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 e research of application models based on traditional convolutional neural networks has gradually entered the bottleneck
period of performance improvement, and the improvement of chest X-ray image models has gradually become a di�cult problem
in the study. In this paper, the Swin Transformer is introduced into the applicationmodel of pneumonia recognition in chest X-ray
images, and it is optimized according to the characteristics of chest X-ray images.  e experimental results based on the model in
this paper are compared with those of the model built with the traditional convolutional neural network as the backbone network,
and the accuracy of the model is proved to be greatly improved. After the comparison experiments on two di�erent datasets, the
experimental results show that the accuracy of the model in this paper improves from 76.3% to 87.3% and from 92.8% to 97.2%,
respectively.  e experiments show that the accuracy of image enhancement based on the features of chest X-ray images in this
model will be higher than the accuracy without image enhancement. In the experiments of this paper, the identi�cation decision
factors in the chest X-ray images were extracted by grad-cam combined with a transformer to �nd the corresponding approximate
lesion regions.

1. Introduction

Pneumonia is a common and dangerous disease that is
mainly caused by viruses, bacteria, or fungi. If left untreated,
its mortality rate is high. According to the literature,
pneumonia is one of the ten deadliest diseases in the United
States and has a highermortality rate in developing countries
[1]. Chest X-ray imaging (hereafter referred to as CXR) is
widely used in general routine examinations because it is not
only low cost, but also its radiation is less harmful than
computed tomography. Relevant papers indicate that the
mean e�ective radiation dose per exam of CXR is about
0.04± 0.19msv, while the principle of computed tomogra-
phy is that X-rays penetrate the human body for multiple
times for tomography, so the mean e�ective radiation dose
per exam can reach 1.09± 1.11msv, about 25 times that of
CXR [2]. Doctors often use CXR as an important aid in
diagnosing pneumonia. In today’s world, arti�cial

intelligence is playing a huge role in the transformation of
science, industry, and society, and its techniques are widely
used in medical image processing.  e application and
improvement of arti�cial intelligence in CXR to identify
pneumonia can assist doctors in making the correct diag-
nosis, help them speed up the diagnosis, reduce the pro-
portion of missed and misdiagnosis, and be of great
importance in saving lives.

Since the explosive development of deep learning in
2012, amazing achievements have been made in the research
and application of arti�cial intelligence. Compared with
other machine learning algorithms, deep learning algo-
rithms can rely on their own learning methods for feature
extraction. Deep learning has achieved great success in many
�elds such as computer vision, natural language processing,
and big data analysis. In addition, it has become a main-
stream approach to machine learning and has achieved
record-breaking results in various competitions in arti�cial
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intelligence. Deep learning can be traced back to AlexNet in
2012 [3]. )e accuracy of this convolutional neural network
algorithm, which won the championship in the famous
international image classification competition ImageNet,
has been improved by more than ten points compared with
other algorithms in the past. It uses many methods for the
first time, uses ReLu as a nonlinear activation function, uses
dropout to prevent overfitting, uses data enhancement, and
so on. After AlexNet, there have been many excellent
convolutional neural networks. VGGNet is a convolutional
neural network developed by the Visual Geometry Group of
Oxford University on the basis of AlexNet [4]. )e im-
provement of VGGNet is that it uses a smaller convolution
kernel and a deeper network structure, which enhances the
feature learning ability of the convolutional neural network,
which also verifies the advantages of small convolution
kernels and can improve network performance by deepening
the network structure. In addition, VGGNet uses the multi-
Scale method to train and predict, reducing the occurrence
of model overfitting and improving the prediction accuracy.
Inspired by the Network in Network theory, the concept of
the Inception module emerged, that is, a convolutional layer
contains multiple convolutional operations of different sizes.
A typical convolutional neural network with Inception is
GoogLeNet [5]. In addition, two auxiliary classifiers are
added to the middle layer of GoogLeNet to strengthen
supervision information and alleviate the problem of gra-
dient disappearance. In simple theory, the deeper the net-
work level, the more complex feature extraction can be
carried out, so better results should be obtained. But in fact,
it was found in the experiment that there was a problem of
degradation after the network was deepened to a certain
extent, that is, after a large increase in the network depth, the
accuracy began to saturate and degrade. )e main reason is
that when the data are transmitted in a deep network, the
gradient becomes smaller and gradually disappears, making
it impossible to perform the backpropagation algorithm, so
it is difficult for the network to train and find a good pa-
rameter after deepening the level to a certain extent. For this
reason, He et al. proposed a residual unit with a “short-
circuit connection” structure to solve this degradation
problem, instead of directly connecting each layer. ResNet is
modified on the basis of VGGNet, and it uses residual units
[6]. Compared with VGGNet, it adds a “short-circuit
connection” mechanism between every two layers, which
gives an implementation idea for building a much deeper
network. In addition to the ways of deepening the network
such as ResNet and widening the network such as Goo-
gLeNet to improve the effect, there are also multiplexing
schemes, the typical representative is DenseNet, which can
achieve better results while achieving fewer parameters [7].
Other scholars have proposed EfficientNet, which is based
on an artificial neural network to obtain the optimal
composite coefficient of network depth, network width, and
image resolution [8].

With the research and development of the convolutional
neural backbone network, it has also promoted the im-
provement of medical image processing model capabilities.
As early as 2017, Wang’s team built medical image

processing models based on the classic convolutional neural
network AlexNet [3], VGGNet [4], GoogLeNet [5], and
ResNet [6] in deep learning, and tested and compared them
on the public CXR dataset named Chest X-ray. )rough
their research and experiments, it was proved that resnet50
has the best effect of disease identification in CXR compared
with other backbone networks [9]. Yao et al. optimized the
convolutional neural network DenseNet [7], and the model
they proposed was tested on the Chest X-ray dataset and
achieved ideal results [10]. Later, Rajpurkar and other
scholars built a 121-layer network based on the convolu-
tional neural network DenseNet and used the weighted cross
entropy as the loss function to propose the chexnet model
for medical image classification.)emodel was tested with a
higher accuracy score than four human medical imaging
experts correctly judged [11]. Later, many scholars further
improved the models based on the convolutional neural
network according to the features of CXR [12–20]. But
accuracy of models began to encounter bottlenecks, and
there are still some unsolved or imperfect problems in the
current models.

In this paper, a new model scheme based on the
backbone network of the new transformer and optimized
according to the features of CXR will be proposed, and it can
greatly improve the accuracy of identification of pneumonia
in CXR. )e image enhancement and parameter optimi-
zation scheme are designed based on the features of CXR,
and the lesion area is found to the greatest extent from the
decision factors of transform. Experiments in this paper
show that under the same circumstances, the model for
identification of pneumonia in CXR based on the trans-
former backbone network has higher accuracy than that
based on the traditional convolutional neural backbone
network. )e image enhancement scheme for CXR in this
model will play a positive role in improving the accuracy rate
of the model.

)rough the research in this paper, the bottleneck
problem of improving the accuracy of the model for
identification of pneumonia in CXR based on the traditional
convolutional neural network can be overcome, and better
results can be achieved. To sum up, the research in this paper
has its value both theoretically and practically in the iden-
tification of pneumonia and even more diseases in CXR.

2. Proposed Scheme

In order to better compare the difference between the model
for identification of pneumonia in CXR based on trans-
former backbone network and the models based on tradi-
tional convolutional neural backbone network, the
experiment in this paper was done on the Chest X-ray data
set [9] and CXR images (pneumonia) data set [21], because a
large number of scholars used these data sets when testing
the models based on the traditional convolutional neural
backbone network. It should be noted that the former data
set comes from the National Institutes of health, and the
latter data set comes from Guangzhou Women and Chil-
dren’s Medical Center, and these data sets are publicly
available for free use in scientific research.
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)e chest X-ray data set is a data set of more than 100000
anonymous chest X-ray images released by the National
Institutes of health to the scientific community. )e copy-
right of this data set is announced on https://www.nih.gov/
news-events/news-releases/nih-clinical-center-provides-
one-largest-publicly-available-chest-x-ray-datasets-scientific-
community, “)e release will allow researchers across the
country and around the world to freely access the datasets
and increase their ability to teach computers how to detect
and diagnose disease.” )e number of samples in the Chest
X-ray data set [9] is shown in Table 1.

In the CXR images (pneumonia) data set [21], there are
5,856 anonymous chest X-ray images from Guangzhou
Women and Children’s Medical Center with “license CC BY
4.0”. )e text of the CC BY 4.0 was retrieved from https://
creativecommons.org/licenses/by/4.0/, and for more infor-
mation, view the full license text at https://creativecommons.
org/licenses/by/4.0/legalcode. )is data set is divided into
two categories: pneumonia and normal. )e number of
samples in the CXR images (pneumonia) data set is shown in
Table 2.

)e model used in the experiment in this paper is based
on the Swin Transformer backbone network [22] and op-
timizes the CXR accordingly. )e basic steps are as follows
(Figure 1): in addition to the obvious feature of a gray-scale
image, CXR generally has its own characteristics such as low
brightness, poor contrast, and high noise, so the first step is
to improve the brightness, contrast, and suppress noise of
the image according to the features of CXR. )e second step
is to obtain the best parameters of the model, the images are
divided into a training set and validation set, normalize the
images in the training set, and after random scaling, clip-
ping, and flipping send them to the transformer network and
fully connected network for training to obtain the best
parameters of this model. )e purpose of normalizing
images is to facilitate the speedy contingency of the network.
)e purpose of random scaling, clipping, and flipping is to
make the model not “see” the same image twice during
training, so it has better generalization ability. A transformer
network is used for feature extraction and a fully connected
network is used for classification. In the third step, the
images in the validation set are scaled and sent to the
transformer network with trained parameters for feature
extraction, and then send to the fully connected network
with trained parameters for classification. )e fourth step is
to extract the decision factor from the Transformer network.
)e last step is to map the decision factor to the original
image to output the lesion area.

)e first was to do experiments with the model in this
paper on the Chest X-ray data set, and then the experimental
results are compared with the experimental results of models
based on AlexNet [3], GoogLeNet [4], VGGNet16 [5], and
ResNet50 [6] from theWang’s team on the same data set, the
experimental results of model based on DenseNet [8] from
Yao and other scholars, and the experimental results of
model based on DenseNet121 [8] from Rajpurkar et al.

In order to verify the effectiveness of image enhancement
according to the features of CXR, a comparison experiment
between enhanced and nonenhanced images in the

preprocessing with the model based on the Transformer
backbone network was carried out, and the two experi-
mental results were compared. As shown in Figure 2, it is a
contrast map for CXR enhancement, in which the left side is
before enhancement, and the right side is after
enhancement.

In order to further verify the versatility of this model for
the identification of pneumonia in CXR based on the
transformer backbone network, a comparative experiment
on the CXR Images (Pneumonia) dataset [21] was carried
out and compared its result with the experimental results of
other models on the same dataset.

Finally, in the experiment, the decision factors of the
identification in the chest X-ray image from the Swin
transformer were extracted, and with the Grad-CAM [23]
they were superimposed on the original image to perform
the discriminative output of the lesion area.

3. Experimental Result

)e accuracy of the experiment results with the model in this
paper on the Chest X-ray data set reached 87.3%. From the
comparison in Table 3, it can be seen that themodel based on
the Swin Transformer backbone network and optimized for
CXR is obviously better than other models based on tra-
ditional convolutional neural network.

In the experiment to verify the effectiveness of pre-
processing of image enhancement according to the features
of CXR, this paper collects the accuracy data of the model
based on the Swin Transformer backbone network during
the training process. As shown in Figure 3, in order to show
the details more clearly, the figure draws a line graph of the
accuracy from batches 32 to 128 on the first epoch without
image enhancement and with image enhancement, in which
the blue dotted line is no enhancement, and the orange

Table 1: )e number of samples in Chest X-ray data set.

Focus of infection Samples
Atelectasis 5789
Cardiomegaly 1010
Effusion 6331
Infiltration 10317
Mass 6046
Nodule 1971
Pneumonia 1062
Pneumothorax 2793
Normal 84312
Data set source: https://www.nih.gov/news-events/news-releases/nih-
clinical-center-provides-one-largest-publicly-available-chest-x-ray-
datasets-scientific-community.

Table 2: )e number of samples in CXR images (pneumonia) data
set.

Focus of infection Samples
Pneumonia 4273
Normal 1583
Data set source: https://www.kaggle.com/datasets/paultimothymooney/
chest-xray-pneumonia.

International Journal of Antennas and Propagation 3

https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community
https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community
https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community
https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community
https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community
https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia


dashed line is enhancement. As can be seen from Figure 3,
the accuracy of image enhancement according to the fea-
tures of CXR will be higher than that without image en-
hancement under the same circumstances.

In the comparative experiment on the CXR Images
(Pneumonia) data set, the model based on the Swin
Transformer backbone network and optimized for CXR in
this paper achieved the best accuracy of 97.2% after only five
epochs of training, which is much higher than the accuracy
rate of 92.8% from the model based on the convolutional
neural network proposed by Kermany’s team [13]. It is also
higher than the competition results in the Kaggle on the
CXR Images (Pneumonia) data set (https://www.kaggle.
com/datasets/paultimothymooney/chest-xray-pneumonia/

discussion/).)e comparison data of accuracy from different
models are shown in Table 4.

In Figures 4 and 5, the cross-entropy loss and accuracy
during the training process using the model in this paper are
shown.)e top figure shows the change of the cross-entropy
loss on epochs (the blue dotted line is from the data of the
training set, and the orange dashed line is from the data of
the validation set), and the bottom figure shows the change
of the accuracy on epochs (the blue dotted line is from data
of the training set, and the orange dashed line is from the
data of the validation set).

What is the reason for the higher accuracy on the val-
idation set than on the corresponding training set (Figure 5)?
Because in order to enhance the generalization ability of the
model, the data of the training set are randomly scaled,
cropped, and flipped before entering the transformer net-
work to extract features, while the data of the validation set
has not undergone this transformation.

Before the transformation of the Softmax function and
entering the fully connected classification network, the
decision factors of the identification in chest X-ray image
from the transformer are extracted. In our experiments, the
decision factors are from the norm layer following the
transformer backbone network, which can be obtained by
back-propagating the result value of the latter classification
network.)e reverse derivation according to the Grad-CAM

Figure 1: Schematic of a transformer network for CXR.

(a) (b)

Figure 2: Image enhancement (a) is before enhancement and (b) is after enhancement.

Table 3: Comparison of the models based on different backbone
network on data set 1.

Backbone network Validate-accuracy (%)
Wang, et al. [9] AlexNet 54.9
Wang et al. [9] GoogLeNet 59.9
Wang et al. [9] VGGNet-16 51.0
Wang et al. [9] ResNet-50 63.3
Yao et al. [10] DenseNet 71.3
Rajpurkar et al. [11] DenseNet-121 76.3
)is paper SwinTransformer 87.3
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algorithm is superimposed with the original image to form a
heat map as shown in Figure 6.  e area with high color
temperature is the area that plays an important role in the
formation of network discrimination, so the corresponding
lesion area can be obtained.

4. Discussion and Analysis

After several years of research, the research of the appli-
cation models based on the traditional convolutional neural
backbone networks such as AlexNet, VGGNet, GoogLeNet,
ResNet, DenseNet, and E�cientNet has gradually entered
the bottleneck period of network performance improve-
ment, and the improvement e�ect in the application models
research of CXR also gradually becomes less obvious. At this
time, a new backbone network is urgently needed to solve
this problem.

Vaswani et al. from the Google team proposed the
transformer backbone network in 2017 [24]. Compared with
the traditional Recurrent Neural Network [25], Transformer
has many advantages such as in�nite memory length in
theory and parallel operation.  e theory of the self-
attention algorithm is the basis of the transformer (1).

Attention(Q,K, V) � Softmax
QKT

��
dk
√( )V. (1)

In transformer multihead, self-attention extended from
the self-attention algorithm is used, and it is split by linear
mapping according to the number of headers and is usually
divided equally (2).

MultiHead(Q,K, V) � Concat head1, ..., headh( )WO,

where headi � Attention QWQ
i , KW

K
i , VW

V
i( ) ,

Attention(Q,K, V) � Softmax
QKT

���
.dk
√( )V.

(2)

 e transformer was originally used for natural language
processing. At the 2020 International Conference on
Computer Vision and Pattern Recognition (CVPR), the
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Figure 4: Cross-entropy loss in the training process and validation
process.
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Figure 3: Comparison accuracy between no enhancement and
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Table 4: Comparison of the models based on di�erent backbone
network on data set 2.

Backbone network Validate-accuracy (%)
Sharma et al. [13] — 92.8
Grzegorz on Kaggle∗ ResNet 94
 is paper SwinTransformer 97.2
∗https://www.kaggle.com/datasets/paultimothymooney/chest-xray-
pneumonia/discussion/313883.
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Google team proposed a scheme to apply transformers to the
�eld of computer vision and achieved good results [26].  e
core of the transformer comes from the self-attention al-
gorithm, and the self-attention algorithm and the convo-
lution algorithm are very closely related, and the latter can be
considered as a subset of the former [27]. As the scale of the
data set increases, the performance of the transformer
backbone network will exceed the traditional convolutional
neural backbone networks, and large-scale training data can
encourage the transformer to learn the more translation
equivariance and locality than possessed by the convolu-
tional neural networks. In 2021, the Swin Transformer
proposed by Microsoft Research Asia has become a bright
spot. It overcomes the bottleneck of the traditional con-
volutional neural backbone network to a certain extent and
further improves the accuracy [22].  e experimental
comparison results [22] of its e�ect on the ImageNet-1K data
set are as follows shown in Table 5.  e di�erence from
convolutional neural networks such as ResNet is that the
Swin Transformer no longer uses traditional convolution
kernels in feature extraction, and the core at each level is
window multihead self-attention and shifted window mul-
tihead self-attention.Windowmultihead self-attention is the
multihead self-attention matrix operation performed inside
the window.  e advantage is to reduce the amount of
computation, but the disadvantage is that information in-
teraction between windows is not possible.  e shifted
window multihead self-attention is designed to overcome
this shortcoming, and it can realize the information inter-
action between di�erent windows by shifting the window
position.

Since the Swin transformer backbone network has not
been proposed for a long time, its application in various
�elds has not been su�ciently studied, and few studies have
been conducted to optimize the model for the application of
CXR images. Regarding the application model in the CXR
�eld, the model proposed in this paper is no longer based on
the traditional convolutional neural backbone network, but
the Swin transformer backbone network is introduced to
build the model.  e experimental results on the two CXR
data sets prove that the accuracy of the model based on the

transformer backbone network is higher than that of the
model based on the traditional convolutional neural back-
bone network model on the same data set, and the e�ect is
improved obviously, which can overcome the existing
bottleneck of improving the accuracy of model based on the
convolutional neural backbone network.

It is necessary to highlight image details and suppress
noise because CXR is usually characterized by low bright-
ness, low contrast, and large noise. In the histogram of CXR,
the area with the highest pixel distribution is usually the
background, which is a nonconcern area, so this part can be
peaked. If the values in the histogram are evenly distributed,
it means that the distribution on each gray level is balanced,
and the contrast is the best at this time, that is, the image is
generally clear.  erefore, a certain degree of equalization
processing on each gray level in the histogram of CXR is
helpful to the subsequent processing. It can be seen from the
data chart of the experimental results (Figure 3) that this
processing method is e�ective for the model based on the
transformer backbone network.

 e concept of class activation mapping (CAM) origi-
nated from the interpretability research of deep neural
networks [28] and was later introduced into application
research by some scholars. On this basis, Selvaraju et al.
proposed gradient weighted activation mapping (Grad-
CAM) [29].

In the experiment of CXR in this paper, gradient
weighted activation mapping is combined into the trans-
former, so that by extracting the decision factors of the
identi�cation in CXR from the transformer, the heat map
through reverse derivation is superimposed on the original
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Figure 6: Heat map for lesion area.

Table 5: Comparison of di�erent backbone network.

 roughput (images/s) Accuracy (%)
E�ceintNet-B3 732.1 81.6
E�ceintNet-B4 349.4 82.9
Swin-T 755.2 81.3
Swin-S 436.9 83.0
Swin-B 278.1 83.5
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image, so the corresponding approximate lesions area can be
found.

When the new type of pneumonia caused by the 2019
novel coronavirus appeared, the study of the corresponding
model was carried out. Narin et al. used ResNet50,
ResNet101, ResNet152, Inception V3, and Inception-
ResNet-V2 five models for identification of the new type of
pneumonia and compared them. )eir experimental results
also show that ResNet50 achieves better results [30]. In
similar cases, it is estimated that the model with the
Transformer backbone network will be better.

5. Conclusion

Pneumonia is a disease with a high mortality rate. Chest
X-ray imaging is widely used in the routine examination of
pneumonia. CXR as an important adjunct to the diagnosis of
pneumonia can diagnose pneumonia quickly and accurately.
Machine learning methods based on deep learning have
been effective in chest X-ray imaging. In this paper, the Swin
Transformer is applied to the application model of CXR
image recognition and analysis, and the model is optimized
accordingly according to the characteristics of CXR. )e
experimental results show that the model outperforms the
model based on the traditional convolutional neural back-
bone network.
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Scene text recognition (STR) is designed to automatically recognize the text content in natural scenes. Di�erent from regular
document text, text in natural scenes has the characteristics of irregular shapes, complex background, and distorted and blurred
contents, which makes STR challenging. To solve the problems of STR for distorted, blurred, and low-resolution texts in natural
scenes, this paper proposes a HRNet encoder and dual-branch decoder framework-based STR model. �e model mainly consists
of an encoder module and a dual-branch decoder module composed of a super-resolution branch and a recognition branch in
parallel. In the encoder module, the HRNet is adopted to realize the cross-parallel aggregation representation with multiple
resolutions during feature extraction and then outputs four kinds of feature maps with di�erent resolutions. Moreover, the
supervised attention module is used to strengthen the learning of the important feature information. In the decoder module, the
dual-branch structure is adopted, in which the super-resolution branch takes the feature maps with the highest resolution
obtained in the encoder module as input and restores images by upsampling through transposed convolution. �e four kinds of
feature maps with di�erent resolutions are fused through independent transposed convolution layers for multiscale fusion in the
recognition branch and then inputted into the attention-based decoder for text recognition. To improve the accuracy of text
recognition, the feature extraction e�ect of the encoder module is together supervised by the super-resolution branch loss and the
recognition branch loss. In addition, the super-resolution branch is only used for training and is abandoned during testing to
reduce the complexity of the model. �e proposed model is trained on Synth90K and SynthText datasets and tested on seven
natural scene datasets. Compared with classical models such as ASTER, TextSR, and SCGAN, the recognition accuracy of the
proposed model is improved and better recognition results can be achieved on irregular and blurred datasets such as IC15, SVTP,
and CUTE80.

1. Introduction

Natural scene text refers to the text content in natural sit-
uations, such as billboards and road signs. Due to the high
diversity of text in orientation, shape, and blurring, scene
text recognition (STR), which is designed to automatically
recognize the text content in natural scene images, is
challenging [1]. With the development of deep learning, the
deep learning-based STR can obtain good text recognition
results and has become a research highlight in the �eld of
document analysis and recognition [2]. Moreover, the deep
learning-based STR is an essential research technology,
which can be employed in many computer vision

applications, such as image retrieval, autonomous driving,
and handwriting recognition [3–6].

Early STR models are usually based on temporal feature
classi�cation, such as the convolutional recurrent neural
network (CRNN) [7]. CRNN uses convolutional neural
networks to extract visual features and uses recurrent neural
networks to learn the bidirectional dependence of feature
sequences and predict the probability of character se-
quences. �en, the predicted probabilities of character se-
quences are transcribed into text character sequences
according to the prede�ned transformation mode in the
transcription layer. However, the setting of the transcription
layer in the CRNN requires that the feature sequences of
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image and text are aligned with each other, which is not
beneficial to predict the text sequences with spatial de-
pendence. (e model based on the encoder-decoder
framework [8] can avoid the alignment problem by training
to predict the corresponding relationship between any two
sequences. Generally, the visual features of an image are
extracted using an encoder and then are converted into a
fixed-length intermediate semantic feature sequence by
means of a recurrent neural network.(en, the intermediate
semantic feature sequence is decoded into a text character
sequence through a decoder. (e models based on the en-
coder-decoder framework have achieved higher perfor-
mance than the earlier models based on temporal feature
classification and provide an effective baseline model for
further research [9].

However, scene text images are often disturbed by
complex background and text distortion, which often cause
the information loss of the visual features extracted by the
encoder and then lead to the decoder’s inaccurate recog-
nition of the target sequences in the noisy decoding time
steps. To alleviate the above problems, the ASTER model
[10] based on the encoder-decoder framework is proposed
and the thin-plate-spline (TPS) [11] is introduced to im-
prove the text distortion, so that the encoder can extract
more sufficient visual features from the rectified images.
Based on the sequence model, the visual features are con-
verted into the textual features and finally the attention
mechanism is introduced to decode the textual features.
When confronted with blurred images and low resolution,
the models based on the encoder-decoder framework also
suffer from low-recognition accuracy, which prompts re-
searchers to introduce auxiliary networks to improve the
resolution of scene text images and learn more accurate text
information. Inspired by the success of multitask learning,
the super-resolution network SRGAN [12] is used as a
preprocessing method in text super-resolution (TextSR) [13]
to restore the low-resolution image with the corresponding
super-resolution image and then input it into the STRmodel
to improve the recognition effect. (e super-resolution
network RCAN [14] is used as an auxiliary network in
PlugNet [15] to update the parameters of the encoder, to
achieve better recognition results. Similarly, in the text
super-resolution network (TSRN) [16], a sequential-residual
block is proposed to extract the sequential information of the
scene text images and accomplish the super-resolution task.
However, the super-resolution networks adopted by the
above three models have complex structure and a large
number of parameters, which increases the complexity of the
model.

