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In this manuscript, a giving-up smoking model is develop using bilinear incidence rate, harmonic mean type of incidence rate and
keeping in view the relapse factor associated to smoking. It is shown that the model' solution is bounded and positive for the
appropriate initial data. The equilibria of the model are obtained, and it is proved that the smoking-free equilibrium is both
locally and globally asymptotically stable for R0 less than unity. It is shown that the model has a positive light smoker present
equilibrium whenever R0 is greater than one, and it is locally asymptotically stable if we have 1 < R0 < 1 + 2β1ðμ + d + δÞ/Λβ2.
Conditions for the global stability of light smoker present equilibrium are rigorously investigated. Also, it is proved that the
model has a smoking present equilibrium when R0 satisfies some condition which is investigated both for local and global
behavior. By considering a few control measures, optimal control strategies are achieved with the help of Pontryagin’s
maximum principle. The analytical results are verified numerically, and effectiveness of the control program is presented.

1. Introduction

Among other diseases, infectious diseases are the most
alarming threat to humanity from the last few centuries.
The plague of Athens is considered to be the first ever
epidemic which affects human life to a great extent [1, 2].
The life in Egypt and Roman was completely demolished
by the smallpox in 165-180 C.E. in which millions of people
died [3]. The epidemic Black Death in Europe is observed to
be the first well-documented epidemic which killed more
than 50 millions of people that region and Mediterranean.
Various other epidemics affected human life throughout
the history, and the current corona virus disease is the last
epidemic whose disasters are in front of us. Thus, it is very
crucial to understand the dynamics of such infectious dis-
ease (particularly the emerging epidemics) and to control
its spread in early transmission phase. In the context of these
extensive illnesses, the tobacco pandemic is one of the
world’s most serious health threats. According to statistics,

up to 50% of smokers die as a result of their habit, a
tobacco-related mortality occurs every 8 seconds, and 10
percent of the adult population dies as a result of tobacco-
related illnesses [4].

Smoking habit grows and spreads across a society in
the same way as an epidemic illness does, and generally,
it nearly follows the same process. To be specific, people
are prone to smoking at first, then become active users,
and eventually recover through certain control methods or
self-abandonment of its usage. In the early twentieth century,
William Hamer’s work on mathematical modeling of infec-
tious illnesses achieved substantial progress. Perhaps, Hamer
was the first who introduces mass action law in epidemic
modeling. However, Sir Ronald Ross is considered the father
of today’s mathematical biology due to his work on malaria.
In 1911, he published a book regarding malaria in which he
used mathematical models for describing the dynamics of
the infection and calculated the threshold parameters. The for-
mal mathematical biology started with the work of Kermack
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and McKendrick [5], and then, significant contributions were
made in the subject, for instance, one can see [6–11].

To study the transmission of smoking habits and its con-
trol in the society, numerous researchers used the tools of
mathematical modeling and optimal control theory. Castillo-
Garrsow et al. [12] used a model of SIR type and well-
presented the qualitative aspects of the model under
discussion. Sharomi and Gumel [13] extended the work of
Castillo-Garrsow et al. and introduced temporary quit class
into the model. Zaman [14] incorporated the light smoker
compartment and rigorously investigated the model from
mathematical perspectives. Subsequently, considering various
features and characteristics of smoking, sophisticated models
have been developed and investigated, for example, [15–18].

Incidence rate plays a crucial role while investigating the
dynamics of any epidemic disease. The bilinear and satu-
rated incidence rates were widely used in case of epidemic
diseases and smoking models, for instance, one can see
[12, 19, 20]. The authors in [17, 21, 22] used the square root
incidence rate and discussed the models from various math-
ematical aspects. In the sequel, Rahman et al. [4] used har-
monic mean type of incidence rate in his giving-up
smoking model, investigated the dynamics of the model,
and set the controlling strategies for reducing the smoking
habit. Similarly, Alzaid and Alkahtani used the same inci-
dence rate and studied the effect of relapse [23]. This work
as well as the work of Rahman et al. assumed that potential
smokers will start smoking only if they make a contact with
light smoker. However, this is usually not the case. A person
(potential smoker) may start smoking when he/she comes
into contact with a smoker. In this work, the authors intend
to overcome this gap. We shall assume that smoking habit
may spread in the population via two roots; (i) contacts of
potential smoker and light smokers and (ii) contact between
smoker and light smokers. For the former type of spread, we
will use the usual harmonic mean type of incidence rate, and
for the later, the standard bilinear incidence rate will be uti-
lized. By doing so, the present model will cover models [4,
23] as a subcase.

The rest of the work is organized as follows. The model
formulation and essential biological features to the model
are discussed in Section 2. The smoking generation number
and equilibria of the model are presented in Section 3. We
investigated the local stability of each equilibrium point in
Section 4, whereas the criteria for global dynamics of smok-
ing-free, light smoker present, and smoking-present equilib-
ria are derived in Section 5. The local sensitivity will be
performed in Section 6. Based on sensitivity analysis, we take
into account some control variables and formulated a
control problem for further analysis in Section 7. The
desired goals were obtained, and the results are verified
through simulations in Section 8. Finally, we presented the
conclusion of the work.

2. Model Formulation and Well-Posedness

To formulate the model, we will divide the entire population
into four compartments, namely, the potential smokers P
= PðtÞ, the light (or occasional) smokers L = LðtÞ, the

smokers S = SðtÞ, and the quit smokers Q =QðtÞ. That is, if
TðtÞ denotes the total population, and then, TðtÞ = P + L +
S +Q. We assumed that smoking habit spread in the popu-
lation through (i) contact between potential smokers and
light smokers and (ii) contact between the light smokers
and chain smokers. The former contact is mathematically
described by harmonic mean type of incidence rate. The rea-
son for taking such type of contact is that the potential
smokers may start smoking at a slower rate whenever they
come into contact with the light smokers. Due to tendency
of light smokers towards smoking, the light smokers will
come into contact with smokers frequently and the rate will
obey the mass action law. Hence, we assumed the bilinear
incidence rate between light smokers and smokers. Further-
more, the harmonic mean type of incidence rate takes into
account the behavioral changes of potential smokers and
the crowding effect of the light smokers which prevent the
unboundedness of the contact rate by choosing suitable
parameters. Also, it is very hard to become a light smoker
(because many social/cultural variables can restrict the
contacts of light smokers with potential smokers), and
mathematically, this phenomenon can be modeled by using
the harmonic mean type of incidence rate instead of using
bilinear incidence rate (because PL/P + L ≤ PL whenever P
and L are positive). Besides this type of spread, we take
into account the spread arising from contact between
potential smokers and smokers which is described by bilin-
ear incidence rate. It is also assumed that the quitting of
smoking is not permanent, and an individual may start
smoking again. These assumptions lead to the following
system of ODEs representing the dynamics of smoking
habit in a population.

dP tð Þ
dt

=Λ − 2β1
P tð ÞL tð Þ
P tð Þ + L tð Þ − d + μð ÞP tð Þ + γQ tð Þ,

dL tð Þ
dt

= 2β1
P tð ÞL tð Þ
P tð Þ + L tð Þ − β2L tð ÞS tð Þ − d + μð ÞL tð Þ,

dS tð Þ
dt

= β2L tð ÞS tð Þ − d + μ + δð ÞS tð Þ,
Q tð Þ
dt

= δS tð Þ − d + μ + γð ÞQ tð Þ,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð1Þ

with initial conditions

P0 > 0, L0 ≥ 0, S0 ≥ 0,Q0 ≥ 0, ð2Þ

where P0, L0, S0, and Q0 stand for the initial size of the
population of the respective compartments. The descrip-
tion of parameters used in model (1) is shown in Table 1.

By adding the governing equations of model (1), we
obtain the conservation law

dT tð Þ
dt

=Λ − d0 + μð ÞT tð Þ, ð3Þ

with Tð0Þ = T0 = P0 + L0 + S0 +Q0.
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Theorem 1. For the nonnegative initial data, if a solution to
model (1) exists, it must be positive.

Proof. Consider the second equation in model (1), and its
solution is given by

L tð Þ = L0e
2β1P tð Þ/P tð Þ+L tð Þ−β2S tð Þ− d+μð Þ ≥ 0: ð4Þ

By using this relation in the third equation of system (1),
we have SðtÞ ≥ 0 which assures the positivity of QðtÞ. Finally,
using these facts in the first equation, we have PðtÞ ≥ 0.

Theorem 2. For nonnegative initial conditions that are not
identically zero on any interval, all possible solutions of
system (1) are bounded in the region

D = P tð Þ, L tð Þ, S tð Þ,Q tð Þð Þ ∈ R4
+ : P tð Þ + L tð Þ + S tð Þ +Q tð Þ ≤ Λ

μ

� �
:

ð5Þ

Since each compartment denotes the size of population
and thus must be nonnegative, the desired solution space is
D = fðPðtÞ, LðtÞ, SðtÞ,QðtÞÞ ∈ R4

+g. Thus, the each compo-
nent in the vector ðPðtÞ, LðtÞ, SðtÞ,QðtÞÞ is bounded below
by zero, and thus, we have to find the upper bound for the
solution. From the conservation equation (3), we have

dT tð Þ
dt

=Λ − d0 + μð ÞT tð Þ ≤Λ − μT tð Þ: ð6Þ

By solving this differential inequality, we get

T tð Þ ≤ T 0ð Þe−μt + Λ

μ
: ð7Þ

Letting t⟶∞, we get TðtÞ ≤Λ/μ. Thus, all solutions of
the model are bounded by 0 and Λ/μ, and hence, the desired
feasible set is (4).

Theorem 3. For system (1), the nonnegative space R4
+ is

positive invariant.

Proof. Consider the vector Ψ = ðP, L, S,QÞ; then, in matrix
form, we can write model (1) in the form

dΨ tð Þ
dt

=AΨ +B, ð8Þ

where

A =

−
2β1
P + L

L + d0 + μ

� �
0 0 γ

2β1
P + L

L − d0 + μð Þ − β2S 0 0

0 β2S − d0 + μ + δð Þ 0
0 0 δ − d0 + μ + γð Þ

0
BBBBBBBB@

1
CCCCCCCCA
,

B =

Λ

0
0
0

0
BBBBB@

1
CCCCCA:

ð9Þ

Clearly, the nondiagonal entries of matrix A are non-
negative which guarantees that A is Metzler matrix [24].
Further, B ≥ 0, and thus, system (1) is positively invariant
in the desired space. In the next section, we intended to find
the smoking generation number (an important parameter
describing the behavior of a system) as well as the possible
equilibria of the proposed system.

3. Equilibria of the Model and Smoker
Generation Number

In order to find the equilibria of the proposed model (1),
we set

Λ − 2β1
P tð ÞL tð Þ
P tð Þ + L tð Þ − d + μð ÞP tð Þ + γQ tð Þ = 0, ð10Þ

2β1
P tð ÞL tð Þ
P tð Þ + L tð Þ − β2L tð ÞS tð Þ − d + μð ÞL tð Þ = 0, ð11Þ

β2L tð ÞS tð Þ − d + μ + δð ÞS tð Þ = 0, ð12Þ

δS tð Þ − d + μ + γð ÞQ tð Þ = 0: ð13Þ
System of equations (10)–(13) always has a solution of

the form

E0 =
Λ

μ + d
, 0, 0, 0

� �
: ð14Þ

This fixed point is known as smoking-free equilibrium
of the model.

To calculate the smoker generation number, we will
follow the procedure of [25]. For this purpose, consider the
smoker classes from system (1) and assume y =
ðLðtÞ, SðtÞÞT , that is,

Table 1: Interpretation of parameters of model (1).

Parameter Interpretation

Λ Constant recruitment into the potential smokers

β1 The contact rate of occasional and potential smokers

β2 The contact rate between smokers and light smokers

μ The natural mortality rate

d0 Death rate due to smoking

δ Temporarily quitting rate of smokers
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dy
dt

= F −W, ð15Þ

where

F =
2β1
P + L

PL − β2LS

β2LS

0
@

1
A,W =

d + μð ÞL tð Þ
d + μ + δð ÞS tð Þ

 !
:

ð16Þ

Considering the Jacobians of these two matrices at DFE,
we get

~F =
2β1 0
0 0

 !
, ~W =

d + μ 0
0 d + μ + δ

 !
, ð17Þ

and thus,

~W
−1 =

1
d + μ

0

0 1
d + μ + δ

0
BBB@

1
CCCA: ð18Þ

Let us consider G = ~F ~W
−1
; thus,

G =
2β1
d + μ

0

0 0

0
B@

1
CA: ð19Þ

Since R0 (the smoking generation) is the dominant
eigenvalue of the next generation matrix G , hence

R0 =
2β1
d + μ

: ð20Þ

By using the number R0, we can obtain other possible
equilibria of system (1) using equation (3).

Theorem 4.

(1) If R0 > 1, then model (1) has a positive light smoker
present equilibrium given by

El = Pl, Ll, Sl,Qlð Þ = Λ

2β1
, Λ

2β1
R0 − 1ð Þ, 0, 0

� �
: ð21Þ

(2) If R0 < 1, then the model has a smoking-free equilib-
rium given by (14)

(3) Whenever R0 = 1, then again, the model has the
smoking-free equilibrium given by (14)

Proof. By solving systems (10)–(13) and keeping in view that
there are no smokers (i.e., SðtÞ = 0) in the community, we
obtained the light smoker present equilibrium (21). How-
ever, for R0 < 1, the light smoker becomes negative and
hence, the model will have just the smoking-free equilibrium
(14). In the similar way, if we assume R0 = 1, then the fixed
point (21) becomes the smoking-free equilibrium as we have
Λ/2β1 =Λ/ðμ + dÞR0.

Theorem 5. There exists a positive smoking present equilib-
rium of model (1) blue if R0 ≥ 1 andβ2S∗ < μ + d.

Proof. System (1) has a positive solution of the form

E∗ = P∗, L∗, S∗,Q∗ð Þ, ð22Þ

where

P∗ =
Λ

μ + d
+ γδS∗

μ + dð Þ μ + d + γð Þ −
μ + d + δð Þ
β2 μ + dð Þ β2S∗ − μ + dð Þð Þ,

L∗ =
μ + d + δ

β2
,

Q∗ =
δS∗

μ + d + γ
,

ð23Þ

and S∗ is a positive root of

β2
d + μ + γ + δ

d + μ + γ
S2∗ −

d + μð Þ R0 − 1ð Þ d + μ + γ + δð Þ
d + μ + γ

+ Λβ2
μ + d

� �
S∗

+Λ R0 − 1ð Þ + R0
μ + dð Þ μ + d + δð Þ

β2
= 0,

ð24Þ

which surely exist by Descartes’ rule of signs whenever
R0 > 1 and β2S∗ < μ + d. Further, if we set R0 = 1, then both
solutions of equation (24) are positive and real and hence
the theorem.

4. Local Stability Analysis of Equilibria

To find out the local stability of system (1) at each equilib-
rium point, first, we will calculate the Jacobian matrix

J =

−
2β1L

2

L + Pð Þ2 − d + μð Þ −
2β1P

2

L + Pð Þ2 0 γ

2β1L
2

L + Pð Þ2
2β1P

2

L + Pð Þ2 − β2S − d + μð Þ −β2L 0

0 β2S β2L − d + μ + δð Þ 0
0 0 δ − d + μ + γð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

ð25Þ

Theorem 6. The SFE (14) of system (1) is locally asymptoti-
cally stable for R0 < 1.
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From relation (25), the Jacobian of system (1) at E0 is
given by

J E0ð Þ =

− d + μð Þ 2β1 0 γ

0 2β1 − d + μð Þ 0 0

0 0 − d + μ + δð Þ 0

0 0 δ − d + μ + γð Þ

0
BBBBB@

1
CCCCCA:

ð26Þ

Matrix (26) has eigenvalues t1 = −ðμ + dÞ, t2 = −ðμ + d
+ δÞ, t3 = 2β1 − ðμ + dÞ, and t4 = −ðμ + d + γÞ. As the
parameters of the model assume positive values, thus the
eigenvalues t1, t2, and t4 are negative and t3 = ðμ + dÞð2β1/
μ + d − 1Þ = ðμ + dÞðR0 − 1Þ is negative only if R0 < 1. Hence,
for R0 < 1, all of the eigenvalues of the Jacobian matrix at E0
are negative and so E0 is locally asymptotically stable.
Further, if R0 = 1, then t3 = 0. However, if we assume R0 >
1, then E0 becomes unstable as one of the eigenvalues is
positive in such case.

Theorem 7. The local smoking present equilibrium (LSPE)
(21) of system (1) is locally asymptotically stable for 1 < R0
< 1 + 2β1ðμ + d + δÞ/Λβ2.

Proof. From relation (25), the Jacobian of system (1) at El is
given by

J Elð Þ =

−
2β1L

2
l

Ll + Plð Þ2 − d + μð Þ −
2β1P

2
l

Ll + Plð Þ2 0 γ

2β1L
2
l

Ll + Plð Þ2
2β1P

2
l

Ll + Plð Þ2 − d + μð Þ −β2Ll 0

0 0 β2Ll − d + μ + δð Þ 0
0 0 δ − d + μ + γð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

ð27Þ

The eigenvalues of matrix (30) are t1 = −ðμ + dÞ
, t2 = −ðμ + dÞðR0 − 1Þ, t3 = −ðμ + d + γÞ, and t4 = ðR0 − 1ÞΛ
β2/2β1 − ðμ + d + δÞ. Now, for positive parameters of the
model and for R0 > 1, the eigenvalues t1, t2, and t3 are nega-
tive. However, t4 is negative only for R0 < 1 + 2β1ðμ + d + δÞ
/Λβ2. Hence, if 1 < R0 < 1 + 2β1ðμ + d + δÞ/Λβ2, all of the
eigenvalues of the Jacobian matrix at El are negative and so
El is locally asymptotically stable. Moreover, for R0 = 1, we
have t2 = 0. In the case of R0 < 1, t2 becomes positive and thus,
the equilibrium El will be unstable.

Theorem 8. The smoking present equilibrium (SPE) is locally
asymptotically stable of if 1 < R0 < 1 + β2S∗/μ + d.

Proof. The Jacobian at SPE is given by

J =

−a11 −a12 0 γ

a21 −a22 −β2L∗ 0
0 a32 β2L∗ − d + μ + δð Þ 0
0 0 δ −a44

0
BBBBB@

1
CCCCCA, ð28Þ

where

a11 =
2β1L

2
∗

L∗ + P∗ð Þ2 + d + μð Þ, ð29Þ

a12 =
2β1P

2
∗

L∗ + P∗ð Þ2 , ð30Þ

a21 =
2β1L

2
∗

L∗ + P∗ð Þ2 , ð31Þ

a22 = β2S∗ + d + μð Þ − 2β1P
2
∗

L∗ + P∗ð Þ2 , ð32Þ

a32 = β2S∗, ð33Þ

a44 = d + μ + γð Þ: ð34Þ
The characteristic equation of matrix (28) is given by

τ4 + a44 + a22 + a11ð Þτ3 + a32 d + δ + μð Þ + a11 a22 + a44ð Þð
+ a12a21 + a22a44Þτ2 + da32 + δa32 + μa32ð Þ × a11 + a44ð Þð
+ a44 a11a22 + a12a21ð ÞÞτ + d + δð Þa11a32a44 − δa32a21γ

+ μa11a32a44 = 0:
ð35Þ

Clearly, a11, a12, a21, a32, and a44 are positive and

a22 = β2S∗ + d + μð Þ − 2β1P
2
∗

L∗ + P∗ð Þ2 , ≥β2S∗ + d + μð Þ − 2β1,

= β2S∗ − d + μð Þ R0 − 1ð Þ > 0,
ð36Þ

only if β2S∗ > ðd + μÞðR0 − 1Þ. Thus, all of the coeffi-
cients of the characteristic equation (35) are positive, and
hence, by Descartes’ rule of signs, this equation has no pos-
itive real solution. By using −τ in place of τ in equation (35)
and utilizing Descartes’ rule of signs, we get that all of the
eigenvalues of this equation are negative or complex conju-
gates with dominant negative real part. Therefore, the SPE
is locally asymptotically stable whenever R0 < 1 + β2S∗/μ +
d. Further, for the existence of SPE, we must assume that
R0 > 1. Moreover, the case R0 = 1 does not affect the stability
of the equilibrium point; however, this condition will chal-
lenge the existence of smoking-present equilibrium.

5. Global Stability Analysis of the Equilibria

Theorem 9. Let R0 ≤ 1; then, the smoking-free equilibrium
(SFE) E0 of model (1) is globally asymptotically stable (GAS).

Proof. For proving the required result, the Lyapunov func-
tion of the following form is assumed:

V 1 P, L, S,Qð Þ = L tð Þ + S tð Þ +Q tð Þ: ð37Þ
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By considering the derivative of (37) with respect to time
t and using model (1), we have

dV 1
dt

= dL tð Þ
dt

+ dS tð Þ
dt

+ dQ tð Þ
dt

,

= 2β1
P tð ÞL tð Þ
P tð Þ + L tð Þ − β2L tð ÞS tð Þ − d + μð ÞL tð Þ

+ β2L tð ÞS tð Þ − d + μ + δð ÞS tð Þ + δS tð Þ − d + μ + γð ÞQ tð Þ,
≤ 2β1L tð Þ − d + μð ÞL tð Þ − d + μ + δð ÞS tð Þ + δS tð Þ − d + μ + γð ÞQ tð Þ,

ð38Þ

because PðtÞ/PðtÞ + LðtÞ ≤ 1. Thus,

dV 1
dt

≤ 2β1 − d + μð Þð ÞL tð Þ − d + μð ÞS tð Þ − d + μ + γð ÞQ tð Þ,
= μ + dð Þ R0 − 1ð ÞL tð Þ − d + μð ÞS tð Þ − d + μ + γð ÞQ tð Þ:

ð39Þ

Hence,

dV 1
dt

< 0, ð40Þ

only if R0 ≤ 1, and thus, by LaSalle’s invariant principle [26],
E0 is globally asymptotically stable in the feasible region.

Theorem 10. If 1 < R0 < β2Λ + 2β1ðd + μÞ/β2Λ, then the
local smoking present equilibrium (LSPE) El of model (1) is
globally asymptotically stable (GAS).

Proof. To prove the main result, we will take into consider-
ation the Lyapunov function of the form

V 2 P, L, S,Qð Þ = L − Ll − Ll ln
L tð Þ
Ll

+ S tð Þ +Q tð Þ: ð41Þ

By considering the derivative of (37) with respect to time
t and using model (1), we have

dV 2
dt

= dL tð Þ
dt

−
Ll
L tð Þ

dL tð Þ
dt

+ dS tð Þ
dt

+ dQ tð Þ
dt

,

= 2β1
P tð ÞL tð Þ
P tð Þ + L tð Þ − β2L tð ÞS tð Þ − d + μð ÞL tð Þ

−
Ll
L tð Þ 2β1

P tð ÞL tð Þ
P tð Þ + L tð Þ − β2L tð ÞS tð Þ − d + μð ÞL tð Þ

� �
+ β2L tð ÞS tð Þ − d + μ + δð ÞS tð Þ + δS tð Þ − d + μ + γð ÞQ tð Þ,

≤ μ + dð Þ 1 − R0ð ÞL tð Þ − μ + dð Þ R0 − 1ð ÞLl
+ β2Ll − d + μð Þð ÞS tð Þ − d + μ + γð ÞQ tð Þ, <0,

ð42Þ

for R0 > 1 and so by LaSalle’s invariant principle, the light
smoker present equilibrium El is globally asymptotically
stable. By considering relation (42) and the case of R0 = 1,
we will reach to the conclusion of Theorem 9 (as the case
of R0 = 1 does not guarantee the existence of LSPE).

Theorem 11. If R0 > 1, β2S∗ < μ + d and R0P
2
∗/ðP∗ + L∗Þ2 < 1,

then (1) is GAS at SPE E∗.

Proof. By considering the Jacobean (25) of the system at the
SPE, we have

The third additive compound matrix of J∗ is given by

J ∣3∣∗ =

A11 0 0 γ

δ A22 −β2L
∗ 0

0 β2S∗ A33 −2β1
P2
∗

P∗ + L∗ð Þ2

0 0 2β1
L2∗

P∗ + L∗ð Þ2 A44

0
BBBBBBBBBB@

1
CCCCCCCCCCA
,

ð44Þ

where

A11 = − d + μ + 2β1
L∗ð Þ2

P∗ + L∗ð Þ2
 !

+ R0P
2
∗

P∗ + L∗ð Þ2 − 1
 !

� d + μð Þ − β2S∗ + β2L∗ − d + μ + δð Þ,

A22 = − d + μ + 2β1
L∗ð Þ2

P∗ + L∗ð Þ2
 !

+ R0 P∗ð Þ2
P∗ + L∗ð Þ2 − 1

 !

� d + μð Þ − β2S∗ − d + μ + γð Þ,

A33 = − d + μ + 2β1
L∗ð Þ2

P∗ + L∗ð Þ2
 !

+ β2L∗ − d + μ + γð Þ − d + μ + δð Þ,

A44 =
R0 P∗ð Þ2
P∗ + L∗ð Þ2 − 1

 !
d + μð Þ − β2S∗ + β2L∗

− d + μ + γð Þ − d + μ + δð Þ:
ð45Þ

Consider ρðχÞ = diag fQ, S, L, Pg such that ρðχ−1Þ =
diag f1/Q, 1/S, 1/L, 1/Pg and time derivative is ρf ðχÞ = diag
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f _Q, _S, _L, _Pg: Therefore,

ρf ρ
−1 = diag

_P
P
,
_L
L
,
_S
S
,
_Q
Q

( )
, ð46Þ

and hence,

ρJ ∣3∣ρ−1 =

A11 0 0 γ
Q
P

δ
S
Q

A22 −β2S 0

0 β2L A33 −2β1
LP

P + Lð Þ2

0 0 2β1
LP

P + Lð Þ2
Q
S

A44

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

ð47Þ

By defining B = ρf ρ
−1+∣2∣ρ−1 so that

B =

b11 0 0 b14

b21 b22 b23 0
0 b32 b33 b34

0 0 b43 b44

0
BBBBB@

1
CCCCCA, ð48Þ

where

b11 =
_Q
Q

− d + μ + 2β1
L2∗

P∗ + L∗ð Þ2
 !

+ R0P
2
∗

P∗ + L∗ð Þ2 − 1
 !

� d + μð Þ − β2S∗ + β2L∗ − d + μ + δð Þ,

b14 = γ
Q
P

=
_P
P
−
Λ

P
+ 2β1

L
P + L

+ d + μð Þ,

b21 = δ
S
Q

=
_Q
Q

+ d + μ + γð Þ,

b22 =
_S
S
− d + μ + 2β1

L2∗
P∗ + L∗ð Þ2

 !
+ R0P

2
∗

P∗ + L∗ð Þ2 − 1
 !

� d + μð Þ − β2S∗ − d + μ + γð Þ,

b23 = −β2S,

b32 = β2L,

b33 =
_L
L
− d + μ + 2β1

L2∗
P∗ + L∗ð Þ2

 !

+ β2L∗ − d + μ + δð Þ − d + μ + γð Þ,

b34 = − 2β1
LP

P + Lð Þ2
 !

,

b43 = 2β1
LP

P + Lð Þ2
 !

,

b44 =
_P
P
+ R0P

2
∗

P∗ + L∗ð Þ2 − 1
 !

d + μð Þ − β2S∗ + β2L∗

− d + μ + δð Þ − d + μ + γð Þ:
ð49Þ

Consequently,

h1 tð Þ = b11 + 〠
4

j=2
b1j
�� ��,

h1 tð Þ =
_Q
Q

− d + μ + 2β1
L2∗

P∗ + L∗ð Þ2
 !

+ R0P
2
∗

P∗ + L∗ð Þ2 − 1
 !

� d + μð Þ − β2S∗ + β2L∗ − d + μ + δð Þ + γ
Q
P
,

≤
_P
P
+

_Q
Q

+ R0P
2
∗

P∗ + L∗ð Þ2 − 1
 !

d + μð Þ,

h2 tð Þ = b22 + 〠
4

j=1 and j≠2
b2j
�� ��,

h2 tð Þ =
_S
S
− d + μ + 2β1

L2∗
P∗ + L∗ð Þ2

 !
+ R0P

2
∗

P∗ + L∗ð Þ2 − 1
 !

� d + μð Þ − β2S∗ − d + μ + γð Þ + δ
S
Q

+ β2S +
_Q
Q

+ d + μ + γð Þ,

≤
_S
S
+

_Q
Q

+ R0P
2
∗

P∗ + L∗ð Þ2 − 1
 !

d + μð Þ,

h3 tð Þ = b33 + 〠
4

j=1 and j≠3
b3j
�� ��,
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h3 tð Þ =
_L
L
− d + μ + 2β1

L2∗
P∗ + L∗ð Þ2

 !
+ β2L∗ − d + μ + δð Þ

− d + μ + γð Þ + β2L + 2β1
LP

P + Lð Þ2
 !

,

≤
_L
L
− d + μ + γð Þ,

h4 tð Þ = b44 + 〠
3

j=1
b4j
�� ��,

h4 tð Þ =
_P
P
+ R0P

2
∗

P∗ + L∗ð Þ2 − 1
 !

d + μð Þ − β2S∗ + β2L∗

− d + μ + δð Þ − d + μ + γð Þ + 2β1
LP

P + Lð Þ2
 !

,

≤
_P
P
+ R0P

2
∗

P∗ + L∗ð Þ2 − 1
 !

d + μð Þ:

ð50Þ

Now we have

lim
t⟶∞

supsup 1
t

ð
lim
0

t
h1 tð Þdt < lim

t⟶∞

1
t
log P tð Þ

P 0ð Þ

+ lim
t⟶∞

1
t
log Q tð Þ

Q 0ð Þ +
R0P

2
∗

P∗ + L∗ð Þ2 − 1
 !

d + μð Þ,

< R0P
2
∗

P∗ + L∗ð Þ2 − 1
 !

d + μð Þ,

lim
t⟶∞

supsup 1
t

ð
lim
0

t
h2 tð Þdt < lim

t⟶∞

1
t
log S tð Þ

S 0ð Þ

+ lim
t⟶∞

1
t
log Q tð Þ

Q 0ð Þ +
R0P

2
∗

P∗ + L∗ð Þ2 − 1
 !

d + μð Þ,

< R0P
2
∗

P∗ + L∗ð Þ2 − 1
 !

d + μð Þ,

lim
t⟶∞

supsup 1
t

ð
lim
0

t
h3 tð Þdt < lim

t⟶∞

1
t
log L tð Þ

L 0ð Þ
− d + μ + γð Þ, < − d + μ + γð Þ,

lim
t⟶∞

supsup 1
t

ð
lim
0

t
h4 tð Þdt < lim

t⟶∞

1
t
log P tð Þ

P 0ð Þ

+ R0P
2
∗

P∗ + L∗ð Þ2 − 1
 !

d + μð Þ,

< R0P
2
∗

P∗ + L∗ð Þ2 − 1
 !

d + μð Þ:

ð51Þ

By combining the preceding four inequalities, we have
the following inequality.

�q = lim
t⟶∞

supsup 1
t

ðt
0
μ Bð Þdt < 0, ð52Þ

and we denote the Lozinskii measure by μðBÞ = hi, i = 1, 2,
3, 4, and hence, it shows that the SPE is GAS.

6. Local Sensitivity Analysis

The term R0 is generally influenced by the inconsistencies in
data gathering and estimated values. Sensitivity analysis is
used to assess the relative impact of epidemic factors for
disease propagation and control.

Definition 12. For the basic reproduction number, the
normalized sensitivity index of a parameter ψ (which depends
on the partial derivative of R0 w.r.t ψ) is of the following form:

Sψ =
ψ

R0

∂R0
∂ψ

: ð53Þ

By calculating the sensitivity index, we may determine R0’s
responsiveness. To find the sensitivity of each parameter for R0,
we will employ equation (53) which was suggested by Tilahun
et al. [27]. On the basis of parameter values β1 = 0:006, d =
0:00004, and μ = 0:08, we have the sensitivity indices of the
form

Sβ1
= β1
R0

∂R0
∂β1

= β1
R0

2
μ + d

= 1,

Sμ =
μ

R0

∂R0
∂μ

= −
μ

μ + d
= −0:999500 < 0,

Sd =
d
R0

∂R0
∂d

= −
d

μ + d
= −0:00049975 < 0:

ð54Þ

These indices enable us to determine the relevance of
numerous variables involved in disease transmission, as well
as the relative change in the number of reproductions as a
function of parameter changes. Using such indices, we may
identify the characteristics that have a significant impact on
R0 and are critical for disease prevention.

Table 2 suggests that there is a positive relation between
R0 and β1 while negative influence of μ and d on R0. The
same argument is supported by Figure 1. This means that
if you raise or reduce the value of parameter β1 by 10%, it

Table 2: Sensitivity indices of R0 w.r.t and the parameters β1, μ,
and d.

Parameters Sensitivity index Value

β1 Sβ1 1
μ Sμ −0:999500
d Sd −0:00049975
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will rise or decrease R0 by 10%. Similarly, if we reduce or
increase μ and d by 1 percent, its relative inverse impact
on R0 will be 99.9% and 0.04%, respectively. To prevent
smoking from the population, we must consider those
parameters which have high sensitivity indices. Based on
the sensitivity indices, we concluded that β1 will directly
affect R0 (100%) whereas μ affects R0 inversely about 99%.
Thus, to reduce smoking habit, we must focus on the con-
tacts between potential smokers and light smokers. It is sim-
ple to develop a control mechanism program for eradication
of smoking habit based on this study.

7. Formulation and Analysis of Optimal
Control Problem

In this part, we simulate the eradication of smoking habit
from the population by using the tools of control theory
[9, 28]. We focus on reducing transmission, which has a sen-
sitivity index of 1, to develop a control plan based on local
sensitivity analysis. Further, to make the control program

more effective, we take into consideration the following four
control measures.

The first control measure is the education campaign
which is denoted by u1ðtÞ, and its aim is to reduce the size
of potential smokers. The second control variable u2ðtÞ
shows physically antismoking gum, and it will reduce the
number of light smokers. The third and fourth control
variables are antinicotive drug u3ðtÞ and ban on smoking
particularly in public places by the government u4ðtÞ.
These measures will be imposed on the smoking compart-
ment. It is observed that whenever the law enforcement
personnel came into contact with light smokers (which
smoke in public places), the light smokers will tend to quit
smoking in public places. That is, by increasing the law
enforcement personnel in public places, the size of light
smokers will tend to decrease and hence, small number
of individuals will tend to quit smoking. Therefore, we will
use the term 1 − u4ðtÞ which will reduce the contacts
between the law enforcement personnel with the light
smokers. The control variables are subject to some

1
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(a) R0 verses μ and d at fixed β1 = 0:006
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(b) R0 verses β and d at fixed μ = 0:08

Figure 1: Sensitive parameters β, μ, and d and its impact on R0.
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conditions; uiðtÞ ∈ ½0, uimax
� for i = 1,⋯, 4 and u1 ≤ u4 ≤ u2

≤ u3. These control variables are the main measures which
could help in reducing the smoking habit [29]. Based on
the control measures, we have the following governing
equations for the control problem:

dP tð Þ
dt

=Λ − 2β1
P tð ÞL tð Þ
P tð Þ + L tð Þ − d + μ + u1 tð Þð ÞP tð Þ + γQ tð Þ,

dL tð Þ
dt

= 2β1
P tð ÞL tð Þ
P tð Þ + L tð Þ − β2L tð ÞS tð Þ − d + μ + u2 tð Þ + 1 − u4 tð Þð Þð ÞL tð Þ,

dS tð Þ
dt

= β2L tð ÞS tð Þ − d + μ + δ + u3 tð Þ + qu4 tð Þð ÞS tð Þ,
Q tð Þ
dt

= δS tð Þ − d + μ + γð ÞQ tð Þ + u3 tð Þ + qu4 tð Þð ÞS tð Þ + u2 tð Þ + 1 − u4 tð Þð ÞL tð Þ + u1 tð ÞP tð Þ,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð55Þ

with the conditions

P0 > 0, L0 ≥ 0, S0 ≥ 0,Q0 ≥ 0, ð56Þ

Our optimum control strategy is to reduce/minimize the
number of potential smokers, light smokers, and smokers while
increasing the number of people who quit smoking. Keeping in
view the control problem (55), our cost functional is given by
the following:

J u1, u2, u3, u4ð Þ =
ðT
0

D1L +D2S +D3P −D4Q + 1
2 F1v

2
1 tð Þ	�

+ F2v
2
2 tð Þ + F3v

2
3 tð Þ + F4v

2
4 tð ÞÞ

�
dt:

ð57Þ

In the cost functional (57), Di’s are positive constants
describing the balancing factors, whereas Fi’s are the cost asso-
ciated to the control measures. Clearly, the cost functional has a
goal to reduce smoker population and to enhance the size of
quit smokers. Our main focus is to find a set of functions fu⋆1
, u⋆2 , u⋆3 , u⋆4g in such a way that

J u⋆1 , u⋆2 , u⋆3 , u⋆4ð Þ =min
ui∈V

J uið Þ, ð58Þ

where the set V is the admissible control set and is define by

V = ui tð Þ ∈ L2 0, T½ �: 0 ≤ ui tð Þ ≤ uimax
≤ 1 for i = 1,⋯,4


 �
,
ð59Þ

where uiðtÞ are the control variables described above, and these
are Lebesgue measurable functions. To identify such control
measures, we must first establish that actually they exist.

7.1. Existence of Solution to the Control Problem. For proving
the desired result, we will take into consideration problems (55)
and (56) and will show that actually this system has a solution.
It is worthy to notice that nonnegative bounded solutions to the
state system exist if we have bounded Lebesguemeasurable con-
trol measures and nonnegative initial conditions [28]. Let

dψ
dt

=Lψ +X ψð Þ, ð60Þ

and here,

Equation (60) denotes a nonlinear system (the proposed
control problem) with bounded coefficients. Set

K =Lψ +X ψð Þ: ð62Þ

By considering the following,

X ψ1ð Þ −X ψ2ð Þj j ≤ 2β1 P1 − P2j j + 2β1 L1 − L2j j + β2 L1S1 − L2S2j j,
≤N1 P1 − P2j j + L1 − L2j j + L1S1 − L2S2j jð Þ,

ð63Þ

Table 5: Parameter values are used for showing the effectiveness of
the control program.

Parameters Values Parameters Values

Λ 10.25 μ 0.0111

γ 0.006 β1 0.9

β2 0.00038 d 0.0019

δ 0.000274 q 0.2

Table 4: Parameter values for verifying the global stability of light
smoker present equilibrium.

Parameters Values Parameters Values

Λ 10.25 μ 0.0111

γ 0.006 β1 0.038

β2 0.00038 d 0.0019

δ 0.041

Table 3: Parameter values for verifying the global stability of
smoking-free equilibrium.

Parameters Values Parameters Values

Λ 10.25 μ 0.08

γ 0.006 β1 0.008

β2 0.00038 d 0.0019

δ 0.000274
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Figure 2: Continued.
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where N1 = max ð2β1, β2Þ is free from the state’s vari-
able. Also, one can write

K ψ1ð Þ −K ψ2ð Þj j ≤ ≤M1 ψ1 − ψ2j jð Þ, ð64Þ

where ∞>M1 = max ðN1, kLkÞ; thus, X is uniformly con-
tinuous function in the sense of Lipschitz. Further, for the
definition of the control measures and conditions on the
states (PðtÞ > 0, LðtÞ ≥ 0, SðtÞ ≥ 0 and RðtÞ > 0), we can
observe that a solution to the control problem (55) does
really exist. The following conclusion holds for the existence
of control variables in the optimum control problem.

Theorem 13. There exists a control vector u⋆ = ðu⋆1 , u⋆2 , u⋆3 ,
u⋆4 Þ ∈U which minimizes the objective functional.

Proof. In order to show that actually such control variables
exist, we need to follow [28], as

(a) Both the state and control functions are nonnegative

(b) Convexity and closedness properties hold by the set
of admissible controls

(c) The boundedness of the control model assures the
compactness

(d) The function inside the integral in the objective
functional (57) is convex in the control measures

Therefore, there exist the control variables uiðtÞ for i =
1, 2, 3, 4 which minimize the objective functional.

7.2. Optimality Conditions. For deriving characterization of
the control from the control problem (55) subject to the cost
functional (57), first of all, we will define the Lagrangian and
the Hamiltonian for this problem. Let z = ðP, L, S,QÞ denote
the vector whose components are the state functions and u =
ðu1, u2, u3, u4Þ is the control vector. The LagrangianL is given
by

L z, uð Þ =D1L +D2S +D3P −D4Q + 1
2 F1v

2
1 tð Þ	

+ F2v
2
2 tð Þ + F3v

2
3 tð Þ + F4v

2
4 tð Þ�, ð65Þ

and the Hamiltonian H is given by

H z, u, λð Þ = L z, uð Þ + λf z, uð Þ, ð66Þ

where λ = ðλ1, λ2, λ3, λ4Þ and f ðz, uÞ = f1ðz, uÞ + f2ðz, uÞ
+ f3ðz, uÞ + f4ðz, uÞ with
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Figure 2: Different initial size of compartments and its long-term behavior for R0 < 1.
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Figure 3: The plot describes stability of smoking present equilibrium Eå when R0 > 1.
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Figure 4: Continued.
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f1 z, uð Þ =Λ − 2β1
P tð ÞL tð Þ
P tð Þ + L tð Þ − d + μ + u1 tð Þð ÞP tð Þ + γQ tð Þ,

f2 z, uð Þ = 2β1
P tð ÞL tð Þ
P tð Þ + L tð Þ − β2L tð ÞS tð Þ − d + μ + u2 tð Þ + 1 − u4 tð Þð Þð ÞL tð Þ,

f3 z, uð Þ = β2L tð ÞS tð Þ − d + μ + δ + u3 tð Þ + qu4 tð Þð ÞS tð Þ,
f4 z, uð Þ = δS tð Þ − d + μ + γð ÞQ tð Þ + u3 tð Þ + qu4 tð Þð ÞS tð Þ + 1 − u4 tð Þð ÞL tð Þ + u1 tð ÞP tð Þ:

8>>>>>>>>><
>>>>>>>>>:

ð67Þ

Thus,

H z, u, λð Þ =D1L +D2S +D3P −D4Q + 1
2 F1v

2
1 tð Þ	

+ F2v
2
2 tð Þ + F3v

2
3 tð Þ + F4v

2
4 tð Þ� + λ1

� Λ − 2β1
P tð ÞL tð Þ
P tð Þ + L tð Þ − d + μ + u1 tð Þð ÞP tð Þ + γQ tð Þ

� �

+ λ2 2β1
P tð ÞL tð Þ
P tð Þ + L tð Þ − β2L tð ÞS tð Þ

�

− d + μ + u2 tð Þ + 1 − u4 tð Þð Þð ÞL tð Þ
�

+ λ3 β2L tð ÞS tð Þ − d + μ + δ + u3 tð Þðð
+ qu4 tð ÞÞS tð ÞÞ + λ4 δS tð Þ − d + μ + γð ÞQ tð Þð
+ u3 tð Þ + qu4 tð Þð ÞS tð Þ + u2 tð Þð
+ 1 − u4 tð Þð ÞÞL tð Þ + u1 tð ÞP tð ÞÞ:

ð68Þ

The Pontryagin maximum principle [28] is used to deter-
mine the best solution for our given optimum control problem.

If ðz⋆, u⋆Þ is the best solution for the control problem (55), then
there exists a nonzero vector function λ such that the Hamilto-
nian system satisfies

dz⋆ tð Þ
dt

= ∂H
∂λ

z⋆ tð Þ, u⋆ tð Þ, λ tð Þð Þ, ð69aÞ

∂H
∂u

z⋆ tð Þ, u⋆ tð Þ, λ tð Þð Þ = 0, ð69bÞ

dλ tð Þ
dt

= −
∂H
∂z

z⋆ tð Þ, u⋆ tð Þ, λ tð Þð Þ, ð69cÞ

while holding the maximality and transversality conditions

H z⋆ tð Þ, u⋆ tð Þ, λ tð Þð Þ =max
u

H z⋆ tð Þ, u, λ tð Þð Þ, ð70Þ

λ Tð Þ = 0: ð71Þ

Theorem 14. Let P⋆, L⋆, S⋆, andQ⋆ be optimal states associated
with the optimal controls ðu⋆1 , u⋆2 , u⋆3 , u⋆4 Þ for problem (55).
Then, there exist adjoint variables λ1ðtÞ, λ2ðtÞ, λ3ðtÞ, and λ4ðt
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Figure 4: The plot presents a comparison of solution curves both with and without control.
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Þ satisfying

dλ1 tð Þ
dt

= 2β1
L2 tð Þ

P tð Þ + L tð Þð Þ2 + d + μ + u1 tð Þð Þ
 !

