applications in different fields [28–31]. In this
paper, Random Forests (RFs) method is adopted to carry out
feature selection according to the importance index of each
feature, not only because of its ability to calculate the im-
portance of a single feature variable, but also due to its good
performance on most datasets.

RFs model is developed from decision-making regres-
sion trees, which will often generate hundreds of trees. )e
data of each tree is extracted from the bag of set B by

bootstrap sampling method, while the remaining out-of-bag
(OOB) samples are defined as setB, which will not appear in
the training samples. Let C define a set of B and C as a set of
B. Assuming Xn × p matrix is an n-dimensional test dataset
with p characteristics, y is an n-dimensional label vector,
and each value represents the corresponding category to
which the test belongs. )e random forest algorithm cal-
culates the importance of the features by rearranging the
errors before and after classification. Each feature Xj in the
algorithm corresponds to a set of feature replacement tests
with rearranged values. )e importance of features is
measured by comparing the classification error rates of the
original features and the replaced randomly rearranged

Table 1: Categorization criteria of several features.

Light
conditions Description Weather

conditions Description Road surface
conditions Description

1 Daylight: street lights present 1 Fine without high winds 1 Dry

2 Daylight: no street lighting 2 Raining without high
winds 2 Wet/damp

3 Daylight: street lighting unknown 3 Snowing without high
winds 3 Snow

4 Darkness: street lights present and
lit 4 Fine with high winds 4 Frost/ice

5 Darkness: street lights present but
unlit 5 Raining with high winds 5 Unknown

6 Darkness: no street lighting 6 Snowing with high winds
7 Darkness: street lighting unknown 7 Fog or mist

8 Other
9 Unknown

Table 2: Categorization criteria for traffic accident severity.

Accident severity code Label Distribution of the data
1 Fatal 2899 (1.12%)
2 Serious 34205 (13.27%)
3 Slight 220741 (85.61%)
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Figure 7: Data distribution (a) before normalization and (b) after normalization.
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features in the OOB test set, which is the extent to which the
change of original feature affects the result. When the im-
portant features are replaced by the randomly rearranged
features, their discrimination will decrease; that is, the OOB
classification error rate will increase. When N trees are
established, there are N OOB sets as test sets. )erefore, the
characteristic importance index Ja is defined as follows:

Ja xj  �
1
N



Bk∈C

1
Bk





i∈Bk

I h
xj

k (i)≠yi  − I hk( ( i)≠yi
⎛⎝ ⎞⎠,

(1)

where yi is a classification label in the i − th OOB, I denotes a
characteristic function, hk(i) represents a classification label
of sample i predicted by datasetBk, and hk

xj (i) is a classi-
fication label after replacing characteristicxj.

3.4. Severity Prediction. )e representation learning in deep
neural networks mainly depends on the processing of the
original features by layer. Inspired by this, Zhou and Feng
[18] obtained the cascade structure of Deep Forests as il-
lustrated by the left schematic diagram in Figure 8. In a
traditional deep neural network, each node denotes a
neuron. In their research, the RFs were treated as a “forest
neuron” and were stacked into multiple layers in deep
learning. )e cascade structure of deep neural networks is
also presented by the right schematic diagram in Figure 8.
Comparing with deep neural networks, the design concept
of using Deep Forests resembles deep neural networks, and
the “concatenate” and “vote” in Deep Forests resemble the
nonlinear transformation procedures in deep learning. More
significantly, the Deep Forests algorithm has much fewer
hyper-parameters, each grade can be regarded as an en-
semble of ensembles, and excellent performance is achieved
in various domains by using the same parameter setting.

Each level of cascade receives feature information pro-
cessed by its preceding level and outputs its processing result
to the next level. Each level is an ensemble of decision trees
forests, which means it can be regarded as an ensemble of
ensembles. When a sample is given, each forest is calculated
by calculating the percentage of different classes of training
samples at the leaf nodes falling into the related instances,
and then the average value of all the trees in the forest to
generate the estimation of the distribution of the class. As
shown in Figure 9, the red part highlights the path of each
sample traversing leaf nodes. Different markings in leaf
nodes represent different classes.

In order to reduce the risk of overfitting, the class vectors
generated by each forest are generated by k-fold cross-
validation. In particular, each instance will be used as theK-1
training data, producing a K-1 class vector, and then taking
the average value to produce the final class vector as the
enhancement feature at the lower level in the cascade. It is
important to note that after a new level is extended, the
performance of the entire cascade will be estimated on the
validation set, and the training process will be terminated
without significant performance gain.)erefore, the number
of cascading cascades is automatically determined. Contrary

to most deep neural networks with fixed complexity of the
model, Deep Forests can determine the complexity of its
model (early stop) properly through termination training,
which enables Deep Forests to be applied to training data of
different scales, not limited to large-scale training data.

4. Experimental Work and Results

)is section introduces our experimental work and results
with the methodology proposed in Section 3. To verify the
superiority of our proposed method, several other machine
learning algorithm-based perdition models were imple-
mented to predict traffic accident severity with the same
dataset, and the prediction results show that the Deep
Forests algorithm with fewer hyper-parameters presents
good stability and the highest accuracy under different level
of training data volume.

4.1. Feature Selection. As described in 3.1, our dataset in-
cludes 18 features, and these features are almost independent
of each other, which means that the complexity of this
dataset is relatively high, and not all features are useful for
improving forecasting accuracy since there may be some
irrelevant or redundant features in those features. )erefore,
before using the Deep Forests algorithm to predict the
dataset, the feature selection work first is of great
importance.

A combination of the Randomized Search and Grid
Search method was adopted in this paper for parameter
optimization. )e Randomized Search method is applied
firstly to quickly help us determine the approximate range of a
parameter, and then we use the Grid Search method to cross-
validate the selected candidate parameters of the model
iteration and determine the optimal value of a parameter.)e
output of the best parameters is 5 for Max_depth, 2 for
Min_samples_leaf, 10 for Min_samples_split, and 1000 for
n_estimators. )erefore, a total of 1000 trees were used to
grow the forest, and this number was deemed sufficient to
yield reliable results.)e feature importance ranking from the
RFs is shown in Figure 10. Using the node purity measure, the
explored variables were ranked in rising order from the least
to the most important. Our principle for choosing the im-
portance threshold is the ∅80 value of the cumulative value
curve of importance. According to the importance value of
each features, the ∅80 value is around 0.04; we thus adopted
0.04 as the critical value for the important features. Finally,
eight features were chosen to conduct the accident severity
prediction, including engine capacity, hour of day, age of
vehicle, month of year, day of week, age band of driver, vehicle
manoeuvre, and speed limit.

4.2. Severity Prediction Results. In this section, the eight
features selected by the feature selection are used as the main
data features. And then the Deep Forests algorithm is
adopted to predict the severity of traffic accidents and
produce the predicted accuracy. In our experiment, the
cascade structure used in Deep Forests is as follows: each
level consists of 4 completely random tree forests and 4
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random forests, each with 500 trees, and three-fold CV is
used for class vector generation. )ese settings of cascade
structure are consistent with that proposed by Zhou and

Feng [18], because it has been proven that this cascade
structure is able to achieve excellent performance by using
the same default setting in their paper. Hence, it is supposed
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that this cascade structure is good enough with some
consideration of performance and time consumption.

In order to verify that Deep Forests can achieve sig-
nificant performance gains for traffic accident severity
prediction, we compare Deep Forests with DNN and several
other popular machine learning algorithms which are widely
used in traffic accident prediction algorithms, such as
Random Forests, LightGBM, XGboost, k-Nearest Neighbor
(KNN), and decision trees. )e computation progress for
each algorithm is calculated and recorded by the same
computer, which is equipped with a 2.8GHz Intel Core i7
CPU and a 16GB RAM. All of the forecasting models are
implemented in Python language.

Table 3 illustrates the performance of Deep Forests,
DNN, RFs, LightGBM, XGboost, KNN, and decision trees
algorithms for traffic accident severity prediction. From the
evaluation index results, Deep Forests algorithm performs
better than other models. Recall is higher than other models;
false alarm rate is lower than other models, so the overall F1
score is also higher. It shows that the model controls well the
influence of data imbalance and learns the characteristics of
different types of data. )e ROC reached 90%, indicating
that the model has learned the difference between different
categories of data, and the prediction results are more re-
liable and stable.

In addition, the experimental results show that the direct
use of DNN cannot achieve the desired effect on the
problems studied in this paper. )is is expected, because
there are significant differences in the number of samples in
different categories; it is difficult for the DNNmodel to learn
the differences between categories. Without adding new
data, we believe that constructing a more suitable deep
learning model structure with careful tuned hyper-
parameters can achieve better results to a certain extent, but
this is beyond the scope of this paper. )is is also the reason
why this paper chooses the Deep Forests algorithm based on
the characteristics of the dataset and the problem itself.

Due to the classification tasks of many data imbalance
problems, we tend to pay more attention to the performance
of the model on the minority class, the predictive perfor-
mance of different accident categories is presented, as shown
in Table 4. It can be easily found that the model performs

worse in categories with fewer samples, compared with the
predictive performance for the majority category. But the
decline is less compared to other models, so the model
adopted in this paper is more robust overall. In addition, in
the performance of this imbalanced dataset, the tree-based
models perform better than the neural networkmodel; this is
also the reason why we adopt Deep Forests model instead of
the neural network model.

In order to better observe the performance of Deep
Forests under different training data volumes, we divide the
data into multiple orders of magnitude, and the accuracy of
different magnitudes with different models are plotted in
Figure 11, from which we can see that, with the increase of
the sample size of the training set, the performance of each
model has improved to a certain extent. However, the Deep
Forests model is significantly better than other models at a
small sample size, which also proves that the advantage of
the model when dealing with small-scale sample size. In
addition, the advantage of Deep Forests model is gradually
weakened with the increase of sample size. When the sample
size reaches 100,000, we can find that although the per-
formance of Deep Forests is a little better than the random
forest, it is not much different.

Additionally, compared with many traditional ma-
chine learning methods, the Deep Forests algorithm used
in this paper has its own advantages. Deep Forests model
has much fewer hyper-parameters than deep neural
networks, although their iterative structure is similar. We
usually do not know the optimal value of the model
hyper-parameter for a given problem. Researchers
generally rely on experience or use replicated values on
other issues or search for the best values through trial and
error. )e increase in hyper-parameters will bring
additional randomness to the model performance, which
is too dependent on the regulation of hyper-parameters.
For instance, there are many hyper-parameters in ran-
dom forests that need to be constantly adjusted to op-
timize model prediction accuracy and speed up model
calculations, including number of decision trees in the
forest, the maximum number of features a random forest
can have in a single tree, number of leaves, OOB sam-
pling, and random state. However, the hyper-parameters
in Deep Forests algorithm is less than random forests, and
a set of hyper-parameters can be applied to different
datasets as mentioned in literature [18], which is another
big point of the deep forest algorithm used in this paper.

Engine_capacity
Hour_of_day

Age_of_vehicle
Month of year
Day_of_week

Age_band_of_driver
Vehicle_manoeuvre

Speed_limit
Vehicle_reference

Journey_purpose_of_driver
Weather_conditions

Driver_home_area_type
Road_surface_conditions

Propulsion_code
Light_conditions

Vehicle_type
Sex_of_driver

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Feature importance : random forest

Figure 10: Feature importance results by Random Forests
algorithm.

Table 3: Average predictive performance of different models.

Accuracy
(%) Recall False alarm

rates
F1

score Roc

Deep forests 90.69 0.92 0.09 0.91 0.93
RFs 88.98 0.90 0.10 0.90 0.92
XGboost 83.49 0.83 0.16 0.83 0.87
LightGBM 83.01 0.83 0.17 0.83 0.87
Decision
tree 81.04 0.81 0.19 0.81 0.85

KNN 77.26 0.77 0.23 0.77 0.82
DNN 53.52 0.54 0.47 0.47 0.52
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5. Discussion

)e higher prediction accuracy of our proposed method
reveals that it can be used as a very useful tool for accident
severity prediction. Fewer hyper-parameters in the deep
forest will be more conducive to the transplantation of
models; that is, a set of hyper-parameters can be applied
to different datasets. )us, it can be easily adapted to
solve lots of different traffic problems as well, for in-
stance, short-term forecast of travel time on expressway
sections and traffic flow situation estimation. )is is of
great significance for the perfect improvement of the
current traffic safety system within a sustainable trans-
portation system, such as an intelligent transportation
decision system and intelligent traffic safety management
system.

From the perspective of traffic safety management
implications, the more accurate severity prediction of
traffic accidents has long been the research direction we
are pursuing for sustainable transportation development.
In most cases, many traffic safety control measures are
still dominated by the limited experience of traffic
managers, which may lead to a deviation from the actual

situation. On the contrary, the use of many excellent deep
learning algorithms can learn from the historical accident
data record effectively and efficiently. )e application of
Deep Forests algorithms proposed in this paper has been
proved to have good performance in predicting the se-
verity of an accident. )e prediction results can be used as
an important and effective reference for the subjective
judgment of safety managers. For instance, if a traffic
safety management want to identify the important
influencing factors of traffic accident and the severity level
of traffic accidents caused by these factors, the general
method we proposed in this paper can be easily carried
out for different dataset by these managers to achieve
their goals. In addition, the prediction outcomes of se-
verity level can also provide an effective reference for the
implementation of traffic accident management and
control measures, such as the improvement of trans-
portation infrastructure, the improvement of lighting
conditions, the implementation of road variable speed
limit, and driving safety warning.

6. Conclusions

With the recognition of the importance of machine
learning in solving some problems in the transportation
field, in this paper we innovatively apply the Deep Forests
algorithm to the prediction of traffic accident severity. )e
excellent forecasting performance of our proposed method
reveals that it can be used as a very useful tool for accident
severity prediction. Fewer hyper-parameters in the deep
forest will be more conducive to the transplantation of
models; that is, a set of hyper-parameters can be applied to
different datasets. )us, it can be easily adapted to solve lots
of different traffic problems as well, for instance, short-term
forecast of travel time on expressway sections and traffic
flow situation estimation, although from the analysis results
there is still room for improvement in prediction accuracy.
)is is because we have not done enough in the mining of
raw data. For future research of this study, in order to
improve prediction accuracy, we will try to summarize and
construct some features that do not exist in the features of
raw data based on the information of the data features. In
addition, it should be noted that this paper does not focus
on optimizing the model parameters, which is also a re-
search direction in the future. Nevertheless, the method
proposed in this paper has certain contributions to both
theory and practice.

Table 4: )e predictive performance of different accident categories.

Recall False alarm rates F1 score ROC
1 2 3 1 2 3 1 2 3 1 2 3

Deep Forests 0.93 0.82 1.00 0.17 0.09 0.01 0.88 0.86 1.00 0.91 0.88 1.00
RFs 0.91 0.77 1.00 0.19 0.10 0.01 0.86 0.83 1.00 0.90 0.86 1.00
XGboost 0.83 0.66 1.00 0.27 0.20 0.02 0.78 0.72 0.99 0.84 0.79 0.99
LightGBM 0.84 0.63 1.00 0.29 0.20 0.02 0.77 0.71 0.99 0.84 0.78 1.00
Decision tree 0.68 0.76 1.00 0.23 0.28 0.05 0.77 0.72 0.95 0.78 0.80 0.98
KNN 0.66 0.64 1.00 0.32 0.33 0.07 0.67 0.66 0.97 0.75 0.75 0.98
DNN 0.80 0.07 0.70 0.52 0.51 0.38 0.60 0.13 0.66 0.56 0.43 0.56
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CAV (connected and autonomous vehicle) is a crucial part of intelligent transportation systems. CAVs utilize both sensors and
communication components to make driving decisions. A large number of companies, research organizations, and governments
have researched extensively on the development of CAVs. (e increasing number of autonomous and connected functions
however means that CAVs are exposed to more cyber security vulnerabilities. Unlike computer cyber security attacks, cyber
attacks to CAVs could lead to not only information leakage but also physical damage. According to the UK CAV Cyber Security
Principles, preventing CAVs from cyber security attacks need to be considered at the beginning of CAV development. In this
paper, a large set of potential cyber attacks are collected and investigated from the aspects of target assets, risks, and consequences.
Severity of each type of attacks is then analysed based on clearly defined new set of criteria.(e levels of severity for the attacks can
be categorized as critical, important, moderate, and minor. Mitigation methods including prevention, reduction, transference,
acceptance, and contingency are then suggested. It is found that remote control, fake vision on cameras, hidden objects to LiDAR
and Radar, spoofing attack to GNSS, and fake identity in cloud authority are the most dangerous and of the highest vulnerabilities
in CAV cyber security.

1. Introduction

Connected and autonomous vehicle (CAV), as a subset of
the Intelligent Transportation System, makes use of different
hardware, e.g., electronic control units (ECUs) and sensors,
software, e.g., entertainment system and decision-making
units, and data fused from multiple sources to conduct
driving tasks with different levels of automation. With these
components, CAVs could not only drive without human
involvement but also communicate with surroundings to
navigate and take appropriate reactions. (e automation of
CAVs is supported by the sensors installed around the
vehicle body which gather information of surrounding
environments to make decisions. (e connectivity is
achieved by the communication with other vehicles, infra-
structures, and pedestrians on the road to navigate and take
relevant reactions.

Currently, a large number of companies investigate and
focus on the research and development of CAVs. In China,
one of the biggest IT companies Baidu released an open
source autonomous driving platform named Apollo, aiming
to address the challenging issues of precise sensing and
decision-making [1]. In USA, Tesla released their Autopilot
for assistant driving and Summon system for assistant
parking in 2015 and 2016, respectively [2].(e latest news on
Tesla official website [3] introduces the enhanced Autopilot
system, which supports autonomous driving in certain
scenarios such as highways. Google is also a leading player in
connected and autonomous driving. Its subcompany
Waymo, set up in 2009, has been focusing on the research
and development of CAVs and finished more than 2 million
miles road test [4]. Taxi-hailing company Uber also tests
their own CAVs on public roads in Arizona [5]. In Europe,
traditional vehicle manufactures including Audi and
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Mercedes Benz also announce their initiatives on CAVs.
Audi already conducted 550 km on-road test, based on their
own autonomous vehicle “Jack” [6]. Mercedes Benz started
to develop CAVs in 1980s; now, their latest S-class Benz
vehicles completed 100 km road trials in Germany [7].

To accelerate the CAV development, governments also
publish relevant regulations and principles. In USA,
regulations and laws on CAV are built at the state level [8].
Chinese government also released a ten-year plan “Made
in China 2025” plan, which aims to master the key CAV
technologies by 2025 [9]. In addition, Chinese government
launched an abundance of CAV demonstration projects
and set up Jiading district in Shanghai as the first public
test field for CAVs [10]. Moreover, CAV competitions
among academic organizations have been held successfully
several times around the world. (ese include the US
DARPA Urban Challenge in 2007 and DARPA Grand
challenge in 2004 [11]. In China, the Future Challenges of
Intelligent Vehicles competition has been held since 2008,
sponsored by the National Natural Science Foundation of
China [12]. With the participation of an increasing
number of research organizations, these competitions not
only provide platforms for researchers to communicate
but also raise public interests on CAV developments.
According to a survey conducted by Boston Consulting
Group, 55% of public would like to try an autonomous
vehicle or even buy one [13].

However, all the CAV research works mentioned above
focus on the functions of either automation or connectivity.
(e cyber security of CAVs is not being sufficiently
addressed. As a fundamental part of the CAV development,
cyber security plays a crucial role on the function safety of
CAVs, which will influence public trust and CAV com-
mercialization directly. According to the newly released UK
CAV Cyber Security Principles [14], CAV cyber security
should be considered at the early stage of CAV development
from the design phase, based on which the whole supply
chain could then prevent CAVs from cyber security risks
and issues in the following phases.

Comparing to traditional networks, mobile network or
traditional automobile network, CAV cyber security has
specific characteristics including large amount of data,
complex functions, and fatal consequences, as shown in
Table 1. (ese differences indicate that the cyber security of
CAVs should be considered specifically and in different ways
compared to the cyber security strategies in traditional
networks or automobile networks.

(e main aim of this paper is to investigate different
potential cyber attack points of CAV. (e specific charac-
teristics of CAV are analysed and potential attack points of
CAV are listed. (e authors also present new criteria to
evaluate the potential attacks to CAVs. (e severity of each
attack is then analysed and mitigation methods are then
suggested.

(e main contributions of this paper are listed as below:

(1) Definitions and categorization of all the potential
attacks for CAVs: the attack categories cover both the
autonomous elements such as the in-vehicle system

and sensors on the vehicles, and the connected parts
or functions such as V2X communication in CAVs.
(e paper also identifies the gaps and the limitations
of current studies. For example, there is a lack of
research and developments on cyber security for the
connectivity elements of CAVs. In addition, those
papers in the literature discussing the attacks to
CAVs focus on only some specific attack types. (e
missing types of attacks require further research. By
defining the initial set of all potential attacks to CAVs
within a structured category and of different se-
verities, additional unexpected new attacks to CAVs
could be added in the future research. (at is, the
categories of the potential attacks and criteria apply
to new attacks; thus, the set of attacks is extendable to
include new attacks.

(2) A new severity assessment on potential attacks to
CAVs: the assessment criteria used in engineering
and information technology are adopted to define
the criteria suitable for assessing CAVs attacks. (is
is a new adoption of such criteria assessing the se-
verity of different CAV attacks.

(3) A new categorization of mitigation methods to CAV
attacks: the recovery and protection mechanisms are
key issues in cyber security of CAVs. Defining
mitigation methods presents guidance to future
research, including intrusion detection or encryption
to protect the overall CAV systems. (e mitigation
category method categorizes the mitigation methods
into prevention, production, acceptance, transfer-
ence, and contingency. With the establishment of
test environments, this categorization could be
adopted to respond to different attacks.

(e paper is structured as follows. Section 2 introduces
the related works on cyber security in CAVs and also the
related subject of Vehicular Ad hoc Network. Section 3 then
describes the methodology to define different criteria to
assess the risk of different attacks. In Section 4, the potential
cyber attacks are listed to analyse each of their severity with
the criteria listed in Section 3. Mitigation methods of cyber
security attacks on CAVs are then recommended in Section
5. Section 6 summarizes the paper and discusses the future
challenges faced by CAV cyber security research.

2. Related Work

(e SAE International defined “driving automation” as that
the system could conduct part of or all DDT (Dynamic
Driving Tasks) continuously [20]. DDTare defined as three
different levels by the SAE J3061 standard, namely, oper-
ational functions, tactical functions, and strategic func-
tions. (e relations of these three functions are illustrated
in Figure 1. Operational functions include basic motion
control such as lateral and longitudinal motion controls.
Tactical functions include all the operational functions plus
OEDR (Object and Event Detection and Response). In the
current DDT performance, the strategic functions such as
destination and waypoint planning are not included.
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(e response by either users or the system to perform
DDT when a system failure happens is defined as DDT
fallback by SAE International. ODD (Operational Design
Domain) is considered as the driving system which requires
a specific running environment including environmental,
geographical, or time restrictions. For example, some au-
tonomous driving vehicles only operate in a closed envi-
ronment [21], which indicates that the vehicle is still
designed under a limited ODD. Based on the DDT per-
formance, DDT fallback, and ODD, SAE International then
defines the vehicle automation into 6 different levels, as
shown in Table 2.

Besides the automation taxonomy, there are attempts to
discuss CAV cyber security. In [22], the authors discussed
the possible cyber security attacks on autonomous vehicles.
After listing all the possible attacks, the authors then pro-
vided mitigation solutions to each attack. It is recommended
that it is important to keep sufficient redundancy in au-
tonomous vehicles. Sufficient sensor data could help vehicles
to know the surroundings and positions. Among all these
attacks, they believed that GNSS spoofing and fake message
injection are the most threatening risks, both of which will
threaten passengers’ lives. It is believed that antispoofing
hardware and authentication methods are needed in au-
tonomous vehicles.

In [23], the authors discussed cyber security in con-
nected vehicles and believed that the vehicles would be more
vulnerable with the increasing connectivity. (is paper
described the possible attack scenarios including USB

update attacks, communication attacks, and malicious ap-
plication installation. A system using machine learning
methods is then built to detect the anomaly behaviours in
CAN-Bus (Controller Area Network) and the operating
system.

In [24], the authors attempted to use the categories of
cyber security in computer science to describe the possible
attacks in CAVs. (e possible attacks are divided into
passive attacks and active attacks. (e passive attacks are
easy to prevent but difficult to detect, while the active attacks
are easy to detect but difficult to prevent. Feasible mitigation
methods including authentication and encryption were
recommended.

In [25], the authors assumed that connected vehicles are
similar to all the Internet devices and cyber security should
be considered as a fundamental part of their development.
(e authors then discussed the potential cyber attacks on
V2I (Vehicle-to-Infrastructure) Communication and pro-
posed a novel cyber security architecture called CVGuard to
detect the attacks in V2I. (e CVGuard reduced 60% DDoS
(Distributed Denial of Service) attacks which might cause
vehicle conflicts.

In [19], it is pointed out that modern cars are already new
targets for hackers. Engines, doors, and brakes could all be
possible vulnerable points. In addition, nowadays, the at-
tackers do not need to approach the target vehicle physically.
All the vehicles in the communication range could be
hacked. (e authors also listed OBD (On-Board Diagnos-
tics) threat, DSRC communication, Malware, and

Table 1: Comparison of CAVs/traditional vehicles/mobile networks.

Compared to traditional vehicles Compared to computer network/mobile network
1. (ere are more ECUs and more codes in CAVs [15], which means
more data to be processed

1. In addition to information leakage, cyberattacks to CAVs could
cause physical damage or even fatal injuries

2. (ere are multiple communication protocols in CAVs, such as
CAN [16], 5G, and DSRC [17]; different communication protocols
lead to multiple data formats, which require more preprocessing time

2. CAVs require higher detection accuracy as well as shorter data
processing time; in the EuropeMetis project, the latency is expected
to be less than 5ms and the accuracy is expected to be 99.999%
when transmitting a 1600 bytes data package [18]

3. (ere are more connected functions, meaning the number of
potential attack points is also increasing [19]

3. (e application scenarios are more complicated; CAVs are more
likely to drive in unregulated areas such as parking lots, highways,
and rural areas

Destination and
waypoint planning OEDR Lateral vehicle

motion control
Vehicle
motion

Longitudinal vehicle
motion control

Basic vehicle motion control
Operational functions

Planning and execution for event/object
avoidance and expedited route followingTactical functions

Strategic functions

Route and destination timing and selection

Figure 1: Schematic view of driving tasks [20].
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automobile apps as the most vulnerable parts on vehicles.
(e authors then offered the solutions to address the cyber
security issues including OTA solution, cloud based solu-
tion, and layer-based solution.

(ere are also research attempts in simulation envi-
ronments to examine the influence of cyber attacks to CAVs.
In [26], simulated slight attacks were made to study lon-
gitudinal safety of CAVs, i.e., on the positions and speed via
GPS communications. An empirical model named PATH
CAV from a field test [27, 28] and a RCRI (Rear-end
Collision Risk Index) based on stopping distance was used to
evaluate the safety. (e authors found that the slight attacks
to the CAV positions are severer than they are to the speed.
(e slight cyber attacks will also make severer impacts on
decelerating than accelerating. In addition, the slight attacks
to multiple CAVs are more dangerous than attacks of higher
severity to fewer number of vehicles. (is research will help
to find a more efficient mitigation method to the attacks to
V2V communications.

In [29], four possible attack points of the vehicle have
been discussed, including signal controllers, vehicle detec-
tors, roadside units, and onboard units. (e focus was on the
attacks to infrastructures. (e authors attacked the traffic
signal control systems by sending spoofed data, which
showed to increase the delay. Some attacks in the experi-
ments also showed to cause severe congestion. Based on the
attacks, an approach was devised to identify this kind of
attacks by analysing the attack locations, which helps to
design a more stable transportation network.

As a fast emerging research topic, CAV cyber security
has just started attracting increasing research attention. In
addition to the limited research on cyber security in CAVs,
research on VANET (Vehicular Ad hoc Networks) may
contribute to the research on the connected functions of
CAVs. VANET uses V2V communication and V2I com-
munication to help vehicles gathering traffic information
[30], while CAVs extend the boundaries to the wider V2X
(Vehicle-to-Everything) communications.

VANETis amobile ad hoc network, where the vehicles are
the mobile nodes [31]. In [31], the authors listed the possible
privacy and security challenges to the safety of VANET in-
cluding the attacks on confidentiality, integrity, or data trust.
(ey claimed that encryption is important to VANET.

In [32], the authors concluded that VANET has three
specific characteristics, which are frequent vehicle move-
ment, time critical response, and hybrid architecture. Other

attacks listed include bogus information, DoS attacks,
Masquerade, and GPS spoofing. (e authors also propose
several mitigation methods including public key, certificate
revocation approaches, and ID-based cryptography.

Research in [33] focused on threats and attacks to ve-
hicular communication. (e authors built a three-layer
framework and pointed out the potential threats and attacks
to V2X communication such as remote communication
protocols including DSRC or Bluetooth. It also suggested
machine learning and block chain as countermeasures to
detect attacks.

In the literature listed above, the majority of the re-
searchers believe that cyber security is a fundamental part in
CAV developments, which demands urgently more research
and investigations. (e majority of researchers agreed that
the increasing connected and autonomous functions will
increase the possibilities of cyber attacks. However, existing
research mainly focused on the cyber security of autono-
mous functions. (e potential attacks should be considered
from both the autonomous and connected aspects. (ere are
attempts to discuss the most severe attacks, but there is a lack
of systematic evaluation criteria in the literature. Some re-
search discussed the mitigation methods including en-
cryption or authentication, but there are still the needs of
further investigations to identify comprehensive and sys-
tematic mitigation methods to categorized cyber attacks.
Overall, the literature on CAV cyber security is limited and
requires more investigation and research efforts. Awareness
of cyber security in CAV should be raised as well.

(is paper significantly extends the existing research by
defining potential attacks to both connectivity and auton-
omy, as well as both in-vehicle and intervehicle potential
cyber attacks. Moreover, severity evaluation criteria for
cyber attacks are defined and the severity level of each attack
is also evaluated based on the criteria defined in this paper.
Corresponding mitigation methods are then suggested at the
end. (is research aims to raise cyber security awareness of
consumers, OEMs, researchers, and manufactures and also
present a starting point to develop the detection and pre-
vention methods towards CAV cyber attacks.

3. Potential CAV Cyber Attack Criteria

(e potential attack points or attack ports are analysed
firstly. For each potential attack, the following criteria will
then be adopted to assess its severity.

Table 2: SAE automation levels [20].

Level Name
DDT

DDT fallback ODD
Sustained motion control OEDR

0 No driving automation Driver Driver Driver N/A
1 Driver assistance Driver and system Driver Driver Limited
2 Partial driving automation System Driver Driver Limited

3 Conditional driving automation System System Fallback-ready user
(becomes the driver during fallback) Limited

4 High driving automation System System System Limited
5 Full driving automation System System System Unlimited
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(enewCAV assessment criteria are defined based on the
widely used formula in engineering risk assessment in dif-
ferent areas including transportation and infrastructure [34],
information technology system [35], and civil aviation [36]:

Risk � Asset∗Vulnerability ∗Threat. (1)

(e new assessment criteria evaluate three aspects of cyber
attacks, namely, the asset of the possible attack targets, vul-
nerability of the possible risks to the attack targets, and threat of
the possible consequences. As mentioned in Section 1, due to
several key differences between traditional automobile network
cyber security and CAV cyber security, some extra criteria are
adapted to our new CAV cyber security assessment. For ex-
ample, to evaluate the severity of the risk, the assessment
criteria of CAVs should consider not only the level of infor-
mation leakage but also the level of physical damage.

3.1. Asset of the Attacked Targets

(1) Asset name: in computer security, ISO/IEC 13335-1:
2004 defines that assets include all the hardware or
software components on computers which are exposed
to an attack target, e.g., a dataset and one piece of
hardware or software code [37]. CAVs are equipped
with a large number ECUs and sensors and are thus
vulnerable to an abundance of possible attacks. More
detailed assets will be explained in Section 4.

(2) Asset importance: the importance of each asset is
categorized into three levels:

(a) Low: the breakdown of this asset will not affect
the operational and tactical functions of the
whole CAV system. In the SAE J3016 standard
[20], operational functions include lateral and
longitudinal vehicle motion control, including
the most basic functions of starting, stopping,
driving, and controlling [38]. (e tactical
functions include the OEDR as introduced in
Section 2.

(b) Medium: the breakdown of this asset might
influence tactical functions of the vehicle,
however would not have direct impacts on the
operational functions. In addition, the asset
function could be replaced or covered by other
assets on the vehicle. For example, if cameras on
CAV breakdown, the vehicle could still use other
sensors to detect the surroundings.

(c) High: the breakdown of this asset may cause
damage to operational functions of the vehicle
directly. For example, the in-vehicle system,
which sends instructions to ECUs to maintain
the vehicle speed or stop the vehicle in certain
situations, is of high importance.

3.2. Vulnerability of the Attacked Targets

(1) Risk name: each asset may be exposed to more than
one risk. (is criterion assesses specific risks to each
asset; more details are presented in Section 4.

(2) Difficulty of conduction: the difficulty of conducting
an attack varies depends on its characteristics. Some
attacks may require sufficient expertise from the
attackers in specific areas such as GPS spoofing or
fake identification. Some devices, such as GNSS
satellites, are securely protected by the governments.
Hacking into these devices needs not only knowledge
but also sufficient time and money. (e difficulty of
conduction is considered based on the knowledge,
time, and budget needed and can be graded into
three levels listed as below:

(a) Low: attackers do not need to acquire relevant
knowledge to conduct the attack or the target
asset is easy to be obtained/bought on the
market. (e attack is not time consuming.

(b) Medium: attackers only need to spend a short
time (weeks/months) to learn the required
knowledge. Hacking into the target asset needs to
be purchased at a high price, or the hacking
process is time consuming.

(c) High: attackers need to have extensive knowledge
on the target asset or need to spend years to learn
relevant knowledge. (e target asset is difficult to
find in the market or costs an astronomical figure.

(3) Detection possibilities: this criterion defines the level
of possibilities detecting attacks by the users or the
CAV system. In computer science, the attacks are
divided into two main categories, namely, passive
attacks and active attacks [39]. Passive attacks do not
interrupt the system but will monitor or eavesdrop it
to access information. Active attacks will interrupt
the system functions directly by methods such as
injecting fake message. In general, passive attacks are
difficult to detect but easy to defend, while active
attacks are difficult to defend but easy to detect [24].
Although passive attacks may not cause harms on
system functions, the information loss could also be a
severe risk because CAVs will be the ultimate per-
sonal mobile device in the future [40], storing sen-
sitive data including personal home address, contact
numbers, and financial information. It is essential to
evaluate the detection possibilities of different at-
tacks. (e levels of detection possibilities are cate-
gorized into three levels as listed below.

(a) Low: the attacks will not affect any function
(whether operational or tactical functions) of the
CAV system. It is difficult to detect the attack in
normal use. (e best solution is to prevent the
attacks from happening in advance with en-
cryption or authentication.

(b) Medium: the attacks will not affect the opera-
tional functions of the CAV system so the users
would not notice the attacks immediately.
However, the attacks would affect some parts of
the tactical or strategic functions.(e system will
detect the abnormal behaviour afterwards and
warn users.

Journal of Advanced Transportation 5



(c) High: the attacks will influence the operational
function immediately so the users could notice
them immediately. For example, if the vehicle
suddenly stopped on the road, the users would
notice the abnormal situation immediately. In
addition, if the cameras around the vehicle
breakdown, the system will notice this abnormal
situation promptly.

3.3. Consequences of the Attacks

(1) Consequence name: to each possible risk, there may
be more than one consequence. (e consequences
will be listed and then be analysed; more details are
presented in Section 4.

(2) Severity of information leakage: information leakage
has been a major cyber security issue in computer
science. Information leakage attacks usually damage
the confidentiality, integrity, and availability of the
system [37]. (e severity is based on the scale and
importance of the leaked information.

(a) Low: the attack will not leak any private
information.

(b) Medium: the attack will leak nonconfidential
personal information or unimportant informa-
tion at a small scale. For example, the attacker
may know the preference of the passenger on
choosing routes or on the entertainment system.
(is type of information leakage will not cause
further harm directly.

(c) High: the attack will leak highly important
confidential information such as the financial
information, the home address, or the personal
ID. With this information, the attackers could
conduct further harmful actions to the victims.
In other situations, this information leakage
would cause larger scale information leakage
such as personal data stored in the cloud.

(3) Severity of physical damage: compared with traditional
networks, cyber attacks to CAVs could lead to physical
damage or even fatalities directly. Tesla vehicle has
already caused fatalities on a straight road with good
visibility and in a good weather [41]. On March 2018,
an Uber autonomous vehicle struck and killed a pe-
destrian crossing the road in Arizona, USA [42]. (e
Uber test vehicle failed to detect the pedestrian in the
environment of low visibility and failed to conduct any
corresponding actions. As a large machine, CAV could
cause hazards or even be exploited as a weapon. With
the possible consequences, the severity of physical
damage can be categorized as below.

(a) Low: the attacks are not likely to cause physical
damage to human or other vehicles, and
infrastructures

(b) Medium: the attacks are likely to cause small
hazards and damage to infrastructures or vehi-
cles, but would not cause fatal injuries to people

(c) High: the attacks have a high possibility to cause
fatal injuries

(4) Combined severity level: a method evaluating the
combined severity is adapted from risk management
in the information system [35]. In the information
system, the risks are determined by the likelihood
and impact. To determine the combined severity
levels to CAVs, a new severity matrix is built based
on the severity of information leakage and physical
damage, as shown in Table 3. If the severity of in-
formation leakage and physical damage are at the
same level, then the combined severity will be at the
same level as well. However, considering its im-
portance, if the severity of physical damage is high,
the combined severity level will be high as well.

(5) Recovery time: this criterion evaluates the time
needed to recover to normal situation after the attack
has been detected.

(a) Low: after the detection, the damage caused by
the attack can be fixed in a timescale of seconds

(b) Medium: after the detection, the damage caused
by the attack can be fixed in a timescale of
minutes to hours

(c) High: after the detection, the damage caused by
the attack can be fixed in a timescale of hours to
days

Based on these criteria, possible attacks in different
scenarios are analysed in Section 4. It should also be noticed
that this paper aims to discuss the possible cyber security
attacks to a full CAV (Level 5), where all the possible attacks
could be conducted via wireless communication remotely.
(e physical access of attacks is not considered when
evaluating the severity. (ese criteria may not be compre-
hensive and exclusive, however could be further refined and
extended. (is research presents the initial attempt to define
and rank the severity of possible attacks in CAV scenarios.
(is also aims to encourage further research developments
to raise public and CAV practitioners’ awareness towards
CAV cyber security.

4. Possible Attacks

In this section, possible attacks of CAVs are listed and
categorized, as shown in Table 4. Following the criteria
defined in Section 3, severity of each attack will be analysed.
CAV developments concern mainly two streams of research,
which are connectivity and automation, covering in-vehicle
and intervehicle components. Detailed potential attacks will
be analysed within these two streams.

Different autonomous levels may be exposed to different
attacks of different possibilities. (is paper focuses on the
attacks to a fully automated vehicle (i.e., level 5) according to
the SAE automation level [20]. Level 5 CAV is capable of all
the DDT under all circumstances. It is also assumed that all
the vehicles on the road are CAVs. In real-world situations,
there will be a mix of CAVs of different automation and
traditional vehicles for a certain period of time. In addition,
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it is known that CAVs will keep evolving and adapting more
technologies. (is paper only discusses attacks with existing
CAV technologies. However, as the attacks are categorized
on automation and connectivity in-vehicle and intervehicle,
the list of possible attacks could be extended if new tech-
nologies are adapted to CAVs.

4.1. Automation in CAVs. In the current CAV development,
all the vehicles from different companies have installed
multiple sensors. (e mainstream sensors include LiDAR,
Radar, and camera [43, 44]. For example, Google Waymo
vehicles are installed with a 360 degree camera on the roof as
the vision system and several LiDAR sensors and Radar
sensors around the vehicle body [45]. (ere are also sup-
plemental sensors such as the sound detection sensors.

(e possible attack target assets are analysed as below.

(1) Audio/entertainment devices: audio devices have
already been widely used in modern automobiles. It
evolved to a colorful touchable screen showing more
information in vehicles [46]. In CAVs, the audio/
video system could be used to warn users about
anomaly or abnormal behaviours detected in the
system or surrounding environments.

(a) Loud volume: the first possible attack is to
suddenly increase the volume of the voice such as
background music on board. (is attack could
distract the passengers’ attention or even cause
panic in certain situations. (e severity of in-
formation of leakage is low but the severity of
physical damage is medium, which means that
the overall severity is low.

(b) Fake sound: the attacker could use the audio
system to make fake noise such as a crash sound.
(is attack might cause passengers’ panic as well,
although is not likely to cause information
leakage.

(c) Remote control: this attack already happened in
real world. Two white hackers in the USA hacked
into a Jeep Great Cherokee from 10miles away and
then stopped the vehicle on a highway road
through the entertainment system [47]. (is is
because the vehicle CAN and the entertainment
system are combined together. If an attacker could
control the vehicle remotely through the audio/
entertainment system, the severity of physical
damage could be high. In addition, the risk of
information leakage will also be severe because the
attackers could send remote instructions to gather
private information. Moreover, in CAVs, the re-
mote-control attacks might happen on other
components leading to severe risks.

(2) Cameras: cameras provide the vision data, an in-
dispensable part in CAV. To detect the surrounding
objects and position the vehicle, camera is a fun-
damental sensor on CAVs. However, the camera’s
function could be replaced by other sensors when
they break down; thus, camera is of medium im-
portance. (ere are already successful attacks to
cameras to fool vehicles already [48].

(a) Blind vision: blind vision attack could be easily
achieved by physical access. However, with the
connectivity of the vehicle, it is even easier for
the attackers. (e attackers could disable the
camera by controlling a strong light resource
remotely. (e attack would not leak the private
information of the vehicle. However, this attack
would not cause fatal injuries as well because it
is easy to be detected, and CAV contains
multisensors’ data. If the cameras break down,
other sensors could still help to ‘see’ the envi-
ronment. Based on this, the overall severity level
of the attack is low.

(b) Mislead camera (fake images): by controlling the
cameras remotely, the attackers could inject fake
image information to mislead the cameras. (is
attack is more dangerous than the blind vision
attack because the detection possibility is lower.
For blind vision attack, the system or the user
could easily detect the abnormal situation. While
in the mislead camera attack, it may take longer
time to detect. In addition, the system might
make decisions based on the fake images, the
severity of physical attack is thus higher, and the
overall severity is high.

(3) Battery system: currently, the number of electric
vehicles on road is increasing. As an environment-
friendly transportation method, it is believed that the
future CAVs would be electric vehicles. (e vehicles’
battery system would also then be an attack target.

(e most possible attack to the battery system is the
DoS (Denial of Services) attack. In computer science, the
aim of DoS attack is to exhaust all the resources of the
target to make the computer, server, or communication
channel unavailable. In CAVs, the DoS attack could target
the energy sources to exhaust the power sources including
heating the seats on the vehicle. DoS attacks could be
really dangerous to the battery system. It could trigger
different parts to consume battery power in a short time.
Sudden battery loss could cause damage to the basic
functions of the vehicle. (e severity of physical damage is
medium, and the combined severity level is medium as
well.

Table 3: Combined severity level matrix (adapted from [35]).

Information leakage/physical damage Low Medium High
Low Low Low High
Medium Low Medium High
High Medium High High
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(4) LiDAR (light detection and ranging): LiDAR is the
most fundamental sensor in CAVs to support lo-
calization and parking assistance [49]. It uses light
point cloud to detect the distance and boundaries of
surrounding obstacles and environments [50]. (e
importance of LiDAR is medium. (ere are suc-
cessful attempts to attack the LiDAR by using strong
lights in a simulation environment [48].

(a) Jamming: this attack jams the LiDAR by using
strong lights to reflect the origin light. (e at-
tackers could not gather any information
through this attack. However, it may lead to
physical damage because the detection perfor-
mance of LiDAR will decrease.

(b) Hidden objects: because LiDAR uses the re-
flection of light to detect the surrounding en-
vironments, the attackers may use special
materials to absorb the light to avoid detection.
(is attack would not cause any information
leakage directly. However, in some situations, for
example, if the object is covered by special re-
flection materials, the vehicle would not observe
it. (is could cause physical damage or even fatal
injuries to the target vehicle. (e combined se-
verity of this attack is high as it may lead to fatal
accident.

(c) Fake objects: the attackers could use light re-
flection to simulate a fake object, e.g., a barrier in
front of the vehicle. (e target vehicles would
stop or change direction based on the false de-
tection. If multiple vehicles detect this fake ob-
ject, it could cause severe traffic congestion.
Moreover, if there are multiple fake objects on
the roads, this attack could cause physical
damage when CAVs try to avoid those fake
objects. With the other detection methods on the
vehicle, however, the possibility of fatal injuries
of this attack exists but is low. (e severity of
physical damage is medium and the combined
severity is medium as well.

(5) Radar: unlike LiDAR in CAVs, radar uses radio
waves instead of light to detect the surroundings.
Currently, there are two types of Radar on CAVs,
millimeter Radar [51], and Ultrasonic Radar [52].
(emillimeter radar is used on object detection [53],
and the ultrasonic radar is used in short distance
scenarios such as parking assistance system [54].(is
is because the speed of ultrasonic radar is slow, which
would lead to poor detection rate in high speed
movements. Radar is also of medium importance.

(a) Jamming: this attack is similar to the LiDAR
jamming attack. In radar jamming attack, the
attackers would use noise to degrade the signal of
radar. (e attacked radar system might not work
properly and the vehicle could not detect the
surrounding environments. If the noise source
influences multiple CAVs, the traffic flow would

be disturbed or it could even cause traffic col-
lisions. (is attack would not cause information
leakage directly but might cause physical dam-
age. (e combined severity of this attack is
medium.

