Computational Aspects of

Social Network Analysis

Guest Editors: Przemyslaw Kazienko, Reda Alhajj, and Jaideep Srivastava

Computational Aspects of
Social Network Analysis

Computational Aspects of
Social Network Analysis

Guest Editors: Przemyslaw Kazienko, Reda Alhajj,
and Jaideep Srivastava

Copyright © 2015 Hindawi Publishing Corporation. All rights reserved.

This is a special issue published in “Scientific Programming” All articles are open access articles distributed under the Creative Com-
mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Editorial Board

Siegfried Benkner, Austria
Barbara Chapman, USA

Frank De Boer, The Netherlands
Bronis R. de Supinski, USA
Dino Distefano, UK

Jack J. Dongarra, USA

Erik Elmroth, Sweden

Wan Fokkink, The Netherlands
Gianluigi Greco, Italy

Rajiv M. Gupta, USA

Bormin Huang, USA

Ananth Kalyanaraman, USA
Rafael Mayo, Spain

Irem Ozkarahan, USA

Can Ozturan, Turkey

Jan E. Prins, USA

Thomas Rauber, Germany
Damian Rouson, USA
Giorgio Terracina, Italy
Jan Weglarz, Poland

Contents

Computational Aspects of Social Network Analysis, Przemyslaw Kazienko, Reda Alhajj,
and Jaideep Srivastava
Volume 2015, Article ID 961610, 2 pages

The Comparison of Users Activity on the Example of Polish and American Blogosphere,
Anna Zygmunt and Bogdan Gliwa
Volume 2015, Article ID 907547, 11 pages

Fast Parallel All-Subgraph Enumeration Using Multicore Machines, Saeed Shahrivari and Saeed Jalili
Volume 2015, Article ID 901321, 11 pages

Skillrank: Towards a Hybrid Method to Assess Quality and Confidence of Professional Skills in Social
Networks, Jose Marfa Alvarez-Rodriguez, Ricardo Colomo-Palacios, and Vladimir Stantchev
Volume 2015, Article ID 451476, 13 pages

On Efficient Link Recommendation in Social Networks Using Actor-Fact Matrices, Michat Ciesielczyk,
Andrzej Szwabe, and Mikotaj Morzy
Volume 2015, Article ID 450215, 9 pages

Link Prediction Methods and Their Accuracy for Different Social Networks and Network Metrics,
Fei Gao, Katarzyna Musial, Colin Cooper, and Sophia Tsoka
Volume 2015, Article ID 172879, 13 pages

A Community-Based Approach for Link Prediction in Signed Social Networks, Saeed Reza Shahriary,
Mohsen Shahriari, and Rafidah MD Noor
Volume 2015, Article ID 602690, 10 pages

Parallelizing SLPA for Scalable Overlapping Community Detection, Konstantin Kuzmin,
Mingming Chen, and Boleslaw K. Szymanski
Volume 2015, Article ID 461362, 18 pages

Hindawi Publishing Corporation
Scientific Programming

Volume 2015, Article ID 961610, 2 pages
http://dx.doi.org/10.1155/2015/961610

Editorial

Computational Aspects of Social Network Analysis

Przemyslaw Kazienko,! Reda A]hajj,2 and Jaideep Srivastava’

"Wroclaw University of Technology, 50-370 Wroclaw, Poland

2University of Calgary, Calgary, AB, Canada T2N IN4
3University of Minnesota, Minneapolis, MN 5545, USA

Correspondence should be addressed to Przemyslaw Kazienko; przemyslaw.kazienko@pwr.edu.pl

Received 12 March 2015; Accepted 12 March 2015

Copyright © 2015 Przemyslaw Kazienko et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

The interdisciplinary research field commonly called Social
Network Analysis (SNA) has attracted many scientists from
various disciplines from physics, sociology, anthropology,
psychology, management, and also computer science. Various
methodologies used in different disciplines are complemen-
tary to computational methods used to process data about
human activities, profiles, or direct social relationships.

Users of IT systems leave their traces in most of these
systems and the Internet is the largest source of data about
human behavior, mutual interactions, and collaboration. It
refers especially to social media like Twitter or Facebook
as well as many other Web 2.0 services. This data is widely
utilized to study social phenomenon and if they also respect
social relationships, then we can say that SNA method is
applied there.

It includes seven papers that come closer to various prob-
lems related to efficient processing of large social networks,
link prediction, community detection, and analysis of human
behavior and skills.

The paper entitled “A Community Based Approach for
Link Prediction in Signed Social Networks” provides meth-
ods to predict the sign of human relationships: either positive
or negative. These approaches are based on analysis of
stable social communities and creation of appropriate node
reputation rankings. The experiments on real data sets proved
the high accuracy of the approach.

The paper entitled “Parallelizing SLPA for Scalable Over-
lapping Community Detection” is also related to social
communities, in particular detection of overlapping groups
in the large-scale environment. The extraction of overlapping

communities is typically more computationally intensive
than disjoint ones, so it requires more sophisticated solutions.
The authors proposed multithreaded SLPA algorithm that is
almost linearly scalable and provides high quality overlapping
social communities, which was confirmed on large real social
networks.

The paper entitled “Fast Parallel All Subgraph Enumer-
ation Using Multicore Machines” describes computational
methods for efficient enumeration of all subgraphs for a
given social network graph. Similar to the previous paper,
it operates in the parallel, multicore environment in order
to enable processing of large social networks. The method
proposed makes use of polynomial heuristic for subgraph
isomorphism detection to prune candidate subgraphs and
reduce necessary operations.

The paper presents Skillrank, a hybrid method to assess
quality and confidence of professional skills in social net-
works. Experts and their expertise are detected, verified, and
ranked using specialized trust metrics. It makes use of various
pieces of information available within the professional social
network: human relationships and endorsements as well as
user profiles. The authors have shown that network-based
methods can be very effective in accurate prediction and
valuation of human skills.

The paper entitled “Link Prediction Methods and Their
Accuracy for Different Social Networks and Network Met-
rics” investigates the correlation between network metrics
and accuracy of various link prediction methods. The authors
analysed ten different methods for prediction of existence of
a new link in the social network and tried to observe which

http://dx.doi.org/10.1155/2015/961610

of them are more suitable for different network types, that is,
real social networks with a certain structural profile.

The paper “On Efficient Link Recommendation in Social
Networks Using Actor-Fact Matrices” deals with the same
problem as the previous paper, prediction of new links in the
social network. The authors claim that the computation qual-
ity of link recommendation algorithms significantly depends
on the social network representation. They found out, in
particular, that the actor-fact matrix appears to be the best
model for the link recommendation problem.

Finally, computational comparison of human activities
online was performed in the last manuscript entitled “The
Comparison of Users Activity on the Example of Polish
and American Blogosphere” The authors compared two
separate online communities: users of Polish and American
blogospheres and found significant quantitative differences,
also in the dynamics of human habits.

The readers will enjoy reading this special issue to get
exposed to various aspects and applications of SNA as
presented by some leading researchers in the field.

Acknowledgments

The work was partially supported by The National Sci-
ence Centre, decision no. DEC-2013/09/B/ST6/02317, and
the European Commission under the 7th Framework Pro-
gramme, Coordination and Support Action, Grant Agree-
ment no. 316097, the ENGINE project.

Przemyslaw Kazienko
Reda Alhajj
Jaideep Srivastava

Scientific Programming

Hindawi Publishing Corporation
Scientific Programming

Volume 2015, Article ID 907547, 11 pages
http://dx.doi.org/10.1155/2015/907547

Research Article

The Comparison of Users Activity on the Example of
Polish and American Blogosphere

Anna Zygmunt and Bogdan Gliwa

AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakéw, Poland

Correspondence should be addressed to Anna Zygmunt; azygmunt@agh.edu.pl

Received 21 March 2014; Accepted 26 November 2014

Academic Editor: Reda Alhajj

Copyright © 2015 A. Zygmunt and B. Gliwa. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

Blogs are popular way to express opinions on the Internet. Due to their popularity and their public character blogs attract attention
of many researchers. In this paper we compare two national blogospheres (Polish and American) from different angles such as
characteristics of messages and interactions, structure of social groups, topics discussed in them, and the influence of real-world
events on the behavior of such groups. In our approach we try to combine in advanced manner users activity on both the individual
and community level. The comparison reveals some differences and various characters of both portals. Methods for analysis of
groups dynamics, users roles, and topics in groups are presented.

1. Introduction

Nowadays a large part of our life has moved to the Internet,
particularly to the social media. It is hard to imagine that
we stop using them. Willingly or not, we are present in
them, even passively searching for sources of information. A
large part of the official and unofficial life has moved there.
There are various reasons for this situation, but one thing
must be said with certainty that this is a process that cannot
be stopped. The majority of us are only passively involved
in it, treating different types of forms of social media as
sources of information, that is, places where one can learn
something. But there are also people who participate in social
media actively and creatively: expressing their opinions,
commenting on others, promoting opinions of others, and so
forth. They leave so many “traces” of their activities, which
can then be analyzed to find interesting patterns of human
life, which can be used in marketing, business, politics, or
public security domains.

The social media may take many forms, for example,
blogs, forums, media sharing systems, microblogging, social
networking, and wikis. Among them, blogs play a special
role. The term “blogosphere,” first introduced by Brad L.
Graham in 1999, should be understood as a term describing
all blogs. Observing the development of blogosphere, one

can say that they have passed a long way from frivolous
diaries to very serious sources of information. Undoubtedly,
the reason for this situation has become a development tool
for creating blogs, as well as the fact that many important
people have discovered that blogs are a very good place to
express their opinions and to observe an immediate response
to them. It is believed that blogs have become a flywheel for
the development of online social networking [1]. Now blogs
are used as a communication platform and more and more as
of source knowledge. Blogs can be treated as web pages with
entries arranged in the reverse order (due to chronology).
Such pages can contain text, links, pictures, videos, and so
forth.

Blogosphere is an interesting source of data for analysis.
It is characterized by (in most cases) high dynamics: posts
are often added as well as comments on them; one can
analyze the reactions of readers to the posts, both in terms of
response speed as well as emotion (sentiment analysis). One
can analyze themes of posts and find those that receive the
greatest interest (getting the most comments) as well as users
who generally write such influential posts. Until recently, the
analysis of the processes taking place in blogosphere was
the domain of research conducted mainly by psychologists
and sociologists. These studies were characterized by carrying
out analyses to a limited extent due to problems with data

http://dx.doi.org/10.1155/2015/907547

collection. With the development of technological capabili-
ties allowing for automatic and incremental collection of any
amount of data from blogosphere and storing them in huge
databases have significantly increased the possible directions
of research.

The paper presents a comparison in various aspects of
users activity in Polish and American blogosphere.

Generally, to our knowledge, there is no such comprehen-
sive comparative analysis of two blogospheres in such a wide
range as we have done. Particular areas of research appear in
single studies. In some articles the authors analyze groups in
blogosphere (but without taking into account the dynamics of
change); others examine influential bloggers or analyze topics
of discussion. Our approach assumes broad comparison of
two national blogospheres by analyzing the structure of the
groups that are formed and continued for a period of time,
comparing the roles of users played in both the group and
the globe in the whole network, as well as the identification
of topics of conversation and the study of reaction time for
posts in different blogospheres. Such a global approach to the
analysis of the users allows creating much more advanced
user profiles, at both the individual and global level, as well
as finding user’s characteristics that are common to different
nationalities, as well as those that differentiate them.

The structure of the paper is as follows. In Section 2,
current research directions over blogosphere, as well as a
review of research on groups and their dynamics, finding
roles, and text analysis are presented. Section 3 contains an
overview of our algorithms used for finding stable groups,
identifying events, finding roles, and identifying topics of
posts and comments. In Section 4 both datasets are described
in detail and results are presented and discussed. Section 5
concludes and shows possible directions of future works.

2. Related Work

2.1. Blogosphere: Direction of Research. Blogosphere soon
became an interesting research area for psychologists and
sociologists. The research methodology was largely based on
designing questionnaires and asking questions to a properly
selected group of respondents (according to, e.g., demogra-
phy). The results of the analysis were strictly dependent on
the truthfulness of responses and the sample size of blogs,
which, due to the need for manual processing, was not big.
The most interesting subject of research was to determine why
people started a blog and reasons they had for continuing
writing. They tried to find differences based on gender and
demographics of bloggers.

Initially, these analyses concerned a single nationality.
Then blogs belonging to representatives of different nations
were analyzed to compare and find out if there were any
differences related to cultures diversity. Analyses of individual
nationalities concerned tracking changes in the demograph-
ics of bloggers or certain groups of bloggers were studied.

The vast majority of authors [2-4] concluded that in
general motivations for blogging were the same in all
analyzed nationalities (self-expression, social interaction,
entertainment, passing time, information, and professional

Scientific Programming

advancement), but they had different priority. In [1] moti-
vations for blogging were linked to identity. In [5], types of
characters (extroverts, introverts, etc.), language, and gender
were analyzed and their impact on the content and topics
discussed on blogs was described.

In [6], the group membership was analyzed, but bloggers
indicated which group they belonged to and why. In [1]
the authors compared bloggers from different countries and
analyzed their habits (e.g., differences in activity depending
on time of day). The need for research groups of bloggers and
analysis of their dynamics was identified, but no studies were
carried out.

Since computer scientists started to be interested in the
analysis of blogosphere, research has sped up, because there
is a real possibility of automatic data collection from the
blogosphere using webcrawlers, saving them to big, effective
databases and performing virtually any analysis on such data.
So there is no need to develop an experiment, invent ques-
tions, and collect responses and analyze only data. Usually
all data from the page are collected, such as demographic
information, text of posts, comments (as well as information
about their authors), links, tags, dates, and all other kinds of
available information. Directions of research now are much
less related to demography, because such data are usually not
avaijlable. Because all data are available in database, one can
freely invent and change the directions of analysis. Generally,
this research can be divided into two directions: structure and
content analysis.

One of the directions of the analysis was to use methods
of social network analysis [7] to analyze the popularity of
bloggers (or posts). In [8, 9] Kleinberg algorithm HITS
finding hubs and authorities was used to find top bloggers.
A-list blogs of the most read, most quoted, and most number
of inbound links from others were used.

In other studies [5], the authors attempted to determine
what impact, for example, psychological profiles and gender
have on the way of writing on blogs. Methods of text
processing were used (large blog corpus was collected) in
order to extract topics from the text. On the basis of those
topics they attempted to create psychological profiles.

The first approach to find clusters in blogospheres and
recognize the structure was in [9]. They observed that blogo-
sphere was “selectively interconnected with dense clusters in
parts and blogs minimally connected in local neighberhood
[sic] or flee-floating individually, constituing [sic] the major-
ity” In [10] structure A-list was used to find core structures
in six national blogospheres. That model was compared with
[11]. Differences in cores structures were explained by cultural
differences.

In [12, 13] Chinese and German blogospheres were
compared to find differences in the structure of pages, length
of comments, and time of reactions. It was observed that,
in spite of cultural diversity, blogging services worked in a
similar way (Chinese bloggers could do more with design of
pages).

In [14] data from Polish blogosphere, discussion on MyS-
pace, YouTube comments, and forums BBC were compared
according to the length of comments in words and bytes, and
it was concluded that overall lengths were similar.

Scientific Programming

2.2. Groups in Social Networks. Social network is not a
homogeneous structure; it rather consists of areas in which
vertices communicate to each other more frequently than
with vertices outside given area. Such areas are called groups
(communities, module, cluster, and subgroups). There are
many methods of finding such groups, which can be over-
lapped (or not) [15, 16]. Finding groups allow simplifying the
complex network or analyzing certain processes in micro-
and macroscale. Quality of group can be measured by several
parameters indicating its size, durability, or importance, for
example, density (ratio of the number of links within the
group to the maximum possible number of links), cohesion
(ratio of the average strength of links between the members
to the average strength of their links with people outside
the group), or stability between groups (the ratio of the
number of people, present in both groups, to the number of
all group members). One of the most popular representatives
of algorithms finding overlapping groups is CPM (Clique
Percolation Method) [17].

2.3. Group Dynamics. Even though most methods have been
developed for static environment, many researchers have
recognized the need for better reflecting the dynamic nature
of the most social networks (especially coming from social
media sites) [18, 19]. For dynamic network analysis the
common way is to divide given period of time into smaller
units called time slots. Then, in each time slot the static
network is analyzed and the groups are extracted. Next
step is to determine the transitions between groups from
neighboring time slots. For this purpose, Greene et al. [16]
used the Jaccard index as a measure describing the similarity
of groups (the measure is calculated for each pair of groups
from neighboring time slots). The value of this measure above
arbitrarily defined threshold level means that one group is
continuation of another. Some other measures for obtaining
transitions between groups have been proposed in literature
[20, 21].

Palla et al. in [22] identified basic events (transitions) that
may occur in the life cycle of the group: growth, merging,
birth, construction, splitting, and death. They did not give any
additional conditions. Asur et al. in [18] introduced formal
definitions of five critical events. Gliwa et al. proposed in [20]
two additional events and gave formal definitions. In [23] new
tool GEVi for context-based graphical analysis of social group
dynamics was proposed.

2.4. Roles of Users. In social network analysis there are many
definitions of role [24-26]. In social media, role can be treated
as a set of characteristics that describe behavior of individuals
and the interactions among them within a social context [27].

Roles in the literature are often discussed in the context of
influences [28]. Agarwal et al. in [29] defined influential blog-
gers and gave their characteristics and described four types of
bloggers: active and influential, inactive but influential, active
but noninfluential, and inactive and noninfluential.

A lot of studies relate to certain social media and attempt
to define their specific roles [30, 31]. For example, an analysis
of the basic SNA measures has been used in several studies

to define social roles of starters and followers in blogosphere
[32, 33]. Starters receive messages mostly from people who
are well connected to each other, and therefore they can
be identified by low in-degree, high out-degree, and high
clustering coefficient in the graph. The distinction between
the roles is obtained by combining the difference between the
number of in-links and out-links of their blogs.

2.5. Text Mining in Domain of Social Networks. Aggarwal and
Wang in [34] provided overview of text mining methods use-
ful for social networks analysis, but in literature text mining
combined with SNA is used mostly in some specific cases.
Bodendorf and Kaiser in [35] used text mining to extract
opinions from texts and then integrated such information
with social network analysis approach to find opinion leaders
and detect trends in communities. Bartal et al. [36] proposed
a method for predicting links in a network based on social
network analysis and text data mining approach.

Topic modeling [37] is a statistical technique that uncov-
ers abstract “topics” that can be found in a collection of
documents. “Topic” can be defined as a set of words that tend
to cooccur in multiple documents, and, therefore, they are
expected to have similar semantics. One of the main benefits
of this method is that similar texts can be discovered even
if they use different vocabulary. One of the most popular
methods in topic modeling is Latent Dirichlet Allocation
(LDA) [38]. In [39] the authors showed usefulness of topic
modeling to analysis of groups dynamics in social networks in
blogosphere. Another approach using topic modeling along
with social network analysis is presented in [40] where
authors track topics in time and automatically assign labels
for topics.

3. Methods Used during the Comparison of
Different Blogospheres

In this section we describe measures and methods applied to
comparison of two blogospheres: American and Polish one.
Firstly, we provide definitions of measures utilized to assess
different characteristics. Next, we depict methods for analysis
of groups dynamics, users roles, and topics in groups.

3.1. Lifetime of a Post. The lifetime It of a post p can be defined
as

It, = max (tc,-) —tp 1)
where t,, is the date when post p was published and ¢ are
dates ofpcomments in the thread of post p.

In other words, lifetime of a post is the range of time
between writing the post and the last comment for that post.

3.2. Reaction Time for a Post. The reaction time rt for a post p
can be formalized in the following way (symbols used in the
definition were explained above):

rt, = rniin (tc,-) —t,. (2)

Reaction time for a post is the range of time between
writing the post and the first comment for that post.

3.3. Groups Dynamics. To analyse groups dynamics, whole
range of time was divided into smaller periods of time (called
later time slots). Next, in each time slot, the static network
was analysed and the groups were extracted. To identify
events between groups from the neighbouring time slots
SGCI method [20, 41] was employed, which consists of the
following stages: identification of short-lived groups in each
time slot, identification of group continuation, separation of
the stable groups (lasting for a certain time interval), and the
identification of types of group changes (transition between
the states of the stable group).

Identification of continuation between groups A and
B (from neighbouring time slots) is performed using MJ
measure

M]J (A, B)
0, itA=0VvB=0, (3)
= <|AmB| |AnB|>)
max , , otherwise.
|Al |B|

And if the calculated value is above predefined threshold th
(in experiments we set th = 0.5) and the ratio of groups size
|Al B >

ds(A,B) = max(— —

> 4
|B| " |Al @

is below predefined threshold mh (in tests mh = 50), then we
assumed that group B is a continuation of group A.
Using above measures we can define transition £, .

between group gy in ith slot and group g; in (i + 1)th time
slot as

tgodin * 39k N Gi1) AMJ (Gig> Givry) = th

©)
Nds (Gio Giv1g) < mh.
Now we can label transitions:
(i) addition: when a small group attaches to big one
. lgi+1,l| > Sh (6)

Gijois1) ° |gik| =00

(ii) deletion: when a small group detached from big one

. |gi,k| > sh (7)

GijeoGir1 lgiﬂll =

(iii) merge: when many groups join together into bigger
one

ty,-,k,g,»“,z : ds (gi,k’ gi+1,l) < Sh
A [Etgi,wgm,z tm# knds (gi,m’ gi+1,l) < Sh] (8)

A [Etgi,k,gi+1,n in :ﬁ l/\ ds (gi,k’ gi+1,n) < Sh] >

Scientific Programming

(iv) split: when group divides into 2 or more groups in the
next time slot

ty,-,k,g,u,],l : dS (gi,k’ gi+l,1) < Sh
A [Eltgi,k’gi+1,n in#lIAds (gi,k’ gi+1,n) < Sh] (9)

A [ﬂtgi,m’giﬂ,l :m # kAds (G Girry) < sh] ,

(v) split_merge: combination of event merge and split for
the same transition

tg,-,k,g,-ﬂ,l tds (gi,k’ gi+1,l) <sh
A [Eltg;,m,gi+1,1 m :/: k A dS (gi,m>gi+1,l) < Sh] (10)

A [Htgiwm,n :n#INAs (Gigo Givin) < Sh] ,

(vi) constancy: simple continuation of a group without
significant change of size

. abs(lgi,k| - |9i+1,1|) <

GijoGis1) ° | Jik l dh

1
A [ﬂtgi,wgm,z tm# kA ds (gi,rm gi+1,l) < Sh] ()

A [’:Btgi,k»gm,n in#lnds (gi,k’ gi+1,n) < Sh] >

(vii) change_size: simple continuation of a group with
significant change of size

) ab5(|9i,k| - |9i+1,l|) S

tgi,k»gm,z : |gl ‘ | dh

A [ﬂtgi,m)giﬂ,l cm # kAds(gim Gisr) < sh] (12)
A [ﬂtgi,k,gi+1,n i1 # INAs(Gigo Gisn) < sh] ,

(viii) decay: when a group disappear in the next time slot
ﬂtgi,k’giﬂ,l ' (13)

In above definitions we used function abs which means
absolute value function and some parameters: sh, threshold
for ratio of groups size and dh, threshold for groups size
differences. In experiments we set value of sh to 10 and value
of dh to 0.05.

3.4. Roles of Users. Users can play different roles on a global
level and different ones in each of the groups they belong to
(local level of roles). The set of roles we use for analysis in this
paper was proposed by us in [42].

The presented roles take into consideration responses
from other users on the content the user writes (in both the
form of posts and comments). To meet such assumptions, we
defined Post and Comment Influence.

Post Influence for author a has the following form (in
this definition we use the notation c¢(X, cond) that means

Scientific Programming

the number of elements in X that every element of X fulfills
condition cond):

PostInf, =4 -c(p,, pr = A;) +2-c(pa pr = A,)
+ ¢ (Pa> pr 2 A3) = (Par pr < Ay) (14)

=2-¢(pa pr < As) —4-c(pa pr < Ag),

where p, is the posts of author a; pr is the number of
comments for a given post excluding the author’s comments
in his own thread; for global roles we set the following values:
A, =50, A, = 25 A; =10, A, = 2, A; = 1, and
A4 = 0; for local roles we set the following values: A; = 10-B,
A, =025-A,A; =025-A,,A, =A; =0,A; = 1,and
B = group Density - group Size.

Comment Influence for author a is calculated in the
following way (in this definition we use the notation
w(cond) that returns 1 when the condition cond is satisfied,
otherwise—0):

Comlnf, =4 -w(r, > 1.25)+2 - w(r, > 1)
+w(r, 20.75) —w(cr, < Cy) —2w(cr, < C,)

—4-w(er, <Cy),
(15)

where r is the number of received comments from other users
divided by the number of written comments by given authors;
cr is the number of received comments from other users; for
global roles we set the following values: C, = 50, C, = 20,
and C; = 10; for local roles we set the following values: C; =
0.5-B,C, =0.25-C;,C; = 0.25- C,, and B = group Size -
group Density.

Using the above definitions we can describe the set of
roles:

(1) Influential User (infUser): PostInf > 2 and ComlInf >
0)

(2) Influential Blogger (infBlog): PostInf >
ComlInf <0,

(3) Influential Commentator (infComm): ComInf > 0
and PostInf < 2,

2 and

(4) Standard Commentator (comm): c(comments) > 20
and c(posts) < 2,

(5) Not Active (notActive): c(posts) <
c(comments) < 2,

(6) Standard Blogger (stdBlog): user that does not match
any from above roles.

1 and

3.5. Topics in Groups. Topics for groups were assigned based
on clusters uncovered by LDA method. The method for
analysis topics in groups was used by us in [23, 39].

Whole method can be described as a set of the following
steps. Firstly, we used LDA method provided by mallet tool
(http://mallet.cs.umass.edu/) for all posts and the method
discovered 350 clusters of words. Next, we manually anno-
tated each cluster by set of topics and joined similar clusters

into bigger ones. After that operation, we infer in every
comment a set of topics that are referenced by this comment
(the network is being built based on writing comments in
response to other messages—precise way of building network
for each dataset is described in Section 4.1). We consider 2
variants of the method (in results referred to as method I and
method 2) which differ only in a way of assigning a topic for a
comment when LDA could not find any matching topics. The
first variant (method I) does not assign any topic if it could
not be inferred for given comment, but the second variant
(method 2) in such case uses topics assigned for the parent
comment (if the analysed comment has the parent one and
the parent comment has any assigned topics) or the post in
the thread where the comment was written. Next step is to
assign for the group a set of topics discussed by members of
this group (we required that topic should be present in at least
5% of all interactions inside a group to assign such topic for
the group).

We can formalize it in the following way. Let us define T
as a set of topics (after operation of annotating and joining
similar clusters from LDA):

T=1{t, 1}, (16)
members of a group G
members (G) = {a, ---a,}, (17)
edges in a group G

edges (G) = {exy : x € members (G) A y € members (G)},
(18)

topics for edge e,

topics (exy) = {t;} A topics (exy) cT. (19)
Using above notation we can define topics for a group G

topics (G)
= {tk V3,3, [exy € edges (G) At € topics (exy)]

/\vk% > h} ,
(20)

where h is a threshold and we used h = 0.05.

4. Results

In this section we compare Polish and American blogosphere
from different points of view, especially in terms of users
activity, groups formation, and topics discussed by users
in groups. For this purpose, we chose one dataset as a
representative for Polish blogosphere and one for American
one.

Scientific Programming

TaBLE 1: Comparison of data quantity in both datasets.

Measure Salon24 Huffington Post
Number of posts 380700 414225
Number of posts without comments 74979 (19.7%) 45604 (11%)
Average number of comments in one post 18.65 48.28
Number of comments 5703140 17796 819
Number of comments to posts 2781303 (48.77%) 6961369 (39.12%)
Number of comments to other comments 2921837 (51.23%) 10753162 (60.88%)
Number of authors 31750 680 341
Number of authors of posts 10131 (31.91%) 1027 (0.15%)
Number of authors of comments 29536 (93.03%) 661676 (97.26%)

All posts (%)

17 —~ v ~ = —_— %) + ~c 3B 1%
15
g EF3 %5 £ 52 5 85328 @
= =] -'3E © Zm o a8 = X =
s 23 = &= g © 88 5z 5
£ £2 S= S 53 3sS ©
So OF = ZEST I
3] = 5 o S
3] 53
= Q E&
=) - 5
© =
Categories

= Huffington Post
u Salon24

FIGURE 1: Categories of posts.

4.1. Datasets Description. The first dataset contains data from
the portal Salon24 (http://www.salon24.pl/) (Polish blogo-
sphere). This portal comprises blogs from different subjects,
but political ones constitute the largest part of them (as
you can see in Figure 1). The data from this dataset is from
time range 1.01.2008-6.07.2013. Whole period of time was
divided into overlapping time slots, each lasting 7 days and
the neighbouring slots overlap each other by 4 days. After
this operation the dataset contains 504 slots. In every time
slot a static network is built according to comments model
introduced in [43]; that is, the users are nodes and relations
between them are built in the following way: from user who
wrote the comment to the user who was commented on or, if
the user whose comment was commented on is not explicitly
referenced in the comment (by using @ and name of author
of comment), the target of the relation is the author of post.
The second dataset is the Huffington Post dataset (http://
www.huffingtonpost.com/) (American blogosphere) which
contains news and blogs from various subjects (we can see
in Figure 1 that political topics constitute significant part of
all posts, but this topic does not outnumber other ones as it
was in the case of Salon24). This dataset contains data from
period 1.01.2010-14.11.2013. Similarly as for Salon24 dataset,
the whole period of time was divided into overlapping time
slots, each lasting 7 days with overlap equal to 4 days, which
produced 442 slots (but for the analysis we used slots in

this dataset starting from 97 because in previous one there
were some slots where groups were not found). In Huffington
dataset networks in time slots are built in similar way as for
Salon24 dataset (edges between an author of given comment
and an author of a comment the response is addressed for, or,
ifa comment is not an answer for another comment, between
an author of given comment and an author of a post), but
in this case the explicit references between comments exist
(hierarchical structure of comments).

Moreover, due to the performance issues of group extrac-
tion method in order to detect communities, we eliminated
the edges with weight equal to one in each time slot. But for
other types of analyses (such as role finding) we conducted
them on full graphs without any edge removal.

4.2. Basic Statistics. As we can observe in Table 1 the Huff-
ington Post dataset is bigger than Salon24 one. Threads in
Huffington Post are also longer; that is, on average posts
have more comments in Huffington Post than in Salon24.
We can see that in both datasets the responses to other
comments represent a substantial part of all comments.
Another interesting fact is that authors of posts in Huffington
Post constitute much smaller fraction of all authors (less than
1%) as compared with Salon24 (almost 32%). This means
that character of both portals is quite different. In Salon24 a
significant number of users have a contribution to creating
posts and informing about new events from the world, but in
Huffington Post the users are oriented towards commenting
on posts and this portal plays a role more similar to an
Internet newspaper.

4.3. Lifetime of Posts. Figure 2 presents lifetime of posts (it is
a cumulative chart so it depicts percentage of all posts that
have lifetime equal or less than specified value). We can see
that almost 90% of posts in Salon24 have their lifetime up to 1
week, but similar lifetime in Huffington Post is achieved after
2 months (8 weeks). This means that in Salon24 posts older
than 1-2 weeks are rarely commented on and the attention
of users is brought mostly by new posts, which is a bit
different than in Huffington Post where significant part of
users comments also on older posts than 1 week. Such a
difference in lifetime of posts between these 2 datasets also
emphasizes higher dynamics in Salon24.

Scientific Programming

All posts (%)

1 2 3 4 5 6 7 8
Lifetime of posts (weeks)

—e— Huffington Post
-m— Salon24

FIGURE 2: Lifetime for posts.

All posts (%)

11-24 1
73-96
>96

25-48 A
49-72 A

Reaction time for a post (hours)

—o— Huffington Post
—m— Salon24

FIGURE 3: Reaction time for a post.

4.4. Reaction Time for Posts. Figure 3 depicts reaction times
for a post in both datasets. One can notice a big difference
in dynamics between Huffington Post and Salon24—in the
first hour after publishing a post in Salon24 73.9% of all posts
received at least one comment, but in Huffington Post only
11.4% of all posts. After 2 days after writing a post, in both blog
portals more than 90% of posts were commented on. We also
investigated the amount of time needed for a half of all posts
to get the first comment. For Huffington Post we need about
8 hours, but in Salon24 it is sufficient to wait only 32 minutes
after writing a post to receive a comment.

4.5. Groups and Their Dynamics. For group extraction we
used CPM method (CPMd version which is designed to
discover groups in directed networks) from CFinder (http://
www.cfinder.org/) tool for k equals 3.

Figure 4 presents number of stable groups with their
size in both datasets. One can notice that Huffington Post
contains more groups overall. Moreover, the mentioned
dataset comprises more small and medium size groups, but
Salon24 has more big groups.

In Figure5 we can see the fraction of stable groups
in relation to all groups. Stable groups have additional

3000 -

8]

v

(=}

S
L

2000 4
1500 A
1000 A

Number of groups

500 -

3

4

5

6

7

8

9

10
11-50
51-100
101-200
>200

Group size

B Huffington Post
B Salon24

FIGURE 4: Number of stable groups at given size.

Stable groups (%)

3

4

5

6

7

8

9

10
11-50
51-100
101-200
>200

Group size

B Huffington Post
B Salon24

FIGURE 5: Percentage of stable groups in relation to all groups.

restriction that they have to be present in at least given
number (in experiments we used value 3 due to the fact that
the presence in 2 time slots is not hard to achieve because slots
are overlapping) of time slots. One can observe that the lowest
fraction of groups is stable for groups with small size and
increases with group size. Furthermore, we can notice that
Salon24 has higher fraction of stable groups than Huffington
Post.

Figure 6 depicts number of evolution events in both
datasets. Huffington Post includes a large amount of medium
size groups, so there are more events related to joining and
dividing groups with similar size (i.e., merge, split events).
Conversely, Salon24 contains a relatively large number of
huge groups, so in this dataset the events related to joining
and dividing groups with substantial difference of size, that
is, addition, deletion events, dominate over ones with similar
size.

4.6. Reaction for Real-World Events. Figures 7 and 8 present
number of groups and evolution events for Huffington Post
and Salon24 with marking key events from real world. One
can notice some correlation between peaks on these charts

2500 -

2000 A

Number

500 -

Decay
Deletion
Merge
Split

g

=]
=
=]
e
<

Change size
Constancy
Split_merge

Events

B Huffington Post
B Salon24

FIGURE 6: Number of events.

800 T T T T T T

600

rgery claim

=
g
g

ses, Kndahar massacre
Egyptand Libya
n as secretary of state
1

500

400
300

Armstrong d

200

= — — Romney fails in state election
- — — Obama supports gay marriage
~ = — Obama birth certificate for

— — — Wikileaks

— — — — LeavingIraq
— — — — Suing Obamacare
£ — — — — Boston bombs

& — — — — Suing Obamacare

100

—— Groups number
—— 3 x events number

FIGURE 7: Number of groups and evolution events in time and
correlation with real-world events for Huffington Post.

450F T T T T T T T T T B
400 B
350
300
250
200
150
100

Ossetia and Georgia.

ation by Poland

Buzek as a chairman of European Parliament

— — NATO meeting in Poland
— — — Death of Szymborska

. — — — Slovakia in euro zone
— — — — Benedict XVI announced end of pontificate

—— Groups number
—— 3 x events number

FIGURE 8: Number of groups and evolution events in time and
correlation with real-world events for Salon24.

Scientific Programming

RN
OHSH.—IN‘:a«'Sbgﬁ
£ s =z g S 8 A~ 2§ 2
EE:& Ao g 4 g
50 w
'
-
S
= .

Topics
B Method 1
B Method 2

FIGURE 9: Topics discussed in at least 10% of all groups in Salon24.

18000 -
16000 -
14000 -
12000 -
10000 -
8000 A
6000 -
4000 A
2000 A
0 -

Number of groups

Art
Crime
Economy
Law
News
Politics
TV

=]
Q
o]
9

w
—
ot
é
[=]
29
B
L
-
o
54

Press
Science

Security
Sport

£ 9
< £
o 3
T =
=
S

2 =
= g
g o
= g
=2
[=}
L2

Elections
Environment
Society

Topics

B Method 1
B Method 2

FIGURE 10: Topics discussed in at least 10% of all groups in Huffington
Post.

and mentioned events. It means that blog portals are a kind
of mirror that reflects actual events from real world and such
events influence on groups in blogosphere to a large degree.

4.7. Topics in Groups. Figures 9 and 10 describe most popular
topics discussed in groups in both blogospheres. Each chart
presents topics being present in at least 10% of all groups. We
used 2 methods to assess topics in groups, both described
in Section 3.5. The motivation for introducing the second
method was to determine topics for larger number of groups
(e.g., in Huffington Post using the first method we assigned
topics for about 75% of all groups and using the second
method we assigned topics for about 93% of all groups).

One can notice that Huffington Post contains more
different topics, but in Salon24 one can observe that topics
related to politics are dominating. Another interesting thing
is the topic of Smolensk which appears frequent in groups
in Salon24 and it concerns Polish President airplane crash in
Smolensk (10.04.2010) and other events related to investiga-
tion of this catastrophe.

Scientific Programming

10000000 -
1000000 4
100000
10000 -
1000 A

Number of users

100 +
10 -

14

infComm comm stdBlog notActive infBlog infUser

Role

B Huffington Post
W Salon24

F1GURE 11: Global roles of users.

1000000 -
100000 -
10000 -
1000 -

100 -

Number of users

10 -

1

infUser

infComm comm

stdBlog notActive infBlog
Role

B Huffington Post
B Salon24

FIGURE 12: Local roles of users.

When we look into results of both methods to associate
topics for groups, we can spot that they are quite similar (in
terms of proportions for different topics).

4.8. Global and Local Roles of Users. Figures 11 and 12 show
number of users with global and local roles (roles on the
level of a group), respectively. For global roles, we can notice
that in Huffington Post users with a role of Influential User
(users with this role write influential posts and influential
comments) almost do not exist (there is only one person
with such a role), which is very different from Salon24. This
difference can be explained by various types of nature of these
portals—in American portal there is very small fraction of
authors of posts and they rarely write any comments.

As far as local roles are concerned, one can notice a few
interesting observations. Firstly, the number of inactive users
is much lower than in previous case—this means that most
inactive users (actually, the conditions in experiments let
them write no more than one comment) are outside groups
which is understandable. Moreover, the number of Influential
Bloggers and Influential Users is smaller in American portal
than in Polish one. The difference has its roots in different
nature of portals (as we explained above) and the fact that in

Huffington Post the responses to a post constitute a smaller
fraction of all responses in comparison with Salon24 (which
can be seen in Table 1).

5. Conclusion

In the paper, a comparative analysis of two different blogo-
spheres, Polish and American, is presented. This approach
is based on a comprehensive analysis of the structure and
content of blogosphere.

The preliminary analysis of the structure of both blo-
gospheres shows that discussions conducted in Salon24 are
much more intense: generally the first comment appears
much more quickly, but the lifetime of the post is much
shorter than in Huffington Post. Discussions in Huffington
Post are much more stable. The structure of groups is
different: in Huffington Post there are smaller groups of
comparable size, which is the reason why there are more
events split and merge (characteristic of groups of similar
size). In Salon24 there is a greater variation in the group size
and thus different events dominate (deletion, addition).

Differences in the number of these groups are significant:
in Huffington Post there are three times more groups than
in Salon24. A probable reason for this is a considerable
difference in the ratio of the number of posts to the number of
comments: in Huffington Post most people write comments,
but very few write posts (for Salon24 the situation is different).

In turn, events have a big impact on the dynamics of
both blogospheres. Due to the different nature of Huffington
Post, where few people write posts and most comments, some
roles, which are in Salon24, in Huffington Post are not present.
As far as topics discussed in groups are considered, Salon24
is more oriented on topics related to politics, but Huffington
Post is more diverse.

So, the comparison of two blogospheres gave interesting
results: in some aspects nationality does not matter but
sometimes has a big impact on user behavior. One can see
differences in the characteristics of people from different
countries in the context of their activity in the social media
(taking into account their dynamic nature), for example,
categories of interesting topics, speed of reaction to novelty,
and way of reaction according to the categories of the world
events. Presenting approach may have many practical appli-
cations. It can, for example, support sociologists and psy-
chologists in their research on behavioral analysis in different
national communities (e.g., among emigrants). The results
of our experiments show that, for example, in marketing,
making user profiles, one should take into account nation-
ality, and therefore product marketing campaigns should be
differentiated depending on countries (e.g., global advertising
campaign). Similarly, to predict customer behavior, one
should take into account the context of nationalities. These
observations can be used in the development of election
campaigns.

Research can be continued in several ways. One of them is
analyzing and comparing differences in sentiment, for exam-
ple, which nation is more optimistic? Another direction of
research could be comparing the ability to predict the future

10

of groups in both blogospheres. Furthermore, extension of
comparison to other national blogospheres possibly could
reveal some characteristics related to their nationality.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The research reported in the paper was partially supported
by the Grants nos. INNOTECH-K2/IN2/89/182461/NCBR/13
and 008/R/ID1/2011/01 from the Polish National Centre for
Research and Development.

References

(1]

(8]

(10]

M. Kobayashi, “Blogging around the globe: mitivations, privacy
concerns, and social networking,” in Computational Social
Networks: Security and Privacy, A. Abraham, Ed., chapter 3, pp.
55-86, Springer, London, UK, 2012.

S. Penderson, Why Blog?: Motivations for Blogging, Woodhead,
Cambridge, UK, 2010.

B. A. Nardi, D. J. Schiano, M. Gumbrecht, and L. Swartz, “Why
we blog,” Communications of the ACM, vol. 47, no. 12, pp. 41-46,
2004.

K. D. Trammell, A. Tarkowski, J. Hofmokl, and A. M. Sapp,
“Rzeczpospolita blogéw [Republic of Blog]: examining pol-
ish bloggers through content analysis,” Journal of Computer-
Mediated Communication, vol. 11, no. 3, pp. 702-722, 2006.

A.J. Gill, S. Nowson, and J. Oberlander, “What are they blog-
ging about? Personality, topic and motivation in blogs,” in
Proceedings of the 3rd AAAI International ICWSM Conference,
E. Adar, M. Hurst, T. Finin, N. S. Glance, N. Nicolov, and B. L.
Tseng, Eds., The AAAI Press, San Jose, Calif, USA, May 2009.

M. Taki, Bloggers and the blogosphere in lebanon & syria mean-
ings and activities [Ph.D. thesis], University of Westminster,
London, UK, 2010.

P. J. Carrington, J. Scott, and S. Wasserman, Eds., Models
and Methods in Social Network Analysis, Cambridge University
Press, Cambridge, UK, 2005.

D. Obradovic and S. Baumann, “Identifying and analysing Ger-
many’s top blogs,” in KI 2008: Advances in Artificial Intelligence,
A. Dengel, K. Berns, T. M. Breuel, FE. Bomarius, and T. Roth-
Berghofer, Eds., vol. 5243 of Lecture Notes in Computer Science,
pp- 111-118, Springer, Berlin, Germany, 2008.

S. C. Herring, I. Kouper, J. C. Paolillo et al., “Conversations
in the blogosphere: an analysis from the bottom up; in
Proceedings of the 38th Annual Hawaii International Conference
on System Sciences (HICSS "05), vol. 4, p. 107.2, IEEE Computer
Society, Washington, DC, USA, January 2005.

D. Obradovic and S. Baumann, “A journey to the core of the
blogosphere,” in International Conference on Advances in Social
Network Analysis and Mining (ASONAM °09), N. Memon and
R. Alhajj, Eds., pp. 1-6, IEEE Computer Society, 2009.

S. P. Borgatti and M. G. Everett, “Models of core/periphery
structures,” Social Networks, vol. 21, no. 4, pp. 375-395, 2000.

(12]

(13]

(14]

(16]

(17

(18]

[19

[20]

(21]

(22]

[26]

[27]

Scientific Programming

H. Yilin, E. Caroli, and T. Mand], “The Chinese and the German
blogosphere: an empirical and comparative analysis,” in Mensch
& Computer, T. Gross, Ed., pp. 149-158, Oldenbourg, 2007.

T. Mandl, “Comparing chinese and german blogs,” in Proceed-
ings of the 20th ACM Conference on Hypertext and Hypermedia
(HT °09), pp- 299-308, ACM, New York, NY, USA, July 2009.