Recently, a parallel high-resolution network (HRNet) is
proposed [17]. Instead of restoring high-resolution repre-
sentations from low-resolution representations, HRNet
maintains high-resolution representations at any time and
performs multiscale fusion across parallel convolutions to
enhance high-resolution representations, therefore greatly
improving the detection and segmentation difficulties
caused by image blurring and low resolution. Due to its
advantages, HRNet is introduced into the STR task to

effectively alleviate the text recognition difficulties caused by
the scene text images with blurry and low resolution.

In this paper, a HRNet encoder and dual-branch decoder
framework-based STR model is proposed to recognize the
distorted and blurred text with low resolution. (is model
innovatively introduces a HRNet encoder to extract visual
features and adopts dual-branch decoder structure com-
posed of a super-resolution branch and a recognition branch
following the encoder. (e feature maps with highest res-
olution are inputted into the super-resolution branch for
upsampling and image recovery. (e feature maps with
multiple resolutions are fused at multiscale in the recog-
nition branch to accomplish the transformation of feature
sequences and obtain the recognized text. (e loss of the
super-resolution branch and the loss of the recognition
branch are together propagated back to enhance the feature
extraction effect of the encoder module, therefore improving
the performance of text recognition.(e main contributions
of this paper are as follows:

(1) (e HRNet is innovatively used for feature extrac-
tion in STR and also performs as a super-resolution
network. Moreover, the HRNet encoder provides
effective feature maps for the super-resolution
branch, therefore decreasing the model complexity
caused by the introduction of an auxiliary super-
resolution network, such as TextSR. Experiments on
several natural scene datasets verify the effectiveness
of the proposed model.

(2) In the encoder module, four kinds of feature maps
with different resolutions are generated at the end of
the HRNet. By using the supervised attention
module (SAM) on the feature maps with the highest
resolution, the important features are enhanced and
the features with a small amount of information are
suppressed. In the decoder module, the feature maps
enhanced by SAM are upsampled through trans-
posed convolution (Trans Conv2D) in the super-
resolution branch to restore the super-resolution
images. (e other three feature maps with lower
resolution are upsampled through independent
transposed convolution layers (Independent Trans
Conv2D Layers) in the recognition branch. (e
feature maps with the same size as the feature maps
with the highest resolution are generated, and
multiscale fusion is implemented to enhance the
representation of the feature maps with multiple
resolutions.

(3) (e parallel dual-branch structure is adopted. In the
training stage, the super-resolution branch and the
recognition branch are adopted together to
strengthen the feature extraction effect of the en-
coder module and constantly update the effective
parameters in the model, so that the recognition
branch can recognize the text on the more-effective
feature maps. In the testing stage, the model is
simplified, the super-resolution branch is aban-
doned, and only the recognition branch is used to
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obtain the recognition results, which is helpful to
reduce the model complexity.

2. Related Work

(e ASTER model [10] based on the encoder-decoder
framework introduces a rectification network TPS to alle-
viate the recognition difficulties caused by arbitrary ar-
rangement and text distortion. (e residual network
(ResNet) is used in the encoder to encode the rectified
images and obtain the visual feature sequences. Based on
bidirectional long-short-term memory (Bi-LSTM), the vi-
sual feature sequences are converted into textual feature
sequences and the text content is obtained by the decoder
with attention mechanism. However, when the scene text
images are severely distorted and the rectification is insuf-
ficient, the visual features extracted from the encoder are not
sufficient. Based on the ASTER model, the ESIR model via
iterative rectifications is proposed [18], which iteratively
removes text distortion as driven by better recognition
performance. However, for the images with few distortions,
the rectified images obtained through the rectification
network will be over rectified, the resolution of images will
be reduced, and the rectified images will even lose some edge
information. Meanwhile, to reduce the recognition errors
caused by insufficient rectification, the SAR model is pro-
posed [19], which abandons the rectification network and
adopts a two-dimensional attention module to process the
two-dimensional visual feature maps from the encoder.
(en, the text characters are located and recognized by
considering the regional information of each position in the
feature maps.

In the encoder-decoder framework, the attention
mechanisms are usually used in the decoder of the models.
Most of the attention-based methods usually suffer from
serious alignment problems due to its recurrent alignment
operation, where the alignment relies on historical
decoding results. Cheng et al. [20] put forward the concept
of attention drift. (e attention mechanism is easily af-
fected by some problems, such as image blurring and
complex background, and cannot get accurate alignment
between feature maps and the targets of input images. (e
DAN model is proposed to alleviate the problem of at-
tention drift [21]. (e attention maps are obtained
through the convolution alignment module based on
visual features from the encoder. Moreover, a decoupled
decoder is used to make the final prediction by jointly
using the visual feature maps and attention maps. In
addition, the RobustScanner model is proposed to alle-
viate the problem by introducing two branches [22].
Specifically, the position enhancement branch is specially
designed to improve the ability of position encoding in the
decoder. (e hybrid branch is the traditional decoder with
attention mechanism. (e outputs of the two branches are
combined through the dynamic fusion module and
connected to an elementwise gate mechanism in the
channel dimension. By the selection of features, the
RobustScanner can adaptively adjust the importance of
contextual information and positional information to

obtain better performance of text recognition. However,
the above models are complex in terms of the model
structure.

Since the transformer [23] has achieved remarkable
achievements in the tasks of natural language processing,
researchers are beginning to explore its application in the
field of STR.(e 2DOCRmodel is proposed [24], which uses
the transformer to decode twice at the end of the encoder.
(e second decoder is fine-tuned and optimized on the basis
of the result of the first decoding, which can effectively
improve the recognition performance. Moreover, the Bi-
STET model is proposed [25] to solve the problem of in-
formation loss in the process of converting visual features to
textual features. After extracting visual features from the
ResNet, the encoder of the transformer is used to enhance
the visual features, to better integrate visual information and
text information. Besides, text recognition on the decoder of
the transformer also has better recognition effect.

However, integrating the transformer into the STR
models greatly increases the number of model parameters
and training time. (erefore, researchers try to introduce
auxiliary network modules with a relatively low number of
parameters to improve the recognition accuracy when
facing the problems of image blurring and low resolution.
Wang proposes the TextSR model [13], which introduces a
content-aware text super-resolution network SRGAN to
restore low-resolution images with super-resolution im-
ages under the guidance of adversarial loss and then uses
the ASTER model to identify the text content of super-
resolution images. To solve the problems of low brightness
in images and text occlusion, the SPIN model [26] pro-
poses the structure preserving network (SPN) and the
auxiliary inner-offset network (AIN), respectively. Spe-
cifically, SPN adjusts the intensity value between pixel
points based on the structure-preserving transformation
to alleviate the problem of low brightness in images. Based
on the theory of offset from geometric transformation, the
AIN introduces colour offsets to distinguish the colour
intensity, to alleviate the problems of text occlusion and
shadow. To solve the problem of complex background, the
SCGAN model is put forward [27], which outputs binary
images through the generator and inputs into the atten-
tion-based decoder to generate the attention feature maps.
After the fusion of binary images and attention feature
maps, the recognized texts are outputted to the dis-
criminator and compared with the ground truth texts. (e
loss is propagated back to optimize the network param-
eters of the generator and to improve the recognition
performance. (e SEED model is proposed [28] to alle-
viate the problems of uneven illumination and incomplete
characters. Based on the ASTER model, the SEED model
innovatively introduces the pretrained language model
FastText in the stage of visual features conversion to
textual features. Moreover, the cosine embedding loss is
calculated with semantic information and word embed-
ding of target texts from the FastText, to supervise the
effect of feature extraction in the encoder, to obtain more
comprehensive text information and better recognition
results.
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3. HRNet Encoder and Dual-Branch Decoder
Framework-Based Scene Text
Recognition Model

(is paper proposes a STR model based on HRNet encoder
and dual-branch decoder framework, as shown in Figure 1.
A single scene text image is taken as the input, and after the
process of TPS network and Gaussian blur, the encoder
module and dual-branch decoder module are adopted, in
which the super-resolution image and recognized text are
outputted by the super-resolution branch and recognition
branch, respectively. Specifically, HRNet is adopted as the
feature extraction network in the encoder module to output
the feature maps with multiple resolutions.(e SAM is acted
on the featuremaps with the highest resolution to strengthen
the learning of important feature information. (e input of
the super-resolution branch is the feature maps with the
highest resolution enhanced by the SAM, and the super-
resolution image is generated by upsampling through Trans
Conv2D. (e input of the recognition branch is the feature
maps with multiple resolutions. (rough the Independent
Trans Conv2D Layers, the lower resolution feature maps are
expanded, so that the final multiscale feature maps can be
fused in the channel dimension. (e attention-based de-
coder is used to decode the fused feature maps to obtain text
recognition results. In the parallel dual-branch decoder
module, the super-resolution branch and the recognition
branch together enhance the feature extraction effect of the
encoder module and then improve the effect of STR. In the
testing stage, the super-resolution branch is abandoned to
simplify the model and reduce the complexity of the model.

3.1. Encoder Module. (e encoder module of the model is
shown in Figure 2, which innovatively adopts HRNet as the
feature extraction network and maintains a high-resolution
representation throughout the whole process. A high-res-
olution subnet is taken as the first stage, and multiresolution
subnets from high to low are added one by one to formmore
stages.(emultiresolution subnets are connected in parallel,
and the information is repeatedly exchanged during the
whole process to perform the multifeature fusion. At the end
of the encoder module, the SAM is used to strengthen the
learning of important feature information of the feature
maps with the highest resolution outputted by the HRNet
encoder. (e feature with less information is suppressed by
using the attention mask, so that the encoder module can
transfer the most effective learned features to the super-
resolution branch and the recognition branch. Finally,
different connection operations are adopted according to the
different purposes of the super-resolution branch and the
recognition branch. (e feature maps with the highest
resolution enhanced by the SAM are inputted to the super-
resolution branch, and four kinds of feature maps with
different resolutions are inputted to the recognition branch.

(e SAM is constituted by a series of convolution op-
eration and sigmoid activation function, as shown in Fig-
ure 3.(e feature maps with the highest resolution are added
to the input image after the 1× 1 convolution operation; that

is, the feature maps are supervised by the input image. (en,
the attention maps are obtained by the activation function
and then are acted on the feature maps by weighted sum-
mation. In this way, important features can be enhanced and
features with less information can be suppressed.

3.2. Super-Resolution Branch. (e super-resolution branch
of the model employs the Trans Conv2D for upsampling on
feature maps with the highest resolution enhanced by the
SAM, to restore the super-resolution images. No extra su-
per-resolution network is introduced, the super-resolution
branch is directly connected to the encoder module, and a
simple upsampling recovery operation is adopted, so the
super-resolution branch of the proposed model is more
dependent on the feature maps outputted from the encoder
module. (e effect of feature extraction of the HRNet en-
coder is strengthened through the supervision of the super-
resolution branch. Meanwhile, the super-resolution branch
is only used in the training stage and is abandoned in the
testing stage, which helps to reduce the model complexity.
(e Trans Conv2D is composed of 3× 3 transposed con-
volution operation, BatchNorm layer, and ReLu layer. (e
average absolute error loss Lsr of the restored super-reso-
lution image and the original image is calculated, as shown
in

Lsr �
1

W × L
􏽘

W

i�1
􏽐
L

j�1
O

i,j
− I

i,j
����

����, (1)

whereW and L represent the width and length of the image,
respectively, O represents the super-resolution image re-
stored by the super-resolution branch, and I represents the
original scene text image.

3.3. Recognition Branch. (e recognition branch of this
proposed model consists of a multiscale fusion structure and
an attention-based decoder structure. Specifically, in the
multiscale fusion structure, in contrast to expanding the size
of the feature maps by bilinear interpolation, the Inde-
pendent Trans Conv2D Layer is used on all low-resolution
feature maps, to obtain the feature maps with the same size
as the feature maps with the highest resolution. (e reso-
lutions of feature maps decrease from the top to bottom, and
the number of input channels and output channels of a
single Independent Trans Conv2D Layer is determined
according to the size of corresponding feature maps. Fur-
thermore, the multiscale fusion is carried out in the channel
dimension through the splicing operation, as shown in
Figure 4. (en, by employing the channel attention
mechanism [29], the weights on different channels of the
multiscale feature maps are calculated and important
channels of the feature maps are adaptively selected to help
the network obtain more effective information.

After obtaining the structure of multiscale fusion, the
attention-based decoder is connected to achieve complete
text recognition. To realize effective sequence conversion
from visual features to textual features, the multiscale feature
maps are processed by a 3× 3 basic convolution module in
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the HRNet, to adjust the channel numbers without changing
the size of the feature maps and then rearrange the di-
mension of the feature maps. In other words, the channel
dimension and the width dimension of feature maps are
converted, to transform the two-dimensional visual feature
maps into one-dimensional textual feature vectors.(en, the
semantic information of one-dimensional feature vectors is
strengthened through the Bi-LSTM network. Finally, the
textual feature vectors are decoded by the GRU based on the
attention mechanism to recognize the characters, as de-
scribed in the ASTER [10]. (e structure of the attention-
based decoder is shown in Figure 5, and <EOS> represents
the last character of the text sequence.

(e sequence cross entropy loss LSCE is calculated be-
tween the recognized text and the ground truth text, as
shown in equation (2), to improve the decoding effect of the
decoder module and the feature extraction effect of the
encoder module and then improve the accuracy of STR.

LSCE � −
1

MN
􏽘

M

i�1
􏽐
N

j�1
yi,jlog si,j􏼐 􏼑, (2)

where M represents the number of samples in a batch, N
represents the number of text characters, y represents the
ground truth text, and s represents the recognized text of the
proposed model.

(e loss function of the proposed model is shown in (3),
where λ1 is the corresponding weight parameter of the
super-resolution branch loss and λ2 is the corresponding
weight parameter of the recognition branch loss.

L � λ1Lsr + λ2LSCE. (3)

4. Experiments and Results

(e experimental environment of the proposed model is
based on Pycharm integrated development environment, the
PyTorch deep learning framework is adopted, and hardware
is based on 1 NVIDIA GeForce GTX 2080Ti 11GB GPU.
According to the unified experimental data and effective
comparison models advocated by Baek et al. [9], the training
data are the public synthetic datasets Synth90K [30] and
SynthText [31] and the testing data are the testing set of
seven natural scene datasets. (e verification data are the
training set of seven natural scene datasets.(e seven natural
scene datasets are as follows: IIIT5K-Words (IIIT5k) [32]
refers to the regular scene text images such as billboards and
posters in Google image search. Street View Text (SVT) [33]
refers to the regular outdoor images in Google street view.
ICDAR 2003 (IC03) [34] is a competition-based regular
dataset published by the ICDAR conference, excluding scene
text images of less than three characters or non-
alphanumeric. ICDAR 2013 (IC13) [35] is a regular dataset,
which is mostly taken from the IC03 dataset and expands
some clear scene text images such as road signs and book
covers. ICDAR 2015 (IC15) [36] is an irregular dataset,
which mostly consists of some random images of blurred
and occluded in streets or shopping malls. SVT-Perspective
(SVTP) [37] refers to the irregular scene text images with

perspective interference in Google street view. CUTE80 [38]
mainly contains distorted and irregular scene text images.

(e scene text images as input of the network are three-
channel RGB images with a unified size of 64× 256, and the
size of the images is unified to 32×100 after TPS. (e four
kinds of feature maps with different resolutions outputted by
the encoder module are 8× 25, 4×13, 2× 7, and 1× 4, from
the feature maps with the highest resolution to the feature
maps with the lowest resolution, respectively. Due to the
setting of super-resolution branch, pairs of low-resolution
images and high-resolution images are required. (erefore,
to simulate the recovery process of super-resolution net-
work, the original image after random Gaussian blur is used
as a low-resolution image and the original image is used as a
high-resolution image. (e Adadelta optimizer is used to
update the network parameters, the weight attenuation
factor is set as 0.1, the initial training learning rate is 1, and
the fine-tuned training learning rate is 0.1. To ensure that the
values of Lsr and LSCE are in the same magnitude, λ1 and λ2 is
set as 0.1 and 1 and the word accuracy is used as the
evaluation metric.

4.1. Experiments ofModel Comparison. To evaluate the effect
of the proposed model, an experiment is performed to
compare with other recent models, as shown in Table 1. For
the fairness of comparison, the models using additional
datasets for training are not compared. Synth90K and
SynthText are used as training sets in all comparative ex-
periments, and no lexicon is provided in the experiments.
Word accuracy is taken as the evaluation metric. Meanwhile,
the speed of the proposed model is 4.3ms and 54ms per
image in the training stage and in the testing stage, re-
spectively. Specifically, the proposed model innovatively
introduces the HRNet, which combines with some methods
such as the super-resolution branch, the SAM, and the
Independent Trans Conv2D Layers. Compared with the
ASTER and TextSR, the accuracy of the proposed model is
improved in most datasets, especially in IC15, SVTP, and
CUTE80, which are irregular and blurry, and the accuracy is
improved by more than 3%. Compared with the Bi-STET,
which uses the transformer to enhance and decode

Attention Based Decoder

Attention

<EOS>

GRUGRUGRUGRU

Text Feature

‘S’ ‘e’ ‘r’

Figure 5: Structure of the attention-based decoder in the recog-
nition branch.
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information, the accuracy of the proposed model is also
improved in three kinds of irregular datasets. Compared
with the SCGAN, which introduces GAN to alleviate the
background interference, the recognition accuracy of the
proposed model is more balanced for different datasets. In
addition, compared with other recent models, the proposed
model can achieve better performance in average accuracy
for irregular datasets as well as good performance for regular
datasets.

4.2. Validity Experiments of the Proposed Methods. To verify
the effectiveness of the proposed methods, such as the super-
resolution branch, the SAM, and the Independent Trans
Conv2D Layers, several comparative experiments are set up.
(e HRNet is used as the feature extraction network in the
baseline model, and the proposed methods are gradually
added to fine-tune in ablation models. (e baseline model is
trained for up to 3 epochs, and the fine-tuned models are
trained for up to 4 epochs based on the baseline model. On

the whole, the proposedmodel is trained for up to 13 epochs.
(e setting of hyperparameters is consistent all time.

Quantitative comparison is made based on the testing
sets, and the results are shown in Table 2. Compared with the
classical ASTER model in Table 1, which uses ResNet as the
feature extraction network, the recognition accuracy of
IC15, SVTP, and CUTE80 is improved by 2.5%, 1.7%, and
1.4%, respectively, by using the HRNet in the baseline
model. (e recognition accuracy is also improved in natural
scenes by adding the super-resolution branch composed of
bilinear interpolation to the baseline, which verifies that
HRNet can be used as both a feature extraction network and
a super-resolution network to provide effective high-reso-
lution feature maps. In addition, the recognition accuracy
can be further improved by the addition of the SAM, and
instead of bilinear interpolation, we use Trans Conv2D as the
upsampling method to recover super-resolution images in
the super-resolution branch.

As shown in Figure 6, the qualitative comparison is given
based on the irregular testing sets, such as IC15, SVTP, and

Table 1: (e accuracy comparison between the proposed model and recent models (%).

Model
Benchmark Average

IIIT5k SVT IC03 IC13 IC15 SVTP CUTE80 Regular Irregular
ASTER 93.4 89.5 94.5 91.8 76.1 78.5 79.5 92.3 78.0
TextSR 92.5 87.2 93.2 91.3 75.6 77.4 78.9 91.0 77.3
ESIR 93.3 90.2 — 91.7 76.9 79.6 83.3 91.7 79.9
2DOCR 94 90.1 94.3 92.7 76.3 82.3 86.8 92.7 81.8
Bi-STET 94.7 89 96 93.4 75.7 80.6 82.5 93.2 79.6
SEED 93.8 89.6 — 92.8 80 81.4 83.6 92.0 81.6
DAN 94.3 89.2 95 93.9 74.5 80 84.4 93.1 79.6
SPIN 94.7 87.6 93.4 91.5 79.1 79.7 85.1 91.8 81.3
RobustScanner 95.3 88.1 — 94.8 77.1 79.5 90.3 92.7 82.3
SCGAN 94 90 95.6 93.3 81.6 85.1 78.1 93.2 81.6
Proposed model 93.7 91.3 93.3 94.3 82.8 83.1 83.0 93.1 82.9
Note: bold font is the optimal value in each column, and the underline font is the suboptimal value in each column.

Table 2: Comparison of accuracy of ablation models (%).

Model IIIT5k SVT IC03 IC13 IC15 SVTP CUTE80
Baseline (HRNet) 91.7 88.4 93.4 92.2 78.6 80.2 80.9
Baseline + SR (Bilinear Interpolation) 93.0 89.5 92.7 92.7 81.1 81.1 78.1
Baseline + SR (Bilinear Interpolation) + SAM 93.0 92.1 91.9 93.2 81.7 83.3 81.2
Baseline + SR (Trans Conv2D) + SAM 93.4 91.8 93.3 93.6 81.8 82.6 81.6
Proposed model 93.7 91.3 93.3 94.3 82.8 83.1 83.0
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Figure 6: Qualitative comparison of recognition results.
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CUTE80. (e text content below each picture is in lower
case. (e first line is the ground truth text, the recognition
results of Baseline and Baseline + SR (Bilinear Interpolation),
respectively. (e second line is the recognition results of the
Baseline + SR (Bilinear Interpolation) +SAM, Baseline + SR
(Trans Conv2D) + SAM, and the proposed model (Base-
line + SR (Trans Conv2D) + SAM+ Independent Trans
Conv2D Layers), respectively. It can be seen that the baseline
model has some problems of misrecognition for individual
characters. However, the proposed methods, such as the
super-resolution branch, the SAM, and the Independent
Trans Conv2D Layers, can be used gradually to effectively

recognize the characters, which are relatively difficult to
recognize, and then the proposed model can obtain better
recognition results.

4.3. Validity Experiments of the Dual-Branch Structure. In
the super-resolution branch of the proposed model, the
methods of Trans Conv2D and bilinear interpolation are
used to compare the effect of image recovery, respectively.
(e values of PSNR metric of the restored images are cal-
culated, as shown in Table 3. Compared with the bilinear
interpolation, the Trans Conv2D could increase the PSNR by
more than 3 dB, which verifies the effectiveness of adopting
Trans Conv2D in the super-resolution branch. Moreover,
qualitative comparison is carried out with regard to the
adoption of Trans Conv2D in the super-resolution branch,
as shown in Figure 7. Experimental results on seven natural
scene datasets verify that super-resolution branch can better
accomplish the super-resolution task and assist the feature
extraction network to effectively encode the scene text
images; therefore, the accuracy of STR can be improved.

In the recognition branch of the proposed model, the
Independent Trans Conv2D Layers are used for size ex-
pansion. (e comparison between the feature maps gen-
erated by the Independent Trans Conv2D Layers and
bilinear interpolation is shown in Figure 8, and the gen-
erated feature maps of five channels are randomly selected.
(e brighter regions in the feature maps represent the higher
feature values of the regions and the more information
contained. Four kinds of feature maps with different reso-
lutions are outputted in the encoder module, with sizes of
8× 25, 4×13, 2× 7, and 1× 4, respectively. (e single In-
dependent Trans Conv2D Layer is used to expand the size of
feature maps with lower resolutions, so that the size of each
resolution feature map is the same, that is, 8× 25. From
Figure 8, it can be seen that the feature maps generated by
the Independent Trans Conv2D Layers contain more text
information than the bilinear interpolation in the size of
4×13, which can reduce the loss of feature information in
the process of size expansion. However, for the size of 2× 7,
the feature maps generated by the bilinear interpolation can
only maintain some edge information, so very little infor-
mation is transmitted to the recognition branch for text
recognition. Meanwhile, the feature maps generated by the
Independent Trans Conv2D Layers can retain some visual
information even at the lowest resolution. Moreover, the
multiscale fusion results transmitted to the attention-based
decoder can contain more effective text information. In
other words, the recognition effect of the model is signifi-
cantly improved by several proposed methods on various
testing sets, as shown in Table 2. As shown in Table 4, the
three ablation models and the proposed model all use the
super-resolution branch in the training stage and abandon it

Table 3: PSNR results of restored images by Trans Conv2D and
bilinear interpolation (dB).

Bilinear interpolation Trans Conv2D Improved
IIIT5k 27.57 30.88 +3.31
SVT 31.93 36.05 +4.12
IC03 27.79 31.68 +3.89
IC13 27.82 32.06 +4.24
IC15 33.08 38.11 +5.03
SVTP 32.76 37.86 +5.10
CUTE80 24.98 28.39 +3.41

IIIT5K

CUTE80

SVT

SVTP

IC03

IC13

IC15

Figure 7: Performance of the adoption of Trans Conv2D in the
super-resolution branch. In each image, from the top to bottom are
the original image, blurred low-resolution image, and super-res-
olution image, respectively.
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in the testing stage, which can reduce the model complexity.
Moreover, the proposed model, which adds the effective
methods, such as super-resolution branch, the SAM, and the
Independent Trans Conv2D Layers, does not increase too
many model parameters.