λ1 tð Þ

− 2β1
L2 tð Þ

P tð Þ + L tð Þð Þ2 λ2 tð Þ − u1 tð Þλ4 tð Þ −D3,

ð72Þ

dλ2 tð Þ
dt

= 2β1
P2 tð Þ

P tð Þ + L tð Þð Þ2 λ1 tð Þ − 2β1
P2 tð Þ

P tð Þ + L tð Þð Þ2 λ2 tð Þ

+ β2S tð Þλ2 tð Þ + d + μ + u2 tð Þ + 1 − u4 tð Þð Þð Þλ2 tð Þ
− β2S tð Þλ3 tð Þ − u2 tð Þ + 1 − u4 tð Þð Þð Þλ4 tð Þ −D1,

ð73Þ

dλ3 tð Þ
dt

= β2L tð Þλ2 tð Þ − β2L tð Þλ3 tð Þ + d + μ + δ + u3 tð Þð
+ qu4 tð ÞÞλ3 tð Þ + δλ4 tð Þ − u3 tð Þ + qu4 tð Þð Þλ4 tð Þ −D2,

ð74Þ

dλ4 tð Þ
dt

= −γλ1 tð Þ + d + μ + γð Þλ4 tð Þ +D4, ð75Þ

with terminal conditions

λ1 Tð Þ = 0, λ2 Tð Þ = 0, λ3 Tð Þ = 0, λ4 Tð Þ = 0: ð76Þ

Further, the control measures are characterized by

u⋆1 tð Þ =max min c1,
λ1 tð Þ − λ4 tð Þð Þ

F1
P tð Þ

� �
, 0

� �
, ð77Þ

u⋆2 tð Þ =max min c2,
λ2 − λ4ð Þ
F2

L tð Þ
� �

, 0
� �

, ð78Þ

u⋆3 tð Þ =max min c3,
λ3 − λ4ð Þ
F3

S tð Þ
� �

, 0
� �

, ð79Þ

u⋆4 tð Þ =max min c4,
λ4 − λ2ð ÞL tð Þ + q λ3 − λ4ð ÞS tð Þ

F4

� �
, 0

� �
:

ð80Þ
Proof. The adjoint system (72) is obtained by using the adjoint
equation (69c) in the maximum principles. The terminal condi-
tions of (76) were derived as a direct consequence of equation
(71). We took the partial derivatives of H with respect to the
control measure ui for i = 1,⋯, 4 in turns and used (69b) for
the derivation of (77)–(80).
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Figure 5: The plot describes stability of light smoker present equilibrium when R0 > 1.
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8. Simulation Results

For solving the problems (both with and without controls),
we used the standard RK method of fourth order. To verify
numerically the key theorems on dynamical analysis, we uti-
lized parameter values from Tables 3 and 4. Specifically,
values of parameters from Table 3 were used to show the
stability of smoking-free equilibrium, and sequentially,
parameter values from Table 4 guarantee the stability of light
smoker present equilibrium. For presenting the effect of
control measures, we assumed values from Table 5. For sim-
ulating the control problem, firstly, we solved model (55)
forward in time and then used backward RK4 method for
solving the adjoint system (72) with the help of terminal
conditions and characterization of the control variables
(77)–(80). The simulation clearly illustrates the results on
dynamical analysis (Figures 2 and 3) as well as on control
theory (Figures 4 and 5).

By using values of parameter from Table 3, calcu-
late the smoking generation number R0 = 0:1954 and
SFE E0 = ð125:1526,0, 0, 0Þ. It is clear from Figure 2 that
each solution curve in the subplots tends to its SFE
irrespective of the initial size of the population when-
ever R0 < 1.

To show numerically the global stability of light smoker
present equilibrium El (21), we assumed the same values of
Table 3 except β1 = 0:08 which gives R0 = 1:9536 and as a

result, El = ðPl, Ll, Sl,QlÞ = ð64:0625,61:0901,0, 0Þ. Thus,
Figures 6(a)–6(d) shows a clear interpretation of Theorems
7 and 10, that is, if R0 > 1, then ðP, L, S,QÞ⟶ ðPl, Ll, Sl,
QlÞ as t⟶∞.

Similarly, to show the long-term behavior of each class
whenever R0 > 1 and the side condition of Theorem 8 holds,
we take into consideration values from Table 4. From these
values of parameters, we calculated R0 = 12:3077 > 1 and
ðP∗, L∗, S∗,Q∗Þ = ð127,142:1,164:5,354:9Þ. Figure 3 proves
the statement of Theorem 8 as well as the global stability
of SPE numerically.

Finally, we used values from Table 5 and simulated both
with and without control problems and presented the effect
of the control variables. The simulation (in Figure 4) depicts
in a clear way the effect of the control variables: to decrease
the size of smoker population and to increase the number of
quit smokers.

9. Concluding Remarks

In this work, we formulated and analyzed a giving-up smoking
model utilizing three main factors related to smoking habit:
the bilinear incidence rate showing the spread of smoking
habit within the population from the contact of light smokers
and smokers, the harmonic mean type of incidence rate (for
incorporating contacts between potential smokers and occa-
sional smokers), and the relapse factor associated to smoking.
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After model formulation, we investigated the model for
bounded and positive solution subject to appropriate initial
conditions. The model was checked for possible fixed points,
and three equilibria were derived under certain conditions,
namely, the smoking-free equilibrium, light smoker present
equilibrium, and smoking present equilibrium. It was shown
that the smoking-free fixed point always exists and is both
locally and globally asymptotically stable when R0 < 1. The
positive light smoker present equilibrium exists if we assume
R0 > 1, and the same fixed point is locally as well as globally
asymptotically stable if we impose additional conditions on
the basic reproduction number. Further, we proved that the
model has a smoking present equilibriumwhenever additional
conditions are satisfied by R0. Also, a criteria for the local
analysis has been derived, and the global stability of smoking
present equilibrium was presented both analytically and
numerically. Keeping in mind a few control measures, we set
a control problem and optimal control strategies were
achieved with the help of Pontryagin’s maximum principle.
The obtained analytical results were verified through simula-
tions and effectiveness of the control program is presented
by comparing with and without control curves.

This work is indeed a very good contribution to the
existing literature on smoking epidemics. However, this
social evil has a dramatic impact on every society, and thus,
one cannot ignore the memory effect while studying such
and related problems. Keeping in view the importance of
generalized fractional derivatives in this regard [10–30], the
authors have a keen interest to formulate and analyze the
fractional models for smoking epidemics in near future.
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In this paper, we consider a fractional-order mathematical system comprising four different compartments for the recent
pandemic of SARS-CoV-2 with regard to global and singular kernels of Caputo fractional operator. -e SARS-CoV-2 fractional
mathematical model is analyzed for series-type solution by Laplace–Adomian decomposition techniques (LADM) and homotopy
perturbation method (HPM). -e whole quantity of each compartment is divided into small parts, and then the sum of these all
parts is written as a series solution for each agent of the system, while the nonlinear part is decomposed using the Adomian
polynomial. -e model is also checked for approximate solution by HPM through a comparison of the parameter power, p, for
each equation. -e numerical simulation for both methods is provided in different fractional orders along with comparison with
each other as well as with natural order 1.

1. Introduction

-e novel coronavirus (SARS-CoV-2), considered the most
dangerous virus of this decade, belong to family of severe
acute respiratory syndrome (SARS) [1, 2]. -erefore, this
new virus is related to the viruses associated with the syn-
drome. It has become a new novel strain of the SARS family,
which was recognised in humans before [3, 4]. SARS-CoV-2
affected not only humans but also several animals. -is virus
has been transmitted from human to human, and it occurs
similarly in animals. But many times, it has become a
mystery that how the animals have been affected by it in
certain security. Infected humans and different species of
various animals are also recognised as an active cause of the
spreading of the virus [5]. In the past, some similar viruses
like the Middle East respiratory syndrome coronavirus
(MERS-CoV) were spread from camels to the human
population, and for SARS-CoV-1, the civet cats were rec-
ognised as the source of spreading into humans [6].

Mathematical models concerning infections have vastly
been used since the last century to study the dynamics and
transmission of various pandemics and epidemics and to

apply valuable techniques for their control or minimization.
Scholars investigating pandemics in the various areas of
sciences are working to control these epidemics or reduce
these negative impacts to a stable situation [7–9]. -ey also
give the concept of the globalization of the ODEs that have
the natural-order differentiation providing more degrees of
freedom at any order. -e equations which contain the FO
differential equation δ, with FO 0< δ ≤ 1, may be studied in
[10–12]. Mostly, in epidemiological problems, FDEs refer to
models with memory effects [12]. Next, the fractional-order
derivative has the term of integration providing the
knowledge of the past spreading for an infection. We can
expect the behavior of the transmission based on the pre-
vious results and studies. -e hereditary and historical
characteristics point to the past transmission of diseases,
which is very beneficial for making predictions. -erefore,
these characteristics can be tested by the application of
noninteger order derivatives, and it impacts the transmis-
sion of an epidemic [10–12].

Modern calculus goods production arbitrary order may
be used in different fields of clinical and physical sciences,
such as goods production by engineering, control theory,
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economics, financing, and infectious disease conditions. -e
extensive huge study of FODEs in modelling global phe-
nomena is because of more attracting characteristics which
are not explained in the natural order derivatives. -e
natural order differential equations are local in nature, while
FDEs are concerned with nonlocality, which provides more
globalization of their dynamics. Usage of integer operator is
hot area and recently caught the researchers interest,
whereas the noninteger order operators have been studied
and used intensively. Infectious problems for the endemic
are the most realistic area for the researchers as a research
gap and are applied to test them in recent times. Moreover,
the analysis for the mathematical models referring to the
real-globe situation is made using the theory of stability,
existence of solution, and with the optimal problem as in
[13–15].

We proposed a new vaccinated SARS-CoV-2 epidemic
model that has four quantities including the susceptible class
W(t), the acutely infected class X(t), chronically infected
class Y(t), and the recovered class Z(t), which takes the
following form:

dW(t)

dt
� Λ − βW(t)X(t) − (ρ + ξ)W(t),

dX(t)

dt
� βW(t)X(t) − (ξ + c + λ)X(t),

dY(t)

dt
� λX(t) − (ξ + δ + κ)Y(t),

dZ(t)

dt
� cX(t) + κY(t) + ρW(t) − ξZ(t).

(1)

-e parameters used in system (1) are described in
Table 1:

-e analysis of model (1) under fractional-order de-
rivative with regard to the Caputo operator is given as

C
D

ζ
t (W(t)) � Λ − βW(t)X(t) − (ρ + ξ)W(t),

C
D

ζ
t (X(t)) � βW(t)X(t) − (ξ + c + λ)X(t),

C
D

ζ
t (Y(t)) � λX(t) − (ξ + δ + κ)Y(t),

C
D

ζ
t (Z(t)) � cX(t) + κY(t) + ρW(t) − ξZ(t),

(2)

with general initial approximation W(0) � N1, X(0) � N2,
Y(0) � N3, and Z(0) � N4.

In the seventeenth century, many researchers Euler,
L’Hôpital, Fourier, Abels, Riemann–Liouville, etc., made
fundamental contributions in this field of modern calculus
and were known as the pioneers of fractional calculus. Besides
them, many other scientists have made significant findings
and discovered some fractional models as seen in [10–12].
Most of the basic properties needed for real phenomena such
as memory, globality, and hereditary are involved in various
fractional operators, while the integer-order differential op-
erator have no such properties; therefore, modern calculus
gives more realistic result. Modern calculus refers to the
appliances of biological, physical, and engineering as in

[11, 16–18]. Other properties of fractional operators like
nonlocality, globality, singularity, and nonsingularity also
attract the interest of many researchers. -ese properties are
more applicable to most real-world problems.

It should be kept inmind that fractional operators do have
not a unique definition and are formulated by different
formulae. Most of the operators have the definite integral with
singular and nonsingular kernels. -ese kernels can also be
found in the various fractional integration formulae. -ese
kernels are mostly taken from the Cauchy integral formula.
-ese integral kernels present in the fractional operator may
be analyzed by various techniques. Some researchers have
used Laplace–Adomian decomposition techniques for both
linear and nonlinear fractional differential models. For the
terms of noninearity, Adomian polynomial is applied, which
decomposes that term into a small one (see [19, 20]). Simi-
larly, the homotopy perturbation techniques are also applied
for a series solution, which can be obtained by perturbed by a
small factor and then comparing the power of parameter
ζ ∈ [0, 1] on both sides of the equation. For the iterative
numerical solution of integer-order models, mostly Run-
ge–Kutta techniques (RK4 and RK2) were used. -ey can be
used for fractional-order equations by involving the fractional
terms. In this article, we will apply Laplace transformation
along with Adomian decomposition techniques by converting
the while quantity into small ones. We will also apply the
homotopy perturbation techniques (HPM) for the series
solution of the said problem [21, 22].

Different global real-life situations may be represented
by noninteger differential equations (FDEs) such as physics
problems, problems of control theory, chemistry problems
(polymerization, rheology, and electronics), physical biol-
ogy, heat, aerodynamics, infectious diseases, electro-statics,
electrical circuits, and blood flow [11, 23–25]. In the last few
years, the interesting description of the existence of solutions
of FDEs by changing the boundary conditions counting
integer order phenomena, nonlocal, nonsingular kernel,
periodic/antiperiodic, and multipoints has been investigated
and has provided good supposition, as can be seen in
[26–28]. Different researchers have tested the solution of the
coupled models by differential equations of noninteger
orders which gives the key role in applied fields of math-
ematics. -is is the establishment for the model developed
from biochemistry, biology, ecology, and other areas of
engineering and physical sciences such as in [29].

Table 1:-e description of different parameters given in model (1).

Parameter
symbols Description

Π Rate of new birth or recruitment
] Rate of vaccination for SARS-CoV-2
μ Rate of natural deaths
α Rate of death due to SARS-CoV-2

η Interaction rate of infectious and healthy
population

c Recovered rate for acute infection
κ Recovered rate for chronic infection

λ Transferring rate acute class to chronic
infection
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2. Basic Definition

In this section, some definitions are written from [19, 20, 30].

Definition 1. Consider Y ∈ L1([0,∞)Z) to be a mapping;
then, the Riemann–Liouville noninteger order integral of
order ζ is as follows:

IζtY(t) �
1
Γ(ζ)

􏽚
t

0

Y(β)

(t − β)
1− ζ dβ, ζ > 0, (3)

where the right integral must exist.

Definition 2. Let Y be an operator, then the Caputo non-
integer order derivative can be defined as

CD
ζ
tY(t) �

1
Γ(n − ζ)

􏽚
t

0
(t − β)

n− ζ− 1
Y

n
(β)dβ, (4)

and the R.H.S of the integrationmust exist and n � [ζ] + 1. If
ζ ∈ (0, 1), then someone has

CD
ζ
tY(t) �

1
Γ(1 − ζ)

􏽚
t

0

Y′(β)

(t − β)
ζ dβ. (5)

Lemma 1. From the noninteger order differential equation,
the following is satisfied:

Iζ CD
ζ
p􏼔 􏼕(t) � p(t) + c0 + c1t + c2t

2
+ · · · + cn− 1t

n− 1
. (6)

Definition 3. With regard to the Caputo operator, the
Laplace transformation can be written as

L
CD

ζ
t p(t)􏼔 􏼕 � s

ζ
P(s) − 􏽘

m− 1

j�0
s
ζ− j− 1

p
k
(0),

m − 1< ζ <m, m ∈ N.

(7)

Definition 4. On application of the homotopy perturbation
techniques to an equation having linear L and nonlinear N

classes, we may write a homotopy
v(r, g): Ω × [0 × 1]⟶ Z.

H(v, g) � (1 − g) L(v) − L u0( 􏼁􏼂 􏼃

+ g[L(v) + N(v) − f(r)] � 0,
(8)

where r ∈ Ω and q ∈ [0, 1] is the embidding parameter.

3. Series Solution of Problem (2) via LADM

-is section is devoted to the analysis of general-typed series
techniques for the considered model (2) along with some
starting conditions. On the application of the Laplace
transformation to the considered problem (2), we get the
following:

L
C

D
ζ
t (W(t))􏼔 􏼕 � L[Λ − βSA − (ρ + ξ)W],

L
C

D
ζ
t (X(t))􏼔 􏼕 � L[βSA − (ξ + c + λ)X],

L
C

D
ζ
t (Y(t))􏼔 􏼕 � L[λX − (ξ + δ + κ)Y ],

L
C

D
ζ
t (Z(t))􏼔 􏼕 � L[cX + κY + ρW − ξZ].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Applying the initial approximation, problem (9)
becomes

L[W(t)] �
N1

s
+
1
s
ζ L[Λ − βSA − (ρ + ξ)W],

L[X(t)] �
N2

s
+
1
s
ζ L[βSA − (ξ + c + λ)X],

L[Y(t)] �
N3

s
+
1
s
ζ L[λX − (ξ + δ + κ)Y ],

L[Z(t)] �
N5

s
+
1
s
ζ L[cX + κY + ρW − ξZ].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Taking the infinite series solution for W,X,Y , andZ as

W(t) � 􏽘
∞

n�0
Wn(t),X(t) � 􏽘

∞

n�0
Xn(t),

Y(t) � 􏽘
∞

n�0
Y n(t),Z(t) � 􏽘

∞

n�0
Zn(t),

(11)

the nonlinear term W(t)X(t) � 􏽐
∞
n�0 Xn(t) can be

decomposed as

Xn(t) �
1
n!

d
n

dλn 􏽘

n

k�0
λk
Wk(t) 􏽘

n

k�0
λk
Xk(t)⎡⎣ ⎤⎦

λ�0

. (12)
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Substitute equations (11) and (12) into equation (10), and
on comparing the terms on each side, we obtain

L W0(t)􏼂 􏼃 �
N1

s
,L X0(t)􏼂 􏼃 �

N2

s
, L Y 0(t)􏼂 􏼃 �

N3

s
, L Z0(t)􏼂 􏼃 �

N4

s
,

L W1(t)􏼂 􏼃 �
1
s
ζ L Λ − βW0A0 − (ρ + ξ)W0􏼂 􏼃,

L X1(t)􏼂 􏼃 �
1
s
ζ L βW0A0 − (ξ + c + λ)X0􏼂 􏼃,

L Y 1(t)􏼂 􏼃 �
1
s
ζ L λX0 − (ξ + δ + κ)Y 0􏼂 􏼃,

L Z1(t)􏼂 􏼃 �
1
s
ζ L cX0 + κY 0 + ρW0 − ξZ0􏼂 􏼃,

⋮

L Wn+1(t)􏼂 􏼃 �
1
s
ζ L Λ − βWnAn − (ρ + ξ)Wn􏼂 􏼃,

L Xn+1(t)􏼂 􏼃 �
1
s
ζ L βWnAn − (ξ + c + λ)Xn􏼂 􏼃,

L Y n+1(t)􏼂 􏼃 �
1
s
ζ L λXn − (ξ + δ + κ)Y n􏼂 􏼃,

L Zn+1(t)􏼂 􏼃 �
1
s
ζ L cXn + κY n + ρWn − ξZn􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Upon using the inverse Laplace transform in expression
(14), we get
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W0(t) � L
− 1 N1

s
􏼔 􏼕 � N1,X0(t) � L

− 1 N2

s
􏼔 􏼕 � N2,Y 0(t) � L

− 1 N3

s
􏼔 􏼕 � N3, ,Z0(t) � L

− 1 N4

s
􏼔 􏼕 � N4,

W1(t) � Λ − βN1N2 − (ρ + ξ)N1􏼂 􏼃
t
ζ

Γ(ζ + 1)
,

X1(t) � βN1N2 − (ξ + c + λ)N2􏼂 􏼃
t
ζ

Γ(ζ + 1)
,

Y 1(t) � λN2 − (ξ + δ + κ)N3􏼂 􏼃
t
ζ

Γ(ζ + 1)
,

Z1(t) � cN2 + κN3 + ρN1 − ξN4􏼂 􏼃
t
ζ

Γ(ζ + 1)
,

W2(t) �
Λtζ

Γ(ζ + 1)
− β N1G11 + N2K11( 􏼁 − (ρ + ξ)G11􏼂 􏼃

t
2ζ

Γ(2ζ + 1)
,

X2(t) � β N1G11 + N2K11( 􏼁 − (ξ + c + λ)K11􏼂 􏼃
t
2ζ

Γ(2ζ + 1)
,

Y 2(t) � λK11 − (ξ + δ + κ)L11􏼂 􏼃
t
ζ2

Γ(2ζ + 1)
,

Z2(t) � cK11 + κL11 + ρG11 − ξM11􏼂 􏼃
t
2ζ

Γ 2ζ+1( 􏼁
.

(14)

In the same way, the remaining terms can be obtained,
and the terms given in equation (14) are as follows:

G11 � Λ − βN1N2 − (ρ + ξ)N1,

K11 � βN1N2 − (ξ + c + λ)N2,

L11 � λN2 − (ξ + δ + κ)N3,

M11 � cN2 + κN3 + ρN1 − ξN4.

(15)

4. Approximate Solution for Problem
(2) via HPM

Furthermore, we apply the HPM to obtain the approximate
solution for the proposed problem (2), according to [20, 21]
as follows:

(1 − q)
C

D
ζ
t (W(t)) −

C
D

ζ
t W0(t)( 􏼁􏼔 􏼕 + q

C
D

ζ
t (W(t)) − Λ + βSA +(ρ + ξ)W􏼔 􏼕 � 0,

(1 − q)
C

D
ζ
t (X(t)) −

C
D

ζ
t E0(t)( 􏼁􏼔 􏼕 + q

C
D

ζ
t (X(t)) − βSA +(ξ + c + λ)X􏼔 􏼕 � 0,

(1 − q)
C

D
ζ
t (Y(t)) −

C
D

ζ
t I0(t)( 􏼁􏼔 􏼕 + q

C
D

ζ
t (Y(t)) − λX +(ξ + δ + κ)Y􏼔 􏼕 � 0,

(1 − q)
C

D
ζ
t (Z(t)) −

C
D

ζ
t Z0(t)( 􏼁􏼔 􏼕 + q

C
D

ζ
t (Z(t)) − cX − κY − ρW + ξZ􏼔 􏼕 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

By applying q � 0 in equation: (16), a model of arbitrary
differential equations can be obtained:
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C
D

ζ
t (W(t)) −

Y
D

ζ
t W0(t)( 􏼁 � 0,

C
D

ζ
t (X(t)) −

Y
D

ζ
t E0(t)( 􏼁 � 0,

C
D

ζ
t (Y(t)) −

Y
D

ζ
t I0(t)( 􏼁 � 0,

C
D

ζ
t (Z(t)) −

Y
D

ζ
t Z0(t)( 􏼁 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Solutions for the equation (17) are straightforward. If we
use q � 1 in equation (16), we will obtain the same system as
(2). -e infinite series solution can be write in the following
form as

W(t) � 􏽘
∞

n�0
q

n
Sn(t),X(t) � 􏽘

∞

n�0
q

n
An(t),Y(t)

� 􏽘
∞

n�0
q

n
Cn(t),Z(t) � 􏽘

∞

n�0
q

n
Rn(t).

(18)

So, by comparing each term q � 1, in equation (18), we
get the original model. Plugging equation (18) in to equation
(16) and on comparison of each terms with the same power
of q, we get

q
0
: W0(t) � N1,X0(t) � N2, Y 0(t) � N3,Z0(t) � N4.􏼈

(19)

Similarly,

q
1
:

W1 � Λ − βW0X0 − (ρ + ξ)W0􏼂 􏼃
t
ζ

Γ(ζ + 1)
,

X1 � βW0X0 − (ξ + c + λ)X0􏼂 􏼃
t
ζ

Γ(ζ + 1)
,

Y 1 � λX0 − (ξ + δ + κ)Y 0􏼂 􏼃
t
ζ

Γ(ζ + 1)
,

Z1 � cX0 + κY 0 + ρW0 − ξZ0􏼂 􏼃
t
ζ

Γ(ζ + 1)
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

q
2
:

W2 � Λ − βW0X0 βW0X0 − (ξ + c + λ)X0􏼈 􏼉 − βX0 + ρ + ξ( 􏼁 Λ − βW0X0 − (ρ + ξ)W0􏼈 􏼉􏼂 􏼃
t
2ζ

Γ(2ζ + 1)
,

X2 � W0 − (ξ + c + λ)􏼈 􏼉 βW0X0 − (ξ + c + λ)X0􏼈 􏼉 + X0 Λ − βW0X0 − (ρ + ξ)W0􏼈 􏼉􏼂 􏼃
t
2ζ

Γ(2ζ + 1)
,

Y 2 � λ βW0X0 − (ξ + c + λ)X0􏼈 􏼉 − (ξ + δ + κ) λX0 − (ξ + δ + κ)Y 0􏼈 􏼉􏼂 􏼃
t
2ζ

Γ(2ζ + 1)
,

Z2 � c βW0X0 − (ξ + c + λ)X0􏼈 􏼉 + κ λX0 − (ξ + δ + κ)Y 0􏼈 􏼉 + ρ Λ − βW0X0 − (ρ + ξ)W0􏼈 􏼉􏼂

− ξ cX0 + κY 0 + ρW0 − ξZ0􏼈 􏼉]
t
2ζ

Γ(2ζ + 1)
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Similarly, the high terms can be obtained, and the re-
quired terms are given in the part above. Hence, we obtain
the same high terms as we obtained using LADM. Both the

methods are applied as strong techniques for nonlinear
fractional-order equations.
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5. Discussion along with Numerical
Simulation for the Proposed System (2)

Next, we compute the numerical solution for the considered
system (2), by assigning different values for the parameter
given in Table 1 used in problem (2).

-e first four terms of the considered model (2), by using
values from the table are given as follows:

W0(t) � 6,X0(t) � 3,Y 0(t) � 2,Z0(t) � 0,

W1(t) �
− 5.2
Γ(ζ + 1)

t
ζ
,X1(t) �,

5.3
Γ(ζ + 1)

t
ζ
,

Y 1(t) �
0.8
Γ(ζ + 1)

t
ζ
,Z1(t) � 0,

W2(t) �
0.4
Γ(ζ + 1)

t
ζ

+
4.7
Γ(2ζ + 1)

t
2ζ

,

X2(t) �
− 5.7
Γ(2ζ + 1)

t
2ζ

, Y 2(t) �
2.25
Γ(2ζ + 1)

t
2ζ

,

Z2(t) �
0.15
Γ(2ζ + 1)

t
2ζ

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

-e solution for the first few terms are the following:

W(t) � 6 −
5.2
Γ(ζ + 1)

t
ζ

+
4.876
Γ(2ζ + 1)

t
2ζ

+
0.3687Γ(2ζ + 1)

Γ2(ζ + 1)Γ(3ζ + 1)
t
3ζ

. . . ,

X(t) � 3 +
5.3
Γ(ζ + 1)

t
ζ

−
5.765
Γ(2ζ + 1)

t
2ζ

−
0.3465Γ(2ζ + 1)

Γ2(ζ + 1)Γ(3ζ + 1)
t
3ζ

. . . ,

Y(t) � 2 +
0.8
Γ(ζ + 1)

t
ζ

+
2.7654
Γ(2ζ + 1)

t
2ζ

−
0.6753
Γ(3ζ + 1)

t
3ζ

+ . . . ,

Z(t) �
0.065
Γ(2ζ + 1)

t
2ζ

−
0.0076
Γ(3ζ + 1)

t
3ζ

+ . . . .

(23)

Now, evaluating equation (23) with ζ � 0.8, we get

W(t) � 6 − 5.765470670t
0.9

+ 3.876379584t
1.8

− 0.507094532t
2.7

+ . . . ,

X(t) � 2 − 4.543942654t
0.9

− 2.655544765t
1.8

− 0.5464427072t
2.7

+ . . . ,

Y(t) � 2 + 0.08768770670t
0.9

+ 0.876594565t
1.8

− 0.8766862398t
2.7

+ . . . ,

Z(t) � 0.87656354145t
1.8

− 0.00872947616t
2.7

+ . . . .

(24)

Similarly, for ζ � 0.6, the approximate solution for (23)
is
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Table 2: Numerical values for the parameters given in model (2).
Parameters Value
Λ 0.8
ρ 0.5
ξ 0.2
δ 0.5
β 0.4
c 0.04
κ 0.05
λ 0.2

ζ=0.87
ζ=0.92

ζ=0.97
ζ=1.0
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Figure 1: Graphical representation of the series solution of (W(t),X(t), Y(t),Z(t)) of the proposed system (2) for various arbitrary orders.
(a) W(t): susceptible population. (b) X(t): acutely infected population. (c) Y(t): chronically infected population. (d) Z(t): recovered
population.
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W(t) � 6 − 5.654737025t
0.7

+ 2.8759942t
1.4

− 1.324229934t
2.1

+ . . . ,

X(t) � 3 − 4.765353842t
0.7

− 2.654389698t
1.4

+ 0.654351204t
2.1

. . . ,

Y(t) � 2 + 0.05502737025t
0.7

+ 0.8473079812t
1.4

− 0.4321037668t
2.1

+ . . . ,

Z(t) � 0.098769077782t
1.4

− 0.98767203392t
2.1

+ . . . ,

(25)

and for ζ � 0.4, the approximate solution for (23) is
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Figure 3: Comparison of LADM and HPM for the series solution of (Y(t),Z(t)) for various arbitrary orders of the considered model (2).
(a) Comparison of LADM and HPM for the series solution of Y(t) for various arbitrary orders. (b) Comparison of LADM and HPM for the
series solution of Z(t) for various arbitrary orders.
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Figure 2: Comparison of LADM and HPM for the series solution of (W(t),X(t)) for various arbitrary orders of the considered model (2).
(a) Comparison of LADM and HPM for the series solution of W(t) for various arbitrary orders. (b) Comparison of LADM and HPM for the
series solution of X(t) for various arbitrary orders.
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W(t) � 6 − 5.765495834t
0.5

+ 2.645t
1.0

− 2.8763389788t
1.5

. . . ,

X(t) � 3 − 4.987430418t
0.5

− 3.343t
1.0

+ 2.765458202t
1.5

. . . ,

Y(t) � 2 + 0.32421895835t
0.5

+ 2.2345t
1.0

− 0.7643392382t
1.5

+ . . . ,

Z(t) � 0.098t
1.0

− 0.764062165752t
1.5

+ . . . .

(26)

For the verification of our semianalytical solution by
both methods, we provide numerical simulations for
problem (2). Our simulation pertains to the qualitative point
analysis, and the parameters are considered through a bi-
ological feasibility approach. We take parameter numerical
value and then different initial class sizes for each of the
compartment, namely, susceptible W(t), acutely infectious
X(t), chronic carries, Y(t), and recovered Z(t), from Ta-
ble 2. Figure 1(a) shows a a quick decline in the starting in
the quantity of susceptible class at at different fractional
orders. -e occurred decline took much more time at low
nonnatural order and very slow at high noninteger order.
We observe that, as the arbitrary order values increased, the
curve of simulation goes, converging to the order 1. Besides
this, after few days, the said individuals show low growth and
then show converging towards stability to the equilibrium
point. Figure 1(b) represents the acute infectious class, X(t)

increases for some beginning days at various fractional
orders. Beside that, the curve declines and stay stable
through all arbitrary orders and converges to an integer
order. In Figure 1(c), one may see the chronical infectious
cases. Y(t) decreases at the starting of few days and then
moves up to the maximum value of 1.5 at different non-
integer order as no treatment and precautionary measures
are done. But after keeping the precautions, the infectious
case declines to 0.9 and then their after show stability and
convergency. From Figure 1(d) we see that the recovery class
goes up to 2.7 at the starting at various fractional orders and
by keeping precautions and treatment the recovered class
also stabilized.

Next, we have provided the comparison of different
agents of the considered model by both the methods of
LADM and HPM, as given from Figures 2(a)–3(b). Figure 4
represents the comparison of various agents at ζ � 1.

6. Conclusions

-e current investigation is the development of the four
compartmental fractional-order SARS-CoV-2 model with
regard to the Caputo fractional-order operative of Caputo
having a singular kernel.-e analysis for the series type solution
of the proposed problem has been successfully achieved by two
methods, one is the Laplace transform along with the Adomian
polynomial (LADM) for a nonlinear term and the other one is
the homotopy perturbationmethod (HPM).-e semianalytical
type solution has been obtained by both the methods which are
comparable with each other.-enumerical simulation for a few
terms has been plotted using the available data given in Table 1
for four different values of ζ. We also compare few fractional-
order values with that of integer 1, and as increasing the
fractional-order value, we achieved the behavior of order 1. A
complete spectrum for all compartments has established, and
we can use other fractional values between 0 and 1. As a result,
we say that fractional-order analysis provides better results than
those of the integer-order problems.

Data Availability

Data are available upon the request by email and according
to the type of collaboration.
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Finite mixture models provide a flexible tool for handling heterogeneous data. This paper introduces a new mixture model which
is the mixture of Lindley and lognormal distributions (MLLND). First, the model is formulated, and some of its statistical
properties are studied. Next, maximum likelihood estimation of the parameters of the model is considered, and the
performance of the estimators of the parameters of the proposed models is evaluated via simulation. Also, the flexibility of the
proposed mixture distribution is demonstrated by showing its superiority to fit a well-known real data set of 128 bladder
cancer patients compared to several mixture and nonmixture distributions. The Kolmogorov Smirnov test and some
information criteria are used to compare the fitted models to the real dataset. Finally, the results are verified using several
graphical methods.

1. Introduction

In most reliability applications, data is modeled by a single
parametric distribution. However, in many situations, a pop-
ulation can be divided into a number of subpopulations each
representing a different type of failure. Finite mixture
models play an important role in modeling such heteroge-
neous data. Applications of mixture models are especially
in clustering and classification, see, for example, Everitt
and Hand [1], McLachlan and Peel [2], McLachlan and Bas-
ford [3], Titterington et al. [4], Lindsay [5], McLachlan and
Krishnan [6], Al-Moisheer et al. [7, 8], and Al-Moisheer [9,
10]. In this paper, we will introduce a finite mixture of Lind-
ley and lognormal distributions (MLLND). The motivation
of suggesting this mixture comes from the importance of
its component distributions. The one-parameter Lindley dis-
tribution was introduced by Lindley [11, 12], and then Ghi-
tany et al. [13] illustrated its importance in lifetesting and
reliability applications. With regards to one component log-
normal distribution, it has found important applications in a

wide variety of fields; (see, Kim and Yum [14] and Lin et al.
[15]). In the literature, work has been done on mixture
models having the Lindley distribution as one of its compo-
nents, see, for example, Al-Moisheer et al. (Al-Moisheer
et al. [16], Al-Moisheer et al. [17]) for the mixture of two
one-parameter Lindley distribution and the mixture of Lind-
ley and inverse Weibull distributions, respectively. Also,
Daghestani et al. [18] considered the mixture of Lindley
and Weibull distributions. In this paper, we will introduce
a new mixture distribution, namely, the finite mixture of
Lindley and lognormal distribution (MLLND). This paper
is organized as follows. In Section 2, we obtain the new
model and derive some of its properties. In Sections 3 and
4, we derive the probability density function of the order sta-
tistics and the equations required to obtain the maximum
likelihood estimation of the model parameters. In Section
5, the flexibility of the proposed model is illustrated by
showing its ability to provide the best fit for a well-known
real data set compared to six competitive models. Finally,
In Section 6, we draw a conclusion.
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2. Model Formulation and Some Properties

The MLLND has the following probability density function
(pdf)

f x ;Θð Þ = p1 f1 x ;Θ1ð Þ + p2 f2 x ;Θ2ð Þ, 0 < p1, p2 < 1, p1 + p2
= 1, x ≥ 0,

ð1Þ

whereas the pdf of the Lindley component is given by

f1 x ;Θ1ð Þ = θ2

θ + 1 1 + xð Þe−θx, x ≥ 0, θ > 0: ð2Þ

The pdf of the lognormal component is given by

f2 x ;Θ2ð Þ = 1ffiffiffiffiffiffi
2π

p
σx

e−
1
2

log x−μ
σð Þ2 , x ≥ 0, −∞ < μ <∞, σ > 0,

ð3Þ

Θ = ðp1, θ, μ, σÞ, Θ1 = ðθÞ, and Θ2 = ðμ, σÞ.
Evidently, the cumulative distribution function (cdf) of

the MLLND is given by

F x ;Θð Þ = p1F1 x ;Θ1ð Þ + p2F2 x ;Θ2ð Þ, ð4Þ

where

F1 x ;Θ1ð Þ = 1 − θ + 1 + θx
θ + 1 e−θx, x ≥ 0, θ > 0,

F2 x ;Θ2ð Þ =Φ
log x − μ

σ

� �
, x ≥ 0, −∞ < μ <∞, σ > 0,

ð5Þ

with Φð:Þ referring to the cdf of the standard normal
distribution.

Ghitany et al. [13] and Shanker et al. [19] displayed some
properties of the LD in (2), while properties of the LND in
(3) were given, for example, by Crow and Shimizu [20]
and Johnson et al. [21]. In this section, we introduce some
properties of the MLLND by mixing the results of the LD
and LND.

2.1. Mean and Variance. The mean of the MLLND in (1) is
simply given by

E Xð Þ = p1
θ + 2

θ θ + 1ð Þ
� �

+ p2e
μ+σ2

2 , for x ≥ 0, θ, σ > 0,

−∞ < μ <∞,
ð6Þ

while the variance is given by

Var Xð Þ = p1
θ2 θ + 1ð Þ 2 θ + 3ð Þ − p1 θ + 2ð Þθ½ �

+ p2e
2μ+σ2 eσ

2
− p2

h i
− 2p1p2

θ + 2
θ θ + 1ð Þ
� �

eμ+σ2
2 ,

for x ≥ 0, θ, σ > 0, −∞ < μ <∞:

ð7Þ

Also, the rth moments of the MLLND is given by

E Xrð Þ = p1 θ + r + 1ð ÞΓ r + 1ð Þ
θr θ + 1ð Þ + p2e

rμ+r2σ2
2 , for r = 1, 2, 3,⋯:

ð8Þ

2.2. Mode and Median. It can be shown that the equations
for obtaining the modes and median of the MLLND, respec-
tively, are

p1
θ2 e−θ x

θ + 1 1 − θ 1 + xð Þ½ � − p2
1ffiffiffiffiffiffi

2π
p

σ3x2
e−

1
2

log x−μ
σð Þ2 σ2 + log x − μð Þ� �

= 0,

ð9Þ

and

p1 1 − θ + 1 + θxð Þe−θx
θ + 1

� �
+ p2Φ

log x − μ

σ

� �
= 0:5: ð10Þ

Figure 1(a) shows the pdf of the MLLND unimodal case
at the choice of parameters Θ = ðp1 = 0:5, θ = 0:95, μ = 0:25,
σ = 0:25Þ with the values of mode and median (1.1623,
1.2712), respectively. Also, Figure 1(b) shows the shape of
the pdf in the MLLND bimodal case at the choice of parame-
tersΘ = ðp1 = 0:5, θ = 2:95, μ = 0:85, σ = 0:25Þwith the values
of mode and median ((1.4370, 2.1430), 1.4542), respectively.
For plotting the pdf of the LD and LND in R, we use the func-
tion dlindley() and dlnorm(), respectively. The package root-
Solve() in R is used for modes and median of the MLLND.

2.3. Reliability and Failure Rate Functions. The reliability
function of the MLLND is given by

R xð Þ = p1
θ + 1 + θx
θ + 1 e−θx

� �
+ p2 1 −Φ

log x − μ

σ

� �� �
, x ≥ 0:

ð11Þ

By using (3) and (4), the hazard rate function (HRF) of
the MLLND is given by

r xð Þ =
p1 θ2/θ + 1
	 


1 + xð Þe−θx + p2 1/
ffiffiffiffiffiffi
2π

p
σx

� �
e−1/2 log x−μ/σð Þ2

p1 θ + 1 + θx/θ + 1ð Þe−θx	 

+ p2 1 −Φ log x − μ/σð Þð Þ , x ≥ 0,

ð12Þ

which can be written by using the result in AL-Hussaini and
Sultan [22], as
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r xð Þ = h xð Þ r1 xð Þ + 1 − h xð Þð Þr2 xð Þ, ð13Þ

where

h xð Þ = 1
1 + p2 R2 xð Þ/p1R1 xð Þð Þ , ri xð Þ = f i xð Þ

Ri xð Þ , i = 1, 2, R1 xð Þ

= θ + 1 + θx
θ + 1 e−θx

� �
andR2 xð Þ = 1 −Φ

log x − μ

σ

� �
:

ð14Þ

The HRF of the MLLND in (12) achieves the following
limits.

Lemma 1.

lim
x⟶0

r xð Þ = p1θ
2

θ + 1
, ð15Þ

lim
x⟶∞

r xð Þ = 0: ð16Þ

Proof. To prove the first part of the limits, using the equation
(13), we get

lim
x⟶0

h xð Þ = p1, and lim
x⟶0

1 − h xð Þð Þ = p2: ð17Þ

Then, we have

lim
x⟶0

r1 xð Þ = p1θ
2

θ + 1 , and lim
x⟶0

r2 xð Þ = 0, ð18Þ

and thus (15) is proved.

Also, to prove (16),

lim
x⟶∞

r xð Þ = lim
x⟶∞

f xð Þ
1 − F xð Þ = − lim

x⟶∞

f ′ xð Þ
f xð Þ , f ′ xð Þ = df xð Þ

dx

� �
,

ð19Þ

where, f ′ xð Þ = p1 f ′1 xð Þ + p2 f ′2 xð Þ: ð20Þ

It follows from (19) and (20) that

lim
x⟶∞

r xð Þ = − lim
x⟶∞

p1 f ′1 xð Þ + p2 f ′2 xð Þ
p1 f1 xð Þ + p2 f2 xð Þ : ð21Þ

It follows that

lim
x⟶∞

r xð Þ = 0: ð22Þ

For more details, see Sultan [23], Sultan and Al-Moisheer
[24], and Al-Moisheer et al. (Al-Moisheer et al. [16]).

2.4. Skewness, Kurtosis, and the Coefficient of Variation. The
coefficient of skewness ðSkÞ, the coefficient of kurtosis ðKuÞ,
and the coefficient of variation ðCvÞ of the MLLND distribu-
tion are given by, respectively,

Sk = E X3	 

− 3μσ2 − μ3

σ3
, = 6p1 θ + 4ð Þ

θ3 θ + 1ð Þ

 !
−

p1 θ + 2ð Þ
θ θ + 1ð Þ + p2e

μ+σ2
2

� �3

+ p2e
3μ+9σ2

2 − 3 2p1 θ + 3ð Þ
θ2 θ + 1ð Þ

−
p1 θ + 2ð Þ
θ θ + 1ð Þ + p2e

μ+σ2
2

� �2
+ p2e

2 μ+σ2ð Þ
 !

� p1 θ + 2ð Þ
θ θ + 1ð Þ + p2e

μ+σ2
2

� �
/ 2p1 θ + 3ð Þ

θ2 θ + 1ð Þ −
p1 θ + 2ð Þ
θ θ + 1ð Þ + p2e

μ+σ2
2

� �2
+ p2e
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Figure 1: pdf plot of MLLND with (a) Θ = ðp1 = 0:5, θ = 0:95, μ = 0:25, σ = 0:25Þ (b) Θ = ðp1 = 0:5, θ = 2:95, μ = 0:85, σ = 0:25Þ:
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Ku = E X4	 

− 4μE X3	 


+ 6μ2σ2 + 3μ4
σ4

, = 24p1 θ + 5ð Þ
θ4 θ + 1ð Þ

− 4 6p1 θ + 4ð Þ
θ3 θ + 1ð Þ

+ p2e
3μ+9σ2

2

 !
p1 θ + 2ð Þ
θ θ + 1ð Þ + p2e

μ+σ2
2

� �

+ 3 p1 θ + 2ð Þ
θ θ + 1ð Þ + p2e

μ+σ2
2

� �4
+ p2e

4μ+8σ2

+ 6 p1 θ + 2ð Þ
θ θ + 1ð Þ + p2e

μ+σ2
2

� �2 2p1 θ + 3ð Þ
θ2 θ + 1ð Þ

 

−
p1 θ + 2ð Þ
θ θ + 1ð Þ + p2e

μ+σ2
2

� �2
+ p2e

2 μ+σ2ð Þ
!
/ 2p1 θ + 3ð Þ

θ2 θ + 1ð Þ

 

−
p1 θ + 2ð Þ
θ θ + 1ð Þ + p2e

μ+σ2
2

� �2
+ p2e

2 μ+σ2ð Þ
!2

,

ð23Þ

Cv = σ

μ
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p1 θ + 3ð Þ/θ2 θ + 1ð Þ − p1 θ + 2ð Þ/θ θ + 1ð Þð Þ + p2e

μ+ σ2/2ð Þ	 
2 + p2e2
μ+σ2ð Þ

� �r
p1 θ + 2ð Þ/θ θ + 1ð Þð Þ + p2e

μ+ σ2/2ð Þ	 
 :

ð24Þ

Some values of the mean, standard deviation, coefficient
of variation, coefficient skewness, and coefficient kurtosis for
the MLLND distributions are obtained for the two choices of
the parameter θ and different values of the parameter μ.
From the results which are presented in Tables 1 and 2, we
note that as μ increases, both the mean and the standard
deviation increase, whereas the values of the other measures
remain fairly stable.

3. Order Statistics

Let X1, X2,⋯, Xm be a random sample of size m selected
from a distribution with pdf f ðxÞ and cdf FðxÞ, and also let
X1:m < X2:m <⋯ < Xm:m be the corresponding order statistics.
The pdf of the rth order statistics that say Xr:m is given by

Table 2: Results of the mean, standard deviation, coefficient of variation, skewness, and kurtosis for the MLLND at the choice
(p1 = 0:5 ; θ = 0:5 ; σ = 3).