(b) Hidden objects: currently, existing technologies
are able to hide objects from radar detection and
have been already adapted in the area of military
aerospace [55]. (e planes or the objects hide
themselves by changing the regular reflection
shape or using radar absorbing materials. In
military, the mitigation method is already de-
veloped, which is called Radar Antistealth
Technology [55]. (is technology will strengthen
the radar signal. (is attack would not cause
information leakage but might cause physical
damage, or even hurt people directly. (e
combined severity level of this attack is high.

(c) Fake objects: the attackers broadcast fake radar
signals to conduct the attack. Other vehicles
would then detect the false signal and take
corresponding reactions. (is attack would not
cause information leakage, however, might cause
physical damage to infrastructures, e.g., colli-
sions when vehicles are trying to avoid fake
objects. (e combined severity of this attack is
medium.

(6) GNSS (Global Navigation Satellite System): the most
widely used GNSS system is GPS (Global Positioning
System) from the USA [56]. Currently, other
countries are developing their own GNSS such as
Beidou from China, Galileo from Europe Union, and
Glonass from Russia [57]. (e GNSS system could
help to locate and navigate the vehicle. Hacking into
this system requires high-level knowledge.(e GNSS
system is a major resource for positioning and
navigation, but as the positioning and navigation are
cooperated via V2V communication, the importance
of GNSS system is thus medium.

(a) Spoofing: GNSS spoofing attack sends similar
GNSS signals to mislead the receivers of the
target CAVs. (e attackers could use these de-
vices to lead the vehicle to false location or wrong
route. In 2013, researchers from the University of
Texas at Austin successfully fooled an 80 million
dollar super-yacht by their GPS spoofing devices
[58]. Compared to the GNSS jamming attack,
GNSS spoofing attack would be more dangerous.
Without the GNSS signals, CAVs would use
other methods such as V2V communication or
SLAM (Simultaneous Localization and Map-
ping) to navigate and avoid the possible hazards
such as collisions. However, if the information is
wrong and not detected, CAVs would trust the
wrong GNSS information and take wrong re-
actions, which may lead to collisions and fatal
injuries. In addition, a vehicle that has been
spoofed successfully could respond with private
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information such as the location information
and historic route information to the attackers,
which would also cause information leakage. In
that case, the severity of information leakage is
medium and the severity of physical damage is
high.

(b) Jamming: in the GNSS jamming attack, the at-
tackers will send stronger power signal to the
CAV receiver. (e GNSS signal is normally weak
when they approach the receivers, and it could be
easily covered by the jamming signal. (e real
GNSS signal will then be ignored. In addition, it is
also difficult to detect the jamming attack because
the GNSS signal is likely to decrease due to in-
terference or limited number of satellites [59].
CAVs could not navigate and locate without the
GNSS signal. However, V2V communication
could help to navigate coordinately as a backup
method. (e severity levels of both information
leakage and physical damage are medium.

(7) In-vehicle system: in-vehicle system contains the
microcontrollers and communication instructions in
the vehicle sent by CAN (Controller Area Network)
or other communication methods such as WiFi and
Bluetooth. (e in-vehicle system is related to all the
operational functions, thus is of high importance.

(a) Injection: the attackers would inject nonexisting
information or even malware to the system
through ports such as USB ports. With the fake
information, CAVs might make wrong decisions
leading to physical damage. As an active attack,
injection could also cause leakage of sensitive data.
(e combined severity of this attack is medium.

(b) Eavesdropping: eavesdropping is a passive attack
and is difficult to be noticed. (e main objective
of this attack is not to cause physical damage but
to gain access to valuable data. (us, the severity
of information leakage is high and the severity of
physical damage is low.

(c) Traffic analysis: traffic analysis is also a passive
attack. (e attackers will monitor and observe
the data and then try to identify the pattern in the
data flow. As a passive attack, the traffic analysis
attack would not cause physical damage directly
and the scale of information leakage is limited.
(e combined severity of this attack is low.

(d) Modification: this attack modifies the messages
sent between different components and units.
(e wrong messages could lead to the wrong
decision and action of the vehicle. (e severity of
this attack is medium.

4.2. Connectivity in CAVs. (ere are three main types of
vehicle communication in CAV network. V2V (Vehicle-to-
Vehicle) communication is between vehicles via wireless
network. V2I (Vehicle-to-Infrastructure) communication is
between vehicles and infrastructures via wireless network

and V2X (Vehicle-to-Everything) includes V2V, V2I, and
communications between vehicles and other entities such as
cloud database or pedestrians [60]. Compared with tradi-
tional automobiles, these communication methods could
help to improve the accuracy of location in rural area and
prevent accidents efficiently. Meanwhile, some computer
cyber attacks might also happen in CAV environment. For
example, in a network cyber attack benchmark KDD99 [61],
cyber attacks such as DoS attack could be adapted into V2V
communication. Nowadays, many communication tech-
nologies are being used in CAV network, e.g., DSRC
(Dedicated Short Range Communication), LTE (Local
(ermal Equilibrium), and 5G [62].

(e possible attack target assets of connectivity are
analysed as below.

(8) V2V Communication (with other vehicles): V2V
communication is a crucial part in future CAVs.
However, there are no general adapted communi-
cation standards for V2V communication. Cur-
rently, the V2V communication standard in the
USA is DSRC, which is based on IEEE 802.11p
standard [63]. In Europe, there is ITS-G5 for V2V
communication [64]. V2V communication could
help to navigate or warn vehicles of potential
hazards.

(a) DoS: in addition to the battery system, DoS
attack could also happen in the V2V commu-
nication.(e attackers could send huge amount
of data to block the communication channel of
the target vehicle from receiving external in-
formation. (is attack would not cause infor-
mation leakage but might cause physical
damage especially in the rural area, where the
V2V communication is the main data source for
vehicle planning.

(b) Modification on message/fake message: the
communication between vehicles would send
different types of information including posi-
tion coordinates, speed, and head angle. If the
attackers send fake messages, the target vehicle
would take wrong reactions. In addition, if the
target vehicle trusts the fake message, it may
respond to the attacker with private informa-
tion. Based on this, the overall severity is
medium.

(c) Hidden vehicle: this attack is also a type of
passive attack. (e attackers would disable their
ownmessage sender to hide their activities. (is
would not cause information leakage directly,
but might cause physical damage if the vehicle
hide its activities and approach the target ve-
hicle silently.

(9) V2I communication (with infrastructure): nowa-
days, there are some initial uses of V2I commu-
nication. For example, the ETC (Electronic Toll
Collection) on roads and bridges use RFID (Radio
Frequency Identification) to charge vehicles [65].
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Apart from the communication channel, which is
similar to the V2V communication, there are other
attack types in V2I communication.

(a) Change infrastructure sign: the infrastructure
signs in transportation help vehicles to navigate,
locate, or control speed. CAVs could ‘read’ the
sign and take corresponding actions. If the
attackers change infrastructure signs such as the
road direction sign, it will lead the vehicle to
wrong route. In addition, if multiple traffic
lights are changed intentionally, it could cause
severe traffic congestion or even traffic
collisions.

(b) Block/remove sign: the infrastructure signs
could also be blocked or removed physically or
remotely. If an emergency alert sign is removed
intentionally, this could cause traffic congestion
and accidents. However, this attack will not
cause information leakage. (e combined se-
verity of this attack is medium.

(10) V2X communication (mainly on cloud).

(a) Cloud ID dataset: authority is important in
CAV network. Each CAV would be assigned a
unique ID such as an electronic plate. In order
to confirm the reliability of the communica-
tion, only the information from the trusted
CAVs in the dataset could be accepted. All the
communication and information exchange
are based on the authority from the CAV
cloud.

(b) Cloud real-time traffic database: cloud database
collects the traffic data to provide transportation
guidance. It includes the real-time traffic con-
gestion data and accident data to inform all the
CAVs to avoid certain areas. If the attackers
inject fake messages or modify messages, all the
vehicles in the cloud database would receive
wrong information. In addition, the attackers
could also access valuable information in the
dataset.

With the severity criteria, all the attacks are then grouped
into four categories, as shown in Table 5. It can be seen that
the critical attacks contain remote control, fake vision on
cameras, hidden objects to LiDAR and Radar, spoofing

attack to GNSS, and fake identity in cloud authority. It could
be summarized that all the critical attacks are related to
spoofing and falsify messages. (ese attacks are difficult to
realize and they could all lead to wrong reaction or even fatal
injuries.

5. Mitigation Methods

For each of the attacks analysed in Section 4, the mitigation
methods will be different. By adapting the mitigation
methods in information security [35], the main types of
mitigation methods could be grouped into five categories. To
CAVs, the mitigation methods could be similar but need to
be considered based on specific CAV characteristics.

(1) Prevention: these methods prevent the attack
from influencing the whole vehicle system neg-
atively. In potential attacks to CAVs, the pre-
vention is for passive attacks such as
eavesdropping by encrypting the communication
channel and messages. In addition, all the CAV
users could be authorized with the credibility of
the messages. For example, to the eavesdropping
attacks in in-vehicle system, if the communica-
tion channel and messages are encrypted, it is
much more difficult for attackers to make use of
the information.

(2) Reduction: reduction methods reduce the possibility
or feasibility of the attack. It could also reduce the
possible impacts of the attacks to a controllable level.
In CAVs, the reduction methods include the re-
dundant sensors. If one sensor breaks down, the
vehicle could still rely on the data from other sensors
to reduce the impact of each sensor. For example, to
reduce the impact of the blind vision attack to the
camera, the vehicle could use other sensors after
detecting abnormal attacks.

(3) Transference: transference shares the possible
risks with others, such as a reliable third-party
organization including governments and insur-
ance companies. For example, in the Cloud of
V2X communication, the authority of each CAV’s
identity should be assigned by the government or
relevant legitimate organizations. All the CAVs
information should also be stored safely and
monitored by the trusted third-party. Not all the

Table 5: Categories of severity of attacks.

Level Description Attack types

1 Critical Remote control (audio/video devices); mislead cameras/fake vision (cameras); hidden objects (LiDAR); hidden objects
(radar); spoofing (GNSS); fake identity (cloud authority)

2 Important
Fake objects (LiDAR); fake objects (radar); DoS attack (battery system); injection (in-vehicle system); modification

(in-vehicle system); modification (V2V communication); fake/ghost message (V2V communication); change
infrastructure sign (V2I communication); injection (cloud dataset); modification (cloud dataset)

3 Moderate
Blind vision (cameras); jamming (LiDAR); jamming (radar); jamming (GNSS); eavesdropping (in-vehicle system);
traffic analysis (in-vehicle system); DoS attack (V2V communication); block/remove sign (infrastructure sign); road

line changing (road)
4 Minor Loud volume (audio/video devices); fake sound (audio/video devices)
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attacks could be resolved by transference. In
CAVs, this mitigation method could only be used
when a single vehicle manufacturer or a supplier
could not handle all the information safely.

(4) Acceptance: acceptance is to retain the risks caused
by those attacks with limited negative impacts on
CAVs. (e attack might not have a proper coun-
termeasure and the impact is at an acceptable level.
For example, to the traffic analysis attack in in-
vehicle communication, the leaked information
could only be the size and timing of the commu-
nication package, which is not likely to cause
physical damage. In addition, the traffic analysis
attack, which is a passive attack, could not be
prevented by message and communication channel
encryption. In that case, the traffic analysis attack
could be tolerated.

(5) Contingency: contingency considers the possible
reactions if the attacks happen. A contingency plan
needs to be prepared to recover the system once
attacked. If the CAV system detects an abnormal
battery loss due to the DoS attack, it could pull up the
CAV to a safe place.

6. Conclusion

CAV is a fundamental part of intelligent transportation
systems and has started attracting increasing research at-
tention in the last few years. Given the importance of CAVs
in relation to personal information, physical damages, and
passengers’ lives, cyber security of CAVs are thus becoming
highly important in research developments.

(is paper has identified some of the most important
cyber attacks to CAVs. For each identified cyber attack, the
target asset, the possible risks, and the consequences have
been analysed. (e severity level of information leakage and
physical damage are then estimated and considered based on
a new criteria adapted from engineering and software de-
velopments. Possible mitigation methods are then catego-
rized and suggested to resolve these attacks.

Among the attacks identified in this paper, the spoofing
and falsify messages attacks including remote control, fake
vision on cameras, hidden objects to LiDAR and Radar,
spoofing attack to GNSS, and fake identity in cloud authority
have been identified as the most dangerous attacks to CAVs.
All of these attacks would cause severe consequences to
information leakage and physical damage.

However, it should also be noticed that CAV technol-
ogies are fast evolving. (is paper discusses the potential
cyber attacks in the existing CAVs technologies and derives
the potential attacks based on the traditional cyber attacks.
Within the scope of CAV hardware, software, and data, the
possible attacks listed in Table 4 will be further extended to
reflect the latest developments in CAVs. Meanwhile, the
overall severity of each attack is only judged by the listed
criteria. It could be further discussed based on other criteria.
Due to the emerging infrastructures under construction at
different countries, and the unique characteristics of real-

world environments required, there is a lack of readily
complete testing environments compliant to generally
adopted standards available in research and practice. Apart
from defining and categorizing the potential cyber attacks, it
should also be stressed that the evaluations of the severity of
each type of attacks also need to be defined and justified
carefully based on real-world field tests. Furthermore, the
severity assessment of the listed potential attacks only
considers single sensor. For example, in real-world tests, if
the cameras fail to recognize an obstacle on the road, the
LiDAR and Radar might complement and help to recognize
and avoid the obstacle. In some extreme situations, all the
sensors or backup elements/functions might be ineffective or
fail. (e assessment of the severity for different attacks
should consider and evaluated the integration of multiple
sensors and would also be an interesting topic for future
research. In addition, the advantage, disadvantage, and
application scenarios of each mitigation method are not the
focus in this paper.(e presentedmitigationmethods will be
extended and refined further in future research on CAVs
cyber security.
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With the development of intelligent vehicle technology, the demand for advanced driver assistant systems kept increasing. To
improve the performance of the active safety systems, we focused on right-turning vehicle’s collision warning and avoidance. We
put forward an algorithm based onMonte Carlo simulation to calculate the collision probability between the right-turning vehicle
and another vehicle (or pedestrian) in intersections. We drew collision probability curves which used time-to-collision as the
horizontal axis and collision probability as the vertical axis. We established a three-level collision warning system and used
software to calculate and simulate the collision probability and warning process. To avoid the collision actively when turning right,
a two-stage braking strategy is applied. Taking four right-turning collision conditions as examples, the two-stage braking strategy
was applied, analysing and comparing the anteroposterior curve diagram simultaneously to avoid collision actively and reduce
collision probability. By comparison, the collision probability 2 s before active collision avoidance was more than 80% and the
collision probability may even reach 100% in certain conditions. To improve the active safety performance, the two-stage braking
strategy can reduce the collision probability from exceeding 50% to approaching 0% in 2 s and reduce collision probability to less
than 5% in 3 s. By changing four initial positions, the collision probability curve calculation algorithm and the two-stage braking
strategy are validated and analysed. ,e results verified the rationality of the collision probability curve calculation algorithm and
the two-stage braking strategy.

1. Introduction

With the development of vehicle active safety systems,
ADAS can solve traffic safety problems in challenging
crashes situations. ,e current ADAS focuses mainly on
turning left, and studying the right-turning process was
also important for improving traffic safety. Considering
that the driver in mainland China was sitting on the left
side, there was a large blind spot in the process of turning
right, and the algorithm was designed by taking the right
turn as an example.,e right-turning condition was special
and relatively complex [1] because drivers needed to give
attention to pedestrians crossing the road while avoiding
vehicles coming from the left side and drivers had a visual
blind spot during the right-turning [2]. ,erefore, the
right-turning condition of an intelligent vehicle was
studied and analysed.

In intersections, the intelligent vehicle’s turning con-
dition was a complex traffic scene which possesses a high
accident rate [3, 4]. ,ere are increasing numbers of colli-
sions between right-turning vehicles and pedestrians (or
other vehicles) [5, 6]. ,erefore, it was necessary to reduce
the collision probability by technical means. At present,
most previous studies focused on the forward collision
warning (FCW) system and active collision avoidance [7];
however, there was a lack of research on the collisions caused
by right-turning vehicles. Some researchers estimated the
motion state of vehicles and pedestrians [8, 9]. By estab-
lishing a probability model, Hashimoto et al. predicted and
identified a pedestrian’s crossing decision in advance [10];
however, this research lacked the calculation of collision
probability for a vehicle on a right-turning course. In right-
turning collision-related research, Sitao et al. put forward an
intersection optimization design to reduce the collision
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probability between right-turning vehicles and pedestrians
[11], but it cannot cover all possible right-turning collisions
in intersections. Zhao et al. have conducted research in
intelligent vehicles active collision avoidance related fields
[12]. Choi and Zhao et al. adopted the autonomous emer-
gency braking (AEB) system to avoid collisions [13, 14].
However, these studies were not combined with the intel-
ligent vehicle’s right-turning condition. In this paper, Monte
Carlo simulation was used to establish a random simulation
algorithm which simulates the right-turning intelligent ve-
hicle’s collision probability.

,e current research is summarized as follows:

(1) At present, most previous studies focused on the
forward collision warning (FCW) system and au-
tonomous emergency braking (AEB) system; how-
ever, there was a lack of research on the collisions
caused by right-turning vehicles.

(2) ,e current research focused on pedestrian intention
prediction and identification, without considering
the right-turn condition.,e existing research on the
right turn was not comprehensive enough, and the
research should be extended to the vehicle and pe-
destrian protection during the right turn.

(3) At present, AEB early warning and active intervention
were mature, but there was relatively little research on
early warning of traffic conflicts during the right-turn
process. Current research lacked the calculation of
collision probability for a vehicle on a right-turning
course. ,e early warning mechanism should be in-
troduced into the field of right-turn collision warning.

In order to calculate the collision probability accurately,
extensively covering all possible collisions during right-
turning, and actively avoiding a collision, the system de-
scribed in this paper not only calculated the collision
probability and designed the three-level collision warning
system (CWS) but also actively avoided the collision to
reduce the collision probability.

According to the algorithm based on Monte Carlo
simulation to calculate the collision probability, we have
improved the performance of the active safety systems,
which contributed to right-turning vehicle’s collision
warning and avoidance. We established a three-level colli-
sion warning system and used software to calculate and
simulate the collision probability and warning process. To
avoid the collision actively when turning right, a two-stage
braking strategy was applied. ,erefore, we calculated the
probability of collision, through the warning level and active
intervention to improve the safety of the right-turning
process and reduce the accident rate.

2. Establishing the Collision Safety Model and
Warning Mechanism

2.1. Collision Safety Model Based on Time-to-Collision.
Our study analysed the right-turning condition and pre-
dicted four different collision modes during the right-
turning process. ,e CWS was designed for each collision

scenario, and the two-stage braking strategy was designed
for each scenario to actively and simultaneously avoid
collisions. Finally, by changing four initial positions, the
collision probability curve calculation algorithm and the
two-stage braking strategy were validated and analysed. ,is
control scheme’s technical roadmap is shown in Figure 1.

,e collision warning and avoidance algorithm’s main
process was as follows:

(1) ,e information gathering process needs to collect
the vehicle’s velocity information and classify it into
four modes. ,e four modes were as follows: a
collision between a vehicle which turned right into
the lane and another vehicle which merged into the
same lane from the left side (scenario 1); a collision
between a right-turning vehicle merging into the
lane and pedestrians crossing the road in the same
lane (scenario 2); a collision between the pedestrians
crossing the road ahead and a right-turning vehicle
(scenario 3); and a collision between a right-turning
vehicle merging into the lane and another vehicle
existing in the lane (scenario 4). ,e four modes are
shown in Figure 2.

(2) We calculated the collision probability for these four
modes and used the vehicle’s and pedestrian’s safety
profile as the collision’s criteria. We generated
random variables for velocity and turning radius and
simulated the collision probability curve using a
collision probability calculation algorithm based on
Monte Carlo simulation. We accumulated collision
probability and plotted the collision probability
curve on the three-level warning figure.

(3) We output the warning level through the three-level
warning region and performed the two-stage braking
strategy in the specific scenario.

In our study, we adopted the collision safety model based
on time-to-collision (TTC) [1]. ,e driver’s danger perception
caused a delay, and the braking system also caused a delay.

,e total delay was as follows: the time in which driver
included stimulation (D1), identification and decision time (D2),
time to control action (D3), and braking system delay time (d).

To ensure safety, it was necessary to ensure the safety
time threshold (Ds) greater than the sum of delay (Dsum), so
the CWS needed to take actions beforeDsum, as expressed by
the following equations:

Dsum � D1 + D2 + D3 + d, (1)

Ds >Dsum. (2)

Dsum was generally within 3 s [15]; therefore, Ds should
be greater than 3 s. To reach reliable intelligent vehicle safety
during right-turning conditions, the collision warning and
avoidance algorithm was designed for a TTC of 5 s.

2.2. Establishment of Collision Warning Mechanism. ,e
three warning levels for right-turning collisions of intelligent
vehicles [16, 17] were defined as follows:
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I-level: it is low collision probability; vehicle’s right-
turning process was safe, so the warning system did not
warn the driver.
II-level: the intelligent vehicle had a certain collision
probability; the warning system reminded the driver by
displaying a yellow light in the dashboard.
III-level: a collision could happen immediately, and the
warning system reminded the driver to take action. If
the TTC was within 2 s, the intelligent vehicle would
perform the two-stage braking strategy to actively avoid
the collision.

Many researchers believed that a collision between the
vehicle and other vehicles or between the vehicle and pedes-
trians should have different collision warning figures, collision

warning icons should be different according to the crashing
objects, and their systems generated different collision warning
figures based on different collision objects [18, 19]. We used a
conservative warning figure as the only collision warning
figure, which can simultaneously simplify the collision warning
mechanism and ensure security. ,e specific areas of the CWS
are shown in Table 1 and drawn, as shown in Figure 3. During
the simulations, the area where the collision probability curve
was located is the warning level.

2.3. Geometric Modelling of Vehicle’s and Pedestrian’s Safety
Profiles. ,e vehicle’s right-turning process was regarded as
a rigid body motion, and the vehicle’s centre (O1) was placed
on its geometric centre. ,e length of the right-turning

Information gathering process Monte Carlo simulation Collision warning and avoidance

Vehicle sensor
system Collect speed

information and
classify collision

modesVehicle networking
platform

Mode 1 I-level No warning

Yellow light

Sound alert

II-level

III-level

TTC < 2s

Simulate the
collision

probability
curve

Mode 2

Mode 3

Mode 4
No

Yes

Two-stage braking

Figure 1: ,e control scheme’s roadmap.

Scenario 1

Another vehicle

Scenario 4

Another vehicle

Scenario 2

Pedestrians 
crossing the road 
in the right lane

Scenario 3

Pedestrians 
crossing the 
road ahead

Figure 2: Schematic diagrams of the four modes.
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vehicle was L1 and the widthW1. A second vehicle’s length was
L2, and the width wasW2.,e coordinate system was based on
O1, and another vehicle’s centre was O2 at coordinates (a, b).
,e velocity of the right-turning vehicle is V1, and the angle
with the X-axis was θ1. Another vehicle’s velocity was V2, and
the angle with the X-axis is θ2. ,e vehicle’s coordinate system
is shown in Figure 4. During the simulation, the second ve-
hicle’s or pedestrian’s position was unchanging, and reversed
speed equal to the speed of the second vehicle or pedestrian was
applied to the turning vehicle. If the right-turning vehicle’s
centre (O1) crossed into the second vehicle’s or pedestrian’s
safety profiles, a collision occurs.

Many scholars regarded the car as a contour [20, 21]; based
on this, the second vehicle’s and pedestrian’s safety profiles
were developed. In this study, we expanded the contour of
another vehicle or pedestrian, and the expansion size was the
size of the turning vehicle and used this size to establish the
vehicle’s and pedestrian’s safety profiles. If the turning vehicle’s
centre crossed into the safety profiles, the collision occurred.

When another vehicle collides with the right-turning
vehicle, this situation could be used as the safe contour
threshold. ,e vehicle’s safety profile was built up as follows.

,e front of the vehicle’s safety profile was a circle with
the front centre S2 as the centre point and (L1 +W2)/2 as the
radius.,e vehicle’s rear safety profile was constructed in the
same way as the front, and the transition part was a rect-
angle. ,e vehicle’s safety profile is shown as Figure 5.

In the same way, the pedestrian’s safety profile was
centred on the pedestrian, and the pedestrian’s geometric
area was enlarged to determine whether the vehicle’s centre
(O1) crossed into the pedestrian safety profile, which was
the collision criterion. When the vehicle’s front side col-
lided with the pedestrian, this situation was the pedestrian’s
safety profile threshold. We defined the pedestrian’s profile
as a circle with a centre O2 and radius D/2, and the pe-
destrian’s safety profile was a circle with centre O2 and
radius (D + L1)/2.,e pedestrian’s safety profile is shown in
Figure 6.

Table 1: Division of three-level collision warning regions.

,ree-level
warning
mechanism

TTC ϵ (0,2) TTC ϵ (2,5)

I-level region
(I-region)

{PC | 0 ≤ PC≤−0.1
TTC+ 0.5}

{PC | 0≤PC≤TTC/
30 + 7/30}

II-level region
(II-region)

{PC | −0.1
TTC+ 0.5≤PC≤ 0.5}

{PC | TTC/30 + 7/
30≤PC≤ 0.1
TTC+ 0.3}

III-level region
(III-region) {PC | 0.5≤PC≤ 1} {PC | 0.1

TTC+ 0.3≤PC≤ 1}
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Figure 3: ,ree-level collision warning regions.
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Figure 4: Vehicle’s coordinate system.
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Figure 5: Vehicle’s safety profile.
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3. Right-Turning Vehicle Collision Probability
Calculation Algorithm

Monte Carlo simulation theory was based on the central
limit theorem and the large number theorem [22, 23]. ,e
central limit theorem showed that although the distribution
of each random variable Mi was unknown, ΣMi obeyed a
normal distribution and could be converted to a standard
normal distribution; therefore, it could be processed using
the standard normal distribution properties. We defined
{Mi} as an independent random variable and part of a se-
quence of identically distributed random variables, with an
expected value of O and variance of k2, as shown in

limP
i⟶∞

 Mi − io
�
i

√
k
≤m  �

1
����
2∗π

√ 
m

−∞
e−t2/2

dt � ϕ(m).

(3)

Φ(m) represented the value of the standard normal
distribution. According to equation (3), the more the
samples of random variableMi were obtained, the closer the
distribution was normal, which was the basis of Monte Carlo
simulation theory for collision probability.

N random numbers were generated for each random
variable V1 and V2 and the right-turning radius r. ,e
random variables were assumed to obey the normal dis-
tribution with μ as the expected value and σ2 as the
variance [24, 25]. ,e intelligent vehicle’s position was
continuously updated as sampling time increases. Sam-
pling time is pt; each simulation calculated the collision
probability within the collision analysis period (T), shown
in Figure 7, to calculate whether a collision will occur in T;
according to the vehicle’s and pedestrian’s safety profiles,
PC represented the collision probability. If a collision
occurred, the probability is accumulated, and the prob-
ability curve is drawn on the three-level warning figure by
software.

,e calculation process of collision probability for four
modes was as follows. First, the right-turning vehicle’s angle
(θ1) and coordinate calculation algorithm were introduced.
,e four modes were slightly different in calculation due to
different initial velocity directions and initial positions, but

the basic calculation principle was the same. We introduced
the calculation process for θ1 and the right-turning vehicle’s
coordinates (x(t), y(t)). In the i times simulation, the velocity
of the right-turning vehicle was V1(i), turning radius was
r(i), and the velocity of the second vehicle was V2(i). We
represented TTC with t, and t represented the simulation
time.

,e calculation of angle θ1 was shown in

θ1 � V1(i)tr(i)
−1

. (4)

To calculate the position coordinates (x(t), y(t)) at the
time t using θ1,, the second vehicle was regarded as stationary
and the reverse speed V2(i) was applied to the right-turning
vehicle.

When the conditionmet the scenario 1, the right-turning
vehicle’s coordinates (x(t), y(t)) were shown in

y(t) � sin θ1( r(i),

x(t) � r(i) − r(i)cos θ1(  − V2(i)t.
 (5)

When the conditionmet the scenario 2, the right-turning
vehicle’s coordinates (x(t), y(t)) were shown in

y(t) � sin θ1( r(i),

x(t) � r(i) − r(i)cos θ1(  + V2(i)t.
(6)

When the condition met scenario 3, the right-turning
vehicle’s coordinates (x(t), y(t)) were shown:

y(t) � sin θ1( r(i) − V2(i)t,

x(t) � r(i) − r(i)cos θ1( .
(7)

When the condition met scenario 4, the right-turning
vehicle’s coordinates (x(t), y(t)) were shown in

L1

O1 O2

D

D + L1

Figure 6: Pedestrian’s safety profile.

C = 0 i = 0

i = i +1

i > N

PC = C/N

Yes

Yes

Yes

No

No

No

C = C + 1

TTC update TTC = TTC + pt

Location update X (TTC) = X (TTC) + dX

Collision

TTC > T

X (TTC) = X (0)

TTC = 0

N: number of random variable samples
C: number of collisions
i: number of cycles
PC: collision probability

TTC: time-to-collision
T: collision analysis period
pt: sampling time
X: position state variable

Figure 7: Flowchart of the collision probability calculation algo-
rithm based on Monte Carlo simulation.
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y(t) � sin θ1( r(i),

x(t) � r(i) − r(i)cos θ1(  − V2(i)t.
(8)

,e second step, in the i times simulation, was to judge if
a collision will occur. We needed to judge whether the right-
turning vehicle centre O1 crossed the vehicle’s or pedes-
trian’s safety profile. When the condition met the scenario 1
or scenario 4, the safety profile condition of the vehicle was
given in equation (9), and the probability was accumulated
according to the safety profile condition:

x(t)≤ a ± 0.5L2( ∩ y(t)≤ b ± L1 + W2( 2−1
  

∪ |x(t) − a| − 0.5L2( 
2

+(y(t) − b)
2 ≤ L1 + W2( 

24−1
 .

(9)

,e collision between the right-turning vehicle and the
pedestrians was judged by the pedestrian’s safety profile
condition, when the conditionmet the scenario 2 or scenario
3, which was given in the same way as equation (9). ,e
probability was accumulated according to the pedestrian’s
safety profile condition; the pedestrian’s safety profile
condition was shown in

(x(t) − a)
2

+(y(t) − b)
2 ≤ 0.5 L1 + L2( 

2
 2−1

. (10)

4. Two-Stage Braking Strategy

An intelligent right-turning vehicle collision warning and
avoidance algorithm needed a braking strategy to realize
active collision avoidance.

We established the two-stage braking strategy. ,e two-
stage braking strategy could select the braking strength
independently according to the TTC so that high-efficiency
braking could be achieved, and emergency braking could be
avoided to prevent the driver from being nervous and
misoperating the car. ,e specific flow of the two-stage
braking strategy was as follows:

II-stage braking: if the collision probability reached
50% within 1 s (whether it reached III-level warning
within 1 s), we used the II-stage braking with the
amount amax. In the braking process, we considered the
braking deceleration (a) approximately linearly in-
creasing with the braking delay (d) and performed a
time-domain integral operation on a, so the speed
reduction amount could be obtained, thereby obtaining
the vehicle speed at each sampling time.
I-stage braking: if the collision probability reached 50%
within 1-2 s (whether it reached III-level warning
within 1-2 s), we used the I-stage braking with the
amount amin. For the same reason as in the II-stage
braking process, we considered the braking decelera-
tion (a) approximately linearly increasing with the
braking delay (d) and performed a time-domain in-
tegral operation on a.,e two-stage braking strategy is
shown in Figure 8.

,e time-domain integral operation of the acceleration
obtained the decrease in velocity, ΔV(t), during the two-

stage braking process; thereby, we obtained the speed change
by time-domain integration of acceleration:

ΔV(t) � 

t

0

a(t)dt. (11)

,e two-stage braking strategy had two sets of formulas,
and equation (12) represented the II-stage braking, which
was within 1 s:

ΔV(t) � 

t

0

a(t)dt �
amax(2 d)−1t2(0< t≤ d),

amax2−1d +(t − d)amax(t> d).

⎧⎨

⎩

(12)

Equation (13) represented the I-stage braking, which was
within 1-2 s:

ΔV(t) � 

t

0

a(t)dt �
amin(2 d)−1(t − 1)2(0< t≤d),

amin2−1d +(t − 1 − d)amin(t>d).

⎧⎨

⎩

(13)

,erefore, in each simulation, the right-turning vehicle
speed V1(i) was obtained, and then, the updated speed V∗1(i)

was obtained, which was shown in

V
∗
1(i) � V1(i) − 

t

0

a(t)dt. (14)

,e position coordinates (xt, yt) of the vehicle were
updated at time t, and the updated coordinates (x∗t , y∗t )

were shown in

y∗(t) � sin V1(i) − 
t

0
a(t)dt  · r(i)−1

 r(i),

x∗(t) � r(i) − r(i)cos V1(i) − 
t

0
a(t)dt  · r(i)−1

  − V2(i)t.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

5. SimulationResults andComparativeAnalysis

5.1. Simulation Results of Each of the Four Modes

Scenario 1: the driver was sitting on the left side and
needed to view the right, and it was not convenient to
observe the movement of the vehicle in the left side, so it
was easy to collide with another vehicle. ,e parameters
in this scenario were defined as follows: pt� 0.01 s, T� 5 s,
L1� 8m, W1� 2m, L2� 8m, and W2� 2m; the second
vehicle’s coordinates were (−9, 12). V1, V2, and R consist
of 10,000 normally distributed random numbers; V1∼N
(12, 1),V2∼N (15, 1), and R∼N (20, 1).We used the two-
stage braking strategy; the specific parameters were as
follows: amax� 6m/s2, amin� 3m/s2, and d� 0.3 s. ,e
collision probability curve (A curve) and the collision
probability curve (B curve) after two-stage braking are
shown in Figure 9.
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5.2. Simulation Results Analysis of Four Modes. ,rough the
simulation results from the four modes, by comparing the
collision probability curve (A curve) and the collision proba-
bility curve (B curve) after two-stage braking, the two-stage
braking strategy could reduce the collision probability that was
more than 50% within 2 s to nearly 0%. ,e two-stage braking

strategy shifted the collision probability curve (A curve) to the
right so that most of the curve falls in the I-level region. Before
the two-stage braking, most of the curve fell in the II-level and
III-level regions. Finally, the simulation results showed that the
intelligent right-turning vehicle collision probability calculation
algorithm could calculate collision probability and the two-

II-stage braking

Braking system operating time: t (sec)
d

0

amaxa 
(m

·s–2
)

(a)

a 
(m

·s–2
)

I-stage braking

Braking system operating time: t (sec)
d

0

amin

(b)

Figure 8: ,e two-stage braking strategy.
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Figure 9: Scenario 1: collision probability curve (A curve) and
collision probability curve (B curve) after two-stage braking.

Scenario 2: when the vehicle turned right into the lane,
it was difficult to find pedestrians who were crossing the
road in the lane, so it was easy to cause serious traffic
accidents. ,e parameters in this scenario were defined
as follows: pt� 0.01 s, T� 5 s, L1 � 8m, W1 � 2m, and
D� 1.5m; the pedestrian’s coordinates were (8, 12). V1,
V2, and R consist of 10,000 normally distributed ran-
dom numbers, V1∼N (14, 1), V2∼N (1, 2), and R∼N
(20, 1); V2 represented the velocity of the pedestrian in
this case. We used the two-stage braking strategy; the
specific parameters were as follows: amax � 6m/s2,
amin � 3m/s2, and d� 0.3 s. ,e collision probability
curve (A curve) and the collision probability curve (B
curve) after two-stage braking are shown in Figure 10.
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Figure 10: Scenario 2: collision probability curve (A curve) and
collision probability curve (B curve) after two-stage braking.

Scenario 3: because the driver had blind spots in vision,
it is possible for the right-turning vehicle to collide with
pedestrians crossing the road. ,e parameters in this
scenario were defined as follows: pt� 0.01 s, T� 5 s,
L1 � 8m, W1 � 2m, and D� 1.5m; the pedestrian’s
coordinates were (3, 9). V1, V2, and R consist of 10,000
normally distributed random numbers, V1∼N (10, 1),
V2∼N (1, 0.7), R∼N (20, 1);V2 represented the velocity
of the pedestrian in this case. We used the two-stage
braking strategy; the specific parameters were as fol-
lows: amax � 6m/s2, amin � 3m/s2, and d� 0.3 s. ,e
collision probability curve (A curve) and the collision
probability curve (B curve) after two-stage braking are
shown in Figure 11.
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stage braking algorithm significantly reduced the collision
probability which can improve safety.

5.3. Comparative Analysis. To verify the rationality of the
collision probability curve calculation algorithm, we com-
pared and analysed the collision probability curves gener-
ated using three different initial positions. Taking scenario 1
as an example and leaving the size of the two vehicles un-
changed, we designed three different initial positions and

changed the initial coordinates of the second vehicle, as
shown in Table 2.

,e collision probability curves (A curve) for the three
different initial positions are shown in Figure 13.

From Figure 13, we can conclude that the collision
probability was increasing from position 1 to position 3
within the period from 1 to 4.5 s, and the closer the distance
between the two vehicles was, the higher the collision
probability is. ,erefore, the calculation algorithm of the
collision probability curve (A curve) can be verified.
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Figure 11: Scenario 3: collision probability curve (A curve) and collision probability curve (B curve) after two-stage braking.

Scenario 4: the parameters in this scenario were defined as follows: pt� 0.01 s, T� 5 s, L1� 8m,W1� 2m, L2� 8m, and
W2� 2m; the second vehicle’s coordinates were (9, 12). V1, V2, and R consist of 10000 normal distribution random
numbers, V1∼N (12, 1), V2∼N (3, 1), and R∼N (20, 1). We used the two-stage braking strategy; the specific parameters
were as follows: amax � 6m/s2, amin � 3m/s2, and d� 0.3 s. ,e collision probability curve (A curve) and the collision
probability curve (B curve) after two-stage braking are shown in Figure 12.
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Figure 12: Scenario 4: collision probability curve (A curve) and collision probability curve (B curve) after two-stage braking.
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Table 2: Parameters of three different initial positions (A curve simulation process).

Initial positions a (m) b (m) V1 (m/s) V2 (m/s) R (m) pt (s) T (s)
Position 1′ 9 12 V1∼N (12, 1) V2∼N (15, 1) R∼N (20, 1) 0.01 5
Position 2 8 11 V1∼N (12, 1) V2∼N (15, 1) R∼N (20, 1) 0.01 5
Position 3 7 10 V1∼N (12, 1) V2∼N (15, 1) R∼N (20, 1) 0.01 5
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Figure 13: Collision probability curves (A curve) for the three different initial positions.

Table 3: Parameters of three different initial positions (B curve simulation process).

Initial positions a (m) b (m) V1 (m/s) V2 (m/s) R (m) pt (s) T (s) amax (m/s2) amin (m/s2) d (s)
Position 1′ 9 12 V1∼N (12, 1) V2∼N (15, 1) R∼N (20, 1) 0.01 5 6 3 0.3
Position 2 8 11 V1∼N (12, 1) V2∼N (15, 1) R∼N (20, 1) 0.01 5 6 3 0.3
Position 3 7 10 V1∼N (12, 1) V2∼N (15, 1) R∼N (20, 1) 0.01 5 6 3 0.3
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Figure 14: Collision probability curve (B curve) after two-stage braking in three different initial positions.
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For the same reason, to verify the rationality of the two-
stage braking strategy, we compared and analysed the
collision probability curves after two-stage braking gen-
erated using three different initial positions. Taking sce-
nario 1 as an example and leaving the size of two vehicles
unchanged, we designed three different initial positions
and changed the initial coordinates of the second vehicle, as
shown in Table 3.

,e collision probability curve (B curve) after two-stage
braking using three different initial positions is shown in
Figure 14.

From Figure 14, we can conclude that the collision
probability was increasing from position 1 to position 3 within
the period from 2.5 to 4.5 s, and the closer the distance between
the two vehicles is, the higher the collision probability is.
,erefore, the two-stage braking strategy can be verified.

6. Conclusion

(1) Compared with the safety distance model, the safety
model based on TTC can more intuitively reflect the
degree of danger. ,e two-stage braking strategy can
lower the warning level. Aiming to reduce an intelligent
right-turning vehicle’s collision probability, we estab-
lished a three-level warning mechanism and drew the
warning figure. Based on Monte Carlo stochastic sim-
ulation, we established the collision probability calcu-
lation algorithm for an intelligent right-turning vehicle
at an intersection and plotted the collision probability
curve on the warning figure. ,e area where the
probability curve was located outputs the warning level.

(2) ,e two-stage braking strategy was established to ac-
tively avoid a collision if the collision probability reaches
50% within 2 s. We analysed four modes for a right-
turning vehicle and simulated the collision probability
curve (A curve) and the collision probability curve (B
curve) after two-stage braking. Finally, we changed the
initial position for comparative analysis and verification.

(3) ,e simulation results from the four modes showed
that the collision probability reached 80% in the 2 s
before active collision avoidance, and the collision
probability of some modes could reach 100%. ,e
two-stage braking strategy reduced the collision
probability to nearly 0% in 2 s, and the collision
probability was reduced to less than 5% in 3 s, which
improves safety significantly.

(4) ,e collision probability curve calculation algorithm
and the two-stage braking strategy were verified and
analysed. By comparing three different initial posi-
tions, the comparison results showed that the col-
lision probability curve calculation algorithm and
the two-stage braking strategy were reasonable.

(5) We used the Monte Carlo method to calculate the
collision probability; collision warning and avoid-
ance were carried out to reduce the collision prob-
ability of a right-turning vehicle. Our research laid
the foundation for future experiments, and we will
carry out experimental analysis better in future.

,rough future experiments, we can perfect the
collision warning and avoidance algorithm.
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Currently, many studies on the severity of traffic conflicts only considered the possibility of potential collisions but ignored the
consequences severity of potential collisions. Aiming toward this defect, this study establishes a potential collision (serious
conflict) consequences severity model on the basis of vehicle collision theory. Regional vehicles trajectory data and historical traffic
accident data were obtained. ,e field data were brought into the conflict consequences severity model to calculate the conflict
severity rate of each section under different TTC thresholds. For comparison, the traditional conflict rate of each section under
different TTC thresholds that considered only the number of conflicts was also calculated. Results showed that the relationship
between conflict severity rate and influencing factors was somehow different. ,e conflict severity rate seemed to have a higher
correlation with accident rate and accident severity rate than conflict rate did. ,e TTC threshold value also affected the
correlation between conflicts and accidents, with high and low TTC threshold indicating a lower correlation. ,e results showed
that conflict severity rate that considered each single conflict consequence severity was a little better than the traditional conflict
rate that considered only the numbers of conflicts in reflecting real risks as a new conflict evaluation indicator. ,e severity of
traffic conflicts should consider two dimensions: the possibility and consequence of potential collisions. Based on this, we propose
a new traffic safety evaluation method that takes into account the severity of the consequences of the conflict. More data and
prediction models are needed to conduct more realistic and complex research in the future to ensure reliability of this
new method.

1. Introduction

A common method for studying traffic safety is based on
historical traffic accidents data. ,is method is logically
rational and reliable, but it has some limitations: (a) Traffic
accidents are random and accidental. If accident data are
insufficient and do not meet statistical requirements, then
the influencing factors on traffic accidents cannot be ana-
lyzed. ,us, drawing useful conclusions on traffic safety
evaluation and improvement will be difficult [1–3]. (b)
Accidents or serious traffic conflicts that do not cause serious
consequences are often unrecorded. For example, Hauer and
Hakkert [4] found that six percent of minor accidents are
unrecorded. However, these minor accidents often contain
substantial information. (c),e analysis of accident data can
only be conducted after the occurrence of an accident.
Aiming toward these shortcomings, some scholars proposed
the concept of traffic conflict in the 1960s–70s [5, 6] and

developed the traffic conflict technique (TCT) [7]. With the
TCT, substantial data can be observed before accidents
occur.,e technique has some statistical advantages, such as
large sample size, short cycle, and small region [8].,e traffic
conflict analysis method is also deemed as one of the
promising research directions in the field of traffic safety [9].

At present, the traffic conflict measurement indicators
that determine the severity of conflicts can be classified as
spatial/temporal proximity (including distance, velocity, and
time) and evasive action indicators. Time indicators, which
combine the distance and velocity, are thus widely used. ,e
most commonly used time indicators include TTC (time
to collision) [10] and PET (postencroachment time) [11].
However, most of these indicators can only measure one
aspect of conflict severity, that is, the possibility/proximity
severity of traffic conflict to a collision, and they do not
consider the consequence/outcome severity of potential
collisions caused by conflicts [12].,e original Swedish TCT
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only defined the severity of conflict as the possibility of an
accident and did not consider casualties and property losses
[13]. Low TTC/PET values represent a short time to collide
and high possibility from conflict to collision. ,e same
TTC/PET values represent the same possibility of collision.
Nevertheless, a minor accident caused by small vehicles is
obviously different from a serious accident leading to ca-
sualties caused by trucks even if their TTC/PET are same;
thus the consequence severity of potential collisions should
be considered.

Few studies have explored the consequence severity of
traffic conflicts. Dutch Traffic Conflict Technique (DOC-
TOR), subjective scoring with video recording, is used to
evaluate severity. But the consistency and accuracy need to
be improved. Evans [14] and Gabauer [15] found that a close
relationship exists between the velocity difference and the
severity of accident consequences. ,erefore, many early
studies used velocity difference as an indicator to describe
the severity of conflict consequences. However, some works
confirmed that the severity of accident consequences is also
related to vehicle quality, collision angle, and other factors.
Considering only the velocity difference is not enough [16].
As a result, many scholars began to comprehensively con-
sider the physical motion parameters of vehicle (e.g., velocity
and acceleration) in their calculation. For example, Bagdadi
[17] considers the quality, velocity, and acceleration of ve-
hicles. ,e theoretical research was valuable, but it needs
accurate and continuous data on speed, acceleration, vehicle
type, conflict type, collision angle, and vehicle quality before
and after collision. ,us, existing studies lacked the support
of actual data.