P. Sobkowicz, M. Thelwall, K. Buckley, G. Paltoglou, and A.
Sobkowicz, “Lognormal distributions of user post lengths in
Internet discussions—a consequence of the Weber-Fechner
law?” EPJ Data Science, vol. 2, no. 1, article 2, 2013.

S. Fortunato, “Community detection in graphs,” Physics Reports,
vol. 486, no. 3-5, pp. 75-174, 2010.

D. Greene, D. Doyle, and P. Cunningham, “Tracking the
evolution of communities in dynamic social networks,” in
Proceedings of the International Conference on Advances in Social
Networks Analysis and Mining (ASONAM ’10), pp.176-183, IEEE
Computer Society, Washington, DC, USA, 2010.

G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering
the overlapping community structure of complex networks in
nature and society;” Nature, vol. 435, no. 7043, pp. 814-818, 2005.

S. Asur, S. Parthasarathy, and D. Ucar, “An event-based frame-
work for characterizing the evolutionary behavior of interaction
graphs,” ACM Transactions on Knowledge Discovery from Data,
vol. 3, no. 4, article 16, 2009.

M. Spiliopoulou, “Evolution in social networks: a survey, in
Social Network Data Analytics, C. C. Aggarwal, Ed., pp. 149-175,
Springer, New York, NY, USA, 2011.

B. Gliwa, S. Saganowski, A. Zygmunt, P. Brodka, P. Kazienko,
and J. Kozlak, “Identification of group changes in blogosphere,”
in Proceedings of the IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM
12), pp. 1201-1206, Istanbul, Turkey, August 2012.

P. Brodka, S. Saganowski, and P. Kazienko, “GED: the method
for group evolution discovery in social networks,” Social Net-
work Analysis and Mining, vol. 3, no. 1, pp. 1-14, 2013.

G. Palla, A.-L. Barabdsi, and T. Vicsek, “Quantifying social
group evolution,” Nature, vol. 446, no. 7136, pp. 664-667, 2007.

B. Gliwa, A. Zygmunt, and A. Byrski, “Graphical analysis of
social group dynamics,” in Proceedings of the 4th Interna-
tional Conference on Computational Aspects of Social Networks
(CASoN ’12), pp. 41-46, IEEE, November 2012.

S. Wasserman and K. Faust, Social Network Analysis: Methods
and Applications, Cambridge University Press, Cambridge,UK,
1994.

E. Gleave, H. T. Welser, T. M. Lento, and M. A. Smith, ‘A
conceptual and operational definition of ‘social role’ in online
community;” in Proceedings of the 42nd Hawaii International
Conference on System Sciences (HICSS °09), pp. 1-11, IEEE
Computer Society, January 2009.

H. T. Welser, D. Cosley, G. Kossinets et al., “Finding social roles
in wikipedia,” in Proceedings of the iConference (iConference 1),
pp- 122-129, ACM, New York, NY, USA, 2011.

V. Junquero-Trabado and D. Dominguez-Sal, “Building a role
search engine for social media,” in Proceedings of the 21st Inter-
national Conference Companion on World Wide Web (WWW
’12), A. Mille, E. L. Gandon, J. Misselis, M. Rabinovich, and S.
Staab, Eds., pp. 1051-1060, ACM, 2012.

Scientific Programming

(28]

(29]

(30]

(31]

(33]

(34]

(35

[36]

(37]

(38]

(39]

E. Keller and J. Berry, One American in Ten Tells the Other Nine
How to Vote, Where to Eat and, What to Buy, The Free Press,
New York, NY, USA, 2003.

N. Agarwal, H. Liu, L. Tang, and P. S. Yu, “Modeling blogger
influence in a community;” Social Network Analysis and Mining,
vol. 2, no. 2, pp. 139-162, 2012.

R. D. Nolker and L. Zhou, “Social computing and weighting to
identify member roles in online communities,” in Proceedings
of the IEEE/WIC/ACM International Conference on Web Intelli-
gence, pp. 87-93, September 2005.

A. Zygmunt, “Role identification of social networkers,” in
Encyclopediaof Social Network Analysis and Mining, R. Alhajj
andJ. Rokne, Eds., pp. 1598-1606, Springer, New York, NY, USA,
2014.

D. L. Hansen, B. Shneiderman, and M. A. Smith, “Visualizing
threaded conversation networks: mining message boards and
email lists for actionable insights,” in Active Media Technology,
A. An, P. Lingras, S. Petty, and R. Huang, Eds., vol. 6335 of
Lecture Notes in Computer Science, pp. 47-62, Springer, Berlin,
Germany, 2010.

M. Mathioudakis and N. Koudas, “Efficient identification of
starters and followers in social media,” in Proceedings of the 12th
International Conference on Extending Database Technology:
Advances in Database Technology (EDBT °09), pp. 708-719,
ACM, Saint-Petersburg, Russia, March 2009.

C. C. Aggarwal and H. Wang, “Text mining in social networks,”
in Social Network Data Analytics, C. C. Aggarwal, Ed., pp. 353-
378, Springer, New York, NY, USA, 2011.

E Bodendorf and C. Kaiser, “Detecting opinion leaders and
trends in online communities,” in Proceedings of the 4th Inter-
national Conference on Digital Society (ICDS ’10), L. Berntzen,
E Bodendorf, E. Lawrence, M. Perry, and S. Smedberg, Eds., pp.
124-129, February 2010.

A. Bartal, E. Sasson, and G. Ravid, “Predicting links in social
networks using text mining and SNA,” in Proceedings of the
International Conference on Advances in Social Network Analysis
and Mining (ASONAM °09), pp. 131-136, IEEE Computer
Society, Washington, DC, USA, July 2009.

Y. Huang, “Support vector machines for text categorization
based on latent semantic indexing, Tech. Rep., Electrical
and Computer Engineering Department, The Johns Hopkins
University, 2003.

D. M. Blei, A. Y. Ng, and M. L Jordan, “Latent Dirichlet
allocation,” Journal of Machine Learning Research, vol. 3, no. 4-5,
pp. 993-1022, 2003.

B. Gliwa, A. Zygmunt, and S. Podgorski, “Incorporating text
analysis into evolution of social groups in blogosphere,” in
Proceedings of the Federated Conference on Computer Science
and Information Systems (FedCSIS ’13), pp. 931-938, Krakow,
Poland, September 2013.

M. Nguyen, T. Ho, and P. Do, “Social networks analysis based on
topic modeling,” in Proceedings of the IEEE RIVF International
Conference on Computing and Communication Technologies:
Research, Innovation, and Vision for Future (RIVF ’13), pp. 119-
122, November 2013.

A. Zygmunt, P. Brodka, P. Kazienko, and J. Kozlak, “Key person
analysis in social communities within the blogosphere,” Journal
of Universal Computer Science, vol. 18, no. 4, pp. 577-597, 2012.

(42]

(43]

1

B. Gliwa, A. Zygmunt, and J. Kozlak, “Analysis of roles and
groups in blogosphere,” in Proceedings of the 8th International
Conference on Computer Recognition Systems (CORES '13), vol.
226 of Advances in Intelligent Systems and Computing, pp. 299-
308, Springer, Cham, Switzerland, 2013.

B. Gliwa, J. Kozlak, A. Zygmunt, and K. Cetnarowicz, “Models
of social groupsin blogosphere based on information about
comment addressees and sentiments,” in Proceedings of the
4th International Conference on Social Informatics, vol. 7710
of Lecture Notes in Computer Science, pp. 475-488, Springer,
Lausanne, Switzerland, 2012.

Hindawi Publishing Corporation
Scientific Programming

Volume 2015, Article ID 901321, 11 pages
http://dx.doi.org/10.1155/2015/901321

Research Article

Fast Parallel All-Subgraph Enumeration Using

Multicore Machines

Saeed Shahrivari and Saeed Jalili

Computer Engineering Department, Tarbiat Modares University (TMU), Tehran 14115-111, Iran

Correspondence should be addressed to Saeed Jalili; sjalili@modares.ac.ir

Received 28 January 2014; Revised 21 November 2014; Accepted 21 November 2014

Academic Editor: Przemyslaw Kazienko

Copyright © 2015 S. Shahrivari and S. Jalili. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Enumerating all subgraphs of an input graph is an important task for analyzing complex networks. Valuable information can be
extracted about the characteristics of the input graph using all-subgraph enumeration. Notwithstanding, the number of subgraphs
grows exponentially with growth of the input graph or by increasing the size of the subgraphs to be enumerated. Hence, all-subgraph
enumeration is very time consuming when the size of the subgraphs or the input graph is big. We propose a parallel solution named
Subenum which in contrast to available solutions can perform much faster. Subenum enumerates subgraphs using edges instead of
vertices, and this approach leads to a parallel and load-balanced enumeration algorithm that can have efficient execution on current
multicore and multiprocessor machines. Also, Subenum uses a fast heuristic which can effectively accelerate non-isomorphism
subgraph enumeration. Subenum can efficiently use external memory, and unlike other subgraph enumeration methods, it is not
associated with the main memory limits of the used machine. Hence, Subenum can handle large input graphs and subgraph sizes that
other solutions cannot handle. Several experiments are done using real-world input graphs. Compared to the available solutions,
Subenum can enumerate subgraphs several orders of magnitude faster and the experimental results show that the performance of
Subenum scales almost linearly by using additional processor cores.

1. Introduction

Enumerating subgraphs of a given size has been shown tobe a
very useful task in the area of complex network analysis. Sub-
graphs can be used to identify building blocks and functional
and nonfunctional characteristics in social, biological, chem-
ical, and technological graphs [1]. An interesting application
is subgraph mining which can be used to extract functional
properties. A good example is finding network motifs, which
are defined as connected subgraphs that occur significantly
more frequently than expected [2]. One of the best known
approaches for finding network motifs is to enumerate all
subgraphs and then extract significant motifs after omitting
frequent subgraphs that occur in random networks [3].
There are also many other applications in areas like data
mining, statistics, systems biology, chemoinformatics, social
networks, telecommunications, and web mining.

Although subgraph enumeration is a useful task, it is a
computational challenging problem [4]. Enumeration can be
classified into two distinct problems: enumerating all labeled

subgraphs and enumerating nonisomorphic subgraphs, that
is, subgraphs that have identical structure but different
vertex labels. In the first problem, all of the subgraphs of
a given size should be enumerated. On the other hand,
in the second problem which is much more important, all
of the nonisomorphic subgraphs of a given size must be
enumerated. Both problems are very time consuming because
the number of both labeled and nonisomorphic subgraphs
increases exponentially by giving a bigger subgraph size or
a larger input graph for subgraph enumeration.

As the size of the input graph increases, the number
of subgraphs of size k increases exponentially (in the worst
case C(n, k) for a complete graph) [5]. The number of
nonisomorphic subgraphs, which can be calculated using the
Polya enumeration theorem [6], also increases exponentially
as k increases. Therefore, by increasing the subgraphs size or
the input graph’s size, subgraph enumeration will take more
time. When nonisomorphic subgraphs are enumerated, the
problem becomes more complicated because an additional
mechanism must be used to identify isomorphic subgraphs.

http://dx.doi.org/10.1155/2015/901321

There is no known polynomial algorithm for subgraph
isomorphism problem yet, and this overcomplicates the
subgraph enumeration problem [7].

Due to the complex nature of subgraph enumeration
problem, it is a very challenging and time-consuming prob-
lem. Available sequential algorithms tend to take a lot of time
to do the job [3]. Hence, a good solution is to use parallel
and distributed systems to accelerate subgraph enumeration
[8]. Several other recent works targeting parallel subgraph
enumeration have been proposed recently [8]. However,
most of the related works are based on message passing
interface (MPI) and hence are designed to work on cluster
computing systems [8, 9]. In contrast, our goal is to provide
a fast and easy to use tool for subgraph enumeration on
commodity multicore and multiprocessor machines and to
the best of our knowledge it has not yet been done. For
this reason, we present a parallel solution, named Subenum,
which is designed for faster and more scalable subgraph
enumeration on multicore and multiprocessor machines.
Subenum provides fast and efficient methods for counting
and dumping both all and just nonisomorphic subgraphs.

Subenum’s strength compared to other similar works can
be classified into three categories. First, we have presented
a new edge-based parallel subgraph enumeration algorithm
named PSE, which is an improved version of the well-known
sequential ESU algorithm. PSE provides a parallel and load-
balanced approach for subgraph enumeration. The second
strength is using a custom polynomial-time heuristic for
detecting isomorphic subgraphs. The last strength is using
a combination of external sorting and the nauty canonical
labeling algorithm which enables Subenum to enumerate
nonisomorphic subgraphs even when the number of sub-
graphs is so big that they cannot be stored in the main
memory.

For evaluating the performance of Subenum we have
performed several experiments on real-world graphs from
different areas like social network, biological networks,
software engineering, and electrical circuits. During the
experiments, we compared Subenum’s performance to state-
of-the-art algorithms and implementations. Experimental
results show that Subenum provides a parallel, load-balanced,
and effective solution for all-subgraph enumeration problem.
Compared to the fastest available tools for nonisomorphic
subgraph enumeration, Subenum enumerates subgraphs sev-
eral times faster and is able to reduce execution time from
days to hours. In addition, Subenum is able to handle large
graphs and also large subgraph sizes while other solutions fail
to handle them.

2. Related Work

Related works for subgraph enumeration can be categorized
into three main classes [8]: all-subgraph enumeration, single-
subgraph enumeration, and subgraph-set enumeration. In
all-subgraph enumeration (our problem), all of the subgraphs
of size k of the original graph must be enumerated [1, 3,
4, 10]. Nevertheless, other conditions can also be defined
for subgraphs for example, subgraphs of size k that have an
Eulerian path. In single-subgraph enumeration, all of the

Scientific Programming

isomorphic subgraphs of a predefined individual subgraph
of size k must be enumerated [5]. Finally, in the subgraph-
set enumeration, isomorphic subgraphs of a given set of
subgraphs of size k must be enumerated [2]. As stated before,
our solution is for the first kind of enumeration, that is,
all-subgraph enumeration. Hence, we concentrate on related
works that enumerate all subgraphs of size k of a given input
graph. Interested reader can find deeper discussions in [8, 11-
15].

The most notable efforts for all-subgraph enumeration
problem are done in the network motif finding problem.
As stated before, one of the best known exact approaches
for finding network motifs is via all-subgraph enumera-
tion and then counting nonisomorphic subgraphs [3]. The
most notable works in this sector are mfinder [1], Kavosh
[3], ESU aka FANMOD [4, 14], FPF [10], gtriesScanner
[16], FaSe [17], NetMODE [18], and QuateXelero [19]. Note
that gtriesScanner and FaSe use the ESU algorithm for
subgraph enumeration, but in conjunction with ESU, they
use the G-Tries data structure to accelerate subgraph iso-
morphism detection. Also note that FANMOD is limited
to subgraphs smaller than 9 and NetMODE is limited to
subgraphs smaller than 7. Compared to this group of related
works, our solution has three strengths: parallel execution,
using a heuristic (ordered labeling) for subgraph isomor-
phism, and external memory based isomorphic subgraphs
counting.

Since subgraph enumeration is a time-consuming task,
some recent works have used cluster computing to tackle
the problem. Most of the available works for parallel all-
subgraph enumeration are based on MPI. The most notable
MPI-based solutions are discussed in [8, 20]. More works are
done for parallel single-subgraph enumeration [2, 9, 21, 22].
Some recent works have used the MapReduce programming
model [23] and Hadoop [24] for efficient single-subgraph
enumeration on cloud and cluster computing systems. The
most mentionable works are [25-29]. However, these works
are also based on cluster and cloud computing systems.
In contrast to available related work, Subenum presents a
parallel solution that can boost the speed of all-subgraph
enumeration problem using parallel processing capabilities
of current commodity multicore and multiprocessor systems
which are more accessible than expensive and complex
solutions like cluster and parallel computing. There are
some other similar but more complex problems like colored
subgraph enumeration and motif finding [30, 31], but in order
to keep this section short, we skip them. The interested reader
can refer to [32] for more information.

3. Preliminaries

In mathematics, a graph is a collection of points that are
connected by some links. The points of a graph are called
vertices and the links are called edges. In this paper, if we
use G to denote a graph, then V(G) is used to present the
vertices of G and E(G) is used to present the edges of G.
Vertices and edges of a graph can be assigned labels, weights,
or colors. However, we assume graphs to be directed, simple,
and unweighted. In other words, we assume that just the

Scientific Programming

vertices take labels and the edges are directed and do not
have weights and also there is at most one edge between two
vertices.

For a vertex set V' C V its open neighborhood N(V')
is the set of all vertices, V — V', which are adjacent to at
least one vertex of V'. For a vertex v € V — V' its exclusive
neighborhood with respect to V' denoted by N, (v, V') is
the set of all vertices neighboring v that do not belong to
VI UNW).

The graph H is a subgraph of G, if V(H) < V(G) and
E(H) < E(G). An induced subgraph of G on the vertices set
N denoted by G[N] is a subgraph of G with N as the vertex set
containing all edges between vertices of N that are in E(G).
When we say that we are enumerating subgraphs of size k
of a graph like G we mean that we are enumerating induced
subgraphs of G. Two subgraphs G, and G, are isomorphic if
and only if there is a one to one correspondence between their
vertices, and there is an edge between two vertices of G, if and
only if there is an edge between the corresponding vertices in
G,. Actually, there is no polynomial time algorithm for graph
isomorphism problem yet [7].

ESU Enumeration Algorithm. The most well-known algo-
rithm for subgraph enumeration is the ESU algorithm [14].
ESU assumes that vertices are labeled by unique integer
values. The basic idea of ESU algorithm is to start from
each vertex v and enumerate all subgraphs of size k that
contain v and vertices that have a bigger label than v, that
is, the subgraphs that are v-rooted. ESU enumerates each
subgraph just once. Details of the ESU algorithm are given in
Algorithm 1.

4. Subenum: A Solution for
All-Subgraph Enumeration

The easiest approach for parallel subgraph enumeration is
to enumerate subgraphs rooted from each vertex in parallel
using the ESU algorithm. However, this approach results
unbalanced parallel tasks. Usually, there is a great variance
in the number of subgraphs rooted from each vertex because
vertices with higher degrees tend to participate in more
subgraphs. For example in one of our experiments, more than
20% of subgraphs were enumerated from an identical vertex.
Hence, this naive approach causes unbalanced parallel loads
and sometime this unbalanced load can cause ineflicient
parallelism.

Our idea for parallel enumeration is to enumerate sub-
graphs containing each edge in parallel. Enumerating sub-
graphs using edges causes more fine-grained parallel tasks
because each vertex will be decomposed into several edges.
Hence, the whole process is more load-balanced than vertex-
based enumeration. For this purpose we need an algorithm
for enumerating all subgraphs of size k that contain a specific
edge e(v, w). For this purpose, we have designed Edge-based
Subgraph Enumeration (ESE) algorithm. ESE itself is an
extended version of the ESU algorithm. However, in contrast
to ESU, ESE is nonrecursive. Details of ESE algorithm are
given in Algorithm 2.

Having defined the edge-based enumeration algorithm,
we can explain Parallel Subgraph Enumeration (PSE) algo-
rithm which uses the ESE algorithm as a building block. The
procedure of PSE is simple. First, we put all of the edges of the
input graph into a shared queue (for the case of bidirectional
edges we put just one of them). Then, we use p concurrent
threads to pick edges from the shared queue and enumerate
subgraphs of each edge using p instances of ESE algorithm in
parallel. The shared queue of edges between threads causes a
more load-balanced parallelism. A more formal description
of PSE is given in Algorithm 3.

Algorithm 3 enumerates all subgraphs of size k. However,
if we want to enumerate nonisomorphic subgraphs, we need
a mechanism to detect isomorphic subgraphs. One of the
most efficient methods for graph isomorphism detection is
graph canonization. Graph canonization produces a canonical
label for every graph. Canonical labeling is completely graph
invariant. Graph G is isomorphic to H if and only if canonical
label of G equals canonical label of H [33]. There are some
practical algorithms for canonical labeling like nauty [34],
bliss [35], and traces [36]. However, there is no known
polynomial-time algorithm for canonical labeling [36].

Most of the competing solutions use nauty for canonical
labeling. When they find a new subgraph, first they find its
canonical labeling using the nauty algorithm. Then, the new
canonical label is looked up against a set of visited canonical
labels. If the new canonical label is present in the set, then
this subgraph is omitted else and the new canonical label is
added to the label set. Some solutions, like FaSe, use a more
sophisticated solution like G-tries instead of a lookup table
for storing subgraphs, but the whole process is the same.
This approach has two shortcomings. First, for each found
subgraph, we need to generate its canonical labeling which
can take exponential time in the worst case [34]. The second
problem is the obligation to keep all of the unique canonical
labels that are seen before in the main memory. These two
shortcomings lead to unnecessary usage of processor and
memory resources. Specially, when the size of subgraphs
is big, for example, when k is more than 8, it would be
impractical to keep all canonical labels in the main memory
of a commodity workstation because there are millions of
canonical labels.

To overcome these shortcomings, we propose a two-
phase subgraph isomorphism solution that works with exter-
nal storage. In the first phase, we use a fast O (v*) heuristic
called ordered labeling to eliminate a considerable portion
of isomorphic subgraphs. Then in the second phase, we use
the nauty algorithm to eliminate all remaining isomorphic
subgraphs. Advantages of our two-phase solution are as
follows: (i) faster execution time and (ii) the ability to
handle situations where the number of nonisomorphism
subgraphs exceeds the main memory limits. A schematic of
our proposed two-phase subgraph isomorphism detection
solution is given in Figurel. A flowchart for the ordered
labeling step (first step of the first phase) is also given in
Figure 2.

As shown in Figure 2, we use an intermediate set resid-
ing in the main memory for early duplicate ordered label

Scientific Programming

Output: All subgraphs of size k

(2) while Vg,0n # @ do

(b) vy

xtension

Input: A graph G and an integer k: 1 < k < [V(G)|

(1) for each vertex v € V(G) do:
(@) Vigtension — 1 € N({v}) 1 u > v}
(b) ExtendSubGraph({v}, Visensions V)
EXtendSUbGraph(VvSubgmph’ VExtension’ V)
(1) if [Vsupgrapn| = k then output G[Vs,p.,,,] and return

(a) remove a vertex w from V
A VExtension U {M € Nexcl(w’ VSubgmph) u> V}
(c) ExtendSubGraph(Vi,,apn U {w}, V

xtension

:)
Extension’ v

ALGoriTHM I: ESU subgraph enumeration algorithm.

(1) let Stack be a stack of tuples
(2) if v > w then swap vand w

(5) while Stack is not empty do:
(a) top « pop the tuple on top of the stack

(c) while top[1] + & do:
(i) remove a vertex x from top[1]
(i) V; —top[l]U{u e N,

Extension

Input: A graph G, and an integer k: 1 < k < [V(G)|, and an edge e(v, w)
Output: All subgraphs of size k that contain e(v, w)

(3) Vistension — {u € N({v})) :u > whU{u e N, 4w, {v}) : u > v} - {v,w}
(4) push new tuple({v, w}, Vi ension> V) into Stack

(b) if |top[0]| = k then output G[top[0]] and return

exct (% Vubgrapn) : 14 > top[2]} //top[2] is the root
(iii) push new tuple(top[0] U {x}, VE'xte,,sion, top[2]) into Stack

//to guarantee that v is smaller than w

//top[0] is the first item of the tuple
/Itop[1] is the extension set

ALGorITHM 2: ESE enumeration algorithm.

Output: All subgraphs of size k

(1) let Q be an empty list.
(2) for each edge e(v, w) € E(G) do:

(a) if e(w,v) is not in Q then insert e(v, w)into Q
(3) spawn p threads
(4) for each thread do in parallel:

(a) while Q is not empty do:

(i) pick an edge e(v, w) from Q

(5) wait until all threads are done

Input: A graph G, an integer k: 1 < k < |[V(G)] as the size of subgraphs, and an integer p as the number of concurrent threads

(ii) enumerate all subgraphs of size k containing e using ESE algorithm

ALGorITHM 3: PSE subgraph enumeration algorithm.

detection and when the size of the set exceeds the memory
limit, we spill ordered labels set to external memory, that is,
a file on disk. To generate an ordered labeling for a subgraph,
we reorder the adjacency matrix considering degree of each
vertex. Then, we concatenate rows of the reordered adjacency
matrix to generate the ordered label for that subgraph.
Algorithm 4 gives a more formal explanation of ordered
labeling algorithm. Actually, ordered labeling algorithm just
changes the labels of vertices and the graph structure is not
changed. Hence, ordered labeling algorithm preserves graph

isomorphism class and canonical labeling. Figure 3 shows an
example of ordered labeling.

According to Figure 1, after generating ordered labeling
for subgraphs and dumping them to a file on external
storage, we have a file containing pairs of ordered labels and
their frequencies. Afterwards, we use the nauty algorithm
to generate a canonical label of each ordered label. Having
a file containing canonical labels and frequencies for each
subgraph, first we sort the file by canonical labels using
parallel external merge sort algorithm and then, we traverse

Scientific Programming

Input: A subgraph G represented with its adjacency matrix M
Output: A binary string of length [V(G)|” as the ordered labeling for G
(1) let L be alist of vertices, and initially L = &
(2) for each vertex v € V(G) do:
(a) insert vto L
(3) sort L by degree of each vertex
(4) let Lookup be a lookup table and Lookup[x] as the value associated to x.
(5) for each vertex v € L do:
(a) set Lookup[v] equal to rank of vin L
(6) let N be a binary matrix of size M filled with zeros

(7) for each M;;in M do:

(8) return concatenation of rows of N

/1A, ; denotes the element of matrix A in row i and column j
(a) if M;; = 1 then set N ookuplil,Lookup(j) 101

ALGORITHM 4: Ordered labeling algorithm.

Ordered labeling phase Canonical labeling phase
Generate — Generate Sort Eli te
Eliminate : oL iminate
dered —> : 1
?arb eelri xe1 o duplicates Clzg(e)lril;f; labels ” duplicates

FIGURE 1: Two-phase isomorphism detection.

(A subgraph is found) Yes

Add the generated label
to set of known labels

and update frequencies
if needed

Generate ordered|
labeling

Size of the set
exceeds memory
limit

There are more
subgraphs

No
N

Spill the labels set to
external memory

FIGURE 2: Generating ordered labeling for subgraphs.

Yes
N

Spill the labels set
to external memory

the sorted file and detect duplicate canonical labels and
merge frequencies of duplicate labels. At last, we have unique
canonical labels and their frequencies, that is, nonisomorphic
subgraphs and their frequencies.

4.1. Complexity Analysis. During the ordered labeling heuris-
tic we perform O (k*) lookups, assuming k as the size of the
subgraph. Hence, if we use a data structure like hash table that
provides O(1) expected lookups, then the time complexity
of the ordered labeling algorithm would be O (k*) which is
far better than traditional canonical labeling algorithms that
have time complexity of O(k!).

After ordered labehng

FIGURE 3: An example of ordered labeling.

For enumeration of subgraphs of size k, whether isomor-
phism detection is done or not, we need to enumerate all
subgraphs of size k. In the worst case, for a complete input
graph of size n, the number of induced subgraphs of size k
is C(n, k). On average, for a general input graph of size #,
the number of subgraphs of size k should be exponential [4].
Hence, if we assume « as the number of subgraphs of size k, 8
as the number of isomorphic classes for subgraphs, and p as
the number of processors, generating ordered labeling of all
subgraphs needs O(a-k*/ p) operations, eliminating duplicate
ordered labels needs execution of standard parallel merge
sort algorithm which has complexity of O(f - log 8/p), and
applying nauty on unique ordered labels needs O(f3 - k!/p).
Hence, the overall time complexity of Subenum is O(a-k*/ p+
B-log 3/ p + B.k!/p) which is far more better than other tools
that use nauty directly which have complexity of O(« - k!),
because f is smaller than « [3, 4].

5. Experimental Results

In order to evaluate the performance and effectiveness of
Subenum, we performed various experiments on different
real-world graphs. For this purpose, we selected some well-
known graphs from various fields like social networks, biol-
ogy, communication, web graphs, and peer-to-peer networks.
We have used eight different graphs: Elegans (neuronal
network of Caenorhabditis elegans [37]), Jazz (network of
jazz musicians [38]), School (face to face contact patterns
in a primary school [39]), Vidal (proteome-scale map of
human binary protein-protein interactions [40]), Gnutella
(structure of Gnutella p2p network from August 31, 2002
[41]), Slash (slashdot social network from February 2009

Scientific Programming

TaBLE 1: The properties of graphs used in experiments.

Elegans Jazz School Vidal Gnutella Slash Tweet Notre
Number of vertices 297 198 238 3,133 62,586 82,168 81,306 325,729
Number of edges 2,345 2,742 5,539 6,726 147,892 948,464 1,768,149 1,497,134
avg (deg.) 14.46 27.69 46.54 4.10 4.72 48.77 38.21 6.77
o (deg.) 12.94 17.41 19.85 6.79 5.70 19.81 67.93 42.87
TaBLE 2: The effectiveness of ordered labeling heuristic for subgraph isomorphism detection.
Subgraph Size
3 4 5 6 7
Number of subgraphs 47,322 1,394,259 43,256,069 1,309,307,357 37,818,052,163
Elegans Number of ordered labels 20 552 24,745 961,476 31,104,089
Number of nonisomorphic subgraphs 13 197 7,072 286,376 9,584,962
Number of subgraphs 67,414 1,833,618 49,500,654 1,266,953,062 30,166,157,456
Jazz Number of ordered labels 5 45 862 32,493 2,291,205
Number of nonisomorphic subgraphs 4 24 267 5,647 237,008
Number of subgraphs 205,796 8,581,352 348,596,925 13,140,615,595 451,141,199,919
School Number of ordered labels 5 45 862 32,515 2,409,520
Number of nonisomorphic subgraphs 4 24 267 5,647 237,319
Number of subgraphs 86,715 2,161,170 62,607,036 1,901,854,904 58,919,388,890
Vidal Number of ordered labels 42 766 18,201 411,148 8,637,628
Number of nonisomorphic subgraphs 3 24 267 4,909 97,094
Number of subgraphs 1,564,126 23,646,400 449,446,489 9,806,726,769 234,415,296,091
Gnutella Number of ordered labels 7 70 933 12,787 170,594
Number of nonisomorphic subgraphs 5 32 291 2,714 25,230

[42]), Tweet (social circles from Twitter [43]), and Notre (web
graph of Notre Dame [44]). Main properties of these graphs
are tabulated in Table 1. The first four graphs are small; for
example, they have less than 10,000 vertices and edges. On
the other hand, the latter four graphs are larger, for example,
more than tens of thousands of vertices and up to one million
edges.

The main goal of our experiments is to evaluate the
overall speed of Subenum compared to available state-of-
the-art algorithms. We divide the experiments into three
sections. First, we evaluate effectiveness of ordered labeling
heuristic for subgraph isomorphism detection. Then, we eval-
uate scalability and parallelism performance of Subenum on
multicore and multiprocessor machines. Finally, we compare
ultimate speed of Subenum to some of the available tools
for subgraph enumeration (FANMOD, Kavosh, G-Tries, and
FaSe) considering different input graphs and subgraph sizes.

We used two machines during our experiments. The first
machine was a four-core Intel i7-2600 CPU having 8 GB of
RAM and running Windows 7 64-bit edition. The second
machine had two 6-core Intel Xeon-E5620 CPUs and 32 GB
of RAM running Ubuntu 12.04. The 4-core i7 machine is
mainly used for comparison with other tools, while the
12-core Xeon machine is mainly used for parallelism and
scalability experiments. For better scalability, we used Azul
Zing JVM on the Xeon machine. Subenum is coded in the
Java programming language and its source code is available
via GitHub at https://github.com/shahrivari/subenum.

5.1. Effectiveness of Ordered Labeling Heuristic. For testing the
effectiveness of ordered labeling heuristic, we applied ordered
labeling on some of the input graphs considering subgraphs
of various sizes. The details about the effectiveness of ordered
labeling heuristic are given in Table 2.

Three numbers are reported per subgraph size and input
graph in Table 2: the number of subgraphs, the number of
ordered labels, and the number of nonisomorphic subgraphs.
As the numbers show, the numbers of ordered labels are
much smaller than the numbers of subgraphs and close to
the number of nonisomorphic subgraphs. This shows that
Subenum calls the expensive nauty algorithm significantly
fewer times (in orders of the number of ordered labels)
while other solutions call nauty per each found subgraph.
For example, considering the subgraphs of size 6 for Gnutella
graph, Subenum calls nauty 12,787 times, while other tools
call nauty more than 9 billion times.

5.2. Parallelism and Scalability. Subenum is inherently de-
signed for running on multicore and multiprocessor ma-
chines. Hence, an important performance factor is the scala-
bility of Subenum. That is to say, we want to know how much
speedup is gained when additional processors are available
to Subenum. For this purpose, we calculated the speed-
up of Subenum running with different counts of threads.
We performed both all-subgraph enumeration and noniso-
morphic subgraph enumeration. For calculating the speed-
up value, we divided the execution time of multithreaded

Scientific Programming

HHHHHHHHHHHH
'S

5

6

7

Used processor cores

4-core i7: counting all subgraphs

EEOQ

12-core Xeon: counting all subgraphs
4-core i7: enumerating nonisomorphic subgraphs
12-core Xeon: enumerating nonisomorphic subgraphs

FIGURE 4: Overall speedup values considering different graphs.

version to the execution time of the single threaded version.
Figure 4 shows an overall view of Subenum’s scalability using
multithreads. For this experiment, we executed Subenum
using different number of threads on all of the input graphs
and enumerated subgraphs of sizes 5 and 6 for the first
four graphs and subgraphs of size 3 and size 4 for the latter
four graphs. As Figure 4 shows, Subenum can reach a near-
linear speedup when additional threads of execution are used
until threads count reaches the number of available processor
cores. Note that the small improvements after increasing the
number of threads to values greater than number of cores are
due to HyperThreading feature of Intel CPUs which allows
each core to run two logical threads simultaneously. More
details of speedup values for each input graph are given in
Figure 5 which shows the increase of speedup values for each
input graph by using more threads.

5.3. Comparison to Other Solutions. The main goal of Sube-
num is to provide a faster solution for all-subgraph enumer-
ation and nonisomorphic subgraph enumeration problems
compared to available solutions. In this part of the paper,
we compare the performance of Subenum to the best known
avaijlable software for all-subgraph enumeration problem.
The comparison is made to Kavosh, FANMOD, gtrieScanner,
and FaSe. During the experiments of this section, we used the
4-core i7 machine.

All of the other solutions are sequential and comparing
Subenum which is a parallel solution to sequential solutions
is not very fair because Subenum can use all of the available
cores, while others just use a single core. For this reason,
in this experiment we used the 4-core i7 machine that has
fewer cores compared to the 12-core Xeon machine. For better
comparison, for every graph and subgraph size, we reported
the performance of Subenum when using a single core, too.
Note that Subenum is programmed in Java, while all of the
other solutions are programmed in C/C++ which has proven
to produce faster executable programs because of producing

12
11
10
9
8
5 7
T 6
&5
4
3
2
1
1 2 3 4 5 6 7 8 9 10 11 12
Number of threads
—o— Elegans —x— Gnutella

—&— Jazz ~e— Slash

—4— School —+— Tweet

—x— Vidal —-— Notre

FIGURE 5: The speedup for each graph using different number of
threads on 12-core Xeon machine.

native machine code in contrast to Java that compiles to byte
code which executes in the Java Virtual Machine (JVM).

For more clarity, we divided the input graphs into two
groups. The first group consists of smaller graphs: Elegans,
Jazz, School, and Vidal. The second group consists of larger
graphs: Gnutella, Slash, Tweet, and Notre. Since the graphs
of first group are smaller, larger subgraph sizes can be
enumerated, while for the second group, enumerating large
subgraphs like 8 can take months and even years.

Figure 6 gives an overall performance comparison of
different solutions for the first group of graphs. For this
experiment, we enumerated nonisomorphic subgraphs of
sizes 5 and 6 for each input graph and reported the average
normalized times. As Figure 6 shows, for all of the input
graphs Subenum is the fastest solution. When Subenum is

100.00 -

90.00 ~

80.00

70.00

60.00

50.00 A

40.00

Normalized execution time

30.00

20.00 ~

10.00

0.00

Elegans

M Subenum
[Serial-Subenum
i Kavosh

Scientific Programming

94.7

School

Input graphs

£ FANMOD
gtrieScanner
O FaSe

FIGURE 6: Average normalized execution times for smaller input graph (subgraphs of sizes 5 and 6).

executed in sequential mode, FaSe is faster, but it does not
reach performance of Subenum when all of the 4 cores of the
i7 CPU are used. We believe that the better performance of
FaSe in the sequential mode is due to better performance of
C++ compared to Java. Using Figure 6, we can also conclude
that there is a great performance gap between Subenum and
FaSe compared to other solutions. The main reason behind
this issue is the better methods that Subenum and FaSe use to
deal with subgraph isomorphism detection.

More details are given in Table 3. The execution times
for each input graph and different subgraph sizes are given
for each solution. For all input graphs and subgraph sizes,
Subenum delivers the fastest execution time. An interesting
point is the failure of other tools when larger subgraphs are
enumerated. When large subgraphs (e.g., 8) are enumerated,
other tools crash due to memory issues. These cases are
denoted by “Out of Mem.” in Table 3. The main reason behind
this is the large count of nonisomorphic subgraphs. Since
other tools keep all nonisomorphic subgraphs in the main
memory, the main memory fills up and the tools crash. For
the cases in which the execution of a solution took more than
a week, we did not proceed and reported these cases by an
estimation like “>1 week”.

We performed the same experiments for the larger input
graphs, too. Kavosh and gtrieScanner failed to load all of the
graphs. Inspecting their code shows that they use a Boolean
matrix for storing edges. Hence, they need O(v*) space,
considering v as the number of vertices. FaSe can just handle
the Gnutella and Slash graphs and fails due to insufficient
memory for the rest of the input graphs. FANMOD performs
better in handling large graphs. However, it is much slower
than Subenum and FaSe. The details of execution times are
given in Table 4.

6. Conclusion and Further Work

The number of both isomorphic and nonisomorphic sub-
graphs of a given graph grows exponentially when the
size of input graph or the subgraphs to be enumerated is
increased. Hence, the only available solution for accelerating
all-subgraph enumeration problem is to use parallel and
distributed systems. We presented a new parallel solution,
named Subenum, for the all-subgraph enumeration problem
on multicore and multiprocessor systems. In contrast to
available parallel solutions that are designed for execution
on cluster computing systems, Subenum is designed for
faster execution on commodity multicore and multiprocessor
desktop and workstation systems.

The novelties of Subenum can be summarized in three
points. First, we designed a new parallel subgraph enumer-
ation algorithm named PSE that provides a load-balanced
and parallel procedure suited for subgraph enumeration on
multicore and multiprocessor systems. Second, we offered
a new, simple, and polynomial heuristic for subgraph iso-
morphism detection problem and we showed that it is very
effective for pruning candidate subgraphs. And lastly, using
a parallel external sorting solution we enabled Subenum to
enumerate nonisomorphic subgraphs even when they are so
large that they do not fit in the main memory. Our practical
experiments on different real-world input graphs showed
that Subenum is a scalable parallel solution and can easily
outperform the fastest available tools like FANMOD and
Kavosh on commodity multicore machines.

For further work, we plan to develop a distributed
subgraph enumeration solution using the MapReduce pro-
gramming model and the Hadoop framework. We have done
most of the work and the preliminary results are encouraging.

Scientific Programming 9
TaBLE 3: The execution times of different tools for small graphs in seconds.
Tool Subgraph size
5 6 7 8
Subenum 1.7 39 1,175 37,993
Serial Subenum 42 130 4,553 147,806
FANMOD 55.2 2,453 85,465 Out of Mem.
Elegans
Kavosh 53.1 3,285 119,286 Out of Mem.
gtrieScanner 52.7 3,233 Out of Mem. Out of Mem.
FaSe 2.2 81 Out of Mem. Out of Mem.
Subenum 1.7 40 1,051 29,216
Serial Subenum 5.3 145 4,059 111,876
Jazz FANMOD 46.3 1,578 49,660 Out of Mem.
Kavosh 45.6 1,611 50,310 Out of Mem.
gtrieScanner 43.7 1,649 Out of Mem. Out of Mem.
FaSe 2.7 84 2,663 Out of Mem.
Subenum 8.8 285 17,062 >1 month
Serial Subenum 325 1,157 68,326 >1 month
School FANMOD 604 27,230 >1 week Out of Mem.
Kavosh 405 21,085 >1 week Out of Mem.
gtrieScanner 399 19,554 >1 week Out of Mem.
FaSe 20 954 42,156 Out of Mem.
Subenum 1.9 52 1,756 61,374
Serial Subenum 5.7 181 6,851 238,449
Vidal FANMOD 76 3,239 147,369 >1 month
Kavosh 76 3,016 143,159 >1 month
gtrieScanner 82 3,720 197,432 >1 month
FaSe 3.2 124 3,780 Out of Mem.
TABLE 4: The execution times of different tools for large graphs in seconds.
Tool Subgraph size
4 5 6 7
Subenum 2.3 30 687 19,288
Serial Subenum 11.9 153 3,237 87,796
FANMOD 15 442 11,715 324,152
Gnutella
Kavosh Out of Mem. Out of Mem. Out of Mem. Out of Mem.
gtrieScanner Out of Mem. Out of Mem. Out of Mem. Out of Mem.
FaSe 3.0 49 1,108 29,423
Subenum 1,040 460,928 >1 year >1 year
Serial Subenum 3,963 >1 week >1year >1year
Slash FANMOD 67,047 >1 month >1 year >1 year
Kavosh Out of Mem. Out of Mem. Out of Mem. Out of Mem.
gtrieScanner Out of Mem. Out of Mem. Out of Mem. Out of Mem.
FaSe 2,373 >1 week >1 year >1 year
Subenum 3,791 >1 month >1 year >1 year
Serial Subenum 14,671 >1 month >1 year >1 year
Tweet FANMOD Out of Mem. Out of Mem. Out of Mem. Out of Mem.
Kavosh Out of Mem. Out of Mem. Out of Mem. Out of Mem.
gtrieScanner Out of Mem. Out of Mem. Out of Mem. Out of Mem.
FaSe Out of Mem. Out of Mem. Out of Mem. Out of Mem.
Subenum 23,273 >1 month >1year >1year
Serial Subenum 82,833 >1 month >1year >1year
Notre FANMOD 451,156 >1 year >1 year >1 year
Kavosh Out of Mem. Out of Mem. Out of Mem. Out of Mem.
gtrieScanner Out of Mem. Out of Mem. Out of Mem. Out of Mem.
FaSe Out of Mem. Out of Mem. Out of Mem. Out of Mem.

10

Another opportunity is using available powerful and low cost
Graphical Processing Units (GPU). Due to the complexity of
the problem, using parallel GPU based solutions like CUDA
may also bring a huge performance boost.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] R.Milo,S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: simple building blocks of complex
networks,” Science, vol. 298, no. 5594, pp. 824-827, 2002.

[2] P. Ribeiro and E Silva, “g-tries: an efficient data structure
for discovering network motifs,” in Proceedings of the ACM
Symposium on Applied Computing (SAC '10), pp. 1559-1566,
2010.

[3] Z. R. M. Kashani, H. Ahrabian, E. Elahi et al., “Kavosh: a new
algorithm for finding network motifs,” BMC Bioinformatics, vol.
10, no. 1, article 318, 2009.

[4] S. Wernicke and F. Rasche, “FANMOD: a tool for fast network
motif detection,” Bioinformatics, vol. 22, no. 9, pp. 1152-1153,
2006.

[5] J. Grochow and M. Kellis, “Network motif discovery using
subgraph enumeration and symmetry-breaking,” in Research
in Computational Molecular Biology, T. Speed and H. Huang,
Eds., vol. 4453 of Lecture Notes in Computer Science, pp. 92-106,
Springer, Berlin, Germany, 2007.

[6] F Harary and E. Palmer, “The enumeration methods of Red-
field,” American Journal of Mathematics, vol. 89, no. 2, pp. 373-
384, 1967.

[7] D.S. Johnson, “The NP-completeness column,” ACM Transac-
tions on Algorithms, vol. 1, no. 1, pp. 160-176, 2005.