μ Mean Stand:Dev: Cv Sk Ku

1 131.891 15574.5 118.086 1:03166 × 106 8:62368 × 1015

2 342.116 42336.0 123.747 1:03165 × 106 8:62359 × 1015

3 913.567 115081 125.969 1:03165 × 106 8:62355 × 1015

4 2466.93 312824 126.807 1:03165 × 106 8:62354 × 1015

5 6689.41 850343 127.118 1:03165 × 106 8:62353 × 1015

6 18167.3 2:31147 × 106 127.233 1:03165 × 106 8:62353 × 1015

7 49367.4 6:28324 × 106 127.275 1:03165 × 106 8:62353 × 1015

8 134178 1:70796 × 107 127.290 1:03165 × 106 8:62353 × 1015

9 364718 4:64272 × 107 127.296 1:03165 × 106 8:62353 × 1015

10 991389 1:26202 × 108 127.298 1:03165 × 106 8:62353 × 1015

Table 1: Results of the mean, standard deviation, coefficient of variation, skewness, and kurtosis for the MLLND at the choice
(p1 = 0:5 ; θ = 0:1 ; σ = 3).

μ Mean Stand:Dev: Cv Sk Ku

1 124.013 15574.6 125.589 1:03165 × 106 8:62356 × 1015

2 334.237 42336.1 126.665 1:03165 × 106 8:62354 × 1015

3 905.688 115081 127.065 1:03165 × 106 8:62353 × 1015

4 2459.05 312824 127.213 1:03165 × 106 8:62353 × 1015

5 6681.53 850343 127.268 1:03165 × 106 8:62353 × 1015

6 18159.4 2:31147 × 106 127.288 1:03165 × 106 8:62353 × 1015

7 49359.6 6:28324 × 106 127.295 1:03165 × 106 8:62353 × 1015

8 134170 1:70796 × 107 127.298 1:03165 × 106 8:62353 × 1015

9 364710 4:64272 × 107 127.299 1:03165 × 106 8:62353 × 1015

10 991381 1:26202 × 108 127.299 1:03165 × 106 8:62353 × 1015
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f r:m xð Þ = m!

r − 1ð Þ! m − rð Þ! F xð Þ½ �r−1 1 − F xð Þ½ �m−r f xð Þ, −∞ < x <∞,

ð25Þ

and the corresponding cdf is given by

F r:mð Þ xð Þ = 〠
m

j=r

m

j

 !
Fj xð Þ 1� F xð Þ½ �m�j

= 〠
m

j=r
〠
m�j

k=0

m

j

 !
m − j

k

 !
�1ð ÞkF j+k xð Þ:

ð26Þ

Therefore, using (25) and (26), the pdf and cdf of the rth
order statistics, are, respectively, given by

f r:m x, θ, σð Þ =
m! p1θ

2 x + 1ð Þe−θx/θ + 1
	 


+ p2e
−1/2 log x−μ/σð Þ2 /

ffiffiffiffiffiffi
2π

p
σx

� �� �
W

Γ jð ÞΓ m − j + 1ð Þ ,

ð27Þ

where

Accordingly, the density functions of the minimum and
maximum order statistics, respectively, are given by

f1:m xð Þ =m
p1θ

2 x + 1ð Þe−θx
θ + 1 + p2e

−1/2 log x−μ/σð Þ2ffiffiffiffiffiffi
2π

p
σx

 !
,

× −
p2
2 erfc μ − log xð Þffiffiffi

2
p

σ

� ��

+ p1 − 1 − e−θx θ + θx + 1ð Þ
θ + 1

� �� �
+ 1
!m+1

,

ð30Þ

f m:m xð Þ =m
p1θ

2 x + 1ð Þe−θx
θ + 1 + p2e

−1/2 log x−μ/σð Þ2ffiffiffiffiffiffi
2π

p
σx

 !
,

× p2
2 erf c μ − log xð Þffiffiffi

2
p

σ

� ��

+ p1 1 − e−θx θ + θx + 1ð Þ
θ + 1

� �!m−1

:

ð31Þ

4. Maximum Likelihood Estimation

The likelihood function (LF) for the MLLND in (1) is
given by

L Θð Þ =
Yn
j=1

p1 f1 xj ;Θ1
	 


+ p2 f2 xj ;Θ2
	 
� �

, ð32Þ

where Θ1=ðθÞ and Θ2=ðμ, σÞ. By differentiating the log LF
with respect to the model parameters Θ = ðp1, θ, μ, σÞ,
respectively, we get the following equations

〠
n

j=1
ω xj ;Θ
	 


= 0, 〠
n

j=1
p1ψ1 xj ;Θ

	 

η1 xj ;Θ
	 


= 0, 〠
n

j=1
p2ϕ1 xj ;Θ

	 

η2 xj ;Θ
	 


= 0, 〠
n

j=1
p2ϕ2 xj ;Θ

	 

η2 xj ;Θ
	 


= 0,

ð33Þ

where ωðxj ;ΘÞ, ψ1ðxj ;ΘÞ, η1ðxj ;ΘÞ, η2ðxj ;ΘÞ, ϕ1ðxj ;ΘÞ,
and ϕ2ðxj ;ΘÞ are as follows:

ω xj ;Θ
	 


=
f1 xj ;Θ1
	 


− f2 xj ;Θ2
	 


f xj ;Θ
	 
 ,

ψ1 xj ;Θ
	 


= 2 θ−1 − xj − 1,

η1 xj ;Θ
	 


=
f1 xj ;Θ1
	 

f xj ;Θ
	 
 ,

η2 xj ;Θ
	 


=
f2 xj ;Θ2
	 

f xj ;Θ
	 
 ,

ϕ1 xj ;Θ
	 


=
log xj − μ
	 


σ2
, ϕ2 xj ;Θ
	 


= log xj − μ
	 
2σ−3 − σ−1,

ð34Þ

W = p2
2 erf c μ − log xð Þffiffiffi

2
p

σ

� �
+ p1 1 − e−θx θ + θx + 1ð Þ

θ + 1

� �� �j−1
× −

p2
2 erf c μ − log xð Þffiffiffi

2
p

σ

� �
+ p1

e−θx θ + θx + 1ð Þ
θ + 1 − 1

� �
+ 1

� �m−j

,

ð28Þ

Fr:m x, θ, σð Þ =
m!δj−m p2/2ð Þ erf c μ − log xð Þ/ ffiffiffi

2
p

σ
� �

+ p1 1 − e−θx θ + θx + 1ð Þ/θ + 1
	 
� �j+1

j + 1ð ÞΓ jð ÞΓ m − j + 1ð Þ : ð29Þ
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Table 3: MLEs for the MLLND parameters with their averages, biases, MSEs, and CIs.

Θ = p1, θ, μ, σð Þ n p∧1 θ∧ μ∧ σ∧

(0.50, 0.95, 0.25, 0.25)

Aveg:

30

0.42098178 1.3880892 0.26007314 0.26373918

Bias -0.0790180 0.4380890 0.01007314 0.01373918

MSE 0.04314494 2.4538343 0.01261492 0.01984133

90%CIs (0.06875, 0.71539) (0.63975, 4.21360) (0.09383, 0.43337) (0.09522, 0.49725)

95%CIs (0.02500, 0.76579) (0.57416, 7.27137) (0.05603, 0.47826) (0.06583, 0.57054)

Aveg:

50

0.45201752 1.1532198 0.256110576 0.256695006

Bias -0.04798248 0.2032198 0.006110576 0.006695006

MSE 0.02578189 1.0242892 0.006485839 0.009521935

90%CIs (0.16097, 0.68077) (0.71706, 1.71599) (0.12595, 0.38932) (0.12420, 0.43820)

95%CIs (0.09463, 0.72194) (0.66882, 3.49642) (0.09611, 0.41885) (0.10079, 0.49013)

Aveg:

75

0.47460679 1.02075786 0.253259473 0.252181908

Bias -0.02539321 0.07075786 0.003259473 0.002181908

MSE 0.01564727 0.28849904 0.00414685 0.0054144

90%CIs (0.26408, 0.66297) (0.76299, 1.25958) (0.14861, 0.35969) (0.14830, 0.38325)

95%CIs (0.19820, 0.69821) (0.72714,1.46520) (0.12957,0.38270) (0.12761,0.42832)

Aveg:

100

0.47989155 0.98821225 0.252882986 0.251725793

Bias -0.02010845 0.03821225 0.002882986 0.001725793

MSE 0.01101642 0.13257566 0.002925308 0.003657510

90%CIs (0.30911, 0.64102) (0.79201, 1.18252) (0.16472, 0.34125) (0.16431, 0.35621)

95%CIs (0.26617, 0.67108) (0.76341, 1.26408) (0.14856, 0.36121) (0.14669, 0.38801)

(0.50, 2.95, 0.85, 0.25)

Aveg:

30

0.51085594 3.1659382 0.854910354 0.244567051

Bias 0.01085594 0.2159382 0.004910354 -0.00543290

MSE 0.01287378 1.3430948 0.051054250 0.032862658

90%CIs (0.33493, 0.69426) (1.65368, 5.12052) (0.71319, 0.98390) (0.13525, 0.33944)

95%CIs (0.30361, 0.73304) (1.44724, 5.71634) (0.67448, 1.01376) (0.11017, 0.33944)

Aveg:

50

0.507576054 3.0707105 0.852470382 0.240278966

Bias 0.007576054 0.1207105 0.002470382 -0.00972100

MSE 0.007065907 0.6709617 0.010009987 0.004340029

90%CIs (0.37350, 0.64665) (1.89865, 4.48536) (0.74975, 0.95241) (0.16456, 0.31975)

95%CIs (0.35033, 0.67656) (1.71581, 4.85850) (0.72685, 0.97424) (0.14466, 0.33891)

Aveg:

75

0.505553756 3.02406667 0.8505206847 0.24284061

Bias 0.005553756 0.07406667 0.0005206847 -0.00715939

MSE 0.004523098 0.40053500 0.002560209 0.002114857

90%CIs (0.39807, 0.61738) (1.94383, 4.39174) (0.77062, 0.93072) (0.18319, 0.30590)

95%CIs (0.37909, 0.63999) (2.08437, 4.12198) (0.75182, 0.94835) (0.17228, 0.32117)

Aveg:

100

0.502508608 2.99851936 0.8507297408 0.24475867

Bias 0.002508608 0.04851936 0.0007297408 -0.0052413

MSE 0.003210267 0.27651139 0.001779217 0.00108009

90%CIs (0.41022, 0.59639) (2.20464, 3.91893) (0.78248, 0.91894) (0.19393, 0.29928)

95%CIs (0.39236, 0.61599) (2.08727, 4.15153) (0.76705, 0.93227) (0.18413, 0.31123)
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and f ðxj ;ΘÞ, f1ðxj ;Θ1Þ, and f2ðxj ;Θ2Þ are as in ð1, 2, 3Þ,
respectively. The MLEs of the parameters can be obtained by
solving systems of nonlinear Eqs. given in (33) using the pack-
age nleqslv() in R.

The numerical results are obtained in Table 3 for two
different combinations of the parameters. The first one cor-
responds to a unimodal distribution ,whereas the second
choice is for bimodal distribution.

In each case, the averages of the MLEs, biases, mean
squared errors (MSE), and the lower and upper limits of
the 95% nd 90% confidence intervals (CIs) for the parame-
ters are computed at different sample sizes.

It is clear from Table 3 that the MSE decreases as the
sample size increases for all estimates parameters. Further-
more, the values of the bias decrease. Also, as the sample size
increases, the width of the confidence intervals (CIs) for the
parameters decreases. The number of replications of the
simulation results is taken to 10000.

5. Application

The flexibility of the proposed model is illustrated by apply-
ing it on a real data set given in Shanker et al. [25]. It repre-
sents the remission times (in months) of sample size n = 128
bladder cancer patients as reported in Lee and Wang [26].

This data was previously analyzed by Daghestani et al.
[18], who compared their proposed model, mixture of Lind-
ley and Weibull distribution MLWD to two other models;
mixture of two one- parameter Lindley distribution MTLD
and mixture of two Weibull distribution MTWD. They
showed that their model provides the best fit as it has the
lowest values of the KS statistic and AIC criterion and the
highest p value.

In this paper, we compared our proposed model with six
other models including the three models given in Daghestani
et al. [18] and there other models, namely, the mixture of
Lindley inverse Weibull distributions (MLIWD), mixture
of inverse Weibull and Weibull distributions (MIWWD),
one component Lindley distribution, and one component
lognormal distribution. All the seven models are fitted to
the real data. The results are listed in Table 4. Table 4 shows
the MLEs of the parameters of the seven models with their
standard errors and values of the KS statistic which is used
to assess the similarity between the actual data and the fitted
distributions. In the R software, the packages (MASS) and
(fitdistrplus) are used to calculate the values of KS statistics
and their corresponding R values for the seven distributions.
The loglikelihood function and some criteria that measure
the quality of the fitted models such as AIC and BIC criteria
are computed. Table 5 gives the results of the variance

Table 4: Results for fitting the MLLND comparing with their components and others models.

Models MLEs Std:Errorð Þ Loglikelihood AIC BIC KS p value

MLLND

p∧1 = 0:16733 (0.0525) -399.423 806.8461 818.2542 0.0344 0.9981

θ∧ = 1:8819 (0.7011)

μ∧ = 1:9453 (0.1119)

σ∧ = 0:8455 (0.0852)

MTLD

p∧1 = 0:2022 (0.1150) -402.4761 810.9522 819.5083 0.0704 0.5495

θ∧1 = 0:0912 (0.0264)

θ∧2 = 0:3239 (0.0483)

MLIWD

p∧1 = 0:2374 (0.0701) -399.8651 807.7303 819.1384 0.0428 0.9730

θ∧ = 1:2975 (0.4920)

α∧ = 0:1804 (0.0221)

β∧ = 1:5473 (0.1528)

MTWD

p∧1 = 0:9554 (0.0438) -401.2711 812.5422 826.8023 0.0584 0.7746

α∧1 = 8:8542 (1.0315)

α∧2 = 0:4747 (0.2526)

β∧1 = 0:9751 (0.0811)

β∧2 = 2:5650 (1.9307)

MIWWD

p∧1 = 0:7344 (0.0680) -398.7583 807.5166 821.7768 0.0439 0.9655

α∧1 = 0:1879 (0.0166)

α∧2 = 1:7452 (0.5879)

β∧1 = 1:5208 (0.1446)

β∧2 = 0:8896 (0.1764)

LND
μ = 1:5111∧ (0.1133) -406.8025 817.6050 823.3091 0.0998 0.1556

σ = 1:2818∧ (0.0801)

LD θ = 0:2129∧ (0.0134) -417.9239 837.8477 840.6997 0.1335 0.0207
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covariance matrices for the competitive models calculated by
the function vcov() in R which depends on the package fit-
dist(). Lower and upper limits of the 95% nd 90% confidence
intervals (CIs) for the parameters of the different distribu-
tions are also provided. Figure 2 displays the plots of the pdfs
of the seven fitted models superimposed on the histogram of
the real data set by using the function denscomp() in R. The
figure shows that the MLLND provides a very good fit for
these data compared to other mixtures and one component

models. Figure 3 shows the comparisons of the plots of the
theoretical cdfs of the fitted distributions to the empirical
cdf of the data using the function cdfcomp() in R. Again,
it is clear that the cdf of the MLLND is closer to the empirical
distribution than any other model. Figures 4 and 5 show the
pp plots and qq plots for the real data to those of the com-
pared models using the functions ppcomp() and qqcomp(),
respectively, in R. The plots show the adequency of the pro-
posed model to fit the real data compared to other models.
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In short, all the above figures indicate that the MLLND is
the perfect fit for the real data set compared to all the
competitive models.

6. Concluding Remarks

This paper introduces a new mixture model which is the
MLLND to handle heterogeneous data. This model was
proposed due to the importance of each of the Lindley
and lognormal distributions and their great applications,
and so it was expected that mixing these two distributions
together would lead to a more flexible model than its com-

ponents distributions. Some properties of the MLLND were
obtained such as the expectation, the mean, variance, the
mode (s), median, reliability function, HRF, skewness, kur-
tosis, and coefficient of variation. The pdf for the minimum
and maximum order statistics of the MLLND is presented.
Maximum likelihood estimation of the parameters of the
model was discussed and estimated via simulation with
number of replications 10000 runs. The main objective of
this paper was to illustrate the applicability of the proposed
distribution compared to six competitive distributions. This
was achieved by showing the ability of the model to fit a
well-known real data set better than the compared models.
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This was done by using the formal test like K-S statistic as
well as information criteria and also through graphical pro-
cedures such as plots of theoretical and empirical cdfs, pp
plots, and qq plots.

Abbreviations

MLLND: Mixture of Lindley and lognormal distributions
MTLD: Mixture of two Lindley distributions
MLIWD: Mixture of Lindley inverse Weibull distributions;

mixture of two Weibull distributions (MTWD)
MIWWD: Mixture of inverse Weibull Weibull distributions
LD: One component of Lindley distribution
LND: One component from lognormal distribution
MLEs: Maximum likelihood estimates
LF: Likelihood function
pdf: Probability density function
cdf: Cumulative distribution function
HRF: Hazard rate function
Sk: Coefficient of skewness
Ku: Coefficient of kurtosis
Cv: Coefficient of variation
CIs: Confidence intervals
AIC: Akaike information criterion
KS: Kolmogorov-Smirnov
ECDF: Empirical cumulative distribution function
pp: Probability plot
qq plot: Quantile quantile plot
Std.: Error: standard error
BIC: Bayesian information criterion.
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In this paper, a new flexible generator of continuous lifespan models referred to as the Topp-Leone Weibull G (TLWG) family is
developed and studied. Several mathematical characteristics have been investigated. The new hazard rate of the new model can be
“monotonically increasing,” “monotonically decreasing,” “bathtub,” and “J shape.” The Farlie Gumbel Morgenstern (FGM) and
the modified FGM (MFGM) families and Clayton Copula (CCO) are used to describe and display simple type Copula. We
discuss the estimation of the model parameters by the maximum likelihood (MLL) estimations. Simulations are carried out to
show the consistency and efficiency of parameter estimates, and finally, real data sets are used to demonstrate the flexibility
and potential usefulness of the proposed family of algorithms by using the TLW exponential model as example of the new
suggested family.

1. Introduction and Motivation

There has already been a great emphasis on building more
flexible distributions in the recent past. To simulate real-
life data in various practical disciplines, including finance,
engineering, medical sciences, biological research, environ-
mental studies, and insurance, over the last few decades, a
variety of G families of distributions has been constructed
and researched. We have generated numerous kinds of dis-
tributions by generalizing G families. With these new fami-
lies, at least one shape parameter is merged with the
baseline one, allowing for greater versatility, for instance,
the generalized transmuted exponentiated G [1], Weibull
(W) G (WG) [2], the Burr type X-G by [3], Type II half
logistic G [4], exponentiated transmuted G by [5], a new
compound G family [6], the beta W G by [7], the generalized
odd W G [8], the transmuted W G by [9], a new W G [10],
TL G [11], a special generalized mixture class of probabilistic
models [12], sine Topp-Leone G [13], Type 2 power Topp-
Leone G [14], a new version of Power Topp-Leone G [15],
and Type 2 generalized Topp-Leone G [16], among others.

According to [11], the cumulative distribution function
(CDF) of the TL G (TLG) class could well be found with

Fα zð Þ = 1 − �G2
Φ zð Þ

h iα
=Gα

Φ zð Þ 2 −GΦ zð Þ
h iα

, ð1Þ

where GΦðzÞ refers to the CDF of the baseline model, and
the corresponding density function (PDF) of (1) can be
derived as

f α zð Þ = 2αgΦ zð Þ 1 − �G2
Φ zð Þ

h iα−1
�GΦ zð Þ, ð2Þ

where GΦðzÞ = dGΦðzÞ/dz refers to the PDF of the base-
line model. According to [2], the WG family’s CDF may be
computed via

GΦ zð Þ =Gβ zð Þ = 1 − exp −OΦ zð Þβ
h i

, ð3Þ

where OΦðzÞ =GΦðzÞ/�GΦðzÞ and �GΦðzÞ = 1 −GΦðzÞ: Then,
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using (3) and (1), the CDF of the TL W G (TLWG) class
may indeed be expressed via

Fα,β,Φ zð Þ = 1 − exp −2OΦ zð Þβ
h in oα

: ð4Þ

The corresponding PDF is

f α,β,Φ zð Þ = 2αβgΦ zð Þ exp −2OΦ zð Þβ
h iGΦ zð Þβ−1

�GΦ zð Þβ+1
1 − exp −2OΦ zð Þβ

h in oα−1
:

ð5Þ

The hazard rate function (HRF) can be easily derived
using hα,β,ΦðzÞ = f α,β,ΦðzÞ/½1 − Fα,β,ΦðzÞ�: The function
hα,β,ΦðzÞ is called the failure rate of Fα,β,ΦðzÞ and often
referred to as the rate function or the intensity function or
failure rate or instantaneous failure rate; in actuarial mathe-
matics, it is named the “force of mortality,” and in demo-
graphic disciplines, it is called the “mortality rate.” It
represents the failure intensity of an x-year-old equipment.
It denotes the likelihood of an operational item failing in
the next time period or the likelihood of a failure in a tiny
unit interval of time ðz, z+Δz� given that no failure has
occurred in ½0, z� and satisfies hα,β,ΦðzÞ > 0 and

Ð∞
0 hα,β,Φðz

Þdx = 0. The HRF is critical because it intuitively translates
as the level of risk associated with an object that has lived
to time x. In life (death) tables, hα,β,ΦðzÞ is approximated
by the probability that a certain individual of age x will die
during the next year. Some notions of aging refer to the
HR such as h/α,β,ΦðzÞ > 0 means positive aging, h/α,β,ΦðzÞ =
0 means no aging, and h/α,β,ΦðzÞ < 0 means negative aging.
The idea of aging in statistical lifetime and reliability analysis
does not imply that the unit grows older in the sense of time.
Rather, it is a concept associated with residual life.

2. Important Expansions

Take a look at the binomial series expansion provided as

1 −
a1
a2

� �a3−1
= 〠

∞

l=0
−1ð Þl

a3 − 1

l

 !
a1
a2

� �l
�����
b>0 and a1/a2j j<1ð Þ

:

ð6Þ

Then, the PDF in (5) can be expressed as

f α,β,Φ zð Þ = 2αβgΦ zð ÞGΦ zð Þβ−1
�GΦ zð Þ1+β

〠
∞

l=0
−1ð Þl

α − 1

l

 !
exp −2 1 + lð ÞOΦ zð Þβ

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A z,β,Φð Þ

:

ð7Þ

Applying the power series expansion to AðzÞ, we have

A z, β,Φð Þ = 〠
∞

l=0

1
l!
−2 1 + lð Þ½ �lOΦ zð Þβl, ð8Þ

where OΦðzÞβd =GΦðzÞβd/�GΦðzÞβd: Then,

f α,β,Φ zð Þ = 2αβ 〠
∞

l,d=0

1
d!

−1ð Þl+d 2 1 + lð Þ½ �d
α − 1

l

 !
gΦ zð ÞGΦ zð Þ 1+dð Þβ−1

�GΦ zð Þ 1+dð Þβ+1 ,

ð9Þ

but �GΦðzÞ−ð1+dÞβ−1 =∑∞
k=0

βðd + 1Þ + 1

k

 !
GΦðzÞk. Then, the

f α,β,ΦðzÞ can be written as

f α,β,Φ zð Þ = 〠
∞

l,d,k=0
v l,d,kð Þ hβ∗ zð Þ

�����
β∗=β 1+dð Þ+kð Þ

, ð10Þ

Table 1: Special cases.

Baseline New model Corresponding CDF

E TLWE 1 − exp −2 exp θzð Þ − 1ð Þβ
h in oα

W TLWW 1 − exp −2 exp θzð Þb
h i

− 1
n oβ

� �� �α

Lx TLWLx 1 − exp −2 1 +
z
b

� 	h iθ
− 1

� �β( ) !α

BX TLWBX 1 − exp −2 1 − exp −
z
θ

� 	2� �
 �−b
− 1

 !−β
2
4

3
5

8<
:

9=
;

α

LL TLWLL 1 − exp −2
z
θ

� 	bβ� �
 �α

L TLWL 1 − exp −2 1 + θ + θz
1 + θ

� �−1
− 1

" #β8<
:

9=
;

0
@

1
Aα
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Figure 1: Plots illustrating the PDF of the TLWE model.
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where

v l,d,kð Þ = 2αβ 〠
∞

l,d,k=0
−1ð Þl+d

α − 1

l

 !
β d + 1ð Þ + 1

k

 !
2 l + 1ð Þ½ �d
d!β∗ , ð11Þ

and hβ∗ðzÞ = β∗gΦðzÞGΦðzÞβ
∗−1 depicts the PDF of the

exponentiated G (ExG) distribution with parameter β∗.

3. Copula

3.1. Via FGM Family. Starting with the joint CDF for the
FGM family of random variables (RVrs) ðZ1, Z2Þ where
Fλðu,wÞjð∣λ∣≤1Þ = uwð1 + λ�u�wÞ, let

u = Fα1,β1,Φ z1ð Þ = 1 − exp −2OΦ z1ð Þβ1
h in oα1 ,

w = Fα2,β2,Φ z2ð Þ = 1 − exp −2OΦ z2ð Þβ2
h in oα2 ,

ð12Þ

where OΦðz1Þ = GΦðz1Þ/�GΦðz1Þ andOΦðz2Þ =GΦðz2Þ/�GΦð
z2Þ; then, we have a (5 +Φ) dimension parameter family

Fλ z1, z2ð Þ = 1 − exp −2OΦ z1ð Þβ1
h in oα1 1 − exp −2OΦ z2ð Þβ2

h in oα2

× 1 +
λ 1 − 1 − exp −2OΦ z1ð Þβ1

h in oα1
� 	

× 1 − 1 − exp −2OΦ z2ð Þβ2
h in oα2

� 	
2
664

3
775

8>><
>>:

9>>=
>>;:

ð13Þ
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Figure 2: HRF graphs for the TLWE model.
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3.2. Via MFGM Copula. As an example, take the MFGM
Copula (see [17–22])

Cτ u, vð Þjτ∈ −1,1½ � = uv 1 + τΦ uð ÞΨ vð Þ½ � = uv + τ _Φ uð Þ _Ψ vð Þ,
ð14Þ

where _ΦðuÞ = uΦðuÞ and _ΨðvÞ = vΨðvÞ. Where ΦðuÞ and

ΨðvÞ are two absolutely continuous CDFs on ð0, 1Þ where
Φð0Þ =Ψð0Þ =Φð1Þ =Ψð1Þ = 0, let

ε = ln f
∂ _Φ uð Þ
∂ujC1

( )
< 0, β = sup

∂ _Φ uð Þ
∂ujC1

( )
< 0,

ξ = ln f
∂ _Ψ vð Þ
∂vjC2

( )
> 0, η = sup

∂ _Ψ vð Þ
∂vjC2

( )
> 0:

ð15Þ

Then, mlnðεβ, ξηÞ ≥ 1, where ∂ _ΦðuÞ/∂u =ΦðuÞ + ðu∂Φ
ðuÞ/∂uÞ,

C1 = u ∣ u ∈ 0, 1ð Þ, ∂
_Φ uð Þ
∂u

exists
( )

,

C2 = v ∣ v ∈ 0, 1ð Þ, ∂
_Ψ vð Þ
∂v

exists
( )

:

ð16Þ

Type I MFGM:
Consider ΦðuÞ and ΨðvÞ as defined above, then

Cτ u, vð Þ = τ _Φ uð Þ _Ψ vð Þ
h i

+ 1 − exp −2OΦ uð Þβ1
h in oα1

�
× 1 − exp −2OΦ vð Þβ2

h in oα2
	
,

ð17Þ

where

_Φ uð Þ = u 1 − 1 − exp −2OΦ uð Þβ1
h in oα1

� 	
,

_Ψ vð Þ = v 1 − 1 − exp −2OΦ vð Þβ2
h in oα2

� 	
:

ð18Þ

Type II MFGM:
Let

Φ uð Þj τ1>0ð Þ = uτ1 1 − uð Þ1−τ1 ,
Ψ vð Þj τ2>0ð Þ = vτ2 1 − vð Þ1−τ2 :

ð19Þ

Then, the corresponding bivariate Copula can be derived
directly from

Cτ,τ1,τ2 u, vð Þ = uv 1 + τuτ1vτ2 1 − uð Þ1−τ1 1 − vð Þ1−τ2� 

: ð20Þ

Type III MFGM:
The CDF of the bivariate Type III MFGM model can be

derived from

Cτ u,wð Þ = uF−1 wð Þ +wF−1 uð Þ − F−1 uð ÞF−1 wð Þ, ð21Þ
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where

F−1 uð Þ =G−1 −1/2 log 1 − u1/α1
� �� 
1/β1

1 + −1/2 log 1 − u1/α1ð Þ½ �1/β1

( )
,

F−1 wð Þ =G−1 −1/2 log 1 − u1/α2
� �� 
1/β2

1 + −1/2 log 1 − u1/α2ð Þ½ �1/β2

( )
:

ð22Þ

3.3. Via CCO. The CCO is a weighted variant of the CCO,
which has the following form:

C u,wð Þ = u−τ + v−τ − 1½ �−τ−1 : ð23Þ

Then, setting

u = uα1,β1,Φ z1ð Þ = 1 − exp −2OΦ zð Þβ1
h in oα1 ,

w =wα2,β2,Φ z2ð Þ = 1 − exp −2OΦ yð Þβ2
h in oα2 ,

ð24Þ

Table 2: MLLEs, SErs, and C.I. (in parentheses) values for the relief
time data.

Models Estimates, SEs, and C.I.s

E θð Þ
0.5261

(0.1172)

(0.3, 0.8)

ME θð Þ
0.950

(0.150)

(0.7, 1.2)

LBHE θð Þ
0.5263

(0.118)

(0.4, 0.6)

OLE θð Þ
0.6044

(0.0535)

(0.5, 0.7)

BrXE a, θð Þ
1.1635, 0.321

(0.33), (0.03)

(0.5, 1.8), (0.26,0.4)

MOE α, θð Þ
54.47, 2.32

(35.58), (0.37)

(0, 124.2), (1.58, 3.0)

TLWE α, β, θð Þ
8.03, 1.58, 3.15

(4.22), (1.01), (0.025)

(0, 16.5), (0, 3.6), (3.1, 3.2)

BE α, β, θð Þ
81.633, 0.542, 3.514

(120.41), (0.327), (1.410)

(0, 317.63), (0, 1.18), (0.75, 6.3)

KwE α, β, θð Þ
83.756, 0.568, 3.330

(42.361), (0.326), (1.188)

(0.7, 167), (0, 1.2), (1.00, 5.7)

GMOE λ, α, θð Þ
0.519, 89.462, 3.169

(0.256), (66.278), (0.77)

(0.02, 1.02), (0, 219.4), (1.66, 4.7)

KwMOE α, β, λ, θð Þ
8.868, 34.826, 0.299, 4.899

(9.15), (22.31), (0.24), (3.18)

(10.9, 46.8), (0, 78.6), (0, 0.76), (0, 11)

MOKwE α, β, λ, θð Þ
0.133, 33.232, 0.571, 1.669

(0.332), (57.84), (0.72), (1.81)

(0, 0.8), (0, 146.6), (0, 2), (0, 5.2)

Table 3: MLLEs, SErs, and C.I. (in parentheses) values for the
survival time data.

Models Estimates, SEs, and C.I.s

E bð Þ
0.540

(0.063)

(0.4, 0.7)

OLE θð Þ
0.38145

(0.021)

(0.3, 0.4)

ME θð Þ
0.9250

(0.080)

(0.62, 1.08)

LBHE θð Þ
0.542

(0.06)

(0.41, 0.68)

BrXE a, θð Þ
0.480, 0.2060

(0.061), (0.012)

(0.4, 0.5), (0.18, 0.23)

MOE α, θð Þ
8.780, 1.380

(3.555), (0.193)

(1.81,15.74), (1.0,1.80)

TLWE α, β, θð Þ
3.225, 1.55, 0.018

(0.85), (0.25), (0.059)

(1.5, 4.9), (1, 2), (0, 0.136)

GMOE λ, α, θð Þ
0.179, 47.635, 4.470

(0.07), (44.901), (1.327)

(0.04, 0.3), (0, 14), (2, 7)

KwE a, β, θð Þ
3.3039, 1.101, 1.038

(1.120), (0.763), (0.615)

(1.12, 5.53), (0, 2.62), (0, 2.24)

MOKE α, β, λ, θð Þ
0.008, 2.716, 1.986, 0.099

(0.002), 1.316), (0.784), (0.048)

(0.004,0.010), (0.14, 5), (0.4, 4), (0, 0.2)
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where

OΦ yð Þ = GΦ yð Þ
�GΦ yð Þ : ð25Þ

Then,

H z, yð Þ = 1 − exp −2OΦ zð Þβ1
h in o−τα1 + 1 − exp −2OΦ yð Þβ2

h in o−τα2
− 1

� 	−τ−1
:

ð26Þ

A simple d-dimensional expansion of the above will be
as follows:

H z1, z2,⋯,zdð Þ = 〠
d

l=1
1 − exp −2OΦ zlð Þβl

h in o−ταl + 1 − d

 !−τ−1

:

ð27Þ

Recently, many new articles are allocated to study some
of these types, see [23, 24].

4. Structural Properties of the TLWG Family

4.1. Quantile Function. The TLWG quantile function (QuF),
say z =QðuÞ, might be obtained by filliping (4); we have

z =Q uð Þ =G−1 −1/2 log 1 − u1/α
� �� 
1/β

1 + −1/2 log 1 − u1/αð Þ½ �1/β
( )

: ð28Þ

We can easily generate z by taking u as a uniform RVr in
ð0, 1Þ.
4.2. Moments. The rth moment (MO) of TLWG could be
acquired in the prescribed sequence:

μ/r =
ð∞
0
zr f zð Þdz = 〠

∞

l,d,k=0
v l,d,kð Þ I 0,∞ð Þ β

∗ð Þ, ð29Þ

where Ið0,∞Þðβ∗Þ = Ð∞0 zrhβ∗ðzÞdz is the rth moment of the
ExG model using parameter β∗:

4.3. Conditional Moments. The sth lower and upper incom-
plete MOs (ICMOs) of Z characterized features υsðtÞ = Eð
Zs jðZ<tÞÞ =

Ð t
0z

s f ðzÞdz and ζsðtÞ = EðZs jðZ>tÞÞ =
Ð∞
t zs f ðzÞdz,

respectively, for just about every real s > 0: The sth lower
ICMO of TLWG is

υs tð Þ =
ðt
0
zs f zð Þdz = 〠

∞

l,d,k=0
v l,d,kð Þ I 0,tð Þ β

∗, s, tð Þ, ð30Þ

where Ið0,tÞðβ∗, s, tÞ = Ð t0zshβ∗ðzÞdz is the sth lower ICMO of

ExG model with exponential parameter β∗. Similarly, the sth

upper ICMO of TLWG is

ζs tð Þ =
ð∞
t
zs f zð Þdz = 〠

∞

l,d,k=0
v l,d,kð Þ I t,∞ð Þ β

∗, s, tð Þ, ð31Þ

where Iðt,∞Þðβ∗, s, tÞ = Ð∞t zshβ∗ðzÞdz is the sth upper ICM of
ExG model with exponential parameter β∗:

4.4. Bonferroni and Lorenz Curves. A positive RVr Z is
described by the following Lorenz curve

L pð Þ = 1
μ

ð∞
q
z f zð Þdz = 1

μ
〠
∞

l,d,k=0
v l,d,kð ÞI q,∞ð Þ β

∗, 1, qð Þ, ð32Þ

where q =G−1ðpÞ: Also, the Bonferroni curve is defined by

B pð Þ = 1
pμ

ð∞
q
z f zð Þdz = 〠

∞

l,d,k=0
v l,d,kð ÞI q,∞ð Þ β

∗, 1, qð Þ: ð33Þ

There are numerous uses for the Bonferroni curve in
economics to analyze income and poverty, as well as
dependability, medical, and insurance areas.

Table 4: Statistic for the relief time data.

Models (D2), D1 C1 C2 C3, C4, C5, C6

E (0.004), 0.4 4.60 0.96 68.0, 68.7, 67.9, 68.0

KwE (0.86), 0.14 0.45 0.07 42.0, 44.8, 43.3, 42.3

BrXE (0.17), 0.25 1.33 0.24 48.1, 50.1, 49.0, 48.5

MOE (0.55), 0.18 0.80 0.14 43.5, 45.5, 44.2, 43.9

GMOE (0.78), 0.15 0.51 0.08 42.8, 45.7, 44.3, 43.3

KMOE (0.86), 0.15 1.08 0.19 43.0, 46.8, 45.6, 43.6

MOKE (0.87), 0.14 0.60 0.11 41.6, 45.5, 44.3, 42.3

OLE (<0.1%), 0.9 1.30 0.22 49.1, 50.1, 49.3, 49.3

BE (0.80), 0.16 0.70 0.12 43.5, 46.5, 44.9, 44.0

ME (0.07), 0.32 2.76 0.53 54.3, 55.3, 54.5, 54.5

LBHE (<0.1%), 0.4 0.62 0.11 67.7, 68.7, 67.9, 67.8

TLWE (0.952), 0.10 0.36 0.040 41.35, 41.14, 41.39, 40.15

Table 5: Statistic for the survival time data.

Models (D2), D1 C1 C2 C3, C4, C5, C6

E (0.060), 0.27 6.53 1.25 234.6, 236.9, 234.7, 235.5

MOKE (0.440), 0.10 0.79 0.12 209.4, 218.6, 210.0, 213.0

OLE (<0.1%), 0.49 1.94 0.33 229.1, 231.4, 229.2, 230.0

ME (0.130), 0.14 1.52 0.25 210.4, 212.7, 210.5, 211.3

LBHE (<0.1%), 0.28 0.79 0.19 235.0, 237.0, 235.0, 236.0

GMOE (0.811), 0.09 1.02 0.16 210.5, 217.4, 211.0, 213.2

KwE (0.500), 0.09 0.74 0.11 209.4, 216.2, 209.8, 212.1

BrXE (0.002), 0.22 2.90 0.52 235.3, 239.9, 235.5, 237.1

MOE (0.430), 0.10 1.20 0.17 210.4, 215.0, 210.5, 212.2

TLWE (0.770), 0.066 0.75 0.12 208.6, 212.2, 207.6, 210.2
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5. Special Cases

In this part, we will look at various TLWG family-specific
situations. We provide six TLWG family special models
equivalent to the baseline exponential (E), Weibull (W),
Lomax (Lx), Burr-X (BX), log-logistic (LL), and Lindley (L)
distributions. The odd ratio OΦðzÞ of these baseline models
along with the new models are listed in Table 1.

The above-mentioned PDF parameters are all positive
actual numbers. Figure 1 shows graphs of the PDF of the
TLWE model. Figure 2 depicts the TLWE model’s HRF
graphs. According to Figure 1, the new PDF can have a vari-
ety of useful forms. According to Figure 2, the new HRF can
be increasing (α = β = θ = 1), bathtub (α = 1, β = 0:15, θ = 0:5
), J shape (α = 1, β = 0:15, θ = 5), and decreasing
(α = 1, β = 0:2, θ = 2).

6. Maximum Likelihood (MLL) Estimation

Suppose z1,⋯, zn be an nth random sample from the TLWG
class provided via (5). Take P = ðα, β, δÞT become the vector
of parameters. The total log-likelihood (LLL) function for P

is

Ln Pð Þ = n log 2βαð Þ + 〠
n

l=1
loggΦ zlð Þ + β − 1ð Þ〠

n

l=1
logGΦ zlð Þ

− β + 1ð Þ〠
n

l=1
log�GΦ zlð Þ − 2〠

n

l=1
OΦ zlð Þ
h iβ

+ α − 1ð Þ〠
n

l=1
log 1 − exp −2 OΦ zlð Þ

h iβ
 �� �
,

ð34Þ

where OΦðzlÞ =GΦðzlÞ/�GΦðzlÞ: The LLL can really be opti-
mized immediately employing SAS software or the R-lan-
guage, or implicitly through solving nonlinear LL
formulas acquired through differentiating (34). The score
function’s related components UnðψÞ =
ð∂LnðPÞ/∂α, ∂LnðPÞ/∂β, ∂LnðPÞ/∂ΦÞT are

∂Ln Pð Þ
∂α

=
n
α
+ 〠

n

l=1
log 1 − exp −2 OΦ zlð Þ

h iβ
 �� �
,
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∂Ln Pð Þ
∂β

=
n
β
〠
n

l=1
logGΦ zlð Þ − 〠

n

l=1
log�GΦ zlð Þ

− 2〠
n

l=1
OΦ zlð Þ
h iβ

log OΦ zlð Þ
h i

+ 2 α − 1ð Þ〠
n

l=1

log OΦ zlð Þ
h i

OΦ zlð Þ
h iβ

exp −2 OΦ zlð Þ
h iβ
 �

1 − exp −2 OΦ zlð Þ
h iβ
 � ,

∂Ln Pð Þ
∂Φk

= 〠
n

l=1

∂GΦ zlð Þ/∂Φk

GΦ zlð Þ + β − 1ð Þ〠
n

l=1

∂GΦ zlð Þ/∂Φk

GΦ zlð Þ

+ β + 1ð Þ〠
n

l=1

∂GΦ zlð Þ/∂Φk

�GΦ zlð Þ − 2〠
n

l=1
OΦ zlð Þ∂GΦ zlð Þ/∂Φk

+ 2 α − 1ð Þ〠
n

l=1

exp −2 OΦ zlð Þ
h iβ
 �

OΦ zlð Þ∂GΦ zlð Þ/∂Φk

1 − exp −2 OΦ zlð Þ
h iβ
 � ,

ð35Þ

where δk is the kth member of the parameter vector δ.
The MLL estimation (MLLE) of P is achieved through
solving the nonlinear equations UnðPÞ = 0.

7. Graphical Simulations

(i) We could perform numerical simulations to visually
analyze the finite sample performance of the MLLEs
utilizing biases (Bs) and mean squared errors
(MSEs). For the assessment, the basic procedure
had been used

(ii) Generate N = 1000 samples of size njðn=50,100,⋯,500Þ
from the TLWE model using (7)

(iii) Compute the MLLEs for N = 1000 samples

(iv) Compute the standard errors (SErs) of the MLLEs
for the 1000 samples

(v) Compute the Bs and MSErs given for P = α, β, θ

The biases (left boxes) and MSEs (right windows) for the
parameters are shown in Figures 3–5. The plots on the left
demonstrate how the three biases grow with large sample n
, while the graphs on the right platform how the three MSEs
change with n. The zero biases are depicted by the broken
line as shown in Figure 1. From Figures 3–5, the biases with
each parameter are typically negative and eventually drop to
0 as n tends to infinity the MSEs with each parameter
decrease to 0 as tends to infinity.
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8. Modelling

Inside this part, we look at two real-world data sets to show
how adaptable the TLWE model is. The first data set (1.1,
1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4,
3, 1.7, 2.3, 1.6, and 2) (see [25]) is known as the “failure
times data,” and it comprises lifetime data on “relief times”
(in minutes) of analgesic-using individuals. In the second
data set, [26] investigated and reported the “survival times”
in days for 72 guinea pigs infected with virulent tubercle
bacilli (0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93,
0.96, 1, 1, 1.02, 1.05, 1.07, 07, 1.08, 1.08, 1.08, 1.09, 1.12,
1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36,
1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72,
1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3,
2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42,
3.47, 3.61, 4.02, 4.32, 4.58, and 5.55). Figure 6 shows the total
time in the test (TTT) plot for determining the form of the
empirical HRFs (first row). To explore the extreme observa-
tions, the box plot is sketched in Figure 6 (second row). To
ensure that the normality state is maintained, the Q-Q plot
is reported in Figure 6 (third row). Kernel density estimation
(KDE) may be used to investigate the initial form of real-
world data, and it is seen within Figure 6 (fourth row).
According to Figure 6 (first row), we note that the HRF is
“asymmetric monotonically increasing” for the two data sets.
Based on Figure 6 (second row), we note that some extreme
observations were spotted. Based on Figure 6 (third row), we
see that the normality does not exist. Based on Figure 6
(fourth row), it is noted that the nonparametric Kernel den-
sities are asymmetric.

We will compare the TLWE distribution’s fits to various
competing models, particularly exponential (E), odd Lindley
E (OLE), Marshall-Olkin (MO) E (MOE), Moment E
(MomE), the logarithmic Burr-Hatke E (LBHE), generalized
MOE (GMOE), beta E (BE), MO Kumaraswamy E
(MOKwE), Kumaraswamy E (KwE), and Kumaraswamy
MOE (KwMOE). See the PDFs of the competitive models
in [27, 28].

We discuss the Anderson-Darling (C1) and the Cramér-
Von Mises (C2) statistics, as well as the Kolmogorov-
Smirnov (D1) statistic as well as its associated P value
(D2). Moreover, we consider some other goodness-of-fit
measures including the Akaike-Information-Criterion (IC)
(C3), Bayesian IC (C4), Consistent-Akaike-IC (C5), and
Hannan-Quinn IC (C6); Table 2 gives the MLLEs, SEs, and
confidence interval (C.I.) values for the relief time data.
Table 3 gives the MLLEs, SErs, and C.I. values for the sur-
vival time data. Table 4 illustrates the C1, C2, C3, C4, C5,
C6, D1, and D2 for the relief time data. Table 5 refers to
the C1, C2, C3, C4, C5, C6, D1, and D2 for the survival time
data. Figure 7 gives the P-P plot, Kaplan-Meier survival
(KMS) plot, fitted PDF (FPDF), and FCDF for the 1st data.
Figure 8 offers the P-P plot, KMS plot, fitted PDF (FPDF),
and FCDF for the 2nd data.