,e severity of traffic conflicts should include two di-
mensions: the possibility of conflict to develop to collision
and the severity of potential conflict consequences. How-
ever, the latter is neglected sometimes. In the study, theo-
retical and empirical studies are carried out to address the
above problems.,e paper comprises three parts. In the first
part, a conflict consequence severity model is established. In
the second part, data collection method and processing
procedure are introduced. In the third part, conflict con-
sequence severity model is verified to determine whether it is
better than the traditional model which only considers the
possibility of collisions by studying their correlation with
historical accident data.

2. Potential Collision Consequences
Severity Model

As mentioned above, the severity of traffic conflict includes
the possibility and consequence of potential collisions.
Distribution in terms of nearness to collisions [7] and
pyramid hierarchy [18] shows that serious conflicts are
closely related to collisions. ,erefore, this paper assumes
that, after a serious conflict occurs, no evasive action will be
taken, and a conflict will certainly develop to a collision.
After a vehicle collision, some kinetic energy is converted
into destructive energy for vehicle deformation, which is
used to reflect the severity of potential collision conse-
quences in traffic conflicts. Apparently, the greater kinetic

energy is lost, the more serious collision consequences will
be and the higher severity of the conflicts consequences will
be.

Vehicles collide not only with other vehicles but also
with road facilities, such as guardrails and central reserva-
tions. ,erefore, in the study, collision contains two cate-
gories: potential collision under vehicle-vehicle conflict and
potential collision under vehicle-road facility conflict. ,e
process is as follows.

2.1. Potential Collision in Vehicle-Vehicle Conflict

2.1.1. Basic Principles and Hypotheses

(1) Traffic conflict is defined as follows: When two users
are close to each other within a certain time and
space, a risk of collision exists if they do not change
their motion. ,e difference between collisions and
conflicts lies only in whether the driver has taken
successful evasion action after conflicts happen. ,e
evasion actions that drivers take are different in
postconflict situations and are simplified. ,e worst
effects are considered in the paper, that is, assuming
that drivers do not take any evasion action after each
serious conflict.

(2) ,e conflict in the model is the serious conflict. ,e
indicator for measuring conflict severity (collision
possibility) in this study is TTC, which is defined as
“the time required for two vehicles to collide if they
continue at their present speeds on the same path” [10].

(3) Vehicle collision is a process of momentum ex-
change. At the same time, the internal force caused
by vehicle collision (acting force and reacting force
produced by the collision) is considerably greater
than the external force (such as friction force); thus,
it can be treated approximately by the law of con-
servation of momentum.

(4) Vehicle collision is also a process of energy exchange.
During the process of vehicle collision, the light,
heat, and sound energy produced by the collision are
neglected. To simplify the analysis, this study as-
sumes that a portion of the mechanical energy is
converted to the deformation energy of the vehicle
before and after the collision. In this study, defor-
mation energy is defined as the destructive energy
hidden in each traffic conflict.

(5) Avoidance measures are not taken into account, and
vehicle braking is not considered from the beginning
of a serious traffic conflict to collision. ,us, only
existing rolling resistance, which is extremely low, is
neglected. As the time between the conflict and the
collision is short usually, collision speed is similar to
serious conflict speed.

(6) ,e time from serious conflict to collision is extremely
short, and avoidance measures are considered; thus,
collision angle can be deemed approximate to the
angle when serious conflict occurs.
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(7) Vehicles are defined as rigid bodies with mass in this
study. Before and after collision, their mass, centroid
position, wheelbase, moment of inertia, and other
parameters do not change [19].

(8) Vehicle height is not considered in vehicle collision,
and no phenomenon in which a small vehicle goes
under a truck or a truck goes on top of a small vehicle
occurs. Vehicle collision only occurs in a plane space,
that is, a two-dimensional collision model.

(9) In this study, the object of data collection is a
highway where no head-on collision occurs. Only
rear-end and cross collisions are assumed. At the
same time, a vehicle is simplified to a point with mass
(centroid point) without considering its shape. ,e
centroids of two vehicles are assumed to be in a
straight line that coincides with the direction of the
collision as the collision occurs. No change in an-
gular momentum occurs.

2.1.2. Phase from Conflict to Collision. ,e period from
conflict to collision is roughly divided into four phases. In
the first phase, serious conflict happens between two vehi-
cles. ,e speed of the vehicle ahead and that of the vehicle
behind in one conflict are Va and Vb, respectively. ,e angle
is α; as only rear-end conflict and cross conflict are con-
sidered, α is −90° to 90°. In the second phase, two vehicles are
about to collide, and their deformation is about to begin. At
the initial stage, the speeds of two vehicles are Va and Vb (in
hypothesis (5), they are approximately equal to the vehicle
speed in serious conflict), and the angle is α (in hypothesis
(6), it is approximately equal to the angle in serious conflict).
In the third phase, two vehicles collide. ,e speed of the
vehicle behind decreases, and the speed of the vehicle ahead
increases. Moreover, the speeds of the two cars are the same
Vi at a certain moment. During the period from the second
phase to the current phase, a portion of the mechanical
energy is converted into deformation energy. In the fourth
phase, the speed of the vehicle behind continues to decrease
to Va′ and the speed of the vehicle ahead continues to in-
crease to Vb′. However, the two vehicles separate, and the
deformation is over. ,e deformation starts during the
period from the second to the third phase, which is the main
goal of our research, as shown in Figure 1.

2.1.3. Computational Process. ,e current work is aimed at
the period from the second phase to the fourth phase.
During this period, the velocity change caused by collision
causes some kinetic energy to be converted into deformation
energy. ,e conversion satisfies the law of conservation of
energy. For convenience, the velocity is converted to the X-
and Y-axes. ,e details are as follows:

1
2
Ma · V

2
aX �

1
2
Ma · V

2
iX +

1
2
Mb · V

2
iX + EX, (1)

1
2
Ma · V

2
aY +

1
2
Mb · V

2
b �

1
2
Ma · V

2
iY +

1
2
Mb · V

2
iY + EY. (2)

At the same time, the conversion also satisfies the law of
conservation of momentum:

Ma · VaX � Ma · ViX + Mb · ViX, (3)

Ma · VaY + Mb · Vb � Ma · ViY + Mb · ViY, (4)

where VaX, VaY, and Vb, respectively, represent the velocities
of the vehicle behind (in the X- and Y-axes) and the vehicle
ahead after a serious conflict, ViX and ViY, respectively,
denote the velocities in the X- and Y-axes at an instant after
the collision when the velocity is the same, Ma and Mb,
respectively, represent the masses of the vehicles ahead and
behind, and EX and EY, respectively, denote the destructive
energy (deformation energy) hidden in a traffic conflict in
the X- and Y-axes.

,e following can be obtained on the basis of Formulas
(3) and (4):

ViX �
Ma · VaX

Ma + Mb
, (5)

ViY �
Ma · VaY + Mb · Vb

Ma + Mb
. (6)

Substitute (5) and (6) into (1) and (2) to calculate

EX �
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According to the trigonometric relationship,

VaX � Va sin αVaY � Va cos α. (9)

,ey are substituted into (7) and (8) to obtain
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Finally,

E � EX + EY �
1
2

·
Ma · Mb

Ma + Mb
· Va sin α( 

2
+ Va cos α − Vb( 

2
 .

(12)

2.2. Potential Collision in Vehicle-Road Facility Conflict

2.2.1. Basic Principles and Hypotheses

(1) Vehicle-road facility conflict is defined as follows:
When a vehicle and a road facility, such as a central
reservations and guardrail, are close to each other
within a certain time and space, a risk of collision
exists if the vehicle does not change its motion state.
,e difference between accidents and conflicts lies
only in whether the driver has taken successful
evasion action after the conflict. Similarly, it is also
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simplified.,e worst effects are considered here, that
is, assuming that the drivers do not take any evasion
action after each serious conflict.

(2) When different types of vehicles collide with fa-
cilities, differences in velocity and energy after
collisions are observed. ,e calculation is sim-
plified by dividing collision into two categories:
collision of trucks and facilities and collision of
small or medium vehicles and facilities. ,e speed
of small and medium vehicles is assumed to de-
crease to 0 after collision with facilities. By con-
trast, the speed of trucks is assumed to halve, but
the driving direction is unchanged after collision
with facilities; chain collision of the opposite lane
is not considered here.

(3) Other hypotheses are basically the same as those for
vehicle-vehicle conflict.

2.2.2. Phase from Conflict to Collision

(1) Collision of small and medium vehicles and road
facilities. ,e period from conflict to collision of
small and medium vehicles and facilities is roughly
divided into four phases. In the first phase, serious
conflict occurs between vehicles and facilities. ,e
instant speed of the vehicles is Va, and the collision
angle is α. In the second phase, the small and me-
dium vehicles collide with the facilities, and the

deformation of the vehicles is about to begin. At the
initial stage of collision, the speed is Va, and the angle
is α (the initial collision velocity and angle are as-
sumed to be approximate to the vehicle speed and
angle in serious conflict, respectively). In the third
phase, the vehicles collide with the facilities, and the
speed of the small and medium vehicles decreases to
0; moreover, some of the mechanical energy is
converted into deformation energy. In the fourth
phase, small and medium vehicles may rebound, but
the deformation is over. ,e deformation starts
during the period from the second phase to the third
phase, which is the main goal of our research, as
shown in Figure 2.

(2) Collision between trucks and road facilities. ,e
period from conflict to collision between trucks
and facilities is roughly divided into four phases.
In the first phase, serious conflict occurs between
vehicles and facilities. ,e instant speed of the
vehicle is Va, and the collision angle is α. In the
second phase, the trucks collide with the facilities,
and the deformation of the vehicles is about to
begin. At the initial stage of collision, the speed is
Va, and the angle is α (the initial collision velocity
and angle are assumed to be approximate to the
vehicle speed and angle in serious conflict, re-
spectively). In the third phase, the vehicles collide
with the facilities, and some of the mechanical

First phase: initial time of conflict

Va Vb

Second phase: initial time of collision

Va Vb

The car begin to deform

Third phase: moments before the collision ends

Vi Vi

The car deformation is coming to an end 

Fourth phase: collision ends with vehicle separation

Va′ Vb′

Figure 1: Schematic diagram of speed changing during vehicle collision.
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energy is converted into deformation energy. ,e
speed decreases to Va′(Va′ � 0.5Va). In the fourth
phase, the trucks break free from the facilities to
run continuously, but the deformation is over. ,e
deformation starts during the period from the
second phase to the third phase, which is the main
goal of our research, as shown in Figure 2.

2.2.3. Computational Process. ,e research covers the pe-
riod from the second to the third phase. During this period,
the velocity change due to collision causes some kinetic
energy to be converted into deformation energy. ,e con-
version satisfies the law of conservation of energy. For
convenience, velocity is converted into the X- and Y-axes.
,e details are shown as follows:

(1) Collision between small and medium vehicles and
facilities

1
2
MsV

2
aX � EX, (13)

1
2
MsV

2
aY � EY, (14)

where VaX and VaY, respectively, represent the components
of the velocities of small and medium vehicles in the X- and
Y-axes before collision, Ms represents the mass of small and
medium vehicles, and EX and EY, respectively, denote the
destructive energy (deformation energy) hidden in a traffic
conflict (X-axis and Y-axis).

According to the trigonometric relation,

VaX � Va sin αVaY � Va cos α. (15)

Finally,

E � EX + EY �
1
2
MsV

2
a . (16)

Initial time of conflict Collision moment Moments before the collision ends

Ms: the quality of small and medium vehicle 

Ms

V′ax

V′ayV′a = 0
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α

Va

Vax

Vay Ms

Va

Vax

Vay

(a)

Initial time of conflict Collision moment Moments before the collision ends
Mt: the quality of truck

Mt

V′ax

V′ayV′a = 0.5Va

Mt

α

Va

Vax

Vay Mt

Va

Vax

Vay

(b)

Figure 2: Schematic diagram of collision between vehicle and road facility (two categories).
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(2) Collision between trucks and facilities

1
2

MtV
2
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1
2
MtV
′2
aX, (17)
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2

MtV
2
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1
2
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′2
aY, (18)

where VaX and VaY, respectively, represent the components
of the velocities of trucks in the X- and Y-axes before col-
lision, Mt refers to the mass of trucks, and EX and EY,
respectively, represent the destructive energy hidden in
traffic collision in the X- and Y-axes.

According to the trigonometric relation,

VaX � Va sin αVaY � Va cos α. (19)

Finally,

E � EX + EY �
3
8
MtV

2
a . (20)

3. Data Collection Method and Processing

Comprising regional high-precision videos and historical
traffic accident data, the data used in this work were mainly
acquired using two methods. (1) Field conflict data were
obtained by collecting high-precision videos of continuous
vehicles using a UAV (unmanned aerial vehicle) hovering at
a high altitude. Follow-ups were dealt with through the video
recognition and the traffic conflict identification program.
(2) ,e historical traffic accident data were mainly collected
by traffic police and local highway administration bureau.
(3) Some other data are processing and assumptions.

3.1. Conflict Data Collection

3.1.1. Location and Time. ,e video data collection location
was the Jinan-QingdaoHighway in Shandong Province, China.
,e collection period was from August 20, 2017, to September
8, 2017. ,e collection times were from 9:00 to 10:00 in the
morning peak and from 16:00 to 17:00 in the evening peak. At
that time, the reconstruction and extension project, that is, the
subgrade construction, was in progress.,e subgrade was filled
and widened on both sides of the road. ,e original road was
kept passing through, but the original guardrails on both sides
were dismantled and replaced by temporary guardrails. ,e
road was two-way with four lanes. ,e width of a lane was
3.75m, and the speed was limited to 80 km/h. ,e specific
collection location included K43+200, K51+500, K57+580,
K58+600, K112+500, K130+500, K131+500, K133+200,
K182+000, K186+000, K192+500, K205+000, K255+000,
K257+700, K258+260, K266+800, K271+620, K277+500,
K278+300, and K287+000. Data were acquired in each lo-
cation for 30min each in the morning and evening peaks.

3.1.2. Device. ,e PHANTOM 4 PRO UAV from DJI
Technology Company was used. ,e maximum flight alti-
tude of the UAV was 500m, and the maximum flight time

was 30min. We prepared 9 batteries; each battery took 8
hours to be fully charged. ,e maximum video resolution
was 4K/60P. ,e UAV shot the video by hovering statically.
,e camera was positioned vertically downward, and the
flying height was 350–450m. ,e lens angle parameters of
the UAV were used as bases for calculation. ,e shooting
range was about 600–700m in length and 300–350m in
width, as shown in Figure 3.

3.1.3. Data Processing. It consists of a video recognition and
a traffic conflict identification program (see Figure 4).

(1) Vehicles were identified and tracked via spatiotem-
poral context visual tracking algorithms based on an
own-written program. ,e real-time continuous
trajectory coordinates (X/Y), vehicle width, vehicle
ID of all vehicles in the region, and other data served
as the outputs. ,e identifying and tracking rate of
video recognition program was about 90%. Most of
the trajectory data errors can be controlled within
1m, mainly including three major steps.

(a) Image Reading and Calibration

Considering the high airflow changes, the video captured
by the UAV has a slight jitter, so the latter picture will
gradually deviate from the original picture, and the subse-
quent picture needs to be matched and calibrated with the
first frame based on the first frame.

,ere are many matching methods, and it is considered
to select a partial region to calculate the correlation coef-
ficient and then calculate the overall transformation matrix.
Finally, in order to ensure the accuracy of the recognition,
feature point matching is selected to calculate the trans-
formation matrix.

Selecting the obvious reference object of the first frame
such as road and road marking, establishing the coordinate
system according to the horizontal direction and the vertical
direction, and performing the rotation according to the
affine transformation relationship between the pictures, the
subsequent pictures can be successfully matched with the
frame by frame.

(b) Vehicle Identification

Vehicle identification system usually includes ROI
(Region of Interest) extraction and vehicle detection. First,
the sequence image is subjected to ROI extraction, and then
the image processing method is used to determine whether
the area is a vehicle. If it is determined to be a vehicle, the
vehicle can be tracked in a subsequent tracking module.
Vehicle detection is a prerequisite for tracking, and accurate
ROI extraction and vehicle detection can establish a solid
foundation for tracking.

,e adjacent frame subtraction algorithm is used to
identify the ROI area by considering that the Jiqing Highway
has the characteristics of faster vehicle speed, more frequent
convergence, and less visibility caused by dust. For the
detection line method is simple and efficient, so it is used for
vehicle detection.
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(c) Vehicle Tracking

Tracking is easier when the vehicle is successfully detected.
Most vehicle tracking methods follow a basic principle of
using space distance to determine whether a vehicle in an
adjacent frame is the same vehicle, thereby completing vehicle
tracking in the time domain. Based on the characteristics of
Jiqing Highway such as faster speeds, high dust, and low
visibility, a tracking method called the spatiotemporal context
was chosen. ,is method obtains the best target position by
maximizing the target position likelihood function and
learning using the fast Fourier transform. Compared with
other mainstreammethods, this method is more accurate and
reliable, and it is more effective in implementation.

(2) About the identifying and tracking rate of video
recognition program

We used to randomly select videos from the locations
K57+ 580, K58+ 600, K182+ 000, K255+ 000, and K271+620
for a total of about 90 minutes for verification. ,rough
statistical analysis, it was found that the video recognition
program identified a total of 3,033 vehicles and continued to
track 2,923 vehicles, while a total of 3,308 vehicles were
recognized by manual observation. ,e initial identifying
rate was about 92%, and the continuous tracking rate was
about 88%.

,e specific data are given in Table 1.

(3) About trajectory data recognition accuracy and
reliability

As the dividing line (white dotted line) of all highways in
China is 6m long, the distance between the dotted lines is
9m (see Figure 5). ,erefore, the accuracy and reliability of
the video recognition program can be judged by this
standard.

Six hundred vehicles were randomly selected in part of
the videos collected at the locations of K57 + 580, K58 + 600,
K182 + 000, K255 + 000, and K271 + 620, and 2 s interval
coordinate data of each vehicle in X-axis and Y-axis were
randomly recorded. At the same time, the position of each
vehicle in the video is manually marked by software called
PicPick, which operates by clicking the image/video with a
mouse to display and measure coordinates. After compar-
ison, 8% of the trajectory errors are below 0.3m, 21% of the
trajectory errors are below 0.5m, 44% of the trajectory errors
are 0.7m, and 82% of the trajectory errors are below 1m.
,erefore, most of the trajectory data errors can be con-
trolled within 1m.

(4) Instantaneous speed, acceleration, vehicle spacing,
vehicle driving angle, and other data in traffic conflict
for every seven frames were then obtained according
to the further processing of the continuous trajectory
coordinate data and TTC-based recognition pro-
gram. TTC is defined as “the time required for two
vehicles to collide if they continue at their present
speeds on the same path.” ,e calculation process is
basically similar to the previous literature.

,e differences lie in the following:

(1) Vehicles are simplified to a point withmass (centroid
point) without considering its shape

(2) Considering the conflicts between the vehicle and the
road facility, the definition and calculation are given
in Figure 6

3.2. Historical Traffic Accident Data. ,e accident data in-
cluded the time of accident occurrence (accurate to year,
month, date, and hour), location of accident occurrence
(station number and orientation), type of vehicle involved in
accident (small, medium, or truck), type of accident (rear-
end collision, overturning, or collision with central sepa-
rators/guardrails), weather, level of severity, number of
casualties (death or injured), and road financial loss, as
shown in Figure 7.

Due to the limitation of UAV power, funding, weather, and
accident being accidental, the location and time of conflict data
collection cannot completely coincide with the actual historical
data location and time. So, on the premise of satisfying the data
analysis sample size, we need to reasonably expand the time
period and location of historical accident data.

After on-site investigations and serious analysis, the
period of accident data collection was from June 2017 to
November 2017. ,is time period had little change com-
pared to the time period of video data collection; possible
influence conditions such as traffic volume, traffic compo-
sition (proportion of various vehicle type), lateral clearance,
and traffic organization changed slightly.

Similarly, to eliminate the influence of conditions, we
divided the highway into five sections (JQ-1–JQ-5)
according to the actual situation such as traffic organization,
traffic volume, traffic composition, and lateral clearance. So
the situations in every different section were consistent in
general. Each section comprised four video data collection
locations (see Table 2).

Figure 3: UAV collecting high-precision video.
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3.3. Other Data Processing and Assumptions

3.3.1. Simplified Processing of TTC 4reshold Values. ,e
conflict in the model in Chapter 2 must be a serious
conflict. But no uniform basis for judging serious conflicts
exists. As the roads, environments, and methods adopted
in studies are different, the threshold values of severe

traffic conflicts adopted by different studies are also dif-
ferent, ranging from 1.0 s to 5.0 s of TTC [13, 20–26].
,erefore, the TTC threshold value of a serious conflict in
this study ranged from 1.0 s to 5.0 s, and the step length
was 0.5 s. For simplification, the TTC threshold values of
vehicle-vehicle and vehicle-road facility conflicts were
assumed to be the same.

Video 
recognition

program

Original video

Read and calibrate 
each frame

Background image 
initialization

Identifying
moving 
vehicle

Tracking vehicle

Output data
(vehicle ID,
continuous 

coordinates, length, 
width, etc.)

(a)

Output data by
kinematics calculation

(vehicle speed, 
acceleration, distance, 

driving angle, etc.)

Output data by
traffic conflict 

identification program
(TTC)

Kinematics 
calculation and 
traffic conflict 
identification

program

(b)

Figure 4: Flow-process diagram of video recognition and traffic conflict identification.
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Table 1: Identifying and tracking rate of video recognition program.

Collection
locations

Video
frames

Video
duration (s)

Initial identifying
vehicles

Continuous
tracking vehicles

Manual observation
vehicles

Initial identifying
rate (%)

Continuous
tracking rate

(%)
K57 + 580 35850 1195 452 437 485 93 90
K58 + 600 15600 520 234 225 251 93 90
K182 + 000 33000 1100 738 701 795 93 88
K255 + 000 28880 963 572 558 628 91 89
K271 + 620 53100 1770 1037 1002 1149 90 87
Total 166430 5548 3033 2923 3308 92 88

Figure 5: Distance of dividing line of highway in China.

Collision point

Vehicle-road facility
conflict

TTC = S1/V1

S1

V1
1

Figure 6: Definition and calculation of conflicts between the vehicle and the road facility.
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Figure 7: Chart of historical traffic accident data (partial translation display).
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3.3.2. Assumptions of Vehicle Weight. Vehicle weight was
involved in the measurement model of conflict consequence
severity in this study. Obtaining real-time and accurate vehicle
weight data by using existing technologies is difficult. ,us,
vehicle types in this study were classified as small and medium
vehicles and trucks by measuring vehicle length. Vehicle
weight was determined according to vehicle type (Table 3).

3.3.3. Selection and Design of Influencing Factors. ,e av-
erage traffic volume and truck rate of one-way lane were
used as influencing factors in this study.

,e experimental scheme was based on the data obtained
from every 15min of video. ,e actual values of each in-
fluence factor were rounded according to step length. For
example, if the average traffic volume of the one-way lane
was 1135 pcu/h, it was recorded as 1100 pcu/h; if the average
traffic volume of the one-way lane was 1278 pcu/h, it was
recorded as 1300 pcu/h. According to the actual data, the
specific scope was designed as follows (Table 4).

4. Results and Discussion

,ere are four parts in this chapter: (1) Evaluation indicators
of traffic history accident are calculated by historical traffic
accident data: accident rate and accident severity rate. (2)
Evaluation indicators of traffic conflict are conflict rate and
conflict severity rate, where the conflict severity rate is
calculated by continuous high-precision vehicle conflict data
and is based on the potential collision consequences severity
model in Chapter 2. (3) We had analyzed the relationship of
conflict rates and conflict severity rates with influencing
factors, that is, traffic volume and truck rate. (4) ,e cor-
relation between conflicts and accidents is also calculated
and verifies whether the evaluation indicators that take the
consequences of conflict into account are superior to the
traditional conflict rate indicators that only consider the
number of conflicts; details are given in Figure 8.

4.1. Historical Accident Rate and Accident Severity Rate

(1) Historical accident rate is calculated according to the
following formula:

An �
N

Q × L
. (21)

In Formula (21), An refers to the accident rate in each
section (JQ1–JQ5) within six months;N refers to the number
of traffic accidents (including conflict accidents of two ve-
hicles and one vehicle with facilities); L refers to the length of
each section in km; andQ refers to the monthly average daily
traffic volume of each section in pcu/d.

(2) Historical accident severity rate is calculated according
to the following formula:

As �
M

Q × L
. (22)

In Formula (22), As refers to the accident severity rate in
each section (JQ1–JQ5) within six months, M refers to the
sum of direct economic losses in ten thousand yuan (RMB),
L refers to the length of each section in km, and Q refers to
the monthly average daily traffic volume of each section in
pcu/d.

Accident data include the number of casualties and the
economic losses in road administration and vehicles. ,rough
normalization, the number of casualties is converted into direct

Table 2: Traffic data of each section.

Section JQ-1 JQ-2 JQ-3 JQ-4 JQ-5
Station number at the
beginning K36 + 388 K100 + 400 K150 + 480 K214 + 910 K268 + 967

Station number at the
end K100 + 400 K150 + 480 K214 + 910 K268 + 967 K294 + 385

Length (km) 64 50 64 54 25
Percentage of small
vehicles 68.9 66.4 63.8 62.5 61.4

Percentage of medium
vehicles 9.5 9.7 7.6 8.2 8.5

Percentage of trucks 21.6 23.9 28.6 29.3 30.1

Station numbers of
video data collection
locations

K43 + 200,
K51 + 500,

K57 + 580, K58 + 600

K112 + 500,
K130 + 500,

K131 + 500, K133 + 200

K182 + 000,
K186 + 000,

K192 + 500, K205 + 000

K255 + 000,
K257 + 700,

K258 + 260, K266 + 800

K271 + 620,
K277 + 500,
K278 + 300,
K287 + 000

Table 3: Vehicle types.

Vehicle types Small vehicle Medium vehicle Truck
Length (m) 4–6 7–9 10–20
Set weight (t) 1.5 5 30

Table 4: Design of influencing factor ranges.

Influence factors Min. Max. Step length
Traffic volume (pcu/h) 300 1500 200
Truck rate (%)∗ 10 70 10
∗Truck rate refers to the proportion of trucks in PCU.
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economic loss. ,e literature shows that the average age of
mortality in road traffic accidents in China is 40 years. On the
basis of the retirement age of 60 years, the standard loss incurred
in one working day resulting from one death is calculated as
5000. At present, China’s per capita working day income is 200
yuan. ,erefore, the direct economic loss per death is 1 million
yuan. ,e direct economic loss per injured person is calculated
at 30% of that per death, that is, 0.30 million yuan [27].

,erefore,

M � M1 + M2 + M3. (23)

In Formula (23), M1 refers to the loss of road admin-
istration and vehicles, M2 refers to the direct economic loss
resulting from death, and M3 refers to the direct economic
loss resulting from injuries.

On the basis of formulas (21)–(23), the accident rates and
accident severity rates of all sections in June–November 2017
can be calculated (Table 5).

4.2. Traffic Conflict Rate and Conflict Severity Rate

4.2.1. Traffic Conflict Rate. Conflict rate evaluation indicator
that considers only the number of conflicts can be calculated
according to the following formula:

R �
N

Q × L
. (24)

In Formula (24), R refers to the traffic conflict rate (n/
pcu·km), N refers to the number of serious conflicts oc-
curring in a time unit, L refers to the length of the data
collection section (km), and Q refers to the traffic volume per
hour in the data collection section (pcu/h).

4.2.2. Traffic Conflict Severity Rate. For comparison, traffic
conflict severity rate is evaluated with the following formula:

s �


i�N
i�1 Ei

Q × L
. (25)

In Formula (25), s refers to the traffic conflict severity
rate (J/pcu·km); N refers to the number of serious conflicts
occurring in a time unit; Ei refers to the destructive energy
hidden in each time of serious traffic conflict (J), that is,
Formulas (12), (16), and (20); L refers to the length of the
data collection section (km), and Q refers to the traffic
volume per hour in the data collection section (pcu/h).

4.3. Relationship between Conflict Rate/Conflict Severity Rate
and Influence Factors

4.3.1. Conflict Rates and Conflict Severity Rates of All Sections
under Different TTC 4reshold Values. On the basis of the
discussion in Chapter 4.2, the average values of the conflict
rate and conflict severity rate of each section under different
TTC values are obtained. Figure 9 reveals that, with an
increase in TTC threshold values, conflict rate and conflict
severity rate increase; this effect is in line with the objective
situation. If the threshold value is high, serious conflicts that
meet the requirements will increase.

4.3.2. Relationship between Conflict Rate/Conflict Severity
Rate and Traffic Volume. ,e relationships of conflict rate
and conflict severity rate with traffic volume are established.
Specifically, the conflict rate and conflict severity rate are the
average values in all sections under different TTC threshold
values. ANOVA shows that traffic volume has a significant
impact on traffic conflict rate and traffic conflict severity rate
(p � 0< 0.01) (F test, where p refers to the probability that
the traffic conflict rate is the same as the severity rate under
different traffic volumes).
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Evaluation indicators of
historical traffic accident 
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traffic conflict 

Conflict rate Conflict 
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Correlation between 
conflict indicators 

and accident 
indicators

Relationship between 
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Video recognition 
traffic conflict identification

Historical
traffic accident 

data 

Continuous high-
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conflict data 

Video data 

Which conflict 
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Potential collision 
consequences 
severity model

Figure 8: Analysis flow diagram.

Table 5: Accident rates and accident severity rates of all sections.

Sections JQ-1 JQ-2 JQ-3 JQ-4 JQ-5
Accident rate An(10

−5) 1.24 1.89 3.87 3.21 3.34
Accident severity rate As(10

−5) 1.28 1.25 1.93 1.89 1.76
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Figure 10 shows the distributions of conflict rates and
severity rates under different traffic volumes. Traffic volume
is positively correlated with the conflict and severity rate.
When traffic volume in a one-way lane is less than 700 pcu/h,
the average conflict and severity rates are low. With the
increase in traffic volume, the average conflict rate and
severity rate increase gradually. Moreover, when traffic
volume exceeds 900 pcu/h, the average conflict and severity
rates increase rapidly. ,is relationship is similar to that
found in a study on the construction area of the Tomei
Expressway in Japan that revealed that 70% of traffic acci-
dents occur in a traffic jam and that the casualty rate caused
by accidents in a crowded construction area is over 90%,
which is eight to nine times that in noncrowded construction
areas [28]. ,erefore, a large traffic volume equates to an
unsafe construction area. As traffic volume exceeds
1300 pcu/h, differences are observed between conflict rates
and severity rates; the conflict rate continues to rise slightly,
whereas the conflict severity rate declines slightly. ,is
finding may be due to the saturation of traffic flow and the

decrease of the speed and the severity of a single conflict
caused by excessive traffic volume. ,erefore, the severity
rate drops.

4.3.3. Relationship between Conflict Rate/Conflict Severity
Rate and Truck Rate. ,e relationships of conflict rate and
conflict severity rate with truck rate are established. Spe-
cifically, the conflict rate and conflict severity rate are the
average values in all sections under different TTC threshold
values. ANOVA shows that truck rate has a significant
impact on traffic conflict rate and traffic conflict severity rate
(p � 0< 0.01) (F test, where p refers to the probability that
the traffic conflict rate is the same as the severity rate under
different truck rates).

,e relationship between conflict rate and severity rate
with truck rate is established, as shown in Figure 11. Under a
low truck rate, the conflict rate is low. With a gradual in-
crease in truck rate, the conflict rate gradually increases as
well. ,en, it reaches the maximum as the truck rate reaches
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Figure 9: Conflict rates and severity rates of all sections under different TTC threshold values.
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Figure 10: Distribution of traffic conflict rates and severity rates under different traffic volumes.
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50%. Afterwards, the conflict rate gradually decreases. ,is
result is similar to the law found by Liang et al. [29]; with an
increase in truck rate, the number of conflicts increases first
and then decreases, showing a single peak. ,e reason for
this phenomenon is that the inadequate performance of
trucks leads to a slower speed than those of other vehicle
types, particularly small vehicles. As a result, the emergence
of trucks in traffic flow inevitably leads to an increase in the
overall speed difference in traffic flow, further causing an
increase in conflict. However, when the number of trucks
increases, the number of vehicles decreases under the same
traffic volume. At the same time, the speed difference de-
creases gradually with an increase in the number of the same
type of vehicles (large truck); thus, the conflict rate decreases
gradually after reaching the peak value.

,e comparison of conflict rate and severity rate with
truck rate in Figure 6 shows that when the truck rate exceeds
50%, the conflict rate decreases, and the conflict severity rate
increases, indicating that the severity of consequences
caused by truck conflict is great. ,is finding is consistent
with the phenomenon in which trucks easily cause serious
accidents in construction areas, as discovered by Pigman and
Agent [30].

4.4. Correlation between Conflict Rate/Severity Rate and
Accident Rate/Severity Rate. Chapter 4.4 focuses on the
correlation between traditional conflict rate and conflict
severity rate that consider the consequence severity and
accident rate/accident severity rate, respectively.,e average
values of the conflict rates and conflict severity rates of all
sections are obtained. On the basis of the accident rates and
accident severity rates of all sections within six months
(Table 4), the correlation coefficients are obtained via
Pearson correlation analysis.

Figure 12 reveals that conflict severity has higher corre-
lation with either accident rate or accident severity rate than
conflict rate does in most cases; in particular, conflict severity
rate is most correlated with accident severity rate (purple line);
under different TTC threshold values, the correlation is about
0.8–0.85. ,e correlation between conflict severity rate and

accident rate (blue line) is also high. By contrast, the traditional
conflict rate has a low correlation (ranging from 0.7 to 0.8) with
accident rate and accident severity rate (red and green line) in
most cases of different TTC threshold.

As for the TTC threshold values, under low thresholds
(1.0 s, 1.5 s) and high thresholds (more than 3.0 s), the
correlation values are low. In addition, correlation in the
range of 2.0–3.0 s is the highest.,is result may be due to the
low conflict threshold that leads to the strict criteria for
detecting conflicts and to neglecting some risks that may
lead to accidents. Moreover, a high threshold will allow
several low-risk conflicts to be included in the calculation,
although many low-risk conflicts do not lead to accidents;
thus, the correlation is reduced.

5. Conclusions

,is study aims to address the lack of research on the severity
of the consequences of potential collisions in traffic conflict
and proposes a newmethod for assessing traffic safety. High-
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Figure 11: Distribution of traffic conflict rates and severity rates under different truck rates.
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precision continuous vehicle microdata obtained by UAV
tell us real-time conflict risk including traditional possibility/
proximity severity of traffic conflict to a collision, and the
consequence/outcome severity of potential collisions caused
by conflicts as well, which is exactly what we need to
improve.

In this paper, a severity model of potential collision
consequences in traffic conflicts is proposed on the basis of
vehicle collision theory. Serious conflicts among road ve-
hicles develop into collision accidents when no evasion
action is taken. After collision, some kinetic energy is
converted into destructive energy, leading to vehicle de-
formation. We use this energy to reflect the potential
consequence severity of traffic conflicts.,e proposedmodel
includes two categories: potential collision of vehicle-vehicle
conflict and collision of vehicles and road facilities (e.g.,
guardrails).

,e accurate videos of vehicles are collected by a UAV.
Vehicle speed, acceleration, vehicle spacing, and other mi-
croscopic data of each traffic conflict at any time are ob-
tained through further processing with a video recognition
and traffic conflict recognition program (output once every
seven frames). Traffic accident data were also collected.

On the basis of the conflict consequence severity model
proposed in this study, the microscopic data of vehicles in
traffic conflicts were substituted to calculate the conflict
severity rates in all sections under different TTC threshold
values. At the same time, the conflict rates in each section
under different TTC threshold values that consider only the
number of conflicts were also calculated. ,e conflict rates
and conflict severity rates were linked to traffic volume and
truck rate, respectively.,e relationship models are found to
be different.

Further correlation analysis of accident rate and accident
severity rates showed that the conflict severity rate that con-
siders conflict consequence severity has a higher correlation
with accident rate and accident severity rate. At the same time,
the threshold value of TTC was an important factor that in-
fluences correlation. When thresholds were low (1.0 s, 1.5 s) or
high (more than 3.0 s), the correlation was low.

In summary, many current studies on the severity of
traffic conflicts focused on the possibility of potential colli-
sions, and less studies explored the severity of the conse-
quences of potential collisions. According to vehicle collision
theory, the formula for calculating the consequences severity
of potential collision is obtained. ,e correlation verification
of data shows that real risk is a little better reflected by conflict
severity rate than by traditional conflict rate. ,e safety
evaluation of traffic conflict should be a combination of both
possibility and consequence of potential collisions.

,e limitations of this study are some adoption of
simplification and idealization processes. Real and complex
processes should be considered in follow-up studies. More-
over, due to the time, fund, equipment constraints, and other
reasons, the conflict data only cover some time periods in 18
days.

In the future, we will make improvements and follow-up
studies from the following aspects: (1) Selection of indica-
tors. Due to words limitation, only the most common TTC

was selected as an indicator for identifying conflicts. Each
conflict indicator such as TTC, PET, and MaxD has its own
advantages and disadvantages. Under different types of
conflict/collision (such as crossing, rear end, and lane
change), the differences between indicators are more ob-
vious [31, 32]. We should select better indicators to identify
conflicts for different types of conflicts later. (2) Expand the
amount of data to collect more conflict and accident data, in
addition to the in-depth analysis of the correspondence
between the types of accidents and the types of conflicts. (3)
,is paper directly analyzes the correlation between serious
conflicts and accidents under considering possibility/con-
sequence severity and finds that the correlation was okay
(probably due to the fact that collection locations were not
many). Extreme value theory (EVT) sees a good accident
prediction model with high prediction accuracy and cor-
relation with field accidents. We may use mathematical
methods such as EVT to predict accidents (number and
severity) with more data later [31–33].
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[1] Å. Svensson and C. Hydén, “Estimating the severity of safety
related behaviour,” Accident Analysis & Prevention, vol. 38,
no. 2, pp. 379–385, 2006.

[2] A. Tarko, G. Davis, N. Saunier, T. Sayed, and S. Washington,
“White paper surrogate measures of safety,” 2009.
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)is study explores the contributing factors that influence bicyclist injury severity at three types of intersection: roundabouts,
crossroads, and T-junctions. Using bicycle-involved crash data in the UK over nine years (from 2009 to 2017), the bicyclist injury
severity (with three severity levels: fatal injury, serious injury, and slight injury) was estimated using the generalized ordered logit
(GOL) model and partial proportional odds (PPO) model. )e marginal effects of each explanatory variable were computed to
investigate the impacts on bicyclist injury severity occurring probabilities. A wide range of variables potentially affecting injury
severity was considered, including bicyclist characteristics, intersection characteristics, environmental conditions, bicyclist
movement and location preceding the crash, and types of collisions. Our findings show that the PPOmodel outperforms the GOL
model for analyzing the factors that affect the bicyclist injury severity at intersections. )e factors that affect cycling safety at
various intersections show enormous differences. Specifically, nine variables have significant impacts on bicyclist injury severity at
those three types of intersections. And there are only two variables, four variables, and eleven variables that have significant impact
on bicyclist injury severity at roundabouts, crossroads, and T-junctions, respectively. )e findings of this study can help decision
makers better understand the spatial heterogeneity of the factors that influence the bicyclist injury severity at various intersections.

1. Introduction

Cycling is often considered as an economical, convenient,
healthy, and sustainable transportation mode, especially
suitable for short distance travel, which can offer a wide
range of environmental and social benefits [1]. Recently,
with the implementation of more than 20,000 bike-sharing
schemes around the world, cycling has become a conven-
tional travel mode in many cities [2]. With this in mind, the
UK government has designed a series of policies over the
past decade to promote the use of the bicycle in the daily
journey, with the ambition to increase the bicycle trips from
0.8 billion in 2013 to 1.6 billion in 2025 [3]. Although the
government has invested extensively to increase bikeability,
bicycle travel mode only shares about 2% of all trips made in
the UK, which is much lower than the Netherlands, Den-
mark, and Germany [4]. Among all the possible explana-
tions, the most widely accepted view is that the safety risks
perceived by cyclists are the most critical reasons hindering

the increase of cycling share rate [5–10]. )erefore, it is
significant to analyze and determine the influencing factors
that affect the safety of bicycle trips, and thereby the gov-
ernment can develop the countermeasures accordingly to
lower the severity of cycling risk and increase the level of
bicycle use.

A series of studies have been conducted to examine the
critical factors related to bicycle safety, including the in-
fluence of bicyclist and driver demographics, bicycle and
vehicle characteristics, road and environmental factors, and
other variables. Behnood and Mannering [11] identified the
contributing factors of race, gender, age, and whether the
bicyclist wears a helmet that can significantly affect the
severity of the bicycle crash. )e cyclists who are younger,
less educated, and ride longer per week were associated with
a higher safety risk [12]. Besides, since bicyclists aged over 65
need more time to perceive and respond to external in-
formation, they are more prone to be involved in severe
bicycle crashes [13]. By analyzing the police-reported data,
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Kim et al. [14] implied that inclement weather, darkness
without lighting, speeding, and involvement of trucks could
significantly increase the probability of fatal bicyclist injury,
and the fault of bicyclists is more likely to result in severe
crashes than the drivers. Specifically, Eluru et al. [15]
asserted that the age of bicyclists, the speed limit strategies of
the road, and the locations and the period of crashes oc-
currence are the critical factors impacting the bicyclist injury
severity. Cycling on the curved road segments, rural roads,
and high-speed roads could raise the risk of severe injury
[16]. Also, intoxicated bicyclists and automobile drivers,
vans, SUVs, light-duty trucks, and roads with a grade or a
curve are more likely to be involved in severe crashes [17].
Regarding the bicycle lanes, Morrison et al. [18] insisted that
setting up exclusive bicycle lanes was a solution to improve
the safety of bicyclists, which reduces the crash risk between
bicycles and vehicles and raises the perception of cycling
safety, thereby attracting more people to use bikes. However,
the level of traffic pressure influenced the outcomes of bi-
cycle lanes on cycling safety, and bicycle lanes on the roads
with heavy traffic were more prone to involved in bicycle
crashes [19]. Furthermore, the configuration of the adjacent
intersections, bicycle traffic volume, and traffic control
strategies at intersections could influence the effectiveness of
bicycle lanes [20]. Besides, Klassen et al. [21] indicated that
the essential factors influencing the severity of bicycle crash
at intersections and road segments were not the same. )us,
unique treatments were needed to improve cycling safety at
these two types of locations.

Several studies have verified that intersections are par-
ticularly dangerous areas due to the crossing traffic streams.
Bicyclist crashes at intersections could increase the proba-
bility of severe injuries and fatalities [22–26]. Moore et al.
[27] stated that there were essential differences in some
factors that impact the bicyclist injury severity at intersec-
tions and non-intersections, and it was necessary to develop
separate models to assess the effects of various factors on the
bicyclist injury severity, respectively. Wang et al. [28] be-
lieved that the implementation of traffic calming methods,
improving street lighting, and stop control strategy could
enhance the cycling safety at nonsignalized intersections.
Moreover, providing warning information to right-turning
drivers when they approach the intersections can reduce
conflicts between right-turning vehicles and bicycles on
bicycle lanes, which can effectively enhance cycling safety at
intersections [29]. Wang and Akar [30] concluded that the
provision of bicycle boxes, bicycle crossing signs, and
crossing markings at intersections could improve cycling
safety, and the safety perceptions varied depending on the
typologies of bicyclists. To sum up, although increasing
researchers are starting to explore bicyclist safety at inter-
sections, to the best of our knowledge, there is few detailed
analysis for the difference of factors affecting bicyclist injury
severity at various intersections.

Given the above, the objective of this research is to
analyze and compare the influences of different intersection
features on bicyclist injury severities in crashes. )e cycling
crash data used in this study are police-reported, occurred at
various intersections in the UK, and the statistical period is

nine years from January 1, 2009, to December 31, 2017.
Specifically, we primarily focus on studying the factors af-
fecting bicyclist injury severity cycling crashes at round-
abouts, crossroads, and T-junctions. )e principal reason is
that the probability of bicycle crashes occurring at these
three intersections were higher than others in the UK,
according to bicycle crash data. )e remainder of the paper
is organized as follows. Section 2 summarizes and describes
the methodology applied to analyze bicyclist injury severity
as well as the methods for comparing the models. Section 3
presents data on bicycle crashes that occurred at round-
abouts, crossroads, and T-junctions. Section 4 discusses the
outcomes of the model estimation and marginal effects, and
finally, a conclusion is given in Section 5.

2. Methodologies

In police-reported bicycle crashes, the bicyclist severity is
generally recorded using ordinal categories, and it is clas-
sified as fatal injury, serious injury, and slight injury. )e
ordered logit model is used to analyze bicycle crashes, which
needs to obey the parallel lines or proportional odds (PO)
assumption, and the estimated parameters are the same
across the cumulative level [31, 32]. However, some variables
affecting the bicycle crash levels at various intersections may
be different. Following the recent studies such as Marcoux
et al. [33], the generalized ordered logit model (GOL), which
can relax the PO assumption for all variables, is selected in
this study. Actually, in this study, we are not convinced
whether we need to relax the PO constraint for all or some
specific variables. Rationally, the partial proportional odds
model (PPO) is also selected, for which only partial variables
can violate the PO assumption. Moreover, using the same
bicycle crash data, comparative analysis of the GOL and PPO
model is conducted in this study. )e brief information
about the two models (GOL and PPO) is described as
follows.