[8] P.Ribeiro, E Silva, and L. Lopes, “Parallel discovery of network
motifs,” Journal of Parallel and Distributed Computing, vol. 72,
no. 2, pp. 144-154, 2012.

[9] Z. Zhao, M. Khan, V. S. A. Kumar, and M. V. Marathe,
“Subgraph enumeration in large social contact networks using
parallel color coding and streaming,” in Proceedings of the 39th
International Conference on Parallel Processing (ICPP ’10), vol.
10, pp. 594-603, September 2010.

[10] F. Schreiber and H. Schwbbermeyer, “Towards motif detection
in networks: frequency concepts and fiexible search,” in Pro-
ceedings of the International Workshop on Network Tools and
Applications in Biology, pp. 91-102, 2004.

[11] M. Kiyomi, Studies on subgraph and supergraph enumeration
algorithms [Ph.D. thesis], The Graduate University for Advanced
Studies, 2006.

[12] P. Ribeiro, Efficient and scalable algorithms for network motifs
discovery [Ph.D. thesis], Porto University, 2011.

[13] A.Masoudi-Nejad, E Schreiber, and Z. R. M. Kashani, “Building
blocks of biological networks: a review on major network motif
discovery algorithms,” IET Systems Biology, vol. 6, no. 5, pp. 164-
174, 2012.

[14] S. Wernicke, “Efficient detection of network motifs,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, vol.
3, no. 4, pp. 347-359, 2006.

Scientific Programming

[15] E. Wong, B. Baur, S. Quader, and C.-H. Huang, “Biological
network motif detection: principles and practice,” Briefings in
Bioinformatics, vol. 13, no. 2, pp. 202-215, 2012.

[16] P.Ribeiro and F. Silva, “G-tries: a data structure for storing and
finding subgraphs,” Data Mining and Knowledge Discovery, vol.
28, no. 2, pp. 337-377, 2014.

[17] P. Paredes and P. Ribeiro, “Towards a faster network-centric
subgraph census,” in Proceedings of the IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining
(ASONAM ’13), pp. 264-271, IEEE, August 2013.

[18] X. Li, D. S. Stones, H. Wang, H. Deng, X. Liu, and G. Wang,
“NetMODE: network motif detection without Nauty;” PLoS
ONE, vol. 7, no. 12, Article ID €50093, 2012.

[19] S.Khakabimamaghani, I. Sharafuddin, N. Dichter, I. Koch, and
A. Masoudi-Nejad, “QuateXelero: an accelerated exact network
motif detection algorithm,” PLoS ONE, vol. 8, no. 7, Article ID
68073, 2013.

[20] W. Tie, J. W. Touchman, Z. Weiyi, E. B. Suh, and X. Guoliang,
“A parallel algorithm for extracting transcriptional regulatory
network motifs,” in Proceedings of the 5th IEEE Symposium
on Bioinformatics and Bioengineering (BIBE *05), pp. 193-200,
October 2005.

[21] M. Schatz, E. Cooper-Balis, and A. Bazinet, Parallel Network
Motif Finding, 2008.

[22] P. Ribeiro, E Silva, and L. Lopes, “Efficient parallel subgraph
counting using G-tries,” in Proceedings of the IEEE International
Conference on Cluster Computing (CLUSTER), pp. 217-226,
2010.

[23] J. Dean and S. Ghemawat, “MapReduce: a flexible data process-
ing tool,” Communications of the ACM, vol. 53, no. 1, pp. 72-77,
2010.

[24] T. White, Hadoop: The Definitive Guide, Yahoo Press, 2012.

[25] Z. Zhao, G. Wang, A. R. Butt, M. Khan, V. S. A. Kumar, and M.
V. Marathe, “SAHAD: subgraph analysis in massive networks
using Hadoop,” in Proceedings of the IEEE 26th International
Parallel and Distributed Processing Symposium (IPDPS ’12), pp.
390-401, Shanghai, China, May 2012.

[26] Z. Zhao, “Subgraph querying in relational networks: a mapre-
duce approach,” in Proceedings of the IEEE 26th Interna-
tional Parallel and Distributed Processing Symposium Workshops
(IPDPSW ’12), pp. 25022505, May 2012.

[27] J. Cohen, “Graph twiddling in a MapReduce world,” Computing
in Science and Engineering, vol. 11, no. 4, Article ID 5076317, pp.
29-41, 2009.

[28] B. Wu and Y. Bai, “An efficient distributed subgraph mining
algorithm in extreme large graphs,” in Artificial Intelligence
and Computational Intelligence, vol. 6319 of Lecture Notes in

Computer Science, pp. 107-115, Springer, Berlin, Germany, 2010.
[29] E N. Afrati, D. Fotakis, and J. D. Ullman, “Enumerating

subgraph instances using map-reduce;” in Proceedings of the
29th International Conference on Data Engineering (ICDE ’13),

pp- 62-73, April 2013.

[30] A. G. Rudi, S. Shahrivari, S. Jalili, and Z. R. M. Kashani,
“RANGI: a fast list-colored graph motif finding algorithm,”
IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, vol. 10, no. 2, pp. 504-513, 2013.

[31] G. Blin, F Sikora, and S. Vialette, “GraMoFoNe: a cytoscape
plugin for querying motifs without topology in protein-protein
interactions networks,” in Proceedings of the 2nd Interna-
tional Conference on Bioinformatics and Computational Biology
(BICoB ’10), pp. 38-43, March 2010.

Scientific Programming

[32] G. Blin, Combinatorial objects in bio-algorithmics: related prob-
lems and complexities [Ph.D. thesis], Université Paris-Est, 2012.

[33] L. Babai and E. M. Luks, “Canonical labeling of graphs,” in
Proceedings of the 15th Annual ACM Symposium on Theory of
Computing, pp. 171-183, 1983.

[34] B. D. McKay, “Practical graph isomorphism,” Congressus
Numerantium, vol. 30, pp. 45-87, 1981.

[35] T. Junttila and P. Kaski, “Engineering an efficient canonical
labeling tool for large and sparse graphs,” in Proceedings of the
9th Workshop on Algorithm Engineering and Experiments and
the 4th Workshop on Analytic Algorithms and Combinatorics, pp.
135-149, January 2007.

[36] H. Katebi, K. Sakallah, and I. Markov, “Conflict anticipation
in the search for graph automorphisms,” in Logic for Program-
ming, Artificial Intelligence, and Reasoning, N. Bjorner and A.
Voronkov, Eds., vol. 7180 of Lecture Notes in Computer Science,
pp. 243-257, Springer, Berlin, Germany, 2012.

[37] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon, “Efficient
sampling algorithm for estimating subgraph concentrations and
detecting network motifs,” Bioinformatics, vol. 20, no. 11, pp.
1746-1758, 2004.

[38] M. G. Pablo and L. Danon, “Community structure in jazz,’
Advances in Complex Systems, vol. 6, no. 4, pp. 565-573, 2003.

[39] J. Stehlé, N. Voirin, A. Barrat et al., “High-resolution measure-
ments of face-to-face contact patterns in a primary school,
PLoS ONE, vol. 6, no. 8, Article ID €23176, 2011.

[40] A.-C. Gavin, P. Aloy, P. Grandi et al., “Proteome survey reveals
modularity of the yeast cell machinery,” Nature, vol. 440, no.
7084, pp. 631-636, 2006.

[41] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution:

densification and shrinking diameters,” ACM Transactions on
Knowledge Discovery from Data, vol. 1, no. 1, article 2, 2007.
[42] J.Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting posi-
tive and negative links in online social networks,” in Proceedings
of the 19th International World Wide Web Conference (WWW
’10), pp. 641-650, April 2010.
[43] J. Leskovec and J. McAuley, “Learning to discover social circles
in ego networks,” in Proceedings of the 26th Annual Conference
on Neural Information Processing Systems (NIPS ’12), pp. 539-
547, December 2012.
R. Albert, H. Jeong, and A.-L. Barabdsi, “Internet: diameter of
the World-Wide Web,” Nature, vol. 401, no. 6749, pp. 130-131,
1999.

(44

1

Hindawi Publishing Corporation
Scientific Programming

Volume 2015, Article ID 451476, 13 pages
http://dx.doi.org/10.1155/2015/451476

Research Article

Skillrank: Towards a Hybrid Method to Assess Quality and
Confidence of Professional Skills in Social Networks

Jose Maria [\lvarez-Rodriguez,1’2 Ricardo Colomo-Palacios,” and Vladimir Stantchev*

"Universidad Carlos ITI de Madrid, Avenida Universidad 30, Leganés, 28911 Madrid, Spain
*Wroclaw University of Technology, Wyspianskiego 27, 50-370 Wroctaw, Poland

3@stfold University College, B R A Veien 4, 1783 Halden, Norway

‘SRH University Berlin, Ernst-Reuter-Platz 10, 10587 Berlin, Germany

Correspondence should be addressed to Vladimir Stantchev; vladimir.stantchev@srh-hochschule-berlin.de

Received 3 February 2014; Revised 1 November 2014; Accepted 21 November 2014

Academic Editor: Przemyslaw Kazienko

Copyright © 2015 Jose Maria Alvarez-Rodriguez et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The present paper introduces a hybrid technique to measure the expertise of users by analyzing their profiles and activities in social
networks. Currently, both job seekers and talent hunters are looking for new and innovative techniques to filter jobs and candidates
where candidates are trying to improve and make their profiles more attractive. In this sense, the Skillrank approach is based on the
conjunction of existing and well-known information and expertise retrieval techniques that perfectly fit the existing web and social
media environment to deliver an intelligent component to integrate the user context in the analysis of skills confidence. A major
outcome of this approach is that it actually takes advantage of existing data and information available on the web to perform both
a ranked list of experts in a field and a confidence value for every professional skill. Thus, expertise and experts can be detected,
verified, and ranked using a suited trust metric. An experiment to validate the Skillrank technique based on precision and recall
metrics is also presented using two different datasets: (1) ad hoc created using real data from a professional social network and (2)

real data extracted from the LinkedIn API.

1. Introduction

In recent years, social network research has been carried
out using data collected from online interactions and from
explicit relationship links in online social network platforms
like, for instance, Facebook and Linkedin [1]. Among these
tasks, expert and people search is one of the most challenging
tasks that one can try in social networks [2, 3].

Expertise represents the skill of answering some ques-
tions or conducting some activities [4]. Thus, the focus of
expertise location is finding an answer, a solution, or a
person with whom details of a problem can be discussed
[5] or a task can be performed [6]. In other words, expert
finding addresses the task of identifying the right person with
the appropriate skills and knowledge. Effective management
of expertise can benefit both organizations and individuals
by easing the access to knowledge, as well as sharing and
applying knowledge [7].

In this light, expert finding involves two main aspects
including expertise identification (“Who are the experts on
Topic X?”) and expertise selection (“What does Expert Y
know?”) [8]. In the later topic, expert profiling turns the
expert-finding task around and asks the following: What
topic(s) does a person know about? [9]. Topics such as
expertise relevance and authority within a community have
been pointed out as some of the factors to assess expert’s
competence [10, 11]. Given that complete and accurate expert
profiles enable people and search engines to effectively and
efficiently locate the most appropriate experts for an informa-
tion need [9], this paper presents an expert profiling approach
to analyze experts skills confidence by means of hybrid
soft computing techniques. One of the main advantages of
Skillrank is the use of LinkedIn as a source of expertise.
LinkedIn is likely the most notable example of business-
oriented social networking site. The company was founded
in December 2002 and launched six months late. LinkedIn

http://dx.doi.org/10.1155/2015/451476

reports by December 2014 more than 330 million users
in 200 countries and territories. In this professional social
networking site, users are allowed to track and publish
their career paths, skills and past experiences, the size and
tenure of the teams with whom theyve worked, and the
roles they played on each team [12]. LinkedIn users self-
report their expertise and ask members of their social
network to provide positive references or recommendations
for them [13]. Although LinkedIn has been used in the
literature for expertise search [14, 15], to the best of authors
knowledge, there is not a study devoted to the application
of self-disclosure and social network integrators to assess
the quality and confidence of professional skills in this
network.

On the other hand, a good number of techniques have
been designed to exploit the information available in social
networks and, in general, to address problems that contain an
implicit graph. The well-known algorithm PageRank [16] by
Google Inc. was developed to assign a measure of importance
to each web page. This algorithm works by counting the
number and quality of links to a page to determine a rough
estimate of how important a website is. The underlying
assumption is that more important websites are likely to
receive more links from other websites. In the same way,
the HITS (Hyperlink-Induced Topic Search) algorithm [17]
also known as “hubs and authorities” is a kind of analysis
technique that also rates web pages. It was designed by
Kleinberg from the Department of Computer Science at
Cornel and the idea behind hubs and authorities stemmed
from a particular insight into the creation of web pages when
the Internet was originally forming; that is, some web pages
are known as hubs and serve as hubs that compile large
directories of web pages. These directories are not actually
authoritative in some topic but a good hub represents a page
that points to many other pages and a good authority page
is expected to be linked to many hubs. The main restriction
of the HITS algorithm lies in its applicability since it only
operates in a small subgraph. This subgraph is considered to
be query dependent, whenever the search contains a different
query phrase, the seed changes as well as the HITS algorithm
ranks the seed nodes according to their authority and hub
weights. The SPEAR (Spamming-resistant Expertise Analysis
and Ranking) algorithm [18] is another tool for ranking
users in social networks by their expertise and influence
within a community. It is also a graph-based technique to
measure the expertise of users by analyzing their activities
and interaction. The main idea behind this technique lies on
the ability of users to find new and high-quality information
on the Internet. This algorithm is an extension of the afore-
mentioned HITS algorithm including two main elements:
(1) Mutual reinforcement of user expertise and document
quality and (2) Discoverers versus followers. The combination
of both elements has been demonstrated to reward quality
over quantity of user activities and that is why it has been
also applied to detect spam attacks [19]. Although graph
analysis techniques [20] have been widely used to study social
networks (e.g., trend detection, opinion mining, sentiment
analysis, information retrieval, etc.) and, in most of cases, the
PageRank algorithm can be seen as a precursor of this kind of

Scientific Programming

approach, there is still lack of techniques to deal with quality
over quantity. In this sense, the SPEAR algorithm offers us a
technique that can be applied to a rather wide area of domains
such as assessment of skills quality. In the context of graph-
based algorithms for expertise ranking, the ExpertRank
[10] algorithm proposes a novel technique to evaluate the
expertise of users based on both document-based relevance
and one’s authority in this or her knowledge community.
Authors modified the PageRank algorithm to evaluate one’s
authority so that it reduces the effect of certain biasing com-
munication behavior in online communities. As an important
cornerstone and relevant to this work, they explored three
different expert ranking strategies that combine document-
based relevance and authority: linear combination, cascade
ranking, and multiplication scaling. This evaluation has been
done using a popular online knowledge community showing
that the proposed algorithm achieves the best performance
when both document-based relevance and authority are
considered.

In this paper a reinterpretation and extension of the
SPEAR algorithm, called Skillrank, is presented. Further-
more, the evaluation of the presented approach is carried
out by comparing existing approaches for expertise ranking
such as the HITS and SPEAR algorithms to the proposed
technique when tests are executed on top of two datasets
extracted from the LinkedIn API. To do so, a panel of
experts has established a set of expected results and values
that are compared to the real results provided by each algo-
rithm with the aim of obtaining measures of precision and
recall.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the related literature. The proposed approach
for skill ranking is illustrated in Section 3. In Section 4, exper-
iment evaluations are conducted to compare our approach
with other methods. Section 5 presents main conclusions and
future research directions.

2. State of the Art

Expert and credibility finding is not a new issue in literature.
As a result of this, literature has vastly reported works on
the topic and even produced relevant surveys on the topic
for example [21, 22]. Methodologies of expert finding can be
divided into three categories [4, 7]: Content-Based Approach,
Network-Based Approach, and Hybrid Approach. On the
other hand, other works [10], propose a different taxonomy
of existing expert finding systems. These authors indicate
that these systems are based on four kinds of expertise
indicators: self-disclosed information, authored documents,
social network analysis and hybrid techniques [23]. An
analysis performed by these authors reveal that hybrid
techniques are not combining self-disclosure indicators with
social network analysis or document-based indicators. In
other words, authors underline that self-disclosure indicators
can be seen as isolated indicators that need deeper analysis.
In [9], authors make in-depth review of benchmarking
techniques and components that constitute a test collection
with special emphasis on error analysis. They also give an
overview of different test collections for expert profiling and

Scientific Programming

expert finding. In [24], author reviews more recent examina-
tions of the validity of a test collection approach and evalua-
tion measures as well as he outlines trends in current research
exploiting query logs and live labs to finally show that, despite
its age, this long-standing evaluation method is still a highly
valued tool for retrieval research. Furthermore, the Text
REtrieval Conference (TREC) or the Yandex Personalized
Web Search Challenge also falls in this area of methods for
assessment ad-hoc datasets through train and test processes
in different topics. For instance, in 2008, the main topic of
the TREC conference was focused on expert finding where
a dataset from the Tilburg University (http://ilk.uvt.nl/uvt-
expert-collection/documentation/documentation.html) was
used as input of a competition to find and rank experts.
Usually these evaluation methodologies are in charge of
asserting the results of an information retrieval process by
comparing expected results to actual results and taking into
account measures [25] of precision, recall, sensitivity, or
stability. On the other hand, relevance assessment methods
are usually created by a panel of experts and a good number
of collections can be found in different domains such as web
search, movie/tourism recommendation, medical diagnosis,
and so forth. Finally statistical significance tests are used to
estimate the average of system performance according to a set
of queries that can be generalized. In this sense, the Wilcoxon
test, Student’s ¢-test, and the Fisher pairwise comparison are
common techniques to assess a P value under certain degrees
of freedom. All these techniques have been reviewed in [9]
and they are relevant to this work due to the fact that a
validation of the expected results must be done to assess if
the Skillrank algorithm is properly working. To do so, the
validation section introduces the evaluation method that is
a combination of an ad hoc collection built by a panel expert
with measures of precision and recall.

Regarding online skills evaluation, in [26] a technique
is introduced to establish a credibility rank (also known as
Skillrank) to online profiles based on user’s confirmations
and six requirements for online skills evaluation. According
to these six requirements, a credibility model is defined and
populated from on-line profiles. Afterwards, a pilot is imple-
mented to show the functional architecture that supports the
online evaluation of skills. Nevertheless, the real evaluation
of skills and online profiles is still an open issue and, only
the architecture is presented. Authors also comment some of
the limitations of their approach: (1) skills are evaluated as
they are and a scale will be necessary to establish an order
of expertise and (2) spread of experience and skills are also
under evaluation. On the other hand, they also raise some
relevant questions in the evaluation of online profiles: What
kind of information can be incorporated to enrich the skill
evaluation model? and How half-time jobs, activities or tasks
can also be included in the evaluation model? This work is
very closely related to the approach presented in this paper.
However, they have been focused in the definition of a skill
model and a pilot architecture instead of comparing different
algorithms working on the same datasets. Other recent works
[27] can also be found applying gamification techniques to
build online personal skills and boost the learning process.
Thus, it is possible to ensure the acquisition of skills from

the early stages of learning by analyzing the online behavior
and interactions [28] between peers. Finally, other works
are also paying attention to the evaluation of online profiles
with different purposes such as digital inclusion. As an
example, authors in [29] theorize how people’s online social
networking skills may condition their uses of various digital
media for communication.

On the other hand, reputation management systems have
emerged to understand the influence of individuals or groups
in a certain group. Different metrics with a particular level
of effectiveness [30] are applied to assess the reputation in
a social network, mailing list or any other collaborative site.
For instance the Stackoverflow system, a question and answer
system [31], uses a simple formula to establish a level of
“karma” for each individual depending on their participation
in the system. The Research Gate site, a social network for
science and research, also establishes a score depending on
publications and contributions that you have added to the
site. In this case, reputation is passed from researcher to
researcher, allowing us to build and leverage our reputation
based on anything we choose to contribute. Interactions or
activities in this social network will determine our score by
looking in our activities (how our peers receive them) but also
at who these peers are. Higher scores will be reached as much
as higher scores peers interact with our activities; it can be
seen as an application of the Spreading Activation technique
[32] that has been widely used in information/document
retrieval and recommending systems [33].

The idea behind of all these reputation management
systems lies in a set of internal metrics (they are usually
private to avoid fraudulent profiles) that are collected in just
one value to create a rank of users by tracking their activity:
asking and responding questions, using online feedback of
other users (How much a response is better than another?),
and so forth. These systems are also relevant to professional
social network sites such as LinkedIn, ResearchGate, or Xing
in which users try to complete, at the most, their profiles
adding own education, professional experience, rewards,
publications, and so forth as well as feedback from their
connections to improve and enrich their profiles. In this
sense, talent hunters have got a new way of detecting
specialists in a topic by performing advanced search through
tools in these websites. Nevertheless the access to this valuable
information is commonly restricted and only quantitative
information can be found. In this context some works have
emerged for topic extraction systems and online reputation
management [34] which they use a set of evaluation metrics
based on handmade metadata annotation to assess the quality
of different factors. Thus, trust and provenance analysis is
becoming a major challenge to avoid vandalism, fraud, and so
forth in public profiles, more specifically in user and company
profiles. Existing works for example [35] are then focused
on applying techniques to characterize profiles in reputation
management systems to demonstrate through algorithms
such as Eigen Trust, TNA-SL, or distributed approaches [8]
are secure enough to effectively manage trust in communities.

In the field of information retrieval, expertise retrieval
[36], and expert finding [37] systems have been widely
studied to provide a new approach to tackle the discovery

of experts in some area [15]. Currently, practices as such
competitions [38] or challenges are common techniques to
retrieve experts based on their performance in a certain topic.
The main objective of expertise retrieval [36] lies in the appli-
cation of existing information retrieval techniques as building
blocks to design advanced algorithms that can serve to create
content-based links between topics and people. Nevertheless,
authors have also outlined both applications to other domains
such as entity retrieval as well as some conjectures on what the
future may hold for expertise retrieval research. For instance,
last times new novel approaches [39] are emerging to include
time and evolution of skills over time as variables in expertise
retrieval processes.

As a closely related field to expertise retrieval, community
detection [40] in social networks is a widely active research
area to segment large communities by a certain criteria. In
the specific case of expertise in some topic, these algorithms
can be applied to narrow down the search of experts. These
techniques can be roughly divided into two groups: (1) global
and (2) local approaches. The first ones assume knowledge of
the entire network while local ones only assume knowledge of
subcommunities featured by some attributes such as location.
Global detection algorithms were firstly proposed by Girvan
and Newman by iteratively removing edges until the social
graph is partitioned (each partition can be consider as a com-
munity). The key point of these techniques lies in the selection
of the edge to be removed and, in general, some metrics such
as betweeness centrality are calculated for each edge. Thus,
a large social network is divided into high-dense connected
communities that share some features and, therefore, can be
considered sub-communities. The main drawback of global
approaches lies in the necessity of knowing the full graph
(it is usually expensive in terms of time and size). In order
to decrease the complexity of handling a large graph, local
approaches aim for detecting communities in a more scalable
and applicable way starting with a set of seed nodes to
detect implicit communities. For instance, Clauset’s algo-
rithm uses intracommunity and intercommunity measures to
iteratively establish or remove the connection between two
nodes. Thus from a starting node communities dynamically
emerge. Although these approaches are completely correct
to detect underlying communities the use or inferring of
dynamic attributes of nodes (users in most of cases) is still
an open issue that has been studied in some works such as
[41] and it allows a better and more accurate community
partition. As a possible application of these aforementioned
techniques, the detection of violent communities, hostility,
or rivalry is currently under study [42] since the internet
is understood to be a social space conducive to increased
hostility, greater disinhibition, and increased social freedom.
Moreover, these authors see a link between virtual hostility
and actual violence. In social networks research, [43] predicts
user personality by mining social interactions including
Aggression-Hostility traits and [44] modeled online social
interactions incorporating the effects of hostile interactions.

Finally the relevance of expertise ranking in social net-
works and Internet has been presented in some works to
understand and exploit enterprise know-how [45], find com-
petence gaps and learning needs inside corporations [46],

Scientific Programming

improve Scrum processes [47], improve human to human
interactions [48], or tackling information asymmetries in
electronic marketplaces [49] to name a few.

In conclusion, a list of methods and techniques for bench-
marking has been introduced with the aim of comparing
existing approaches to assess personal skills quality. Fur-
thermore, existing works related to reputation management
systems and, more specifically, trust and provenance analysis
can be also applied to the Skillrank technique since methods
to evaluate public profiles are an emerging topic due to the
current use of the web. That is why the Skillrank technique
seeks for providing an innovative method to assess user
profiles from a qualitative point of view through an agnostic
technique that can help both talent hunters and managers to
exactly know where a capability or skill can be found in their
connections or employees with a certain degree of trust and
provenance.

3. Skillrank: Reinterpreting the SPEAR
Algorithm to Assess Skills Quality in
Professional Social Networks

3.1. Summary of the HITS and SPEAR Algorithms. As the
previous section has introduced, the HITS algorithm [50]
identifies good authorities and hubs for a certain topic
by assigning two numbers to a page: an authority and a
hub weight where weights are recursively defined. A higher
authority weight occurs if the page is pointed to by pages
with high hub weights. A higher hub weight occurs if the
page points to many pages with high authority weights. More
specifically in the context of web search, the HITS algorithm
first collects a base document set for each query. After that it
recursively calculates the hub and authority values for each
document. In order to gather the base document set I, first,
a root set R matching the query is fetched from the search
engine. Once this root set is configured for each document
r € R, a set of documents that point to » another set of
documents L' that are pointed to by r are added to the set
I as R’s neighborhood. Then, for each document i € I, let
a; and h; be the authority and hub values, respectively, that
are initialized to 1. While the values have not converged, the
algorithm iteratively proceeds as follows.

(1) For alli’ € I which points to i,

a; = Z,hi/ . (1)

(2) For alli’ € I which is pointed to i,

hi = Z/ai/ . (2)

(3) Normalize a; and h; values so that), a; =), h; = 1.

A good hub increases the authority weight of the pages
it points to. A good authority increases the hub weight of
the pages that point to it. The idea is then to apply the two
operations above alternatively until equilibrium values for

Scientific Programming

the hub and authority weights are reached. The author also
demonstrated that the algorithm will likely converge but the
bound on the number of iterations is unknown (in practice
the algorithm converges quickly). New improved versions
of this algorithm have emerged such as BHITS by giving a
document a default authority weight of 1/k if the document is
in a group of k documents on a first host which link to a single
document on a second host, and a default hub weight of 1/1if
there are [links from the document on a first host to a set of
documents on a second host. Nevertheless and according to
its authors, this new version of the algorithm generated bad
results when a root link has few in-links but a large number
of out-links that are not relevant to the query.

On the other hand, the SPEAR algorithm [18, 19] makes
use of the HIT'S definition to introduce the concept of expert,
someone with a high level of knowledge, technique, or skills
in a particular domain. This implies that experts are reliable
sources of relevant resources and information but with two
main assumptions.

(1) Mutual reinforcement of user expertise and docu-
ment quality. The expertise of a user in a particular
domain will depend on the quality of the documents
he/she has found. In the same way, quality of docu-
ments will depend on the expertise of the user who
has found them. This is an issue that has been studied
in Psychology and it states that expertise involves the
ability of selecting best and relevant information in a
certain context. The SPEAR algorithm is based on this
assumption and an expert should be someone who
selects by quality instead of quantity.

(2) Discoverers versus followers. The second assumption
of the SPEAR algorithm lies in the definition of a
discoverer (expert user that finds high-quality and
relevant information) versus a follower (an user that
annotates a document after a discoverer does).

Under the aforementioned assumptions the SPEAR algo-
rithm produces a ranking of users with regard to a set of one
or more tags. It assumes that a topic of interest is represented
by a tag t. The algorithm works as follows [18, 19].

(i) Firstly the set of tags R, is extracted from an underly-
ing folksonomy in a certain social network. Each tag
is represented by the tuple r = (u,t,d, c) where u is
the user, ¢ is the time when the tag t was assigned to
the document d, and ¢; < ¢, if ¢ refers to an earlier
time than c,.

(ii) Then, the next vectors are defined:

(a) a vector E = (e},e,,...,e,) containing the
expertise scores of users where M = |U,| is the
number of unique users in R,,

(b) a vector Q = (4,4, ...,qy) containing the
quality scores of documents where N = |D,]| is
the number of unique documents in R,.

(iii) According to the first assumption, mutual reinforce-
ment refers to the idea that the expertise score of a

user depends on the quality scores of the documents
to which he tags with ¢, and the quality score of a
document depends on the expertise score of the users
who assign tag ¢ to it. Authors define an adjacency
matrix A of size M x N where A; ; = 1 if user i has
annotated with the tag ¢ the document j,and A; ; = 1
otherwise. Based on this matrix, the calculation of
expertise and quality scores is an iterative process
similar to that of the HITS algorithm: E = Q x AT
and Q = E x A.

(iv) On the other hand, the second assumption is imple-
mented by changing the definition of the aforemen-
tioned adjacency matrix. Instead of assigning either 0
or 1 (like the HITS algorithm) the following equation
is used to populate the initial values of the matrix A.

(@ A;; = l{u | (wt,djc),(u;t,djg) € R Ag <
cH + 1.

(b) Thus, the cell A, ; is equal to 1 plus the number
of users who have assigned tag to document d;
after user u;. Hence, if u; is the first to assign t
to d;, A;; will be equal to the total number of
users who have assigned ¢ to d ;. If u; is the most
recent user to assign t to d;, A; ; will be equal to
1. The effect of such initialization is that matrix
A represents a sorted timeline of any users who
tagged a given document d;.

(v) The last step is to assign a proper credit score to
users by applying a credit scoring function C to each
element A; .. According to the authors three different
functions could be applied to the matrix A.

(a) Alinear credit score C(x) = x. This function was
initially discarded by the authors because dis-
coverers of a popular document would receive
a comparatively higher expertise score although
they might have not contributed in any other
document thereafter.

(b) An increasing function but with a decreas-
ing first derivative to retain the ordering of
the scores in A. Authors demonstrated that
this kind of function enables the possibility of
keeping discoverers score higher than follow-
ers but differences between higher scores will
be reduced to avoid the undesirable effect of
assigning high expertise scores to users who
were the first in tagging a few set of popular
documents but without further contribution in
high-quality documents thereafter. Finally, the
authors selected the function C(x) = +/x as
credit score for their experiments.

3.2. Skillrank in Online Communities. A simplistic definition
of an online community or social network is a set of C =
{U, F, DF, R}, where U is the set of users that interact with
each other, F is a set of static features or attributes, DF
is a set of dynamic or inferred attributes that define the

community, and R is the set of all resources generated by
users. More specifically, a user u; € U is also described by
a set of attributes u; = {S, D}, where S is the set of static
attributes that describe the user profile and they are usually
defined by the own user. On the other hand, D represents a
dynamic set of attributes that can be inferred or predicted by
tracking the user’s activity and interaction in the context of
social network C. Furthermore, any social network can be
divided into different subcommunities (subgraphs) C; that
are also communities, and by extension, a social network can
be also be defined as the union of several subcommunities
C = UIf{Ck}. Formally, let K be an index set, and for each
k € K then the family of sets {C;, : k € K} is the union set
that represents an online-community:

k
C = J{{u,, F,, DF |, R}, {U,, F,, DF,, R, }, .., o
1

{Uk> Fio DFj Ry}

Commonly, the set of users U) are not disjoint sets,
so a user u; can be a member of several subcommunities.
Nevertheless, the set of features F;, dynamic features DF,
and resources R, could be shared among subcommunities but
they could be also disjoint sets depending of the characteris-
tics of the social network.

Following these definitions, we can describe a social
network such as LinkedIn containing a subcommunity
“MyLinkedIn” that can be also partitioned in several subcom-
munities such as “MyUniversity” or “MyWork”. According to
the theoretical model,

(i) CLinkedin {ULinkediw FLinkedin’ DFLinkedin’ RLinkedin}

where
(ii) ULipkedin is the set of all registered users.

(iii) Flipkeain = 1id = 1, type = “professional social net-
work”, name = “Linkedin’, descriptors = {d,,d,, ...,
di} ...} is a set of key-value pairs.

(iv) DFpjpkeqin = {trends = {t|,t,,...,t;}, posts = {(p;,
u)s ... (P> uy)}, time} is also a set of dynamic key-
value pairs in a certain moment tirme.

(v) On the other hand we can also define this social
network by the union of several disjoint sub-
communities. Thus Cyjeqin = {CMyLinkedin U G}
where CMyLinkedin = {CMyUniversity U CMyWork}'

(vi) Finally, users will be members of some commu-
nity so u,,, represents a LinkedIn user that creates
the subcommunity “MyLinkedIn”. This user and its
subcommunity generate resources such as “posts,
“connections,” “endorsements,” and so forth as an
example rtljk = {user = u,,,type = “endorsement’,
time = timestamp, tag = “skill”} describes the resource
in the community “MyLinkedIn” that was created
by the user u; using a “endorsement” in a certain
moment time on the user u,,,,.

Although communities, users, and resources can be
described through different static attributes there is still a

Scientific Programming

set of dynamic or behavioral features that must be inferred
to make a better description of foreknown communities and
to be able to create new intercommunity relationships. Since
communities, user endorsements, and so forth are evolving
characteristics, it is necessary to analyze emerging or implicit
user’s behaviors [41, 51]. In this sense, the aforementioned
community detection algorithms follow a similar approach
but studying the structure of the social graph instead of
analyzing contents.

Here, we propose the adaptation of the SPEAR algorithm
to support the quality assessment of endorsements generated
by a subcommunity; more specifically the following contexts
can be identified.

(1) Community Cypyrikeqin (Local context). Figure 1
shows that a user u; endorses another user u,,, with
the skill “java” in the time t,. After that another user
u, belonging to the same sub-community generated
by user u,,, also uses the same endorsement but at
time ¢, where t; < t,. The assumption behind this
behavior is that after seeing the new endorsement
(made by u,) u, also realizes that this endorsement is
correct and adds again the same endorsement to the
user u,,,. This situation implies that the first post (see
discoverer in the SPEAR algorithm) has activated new
annotations (see follower in the SPEAR algorithm)
reinforcing both: (1) the skill “java” in user u,,, and
(2) the initial annotation of the user u,. Similarly, if
a user u, notices that a user 1, has endorsed another
user u,,, at time ¢, this can lead to an endorsement
of user u, for the same skill by user u, at time ¢,
where ¢, < t, (Figure 2). Finally Figure 3 depicts the
situation in which a user is activated by some activity
but instead of applying the same tag she uses another
tag to annotate knowledge of user u; (the one that
started the interaction).

(ii) Community Cpjpeqin (Global context). Figure 4
shows that an user u; endorses another user u,,,
with the skill “java” in the time t,. After that another
user u,, outside of the subcommunity (represented
by a dashed circle) also uses the same endorsement
but in time t,, where f; < f,, to endorse user u;.
The idea behind this behavior is that after seeing
the new endorsement (made by u,) u, also realizes
that this endorsement can be applied to u;. This
situation implies that the first post (see discoverer in
the SPEAR algorithm) has activated new annotations
(see follower in the SPEAR algorithm) reinforcing the
skill of the user u;.

On the other hand, Figures 3 and 5 depict a situation
in which an user u, assigns a skill to user u,,, in time t,
but although other user u, is activated and assigns another
skill, different from the one assigned by u,, there is not
actually a correlation between them and both assignments
can be interpreted as independent endorsements. The Skill-
rank technique covers the aforementioned scenarios to take
advantage of the data delivered by tracking user activities.

Scientific Programming

(“java’, t;)

FIGURE 1: Correlated-endorsements to the same user u,, in a
subcommunity.

Uy

F1GURE 2: Correlated-endorsements to different users in a subcom-
munity.

Taking into account the inputs required by the SPEAR
algorithm, the following vectors are redefined and the pseu-
docode of the algorithm is also presented in Listing 1.

(i) The set of skills S, is extracted from the activities
generated by a subcommunity C;, in a certain social
network. Each endorsement is also represented by the
tuple r = (u,, s, u;, c) where u, is the source user that
endorses with the skill s, to a target user u, at time c.

(ii) Then, the next vectors are also redefined:

(a) a vector E = (e}, e,,...,€,) containing the
expertise scores of users where M = |U,| is the
number of unique users in Cy,

(b) a vector Q = (91>955 - - -»qn) containing the
quality scores of skills where N = |S,| is the
number of unique skills in C,.

According to these definitions the unique difference
between the original version of the SPEAR algorithm and this
new version seems to be the naming of elements (“document”
by “skill”). Nevertheless, the Skillrank facilitates a two-step
process to run the SPEAR algorithm in C before C, with
the aim of populating both vectors E and Q with real values.
Hence, a new interpretation of the adjacency matrix can be
done. Instead of considering the adjacency matrix for the
whole social network or folksonomy, each user will generate
an adjacency matrix in which rows represent connections and
columns skills respectively (see Table 1). The interpretation of
this table is as follows: 0 represents that the user u; have not
yet endorsed using the skill s, while another value such 2 in
cell (u,s,) and 1 in cell (u,, s;) represents that user 1, used
the skill s, before user u,.

On the other hand, an analysis of the temporal and
spatial complexity of the algorithm can be carried out to

(“python’, t,)

(“java’, t;)

FIGURE 3: Independent endorsements to the same user u,, in a
subcommunity.

(“java’, t})

FIGURE 4: Correlated-endorsements to different users in a commu-

nity.

(“java’, t;)

FIGURE 5: Independent endorsements to the same user u,, in a
community.

show the computational complexity of the technique depicted
in Error! Reference source not found. Firstly and regarding
the spatial complexity, the algorithm makes use of a set
of skills S, which contains all skill endorsements registered
for a community C;, the aforementioned vectors E and
Q and a matrix A of dimensions: M = |U,|, number
of users in a community C, and N = [S;], number of
unique skills in a community C;. Secondly and regarding
the temporal complexity, the standard SPEAR algorithm
performs k iterations containing a main operation (matrix
multiplication) two times, an operation to transpose a matrix
and two vector normalizations. Assuming that the adjacency
matrix, A, has dimension M x N, the computation complexity
of the algorithm can be expressed through the next expression
using the Big-O notation: O(k[2 % (M % N % N) + (M = N) +
M + NJ) = O(k[M * N?]) = O(M = N?).

4. The Case Study

To illustrate the performance in terms of precision and
recall of the presented algorithms, HITS and SPEAR, with
regards to the adaptation designed in Skillrank a case study

8 Scientific Programming

Input: Number of users M

Input: Number of skills N

Input: A set of skills S, € C, = {(u, s, u;, €)}

Input: Credit scoring function C (the same as in the standard SPEAR)
Input: Number of iterations k

Output: A list L of users.

(1) Set E to be the vector (1,1,...,1) € QM

(2) Set Q to be the vector (1,1,...,1) € QV

(3) A < Generate Adjacency Matrix (S,, C)

(4) fori=1to k do
(5) E—QxA
(6) Q—ExA
(7) Normalize E
(8) Normalize Q
(9) end for

(11) return L

(10) L « Sort users by their expertise scores in E and quality skills scores in Q

L1sTING 1: Skillrank pseudocode. Reinterpreting the SPEAR algorithm [18, 19].

TaBLE 1: Example of generated adjacency matrix for a user u.

Sy S SN
u, 0 2 0 2
U, 2 1 3 1
3 5 0 4
Uy 4 2 1 0

using different datasets is provided. Here, the evaluation of
performance is not a mere question since there is a lack of
real datasets containing the required information of users,
connections, skills and time. To mitigate this problem, a
synthetic dataset, as the basis of the experiment, has been
designed after collecting real data from the LinkedIn API
(currently, this API provides access to valuable but incom-
plete information that must be fixed by the own users). Thus,
simulated communities, users, skills, and endorsements are
generated to study the behavior of the different approaches.
To carry out both experiments the following steps have been
carried out.

(1) Select and prepare dataset. For every dataset to be
evaluated a set of tuples in the form r = (u,, s, u;, ¢)
must be provided.

(2) Create a dataset for unit testing purposes. To do so
a panel of experts has established a category, using an
official competence scale [52], for every user and skill.

(3) Definition of precision and recall. In order to calculate
both measures, next definitions are also required
(given an user):

(i) true positives (tp): “number of skills that were
expected to reach a certain level of quality”

(ii) false positives (fp): “number of skills that have
reached a different level of quality”

(iii) true negative (tn): “number of skills that were
not expected to reach a certain level of quality”

(iv) false negative (fn) “number of skills that have
not reached a different level of quality”

Once we have the aforementioned definitions, pre-
cision and recall can be defined and calculated as
follows.

(i) Precision is defined as “the number of user skills
that have reached the proper level of quality
established by the panel of experts”:

tp
tp+fp

Precision = P =

(4)

(ii) Recall is defined as “the number of user skills
that have not reached the proper level of quality
established by the panel of experts”:

tp
Recall =R = .
ecd tp + fn ®)
(iii) F, score is then defined as
F=2s Precision * Recall ©6)

Precision + Recall

(4) Inclusion of the frequency as a basic technique for
each user and skill. Given a user u;, and a skill s the
quality of the skill is calculated as follows:

s _ number of tuples (14, S Ug> €))
“ number of connections of u;

(5) Run the experiment for every dataset and technique.

Scientific Programming

(6) Configure all techniques with default parameters
(credit score function, etc.) as previous section has
presented.

(7) Extract measures of precision, recall, and F, by
comparing expected results to real results.

4.1. Design of the Experiment. The first step to run the
experiments lies in the proper creation of a synthetic dataset
inspired by real data extracted from the LinkedIn API. To
do so a community Cyyec must be modeled including the
required input parameters for the target algorithms. Thus,
a set of users, Uy e containing 10 different profiles has
been designed including an average between 30 and 50
connections per user (these values have been inferred from
the real data). On the other hand, a set of skills S,, see
Table 2, must be also designed according to next features:
(1) technical, professional, and management skills must be
available for each user and (2) all skills must be, at least, in
one profile but no all profiles contain all skills. Finally, a set
of endorsements in the form r = (ug, s, u,, ¢) are generated
from each user being u, the user/connection that assigns the
skill s to the user u, in a certain time c.

Once the input dataset is designed, it is necessary to create
a dataset containing the expected results with the aim of
performing automatic unit testing. To do so, a panel experts
that has already participated easing the access to their profiles
in LinkedIn, has also established for their real connections
a level of expertise for each skill in S,. Thus, this dataset
contains a set of tuples in the form r, = (14, s;, l;), where
. is an user with a level of competence [, on the skill s,.
The different levels of competence have been taken from [52]
in which authors present “The Individual Competency Index
(ICI),” see Table 3.

After the creation of the input and test datasets, the
algorithms and unit tests can be executed to finally extract
the measures of precision, recall, and F, and compare the
different techniques. Last step involves the creation of a
function to convert numerical values into a level of expertise.
To do so, a percentile rank for every level of expertise is
defined. The aforementioned steps have been also followed to
perform the same experiment on the LinkedIn dataset. As a
final remark it is relevant to discuss some research limitations
that have emerged during the creation of both datasets.

(i) The use of the LinkedIn API is restricted and it is
not possible to access all information that is available
through the public website. Thus, some relevant
information with regards to the skills is missing such
as who has endorsed someone. To overcome this issue
our panel of experts and collaborators were asked to
complete this information.

(ii) Another issue in the use of the LinkedIn API lies in
the lack of time for each endorsement. This is a critical
point since algorithms are based in this assumption.
To overcome this issue we have follow two strategies:
(1) ask the panel of experts and collaborators to
estimate a date in which the endorsements were

9
TABLE 2: Set of selected skills S,.
Id Skill
1 Java
s, Python
S5 Data mining
S, UML
S5 MySQL
S CMMI
s; Sales management
Sg Negotiation
So Technical management
S0 Business management

created and (2) estimate the time of the endorsement
by using the join data in the social network.

(iii) The LinkedIn API also provides a level of proficiency
for each skill. Nevertheless these features cannot be
used since it is not available in all skills and it is based
on a particular taxonomy.

