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Sensemaking is the active process of constructing a meaningful representation (i.e., making sense) of some complex aspect of
the world. In relation to intelligence analysis, sensemaking is the act of finding and interpreting relevant facts amongst the
sea of incoming reports, images, and intelligence. We present a cognitive model of core information-foraging and hypothesis-
updating sensemaking processes applied to complex spatial probability estimation and decision-making tasks. While the model
was developed in a hybrid symbolic-statistical cognitive architecture, its correspondence to neural frameworks in terms of both
structure and mechanisms provided a direct bridge between rational and neural levels of description. Compared against data from
two participant groups, the model correctly predicted both the presence and degree of four biases: confirmation, anchoring and
adjustment, representativeness, and probability matching. It also favorably predicted human performance in generating probability
distributions across categories, assigning resources based on these distributions, and selecting relevant features given a prior
probability distribution.This model provides a constrained theoretical framework describing cognitive biases as arising from three
interacting factors: the structure of the task environment, the mechanisms and limitations of the cognitive architecture, and the use
of strategies to adapt to the dual constraints of cognition and the environment.

1. Introduction

We present a computational cognitive model, developed in
the ACT-R architecture [1, 2], of several core information-
foraging and hypothesis-updating processes involved in a
complex sensemaking task. Sensemaking [3–6] is a concept
that has been used to define a class of activities and tasks
in which there is an active seeking and processing of infor-
mation to achieve understanding about some state of affairs
in the world. Complex tasks in intelligence analysis and
situation awareness have frequently been cited as examples of
sensemaking [3–5]. Sensemaking, as in tomake sense, implies
an active process to construct a meaningful and functional
representation of some aspects of the world. A variety of
theories and perspectives on sensemaking have been devel-
oped in psychology [3, 4], human-computer interaction [6],
information and library science [7], and in organizational

science [8]. In this paperwe present a cognitivemodel of basic
sensemaking processes for an intelligence analysis task.

A major concern in the intelligence community is the
impact of cognitive biases on the accuracy of analyses [9].
Two prominent biases are confirmation bias, in which an ana-
lyst disproportionately considers information that supports
the current hypothesis, and anchoring bias, inwhich an initial
judgment is insufficiently revised in the face of new evidence.
In the task used in this paper, sensemaking is instantiated in
terms of estimation of probability distributions over hypoth-
esis space. Rational Bayesian optima are defined over those
distributions, with cognitive biases defined as deviations from
those optima. In this framework, confirmation bias can then
be defined as a distribution “peakier” than the Bayesian
optimum, whereas anchoring bias is a flatter-than-rational
distribution reflecting an insufficient adjustment from the
original uniform prior. We present simulation results that
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Figure 1: The Data-Frame model of sensemaking. Image repro-
duced by Klein et al. [4].

exhibit several cognitive biases, including confirmation bias,
anchoring and adjustment, probability matching, and base-
rate neglect. Those biases are not engineered in the model
but rather result from the interaction of the structure and
statistics of the task, the structure and mechanisms of our
cognitive architecture, and the strategies that we select to
perform the former using the latter.

Figure 1 presents the Data/Frame theory of sensemaking
[3]. The Data/Frame theory assumes that meaningful mental
representations called frames define what counts as data and
how those data are structured for mental processing [4].
A similar conceptual model was employed in Pirolli and
Card [5] to perform a cognitive task analysis of intelligence
analysis [10–12]. Frames can be expressed in a variety of
forms including stories, maps, organizational diagrams, or
scripts. Whereas frames define and shape data, new data can
evoke changes to frames. In this framework, sensemaking
can involve elaboration of a frame (e.g., filling in details),
questioning a frame (e.g., due to the detection of anomalies),
or reframing (e.g., rejecting a frame and replacing it with
another). The Data/Frame theory proposes that backward-
looking processes are involved in forming mental models
that explain past events, and forward-looking mental sim-
ulations are involved in predicting how future events will
unfold. We describe how frames can be represented in a
cognitive architecture and how the architectural mechanisms
can implement general sensemaking processes. We then
demonstrate how the dynamics of sensemaking processes in
a cognitive architecture can give rise to cognitive biases in an
emergent way.

The structure of this paper is as follows. Section 2 defines
the AHA (Abducting Hotspots of Activity) experiment con-
sisting of a suite of six sensemaking tasks of increasing com-
plexity. Section 3 outlines our cognitive modeling approach
to sensemaking: it describes the ACT-R architecture, how it
is used to prototype neuralmodels, which cognitive functions
compose the model, and how four cognitive biases can be
accounted for by the model. Section 4 presents the measures
used to assess the cognitive biases in the AHA framework
and then compares human and model results. Section 5
presents a test of the model’s generalization on a data set

that was unavailable at the time of initial model development.
Finally, Section 6 summarizes our account of cognitive biases
centered around themechanisms and limitations of cognitive
architectures, the heuristic that these mechanisms use to
adapt to the structure of the task, and their interaction with
the task environment.

2. The Task Environment

The AHA experiment consists of a series of six tasks
developed as part of the IARPA (Intelligence Advanced
Research Projects Activity), ICArUS (Integrated Cognitive-
neuroscience Architectures for the Understanding of Sense-
making) program, whose goal is to drive the development
of integrated neurocognitive models of heuristic and biases
in decision-making in the context of intelligence analysis.
The AHA tasks can be subdivided into two classes: the first
focusing on learning the statistical patterns of events located
on a map-like layout and generating probability distribu-
tions of category membership based on the spatial location
and frequency of these events (Tasks 1–3) and the second
requiring the application of probabilistic decision rules about
different features displayed on similar map-like layouts in
order to generate and revise probability distributions of
category membership (Tasks 4–6).

The AHA tasks simulate the analysis of artificial geospa-
tial data presented in a manner consistent with and informed
by current intelligence doctrine (Geospatial Intelligence
Basic Doctrine; http://www.fas.org/irp/agency/nga/doctrine
.pdf). The tasks involve the presentation of multiple features
consistent with intelligence data, which are presented in aGIS
(Geographic Information System) display not unlike Google
maps (https://maps.google.com). These features include

HUMINT: information collected by human sources
such as detecting the location of events,
IMINT: information collected from imagery of build-
ings, roads, and terrain elements,
MOVINT: analysis of moving objects such as traffic
density,
SIGINT: analysis of signals and communications,
SOCINT: analysis of social customs and attitudes of
people, communities, and culture.

The display (see Figure 2) includes access to the mission
tutorial and instructions (the top-right corner), a legend
to understand the symbols on the map (the left pane), the
map (the center pane), and participants’ current and past
responses (the right pane).

For Tasks 1–3, the flow of an average trial proceeds
according to the following general outline. First, participants
perceive a series of events (SIGACTs; SIGnals of ACTivity)
labeled according to which category the event belonged.
Categorieswere both color- and shape-coded,with the appro-
priate label {Aqua,Bromine,Citrine, or Diamond} listed in
the legend. After perceiving the series of events, a probe event
is displayed (represented as a “?” on the display). Participants
were asked to generate a center of activity (e.g., prototype)
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Your responsesMission areaIntelligence
received (top);
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Figure 2: The image is a sample of the display in Task 4. To the left is a legend explaining all the symbols on the map (center). To the right
are the probability distributions for the four event categories (both for the current and prior layer of information). The panel across the top
provides step-by-step instructions for participants.

for each category’s events, reflect on how strongly they
believed the probe belonged to each category, and generate
a probability estimate for each category (summed to 100%
across all groups) using the sliders or by incrementing the
counters presented on the right side of the Task interface.
As an aid, the interface automatically normalized the total
probability such that the total probability summed across
each category equaled 100%. Participants were not provided
feedback at this step. Scoring was determined by comparing
participants distributions to an optimal Bayesian solution
(see Section 4 for a detailed description of how the probability
estimate scores are calculated). Using these scores it was
possible to determine certain biases. For instance, partici-
pants’ probability estimates that exhibited lower entropy than
an optimal Bayes model would be considered to exhibit a
confirmation bias, while probability estimates having higher
entropy than an optimal Bayes model would be considered to
exhibit an anchoring bias.

After finalizing their probability estimates, participants
were then asked to allocate resources (using the same right-
side interface as probability estimates) to each category with
the goal of maximizing their resource allocation score, which
was the amount of resources allocated to the correct category.
Participants would receive feedback only on their resource

allocation score. For Tasks 1–3, the resource allocation
response was a forced-choice decision to allocate 100% of
their resources to a single category. If that category produced
the probe event, then the resource allocation score was 100
out of 100 for choosing the correct category, otherwise 0
out of 100 for choosing an incorrect category. Following this
feedback, the next trial commenced.

For Tasks 4–6, the flow of an average trial was structurally
different as intelligence “features,” governed by probabilistic
decision rules (see Table 1), were presented sequentially as
separate layers of information on the display. These Tasks
required reasoning based on rules concerning the relation
of observed evidence to the likelihood of an unknown event
belonging to each of four different categories. Participants
updated their beliefs (i.e., likelihoods) after each layer of
information (i.e., feature) was presented, based on the prob-
abilistic decision rules described in Table 1.

For instance, in Task 4, after determining the center
of activity for each category (similar in mechanism to
Tasks 1–3) and reporting an initial probability estimate, the
SOCINT (SOCial INTelligence) layer would be presented by
displaying color-coded regions on the display representing
each category’s boundary. After reviewing the information
presented by the SOCINT layer, participants were required
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Table 1: Rules for inferring category likelihoods based on knowl-
edge of category centroid location and an observed feature.

Features Rules

HUMINT
If an unknown event occurs, then the likelihood of
the event belonging to a given category decreases as
the distance from the category centroid increases.

IMINT

If an unknown event occurs, then the event is four
times more likely to occur on a Government versus
Military building if it is from category A or B. If an
unknown event occurs, then the event is four times
more likely to occur on aMilitary versus Government
building if it is from category C or D.

MOVINT

If an unknown event occurs, the event is four times
more likely to occur in dense versus sparse traffic if it
is from category A or C. If an unknown event occurs,
the event is four times more likely to occur in sparse
versus dense traffic if it is from category B or D.

SIGINT

If SIGINT on a category reports chatter, then the
likelihood of an event by that category is seven times
as likely as an event by each other category.
If SIGINT on a category reports silence, then the
likelihood of an event by that category is one-third as
likely as an event by each other category.

SOCINT

If an unknown event occurs, then the likelihood of
the event belonging to a given category is twice as
likely if it is within that category’s boundary
(represented as a colored region on the display).

to update their likelihoods based on this information and the
corresponding probabilistic decision rule.

When all the layers have been presented (two layers in
Task 4, five layers in Task 5, and four layers in Task 6),
participants were required to generate a resource allocation.
In these Tasks, the resource allocation response was pro-
duced using the same interface as probability estimates. For
instance, assuming that resources were allocated such that
{A = 40%,B = 30%,C = 20%,D = 10%} and if the probe
belonged to category A (i.e., that A was the “ground truth”),
then the participant would receive a score of 40 out of 100,
whereas if the probe instead belonged to category B, they
would score 30 points.The resource allocation score provided
the means of measuring the probability matching bias. The
optimal solution (assuming one could correctly predict the
right category with over 25% accuracy) would be to always
allocate 100% of one’s resources to the category with the
highest probability. Allocating anything less than that could
be considered an instance of probability matching.

Finally, participants were not allowed to use any assistive
device (e.g., pen, paper, calculator, or other external devices),
as the intent of the Task was tomeasure howwell participants
were able to make rapid probability estimates without any
external aids.

2.1. Task 1. In Task 1, participants predicted the likelihood
that a probe event belonged to either of two categories
{Aqua or Bromine}. Categories were defined by a dispersion
value around a centroid location (e.g., central tendency),
with individual events produced probabilistically by sampling

Figure 3: Sample output fromTask 1. Participants must generate the
likelihood that a probe event (denoted by the “?”) was produced by
each category and then perform a forced-choice resource allocation
to maximize their trial score. Likelihoods are based on the distance
from each category’s centroid and the frequency of events. For
instance, Aqua has a higher likelihood because its centroid is closer
to the probe and it has a higher frequency (i.e., more events) than
Bromine.

in a Gaussian window using a similar function as seen in
prototype distortion methodologies from dot pattern catego-
rization studies [13]. The interface was presented spatially on
a computer screen (see Figure 3) in a 100 × 100 grid pattern
(representing 30 square miles; grid not shown).

Participants were instructed to learn about each cate-
gory’s tendencies according to three features: the category’s
center of activity (i.e., centroid), the dispersion associated
with each category’s events, and the frequency of events
for each category. Using these three features, participants
determined the likelihood that the probe event belonged to
each category.

A trial consisted of 10 events, with 9 events presented
sequentially at various locations about the interface, with par-
ticipants required to click “next” after perceiving each event.
The 10th event was the probe event, which was presented as
a “?” on the interface. Each participant completed 10 trials,
with events accumulating across trials such that 100 events
were present on the interface by the end of the task.

After perceiving the probe event, participants were
instructed to generate likelihoods that the probe event
belonged to each category based on all the events that they
have seen not just the recent events from the current trial.
These likelihoods were expressed on a scale from 1 to 99% for
each category and summing to 100% across both categories.
If necessary, the interface would automatically normalize all
likelihoods into probabilities summing to 100%.

Finally, participants entered a forced-choice resource
allocation response, analogous to a measure of certainty.
Resource allocation was a forced-choice decision to allocate
100% of their resources to a single category. If that category
produced the probe event, then the participant would receive
feedback that was either 100 out of 100 for choosing the
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Figure 4: Sample output from Task 2. Participants must generate
the likelihood that a probe event (denoted by the “?”) was produced
by each category and then do a forced-choice resource allocation to
maximize their trial score. In addition, participants had to draw a 2-
to-1 boundary for each category whose boundary encapsulates 2/3
of that category’s events and whose center represents the center of
activity for that category. Likelihoods are based on the distance from
each category’s centroid and the frequency of events. For instance,
Citrine has the highest likelihood because it has a higher frequency
than the other categories, while Diamond has a marginally higher
likelihood than Aqua and Bromine because it has the closest
distance.

correct category or 0 out of 100 for choosing an incorrect
category. Following this feedback, the next trial commenced.

2.2. Task 2. In Task 2, participants predicted the likeli-
hood that a probe event belonged to either of four cate-
gories {Aqua,Bromine,Citrine, or Diamond}. The interface
and procedure were similar to Task 1, with the following
differences. A trial consisted of 20 events, with 19 events pre-
sented sequentially at various locations about the interface.
The 20th event was the probe event, which was presented as a
“?” on the interface. Each participant completed 5 trials, with
events accumulating across trials such that 100 events were
present on the interface by the end of the task. Participants
were further required to estimate each category’s centroid and
dispersion by drawing a circle for each category representing
a 2-to-1 boundary with 2/3 of the category’s events inside
the circle and 1/3 outside (see Figure 4). Participants clicked
with the mouse to set the centroid and dragged out with
the mouse to capture the 2-to-1 boundary, releasing the
mouse to set the position. It was possible to adjust both the
position and dispersion for each category after their initial
set. Estimating category centroids and dispersion preceded
generating likelihoods.

Finally, participants entered a similar forced-choice
resource allocation response as in Task 1. Resource alloca-
tion was a forced-choice decision to allocate 100% of their
resources to a single category. If that category produced the
probe event, then the participant would receive feedback that
was either 100 out of 100 for choosing the correct category or

Figure 5: Sample output from Task 3. Participants must generate
the likelihood that a probe event (denoted by the “?”) was produced
by each category and then do a forced-choice resource allocation
to maximize their trial score. Likelihoods are based on the road
distance from each category’s centroid and the frequency of events.
For instance, Citrine has the highest likelihood because it is the
closest category.

0 of out 100 for choosing an incorrect category. Following this
feedback, the next trial commenced.

2.3. Task 3. In Task 3, participants predicted the likelihood
that a probe event belonged to either of four categories
similar to Task 2, with the following differences. Instead of the
interface instantiating a blank grid, it displayed a network of
roads. Events were only placed along roads, and participants
were instructed to estimate distance along roads rather than
“as the crow flies.” In addition, participants no longer had
to draw the 2-to-1 boundaries but instead only identify the
location of the category centroid.

A trial consisted of 20 events, with 19 events presented
sequentially at various locations about the interface.The 20th
event was the probe event, which was presented as a “?”
on the interface. Each participant completed 5 trials, with
events accumulating across trials such that 100 events were
present on the interface by the end of the task. Participants
were further required to estimate each category’s centroid by
placing a circle for each category (see Figure 5). Participants
clicked with the mouse to set the centroid. It was possible to
adjust the position for each category after the initial set. Based
on the requirement to judge road distance, Task 3 (and Task
4) involved additional visual problem solving strategies (e.g.,
spatial path planning and curve tracing) [14].

Finally, participants entered a similar forced-choice
resource allocation response as in Task 2. Resource alloca-
tion was a forced-choice decision to allocate 100% of their
resources to a single category. If that category produced the
probe event, then the participant would receive feedback that
was either 100 out of 100 for choosing the correct category or
0 out of 100 for choosing an incorrect category. Following this
feedback, the next trial commenced.
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Figure 6: Sample output from Task 4. Participants must generate
the likelihood that a probe event (denoted by the Diamond) was
produced by each category (1–4), first by the HUMINT layer
(distance from category centroids to probe event) and then by the
SOCINT layer (likelihoods are doubled for the category in whose
region the probe event falls). Finally, participants allocate resources
tomaximize their trial score. For instance, category 4 has the highest
likelihood because it is the closest category and the probe falls within
its boundary.

2.4. Task 4. Beginning with Task 4, instead of gathering
information from a sequence of events, participants instead
generated and updated likelihoods after being presented with
a number of features as separate layers of information. These
features were governed by probabilistic decision rules [15]
described previously in Table 1. In Task 4, two features
were presented to participants in a fixed order. The first
layer was HUMINT (HUMan INTelligence), which revealed
the location of the category centroid for each category. The
second layer was SOCINT (SOCial INTelligence), which
revealed color-coded regions on the display representing each
category’s boundary (see Figure 6). If a probe event occurred
in a given category’s boundary, then the probability that the
probe belonged to that category was twice as high as the event
belonging to any of the other categories.

Participants were instructed that the feature layers pro-
vided “clues” revealing intelligence data (called INTs) and the
probabilistic decisions rules (called PROBs rules) provided
means to interpret INTs. Participants were instructed to refer
to the PROBs handbook (based on Table 1; see the appendix
for the complete handbook), which was accessible by clicking
on the particular layer in the legend on the left side of the
display or by reviewing the mission tutorial in the top-right
corner. They were further instructed that each feature layer
was independent of other layers.

The same simulated geospatial display from Task 3 was
used in Task 4; however, instead of a trial consisting of a series
of individual events, a trial instead consisted of reasoning
from category centroids to a probe event by updating likeli-
hoods after each new feature was revealed. A trial consisted of
two features presented in sequence (HUMINT and SOCINT,
resp.). The HUMINT layer revealed the centroids for each

category along with the probe event. Participants reported
likelihoods for each category {1, 2, 3, or 4} based on the road
distance between the probe and each category’s centroid.
Similar to previous tasks, likelihoods were automatically nor-
malized to a probability distribution (i.e., summing to 100%).
After this initial distribution was input, the SOCINT feature
was presented by breaking the display down into four colored
regions representing probabilistic category boundaries. Using
these boundaries, participants applied the SOCINT rule and
updated their probability distribution.

Once their revised probability distribution was entered,
participants were required to generate a resource allocation.
The resource allocation response was produced using the
same interface as probability estimates. For instance, assum-
ing that resources were allocated such that {1 = 40%, 2 =
30%, 3 = 20%, 4 = 10%} and if the probe belonged to category
1 (i.e., that 1 was the “ground truth”), then the participant
would receive a score of 40 out of 100, whereas if the probe
instead belonged to category 2, they would score 30 points.
After completing their resource allocation, the display was
reset and a new trial started.

Participants completed 10 trials. Unlike Tasks 1–3, each
trial was presented on a unique road network with all four
category locations presented in a unique location.

2.5. Task 5. In Task 5, all five features were revealed to partici-
pants in each trial, with theHUMINT feature always revealed
first (and the rest presented in a randomorder).Thus, partici-
pants began each trial with each category’s centroid presented
on the interface and the Bayesian optimal probability distri-
bution already input on the right-side response panel (see
Figure 7).The goal of Task 5 was to examine how participants
fused multiple layers of information together. Unlike Task
4, the correct probability distribution for HUMINT was
provided to participants. This was done both to reduce the
variance in initial probabilities (due to the noisiness of spatial
road distance judgments) and also to reduce participant
fatigue. After perceiving HUMINT and being provided the
correct probability distribution, each of the four remaining
features (SOCINT, IMINT, MOVINT, and SIGINT on a
single category) was revealed in a random order. After each
feature was revealed, participants updated their probability
distribution based on applying the corresponding decision
rules. Similar to Task 4, after the final feature was revealed,
participants allocated resources.

The same methodology was used as for Task 4, only with
five layers of features presented instead of two. Participants
reported likelihoods for each category {Aqua, Bromine,
Citrine, or Diamond} based on the information revealed
by the feature at each layer according to the rules of the
PROBs handbook. Likelihoods were automatically normal-
ized to a probability distribution (i.e., summing to 100%).
After HUMINT was revealed, four other features (SOCINT,
MOVINT, IMINT, and SIGINT) were revealed in random
order. The SOCINT feature was presented by breaking the
display down into four colored regions representing proba-
bilistic category boundaries. The IMINT (IMagery INTelli-
gence) feature was presented by showing either a government
or military building at the probe location. The MOVINT
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Figure 7: Sample output fromTask 5. Participantsmust generate the
likelihood that a probe event (denoted by the probe event “1”) was
produced by each category. The HUMINT layer is always displayed
first, and the initial probability distribution based on road distance
is provided to participants. Participants must update this initial
distribution as new features are revealed. In the current example, the
likelihoods of categories A and C are increased due to theMOVINT
layer revealing sparse traffic at the probe event location (see PROBs
rules in Table 1).

(MOVement INTelligence) feature was presented by showing
either sparse or dense traffic at the probe location. Finally,
the SIGINT (SIGnal INTelligence) feature was presented
by showing either the presence or absence of chatter for a
specific category at the probe location. After each feature was
revealed, participants applied the relevant PROBs rule and
updated their probability distribution.

After all feature layers were revealed and probability
distributions were revised, participants were required to gen-
erate a resource allocation. The resource allocation response
was produced using the same interface as in Task 4. After
completing their resource allocation, the display was reset
and a new trial started. Participants completed 10 trials. Note
that participants needed to update likelihoods four times per
trial (thus 40 times in total) in addition to a single resource
allocation per trial (10 total). Similar to Task 4, each trial was
presented on a unique road network with all four category
locations presented in a unique location.

2.6. Task 6. In Task 6, participants were able to choose three
of four possible features to be revealed, in addition to the
order in which they are revealed (see Figure 8). The goal of
Task 6 was to determine participants’ choices and ordering in
selecting features (which we refer to as layer selection). This
methodology determined whether participants were biased
to pick features whose corresponding decision rule con-
firmed their leading hypothesis or possiblymaximized poten-
tial information gain. Participants were instructed to choose
layers thatmaximized information at each step to increase the
likelihood of a single category being responsible for the event.

As for Task 5, a trial began by perceiving the HUMINT
layer and being provided the correct probability distribution.

Figure 8: Sample output fromTask 6. Participantsmust generate the
likelihood that a probe event (denoted by the probe event “1”) was
produced by each category. The HUMINT layer is always displayed
first, and the initial probability distribution based on road distance
is provided to participants. Participants must update this initial
distribution as new features are revealed. In the current example, the
likelihoods of categories A and C are increased due to theMOVINT
layer revealing sparse traffic at the probe event location.

Participants must then choose a feature to be revealed
(SOCINT, IMINT, MOVINT, or SIGINT on a single cat-
egory). When participants chose the SIGINT layer, they
needed to further specify which category they were inspect-
ing (listening for chatter). After the chosen feature was
revealed, participants updated their probability distribution
based on applying the corresponding decision rules. This
process was repeated twice more with different features, for
a total of three layers being chosen. Participants must update
category likelihoods {Aqua,Bromine,Citrine, or Diamond}
after each layer was revealed based on the information pro-
vided by the corresponding feature at each layer according to
the rules of the PROBs handbook. As in the other tasks, like-
lihoods were automatically normalized to sum to 100% across
categories. Note that with only three layer selection choices,
participants were not able to reveal one feature on each trial.

After participants completed the process of choosing
a feature and updating their likelihoods for each of three
iterations, participants were required to generate a resource
allocation. The resource allocation response was produced
using the same interface as in Tasks 4-5. After completing
their resource allocation, the display was reset and a new
trial commenced. Participants completed 10 trials. Note that,
with three layer selections, participants actually updated
probabilities 30 times (3 times per trial), in addition to
allocating resources once for each trial. Similar to Tasks 4-
5, each trial was presented on a unique road network with all
four category locations presented in a unique location.

3. An ACT-R Model of Sensemaking

3.1. Overview of ACT-R. Our aim has been to develop a
functional model of several core information-foraging and
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hypothesis-updating processes involved in sensemaking. We
do this by developing ACT-R models to specify how ele-
mentary cognitive modules and processes are marshaled to
produce observed sensemaking behavior in a set of complex
geospatial intelligence Tasks. These tasks involve an iterative
process of obtaining new evidence from available sources
and using that evidence to update hypotheses about potential
outcomes. One purpose of the ACT-R functional model is
to provide a roadmap of the interaction and sequencing of
neural modules in producing task performance (see next
section). A second purpose is to identify and understand a
core set mechanisms for producing cognitive biases observed
in the selection and weighting of evidence in information
foraging (e.g., confirmation bias).

TheACT-R architecture (see Figure 9) is organized as a set
of modules, each devoted to processing a particular kind of
information, which are integrated and coordinated through
a centralized production system module. Each module is
assumed to access and deposit information into buffers
associated with the module, and the central production
system can only respond to the contents of the buffers not the
internal encapsulated processing of the modules. Each mod-
ule, including the production module, has been correlated
with activation in particular brain locations [1]. For instance,
the visual module (occipital cortex and others) and visual
buffers (parietal cortex) keep track of objects and locations in
the visual field. The manual module (motor cortex; cerebel-
lum) and manual buffer (motor cortex) are associated with
control of the hands. The declarative module (temporal lobe;
hippocampus) and retrieval buffer (ventrolateral prefrontal
cortex) are associated with the retrieval and awareness of
information from long-term declarative memory. The goal
buffer (dorsolateral prefrontal cortex) keeps track of the
goals and internal state of the system in problem solving.
Finally, the production system (basal ganglia) is associated
with matching the contents of module buffers and coordinat-
ing their activity. The production includes components for
pattern matching (striatum), conflict resolution (pallidum),
and execution (thalamus). A production rule can be thought
of as a formal specification of the flow of information from
buffered information in the cortex to the basal ganglia and
back again [16].

The declarative memory module and production system
module, respectively, store and retrieve information that
corresponds to declarative knowledge and procedural knowl-
edge [17]. Declarative knowledge is the kind of knowledge
that a person can attend to, reflect upon, andusually articulate
in some way (e.g., by declaring it verbally or by gesture).
Procedural knowledge consists of the skills we display in our
behavior, generally without conscious awareness. Declarative
knowledge in ACT-R is represented formally in terms of
chunks [18, 19]. The information in the declarative mem-
ory module corresponds to personal episodic and semantic
knowledge that promotes long-term coherence in behavior.
In this sense a chunk is like a data frame, integrating
information available in a common context at a particular
point in time in a single representational structure. The goal
module stores and retrieves information that represents the
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Figure 9:ACT-R functions as a production system architecturewith
multiple modules corresponding to different kinds of perception,
action, and cognitive information stores. Modules have been identi-
fied with specific brain regions. In addition to those shown above,
the Imaginal module has been associated with posterior parietal
activation.

internal intention and problem solving state of the system and
provides local coherence to behavior.

Chunks are retrieved from long-termdeclarativememory
by an activation process (see Table 2 for a list of retrieval
mechanisms in ACT-R). Each chunk has a base-level acti-
vation that reflects its recency and frequency of occurrence.
Activation spreads from the current focus of attention,
including goals, through associations among chunks in
declarative memory. These associations are built up from
experience, and they reflect how chunks cooccur in cognitive
processing. The spread of activation from one cognitive
structure to another is determined by weighting values on
the associations among chunks. These weights determine the
rate of activation flow among chunks. Chunks are compared
to the desired retrieval pattern using a partial matching
mechanism that subtracts from the activation of a chunk
its degree of mismatch to the desired pattern, additively for
each component of the pattern and corresponding chunk
value. Finally, noise is added to chunk activations to make
retrieval a probabilistic process governed by a Boltzmann
(softmax) distribution.While themost active chunk is usually
retrieved, a blending process [20] can also be applied which
returns a derived output reflecting the similarity between the
values of the content of all chunks, weighted by their retrieval
probabilities reflecting their activations and partial-matching
scores. This blending process will be used intensively in
the model since it provides both a tractable way to learn
to perform decisions in continuous domains such as the
probability spaces of the AHA framework and a direct
abstraction to the storage and retrieval of information in
neural models (see next section).
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Table 2: The list of sub-symbolic mechanisms in the ACT-R architecture.

Mechanism Equation Description

Activation 𝐴
𝑖
= 𝐵
𝑖
+ 𝑆
𝑖
+ 𝑃
𝑖
+ 𝜀
𝑖

𝐵
𝑖
: base-level activation reflects the recency and frequency of use of

chunk i
𝑆
𝑖
: spreading activation reflects the effect that buffer contents have on

the retrieval process
𝑃
𝑖
: partial matching reflects the degree to which the chunk matches

the request
𝜀
𝑖
: noise value includes both a transient and (optional) permanent

components (permanent component not used by the integrated
model)

Base level 𝐵
𝑖
= ln(

𝑛

∑
𝑗=1

𝑡
−𝑑

𝑗
) + 𝛽

𝑖

𝑛: the number of presentations for chunk i
𝑡
𝑗
: the time since the jth presentation
𝑑: a decay rate (not used by the integrated model)
𝛽
𝑖
: a constant offset (not used by the integrated model)

Spreading activation
𝑆
𝑖
= ∑
𝑘

∑
𝑗

𝑊
𝑘𝑗
𝑆
𝑗𝑖
,

𝑘: weight of buffers summed over are all of the buffers in the model
𝑗: weight of chunks which are in the slots of the chunk in buffer k
𝑊
𝑘𝑗
: amount of activation from sources j in buffer k

𝑆
𝑗𝑖
: strength of association from sources j to chunk i

𝑆
𝑗𝑖
= 𝑆 − ln (fan

𝑗𝑖
)

𝑆: the maximum associative strength (set at 4 in the model)
fan
𝑗𝑖
: a measure of how many chunks are associated with chunk j

Partial matching 𝑃
𝑖
= ∑
𝑘

𝑃𝑀
𝑘𝑖

𝑃: match scale parameter (set at 2) which reflects the weight given to
the similarity
𝑀
𝑘𝑖
: similarity between the value k in the retrieval specification and

the value in the corresponding slot of chunk i
The default range is from 0 to −1 with 0 being the most similar and −1
being the largest difference

Declarative retrievals 𝑃
𝑖
=

𝑒
𝐴𝑖/𝑠

∑
𝑗
𝑒𝐴𝑗/𝑠

𝑃
𝑖
: the probability that chunk 𝑖 will be recalled
𝐴
𝑖
: activation strength of chunk 𝑖

∑𝐴
𝑗
: activation strength of all of eligible chunks 𝑗

𝑠: chunk activation noise

Blended retrievals 𝑉 = min∑
𝑖

𝑃
𝑖
(1 − Sim

𝑖𝑗
)
2 𝑃

𝑖
: probability from declarative retrieval

Sim
𝑖𝑗
: similarity between compromise value 𝑗 and actual value 𝑖

Utility learning

𝑈
𝑖
(𝑛) = 𝑈

𝑖
(𝑛 − 1) + 𝛼 [𝑅

𝑖
(𝑛) − 𝑈

𝑖
(𝑛 − 1)]

𝑈
𝑖
(𝑛 − 1): utility of production i after its 𝑛 − 1st application

𝑅
𝑖
(𝑛): reward production received for its nth application

𝑈
𝑖
(𝑛): utility of production i after its nth application

𝑃
𝑖
=

𝑒
𝑈𝑖/𝑠

∑
𝑗
𝑒𝑈𝑗/𝑠

𝑃
𝑖
: probability that production i will be selected
𝑈
𝑖
: expected utility of the production determined by the utility

equation above
𝑈
𝑗
: the expected utility of the competing productions j

Production rules are used to represent procedural knowl-
edge inACT-R.That is, they specify procedures that represent
and apply cognitive skill (know-how) in the current context
and how to retrieve and modify information in the buffers
and transfer it to other modules. In ACT-R, each production
rule has conditions that specify structures that arematched in
buffers corresponding to information from the externalworld
or other internal modules. Each production rule has actions
that specify changes to be made to the buffers.

ACT-R uses a mix of parallel and serial processing. Mod-
ules may process information in parallel with one another.
So, for instance, the visual modules and the motor modules
may both operate at the same time. However, there are two
serial bottlenecks in process. First, only one production may
be executed during a cycle. Second, each module is limited
to placing a single chunk in a buffer. In general, multiple
production rules can be applied at any point. Production

utilities, learned using a reinforcement learning scheme, are
used to select the single rule that fires. As for declarative
memory retrieval, production selection is a probabilistic
process.

Cognitive model development in ACT-R [21] is in part
derived from the rational analysis of the task and information
structures in the external environment (e.g., the design of
the tasks being simulated or the structure of a graphical user
interface), the constraints of the ACT-R architecture, and
guidelines frompreviousmodels of similar tasks. A successful
design pattern in specifying cognitive process sequencing in
ACT-R [21] is to decompose a complex task to the level of
unit tasks [22]. Card et al. [22] suggested that unit tasks
control immediate behavior.Unit tasks empirically take about
10 seconds. To an approximation, unit tasks are where “the
rubber of rationality meets the mechanistic road.” To an
approximation, the structure of behavior above the unit task
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level largely reflects a rational structuring of the task within
the constraints of the environment, whereas the structure
within and below the unit task level reflects cognitive and
biological mechanisms, in accordance with Newell’s bands
of cognition [23]. Accordingly, in ACT-R, unit tasks are
implemented by specific goal types that control productions
that represent the cognitive skills for solving those tasks.