2.1. Generalized Ordered Logit (GOL) Model. In this paper,
bicyclist injuries are studied by three discrete severity
levels according to the police-reported bicycle crashes;
accordingly, we coded 1 � slight injury, 2 � serious injury,
and 3 � fatal injury. And the contribution of driver
characteristics, driver behaviors, collision types, infra-
structure characteristics, vehicle types, and environmental
conditions is assessed by the crash injury severity model.
Following the research by Williams [34], we define the
bicyclist injury severity function y∗i based on the latent
regression:

y
∗
i � Xiβj + εi, (1)

where j are the categories of bicyclist injury severities, Xi is a
1 × p vector that contains the values of all the explanatory
variables to the bicycle crash i, βj is a vector of regression
coefficients, εi a residual term following a logistic distri-
bution, and y ∗i is a latent preference variable. )e observed
counterpart to y∗i is yi, and the severity level yi of crash i is
defined as follows:
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yi �

1, y∗i ≤ μi,0,

2, μi,0 <y∗i ≤ μi,1,

3, μi,1 <y∗i ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where μi,0, μi,1, and μi,2 are the boundaries between the bi-
cyclist severity levels for crash i. As the residual term εi

follows the logistic distribution, the GOL model can be
written as

P yi > j(  � g Xiβj  �
exp αj + Xiβj 

1 + exp αj + Xiβj 
, (3)

where αj represents a cutoff point for the cumulative logit of
category j. From the above, it can be determined that the
probabilities that yi will take on each of the values 1, 2, and 3
are equal to

P yi � 1(  � 1 − g Xiβ1( ,

P yi � 2(  � g Xiβ2(  − g Xiβ1( ,

P yi � 3(  � g Xiβ2( .

⎧⎪⎪⎨

⎪⎪⎩
(4)

2.2. Partial Proportional Odds (PPO) Model. As mentioned
above, unlike the GOL model, the PPO model allows some
independent variables to violate the PO assumption, and
other independent variables can remain constant for each
crash injury severity level. Based on equation 3, suppose that
there are only m variables that obey the PO assumption, and
the GOL model can be written as

P yi > j(  � g Xi,mβ + Xi,p−mβj 

�
exp αj + Xi,mβ + Xi,p−mβj 

1 + exp αj + Xi,mβ + Xi,p−mβj 
,

(5)

where Xi,m is a vector of m explanatory variables to the
bicycle crash i that satisfies the PO assumption, β is a
vector of regression coefficients that is the same for all
values of j, Xi,p−m is a vector of p − m variables to the
bicycle crash i that is free to the PO assumption, and βj is a
vector of regression coefficients that is different for var-
ious values of j.

By conducting the Brant test for all independent vari-
ables, we can determine variables that satisfy the PO as-
sumption. Particularly, when the independent variables pass
the Brant test, it can be considered that those variables satisfy
the PO assumption; otherwise, those variables need to be
relaxed. For a detailed discussion on this, please refer to
Williams [34].

2.3. Model Comparison. In this study, we use the same
dataset to fit the GOL model and the PPOmodel and choose
the log-likelihood of the full model (LLf ), Akaike Infor-
mation Criterion (AIC), and Bayesian Information Criterion
(BIC) to compare the performance of those two models.

In the previous study, researchers have proven that AIC
and BIC are practical evaluation criteria to assess the quality

of different statistical models [35, 36]. By comprehensively
considering the penalty term of the number of predictive
variables and the log-likelihood value of those two models,
AIC and BIC consider not only the effect of model fitting but
also themodel complexity.)e smaller the values of AIC and
BIC are, the better the model fit effect is. )e AIC and BIC
can be calculated as follows:

AIC � 2k − 2LLf,

BIC � k ln(O) − 2LLf,
(6)

where k is the number of parameters estimated in the model
and O is the number of observations.

3. Data Description

)e data used in this study were obtained from police-
reported cycling crashes that occurred at various intersec-
tions in the UK during the nine years from January 1, 2009,
to December 31, 2017. According to the latest census, the
total population of the UK is about 63.2 million, making it
one of the most densely populated areas in the world.

)e data used in the study were all obtained from the
British Government Digital Service (https://data.gov.uk/
dataset/). In the UK, intersections are grouped into five
categories in bicycle crash dataset reported by the police,
including roundabouts, crossroads, T-junction, more than
four arms but not a roundabout, and others. From 2009 to
2018, there are about 44,804 police-reported bicyclist in-
juries that occurred at various intersections in the UK (with
all incomplete or incorrect data observations removed), and
about 95% of which happened at or near roundabouts,
intersections, and T-junction intersections, as shown in
Table 1.

According to the statistical characteristics of bicycle
crash data at various intersections, we primarily analyze
bicyclist injury severity at three categories, including
T-junction, roundabout, and crossroads. )e characteristics
defined in the dataset, including bicyclist characteristics,
intersection attributes, environmental factors, bicyclist
movement and location factors, and crash characteristics,
are studied in this research for their effect on bicyclist injury
severity.

)e final analysis dataset contains 42,532 crashes, and
the descriptive statistics of the variables used are shown in
Table 2.

4. Results and Discussion

In this study, the GOL model and PPO model are fitted by a
user-written program gologit2 in Stata 15, and the coeffi-
cients of the explanatory variables in these two models were
estimated by the maximum likelihood estimation. Estima-
tion results of the GOL and PPO models are shown in
Tables 3 and 4, respectively. )e summaries of indicators for
model comparison are given in Table 5. It is worth noting
that the variables excluded in the final model are those that
are not statistically significant, at least at the 95% level (p
value smaller than 0.05).
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Table 1: )e statistics of total bicycle crashes at various intersections (2009–2018).

Intersection categories T-junction Roundabout Crossroads Others Summary
Total number 26475 9127 6931 2272 44804
Percentage (%) 59.09 20.37 15.47 5.07 100

Table 2: Descriptive statistics of the variables used in the estimations.

Variable
Roundabouts Crossroads T-junctions

Mean S.D. Mean S.D. Mean S.D.
Bicyclist characteristics
Male (1 if bicyclist is male; 0 others) 0.809 0.394 0.792 0.406 0.803 0.397
Age 1 (1 if bicyclist is younger than 15 years; 0 others) 0.040 0.195 0.09 0.286 0.115 0.319
Age 2 (1 if bicyclist is older than 16 years and is younger than 25 years; 0 others) 0.172 0.377 0.209 0.406 0.197 0.397
Age 3 (1 if bicyclist is older than 26 years and is younger than 35 years; 0 others) 0.234 0.423 0.281 0.449 0.246 0.430
Age 4 (1 if bicyclist is older than 36 years and is younger than 45 years; 0 others) 0.235 0.424 0.207 0.405 0.202 0.401
Age 5 (1 if bicyclist is older than 46 years and is younger than 55 years; 0 others) 0.195 0.396 0.133 0.339 0.150 0.358
Age 6 (1 if bicyclist is older than 55 years; 0 others) 0.125 0.330 0.081 0.272 0.090 0.286
Citizen (1 if bicyclist dwells in the city; 0 others) 0.885 0.319 0.937 0.243 0.906 0.292
Towner (1 if bicyclist dwells in the town; 0 others) 0.055 0.228 0.029 0.167 0.047 0.212
Villager (1 if bicyclist dwells in the rural area; 0 others) 0.060 0.237 0.034 0.182 0.047 0.212
Part-of-work (1 if journey as part of work; 0 others) 0.098 0.297 0.066 0.249 0.069 0.253
To-from-work (1 if commuting to/from work; 0 others) 0.215 0.411 0.176 0.381 0.164 0.370
Taking-pupil-school (1 if taking pupil to/from school; 0 others) 0.014 0.118 0.010 0.100 0.013 0.114
Pupil-school (1 if pupil riding to/from school; 0 others) 0.013 0.114 0.018 0.134 0.026 0.158
Purpose-others (1 if travel purpose is different from the above four models; 0 others) 0.661 0.473 0.730 0.444 0.728 0.445
Intersection characteristics
Speed-limit (1 if the speed limit at the intersection is less than or equal to 30 km/h; 0 others) 0.791 0.406 0.931 0.253 0.927 0.261
Junction-control (1 if the intersection is nonsignalized controlled; 0 others) 0.953 0.212 0.517 0.500 0.907 0.290
Nonsignal-pedestrian (1 if pedestrian crossing facilities are nonsignalized controlled
crosswalks; 0 others) 0.116 0.321 0.111 0.315 0.126 0.332

Signal-pedestrian (1 if there is pedestrian phase at traffic signal junction; 0 others) 0.027 0.161 0.350 0.477 0.073 0.261
Footbridge (1 if there are footbridges or subways; 0 others) 0.013 0.114 0.009 0.095 0.010 0.100
Central-refuge (1 if there are central refuges; 0 others) 0.079 0.270 0.018 0.134 0.015 0.122
None (1 if there are no pedestrian crossing facilities; 0 others) 0.791 0.406 0.931 0.253 0.927 0.261
Road-dry (1 if road surface is dry; 0 others) 0.725 0.446 0.782 0.412 0.79 0.407
Road-wet (1 if road surface is wet; 0 others) 0.257 0.437 0.194 0.395 0.195 0.396
Road-ice (1 if road surface is ice; 0 others) 0.011 0.105 0.014 0.118 0.007 0.084
Road-others (1 if road surface is different from the above three models; 0 others) 0.007 0.084 0.010 0.100 0.008 0.089
Urban-junction (1 if the intersection is located in an urban area; 0 others) 0.781 0.414 0.927 0.261 0.886 0.318
Divider (1 if the roads have dividers; 0 others) 0.167 0.373 0.260 0.438 0.264 0.440
Environmental condition
Weekend (1 if the crash occurred at the weekend; 0 others) 0.243 0.429 0.256 0.436 0.273 0.445
Morning-peak (1 if the crash occurred at the morning rush hour; 0 others) 0.202 0.401 0.165 0.371 0.190 0.392
Night-peak (1 if the crash occurred at the afternoon rush hour; 0 others) 0.177 0.382 0.205 0.404 0.227 0.418
Nonpeak (1 if the crash occurred at the off-peak hour; 0 others) 0.622 0.485 0.630 0.483 0.583 0.493
Daylight (1 if it was daylight when the crash occurred; 0 others) 0.754 0.430 0.761 0.427 0.850 0.358
Night-light (1 if the crash occurred at night, and there were lights on the road; 0 others) 0.221 0.415 0.219 0.414 0.189 0.391
Night-nonlight (1 if the crash occurred at night, and there were no lights on the road; 0
others) 0.026 0.158 0.020 0.141 0.039 0.192

Weather-fine (1 if it was fine weather when the crash occurred; 0 others) 0.835 0.371 0.849 0.358 0.871 0.335
Weather-raining (1 if it was raining when the crash occurred; 0 others) 0.122 0.327 0.097 0.297 0.100 0.300
Weather-snowing (1 if it was snowing when the crash occurred; 0 others) 0.008 0.089 0.011 0.105 0.012 0.110
Weather-foggy (1 if it was foggy when the crash occurred; 0 others) 0.010 0.100 0.011 0.105 0.009 0.095
Weather-others (1 if it was other weather when the crash occurred; 0 others) 0.025 0.155 0.032 0.176 0.009 0.095
January (1 if the crash occurred in January; 0 others) 0.089 0.285 0.066 0.249 0.071 0.257
February (1 if the crash occurred in February; 0 others) 0.073 0.261 0.063 0.243 0.063 0.243
March (1 if the crash occurred in March; 0 others) 0.072 0.259 0.080 0.272 0.080 0.272
April (1 if the crash occurred in April; 0 others) 0.073 0.261 0.078 0.268 0.075 0.263
May (1 if the crash occurred in May; 0 others) 0.082 0.274 0.09 0.286 0.092 0.290
June (1 if the crash occurred in June; 0 others) 0.080 0.272 0.095 0.293 0.097 0.297
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4.1. Comparison of Models. In this study, according to the
estimates of the GOL and PPO models, we adopt AIC, BIC,
and pseudo R2 to compare those two models (as shown in
Table 5). It can be concluded that the AIC and BIC values of
the PPO model are smaller than those of the GOL model.
)ese two values imply that, given the same dataset, the PPO
model produces better fitting results. Besides, a similar
implication can be derived from the pseudo R2 because the
value of the PPOmodel is larger than that of the GLOmodel.
In summary, the PPO model outperforms the GOL model
for fitting the data of bicycle crashes that occurred at various
intersections. We mainly adopt the PPO model to analyze
the bicycle crash data.

It should be noted that the sign of the estimated coef-
ficients cannot intuitively interpret the influence of

explanatory variables on the PPO model outcomes. To
present meaningful explanations, we calculate the marginal
effects of each variable to evaluate the impacts of estimates
on the bicyclist injury severity occurring probabilities.
Particularly, the marginal effects demonstrate the difference
in outcome probability of each level of bicyclist injury se-
verity caused by one unit change in the explanatory variable
(as shown in Table 6).

4.2. Bicyclist Characteristics. In Table 3, several factors are
found to be statistically significant in influencing severity
outcomes in bicyclist-related crashes. Specifically, it is
found that male cyclists are more likely to be involved in
fatal or serious injuries at crossroads and T-junctions while

Table 2: Continued.

Variable
Roundabouts Crossroads T-junctions

Mean S.D. Mean S.D. Mean S.D.
July (1 if the crash occurred in July; 0 others) 0.092 0.290 0.102 0.303 0.100 0.300
August (1 if the crash occurred in August; 0 others) 0.081 0.272 0.089 0.285 0.085 0.279
September (1 if the crash occurred in September; 0 others) 0.091 0.288 0.091 0.288 0.100 0.300
October (1 if the crash occurred in October; 0 others) 0.099 0.298 0.101 0.302 0.096 0.295
November (1 if the crash occurred in November; 0 others) 0.094 0.292 0.088 0.283 0.085 0.279
December (1 if the crash occurred in December; 0 others) 0.075 0.263 0.057 0.232 0.057 0.232
Bicyclist movement and location preceding the crash
Parked (1 if the bicycle is in a state of parking; 0 others) 0.007 0.084 0.01 0.100 0.013 0.114
Waiting-go (1 if the bike is waiting to go straight; 0 others) 0.014 0.118 0.018 0.134 0.031 0.173
Slowing (1 if the bicycle is in a state of deceleration; 0 others) 0.013 0.114 0.02 0.141 0.061 0.239
Moving-off (1 if the bicycle is moving off; 0 others) 0.038 0.192 0.036 0.187 0.058 0.235
Lefting (1 if the bike is turning left; 0 others) 0.007 0.084 0.010 0.100 0.010 0.100
Waiting-left (1 if the bike is waiting to turn left; 0 others) 0.008 0.089 0.010 0.100 0.012 0.110
Righting (1 if the bike is turning right; 0 others) 0.124 0.330 0.051 0.219 0.064 0.245
Waiting-right (1 if the bike is waiting to turn right; 0 others) 0.008 0.089 0.025 0.155 0.042 0.200
Lane-left (1 if the bike is changing lane to left; 0 others) 0.009 0.095 0.010 0.100 0.014 0.118
Lane-right (1 if the bike is changing lane to right; 0 others) 0.012 0.110 0.015 0.122 0.017 0.130
Over-offside (1 if the bike is overtaking at offside; 0 others) 0.016 0.126 0.022 0.148 0.031 0.173
Over-nearside (1 if the bike is overtaking at nearside; 0 others) 0.011 0.105 0.030 0.170 0.027 0.161
Ahead-left (1 if the bike is going ahead left; 0 others) 0.013 0.114 0.014 0.118 0.011 0.105
Ahead-right (1 if the bike is going ahead right; 0 others) 0.056 0.230 0.017 0.130 0.026 0.158
Ahead (1 if the bike is going ahead; 0 others) 0.665 0.472 0.715 0.452 0.582 0.493
Mainway (1 if the bike is on mainway; 0 others) 0.954 0.210 0.927 0.261 0.894 0.308
Busway (1 if the bike is on busway; 0 others) 0.019 0.138 0.023 0.148 0.03 0.170
Cycleway (1 if the bike is on cycleway; 0 others) 0.014 0.118 0.030 0.170 0.049 0.217
Pavement (1 if the bike is on pavement; 0 others) 0.007 0.084 0.011 0.105 0.020 0.141
Bike-location-others (1 if the bike is on other location; 0 others) 0.007 0.084 0.009 0.095 0.009 0.095
Approaching-parked (1 if the bike is approaching junction or waiting/parked at junction
approach; 0 others) 0.209 0.406 0.278 0.448 0.367 0.482

Leaving-parked (1 if bike is leaving junction or waiting/parked at junction exit; 0 others) 0.156 0.363 0.071 0.257 0.085 0.279
Leaving-main (1 if the bike is leaving main road; 0 others) 0.016 0.126 0.012 0.110 0.018 0.134
Entering-main (1 if the bike is entering main road; 0 others) 0.016 0.126 0.049 0.217 0.054 0.226
Mid (1 if the bike is located in the intersection; 0 others) 0.604 0.489 0.59 0.492 0.476 0.499
Type of collision
Collision-point-front (1 if the collision point is on the front side of the bicycle; 0 others) 0.346 0.475 0.528 0.499 0.552 0.497
Collision-point-back (1 if the collision point is on the back side of the bike; 0 others) 0.181 0.385 0.086 0.281 0.084 0.277
Collision-point-right (1 if the collision point is on the right side of the bike; 0 others) 0.139 0.346 0.219 0.414 0.185 0.389
Collision-point-left (1 if the collision point is on the left side of the bike; 0 others) 0.301 0.458 0.131 0.338 0.136 0.344
Collision-point-none (1 if there was no collision point; 0 others) 0.034 0.182 0.037 0.190 0.044 0.205
Secondary-collision-on-road (1 if the secondary collision occurred on the road; 0 others) 0.011 0.105 0.026 0.158 0.032 0.176
Secondary-collision-off-road (1 if the secondary collision occurred off the road; 0 others) 0.017 0.130 0.014 0.118 0.007 0.084
Secondary-collision-none (1 if there is no secondary collision occurred; 0 others) 0.972 0.164 0.96 0.195 0.961 0.192
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Table 3: Estimation results of the GOL model.

Variables
Roundabouts Crossroads T-junctions

Fatal Serious Fatal Serious Fatal Serious
Bicyclist characteristics
Male 0.100 (0.052)∗ −0.169 (0.063)∗∗ −0.088 (0.033)∗∗
Age 1 0.804 (0.132)∗∗∗ 0.32 (0.105)∗∗ 0.298 (0.053)∗∗∗
Age 2 0.652 (0.071)∗∗∗ 0.389 (0.084)∗∗∗ 0.38 (0.043)∗∗∗
Age 3 1.46 (0.585)∗ 0.461 (0.062)∗∗∗ 0.398 (0.080)∗∗∗ 0.324 (0.041)∗∗∗
Age 4 0.330 (0.060)∗∗∗ 0.191 (0.082)∗ 0.154 (0.041)∗∗∗
Age 6 −0.25 (0.066)∗∗∗ −1.306 (0.495)∗∗ −0.305 (0.096)∗∗ −1.501 (0.280)∗ −0.279 (0.048)∗∗∗
Villager −0.675 (0.246)∗∗ −0.111 (0.057)∗
Part-of-work 0.202 (0.074)∗∗ 0.15 (0.052)∗∗
To-from-work 1.012 (0.370)∗∗
Pupil-school 0.366 (0.098)∗∗∗

Intersection
characteristics
Speed-limit 0.331 (0.048)∗∗∗ 0.944 (0.409)∗ 0.529 (0.097)∗∗∗ 1.239 (0.231)∗∗∗ 0.441 (0.047)∗∗∗
Junction-control 1.613 (0.437)∗∗∗ 0.967 (0.342)∗∗ 0.723 (0.235)∗∗
Divider −1.053 (0.402)∗∗ −0.958 (0.394)∗ −0.29 (0.076)∗∗∗
Urban-junction 0.278 (0.099)∗∗ 0.45 (0.246)∗ 0.321 (0.042)∗∗∗

Environmental
condition
Weather-fine 0.266 (0.125)∗
Weather-raining 0.188 (0.066)∗∗ 0.291 (0.146)∗
Night-peak 0.071 (0.032)∗
Night-light −0.122 (0.033)∗∗∗
Night-nonlight −0.195 (0.074)∗∗
February −0.701 (0.266)∗∗
May −0.14 (0.084)∗
June 0.19 (0.080)∗
October −0.142 (0.079)∗

Bicyclist movement
and location preceding
the crash
Parked −1.971 (1.068)∗ 1.354 (0.600)∗
Waiting-go 0.889 (0.277)∗∗
Righting −0.234 (0.089)∗∗ −0.494 (0.248)∗ −0.113 (0.051)∗
Waiting-right 0.764 (0.377)∗ 0.418 (0.122)∗∗
Ahead-right −0.446 (0.106)∗∗∗ −0.24 (0.073)∗∗
Over-nearside −2.928 (0.907)∗∗ −1.241 (0.404)∗∗
Lane-left −0.483 (0.212)∗
Approaching-parked 1.523 (0.606)∗
Leaving-parked −0.825 (0.256)∗∗ −0.09 (0.046)∗
Entering-main −1.038 (0.400)∗∗ −0.206 (0.110)∗ −1.149 (0.281)∗∗∗ −0.182 (0.057)∗∗
Busway −1.387 (0.768)∗
Pavement −0.534 (0.298)∗ −1.35 (0.615)∗

Type of collision
Collision-point-front 0.51 (0.115)∗∗∗ 0.422 (0.055)∗∗∗
Collision-point-back 0.234 (0.057)∗∗∗ 0.804 (0.144)∗∗∗ 0.652 (0.070)∗∗∗
Collision-point-right 0.15 (0.063)∗ 0.576 (0.122)∗∗∗ 0.444 (0.060)∗∗∗
Collision-point-left 0.416 (0.128)∗∗ 0.544 (0.063)∗∗∗
Secondary-collision-on-
road −0.264 (0.067)∗∗∗

Secondary-collision-off-
road −0.78 (0.248)∗∗ −0.482 (0.278)∗ −1.491 (0.405)∗∗∗ −0.679 (0.125)∗∗∗

Constant 4.394 (0.784) 0.957 (0.132) 2.746 (1.325) −0.04 (0.208) 4.339 (0.542) 0.227 (0.088)
Number of observations 16418 11,623 14491
Log-likelihood at zero,
LL (0) −7800.35 −5544.79 −6810.67

Log-likelihood at
convergence, LL (β) −6817.51 −4823.41 −5932.77

Pseudo R2 0.1260 0.1301 0.1289
AIC 15684.71 11189.57 13662.38
BIC 16008.36 11557.61 13989.59
Note. Standard errors are in parentheses. Level of significance: ∗ indicates parameter is significant at 0.05, ∗∗ indicates parameter is significant at 0.01, and
∗∗∗ indicates parameter is significant at 0.001.
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having a decreased likelihood of a slight injury, consistent
with previous research [11, 14, 15]. )e average marginal
effects (as shown in Table 5) show that at crossroads and

T-junctions, the male indicator variable increases the
probability of serious injuries by 2.37% and 1.24%, re-
spectively. Instead, the variable increases the probability of

Table 4: Estimation results of the PPO model.

Variables
Roundabouts Crossroads T-junctions

Fatal Serious Fatal Serious Fatal Serious
Bicyclist characteristics
Male 0.111 (0.052)∗ 0.111 (0.052)∗ −0.16 (0.064)∗ −0.16 (0.064)∗ −0.089 (0.033)∗∗ −0.089 (0.033)∗∗
Age 1 0.706 (0.143)∗∗∗ 0.706 (0.143)∗∗∗ 0.309 (0.111)∗∗∗ 0.309 (0.110)∗ 0.275 (0.053)∗∗∗ 0.275 (0.053)∗∗∗
Age 2 0.654 (0.071)∗∗∗ 0.654 (0.071)∗∗∗ 0.396 (0.085)∗∗∗ 0.373 (0.043)∗∗∗ 0.373 (0.043)∗∗∗
Age 3 0.467 (0.062)∗∗∗ 0.467 (0.062)∗∗∗ 0.405 (0.080)∗∗∗ 0.405 (0.080)∗∗∗ 0.325 (0.041)∗∗∗ 0.325 (0.041)∗∗∗
Age 4 0.336 (0.060)∗∗∗ 0.336 (0.060)∗∗∗ 0.194 (0.082)∗∗ 0.194 (0.082)∗∗ 0.156 (0.041)∗∗∗ 0.156 (0.041)∗∗∗
Age 6 −0.263 (0.066)∗∗∗ −0.263 (0.066)∗∗∗ −1.571 (0.354)∗∗∗ −0.298 (0.097)∗∗ −1.426 (0.178)∗∗∗ −0.282 (0.048)∗∗∗
Villager −0.716 (0.235)∗∗ −0.114 (0.057)∗
Part-of-work 0.188 (0.075)∗ 0.188 (0.075)∗ 0.146 (0.052)∗∗ 0.146 (0.052)∗∗
To-from-Work 0.981 (0.366)∗∗
Pupil-school 0.366 (0.098)∗∗∗ 0.366 (0.098)∗∗∗

Intersection characteristics
Speed-limit 0.284 (0.054)∗∗∗ 0.284 (0.054)∗∗∗ 1.327 (0.340)∗∗∗ 0.537 (0.097)∗∗∗ 1.287 (0.188)∗∗∗ 0.443 (0.047)∗∗∗
Junction-control 1.492 (0.424)∗∗∗ 0.843 (0.318)∗∗∗ 0.711 (0.232)∗∗
Divider −1.095 (0.397)∗∗ −0.296 (0.076)∗∗∗ −0.296 (0.076)∗∗∗
Urban-junction 0.115 (0.055)∗ 0.115 (0.055)∗ 0.255 (0.110)∗∗ 0.255 (0.110)∗∗ 0.329 (0.041)∗∗∗ 0.329 (0.041)∗∗∗
Road-wet -4.438 (1.873)∗ -4.438 (1.873)∗

Environmental condition
Weather-fine 0.313 (0.131)∗∗ 0.313 (0.131)∗∗
Weather-raining 0.193 (0.067)∗∗ 0.193 (0.067)∗∗ 0.308 (0.161)∗∗ 0.308 (0.161)∗
Weather-foggy −2.202 (1.064)∗∗
Night-peak 0.073 (0.032)∗ 0.073 (0.032)∗
Night-light −0.118 (0.033)∗∗∗ −0.118 (0.033)∗∗∗
Night-nonlight −0.193 (0.074)∗∗ −0.193 (0.074)∗∗
February −0.641 (0.263)∗
May −0.192 (0.105)∗∗ −0.192 (0.105)∗∗
June 0.208 (0.108)∗ 0.208 (0.108)∗
October −0.179 (0.101)∗∗ −0.179 (0.101)∗∗

Bicyclist movement and
location preceding the crash
Parked −2.288 (1.003)∗ 1.314 (0.600)∗
Waiting-go 0.869 (0.292)∗∗∗ 0.869 (0.292)∗∗∗ 0.801 (0.172)∗∗∗ 0.801 (0.172)∗∗∗
Righting −0.115 (0.050)∗ −0.115 (0.050)∗
Waiting-right 0.733 (0.388)∗ 0.733 (0.388)∗∗ 0.4 (0.122)∗∗ 0.4 (0.122)∗∗
Over-nearside −2.531 (0.759)∗∗ −2.294 (0.466)∗∗∗ −1.212 (0.393)∗∗
Ahead-right −0.38 (0.120)∗∗ −0.38 (0.120)∗∗ −0.216 (0.072)∗∗ −0.216 (0.072)∗∗
Entering-main −2.57 (1.063)∗∗ −1.179 (0.239)∗∗∗ −0.233 (0.055)∗∗∗
Lane-left −0.441 (0.220)∗ −0.441 (0.220)∗ −1.034 (0.561)∗ −1.034 (0.561)∗
Busway −1.389 (0.587)∗∗
Pavement −0.495 (0.242)∗ −0.495 (0.242)∗ −1.285 (0.345)∗∗∗

Type of collision
Collision-point-front −0.511 (0.116)∗∗∗ −0.511 (0.116)∗∗∗ −0.446 (0.055)∗∗∗ −0.446 (0.055)∗∗∗
Collision-point-back 0.407 (0.117)∗∗∗ 0.407 (0.117)∗∗∗ 0.812 (0.146)∗∗∗ 0.812 (0.146)∗∗∗ 0.656 (0.070)∗∗∗
Collision-point-right 0.324 (0.119)∗∗ 0.575 (0.123)∗∗∗ 0.457 (0.060)∗∗∗
Collision-point-left 0.414 (0.130)∗∗∗ 0.576 (0.063)∗∗∗ 0.576 (0.063)∗∗∗
Secondary-collision-on-road −0.319 (0.066)∗∗∗ −0.319 (0.066)∗∗∗
Secondary-collision-off-road −0.753 (0.253)∗∗ −0.753 (0.253)∗∗ −0.477 (0.281)∗ −0.477 (0.281)∗ −1.636 (0.386)∗∗∗ −0.69 (0.125)∗∗∗

Constant 4.576 (1.191) 1.042 (1.123) 4.787 (1.613) −0.849 (1.460) 4.000 (0.301) 0.528 (0.087)
Number of observations 16418 11623 14491
Log-likelihood at zero, LL (0) −7778.23 −5525.77 −6810.30
Log-likelihood at
convergence, LL (β) −6776.39 −4788.63 −5929.73

Pseudo R2 0.1288 0.1334 0.1293
AIC 15669.03 11166.97 13627.88
BIC 15869.39 11424.59 13800.70
Note. Standard errors are in parentheses. Level of significance: ∗ indicates parameter is significant at 0.05, ∗∗ indicates parameter is significant at 0.01, and
∗∗∗ indicates parameter is significant at 0.001.
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Table 5: Indicators for model comparison.

Model
Roundabouts Crossroads T-junctions

AIC BIC Pseudo R2 AIC BIC Pseudo R2 AIC BIC Pseudo R2

GOL 15684.71 16008.36 0.1260 11189.57 11557.61 0.1301 13662.38 13989.59 0.1289
PPO 15669.03 15869.39 0.1288 11166.97 11424.59 0.1334 13627.88 13800.70 0.1293

Table 6: Marginal effects for different bicycle crash injury severity levels at different intersections.

Variables
Roundabouts Crossroads T-junctions

Fatal Serious Slight Fatal Serious Slight Fatal Serious Slight
Bicyclist characteristics
Male −0.0003 −0.0145 0.0148 0.0007 0.0237 −0.0244 0.0003 0.0124 −0.0127
Age 1 −0.0022 −0.1149 0.1171 −0.0013 −0.0448 0.0461 −0.0009 −0.0384 0.0392
Age 2 −0.0018 −0.0927 0.0945 0.0020 −0.0584 0.0564 −0.0012 −0.0519 0.0531
Age 3 −0.0012 −0.0655 0.0667 −0.0016 −0.0562 0.0578 −0.0010 −0.0453 0.0463
Age 4 −0.0009 −0.0472 0.0481 −0.0008 −0.0269 0.0276 −0.0005 −0.0217 0.0222
Age 6 0.0007 0.0361 −0.0368 0.0060 0.0372 −0.0433 0.0045 0.0356 −0.0402
Villager 0.0023 0.0140 −0.0163
Part-of-work −0.0005 −0.0288 0.0293 −0.0005 −0.0203 0.0208
To-from-Work −0.0031 0.0073 −0.0042
Pupil-school −0.0012 −0.0510 0.0521
Intersection characteristics
Speed-limit −0.0008 −0.0405 0.0413 −0.0054 −0.0706 0.0760 −0.0041 −0.0590 0.0631
Junction-control −0.0040 −0.0121 0.0161 −0.0034 −0.0065 0.0100 −0.0023 −0.0081 0.0103
Divider 0.0030 0.0034 −0.0064 0.0009 0.0412 −0.0422
Urban-junction −0.0003 −0.0139 0.0142 −0.0011 −0.0394 0.0405 −0.0010 −0.0458 0.0469
Road-wet 0.0115 0.6092 −0.6207
Environmental condition
Weather-fine −0.0010 −0.0369 0.0379
Weather-raining −0.0022 −0.1179 0.1201 −0.0011 −0.0398 0.0409
Weather-foggy 0.0086 −0.0166 0.0080
Night-peak −0.0002 -0.0102 0.0104
Night-light 0.0004 0.0165 −0.0169
Night-nonlight 0.0006 0.0269 −0.0275
February 0.0020 −0.0033 0.0013
May 0.0006 0.0199 −0.0204
June −0.0005 −0.0270 0.0275
October 0.0006 0.0203 −0.0208
Bicyclist movement and location preceding the
crash
Parked 0.0072 −0.1945 0.1872
Waiting-go −0.0038 −0.1343 0.1381 −0.0025 −0.1116 0.1142
Righting 0.0004 0.0160 −0.0163
Waiting-right −0.0033 −0.1162 0.1195 −0.0013 −0.0558 0.0570
Over-nearside 0.0065 −0.0094 0.0029 0.0076 −0.0101 0.0025 0.0038 −0.0157 0.0119
Ahead-right 0.0009 0.0455 −0.0463 0.0007 0.0301 −0.0307
Entering-main 0.0054 0.0241 −0.0295 0.0037 0.0295 −0.0332
Lane-left 0.0010 0.0504 −0.0513 0.0036 0.1288 −0.1324
Busway 0.0044 −0.0059 0.0015
Pavement 0.0014 0.0733 −0.0747 0.0041 0.0151 −0.0192
Type of collision
Collision-point-front 0.0020 0.0696 −0.0715 0.0014 0.0622 −0.0636
Collision-point-back −0.0007 −0.0356 0.0363 −0.0032 −0.1140 0.1172 −0.0002 −0.0932 0.0934
Collision-point-right 0.0016 −0.0238 0.0222 0.0012 −0.0832 0.0820 0.0009 −0.0661 0.0651
Collision-point-left 0.0023 −0.0608 0.0585 −0.0018 −0.0803 0.0821
Secondary-collision-on-road 0.0010 0.0445 −0.0455
Secondary-collision-off-road 0.0021 0.1098 −0.1119 0.0019 0.0680 −0.0699 0.0052 0.0931 −0.0983
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serious injuries that happened at the roundabout by 1.45%.
)e primary reason for this phenomenon may be that
bicyclists ordinarily consider that traffic conflicts at
roundabouts are more severe, and they could be more
careful, which results in lower serious accidents [27].

)e age of bicyclists is also a statistically significant
variable to analyze the injury severity. Particularly, older
bicyclists (older than 55 years) are more likely to be involved
in the occurrence of serious injury. According to the average
marginal effects in Table 6, this variable increases the oc-
currence probability of serious injury at roundabouts,
crossroads, and T-junctions by 3.61%, 3.72%, and 3.56%,
respectively. )e result can be supported by previous re-
search [11, 13, 14, 27]. )e possible reason for this finding is
that the older bicyclists are slower and have a longer reaction
and perception times than other age groups. For the younger
bicyclists (the bicyclist is younger than 15 years), they are
always involved in slight injuries. )e indicator increases the
probability of slight injury at roundabouts, crossroads, and
T-junctions by 11.71%, 4.61%, and 3.92%, respectively.
Besides, bicyclists who live in rural areas are more likely to be
seriously injured in cycling crashes at T-junctions, and the
variable increases the occurrence probability of slight injury
by 1.4%.

4.3. Intersection Characteristics. Regarding the intersection
characteristics, in Table 5, many statistically significant
factors influence bicyclist injury severity. Consistent with
previous research [15], traffic control strategies enforced at
intersections appear to be effective in reducing the possibility
of serious and fatal injury. For instance, regarding the speed
limit strategy at intersections, the factor decreases the oc-
currence probability of serious injuries that occurred at
roundabouts, crossroads, and T-junctions by 4.05%, 7.06%,
and 5.9%, respectively. However, nonsignalized control
strategies at intersections decrease serious and fatal injury
while increasing the possibility of slight injuries. Such factor
increases the occurrence probability of slight injury at
roundabouts, crossroads, and T-junctions by 1.61%, 1%, and
1.03%, respectively. At the nonsignalized intersections, bi-
cyclists and drivers might consciously slow down, thus ef-
fectively reducing the occurrence of fatal and severe
casualties [28]. Similarly, bicyclists are less likely to be in-
volved in fatal or severe crashes that occurred at urban
intersections due to integrated traffic control stratagems.

)e widely accepted view is that the implication of road
facilities (for example, divider facilities between motor and
bicycle lanes) can improve the safety of cyclists. However,
this study finds that the provision of divider facilities at
roundabouts and T-junctions increases the likelihood of
fatal and serious injury. )e indicator increases the occur-
rence probability of serious injury at T-junctions by 4.12%. It
is mainly due to the fact that divider facilities are more likely
to cause a secondary collision when the crash occurred, and
the secondary collision will significantly increase the oc-
currence of fatal or severe casualties. It is worth noting that,
consistent with the results in Kim et al. [14], cycling on wet
roads was more prone to severe or fatal injury. To be specific,

the indicator increases the occurrence probability of serious
injuries that happened at the roundabouts by 60.92%.

4.4. Environmental Conditions. Several environmental
conditions related variables are found to affect bicyclist injury
severity significantly, as shown in Table 5. Consistent with
previous research, bad weather can result in more dangerous
cycling [17, 19, 23]. However, the impact of environmental
conditions on the probability of cycling crashes that occurred
at the various intersections is quite dissimilar. Interestingly,
rainy days only affected the possibility of cycling crashes at
roundabouts and intersections, and the variable decreases the
likelihood of fatal and serious injury while increasing the
occurrence probability of slight injury. In particular, on rainy
days, more consideration should be paid to cycling safety at
roundabouts, since the factor can increase the occurrence
probability of slight injury at roundabouts by 12.01%. Besides,
foggy days only have a significant impact on cycling safety at
crossroads. In particular, it significantly increases the likeli-
hood of serious injury crashes, and the factor can increase the
occurrence probability of serious injury by 12.01%.

It is generally considered that lighting conditions are
directly related to the visibility of the bicyclist and drivers,
which will directly affect the severity of cycling crashes.
However, in this study, we find out that lighting conditions
only have a significant effect on the likelihood of serious
cycling crashes at T-junctions. Opening up the street lights at
night reduces the possibility of the slight injury, and the lack
of street lights increases the likelihood of serious injury.
However, with or without street lights, we need to be more
careful when cycling near T-junctions at night [13, 14].

In previous studies, researchers have found that seasons
and months have a significant influence on the probability
of bicyclist injury severity [27]. Furthermore, in this study,
we discover February and June significantly affect bicyclist
injury severity only at T-junctions and roundabouts,
separately. In particular, in May and October, we need to
pay more attention to the possibility of severe cycling
crashes at crossroads, and the factors increase the occur-
rence probability of serious injury by 1.99% and 2.03%,
respectively.

4.5. Bicyclist Movement and Location Preceding the Crash.
In Table 5, a wide range of movement-related variables
shows a statistically significant influence on the outcome of
the bicyclist injury severity. Individually, at roundabouts,
making a right turn, changing lanes to the left, and overtaking
inside the intersections are statistically significant factors re-
lated to bicyclist injury severity. As for cross sections, stopped
following going straight, stopped following turning right,
overtaking inside the intersections, entering the main road
from the intersection, and changing lanes to the left are sta-
tistically significant factors related to bicyclist injury severity.
And the variables, including parked, stopped following going
straight, making a right turn, waiting and turn right, overtaking
inside the intersections, entering the main road from the in-
tersection, and riding on the wrong road, will affect the severity
of the injury that occurred at the T-junctions.
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Particularly, consistent with the previous research [11],
parked or making a right turn has a significant effect on
cycling safety. Interestingly, in this study, these two factors
only appear to have statistically significant impact on the
bicyclist injury severity at T-junctions, and the factor of
parked at T-junctions increases the occurrence probability of
slight injury by 18.72% while decreasing the occurrence
probability of serious injury by 19.45%. However, changing
lanes to the left does not show any significant influence on the
likelihood of bicyclist injury severity at T-junctions and shows
a considerable effect on severe or fatal cycling crashes at
roundabouts and cross sections. Correspondingly, the factor
will increase the occurrence probability of serious injury at
roundabouts and crossroads by 5.04% and 12.88%, respec-
tively. Moreover, cycling on the pavement can also signifi-
cantly impact the likelihood of bicyclist injury severity at
roundabouts and crossroads, and the factor increases the
occurrence probability of serious injury that occurred at these
two types of intersections by 7.33% and 1.51%, respectively.

4.6. Type of Collision. As shown in Table5, the type-of-colli-
sion indicators, including the collision point at the front, back,
right, and left, and the secondary collisions that occurred in or
off the road, could impact the cycling crash injury severity, and
the impact is statistically significant. Similar to previous studies
[13, 14, 27], this study also found that the severity of cycling
crashes at various intersections can be distinctly affected by the
collision point. Specifically, the collision point at the front and
leftmerely appears to have statistically significant impact on the
bicyclist injury severity at crossroads and T-junctions, mainly
since there are few left-turn traffic volumes at roundabouts.)e
factor of the collision point at the front will increase the oc-
currence probability of serious injury at crossroads and
T-junctions by 6.96% and 6.22%, respectively. In comparison,
the factor of the collision point at the left will decrease the
occurrence probability of serious injury at crossroads and
T-junctions by 6.08% and 8.03%, respectively. Interestingly, in
this study, we discover that the factors of the collision point at
the back and left will decrease the probability of serious injury
whiling increasing the likelihood of slight injury. Above all, the
collision point at the front or back is mainly caused by cycling
when going straight. Due to the faster speed of vehicles, serious
cycling crash severity is more likely to occur. Besides, since the
vehicle speed is always slower while turning at the intersections,
the probability of slight injury is more likely to occur at the left
and right collision points.

)e widely accepted opinion is that the secondary col-
lision is dangerous. However, in this study, we find that the
indicator of secondary-collision-on-road only affects the
severity of cycling crashes at T-junctions, and the factor
increases the occurrence probability of serious injury by
4.45% while decreasing the occurrence probability of slight
injury by 4.55%. Also, it should be noted that the indicator of
the secondary-collision-off-road significantly increases the
likelihood of severe cycling crashes. In Table 6, the factor
increases the occurrence probability of serious injury at
roundabouts, crossroads, and T-junctions by 10.98%, 6.8%,
and 9.31%, respectively.

5. Conclusions

To improve the cycling safety of bicyclists at various in-
tersections, in this study, we apply the GOL model and PPO
model to explore the possible factors that may result in the
severity of bicycle injuries. Particularly, according to the
statistical characteristics of data on bicycle crashes that
occurred in the UK from 2009 to 2019, the intersections in
this study are divided into three groups, including round-
abouts, intersections, and T-shaped intersections. )e bi-
cyclist injury severity is divided into three categories: slight
injury, serious injury, and fatal injury. A wide range of
possible factors affecting bicyclist injury severities, including
bicyclist characteristics, intersection characteristics, envi-
ronmental conditions, bicyclist movement and location
preceding the crash, and types of collisions, is considered.

)e model estimation results reveal that the PPO model
outperforms the GOL model for analyzing the factors that
affect the severity of cycling crashes at various intersections.
Further, we calculated the marginal effects of the variables in
the PPO model to explore the differences of factors that
influence the occurrence probability of bicyclist injury se-
verity at various intersections. Regarding the estimation
results of the bicyclist injury severity, we find out that there
are gigantic differences in the factors that influence the
severity of cycling crashes at various intersections. Partic-
ularly, we find that nine variables have significant impacts on
bicyclist injury severity at those three types of intersections,
including male bicyclists, age, speed limit, traffic control
strategies at intersections, urban junctions, overtaking inside
the intersections, the collision point at the back of the bi-
cycle, the collision point at the right of the bike, and the
secondary collision happened on the roadside. Interestingly,
there are two variables (cycling in wet road and cycling in
June) that only have significant impact on bicyclist injury
severity at roundabouts. And four variables (cycling in find
days, cycling in foggy days, cycling in May, and cycling in
October) are discovered to only have significant impact on
bicyclist injury severity at crossroads. Surprisingly, up to
eleven variables are discovered to only have significant
impact on bicyclist injury severity at T-junctions, and the
variables include the cyclist is a villager, journey purpose is
to or from work, pupil is going to or from school alone,
cycling in night peak hours, cycling in the night with a light
on the road, cycling in the night without a light on the road,
cycling in February, parked, turning right, cycling in the
busway, and the secondary collision happened on the road.

Moreover, in this study, we also found that the factors
affecting the cycling safety of intersections may also appear
to have significant impact in different seasons, which means
these factors may not be homogeneous with the time change.
Due to the limitations of the PPOmodel, we cannot consider
the temporal heterogeneity of various influencing factors in
the analysis, and we will continue to focus on such issues in
subsequent studies. With the growing importance relating to
bicyclist safety, this paper provides some essential initial
findings with the dataset from the UK and also provides
some guidance for the analysis of cycling crashes from other
countries. Anyway, this study can help decision makers
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better understand the spatial heterogeneity of the factors that
influence the bicyclist injury severity at various intersections.
)us, more specific and efficient measures can be provided
to enhance cycling safety at different types of intersections.
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Accurate prediction and reliable significant factor analysis of incident clearance time are two main objects of traffic incident
management (TIM) system, as it could help to relieve traffic congestion caused by traffic incidents. +is study applies the extreme
gradient boosting machine algorithm (XGBoost) to predict incident clearance time on freeway and analyze the significant factors
of clearance time.+e XGBoost integrates the superiority of statistical andmachine learning methods, which can flexibly deal with
the nonlinear data in high-dimensional space and quantify the relative importance of the explanatory variables.+e data collected
from theWashington Incident Tracking System in 2011 are used in this research. To investigate the potential philosophy hidden in
data,K-means is chosen to cluster the data into two clusters.+e XGBoost is built for each cluster. Bayesian optimization is used to
optimize the parameters of XGBoost, and the MAPE is considered as the predictive indicator to evaluate the prediction per-
formance. A comparative study confirms that the XGBoost outperforms other models. In addition, response time, AADT (annual
average daily traffic), incident type, and lane closure type are identified as the significant explanatory variables for clearance time.

1. Introduction

According to Lindley [1], traffic incidents result in about
60% of nonrecurrent traffic congestions. +ese congestions
may cause lots of adverse effects such as reducing the
roadway capacity, increasing the likelihood of secondary
incidents [2], and unfavorable social and economic phe-
nomenon [3]. When a traffic incident occurred, timely and
reliable incident duration prediction plays an important role
in the traffic authorities to design strategy for traffic guid-
ance. In terms of Highway Capacity Manual, there are four
phases in traffic incident duration [4]: detection time (the
time from incident occurrence to detection), response time
(the time from incident detection to verification), clearance
time (the time from incident verification to clearance), and
recovery time (the time from incident clearance to the
normal traffic condition). Severe incidents that are not
cleared in time may lead to a twice even three times incident
duration [5]. Compared to other phases, clearance time is

the most important and time-consuming phase in the time
incident process. +us, the aims of this paper are to effec-
tively predict the clearance time and investigate the sig-
nificant influencing factors of clearance time.