5. Conclusions

(is paper proposes a HRNet encoder and dual-branch
decoder framework-based STR model to recognize distor-
tion, blurred, and low-resolution text in natural scenes.
Based on the encoder-decoder framework, the model in-
novatively introduces the HRNet as feature extraction
network and introduces the SAM to enhance the learning of
important features. (e feature maps with multiple reso-
lutions extracted by the HRNet encoder are inputted to the
dual-branch decoder module composed of the super-reso-
lution branch and the recognition branch. Specifically, the
feature maps with the highest resolution are inputted to the
super-resolution branch to restore the super-resolution
images and to strengthen the feature extraction effect of the
encoder module. After multiscale fusion through the In-
dependent Trans Conv2D Layers in the recognition branch,
the four kinds of feature maps with different resolutions are
decoded by the attention-based decoder and finally the
recognized text is obtained. (rough ablation experiments
and comparative experiments, the effectiveness of the
proposed methods such as the HRNet encoder, the super-
resolution branch, and the Independent Trans Conv2D
Layers is verified. Compared with the ASTER model and
other recent models, the proposed model can better perform
STR on multiple public natural scene datasets, especially for
the text with distortion, blurring, and low resolution. In the

future, STR for images with complex background and jitter
imaging will be further studied.
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Convolutional neural networks, as a branch of deep neural networks, have been widely used in multidimensional signal processing,
especially in point cloud signal processing. Nevertheless, in point cloud signal processing, most point cloud classi�cation networks
currently do not consider local feature correlation. In addition, they only adopt ground-truth as positive information to guide the training
of networks while ignoring negative information.�erefore, this paper proposes a network model to classify point cloud signals based on
feature correlation and negative constraint, DANC-Net (dual-attention and negative constraint on point cloud classi�cation). In the
DANC-Net, the dual-attention mechanism is utilized to strengthen the interaction between local features of point cloud signal from both
channel and space, thereby improving the expression ability of extracted features. Moreover, during the training of the DANC-Net, the
negative constraint loss function ensures that the features in the same categories are close and those in the di�erent categories are far away
from each other in the representation space, so as to improve the feature extraction capability of the network. Experiments demonstrate
that the DANC-Net achieves better classi�cation performance than the existing point cloud classi�cation algorithms on synthetic datasets
ModelNet10 andModelNet40 and real-scene dataset ScanObjectNN.�e code is released at https://github.com/sunhang1986/DANC-Net.

1. Introduction

Signal processing is usually understood as the processing of
electronic signals [1–5]. Point cloud processing can be de-
scribed as the processing of point cloud, a kind of multi-
dimensional signal. However, the classi�cation task of point
cloud is still facing enormous challenges due to its unor-
dered and sparse characteristics.

3D objects can be represented in two ways according to
the spatial distribution of the 3D point cloud. (1) regular
structure representation, which is represented by multi-view
and voxel representation, and (2) irregular and unstructured
representation, which is represented by point cloud and grid
representation. Point cloud processing methods based on
regular structured representations include 3D volumetric
convolutional neural networks (CNNs) [6–8] and the multi-

view CNN [9, 10]. �ese methods transform irregular/un-
structured point clouds to regular/structured images (or
volume grids), and use two-dimensional (2D) CNNs to
extract local features and global features of the point cloud.
Although these methods solve the unordered distribution
issues of point clouds, they bring a lot of challenges in
calculation and issues in memory consumption. Octree-
based method [11] alleviates these problems to a certain
extent and can apply 3D CNN to higher resolution grid. Le
and Duan [12] and Hua et al. [13] studied di�erent 3D
convolution operators based on grid cells, which can better
learn local features. On the contrary, methods based on
irregular unstructured representation do not need to
transform the representation of point cloud. �ey can learn
point cloud features using special CNNs designed for raw
point cloud data [14–16]. Because of low memory
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consumption and simple structure of this type of repre-
sentation, point cloud classification methods based on ir-
regular unstructured representation have attractedmore and
more attention from researchers.

In the study of point cloud classification based on irregular
and unstructured representations, Qi et al. [14] designed a
PointNet network capable of point-by-point coding in order to
use deep learning to process point cloud data. However, the
details are lost because the whole PointNet network does not
divide the point cloud regions and extract the region features.
PointNet++ [15], which is based on PointNet, adopts a hier-
archical structure that allows repeated capture of local infor-
mation.*erefore, the overall accuracy (OA) of PointNet++ in
ModelNet40 dataset is greatly improved compared with the
OA of PointNet, which effectively demonstrates the impor-
tance of local information. However, because the processes of
extracting local features aremutually independent, information
is not exchanged between subclouds, resulting in a loss of
structural information. Since then, in order to simplify the
training process and save computing resources, a large number
of researchers have proposedmethods based on CNNs, such as
PointCNN [16], tangent convolutions [17], and point cloud
classification networks [18], which strengthen the geometric
structure acquisition of point cloud data. However, these
methods do not consider the effects of local structure rela-
tionship that are essential in 3D object recognition.

In summary, how to efficiently learn in-depth local features
and their relationship from point cloud has become a pressing
problem. In addition, most of the existing point cloud clas-
sification networks only use positive information to guide the
training of network, lacking of effective use of negative in-
formation, which limits the network capability to extract more
distinguishing features for point cloud classification.

In order to efficiently learn the correlation between local
features of point cloud signals and utilize the negative infor-
mation which is crucial to the classification results, we propose
an effective point cloud classification network. Our point cloud
classification network, based on a dual-attention mechanism
and contrastive learning constraints, is namedDANC-Net.*e
main components of the network are the channel attention and
self-attention (CASA) module and the negative constraint loss
function (NC-loss).*eCASAmodule is used before the global
features are aggregated. Channel attention and self-attention
are used to capture the relationship between local features. In
NC-loss, the output point cloud features with local feature
relationships are divided into the output feature, positive
sample features, and negative sample features. *e output
feature is constrained by negative information, in order to be
approach-positive sample features and stay away from negative
sample features. Positive information and negative information
are used effectively at the same time, which improves the
classification ability of our DANC-Net.

To sum up, our contributions are three-folds as follows:

(1) We propose a dual-attention module, CASA. It can
strengthen the extraction of local feature correlation
from channel and spatial, thereby helping the net-
work to further develop the geometric structure
between points.

(2) We propose a negative constraint loss function, NC-
loss. Besides the positive information constraints, the
effective constraint of negative information has also
been strengthened; thus, the ability of the network to
extract more distinctive features is improved.

(3) We propose a dual-attention negative constraint
network, DANC-Net, which achieves superior per-
formance compared with the recently proposed
point cloud classification methods on open datasets
ModelNet10 [8] and ModelNet40 [8] and the real-
scene dataset ScanObjectNN [19].

2. Related Work

In recent years, deep learning continues to make break-
throughs in computer vision [20–23]. *e early point cloud
classification methods based on deep learning transform
point cloud to regular volume grids and then extract features
from the point cloud by using 3D CNNs [6, 8]. However, 3D
CNN takes up more computing resources than 2D CNN. To
make computation affordable, the volume grids are usually
in low resolution, resulting in the loss of geometric infor-
mation of 3D mesh shape, especially when dealing with
large-scale point cloud. *erefore, the 3D point cloud is
mapped to the 2D space, and then, the 2D image CNNs are
used to classify [7, 10]. With well-engineered image CNNs,
these methods have achieved the expected performance.
Nevertheless, the selection of projection angle and projec-
tion plane has a significant impact on the classification
accuracy, so the generalization ability of these models is
poor.

PointNet [14], a kind of end-to-end network, is the first
method to deal with point cloud directly based on deep
learning.*emethod takesN points as input and uses a 3× 3
affine transformation matrix (T-Net) to realize input
alignment and feature alignment. *e aligned point cloud
learns global feature vectors through multiple three-layer
perceptrons (MLPs) and max pooling, and finally realizes
end-to-end point cloud classification. However, vital local
information is ignored in the PointNet. PointNet++ [15]
proposed by Qi et al. is a point cloud classification network
based on PointNet. It refers to the feature extraction method
of PointNet to process each group of point clouds inde-
pendently. *en, the global features are aggregated using
max pooling. *e hierarchical structure of PointNet++
exploits local information to a certain extent. In PointNet++,
multi-scale algorithm is used to group point clouds. In the
process of grouping, it is inevitable that there will be re-
peated grouping points, which will result in local infor-
mation redundancy and reduce the classification ability of
the network. For the purpose of reducing the redundancy of
local information, the authors of A-CNN [24] proposed the
constraint-based k-nearest neighbor (k-NN) algorithm and
annularly convolution on the basis of hierarchical structure.
As shown in Figure 1, the input point cloud is sampled and
the constraint-based k-NN algorithm is used to construct
groups in each layer of the network. *en, the features
within each group are extracted by combining annular
convolution with max pooling. Compared with multi-scale
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grouping, rings of annularly convolution do not contain
duplicate points, which allows the network to learn more
discriminant features. *erefore, A-CNN achieved a higher
classification performance than PointNet++ on the Mod-
elNet dataset. *e progress of the above end-to-end point
cloud classification methods is undeniable, However, their
approach of extracting local features independently leads to
inadequate identification of correlations between points or
local neighborhoods.

Recently, attention mechanism [25] has achieved re-
markable achievements in natural language processing,
image recognition [26], and other fields. In point cloud
classification, Bhattacharyya et al. [27] proposed an altitude
attention model, which can achieve superior classification
performance of airborne laser scanning (ALS) by consid-
ering the altitude information of points. Lee et al. [28]
proposed a simple and efficient network based on self-at-
tention, called set transformer, which can process set data,
such as a point cloud. Shajaha et al. [29] proposed a multi-
view CNN with self-attention. Multiple views of a roof point
cloud were taken as the input, an adaptive weight learning
algorithm was used to assign weights corresponding to each
view, and the category of the roof was the output. However,
the generalization ability of the model [29] is poor and is
limited to special field. On the contrary, the DANC-Net we
proposed can be applied to any point cloud classification
tasks.

Currently, most of the point cloud classification net-
works only use ground-truth as positive information to
guide the training of the network while negative information
is ignored, which leads to the limitation of network dis-
crimination capabilities. *erefore, in order to further ex-
plore the correlation of local features of point cloud and the
constraints of negative information on features, this paper
proposes the DANC-Net based on dual-attention mecha-
nism and negative information constraints.

3. Method

*is section details the proposed DANC-Net in this paper.
First, the architecture of DANC-Net point cloud classifi-
cation method is introduced in Section 3.1.*en, Section 3.2
performs detailed analysis of dual-attention CASA module
for capturing correlations between local features. Next,
Section 3.3 presents the loss function NC-loss under the
negative information constraint. Finally, Section 3.4 sum-
marizes the total loss function of the DANC-Net.

3.1. DANC-Net Architecture. For a clear understanding of
our DANC-Net, we show the network architecture and the
output feature map size of each layer in the network in
Figure 2. Our DANC-Net consists of five layers.

(1) Input layer: for a given 3D shape point cloud, the
coordinates and normals of N points are used as
input.
Feature map size: each input consists of a 3D co-
ordinates (x, y, z) and a normal, i.e., two N× 3-di-
mensional tensors.

(2) A-CNN layer: local features are extracted from point
cloud. *is layer performs two feature extractions,
and each feature extraction includes two operations,
namely, the farthest point sampling (FPS) algorithm
[30] and the A-CNN abstraction layer.
Feature map size: after two feature extractions, the
previous-level output point cloud is divided into N1
and N2 local regions, and the number of channels for
each local region feature is 128 and 256, respectively.

(3) CASA layer: a new feature map fr with geometric
relationship and positional relationship among local
features of point cloud is obtained, and then, the
global feature vector fg is aggregated through the
PointNet [14] layer.
Feature map size: the point cloud global feature
vector fg with correlation between local feature
output by this layer has 1024 channels.

(4) Negative information constraint layer: the fr is used
to construct the NC-loss under the constraint of
negative information, so as to restrain the mutual
interference between similar categories (such as
nightstands and dressing tables with similar spatial
structure).
Feature map size: the feature map fr that is fed into
the loss function has 256 channels.

(5) Output layer: MLPs are used to obtain the proba-
bility score of the point cloud belonging to the c
category.
Feature map size: the final output vector size of our
DANC-Net is 1× c.

3.2. Dual-Attention (CASA) Unit. Most point cloud classi-
fication networks only enhance the expression ability of the
network from the perspective of enhancing local feature
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extraction, while ignoring the exchange of information
between local features. CASA unit can adaptively learn
feature weights and capture the correlation between local
features. As shown in Figure 3, the CASAmodule consists of
two branches, each consisting of channel attention [31] and
self-attention [32]. Among them, the upper branch is used to
extract the geometric feature relationship and the lower
branch is used to extract the positional feature relationship.
*e CASA module considers that the features of different
channels contain completely a different weighting infor-
mation and point distribution is not uniform in different
spatial positions. CASA treats different features and points
unequally, providing extra flexibility in processing different
types of information and expanding CNN’s expressive
ability.

For a set of points containing n points P � Pi, i �􏼈

1, . . . , n}, A-CNN is used to extract the geometric feature
vector gri ∈ Rd and location feature vector lri ∈ R3 of the
local sub-cloud Gi; the two feature vectors are then input
into the CASA module. *e output is a high-level global
feature fg that incorporates context information. *e key to
this process is how to generate different weights for each
point feature. *e detailed implementation process of the
CASA module is analyzed as follows.

First, the input geometric information and location
information are weighted by channel attention. In this
process, we use global average pooling to transform the
global information of the channel to the channel descriptors;
that is, the channel dimension is kept unchanged, but the
other dimensions of the feature map are reduced to 1. In
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order to obtain the weights CA of the channels, channel
descriptors sequentially pass through convolution layer,
ReLU activation function, convolution layer, and sigmoid
function.

CA � S Conv L Conv gc Fc( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁, (1)

where Fc is the feature graph of the input, gc is the global
pooling function, and S and L represent the sigmoid function
and ReLU function, respectively. Finally, the input feature
map Fc and channel weight CA are multiplied and the
weighted feature map is obtained as shown in

F
∗
c � CA⊗Fc. (2)

Second, the feature map is spatially weighted.*ree 1× 1
traditional convolutions of the input feature map are per-
formed, and the three feature matrixes q, k, and v are ob-
tained. *e correlation matrix M is obtained by multiplying
matrixes q and k. *e softmax normalization operation is
performed on the correlation matrix M to obtain the at-
tention weight in the range [0, 1]. *e weight coefficient is
applied to the feature matrix v, and the residual connection
is made with the input feature map F∗c , so that each local
feature is weighted by all local features. *e weighted feature
map obtained is shown in

F
∗

� softmax q⊗ k
T

􏼐 􏼑⊗ v + F
∗
c . (3)

Finally, the feature graph F∗, which has been weighted by
channel and space, is fused by the MLP, and local features fr
containing context correlation are obtained by matrix ad-
dition. All local regional features are then aggregated by
PointNet to obtain the global feature fg. To demonstrate the
correctness of the CASA module, we verify its point cloud
classification effect in the ablation study (Section 4.3).

3.3. Negative Constraint Loss Function (NC-Loss) Unit.
Inspired by [33, 34], in order to further improve the dis-
crimination ability of the point cloud classification network,
a loss function (NC-loss) with negative information con-
straints is proposed in this paper. *e point cloud with the
same label as the output feature is called positive infor-
mation, while the point cloud with different labels from the
output feature is called negative information. As shown in
Figure 2, the red dotted box represents the feature space of
the constructed NC-loss. In the feature space, NC-loss can
not only close the features of positive information and the
output features, but also push the features of negative in-
formation and the output features farther.

In the proposed NC-loss, an output feature is selected
from the local features fr containing context correlation. In
this paper, the features of all input point cloud samples are
traversed to ensure that the feature of each point cloud
sample has the opportunity to be selected as output features.
In the feature space, the distances between point clouds of
the same class are minimized and the distances between
point clouds of different classes are maximized. *erefore,
the regularization loss function of contrastive learning is
defined in

Lnc � 􏽘
B

i�1
D Fi, FP( 􏼁 − D Fi, FN( 􏼁􏼂 􏼃, (4)

where D (x, y) represents the L1 distance between x and y.
*e number of input point cloud samples is B, and
i ∈ I ≡ 1, . . . , B{ } represents the ith point cloud sample se-
lected as the output feature. P(i) is the set of positive point
cloud samples, which contains all the point clouds in the B
samples with the same label as the output feature. N(i) is the
set of negative point cloud sample, which contains all the
point clouds in the B samples with the same label as the
output feature. F � MLP(fr) ∈ RDM means that the local
features fr containing context correlation become the feature
matrixes F after MLP mapping; i.e., Fi, FP, and FN represent
the output feature matrixes, the positive sample feature
matrixes, and negative information sample feature matrixes,
respectively, where DM is a constant 256.

3.4. DANC-Net Totally Loss Function. For the task of point
cloud classification, we use the cross-entropy loss function to
measure the distance between the predicted values of 3D
point cloud samples and the ground-truth. *e calculation
method of cross-entropy loss is as follows:

L(P) � − 􏽘
c

k�1
􏽢yk ln yk( 􏼁, (5)

where 􏽢yk ∈ 0, 1{ } indicates the kth value in the label vector.
yk ∈ [0, 1] indicates the probability that the prediction
sample P belongs to the kth class.

*erefore, the finally loss function L of our DANC-Net
consists of a classification loss function and a negative
constraint loss function (NC-loss). *e final loss function L
can be expressed as follows:

L � L(p) + λLnc � L(p) + λ􏽘
B

i�1
D Fi, FP( 􏼁 − D Fi, FN( 􏼁.

(6)

In formula (6), λ is the penalty parameter used to balance
the classification loss and NC-loss. *e ablation experiment
results show that the classification accuracy of the DANC-
Net based on the dual-attention CASA module can be
further improved by using NC-loss.

4. Experiments and Result Analysis

We used three benchmark datasets, ModelNet10, Mod-
elNet40, and ScanObjectNN, to compare our DANC-Net
with the state-of-the-art point cloud classification algo-
rithms [6, 8, 14–16, 24, 35–40]. *e synthetic datasets
ModelNet10 and ModelNet40 are subsets of ModelNet (a
large 3D CAD model dataset). Each point cloud sampled
from the grid contains 10,000 points and normal vectors,
and the coordinates are normalized to unit spheres. Sca-
nObjectNN is a real-world dataset of point cloud objects,
constructed from indoor scene scanning. More details about
three benchmark datasets can be found in Table 1.
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In robustness test, 80% and 20% of the total models were
randomly selected as the training set and test set. In the
experiment using ModelNet10 and ModelNet40, 1024
points with normals were sampled, and the normals were
used in the ordering algorithm in A-CNN.

*e hardware environment of the experiments included
an RTX 2080 Ti graphics card, 12GB videomemory, Ubuntu
18.04 operating system, and CUDA 10.1 + cuDNN
7.6.5 + TensorFlow 1.3.0 + Python 3.6. In Tables 2–4, the
highest, second highest, and third highest classification
accuracies are indicated by bold, underline, and italic text,
respectively.

4.1. Parameters. For experiments on three benchmark
datasets, 1024 points from 3Dmeshes are sampled randomly
as the input of the DANC-Net. *e data augmentation
method was the same as that of A-CNN. *e loss included
classification loss and comparison loss, as defined in (6), and
the classification loss used the cross-entropy loss function.
Using the Adam optimizer, the initial learning rate was set to
0.001 and attenuated at a decay rate of 0.7 per 200,000 steps.
*e classification model was trained for 250 epochs with a
batch_size of 16. In the experiment, the penalty parameter
was set to 1.0.

4.2. Comparison Experiments andAnalysis. We demonstrate
the effectiveness of our DANC-Net on ModelNet40 and
ModelNet10 datasets though comparison experiments. As
shown in Tables 2 and 3, using the datasets ModelNet10 and
ModelNet40, our DANC-Net was compared with the state-
of-the-art point cloud classification methods based on deep
learning. *e quantitative evaluation of the classification
performance of models in experiments adopts the com-
monly used evaluation metrics for point cloud classification:
mean per-class accuracy (mA) and overall accuracy (OA).
mA and OA are defined by

mA � 􏽘
c

i�1

num(TP)i

numi

×
1
c
. (7)

OA �
􏽐

c
i�1 num(TP)i

T
. (8)

where num(TP)i represents the number of 3D meshed
shapes correctly classified into category i; numi represents
the number of 3D meshed shapes that belong to category i;
and Trepresents the total number of 3Dmeshed shapes to be
predicted. In Tables 2 and 3, the top three mA and OA are
highlighted by bold, underline, and italic text, respectively.

Furthermore, the classification results of the methods used
for comparison are obtained from corresponding papers. If
the data and results are not given in the paper, we will
download the codes of the models. *e classification results
are obtained by training and testing the models in the
corresponding experimental environment. Moreover, “-”
means that the dataset cannot be used by the methods or the
codes are not provided in the paper.

4.2.1. Comparison Experiments on ModelNet10 Dataset.
*e DANC-Net achieves the best classification performance
with 95.5 OA and 95.4mA on ModelNet10 (Table 2).

(1) Comparison with the deep learning point cloud
classification methods based on voxel grid.
In Table 2, we compare DANC-Net with 3DSha-
peNets and VoxNet methods based on voxel grid on
ModelNet10. We observe that our DANC-Net
achieves 12.0 OA and 3.5 OA more than 3DSha-
peNets and VoxNet. For 3DShapeNets and VoxNet,
the classification performance is low because the
invariance of point cloud cannot be maintained
when point cloud is converted to 3D voxel grids. For
our DANC-Net, conversion of point cloud to other
forms is not required, and the invariance of point
cloud is retained, achieving high classification
accuracy.

(2) Comparison with the deep learning classification
methods based on point cloud.

As shown in Table 2, we can observe that (1) compared
with the classical PointNet and PointNet++, mA of our
DANC-Net is increased by 1.2 and 0.7, and OA is increased
by 1.1 and 0.6, respectively, on ModelNet10. (2) Compared
with Kd-Net [35] and DGCNN [36], mA is increased by 1.9
and 0.6, and OA is improved by 1.5 and 0.6, respectively. (3)
Compared with A-CNN, our DANC-Net has achieved an
improvement of 1.0mA and 0.9 OA on ModelNet10. Our
DANC-Net achieves high performance because the CASA
module can adjust both spatial weights of features and
channel weights of features. Furthermore, our DANC-Net
adds negative information constraint, so the classification
accuracy is higher than that of other methods.

4.2.2. Contrast Experiments on ModelNet40 Dataset. *e
DANC-Net achieved the highest classification accuracy with
92.9 OA and 90.5mA on ModelNet40 (Table 3).

(1) Comparison with the deep learning point cloud
classification methods based on voxel grid.

Table 1: Distribution of training and test sets.

Datasets Class
number Training models Testing models Total

models
ModelNet10 10 3991 908 4899
ModelNet40 40 9843 2468 12331

ScanObjectNN 15 80% of the total models were randomly
selected

20% of the total models were randomly
selected 2902
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As shown in Table 3, our DANC-Net achieves
13.2mA and 7.5mA more than 3DShapeNets and
VoxNet, respectively, on ModelNet40 dataset, and
OA is increased by 8.2 and 7.0. Our DANC-Net has
achieved the above improvement because it is more
effective in learning the features of point cloud than
3DShapeNets and VoxNet methods based on voxel.

(2) Comparison with the deep learning classification
methods based on point cloud.

As shown in Table 3, we can observe that (1) mA of our
DANC-Net is increased by 4.3 and 2.3, and OA is improved
by 3.7 and 2.3, respectively, compared with the classical
PointNet and PointNet ++. (2) Compared to Kd-Net based
on KD tree, mA of our DANC-Net is increased by 2.0, and
OA is improved by 1.1. (3) Compared to DGCNN,
PointCNN, and A-CNN based on convolution, mA of our
DANC-Net is increased by 1.1, 2.4, and 0.6, respectively,
and OA is increased by 1.1, 0.7, and 0.7, respectively. (4)
Compared with the recent point cloud classification net-
work PointHop [37] and MRFGAT [38], mA of our
DANC-Net is increased by 6.1 and 0.4, and OA is increased
by 3.8 and 0.4. Our DANC-Net demonstrates high clas-
sification performance because it extracts local features of

point clouds to obtain more information. In addition, in
order to obtain higher classification accuracy, CASA is
added to our DANC-Net, which can take advantage of local
feature correlations.

Meanwhile, mA of our DANC-Net is increased by 1.1,
and OA is increased by 0.6, respectively, compared with
DGANet [39]. *ere are two reasons for achieving high
performance: (1) our DANC-Net can dynamically weight
local features by CASA module. (2) Loss function with
negative constraint is used to eliminate the interference
between point cloud categories with similar structures. In
contrast, DGANet introduces offset attention into graph-
based methods. *e accuracy of constructing local graph
impacts the results of feature extraction. As a consequence,
the classification accuracy of DGANet is inferior to our
DANC-Net.

Besides, we compare our method with SRN-PointNet++
[40], which can extract geometrical relationship between
points. OA of our DANC-Net is 1.4 higher than that of SRN-
PointNet++. We think that (1) our DANC-Net uses CASA
to assign different weights to features, improving the
flexibility of network. SRN-PointNet++ uses MLPs to
obtain geometrical relationship between points, and the
weights are the same for each local feature. *erefore, the
classification accuracy of SRN-PointNet++ is not as good
as that of our DANC-Net. (2) ModelNet40 contains much
more categories of 3D point cloud shape than Mod-
elNet10. *erefore, the point clouds in ModelNet40 have
higher shape similarity and smaller distance between
categories than those in ModelNet10. Under the cir-
cumstances, the loss function with negative constraint
plays a prominent role, which further improves the
classification performance of DANC-Net. To sum up, our
proposed DANC-Net obtains the better performance in
the final results than other deep learning methods on the
task of point cloud classification.

*e OA changes of our DANC-Net, PointNet, and
A-CNN with epoch times are depicted in Figure 4. It can be
found that (1) the OA of our DANC-Net is consistently
higher than that of A-CNN when the OA reaches a sta-
tionary stage. (2)*e OA of our DANC-Net is always higher
than that of PointNet throughout the testing process.

4.3.AblationStudy. In order to verify the effectiveness of the
dual-attention CASA module and the loss function with
negative constraint (NC-loss) in our DANC-Net network,
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Figure 4: Variation of the overall accuracy (OA) in % on Mod-
elNet40 with 250 epochs.

Table 2: Classification performance on ModelNet10. (*e top three accuracies are highlighted by bold, underline, and italic.)