(iv) Finally, in order to access all required information,
an URL to query the official LinkedIn REST API
(https://developer.linkedin.com/apis) was designed
as shown in Listing 2. Nevertheless and due to privacy
setting of the API, every participant in the experi-
ments was asked to execute this request through the
APIgee service (https://apigee.com/console/linkedin)
using their own OAuth credentials and to send us
the request’s output as XML. Through this request the
user will be asked to grant access to their full pro-
file. Then, all public personal information, a profile
containing: first name, last name, headline, industry,
location, number of connections, summary, special-
ties, positions, associations, honors, interests, publi-
cations, patents, languages, skills (id, proficiency, and
years), certifications, education, courses, volunteer,
three-current-positions, number of recommenders,
and connections (and their full profile) will be gath-
ered using the LinkedIn REST API.

4.2. Results and Discussion. After the execution of the dif-
ferent techniques, the averaged measures (for all skills) and
for every user in dataset Cyyec are presented in Table 4.
Obviously, the first technique based on the number of times
a user has been endorsed is not actually relevant in terms
of quality as results show. On the other hand, the HITS
algorithm provides better results in terms of precision but
the drawbacks of this algorithm (not considering time as a
relevant variable—see Section 3.1) implies a low-precision
in some users with a behavior close to the frequency-based
technique. As an improvement or more accurate version of
the HITS algorithm, the SPEAR technique seems to get better
results that are closer to the experts opinion. Here, it is clear
that the assumption of time as a key-variable to assess quality
is a determinant to detect the level of expertise. Finally, the
Skillrank technique that previously configures the level of

10 Scientific Programming
TaBLE 3: The Individual Competency Index (ICI).
Id Conceptual knowledge Description
Iy None Level 0 denotes a lack of competence in a specific area or topic.
I Basic Level 1 denotes an understanding of fundamentals and some initial practical
application.
I Intermediate Level 2 denotes a solid conceptual understanding and some practical application.
I Ad d Level 3 denotes significant conceptual knowledge and practical experience in
3 vance performing a competency to a consistently high standard.
I E Level 4 denotes extensive knowledge, refined skill, and prolonged experience in
4 xpert performing a defined competency at the highest standard.
TaBLE 4: Aggregated measures S, in dataset Cyyppeiic-
F'k HITS SPEAR Skillrank
User U
P R F, 2 R F, P R F, 2 R F,
u, 0.43 0.80 0.56 0.67 0.79 0.73 0.73 0.87 0.79 0.80 0.81 0.80
u, 0.25 0.89 0.39 0.65 0.78 0.71 0.90 0.71 0.79 0.65 0.72 0.68
Uy 0.44 0.83 0.58 0.63 0.82 0.71 0.82 0.80 0.81 0.85 0.86 0.85
Uy, 0.52 0.74 0.61 0.63 0.86 0.73 0.83 0.86 0.84 0.86 0.77 0.81
Us 0.48 0.84 0.61 0.56 0.79 0.66 0.67 0.84 0.75 0.77 0.77 0.77
Ug 0.43 0.79 0.56 0.53 0.78 0.63 0.89 0.72 0.80 0.84 0.89 0.86
u, 0.35 0.71 0.47 0.53 0.89 0.66 0.82 0.82 0.82 0.86 0.85 0.85
Ug 0.46 0.84 0.59 0.74 0.88 0.80 0.80 0.86 0.83 0.80 0.84 0.82
Uy 0.45 0.73 0.56 0.74 0.87 0.80 0.82 0.84 0.83 0.66 0.90 0.76
Uy, 0.29 0.77 0.42 0.68 0.89 0.77 0.69 0.90 0.78 0.78 0.78 0.78
Average 0.41 0.79 0.54 0.64 0.84 0.72 0.80 0.82 0.80 0.79 0.82 0.80

expertise of every user before making endorsement seems to
have a similar behavior to the SPEAR algorithm. Although in
some cases there is a relevant gain, the truth is that values
in both techniques are very similar and to actually assert
that Skillrank is better than the simple version of the SPEAR
technique more data should be used.

Following this discussion, Table 5 shows the results of the
different techniques using real data. In general, a decrease of
precision can be found in this table with regards to previous
results. This can be explained due to the fact that this dataset is
not customized and real behavior of users and skills is found
implying, in general, worse results.

As final remark, a change in the parameters such as
the set of users and skills could lead us to get better
results. Nevertheless, this initial effort will be used as a
baseline to compare further improvements. Regarding sim-
ilar approaches that have been implemented, as the related
work section has outlined, the presented approach is closely
related to [26] since the same problem is being addressed. The
main difference is that they have also outlined a functional
architecture while we focus here in addressing some of the
existing open issues: alignment of the skills quality to an
existing competency index. On the other hand, we have tried
to reuse the most existing techniques. That is why we have
made use of the well-known techniques such as the HITS
and SPEAR algorithms that have been demonstrated to detect
experts under certain characteristics of a graph. The Skillrank
technique gets inspiration of these techniques to adapt the
underlying concepts and execution steps to the problem of
quality assessment of skills available in online profiles.

5. Conclusions and Future Work

The present paper has introduced different techniques to
assess quality in graph-based structures. The well-known
algorithms HITS and SPEAR have been also presented
as inspiration for the Skillrank technique. This approach
reinterprets the notions and underlying concepts of the
SPEAR algorithm to apply them to the context of skills
quality assessment in professional social networks. On the
other hand two main experiments have been conducted
using synthetic and real data to evaluate the behavior of the
aforementioned techniques in terms of precision and recall.
Both approaches—the SPEAR and Skillrank algorithms—
have shown similar results in the test datasets implying that
these techniques can be meaningfully applied to assess quality
of skills. From another perspective the quality assessment
of user profiles and more specifically user skills is an active
research area that ranges from applying expertise retrieval
techniques to expertise profiling, topic extraction, and so
forth. In this sense there are still some open issues that
must be tackled in order to provide automatic methods
for user profiling, talent hunter or expert finding processes.
Currently, a lot of professional social networks are emerging
but the problem of creating groups of users by a certain
topic is becoming a major challenge since it is necessary
to improve trust and provenance of information or user’s
activities. The relevance of this work is that it can serve to
manage enterprise know-how and to detect experts inside
organizations. Their competitiveness can be increased by
better human resources management processes that could

Scientific Programming 11
https://api.LinkedIn.com/vl/people/~/connections:(id,first-name,last-name,formatted-name,email-address,headline,industry,
location,num-connections,summary,specialties,positions,site-standard-profile-request,public-profile-url,api-standard-profile-
request,proposal-comments,associations,honors,interests,publications,patents,languages,skills:(id,skill, proficiency,years),
certifications,educations,courses,volunteer,three-current-positions,num-recommenders,following,job-bookmarks,date-of-
birth,member-url-resources,connections)

L1sTING 2: URL to extract user data from the LinkedIn APL
TABLE 5: Aggregated measures S, in dataset Cp; .qin-
F* HITS SPEAR Skillrank
User 3
j2 R F, j2 R F, P R F, j2 R F,

u, 0.39 0.68 0.50 0.53 0.68 0.60 0.66 0.71 0.68 0.79 0.79 0.79

U, 0.22 0.80 0.35 0.59 0.69 0.64 0.56 0.83 0.67 0.77 0.75 0.76

Uy 0.40 0.60 0.48 0.40 0.70 0.51 0.58 0.87 0.70 0.78 0.89 0.83

Uy, 0.23 0.80 0.36 0.55 0.60 0.57 0.75 0.70 0.72 0.67 0.71 0.69

Us 0.40 0.60 0.48 0.43 0.76 0.55 0.74 0.82 0.78 0.84 0.89 0.86

U 0.33 0.69 0.45 0.63 0.68 0.65 0.53 0.77 0.63 0.67 0.89 0.76

U, 0.50 0.78 0.61 0.67 0.62 0.64 0.64 0.79 0.71 0.71 0.76 0.73

Ug 0.27 0.60 0.37 0.60 0.73 0.66 0.52 0.88 0.65 0.75 0.87 0.81

Uy 0.30 0.67 0.41 0.66 0.69 0.67 0.81 0.80 0.80 0.81 0.84 0.82

Uy, 0.45 0.80 0.58 0.63 0.76 0.69 0.72 0.89 0.80 0.73 0.81 0.77

Average 0.35 0.70 0.46 0.57 0.69 0.62 0.65 0.81 0.71 0.75 0.82 0.78

take advantage of exploiting existing data generated by = References

tracking user’s activities. From a technical point of view)) o) -

Skillrank is a first substantial effort (including a good number [1] E Bonchi, C. Castillo, A. Gionis, and A.] aimes, Social network

of “artisan” tasks) and new capabilities such as including new analysis and mining for business applications,” ACM Transac-

data sources to assess skills quality. use of more advanced tions on Intelligent Systems and Technology, vol. 2, no. 3, article
quaity, 22, 2011,

ordered weighted averaging (OWA) operators and adaptation ’

of other datasets for experimenting purposes shouldbeadded ~ [2] M. Neshati, D. Hiemstra, E. Asgari, and H. Beigy, “Integration

in the future as well as new variables in the core of the of scientific and social networks,” World Wide Web, vol. 17, no.

algorithm. Finally, we also plan to release the information > pp- 1051-1079, 2014.

of our experiments using some existing standard such as [3] K. Musial and P. Kazienko, “Social networks on the Internet,”

nanopublications to ease the reuse and comparison with new World Wide Web, vol. 16, no. 1, pp. 31-72, 2013.

techniques. [4] X. Tang and C. C. Yang, “Ranking user influence in healthcare

social media,” ACM Transactions on Intelligent Systems and

Conflict of Interests Technology, vol. 3, no. 4, article 73, pp. 1-21, 2012.

[5] T. Schleyer, B. S. Butler, M. Song, and H. Spallek, “Concep-

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This wok has been partially supported by the European Com-
mission (programme LifeLong Learning—action Leonardo
da Vinci—Transfer of Innovation) through project “ECQA
Certified Social Media Networker Skills” (2011-1-ES1_LEO05-
35930), by the Spanish Ministry of Economy and Com-
petitiveness through INNPACTO project Post-Via 2.0 (IPT-
2011-0973-410000), by the German Federal Ministry of
Education and Research trough project “OpSIT—Optimaler
Einsatz von Smart-Items-Technologien in der Stationiren
Pflege” (16SV6048), and by the German Federal Ministry
of Economics and Technology through project “PrevenTAB”
(KF3144902DB3).

tualizing and advancing research networking systems,” ACM
Transactions on Computer-Human Interaction, vol. 19, no. 1,
article 2, 2012.

R. Colomo-Palacios, E. Tovar-Caro, A. Garcia-Crespo, and J. M.
Gomez-Berbis, “Identifying technical competences of IT pro-
fessionals: the case of software engineers,” International Journal
of Human Capital and Information Technology Professionals, vol.
1, no. 1, pp. 31-43, 2010.

Y. Xu, X. Guo, J. Hao, J. Ma, R. Y. K. Lau, and W. Xu,
“Combining social network and semantic concept analysis for
personalized academic researcher recommendation,” Decision
Support Systems, vol. 54, no. 1, pp. 564-573, 2012.

D. W. McDonald and M. S. Ackerman, “Expertise recom-
mender: a flexible recommendation system and architecture,”
in Proceedings of the ACM Conference on Computer Supported
Cooperative Work, pp. 231-240, New York, NY, USA, December
2000.

12

(9]

(10]

(12]

(13]

(14]

(15]

(19]

(20]

[21]

(22]

(23]

(24]

(25]

R. Berendsen, M. de Rijke, K. Balog, T. Bogers, and A. van den
Bosch, “On the assessment of expertise profiles;” Journal of the
American Society for Information Science and Technology, vol.
64, no. 10, pp. 2024-2044, 2013.

G. A. Wang, J. Jiao, A. S. Abrahams, W. Fan, and Z. Zhang, “Ex-
pertRank: a topic-aware expert finding algorithm for online
knowledge communities;” Decision Support Systems, vol. 54, no.
3, pp. 1442-1451, 2013.

R. Colomo-Palacios, 1. Gonzalez-Carrasco, J. L. Lopez-
Cuadrado, A. Trigo, and J. E. Varajao, “I-Competere: using
applied intelligence in search of competency gaps in software
project managers,” Information Systems Frontiers, vol. 16, no. 4,
pp. 607-625, 2014.

A. Capiluppi, A. Serebrenik, and L. Singer, “Assessing technical
candidates on the social web,” IEEE Software, vol. 30, no. 1, pp.
45-51, 2013.

M. Taylor and D. Richards, “Finding and validating expertise,”
in Proceedings of the 19th European Conference on Information
Systems (ECIS ’11), Helsinki, Finland, 2011.

E. Ben Ahmed, A. Nabli, and E Gargouri, “Group extraction
from professional social network using a new semi-supervised
hierarchical clustering,” Knowledge and Information Systems,
vol. 40, no. 1, pp. 29-47, 2014.

V. Boeva, M. Krusheva, and E. Tsiporkova, “Measuring exper-
tise similarity in expert networks,” in Proceedings of the 6th IEEE
International Conference Intelligent Systems (IS ’12), pp. 53-57,
Sofia, Bulgaria, September 2012.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
citation ranking: bringing order to the web,” Stanford Digital
Library Technologies Project, 1998.

J. M. Kleinberg, “Hubs, authorities, and communities,” ACM
Computing Surveys, vol. 31, no. 4, article 5es, 1999.

C. A.Yeung, M. G. Noll, N. Gibbins, C. Meinel, and N. Shadbolt,
“Spear: spamming-resistant expertise analysis and ranking in
collaborative tagging systems,” Computational Intelligence, vol.
27, no. 3, pp. 458-488, 2011.

M. G. Noll, C.-M. Au Yeung, N. Gibbins, C. Meinel, and N.
Shadbolt, “Telling experts from spammers: expertise ranking in
folksonomies,” in Proceedings of the 32nd Annual International
ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR09), pp. 612-619, July 2009.

B. Hoppe and C. Reinelt, “Social network analysis and the
evaluation of leadership networks,” The Leadership Quarterly,
vol. 21, no. 4, pp. 600-619, 2010.

T. Lappas, K. Liu, and E. Terzi, “A survey of algorithms
and systems for expert location in social networks,” in Social
Network Data Analytics, C. C. Aggarwal, Ed., pp. 215-241,
Springer, New York, NY, USA, 2011.

X. Liu, G. A. Wang, A. Johri, M. Zhou, and W. Fan, “Harnessing
global expertise: a comparative study of expertise profiling
methods for online communities,” Information Systems Fron-
tiers, vol. 16, no. 4, pp. 715-727, 2014.

J. J. Jung and P. Kazienko, “Advances on social network applica-
tions,” Journal of Universal Computer Science, vol. 18, no. 4, pp.
454-456, 2012.

M. Sanderson, “Test collection based evaluation of informa-
tion retrieval systems,” Foundations and Trends in Information
Retrieval, vol. 4, no. 4, pp. 247-375, 2010.

K. Hofmann, S. Whiteson, and M. D. Rijke, “Fidelity, sound-
ness, and efficiency of interleaved comparison methods,” ACM
Transactions on Informatian Systems, vol. 31, no. 4, article 17, pp-
1-43, 2013.

(26]

[27]

(33]

(34]

(35]

(36

[37]

(38]

(39]

Scientific Programming

T. Haselmann, A. Winkelmann, and G. Vossen, “Towards a
conceptual model for trustworthy skills profiles in online social
networks,” in Information Systems Development,]. Pokorny, V.
Repa, K. Richta et al., Eds., pp. 285-296, Springer, New York,
NY, USA, 2011.

M.-E. Del-Moral Pérez and A.-P. Guzmdn-Duque, “CityVille:
collaborative game play, communication and skill development
in social networks,” Journal of New Approaches in Educational
Research, vol. 3, no. 1, pp. 11-19, 2014.

A. Cabrales, A. Calvo-Armengol, and Y. Zenou, “Social interac-
tions and spillovers,” Games and Economic Behavior, vol. 72, no.
2, pp. 339-360, 2011.

Y. P. Hsieh, “Online social networking skills: the social affor-
dances approach to digital inequality;” First Monday, vol. 17, no.
4, 2012.

G. E. Bolton, E. Katok, and A. Ockenfels, “How effective are
electronic reputation mechanisms? An experimental investiga-
tion,” Management Science, vol. 50, no. 11, pp. 1587-1602, 2004.

D.-R. Liu, Y.-H. Chen, W.-C. Kao, and H.-W. Wang, “Integrating
expert profile, reputation and link analysis for expert finding
in question-answering websites,” Information Processing and
Management, vol. 49, no. 1, pp. 312-329, 2013.

J. M. Alvarez-Rodriguez, J. E. L. Gayo, and P. O. de Pablos,
“An extensible framework to sort out nodes in graph-based
structures powered by the spreading activation technique: the
ONTOSPREAD approach,” International Journal of Knowledge
Society Research, vol. 3, no. 4, pp. 57-71, 2012.

J. M. Alvarez, L. Polo, W. Jimenez, P. Abella, and J. E. Labra,
“Application of the spreading activation technique for recom-
mending concepts of well-known ontologies in medical sys-
tems,” in Proceedings of the ACM Conference on Bioinformatics,
Computational Biology and Biomedicine (ACM-BCB ’l1), pp.
626-635, August 2011.

E. Amigo, D. Spina, B. Beotas, and J. Gonzalo, “Towards an
evaluation framework for topic extraction systems for online
reputation management,” in Proceedings of the Ist Workshop on
Dynamic Networks and Knowledge Discovery (DyNaK ’10), pp.
101-111, September 2010.

A. G. West, A.]. Aviy, J. Chang et al., “QuanTM: a quantitative
trust management system,” in Proceedings of the 2nd European
Workshop on System Security (EUROSEC ’09), pp. 28-35,
Nuremberg, Germany, March 2009.

K.Balog, Y. Fang, M. de Rijke, P. Serdyukov, and L. Si, “Expertise
retrieval,” Foundations and Trends in Information Retrieval, vol.
6, no. 2-3, pp. 127-256, 2012.

A. Bozzon, M. Brambilla, S. Ceri, M. Silvestri, and G. Vesci,
“Choosing the right crowd: expert finding in social networks,”
in Proceedings of the 16th International Conference on Extending
Database Technology (EDBT ’13), pp. 637-648, Genoa, Italy,
March 2013.

C. Aslay, N. O’'Hare, L. M. Aiello, and A. Jaimes, “Competition-
based networks for expert finding,” in Proceedings of the 36th
International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR ’13), pp. 1033-1036, New
York, NY, USA, August 2013.

J. Rybak, K. Balog, and K. Nervag, “Temporal expertise pro-
filing, in Advances in Information Retrieval: 36th European
Conference on IR Research, ECIR 2014, Amsterdam, The Nether-
lands, April 13-16, 2014. Proceedings, vol. 8416 of Lecture Notes
in Computer Science, pp. 540-546, 2014.

Scientific Programming

[40] S. Fortunato and A. Lancichinetti, “Community detection algo-
rithms: a comparative analysis: invited presentation, extended
abstract,” in Proceedings of the 4th International ICST Conference
on Performance Evaluation Methodologies and Tools (VALUE-
TOOLS09), p. 27, 2009.

[41] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel,
“You are who you know: inferring user profiles in online
social networks,” in Proceedings of the 3rd ACM International
Conference on Web Search and Data Mining (WSDM ’10), pp.
251-260, February 2010.

[42] D. U. Patton, R. D. Eschmann, and D. A. Butler, “Internet
banging: new trends in social media, gang violence, masculinity
and hip hop,” Computers in Human Behavior, vol. 29, no. 5, pp.
A54-A59, 2013.

[43] A. Ortigosa, R. M. Carro, and J. . Quiroga, “Predicting user
personality by mining social interactions in Facebook,” Journal
of Computer and System Sciences, vol. 80, no. 1, pp. 57-71, 2014.

[44] C.-C. Musat, B. Faltings, and P. Roussille, “A model of online
social interactions based on sentiment analysis and content
similarity, HUMAN , vol. 2, no. 1, pp. 55-66, 2013.

[45] R. Colomo-Palacios, C. Casado-Lumbreras, P. Soto-Acosta, F.
J. Garcia-Pefialvo, and E. Tovar-Caro, “Competence gaps in
software personnel: a multi-organizational study,” Computers in
Human Behavior, vol. 29, no. 2, pp. 456-461, 2013.

[46] E J. Garcia-Pefalvo, R. Colomo-Palacios, and M. D. Lytras,
“Informal learning in work environments: training with the
Social Web in the workplace,” Behaviour and Information
Technology, vol. 31, no. 8, pp. 753-755, 2012.

[47] R. Colomo-Palacios, I. Gonzdlez-Carrasco, J. L. Lopez-
Cuadrado, and A. Garcia-Crespo, “Resyster: a hybrid recom-
mender system for scrum team roles based on fuzzy and
rough sets,” International Journal of Applied Mathematics and
Computer Science, vol. 22, no. 4, pp. 801-816, 2012.

[48] P. Kazienko, N. Szozda, T. Filipowski, and W. Blysz, “New busi-
ness client acquisition using social networking sites,” Electronic
Markets, vol. 23, no. 2, pp. 93-103, 2013.

[49] V. Stantchev and G. Tamm, “Reducing information asymmetry
in cloud marketplaces,” International Journal of Human Capital
and Information Technology Professionals, vol. 3, no. 4, pp. 1-10,
2012.

[50] L. Li, Y. Shang, and W. Zhang, “Improvement of HITS-based
algorithms on web documents;” in Proceedings of the IIth
International Conference on World Wide Web (WWW °02), pp.
527-535, New York, NY, USA, May 2002.

[51] A. Hannak, P. Sapiezynski, A. M. Kakhki et al., “Measuring
personalization of web search,” in Proceedings of the 22nd
international conference on World Wide Web (WWW ’13), pp.
527-538, 2013.

B. Succar, W. Sher, and A. Williams, “An integrated approach
to BIM competency assessment, acquisition and application,”
Automation in Construction, vol. 35, pp. 174-189, 2013.

(52

Hindawi Publishing Corporation
Scientific Programming

Volume 2015, Article ID 450215, 9 pages
http://dx.doi.org/10.1155/2015/450215

Research Article

On Efficient Link Recommendation in Social
Networks Using Actor-Fact Matrices

Michat Ciesielczyk, Andrzej Szwabe, and Mikolaj Morzy
Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland

Correspondence should be addressed to Mikotaj Morzy; mikolaj.morzy@put.poznan.pl
Received 28 February 2014; Revised 21 November 2014; Accepted 21 November 2014
Academic Editor: Reda Alhajj

Copyright © 2015 Michat Ciesielczyk et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Link recommendation is a popular research subject in the field of social network analysis and mining. Often, the main emphasis is
put on the development of new recommendation algorithms, semantic enhancements to existing solutions, design of new similarity
measures, and so forth. However, relatively little scientific attention has been paid to the impact that various data representation
models have on the performance of recommendation algorithms. And by performance we do not mean the time or memory
efficiency of algorithms, but the precision and recall of recommender systems. Our recent findings unanimously show that the
choice of network representation model has an important and measurable impact on the quality of recommendations. In this
paper we argue that the computation quality of link recommendation algorithms depends significantly on the social network
representation and we advocate the use of actor-fact matrix as the best alternative. We verify our findings using several state-

of-the-art link recommendation algorithms, such as SVD, RSVD, and RRI using both single-relation and multirelation dataset.

1. Introduction

Link recommendation, along with link prediction, is a popu-
lar research topic in the domain of social network analysis and
mining [1]. Numerous algorithms have been proposed over
the years [2]. The main objective of link recommendation
and prediction is to predict, based on the historical data,
unobserved relationships and interactions between actors of
a social network [3]. It should be stressed here that the term
“link” is used here freely, as the task can refer to predicting
possible (existing or future) relationships between people,
recommending interesting resources to actors of the network,
or discovering latent similarities between objects. Usually, a
distinction is drawn between link prediction (where the task
is to evaluate the probability of a given relationship’s existence
between actors) and link recommendation (where the task is
to select top k resources relevant to a given actor). One can
see however that it is relatively easy to combine the two tasks
under a single framework. For the sake of brevity we will refer
to both problems as “link recommendation” throughout this
paper. Link recommendation is predicated on the existence
of data, either panel data or event data [4]. Panel data refer

to snapshots of the social network taken at certain intervals
and representing possibly a coarse-grained view of existing
relationships. In contrast, event data refer to detailed records
of activities between actors in the network. Event data is time-
stamped and fine-grained and often results from automated
measurements or transactions. These two types of data are
merged and processed and split into a training set and a
test set for the purpose of training of link recommendation
models.

Although link recommendation tasks have attracted
significant attention of the scientific community over the
last years, in our opinion relatively little work has been
done on the impact of data representation models on the
quality of recommendations. By far the most popular data
representation model is an actor-object matrix, where actors
of the social network are represented as rows and objects
that are the subject of reccommendations are represented as
columns. The cells of such matrix may contain either binary
flags to denote the existence of a relation (e.g., Adam likes
“The Police”), or a value of the relation, both discrete and
numerical (e.g., Beth ate at “Pizza Paradise” and rated it with
4.5 stars). One may note that the social network need not be

http://dx.doi.org/10.1155/2015/450215

a bipartite graph. When the relation is defined between actors
(e.g., Carol likes Douglas), the actor-object matrix becomes
simply a square matrix. The situation becomes slightly more
complex in case of multirelational social networks, where
multiple different relations, of possibly varying semantics,
may exist between actors in the network. A typical example
is a network where actors may express both fondness of and
rejection of certain objects (e.g. Eve likes to watch comedy
movies but she hates horror movies). If the storage of relation
values is permitted by a given data model, multirelational
networks may be modeled by assigning distinct values (or sets
of values) to particular relations, but for a binary actor-object
matrix it is necessary to represent each relation by a separate
matrix and to include processing of multiple matrices by the
recommendation algorithm.

In this paper we argue that actor-object matrix is not
the optimal data model for recommendation algorithms.
Our experiments conclusively show that transformation from
the actor-object to the actor-fact matrix improves recom-
mendation quality significantly, as measured by the popular
“area under receiver-operator characteristic curve” (AUROC)
measure. We perform extensive experiments on a large real-
world dataset to support our claims. Given the fact that the
vast majority of link recommendation algorithms for social
networks compute actor-object, actor-actor, or object-object
similarities by applying linear algebra on data representation
matrices, the superiority of actor-fact matrix representation
becomes quite obvious (in particular for methods which are
generally based on singular value decomposition paradigm).
The original contribution of this paper consists in the intro-
duction of two elements:

(i) a datarepresentation method based on a binary actor-
fact matrix,

(ii) a similarity quasimeasure based on the 1-norm length
of the Hadamard product of the given tuple of vectors.

Our key finding is that the proposed data representa-
tion and the new similarity measure, when combined with
reflexive matrix processing, significantly outperform state-of-
the-art collaborative filtering methods based on the use of a
standard actor-object matrix.

Our paper is organized as follows. In Section 2 we report
on the related work on the subject and we present the refer-
enced recommendation algorithms. Section 3 introduces the
concept of the actor-fact matrix. In Section 4 we present the
evaluation methodology of the actor-fact matrix represen-
tation and we report the results of conducted experiments
in Section 5. The paper concludes in Section 6 with a brief
summary.

2. Related Work

By far the most popular approach to link recommendation
in social networks is collaborative filtering using an input
matrix which represents each actor as a vector in the space of
objects and each object as a vector in the space of actors. Many
previous works consider building a model of collaborative
similarity from a model of content-based interobject relations

Scientific Programming

to be the most promising hybrid link recommendation
technique [5, 6]. As far as algebraic representations of graph
data is concerned, the actor-fact matrix model is similar to
the model described in [7]. Indeed, our model was inspired
by the semantic data model of RDF triples. Also, as far as
the algebraic transformation of the graph data is concerned,
the model presented in this paper may be regarded as similar
to RDF data search methods which are based on spreading
activation realized by means of iterative matrix data pro-
cessing [8] or single multiplication by a random projection
matrix [7]. However, the latter method is limited to the
RDF graph node search using a traditional bilateral similarity
measure, whereas we extend the model by using a vector-
space quasisimilarity measure which allows to efficiently
compute the likelihood of an unknown relationship.

In our evaluation we use three main types of collaborative
filtering recommender algorithms. The baseline is established
by a simple popularity-based algorithm favoring objects hav-
ing the highest number of positive relationships in the train
set [9]. Next, we have employed several different approaches
to the input matrix decomposition. Firstly, we have used the
algorithm based on reflexive random indexing [10]. Secondly,
we have used two types of algorithms that are based on
the singular value decomposition: a traditional implemen-
tation of the method (PureSVD), in which actor vectors
are represented as combinations of object vectors without
any specific parameterization, and an implementation of
the randomized singular value decomposition (RSVD) [11],
which is a combination of the reflexive random indexing and
SVD. We have chosen so since SVD-based methods have
been long considered to be the most efficient recommender
engines in real world settings [12-15].

Section 5 presents the results of conducted experiments.
Since our data have the form of binary prepositions (i.e.
our social network is a signed network), the evaluation of
the proposed method is oriented on the task of finding
relevant links [16] rather than on the minimization of recom-
mendation rating error. Classification metrics, such as area
under ROC (AUROC), measure the probability of making
correct or incorrect decisions by the recommender algorithm
about whether an object is relevant. Moreover, classification
metrics tolerate the differences between actual and predicted
values, as long as they do not lead to wrong decisions. Thus,
these metrics are appropriate to examine binary relevance
relationships. In particular, while using AUROC it is assumed
that the ordering among relevant items does not matter.
According to [17], AUROC is equivalent to the probability of
the system being able to choose properly between two objects,
one randomly selected from the set of relevant objects and
one randomly selected from the set of nonrelevant objects.
For this reason, the results of the theoretical research are
evaluated by means of experiments based on quality measures
that are probabilistically interpretable such as AUROC.

3. Actor-Fact Matrix

Let us recall that our model is influenced by the semantic
model of RDF triples. Each RDF triple combines information
about the predicate that relates a subject to an object. We

Scientific Programming

consider a generic social network (for simplicity we constrain
ourselves to nonvalued relations, but the proposed method
may be easily extended to valued relations) which conceptu-
ally consists of a set of actors A = {a,,...,4a,}, a set of objects
O = {o;,...,0,,}, and a set of relations R = {R,...,R},
where each relation R; represents a function R; : Ax O —
{0, 1}. Let us now combine all actors, objects, and possible
predicates into a single set E = A U O U R. Furthermore,
let |A|] = n, |O| = m, and |R| = I. Of course, there is no
requirement to have the set of actors be separate from the
set of objects; that is, in general it is possible that A < O.
It should be noted though that if sets A and O would overlap,
that is, if they would be represented by the same vectors,
it would not be possible to take advantage of the semantics
of actors constituting relationships. In other words, putting
actors and objects together into a single set would make
it impossible to distinguish between semantically correct
relationships, such as “Alice likes apples,” and semantically
incorrect relationships, such as “apples like Alice” Being able
to encode such semantics directly in social network matrix
representation is obviously a very desirable property, but this
issue is out of the scope of this paper.

We refer to the set of actual instances of relations as the set
of facts denoted by F, and let |[F| = f. The binary actor-fact
matrix is defined as X = [x; ;] mp)x s> Where each column
of the matrix X represents a single fact (i.e., an existing dyad
connected in the social network by a relation), each row of the
matrix X represents an entity (actor, object, or relation), and
each column contains exactly three nonzero entries, that is,
for each j there exist exactly three nonzero entries Xi i Xi s
and x; j,suchthatl <i; <mn+1<i,<n+m,andn+m+
1 < iy < n+m + 1 (the rows containing these three nonzero
entries correspond to the actor, object, and relation of a given
dyad, or, in the RDF parlance, to the subject, predicate, and
the object of a triple). At the same time the number of nonzero
entries in each row represents the number of dyads in which
a given actor/object participates, or the number of dyads of a
given relation.

Let us consider a simple social network depicted in
Figure 1. It represents two different relationships between
actors Alice, Bob, Titanic, and Star Wars. The relationships
between these actors include liking and being a friend of.
Implicitly, we understand that liking is a relationship between
an actor representing a person and an actor representing a
movie, whereas being a friend of is a relationship between
two actors representing persons. This network can be easily
transformed into the actor-fact model. There are three facts
that exist in this network:

(i) fact,: Alice is a friend of Bob,
(ii) fact,: Alice likes Titanic,
(iii) fact;: Bob likes Star Wars.

In our actor-fact matrix representation fact, will con-
stitute a column in the matrix X and this column will have
nonzero entries for cells X [Alice, fact,], X [is a friend of,
fact,], and X [Bob, fact,]. The entire social network from
Figure 1 is presented in the actor-fact matrix representation
in Table 1.

Likes

Alice/ Titanic

Is a friend of

Bh Likes

F1GURE 1: Example of a social network.

Star wars

TABLE 1: Actor-fact matrix representing the network from Figure 1.

fact, fact, fact,
Alice 1 1 0
Bob 1 0 1
Is a friend of 1 0 0
Likes 0 1 1
Titanic 0 1 0
Star Wars 0 0 1

When using the actor-fact matrix as the data represen-
tation, one has to perform the prediction generation step
in a special way. Initially, as in many of the most accurate
collaborative filtering methods, the missing values of the
input matrix are estimated. In order to achieve this, the input
matrix X is processed into its reconstructed form X using one
of the evaluated recommendation algorithms. Afterwards,
each of the predictions is calculated as the 1-norm length
of the Hadamard product of row vectors. The Hadamard
product (also known as the Schur product or the entrywise
product) of two vectors X = [x;,...,x,]andY = [y,,..., ¥,]
of the same length 7 is defined as

XOYz[xl'yl""’xn'yn]' ¢))

Each dyad forms the proposition which is the subject of
the likelihood estimation. More formally, the prediction value
i,k is calculated according to the formula

P = |Bo %o 5, (2)

where X;, X}, and X are the row vectors of the reconstructed

matrix X = [X;] (nemsx g corresponding to the elements of
the given dyad, and the symbol - represents the Hadamard
product.

For instance, using the proposed measure on the example
shown in Table1 one may predict the likelihood of Alice
liking the movie Titanic (i.e., the likelihood of the joint

incidence of actors Alice, likes, and Titanic represented by
row vectors X[Alice,] = [1,1,0], X[likes,] = [0,1,1], and
X[Titanic,] = [0,1,0], resp.). This likelihood equals
(I[1,1,0] = [0,1,1] o [0, 1, 1]]| = 1. Conversely, the likelihood
of any nonexistent fact, such as Bob likes Titanic, equals
0. Naturally, the practical value of such a measure is to
estimate the likelihood of missing links after the application
of appropriate collaborative filtering algorithms.

The proposed formula may be seen as a generalization
of the dot product formula, as in the hypothetical case of
measuring quasisimilarity of two (rather than three) vectors,
the formula is equivalent to the dot product of the two
vectors. It should be also noted that the measure may be easily
extended to larger number of vectors. The interpretation of
the proposed formula as the likelihood of the joint incidence
of two or more facts represented as vectors is based on
the quantum information retrieval model [18]. It has to
be admitted that, for the methods presented in this paper,
the coordinates of modeled entities’ representations do not
formally denote probabilities. Therefore, formally speaking,
the proposed method may be regarded as a technique for
providing the likelihood of the joint incidence of two or
more events represented as vectors, which is inspired by
the quantum information retrieval model of probability
calculation.

4. Evaluation Methodology

Let us now present the evaluation methodology for the exper-
iments. Our goal is to quantitatively compare two matrix-
based methods of social network representation: the classical
actor-object matrix and the new actor-fact matrix from the
point of view of the link recommendation task. Taking into
consideration that link recommendation tasks may vary,
we have additionally considered two subproblems: a one-
class link recommendation, where the aim is to discover
only the missing links of a single relation (e.g., for a given
actor recommend to her a set of possible new friends),
and the biclass link recommendation, where the aim is to
discover missing links of one particular relation while not
recommending any of the links of another relation (e.g., for a
given actor, show him possible friends who share theatrical
preferences, but do not recommend any new movies). The
combination of the two results in the following four scenarios:

(i) SI: using single relation and an actor-object matrix
B = [j],xm> where nis the number of actors and m is
the number of objects, a scenario which corresponds
to friend recommendations using only information
on friendship between actors,

(ii) S2: using two antagonistic relations and an actor-
object matrix B = [b, ;],,x,,» where n is the number
of actors and m is the number of objects, a scenario
which corresponds to friend recommendations using
information on friendship and dislike between actors,

(iii) S3: using single relation and an actor-fact matrix X =
[X;] (rems1)x r» where n is the number of actors, m is
the number of objects, and I = 1 is the number of
predicates (in this case a single predicate),

Scientific Programming

(iv) S4: using two antagonistic relations and an actor-fact
matrix X = [%; ;](sem1)x s> Where n is the number of
actors, m is the number of objects, and I = 2 is the
number of predicates.

In order to evaluate the effect of data representation
model on collaborative filtering methods, we have decided
to use one of the most widely referenced datasets in the
recommender systems area. We have deliberately chosen to
turn a typical recommender system dataset into an artificial
social network, instead of using a genuine network (e.g.,
Facebook friend graph or Twitter followers graph), because
we also wanted to compare our results with previous results;
thus we needed a well-established benchmark dataset. Movie-
Lens ML100k set was collected over various periods of time
from Internet users who expressed their opinions on different
movies in order to receive personalized recommendations. It
contains 100 000 ratings of 1682 movies given by 943 unique
users. Each rating which is above the average for a given
movie has been treated as an indication that a user likes the
movie. Analogically, each rating below the average has been
used as an indication that a user dislikes the movie. Finally,
train and test data sets were generated by randomly dividing
the set of all known facts into two subsets. The data were
divided according to the specified training ratio, denoted by
tr. To compensate for the impact that the randomness in
the dataset partitioning has on the results of the presented
methods, each plot in this section shows a series of values that
represent averaged results of individual experiments.

As we have previously stated, four recommendation
algorithms are used: a simple popularity-based method, a
traditional SVD (PureSVD), a randomized version of SVD
(RSVD), and a reflexive random indexing (RRI). To clarify,
the actual algorithm being used is the collaborative filtering
(CF), but it works on a matrix decomposed using the above
algorithms. The decomposition of the original matrix is of
course necessary to make collaborative filtering computation
feasible in practice. In real social networks the size of the
matrix (actor-object, and actor-fact in particular) is so huge
that vector similarity computation in original dimensions is
impossible. Each of the methods has been tested using the
following parameters (where applicable):

(i) vector dimension: 256, 512, 768, 1024, 1536, 2048;
(ii) seed length: 2, 4, 8;
(iii) SVD k-cut: 2, 4, 6, 8, 10, 12, 14, 16, 20, 24.

The number of dimensions (i.e., the SVD k-cut value),
which we have used in the experiments, may appear as quite
small when compared to a typical LSI application scenario.
This choice has been made in order to avoid overfitting, in
accordance with the assumptions concerning the dimension-
ality reduction sensitivity presented in [14]. Moreover, it has
been observed that for each investigated scenario the optimal
algorithm performance was achieved for the SVD k-cut value
that was less or equal to 16, so experiments for k-cuts higher
than 24 were not necessary. We have also varied the number
of reflections used in RRI and RSVD between 3 and 15.

Scientific Programming

0.72 - - - -
. R
0.68 LR L
O / - . A______}”(,—L _____ i
@] | < S """
064 £7 , ,
2 .
0.60 s
...................... @ @ W@
e o ([
0.2 0.4 0.6 0.8
tr (training ratio)
Method Scenario
-@- Popularity - Popularity
—— PureSVD — S1
RRI ---S3
RSVD

F1GURE 2: AUROC results for S1 and S3 scenarios.

0.75
O 0.70
o]
% 0.65
20
0.60
tr (training ratio)
Method Scenario
-@- Popularity o Popularity
—— PureSVD — S2
RRI --- $4

RSVD

F1GURE 3: AUROC results for S2 and S4 scenarios.

5. Experiments

Figures 2 and 3 show a comparison of the investigated
recommendation algorithms, each using either the classical
actor-object or the actor-fact matrix data representation. The
comparison has been performed using the AUROC measure
and datasets of various sparsity. The presented results have
been obtained using optimized parameters for each method
and each data model. Figure 2 presents AUROC evaluation
results obtained for the case of using the network consisting of
a single relation (i.e., only positive ratings), whereas Figure 3
presents analogical results obtained for the case of using the
tull network, that is, the one containing both positive and
negative relations.

As it has been confirmed experimentally, the actor-fact
data representation matrix obtains recommendation quality
which is higher than the analogical results obtained with the
use of the classical actor-object matrix representation. It can
be observed that the advantage of the proposed model is
especially visible in the case of employing the full network
containing both positive and negative relations, and the RRI
method. Such behavior is the result of the more native ability

to represent multiple relations provided by the actor-fact
model.

One may realize that the popularity-based algorithm,
instead of modeling actors’ preference profiles, simply reflects
the ratio between the number of positive relation instances
(hits) and negative relation instances (misses) for the most
popular objects in a given network. Since arandom procedure
is used to divide the dataset into a train set and a test set,
the values of AUROC observed for the popularity-based
algorithm are almost identical for the case of both tr = 0.2
and tr = 0.8, which additionally confirms the reliability of
the AUROC measurement.

In Figures 4, 5, and 6 the impact of the data representation
method on the performance evaluation results is presented.
As can be seen, the application of the new fact-based data
representation method, accompanied with the Hadamard-
based reconstruction technique, improves the results of using
RRI for both single and multiple relations networks (see
Figures 4(a) and 4(b)). Moreover, for the case of using the
network with multiple relations, RRI outperforms any other
presented method. It may be concluded that, in the context of
the proposed data representation scheme, the calculation of
the I-norm length of the Hadamard product is an operation
that is synergic to the reflective data processing.

On the other hand, the application of the new representa-
tion method, accompanied by the reconstruction technique
based on the Hadamard product, decreases the quality of
results of using PureSVD for both single and multiple relation
networks (see Figures 5(a) and 5(b)). The reason of such
behavior is the fact that the prediction method based on the
Hadamard product is not compatible with the data processing
techniques based on the SVD decomposition. In the case of
using the SVD dimensionality reduction, an input matrix
reconstruction result should rather be used directly as the
set of prediction values. The comparatively low quality of
the method based on PureSVD and Hadamard product may
be explained by the nonprobabilistic nature of SVD results:
it is especially evident in cases when the vectors multiplied
together (by means of the Hadamard product) have negative
coordinates, which indicates that they obviously have no
probabilistic interpretation.

Furthermore, in the case of using RSVD (see Figures
6(a) and 6(b)), which is a combination of RI-based pre-
processing and SVD-based vector space optimization, the
application of the new data representation method improves
the performance when single relation network is concerned
(especially for small numbers of the ratio tr). On the other
hand, the application of the new data representation method
decreases the system performance for the multiple relations
network scenario for the same reasons as in the case of
using PureSVD. It may be additionally concluded that when
the methods based on dimensionality reduction are used,
the new representation method performs relatively (i.e.,
with respect to results obtained for standard representation
methods) better for smaller values of the ratio tr, that is, for
sparser datasets for which the recommendation task is harder.

Figure 7 presents the performance of the recommender
algorithms as compared in the investigated scenarios (i.e., in
scenarios S1-4). It may be concluded that, as it was already

Scientific Programming

0.76 -
0.72 4
&)
Q
3
<<
0.68 -
0.64 -
0.2 0.4 0.6 0.8
tr (training ratio)
Scenario
@ S2

S4

(b) Two relations

FIGURE 4: Impact of the input data representation method on AUROC results achieved using the RRI method.