ACT-R has been the basis for several decades of research
on learning complex cognitive tasks such as algebra and
programming [24, 25]. In general, the long-run outcome of
learning such tasks is a large set of highly situation-specific
productions whose application is sharply tuned by ACT-R
utility mechanisms (a form of reinforcement learning). How-
ever, it is also generally assumed that achieving such expert
levels of learning requires 1000s of hours of experience. We
assume that the participants in the AHA tasks will not have
the opportunity to achieve such levels of expertise. Instead,
we hypothesize that participants will rely on direct recogni-
tion or recall of relevant experience from declarativememory
to guide their thinking or, failing that, will heuristically inter-
pret and deliberate through the rules and evidence provided
in the challenge tasks. This compute-versus-retrieve process
is another design pattern that typically structures ACT-R
models [21]. The notion that learners have a general-purpose
mechanism whereby situation-action-outcome observations
are stored and retrieved as chunks in ACT-R declarative
memory is derived from instance-based learning theory
(IBLT) [26, 27]. Gonzalez et al. [26] present arguments
that IBLT is particularly pertinent to modeling naturalistic
decisionmaking in complex dynamic situations, andmany of
those arguments would transfer to making the case that IBLT
is appropriate for sensemaking.

Relevant to the Bayesian inspiration for the AHA
tasks, ACT-R’s subsymbolic activation formula approximates
Bayesian inference by framing activation as log-likelihoods,
base-level activation (𝐵

𝑖
) as the prior, the sum of spreading

activation and partial matching as the likelihood adjustment
factor(s), and the final chunk activation (𝐴

𝑖
) as the posterior.

The retrieved chunk has an activation that satisfies the
maximum likelihood equation. ACT-R provides constraint
to the Bayesian framework through the activation equation
and production system. The calculation of base levels (i.e.,
priors) occurs within both neurally and behaviorally con-
sistent equations (see Table 2) providing for behaviorally
relevantmemory effects like recency and frequencywhile also
providing a constrainedmechanism for obtaining priors (i.e.,
driven by experience).

In addition, the limitations on matching in the produc-
tion system provide constraints to the Bayesian hypothesis
space and, as a result, the kinds of inferences that can be
made. For instance, there are constraints on the kinds of
matching that can be accomplished (e.g., no disjunction,
matching only to specific chunk types within buffers), and,
while user-specified productions can be task-constrained, the
production system can generate novel productions (through
proceduralization of declarative knowledge) using produc-
tion compilation. In addition, the choice of which production
to fire (conflict resolution) also constrains which chunks

(i.e., hypotheses) will be recalled (limiting the hypothesis
space) and are also subject to learning via production utilities.

It has been argued that ACT-R’s numerous parameters
do not provide sufficient constraint on modeling endeav-
ors. However, the use of community and research-justified
default values, the practice of removing parameters by
developing more automatized mechanisms, and the devel-
opment of common modeling paradigms—such as instance-
based learning theory—mitigate these criticisms by limiting
degrees of freedom in the architecture and thus constraining
the kinds of models that can be developed and encouraging
their integration.

3.2. ACT-R Prototyping for Neural Models. ACT-R can be
used in a prototyping role for neural models such as
Emergent, which uses the Leabra learning rule [28]. In ACT-
R, models can be quickly developed and tested, and the
results of thesemodels then help informmodeling efforts and
direct training strategies in Emergentmodels [29, 30]. ACT-R
models can be created quickly because ACT-Rmodels accept
predominantly functional specifications, yet they produce
neurally relevant results. The ACT-R architecture is also flex-
ible enough that innovations made in neurocomputational
models can be implemented (to a degree of abstraction)
within new ACT-R modules [31].

There are several points of contact between ACT-R and
Emergent, the most tangible of which is a commitment to
neural localization of architectural constructs in both archi-
tectures (see Figure 9). In both architectures a central control
module located in the basal ganglia collects inputs from a
variety of cortical areas and outputs primarily to the frontal
cortex, which maintains task relevant information [16, 32].
Additionally, both include a dedicated declarative/episodic
memory system in the hippocampus and associated cortical
structures. Lastly, both account for sensory and motor pro-
cessing in the posterior cortex.

The architectures differ in that the brain regions are
explicitly modeled in Emergent, whereas they are implicit
in ACT-R. In ACT-R the basal ganglia are associated with
the production system; the frontal cortex with the goal
module; the parietal cortex with the imaginal module; the
hippocampus with the declarative memory module; and
finally the posterior cortices with the manual, vocal, aural,
and vision modules. This compatibility of ACT-R and Emer-
gent has been realized elsewhere by the development of
SAL (Synthesis of ACT-R and Leabra/Emergent), a hybrid
architecture that combinesACT-R andEmergent and exploits
the relative strengths of each [33]. Thus, ACT-R connects to
the underlying neural theory of Emergent and can provide
meaningful guidance to the development of neural models of
complex tasks, such as sensemaking.

In effect, ACT-Rmodels provide a high-level specification
of the information flows that will take place in the neural
model between component regions implemented in Emer-
gent. Since ACT-R models have been targeted at precisely
this level of description, they can provide for just the right
level of abstraction while ignoring many implementational
details (e.g., number of connections) at the neural level.
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Conceptually, the ACT-R architecture provides a bridge
between the rational Bayesian level and the detailed neural
level. In terms of Marr [34] levels of analysis, the Bayesian
characterization of the task solutions is situated at the com-
putational level, describing the computations that should be
performed without specifying how. AnACT-R account of the
tasks is at the algorithmic/representational level, specifying
what representations are created, whichmechanisms are used
to manipulate them, and which structure constrains both
representations and processes. Finally, a neural account is sit-
uated at the physical/implementational level, fully specifying
all the details of how the computations are to be carried out in
the brain. Thus, just as in Marr’s analysis it would not make
sense to try to bridge directly the highest and lowest levels;
a functional cognitive architecture such as ACT-R provides
a critical link between abstract computational specifications
such as Bayesian rational norms and highly detailed neural
mechanisms and representations.

Moreover, ACT-R does not just provide any intermediate
level of abstraction between computational and implemen-
tational levels in a broad modular sense. Rather, just as the
ACT-R mechanisms have formal Bayesian underpinnings,
they also have a direct correspondence to neural mecha-
nisms and representations. The fundamental characteristics
of modern neural modeling frameworks are distributed
representations, local learning rules, and training of networks
from sets of input-output instances [35].

Distributed representations are captured in ACT-R
through similarities between chunks (and other sets of values
such as number magnitudes) that can be thought of as
corresponding to the dotproduct between distributed repre-
sentations of the corresponding chunks. The generalization
process operates over distributed representations in neural
networks, effectively matching the learned weights from the
input units resulting in a unit containing the representation of
the current input.This is implemented in ACT-R using a par-
tial matching mechanism that combines a chunk’s activation
during the memory retrieval process with its degree of match
to the requested pattern as determined by the similarities
between chunk contents and pattern [36].

Local learning rules in neural networks are used to
adjust weights between units based on information flowing
through the network. The base-level and associative learning
mechanisms in ACT-R perform a similar function in the
same manner. Both have Bayesian underpinnings [37] but
also direct correspondence to neural mechanisms. Base-level
learning is used to adjust the activation of a chunk based
on its history of use, especially its frequency and recency
of access. This corresponds to learning the bias of a unit
in a network, determining its initial activation which is
added to inputs from other units. Associative learning adjusts
the strengths of association between chunks to reflect their
degree of coactivation. While the original formulation was
Bayesian in nature, a new characterization makes the link
to Hebbian-like learning explicit, in particular introducing
the same positive-negative learning phases as found in many
connectionist learning algorithms including Leabra [31].

Neural models are created by a combination of modeler-
designed structure and training that adjusts the network’s

weights in response to external inputs. The instance-based
learning approach in ACT-R similarly combines a repre-
sentational structure provided by the modeler with content
acquired from experience in the form of chunks that repre-
sent individual problem instances. The set of chunks stored
in declarative memory as a result can be thought of as the
equivalent to the set of training instances given to the neural
network. While the network compiles those instances into
weights during training, ACT-R can instead dynamically
blend those chunks together during memory retrieval to
produce an aggregate response that reflects the consensus of
all chunks, weighted by their probability of retrieval reflecting
the activation processes described above [20].

Thus, ACT-R models can be used to prototype neural
models because they share both a common structure of infor-
mation flow as well as a direct correspondence from themore
abstract (hence tractable) representations andmechanisms at
the symbolic/subsymbolic level and those at the neural level.

3.3. Cognitive Functions Engaged in the AHA Tasks. The
integrated ACT-R model of the AHA tasks has been used to
prototype many cognitive effects in neural models including
generating category prototypes of centroids from SIGACT
events (centroid generation) [29], spatial path planning
along road networks [30], adjusting probabilities based on
incoming information [29], choosing how many resources
to allocate given a set of probabilities and prior experience
[29], and selecting additional intelligence layers (see Table 3
for an overview). The model’s output compared favorably
with human behavioral data and provides a comprehensive
explanation for the origins of cognitive biases in the AHA
framework, most prominently the anchoring and adjustment
bias. All the functions described below were integrated in a
singleACT-Rmodel that performed all 6AHA tasks using the
same parameters. That model was learned across trials and
tasks. We will describe later in details how its performance
in the later trials of a task can depend critically upon its
experience in the earlier trials (even just the first trial), in
particular leading to a distinct conservatism bias. Similarly,
its performance in the later tasks depends upon its experience
in earlier tasks, leading directly to probability matching bias
in resource allocation.

The model performs the task in the same manner as
human subjects. Instructions such as the probabilistic deci-
sion rules are represented in declarative memory for later
retrieval when needed. The model perceives the events,
represents them in the imaginal buffer, and then stores
them in declarative memory where they influence future
judgments. In Tasks 1–3, the model uses those past events
in memory to generate the category centroid when given a
probe. In Tasks 3-4, the model programmatically parses the
map to represent the road network declaratively and then
uses that declarative representation to generate paths and
estimate road distances. In all tasks, probability adjustment
is performed using the same instance-basedmechanism,with
experience from earlier tasks accumulated inmemory for use
in later tasks. Resource allocation is also performed in all
tasks using the same instance-based approach, with results
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Table 3: Overview of cognitive functions of ACT-R model.

Cognitive function Overview of operation

Centroid generation
Tasks: 1–3

Buffers implicated: blending, imaginal, and goal
Biases instantiated: base-rate neglect, anchoring and adjustment
The model generates a category centroid by aggregating overall of the perceived events (SIGACTs) in memory
via the blended memory retrieval mechanism. Judgments are based on generating a centroid-of-centroids by
performing a blended retrieval over all previously generated centroids, resulting to a tendency to anchor to early
judgments. Because there is an equal number of centroids per category, this mechanism explicitly neglects base
rate

Path planning
Tasks: 3-4

Buffers implicated: retrieval, imaginal, and goal
Biases instantiated: anchoring and adjustment
The model parses the roads into a set of intersections and road segments. The model hill-climbs by starting at
the category centroid and appends contiguous road segments until the probe event is reached. Road segment
lengths are perceived veridically; however, when recalled the lengths are influenced by bottom-up perceptual
mechanisms (e.g., curve complexity and length) simulated by a power law with an exponent less than unity. This
leads to underestimation of longer and curvier segments, resulting in a tendency to anchor when perceiving
long segments

Probability adjustment
Tasks: 1–6

Buffers implicated: blending, imaginal, and goal
Biases instantiated: anchoring in weighing evidence, confirmation bias
The model represents the prior probability and multiplicative factor rule and then attempts to estimate the
correct posterior by performing a blended retrieval over similar chunks in memory in a form of instance-based
learning. The natural tendency towards regression to the mean in blended retrievals leads to anchoring bias in
higher probabilities and confirmation bias in lower probabilities. The partial matching mechanism is used to
allow for matches between the prior and similar values in DM

Resource allocation
Tasks: 1–6

Buffers implicated: blending, imaginal, and goal
Biases instantiated: probability matching
The model takes the probability assigned to a category and then estimates an expected outcome by performing a
blended retrieval using the probability as a cue. The outcome value of the retrieved chunk is the expected
outcome for the trial. Next, an additional blended retrieval is performed based on both the probability and
expected outcome, whose output is the resources allocation
After feedback, the model stores the leading category probability, the resources allocated, and the actual
outcome of the trial. Up to two counterfactuals are learned, representing what would have happened if a
winner-take-all or pure probability matching resources allocation had occurred. Negative feedback on forced
winner-take-all assignments in Tasks 1–3 leads to probability matching in Tasks 4–6

Layer selection
Task: 4–6

Buffers implicated: blending, goal
Biases instantiated: confirmation bias
In Task 6, the model uses partial matching to find chunks representing past layer-selection experiences that are
similar to the current situation (the distribution of probabilities over hypotheses). If that retrieval succeeds, the
model attempts to estimate the utility of each potential layer choice by performing a blended retrieval over the
utilities of past layer-choice outcomes in similar situations. The layer choice that has the highest utility is
selected. If the model fails to retrieve past experiences similar to the current situations, it performs a
“look-ahead” search by calculating the expected utility for some feature layers. The number of moves mentally
searched will not often be exhaustive
The blended retrieval mechanism will tend to average the utility of different feature layers based on prior
experiences from Tasks 4 and 5 (where feature layers were provided to participants), in addition to prior trials
on Task 6

from forced-choice selections in Tasks 1–3 fundamentally
affecting choices in later Tasks 4–6. Finally, layer selection in
Task 6 uses experiences in Tasks 4-5 to generate estimates of
information gain and select the most promising layer. Thus
the integrated model brings to bear constraints from all tasks
and functions.

3.3.1. Centroid Generation. The ACT-R integrated model
generates category centroids (i.e., the prototype or central
tendency of the events) in Tasks 1–3 by aggregating overall of
the representations of events (e.g., spatial-context frames) in
memory via the blended memory retrieval mechanism. The

goal buffer maintains task-relevant top-down information
while the blending buffer creates/updates centroids from
both the set of perceived SIGACTs to date and prior created
centroids. Centroid generation approximates a stochastic
least-MSE derived from distance and based on the 2D Carte-
sian coordinates of the individual SIGACTs. Specifically, the
mismatch penalty (𝑃

𝑖
) used in the blended retrieval is a linear

difference:

𝑃
𝑖
=

2 ⋅
󵄨󵄨󵄨󵄨𝑑1 − 𝑑2

󵄨󵄨󵄨󵄨

∗max range∗
, (1)

where 𝑑 is the perceived distance and ∗max range∗ is the
size of the display (100 units).The imaginal buffer (correlated
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with parietal activity) is used to hold blended chunks before
being committed to declarative memory. When centroids
are generated directly from SIGACTs, the blending process
reflects a disproportionate influence of the most recent
events given their higher base-level activation. A strategy
to combat this recency bias consisted of generating a final
response by performing a blended retrieval over the current
and past centroids, thereby giving more weight to earlier
SIGACTs.This is because the influence of earlier centroids has
been compounded over the subsequent blended retrievals,
essentially factoring earlier SIGACTs into more centroids.
This second-order blended retrieval is done for each category
across their prior existing centroids, which we refer to as the
generation of a centroid-of-centroids.This blending over cen-
troids effectively implements an anchoring-and-adjustment
process where each new centroid estimate is a combination
of the previous ones together with the new evidence. A
fundamental difference with traditional implementation of
anchoring-and-adjustment heuristic is that this process is
entirely constrained by the architectural mechanisms (espe-
cially blending) and does not involve additional degrees of
freedom. Moreover, because there are an equal number of
centroid chunks (one per category created after each trial),
there is no effect of category base rate on the model’s later
probability judgments, even though the base rate for each
category is implicitly available in the model based on the
number of recallable events.

3.3.2. Path Planning. The ACT-R model uses the declarative
memory and visual modules to implement path planning,
which simulate many of the parietal functionalities that were
later implemented in a Leabra model [30]. Two examples
include

(1) perceptually segmenting the road network so that
the model only attends to task-relevant perceptual
elements,

(2) implementing visual curve tracing to model the psy-
chophysics of how humans estimate curved roads.

The model segments the road network in Tasks 3-4 into
smaller elements and then focuses perceptual processes such
as curve tracing, distance estimation, and path planning on
these smaller road segments [38]. Specifically, the model
identifies the intersections of different roads as highly salient
HUMINT features and then splits the road network into road
segments consisting of two intersections (as the ends of the
segment), the general direction of the road and the length of
road. Intersections are generally represented as a particular
location on the display in Cartesian𝑋-𝑌 coordinates.

For each trial, the probe location is also represented as a
local HUMINT feature, and, in Task 3, the individual events
are represented as local HUMINT features for the purposes
of calculating category centroids. At the end of each trial,
the probe is functionally removed from the path planning
model, although a memory trace of the previous location still
remains in declarative memory.

We have implemented a multistrategy hill-climber to
perform path planning. The model starts with a category

centroid and appends contiguous road segments until the
probe location is reached (i.e., the model is generating
and updating a spatial-context frame). The path planning
“decision-making” is a function of ACT-R’s partial matching.
In partial matching, a similarity is computed between a
source object and all target objects that fit a set of matching
criteria. This similarity score is weighted by the mismatch
penalty scaling factor. The hill-climber matches across mul-
tiple values such as segment length and remaining distance
to probe location. In general, for all road segments adjoining
the currently retrieved intersection or category centroid,
the model will tend to pick the segment where the next
intersection is nearest to the probe. This is repeated until the
segment with the probe location is retrieved.These strategies
are not necessarily explicit but are instead meant to simulate
the cognitive weights of different perceptual factors (e.g.,
distance, direction, and length) guiding attentional processes.
The partial matching function generates probabilities from
distances and calculates similarity between distances using
the same mismatch penalty as in Tasks 1 and 2.

Human performance data on mental curve tracing [14]
show that participants take longer to mentally trace along a
sharper curve than a relatively narrower curve.This relation is
roughly linear (with increased underestimation of total curve
length at farther curves) and holds along the range of visual
sizes of roads that were seen in the AHA tasks.This modeling
assumption is drawn from the large body of the literature on
visuospatial representation and mental scanning [39]. When
road network is parsed, a perceived length is assigned to
each road segment. This length is more or less represented
veridically in declarative memory. The dissociation between
a veridical perceived magnitude of distance and a postpro-
cessed cognitive distance estimate is consistent with prior
literature [40]. We represent a cognitive distance estimate
using Stevens’ Power Law [41]. Stevens’ Power Law is a well-
studied relationship between themagnitude of a stimulus and
its perceived intensity and serves as a simple yet powerful
abstraction of many low-level visual processes not currently
modeled in ACT-R.

The function uses the ratio of “as the cow walks” distance
to “as the crow flies” distance to create an estimate of curve
complexity [41].The higher the curve complexity, the curvier
the road. To represent the relative underestimation of dis-
tance for curvier segments, this ratio is raised to an exponent
of .82 [41–43]. The effect of this parameter is that, for each
unit increase in veridical distance, the perceived distance is
increased by a lesser extent. The closer the exponent to 1,
the more veridical the perception, and the closer to zero,
the more the distance will be underestimated. This value for
curve complexity is then multiplied by a factor representing
straight-line distance estimation performance (1.02) [43–45]:

𝐷 = {1.02 (
CowWalk
CrowFlies

) + CrowFlies }
.82

, (2)

where 𝐷 is the cognitive judgment of distance for the road
segment, CowWalk is the veridical perception of the curvature
of the road, and CrowFlies is the veridical perception of the
Euclidean distance between the source and target locations.
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Figure 10: Results from an ACT-R model of probability adjustment with linear (a) and ratio (b) similarities.

The factor of 1.02 represents a slight overestimation of smaller
straight-line distances. Similar to the exponent, any factor
above unity represents an overestimation of distance and any
factor below unity represents an underestimation of distance.

3.3.3. Probability Adjustment. Lebiere [20] proposed amodel
of cognitive arithmetic that used blended retrieval of arith-
metic facts to generate estimates of answers without explicit
computations. The model was driven by number of sim-
ilarities that correspond to distributed representations for
number magnitudes in the neural model and more generally
to our sense of numbers [46]. It used partial matching to
match facts related to the problem and blended retrievals
to merge them together and derive an aggregate estimated
answer. The model reproduced a number of characteristics
of the distribution of errors in elementary school children,
including both table and nontable errors, error gradients
around the correct answer, higher correct percentage for tie
problems, and, most relevant here, a skew toward under-
estimating answers, a bias consistent with anchoring and
adjustment processes.

To leverage this approach for probability adjustment, the
ACT-R model’s memory was populated with a range of facts
consisting of triplets: an initial probability, an adjustment
factor, and the resulting probability. These triplets form the
building blocks of the implementation of instance-based
learning theory [47] and correspond roughly to the notion of
a decision frame [3, 4]. In the AHA framework, the factor is
set by the explicit rules of the task (e.g., an event in a category
boundary is twice as likely to belong to that category). The
model is then seeded with a set of chunks that correspond
to a range of initial probabilities and an adjustment factor
together with the posterior probability that would result from
multiplying the initial probability by the adjustment factor,

then normalizing it. When the model is asked to estimate the
resulting probability for a given prior and multiplying factor,
it simply performs a blended retrieval specifying prior and
factor and outputs the posterior probability that represents
the blended consensus of the seeded chunks. Figure 10
displays systematic results of this process, averaged over a
thousand runs, given the variations in answers resulting from
activation noise in the retrieval process. When provided
with linear similarities between probabilities (and factors),
the primary effect is an underestimation of the adjusted
probability for much of the initial probability range, with an
overestimate on the lower end of the range, especially for
initial values close to 0.The latter effect is largely a result of the
linear form of the number similarities function. While linear
similarities are simple, they fail to scale both to values near
zero and to large values.

A better estimate of similarities in neural representations
of numbers is a ratio function, as reflected in single cell
recordings [1]. This increases dissimilarities of the numbers
near zero and scales up to arbitrarily large numbers. When
using a ratio similarity function, the effects from the lin-
ear similarity function are preserved, but the substantial
overestimate for the lower end of the probability range is
considerably reduced. While the magnitude of the biases
can be modulated somewhat by architectural parameters
such as the mismatch penalty (scaling the similarities) or
the activation noise (controlling the stochasticity of memory
retrieval), the effects themselves are a priori predictions of
the architecture, in particular its theoretical constraints on
memory retrieval.

Particular to the integrated model of the AHA tasks, the
mismatch penalty (𝑃

𝑖
) was computed as a linear difference:

𝑃
𝑖
= 2 ∗

󵄨󵄨󵄨󵄨󵄨
𝑀
𝑘
−𝑀
𝑗

󵄨󵄨󵄨󵄨󵄨
, (3)
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where 𝑀
𝑘
is the possible target probability and 𝑀

𝑗
is the

probability in the blended retrieval specification. As will be
described below, this linear differencematches extremely well
to human behavioral data.

The results of the ACT-R mechanism for probability
adjustment provided a benchmark against which neural
models were evaluated and were used to generate training
instances for the neural model which had already embodied
the proper bias. In our opinion, this constitutes a novel way
to use functional models to quickly prototype and interpret
neural models.

3.3.4. Resource Allocation. The resource allocation mecha-
nism in the model makes use of the same instance-based
learning paradigm as the probability adjustment mechanism.
This unified mechanism has no explicit strategies but instead
learns to allocate resources according to the outcomes of
past decisions. The model generates a resource allocation
distribution by focusing on the leading category and deter-
mining how many resources to allocate to that category. The
remaining resources are divided amongst the remaining three
categories in proportion to their assigned probabilities. This
instance-based learning not only occurs during Tasks 4–6 but
also inTasks 1–3 for forced-choice allocations. Because of this,
the model has some prior knowledge to draw upon in Task 4
when it first has the opportunity to select howmany resources
to assign to the leading category.

As mentioned above, this instance-based model has
the same structure as the model of probability adjustment.
Representation of a trial instance consists of three parts: a
decision context (in this case, the probability of the leading
category), the decision itself (i.e., the resource allocation to
the leading category), and the outcome of the decision (i.e.,
the payoff resulting from the match of that allocation to the
ground truth of the identity of the responsible category).This
representation is natural because all these pieces of infor-
mation are available during a resource allocation instance
and can plausibly be bound together in episodic memory.
However, the problem is how to leverage it tomake decisions.

Decision-making (choice)models based on this instance-
based learning approach iterate through a small number of
possible decisions, generating outcome expectancies from
the match of context and decision, and then choose the
decision with the highest expected outcome [47, 48]. Control
models apply the reverse logic: given the current context and
a goal (outcome) state, they match context and outcome to
generate the expected action (usually a control value from a
continuous domain) that will get the state closest to the goal
[49, 50]. However, our problem does not fit either paradigm:
unlike choice problems, it does not involve a small number
of discrete actions but rather a range of possible allocation
values, and, unlike control problems, there is no known goal
state (expected outcome) to be reached.

Our model’s control logic takes a more complex hybrid
approach, involving two steps of access to experiences in
declarative memory rather than a single one. The first step
consists of generating an expected outcome weighted over
the available decisions given the current context. The second

step will then generate the decision that most likely leads
to that outcome given to the context. Note that this process
is not guaranteed to generate optimal decisions, and indeed
people do not. Rather, it represents a parsimonious way to
leverage our memory of past decisions in this paradigm that
still provides functional behavior. A significant theoretical
achievement of our approach is that it unifies control models
and choice models in a single decision-making paradigm.

When determining how many resources to apply to the
lead category, the model initially has only the probability
assigned to that category. The first step is to estimate an
expected outcome. This is done by performing a blended
retrieval on chunks representing past resource allocation
decisions using the probability as a cue. The outcome value
of the retrieved chunk is the expected outcome for the
trial. Next, based on the probability assigned to the leading
category and the expected outcome, an additional blended
retrieval is performed. The partial matching mechanism is
leveraged to allow for nonperfect matches to contribute to
the estimation of expected outcome and resource quantity.
The resource allocation value of this second blended allocate
chunk is the quantity of resources that the model assigns to
the leading category. After feedback is received, the model
learns a resource allocation decision chunk that associates
the leading category probability, the quantity of resources
assigned to the leading category, and the actual outcome of
the trial (i.e., the resource allocation score for that trial).
Additionally, up to two counterfactual chunks are committed
to declarative memory. The counterfactuals represent what
would have happened if a winner-take-all resource assign-
ment had been applied and what would have happened if
a pure probability-matched resource assignment (i.e., using
the same values as the final probabilities) had been applied.
The actual nature of the counterfactual assignments is not
important; what is essential is to give the model a broad
enough set of experience representing not only the choices
made but also those that could have been made.

The advantage of this approach is that the model is not
forced to choose between a discrete set of strategies such
as winner-take-all or probability matching; rather, various
strategies could emerge from instance-based learning. By
priming the model with the winner-take-all and probability
matching strategies (essentially the boundary conditions), it
is possible for the model to learn any strategy in between
them, such as a tendency to more heavily weigh the leading
candidate (referred to as PM+), or even suboptimal strategies
such as choosing 25% for each of the four categories (assuring
a score of 25 on the trial) if the model is unlucky enough
to receive enough negative feedback so as to encourage risk
aversion [47].

3.3.5. Layer Selection. Layer selection in Task 6 depends
on learning the utilities of layer choices in Tasks 4-5 and
relies on four processes: instance-based learning (similar to
probability adjustment and resource allocationmechanisms),
difference reduction heuristic, reinforcement learning, and
cost-satisfaction. During Tasks 4–6 participants were asked
to update probability distributions based on the outcome of
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each layer (i.e., feature and relevant decision rule). In Tasks 4-
5, participants experienced 20 instances of the SOCINT rule
and 10 instances each of the IMINT, MOVINT, and SIGINT
rules. They also had a variable number of instances from
Task 6 based on their layer selections. Some of the layers
and outcomes might support their preferred hypothesis, but
some of them might not. Based on the results of each layer’s
outcome, the gain towards the goal of identifying a single
category might vary, and those experiences affect future layer
selection behavior through reinforcement learning.

A rational Bayesian approach to Tasks 4–6 might involve
the computation of expected information gains (EIGs) com-
puted overall possible outcomes that might result from the
selection of a feature layer. Under such a rational strategy,
SIGINT and SOCINT layers would require more calculation
cost than IMINT andMOVINT. In particular, the calculation
of EIG for SIGINT requires considering four categories with
two outcomes each, and the calculation of EIG for SOCINT
requires four outcomes; however, the calculation of EIG
for an IMINT or MOVINT layer requires consideration of
only two outcomes. We assume participants might consider
the cognitive costs of exploring layer selection outcomes in
preferring certain layer selection.

We chose to use a difference reduction heuristic (i.e., hill-
climbing) because we assume that an average person is not
able to compute and maintain the expected information gain
for all layers. A hill-climbing heuristic enables participants
to focus on achieving states that are closer to an ideal goal
state with the same requirement for explicit representation,
because all that needs to be represented is the difference
between the current state and a preferred (i.e., goal) state.

In Task 6, all prior instances were used to perform
evaluations of layer selection. First, the model attends to the
current problem state, including the distribution of likelihood
of attacks, as represented in the goal (Prefrontal Cortex;
PFC) and imaginal (Parietal Cortex; PC) buffers. Then, the
model attempts to retrieve a declarative memory chunk
(Hippocampus/Medial Temporal Lobe; HC/MTL) which
encodes situation-action-outcome-utility experiences of past
layer selections. This mechanism relies on partial matching
to retrieve the chunks that best match the current goal
situation and then on blending to estimate the utility of layer-
selectionmoves based on past utilities. If the retrieval request
fails, then themodel computes possible layer-selectionmoves
(i.e., it performs a look-ahead search) using a difference-
reduction problem-solving heuristic. In difference reduction,
for each mentally simulated layer-selection action, the model
simulates and evaluates the utility of the outcome (with
some likelihood of being inaccurate). Then the model stores
a situation-action-outcome-utility chunk for each mentally
simulated move. It is assumed that the number of moves
mentally searched will not often be exhaustive.This approach
is similar to the use of counterfactuals in the resource
allocation model.

TheACT-Rmodel of Task 6 relies on the use of declarative
chunks that represent past Tasks 4, 5, and 6 experiences. This
is intended to capture a learning process whereby participants
have attended to a current probability distribution, chosen a
layer, revised their estimates of the hypotheses, and finally

assessed the utility of the layer selection they just made.
The model assumes that chunks are formed from these
experiences each representing the specific situation (proba-
bility distribution over groups), selected intelligent layer, and
observed intelligence outcome and information utility, where
the utilities are computed by the weighted distancemetric (𝑑)
below:

𝑑 = ∑
𝑖∈Hypotheses

𝑝
𝑖
(1 − 𝑝

𝑖
) , (4)

where, each𝑝 is a posterior probability of a group attack based
on rational calculation, and zero is the optimum. The ACT-
R model uses this weighted distance function and assumes
that the participant’s goal is to achieve certainty on one of the
hypotheses (i.e., 𝑝

𝑖
= 1).

At a future layer selection point, a production rule will
request a blended/partial matching retrieval from declar-
ative memory based on the current situation (probability
distribution over possible attacking groups). ACT-R will use
a blended retrieval mechanism to partially match against
previous experience chunks and then blend across the stored
information utilities for each of the available intelligence layer
choices. For each layer, this blending over past experience
of the information utilities will produce a kind of expected
information utility for each type of intelligence for specific
situations. Finally, the model compares the expected utility
of different intelligence layers and selects the one with the
highest utility.

The ACT-R model performs reinforcement learning
throughout Tasks 4 to 6. After updating probability distribu-
tion based on a layer and its outcomes, the model evaluates
whether it has gained or lost information by comparing
the entropy of the prior distribution with the posterior
distribution. If it has gained information, the production for
the current layer receives a reward if it has lost, it receives a
punishment. This reinforcement learning enables the model
to acquire a preference order for the selection of intelligence
layers, and this preference order list was used to determine
which layer should be explored first in the beginning of the
layer selection process.

3.4. Cognitive Biases Addressed. Anchoring and confirmation
biases have been long studied in cognitive psychology and
the intelligence communities [9, 51–55]. As we have already
mentioned, these biases emerge in several ways in the ACT-R
model of AHA tasks (see Table 4 for an overview). In general,
our approach accounts for three general sources of biases.

The first source of bias is the architecture itself, both
in terms of mechanisms and limitations. In our model, a
primary mechanistic source of bias is the ACT-R blending
mechanism that is used to make decisions by drawing
on instances of similar past problems. While it provides
a powerful way of aggregating knowledge in an efficient
manner, its consensus-driven logic tends to yield a regression
to themean that often (but not always) results in an anchoring
bias. Limitations of the architecture such as workingmemory
capacity and attentional bottlenecks can lead to ignoring
some information that can result in biases such as base-rate
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Table 4: Source of cognitive biases in the ACT-R integrated model of the AHA tasks.

Cognitive bias Mechanism Source of bias in functional model (ACT-R)

Confirmation bias

Attentional effect (seeking) Feature selection behavior such as selecting SIGINT too early. Blended
retrieval during layer choice using stored utilities.

Overscaling in rule application
(weighing)

Bias in blended retrieval of mappings from likelihood factor to revised
probability (low value). Weighted-distance utilities used for layer selections
shows confirmation bias in weighing.

Anchoring in learning
Underscaling in rule application Bias in blended retrieval of mappings from likelihood factor to revised

probability (high values)

Centroid computation Inertia from centroid estimates to consolidated values to DM. Productions
encoding thresholds in distance for centroid updating

Representativeness Base-rate neglect
Base rate not a cue for matching to a category. Compute distance to category
centroid rather than cloud of events. Blended retrievals ignore number of
events

Probability matching Resource allocation
Use of instance-based learning leads to tendency of risk aversion against
winner-take-all instances, leading to the tendency for the blended retrieval of
instances between pure probability matching and winner-take-all

neglect (ignoring background frequencies when making a
judgment of conditional probabilities).

The second source of bias is the content residing in
the architecture, most prominent strategies in the form of
procedural knowledge. Strategies can often lead to biases
when they take the form of heuristic that attempt to conserve
a limited resource, such as only updating a subset of the
probabilities in order to save time and effort, or overcome
a built-in architectural bias, such as the centroid-of-centroid
strategy intended to combat the recency effect in chunk
activations that in turn leads to an anchoring bias.

The third and final source of biases is the environment
itself, more specifically its interaction with the decision-
maker. For instance, the normalization functionality in the
experimental interface can lead to anchoring bias if it results
in a double normalization. Also, the feedback provided by
the environment, or lack thereof, can lead to the emergence
or persistence of biases. For instance, the conservatism bias
that is often seen in the generation of probabilities could
persist because subjects do not receive direct feedback as to
the accuracy of their estimates.

In the next subsections we discuss in detail the sources of
the various biases observed.

3.4.1. Anchoring and Adjustment. Anchoring is a cognitive
bias that occurswhen individuals establish some beliefs based
on some initial evidence and then overly rely on this initial
decision in their weighting of new evidence [54]. Human
beings tend to anchor on some estimates or hypotheses, and
subsequent estimates tend to be adjustments that are influ-
enced by the initial anchor point—they tend to behave as if
they have an anchoring + adjustment heuristic. Adjustments
tend to be insufficient in the sense that they overweight the
initial estimates and underweight new evidence.

Anchoring and adjustment in learning (AL) can occur in
the first three tasks due to the nature of the task, specifically
the iterative generation of the centroids of each category
across each trial. For each trial, participants estimate a
centroid for the events, perceived to date by that category,

then observe a new set of events and issue a revised estimate.
This process of issuing an initial judgment and then revising
might lead to anchoring and adjustment processes. Thus,
in Tasks 1–3, anchoring can occur due to the centroid-of-
centroid strategy to prevent being overly sensitive to themost
recent events.