Methods Input Points (k) mA (%) OA (%)
VoxNet (IROS 2015) Points 1 — 92.0
3DShapeNets (CVPR 2016) Points 1 — 83.5
PointNet (CVPR 2017) Points 1 94.2 94.4
PointNet++ (CVPR 2017) Points + normal 5 94.7 94.9
Kd-Net (ICCV 2017) Points 32 93.5 94.0
DGCNN (TOG 2019) Points 1 94.8 94.9
A-CNN (CVPR 2019) Points + normal 1 94.4 94.6
Ours Points + normal 1 95.4 95.5
Input and points represent the input data type and the number of sampling points, respectively.
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this paper conducts ablation experiments onModelNet10 and
ModelNet40 datasets. Besides our DANC-Net, three addi-
tional models are designed in these experiments, including
A-CNN, A-CNN+CASA module, and A-CNN+NC-loss.

In Figure 5, we observe that (1) CASA module and NC-
loss contribute different degrees of improvement in classi-
fication performance from A-CNN to A-CNN+CASA and
from A-CNN to A-CNN+NC-loss. (2) When both CASA
module and NC-loss are added to the A-CNN, the classi-
fication accuracy will reach the maximum.

4.4. Robustness Test. We employ ScanObjectNN dataset to
test the robustness of our DANC-Net. *e objects in Sca-
nObjectNN, which are selected from SceneNN [41] and

ScanNet [42] scenes, are screened by the bounding boxes. In
Table 4, we summarize the OAs of our DANC-Net and the
state-of-the-art methods on ScanObjectNN dataset. In Ta-
ble 4, OBJ_BG, PB_T25, PB_T25_R, PB_T50_R, and
PB_T50_RS are five subsets of ScanObjectNN. OBJ_BG is
point cloud with background, and PB denotes point cloud
with random disturbance. T25 or T50 denotes point cloud
after translation of 25% or 50% is performed. R and S denote
rotation and scaling, respectively.

As presented in Table 4, we find that (1) our DANC-Net
achieves the highest OA of 86.4 in OBJ_BG (without per-
turbation), compared with other methods. (2) Our DANC-
Net also outperforms other methods on disturbed
PB_T25_R, PB_T50_R, and PB_T50_RS datasets. (3)
Overall, our DANC-Net has the highest average OA of 83.8
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Figure 5: Classification effects of ablation experiments.

Table 3: Classification performance on ModelNet40. (*e top three accuracies are highlighted by bold, underline, and italic.)

Methods Input Points (k) mA (%) OA (%)
VoxNet (IROS 2015) Points 1 83.0 85.9
3DShapeNets (CVPR 2016) Points 1 77.3 84.7
PointNet (CVPR 2017) Points 1 86.2 89.2
PointNet++ (CVPR 2017) Points + normal 5 87.9 91.9
Kd-Net (ICCV 2017) Points 32 88.5 91.8
PointCNN (NeurIPS 2018) Points + normal 1 88.1 92.2
DGCNN (TOG 2019) Points 1 90.2 92.3
A-CNN (CVPR 2019) Points + normal 1 89.9 92.2
SRN-PointNet++ (CVPR 2019) Points 1 — 91.5
PointHop (IEEE T MULTIMEDIA 2020) Points 1 84.4 89.1
DGANet (remote sensing 2021) Points 1 89.4 92.3
MRFGAT (INT J ANTENN PROPAG 2021) Points 1 90.1 92.5
Ours Points + normal 1 90.5 92.9
Input and points represent the input data type and the number of sampling points, respectively.

Table 4: Overall accuracy in % on ScanObjectNN. (*e top three accuracies are highlighted by bold, underline, and italic.)

Methods OBJ_BG PB_T25 PB_T25_R PB_T50_R PB_T50_RS Mean of OA
PointNet 79.0 74.5 73.2 69.3 67.8 72.7
PointNet++ 83.5 85.4 82.8 80.9 78.7 82.2
DGCNN 85.3 85.7 83.8 80.9 81.0 83.3
A-CNN 85.1 83.2 83.5 81.8 81.4 83.0
Ours 86.4 84.3 84.0 82.7 81.8 83.8
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on ScanObjectNN. In summary, our DAC-Net performs
better than other methods, which demonstrates its robust-
ness on real-world datasets.

Figure 6 shows the robustness of our DANC-Net when
ModelNet40 dataset is used for the test, in which 25%, 50%,
62.5%, 75%, and 87.5% of the input sampling points are
randomly selected and discarded. *e number of sampling
points for training and testing is the same.

As shown in Figure 6, (1) our DANC-Net also achieves
the highest classification accuracy, no matter whether the
input point cloud is dense or sparse. (2) Compared with
DANC-Net when 1024 sampling points are used, when 25%
of sampling points are randomly dropped, the OA of the
DANC-Net is only 0.6 lower. (3) Compared with PointNet
when 1024 sampling points are used, when 87.5% of sam-
pling points are randomly dropped, the OA of the DANC-
Net is higher. It is shown that our DANC-Net is robust to
point cloud sparsity.

5. Conclusions

At present, most point cloud classification models fail to
explore the correlation between local regional features, and
they use ground-truth as positive information to guide the
network training, ignoring negative information. In view of
this issue, we propose a new model of dual-attention and
negative constraint network (DANC-Net). Our DANC-Net
strengthens the interaction between local features of point
cloud signals from both channel and space. At the same time,
positive information and negative information are used
effectively to improve the classification ability of our DANC-
Net. Experimental results on synthetic datasets demonstrate
that our DANC-Net successfully achieves high classification
performance on point cloud classification tasks. Experi-
mental results on real-world datasets confirm that our
DANC-Net is robust. In the contrastive learning, the hard
negative example is beneficial to enhance the ability of the
network to distinguish between signal and noise. *erefore,
in the future, we will explore new strategies to increase the

number of the hard negative samples, so as to improve the
classification ability of the DANC-Net.
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Direction of arrival (DOA) estimation for non-Gaussian signals using three-level nested array (THL-NA) is investigated in this
paper. Motivation from larger consecutive degree of freedom (DOF) and array aperture, the THL-NA is proposed, which can take
full advantages of the consecutive coarrays of TL-NA and has the closed-form expression of DOF. Specifically, firstly, the array
aperture is expanded by the second order sum coarray (2-SC) of the proposed array, secondly, the nested relationship between
subarrays is employed to obtain the difference coarray of 2-SC (2-DCSC), finally, a consecutive virtual array with large array
aperture is obtained. Besides, a successive SS-MUSIC algorithm is proposed, which employs the spatial smoothing estimating
signal parameter via rotational invariance techniques (SS-ESPRIT) algorithm and partial spectrum searching multiple signal
classification (PSS-MUSIC) to obtain initial estimations and fine estimations, respectively, resulting in a better balance between
computational complexity and estimation accuracy.

1. Introduction

Direction of arrival (DOA) estimation, which is one of the
fundamental issues in array signal processing, plays an
important role in various fields, e.g., radar systems,
acoustics, navigation, and wireless communications [1–3].

Compared with traditional uniform linear arrays
(ULAs), sparse arrays can obtain less mutual coupling and
higher degrees of freedom (DOF), which can obtain DOA
estimation for signals with more sources. (e nested array
(NA) [4] is a sparse array composed of two ULAs with
different spacings, which has strong expansion capability in
DOA estimation algorithms based on FOC. (e coprime
array (CPA) [5, 6], consisting of two ULAs with coprime
interelement spacings, has less mutual coupling compared
with NA. (ese arrays can generate sets of uniformly dis-
tributed virtual second order difference coarray (2-DC) [4],
in particular, the 2-DC of NA is free from holes. However,
these sparse arrays have limitations due to their array ge-
ometries. (e 2-DC of CPA generates a lot of holes that

decrease consecutive DOF significantly, the dense part of
NA leads to more serious mutual coupling than CPA.

Traditional DOA parameter estimation algorithms, such
as multiple signal classification (MUSIC) algorithm [7, 8]
and estimation of signal parameters via rotational invariance
techniques (ESPRIT) algorithm [9, 10], mostly utilize the
second order statistical characteristics of the signals. Fur-
thermore, new algorithms have been proposed such as 2D-
MUSIC and RD-MUSIC [1]. When the signals obey the
Gaussian distribution, they can be described by the first
order or second order statistics. However, the situation in
practical applications is more complicated, andmost sources
to be processed are non-Gaussian signals, whose statistical
characteristics can be described by fourth order cumulant
(FOC) [11, 12], resulting in larger array aperture and better
DOA estimation performance, as compared with second
order cumulant (SOC). Considering the non-Gaussian
signals, DOA estimation methods based on FOC, including
MUSIC-LIKE [13, 14] and virtual-ESPRIT algorithm [15],
are most exploited. (e virtual coarrays utilized by
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vectorized FOC methods can be obtained from fourth order
difference coarray (4-DC) [16] or difference coarray of sum
coarray (2-DCSC) [17] operation of physical sensors. (e
FOC can not only suppress Gaussian white noise or color
noise, but effectively expand the length of array apertures.
(erefore, the estimation performance of DOA based on
FOC is greatly improved.

Combining the designing of sparse array and the
exploiting of 4-DC or 2-DCSC, lots of array structures are
proposed, such as fourth-level NA (FL-NA) [16], sparse
array with fourth order difference coarray enhancement
based on CPA (SAFE-CPA) [18]. FL-NA is investigated in
detail as a special case of 2q-level NAs when q is equal 2 in
reference [16] and SAFE-CPA constructs physical sensors
structure by adding another subarray. Regarding the pro-
cessing of the above sparse array structure, related scholars
have proposed a series of FOC estimation algorithms based
on spatial smoothing subspace methods [19, 20] such as SS-
MUSIC algorithm, SS-ESPRIT algorithm, which provide a
theoretical basis for the DOA estimation based on sparse
arrays.

In this paper, a novel sparse array structure, named
three-level nested array (THL-NA), is proposed for non-
Gaussian incident signals, which can take full advantages of
the consecutive coarrays of TL-NA and has the closed-form
expression of DOF. Firstly, the 2-SC [21] of the proposed
array is obtained to expand the array aperture, and then the
consecutive 2-DCSC of the proposed array is obtained by
employing the nested relationship between subarrays of 2-
SC. To make a better balance between computational
complexity and estimation accuracy, a successive SS-MUSIC
algorithm is proposed, which employs the spatial smoothing
ESPRIT (SS-ESPRIT) algorithm and partial spectrum
searching MUSIC (PSS-MUSIC) to obtain initial estimates
and fine estimates, respectively.

(e three contributions of this paper are extracted as
follows:

(1) From the viewpoint of constructing sum or differ-
ence coarray, the THL-NA based on the FOC is
proposed to obtain large consecutive DOF and array
aperture, which enhances the DOA estimation
performance.

(2) From the perspective for expressing the length of the
virtual array in the THL-NA, this paper derives the
closed-form expressions with consecutive DOF and
discusses the optimal array configuration to achieve
the largest consecutive DOF.

(3) In terms of making a balance between computational
complexity and estimation accuracy, a successive SS-
MUSIC algorithm is proposed, which employs SS-
ESPRIT algorithm and PSS-MUSIC to obtain initial
angle estimations and fine angle estimations,
respectively.

(e chapter arrangement of this paper is as follows. In
Section 2, we introduce 2-DC, 2-SC, 2-DCSC, 4-DC, and the
properties of NA. We elaborate the array configuration of
THL-NA and explain the closed-form expression in Section

3. (e proposed algorithm called successive SS-MUSIC
algorithm is presented in Section 4. Section 5 analyzes the
performance of THL-NA and the computational complexity
of the successive SS-MUSIC algorithm. Section 6 provides
lots of simulations and the conclusions are drawn in Section
7.

Notations. (roughout the paper, matrices are expressed by
upper-case bold characters and vectors are denoted by
lower-case bold characters, respectively. (·)T, (·)H, (·)− 1, and
(·)∗ imply the transpose, the conjugate transpose operation,
inverse and complex conjugation of a vector or matrix,
respectively. ⊗ , ⊙ , and ⊕ stand for the Kronecker product,
Khatri-Rao product and Hadamard product, respectively.
vec(·) represents the vectorization operation and cum(·)

indicates the cumulant operator. angle(·) signifies the phase
operator and ‖ · ‖F shows the Frobenius norm. arcsin(·)

means the arcsine function.

2. Preliminaries

In this section, the 2-DC, 2-SC, 2-DCSC, 4-DC, and the
properties of NA are introduced.

2.1. *e Definitions of 2-DC, 2-SC, 4-DC, and 2-DCSC.
Consider a P -sensors linear array, whose locations set can be
indicated as [22]

S � v1 · d, v2 · d, . . . , vP · d􏼈 􏼉, (1)

where vp · d represents the position of the p − th sensor,
p � 1, 2, . . . , P, and d is the unit spacing.

Definition 1. For the array with the set of sensor position S

in equation (1), the 2-DC set is defined as [17]

C2−DC � Φ2−DCd, (2)

where the set of 2-DC lags

Φ2−DC � vp1 − vp2, 1≤p1, p2≤P􏽮 􏽯. (3)

Definition 2. (e 2-SC set is defined as [21]

C2−SC � Φ2−SCd, (4)

with the set of 2-SC lags

Φ2−SC � vp1 + vp2, 1≤p1, p2≤P􏽮 􏽯. (5)

Definition 3. (e 4-DC set is defined as [16]

C4−DC � Φ4−DCd, (6)

where the set of 4-DC lags

Φ4−DC

� vp1 − vp2􏼐 􏼑 − vp3 − vp4􏼐 􏼑, 1≤p1, p2, p3, p4≤P􏽮 􏽯.
(7)
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Definition 4. (e 2-DCSC set is defined as [17]

C2−DCSC � Φ2−DCSCd, (8)

where the set of 2-DCSC lags

Φ2−DCSC � vp1 + vp2􏼐 􏼑 − vp3 + vp4􏼐 􏼑, 1≤p1, p2, p3, p4≤P􏽮 􏽯. (9)

By permutation invariance, Φ2−DCSC can be rewritten as

Φ2−DCSC � vp1 − vp2􏼐 􏼑 − vp3 − vp4􏼐 􏼑􏽮 􏽯 � vp1 + vp4􏼐 􏼑 − vp2 + vp3􏼐 􏼑􏽮 􏽯 � Φ4−DC. (10)

for 1≤p1, p2, p3, p4≤P. (at is, for a particular array,
the 4-DC is equivalent to the 2-DCSC

C4−DC � C2−DCSC. (11)

2.2. *e Properties of TL-NA. (e configuration of TL-NA
[4] has been shown in Figure 1, which contains two sparse
uniform subarrays. (e first subarray has M1 sensors with
interelement spacing d, where d � λ/2 and λ is the

wavelength, while the another subarray has M2 sensors
with interelement spacing (M1 + 1)d. (e position of TL-
NA varies from 1 d to M2(M1 + 1)d and it can be rep-
resented as

S � m1d, 1≤m1 ≤M1􏼈 􏼉∪ m2 M1 + 1( 􏼁d, 1≤m2 ≤M2􏼈 􏼉.

(12)

Refer to Definition 1, the 2-DC location set of TL-NA
can be written as

C2−DC � −M2 M1 + 1( 􏼁 + 1, . . . , −1, 0, 1, . . . , M2 M1 + 1( 􏼁 − 1􏼈 􏼉d. (13)

Refer to Definitions 3 and4, the 4-DC (2-DCSC) location
set of TL-NA can be expressed as [23]

C4−DC � C2−DCSC � −2M2 M1 + 1( 􏼁 + 2, . . . , −1, 0, 1, . . . , 2M2 M1 + 1( 􏼁 − 2􏼈 􏼉d. (14)

From equations (13) and (14), It can be concluded that
the position of the 2-DC and 2-DCSC of TL-NA are
consecutive.

2.3. Data Model Based on FOC. Assume K far-field nar-
rowband uncorrelated sources impinging upon the array
with locations set S from directions θ � [θ1, . . . , θK], the

received data model of the array can be expressed as
[24, 25]

x(t) � As(t) + n(t), (15)

where A(θ) � [a(θ1), a(θ2), . . . , a(θK)] ∈ CP×K represents
the steering matrix of array, and the steering vector at di-
rection θk, which denotes the elevation angle of the k − th

target, is given by

a θk( 􏼁 � e
− j2πv1d sin θk/λ, e

− j2πv2d sin θk/λ, . . . , e
− j2πvPd sin θk/λ􏽨 􏽩

T
∈ CP×1

. (16)

and s(t) � [s1(t), s2(t), . . . , sK(t)]T ∈ CK×1, 1≤ t≤ L

denotes non-Gaussian signal source matrix with zero mean,
where L indicates the number of snapshots. And, n(t) is the

received additive white Gaussian noise with mean zero and
variance σ2.

In this paper, for given xk1, xk2, x∗k3, x∗k4, the FOC defi-
nition can be written as [26]
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C4 � Cum xk1, xk2, x
∗
k3, x
∗
k4( 􏼁

� E xk1xk2x
∗
k3x
∗
k4( 􏼁 − E xk1xk2( 􏼁E x

∗
k3x
∗
k4( 􏼁 − E xk1x

∗
k3( 􏼁E xk2x

∗
k4( 􏼁 − E xk1x

∗
k4( 􏼁E xk2x

∗
k3( 􏼁.

(17)

For the array, the FOC of the received signal can be [26]

C4,X � Cum X,X,X∗,X∗( 􏼁

� E X⊗X∗( 􏼁 X⊗X∗( 􏼁
H

􏽨 􏽩 − E X⊗X∗( 􏼁E X⊗X∗( 􏼁
H

􏽨 􏽩 − E XXH
􏼐 􏼑⊗E XXH

􏼐 􏼑
∗

􏽨 􏽩.
(18)

(e FOC matrix of the received signal is expressed by
[26]

R4 � C4,X (19)

where

B(θ) � b θ1( 􏼁, b θ2( 􏼁, . . . , b θK( 􏼁􏼂 􏼃

� a θ1( 􏼁⊗ a∗ θ1( 􏼁, a θ2( 􏼁⊗ a∗ θ2( 􏼁, . . . , a θK( 􏼁⊗ a∗ θK( 􏼁􏼂 􏼃

� A(θ)⊙A∗(θ),

CS � E (S⊗ S)(S⊗ S)
H

􏽨 􏽩 − E(S⊗ S)E (S⊗ S)
H

􏽨 􏽩 − E SSH
􏼐 􏼑⊗E SSH

􏼐 􏼑
∗

􏽨 􏽩.

(20)

B(θ) is the steering matrix after array manifold
(A(θ)⇒B(θ)) by using the FOC. To further improve the
performance of DOA estimation, we use a vectorized
method [23, 26, 27] for R4 to obtain a vector, which is
equivalent to the received signal from the virtual ULA.

z � vec R4( 􏼁 (21)

where

Λ(θ) � b∗ θ1( 􏼁⊗ b θ1( 􏼁, b∗ θ2( 􏼁⊗ b θ2( 􏼁, . . . , b∗ θK( 􏼁⊗ b θK( 􏼁􏼂 􏼃

� B∗(θ) ⊙B(θ),
(22)

and p � [c4,s1
, c4,s2

, . . . , c4,sK
]T represents the FOC matrix of

source vector, and c4,sk
represents the FOC of the k − th

source vector.

2.4. Data Model with Mutual Coupling Based on FOC.
Equation (16) assumes that the sensors in the array has not
interference with each other. Actually, the output of each
sensor is influenced by its adjacent elements owing to the
presence of mutual coupling. (erefore, by introducing a
mutual coupling matrix C, the received data model can be
rewritten as follows [28, 29].

x(t) � CAs(t) + n(t), (23)

where the mutual couplingC can be obtained from reference
[28], whose define is determined by varieties of factors
involving in the distance between sensors, the operating
frequency, e.g., and it can be approximated by employing the
B-banded model [30–32].

Ci,j �

0, vid − vjd
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>B,

c
vid−vjd

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
, vid − vjd

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤B,

⎧⎪⎪⎨

⎪⎪⎩
(24)

where vid, vjd ∈ S and 1 � c0 > |c1|> · · · > |cB|> |cB+1| � 0,
c1 � 0.3ejπ/3, cl � c1e

− j(l− 1)π/8/l, for l ∈ [2, B], B� 100 rep-
resents the maximum spacing of sensor pairs with mutual
coupling. Besides, for a given array, the total strength of the

1 2 M1 M2

d = λ/2 d2 = (M1+1)d

1 2
……

Figure 1: Two-level nested array.
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mutual coupling effect can be measured by coupling leakage
as [22, 28]

L(M) �
‖C − diag C{ }‖F

‖C‖F

. (25)

Based on the mutual coupling model in equation (24),
the received signal from the virtual array in equation (21) can
be reconstructed as

􏽥z � CvecΛ(θ)p, (26)

where Cvec � (C⊗C∗)∗ ⊗ (C⊗C∗).

3. The Proposed Array

In this section, the proposed array is specifically introduced,
including the position of physical sensors, the derivation of the
consecutive elements part in the 2-SC and the 2-DCSC, and the
properties of it. Next, we analyze the 2-SC and the 2-DCSC of
the array for given parameters, and reveal the influence of
different array configurations on the consecutive DOF of the
array with the same total number of physical sensors.

3.1. Array Structure. Motivation from larger consecutive
DOF and array aperture, the THL-NA is proposed, which
has a concrete closed expression form with consecutive
DOF.(e 2-SC of the proposed array is employed to enlarge
the array aperture, and then a consecutive virtual array with
large array aperture is obtained by performing the difference
operation on the 2-SC, whose consecutive character utilizes
the nested relationship between subarrays in the 2-SC. Next,
the position of physical sensors in the proposed array is
given.

Proposition 1. *e THL-NA is composed of three ULAs with
a dense ULA and two sparse ULAs, which is shown in

Figure 2. *e position of THL-NA sensors can be represented
as

S1 � n1d, 1≤ n1 ≤N1􏼈 􏼉,

S2 � n2 N1 + 1( 􏼁d, 1≤ n2 ≤N2􏼈 􏼉,

S3 � n3 N2 + 1( 􏼁 N1 + 1( 􏼁d, 1≤ n3 ≤N3􏼈 􏼉,

STHL−NA � S1 ∪ S2 ∪ S3.

(27)

Figure 2 shows the distribution position of physical
sensors in the proposed array. (e array consists of three
ULAs. (e number of sensors is N1 with interelement
spacing d starting from 1 d in the first subarray, the number
of sensors is N2 with interelement spacing (N1 + 1)d

starting from (N1 + 1)d in the second subarray and the
number of sensors is N3 with interelement spacing (N2 +

1)(N1 + 1)d starting from (N2 + 1)(N1 + 1)d in the third
subarray. (e total number of physical sensors is N and
N � N1 + N2 + N3.

3.2.*eDeriving of Closed-Form Expression with Consecutive
Elements. (e 2-SC of the proposed array ranges from 2 d

to 2N3(N2 + 1)(N1 + 1)d, which is not a virtual consecutive
array. It is worth noting that there are N3 TL-NAs and a
THL-NA with the same array structure in the 2-SC. In fact,
the 2-SC can be regarded as the panning of a certain position
of the proposed array. For instance, the THL-NA at the last
part of the 2-SC can be regarded as the number of elements
position in the physical array plus the largest number of
elements position, which can be understood as the panning
of the initial physical array.

Proposition 2. *e 2-SC can be divided into N3 + 1 parts.
*e 2-SC position of THL-NA can be represented as

S1 � n1d, 2≤ n1 ≤ N1 + 1( 􏼁 N2 + 1( 􏼁􏼈 􏼉,

S2 � N1 + 1( 􏼁 N2 + 1( 􏼁d + n1d, 1≤ n1 ≤N1􏼈 􏼉∪ n2 N1 + 1( 􏼁d, 1≤ n2 ≤N2 + 1􏼈 􏼉,

S3 � 2 N1 + 1( 􏼁 N2 + 1( 􏼁d + n1d, 1≤ n1 ≤N1􏼈 􏼉∪ n2 N1 + 1( 􏼁d, 1≤ n2 ≤N2 + 1􏼈 􏼉,

⋮

SN3+1 � N3 N1 + 1( 􏼁 N2 + 1( 􏼁d + n1d, 1≤ n1 ≤N􏼈 􏼉1∪ n2 N1 + 1( 􏼁d, 1≤ n2 ≤N2􏼈 􏼉∪ n3 N2 + 1( 􏼁 N1 + 1( 􏼁d, 1≤ n3 ≤N3􏼈 􏼉,

S2−SC � S1 ∪ S2 ∪ · · · ∪ SN3+1.

(28)

According to the consecutive character of the 2-DC of
the TL-NA, it can be seen that a virtual consecutive 2-DCSC
is obtained by performing another difference operation on
the 2-SC.

Proposition 3. *e 2-DCSC position of THL-NA can be
represented as

S2−DCSC � −2N3 N2 + 1( 􏼁 N1 + 1( 􏼁 + 2, . . . , −1, 0, 1, . . . , 2N3 N2 + 1( 􏼁 N1 + 1( 􏼁 − 2􏼈 􏼉. (29)

International Journal of Antennas and Propagation 5



Summarize the closed-form expression with the number of
the consecutive lags of the array structure based on FOC as
follows:

cDOF � 2 2N3 N2 + 1( 􏼁 N1 + 1( 􏼁 − 2􏼂 􏼃 + 1

� 4N3 N2 + 1( 􏼁 N1 + 1( 􏼁 − 3.
(30)

Next, a specific array configuration example is used to
deepen understanding. Figure 3 shows when the array
configuration satisfies N1 � 3, N2 � 3, N3 � 4, the position
of physical sensors in the proposed array, the position of

array elements in the 2-SC and 2-DCSC. Next, the specific
example is used to analyze and discuss the structure and
properties of the proposed array.