The TLWE model is much better than many common
competitive models such as the exponential (standard ver-
sion), MOE, OLE, LBHE, MomE, GMOE, KwE, MOKwE,
and KwMOE models. As a result, the new lifespan model

offers a practical alternate to all these models. For both data
sets, we can see from Figures 7 and 8 that the TLWE model
fits the two real data sets well.

9. Discussion and Concluding Remarks

We described and explored the TLWG family, a novel gen-
erator of continuous lifespan distributions, in this work. Sta-
tistical attributes of the family are offered, such as density
function expansion, moments, incomplete moments, mean
deviation, and Bonferroni and Lorenz curves. The new
HRF might be described as “monotonically rising,” “bath-
tub,” “J shape,” or “monotonically declining.” FGM and
MFGM families and CCO are often used to describe and
visualize Copula of the basic kind. Regarding estimating
model parameters, we glance at the MLL methodology. We
conducted simulated studies to examine the limited sample
behavior of MLL estimations utilizing graphs, biases, and
mean squared errors. Two applications to actual data sets
demonstrate the relevance and versatility of the intended
family.

As a future work, we can apply many new useful
goodness-of-fit tests for right-censored validation such as
the Nikulin-Rao-Robson goodness-of-fit test, modified
Nikulin-Rao-Robson goodness-of-fit test, Bagdonavicius-
Nikulin goodness-of-fit test, and modified Bagdonavicius-
Nikulin goodness-of-fit test. However, some bivariate ver-
sions could be studied in more details.
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Epidemiological models play pivotal roles in predicting, anticipating, understanding, and controlling present and future
epidemics. The dynamics of infectious diseases is complex, and therefore, researchers need to consider more complicated
mathematical models. In this paper, we first describe the dynamics of a complex SIR epidemic model with nonstandard
nonlinear incidence and recovery rates. In this model, we consider the rate at which individuals lose immunity. Rigorous
mathematical results have been established from the point of view of stability and bifurcation. The basic reproduction number
(R0) is determined. We then apply LaSalle’s invariance principle and Lyapunov’s direct method to prove that the disease-free
equilibrium is globally asymptotically stable when R0 < 1. The model has a unique endemic equilibrium when R0 > 1. A
nonlinear Lyapunov function is used together with LaSalle’s invariance principle to show that the endemic equilibrium is
globally asymptotically stable under some conditions. Further, for the case when R0 = 1, we analyze the model and show a
backward bifurcation under certain conditions. In the second part of this paper, we analyze a modified SIR model with a
vaccination term, which must be a function of time. We show that the modified model agrees well with COVID-19 data in
Saudi Arabia. We then investigate different future scenarios. Simulation results suggest that a two-pronged strategy is crucial to
control the COVID-19 pandemic in Saudi Arabia.

1. Introduction

There is a long and rich history of mathematical modeling of
epidemiology. Most often, compartmental deterministic
models are used for modeling the spread of infectious dis-
eases [1–3]. In these models, a population of susceptible indi-
viduals evolves into other categories representing different
stages of infection. Among many epidemiological models
which had been used for infectious disease, SIR types of
models have received more attention. In 1927, Kermack
and McKendrick were the first to develop the susceptible-
infective-recovered (SIR) model, where the total population
is divided into three classes: susceptible, infective, and recov-

ered [4]. After that, variant of SIR compartmental models
were developed, some of them outlined in [5–8]. Here, we
consider a complex SIR epidemic model with nonstandard
nonlinear incidence and recovery rates. We also consider in
our model the rate of losing immunity, which has not been
considered before.

In classic SIR epidemic models, the bilinear incident rate
βIS/N (where NðtÞ = SðtÞ + IðtÞ + RðtÞ is the number of total
populations, parameter β is the infection transmission rate,
and SðtÞ, IðtÞ, andRðtÞ represent the number of susceptible
and infected and recovered individuals at time ðtÞ. Also, a
linear recovery rate μI (μ is the per capita recovery rate) is
often used. These classic models do not have bistability
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and periodicity in their solution which is not realistic, espe-
cially for COVID-19. Their dynamics basically depend on
the basic reproducing number R0; the disease will be elimi-
nated if R0 < 1; otherwise, the disease persists [9]. However,
in reality, many infectious diseases show multiple peaks
and/or periodic oscillations during the outbreak. The mono-
tone incident rate term f ðIÞS (which describes the mecha-
nism of disease transmission) does not capture the
“psychological” or behavioral change and crowding effect
of infected individuals. Therefore, we use the following gen-
eral incidence rate:

f Ið ÞS = βIqS
1 + kIp

, ð1Þ

where k > 0 measures the psychological or inhibitory effect
and q and p are constants. This type of incidence rate was
first considered by Liu et al. [10]. This incidence rate was
used by many other scholars [11, 12]. In the rest of the
paper, we use the incidence rate term (1) with q = 1.

Determining the treatment rate is not an easy task and
many factors are involved in this process. The main factor
is the number of health workforce that includes physicians,
nurses, pharmacists, and other health care workers
(HCW). The facilities of the hospital such as medical equip-
ment and apparatus, the availability of the intensive care
unit, and the number of the hospital beds and medicines
are the other significant factors which are necessary and
essential for safe and effective avoiding, diagnosis, and treat-
ment of illness [13, 14]. In this work, we follow the work of
Shan and Zhu [15] and use the following nonlinear treat-
ment function

μ b, Ið Þ = μ0 + μ1 − μ0ð Þ b
b + I

� �
, ð2Þ

where μ0, μ1ðμ1 > μ0Þ are the minimum and maximum per
capita recovery rates, respectively. Parameter b is considered
as a measure of available hospital resources.

We need herd immunity to eradicate the COVID-19
pandemic from the human population. This could be
achieved either by previous infection or by vaccination. Sev-
eral pharmacological companies declared high efficacy rates
of their vaccine products [16, 17]. In Saudi Arabia, the Min-
istry of Health launched a vaccine campaign through a
mobile application, which is called “Sehaty,” that provides
registration for COVID-19 vaccination, and vaccination
centers were established in different cities around the coun-
try. The campaign was launched offering both the Pfizer-
BioNTech and AstraZeneca’s COVID-19 vaccines. They
aim to provide free vaccination to all citizens and residents
until getting herd immunity [18]. Hence, it is extremely
important to create public awareness on the importance of
vaccination. In this paper, we develop a mathematical model
to show the effectiveness of vaccination in reducing the
infection rates in Saudi Arabia.

The organization of this paper is as follows: the model
framework is given in Section 2, the existence of equilibria

and global stability of disease-free and endemic equilibria
is studied in Section 3. In Section 4, we study the backward
bifurcation. Section 5 is devoted to the modification of the
model that was previously defined in Section 2. In Section
6, we summarize our results and provide a short discussion
on possible extensions of our model with a possibility of
additional vaccinated component.

2. Model Framework

In this section, we describe the mathematical formulation of
an SIR epidemic model, where the total population size of
individuals is represented by NðtÞ. The total population size
is subdivided into three different classes, namely, SðtÞ: sus-
ceptible, IðtÞ: infected, and RðtÞ: removed or recovered indi-
viduals. We consider that the (viruses) parasites of the
diseases are transmitted to the susceptible populations by
the direct contact with the infected populations.

We assume that the total recruitment at any time t is }A}

and all the new recruited populations go to the susceptible
class. We consider that β ≥ 0, which is the disease transmis-
sion rate and the incidence rate to be βIS/1 + kI, where k is
the half-saturation constant for which the susceptible popula-
tion decreases. The population of susceptible people is
decreased by the natural death rate d, and the recovery popu-
lation goes to the susceptible class at a rate δ (the recovered
individuals could become susceptible again due to lose of
immunity). Hence, the governing equation can be modeled as

dS
dt

= A −
βIS
1 + kI

− dS + δR: ð3Þ

The infected population is decreased by the natural death
rate d and the disease death rate γ. The medical treatments,
determining how well the diseases are controlled, are normally
expressed as constant recovery rates. There are several sug-
gested functions to describe the treatment term. In this paper,
we follow the work of Shan and Zhu [15], where they defined
the recovery rate as a function of b, the number of hospital
beds, and the number of infectives I. Thus, the time rate of
change for this can be represented by the following equation:

dI
dt

= βIS
1 + kI

− μ0 + μ1 − μ0ð Þ b
b + I

� �
I − d + γð ÞI: ð4Þ

The recovered population is increased by the recovery rate
as in above and decreased by the natural death rate d and the
susceptibility of recovered individuals δ. The time rate of
change for the population of recovered individuals can be rep-
resented by the following equation:

dR
dt

= μ0 + μ1 − μ0ð Þ b
b + I

� �
I − d + δð ÞR: ð5Þ

All parameters involved in equations (3)–(5) are nonneg-
ative. Equations (3)–(5) can be written in the combined form
as follows:
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dS
dt

= A −
βIS
1 + kI

− dS + δR, ð6Þ

dI
dt

= βIS
1 + kI

− μ0 + μ1 − μ0ð Þ b
b + I

� �
I − d + γð ÞI, ð7Þ

dR
dt

= μ0 + μ1 − μ0ð Þ b
b + I

� �
I − d + δð ÞR, ð8Þ

subject to initial conditions

S 0ð Þ = S0 ≥ 0, ð9Þ

I 0ð Þ = I0 ≥ 0, ð10Þ

R 0ð Þ = R0 ≥ 0: ð11Þ

For systems (6)–(9), the cone R3+ is positively invariant.
The C1 smoothness of the right side of systems (6)–(9) implies
local existence and uniqueness of solutions with the initial
values in R3+.

It is not difficult to show that every solution of (6)–(9)
with nonnegative initial conditions remains nonnegative. If
we add up the three equations of systems (6)–(8), we get

d S + I + Rð Þ
dt

= A − d S + I + Rð Þ − γI ≤ A − d S + I + Rð Þ,
ð12Þ

which implies that the set

Ω = S, I, Rð Þ ∈R3+ : S ≥ 0, I≥,R ≥ 0, S + I + R ≤
A
d

� �
ð13Þ

is positively invariant and an attractive set for (6)–(9); hence,
all solutions in the first octant approach enter or stay inside
the set defined above and also bounded and, hence, globally
exist. Thus, the initial value problem of systems (6)–(9) is
mathematically well posed and epidemiologically
reasonable.

Because of total population NðtÞ = SðtÞ + IðtÞ + RðtÞ is
regulated by the disease, the system cannot be reduced to
the lower dimension; hence, we need to analyze systems
(6)–(9) in the three-dimensional phase space.

3. Basic Reproduction Number

The basic reproduction number is denoted by R0, and it is
defined as the number of newly infected individuals caused
by a single infection. We now find the basic reproduction
number of systems (6)–(9) using the next-generation matrix
method developed by Driessche and Watmough [19]. Let us
write systems (6)–(9) as follows:

x
:

i =F i xð Þ −V i xð Þ, i = 1,⋯, 3, ð14Þ

where

xi = I, S, Rð ÞT ,

F i =

βS
1 + kI
0
0

0
BBB@

1
CCCA,

V i = μ0 + μ1 − μ0ð Þ b
b + I

� �
I

�

+ d + γð ÞI − A + dS − δR + βS
1 + kI

− μ0 + μ1 − μ0ð Þ b
b + I

� �
I + d + δð ÞR

�
:

ð15Þ

We denote the disease-free equilibrium of models
(6)–(9) by E0, where

E∗
0 = 0, A

d
, 0

� �
: ð16Þ

Now, the Jacobian matrixes of F i and V i at E0 are given
as

F = J F ið Þ =
βA
d

0

0 0

0
@

1
A,

J V ið Þ =
V 0
M1 M2

 !
,

ð17Þ

where

V =
d + γ + μ1 0

βA
d

d

0
@

1
A: ð18Þ

The basic reproduction number R0 of system (14) is
defined by the spectral radius of the matrix ρðFV−1Þ (see
Driessche and Watmough [19]) and it is given by R0 = βA/
ðdðd + γ + μ1ÞÞ.

4. Existence and Types of Equilibria

4.1. Existence of Equilibria. We have already established the
existence of the disease-free equilibrium E0 = ðA/d, 0, 0Þ for
systems (6)–(9) for all values of parameters. For any
endemic equilibrium E∗ = ðS, I, RÞ, its coordinates satisfy

R = 1
d + δ

μ0 + μ1 − μ0ð Þ b
b + I

� �
I: ð19Þ

Substituting this into the first equation in (6)–(9) and
solving for S, we obtain
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S = A + δ/ d + δð Þð Þ μ0 + μ1 − μ0ð Þ b/ b + Ið Þð Þð Þ
βIS/ 1 + kIð Þð Þ + dð Þ : ð20Þ

The variable I should be the positive root of the follow-
ing quadratic equation

f Ið Þ =AI2 +CI +D, ð21Þ

where

A = d3k + γ + β + δk + kμ0ð Þd2 + γβ + γδk + βδ + βμ0 + δkμ0ð Þd + γβδ

d γ + d + μ1ð Þ ,

C =

bk + 1ð Þd3 + γbk + bβ + bkδ + bkμ1 + δ + μ0 + γð Þd2 +
γbδβ + kbδμ + γbβ + bβδ + bβδ + bβμ1 + kμ0 + γδ − Aβð Þd + γbβδ − δβA

d γ + d + μ1ð Þ ,

ð22Þ

and

D = b d + δð Þ
d γ + d + μ1ð Þ 1 − R0ð Þ: ð23Þ

Equation f ðIÞ = 0 may have two roots if Δ0 > 0, which
are

I1 =
−C −

ffiffiffiffiffi
Δ0

p
2A ,

I1 =
−C +

ffiffiffiffiffi
Δ0

p
2A ,

ð24Þ

where Δ0 =C2 − 4AD.
If I > 0, we see from (19) and (20) that S > 0 and R > 0,

respectively.
We study the existence of equilibria in the following

three cases:

R0 > 1: ð25Þ

In this case,D > 0; sinceA > 0, we have I1 < 0 and I2 > 0,
so systems (6)–(9) have a unique endemic equilibrium E2
= ðSðI2Þ, I2, RðI2ÞÞ.

R0 = 1: ð26Þ

In this case, I1 = −ðC/AÞ and I2 = 0; if C < 0, then, sys-
tems (6)–(9) have a unique endemic equilibrium E1 = ðSðI1
Þ, I1, RðI1ÞÞ.

R0 < 1: ð27Þ

In this case, if C > 0, there is no endemic equilibrium; if
C < 0 and Δ0 > 0, we have two endemic equilibria E1 = ðSð
I1Þ, I1, RðI1ÞÞ and E2 = ðSðI2Þ, I2, RðI2ÞÞ. If Δ0 = 0, then, we
have one root multiplicity 2. We summarize the result in
the following theorem.

Theorem 1. For systems (6)–(9),

(1) The disease-free equilibrium exists

(2) If R0 > 1, there exists a unique endemic equilibrium
E2

(3) If R0 = 1, there exists a unique endemic equilibrium
E1 provided that C < 0; otherwise, there is no endemic
equilibrium

(4) If R0 < 1 and if C > 0, there is no endemic equilib-
rium; if C < 0 and Δ0 > 0, the system has two endemic
equilibria E1 and E2; if C < 0 and Δ0 = 0, the system
has two equilibria coalesce into E∗

Theorem 2. For systems (6)–(9), the disease-free equilibrium
E0 = ðA/d, 0, 0Þ is

(i) R0 < 1 : an attracting node

(ii) R0 > 1 :a hyperbolic saddle

(iii) R0 = 1 : and b > d2ððμ1 − μ0Þd + ðμ1 − μ0ÞδÞ/βðAðd
+ kÞðdk + βÞ − δμ1dÞ: a saddle-node of codimension
1

b < ðd2ððμ1 − μ0Þd + ðμ 1 − μ0ÞδÞÞ/ðβðAðd + kÞ ðdk + βÞ
− δμ1 dÞÞ is a saddle-node of codimension 1; b = ðd2ððμ1 −
μ0Þd + ðμ1 − μ0ÞδÞÞ/ðβðAðd + kÞðdk + βÞ − δμ1dÞÞ is an
attracting semihyperbolic node of codimension 2.

Proof. The Jacobian matrix JðE0Þ for systems (6)–(9) is given
by

J E0ð Þ =
−d −

βA
d

δ

0 βA
d

− μ1 − γ 0

0 μ1 −d − δ

0
BBBBB@

1
CCCCCA: ð28Þ

The eigenvalues are obtained from this.

λ1 = −d,
λ2 = −d − δ,

λ3 =
Aβ − γd − d2 − dμ1

d
:

ð29Þ

Since R0 < 1, λ3 is negative, because λ3 = ðγd + d2 + dμ1
Þ/dðR0 − 1Þ; hence, all eigenvalues are negative. Thus, if R0
< 1, E0 is an attracting node, and if R0 > 1, then, E0 is a
hyperbolic saddle. If R0 = 1, the third eigenvalue is zero. In
order to determine the type of E0, we first transform the
disease-free equilibrium point E0 to the origin. We use ~S =
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S − A/d; then, using the Taylor expansion as in [15], we get

d~S
dt

= δR tð Þ − d~S tð Þ + βAI tð Þ
d

+O ~S, I, R
�� ��3� 	

, ð30Þ

dI
dt

= −
βAk
d

+ −μ1 + μ0
b

� �
I2 +O ~S, I, R

�� ��3� 	
, ð31Þ

dR
dt

= − d + δð ÞR + μ1I tð Þ + O ~S, I, R
�� ��3� 	

, ð32Þ

Using eigenvectors, we find following transform:

I tð Þ = X tð Þ,

~S tð Þ = − δμ1/ d + δð Þð Þ + βA/dð Þð ÞI tð Þ + Y tð Þ − δd/ d + δð Þ 2d + δð Þð Þð ÞZ tð Þ
d

,

R tð Þ = Z tð Þ − μ1I tð Þ
d + δ

: ð33Þ

Thus, using these variables in (30), we obtain

dX
dt

= −
βAk
d

+ −μ1 + μ0
b

+ β − δμ1/ d + δð Þð Þ + βA/dð Þð Þ
d

� �
X2

+ XO Y , Zj jð Þ +O Y , Zj j2, X, Y , Zj j3
 �
,

ð34Þ

dY
dt

= −dY +O X, Y , Zj j2
 �
, ð35Þ

dZ
dt

= − d + δð ÞZ +O X, Y , Zj j2
 �
: ð36Þ

It is unnecessary to calculate the center manifold if b ≠
ðd2ððμ1 − μ0Þd + ðμ1 − μ0ÞδÞÞ/ðβðAðd + kÞðdk + βÞ − δμ1dÞÞ
, and E0 is a saddle node. If b = ðd2ððμ1 − μ0Þd + ðμ1 − μ0ÞδÞÞ/ðβðAðd + kÞðdk + βÞ − δμ1dÞÞ, then, from the central
manifold theorem for systems (6)–(9), we obtain

dX
dt

= −
βAk
d

+ β − δμ1/ d + δð Þð Þ + βA/dð Þð Þ
d

�

+ δd −μ1 + μ0ð Þ
b 2d + δð Þ + δμ1

d + δ
−
βAk
d



X3 +O Xj j4
 �

,

ð37Þ

dY
dt

= −dY +O X, Y , Zj j2
 �
, ð38Þ

dZ
dt

= − d + δð ÞZ +O X, Y , Zj j2
 �
: ð39Þ

Hence, E0 is a semihyperbolic attracting node.☐

From Theorem 1, one can see that for the existence of
endemic equilibrium, βA < dðd + γ + μ1Þ is a necessary con-
dition. If <dðd + γ + μ1Þ, E2 is the unique equilibrium point
and we have the following theorem.

Theorem 3. For the system (4)-(7), if <dðd + γ + μ1Þ, the
disease-free equilibrium E0 = ðA/d, 0, 0Þ is globally asymptot-
ically stable.

Proof. Consider the Lyapunov function V = I in R3+ with the
Liapunov derivative

V ′ = βIS
1 + kI

− μ0 + μ1 − μ0ð Þ b
b + I

� �
I − d + γð ÞI

≤ βS − μ0 + μ1 − μ0ð Þ b
b + I

� �
− d + γð Þ

� 

I

≤ lim
S⟶A

d,I⟶0
βS − μ0 + μ1 − μ0ð Þ b

b + I

� �
− d + γð Þ

� 

I

≤
βA
d

− μ1 + d + γð Þ
� 


lim
I⟶0

I ≤ μ1 + d + γð Þ R0 − 1½ � lim
I⟶0

I:

ð40Þ

The Lyapunov–Lasalle theorem implies that solutions in
Ω approach the largest positively invariant subset of set V ′
= 0, i.e., plane I = 0. In this plane, S⟶ A/d and R⟶ 0
as t⟶∞. Thus, all solutions in plane I = 0 go to the
disease-free equilibrium E0. Therefore, E0 is globally asymp-
totically stable.☐

Theorem 4. A sufficient condition for the endemic equilib-
rium E2 to be locally asymptotically stable is R0 > 1

Proof. In this case, the Jacobian matrix has the following
form:

J =

−βI∗

1 + I∗k
− d Σ δ

βI∗

1 + I∗k
−Σ + Ξ − d − γ 0

0 −Ξ −d − δ

0
BBBBB@

1
CCCCCA, ð41Þ

where Σ = ð−βS∗/ð1 + I∗kÞÞ + ðβkI∗S∗/ðð1 + I∗kÞ2ÞÞ and Ξ
= ððμ1 − μ0ÞbÞ/ðb + I∗ÞððI∗/ðb + I∗ÞÞ − 1Þ − μ0. The charac-
teristic equation for the above Jacobian around its endemic
equilibrium E2 is

x3 + C1x
2 + C2x + C3 = 0, ð42Þ

where C1, C2, and C3 are too long to reproduce here. We
have observed that C1, C2, and C3 are positive and C1C2 >
C3; hence, the Routh–Hurwitz criterion is satisfied, so sys-
tems (6)–(9) are locally asymptotically stable for R0 > 1.☐

Theorem 5. The epidemic models (4)–(7) at E2 are globally
asymptotically stable if R0 > 1:
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Proof. We consider the Lyapunov function given by

L =
ðS
S∗

1 − S∗

z

� �
dz +

ðI
I∗

1 − I∗

z

� �
dz +

ðS
R∗

1 − R∗

z

� �
dz:

ð43Þ

Taking the derivative, we have

L
:
= 1 − S∗

S

� �
dS
dt

+ 1 − I∗

I

� �
dI
dt

+ 1 − R∗

R

� �
dR
dt

= 1 − S∗

S

� �
A −

βIS
1 + kI

− dS + δR
� �

+ 1 − I∗

I

� �

� βIS
1 + kI

− μ0 + μ1 − μ0ð Þ b
b + I

� �
I − d + γð ÞI

� �

+ 1 − R∗

R

� �
μ0 + μ1 − μ0ð Þ b

b + I

� �
I − d + δð ÞR

� �

= 1 − S∗

S

� �
βI∗S∗

1 + kI∗
+ dS∗ + δR∗ −

βIS
1 + kI

− dS − δR
� �

+ 1 − I∗

I

� �
βIS
1 + kI

− μ0 + μ1 − μ0ð Þ b
b + I

� �
I

�

− d + γð ÞI − βI∗S∗

1 + kI∗
+ μ0 + μ1 − μ0ð Þ b

b + I∗

� �
I∗

+ d + γð ÞI∗Þ + 1 − R∗

R

� �
μ0 + μ1 − μ0ð Þ b

b + I

� �
I

�

− d + δð ÞR − μ0 + μ1 − μ0ð Þ b
b + I∗

� �
I∗ + d + δð ÞR∗

�
,

L
:
= 1 − S∗

S

� � 1
1 + kI∗ð Þ 1 + kIð Þ βI∗Sð Þ S∗

S
−

I
I∗

� ���

+ kβI∗IS∗ 1 − S
S∗

� �

+ δR∗ 1 − R

R∗

� �
+ dS∗ 1 − S

S∗

� �Þ
+ 1 − I∗

I

� �
−1

1 + kI∗ð Þ 1 + kIð Þ βI∗Sð Þ S∗

S
−

I
I∗

� ���

+ kβI∗IS∗ 1 − S
S∗

� �

+ b2I∗

b + I∗ð Þ b + Ið Þ 1 − I
I∗

� �

+ μ0 + d + γð ÞI∗ 1 − I
I∗

� ��
+ 1 − R∗

R

� �

� d + δð ÞR∗ 1 − R
R∗

� �
−

b2I∗

b + I∗ð Þ b + Ið Þ

 

� 1 − I
I∗

� �
− μ0 + d + γð ÞI∗ 1 − I

I∗

� ��
,

L
:
= 1 − S∗

S

� �
kβI∗IS∗ 1 − S

S∗

� �
+ 1 − I∗

I

� �

� b2I∗

b + I∗ð Þ b + Ið Þ 1 − I
I∗

� �
+ μ0 + d + γð ÞI∗ 1 − I

I∗

� � !

+ 1 − R∗

R

� �
d + δð ÞR∗ 1 − R

R∗

� �
+ 1 − R∗

R

� �

� δR∗ 1 − S∗

S

� �
−

b2I∗

b + I∗ð Þ b + Ið Þ 1 − I
I∗

� � 

− μ0 + d + γð ÞI∗ 1 − I
I∗

� ��
+ 1 − I∗

I

� �

� −1
1 + kI∗ð Þ 1 + kIð Þ βI∗Sð Þ S∗

S
−

I
I∗

� ���

+ kβI∗IS∗ 1 − S
S∗

� �
Þ
+ 1

1 + kI∗ð Þ 1 + kIð ÞβI
∗S

S∗

S
−

I
I∗

� �
1 − S∗

S

� �
,

ð44Þ

if

1 − R∗

R

� �
1 − S∗

S

� �
< 0,

1 − R∗

R

� �
1 − I

I∗

� �
> 0,

1 − I∗

I

� �
−1

1 + kI∗ð Þ 1 + kIð Þ
�

� βI∗Sð Þ S∗

S
−

I
I∗

� �
+ kβI∗IS∗ 1 − S

S∗

� �� 
�

+ 1
1 + kI∗ð Þ 1 + kIð ÞβI

∗S
S∗

S
−

I
I∗

� �
1 − S∗

S

� �
< 0:

ð45Þ

Then, we have

L
:
< 0, ð46Þ

Hence, the theorem is proved.☐

Theorem 6. For systems (6)–(9), consider R0 as the bifurca-
tion parameter. Then, we have, when R0 = 1, systems (6)–(9)
which undergo forward bifurcation if b > ðd2ððμ1 − μ0Þd + ð
μ1 − μ0ÞδÞÞ/ðβðAðd + kÞðdk + βÞ − δμ1dÞÞ; systems (6)–(9)
undergo backward bifurcation if b < ðd2ððμ1 − μ0Þd + ðμ1 −
μ0ÞδÞÞ/ðβðAðd + kÞðdk + βÞ − δμ1dÞÞ; systems (6)–(9)
undergo pitchfork bifurcation if b = ðd2ððμ1 − μ0Þd + ðμ1 −
μ0ÞδÞÞ/ðβðAðd + kÞðdk + βÞ − δμ1dÞÞ.

Proof. Since R0 is a function of the parameters β, γ, δ, d,
and μ1, without loss of generality, we can choose μ1 as the
bifurcation parameter.

Let μ1 = ðβA/dÞ − d − γ + ε, we substitute this into
(6)–(9); we note that if ε = 0, then, it reduces to R0 = 1.
We then use Taylor expansion at E0; diagonalizing the linear
part, we then apply the center manifold theorem for the
parameter ε. We found that

dX
dt

= − ε +O ε2

 �
 �

X −
βAk
d

+ −Π + μ0
b

�

+ β − δΠ/d + δð Þ + βA/dð Þð Þ
d

+O εð Þ
�
X2 +O X3
 �

,

ð47Þ

where Π = ðβA/d − d − γÞ. Denoting the right-hand side of
(47) as Γðε, XÞ, we have

Γ 0, 0ð Þ = 0,
∂
∂ε

Γ 0, 0ð Þ = 0,

∂
∂X

Γ 0, 0ð Þ = 0,

∂2

∂X∂ε
Γ 0, 0ð Þ = −1,
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∂2

∂X2 Γ 0, 0ð Þ = −
βAk
d

+ −Π + μ0
b

+ β − δΠ/d + δð Þ + βA/dð Þð Þ
d

� �

= −
βAk
d

+ −μ1 + μ0
b

+ β − δμ1/d + δð Þ + βA/dð Þð Þ
d

� �
:

ð48Þ

Therefore, the system has transcritical bifurcation if

b ≠ d2 μ1 − μ0ð Þd + μ1 − μ0ð Þδð Þ
β A d + kð Þ dk + βð Þ − δμ1dð Þ : ð49Þ

If b = ðd2ððμ1 − μ0Þd + ðμ1 − μ0ÞδÞÞ/ðβðAðd + kÞðdk + βÞ
− δμ1dÞÞ, using the center manifold theory, as the above,
from (6)–(9), we obtain

dX
dt

= − ε +O ε2

 �
 �

X +O εð ÞX2

−
βAk
d

+ β − δΠ/ d + δð Þð Þ + βA/dð Þð Þ
d

�

+ δd −Π + μ0ð Þ
b 2d + δð Þ + δΠ

d + δ
−
βAk
d

+O εð Þ


X3 +O Xj j4
 �

:

ð50Þ

Again, denoting the right-hand side of (50) as Γðε, XÞ,
we have

Γ 0, 0ð Þ = 0,
∂
∂ε

Γ 0, 0ð Þ = 0,

∂
∂X

Γ 0, 0ð Þ = 0,

∂2

∂X∂ε
Γ 0, 0ð Þ = −1,

∂2

∂X2 Γ 0, 0ð Þ = 0,

∂3

∂X3 Γ 0, 0ð Þ = −
βAk
d

+ β − δΠ/d + δð Þ + βA/dð Þð Þ
d

�

+ δd −Π + μ0ð Þ
b 2d + δð Þ + δΠ

d + δ
−
βAk
d

�

= −
βAk
d

+ β − δΠ/d + δð Þ + βA/dð Þð Þ
d

�

+ δd −Π + μ0ð Þ
b 2d + δð Þ + δΠ

d + δ
−
βAk
d

�
:

ð51Þ

It is clear that systems (6)–(9) have pitchfork bifurcation if
b = ðd2ððμ1 − μ0Þd + ðμ1 − μ0ÞδÞÞ/ðβðAðd + kÞðdk + βÞ − δμ1
dÞÞ when R0 = 1 [20]. We note that If ε = 0, the system related
with equation (47) and the system related with equation (50)
reduce to the systems in equations (34) and (37), respectively.

Since R0 is a function of μ1, also b and k, we choose μ1 as
the bifurcation parameter. In Theorem 1, there are two
endemic equilibria provided that if R0 < 1, C < 0, and Δ0 > 0
and ifC < 0 and Δ0 = 0, then, there are two equilibria coalesce.

The basic reproducing number R0 = 1 defines a straight
line P0 in the ðμ1, bÞ plane

P0 : μ1 =
Aβ − γd − d2

d
, ð52Þ

C=0 defines one branch of hyperbola PC (see Figure 1):

The branch of PC has an intersection with P0 at point K,
where K = ððAβ − γd − d2Þ/d, ðd2ððμ1 − μ0Þd + ðμ1 − μ0ÞδÞÞ/
ðβðAðd + kÞðdk + βÞ − δμ1dÞÞÞ. We also have ðdHCðμ1ÞÞ/d
μ1 < 0 and ðd2HCðμ1ÞÞ/dμ21 > 0, so HCðμ1Þ is decreasing
and a convex function of μ1.

Now, let

P+
0 = μ1, bð Þ: μ1 =

Aβ − γd − d2

d
, b > d2 μ1 − μ0ð Þd + μ1 − μ0ð Þδð Þ

β A d + kð Þ dk + βð Þ − δμ1dð Þ

( )
,

P−
0 = μ1, bð Þ: μ1 =

Aβ − γd − d2

d
, b < d2 μ1 − μ0ð Þd + μ1 − μ0ð Þδð Þ

β A d + kð Þ dk + βð Þ − δμ1dð Þ

( )
:

ð54Þ

Then, P0 = P+
0 ∪ P−

0 ∪ K , where P+
0 and P−

0 are the parts of
P0 which are separated by K. Now, we consider the curve
defined by Δ0ðμ1, bÞ = 0 and we indicate these curves as P±

Δ
; solving for b from Δ0ðμ1, bÞ = 0, we got

P±
Δ : b = f ±Δ μ1ð Þ: ð55Þ

PC : b =HC μ1ð Þ = Aβ − γd − d2 − dμ0

 �

d + kð Þ
d3k + γ + δ + μ1ð Þk + βð Þd2 + δ γ + μ1ð Þk + β γ + δ + μ1ð Þð Þd + γβδ

: ð53Þ
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We found that f +Δ ððAβ − γd − d2Þ/dÞ = f −Δ ððAβ − γd −
d2Þ/dÞ and straightforward calculations lead to

f −Δ μ1ð Þ <HC μ1ð Þ < f +Δ μ1ð Þ,  μ1 ∈
Aβ − γd − d2

d
,∞

 !
:

ð56Þ

Furthermore, we have found that

df ±Δ μ1ð Þ
dμ1

< 0, μ1 ∈
Aβ − γd − d2

d
,∞

 !
and lim

μ1⟶∞
f −Δ μ1ð Þ⟶ 0:

d2 f ±Δ μ1ð Þ
dμ21

> 0, μ1 ∈
Aβ − γd − d2

d
,∞

 !
and lim

μ1⟶∞
f −Δ μ1ð Þ⟶ 0:

ð57Þ

Hence, f ±Δ ðμ1Þ and HCðμ1Þ are decreasing and they are
convex functions of μ1.

Based on the above discussion and Theorem 1, for fix k,
we define

D0 = b, μ1ð Þ: b > f −Δ μ1ð Þ, μ1 >
Aβ − γd − d2

d

( )
,

D1 = b, μ1ð Þ: b > 0, μ0 < μ1 <
Aβ − γd − d2

d

( )
,

D2 = b, μ1ð Þ: 0 < b < f −Δ μ1ð Þ, μ1 >
Aβ − γd − d2

d

( )
:

ð58Þ

In Figure 1, we see that there is one endemic equilibrium
in region D1 and two equilibria in region D2. The system of
equations (6)–(9) undergoes saddle-node bifurcation on the
curve P−

Δ. The forward bifurcation occurs on P−
Δ and we have

backward bifurcation, which occurs on P−
Δ. The pitchfork

bifurcation occurs when transversally passing through curve
P0 at point K . The mathematical system of equations (6)–(9)
has a semihyperbolic node of codimension 2 at point K . The
similar discussion can be done for fixed b and varying value
of k to show the backward bifurcation. This part is omitted
since the analysis is the same as before.☐

5. Further Development of the Model,
Numerical Results, and Discussion

We numerically show that equilibrium point E2ðS∗, I∗, R∗Þ is
locally and globally asymptotically stable. For the parameters
in Table 1, R0 = 6:9307, the endemic equilibrium E2 exists at
E2ðS∗, I∗, R∗Þ = ð243:9075,2:455,1:6707Þ. Figure 2 provides
that Theorem 1 is satisfied, i.e., E2 is locally asymptotically sta-
ble where initial conditions Sð0Þ = 150, Ið0Þ = 50, and Rð0Þ
= 20 are used. In Figure 2, we could see that solutions
approach to E2ðS∗, I∗, R∗Þ = ð243:9075,2:455,1:6707Þ. Fur-
thermore, in Figure 3, we use the parameters in Table 1 to
show that the endemic equilibrium E2ðS∗, I∗, R∗Þ = ð
243:9075,2:455,1:6707Þ is globally asymptotically stable
because the solutions of S, I, and R converge to the same E2
independently from the initial values of S, I, and R.

We further simulate the inhibition effect due to the
behavioral change of susceptible population when the num-
ber of infected individuals increases. We use parameter
values given in Table 1 with k = 0, 0:2, 1, 2, and 4. Figure 4
shows different levels of the inhibition effect: low, moderate,
and significant. The results are depicted in Figure 5, which
shows that moderate and significant inhibition considerably
reduces the number of infected individuals (I).

We now consider a modification of the model defined in
equations (6)–(9). We define a new term, which is the vacci-
nation ratio v, and incorporate this term into our existing
model. The modified model is shown in Figure 6

We assume that the vaccination rate is constant, but in
general, v is a function of susceptible, infected, and recov-
ered individuals. Using the idea from [21], we can further
modify the defined model in (6)–(9) to be

dS
dt

= A −
βIS
1 + kI

− d + vpsð ÞS + δR, ð59Þ

dI
dt

= βIS
1 + kI

− μ0 + μ1 − μ0ð Þ b
b + I

� �
I − d + γ + γvpið ÞI,

ð60Þ

dR
dt

= vpsS + μ0 + μ1 − μ0ð Þ b
b + I

� �
I + γvpiI − d + δð ÞR,

ð61Þ

b

P𝜇0

PC

P0

D1

D2

K

R0>1

+

P𝛥
+

P𝛥
–

P0
–

k

𝜇1𝜇0 A𝛽-𝛾d-d2
(R0=1)

d

Figure 1: For fixed k, the bifurcation curves in the ðμ1, bÞ plane
when Aβ > dμ0 + γd + d2. In D1 region R0 > 1, where there exists
a unique endemic equilibrium. There are two endemic equilibria
in D2. Two equilibria coalesce and a saddle-node bifurcation
occurs on P−

Δ . The forward bifurcation occurs on P−
0 and

backward bifurcation occurs on P+
0 . There is no endemic

equilibrium in the first region.
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subject to initial conditions

S 0ð Þ = S0 ≥ 0, ð62Þ

I 0ð Þ = I0 ≥ 0, ð63Þ
R 0ð Þ = R0 ≥ 0, ð64Þ

where v is the vaccination rate of the population, ps repre-
sents the vaccine efficacy for the suspected, and pi is the
effectiveness of the vaccination in infected individuals. We
could analyze systems (59)–(62) as we did for the original
system; therefore, there is no need to duplicate the same
analysis here. We apply the modified model to describe
COVID-19 scenarios in Saudi Arabia. The total population
of Saudi Arabia is 35575027. The total reported cases in
Saudi Arabia on April 1, 2021, are 390007, and the active
cases are 5452. The Saudi government has provided

4571478 doses of vaccine until April 1, 2021, and 3818608
people of the population are considered to be immune. It
is clear from the model that we can derive the reproducing
number easily as we explained above using R0 = βA/ððd + v
psÞðd + γ + μ1 + γvpiÞÞ. We now try to simulate Saudi Arabia
cases, where pi = 0:5, pS = 0:95, γ = 0:28, v = 0:00233, and
R0 = 1:108. We use the least square method to fit the other
parameters. Figure 5 shows the model predictions in com-
parison with real COVID-19 data of Saudi Arabia for
infected individuals. The model predicts current cases nicely,
but the model prediction in the future cannot be accurate
(see Figure 4 after 1000 days). Furthermore, we know from
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Table 1: Random parameters used in the numerical simulations in
Figures 2 and 3.

Parameter Value Dimension

A 1.75 Individual/time

β 0.01 1/(individual × time)

k 2 1/individual

d 0.005 1/time

μ0 0.2 1/time

μ1 0.3 1/time

b 0.2 Individual

γ 0.2 1/time

α 0.3 1/time

11000

10000

9000

8000

7000

6000

0 200 600400 800 1000
t

Figure 4: Prediction of model (46–49) for a long time, β = 2:79:1
0−7 and R0 = 1:108.
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other transmitted diseases that vaccination together with
some simple restrictions on the society could control the
spread of transmitted diseases. This fact tells us that the cur-
rent model must be modified as we do below.

It is well known that the coefficients β, μ0, and μ1 are
functions of time in general. But these functions can be writ-
ten using empirical assumptions by using constant parame-
ters, where empirical relations depend on disease control
measures, such as social distancing, partial closure, and trac-
ing of suspected people. In this report, we model these func-
tions as

β tð Þ = β0m1 tð Þ,
μ0 tð Þ = μ0m2 tð Þ,
μ1 tð Þ = μ1m3 tð Þ:

ð65Þ

In general, the form of the miðtÞ can be considered as in
the work of [22, 23] as

mi tð Þ =

m0 −m1ð Þ exp k1 t − t0ð Þð Þ +m1 t ∈ t0, λ1½ �,
mλ1

−m2

 �

exp k2 t − λ1ð Þð Þ +m2 t ∈ λ1, λ2�ð ,
−−

−−

mλp−1
−mp

� 	
exp kp t − λp−1


 �
 �
+mp t ∈ λp−1,∞Þ,


8>>>>>>>><
>>>>>>>>:

ð66Þ

where mi measures the intensity of the control measures, ki
has a dimension 1/day and simulates the efficiency of the
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Figure 7: Compared the prediction of model (53–55) (black line)
with real data of Saudi Arabia (red asterisks) for v = 75000
individual/per day and β0 = 4:10−7, i.e., R0 ≤ 1:311.
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Figure 8: Compared the prediction of model (53–55) (black line)
with real data of Saudi Arabia (red asterisks) for v = 75000
individual/per day and β0 = 5:10−7, i.e., R0 ≤ 1:64.

𝛿R(t)

dRdS

𝛽IS

Vaccinated

Infected

and+(( ))-

Susceptible

1+kl
I𝜇0 𝜇1

(d+𝛾)I

𝜇0
b
b+I

Recovered
va

va

Figure 6: Schematic diagram of the modified model. The arrows
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11000

10000

9000

8000

7000

6000

0 50 100 150 200
t

Figure 5: Comparing the prediction of model (46–49 (black line)
with real data of Saudi Arabia (red asterisks) for β = 2:79:10−7
and R0 = 1:108:
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control measures, and λi represents the number of days for
each implemented control strategy. The vaccination rate is
also a function of time and can be assumed to equal the fol-
lowing equation

v tð Þ = V
N + number of NBXday −NDXday −VXday , ð67Þ

whereV is the number of vaccinations per day, the denomina-
tor is the total population × the number of new born per day–
new death per day– the number of vaccinations per day. The
values of λi,mi, and ki are not fixed; they are different for each

country. In this study, we use data from Saudi Arabia. Under
the above discussion, our model can be written as

dS
dt

= A − β0m1 tð Þ IS
1 + kI

− d + v tð Þpsð ÞS + δR,

dI
dt

= β0m1 tð Þ IS
1 + kI

+− μ0m2 tð Þ + μ1m3 tð Þðð

− μ0m2 tð ÞÞ b
b + I

ÞI − d + γ + αtv tð Þð ÞI,

dR
dt

= μ0m2 tð Þ + μ1m3 tð Þ − μ0m2 tð Þð Þ b
b + I

� �
I

− d + δð ÞR + αtv tð ÞI:
ð68Þ
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Figure 10: The effect of the reproducing number on the infected
individuals (dashed line, R0 ≤ 0.98, continuous line R0 ≤ 1.311,
and dashed-dotted line R0 ≤ 1.96.
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Figure 11: The effect of vaccination on the suspected individuals
(dashed line, v = 100000, continuous line v = 75000, and dashed-
dotted line, v = 50000) for β0 = 4:10−7.
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Figure 12: The effect of vaccination on recovered individuals
(dashed line, v = 100000, continuous line v = 75000, dashed-
dotted line, v = 50000) for β0 = 4:10−7.
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Figure 9: The effect of the number of vaccination on the infected
individuals (dashed line, v = 100000, continuous line v = 75000,
dashed-dotted line, v = 50000).
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Increasing the number of vaccinations per day reduces the
reproducing number. Figure 7 shows the total infected indi-
viduals, where the continuous black line is the model predic-
tion and symbol red asterisk represents the real data of Saudi
Arabia (WHO) for the number of vaccinations v = 75000 indi-
vidual/day and R0 ≤ 1:311. We now increase the reproducing
number up to R0 ≤ 1:64, where we increase the transmission
rate of infection from 4.10−7 to 5.10−7. Model prediction of
the current infected individuals against the real data of Saudi
Arabia is shown in Figure 8. We see that the prediction agrees
with real data even for the first month unlike the results in
Figure 7. The prediction of the model is not a feasible region
of real data; from here, we can conclude that the reproducing
number of disease for Saudi Arabia is around 1.311. We now
consider 50000 vaccinations per day and then consider
1000000 vaccinations per day to show the effect of vaccination
as in Figure 9 for β0 = 4:10−7, where the dashed line represents
100000 vaccinations per day, while the continuous line repre-
sents 75000 vaccinations per day and the dashed-dotted line
represents 50000 vaccinations per day. We see that increasing
the number of vaccinations per day decreases the number of
infected individuals as we expected. We also observe from
Figure 10 that we could certainly control the spread of
COVID-19 after 200 days for more than 75000 vaccinations
per day. Next, we show the effect of the reproducing number
on the number of infected individuals. Figure 10 shows the
effect of the reproducing number on infected individuals.
The dashed line, black line, and dashed-dotted line represent
the reproducing number R0 ≤ 0.98, 1.311, and 1.96, respec-
tively, for fixed vaccinations v = 75000. Now, we check the
effect of vaccination and reproducing number on the sus-
pected and recovered individuals. Figure 11 shows the effect
of vaccination on the suspected population for β0 = 4:10−7.
It is clear that increasing the number of vaccinations reduces
the number of suspected individuals. Finally, Figure 12 shows
the effect of the vaccination on the recovered population. We
find that increasing the number of vaccination increases the
number of recovered individuals.

