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The research of application models based on traditional convolutional neural networks has gradually entered the bottleneck
period of performance improvement, and the improvement of chest X-ray image models has gradually become a difficult problem
in the study. In this paper, the Swin Transformer is introduced into the application model of pneumonia recognition in chest X-ray
images, and it is optimized according to the characteristics of chest X-ray images. The experimental results based on the model in
this paper are compared with those of the model built with the traditional convolutional neural network as the backbone network,
and the accuracy of the model is proved to be greatly improved. After the comparison experiments on two different datasets, the
experimental results show that the accuracy of the model in this paper improves from 76.3% to 87.3% and from 92.8% to 97.2%,
respectively. The experiments show that the accuracy of image enhancement based on the features of chest X-ray images in this
model will be higher than the accuracy without image enhancement. In the experiments of this paper, the identification decision
factors in the chest X-ray images were extracted by grad-cam combined with a transformer to find the corresponding approximate

lesion regions.

1. Introduction

Pneumonia is a common and dangerous disease that is
mainly caused by viruses, bacteria, or fungi. If left untreated,
its mortality rate is high. According to the literature,
pneumonia is one of the ten deadliest diseases in the United
States and has a higher mortality rate in developing countries
[1]. Chest X-ray imaging (hereafter referred to as CXR) is
widely used in general routine examinations because it is not
only low cost, but also its radiation is less harmful than
computed tomography. Relevant papers indicate that the
mean effective radiation dose per exam of CXR is about
0.04 +£0.19 msv, while the principle of computed tomogra-
phy is that X-rays penetrate the human body for multiple
times for tomography, so the mean effective radiation dose
per exam can reach 1.09 + 1.11 msv, about 25 times that of
CXR [2]. Doctors often use CXR as an important aid in
diagnosing pneumonia. In today’s world, artificial

intelligence is playing a huge role in the transformation of
science, industry, and society, and its techniques are widely
used in medical image processing. The application and
improvement of artificial intelligence in CXR to identify
pneumonia can assist doctors in making the correct diag-
nosis, help them speed up the diagnosis, reduce the pro-
portion of missed and misdiagnosis, and be of great
importance in saving lives.

Since the explosive development of deep learning in
2012, amazing achievements have been made in the research
and application of artificial intelligence. Compared with
other machine learning algorithms, deep learning algo-
rithms can rely on their own learning methods for feature
extraction. Deep learning has achieved great success in many
fields such as computer vision, natural language processing,
and big data analysis. In addition, it has become a main-
stream approach to machine learning and has achieved
record-breaking results in various competitions in artificial
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intelligence. Deep learning can be traced back to AlexNet in
2012 [3]. The accuracy of this convolutional neural network
algorithm, which won the championship in the famous
international image classification competition ImageNet,
has been improved by more than ten points compared with
other algorithms in the past. It uses many methods for the
first time, uses ReLu as a nonlinear activation function, uses
dropout to prevent overfitting, uses data enhancement, and
so on. After AlexNet, there have been many excellent
convolutional neural networks. VGGNet is a convolutional
neural network developed by the Visual Geometry Group of
Oxford University on the basis of AlexNet [4]. The im-
provement of VGGNet is that it uses a smaller convolution
kernel and a deeper network structure, which enhances the
feature learning ability of the convolutional neural network,
which also verifies the advantages of small convolution
kernels and can improve network performance by deepening
the network structure. In addition, VGGNet uses the multi-
Scale method to train and predict, reducing the occurrence
of model overfitting and improving the prediction accuracy.
Inspired by the Network in Network theory, the concept of
the Inception module emerged, that is, a convolutional layer
contains multiple convolutional operations of different sizes.
A typical convolutional neural network with Inception is
GoogLeNet [5]. In addition, two auxiliary classifiers are
added to the middle layer of GoogLeNet to strengthen
supervision information and alleviate the problem of gra-
dient disappearance. In simple theory, the deeper the net-
work level, the more complex feature extraction can be
carried out, so better results should be obtained. But in fact,
it was found in the experiment that there was a problem of
degradation after the network was deepened to a certain
extent, that is, after a large increase in the network depth, the
accuracy began to saturate and degrade. The main reason is
that when the data are transmitted in a deep network, the
gradient becomes smaller and gradually disappears, making
it impossible to perform the backpropagation algorithm, so
it is difficult for the network to train and find a good pa-
rameter after deepening the level to a certain extent. For this
reason, He et al. proposed a residual unit with a “short-
circuit connection” structure to solve this degradation
problem, instead of directly connecting each layer. ResNet is
modified on the basis of VGGNet, and it uses residual units
[6]. Compared with VGGNet, it adds a “short-circuit
connection” mechanism between every two layers, which
gives an implementation idea for building a much deeper
network. In addition to the ways of deepening the network
such as ResNet and widening the network such as Goo-
gLeNet to improve the effect, there are also multiplexing
schemes, the typical representative is DenseNet, which can
achieve better results while achieving fewer parameters [7].
Other scholars have proposed EfficientNet, which is based
on an artificial neural network to obtain the optimal
composite coefficient of network depth, network width, and
image resolution [8].

With the research and development of the convolutional
neural backbone network, it has also promoted the im-
provement of medical image processing model capabilities.
As early as 2017, Wang’s team built medical image
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processing models based on the classic convolutional neural
network AlexNet [3], VGGNet [4], GoogLeNet [5], and
ResNet [6] in deep learning, and tested and compared them
on the public CXR dataset named Chest X-ray. Through
their research and experiments, it was proved that resnet50
has the best effect of disease identification in CXR compared
with other backbone networks [9]. Yao et al. optimized the
convolutional neural network DenseNet [7], and the model
they proposed was tested on the Chest X-ray dataset and
achieved ideal results [10]. Later, Rajpurkar and other
scholars built a 121-layer network based on the convolu-
tional neural network DenseNet and used the weighted cross
entropy as the loss function to propose the chexnet model
for medical image classification. The model was tested with a
higher accuracy score than four human medical imaging
experts correctly judged [11]. Later, many scholars further
improved the models based on the convolutional neural
network according to the features of CXR [12-20]. But
accuracy of models began to encounter bottlenecks, and
there are still some unsolved or imperfect problems in the
current models.

In this paper, a new model scheme based on the
backbone network of the new transformer and optimized
according to the features of CXR will be proposed, and it can
greatly improve the accuracy of identification of pneumonia
in CXR. The image enhancement and parameter optimi-
zation scheme are designed based on the features of CXR,
and the lesion area is found to the greatest extent from the
decision factors of transform. Experiments in this paper
show that under the same circumstances, the model for
identification of pneumonia in CXR based on the trans-
former backbone network has higher accuracy than that
based on the traditional convolutional neural backbone
network. The image enhancement scheme for CXR in this
model will play a positive role in improving the accuracy rate
of the model.

Through the research in this paper, the bottleneck
problem of improving the accuracy of the model for
identification of pneumonia in CXR based on the traditional
convolutional neural network can be overcome, and better
results can be achieved. To sum up, the research in this paper
has its value both theoretically and practically in the iden-
tification of pneumonia and even more diseases in CXR.

2. Proposed Scheme

In order to better compare the difference between the model
for identification of pneumonia in CXR based on trans-
former backbone network and the models based on tradi-
tional convolutional neural backbone network, the
experiment in this paper was done on the Chest X-ray data
set [9] and CXR images (pneumonia) data set [21], because a
large number of scholars used these data sets when testing
the models based on the traditional convolutional neural
backbone network. It should be noted that the former data
set comes from the National Institutes of health, and the
latter data set comes from Guangzhou Women and Chil-
dren’s Medical Center, and these data sets are publicly
available for free use in scientific research.
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The chest X-ray data set is a data set of more than 100000
anonymous chest X-ray images released by the National
Institutes of health to the scientific community. The copy-
right of this data set is announced on https://www.nih.gov/
news-events/news-releases/nih-clinical-center-provides-
one-largest-publicly-available-chest-x-ray-datasets-scientific-
community, “The release will allow researchers across the
country and around the world to freely access the datasets
and increase their ability to teach computers how to detect
and diagnose disease.” The number of samples in the Chest
X-ray data set [9] is shown in Table 1.