The location of the physical sensors is distributed in
0.5, 1, 1.5, 2, 4, 6, 8, 16, 24, 32{ }, (e 2-SC of the array ranges
from 2 d to 2N3(N2 + 1)(N1 + 1)d namely 1 to 64 with
d � 0.5. According to the above analysis, the 2-SC is divided
into N3 + 1 � 5 parts, and the position of coarray elements
in each part can be expressed as

S1 � n1d, 2≤ n1 ≤ N1 + 1( 􏼁 N2 + 1( 􏼁􏼈 􏼉

S2 � N1 + 1( 􏼁 N2 + 1( 􏼁d + n1d, 1≤ n1 ≤N1􏼈 􏼉∪ n2 N1 + 1( 􏼁d, 1≤ n2 ≤N2 + 1􏼈 􏼉

� 8 + 0.5, 1, 1.5, 2, 4, 6, 8{ },

S3 � 2 N1 + 1( 􏼁 N2 + 1( 􏼁d + n1d, 1≤ n1 ≤N1􏼈 􏼉∪ n2 N1 + 1( 􏼁d, 1≤ n2 ≤N2 + 1􏼈 􏼉

� 16 + 0.5, 1, 1.5, 2, 4, 6, 8{ },

S4 � 3 N1 + 1( 􏼁 N2 + 1( 􏼁d + n1d, 1≤ n1 ≤N1􏼈 􏼉∪ n2 N1 + 1( 􏼁d, 1≤ n2 ≤N2 + 1􏼈 􏼉

� 24 + 0.5, 1, 1.5, 2, 4, 6, 8{ },

S5 � 4 N1 + 1( 􏼁 N2 + 1( 􏼁d

+ n1d, 1≤ n1 ≤N1􏼈 􏼉∪ n2 N1 + 1( 􏼁d, 1≤ n2 ≤N2􏼈 􏼉∪ n3 N2 + 1( 􏼁 N1 + 1( 􏼁d, 1≤ n3 ≤N3􏼈 􏼉

� 32 + 0.5, 1, 1.5, 2, 4, 6, 8, 16, 24, 32{ },

S2−SC � S1 ∪ S2 ∪ · · · ∪ S5.

(31)

(ere is nested relationship among subarrays circled in
the black box in Figure 3. (e elements in the position set
S2, S3, S4 construct NA structure respectively, which can be
regarded as TL-NA. (e last part of the 2-SC is structurally
equivalent to the proposed array, which can be regarded as a
THL-NA.(e consecutive 2-DCSC is obtained by performing
a difference operation on the 2-SC. Since the 2-DC of the TL-
NA is consecutive, the 2-DC of the sets S2, S3, S4 is equivalent
to the 2-DCSC of the proposed array, which is a consecutive
virtual array. From Figure 3, it can be observed that the
longest length of the consecutive holes is 8, and the longest
length of the consecutive elements is 9. By performing the
difference operation on set S5, a consecutive array is obtained.
As a result, a consecutive virtual array can be obtained
through the above array processing. (e length of the con-
secutive DOF is cDOF � 4N3(N2 + 1)(N1 + 1) − 3 � 253.

Figure 4 shows when the array configuration satisfies
N1 � 3, N2 � 3, N3 � 3, the position of physical sensors in
the proposed array, the position of array elements in the 2-SC

and 2-DCSC. According to the above analysis, the consecutive
DOF is cDOF � 4N3(N2 + 1)(N1 + 1) − 3 � 189.

3.3. Optimal Array Configuration. For a fixed total number
of physical sensors, there are multiple schemes about allo-
cating sensors of each subarray in THL-NA. (e problem of
determining the optimal array configuration is addressed to
maximize the consecutive DOF in this section. According to
Proposition 3, the length of consecutive virtual elements in
THL-NA is 4N3(N2 + 1)(N1 + 1) − 3.(e consecutive DOF
optimization problem can be formulated as

max, 4N3N2N1 + 4N3N2 + 4N3N1 + 4N3 − 3,

subject to, N3 + N2 + N1 � N.
(32)

In equation (32), we focus on how to configure the
number of sensors of each subarray (N1, N2, N3), so that the
possible largest length of consecutive lags is obtained from

1 2

1 2

N1
(N1+1)d

(N1+1)(N2+1)d

N2
N31 2

d

Figure 2: (ree-level nested array structure.
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the virtual ULA when the total number of array sensors N is
certain. We define integers m and n to be the remainder and
quotient of N modulo 3, where N � 3n + m, 0≤m≤ 2.

Proposition 4. One solution to the optimization problem in
equation (32) is can be presented as

N3 � N2 � N1 � n, if m � 0,

N3 � n + 1, N2 � N1 � n, if m � 1,

N3 � N2 � n + 1, N1 � n, if m � 2.

⎧⎪⎪⎨

⎪⎪⎩
(33)

According to equation (33), the corresponding con-
secutive DOF can be evinced as

c − DOF �

4n(n + 1)(n + 1) − 3, if m � 0,

4(n + 1)(n + 1)(n + 1) − 3, if m � 1,

4(n + 1)(n + 2)(n + 1) − 3, if m � 2,

⎧⎪⎪⎨

⎪⎪⎩
(34)

where n � [N/3].
Table 1 shows the consecutive degree of freedom cor-

responding to different array configurations when the
number of physical sensors is 9. Proposition 4 can be verified
with specific examples in Table 1.

4. The Proposed Algorithm

(e computational complexity of the FOCmatrix and that of
the conventional MUSICmethod due to the global spectrum

searching are expensive, the successive SS-MUSIC algorithm
is presented, which employs partial spatial spectrum peak
searching to drop the complexity. (e SS-ESPRIT algorithm
for the consecutive 2-DCSC of the THL-NA is utilized to
obtain the initial estimates, which can be used to shrink the
searching range of MUSIC algorithm to obtain the fine
estimates.

4.1. Initial Estimates. From the previous discussion, there
is a consecutive virtual array of the THL-NA with the
range of elements [−Wd, Wd], where W � 2N3(N2 + 1)

(N1 + 1) − 2, and the length of the virtual array is
T � 2W + 1. Data model of the part refer to Section 2.3, the
steering vector of the virtual array a

∗
(θk) ∈ CT×1 is denoted

as

a
∗

θk( 􏼁 � e
− j2π(− W)sin θk/λ, . . . , 0, . . . , e

− j2πW sin θk/λ􏽨 􏽩
T
. (35)

According to the position of the virtual array, remove the
redundant part of z and sort z, then construct z1.

z1 � Λ1p, (36)

where Λ1 ∈ CT×K is the direction matrix through sorting it
after removing the redundant parts of Λ(θ), and it is
mathematical form can be represented by

Λ1 �

e
− j(2π/λ)(− W)d sin θ1 e

− j(2π/λ)(− W)d sin θ2 · · · e
− j(2π/λ)(− W)d sin θK

⋮ ⋮ ⋱ ⋮

1 1 1 1

⋮ ⋮ ⋱ ⋮

e
− j(2π/λ)Wd sin θ1 e

− j(2π/λ)(− W)d sin θ2 · · · e
− j(2π/λ)Wd sin θK

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (37)

0 10 20 30 40 50 60 70

sub1
sub2
sub3

holes
2-SC
2-DCSC

Figure 3: (e location of physical sensors, 2-SC, 2-DCSC when N1 � 3, N2 � 3, N3 � 4.

sub1
sub2
sub3

holes
2-SC
2-DCSC

0 10 20 30 40 50 60 70

Figure 4: (e location of physical sensors, 2-SC, 2-DCSC when N1 � 3, N2 � 3, N3 � 3.
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Under the situation, the traditional DOA algorithms,
which use the eigenvalue decomposition of covariance, is
invalid because of the vectorized interrelated signal. (e
received signal matrix is updated by intercepting the con-
secutive part of z1. After obtaining the consecutive vector z1,
the spatial smoothing algorithm [19, 20], which divides the
ULA into several overlapping subarrays, is exploited to take
the place of the invalid traditional DOA algorithms. After
obtaining the sum of the covariance matrices of the divided
subarrays, which have the same array structure, the spatial
smoothing covariance matrix is obtained by taking the
average of it. As shown in Figure 5, W + 1 overlapping
subarrays are obtained by dividing equally the virtual array,
and each subarray incorporates W + 1 elements. Where, the
sensors position of the i − th subarray is

(−i + 1 + n)d, n � 0, 1, . . . , W{ }. (38)

(e received signal matrix z1i is from row W + 2 − i to
row 2W + 2 − i of z1.Construct the covariance matrix:

Ri � z1iz
H
1i . (39)

To obtain the spatial smoothing covariance matrix R,
which has the same form as the signal covariance matrix
based on classical subspace algorithms, we sum the co-
variance matrices of all W + 1 subarrays and calculate the
mean of it as shown in

R �
1

W + 1
􏽘

W+1

i�1
Ri. (40)

In the following, the results of DOA estimation are ob-
tained by using the classic ESPRIT algorithm [33]. Perform
eigenvalue decomposition on R to obtain the signal subspace
UN and the noise subspace US.

R � US 􏽘
S

UH
S + UN 􏽘

N

UH
N. (41)

(e rotation invariance of array makes the matrix US

decomposed into UX ∈ C(W− 1)×K, UY ∈ C(W− 1)×K,corre-
sponding to two subarrays, namely,

US �
UX

UY

􏼢 􏼣 �
UX

UXΨ
􏼢 􏼣,

Ψ � T− 1ΦT.

(42)

(e signal subspace UX is similar to UY, and the diagonal
elements of Φ are equal to the eigenvalues of Ψ, so by cal-
culating the eigenvalues λk of Ψ � U+

XUY, where
(k � 1, 2, . . . , K), the diagonal elements of Φ is estimated to
obtain the angle estimation value:

􏽢θ
ini

k � arcsin angle
λk( 􏼁

2πd
􏼠 􏼡. (43)

4.2. Fine Estimates. (e initial estimated angles 􏽢θ
ini

k are
employed to shrink the range of spectrum searching and the
MUSIC algorithm is utilized to perform interval processing
on the spatial spectrum function, where the interval range is
expressed by [􏽢θ

ini

k − Δ, 􏽢θ
ini

k k + Δ] (Δ is a small number), and
then the more accurate angle estimation parameters are
obtained.

(e spatial spectrum function of MUSIC algorithm can
be constructed as

PMUSIC �
1

aH
(θ)UNU

H
Na(θ)

, (44)

where a(θ) is the direction vector, and
a(θ) � [1, e− j2π sin θ/λ, . . . , e− j2π(W− 1)sin θ/λ]T ∈ CW×1. While
changing the value of θ, and performing the spectrum
searching in the space domain. When the denominator of
the spectral function tends to 0, in where the spatial spectral
function reaches a peak, the noise vector is orthogonal to the
signal vector, and the signal arrival angle 􏽢θk is equivalent as θ
at this time.

4.3. *e Advantages of the Proposed Algorithm. (e main
advantages of the proposed algorithm can be summarized as
follows:

(1) (e computational complexity of the successive SS-
MUSIC algorithm is much lower than SS-MUSIC
algorithm

(2) (e successive SS-MUSIC algorithm owns approx-
imately the same DOA estimation performance as
the SS-MUSIC algorithm

(3) (e successive SS-MUSIC algorithmmakes a balance
between computational complexity and estimation
accuracy

5. Performance Analysis

Aiming to evaluate the performance of the proposed array
geometry and the proposed algorithm, the array perfor-
mance index, including the consecutive DOF, the array
aperture, the SS-MUSIC spectrum, the coupling leakage e.g.,
and the computational complexity are compared in this
section.

5.1. Analysis of the Proposed Array. Direction of arrival In
this part, we compare the consecutive DOF of ACA, SAFE-
CPA, TL-NA, FL-NA, and THL-NA, as shown in Figure 6.
Figure 6 demonstrates that the THL-NA has a higher
consecutive DOF than other arrays. It is worth noting that
when the number of array elements exceeds 12, the con-
secutive DOF of the THL-NA begins to be lower than that of
FL-NA. From the overall trend of the image, the consecutive

Table 1: C-DOF of different array configurations.

(N1, N2, N3) 3, 3, 3 2, 3, 4 3, 2, 4 2, 4, 3 4, 2, 3 4, 3, 2 3, 4, 2 2, 2, 5 5, 2, 2 2, 5, 2

c-DOF 189 189 189 177 177 157 157 177 141 141
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DOF of the THL-NA is close to but still greater than SAFE-
CPA, which always surpasses that of FL-NA and TL-NA.

Table 2 lists the number of sensors, the consecutive DOF
and the location of different arrays with 10 sensors. (e
length of array aperture in the proposed array is larger than
that in TL-NA, ACA, which is smaller than that in FL-NA,
SAFE-CPA.

M0 � 4N1N2N3 + 3N1N2 + 2N1N3

− N2N3 + N1 − N2 + N3 − 1.
(45)

Table 3 shows the position, consecutive DOF, the weight
distribution diagrams of the 2-SC, 2-DCSC, the SS-MUSIC
spatial spectrum and mutual coupling coefficients of each
array with 10 sensors in ACA, TL-NA, FL-NA, SAFE-CPA,
THL-NA, and the consecutive DOF of the 2-DCSC with the
THL-NA, SAFE-CPA, CPA, FL-NA, TL-NA can reach 253,
241, 85, 215, 117 respectively. (e incident angles are evenly
distributed between −50 and 50, SNR � 0dB, SNAPSHOTS
as L � 500.

(e comparison of the MUSIC spatial spectrum of the
array structure proposed in this paper with SAFE-CPA,
CPA, FL-NA, TL-NA at the same incident angles is shown
as Table 3. It can be seen that the incident angle infor-
mation of all signals can be effectively detected only in the
spectral peak diagram of the THL-NA, while the DOA
estimation based on the other four arrays fail to find target
estimation and search false peaks, which fully demonstrates
that the THL-NA is capable of achieving higher accuracy
DOA estimation.

5.2. Analysis of the Proposed Algorithm. For evaluating the
proposed algorithm, the computational complexity is in-
troduced into the analysis in this part, which is compared
among the SS-MUSIC algorithm, the SS-ESPRIT method
and the proposed algorithm. Specifically, the total number
of sensors is N, the number of signal source is K, L in-
dicates the number of snapshots, and the total number of
the virtual array is T � 2W + 1, where
W � 2N3(N2 + 1)(N1 + 1) − 2.

Based on the number of complex multiplications, the
main complexities of the methods involve that, the calcu-
lation of FOC matrix needs O(LN4). (e virtual array is
divided into W + 1 overlapping subarrays, and each sub-
array contains W + 1 elements. After the operation of spatial
smoothing, the covariance matrix calculation of each virtual
subarray needs O (W + 1)3􏽮 􏽯 and eigenvalue decomposition
of the covariance matrix requires O (W + 1)3􏽮 􏽯, calculating
Ψ needs O 2K3 + 3K2W􏼈 􏼉 and the eigenvalue decomposition

of Ψ requires O K3􏼈 􏼉. (e complexity of spectral peak
searching is O n1(W + 1)(2(W − K) + 3)􏼈 􏼉, where the
number of searching n1 � 2KΔ/0.01, where Δ is a very small
number and 0.01 is the searching accuracy.

Consequently, the total complexity of the proposed al-
gorithm is given by O LN4 + 2(W + 1)3 + 3K2􏽮 (W + K)+

n1(W + 1)(2(W − K) + 3)}, the total complexity of SS-ES-
PRIT algorithm is O LN4 + 2(W + 1)3 + 3K2(W + K)􏽮 􏽯, the
total complexity of SS-MUSIC algorithm is O LN4+􏼈

2(W + 1)3 + n(W + 1)(2(W − K) + 3)}, where n � 90/0.01
stands for the peak search times over angle domain.

(e computational complexity of algorithms is
exhibited in Table 4. (e histogram and the line graph are
utilized to display the comparison results between the
complexity of the three algorithms, as shown in Figures 7
and 8 respectively, where K � 2 and L � 500 in comparison
versus different elements and N1 � 3, N2 � 3, N3 � 4 in
comparison versus different snapshots. It is observed that
the complexity of the proposed algorithm is significantly
lower than the SS-MUSIC method but is higher than the
SS-ESPRIT algorithm.

6. RMSE Results

In this section, the root mean square error (RMSE) via 200
Monte-Carlo trials are utilized to validate the superior
performance of the proposed array and the proposed al-
gorithm by comparing with four arrays and two algorithms,
respectively. (e RMSE is defined by [34, 35]

Subarray

Subarray Subarray2

Subarray1W

-W -W+1

W+1

-1 1 W-1 W0

Figure 5: (e spatial smoothing algorithm.
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Figure 6: c-DOF comparison versus different arrays.
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Table 3: (e 2-SC, 2-DCSC, c-DOF, spectrum, and L(M) comparison of different arrays.

ACA TL-NA FL-NA SAFE-CPA THL-NA

Antennas 0, 1.5, 2.5, 3, 4.5,{

5, 6, 7.5, 10, 12.5}

0.5, 1, 1.5,{

2, 2.5, 3, 6, 9, 12, 15}

0.5, 1, 1.5, 2, 4,{

6, 12, 18, 36, 54}

0, 1, 1.5, 2, 3, 4.5,{

17.5, 30.5, 43.5, 56.5}

(0.5, 1, 1.5, 2, 4,

6, 8, 16, 24, 32}

2-SC
locations

2-DCSC
locations

Spectrum

C-DOF 85 117 215 241 253
L(M) 0.4582 0.6363 0.4686 0.4409 0.4728

Table 2: Comparison of the closed-form expression with consecutive DOF.

Arrays structure Number of sensors (Ni, i � 1, 2, . . . , 4) Consecutive DOF (Ni, i � 1, 2, . . . , 4) Location (T � 10)

TL-NA N1 + N2 4N2(N1 + 1) − 3 0.5, 1, 1.5, 2, 2.5, 3, 6, 9, 12, 15{ }

FL-NA 􏽐
4
1 Ni − 3 2􏽑

4
i�1 Ni − 1 0.5, 1, 1.5, 2, 4, 6, 12, 18, 36, 54{ }

ACA 2N1 + N2 − 1 6N1N2 + 2N1 − 2N2 − 1 0, 1.5, 2.5, 3, 4.5, 5, 6, 7.5, 10, 12.5{ }

SAFE-CPA 2N1 + N2 − 1 + N3 2M0 + 1 0, 1, 1.5, 2, 3, 4.5, 17.5, 30.5, 43.5, 56.5{ }

Proposed N1 + N2 + N3 4N3(N2 + 1)(N1 + 1) − 3 0.5, 1, 1.5, 2, 4, 6, 8, 16, 24, 32{ }

Table 4: Complexity of different algorithms.

Algorithm Computational complexity
Proposed O LN4 + 2(W + 1)3 + 3K2(W + K) + n1(W + 1)(2(W − K) + 3)􏽮 􏽯

SS-ESPRIT O LN4 + 2(W + 1)3 + 3K2(W + K)􏽮 􏽯

SS-MUSIC O LN4 + 2(W + 1)3 + n(W + 1)(2(W − K) + 3)􏽮 􏽯
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Figure 7: Complexities of different methods versus different
elements.
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RMSE �
1
K

􏽘

K

k�1

���������������

1
200

􏽘

200

l�1

􏽢θk,l − θk􏼐 􏼑
2

􏽶
􏽴

, (46)

where θk denotes the true elevation of the k − th target, 􏽢θk,l

is estimated value of θk in the l − th(l � 1, . . . , 200) Monte-
Carlo simulation. (e non-Gaussian sources with
θ � [5∘, 45∘] incident on the proposed array, SAFE-CPA,
ACA, FL-NA, TL-NA, the total number of physical
sensors is set as 10, and the consecutive DOF of the virtual
coarray with the proposed array, SAFE-CPA, ACA, FL-
NA, and TL-NA can reach 253, 241, 85, 215, and 117,
respectively.

Sections 6.1–6.3 all employ the proposed successive
SS-MUSIC algorithm to conduct the simulation experi-
ments. Furthermore, Section 6.4 performs the comparison
of different algorithms based on the proposed array
geometry.

6.1. RMSE Comparison versus Snapshots. Figure 9 substan-
tiates the effectiveness of the proposed array in estimated
accuracy, and manifests that the increase of sampled data
leads to the improvement of estimation performance, owing
to the more accurate covariance estimation.

6.2. RMSE Comparison of Different Array Configurations.
In this simulation, we compare the RMSE results of different
array configurations, involving N1 � 3, N2 � 3, N3 � 3,
N1 � 3, N2 � 3, N3 � 4 and N1 � 3, N2 � 3, N3 � 5, using
the successive SS-MUSIC algorithm, where
SNAPSHOTS� 500. Meanwhile, the RMSE results of each
algorithm versus the number of snapshots are exhibited in
Figure 10. As depicted in Figure 10, with the number of
elements increasing, the parameter estimation performance
is enhanced because of diversity gain.

6.3. RMSE Performance Comparison of Different Arrays.
To specifically examine the DOA estimation ability of the
proposed array, the experiment uses 200 independentMonte
Carlo experiments to statistically compares the RMSE of the
array structure proposed in this paper with SAFE-CPA,
ACA, FL-NA, TL-NA at different signal-to-noise ratios and
snapshots, respectively. (e number of physical sensors is
10. It is obviously seen that the performance of the proposed
array is better than others.

Figure 11 presents the RMSE comparison of DOA es-
timation in different arrays versus SNR, where SNR is from
−15 dB to 5 dB and SNAPSHOTS� 500. With the increase of
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Figure 9: RMSE performance of different snapshots versus SNR.
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Figure 10: RMSE performance of different array configurations
versus SNR.
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Figure 11: RMSE performance of different arrays versus SNR.
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SNR, the THL-NA can reach the best DOA estimation
performance compared to SAFE-CPA, ACA, FL-NA, and
TL-NA.

Figure 12 presents the RMSE comparison of DOA esti-
mation in different arrays versus SNAPSHOTS, where
SNAPSHOTS is from 200 to 1000 and SNR� −5dB. With the
increase of the SNAPSHOTS, the THL-NA can reach the best
DOA estimation performance compared to SAFE-CPA, ACA,
FL-NA, and TL-NA due to the largest consecutive DOF.

6.4. RMSE Comparison of Different Algorithms. Figure 13
gives the comparison of estimation performance with

different algorithms versus SNR, where SNAPSHOTS� 500.
In addition, the searching range of the successive SS-MUSIC
algorithm and the SS-MUSIC method is
(θini

k − 1∘, θini
k + 1∘), k � 1, . . . K and (−60∘, 60∘), where θini

k

represents the initial DOA estimates according to Section
4.3. In terms of estimated performance according to fol-
lowing image, the successive SS-MUSIC algorithm is close to
SS-MUSIC method and far better than SS-ESPRIT
algorithm.

Figure 14 gives the comparison of estimation perfor-
mance with different algorithms versus snapshots, where
SNR � 0. It can be concluded from Figures 12 and 13 that
the DOA estimation performance of the successive SS-
MUSIC algorithm is more accurate than the SS-ESPRIT
algorithm and slightly worse than the SS-MUSIC
algorithm.

7. Conclusion

In this paper, the THL-NA is proposed for DOA estimation
of non-Gaussian signals based on FOC, which can provide
large consecutive DOF and a specific closed-form expres-
sion. (e proposed array utilizes the characteristic of con-
secutive coarrays in TL-NA. Firstly, the array aperture is
enlarged by obtaining the 2-SC of the proposed array, and
then the nested relationship between subarrays in the 2-SC is
employed to obtain 2-DCSC to construct a consecutive
virtual array. (e simulation results prove that the proposed
array has higher performance than SAFE-CPA, CPA, FL-
NA, TL-NA in DOA estimation. Besides, the successive SS-
MUSIC method proposed in the paper has lower compu-
tational complexity than SS-MUSIC algorithm and more
accurate estimate than SS- ESPRIT algorithm. In future
research, sparse array design under the incidence of non-
Gaussian sources based on MIMO system [36, 37] may be
considered.
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Figure 12: RMSE performance of different arrays versus
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In this study, the precise tracking problem for electrostatic micromirror systems with disturbances and input saturation is
investigated. Inspired by the composite nonlinear feedback (CNF)’s improvement of the transient performance and the sliding
mode control’s enhancement of the robustness, a novel integral sliding mode with reaching law (ISMRL)-based composite
nonlinear feedback (CNF) controller is proposed. +en, the stability of the closed-loop system is proved based on Lyapunov
theorem. Finally, numerical simulations are investigated to evaluate the effectiveness of the proposed scheme. It is shown that the
closed-loop system with the proposed scheme has precise positioning and improved transient performance in presence of time-
varying disturbances.

1. Introduction

Micro-electro-mechanical system (MEMS) micromirror has
experienced enormous commercial success in applications
such as optical switches [1, 2], biomedical imaging [3], and
high-resolution displays [4]. Compared with electrothermal,
electromagnetic, and piezoelectric actuation, the advantages
of electrostatic actuation are fast response, simple electronic
driving, and low power consumption [5]. However, the
electrostatic MEMS micromirror suffers unsatisfied tran-
sient performance and pull-in instability under open loop
control. Lots of efforts and control strategies have been
introduced to tackle the problem. Classic strategies, such as
PID controller [6, 7], H-infinity robust controller [8], sliding
mode control [9], and adaptive control [10] schemes have
been reported to improve its tracking performance and
eliminate the effect of external disturbances. +e afore-
mentioned control strategies have been verified benefits of
improving the positioning performance and extending the
stable operational range of micromirrors. However, the

transient response, which is essential for micromirror’s
application, is not directly considered. For instant, fast
setting time and low overshoot of micromirror-based optical
switches are required in order to reduce the insertion loss.