Tasks 4–6 can also elicit anchoring biases. Anchoring
bias in weighing evidence might be found when participants
revise their belief probabilities after selecting and interpreting
a particular feature. The estimates of belief probabilities that
were set prior to the new feature evidence could act as an
anchor, and the revised (posterior) belief probabilities could
be insufficiently adjusted to reflect the new feature (i.e., when
compared to some normative standards). Insufficient adjust-
ment may happen because the blended retrieval mechanism
tends to have a bias towards the mean.

The model also updates only the probabilities corre-
sponding to the positive outcomes of the decision rules.
For example, if it is discovered that the probe occurs on a
major road, the model would update the probabilities for
categories A and B and neglect to adjust downward the
probabilities for categories C and D. This neglect is assumed
to result from a desire to save labor by relying on the interface
normalization function and by the difficulty of carrying out
the normalization computations mentally. In turn, this is a
cause of an underestimation of probabilities (anchoring) that
results from the normalization of the probabilities in the
interface.

3.4.2. Confirmation Bias. Confirmation bias is typically
defined as the interpretation of evidence in ways that are
partial to existing beliefs, expectations, or a hypothesis in
hand [53], the tendency for people to seek information and
cues that confirm the tentatively held hypothesis or belief
and not seek (or discount) those that support an opposite
conclusion or belief [56], or the seeking of information
considered supportive of favored beliefs [53]. Studies [57–59]
have found evidence of confirmation bias in tasks involving
intelligence analysis, and there is a common assumption that
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many intelligence failures are the result of confirmation bias
in particular [9, 60].

Confirmation bias in weighing evidence might occur in
the probability adjustment process in Tasks 4–6. For example,
we have seen that the probability adjustment process applied
to small probability values sometimes resulted in over-
adjustment. Certain strategies for probability adjustment
might also result in confirmation bias. When applying a
particular feature, such as IMINT (which supports two
hypotheses), participants may only apply the adjustment to
the preferred hypothesis while neglecting the other category
that is also supported by evidence or weight the evidence too
strongly in favor of the preferred category.

Confirmation bias can also occur in the evidence seeking
process in Task 6 as the participants might select intelligence
layers that maximize information gains about the current
preferred category. For instance, when applying the IMINT
and MOVINT rules, one could only apply the adjustment
to the preferred hypothesis (assuming it is one of the two
receiving favorable evidence from that layer) while neglecting
the other categories also supported by the evidence. This
strategic decision could reflect the desire both to minimize
effort and to maximize information gain.

A significant difference in layer selection features is the
SIGINT feature, which requires the selection of one particular
category to investigate. If that feature is applied to the leading
category and chatter is detected, then the category likelihood
gains considerable weight (by a factor of 7). However, if no
chatter is detected, then the category likelihood is strongly
downgraded, which throws considerable uncertainty over the
decision process.Thus the decision to select the SIGINT layer
too early (before a strong candidate has been isolated) or
to apply it to strictly confirm the leading category rather
than either confirm or invalidate a close second might be
construed as a form of confirmation bias in layer selection.

3.4.3. Base-Rate Neglect. Base-rate neglect is an error that
occurs when the conditional probability of a hypothesis is
assessed without taking into account the prior background
frequency of the hypothesis’ evidence. Base-rate neglect can
come about from three sources.

(1) Higher task difficulties and more complex environ-
ments can lead to base-rate neglect due to the sheer
volume of stimuli to remember. To reduce memory
load, some features may be abstracted.

(2) Related to the above, there can be base-rate neglect
due to architectural constraints. For instance, short-
termmemory is generally seen to have a capacity of 7±
2 chunks of information available. Oncemore chunks
of information need to be recalled, some information
may either be abstracted or discarded.

(3) Finally, there can be explicit knowledge-level strategic
choices made from an analysis of (1) and (2) above.

The strategic choice (3) of the ACT-R model leads to
base-rate neglect in calculating probabilities for Tasks 1–
3. In particular, the fact that the ACT-R model generates

probabilities based on category centroids leads to base-
rate neglect. This is because base-rate information is not
directly encoded within the category centroid chunk. The
information is still available within the individual SIGACTs
stored in the model, but it is not used directly in generating
probabilities.

3.4.4. Probability Matching. We endeavored to develop a
model that leveraged subsymbolic mechanisms that often
give rise naturally to probability matching phenomena [61].
Subsymbolic mechanisms in ACT-R combine statistical mea-
sures of quality (chunk activation for memory retrieval,
production utility for procedural selection) with a stochastic
selection process, resulting in behavior that tends to select a
given option proportionately to its quality rather than in a
winner-take-all fashion.This approach is similar to stochastic
neural models such as the Boltzmann Machine [35].

In our model, resource allocation decisions are based
not on discrete strategies but rather on the accumulation of
individual decision instances. Strategies then are an emergent
property of access to those knowledge bases. Moreover, to
unify our explanation across biases, we looked to leverage
the same model that was used to account for anchoring (and
sometimes confirmation) bias in probability adjustment.

Results also approximate those seen by human partic-
ipants: a wide variation between full probability matching
and winner-take-all, several individual runs tending towards
uniform or random distributions, and the mean falling
somewhere between probability matching and winner-take-
all (closer to matching).

Probability matching in resource allocation occurs due
to the trade-off inherent in maximizing reward versus mini-
mizing risk. A winner-take-all is the optimal strategy overall;
however there are individual trials with large penalties (a zero
score) when a category other than the one with the highest
probability is the ground truth. When such an outcome
occurs prominently (e.g., in the first trial), it can have a
determinant effect on subsequent choices [47].

4. Data and Results

The results of the ACT-R model on the AHA tasks were
compared against 45 participants who were employees of the
MITRE Corporation. All participants completed informed
consent and debriefing questionnaires that satisfied IRB
requirements. To compare the ACT-R model to both human
participants and a fully Bayesian rational model, several met-
rics were devised by MITRE [62–64], which are summarized
below.

As an overall measure of uncertainty across a set of
hypotheses, we employed a Negentropy (normalized negative
entropy) metric,𝑁, computed as

𝑁 =
(𝐸max − 𝐸)

𝐸max
, (5)

where 𝐸 is the Shannon entropy computed as

𝐸 = −∑
ℎ

𝑃
ℎ
∗ log
2
𝑃
ℎ
, (6)
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where the summation is over the probabilities, 𝑃
ℎ
, assigned

to hypotheses. Negentropy can be expressed on a scale of
0% to 100%, where 𝑁 = 0% implies maximum uncertainty
(i.e., maximum entropy or a uniform probability distribution
over hypotheses) and 𝑁 = 100% implies complete certainty
(i.e., zero entropy or a distribution in which one hypothesis
is assigned a maximum probability of 1). The normalization
is provided by 𝐸max = 2 in the case of four hypotheses (Tasks
2–6) and 𝐸max = 1 in the case of two hypotheses (Task 1).

Comparisons of human and normative (e.g., Bayesian)
assessments of certainty as measured by Negentropy permit
the evaluation of some cognitive biases. For instance, one
can compare human Negentropy 𝑁

𝐻
to Negentropy for a

rational norm 𝑁
𝑄

following the revision of probabilities
assigned to hypotheses after seeing new intelligence evidence.
If 𝑁
𝐻
> 𝑁
𝑄
, then the human is exhibiting a confirmation

bias because of overweighing evidence that confirms themost
likely hypothesis. On the other hand, if 𝑁

𝐻
< 𝑁
𝑄
, then the

human is exhibiting conservatism which might arise from an
anchoring bias.

In addition to measuring biases, we also compared the
probability estimation and resource allocation functions of
the model against both human participants and a Bayesian
rational model (i.e., an optimal model).The Kullback-Leibler
Divergence (𝐾) is a standard information-theoretic measure
for comparing two probability distributions like those of a
human (𝑃) and model (𝑀). 𝐾

𝑃𝑀
measures the amount of

information (in bits) by which the two distributions differ,
which is computed as follows:

𝐾
𝑃𝑀
= 𝐸
𝑃𝑀
− 𝐸
𝑃

= −∑
ℎ

𝑃
ℎ
∗ log
2
𝑀
ℎ
+ ∑
ℎ

𝑃
ℎ
∗ log
2
𝑃
ℎ
,

(7)

where, similar to the Negentropy measure, 𝐸
𝑃𝑀

is the cross-
entropy of human participants (𝑃) and theACT-Rmodel (𝑀)
and 𝐸

𝑃
is the entropy of human participants. It is important

to note that 𝐾
𝑃𝑀

= 0 when both distributions are the same,
and𝐾

𝑃𝑀
increases as the two distributions diverge.𝐾 ranges

from zero to infinity, but 𝐾 is typically less than 1 unless the
two distributions have large peaks in different hypotheses.

A normalizedmeasure of similarity (𝑆) on a 0–100% scale
similar to that of Negentropy can be computed from𝐾:

𝑆 = 100% ∗ 2−𝐾. (8)

As the divergence 𝐾 ranges from zero to infinity, the
similarity 𝑆 ranges from 100% to 0%. Thus 𝑆

𝑄𝑃
and 𝑆
𝑄𝑀

can
be useful for comparing the success of humans or models
in completing the task (compared by their success relative
against a fully rational Bayesian model). This measure will be
referred to as an S1 score.

To address the overall fitness of the model output com-
pared with human data, the most direct measure would be
a similarity comparing the human and model distributions
(𝑆
𝑃𝑀

) directly. However, this would not be a good measure
as it would be typically higher than 50% (𝐾 is typically
less than 1); thus we scaled our scores on a relative basis
by comparing against a null model. A null model (e.g., a
uniform distribution, 𝑅 = {0.25, 0.25, 0.25, 0.25}) exhibits

maximum entropy, which implies “random” performance in
sensemaking. Thus 𝑆

𝑃𝑅
was used to scale as a lower bound in

computing a relative success rate (RSR) measure as follows:

RSR =
(𝑆
𝑃𝑀
− 𝑆
𝑃𝑅
)

(100% − 𝑆
𝑃𝑅
)
. (9)

The model’s RSR was zero if 𝑆
𝑃𝑀

is equal to or less than
𝑆
𝑃𝑅
, because in that case a null model 𝑅 would provide the

same or better prediction of the human data as the model.
The RSR for a model𝑀 will increase as 𝑆

𝑃𝑀
increases, up to

a maximum RSR of 100% when 𝑆
𝑃𝑀

= 100%. For example, if
a candidate model 𝑀 matches the data 𝑃 with a similarity
score of 𝑆

𝑃𝑀
= 80% and the null model 𝑅 matches 𝑃 with

a similarity score of 𝑆
𝑃𝑅

= 60%, then the RSR for model 𝑀
would be (80 − 60)/(100 − 60) = (20/40) = 50%.

In Task 6, because each participant potentially receives
different stimuli at each stage of the trial as they choose
different INTs to receive, RSR was not appropriate. Instead,
the model was assessed against a relative match rate (RMR),
which is defined below.

After receiving the common HUMINT feature layer at
the start of each trial in Task 6, human participants have a
choice amongst four features (IMINT, MOVINT, SIGINT, or
SOCINT).Thenext choice is among three remaining features,
and the last choice is among two remaining features. Thus
there are 4 ∗ 3 ∗ 2 = 24 possible sequences of choices that
might be made by a subject on a given trial of Task 6. For
each trial, the percentage of subjects that chooses each of the
24 sequences was computed.Themodal sequence (maximum
percentage) was used to define a benchmark (𝑡, 𝑠max) for
each trial (𝑡), where 𝐹 is the percentage of a sequence and
𝑠max refers to the sequence with maximum 𝐹 for trial 𝑡. For
each trial, the model predicted a sequence of choices 𝑠mod,
and the percentage value of 𝐹(𝑡, 𝑠mod) for this sequence was
computed from the human data. In other words, 𝐹(𝑡, 𝑠mod) is
the percentage of humans that chose the same sequence as the
model chose, on a given trial 𝑡:

RMR (𝑡) =
𝐹 (𝑡, 𝑠mod)

𝐹 (𝑡, 𝑠max)
. (10)

For example, assume a model predicts a sequence of
choices 𝑠mod on a trial of Task 6. Assume also that 20% of
human subjects chose the same sequence, but a different
sequence was themost commonly chosen by human subjects,
for example, by 40% of subjects. In that case 𝐹(𝑡, 𝑠mod) = 20%
and 𝐹(𝑡, 𝑠max) = 40%, so RMR(𝑡) = 20%/40% = 50%.

Finally, a measure of resource allocation was derived by
assigning a value (S2) based on the resources allocated to the
category that was the ground truth. Thus if a participant (or
model) was assigned a resource allocation of {A% = 40,B% =
30,C% = 20,D% = 10} and the ground truth was category
B, then the S2 score for that trial would be 30%. Thus, to
maximize the score, an optimal model or participant would
need to assign 100% of their resources to the ground truth
(i.e., adopt a winner-take-all strategy to resource allocation).

4.1. Data. The integrated ACT-R AHAmodel performs (and
learns incrementally across) all 6 tasks using the same
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Table 5: S1, S2, RSR (RMR for Task 6), and linear regression (𝑟2) scores broken down by task and layer.

Task S1 score S2 score RSR/RMR
Model Human 𝑅

2 Model Human 𝑟
2

1 78.1 68.7 .929∗ 55.0 69.1 .219 .650
2 68.2 53.7 .313∗ 78.7 79.1 .990∗ .799
3 82.6 74.5 .001 45.2 45.3 .253∗ .595
4-1 92.2 75.6 .730∗ .761
4-2 92.7 76.2 .461∗ 47.7 44.0 .510∗ .906
5-1 96.6 68.1 .037 .856
5-2 91.5 77.4 .078 .776
5-3 85.3 69.8 .115 .780
5-4 82.3 66.3 .262∗ 40.4 45.2 .637∗ .618
6 91.2 91.0 .867∗ 34.8 31.2 .902∗ .788
∗P < .01.

knowledge constructs (production rules and chunks; other
than those it learns as part of executing the task) and param-
eters. The results comparing human and model performance
presented below are broken down by task and expanded
on trial-by-trial and layer-by-layer analyses. For instance,
while a similar instance-based representation is used across
all tasks for probability adjustment, resource allocation, and
layer selection, the output from the path planningmechanism
is only used in Tasks 3 and 4. Thus it is best to examine Task
3 and Task 4-1 (the first layer of Task 4) alone in determining
the efficacy of the path planning mechanism.

The model was run the same number of times as
participants in the dataset (45) with the average model
response were compared to the average human performance.
The natural variability in the model (stochastic elements
influencing instance-based learning) approximates some of
the individual differences of the human participants. While
the average distribution of the ACT-R model is slightly
peakier than the average human (the ACT-R model is closer
to Bayesian rational than humans are), the overall fits (based
on RSR/RMR) are quite high, with an overall score over .7
(a score of 1 indicates a perfect fit [63, 64]; see Table 5). In
addition, a linear regression comparing model and human
performance at each block of each layer indicates that the
model strongly and significantly predicts human behavior on
AHA tasks.

Supporting these results, the trial-by-trial performance of
the model (see Figure 11) predicted many of the variations
seen in users’ data.While the ACT-Rmodel tended to behave
more rationally than human participants (i.e., the model
exhibited a higher S1 score), the model tended to capture
much of the individual variation of humanparticipants across
trials (the S1 scores on Task 2 and S2 scores on Task 3 being
the exceptions).

In addition to the fit to human data based on probabilities
(S1/RSR) and resource allocation (S2), the model was also
compared to human participants in terms of the anchoring
and adjustment and confirmation biases (see Figure 12).
Whenever both the human behavioral data and model
exhibit a lower Negentropy than the Bayesian rational model,

they are both exhibiting anchoring bias (and conversely
they exhibit confirmation bias when they have a higher
Negentropy). As shownbelow, theACT-Rmodel significantly
predicts not only the presence or absence of a bias but also the
quantity of the bias metric, reflected in an overall 𝑅2 = .645
for Negentropy scores across all tasks.

4.1.1. Tasks 1 and 2. In Task 1, the ACT-R model produces
a probability distribution and forced-choice resource allo-
cation for each trial. The probability distribution is based
on the blended probability adjustments using instance-based
learning as described above and results in an increased
prevalence of anchoring (i.e., less peaky distributions) over
the normative solution in a manner similar to (yet stronger
than) human data.

Similar to Task 1, in Task 2 the model follows the general
trends of human participants for both S1 and especially S2
scores. With 4 groups to maintain in Task 2, we assume that
there is more base-rate neglect in humans (which results in
ACT-R from the centroid representation of groups that loses
base-rate information), which increases theRSR score to .799.
However, the 𝑅2 for S1 drops from .929 in Task 1 to .313 in
Task 2 because the ACT-R model does not capture the same
trial-by-trial variability despite being closer to mean human
performance.

In Task 1, the ACT-Rmodel exhibited ameanNegentropy
score (𝑁

𝑀
= .076), well below that of the Bayesian solution

(𝑁
𝑄

= .511); thus, there was an overall strong trend
towards anchoring and adjustment in learning (AL) for the
model. Humans exhibited a similar AL bias (𝑁

𝐻
= .113).

Additionally, on a trial-by-trial comparison of the model to
the Bayesian solution, both humans and the ACT-R model
showed AL for each individual trial.

In Task 2 the results were similar (𝑁
𝑄
= .791,𝑁

𝑀
= .206,

𝑁
𝐻
= .113) with both the model and humans exhibiting

anchoring and adjustment in learning in every trial.

4.1.2. Task 3. In Task 3 the ACT-R model was first required
to generate category centroids based on a series of events
and then was required to use the path planning mechanism
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Figure 11: (a) is the trial-by-trial (horizontal axis) fit between the ACT-R model and human data for Tasks 1–5 using the S1 metric (vertical
axis), which compares humans andmodel to Bayesian rational. (b) is the fit for the S2metric determining resource allocation score. For Tasks
4-5, the top tile is the fit for the first feature layer, and the bottom tile is the fit for the final feature layer.
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Figure 12: Trial-by-trial Negentropy scores for Tasks 1–5 (Δ Negentropy between layers for Tasks 4-2 and 5) for the fully rational Bayes
outcome, the ACT-R model, and human participants. Values less than normative (i.e., Bayesian rational) are considered an anchoring bias,
and values greater than normative are considered confirmation bias.

to estimate the distance between each category centroid and
a probe location. While the model captured average human
performance on the task, it was not able to capture individual
human behavior. This was in part due to wide variability
and negative skew in the raw human data and a difficulty in
the ACT-R model correctly placing category centroids when
events fell across multiple roads.

However, when examining bias metrics, the ACT-R
model exhibited both AL and confirmation biases as did
human participants. Both ACT-R and human participants
exhibited an AL bias on Trials 1, 3, and 5 and confirmation
bias on Trials 2 and 4. Overall, both the model and humans
exhibit a similar AL (𝑁

𝑄
= .412,𝑁

𝑀
= .372, and𝑁

𝐻
= .311).

Thus, while the model was not capturing the exact distance
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estimates of human participants, it was able to capture the
variability in the bias metrics.

4.1.3. Task 4. In Task 4, the issue with centroid generation
over multiple roads is avoided since centroids are provided
by the task environment, resulting in aHUMINT layer RSR =
.761 and 𝑅2 = .730. Thus, the path-planning mechanism itself
is functioning correctly and providing excellent fits to human
data. In addition, the model provided excellent fits to the
second layer (the SOCINT layer) in Task 4, with an RSR fit
of .905.

Beginning with Task 4, layer 2, the measure of anchoring
and adjustment (Delta Negentropy) is based on whether
category probabilities were revised sufficiently by following
the probabilistic decision rules. There was an overall trend
towards anchoring and adjustment in both learning and
inference, with a slight trend towards confirmation bias for
the humans. The main difference is when using SOCINT;
the ACT-R model tends to exhibit an anchoring bias while
human participants tended to exhibit a confirmation bias
when applying the SOCINT layer. We speculate that the
reason why humans would exhibit a confirmation bias on
SOCINT, which is the easiest of the rules to apply, might be
that it has a compelling visual interpretation that participants
are more likely to trust.

Also, beginning with Task 4, resource allocation judg-
ments are a distribution instead of a forced-choice.Themodel
learns the outcomes of probability matching (PM) versus
winner-take-all (WTA; forced-choice) through experience on
Tasks 1–3 in the formof IBL chunks. From this experience, the
model adopts a strategy (not a procedural rule but emergent
from blended retrieval of chunks) that is somewhere between
PM and WTA, with a bias towards PM. Based on the S2
fits for Tasks 4–6 (see Table 5), the resource allocation
mechanism, which also relies on the same instance-based
learning approach as the probability adjustment mechanism,
provides an excellent match to human data.

4.1.4. Task 5. In Task 5 the RSR fits for Layers 1–3 are quite
high (.856, .776, and .780, resp.) with some drop-off in Layer
4 (.618) due to human participants’ distributions being closer
to uniform and an RSR singularity (a near-uniform Bayesian,
human, and model distribution leading to all nonperfect fits
receiving a near-zero score since the random model near-
perfect predicts human behavior). It may also be the case
that humans, after getting several pieces of confirmatory
and disconfirmatory evidence, express their uncertainty by
flattening out their distribution in the final layer rather than
applying each layer mechanically.

As seen in the Delta Negentropy graphs for each layer
(see Figure 12), ACT-R correctly predicts the overall trend of
anchoring (𝑁

𝐻
< 𝑁
𝑄
and𝑁

𝑀
< 𝑁
𝑄
) for each layer:

Layer 1:𝑁
𝑞
= .080,𝑁

ℎ
= .016,𝑁

𝑚
= −.007

Layer 2:𝑁
𝑞
= .110,𝑁

ℎ
= .033,𝑁

𝑚
= .025

Layer 3:𝑁
𝑞
= .138,𝑁

ℎ
= .056,𝑁

𝑚
= .024

Layer 4:𝑁
𝑞
= .000,𝑁

ℎ
= −.007,𝑁

𝑚
= −.011
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Figure 13: Layer selection sequences both the ACT-R model and
human data (IM for IMINT, MO for MOVINT, SI for SIGINT, and
SO for SOCINT).

Across each layer, the model correctly predicts anchoring
on all 10 trials of Layer 2, correctly predicts anchoring on
8 trials of Layer 3 and correctly predicts the confirmation
on the other 2 trials, correctly predicts anchoring on 8 trials
of Layer 4 and correctly predicts confirmation on the other
2, and correctly predicts anchoring on 4 trials of Layer 5
and correctly predicts confirmation on 5 other trials. Over
40 possible trials, ACT-R predicts human confirmation and
anchoring biases on 39 of the trials (trial 10 of Layer 5 being
the only exception).

4.1.5. Task 6. In Task 6, both the model and participants
are able to choose 3 feature layers before specifying a final
probability distribution. Figure 13 shows the probability dis-
tribution of layer selection sequences for our ACT-R model
and human data. To measure the similarity of the probability
distribution of layer selection sequences between the ACT-
R model and human data, we performed Jensen-Shannon
divergence analysis, which is a method of measuring the
similarity between two distributions.The divergence between
the two distributions is .35, indicating that the ACT-R model
strongly predicts the human data patterns.

5. Generalization

To determine the generalizability of the integrated ACT-R
model of the AHA tasks, the same model that produced the
above results was run on novel stimuli in the same AHA
framework. The results of the model were then compared to
the results of a novel sample gathered from 103 students at
Penn State University. This new data set was not available
before the model was run, and no parameters or knowledge
structures were changed to fit this data set. Unlike the
original 45-participant dataset, the Penn State sample used
only people who had taken course credit towards a graduate
Geospatial Intelligence Certificate. Overall, the RSR and 𝑅2
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Table 6: Set of S1, S2, RSR (RMR in Task 6), and linear regression (𝑟2) scores broken down by task for novel dataset and participants.

Task S1 score S2 score RSR/RMR
Model Human 𝑅

2 Model Human 𝑟
2

1 81.7 80.7 .011 59.1 63.4 .141 .625
2 68.5 78.9 .347∗ 54.2 54.6 .765∗ .534
3 72.1 79.7 .121 34.7 73.8 .701∗ .692
4 94.4 87.6 .006 47.5 46.7 .992∗ .893
5 84.5 84.5 .000 42.0 45.5 .943∗ .864
6 85.3 88.3 .447∗ 48.4 44.6 .990∗ .854
∗P < .01.

fits on S2 scores improved while the 𝑅2 fits on S1 scores
dropped (see Table 6). The increase in RSR was mainly due
to the Penn State population behaving more rationally (i.e.,
higher S1 scores; see Figure 14) than the population from the
initial dataset.This is consistent with the increased education
and experience of the Penn State sample. That said, the Penn
State sample most likely utilized some different strategies in
solving the tasks, as the trial-by-trial S1 fits were not as close,
implying some difference in reasoning that the ACT-Rmodel
was not capturing.

Overall, the improved model fits indicate that the ACT-
R model of the AHA tasks is able to capture average human
performance at the task level for S1 scores and at the trial-by-
trial level for S2 scores. Conversely, this justifies the reliability
of the AHA tasks as a measure of human performance in a
sensemaking task environment.

Finally, the ACT-R model fits for anchoring and con-
firmation biases (see Figure 15) were also similar in the
Penn State dataset. The model correctly predicted both the
presence and degree of anchoring on every block in Tasks 1–3
and followed similar trial-by-trial trends for both anchoring
and confirmation in Tasks 4-5. 𝑅2 of Negentropy scores was
a similar .591 to the original dataset.

6. Conclusion

The decision-making literature has established a lengthy list
of cognitive biases under which human decision making
empirically deviates from the theoretical optimum. Those
biases have been studied in a number of theoretical (e.g.,
binary choice paradigms) and applied (e.g.,medical diagnosis
and intelligence analysis) settings. However, as the list of
biases and experimental results grows, our understanding
of the mechanisms producing these biases has not followed
pace. Biases have been formulated in an ad hoc, task- and
domain-specific manner. Explanations have been proposed
ranging from the use of heuristic to innate individual pref-
erences. What is lacking is an explicit, unified, mechanistic,
and theoretical framework for cognitive biases that provides a
computational understanding of the conditions under which
they arise and of themethods bywhich they can be overcome.

In this paper, we present such a framework by developing
unified models of cognitive biases in a computational cogni-
tive architecture. Our approach unifies results along a pair
of orthogonal dimensions. First, the cognitive architecture
provides a functional computational bridge from qualitative

theories of sensemaking to detailed neural models of brain
functions. Second, the framework enables the integration
of results across paradigms from basic decision making to
applied fields. Our basic hypothesis is that biases arise from
the interaction of three components: the task environment,
including the information and feedback available as well
as constraints on task execution, the cognitive architecture,
including cognitive mechanisms and their limitations, and
the use of strategies including heuristic as well as formal
remediation techniques. This approach unifies explanations
grounded in neurocognitive mechanisms with those assum-
ing a primary role for heuristic.The goal is to derive a unified
understanding of the conditions underwhich cognitive biases
appear as well as those under which they can be overcome
or unlearned. To achieve this unification, our model uses a
small set of architectural mechanisms, leverages them using a
coherent task modeling approach (i.e., instance-based learn-
ing), performs a series of tasks using the same knowledge
structures and parameters, generalizes across different sets of
scenarios andhumanparticipants, and quantitatively predicts
a number of cognitive biases on a trial-to-trial basis.

In particular, we showbiases to be prevalent under system
1 (automatic) processes [65] and that a unified theory of
cognition can provide a principled way to understand how
these biases arise from basic cognitive and neural substrates.
As system 2 (deliberative) processes make use of the same
cognitive architecture mechanisms in implementing access
to knowledge and use of strategies, we expect biases to also
occur, in particular as they relate to the interaction between
the information flow and the structure of the architecture.
However, at the same time, we show that system 2 processes
can provide explicit means to remediate most effects of
the biases, such as in the centroid-of-centroid generation
strategy, where a strong recency bias is replaced with an
(slight) anchoring bias.

Moreover, it is to be expected that a rational agent learns
and adapts its strategies and knowledge, its metacognitive
control (e.g., more deliberate processing of information), and
its use of the task environment (e.g., using tools to perform
computations or serve as memory aids) so as to at least
reduce the deteriorating effects of these biases. However,
biases are always subjective, in that they refer to an implicit
assumption about the true nature of the world. For instance,
the emergence of probability matching in the later tasks can
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Figure 14: (a) is the trial-by-trial fit between the ACT-R model and human data for Tasks 1–5 using the S1 metric, which compares humans
and model to Bayesian rational. (b) is the fit for the S2 metric determining resource allocation score. For Tasks 4-5, the graph represents the
final layer fit. These results are for the final Penn State dataset.
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Figure 15: Trial-by-trial Negentropy scores for Tasks 1–5 (Δ Negentropy between layers for Tasks 4-2 and 5) for the fully rational Bayes
outcome, the ACT-R model, and human participants. These results are for the Penn State dataset.

be seen as a response to the uncertainty of the earlier tasks and
the seemingly arbitrary nature of the outcomes. Thus, people
respond by hedging their bets, a strategy that can be seen as
biased in a world of exact calculations but one that has shown
its robust adaptivity in a range of real-world domains such as
investing for retirement. As is often the case, bias is in the eye
of the beholder.

Appendix

PROBs Handbook

Figures 16, 17, 18, 19, and 20 were the individual pages of the
PROBs (Probabilistic Decision Rules) handbook explaining
how to update category likelihoods based on the information
revealed by each feature.
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HUMINT: human intelligence

Figure 16:TheHUMINT feature, representing distance along a road
network between a category and a probe event.
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IMINT: image intelligence

Figure 17:The IMINT feature, representing imagery of government
or military buildings located at a probe event location.
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Figure 18:TheMOVINT feature, representing vehicular movement
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mation about the region boundary for each category.
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We address strategic cognitive sequencing, the “outer loop” of human cognition: how the brain decides what cognitive process to
apply at a given moment to solve complex, multistep cognitive tasks. We argue that this topic has been neglected relative to its
importance for systematic reasons but that recent work on how individual brain systems accomplish their computations has set the
stage for productively addressing how brain regions coordinate over time to accomplish our most impressive thinking. We present
four preliminary neural network models. The first addresses how the prefrontal cortex (PFC) and basal ganglia (BG) cooperate to
perform trial-and-error learning of short sequences; the next, how several areas of PFC learn to make predictions of likely reward,
and how this contributes to the BG making decisions at the level of strategies. The third models address how PFC, BG, parietal
cortex, and hippocampus can work together to memorize sequences of cognitive actions from instruction (or “self-instruction”).
The last shows how a constraint satisfaction process can find useful plans.The PFCmaintains current and goal states and associates
from both of these to find a “bridging” state, an abstract plan. We discuss how these processes could work together to produce
strategic cognitive sequencing and discuss future directions in this area.

1. Introduction
Weighing the merits of one scientific theory against another,
deciding which plan of action to pursue, or considering
whether a bill should become law all require many cognitive
acts, in particular sequences [1, 2]. Humans use complex
cognitive strategies to solve difficult problems, and under-
standing exactly how we do this is necessary to understand
human intelligence. In these cases, different strategies com-
posed of different sequences of cognitive acts are possible,
and the choice of strategy is crucial in determining how
we succeed and fail at particular cognitive challenges [3, 4].
Understanding strategic cognitive sequencing has important
implications for reducing biases and thereby improving
human decision making (e.g., [5, 6]). However, this aspect of
cognition has been studied surprisingly little [7, 8] because it
is complex. Tasks in which participants tend to use different
strategies (and therefore sequences) necessarily produce data
that is less clear and interpretable than that from a single
process in a simple task [9].Therefore, cognitive neuroscience
tends to avoid such tasks, leaving the neural mechanisms of

strategy selection and cognitive sequencing underexplored
relative to the large potential practical impacts.

Here, we discuss our group’s efforts to form integrative
theories of the neural mechanisms involved in selecting and
carrying out a series of cognitive operations that successfully
solve a complex problem. We dub this process strategic
cognitive sequencing (SCS). While every area of the brain
is obviously involved in some of the individual steps in
some particular cognitive sequences, there is ample evidence
that the prefrontal cortex (PFC), basal ganglia (BG), and
hippocampus and medial temporal lobe (HC and MTL) are
particularly important for tasks involving SCS (e.g., [10–14]).
However, exactly how these brain regions allow us to use
multistep approaches to problem solving is unknown. The
details of this process are clearly crucial to understanding that
process well enough to help correct dysfunctions, to better
train it, and perhaps to eventually reproduce it in artificial
general intelligence (AGI).

We present four different neural network models, each
of a computational function that we consider crucial for
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strategic cognitive sequencing. The first two models address
how sequences are learned and selected: how the brain
selects which of a small set of known strategic elements to
use in a given situation. The first, “model-free learning,” is
a model of how dopamine-driven reinforcement learning
in the PFC and BG can learn short cognitive sequences
entirely through trial and error, with reward available only
at the end of a successful sequence. The second, “PFC/BG
decision making” (PBDM), shows how cortical predictions
of reward and effort can drive decision making in the basal
ganglia for different task strategies, allowing a system to
quickly generalize learning from selecting strategies on old
tasks to new tasks with related but different strategies. The
last two models apply to selecting what plans or actions
(from the large set of possibilities in long-term semantic
memory) will be considered by the two “which” systems.
The third model, “instructed learning,” shows how episodic
recall can work with the PFC and BG to memorize sequences
from instructions, while the last “subgoal selection” model
shows how semantic associative processes in posterior cortex
can select representations of “bridging states” which also
constitute broad plans connecting current and goal states,
each of which can theoretically be further elaborated using
the same process to produce elaborate plan sequences.

Because these models were developed somewhat sepa-
rately, they and their descriptions address “actions,” “strate-
gies,” “subgoals,” and “plans.”We see all of these as sharing the
same types of representations and underlying brain mecha-
nism, so each model actually addresses all of these levels. All
of these theories can be applied either to individual actions
or whole sequences of actions that have been previously
learned as a “chunk” or plan. This hierarchical relationship
between sequence is well understood at the lower levels of
motor processing (roughly, supplementary motor areas tend
to encode sequences of primary motor area representations,
while presupplementary motor areas encode sequences of
those sequences); we assume that this relationship holds to
higher levels, so that sequences of cognitive actions can be
triggered by a distributed representation that loosely encodes
that whole sequence and those higher-level representations
can then unfold as sequences themselves using identically
structured brain machinery, possibly in slightly different, but
parallel brain areas.

Before elaborating on each model, we clarify the theoret-
ical framework and background that have shaped our think-
ing. After describing each model, we further tie each model
to our overall theory of human strategic cognitive sequencing
and describe our planned future directions for modeling
work that will tie these individual cognitive functions into
a full process that learns and selects sequences of cognitive
actions constituting plans and strategies appropriate for
novel, complexmental tasks, one of humans’ most impressive
cognitive abilities.