Over the past few decades, a large number of works have
been undertaken to predict the incident duration time.+ese
approaches can be mainly categorized into statistical ap-
proaches and machine learning approaches. Statistical
methods have their own model assumptions and predefined
underlying relationships between dependent and indepen-
dent variables [6] which provide the explainable ability to
statistical methods. +e widely used statistical methods are
summarized as follows: probabilistic distribution analyses
method [7, 8], regression method [9–13], discrete choice
method [14], structure equation method [15], hazard-based
duration method [16], Cox proportional hazards regression
method [17–19], and accelerated failure time method
[20–23]. Unlike statistical methods, machine learning
methods are based on a more flexible mapping process that
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requires no or less prior hypothesis. And flexible mapping
allows machine learning methods to handle the nonlinear
data in the high-dimensional space, but it cannot explore the
potential relationship between dependent variables and
independent variables. +ese widely used machine learning
methods are categorized as K-nearest neighborhood method
[24–27], support vector machine method [26–28], Bayesian
networks method [29–34], artificial neural networks method
[2, 35–37], genetic algorithm [37, 38], tree-based method
[25, 39–41], and hybrid method [42].

In summary, conventional incident clearance time
prediction studies rely on either statistical models with prior
assumptions or machine learning models with poor inter-
pretability [43]. To solve the abovementioned issues, we
apply the extreme gradient boosting machine (XGBoost)
method to predict the clearance time and then investigate
the significant influencing factors of traffic incident clear-
ance time. Because the XGBoost inherits both the advantages
of statistical models and machine learning models, which
can handle the nonlinear high-dimensional data when
computing the relative importance among variables.

In this study, the prediction performance of XGBoost is
examined by using the data from the Washington Incident
Tracking System in 2011. In order to better explore the
potential philosophy hidden in the original data, we cluster
the original data in terms of their inherent properties. And
then XGBoost model is built for each cluster.+e framework
of the proposed method is detailed in Section 3.5.

+e remaining of this research is organized as follows.
+e data source is described in Section 2. Section 3 presents
the K-means algorithm, the XGBoost algorithm, the
Bayesian optimization algorithm, evaluation indicator, and
the framework of the proposed method. +e model results
and discussion are outlined in Section 4. +e last section is
the conclusion.

2. Data Description

Traffic incident data were collected from the Washington
Incident Tracking System (WITS), which occurred on the
section from Boeing Access Road (Milepost 157) to the
Seattle Central Business District (Milepost 165). +is seg-
ment is not only a high incident-occurrence area but also
takes on heavy traffic demand [44]. +erefore, it was chosen
as the research object. And the annual average daily traffic
(AADT) comes from the Highway Safety Information
System (HSIS) database. +e historical weather data were
obtained from the National Oceanic and Atmospheric
Administration (NOAA)’s weather stations in the region.
+e components of the data are detailed in Table 1.+ere are
14 discrete explanatory variables and 2 continuous ex-
planatory variables in this dataset. In terms of their prop-
erties, they are divided into six categories: incident,
temporal, geographical, environment, traffic, and opera-
tional. +e detailed value sets of variables are presented as
the third column in Table 1. In order to equalize the vari-
ability of independent variables, both response time and
AADT variables are normalized [41, 43–46].

Totally, 2565 incident records were retrieved from the
WITS database for the time period from 1 January to 31
December 2011. +e mean and standard values of clearance
time are, respectively, 13.10minutes and 14.63 minutes. A
big standard value (14.63 min) means that most of the
clearance time values are quite different from their average
values.+at is, the original data should be processed to make
the data organized well.

3. Methodology

3.1. K-Means Algorithm. K-means algorithm, developed by
MacQueen [47], is one of the widely used methods in the
field of dataset clustering. Samples in the dataset with similar
characteristics can be clustered into the same class by using
K-means [48]. +e data we used in this research are
expressed as {xi � [xi1, xi2, . . . , xim], yi}, i � 1, 2, 3, . . . , n

and n represents the number of incidents,m is the number of
explanatory variables, and the y denotes the actual clearance
time. +e detailed steps of the K-means algorithm are
presented as follows:

Step 1: assuming the number of clusters (K clusters)
and choosing the cluster centers from the dataset
randomly.
Step 2: determining the clusters of other samples by the
distance function as

xi ∈ Ca, if xi − Oa


< xi − Ob


. (1)

Here, the Oa and Ob are the centers of the cluster a and
cluster b, and Ca denotes the cluster a.
Step 3: after all samples have been clustered, the new
center of each cluster should be calculated by using the
following equation:

Oj �
i∈Ca

xi

NC

, j � 1, 2, 3, . . . , K, (2)

where NC is the number of the samples in cluster j.
Step 4: repeating step 2 and step 3 until the center of the
cluster is within the permission.
Accordingly, we can find that the value of K and the
cluster center are important to the clustering perfor-
mance, as the clustering of K-means is extremely de-
pendent on the selection of initial cluster center and the
number of K. To obtain a reasonable K, we use the
silhouette coefficient as the evaluation index, which is
proposed by Rousseeuw [49] and defined as follows:

s(i) �

1 −
a(i)

b(i)
, if a(i)< b(i),

0, if a(i) � b(i),

b(i)

a(i)
− 1, if a(i)> b(i).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)
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Here, the a(i) is the average distance between sample i
and other samples within the same cluster, and the b(i)

is the lowest average distance of sample i to all the
remaining samples.

3.2. Extreme Gradient Boosting Machine Algorithm. Chen
and Guestrin [50] proposed the extreme gradient boosting
machine (XGBoost) algorithm. It is regarded as the advanced
application of gradient boosting machine (GBDT) and adopts
decision trees as the base learners for achieving classification
and regression. Boosting is the integrated approach that can
adjust the predicted error of the current model by adding new
models to the model [41]. +e predicted result of the boosting
model is the sum scores of all models. Accordingly, the pre-
diction of XGBoost is the sum scores of K boosted trees and is
shown in the following equation:

yi � ∅ xi(  � 
K

k�1
fk xi( , fk ∈ F, (4)

where xi is the ith sample, fk(xi) is the score of xi at the ith

boosted tree, and F is the space composed of boosted trees.
To decrease the fitting error of XGBoost, there is an im-
provement in regulation compared to GBDT, and it is
presented as follows:

obj(Θ) � 
n

i�1
l yi, yi(  + 

K

k

Ω fk( , (5)

where yi and yi are the actual and predicted values of the ith

sample, the former item is the loss function, which needs to
be a differentiable convex function, and the latter item is the
penalty corresponding to the model complexity for avoiding
overfitting. +e second item of equation (5) can be detailed
as follows:

Ω(f) � cT +
1
2
λ

T

j�1
w

2
j , (6)

where both c and λ are constants, Tdenotes the sum number
of leaves, and wj is the score of jth leaf. When equation (6)
equals zero, the obj(Θ) will convert to the conventional
formula of GBDT.

According to equations (5) and (6), the training error
and the model complexity are the two main sections of
XGBoost. When the previous trees have been trained, the
current tree can be trained by using additive training
method. It means that when the tth boosted tree is trained,
the parameters of the previous trees (from the first tree to the
(t − 1)th tree) are fixed and their corresponding variables are
constant. Taking the tth boosted tree as an example, the loss
can be expressed as follows:

obj(Θ)
t

� 
n

i�1
l yi, yi

t
  + 

T

t�1
Ω ft( . (7)

+ere are two formulas in these two items of (7):

Table 1: Description of explanatory variables for clearance time.

Category Variable Value set
Response time R+

Incident

Incident type

0� others
1� disabled
2� debris

3� abandoned vehicle
4� collision

Lane closure type

0� others
1� single lane

2�multiple lane
3� all travel lane
4� total lane

Injury involved 0�no; 1� yes
Fire involved 0�no; 1� yes

Work zone involved 0�no; 1� yes
Heavy truck involved 0�no; 1� yes

Temporal

Time of day 0� daytime; 1�night (22 : 00–6 : 00)
Day of week 0�weekdays; 1�weekends

Month of year
0� other seasons

1� summer (Jun, Jul, and Aug)
2�winter (Dec, Jan, and Feb)

Geographic HOV 0�no; 1� yes

Environment Weather
0� others
1� rainy
2� snowy

Traffic Peak hours (6 : 00–9 : 00, 15 : 00–18 : 00) 0�no; 1� yes
AADT R+

Operational Traffic control 0�no; 1� yes
Washington State Patrol (WSP) involved 0�no; 1� yes
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yi
t

� yi
(t− 1)

+ ft xi( , (8)



T

t�1
Ω ft(  � 

T−1

k�1
Ω fk( ⎛⎝ ⎞⎠ +Ω ft( . (9)

+e first items of equations (8) and (9) are the sum score
and sum regulation of former (t − 1)th trees and the second
items of them are the score and regulation of the tth boosted
tree, yi

t is the predicted value of the tth iteration, and


T
t�1Ω(ft) is the regulation of tth iteration.
Equations (8) and (9) are substituted into equation (7),

and then equation (7) is expanded by using the following
Taylor formula:

f(x + Δx) ≈ f(x) + f′(x)Δx +
1
2
f″(x)Δx2

. (10)

+e yi
(t− 1) is considered as x and the ft(xi) is

regarded as Δx. +en, equation (7) is transformed as
follows:

obj(Θ)
t

� 
n

i�1
l yi, yi

(t− 1)
+ ft xi(   + Ω ft(  + constant

≈ 
n

i�1
l yi, yi

(t− 1)
  + gift xi(  +

1
2
hi ft xi( ( 

2
 

+ Ω ft(  + constant

� 
n

i�1
gift xi(  +

1
2
hi ft xi( ( 

2
  + Ω ft(  + constant.

(11)

As Chen and Guestrin [50] suggested, ft(x) can also be
written as

ft(x) � ωq(x), ω ∈ R
K

, q: R
d⟶ 1, 2, . . . , d{ }, (12)

where q(x) is the leaf node of x, the ωq(x) indicates the
weight of q(x) or that can be considered as the predicted
value of the tth iteration, and d is the number of leaf nodes.
+en, equation (11) can be expressed as follows:

obj(Θ)
t

� 
n

i�1
giwq xi(  +

1
2
hi wq xi(  

2
 cT

+
1
2
λ

T

j�1
wj

2
+ constant

� 
T

j�1

i∈Ij

gi
⎛⎜⎝ ⎞⎟⎠wj +

1
2


i∈Ij

hi + λ⎛⎜⎝ ⎞⎟⎠wj
2⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

+ cT + constant,

(13)

where gi and hi are the first order and second order of
gradient statistics. When the q(x) is fixed, the optimal leaf
weight and the metric function can be used to measure the
quality of the tree structure q(x) can be calculated:

wj
∗

� −
i∈Ij

gi

i∈Ij
hi + λ

,

obj(q) � −
1
2



T

j�1

i∈Ij
gi 

2

i∈Ij
hi + λ

+ cT.

(14)

3.3. Bayesian Optimization Algorithm. Bayesian optimiza-
tion algorithm (BOA), one of the most famous extendible
applications of the Bayesian network, is based on the con-
struction of the probabilistic model. +is model defines the
distribution of objective function from the input data to
output data. In this Bayesian optimization process, the global
statistical characteristics are obtained from the optimal
solutions and modeled by using the Bayesian network [51].
+at is why the BOA shows its advantage in machine
learning models because these machine learning models
need more accurate parameters to flexibly handle nonlinear
high-dimensional data [52]. In this study, the BOA is applied
to optimize the parameters in the XGBoost with the aim to
accurately predict the traffic incident clearance time.

+e accomplishment of Bayesian optimization includes
two core parts: prior function (PF) and acquisition function
(AC), which is also called the utility function [51]. Gaussian
process (GP) is generally considered as the PF. And the AC is
used to balance the model exploration and exploitation. +e
framework of Bayesian optimization is presented in Figure 1
and the main steps are described as follows: (1) +e data is
split into training data and validation data by using the k-
fold cross-validation method. Initialization parameters of
the target model are defined as θ1, θ2, . . . , θn . (2) +e
accuracy of the target model with initial parameters is
evaluated by using validation data, and then the accuracy is
recorded. +e goal of the optimization is to minimize val-
idation accuracy. (3) Gaussian process (GP) is employed to
fit the recorded accuracy. (4) +e parameters of the target
model are updated in terms of the result of GP. +en, the
maximum value of AC is used to select the next point, as it
achieves the optimization by determining the next point to
evaluate. Probability of improvement, expected improve-
ment, and information gain are the three widely used AC
[51]. In this study, expected improvement is chosen as the
AC. +en, the best validation accuracy is mathematically
written as follows:

α(θ,GP) � 
∞

−∞
max L − L

∗
,GP( PGP(L | θ)dL, (15)

where L is the validation accuracy and PGP(L | θ) is the
probability of L with θ that is executed by using GP.

3.4. Evaluation Indicator. In general, the mean absolute
percent error (MAPE) is a commonly used predictive in-
dicator to evaluate the prediction performance of the re-
gressive model. As mentioned above, the data are described
as {xi � [xi1, xi2, . . . , xim], yi}, i � 1, 2, 3, . . . , n, that can be
considered as a matrix with the size of n∗m. Specifically, n is
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the number of incidents and yi represents the actual value of
the ith incident. Considering pi is the predicted value of the
ith incident. +en, the MAPE can be expressed as follows:

MAPE �


n
i�1 yi − pi( /yi




n
× 100%. (16)

In terms of this formula, the MAPE is a relative predictive
indicator that can measure the prediction performance of the
models based on actual values and predicted values.

3.5. Framework of the Proposed Method. As introduced in
Section 2, we need a suitable way to handle the original
dataset to organize the dataset well for exploring the po-
tential philosophy hidden in data easier. To this end, in this
research, we select the K-means algorithm as the method to
cluster the original dataset into several categories in which
the data are high similarity. +en, the XGBoost model is
built for each category to perform prediction.+emain steps
of the proposed method are introduced as follows:

Step 1: clustering the original data into several cate-
gories by using the K-means algorithm. +e number of
clusters is determined by the optimal silhouette coef-
ficient (the detailed information is introduced in Sec-
tion 3.1).
Step 2: splitting the clustered data into training data and
testing data for each category. Using the training data to
constructs the XGBoost model.

Step 3: the BOA is used to optimize parameters for each
constructed XGBoost model.
Step 4: inputting the testing data into the trained
XGBoost, and then the predicted clearance time will be
output and recorded.
Step 5: calculating the predictive indicator (MAPE) and
the relative importance of explanatory factors

Noting that with the number of traffic incidents in-
creasing, the dataset will be updated continuously, and thus
the XGBoost should be retrained.

4. Prediction Result and Discussion

+ere are two objects of this study: (a) examining the
performance of the XGBoost model in predicting clearance
time and (b) investigating the significant factors of clearance
time. We firstly process the original data, including data
clustering, and clustering evaluation. Next, the data are split
into training data and testing data with a ratio of 7 : 3. +e
XGBoost is trained by using training data, and the testing
data are used for model evaluation. +en, comparison re-
search examines the prediction performance of XGBoost.
MAPE is chosen as a predictive measure. Finally, the relative
importance of all the explanatory variables is calculated, and
the significant explanatory variables of incident clearance
time are analyzed. Overall, the proposed model is accom-
plished by coding and executing at Python.

Start

Whether the model parameters are
initialized or not

Yes

Collecting the parameters
which generate the maximum

AC in last iteration

No

Obtaining the number of
parameters and initializing

parameters

Gaussian process
regressionTraining

Calculating the maximum
AC with (x, y) and
recording the (x, y)

Determine whether y
meets expectations or not

Yes

Outputting the (x, y)

No

Figure 1: Parameter-tuning process of Bayesian optimization.
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4.1. Data Preprocessing. Before modeling, the original
dataset has been processed by means of the K-means al-
gorithm. As described in Section 3.1, the number of clusters
(K) is the key parameter of the K-means algorithm. To find
the bestK, the values ofK increasing from 2 to 10 are selected
to calculate the corresponding silhouette coefficient, and the
results are shown in Table 2. Assuming the iteration stops
when the silhouette coefficients for continuous 5 iterations
are not improved. +e iteration stops when K� 7, as the
silhouette coefficients of continuous 5 iterations are de-
creasing. In terms of equation (3), a higher silhouette co-
efficient indicates a better clustering performance.
According to Table 2, when K� 2, the silhouette coefficient
reaches the biggest value (0.613), which means K is set as 2 in
this study. In this case, the original data are clustered into
two clusters in this study. To present each cluster clearly, we
draw the scatter plots of the target variable and one of the
explanatory variables (which is chosen randomly), shown in
Figure 2. +e x-axis is clearance time and the y-axis denotes
the response time. Figure 2(a) shows the scatter plot of these
two variables in the original data, while Figure 2(b) shows
the scatter plot of the clustered data. As shown in
Figure 2(b), the cluster 1 marked with purple represents
relative shorter clearance time, and cluster 2 marked with
yellow indicates longer clearance time.

In order to knowledge the characteristic of two clusters
clearly, several essential indexes are calculated and presented
in Table 3. In total, there are 2246 incidents in cluster 1 and
319 incidents in cluster 2. Regarding cluster 1, the mean,
standard, median, and range values of clearance time are 9
minutes, 5.44 minutes, 7.00 minutes, and 22 minutes. In
respect to cluster 2, these values, respectively, are 39.25
minutes, 15.25 minutes, 35 minutes, and 75 minutes.
Compared median value to mean value within each cluster,
we can find that median values are, respectively, bigger than
mean values for both two clusters. +e result indicates that
the distributions of clearance time in two clusters are
skewed, instead of normal distribution. +en, we calculate
the skew values of two clearance time distributions, and they
are 0.92 in cluster 1 and 1.59 in cluster 2. Both of them
present right-skewed, which are consistent with previous
studies [26, 39, 41]. Distribution figures of clearance time in
two clusters are shown in Figures 3(a) and 3(b).

Both Figures 3(a) and 3(b) present long-tail distributions
with the range values of 22 and 75. It is difficult to handle the
data with such a wide value range [53]. In this case, in order
to make the distribution of clearance time closer to the
normal distribution, we use data transformation to deal with
clearance time data in two clusters. Regarding cluster 1, the
skew value of clearance time is 0.92 which is between 0.5 and
1, indicating the median skewed.+erefore, according to the
empirical method, we apply the square transformation to
handle clearance time in cluster 1. In respect to cluster 2, the
skewed value is 1.59 which is larger than 1, leading to a
highly skewed. +e log transformation is used to convert
clearance time in cluster 2. Distributions of transformed
clearance time are presented in Figures 3(c) and 3(d). In
Figure 3, the blue line is the fitting curve of clustered data
and the black line denotes the normal distribution curve

which is fitted by their calculated mean and standard values.
As shown in Figures 3(c) and 3(d), the distributions of
transformed data are closer to normal distribution.

4.2. Parameter Optimization. In general, there are three
approaches to optimize parameters, including the systematic
grid search approach, the random search approach, and the
Bayesian optimization approach. +e grid search approach
works well as it systematically searches the entire search
space, but time-consuming. In contrast, the random search
approach runs fast while it may miss the best value as it
searches randomly in the search space. Bayesian optimiza-
tion is the process of continuously sampling, calculating, and
updating the model. In overall, we apply the Bayesian op-
timization method to find the optimal parameters in
XGBoost. +ese parameters include max depth of the tree
(max_depth), the number of trees (n_estimators), the
learning rate of the tree (learning_rate), percent of randomly
sampling for trees (subsample), sum of minimum leaf node
sample weights (min_child_weight), and percentage of
randomly sampled features (colsample_bytree). +e in-
creasing of n_estimators may improve the accuracy of
XGBoost but increase the computing time too. +e max_-
depth is used to avoid overfitting. In contrast, the larger
min_child_weight will result in underfitting. Both sub-
sample and min_child_weight, respectively, denote the row
and column sampling. +e meaning of the learning rate is
identified to avoid overfitting and increase the robustness of
the model [54]. +erefore, all these parameters should be
optimal for achieving the best model performance.

+e Bayesian optimization is packaged in a module of
python, called Hyperopt [55]. +e objective function (fmin),
search space (space), optimal algorithm (algo), and the maxi-
mum numbers of evaluations (max_evals) are four main objects
of the Hyperopt, which is used to accomplish BOA. In this
research, the XGBoost is the fmin, tree of Parzen estimator de-
faults as the algo, and the max_evals is generally set as 4. Re-
garding search space, we set n_estimators∈ [50, 500],
learning_rate∈ [0.05, 0.1], max_depth∈ [2, 10], subsample∈
[0.1, 0.9], colsample_bytree∈ [0.1, 0.9], and min_child_weight∈
[2, 12]. In addition, we use 5-fold cross-validation during pa-
rameter tuning, and the result is shown in Table 4.

Regarding cluster 1, the n_estimators, learning_rate,
max_depth, subsample, colsample_bytree, and min_-
child_weight are, respectively, set as 140, 0.09, 6, 0.5, 0.7, and
3. In respect to cluster 2, the best prediction performance of
XGBoost is obtained when the n_estimators� 100, the
learning_rate� 0.05, the max_depth� 5, the sub-
sample� 0.5, the colsample_bytree� 0.3, and the min_-
child_weight� 5. +e XGBoost model reaches its best
prediction performance when using these optimal param-
eters. And the MAPE values of optimized XGBoost for two
clusters are 0.348 and 0.221, respectively.

Table 2: Corresponding silhouette coefficient of each K.
K 2 3 4 5 6 7
Silhouette coefficient 0.613 0.447 0.422 0.418 0.396 0.352
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4.3. Comparison Analysis. To examine the prediction per-
formance of XGBoost in clearance time prediction, we select
several commonly used models including support vector re-
gression (SVR) model, random forest (RF) model, and Ada-
boost model for comparison. To ensure fairy comparison, the
testing data and the parameter-tuning method (BOA) of all
models are the same. For the SVR model, we select the radial
basis function (RBF) as the kernel function. +e gamma and
penalty C are two key parameters of RBF and are set as 0.1, 64,
and 0.15, 32 for two clusters. For the RF model, the number of
trees (n_estimators), the maximum depth of the tree (max_-
depth), the minimum number of samples of internal node
splitting (min_samples_split), and the minimum number of
leaf nodes (min_samples_leaf) are the four key parameters, and
they are set as 195, 8, 11, and 23 in the cluster 1 and 100, 13, 18,
and 12 in the cluster 2. In regard to the Adaboost model, the
same with RF model, n_estimators, max_depth, and min_-
samples_split should be identified. In addition, the learnin-
g_rate and the maximum features in splitting (max_features)
also need to be optimized. +ese parameters of Adaboost in
two clusters are set as 470, 6, 25, 0.05, 7 and 425, 9, 30, 0.11.+e
MAPE for four candidates is shown in Table 5, and the smallest
values for two clusters are marked in bold.

As shown in Table 5, for cluster 1, the MAPE values of
XGBoost, SVR, RF, and Adaboost are 0.348, 0.363, 0.357,
and 0.383. +e XGBoost represents the smallest MAPE,
showing its superiority in clearance time prediction for
cluster 1. As for cluster 2, the MAPE values of XGBoost,
SVR, RF, and Adaboost are 0.221, 0.253, 0.228, and 0.231.
Compared to other models, the XGBoost represents the
smallest MAPE (0.221). It means the XGBoost model out-
performs SVR, RF, and Adaboost in both two clusters. +is
result confirms the superiority of XGBoost in clearance time
prediction.

4.4. Importance Evaluation for Explanatory Factors.
Different explanatory variables have different effects on the
target factor [56, 57]. To investigate the significant factors of
clearance time, the relative importance of each explanatory
factor is calculated by using the XGBoost with optimal
parameters for two clusters. An explanatory factor with
higher relative importance means that it generates a stronger
effect on clearance time [41]. In this study, we assume that
factors with relative importance greater than 8.0% are de-
fined as significant explanatory factors, the relative impor-
tance of the general factor is from 2.5% to 8.0%, and the
remaining explanatory factors are considered as insignifi-
cant factors. In this case, the explanatory factors with its
importance are shown in Table 6.

As for cluster 1, AADT (17.70%), incident type (17.30%),
response time (15.10%), and lane closure type (8.00%) are
categorized into the significant explanatory factors of
clearance time as their relative importance is bigger than
8.00%. +e general factors of clearance time include six
explanatory factors, such as WSP involved (7.60%), month
of year (6.10%), traffic control (5.00%), weather (4.70%), day
of week (4.60%), and peak hours (3.10%). And the remaining
HOV (2.50%), time of day (2.10%), heavy truck involved
(1.70%), injury involved (1.70%), and work zone involved
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Figure 2: Scatter plots of data. (a) Scatter plot of the original dataset. (b) Scatter plot of the clustered dataset.

Table 3: Statistical characteristics of clearance time.

Cluster 1 2
Count 2246.00 319.00
Mean 9.00 39.25
Standard 5.44 15.25
Min 3.00 21.00
25% 5.00 29.00
Median 7.00 35.00
75% 12.00 45.00
Max 25.00 96.00
Skew 0.92 1.59
Range 22.00 75.00
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(0.30%) are regarded as the insignificant explanatory vari-
ables in cluster 1. Regarding cluster 2, four explanatory
factors are included in significant explanatory factors to
clearance time, including AADT (14.00%), incident type
(12.8%), response time (22.30%), and lane closure type
(8.40%). And fire involved (8.40%), weather (6.10%), month
of year (6.10%), traffic control (6.10%), injury involved
(5.00%), and HOV (2.80%) are the general explanatory
factors. Peak hours (2.20%), heavy truck involved (2.20%),

WSP involved (1.70%), day of week (1.10%), time of day
(0.60%), and work zone involved (0.20%) are categorized
into insignificant explanatory factors to incident clearance
time.

+at is, for both two clusters, AADT, incident type,
response time, and lane closure type are considered as the
significant explanatory factors of clearance time. But the
same factor may generate varying impacts on clearance time
in the different datasets [58]. In detail, the AADT is the
greatest contribution to shorter clearance time in cluster 1
and generates the second impacts on longer clearance time
in cluster 2 with the relative importance of 17.70% and
14.00%, respectively. Generally speaking, AADT represents
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Figure 3: Distributions of clearance time. (a) Original clearance time distribution of cluster 1. (b) Original clearance time distribution of
cluster 2. (c) Log-transformed clearance time distribution of cluster 1. (d) Square-transformed clearance time distribution of cluster 2.

Table 4: +e optimal parameters in XGBoost.

Cluster 1 2
n_estimators 140 100
learning_rate 0.09 0.05
max_depth 6 5
subsample 0.5 0.5
colsample_bytree 0.7 0.3
min_child_weight 3 5

Table 5: Prediction results for different models.

Cluster XGBoost SVR RF Adaboost
1 0.348 0.363 0.357 0.383
2 0.221 0.253 0.228 0.231
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the characteristic of current traffic [59, 60].+at is, the traffic
congestion with a high AADT may make the incident dif-
ficult to clear, leading to longer clearance time. As for in-
cident type, it respectively contributes 17.30% and 12.80% to
short and long clearance time and ranks the second in cluster
1 and the third in cluster 2. As shown in Table 1, the incident
type factor consists of disabled vehicles, debris, abandoned
vehicles, collision, and others. +ese incidents may block
normal traffic [61, 62]. In this case, the transportation au-
thorities may make a series of strategies to deal with the
problems caused by these incidents [63, 64]. Interestingly,
the longer clearance time seems less sensitive to incident
type than shorter clearance time. Maybe a long clearing time
means a high severity of the crash. With the relative im-
portance of 15.10% and 22.3%, the response time factor is the
third contributor for shorter clearance time in cluster 1 and
yields the biggest impacts on longer clearance time in cluster
2. +e result shows that longer clearance time is more
sensitive to response time compared to shorter clearance
time, which is consistent with the previous studies [18, 19].
For every minute, the response time increases, and the
clearing time will increase by one percent [18, 19]. +e lane
closure type factor is the fourth contributed factor for both
two clusters. It indicates the severity of incidents by
restricting vehicles from entering the incident site [41].

5. Conclusions

In this study, XGBoost is applied to predict incident
clearance time that occurred on the freeway and investigates
the significant factors of clearance time by using the data
collected from the Washington Incident Tracking System in
2011. We firstly introduce the original data and the proposed
method briefly. +e original data are clustered by using the
K-means algorithm for better exploring the underlying re-
lationship. +en, we built the XGBoost model for each
cluster. Each clustered data is divided into 70% training data
and 30% testing data. Training data are applied for modeling
XGBoost and optimizing parameters on the basis of 5-fold

cross-validation BOA. Testing data are used to measure the
prediction performance of XGBoost. And the MAPE is
considered as the predictive indicators in this paper. To
examine the model performance of XGBoost, support vector
regression (SVR), random forest (RF), and Adaboost are
chosen to predict the clearance time. +e comparing study
manifests that the XGBoost outperforms the other three
models with the lowest MAPE in both two clusters. To
obtain the significant factors of clearance time, we calculate
the relative importance of each explanatory factor and then
define the quantitative indexes about significant explanatory
factors, general explanatory factors, and insignificant ex-
planatory factors. +e result is that response time, AADT,
incident type, and lane closure type are the significant ex-
planatory factors of clearance time.

It is worth noting that the traffic incident is the time-se-
quential process [65]. And almost the incident information is
acquired from that process [66]. Modeling based on the ac-
quired incident information is the limitation of the proposed
method in this study. Because, during the initial stage of the
incident, the prediction may not be accurate due to the ac-
quired information is incomplete. For future research, mul-
tistage updates of information should be a promising future
research direction. In addition, strategies about dealingwith the
unobserved heterogeneity of dependent variables, especially in
traffic incidents filed, may be a hot topic, due to some omitted
variables (e.g., driving behavior) that may generate potential
impacts on the target variable.
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Table 6: Relative importance of explanatory factors on clearance time.

Cluster 1 2
Rank Variable Relative importance (%) Variable Relative importance (%)

Significant explanatory factors

1 AADT 17.70 Response time 22.30
2 Incident type 17.30 AADT 14.00
3 Response time 15.10 Incident type 12.80
4 Lane closure type 8.00 Lane closure type 8.40

General explanatory factors

5 WSP involved 7.60 Fire involved 8.40
6 Month of year 6.10 Weather 6.10
7 Traffic control 5.00 Month of year 6.10
8 Weather 4.70 Traffic control 6.10
9 Day of week 4.60 Injury involved 5.00
10 Peak hours 3.10 HOV 2.80

Insignificant explanatory variables

11 HOV 2.50 Peak hours 2.20
12 Fire involved 2.50 Heavy truck involved 2.20
13 Time of day 2.10 WSP involved 1.70
14 Heavy truck involved 1.70 Day of week 1.10
15 Injury involved 1.70 Time of day 0.60
16 Work zone involved 0.30 Work zone involved 0.20
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Traffic accidents are often related to the driver’s driving behavior, which is mainly decided by his or her characters. In order to
explore the correlation of traffic accident risk with driver characters, the age, driving experience, and driving style were statistically
analyzed based on the China In-Depth Accident Study (CIDAS) database. Taking the number of casualties in the accident as
evaluation indicators, the grey cluster analysis was used to classify the drivers into four accident risk ranks: low, medium to low,
medium to high, and high. ,e results show that drivers aged 18–30 years are more likely to induce accidents; drivers with 6–10
years of driving experience have the highest risk to accidents, followed by drivers with 4-5 years of driving experience; and the
driving style is also highly correlated with accident risk tendency.

1. Introduction

In China, especially in urban roads, due to mixed traffic
flows, the traffic situation is more complicated. Although the
accident rate is decreasing year by year, the number of
casualties is still high every year [1]. For example, it is re-
ported 0.9 per cent year-on-year decrease for 2018 in China,
but there were still 166,906 traffic accidents in cars, which
killed 46,161 people and injured 169,046 people. In addition,
according to the reports of traffic accidents, nearly 90% of
accidents are caused by human factors, and the human
becomes one of the most unstable factors in causing traffic
safety problems [2]. Traffic accidents are often related to the
driver’s driving behavior, which is mainly decided by his or
her characters, such as the age, driving experience, and
driving style. Drivers’ willingness to reflect the driving style
characteristics is based on their own driving ability, danger,
and emergency handling attitude [3, 4]. It is particularly
urgent to study the correlation of traffic accident risk ten-
dency with driver characters.

Accident Tendency ,eory is one of the ancient and
most widely known accident causation theories, which holds

that accidents are indeed related to human personality [5]. In
addition, from the statistical point of view, a certain type of
driver would show more likely to be accident-prone than
other drivers under the same driving environment condi-
tions, which can be called the driver’s accident tendency. In
other words, accident propensity refers to individuals who
have the characteristics of accident-prone among drivers [6].

,e Grey System ,eory was founded in 1982 by the
Chinese scholar Professor Deng Julong. It is a systematic
subject with the uncertainty system, which is mainly used to
study the “small sample uncertainty problem” and describes
the versatile factors that are difficult to describe quantita-
tively [7, 8]. ,e generation and development of known
information is used to extract valuable information and
achieve a correct description of the system’s operational
behavior, evolutionary rules, and effective monitoring [9].
,e problem of traffic accident risk with driver characters is
not only complicated but also changes with time and en-
vironment. It can be summarized as follows: the system
factors are not completely clear, the relationship between
factors is not completely clear, the system structure is not
fully known, and the principle of the system is not
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completely clear, that is to say, the system is an “information
incomplete” system. ,erefore, the system consisting of
people and vehicles is a typical grey system, which is suitable
for the grey system theory [10].

Exploring the correlation of traffic accident risk with
driver characters, such as the age, driving experience, and
driving style, would be an effective way to improve the traffic
safety [11]. Based on the statistics of the actual traffic ac-
cident cases occurred from 2014 to 2016 in the CIDAS
database, this paper analyzes the characters of drivers in-
volved in these accidents, and the grey cluster analysis was
used to classify the drivers into four accident risk ranks. ,is
study would provide a theoretical basis for improving the
domestic traffic design and standardizing the driving be-
havior of drivers.

2. Data and Methods

2.1. Data. ,e China In-Depth Accident Study (CIDAS)
project was launched on July 15, 2011, by China Automotive
Technology Research Center and several well-known au-
tomobile enterprises. It aims to provide basic data support
and technical services for the automobile industry through
in-depth investigation, analysis, and research on road traffic
crashes in China [12].

356 crash cases are selected from the road vehicle ac-
cidents of the CIDAS project from 2014 to 2016 based on the
following sampling criteria: (1) passenger car involvement,
(2) detailed records of driver characters, (3) detailed injury
records, (4) clear causation of the accident, and (5) age of the
drivers ranging between 18 and 60 years.

2.2. Methods. A grey cluster evaluation model is established
to classify the drivers’ accident risk rank, and the main steps
are as follows:

(1) Giving the cluster whitening number: select n
clustering objects, get m clustering indicators, and
construct an n×m matrix.

(2) Inputting the cluster whitening number into the
computer, entering the grey clustering analysis and
evaluation algorithm, including the clustering
whitening number to be averaged and dimension-
less; determining the grey class where each clustering
index value belongs to each clustering object; using
the valuation method or interpolation method to
obtain the whitening weight function value of each
grey class; calibrating the clustering weight grey
number matrix; and constructing the clustering
matrix.

(3) Performing grey evaluation based on the result of
step (2).

2.2.1. Definition of Grey Cluster Objects and Indicators.
,e numbers of minor injuries, serious injuries, and deaths
in the accident are selected as the evaluation indicators, and

then the evaluation index matrix is constructed according to
the following equation:

Xm×n �

9 4 5

10 4 0

4 2 0

⋮ ⋮ ⋮

1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where m represents the number of the evaluation object,
m ∈ 1, 2, 3, · · · , 47{ }; n is the evaluation index, n ∈ 1, 2, 3{ };
and n� 1, 2, 3 represents the number of minor injuries,
serious injuries, and deaths in the accident, respectively. ,e
range method is used to measure the indicators without
dimension, shown as equation (2):

Xmn �
xmn
′ − xmin

xmax − xmin
, (2)

where xmn
′ is the elements in the matrix and xmin and xmax

are the minimum and the maximum element in the matrix,
respectively. ,e evaluation matrix after dimensionless
processing is shown in the following equation:

Xm×n �

0.9 0.4 0.5

1.0 0.4 0

0.4 0.2 0

⋮ ⋮ ⋮

0.1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

2.2.2. Determining of Ash and Whitening Values. ,e driver
accident risk rank is classified into four levels: low, medium
to low, medium to high, and high. It is represented by the
grey class k� 1, 2, 3, and 4, respectively, and then the
evaluation matrix after dimensionless treatment is used to
perform the cumulative frequency analysis [13, 14]. ,e
whitening values of the four levels of the driver’s risk ten-
dency are represented by λ1n, λ2n, λ3n, λ4n, which are the relative
values of the cumulative frequencies of the curves of 15%,
40%, 60%, and 85%, respectively.,ematrix of λ is described
in the following equation:

λ � λ1n, λ2n, λ3n, λ4n  �

0.1 0.1 0.3 0.4

0 0 0.1 0.3

0 0 0 0.2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

2.2.3. Construction of the Grey Class Whitening Weight
Function. ,e segmentation function can be used to con-
struct the whitening weight function of the driver’s risk
tendency of inducing an accident [15–17]. ,e symbol fk

n

indicates the whitening weight function of the nth clustering
evaluation index, which belongs to subclass K. ,e whit-
ening weight function of the indicator corresponding to
minor injury, severely injury, and death is fk

1, fk
2, and fk

3,
respectively. Taking the minor injury indicator fk

1 for
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example, the whitening weight function of four levels of risk
tendency can be obtained from equations (5) to (8)

f
1
1 �

1, x ∈ [0, 0.1],

0, x ∈ (0.1, 1],

⎧⎨

⎩ (5)

f
2
1 �

0, x ∉ [0.1, 0.3],

0.3 − x

0.3 − 0.1
, x ∈ [0.1, 0.3],

⎧⎪⎨

⎪⎩
(6)

f
3
1 �

0, x ∉ [0.1, 0.4],

x − 0.1
0.3 − 0.1

, x ∈ [0.1, 0.3],

0.4 − x

0.4 − 0.3
, x ∈ (0.3, 0.4],

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

f
4
1 �

0, x ∈ [0, 0.3],

x − 0.3
0.4 − 0.3

, x ∈ (0.3, 0.4],

1, x ∈ (0.4, 1].

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

,en, the clustering weight will be determined by the
following equation:

ηk
n �

λk
n


3
n�1 λ

k
n

· 1 −
b

i
 , λk

j ≠ 0,

1
i
, λk

j � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

whereηk
n and λk

n are the clustering weight and whitening
value, respectively, of the nth evaluation index in the kth grey
category and b is the number of λk

n, which is equal to 0, i� 3.
According to equation (9), the grey cluster weight matrix

of each evaluation index can be obtained for each subclass.
,en, the reanalysis of grey clustering will be performed, the
grey cluster evaluation value σk

m, which means the cluster
evaluation value of the mth evaluation object in the kth grey
class can be determined by the following equation:

σk
m � 

3

n�1
f

k
mX

n
mη

k
n. (10)

,e cluster evaluation value sequence of the evaluation
object m σk

m � (σ1m, σ2m, · · · , σk
m) will be used to identify the

accident tendency level of m.

3. Results

3.1. Characters of Accident Vehicles Drivers. Traffic accidents
are often related to the driver’s driving behavior, which is
mainly decided by his or her characters, and age, driving
experience, and driving style are the main characters related
with the handling performance [18–22].

3.1.1. Age. ,e drivers were divided into four age groups: 18
to 30 years old, 31 to 40 years old, 41 to 50 years old, and 51 to
60 years old. Figure 1 shows the age distribution of the
drivers in traffic accident vehicles.

Figure 2 shows the number of casualties caused by
different age groups.

Drivers aged 31–40 years account for the maximum
number of traffic accidents, while drivers aged 51–60 years
have the minimum number of traffic accidents and they also
have the lowest casualties. Drivers in the 41–50 age group
have the highest number of fatal accidents, followed by
drivers in the 51–60 age group. ,e visual characteristics,
response time, speed estimation accuracy, and operation
ability of drivers would change with the increase of age to a
certain extent [23–25], so age would consequently influence
a driver’s accident risk tendency.

3.1.2. Driving Experience. Driving experience is an objective
evaluation index related with the driver’s driving ability
[26–29]. In this study, the drivers were divided into six
groups based on their driving experience: 3 years and below,
4 to 5 years, 6 to 10 years, 11 to 15 years, 16 to 20 years, and
20 years and above. Figure 3 shows the distribution of
driving experience of drivers in accidents.

It can be seen that the drivers in the 6–10-year driving
experience group contribute the most number of accidents,
followed by the drivers in the 3-year driving experience
group, and the drivers with 20 years or more driving ex-
perience account for the lowest number of accidents.

3.1.3. Road Types. Figure 4 shows the distribution of the
road types where the accident occurred. In this study, four
kinds of road types are involved: straight, curved road,
intersection, and crossroad. ,e accidents occurred on the
straight road account for the highest proportion (44.45%) in
the total accidents, followed by intersections and crossroads.
If we consider the integration of data at intersections and
crossroads, the number of accidents at intersections is more
than half of the total number of accidents, which is con-
sistent with other literatures [30–33].

32%

33%

28%

7%

18 to 30 years old
31 to 40 years old

41 to 50 years old
51 to 60 years old

Figure 1: Age distribution of the drivers in traffic accident vehicles.
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3.1.4. Driving Style. Due to the significant deviation of the
driver’s gender in data samples, the accident cases involved
female driver only accounts for 7.5% of the total sample, and
the correlation of the driver’s driving style with accident risk
tendency was analyzed without gender-specific.

Figure 5 shows the distribution of driving styles of the
accident vehicle drivers, which were recorded for each ac-
cident case in the CIDAS database, but the driving styles
were declared by the driver himself. In the CIDAS database,
the driving styles include three types that are adventure style,
conservative style, and general style [34].

It can be seen from Figure 5, the general style and
conservative style should be responsible for most accidents,
which were not agreed with common recognition that the

adventure style drivers will have higher accident rates
[35–38].

3.2. Analysis of Driver’s Accident Risk Tendency

3.2.1. Grey Cluster Objects and Indicators. ,e drivers were
divided into 47 classification groups as the object of grey
clustering based on their age, driving experience, and driving
style. ,e nonexistent combination and the combination
with zero evaluation index were eliminated, as shown in
Table 1.

3.2.2. Assessment Value of Drivers’ Accident Risk Tendency in
Various Character Groups. Table 2 lists the grey clustering
assessment value of drivers’ accident risk tendency in var-
ious character groups, and the groups with high accident risk
tendency are given in italic.
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Table 1: Grouping of driver characteristics.

Number
Driver characters Evaluation index

Age/year Driving experience/year Driving style Slightly injured Seriously injured Death toll
1 18 to 30 years old ≤3 Conservative 9 4 5
2 31 to 40 years old ≤3 Conservative 10 4 0
3 41 to 50 years old ≤3 Conservative 4 2 0

. . . . . . . . . . . . . . . . . .

45 51 to 60 years old 11～15 Adventure 0 0 1
46 41 to 50 years old 16～20 Adventure 3 0 0
47 51 to 60 years old 16～20 Adventure 1 0 0

Table 2: Grey clustering calculation results of accident tendency of each group with driver characteristics.

Number
Driver characters

Anecdotal tendency
Age/year Driving experience/year Driving style

1 18 to 30 years old ≤3 Conservative Medium to high
2 31 to 40 years old ≤3 Conservative Medium to high
3 41 to 50 years old ≤3 Conservative Medium to high
4 18 to 30 years old 4～5 Conservative High
5 31 to 40 years old 4～5 Conservative Medium to high
6 41 to 50 years old 4～5 Conservative High
7 18 to 30 years old 6～10 Conservative Medium to low
8 31 to 40 years old 6～10 Conservative Medium to low
9 41 to 50 years old 6～10 Conservative High
10 31 to 40 years old 11～15 Conservative Medium to high
11 41 to 50 years old 11～15 Conservative Medium to low
12 51 to 60 years old 11～15 Conservative Low
13 41 to 50 years old 16～20 Conservative Low
14 51 to 60 years old 16～20 Conservative Medium to low
15 41 to 50 years old ≥20 Conservative Medium to low
16 51 to 60 years old ≥20 Conservative Low
17 18 to 30 years old ≤3 General High
18 31 to 40 years old ≤3 General Medium to high
19 41 to 50 years old ≤3 General Medium to high
20 18 to 30 years old 4～5 General High
21 31 to 40 years old 4～5 General Medium to low
22 41 to 50 years old 4～5 General Medium to low
23 51 to 60 years old 4～5 General Medium to low
24 18 to 30 years old 6～10 General High
25 31 to 40 years old 6～10 General High
26 41 to 50 years old 6～10 General High
27 51 to 60 years old 6～10 General Low
28 18 to 30 years old 11～15 General Low
29 31 to 40 years old 11～15 General Medium to high
30 41 to 50 years old 11～15 General Medium to low
31 31 to 40 years old 16～20 General Medium to low
32 41 to 50 years old 16～20 General Medium to high
33 51 to 60 years old 16～20 General Medium to low
34 31 to 40 years old ≥20 General Low
35 41 to 50 years old ≥20 General Medium to low
36 51 to 60 years old ≥20 General Medium to low
37 18 to 30 years old ≤3 Adventure High
38 41 to 50 years old ≤3 Adventure Medium to high
39 18 to 30 years old 4～5 Adventure Medium to high
40 31 to 40 years old 4～5 Adventure Medium to low
41 41 to 50 years old 4～5 Adventure Medium to high
42 18 to 30 years old 6～10 Adventure Medium to high
43 31 to 40 years old 6～10 Adventure Medium to low
44 41 to 50 years old 6～10 Adventure Medium to high
45 51 to 60 years old 11～15 Adventure High
46 41 to 50 years old 16～20 Adventure Medium to low
47 51 to 60 years old 16～20 Adventure Medium to high
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4. Discussion and Conclusions

4.1. Age Characteristics of Drivers with High Accident
Tendency. ,e age distribution of drivers with high accident
risk tendency is mainly concentrated in the age group of 18
to 30 years old. ,e main accident causation is the driver’s
illegal driving behaviors, such as robbing road priority and
overtaking, and these accidents usually occurred in rush
hours. From the perspective of psychological characteristics,
young people have strong aggressive psychology, blind self-
confidence, and possible expectation imbalance.