For the past few years, composite nonlinear feedback
(CNF) control scheme has attracted many attentions as its
meaningful improvements in transient behaviors [11]. +is
scheme was first studied for a class of second-order linear
system [12]. +en, it was extended to partially linear com-
posite system [13]. CNF control methods are also investi-
gated for master/slave synchronization of nonlinear system
[14], nonlinear time-delay systems [15], strict-feedback
nonlinear systems [16], and under actuated systems [17].+e
output tracking problem of time-varying references in de-
scriptor systems is investigated using CNF control technique
in [18]. Besides developments in theory, the CNF controller
is proposed for hard-disk-drive (HDD) servo system [19],
spacecraft rendezvous systems [20], multiquadrotor systems
[21], robot manipulators [22], and autonomous vehicles
[23]. However, when considering the inevitable external
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disturbances, the traditional CNF control reveals its lack of
the ability to deal with it. Fortunately, in the field of control
theory, sliding mode control is considered to be a solution
for alleviating the effects of the parametric uncertainties and
external disturbances [24–26]. As a result, the sliding mode
control techniques combined with composite nonlinear
feedback are proposed to improve system robustness in
[27–38]. Recently, this scheme is also developed for more
general class of linear and nonlinear systems with plant
uncertainties [39].

+ough sliding mode-based CNF controller has been
fully studied and demonstrated the advantages of ro-
bustness, the chattering problem of sliding mode control
is a serious situation which not only increases energy
consumption but also leads to the instability. To avoid
this, one solution is to introduce the second-order sliding
mode control [40]. In [41], a super-twisting algorithm-
based integral sliding mode control with composite
nonlinear feedback control is proposed to eliminate the
chattering effect for magnetic levitation system. Another
effective solution to reduce the chattering is the sliding
mode control based on the reaching law, which is first
proposed in [42]. Recently, in [43–45], improved quick
reaching law is proposed to speed up the response and
reduce the chattering of a sliding mode control system
simultaneously.

Motivated by the aforementioned problem through
literature review, the main contribution of this research is
that a novel integral sliding mode with reaching law-
based composite nonlinear feedback (ISMRL-CNF)
controller for angular control of an electrostatic MEMS
micromiror is proposed. +e CNF controller is designed
to guarantee the system has fast dynamic performance
and small overshoot. An integral sliding mode control
with quick reaching law is designed to enhance the ro-
bustness, attenuate chattering, and achieve finite-time
convergence of the sliding mode. Furthermore, the time-
varying disturbances and input saturation are taken into
account for controller design and stability analysis.
Simulation study verifies that the closed-loop system with
the proposed scheme has precise positioning and im-
proved transient performance in presence of time-
varying disturbances.

+e rest of the paper is organized as follows. +e dy-
namic model is described in Section 2.+e design procedure
of the proposed controller and stability analysis are devel-
oped in Section 3. Simulation study is given in Section 4.
Finally, the conclusions are discussed.

2. The Simplified Dynamics of Electrostatic
MEMS Micromirror

Figure 1 shows the schematic figure of a 2-degree-of-free-
dom electrostatic torsional MEMSmicromirror. +e studied
micromirror consists of mirror plate, torsion bar, gimbal
frame, and bottom and sidewall electrodes. +e mirror plate
is suspended by double frame structure and driven by
electrostatic torque. When the driving voltage applied to the
bottom and sidewall electrodes, the mirror plate is actuated

about X-axis and Y-axis, respectively. +e dynamic equa-
tions of the system are given as follows [5]:

J1 + J2( 􏼁€α + D1 _α + K1α � Tα,

J1
€β + D2

_β + K2β � Tβ,
(1)

where α and β represent the tilt angles of x-axis and y-axis, J1
and J2 denote the mass moment of inertias of the mirror
plate and gimbal, respectively, D1 and D2 represent the
damping coefficients, K1, K2 represent the stiffness coeffi-
cients, and Tα and Tβ are electrostatic torque. Introducing
the parameter τ �

�����
K2/J1

􏽰
t, let x1 � α, x2 � dα/dτ, x3 � β,

and x4 � dβ/dτ. As a result, system (1) can be described as
[5]

_x1 � x2,

_x2 � − R1x2 − λαβx1 + G1Tα,

_x3 � x4,

_x4 � − R2x4 − x3 + G2Tβ,

(2)

where the parameters are R1 � 0.16, R2 � 0.15, λαβ � 0.2251,
G1 � 3.0827 × 106, and G2 � 1.7894 × 107. Considering in-
put saturation and external disturbances, the system is re-
written as

_x � Ax + Bsat(u) + B d,

y � Cx,
(3)

where x ∈ Rn is the state of micromirror system, u ∈ R is
the control input, y ∈ R is the measurement output, And
A, B, andC are constant appropriate dimensional ma-
trices. +e saturation function sat(·): R⟶ R is defined
as sat(u) � sgn(u)min umax, |u|􏼈 􏼉 with the maximum of
control input umax. +e system uncertainties and dis-
turbances d ∈ R are bounded, and |d|≤dmax with the
maximum of disturbances dmax. +e following assump-
tions are satisfied for the investigated system (3) [19]: (1)
(A, B) is stabilizable, (2) (A, B, C) is invertible, which
means the system has no zeros at s � 0, and (3) (A, C) is
detectable.

3. The Proposed Integral Sliding Mode-Based
Composite Nonlinear Feedback
Controller Design

In this section, a novel integral sliding mode-based composite
nonlinear feedback (ISMRL-CNF) controller is designed for the
micromirror system with input saturation and disturbances.
+e objective is to ensure that the controlled output can track
step command input precisely with enhanced transient per-
formance and robustness, in presence of external disturbances.
+e proposed controller consists of a CNF control law and an
integral sliding mode control with reaching law (ISMRL):

u � uN + uis, (4)

where the CNF control uN is utilized to achieve good
transient performance and the integral sliding mode control
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with reaching law uis is designed to guarantee the system
robustness under disturbances and reduce chattering.

+e CNF controller consists of a linear control law and a
nonlinear control law. +e linear control law is presented to
achieve fast response by using small damping ration. +e
nonlinear control law is developed to change the damping
ration in order to eliminate overshoot. +e linear feedback
control uL is designed as [12]

uL � Fx + Gr, (5)

where F is chosen to guarantee that (A + BF) an asymp-
totically stable matrix, r is a step command input, and G is
scalar and calculated as

G � − C(A + BF)
− 1

B􏽨 􏽩
− 1

, (6)

where F and G are defined since (A, B, C) is assumed to have
no invariant zeros at s � 0.

+e nonlinear feedback law uNL is designed as

uNL � ρ(y, r)B
T
P x − xe( 􏼁, (7)

where ρ(y, r) represents any nonpositive nonlinear func-
tion. Different forms of ρ(y, r) have been reported in
previous works. A scaled nonlinear function is proposed to
adapt the variation of tracking targets in [19] as

ρ(y, r) � − βe
− m(y− r)

, (8)

where β and m are positive tunable parameters. Define P as a
real positive definite symmetric matrix which can be solved
from the Lyapunov equation:

(A + BF)
T
P + P(A + BF) � − W. (9)

With a given positive definite symmetric matrix W,
consider that P always exists since (A + BF) is defined to be
asymptotically stable. W can be chosen as

W � 10θ · 􏽢E, (10)

where θ is a tunable parameter and 􏽢E is an identity matrix.
+en, the new steady-state value xe is computed as

xe � − (A + BF)
− 1BGr. (11)

Finally, a CNF controller is formed by combining the
linear feedback law (5) and the nonlinear feedback law (7) as
follows:

uN � uL + uNL

� Fx + Gr + ρ(y, r)B
T
P x − xe( 􏼁,

(12)

Theorem 1. For any δ ∈ (0, 1), choosing cδ > 0 to be the
largest positive scalar and satisfying the conditions [27],

|Fx|≤ (1 − δ)umax,∀x ∈ Xδ ≔ x|x
T
Px≤ cδ􏽮 􏽯. (13)

4e initial state x0 and r satisfy

x0 − xe ∈ Xδ, |Hr|≤ δ1umax, (14)

where H � [I − F(A + BF)− 1B]G, 0≤ δ1 < δ, and
|(δ − δ1)umax| � dmax. 4en, the control law (12) is capable to
drive the system output y to track the commend input r

asymptotically for any nonpositive function ρ(y, r).

Inspired by the robustness enhancement of the in-
tegral sliding mode control with reaching law, such a
controller is designed and added with the CNF controller
to make overall system robust. Taking into account the
input saturation, the integral sliding surface is designed
as [38]

s � B
+

x(t) − x0 − 􏽚
t

o
Ax(τ) + B sat(u) − uis( 􏼁(τ)dτ􏼠 􏼡,

(15)

where B+ is the pseudoinverse of B and uis is sliding mode
control. +e reaching law approach is first proposed in
[42] which is utilized to force the system state quickly
arrives at the sliding mode surface in the whole
approaching process [43]. A novel improved quick
reaching law is designed as [44]

_s � − k1 b
|s|

− 1􏼐 􏼑sgn(s) − k2|s|
asgn(s), (16)

where 0< a< 1, k1 > 0, k2 > 0, and b � 1 + k2/k1. When the
system state is far away from the sliding surface, the change
rate of the first term in (16) is larger than that of the power
function. It speeds up the reaching rate in the case |s|> 1.
When the system state is near to the sliding surface, the
second item in (16) can make the system approach the
sliding surface with higher speed.

Finally, the proposed ISMRL-CNF scheme for system (3)
is expressed as

Mirror plate

Gimbal frame

Sidewall
electrode

α

β

Figure 1: +e electrostatic torsional MEMS micromirror.
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u � uCNF + uis

� Fx + Gr + ρ(y, r)B
T
P x − xe( 􏼁 − k1 b

|s|
− 1􏼐 􏼑sgn(s) − k2|s|

asgn(s).
(17)

Remark 1. In order to ensure the closed-loop system has a
fast rise time, F is chosen such that the closed-loop poles of
C(sI − A + BF)− 1 have a dominant pair with a small ration. F
can be designed by using H∞ optimization approach. In
order to reduce the overshoot, ρ(y, r) is selected to gradually
change the damping ratio of the closed-loop system. To obtain
the control parameters F, m, β, and W properly, we have

min
F,m,β,W

� 􏽚
∞

0
t|y − r|dt. (18)

+e integrated time and absolute error (ITAE) is utilized as
the performance criteria, and the minimization problem (18) is
solved by the particle swarm optimization (PSO) algorithm.

3.1. Demonstration of System Stability. Taking the derivative
of the sliding surface (15) along the trajectories of system
yields

_s � B
+

_x − Ax + B sat(u) − uis( 􏼁( 􏼁( 􏼁

� B
+

Ax + Bsat(u) + B d − Ax + B sat(u) − uis( 􏼁( 􏼁( 􏼁

� B
+

Buis + B d( 􏼁

� − k1 b
|s|

− 1􏼐 􏼑sgn(s) − k2|s|
asgn(s) + d.

(19)

Defining a Lyapunov function V1 � 1/2s2 and taking the
derivative of V1 [44],

V1
.

� s _s � s − k1 b
|s|

− 1􏼐 􏼑sgn(s) − k2|s|
asgn(s) + d􏼐 􏼑

� − k1|s| b
|s|

− 1􏼐 􏼑 − k2|s|
a+1

+ s d≤ − k1|s| b
|s|

− 1􏼐 􏼑 − k2|s|
a+1

+|s‖ d|≤ − k2|s|
a+1

− k1 b
|s|

− 1􏼐 􏼑 − dmax􏼐 􏼑|s|,
(20)

where |d|≤ dmax. It can be noted that when k1(b|s| − 1) −

dmax ≥ 0 such that

|s|≥ logb

dmax + k1

k1
􏼠 􏼡 , (21)

then V1
.

≤ − k2|s|a+1. +us, the sliding mode variable s can
converge to the finite-time convergence region
|s|≤ logb(dmax + k1/k1) [44].

Take the control law into the system and let 􏽥x � x − xe,
and we have

_􏽥x � (A + BF)􏽥x + Bψ, (22)

where ψ � sat(F􏽥x + Hr + uNL + uis) − F􏽥x − Hr + d.
Define a Lyapunov function:

V2 � 􏽥x
T
P􏽥x. (23)

Taking the derivative of V2, we obtain

V2
.

� _􏽥x
T
P􏽥x + 􏽥x

T
P _􏽥x

� 􏽥x
T
(A + BF)

T
P􏽥x + 􏽥x

T
(A + BF)P􏽥x + 2􏽥x

TPBψ

� − 􏽥x
T
W􏽥x + 2􏽥x

TPBψ.

(24)

+en, we have

F􏽥x + Hr + uis

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ |F􏽥x| +|Hr| + uis

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ umax, (25)

When |F􏽥x + Hr + uNL + uis|≤ umax, then

ψ � F􏽥x + Hr + uNL + uis − F􏽥x − Hr + d, (26)

where _s would converge to zero in finite time; then, uis � − d.
+en, ψ � uNL � ρ(y, r)BTP􏽥x. ρ(y, r) is a nonpositive
function. So, V2

.

≤ − 􏽥xTW􏽥x.
When (F􏽥x + Hr + uNL + uis)> umax, then

uNL < umax − F􏽥x + Hr + uis( 􏼁< 0,

ψ � umax − (F􏽥x + Hr) + d

� umax − F􏽥x + Hr + uis( 􏼁≥ 0,

(27)

where ρ(y, r) is a nonpositive function. So, it implies that
􏽥xTPB≤ 0. +en, V2

.

≤ − 􏽥xTW􏽥x.
When (F􏽥x + Hr + uNL + uis)< − umax, then

uNL ≤ − umax − F􏽥x − Hr − uis ≤ 0,

ψ � − umax − (F􏽥x + Hr) + d

� − umax − F􏽥x + Hr + uis( 􏼁≤ 0,

(28)

where ρ(y, r) is a nonpositive function. So, it implies that
􏽥xTPB≤ 0. +us, V2

.

≤ − 􏽥xTW􏽥x. +erefore, we can sum-
marize that V2

.

≤ − 􏽥xTW􏽥x< 0.

4. Simulation Results

In this section, various simulations are conducted to test the
performance of the proposed strategy. For simplicity, system
(2) is consider as linear systems with disturbances:
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_x1

_x2
􏼢 􏼣 �

0 1

− 0.2251 − 0.16
􏼢 􏼣

x1

x2
􏼢 􏼣 +

0

3.0827
􏼢 􏼣 sat uα( 􏼁 + dα( 􏼁,

y1 � 1 0􏼂 􏼃
x1

x2
􏼢 􏼣,

(29)

_x3

_x4
􏼢 􏼣 �

0 1
− 1 − 0.15

􏼢 􏼣
x3

x4
􏼢 􏼣 +

0
1.7894

􏼢 􏼣 sat uβ􏼐 􏼑 + dβ􏼐 􏼑,

y2 � 1 0􏼂 􏼃
x3

x4
􏼢 􏼣,

(30)

where uα � 106Tα and uβ � 107Tβ. +e maximum inputs
are uαmax � uβmax � 10. +e control objective is to
force the scan angle α or β and follow the reference
trajectory r precisely with fast response in presence of
disturbances.

+e parameters of CNF for system (29) are tuned by PSO
as Fα � − 40.3457 − 5.6301􏼂 􏼃, mα � 62.9236, βα � 49.4610,
and θα � − 0.1296. +en, Gα � 40.4187,

Wα �
0.7420 0

0 0.7420􏼢 􏼣, and Pα �
2.7124 0.0030
0.0030 0.0214􏼢 􏼣. +e

parameters of ISMRL are chosen as k1α � 1, k2α � 1.6, and
aα � 0.05. +e parameters of CNF for system (30) are tuned
by PSO as Fβ � − 40.5216 − 7.1381􏼂 􏼃, mβ � 4.5160,
ββ � 35.0126, and θβ � 0.4681. +en, Gα � 41.0804Wβ �

2.9383 0
0 2.9383􏼢 􏼣 and Pβ �

8.7290 0.0200
0.0200 0.1152􏼢 􏼣. +e pa-

rameters of ISMRL are chosen as k1β � 1.5, k2β � 2.2, and
aβ � 0.04.

Figure 2 shows the MEMS micromirror along the x-
axes tracking trajectories using the CNF, ISM-CNF, and
proposed ISMRL-CNF controller, respectively. +e target
references for α are set as r � 2; the disturbance

dα � − sgn(sin(0.3πt)) is introduced when t≥ 3ms. It can
be noted that the proposed controller has better perfor-
mance in comparison with the two other controller such as
CNF and ISM-CNF. +e actuation motion trajectory of the
MEMS micromirror under the proposed ISMRL-CNF
controller is consistent with the desired trajectory in
presence of the disturbance. +e closed-loop system has
good transient performance such as very small overshoot
and fast response. +e control inputs of CNF, ISM-CNF,
and ISMRL-CNF are shown in Figure 3; compared with
ISM-CNF, the chattering problem is eliminated by using
the proposed ISMRL-CNF.

Figure 4 shows the MEMS micromirror along the y-axes
tracking trajectories using the CNF, ISM-CNF, and pro-
posed ISMRL-CNF controller, respectively. +e target ref-
erences for β are set as r � 2.2 and the disturbance
dβ � − 1.5sgn(sin(πt)) is introduced when t≥ 3.5ms. +e
results demonstrate that the CNF controller exhibits worst
performance due to the disturbances. Comparewith ISM-CNF,
the proposed ISMRL-CNF controller can obtain a faster and
more efficient performance in presence of the disturbances.
+e control inputs of CNF, ISM-CNF, and proposed controller
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Figure 2: Comparison of angular α responses.
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are shown in Figure 5. It can be noted that the control input of
ISMRL-CNF is more smoother than ISM-CNF.

To further verify the antidisturbances of the proposed
controller, the time-varying disturbance is introduced.

+e comparison of angular α responses using CNF,
ISM-CNF, and proposed ISMRL-CNF controller under
disturbance d � − 1.5 sin(1.2πt) is shown in Figure 6. It
can be seen that the traditional CNF controller is not able
to suppress the time-varying disturbance. Compared with

ISM-CNF, the proposed ISMRL-CNF controller ensures
the system has better response in presence of disturbance.
+e comparison of angular β responses using CNF, ISM-
CNF, and proposed ISMRL-CNF controller under dis-
turbance d � − 1.4 cos(1.3πt) is shown in Figure 7. +e
results demonstrate that the proposed controller ensures
the system has better performance in presence of time-
varying disturbance.
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5. Conclusions

In this study, the precise tracking problem for electrostatic
micromirror systems with disturbances and input saturation
is investigated. Inspired by the composite nonlinear feed-
back (CNF)’s improvement of the transient performance
and the sliding mode control’s enhancement of the ro-
bustness, a novel integral sliding mode with reaching law
(ISMRL)-based composite nonlinear feedback (CNF) con-
troller is proposed. +en, the stability of the closed-loop
system is guaranteed based on Lyapunov theorem. Nu-
merical simulations verify the effectiveness of the proposed
scheme. It is shown that the closed-loop system with the
proposed scheme has precise positioning and improved
transient performance even in presence of time-varying
disturbances. It should be noted that the proposed controller
needs the accurate model knowledge; as a result, more in-
clusive methods about the model uncertainty and model
inaccuracy, combined with faster convergence rate and
smaller chattering, will be inquired in future work.
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In this paper, we investigate the problem of direction of arrival (DOA) and polarization estimation for non-Gaussian signal in
polarization-sensitive augmented coprime array. Instead of the second-order cumulant statistics, the fourth-order cumulant
statistics of the received signals are used for parameter estimation because they can detect more information of the non-Gaussian
signal. First, polarization-sensitive augmented coprime array is designed, where each sensor element is equipped with a pair of
orthogonal electric dipoles. Furthermore, a low-complexity reduced-dimensional Capon algorithm which uses the fourth-order
cumulant of the received array signal is proposed for DOA and polarization estimation. Only one-dimensional peak search is
required by reconstructing peak search function.*eoretical analysis has proven the effectiveness of the algorithm, and simulation
results demonstrate that the proposed fourth-order cumulant reduced-dimensional Capon algorithm outperforms the
other algorithms.

1. Introduction

*e research on directional of arrival (DOA), as a funda-
mental project in array signal processing, has attracted great
attention from relevant scholars all around the world [1, 2].
In recent years, it is proved to be feasible in many fields, such
as sonar, radar, and communication system. With the
proposal and improvement of related algorithms for dif-
ferent scenarios, the estimate accuracy of DOA is gradually
improved, the complexity is also gradually reduced, and
more sources could be detected [3–7]. However, existing
DOA estimation techniques are usually based on scalar
sensor array structures with equal element spacing not
greater than half-of-wavelength, which is also called uniform
linear array [8]. *is array structure can obtain unambig-
uous DOA estimates while suffering from heavy mutual

coupling effects and low system resolution [9]. Simulta-
neously, only relying on DOA information received by scalar
sensor array, it is hard to distinguish different signals im-
pinging on the array from similar directions of arrival.
Meanwhile, polarization-sensitive array (PSA) [10] is pro-
posed to obtain another two-dimensional information
combined with DOA information, which can distinguish
different signals in higher dimensions, especially signals with
similar incident angles. Many kinds of polarization-sensitive
sensors have been designed for receiving different electro-
magnetic vector signals, like triad [11], cocentered orthog-
onal loop and dipole (COLD) [12], and crossed dipoles [13].
Relative algorithms are also proposed for measuring joint
DOA and polarization estimates [14–16].

In addition, coprime array (CA) [17, 18] is proposed by
extending the array aperture and reducing mutual coupling
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effect sparse array, in order to improve the array perfor-
mance. It solves the problem of compact array structure in
uniform linear array, whose phase ambiguity can be elim-
inated by vectorizing the covariance matrix of the received
signal to construct a virtual array. Based on CA, some high-
performance DOA estimation algorithms have been pro-
posed in the field of PSA [19, 20]. In [19], the CA is split up
into two uniform linear arrays, and a minimum distance
parallel factor algorithm is proposed to obtain an accurate
estimate, though the advantage of high degrees of freedom
(DOF) in CA is not exploited. In order to take full advantage
of the large virtual aperture of the CA, a coarray interpo-
lation method is proposed in [20]. However, it suffers from
high computational complexity when solving the large
stacked recovered covariance matrix.

Augmented CA (ACA) [21], as an improved array, is
equipped with more virtual elements than other CAs after
vectorization and a closed-form formula in its virtual array’s
continuous part can be derived, which is more suitable for
covariance matrix vectorization. Furthermore, compared
with the covariance matrix which only uses second-order
statistics of the received signals, fourth-order cumulants can
demonstrate more information of non-Gaussian signals
[22]. Besides, by constructing the fourth-order cumulants of
the received signals, the array aperture of the equivalent
virtual array is significantly extended [23], while the noise is
suppressed in the fourth-order cumulant due to its Gaussian
property [24]. As a result, fourth-order cumulant and its
corresponding algorithms have shown great advantages in
parameter estimation. However, the CA research on PSA
and the corresponding algorithms has just begun, and more
and more updated array structure designs and high-preci-
sion estimation algorithms are required in this field.

In this paper, we introduce the augmented CA to po-
larization-sensitive arrays in electromagnetic environment
and design a kind of new sparse array called polarization-
sensitive ACA (PSACA). Each sensor element is equipped
with a pair of orthogonal dipoles, which are orthogonal to
each other while the array element location is the same as
ACA. On the other hand, a fourth-order cumulant reduced-
dimensional Capon (FOC-RD-Capon) algorithm is pro-
posed for non-Gaussian signals. First, the fourth-order
cumulant is constructed by received signals, replacing the
covariancematrix in traditional Capon algorithm, which can
obtain a large amount of consecutive virtual elements.
Benefited from the fourth-order cumulant, DOF are in-
creased and virtual array aperture is extended in contrast to
the virtual array by vectorization of covariance matrix.
Second, considering the high calculation burden of three-
dimensional spectral peak search for DOA and polarization
estimates, a reduced-dimensional Capon algorithm is pro-
posed, which only requires one-dimensional spectral peak
search. *e accuracy of the algorithm can be improved by
shortening the search interval. *e proposed algorithm is
proved to have much lower complexity than traditional
Capon algorithm. Numerous simulations illustrate the ef-
fectiveness of the ACA in polarization-sensitive scenarios
and the proposed FOC-RD-Capon algorithm.

To summarize, the contributions of this paper are as
follows:

(1) We design the ACA in polarization-sensitive sce-
nario, where each sensor element is a pair of or-
thogonal dipoles to receive electric field strength
vector. Compared with traditional CA, ACA can
achieve higher DOF.

(2) We use the fourth-order cumulant signal instead of
second-order cumulant signal for non-Gaussian
signal, which can demonstrate more information to
obtain high estimation performance. Moreover, the
equivalent virtual array for the fourth-order
cumulant signal has more consecutive elements.

(3) We propose a low-complexity reduced-dimensional
algorithm for polarization-sensitive augmented CA,
avoiding three-dimensional peak search. Meanwhile,
the proposed algorithm enjoys high estimation ac-
curacy with multi-parameter autopairing.

*e rest of the paper is arranged as follows.
Section 2 demonstrates the data model of the signal

impinging on the PSA. Section 3 introduces the array
structure of PSACA and its virtual array element model after
employing the fourth-order cumulant. Section 4 elaborates
the proposed reduced-dimensional Capon algorithm. Sec-
tion 5 depicts the simulation results, and Section 6 concludes
the paper.

Notations. We use lower-case (upper-case) bold character to
imply vector (matrix). (·)∗, (·)T, and (·)H denote the con-
jugate, transpose, and the conjugate transpose of a matrix or
vector, respectively. ⊗ denotes the Kronecker product, and
⊙ represents Khatri–Rao product. (·)− 1 represents matrix
inverse. angle(·) means phase operator. diag ·{ } means di-
agonalization operator. 〈a, b〉 means the integer set from a

to b, and E[·] means the mathematical expectation of a
vector or matrix.