6. Conclusions

In this paper, we established a new model with nonstandard
nonlinear incidence and recovery rates formulated to con-

sider the impact of available resources of public health, in
particular the number of hospital beds and rate of losing
immunity. We used Lyapunov’s direct method to show
global asymptotic stability of the disease-free equilibrium
when R0 < 1 and global asymptotic stability of the endemic
equilibria when R0 > 1. We also solved the system numeri-
cally, which confirms our theoretical results.

Vaccination is an effective method to prevent individuals
from contracting transmitted diseases like flu and cholera. In
the second part of this paper, we included a vaccination term
and found that the modified model agrees well with the real
data of Saudi Arabia.

In a forthcoming study, we will study a system with an
additional vaccinated component such as

dV
dt

= f V , S, I, Rð Þ,
dS
dt

= g V , S, I, Rð Þ,
dI
dt

= h V , S, I, Rð Þ,
dR
dt

= z V , S, I, Rð Þ:

ð69Þ

We will compare the prediction of this system with our
newly defined system in this paper.
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Our manuscript is devoted to investigating a class of impulsive boundary value problems under the concept of the Riemann-
Liouville fractional order derivative. The subject problem is of implicit type. We develop some adequate conditions for the
existence and puniness of a solution to the proposed problem. For our required results, we utilize the classical fixed point
theorems from Banach and Scheafer. It is to be noted that the impulsive boundary value problem under the fractional order
derivative of the Riemann-Liouville type has been very rarely considered in literature. Finally, to demonstrate the obtained
results, we provide some pertinent examples.

1. Introduction

The fractional order differential equations (abbreviated as
FODEs) are the generalization of the ordinary differential
equations of the integer order. In the 17th century (1665),
the great mathematicians Newton, Leibnitz and L’Hospital
introduced for the first time the idea of fractional order dif-
ferential equations (FODEs). Later on, in 1823, another
mathematician by the name of Lacroix, introduced the frac-
tional derivative [1] of simple power function. Furthermore,
this area has been studied by many researchers because it
has significant applications in various fields of science and
technology in mathematical modeling of different fields of
Science and Technology. For instance, some phenomena
including the diffusion process [2], some chemical processes
of electrochemistry [3], infectious disease in biology [4], signal
and image processing [5], dynamic processes [6], and systems
control theory [7] can be excellently described by using
FODEs instead of the ordinary derivative. For further applica-
tions of FODEs, we refer to [8–13] and the references therein.

On the other hand, an interesting and important branch
recently got warm attention known as impulsive differential

equations (IDEs). In recent times, the said area has been
increasingly used to model many physical and social phe-
nomena in social sciences in a very interesting way. Cur-
rently in the said area, significant contribution has been
done by various researchers like Simeonov and Bainov
[14], Benchohra et al. [15], Lakshmikantham et al. [16],
and Samoilenko and Perestyuk [17]. Benchohra and Slimani
[18] has initiated the study of FODEs under impulsive con-
ditions by using fractional derivatives of the Caputo and
Riemann-Liouville type with order α ∈ ð0, 1Þ. In addition,
some applications of IDEs have been studied in various
scientific disciplines such as biology, geography, engineer-
ing, dynamics, physics, geology, and management sciences.
In terms of the important applications of IDEs, due to
important applications of IDEs this field has a lot of sig-
nificance and concentration (see [19–22]). For general
research and significance, we refer some more important
publications [23–26]. Many researchers have recently stud-
ied nonlinear FODEs with different kinds of boundary and
initial conditions. Boundary value problems have signifi-
cant applications in various fields of dynamics and fluid
mechanics as well as engineering disciplines. Here, it is
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remarkable that problems under integral boundary condi-
tions have some important applications in fluid mechanics,
chemical engineering, thermoelasticity, flow of groundwater,
population dynamics, and more (see [27–29]). Furthermore,
we also refer some significance of FODEs under integral
boundary conditions as discussed in [27–31].

Recently, due to increasing applications of FODEs
to model real world problems more comprehensively,
researchers are taking keen interest to investigate different
areas of fractional calculus. In particular, the use of FODEs
in mathematical modeling of infectious diseases and other
biological phenomena have got more attention. Various
researchers have studied the fractional predator-prey path-
ogen model, the n-predator-prey model with herd behavior,
etc. (see [32–34]). Further, there is also modeling of the
interaction between tumor growth and the immune system,
edge-detecting techniques, an infectious diesease on a pre-
predator model, etc., (we refer to [35–40]).

As stated earlier, the area devoted to IDEs with a frac-
tional order has many applications. These differential
equations can be modeled to those evolutionary processes
which are subjected to abrupt changes in their states.
Recently, some authors have used IDEs for the mathemat-
ical modeling of certain biological events. It is remarkable
that impulsive differential equations are using in mathe-
matical models which give rise to some important dual-
layered impulsive systems. The said systems will open
new doors in the future to develop a general mathematical
theory for the said systems. For instance, the author of
[41] has obtained very interesting results in this regard
for various kinds of biological models of infectious dis-
eases. Here, we remark that a very basic and important
qualitative problem in the investigation of IDEs with a
fractional order concerns the existence theory of solutions.
For these purposes, researchers have used the classical
fixed point theory and some tools of nonlinear analysis.
For instance, in [42], the authors have applied fixed point
results to develop the corresponding existence theory of
solutions by using the Caputo derivative of the fractional
order. In the same line, in [43], the authors have used
the Picard-type analysis to investigate the stochastic-type
IDEs of a fractional order by using the Caputo operator.
In all these papers, the Caputo operator has been increas-
ingly used. It is to be noted that the fractional order deriv-
ative of the Riemann-Liouville type has been very rarely
used in IDEs.

Authors [44] have established existence theory for frac-
tional order IDEs with initial conditions by using the fixed
point theory. The authors in [45] investigated the following
problem of IDEs under the fractional order derivative of
the Riemann-Liouville type as

RLDαk r zð Þ = f z, r zð Þð Þ, z ∈ 0, T½ �, z ≠ zm, 1 < αm ≤ 2, z ∈ J , z ≠ zm,
Δr zmð Þ = ψm r zmð Þð Þ, m = 1, 2, 3,⋯, q,
Δ∗r zmð Þ = ψ∗

m r zmð Þð Þ, m = 1, 2, 3,⋯, q,
r 0ð Þ = 0, Dα0−1r 0ð Þ = β,

8>>>>><
>>>>>:

ð1Þ

where β ∈R and f : ½0, T� ×R⟶R is a continuous func-
tion. They developed sufficient conditions for the existence
of at least one solution to the considered problem by using
a fixed point approach.

Motivated from the said work given in (1), we are inter-
ested in studying a class of nonlinear implicit fractional
order IDEs under the Riemann-Liouville derivative with
the Riemann-Liouville-type integral boundary conditions as

RLDαk r zð Þ = f z, r zð Þ, RLDα
r zð Þ

� �
, 1 < α ≤ 2, z ∈ J , z ≠ zm,

Δr zmð Þ = ψm r zmð Þð Þ, m = 1, 2, 3,⋯, q,
Δ∗r zmð Þ = ψ∗

m r zmð Þð Þ, m = 1, 2, 3,⋯, q,
I1−αr 0ð Þ = 0, I2−αr 1ð Þ = 0,

8>>>>>><
>>>>>>:

ð2Þ

where RLD is denoted as the Riemann-Liouville fractional
order derivative, J = ½0, 1�, f : J ×R ×R⟶R is a con-
tinuous function. Furthermore, ψm, ψ∗

m : R⟶R are con-
tinuous functions for m = 1, 2,⋯, q and
ΔrðzmÞ = I1−αzm

rðz+mÞ − I1−αzm
rðz−mÞ, Δ∗rðzmÞ = I2−αzm

rðz+mÞ − I2−αzm
r

ðz−mÞ with rðz+mÞ = limh⟶0+rðzm + hÞ, rðz−mÞ = limh⟶0−rðzm
+ hÞ, m = 1, 2, :⋯ , q, for 0 = z0 < z1 < z2 ⋯ <zq+1 = 1. And
also, where I1−α, I2−α are denoted as the Riemann-Liouville
integral of fractional order 1 − α < 0, 2 − α > 0 on J , respec-
tively. To establish the required results, we utilize the
Scheafer fixed point theorem to investigate sufficient condi-
tions for the existence of at least one solution to the problem
under consideration (2). Furthermore, the criterion of
uniqueness is derived by using the Banach contraction theo-
rem. For the demonstration of our results, we provide some
concrete examples.

2. Preliminaries

In this section, we provide some important results, basic def-
initions, and lemmas from the literature of fractional calcu-
lus [1, 3, 10, 11], which are needed in this manuscript.

Let J = ½0, 1�, J 0 = ðz0, z1�, and Jm = ðzm, zm+1� for m =
1, 2, 3⋯ q. Suppose that PCðJ ,RÞ = fr : J ⟶R ; r ∈C
ððzm, zm+1�,RÞ,m = 0, 1, 2,⋯,q + 1g and rðz+mÞ and rðz−mÞ
exist with rðz−mÞ = frðzmÞ,m = 1, 2,⋯,qg: Note that PCðJ ,
RÞ is a Banach space of piece-wise continuous function with
norm krk = supz∈J jrðzÞj.

Definition 1. The integral of the Riemann-Liouville frac-
tional order β > 0 of a continuous function f : ð0,∞Þ⟶
R is defined by

Iβ f zð Þ =
ðz
0

z − sð Þβ−1
Γ βð Þ f sð Þds, z ∈ 0, 1ð Þ: ð3Þ

Therefore, the right side is point-wise defined on ð0,
∞Þ, where Γ is the symbol of gamma function defined
as ΓðβÞ = Ð∞0 e−ssβ−1ds.
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Definition 2. The derivative of the Riemann-Liouville frac-
tional order β > 0, of a continuous function f ∈ C½0, 1� ∩ L½
0, 1�, b > 0 is defined by

RLDβ
f zð Þ = d

dz

� �nðz
0

z − sð Þn−β−1
Γ n − βð Þ f sð Þds, n − 1 < β < n, z ∈ 0, 1ð Þ,

ð4Þ

where n = ½β� + 1, ½β� represent the whole part of the real
number β; therefore, the right side is point-wise defined on
ð0,∞Þ:

Definition 3. If the function f : ðc, dÞ⟶R is at least n
-times differentiable, then the Caputo fractional derivative
of order β > 0 is defined as

CDβ
c f zð Þ =

ðz
c

z − sð Þn−β−1
Γ n − βð Þ f n sð Þds, n − 1 < β < n, z ∈ c, dð Þ,

ð5Þ

where n = ½β� + 1.

Lemma 4 [11]. Suppose β > 0, and r ∈ Cðb, dÞ ∩ Lðb, dÞ.
Then, FODE

RLDβ
r zð Þ = 0, ð6Þ

has a unique solution given by

r zð Þ = d1 z − bð Þβ−1 + d2 z − bð Þβ−2+⋯+dn z − bð Þβ−n, ð7Þ

where di ∈R, i = 1, 2,⋯, n, and n − 1 < β < n.

Lemma 5 [11]. In particular, β > 0 and r ∈ C½0, 1� ∩ L½0, 1�.
We have

IβDβr zð Þ = r zð Þ + a1z
β−1 + a2z

β−2+⋯+anzβ−n, ð8Þ

where ak ∈R, k = 1, 2,⋯, n, and n − 1 < β < n.

3. Main Works

To convert our considered problem in to an impulsive frac-
tional integral equation, the given Lemma is provided.

Lemma 6. The solution of the given linear IDE of the frac-
tional order with the Riemann-Liouville derivative

RLDα
r zð Þ = σ zð Þ, 1 < α ≤ 2, z ∈ J , z ≠ zm,

Δr zmð Þ = ψm r zmð Þð Þ, m = 1, 2, 3,⋯, q,
Δ∗r zmð Þ = ψ∗

m r zmð Þð Þ, m = 1, 2, 3,⋯q,
I1−αr 0ð Þ = 0, I2−αr 1ð Þ = 0,

8>>>>><
>>>>>:

ð9Þ

is given by

Proof. Suppose rðzÞ is a solution to Problem (9); then, taking
the Riemann-Liouville integral on both sides to using
Lemma 5, there exist some constants c0, c1 ∈R such that

r zð Þ =
ðz
0

z − sð Þα−1
Γ αð Þ σ sð Þds − c0z

α−1 − c1z
α−2, z ∈ 0, z1½ �: ð11Þ

Again taking the Riemann-Liouville integral to using
Lemma (9), for some constant d0, d1 ∈R, we have

r zð Þ =
ðz
z1

z − sð Þα−1
Γ αð Þ σ sð Þds − d0 z − z1ð Þα−1 − d1 z − z1ð Þα−2, z ∈ z1, z2ð �:

ð12Þ

Now, by using the impulsive conditions, we have Δrðz1Þ
= I1−αz1

rðz+1 Þ − I1−αz1
rðz−1 Þ = ψ1ðrðz1ÞÞ and Δ∗rðz1Þ = I2−αz1

rðz+1 Þ
− I2−αz1

rðz−1 Þ = ψ∗
1 ðrðz1ÞÞ, and we find that

−d0 =
ðz1
0

z1 − sð Þσ sð Þds − c0 − c1z
−1
1 + ψ1 r z1ð Þð Þ,

−d1 =
ðz1
0

z1 − sð Þ2σ sð Þds − c0z1 − c1 + ψ∗
1 r z1ð Þð Þ: ð13Þ

r zð Þ =

ðz
0

z − sð Þα−1
Γ αð Þ σ sð Þds + zm

ð1
zm

1 − sð Þ2σ sð Þds + 1 − zmð Þ
ðzm
0

zm − sð Þσ sð Þds − ψm r zmð Þð Þ
� �� �"

+
ðzm
0

zm − sð Þ2σ sð Þds − ψ∗
m r zmð Þð Þ

� ��
zα−2, z∊ 0, z1½ �,

ðz
zm

z − sð Þα−1
Γ αð Þ σ sð Þds − z − zmð Þα−1 + z − zmð Þα−1 + zm z − zmð Þα−2� �� �

1 − zmð Þ	 


×
ðzm
zm−1

zm − sð Þσ sð Þds − ψm r zmð Þð Þ
 !

− z − zmð Þα−2 + z − zmð Þα−1 + zm z − zmð Þα−2� �	 


×
ðzm
zm−1

zm − sð Þ2σ sð Þds − ψ∗
m r zmð Þð Þ

 !
− z − zmð Þα−1 + zm z − zmð Þα−2� � ð1

zm

1 − sð Þ2σ sð Þds
 !

, z∊ zm, zm+1ð �:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð10Þ
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Thus, putting the values in (12), we have

r zð Þ =
ðz
z1

z − sð Þα−1
Γ αð Þ σ sð Þds − z − z1ð Þα−1

�
ðz1
0

z1 − sð Þσ sð Þds − ψ1 r z1ð Þð Þ
� �

− z − z1ð Þα−2

�
ðz1
0

z1 − sð Þ2σ sð Þds − ψ∗
1 r z1ð Þð Þ

� �
− c0 z − z1ð Þα−1 + z1 z − z1ð Þα−2� �
− c1 z−11 z − z1ð Þα−1 + z − z1ð Þα−2� �

, z ∈ z1, z2ð �:
ð14Þ

The above process can be repeated in this way until we
obtain the solution rðzÞ for z ∈ ðzm, zm+1� as

r zð Þ =
ðz
zm

z − sð Þα−1
Γ αð Þ σ sð Þds − z − zmð Þα−1

�
ðzm
zm−1

zm − sð Þσ sð Þds − ψm r zmð Þð Þ
 !

− z − zmð Þα−2

�
ðzm
zm−1

zm − sð Þ2σ sð Þds − ψ∗
m r zmð Þð Þ

 !

− c0 z − zmð Þα−1 + zm z − zmð Þα−2� �
− c1 z−1m z − zmð Þα−1 + z − zmð Þα−2� �

, z ∈ zm, zm+1ð �:
ð15Þ

Now, applying boundary condition I1−αrð0Þ = 0 and I2−α

rð1Þ = 0 to get the values of constant c0 and c1, we have

c0 = 0,

c1 = zm

ð1
zm

1 − sð Þ2σ sð Þds − zm 1 − zmð Þ

�
ðzm
0

zm − sð Þσ sð Þds − ψm r zmð Þð Þ
� �

− zm

ðzm
0

zm − sð Þ2σ sð Þds − ψ∗
m r zmð Þð Þ

� �
:

ð16Þ

The values of c0, c1 putting in (11) and (15), one can
obtain (10). On the contrary, suppose rðzÞ is a solution
of the impulsive fractional integral equation (10). Follow-
ing the direct calculation, we see that (10) satisfies the
problem (9).

For simplification, we use the following notations:

σ1 = sup
z∈ 0,1½ �

z − zmð Þα−1 + z − zmð Þα−1 + zm z − zmð Þα−2� �
1 − zmð Þ

 

,

σ2 = sup
z∈ 0,1½ �

z − zmð Þα−2 + z − zmð Þα−1 + zm z − zmð Þα−2� �

 

,

σ3 = sup
z∈ 0,1½ �

z − zmð Þα−1 + zm z − zmð Þα−2

 

: ð17Þ

For the existence and uniqueness of the solution, we use
some fixed point theorems. To transform the considered
Problem (2) to a fixed point problem, we need to define
the operator by M : PCðJ ,RÞ⟶ PCðJ ,RÞ as

Mr zð Þ =
ðz
zm

z − sð Þα−1
Γ αð Þ σ sð Þds − 	� z − zmð Þα−1

+ z − zmð Þα−1 + zm z − zmð Þα−2� ��
1 − zmð Þ


×
ðzm
zm−1

zm − sð Þσ sð Þds − ψm r zmð Þð Þ
 !

− z − zmð Þα−2 + z − zmð Þα−1 + zm z − zmð Þα−2� �	 

×

ðzm
zm−1

zm − sð Þ2σ sð Þds − ψ∗
m r zmð Þð Þ

 !

− z − zmð Þα−1 + zm z − zmð Þα−2� � ð1
zm

1 − sð Þ2σ sð Þds
 !

:

ð18Þ

By using Lemma 6 with rðzÞ = f ðz, rðzÞ, RLDαrðzÞÞ,
Problem (2) is reduced to a fixed point problem MrðzÞ =
rðzÞ, where the operator M is given by (18). Therefore,
Problem (2) has a solution if and only if operator M has
a fixed point, where τðzÞ = f ðz, rðzÞ, τðzÞÞ and τðzÞ = RLDα

rðzÞ. The following hypotheses are satisfied:
(H1) The function f : J ×R ×R⟶R is continuous
(H2) There exist some constants K∗ > 0 and 0 < L∗ < 1,

such that

f z, r zð Þ, τ zð Þð Þ − f z,�r zð Þ, �τ zð Þð Þj j
≤ K∗ r zð Þ −�r zð Þj j + L∗ τ zð Þ − �τ zð Þj j, ð19Þ

for any r,�r ∈ PCðJ ,RÞ, τ, �τ ∈R, and z ∈ J .
(H3) There exists a constant N

∗
1 > 0, such that

ψm r zð Þð Þ − ψm �r zð Þð Þj j ≤N∗
1 r zð Þ −�r zð Þj j, ð20Þ

for each r,�r ∈ PCðJ ,RÞ and m = 1, 2, 3,⋯, q.
(H4) There exists a constant N

∗
2 > 0, such that

ψ∗
m r zð Þð Þ − ψ∗

m �r zð Þð Þj j ≤N∗
2 r zð Þ −�r zð Þj j, ð21Þ

for every r,�r ∈ PCðJ ,RÞ and m = 1, 2, 3,⋯, q.
We use Banach fixed point theorem to prove that prob-

lem (2) has unique solution.
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Theorem 7. Under hypotheses (H1)–(H4) and if the following
condition holds

K∗

1 − L∗
1

Γ α + 1ð Þ + σ1
2

+ σ2
3

+ σ3

3

� �
+ σ1N

∗
1 + σ2N

∗
2ð Þ

� �
< 1,

ð22Þ

then, there exists a unique solution for Problem (2) on J .

Proof. Let r,�r ∈ PCðJ ,RÞ for some z ∈ J , we have

Mr zð Þ −M�r zð Þj j

≤
ðz
zm

z − sð Þα−1
Γ αð Þ f s, r sð Þ, τ sð Þð Þ − f s,�r sð Þ, �τ sð Þð Þj jds

+ z − zmð Þα−1 + z − zmð Þα−1 + zm z − zmð Þα−2� �
1 − zmð Þ

 



×
 ðzm

zm−1

zm − sð Þ f s, r sð Þ, τ sð Þð Þ − f s,�r sð Þ, �τ sð Þð Þj jds

+ ψm r zð Þð Þ − ψm �r zð Þð Þj j
!
+ j z − zmð Þα−2

+ z − zmð Þα−1 + zm z − zmð Þα−2� �j
×
 ðzm

zm−1

zm − sð Þ2 f s, r sð Þ, τ sð Þð Þ − f s,�r sð Þ, �τ sð Þð Þj jds

+ ψ∗
m r zð Þð Þ − ψ∗

m �r zð Þð Þj j
!
+ z − zmð Þα−1 + zm z − zmð Þα−2

 



×
ð1
zm

1 − sð Þ2 f s, r sð Þ, τ sð Þð Þ − f s,�r sð Þ, �τ sð Þð Þj jds
 !

,

ð23Þ

which further gives

Mr zð Þ −M�r zð Þj j

≤
ðz
zm

z − sð Þα−1
Γ αð Þ τ sð Þ − �τ sð Þj jds + j z − zmð Þα−1

+ z − zmð Þα−1 + zm z − zmð Þα−2� �
1 − zmð Þj

×
ðzm
zm−1

zm − sð Þ τ sð Þ − �τ sð Þj j + ψm r zð Þð Þ − ψm �r zð Þð Þj j
 !

+ z − zmð Þα−2 + z − zmð Þα−1 + zm z − zmð Þα−2� �

 


×

ðzm
zm−1

zm − sð Þ2 τ sð Þ − �τ sð Þj jds + ψ∗
m r zð Þð Þ − ψ∗

m �r zð Þð Þj j
 !

+ z − zmð Þα−1 + zm z − zmð Þα−2

 

 ð1
zm

1 − sð Þ2 τ sð Þ − �τ sð Þj jds
 !

,

ð24Þ

where τ, �τ ∈CðJ ,RÞ are given by

τ zð Þ = f z, r zð Þ, τ zð Þð Þ,
�τ zð Þ = f z,�r zð Þ, �τ zð Þð Þ:

ð25Þ

By using hypothesis ðH2Þ, we have

τ zð Þ − �τ zð Þj j = f z, r zð Þ, τ zð Þð Þ − f z,�r zð Þ, �τ zð Þð Þj j
≤ K∗ r zð Þ −�r zð Þj j + L∗ τ zð Þ − �τ zð Þj j: ð26Þ

Repeating this process, we get

τ zð Þ − �τ zð Þj j ≤ K∗

1 − L∗
r zð Þ −�r zð Þj j: ð27Þ

Therefore, for every z ∈ J and from (24), using hypoth-
esis ðH3Þ, ðH4Þ, and (27), one has

Mr zð Þ −M�r zð Þj j

≤
K∗

1 − L∗

ðz
zm

z − sð Þα−1
Γ αð Þ r sð Þ −�r sð Þj jds + j z − zmð Þα−1

+ z − zmð Þα−1 + zm z − zmð Þα−2� �
1 − zmð Þj

× K∗

1 − L∗

ðzm
zm−1

zm − sð Þ r sð Þ −�r sð Þj jds +N∗
1 r zð Þ −�r zð Þj j

 !

+ z − zmð Þα−2 + z − zmð Þα−1 + zm z − zmð Þα−2� �

 


× K∗

1 − L∗

ðzm
zm−1

zm − sð Þ2 r sð Þ −�r sð Þj jds +N∗
2 r zð Þ −�r zð Þj j

 !

+ z − zmð Þα−1 + zm z − zmð Þα−2

 

 K∗

1 − L∗

�
ð1
zm

1 − sð Þ2 r sð Þ −�r sð Þj jds
 !

:

ð28Þ

Upon further simplification, (29) yields

Mr −M�rk k

≤
K∗

1 − L∗
z − zmð Þα
Γ α + 1ð Þ r − �rk k + σ1

 
K∗

1 − L∗
zm − zm−1ð Þ2

2 r −�rk k

+N∗
1 r − �rk k

!
+ σ2

K∗

1 − L∗
zm − zm−1ð Þ3

3 r − �rk ∣+N∗
2 r −�rk k

 !

+ σ3
K∗

1 − L∗
1 − zmð Þ3

3 ∥r − �r∥

 !
:

ð29Þ

Hence, from (29), we have

Mr −M�rk k
≤

K∗

1 − L∗
1

Γ α + 1ð Þ + σ1
2 + σ2

3 + σ3
3

� �
+ σ1N

∗
1 + σ2N

∗
2ð Þ

� �
� r −�rk k:

ð30Þ

By (22), operator M is a contraction. Thus, according to
Banach’s contraction principle, operator M has a unique
fixed point which is the unique solution to Problem (2).
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Next, we will prove that Problem (2) has at least one
solution for this, and we use Schaefer’s fixed point theorem.
Let the given hypotheses hold true:

(H5) There exist x, y, h ∈ PCðJ ,RÞ, with

x∗ = sup
z∈ 0,1½ �

x zð Þ,

y∗ = sup
z∈ 0,1½ �

y zð Þ,

h∗ = sup
z∈ 0,1½ �

h zð Þj j < 1,

ð31Þ

such that

f z, r zð Þ, τ zð Þð Þj j ≤ x zð Þ + y zð Þ r zð Þj j + h zð Þ τ zð Þj j, ð32Þ

for z ∈ J , r ∈ PCðJ ,RÞ, and τ ∈ R.
(H6) The function ψm : PCðJ ,RÞ⟶R is continuous,

and there exist constants A∗
1 , B∗

1 > 0 such that

ψm r zð Þð Þj j ≤ A∗
1 r zð Þj j + B∗

1 , ð33Þ

for every r ∈ PCðJ ,RÞ, m = 1,⋯, q.
(H7) The function ψ∗

m : PCðJ ,RÞ⟶R is continuous,
and there exist constants A∗

2 , B∗
2 > 0 such that

ψ∗
m r zð Þð Þj j ≤ A∗

2 r zð Þj j + B∗
2 , ð34Þ

for every r ∈ PCðJ ,RÞ, m = 1,⋯, q.

Theorem 8. If the hypotheses (H1), (H2), (H5)-(H7 ) are sat-
isfied, then Problem (2) has at least one solution.

Proof. The proof is performed in several steps.

(Step 1) The operator M is continuous

Assume frng be a sequence such that rn ⟶ r on PC
ðJ ,RÞ.

For z ∈ J , we have

Mrn zð Þ −Mr zð Þj j

≤
ðz
zm

z − sð Þα−1
Γ αð Þ τn sð Þ − τ sð Þj jds + j z − zmð Þα−1

+ z − zmð Þα−1 + zm z − zmð Þα−2� �
1 − zmð Þj

×
ðzm
zm−1

zm − sð Þ τn sð Þ − τ sð Þj jds + ψm rn zð Þð Þ − ψm r zð Þð Þj j
 !

+ z − zmð Þα−2 + z − zmð Þα−1 + zm z − zmð Þα−2� �

 


×

ðzm
zm−1

zm − sð Þ2 τn sð Þ − τ sð Þj jds + ψ∗
m rn zð Þð Þ − ψ∗

m r zð Þð Þj j
 !

+ z − zmð Þα−1 + zm z − zmð Þα−2

 

 ð1
zm

1 − sð Þ2 τn sð Þ − τ sð Þj jds
 !

,

ð35Þ

where τnðzÞ, τðzÞ ∈ PCðJ ,RÞ are given by

τn zð Þ = f z, rn zð Þ, τn zð Þð Þ,
τ zð Þ = f z, r zð Þ, τ zð Þð Þ:

ð36Þ

Now, from assumption ðH2Þ, we have

τn zð Þ − τ zð Þj j = f z, rn zð Þ, τn zð Þð Þ − f z, r zð Þ, τ zð Þð Þj j
≤ K∗ rn − rk k + L∗ τn zð Þ − τ zð Þj j: ð37Þ

Repeating this process, we get

τn zð Þ − τ zð Þj j ≤ K∗

1 − L∗
rn − rk k: ð38Þ

Since rn ⟶ r, τnðzÞ⟶ τðzÞ as n⟶∞ for every z ∈
J . We know that every convergent sequence is bounded,
so for this, let ζ > 0 such that for every z ∈ J , we have jτnðzÞ
j ≤ ζ and ∣τðzÞ ∣ ≤ζ. Then, we have

z − sð Þα−1 τn zð Þ − τ zð Þj j ≤ z − sð Þα−1 τn zð Þj j + τ zð Þj j½ �
≤ 2ζ z − sð Þα−1,

zm − sð Þα−1 τn zð Þ − τ zð Þj j ≤ zm − sð Þα−1 τn zð Þj j + τ zð Þj j½ �
≤ 2ζ zm − sð Þα−1,

ð39Þ

for every z ∈ J ; the function s⟶ 2ζðz − sÞα−1 and s⟶ 2ζ
ðzm − sÞα−1 are integrable on ½0, 1�, upon the use of these facts
and the Lebesque-dominated convergence theorem in (35).
After using assumptions ðH5Þ‐ðH7Þ, we see that

Mrn zð Þ −Mr zð Þj j⟶ 0,  asn⟶∞, ð40Þ

and hence, we have

Mrn −Mrk k⟶ 0,  n⟶∞: ð41Þ

Therefore, operator M is continuous.

(Step 2) The operator M assigns bounded sets to
bounded sets on PCðJ ,RÞ. Just prove it for
any ξ∗ > 0, there exists a positive constant E∗,
such that for every r ∈D = fr ∈ PCðJ ,RÞ, krk
≤ ξ∗g, we have kMrk ≤ E∗. To derive this result
for each z ∈ J , one has
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Mr zð Þj j

≤
ðz
zm

z − sð Þα−1
Γ αð Þ τ sð Þj jds + j z − zmð Þα−1

+ z − zmð Þα−1 + zm z − zmð Þα−2� �
1 − zmð Þj

×
ðzm
zm−1

zm − sð Þ τ sð Þj jds + ψm r zmð Þð Þj j
 !

+ z − zmð Þα−2 + z − zmð Þα−1 + zm z − zmð Þα−2� �

 


×

ðzm
zm−1

zm − sð Þ2 τ sð Þj jds + ψ∗
m r zmð Þð Þj j

 !

+ z − zmð Þα−1 + zm z − zmð Þα−2

 

 ð1
zm

1 − sð Þ2 τ sð Þj jds
 !

,

ð42Þ

where τðzÞ ∈CðJ ,RÞ is given by

τ zð Þ = f z, r zð Þ, τ zð Þð Þ: ð43Þ

By hypothesis (H5) and for every z ∈ J , we have

τ zð Þj j = f z, r zð Þ, τ zð Þð Þj j ≤ x zð Þ + y zð Þ r zð Þj j + h zð Þ τ zð Þj j
≤ x zð Þ + y zð Þ rk k + h zð Þ τ zð Þj j
≤ x zð Þ + y zð Þξ∗ + h zð Þ τ zð Þj j ≤ x∗ + y∗ξ∗ + h∗ τ zð Þj j:

ð44Þ

Thus, we have

τ zð Þj j ≤ x∗ + y∗ξ∗

1 − h∗
≔ R∗: ð45Þ

Therefore, from (42) by using (45), one has

Mr zð Þj j ≤ R∗

Γ α + 1ð Þ + σ1R
∗

2 + A∗
1ξ

∗ + B∗
1 +

σ2R
∗

3

+ A∗
2ξ

∗ + B∗
2 +

σ3R
∗

3 :

ð46Þ

Hence, one has

Mrk k ≤ R∗ 1
Γ α + 1ð Þ + σ1

2 + σ2
3 + σ3

3

� �
+ A∗

1 + A∗
2ð Þξ∗ + B∗

1 + B∗
2

� �
≔ E∗,

Mrk k ≤ E∗: ð47Þ

Therefore, the operator M is bounded.

(Step 3) The operator M assigns bounded sets to equi-
continuous sets of PCðJ ,RÞ: Let z1, z2 ∈ J ,
and z1 < z2. D is a bounded set as in Step 2,
and let r ∈D; then, we have

Mr z2ð Þ −Mr z1ð Þj j

≤
ðz2
zm

z2 − sð Þα−1
Γ αð Þ τ sð Þds −

ðz1
zm

z1 − sð Þα−1
Γ αð Þ τ sð Þds














+ j z2 − zmð Þα−1 + z2 − zmð Þα−1 + zm z2 − zmð Þα−2� �
1 − zmð Þ	 


− z1 − zmð Þα−1 + z1 − zmð Þα−1 + zm z1 − zmð Þα−2� �
1 − zmð Þ	 
j

�
ðzm
zm−1

zm − sð Þ τ sð Þj jds + ψm r zmð Þð Þj j
 !

+ j z2 − zmð Þα−2 + z2 − zmð Þα−1 + zm z2 − zmð Þα−2� �	 

− z1 − zmð Þα−2 + z1 − zmð Þα−1 + zm z1 − zmð Þα−2� �	 
j
�

ðzm
zm−1

zm − sð Þ2 τ sð Þj jds + ψ∗
m r zmð Þð Þj j

 !

+ j z2 − zmð Þα−1 + zm z2 − zmð Þα−2	 

− z1 − zmð Þα−1 + zm z1 − zmð Þα−2	 
j ð1

zm

1 − sð Þ2 τ sð Þj jds
 !

:

ð48Þ

Using (45) and hypotheses ðH6Þ and ðH7Þ in (48), we
obtain

Mr z2ð Þ −Mr z1ð Þj j
≤

R∗

Γ α + 1ð Þ z2 − zmð Þα − z1 − zmð Þαð Þ

+ R∗ zm − zm−1ð Þ2
2 + A∗

1ξ
∗ + B∗

1

" #

� z2 − zmð Þα−1 − z1 − zmð Þα−1� �
zm

+ R∗ zm − zm−1ð Þ2
2 + A∗

1ξ
∗ + B∗

1

" #

� z2 − zmð Þα−2 − z1 − zmð Þα−2� �
zm 1 − zmð Þ

+ R∗ zm − zm−1ð Þ3
3 + A∗

2ξ
∗ + B∗

2

" #

� z2 − zmð Þα−2 − z1 − zmð Þα−2� �
1 + zmð Þ

+ R∗ zm − zm−1ð Þ3
3 + A∗

2ξ
∗ + B∗

2

" #

� z2 − zmð Þα−1 − z1 − zmð Þα−1� �
+ R∗ 1 − zmð Þ3

3

" #

� z2 − zmð Þα−1 − z1 − zmð Þα−1� �
+ R∗ 1 − zmð Þ3

3

" #

� z2 − zmð Þα−2 − z1 − zmð Þα−2� �
zmð Þ:

ð49Þ

Clearly, in the inequality (49), the right hand side
tends to zero as z1 ⟶ z2: Hence, jMrðz2Þ −Mrðz1Þj⟶
0 as z1 ⟶ z2. As a consequence of the passage from Step
1 to Step 3 combined with the Arzellá-Ascolli theorem, we
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conclude that M : PCðJ ,RÞ⟶ PCðJ ,RÞ is completely
continuous.

(Step 4) In the last step, we need to show that the
set F = frðzÞ ∈ PCðJ ,RÞ: rðzÞ = μMðrðzÞÞ, for
some 0 < μ < 1g is bounded. Let r ∈ F; then,
rðzÞ = μMðrðzÞÞ for some 0 < i < 1. Therefore,
for every z ∈ J , we have

r zð Þ = μM r zð Þð Þ

= μ
ðz
zm

z − sð Þα−1
Γ αð Þ τ sð Þds

− μ z − zmð Þα−1 + z − zmð Þα−1 + zm z − zmð Þα−2� �� �
1 − zmð Þ	 


×
ðzm
zm−1

zm − sð Þτ sð Þds − ψm r zmð Þð Þ
 !

− μ z − zmð Þα−2 + z − zmð Þα−1 + zm z − zmð Þα−2� �	 

×

ðzm
zm−1

zm − sð Þ2τ sð Þds − ψ∗
m r zmð Þð Þ

 !

− μ z − zmð Þα−1 + zm z − zmð Þα−2� � ð1
zm

1 − sð Þ2τ sð Þds
 !

:

ð50Þ
Now, we have

r zð Þj j = μ M r zð Þð Þj j

≤
ðz
zm

z − sð Þα−1
Γ αð Þ τ sð Þj jds + j z − zmð Þα−1

+ z − zmð Þα−1 + zm z − zmð Þα−2� �
1 − zmð Þj

×
ðzm
zm−1

zm − sð Þ τ sð Þj jds + ψm r zmð Þð Þj j
 !

+ z − zmð Þα−2 + z − zmð Þα−1 + zm z − zmð Þα−2� �

 


×

ðzm
zm−1

zm − sð Þ2 τ sð Þj jds + ψ∗
m r zmð Þð Þj j

 !

+ z − zmð Þα−1 + zm z − zmð Þα−2

 

 ð1
zm

1 − sð Þ2 ∣ τ sð Þ ∣ ds
 !

:

ð51Þ

Using (45) and hypotheses ðH6Þ and ðH7Þ in (51), we get

r zð Þj j ≤ R∗

Γ α + 1ð Þ + σ1R
∗

2 + A∗
1ξ

∗ + B∗
1 +

σ2R
∗

3

+ A∗
2ξ

∗ + B∗
2 +

σ3R
∗

3 :

ð52Þ

Hence, one has from where

rk k ≤ R∗ 1
Γ α + 1ð Þ + σ1

2 + σ2
3 + σ3

3

� �
+ A∗

1 + A∗
2ð Þξ∗ + B∗

1 + B∗
2

� �
≔ Z∗,

rk k ≤ Z∗:

ð53Þ

Hence, the given set F is bounded as a result of the
Schaefer fixed point theorem, and we conclude that operator
M has at least one fixed point. Hence, the corresponding
Problem (2) has at least one solution.

4. Examples

Here, we provide two pertinent examples to verify the previ-
ous results.

Example 1. Consider the following IDE under the Riemann-
Liouville-type integral boundary condition and the Riemann-
Liouville fractional order derivative

RLDα
r zð Þ = z + cos r zð Þð Þ + cos RLDαr zð Þ� �

90 + z2
, 1 < α ≤ 2, z ∈ 0, 1½ �, z ≠ 1

5 ,

Δr
1
5

� �
= ψ1 r

1
5

� �� �
= sin r 1/5ð Þð Þ

30 ,

Δ∗r
1
5

� �
= ψ∗

1 r
1
5

� �� �
= e−r 1/5ð Þ

15 ,

 I1−αr 0ð Þ = 0, I2−αr 1ð Þ = 0:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð54Þ

where α = ð1/2Þ, we set

f z, r zð Þ, τ zð Þð Þ = z + cos r zð Þð Þ + cos τ zð Þð Þ
90 + z2

, r zð Þ ∈ PC J ,Rð Þ, 
τ zð Þ ∈R, and z ∈ 0, 1½ �:

ð55Þ

Clearly f is a jointly continuous function.
Now for every rðzÞ, �rðzÞ ∈ PCðJ ,RÞ, τðzÞ, �τðzÞ ∈R,

and z ∈ ½0, 1�, we have

f z, r zð Þ, τ zð Þð Þ − f z,�r zð Þ, �τ zð Þð Þj j
= z + cos r zð Þð Þ + cos τ zð Þð Þ

90 + z2
−
z + cos �r zð Þð Þ + cos �τ zð Þð Þ

90 + z2












= cos r zð Þð Þ − cos �r zð Þð Þ + cos τ zð Þð Þ − cos �τ zð Þð Þ
90 + z2












≤
cos r zð Þð Þ − cos �r zð Þð Þ

90 + z2










 + cos τ zð Þð Þ − cos �τ zð Þð Þ

90 + z2










,

f z, r zð Þ, τ zð Þð Þ − f z,�r zð Þ, �τ zð Þð Þj j ≤ 1
90 r −�rj j + τ − �τj jð Þ:

ð56Þ

Which satisfies hypothesis ðH2Þ with K∗ = L∗ = ð1/90Þ.
Now, we set

Δr
1
5

� �
= ψ1 r

1
5

� �� �
= sin r 1/5ð Þð Þ

30 ,  r ∈ PC J ,Rð Þ:

ð57Þ
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Then, for rðzÞ, �rðzÞ ∈ PCðJ ,RÞ, we have

ψ1 r
1
5

� �� �
− ψ1 r

1
5

� �� �










= sin r 1/5ð Þð Þ
30 −

sin �r 1/5ð Þð Þ
30










 ≤ 1

30 r −�rj j:
ð58Þ

Therefore, with N∗
1 = ð1/30Þ, hypothesis ðH3Þ is satisfied.

Next, we set

Δ∗r
1
5

� �
= ψ∗

1 r
1
5

� �� �
= e− r 1/5ð Þð Þ

15 ,  r ∈ PC J ,Rð Þ: ð59Þ

Then, for rðzÞ, �rðzÞ ∈ PCðJ ,RÞ, we have

ψ∗
1 r

1
5

� �� �
− ψ∗

1 r
1
5

� �� �








 = e− r 1/5ð Þð Þ

15 −
e− �r 1/5ð Þð Þð Þ

15










 ≤ 1

15 r −�rj j:

ð60Þ

Thus, with N∗
2 = ð1/15Þ, hypothesis ðH4Þ is satisfied. Fur-

ther, we need to satisfy the given condition of Theorem 7, by

K∗

1 − L∗
1

Γ α + 1ð Þ +
σ1
2 + σ2

3 + σ3
3

� �
+ σ1N

∗
1 + σ2N

∗
2ð Þ

� �

= 1
90

1
Γ α + 1ð Þ + 35

20 + 55
30 + 28

30

� �
+ 35
300 + 55

150

� �
< 1:

ð61Þ

Therefore, all the hypotheses and conditions of Theorem
7 are satisfied. Therefore, the considered problem (54) has a
unique solution on J .

Example 2. Consider another example of IDE under the
Riemann-Liouville-type integral boundary condition and
the Riemann-Liouville fractional order derivative:

where α = ð3/2Þ and RLDαrðzÞ = τðzÞ: We set

f z, r zð Þ, τ zð Þð Þ =
e−z + e−2z sin

ffiffiffiffiffiffiffiffi
r zð Þp� �

+ sin
ffiffiffiffiffiffiffiffiffi
τ zð Þp� �

35 + z3
, 

r zð Þ ∈ PC J ,Rð Þ, τ zð Þ ∈R, z ∈ 0, 1½ �:
ð63Þ

Clearly f is a jointly continuous function.
Now for every rðzÞ, �rðzÞ ∈ PCðJ ,RÞ, τðzÞ, �τðzÞ ∈R,

and z ∈ ½0, 1�, we have

f z, r zð Þ, τ zð Þð Þ − f z,�r zð Þ, �τ zð Þð Þj j

=
e−z + e−2z sin

ffiffiffiffiffiffiffiffi
r zð Þp� �

+ sin
ffiffiffiffiffiffiffiffiffi
τ zð Þp� �

35 + z3








−
e−z + e−2z sin

ffiffiffiffiffiffiffiffi
�r zð Þp� �

+ sin
ffiffiffiffiffiffiffiffiffi
�τ zð Þp� �

35 + z3









≤
e−2z sin

ffiffiffiffiffiffiffiffi
r zð Þp� �

− sin
ffiffiffiffiffiffiffiffi
�r zð Þp� �n o

35 + z3
















+
sin

ffiffiffiffiffiffiffiffiffi
τ zð Þp� �

− sin
ffiffiffiffiffiffiffiffiffi
�τ zð Þp� �

35 + z3
















≤
e−2z

35 + z3
ffiffiffiffiffiffiffiffi
r zð Þ

p
−

ffiffiffiffiffiffiffiffi
�r zð Þ

p


 


 + 1
35 + z3

ffiffiffiffiffiffiffiffiffi
τ zð Þ

p
−

ffiffiffiffiffiffiffiffiffi
�τ zð Þ

p


 


,

f z, r zð Þ, τ zð Þð Þ − f z,�r zð Þ, �τ zð Þð Þj j ≤ 1
35 r −�rj j + τ − �τj jð Þ:

ð64Þ

This satisfies hypothesis (H2), with K∗ = L∗ = ð1/35Þ:

RLDα
r zð Þ =

e−z + e−2z sin
ffiffiffiffiffiffiffiffi
r zð Þp� �

+ sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RLDαr zð Þ

p� �
35 + z3

, 1 < α ≤ 2, z ∈ 0, 1½ �, z ≠ 1
7 ,

Δr
1
7

� �
= ψ1 r

1
7

� �� �
= tan r 1/7ð Þð Þ
25 + tan r 1/7ð Þð Þ ,

Δ∗r
1
7

� �
= ψ∗

1 r
1
7

� �� �
= er zð Þ

55 + 30er zð Þ ,

 I1−αr 0ð Þ = 0, I2−αr 1ð Þ = 0:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð62Þ
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Now, another hypotheses for every rðzÞ ∈ PCðJ ,RÞ,
τðzÞ ∈R, and z ∈ ½0, 1�, we have

f z, r zð Þ, τ zð Þð Þj j

=
e−z + e−2z sin

ffiffiffiffiffiffiffiffi
r zð Þp� �

+ sin
ffiffiffiffiffiffiffiffiffi
τ zð Þp� �

35 + z3
















≤
e−z

35 + z3
+ e−2z

35 + z3
ffiffiffiffiffiffiffiffi
r zð Þ

p


 


 + 1
35 + z3

ffiffiffiffiffiffiffiffiffi
τ zð Þ

p


 



≤

e−z

35 + z3
+ e−2z

35 + z3
r zð Þj j + 1

35 + z3
τ zð Þj j:

ð65Þ

Thus, hypothesis (H5) is satisfied with xðzÞ = ðe−z/35
+ z3Þ, yðzÞ = ðe−2z/35 + z3Þ, and hðzÞ = ð1/35 + z3Þ: Now,
we set

Δr
1
7

� �
= ψ1 r

1
7

� �� �
= tan r 1/7ð Þð Þ
25 + tan r 1/7ð Þð Þ ,  r ∈ PC J ,Rð Þ:

ð66Þ

Then, for every r ∈ PCðJ ,RÞ, we have

ψ1 r
1
7

� �� �








 = tan r 1/7ð Þð Þ

25 + tan r 1/7ð Þð Þ










,  ≤
1
25 rj j + 1: ð67Þ

Therefore, hypothesis (H6) is satisfied with A∗
1 = ð1/25Þ

and B∗
1 = 1. Next, we set

Δ∗r
1
7

� �
= ψ∗

1 r
1
7

� �� �
= e r 1/7ð Þð Þ

55 + 30e r 1/7ð Þð Þ ,  r ∈ PC J ,Rð Þ:

ð68Þ

Then, for every r ∈ PCðJ ,RÞ, we have

ψ∗
1 r

1
7

� �� �








 = e r 1/7ð Þð Þ

55 + 30e r 1/7ð Þð Þ










,  ≤

1
55 rj j + 1

30 : ð69Þ

Thus, hypothesis (H7) is satisfied with A∗
2 = ð1/55Þ and

B∗
2 = ð1/30Þ. Therefore, all of the hypotheses of Theorem 8

are satisfied, and therefore, the considered problem (62)
has at least one solution on J .