4.2. Driving Experience Characteristics of Drivers with High
Accident Tendency. From the perspective of the driving
experience, the drivers with 6–10 years of driving experience
have the highest risk tendency, followed by the drivers with
4–5 years of driving experience. Drivers who have just
started driving for 3 years or less are more cautious in their
mental preparation, and drivers with more than 10 years of
driving experience can deal with all kinds of unexpected
situations with all kinds of skills. While a driver who is not
senior but has some proficiency in road traffic rules and
driving skills will be more risky when overtaking, violating,
and so on and consequently has a higher risk tendency to
causing accidents.

4.3.Driving StyleCharacteristics ofDriverswithHighAccident
Tendency. It can be seen from the results that three driving
styles of drivers have similar accident risk tendency, and the
general drivers should be responsible for the most accidents,
which was not agreed with the common recognition that the
adventure style drivers will have higher accident rates. ,e
main reasons for this result are as follows: first, the driving
style was declared by drivers themselves, there may be
subjective interference in the classification of the driver’s
driving style, people often misjudge themselves, or they do
not consider the change of their driving style during their
trip, for example, the irregular driving of other vehicles make
them feel anger or confusion; second, the accident rate of
three styles of drivers would be a better evaluating indicator
to indicate the correlation of the driver’s driving style with
accident risk tendency.

What we need to point out here is that, in this study, only
the numbers of drivers in different age groups, driving style
groups, and road types are used in statistical analysis, but in
fact, drivers in different age groups would have different
exposure of driving. Younger or middle-aged drivers may
have more traveling miles than teen or older drivers. ,e
number of causalities per mile may be a better indicator than
considering only the number of causalities, and different
road types also take up different proportions of all the trips.
If the exposure of different types can be considered, the
importance of intersections could be better explained. But
due to the lack of relevant data in the current database, these
parameters cannot be obtained right now. Considering the
important statistical significance of these parameters, we will
further update the procedure of in-depth accident investi-
gation and record more valuable data.

,e above research results show that drivers aged 18–30
years are more likely to induce accidents; drivers with 6–10
years of driving experience have the highest risk to accidents;
and the driving style is also highly correlated with accident
risk. ,e research on the characters of drivers with high
accident risk tendency is conducive to targeted education
and prevention of accidents in the future driving training
and management.

Data Availability

,e data used to support the findings of this study have been
deposited in the figshare repository. ,e link is https://
figshare.com/s/bd4d605f61a1bf71fba7.

Conflicts of Interest

,e authors declare that there are no conflicts of interest.

Acknowledgments

,is work was financially supported by the Hunan Province
Natural Science Outstanding Youth Fund (No. 2019JJ20017)
and the National Natural Science Foundation of China (No.
51875049/51705035).

References

[1] Ministry of Public Security, Annual Report on Road Traffic
Accidents of the People’s Republic of China, Traffic Manage-
ment Bureau of the Ministry of Public Security, Beijing,
China, 2015.

[2] J. W. Niu, X. M. Zhang, Y. P. Sun et al., “Research on driving
behavior of drivers taking over autopilot vehicles in dan-
gerous situations,” China Journal of Highway and Transport,
vol. 31, no. 6, pp. 272–280, 2018.

[3] L. Sun, R. S. Chang, Y. Dong et al., “Impact of driving ex-
perience on driver’s driving style and traffic violations,”
Chinese Journal of Health Psychology, vol. 22, no. 2,
pp. 222–224, 2014.

[4] S. Li, “Effect of risk behavior attitude on drivers’ driving style,”
Chinese Journal of Health Psychology, vol. 24, no. 10,
pp. 1458–1460, 2016.

[5] H. Q. Jin, Y. Song, S. L. Zhang et al., “Construction of control
model for traffic accident prevention system based on acci-
dent orientation theory,” Ergonomics, vol. 17, no. 1, pp. 73–77,
2011.

[6] H. Q. Jin, “Driving Suitability,” Hefei, Anhui People’s Pub-
lishing House, Hefei, China, 1995.

[7] F. Y. Dong, M. D. Xiao, B. Liu et al., “Analysis of the con-
struction method of whitening weight function in grey system
teaching,” Journal of North China University of Water Engi-
neering, Natural Science Edition, vol. 31, no. 3, pp. 97–99,
2010.

[8] J. B. Hu and X. T. Cao, “Analysis of driver characteristics of
road traffic accidents,” China Journal of Highway and
Transport, vol. 22, no. 6, pp. 106–110, 2009.

[9] Z. D. Zhao, “Application and analysis of grey system theory in
automobile engineering,” Journal of Chongqing University of
Technology (Natural Science), vol. 28, no. 3, pp. 10–16, 2014.

[10] S. Y. Yan, Weapon Equipment Ergonomics,” Harbin,
pp. 344–359, Harbin Institute of Technology Press, Weihai,
China, 2009.

6 Journal of Advanced Transportation

https://figshare.com/s/bd4d605f61a1bf71fba7
https://figshare.com/s/bd4d605f61a1bf71fba7


[11] M. Q. Guan and Q. N. Gong, “Analysis of drivers’ incidence
tendency of construction vehicles based on grey clustering
method,” Highway, vol. 22, no. 11, pp. 182–187, 2017.

[12] L. Hu, X. Hu, J. Wan, M. Lin, and J. Huang, “,e injury
epidemiology of adult riders in vehicle-two-wheeler crashes in
China, Ningbo, 2011-2015,” Journal of Safety Research, vol. 72,
pp. 21–28, 2020.

[13] H. M. Zhou, Y. Sun, and X. J. Xu, “Research on freedom lane
change behavior of urban road vehicles based on random
utility theory,” Journal of Transportation Research, vol. 3,
no. 2, pp. 9–16, 2017.

[14] L. Hu, Y. Zhong, W. Hao et al., “Optimal route algorithm
considering traffic light and energy consumption,” IEEE
Access, vol. 6, pp. 59695–59704, 2018.

[15] L. Hu, J. OU, J. Huang, Y. Chen, and D. Cao, “A review of
research on traffic conflicts based on intelligent vehicles,”
IEEE Access, vol. 8, pp. 24471–24483, 2020.

[16] P. Kumar, M. S. Bains, N. Bharadwaj et al., “Impact assess-
ment of driver speed limit compliance behavior on macro-
scopic traffic characteristics under heterogeneous traffic
environment,” Transportation Letters Fe International
Journal of Transportation Research, vol. 4, no. 3, pp. 1–12,
2018.

[17] W. Qi, R. Z. Wang, and L. Wang, “Driving risk detection
model of deceleration zone in expressway based on gener-
alized regression neural network,” Journal of Advanced
Transportation, vol. 2018, no. 6, Article ID 8014385, 8 pages,
2018.

[18] L. Hu, S. Y. Fang, and Q. Chen, “Research on parameters
influence of automobile-two-wheel vehicle collision accident
reconstruction based on orthogonal experiment,” Automotive
Engineering, vol. 38, no. 5, pp. 567–573, 2016.

[19] L. Hu, X. Hu, Y. Che et al., “Reliable state of charge estimation
of battery packs using fuzzy adaptive federated filtering,”
Applied Energy, vol. 262, 2020.

[20] P. Yong, C. J. Fan, L. Hu et al., “Tunnel driving occupational
environment and hearing loss in train drivers in China,”
Occupational and Environmental Medicine, vol. 76, no. 1,
pp. 97–104, 2019.

[21] H. J. Hou, L. S. Jin, Z. W. Guan et al., “,e influence of driving
style on driving behavior,” China Journal of Highway and
Transport, vol. 31, no. 4, pp. 22–31, 2018.

[22] Y. L. Zhai, Y. Q. Jin, and H. F. Chen, “Fatigue characteristics of
drivers of different ages based on EEG signal analysis,” China
Journal of Highway and Transport, vol. 31, no. 4, pp. 63–81, 2018.

[23] Z. Zhang, L. Zhang, L. Hu, and C. Huang, “Active cell bal-
ancing of lithium-ion battery pack based on average state of
charge,” International Journal of Energy Research, vol. 44,
no. 4, pp. 2535–2548, 2020.

[24] H. Q. Wu, S. J. Kuang, and H. B. Hou, “Research on appli-
cation of electric vehicle collision based on reliability opti-
mization design method,” International Journal of
Computational Methods, vol. 16, no. 7, pp. 1–15, 2019.

[25] L. ZhengY. S. Chen et al., “Research on static distance of
queuing vehicles at signalized intersection based on computer
vision,” Journal of Highway and Transportation Research and
Development, vol. 16, no. 2, pp. 95–100, 2018.

[26] X. H. Zhao, J. Rong, and Z. Q. Zhang, Driving Behavior
Simulation Experiment Platform and its Application Research,
People’s Communications Press, Beijing, China, 2013.

[27] J. W. Han, Z. Q. Liu, B. Gong et al., “Mechanism analysis of
urban road traffic accidents based on bayesian network,”
Science and Technology Innovation and Application, vol. 6,
no. 8, pp. 23-24, 2017.

[28] X. Yue, Y. Ding, H. Hu et al., Analysis on the Association
between Driver’s Macroscopic Characteristics and Accident
Type of Urban Traffic Accidents, China Control Conference,
Shenyang, China, 2017.

[29] H. P. Wang and S. Eli, “Fuzzy clustering evaluation of altitude
suitability for driving in continuous driving time,” Science
Technology and Engineering, vol. 2, no. 10, pp. 319–324, 2017.

[30] F. Chen, M. T. Song, and X. X. Ma, “Investigation on the
injury severity of drivers in rear-end collisions between cars
using a random parameters bivariate ordered probit model,”
International Journal of Environmental Research and Public
Health, vol. 16, no. 14, pp. 26–32, 2019.

[31] F. Chen and S. Chen, “Injury severities of truck drivers in
single- and multi-vehicle accidents on rural highways,” Ac-
cident Analysis & Prevention, vol. 43, no. 5, pp. 1677–1688,
2011.

[32] R. Du, G. Qiu, K. Gao, and L. Hu, “Abnormal road surface
recognition based on smartphone acceleration sensor,” Sen-
sors, vol. 20, no. 2, p. 451, 2020.

[33] X. Yu, B. Li, T. Zhang, C. Tan, and H. Yan, “Variable weight
coefficient optimization of gearshift actuator with direct-
driving automated transmission,” IEEE Access, vol. 8,
pp. 4860–4869, 2020.

[34] K. Gao, S. Huang, F. Han, S. Li, W. Wu, and R. Du, “An
integrated algorithm for intersection queue length estimation
based on IoT in a mixed traffic scenario,” Applied Sciences,
vol. 10, no. 6, pp. 2078–2088, 2020.

[35] J. L. Zhang, X. Y. Wang, M. S. Wang et al., “Transition
probability and prediction of vehicle driving tendency in
three-lane dynamic environment,” Journal of Transportation
Systems Engineering, vol. 17, no. 1, pp. 82–90, 2017.

[36] Y. Kong, R. S. Chang, T. J. Liu et al., “A comprehensive
predictive model of driver’s subjective fatigue state and
steering wheel angle for accident tendency,” Ergonomics,
vol. 24, no. 2, pp. 40–46, 2018.

[37] D. Yang, Y. Z. Zhang, Y. Q. Zhang et al., “Comparative study
on traffic injuries between Chinese expressways and ordinary
highways from 2004 to 2015,” Journal of Fird Military
Medical University, vol. 39, no. 6, pp. 589–596, 2017.

[38] F. Chen, H. R. Peng, X. X. Ma et al., “Examining the safety of
trucks under crosswind at bridge-tunnel section: a driving
simulator study,” Tunnelling and Underground Space Tech-
nology, vol. 92, p. 103034, 2019.

Journal of Advanced Transportation 7



Research Article
Driving Fatigue Prediction Model considering Schedule and
Circadian Rhythm

Qi Zhang ,1,2 Chaozhong Wu ,1,2 and Hui Zhang 1,2

1Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan, China
2Engineering Research Center of Transportation Safety, Ministry of Education, Wuhan, China

Correspondence should be addressed to Hui Zhang; zhanghuiits@whut.edu.cn

Received 29 December 2019; Accepted 5 February 2020; Published 19 March 2020

Guest Editor: Zeyang Cheng

Copyright © 2020 Qi Zhang et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Driver fatigue level was considered an accumulated result contributed by circadian rhythms, hours of sleep before driving, driving
duration, and break time during driving. *is article presents an investigation into the regression model between driver fatigue
level and the above four time-related variables. With the cooperation of one commercial transportation company, a Naturalistic
Driving Study (NDS) was conducted, and NDS data from thirty-four middle-aged drivers were selected for analysis. With regard
to the circadian rhythms, commercial drivers operated the vehicle and started driving at around 09:00, 14:00, and 21:00, re-
spectively. Participants’ time of sleep before driving is also surveyed, and a range from 4 to 7 hours was selected. *e commercial
driving route was the same for all participants. After getting the fatigue level of all participants using the Karolinska Sleepiness
Scale (KSS), the discrete KSS data were converted into consecutive value, and curve fitting methods were adopted for modeling. In
addition, a linear regression model was proposed to represent the relationship between accumulated fatigue level and the four
time-related variables. Finally, the prediction model was verified by the driving performance measurement: standard deviation of
lateral position. *e results demonstrated that fatigue prediction results are significantly relevant to driving performance. In
conclusion, the fatigue prediction model proposed in this study could be implemented to predict the risk driving period and the
maximum consecutive driving time once the driving schedule is determined, and the fatigue driving behavior could be avoided or
alleviated by optimizing the driving and break schedule.

1. Introduction

Driving fatigue is a major safety issue in transportation,
which has been identified to be associated with an increased
risk of traffic collisions on roads because fatigued drivers
tend to be unfocused with reaction time increases and
impaired driving performance [1]. Deaths caused by road
traffic accidents has risen to 1.35 million in 2018 [2].
Generally, accidents that are directly or indirectly caused by
fatigue driving account for 30%–45% [3]. Operating vehicles
when drivers are fatigued, they are endangering themselves
and others. 31% of highway vehicle drivers admitted to
driving while they were unable to keep their eyes open [4].
Approximately, each year 100,000 fatigue driving accidents
reported in the United States cause 1,550 deaths and 71,000
injuries [5]. Based on nationwide statistics in Canada, about

20% of drivers noddedoff or fallen asleep while driving and
kill about 400 Canadians each year [6, 7]. In China, the traffic
accident mortality rate caused by fatigue driving is twice that
caused by other reasons [8]. With regard to the frequency of
fatigue-caused accidents, it accounts for 10%–20% of all road
traffic accidents in Europe [9]. To reduce the risk of traffic
accidents and prevent fatigued driving [10], most countries
have implemented their own hours of driving regulations
[11–16]. However, those regulations differ from country to
country and mainly include two aspects: the maximum
duration on-duty and rest break during driving (Figure 1).

With the aim to detect or predict the fatigue status of
drivers, more measurements including contextual, contact,
or contactless physiological features; driver behavior; vehicle
maneuver; and environment [17, 18], and more complex
mathematical algorithms [17, 19, 20] were proposed.

Hindawi
Journal of Advanced Transportation
Volume 2020, Article ID 9496259, 10 pages
https://doi.org/10.1155/2020/9496259

mailto:zhanghuiits@whut.edu.cn
https://orcid.org/0000-0003-1426-1909
https://orcid.org/0000-0003-3338-0436
https://orcid.org/0000-0003-4206-4339
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9496259


Whether in simulation experiments or field study, devices
such as eye trackers and electroencephalograph recorders were
equipped to collect data that will be used in algorithms
[21–23]. All these studies are processing new algorithms, based
on probability or statistics models and specific indicators,
driving fatigue detection and prediction models were estab-
lished through data mining. *ese studies have demonstrated
that driving fatigue is detectable and predictable. However,
those algorithms take long terms in driving fatigue data
processing and optimal parameters training; even their ac-
curacy of fatigue detection reached 80–90%, not ready to be
implemented in real-time fatigue detection and prediction,
especially in the case of new samples. *is makes such al-
gorithms more suitable for detection rather than for predic-
tion, especially in the field driving environment, and it is
difficult to obtain accurate physiological data. And obtained
algorithms mostly tend to deal with the subtle driver factors
during the driving process, rather than analyzing the fatigue
value change throughout a given schedule. So, it is necessary to
develop a fatigue predictionmodel for a whole driving process.

Fatigue is an accumulated result contributed by several
factors; generally, fatigue is considered a suboptimal psy-
chophysiological condition caused by sleep, rest, circadian
effects, and daily activities [24]; with regard to driving, daily
activities specifically refer to driving. Progressive decrement
of driving performances proved the negative influence of
consecutive driving, which was confirmed closely related to
driving fatigue. By analyzing the driving log, Jovanis et al.
found that drivers will be fatigued and the accident risk will
rise after driving 4 hours without rest or break [25]. After
analyzing 1,924 driving events, Lin et al. found the accident
risk in the first 4 hours is low. But the risk would increase
more than 50% in the following 3 hours, and increased
80–130% during the final hour [26]. Forty drivers were
recruited in the field driving experiments, and Ma analyzed
their driving records and found that those drivers showed
more driving errors and poor driving performance after
consecutive driving 3.5 hours [27]. In a 6-hour simulated
driving experiment, Jing et al. recorded four drivers’
physiological information and found that 235 minutes
should be the consecutive driving time threshold [28].

In addition, taking enough sleep and rest during con-
secutive schedules are the two main effective methods to

relieve fatigue in the field driving environment and simu-
lators. In some driving simulation experiments, the neu-
rocognitive measures of vigilance, reaction time, and driving
performance were evidenced to impair after sleep depri-
vation [29, 30]. Other findings from field experiments also
proved that drivers showed more tendencies to be drowsy
after experienced sleep deprivation [31, 32]. In a statistical
analysis of the hours of sleep for drivers who were involved
in a representative sample of crashes, Tefft found that the
shorter the drivers slept in the 24 hours before crashing, the
more odds the drivers should be culpable for their crashes
[33]. Besides the sleep before driving, the rest breaks between
driving stages can also help drivers recover from driving
fatigue. In the regulation of hours of service (HoS) [34], a
term related to rest breaks was firstly included. *e rule
categorically stated that “Driving is not permitted if more
than 8 hours have passed since the end of the driver’s last off-
duty or at least 30 minutes since sleeper berth period.” Chen
and Xie analyzed 183 crash events and 398 noncrash events
and found that the more the rest break was taken, the more
the crash odds could be reduced [12]. After 4 hours of
consecutive field driving, Yuhua et al. found that it was
difficult for electrocardiograph signal return to a normal
level unless male and female drivers rested at least 24 and 27
minutes, respectively [35]. *e circadian rhythms have been
proved to have an impact on drivers’ fatigue; their alertness
and performance vary across the day driven by the circadian
rhythm [36]. *e circadian rhythm also caused a higher
proportion of sleep-related accidents to occur, mostly in the
early morning and early afternoon, mainly ranging in two
periods (02:00–05:00 and 13:00–16:00) [37–42] between the
thick black lines in Figure 2.

It could be concluded that the four time-related indi-
cators, time of sleep before driving, rest time, circadian
rhythm, and consecutive driving time, all have an influence
on driving fatigue. *ose algorithms completed in the
previous research used the drivers’ parameters or the rele-
vant parameters of the vehicles being driven; not all of the
four time-related factors were taken into account, so these
algorithms can only perform short-term fatigue detection of
prediction. *e purpose of this article is to study a newly
developed fatigue prediction model; with more than one
feature, the model is expected that the precision could be
improved and as concise as possible, only considering the
four mentioned variables, and could model the fatigue for
the whole driving process.

2. Experimental Design and Data Processing

By cooperating with a commercial transportation company,
one regular transportation schedule was finally selected, G70
(Han-Shi) Expressway from Wuhan to Xiangyang, China,
which is more than 6 h of round-trip travel. Considering the
time span of the experiment was more than 6 hours, all of the
participants need to meet the following requirements: no
sleep disorder, no job on shift or night routines, in good
health, not on medication, and no serious disease in nearly
five years; more male drivers were selected during this ex-
periment as shown in Figure 3.
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Figure 1: National regulation on driving time.
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Two weeks before the experiments, one recruitment
notice for participant recruiting was issued in the cooperate
company, and any driver who was actively licensed and met
the appeal requirements can register. All of the participants
were also required to abstain from drinking alcohol, tea, and
caffeine within 72 hours before the driving schedule, and
record their time of sleep within 24 hours before the driving
schedule. Finally, a total of 50 participants who were actively
licensed and in normal health, especially free from any sleep
disorders [43, 44], were recruited from the company; they all
signed informed consent agreement prior to their partici-
pation and got 500 yuan for his/her contribution, which was
almost one time higher than their usual daily salary.

During the schedule, participants could take a break in
one service area [1, 8] when they feel extremely fatigued and
consider continue driving will lead to high collision risk, and
the driver’s face and the surrounding environment were
recorded by several cameras (Figure 4(a)); a vision-based
lane departure warning device Mobileye C2-270 was used to
record the lane position data at a sampling rate of 8Hz
(Figure 4(b)), and all of the equipment were installed in one
automatic transmission private vehicle (Figure 4(c)).

To obtain data with a large change in the fatigue level,
driving schedules started around 09:00, 14:00, 21:00 were
selected. However, 16 participants were excluded for various
reasons: three drivers failed to complete the schedule, four of
them drank alcohol within 24 to 72 hours before their
schedules, and nine of them failed to fully cover neither of
the two circadian rhythm peak periods. Finally, 34 drivers
(middle-aged, mean� 47.8, SD� 5.1, and held the driving
license for an average of 18.2 years with a standard deviation
of 6.5 years) were selected, and the statistics of their
schedules are shown in Figure 5. 24 participants whose
schedules started around 09:00 were divided into the
morning groups and further divided into three subgroups
considering self-reported time of sleep within 24 hours
before their schedules (time of sleep was recorded by one
wearable device: smart bracelet) [45]. Every five participants
whose schedules started around 14:00 or 21:00 were divided
into the afternoon group and the night group.

*e Karolinska Sleepiness Scale (KSS) [46] was used for
evaluating subjective sleepiness because of its validity and

reliability, and its scores range from 1 to 9, where 1 indicates
extremely alert and 9 indicates extremely sleepy, even falling
asleep; the higher the level is, the more fatigued the driver is.
*e self-reported KSS results of participants were recorded
every five minutes by one experiment recorder and used as
the subjective fatigue level measurement in this study. After
the driver’s KSS data were obtained, all KSS data were
converted into fatigue value. In this study, the fatigue value is
used to substitute the tiredness scores and defined as a
nonunit constant, just for data processing andmodeling.*e
fatigue value is transformed from a 9-grade KSS [47] to a 150
unmeasured value considering the actual performance of
drivers and the related results in sleep studies [48], the
transform process of the conversion between the KSS level
and the overall fatigue value and the fatigue value changing
data of the four factors are shown in Figure 6.

By analyzing the recorded video of the 34 selected
participants, the driver’s consecutive driving time, rest time,
and the circadian rhythm range during the schedules could
be obtained; the real-time fatigue value could be linearly
summed to give overall tiredness scores [49], and the basic
relationship between the four variables is shown in

FI(t) � Ftd
+ Fts

− Ftr
+ Ftc

, (1)

where FI(t) is the total fatigue value in this study, Ftd
is the

fatigue value caused by consecutive driving, Fts
is the fatigue

value after sleep, Ftr
is the fatigue value relieved by rest, and

Ftc
is the fatigue value caused by circadian rhythms.
At first, the KSS levels were transferred to the fatigue

value and expanded to 1Hz by cubic spline interpolation, as
shown in Figure 6 (fatigue value). To facilitate the subse-
quent model establishment, all time-related parameters were
counted in seconds. Limited by the experimental conditions,
circadian rhythm data were directly cited from exiting
chronobiology studies [24, 36]. At the beginning of the
experiment, the fatigue value was assumed only caused by
circadian rhythm and time of sleep; after removing the
fatigue value of the circadian rhythm (Ftc

) from the be-
ginning, the remaining fatigue values were considered to be
only caused by different times of sleep (Fts

). After removing
the fatigue value of circadian rhythm and time of sleep from
the total fatigue value, the remaining fatigue values were
considered to be caused by driving and rest (Ftd

+ Fts
).

Because all of the experiments were carried out in a similar
environment, the influence of various factors on driver
fatigue, such as traffic flow, weather, and light, was ignored.

Experimental design

Determine recruitments of participants

Post recruitment notice

Applications accept and basic statistics of participants

Figure 3: Participant selection flow.

Time of day (HH:MM)
08:0000:00 12:00 20:0004:00 16:00 24:00

Sahayadhas 3:00–5:00, 14:00–16:00 
Horne 2:00-3:00, 6:00-7:00, 16:00-17:00 
Mary 10:00–12:00, 21:00–23:00 
Phillips 2:00–4:00, 14:00–16:00 
Pan 6:00–9:00, 13:00–15:00, 17:00–20:00 
Li 4:00-5:00, 6:00-7:00, 13:00-14:00 

Figure 2: Fatigue peak period of the circadian rhythm.
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Driving performance is another valuable measurement
to confirm the drivers’ fatigue status; in this study, the
standard deviation of lateral position (SDLP) is used as a
verification indicator parameter [47, 50, 51]; it reflects the
driver’s ability to avoid unintentional lane departure or lane
crossing. *e lane line position was collected by Mobileye at
a frequency of 10Hz, the average of SDLP data in one second
was processed into new data after filtering and used as a
verification indicator, and the SDLP is computed by

SDLP �

��������������


n
i�1 di − davg 

2

n



, (2)

where di denotes the ith lane position for this horizontal
curve segment. *e lane position refers to the distance from
the center of the vehicle to the right edge of each lane. davg
denotes the average lane position and n denotes the sample
size of the lane position.

3. Modeling and Verification

Five participants (three were from the morning group and
two were from the other two groups) were randomly selected
and used as validation, and their data were not used in the
modeling process. In this study, the model validation is

performed using the root mean squared error (RMSE) and
the coefficient of determination (R-square). Although some
of the circadian rhythm data are missing, it does not affect its
modeling, which has already been mentioned above, and
through the above data processing process, the fatigue value
data of the four indicators were obtained and their pre-
diction model could be established.

3.1. Modeling of Fatigue Value Contributed by Circadian
Rhythm. According to the previous research work, it could
be seen that the fatigue value caused by circadian rhythm
shows a regular change with the time of the day
[36, 49, 51, 52]; in this study, it is assumed to be the same
among all participants as an underlying fixed variable.
Firstly, the missing circadian rhythm data are interpolated
by cubic spline interpolation, and then the effects of cir-
cadian rhythm shown in Figure 7 were best fitted with a sum
of sin functions shown as

Ftc
� 

8

i�1
ai sin bitc + ci( , (3)

(a) (b) (c)

Figure 4: (a) Driving recorder, (b) mobileye, (c) experimental vehicle.
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where tc is the time of day, from 0 s to 86400 s; ai, bi, ci (i� 1,
2, 3, . . ., 8) are numerical constants and given at the end of
this article; and Ftc

is the fatigue value caused by circadian
rhythm. *e SSE, R-square, and RMSE are 146, 0.9991, and
0.7437, respectively.

3.2. Modeling the Fatigue Value Caused by Hours of Sleep.
At the beginning of the experiments, the initial fatigue value of
all participants with different times of sleep could be obtained.
*e fatigue values of different sleeping times could be best
fitted with themodel as in equation (4), and shown in Figure 8.

Fts
� 954.9e

− 0.7211t2s, (4)

where ts is the time of sleep in hours within 24 hours before
driving, Fts

is the fatigue value with different times of sleep.
*e validation parameters are SSE: 180.8, R-square: 0.911,
and RMSE: 2.497.

3.3.Modeling of the FatigueValueContributed byConsecutive
Rest. In this study, each participant takes rest in the service
area. After collecting the fatigue value data before and after
the rest, the fatigue value relieving effects of different rest
times could be estimated, which could be fitted with the
model as in equation (5), and shown in Figure 9.

Ftr
�
1.216t2r + 1238tr + 2.417∗ 105

tr + 1.6∗ 106
, (5)

where tr is the time on rest in seconds, Ftr
is the fatigue

mitigation value, and the three validation parameters are
SSE: 681.0, R-square: 0.8592, RMSE: 4.497.

3.4. Modeling of the Fatigue Value Caused by Consecutive
Driving. *is study consists of three sets of experiments:
morning group, afternoon group, and night group. In
driving stages, different driving times and corresponding
changes in the fatigue value are collected and presented in
various colors in Figure 10. *e analysis of its changing
tendency can be obtained as follows:

Ft d
� 104.4 sin 4.539∗ 10− 5

td − 0.01652 

+ 2.922 sin 5.053∗ 10−4
− 3.135 ,

(6)
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Figure 7: Fatigue value changes caused by the circadian rhythm.
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where t d are the different driving durations counted in
seconds start in the morning, afternoon, and night, re-
spectively, and Ft d

are driving fatigue values after consec-
utive driving. After nearly four hours of driving, it was found
that the fatigue value calculated by the model is very close to
the actual fatigue value. After the verification of the model,
the value of each testing parameter is SSE: 390.4, R-square:
0.9999, and RMSE: 0.221.

3.5. Verification of the Fatigue Value Prediction Model Using
SDLP. When drivers start driving, their time of sleep within
24 hours before driving could be collected, the time point
when the driver starts driving as well as the whole circadian
rhythm range in real time could be identified, and the two
fatigue value parts are the basic fatigue value. Additionally,
the consecutive driving time and rest time during driving
could also be collected in real time. *e driving fatigue value
at any time point could be calculated using the collected data
and established models, as shown in Figure 11.

SDLP data of the five selected participants could also be
calculated; after extracting the corresponding time period of
the five subjects’ schedules, the fatigue value of circadian
rhythm during the schedule, and the fatigue value of con-
secutive driving, rest, and different time of sleep were es-
timated.*e relationship between the two sets of data can be
calculated by Spearman’s rho using

ρ �
cov rgFI, rgsdlp 

σFIσsdlp
, (7)

where ρ denotes the usual Pearson correlation coefficient but
applied to the two ranked sets of data, cov(rgFI, rgsdlp) is the
covariance of the two ranked sets of data, and σFI, σsdlp are
the standard deviations of the two ranked sets of data.

*e Spearman correlation coefficients of the 5 participants
are (a): 0.9766, (b): 0.9549, (c): 0.9804, (d): 0.9661, and (e):
0.9035, respectively. Such values indicate that there is a strong
correlation between the calculated fatigue value with the
model and the SDLP, and the trends of the two sets are also
consistent. Because most of the scheduled routes are high-
ways, there were few lanes changing and interacting with
other road users, so the change in SDLP could be seen as
mainly caused by driver fatigue. For the participants from the
morning group (a)–(c), in Figure 12, the trend of SDLP is the
most moderate for the one with 7.4 sleep hours. *e trends of
SDLP of the two participants with 5.5 and 3.8 sleep hours are
similar, especially during the period before having a break. In
this study, 0.3 was considered as the SDLP threshold [23, 53],
and the three participants exceeded the threshold during the
later driving stage in their schedules. When 100 was seen as
the participants’ fatigue value threshold [49, 51, 52], only the
SDLP of the participants with 7.4 hours of sleep is less than the
threshold. In addition, the shorter the participants’ sleep, the
more the SDLP exceeds the threshold. For the afternoon
group and the night group, the SDLP trends of the two
participants are different from each other and the morning
group. Compared with other participants, the participants in
the afternoon group own the lowest fatigue value, but the

SDLP exceeds the threshold at the earliest. However, there is
also a turning point at around 8000 s for the two participants
for the afternoon group and the night group. When the SDLP
of the night participant approaches 0.3 for the first time, its
SDLP fluctuates around 0.3. After taking rest in the service
area, the SDLP increased significantly.

3.6.MaximumPredictedConsecutiveDriving Time. After the
model is established and verified, the maximum consecutive
driving time of drivers who start driving at different common
times could be obtained, as shown in Figure 13. Assuming
that the driver starts driving at 09:00, 14:00, and 21:00, re-
spectively, the driving duration before the predicted fatigue
value of drivers exceeds the threshold could be calculated. In
this study, the threshold was set to 100 by reviewing the
physiology-related literature. Because the peak of the circa-
dian rhythm is between 13:00 and 16:00, the fatigue value of
the driver who starts driving at 14:00 shows an arched shape.
Within the first 2.5 hours of consecutive driving, driving
fatigue rises slowly, and then turns to fall. During the whole
driving process, driving fatigue reaches the threshold at 2.05
hours for the first time. At the same time, its initial fatigue
value is also the highest among the three groups. When the
driver starts driving around 09:00, under the influence of low
circadian rhythm fatigue value, the initial fatigue value is the
lowest among the three kinds; the area between the two dotted
lines is the fatigue value changing the range for drivers who
have different times of sleep. Before reaching the fatigue
threshold, it is almost always the lowest. Finally, the driver will
exceed the threshold after 2.57 to 3.05 hours of consecutive
driving. Assuming the driver starts driving around 21:00,
throughout the whole driving process, its tendency is very
familiar to the morning group and their slope is almost the
same before the fatigue value threshold, but the fatigue rises
more quickly and reaches the threshold after 2.25 hours of
consecutive driving.

4. Conclusions and Discussion

Real-time detection of driver fatigue is technically mature,
and most of the vehicles have been equipped with different
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kinds of relevant equipment to detect whether or not the
driver is fatigued. But predicting the driver fatigue degree
remains an important research topic. *e purpose of this
study is intended to predict driver fatigue only using time-
related variables, such as consecutive driving time, con-
secutive rest, time of sleep within 24 hours before driving,
and circadian rhythms during driving. Field experiments
were conducted to obtain the fatigue-level indicators (KSS)
and the driving performance (SDLP). *e model in this
study was developed from field experiments using an
equipped car, which might be more believable than using a
driving simulator. *e strong correlation between the pre-
dicted fatigue value and SDLP collected from the Mobileye
demonstrated that the developed method in this study is
reliable. A major finding of this study is the establishment of
models contributed by circadian rhythm, time of sleep, time
of rest, and the detailed modeling of driving duration
starting at different times. *e analysis results indicated that
when drivers reached a higher fatigue level, they would
swing around when driving. And driving fatigue affects lane-
keeping performance significantly. At the same time, even
when the driver is at a low fatigue level, their driving per-
formance will still reduce after driving for a consecutive
time. In a word, the results demonstrate that it is possible to
predict driver’s fatigue degree at a certain moment using the
developed driving fatigue prediction model which only
considers the four time-related variables. Instead of using
KSS to verify the accuracy of the model, the driving per-
formance indicator SDLP was used because the operational
indicator standard is more uniform. Even though the KSS
has been widely used, for different observers (the observer in
this study did not change) and participants, their under-
standing of fatigue is difficult to maintain in a consistent
standard. In our best case, the correlation between the
calculated fatigue value and computed SDLP is up to 98%,
showing that themodel in this study could reflect the drivers’
fatigue change trend perfect. *e maximum consecutive
driving time calculated in this article using the model is
really shorted than any existing regulation; even the longest
time is only around three hours. It is hard to say whether this
is a problem with the model established in the study or the
setting of the fatigue value threshold or some urgent im-
provements in the existing regulations; this will be further
studied in future research.

*e purpose of this study is to use the time-related
variables to predict the time when the driver will be fatigued.
In the data analysis process, the authors try to avoid using
behavioral, physiological, and vehicle data for modeling.*e
other variables, including physiological variables (e.g., res-
piration), behavioral variables (e.g., head position), or ve-
hicle information (e.g., speed), always need to face the
problem of statistical frequency when dealing with them.
Regardless of the size of the time window used for data
processing, a time window is always required when getting
an indicator.*is results in the inability to perform real-time
fatigue prediction. However, this study has several limita-
tions. First, KSS and SDLP used in this study may limit the
accuracy of the results. As for driving performance indi-
cators, because of the limited funds and lack of equipment,

only the SDLP was analyzed. In addition, the collection
frequency of KSS is a little high (one point every 5 minutes),
and this may help drivers keep awake [54]. What is more, in
these field experiments, participants need driving on the
highway for at least 4 hours, and it may become difficult for
drivers to judge their drowsiness [55] after a period of
driving. Second, age and gender are the two main important
indicators that may affect influent driving performance, but
they are not taken into account in this study. Some ex-
perimental conditions factors, such as weather and traffic
flow, are not considered either. Even though the authors
tried their best to ensure that the experiments are conducted
in the same conditions, there is still no guarantee that all
conditions are the same. Moreover, when drivers restart
driving after rest in the service area, the model of driving
time needs to be deeply explored. When drivers start driving
again, their starting time is close to the starting time of the
next set of experiment group. Moreover, for the experiments
starting in the afternoon and night, the fatigue accumulated
in the daytime before the experiments are only estimated
using the hours of sleep, which may be inaccurate, and the
fatigue of these drivers should be divided more meticulously
in the future work.
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As shown in Figure 7, the black line is the best fit curve of the
fatigue value of circadian rhythm and the curve could de-
scribed by equation (3), where Ftc

is the fatigue value caused
by circadian rhythm; tc is the time of day, 0 to 86400 seconds
from 00:00 every day; and ai, bi, ci (i= 1, 2, 3, . . ., 8) are
numerical constants, and all of the parameters are shown in
the below supplementary table. (Supplementary Materials)
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+is study develops three measures to optimize the junction-tree-based reinforcement learning (RL) algorithm, which will be used
for network-wide signal coordination.+e first measure is to optimize the frequency of running the junction-tree algorithm (JTA)
and the intersection status division. +e second one is to optimize the JTA information transmission mode. +e third one is to
optimize the operation of a single intersection. A test network and three test groups are built to analyze the optimization effect.
Group 1 is the control group, group 2 adopts the optimizations for the basic parameters and the information transmission mode,
and group 3 adopts optimizations for the operation of a single intersection. Environments with different congestion levels are also
tested. Results show that optimizations of the basic parameters and the information transmission mode can improve the system
efficiency and the flexibility of the green light, and optimizing the operation of a single intersection can improve the efficiency of
both the system and the individual intersection. By applying the proposed optimizations to the existing JTA-based RL algorithm,
network-wide signal coordination can perform better.

1. Introduction

Signal control system is an important method of improving
the operation of urban traffic. With the development of
people’s understanding on traffic and technology, urban
traffic signal control systems have undergone three stages:
single-point, linear coordinated, and regional coordinated.
Traffic signal coordination is considered to be more effective
in alleviating traffic congestion than single-point and linear
coordinated.

1.1. Review of the Literature on Signal Coordination.
Signal coordination has been studied extensively over the
past 30 years.+e first developed signal coordination control
systems include SCOOT [1], SCATS [2], PRODYN [3],
OPAC [4], RHODES [5], UTOPIA [6], CRONOS [7], and
TUC [8]. Although the signal coordination control can
achieve better effects than the single-point signal control and
the inductive signal control, there are also many restrictions
on the signal coordination control, such as difficulty in

parameter calibration, computational complexity, and poor
adaptability and stability.

Considering these restrictions and the fact that the
dynamic characteristics of the traffic environment also
provide the need for interactive environment-based learning
from the environment, machine learning algorithms are
proposed to be used in signal coordination control research.
Among the machine learning algorithms, the reinforcement
learning (RL) algorithm is the most widely used in the field
of traffic signal control.

Liang et al. [9] proposed a deep reinforcement learning
model to control the traffic light cycle. Aslani et al. [10]
introduced the actor-critic method to solve the problem of
the trade-off between exploration of the traffic environment
and exploitation of the knowledge already obtained. Aslani
et al. [11] developed adaptive traffic signal controllers based
on continuous residual reinforcement learning to improve
their stability. Jeon et al. [12] suggested a novel artificial
intelligence that only uses video images of an intersection;
the image-based RL model outperformed both the actual
operation of fixed signals and a fully actuated operation. Aziz
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et al. [13] applied R-Markov Average Reward Technique-
based reinforcement learning algorithm for vehicular signal
control problem leveraging information sharing among
signal controllers in the connected vehicle environment.
Darmoul et al. [14] suggested a Immune Network Algo-
rithm-based Multiagent System to control a network of
signalized intersections, which is able to handle different
traffic scenarios.

Graph theory models can reduce the computational
complexity of RL, especially when joint action of multiagents
needs to be calculated. But not much research has been done
in this area. Some work has included developments in the
max-plus algorithm and junction-tree algorithm (JTA);
these have been applied to signal coordination control re-
search at the road network level.

Medina and Beenekohal [15] applied the max-plus al-
gorithm as a coordinating strategy in the network-wide
signal control problem. However, the max-plus algorithm
has two key limitations. Firstly, it is only applicable to tree-
structured networks and cannot guarantee the convergence
to an optimal solution for general cyclic networks. Secondly,
this algorithm only provides a brief loopy propagation that
refers to inexact messages received at a node. +us, it only
provides an approximate inference of the exact message
being passed. Zhu et al. [16] first proposed the JTA instead of
the max-plus algorithm to obtain the best joint action for
traffic signals and to realize network-wide signal coordi-
nation. JTA was first proposed by Jensen et al. [17]. +e
advantage of JTA is that it is computationally efficient and
can handle looped or acyclic road networks and accurately
infer the best joint scheme.

1.2. Motivations and Contributions of this Study. Zhu et al.
[16] demonstrated that the test network can perform better
under the JTA compared to an adaptive or single-agent RL-
based control. Although the network system improved,
some intersections still experienced poor operations. Zhu
et al. [16] also noted that it is necessary to assess the variance
of performance metrics at the intersection level, and
modified schemes should be developed to optimize the
system to ensure desired level of performance at local
intersections.

To summarize, the research goals are as follows:

(1) To optimize the basic parameters of the JTA algo-
rithm so that the signal coordination control scheme
is consistent with actual requirements

(2) To evaluate the impact of existing algorithms on local
intersection operations

(3) To propose optimization measures for local inter-
sections to improve the practical application value of
the algorithm

2. Introducing the Junction-Tree-Based
RL Algorithm

2.1. Reinforcement Learning (RL) and Its Application in Signal
Control. +e basic RL model is shown in Figure 1. It

contains an environment, agents, learners, and strategies.
+e agent obtains the state “s” from the environment and
selects action “a” according to the state. +e action “a”
interacts with the environment, which then returns to a new
state “s′” and sends a certain feedback “r” to the agent. After
repeated interactions, the agent can learn an optimal strategy
for the situations presented.

In the application of RL to traffic signal control, the road
network is the environment and the signal control machine
is the agent. During the decision period, the signal control
machine takes an action to activate a signal phase, and the
state of the environment changes accordingly. +e goal of
the algorithm is to obtain the optimal strategy that can
achieve the maximum return. +e optimal strategy is to map
the activation phase and state of the traffic.+e feedback can
include average delay and the number of stops. Its value can
be extracted directly from the environment.

2.2. Junction-Tree Algorithm and Application in Signal
Control. +e key idea of the JTA is to find a way to de-
compose the global computation of joint probability into a
set of related local computations. +e JTA is introduced to
reveal the important connections between global and local
probabilistic reasoning using graph theory.

+e essence of the JTA is information transmission. +e
forward transmission is the transfer from the root node to
the leaf node, while the reverse transmission is from the leaf
node to the root node. +e process of information transfer
can be expressed by equations (1)–(4).

Forward transmission from v to s:

ψv
′, ϕs
′(  � arg

v/s
maxψv. (1)

Forward transmission from s to w:

ψw
′ �

ϕs
′

ϕs

ψw. (2)

Reverse transmission from w tos:

ψw
″, ϕs
″(  � arg

w/s
maxψw
′ . (3)

Reverse transmission from s to v:

ψv
″ �

ϕs
″

ϕs
′
ψv
′ . (4)

In the equations above, v is the root node; w is the leaf
node; s is the separation node; ψv, ψw, and ϕs denote po-
tential functions of v, w, and s; ψv

′, ϕs
′, and ψw

′ denote

Agent Environ
mentFeedback r

State s

Action a

State s′ 

Figure 1: +e basic reinforcement learning model.
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potential functions after forward transmission; and ψv
″, ϕs
″,

and ψw
″ denote potential functions after reverse transmission.

JTA and RL have the same objective function in terms of
calculating the maximum posteriori probability. +ey both
decompose the whole network optimization problem into
local subproblems, and both use their Markov attributes to
do so. In the probability model, the probability of a node
depends on the adjacent nodes. In the coordinated traffic
signal control, the phase selection of the intersection de-
pends on the phase of the adjacent intersection. +erefore,
JTA is selected to solve a coordinated traffic signal control
problem. JTA has great advantages in dealing with coor-
dinated traffic signal control problems because it is the
fastest and most accurate inference algorithm.

2.3.1e Junction-Tree-Based RLAlgorithm. +e control flow
of the JTA-based RL algorithmmethod is shown in Figure 2.
In the applied method, the RL is the core algorithm of signal
control, and the JTA is used to find the signal control scheme
with the highest rate of return. Existing research verifies that
the applied method is better than the timing signal control,
the independent Q learning signal control, and the maxi-
mum queue length priority signal control under different
traffic intensities.

It should be noted that the RL algorithm can learn the Q
value under specific traffic demand and signal control
scheme for one or two adjacent intersections. But, the RL
algorithm cannot learn the Q value for the whole network
with too many intersections because of the large scale of
knowledge to be learned. JTA is adopted to achieve the best
signal control scheme so that the Q value for the whole
network is the best one. In the proposed algorithm, there is
no cycle time and split. If the frequency of running JTA is 1 s,
then the algorithm can only decide which phase is green light
for each intersection in the next 1 s.

3. Optimizing the Junction-Tree-Based
RL Algorithm

3.1. Optimizing Basic Parameters

3.1.1. Frequency of Running the JTA. As the JTA determines
the phase-switch at intersections, the lower frequency
running it, the longer a given phase duration will be. To
adjust the signal control scheme according to feedback in
time, the frequency to run the JTA should not be lower than
the headway of queueing vehicles passing the parking line.

Both Shao et al. [18] and Zhao et al. [19] have verified
that the headway is less than 2 s when the queue length is
longer than 10 vehicles. However, in existing research on
JTA, the frequency is 5 s which cannot meet actual control
requirements. In order to improve the sensitivity of the signal
control scheme, and considering theminimum step size of the
signal control scheme, 1 s is employed in this study.