2. Theoretical Framework

These models synthesize available relevant data and consti-
tute our attempt at curren best-guess theories. We take a
computational cognitive neuroscience approach, in which

artificial neural network models serve to concretize and
specify our theories. The models serve as cognitive aids in
a similar way to diagramming and writing about theories
but also serve to focus our inquiries on the computational
aspects of the problem. These theories are constrained not
only by the data we specifically consider here but also by
our use of the Leabra modeling framework [15, 16]. That
framework serves as a cumulative modeling effort that has
been applied to many topic areas and serves to summarize a
great deal of data on neural function. This framework serves
as a best-guess theory on cortical function, and individual
models represent more specific, but still empirically well-
supported and constrained theories of PFC, basal ganglia,
reward system, and hippocampal function. Here, we extend
these well-developed theories to begin to address SCS.

We also take our constraints from purely cognitive the-
ories of cognitive sequencing. Work on production system
architectures serves as elaborate theories of how human
beings sequence cognitive steps to solve complex problems
[17–19]. The numerous steps by which a production system
model carries out a complex task such as air traffic control
[20] are an excellent example of cognitive sequencing. Our
goal here is to elaborate on the specific neural mechanisms
involved, and in so doing, we alter those theories somewhat
while still accounting for the behavioral data that has guided
their creation.

Neural networks constitute the other class of highly
specified and cumulative theories of cognition. However,
these are rarely applied to the type of tasks we address here, in
which information must be aggregated from step to step, but
in arbitrary ways (e.g., first figure out center of a set of points,
then calculate the distance from that center of points to an
another point, and then based on that distance, estimate the
likelihood that the point shares properties with the set). This
is essentially because neural networks perform information
processing in parallel and so offer better explanations of
single-step problem solving. Indeed, we view humans’ ability
to use strategic cognitive sequences as an exaptation of our
ancestral brain machinery, one that makes us much smarter
by allowing us to access a range of strategies that lower
animals largely cannot use [21, 22].

Because of the weaknesses in each approach and the
paucity of other mechanistically detailed, cumulative models
of cognition, we take inspiration from the well-developed
theories from production systems about how cognitive steps
are sequenced [17–19, 23] while focusing on artificial neural
network-centered theories on the specifics of how indi-
vidual cognitive actions are performed. This perspective is
influenced by prior work on hybrid theories and cognitive
architectures based on ACT-R and Leabra networks for a
different purpose [24]. ACT-R [18] is the most extensively
developed production system architecture and the one which
most explicitly addresses physiology, while Leabra is arguably
the most extensively developed and cumulative theory of
neural function that spans from the neural to cognitive levels.

In ACT-R, the sequence of cognitive actions is deter-
mined by which production fires. This in turn is based upon
the “fit” between the conditions of each production and the
current state of the cognitive system (which also reflects
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the state of the environment through its sensory systems).
This function has been proposed to happen in the basal
ganglia (BG) [25, 26], and this has been borne out through
matches with human neuroimaging data [25]. While it is
possible that the BG is solely responsible for action selection
in well-practiced cases [27], we focus on the learning process
and so on less well-practiced cases. In our neural network
framework, we divide this functionality between cortical
and BG areas, with the cortex (usually PFC) generating a
set of possible cognitive actions that might be performed
next (through associative pattern matching or “constraint
satisfaction”), while the basal ganglia decides whether to
perform each candidate action, based on its prior relationship
to reward signals in similar circumstances.

In modeling this process, we draw upon previous work
from our group in modeling the mechanisms and compu-
tations by which the PFC and BG learn to maintain useful
information in working memory [28–32]. The prefrontal
cortex basal ganglia working memory (PBWM) models
developed by O’Reilly and colleagues integrate a wealth of
electrophysiological, anatomical, and behavioral data, largely
from animal work. Working memory also appears to be a
large component of executive function, because in many
cases a specific task is performed by virtue of maintaining an
appropriate task set [33], in effect remembering what to do.
Thosemaintained representations bias other brain processing
through constraint satisfaction. Because it explains the deep
question of how we learn our executive function (EF), this
theory makes progress in dispelling the “homunculus” [30],
by explaining how complex cognitive acts are performed by
a collection of systems, each of which supplies a small part of
the overall intelligence, decision making, and learning.

In essence, the PBWM framework extends the wealth of
knowledge on the role of the basal ganglia in motor control
to address working memory and executive function. This is
possible because there are striking regularities across areas
of frontal cortex, so that the anatomy of cortex and basal
ganglia that subserves motor function is highly similar to
prefrontal and anterior BG areas known to subserve WM
and EF [34]. This anatomy is thought to help select potential
motor actions by “gating” that information through thalamus
back to cortex, amplifying it and so cleanly selecting one
of the several possible candidate actions represented in the
cortex (e.g., [35]). The core hypothesis of PBWM is that
these same circuits help select which representations will be
actively maintained in PFC by fostering local reverberant
loops in the cortex, and between cortex and thalamus, and
by triggering intrinsic maintenance currents that enable self-
sustained persistent firing in cortical pyramidal neurons.
The reinforcement learning mechanisms by which BG learns
which actions are rewarding also apply to learning what to
remember and so what to do.

The primary value and learned value (PVLV) model of
dopamine release as change in reward prediction [36, 37] is
also a key component of PBWM and is in turn based on
electrophysiological and behavioral data from a collection
of subcortical areas known to be involved (e.g., [38–41]).
The known properties of dopamine release indicate that
it serves as a reward prediction error signal [42] which

has informational properties that make it useful for driving
learning [43, 44]. This system learns to signal when a new set
of representations will likely lead to reward in a biologically
realistic variant of the function of the better-known temporal
difference (TD) algorithm when it is supplemented with “eli-
gibility trace” information (e.g., [45]).This reward prediction
function is crucial, because the difficulty in assessing the
benefit of an action (whether it be cognitive or behavioral)
is that the actual reward achieved by that action very often
occurs later in time and so cannot be used directly as a
learning signal [46, 47]. Instead, the system learns to perform
actions that are predicted to gain reward. This reinforcement
learning trains the striatum and works alongside the more
powerful associative and error-driven learning within the
PFC portion of PBWM that learns the representations (and
therefore the associative semantics) of candidate actions to
take.

In the remainder of the paper, we present an overview of
four models that elaborate on this process in several ways.
The first addresses how the learning mechanisms described
previously and elaborated upon in works by various workers
in our group [36, 37, 48, 49] can learn short sequences
of cognitive actions, when they are sequentially dependent
and so must be performed in the right order to achieve
reward. The second describes how the hippocampus can
achieve instructed learning, participating in the constraint
satisfaction process of deciding which action to consider
performing, as when we perform a novel task based on
memorized instructions. The third model considers how
slow, cortical associative learning can contribute to that same
“which” process by using constraints of the current state and
the goal to arrive at a subgoal that can serve as a viable next
step in the sequence. Finally, we close with some discussion of
the state of this research and the many remaining questions.

3. Model-Free Reinforcement Learning

Model-free reinforcement learning (RL) can be defined at
a high level as learning which actions (which we take to
include cognitive “actions”) produce reward, without any
other knowledge about the world [43]. While the learning
mechanisms we describe here are purely trial and error,
the same learning mechanisms apply to model-driven or
“hypothesis-driven” learning as well. For instance, the same
learning principles apply when using actions, explicit plans
from memorized instructions, or semantic associations as
outlined in the final two models we describe later.

In hopes of better understanding how this process could
occur in neural tissue, we have leveraged the prefrontal cortex
basal ganglia working memory framework, or PBWM [28–
32]. Under this account, a basic actor-critic architecture [43,
50] naturally arises between the prefrontal cortex (PFC), the
basal ganglia (BG), and the midbrain dopamine system as
modeled by our PVLV system described previously. PVLV
serves as the critic, evaluating the state of the network
and providing dopamine bursts or dips for better than and
worse than expected outcomes, respectively. The BG system
is naturally situated to perform the functions of the actor
based on its known role in selecting motor actions (and by
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Figure 1: Simple state-based room navigation task.The percentages
of the last level of rooms at the bottom of the figure represent the
probability that the agent will get rewarded if it chooses the path
that leads to the respective rooms.

hypothesis, selecting cognitive actions with analogous neural
mechanisms in more anterior regions of PFC). Using the
critic’s input, the BG learns from experience a policy of
updating segregated portions of the PFCas task contingencies
change.ThePFC is able tomaintain past context and provides
a temporally extended biasing influence on the other parts of
the system. It is helpful to view this entire process as a “gating”
procedure: the BG gating controls that are being actively
maintained within the PFC, and therefore subsequently
biasing (controlling processing in) other cortical areas.When
the gate is closed, however, the contents of the PFC are
robustly maintained and relatively protected from competing
inputs. Importantly, as task contingencies change and the
actor determines that a change is needed, the gate can be
opened allowing new, potentially more task appropriate,
content into the PFC.

The simple RL-based learning of the PBWM framework
allows us to easily and naturally investigate one manner in
which the brain may be capable of utilizing model-free RL
in order to solve a simple task. In short, the network must
learn to maintain the specific actions taken and evaluate this
sequence based on either the success or failure of a simulated
agent to attain reward. The simple example task we use is a
basic state-based navigation task (abstracted at the level of
“rooms” as states) in which a simulated agent must navigate
a state space with probabilistic rewards as inspired by the
work of Fu and Anderson [51] (see Figure 1). The goal of
the task is simply to learn an action policy that leads to the
highest amount of reward. To achieve this, the agent must
make a choice in each room/state it visits to move either
to the next room to the left or the next room to right but
always moving forward. The only rooms that contain reward
are at the final level (as in most tasks). The structure of the
reward is probabilistic, so a single room is themost consistent
provider of reward (Room 3 in Figure 1), but the others have a
lower chance to be rewarding as well. In order for the PBWM
framework to ultimately succeed, itmust be able tomaintain a
short history of the actions it took and reward or punish these
action choices in the final presence or absence of reward.This
is a simple task, but a learning in this way is a valuable tool

Resulting
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Current
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Figure 2: Model-free network architecture. Based on both current
state and possible actions, the “matrix maint” determines what
to maintain in PFC. Based on the stored information in PFC,
“matrix out” determines the next chosen action via PFC out. PVLV
(consisting of multiple biological systems) evaluates the actions
(critic) and helps train the model. See text for in-depth description
and functions of the various components of the network. Detailed
network architecture is highly similar to the PBDMmodel discussed
later.

when the system must learn basic actions first in order to
succeed at more extensive cognitive sequencing tasks.

3.1. Description of the Model. The model-free RL network is
depicted in Figure 2. The ultimate goal of the network is to
receive reward by determining the best action to take given
the reward structure of the simulated environment.There are
many models of reinforcement learning in similar domains,
and the PBWM and PBDM models have been applied to
learning in superficially similar domains. However, some
very important differences make the setup of this model
unique. Most importantly, the final outcome (what Room
the network ends up in based on the action chosen) of the
network is not determined in the standard neural network
manner of having activation propagate through units and
having a competition that determines the winner. Instead,
the network chooses an action via the action layer, which is
the only traditional output layer in the network. The possible
actions can be thought of as any atomic action that may result
in a change of state, such as “go left” or “go right.” After the
network chooses an action, a state transition table is used
to determine the outcome of the action. More specifically,
the network makes a decision about what action to take,
and program code determines what the effect is on the
environment of the simulated agent.The outcome is reported
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back to the network via the resulting state layer, but for display
purposes only (not used in any computation). The example
trial stepped through later in this section will help to clarify
this process.

3.1.1. Network Layer Descriptions

(i) Action layer: this is the output of the network. The
chosen action is used via a state transition table to
choose a new room. In the current simulation, the
room choice is completely deterministic based on the
action.

(ii) CurrentState layer: this is a standard input layer.
The CurrentState is the current state (room) that the
model is occupying.

(iii) PossibleActions layer: this is the second input layer.
The layer is used to specify what “legal” actions are
based on the current state that the network is occupy-
ing. Importantly, PossibleActions provides the main
signal to the simulated basal ganglia to determine the
gating policy, as well as the main input to the PFC.
This ensures that only legal actions should be chosen
(gated) at any given time.

(iv) PreviousAction layer (display only): this is a display
only layer. It maintains the last action choice that the
network made. This can be useful to understand how
the network arrived to its current state.

(v) ResultingState layer (display only): this is a display
only layer. The ResultingState is the “room” that the
simulated agent will arrive in based on the action
that the network produced. The final room is used to
determine if the agent should receive reward.

(vi) PVLV layers: the PVLV layer(s) represents various
brain systems believed to be involved in the evaluative
computations of the critic [36].

(vii) PFC maint and PFC out: simulated prefrontal cortex
layers, the maint PFC is used to actively maintain
information overextended delay period. The PFC out
layermodels the process of releasing this information,
allowing it to affect downstream cortical areas and
drive actual responses.

(viii) Matrix maint and matrix out: these layers are used
to model the basal ganglia system and represent the
actor portion of the network. They learn to gate
portions of the PFC, through experience, using the
information provided from the PVLV system.

3.1.2. Task Example

(1) The current state (room) is presented to the network
via the CurrentState layer. The inputs correspond to
different rooms as shown in Figure 1, where Room
0 corresponds to the first unit in CurrentState layer,
Room 1 to the second, Room 2 to the third, and so
forth.

(2) Using the CurrentState and the actions maintained
within the PFC, the network must decide to go to the
room to the left or the room to the right.This decision
is reflected by activation in the action layer.

(3) The action that is chosen by the network is used to
determine where the simulated agent is in the current
state space, and this is accomplished using a standard
transition table to look up the next room.The actions
are deterministic and move the agent directly to the
room based only on the action.

(4) The resulting state of the agent is returned to the
network via activation in the CurrentState layer indi-
cating the result of the action. Return to Step 2 unless
the agent reaches a terminal room.

(5) If the room reached by the agent is a final room,
the reward probabilities for that room are used to
determine the likelihood of reward to the agent.

(6) Repeat from Step 1 until task is reliably learned.

3.2. Results. The network is capable of quickly learning the
optimal policy of action sequences that optimize its reward
on this task. To assess the ability of the network to solve
this task, we set up a testing structure which allowed the
network 75 “chances” to solve the task per epoch (block). At
the end of the epoch, the average rate of reward was recorded
for the simulated agent. This was repeated until either the
agent received an average reward greater than 85% of the
time or for 25 epochs (blocks), whichever came first. Ten
simulated agents were ran, and 8 out of the 10 reached criteria
of 85% average reward within 25 epochs. On average, it took
4 epochs to achieve this feat. While this may not appear to
be a surprising result, the complex nature of the biologically
realistic network made this far from a forgone conclusion.
Indeed, many insights were gained about the nature of how
the actor must balance its exploring of the state space with
gaining reward. If the network randomly gets reward in one
of the low-reward states, it must still be willing to explore its
environment in order to confirm this finding. Conversely, if
the network is in the high-reward state and does not receive
reward, the (relative) punishment for this nonreward needs
to allow a possible return to this same state at some point
in the future in order to discover the optimal action policy.
The limits of the framework are apparent in the 2 networks
that did not reach criteria. In both of these cases, the agent
randomly reached the low probability area of state space. In
most cases, the agent is able to successfully explore other
options and thus find the more rewarding rooms. However,
the current PBWM framework will occasionally fail if reward
is not present early enough in exploration process. We are
investigating biologically inspired mechanisms to bootstrap
the learning in more efficient ways. Encouraged by our initial
framework, we are actively investigating how a simplemodel-
free approach to learning basic sequences could be utilized
by the human brain in order to scaffold up to more complex
and interesting sequences. We are hopeful that concentrating
on the relevant biological data and learning will provide us
with useful insights to help us better understand how people
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PBDM net: showing activations

Figure 3: PBDM decision-making model.This figure shows the PBDM network and the components it models.The bars show the activation
strengths of each of the units in the model for a particular point in time.

are capable of such effortless sequencing of extended, diverse,
and complex action plans.

We hypothesize that this type of learning aids in cognitive
sequencing by allowing humans to discover useful simple
sequences of cognitive actions purely by trial and error.While
this learning does not likely account for the more impressive
feats of human cognition, since these seem to require substan-
tial semantic models of the relevant domain and/or explicit
instruction in useful sequences, we feel that understanding
what the brain can accomplish without these aids is necessary
to understanding how the many relevant mechanisms work
together to accomplish useful strategic cognitive sequencing.

4. Prefrontal Cortex Basal Ganglia
Decision-Making (PBDM) Model

In the PBDM model, we primarily address decision making
at the level of task strategies (task set representations in
PFC, primarily dorsolateral PFC (DLPFC)). Decisionmaking
is important in many areas, but the selection of strategies
for complex tasks is our focus. We believe that the same
mechanisms apply to making decisions in many different
domains.

Themain idea behind PBDM is to computationallymodel
the interactions between basal ganglia and medial prefrontal
areas that represent particularly relevant information for
making action plan or strategy decisions. Anterior cingu-
late cortex (ACC) and orbitofrontal cortex (OFC) serve as
activation-based monitors of task affective value parameters
[52, 53], including action effort in the ACC [54], and
probability of reward in the OFC. These then project to the
basal ganglia that controls updating in the DLPFC, giving
it the necessary information to select choices in favor of
lower effort and higher reward strategies. Because the ACC

and OFC are themselves PFC areas with inputs from the
same type of basal ganglia/thalamic circuits as motor and
working memory areas, they are hypothesized to be able to
rapidly update and maintain their value representations and,
with a single gating action, change the evaluation to reflect
new important information. This confers great flexibility
and rapid adaptability to rapidly changing circumstances.
Within this framework, several questions remain: what, more
precisely, do the ACC and OFC represent? How can these
representations drive appropriate gating behavior in the
DLPFC BG? How are appropriate representations engaged in
novel task contexts?

In the initial version of the PBDM model, described in
more detail later and shown in Figure 3, we adopt simple
provisional answers to these questions while recognizing that
these likely underestimate the complexity of what happens
in the real system. In particular, while ACC is often (and
in our model) assumed to represent effort, its true role is
more complex.The current state of knowledge on these issues
is reviewed thoroughly by Kennerley and Walton [55]. The
ACC andOFC in ourmodel compute running time-averaged
estimates of effort and reward probability, respectively, based
on phasic inputs on each trial. If a task is ongoing, the ACC
just increases its running average of time-effort by one.When
a reward value is received or not (when otherwise expected),
the OFC increments its running average estimate of reward
probability. We have four different stripes within the ACC
and OFC, each of which receives input from and so has
a representation determined by one of the task strategies
represented in the parietal cortex.These are thought of as very
general strategies for dealing with spatial information, and
over a lifetime of experience,we build up reasonable estimates
of how effortful and rewarding they are on average in similar
tasks. In order to in part capture the importance of context,
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there is also a randomly updated set of task features, which
represent specific details about each different task that the
model learns to perform. Over time, the model learns to pay
attention to the ACC/OFC value representations in selecting
a task strategy and pay less attention to these idiosyncratic
task cues. Having done so, the model can then generalize
to novel task contexts, by paying attention to the underlying
spatial task values and ignoring the novel task features.Then,
as the novel task progresses, actual experienced reward and
effort drive the ACC and OFC representations, providing a
more accurate picture for decision making going forward.
This is the overall model we think applies to subjects as they
engage in novel tasks with multiple possible strategies.

We conceptualize this PBDM process as engaging when
people are actively and explicitly considering a new strategy
or similar decision. We model an abstract spatial task, in
which the strategies consist of individual spatial properties
of groups of similar items. Strategies consist of considering
one or a combination of these properties.There are 4 different
strategies considered (listed by increasing order of both effort
and reward probability; the precise values vary by task):
Distance Only, Distance + BaseRate, Distance + Radius, and
Distance + BaseRate + Radius. These are merely example
strategies associated with a hypothetical spatial estimation
task and are therefore sometimes also simply referred to as
strategies 0 to 3, respectively; the task is not implemented
for this model outside of entirely hypothetical probabilities
of success (reward) and level of effort (time to implement).
The weights for the PBDM component are trained to model
a long history of experience with these hypothetical reward
and effort values. After this learning (and purely through
it), the OFC reward representations primarily bias the Go
pathway, while the ACC effort representations bias the NoGo
pathway. It is this balance between Go and NoGo that then
ultimately determines the strategy selected. In our models,
we observe that different random initial weights produce
different individual preferences along this tradeoff.

The network performs various tasks (which switch every
10 trials during pretraining, simulating the intermixed variety
of spatial tasks a person encounters during their daily life).
The probability of reward and the number of trials required
are determined by the selected strategy, the task represen-
tation that the DLPFC maintains. In reality, the possible
strategies and therefore the representational space would be
much larger, but we have narrowed it down to just 4 different
states in a localist representation, (called Distance, Dist +
Base Rate, Dist + Radius, and Dist + BaseRate + Radius;
the original relation of these strategies to a particular task
is irrelevant since the base task was abstracted to only the
strategy component for this model). The inner loop per trial
consists of “performing” the task in question, which happens
through task-specific areas responding to the DLPFC task
representation. We model that process here only at the most
abstract level: each strategy takes an amount of time and has a
probability of success that varies for each possible task. Thus,
the PBDM network only experiences the overall feedback
parameters: number of trials and probability of reward at the
end of those trials. We do not model the process of carrying
out these strategies; each of the models here could also be

applied to understanding how a particular strategy unfolds
into an appropriate sequence of cognitive actions.

The overall behavior is thus as follows: select a DLPFC
task representation, run a number of blank trials (blank
since we assume that the lower-level processes that carry
out the strategy have little influence on this level of cortical
machinery) according to the “effort” parameter (representing
task performance), then receive rewardwith given probability
determined by the PCTask representation that the DLPFC
task representation drives, and then repeat. Over time, the BG
gating units for the DLPFC are shaped by the effort/delay and
reward parameters, to select DLPFC stripes, and associated
reps that are associated with greater success and shorter
delays.

The BG “Matrix” layer units control gating in DLPFC
and so, ultimately, make final decisions on strategy choice.
They receive inputs from theACC andOFC, which learn over
time to encode, using dynamic activation-based updating,
running time averages of reward and effort, associated with
the different strategies on the different tasks. Because we
assume that mental effort is equal per unit time across strate-
gies, the effort integration is identical to time integration in
this case. Critically, because this is done in activation space,
these can update immediately to reflect the current PCTask
context. Over time, the BG learns weights that associate each
OFC and ACC unit with its corresponding probability of
success or effort.Thus, an immediate activation-based update
of the ACC and OFC layers will immediately control gating
selection of the DLPFC layers, so that the system can quickly
change its decision making in response to changing task
contexts [52, 56, 57].

Thus, the early part of the network training represents
a developmental time period when the ACC and OFC are
learning to perform their time-averaging functions, and
the DLPFC BG is learning what their units/representations
correspond to in terms of actual probability of reward and
effort experienced. Then, in the later part, as the DLPFC
task representations continue to be challenged with new task
cue inputs (different specific versions of this task space),
the learned ACC/OFC projections into DLPFC BG enable
it to select a good task strategy representation on the first
try.

4.1. Details of Network Layer Functions

(i) TaskInput: generalized task control information
about the inner loop task being performed projects to
DLPFC.We assume that this information comes from
abstract semantic representations of the task at hand;
this is likely represented in a variety of posterior and
prefrontal regions, depending on the type of task.
Use the following units/localist representations:

(a) PERF—performing current task-signals that
DLPFC should not update the task representa-
tion (see DLPFC NoGo In later); this repeats
for the number of trials a given PCTask strategy
requires and metes out the delay/effort associ-
ated with a given strategy.
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(b) DONE—done performing current task-reward
feedback will be received in RewInput to OFC
and PVe (PVLV); note that there is a “cortical”
distributed scalar value representation of reward
(RewInput), in addition to the subcortical one
that goes directly into the reward learning sys-
tem (PVe); conceptually these are the same rep-
resentation, but their implementation differs.

(c) CHOICE—DLPFC should choose a new task
representation, based on influences from
TaskCues, ACC, and OFC states; the newly
gated DLPFC representation will then drive a
new PCTask representation, which will then
determine how many PERF trials are required
and the probability of reward for the next
DONE state.

(ii) TaskCues: these are random bit patterns determined
by the cur task no state, which drives DLPFC (both
cortex and BG); they represent all the sensory, con-
textual, and instructional cues associated with a given
specific task.

(iii) PCTask reflects the actual task parameters. In this
example, these are Distance, Dist + BaseRate, Dist +
Radius, and Dist + BaseRate + Radius, but more
generally this would represent a much larger space of
task representations that have associated reward and
effort parameters for different tasks. This may also
reflect a combination of posterior cortical and also
more posterior DLPFC representations that provide
topdown biasing to these PC task representations and
maintain them over shorter durations.The DLPFC in
the model is the more anterior “outer loop” DLPFC
that maintains higher-level, longer-duration task rep-
resentations that are “unfolded” into useful sequences
by other processes, including but likely not limited to
those we address in the models here.

(iv) RewInput: scalar val of reward input level activated
during the DONE trial; this also has a −1 state that
is activated whenever the network is in PERF task
mode, and this is what triggers the incrementing of
delay/effort in theACC layer (i.e., bothOFC andACC
feed off of this same basic RewInput layer, pulling out
different information). This is overall redundant with
signals in PVLV but packages them in a simple way
for OFC/ACC to access and for us to manipulate for
various experiments.

(v) OFC computes running time average of reward prob-
ability/magnitude; only updated when reward occurs
(DONE trials), otherwise maintains the current esti-
mate for PERF and CHOICE trials. The network
learns coarse-coded distributed representation of this
value, not in a scalar value format, through a “decod-
ing” layer (AvgRewOut) that is in scalar value format.
But it is the distributed representation that projects to
DLPFC to bias its processing. It is not exactly clear
what AvgRewOut corresponds to biologically, but the
general idea is that there are autonomic level states

in the brainstem, and so forth, that compute low-
level time averages based on physiological variables
(e.g., longer time average sucrose concentration in the
blood), and that is what drives the OFC to learn to
compute activation-based running time averages. See
(vii) for the way this representation learns to affect
DLPFC gating.

(vi) ACC computes running time-average interval
between reward trials which constitutes total effort
on each task, since we assume roughly equal effort
per time. It is updated on each performance trial and
maintained during the DONE and CHOICE trials;
each time step increases activation. As with OFC, this
layer learns coarse-coded distributed representation
of this value, not in a scalar value format, through a
“decoding” layer (AvgDelayOut), which again reflects
longer time-average metabolic cost variables.

(vii) DLPFC encodes current task strategy and learns
representations entirely through reinforcement learn-
ing stabilization. It receives information about each
task from TaskCues; the Matrix layer also receives
from ACC and OFC and learns over time to select
task representations associated with good values of
ACC and OFC (i.e., values of those that have been
associated with rewards in the past). DLPFC also
projects to PCTask,which in turn projects toACCand
OFC and “conditionalizes” (makes appropriate to the
particular task) their representations.

(viii) DLPFC NoGo In is our one “hack.” It turns on
NoGo (strongly) whenever a task is being performed
to ensure that the matrix does not update DLPFC
midtask. This hard-coded behavior is simply the
assumption that the DLPFC task set representation
remains active during task performance; that is, peo-
ple maintain one task set without switching strategies
midway through more general learning: when you
decide on a strategy, stick with it until you are done
(or until it gets “frustrating” by consuming too much
time).

4.2. Results

4.2.1. Reward-Only Optimization: OFC Proof of Concept Test.
The first proof of concept test sets the probability of reward
to .2, .4, .6, and .8 for PCTask units 0–3, respectively (labeled
“Distance only,” “+BaseRate,” “+radius,” and “Combined,”
resp.), with delay set to a constant 1 trial (.2 parameter ×
5 trials max delay) for all options. Thus, the best strategy
is to select strategy 3, based on OFC inputs. As shown
in Figure 4, the network does this through a period of
exploration followed by “exploitation” of strategy 3, which
is selected automatically and optimally immediately, despite
changing TaskCues inputs. All of the batches (10/10) exhibited
this same qualitative behavior, with a few stabilizing on
strategy 2 instead of 3. This was the second-best strategy,
and the fact that the model stabilized on this in some
cases shows the stochastic process of sampling success that
likely contributes to the selection of nonoptimal strategies in



Computational Intelligence and Neuroscience 9

0 100 200 300 400 500
0

20

40

60

80

100

Epochs

Ch
os

en
 (%

)

Temporal evolution of chosen strategies

Distance only
Combined+BaseRate
+Radius

Figure 4: Developmental learning trajectory of PCTask selection.
Early in learning it explores the different strategies, and later it
learns to predominantly select the one (green line, strategy 3
(“Combined”)) that produces the best results.

some real-life cases (since after the model stabilizes, it will
not learn about potentially better strategies without some
sort of external perturbation to force resampling). None
stabilized on 0 or 1, since they have substantially lower reward
probabilities. As shown in Figure 5, the weights into the
Matrix Go stripe that gates DLPFC learned to encode the
high-value OFC representations associated with the strategy
3 OFC representation.

4.2.2. Delay-Only Optimization: ACC Proof of Concept Test.
Next, we set probability to .6 for all strategies and set the
delay factors to 1, 2, 3, and 4 trials of delay, respectively,
for strategies 0–3. Without any PVLV feedback at all during
the PERF trials, the network does appear to be sensitive to
this delay factor, with strategy 0 (1 trial delay) being chosen
preferentially. However, this preference is somewhat weak,
and to produce stronger, more reliable preferences, we added
a direct dopaminergic cost signal associated with delay, as has
been shown empirically [58]. This modulation decreased the
size of a DA reward burst in proportion to effort/delay (with
a small weighting term). In our proof of concept test, this
small modulation produced 50% of networks preferring the
first (least delay) strategy.

4.2.3. Balanced Reward and Delay (Actual Use Case). To sim-
ulate a plausible situation where there is a tradeoff between
effort and reward, we set the reward factors to .4, .6, .6, and
.8 and the delay factors to .2, .4, .6, and .8. This resulted in
a mix of different strategies emerging over training across
different random initial weights (“batches”) (proportions
shown in Figure 6), with some preferring the low-effort, low-
reward distance only option, while others going for the full
Distance + BaseRate + Radius high-effort, high-reward case,
and others falling in between.Theparticular results are highly

stochastic and a product of our particular choices of reward
and effort values; it is easy to push these preferences around
by using different weightings of effort versus time.

4.3. Discussion. ThePBDMmodel shows how rapid updating
in prefrontal cortex (as captured in the PBWM models
and related work on persistent firing in PFC) can aid in
decision making by allowing the system to use contextually
appropriate representations of predicted reward and effort to
drive decisions on task strategy. If the context (e.g., physical
environment and task instructions) remains the same, then
new learning in the ACC and OFC slowly updates the
values of predicted reward and effort through weight-based
learning. If, however, the context changes, representations in
ACC andOFCwill be “gated out,” so that a new set of neurons
learns about the new context. Detailed predictions about the
old context are thus preserved in the synaptic weights to that
now silent units (because the learning rule we use, and most
others, does not adjust weights to inactive neurons/units).

One way in which this preservation of contextually
dependent ACC andOFC representations could be extremely
useful is in interaction with episodic memory in the HC. We
believe that predictive representations could also be retrieved
toACCandOFC fromepisodicmemory in the hippocampus,
a form of PFC-HC interaction similar to but importantly
different from that we model in the “instructed learning”
model.

Thismodel primarily addresses the “strategic” component
of strategic cognitive sequencing, but this type of effortful
decision making, bringing the whole predictive power of
cortex online to estimate payoff and cost of one possible
sequence component, could help bootstrap learning through
the mechanisms in either or both of the instructed learning
and “model-free” models.

5. Instructed Learning

One source of complex, strategic cognitive sequences is
learning them directly from instruction [59–61]. Humans
have the remarkable ability to learn from the wisdom of
others. We can take advice or follow instruction to perform
a particular cognitive sequence. One such example may be
observed daily by cognitive scientists who conduct human
laboratory experiments. Most normal participants can well
implement instructions of an arbitrary novel taskwith little or
no practice. However, in the cognitive neuroscience of learn-
ing, reinforcement learning has been the central research
topic and instructed learning appears to have been relatively
understudied to date. In this section, we contrast reinforce-
ment and instructed learning and outline the dynamics of
instruction following in a biologically realistic neural model.

Reinforcement learning adapts behavior based on the
consequences of actions, whereas instructed learning adapts
behavior in accordance with instructed action rules. As a
result, unlike the slow, retrospective process of trial and
error in reinforcement learning, instructed learning tends to
be fast, proactive, and error-free. In the brain, the neuro-
transmitter dopamine signals reward prediction errors for
the basal ganglia to carry out reinforcement learning of
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PBDM net: showing weight strengths

Figure 5: PBDM decision-making model. This figure shows the weights from the respective units to a unit in the DLPFC Matrix Go layer
(green, lower right). It depicts the strength of weights towards the end of learning, at which point there are particularly strong connections
from the core OFC distributed representations, which represent strategy’s predicted reward value, established through learning.
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Figure 6: Balanced reward and delay. The left graph shows the number of times a strategy was chosen over 16 repeats with random initial
weights, while the graph on the right shows the temporal evolution of selection for one randomly chosen network. The variability in the
equilibrium strategy choice stems from the balance between reward and delay (the higher the reward, the higher the delay) making each
strategy approximately equally rational to choose. As discussed in the reward-only case previously, the particular, random history of reward
plays a large role in determining the ultimate strategy choice.

reward-linked actions (for a discussion, see [62]). As for
instructed learning, the human posterior hippocampus
underlies verbal encoding into episodicmemory [63] and use
of conceptual knowledge in a perceptually novel setting [64].

Compared to reinforcement learning, instructed learn-
ing appears effortless. Why is learning so arduous in one
mode but effortless in another? How exactly do we perform
complex novel tasks on the first attempt? We propose that

instruction offers nothing but a new plan of recombining
old tricks that have been acquired through other forms
of learning. In other words, instructions quickly assemble
rather than slowly modify preexisting elements of perceptual
and motor knowledge. For example, we can immediately
follow the instruction: “press the left button when seeing
a triangle; press the right button when seeing a square,”
in which the action of button press is a preexisting motor
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Figure 7:The instructed learningmodel.Themodel consists of two interactive learning pathways.The hippocampal-prefrontal pathway (i.e.,
lower part in the diagram) processes newly instructed conditional-action rules, whereas the parietal pathway (i.e., upper part in the diagram)
processes habitual actions. The actions suggested by each of these pathways are then gated by the PFC portion.

skill, and visual recognition and categorization of shapes
are also an already learned perceptual ability. Note also that
understanding the instruction requires a previously learned
mapping from language (e.g., the verbal command of “press”)
to actual behavior (e.g., the motor execution of “press”).

To further study how instruction following is carried out
from neural to behavioral levels, we constructed a model of
instructed learning based upon known neuroanatomical and
neurophysiological properties of the hippocampus and the
prefrontal-basal ganglia circuits (Figure 7). Specifically, the
model basal ganglia (BG) carries out reinforcement learning
ofmotor execution (abstracted in themodel to premotor); the
model hippocampus rapidly encodes instructions as action
episodes that can be contextually retrieved into the prefrontal
cortex (PFC) as a goal for guiding subsequent behavior.
Unlike a single-purpose neural network that slowly rewires
the whole system to learn a new sensorimotor transforma-
tion, this general purpose instructablemodel separatesmotor
from plan representations and restricts plan updating to lie
within the fast-learning hippocampus, which is known to
rapidly bind information into episodic memories.