5. Conclusion

IDEs of the fractional order have received proper attention
due to their important applications in various fields of
applied sciences. In the past, most studies have been done
using the Caputo-type fractional derivatives to handle
IDEs. In very few papers, investigating IDEs of the frac-
tional order was done using the Riemann-Liouville deriva-
tive. Therefore, we have established successfully some
important results devoted to the existence theory of a
solution to the considered nonlinear implicit IDE with
the Riemann-Liouville-type integral boundary conditions
under the Riemann-Liouville fractional order derivative.
The corresponding results for the existence and unique-

ness of the solution have been archived by utilizing the
classical Schiefer and Banach contraction fixed point theo-
rems. For the demonstration of our results, we have
enriched the paper by providing two pertinent examples.
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The theory of Bessel functions is a rich subject due to its essential role in providing solutions for differential equations associated
with many applications. As fractional calculus has become an efficient and successful tool for analyzing various mathematical and
physical problems, the so-called fractional Bessel functions were introduced and studied from different viewpoints. This paper is
primarily devoted to the study of developing two aspects. The starting point is to present a fractional Laplace transform via
conformable fractional-order Bessel functions (CFBFs). We establish several important formulas of the fractional Laplace
Integral operator acting on the CFBFs of the first kind. With this in hand, we discuss the solutions of a generalized class of
fractional kinetic equations associated with the CFBFs in view of our proposed fractional Laplace transform. Next, we derive
an orthogonality relation of the CFBFs, which enables us to study an expansion of any analytic functions by means of CFBFs
and to propose truncated CFBFs. A new approximate formula of conformable fractional derivative based on CFBFs is
provided. Furthermore, we describe a useful scheme involving the collocation method to solve some conformable fractional
linear (nonlinear) multiorder differential equations. Accordingly, several practical test problems are treated to illustrate the
validity and utility of the proposed techniques and examine their approximate and exact solutions. The obtained solutions of
some fractional differential equations improve the analog ones provided by various authors using different techniques. The
provided algorithm may be beneficial to enrich the Bessel function theory via fractional calculus.

1. Introduction

The theory of special functions is a critical branch of mod-
ern mathematical analysis. During the past three decades,
several new classes of special functions have been proposed
as solutions of fractional differential equations (FDEs). No
other special functions have received such detailed treat-
ment in readily available treatises as Bessel functions. The
investigation of such functions is an important problem
in fractional calculus, which has earned much attention as
real-life problems can be analyzed well. Fractional calculus
appears in many branches of science, such as medicine, mate-
rial sciences, electromagnetics, and fluid mechanics (see
[1–4]). Many applications have been performed through
FDEs, and their solution techniques could be found, for
example, in [5–11].

We trace the existing efforts regarding fractional order
derivatives. Several definitions of the fractional order deriva-
tive have been introduced by many famous authors, such as
Euler, Fourier, Letnikov, Laurent, Grünwald-Letnikov,
Caputo, and Riemann-Liouville. Other definitions have also
been provided by Kilbas et al. and Miller and Ross in [3, 10].
The most popular definitions considered frequently in the
literature are derivatives by Riemann-Liouville, Caputo,
and Grünwald-Letnikov. Interestingly, each definition of
the arbitrary order derivative captures only a few properties
of the classical integral derivative. However, a few drawbacks
exist; for instance, Dα

að1Þ = 0 does not fulfill the Riemann-
Liouville definition. In Caputo’s definition, f ðxÞ is assumed
to be differentiable; otherwise, one cannot use such a defini-
tion. Moreover, Liouville’s theorem in the fractional setting
does not hold. Therefore, it is clear that all definitions of
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fractional derivatives seem deficient regarding certain math-
ematical properties, such as the rules of product, quotient,
and chain. For more details concerning other properties of
these fractional order derivatives, see, for example, [4] and
the references therein.

Due to the mentioned arguments, a new definition of the
fractional order derivative is needed to achieve suitable
mathematical properties. Khalil et al. [12] introduced a
well-extended definition of the noninteger order derivative
called the conformable fractional derivative (CFD). This def-
inition is formulated as follows:

Definition 1 (see [12]). For the initial real value a, the con-
formable fractional derivative Dα

a f ðxÞ of a real function
f : ½a,∞Þ⟶ℝ, α ∈ ð0, 1� is defined by the following:

Dα
a f xð Þ = lim

h⟶0

f x + h x − að Þ1−α� �
− f xð Þ

h
, for all x > a:

ð1Þ

The initial value a can be zero, and if the limit exists,
then f ðxÞ is called α-differentiable.

Along with the CFD’s Definition 1, if f ðxÞ is differentiable,
then Dα f ðxÞ = x1−α f ′ðxÞ (see [12]). Moreover, if Definition 1
holds for α = 0, we obtain D0 f ðxÞ = f ðxÞ. Additionally, we
have D0 f ðxÞ = xf ′ðxÞ; hence, x = f ðxÞ/f ′ðxÞ, which indicates
that x relies on some functions; it is unreasonable. Therefore,
the CFD definition [12] does not need to hold for zero order.
For the conformable fractional integral, we state the following
definition as given in the following [12]:

Definition 2 (see [12]). Let f : ½0,∞Þ⟶ℝ: Then, for any
β ∈ ð0, 1�, the conformable fractional integral Iβ f ðxÞ of order
β of f is defined as follows:

Iβ f xð Þ =
ðx
0
tβ−1 f tð Þdt: ð2Þ

Definition 1 depends entirely on the basic limit like the
classical order derivative. Furthermore, Definition 1 fulfills
various classical properties, such as the mean value theorem
and the product, quotient, and chain rules. Moreover, this
definition is provided with the Leibniz rule, in which other
fractional derivatives can not achieve (see [13]). Growing
attention has been paid to explore the conformable deriva-
tives due to the enormous number of their meaningful
applications in many fields of science. Abul-Ez et al. [14]
introduced a comprehensive study on the conformable frac-
tional Legendre polynomials. They presented the shifted
conformable fractional Legendre polynomials and described
an applicable scheme using the collocation method to solve
some fractional differential equations (FDEs) in the sense of
conformable derivative. Recently, the conformable fractional
Gauss hypergeometric function and a class of conformable
fractional differential equations through that function were
treated in [15]. Further interesting ideas on the conformable
derivative can be found in the work by [16–23].

Note that some authors have demonstrated that the con-
formable derivative is not the same as a fractional order
derivative, but it is a first-order derivative multiplied by an
additional factor (see for example [23]). Hence, Definition
1 seems to be a natural extension of the conventional order
derivative to noninteger order loosing memory effect. In
addition, a new approach for finding fractional operators
was introduced by Antagan and Baleanu [24] with a nonsin-
gular Mittag-Leffler kernel with a memory effect.

Returning to the purpose of the present work, we
observe that Bessel functions are playing a significant role
in investigating the solution of important differential equa-
tions (for example, see [25]). The theory of Bessel functions
is usually used when solving problems related to information
theory, nuclear physics, radiophysics, and hydrodynamics.
Recently, as in [26–30], a resurgence of interest has occurred
in the study of Bessel functions in the framework of frac-
tional calculus theory. Along with the work in [26, 27], we
employ conformable fractional order Bessel functions
(CFBFs) to solve problems of a fractional nature. The study
of a Bessel function of half-integer order led to discovering
another interesting class of orthogonal polynomials called
the Bessel polynomials. Many authors have used these poly-
nomials. For example, Yüzbaşi et al. [31] solved linear inte-
gral, differential, and integro-differential equations, while
Parand et al. [32] applied Bessel functions to solve nonlinear
Lane-Emden equations. In [33], fractional optimal control
problems were solved using the Bessel collocation method.

The present work proposes an approach to approximat-
ing the solution for some important linear and nonlinear
FDEs in the conformable sense. The paper is designed with
two objectives. The first is to establish some interesting
properties of fractional Laplace-type integrals of functions
via CFBFs. Then, we use the obtained results to establish
the possible solutions of conformable fractional kinetic
equations through CFBFs. The second objective is concerned
with developing applications of the fundamental process of
the proposed approach in terms of CFBFs. To achieve that,
we derive an orthogonality relation, expand functions in
terms of the truncated CFBFs, and effectively formulate a
scheme involving the collocation method which employed
to provide solutions of certain types of linear and nonlinear
CFBEs.

The structure of this paper is organized as follows. The
needed concepts and features of CFD are collected in Section
2. Next, Section 3 establishes useful properties of Laplace
transforms in the sense of CFBFs, with some applications
to solve a new type of conformable fractional kinetic equa-
tions. Section 4 is divided into four subsections. Section
4.1 provides essential results on orthogonality relations.
A brief study on an expansion of any analytic function
employing CFBFs is the subject of Section 4.2. In Section
4.3, we construct an algorithm for solving various kinds
of problems using CFBFs through the collocation method.
Section 4.4 presents the concepts that have been developed
through previous subsections to solve some linear and
nonlinear conformable fractional differential equations
(CFDEs), including the nonlinear Riccati FDE. Concluding
remarks are provided in Section 5.
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2. Preliminaries and Basic Concepts

The Bessel equation is a special case of the Sturm-Liouville
problem, and it can be written as [34]

x2y′′ + xy′ + x2 − n2
� �

y = 0: ð3Þ

In view of formula (1), the authors of [26] solved the fol-
lowing conformable fractional Bessel equation:

x2αDαDαy + αxαDαy + α2 x2α − n2
� �

y = 0, ð4Þ

around the regular singular point x = 0, and introduced the
CFBFs of the first kind JαnðxÞ as its solution such that

Jαn xð Þ = 〠
∞

κ=0

−1ð Þκ
κ!Γ n + κ + 1ð Þ

xα

2

� �n+2κ
: ð5Þ

Moreover, they investigated in [26] some of its recur-
rence relations from which we may mention

Dα xαnJαn xð Þ½ � = αxαnJαn−1 xð Þ,
Dα x−αnJαn xð Þ½ � = −αx−αnJαn+1 xð Þ,

Dα Jαn xð Þ½ � = αJαn−1 xð Þ − αn
xα

Jαn xð Þ,

Dα Jαn xð Þ½ � = αn
xα

Jαn xð Þ − αJαn+1 xð Þ,

ð6Þ

In the following, we are about to recall some essential
definitions and results which are needed in the sequel.

Definition 3. The Gauss hypergeometric function 2F1ða, b ;
c ; xÞ is defined by (see [35])

2F1 a, b ; c ; xð Þ = 〠
∞

n=0

að Þn bð Þn
cð Þn

xn

n!
,  xj j < 1 ð7Þ

where ðδÞn stands for the familiar Pochhammar symbol
which can be written in terms of Gamma function as

δð Þn =
Γ δ + nð Þ
Γ δð Þ = δ δ + 1ð Þ δ + 2ð Þ,⋯, δ + n − 1ð Þ, n ∈ℕ, δð Þ0 = 1:

ð8Þ

Definition 4 (see [36]). The function pψqðxÞ where p and q
refer to its numerators and denominators, respectively, is
called the Fox-Wright function, and it can be defined by
the formula

pψq xð Þ = pψq

ai, μið Þ1,p
bj, νj

� �
1,q

; x

0
@

1
A = 〠

∞

n=0

Qp
i=1Γ ai + nμið ÞQq
j=1Γ bj + nνj

� � xn
n!

,

ð9Þ

such that ∑q
j=1νj −∑p

i=1μi > −1, where ai, bj ∈ℝði = 1, 2,⋯,
p ; j = 1, 2,⋯, qÞ.

In particular, when μi = νj = 1 in Definition 4, then the
function pψqðxÞ immediately reduced to the generalized
hypergeometric function pFq (see [35]). Abdeljawad [16]
defined the fractional Laplace transform in the conformable
sense as follows:

Definition 5 (see [16]). For a real valued function f : ½0,∞Þ
⟶ℝ, the conformable fractional Laplace transform of
noninteger order α, α ∈ ð0, 1� is given by

Lα f tð Þ½ � = Fα sð Þ =
ð∞
0
e−s t

α/αð Þ f tð Þdαt =
ð∞
0
e−s t

α/αð Þ f tð Þtα−1dt:

ð10Þ

The inverse fractional Laplace transform is the transfor-
mation of a fractional Laplace transform into a function of
time. If Lα½ f ðtÞ� = FαðsÞ, then f ðtÞ is the inverse fractional
Laplace transform of FαðsÞ, and it can be written as

L−1α Fα sð Þ½ � = f tð Þ: ð11Þ

Remark 6. If α = 1, then (10) is the classical definition of the
Laplace transform of integer order.

Furthermore, the author in [16] gave the following inter-
esting results.

Lemma 7 [16]. For a real valued function f : ½0,∞Þ⟶ℝ
satisfying Lα½ f ðtÞ� = FαðsÞ, α ∈ ð0, 1�, the following relations
hold true:

(1) FαðsÞ = L½ f ðαtÞ1/α�, where L½ f ðtÞ� = Ð∞0 e−st f ðtÞdt
(2) Lα½1� = 1/s, s > 0

(3) Lα½tp� = αp/αððΓð1 + ðp/αÞÞÞ/ðs1+ðp/αÞÞÞ, s > 0

(4) Lα½ekðt
α/αÞ� = 1/ðs − kÞ

3. Fractional Laplace Transform of the CFBFs

In this section, we derive some new interesting fractional
Laplace-type integrals of functions involving CFBFs. Then,
as an application, we are going to employ the obtained
results in order to find the possible solutions of the fractional
kinetic equations in the conformable sense associated with
CFBFs.

3.1. Fractional Laplace Integral Formulas

Theorem 8. Let JαnðxÞ, α ∈ ð0, 1� be the CFBFs; then,

Lα Jαn tð Þf g = αn

2nsn+1 2F1
n + 1
2

, n
2
+ 1 ; n + 1 ; −α

2

s2

� �
: ð12Þ
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Proof. Owing to the definition of CFBFs (5) and applying the
conformable fractional Laplace transform operator of order
α ∈ ð0, 1� as stated in Lemma 7, we have

Lα Jαn tð Þf g = 〠
∞

κ=0

−1ð Þκ
κ!Γ n + κ + 1ð Þ2n+2κ Lα tα n+2κð Þ

n o
: ð13Þ

According to (3) of Lemma 7, one can see

Lα Jαn tð Þf g = 〠
∞

κ=0

−1ð Þκ
κ!Γ n + κ + 1ð Þ2n+2κ

αn+2κΓ n + 2κ + 1ð Þ
sn+2κ+1

= αn

2nsn+1 〠
∞

κ=0

Γ n + 2κ + 1ð Þ
κ!Γ n + κ + 1ð Þ22κ

−α2

s2

� �κ

= αn

2nsn+1 〠
∞

κ=0

n + 1ð Þ2κ
κ! n + 1ð Þκ22κ

−α2

s2

� �κ
:

ð14Þ

Using the identity ðn + 1Þ2κ = 22κððn + 1Þ/2Þκððn/2Þ + 1Þκ,
we obtain

Lα Jαn tð Þf g = αn

2nsn+1 〠
∞

κ=0

n + 1ð Þ/2ð Þκ n/2ð Þ + 1ð Þκ
κ! n + 1ð Þκ

−α2

s2

� �κ
:

ð15Þ

Therefore, the result is established.

Now, consider the Fox-Wright function 1Ψ1 defined in (9)
to deduce the following important results.

Theorem 9. Let JαnðxÞ, α ∈ ð0, 1� be the CFBFs. Then, the fol-
lowing relation is satisfied:

Lα Jαn aμtμð Þf g = αað Þμn
2nsμn+1 1ψ1

μn + 1, 2μð Þ
n + 1, 1ð Þ

; αað Þ2μ
4s2μ

 !
:

ð16Þ

Proof. By combining (5) and (10), we get

Lα Jαn aμtμð Þf g = Lα 〠
∞

κ=0

−1ð Þκ
κ!Γ n + κ + 1ð Þ

aμtμα

2

� � n+2κð Þ( )

= 〠
∞

κ=0

−1ð Þκaμ n+2κð Þ

κ!Γ n + κ + 1ð Þ2n+2κ Lα tαμ n+2κð Þ
n o

:

ð17Þ

Due to (3) of Lemma 7, it follows that

Lα Jαn aμtμð Þf g = 〠
∞

κ=0

−1ð Þκaμ n+2κð Þ

κ!Γ n + κ + 1ð Þ2n+2κ

:
αμ n+2κð ÞΓ μn + 2μκ + 1ð Þ

sμn+2μκ+1

= αμnaμn

2nsμn+1 〠
∞

κ=0

Γ μn + 2μκ + 1ð Þ
κ!Γ n + κ + 1ð Þ

− αað Þ2μ
4s2μ

" #κ

= αað Þμn
2nsμn+1 1ψ1

μn + 1, 2μð Þ
n + 1, 1ð Þ

; − αað Þ2μ
4s2μ

 !
,

ð18Þ

as required.

Theorem 10. Let JαnðxÞ, α ∈ ð0, 1� be the CFBFs. Then,

Lα tα μ−1ð Þ Jαn tð Þ
n o

= αð Þn+μ
2nsn+μ 1ψ1

n + μ, 2ð Þ
n + 1, 1ð Þ

; −α
2

4s2

 !
:

ð19Þ

Proof. As proceeded in the proof of Theorem 8 then, relying
on Equation (5) and Lemma 7, we conclude that

Lα tα μ−1ð Þ Jαn tð Þ
n o

= 〠
∞

κ=0

−1ð Þκ
κ!Γ n + κ + 1ð Þ2n+2κ Lα tα n+2κ+μ−1ð Þ

n o

= 〠
∞

κ=0

−1ð Þκ
κ!Γ n + κ + 1ð Þ2n+2κ

� α
n+2κ+μð ÞΓ n + 2κ + μð Þ

s n+2κ+μð Þ

= αn+μ

2nsn+μ 〠
∞

κ=0

Γ n + 2κ + μð Þ
Γ n + κ + 1ð Þκ!

−α2

4s2
� �κ

:

ð20Þ

Theorem 11. Let JαnðxÞ, α ∈ ð0, 1� be the CFBFs. Then, the fol-
lowing identity holds:

Lα tα μ−1ð Þ Jαn
1
t

� �� 	
= αð Þμ−n
2nsμ−n 1ψ1

μ − n,−2ð Þ
n + 1, 1ð Þ

; −s
2

4α2

 !
:

ð21Þ
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Proof. The reduction of (5) and (10) yields

Lα tα μ−1ð Þ Jαn
1
t

� �� 	
= 〠

∞

κ=0

−1ð Þκ
κ!Γ n + κ + 1ð Þ2n+2κ Lα tα μ−n−2κ−1ð Þ

n o

= 〠
∞

κ=0

−1ð Þκ
κ!Γ n + κ + 1ð Þ2n+2κ

� α
μ−n−2κð ÞΓ μ − n − 2κð Þ

s μ−n−2κð Þ

= αμ−n

2nsμ−n 〠
∞

κ=0

Γ μ − n − 2κð Þ
Γ n + κ + 1ð Þκ!

−s2

4α2
� �κ

,

ð22Þ

which ends the proof.

The above obtained results provide the necessary tools
which enable us to carry out the following interesting study.

3.2. Fractional Kinetic Equations Associated with the CFBFs
and Their Solutions via Fractional Laplace Transform. One
of the most important equations in mathematical physics
and natural sciences is the kinetic equation, which describes
the continuity of motion of substances. Therefore, many
researchers investigated extensions and generalizations of this
equation in the context of various fractional calculus opera-
tors. For such type of work, we refer for example to [37, 38].
We begin by briefly reviewing these previous efforts; then,
we introduce our extended form of the fractional kinetic dif-
ferential equation associated with the CFBFs. Assuming that
N ðtÞ denotes an arbitrary reaction which depends on time,
d refers to the destruction rate, and p is the production rate
on N , Haubold and Mathai [37] characterized the FDE of
the quantities N ðtÞ, d and p, by the formula

dN
dt

= −d N tð Þ + p N tð Þ, ð23Þ

where N tðt∗Þ =N ðt − t∗Þ for t∗ > 0. In the case where spatial
fluctuation or inhomogeneities in the quantity N ðtÞ is
neglected, the authors in [37] handled the following equation:

dN i

dt
= −ciN i tð Þ, ð24Þ

where the primary condition N iðt = 0Þ =N 0 gives the num-
ber density of species i at time t = 0 and constant ci > 0. Equa-
tion (24) is known as the standard kinetic equation.
Alternatively, if the index i is neglected, then, by integrating
the standard kinetic Equation (24), one can get

N tð Þ −N 0 = c0D
−1N tð Þ, ð25Þ

where 0D
−1 is the standard integral operator. Equation Equa-

tion (25) has been extended to the fractional setting in the
form (see [37]).

N tð Þ −N 0 = c0D
−νN tð Þ, ð26Þ

where 0D
−ν denotes the standard fractional integral operator

in Riemann-Liouville sense (see [10, 39]).
Now, consider the conformable fractional kinetic equa-

tion in the form:

N tð Þ −N 0 = cIα N tð Þð Þ, ð27Þ

where Iαð·Þ is the conformable fractional integral of order
ν ∈ ð0, 1� in the frame of Definition 2. Accordingly, we
develop here a new type of generalization of the fractional
kinetic differential equation in the conformable sense involv-
ing the fractional-order Bessel function in view of a frac-
tional Laplace transform.

Remark 12. The solutions we are going to conclude for the
conformable fractional kinetic equations will be determined
through the generalized Mittag-Leffler function Eμ,νðxÞ [36],
which is defined as

Eμ,ν xð Þ = 〠
∞

n=0

xn

Γ μn + νð Þ , μ, ν > 0: ð28Þ

Theorem 13. For d > 0 and α ∈ ð0, 1�, the following conform-
able fractional equation

N tð Þ −N 0 Jαn tð Þf g = −dαIα N tð Þð Þ ð29Þ

has a solution in the form

N tð Þ =N 0 〠
∞

κ=0

−1ð ÞκΓ n + 2κ + 1ð Þ
κ!Γ n + κ + 1ð Þ

tα

2

� �n+2κ

� E 1,n+2κ+1ð Þ
−dαtα

α

� �
:

ð30Þ

Proof. Following Abdeljawad [16], then, in virtue of Iαð f ðtÞÞ,
we have

Lα Iα f tð Þð Þf g = Fα sð Þ
s

, ð31Þ

where FαðsÞ = Lαf f ðtÞg defined in (10) and Iα is the con-
formable fractional integral operator (2). Acting by the con-
formable fractional Laplace transform on both sides of
Equation (30) implies that

Lα N tð Þf g −N 0Lα Jαn tð Þf g = −dαLα Iα N tð Þð Þf g: ð32Þ

Combining Equation (5) and Equation (31) leads to

N α sð Þ −N 0 〠
∞

κ=0

−1ð Þκ
κ!Γ n + κ + 1ð Þ2n+2κ Lα tα n+2κð Þ

n o

= −dα
N α sð Þ

s
,

ð33Þ
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N α sð Þ 1 + dα

s

� �
=N 0 〠

∞

κ=0

−1ð Þκ
κ!Γ n + κ + 1ð Þ2n+2κ

�
ð∞
0
e−s t

α/αð Þtα n+2κð Þdαt:

ð34Þ

Considering Equation (10) with (34), we obtain

N α sð Þ 1 + dα

s

� �
=N 0 〠

∞

κ=0

−1ð Þκα n+2κð Þ

κ!Γ n + κ + 1ð Þ2n+2κ
Γ n + 2κ + 1ð Þ

sn+2κ+1
:

ð35Þ

Therefore,

N α sð Þ =N 0 〠
∞

κ=0

−1ð Þκα n+2κð ÞΓ n + 2κ + 1ð Þ
κ!Γ n + κ + 1ð Þ2n+2κ

1
sn+2κ+1

1 + dα

s

� �−1

=N 0 〠
∞

κ=0

−1ð Þkα n+2κð ÞΓ n + 2κ + 1ð Þ
κ!Γ n + κ + 1ð Þ2n+2κ

� 1
sn+2κ+1

〠
∞

i=0

1ð Þi −dα/sð Þi
i!

=N 0 〠
∞

κ=0

−1ð Þκα n+2kð ÞΓ n + 2κ + 1ð Þ
κ!Γ n + κ + 1ð Þ2n+2κ 〠

∞

i=0

−1ð Þidαi
sn+2κ+i+1

:

ð36Þ

With the aid of the inverse Laplace transform (10), it fol-
lows that

N tð Þ =N 0 〠
∞

κ=0

−1ð Þκα n+2κð ÞΓ n + 2κ + 1ð Þ
κ!Γ n + κ + 1ð Þ2n+2κ

�〠
∞

i=0

−1ð Þidαitα n+2κ+ið Þ

αn+2κ+iΓ n + 2κ + i + 1ð Þ

=N 0 〠
∞

κ=0

−1ð ÞκΓ n + 2κ + 1ð Þ
k!Γ n + κ + 1ð Þ

tα

2

� �n+2κ

�〠
∞

i=0

1
Γ n + 2κ + i + 1ð Þ

−dαtα

α

� �i

=N 0 〠
∞

κ=0

−1ð ÞκΓ n + 2κ + 1ð Þ
κ!Γ n + κ + 1ð Þ

tα

2

� �n+2κ

� E 1,n+2κ+1ð Þ
−dαtα

α

� �
:

ð37Þ

Theorem 14. The solution of the following conformable frac-
tional equation

N tð Þ −N 0 Jαn dμtμð Þf g = −dαμIα N tð Þð Þ, for d, μ > 0, α ∈ 0, 1ð �,
ð38Þ

is given by

N tð Þ =N 0 〠
∞

κ=0

−1ð ÞκΓ nμ + 2μκ + 1ð Þ
κ!Γ n + κ + 1ð Þ

dαμtαμ

2

� �n+2κ

� E 1,nμ+2μκ+1ð Þ
−dαμtα

α

� �
:

ð39Þ

Proof. Operating the conformable fractional Laplace trans-
form on both sides of Equation (38), we get

Lα N tð Þf g −N 0Lα Jαn dμtμð Þf g = −dαμLα Iα tð Þð Þf g: ð40Þ

In view of Equations (5) and (31), we obtain

N α sð Þ + dαμ
N α sð Þ

s

=N0 〠
∞

κ=0

−1ð Þκdμα n+2κð Þ

κ!Γ n + κ + 1ð Þ2n+2κ Lα tαμ n+2κð Þ
n o

:

ð41Þ

Hence, using (3) of Lemma 7 implies

N α sð Þ 1 + dαμ

s

� �
=N 0 〠

∞

κ=0

−1ð Þκdμα n+2κð Þ

κ!Γ n + κ + 1ð Þ2n+2κ

� α
μ n+2κð ÞΓ nμ + 2μκ + 1ð Þ

snμ+2μκ+1
,

ð42Þ

from which one can obtain

N α sð Þ =N 0 〠
∞

κ=0

−1ð Þκdμα n+2κð Þαμ n+2κð ÞΓ nμ + 2μκ + 1ð Þ
κ!Γ n + κ + 1ð Þ2n+2κ

� 1
snμ+2μκ+1

〠
∞

i=0

−1ð Þidαiμi
si

:

ð43Þ

Therefore,

N α sð Þ =N 0 〠
∞

κ=0

−1ð Þκdμα n+2κð Þαμ n+2κð ÞΓ nμ + 2μκ + 1ð Þ
κ!Γ n + κ + 1ð Þ2n+2κ

�〠
∞

i=0
−1ð Þidαiμi 1

snμ+2μκ+i+1
:

ð44Þ

In view of the inverse fractional Laplace transform (10),
it follows that
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N tð Þ =N 0 〠
∞

κ=0

−1ð Þκdμα n+2κð ÞΓ nμ + 2μκ + 1ð Þ
κ!Γ n + κ + 1ð Þ2n+2κ tα nμ+2μκð Þ

�〠
∞

i=0

1
Γ nμ + 2μκ + i + 1ð Þ

−dαμtα

α

� �i

=N 0 〠
∞

κ=0

−1ð ÞκΓ nμ + 2μκ + 1ð Þ
κ!Γ n + κ + 1ð Þ

dμαtαμ

2

� �n+2κ

� E 1,μn+2μκ+1ð Þ
−dαμtα

α

� �
:

ð45Þ

Thus, the result is established.

4. Orthogonality of the CFBFs

Understanding the orthogonality relation of the CFBFs is
mandatory to compute coefficients of series whose terms
include the CFBFs. These series represent solutions of the
FDEs as we will encounter in the application part of this sec-
tion. Along with [40] and in view of the CFD definition (1),
we introduce the following interesting results on orthogonal-
ity which will be useful in the current study.

4.1. An Orthogonal Relation of the CFBFs

Theorem 15. The orthogonality relation of the CFBFs JαnðxÞ
is deduced over ½0, b� with respect to the weight function
wðxÞ = x2α−1 by the following:

ðb
0
x2α−1 Jαn λsxð ÞJαn λrxð Þdx = b2α

2α
Jαn+1 λsbð Þ½ �2δλsλr , α ∈ 0, 1ð �,

ð46Þ

where δλsλr is the familiar Kronker delta function and λs, λr
are distinct roots of JαnðxÞ = 0:

Proof. Since JαnðxÞ is a solution of the CFBE (4), it follows
that y = JαnðλsxÞ which satisfies the more general equation

x2αDαDαy xð Þ + αxαDαy xð Þ + α2 x2αλ2αs − n2
� �

y xð Þ = 0:
ð47Þ

It is convenient to reformulate (47) in the following way:

xαDα xαDαy xð Þð Þ + α2 x2αλ2αs − n2
� �

y xð Þ = 0: ð48Þ

Consequently, JαnðλsxÞ and JαnðλrxÞ satisfy the following
CFDEs, respectively:

xαDα xαDα Jαn λsxð Þð Þ + α2 x2αλ2αs − n2
� �

Jαn λsxð Þ = 0, ð49Þ

xαDα xαDα Jαn λrxð Þð Þ + α2 x2αλ2αr − n2
� �

Jαn λrxð Þ = 0: ð50Þ

Multiplying (49) by x−α JαnðλrxÞ and (50) by x−α JαnðλsxÞ
and then subtracting the resulting equations produce

λ2αs − λ2αr
� �

xα Jαn λsxð ÞJαn λrxð Þ
= Jαn λsxð ÞDα xαDα Jαn λrxð Þ½ � − Jαn λrxð ÞDα xαDα Jαn λsxð Þ½ �:

ð51Þ

In view of the conformable fractional integral formula
(2) over ½0, b�, we obtain

λ2αs − λ2αr
� �ðb

0
xα Jαn λsxð ÞJαn λrxð Þdαx

=
ðb
0
Jαn λsxð ÞDα xαDα Jαn λrxð Þ½ �dαx

−
ðb
0
Jαn λrxð ÞDα xαDα Jαn λsxð Þ½ �dαx:

ð52Þ

By performing integration by parts [16] on the right-
hand side divided by the factor ðλ2αs − λ2αr Þ, one can conclude
that

ðb
0
xα Jαn λsxð ÞJαn λrxð Þdαx =

xα

λ2αs − λ2αr
� � Jαn λsxð ÞDα Jαn λrxð Þ½

− Jαn λrxð ÞDα Jαn λsxð Þ�b0:
ð53Þ

Hence, according to the values of λs and λr , we consider
the following two cases:

(i) If λs ≠ λr and by hypothesis JαnðλsÞ = JαnðλrÞ = 0, then
the right-hand side of (53) vanishes

(ii) If λs = λr , then the resulting integral

I =
ðb
0
xα Jαn λsxð Þ½ �2dαx =

ðb
0
x2α−1 Jαn λsxð Þ½ �2dx ð54Þ

creates an interest to look at. In order to deduce its value, we
take the limit of (53) as λr ⟶ λs. As the right-hand side in
(53) approaches the indeterminate form 0/0 in the limit, we
apply L’Hopital’s rule, which leads to

I = xα

2αλαs
Dα

λs
Jαn λsxð ÞDα

x J
α
n λsxð Þ − Jαn λsxð ÞDα

λs
Dα

x J
α
n λsxð Þ

h ib
0

ð55Þ

Now, using the following recurrence relations of CFBFs
[26]

Dα
λs
Jαn λsxð Þ = n

xα
Jαn λsxð Þ − λαs J

α
n+1 λsxð Þ,

Dα
x J

α
n λsxð Þ = n

λαs
Jαn λsxð Þ − xα Jαn+1 λsxð Þ,

ð56Þ
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it follows that

I =
�

n2

2αλ2αs
Jαn λsxð Þ½ �2 + x2α

2α Jαn+1 λsxð Þ½ �2

−
nxα

2αλαs
Jαn λsxð ÞJαn+1 λsxð Þ

�b
0
= b2α

2α Jαn+1 λsbð Þ½ �2:
ð57Þ

As a special case of Theorem 15, the following result can be
easily verified.

Corollary 16. The CFBFs JαnðxÞ are orthogonal over ½0, 1�
with respect to the weight function wðxÞ = x2α−1 and

ð1
0
x2α−1 Jαn λsxð ÞJαn λrxð Þdx = 1

2α
Jαn+1 λsð Þ½ �2δλsλr : ð58Þ

The results obtained in the current Section 4.1 treated
the topic of orthogonal polynomials which pave the way to
discuss a function representation via a series of the CFBFs.

4.2. Expansion of Functions via CFBFs. The classical theory
of expressing analytic functions as expansions in terms of
an arbitrary set of orthogonal polynomials can be described
as the backbone of many topics in analysis. It was originated
by several authors to whom we may mention Boas and Buck
[41], Faber [42], and Whittaker and Gattegno [43] and later
on in higher dimension by Abul-Ez et al. [29, 30, 44–46]. In
the usual classical calculus, we found that not all functions
have the Taylor power series representation around specific
points, but this is not the case in the theory of conformable
fractional calculus. This fact has been shown by Abdeljawad
[16], where he also proposed the expansion of the fractional
power series for an infinity α-differentiable function through
the fractional Taylor series. The expansion of a given real
function in a series of Bessel functions is extremely useful
in determining the solution of certain FDEs involving radial
symmetry [40]. Related to the work of finding the expansion
of a given function by means of Bessel polynomials in the
higher-dimensional context, see the work given in [29, 30].
Using the orthogonality property (46), one can easily repre-
sent a given function f ðxÞ over the interval ½0, b� by a series
of Bessel functions such as

f xð Þ = 〠
∞

i=0
ai J

α
n λixð Þ, 0 < x < b, ð59Þ

where JαnðλibÞ = 0, i = 0, 1, 2, 3,⋯, and ai are determined by

ai =
2α

b2α Jαn+1 λibð Þ½ �2
ðb
0
x2α−1 f xð ÞJαn λixð Þdx, i = 0, 1, 2, 3,⋯ ð60Þ

As the topic of expansions of an arbitrary function, of
either a real or a complex variable, into a series of polyno-
mials has not been fully explored, we believe that several
open problems remain untouched in particular in the frame-
work of fractional calculus.

4.3. Applications. In this subsection, we intend to indicate
the efficiency and applicability of the results developed in
this study. Precisely, we construct a scheme which will be
employed to solve some linear and nonlinear CFDEs. In this
concern, we first define the mth truncated CFBFs of the first
kind. Then, we introduce the noninteger derivative in the
conformable context of an approximated function expanded
in terms of the CFBFs. Several important examples including
famous FDEs have been comprehensively treated, and their
solutions have been compared to other existing methods in
the literature to show the consistency and accuracy of our
proposed method.

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3
x

4 5 6

Figure 1: Graph of CFBFs with M = 2,m = 2 and various values of
α = 0:2,0:4,0:6,0:8,1:
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Figure 2: Graph of CFBFs with M = 2, α = 0:5 and various values
of m = 0, 1, 2.
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We begin by considering the mth truncated CFBFs of the
first kind as follows:

~J
α
m xð Þ = 〠

M−mð Þ/2b c

κ=0

−1ð Þκ
κ!Γ m + κ + 1ð Þ

xα

2

� �2κ+m
, 0 ≤ x <∞,

ð61Þ

where M is a positive integer such that M ≥m and m = 0,
1, 2,⋯,M. For M = 2, we have

~J
α
0 xð Þ = 1 − x2α

4 ,

~J
α
1 xð Þ = xα

2 ,

~J
2
m xð Þ = x2α

8 :

ð62Þ

Figures 1 and 2 show the graphs of the truncated CFBFs
when M = 2 and by taking various values of m and α.

Let f ðxÞ be a function defined over ½0, 1�; then, f ðxÞ can
be expanded in terms of CFBFs as follows:

f xð Þ = 〠
∞

i=0
ai~J

α
i xð Þ: ð63Þ

Thus, the following truncated series for f ðxÞ is supposed
to be

f xð Þ = 〠
M

m=0
am~J

α
m xð Þ: ð64Þ

Theorem 17. The noninteger derivative of order γ > 0 of the
CFBFs in the conformable sense is given by

Dγ~J
α
m xð Þ = 〠

M−mð Þ/2b c

κ=0
ηα,γκ,mx

α 2κ+mð Þ−γ, ð65Þ

where

ηα,γκ,κ =
−1ð ÞκΓ α 2κ +mð Þ + 1ð Þ

22κ+mk!Γ m + κ + 1ð ÞΓ α 2κ +mð Þ − γd e + 1ð Þ : ð66Þ

Proof. The linearity of the conformable derivative (see [12,
16]) leads to

Dγ~J
α
m xð Þ = 〠

M−mð Þ/2b c

κ=0

−1ð Þκ
22κ+mκ!Γ m + κ + 1ð ÞD

γxα 2κ+mð Þ

= 〠
M−mð Þ/2b c

κ=0

−1ð Þκ
22κ+mκ!Γ m + κ + 1ð Þ

� Γ α 2κ +mð Þ + 1ð Þ
Γ α 2κ +mð Þ − γd e + 1ð Þ x

α 2κ+mð Þ−γ,

ð67Þ

as required.

Remark 18. If αð2κ +mÞ < γ, where αð2κ +mÞ ∈ℕ0, then,
Dγ~J

α
mðxÞ = 0:

Theorem 19. Let uMðxÞ be an approximated function given
by means of the truncated formula of CFBFs (61). Then,

DγuM xð Þ = 〠
M

m=0
〠

M−mð Þ/2b c

κ=0
amη

α,γ
κ,mx

α 2κ+mð Þ−γ: ð68Þ

Proof. The induction of Theorem 17 and in view of the lin-
earity property leads to the required result.

4.3.1. Proposed Scheme

(1) Linear Multiorder CFDEs. Suppose that the generalized
linear multiorder CFDE is given in the form

Dγu xð Þ + 〠
s

j=0
AjD

γ j u xð Þ + As+1u xð Þ = As+2h xð Þ, ∈ 0, 1½ �,

ð69Þ

subject to the initial conditions

D ið Þu xð Þ = di, i = 0, 1, 2,⋯, γd e − 1, ð70Þ

where Dγ, 0 < γ1 < γ2 <⋯ < γs < γ, denotes to the CFD of
order γ > 0,hðxÞ are known to be a continuous function,
and di, i = 0, 1, 2,⋯, dγe − 1 are some constants.

Assume that the solution of the CFDE (69) can be given
in the form

uM xð Þ = 〠
M

m=0
am~J

α
m xð Þ: ð71Þ

Substituting (71) into (69) and using Theorem 19, we
have

〠
M

m=0
〠

M−mð Þ/2b c

κ=0
amη

α,γ
κ,mx

α 2κ+mð Þ−γ

+ 〠
s

j=0
Aj 〠

M

m=0
〠

M−mð Þ/2b c

κ=0
amη

α,γ j
κ,mx

α 2κ+mð Þ−γ j

( )

+ As+1 〠
M

m=0
am~J

α
m xð Þ = As+2h xð Þ:

ð72Þ

Collocating Equation (72) at the points xq = q/M, = 1,
2, 3,⋯,M + 1 − dγe, we get
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〠
M

m=0
〠

M−mð Þ/2b c

κ=0
amη

α,γ
κ,mx

α 2κ+mð Þ−γ
q

+ 〠
s

j=0
Aj 〠

M

m=0
〠

M−mð Þ/2b c

κ=0
amη

α,γ j
κ,mx

α 2κ+mð Þ−γ j
q

( )

+ As+1 〠
M

m=0
am~J

α
m xq
� �

= As+2h xq
� �

:

ð73Þ

These equations give ðM + 1 − dγeÞ linear algebraic
equations. Combining (71) and (70) produces dγe-algebraic
equations. Thus, we obtain a linear algebraic system of M
+ 1 equations in the unknown am,m = 0, 1, 2,⋯,M. By
solving this system, we obtain the solution of Equation
(69) associated with the initial condition (70).

(2) Nonlinear Multiorder CFDEs. Consider the generalized
nonlinear multiorder CFDE such that

Dγu xð Þ = F x, u xð Þ,Dγ1u xð Þ,Dγ2u xð Þ,⋯,
�

Dγsu xð ÞÞ, x ∈ 0, 1½ �,
ð74Þ

with the initial conditions

D ið Þu xð Þ = ci, i = 0, 1, 2,⋯, γd e − 1, ð75Þ

where Dγ, 0 < γ1 < γ2 <⋯ < γs < γ, stands for the CFD of
order γ > 0,F is a nonlinear operator, and ci, i = 0, 1, 2,⋯,
dγe − 1 are given constants. A similar procedure as in estab-
lishing (69) can be used to approximate uðxÞ in terms of
CFBFs. Thus, combining (71) with (74) and using Theorem
19 yield

〠
M

m=0
〠

M−mð Þ/2b c

κ=0
amη

α,γ
κ,mx

α 2κ+mð Þ−γ

= F x, 〠
M

m=0
am~J

α
m xð Þ, 〠

M

m=0
〠

M−mð Þ/2b c

κ=0

0
@

� amηα,γ1κ,m xα 2κ+mð Þ−γ1 , 〠
M

m=0
〠

M−mð Þ/2b c

κ=0

� amηα,γ2κ,m xα 2κ+mð Þ−γ2 ,⋯, 〠
M

m=0
〠

M−mð Þ/2b c

κ=0

� amηα,γsκ,mx
α 2κ+mð Þ−γs

1
A:

ð76Þ

Collocating Equation (76) at the points xq, = 1, 2, 3,⋯,
M + 1 − dγe, thus, we have the following:

〠
M

m=0
〠

M−mð Þ/2b c

κ=0
amη

α,γ
κ,mx

α 2κ+mð Þ−γ
q

= F xq, 〠
M

m=0
am~J

α
m xq
� �

, 〠
M

m=0
〠

M−mð Þ/2b c

κ=0

0
@

� amηα,γ1κ,m xα 2κ+mð Þ−γ1
q , 〠

M

m=0
〠

M−mð Þ/2b c

κ=0

� amηα,γ2κ,m xα 2κ+mð Þ−γ2
q ,⋯, 〠

M

m=0
〠

M−mð Þ/2b c

κ=0

� amηα,γsκ,mx
α 2κ+mð Þ−γs
q

1
A

ð77Þ

Equation (77) determines ðM + 1 − dγeÞ nonlinear equa-
tions. In virtue of (71) and the initial conditions (75), we get
dγe equations. Immediately, one can get a system of M + 1
nonlinear equations in the unknown am,m = 0, 1, 2,⋯,M:
As usual, Newton’s iterative method can be used to solve this
system. Thus, the solution of the nonlinear CFDE (74) with
(75) can be deduced.