In the CXR images (pneumonia) data set [21], there are
5,856 anonymous chest X-ray images from Guangzhou
Women and Children’s Medical Center with “license CC BY
4.0”. The text of the CC BY 4.0 was retrieved from https://
creativecommons.org/licenses/by/4.0/, and for more infor-
mation, view the full license text at https://creativecommons.
org/licenses/by/4.0/legalcode. This data set is divided into
two categories: pneumonia and normal. The number of
samples in the CXR images (pneumonia) data set is shown in
Table 2.

The model used in the experiment in this paper is based
on the Swin Transformer backbone network [22] and op-
timizes the CXR accordingly. The basic steps are as follows
(Figure 1): in addition to the obvious feature of a gray-scale
image, CXR generally has its own characteristics such as low
brightness, poor contrast, and high noise, so the first step is
to improve the brightness, contrast, and suppress noise of
the image according to the features of CXR. The second step
is to obtain the best parameters of the model, the images are
divided into a training set and validation set, normalize the
images in the training set, and after random scaling, clip-
ping, and flipping send them to the transformer network and
fully connected network for training to obtain the best
parameters of this model. The purpose of normalizing
images is to facilitate the speedy contingency of the network.
The purpose of random scaling, clipping, and flipping is to
make the model not “see” the same image twice during
training, so it has better generalization ability. A transformer
network is used for feature extraction and a fully connected
network is used for classification. In the third step, the
images in the validation set are scaled and sent to the
transformer network with trained parameters for feature
extraction, and then send to the fully connected network
with trained parameters for classification. The fourth step is
to extract the decision factor from the Transformer network.
The last step is to map the decision factor to the original
image to output the lesion area.

The first was to do experiments with the model in this
paper on the Chest X-ray data set, and then the experimental
results are compared with the experimental results of models
based on AlexNet [3], GoogLeNet [4], VGGNet16 [5], and
ResNet50 [6] from the Wang’s team on the same data set, the
experimental results of model based on DenseNet [8] from
Yao and other scholars, and the experimental results of
model based on DenseNet121 [8] from Rajpurkar et al.

In order to verify the effectiveness of image enhancement
according to the features of CXR, a comparison experiment
between enhanced and nonenhanced images in the

3
TaBLE 1: The number of samples in Chest X-ray data set.

Focus of infection Samples
Atelectasis 5789
Cardiomegaly 1010
Effusion 6331
Infiltration 10317
Mass 6046
Nodule 1971
Pneumonia 1062
Pneumothorax 2793
Normal 84312

Data set source: https://www.nih.gov/news-events/news-releases/nih-
clinical-center-provides-one-largest-publicly-available-chest-x-ray-
datasets-scientific-community.

TaBLE 2: The number of samples in CXR images (pneumonia) data
set.

Focus of infection Samples
Pneumonia 4273
Normal 1583

Data set source: https://www.kaggle.com/datasets/paultimothymooney/
chest-xray-pneumonia.

preprocessing with the model based on the Transformer
backbone network was carried out, and the two experi-
mental results were compared. As shown in Figure 2, it is a
contrast map for CXR enhancement, in which the left side is
before enhancement, and the right side is after
enhancement.

In order to further verify the versatility of this model for
the identification of pneumonia in CXR based on the
transformer backbone network, a comparative experiment
on the CXR Images (Pneumonia) dataset [21] was carried
out and compared its result with the experimental results of
other models on the same dataset.

Finally, in the experiment, the decision factors of the
identification in the chest X-ray image from the Swin
transformer were extracted, and with the Grad-CAM [23]
they were superimposed on the original image to perform
the discriminative output of the lesion area.

3. Experimental Result

The accuracy of the experiment results with the model in this
paper on the Chest X-ray data set reached 87.3%. From the
comparison in Table 3, it can be seen that the model based on
the Swin Transformer backbone network and optimized for
CXR is obviously better than other models based on tra-
ditional convolutional neural network.

In the experiment to verify the effectiveness of pre-
processing of image enhancement according to the features
of CXR, this paper collects the accuracy data of the model
based on the Swin Transformer backbone network during
the training process. As shown in Figure 3, in order to show
the details more clearly, the figure draws a line graph of the
accuracy from batches 32 to 128 on the first epoch without
image enhancement and with image enhancement, in which
the blue dotted line is no enhancement, and the orange
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FIGURE 2: Image enhancement (a) is before enhancement and (b) is after enhancement.

TaBLE 3: Comparison of the models based on different backbone
network on data set 1.

Backbone network Validate-accuracy (%)

Wang, et al. [9] AlexNet 54.9
Wang et al. [9] GoogLeNet 59.9
Wang et al. [9] VGGNet-16 51.0
Wang et al. [9] ResNet-50 63.3
Yao et al. [10] DenseNet 71.3
Rajpurkar et al. [11] DenseNet-121 76.3
This paper SwinTransformer 87.3

dashed line is enhancement. As can be seen from Figure 3,
the accuracy of image enhancement according to the fea-
tures of CXR will be higher than that without image en-
hancement under the same circumstances.

In the comparative experiment on the CXR Images
(Pneumonia) data set, the model based on the Swin
Transformer backbone network and optimized for CXR in
this paper achieved the best accuracy of 97.2% after only five
epochs of training, which is much higher than the accuracy
rate of 92.8% from the model based on the convolutional
neural network proposed by Kermany’s team [13]. It is also
higher than the competition results in the Kaggle on the
CXR Images (Pneumonia) data set (https://www.kaggle.
com/datasets/paultimothymooney/chest-xray-pneumonia/

discussion/). The comparison data of accuracy from different
models are shown in Table 4.

In Figures 4 and 5, the cross-entropy loss and accuracy
during the training process using the model in this paper are
shown. The top figure shows the change of the cross-entropy
loss on epochs (the blue dotted line is from the data of the
training set, and the orange dashed line is from the data of
the validation set), and the bottom figure shows the change
of the accuracy on epochs (the blue dotted line is from data
of the training set, and the orange dashed line is from the
data of the validation set).

What is the reason for the higher accuracy on the val-
idation set than on the corresponding training set (Figure 5)?
Because in order to enhance the generalization ability of the
model, the data of the training set are randomly scaled,
cropped, and flipped before entering the transformer net-
work to extract features, while the data of the validation set
has not undergone this transformation.

Before the transformation of the Softmax function and
entering the fully connected classification network, the
decision factors of the identification in chest X-ray image
from the transformer are extracted. In our experiments, the
decision factors are from the norm layer following the
transformer backbone network, which can be obtained by
back-propagating the result value of the latter classification
network. The reverse derivation according to the Grad-CAM
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TaBLE 4: Comparison of the models based on different backbone
network on data set 2.

Backbone network Validate-accuracy (%)

Sharma et al. [13] — 92.8
Grzegorz on Kaggle® ResNet 94
This paper SwinTransformer 97.2

*https://www.kaggle.com/datasets/paultimothymooney/chest-xray-
pneumonia/discussion/313883.

algorithm is superimposed with the original image to form a
heat map as shown in Figure 6. The area with high color
temperature is the area that plays an important role in the
formation of network discrimination, so the corresponding
lesion area can be obtained.