As a concrete example, the proposed model is instructed
with 10 novel pairs of if-then rules (e.g., if you see A, then
do B) and evaluated for its success in performing conditional
actions (e.g., do B) when encountering a specific condition
(e.g., seeing A). In the model, each of the “Condition,”
“Action,” and “Premotor” layers consists of 10 localist rep-
resentations of conditions, verbal actions, and (pre-)motor
outputs, respectively. The model is pretrained with action-
to-motor mappings (i.e., from verbal commands to premotor
responses) during the Pretraining stage and then trained
with condition-to-actionmappings (i.e., if-then rules) during
the Instruction stage. Finally, during the Performance stage,
it is tested with Condition-to-Motor mappings without any
inputs from the “Action” layer. The simulation results are
shown in Figure 8. The model quickly learns an if-then rule

in just few trials during the Instruction stage, and without
further practice, it makes no error in carrying out these
instructions for response during the Performance stage, just
as human subjects often do after being presented with clear
instructions and a short practice period.

Inside the model, learning occurs in multiple parts of the
architecture. During the Pretraining stage, the hippocampus
learns to perform identity mapping for relaying information
from the “Action” layer to the correspondingmotor represen-
tations in the PFC layers. Meanwhile, BG learns to open the
execution gate for PFC to output amotor decision to the “Pre-
motor” layer. During the Instruction stage, the hippocampus
associates inputs from the “Condition” and “Action” layers
and learns each condition-action pair as a pattern. During
the Performance stage, all the model components work
together using mechanisms of pattern completion, and the
hippocampus recalls instructions about what action to do
based on retrieval cues from the “Condition” layer, and
its downstream PFC either maintains a retrieved premotor
command in workingmemory when BG closes the execution
gate or further triggers a motor response in the “Premotor”
layer when BG opens the execution gate.

Compared to earlier work on instructable networks [65],
our model further explicates how different parts of the
brain system coordinate to rapidly learn and implement inst-
ructions. Albeit simple, our instructed learning mechanisms
can support strategic cognitive sequencing in that a cogni-
tive sequence can be constructed from an ordered set of
instructed or self-instructed operations. Beside sequential
behavior, the model is being extended to also explain the
interactions between instructions and experience (e.g., [66–
69]) in the context of confirmation bias and hypothesis
testing.Themodeled ability of the hippocampus tomemorize
specific contingencies in one shot undoubtedly contributes an
important piece of our ability to learn complex goal-oriented
sequences of cognitive actions. Beyond simply memorizing
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instructions given by others, it can also aid in “self-instructed”
learning by remembering successful steps learned by trial and
error or other means for assembly into new sequences.

6. Planning through Associative Discovery of
Bridging States

We explore the idea that the active maintenance of long-term
goals in the PFC can work in conjunction with a network’s
semantic knowledge to identify relevant subgoals and then
use those individual subgoals in a similar manner to bias
action selection in the present. One fundamental question
motivates this research. Given some ultimate goal, possibly
associated with explicit reward, how does the system identify
subgoals that lead to the final goal? Our hypothesis revolves
around semantics, that is, knowledge about how the world
works. Our model uses this knowledge to perform constraint
satisfaction by using active representations of the current
state (where I am) and the desired goal (where I want to be)
to associatively arrive at a representation of a subgoal that

“bridges” between the two states. This subgoal can serve as
the focus for a strategy or plan to achieve the larger goal.

6.1. Description of the Model. There is a tension that exists
between the temporal sequencing over one or more subgoals
versus a multiple constraint-satisfaction approach that does
things all in one step. It seems clear that both can be involved
and can be important. So, when does the brain do one versus
the other? We have adopted the following heuristic as a kind
of corollary of Occam’s razor. In general, the brain will by
default try to do things in a single time step if it can; as
an initial hypothesis, we suspect that bridging over a single
subgoal is probably about as much as can be done in this
way. When no such plan exists, a more complex process of
navigating the modeled task-space through stepwise simu-
lations of intervening states can be undertaken; because this
process is among the most complex that humans undertake,
a model that does this in a biologically realistic way is a goal
for future research. Thus, our initial objective here is to try
to demonstrate a one-step constraint satisfaction solution to
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Figure 9: Subgoaling through constraint satisfaction. This figure shows settling of activations of the current state and goal state in both the
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subgoals. (c) Activations late in settling when they have converged. The network has settled onto the single most relevant subgoal through
constraint satisfaction (simultaneous association from the current state and maintained goal state).

a simple three-state problem: current state and end state to
subgoal (“bridging”) state.

Another major issue is the tension that exists between
state representations sometimes having to compete with one
another (e.g., “What is the current state?,”) versus sometimes
needing to coexist as in spreading activation so as to represent
a full motor plan or model of state space (e.g., representing
all three of the states in the previous three-state problem).
The solution we have settled on is a division of labor between
a relation processing area, possibly in the posterior parietal
cortex (PPC, circled in red in Figure 9), and a semantic
association area, possibly in the anterior temporal lobe (ATL,
circled in blue). Because many brain areas are involved in
semantics, the precise areas can be expected to vary with
the semantic domain, but the mechanisms we describe are
expected to be general across those variances. Figure 9 later

illustrates these two distinct areas. The PFC (not explicitly
modeled) is envisioned to represent the goal state and thus
to bias processing in these two areas. The relation processing
area is based on the ideas described in “Semantic Cognition”
by Rogers and McClelland [70].

Training: the network is trained on the semantics of the
State-Action-State triad relation (parietal/anterior temporal
cortex) but includes connections to the semantic part of the
network. The idea is that the relation area will learn the
specific role relations between the states (before, after) and
the actions (between states), while the semantic area will
learn simple associations between the nodes. The former
is dominated by a tight inhibitory competition, while the
latter is more free to experience spreading activation. In this
way, pre-training on all the individual S-A-S relations enables
the bridging over an intermediate subgoal state and biases
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the correct action in the current state, under the biasing
influence of the goal state.

As illustrated in Figure 9(a), which shows a network
trained only on pairwise transitions between adjacent states,
when a current state and a remote goal state are input, both
are activated in both the semantic network and relation
engine early in settling. At this very early stage of settling,
there are three action units active in the ActionBetween
layer (Relation Engine), which are all of the possible actions
that can be taken in the current state (S0). Later in settling
(Figure 9(b)), a third state unit comes on, which is the
intermediate state between the current state and the goal. It
becomes the only active unit due to a constraint satisfaction
process that includes both bottom-up input from the current
state and top-down input from the goal state. This in turn
drives the intermediate state unit ON in AfterState layer in
the RelationEngine module.

Finally, late in settling (Figure 9(c)), the intermediate
state outcompetes the goal unit in the AfterState layer due to
the attractor associated with the prior training of contiguous
state transitions. This is associated with the third action unit
in the ActionBetween and ActionNodes (Semantic Network)
layers. This is the correct answer. This model illustrates how
constraint satisfaction to find bridging states can work as one
component of more complex planning.

6.2. Discussion. Subgoals in this context are conceived as a
version of “cold” goals, defined as teleological representations
of a desired state of the world that, in and of itself, does not
include primary reward. Thus, in a sense, cold goals (here
subgoals) are “just a means to an end.”

In thinking about the role of subgoals, a number of
important issues can be identified. First, as already noted, a
fundamental issue concerns how brain mechanisms create
useful subgoals, if they are not provided externally. In
addition, a second important issue is whether there are one
or more biologically plausible mechanisms for rewarding the
achievement of subgoals. This in turn has two subcompo-
nents: (1) learning how to achieve subgoals in the first place
(e.g., how to grind coffee in support of making coffee in
the morning) and (2) learning how/when to exploit already
familiar subgoal in the service of achieving a master goal
(e.g., learning that having ground coffee is a precursor to
enjoying a nice fresh cup of hot coffee for yourself and/or
receiving kudos from your significant other). It is interesting
to note that these two learning categories exhibit a mutual
interdependence. Usually, learning how to achieve subgoals
must precede learning to exploit them, although an interest-
ing alternative can sometimes occur: if a learner is allowed
to use its what-if imagination. For example, if a learner can
do thought experiments like: “IF I had ground coffee, and
cold water, and a working coffee maker, THEN I could have
hot coffee.” Thinking about it over and over could transfer
(imagined) value from the hot coffee to the ground coffee,
and so forth,which then could be used as secondary reinforce-
ment to motivate the learning of instrumental subgoals. This
scenario-spinning behavior is not modeled in any realistic
cognitive model of which we are aware; achieving this will be

difficult but an important step toward understanding human
intelligence.

A third critical issue is how subgoals are actually used
by the system (in a mechanistic sense) in the service of
pursuing the master goal. Here, the simple idea that serves
as a kind of working hypothesis in our work is that the
active maintenance of subgoals can serve to bias the behavior
that produces their realization in a kind teleological “pull of
the future” way. Finally, there then still needs to be some
sort of cognitive sequencing control mechanism organizing
the overall process, that is, the achievement of each subgoal
in turn. Ultimately, in our way of thinking, this whole
process can be biased by keeping the master goal in active
maintenance throughout the process.

In sum, this model demonstrates a rough draft of one
aspect of human high-level planning: abstract state repre-
sentations allow constraint satisfaction processes based on
associative learning to find a bridging state between current
and goal states. We hypothesize that this process is iterated
at different levels of abstraction to create more detailed plans
as they are needed. However, we do not as yet have a model
that includes the movement between different levels of plan
abstraction.The other models presented here represent some
of the mechanisms needed for this process but have yet to
be integrated into a coherent, let alone complete, model of
human planning.

Explaining how brains perform planning requires under-
standing the computational demands involved. The more
abstract literature on the algorithmic and computational
properties of planning in artificial intelligence research has
thoroughly explored the problem space of many types of
planning (e.g., [71–73]). Consistent with this proposed bio-
logicalmodel, algorithmic constraint satisfaction solvers have
been an important part of AI planning algorithms (e.g., [74,
75]). Other extensions and combinations of these models are
also suggested by AI planning work; search-based algorithms
(e.g., [76, 77]) show that sequencing, storing, and retrieval of
state (as in the model-free and instructed sequencing model)
are essential for flexible planning. We address some such
possible combinations and extensions later.

7. General Discussion

The four models here represent an incomplete start at fully
modeling human strategic cognitive sequencing. A fullmodel
would explain how basic mammalian brain mechanisms
can account for the remarkable complexity and flexibility
of human cognition. It would address the use of elaborate
cognitive sequences which constitute learned “programs”
for solving complex problems and how people generalize
this ability to new problems by selecting parts of these
sequences to construct appropriate strategies for novel tasks
in related domains. A complete model is thus a long-term
and ambitious project, but one with important implications
for understanding human cognition.

The following primarily addresses the limitations in the
work described and our plans to extend these models toward
a more complete explanation of complex human sequential
cognition. Although learning was integral to all presented
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models, demonstrating the feasibility of bootstrapping such
flexible cognitive systems, the learning in these initial models
was mostly still domain specific: models were trained within
the class of tasks to be performed from a naive state. While
the instructed model could generalise to a variety of unseen
if-then rules and the constraint satisfactionmodel generalizes
to unseen state-goal pairings, they were both only trained on
their respective tasks.

In future work, we plan to extend this to a more sophis-
ticated pre-training or scaffolding of networks that are more
general and ecologically valid. Instead of beginning training
of specific task structures from a naive network, the idea
is to train the networks on a large variety of distinct tasks,
progressing from simple to complex. The PBDM model, for
instance, was trained in a relatively ecologically valid way but
did not learn increasing complexity of tasks as it mastered
simple ones as humans do. With increasing number of tasks
trained, the network should learn to extract commonality
between tasks, abstracting the essence of tasks into distinct
representations. While it remains unclear what these task
representations might look like on the finer biological scale,
either from experimentation or computational modeling, it
seems likely that representations for some basic computa-
tional building blocks of cognitive sequencing exist.

Such representations must, at an abstract level, include
some of those found in any standard computer programming
language, such as sequencing, loops, storing, and recalling of
state. While the models presented here cannot accomplish
any of these functions as they stand, we already have a
rough basis for these basic task building blocks. All of the
previous “program flow” functions can be seen as subsets
of conditional branching (e.g., if you have not yet found
the goal object, use a sequence that looks for it). The
other models presented here (planning, model-free sequence
learning, and decision making) address important aspects
of how sequences are learned and used, but the instructed
learning model alone is enough to understand one way
in which the brain can exhibit such program flow control
once a relevant sequence is learned. This behavior requires
extending the model to store and use state information. This
minor extension would include working memory updates in
the potential actions and make action pairs conditional on
those working memory representations as well as sensory
inputs.

Dayan [78] has already explored this behavior in a more
abstract version of PBWM. This model includes storage
actions and dependency upon stored information consistent
with the role for which PBWM was primarily developed,
understanding how mechanisms evolved for gating motor
actions control storage in working memory. Making memo-
rized pairings dependent upon state information in working
memory is also straightforward, and known basal ganglia
connectivity suggests such a convergence of information
between prefrontal working memory and posterior sensory
cortices for the purpose of gating decisions. Dayan [78]
also includes a match detection function to allow nonmatch
criteria that do not arise naturally from the associative nature
of neural networks, an important consideration for our future
development of these models.

The models presented here are also generally consistent
with the most well-developed models in this domain, proce-
dural models such as ACT-R [60], from which our approach
draws inspiration. While our work is generally compatible,
we hope to provide more constraints on these theories by
considering the wealth of data on detailed aspects of neural
function.

In particular, our learning neural network approach will
also allow us to constrain theories of exactly what represen-
tations are used to produce cognitive sequences by how they
are learned. By studying learning over a large number of tasks,
we aim to address the question of how these representations
emerge on a developmental time scale from a young infant
to the fully developed capability of an adult. This focus
addresses learning to learn, a phenomenon that has both
been extensively studied in psychology as well as in machine
learning and robotics [79–81]. In both cases, learning to learn
transfers beneficial information from a group of tasks to new
ones, speeding up learning of new tasks. While in machine
learning, many different algorithms have been proposed
to achieve transfer learning or learning to learn, a good
proportion is based upon representational transfer [79, 82];
that is, due to the efficient and general representations learned
in prior tasks, new tasks can be learned more rapidly or more
effectively instructed.

To address these questions, we will draw on our and
others’ work on learning of abstract categories from sensory
data (e.g., [83]). Generalizing from prior learning usefully
categorizes novel sensory inputs through neural processing
that is now relatively well understood. Such category gener-
alization, when combined with the models presented here,
offers one explanation of learning to learn. When strategic
cognitive sequencing is performed based upon categorical
representations (e.g., substitute “input A” in the instructed
learning model for “signal to stop and wait for instructions”),
learning will generalize to new sensory inputs that can be
correctly categorized.This type of generalizedmatching bears
a resemblance to the variablematching rule in recent versions
of ACT-R (e.g., “if the word was (word X, previously stored),
press the red button”). Modeling this process in greater
neural detail will provide more constraints on what types of
generalization and matching can be learned and performed
by realistic neural networks.

Perhaps because such high-level cognition inevitably
involves interactions between many brain regions, com-
putational modeling and other forms of detailed theory
construction have, as yet, made little progress. However, the
enormous accumulation of work aimed at understanding
the contributions from individual brain areas have rendered
this complex but important domain a potentially productive
target for detailed modeling and computational-level theory.
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The emergent consensus on dimensional models of sentiment, appraisal, emotions, and values is on the semantics of the principal
dimensions, typically interpreted as valence, arousal, and dominance. The notion of weak semantic maps was introduced recently
as distribution of representations in abstract spaces that are not derived from human judgments, psychometrics, or any other a
priori information about their semantics. Instead, they are defined entirely by binary semantic relations among representations,
such as synonymy and antonymy. An interesting question concerns the ability of the antonymy-based semantic maps to capture
all “universal” semantic dimensions. The present work shows that those narrow weak semantic maps are not complete in this
sense and can be augmented with other semantic relations. Specifically, including hyponym-hypernym relations yields a new
semantic dimension of the map labeled here “abstractness” (or ontological generality) that is not reducible to any dimensions
represented by antonym pairs or to traditional affective space dimensions. It is expected that including other semantic relations
(e.g., meronymy/holonymy) will also result in the addition of new semantic dimensions to the map. These findings have broad
implications for automated quantitative evaluation of the meaning of text and may shed light on the nature of human subjective
experience.

1. Introduction

The idea of representing semantics geometrically is increas-
ingly popular. Many mainstream approaches use vector
space models, in which concepts, words, documents, and
so forth are associated with vectors in an abstract multi-
dimensional vector space. Other approaches use manifolds
of more complex topology and geometry. In either case,
the resultant space or manifold together with its allocated
representations is called a semantic space or a semantic
(cognitive) map. Examples include spaces constructed with
Latent Semantic Analysis (LSA) [1] and Latent Dirichlet
Allocation (LDA) [2], as well as many related techniques, for
example, ConceptNet [3, 4]. Other examples of techniques
include Multi-Dimensional Scaling (MDS) [5], including
Isomap [6], and related manifold-learning techniques [7],
Gardenfors’ conceptual spaces [8], very popular in the past
models of self-organizing feature maps, and more.

The majority of these approaches are based on the idea
of a dissimilarity metrics, which is to capture semantic

dissimilarity between representations (words, documents,
concepts, etc.) with a geometrical distance between associ-
ated space elements (points or vectors). In other words, the
metrics that determines the allocation of representations in
space is a function of their semantic dissimilarity. In this case,
two representations allocated at close points in space must
have similar semantics and vice versa: two representations
with similar semantics must be close to each other in space.
Conversely, representations unrelated to each other must be
separated by significant distance.

We introduced the term “weak semantic cognitive map-
ping” to denote an alternative approach, exploited here,
which is not based on dissimilarity [9–11]. The idea is not to
separate all differentmeanings fromeach other (like inMDS),
nor to allocate them based on their individual semantic
characteristics given a priori (as in LSA), but rather to arrange
them in space based on their mutual semantic relations.
The notion of weak semantic cognitive maps was originally
introduced in a narrow sense, where these relations were
limited to synonymy and antonymy only [9–11]. In a more
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general sense, as discussed below, weak semantic cognitive
maps may capture other binary semantic relations as well,
including hypernymy-hyponymy, holonymy-meronymy, tro-
ponymy, causality, and dependence.

While the understanding of dissimilarity as the basis of
antonymy is widespread, many examples of the dictionary
antonym pairs used in our analysis suggest that dissimilarity
and antonymy are distinct notions. Most unrelated words
may be considered dissimilar (e.g., “apple” and “inequality”),
yet do not constitute antonym pairs. In contrast, antonym
pairs include words that are related to each other and in a
certain sense are similar to each other in their meaning and
usage, for example, king and queen, major and minor, and
ascent and descent. It appears that most antonym pairs (at
least in the dictionaries that we used) are consistent with the
notion of “opposite” rather than “dissimilar.”

More generally, the method of weak semantic map-
ping is essentially different from most vector-space-based
approaches including LSA, LDA, MDS, and ConceptNet [1–
4], primarily because there is no a priori attribution of seman-
tic features to representations in the constructive definition
of the map. Only relations, but not semantic features, are
given as input. As a result, semantic dimensions of the map
that are not predefined to emerge naturally, starting from
a randomly generated initial distribution of words in an
abstract space with no a priori given semantics and following
the strategy to pull synonyms together and antonyms apart
[10, 11] (see Section 2: Methods). In contrast to LSA, principal
component analysis is used here to reveal the main emergent
semantic dimensions at the final stage only. The advan-
tage of the antonymy-based weak semantic cognitive map
compared to “strong” maps based on dissimilarity metrics
is that its dimensions have clearly identifiable semantics
(naturally given by the corresponding pairs of antonyms) that
are domain-independent. For example, the notion of “good
versus bad” that corresponds to the first principal component
applies to all domains of human knowledge.

Interestingly, semantics of the emergent dimensions of
antonym-based weak semantic cognitive maps are closely
related to those of another broad category of “dimensional
models” of affects [12] that attempt to capture human
emotions, feelings, affects, appraisals, sentiments, and atti-
tudes. Examples range from original classical models such
as Osgood’s semantic differential [13], Russell’s circumplex
[14], and Plutchik’s wheel [15] to many more recent deriva-
tive integrated frameworks, like PAD (pleasure, arousal,
and dominance) [16], ANEW (Affective Norms for English
Words) [17], EPA (evaluation, potency, and arousal) [18], and
a recent 3D model linking emotions to main neurotrans-
mitters [19]. These dimensional models are usually derived
from human experimental studies involving psychometrics
or introspective judgment evaluated on the Likert scale [20].
While these models provide the most common bases for
opinionmining or sentiment analysis [21], the weak semantic
map is more complete in the sense that (i) it assigns values
to all words, not only to emotionally meaningful words, (ii)
it measures semantics associated with all antonym pairs, not
only emotionally meaningful antonym pairs, and therefore
is applicable to all domains of knowledge, and (iii) its

dimensions are orthogonal and independent of each other.
The combination of these featuresmakesweak semanticmaps
extremely valuable for numerous applications.

It is surprising that the well-known dimensions of the
semantic differential, PAD, EPA, and related models can
be recognized in the main principal components (PC) of
the above cited weak semantic map, where PC1 is related
to valence, PC2 to arousal, and PC3 to dominance [11].
(This correspondence is approximate, because the principal
components have zero correlations with each other, while
the variables of, e.g., ANEW are strongly correlated.) For
example, “love” and “joy” have top values of valence in the
affective database ANEW and also top values of PC1 of weak
semantic cognitive map.Words like “anger” and “excitement”
have top values of arousal in the affective database ANEW
and also top values of PC2 in weak semantic cognitive map.
This correspondence is consistent in weak semantic maps
constructed based on different corpora in several major
languages [11]. The observation is unexpected, because the
weak semantic map is not derived from any semantic features
of words given a priori, and is not explicitly related to
emotions and feelings by its construction. In fact, any pair of
antonyms defines a map dimension, including antonym pairs
that are not associated with affects, for example, “abstract-
specific.” It is also surprising that the weak semantic map is
low-dimensional: the number of PCs that account for 95%
of the variance of the multidimensional distribution typically
varies from 4 to 6, depending on the corpus [11].

How complete is the weak semantic map narrowly
defined only by antonym pairs? Certainly at least some
semantic differences cannot be captured by antonymy rela-
tions, because not all concepts have antonyms (e.g., the
number 921714083). Here we address a different question:
whether all universal semantic dimensions can be captured
by antonymy relations. For example, it may seem obvious that
causality cannot be captured by antonymy.However, the issue
is nontrivial, as there are many examples of causally related
antonyms (e.g., attack-defend, begin-end, send-receive, and
even cause-effect). Thus, two logical possibilities stand.

(1) Antonym-based semantic maps separate representa-
tions along all semantic dimensions that make sense
for all domains of knowledge. Thus, if there is a
semantic characteristic 𝑋 that makes sense for all
domains of knowledge such that some concepts can
be characterized as having more 𝑋 than others, then
there is a direction on the narrow weak semantic map
along which those concepts are separated based on
their value of X.

(2) The alternative: there is at least one general seman-
tic characteristic 𝑋 defined for all domains that is
ignored by the antonym-based weak semantic map.
In other words, the variance in 𝑋 measured across
all concepts is not accounted by the map coordinates
of concepts, and vice versa, no significant part of the
variance of the map can be accounted by X.

Here we argue for (2), quantifying the notion of “abstract-
ness” (or ontological generality) as an example of 𝑋. Our
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Figure 1: A sample from the antonymy-based weak semantic
cognitive map constructed by Samsonovich and Ascoli [11]. Grey
dots show all 15,783 words from the MS Word English dictionary.
Similar results were obtained by WordNet. Words shown in color
are examples of hypernym-hyponym pairs: “action-withdrawal” and
“object-screw.” Selected examples illustrate that there is no clear
separation of hypernyms and hyponyms on the map.

technical definition of “abstractness” is based on hyponym-
hypernym relations among words.

Before presenting results of the computational study, we
briefly discuss the hypothesis at an intuitive level. While
“abstract-specific” is a pair of antonyms, which corresponds
to a direction on the narrow weak semantic map, the two
antonyms “abstract” and “specific” themselves have approx-
imately the same measure of “abstractness” (the 𝑋 value)
associated with them. Intuitively, this observation must hold
for most antonym pairs, because antonyms pairs do not
typically constitute a hypernym-hyponym couple. Therefore,
it is unlikely that there is a hyperplane on the map that
separates more abstract frommore specific words.Therefore,
we do not expect to find a dimension of the map based
on synonyms and antonyms that could separate words by
“abstractness” (see Figure 1). In contrast, there is a hyperplane
(PC1 = 0) that separates “good” and “bad” words and a
hyperplane (PC2 = 0) that separates “calming” and “exciting”
words. That is to say, “good words” tend to be synonyms of
the word “good,” but “abstract words” are not synonyms of
the word “abstract” or of each other.

2. Methods

2.1. Weak Semantic Cognitive Mapping. The general idea of
semantic cognitive mapping is to allocate representations
(e.g., words) in an abstract space based on their semantics.
This paradigm is common for a large number of techniques
overviewed in Introduction. While most studies in semantic
cognitive mapping are based on the notion of a dissimilarity
metrics and/or on a set of semantic features given a priori,
weak semantic mapping ignores dissimilarity as well as any
individually predefined semantics.

The algorithm for antonymy-based weak semantic map-
ping is described in our previous work [11]. The semantic
space is created by minimization of the “energy” of the entire
distribution of words on themap, starting from a randomdis-
tribution. Then, the emergent semantics of the map dimen-
sions are defined by the entire distribution of representations
on themap and typically are best characterized by the pairs of
antonyms that are separated by the greatest distance along the
given dimension.The main semantic dimensions are defined
by the principal components of the emergent distribution
of words on the map. Semantics associated with the first
three PCs can be characterized as “good” versus “bad” (PC1),
“calming, easy” versus “exciting, hard” (PC2), and “free,
open” versus “dominated, closed” (PC3) [11]. When limited
to affects, these semantics approximately correspond to the
three PAD dimensions: pleasure, arousal, and dominance.

More precisely, the narrow weak semantic cognitive map
is a distribution of words in an abstract vector space (with no
semantics preassociatedwith its elements or dimensions) that
minimizes the following energy function [11]:

𝐻(x) = −1
2

𝑁

∑

𝑖,𝑗 =1

𝑊
𝑖𝑗
x
𝑖
⋅ x
𝑗
+
1

4

𝑁

∑

𝑖 =1

󵄨󵄨󵄨󵄨x𝑖
󵄨󵄨󵄨󵄨

4
, x ∈ R𝑁 ⊗R𝐷. (1)

Here x
𝑖
is a D-vector representing the 𝑖th word (out of

N). The 𝑊
𝑖𝑗
entries of the symmetric relation matrix equal

+1 for pairs of synonyms, –1 for pairs of antonyms, and zero
otherwise.D is set to any integer (e.g., 100) that is substantially
greater than the number of resulting significant principal
components of the distribution, which typically ranges from
4 to 6 and determines the dimensionality of the map. In
this case the choice of 𝐷 does not change the outcome. The
energy function (1) follows the principle of parsimony: it is
the simplest analytical expression that creates balanced forces
of desired signs between synonyms and antonyms, preserves
symmetries of semantic relations, and increases indefinitely
at the infinity, keeping the resultant distribution localized
near the origin of coordinates.

The procedure is that the initial coordinates of all words
are sampled by a random number generator.Then the energy
(1) minimization process starts that pulls synonym vectors
together and antonym vectors apart. Then principal compo-
nent analysis is used to reveal the main emergent semantic
dimensions of the optimized map [10, 11]. Thus, the initial
space coordinates are not associated with any semantics a
priori: instead, words are allocated randomly in an abstract
multidimensional space. In contrast, the starting point of
traditional techniques based on LSA [1, 22] is a feature space,
where dimensions have definite semantics a priori.

The representative weak semantic map shown in Figure 1
includes 𝑁 = 15,783 words and was constructed based on
the dictionary of English synonyms and antonyms available
as part ofMicrosoftWord (MSWord) [11]. A similar map was
also constructed using WordNet in the same work [11] and is
also used in this study, together withmaps constructed in [11]
for other languages. Figure 1 represents the first two PCs of
the distribution of words on the map constructed using the
English MSWord thesaurus. The axes of the map are defined
by the PCs. Selected words shown on the map in black at
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Figure 2: Distribution histogram of the 124,408WordNet 3.0 words
along the “abstractness” dimension.

Table 1:The tails of the list of 124,408 words sorted by “abstractness”
in descending order.

The beginning of the list The end of the list
Entity Chain wrench
Physical entity Francis turbine
Psychological feature Tricolor television tube
Auditory communication Tricolor tube
Unmake Tricolour television tube
Cognition Tricolour tube
Knowledge Edmontonia
Noesis Coelophysis
Natural phenomenon Deinocheirus
Ability Struthiomimus
Social event Deinonychus
Craniate Dromaeosaur
Vertebrate Mononychus olecranus
Higher cognitive process Oviraptorid
Physiological property Superslasher
Mammal Utahraptor
Mammalian Velociraptor

their map locations characterize the semantics of the map.
The two hypernym-hyponym pairs, “object-screw” (shown in
pink) and “action-withdrawal” (in blue), illustrate the map
inability to capture the “abstractness” dimension, confirmed
quantitatively by correlation analysis in the next section.
It should be pointed out here that the negative valence of
“object” can be attributed to the meaning of the verb “object”
that is merged with the noun “object” on this string-based
semantic map.

2.2. Measuring the “Abstractness” of Words. Here we refer to
the “abstractness” of a concept as its ontological generality.
The WordNet database contains information that allows
us to arrange English words on a line according to their

“abstractness” (or ontological generality). This information
is contained in the hyponym-hypernym relations among
words. The goal is to separate hypernym-hyponym pairs in
one dimension tentatively labeled “abstractness,” so that each
hyponym has a lower “abstractness” value compared to its
hypernyms.Given a consistent hierarchy, a solutionwould be,
for example, to interpret the order of a word in the hierarchy
as a measure of its “abstractness.” Unfortunately, the system
of hyponym-hypernym relations among words available in
WordNet is internally inconsistent: it has numerous loops
and conflicting links. Therefore, we use an optimization
approach analogous to the antonymy-based weak semantic
mapping based on (1). The underlying idea is to give each
word 𝑖 its “abstractness” coordinate 𝑥

𝑖
in such a way that the

overall correlation between the difference in word “abstract-
ness” coordinates 𝑥 and the reciprocal hypernym-hyponym
relations of the two words is maximized. Unfortunately, an
energy function similar toH (1) cannot be used here, because
the symmetry of hypernym-hyponym relations is different
from the symmetry of antonym and synonym relations.
Nevertheless, we showed in previous work [23] that the goal
can be achieved by using the following definition of word
“abstractness” values {𝑥}:

𝑥⃗ = argmin
R𝑛

[

[

𝑛

∑
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𝑊
𝑖𝑗
(𝑥
𝑖
− 𝑥
𝑗
− 1)
2

+ 𝜇

𝑛

∑
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𝑥
2

𝑖
]

]

, (2)

where 𝑛 is the number of words, 𝜇 is a regularization
parameter, and 𝑊

𝑖𝑗
= 1 if the word 𝑖 is a hypernym of the

word j and zero otherwise. Here the first sum is taken over
all ordered hyponym-hypernym pairs.

The publicly available WordNet 3.0 database (http://
wordnet.princeton.edu/) was used in this study. The hyper-
nym-hyponym relations among 𝑛 = 124,408 English words
were extracted from the database as a connected graph
defining thematrixW, whichwas used to compute the energy
function (2). Optimization was carried out with standard
MATLAB functions, as described in [23].

3. Results

3.1. Measuring Correlations of Augmented Map Dimensions.
The one-dimensional semantic map of “abstractness” was
computed as described in Section 2. The resultant distribu-
tion of 124,408WordNet words in one dimension is shown in
Figure 2. The two ends of the sorted list of words along their
“abstractness” are given in Table 1.

This map was then combined with several antonymy-
based weak semantic maps that are previously constructed
[11]. The “abstractness” map was merged with any given
narrow weak semantic map as the following. First, the set of
words was limited to those that are common for both maps.
Then, the augmented map was defined as a direct sum of the
two vector spaces; that is, the “abstractness” dimension was
added as a new word coordinate.

The resultant augmented maps were used to com-
pute the correlation between “abstractness” and other map
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Figure 3: Correlations of “abstractness” with principal components of the antonymy-based weak semantic cognitive maps. (a) The map
constructed using WordNet 3.0; (b) the map constructed using the Microsoft Word thesaurus.

Table 2: Pearson correlation coefficient 𝑅 and the corresponding accounted variance (𝑅2) of “abstractness” with PC1: valence, PC2: arousal,
and PC3: freedom/dominance, measured in four augmented maps constructed based onWordNet 3.0 and theMSWord English, French, and
German thesauri.

PC1: valence PC2: arousal PC3: freedom, dominance
𝑅 𝑅

2
𝑅 𝑅

2
𝑅 𝑅

2

WordNet 0.09 0.8% −0.07 0.5% −0.01 0% (NS)
MSWord English 0.12 1.4% 0.01 0% (NS) −0.03 0.1% (NS)
MSWord French 0.11 1.2% 0.02 0% (NS) 0.01 0% (NS)
MSWord German 0.14 2.0% −0.02 0% (NS) 0 0% (NS)

dimensions. The main question was how, if at all is the new
“abstractness” dimension related to the principal components
of the antonymy-based weak semantic map? Figure 3 illus-
trates the scatterplots of word “abstractness” values derived
fromWordNet with the dimensions of narrowweak semantic
maps derived fromWordNet data (Figure 3(a)) and fromMS
Word (Figure 3(b)).ThePearson correlation coefficient𝑅 and
the corresponding accounted variance𝑅2 are given in Table 2
for each PC.

Similar results were obtained for augmentedweak seman-
tic maps in other languages (constructed based on the MS
Word thesaurus as described in [11]): French (Figure 4(a))

and German (Figure 4(b)). Automated Google translation
was used to merge maps in different languages.

In all cases “abstractness” is only positively correlated
with valence (𝑃 < 10−8 in all corpora), while none of the
correlation coefficients with the other two dimensions
(arousal and freedom) are statistically significant in a con-
sistent way across corpora. Even in the case of valence, the
correlation coefficient remains small (Table 2). This finding
is further addressed in Section 4.

Overall, the results (Figures 3 and 4) show that the new
“abstractness” dimension is practically orthogonal to the
narrowly defined weak semantic map dimensions. Indeed,
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Figure 4: Correlations of “abstractness” with principal components of the antonymy-based weak semantic cognitivemaps in other languages.
(a) The map constructed using the French dictionary of MSWord. (b) The map constructed using the German dictionary of MSWord.

in most cases the correlation is not significant. In the
minority of the cases where the correlation is statistically
significant, the correlation coefficient is sufficiently small as
to become marginal. Specifically, little information is lost by
disregarding the fraction of the variance of the distribution
of words on the weak semantic map accounted by the word
“abstractness” or, vice versa, the fraction of the variance in
the word “abstractness” accounted by the weak semantic map
dimensions (Table 2).