3.1.2. Intersection Status Division. +e JTA-based RL al-
gorithm selects the phase scheme with the highest return
according to the state of the road network. Phase schemes

are determined by the number of intersections and the
phases of a single intersection, which are relatively fixed.
+erefore, the accuracy of the applied method for signal
control is determined by the state of the road network.
However, the large number of intersections available when
signal coordination control is performed provides a status
division that is too detailed and may lead to a long learning
time. Existing studies treat the saturation as the evaluation
index of intersection entrance, and saturations of all phases
are summed and divided into three levels. +at is, each
intersection contains three states, and the state of two ad-
jacent intersections is divided into nine. In general, this state
division is rough and makes the signal control scheme less
sensitive to the traffic state of the road network.

Considering that the state will be defined as an eight-
dimensional vector in the program of the applied method,
the saturation of each intersection entrance is divided into
three levels, and then each intersection is divided into
81 states. In future applications, the status of the inter-
section can be divided in more detail based on specific
requirements.

3.2. Analysis of the JTA Information Transmission Mode.
+e JTA uses the continuity function while calculating the
maximum posteriori probability, which should not be
directly applied to the information transmission in traffic
signal coordination control. +erefore, a new information
transmission mode that will be applied in signal coordi-
nation control is defined. +e new transmission mode,
taking four intersections as the example, is shown as follows.

Suppose that all four intersections have only two phases,
A and B; phase A is for north-south traffic, and phase B is for
east-west traffic. +e virtual road network can be transferred
into a junction tree using moralization and triangulation, see
Figure 3. Intersections 1–3 form a root node; intersections
2–4 form a leaf node, and intersections 2 and 3 form a
separation node. +e key parameter Q is the value of two
adjacent intersections and is shown in Table 1.

+e target function of JTA is argmax(Q12 + Q13+

Q24 + Q34).

Initialization or 
update of Q values

Update learning 
rates ε

Random 
value ≤ 1 – ε

Select 
random
action

Apply JTA, 
select joint

actions

Restrictions
for action 
selection

Given the action,
implement the 
signal scheme

Obtain the reward 
and traffic states 

No Yes

Update

Knowledge base 
for reinforcement 

learning

Update

Figure 2: +e control flow of the JTA-based RL algorithm method.
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3.2.1. Initialization: Define the Potential Function of all
Nodes. +e potential functions of the root and leaf nodes are
the sum of the Q values of three intersections that form the
node. +e potential function of the separation node is the
phase combination of two intersections that form the node;
the initial value is null.

+e potential function of the root node is
ψ123 � Q123 � Q12 + Q13

+e potential function of the separation node is
ϕ23 � Null
+e potential function of the leaf node is
ψ234 � Q234 � Q24 + Q34

3.2.2. Forward Transmission from the Root Node to the
Separation Node. +e transmission function is
(ψ123′ , ϕ23′ ) � argmaxψ123 � argmax(Q12 + Q13).

After transmission, ψ123 should achieve the max value
ψ123′ under all possible potential functions ϕ23 and also
achieve the best phase combination ϕ23′ . +e transmission
result is shown in Table 2.

3.2.3. Forward Transmission from the Separation Node to the
Leaf Node. +e transmission function is
ψ234′ � ϕ23′ ψ234 � ϕ23′ (Q24 + Q34).

After transmission, the potential function of leaf node
ψ234 changes to ψ234′ .

3.2.4. Reverse Transmission from the Leaf Node to the Sep-
aration Node. +e transmission function is argmax(Q24+

Q34), (ψ234″ ,ϕ23″ ) � argmaxψ234′ � argmax ϕ23′ (Q24 + Q34).
After transmission,ψ234′ should achieve themax valueψ234″

under all possible potential functions ϕ23′ and the best phase
combination ϕ23″ . +e transmission result is shown in Table 3.

By combining ϕ23′ and argmax(Q24 + Q34), it is easy to
understand that ϕ23′ (Q24 + Q34) achieves the maximum
value only when ϕ23″ selects combination 4. In other words,
ϕ23′ (Q24 + Q34) can achieve the maximum value only when
intersections 2, 3, and 4 are all in phase B; at the same time,
ψ234″ must be 13.

3.2.5. Reverse Transmission from the Separation Node to the
Root Node. +e transmission function is ψ123″ � ϕ23″ ψ123′ .

After transmission, ψ123′ changes to ψ123″ based on ϕ23″ . At
this time, ψ123″ is 16, and intersection 1 is in phase B. +e

result of applying JTA is obtained after the above infor-
mation transmission occurs, that is, after the joint action
of the four intersections becomes (B, B, B, B), which will
result in the joint tree achieving its highest potential
function.

3.3. Optimizations for Single Intersection’s Operation.
Network-wide signal coordination control both pursues the
system optimization and the requirements of the individual
intersection. For example, the queue length of a single in-
tersection entrance should not be too long when the network
has a low average queue length.+e JTA-based RL algorithm
considers system optimization to be the goal; however, this
tends to cause the queue lengths of some entrance lanes to be
too long.

To improve the performance of single intersections,
optimization should be studied.

3.3.1. Information Transmission Rule-Based Optimization.
In the JTA-based RL algorithm, the root and leaf nodes
determine the direction of information transmission along
the junction tree. Existing study, Zhu et al. [16], simply
assigns the endpoints of the junction tree as the root and
leaf nodes, without considering the signal control re-
quirements. Analyses of the JTA information transmission
modes show that the intersection’s phase is determined in
the reverse transmission process. For these reasons, it is
proposed that the phase of the intersection with poor
operation should be determined first. +erefore, the worst
running node should be taken as the leaf node while all
endpoints of the junction tree are taken as root nodes. +e
information transmission rule before and after optimiza-
tions is shown in Figure 4.

3.3.2. Differentiated Return-Based Optimization. System Q
value of the JTA-based RL algorithm is determined by the Q
values of every two adjacent intersections. For example, A
and B are adjacent intersections, and entrances of two
connecting sections between A and B are saturated with a
and b, and then the Q value of A and B can be expressed as
Q(A, B)� a+ b. When a� 0.1, b� 0.8, then Q(A, B)� 0.9;
when a� b� 0.45, thenQ(A, B)� 0.9. Saturations of 0.1, 0.45,
and 0.8 indicate different service levels, but there is no
difference in calculatingQ(A, B); thus, the differences cannot
be learned in signal timing. +erefore, the differentiated
return-based optimization method is proposed to optimize
the definition of Q values.

If the saturation q is taken as the evaluation index and
varies from 0 to 1, q should be divided into n levels, and the
return of the kth level should be 2k (k ∈ [1, n]). When the
saturations of the adjacent intersections A and B are q1 and
q2, q1 belongs to level k1, and q2 belongs to level k2.
+erefore, the Q value of the adjacent intersections is
expressed as follows:

Q(A, B) � q1∗ 2
k1 + q2∗ 2

k2 , (5)

1 2

3 4

123 23 234

Figure 3: Virtual road networks and the corresponding junction
tree.
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where Q(A, B) is the Q value of adjacent intersections A and
B, q1 and q2 are the saturations of adjacent intersections A
and B, and k1 and k2 are the levels of q1 and q2.

4. Test Case Study

4.1. Network Description. +is study used VISSIM5.4 to
build a virtual road network and test the validity of opti-
mizations on the JTA-based RL algorithm. Details about the
modules in VISSIM (e.g., car-following, lane-changing,
traffic light control) can be found in the VISSIMmanual.+e
JTA-based RL algorithm is coded in VB.net and interacts
with VISSIM through the component object model (COM)
interface.

A virtual road network same to the one in Zhu et al.’s
study [16] was built. Under the same test environment, the
results of this study should be more convincing.+e network
uses a structure with six horizontal and three vertical roads.
+e number of lanes is randomly set. +ere are 18 inter-
sections in the network, and each entrance has an inde-
pendent left turn lane, as shown in Figure 5. Also, the given
network is transformed into a junction tree, as shown in
Figure 6.

+e length of the road section in the test network is set
randomly, and channelization schemes of 18 intersections
are also not uniform. All 18 intersections in the test network
are coordinated intersections. Four phases are considered:
(a) E-W+W-E bound through and right turn, (b) N-S + S-N
bound through and right turns, (c) dual left from E-S +W-N
bound, and (d) dual left from S-W+N-E bound.

+e performance of the JTA-based RL algorithm is tested
at three levels of congestion: low, medium, and high. +e
traffic demand is input into the network through the 18 link
origins in Figure 5. +e congestion levels are reflected in the
ranges of the demand inputs, which are 500 vph to 600 vph,
600 vph to 800 vph, and 900 vph to 1200 vph, respectively.

4.2. Test Group Settings. In the test case, queue length wij is
adopted to build the return and objective functions. +e

objective function is created to achieve the shortest queue
length for the system. +e return function is as follows:

f
ij
r (t) �

qt
ij

Jij

×
1
lij

, (6)

where f
ij
r (t) is the return of intersection i in phase j and time

t, qt
ij is the traffic volume of the key entrance of intersection i

in phase j and time t, Jij is the density of the key entrance
when it is congested, and lij is the lane length available for
queueing of intersection i in phase j.

+ree test groups are set to test the effectiveness of
optimization methods. +e details of the settings are as
follows:

Group 1: existing research of Zhu et al. [16] applying
JTA in signal coordination

(1) Frequency of running JTA: 5 s
(2) Intersection status division: each intersection

contains three states, and the state of the two
adjacent intersections is divided into nine parts

(3) JTA information transmission mode: the mode
introduced in Section 2.2

(4) Root and leaf node: V(1, 2, 4) is the root node, and
V(14, 16, 17) and V(15, 17, 18) are the leaf nodes

(5) Q value: calculated without regard to the dif-
ferentiated returns

Group 2: optimizations of basic parameters and in-
formation transmission modes

(1) Frequency of running JTA: 1 s
(2) Intersection status division: the saturation of each

intersection entrance is divided into three levels,
and each intersection is divided into 81 states

(3) JTA information transmission mode: the mode
introduced in Section 3.2

(4) Root and leaf node: same as group 1
(5) Q value calculated same as group 1

Group 3: optimizations on the information transmis-
sion rule and the return

Table 1: +e given Q-value matrix of the virtual road network.

Phase
combination

Intersection
and phase Q12

Intersection
and phase Q13

Intersection
and phase Q34

Intersection
and phase Q24

1 2 1 3 3 4 2 4

Combination 1 A A 4 A A 8 A A 7 A A 8
Combination 2 A B 5 A B 7 A B 6 A B 9
Combination 3 B A 3 B A 5 B A 4 B A 5
Combination 4 B B 7 B B 9 B B 6 B B 7

Table 2: ψ123′ under possible combinations and corresponding ϕ23′ .

Phase
combination
ϕ23

Intersection
and phase max(Q12 + Q13)

Intersection
and phase

2 3 1

Combination 1 A A 12 A
Combination 2 A B 12 B
Combination 3 B A 13 A
Combination 4 B B 16 B

Table 3: Combination forms for argmax(Q24 + Q34).

Phase
combination
ϕ23

Intersection
and phase max(Q24 + Q34)

Intersection
and phase

2 3 4

Combination 1 A A 15 A or B
Combination 2 A B 15 B
Combination 3 B A 13 B
Combination 4 B B 13 B

Journal of Advanced Transportation 5



(1) Frequency of running JTA: same as group 2
(2) Intersection status division: same as group 2
(3) JTA information transmission mode: same as

group 2
(4) Root and leaf node: the worst running node is taken

as the leaf node while all endpoints of the junction
tree are taken as root nodes

(5) Q value-differentiated returns are calculated and
applied

In addition to the above settings, the training time of
group 1 is 5 h, while that of groups 2 and 3 is 10 h. After
training, the three groups are applied in signal coordination;
each group contains 10 simulation runs (each with a dif-
ferent random seed), and each simulation lasts 1 h.

+e differentiated-return-based optimization method
adopted in group 3 is necessary to classify the queue
length wij. +is is divided into three levels in this study:
the first level is [0, 0.4), the second is [0.4, 0.7), and the
third is [0.7, 1]. +e return of each level is 2, 4, and 8,
respectively.

4.3. Test Result Analysis. By comparing the test results of
three groups, several conclusions can be drawn as follows.

4.3.1. 1e Green Light of Each Phase Is More Flexible.
Taking intersection 8 as an example, 50 randomly selected
continuous phases under medium congestion levels are
extracted, and the corresponding green light durations are
shown in Figure 7. As the frequency of calling the JTA in
group 1 is 5 s, the green time of all phases is a multiple of 5,
while the green time in group 2 is not subject to this
constraint. +e green time in group 2 can be adjusted
according to the length of the queue. It can be concluded that
optimization of the basic parameters can increase the
flexibility of the green light duration, which in turn makes
the green light more reasonable.

4.3.2. 1e Efficiency of Signal Coordination Is Improved.
+e queue length of the system and the intersection at
different congestion levels are shown in Table 4. +e queue
length of the intersection is the longest queue length of all
the entrance lanes while the phase is being switched. +e
average queue length of the system is the average queue
length of all 18 intersections. As the traffic demand is input
into the network via link origins, the outermost intersections
of the network are directly affected by the traffic input, which
may then also affect the evaluation result. Considering the
above reasons, only intersections 5, 8, 11, and 14 are selected
and analyzed.

In terms of the queue length of the system, the table
shows that the length of group 2 is shorter than group 1 by
over 10%. It can be concluded that optimizations of basic
parameters and the JTA information transmission mode can
improve the efficiency of signal coordination. +e lengths of
group 2 and group 3 are not significantly different, which
means that optimizing the operation of a single intersection
has little effect on the system operation.

4.3.3. Problems after Parameter Optimization and the In-
formation Transmission Mode Are Still Significant.
Optimization methods improve system operation, but the
operations of some intersections are still poor. Table 4 shows

Figure 5: Center line representation of the network and a zoomed-
in view of one intersection.

After

Before

Forward transmission

Reverse transmission

Forward transmissionForward transmission

Reverse Reverse 

1 2 3 4 5 6 7 8 9 10 11

1

6 5 4 3 2 1 2 3 4 5 6

6

Root node
Leaf node

The worst 
running node

Figure 4: Optimization of the JTA information transmission rule.
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that the average queue length of some intersections in
group 2 is longer than that in group 1; for example, in-
tersection 5 under a low congestion level and intersection 8
under a high congestion level. Queue lengths of 50 ran-
domly selected continuous phases of these two intersec-
tions are also shown in Figures 8 and 9. +e two figures
show intersections with large fluctuations in queue length,
such as intersection 5 under low congestion level with a
maximum queue length of 0.55 and a minimum queue
length of 0.16.

In other words, after optimizing basic parameters and
the information transmissionmode, the operation of a single
intersection still needed to be improved.

4.3.4. Optimizations for Operating Single Intersections Can
Reduce the Maximum Queue Length of the System. +e
maximum queue length of the system under low and

high congestion levels is counted at intervals of 10 s and
shown in Figures 10 and 11. It is obvious that the queue
length of group 3 is the lowest. In other words, the max-
imum queue length of the system is reduced after the
optimizations for the operation of a single intersection
were adopted.

4.3.5. Optimizations for the Operation of a Single Intersection
Can Reduce the Fluctuation of the Queue Length at the
Intersection. After applying a differentiated return-based
optimization, group 3 should be more sensitive towards
returns than groups 1 and 2. +e queue length of intersection
5 under low congestion levels in different groups can be taken
as an example. +e variations in the queue lengths are shown
in Figure 12. +e queue length in group 1 varies from 0.18 to
0.53, group 2 varies from 0.17 to 0.55, and group 3 varies from
0.32 to 0.44. +e fluctuation of queue length shows that the
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Table 4: Queue length-based improvement analysis of optimization methods.

Congestion level Test group Average queue length of the system
Average queue length of the intersection

Intersection 5 Intersection 8 Intersection 11 Intersection 14

Low
Group 1 0.36 0.35 0.32 0.43 0.37
Group 2 0.32 0.38 0.30 0.32 0.31
Group 3 0.33 0.36 0.31 0.35 0.29

Medium
Group 1 0.51 0.50 0.47 0.45 0.53
Group 2 0.43 0.40 0.42 0.44 0.48
Group 3 0.44 0.41 0.45 0.42 0.46

High
Group 1 0.83 0.84 0.82 0.76 0.81
Group 2 0.71 0.73 0.87 0.70 0.69
Group 3 0.71 0.75 0.81 0.72 0.71
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Figure 8: Variations in queue length at intersection 5 under low congestion levels.
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intersections in group 3 have better operations, which benefit
from a differentiated return-based optimization.

5. Discussion and Conclusion

+e study proposed three optimizationmethods for the JTA-
based RL algorithm which can be used for network-wide
signal coordination. +ree test groups were built to analyze
the optimization effect.

Group 1 used the existing algorithmapplying JTA in signal
coordination; this group was taken as the control group

Group 2 applied optimizations on basic parameters
and the information transmission mode relative to
group 1
Group 3 applied optimizations on the transmission rule
and the return relative to group 2

Detailed grouping and improvement effects are shown in
Table 5.

Table 5 shows that the optimizations proposed in this
paper play a good role in improving the operation of the
JTA-based RL algorithm used for network-wide signal co-
ordination. Optimizations of basic parameters and
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information transmission modes can improve the system
efficiency and the flexibility of green lights. Optimizations of
the information transmission rule and the return can im-
prove the efficiency of both the system and of the single
intersection. It can be concluded that better operational
results can be achieved in network-wide signal coordination
by applying the proposed optimizations to existing JTA-
based RL algorithms.

However, the results reported here are based on a hy-
pothetical network. Results from real-world implementation
should be studied in future research. +is would make our
conclusions stronger. What is more, each intersection is
divided into only 81 states; the possibility of more detailed
states division should be studied.
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To date, electric bikers’ (e-bikers’) red-light running (RLR) behavior is often viewed as one of the main contributors to e-bike-
related accidents, especially for traffic scenarios with high e-bike ridership. In this paper, we aim to understand e-bikers’ RLR
behavior based on structural equation modeling. Specifically, the predictive utility of the theory of planned behavior (TPB),
prototype willingness model (PWM), and their combined form, TPB-PWMmodel, is used to analyze e-bikers’ RLR behavior, and
a comparison analysis is made. +e analyses of the three modeling approaches are based on the survey data collected from two
online questionnaires, where more than 1,035 participant-completed questionnaires are received. +e main findings in this paper
are as follows: (i) Both PWM and TPB-PWM models could work better in characterizing e-bikers’ RLR behavior than the TPB
model. +e former two models explain more than 80% (81.3% and 81.4%, respectively) of the variance in e-bikers’ RLR behavior,
which is remarkably higher than that of the TPB model (only 74.3%). (ii) It is also revealed that RLR willingness contributes more
on influencing the RLR behavior than RLR intention, which implies that such behavior is dominated by social reactive decision-
making rather than the reasoned one. (iii) Among the examined psychological factors, attitude, perceived behavioral control, past
behavior, prototype perceptions (favorability and similarity), RLR intention, and RLR willingness were the crucial predictors of
e-bikers’ RLR behavior. Our findings also support designing of more effective behavior-change interventions to better target
e-bikers’ RLR behavior by considering the influence of the identified psychological factors.

1. Introduction

In recent decades, as a green, cost-effective, and easy-to-
carry transport means, electric bikes (e-bikes) have been
adopted and promoted in an increasing number of countries
such as Switzerland, Norway, the Netherlands, and China
[1–4]. However, the use of e-bikes has been causing in-
creasing e-bike-involved traffic accidents [1, 5, 6]. For ex-
ample, in China, around 56,200 traffic accidents were caused
by e-bikers, resulting in 8,431 fatalities, 63,400 injuries, and
direct property losses of 111 million-yuan (equivalent to
16.42 million dollars based on the 2017 average closing
exchange rate) between 2013 and 2017 [7]. According to the

statistics of accidents related to two-wheeled vehicles (e.g.,
e-bikes, regular bicycles, and e-scooters) in typical Chinese
cities (including Beijing, Changchun, Ningbo, Foshan, and
Weihai), e-bike-involved accidents accounted for 34.8% of the
total accidents from July 2011 to June 2016; of the e-bike-
involved accidents, the proportions of minor injuries, serious
injuries, and fatalities to e-bikers were 70.0%, 12.6%, and
10.6%, respectively [8]. Some studies reported that the speed
and weight of e-bikes were both higher than those of regular
bicycles, thereby leading to more injuries and fatalities [9]. In
addition, previous findings showed that traffic violating be-
haviors, especially red-light running (RLR) behavior at sig-
nalized intersections, partially contributed to e-bikers-related
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accidents and fatalities [10–16].+us, studies on e-bikers’ RLR
behavior are needed, especially for countries with high e-bike
ownership and e-bike-involved accidents.

Previous studies mainly focused on the influence of the
demographics and traffic environment on e-bikers’ RLR
behavior. Moreover, in the studies of psychological factors
associated with violating behavior, e-biker-related studies are
less than the pedestrian-related and driver-related studies. A
recent study has employed a social cognitive theory, the
theory of planned behavior (TPB), to recognize the psy-
chological determinants of e-bikers’ intention to violate a red
light [17]. Nevertheless, some evidence presented that the
utility of the TPB framework is insufficient in predicting the
unconscious risk-taking behaviors [18–20], while the proto-
type willingness model (PWM) might be a superior social
cognitive theory in predicting such behaviors than the TPB
framework [21]. Herein, the main goal of our work is to
investigate the predictive utility of TPB, PWM, and their
combined form, TPB-PWM, in e-bikers’ RLR behavior and
explore the psychological mechanism behind this behavior.

1.1. E-Bikers’ RLR Behavior. So far, most existing evidence
has revolved around the red-light infringement behavior of
cyclists. Specifically, investigations have been performed on
the influence of demographics [11–15], psychological factors
[11–13], and other risk behaviors (e.g., unhelmeted riding,
carrying passengers, using a phone, and listening to music)
[14, 16, 22, 23] on cyclists’ RLR behavior. However, due to
the differences in weight, speed, and acceleration of e-bikes
and regular bicycles, there are some discrepancies in the
riders’ psychology. Some studies discovered that e-bikers
have a stronger intention to violate a red light than regular
cyclists [13, 24–28]. Among these studies, Yang et al. [27]
proposed that the prominent contributors to RLR behavior
of cyclists and e-bikers were individual features (i.e., gender
and rider type), psychological factors (i.e., conformity
tendency), and traffic factors (i.e., waiting position and
traffic volume). Investigations have also been performed on
the impact of infrastructure conditions on the RLR behavior
of cyclists and e-bikers, such as sunshades [26], carriageway,
and intersection types [28]. However, apart from the above
studies, much less literature has been published specifically
on e-bikers’ RLR behavior. Recent research conducted by
Yang et al. [17] identified the psychological factors (i.e.,
attitude, perceived behavioral control, moral norm, and self-
identify) which significantly influenced the e-bikers’ RLR
intention based on the TPB framework. However, their
study focused on e-bikers’ RLR intention, but not on their
behavior. Also, it is relatively undesirable to employ the
extended TPB framework they proposed to predict e-bikers’
RLR intention. +us, other more efficient models were
applied to obtain an in-depth investigation of e-bikers’ RLR
intention and behavior in our study.

1.2. 0eoretical Framework

1.2.1. TPB Framework. TPB has been the most prevalent
framework used to identify the social cognitive constructs

that influence traffic violations of drivers, pedestrians, and
e-bikers. In reviews of drivers’ violations, the TPB frame-
work has successfully explained the violation intentions,
including high-speeding [29, 30], drink-driving [31–33],
mobile phone use while driving [34, 35], and seatbelt nonuse
[36, 37]. In terms of pedestrians’ violations, the TPB
framework has been employed to understand various pe-
destrian behavior intentions, such as walking while
intoxicated [38], red-light infringement [39, 40], and dis-
tracted crossing [41]. In addition to drivers’ and pedestrians’
violations, Yang et al. [17] also determined the utility of the
TPB framework in explaining e-bikers’ RLR intention.

As mentioned above, TPB has been supported as a
framework for explaining various traffic violations. Never-
theless, it is still unclear whether these behaviors are totally
decided by volition. Sheeran et al. [18] pointed out that the
TPB framework ignores the spontaneous or heuristic pro-
cesses, and its hypothesis that a particular behavior is rea-
soned and premeditated could not match real situations.
Also, some studies indicated that the utility of the TPB
framework is insufficient in predicting the unconscious risk-
taking behaviors [19, 20]. For example, even though e-bikers
have a negative attitude towards e-bikers’ RLR behavior,
they might also have the willingness to violate a red light
when there is a traversable space-time gap in the motor
vehicle traffic flows.

In this investigation, an extension of the TPB framework
(Figure 1) was applied. According to Ajzen’s studies [42, 43],
RLR intention (RI) reflects an e-biker’s readiness to violate a
red light. Attitude (AT) refers to an e-biker’s positive/fa-
vorable or negative/unfavorable perception of RLR behavior.
Subjective norm (SN) represents an e-biker’s perceived view
of whether social referents (e.g., family members and
friends) approve or disapprove of RLR behavior. Perceived
behavioral control (PBC) reflects an e-biker’s perceived view
of their ability to violate a red light. In light of previous
studies, past behavior was also incorporated into the original
TPB framework [29, 44, 45]. Past behavior (PB) represents
an e-biker’s violating behavior or illegal riding habits in the
past and can indicate his/her habit strength [43, 44]. A range
of previous research studies has discussed the explanatory
power of the extension of the TPB framework with the
addition of past behavior, suggesting that past behavior
emerged as a key contributor to behavioral intentions and
behaviors in particular correlation with perceived behavioral
control [19, 29, 43, 44]. In the present model framework,
attitude, subjective norm, perceived behavioral control, and
past behavior have direct effects on RLR intention and in-
direct effects on RLR behavior via RLR intention. Also,
perceived behavioral control directly influences RLR in-
tention and behavior while indirectly influences RLR in-
tention and behavior through past behavior.

1.2.2. PWM Framework. In fact, e-bikers’ crossing behavior
is a spontaneous risk-taking behavior that generally requires
reactive decisions on how to act in response to changing
traffic environmental demands (e.g., traffic signals, traffic
volume, and other e-bikers’ crossing behaviors) at signalized
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intersections. +us, other decision-making models might be
considered in governing RLR behavior. +e PWM frame-
work, which focuses on both social reactive decision-making
and reasoned one, might contribute to a better under-
standing of RLR behavior than TPB framework, which is
concentrated on reasoned decision-making only. +e PWM
framework has been successfully applied in examinations of
drivers’ and pedestrians’ violations, such as drink-driving
[46], high-speeding [47, 48], texting while driving [48], and
pedestrians’ violations [21]. As far as we are concerned, no
previous research studies have employed the PWM
framework in the study on e-bikers’ violations. In this work,
the PWM framework was adapted from the study of Gib-
bons et al. [49] (Figure 2). Among the PWM-based variables,
prototype perceptions refer to the images of e-bikers (e.g.,
age and gender) who engage in RLR behavior, consisting of
prototype similarity (PS) and prototype favorability (PF)
[21, 49]. RLR willingness (RW) denotes the e-biker’s will-
ingness to violate a red light when such an opportunity is
provided [21, 49]. In the reasoned decision-making pathway,
attitude, subjective norm, and past behavior exert direct
effects on RLR intention and indirect effects on RLR be-
havior via RLR intention, while past behavior directly in-
fluences RLR behavior. In the social reactive decision-
making pathway, attitude, subjective norm, prototype
similarity, prototype favorability, and past behavior have
direct effects on RLR willingness, and RLR willingness di-
rectly affects RLR intention and behavior.

1.2.3. Integrating TPB and PWM Frameworks. A few studies
have applied the integrative model which incorporates TPB
and PWM frameworks (hereafter, referred to as “TPB-
PWM”) to investigate a particular behavior in other do-
mains, such as health-protective/risk behavior [50] and
organ donation communication [51]. In recent research,
Demir et al. [21] compared the utility of TPB, PWM, and
TPB-PWM frameworks in explaining the pedestrians’ vio-
lations, among which PWM and TPB-PWM frameworks
had a better predictive power than TPB framework. In light
of the original PWM proposed by Gibbons et al. [49], the
past behavior was also a crucial predictor and could improve

the PWM’s performance. However, the past behavior was
not included in Demir et al.’s [21] study, which might have
negatively influenced the representativeness of the analysis
results. +us, past behavior was incorporated into three
decision-making frameworks in this work. +e TPB-PWM
framework in this study refers to an extended PWMwith the
addition of perceived behavioral control, which has a direct
effect on RLR intention and behavior (Figure 3).

1.3. Paper Position and Contribution. Little empirical evi-
dence has been reported to support the utility of TPB and
PWM frameworks in understanding e-bikers’ RLR behavior.
In this study, we compared the utility of TPB, PWM, and
TPB-PWM frameworks in understanding such behavior, by
using the TPB framework as a baseline comparator. +is
study aimed to test our hypothesis of e-bikers’ RLR behavior
as being more social reactive (using the PWM/TPB-PWM
framework) rather than rational (using the TPB framework).
Another aim of this work was to investigate the social
cognitive determinants that influence e-bikers’ RLR
behavior.

2. Methods

2.1. Procedures. An experiment was designed using self-
reported questionnaires. In the survey, participants who
often used e-bikes (on average at least once a day) were asked
to answer a wide range of questions related to each variable
of the proposed model frameworks in a hypothetical situ-
ation. +e situation assumed was described as follows: “You
are riding an e-bike to work/school or somewhere on time.
When you reach a signalized intersection, the traffic light
turns red. In this situation, please answer the following
questions.”

Before the formal survey in this study, we performed a
pilot survey among a small total number of 50 participants
using online questionnaires. +e purpose of this pilot survey
was to ensure that the questionnaire items were easy to
understand. Also, the pilot survey was helpful to evaluate the
completion time of the survey. Cronbach’s α correlation
analysis and principal component analysis (PCA) were

Attitude

Subjective
norm 

RLR
intention RLR behavior

Past behavior
Perceived
behavioral

control 

Figure 1: An extension of the TPB framework.
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employed to examine the reliability and validity of the items,
and those items that did not pass the examinations were
removed. +e finalized questionnaire was designed based on
the participants’ feedback and the test results.

+e formal survey was carried out in Shanghai, China,
from May to July 2018. +e participants were recruited from
universities, communities, shoppingmalls, and office districts.
+ey were required to complete two online questionnaires
distributed by an online survey platform (http://www.wjx.cn)
one month apart. To be specific, the participants were re-
quired to complete the first (Time 1) questionnaire, including
all items of variables, except for RLR behavior (Table 1). One
month later, the participants should complete the second
(Time 2) questionnaire to measure the subsequent RLR be-
havior. Finally, the participants were rewarded with an
amount of about $1 for completing the survey.

2.2. Participants. In this survey, a total number of 1,147
participants completed the Time 1 and Time 2 question-
naires. After excluding 112 invalid questionnaires (e.g.,

inconsistent scoring logic, unusually short completion time,
and abnormal score), we obtained a complete and valid
sample of N� 1,035 participants. +e mean age of the final
sample of participants was 34.6 (SD� 9.92), 68.0% of which
were female (N� 704); 89.2% used e-bikes at least twice a day
on average (N� 923), and 74.3% had more than two years of
e-bike riding experience (N� 769).

2.3. Measures. A 29-item questionnaire was designed to
obtain data of participants for this work. +e TPB-based
items for each variable (i.e., attitude, subjective norm,
perceived behavioral control, and RLR intention) and
PWM-based items for each variable (i.e., past behavior,
prototype perceptions, and RLR willingness) are presented
in Table 1. Each item was measured using a 7-point response
format. For the variables, we adopted the confirmatory
factors analysis (CFA) and Cronbach’s α correlation analysis
to examine the validity and internal consistency of the items,
thereby evaluating the reliability of the survey data. CFA was
conducted by PCA. PCA identified that the value of
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Figure 3: TPB-PWM framework.
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Table 1: Summary of items and internal consistency.

Variable No. Item Reference PCA
(%)

Cronbach’s
α

Attitude

AT1 For me, running against a
red light in this situation

would be . . .

Bad to good
Ajzen [43];

Elliott et al. [47] 72.5 0.873AT2 Foolish to wise
AT3 Dangerous to safe
AT4 Unnecessary to necessary

Subjective
norm

SN1 People who are important to me disapprove of my red-light running in
this situation. (Strongly disagree to strongly agree)

Demir et al. [21];
Ajzen [43] 73.7 0.821SN2 People who are important to me bother with my red-light running in

this situation. (Strongly disagree to strongly agree)

SN3 People who are important to me tolerate my red-light running in this
situation. (Strongly disagree to strongly agree)∗

Perceived
behavioral
control

PBC1 I believe that I have the ability to run against a red light in this situation.
(Strongly disagree to strongly agree)

Evans and
Norman [39] 80.8 0.881PBC2 For me, it is easy to run against a red light in this situation. (Strongly

disagree to strongly agree)

PBC3 I have control over whether to violate a red light in this situation.
(Strongly disagree to strongly agree)

Past behavior

PB1 How often have you committed the red-light running as an e-biker
during the last 12 months? (Never to frequently)

Forward [29];
Potard et al. [45] 87.4 0.928PB2 How often have you ridden faster than the legal speed limit during the

last 12 months? (Never to frequently)

PB3 How often have you committed the violating crossing as a pedestrian
during the last 12 months? (Never to frequently)

Prototype
perceptions

PS1 Prototype similarity

How similar/different are you to/from the
person your age and gender that regularly
violates a red light? (Very different to very

similar)

Elliott et al. [47] 87.7 0.930PS2
I am comparable to the typical person my
age and gender that regularly violates a red
light. (Strongly disagree to strongly agree)

PS3
Do you resemble the typical person your age
and gender that regularly violates a red
light? (Definitely no to definitely yes)

PF1

Prototype favorability

How do you think about the
typical person your age and

gender who regularly violate a
red light?

Dynamic

Elliott et al. [47] 89.4 0.940PF2 Cool

PF3 Childish∗

RLR intention

RI1 In such a situation, how likely is it that you will run against a red light?
(Extremely unlikely to extremely likely)

Zhou et al. [40];
Ajzen [43] 82.2 0.928

RI2 In a similar situation in the future, do you intend to run against a red
light? (Definitely do not to definitely do)

RI3 In a similar situation in the future, what is the degree that you will avoid
running against a red light? (Very weak to very strong)∗

RI4 In a similar situation in the future, how likely or unlikely is it that you
will run against a red light? (Extremely unlikely to extremely likely)

RLR willingness

RW1 You will wait for the green light to cross in this situation. (Not at all
willing to very willing)∗

Elliott et al. [47];
Gibbons et al.

[49]
86.2 0.920RW2 You will run against a red light when there is a gap in traffic flow. (Not at

all willing to very willing)

RW3
If other e-bikers around you are running against a red light, what is the
degree that you will also run against a red light? (Very weak to very

strong)

RLR behavior

RB1 I have committed the red-light running in the last month. (Strongly
disagree to strongly agree)

Elliott et al. [47] 82.3 0.892RB2 How many times have you committed the red-light running over the
last month? (None to lots of times)

RB3 Overall, how often have you committed the red-light running over the
last month? (Never to frequently)

Note. ∗Measuring scale is reverse.
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Kaiser–Meyer–Olkin (KMO) was 0.973, and each single
component accounted for 72.5% to 89.4% of the variance
(Table 1), indicating the high validity of the items in the
variable. All Cronbach’s α coefficients ranged from 0.821 to
0.940, suggesting a high internal consistency (Cronbach’s
α> 0.7) (Table 1). Apart from these items, participants’
demographic data (e.g., gender, age, use frequency, and years
of riding experience) were also collected.

3. Results

3.1. Descriptive Statistics and Correlations. Table 2 sum-
marizes the descriptive statistics of the variables. +e par-
ticipants reported that they had a negative attitude towards
RLR behavior (attitude, mean� 2.79). People who are im-
portant to participants (e.g., family members and friends),
although subjectively disapprove them to run against a red
light, would still tolerate their violating behaviors (subjective
norm, mean� 2.52). +e participants had moderate control
over their ability to violate a red light (perceived behavioral
control, mean� 3.86), and they violated traffic rules (e.g.,
red-light running, high-speeding, and violating crossing) to
a moderate extent during the last 12 months (past behavior,
mean� 4.24). It is also visible in Table 2 that the participants
regarded themselves slightly dissimilar to the prototypical
RLR e-bikers (prototype similarity, mean� 3.80) and rated
the prototypical RLR e-bikers as moderately negative
(prototype favorability, mean� 3.74). Additionally, the
participants had a weak intention to violate a red light (RLR
intention, mean� 4.06) but a relatively strong willingness to
violate a red light whenever an opportunity was provided
(RLR willingness, mean� 4.60). Finally, the participants
reported that they violated a red light to a moderate extent
during onemonth after completing the Time 1 questionnaire
(RLR behavior, mean� 4.20).

Pearson’s bivariate correlations were calculated to
evaluate the association between each variable (Table 2).
+e correlations established suggested that all study vari-
ables were significantly associated with each other. In
particular, RLR intention, RLR willingness, and RLR be-
havior positively and significantly correlated with attitude,
perceived behavioral control, past behavior, prototype
similarity, and prototype favorability, while negatively and
significantly with subjective norm. RLR behavior was
positively and significantly related to RLR intention and
willingness. +e correlation analysis results support the
efficacy of TPB, PWM, and TPB-PWM frameworks in
explaining e-bikers’ RLR behavior.

3.2. Results of the Structural Equation Modeling. In this
section, we have presented the process and results of the path
analysis conducted using structural equation modeling in
Amos 24. +e path models for e-bikers’ RLR behavior was
evaluated based on TPB, PWM, and TPB-PWM frame-
works. Degree-of-fit of the proposed model frameworks was
evaluated and modified by multiple indexes, including chi-
square divided by degrees of freedom (CMIN/df), root-
mean-square error of approximation (RMSEA), goodness-

of-fit index (GFI), normal fit index (NFI), incremental fit
index (IFI), comparative fit index (CFI), and Tucker–Lewis
index (TLI) [52, 53]. Subsequently, we employed the path
analysis to estimate the significance of the direct, indirect,
and total effects of the variables in each model and assess the
predictive utility of the proposed models. +e path analysis
results of each model are presented below. +e degree-of-fit
indexes for three models are summarized in Table 3, while
Table 4 displays the direct, indirect, and total effects of the
independent variables on RLR intention, willingness, and
behavior in three models.

3.2.1. TPB Model. Table 3 showed that the CMIN/df was
more than 3 in the initial TPB model, indicating the degree-
of-fit of this model to our data was inadequate (CMIN/
df� 3.191, RMESA� 0.046, GFI� 0.953, NFI� 0.969,
IFI� 0.979, CFI� 0.979, and TLI� 0.975). Based on the
suggested modification indices in Amos 24, the initial model
path was revised by adding a path from the subjective norm
to past behavior. +e modified TPB model fitted well to the
data (CMIN/df� 2.925, RMESA� 0.043, GFI� 0.958,
NFI� 0.972, IFI� 0.981, CFI� 0.981, and TLI� 0.978). +e
path analysis results revealed that the attitude, subjective
norm, and perceived behavioral control were the crucial
determiners of RLR intention. RLR behavior was also sig-
nificantly predicted by RLR intention, perceived behavioral
control, and past behavior. +e modified TPB model
explained 80.4% of the variance of RLR intention and 73.6%
of RLR behavior (Figure 4).

3.2.2. PWMModel. +e initial PWMmodel did not obtain a
good fit to our data due to the value of more than 3 for the
CMIN/df (CMIN/df� 3.246, RMESA� 0.047, GFI� 0.940,
NFI� 0.965, IFI� 0.975, CFI� 0.975, TLI� 0.971). +us, the
initial model path was improved based on the suggested
modification indices. We removed the path from subjective
norm to RLR willingness and added the paths from pro-
totype favorability and similarity to RLR intention, as well as
the path from prototype favorability to RLR behavior. +e
modified PWMmodel obtained adequate degree-of-fit to the
data (CMIN/df� 2.627, RMESA� 0.040, GFI� 0.951,
NFI� 0.972, IFI� 0.982, CFI� 0.982, and TLI� 0.979) and
explained 76.6%, 77.4%, and 81.3% of the variance of RLR
intention, willingness, and behavior, respectively. It is
noteworthy that RLR willingness had a greater impact on
RLR behavior than RLR intention (β� 0.395 vs β� 0.173)
(Figure 5).

3.2.3. TPB-PWM Model. As the degree-of-fit of the initial
TPB-PWM model to our data was inadequate (CMIN/
df� 3.556, RMESA� 0.050, GFI� 0.923, NFI� 0.956,
IFI� 0.968, CFI� 0.968, and TLI� 0.963), we applied the
same path modifications as those in the modified PWM
model. Based on the modification indices, we also omitted
the path from perceived behavioral control to RLR behavior.
+e modified TPB-PWM model fitted well to the data
(CMIN/df� 2.438, RMESA� 0.037, GFI� 0.948,
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NFI� 0.970, IFI� 0.982, CFI� 0.982, and TLI� 0.979) and
explained a relatively higher percentage of the variance of
RLR intention (82.0%), behavior willingness (77.1%), and

RLR behavior (81.4%). We also found that RLR willingness
contributedmore impact on RLR behavior compared to RLR
intention (β� 0.393 vs β� 0.175) (Figure 6).

Table 2: Means, standard deviations, and bivariate correlations for all study variables.

Variable 1 2 3 4 5 6 7 8 9 Mean SD
1. Attitude 1.000 − 0.460∗∗ 0.543∗∗ 0.501∗∗ 0.528∗∗ 0.549∗∗ 0.638∗∗ 0.630∗∗ 0.484∗∗ 2.79 1.05
2. Subjective norm 1.000 − 0.572∗∗ − 0.541∗∗ − 0.643∗∗ − 0.631∗∗ − 0.582∗∗ − 0.632∗∗ − 0.689∗∗ 2.52 1.19
3. Perceived behavioral control 1.000 0.631∗∗ 0.701∗∗ 0.675∗∗ 0.760∗∗ 0.622∗∗ 0.680∗∗ 3.86 1.54
4. Past behavior 1.000 0.607∗∗ 0.673∗∗ 0.630∗∗ 0.742∗∗ 0.709∗∗ 4.24 1.57
5. Prototype similarity 1.000 0.772∗∗ 0.711∗∗ 0.685∗∗ 0.778∗∗ 3.80 1.87
6. Prototype favorability 1.000 0.709∗∗ 0.715∗∗ 0.739∗∗ 3.74 1.73
7. RLR intention 1.000 0.660∗∗ 0.688∗∗ 4.06 1.49
8. RLR willingness 1.000 0.775∗∗ 4.60 1.66
9. RLR behavior 1.000 4.20 1.41
Note. ∗∗p< 0.01.

Table 3: +e degree-of-fit indexes in three models.

Index
TPB model PWM model TPB-PWM model

Initial Modified Initial Modified Initial Modified
CMIN/df 3.191 2.925 3.246 2.627 3.556 2.438
RMESA 0.046 0.043 0.047 0.040 0.050 0.037
GFI 0.953 0.958 0.940 0.951 0.923 0.948
NFI 0.969 0.972 0.965 0.972 0.956 0.970
IFI 0.979 0.981 0.975 0.982 0.968 0.982
CFI 0.979 0.981 0.975 0.982 0.968 0.982
TLI 0.975 0.978 0.971 0.979 0.963 0.979

Table 4: Effects of the independent variables on RLR intention, willingness, and behavior in three models.

RLR intention RLR willingness RLR behavior
Direct Indirect Total Direct Indirect Total Direct Indirect Total

TPB model
AT 0.291∗∗∗ 0.291∗∗∗ 0.079∗∗∗ 0.079∗∗∗

SN − 0.114∗∗ − 0.027∗∗ − 0.141∗∗∗ − 0.158∗∗∗ − 0.158∗∗∗

PBC 0.527∗∗∗ 0.048∗∗ 0.575∗∗∗ 0.254∗∗∗ 0.369∗∗∗ 0.623∗∗∗

PB 0.094∗∗ 0.094∗∗ 0.420∗∗∗ 0.025∗∗ 0.445∗∗∗

RI 0.270∗∗∗ 0.270∗∗∗

PWM model
AT 0.361∗∗∗ − 0.026 0.335∗∗∗ 0.257∗∗∗ 0.257∗∗∗ 0.160∗∗∗ 0.160∗∗∗

SN − 0.073∗ − 0.073∗ − 0.013∗ − 0.013∗

PB 0.196∗∗∗ − 0.044 0.152∗∗∗ 0.434∗∗∗ 0.434∗∗∗ 0.140∗∗ 0.197∗∗∗ 0.337∗∗∗

PF 0.132∗ − 0.013∗ 0.119 0.127∗ 0.127∗ 0.285∗∗∗ 0.071∗∗∗ 0.356∗∗∗

PS 0.364∗∗∗ − 0.021∗ 0.343∗∗∗ 0.203∗∗∗ 0.203∗∗∗ 0.139∗∗∗ 0.139∗∗∗

RW − 0.102 − 0.102 0.395∗∗∗ − 0.018∗ 0.377∗∗∗

RI 0.173∗∗∗ 0.173∗∗∗

TPB-PWM model
AT 0.282∗∗∗ − 0.014 0.268∗∗∗ 0.256∗∗∗ 0.256∗∗∗ 0.148∗∗∗ 0.148∗∗∗

SN − 0.036 − 0.036 − 0.006 − 0.006
PBC 0.428∗∗∗ 0.428∗∗∗ 0.075∗∗∗ 0.075∗∗∗

PB 0.075 − 0.023 0.052 0.432∗∗∗ 0.432∗∗∗ 0.142∗∗ 0.179∗∗∗ 0.321∗∗∗

PF 0.082 − 0.007 0.075 0.132∗ 0.132∗ 0.283∗∗∗ 0.065∗∗∗ 0.348∗∗∗

PS 0.191∗∗∗ − 0.011 0.180∗∗∗ 0.199∗∗∗ 0.199∗∗∗ 0.110∗∗∗ 0.110∗∗∗

RW − 0.054 − 0.054 0.393∗∗∗ − 0.009 0.384∗∗∗

RI 0.175∗∗∗ 0.175∗∗∗

Note. ∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001.
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4. Discussion

4.1. Comparison of Predictive Utility. As shown in Tables 3
and 4, the modified TPB, PWM, and TPB-PWM models
provided adequate degree-of-fit to the data, but the modified

PWM and TPB-PWM models had a more considerable
utility in predicting e-bikers’ RLR behavior than the mod-
ified TPB model. +at is, the PWM and TPB-PWM
frameworks provided a more complete account of e-bikers’
RLR behavior than the TPB framework.
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4.1.1. Predictive Utility of TPB. In this study, the extended
TPB model with the addition of past behavior explained
80.4% of the variance of RLR intention and 73.6% of RLR
behavior. Previous studies obtained similar results, reporting
that the TPB framework explained 25%–72.8% of the var-
iance in pedestrians’ violation intentions [38–41]. However,
these studies focused on predicting pedestrians’ behavioral
intention but not on their behavior. Demir et al. [21]
confirmed the path from intention to behavior for pedes-
trians’ violations. Currently, insufficient evidence exists on
the intention-behavior path for e-bikers’ violations.