4. Discussion and Analysis

After several years of research, the research of the appli-
cation models based on the traditional convolutional neural
backbone networks such as AlexNet, VGGNet, GoogLeNet,
ResNet, DenseNet, and EfficientNet has gradually entered
the bottleneck period of network performance improve-
ment, and the improvement effect in the application models
research of CXR also gradually becomes less obvious. At this
time, a new backbone network is urgently needed to solve
this problem.

Vaswani et al. from the Google team proposed the
transformer backbone network in 2017 [24]. Compared with
the traditional Recurrent Neural Network [25], Transformer
has many advantages such as infinite memory length in
theory and parallel operation. The theory of the self-
attention algorithm is the basis of the transformer (1).

5
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FIGURE 4: Cross-entropy loss in the training process and validation
process.
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FIGURE 5: Accuracy in the training process and validation process.

Attention (Q, K, V) = Soft (QKT)V (1)
ention (Q, K, V) = Softmax| —— |V.
V.
In transformer multihead, self-attention extended from
the self-attention algorithm is used, and it is split by linear

mapping according to the number of headers and is usually
divided equally (2).

MultiHead (Q, K, V) = Concat (head,, ..., headh)Wo,

where head; = Attention(QW?, KWIK, VW:/) s

Attention (Q K,V ) = Softmax()v
Y \/.dk '
(2)

The transformer was originally used for natural language
processing. At the 2020 International Conference on
Computer Vision and Pattern Recognition (CVPR), the
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Google team proposed a scheme to apply transformers to the
field of computer vision and achieved good results [26]. The
core of the transformer comes from the self-attention al-
gorithm, and the self-attention algorithm and the convo-
lution algorithm are very closely related, and the latter can be
considered as a subset of the former [27]. As the scale of the
data set increases, the performance of the transformer
backbone network will exceed the traditional convolutional
neural backbone networks, and large-scale training data can
encourage the transformer to learn the more translation
equivariance and locality than possessed by the convolu-
tional neural networks. In 2021, the Swin Transformer
proposed by Microsoft Research Asia has become a bright
spot. It overcomes the bottleneck of the traditional con-
volutional neural backbone network to a certain extent and
further improves the accuracy [22]. The experimental
comparison results [22] of its effect on the ImageNet-1K data
set are as follows shown in Table 5. The difference from
convolutional neural networks such as ResNet is that the
Swin Transformer no longer uses traditional convolution
kernels in feature extraction, and the core at each level is
window multihead self-attention and shifted window mul-
tihead self-attention. Window multihead self-attention is the
multihead self-attention matrix operation performed inside
the window. The advantage is to reduce the amount of
computation, but the disadvantage is that information in-
teraction between windows is not possible. The shifted
window multihead self-attention is designed to overcome
this shortcoming, and it can realize the information inter-
action between different windows by shifting the window
position.

Since the Swin transformer backbone network has not
been proposed for a long time, its application in various
fields has not been sufficiently studied, and few studies have
been conducted to optimize the model for the application of
CXR images. Regarding the application model in the CXR
field, the model proposed in this paper is no longer based on
the traditional convolutional neural backbone network, but
the Swin transformer backbone network is introduced to
build the model. The experimental results on the two CXR
data sets prove that the accuracy of the model based on the

TaBLE 5: Comparison of different backbone network.

Throughput (images/s) Accuracy (%)

EfficeintNet-B3 732.1 81.6
EfficeintNet-B4 349.4 82.9
Swin-T 755.2 81.3
Swin-S 436.9 83.0
Swin-B 278.1 83.5

transformer backbone network is higher than that of the
model based on the traditional convolutional neural back-
bone network model on the same data set, and the effect is
improved obviously, which can overcome the existing
bottleneck of improving the accuracy of model based on the
convolutional neural backbone network.

It is necessary to highlight image details and suppress
noise because CXR is usually characterized by low bright-
ness, low contrast, and large noise. In the histogram of CXR,
the area with the highest pixel distribution is usually the
background, which is a nonconcern area, so this part can be
peaked. If the values in the histogram are evenly distributed,
it means that the distribution on each gray level is balanced,
and the contrast is the best at this time, that is, the image is
generally clear. Therefore, a certain degree of equalization
processing on each gray level in the histogram of CXR is
helpful to the subsequent processing. It can be seen from the
data chart of the experimental results (Figure 3) that this
processing method is effective for the model based on the
transformer backbone network.

The concept of class activation mapping (CAM) origi-
nated from the interpretability research of deep neural
networks [28] and was later introduced into application
research by some scholars. On this basis, Selvaraju et al.
proposed gradient weighted activation mapping (Grad-
CAM) [29].

In the experiment of CXR in this paper, gradient
weighted activation mapping is combined into the trans-
former, so that by extracting the decision factors of the
identification in CXR from the transformer, the heat map
through reverse derivation is superimposed on the original
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image, so the corresponding approximate lesions area can be
found.

When the new type of pneumonia caused by the 2019
novel coronavirus appeared, the study of the corresponding
model was carried out. Narin et al. used ResNet50,
ResNet101, ResNetl52, Inception V3, and Inception-
ResNet-V2 five models for identification of the new type of
pneumonia and compared them. Their experimental results
also show that ResNet50 achieves better results [30]. In
similar cases, it is estimated that the model with the
Transformer backbone network will be better.

5. Conclusion

Pneumonia is a disease with a high mortality rate. Chest
X-ray imaging is widely used in the routine examination of
pneumonia. CXR as an important adjunct to the diagnosis of
pneumonia can diagnose pneumonia quickly and accurately.
Machine learning methods based on deep learning have
been effective in chest X-ray imaging. In this paper, the Swin
Transformer is applied to the application model of CXR
image recognition and analysis, and the model is optimized
accordingly according to the characteristics of CXR. The
experimental results show that the model outperforms the
model based on the traditional convolutional neural back-
bone network.
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Scene text recognition (STR) is designed to automatically recognize the text content in natural scenes. Different from regular
document text, text in natural scenes has the characteristics of irregular shapes, complex background, and distorted and blurred
contents, which makes STR challenging. To solve the problems of STR for distorted, blurred, and low-resolution texts in natural
scenes, this paper proposes a HRNet encoder and dual-branch decoder framework-based STR model. The model mainly consists
of an encoder module and a dual-branch decoder module composed of a super-resolution branch and a recognition branch in
parallel. In the encoder module, the HRNet is adopted to realize the cross-parallel aggregation representation with multiple
resolutions during feature extraction and then outputs four kinds of feature maps with different resolutions. Moreover, the
supervised attention module is used to strengthen the learning of the important feature information. In the decoder module, the
dual-branch structure is adopted, in which the super-resolution branch takes the feature maps with the highest resolution
obtained in the encoder module as input and restores images by upsampling through transposed convolution. The four kinds of
feature maps with different resolutions are fused through independent transposed convolution layers for multiscale fusion in the
recognition branch and then inputted into the attention-based decoder for text recognition. To improve the accuracy of text
recognition, the feature extraction effect of the encoder module is together supervised by the super-resolution branch loss and the
recognition branch loss. In addition, the super-resolution branch is only used for training and is abandoned during testing to
reduce the complexity of the model. The proposed model is trained on Synth90K and SynthText datasets and tested on seven
natural scene datasets. Compared with classical models such as ASTER, TextSR, and SCGAN, the recognition accuracy of the
proposed model is improved and better recognition results can be achieved on irregular and blurred datasets such as IC15, SVTP,
and CUTESO.

1. Introduction

Natural scene text refers to the text content in natural sit-
uations, such as billboards and road signs. Due to the high
diversity of text in orientation, shape, and blurring, scene
text recognition (STR), which is designed to automatically
recognize the text content in natural scene images, is
challenging [1]. With the development of deep learning, the
deep learning-based STR can obtain good text recognition
results and has become a research highlight in the field of
document analysis and recognition [2]. Moreover, the deep
learning-based STR is an essential research technology,
which can be employed in many computer vision

applications, such as image retrieval, autonomous driving,
and handwriting recognition [3-6].