In conclusion, the previous weak semantic map dimen-
sions do not account for a substantial fraction of variance in
“abstractness,” and word “abstractness” values do not account
for a substantial fraction of variance in the distribution of
words on antonymy-based weak semantic maps.

3.2. Examples of Document Mapping with the Augmented
Semantic Map. Traditionally, only the valence dimension
is used in sentiment analysis. At the same time, other
dimensions including “abstractness” are frequently indi-
cated as useful (e.g., [24]). We previously applied the
weak semantic map to analysis of Medline abstracts [25].
As an extension of that study, we now applied the aug-
mented semantic map to analyze various kinds of docu-
ments.

Using the MS Word English narrow weak semantic map
merged with the WordNet-based “abstractness” map, this
part of the study asked the following key research questions:
how informative is the new dimension compared to familiar
dimensions at the document level? Specifically, how well are
different kinds of documents separated from each other on
the augmented map compared to the narrow weak semantic
map? How capable is the new “abstractness” dimension
compared to antonymy-based dimensions in terms of doc-
ument separation? Being aware of more advanced methods
of sentiment analysis [21, 26], here we adopted the simplest
“bag of words” method (computing the “center of mass” of
words in the document, not to be confused with LSA). This
parsimonious choice is justified because at this point we are
interested in assessing the value of the new dimension com-
pared to familiar dimensions of the narrow weak semantic
map, rather than achieving practically significant results.

For each document, the average augmented map coor-
dinates of all words were computed, together with the
standard error in each dimension.The results are represented
in Figure 5 by crossed ovals, with the center of the cross
representing the average and the size of the oval representing
the standard error (i.e., the standard deviation divided by
the square root of the number of identified words). The
large black crosses in each panel represent the average of
all words in the dictionary weighted by their overall usage
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Figure 5: Representations of 13 documents (details in the text) on the augmented semantic map. The Pearson correlation coefficient 𝑅 and
the corresponding 𝑃 value were computed for each panel. None of the correlations are significant. (a) Valence versus “abstractness,” R = 0.54,
𝑃 = 0.06. (b) Arousal versus “abstractness,” R = 0.50, 𝑃 = 0.09. (c) Arousal versus valence, R = 0.54, 𝑃 = 0.057. (d) Richness (PC4) versus
freedom (PC3), R = 0.46, 𝑃 = 0.12.

frequency, not limited to materials of this study and derived
as in [11]. Colors and numbers of ovals in Figure 5 correspond
to RGB values and item numbers given in the following list of
corpora:

(1) Project Gutenberg’s A Text-Book of Astronomy,
by George C. Comstock (http://www.gutenberg.org/
files/34834/34834-0.txt), 9626 words, rgb = (0, 0, 6);

(2) Martha Stewart Living Radio Thanksgivings Hotline
Recipes 2011 (http://www.hunt4freebies.com/free-
martha-stewart-thanksgiving-recipes-ebook-down-
load), 2091 words, rgb = (0, 0, 9);

(3) AlQaida InspireMagazine Issue 9 (http://www.en.wi-
kipedia.org/wiki/Inspire (magazine)), 2555 words,
rgb = (0, 2, 10);

(4) A suicide blog (http://www.tumblr.com/tagged/suic-
ideblog), 387 words, rgb = (0, 5, 10);

(5) 152 Shakespeare sonnets [27], 4170 words, rgb = (0, 8,
10);

(6) TheHitchhiker’s Guide to the Galaxy, by Douglas Ad-
ams (http://www.paulyhart.blogspot.com/2011/10/hi-
tchhikers-guide-to-galaxy-text 28.html), 4187 words,
rgb = (1, 10, 9);

(7) 10 abstracts of award-winning NSF grant propos-
als (downloaded from http://www.nsf.gov/award-
search), 585 words, rgb = (4, 10, 6);

(8) 196 reviews of the film “IronMan”, 2008 (http://www.
mrqe.com/movie reviews/iron-man-m100052975/),
3902 words, rgb = (8, 10, 2);

(9) 170 reviews of the film “Superhero Movie”, 2008
(http://www.mrqe.com/movie reviews/superhero-
movie-m100071304/), 2204 words, rgb = (10, 9, 0);
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(10) 160 reviews of the film “Prom Night”, 2008
(http://www.mrqe.com/movie reviews/prom-night-
m100076394/), 2114 words, rgb = (10, 6, 0);

(11) 47 anecdotes of/about famous scientists (retri-
eved from http://jcdverha.home.xs4all.nl/scijokes/10
.html), 919 words, rgb = (10, 3, 0);

(12) transcript of Obama’s speech at the DNC on
September 6, 2012 (http://www.foxnews.com/poli-
tics/2012/09/06/transcript-obama-speech-at-dnc),
491 words, rgb = (10, 0, 0);

(13) “Topological strings and their physical applica-
tions,” by Andrew Neitzke and Cumrun Vafa (http://
www.arxiv.org/abs/hep-th/0410178v2), 1909 words,
rgb = (7, 0, 0).

The selected documents are mostly well separated in
3 dimensions, including valence (PC1), arousal (PC2), and
“abstractness” (Figure 5). At the same time, the ovals more
frequently overlap on the plane freedom-richness (PC3-
PC4). Visually, “abstractness” is approximately as efficient as
valence (PC1) in its ability to separate documents and appears
to be more efficient than other dimensions; however, the oval
separation on the valence-arousal projection (Figure 5(c))
looks slightly better than on the valence-“abstractness” pro-
jection (Figure 5(a)). This observation suggests that disre-
garding “abstractness” may not significantly affect the quality
of results, while disregarding valence would substantially
impair the quality of document separation (e.g., on the
“abstractness-”arousal plane, Obama’s speech overlaps sub-
stantially with the suicide blog, while valence separates the
two documents significantly).

Differences between the above 13 documents along these
5 dimensions were quantified with analysis of variance.
Specifically, the MANOVA 𝑃 value was 0.027, suggesting that
all five semantic dimensions are mutually independent in
characterizing the selected 13 corpora. Moreover, in order
to compare how informative different semantic dimensions
are relative to each other, two sets of characteristics were
computed (Table 3), namely, (i) the ANOVA𝑃 values to reject
the null hypothesis that all 13 corpora have the same mean in
each selected semantic dimension and (ii) the MANOVA 𝑃
values to reject the null hypothesis that the means of all 13
corpora belong to a low-dimensional hyperplane within the
space of all but one semantic dimensions.

These results can be interpreted as follows. The lower the
𝑃 value for ANOVA is, the more informative the selected
semantic dimension is. On the contrary, the lower the𝑃 value
for MANOVA is, the less informative the selected semantic
dimension is, because MANOVA was computed in the space
of all semantic dimensions except the one selected.Therefore,
results represented in Table 3 indicate that “abstractness”
(dimension 0) is nearly as informative as valence (dimension
1) and could be more informative than arousal (dimension
2, based on ANOVA only), freedom (dimension 3), and
richness (dimension 4). More data are needed to verify this
interpretation.

4. Discussion

Statistical analysis indicates that “abstractness” is positively (if
marginally) correlated with valence consistently across cor-
pora, which is not the case with other semantic dimensions.
On the one hand, the amount of variance in the distributions
of words that can be attributed to interaction between valence
and “abstractness” is not substantial (only 2% of variance
or less); therefore, the two dimensions can be considered
orthogonal for practical purposes. On the other hand, the
consistent significance of this negligibly small correlation
across datasets and languages indicates that there may be a
universal factor responsible for it. This factor could be the
usage frequency of words that affects the probability of word
selection for dictionaries. Stated simply, abstract positive
words and specific negative words are used more frequently
than abstract negative words and specific positive words.
Specifically, our previous study [11] showed that the mean
valence (normalized to unitary standard deviation) of all
words weighted by their usage frequency is significantly posi-
tive (0.50 using frequency data from a database of Australian
newspapers and 0.59 using frequency data from the British
National Corpus). Using the results in the present study, the
mean normalized “abstractness” is between 0.99 (weighted by
“Australian” frequency) and 1.39 (weighted by “British” fre-
quency). An equivalent explanation is that abstract words and
positive words are both used more frequently than specific
words and negative words. Specifically, the correlation with
frequency is small but significantly positive both for valence
(0.064 Australian, 0.061 British) and for “abstractness” (0.036
Australian, 0.019 British). This interpretation is consistent
with data at the level of documents (Figure 5(a)), where
the correlation coefficient is even higher, yet not significant
(not shown). Another potential source of correlation is the
selection of words for inclusion in dictionaries. It seems,
however, counterintuitive that the overall picture should be
affected bymarginal inclusions of rare words. Nevertheless, it
would be interesting to check elsewhere how the correlation
changes across sets of words found in various types of
documents.

The method of weak semantic mapping is an alterna-
tive to other vector-space-based approaches including LSA,
LDA, MDS, and ConceptNet [1–4], primarily because (i)
no semantic features of words are given as input and (ii)
the abstract space of the map has no semantics associated a
priori with its dimensions. It is therefore not surprising that
emergent semantic features (dimensions) in weak semantic
mapping are substantially different from emergent semantic
dimensions obtained by LSAand related techniques: the latter
are typically domain specific and harder to interpret [22].

From another perspective, it is interesting that emergent
semantic dimensions of a weak semantic map are so familiar.
All generally accepted dimensional models of sentiment,
appraisal, emotions and values, attitudes, feelings, and so
forth converge on semantics of their principal dimensions,
typically interpreted as valence, arousal, and dominance
[12–14, 16–18]. Antonymy-based weak semantic mapping
appears to be consistent with this emergent consensus [9–
11], despite the stark difference in methodologies (human



Computational Intelligence and Neuroscience 9

Table 3: ANOVA and MANOVA 𝑃 values for selected semantic dimensions characterizing the means of the 13 corpora. Dimensions are
numbered as follows: 0, “abstractness”, 1, PC1 (valence), 2, PC2 (arousal), 3, PC3 (freedom/dominance), and 4, PC4 (richness).

Semantic Dimension 0 1 2 3 4
One dimension, ANOVA 1.2𝑒 − 36 5.9𝑒 − 57 3.1𝑒 − 15 2.1𝑒 − 7 6.2𝑒 − 11

All but one, MANOVA 0.018 0.040 0.041 5.1𝑒 − 7 1.4𝑒 − 7

judgment or psychometrics versus automated calculations
based on subject-independent data).The number of semantic
dimensions, or factors, used in the literature varies from
2 to 7, which roughly corresponds to the variability in the
number of significant principal components of the narrow
weak semantic map [11]. Why do antonyms relating to the
“dimensionalmodels” of affect, and not others,make for good
PCs? This interesting question remains open and should be
addressed by future studies.

The present study unambiguously demonstrates the
inability of narrow weak semantic maps to capture all univer-
sal semantic dimensions. Here we presented one dimension,
“abstractness,” that is not captured by “antonymy-” defined
weak semantic maps. This is due to the fact that, in general,
hypernym-hyponym pairs are not antonym pairs and vice
versa. Therefore, hypernym-hyponym relations cannot be
captured with the map defined by antonym relations, and the
map needs to be augmented. The example of “abstractness”
that we found is probably not unique: we expect a similar
outcome for the holonym-meronym relation, which will be
addressed elsewhere. Our previous results indicated that
antonym relations are essential for weak semantic mapping,
while synonym relations are not [28].

Thus, the present work shows that narrow weak semantic
maps (and related dimensional models of emotions) are
not complete in this sense and need to be augmented by
including other kinds of semantic relations in their definition.
A question remains open as to whether any augmented
semantic map may be considered complete—or there will
always be new semantic dimensions that can be added to
the map. We speculate that there exists a complete finite-
dimensional weak semantic map. Moreover, the number of
its dimensions can be relatively small. This is because the
number of distinct semantic relationships in natural language
is limited, as is the number of primary categories [29], or
the number of primary semantic elements of metalanguage
known as semantic primes [31, 32]. This notion of “complete-
ness,” however, may only be applicable to a limited scope, for
example, all existing natural languages.

We found that hyponym-hypernym relations induce a
new semantic dimension on the weak semantic map that
is not reducible to any dimensions represented by antonym
pairs or to the traditional PAD or EPA dimensions. Its
tentative labeling as “abstractness” or ontological generality,
however, remains speculative. In any case, it is not our
ambition here to define the notion of “abstractness” or to
establish a precise connection between the real notion of
abstractness and our new “abstractness” dimension, a topic
that should be addressed elsewhere.

Findings of this study have broad implications for
automated quantitative evaluation of the meaning of text,

including semantic search, opinionmining, sentiment analy-
sis, andmood sensing, as exemplified in Figure 5 and Table 3.
While multidimensional approaches in opinion mining are
nowadays popular, the problem is finding good multidi-
mensional ranking of all words in the dictionary. Tradi-
tional bootstrapping methods (e.g., based on cooccurrence
of words) to extend the ranking of positivity from a small
subset of words to all words may not work, for example, for
“abstractness.” The approach presented here should be useful
for such applications.

Finally, we speculate that this approachmay shed light on
the nature of human subjective experience [30] by revealing
fundamental semantics of qualia as PCs of the weak semantic
cognitive map. In addition, we suggest other connections of
our findings, for example, to semantic primes [31, 32].
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The human hippocampus receives distinct signals via the lateral entorhinal cortex, typically associated with object features, and the
medial entorhinal cortex, associated with spatial or contextual information.The existence of these distinct types of information calls
for some means by which they can be managed in an appropriate way, by integrating them or keeping them separate as required to
improve recognition.We hypothesize that several anatomical features of the hippocampus, including differentiation in connectivity
between the superior/inferior blades of DG and the distal/proximal regions of CA3 and CA1, work together to play this information
managing role. We construct a set of neural network models with these features and compare their recognition performance when
given noisy or partial versions of contexts and their associated objects. We found that the anterior and posterior regions of the
hippocampus naturally require different ratios of object and context input for optimal performance, due to the greater number of
objects versus contexts. Additionally, we found that having separate processing regions in DG significantly aided recognition in
situations where object inputs were degraded. However, split processing in both DG and CA3 resulted in performance tradeoffs,
though the actual hippocampus may have ways of mitigating such losses.

1. Introduction

We make sense of the world by comparing our immediate
sensations with memories of similar situations. A very basic
type of situation is an encounter with objects in a context.
For example, objects such as a salt shaker, a glass, and a
sink are expected in a kitchen. Even if these objects are
encountered in an office, they suggest a kitchen-like function
to the area (e.g., it is a kitchenette—not a work cubicle). In
other words, the objects evoke the context in which they have
been experienced in the past, and the context evokes objects
that have been experienced there. The hippocampus, which
is essential for the storage and retrieval of memories, is likely
to play a central role in this associational process.

In rats, the hippocampus is oriented along a dorsal-
ventral axis, while in primates this axis becomes an anterior-
posterior axis. In both species, signals reach the hippocampus
via the entorhinal cortex (EC layers II and III), which can
be divided into lateral and medial portions (denoted LEC

and MEC, resp.). Both the LEC and MEC can be further
subdivided into caudolateral and rostromedial bands, with
the caudolateral bands projectingmainly to the posterior half
of the hippocampus and the rostromedial bands projecting
mainly to the anterior half [1].Within the hippocampus, these
entorhinal projections reach the dentate gyrus (DG) andCA3
via the perforant path, as well as CA1. Because of the low
probability of activation of its neurons, DG is thought to be
responsible for producing a sparse representation of a given
input which has minimal overlap with other input patterns,
thereby reducing interference [2]; however the role of DG
in memory is still in question [3–5]. DG projects to CA3
via the mossy fibers, a set of very strong but sparse connec-
tions. In addition to receiving inputs from DG and EC, CA3
also has many recurrent connections which are believed to
serve a pattern completion purpose, allowing details lost in
the sparse DG representation to be recovered in CA3 via
recurrent activity and the help of EC perforant path inputs
[6, 7]. The proximal region of CA3 (relative to DG) then
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projects to the distal portion of CA1, while the distal region
of CA3 projects to the proximal portion of CA1 [8]. These
connections occur in both the anterior and posterior sections
of the hippocampus, with each having its own relatively inde-
pendent (except in the intermediate area between anterior
and posterior) DG, CA3, and CA1 subareas.

CA1 receives input from EC, with the distal portion of
CA1 receiving input from LEC and proximal CA1 receiving
MEC input. CA1 is essential for proper hippocampus func-
tion, since CA1 lesions result in anterograde amnesia [9].
The function of CA1 is not fully known however, although
several ideas have been suggested based on theoretical [6, 7]
or experimental considerations [10, 11]. We propose below a
novel role for the distal and proximal areas of CA1. Each of
these CA1 regions then sends output to other parts of the
brain via two main pathways. The first is via the subiculum
(where CA1 proximal connects to the distal part of subiculum
and vice versa for CA1 distal) and to EC layers V and VI.
The second pathway is via the fornix, which projects to the
mammillary bodies and the thalamus.

LEC receives input mainly from perirhinal cortex and
MEC receives most of its inputs from parahippocampal
cortex (or postrhinal cortex in rats) which receives highly
processed sensory information [12]. In this paper, we will
refer to information about both the surrounding environ-
ment and spatial position within this environment, carried
by the MEC, as the “context,” and the information carried
by LEC as the “object,” which may include relational and
configural information about objects [13]. It has been shown
that in rats, MEC neurons display highly specific spatial grid
fields, whereas LECneurons have onlyweak spatial specificity
[14]. This supports the notion that spatial environmental
information arrives at the hippocampus primarily through
MEC, whereas nonspatial information (what we call object
information) is conveyed through LEC [10, 14]. Note that
although our definition of context is based on the physical
environment, other equally valid definitions are possible. For
example, in a word list memorization task, context can refer
either to the list in which a word appears (if there aremultiple
lists) or to a “processing context” that describes the actions
done during the processing of the word, such as counting the
number of vowels. It can also refer to a “temporal context”
that describes, for example, whether a word was learned later
or earlier during a session [15]. In the temporal contextmodel
(TCM) [12] and context maintenance and retrieval (CMR)
framework [13], context is defined as an internallymaintained
pattern of activity different from the one corresponding
to perception of the item itself. This context, consisting of
background information about the object, changes over time
and becomes associated with other coactive patterns.

The most obvious use of this incoming object and
context information would be to associate and store object
and context memories in hippocampus. However, while the
necessity of hippocampus for spatial context recognition and
navigation is well documented in rats [16, 17], various studies
on the role of the rat hippocampus in object recognition
have returned surprisingly mixed results. Several studies
have found that novel object recognition in rats is impaired
following hippocampal damage [18], temporary inactivation

of the dorsal region [19], or attenuation of LEC inputs to
the dorsal region [10]. These experimental results suggest
that detailed information about the world may indeed be
represented within the dorsal hippocampus and may be
dissociable from contexts, while other studies have concluded
that only contextual information is stored in hippocampus
[20, 21], or that the hippocampus is not required for intact
spontaneous object recognition memory [22]. Analysis of
neural spike data during an object recognition memory task
in rats showed that hippocampal pyramidal cells primarily
encode information about object location but also encode
object identity as a secondary dimension [23]. Manns sug-
gested that objects were represented mainly as points of
interest on the hippocampal cognitivemap, and that this map
might aid the rat in recognizing encounters with particular
objects [23].

In humans, the question of where memory for objects is
stored is still debated, although patients such as H.M. and
K.C. who have had bilateral hippocampus removals demon-
strate that the hippocampus is required for the formation of
new object memories and recall of most short- and medium-
term memories (those formed within the last several years)
[24, 25]. It is known that the human hippocampus is active
during object-type recall [26]. Specifically, during success-
ful memorization of word lists, there is significantly more
activation of the posterior hippocampus than the anterior
hippocampus [27]. A greater degree of posterior activation
is also seen during the encoding of novel pictures [28].
However, the posterior region often responds to spatial tasks
as well, particularly those concerning local spatial detail (see
[29] for a review of differences in spatial and other types of
processing between the anterior and posterior regions). In
this study we assume that both specific object and context
representations exist and are stored as memories within the
hippocampus. While both regions seem to process spatial
contextual information, only the posterior region has been
strongly implicated in object memory as well. We therefore
hypothesize that the anterior region of the primate hip-
pocampus is primarily processing contextual information,
while the posterior region is relatively more object oriented.
The models that we develop in this study have explicit object
recognition as a main feature and should therefore mainly be
considered models of the primate hippocampus because of
the evidence for explicit object representations in this case.
We will discuss how our models can be related to the rat
hippocampus in Section 4.

In summary, we assume that object and context memory
are mainly stored in the posterior and anterior regions of
hippocampus, respectively. Recall, however, that the posterior
region also receives input from the caudolateral band of
the MEC (which carries contextual information), and the
anterior region receives input from the rostromedial band of
the LEC (which carries object information). These connec-
tions raise the question of the purpose of having both object
and context information reach the posterior and anterior
subdivisions of the hippocampus. Recent reconsolidation
experiments have shown that spatial contextual information
plays a significant role in object retrieval and encoding [30,
31]. We propose that the MEC connections to the posterior
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streammentioned above are vital for this.The experimentswe
describe next explain why context plays such a pivotal role in
memory. We provide evidence that elements of hippocampal
anatomy such as differentiation between the blades ofDGand
functional separation of the distal and proximal regions of
CA1maywork together to improve the selective use of context
information in object recognition, and that this can in turn
improve memory performance in certain situations.

Overall, we attempt to formulate a coherent explanation
for the role of several distinct anatomical features of the
hippocampus and how they work together. This explanation
centers on the idea that some of these anatomical differences
may have evolved in order to deal with the two intrinsically
different types of information that enter the hippocampus
through LEC and MEC. These two types of information are
“object” information (specific items within an environment,
e.g., a spoon) and contextual information (the environment
itself—generally less numerous than objects and related to
general classes of objects, e.g., the kitchen).

Our hypothesis is that the anatomical features of the
hippocampus can help manage the flow of these two types
of information better than an undifferentiated hippocampus
could—that they allow these two types of information to
come together only in areas where it is beneficial and keep
them apart otherwise. The question we are addressing in this
paper is the following: can these anatomical features actually
improve performance by playing the information managing
role that we have proposed?We determine this by testing on a
number of basic memorization tasks and find that themodels
with these features do indeed performbetter than the baseline
model on some of the tasks.

Why would we want to examine this question? There
has been a large amount of work done on the theoretical
aspects of how the hippocampus stores generic inputs and
what role each of the main subregions (DG, CA3, and CA1)
may play. In recent years, however, anatomical studies have
demonstrated that there is a high degree of differentiation in
terms of connectivity alongmultiple axes of the hippocampus
(posterior-anterior and distal-proximal) and within each of
the subregions. At the same time, experimental studies have
shown that this differentiation has actual consequences for
the memorization ability of different regions, and the studies
above have shown that context plays an important role in
object memorization. Thus, it is important to consider how
these new findings fit into the theoretical picture of how
the hippocampus works. We can no longer just consider the
hippocampus or its subregions as single blocks (CA1, CA3,
. . .) nor consider all inputs as homogeneous if we are to
have any hope of explaining existing behavioral data at the
neural network level. We come at the question of how the
anatomical data can explain the new experimental data with
two important ideas that we believe have not been adequately
expressed up to now: (1) that the anatomical features
mentioned above play an information managing role whose
existence only becomes necessary once we start to consider
at least two different types of information converging in
the hippocampus and (2) that the roles of these individual
features only make sense when looking at their interaction
with everything else; for example, differentiation within DG

on its own would be less useful for managing information if
the rest of the upstream regions like CA1 did not also have
features (like the proximal-distal distinction in our model)
that make use of how DG partitions this information.

2. Methods

2.1. Model Structure and Connectivity. We use an expanded
version of a model of the hippocampus developed by O’Reilly
et al. [32]. The original model is a basic hippocampus
consisting of a single input (EC layers II and III), a DG,
CA3, and CA1 layer and a single output (EC layers V and
VI). This model includes recursive connections within CA3
and DG to CA3 connections that are 10 times stronger
than the EC to CA3 connections to mimic the sparse but
powerful mossy fiber synapses. The smallest computational
element is a “unit,” which simulates a small population of
neurons in a rate-coded fashion [33]. We will use the term
neuron synonymously with unit in the rest of the paper.
The network is trained using the Leabra algorithm, which is
based on the generalized recirculation algorithm. Unlike the
original model, we do not pretrain the EC → CA1 → output
connection. In addition, we did not model an explicit EC
output layer; we simply have an output layer. Further details
of the original model can be found elsewhere [6, 34].

Our model explicitly separates the posterior and anterior
halves of the hippocampus, so that the network has two CA3
regions, two DG regions, and two CA1 regions, each in the
posterior and anterior poles. EC is split into lateral andmedial
regions (LEC and MEC, resp.), with LEC connected to all
three layers on both the posterior and anterior sides to sim-
ulate the outputs of the caudolateral and rostromedial bands,
respectively, and similarly for MEC. As supported by the
neuroanatomy, CA3 proximal (in relation to DG) connects
to CA1 distal and CA3 distal connects to CA1 proximal [8]. In
order to model this distal/proximal connectivity distinction,
we split each of the two CA1 regions into half again, to give
four separate CA1 regions (two on the posterior side and
two on the anterior side). Each CA1 receives input from the
ipsilateral CA3 along with either LEC input (if it is distal) or
MEC input (if it is proximal).This network will be referred to
as the “Baseline” network (Figure 1).

We model inhibition in each layer as a competitive k-
winner-take-all process, where only the top k most active
neurons send their outputs to the next layer. Thus we can set
the activity level in each region to approximately that seen
in experimental results, where the activity level refers to the
percentage of active neurons at any given time. EC, DG, CA3,
and CA1 have experimental activity levels of 7%, 1%, 2.5%,
and 2.5%, respectively [34]. In our model, these levels are set
to 25%, 1.5%, 2.3%, and 2.5%, respectively.The discrepancy in
EC (both LEC and MEC) is because it is serving as our input
layer and does no computation; EC is just large enough to
hold training patterns with 25% of the units active. The LEC
and MEC layers each consist of 64 neurons. The DG, CA3,
and CA1 layers on the posterior side consist of 800, 256, and
800 neurons, respectively (the distal and proximal regions of
CA1 have 400 neurons each).The same numbers apply on the
anterior side.
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Figure 1: Layer and connectivity diagram of the Baseline network.Matrices representing an object and a context are the inputs to the network.
The outputs are an object (O), an object-based context guess (OBCG), a context-based object guess (CBOG), and a context (C). The OBCG
output is the context that the input object is associated with during training, and the CBOG output is the set of objects that were associated
with the input context during training.

As discussed above, the LEC primarily carries object
information while the MEC carries spatial contextual infor-
mation. Hence in ourmodel we conceptualize the LEC inputs
as “objects” and MEC inputs as “context.” In assigning roles
to the output layers corresponding to the distal and proximal
CA1 regions, we first note that these two regions lie on largely
separate output pathways: CA3 proximal connects mainly to
CA1 distal and CA1 distal connects mainly to the proximal
part of the subiculum, which in turn projects back to the LEC
[8, 35]. On the other hand, CA3 distal connects mainly to
CA1 proximal and CA1 proximal connects to the distal part

of the subiculum, which in turn projects back to the MEC
[8, 35]. If these pathways were both carrying the same type
of information, there would be no need for such a wiring
scheme to keep them separate. Since ourmodel only contains
two types of information, object and context, we assume that
one of these pathways is carrying object information and the
other is carrying context.

On the posterior side of hippocampus we are mainly
focused on its object processing capabilities; hencewe assume
that the relevant outputs must be largely dependent on
using object-type information from LEC. We hypothesize
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that these two outputs are an object guess and an object-
based context guess. The object guess pathway does standard
object recognition by taking the input object, matching it
to the closest object in memory, and giving the best match
as its output. The object-based context guess pathway uses
the object input to generate the context that the object is
associated with: if one gives it the object “swing set,” it returns
“playground,” if one gives it “refrigerator,” it returns “kitchen,”
and so forth. We emphasize that not every neuron in the
given regions is doing these operations or using only one
type of information to do them. But, to the extent that we
have neurons that are encoding nonspatial information in
these regions, we predict that there will be more of them
(or alternatively, that the degree to which they are sensitive
to spatial information will be lower) in the distal region of
CA1 compared to the proximal region. Experimental results
by Henriksen et al. provide support for this, showing that
the strongest spatial modulation occurs in the proximal part
of CA1, and that distal CA1 cells are less spatially tuned
[36].

On the anterior side of the hippocampus, since we focus
on its contextual processing capabilities, we require that its
outputs be largely dependent on using context-type informa-
tion from MEC. We hypothesize that these two outputs are a
context guess and a context-based object guess. The context
guess pathway matches the input context to the closest con-
text in memory, and the context-based object guess uses the
input context to generate a list of the set of objects associated
with the given context. For example, given the context input
“playground,” it would output the object list “swings, sand-
box, slide.”

The final question is which of the distal or proximal
CA1 regions is playing each of these roles. It is known that
MEC projects preferentially to the proximal region of CA1,
while LEC projects preferentially to the distal region [37].
Assuming that the purpose of the two CA1 streams is to keep
object and context-type information largely separate, it seems
unlikely that object information from LEC would then be
projected to the context stream at CA1, and similarly forMEC
inputs and the object stream. Thus, on the posterior side, we
conclude that the object guess is output by distal CA1 and
the object-based context guess is output by proximal CA1.
Similarly, on the anterior side, we conclude that the context-
based object guess is output by distal CA1, and the context
guess is output by proximal CA1.

2.2. Model Variants. Variants of the Baseline network were
designed to investigate the effect of two additional anatomical
details. The first is the differentiation between the inferior
and superior blades of DG. As shown in Figure 2, the DG
may be functionally separated into two parts because of
the different strengths of LEC and MEC connections onto
the superior and inferior blades and a postulated dendritic
gating mechanism [38, 39]. Both blades receive proximal
dendritic MEC input via the medial perforant path (MPP)
and distal dendritic LEC input via the lateral perforant path
(LPP). However, the superior blade receives stronger LPP
input whereas the inferior blade receives strongerMPP input.
We further hypothesize that the effect of this connectivity is

Superior blade

Inferior blade

Hippocampus
DG m.l. g.l.

CA3 CA3

LPP

MPP

Figure 2: Connectivity of lateral perforant path (LPP) and medial
perforant path (MPP) inputs to superior and inferior blade of DG.
The LPP andMPP fiber lamina are thicker on the superior blade and
inferior blades, respectively, resulting in higher effective synaptic
weights (adapted from [38]).

different depending on whether the given DG region lies in
the posterior or anterior hippocampus.

In the posterior hippocampus, the object information
contained in the LPP input is more relevant to its task than
the context information coming from theMPP input.Thuswe
would expect that the DG neurons in posterior hippocampus
would be biased toward (or learn to weight more heavily) the
LPP inputs over the MPP inputs. However, the fact remains
that the MPP inputs are more proximal to the soma and thus
cannot be completely ignored.The hypothesized result of this
tug-of-war (more relevant LPP input butmore proximalMPP
input) is that, in the superior blade where the LPP object
inputs are already stronger than theMPP context inputs, LPP
is able to largely control the neurons’ firing. In the inferior
blade where LPP inputs are weaker, they are able to achieve
approximate parity with the MPP input.

In anterior hippocampus the MPP contextual inputs are
both more relevant and more proximal to the soma. We
hypothesize that this allows the MPP inputs to control the
neurons’ firing, though to a greater extent in the inferior blade
than the superior blade, where LPP input cannot be totally
ignored.

Wemodel the two blades of DG as separate layers in both
the anterior and posterior sides of hippocampus in order to
determine their effect on performance. The model with DG
layers split in this way, but with all other architecture the same
as in the Baseline model, will be referred to as the “SplitDG”
model (Figure 3).

The second anatomical detail we consider is differenti-
ation between the proximal and distal regions of CA3. As
mentioned in the introduction, CA3 has distal and proximal
regions just as in CA1 (here distal and proximal refer to dis-
tance from DG, rather than to the location on the dendrite).
These regions receive different amounts of inferior and sup-
erior blade DG input and have distinct patterns of recur-
rent connections [8]. The amount of recurrent versus feed-
forward connections is also different between the two sub-
areas. Thus these two regions of CA3 may be performing
functionally different roles. In order to determine the pur-
pose of such a split and test whether it may confer some
performance advantage, we construct a third network that
has CA3 split into two layers on each of the posterior and
anterior sides, in addition to the DG split described above.



6 Computational Intelligence and Neuroscience

Object Context

LEC
caudolateral

band

MEC
caudolateral

band

DG
inferior 
blade

DG
superior 

blade

DG
inferior
 blade

DG
superior 

blade

CA1
distal

CA1
proximal

CA1
distal

CA1
proximal

CA3

Object (O) OBCG

CBOG

Context (C)

LEC
rostromedial

band

MEC
rostromedial

band

CA3

Po
ste

rio
r

A
nt

er
io

r

SplitDG network

OBCG = object-based context guess
CBOG = context-based object guess

Figure 3: Layer and connectivity diagram of the SplitDG network.

Anatomically, the inferior blade of DG projects to proximal
CA3, while the superior blade projects to both proximal and
distal portions of CA3 [8]. As a modeling approximation we
connect the inferior blade to proximal CA3 and the superior
blade to distal CA3 only. Although our model does not cap-
ture the detailed connectivity of CA3, we believe it serves as a
good starting point for understanding the purpose of having

distinct CA3 regions. We will refer to this network as the
“AllSplit” network (Figure 4).

2.3. The “+” Networks. We constructed two additional net-
works, SplitDG+ and AllSplit+, for the purposes of compar-
ison across networks with equal training set error. SplitDG+
is the same as SplitDG, except that each of the DG layers is
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Figure 4: Layer and connectivity diagram of the AllSplit network.

doubled in size. Similarly, AllSplit+ is the same as AllSplit,
except that both the CA3 and DG layers have been doubled
in size. The relevance of these networks is addressed in more
detail in the discussion.

2.4. Training and Test Sets. The training set consists of object
patterns and context patterns (Figure 5). Each object is a
random 8 × 8 matrix of zeros and ones, consisting of 16
ones (active units) and 48 zeros (inactive units). Contexts are
constructed the same way. There are 120 unique objects and
40 unique contexts (3 unique objects per context).

The output layers of the network are referred to as “object”
(O), “object-based context guess” (OBCG), “context-based
object guess” (CBOG), and “context” (C). The correct output
for the object output layer (used as a training signal and
ground truth for the error metric) is the object matrix for the
input object. For the OBCG layer, the correct output is the
context matrix associated with the given object input. For the
CBOG layer, the correct output is the three object matrices
for the three objects associatedwith the given context. Finally,
for the context output layer, the correct output is the context
matrix for the input context.
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Object 1 Object 2 Object 3

Object 118 Object 119 Object 120

Context 1

Context 40

...