We can briefly clarify the achieved advantages of
employing the proposed method as follows. The fractional-
order Bessel functions approximate the fractional function
with more accuracy. This feature has made the FBFs more
effective than Bessel functions in solving the fractional prob-
lems. As the values of coefficients in Bessel polynomials are
smaller than the coefficients of Chebyshev, Legendre, and
Bernoulli polynomials, the computational error in the cur-
rent method is less. Furthermore, our detailed treatment to
these FDEs using the collocation method is aimed at encour-
aging the use of such approach which allows reaching the
required solutions with ease and accuracy.

In the following subsection, we discuss several numerical
examples to demonstrate the consequences of the above-
mentioned features.

4.4. Illustrative Examples. In view of the above arguments, it
is interesting to employ the provided techniques to solve
some useful FDEs, as we shall see through the following
examples.

Example 20. Consider the famous Bagley-Torvik equation

D2u xð Þ +D3/2u xð Þ + u xð Þ = 1 + x, 0 ≤ x ≤ 1, ð78Þ

subject to the initial conditions

u 0ð Þ = 1, u′ 0ð Þ = 1: ð79Þ

This equation has been solved using Legendre polyno-
mials in view of the conformable fractional sense in [14],
as well as in [47–50] in the sense of Caputo derivative. The
exact solution of (78) was given in ([47, 49]) as uðxÞ = 1 +
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x; then for M = 2 and α = 1 in (71), one gets the approxi-
mated solution of (78) in the form

u2 xð Þ = 〠
2

m=0
am~J

α
m xð Þ: ð80Þ

Owing to initial condition (79), then (80) gives

a0 = 1, a1 = 2 ð81Þ

Using the collocation point x = 0:5 and in view of (81),
one can get

0:3982a2 = 0:7964: ð82Þ

Hence, a2 = 2: Therefore, we have uðxÞ = 1 + x, which
coincides with the one given in ([47, 49]).

A similar procedure can be carried out as in Example 20,
so that we may summarize the corresponding details for two
different CFDEs as follows.

Remark 21.

(i) The problem in Table 1 has been treated in [47–50]
with the Caputo fractional derivative using various
methods such as Legendre polynomials, homotopy
perturbation method, and homotopy analysis method

(ii) The problem in Table 2 has been manipulated in [51]
by means of Legendre polynomials with conformable

Table 1

Conformable fractional differential equation D3u xð Þ +D5/2u xð Þ + u2 xð Þ = x4, x ∈ 0, 1½ �
Initial conditions u 0ð Þ = 0, u′ 0ð Þ = 0, and u′′ 0ð Þ = 2
Exact solution x2 (as given by various authors in [47–50])

Values of M and α, as indicated in relation (71) M = 4 and α = 1
Coefficients to be determined in relation (71) ai = 0 for i = 0, 1, 3, a2 = 8, and a4 = 32
Solution x2

Table 2

Conformable fractional differential equation D4u xð Þ +D7/2u xð Þ + u3 xð Þ = x9, 0 < x ≤ 1
Initial conditions u 0ð Þ = 0, u′ 0ð Þ = 0, u′′ 0ð Þ = 0, and u′′′ 0ð Þ = 6
Exact solution x3 (as given in [51, 52])

Values of M and α, as is indicated in relation (71). M = 4 and α = 1
Coefficients to be determined in relation (71) ai = 0 for i = 0, 1, 2, 4, a3 = 48
Solution x3
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Figure 3: Graph of the approximate solutions of Example 22 when M = 5 with γ = α = 0:5,0:7,0:9,1:
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derivative and in [52] in view of Laguerre polynomials
involving Caputo derivative

Example 22. Suppose that we have the following linear frac-
tional differential equation in the form

Dγu xð Þ + u xð Þ = 0, 0 < γ ≤ 1, ð83Þ

with the initial condition

u 0ð Þ = 1: ð84Þ

The exact solution of (83) is uðxÞ = exp ð−ðxγ/γÞÞ (see
[47]). This problem has been evaluated using various
methods (see for example [47, 49, 53]) in the sense of the
Caputo fractional derivative. Putting M = 5 in (71) with γ
= α, then using the presented technique, we computed the
approximate solution of the problem (83) for the values γ
= α = 0:5,0:7,0:9,1. We indicate the approximate solution

through Figure 3, while Figure 4 compares the obtained
solution with the exact solution of (83). Moreover, the corre-
sponding absolute errors of our approximate solution are
displayed in Table 3. From Figure 4, it is clear that the
approximate solutions converge to the exact solutions.

Example 23. It is well known that the theory of Bessel func-
tions is connected with the Riccati equations. In fact, Bessel
functions are defined as solutions of Bessel equations, which
can be derived from the Riccati equations. This motivates us
to consider the following the nonlinear Riccati fractional dif-
ferential equation:

Dγu xð Þ + u2 xð Þ = 1, 0 < γ, x ≤ 1, ð85Þ

subject to the initial condition

u 0ð Þ = 0: ð86Þ
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Figure 4: The comparison of the approximate solutions of Example 22 with the exact solution when M = 5 and for γ = α = 0:5,0:7,0:9,1:
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This problem has the exact solution ueðxÞ = ½exp ð2xγ/γÞ
− 1�/½exp ð2xγ/γÞ + 1� (see [21]), and it has been treated by
many authors using various methods such as the collocation
method, operational matrix method, homotopy perturbation
Pade technique, homotopy analysis method, modified homo-
topy perturbation (MHP) method, modified variational iter-
ation method, B-spline operational matrix method, and
polynomial least squares method (see, for example, [54, 55].
In all these methods, the authors used the Caputo fractional
derivative.

Now, regarding the proposed method here, the approxi-
mated analytical solution of the initial value problem (85)
has been computed for M = 10 with various values of γ = α.
Figure 5 shows the approximate solutions forM = 10 and var-
ious values of γ = α = 0:5,0:7,0:9,1. Table 4 illustrates both

numerical and exact solutions of (85). The comparison
between the obtained values of uðxÞ by the presented method
and the modified Homotopy perturbation method (MHPM)
given in [55] for γ = 1 and M = 10 is shown in Table 5.
Table 5 illustrates that our method is more accurate compared
to other methods.

Example 24. Suppose that a system of fractional differential
equations is given in the form

Dγ1u1 xð Þ = u1 xð Þ + u2 xð Þ, 0 < γ1 ≤ 1, 0 ≤ x ≤ 1,
Dγ2u2 xð Þ = −u1 xð Þ + u2 xð Þ, 0 < γ2 ≤ 1,

ð87Þ
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Figure 5: The approximate solutions for various values of γ = α in Example 23.

Table 3: Absolute errors for example 22 in the case of M = 5 with various values of γ = α:

x α = 0:5 α = 0:7 α = 0:9 α = 1
0:1 1:698913766905:10−3 2:01482483935533:10−4 2:55260108363852:10−5 9:4292936385015:10−6

0:2 1:341809039425:10−3 1:80206291971352:10−4 2:57393080246859:10−5 1:0100445353045:10−5

0:3 1:094073239144:10−3 1:53118426981402:10−4 2:22828517444373:10−5 8:740914169325:10−6

0:4 9:222016584745:10−4 1:32711916546735:10−4 1:9580499485472:10−5 7:674994977578:10−6

0:5 7:94771487391:10−4 1:17204363458189:10−4 1:77639190854228:10−5 7:0847477455521:10−6

0:6 6:94723214864:10−4 1:04225706794691:10−4 1:61290436707651:10−5 6:5282543029262:10−6

0:7 6:13410718572:10−4 9:28101826830340:10−5 1:43823651976849:10−5 5:7858773236572:10−6

0:8 5:46280728516:10−4 8:30201804029595:10−5 1:2815490789575:10−5 5:0984705504265:10−6

0:9 4:90369742377:10−4 7:50420455738476:10−5 1:18437600535870:10−5 4:8554037531864:10−6

1 4:42903116775:10−4 6:82330917218671:10−5 1:11289526305072:10−5 4:7847594708325:10−6
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Table 5: Comparison of obtained values of u10ðxÞ with MHPM in Example 23 with γ = 1.

x MHPM [55] Present method Exact solution Absolute error

0:1 0:099668 0:099667671416668 0:099667994624956 3:232082876148868:10−7

0:2 0:197375 0:197375012267825 0:197375320224904 3:079570785998806:10−7

0:3 0:291312 0:291312318874021 0:291312612451591 2:935775703234479:10−7

0:4 0:379944 0:379948688365082 0:379948962255225 2:738901430200881:10−7

0:5 0:462078 0:462116905688459 0:462117157260010 2:515715507406561:10−7

0:6 0:536857 0:537049339939348 0:537049566998035 2:270586874674282:10−7

0:7 0:603631 0:604367573599157 0:604367777117164 2:035180060362447:10−7

0:8 0:661706 0:664036591419464 0:664036770267849 1:788483853309343:10−7

0:9 0:709919 0:716297714005185 0:716297870199024 1:561938393935934:10−7

1 0:746032 0:761594024015154 0:761594155955765 1:319406113975582:10−7

Table 4: Obtained values of uðxÞ for Example 23 by the present method with M = 10 and γ = α = 0:7 and 0:9:

x
γ = α = 0:7 γ = α = 0:9

Exact solution ue xð Þ Appr. Sol u10 xð Þ Exact solution ue xð Þ Appr. Sol u10 xð Þ
0:1 0:277560937258027 0:396329287768680 0:138975357216608 0:165142712549575
0:2 0:432562507032238 0:541472216303135 0:255255338098812 0:287926712330121
0:3 0:547648770236210 0:634513884465960 0:359212661331767 0:391527449696852
0:4 0:636470555494007 0:700774990734457 0:451905777263955 0:480439682175042
0:5 0:706113027676249 0:750534511840285 0:533789465005938 0:556914559531437
0:6 0:761214832718165 0:789171534868799 0:605386508611184 0:622580109650008
0:7 0:805098130420862 0:819896688293229 0:667388747653672 0:678810765325902
0:8 0:840237973205243 0:844771155592644 0:720626381374415 0:726831787717051
0:9 0:868514797371047 0:865206088424650 0:766006660708606 0:767744616102944
1 0:891373467734719 0:882214664339926 0:804454800298401 0:802541763903386
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Figure 6: Graph of the approximate solutions u1ðxÞ and u2ðxÞ of Example 24 for M = 5 and various values of α = γ1 = γ2 = 0:7,0:8,0:9,1.
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with the primary conditions

u1 0ð Þ = 0, u2 0ð Þ = 1: ð88Þ

We proceed the solution as follows. When γ1 = γ2 = 1,
the exact solution of this system was given in [56, 57] as u1
ðxÞ = ex sin x, and u2ðxÞ = ex cos x: Applying the same tech-
nique described above and by putting M = 5 in (71) with α
= γ1 = γ2, we have computed the approximate solution for
the values α = γ1 = γ1 = 0:7,0:8,0:9,1. Figure 6 shows the
graphs of approximate solution for various values of α = γ1
= γ2 with M = 5: Tables 6 and 7 display the corresponding
absolute error to our approximate solutions for α = γ1 = γ2
= 1 and various values of M. Note that the absolute error
tends to zero when the terms M of CFBFs increase.

5. Conclusion

Exploring the multifaceted applications of Bessel functions
in several fields of science with recognition of the growing
impact conformable fractional calculus has in many applica-
tions, this paper exhibits further developments on the con-
formable fractional-order Bessel functions (CFBFs). The

novelty of this research paper is determined by explaining
the comparison between our obtained solutions (results)
and the solutions in previously published articles by various
authors. Such novelty may be described as follows. In the
first part of the paper, some useful formulas concerning
the properties of conformable fractional Laplace transforms
are obtained. These formulas are successfully employed to
obtain the solutions for a new type of fractional kinetic equa-
tions associated with the CFBFs in the conformable frac-
tional sense which is generalized and developed in this
study. These solutions are newly presented compared with
those given by various authors (see [38, 58–61]).

In addition, an interesting orthogonal relation of the
CFBFs is established. This gives rise to the discussion of func-
tions expansions where we present a given function in a series
of the CFBFs. Consequently, we investigate the analytical and
approximate solutions of some linear and nonlinear CFDEs
using a proposed scheme depending on the collocation
method, involving CFBFs. Particular emphasis is paid to indi-
cate that our approach, in some sense, is easily applicable and
provides more accurate results with refined errors. The pro-
posed scheme is used to approximate the solutions of linear,
nonlinear CFDEs, and also systems of CFDEs. The numerical

Table 7: Absolute errors of u2ðxÞ for various values of M = 5, 8, 10 with α = γ1 = γ2 = 1 in Example 24.

x M = 5 M = 8 M = 10
0:1 1:764442982358745:10−4 1:289165400939913:10−8 6:228629314555091:10−12

0:2 2:483473612144735:10−4 3:801071933089472:10−9 1:613098247747954:10−11

0:3 2:943918013066388:10−4 6:996798181222391:10−9 3:734106142077792:10−11

0:4 3:463545496320502:10−4 1:992154729449800:10−8 6:483630453443810:10−11

0:5 4:089060754978633:10−4 3:538677484194269:10−8 9:820822938741669:10−11

0:6 4:761667760399912:10−4 5:339426604651616:10−8 1:410768556814162:10−10

0:7 5:435609065997361:10−4 7:429242006830613:10−8 2:010920588084222:10−10

0:8 6:132891968498514:10−4 9:811361566232743:10−8 2:860794615286945:10−10

0:9 6:915106434315280:10−4 1:250216107427356:10−7 4:199493848745102:10−10

1 7:750844548684034:10−4 1:556557391707215:10−7 6:201785524511703:10−10

Table 6: Absolute errors of u1ðxÞ for various values of M = 5, 8, 10 with α = γ1 = γ2 = 1 in Example 24.

x M = 5 M = 8 M = 10
0:1 2:175152855412623:10−4 9:162421859512191:10−8 1:758976284592979:10−10

0:2 2:563542720906999:10−4 1:010603222372797:10−7 1:884819425658612:10−10

0:3 2:455251579074233:10−4 1:112064359635733:10−7 2:046192475246368:10−10

0:4 2:320713758760705:10−4 1:218391399387871:10−7 2:191098474404878:10−10

0:5 2:201273528237466:10−4 1:315382035648231:10−7 2:333426724860480:10−10

0:6 1:996737905732100:10−4 1:409308454622984:10−7 2:471041121886989:10−10

0:7 1:643238206067162:10−4 1:489432328394127:10−7 2:648922750010470:10−10

0:8 1:175657989381895:10−4 1:556332410815428:10−7 2:906084812992896:10−10

0:9 6:701651870429315:10−5 1:606609913492092:10−7 3:310520786806953:10−10

1 6:404833938994381:10−6 1:601412220569667:10−7 4:151750389509799:10−10
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examples show the validity and efficiency of the method. Nota-
bly, it is demonstrated that the presented method works well
and achieves better accuracy compared with exact solutions
and with results obtained using other methods. Our scheme
is beneficial in the way that using the fractional-order Bessel
functions leads to more accurate results in approximating the
fractional function. Because of this characteristic, FBFs are
more effective than Bessel functions in treating fractional prob-
lems. Because Bessel polynomials have smaller coefficients than
Chebyshev, Legendre, and Bernoulli polynomials, the compu-
tational error in the current approach is less. Importantly, the
employment of the collocation method provides convenient
and accurate solutions. Furthermore, all the given solutions
are obtained differently, unlike those established by the authors
in [47–55] and the references therein where other fractional
derivatives such as Caputo derivative were used.
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Saint-Venant equations describe the flow below a pressure surface in a fluid. We aim to generalize this class of equations using
fractional calculus of a complex variable. We deal with a fractional integral operator type Prabhakar operator in the open unit
disk. We formulate the extended operator in a linear convolution operator with a normalized function to study some important
geometric behaviors. A class of integral inequalities is investigated involving special functions. The upper bound of the suggested
operator is computed by using the Fox-Wright function, for a class of convex functions and univalent functions. Moreover, as
an application, we determine the upper bound of the generalized fractional 2-dimensional Saint-Venant equations (2D-SVE) of
diffusive wave including the difference of bed slope.

1. Introduction

Newly, fractional calculus has expanded considerable
attention primarily appreciations to the growing occur-
rence of investigation mechanisms in the life sciences,
allowing for simulations found by fractional operators [1]
including differential and integral formulas. Further, the
mathematical investigation of fractional calculus has
advanced, chief to connections with other mathematical
areas such as probability theory, mathematical physics
[2], and mathematical biology [3–7] and the investigation
of stochastic processes in real cases. In addition, it appears
in studies of complex analysis. Now the literature, several
different definitions of fractional integrals and derivatives
are presented. Some of them such as the Riemann-
Liouville integral, the Caputo, and the Riemann-Liouville
differential operators are extensively employed in mathe-
matics and physics and actually utilized in applied struc-
tures, modeling systems in real cases. While, in complex
analysis, especially the theory of geometric functions, the
researchers are focusing on Srivastava-Owa integral and

differential operators [8], Tremblay differential operator,
and the most recent fractional operator in [9, 10]. A
new investigation of the complex ABC-fractional operator
is presented to formulate different classes of analytic func-
tions [11]. Some definitions such as the Hilfer and Prabha-
kar results [12] (differential and integral operators) are
essentially the theme of mathematical study.

Our study is aimed to extend the Prabhakar operator [13]
to the open unit disk utilizing the class of normalized analytic
functions. We formulate this operates in a linear convolution
operator to study some important geometric behaviors. A
class of integral inequalities is investigated involving special
functions. The upper bound of the suggested operator is
computed by using the Fox-Wright function, for a class of
convex functions and univalent functions, and other studies
are illustrated in the sequel.

2. Complex Prabhakar Operator (CPO)

The Prabhakar integral operator is defined for analytic
function ϕðzÞ ∈H ½0, 1� = fϕ∈∪ : ϕ1z + ϕ2z

2+⋯g by the

Hindawi
Journal of Function Spaces
Volume 2021, Article ID 4797955, 11 pages
https://doi.org/10.1155/2021/4797955

https://orcid.org/0000-0001-9341-025X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4797955


formula [14–20]

Pγ,ω
α,βϕ zð Þ =

ðz
0
z − ζð Þβ−1Ξγ

α,β ω z − ζð Þα� �
ϕ ζð Þdζ = ϕ · ργ,ωα,β

� �
zð Þ,

α, β, γ, ω ∈ℂ, z∈∪≔ z ∈ℂ : zj j < 1f g,R αð Þ,R βð Þ > 0ð Þ,
ð1Þ

where, [15]

ρ
γ,ω
α,β zð Þ≔ zβ−1Ξγ

α,β ωzαð Þ,

Ξ
γ
α,β χð Þ = 〠

∞

n=0

Γ γ + nð Þ
Γ γð ÞΓ αn + βð Þ

χn

n!
:

ð2Þ

For example, let ϕðzÞ = zε−1 then in view of [21] Corol-
lary 2.3, we have

Pγ,ω
α,βz

ε−1 =
ðz
0
z − ζð Þβ−1Ξγ

α,β ω z − ζð Þα� �
ζε−1
� �

dζ

= Γ εð Þzβ+ε−1Ξγ
α,β+ε ωzαð Þ:

ð3Þ

The Prabhakar derivative can be computed by the for-
mula [13]

Dγ,ω
α,βϕ zð Þ = dk

dzk
P−γ,ω
α,k−βϕ zð Þ

� �
, z ∈ ∪: ð4Þ

To study the geometric indications of CPO, we intro-
duce the following class of analytic function: a normalized
analytic function ϕðzÞ ∈ ∧, z ∈ ∪ achieving the power series

ϕ zð Þ = z + 〠
∞

n=2
ϕn z

n, z∈∪, ð5Þ

Two analytic functions f , g are called convoluted,
denoting by f ∗ g if and only if

f ∗ gð Þ zð Þ = 〠
∞

n=0
anz

n

 !
∗ 〠

∞

n=0
gnz

n

 !
= 〠

∞

n=0
angnz

n: ð6Þ

Definition 1. Define a new function Ω : ∪⟶ ∪ , such
that

Ωγ,ω
α,β zð Þ≔ Γ α + βð Þ

γω1/α

� �
z1−βργ,ωα,β z

1
α

� �

= Γ α + βð Þ
γω1/α

� �
Ξ
γ
α,β ω

1
α z

1
α

� �α� �

= Γ α + βð Þ
γω1/α

� �
〠
∞

n=0

Γ γ + nð Þ
Γ γð ÞΓ αn + βð Þ

ω1/αz
� 	n

n!

= Γ α + βð Þ
γω1/α

� �
〠
∞

n=0

Γ γ + nð Þωn/α

Γ γð ÞΓ αn + βð Þ
� �

zn

n!
,

� α, β, γ, ω ∈ℂ, z∈∪,R αð Þ,R βð Þ > 0ð Þ:

ð7Þ

Note that,

Ω1,1
1,1

� 	
zð Þ = 〠

∞

n=0

zn

n!
= ez , ð8Þ

where ez is a transcendental function. Utilizing the func-
tional Ωγ,ω

α,β , we define the modified complex linear Prabha-

kar operator

ℙγ,ω
α,βϕ zð Þ≔Ω

γ,ω
α,β ∗ ϕ zð Þ, ϕ∈∧: ð9Þ

We have the following result.

Proposition 2. If ϕ ∈ ∧, then ℙγ,ω
α,βϕðzÞ = ðΩγ,ω

α,β ∗ ϕÞ ∈ ∧, where
∗ indicates the convolution product.

Proof. Let ϕ ∈ ∧, then we have

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ =Ω

γ,ω
α,β zð Þ ∗ ϕ zð Þ

= Γ α + βð Þ
γω1/α

� �
〠
∞

n=0

Γ γ + nð Þωn/α

Γ γð ÞΓ αn + βð Þ
zn

n!

 !

∗ z + 〠
∞

n=2
ϕn z

n

 !
= Γ α + βð Þ

Γ βð Þγω1/α

� ��

+ Γ α + βð Þ
γω1/α

� �
γω1/α

Γ α + βð Þ
� �

z+⋯
�

∗ 0 + z + ϕ2z
2+⋯

� 	
= z + 〠

∞

n=2

Γ α + βð Þ
γω1/α

� �

� Γ γ + nð Þωn/α

Γ γð ÞΓ αn + βð Þ
� �

ϕn
n!

zn ≔ z + 〠
∞

n=2
Φn z

n,

ð10Þ

where

Φn =
Γ α + βð Þ
γω1/α

� �
Γ γ + nð Þωn/α

Γ γð ÞΓ αn + βð Þ
� �

ϕn
n!

= Γ α + βð Þ
Γ γ + 1ð Þω1/α

� �
Γ γ + nð Þωn/α

Γ αn + βð Þ
� �

ϕn
n!

:

ð11Þ

Hence, ℙγ,ω
α,βϕðzÞ = ðΩγ,ω

α,β ∗ ϕÞðzÞ ∈ ∧: ?

We need the following concepts to study the ℙγ,ω
α,βϕðzÞ

geometrically.

Definition 3. A function ϕ ∈ ∧ is indicated to be starlike
including the origin of the linear slice contains the origin to
all further point of ϕ in ϕðz ∈ ∪Þ. A univalent function
(one-one) ϕ is indicated to be convex in ∪ if the linear slice
relating every two points of ϕðzÞ lies completely in ϕðz ∈ ∪Þ.
We indicate these classes by S∗ andC for starlike and convex
consistently. Consider the class P includes all mappings ℘
smooth in ∪ with a positive real part in ∪ realizing ℘ð0Þ = 1
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, ℘′ð0Þ > 0. Precisely, ϕ ∈ S∗ ⇔ zϕ′ðzÞ/ϕðzÞ ∈ P and ϕ ∈C
⇔ 1 + zϕ′′ðzÞ/ϕ′ðzÞ ∈P . Regularly, Rðzϕ′ðzÞ/ϕðzÞÞ > 0 for
the starlikeness and Rð1 + zϕ′′ðzÞ/ϕ′ðzÞÞ > 0 for the
convexity.

Two analytic functions f1, f2 in U are called subordinated
[22] denoting by f1 ≺ f2 or f1ðzÞ ≺ f2ðzÞ, z ∈ ∪, if there occurs
an analytic function ω, ∣ω ∣ ≤ ∣ z ∣ <1 satisfying

f1 zð Þ = f2 ω zð Þð Þ, z∈∪: ð12Þ

Next, lemma can be located in [22], P138-140.

Lemma 4. Let h ∈ ∧: Then,

(a) hðzÞ + az h′ðzÞ ≺ ð1 + aÞz + az2 ⇒ hðzÞ ≺ z, when a
∈ ð0, 1/3�

(b) zh′ðzÞ½1 + hðzÞ� + ah2ðzÞ ≺ z + ð1 + aÞz2 ⇒ hðzÞ ≺ z,
when ∣1 + a ∣ ≤1/4

(c) ½zh′ðzÞ − hðzÞ�eaðhðzÞÞ + ehðzÞ ≺ ez ⇒ hðzÞ ≺ z, when ∣a
− 1 ∣ ≤π/2

(d) zh′ðzÞð1 + ahðzÞÞ + hðzÞ ≺ 2z + az2 ⇒ hðzÞ ≺ z, when
∣a ∣ ≤1/2

(e) zh′ðzÞea hðzÞ + hðzÞ ≺ zð1 + azeazÞ⇒ hðzÞ ≺ z, when ∣
a ∣ ≤1

(f) hðzÞ + ðzh′ðzÞ/1 + ahðzÞÞ ≺ z⇒ hðzÞ ≺ z, when ∣a ∣ ≤
1

and the solution is sharp.

Definition 5. The Fox-Wright function pW qðzÞ (the exten-
sion function of hypergeometric function) is formulated by

pW q

x1, X1ð Þ x2, X2ð Þ ⋯ xp, Xp

� 	
y1, Y1ð Þ y2, Y2ð Þ ⋯ yq, Yq

� � ; z

2
64

3
75

= 〠
∞

n=0

Γ x1 + X1nð Þ⋯ Γ xp + Xpn
� 	

Γ y1 + Y1nð Þ⋯ Γ yq + Yqn
� � zn

n!
:

ð13Þ

And it normalized by

pW
∗
q

x1, X1ð Þ x2, X2ð Þ ⋯ xp, Xp

� 	
y1, Y1ð Þ y2, Y2ð Þ ⋯ yq, Yq

� � ; z

2
64

3
75

=
Γ y1ð Þ⋯ Γ yq

� �
Γ x1ð Þ⋯ Γ xp

� 	 〠∞
n=0

Γ x1 + X1nð Þ⋯ Γ xp + Xpn
� 	

Γ y1 + Y1nð Þ⋯ Γ yq + Yqn
� � zn

n!
:

ð14Þ

Note that the series is converged when

⊳≔〠
q

j=1
Y j − 〠

p

i=1
Xi ≥ −1: ð15Þ

Moreover, it converges for all finite values z to the entire
function provided ⊳< − 1: In addition, at the boundary ∣z ∣
= 1, it has the convergence value (see [23])

R ⊲ð Þ≔R 〠
q

j=1
yj − 〠

p

i=1
xi +

p − q − 1
2

 !
> 0: ð16Þ

The significance of the Fox-Wright function arises reg-
ularly from its part in fractional calculus (see [1]). Further
fascinating applications correspondingly occur. Wright’s
original attentiveness in this function was connected to
the asymptotic theory of partitions [24]. The formula ⊲
is generated in [23] by adding a positive parameter θ > 0
as follows:

⊲θ ≔ 〠
q

j=1
yj + θ − 〠

p

i=1
xi +

p − q − 1
2 : ð17Þ

Based on this generalization, the authors in [24] intro-
duced the following lemma.

Lemma 6. Assume that ⊳ = − 1,θ > 0 and Rð⊲θÞ > 0. Then,

pW q zð Þ = Γ θð Þ
ð1
0

H ρ−1t
� 	

dt

t 1 − tzρ−1ð Þθ
, zj j < ρ, ð18Þ

where

H ≔
1
2πi

ð
∪
Π ς, θð Þz−ς/Γ ς + θð Þdς <∞, ð19Þ

is the delta-neutral H function and Π indicates the Fox-
Wright coefficients.

Proposition 7. Let ϕ ∈C (convex in the open unit disk),
then

∣ Ω
γ,ω
α,β ∗ ϕ

� �
′ zð Þ∣ ≤ 1W

∗
1

1 + γ, 1ð Þ
α + β, αð Þ

; ω1/αr

" #
,

α > 0, β > 0, ∣z∣ ≔ r < 1, γ, ω ∈ℝ+ð Þ,
ð20Þ

Proof. Since ϕ ∈C , then for each n ≥ 2, we have ∣ϕn ∣ ≤1.
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Then, a computation implies that

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ




 


 ≤ Γ α + βð Þ
Γ γ + 1ð Þω1/α

� �
〠
∞

n=1

Γ γ + nð Þωn/α

Γ αn + βð Þ
� �

∣ ϕn ∣
n!

rn

≤
Γ α + βð Þ

Γ γ + 1ð Þω1/α

� �
〠
∞

n=1

Γ γ + nð Þωn/α

Γ αn + βð Þ
� �

rn

n!

= Γ α + βð Þ
Γ γ + 1ð Þω1/α

� �
〠
∞

n=1

Γ γ + nð Þ
Γ αn + βð Þ
� �

ω1/αr
� 	n

n!

= Γ α + βð Þ
Γ γ + 1ð Þω1/α

� �
〠
∞

n=0

Γ γ + 1 + nð Þ
Γ αn + α + βð Þ
� �

ω1/αr
� 	n+1
n + 1ð Þ!

= ω1/αr
� 	 Γ α + βð Þ

Γ γ + 1ð Þω1/α

� �
〠
∞

n=0

� Γ 1 + nð ÞΓ 1 + γ + nð Þ
Γ 2 + nð ÞΓ αn + α + βð Þ
� �

ω1/αr
� 	n

nð Þ!

= r
Γ α + βð Þ
Γ γ + 1ð Þ

� �
〠
∞

n=0

Γ 1 + nð ÞΓ 1 + γ + nð Þ
Γ 2 + nð ÞΓ αn + α + βð Þ
� �

ω1/αr
� 	n

nð Þ!

= r
Γ α + βð Þ
Γ γ + 1ð Þ

� �
2
W 2

1, 1ð Þ 1 + γ, 1ð Þ
2, 1ð Þ α + β, αð Þ

; ω1/αr

" #

= r
Γ 2ð ÞΓ α + βð Þ
Γ γ + 1ð ÞΓ 1ð Þ

� �
2
W 2

1, 1ð Þ 1 + γ, 1ð Þ
2, 1ð Þ α + β, αð Þ

; ω1/αr

" #

= r2W
∗
2

1, 1ð Þ 1 + γ, 1ð Þ
2, 1ð Þ α + β, αð Þ

; ω1/αr

" #
:

ð21Þ

Now, for the derivative, we have

∣ Ωγ,ω
α,β ∗ ϕ

� �
′ zð Þ∣ ≤ 〠

∞

n=1

Γ α + βð Þ
γω1/α

� �
Γ γ + nð Þωn/α

Γ γð ÞΓ αn + βð Þ
� �

n ∣ ϕn ∣
n!

∣z∣∧ n − 1f g

≤ 〠
∞

n=0

Γ α + βð Þ
Γ γ + 1ð Þω1/α

� �
Γ γ + n + 1ð Þω n+1ð Þ/α

Γ αn + α + βð Þ
� �

rn

n!

= 〠
∞

n=0

Γ α + βð Þ
Γ γ + 1ð Þ

� �
Γ γ + n + 1ð Þωn/α

Γ αn + α + βð Þ
� �

rn

n!

= Γ α + βð Þ
Γ γ + 1ð Þ

� �
1W 1

1 + γ, 1ð Þ
α + β, αð Þ

; ω1/αr

" #

= 1W
∗
1

1 + γ, 1ð Þ
α + β, αð Þ

; ω1/αr

" #
:

ð22Þ

This completes the proof.

Remark 8.

(i) It is clear that the above upper bound of ðΩγ,ω
α,β ∗ ϕÞ

ðzÞ, ∣z ∣⟶1, ω = 1 converges at

R ⊲ð Þ =R 〠
q

j=1
yj − 〠

p

i=1
xi +

p − q − 1
2

 !

> 0⟶ α + β − γ − 1/2 > 0⟶ α + β > γ + 1/2:
ð23Þ

Moreover, the upper bound of ðΩγ,ω
α,β ∗ ϕÞðzÞ converges,

when

R ⊲ð Þ =R 〠
q

j=1
yj − 〠

p

i=1
xi +

p − q − 1
2

 !

> 0⟶ α + β − γ − 3/2 > 0⟶ α + β > γ + 3/2:
ð24Þ

(ii) For special case: by Proposition 7 and Lemma 6, we
have

Ωγ,1
2,β ∗ ϕ

� �
zð Þ




 


 ≤ r
Γ 2ð ÞΓ 2 + βð Þ
Γ γ + 1ð ÞΓ 1ð Þ
� �

2
W 2

1, 1ð Þ 1 + γ, 1ð Þ
2, 1ð Þ 2 + β, 2ð Þ

; r
" #

≤ r
Γ 2 + βð Þ
Γ γ + 1ð Þ
� �ð1

0

H r−1t
� 	

dt

t 1 − tzr−1ð Þ ,

ð25Þ

provided that 5/2 + β > γ and θ = 1:

Proposition 9. Let ϕ be univalent in the open unit disk. Then,

∣ Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ∣ ≤ r1W

∗
1

1 + γ, 1ð Þ
α + β, αð Þ

; ω1/αr

" #
,

∣ Ωγ,ω
α,β ∗ ϕ

� �
zð Þ∣ ≤ r1W

∗
1

1 + γ, 1ð Þ
α + β, αð Þ

; ω1/αr

" # !
′

α ≠ 0, r < 1, β, γ ∈ℝ+ð Þ:

ð26Þ

Proof. Since ϕ is univalent, then for each n ≥ 2, we have ∣ϕn
∣ ≤n: Then a calculation indicates that

∣ Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ∣ ≤ Γ α + βð Þ

Γ γ + 1ð Þω1/α

� �
〠
∞

n=1

Γ γ + nð Þωn/α

Γ αn + βð Þ
� �

∣ ϕn ∣
n!

rn

≤
Γ α + βð Þ

Γ γ + 1ð Þω1/α

� �
〠
∞

n=1
n

Γ γ + nð Þωn/α

Γ αn + βð Þ
� �

rn

n!

= Γ α + βð Þ
Γ γ + 1ð Þω1/α

� �
〠
∞

n=1

Γ γ + nð Þ
Γ αn + βð Þ
� �

ω1/αr
� 	n
n − 1ð Þ!

= Γ α + βð Þ
Γ γ + 1ð Þω1/α

� �
〠
∞

n=0

Γ γ + 1 + nð Þ
Γ αn + α + βð Þ
� �

ω1/αr
� 	n+1

nð Þ!

= r
Γ α + βð Þ
Γ γ + 1ð Þ

� �
〠
∞

n=0

Γ 1 + γ + nð Þ
Γ αn + α + βð Þ
� �

ω1/αr
� 	n

nð Þ!

= r
Γ α + βð Þ
Γ γ + 1ð Þ

� �
1W 1

1 + γ, 1ð Þ
α + β, αð Þ

; ω1/αr

" #

= r1W
∗
1

1 + γ, 1ð Þ
α + β, αð Þ

; ω1/αr

" #
:

ð27Þ
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Now, we return to the upper bound of the derivative

∣ Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ∣ ≤ 〠

∞

n=1

Γ α + βð Þ
γω1/α

� �
Γ γ + nð Þωn/α

Γ γð ÞΓ αn + βð Þ
� �

nϕn
n!

∣zn−1∣

≤ 〠
∞

n=1

Γ α + βð Þ
γω1/α

� �
Γ γ + nð Þωn/α

Γ γð ÞΓ αn + βð Þ
� �

n ∣ ϕn ∣
n!

rn−1

≤ 〠
∞

n=1

Γ α + βð Þ
γω1/α

� �
Γ γ + nð Þωn/α

Γ γð ÞΓ αn + βð Þ
� �

n
n − 1ð Þ! r

n−1

= 〠
∞

n=0

Γ α + βð Þ
Γ γ + 1ð Þ

� �
Γ γ + n + 1ð Þ
Γ αn + β + αð Þ
� �

n + 1ð Þ
n!

ω1/αr
� 	n

= Γ α + βð Þ
Γ γ + 1ð Þ

� �
〠
∞

n=0

Γ 1 + γ + nð Þ
Γ αn + α + βð Þ
� �

n + 1ð Þ ω1/αr
� 	n
nð Þ!

= Γ α + βð Þ
Γ γ + 1ð Þ

� �
r1W 1

1 + γ, 1ð Þ
α + β, αð Þ

; ω1/αr

" # !
′

= r1W
∗
1

1 + γ, 1ð Þ
α + β, αð Þ

; ω1/αr

" # !
′:

ð28Þ

This completes the proof. ?

More integral inequality results will consider in the fol-
lowing theorem.

Theorem 10. Consider ϕ ∈ ∧ and the operator ðΩγ,ω
α,β ∗ ϕÞðzÞ,

where α ≠ 0, z ∈ ∪, β, γ ∈ℝ+: If one of the following subordi-
nation inequalities hold

Ωγ,ω
α,β ∗ ϕ

� �
zð Þ + z Ωγ,ω

α,β ∗ ϕ
� �

zð Þ 1 + σ Ωγ,ω
α,β ∗ ϕ

� �
zð Þ

� �
≺ σz2 + 2z,  σj j ≤ 1

2
,

Ωγ,ω
α,β ∗ ϕ

� �
zð Þ + z Ωγ,ω

α,β ∗ ϕ
� �

zð Þeσz ≺ 1 + σzeσzð Þz,  σj j ≤ 1,

Ωγ,ω
α,β ∗ ϕ

� �
zð Þ +

z Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ

1 + σ Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ

≺
z 1 + σzð Þ
1 + σz

,  σj j ≤ 1,

z Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ − Ω

γ,ω
α,β ∗ ϕ

� �
zð Þ

� �
eσ Ω

γ,ω
α,β∗ϕ

� 	
zð Þ + eσ Ω

γ,ω
α,β∗ϕ

� 	
zð Þ ≺ ez ,  σ − 1j j ≤ π

2
,

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ + σz Ω

γ,ω
α,β ∗ ϕ

� �
zð Þ ≺ 1 + σzð Þ + σz2, 0 < σj j ≤ 1

3
,

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ + z Ω

γ,ω
α,β ∗ ϕ

� �
zð Þ ≺ 2z,

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ 1 +

z Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ

Ωγ,ω
α,β ∗ ϕ

� �
zð Þ

2
4

3
5 ≺ 2z,

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ 1 + z Ω

γ,ω
α,β ∗ ϕ

� �
zð Þ

� �2� �
≺ 2z,

ð29Þ

then ΨðzÞ≔ 1/eσz
Ð z
0 ðΩ

γ,ω
α,β ∗ ϕÞðζÞeσζdζ ∈H ½0, 1� and

1
eσz

ðz
0

Ω
γ,ω
α,β ∗ ϕ

� �
ζð Þeσζdζ










 < 1

2−∣σ ∣
, ∣σ∣ < 2: ð30Þ

Proof. Suppose that the operator ðΩγ,ω
α,β ∗ ϕÞ achieves one of

the subordination inequalities (a)-(h) then, in view of Propo-

sition 2 and results in Lemma 4, we have

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ ≺ z, z∈∪: ð31Þ

Consequently, we obtain the upper bound inequality

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ




 


 < 1, z∈∪: ð32Þ

The function eσz achieves the real inequality

R
z eσzð Þ′
eσz

+ 2
 !

=R σz + 2ð Þ > 0, ð33Þ

provided that ∣σ ∣ <2: Moreover, we have superior inequality

χ = sup
∣z∣<1

∣eσz ∣
∣z eσzð Þ′ + 2eσz ∣

( )
= sup

∣z∣<1

∣eσz ∣
∣zσeσz + 2eσz ∣


 �

≤
1

2−∣σ ∣
<∞, ∣σ∣ < 2:

ð34Þ

Hence, in view of [22] [Corollary 4.3a.2, P210], we con-
clude that

1
eσz

ðz
0

Ω
γ,ω
α,β ∗ ϕ

� �
ζð Þeσζdζ










 ≤ zj j2

2−∣σ ∣
, ∣σ∣ < 2, ð35Þ

which yields

1
eσz

ðz
0

Ω
γ,ω
α,β ∗ ϕ

� �
ζð Þeσζdζ










 < 1

2−∣σ ∣
,

σj j < 2, z∈∪,ð Þ,
ð36Þ

hence the proof. ?

Now, we investigate another integral inequality involving
the operator ðΩγ,ω

α,β ∗ ϕÞ where ϕ ∈ ∧:

Theorem 11. Consider ϕ ∈ ∧ and the operator ðΩγ,ω
α,β ∗ ϕÞðzÞ,

where α, β, γ, ω ∈ℂ, z ∈ ∪,RðαÞ,RðβÞ > 0: If one of the sub-
ordination inequalities in Theorem 10 holds, then

G zð Þ≔ 1
eσz

ðz
0

Ω
γ,ω
α,β ∗ ϕ

� �
ζð Þg ζð Þζσ−1dζ ∈H 0, 1½ �,

∣
1
eσz

ðz
0

Ω
γ,ω
α,β ∗ ϕ

� �
ζð Þg ζð Þdζ∣ < ∣g zð Þ ∣

1−∣σ ∣
, ∣σ∣ < 1,

ð37Þ

where g ∈H ½1, 1�, g ≠ 0:

Proof. Suppose that the operator ðΩγ,ω
α,β ∗ ϕÞ has one of the

subordination inequalities (a)-(h) in Theorem 10 then, in
view of Proposition 2, we have

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ ≺ z, z∈∪, ð38Þ
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which implies that

∣ Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ∣ < 1, z∈∪: ð39Þ

As in Theorem 10, the function eσz admits the real
inequality

R
z eσzð Þ′
eσz

+ 1
 !

=R σz + 1ð Þ > 0, ð40Þ

provided that ∣σ ∣ <1: Moreover, we have superior inequality

ν = sup
∣z∣<1

g zð Þj j
z eσzð Þ′ + 1 + σð Þeσz

 



( )
= sup

zj j<1

g zð Þj j
zσeσz + eσzj j


 �

= sup
zj j<1

g zð Þj j
1 − σj j

 �

, σj j < 1 <∞,

ð41Þ

Thus, in view of [22] [Theorem 4.3a, P207], we indicate
that then GðzÞ ∈H ½0, 1� and

∣
1
eσz

ðz
0

Ω
γ,ω
α,β ∗ ϕ

� �
ζð Þg ζð Þdζ∣ < ∣g zð Þ ∣

1−∣σ ∣
, ∣σ∣ < 1, ð42Þ

where g ∈H ½1, 1�, g ≠ 0, hence the proof. ?

In addition, we have the following result by replacing eσz

by zeσz :

Theorem 12. Consider ϕ ∈ ∧ and the operator ðΩγ,ω
α,β ∗ ϕÞðzÞ,

where α ≠ 0, z ∈ ∪β, γ ∈ℝ+: If one of the subordination
inequalities in Theorem 10 holds, then

L zð Þ≔ 1
zκeσz

ðz
0

Ω
γ,ω
α,β ∗ ϕ

� �
ζð Þ 1 + σζð Þeσζζκ−1dζ ∈H 0, 1½ �,

∣
1

zκeσz

ðz
0

Ω
γ,ω
α,β ∗ ϕ

� �
ζð Þ 1 + σζð Þeσζζκ−1dζ∣

< 1+∣σ ∣
1−∣σ∣+κ


 �
, κ > 0, ∣σ∣ ≤ 1:

ð43Þ

Proof. Suppose that the operator ðΩγ,ω
α,β ∗ ϕÞ has one of the

subordination inequalities (a)-(h) then, in view of Proposi-
tion 2 and results in [22], P138-140, we have

Ωγ,ω
α,β ∗ ϕ

� �
zð Þ ≺ z, z ∈ ∪, ð44Þ

which leads to

∣ Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ∣ < 1, z ∈ ∪: ð45Þ

The function zeσz admits the following properties

zeσz ∈ ∧,
zeσzð Þ′ zeσzð Þ

z
= e2σz + σze2σz ≠ 0, ∣σ∣ ≤ 1 ;

R
z zeσzð Þ′
zeσzð Þ + κ

 !
=R 1 + σz + κð Þ > 0:

ð46Þ

Moreover, we have superior inequality

S = sup
∣z∣<1

∣z zeσzð Þ′ ∣
∣z zeσzð Þ′ + κ zeσzð Þ ∣

( )
= sup

∣z∣<1

1 + σz
1 + σz + κ


 �

= sup∣z∣<1
1+∣σ ∣
1−∣σ∣+κ


 �
, ∣σ∣ < 1, κ > 0 <∞:

ð47Þ

Thus, in view of [22]-[Corollary 4.3a.1, P208], LðzÞ ∈H
½0, 1� and

∣
1

zκeσz

ðz
0

Ω
γ,ω
α,β ∗ ϕ

� �
ζð Þ 1 + σζð Þeσζζκ−1dζ∣ < 1+∣σ ∣

1−∣σ∣+κ


 �
,

κ > 0, σ∣ ≤ 1, z∈∪,ϕ∈∧ð Þ:
ð48Þ

This completes the proof. ?