6
0.76
0.72
O
@]
=
<
0.68
0.64
0.2 0.4 0.6 0.8
tr (training ratio)
Scenario
-@- S1
S3
(a) One relation
0.76
0.72
O
]
=
<
0.68
0.64
0.2 0.4 0.6 0.8
tr (training ratio)
Scenario
-@- Sl

S3

(a) One relation

0.76 A
0.72 4
Q
Q
5
<
0.68 4
0.64 4
0.2 0.4 0.6 0.8
tr (training ratio)
Scenario
-0 S2

S4

(b) Two relations

FIGURE 5: Impact of the input data representation method on AUROC results achieved using the PureSVD method.

shown in [11], the RSVD method outperforms other methods
(i.e., PureSVD and RRI) when the standard input data
representation is used. As far as the Sl scenario is concerned,
that is, the one with the standard data representation based on
the actor-object coincidence matrix single relation, it may be
seen that, in general, the decomposition-based methods (i.e.,
PureSVD and RSVD) achieve comparable recommendation
quality and that, in general, these methods perform better
than RRI (for various values of the training ratio). It may
also be seen that the decomposition-based methods behave

quite differently in the S3 scenario, in which the novel, fact-
based data representation is used: in such case, RSVD is the
method which not only outperforms all the other methods
compared in the scenario (including PureSVD), but also
provides a high recommendation quality for various values
of the training ratio. When analyzed together, S1 and S3
scenarios show the superiority of RSVD in cases when single
relation network is used. Moreover, as long as RSVD is
combined with the fact-based data representation, it provides
recommendation quality that is the most reliable, which is

Scientific Programming

AUROC

0.2 0.4 0.6 0.8
tr (training ratio)

Scenario
@ S1
S3

(a) One relation

0.76 1

0.72 1

AUROC

0.68

0.64 4

0.2 0.4 0.6 0.8
tr (training ratio)

Scenario
@ S2
S4

(b) Two relations

FIGURE 6: Impact of the input data representation method on AUROC results achieved using the RSVD method.

higher than the quality observed when any other method is
used for the majority of investigated values of the training
ratio. In the case of scenario S4 (fact-based data repre-
sentation with multiple relations) RRI method outperforms
both decomposition-based methods, which shows the com-
patibility of the Hadamard-based reconstruction technique
with the reflective processing of multirelational data. Such
combination, that is, the application of RRI together with the
fact-based multirelational data representation, provides the
highest recommendation quality among all the combinations
presented in this paper. As the RRI method does not involve
any computationally expensive spectral decomposition, this
result may be very valuable from the perspective of the
practical applicability of the RRI-based link recommendation
systems in real-world scenarios.

The results of the experiments presented herein clearly
indicate that the presence of the additional information
about the negative relation improves the recommendation
quality. The results for S2 and S4 scenarios (see Figure 3)
are significantly better than the results obtained in S1 and S3
scenarios (see Figure 2). However, the main conclusion from
the experiments is that the best quality is observed in scenario
S$4 (in which the proposed data representation and prediction
method has been applied) for the case of the RRI-based data
processing application.

The results of the comparison show that, in general, as
long as the proposed multirelational actor-fact matrix data
representation is used, the reflective processing methods
(in particular RRI) outperform the well-known SVD-based
dimensionality reduction methods. While trying to explain
this observation, one may note that the typical actor-object
matrix (representing only positive relations between actors
and objects) is equivalent to a part of another much bigger
matrix. This bigger matrix may be obtained as the result
of multiplying the actor-fact matrix (with both actors and

objects represented as the rows) by its transposition. The
“submatrix” of the bigger matrix (together with its transposed
“clone”) is just a typical collaborative filtering matrix—it
represents the “magnitudes” of the actor-object positive pref-
erence relation. Demonstrating this correspondence between
the object-fact matrix format and widely used actor-object
matrix format (typically used together with the SVD-based
dimensionality reduction) requires an additional matrix mul-
tiplication (i.e., an additional reflection). Therefore, it may
be expected that, as long as the proposed data represen-
tation is used, only reflective data processing methods can
take full advantage of using it by applying appropriately
many reflections. To put this observation (confirmed by
the results of the experiments presented herein) in other
words, while using the fact-based data representation, SVD-
based collaborative filtering methods need at least one more
matrix multiplication to provide the recommendation quality
comparable to the quality achieved by means of the optimized
reflective matrix processing.

6. Conclusions

The new framework proposed in this paper consists of two
core elements: the new data representation method based
on the actor-fact matrix and the new prediction calculation
technique based on the Hadamard product of vectors. The 1-
norm length of the Hadamard product vector may be seen
as a natural extension of the vector dot product (in this
case as a kind of group inner product of the three vectors
representing the actor, the object, and the relation) whereas
the dot product may be seen as an elemental step of the matrix
multiplication, that is, the basic operation used in reflective
matrix processing. Therefore, the calculation of the 1-norm
length of the Hadamard product vector may be regarded as an
operation compatible with the reflective matrix processing,

8
0.76 4
0.72 4
O
@]
3
<<
0.68
0.64
0.2 0.4 0.6 0.8
tr (training ratio)
—@— PureSVD
A RRI
RSVD
(a) S1
0.76
0.72 4
&)
o
=
<
0.68
0.64 4
0.2 0.4 0.6 0.8
tr (training ratio)
—@— PureSVD
A RRI
RSVD

(c) S3

Scientific Programming

0.76
0.72
@)
o
5
<
0.68 -
0.64
0.2 0.4 0.6 0.8
tr (training ratio)
—@- PureSVD
A RRI
RSVD
(b) S2
0.76 . i LA i "
ok
A
0.72
@)
o
5
<
0.68
0.64
0.2 0.4 0.6 0.8
tr (training ratio)
—@- PureSVD
4 RRI
RSVD

(d) s4

FIGURE 7: Comparison of all recommender algorithms for various scenarios.

seen as an “additional reflection” (i.e., the next step of the
reflective data exploration process). This observation may
additionally explain why the optimal number of reflections
for the RRI method in the S4 scenario is relatively small
(equal to 3 for each training ratio). On the other hand, the
prediction based on the Hadamard product does not suit well
the data processing techniques based on SVD decomposition.
This explains relatively weak results of the dimensionality
reduction methods in the scenarios in which the proposed
data modeling method is used. In the case of using the
techniques based on the dimensionality reduction, the input
matrix reconstruction result is used directly as the set of the
prediction values and an additional step of the Hadamard
product calculation procedure is not required.

We have shown that the proposed fact-based approach to
social network representation allows to improve the quality

of collaborative filtering. The application of the proposed
actor-fact matrix in systems featuring the most widely known
methods for input data processing, such as the SVD-based
dimensionality reduction and the reflective matrix process-
ing, has been investigated. We have also shown that using
the actor-fact matrix together with reflective data processing
enables us to design a collaborative system outperforming
systems based on the application of the dimensionality
reduction techniques.

We have demonstrated the superiority of multiple matrix
data reflections by realizing a new kind of spreading acti-
vation. However, the purpose of the spreading activation
mechanism introduced herein is to realize the probabilistic
reasoning about any fact that may be composed of actors,
relations, and objects appearing in the network. To state
it more precisely, in order to estimate the probability that

Scientific Programming

a given fact represents a true statement, the three constituents
of the fact are independently primed. On the basis of the
three independently generated vectors, each one representing
levels of node activation obtained as the result of priming
the node represented by the vector, the 1-norm length of a
Hadamard product is applied to measure holistically (i.e., by
taking into account the state of all nodes) the amount of joint
similarity of the three fact constituents or, more precisely,
their representations that have been obtained as the result of
the spreading activation procedure.

While taking the perspective of related areas of research
(such as Web scale reasoning), one may find it particularly
interesting to investigate our proposal of using the 1-norm
length of the Hadamard product as the measure of an
unknown dyad likelihood. The authors believe that, due
to probabilistic reasoning as a vector-space technique, the
introduced solution provides basic means for extending the
capacity for reasoning on social networks beyond the bound-
aries provided by currently used nonstatistical methods.
In our opinion, the application of introduced methods (in
particular, the new actor-fact data representation and the
new Hadamard product likelihood calculation) leads to a
significant link recommendation quality improvement, at
least for the case of using the reflective matrix processing.
Although this paper provided an evaluation using only the
two relations scenario, one may also find the proposed
approach to matrix-based propositional data representation
to be promising from the perspective of its extendability to
truly multirelational applications.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

Mikotaj Morzy has been supported by the National Science
Centre Grant 2011/03/B/ST6/01563. Michat Ciesielczyk and
Andrzej Szwabe have been supported by the National Science
Centre Grant DEC-2011/01/D/ST6/06788.

References

[1] D. Liben-Nowell and J. Kleinberg, “The link-prediction prob-
lem for social networks,” Journal of the American Society for
Information Science and Technology, vol. 58, no. 7, pp. 1019-1031,
2007.

[2] L. L. Linyuan and T. Zhou, “Link prediction in complex
networks: a survey;,” Physica A: Statistical Mechanics and Its
Applications, vol. 390, no. 6, pp. 1150-1170, 2011.

[3] R. Lichtenwalter and N. V. Chawla, “Link prediction: fair and
effective evaluation,” in Proceedings of the IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and
Mining (ASONAM ’12), pp. 376-383, August 2012.

[4] C. Lee, B. Nick, U. Brandes, and P. Cunningham, “Link predic-
tion with social vector clocks,” in Proceedings of the 19th ACM

SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM, 2013.

[5] B. Mobasher, X. Jin, and Y. Zhou, “Semantically enhanced
collaborative filtering on the Web,” in Proceedings of the Ist
European Web Mining Forum (EWMEF °03), pp. 57-76, Springer,
Cavtat-Dubrovnik, Croatia, September 2003.

[6] J. Salter and N. Antonopoulos, “CinemaScreen recommander
agent: combining collaborative and content-based filtering,
IEEE Intelligent Systems, vol. 21, no. 1, pp. 35-41, 2006.

[7] D. Damljanovic, J. Petrak, M. Lupu et al., “Random indexing
for finding similar nodes within large RDF graphs,” in The
Semantic Web: ESWC 2011 Workshops, vol. 7117 of Lecture Notes
in Computer Science, pp. 156-171, Springer, Berlin, Germany;,
2012.

[8] P. Todorova, A. Kiryakov, D. Ognyano, I. Peikov, R. Velkov, and
Z. Tashev, “Conclusions from experimental data and combi-
natorics analysis,” Tech. Rep., The Large Knowledge Collider
(LarKC), 2009.

[9] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of rec-
ommender algorithms on top-N recommendation tasks,” in
Proceedings of the 4th ACM Recommender Systems Conference
(RecSys ’10), pp. 39-46, ACM, September 2010.

[10] T. Cohen, R. Schvaneveldt, and D. Widdows, “Reflective
Random Indexing and indirect inference: a scalable method
for discovery of implicit connections,” Journal of Biomedical
Informatics, vol. 43, no. 2, pp. 240-256, 2010.

[11] M. Ciesielczyk and A. Szwabe, “RSVD-based dimensionality
reduction for recommender systems,” International Journal of
Machine Learning and Computing, vol. 1, no. 2, pp. 170-175, 2011.

[12] G. Adomavicius and A. Tuzhilin, “Toward the next generation
of recommender systems: a survey of the state-of-the-art and
possible extensions,” IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 6, pp. 734-749, 2005.

[13] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization tech-
niques for recommender systems,” Computer, vol. 42, no. 8, pp.
30-37,2009.

[14] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Analysis of
recommendation algorithms for e-commerce,” in Proceedings of
the 2nd ACM Conference on Electronic Commerce (EC '00), pp.
158-167, 2000.

[15] J. B. Schafer, J. A. Konstan, and J. Riedl, “E-commerce rec-
ommendation applications,” in Applications of Data Mining to
Electronic Commerce, pp. 115-153, Springer, New York, NY, USA,
2001

[16] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl,
“Evaluating collaborative filtering recommender systems,”
ACM Transactions on Information Systems, vol. 22, no. 1, pp. 5-
53,2004.

(17] J. A. Hanley and B. J. McNeil, “The meaning and use of the
area under a receiver operating characteristic (ROC) curve;
Radiology, vol. 143, no. 1, pp. 29-36, 1982.

[18] I. Pitowsky, “Quantum mechanics as a theory of probability,”
in Physical Theory and Its Interpretation, vol. 72 of The Western
Ontario Series in Philosophy of Science, pp. 213-240, Springer,
Dordrecht, The Netherlands, 2006.

Hindawi Publishing Corporation
Scientific Programming

Volume 2015, Article ID 172879, 13 pages
http://dx.doi.org/10.1155/2015/172879

Research Article

Link Prediction Methods and Their Accuracy for Different
Social Networks and Network Metrics

Fei Gao, Katarzyna Musial, Colin Cooper, and Sophia Tsoka

Department of Informatics, School of Natural and Mathematical Sciences, King’s College London,

Strand Campus, London WC2R 2LS, UK

Correspondence should be addressed to Katarzyna Musial; katarzyna.musial@kcl.ac.uk

Received 27 February 2014; Revised 21 November 2014; Accepted 21 November 2014

Academic Editor: Jeftrey C. Carver

Copyright © 2015 Fei Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Currently, we are experiencing a rapid growth of the number of social-based online systems. The availability of the vast amounts of
data gathered in those systems brings new challenges that we face when trying to analyse it. One of the intensively researched topics
is the prediction of social connections between users. Although a lot of effort has been made to develop new prediction approaches,
the existing methods are not comprehensively analysed. In this paper we investigate the correlation between network metrics and
accuracy of different prediction methods. We selected six time-stamped real-world social networks and ten most widely used link
prediction methods. The results of the experiments show that the performance of some methods has a strong correlation with
certain network metrics. We managed to distinguish “prediction friendly” networks, for which most of the prediction methods
give good performance, as well as “prediction unfriendly” networks, for which most of the methods result in high prediction error.
Correlation analysis between network metrics and prediction accuracy of prediction methods may form the basis of a metalearning

system where based on network characteristics it will be able to recommend the right prediction method for a given network.

1. Introduction

Network structures have been studied for many years. First
research in this area can be traced back to 1736 when Euler
defined and solved the Seven Bridges problem of Kénigsberg
[1]. Since then, for a long time, networks have been mainly
studied by mathematicians and this resulted in a very promi-
nent research field known today as the graph theory. There
was not much ground breaking development in the complex
network research area until 1960s, when the Erdos-Renyi
random graph model (ER-model) was introduced [2, 3]. This
is the simplest model of complex network. Due to the fact that
there was a lack of large real-world data, most of the work had
been done on theoretical analysis of phenomena existing in
networked structures (e.g., phase transition).

Over the years data collection techniques have signifi-
cantly improved our ability to store massive and heteroge-
nous network data. During the time when ER-model was
introduced, progress has also been made by sociologists in
researching real-world human relationships [4, 5]. A new
wave of research was set off by Watts and Strogatz who
published a paper about the small-world effect in 1998 [6] and

introduction of the scale-free network model by Barabasi and
Albert one year later [7].

As the accessibility of database systems and Internet is
growing, more and more real-world network datasets are
available. The available information about people and their
activities is much richer and more complex than ever before.
The complex network concept is an abstract form of various
real-world networks, for example, biological networks such
as protein-protein interaction networks, metabolic networks
[8, 9], human networks and disease spread [10-13], scientific
collaboration networks [14, 15], and online social networks
[16-19].

Link prediction in complex network is one of the popular
research topics. Most of the researchers focus on the link
prediction problem [20] which is very valuable for solving
real-world problems. Generally, the prediction problem is
mainly studied from two angles: (i) network structure and
(ii) attributes of nodes and connections. Structure refers
to the way in which nodes that compose the network are
interconnected. It reflects the information about network
topology. Majority of the progress in the area of structure
based prediction has been made by mathematicians and

http://dx.doi.org/10.1155/2015/172879

physicists. Some of the well-known structure based pre-
diction methods are Common Neighbour, Jaccard’s Index,
Adamic/Adar Index, Katz, and so forth (for a review of the
methods please see [21]).

The link prediction problem also has been studied from
the angle of the network attribute information. The attribute
information refers to description of the features of nodes.
Such information is difficult to show directly in the network
graph. It can be for example, done by labelling nodes; for
example, 1 depicts node that represents woman and 2 means
that node represents man. The majority of attribute-based
prediction methods follow a machine learning approach; that
is, they use classification-based methods to make predic-
tions. Widely used methods include Decision Tree, Support
Vector Machine (SVM), and Naive Bayes [22, 23]. In [24-
26], authors report that the performance of link prediction
improves when machine learning approaches are used. How-
ever, this is done using additional network information that
is not always available. We would like to emphasize that, in
our work, we are interested in the methods that only require
the basic network structure information and thus we do not
include machine learning methods in our study.

However, although much effort has been made, there is
still no prominent prediction method that could provide a
satisfactory performance. Thus, there is still a huge research
gap that needs to be addressed.

1.1 Research Motivation. In the realm of network prediction,
many efforts have been done on exploring new prediction
methods that could provide better performance. However,
the methods presented in most of the studies only improve
the prediction result significantly for the network used in the
study. There is a lack of systematic research that would enable
to reveal the reason why the methods are good predictors
when it comes to some of the networks but very bad when
other networks are considered.

This paper addresses this problem, by exploring the cor-
relation between network metrics and prediction accuracy of
different methods. We expect that such approach will enable
to find the reasons why methods performance varies on dif-
ferent networks. Apart from having a further understanding
of the prediction methods, the study is also important as a
theoretical base for developing new prediction methods. This
could be relevant to many subjects. The prediction methods
could help to find the relationships between proteins which
might not be easily observed directly due to the interaction
complexity. For example, new interactions can be inferred
from the existing known interaction networks [27, 28] which
shows a much better performance than prediction purely
by chance. Online market targeting might also benefit from
the network prediction which has already been applied in
real-world industries. For example, Google and Amazon
recommend customers the potential goods and services that
they might be interested in which is a kind of link prediction
that predicts the link between customers and products.

Beyond that, analysis of the link prediction problem in
a time series approach could help researchers gain a better
understanding of the evolution of the networks. Many works
have been done to study the dynamics of complex network

Scientific Programming

[29-31]. The achievement of network prediction analysis
could help explain the mechanism of the network evolution.

1.2. Contributions. The main contribution of our study is
that we look at the link prediction as a time series problem
and systematically analysed the correlation between net-
work metrics and methods accuracy. In addition, in our
experiments, we also find that for some networks, most of
the prediction methods could provide a good performance
while for some other networks, most methods are relatively
powerless. We name them “prediction friendly” networks and
“prediction unfriendly” networks, respectively.

The paper is structured as follows. Section 2 presents
the prediction methods and performance metrics used in
our experiments. Section 3 presents how the dataset were
selected and processed. In Sections 4 and 5 we introduce
the experimental design and present obtained results. We
conclude the paper in Section 6.

2. Link Prediction Problem

Link prediction problem has been extensively studied by
members of the complex network community. Liben-Nowell
and Kleinberg have formalised the link prediction problem in
[20] in the following way.

Let G(V, L) be a network within the time period of G[¢, ;]
where V represents the set of nodes and L represents the set
of links. For the next time period G(t,, t,], the network might
change. The link prediction focuses on how to predict the
evolution of links, that is, how L, , will differ from L, , ;.

Researchers with background in physics and mathematics
usually deal with the problem by focusing on the topology
information of the networks. Researchers with machine
learning and data mining background favour to solve the
problem with considering the nodes’ attribute information.
There are three types of link prediction problems as shown in
Figure 1: we can consider (i) only adding links to the existing
network, (ii) only removing links from the existing structure,
and (iii) both, adding and removing links at the same time.

Adding Links. Adding links (Figure 1(a)) means that in the
next time window a new link will be created between existing
nodes. There can be one or more newly created links.

Removing Links. Removing links (Figure 1(b)) means that the
link will disappear in the next time window. Similar to the
situation when new links are added, one or more links can be
removed in one time step.

Adding and Removing Links. This problem is the combination
of two previously described problems. It means that from one
time window to another both appearance and disappearance
of links can be predicted (Figure 1(c)).

In this research, we will only focus on the first type of
link prediction problem which only aims at predicting the
appearance of links. The main reason for this is that the vast
majority of existing methods for real-world data focus on this
problem, so it means that we have big enough base to perform
correlation analysis.

Scientific Programming

N

»

(a) Adding links

N

\ 4

(b) Removing links

N

»

(c) Adding and removing links

FIGURE 1: Link prediction problems.

2.1. Prediction Methods. We select and present a brief descrip-
tion of ten commonly used prediction methods that use
topology information about networks in the prediction pro-
cess. Throughout this section the symbols x, y denote nodes,
N denotes number of nodes in the network, and k is the
average degree. I'(x) and T'(y) denote the neighbour sets of
these nodes and k, and k,, denote the degree number of node
x and y, respectively.

Common Neighbours. This method is based on the assump-
tion that two nodes with many common neighbours will be
connected in the future. The more common neighbours the
two users have, the higher the probability that a relationship
between them will emerge. As a basic and intuitive method,
Common Neighbours approach is usually used as a baseline
to judge the performance of other methods [17, 20, 21, 40].
The complexity of this method, as introduced in [41], is
O(NK?).

T(x)nT(y)|. 1

Jaccard’s Coefficient. The Jaccard Coeflicient, also known as
Jaccard index or Jaccard similarity coefficient, is a statistic
measure used for comparing similarity of sample sets. It
is usually denoted as J(x, y) where x and y represent two
different nodes in a network. In link prediction, all the
neighbours of a node are treated as a set and the prediction
is done by computing and ranking the similarity of the

neighbour set of each node pair. This method is based on
Common Neighbours method and its complexity is also
O(NK?). The mathematical expression of this method is as
follows [20]:

rx)nT

‘) @)

T(x)uT(y)|

Preferential Attachment. Due to the assumption that the node
with high degree is more likely to get new links [42], pref-
erential attachment was introduced as a prediction method.
The degree of both nodes in a pair needs to be considered
for the prediction. Same as common neighbours, this is also a
basic prediction method which is usually used as a baseline to
measure the performance of other prediction methods. This
method will calculate similarity score for each pair of nodes
within the network rather than only the neighbour of nodes;
thus the complexity of preferential attachment is O(N>k?).
This method can be expressed as

IT (0l * [T (»)]- 3)

Adamic/Adar Index. It was initially designed to measure the
relation between personal home pages. As shown in (4),
the more friends z has, the lower score it will be assigned
to. Thus, the common neighbour of a pair of nodes with
few neighbours contributes more to the Adamic/Adar score
(AA) value than this with large number of relationships.

In real-world social network, it can be interpreted as follows:
if a common acquaintance of two people has more friends,
then it is less likely that he will introduce the two people to
each other than in the case when he has only few friends.
It shows good results in predicting the friendship according
to personal homepage and Wikipedia Collaboration Graph,
but in the experiment of predicting author collaboration, it
shows a poor accuracy prediction [16]. It is another method
that is based on common neighbour; the complexity is also
the O(NK?). It is calculated as

1

I .
zel(x)NI(y) log |I' (2)] (4)

where z is a common neighbour of node x and node y.

Katzg. This method takes lengths of all paths between each
pair of nodes into consideration [43]. According to (5), the
number of paths between node x and node y with length /

(written as |paths§clj>,|) is calculated and then multiplied by a

factor . By summing up all the results for the given two
nodes with path length from 1 to oo, a prediction score
for the pair of nodes (x, y) is obtained. Katz is a prediction
method based on the topology of whole network and thus
its calculation is more complex than other methods in this
section. The complexity is mainly determined by the matrix
inversion operator, which is O(IN %) [41, 44]:

iﬁl . |paths§3 . (5)
1=1

The parameter 3, as shown in (5), is used to adjust the
weight of path with different length. When an extremely small
B is chosen, the longer paths will contribute less to the score
in comparison to shorter ones so that the result will be close
to the common neighbours.

It is one of the prediction methods that, as it will be
shown in further sections, achieves high prediction accuracy
in many experiments.

Cosine Similarity. The idea of this method is based on the dot
product of two vectors. It is often used to compare documents
in text mining [21]. In network prediction problem, this
method is expressed as

LT ()]
It GO« ()]
For each pair of nodes with common neighbours, this method

will perform a vector multiplication and thus the complexity
is O(NK?).

(6)

Sorensen Index. This index [45] is designed for comparing
the similarity of two samples and originally used in analysis
plant sociology. The complexity of this method is O(Nk?). It
is defined as

2|F(x)ﬂf(y)l.

Kk, @

Scientific Programming

Hub Promoted Index. HPI is proposed for analysing metabolic
networks as shown in [46]. The property of this index is
that the links adjacent to hubs are likely to obtain a higher
similarity score. The complexity of the method is O(Nk?). It
is expressed as

ICx)NT(y)

min {kx,ky} . ®)

Hub Depressed Index. Approach that uses the idea of hub in
totally different manner than HPI is Hub Depressed Index
(HDI). It gives links adjacent to hub a lower score. Its
complexity is the same as Hub Promoted Index, O(N k). 1t
is defined as

It (x)NT(y)]

max {kx,ky} . ©)

Leicht-Holme-Newman Index. LHNI [47] was proposed to
quantify the similarity of nodes in networks. It is based on
the concept that two nodes are similar if their immediate
neighbours in the network are themselves similar. As another
common neighbour based method, its complexity is O(N k).
It is defined as

INCLINCY
—_—. (10)
ky =k,
All of the methods presented in this section are following
similar approach. The required input for each method is the
adjacency matrix that represents a network in which there
are only 0 and 1 (0 when there is no link between two given
nodes and 1 when the links between two given nodes exist).
The output of each method is a similarity matrix in which
each element represents the similarity score of a pair of nodes
within the network and it is calculated according to the
equation used in a given method.

2.2. Prediction Performance Metrics. In order to measure
the performance of a prediction method, we need to use
historical network data. Link prediction is a time related
activity; therefore, we should use time-stamped dataset, and
according to the time stamp, separate the data into two
sets, G;, (V,L;) as training set for prediction methods and
G, 1,(V,L,) as unknown future network for testing where
t < t; < t,. Those two networks must consist of the same set
of nodes V. The number of possible links that is denoted by U
is [V] = (V] = 1)/2. The link prediction method, in principle,
provides a similarity score for each nonexisting link (U — L)
and for most methods, a higher score means higher likelihood
that the link will appear in the future. Final prediction is done
by ordering this score list and selecting top N links with the
highest score.

In our work, AUC is used for quantifying the accuracy of
prediction method. It is the area under the receiver operating
characteristic curve [48]. In the context of network link
prediction, AUC can be interpreted as the probability that a

Scientific Programming 5

TABLE 1: Original dataset information.

Dataset name Time range Vertices Edges
Enron E-mail Communication® 1998/11-2002/07 87,273 1,148,072
Facebook Wall Posts” 2008/01-2009/01 63,731 1,269,502
Flickr Friendship* 2006/11-2007/05 2,302,925 33,140,018
PWr E-mail Communication’ 2008/11-2009/05 14,316 49,950
UC Irvine Messages® 2004/03-2004/10 1,899 59,835
YouTube Friendship® 2006/12-2007/07 3,223,589 12,223,774

This table shows the original information about the datasets used in the experiments.

*The Email network among employees of Enron. Nodes in the network are individual employees and edges are individual emails [32].

The wall posts from the Facebook New Orleans networks [33].

“The social network of Flickr users and their friendship connections. It is collected by taking a snapshot of the network on November 2, 2006, and recording
it daily until December 3, 2006, and then again daily between February 3, 2007, and May 18, 2007 [34, 35].

4The Email Communication of Wroctaw University of Technology [36].

“The network contains messages sent between the users of an online community of students from the University of California, Irvine. A node represents a user.
An edge represents sent message. Multiple edges denote multiple messages [37].

fThe social network of YouTube users and their friendship connections between December 10, 2006, and January 15, 2007, and again daily between February

8, 2007, and July 23, 2007 [38, 39].

randomly chosen missing link (L, UL, —L,) is given a higher
similarity score than a randomly chosen pair of unconnected
links (U - (L, U L,)) [49]. The algorithmic implementation
of AUC follows the approach in [21]. It is calculated as

n +0.51"
n

; (11)

where 7 is the number of times that we randomly pick a pair
of links from missing links set and unconnected links set;
n' is the number of times that the missing link got a higher
score than unconnected link, while n” is the number of times
when they are equal. The AUC value will be 0.5 if the score
is generated from an independent and identical distribution.
Thus, the degree to which the AUC exceeds 0.5 indicates how
much better the predictions are when compared to prediction
by chance.

3. Data Preparation

All six datasets used in experiments are real-world social
networks, five of them come from Koblenz Network Col-
lection (KONECT [50]) and another one from the Wroclaw
University of Technology (see Table 1).

3.1. Dataset Selection. Datasets for the experiments have to
meet certain requirements: (i) they have to represent data
about users’ interactions or any other type of activity that
enables to define connections between users and (ii) those
activities have to be time stamped. As described in Section 2,
the link prediction problem is a time series problem that looks
into the evolution of networks in time. Time-stamp is thus
necessary. Table 1 shows the original dataset information that
was selected based on these two criteria.

3.2. Data Processing. 'To make the data suitable for the experi-
ments, first the preprocessing of datasets has been performed.
It consists of the following three steps.

(1) Select Data Samples. For each dataset, we first ran-
domly select 6000-8000 user records (8000 samples
are selected due to the calculation capacity. As for
some dense networks, 8000 nodes are also too big,
so we choose 6000) from the original dataset as the
sample user data. As UC Irvine Messages only contain
1899 users, so we leave them as they are. The specific
sample numbers are shown in Table 2.

(2) Split the Data into Training and Testing Sets. Predic-
tion in a time series problem means the dataset should
be divided into train and test sets based on time
stamps available. As the dataset of Flickr and YouTube
are collected by taking snapshot of the network which
is different from other four datasets, we take the first
day snapshot as the training set and the remaining
data as the test set. The other four networks are split
according to the time scale with a ratio of approximate
training time: test time = 80%:20% as shown in
Table 2.

(3) Extract Connected Network. Dividing data into train-
ing and testing sets can cause the isolation of some
nodes or cliques. This, in turn, generates noise for
measuring the accuracy of prediction methods as the
methods we selected can not predict unconnected
nodes. To eliminate the impact of this noise, we
extract the giant component from training dataset
as our final training set G, (V,L,). The final test
set G, , (V,L,) is obtained by extracting the network
with all the nodes that exist in G, (V,L;) from the
original test set obtained from step (2). For nodes
existing in the final training set but not present in the
original test set, we just keep and leave them isolated
in the final test set as it is formed by link disappearing.

After all, we get the train set G,, (V,L;) and test set
G, +,(V; L,) as described in Section 2.2 where both sets have
the same nodes V.

Scientific Programming

TABLE 2: Dataset details.

Dataset name Train time range Test time range Sample Final

nodes nodes
Enron E-mail Communication 1998/11-2001/12 2002/01-2002/07 8000 5208
Facebook Wall Posts 2008/01-2008/11 2008/12-2009/01 8000 5784

. . . 2006/11/03-2006/12/03 &

Flickr Friendship Snapshot on 2006/11/02 2007/02/03-2007/05/18 6000 5949
PWr E-mail Communication 2008/11-2009/04 2009/04-2009/05 8000 5208
UC Irvine Messages 2004/03-2004/08 2004/08-2004/10 1899 1666
YouTube Friendship Snapshot on 2006/12/10 2006/12/11-2007/01/15 & 6000 6000

2007/02/08-2007/07/23

The time range of train and test set, the number of sample nodes selected from the original dataset and number of nodes in the giant component which are

used as the final nodes set for the experiment are presented in the table.

4. Experimental Design

In order to be able to apply all selected methods and taking
into account the types of datasets available, the network is
represented as a binary unweighted network. This enables
us to reach a consistent and comprehensive review of the
existing methods.

First, the prediction methods described in Section 2.1
will be applied to each of the processed training sets to get
the similarity matrix as the prediction result. The prediction
results will be then evaluated using the testing set and the
AUC for each method will be calculated.

For the implementation of those methods, we applied the
toolbox that is presented in [21] and all the experiments were
implemented in Matlab.

As stated before, the main goal of the research is to
explore the correlations between the accuracy of different
prediction methods and network metrics. For the training
set of each network, the network metrics are calculated with
toolboxes provided by KONECT [50] and MIT Strategic
Engineering research group. The metrics we calculate include
the following.

Global Clustering Coefficient. It is defined in [51] as

3 % number of triangles in the network

GCC = (12)

Number of connected triples of vertices’

It shows the transitivity of the network as a whole. The
coefficient range is between 0 and L.

Average Clustering Coefficient [6]. It is based on local cluster-
ing C;. For each vertex J, its local clustering coeflicient can be
calculated by

_ Number of triples connected to vertex [

= 13
'~ Number of triples centered on vertex I (13
and then the ACC can be calculated as
1
ACC = ;ch, (14)
1

where v is the number of nodes in a network.

Network Density. The ratio between number of existing links
and number all possible links within a given network.
Number of Existing Links

Network Density = » (15
erwork HENSIY = Number of all possible links 5)
where
-1
Number of all possible links = %, (16)

where v is the number of nodes in the network.

Gini Coefficient [52]. I the network theory Gini coeflicient is

defined as

_23id n+1
ny! d; n’

where d; < d, < d; <--- < d, is the sorted list of degrees

in the network and # is the number of nodes in a network.

Its value is between 0 and 1, where 0 denotes total equality
between degrees and 1 denotes dominance of single node.

G (17)

Diameter. It is the longest path out of the set of all shortest
paths in the network.

Diameter = maxd (i, j), (18)
ij

where d(3, j) is the shortest path between node i and j.

Average Shortest Path. The average number of the shortest
paths between each pair of vertices is

1 .
ASP = ——— D -ﬂgjd (i, j) - (19)

Once the accuracy of prediction for each method and the
metrics for each network are calculated, the correlation
between them will be analysed. The Pearson’s Coeflicient
[53] is used to measure the correlation between accuracy of
network prediction method and selected network metrics. It
is a widely used statistic method to measure linear correlation
between two variables, say W and Z. It is calculated as

Z?:l (W B W) (Z B 2)

VL (-)\ (2 7

(20)

Scientific Programming

TABLE 3: Theoretical GCC and ASP of random, real, and regular
network.

Random network YouTube Regular network
Nodes 6,000 6,000 6,000
Links 54,596 54,596 54,596
GCC 0.0030 0.0286 0.7064
ASP 2.9983 3.0709 164.8500
UC Irvine
Nodes 1,666 1,666 1,666
Links 11,582 11,582 11,582
GCC 0.00835 0.0197 0.6919
ASP 2.8186 3.0463 59.9108
PWr
Nodes 6,335 6,335 6,335
Links 15,334 15,334 15,334
GCC 0.0008 0.0048 0.5547
ASP 5.5499 4.0162 654.3060
Flickr
Nodes 5,949 5,949 5,949
Links 387,719 387,719 387,719
GCC 0.0219 0.0658 0.7442
ASP 1.7845 2.3447 22.8198
Facebook
Nodes 5,784 5,784 5,784
Links 14,507 14,507 14,507
GCC 0.0009 0.0341 0.5633
ASP 5.3717 5.7235 576.5205
Enron

Nodes 5208 5208 5208
Links 23977 23977 23977
GCC 0.0018 0.0290 0.6586
ASP 3.8548 3.6818 282.8037

The coefficient value is between —1 and 1 where —1 means
that two variables are negatively linearly correlated and 1
means that they are positively linearly correlated.

5. Experiment Result

5.1. Network Profiles. The values of network metrics for each
of the extracted social networks are presented in Table 5. As
it is much easier to set up relationship between people in
online social network than in real-world network, the average
shortest paths in our experiments are all smaller than six,
the number suggested by the six degrees of separation theory
[54]. The average shortest path of the six selected networks is
3.65. This reflects the small-world property of the networks.
People are closer to each other in online social networks than
in face-to-face networks. This phenomenon was also pointed
outin [55] where authors established that the average shortest
path of Twitter is 3.43.

The degree distributions of the six networks, shown in
Figure 3, indicate that they are scale-free networks as the
distributions follow the power law.

TABLE 4: Analytical formulas for GCC and ASP in random and
regular networks.

Random network Regular network

k 3(k-2)
GCC -
v 4(k—-1)
logv v
ASP s
logk 2k

k is the average degree and v is the number of nodes in the network.

— 1000
=18}

i)

=

g 4 100
g

-

2

3 {10
(5]

oo

5

= : : : 1
0.0001 0.001 0.01 0.1 1

Clustering coefficient (log)

—e— Enron
—o— YouTube
Flickr

—e— UCIrvine
—eo— PWr
Facebook

= Random network
e Real network
» Regular network

FIGURE 2: GCC and ASP calculated for six analysed networks (circle)
and corresponding random (square) and regular (triangle) networks
generated using the same number of nodes and connections as
in real-world networks. Different colours depict different networks
and corresponding random and regular networks—see legend. For
example green circle is a datapoint for Facebook network, green
square is a datapoint for random network corresponding to Face-
book network and green triangle is a datapoint for regular network
corresponding to Facebook network.

We also compared the GCC and ASP metrics of the real
network with the theoretical metrics of random network and
regular network that have the same number of nodes and
links. The analytical formulas for GCC and ASP in random
and regular networks with a given number of nodes and
links are given in Table 4. The results of calculations for each
analysed network are presented in Table 3.

Figure 2 plots the metrics of six analysed networks
and related theoretical networks, respectively. It shows that
the clustering coeflicients of the analysed networks are all
between random and regular networks. Meanwhile, the
average shortest paths of real-world networks are all very
close to the random networks. This two phenomena indicate
the small-world property of analysed structures. Taking into
account both metrics and node degree distribution, it can be
concluded that those networks are a combination of small-
world and scale-free networks.

5.2. Prediction Results. The prediction results are sum-
marised in Table 6. Katz method achieved the best average
performance and the overall performance is ranked as Katz >
Preferential Attachment > Adamic-Adar > Common Neigh-
bours > Cosine Similarity > Jaccard Index > Hub Depressed

10° . .
*
—1 L i
10 *
*
* %
*
%\f’ 10_2 F %% E
TR
K
107 F = 1
WeRK * K
¥ JoEEE N
HOMHON: AUMINIENNE: > BeicHc
1074 - ;
10° 10! 10° 10°
k (deg)
(a) Enron®
10° " " .
10*
k (deg)
(c) Flickr®
10° ; .
S i
10 %
*
Fopdt
e R
E’ 1072 F K ¥k E
2. T
* *
L3 -)Hé**
e Fok-oMek
107 F HeE kK _
He Aol DENIEHIE NI N ¥
107 . .
10° 10! 10 10°
k (deg)
* Degree

(e) UC Irvine®

Scientific Programming

10° .
0 M
107 * i
*
**
*
** .
o *
X 1072} i
o ***;k
P
*
3 #*
107° F * i
e K
Eo S
* Mok
Mok Mk K K
107 :
10° 10! 10
k (deg)
(b) Facebook”
10° . . .
*
U 1
*
*
*
**
2 02 &
& 10 %
*
';
ko
1073k F .
e’
ok
* Mk * %
¥ HETRNONONE SHOMMOK % * * ¥
1074 " L L
10° 10 10 10° 10*
k (deg)
(d) pwrd
10° . . .
107 * . i

— #*
= a2 J
= 10 A
Lo 2]
LR X R
E - BT X R
1074 " L L
10° 10! 10 10° 10*

k (deg)
* Degree

f) YouTube'

FIGURE 3: The Degree distributions. The degree distributions are all following the power law with exponent of *Enron, r = 1.85; "Facebook, r
= 1.82; “Flickr, r = 1.25; “PWr, r = 2.19; °UC Irvine, r = 1.56; ' YouTube, r = 1.56.

Scientific Programming

TABLE 5: Network metrics results.

Datasets GCC ACC Network density Gini Coeflicient Diameter Ave. shortest path
Facebook 0.0341 0.1176 0.0008674 0.473 16 5.7235
Flickr 0.0658 0.3294 0.0219 0.5931 6 2.3447
UC Irvine 0.0197 0.1075 0.0084 0.6394 7 3.0463
PWr 0.0048 0.2666 0.00076 0.6407 16 4.0162
Enron 0.029 0.1946 0.0018 0.7172 10 3.6818
YouTube 0.0286 0.2838 0.003 0.7222 5 3.0709
TABLE 6: Prediction methods accuracy result (AUC).

Datasets AUC

CN JI PA AA Katz ﬁa Cosin Sor HPI HDI LHN
Facebook 0.6688 0.6758 0.6803 0.6753 0.8369 0.6738 0.6715 0.6708 0.6694 0.6694
Flickr 0.89 0.8702 0.841 0.8922 0.8839 0.8812 0.865 0.844 0.8511 0.6944
UC Irvine 0.6625 0.6421 0.8412 0.6738 0.8048 0.6414 0.6359 0.6303 0.6427 0.6322
PWr 0.6815 0.6466 0.7924 0.6913 0.7979 0.651 0.6514 0.6422 0.6491 0.6382
Enron 0.8157 0.7937 0.9015 0.8196 0.9312 0.7921 0.7995 0.794 0.7977 0.7881
YouTube 0.8525 0.7957 0.9109 0.8571 0.9157 0.7938 0.7503 0.8017 0.7984 0.7587
Average 0.7618 0.7374 0.8279 0.7682 0.8617 0.7389 0.7289 0.7305 0.7374 0.6968
Variance 0.0105 0.0091 0.0071 0.0099 0.0032 0.0095 0.0084 0.0087 0.0083 0.0041

The accuracy of selected prediction methods measured by AUC. The average performance and the variance for each method are also listed.

In our experiment, we choose f3 = 0.0005.

Index > Hub Promoted Index > Serensen > Leicht-Holme-
Newman Index. By comparing the variance of each method,
we find that the Katz also provides the most stable prediction
performance among those methods while Common Neigh-
bours is the worst performing approach. Overall, we find that
Katz and preferential attachment provide good prediction
accuracy together with a relative stability.

To study the prediction results from the perspective of
each network please see Figure 4. The prediction results
of different methods align on the vertical lines for each
network, respectively. From this figure, we find that, for some
networks, most of the prediction methods could provide a
good prediction result. Such networks include Flickr, Enron,
and YouTube. We call this type of networks the “prediction
friendly” network. Apart from this type of network, there
are also some networks for which most of the prediction
approaches provide fairly low accuracy, such as Facebook, UC
Irvine, and PWr. Similarly, we call those networks “prediction
unfriendly” networks. Please note that, in the experiments,
for both prediction friendly and unfriendly networks, Katz,
always provides a good performance level.

5.3. Correlation between Prediction Accuracy and Network
Metrics. Table 7 shows Pearson’s linear correlation coefficient
of prediction accuracy and network metrics. The closer
the absolute value to 1, the higher the correlation between
analysed factors. Figure 5 presents a heat-map plot to show
the degree of linear relation between the two factors where we
use the absolute value of Pearson’s Coeflicient. The brighter
the colour in the heat-map is, the stronger a given network
metric and the accuracy of prediction method are correlated.

0.95
®
0.9 ‘ : ’
L °
) 0.85 . s
8 . . ®
L []
2 08 ¢ ' (]
0.75 | 4
0.7t : , : :
§ ®
0.65 |+ . .
s
Facebook Flickr UCI PWr Enron Youtube
Network name
CN e Cosin
e JI e Sor
PA e HPI
e AA e HDI
o Katz e LHN

FIGURE 4: The AUC prediction results for each network.

In Figure 5, we can see that the preferential attachment
and Gini Coeflicient provide the highest correlation coeffi-
cient (0.94) which indicates that they generally follow a linear
relationship. This is not a surprise. For a network with a high
Gini Coefficient, there exist some nodes with dominant high

10

Scientific Programming

Network metrics

GCC
ACC
Network density
Gini
Diameter
Ave. shortest path -

0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

CN JI PA AA

Katz

Cosin ~ Sor HPI HDI LHN

Prediction methods

FIGURE 5: Heat-map of network metrics and prediction methods correlation. As for the Pearson Coefficient, both 1 and -1 stand for linear
relationship (positive and negative); we use the absolute value of correlation coefficient in this figure to indicate whether the two factors are

linearly correlated.

TABLE 7: Pearson Correlation of prediction methods accuracy and network metrics.

CN JI PA AA Katzg Cosine Sor HPI HDI LHN Average
GCC 0.68 0.79 0.05 0.68 0.47 0.80 0.81 0.73 0.74 0.27 0.60
ACC 0.75 0.68 0.43 0.76 0.39 0.70 0.65 0.67 0.68 0.30 0.60
Network Density ~ 0.52 0.58 0.18 0.52 0.09 0.61 0.61 0.48 0.52 -0.12 0.40
Gini 0.45 0.30 0.94 0.46 0.49 0.29 0.25 0.36 0.37 0.57 0.45
Diameter -0.67 -0.61 -0.77 -0.68 -0.51 -0.61 -0.52 -0.61 -0.63 -0.39 -0.60
ASP -0.63 -0.55 -0.79 -0.65 -0.29 -0.57 -0.52 -0.52 -0.56 -0.18 -0.53

This table shows the correlation between prediction methods accuracy and network metrics calculated with Pearson’s linear correlation coefficient. The number
is within the range of [-1, 1] where 1 is completely positive correlation, 0 is no correlation, and —1 is completely negative correlation.

TABLE 8: Metrics rank of networks.