All the variables from the TPB framework had a sta-
tistically significant total effect on RLR intention and be-
havior. Of these variables, perceived behavioral control had
the highest total effect (the sum of the direct and indirect
effects) on RLR intention, which can be supported across a
few studies on pedestrians’ violation intention and drink-
driving intention [41, 45]. Also, the total effect of perceived
behavioral control on e-bikers’ RLR behavior was the
strongest. In accordance with earlier related findings on
pedestrians’ violations [21], perceived behavioral control
also played an important role in predicting pedestrians’
violating behavior. However, in contrast to the results ob-
tained by Demir et al. [21], we established that the subjective
norm was statistically significantly associated with RLR
intention and behavior. +is result was in line with previous
research studies which revealed that subjective norm con-
tributed a moderate effect on pedestrians’ violation inten-
tions [39, 40, 54]. Among the extended TPB framework, past

behavior as an extended variable contributed a weak effect
on RLR intention, which is inconsistent with the related
studies on the behavioral intentions of risky riding [30] and
drink-driving [31, 45]. However, past behavior was found to
be a second-crucial determiner of RLR behavior and added
an additional 7.2% to the explained variance for RLR be-
havior compared to the original TPB model. +is result was
in good agreement with a previous study on drivers’
speeding behavior [55], which reported that the additional
past behavior could enhance the explained variance for
speeding behavior by an additional 4%. Our findings
highlighted the fact that past behavior, with the incorpo-
ration into the original TPB framework, improved the
predictive power. To some extent, e-bikers’ past behavior
partially represented their behavioral habits, while the ha-
bitual, familiar behavior has been recognized by Ajzen [42]
that plays an important role in predicting behavior.

4.1.2. Predictive Utility of PWM and TPB-PWM.
Compared to the modified TPB framework, the modified
PWM and TPB-PWM frameworks explained an additional
7.7% and 7.8% of the variance in RLR behavior. +e
modified TPB-PWM framework also explained an addi-
tional 1.6% of the variance in RLR intention. Interestingly,
our findings showed that RLR intention and willingness
were crucial predictors of RLR behavior, and the total effect
of willingness on RLR behavior was prominently stronger
than that of intention. Elliott et al. [47] and Demir et al. [21]
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reached similar conclusions for drivers’ speeding and pe-
destrians’ violations. +ey also revealed that behavioral
willingness contributed more substantially to violating be-
havior than behavioral intention. +us, we concluded that
e-bikers might decide on whether to violate a red light
through the social reactive pathway rather than the reasoned
pathway.+is result was also consistent with the conclusions
of Gibbons et al. [49], which underlined that the social
reactive decision-making was more suitable for predicting
risk-taking behavior. Accordingly, as expected, the results
revealed that social reactive decision-making is more crucial
than reasoned decision-making in determining e-bikers’
RLR behavior. +is finding is paralleled to the dynamic
nature of the riding task, which suggests that social reactive
decision-making needs to respond to changing traffic en-
vironmental factors.

+emodel estimation results revealed that the attitude still
significantly influenced RLR intention as the TPB model, and
furthermore, had a significant total effect on RLR behavior via
a mediator variable “RLR willingness.” However, the influ-
ence of subjective norm on RLR intention and behavior was
weakened, and it was no longer a significant variable in the
TPB-PWM model. A plausible reason is that the approval of
one’s family members or friends on RLR behavior has little
influence on his/her RLR intention and behavior, which is
supported by the results of several investigations on violation
intentions of drivers, e-bikers, and pedestrians
[17, 21, 29, 32, 40]. For instance, Zhou et al. [40] suggested that
the behavior of pedestrian’s family members or friends exerts
a stronger influence on the pedestrian’s intention to violate
crossing than their approval of such behavior.

Prototype perceptions (favorability and similarity)
played a significant role in predicting RLR intention, will-
ingness, and behavior, except for a special case; that is, the
effect of prototype favorability on RLR intention was not
significant in the TPB-PWMmodel, which was caused by the
addition of perceived behavioral control. +ese results
revealed that e-bikers who perceived people of their age and
gender that regularly violate a red light as favorable and
similar had a higher intention/willingness to commit RLR
behavior. Although the original PWM framework has no
relationship between prototype perceptions and intention,
recent studies on pedestrian violations also found that
prototype perceptions significantly contributed to intention
[47]. More specifically, in the modified PWM model, pro-
totype perceptions had a more significant influence on RLR
intention than RLR willingness. Since perceived behavioral
control was integrated into the modified TPB-PWM model
and significantly influenced RLR intention, prototype per-
ceptions contributed to RLR willingness more considerably.

Perceived behavioral control, as one of the TPB-based
variables, still exerted a strong influence on RLR intention,
whereas it had a weak effect on RLR behavior since it did not
directly affect RLR behavior. In the modified PWM, past
behavior was always a crucial predictor of RLR intention,
willingness, and behavior, as also established by Gibbons et al.
[20, 49]. In the modified TPB-PWM model, although the
effect of past behavior on RLR intention was no more sig-
nificant due to the addition of perceived behavioral control,

past behavior still substantially contributed to RLR willing-
ness and behavior. +ese findings revealed that e-bikers’
perceived ability to violate a red light (perceived behavioral
control) was more likely to influence behavioral intention,
whereas behavioral habits or experiences (past behavior) had
a greater impact on their behavioral willingness. In summary,
e-bikers’ behavioral habits or experiences substantially in-
fluence RLR behavior through social reactive and reasoned
pathways. +erefore, bias and deviations in the final results
might have been caused in Demir et al.’s [21] study without
considering the impact of past behavior.

4.2. Implications of Safety Interventions. +e outputs ob-
tained from this study could support the application of safety
interventions and thereby further discourage the e-bikers’
RLR behavior. +e attitude, perceived behavioral control,
past behavior, prototype perceptions, RLR intention, and
RLR willingness represent particularly good intervention
targets since they were the crucial predictors of e-bikers’ RLR
behavior.

Among these identified psychological factors, the per-
ceived behavioral control was a crucial contributor to
e-bikers’ RLR intention. +is result revealed that if e-bikers
perceived the difficulty of violating a red light, they had less
intention to commit it. +us, reducing e-bikers’ perceived
control might decrease their RLR behavior. For example,
radio-frequency identification (RFID) can be integrated into
e-bike license plates, combined with traffic cameras, to
automatically monitor and capture e-bikes’ RLR behavior at
signalized intersections. Meanwhile, learning from the
management system of drivers’ red-light infringement be-
havior, more stringent penalties (e.g., higher fines and de-
merit point system) can be employed to limit the e-bikers’
RLR behavior.+e RLR willingness was especially crucial for
RLR behavior. +e aforementioned countermeasures would
also reduce the opportunity for RLR behavior, thereby
weakening the willingness to violate a red light.

Since attitude, prototype perceptions, and past behavior
were found to be pronounced predictors of both intention
and willingness to engage in RLR behavior, preventative
safety interventions are needed to focus on addressing this
issue. +erefore, future advertisements and education re-
lated to traffic safety could consider creating the images of
negative and undesirable e-bikers who violate a red light and
enhance the negative and unfavorable perception of themost
typical violators. For instance, riding simulation could allow
e-bikers to experience traffic crashes or near-crashes as the
results of their RLR behavior at signalized intersections,
which might make e-bikers directly perceive the negative
attributes of RLR behavior. It is expected that identifying
violating e-bikers with negative portrayal would reduce
e-bikers’ RLR behavior. +is expectation is supported by the
findings of Demir et al. [56], which indicated that identifying
speeders with negative portrayal on campus could reduce the
incidence of speeding behavior. Also, school-based educa-
tion can be an important approach to changing or correcting
individual attitudes and prototype perceptions, especially
correcting younger people’s attitudes and prototype
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perceptions [40]. In essence, past behavior can indicate
individual behavioral habits [42]. +erefore, the proposed
advertisements and education, riding simulation, and au-
tomated traffic rule enforcement might help e-bikers develop
good riding habits. Furthermore, if e-bikers are required to
participant in e-bike riding training and pass some riding
tests, their illegal riding habits might be corrected.

4.3. Limitations and Future Research. +is study employed
the social cognitive theories, including the TPB, PWM, and
TPB-PWM frameworks, in understanding e-bikers’ RLR
behavior. Our work extended upon previous studies in
e-bikers’ RLR behavior which was investigated by using the
TPB frameworks. Furthermore, the application of the PWM
and TPB-PWM frameworks allowed for an in-depth un-
derstanding of the psychological factors influencing
e-bikers’ RLR behavior. Despite this, our work still had some
limitations that need attention and discussion. First, the
study sample included e-bikers that were predominantly
female and with a large age variance. Previous studies
showed that men or young people are more prone to take the
risk when driving or riding; also their likelihood to get
involved in traffic accidents is greater [11–15, 57, 58]. Hence,
the gender and age composition of the study sample might
have influenced the results of the proposed model frame-
works. More comprehensive studies need to be conducted to
elucidate the effects of gender and age differences in the
future. Second, the findings of this study might have been
affected by the bias inherent in self-report data. Specifically,
such bias might have led to an underestimation of past
behavior and subsequent RLR behavior due to social de-
sirability and recall bias. Although this work was conducted
by the use of voluntary and anonymous questionnaires to
reduce social desirability bias, recall bias was still an issue
that needed to be addressed.+ird, one aim of this study is to
predict potential RLR behavior, which requires high accu-
racy for measuring subsequent RLR behavior, whereas we
measured this variable only by self-reports. +erefore, the
absence of an objective measurement of subsequent RLR
behavior is also a major limitation of this work. In future
studies, we can use some objective measurements such as an
e-bike data acquisition system to obtain the frequency of
subsequent RLR behavior in a given period (one month or
more) after completing the Time 1 questionnaire.+e fourth
limitation is that this study assumes that the use of e-bikes of
participants is an equal amount, whereas it varies signifi-
cantly between participants based on the collected metric of
exposure (e.g., use frequency and years of riding experience).
As the exposure might be correlated to the psychological
variables, the study results would be altered. +erefore, the
influence of the exposure factors on the psychological
variables and behavior should be considered in future work.

5. Conclusions

+e findings of our research suggest that the TPB and PWM
are the promising theoretical frameworks for predicting
e-bikers’ intention or willingness to engage in RLR behavior, as

well as for understanding the effects of psychological variables
on RLR behavior. Furthermore, the PWM and TPB-PWM
frameworks were found to be superior to the TPB framework
in predicting e-bikers’ RLR behavior. +e present findings
validate our hypothesis that e-bikers’ RLR behavior is governed
by both reasoned and social reactive decision-making, and the
influence of the latter is stronger. In the PWMmodel, attitude,
past behavior, and prototype similarity were the crucial pre-
dictors of both RLR intention and willingness. Prototype
favorability had a relatively weak influence on RLR intention
and willingness while exerted a pronounced direct effect on
RLR behavior. In the TPB-PWM model, with the addition of
perceived behavioral control, the impact of past behavior on
RLR intention was reduced by the substantial influence of
perceived behavioral control on RLR intention, but past be-
havior was still a crucial factor in predicting RLR behavior.
+ese results imply the significance of specifically changing the
e-bikers’ attitude, perceived behavioral control, past behavior,
and prototype perceptions towards RLR behavior. +us, the
design of more effective behavior-change interventions is
needed, such as advertisements and education, training pro-
grams (e.g., riding simulation, riding training, and riding tests),
and automated traffic rule enforcement.
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“(E-)cyclists running the red light—the influence of bicycle
type and infrastructure characteristics on red light violations,”
Accident Analysis & Prevention, vol. 122, pp. 99–107, 2019.

[29] S. E. Forward, “+e theory of planned behaviour: the role of
descriptive norms and past behaviour in the prediction of
drivers’ intentions to violate,” Transportation Research Part F:
Traffic Psychology and Behaviour, vol. 12, no. 3, pp. 198–207,
2009.

[30] K. Chorlton, M. Conner, and S. Jamson, “Identifying the
psychological determinants of risky riding: an application of
an extended theory of planned behaviour,” Accident Analysis
& Prevention, vol. 49, pp. 142–153, 2012.

[31] D. C. N. Chan, A. M. S. Wu, and E. P. W. Hung, “Invul-
nerability and the intention to drink and drive: an application
of the theory of planned behavior,” Accident Analysis &
Prevention, vol. 42, no. 6, pp. 1549–1555, 2010.

[32] I. S. Moan and J. Rise, “Predicting intentions not to “drink and
drive” using an extended version of the theory of planned

12 Journal of Advanced Transportation



behaviour,” Accident Analysis & Prevention, vol. 43, no. 4,
pp. 1378–1384, 2011.

[33] C. Castanier, T. Deroche, and T. Woodman, “+eory of
planned behaviour and road violations: the moderating in-
fluence of perceived behavioural control,” Transportation
Research Part F: Traffic Psychology and Behaviour, vol. 18,
pp. 148–158, 2013.

[34] H. E. Nemme and K. M. White, “Texting while driving:
psychosocial influences on young people’s texting intentions
and behaviour,” Accident Analysis & Prevention, vol. 42, no. 4,
pp. 1257–1265, 2010.

[35] R. Zhou, P.-L. P. Rau, W. Zhang, and D. Zhuang, “Mobile
phone use while driving: predicting drivers’ answering in-
tentions and compensatory decisions,” Safety Science, vol. 50,
no. 1, pp. 138–149, 2012.

[36] K. Brijs, S. Daniels, T. Brijs, and G. Wets, “An experimental
approach towards the evaluation of a seat belt campaign with
an inside view on the psychology behind seat belt use,”
Transportation Research Part F: Traffic Psychology and Be-
haviour, vol. 14, no. 6, pp. 600–613, 2011.

[37] K. Okamura, G. Fujita, M. Kihira, R. Kosuge, and T. Mitsui,
“Predicting motivational determinants of seatbelt non-use in
the front seat: a field study,” Transportation Research Part F:
Traffic Psychology and Behaviour, vol. 15, no. 5, pp. 502–513,
2012.

[38] B. Gannon, L. Rosta, M. Reeve, M. K. Hyde, and I. Lewis,
“Does it matter whether friends, parents, or peers drink walk?
Identifying which normative influences predict young pe-
destrian’s decisions to walk while intoxicated,” Transportation
Research Part F: Traffic Psychology and Behaviour, vol. 22,
pp. 12–24, 2014.

[39] D. Evans and P. Norman, “Predicting adolescent pedestrians’
road-crossing intentions: an application and extension of the
theory of planned behaviour,” Health Education Research,
vol. 18, no. 3, pp. 267–277, 2003.

[40] H. Zhou, S. B. Romero, and X. Qin, “An extension of the
theory of planned behavior to predict pedestrians’ violating
crossing behavior using structural equation modeling,” Ac-
cident Analysis and Prevention, vol. 95, pp. 4717–424, 2016.

[41] B. K. Barton, S. M. Kologi, and A. Siron, “Distracted pe-
destrians in crosswalks: an application of the theory of
planned behavior,” Transportation Research Part F: Traffic
Psychology and Behaviour, vol. 37, pp. 129–137, 2016.

[42] I. Ajzen, “From intentions to actions: a theory of planned
behavior,” in Action Control from Cognition to Behavior,
J. Kuhl and J. Beckman, Eds., Springer, Heidelberg, Germany,
pp. 11–39, 1985.

[43] I. Ajzen, “+e theory of planned behavior,” Organizational
Behavior and Human Decision Processes, vol. 50, no. 2,
pp. 179–211, 1991.

[44] S. Bamberg, I. Ajzen, and P. Schmidt, “Choice of travel mode
in the theory of planned behavior: the roles of past behavior,
habit, and reasoned action,” Basic and Applied Social Psy-
chology, vol. 25, no. 3, pp. 175–187, 2003.

[45] C. Potard, V. Kubiszewski, G. Camus, R. Courtois, and
S. Gaymard, “Driving under the influence of alcohol and
perceived invulnerability among young adults: an extension of
the theory of planned behavior,” Transportation Research Part
F: Traffic Psychology and Behaviour, vol. 55, pp. 38–46, 2018.

[46] A. Rivis, C. Abraham, and S. Snook, “Understanding young
and older male drivers’ willingness to drive while intoxicated:
the predictive utility of constructs specified by the theory of
planned behaviour and the prototype willingness model,”

British Journal of Health Psychology, vol. 16, no. 2, pp. 445–
456, 2011.

[47] M. A. Elliott, R. McCartan, S. E. Brewster, D. Coyle,
L. Emerson, and K. Gibson, “An application of the prototype
willingness model to drivers’ speeding behaviour,” European
Journal of Social Psychology, vol. 47, no. 6, pp. 735–747, 2017.

[48] C. Preece, A. Watson, S.-A. Kaye, and J. Fleiter, “Under-
standing the psychological precursors of young drivers’
willingness to speed and text while driving,” Accident Analysis
& Prevention, vol. 117, pp. 196–204, 2018.

[49] F. X. Gibbons, M. Gerrard, H. Blanton, and D. W. Russell,
“Reasoned action and social reaction: willingness and in-
tention as independent predictors of health risk,” Journal of
Personality and Social Psychology, vol. 74, no. 5, pp. 1164–
1180, 1998.

[50] A. Rivis, P. Sheeran, and C. J. Armitage, “Augmenting the
theory of planned behaviour with the prototype/willingness
model: predictive validity of actor versus abstainer prototypes
for adolescents’ health-protective and health-risk intentions,”
British Journal of Health Psychology, vol. 11, no. 3, pp. 483–
500, 2006.

[51] M. K. Hyde and K. M. White, “Are organ donation com-
munication decisions reasoned or reactive? A test of the utility
of an augmented theory of planned behaviour with the
prototype/willingness model,” British Journal of Health Psy-
chology, vol. 15, no. 2, pp. 435–452, 2010.

[52] L. T. Hu and P. M. Bentler, “Cutoff criteria for fit indexes in
covariance structure analysis: conventional criteria versus
new alternatives,” Structural Equation Modeling: A Multi-
disciplinary Journal, vol. 6, no. 1, pp. 1–55, 1999.

[53] B. G. Tabachnick and L. S. Fidell,Using Multivariate Statistics,
Pearson, Boston, MA, USA, 2013.

[54] D. Evans and P. Norman, “Understanding pedestrians’ road
crossing decisions: an application of the theory of planned
behaviour,” Health Education Research, vol. 13, no. 4,
pp. 481–489, 1998.

[55] M. A. Elliott and J. A. +omson, “+e social cognitive de-
terminants of offending drivers’ speeding behaviour,” Acci-
dent Analysis & Prevention, vol. 42, no. 6, pp. 1595–1605, 2010.

[56] S. Demir, B. Demir, and T. Özkan, “When do drivers con-
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Macrolevel crash modeling has been extensively applied to investigate the safety e�ects of demographic, socioeconomic, and land
use factors, in order to add safety knowledge into tra�c planning and policy-making. In recent years, with the increasing attention
to regional tra�c management and control, the safety e�ects of macrolevel tra�c �ow parameters may also be of interest, in order
to provide useful safety knowledge for regional tra�c operation. In this paper, a new spatial unit was developed using a recursive
half-cut partitioning procedure based on a normalized cut (NC) minimization method and tra�c density homogeneity. Two
Bayesian lognormal models with di�erent conditional autoregressive (CAR) priors were applied to examine the safety e�ects of
tra�c �ow characteristics at the NC level. It was found that safety e�ects of tra�c �ow exist at such macrolevel, indicating the
necessity of considering safety for regional tra�c control and management. Furthermore, tra�c �ow e�ects were also examined
for another two spatial units: Tra�c Analysis Zone (TAZ) and Census Tract (CT). It was found that ecological fallacy and atomic
fallacy could exist without considering tra�c �ow parameters at those planning-based levels. In general, safety needs to be
considered for regional tra�c operation and the e�ects of tra�c �ow need to be considered for spatial crash modeling at various
spatial levels.

1. Introduction

Macroscopic safety evaluation was often conducted, with the
purpose of �nding factors that could be improved or con-
trolled at the planning stage or during policy-making
process. Traditional macroscopic crash models (e.g., Poisson
lognormal models) rely on the assumption of independence
across observations. However, in recent years, spatial crash
models have gained a lot of attention, by adding spatial
dependence into macroscopic crash models. Socioeconomic,
land use, demographic, and tra�c network characteristics
were of interest, and they were often aggregated at varying
levels of spatial units [1], including Tra�c Analysis Zones
(TAZ), Census Tracts (CT), census wards, statistical area
levels, block groups, counties, and states. In general, spatial
crash models have shown their superiority over conven-
tional macroscopic crash models.

However, an important issue of spatial crash models is
the choice of a certain level of spatial unit, which is also

called Modi�able Aerial Unit Problem (MAUP). Wang et al.
[2] discussed the possible ecological fallacy of spatial ag-
gregation (Davis) that modeling results from spatially ag-
gregated data may not be fully applied to disaggregated data.
�ey also argued the possible atomistic fallacy caused by
disaggregated data, which is unable to take “system-wide
e�ects” captured by spatially aggregated data [3, 4]. Abdel-
Aty et al. [5] compared spatial crash models based on three
di�erent aggregate-level spatial units (i.e., TAZs, CT, and
block groups) and found the e�ects of di�erent spatial units
on the signi�cance of model estimates. Xu et al. [6] con-
ducted a sensitive analysis on the e�ects of di�erent ag-
gregate-level spatial TAZ units. �ey found that more
aggregated TAZs tended to have better model performance
but fewer variables. �is result was consistent with Wang
et al. [2], as spatially aggregated data tend to decrease at-
omistic fallacy while increase ecological fallacy if not
properly aggregated. Gyimah et al. [1] examined the e�ect of
six di�erent aggregate-level spatial units on unobserved
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spatial heterogeneity. According to the results, the aggre-
gation level could significantly affect spatial heterogeneity, as
well as model performance.

Both Xu et al. [6] and Gyimah et al. [1] pointed out the
necessity of defining a new spatial unit from the perspective
of macroscopic safety evaluation, instead of using long-term
planning-based TAZs. To note, most spatial units like TAZ
were not initially defined for safety analysis but for traffic
planning purposes. *us, they are possibly delineated based
on the homogeneity of demographic, socioeconomic, or land
use factors, regardless of traffic flow characteristics. Traffic
flow characteristics were largely found to be associated with
crash occurrence and safety in the previous literature. *us,
an aggregate-level spatial unit, like TAZs at any aggregate
level, may contain roadways with significantly distinct traffic
flow characteristics. As a result, the relationship between
traffic flow characteristics and crash occurrence could be
weakened or nonsignificant (i.e., an example of ecological
fallacy for a spatial unit due to the inhomogeneity in traffic),
leading to biased model estimates. To overcome possible
ecological fallacy and atomistic fallacy (caused by dis-
aggregated data), Wang et al. [2] claimed the necessity of a
better mathematical partitioning scheme based on spatial
homogeneity in both demographic and traffic flow
characteristics.

*ere are many different spatial partitioning methods in
the literature to define spatial units, such as k-means al-
gorithm, AZP [7], and REDCAP (regionalization with dy-
namically constrained agglomerative clustering and
partitioning) [8]. Some have also been introduced into
spatial crash modeling. In order to study the effect of en-
forcement on road crashes in Greece, Yannis et al. [9]
formed spatial units based on spatial homogeneity in traffic
characteristics and road safety parameters, with a direct k-
means algorithm. Yannis concluded the statistical results
might be more reliable if spatial units are more homoge-
neous. Xu et al. [6] proposed a zoning scheme of aggregating
similar TAZs into a spatial unit, based on REDCAP. *e
homogeneity of crash risk was considered as the clustering
criteria. However, although considering spatial homogeneity
in various factors, these partitioning methods still rely on
predefined spatial units for planning, such as TAZ.

Ji and Geroliminis [10] introduced a graph cut mini-
mization method to divide urban traffic networks into
multiple spatial units. With such method, a traffic network
was partitioned into spatial units with homogeneous traffic
flow characteristics, and macroscopic fundamental diagram
(MFD) of each region was successfully identified. Such
method is very flexible, by not depending on any sort of
predefined spatial unit (e.g., TAZs). Although initially
proposed for controlling traffic and improving congestion,
the idea of the graph cut minimization method could also be
beneficial for macroscopic safety evaluation. As traffic flow
characteristics have been shown strong relationships with
crash, it is reasonable to believe that a spatial unit aggre-
gating roadway with similar traffic flow characteristics would
be more suitable for spatial crash modeling. Based on such
method, the underlying relationship between traffic flow and

crash may be better explored. *us, active regional traffic
control and management strategies [11–15] could be ex-
pected to improve macroscopic safety, by managing traffic
flow in some certain state with lower crash risk.

*us, in this paper, we will define a new spatial unit for
macroscopic safety evaluation, by considering the homo-
geneity of traffic densities. A graph cut method will be in-
troduced, based on which a spatial partitioning procedure is
proposed. Two Bayesian spatial modeling techniques are
employed to analyze crash data at the new level, in order to
identify possible traffic flow effects on safety. *e remainder
of the paper is organized as follows. In Section 2, we present
the detail of the graph cut minimization method for spatial
partitioning as well as spatial modeling techniques. Section 3
gives a brief description of the data. Section 4 summarizes
the spatial partition results and modeling results and in-
cludes a discussion. *e last part concludes the paper and
recommends future research directions.

2. Spatial Partitioning

2.1. A Normalized Cut (NC) Minimization Method. In order
to divide an area into multiple regions, a normalized cut
minimization (NC) method is introduced, considering in-
tersections as nodes and roadways as edges. NC method has
been used in the previous literature for spatial partitioning
[10].

Suppose the node set V in an undirected graph G �

(V, E) where E indicates the set of edges in G. Assume that
each edge between two vertices vi and vj carries a non-
negative weight wij � wji ≥ 0. *e weight adjacency matrix
of the graph can be defined as W � (wij)i,j�1,...,n. When
wij � 0, it indicates that the two vertices are not connected.
*e degree of a vertex vi ∈ V is defined as di � 

n
j�1wij. *e

degree matrix D is defined as the diagonal matrix with
degree d1, d2, . . . , dn on the diagonal.

Consider edge to be a measure of the similarity between
nodes. We want to find a partition of the graph such that edges
between different groups have a very low weight, indicating
that points in different clusters are dissimilar from each other.
Moreover, the edges within a group need to have high weights,
implying that pints within the same cluster are similar.

For two disjoint subsets A and B,

cut(A, B) � 
i∈A,j∈B

wij. (1)

In 2000, Shi and Malik proposed a 2-way normalized cut
functions: Ncut and Nassoc, which indicate the homogeneity
and heterogeneity of two clusters:

Ncut(A, B) �
cut(A, B)

cut(A, V)
+
cut(A, B)

cut(B, V)
,

Nassoc(A, B) �
cut(A, A)

cut(A, V)
+
cut(B, B)

cut(B, V)
,

cut(A, A) + cut(A, B) � cut(A, V),

Ncut(A, B) � 2 − Nasssoc(A, B).

(2)
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*us, the objective can be determined as the minimi-
zation of Ncut:

min
x

Ncut(x).

s.t. x ∈ V.
(3)

Minimizing Ncut value exactly is NP-complete. *e
discrete solution can be approximated efficiently by solving
an eigenvalue system in the real value domain. A common
way is to convert the normalized cut into the unnormalized
graph Laplacian. Set

w(i, j) �
exp − di − dj 

2
 , aij � 1,

0, aij � 0.

⎧⎪⎨

⎪⎩
(4)

*en, we have

min
x

Ncut(x) � min
y

yT(D − W)y

yTDy
,

s.t xi � 1 if xi ∈ A,

xi � 1 if xi ∈ B,

yi ∈ − 1, b{ },

yTD1 � 0,

(5)

where D is an N ∗N diagonal matrix with dii � jω(i, j)

on its diagonal. D − W is the Laplacian matrix, known to
be positive semidefinite. Based on Rayleigh–Ritz theo-
rem, the solution is to solve the generalized eigenvalue
system:

(D − W)y � λDy, (6)

where λ is the eigenvalue and y is the eigenvector. *e
second smallest eigenvector is called the Fiedler vector,
which is the real-valued solution to normalized cut
problem.

2.2. A Recursive Half-Cut Partitioning Procedure. To apply
the above method for spatial partitioning, we propose a
recursive half-cut procedure:

Step 1: set up a weighted graph G � (V, E) based on
the topology of traffic network. Intersections are
treated as nodes while roadways are considered as
edges.
Step 2: set the weight on the edge connecting two nodes,
using a measure of similarity between two notes (i.e.,
traffic density).
Step 3: solve (D − W)y � λDy for eigenvectors with
the smallest eigenvalues.
Step 4: cut the graph into two clusters based on the
second smallest eigenvector (i.e., Fiedler vector).
Step 5: decide if the current partition should be further
divided.

Step 6: repeat the first five steps until certain criteria
were met.

When partitioning a graph with the Fiedler vector,
different strategies can be used.*ere are three general ways:
(1) partition the graph with the median value; (2) cut the
graph with value 0 (negative versus positive); and (3) cut the
graph based on the largest interval between every two ele-
ments. In this study, the third approach was utilized.

2.3. Spatial Model Configuration. Crash modeling includes
severity modeling [16–18] and crash frequency modeling
[19, 20]. Spatial crash modeling belongs to crash frequency
modeling, which contains multiple model structures [21–
26], including Poisson lognormal model, negative binomial
spatial model, Poisson lognormal spatial model, geographic
weighted Poisson regression model, and Bayesian spatial
varying-coefficient model. Since the purpose of this study is
to examine the effect of traffic flow characteristics, two
Bayesian lognormal models with different CAR priors were
applied, since they have been widely applied in many dif-
ferent research fields such as epidemiology.

A generalized Bayesian lognormal model with CAR prior
can be presented as

YI ∼ Poisson λi( ,

ln λi(  � ln(E) + β0 + βkXik + θi + ϕi,
(7)

where λi is the expected mean of crash occurrence for ob-
servation i; E is the exposure/expectation for observation i;
βk is the parameter coefficient of kth variable; Xik is the kth
variable for ith observation; θi is the unstructured error,
often assumed as a prior normal distribution; and ϕi is the
spatial correlation.

For the spatial correlation term ϕi, the intrinsic condi-
tional autoregressive prior (CAR prior) can be defined as
follows [18]:

∅i

∅− i, W, τ2 ∼ N
i≠jϕjmij

i≠jmij

,
τ2c

i≠jmij

 , (8)

where mij denotes the binary entries of proximity matrix (1
represents adjacency while 0 indicates nonadjacency). τc is
the precision parameter, assumed as a prior gamma dis-
tribution. In essence, the conditional expectation ϕi is the
average of spatial correlations of adjacent areas; conditional
variance τ2 is inversely proportional to the number of ad-
jacent areas.

A Cressie autoregressive prior can be written as follows:

∅i

∅− i, W, τ2 ∼ N ρ
i≠jϕjmij

i≠jmij

+(1 − ρ)


n
j�1ϕj

n
,

τ2c
i≠jmij

 .

(9)

Different from IAC priors, the conditional expectation of
ϕi is modified into the weighted average of the average of
adjacency area and the average of the entire area. Weight
parameter ρ indicates the intensity of spatial autocorrela-
tion. When ρ � 0, it indicates a complete spatial indepen-
dency, and with the increase of ρ, spatial autocorrelation
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increases. When ρ � 1, the Cressie model degenerates to an
intrinsic CAR model.

Based on a fitted model, the relative risk (RR) of a
subregion can be calculated as follows:

RR � e
β0+βkXik+θi+ϕi( ). (10)

3. Data Preparation

Crash data for the central area of Kunshan City (within the
KunshanMiddle Ring Road) in 2015 were acquired from the
Kunshan Police Department. A total of 5538 crashes were
collected. *e crash data contain detailed information on
drivers, roadways, and vehicles. For each crash record, there
is a unique coordinate, which can be further used for lo-
cating it on the map. In order to conduct macroscopic crash
modeling, spatially aggregated features also need to be
collected.

Planning-based data were extracted from the planning
department of Kunshan City. More importantly, detailed
traffic data are necessary for spatial partition and spatial
modeling. *us, traffic data between 2015.8 and 2015.9 were
extracted from microwave detectors with the 30 s interval,
including density, speed, and counts. *e average traffic
density was considered as the measure of traffic homoge-
neity, used in spatial partitioning. Figure 1 shows the
roadway network, the location of microwave detectors, and
the land use sketch of the studied area.

As for Bayesian modeling, the total number of crashes
was used as the dependent variable. Unlike previous studies,
we calculated the expected crash number as exposure. *e
expected crash number of a spatial unit can be calculated as
the total crash number times the proportion of the exposure
(daily traffic volume ∗ total population ∗ area size) of the
area. *e calculation assumed that the expected average risk
of each area is comparable. However, it is also reasonable
that the relative exposure risk among different areas can
largely vary. Many factors could contribute to it, including
traffic flow parameters (used as explanatory variables),
planning, and land use factors. Four aggregated traffic
variables (average flow, average density, average speed, and
speed variance) were calculated for each area, which were
also used as explanatory variables for spatial modeling.
Other explanatory variables include most planning-based
aggregated variables, commonly used in the previous
literature.

4. Results

4.1. Partitioning Results. *e NC partitioning method was
applied to partition the graph with 99 nodes (i.e., 99 in-
tersections). Initially, by solving the Laplacian matrix, all
eigenvalues were calculated. Based on the similarity of ei-
genvectors and their spatial adjacency, 8 clusters were de-
termined. However, NC 8 has the area size of 10.98m2,
which is much larger than other NCs. In order to obtain all
NCs with comparable size, further division efforts were
conducted in NC 8, which has 23 intersections within the

area. Based on another two rounds of partitioning on NC 8,
13 NCs were finally delineated, as shown in Figure 2.

*e descriptive statistics of planning, roadway, and
traffic flow parameters of 13 NCs are summarized in Table 1.

4.2. Model Results. Intrinsic and Cressie Bayesian CAR
models were developed to examine the relationship between
various variables with crash risk. First, multicollinearity
needs to be examined for those variables. VIF tests and
stepwise methods were applied to eliminate those variables
with high multicollinearity (VIF >10).

*en, for each Bayesian CAR model, 100000 iterations
were conducted with 5000 iterations as burn-in period. All
three models appeared to reach convergence within the
simulation period. Figure 3 gives an illustration of model
convergence.

Both intrinsic and Cressie CAR models showed signif-
icant traffic flow effects on crash risk. *e results were
comparable for the two models. Detailed results are shown
in Table 2. A region having higher speed variance tends to
have higher crash risk. *is is reasonable. With higher traffic
density, there is a slight increase in crash risk. Previous
literature studies suggest controversial findings on the re-
lationship between density and crash risk. Some claimed a
positive linear relationship while others suggested a qua-
dratic function. It is reasonable to expect that, at first, the
higher density creates more interaction and thus more
crashes. While it reaches some certain point, the traffic
becomes congested and the speed significantly drops down.
In this case, crashes could possibly decrease. Since we only
consider an average effect without regarding spatial and
temporal heterogeneity, the detailed density effect of each
zone needs to be further explored. Average daily traffic
volume (ADT) was not found to be significant as the ex-
planatory variable, implying that traffic volume is not sig-
nificantly connected with average crash risk. *us, the effect
of ADT on crash risk could be considered as the only ex-
posure effect (Figure 4).

As for the effects of planning/roadway factors on crash
risk, there are slight differences between the two models.
According to intrinsic CAR models, the increase of major/
minor arterial density will increase crash risk. *is was
consistent with the previous literature. *ere is no signifi-
cant relationship between local road density and crash risk.
It was expected that the increase of local roads would lower
crash risk, according to the previous literature. A possible
reason could be the inclusion of significant traffic flow
variables adjusts the effects of local roads density. In other
words, traffic flow variables could be endogenous variables
that cannot be ignored. According to the Cressie CAR
model, with the increase of industrial land use, crash risk
decreases by 2.5%. More school land use and residential land
use are associated with higher crash risk.*is was reasonable
in China. During morning and evening peak hours, parents
pick children to increase the disorder of traffic. *us, it is
critical to deal with school land use. *ose low-income
residential areas are older district. Buildings are too old so
that there is enough parking space. Oftentimes, roadways
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were occupied by vehicles. *ese could be potential safety
issues. *us, certain traffic management could be
considered.

*e relative risk of each spatial unit was also calculated,
based on the two models. In general, two models estimated
the similar results. Comparing with crash frequency, it
should be noted that spatial models can effectively identify

actual relative risk, by accounting for exposure and spatial
autocorrelation.

4.3. Ecological Fallacy andAtomic Fallacy. To further discuss
ecological fallacy and atomic fallacy, spatial modeling was
also conducted for another two spatial units: TAZ and
Census Tract (CT) zone. For each spatial unit, two models
were developed, one considering traffic flow parameters
(model 2) and another without considering them (model 1).
Detailed results can be found in Table 3. Note that both
original TAZ and CT were decided by the Kunshan Traffic
Planning Department (as shown in Figure 5).

For CT model 2, average daily traffic volume, average
speed, business, administrative, and public service land use
were found as significant variables. For TAZ model, only
land use variables were found as significant, including the
public management and public service, business, and resi-
dence. Using TAZ as spatial units, there were no significant
traffic flow effects on crash risk. However, for CT units,
traffic flow effects emerge.

(a) (b)

Figure 1: (a) Roadway network and location of microwave detectors and (b) land use sketch of the subject area.
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Figure 2: Final NC partitioning results.

Table 1: Descriptive analysis of 13 NCs.
Roadway characteristics Min Max Mean SD
Area (km2) 1.016 4.269 2.329 1.237
Roadway density (km/km2) 3.181 10.919 6.923 2.423
Major arterials (km/km2) 0.392 4.805 2.648 1.396
Minor arterials (km/km2) 0.022 2.386 1.432 0.660
Land use characteristics Average percentage (%)
School land use 2.391
Public land use 5.761
Commercial land use 11.822
Industrial land use 9.816
Low-income residentials 1.015
High-income residentials 28.265

Iteration
1 2500 5000 7500 10000

Intrinsic

(a)

Iteration
1 2500 5000 7500 10000

Cressie

(b)

Figure 3: Illustration of Bayesian model convergence: intrinsic (a)
and Cressie (b).
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It is known that TAZ is delineated by land use, socio-
economics, and demographics. From the results, it can be
concluded that the major issue of TAZ-based spatial

modeling is the risk of atomic fallacy. In other words, the
actual traffic flow effects were not detected based on TAZs.
Moreover, in practice, any active interventions or policies

N

Values for Y

0.02km

(5) <250.0
(4) 250.0 – 500.0
(2) 500.0 – 750.0

(0) 750.0 – 1.00E + 3
(2) ≥1.00E + 3

(a)

N

Values for RR

0.02km

(10) <2.0
(2) 2.0 – 4.0

(0) 4.0 – 6.0
(1) ≥6.0

(b)

0.02km

Values for RR

N

(8) < 1.0
(2) 1.0 – 2.0

(2) 2.0 – 3.0
(0) 3.0 – 4.0

(0) 4.0 – 5.0
(1) ≥ 5.0

(c)

Figure 4: Crash count, relative risk of intrinsic and Cressie model estimation. (a) Crash Count. (b) Intrinsic model estimation. (c) Cressie
model estimation.

Table 2: Two bayesian modeling results of NC spatial units.

Varibale
BYM intrinsic CAR BYM cressie CAR

Mean s.d. 95% CI Mean s.d. 95% CI
Roadway density − 0.136 0.067 (− 0.239, − 0.012) − 0.081 0.091 (− 0.206, 0.096)
Major arterial density 0.089 0.199 (− 0.526, 0.309) 0.222 0.252 (− 0.158, 0.596)
Minor arterial density 0.121 0.313 (− 0.304, 1.012) −0.601 0.242 (− 1.083, − 0.193)
School land use − 0.224 0.150 (− 0.841, 0.015) 0.047 0.111 (0.034, 0.228)
Public land use 0.032 0.106 (0.121, 0.700) 0.066 0.058 (− 0.049, 0.176)
Commercia land use − 0.066 0.033 (− 0.099, 0.008) 0.040 0.018 (− 0.074, 0.085)
Industrial land use − 0.037 0.019 (− 0.064, 0.006) −0.025 0.025 (− 0.067, − 0.012)
Low-income residence 0.222 0.194 (− 0.257, 0.531) 0.145 0.201 (− 0.185, − 0.510)
High-income residence − 0.026 0.032 (− 0.076, 0.011) − 0.013 0.019 (− 0.046, 0.015)
Daily traffic density 0.021 0.010 (0.009, 0.033) 0.014 0.012 (0.007, 0.028)
Average traffic speed 0.013 0.024 (− 0.023, 0.052) 0.011 0.020 (− 0.017, 0.041)
ADT 0.223 0.141 (− 0.019, 0.788) 0.213 0.131 (− 0.011, 0.634)
Speed variance 0.082 0.012 (0.053, 0.114) 0.077 0.011 (0.049, 0.103)

Table 3: Bayesian modeling results of CT and TAZ model.

Variables
CT model 2∗ CT model 1 TAZ model 2∗ TAZ model 1

Mean s.d. Mean s.d. Mean s.d. Mean s.d.
Intercept − 3.034 0.665 − 2.993 0.385 − 2.603 0.438 − 2.702 0.425
Planning parameters
Minor arterials
Local roads −0.001 0.005 −0.001 0.004
Public service land use 0.040 0.017 0.057 0.021 0.025 0.009 0.027 0.010
Commercial land use 0.053 0.016 0.078 0.017 0.046 0.011 0.048 0.010
Residential land use — — 0.027 0.009 0.029 0.007 0.031 0.009

Traffic parameters
Daily traffic density − 0.1264 0.0318 0.02459 0.02557
Average traffic speed 0.0216 0.0062 — — 0.00161 0.00535
ADT −0.0415 0.0090 − 0.0109 0.00674
Speed variance 0.0432 0.0076 − 0.0321 0.00339

∗*e modeling efforts of adding traffic flow parameters to the corresponding spatial levels.
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cannot be proposed on regional traffic flow control or
management to improve traffic safety, as only land use
parameters were found as significant.

For the CT-based model, average daily traffic volume
(ADT) was found as a significant variable, with a negative
sign indicating that higher traffic volume would result in
lower crash rates. *is finding could be challenged because
traffic volume was considered positively associated with
crash risk as the crash exposure, per the previous literature
studies. In addition, average speed was found to be positively
associated with regional crash risk. However, according to
Abdel-Aty et al. [27], relatively low-speed area tended to
have higher crash risk. Moreover, previous literature largely
suggested the insignificance of possible linear relationship
between average speed and crash risk [28]. *us, the sig-
nificant traffic flow effects from CT appear to be ecological
fallacy [29]. As known, CT was also defined based on
nontraffic parameters.

5. Conclusion

Crash occurrence was believed and found to be associated
with traffic flow characteristics. Macroscopic spatial crash
modeling was initially conducted with the purposes of
adding safety consideration into long-term traffic planning
and policy-making, as spatial units used were mainly defined
from the planning perspective. However, it could also be
expected to propose some effective control and management
strategies to improve not only efficiency but also regional
traffic safety. *us, exploring the possible linkage among
traffic flows and crash risk at regional level appears to be
necessary. In addition, previous literature argued the major
flaw of TAZ-based spatial modeling of both atomic fallacy
and ecological fallacy. *us, conducting macroscopic spatial
crash modeling using a better-defined spatial unit is of
interest in this paper.

Based on a normalized cut minimization method, we
defined a spatial unit for regional safety evaluation.Microwave

data were used to partition the subject area into multiple parts,
according to the homogeneity of traffic density. Crash data,
planning data, and traffic data were all collected for spatial
modeling purpose. In order to account for the spatial de-
pendency among each unit and the potential overfitting issue
(caused by the availability of detectors), two Bayesian CAR
models were employed.

*e results proved the existence of traffic flow effects at
macrolevels. Note that this level was often used to study
regional traffic control and management strategies. *us, it
indicates the necessity of deeply examining the relationship
among traffic flow characteristics (e.g., MFD) and crash risk
at regional level, in order to enlighten traffic professionals to
propose time-dependent active regional traffic control and
management strategies for safety improvement.

Admittedly, the current study still has some limitations.
First, most traffic data were collected for arterial roads,
where microwave detectors are installed. Only those roads
can be used as edges in graph cut minimization. *us,
limited by the sparsity of microwave detectors and the size
of the subject area, only 13 NC zones were finally defined.
*is could possibly cause overfitting issue. Bayesian CAR
models were introduced to deal with the issue, and the
coefficients were assumed to follow prior normal distri-
butions (similar with L2 regularization). In our future
study, we will obtain more detailed traffic data through
different ways and expand the study area. Second, spatial
and temporal heterogeneities were not considered in this
model. Spatial heterogeneity had been discussed in the
previous literature. Since this study mainly focuses on
defining new spatial unit and comparing it with other units,
spatial heterogeneity could be examined in the future,
especially for the effect of traffic characteristics. Moreover,
since NC is defined based on traffic flow data instead of
planning data, temporal heterogeneity can also be dis-
cussed in the future. *ird, only three simple aggregated
traffic parameters were considered in the study. It is in-
teresting to extract other features of traffic flow (e.g.,

(a) (b)

Figure 5: (a) TAZ and (b) CT spatial units of the studied area.
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macroscopic fundamental diagram (MFD) and examine
their possible effects on safety. Last, it appeared that
macrolevel traffic flow parameters were not significant at
TAZ levels. It deserves a deeper investigation and possible
endogenous factors need to be examined in the future.
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