Early STR models are usually based on temporal feature
classification, such as the convolutional recurrent neural
network (CRNN) [7]. CRNN uses convolutional neural
networks to extract visual features and uses recurrent neural
networks to learn the bidirectional dependence of feature
sequences and predict the probability of character se-
quences. Then, the predicted probabilities of character se-
quences are transcribed into text character sequences
according to the predefined transformation mode in the
transcription layer. However, the setting of the transcription
layer in the CRNN requires that the feature sequences of
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image and text are aligned with each other, which is not
beneficial to predict the text sequences with spatial de-
pendence. The model based on the encoder-decoder
framework [8] can avoid the alignment problem by training
to predict the corresponding relationship between any two
sequences. Generally, the visual features of an image are
extracted using an encoder and then are converted into a
fixed-length intermediate semantic feature sequence by
means of a recurrent neural network. Then, the intermediate
semantic feature sequence is decoded into a text character
sequence through a decoder. The models based on the en-
coder-decoder framework have achieved higher perfor-
mance than the earlier models based on temporal feature
classification and provide an effective baseline model for
further research [9].

However, scene text images are often disturbed by
complex background and text distortion, which often cause
the information loss of the visual features extracted by the
encoder and then lead to the decoder’s inaccurate recog-
nition of the target sequences in the noisy decoding time
steps. To alleviate the above problems, the ASTER model
[10] based on the encoder-decoder framework is proposed
and the thin-plate-spline (TPS) [11] is introduced to im-
prove the text distortion, so that the encoder can extract
more sufficient visual features from the rectified images.
Based on the sequence model, the visual features are con-
verted into the textual features and finally the attention
mechanism is introduced to decode the textual features.
When confronted with blurred images and low resolution,
the models based on the encoder-decoder framework also
suffer from low-recognition accuracy, which prompts re-
searchers to introduce auxiliary networks to improve the
resolution of scene text images and learn more accurate text
information. Inspired by the success of multitask learning,
the super-resolution network SRGAN [12] is used as a
preprocessing method in text super-resolution (TextSR) [13]
to restore the low-resolution image with the corresponding
super-resolution image and then input it into the STR model
to improve the recognition effect. The super-resolution
network RCAN [14] is used as an auxiliary network in
PlugNet [15] to update the parameters of the encoder, to
achieve better recognition results. Similarly, in the text
super-resolution network (TSRN) [16], a sequential-residual
block is proposed to extract the sequential information of the
scene text images and accomplish the super-resolution task.
However, the super-resolution networks adopted by the
above three models have complex structure and a large
number of parameters, which increases the complexity of the
model.

Recently, a parallel high-resolution network (HRNet) is
proposed [17]. Instead of restoring high-resolution repre-
sentations from low-resolution representations, HRNet
maintains high-resolution representations at any time and
performs multiscale fusion across parallel convolutions to
enhance high-resolution representations, therefore greatly
improving the detection and segmentation difficulties
caused by image blurring and low resolution. Due to its
advantages, HRNet is introduced into the STR task to
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effectively alleviate the text recognition difficulties caused by
the scene text images with blurry and low resolution.

In this paper, a HRNet encoder and dual-branch decoder
framework-based STR model is proposed to recognize the
distorted and blurred text with low resolution. This model
innovatively introduces a HRNet encoder to extract visual
features and adopts dual-branch decoder structure com-
posed of a super-resolution branch and a recognition branch
following the encoder. The feature maps with highest res-
olution are inputted into the super-resolution branch for
upsampling and image recovery. The feature maps with
multiple resolutions are fused at multiscale in the recog-
nition branch to accomplish the transformation of feature
sequences and obtain the recognized text. The loss of the
super-resolution branch and the loss of the recognition
branch are together propagated back to enhance the feature
extraction effect of the encoder module, therefore improving
the performance of text recognition. The main contributions
of this paper are as follows:

(1) The HRNet is innovatively used for feature extrac-
tion in STR and also performs as a super-resolution
network. Moreover, the HRNet encoder provides
effective feature maps for the super-resolution
branch, therefore decreasing the model complexity
caused by the introduction of an auxiliary super-
resolution network, such as TextSR. Experiments on
several natural scene datasets verify the effectiveness
of the proposed model.

(2) In the encoder module, four kinds of feature maps
with different resolutions are generated at the end of
the HRNet. By using the supervised attention
module (SAM) on the feature maps with the highest
resolution, the important features are enhanced and
the features with a small amount of information are
suppressed. In the decoder module, the feature maps
enhanced by SAM are upsampled through trans-
posed convolution (Trans Conv2D) in the super-
resolution branch to restore the super-resolution
images. The other three feature maps with lower
resolution are upsampled through independent
transposed convolution layers (Independent Trans
Conv2D Layers) in the recognition branch. The
feature maps with the same size as the feature maps
with the highest resolution are generated, and
multiscale fusion is implemented to enhance the
representation of the feature maps with multiple
resolutions.

(3) The parallel dual-branch structure is adopted. In the
training stage, the super-resolution branch and the
recognition branch are adopted together to
strengthen the feature extraction effect of the en-
coder module and constantly update the effective
parameters in the model, so that the recognition
branch can recognize the text on the more-effective
feature maps. In the testing stage, the model is
simplified, the super-resolution branch is aban-
doned, and only the recognition branch is used to
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obtain the recognition results, which is helpful to
reduce the model complexity.

2. Related Work

The ASTER model [10] based on the encoder-decoder
framework introduces a rectification network TPS to alle-
viate the recognition difficulties caused by arbitrary ar-
rangement and text distortion. The residual network
(ResNet) is used in the encoder to encode the rectified
images and obtain the visual feature sequences. Based on
bidirectional long-short-term memory (Bi-LSTM), the vi-
sual feature sequences are converted into textual feature
sequences and the text content is obtained by the decoder
with attention mechanism. However, when the scene text
images are severely distorted and the rectification is insuf-
ficient, the visual features extracted from the encoder are not
sufficient. Based on the ASTER model, the ESIR model via
iterative rectifications is proposed [18], which iteratively
removes text distortion as driven by better recognition
performance. However, for the images with few distortions,
the rectified images obtained through the rectification
network will be over rectified, the resolution of images will
be reduced, and the rectified images will even lose some edge
information. Meanwhile, to reduce the recognition errors
caused by insufficient rectification, the SAR model is pro-
posed [19], which abandons the rectification network and
adopts a two-dimensional attention module to process the
two-dimensional visual feature maps from the encoder.
Then, the text characters are located and recognized by
considering the regional information of each position in the
feature maps.

In the encoder-decoder framework, the attention
mechanisms are usually used in the decoder of the models.
Most of the attention-based methods usually suffer from
serious alignment problems due to its recurrent alignment
operation, where the alignment relies on historical
decoding results. Cheng et al. [20] put forward the concept
of attention drift. The attention mechanism is easily af-
fected by some problems, such as image blurring and
complex background, and cannot get accurate alignment
between feature maps and the targets of input images. The
DAN model is proposed to alleviate the problem of at-
tention drift [21]. The attention maps are obtained
through the convolution alignment module based on
visual features from the encoder. Moreover, a decoupled
decoder is used to make the final prediction by jointly
using the visual feature maps and attention maps. In
addition, the RobustScanner model is proposed to alle-
viate the problem by introducing two branches [22].
Specifically, the position enhancement branch is specially
designed to improve the ability of position encoding in the
decoder. The hybrid branch is the traditional decoder with
attention mechanism. The outputs of the two branches are
combined through the dynamic fusion module and
connected to an elementwise gate mechanism in the
channel dimension. By the selection of features, the
RobustScanner can adaptively adjust the importance of
contextual information and positional information to

obtain better performance of text recognition. However,
the above models are complex in terms of the model
structure.