Dataset GCC ACC Diameter ASP Ave. rank
PWr 6 3 5 5 4.75
Facebook 2 5 5 6 4.5
UC Irvine 5 6 3 2 4
Enron 3 4 4 4 3.75
YouTube 4 2 1 3 2.5
Flickr 1 1 2 1 1.25

degrees. It just reflects the phenomenon of “rich get richer”
which is also the assumption of preferential attachment
method. So we can say that preferential attachment could lead
to a high Gini Coefficient and thus Preferential Attachment,
on the other hand, could also describe how a network with
high Gini Coeflicient evolves by giving a better prediction
result.

Cosine-GCC and Sor-GCC also provide a correlation
coeflicient above 0.8. We can draw the conclusion that Cosine
Similarity and Sorensen Index method perform better in a
network with higher GCC than they do in networks with
smaller GCC.

The diameter and average shortest path shows a negative
linear relation to almost all of the prediction methods
(excluding Katz and LHN where the negative correlation
is weak). Both the average shortest path and the network

diameter reflect how easy it is to get from one node in
a network to another one. Shorter path as well as smaller
diameter means a higher probability that a pair of randomly
picked nodes will be connected. Negative correlation between
those two metrics and prediction accuracies of different
methods means that most of the methods work well in
the situations where networks feature short ASP and in
consequence small Diameter. This is additionally supported
by the fact that global clustering coefficient is positively
correlated with those of the prediction methods meaning that
these methods work well with networks with high clustering
coefficient. Based on the above we can say that prediction
methods positively correlated with GCC and negatively with
ASP and diameter will work well in the situation where
analysed network is of small-world type. In the same time
they will work neither in random networks where GCC is
very low nor in regular networks where ASP is very long.

It should be clear that the Pearson’s Coefficient does not
indicate the accuracy of the method. For example, although
the prediction method Katz does not show strong correlation
to any of the network metrics, it still provides the best result in
our experiments. The reason can be found in Table 6, where it
is shown that Katz always provides a high prediction accuracy
regardless of the tested network metrics.

The most important value of our correlation study lies in
the variety of prediction methods used in the experiments.
The prediction with methods combination could be a way to

Scientific Programming

improve accuracy and this will be investigated in the future.
The correlation between methods and network metrics could
be used to determine the weight of different prediction
methods in the combination process.

5.4. Prediction Friendly and Unfriendly Networks. Table 7
also shows the average correlation of network metrics and
prediction accuracy. As we know the closer the absolute
value of correlation to 1, the stronger the linear relation.
Here we take 0.5 as a threshold for strong correlation.
According to this, we find that there are four metrics strongly
correlated with the prediction accuracy which includes GCC,
ACC, Diameter, and ASP. So it is reasonable to assume
that these metrics could be used to classify the prediction
friendly and unfriendly networks. We ranked each of the
analysed networks according to the metrics that have strong
correlation with prediction accuracy and based on this for
each network we calculate the average ranking (Table 8).
Top three ranked networks (with the small average ranks)
are the prediction friendly networks and the other three
are prediction unfriendly networks. It can be seen that the
prediction friendly networks usually have large global and
local clustering coefficient, a short average shortest path, and
small diameter. It suggests that networks with the structural
profile similar to small-world network are easier to predict
than networks similar to random structures.

6. Conclusions

In this research, we look into the correlation between ten
prediction methods and different network metrics in six
time-stamped social networks. The study of network metrics
confirmed that the node degree distribution of real-world
social networks follows a power law distribution. We also
found that the average shortest path of online social network
is much smaller than six. This might be due to the fact that
online relationships are much easier to setup. The results of
the prediction accuracy show that the best method among
the tested ones is Katzg. It is also the most stable technique
from all tested ones. preferential attachment is the second
best method that also provides a good prediction accuracy.
In addition, for some “prediction friendly” networks, most of
prediction methods could provide a good performance while
for some others, called in here as “prediction unfriendly”
networks, most prediction methods are lack of power.

The Pearson correlation coefficient enabled us to investi-
gate the relationship between network metrics and prediction
accuracy. Our research showed that some methods are highly
correlated with certain network metrics (e.g., PA-Gini, Sor-
GCC, and Cosine-Gcc).

There are several further directions of the presented study.
As discovered, for some networks, most prediction methods
could provide a good performance which we name them as
“prediction friendly networks” Similarly, we also find the
existence of “prediction unfriendly” networks. Section 5.4
explores the prediction friendly and unfriendly network
classification according to the metrics ranking. The problem
is that it does not provide an exact threshold that could be
used to classify networks. It is out of scope of this research

1

but is a very interesting topic for another study that we plan
to conduct.

Based on the results of correlation between network
metrics and the prediction accuracy, another possible work
is to develop a new prediction approach which combines
several existing methods. We can also extend this research to
many other networks, not only social ones, which might be
good for finding some more general relations.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] N. L. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory, New
York, NY, USA, The Clarendon Press, 2nd edition, 1986.

[2] P. Erdés and A. Rényi, “On random graphs. I, Publicationes
Mathematicae Debrecen, vol. 6, pp. 290-297, 1959.

[3] P. Erdds and A. Rényi, “On the evolution of random graphs,’
Publications of the Mathematical Institute of the Hungarian
Academy of Sciences, vol. 5, pp. 17-61, 1960.

[4] J. Travers and S. Milgram, “An experimental study of the small
world problem,” Sociometry, vol. 32, no. 4, pp. 425-443, 1969.

[5] S. Milgram, “The small world problem,” Psychology Today, vol.
2, pp. 6067, 1967.

[6] D.J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’ networks,” Nature, vol. 393, no. 6684, pp. 440-442, 1998.

[7] A.-L. Barabdsi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509-512, 1999.

[8] H. Jeong, S. P. Mason, A.-L. Barabdsi, and Z. N. Oltvai,
“Lethality and centrality in protein networks,” Nature, vol. 411,
no. 6833, pp. 41-42, 2001.

[9] A.D. King, N. Przulj, and L. Jurisica, “Protein complex predic-
tion via cost-based clustering,” Bioinformatics, vol. 20, no. 17, pp.
3013-3020, 2004.

[10] R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in
scale-free networks,” Physical Review Letters, vol. 86, no. 14, pp.
3200-3203, 2001.

[11] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, “Epi-
demic spreading in real networks: an eigenvalue viewpoint,”
in Proceedings of the 22nd International Symposium on Reliable
Distributed Systems (SRDS "03), pp. 25-34, October 2003.

[12] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Falout-
sos, “Epidemic thresholds in real networks,” ACM Transactions
on Information and System Security, vol. 10, no. 4, article 1, 26
pages, 2008.

[13] N. A. Christakis and J. H. Fowler, “The spread of obesity in a
large social network over 32 years,” The New England Journal of
Medicine, vol. 357, no. 4, pp. 370-379, 2007.

[14] Z. Huang, X. Li, and H. Chen, “Link prediction approach to
collaborative filtering,” in Proceedings of the 5th ACM/IEEE Joint
Conference on Digital Libraries (JCDL °05), pp. 141-142, ACM,
New York, NY, USA, June 2005.

(15] E Molnar, “Link prediction analysis in the Wikipedia Col-
laboration graph,” 2011, http://www.cs.rpi.edu/ magdon/cours-
es/casp/projects/Molnar.pdf.

[16] L. A. Adamic and E. Adar, “Friends and neighbors on the Web,”
Social Networks, vol. 25, no. 3, pp. 211-230, 2003.

12

[17] W. Cukierski, B. Hamner, and B. Yang, “Graph-based features
for supervised link prediction,” in Proceedings of the Interna-
tional Joint Conference on Neural Network (IJCNN ’11), pp. 1237-
1244, August 2011.

[18] M. Fire, L. Tenenboim, O. Lesser, R. Puzis, L. Rokach, and
Y. Elovici, “Link prediction in social networks using compu-
tationally efficient topological features,” in Proceedings of the
IEEE International Conference on Privacy, Security, Risk and
Trust (PASSAT ’11) and IEEE International Conference on Social
Computing (SocialCom ’I1), pp. 73-80, Boston, Mass, USA,
October 2011.

[19] K. Juszczyszyn, K. Musial, and M. Budka, “Link prediction
based on Subgraph evolution in dynamic social networks,” in
Proceedings of the IEEE International Conference on Privacy,
Security, Risk and Trust (PASSAT ’11) and IEEE International
Conference on Social Computing (SocialCom ’11), pp. 27-34,
October 2011.

[20] D.Liben-Nowell and J. Kleinberg, “The link prediction problem
for social networks,” in Proceedings of the 12th ACM Interna-
tional Conference on Information and Knowledge Management
(CIKM °03), pp. 556-559, ACM, New York, NY, USA, November
2003.

[21] L. Li and T. Zhou, “Link prediction in complex networks: a
survey, Physica A: Statistical Mechanics and Its Applications, vol.
390, no. 6, pp. 1150-1170, 2011.

[22] O. J. Mengshoel, R. Desai, A. Chen, and B. Tran, “Will we
connect again? Machine learning for link prediction in mobile
social networks,” 2013.

[23] Z. Liu, Q-M. Zhang, L. Lii, and T. Zhou, “Link prediction
in complex networks: a local naive Bayes model,” Europhysics
Letters, vol. 96, no. 4, Article ID 48007, 2011.

[24] R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla, “New
perspectives and methods in link prediction,” in Proceedings of
the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining(KDD ’10), pp. 243-252, New York,
NY, USA, July 2010.

[25] K. Yu, W. Chu, S. Yu, V. Tresp, and Z. Xu, “Stochastic relational
models for discriminative link prediction,” in Advances in
Neural Information Processing Systems, pp. 333-340, MIT Press,
Boston, Mass, USA, 2007.

[26] M. Al Hasan, V. Chaoji, S. Salem, and Z. Mohammed, “Link
prediction using supervised learning;” in Proceedings of the
SDM 6th workshop on Link Analysis, Counterterrorism and
Security, 2006.

[27] X.-W. Chen and M. Liu, “Prediction of protein-protein interac-
tions using random decision forest framework,” Bioinformatics,
vol. 21, no. 24, pp. 4394-4400, 2005.

[28] P. Aloy and R. B. Russell, “InterPreTS: protein interaction
predictionthrough tertiary structure;” Bioinformatics, vol. 19, no.
1, pp. 161-162, 2003.

[29] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U.
Hwang, “Complex networks: structure and dynamics,” Physics
Reports: A Review Section of Physics Letters, vol. 424, no. 4-5,
pp. 175-308, 2006.

[30] M.Budka, K. Juszczyszyn, K. Musial, and A. Musial, “Molecular
model of dynamic social network based on e-mail communica-
tion,” Social Network Analysis and Mining, vol. 3, no. 3, pp. 543—
563, 2013.

[31] C.Guido, A. Chessa, I. Crimaldi, and FE. Pammolli, The Evolution
of Complex Networks: A New Framework, 2012.

[32] B. Klimt and Y. Yang, “The Enron corpus: a new dataset
for email classification research,” in Proceedings of the 15th

(33]

(34]

(37]

(38]

[41]

(42]

(43]

[44]

[45]

(50]

Scientific Programming

European Conference on Machine Learning (ECML 04), pp. 217-
226, September 2004.

B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
evolution of user interaction in Facebook,” in Proceedings of the
2nd ACM SIGCOMM Workshop on Online Social Networks, pp.
37-42, Barcelona, Spain, August 2009.

A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee, “Growth of the Flickr social network,” in
Proceedings of the Workshop on Online Social Networks, pp. 25—
30, 2008.

A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee, “Growth of the flickr social network,” in
Proceedings of the Ist ACM SIGCOMM Workshop on Social
Networks (WOSN °08), pp. 25-30, ACM, August 2008.

P. Kazienko, K. Musial, and A. Zgrzywa, “Evaluation of node
position based on email communication,” Control and Cyber-
netics, vol. 38, no. 1, pp. 67-86, 20009.

T. Opsahl, “Triadic closure in two-mode networks: redefining
the global and local clustering coeflicients,” Social Networks, vol.
35, no. 2, pp. 159-167, 2013.

A. Mislove, Online social networks: measurement, analysis, and
applications to distributed information systems [Ph.D. thesis],
Rice University, 2009.

A. Mislove, Online social networks: measurement, analysis, and
applications to distributed information systems [Ph.D. thesis],
Department of Computer Science, Rice University, 2009.

H. R. de Saand R. B. C. Prudencio, “Supervised link prediction
in weighted networks,” in Proceedings of the International Joint
Conference on Neural Networks (IJCNN ’I1), pp. 2281-2288,
August 2011.

L. Li, C.-H. Jin, and T. Zhou, “Similarity index based on local
paths for link prediction of complex networks,” Physical Review
E, vol. 80, Article ID 046122, 2009.

M. E. J. Newman, “Clustering and preferential attachment in
growing networks,” Physical Review E, vol. 64, no. 2, Article ID
025102, 2001.

L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, vol. 18, no. 1, pp. 39-43, 1953.

G. H. Golub and C. E Van Loan, Matrix Computations, Johns
Hopkins Studies in the Mathematical Sciences, Johns Hopkins
University Press, Baltimore, Md, USA, 3rd edition, 1996.

T. Serensen, A Method of Establishing Groups of Equal Ampli-
tude in Plants Ociology Based on Similarity of Species and Its
Application to Analyses of The Vegetation on Danish Commons,
vol. 5 of Biologiske Skrifter, E. Munksgaard, 1948.

E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L.
Barabdsi, “Hierarchical organization of modularity in metabolic
networks,” Science, vol. 297, no. 5586, pp. 1551-1555, 2002.

E. A. Leicht, P. Holme, and M. E. . Newman, “Vertex similarity
in networks,” Physical Review E, vol. 73, no. 2, Article ID 026120,
2006.

J. A. Hanley and B. J. McNeil, “The meaning and use of the
area under a receiver operating characteristic (ROC) curve,
Radiology, vol. 143, no. 1, pp. 29-36, 1982.

A. Clauset, C. Moore, and M. E. J. Newman, “Hierarchical
structure and the prediction of missing links in networks,”
Nature, vol. 453, no. 7191, pp. 98-101, 2008.

J. Kunegis, “KONECT—the koblenz network collection,” in
Proceedings of the 22nd International Conference on World Wide
Web (WWW ’I3), pp. 1343-1350, May 2013.

Scientific Programming

[51] M. E. Newman, “The structure and function of complex
networks,” SIAM Review, vol. 45, no. 2, pp. 167-256, 2003.

[52] J. Kunegis and J. Preusse, “Fairness on the Web: Alternatives
to the power law;” in Proceedings of the 3rd Annual ACM Web
Science Conference (WebSci ’2), pp. 175-184, June 2012.

[53] J. L. Rodgers and A. W. Nicewander, “Thirteen ways to look at
the correlation coefficient,” The American Statistician, vol. 42,
no. 1, pp. 59-66, 1988.

[54] M. E. J. Newman, A. L. Barabdsi, and D.]J. Watts, Eds., The
Structure and Dynamics of Networks, Princeton Studies in
Complexity, Princeton University Press, Princeton, NJ, USA,
2006.

[55] R. Bakhshandeh, M. Samadi, Z. Azimifar, and J. Schaeffer,
“Degrees of separation in social networks,” in Proceedings of
the 4th International Symposium on Combinatorial Search (SoCS
’11), pp. 18-23, July 2011

13

Hindawi Publishing Corporation
Scientific Programming

Volume 2015, Article ID 602690, 10 pages
http://dx.doi.org/10.1155/2015/602690

Research Article

A Community-Based Approach for Link Prediction in

Signed Social Networks

Saeed Reza Shahriary,1 Mohsen Shahriari,” and Rafidah MD Noor'

'Department of Computer System & Technology, Faculty of Computer Science & Information Technology, University of Malaya,

50603 Kuala Lumpur, Malaysia

2Advanced Community and Information System, RWTH Aachen University, AhornstrafSe 55, 52056 Aachen, Germany

Correspondence should be addressed to Saeed Reza Shahriary; shahriarysaeedreza@gmail.com,
Mohsen Shahriari; shahriari@dbis.rwth-aachen.de and Rafidah MD Noor; fidah@siswa.um.edu.my

Received 28 February 2014; Accepted 8 October 2014

Academic Editor: Przemyslaw Kazienko

Copyright © 2015 Saeed Reza Shahriary et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In signed social networks, relationships among nodes are of the types positive (friendship) and negative (hostility). One absorbing
issue in signed social networks is predicting sign of edges among people who are members of these networks. Other than edge sign
prediction, one can define importance of people or nodes in networks via ranking algorithms. There exist few ranking algorithms
for signed graphs; also few studies have shown role of ranking in link prediction problem. Hence, we were motivated to investigate
ranking algorithms availed for signed graphs and their effect on sign prediction problem. This paper makes the contribution of
using community detection approach for ranking algorithms in signed graphs. Therefore, community detection which is another
active area of research in social networks is also investigated in this paper. Community detection algorithms try to find groups of
nodes in which they share common properties like similarity. We were able to devise three community-based ranking algorithms
which are suitable for signed graphs, and also we evaluated these ranking algorithms via sign prediction problem. These ranking
algorithms were tested on three large-scale datasets: Epinions, Slashdot, and Wikipedia. We indicated that, in some cases, these

ranking algorithms outperform previous works because their prediction accuracies are better.

1. Introduction

Recently, social network analysis has attracted great deal of
attentions. In social networks, nodes and edges, respectively,
indicate people and relationships among them [1]. Social
networks are dynamic and evolve over time via registering
new members, deleting profiles, and adding/removing some
edges or connections among entities [2]. Hence, plenty of
studies have investigated this field in order to model these
structures. One of the most important problems in social
networks is link prediction which can be stated as follows:
with how much determinism one can predict forming (lack-
ing) of edge between two people based on available structure
of the graph? The importance of this subject is originated
from the natural sparsity of social networks [2]. In other
words, social networks encompass highly dynamic structure;
therefore, available links are just a subset of possible relations
among people and some new links will form in future. Link

predication is also widely used in retrieving lost data and it
probably helps to construct the graph [3].

One could model social systems by using signed rela-
tionships. Inherently in signed graphs, most of relations
are positive or negative such as likes and dislikes or trusts
and distrusts [4]. Negative edges play an important role in
signed networks and these negative links impress greatly on
importance of nodes in the system. Studying negative rela-
tionships in signed graphs can help in analyzing and better
understanding social ecosystems. Link prediction in signed
graph appears in the form of predicting sign of edge between
two people. Therefore, one important question which comes
to mind in signed networks is that how accurately sign
of an edge can be predicted according to local and global
behavioral patterns in the network. Not only sign prediction
enables us to have better understanding of social relations
but also it can be utilized in several applications such as
recommender systems and online social networks, in which

http://dx.doi.org/10.1155/2015/602690

they offer new friends for users. In these networks, users have
capability of expressing their views toward others via binary
-1 and +1 values [5, 6].

In this paper, three community-based ranking algorithms
for ranking of nodes have been proposed, and we have studied
their impacts on the edge sign prediction problem. In order to
study the impact of proposed ranking algorithms on signed
prediction problem, we extracted the features of the predictor
based on reputation and optimism introduced in [7]. Rep-
utation of a node shows how much reputable a node is in
the system and optimism denotes voting pattern of the node
toward others. We assess our method by utilizing logistic
regression classifier and running algorithms on real social
network datasets. The structure of this paper is organized as
follows.

In Section 2, related works are brought. In Section 3,
we mainly introduce proposed algorithms; moreover, the
problem of sign prediction is defined and rank-based fea-
tures are introduced as features for the prediction task.
We also separately go through community detection prob-
lem, community-based ranking algorithms, and the logistic
regression classifier. In Section 4, datasets for experimental
purposes are introduced and implementation results are also
demonstrated. In Section 5, the discussion is made and finally
in Section 6, conclusion and future directions are mentioned.

2. Related Works

There are two major categories of methods used in link pre-
diction: firstly, those approaches that utilize local information
of the graph which focus on the local structure of nodes.
Among local approaches, [8] has the best performance in link
prediction between two specific nodes. Common neighbor
index is also known as friend of friend algorithm (FOAF)
is used by many online social networks for recommending
friends such as Facebook. FOAF determines the similarity
of two nodes that tend to communicate with each other on
the basis of counting number of joint neighbors [9]. Other
metrics for computing similarity are based on preferential
attachments, where these measures are calculated based on
multiplying or summing of nodes degree. Second category
concentrates on global structure of the network and detecting
overall features in order to find how strongly two nodes are
similar. There are also diverse global approaches which use
the whole adjacency matrix in order to predict hidden links,
for instance, shortest path algorithm, PWR algorithm, and
SimiRank algorithm [1, 10].

In sign prediction, the most notable and remarkable
methods are divided into two categories: Belief Matrix Model
[5] and machine learning approaches [11]. Belief Matrix
Model was introduced by [5] and was proposed for predicting
trust or distrust between two particular users in signed
networks. It was the fundamental model in sign prediction of
edges. Reference [11] employed the idea of signed triads and
used logistic regression model and some local feature in order
to predict sign of edges in social networks. The features that
were introduced by [11] are categorized in two classes: first
one is on the base of the positive/negative ingoing/outgoing
degree of nodes which basically collect the local information

Scientific Programming

of nodes. And the second group is based on the extracted
principles from social psychology, in which we are able
to determine the type of u and v relation by utilizing the
information of third party like w.

Ranking of nodes has tight relationship with sign pre-
diction problem so we also investigate ranking in signed
networks. Ranking of nodes is the problem of computing how
much important or trustable a node is in networks [12]. The
centrality measures like betweenness [13], closeness [14], and
eigenvector centrality [15] were introduced to compute nodes’
importance degree in the network. Other algorithms like
HITS [16] and PageRank [17] were added in 1990. All of these
ranking algorithms are designed for positive graphs and there
are merely several literatures for ranking of nodes in signed
networks. The simplest ranking algorithm for signed graphs
is prestige, where number of positive and negative incoming
links determine ranking of each node [18]. Another ranking
algorithm is PageTrust that was introduced by [19]. This
method is extension of PageRank, and the main difference
is that nodes with negative incoming links will be visited
less in random walk process. Exponential ranking is another
chief method of ranking for signed graphs [12]. In exponential
ranking, the value of ranking vector globally is obtained
from local trust values. Another ranking algorithm for signed
networks that is greatly similar to HITS was proposed by
[20]. This method utilizes the concept of Bias and Deserve
which underestimates the vote of optimistic and pessimistic
nodes. Reference [3] also proposed new ranking algorithms
for signed networks, namely, Modified HITS and Modified
PageRank.

Because we propose community-based ranking algo-
rithms, we should go through community detection prob-
lem. Community detection algorithms help to prepare more
dominant recommendation systems and web page clustering
which have great effect on better searches [21]. Commu-
nity detection algorithms attempt to cluster edges/nodes in
order to have minimum number of edges between densely
communities [22]. One of the most widely used methods
for community detection in unsigned graphs was proposed
by [23]. As for signed networks, [24] proposed a two-step
spectral approach which was an extension to modularity.
The main problem related to modularity is resolution limit
in which very small communities might not be detected. In
order to address this problem, [22] proposed new method for
detecting communities on signed graphs by extending potts
model. Reference [25] also introduced useful approach that
works on the base of blocking method.

3. Method

In this paper, authors intend to investigate the community-
based problem of predicting sign of links in signed social
networks. Hence, in this section as well as proposed algo-
rithms and methods, the problems of sign prediction and
community detection will be discussed in detail.

3.1. Edge Sign Prediction. In order to define the problem
formally, it can be assumed that we have a signed directed
graph G(V, E) that V represents set of vertices and E shows

Scientific Programming

set of edges where customers and users can vote positively
and negatively toward each other. So the aforementioned
notation V represents users of site and E indicates +1 and
-1 relations among them. In all over the paper, the person
who gives positive vote and receives it, is named trustor and
trustee, respectively [2, 26]. The sign prediction problem can
be defined as follows. Suppose that signs of some links in
the network are hidden, and the goal is to reliably predict
values of these edges by current information in the graph.
The sign prediction problem tries to find signs of hidden
edges with negligible error [1, 27]. In this work we propose
state-of-the-art community-based ranking algorithms and
we evaluate their effectiveness via sign prediction problem on
three datasets: Epinoins, Slashdot, and Wikipedia.

To this end, [7] already introduced rank-based features
named Optimism and Reputation to connect ranking prob-
lem with sign prediction. Rank-based reputation of node i
indicates patterns of voting toward this node. Meaningfully,
rank-based reputation of node i not only considers number
of positive/negative incoming links toward node i but also
it takes into account ranks of nodes who vote toward node
i. In other words, when a person receives several positive
incoming links, s/he might not be very reputable because one
should consider rank of voters toward node i. If the users
who vote toward node i are high rank, then node i can be
considered reputable, but if they are not high rank we cannot
say that node i is reputable although the number of positive
incoming links toward node i is relatively high. The following
equation can better describe rank-based reputation [7]:

RS)] - RS)]
R ()] +|R)]

RBR; = ey

where RBR,; is the value of rank-based reputation of node i,
Rl(; (i) indicates sum of rank values of nodes who positively
voted toward node i, and, similarly, R'’(i) is sum of rank
values of nodes who negatively voted toward node i. In the
same vein, one can define rank-based optimism of node i as
follows:

RS ()] - [R) ()|
RBO, = —~ Ty 2
RS ()] + RS ()]

where RBO; is the value of rank-based optimism of node i,

R™W(i) refers to sum of rank values of nodes whom node i

out

positively voted toward them, and similarly, Rg;)t(i) is sum of
rank values of nodes in which node i negatively voted toward
them. As formula (2) shows, node i which generates several
positive outgoing links might not be optimistic because this
set might contain nodes in which they are low rank [3].
In order to compute these features, we need algorithms to
rank nodes. As for ranking algorithms, we propose three
community-based ranking algorithms in the next sections.

3.2. Community-Based Ranking Algorithms to Compute RBR
and RBO. In this section we propose three ranking algo-
rithms in which all of them work based on community
detection problem in signed graphs. In other words, firstly, we

+ o+ - = + o+ & B
b @b @0 G0
(a) Stable configurations (b) Unstable configurations

FIGURE 1: All possible states of balance theory.

run a community detection algorithm on signed networks.
The results will be disjoint communities of nodes. As all
community detection algorithms work based on a density
based approach in which they try to maximize density of
intracluster edges and minimize between cluster edges, so
intracluster nodes are more dense and close. From social
perspective, intracluster nodes might know each other better
(this is the notion behind our community-based ranking
algorithm). Meaningfully, nodes in the same community
are much more familiar than nodes that are in different
communities. Via using this philosophy about intracluster
nodes, we change previous ranking algorithm like Prestige,
HITS, and PageRank [3] to have influence of intra- and
extracluster nodes with parameters « and (1 —«), respectively.
Then we can use ranking-based features of [7] for the case
of sign prediction. Because first phase of the algorithms is
community detection, so we investigate community detection
problem and a sample community detection algorithm in
signed graphs in Section 3.2.1. In this paper a community
detection algorithm based on social balance theory is utilized.
In Section 3.3, ranking algorithms based on community
detection phase are introduced.

3.2.1. Community Detection. 'The algorithm used in this paper
is based on structural balance theory [28]. In balance theory,
there are four possible states when nodes are in signed
relations in social networks [29]. One can differentiate these
states by number of positive and negative edges in each triad
[30]. On the base of strong social balance theory, when all
of nodes have positive relation or two nodes share the same
enemy, these states are called stable. Similarly, cases with
all nodes have negative edges or with two positive edges
are unstable states [31]. Regarding this definition, a network
with more than three nodes is structurally balanced if all the
possible triads are stable [32] (Figure 1).

The basic structural theorem states that these triples can
be partitioned into two distinct sets in which all the positive
relations are inside sets and negative ones are among them
[33, 34]. In other words, negative edges connect positive sets.
On the basis of this definition, a network is called k-balanced
if all positive edges are located in k number of different
categories, and these sets are joined with negative relations
[35]. In reality, rarely there are structurally balanced net-
works. There are always some edges that destabilize the graph
and transform it into unstable configuration. Therefore, the
number of positive edges between clusters and the number of
negative edges inside clusters should be minimized [24]. In
fact, the problem is like finding the best sets with minimum
number of positive relations between partitions and also
minimum number of negative edges inside sets [36].

Reference [25] introduced one criterion function which
makes decision based on counting number of elements
having conflict with k-balanced theory. It can be defined as if
one considers N as number of negative edges inside clusters,
and P as number of positive edges between clusters, then
number of inconsistencies which is denoted by I(c) can be
mentioned as

I(c)=BxN+(1-B)xP, (3)

where f3 is the importance factor that is assigned to positive
and negative inconsistencies.

If B = 0.5 then positive and negative relations contribute
equally on amount of inconsistency. And for the case that
0.5 < pB < 1 the negative relations have more impact on
result and, when 0 < 8 < 0.5, positive edges have higher
influence. The ideal condition is created when P and N have
the smallest amount, so better result is achieved. Because I(c)
show error, the algorithm tries to find minimum value for N
and P via using a hill-climbing optimization technique [25].
Other community detection approaches suitable for signed
graphs can also be used in this phase.

3.3. Community-Based Ranking Methods. In this paper, we
propose three new ranking algorithms for signed complex
networks that are dependent on community detection. We
introduce a method that ties the concept of ranking algorithm
and community detection. Suppose that we intend to com-
pute the rank of node i in the network. First of all, we cluster
nodes in the network in such a way that each node belongs
to one community in the graph (first phase, algorithm
referenced in Section 3.2.1), so for calculating rank of node
i by taking influence of other nodes in the network, we give
priority and high importance to the nodes that belong to the
same community, which node i belongs to. These algorithms
are described in detail, in the following subsections (second
phase of ranking). We will verify rationality of these ranking
algorithms in Results section.

3.3.1. PBCD (Prestige Ranking Algorithm Based on Community
Detection). Prestige is the simplest algorithm in signed com-
plex network [18]. In this method, the most important factor
for determining ranking of each node in the system is the
number of positive and negative incoming nodes that each
node receives from others. In other words, if a node has many
positive incoming links, therefore, its prestige is high in the
network. And it is also true for negative links, if the number
of positive incoming links is less than negative ones, the node
has low prestige in comparison with the other nodes in the
system [3]. The idea of community-based ranking inspires us
to incorporate our method with some well-known ranking
algorithms like prestige. The proposed prestige can be stated
as follows:

|M§aﬂ4uyaﬂ}
|m®aﬂﬂmﬁaﬂ

m

Pr(i) = [a X

|w$aﬂ-h§%ﬂ}

+ [(1 —a) X |odi(;) (i)| + |odi(;) (i)|

Scientific Programming

where « is the impact factor to determine degree of impor-
tance of nodes that are in the same community that node i
belongs to, and id;;(i) and id, (i), respectively, indicate set
of nodes who positively and negatively voted toward i and
these nodes are members of the same community that node
i belongs to. Similarly, od;(i) and od, (i) show set of nodes
who positively and negatively voted toward node i and these
nodes are members of other communities which are different
from the community that node i belongs to. Moreover, ||
represents magnitude of the set of nodes and the in subscript
indicates that we only consider incoming links from id(i) and
od(i) sets toward node i. Finally, i € ¢,c € C:cis the
community which node i belongs to and C is the disjoint
subgraph of all clusters detected via the algorithm. In this
notation, all members of id(i) are in ¢ and none of od(i)
members are in c. As intraclusters nodes of communities are
more close to each other, ranking algorithm can utilize the
influence of intra clusters nodes closeness.

3.3.2. HBCD (HITS Ranking Algorithm Based on Community
Detection). HITS algorithm was introduced by [16], and it
was mainly proposed for exploiting helpful information in
order to analyze structure of links and has been applied
in various applications. This algorithm works based on hub
and authority vectors. These vectors are initialized with
some predefined (random) values and converge after some
recursive iterations [16].

Reference [3] introduced modified version of HITS in
which the graph is divided into two positive and negative
parts and then run the algorithm on each graph separately.
In HITS algorithm, there are two vectors: authority and hub,
which finally converge after enough iteration. We propose a
new version of HITS in which there is distinction between
importance of local neighbor nodes and those members of
different communities that node i belongs to. The HITS
algorithm based on community detection can be stated as
follows:

(+) _ (+)
alt+)=ax| Y K (8)
jeid(H) (i)
(+)
+(1-a)x| Y K@)],
jeodS (i)
=) _ =)
a’(t+)=ax| Y W (@)
jeid) (i)
=)
+(l-a)x| Y W @)),
jeod((i)
(+) _ (+)
KO+)=ax| Y a" ()
jeid ()

+ (1 —«) X

>),

jeod? (i)

Scientific Programming

KO+ =ax| Y a7

jeid) ()

+1-a)x(Y &0 |,

jeod') (i)

©)

where « indicates importance factor that is given to the
local neighbors and h(t) and a(t) show hub and authority
vectors at time t. zdl(;/out(z) and zdm Jout

resent set of nodes who have relations (positive/negative or
incoming/outgoing) with node i and they are members of the
same community that node 7 belongs to. In a similar manner,

Odl(;/)out(l) and Odm/o t
have relations (positive/negative, incoming/outgoing) with
node i and they are members of different communities that
node i belongs to. Finally, in and out subscripts, respectively,
show that id(i) or od(i) represents set of nodes that voted
toward node i (incoming links toward node i) or being voted
by node i (outgoing links from node 7). Hub and authorities
are initialized with some random values and they converge
after enough iteration.

(i), respectively, rep-

(i) indicate set of nodes in which they

3.3.3. RBCD (PageRank Algorithm Based on Community
Detection). PageRank is one of the most widely used meth-
ods for ranking of nodes [37]. It was extracted from Google
Larry page. PageRank uses the concept of random walk
that leads to probability distribution which computes the
possibility of randomly going from one node to another
one, and finally gets to one specific node. This algorithm
initially was introduced for graphs with positive and unsigned
edges, especially for web pages on the internet. Reference
[3] introduced modified version of PageRank in which the
graph is divided into two parts and the algorithm is run
on each graph separately, and finally for calculating ranking
vector, negative ranking vector is subtracted from positive
one. Our proposed ranking algorithm states that each node in
the network belongs to specific community or cluster, and the
general idea of specifying ranking is on the basis of utilizing
other nodes” information. In other words, to compute rank
of node i, we give priority to the nodes that belong to
the same community that node i belongs to. Based on this
opinion, PageRank based on community detection can be
defined as

PRE+)(t+1):oc><<[§>< Z

jeidia (i)

PR(+) 1)
1-f6)x —
out (])| (ﬁ) N

+(1 - «)

><<,8><

(+)()
Y e ﬁ)ﬁ),

jeody, (i) dg;t (J)|

5
PR(*) t+1) % (ﬁx Z PR()(t) (1 ﬁ) o 1 >
i =« — _
jeidi, (i) out (])| N
+(1-«)
)
®) X
[B s),
(Z 52 ()| N
(6)

where in the above equations « denotes importance factor
is assigned to the local neighbor nodes, and ¢ shows the
rank at the time of t. 8 indicates the forgetting factor, and
N represents number of nodes in the graph. id;, (i) shows
set of incoming links to node i that belong to the same
community that node i belongs to. Similarly od;, (i) indicates
set of incoming links to node i that belong to different
communities that node i belongs to. df)flz(j) and dout(7)
involves number of positive and negative outgoing links from
node j, respectively.

3.4. Classifier. Classification is the process of assigning data
to one of predetermined classes. Here our classes are the
mapped values of positive and negative signs to +1 and -1
values. This process is done via using training set which
contains some features to constitute a classifier and then
evaluation via using a test set. A brief explanation of the
classifier used in our work is brought here.

Logistic regression: logistic regression or sigmoid func-
tion is a monotonic, continuous function which lies between
-1 and +1 values and is a method of learning function of the
form f: X — Y or P(Y | X). They can be mathematically
defined as follows:

1

P(Y=1|x)= ,
(%) 1 +exp (wy + Yoy wix;)

7)
1

1+exp (wy + Y, wix;)

PY=-1]|x)=

Y is the discrete values of classes which here are +1 and
-1, X is the input vector of discrete or continuous values,
and w; are some learning coefficient learnt by the model.
Classifiers are evaluated based on accuracy. Accuracy metric
is calculated based on TP, FP, TN, and FN as follows [38, 39]:

accuracy = 1P+ TN (8)
YT TP+ TN+ FP+ EN’

We used 10-fold validation in order to evaluate general-
ization of the models. Cross validation is a classical method
in which the dataset are partitioned into k folds. The first one
is used as test set and the remaining folds are considered as
training sets. In the next phase, the second fold is selected as
the test set and the remaining are chosen as training sets [40].
We utilized WEKA software for computing accuracy that is
available through http://www.cs.waikato.ac.nz/ml/weka.

4. Experiments

In order to verify proposed algorithms introduced in
Section 3.3 we executed them on three large datasets.

In the following sections these datasets are introduced and
achieved results are depicted.

4.1. Datasets. Datasets which are used for experimental
purposes are Wikipedia, Epinions, and Slashdot. These online
social networks are available through http://snap.stanford
edu/data/. In the following, we explain briefly these datasets.

Wikipedia. Volunteers from all around the world collaborate
to write this free cyclopedia. A user can take the role
of administrator with additional access to some technical
features by getting vote of other users. Administrators are
responsible for maintenance purposes. A user is nominated
as administrator, and then Wikipedia members elect users
as administrators via public dialogues and talks. Totally,
7000 users took part in elections, and 100,000 votes were
received from 2800 delegated elections. 1200 elections lead to
promotion and 1500 elections were not successful and did not
produce a winner. Half of voters are current administrators
and the remaining are ordinary users [6].

Epinions. Epinions is a review online social network that
users can express their views about diverse items like music,
TV shows, and hardware. The site members are able to vote
positively and negatively toward each other. As a matter of
fact, this online social network contains information about
who-trusts-whom. The data set is made of 131828 nodes and
contains 841372 edges in which 85% of them are positive [41].

Slashdot. Slashdot is a website related to technology and
science. It is well known due to its specific users and has
introduced itself as user-submitted and science evaluated
news. In other words, links of news and summary of different
issues are submitted by users, and each story becomes the
topic of series of talks. Selected readers that take the role
of moderators send ratings to Slashdot. The responsibility of
these readers is appointing tags for each comment. Slashdot
does not show scores to the users but lets them arrange
comments on the base of assigned points. Slashdot also
has a service that users have the ability to tag each other
as friend or opponent. Therefore, links between users are
friend/opponent relationship. The data set is made of 82144
nodes and contains 549202 edges in which 77% of them are
positive [42].

4.2. Results. Via using introduced community detection of
Section 3.2.1, the communities in Epinions, Slashdot, and
Wikipedia are detected. We examine our proposed method
on different size of communities, where it can be specified
through input parameter of community detection algorithm.
Reference [43] introduced a function for determining num-
ber of clusters in Epinions, Slashdot, and Wikipedia, and it
can be observed that this method has high accuracies when
the number of clusters is between four and ten, so we also
checked our approach for seven cases starting from four to
ten. For ranking nodes, Prestige Based on Community Detec-
tion (PBCD), PageRank Based on Community Detection
(RBCD), and HITS Based on Community Detection (HBCD)
are run on these datasets. In order to differentiate between
nodes which belong to various communities, we defined

Scientific Programming

95.65 |- =

95.6 1 1 1 1 1 1 1 1 1
05 055 06 065 0.7 075 0.8 085 09 095 1

-- Com =38
Com =9
-8- Com = 10

-2- Com =4
-=- Com =5
-8- Com =6

Com =7

FIGURE 2: y axis shows prediction accuracy of PBCD ranking
algorithm on Epinions dataset and x axis indicates different values
of a. Different colors show number of communities detected by the
community detection algorithm.

impact factor « for local nodes and (1 — «) for foreign ones
where « can contains values of (0.5,0.6,...,0.9,1). When
0.5 < «a < 1, local nodes have more privilege than the
others, and « = 0.5 shows normal ranking algorithms of
[3]. In other words, in the case (¢ = 0.5), no community
structure is considered. In order to define accuracy of edge
sign prediction, rank based features are extracted and in order
to evaluate generalization of the models we used 10-fold cross
validation. Accuracy of introduced methods is evaluated
with various size of communities and different values of .
The results are shown in forms of figures. In the following,
significant findings related to each dataset are stated.

4.2.1. PBCD on Datasets. In Epinions and Slashdot, for all
size of communities, « = 0.5 contains the maximum values.
In fact outputs of PBCD on Epinions and Slashdot datasets
indicate that using community-based ranking algorithms
might slightly degrade prediction accuracy. However, the
prediction accuracy is still high for different values of «
greater than 0.5 and for all community numbers. This lower
accuracy might be because of special property of dataset or
community detection algorithm. Results for Epinions and
Slashdot are illustrated in Figures 2 and 3, respectively. Results
related to Wikipedia are shown in Figure 4. In the case
Com (number of communities) equals 4, 6, and 7, prediction
accuracy is higher than the case @ = 0.5. Generally high
precisions extract properties of dataset and offers better
model for prediction. In Figure 4, where Com = 6, &« = 0.6
contains maximum value which is equal to 88.7467.

4.2.2. RBCD on Datasets. Analogously to PBCD, we imple-
mented RBCD ranking algorithm on datasets. Outputs for
Epinions are illustrated in Figure 5. In Epinions, all the
number of communities has acceptable accuracies. Com = 10
with « = 1 contains the maximum value of 95.515 among

Scientific Programming

89-8 T T T T T T T T T
89.7 - B

89.6 s

89.5 -

89.4

89.3
89.2

T
7
7

Fo b

89.1

89
0.5 055 06 0.65 0.7 075 08 085 09 095 1

FIGURE 3: y axis shows prediction accuracy of PBCD ranking
algorithm on Slashdot dataset and x axis indicates different values
of a. Different colors show number of communities detected by the
community detection algorithm.

88.75(
é

88.74
88.65

88.6

H

88.55

88.5

o

88‘45 1 1 1 1 1 1 1 1 1
05 055 06 065 0.7 075 08 085 09 095 1

FIGURE 4: y axis shows prediction accuracy of PBCD ranking
algorithm on Wikipedia dataset and x axis indicates different values
of «. Different colors show number of communities detected by the
community detection algorithm.

95-8 T T T T T T T T T

95.6 -

95.4 -

952 -

95 -

94.8 -

94'6E;===:=§§§

94.4 1 1 1 1 1 1 1 1 1
05 055 06 065 07 075 0.8 0.85 09 095 1

FIGURE 5: y axis shows prediction accuracy of RBCD ranking
algorithm on Epinions dataset and x axis indicates different values
of «. Different colors show number of communities detected by the
community detection algorithm.

all communities. RBCD have similar outputs in Slashdot;
when o = 1, it has highest precision with maximum value
of 89.335 for 10 communities. Results related to Slashdot are
represented in Figure 6. RBCD also produced satisfactory
results in Wikipedia. When « = 0.5 it contains minimum
value of 88.350 among all communities. In case of Com = 8,

89.35
89.3
89.25
89.2
89.15
89.1
89.05
89
88.95
88.9
88.850

05 055 06 065 0.7 075 0.8 085 09 095 1

FIGURE 6: y axis shows prediction accuracy of RBCD ranking
algorithm on Slashdot dataset and x axis indicates different values
of a. Different colors show number of communities detected by the
community detection algorithm.

88~44 T T T T T T T T T

88.42
88.4

88.38 -
88.36

88.34@E=-"-—F T T--_ - Fh- Sl
b
8832 SN
O

88.3 S
1]

88.28 1 1 1 1 1 1 1 1 1
0.5 055 0.6 065 0.7 0.75 0.8 085 09 095 1

FIGURE 7: y axis shows prediction accuracy of RBCD ranking
algorithm on Wikipedia dataset and x axis indicates different values
of a. Different colors show number of communities detected by the
community detection algorithm.

maximum accuracy of 88.405 is for « = 0.9. When Com = 5,
6, 7, RBCD reach maximum accuracies at « = 0.8 in which
their values are 88.386, 88.372, and 88.374, respectively.

Similarly, for communities nine and ten maximum values
are 88.4021 and 88.402, respectively, with « = 0.9. Outputs for
Wikipedia are shown in Figure 7.

4.2.3. HBCD on Datasets. We also implemented HBCD on
datasets. Achieved results for Epinions are shown in Figure 8.
In Epinions, « = 1 has best accuracy for all communities.
Moreover, community number four with value of 95.620
contains maximum among them. As for Slashdot, « = 1 has
the best accuracy and Com = 9 generates accuracy of 89.37
which has the highest value among all communities. Outputs
for Slashdot are illustrated in Figure 9. There is the same story
in Wikipedia. &« = 1 has the best accuracy and proves our
new method. Among all of them community number seven
has the best accuracy with value of 88.410. Related results for
Wikipedia are presented in Figure 10.