(a) Training set

Object

Context

Additive 
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Non additive 
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Partial Mismatch
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Figure 5: Training and test sets. The training set consists of 120 objects and 40 contexts, with 3 objects per context. The test sets are the same
as the training set, except with either noise added (additive or nonadditive noise), part of the pattern missing (partial cue), or an object and
context mismatch.

The network is trained for 20 epochs, where each epoch
consists of presenting all 120 object-context pairs in a random
order and applying the Leabra weight update algorithm after
each presentation. Twenty epochs were chosen as the stop-
ping point because all networks’ training error had stabilized
at close to their minimum value by this time.

After training, the networks’ weights are frozen, and the
networks’ performance is measured using four test sets: addi-
tive noise, nonadditive noise, partial cue, and context mis-
match (Figure 5). In additive noise tests, objects or contexts
have some of the zeros in their matrix replaced by ones,
simulating additional active units. In non-additive noise tests,
for each zero that is replaced by a one, a one from the original
pattern is replaced by a zero, so that the total number of active
units remains the same. In partial cue tests, some of the ones
in the original object or context pattern are replaced by zeros,
resulting in a fewer number of active units overall. In the
context mismatch test, an object is paired with a different
context from the one it was associated with during training.
The level of difficulty of each test depends on the number of
units that are changed from the original pattern, which we
denote by percentages in the figures.

Many experimental or real-life situations can be inter-
preted in terms of these simple tests or a combination of them.
For example, if the object we are memorizing is a man’s face,
we recognize who he is even if he has grown a mustache
(additive noise), is wearing a hat (non-additive noise, since
it adds something but also covers his hair, which is one of his
original features), or is partially turned away from us (partial
cue). In addition, we recognize him even if we see the same
man in a different context (mismatch), although this may be
a somewhat more subtle issue than the previous ones, which
we will discuss further.

3. Results

3.1. Setting the CrossconnectionWeights for the BaselineModel.
We will refer to the connections from LEC to the anterior
side of hippocampus and from MEC to the posterior side as
“crossconnections,” since they bring object information into
the context-dominated anterior side and context information

into the object-dominated posterior side, respectively. The
first task was to determine how the relative amount of cross-
connection and noncrossconnection input affects the error
rate of the Baseline network and use this to maximize its
performance. Since the OBCG and CBOG output layers are
used in different situations from the O and C layers, we test
them accordingly on a different set of tasks. The O and C
layers were tested on a set with mixed additive and non-
additive noise introduced to object and context (15% noise
in each layer) and a set where both object and context were
incomplete (40% complete each). The OBCG layers were
tested when object and context were mismatched, with noise
(30%) in context only, and partial (40%) in context only. For
theCBOG layer, themismatch testwas the same, but the noise
and partial tests were in the object input only (30% object
noise and 40% partial object) rather the context. The results
can be seen in Figure 6.

To determine the optimal LEC and MEC weights for
each output stream, we plot each output layer’s average error
over the set of relevant tests as a function of the crosscon-
nection input it receives. This is shown in Figure 7. We use
this as a guide to set the relative weights of the crosscon-
nections for all the networks to levels which optimize their
performance on the sample tests. Note that for networks such
as SplitDG or AllSplit which have split layers, we optimize
the crossconnection strengths for these layers independently,
while for the Baseline network, we must average the optimal
connection strengths over the two output types. For example,
since the O output does best with a multiplier of 3 while
OBCG does best with a multiplier of 0, we end up with
the Baseline network having a relative weight multiplier of
1.5 for the MEC to dorsal side crossconnections. For the
AllSplit network, we do not need to make this compromise
and can directly use a multiplier of 3 for the MEC inputs into
the DG and CA3 areas which feed into O and use a small
multiplier close to 0 for the DG and CA3 areas which feed
into OBCG.The SplitDG network has the same weighting for
crossconnections to DG and CA1 as the AllSplit network and
the same weighting to CA3 as the Baseline network, since it
only has a single CA3 which the O and OBCG streams must
share. These results show that there is unlikely to be a single
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Figure 6: Error for each of the four output layers of the Baseline network on various sample tasks, as a function of crossconnection weighting.
Crossconnection input refers to LEC input to anterior hippocampus and MEC input to posterior hippocampus. Higher relative weight
multiplier values mean stronger MEC input to posterior and stronger LEC input to anterior streams. (a) Object output error on noisy and
partial cue tests (where both object and context are noisy or partial, resp.) as a function of crossconnection strength. (b) OBCG output error
on noisy and partial cue tests (here the noise and partial are only in the context) as a function of crossconnection strength. (c) Same as A,
except the error is measured at the context output layer. (d) Same as B, except only the object is noisy or partial, and the error is measured at
the CBOG output layer. Error bars are standard errors of the mean.

set of crossconnection weights that optimizes performance
for the various output layers across a range of different tasks.
The flexibility provided by having different DG and CA3
layers that can take different levels of crossconnection input
provides an advantage andmay be one of the reasons why this
anatomical differentiation exists in the hippocampus.

3.2. Training Error. Having fixed the crossconnection
weights in all networks to values that minimize the error
over the sample test sets, we now compare the networks.
First wemeasure the error on the training set after 20 epochs,
when the error has reached its asymptotic minimum. Figure
8 shows the average error for each of the five networks,
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Figure 8: Error on the training set for each of the five networks after
20 epochs of training.

along with the error on each of the four outputs individually.
The networks can be divided into two categories for further
comparison: those which have the same number of neurons,
consisting of AllSplit, SplitDG, and Baseline and those
which have the same initial training set error, consisting of
Baseline, AllSplit+, and SplitDG+. This illustrates the fact
that differences in layer size may play an important role in
the networks’ basic memorization ability. When a layer is
split, each of the halves can specialize more efficiently on the
task, for example, pattern completing an object or converting
an object to a context guess. On the other hand, it must hold
the same number of object or context memories despite
being half the size, resulting in more memorization errors.
Figure 8 shows two possible outcomes of this tradeoff: for
the context and CBOG streams, there is no difference in
training error before and after splitting the CA3 and DG
layers which lie on those streams (compare C and CBOG
error between Baseline, SplitDG, and AllSplit). This is due
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Figure 9: Error on the context-based object guess (CBOG) output
when given only the context as input.

to the fact that these layers only need to store 40 context
memories, so even when they are split in half they have no
difficulty memorizing them all. However, for the object and
OBCG streams, splitting their respective DG or CA3 layers
results in a significant increase in training error (compare
O and OBCG error between the same three networks). In
this case they need to memorize 120 objects, and a CA3 or
DG layer half the size is not sufficient. The results of the “+”
networks show that this is no longer a problem if we simply
have more neurons to start with. The question of whether
it is more appropriate to compare Baseline with AllSplit+
and SplitDG+ (since they start off with the same training
set error) or to compare Baseline with AllSplit and SplitDG
(since they have the same number of neurons) depends on
which situation is more likely to reflect biological reality and
will be addressed further in the discussion. In all subsequent
tests we include the results for each of the five networks.

3.3. Test Sets. We seek to determine how, and in what situa-
tions, contextual information can be used by the hippocam-
pus to aid in object recognition and recall (and similarly how
object information can aid context recognition), and what
role differentiation within DG and CA3 may play in using
this information. To answer these questions, we have con-
structed three primary networks with varying degrees of dif-
ferentiation in the DG and CA3 layers and will test the ability
of each of these networks to recognize objects and contexts
under various conditions of degraded inputs.

A common and simple test of humanmemory is to have a
subject memorize a list of words or set of objects, then recall
them given a cue. We would like to determine if our network
is capable of giving this object output even without the object
input. We simulate this task in our networks by presenting
a context (the cue—which would consist of the room and
the experimenter) and use the CBOG output to get a list of
the objects which have been memorized in the given context.
Figure 9 shows that the CBOG stream performs well in this
task.There is little difference between networks here since all
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Figure 10: Error for each of the networks’ O, C, and OBCG layers when a partial context and full object were given as input. (a) SplitDG, (b)
SplitDG+, (c) AllSplit, (d) AllSplit+, (e) Baseline, and (f) average error across the object output and the lowest of the two context outputs (C
or OBCG) for each network, as a function of percentage of context input presented.

use the same crossconnection strength into the anterior side,
where CBOG is located.

Next we consider the case where the context, rather than
the object, is missing to various degrees. This test will help
us determine the degree to which relying on contextual input
to recognize objects is disadvantageous when the context is
degraded. Figure 10 shows the individual performance of the
output layers O, OBCG, and C as a function of how much
of the context is given for the various networks, illustrating
the effect of having increased MEC inputs into the object
stream. Because the AllSplit network’s object stream uses a
relatively large amount of context information, partial context
input has a greater adverse effect on the AllSplit network’s O
output than it does on the Baseline network’s O output. The
same is true for SplitDG and its “+” counterpart. Thus we do
not expect the AllSplit network to do well compared to the

Baseline network in this situation, and Figure 10(e), which
gives the average error for each network by taking the average
of the error from the O output and the best context output
(either C or OBCG), confirms this. The “+” networks do
relatively better since their larger CA3 sizes allow the partial
context-object mix within the object stream to be pattern
completed to a higher degree. This figure also shows the
advantage (for all the networks) of having an OBCG output
when context is difficult to discern. When the fraction of
context drops below 60%, the networks can rely onOBCG for
their context guess rather than the context stream output C.

The analogous situation on the object side is to present a
partial object and a full context. This test helps us determine
howwell the various network architectures can utilize context
to aid object recognition. At first glance it seems thatwe ought
to make use of the CBOG output to generate an object guess
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Figure 11: Average error on the O and C output layers when full
contexts and partial objects were given as input.

using the clean context, just as we used the OBCG layer in the
partial context case above. However, the problem is that the
CBOG layer activates multiple possible objects rather than
a single object, and thus we would need a way of picking
the correct object out of this list. Cortical areas outside of
hippocampus could conceivably accomplish this by picking
the closest match either to the original input or the O output;
however, since we restrict our model to the hippocampus
proper, we have not attempted to implement such a scheme
and instead use theO output as our exclusive object guess.We
consider this issue further in the discussion. Figure 11 shows
that, when the object is partially given, the increased amount
of context information that the AllSplit network uses via the
MEC to posterior crossconnections becomes an advantage
rather than a liability, as it nowhas an error rate similar to that
of the Baseline network. When the initial training set mem-
orization disadvantage is accounted for under the AllSplit+
network, a consistent advantage for all partial conditions is
seen. Surprisingly, neither SplitDG nor SplitDG+ is able to do
better than the Baseline network, suggesting that some degree
of heterogeneity within CA3 is necessary to take advantage of
the additional context information.

Figure 12 illustrates the effect of having additive-only
noise in the object or context input layers. These tests are of
the same nature as the partial input tests done previously and
are designed to determine if there is any difference in how
the networks deal with noise, and whether this allows more
or less effective use of the crossconnection inputs. As with
the partial object case, the AllSplit network performs well
with object noise by using the additional context information
available to its object stream to help it guess the object. In
this case, the SplitDG and SplitDG+ networks also do better

than the Baseline network and about the same as their AllSplit
counterparts, though slightly worse in high noise situations.
When the noise is in the context input, AllSplit does worse
since it must deal with additional noise in its object represen-
tation. The larger DG and CA3 areas of the SplitDG and “+”
networks clearly help with this task and bring performance
on par with or even better than the Baseline network (in the
case of SplitDG+), indicating that even if the context input
is highly noisy, a large CA3 can extract enough additional
context information to aid in object identification.

Figure 13 shows the results of the non-additive noise task.
As in the additive-only task, the split networks perform better
than the Baseline network when the object is noisy, with the
AllSplit network performing better than SplitDG. When the
context is noisy, the pattern is reversed, although SplitDG
does just as well as the Baseline network.

4. Discussion

4.1. Anterior-Posterior Crossconnections. The results in Fig-
ure 6 suggest that a split network provides performance
advantages compared to the Baseline network. Each output
layer requires a different object to context input ratio in
order to perform optimally on the relevant tasks. The object
output layer gives the network’s best guess as to what the
actual object is, meaning it needs to perform well in low
to medium noise and partial situations where either the
object or context input (or both) is degraded. Surprisingly,
additional contextual information is helpful even when that
context is as noisy/incomplete as the object. This can be
thought of as providing a “bigger picture” for the network to
look at, and thus making it more likely that it can find some
relevant clue which it can use to decipher the entire input.
For example, suppose one is looking at a photograph of a
person taken from a side angle so it is difficult to determine
who it is (partial cue). If a wider-angle photo is now given
which includes some of the person’s body or clothing (partial
context), this information gives a clue as to who the person is,
even if the full context is unavailable. The same idea applies
to noisy objects and contexts.

However, since each context contains several possible
objects, the context input gives less information than the
object input, and therefore its value (as far as the object output
is concerned) decreases rapidly to zero with the amount of
signal degradation. It is not a case when more information
is beneficial regardless of how noisy it is. At some point,
the error introduced by the noise outweighs the value of
having additional information. If the object is presented
noiselessly, then additional contextual information is not very
useful, particularly if it itself contains noise. For the CA3
size used in our AllSplit network, this point of zero benefit
occurs approximately when the context begins to have more
noise or be more incomplete than the object. This is why,
in the “partial context” and “noisy context” tests, we see the
AllSplit network perform rather poorly with its relatively
large amount of context input into the object stream (via
the strong MEC connection). As we would expect, the more
degraded the input context compared to the input object, the
worse the AllSplit network performance. On the other hand,
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Figure 12: Additive-only noise tests. (a) Error across networks, averaged over the O and C output layers, when noisy objects and noiseless
contexts were presented as input. (b) Error across networks, averaged over the O and C output layers, when noiseless objects and noisy
contexts were presented as input.
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Figure 13: Nonadditive noise tests. (a) Error across networks, averaged over the O and C output layers, when noisy objects and noiseless
contexts were presented as input. (b) Error across networks, averaged over the O and C output layers, when noiseless objects and noisy
contexts were presented as input.
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when the input context is less degraded than the input object,
as in the “partial object” and “noisy object” tests, the AllSplit
performance increases above that of the other networks.
Again, because the context inputs have less absolute predict-
ive value than the object inputs (for the object output layer)
to begin with, the beneficial effect of noiseless context is less
than the detrimental effect of degraded context, and as a result
the noiseless context benefit does not come into play until
object noise/partial levels are slightly higher. However, the
beneficial effects can clearly be seen at moderate object noise
levels, and for low noise levels the error is near the training
threshold.

In all the networks, in the case of the context being part-
icularly noisy/incomplete, the context output from the ante-
rior stream may be too noisy for use. The hippocampal net-
work would then turn to the object-based context guess
output to deliver a context prediction, provided that the
object input is relatively noiseless.Thus theOBCG layer needs
to be effective in noisy/partial context and mismatch situa-
tions, which is what we test in Figure 6(b). In order to
achieve good performance, the output must not use theMEC
context input, since this layer will only be called on when
the context is particularly noisy or incomplete. In addition,
if the output relies toomuch on context, it begins to duplicate
the functionality of the anterior context stream. Fortunately
for the AllSplit network, this highly degraded or mismatched
context situation in which Cmust be substituted with OBCG
is also exactly the situation in which the object output fails;
hence it may be able to conveniently rely on the OBCG
layer’s output to give it a reliable context to use. We have not
implemented this backup functionality in our network.

The context output layer is similar to the object output
layer in that it must be able to deal with noise in both object
and context, and dealingwith object noise is of higher priority
(as it is with the object output) because the OBCG layer pro-
vides a backup in the case of high context noise. For the
context layer, thismeans that it should have a small amount of
object input relative to context input. Figure 6(c) shows that
this naturally occurs thanks to the fact that there are much
fewer contexts than objects, and thus the context stream is
very effective at determining context even when they are
noisy/incomplete. As a result additional object information
is of little use to it, so the LEC to context stream input has less
influence than the MEC to object stream input.

As with the context stream, the CBOG stream has fewer
input-output associations to store; hence it relies less on
the object input from LEC crossconnections. It is important
that it depends mostly on context for the same reason that
OBCG depends mostly on object, although the CBOG list
may get called on evenwhen the object input is usable, since it
provides additional information that the object output cannot
give. This layer provides a mechanism by which a list of
objects can be recalled given only a single contextual cue.Net-
works consisting of only a single object and context output
would not be able to model this task. One artificial feature of
this output is that it is N times as large as the object output,
where N is the number of objects per context (here 3). We
are not implying that in the actual hippocampus, the region
that distal CA1 on the anterior side projects to is N times as

large orN times as active as the regions all the other CA1 areas
project to. In the actual hippocampus these object outputs
may come out one at a time, as the network activity has a time
component in spiking networks. Since our model is strictly a
rate-based connectionist model, the only way we can repre-
sent this output is as a single matrix in which all objects are
represented at once. The OBCG output could also be repre-
sented this way, in the case where objects are allowed to
appear in more than one context.

The temporal dynamics of context-based object retrieval
in free recall situations have been given a theoretical founda-
tion in the TCM (temporal context model) and CMR (con-
text maintenance and retrieval) frameworks [40, 41]. Our
model explicitly represents the biological structures and con-
nections that make possible the basic multiple object to con-
text associations (referred to as source clustering) assumed
by these frameworks, but we do not attempt to provide a real-
ization of any of the temporal aspects of memory (temporal
clustering) which TCM and its generalizations also deal with,
such as associations between successively presented contexts
and the recency effect. However, allowing objects to be asso-
ciated with more than one context (as they are in the case of
the temporal context), our model could conceivably provide
a starting point for a biological realization of the TCM frame-
work. The varying internal context of TCM could be pro-
duced within our model by having objects output by CBOG
feed back into the OBCG stream to produce an associated
set of contexts, which would then be used as inputs into the
CBOG stream to produce the next object to be recalled, in a
repeated cycle.

4.2. Effects of Layer Size. There are two ways to approach the
interpretation of the other test results, beginning with the
training set error. The first way is to ignore the size of the
network and compare only those networks that have similar
amounts of error on the training set. In this view, a fair com-
parison would be between those networks that start out with
equal amounts of knowledge on the training set, regardless of
how many epochs it took them to get their error to that level
or how many neurons they have. Here, splitting a layer into
two separate sublayers has little to no disadvantage, because
each sublayer is still large enough to do its task at the same
level as the full layer. This has precedent in the cognitive psy-
chology literature, where, for example, subjects being tested
on recall of a list over time or in different contexts may be
allowed asmany trials as they need tomemorize the list in the
first place, so that all participants start out with the same low
training error rate. This assumes that humans have enough
neurons available to memorize the training list to whatever
degree of accuracy is required, given enough time. In addi-
tion, it is known that in rats, during the course of a particular
spatial task, only a small fraction of the hippocampal CA1
neurons fire during the entire duration of the task. This
suggests that the hippocampus has many more neurons than
necessary for any given task.

Of course, neurons cannot be added to actual test sub-
jects, but in our test networks this provides an effective way to
accomplish the same goal of reducing the error on the train-
ing set, so that all networks start with the same baseline error
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Figure 14: Error on object output layer in a 40% partial object task
as a function of the size of posterior CA3 in the Baseline network.

rate. From the biological standpoint, this way of comparing
networks essentially says that, in the actual brain, the memo-
rization ability of the hippocampus for any particular task is
not limited by the number of neurons, but rather the way in
which they are connected. From this point of view, the basic
AllSplit and SplitDG networks should be ignored, and the
results of Baseline should only be compared against AllSplit+
and SplitDG+, since all three of these networks have the same
error rate on the initial training set.

The second way to interpret the results is to take the
neuron-limited view, where a fair comparison would be
between networks which have the same number of neurons,
regardless of howwell they are able to store the initial training
set. In this view, splitting a layer into two separate sublayers
incurs the penalty of each sublayer now being half the size.
Biologically, this means that neurons are costly in terms of
energy required to build andmaintain, and that the brain has
as few neurons as possible while still being able to perform
its required tasks. From this point of view, Baseline should be
compared with AllSplit and SplitDG since they have the same
number of neurons, and AllSplit+ and SplitDG+ should be
ignored.

In the biological hippocampus, the answer probably lies
somewhere between the two extremes. Figure 14 shows that
increasing the size of CA3 in the Baseline network results
in lower error rates, but that eventually the error stops
decreasing with layer size. If the hippocampus is in the
rightmost region of the graph, then it has enoughneurons and
there is little cost to splitting a layer, so it is best approximated
by the “+”models. On the other hand, if it is near the leftmost
region of the graph, it is severely neuron constrained, and
splitting a layer results in a dramatic decrease in performance
on each of the streams. In this case it would be better
approximated by the normal (non-+) models.

Overall, the test results show that the AllSplit network
is best for noisy or partial object situations and worst when
given noisy or partial context. AllSplit+ has uniformly better

performance as expected but follows the same general pattern
as AllSplit. On the other hand, the Baseline network is
relatively better at noisy or partial context situations thanwith
noisy or partial object. Rarely is it the best network at any
particular task, however, with the exception of partial context.
It is most similar to the SplitDG network, which is what we
expected based on its architecture. The SplitDG network has
good all-around performance. Compared to Baseline, it does
consistently better in noisy or partial object tests, about the
same in noisy context, but noticeably worse when presented
with partial context. SplitDG+ is generally about the same
as SplitDG on noisy or partial object tests, but its larger DG
seems to aid in the incorporation of context information
when it is noisy or partial. This allows it to do significantly
better than SplitDG in such tasks and puts it on par or better
than Baseline. Our results thus suggest that differentiation
within DG provides uniformly better performance over a
nondifferentiated DG if it is large enough (SplitDG+), and
generally better performance with the exception of partial
context tasks if DG is size constrained (SplitDG). Additional
differentiation within CA3 (AllSplit and AllSplit+) may work
to further increase noisy and partial object task performance,
but at the cost of the corresponding degraded context task
performance.

4.3. Object Noise versus Context Noise. These results raise the
question of whether it is better for the object stream to be
able to deal with noisy objects (AllSplit) or noisy contexts
(Baseline), where we will use the term “noise” to refer to
partial cues as well. We argue that there is inherently less
noise in contexts than in objects; hence dealing with object
noise is more important. To make things concrete, consider
the case of an animal in search of food. It has to find edible
plants and insects and has to memorize a large amount of
object-related information. Depending on the time of year
and the time of day, the types of plants or insects it can
eat and their appearance change (noise). On the other hand,
the season and spatial environment are contextual cues that
change slowly, and there are only a relatively small number of
different contexts it must identify: its dwelling, its scavenging
grounds, what season it is, and so forth. In general, the much
larger number of objects in existence makes it likely that
interference and noise aremuchmore likely to occur between
objects than between object and contexts, which are few in
number and change only slowly over time.

The second argument is that, given some recurrent sup-
port structures, noise in context is easier for the hippocampus
to deal with than noise in object. The context stream deals
with context noise relatively well since the contexts are few
and well memorized. Thus getting a clean context to the
object stream requires only taking the context stream output
(C) and feeding it back into the object stream. If the context
is very noisy or absent (to the point that the context stream
output is no longer useful), the output of the OBCG layer
can be used instead.Thus there are two independent ways for
the object stream to not have to deal with context noise, each
involving only a recurrent loop.

With object noise, the situation is different. The object
stream is itself responsible for determining the object; thus
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the only place it can turn to for additional object information
is the CBOG output, which uses context to make object
guesses. However, since the CBOG stream uses mainly con-
text information, the best it can do is to give a list of possible
objects that are associated with that context. Choosing one
object out of this list would then require a separate calculation
where the input object is comparedwith theCBOGoutput list
and the best match selected. This would not be an easy task
when the input object is noisy, although it would be signifi-
cantly easier than the object stream’s original task, which is to
compare the input object to a list of 120 possible objects and
choose the closest match. Thus the object noise problem can
certainly be overcome with the help of additional structures,
but it may be more judicious to simply use context informa-
tion in the object stream from the beginning, which is exactly
the solution that the AllSplit and SplitDG networks use.
They then trade the object noise problem for a context noise
problem, but this seems to be amuch easier issue to deal with.

4.4.Mismatches. Mismatches, consisting of an object appear-
ing in a different context from that it was learned into, are by
definition rare events. If they happened frequently, the object
would simply be associated with the new context and it would
no longer be considered a mismatch. On the posterior side, a
mismatchmeans that the incoming context information does
not match the primary object input from LEC, thus putting
it in a situation similar to having a very noisy context but
noiseless object. On the anterior side, where MEC context
information is primary, the incoming object input introduces
uncertainty, and the situation is similar to a very noisy object
but noiseless context. Due to the smaller number of inputs
it needs to store and the fact that LEC input is relatively
weak, mismatches have little effect on the anterior stream—
if we see someone from the office at the mall, we do not
have any trouble recognizing our context as the mall. On the
other hand, the large amount ofMEC input into the posterior
stream means that a mismatched context can significantly
affect object recognition—it may take us several seconds to
recognize a colleague if we unexpectedly encounter them
at the mall, whereas the recognition is nearly instantaneous
when we see them at the office.

Any encoding and retrieval scheme which uses context-
ual information to recognize objects, as we believe the hip-
pocampus does, will naturally have problems in mismatch
situations. However, this is only the case if we believe that a
familiar object in a different context from usual ought to still
be recognized as the same familiar object. In many situations
it may make sense to consider object A in context A as effect-
ively different from object A in context B [42]. The large
amount of error that a mismatch produces may be beneficial
for signaling that something is wrong or unexpected and
deserves our attention.

4.5. Relation to Rat Hippocampus. Ourmodel is not explicitly
a place field model, and in the way we have conceptualized it
and in its current form our model better reflects the primate
hippocampus. However, with some minor modifications
the model would be consistent with the observation of
higher-resolution place fields in dorsal compared to ventral

hippocampus. We will switch to using the appropriate termi-
nology for the rat anatomy in this discussion, so that anterior
and posterior in our model are now ventral and dorsal, and
the caudolateral and rostromedial bands ofMEC and LEC are
now dorsolateral and ventromedial, respectively.

In ourmodel, for simplicity’s sake, wemake nodistinction
between the dorsolateral and ventromedial bands of the
MEC, modeling both as carrying the same context informa-
tion, albeit to different parts of hippocampus (dorsal versus
ventral, resp.). However, it is known that neurons in the
dorsolateral band ofMEC aremore spatially tuned than those
in the ventromedial band [43], and thus we would expect
that the dorsal hippocampus, receiving higher-resolution
spatial information from the dorsolateral band, would have
the tighter place fields that are seen experimentally. If we
wanted to extend our model to cover this additional aspect
of the anatomy, we could do this by having two different
types of contextual inputs, a “local” context and a less precise
“global” context which might represent the context at a larger
spatial scale or contain some other nonspatial information,
with the local context being carried by the dorsolateral MEC
and the global context being carried by the ventromedial
MEC.

Note that both the dorsal and ventral subdivisions of
the hippocampus receive the nonspatial LEC inputs to some
extent. However, we refer to the dorsal hippocampus as the
more object-oriented layer in our model compatible with
human fMRI studies and our set of sample tests (shown in
Figures 6 and 7) which led us to set the relative weighting
of the LEC input larger than that of the MEC input for
optimal performance (and the reverse is true on the ventral
hippocampus for context information). Of course, the set of
“tests” that the rat hippocampus has evolved to do could be
different from the basic tests that we proposed. For example,
the performance on the mismatch test (where the presented
object and context were not associated) was a significant fac-
tor in determining how strong the MEC to dorsal hip-
pocampus connections should be. A strong MEC to dorsal
connection results in a large amount of error on the OBCG
output, and as a result those connectionswere kept veryweak.
In the rat hippocampus, however, it could be the case that it
simply just does badly onmismatches because they are so rare
that they do not need to be protected against with weakMEC
to dorsal weighting, or it could be that in the case of mis-
matches, additional cortical processing is involved. In either
case, the MEC to dorsal signal could well be just as strong or
stronger than the LEC to dorsal signal.

In conjunction with the dorsolateral versus ventromedial
band differences mentioned above, the dorsal and ventral
streams of our rat-modified model would not contradict the
general conception of the dorsal stream as being context
oriented and more finely spatially tuned than the ventral
side. In summary, the degree to which the MEC’s spatial
contextual information is relevant in the dorsal side of the
rat hippocampus is probablymuch higher than that indicated
in our model, where we look at objects, rather than context,
as the primary information the hippocampus is storing and
view context as information that can contribute to object
recognition.
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5. Conclusion

We constructed hippocampus models that include anatom-
ical and functional details such as the distinction between
the posterior and anterior subdivisions of the hippocampus,
connections from the medial and lateral entorhinal cortex to
both the posterior and anterior regions, differences between
the superior and inferior blades of the dentate gyrus, and
connectivity differences between distal and proximal (relative
to DG) portions of CA3 and CA1. We hypothesized distinct
roles for each of theCA1 areas on the proximal and distal sides
and attempted to show how these anatomical details work
together to increase performance on certain tasks. In particu-
lar, we showed that object and context require different treat-
ment in terms of how much one is used to help recognize
the other. This is simply due to the greater number of objects
compared to the number of contexts rather than intrinsic
differences in representation. In addition, we showed how the
hippocampal anatomy supports the use of contextual inform-
ation to help object recognition and proposed ways in which
the tradeoffs inherent to this could possibly be mitigated.

Our models make several predictions that may be exper-
imentally tested. We predict that the inferior blade of DG
and proximal CA3 in the posterior region of hippocampus
receives more MEC innervation, or that these neurons are
more sensitive to MEC inputs, than is the case with LEC
inputs into the anterior side of hippocampus. Blocking MEC
input into posterior hippocampus should have a significant
negative effect on object recognition when the object is noisy
or only partially shown, assuming that the object was asso-
ciated with a specific context, but should have only a mildly
negative or even a positive effect if the context is noisy or
obscured. Blocking LEC input into anterior hippocampus
should have much less of an effect on context recognition
in either case, assuming that there are many more objects
than contexts. If the number of contexts and the number of
objects are roughly equal, then we should see effects simi-
lar to those seen on the posterior stream with MEC input.
Our assumptions about the two different types of information
being carried along the output pathways can also be experi-
mentally tested by comparing the information content of
proximal CA1 and distal CA1 neurons. We predict that distal
CA1 neurons on both the posterior and anterior sides will
be more likely to carry object-type information, while pro-
ximal CA1 neurons will tend to carry primarily context-type
information.

We found that the models that have only DG split
(SplitDG and SplitDG+) did the best overall on our test sets,
generally doing about the same as the Baseline model when
the context input was degraded, and significantly better when
the object input was degraded. The models with both DG
and CA3 split (AllSplit and AllSplit+) did even better in noisy
or incomplete object situations, but at a cost in performance
on the corresponding degraded context tasks. As we men-
tioned in the discussion, it may be the case that degraded
context situations are relatively rare compared to degraded
object situations, and thus the performance tradeoff of the
AllSplit networks may in fact be optimal. However, it is
probably also the case that the hippocampus does not make

as severe a tradeoff as we have in our models, where CA3
is either completely unified or completely split. For instance,
both regions of CA3 in the actual hippocampus receive sup-
erior blade input from DG, rather than just the distal region.
In our model, the superior blade on the posterior side of hip-
pocampus carries mainly LEC object information, so includ-
ing this feature may change the ratio of object to context
information within proximal CA3 in favor of object infor-
mation and thereby reduce some of the deleterious effects of
noisy context that we observed in the AllSplit network. The
two regions of CA3 also communicate to an extent, although
they have different connectivity patterns in terms of the pro-
portion of projections they send within CA3 and onward to
CA1. Exactly how these differences affect hippocampal func-
tion remains a topic for future research.

To date, much of the computational literature on the hip-
pocampus has either focused on only object memorization or
only spatial context memorization and has not attempted to
identify how these different types of information may mutu-
ally support each other within the hippocampus or eluci-
date specific anatomical details within the hippocampus that
may allow this to occur. On the other hand, experimental lit-
erature that addresses details such as the LEC andMEC cross-
connections has often assigned them only the vague role of
allowing a mixing or integration of object and context infor-
mation. We have hypothesized specific ways that object and
context informationmay be used in the posterior and anterior
regions of the hippocampus, shown that the connectivity of
hippocampus supports and enables these uses, and identified
specific situations in which these object-context interactions
have a beneficial or deleterious effect. Our results thus suggest
new ways of thinking about the sort of computations that the
hippocampusmay do, andhow it uses both object and context
to perform them.
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According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain
their observations by processing a number of explanatory structures called frames until the observations and frames become
congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions
related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal
cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a
series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early
with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed
top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on
the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between
different types of spatial information are essentially the result of the competition at different levels of abstraction.

1. Introduction

Sensemaking is a complex cognitive activity in which people
make sense of or explain their experience or observations.
Sensemaking is ubiquitous in humans’ everyday life. Exam-
ples of sensemaking include medical diagnosis, scientific dis-
covery, and intelligence analysis. Though it is plausible to
argue that the core of sensemaking is abduction (a reasoning
process that generates and evaluates explanations for data
that are sparse, noisy, and uncertain), there is no doubt
that sensemaking is not a primitive neurocognitive process.
Rather, sensemaking is comprised of a collection of more
fundamental cognitive processes (e.g., perception, attention,
learning, memory, and decision making) working together,
and certainly involves a group of brain systems fromposterior
regions to the prefrontal cortex.

According to the data-frame theory of sensemaking, peo-
ple possess a number of explanatory structures, called frames,
in which people try to fit the data into a frame and fit a frame
around the data, until the data and frame become congruent
[1–3]. Sensemaking is called a macrocognitive process in
that it involves complex data-frame interactions (e.g., frames

shape, define data, data recognize, and mandate frames),
and therefore requires coordinated activities from multiple
cognitive processes/systems, including attention, learning,
memory, reasoning, and decision making. Whereas many
different types of integrative processing models exist, the
data-frame theory brings clearly into focus the emergence of
the explanatory structures and the opportunity of learning in
terms of extracting statistical regularities from the environ-
ment [4]. Such an approach makes the theory particularly
appealing when the task environment is complex and people
have to make decisions in the presence of multiple cues with
a great deal of uncertainty.

Figure 1 describes a counter-insurgency surveillance
example (hereafter COIN-AHA problem), in which an ana-
lyst is faced with a map that records the attacks from
multiple enemy groups in the past. (For detailed modeling
problems, see MITRE’s Technical Report, In Press). The task
is to estimate which enemy group would be more likely to
be responsible for the new attack at the provided location
(point of interest, POI). This task is clearly a sensemaking
task. In particular, since the task stimuli are presented in
a spatial environment, for effective sensemaking, different
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Figure 1: A typical scene in the COIN-AHA tasks. Attacks from
individual enemy groups (labeled by “A”, “B”, “C”, and “D” in different
colors) are distributed along a road network. Subjects first need to
estimate the radius and the center of gravity of the attacks from each
enemy group. When a new attack occurs at the point of interest
(POI, represented by a black square), subjects are asked to report
the likelihood of each enemy group responsible for such an attack.

types of spatial properties of the environment would have
to be acquired in the first place. For example, how many
attacks have been carried out by each group (e.g., counting
the number of objects from the visual inputs)? How large
is the area that each group’s attacks cover (e.g., perception
of dispersion or size)? How close is the new attack to each
group’s active area (e.g., estimation of distance)?