2. Data Model

Consider that K far-field non-Gaussian narrowband signals
impinge on the linear array with M sensors where each
sensor element consists of a pair of orthogonal electric di-
poles to ensure vector receiving capability. *e two dipoles
with different polarization modes in an element are sup-
posed to be distributed in the direction along with x-axis and
y-axis, respectively, which are able to receive the electric
component in the corresponding direction. *e elevation
angles of the signals are θk ∈ [−π/2, π/2], k ∈ 〈1, K〉. *e
corresponding polarization information in the signal can be
modeled as two polarization parameters: polarization aux-
iliary angle ck ∈ [0, π/2], k ∈ 〈1, K〉 and polarization phase
difference ηk ∈ [−π, π), k ∈ 〈1, K〉. As a result, the single
snapshot data model of the received signal on the array is
written as [16]

y(t) � a1 ⊗ s1, a2 ⊗ s2, . . . , aK ⊗ sK􏼂 􏼃b(t) + n(t), (1)
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where ak � [ej2πd1sin θk/λ, ej2πd2sin θk/λ, . . . , ej2πdMsin θk/λ] de-
notes the directional vector and dm, m ∈ 〈1, M〉 is the lo-
cation of m − th sensor element. b(t) ∈ CK×1 represents the
non-Gaussian signal vector while n(t) ∈ CM×1 is the white
Gaussian noise vector. sk ∈ C2×1 symbolizes the polariza-
tion-space steering vector of k − th signal for orthogonal
electric dipoles, which can be represented as [13]

sk � Φ θk( 􏼁ω ck, ηk( 􏼁

�
0 −1

cos θk 0
􏼢 􏼣

sin cke
jηk

cos ck

⎡⎣ ⎤⎦,
(2)

where Φ(θk) denotes the coordinate matrix only containing
DOA information, which is determined by the polarization
mode of the electric dipoles, and ω(ck, ηk) is the polarization
vector. Assume that J snapshots are received during a period
of time for parameter estimation, and the overall received
signal is modeled as [25]

Y � [A⊙ S]B + N, (3)

where A � [a1, a2, . . . , aK], S � [s1, s2, . . . , sK] are the di-
rectional matrix and electric matrix, respectively.
B � [b1, b2, . . . , bJ] ∈ CK×J denotes the non-Gaussian signal
vector while N � [n1,n2, . . . ,nJ] ∈ C2M×J symbolizes the
additive Gaussian noise matrix.

Note that the number of the signals to be estimated in
this paper is known. If the number is uncertain, methods
such as matrix decomposition [26], information theory [27],
or Geist’s circle [28] can be used for estimation.

3. ACA and Virtual Elements

Based on the array model in [21], Figure 1 depicts the
array structure of the ACA, which is composed of two
subarrays. *e two subarrays are both uniform linear
arrays. Subarray 1, which is marked with white rectangles,
is equipped with N array elements with adjacent interval
Mλ/2. Meanwhile, subarray 2 is marked with black cir-
cles, whose total array elements are 2M with adjacent
interval Nλ/2. *e total element number of the ACA is
2M + N − 1 because the first element of subarray 1 and
subarray 2 is located at the same place. ACA is considered
as the improvement of traditional CA because it keeps
subarray 1 unchangeable while extending the array ap-
erture of subarray 2 twice as that of CA by equipping 2M

sensor elements.
It can be obviously concluded from Figure 1 that the

sensor element location of each subarray is that

S1 � 〈0, N − 1〉Mλ/2,

S2 � 〈0, 2M − 1〉Nλ/2,
􏼨 (4)

where 〈a, b〉 denotes the integers from a to b. *erefore, the
overall position set of the sensor elements is described as
SACA � S1 ∪S2.

According to the data model for PSA presented in
Section 2, the fourth-order cumulant matrix of received
signal Y with J snapshots can be expressed as [24]

C4 � E Y⊗Y∗( 􏼁 Y⊗Y∗( 􏼁
H

􏽨 􏽩 − E Y⊗Y∗( 􏼁􏼂 􏼃E Y⊗Y∗( 􏼁
H

􏽨 􏽩

− E YYH
􏽨 􏽩⊗E YYH

􏼐 􏼑
∗

􏽨 􏽩.

(5)

Assume that the signals are independent with each other,
and fourth-order cumulant matrix can be considered as the
covariance matrix of virtual received signal corresponding to
an equivalent virtual array whose element location set is the
difference co-array of the physical sensor elements, which
can be defined as

SACA 4 � di − dj|di, dj ∈ SACA􏽮 􏽯. (6)

Figure 2 demonstrates the virtual array structure after
fourth-order cumulant extension for ACA and CA with the
same physical sensor elements. *ere are both 12 physical
sensor elements with M � 4, N � 5 in ACA and
M � 7, N � 6 in CA. As depicted in the figure, CA has 25
consecutive virtual elements while ACA has 47 consecutive
virtual elements, which is obviously more than that of CA.
Benefited from the merit, ACA can achieve high DOF to
detect more signals [29].

4. FOC-RD-Capon Algorithm

4.1. Algorithm Process Introduction. Capon algorithm can
obtain multi-parameter estimates simultaneously by amulti-
dimensional peak search, which has been widely used in
DOA estimation. However, the direct introduction of Capon
algorithm from scalar sensor array to polarization-sensitive
array will result in the dramatic increase in search dimen-
sion, which causes the inevitable high-dimensional search
process. To reduce the calculation burden of the Capon
algorithm in polarization-sensitive arrays while improving
the estimation performance for non-Gaussian signals, a
FOC-RD-Capon algorithm is proposed in this section. *e
introduction will be presented as follows.

Traditional Capon search function for DOA and po-
larization estimation is expressed as [30]

FCapon a1, a2, · · · , aQ􏼐 􏼑 �
1

MHR− 1M
, (7)

where R is the covariance matrix of the received signal and
M denotes the array manifold for Q parameters. In PSA
scenarios, the array manifold includes three parameters,
DOA θ, polarization auxiliary angle c, and polarization
phase difference η, which means three-dimensional peak
search is required, but it is unrealistic in engineering ap-
plication. *is part introduces a kind of parameter elimi-
nation method for polarization dimensional reduction.

Replacing the covariance matrix by the fourth-order
cumulant matrix C4, define M � ac(θ)⊗ s(θ, c, η), where
ac(θ) is the directional vector for virtual array structure
which is the difference coarray of physical array. *en, the
peak search function for PSA fourth-order cumulant sce-
nario is given by
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FCapon(θ, c, η) �
1

M(θ, c, η)
HC−1

4 M(θ, c, η)
. (8)

Note that s � Φ(θ)ω(c, η) and a characteristic of Kro-
necker product is defined as

(AB)⊗ (C D) � (A⊗C)(B⊗D) [25]. *e array manifold
can be reconstructed as M � [a(θ) ⊗Φ(θ)]ω(c, η); there-
fore, (8) is written as

FCapon(θ, c, η) �
1

ω(c, η)
H ac(θ)⊗Φ(θ)􏼂 􏼃

HC−1
4 ac(θ) ⊗Φ(θ)􏼂 􏼃ω(c, η)

. (9)

Classifying the terms in the function according to the
parameters, the terms only about DOA is expressed as
U(θ) � [ac(θ) ⊗Φ(θ)]HC−1

4 [ac(θ) ⊗Φ(θ)]. Besides, there is
an identity ω(c, η)Hω(c, η) � 1 that holds. *en, the peak
search function has been transformed into the minimum
finding under constraints that

Fm(σ,ω) � ωHUω + σ 1 − ωHω􏼐 􏼑. (10)

In order to find the minimum value of (10), we calculate
the partial derivative of Fm(σ,ω) about ωH that

zFm(σ,ω)

zωH
� Uω − σω. (11)

Let (11) equal 0 to calculate the final estimates that
Uω � σω. Instead of solving the equations, we assume it as the
form of eigenvalue and eigenvector pairs, where σ is the
eigenvalue and ω is the corresponding eigenvector. Based on
the analysis above, the peak search function (9) is expressed as

FCapon(σ,ω) �
1

ωHUω

�
1

ωHσω
.

(12)

Because σ is a constant, (12) is actually the search about
the eigenvalue [32].

FCapon(σ) �
1

σωHω

�
1

σU,min
.

(13)

Every peak calculation can be considered as finding the
minimum eigenvalue about U which is only constructed by
DOA information. Polarization information is eliminated in
Capon search function to tremendously reduce the com-
putational complexity.

1 2 3 M...

2

3

N...1

2 M...

Nλ/2

Mλ/2

Subarray 1

Subarray 2

Figure 1: ACA structure.

-35 -30 -25 -20 -15 -10 350 3010 15 20 25 40-40 -5 5
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Figure 2: *e virtual array structure after fourth-order cumulant extension for ACA and CA.
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After finding K peaks about the DOA estimates
􏽢θk, k ∈ 〈1, K〉, the corresponding U is obtained as

U 􏽢θk􏼐 􏼑 � ac
􏽢θk􏼐 􏼑⊗Φ 􏽢θk􏼐 􏼑􏽨 􏽩

H
C−1
4 ac

􏽢θk􏼐 􏼑⊗Φ 􏽢θk􏼐 􏼑􏽨 􏽩. (14)

Polarization matrix 􏽢ωk is measured by the eigen de-
composition of U(􏽢θk). Note that U(􏽢θk) ∈ C2×2 has 2 ei-
genvalue and eigenvector pairs, and the eigenvector whose
eigenvalue is the smallest is the estimate 􏽢ωk. Ultimately,
polarization estimates are obtained as

􏽢ck � arc tan abs ω[1]
k /ω[2]

k􏼐 􏼑􏼐 􏼑,

􏽢ηk � angle ω[1]
k /ω[2]

k􏼐 􏼑,

⎧⎪⎨

⎪⎩
(15)

where k ∈ 〈1, K〉 and ω[i] denotes the i − th element in
vector ω.

*e main steps of the proposed FOC-RD-Capon algo-
rithm are summarized as follows:

Step 1. Compute the fourth-order cumulant matrix of
received signal C4 according to (5).
Step 2. Obtain the peak search function with (8) and
reconstruct it according to the characteristic of Kro-
necker product (9).
Step 3. Establish the search dictionary θi ∈ [−π/2, π/2]

to calculate U(θi) with each dictionary element θi.
Step 4. Perform eigen decomposition of U(θi) and find
its smallest eigenvalue σU,min.
Step 5. Find K peaks in (13) to estimate 􏽢θk, k ∈ 〈1, K〉.
Step 6. Calculate the eigenvector 􏽢ωk corresponding to
the smallest eigenvalue in U(θi), k ∈ 〈1, K〉.

4.2. Discussion. *e calculation burden of the FOC-RD-
Capon algorithm mainly results from the following steps.
Assume that there are P sensor elements in the ACA.
Computing the fourth-order cumulant of the received signal
requires O[J(2P)4]. *e inverse of fourth-order cumulant
matrix needs the complexity of O[(2P)6]. Every peak search
consists of O(64P2L) for L-times peak search. *erefore, it
can be summed up that the proposed FOC-RD-Capon al-
gorithm is composed of the complexity of
O(64P2L + 16JP4 + 64P6).

Meanwhile, the traditional Capon algorithm without
dimensional reduction requires three-dimensional peak
search. Computing the fourth-order cumulant and inverse
of it requires totally O[J(2P)4 + (2P)6], which is the same as
the proposed algorithm. However, the three-dimensional
peak search needs the complexity of O(64P2L3) for L-times
search in each dimension. To sum up, the approximate
calculation burden of the traditional Capon algorithm is
O(64P2L3 + 16JP4 + 64P6), which is obviously higher than
that of the proposed algorithm. Figure 3 shows the com-
parison of the complexity of the two algorithms with the
number of sensor elements.

In addition, ACA is employed for the proposed algo-
rithm due to the following merits:

(1) ACA is a kind of sparse array, where array aperture is
extended andmutual coupling effect is eliminated. In
practice, the coprime numbers M and N can be
chosen according to the requirement to satisfy dif-
ferent scenarios. Benefited from the sparse structure,
the DOA and polarization estimation results are
tremendously improved.

(2) *e proposed algorithm uses the fourth-order
cumulant statistic instead of the second-order
cumulant, where the received signal can be regarded
as the signal received by the equivalent virtual array.
*e virtual array is the difference coarray of physical
array. Based on the conclusion and the analysis in
Section 3, ACA can achieve more consecutive ele-
ments than CA, which means being able to detect
more signals.

Cramér–Rao bound (CRB) is often used as the standard
error which can be calculated. We derive the CRB formula to
evaluate the RMSE performance of the algorithms on the
designed ACA. Define As � A⊙ S, Π⊥As

� I2P −As(AH
s As)

− 1

AH
s , and P � 􏽐

J
j�1 bjb

H
j /J, and the formula of CRB for

polarization-sensitive ACA is demonstrated as [32]

CRB �
κ2

2J
Re DHΠ⊥As

D􏼐 􏼑⊕PT
􏽨 􏽩􏽮 􏽯

− 1
, (16)

where D � [d1, . . . ,dK, e1, . . . , eK, f1, . . . , fK], dk � z(ak

⊗ sk)/zθk, ek � z(ak ⊗ sk)/zck � ak ⊗Γksk, Γk � diag
sin ck, cos ck􏼈 􏼉, fk � z(ak ⊗ sk)/zηk � ak ⊗Ξksk, Ξk

� diag 0, jηk􏼈 􏼉. κ2 is the power of noise.

5. Simulation Results

Numerous simulations are performed to verify the effec-
tiveness of the designed ACA and proposed FOC-RD-Capon
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Figure 3: *e complexity comparison between the proposed al-
gorithm and the traditional Capon algorithm.
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algorithm, where root mean square error (RMSE) is
employed as an evaluation standard to judge the perfor-
mance. RMSE is defined as

RMSEa �
1
K

􏽘

K

k�1

���������������

1
L

􏽘

L

l�1
􏽢ak,l − ak􏼐 􏼑

2
􏼔 􏼕

􏽶
􏽴

, (17)

which is the RMSE of parameter a. L denotes the times of
independent Monte Carlo simulations. ak is the actual pa-
rameter, and 􏽢ak,l is its estimate in l − th simulation. *e two
sinusoidal waveform signals are impinging on the ACA, and
the DOA and polarization parameters are set as
(θ1, c1, η1) � (20∘, 9∘, 13∘), (θ2, c2, η2) � (40∘, 29∘, 33∘). *e
array structure of ACA is M � 4, N � 5, and the total
number of physical array elements is 12, which means
subarray 1 is equipped with 5 sensor elements and subarray 2
has 8 sensor elements.

5.1. Scatter Plot of the Proposed Algorithm. Figures 4 and 5
depict the scatter plots of DOA and polarization estimates,
where 100 independent Monte Carlo simulations are per-
formed. Simulation environments are set as follows: the
signal-to-noise ratio (SNR) is 15 dB and the number of
snapshots J is 300. As is exhibited in the figures, DOA
estimates and two polarization estimates are accurately
measured and different parameters are correctly paired. In
addition, it can be noticed that the variances of polarization
estimates are higher than DOA estimates.

5.2. RMSE Performance of Different Algorithms versus SNR.
Figures 6–8 demonstrate the RMSE performance of the
proposed FOC-RD-Capon algorithm versus SNR, where
CRB curve is given as the standard. Snapshots are fixed as
200 while SNR varies from −10 dB to 20 dB. Compared with
the propagator method (PM) [33], estimating signal pa-
rameter via rotational invariance techniques (ESPRIT) [34],
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Figure 4: Scatter plot of DOA and polarization parameter c.
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and parallel factor (PARAFAC) [35] algorithms, the pro-
posed algorithm has the lowest RMSE, and its curve is closest
to the CRB. Meanwhile, the RMSE of all the four algorithms
decreases as the SNR improves, which indicates its influence
to the estimates.

5.3. RMSE Performance of Different Algorithms versus
Snapshots. Figures 9–11 show the RMSE performance
versus snapshots. Similar to Section 5.2, PM, ESPRIT, and
PARAFAC algorithms are used for comparison and CRB
curve is depicted as the standard. With the increase of
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Figure 6: DOA estimation of different algorithms versus SNR.
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Figure 7: c estimation of different algorithms versus SNR.
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snapshots, the estimation accuracy of all the algorithms is
improved. Meanwhile, the proposed FOC-RD-Capon al-
gorithm has the least RMSE whatever snapshots are, which
shows its great performance.

6. Conclusion

In this paper, we make use of the inherent information in
fourth-order cumulant of non-Gaussian signals, proposing a
FOC-RD-Capon algorithm for PSACA. Compared with the
scalar sensor arrays, each sensor element of PSASA is
equipped with a pair of orthogonal electric dipoles to receive
vector signals, which is able to obtain joint DOA and po-
larization estimates. *e proposed algorithm reduces the

search dimension of Capon method from three dimensions
to one dimension, tremendously reducing the calculation
burden. According to the analysis and the numerous sim-
ulations, the effectiveness of the proposed FOC-RD-Capon
algorithm is confirmed.
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0e rapid development of the sensor equipment has promoted the rapid growth of the Internet of 0ings (IoT). 0e IoT has been
widely employed in the multidimensional signal processing and gradually formed the IoT networks. Mobile communication
promotes the wide application of the IoT networks. In this study, the transmit antenna selection (TAS) scheme is employed to
investigate the average symbol error probability (ASEP) performance of mobile IoT networks over the 2-Rayleigh channels. We
first employ moment-generating function (MGF) approach to derive the exact ASEP expressions. We also investigate the outage
probability (OP) performance and derive OP expressions. Employing the deep neural network (DNN), an OP intelligent
prediction algorithm is proposed. 0en, the numerical simulations are conducted to confirm the ASEP and OP performance
analysis. 0e effect of different channel parameters is also analyzed. Compared with Nakagami and Rayleigh channel models, the
2-Rayleigh model has 83.6% and 59.1% increase in ASEP values, respectively. Compared with ELM and RBF models, the DNN
model has 31.7% and 22.5% increase in OP prediction accuracy, respectively.

1. Introduction

In recent years, the information society is facing the
transformation from information age to intelligent age.
Sensor industry is developing towards the direction of in-
telligence, low power consumption, and high precision. 0e
intelligent sensor industry plays an important supporting
role in the development of the Internet of 0ings (IoT) and
gradually forms the IoT networks [1–3]. With the extensive
application of mobile communication, the IoT networks are
widely used in transportation, agriculture, and
manufacturing [4, 5]. 0e perspectives and challenges of
physical Internet employed in the IoT networks were in-
vestigated in [6]. Due to IoT device mobility, the IoT net-
works are facing many challenges. A new secure user
authenticated scheme was employed in the IoTenvironment
to establish a secure transmission process [7]. In the
transmission of the biomedical information, smartphone
was employed to power the electrochemical biosensing
dongle in the IoT networks [8].

Multiple-input multiple-output (MIMO) is an impor-
tant method to obtain the high data-rate in mobile IoT
networks [9]. To improve the system throughput, a Kalman
filtering combining scheme was employed in the MIMO
system [10]. To improve the power efficiency, the robust
beamforming was designed in magnetic MIMO systems
[11]. In [12], a deep neural network-based linear precoding
method was proposed for multiuser MIMO systems, which
can achieve a higher downlink rate. With sparse channels, a
low complexity parameter estimation method was proposed
for MIMO big data communication system [13]. In [14], the
authors considered covert MIMO communications and
investigated the covert capacity with variational distance
constraint. 0e sparse Bayesian learning method was used to
realize the channel estimation in industrial IoT networks
[15].

Transmit antenna selection (TAS) has been widely used
in the MIMO system to reduce complexity [16, 17]. With
deep neural network, the data-driven prediction method was
employed to achieve the TAS in the MIMO system [18]. In
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[19], the exact average symbol error probability (ASEP) and
outage probability (OP) expressions for underwater MIMO
system with TAS were derived. 0e TAS was employed to
improve the ASEP performance of underlay spectrum-
sharing MIMO system in [20]. In [21], using the moment-
generating function (MGF) method, the TAS scheme was
employed to derive the error rate expressions for space-time
line code system.

However, the TAS performance of the IoTnetworks over
the 2-Rayleigh channels is very difficult. Motivated by the
above discussion, employing TAS and SC schemes, the ASEP
and OP performance of the mobile IoT networks is inves-
tigated. 0e main contributions are as follows:

(1) 0eMGF approach was employed to derive the exact
ASEP expressions with TAS, which are used to in-
vestigate the ASEP performance of different mod-
ulation methods.

(2) Employing the CDF-based approach, the OP ex-
pressions are also derived. 0e derived OP results of
the 2-Rayleigh model are more complicated than
those of Nakagami and Rayleigh channel models.
However, they have a high computational
complexity.

(3) Employing the deep neural network (DNN), an OP
intelligent prediction algorithm is proposed in this
study. 0e prediction algorithm can achieve rapid
analysis of OP performance.

(4) 0rough different conditions, the effect of different
channel parameters is analyzed. Compared with
Nakagami and Rayleigh channel models, the 2-
Rayleigh model has 83.6% and 59.1% increase in
ASEP values. Compared with ELM and RBF models,
the DNNmodel has 31.7% and 22.5% increase in OP
prediction accuracy, respectively.

Table 1 shows the notations.

2. The Mobile IoT Networks

In the mobile IoT networks, it has a mobile source (S) and
mobile destination (D). 0ere are K antennas at S and L
antennas at D. Es is the transmit power. Figure 1 shows the
system model.

Firstly, Si transmits the signal. 0e received SNR of Dj is
given as

cij � hij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2 Es

N0
, i � 1, . . . , K, j � 1, . . . , L, (1)

where hij is the channel gain, which follows the 2-Rayleigh
model and N0 is the noise power.

0e average SNR is given as

cij � E hij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓
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� E hi1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑e− (j− 1)W Es

N0
,

(2)

where W is the power attenuation factor.
Karagiannidis et al. [22] give the CDF and PDF of cij as
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(3)

D employs the SC combiner, which can select the best
cij. 0e output SNR ci is

ci � max ci1, ci2, . . . , ciL( 􏼁. (4)

To derive the ASEP and OP results, it needs to obtain the
CDF and PDF of ci. 0e CDF of ci � max(ci1, ci2, . . . , ciL) is

FSC(r) � Pr ci ≤ r􏼂 􏼃 � Pr max ci1, ci2, . . . , ciL( 􏼁≤ r􏼂 􏼃
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(5)

With the derivative of (5), it can obtain the PDF of ci
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S employs the TAS scheme. For K antennas at S, the g is
selected as

g � argmax ci( 􏼁, 1≤ i≤K. (7)

Redha [23] gives the PDF of cg

fcg
(r) � K FSC(r)􏼂 􏼃

K− 1
fSC(r). (8)

So, it can obtain the MGF of cg [21]:

Table 1: Notations.

Notations Designation
PDF Probability density function
MSE Mean square error
SC Selection combining
CDF Cumulative density functions
SNR Signal-to-noise ratio
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3. The ASEP and OP Performance

Yilmaz and Kucur [24] give the ASEP of q-ary PSK:
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1
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Yilmaz and Kucur [24] give the ASEP of q-ary QAM:
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0e OP is

Pout � Pr cg ≤ rth􏽨 􏽩
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where rth is a given threshold.
Employing (3) and (4), it can obtain the OP as

Pout � 􏽙
K
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􏽙
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cij
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4. OP Prediction Algorithm

However, (14) has a high computational complexity. In
order to realize real-time analysis of OP performance, we
propose an OP prediction method based on DNN.

From (13), K, L, rth, andW constitute the DNN input X.
0e DNN output y is Pout.

0e DNN structure is shown in Figure 2. It has six layers,
which are input layer, two hidden layers, ReLU layer, sig-
moid layer, and output layer, respectively.

For the input layer, it has four characteristics. 0en, it
uses full connection to connect with two hidden layers. 0e
hidden layers have 512 and 1024 neurons, respectively.
Meanwhile, we use ReLU and Sigmoid functions after
hidden layer 1 and hidden layer 2, respectively. To make
regression prediction, Sigmoid function is employed to fi-
nally predict the output.

MSE is widely used as an evaluation criterion in deep
learning. So, we also employ the MSE to evaluate the OP
prediction effect. MSE is given as [16, 17]

MSE �
􏽐

S
i�1 ti − yi( 􏼁

2

S
, (14)

where ti is the predicted output and S is the number of the
testing date.

5. Simulation Analysis

Figures 3 and 4 present the impact of W on the ASEP andOP
performance, respectively.0e parameters are in Table 2.We
can obtain that the ASEP andOP performance is degraded as
W increases. For example, when SNR� 16 dB, the W values
are 0.5, 2, and 4, respectively, the ASEP values are 9×10− 4,

Source Destination

Figure 1: 0e TAS/SC model.
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3.9×10− 3, and 8.2×10− 3, respectively. With W increases, the
fading severity is more serious.

Figure 5 presents the ASEP performance comparison.
We can obtain that the ASEP performance of the 2-Rayleigh
model is worse than that of Rayleigh and Nakagami models.
When SNR� 10 dB, the ASEP values are 0.0450, 0.0184, and
0.0074, respectively. Compared with Rayleigh and Nakagami
channel models, the 2-Rayleigh model has a 59.1% and
83.6% increase in ASEP values, respectively. 0is shows that
the communications environment of the 2-Rayleighmodel is
more complex than that of Rayleigh and Nakagami models.

Figure 6 presents the OP performance comparison.
When SNR� 6 dB, the OP values are 0.3214, 0.1902, and
0.0968, respectively. Compared with Nakagami and Rayleigh
channel models, the 2-Rayleigh model has a 69.9% and
49.1% increase in OP values, respectively.

For the DNN, ELM, and RBF algorithms, Figures 7–9
show the prediction results, and Table 3 shows the

simulation parameters. 0e prediction results of the DNN
algorithm are better than ELM and RBF methods. Table 4
shows the MSE comparison. 0e MSE with the DNN
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Figure 3: 0e ASEP performance with different (W).
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Figure 4: 0e OP performance with different (W).

Table 2: Simulation parameters for Figures 3–6.

Parameters Value
E 1
W 0.5, 2, 4
K 2
L 2
cth 5 dB
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Figure 5: 0e ASEP performance comparison with different
channel models.
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algorithm is only 0.0557, which is lower than ELM and RBF
methods. Compared with ELM and RBF models, the DNN
model has 31.7% and 22.5% increase in OP prediction ac-
curacy, respectively.