5. Discussion

Random guessing of edge sign prediction on original datasets
results in accuracy prediction of approximately 80 percent.

96 T T T T T T T T T
95.8 - —
95.6
95.4
95.2
95
94.8

94.6

[

94.4 1 1 1 1 1 1 1 1 1
05 055 06 065 07 075 08 08 09 095 1

FIGURE 8: y axis shows prediction accuracy of HBCD ranking
algorithm on Epinions dataset and x axis indicates different values
of a. Different colors show number of communities detected by the
community detection algorithm.

89.5 T T T T T T T T T g
4
7
89 - oA
2 /[/Z
'y
o)
-7,
88.5 - o 0
_ %
- /
=-- 7 7,1
o i /
Fe - B S U
88 Py - Prat ey =a DEaE = N / 7 —
SO T L7, A 4 -~z ‘0
\\\ N = vy L ~ 7,0
P SE
NS 7 / AN AN, =7 /
N 7 / > i
87.5 NN S AN / —
A ’ /
oL A , RN ,
NN S~ \ =
7 v .
87 - N . .- -
\ -7
\ -
\vg
86.5 1 1 1 1 1 1 1 1 1

0.5 055 06 0.65 0.7 075 08 085 09 095 1

FIGURE 9: y axis shows prediction accuracy of HBCD ranking
algorithm on Slashdot dataset and x axis indicates different values
of a. Different colors show number of communities detected by the
community detection algorithm.

As Table 1 indicates accuracy of our work improves the rate
of prediction about 10 to 15 percent.

Reference [5] applied degree-based features on Epinions,
Slashdot, and Wikipedia and performed sign prediction with
precisions of 90.751, 87117, and 83.835, respectively. It can be
perceived in Table 1 that the prediction rate of our work has
significant improvement in comparison to [5].

Reference [3] also introduced new ranking algorithms,
namely, MPR, MHITS, and improved precision achieved
by [5]. In order to compare result of this paper with [3], we
can consider a = 0.5, as normal Prestige, MPR, and MHITS.
In other words, in our proposed formulas, &« = 0.5 indicates
that nodes inside and outside community have the same
privilege. Allin all, except precision of PBCD on Epinions and
Slashdot, in other cases, our method produces better results
in comparison with [3]. To put in a nutshell, we find out that
our proposed approach outperforms previous works related
to sign prediction problem, and it is indicated that local
nodes in communities have higher impact on reputation and
importance of other nodes in the network. Moreover, number

Scientific Programming

89 T T T T T T T T T
A
88 7
74 /
37 i
“ . ’
87 - //\\\ ,,//,?/ II/_

/,/;"\\\\~‘\‘ - A ,// //
NN et

86 L NN - /7 -~

4 S N 77

[7

N \\ 7y
/ N -

85 57 S V /l

R =~ /
\ ~0) \ /
84 N i, N -
\ / NS
N =
N -
83| N .
|=2e
2 1 1 1 1 1 1 1 1 1

0.5 055 06 065 0.7 075 0.8 085 09 095 1

FIGURE 10: y axis shows prediction accuracy of HBCD ranking
algorithm on Wikipedia dataset and x axis indicates different values
of a. Different colors show number of communities detected by the
community detection algorithm.

TaBLE 1: Prediction accuracy using various methods on original
datasets.

Epinion SlashDot Wikipedia
Prediction accuracy of Leskovec [5]
Leskovec 90.751 87117 83.835
Prediction accuracy of Shahriari [3]
Normal prestige 95.872 89.604 88.747
MPR 94.550 88.859 88.34
MHITS 94.770 88.185 88.359
Prediction accuracy achieved from our proposed algorithms
PBCD 95.853 89.536 88.747
RBCD 95.515 89.355 88.405
HBCD 95.629 89.380 88.405

of communities can be estimated in these real-world datasets
by analyzing output presented in the previous section. For
example, in Wikipedia, PBCD algorithm produces best accu-
racies for community number six, and community number
eight yields the best result for RBCD. Similarly HBCD detect
seven communities in Wikipedia. It is very obvious that result
of each algorithm is different with another one but it can be
easily perceived that all of these numbers are close to each
other. Therefore we can deduce that these community-based
ranking algorithms are able to approximate the number of
communities in these datasets.

6. Conclusion and Future Works

Complex networks have multidisciplinary roles in science
comprising artificial intelligence, economics, and chemistry
in which their usages have been increasing. Social networks
as one branch of complex networks have got a lot of attention
recently. One principal topic in social networks is to inves-
tigate evolution of graphs; thus researchers are trying to take
prediction algorithms in order to find hidden relationships in
these networks. A significant factor in predicting relations is
ranking of people in societies. The aforementioned concepts

Scientific Programming

are expressed in social networks as sign prediction and
ranking of nodes, respectively.

Nodes ranking algorithms which intend to determine
how much a node is reputable in a network are studied in
our document. Three community-based ranking algorithms
are proposed in this paper. These ranking algorithms have
two phases. In the first phase, nodes are assigned to different
communities by applying community detection algorithm
(in this phase, different community detection algorithms
can be applied). In the second phase, rank of each node
is computed based on its membership to its neighbors
communities and its incoming/outgoing positive/negative
links. So we investigated the effect of community detection
on the accuracy of sign prediction problem and compared
our work with [3, 5]. Eventually, we deduced that our rank-
ing algorithms outperform both methods and community-
based ranking algorithms produce better accuracies in some
cases.

Our experiment was performed to check which com-
munity number has the best accuracy. In this case, results
may be affected by properties of this community detection
algorithm. In future research, we intend to compare impact
of different community detection methods on accuracy of
edge sign prediction problem. The problem of overlapping
community detection, especially, has gained much attention.
Hence this problem and its effect on signed prediction
can be investigated. We are also interested in working on
parameter-free community detection methods suitable for
signed graphs. Finally, to check the reliability of the method,
it is good to test these approaches in person to person
recommenders.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] D.Liben-Nowell and]. Kleinberg, “ Thelink prediction problem
for social networks,” in Proceedings of the 12th International
Conference on Information and Knowledge Management (CIKM
’03), pp. 556-559, November 2003.

[2] Y. Dong, J. Tang, S. Wu et al., “Link prediction and recommen-
dation across heterogeneous social networks,” in Proceedings of
the 12th IEEE International Conference on Data Mining (ICDM
’12), pp. 181-190, December 2012.

[3] M. Shahriari and M. Jalili, “Ranking nodes in signed social
networks,” Social Network Analysis and Mining, vol. 4, article
172, 2014.

[4] J. Kunegis, A. Lommatzsch, and C. Bauckhage, “The Slashdot
Zoo: mining a social network with negative edges,” in Pro-
ceedings of the 18th International World Wide Web Conference
(WWW 09), pp. 741750, April 2009.

[5] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting
positive and negative links in online social networks,” in
Proceedings of the 19th International Conference on World Wide
Web, pp. 641-650, New York, NY, USA, April 2010.

[6] K.-Y. Chiang, N. Natarajan, A. Tewari, and I. S. Dhillon,
“Exploiting longer cycles for link prediction in signed net-
works,” in Proceedings of the 20th ACM Conference on Infor-
mation and Knowledge Management (CIKM ’11), pp. 1157-1162,
October 2011.

[7] M. Shahriari, O. A. Sichani, J. Gharibshah, and M. TJalili,
“Predicting sign of edges in social networks based on users
reputation and optimism,” Transactions on Knowledge Discovery
from Data. In press.

[8] L. Adamic and E. Adar, “How to search a social network,” Social
Networks, vol. 27, no. 3, pp. 187-203, 2005.

[9] J. Chen, W. Geyer, C. Dugan, M. Muller, I. Guy, and M.
Carmel, “Make new friends, but keep the old: recommending
people on social networking sites,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI '09),
pp. 201-210, 2009.

[10] P. Symeonidis, E. Tiakas, and Y. Manolopoulos, “Transitive
node similarity for link prediction in social networks with
positive and negative links,” in Proceedings of the 4th ACM
Recommender Systems Conference (RecSys ’10), pp. 183-190,
September 2010.

[11] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting
positive and negative links in online social networks,” in
Proceedings of the 19th International Conference on World Wide
Web, pp. 641-650, 2010.

[12] V. A.Traag, Y. Nesterov, and P. Van Dooren, “Exponential rank-
ing: taking into account negative links,” in Social Informatics,
vol. 6430 of Lecture Notes in Computer Science, pp. 192-202,
Springer, Berlin, Germany, 2010.

[13] L. C. Freeman, “A set of measures of centrality based on
betweenness,” Sociometry, vol. 40, no. 1, pp. 35-41, 1977.

[14] L. C. Freeman, “Centrality in social networks conceptual clari-
fication,” Social Networks, vol. 1, no. 3, pp. 215-239, 1978.

[15] P. Bonacich, “Factoring and weighting approaches to status
scores and clique identification,” The Journal of Mathematical
Sociology, vol. 2, no. 1, pp. 113-120, 1972.

[16] J. M. Kleinberg, “Authoritative sources in a hyperlinked envi-
ronment,” Journal of the ACM, vol. 46, no. 5, pp. 604-632, 1999.

[17] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
web search engine,” Computer Networks and ISDN Systems, vol.
56, no. 18, pp. 3825-3833, 2012.

[18] K. Zolfaghar and A. Aghaie, “Mining trust and distrust rela-
tionships in social Web applications,” in Proceedings of the
6th IEEE International Conference on Intelligent Computer
Communication and Processing, pp. 73-80, 2010.

[19] C. de Kerchove and P. van Dooren, “The PageTrust algorithm:
how to rank web pages when negative links are allowed?” in
Proceedings of the 8th SIAM International Conference on Data
Mining, pp. 346-352, April 2008.

[20] A. Mishra and A. Bhattacharya, “Finding the bias and prestige
of nodes in networks based on trust scores,” in Proceedings of
the 20th International Conference on World Wide Web (WWW
’11), pp. 567-576, April 2011.

[21] P. Anchuri and M. M. Ismail, “CommunityDetection in Signed
Networks”.

[22] V. A. Traag and J. Bruggeman, “Community detection in
networks with positive and negative links,” Physical Review E:
Statistical, Nonlinear, and Soft Matter Physics, vol. 80, no. 1,
Article ID 036115, 7 pages, 2009.

[23] M. E. J. Newman, “Modularity and community structure in
networks,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 103, no. 23, pp. 8577-8582, 2006.

10

[24] P. Anchuri and M. Magdon-Ismail, “Communities and balance
in signed networks: a spectral approach,” in Proceedings of
the IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, pp. 235-242, August 2012.

[25] P. Doreian and A. Mrvar, “Partitioning signed social networks,”
Social Networks, vol. 31, no. 1, pp. 1-11, 2009.

[26] T.Zhang, H. Jiang, Z. Bao, and Y. Zhang, “Characterization and
edge sign prediction in signed networks,” Journal of Industrial
and Intelligent Information, vol. 1, no. 1, pp. 19-24, 2013.

[27] S. H. Yang, A. J. Smola, B. Long, H. Zha, and Y. Chang,
“Friend or frenemy? Predicting signed ties in social networks,”
in Proceedings of the 35th Annual ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’12),
pp. 555-564, August 2012.

[28] D. Cartwright and E Harary, “Structural balance: a generaliza-
tion of Heider’s theory,” Psychological Review, vol. 63, no. 5, pp.
277-293,1956.

[29] P. Doreian, “Evolution of human signed networks,” metodoloski
Zvezki, vol. 1, no. 2, pp. 277-293, 2004.

[30] M. Szell, R. Lambiotte, and S. Thurner, “Multirelational orga-
nization of large-scale social networks in an online world,
Proceedings of the National Academy of Sciences of the United
States of America, vol. 107, no. 31, pp. 13636-13641, 2010.

[31] S. Maniu, B. Cautis, and T. Abdessalem, “Building a signed
network from interactions in Wikipedia,” Proceedings of the Ist
ACM SIGMOD Workshop on Databases and Social Networks
(DBSocial ’11), pp. 19-24, 2011.

[32] S.R.T. Antal, P. L. Krapivsky, and S. Redner, “Social balance on
networks: the dynamics of friendship and enmity,” Physica D.
Nonlinear Phenomena, vol. 224, no. 1-2, pp. 130-136, 2006.

[33] P. Doreian, “A multiple indicator approach to blockmodeling
signed networks,” Social Networks, vol. 30, no. 3, pp. 247-258,
2008.

[34] S. A. Marvel, J. Kleinberg, R. D. Kleinberg, and S. H. Strogatz,
“Continuous-time model of structural balance,” Proceedings of
the National Academy of Sciences of the United States of America,
vol. 108, no. 5, pp. 1771-1776, 2011.

[35] N. P. Hummon and P. Doreian, “Some dynamics of social
balance processes: bringing Heider back into balance theory,”
Social Networks, vol. 25, no. 1, pp. 17-49, 2003.

[36] G. Adejumo, P. R. Duimering, and Z. Zhong, “A balance theory
approach to group problem solving,” Social Networks, vol. 30,
no. 1, pp. 83-99, 2008.

[37] L. Page, S. Brin, R. Motawani, and T. Winograd, “The page rank
citation ranking:bringing order to the web,” 1999.

[38] C. M. Bishop, Pattern Recognition and Machine Learning,
Springer, New York, NY, USA, 2006.

[39] T. M. Mitchell, Machine Learning, McGraw Hill, 1st edition,
1997.

[40] J. Ye, H. Cheng, Z. Zhu, and M. Chen, “Predicting positive and
negative links in signed social networks by transfer learning,” in
Proceedings of the 22nd International Conference on World Wide
Web (WWW ’13), pp. 1477-1488, 2013.

[41] J. Kunegis, “What is the added value of negative links in
online social networks?” in Proceedings of the 22nd International
Conference on World Wide Web, pp. 727-736, 2013.

[42] K.-Y. Chiang, C.-]. Hsieh, N. Natarajan, I. S. Dhillon, and A.
Tewari, “Prediction and clustering in signed networks: a local to
global perspective,” Journal of Machine Learning Research, vol.
15, no. 1, pp. 11771213, 2014.

[43] A.Javariand M. Jalili, “Cluster-based collaborative filtering for
sign prediction in social networks with positive and negative
links,” ACM Transactions on Intelligent Systems and Technology,
vol. 5, no. 2, article 24, 2014.

Scientific Programming

Hindawi Publishing Corporation
Scientific Programming

Volume 2015, Article ID 461362, 18 pages
http://dx.doi.org/10.1155/2015/461362

Research Article

Parallelizing SLPA for Scalable Overlapping

Community Detection

Konstantin Kuzmin,' Mingming Chen,' and Boleslaw K. Szymanski"*

'Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
*The Faculty of Computer Science and Management, Wroclaw University of Technology, 50-370 Wroctaw, Poland

Correspondence should be addressed to Konstantin Kuzmin; kuzmik@rpi.edu

Received 3 March 2014; Accepted 17 November 2014

Academic Editor: Przemyslaw Kazienko

Copyright © 2015 Konstantin Kuzmin et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Communities in networks are groups of nodes whose connections to the nodes in a community are stronger than with the nodes
in the rest of the network. Quite often nodes participate in multiple communities; that is, communities can overlap. In this paper,
we first analyze what other researchers have done to utilize high performance computing to perform efficient community detection
in social, biological, and other networks. We note that detection of overlapping communities is more computationally intensive
than disjoint community detection, and the former presents new challenges that algorithm designers have to face. Moreover, the
efficiency of many existing algorithms grows superlinearly with the network size making them unsuitable to process large datasets.
We use the Speaker-Listener Label Propagation Algorithm (SLPA) as the basis for our parallel overlapping community detection
implementation. SLPA provides near linear time overlapping community detection and is well suited for parallelization. We explore
the benefits of a multithreaded programming paradigm and show that it yields a significant performance gain over sequential
execution while preserving the high quality of community detection. The algorithm was tested on four real-world datasets with up
to 5.5 million nodes and 170 million edges. In order to assess the quality of community detection, at least 4 different metrics were

used for each of the datasets.

1. Introduction

Analysis of social, biological, and other networks is a field
which attracts significant attention as more and more algo-
rithms and real-world datasets become available. In social
science, a community is loosely defined as a group of individ-
uals who share certain common characteristics [1]. Based on
similarity of certain properties, social agents can be assigned
to different social groups or communities. Knowledge of
communities allows researchers to analyze social behaviors
and relations between people from different perspectives. As
social agents can exhibit traits specific to different groups
and play an important role in multiple groups, communities
can overlap. Usually, there is no a priori knowledge of
the number of communities and their sizes. Quite often,
there is no ground truth either. Knowing the community
structure of a network empowers many important appli-
cations. Communities can be used to model, predict, and

control information dissemination. Marketing companies,
advertisers, sociologists, and political activists are able to
target specific interest groups. The ability to identify key
members of a community provides a potential opportunity
to influence the opinion of the majority of individuals in
the community. Ultimately, the community opinion can be
changed when only a small fraction of the most influential
nodes accepts a new opinion [2].

Biological networks such as neural, metabolic, protein,
genetic, or pollination networks and food webs model
interactions between components of a system that represent
some biological processes [3]. Nodes in such networks often
correspond to genes, proteins, individuals, or species. Com-
mon examples of such interactions are infectious contacts,
regulatory interaction, and gene flow.

The majority of community detection algorithms operate
on networks which might have strong data dependencies
between the nodes. While there are clearly challenges in

http://dx.doi.org/10.1155/2015/461362

designing an efficient parallel algorithm, the major factor
which limits the performance is scalability. Most frequently, a
researcher needs to have community detection performed for
a dataset of interest as fast as possible subject to the limitations
of available hardware platforms. In other words, for any given
instance of a community detection problem, the total size of
the problem is fixed while the number of processors varies
to minimize the solution time. This setting is an example
of a strong scaling computing. Since the problem size per
processor varies with the number of processors, the amount
of work per processor goes down as the number of processors
is increased. At the same time, the communication and
synchronization overhead does not necessarily decrease and
can actually increase with the number of processors, thus
limiting the scalability of the entire solution.

There is yet another facet of scaling community detection
solutions. As more and more hardware computing power
becomes available, it seems quite natural to try to uncover
the community structure of increasingly larger datasets.
Since more compute power currently tends to come rather
in a form of increased processor count than in a single
high performance processor (or a small number of such
processors), it is crucial to provide enough data for each
single processor to perform efficiently. In other words, the
amount of work per processor should be large enough so
that communication and synchronization overhead is small
relative to the amount of computation. Moreover, a well-
designed parallel solution should demonstrate performance
which at least does not degrade and perhaps even improves
when run on larger and larger datasets.

Accessing data that is shared between several processes
in a parallel community detection algorithm can easily
become a bottleneck. Several techniques have been studied,
including shared-nothing, master-slave, and data replication
approaches, each having its merits and drawbacks. Shared-
memory architectures make it possible to build solutions
that require no data replication at all since any data can be
accessed by any processor. One of the key design features of
our multithreaded approach is to minimize the amount of
synchronization and achieve a high degree of concurrency of
code running on different processors and cores. Provided that
the data is properly partitioned, the parallel algorithm that
we propose does not suffer performance penalties when pre-
sented with increasing amounts of data. Quite the contrary,
results show that, with larger datasets, the values of speedup
avoid saturation and continue to improve up to maximal
processor counts.

Validating the results of community detection algorithms
presents yet another challenging task. After running a com-
munity detection algorithm how do we know if the resulting
community structure makes any sense? If a network is known
to have some ground truth communities then the problem
is conceptually clear—we need to compare the output of the
algorithm with the ground truth. It might sound like an
easy problem to solve but in reality there are many possible
ways to compare different community structures of the same
network. Unfortunately, there is no one single method that
can be used in any situation. Rather a combination of metrics
can tell us how far our solution is from that represented by

Scientific Programming

the ground truth. As mentioned earlier, for many real-life
datasets it is not feasible to come up with any kind of ground
truth communities at all. Without them, comparative study
of values obtained from different metrics for community
structures output by different algorithms seems to be the only
way of judging the quality of community detection.

The rest of the paper is organized as follows. An overview
of relevant research on parallel community detection is
presented in Section 2. Section 3 provides an overview of
the sequential SLPA algorithm upon which we base our
parallel implementation. It also discusses details of the
multithreaded community detection on a shared-memory
multiprocessor machine along with busy-waiting techniques
and implicit synchronization used to ensure correct execu-
tion. We describe the way we partition the data and rearrange
nodes within a partition to maximize performance. We also
discuss the speedup and efficiency accomplished by our
approach. Detailed analysis of the quality of community
structures detected by our algorithm for four real-life datasets
relative to ground truth communities (when available) and
based on the sequential SLPA implementation is given in
Section 4. Finally, in Section 5, closing remarks and conclu-
sions are provided. We also discuss some of the limitations of
the presented solution and briefly describe future work.

2. Related Work

During the last decade substantial effort has been put into
studying network clustering and analysis of social and other
networks. Different approaches have been considered and
a number of algorithms for community detection have
been proposed. As online social communities and the net-
works associated with them continue to grow, the parallel
approaches to community detection are regarded as a way
to increase efficiency of community detection and therefore
receive a lot of attention.

The clique percolation technique [4] considers cliques
in a graph and performs community detection by finding
adjacent cliques. The k-means clustering algorithm partitions
m n-dimensional real vectors into k n-dimensional clusters
where every point is assigned to a cluster in such a way
that the objective function is minimized [5]. The objective
function is the within-cluster sum of squares of distances
between each point and the cluster center. There are several
ways to calculate initial cluster centers. A quick and simple
way to initialize cluster centers is to take the first k points
as the initial centers. Subsequently at every pass of the
algorithm the cluster centers are updated to be the means
of points assigned to them. The algorithm does not aim to
minimize the objective function for all possible partitions
but produces a local optimal solution instead, that is, a
solution in which for any cluster the within-cluster sum
of squares of distances between each point and the cluster
center cannot be improved by moving a single point from
one cluster to another. Another approach described in [6]
utilizes an iterative scan technique in which density function
value is gradually improved by adding or removing edges.
The algorithm implements a shared-nothing architectural

Scientific Programming

approach. The approach distributes data on all the computers
in a setup and uses master-slave architecture for clustering. In
such an approach, the master may easily become a bottleneck
when the application requires a large number of processors
because of the network size. A parallel clustering algorithm is
suggested in [7], which is a parallelized version of DBSCAN
(8].

A community detection approach based on propinquity
dynamics is described in [9]. It does not use any explicit
objective function but rather performs community detection
based on heuristics. It relies on calculating the values of
topology-based propinquity which is defined as a measure of
probability that two nodes belong to the same community.
The algorithm works by consecutively increasing the network
contrast in each iteration by adding and removing edges
in such a way as to make the community structure more
apparent. Specifically, an edge is added to the network if
it is not already present and the propinquity value of the
endpoints of this proposed edge is above a certain threshold,
called the emerging threshold. Similarly, if the propinquity
value of the endpoints of an existing edge is below a certain
value, called the cutting threshold, then this edge is removed
from the network. Since inserting and removing edges alters
the network topology; it affects not only propinquity between
individual nodes but also the overall propinquity of the entire
topology. The propinquity of the new topology can then be
calculated and used to guide the subsequent changes to the
topology in the next iteration. Thus, the whole process called
propinquity dynamics continues until the difference between
topologies obtained in successive iterations becomes small
relative to the whole network.

Since both topology and propinquity experience only
relatively small changes from iteration to iteration, it is
possible to perform the propinquity dynamics incrementally
rather than recalculating all propinquity values in each iter-
ation. Optimizations of performing incremental propinquity
updates achieve a running time complexity of O((|V| + |E]) -
|E|/|V]) for general networks and O(|V']) for sparse networks.

It is also shown in [9] that community detection with
propinquity dynamics can efficiently take advantage of paral-
lel computation using message passing. Nodes are distributed
among the processors which process them in parallel. Since it
is essential that all nodes are in sync with each other, the bulk
synchronous parallel (BSP) model is used to implement the
parallel framework. In this model, the computation is orga-
nized as a series of supersteps. Each superstep consists of three
major actions: receiving messages sent by other processors
during the previous superstep, performing computation, and
sending messages to other processors. Synchronization in
BSP is explicit and takes the form of a barrier which gathers all
the processors at the end of the superstep before continuing
with the next superstep. Two types of messages are defined for
the processors to communicate with each other. The first type
is used to update propinquity maps that each processor stores
locally for its nodes. Messages of the second type contain
parts of the neighbor sets that a processor needs in its local
computation.

A number of researchers explored a popular MapReduce
parallel programming model to perform network mining

operations. For example, a PeGaSus library (Peta-Scale Graph
Mining System) described in [10] is built upon using Hadoop
platform to perform several graph mining tasks such as
PageRank calculations, spectral clustering, diameter estima-
tion, and determining connected components. The core of
PeGaSus is a GIM-V function (generalized iterated matrix-
vector multiplication). GIM-V is capable of performing three
operations: combining two values, combining all the values
in the set, and replacing the old value with a new one.
Since GIM-V is general, it is also quite universal. All other
functions in the library are implemented as function calls to
GIM-V with proper custom definitions of the three GIM-V
operations. Fast algorithms for GIM-V utilize a number of
optimizations like using data compression, dividing elements
into blocks of fixed size, and clustering the edges. Finding
connected components with GIM-V is essentially equivalent
to community detection. The number of iterations required
to find connected components is at most the diameter of the
network. One iteration of GIM-V has the time complexity of
O(((IV] + |E)/P) log((IV| + |E|)/P)) where P is the number
of processors in the cluster. Running PeGaSus on an M45
Hadoop supercomputer cluster shows that GIM-V scales
linearly with the number of machines increasing from 3 to
90. Accordingly, PeGaSus is able to reduce time execution on
real-world networks containing up to hundreds of billions of
edges from many hours to a few minutes.

A HEigen algorithm introduced in [11] is an eigensolver
for large scale networks containing billions of edges. It is built
upon the same MapReduce parallel programming model as
PeGaSus and is capable of computing k eigenvalues for sparse
symmetric matrices. Similar to PeGaSus, HEigen scales
almost linearly with the number of edges and processors
and performs well in up to a billion edge scale networks. Its
asymptotic running time is the same as that of PeGaSus’ GIM-
V.

In [12] the authors consider a disjoint partitioning of
a network into connected communities. They propose a
massively parallel implementation of an agglomerative com-
munity detection algorithm that supports both maximizing
modularity and minimizing conductance. The performance
is evaluated on two different threaded hardware architectures:
a multiprocessor multicore Intel-based server and massively
multithreaded Cray XMT?2. This approach is shown to scale
well on two real-world networks with up to tens of millions
of nodes and several hundred million edges.

Another method for partitioning a network into disjoint
communities is scalable community detection (SCD) [13].
This two-phase algorithm works by optimizing the value of
an objective function and is capable of processing undirected
and unweighted graphs.

SCD uses the weighted community clustering (WCC)
metric proposed in [14] as the objective function. Instead of
performing simple edge counting, WCC works with more
sophisticated graph structures, such as triangles. The quality
of a partition is measured based on the number of triangles
in a graph. Intuitively, more connections between the nodes
within a community correspond to a larger number of
triangles. Communities tend to have many highly connected
nodes which are much more likely to close triangles with

each other rather than with nodes from other communities.
Thus, for a particular node and community the value of
WCC quantifies the level of cohesion of the node to the
community. The metric is defined not only for individual
nodes and communities but also for a community as a whole
and the entire partition. One of the advantages of WCC over
modularity is that it does not have a resolution limit prob-
lem. In addition, optimization of WCC is mathematically
guaranteed to produce cohesive and structured communities.
The measure of cohesion is defined for a partition as some
real-valued function f called degree of cohesion. For each
subset of nodes f assigns a value in the range [0, 1] such
that high values of f correspond to good communities and
low values of f correspond to bad communities. For a
given context (social, biological, etc.) an adequate metric f
captures the features specific to this context. For example,
for social networks the cohesion of a community depends
on the number of triangles closed by the nodes inside this
community. Furthermore, triangles are also used as a good
indicator of community structure.

The operation of SCD consists of two phases which are
executed sequentially. The first stage comprises graph cleanup
and initial partitioning. Cleanup is performed by removing
the edges which do not close any triangles. Then the graph is
partitioned based on the values of the clustering coefficient of
every node. Nodes are taken in the order of decreasing clus-
tering coefficient and placed in communities together with
their neighbors. Such partitioning yields communities with
high values of WCC which is beneficial for the subsequent
optimization process.

The second phase is responsible for the refinement of
the initial partition. WCC optimization process consists of
iterations which are repeated as long as the value of WCC for
the entire partition keeps improving. In order to improve the
value of WCC, the best of the following three movements is
chosen for each node. These are the only movements which
can potentially improve the WCC score:

(i) keep the network unchanged;

(ii) remove a node from its current community and place
it in its own singleton community;

(iii) move a node from one community to another.

After movements for all the nodes have been selected,
the WCC metric is calculated for the entire partition and
compared to the previous value to determine if there is an
overall improvement in the score. The refinement process
stops when there has been no improvement (or improvement
was less than a specified threshold) during the most recent
iteration.

Computing the value of WCC directly at each iteration
and for each node is computationally expensive and therefore
should be avoided, especially for high degree nodes. In order
to speed up calculations, it is possible to exploit the fact that
the refinement process operates using the improvement of the
score and therefore computing the absolute value of WCC
is not necessary. Instead of calculating WCC directly, SCD
uses certain graph statistics to build a WCC estimator. The

Scientific Programming

estimator evaluates the improvement of WCC only once per
iteration spending just O(1) time per node.

Assuming that graphs have a quasilinear relation between
the number of nodes and the number of edges, and the
number of iterations of the refinement process is a constant,
the overall running time complexity of SCD is O(m - log n),
where 7 is the number of nodes and m is the number of edges
in the graph.

The advantage of the SCD algorithm is its amenability
to parallelization. This is due to the fact that during the
optimization process improvements of WCC are considered
for every node individually and independently of other
nodes. Therefore, the best movement can be calculated for
all nodes simultaneously using whatever parallel features
the underlying computing platform has to offer. Moreover,
applying the moves to all nodes is also done in parallel.

SCD is implemented in C++ as a multithreaded applica-
tion which uses OpenMP API for parallelization. Concur-
rency during the refinement process is achieved by consid-
ering improvements of WCC and then applying movements
independently for each node. Benchmark datasets used in
experiments include a range of networks of different sizes:
Amazon, DBLP, Youtube, LiveJournal, Orkut, and Friendster.
All of these graphs contain ground truth communities which
are required to evaluate the quality of communities produced
by SCD.

Normalized mutual information (NMI) and average F,
score are used to evaluate the quality of community detection.
SCD is compared against the following algorithms: Infomap,
Louvain, Walktrap, BigClam, and Oslom. No distinction
is made between methods which perform only disjoint
community detection and those that are capable of detecting
overlapping communities. The output of each algorithm is
compared against ground truth communities without regard
to possible overlaps. Although the values of NMI and average
F, scores obtained for SCD are close to the results of other
algorithms, it outperforms its competition on almost all
datasets.

In terms of runtime performance, SCD is much faster
than the majority of other algorithms used in the experiment.
In a single threaded mode, the largest of the datasets used
(Friendster) was processed in about 12 hours. SCD scales
almost linearly with the number of edges in the graph. Using
multiple threads can reduce the processing time even further.
With 4 threads it takes a little bit over 4 hours to perform
community detection on the Friendster network. Although
the values of speedup are not explicitly presented, it can be
inferred that the advantage of using multiple threads varies
considerably depending on the dataset. The best case seems to
be the Orkut graph for which speedup grows linearly as the
number of threads is increased from 1 to 4. However, since
the scope of parallelization in the experiment is modestly
limited to just 4 threads, it is unclear how the scalability of
the multithreaded SCD behaves when more than 4 cores are
utilized.

A family of label propagation community detection
algorithms includes label propagation algorithm (LPA) [15],
community overlap propagation algorithm (COPRA) [16],
and speaker-listener label propagation algorithm (SLPA) [17].

Scientific Programming

The main idea is to assign identifiers to nodes and then make
them transmit their identifiers to their neighbors. With node
identifiers treated as labels, a label propagation algorithm
simulates the exchange of labels between connected nodes in
the network. At each step of the algorithm each and every
node that has at least one neighbor receives a label from
one of its neighbors. Nodes keep a history of labels that they
have ever received organized as a histogram which captures
the frequency (and therefore the rank) of each label. The
number of steps, or iterations, of the algorithm determines
the number of labels each node accumulates during the
label propagation phase. Being one of the parameters of
the algorithm, the number of iterations eventually affects
the accuracy of community detection. Clearly, the running
time of the label propagation phase is linear with respect
to the number of iterations. The algorithm is guaranteed to
terminate after a prescribed number of iterations. When it
does, communities data is extracted from nodes’ histories.

Staudt and Meyerhenke [18] proposed PLP, PLM, and
EPP algorithms for nonoverlapping community detection,
that is, determining a partitioning of the node set.

Parallel label propagation (PLP) algorithm is a variation
of the sequential LPA capable of performing detection of
nonoverlapping communities in undirected weighted graphs.
PLP differs from the original formulation of the label prop-
agation algorithm [15] in that it avoids explicitly randomiz-
ing the node order and relies instead on asynchronism of
concurrently executed PLP code threads. This way it saves
the cost of explicit randomization. In order to optimize code
execution even further, nodes are divided into active nodes
and inactive nodes. Since labels of inactive nodes cannot be
updated in the current iteration, the label propagation process
is only performed on active nodes, thus reducing the amount
of computation.

The termination criterion used by PLP is also different
from the original description [15]. PLP uses a threshold value
to stop processing. The value of the threshold is determined
empirically and set to n- 107>, where n is the number of nodes
in the graph. Therefore, for the majority of graphs which
were included in the experiment, the number of iterations is
relatively small (from 2 to about a hundred). Moreover, no
justification is provided for this formula which establishes a
relation between the number of iterations and the number
of nodes in the graph. Although it is claimed that “clustering
quality is not significantly degraded by simply omitting these
iterations,” it is also admitted that “while the PLP algorithm
is extremely fast, its quality might not always be satisfactory
for some applications” No results are presented to show how
the number of iterations affects the quality of community
detection or how the modularity scores of PLP compare to
those of the competition.

A locally greedy, agglomerative (bottom-up) multi-
level community detection method called parallel Louvain
method (PLM) is based on modularity optimization. Starting
from some initial partition, nodes are moved from one
community to another as long as it increases the objective
function, that is, modularity. When modularity reaches a
local optimum, a graph is coarsened and modularity opti-
mization process is repeated.

Ensemble preprocessing (EPP) algorithm is a combi-
nation of several community detection methods. Its main
goal is to form a classifier which decides if a pair of nodes
should belong to the same community. EPP requires a
preprocessing step which is performed by several parallel
PLP instances running concurrently. The consensus of several
base classifiers is used to form core communities which are
coarsened to reduce the problem size.

Ensemble multilevel (EML) method is a recursive exten-
sion of the ensemble preprocessing algorithm. First, the core
clustering is produced. Then the graph is contracted to a
smaller graph, and the same algorithm is called recursively
until a predefined termination condition is met.

All algorithms in [18] are created in C++. Parallel code
is implemented using OpenMP API. Nodes are distributed
between the threads and processed concurrently. Perfor-
mance of the algorithms is compared to several other com-
munity detection methods: CLU_TBB, RG, CGGC, CGGCi,
and the original sequential Louvain implementation. In order
to compare the quality of results produced by different
algorithms, Staudt and Meyerhenke use modularity [19].
Although modularity is very popular it was shown to suffer
from the resolution limit and is also known to have other
issues and limitations. There are other community quality
metrics as well as modified versions of the original definition
of modularity which overcome some of these problems [20].
However, modularity is the only measure used to compare
the quality of communities produced by different algorithms
in this experiment.

A shared-memory multiprocessor machine was used to
test the performance and community quality of different
algorithms. EML performed poorly while PLP and PLM were
found to pay off with respect to either the execution time or
community detection quality.

PLP was the fastest algorithm tested. It demonstrated
linear strong scaling in the range 2-16 threads for uk-2002,
the largest network which participated in all experiments. No
data on scaling results for other datasets were provided. Since
only one graph describes speedup for PLP, it is difficult to
measure the values exactly, but they are approximately 0.92
for 2 threads (i.e., slower than with a single thread), 1.45
for 4 threads, 2.6 for 8 threads, and 4.6 for 16 threads. The
running time drops in a slightly sublinear manner with the
number of threads, although the absolute values of speedup
are quite modest, and efficiency slowly goes down from 35%
for 4 threads to 29% for 16 threads.

In almost all the cases, EPP was able to improve the values
of modularity achieved by PLM. However, this advantage
comes at the cost of running on average 10 times slower. At the
same time, scalability of EPP remains unclear since no data
is provided on the running time performance for different
ensemble sizes.

For uk-2007-05 which was the largest graph used in
the experiments, only the processing time of 120 seconds
using the PLP algorithm and a parallel configuration with
32 threads is reported. No information is provided about
scalability tests with this graph for other numbers of threads.
In addition, due to memory constraints a different hardware
platform with larger memory and a different CPU had to be

used to process this network. Therefore, the results are not
directly comparable to those of other datasets. Although it
is also mentioned that “a modularity of 0.99598 is reached
for the uk-2007-05 graph in 660 seconds,” it is not clear
under which conditions this result was achieved. There is
no mention of any other results concerning uk-2007-05,
including any comparisons with other algorithms. Despite
mentjoning that uk-2007-05 requires “more than 250 GB of
memory in the course of an EPP run,” no EPP results for this
graph are reported either.

In [21] we designed a multithreaded parallel community
detection algorithm based on the sequential version of SLPA.
Although only unweighted and undirected networks have
been used to study the performance of our parallel SLPA
implementation, an extension for the case of weighted and
directed edges is straightforward and does not affect the
computational complexity of the method. To facilitate such
generalization, each undirected edge is represented with two
directed edges connecting two nodes in opposite directions.
In effect, the number of edges that are represented internally
in code, is doubled, but the code is capable of running
on directed graphs. A distinctive feature of our parallel
solution is that, unlike other approaches described above, it
is capable of performing overlapping community detection
and has a parameter enabling balancing the running time and
community detection quality.

In this paper, we further explore the multithreaded
parallel programming paradigm that was used in [21] and test
its performance on several real-world networks that range in
size from several hundred thousand nodes and a few million
edges to almost 5.5 million nodes and close to 170 million
edges. We also provide a detailed analysis of the quality of
communities detected with the parallel algorithm.

3. Parallel Linear Time Community Detection

The SLPA [17] is a sequential linear time algorithm for
detecting overlapping communities. SLPA iterates over the
list of nodes in the network. Each node i randomly picks one
of its neighbors n; and the neighbor then selects randomly
a label [from its list of labels and sends it to the requesting
node. Node i then updates its local list of labels with I.
This process is repeated for all the nodes in the network.
Once it is completed, the list of nodes is shuffled and the
same processing repeats again for all nodes. After t iterations
of shuffling and processing label propagation, every node
in the network has a label list of length t, as every node
receives one label in each iteration. After all iterations are
completed, postprocessing is carried out on the list of labels
and communities are extracted. We refer interested readers to
the full paper [17] for more details on SLPA.

It is obvious that the sequence of iterations executed in
SLPA algorithm makes the algorithm sequential and it is
important for the list of labels updated in one iteration to be
reflected in the subsequent iterations. Therefore, the nodes
cannot be processed completely independently of each other.
Each node is a neighbor of some other nodes; therefore,
if the lists of labels of its neighbors are updated, it will

Scientific Programming

receive a label randomly picked from the updated list of
labels.

3.1. Multithreaded SLPA with Busy-Waiting and Implicit
Synchronization. Our multithreaded implementation closely
follows the algorithm described in [21] with minor improve-
ments and bug fixes. In the multithreaded SLPA, we adopt
a busy-waiting synchronization approach. Each thread per-
forms label propagation on a subset of nodes assigned to
this particular thread. This requires that the original network
to be partitioned into subnetworks with one subnetwork to
be assigned to each thread. Although partitioning can be
done in several different ways depending on our objective,
in this case the best partitioning will be that which makes
every thread spend the same amount of time processing each
node. Label propagation for any node consists of forming
a list of labels by selecting a label from every neighbor of
this node and then selecting a single label from this list
to become a new label for this node. In other words, the
ideal partitioning would guarantee that at every step of
the label propagation phase each thread deals with a node
that has exactly the same number of neighbors as nodes
that are being processed by other threads. Thus, the ideal
partitioning would divide the network in such a way that a
sequence of nodes for every thread consists of nodes with
the same number of neighbors across all the threads. Such
partitioning is illustrated in Figurel. T3,T5,...,T, are p
threads that execute SLPA concurrently. As indicated by the
arrows, time flows from top to bottom. Each thread has its
subset of nodes 1;;, 1,5, ..., 1y, of size k where i is the thread
number, and node neighbors are m;,m,,...,m;. A box
corresponds to one iteration. There are ¢ iterations in total.
Dashed lines denote points of synchronization between the
threads.

In practice, this ideal partitioning will lose its perfection
due to variations in thread start-up times as well as due
to uncertainty associated with thread scheduling. In other
words, in order for this ideal scheme to work perfectly,
hard synchronization of threads after processing every node
is necessary. Such synchronization would be both detri-
mental to the performance and unnecessary in real-life
applications.

Instead of trying to achieve an ideal partitioning we can
employ a much simpler approach by giving all the threads
the same number of neighbors that are examined in one
iteration of the label propagation phase. It requires providing
each thread with such a subset of nodes that the sum of
all indegrees is equal to the sum of all indegrees of nodes
assigned to every other thread. In this case, for every iteration
of the label propagation phase every thread will examine
the same overall number of neighbors for all nodes that are
assigned to this particular thread. Therefore, every thread
will be performing, roughly, the same amount of work per
iteration. Moreover, synchronization then is only necessary
after each iteration to make sure that no thread is ahead of any
other thread by more than one iteration. Figure 2 illustrates
such partitioning. As before, T}, T, ..., T, are p threads that
execute SLPA concurrently. As shown by the arrows, time

Scientific Programming

t iterations
A

t iterations
A

Node Number of
index neighbors

(]]
(] ma
(g e

Ty

Node Number of]|
index neighbors
(1]

my

Node Number of]
index neighbors

(ol ___mMi___
(] |
(k] My

Node Number of|
index neighbors

] m
[l oy
[r] s

Node Number of]
index neighbors

(101

Node Number of|
index neighbors

T

Node Number of|
index neighbors

lrp) _my
] my
[”pk] My

Node Number of]
index neighbors

gl omy
g ma
gl me

Node Number of]
index neighbors

[rp] __m
(o] 2
()

FIGURE I: Ideal partitioning of the network for multithreaded SLPA.

Ty
Node index Node index
=~ =~
[ha] | 5 = [mu] | =
g 8
[12] \ § E [112] \ g é
=] =
R R
o] | & (] J &
Node index 177" 7 |Node index
=~ =~
n, = n)
[01] ; % [11] g %
=) =)
[102] LE & (1] LE &
g = g2
© °
[noko] . [”1k1] .
- d____ -
Node index Node index
[101] S n b
S E [11] S E
g S
[102] g & (2] E £
Z 2 g2
—_ g — <
s s
[”oko] B = ["1k1] 8 =

T

Node index
[l |
n
2 g ﬁ
=
[nPZ] > g §
z
i
° [
= =
[”pkp]_/
Node index
1])
n S
pl g ﬁ
Ha)
[”pz] >§ g
o 0
g =
R
°
["pkp]_/ s
Node index
[np] |5
P g ?
Na)
[”pz] £ g
El-
£ =
)
]
[”pkp] B E

FIGURE 2: A better practical partitioning of the network for multithreaded SLPA.

flows from top to bottom. However, each thread now has its
subset of nodes 1;;, 1,5, ..., my. of size k; where i is the thread
number. In other words, threads are allowed to have different
number of nodes that each of them processes, as long as the

total number of node neighbors M = Zfil m; is the same
across all the threads. A box still corresponds to one iteration.
There are ¢ iterations in total. Dashed lines denote points of
synchronization between the threads.

We can employ yet an even simpler approach of just
splitting nodes equally between the threads in such a way
that every thread gets the same (or nearly the same) number
of nodes. It is important to understand that this approach is
based on the premise that the network has small variation
of local average of node degrees across all possible subsets
of nodes of equal size. If this condition is met, then, as
in the previous case, every thread performs approximately
the same amount of work per iteration. Our experiments
show that for many real-world networks this condition holds,
and we accepted this simple partitioning scheme for our
multithreaded SLPA implementation.