Since the transformer [23] has achieved remarkable
achievements in the tasks of natural language processing,
researchers are beginning to explore its application in the
field of STR. The 2DOCR model is proposed [24], which uses
the transformer to decode twice at the end of the encoder.
The second decoder is fine-tuned and optimized on the basis
of the result of the first decoding, which can effectively
improve the recognition performance. Moreover, the Bi-
STET model is proposed [25] to solve the problem of in-
formation loss in the process of converting visual features to
textual features. After extracting visual features from the
ResNet, the encoder of the transformer is used to enhance
the visual features, to better integrate visual information and
text information. Besides, text recognition on the decoder of
the transformer also has better recognition effect.

However, integrating the transformer into the STR
models greatly increases the number of model parameters
and training time. Therefore, researchers try to introduce
auxiliary network modules with a relatively low number of
parameters to improve the recognition accuracy when
facing the problems of image blurring and low resolution.
Wang proposes the TextSR model [13], which introduces a
content-aware text super-resolution network SRGAN to
restore low-resolution images with super-resolution im-
ages under the guidance of adversarial loss and then uses
the ASTER model to identify the text content of super-
resolution images. To solve the problems of low brightness
in images and text occlusion, the SPIN model [26] pro-
poses the structure preserving network (SPN) and the
auxiliary inner-offset network (AIN), respectively. Spe-
cifically, SPN adjusts the intensity value between pixel
points based on the structure-preserving transformation
to alleviate the problem of low brightness in images. Based
on the theory of offset from geometric transformation, the
AIN introduces colour offsets to distinguish the colour
intensity, to alleviate the problems of text occlusion and
shadow. To solve the problem of complex background, the
SCGAN model is put forward [27], which outputs binary
images through the generator and inputs into the atten-
tion-based decoder to generate the attention feature maps.
After the fusion of binary images and attention feature
maps, the recognized texts are outputted to the dis-
criminator and compared with the ground truth texts. The
loss is propagated back to optimize the network param-
eters of the generator and to improve the recognition
performance. The SEED model is proposed [28] to alle-
viate the problems of uneven illumination and incomplete
characters. Based on the ASTER model, the SEED model
innovatively introduces the pretrained language model
FastText in the stage of visual features conversion to
textual features. Moreover, the cosine embedding loss is
calculated with semantic information and word embed-
ding of target texts from the FastText, to supervise the
effect of feature extraction in the encoder, to obtain more
comprehensive text information and better recognition
results.



3. HRNet Encoder and Dual-Branch Decoder
Framework-Based Scene Text
Recognition Model

This paper proposes a STR model based on HRNet encoder
and dual-branch decoder framework, as shown in Figure 1.
A single scene text image is taken as the input, and after the
process of TPS network and Gaussian blur, the encoder
module and dual-branch decoder module are adopted, in
which the super-resolution image and recognized text are
outputted by the super-resolution branch and recognition
branch, respectively. Specifically, HRNet is adopted as the
feature extraction network in the encoder module to output
the feature maps with multiple resolutions. The SAM is acted
on the feature maps with the highest resolution to strengthen
the learning of important feature information. The input of
the super-resolution branch is the feature maps with the
highest resolution enhanced by the SAM, and the super-
resolution image is generated by upsampling through Trans
Conv2D. The input of the recognition branch is the feature
maps with multiple resolutions. Through the Independent
Trans Conv2D Layers, the lower resolution feature maps are
expanded, so that the final multiscale feature maps can be
fused in the channel dimension. The attention-based de-
coder is used to decode the fused feature maps to obtain text
recognition results. In the parallel dual-branch decoder
module, the super-resolution branch and the recognition
branch together enhance the feature extraction effect of the
encoder module and then improve the effect of STR. In the
testing stage, the super-resolution branch is abandoned to
simplify the model and reduce the complexity of the model.

3.1. Encoder Module. The encoder module of the model is
shown in Figure 2, which innovatively adopts HRNet as the
feature extraction network and maintains a high-resolution
representation throughout the whole process. A high-res-
olution subnet is taken as the first stage, and multiresolution
subnets from high to low are added one by one to form more
stages. The multiresolution subnets are connected in parallel,
and the information is repeatedly exchanged during the
whole process to perform the multifeature fusion. At the end
of the encoder module, the SAM is used to strengthen the
learning of important feature information of the feature
maps with the highest resolution outputted by the HRNet
encoder. The feature with less information is suppressed by
using the attention mask, so that the encoder module can
transfer the most effective learned features to the super-
resolution branch and the recognition branch. Finally,
different connection operations are adopted according to the
different purposes of the super-resolution branch and the
recognition branch. The feature maps with the highest
resolution enhanced by the SAM are inputted to the super-
resolution branch, and four kinds of feature maps with
different resolutions are inputted to the recognition branch.

The SAM is constituted by a series of convolution op-
eration and sigmoid activation function, as shown in Fig-
ure 3. The feature maps with the highest resolution are added
to the input image after the 1 x 1 convolution operation; that
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is, the feature maps are supervised by the input image. Then,
the attention maps are obtained by the activation function
and then are acted on the feature maps by weighted sum-
mation. In this way, important features can be enhanced and
features with less information can be suppressed.

3.2. Super-Resolution Branch. The super-resolution branch
of the model employs the Trans Conv2D for upsampling on
feature maps with the highest resolution enhanced by the
SAM, to restore the super-resolution images. No extra su-
per-resolution network is introduced, the super-resolution
branch is directly connected to the encoder module, and a
simple upsampling recovery operation is adopted, so the
super-resolution branch of the proposed model is more
dependent on the feature maps outputted from the encoder
module. The effect of feature extraction of the HRNet en-
coder is strengthened through the supervision of the super-
resolution branch. Meanwhile, the super-resolution branch
is only used in the training stage and is abandoned in the
testing stage, which helps to reduce the model complexity.
The Trans Conv2D is composed of 3 x 3 transposed con-
volution operation, BatchNorm layer, and ReLu layer. The
average absolute error loss L, of the restored super-reso-
lution image and the original image is calculated, as shown
in

B 1
STTW x L -

1

L

5 Jo -1 o

j=1
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I
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where W and L represent the width and length of the image,
respectively, O represents the super-resolution image re-
stored by the super-resolution branch, and I represents the
original scene text image.

3.3. Recognition Branch. The recognition branch of this
proposed model consists of a multiscale fusion structure and
an attention-based decoder structure. Specifically, in the
multiscale fusion structure, in contrast to expanding the size
of the feature maps by bilinear interpolation, the Inde-
pendent Trans Conv2D Layer is used on all low-resolution
feature maps, to obtain the feature maps with the same size
as the feature maps with the highest resolution. The reso-
lutions of feature maps decrease from the top to bottom, and
the number of input channels and output channels of a
single Independent Trans Conv2D Layer is determined
according to the size of corresponding feature maps. Fur-
thermore, the multiscale fusion is carried out in the channel
dimension through the splicing operation, as shown in
Figure 4. Then, by employing the channel attention
mechanism [29], the weights on different channels of the
multiscale feature maps are calculated and important
channels of the feature maps are adaptively selected to help
the network obtain more effective information.

After obtaining the structure of multiscale fusion, the
attention-based decoder is connected to achieve complete
text recognition. To realize effective sequence conversion
from visual features to textual features, the multiscale feature
maps are processed by a 3 x 3 basic convolution module in
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the HRNet, to adjust the channel numbers without changing
the size of the feature maps and then rearrange the di-
mension of the feature maps. In other words, the channel
dimension and the width dimension of feature maps are
converted, to transform the two-dimensional visual feature
maps into one-dimensional textual feature vectors. Then, the
semantic information of one-dimensional feature vectors is
strengthened through the Bi-LSTM network. Finally, the
textual feature vectors are decoded by the GRU based on the
attention mechanism to recognize the characters, as de-
scribed in the ASTER [10]. The structure of the attention-
based decoder is shown in Figure 5, and <EOS> represents
the last character of the text sequence.