Theorem 13. Consider that ϕ is convex univalent function in
the open unit disk and the operator ðΩγ,ω

α,β ∗ ϕÞðzÞ, where α

≠ 0, z ∈ ∪, β, γ ∈ℝ+: Then,

Ψ zð Þ ∈H 0, 1½ �, ð49Þ

with

∣
1
eσz

ðz
0

Ω
γ,ω
α,β ∗ ϕ

� �
ζð Þeσζdζ∣

<
2W

∗
2

1, 1ð Þ 1 + γ, 1ð Þ
2, 1ð Þ α + β, αð Þ

; ω1/α
" #

2−∣σ ∣
, ∣σ∣ < 2:

ð50Þ

GðzÞ ∈H ½0, 1� with

∣
1
eσz

ðz
0

Ω
γ,ω
α,β ∗ ϕ

� �
ζð Þg ζð Þdζ∣

<
∣g zð Þ∣2W ∗

2

1, 1ð Þ 1 + γ, 1ð Þ
2, 1ð Þ α + β, αð Þ

; ω1/α
" #

1−∣σ ∣
, ∣σ∣ < 1,

ð51Þ

where g ∈H ½1, 1�, g ≠ 0:
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LðzÞ ∈H ½0, 1� with

∣
1

zκeσz

ðz
0

Ω
γ,ω
α,β ∗ ϕ

� �
ζð Þ 1 + σζð Þeσζζκ−1dζ∣

<
1+∣σ ∣ð Þ2W ∗

2

1, 1ð Þ 1 + γ, 1ð Þ
2, 1ð Þ α + β, αð Þ

; ω1/α
" #

1+∣σ∣+κ ,
κ > 0, ∣σ∣ ≤ 1, z∈∪ð Þ:

ð52Þ

Proof. Let ϕ be convex univalent in ∪: Then, in view of Prop-
osition 7, we have

∣ Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ∣ < r2W

∗
2

1, 1ð Þ 1 + γ, 1ð Þ
2, 1ð Þ α + β, αð Þ

; ω1/αr

" #
:

ð53Þ

Consequently, by assuming r⟶ 1, we obtain

∣ Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ∣ < 2W

∗
2

1, 1ð Þ 1 + γ, 1ð Þ
2, 1ð Þ α + β, αð Þ

; ω1/α
" #

:

ð54Þ

By the proof of Theorem 10, we conclude that (A). Simi-
larly, by using the proof in Theorems 11 and 12, we have (B)
and (C), respectively. This ends the proof. ?

Theorem 14. Consider that ϕ is univalent function in the open
unit disk and the operator ðΩγ,ω

α,β ∗ ϕÞðzÞ, where α ≠ 0, z ∈ ∪,
β, γ ∈ℝ+: Then

ΨðzÞ ∈H ½0, 1� with

1
eσz

ðz
0

Ωγ,ω
α,β ∗ ϕ

� �
ζð Þeσζdζ










 <

1W
∗
1

1 + γ, 1ð Þ
α + β, αð Þ

; ω1/α
" #

2−∣σ ∣
, ∣σ∣ < 2:

ð55Þ

GðzÞ ∈H ½0, 1� with

1
eσz

ðz
0

Ω
γ,ω
α,β ∗ ϕ

� �
ζð Þg ζð Þdζ










 <

∣g zð Þ∣1W ∗
1

1 + γ, 1ð Þ
α + β, αð Þ

; ω1/α
" #

1−∣σ ∣
, ∣σ∣ < 1,

ð56Þ

where g ∈H ½1, 1�, g ≠ 0:
LðzÞ ∈H ½0, 1� with

1
zκeσz

ðz
0

Ω
γ,ω
α,β ∗ ϕ

� �
ζð Þ 1 + σζð Þeσζζκ−1dζ












<
1 + σj jð Þ1W ∗

1

1 + γ, 1ð Þ
α + β, αð Þ

; ω1/α
" #

1 + σj j + κ
, κ > 0, σj j ≤ 1, z∈∪ð Þ:

ð57Þ

Proof. Let ϕ be convex univalent in ∪: Then, in view of Prop-
osition 9, we have

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ




 


 < r1W
∗
1

1 + γ, 1ð Þ
α + β, αð Þ

; ω1/αr

" #
: ð58Þ

Consequently, by assuming r⟶ 1, we have

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ




 


 < 1W
∗
1

1 + γ, 1ð Þ
α + β, αð Þ

; ω1/α
" #

: ð59Þ

By the proof of Theorem 10, we conclude that (A). Simi-
larly, by using the proof in Theorems 11 and 12, we have (B)
and (C), respectively. This ends the proof. ?

In the next result, we discuss the starlikeness of the oper-
ator ðΩγ,ω

α,β ∗ ϕÞ:

Theorem 15. Consider the operator ðΩγ,ω
α,β ∗ ϕÞ, ϕ ∈ ∧:

(A) If jðΩγ,ω
α,β ∗ ϕÞðzÞ/eσzðσz + 1Þ − 1j < 0:04, where ∣σ ∣ <

1/2ð ffiffiffiffiffi
13

p
− 3Þ ≈ 0:3027 then ðΩγ,ω

α,β ∗ ϕÞ ∈ S∗

(B) If jzϕ′ðzÞ/ϕðzÞ − 1j < 0:374 and sup fjðΩγ,ω
α,β ∗ ϕÞðzÞ/

ðΩγ,ω
α,β ∗ ϕÞðzÞjg ≡ jσj, jσj < 1 then

ðz
0

Ωγ,ω
α,β ∗ ϕ

� �
zð Þϕ′ zð Þdz ∈ S∗: ð60Þ

(C) If ∣ðΩγ,ω
α,β ∗ ϕÞðzÞ ∣ <2/ ffiffiffi

5
p

then ðΩγ,ω
α,β ∗ ϕÞðzÞ ∈ S∗

Proof. For part (A), assume that gðzÞ = zeσz then

sup ∣
g′′ zð Þ
g′ zð Þ

∣

( )
= sup ∣

2σ + zσ2

1 + zσ
∣


 �
: ð61Þ

Consequently, we have

sup ∣
2σ + zσ2

1 + zσ
∣


 �
≤
2 ∣ σ∣+ σj j2
1−∣σ ∣

< 1, ∣σ∣ < 1: ð62Þ

The value ∣σ ∣ <1/2ð ffiffiffiffiffi
13

p
− 3Þ ≈ 0:3027 implies that 2 ∣ σ

∣ +jσj2/1 − ∣σ ∣ ≈0:98 < 1: Since

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ

eσz σz + 1ð Þ − 1














 < 0:04, ð63Þ

then in view of [22]-[Theorem 5.5c, P296], we conclude that
ðΩγ,ω

α,β ∗ ϕÞ ∈ S∗:
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For part (B), since

zϕ′ zð Þ
ϕ zð Þ − 1












 < 0:374, ð64Þ

where the number 0.374 is a solution of the equation ð1 + x
Þex = 2 then by [22] [Theorem 5.5g, P299], we have ∣ϕ′ðzÞ
− 1 ∣ <1: Moreover, in terms of ∣σ ∣ , we have

ϕ′ zð Þ − 1


 

 < 2−∣σ ∣ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 2 − 2 ∣ σ ∣ð Þ + 1
p

−∣σ ∣
2−∣σ ∣ð Þ2 + 1

< 1, ∣σ∣ < 1,

lim
∣σ∣⟶1

2−∣σ ∣ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2 − 2 ∣ σ ∣ð Þ + 1

p
−∣σ ∣

2−∣σ ∣ð Þ2 + 1
≈ 0:

ð65Þ

by [22] [Theorem 5.5d, P298] then

ðz
0

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þϕ′ zð Þdz ∈ S∗: ð66Þ

The last part immediately comes from [22] [Corollar-
y5.5.a,P294]. This ends the proof. ?

Theorem 16. Consider the operator ðΩγ,ω
α,β ∗ ϕÞ, ϕ ∈ ∧:

(A) If the following inequality holds

z Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ

≺ ez − 1, z ∈ ∪, ð67Þ

then

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ ≺ exp

ðz
0

eζ − 1
� �

ζ−1dζ
� �

, z ∈ ∪, ð68Þ

(B) If the subordination occurs

z Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ

Ωγ,ω
α,β ∗ ϕ

� �
zð Þ

− 1 ≺ ez − 1, z ∈ ∪, ð69Þ

then

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ

z
≺ exp

ðz
0

eζ − 1
� �

ζ−1dζ
� �

, z ∈ ∪, ð70Þ

(C) If the next relation exists

z Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ ≺ ez − 1, z ∈ ∪, ð71Þ

then

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ ≺

ðz
0

eζ − 1
� �

ζ−1dζ: ð72Þ

Proof. It is clear that the function

f zð Þ = ez − 1 = z + z2

2 + z3

6 + z4

24 + z5

120 +O z6
� 	

, ð73Þ

satisfies f ð0Þ = 0 and it is convex in the open unit disk. Con-
sequently, it is starlike. By Proposition 2, the operator ðΩγ,ω

α,β
∗ ϕÞðzÞ ∈ ∧ and hence ðΩγ,ω

α,β ∗ ϕÞð0Þ = 1 that is ðΩγ,ω
α,β ∗ ϕÞðz

Þ ∈H ½1, 1�: Similarly for the function

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ

z
∈H 1, 1½ �: ð74Þ

Thus, in view of [22]-[Corollary 3.1d.1, P76], we have the
desire results.

For the last part (C), zðΩγ,ω
α,β ∗ ϕÞðzÞ ∈H ½0, 1� ; thus, in

virtue of [22]-[Theorem 3.1d, P76], where a = 0, we conclude
the last subordination. ?

2.1. Fractional Saint-Venant Equations. By using the frac-
tional calculus of the construction, we formulate the frac-
tional 2D-Saint-Venant equations utilizing the functional
convolution operator Ωγ,ω

α,β ∗ ϕ, ϕ ∈Λ, and z ∈ ∪:

Example 1. We investigate the upper bound of the 2-
dimensional Saint-Venant equations (2D-SVE) of diffusive
wave (this equation has measured the level of the water). This
equation simply presents the formula

dΘ zð Þ
dz

− Δ zð Þ = 0, ð75Þ

whereΘ is the height deviation of the horizontal pressure
surface at two-dimensional position z = x + iy and ΔðςÞ rep-
resents the difference of bed slope. By using the convolution
operator, we generalize 2D-SVE into the form

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ − Δ zð Þ = 0, z ∈ ∪: ð76Þ

Multiplying both sides of Eq. (76) by z and let

Δ zð Þ = ez − 1
z

= 1 + z
2 + z2

6 + z3

24 + z4

120 + z5

720 +O z6
� 	

,

ð77Þ

we have

z Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ = ez − 1, z ∈ ∪: ð78Þ
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Re(ez-1) where z = x+iy Im(ez-1) where z = x+iy

Im(Ei(z)-log(z)) where z = x+iyRe(Ei(z)-log(z)) where z = x+iy
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(a) The first row represents the function f ðzÞ = ðezÞ − 1 and the second row indicates the solution (79) of the extended 2D-SVE

Im(Ei(z)-log(z)) where z = x+iyRe(Ei(z)-log(z)) where z = x+iy

f

f

f

f

fʹ f(1)=1

(Sampling f(1))
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(b) The solution f ðzÞ≔ ðΩγ,ω
α,β ∗ ϕÞðzÞ

Figure 1: Saint-Venant equations (2D-SVE) of diffusive wave.
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Thus, in view of Theorem 16-(C), we conclude the upper
solution of Eq. (78) is given by (see Figure 1, second row)

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ ≺

ðz
0

eζ − 1
� �

ζ−1dζ: ð79Þ

Hence, we obtain

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ = c + Ei zð Þ − log zð Þ = c + 0:577 + z + z2

4

+ z3

18 + z4

96 + z5

600 + z6

4320 +O z7
� 	

− iπ
arg zð Þ + πð Þ

2πð Þ
� �

,

ð80Þ

where c is a constant and

Ei zð Þ = 0:577 + ln zð Þ + z+⋯, ð81Þ

indicates the exponential integral. Assuming that

c = iπ
arg zð Þ + πð Þ

2πð Þ
� �

− 0:577, ð82Þ

we get

Ω
γ,ω
α,β ∗ ϕ

� �
zð Þ = z + z2

4 + z3

18 + z4

96 + z5

600 + z6

4320 +O z7
� 	

∈ ∧:

ð83Þ

By the convexity of ez (see [22]-P139), we confirm that
the solution is normalized analytic convex in ∪: Note that
the term ðΩγ,ω

α,β ∗ ϕÞðzÞ is called the convective acceleration

term. Figure 1 shows the behavior of solutions of 2D-SVE
of diffusive wave.

3. Conclusion

From above, we have extended the Prabhakar operator in the
open unit disk. We formulated it in a linear convolution
operator with a normalized function. A class of integral
inequalities is investigated involving special functions. The
upper bound of the suggested operator is computed by using
the Fox-Wright function, for a class of convex functions and
univalent functions. Moreover, we applied the operator to
generalize the 2D-SVE. A solution of the extended 2D-SVE
is computed by using recent result (Theorem 16).

For future woks, one can consider extra studies in the
geometric function theory by considering the operator in dif-
ferent classes of analytic functions, such as normalized func-
tions, harmonic functions, and meromorphic functions.
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This research article is dedicated to solving fractional-order parabolic equations, using an innovative analytical technique. The
Adomian decomposition method is well supported by Elzaki transformation to establish closed-form solutions for targeted
problems. The procedure is simple, attractive, and preferred over other methods because it provides a closed-form solution for
the given problems. The solution graphs are plotted for both integer and fractional-order, which shows that the obtained
results are in good contact with problems’ exact solution. It is also observed that the solution of fractional-order problems is
convergent to the integer-order problem. Moreover, the validity of the proposed method is analyzed by considering some
numerical examples. The theory of the suggested approach is fully supported by the obtained results for the given problems. In
conclusion, the present method is a straightforward and accurate analytical technique that can solve other fractional-order
partial differential equations.

1. Introduction

The present research work is dedicated to studying the ana-
lytical solution of fractional-order parabolic equations. The
literature is well recognized that a broad range of physics,
engineering, nuclear physics, and mathematics problems
can be defined as unique boundary and initial value
problems. Homogeneous beam’s transverse vibrations are
controlled by fractional single fourth-order parabolic partial
differential equations (PDEs). Such problem types occur in
viscoelastic and inelastic flow mathematical modeling, layer
deflection theories, and beam deformation [1–12]. Analyses
of these problems have taken several physicist’s and mathe-
matician’s attention [13–15].

The time fractional parabolic PDEs with variable coeffi-
cient:

∂βμ
∂τβ

+ κ ϕ, φ, ψð Þ ∂
4μ

∂ϕ4
+ 1
φ
μ ϕ, φ, ψð Þ ∂

4μ

∂φ4

+ 1
ψ
ρ ϕ, φ, ψð Þ ∂

4μ

∂ψ4 = g ϕ, φ, ψ, τð Þ, 1 < β ≤ 2, τ ≥ 0,

ð1Þ

where κðϕ, φ, ψÞ, μðϕ, φ, ψÞ, and ρðϕ, φ, ψÞ are positive.
With initial conditions,
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μ ϕ, φ, ψ, τð Þ = f0 ϕ, φ, ψð Þ,
μτ ϕ, φ, ψ, τð Þ = k0 ϕ, φ, ψð Þ,

ð2Þ

with boundary conditions

μ a, φ, ψ, τð Þ = h0 φ, ψ, τð Þ, μ b, φ, ψ, τð Þ = h1 φ, ψ, τð Þ,
μ ϕ, a, ψ, τð Þ = g0 φ, ψ, τð Þ, μ ϕ, b, ψ, τð Þ = g1 φ, ψ, τð Þ,
μ ϕ, φ, a, τð Þ = k0 φ, ψ, τð Þ, μ ϕ, φ, b, τð Þ = k1 φ, ψ, τð Þ,

μϕϕ a, φ, ψ, τð Þ = �h0 φ, ψ, τð Þ, μϕϕ b, φ, ψ, τð Þ = �h1 φ, ψ, τð Þ,
μφφ ϕ, a, ψ, τð Þ = �g0 φ, ψ, τð Þ, μφφ ϕ, b, ψ, τð Þ = �g1 φ, ψ, τð Þ,
μψψ ϕ, φ, a, τð Þ = �k0 φ, ψ, τð Þ, μψψ ϕ, φ, b, τð Þ = �k1 φ, ψ, τð Þ:

ð3Þ

For which, hℓ, gℓ, kℓ, hℓ, gℓ, and kℓ are continuous vari-
ables, and ℓ differs between 0 and 1 and beam’s flexural stiff-
ness ratio [1] in its volume per unit mass, like, and its
mentions [1, 3, 4, 6, 8, 10, 11]. Many researchers [10, 16, 17]
have attempted to study the analytical solutions of the para-
bolic equation of the fourth-order. Different techniques have
been suggested recently, such as the B-spline method [18],
decomposition method [19], the implicit scheme [20], the
explicit scheme [11], and the spline method [21] to analyze
the solution of the partial differential fourth-order parabolic
equation. Biazar and Ghazvini [22] have used He’s iterative
technique for the solution of parabolic PDE’s. The modified
version of this method was introduced in [23] to solve singular
fourth-order parabolic PDEs. The fourth-order parabolic PDE
analytical solution was examined in [24]. The modified
Laplace discussed variational iteration technique [25] to solve
singular fourth-order parabolic PDEs.

G. Adomian is an American scientist who has developed the
Adomian decomposition method. It focuses on the search for a
set of solutions and the decomposition of the nonlinear operator
into a sequence in which Adomian polynomials [26] are recur-
rently computed to use the terms. This method is improved with
the aid of Elzaki transformation such that the improved method
is known as the Elzaki decomposition method (EDM). Elzaki
Transform (ET) is a modern integral transform introduced by
Tarig Elzaki in 2010. ET is a modified transform of Sumudu
and Laplace transforms. It is important to note that there are
many differential equations with variable coefficients that
Sumudu and Laplace cannot accomplish transforms but can be
conveniently done by using ET [27–30]. Many mathematicians
have been solving differential equations with the aid of ET, such
as Navier-Stokes equations [30], heat-like equations [31] and
Burgers–Huxley equation [32].

2. Preliminaries

2.1. Definition. The Abel-Riemann of fractional operator Dβ

of order β is given as [27–30]

Dβν ζð Þ =

dj

dζj
ν ζð Þ, β = j,

1
Γ j − βð Þ

d

dζj

ðζ
0

ν ζð Þ
ζ − ψð Þβ−j+1

dψ, j − 1 < β < j,

8>>>><
>>>>:

ð4Þ

where j ∈ Z+, β ∈ R+, and

D−βν ζð Þ = 1
Γ βð Þ

ðζ
0
ζ − ψð Þβ−1ν ψð Þdψ, 0 < β ≤ 1: ð5Þ

2.2. Definition. The fractional-order Abel-Riemann integra-
tion operator Jβ is defined as [27–30]

Jβν ζð Þ = 1
Γ βð Þ

ðζ
0
ζ − ψð Þβ−1ν ζð Þdζ, ζ > 0, β > 0: ð6Þ

The operator of basic properties:

Jβζj = Γ j + 1ð Þ
Γ j + β + 1ð Þ ζ

j+ψ,

Dβζj = Γ j + 1ð Þ
Γ j − β + 1ð Þ ζ

j−ψ:

ð7Þ

2.3. Definition. The Caputo fractional operator Dβ of β is
defined as [27–30]

CDβν ζð Þ =

1
Γ j − βð Þ

ðζ
0

νj ψð Þ
ζ − ψð Þβ−j+1

dψ, j − 1 < β < j,

dj

dζj
ν ζð Þ, j = β:

8>>>><
>>>>:

ð8Þ

3. Idea of NDM

The general fractional-order PDE is given as

Dβμ ϕ, τð Þ + Lμ ϕ, τð Þ +Nμ ϕ, τð Þ = q ϕ, τð Þ, ϕ, τ ≥ 0, 1 < β ≤ 1,
ð9Þ

In Equation (9), we represent the linear part of the equa-
tion with L and the nonlinear part with N , and Dβ = ∂β/∂τβ
denotes the Caputo fractional derivatives.

With initial condition,

μ ϕ, 0ð Þ = k ϕð Þ, ð10Þ

We have applied the Elzaki transformation to Equation
(9)

E Dβμ ϕ, τð Þ
h i

+ E Lμ ϕ, τð Þ +Nμ ϕ, τð Þ½ � = E q ϕ, τð Þ½ �, ð11Þ

and using Elzaki Transform’s differentiation property, we
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get

1
sβ
E μ ϕ, τð Þ½ � − s2−βμ ϕ, 0ð Þ = E q ϕ, τð Þ½ � − E Lμ ϕ, τð Þ +Nμ ϕ, τð Þ½ �,

E μ ϕ, τð Þ½ � = s2μ ϕ, 0ð Þ + sβE q ϕ, τð Þ½ � − sβE Lμ ϕ, τð Þ +Nμ ϕ, τð Þ½ �:
ð12Þ

Now, μðϕ, 0Þ = kðϕÞ.

E μ ϕ, τð Þ½ � = s2k ϕð Þ + sβE q ϕ, τð Þ½ � − sβE Lμ ϕ, τð Þ +Nμ ϕ, τð Þ½ �:
ð13Þ

The following infinite series represent the EDM solution
μðϕ, τÞ.

μ ϕ, τð Þ = 〠
∞

j=0
μj ϕ, τð Þ, ð14Þ

and Adomian polynomials as

Nμ ϕ, τð Þ = 〠
∞

j=0
Aj, ð15Þ

Aj =
1
j!

dj

dλj N〠
∞

j=0
λjμj

� �" #" #
λ=0

, j = 0, 1, 2,⋯: ð16Þ

We get replacement Equation (14) and Equation (15) in
Equation (13).

E 〠
∞

j=0
μj ϕ, τð Þ

" #
= s2k ϕð Þ + sβE q ϕ, τð Þ½ � − sβE L〠

∞

j=0
μj ϕ, τð Þ + 〠

∞

j=0
Aj

" #
:

ð17Þ

Applying the Elzaki transformation’s linearity,

E μ0 ϕ, τð Þ½ � = s2k ϕð Þ + sβE q ϕ, τð Þ½ �, ð18Þ

E μ1 ϕ, τð Þ½ � = −sβE Lμ0 ϕ, τð Þ + A0½ �: ð19Þ

We can generally write

E μj+1 ϕ, τð Þ
h i

= −sβE Lμj ϕ, τð Þ + Aj

h i
, j ≥ 1: ð20Þ

Equation (18) and Equation (20) implement the inverse
Elzaki transformation

μ0 ϕ, τð Þ = k ϕð Þ + E−1 sβE q ϕ, τð Þ½ �
h i

,

μj+1 ϕ, τð Þ = −E−1 sβE Lμ j ϕ, τð Þ + Aj

h ih i
:

ð21Þ

4. Numerical Implementation

4.1. Problem. Consider fractional-order one-dimensional
parabolic equation:

∂βμ
∂τβ

+ 1
ϕ
+ ϕ4

120

� �
∂4μ
∂ϕ4

= 0, 1 < β ≤ 2, τ ≥ 0, ð22Þ

with initial conditions

μ ϕ, 0ð Þ = 0, μτ ϕ, 0ð Þ = 1 + ϕ5

120 , ð23Þ

with boundary conditions

μ
1
2 , τ
� �

= 1 + 1/2ð Þ5
120

� �
sin τð Þ, μ 1, τð Þ = 121

120

� �
sin τð Þ,

∂2μ
∂ϕ2

1
2 , τ
� �

= 1
6

1
2

� �3
sin τð Þ, ∂

2μ

∂ϕ2
1, τð Þ = 1

6 sin τð Þ:

ð24Þ

The Elzaki transform of Equation (22):

1
sβ
μ ϕ, s, uð Þ − s2−βμ ϕ, 0ð Þ − s3−βμτ ϕ, 0ð Þ = −E

1
ϕ
+ ϕ4

120

� �
∂4μ
∂ϕ4

" #
:

ð25Þ

Simplify and replace Equation (23) condition.

μ ϕ, s, uð Þ = s2 0ð Þ + s3 1 + ϕ5

120

� �
− E

1
ϕ
+ ϕ4

120

� �
∂4μ
∂ϕ4

" #
:

ð26Þ

Use of inverse Elzaki transformation

μ ϕ, τð Þ = E−1 s3 1 + ϕ5

120

� �
− sβE

1
ϕ
+ ϕ4

120

� �
∂4μ
∂ϕ4

" #" #
,

ð27Þ

μ ϕ, τð Þ = 1 + ϕ5

120

� �
τ − E−1 sβE

1
ϕ
+ ϕ4

120

� �
∂4μ
∂ϕ4

" #" #
:

ð28Þ
Equation (28) correction function is provided by

〠
∞

ℓ=0
μℓ+1 ϕ, τð Þ = 1 + ϕ5

120

� �
τ − E−1 sβE

1
ϕ
+ ϕ4

120

� �
〠
∞

ℓ=0

∂4μℓ
∂ϕ4

" #" #
,

ð29Þ

the first term

μ0 ϕ, τð Þ = 1 + ϕ5

120

� �
τ, ð30Þ
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then we got

μℓ+1 ϕ, τð Þ = −E−1 sβE
1
ϕ
+ ϕ4

120

� �
〠
∞

ℓ=0

∂4μℓ
∂ϕ4

" #" #
, ð31Þ

for j = 0,

μ1 ϕ, τð Þ = −E−1 sβE
1
ϕ
+ ϕ4

120

� �
∂4μ0
∂ϕ4

" #" #
,

μ1 ϕ, τð Þ = −E−1 1 + ϕ5/120
� �� �

uβ

sβ+2

" #
= − 1 + ϕ5

120

� �
τβ+1

Γ β + 2ð Þ :

ð32Þ

The following terms are

μ2 ϕ, τð Þ = −E−1 sβE
1
ϕ
+ ϕ4

120

� �
∂4μ1
∂ϕ4

" #" #
= 1 + ϕ5

120

� �
τ2β+1

Γ 2β + 2ð Þ ,

μ3 ϕ, τð Þ = −E−1 sβE
1
ϕ
+ ϕ4

120

� �
∂4μ2
∂ϕ4

" #" #
= − 1 + ϕ5

120

� �
τ3β+1

Γ 3β + 2ð Þ ,

⋮

ð33Þ

The series form of problem (1) such as:

μ ϕ, τð Þ = μ0 ϕ, τð Þ + μ1 ϕ, τð Þ + μ2 ϕ, τð Þ + μ3 ϕ, τð Þ + μ4 ϕ, τð Þ⋯,

μ ϕ, τð Þ = 1 + ϕ5

120

� �
τ −

τβ+1

Γ β + 2ð Þ + τ2β+1

Γ 2β + 2ð Þ −
τ3β+1

Γ 3β + 2ð Þ + τ4β+1

Γ 4β + 2ð Þ ⋯
� 	

,

ð34Þ

when β = 2, then integer EDM solution is

μ ϕ, τð Þ = 1 + ϕ5

120

� �
τ −

τ3

3! +
τ5

5! −
τ7

7! +
τ9

9! ⋯
� 	

: ð35Þ

The exact result is given as

μ ϕ, τð Þ = 1 + ϕ5

120

� �
sin τð Þ: ð36Þ

In Figure 1, the exact and the EDM solutions of problem
1 at β = 1 are shown by subgraphs, respectively. From the
given figure, it can be seen that both the EDM and exact
results are in close contact with each other. In Figure 2, the
EDM solutions of problem 1 are investigated at different
fractional order β = 0:8 and 0:6. It is analyzed that time-
fractional problem results are convergent to an integer-
order effect as time-fractional analysis to integer order.

4.2. Problem. Consider fractional-order two-dimensional
parabolic equation:

∂βμ
∂τβ

+ 2 1
ϕ2

+ ϕ4

6!

� �
∂4μ
∂ϕ4

+ 2 1
φ2 + φ4

6!

� �
∂4μ
∂φ4 = 0, 1 < β ≤ 2, τ ≥ 0,

ð37Þ

with initial conditions

μ ϕ, φ, 0ð Þ = 0, μτ ϕ, φ, 0ð Þ = 2 + ϕ6

6! +
φ6

6! , ð38Þ

with boundary conditions

μ
1
2 , φ, τ
� �

= 2 + 1/2ð Þ6
6! + φ6

6!

 !
sin τð Þ, μ 1

2 , φ, τ
� �

= 2 + 1ð Þ6
6! + φ6

6!

 !
sin τð Þ,

μϕϕ
1
2 , φ, τ
� �

= 1/2ð Þ4
4!

 !
sin τð Þ, μϕϕ

1
2 , φ, τ
� �

= 1
24 sin τð Þ,

μφφ ϕ, 12 , τ
� �

= 1/2ð Þ4
4! sin τð Þ, μφφ ϕ, 12 , τ

� �
= 1
24 sin τð Þ:

ð39Þ

In the Elzaki transformation of Equation (37), we get

1
sβ
μ ϕ, φ, s, uð Þ − s2−βμ ϕ, 0ð Þ − s3−βμτ ϕ, 0ð Þ

= −E 2 1
ϕ2

+ ϕ4

6!

� �
∂4μ
∂ϕ4

+ 2 1
φ2 + φ4

6!

� �
∂4μ
∂φ4

" #
,

ð40Þ

Simplify and replace Equation (38) condition.

μ ϕ, φ, s, uð Þ = s2 0ð Þ + s3 2 + ϕ6

6! +
φ6

6!

� �

− sβE 2 1
ϕ2

+ ϕ4

6!

� �
∂4μ
∂ϕ4

+ 2 1
φ2 + φ4

6!

� �
∂4μ
∂φ4

" #
,

ð41Þ

using inverse Elzaki transformation

μ ϕ, φ, τð Þ = E−1 s3 2 + ϕ6

6! +
φ6

6!

� �
− sβE 2 1

ϕ2
+ ϕ4

6!

� �
∂4μ
∂ϕ4

+ 2 1
φ2 + φ4

6!

� �
∂4μ
∂φ4

( )" #
,

ð42Þ

μ ϕ, φ, τð Þ = 2 + ϕ6

6! +
φ6

6!

� �
τ − E−1

� sβE 2 1
ϕ2

+ ϕ4

6!

� �
∂4μ
∂ϕ4

+ 2 1
φ2 + φ4

6!

� �
∂4μ
∂φ4

( )" #
,

ð43Þ
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Equation (43) correction function is provided by

〠
∞

ℓ=0
μℓ+1 ϕ, φ, τð Þ = 2 + ϕ6

6! +
φ6

6!

� �
τ − E−1

� sβE 2 1
ϕ2

+ ϕ4

6!

� �
〠
∞

ℓ=0

∂4μℓ
∂ϕ4

+ 2 1
φ2 + φ4

6!

� �
〠
∞

ℓ=0

∂4μℓ
∂φ4

( )" #
,

ð44Þ

the first term

μ0 ϕ, φ, τð Þ = 2 + ϕ6

6! +
φ6

6!

� �
τ, ð45Þ

then we get

μℓ+1 ϕ, φ, τð Þ = −E−1 sβE 2 1
ϕ2

+ ϕ4

6!

� �
〠
∞

ℓ=0

∂4μℓ
∂ϕ4

+ 2 1
φ2 + φ4

6!

� �
〠
∞

ℓ=0

∂4μℓ
∂φ4

( )" #
,

ð46Þ

for j = 0,

μ1 ϕ, φ, τð Þ = −E−1 sβE 2 1
ϕ2

+ ϕ4

6!

� �
∂4μ0
∂ϕ4

+ 2 1
φ2 + φ4

6!

� �
∂4μ0
∂φ4

( )" #
,

μ1 ϕ, τð Þ = −E−1 2 + ϕ6

6! +
φ6

6!

� �
uβ

sβ+2


 �
= − 2 + ϕ6

6! +
φ6

6!

� �
τβ+1

Γ β + 2ð Þ :

ð47Þ

The following terms are

μ2 ϕ, φ, τð Þ = −E−1 sβE 2 1
ϕ2

+ ϕ4

6!

� �
∂4μ1
∂ϕ4

+ 2 1
φ2 + φ4

6!

� �
∂4μ1
∂φ4

( )" #
,

μ2 ϕ, φ, τð Þ = 2 + ϕ6

6! +
φ6

6!

� �
τ2β+1

Γ 2β + 2ð Þ ,

μ3 ϕ, φ, τð Þ = −E−1 sβE 2 1
ϕ2

+ ϕ4

6!

� �
∂4μ2
∂ϕ4

+ 2 1
φ2 + φ4

6!

� �
∂4μ2
∂φ4

( )" #
,

μ3 ϕ, φ, τð Þ = − 2 + ϕ6

6! +
φ6

6!

� �
τ3β+1

Γ 3β + 2ð Þ ,
:

:

ð48Þ

In the series form of problem (2), we get

μ ϕ, φ, τð Þ = μ0 ϕ, φ, τð Þ + μ1 ϕ, φ, τð Þ + μ2 ϕ, φ, τð Þ
+ μ3 ϕ, φ, τð Þ + μ4 ϕ, φ, τð Þ⋯,

μ ϕ, φ, τð Þ = 2 + ϕ6

6! +
φ6

6!

� �
τ −

τβ+1

Γ β + 2ð Þ + τ2β+1

Γ 2β + 2ð Þ
�

−
τ3β+1

Γ 3β + 2ð Þ +
τ4β+1

Γ 4β + 2ð Þ ⋯
	
:

ð49Þ
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Figure 1: The graphs of exact and EDM result for β = 2 of problem 1.
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Figure 2: The fractional-order graphs of β = 0:8 and 0:6 of problem 1.
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Then, β = 2, the integer EDM result as

μ ϕ, φ, τð Þ = 2 + ϕ6

6! +
φ6

6!

� �
τ −

τ3

3! +
τ5

5! −
τ7

7! +
τ9

9! ⋯
� 	

:

ð50Þ

The exact solution is

μ ϕ, φ, τð Þ = 2 + ϕ6

6! +
φ6

6!

� �
sin τð Þ: ð51Þ

In Figure 3, the exact and the EDM solutions of problem
2 at β = 1 are shown by subgraphs, respectively. From the
given figure, it can be seen that both the EDM and exact
results are in close contact with each other. In Figure 4, the
EDM solutions of problem 2 are investigated at different
fractional order β = 0:8 and 0:6. It is analyzed that time-
fractional problem results are convergent to an integer-
order effect as time-fractional analysis to integer order.

4.3. Problem. Consider fractional-order three-dimensional
parabolic equation:

∂βμ
∂τβ

+ 2 φ + ψ

2 cos ϕ − 1
� �

∂4μ
∂ϕ4

+ 2 ϕ + ψ

2 cos φ − 1
� �

∂4μ
∂φ4 + 2 φ + ϕ

2 cos ψ − 1
� �

∂4μ
∂ψ4 = 0,

ð52Þ

1 < β ≤ 2, τ ≥ 0, ð53Þ
with initial conditions

μ ϕ, φ, ψ, 0ð Þ = ϕ + φ + ψ − cos ϕð Þ + cos φð Þ + cos ψð Þð Þ,
ð54Þ

μτ ϕ, φ, ψ, 0ð Þ = cos ϕð Þ + cos φð Þ + cos ψð Þð Þ − ϕ + φ + ψð Þ,
ð55Þ

with boundary conditions

μ 0, φ, ψ, τð Þ = −1 + φ + ψ − cos φð Þ − cos ψð Þð Þe−τ,

μ
π

3 , φ, ψ, τ
� �

= 2π − 3
6 + φ + ψ − cos φð Þ − cos ψð Þ

� �
e−τ,

μ ϕ, 0, ψ, τð Þ = −1 + ϕ + ψ − cos ϕð Þ − cos ψð Þð Þe−τ,

μ ϕ, π3 , ψ, τ
� �

= 2π − 3
6 + ϕ + ψ − cos ϕð Þ − cos ψð Þ

� �
e−τ,

μ ϕ, φ, 0, τð Þ = −1 + ϕ + φ − cos ϕð Þ − cos φð Þð Þe−τ,

μ ϕ, φ, π3 , τ
� �

= 2π − 3
6 + ϕ + φ − cos ϕð Þ − cos φð Þ

� �
e−τ,

μϕ 0, φ, ψ, τð Þ = μφ ϕ, 0, ψ, τð Þ = μψ ϕ, φ, 0, τð Þ = e−τ,

μϕ
π

3 , φ, ψ, τ
� �

= μφ ϕ, π3 , ψ, τ
� �

= μψ ϕ, φ, π3 , τ
� �

=
ffiffiffi
3

p
+ 2
2

 !
e−τ:

ð56Þ

In the Elzaki transformation of Equation (52), we get

1
sβ
μ ϕ, φ, ψ, s, uð Þ − s2−βμ ϕ, φ, ψ, 0ð Þ − s3−βμτ ϕ, φ, ψ, 0ð Þ

= −E 2 φ + ψ

2 cos ϕ − 1
� �

∂4μ
∂ϕ4

+ 2 ϕ + ψ

2 cos φ − 1
� �

∂4μ
∂φ4

"

+ 2 φ + ϕ

2 cos ψ − 1
� �

∂4μ
∂ψ4

#
,

ð57Þ

Simplify and replace Equation (54) condition.

μ ϕ, φ, ψ, s, uð Þ = s2 ϕ + φ + ψ − cos ϕð Þ + cos φð Þ + cos ψð Þð Þf g
+ s3 cos ϕð Þ + cos φð Þ + cos ψð Þð Þ − ϕ + φ + ψð Þf g

− sβE 2 φ + ψ

2 cos ϕ − 1
� �

∂4μ
∂ϕ4

+ 2 ϕ + ψ

2 cos φ − 1
� �

∂4μ
∂φ4

"

+ 2 φ + ϕ

2 cos ψ − 1
� �

∂4μ
∂ψ4

#
,

ð58Þ

using the inverse Elzaki transform

μ ϕ, φ, ψ, τð Þ = E−1 s2 ϕ + φ + ψ − cos ϕð Þ + cos φð Þ + cos ψð Þð Þf g

+ s3 cos ϕð Þ + cos φð Þ + cos ψð Þð Þ − ϕ + φ + ψð Þf g�
− E−1 sβE 2 φ + ψ

2 cos ϕ − 1
� �

∂4μ
∂ϕ4

+ 2 ϕ + ψ

2 cos φ − 1
� �

∂4μ
∂φ4

""

+ 2 φ + ϕ

2 cos ψ − 1
� �

∂4μ
∂ψ4

##
,

ð59Þ

μ ϕ, φ, ψ, τð Þ = ϕ + φ + ψ − cos ϕð Þ + cos φð Þ + cos ψð Þð Þf g 1 − τð Þ

− E−1 sβE 2 φ + ψ

2 cos ϕ − 1
� �

∂4μ
∂ϕ4

+ 2 ϕ + ψ

2 cos φ − 1
� �

∂4μ
∂φ4

""

+ 2 φ + ϕ

2 cos ψ − 1
� �

∂4μ
∂ψ4

##
:

ð60Þ
Equation (59) correction function is provided by

〠
∞

ℓ=0
μℓ+1 ϕ, φ, τð Þ = ϕ + φ + ψ − cos ϕð Þ + cos φð Þ + cos ψð Þð Þf g 1 − τð Þ

− E−1 sβE 2 φ + ψ

2 cos ϕ − 1
� �

〠
∞

ℓ=0

∂4μℓ
∂ϕ4

+ 2 ϕ + ψ

2 cos φ − 1
� �

〠
∞

ℓ=0

∂4μℓ
∂φ4

""

+ 2 φ + ϕ

2 cos ψ − 1
� �

〠
∞

ℓ=0

∂4μℓ
∂ψ4

##
,

ð61Þ

the first term

μ0 ϕ, φ, ψ, τð Þ = ϕ + φ + ψ − cos ϕð Þ + cos φð Þ + cos ψð Þð Þf g 1 − τð Þ,
ð62Þ
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then we get

μℓ+1 ϕ, φ, ψ, τð Þ = −E−1 sβE 2 φ + ψ

2 cos ϕ − 1
� �

〠
∞

ℓ=0

∂4μℓ
∂ϕ4

("

+ 2 ϕ + ψ

2 cos φ − 1
� �

〠
∞

ℓ=0

∂4μℓ
∂φ4 + 2 φ + ϕ

2 cos ψ − 1
� �

〠
∞

ℓ=0

∂4μℓ
∂ψ4

)#
,

ð63Þ

for j = 0,

μ1 ϕ, φ, ψ, τð Þ = −E−1 sβE 2 φ + ψ

2 cos ϕ − 1
� �

∂4μ0
∂ϕ4

+ 2 ϕ + ψ

2 cos φ − 1
� �

∂4μ0
∂φ4

("

+ 2 φ + ϕ

2 cos ψ − 1
� �

∂4μ0
∂ψ4

)#
,

μ1 ϕ, φ, ψ, τð Þ = E−1 ϕ + φ + ψ − cos ϕð Þ + cos φð Þ + cos ψð Þð Þ uβ

sβ+1
−

uβ

sβ+2

� �
 �
,

μ1 ϕ, φ, ψ, τð Þ = ϕ + φ + ψ − cos ϕð Þ + cos φð Þ + cos ψð Þð Þf g τβ

Γ β + 1ð Þ −
τβ+1

Γ β + 2ð Þ
� �

:

ð64Þ

The following terms are

μ2 ϕ, φ, ψ, τð Þ = −E−1 sβE 2 φ + ψ

2 cos ϕ − 1
� �

∂4μ1
∂ϕ4

("

+ 2 ϕ + ψ

2 cos φ − 1
� �

∂4μ1
∂φ4 + 2 φ + ϕ

2 cos ψ − 1
� �

∂4μ1
∂ψ4

)#
,

μ2 ϕ, φ, ψ, τð Þ = ϕ + φ + ψ − cos ϕð Þ + cos φð Þ + cos ψð Þð Þf g

� τ2β

Γ 2β + 1ð Þ −
τ2β+1

Γ 2β + 2ð Þ
� �

,

μ3 ϕ, φ, ψ, τð Þ = E−1 sβE 2 φ + ψ

2 cos ϕ − 1
� �

∂4μ2
∂ϕ4

("

+ 2 ϕ + ψ

2 cos φ − 1
� �

∂4μ2
∂φ4 + 2 φ + ϕ

2 cos ψ − 1
� �

∂4μ2
∂ψ4

)#
,

μ3 ϕ, φ, ψ, τð Þ = ϕ + φ + ψ − cos ϕð Þ + cos φð Þ + cos ψð Þð Þf g

� τ3β

Γ 3β + 1ð Þ −
τ3β+1

Γ 3β + 2ð Þ
� �

,

⋮ ð65Þ
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Figure 3: The exact and EDM solution for β = 2 of problem 2.
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Figure 4: The fractional-order graphs of β = 0:8 and 0:6 of problem 2.
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The series form of problem (3) such as

μ ϕ, φ, ψ, τð Þ = μ0 ϕ, φ, ψ, τð Þ + μ1 ϕ, φ, ψ, τð Þ + μ2 ϕ, φ, ψ, τð Þ
+ μ3 ϕ, φ, ψ, τð Þ + μ4 ϕ, φ, ψ, τð Þ⋯,

μ ϕ, φ, ψ, τð Þ = ϕ + φ + ψ − cos ϕð Þ + cos φð Þ + cos ψð Þð Þf g

� 1 − τ + τβ

Γ β + 1ð Þ −
τβ+1

Γ β + 2ð Þ + τ2β

Γ 2β + 1ð Þ
�

−
τ2β+1

Γ 2β + 2ð Þ +
τ3β

Γ 3β + 1ð Þ −
τ3β+1

Γ 3β + 2ð Þ ⋯
	
:

ð66Þ

In the integer-order solution of EDM of Equation (52) at
β = 2, we get

μ ϕ, φ, ψ, τð Þ = ϕ + φ + ψ − cos ϕð Þ + cos φð Þ + cos ψð Þð Þf g

� 1 − τ + τ2

2! −
τ3

3! +
τ4

4! −
τ5

5! +
τ6

6! −
7
7! ⋯

� 	
:

ð67Þ

The exact solution is given as

μ ϕ, φ, ψ, τð Þ = ϕ + φ + ψ − cos ϕð Þ + cos φð Þ + cos ψð Þð Þð Þe−τ:
ð68Þ

In Figure 5, the exact and the EDM solutions of problem
3 at β = 1 are shown by subgraphs, respectively. From the
given figure, it can be seen that both the EDM and exact
results are in close contact with each other. In Figure 6, the
EDM solutions of problem 3 are investigated at different
fractional order β = 0:8 and 0:6. It is analyzed that time-
fractional problem results are convergent to an integer-
order effect as time-fractional analysis to integer order.

5. Conclusion

In the present article, an efficient analytical technique is used
to solve fractional-order parabolic equations. The present
method is the combination of two well-known methods,
namely, Elzaki transform and Adomian decomposition
method. The Elzaki transform is applied to the given prob-
lem, which makes it easier. After this, we implemented Ado-
mian decomposition method and then inverse Elzaki
transform to get closed form analytical solutions for the
given problems. The proposed method required small num-
ber of calculation to attain closed form solutions and is
therefore considered to be one of the best analytical method
to solve fractional-order partial differential equations.

Data Availability

The numerical data used to support the findings of this
study are included within the article.
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Figure 5: The exact and EDM solution for β = 2 of problem 3.
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