Given the choice of the partitioning methods described
above, each of the threads running concurrently is processing
all the nodes in its subset of nodes at every iteration of the
algorithm. Before each iteration, the whole subset of nodes
processed by a particular thread needs to be shuffled in order
to make sure that the label propagation process is not biased
by any particular order of processing nodes. Additionally, to
guarantee the correctness of the algorithm, it is necessary to
ensure that no thread is more than one iteration ahead of any
other thread. The latter condition places certain restrictions
on the way threads are synchronized. More specifically, if
a particular thread is running faster than the others (for
whatever reasons), it has to eventually pause to allow other
threads to catch up (i.e., to arrive at a synchronization
point no later than one iteration behind this thread). This
synchronization constraint limits the degree of concurrency
of this multithreaded solution.

It is important to understand the importance of partition-
ing the network nodes into subsets to be processed by the
threads in respect to the distribution of edges across different
network segments. In our implementation we use a very
simple method of forming subsets of nodes for individual
threads. First, a subset for the first thread is formed. Nodes are
read sequentially from an input file. As soon as a new node
is encountered, it is added to the subset of nodes processed
by the first thread. After the subset of nodes for the first
thread has been filled, a subset of nodes for the second
thread is formed, and so on. Although simple and natural,
this approach works well on networks with high locality of
edges. For such networks, if the input file is sorted in the
order of node numbers, nodes are more likely to have edges to
other nodes that are assigned to the same thread. This leads
to partitioning where only a small fraction (few percent) of
nodes processed by each thread have neighbors processed by
other threads.

Algorithm 1 shows the label propagation phase of our
multithreaded SLPA algorithm which is executed by each
thread. First, each thread receives a subset of nodes that it

Scientific Programming

ThreadPartition «— CreatePartition(InputFile)
p « number of threads
for j=1toj< pdo
Used[j] < 0
end for
for all v such that v is in ThreadNodesPartition do
for all w such that w has an edge to v
k « getProcessorForNode(w)
Used[k] < 1
end for
end for
Dsize — 0
for j=1toj< pdo
if Used[j] > 0 then
D(Dsize] < j
Dsize < Dsize + 1
end if
end for
while ¢ < maxT do
for j=0to j < Dsize— 1 do
while ¢ —t of thread D[j] > 1 do
Do nothing
end while
end for
for all v such that v is in myPartition do
| « selectLabel(v)
Add label | to labels of v
end for
te—t+1
end while

ALGORITHM 1: Multithreaded SLPA.

processes called ThreadNodesPartition. An array of depen-
dencies Used is first initialized and then filled in such
a way that it contains 1 for all threads that process at
least one neighbor of the node from Thread NodesPartition
and 0 otherwise. This array of dependencies Used is then
transformed to a more compact representation in the form
of a dependency array D. Elements of array D contain thread
numbers of all the threads which process any neighbor of a
node that this thread processes. Dsize is the size of array D.
If no node that belongs to the subset processed by this thread
has neighbors processed by other threads, then array D is
empty and Dsize = 0. If, for example, nodes that belong to
the subset processed by this thread have neighbors processed
by threads 1, 4, and 7, then array D has three elements with
values of 1, 4, and 7, and Dsize = 3. After the dependency
array has been filled, the execution flow enters the main
label propagation loop which is controlled by counter ¢ and
has max T iterations. At the beginning of every iteration, we
ensure that this thread is not ahead of the threads on which
it depends by more than one iteration. If it turns out that it is
ahead, this thread has to wait for the other threads to catch up.
Then the thread performs a label propagation step for each
of the nodes it processes which results in a new label being
added to the list of labels for each of the nodes. Finally, the

Scientific Programming

iteration counter is incremented, and the next iteration of the
loop is considered.

In order to even further alleviate the synchronization
burden between the threads and minimize the sequentiality
of the threads as much as possible, another optimization tech-
nique can be used. We note that some nodes which belong
to a set processed by a particular thread have connection
only to nodes that are processed by the same thread (we
call them internal nodes), while other nodes have external
dependencies. We say that a node has an external dependency
when at least one of its neighbors belongs to a subset of
nodes processed by some other thread. Since there are nodes
with external dependencies, synchronization rules described
above must be strictly followed in order to ensure correctness
of the algorithm and meaningfulness of the communities it
outputs. However, nodes with no external dependencies can
be processed within a certain iteration independently from
the nodes with external dependencies. It should be noted
that a node with no external dependencies is not completely
independent from the rest of the network since it may well
have neighbors of neighbors that are processed by other
threads.

It follows that processing of nodes with no external
dependencies has to be done within the same iteration
framework as for nodes with external dependencies but with
less restrictive relations in respect to the nodes processed
by other threads. In order to utilize the full potential of the
technique described above, it is necessary to split the subset
of nodes processed by a thread into two subsets, one of which
contains only nodes with no external dependencies and the
other one contains all the remaining nodes. Then, during
the label propagation phase of the SLPA, nodes that have
external dependencies are processed first in each iteration.
Since we know that by the time such nodes are processed
the remaining nodes (those with no external dependencies)
cannot influence the labels propagated to nodes processed
by other threads (due to the symmetry of the network), it is
safe to increment the iteration counter for this thread, thus
allowing other threads to continue their iterations if they have
been waiting for this thread in order to be able to continue.
Meanwhile, this thread can finish processing nodes with no
external dependencies and complete the current iteration.

This approach effectively allows a thread to report com-
pletion of the iteration to the other threads sooner than it has
been completed by relying on the fact that the work which
remains to be completed cannot influence nodes processed by
other threads. This approach, though seemingly simple and
intuitive, leads to noticeable improvement of the efficiency of
parallel execution (as described in Section 3.2) mainly due to
decreasing the sequentiality of execution of multiple threads
by signaling other threads earlier than in the absence of such
splitting.

An important peculiarity arises when the number of
nodes with external dependencies is only a small fraction (few
percent) of all the nodes processed by the thread. In this case
it would be beneficial to add some nodes without external
dependencies to the nodes with external dependencies and
process them together before incrementing the iteration
counter. The motivation here is that nodes must be shuffled

Internal — Createlnternal Partition(InputFile)
External — CreateExternalPartition(InputFile)
p « number of threads
/*Unchanged code from Algorithm 1 omitted™/
while ¢t < maxT do
for j=0to j < Dsize -1 do
while t —t of thread D[j] > 1 do
Do nothing
end while
end for
for all v such that v is in External do
| « selectLabel(v)
Add label | to labels of v
end for
t—t+1
for all v such that v is in Internal do
| « selectLabel(v)
Add label 1 to labels of v
end for
end while

ALGORITHM 2: Multithreaded SLPA with splitting of nodes.

in each partition separately from each other to preserve the
order of execution between partitions. Increasing partition
size above the number of external nodes improves shuffling
in the smaller of the two partitions.

The remaining nodes without external dependencies
can be processed after incrementing the iteration counter,
as before. In order to reflect this optimization factor we
introduce an additional parameter called the splitting ratio.
A value of this parameter indicates the percentage of nodes
processed by the thread before incrementing the iteration
counter. For instance, if we say that splitting of 0.2 is used it
means that at least 20% of nodes are processed before incre-
menting the iteration counter. If after initial splitting of nodes
into two subsets of nodes with external dependencies and
without external dependencies it turns out that there are too
few nodes with external dependencies to satisfy the splitting
ratio, some nodes that have no external dependencies are
added to the group of nodes with external dependencies just
to bring the splitting ratio to the desired value.

Algorithm 2 shows our multithreaded SLPA algorithm
that implements splitting of nodes processed by a thread into
a subset of nodes with external dependencies and a subset
with no external dependencies. The major difference from
Algorithm 1 is that, instead of processing all the nodes before
incrementing the iteration counter, we first process a subset of
nodes that includes nodes that have neighbors processed by
other threads, then we increment the iteration counter, and
then we process the rest of the nodes.

Since in [21] we studied the impact of selecting different
values of the splitting ratio, it was not our main focus here.
We simply accepted a splitting ratio of 0.2 and kept it fixed
for all the test runs. Our major objective was to ensure
that all parallel and sequential runs are performed with
exactly the same code base and provide identical runtime

10

conditions and parameters, so that results of our performance
evaluation and community detection quality metrics are
directly comparable.

3.2. Performance Evaluation of the Multithreaded Solution.
We performed runs on a hyper-threaded Linux system
operating on top of a Silicon Mechanics Rackform nServ
A422.v3 machine. Processing power was provided by 64 cores
organized as four AMD Opteron 6272 central processing
units (2.1 GHz, 16-core, G34, 16 MB L3 Cache) operating over
a shared 512 GB bank of random access memory (RAM) (32
% 16 GB DDR3-1600 ECC Registered 2R DIMM:s) running at
1600 MT/s Max. The source code was written in C++03 and
compiled using g++ 4.6.3 (Ubuntu/Linaro 4.6.3-lubuntus5).

Four datasets have been used to test the perfor-
mance of the multithreaded solution and the quality of
community detection. Three of these datasets (com-Amazon,
com-DBLP, and com-LiveJournal) have been acquired from
Stanford Large Network Dataset Collection (http://snap.stan-
ford.edu/data/) which contains a selection of publicly avail-
able real-world networks (SNAP networks).

Undirected Amazon product copurchasing network
(referred to as com-Amazon) was gathered, described, and
analyzed in [22]. From the dataset information [23], it
follows that it was collected by crawling Amazon website.
A Customers Who Bought This Item Also Bought feature of
the Amazon website was used to build the network. If it is
known that some product i is frequently bought together with
product j, then the network contains an undirected edge from
i to j. For each product category defined by Amazon, there is
a corresponding ground truth community. Each connected
component in a product category is treated as a separate
ground truth community.

Since small ground truth communities having less than
3 nodes had been removed, it was necessary to modify the
original com-Amazon network to ensure that only nodes
that belong to ground truth communities can appear in
communities detected by the multithreaded parallel algo-
rithm. Otherwise, comparison of communities produced by
the community detection algorithm and the ground truth
communities would not be feasible. The modified com-
Amazon network was obtained from the original one by
removing nodes which are not found in any ground truth
community and all the edges connected to those nodes. While
the original Amazon network consists of 334,863 nodes and
925,872 undirected edges, the modified dataset has 319,948
nodes and 1,760,430 directed edges. As outlined in Section 2,
each undirected edge is internally converted to a pair of
edges. Therefore, 925,872 undirected edges from the original
network correspond to 1,851,744 directed edges in the internal
representation of the code, and since some of the edges were
incident to removed nodes, the resulting number of directed
edges left in the network was 1,760,430.

The DBLP computer science bibliography network
(referred to as com-DBLP) was also introduced and studied
in [22]. According to the dataset information [24], it provides
a comprehensive list of research papers in computer science.
If two authors publish at least one paper together, then the

Scientific Programming

nodes corresponding to these authors will be connected
with an edge in a coauthorship network. Ground truth
communities are based on authors who published in journals
or conferences. All authors who have at least one publication
in a particular journal or conference form a community.
Similarly to the com-Amazon network, each connected
component in a group is treated as a separate ground truth
community. Small ground truth communities (less than 3
nodes) have also been removed.

The DBLP dataset was also modified to facilitate compar-
ison with ground truth communities as described above for
the com-Amazon network. Since DBLP is also undirected,
the same considerations about the number of edges that
were provided above for the com-Amazon network also apply
to com-DBLP. The original DBLP network contains 317,080
nodes and 1,049,866 undirected edges, while the modified
version has 260,998 nodes and 1,900,118 directed edges.

Another network from [22] that we are using to evaluate
the performance of the multithreaded parallel implementa-
tion of SLPA and the quality of communities it produces
is a LiveJournal dataset (referred to as com-LiveJournal).
The dataset information page [25] describes LiveJournal
as a free online blogging community where users declare
friendship with each other. LiveJournal users can form groups
and allow other members to join them. For the purposes
of evaluating the quality of communities we are treating
the com-LiveJournal network as having no ground truth
communities. The LiveJournal network is undirected and
contains 3,997,962 nodes and 34,681,189 pairs of directed
edges. Since we are not comparing the communities found
by the community detection algorithm with the ground truth
communities, no modification of the original network is
necessary.

The fourth dataset is a snapshot of the Foursquare
network as of October 11, 2013. This dataset contains 5,499,157
nodes and 169,687,676 edges. No information about ground
truth communities is available.

We calculated speedup using the formula shown in (1) and
efficiency according to (2):

T
Speedup = 771, 1)
P

where Speedup is the actual speedup calculated according to
(1) and p is the number of processors or computing cores:

Speedup

Efficiency = (2)

All the experiments were run with 1,000 iterations (the
value of maxT was set to 1000) for all networks. On one
hand, a value of 1,000 for the number of iterations provides
a sufficient amount of work for the parallel portion of the
algorithm, so that the overhead associated with creating
and launching multiple threads does not dominate the
label propagation running time. On the other hand, 1,000
iterations are empirically enough to produce meaningful
communities since the number of labels in the history of
every label is statistically significant. At the same time,

Scientific Programming

although running the algorithm for 1,000 iterations on certain
datasets (especially larger ones) was in some cases (mainly for
smaller core counts) taking a few days, it was still feasible to
complete all runs on all four networks in under two weeks.

We conducted one set of measurements by considering
only time for the label propagation phase since it is at this
stage that our multithreaded implementation differs from the
original sequential version. Time necessary to read an input
file and construct in-memory representation of the nodes and
edges as well as any auxiliary data structures was not included
in this timing. All postprocessing steps and writing output
files have also been excluded.

However, for an end user it is not the label propagation
time (or any other single phase of the algorithm) that is
important but rather the total running time. Users care about
the time it took for the code to run: from the moment a
command was issued until the resulting communities files
have been written to a disk. Therefore, we conducted a second
set of measurements to gather data on total execution time
of our multithreaded parallel SLPA implementation. Since
the total execution time includes not only a highly parallel
label propagation stage but also file I/O, threads creation
and cleanup, and other operations which are inherently
sequential, it is to be expected that the values of both speedup
and efficiency are going to be worse than in the case when
only label propagation phase is considered.

Since the hardware platform we used provides 64 cores,
every thread in our tests executes on its dedicated core.
Therefore, threads do not compete for central processing unit
(CPU) cores (unless there is interference from the operating
system or other user processes running concurrently). They
are executed in parallel, and we can completely ignore thread
scheduling issues in our considerations. Because of this,
we use terms “thread” and “core” interchangeably when we
describe results of running the multithreaded SLPA. The
number of cores in our runs varies from 1 to 64. However,
we observed a performance degradation when the number
of threads is greater than 32. This performance penalty is
most likely caused by the memory banks organization of our
machine. Speedup and efficiency are calculated using (1) and
(2) defined earlier. No third-party libraries or frameworks
have been used to set up and manage threads. Our implemen-
tation relies on Pthreads application programming interface
(POSIX threads) which has implementations across a wide
range of platforms and operating systems.

We noticed that the compiler version and compilation
flags can each play a crucial role not only in terms of how
efficiently the code runs but also in terms of the sole ability of
code to execute in the multithreaded mode. Unfortunately,
little, if anything is clearly and unambiguously stated in
compiler documentation regarding implications of using
various compiler flags to generate code for execution on
multithreaded architectures. For the most part, developers
have to rely on their own experience or common sense and
experiment with different flags to determine the proper set
of options which would make the compiler generate effective
code capable of flawlessly executing multiple threads.

For instance, when the compiler runs with either -O2
or -O3 optimization flag to compile the multithreaded SLPA

1

3000
2500
2000
1500
1000

500

Time (s)

1 2 4 8 16 24 32 40 48 64
Number of threads (cores) utilized

FIGURE 3: Label propagation time for com-Amazon network at
different number of cores.

8 1.2
7 1
6 1 os
8
s 5 [o8 g
2 4 o6 2
4 £
&3 104 &3
2 .
) o2
0 0
1 2 4 8 16 24 32 40 48 64
Number of threads (cores) utilized
—— Speedup

—=— Efficiency

FIGURE 4: Speedup and efficiency for com-Amazon network (con-
sidering only label propagation time) at different number of cores.

the resulting binary code simply deadlocks at execution. The
reason for deadlock is exactly the optimization that compiler
performs ignoring the fact that the code is multithreaded.
This optimization leads to threads being unable to see updates
to the shared data structures performed by other threads. In
our case such shared data structure is an array of iteration
counters for all the threads. Evidently, not being able to see
the updated values of other threads” counters quickly leads
threads to a deadlock.

Another word of caution should be offered regarding
some of the debugging and profiling compiler flags. More
specifically, compiling code with -pg flag which generates
extra code for a profiling tool gprof leads to substantial
overhead when the code is executed in a multithreaded
manner. The code seems to be executing fine but with a
speedup of less than 1. In other words, the more threads are
being used the longer it takes for the code to run regardless
of the fact that each thread is executed on its own core and
therefore does not compete with other threads for CPU. It is
also counterintuitive since using more threads should result
in a smaller subset of nodes that each thread processes.

The results of performance runs of our multithreaded
parallel implementation are presented in Figures 3-19. (Data
export was performed using Daniel’s XL Toolbox add-in for
Excel, version 6.51, developed by Daniel Kraus, Wiirzburg,
Germany.)

Figures 3, 5, 7, and 9 show the time it took to complete
the label propagation phase of the multithreaded parallel

12

3000
2500
2000
1500
1000

500

Time (s)

1 2 4 8 16 24 32 40 48 o4

Number of threads (cores) utilized

FIGURE 5: Label propagation time for com-DBLP network at
different number of cores.

1.2

0.8
0.6
0.4
0.2

Speedup
Efficiency

S = N W R Ul NN

1 2 4 8 16 24 32 40 48 64

Number of threads (cores) utilized

—— Speedup
—=— Efficiency

FIGURE 6: Speedup and efficiency for com-DBLP network (consid-
ering only label propagation time) at different number of cores.

Time (s)
O =N Wk U1\ 0 \O

1 2 4 8 16 24 32 40 48 64

Number of threads (cores) utilized

FIGURE 7: Label propagation time for com-LiveJournal network at
different number of cores.

7 1.2

6 1

> 08 &
El g
3 0.6 -3
g 3 =!
) 04 =

1 0.2

0 0

1 2 4 8 16 24 32 40 48 64
Number of threads (cores) utilized

—— Speedup
—=— Efficiency

FIGURE 8: Speedup and efficiency for com-LiveJournal network
(considering only label propagation time) at different number of
cores.

Scientific Programming

x10*
25

20

15

Time (s)

10

1 2 4 8 16 24 32 40 48 o4

Number of threads (cores) utilized

FIGURE 9: Label propagation time for Foursquare network at
different number of cores.

8 1.2

7 1

6
& 5 08 &
2~ Q
g 4 0.6 -5
9 E
% ; 04 =

1 0.2

0 0

1 2 4 8 16 24 32 40 48 64

Number of threads (cores) utilized

—— Speedup
—=— Efficiency

FIGURE 10: Speedup and efficiency for Foursquare network (consid-
ering only label propagation time) at different number of cores.

Speedup
O~ N WA Ul ®

1 2 4 8 16 24 32 40 48 64
Number of threads (cores) utilized

—— com-Amazon —4— com-LiveJournal
—=— com-DBLP —»— Foursquare

FIGURE 11: Speedup for all datasets (considering only label propaga-
tion time) at different number of cores.

3500
3000
2500
2000
1500
1000
500
0

Time (s)

1 2 4 8 16 24 32 40 48 o4

Number of threads (cores) utilized

FIGURE 12: Total execution time for com-Amazon network at
different number of cores.

Scientific Programming

6 12
5 1
5 4 108 5
3 g
g 3 toe 8
&) Los §
1 102
0 0

1 2 4 8 16 24 32 40 48 64

Number of threads (cores) utilized

—— Speedup
—s=— Efficiency

FIGURE 13: Speedup and efficiency for com-Amazon network (con-
sidering total execution time) at different number of cores.

3500
3000
2500
2000
1500
1000

500

Time (s)

1 2 4 8 16 24 32 40 48 64

Number of threads (cores) utilized

FIGURE 14: Total execution time for com-DBLP network at different
number of cores.

SLPA on four datasets (com-Amazon, com-DBLP, com-
LiveJournal, and Foursquare, resp.) for the number of cores
varying from 1 to 64. It can be seen that for smaller core
counts the time decreases nearly linearly with the number
of threads. For larger number of cores the label propagation
time continues to improve but at a much slower rate. In
fact, for 32 or more cores, there is almost no improvement
of the label propagation time on smaller datasets (com-
Amazon and com-DBLP). At the same time, larger datasets
(com-LiveJournal and Foursquare) improve label propaga-
tion times all the way through 64 cores. As outlined in
Section 1, this is clearly something to be expected since in a
strong scaling setting enough workload should be supplied to
parallel processes to compensate for the overhead of creating
multiple threads and maintaining communication between
them.

This trend is even more evident in Figures 4, 6, 8, and
10 which plot the values of speedup and efficiency for the
four datasets (com-Amazon, com-DBLP, com-LiveJournal,
and Foursquare, resp.) and the number of cores from 1 to
64. As the number of cores increases, the speedup also grows
but not as fast as the number of utilized cores, so efficiency
drops. The saturation of speedup is quite evident for smaller
networks (com-Amazon and com-DBLP) and corresponds
to regions with no improvement of the label propagation
time that we noticed earlier. Similarly, the values of speedup
continue to improve (although at decreasing rates) for larger

13

5 1.2
4.5
4 1
3.5 E
o 33 08
5 =
T 25 0.6 .2
o] 2 &EU
& s 04 &
1 102
0.5
0 0
1 2 4 8 16 24 32 40 48 64
Number of threads (cores) utilized
—— Speedup

—=— Efficiency

FIGURE 15: Speedup and efficiency for com-DBLP network (consid-
ering total execution time) at different number of cores.

x10*
12

10

8

Time (s)
o

1 2 4 8 16 24 32 40 48 64
Number of threads (cores) utilized

FIGURE 16: Total execution time for com-LiveJournal network at
different number of cores.

6 1.2
5 1
g 4 08 &
< g
g 3 0.6 -5
=3 -5
L2 04 =
1 0.2
0 0

1 2 4 8 16 24 32 40 48 64

Number of threads (cores) utilized

—— Speedup
—=— Efficiency

FIGURE 17: Speedup and efficiency for com-LiveJournal network
(considering total execution time) at different number of cores.

datasets (com-LiveJournal and Foursquare) even at 64 cores.
Nonetheless, the efficiency degrades since speedup gains are
small relative to an increase in core count. Such behavior can
be attributed to several factors. First of all, as the number
of cores grows while the network (and hence the number of
nodes and edges) stays the same, each thread gets fewer nodes
and edges to process. Approaching the limit of the thread size
can cause the overhead of creating and running threads to
outweigh the benefits of parallel execution for a sufficiently
small thread size. Furthermore, as the number of cores grows,
the number of neighbors of nodes with external dependencies

14

x10*
25

20

15

10

Time (s)

1 2 4 8 16 24 32 40 48 64
Number of threads (cores) utilized

FIGURE 18: Total execution time for Foursquare network at different
number of cores.

1.2

1os
106
104
toz2

Speedup
Efficiency

O = N W kUl NN

1 2 4 8 16 24 32 40 48 64
Number of threads (cores) utilized

—— Speedup
—=— Efficiency

FIGURE 19: Speedup and efficiency for Foursquare network (consid-
ering total execution time) at different number of cores.

increases (both because each thread gets fewer nodes and
there are more threads to execute them). More nodes with
external dependencies, in turn, means that threads are more
dependent on other threads.

However, for the sake of fair data interpretation, we need
to remember that the definition of efficiency which we are
using here is based on (2). It only takes into account the
parallel execution speedup observed on a certain number of
cores. The cost of cores is completely ignored in this formula.
More realistically, the cost should be considered as well. The
price paid for a modern computer system is not linear with
the number of processors and cores. Within a certain range
of the number of cores per system as the architecture moves
towards higher processor and core counts, each additional
core costs less. That is why the pure parallel efficiency defined
by (2) should be effectively multiplied by the cost factor for
making decisions regarding the choice of hardware to run
community detection algorithms on real-life networks. After
such multiplication, the efficiency including cost is going
to be much more favorable to higher core counts than the
efficiency given by (2).

Figure 11 combines plots of speedup values based on the
label propagation time for all four datasets. Overall, the values
of speedup do not vary considerably between the networks
used in the experiments. However, it is quite evident that
the shape of the curves is slightly different. On one hand,

Scientific Programming

there is com-Amazon and com-DBLP for which the values
of speedup reach local maximum at fewer than maximal
number of cores. On the other hand, speedup values for
com-LiveJournal and Foursquare are strictly increasing as the
number of cores ranges between 1 and 64.

This observation is just additional evidence of the behav-
ior discussed earlier. Smaller networks are too small to
effectively use large core counts which leads to the saturation
of speedup. The performance of multithreaded parallel SLPA
on larger datasets continues to improve at almost a constant
rate in a wide range of core counts between 4 and 64. It is
also worth noting that, as long as a network is large enough
to justify the overhead of multithreaded execution, different
datasets yield almost identical speedup values. Although
more testing would be required to firmly assert that speedup
is independent of the size of the dataset, such behavior
would be easy to explain. Indeed, speedup performance of the
algorithm depends primarily on the properties of the graph
(e.g., the number of edges crossing the boundary between
the node sets processed by different cores) rather than on
the size of the network. Such a feature is quite desirable
in community detection since it enables the application to
provide a user with an estimate of the overall execution time
once the network is loaded and partitioned between the cores.

Figures 12, 14, 16, and 18 present the total community
detection time of the multithreaded parallel SLPA on four
datasets (com-Amazon, com-DBLP, com-LiveJournal, and
Foursquare, resp.) for the number of cores varying from 1 to
64. Although clearly the total running time exceeds the label
propagation phase, the difference in many cases is not that
significant. This is especially true for larger datasets (com-
LiveJournal and Foursquare) which, as we discussed above, is
something to be expected. The fact that the label propagation
phase is a dominating component of the total running time
justifies our efforts to increase performance by replacing
sequential label propagation with a parallel implementation.

The values of speedup and efficiency calculated based
on the total execution time rather than label propagation
time are plotted in Figures 13, 15, 17, and 19 for the four
datasets (com-Amazon, com-DBLP, com-LiveJournal, and
Foursquare, resp.) and the number of cores between 1 and
64. Although these values are worse than those calculated
based only on the label propagation time, they provide
a more realistic view of the end-to-end performance of
our multithreaded SLPA implementation. In real life the
speedup values of around 5 to 6 still constitute a substantial
improvement over the sequential implementation, meaning,
for example, that you would only have to spend 8 hours
waiting for your community detection results instead of 2
days.

Figure 20 shows combined plots of speedup values for
all four datasets considering the total execution time. Just
like in Figure 11, the values of speedup for different networks
are quite similar. The same two types of curves are observed
which correspond to a group of relatively small (com-
Amazon and com-DBLP) and large (com-LiveJournal and
Foursquare) networks.

However, there are some differences. First, the absolute
values of speedup are lower when we consider the total

Scientific Programming

Speedup

15

TABLE 1: Metric values of the community structures detected by
sequential SLPA and multithreaded SLPA on Amazon (bold font
denotes the best value for each metric).

Algorithm VI NMI F-measure NVD
Sequential SLPA 65.2664 1.6113 1.5318 -0.5647
Multithreaded

65.4445 1.6132 1.5034 —0.5552
SLPA

S = N W kR N

1 2 4 8 16 24 32 40 48 64

Number of threads (cores) utilized

—— com-Amazon
—=— com-DBLP

com-LiveJournal
—»— Foursquare

FIGURE 20: Speedup for all datasets (considering total execution
time) at different number of cores.

execution time instead of just the label propagation phase.
This is clearly something to be expected since the total
execution time includes many operations (e.g., reading the
input graph and writing output communities, partitioning
the network between the cores, etc.) which cannot be made
efficiently parallel. Second, the difference in speedup for
different datasets even within the same group (e.g., large
datasets) is greater than it was in Figure 11. The reason for that
is also the effect of the limiting factor of sequential operations.
Since we are considering the total execution time here, the
size of the dataset affects speedup more significantly than in
the case when only label propagation time was taken into
account.

4. The Quality of Community Detection

In this section, we will evaluate the quality of the community
structure detected with multithreaded version of SLPA [17]
on the four datasets, Amazon, DBLP, Foursquare, and Live-
Journal, introduced in Section 3.2. Amazon and DBLP have
ground truth communities, while Foursquare and LiveJour-
nal do not. Our only concern here is whether the community
structure discovered by multithreaded SLPA has the quality
similar to that detected by sequential SLPA [17] since we
have already shown the effectiveness of sequential SLPA,
compared with other community detection algorithms, in
[17, 26]. Each metric value in Tables1and 2 is the average
of results from ten runs of the community detection algo-
rithm. The tested values of threshold r of SLPA are r =
0.01,0.05,0.1,0.15,0.2,0.25,0.3,0.35, 0.4, and 0.45.

We calculate variation of information (VI), normalized
mutual information (NMI), F-measure, and normalized Van
Dongen metric (NVD) [20] of the community structures
detected by sequential SLPA and multithreaded SLPA on
Amazon and DBLP, presented in Tables 1 and 2. Notice that
VI, NMI, F-measure, and NVD are intended to measure
the quality of disjoint communities. However, we could
still use them here to evaluate the quality of overlapping
communities, although the values of NMI, F-measure, and
NVD may not be in the range of [0, 1]. There are mainly two
reasons why we adopt their disjoint versions. On one hand,

TABLE 2: Metric values of the community structures detected by
sequential SLPA and multithreaded SLPA on DBLP (bold font
denotes the best value for each metric).

Algorithm VI NMI F-measure NVD
Sequential SLPA 30.4591 0.963 0.4112 0.4306
Multithreaded

30.8962 0.9675 0.4029 0.4521
SLPA

we are only concerned whether multithreaded SLPA has
almost the same performance with sequential SLPA, in other
words, whether communities detected by sequential and
parallel runs have values of VI, NMI, F-measure, and NVD
close to each other. On the other hand, VI, F-measure, and
NVD do not have definitions for overlapping communities
yet. NMI has its overlapping version [27], but it takes a
very long time to calculate its value on large networks, like
Amazon and DBLP. It can be seen from Tables 1 and 2 that
the metric values of the community structures detected by
sequential SLPA and multithreaded SLPA on Amazon and
DBLP are very close to each other, which indicates that
multithreaded SLPA has almost the same performance with
sequential SLPA on Amazon and DBLP.

We then compute modularity (Q) [19], intradensity,
contraction, expansion, and conductance [22, 28] of the
community structures found by sequential SLPA and multi-
threaded SLPA on Foursquare and LiveJournal, presented in
Tables 3 and 4. Notice that the modularity we adopt here is
also applicable to disjoint communities, so its value may not
be in the range of [0, 1]. The reasons for using the disjoint
version of modularity echo those given in the case of VI,
NMI, F-measure, and NVD metrics. In addition, there are
several overlapping versions for modularity [29-34], and it
is not clear which one is the best. Tables 3 and 4 show that
the metric values of the community structures detected by
sequential SLPA and multithreaded SLPA on Foursquare and
LiveJournal are also very close to each other, which implies
that multithreaded SLPA has almost the same performance
with sequential SLPA on Foursquare and LiveJournal.

Comparisons between different community detection
algorithms are not always easy to make due to substantially
different implementations which might even require mutu-
ally exclusive architectural features or software components
(shared-memory versus distributed memory machines, pro-
gramming languages compiled to native code versus devel-
opment systems based on virtual machines or interpretation,
and so on).

16

Scientific Programming

TABLE 3: Metric values of the community structures detected by sequential SLPA and multithreaded SLPA on Foursquare (bold font denotes

the best value for each metric).

Algorithm Q Intradensity Contraction Expansion Conductance
Sequential SLPA 0.7608 0.3651 3.6683 2.5137 0.3849
Multithreaded SLPA 0.7682 0.3535 3.5766 2.6358 0.4055

TABLE 4: Metric values of the community structures detected by sequential SLPA and multithreaded SLPA on LiveJournal (bold font denotes

the best value for each metric).

Algorithm Q Intradensity Contraction Expansion Conductance
Sequential SLPA 0.6834 0.3174 4.4735 2.4332 0.3777
Multithreaded SLPA 0.6929 0.2969 4.0367 2.8901 0.4333

Itis also important to consider the type of output commu-
nities that an algorithm can produce. As mentioned earlier,
overlapping community detection is more computationally
intensive than disjoint. While the majority of other parallel
solutions perform only disjoint community detection, our
multithreaded SLPA can produce either disjoint or overlap-
ping communities, depending on the value of threshold r.

Even though execution time is certainly one of the
most important performance measures for an end user, it is
often not suitable for direct comparisons between different
implementations of community detection methods. Unlike
execution time which depends on specific hardware, oper-
ating systems, code execution environments, compiler opti-
mizations, and other factors, speedup evens out architectural
and algorithmic differences. It is therefore a much better way
to compare runtime performance of community detection
algorithms.

Another important factor that makes it hard to compare
the results produced by competing methods is the use of
different datasets. Although several datasets seem to appear
more often than the others (e.g., Amazon, DBLP, and LFR)
there is no established set of datasets which are publicly
available and widely accepted as a benchmark for high
performance community detection. If such a benchmark
existed, it should have contained a balanced blend of both
real-world and synthetic datasets of varying size (from
hundreds of thousands of nodes and edges to billion scale
networks) carefully selected so that it does not give a priori
advantage to any of the possible approaches to community
detection.

There are datasets which are supplied with so-called
ground truth communities, although in some cases it is very
questionable whether these communities in fact represent
the ground truth. For other networks, it is not feasible to
establish the ground truth at all. Again, there is no established
consensus on whether datasets with or without ground
truth communities (or a combination of both types) should
be evaluated. Different researchers approach this problem
differently, mainly depending on the datasets to which they
have access. There is also a problem of using proprietary
datasets which might not be available to other researchers to
test their community detection implementations.

Besides using different datasets, researchers also use
different metrics to evaluate the quality of community detec-
tion. A decade or so ago, modularity was the dominating
player on the community quality field. However, after it
was discovered that the original formulation of modularity
suffers from several drawbacks, a number of new or extended
metrics have been proposed and a number of old, almost
forgotten methods have been rediscovered. A detailed review
of different existing and emerging metrics can be found
n [20]. Still, there is no agreement on which metric (or
combination of metrics) should be chosen as an authoritative
measure of the quality of community detection performed by
a certain algorithm.

From all of the above, it follows that performing fair com-
parisons of different community detection implementations
is difficult. To take just one example, let us consider PLP/EPP,
SCD, and multithreaded SLPA.

(i) Both PLP/EPP and SCD methods (see Section 2) are
only able to detect disjoint communities while mul-
tithreaded SLPA performs overlapping community
detection.

(ii) Experiments with SCD were only conducted with the
number of threads ranging from 1 to 4. In contrast,
in our approach described in Section 3, we evaluate
the method and show its scalability for all datasets
being tested, including large graphs, and the number
of cores ranging from 1 to 64. PLP was tested for
a slightly wider range of parallel configurations (1
to 16 threads) but only for one dataset, uk-2002.
For the Foursquare network which is similar in size
to uk-2002, the values of speedup demonstrated by
multithreaded SLPA (see Figure 19) are comparable to
the results of SCD described in Section 2.

(iii) Modularity is the only measure of community quality
considered by PLP/EPP. SCD uses NMI and average
F, score. Multithreaded SLPA uses several different
metrics, including NMI and F-measure. However, for
the reasons explained above the values of NMI and
F-measure may not be in the conventional range of
[0, 1]. Therefore, it is not feasible to directly compare
the values of community quality metrics obtained in
our experiments with the SCD results.

Scientific Programming

In conclusion, the community structure found by multi-
threaded SLPA has almost the same quality as that discovered
by sequential SLPA. Moreover, we have demonstrated in
[17, 26] that sequential SLPA is very competitive compared
to other community detection algorithms, which implies the
effectiveness of multithreaded SLPA on community detec-
tion.

5. Conclusion and Future Work

In this paper, we evaluated the performance of a multi-
threaded parallel implementation of SLPA and showed that
using modern multiprocessor and multicore architectures
can significantly reduce the time required to analyze the
structure of different networks and output communities. We
found that despite the fact that the rate of speedup slows down
as the number of processors is increased, it still pays off to
utilize as many cores as the underlying hardware has avail-
able. Our multithreaded SLPA implementation was proven
to be scalable in terms of both increasing the number of cores
and analyzing increasingly larger networks. Furthermore, the
properties of the detected communities closely match those
produced by the base sequential algorithm, as verified using
several metrics. Given a sufficient number of processors, the
parallel SLPA can reliably process networks with millions
of nodes and accurately detect meaningful communities in
minutes and hours.

In our future work, we plan to explore other parallel
programming paradigms and compare their performance
with our multithreaded approach.

Disclaimer

The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the US Government.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The research was sponsored in part by the Army Research
Laboratory under Cooperative Agreement no. W9IINF-09-
2-0053, by the EU’s 7FP Grant Agreement no. 316097, and by
the Polish National Science Centre, the Decision no. DEC-
2013/09/B/ST6/02317.

References
[1] R.E.Park, Human Communities: The City and Human Ecology,
vol. 2, Free Press, 1952.

[2] J. Xie, S. Sreenivasan, G. Korniss, W. Zhang, C. Lim, and
B. K. Szymanski, “Social consensus through the influence of

—
)

(10]

(11]

(12]

(13]

(14]

(16]

17

committed minorities,” Physical Review E, vol. 84, no. 1, Article
ID 011130, 8 pages, 2011.

P. Sah, L. O. Singh, A. Clauset, and S. Bansal, “Exploring
community structure in biological networks with random
graphs,” BioRxiv, 2013.

G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering
the overlapping community structure of complex networks in
nature and society;” Nature, vol. 435, no. 7043, pp. 814-818, 2005.

J. A. Hartigan and M. A. Wong, “Algorithm as 136: a k-means
clustering algorithm,” Journal of the Royal Statistical Society
Series C (Applied Statistics), vol. 28, no. 1, pp. 100-108, 1979.

J. Baumes, M. Goldberg, and M. Magdon-Ismail, “Efficient
identification of overlapping communities,” in Intelligence and
Security Informatics, pp. 27-36, Springer, Berlin, Germany,
2005.

X. Xu, J. Jager, and H.-P. Kriegel, “A fast parallel clustering algo-
rithm for large spatial databases,” Data Mining and Knowledge
Discovery, vol. 3, no. 3, pp. 263-290, 1999.

M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise;,” in Proceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining, vol. 1996, pp. 226-231,
AAALI Press, 1996.

Y. Zhang, J. Wang, Y. Wang, and L. Zhou, “Parallel community
detection on large networks with propinquity dynamics,” in
Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 997-1006, ACM,
July 2009.

U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: a petas-
cale graph mining system implementation and observations,”
in Proceedings of the 9th IEEE International Conference on Data
Mining (ICDM °09), pp. 229-238, IEEE, 20009.

U. Kang, B. Meeder, and C. Faloutsos, “Spectral analysis
for billion-scale graphs: discoveries and implementation,” in
Advances in Knowledge Discovery and Data Mining: 15th Pacific-
Asia Conference, PAKDD 2011, Shenzhen, China, May 24-27,
2011, Proceedings, Part I, vol. 6635 of Lecture Notes in Computer
Science, pp. 13-25, Springer, Berlin, Germany, 2011.

E.J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader, “Parallel
community detection for massive graphs,” in Parallel Processing
and Applied Mathematics, vol. 7203, pp. 286-296, Springer,
Berlin, Germany, 2012.

A. Prat-Pérez, D. Dominguez-Sal, and J.-L. Larriba-Pey, “High
quality, scalable and parallel community detection for large real
graphs,” in Proceedings of the 23rd International Conference on
World Wide Web (WWW ’14), pp. 225-236, World Wide Web
Conferences Steering Committee, Seoul, Republic of Korea,
April 2014.

A. Prat-Pérez, D. Dominguez-Sal, J. M. Brunat, and J.-L.
Larriba-Pey, “Shaping communities out of triangles,” in Pro-
ceedings of the 21st ACM International Conference on Informa-
tion and Knowledge Management (CIKM ’12), pp. 1677-1681,
ACM, November 2012.

U. N. Raghavan, R. Albert, and S. Kumara, “Near linear
time algorithm to detect community structures in large-scale
networks,” Physical Review E: Statistical, Nonlinear, and Soft
Matter Physics, vol. 76, no. 3, Article ID 036106, 2007.

S. Gregory, “Finding overlapping communities in networks by

label propagation,” New Journal of Physics, vol. 12, no. 10, Article
1D 103018, 2010.

18

(17]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(30]

(31]

(33]

J. Xie and B. K. Szymanski, “Towards linear time overlapping
community detection in social networks,” in Advances in Knowl-
edge Discovery and Data Mining, pp. 25-36, Springer, Berlin,
Germany, 2012.

C. L. Staudt and H. Meyerhenke, “Engineering high-Per-
formance community detection heuristics for massive graphs,”
in Proceedings of the 42nd Annual International Conference on
Parallel Processing, pp. 180-189, Lyon, France, October 2013.

M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” Physical Review E, vol. 69,
no. 2, Article ID 026113, 2004.

M. Chen, K. Kuzmin, and B. K. Szymanski, “Community
detection via maximization of modularity and its variants,”
IEEE Transactions on Computational Social Systems, vol. 1, no.
1, pp. 46-65, 2014.

K. Kuzmin, S. Y. Shah, and B. K. Szymanski, “Parallel overlap-
ping community detection with SLPA,” in Proceedings of the
International Conference on Social Computing (SocialCom ’13),
pp. 204-212, IEEE, September 2013.

J. Yang and J. Leskovec, “Defining and evaluating network
communities based on ground-truth,” in Proceedings of the
ACM SIGKDD Workshop on Mining Data Semantics, Beijing,
China, 2012.

J. Leskovec, Amazon Product Co-Purchasing Network and
Ground-Truth Communities, 2014, http://snap.stanford.edu/data/
com-Amazon.html.

“DBLP collaboration network and groundtruth communities,”
2014, http://snap.stanford.edu/data/com-DBLPhtml.

LiveJournal social network and groundtruth communities,
2014, http://snap.stanford.edu/data/com-LiveJournal. html.

J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community
detection in networks: the state-of-the-art and comparative
study, ACM Computing Surveys, vol. 45, no. 4, Article ID
2501657, 2013.

A. Lancichinetti, S. Fortunato, and J. Kertész, “Detecting the
overlapping and hierarchical community structure in complex
networks,” New Journal of Physics, vol. 11, no. 3, Article ID
033015, 2009.

M. Chen, T. Nguyen, and B. K. Szymanski, “A new metric for
quality of network community structure,” ASE Human Journal,
vol. 2, no. 4, pp. 226-240, 2013.

S. Zhang, R.-S. Wang, and X.-S. Zhang, “Identification of
overlapping community structure in complex networks using
fuzzy c-means clustering,” Physica A: Statistical Mechanics and
Its Applications, vol. 374, no. 1, pp. 483-490, 2007.

T. Nepusz, A. Petroczi, L. Négyessy, and F. Bazso, “Fuzzy com-
munities and the concept of bridgeness in complex networks,”
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics,
vol. 77, no. 1, Article ID 016107, 2008.

H. Shen, X. Cheng, K. Cai, and M.-B. Hu, “Detect overlapping
and hierarchical community structure in networks,” Physica A:
Statistical Mechanics and its Applications, vol. 388, no. 8, pp.
1706-1712, 2009.

V. Nicosia, G. Mangioni, V. Carchiolo, and M. Malgeri, “Extend-
ing the definition of modularity to directed graphs with overlap-
ping communities,” Journal of Statistical Mechanics: Theory and
Experiment, vol. 2009, no. 3, Article ID P03024, 2009.

H.-W. Shen, X.-Q. Cheng, and J.-E. Guo, “Quantifying and
identifying the overlapping community structure in networks,”
Journal of Statistical Mechanics: Theory and Experiment, vol.
2009, no. 7, Article ID P07042, 2009.

Scientific Programming

[34] D. Chen, M. Shang, Z. Lv, and Y. Fu, “Detecting overlapping

communities of weighted networks via a local algorithm,”
Physica A: Statistical Mechanics and its Applications, vol. 389, no.
19, pp. 4177-4187, 2010.