The sequence cross entropy loss Lgcg is calculated be-
tween the recognized text and the ground truth text, as
shown in equation (2), to improve the decoding effect of the
decoder module and the feature extraction effect of the
encoder module and then improve the accuracy of STR.

M N
Lgcg = MN Z gl yi,jlog(si,j)’ (2)

where M represents the number of samples in a batch, N
represents the number of text characters, y represents the
ground truth text, and s represents the recognized text of the
proposed model.

The loss function of the proposed model is shown in (3),
where A, is the corresponding weight parameter of the
super-resolution branch loss and A, is the corresponding
weight parameter of the recognition branch loss.

L = AILSI‘ + AZLSCE' (3)

4. Experiments and Results

The experimental environment of the proposed model is
based on Pycharm integrated development environment, the
PyTorch deep learning framework is adopted, and hardware
is based on 1 NVIDIA GeForce GTX 2080Ti 11GB GPU.
According to the unified experimental data and effective
comparison models advocated by Baek et al. [9], the training
data are the public synthetic datasets Synth90K [30] and
SynthText [31] and the testing data are the testing set of
seven natural scene datasets. The verification data are the
training set of seven natural scene datasets. The seven natural
scene datasets are as follows: IIIT5K-Words (III'T5k) [32]
refers to the regular scene text images such as billboards and
posters in Google image search. Street View Text (SVT) [33]
refers to the regular outdoor images in Google street view.
ICDAR 2003 (IC03) [34] is a competition-based regular
dataset published by the ICDAR conference, excluding scene
text images of less than three characters or non-
alphanumeric. ICDAR 2013 (IC13) [35] is a regular dataset,
which is mostly taken from the IC03 dataset and expands
some clear scene text images such as road signs and book
covers. ICDAR 2015 (IC15) [36] is an irregular dataset,
which mostly consists of some random images of blurred
and occluded in streets or shopping malls. SVT-Perspective
(SVTP) [37] refers to the irregular scene text images with
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Text Feature

FIGURE 5: Structure of the attention-based decoder in the recog-
nition branch.

perspective interference in Google street view. CUTE80 [38]
mainly contains distorted and irregular scene text images.

The scene text images as input of the network are three-
channel RGB images with a unified size of 64 x 256, and the
size of the images is unified to 32 x 100 after TPS. The four
kinds of feature maps with different resolutions outputted by
the encoder module are 8 x 25, 4x13,2x 7, and 1 x4, from
the feature maps with the highest resolution to the feature
maps with the lowest resolution, respectively. Due to the
setting of super-resolution branch, pairs of low-resolution
images and high-resolution images are required. Therefore,
to simulate the recovery process of super-resolution net-
work, the original image after random Gaussian blur is used
as a low-resolution image and the original image is used as a
high-resolution image. The Adadelta optimizer is used to
update the network parameters, the weight attenuation
factor is set as 0.1, the initial training learning rate is 1, and
the fine-tuned training learning rate is 0.1. To ensure that the
values of L, and Lgcg are in the same magnitude, A, and A, is
set as 0.1 and 1 and the word accuracy is used as the
evaluation metric.

4.1. Experiments of Model Comparison. To evaluate the effect
of the proposed model, an experiment is performed to
compare with other recent models, as shown in Table 1. For
the fairness of comparison, the models using additional
datasets for training are not compared. Synth90K and
SynthText are used as training sets in all comparative ex-
periments, and no lexicon is provided in the experiments.
Word accuracy is taken as the evaluation metric. Meanwhile,
the speed of the proposed model is 4.3 ms and 54 ms per
image in the training stage and in the testing stage, re-
spectively. Specifically, the proposed model innovatively
introduces the HRNet, which combines with some methods
such as the super-resolution branch, the SAM, and the
Independent Trans Conv2D Layers. Compared with the
ASTER and TextSR, the accuracy of the proposed model is
improved in most datasets, especially in IC15, SVTP, and
CUTES0, which are irregular and blurry, and the accuracy is
improved by more than 3%. Compared with the Bi-STET,
which wuses the transformer to enhance and decode
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TaBLE 1: The accuracy comparison between the proposed model and recent models (%).

Benchmark Average

Model

IIIT5k SVT IC03 IC13 IC15 SVTP CUTES80 Regular Irregular
ASTER 93.4 89.5 94.5 91.8 76.1 78.5 79.5 92.3 78.0
TextSR 92.5 87.2 93.2 91.3 75.6 77.4 78.9 91.0 77.3
ESIR 93.3 90.2 — 91.7 76.9 79.6 83.3 91.7 79.9
2DOCR 94 90.1 94.3 92.7 76.3 82.3 86.8 92.7 81.8
Bi-STET 94.7 89 96 93.4 75.7 80.6 82.5 93.2 79.6
SEED 93.8 89.6 — 92.8 80 81.4 83.6 92.0 81.6
DAN 94.3 89.2 95 93.9 74.5 80 84.4 93.1 79.6
SPIN 94.7 87.6 93.4 91.5 79.1 79.7 85.1 91.8 81.3
RobustScanner 95.3 88.1 — 94.8 77.1 79.5 90.3 92.7 82.3
SCGAN 94 90 95.6 93.3 81.6 85.1 78.1 93.2 81.6
Proposed model 93.7 91.3 93.3 94.3 82.8 83.1 83.0 93.1 82.9
Note: bold font is the optimal value in each column, and the underline font is the suboptimal value in each column.

TaBLE 2: Comparison of accuracy of ablation models (%).
Model IIT5k SVT 1C03 IC13 1C15 SVTP CUTES0
Baseline (HRNet) 91.7 88.4 93.4 92.2 78.6 80.2 80.9
Baseline + SR (Bilinear Interpolation) 93.0 89.5 92.7 92.7 81.1 81.1 78.1
Baseline + SR (Bilinear Interpolation) + SAM 93.0 92.1 91.9 93.2 81.7 83.3 81.2
Baseline + SR (Trans Conv2D) + SAM 93.4 91.8 93.3 93.6 81.8 82.6 81.6
Proposed model 93.7 91.3 93.3 94.3 82.8 83.1 83.0
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FIGURE 6: Qualitative comparison of recognition results.

information, the accuracy of the proposed model is also
improved in three kinds of irregular datasets. Compared
with the SCGAN, which introduces GAN to alleviate the
background interference, the recognition accuracy of the
proposed model is more balanced for different datasets. In
addition, compared with other recent models, the proposed
model can achieve better performance in average accuracy
for irregular datasets as well as good performance for regular
datasets.

4.2. Validity Experiments of the Proposed Methods. To verify
the effectiveness of the proposed methods, such as the super-
resolution branch, the SAM, and the Independent Trans
Conv2D Layers, several comparative experiments are set up.
The HRNet is used as the feature extraction network in the
baseline model, and the proposed methods are gradually
added to fine-tune in ablation models. The baseline model is
trained for up to 3 epochs, and the fine-tuned models are
trained for up to 4 epochs based on the baseline model. On

the whole, the proposed model is trained for up to 13 epochs.
The setting of hyperparameters is consistent all time.