6. Conclusions

We investigated the ASEP and OP performance of the 2-
Rayleigh model, respectively. 0rough different conditions,
the effect of K, L, and W on the ASEP and OP performance
was analyzed. K or L values increased, and the system
performance was improved. 0e ASEP and OP performance
degraded as W increased. Compared with Nakagami and
Rayleigh channel models, the 2-Rayleigh model had 83.6%
and 59.1% increase in ASEP values, respectively. 0e DNN
model had a better OP prediction accuracy than the ELM
and RBF algorithms.
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*e traditional algorithm performing direction of arrival (DOA) estimation under the background of strong interference and
colored noise has the problems of low estimation accuracy and small measurement targets. Based on the construction of a fourth-
order cumulant (FOC) matrix to suppress colored noise, this paper adopts the extended noise subspace (ENS) algorithm and the
fixed projection blocking (FPB) algorithm to estimate the DOA of weak targets. Firstly, a FOCmatrix of the received signal vector
is established to curb the noise component, and the eigenvalue decomposition is performed. *en, two approaches of weak signal
DOA estimation are proposed. One approach is to merge the space where the strong interference steering vector lies into the noise
subspace to construct an extended noise subspace, and then, the multisignal classification (MUSIC) algorithm is used to obtain the
DOA estimation of the weak signal on the basis of the extended noise subspace. Another approach is to build the orthogonal
projection matrix of the interference subspace as the interference blocking matrix, and the receiving array signal is preprocessed,
and on the basis of it, the eigen decomposition is performed again to obtain the DOA information of the weak signal. Both
algorithms make breakthroughs in the aperture limitation of the traditional algorithm, effectively expand the aperture, and
promote the accuracy of estimation. *e simulation tests the effectiveness of the proposed method.

1. Introduction

With the increasing intricacy of the electromagnetic envi-
ronment, radar detection is interference by more and more
electromagnetic, making it increasingly difficult for radar to
detect targets [1, 2]. Strong electromagnetic interference will
cover up the target’s echo signal or overload the signal
processor and receiver [3, 4]. When the power of the in-
terference signal is greater than that of the echo signal, the
received data is directly used in the estimation of the di-
rection of arrival, and the false peak resulting from strong
interference will be regarded as the peak of the source, which
will give birth to the misinterpretation of the correct angle
[5, 6]. Firstly, at present, one method to address this problem
is signal separation, mainly including the Relaxation (Relax)
algorithm [7] and the CLEAN algorithm [8]. *is type of
algorithm separates the output part of the array of all signals
into multiple data blocks and then determines and removes

the data blocks containing the interference signals according
to the characteristics of the interference signal so as to
achieve target recognition. However, this type of algorithm is
extremely complex. Secondly, the jamming jam method
(JJM) was proposed by Fang et al. and its extended appli-
cation [9, 10]. *e core concept is to use the angle infor-
mation of the signal receiving matrix to establish an
interference blocking matrix to eliminate the interference
signal part of the received signal covariance matrix. How-
ever, the algorithm requires a precise prediction of the di-
rection of interference. In addition, there is an Extended
Noise Subspace algorithm [11]. *e algorithm first con-
structs an extended noise subspace for strong interferences
and noises, and then performs conventional DOA estima-
tion. Dong et al. [12] deduced an interference blocking
method based on modified projection. *e interference
direction is not a necessity in this approach, and it is of more
practical use.
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However, the abovementioned strong interference re-
jection algorithms are characterized by low estimation ac-
curacy and small measurement targets in the direction
finding under the background of nonideal colored noise.
According to related literature, the calculation of high-order
cumulants is blind Gaussian which can achieve aperture
expansion and provides a powerful tool in response to
Gaussian colored noise. Literature [13, 14] accordingly
proposed a variety of FOC-based algorithms, which have
better angle estimation performance under Gaussian colored
noise conditions. Nonetheless, there are still some problems
in terms of angular resolution and complexity. Tufail and
Ahmed [15] used the FOC and ESPRITalgorithm to propose
DOA estimation based on the genetic algorithm (GA) and
obtained the multiple invariant cumulant ESPRITalgorithm,
which has a better angular resolution, but the problem of
excessive complexity remains unsolved. Literature [16] used
the real-valued sparse Bayesian learning method to trans-
form the FOC matrix into a real-valued matrix and simplify
the algorithm through unitary transformation. *e above-
mentioned FOC algorithm has made certain progress in the
field of array signal processing, but the research on the
background of strong interference is scarce.

To tackle the above problems, this paper puts forward the
fourth-order cumulant-expanded noise subspace (FOC-
ENS) algorithm and the fourth-order cumulant-fixed pro-
jection blocking (FOC-FPB) algorithm. One is to use the
FOC matrix to substitute for the traditional covariance
matrix. After eigenvalue decomposition, the space of the
strong interference steering vector is incorporated into the
noise subspace, and thus, the extended noise subspace is
constructed. And the conventionalMUSIC algorithm is used
to obtain the DOA estimation of the weak signal on the basis
of the extended noise subspace. *e other method is to
construct the orthogonal projection matrix of the strong
interference signal subspace as the interference blocking
matrix, and the received array signal is preprocessed. And
the eigenvalue decomposition is performed again to obtain
the noise subspace. Eventually, the MUSIC algorithm is used
to search for spectral peaks to obtain the azimuth angle of the
weak signal. Compared with traditional algorithms, this
algorithm enjoys higher estimation accuracy under a variety
of conditions.

2. Signal Model and FOC Vector Formulation

2.1. Signal Model. Assuming that K far-field narrowband
signals and J strong interference signals Si(t)(i � 1, 2, . . . , J,

. . . , K + J) are incident on a uniform linear array, the in-
cident angle is θi, and if the first J is a strong interference
signal, their power satisfies σ21 > σ22 > · · · > σ2J≫ σ2J+1 > · · · >
σ2K+J. *e distance d of the array elements is half of the signal
wavelength. *e array is composed of M array elements,
each of which is omnidirectional. *e received signal of the
m-th array element of the array at time t can be expressed as

xm(t) � 􏽘

K+J

i�1
si(t)exp j(m − 1)πsin θi( 􏼁􏼈 􏼉 + nm(t), (1)

where nm(t) is the Gaussian colored noise of the m-th el-
ement at time t and si(t) is the complex envelope of the i-th
source.

Assuming that the plane wave propagates along a
straight line, the array response vector corresponding to the
direction can be expressed as

a θi( 􏼁 � 1, exp −jπsinθi( 􏼁, . . . , exp −jπ(M − 1)sinθi( 􏼁􏼂 􏼃
T
,

(2)

among which, (·) T represents the transpose of the matrix.
*e direction matrix is defined as

A(θ) � a θ1( 􏼁, a θ2( 􏼁, . . . , a θJ􏼐 􏼑, . . . , a θK+J􏼐 􏼑􏽨 􏽩. (3)

*is matrix is a M × (K + J) dimensional direction
matrix.

*e vector output of the array element is expressed as

X(t) � A(θ)S(t) + N(t). (4)

In the above formula, S(t) is the (K + J) × 1 dimensional
signal vector and N(t) is the M × 1 dimensional Gaussian
colored noise vector.

2.2. Observation Model Based on FOC Vector. Compared
with the second-order cumulant, the high-order cumulant
can better characterize the signal characteristics and has the
blind Gaussian property.*erefore, in the actual array signal
processing, the fourth-order cumulant is frequently used for
processing.

Regarding a uniform linear array, according to the
symmetric definition of the FOC of the zero-mean stable
random process, the FOC of the array received data is

cum xk1
, xk2

, x
∗
k3

, x
∗
k4

􏼐 􏼑

� E xk1
xk2

x
∗
k3

x
∗
k4

􏼐 􏼑 − E xk1
x
∗
k3

􏼐 􏼑E xk2
x
∗
k4

􏼐 􏼑

− E xk1
x
∗
k4

􏼐 􏼑E xk2
x
∗
k3

􏼐 􏼑 − E xk1
xk2

􏼐 􏼑E x
∗
k3

x
∗
k4

􏼐 􏼑.

(5)

In the above formula, (·)∗ represents conjugate and
cum() represents cumulant.

According to literature [13], it is easy to get

Cx � E X⊗X∗( 􏼁 X⊗X∗( 􏼁
H

􏽮 􏽯−

E X⊗X∗( 􏼁􏼈 􏼉E X⊗X∗( 􏼁
H

􏽮 􏽯 − .

E (XX)
H

􏽮 􏽯⊗E XXH
􏼐 􏼑

∗
􏽮 􏽯

(6)

In the above formula, ⊗ represents the Kronecker
product.

Substituting the signal vector into the above formula can
obtain the FOC matrix of the signal as follows:

Cs � E S⊗ S∗( 􏼁 S⊗ S∗( 􏼁
H

􏽮 􏽯

− E S⊗ S∗( 􏼁􏼈 􏼉E S⊗ S∗( 􏼁
H

􏽮 􏽯

− E (SS)
H

􏽮 􏽯⊗E SSH􏼐 􏼑
∗

􏽮 􏽯,

(7)
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where the signal FOC matrix Cs is a K2 × K2 complex
matrix, and its (i + 1)K + j row and (k − 1)K + l column
elements can be expressed as

cum si, sj, s
∗
k , s
∗
l􏼐 􏼑,∀i, j, k, l ∈ 1, 2, . . . ,K{ }. (8)

With respect to an independent signal source, according
to the nature of the higher-order cumulant, the elements in
the FOC Cs of the signal are not zero if and only if
i � j � k � l, and all other elements are zero, namely,

Cs � cum si, sj, s
∗
k , s
∗
l􏼐 􏼑
≠ 0, i � j � k � l,

� 0, otherwise .
􏼨 (9)

Hence, there are onlyK nonzero elements inCs, and they
are situated at position (k − 1)K + k(k � 1, 2, . . . , K) on the
diagonal of Cs. Now, the rows and columns are deleted with
all zero elements in Cs; Cs is reduced from the K2 × K2

dimensional matrix to the K × K dimensional diagonal
matrix. *en, the simplified signal FOC matrix can be
expressed as

Cs � diag c1, c2, . . . , ck( 􏼁. (10)

In the above formula, ck � cum(sk, sk, s∗k , s∗k ).
It can also be obtained that the FOC matrix of noise is

Cn � E N⊗N∗( 􏼁 N⊗N∗( 􏼁
H

􏽮 􏽯

− E N⊗N∗􏼈 􏼉 · E N⊗N∗( 􏼁
H

􏽮 􏽯

− E N · NH
􏽮 􏽯⊗E N · NH

􏼐 􏼑
∗

􏽮 􏽯.

(11)

In addition, the array steering vector after array ex-
pansion according to the FOC defined above is

b(θ) � a(θ) ⊗ a∗(θ). (12)

*e expanded direction matrix is

B(θ) � b θ1( 􏼁 b θ2( 􏼁 · · · b θk( 􏼁􏼂 􏼃

� a θ1( 􏼁⊗ a∗ θ1( 􏼁a θ2( 􏼁⊗ a∗ θ2( 􏼁 · · · a θK( 􏼁⊗ a∗ θK( 􏼁􏼂 􏼃.

(13)

If each signal source is completely independent, the
following formula holds [17]:

Cx � B(θ)CsB
H

(θ) + Cn . (14)

Assuming that the noise is Gaussian noise, whether it is
white noise or colored noise with unknown spectral char-
acteristics, the theoretical definition by the above formulaCn

should always be a zero matrix. Due to noise deviation from
Gaussian or finite data length calculation accuracy, Cn is a
matrix approaching 0.

3. DOA Estimation Based on FOC Vector

Eigenvalue decomposition is performed on Cx, and its ei-
genvalues are arranged from large to small as λ1, λ2, . . . , λM2 ,
and the corresponding eigenvector is e1, e2, . . . , eM2 , where
the eigenvectors corresponding to the J large eigenvalues of

the matrix Cx are transformed into a fourth-order strong
interference signal subspace [18–20]:

EJ � e1, e2, . . . , eJ􏽨 􏽩. (15)

*e eigenvectors corresponding to the K larger eigen-
values are transformed into a fourth-order signal subspace:

Es � eJ+1, eJ+2, . . . , eJ+K􏽨 􏽩. (16)

*e eigenvectors corresponding to the other M2 − K − J

small eigenvalues are transformed into a fourth-order noise
subspace:

EN � eJ+K+1, eJ+K+2, . . . , eM2􏽨 􏽩. (17)

3.1. Expanded Noise Subspace DOA Estimation. Taking the
MUISC algorithm as an example, the spatial spectrum value
of a certain angle is the reciprocal of the projection modulus
of the steering vector in direction to the projection space,
that is, the noise subspace [21–23].*e peak value represents
that the steering vector at this angle projected in the noise
subspace is smaller than its surrounding angle.*e direction
steering vector is merged into the noise subspace to form an
expanded noise subspace [24]. When the expanded noise
subspace is used for spectrum estimation, there must be no
peak in this direction, and the steering vector of the weak
signal will be in the expanded noise subspace.*e projection
of the steering vector of the weak signal on the extended
noise subspace is a small nonzero value, and its reciprocal
will generate a larger peak so that strong interference can be
curbed, and the DOA of a weak signal can be estimated [11].

Accordingly, the feature vector of the interference signal
can be incorporated into the noise subspace to form an
extended noise subspace, namely,

EJN � e1, e2, . . . , eJ, eJ+K+1, . . . , eM2􏽨 􏽩. (18)

Based on the interference-noise subspace, since the weak
signal steering vector and the interference signal steering
vector are often not orthogonal, in order to ensure the
correct formation of the weak signal peak, the steering vector
is transformed as follows:

c(θ) � I − EJE
H
J􏼐 􏼑b(θ), (19)

where b(θ) is the steering vector after the expansion of the
FOC.

*e conventional MUSIC method is adopted to search
for spectral peaks and estimate the DOA of the weak signal:

P1(θ) �
cH(θ)c(θ)

cH(θ)EJNE
H
JNc(θ)

. (20)

In the above formula, since the total signal subspace is
orthogonal to the noise subspace, there is EH

J EN � 0. If θi is
the incident angle of the weak signal, then

EN I − EJE
H
J􏼐 􏼑a θi( 􏼁 � ENa θi( 􏼁 − 0 � 0. (21)
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So the weak signal steering vector is orthogonal to the
interference-noise subspace after transformation by equa-
tion (20).

Finally, the angle corresponding to the maximum point
obtained through the spatial spectrum is the incident di-
rection of the weak signal.

According to the above analysis, the FOC-ENS algo-
rithm is summarized, as shown in Table 1.

3.2. Modified Projection Blocking Method DOA Estimation.
After the division of the strong interference signal subspace,
signal subspace, and noise subspace according (after for-
mulas (15)–(17)) to the subspace theory, a modified pro-
jection blocking matrix G orthogonal to the strong
interference signal subspace is established [12] as follows:

G � I − EJ EH
J EJ􏼐 􏼑

− 1
EJ. (22)

*e global subspace is performed to get

D � GE � G EJ,ES,EN􏽨 􏽩 � 0J,DK+1,DK+2, . . .DM2􏽨 􏽩. (23)

*at is, the matrix D after the modified projection
blocking transformation is merely related to the weak signal
and noise and has nothing to do with the interference,
achieving the suppression of the strong interference.
*erefore, in order to avoid interference, the transformed
data vector should be

Y � GCx. (24)

*e data covariance matrix after modified projection
transformation is

RY � GERsE
HGH

+ σ2GGH
. (25)

After the modified projection transformation, the strong
interference is blocked, thereby eliminating the influence of the
strong interference on the weak signal. *en, eigenvalue de-
composition is performed on the receiving matrix again to
obtain a new signal subspace ES

′ and noise subspace EN
′. At this

time, ES
′ is only correlated with the weak signal, EN

′ orthogonal
to the steering vector in the direction of the weak signal, and the
spatial spectrum function is used as follows [25–27]:

P2(θ) �
1

bH(θ)EN
′EN
′Hb(θ)

. (26)

Finally, the azimuth angle of the weak signal can be
estimated with the help of the spectral peak search.

According to the above analysis, the algorithm of this
paper is summarized, as depicted in Table 2.

4. Simulation Results and Analysis

Suppose the signal-to-noise ratio of the signal is defined as
10log10(σ2k/σ

2
n), the interference-to-signal ratio is defined as

10log10(σ2j /σ
2
k), and the interference-to-noise ratio is defined

as 10log10(σ2j /σ
2
n). Among them, σ2k is the power of the k-th

signal, σ2j is the power of the strong interference signal, and
σ2n is the noise power.

*e root mean square error (RMSE) is

RMSE �

������������������

1
KN

􏽘

N

i�1
􏽘

K

k�1
θi − θik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑

􏽶
􏽴

. (27)

Among them, N is the number of Monte-Carlo exper-
iments, K is the number of weak signals, and θi and θik are
the true value and estimated value of the azimuth angle of
the i-th signal in the k-th experiment.

4.1. Spatial Spectrum Estimation. Experiment 1 sets the
incident angles of 3 target signals at −30°, 0°, and 30°, re-
spectively; the incident angles of 2 strong interference signals
are −60° and 60°; the number of array elements is 10; the
signal-to-noise ratio (SNR) is 10 dB; the signal-to-interfer-
ence ratio (SIR) is 30 dB; the number of snapshots is 200.*e
advantages of the proposed algorithm in DOA estimation
accuracy are analyzed. Figure 1 illuminates the spatial
spectrum curves of the conventional FOC-MUSIC algo-
rithm, JJM algorithm, FOC-ENS algorithm, and FOC-FPB
algorithm.

Figure 1 illustrates that the conventional FOC-MUSIC
algorithm is inclined to regard the false peak formed by the
strong interference signal as the peak of the real target, thus
failing to estimate the arrival angle of the target. Although
the JJM algorithm can suppress strong interference signals, it
has a mediocre effect on the estimation of the target’s arrival
angle, and it requires precise prediction of the direction of
the strong interference signal. *e FOC-ENS algorithm can
better estimate the direction of arrival of the target. How-
ever, the direction of strong interference will exist during the
estimation of small spikes, which will affect DOA estimation
under certain conditions. *e FOC-FPB algorithm can
determine the target wave arrival angle best.

4.2. Comparative Analysis of Errors of Different Algorithms.
Experiment 2 sets the number of array elements at 10, the
SIR is 30 dB, and the number of Monte Carlo experiments is
500. *e errors of different algorithms in the Monte Carlo
simulation experiment are also analyzed. Figure 2(a) illu-
minates that under the condition of SNR� 10 dB, the
number of snapshots varies from 50 to 500 in step of 50 and
the variation curves of the RMSE of the JJM algorithm, ENS
algorithm, FPB algorithm, FOC-ENS algorithm, and FOC-
FPB algorithm with the number of snapshots. Figure 2(b)
shows the curve of the RMSE of the five algorithms changing
from −10 dB to 10 dB in step of 2 dB under the condition of
200 snapshots.

It can be inferred from Figure 2 that the RMSE of these
methods dwindles as the SNR and the number of snapshots
grow. In a composite background, when the number of
snapshots and the SNR climb to a certain extent, the RMSE
of several algorithms tends to be stable. Due to the sup-
pression of spatial colored noise, the FOC-ENS algorithm
and the FOC-FPB algorithm are better than other algorithms
in low SNR.
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4.3. Comparative Analysis of Errors under Different Numbers
of Interference Sources. Experiment 3 sets the number of
array elements at 10, the SIR is 30 dB, the number of
snapshots is 200, and the number of Monte Carlo experi-
ments is 500. *e RMSE of the proposed algorithm under
different numbers of interference sources is analyzed.
Figure 3(a) shows the SNR of the FOC-ENS algorithm from
−10 dB to 10 dB in step of 2 dB and the curves of the RMSE
with the SNR under the different numbers of interference
sources. Figure 3(b) depicts the FOC-FPB algorithm SNR
changes from −10 dB to 10 dB in step of 2 dB, reflecting the
variation curves of the RMSE with the SNR under the
different numbers of interference sources.

As presented in Figure 3, the two algorithms can sup-
press interference and accurately estimate weak signals in a
composite background. It effectively addresses the defect
that the traditional algorithm cannot accurately estimate the
weak signal under the background of strong interference and
colored noise. As the number of interference sources in-
creases, the direction finding performance of the proposed

algorithm is slightly worse. *e reason for the poor per-
formance may be that the increase in the number of in-
terferences gives rise to the leakage of the interference
subspace, which affects the noise subspace.

4.4. Comparative Analysis of Errors under Different Noise
Backgrounds. Experiment 4 sets the number of array ele-
ments at 10, the SIR is 30 dB, the number of snapshots is 200,
and the number of Monte Carlo experiments is 500. *e
RMSE under different noise backgrounds is analyzed.
Figure 4(a) shows the SNR of the FOC-ENS algorithm from
−10 dB to 10 dB in step of 2 dB and the curves of the RMSE
versus SNR under the two noise backgrounds. Figure 4(b)
illuminates the FOC-FPB algorithm SNR changes from
−10 dB to 10 dB in step of 2 dB, providing the curves of the
RMSE with the SNR under different backgrounds.

Due to the unique blind Gaussian type of the FOC, the
performance of this method under colored noise is similar to
that under white noise.

Table 1: FOC-ENS algorithm basic steps.

FOC-ENS algorithm
Step 1: estimate the data covariance matrix R of the array from the output vector X(t) of the array element
Step 2: perform eigen decomposition on the covariance matrix Cx and arrange the eigenvalues in descending order so as to obtain
interference subspace EJ, signal subspace Es, and noise subspace EN

Step 3: take a set of orthogonal bases EJ determined by interference in the total signal subspace and merge it into the noise subspace EN to
form the interference-noise subspace EJN

Step 4: based on the interference-noise subspace EJN, perform a spectral peak search on P1(θ) to estimate the DOA of the weak signal

Table 2: FOC-FPB algorithm basic steps.

FOC-FPB algorithm
Step 1 and Step 2 are the same as the FOC-ENS algorithm
Step 3: construct a modified projection matrix G orthogonal to the interference steering vector
Step 4: preprocess the received data vector to get Y
Step 5: similarly duplicate Step 2 to do the second eigenvalue decomposition to get the noise subspace EN

′
Step 6: perform a spectral peak search on P2(θ) and estimate the DOA of the weak signal

0

-20

-40

-60

-80

-100

-120

-140

-160

-180

-200
-90 -60 -30 0 30 60 90

DOA (degree)

FOC-MUSIC
JJM

FOC-ENS
FOC-FPB

sp
ec

tr
um

 (d
B)

Figure 1: Comparison of spatial spectrum curves.
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4.5. Algorithm Aperture Expansion Effect. Experiment 5
analyses themultitarget direction finding performance of the
proposed algorithm. Figure 5(a) shows the simulation of the
FOC-ENS algorithm. It sets the incidence angle of 12 target
signals to be uniformly distributed from −50° to 60°, and the
incidence angle of 2 strong interference signals to be 70° and
80°, and other settings are the same as in Section 4.1.
Figure 5(b) is the FOC-FPB simulation. It sets the incident

angle of 11 target signals to be uniformly distributed from
−40° to 60°, and the incident angle of 2 strong interference
signals to be −60° and −50°.

Owing to the aperture expansion characteristics of the
FOC algorithm, the combined ENS algorithm and the FPB
algorithm do not experience aperture loss, and the two
improved algorithms perform well in multiobjective
situations.
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4.6. Time Complexity Analysis. Supposing that the number
of sampling points is N, and the number of angle searches is
Nθ. *e calculation amount of FOC-ENS and FOC-FPB
algorithms mentioned in this paper is mainly the con-
struction of the cumulant matrix, eigenvalue decomposition,
and spectral peak search. *e calculation amount is
O(9NM4 + M6 + NθM

4) and O(9NM4 + 2M6 + NθM
4),

respectively. Compared with the JJM and ENS algorithms
with complexity O(NM4 + M6 + NθM

4) and the FPB al-
gorithm with complexity O(NM4 + 2M6 + NθM

4), the
complexity is slightly higher.

Firstly, the calculation time of the two improved algo-
rithms is simulated, and the number of target signals and the
number of interference sources are set. K represents the

number of target, and J represents the number of inter-
ference sources. Figures 6(a) and 6(b) show the simulation
time comparison of FOC-ENS and FOC-FPB algorithms at
different target numbers and interference sources, respec-
tively. *en, K� 8 and J� 2 are set, and they are compared
with traditional algorithms. Figure 6(c) shows the simulation
time comparison of different algorithms.

It can be seen from Figure 6 that the FOC-ENS and FOC-
FPB algorithms construct FOCmatrix, so the calculation time
is slightly longer than that of the JJM, ENS, and FPB algo-
rithms. FOC-ENS algorithm simulation time is shorter than
the FOC-FPB algorithm in that the FOC-FPB algorithm has
one more feature decomposition than the FOC-ENS algo-
rithm, which enhances the complexity to a certain extent.
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5. Conclusion

To address the direction finding problem under the com-
pound background of strong interference and colored noise,
this paper proposes two algorithms based on FOC. Both
algorithms need to construct a FOC matrix by receiving
signal vectors to suppress noise components and then
perform eigenvalue decomposition on the matrix and divide
the subspace in accordance with the eigenvalues. *e FOC-
ENS algorithm merges the space where the strong inter-
ference steering vector is located into the noise subspace to
construct an extended noise subspace for spectral peak
search. *e FOC-FPB algorithm constructs the orthogonal
projection matrix of the strong interference signal subspace
as the interference blocking matrix, uses the matrix to pre-
transform the global subspace, and then eigen decomposes

again to obtain the target DOA. Compared with the tra-
ditional algorithm, the algorithm proposed in this paper has
a smaller RMSE, and there is no array aperture loss. It
functions in a complex and volatile electromagnetic
environment.
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Figure 6: Comparison of simulation time. (a) Number of different targets. (b) Number of different interference sources. (c) Different
algorithms.
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