Quantitative comparison is made based on the testing
sets, and the results are shown in Table 2. Compared with the
classical ASTER model in Table 1, which uses ResNet as the
feature extraction network, the recognition accuracy of
IC15, SVTP, and CUTES0 is improved by 2.5%, 1.7%, and
1.4%, respectively, by using the HRNet in the baseline
model. The recognition accuracy is also improved in natural
scenes by adding the super-resolution branch composed of
bilinear interpolation to the baseline, which verifies that
HRNet can be used as both a feature extraction network and
a super-resolution network to provide effective high-reso-
lution feature maps. In addition, the recognition accuracy
can be further improved by the addition of the SAM, and
instead of bilinear interpolation, we use Trans Conv2D as the
upsampling method to recover super-resolution images in
the super-resolution branch.

As shown in Figure 6, the qualitative comparison is given
based on the irregular testing sets, such as IC15, SVTP, and



TaBLE 3: PSNR results of restored images by Trans Conv2D and
bilinear interpolation (dB).

Bilinear interpolation  Trans Conv2D  Improved
IIIT5k 27.57 30.88 +3.31
SVT 31.93 36.05 +4.12
1C03 27.79 31.68 +3.89
1C13 27.82 32.06 +4.24
I1C15 33.08 38.11 +5.03
SVTP 32.76 37.86 +5.10
CUTES80 24.98 28.39 +3.41
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FIGURE 7: Performance of the adoption of Trans Conv2D in the
super-resolution branch. In each image, from the top to bottom are
the original image, blurred low-resolution image, and super-res-
olution image, respectively.

CUTES0. The text content below each picture is in lower
case. The first line is the ground truth text, the recognition
results of Baseline and Baseline + SR (Bilinear Interpolation),
respectively. The second line is the recognition results of the
Baseline + SR (Bilinear Interpolation) +SAM, Baseline + SR
(Trans Conv2D)+SAM, and the proposed model (Base-
line+SR (Trans Conv2D)+ SAM + Independent Trans
Conv2D Layers), respectively. It can be seen that the baseline
model has some problems of misrecognition for individual
characters. However, the proposed methods, such as the
super-resolution branch, the SAM, and the Independent
Trans Conv2D Layers, can be used gradually to effectively
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recognize the characters, which are relatively difficult to
recognize, and then the proposed model can obtain better
recognition results.

4.3. Validity Experiments of the Dual-Branch Structure. In
the super-resolution branch of the proposed model, the
methods of Trans Conv2D and bilinear interpolation are
used to compare the effect of image recovery, respectively.
The values of PSNR metric of the restored images are cal-
culated, as shown in Table 3. Compared with the bilinear
interpolation, the Trans Conv2D could increase the PSNR by
more than 3 dB, which verifies the effectiveness of adopting
Trans Conv2D in the super-resolution branch. Moreover,
qualitative comparison is carried out with regard to the
adoption of Trans Conv2D in the super-resolution branch,
as shown in Figure 7. Experimental results on seven natural
scene datasets verify that super-resolution branch can better
accomplish the super-resolution task and assist the feature
extraction network to effectively encode the scene text
images; therefore, the accuracy of STR can be improved.
In the recognition branch of the proposed model, the
Independent Trans Conv2D Layers are used for size ex-
pansion. The comparison between the feature maps gen-
erated by the Independent Trans Conv2D Layers and
bilinear interpolation is shown in Figure 8, and the gen-
erated feature maps of five channels are randomly selected.
The brighter regions in the feature maps represent the higher
feature values of the regions and the more information
contained. Four kinds of feature maps with different reso-
lutions are outputted in the encoder module, with sizes of
8x25, 4x13, 2x 7, and 1x4, respectively. The single In-
dependent Trans Conv2D Layer is used to expand the size of
feature maps with lower resolutions, so that the size of each
resolution feature map is the same, that is, 8 x25. From
Figure 8, it can be seen that the feature maps generated by
the Independent Trans Conv2D Layers contain more text
information than the bilinear interpolation in the size of
4 x 13, which can reduce the loss of feature information in
the process of size expansion. However, for the size of 2x 7,
the feature maps generated by the bilinear interpolation can
only maintain some edge information, so very little infor-
mation is transmitted to the recognition branch for text
recognition. Meanwhile, the feature maps generated by the
Independent Trans Conv2D Layers can retain some visual
information even at the lowest resolution. Moreover, the
multiscale fusion results transmitted to the attention-based
decoder can contain more effective text information. In
other words, the recognition effect of the model is signifi-
cantly improved by several proposed methods on various
testing sets, as shown in Table 2. As shown in Table 4, the
three ablation models and the proposed model all use the
super-resolution branch in the training stage and abandon it
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TABLE 4: Parameter comparison in ablation models during training
and testing (M).

Parameters

Model

Training Testing
Baseline (HRNet) 35.564 35.564
Baseline + SR (Bilinear Interpolation) 35.565 35.564
Baseline + SR (Bilinear Interpolation) + SAM ~ 35.568  35.567
Baseline + SR (Trans Conv2D) + SAM 35.573 35.567
Proposed model (Baseline + SR (Trans
Conv2D) + SAM + Independent Trans 37.582 37.576

Conv2D Layers)

in the testing stage, which can reduce the model complexity.
Moreover, the proposed model, which adds the effective
methods, such as super-resolution branch, the SAM, and the
Independent Trans Conv2D Layers, does not increase too
many model parameters.

5. Conclusions

This paper proposes a HRNet encoder and dual-branch
decoder framework-based STR model to recognize distor-
tion, blurred, and low-resolution text in natural scenes.
Based on the encoder-decoder framework, the model in-
novatively introduces the HRNet as feature extraction
network and introduces the SAM to enhance the learning of
important features. The feature maps with multiple reso-
lutions extracted by the HRNet encoder are inputted to the
dual-branch decoder module composed of the super-reso-
lution branch and the recognition branch. Specifically, the
feature maps with the highest resolution are inputted to the
super-resolution branch to restore the super-resolution
images and to strengthen the feature extraction effect of the
encoder module. After multiscale fusion through the In-
dependent Trans Conv2D Layers in the recognition branch,
the four kinds of feature maps with different resolutions are
decoded by the attention-based decoder and finally the
recognized text is obtained. Through ablation experiments
and comparative experiments, the effectiveness of the
proposed methods such as the HRNet encoder, the super-
resolution branch, and the Independent Trans Conv2D
Layers is verified. Compared with the ASTER model and
other recent models, the proposed model can better perform
STR on multiple public natural scene datasets, especially for
the text with distortion, blurring, and low resolution. In the

future, STR for images with complex background and jitter
imaging will be further studied.
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Convolutional neural networks, as a branch of deep neural networks, have been widely used in multidimensional signal processing,
especially in point cloud signal processing. Nevertheless, in point cloud signal processing, most point cloud classification networks
currently do not consider local feature correlation. In addition, they only adopt ground-truth as positive information to guide the training
of networks while ignoring negative information. Therefore, this paper proposes a network model to classify point cloud signals based on
feature correlation and negative constraint, DANC-Net (dual-attention and negative constraint on point cloud classification). In the
DANC-Net, the dual-attention mechanism is utilized to strengthen the interaction between local features of point cloud signal from both
channel and space, thereby improving the expression ability of extracted features. Moreover, during the training of the DANC-Net, the
negative constraint loss function ensures that the features in the same categories are close and those in the different categories are far away
from each other in the representation space, so as to improve the feature extraction capability of the network. Experiments demonstrate
that the DANC-Net achieves better classification performance than the existing point cloud classification algorithms on synthetic datasets
ModelNet10 and ModelNet40 and real-scene dataset ScanObjectNN. The code is released at https://github.com/sunhang1986/DANC-Net.

1. Introduction

Signal processing is usually understood as the processing of
electronic signals [1-5]. Point cloud processing can be de-
scribed as the processing of point cloud, a kind of multi-
dimensional signal. However, the classification task of point
cloud is still facing enormous challenges due to its unor-
dered and sparse characteristics.

3D objects can be represented in two ways according to
the spatial distribution of the 3D point cloud. (1) regular
structure representation, which is represented by multi-view
and voxel representation, and (2) irregular and unstructured
representation, which is represented by point cloud and grid
representation. Point cloud processing methods based on
regular structured representations include 3D volumetric
convolutional neural networks (CNNs) [6-8] and the multi-

view CNN [9, 10]. These methods transform irregular/un-
structured point clouds to regular/structured images (or
volume grids), and use two-dimensional (2D) CNNs to
extract local features and global features of the point cloud.
Although these methods solve the unordered distribution
issues of point clouds, they bring a lot of challenges in
calculation and issues in memory consumption. Octree-
based method [11] alleviates these problems to a certain
extent and can apply 3D CNN to higher resolution grid. Le
and Duan [12] and Hua et al. [13] studied different 3D
convolution operators based on grid cells, which can better
learn local features. On the contrary, methods based on
irregular unstructured representation do not need to
transform the representation of point cloud. They can learn
point cloud features using special CNNs designed for raw
point cloud data [14-16]. Because of low memory


mailto:watersun@ctgu.edu.cn
https://github.com/sunhang1986/DANC-Net
https://orcid.org/0000-0002-3460-9354
https://orcid.org/0000-0001-8393-7656
https://orcid.org/0000-0003-0933-152X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5417440

consumption and simple structure of this type of repre-
sentation, point cloud classification methods based on ir-
regular unstructured representation have attracted more and
more attention from researchers.

In the study of point cloud classification based on irregular
and unstructured representations, Qi et al. [14] designed a
PointNet network capable of point-by-point coding in order to
use deep learning to process point cloud data. However, the
details are lost because the whole PointNet network does not
divide the point cloud regions and extract the region features.
PointNet++ [15], which is based on PointNet, adopts a hier-
archical structure that allows repeated capture of local infor-
mation. Therefore, the overall accuracy (OA) of PointNet++ in
ModelNet40 dataset is greatly improved compared with the
OA of PointNet, which effectively demonstrates the impor-
tance of local information. However, because the processes of
extracting local features are mutually independent, information
is not exchanged between subclouds, resulting in a loss of
structural information. Since then, in order to simplify the
training process and save computing resources, a large number
of researchers have proposed methods based on CNNs, such as
PointCNN [16], tangent convolutions [17], and point cloud
classification networks [18], which strengthen the geometric
structure acquisition of point cloud data. However, these
methods do not consider the effects of local structure rela-
tionship that are essential in 3D object recognition.

In summary, how to efficiently learn in-depth local features
and their relationship from point cloud has become a pressing
problem. In addition, most of the existing point cloud clas-
sification networks only use positive information to guide the
training of network, lacking of effective use of negative in-
formation, which limits the network capability to extract more
distinguishing features for point cloud classification.

In order to efficiently learn the correlation between local
features of point cloud signals and utilize the negative infor-
mation which is crucial to the classification results, we propose
an effective point cloud classification network. Our point cloud
classification network, based on a dual-attention mechanism
and contrastive learning constraints, is named DANC-Net. The
main components of the network are the channel attention and
self-attention (CASA) module and the negative constraint loss
function (NC-loss). The CASA module is used before the global
features are aggregated. Channel attention and self-attention
are used to capture the relationship between local features. In
NC-loss, the output point cloud features with local feature
relationships are divided into the output feature, positive
sample features, and negative sample features. The output
feature is constrained by negative information, in order to be
approach-positive sample features and stay away from negative
sample features. Positive information and negative information
are used effectively at the same time, which improves the
classification ability of our DANC-Net.

To sum up, our contributions are three-folds as follows:

(1) We propose a dual-attention module, CASA. It can
strengthen the extraction of local feature correlation
from channel and spatial, thereby helping the net-
work to further develop the geometric structure
between points.
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(2) We propose a negative constraint loss function, NC-
loss. Besides the positive information constraints, the
effective constraint of negative information has also
been strengthened; thus, the ability of the network to
extract more distinctive features is improved.

(3) We propose a dual-attention negative constraint
network, DANC-Net, which achieves superior per-
formance compared with the recently proposed
point cloud classification methods on open datasets
ModelNet10 [8] and ModelNet40 [8] and the real-
scene dataset ScanObjectNN [19].

2. Related Work

In recent years, deep learning continues to make break-
throughs in computer vision [20-23]. The early point cloud
classification methods based on deep learning transform
point cloud to regular volume grids and then extract features
from the point cloud by using 3D CNNs [6, 8]. However, 3D
CNN takes up more computing resources than 2D CNN. To
make computation affordable, the volume grids are usually
in low resolution, resulting in the loss of geometric infor-
mation of 3D mesh shape, especially when dealing with
large-scale point cloud. Therefore, the 3D point cloud is
mapped to the 2D space, and then, the 2D image CNNs are
used to classify [7, 10]. With well-engineered image CNNs,
these methods have achieved the expected performance.
Nevertheless, the selection of projection angle and projec-
tion plane has a significant impact on the classification
accuracy, so the generalization ability of these models is
poor.

PointNet [14], a kind of end-to-end network, is the first
method to deal with point cloud directly based on deep
learning. The method takes N points as input and uses a 3 x 3
affine transformation matrix (T-Net) to realize input
alignment and feature alignment. The aligned point cloud
learns global feature vectors through multiple three-layer
perceptrons (MLPs) and max pooling, and finally realizes
end-to-end point cloud classification. However, vital local
information is ignored in the PointNet. PointNet++ [15]
proposed by Qi et al. is a point cloud classification network
based on PointNet. It refers to the feature extraction method
of PointNet to process each group of point clouds inde-
pendently. Then, the global features are aggregated using
max pooling. The hierarchical structure of PointNet++
exploits local information to a certain extent. In PointNet++,
multi-scale algorithm is used to group point clouds. In the
process of grouping, it is inevitable that there will be re-
peated grouping points, which will result in local infor-
mation redundancy and reduce the classification ability of
the network. For the purpose of reducing the redundancy of
local information, the authors of A-CNN [24] proposed the
constraint-based k-nearest neighbor (k-NN) algorithm and
annularly convolution on the basis of hierarchical structure.
As shown in Figure 1, the input point cloud is sampled and
the constraint-based k-NN algorithm is used to construct
groups in each layer of the network. Then, the features
within each group are extracted by combining annular
convolution with max pooling. Compared with multi-scale
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FIGURE 1: A-CNN abstract layer structure.

grouping, rings of annularly convolution do not contain
duplicate points, which allows the network to learn more
discriminant features. Therefore, A-CNN achieved a higher
classification performance than PointNet++ on the Mod-
elNet dataset. The progress of the above end-to-end point
cloud classification methods is undeniable, However, their
approach of extracting local features independently leads to
inadequate identification of correlations between points or
local neighborhoods.

Recently, attention mechanism [25] has achieved re-
markable achievements in natural language processing,
image recognition [26], and other fields. In point cloud
classification, Bhattacharyya et al. [27] proposed an altitude
attention model, which can achieve superior classification
performance of airborne laser scanning (ALS) by consid-
ering the altitude information of points. Lee et al. [28]
proposed a simple and efficient network based on self-at-
tention, called set transformer, which can process set data,
such as a point cloud. Shajaha et al. [29] proposed a multi-
view CNN with self-attention. Multiple views of a roof point
cloud were taken as the input, an adaptive weight learning
algorithm was used to assign weights corresponding to each
view, and the category of the roof was the output. However,
the generalization ability of the model [29] is poor and is
limited to special field. On the contrary, the DANC-Net we
proposed can be applied to any point cloud classification
tasks.

Currently, most of the point cloud classification net-
works only use ground-truth as positive information to
guide the training of the network while negative information
is ignored, which leads to the limitation of network dis-
crimination capabilities. Therefore, in order to further ex-
plore