Among the multiple cognitive steps in decision making,
the parietal cortex (PC) has been implicated in various tasks
for the functions related to spatial and temporal information
processing, mathematical thinking, and spatial attention
[5–8]. In the context of understanding the sensemaking
processing in the COIN-AHA tasks, all these functions are
certainly relevant. In this paper, we report a computational
model to simulate the various functions of the parietal cortex
in sensemaking (hence the PC module). In doing so, we
hope to provide an integrated theory of the parietal cortex
in spatial-temporal processing.

2. Value Representation in the Parietal Cortex

The central theme in modeling the parietal cortex in the
COIN-AHA tasks is the estimation, representation, and
integration of values based on the magnitudes of various
spatial properties such as numerosity, group center, distance,
and probability. Before we dive into the modeling details, we
first discuss the unique role of the parietal cortex in value
representation in the broader context of judgment and
decision making.

First of all, in most accounts of decision theories, value
representation is considered as the essential component in
the decision-making process. To an extreme extent, the entire

process of decision making is about value representations
(e.g., [9]). Vlaev et al. [10] summarized three types of deci-
sion theories. The approach of “Type I”, value-first decision
making, is based on independent and absolute value scales
(e.g., [11]). “Type II”, comparison-based decisionmakingwith
value computation, is based on comparison of values where
subjective magnitude representations are context dependent
(e.g., [12]). “Type III”, comparison-based decision making
without value computation, has no explicit psychoeconomic
scales, and decisions can be reached at by binary comparison,
for example, by the “priority heuristic” (e.g., [13]). Despite the
different flavors, all the three types of the decision theories
have to rely on some form of value representations. The
difference is only on the specific forms and stages of value
representation in decision making: for example, whether the
value representation stably leads to a decision (Type I) or is
modulated by contextual information (Type II), or whether
the value is on a cardinal scale (e.g., number or magnitude-
like in Types I and II) or an ordinal scale (e.g., binary com-
parison in Type III). Neurologically, we are interested in the
neuronal correlates of values in decision making in addition
to the value representation itself. It has been reported that
the neuronal correlates of various types of values exist in
numerous regions, such as the orbitofrontal cortex, parietal
cortex, posterior cingulated cortex, dorsolateral prefrontal
cortex, premotor cortex, and frontal eye fields (for reviews,
see, [9, 14]). Thus, it is critical to examine different types of
value representations depending on the purpose and domain
of the brain function.

Compared with other brain regions, the parietal cortex
plays a unique role in transforming the spatial and tem-
poral information from the environment, such as time,
distance, speed, size, and numerosity, into magnitude-like
value representations [5, 15]. Neuroanatomically, the parietal
cortex receives projections frommultiple sensory modalities,
including visual, somatosensory, and auditory. In addition, it
receives inputs from the subcortical collicular pathway, which
consists of the superior colliculus and the pulvinar and is
thought to be closely related to spatial orienting and eye
movement control [6, 16, 17]. Most significantly, the parietal
cortex has been identified as part of the dorsal “where” path-
way [18]. It has been indicated that there is a common metric
of time, space, and quantity representations residing in the
parietal cortex because of the need to learn about the envi-
ronment through motor interactions and to encode relevant
variables for action [5, 15]. This pattern of cortical connec-
tions makes the parietal cortex an ideal system for inte-
grating and extracting spatial information from multiple
modality-specific and unstable sensory channels and achiev-
ing supramodal and more stable spatial representations.

Although the encoding of values could be relevant in
all stages of decision making and exhibit neuronal corre-
lates in numerous brain regions, the value representation
in the parietal cortex is unique in that it is confined by
its proximity and specificity [7]. For example, fMRI studies
revealed that when participants were instructed to compare
number, size, and luminance, the activation of the left and
right intraparietal sulci (IPS) shows a tight correlation with
the behavioral-distance effect [7, 19]. Whereas hippocampal
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and parahippocampal regions are clearly involved in spatial
cognition, they do not possess the close proximity of spatial
and numerical representations as the parietal cortex does.
Although frontal regions are involved in both spatial and
numerical tasks, parietal activations are related to a more
restricted set of cognitive processes. Such specificity probably
is most evident in the comparison between the orbitofrontal
cortex (OFC) and the lateral intraparietal area (LIP). In gen-
eral, the values represented by LIP neurons are more subject
to modulation of responses encoding the spatial properties of
the visual stimuli [9]. Although there is evidence that neurons
in LIP are sensitive to probabilistic classification, it seems
that such a sensitivity is limited to the simple integration of
visual properties (e.g., combination of shapes) [20]. In con-
trast, neurons in OFC represent the value of goods per se
(probabilities, rewards, etc.), independently of how goods
are visually presented [9]. Crucially, the bilateral horizontal
segment of the intraparietal sulci (HIPS) that are consistently
activated in arithmetical tasks in humans roughly coincides
with the putative human ventral intraparietal area (VIP), and
such an overlap between comparison processes and spatial
networks in the IPS is believed to account for the behavioral
interactions between representations of number and space
[7]. In sum, the parietal cortex, and the IPS in particular,
might be the first cortical stage that extracts visual numerical
information from visual inputs [8].

Another aspect of the specificity in the parietal cortex’s
spatial processing comes from the selection of frames of refer-
ences (FOR). While spatial representations prior to the pari-
etal cortex are typically retinotopic, spatial representations in
the parietal cortex have been transformed and are generally
egocentric. In putative human homologues of macaque IPS
regions, LIP represents target position in an eye-centered
frame of reference and is involved in spatial updating. Ventral
intraparietal (VIP) represents targets in a head-centered
frameof reference, and anterior intraparietal (AIP) represents
space in hand-centered coordinates [7]. According to theory
of frame of reference-based maps of salience (FORMS), the
parietal cortex subserves spatial representations using a range
of egocentric frames of references (e.g., eye centered, hand
centered, and body centered, etc.) so as to allow rapid actions
[21–23]. In addition, intrinsic representations, which repre-
sent between-object relations using aworld-centered frameof
reference but often involve some degree of perspective taking,
are also encoded in parietal cortex, especially the posterior
parietal cortex [24]. Furthermore, the values encoded by the
parietal cortex tend to be at the approximate level rather than
exact. For example, it has been indicated that topological
comparison and approximate metrics are encoded within
the parietal cortex, and exact spatial metrics are encoded in
hippocampus [25].

In accordancewith theories described above,we have des-
ignated the PCmodule to be responsible for (1) extracting and
representing relevant spatial information (i.e., providing rel-
evant data from frame-matching such as radius, group center
and two types of distances); (2) providing mechanisms for
shifting attention during the process (i.e., defining and
shaping data collection through both top-down and bottom-
up modulations). Specifically, the PC module is responsible

Radius Numerosity

DistanceFly DistanceWalk

PFCcPC

Hidden layer

Visual 
input

Visual working memory

PC Value

Figure 2: A schematic depiction of the metric estimates in the PC
module. A common hidden layer takes inputs from both visual
field and visual working memory, and outputs a magnitude value
as the “PC value”. There are two basic metrics being encoded on
the hidden layer: numerosity (in red area, including the number
of group attacks and the walking distance on a road segment) and
size (in green area, including the radius of group attacks and the
flying distance between the group center and POI). The overlap of
red and green areas represents the possible overlapped functionality
of numerosity and size. The role of PFCcPC (PFC controls PC) is to
provide an “attentional prioritization” by enhancing the contrast and
specialization on the hidden layer. At any time, only one of the units
on PFCcPC is active and projected onto the corresponding section
on theHidden layer. As a result, that section ismore active than other
sections and more likely to win the competition.

for processing the following spatial information (see Figures
1 and 2):

(1) estimating the group center, the centroid of a cluster
of attacks from a particular enemy group;

(2) estimating the dispersion (“Radius”), the two-to-one
radius that spatially covers two-thirds of the attacks
from a known enemy group;

(3) estimating two types of distances between the enemy
group center and the point of interest (POI): “Dis-
tanceFly” represents the Euclidean distance (as crow
flies) and “DistanceWalk” represents the length of the
road segment (as cow walks);

(4) estimating the number of attacks from each enemy
group (“Numerosity”), which will later lead to the
base rate comparison (i.e., the percentage each enemy
group takes in the total number of attacks).

In the following, we discuss the implementation steps and
the corresponding psychoneurological justifications in detail.

3. Inputs: Perceptual Grouping and
Segmentation

The first step in modeling the parietal cortex functions in the
COIN-AHA tasks is to group the various visual representa-
tions (e.g., individual attacks, POI, road) onto different input
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PCWM POI

PC Attn

PFCcPC PC Value

PC HL2

PCWM GC PCWM RS

Figure 3: The parietal cortex module for computing target values on Numerosity, Radius, DistanceFly, and DistanceWalk (represented on
the target layer “PC Value”). The hidden layer “PC HL2” is “sliced” into 4 groups, each responsible for a different type of target values. The
competition on PC HL2 is achieved by a kWTA function (k-Winners-Take-all, [26]), which is a combination of within-group inhibition (only
the most active units within a group can contribute as the layer output) and entire-layer inhibition (units within a relatively weaker group are
more likely to be inhibited). Such a function allows both of the dissociation and interference between different types of target computations.
In the bottom-up information flow, input for both Numerosity and Radius is represented on PC Attn (group attacks on visual field); Input
for DistanceFly is based on a direct comparison of PCWM POI (point of interest) and PCWM GC (group center). Input for DistanceWalk
is represented on PCWM RS (road segment between POI and group center). The top-down control from layer PFCcPC represents 4 types of
magnitude computation (Numerosity, Radius, DistanceFly, DistanceWalk) (the fifth unit is tentatively reserved for topological comparison).
At any time, only one type of the magnitude values is available at the output level. The example shown here illustrates the case when the
top-down demand is to compute Numerosity (second unit on PFCcPC), such that the bottom-right section on PC HL2 is more likely to win
over other sections in kWTA inhibition.

layers. On the one hand, our modeling focus is on the higher-
order functions of value representation rather than the low-
level visual processing. On the other hand, the encoding of
values in the parietal cortex is heavily driven by the spatial
and temporal properties of the visual inputs. To strike a
balance, we made several simplifications in organizing the
input layers to the PC module.

To represent themultiple attacks fromenemygroups (e.g.,
attacks labels “A,” “B,” “C,” and “D” in Figure 1) within the
parietal cortex, our modeling approach is to represent the
multiple attacks from a single enemy group as a whole on the
visual input layer (“PC Attn”, see Figure 3), separated (seg-
mented) from the attacks from other enemy groups. Then,
both numerosity and radius can be computed based on
PC Attn. Next, the group center is computed as the center of
gravity (i.e., arithmetic means of 𝑥 and 𝑦 coordinates of indi-
vidual attacks) and represented on layer “PCWM GC.” The
point of interest (POI) is represented on a separate input layer
“PCWM POI” (with lateral activations such that an object
is displayed as a Gaussian bump). Then, DistanceFly (the
distance “as crow flies”) is computed as the Euclidian distance
between the group center andPOI. To computeDistanceWalk
(the distance “as cow walks”), we represent the road segment
between the group center and the POI on the input layer
“PCWM RS”. Then, the estimation of the walking distance is
in effect to estimate the length of a curved line segment, which
is equivalent to numerosity counting based on the number
of activated pixels on PCWM RS, regardless the topographic
distribution of individual pixels.

It is noted that in the current model, we have avoided the
problem of finding the shortest path. Instead, we focus on the
problem of length estimation when a road segment is explic-
itly provided (i.e., the walking distance). In representing the
road segment as a separate visual input, our justification is
that a curved line segment can be recognized andmaintained

as a single visual input component. Ungerleider and Bell [17]
suggest that in identifying and discriminating the primitive
“geons,” neuronal selectivity progresses from simple line
segments (in V1) to simple curves (in V2), to complex curves
or combination of curves (in V4 and posterior IT cortex).
In addition, it has been suggested that attention operates on
object-centered as well as on location-based representations
in that two connected objects (e.g., a barbell) may be repre-
sented as a single continuous object [27].

Apparently, estimating the walking distance between two
objects will be affected by the curvature (the curves on
the road) and connectedness (whether two objects are con-
nected by the road). Regarding the curvature (Figure 4(a)),
it has been suggested that the “sagitta” provides the best cue
in accounting for the discrimination of pairs of long-dura-
tion, curved-line stimuli, over a range of one- and two-
dimensional transformations, and the contour curvature was
coded in terms of just two or three curvature categories,
depending on curved-line orientation [28]. Regarding the
connectedness (Figure 4(b)), Sun and Wang [21] found that
object pairs connected or anchored to the same landmarks are
easier to recall than those anchored to different landmarks.
Together, these studies suggest that people are to a certain
extent sensitive to the variations in curvature and connect-
edness. Then, by representing the road segment on a single
layer, the curvature and connectedness are in effect implicitly
encoded in the visual input. For example, a curvy road
segment would be longer than a straight one, and two points
directly connected by the same road would be closer than
connected by different roads because of more curves. Then,
estimating the walking distance along the road effectively
becomes a task of numerosity estimation (i.e., counting the
number of active units on the line segment), resulting in a
nonverbal representation of magnitude and number sense
housed in IPS [7, 29].
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(a) (b)

Figure 4: Distance adjustments by curvature and connectedness. By representing the road segment on a grid, the adjustment by curvature
and connectedness is transformed into the task of numerosity estimation. For example, a more curvy (greater sagitta) road segment presents
more active pixels on the grid (a), and a disconnected object pair requires additional routes to be connected and results in more active pixels
on the grid (b).

It is noted that our method of representing various inputs
to the PC module is mostly guided by the principles of selec-
tive attention. In particular, the PCmodulemay receivemulti-
ple perceptual inputs in parallel from both direct visual input
(layer “PC Attn”) and visual working memory (“PCWM ”
layers), but the total number of input layers is limited. This is
due to the consideration that when the computation of target
values requires selective attention (e.g., paying attention to
one particular enemy group), it generally suffers a bottleneck
that poses more strict limitations on the processing capacity
(e.g., [30, 31]). In addition, we also considered the constraints
to display resolutions on the input layers. It appears that the
superior intraparietal sulcus (SIPS) could be the candidate for
providing inputs from visual working memory, with a high
resolution but a limited number of slots [32]. Also note that
at the current stage of modeling, the assignment of whether
a particular input is directly from visual field or from visual
working memory is rather arbitrary. In reality, it is likely that
the assignment will be dependent on the temporal sequences
of visual stimuli or on specific strategy usages by individual
subjects.

Another critical issue in organizing the input layers is to
consider the principles of perceptual segmentation (e.g., to sin-
gle out a particular set of objects from others) and attentional
foveation (e.g., multiple scans in evaluating a large number of
objects or estimating the distance across awide range of visual
field). We argue that separating a single enemy group from
others (e.g., group attacks on PC Attn) and representing a
cluster of spatially distributed objects as a single object (group
center on PCWM GC) are essentially the results of these
principles. The guideline is that such representations can be
obtained andmaintained in early visual processing, especially
when the different groups of objects are displayed in different
colors and can be easily distinguished from each other. Strong
claims have been made based on the efficient detection of
groups of image elements by selective neurons that occurs
in higher areas of the visual cortex [33, 34]. Using a task of
transsaccadic integration (TSI) in which participants used a
mouse to click on the intersection point of two successively
presented bars, Prime et al. [35] found indistinguishable
performance in the “Saccade” condition (bars viewed in sep-
arate fixations) and the “Fixation” condition (bars viewed in
one fixation) and concluded that participants can retain and
integrate orientation and location information across sac-
cades in a common eye-centered map in occipital cortex.
From the perspective of attentional foveation, it is proposed

that the dorsal stream (posterior parietal and lateral premotor
cortices) plays the role of serial deployment of attention
over different locations of space and/or time, such that the
encoding of magnitude is abstract enough to respond to both
sequential and simultaneous presentations [36, 37]. Together,
the parietal cortex may receive multiple visual inputs in
a rather flexible fashion. During our simulations, we have
indeed found that different visual input formats can result in
indistinguishable performances (Figure 5).

4. Output: A ‘‘ScalarVal’’ Representation
of Magnitude

Currently, our PC module uses a “ScalarVal” type of Leabra
layers to represent a magnitude value (“PC Value” in
Figure 3) [26, 38]. (For a detailed description of the ScalarVal
specification, see http://grey.colorado.edu/emergent/index
.php/ScalarValLayerSpec). Such a specification encodes and
decodes scalar, real-numbered values based on a coarse coded
distributed representation across multiple units (e.g., a value
is represented by a Gaussian bump with a fixed standard
deviation). This provides a very efficient and effective way of
representing scalar values [39, 40].

On a related note, there has been an ongoing debate
regarding whether magnitudes are being internally repre-
sented on a linear scale or a logarithmic scale (e.g., [41])
(see Figure 6). By linear encoding, the noise (i.e., standard
deviation) in the internal representation of a magnitude is
tied to the specific value of the physical magnitude. Then, in
comparing two magnitudes 𝑚

1
and 𝑚

2
, the discriminability

(i.e., the amount of the overlap between two Gaussian
distributions) is determined by the Weber fraction w, and
the standard deviations that are tied to the specific values
of the magnitudes (with a pooled standard deviation). By
logarithmic encoding, the noise in the internal representation
of anymagnitude is solely determined by theWeber fraction.
Discriminability is determined by the Weber fraction 𝑤
and the ratio of two magnitudes 𝑟 = 𝑚

1
/𝑚
2
, regardless

of the specific values of the magnitudes (Weber’s law). In
our opinion, the logarithmic encoding appears to be a
more appealing candidate that makes the representation of
a magnitude truly abstract and with generality. It should
be noted that the linear and logarithmic representations
are mathematically equivalent but have different advantages
during actual computation (e.g., linear models are more
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OutputInput Hidden
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Figure 5: Two different configurations for providing the same
spatial information to the PC module. (a) Two objects (e.g., a group
center and a POI) are presented on the same input layer. (b) The
same object pair is presented on two separate layers. When the
task is to compute the Euclidean distance (flying distance) between
the two objects, these two configurations yield indistinguishable
performance. To compare the model performance, we computed
the model-target correlation (correlation between the output values
at the minus phase and the target values across trials). In both
configurations, after training for 1000 epochs (20 trials in each
epoch), the model can produce a model-target correlation greater
than 0.95 in the last 10 epochs (𝑛 = 200 trials).

convenient for addition and subtraction, and log models
are more convenient for production and division). Because
of the mathematical equivalence, it remains difficult to
neurologically distinguish the actual representation form in
the brain [42]. Nevertheless, the logarithmic representation
appears to be more parsimonious in that the representation
of a magnitude is independent of the range of the target
values thus allowing different neurons representing different
numbers to be activated in the same fashion (see Figure 6).
In this regard, the default ScalarVal specification in Emergent
serves our modeling purpose well.

5. Numerosity and Size on a Common Metric

The most significant aspect of the current PC module is that
the computation of all types of target values (numerosity,
radius, and two types of distances) largely shares a common
pathway (see Figure 2). First, multiple input layers (e.g.,
individual group attacks, group center, POI, and road
segment from direct visual and visual workingmemory slots)
are projected onto different groups within a single hidden
layer, depending on the particular task demand. This hidden
layer employs a particular type of kWTA inhibition in that
the winners are selected based on a combination of within-
group and entire-layer inhibition (Figure 3). Its functions
are analogous to those of the LIP area in that the spatial
information is reencoded, sensitively but not selectively
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Figure 6: Comparison of the linear and logarithmic representation
of magnitude. The method implemented in the PC module is
analogous to the log scale representation in which we use a fixed
number of units (thus fixed variance) to represent any particular
level of magnitude.

corresponding to the magnitude statistics from the visual
environment. For example, a unit’s activation may be
statistically correlated with the number of active units on the
input layer (i.e., sensitive to numerosity), but such a
correlation on the hidden layer may not uniquely identify a
number before being classified on the target layer (i.e.,
selectivity). In addition, the hidden layer receives a top-down
signal from the layer “PFCcPC,” representing a single task
demand for a particular type of target values (“PFCcPC”
means “prefrontal controls parietal”). At the output level, the
desired target value is represented on the single target
layer “PC Value,” analogous to the VIP area whose value
representation selectively corresponds to the specific mag-
nitude information in the visual environment. Computa-
tionally, the learning of target values occurs in two phases,
an expectation-driven minus phase and an outcome-driven
plus phase [26]. During the minus phase, the inputs (visual
inputs plus the signal from PFCcPC) are reencoded onto
the hidden layer and the target layer. During the plus
phase, a teaching signal is provided on the target layer,
which will provide a top-down correction by modifying
the activations on the hidden layer and the corresponding
weights. (For detailed descriptions of the learning rule (i.e.,
the extended contrastive attractor learning rule, XCAL), see
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Figure 7: An illustration of numerosity detection (a) and size detection (b). In both figures, each unit on the hidden layer takes the sum of
the visual input units, hence the name “summation units”. For simplicity, we show only three units as the visual inputs and two units on the
hidden layer. In representing numerosity, a summation unit takes the sum from each visual input unit uniformly (i.e., with equal connection
weights). Thus, the activation of such a unit only responds to numerosity monotonically, and the spatial information is completely discarded.
Different summation units have different connection weights from visual inputs, and their combined activation pattern is projected to the
final tuned numerosity detectors that are ultimately selective to numerosity. In contrast, the summation units for encoding size (or distance
between the two furthest active visual units) must receive nonuniform weights selectively from different spatial locations in the visual inputs
(i.e., with unequal connection weights) in order to preserve the spatial information.

http://grey.colorado.edu/CompCogNeuro/index.php/CCN-
Book/Learning).

The implementation of a common pathway for all types
of target values is motivated by the following considerations.
First of all, the recent literature suggests a “common met-
ric” in parietal cortex responsible for the processing of all
magnitude-like values such as numerosity, size, and temporal
and spatial distances, namely, the temporal-spatial number
line [5, 15, 43]. Second, although the projections from the
input layers onto the various sections of the hidden layer
are essentially in parallel, there is only one target layer. The
rationale is that the perceptual stages operate in parallel but
a central decision stage occurs via a serial bottleneck [44].
Third, the top-down control from PFCcPC reflects the idea
that attention prioritizes stimulus processing on the basis
of motivational relevance, and major sources of top-down
attentional biasing have long been located principally in the
dorsolateral prefrontal and posterior parietal cortices [45].
Also, the top-down connections from both PFCcPC and
PC Value to the hidden layer are consistent with the findings
that the same neurons in LIP that encode values would also
encode the selected actions late in the decision process [46].

Most importantly, the PC module addresses the dissocia-
tion and interference between various types of target values.
Theoretically, there has been an ongoing debate regarding the
interactions such as those between the processing pathways of
numerosity, size, and density. On one side of the debate, it has
been suggested that numerosity could only derive indirectly
from texture density (e.g., [47–49]). On the other side, it has
been suggested that numerosity could be an attribute “sensed
directly” from the visual input, independently from texture
perception [50, 51]. Most recently, Stoianov and Zorzi [52]
shows that selectivity to visual numerosity emerges naturally
during unsupervised learning in a hierarchical generative
model of perception, invariant to area, density, and object
features. This study has been cited by Ross and Burr [51] as
a strong support to their theory of “visual sense of numbers.”

In the PC module, among the four types of target values,
there are actually only two basic types of information being
extracted from the visual environment: numerosity and size.
As mentioned in the previous section, estimating the walking
distance on a road segment is in effect a task of counting
the number of active pixels. In addition, estimating the flying
distance is in effect a size or radius estimation in which the
number of objects is a constant of two, regardless whether
the inputs are represented on a single or separate layers (see
Figure 5).

It is important to note that the dissociation and inter-
ference of numerosity and size may occur at different levels
of visual analyses. We hypothesize that the key in both of
dissociation and interference lies in the mechanism in which
neurons selectively or uniformly sample the visual field and
whether the spatial information is discarded or preserved
during the sampling (see Figure 7). In the case of numerosity
representation, it has been found that there were “summation
units” in the parietal lobe, particularly in the LIP area, whose
responses resembled the output of accumulator neurons that
systematically increased or decreased with the increase of the
numerosity in visual stimulus [53]. And, there were “number
neurons” tuned to a preferred numerosity with “labeled-line”
encoding of numerosity in theVIP area [54–57].Thus, similar
to some of the previous models on numerosity [52, 58, 59],
our approach to modeling both numerosity and size estima-
tion is to assume that the final tuned magnitude detectors on
the target layer “harvest” the activations from the preceding
summation units on the hidden layer. In order to selectively
respond to the numerosity information, the spatial informa-
tion must be discarded (e.g., the number sense of “2” arises
regardless how far twoobjects are apart fromeach other).One
immediate way to achieve such a dissociation is to assume
the numerosity summation units samples the visual field
uniformly (with approximately equal connection weights),
regardless the spatial locations (see Figure 7(a)). This kind
of uniform sampling has been demonstrated by [59].
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On the other hand, spatial location information has to be
preserved in size detection, which implies that the summa-
tion units must selectively cover different locations in their
receptive fields (see Figure 7(b)).

What is interesting is how the interference between num-
erosity and size can arise when the spatial location infor-
mation is only partially discarded or preserved. It has been
found that single neurons tuned to quantity can provide
information about only a restricted range of magnitudes, and
only the population of selective neurons together can account
for the entire range of tested stimuli [60]. Thus, it is likely
that the receptive field of individual numerosity summation
units on the hidden layer is spatially segmented and they are
selective to a limited region of space, especially in a high-
load condition (e.g., when the scene is crowded or subjects
are distracted). Otherwise, responding to a greater range of
numerosity would require finer graded activation levels thus
overburden the summation neurons. As a result of the spatial
segmentation, the activation of these neurons would partially
carry the location information from the visual inputs. On the
other hand, some of the size summation unitsmay take visual
inputs less selectively regarding different spatial locations. In
either scenario, we would expect that the numerosity-size
dissociation by the summation units is not perfect (i.e., car-
rying partial spatial information) and observe some neurons
serving a double duty on both numerosity and size detection.
We can find support to such a speculation repeatedly from
both neurological (e.g., [5, 8, 54] and behavioral studies [48,
49]). Particularly, in their transcranial magnetic stimulation
(TMS) experiments, Kadosh et al. [61] have found that the
interference between number and size is late in the processing
stream, at the point of response initiation and interaction
between the stimulus attributes only in high-load conditions.
And, it has been proposed that the numerosity and size
estimations, and their overlaps, arise as the results of the
serial deployment of attention over different locations of
space and/or time via the dorsal stream (posterior parietal
and lateral premotor cortices) [36, 37].

6. Topological Comparison and
Representativeness

Although the main scheme in our PC module is metric esti-
mations in a serial fashion (i.e., only one type of metrics
is available at a time at the output level; see Figure 2), it
should be emphasized that some bottom-up processing may
indeed have occurred in a parallel fashion, resulting in
behaviorally relevant representations in the process of deci-
sion making. In particular, the global nature of perceptual
organization of spatial information has been described in
terms of topological invariants, prior to the perception of
other featural properties; that is, the processing of topological
information may occur earlier than any metric estimation
(e.g., [62]). Moreover, It has been suggested that posterior
parietal cortex (PPC) supports topological spatial informa-
tion which emphasizes the importance of proximity of local
landmark cues, whereas the hippocampus supports metric
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Figure 8: Topological comparison in an example trial in COIN-
AHA task. The point of interest (POI, the black square) falls inside
the region of Group A’s attacks, but outside the region of Group
B’s attacks. Thus, without estimating the more abstract spatial
information such as distance and numerosity, the POI might be
perceived as more representative of the spatial characteristics of
Group A’s attacks than that of Group B.

spatial information which emphasizes the importance of
distance between local landmark cues [25, 63, 64].

Whereas the metric information is defined as the rela-
tionship of angles and distances between objects resulting
in a continuous representation of values (e.g., radius and
distances in the COIN-AHA problems), the topological
relationships are represented by a connectedness relationship
between objects that are invariant of metric modifications
resulting in a categorical representation of values [25]. If
topological comparisons indeed have occurred earlier than
metric estimation, it would be very plausible that they are
utilized in the decision-making process, especially as the
means of shortcuts in the early stages. For example, it has been
reported that expert geographers organized their thoughts
and presented data to others with the topological information
[65–67].

Perhaps more significantly, modeling the topological
comparison would enable us to examine the representative-
ness heuristic that might arise at the level of perceptual
analysis (Figure 8). It should be noted that the term of
representativeness heuristic has been coined more than three
decades ago [68]. Here we take amore updated interpretation
described byKahneman andFrederick [69]. According to this
interpretation, both of the representativeness and availability
heuristics in effect belong to the heuristic of accessibility and
substitution, where an individual assesses a specified target
attribute of a judgment object by substituting another prop-
erty of that object—the heuristic attribute—which comes
more readily to mind. Applied to the COIN-AHA tasks, it
is possible that when human subjects perceive that the POI
falls inside the region of Group A but outside the region
of Group B, they might conclude that this particular POI is
more representative of Group A’s characteristics than that of
Group B. Consequently, they might draw a conclusion that
Group A is more likely to be responsible for the attack. That
is, a decision can be made by taking a shortcut where the
topological relation is used as a heuristic attribute to substi-
tute a metric estimate of distance which only arrives later.
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Figure 9: Performance of the PC module in Task 2 (a) and Task 3
(b) measured by model-target correlation. In both figures, the top-
down PFCcPC-to-Hidden connections are specified as “group-one-
to-one.” In such a connection, each unit on PFCcPC is connected
to all units in the corresponding section on the hidden layer but
not other sections. For example, the unit on PFCcPC representing
“numerosity” is connected with all units in the bottom-right quarter
on the hidden layer (see Figure 3). Task 2 does not have a road
network so that no training on DistanceWalk.

7. Module Performance

ThePCmodule was trained within the integratedmodel with
artificial data generated by a data generation software. (For
details of the integratedmodel, see, [70]). At the current stage,
we only focused on the training on metric estimates (e.g.,
numerosity, radius, flying distance, and walking distance).
The training on topological comparison has not been com-
pleted thus it is omitted here. In addition, it has been found
that in the COIN-AHA tasks, human subjects have mainly
relied on the metric distances as the predictor [71].

Overall, we have demonstrated that the PC module can
accurately extract various types of target values from the

training dataset. To measure the module performance, we
use the model-target correlation, which is the correlation
between the minus phase activation on the target layer
(“PC Value”) and the corresponding target value across trials
within each epoch. Figure 9 shows the module performance
in COIN-AHA Task 2 (without road network) and Task 3
(with road network). It can be seen that, in both tasks, the per-
formances on Numerosity, DistanceFly, and DistanceWalk
were very accurate (model-target correlations greater than 0.8
after 750 epochs). The only difference is that the training on
Radius in Task 3 only showed a moderate performance. It is
noted that the performance on DistanceFly was consistently
more accurate than the performances on DistanceWalk and
Numerosity. One apparent reason is due to the different levels
of variances and ranges of the target values that are embedded
in the input representations. For example, on a 24 by 24 grid,
the maximum distance on the diagonal is 24 × 1.414 ≈ 34,
but themaximumDistanceWalk andNumerosity can be 24 ×
24 = 576. The moderate performance on Radius can also be
attributed to the variance on the input representations in
which the location changes of individual units may not
change the overall dispersion but can significantly affect the
spatial correlations between units.That is, unlike other target
values, the interactions between units can add additional
noises in the model performance on Radius.

Importantly, Figure 9 shows the dissociation among var-
ious types of target values. In particular, the model-target
correlations for both Numerosity and Radius in Task 2
reached approximately 0.8 after 750 epochs. Given that both
target values have to be computed from the same visual
input on PC Attn, such a performance suggests an almost
perfect dissociation between Numerosity and Radius (i.e.,
size). Crucially, this result has been obtained with the specific
top-down connections from PFCcPC to the hidden layer
(see Figure 3). That is, the units on PFC, each representing
a unique demand, are, respectively, connected to the corre-
sponding sections on the hidden layer. For example, the unit
on PFCcPC representing “numerosity” is connected with all
units in the “numerosity” section on the hidden layer, but
not the units in other sections. As a result, when the demand
fromPFCcPC is to compute “Numerosity”, the corresponding
section of the hidden layer is more likely to be activated thus
wins the inhibition competition over other sections. In other
words, the top-down signal from PFCcPC provides a critical
role in the functionality specialization on the hidden layer.

In contrast, Figure 10 shows the module performance
in Task 3 with nonspecific PFCcPC-to-Hidden connections
(e.g., each unit on PFCcPC is connected with all units
on the hidden layer). It can be seen that dissociation had
occurred to some extent, but the model-target correlation
has significantly dropped for all types of target values. For
example, the highest model-target correlation in Figure 10
was achieved on DistanceWalk, 0.65 (𝑛 = 100 trials), which
was significantly lower than that in Figure 9, 0.86 (𝑛 =
100 trials) (comparing the two correlations by Fisher 𝑟-to-𝑧
transformation, 𝑍 = −3.61, two tailed 𝑃 < .001). Since the
only difference in these results was in the way PFCcPC is
connected to the hidden layer, it appears that the failed dis-
sociation between different target values is due to the lack of
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Figure 10: Performance of the PCmodule in task 3, with nonspecific
PFCcPC-to-Hidden connections (e.g., each unit on PFCcPC is
connected with all units on the hidden layer). It appears that the lack
of specificity in the top-down control has caused themodule’s failure
in dissociating between different target values.

specificity in the top-down control. This finding is consistent
with the current understanding in the literature on selective
attention. For example, it has been suggested that the goal-
directed attention can prioritize stimulus processing on the
basis of motivational relevance via the dorsolateral prefrontal
and posterior parietal network [45]. In our model, the top-
down control was implemented by the PFCcPC-to-Hidden
connections. With the specific connections, the active unit
on PFCcPC is only projected onto the corresponding section
on the Hidden layer. As a consequence, the units on that
section are more likely to be active and better associated with
the current target value since the corresponding connection
weights are updated based on the activation values. Thus, by
a goal-directed division of labor, different groups of units on
the Hidden layer can develop associations with their own
target values in a relatively independent fashion, resulting in
an overall better performance.

Besides attention, expectation is considered as another
top-down mechanism that mitigates the burdens of com-
putational capacity in visual cognition, which may lie more
medially in the posterior cortices as well as more ventrally
in the frontal lobe [45]. In the PC module, the top-down
control is not only from PFCcPC but also from the teaching
signals provided on the target layer. As mentioned in the
early section, it has been debated whether numerosity is a
property that can be “sensed directly” from the visual input,
dissociated from texture perception [51, 52]. To test this
idea, we also conducted simulations with a simplified PC
module with only one visual input layer and one hidden
layer, and without teaching signals and top-down signals
from PFCcPC (Figure 11). We find that by pure Hebbian
association, units on the hidden layer can indeed show some
dissociation between numerosity and size, but only to a
certain extent. First, the correlation between hidden unit
activation and either target value was hardly perfect (similar

to the findings by [52]). For example, when computing the
model-target correlations over 100 trials, a Pearson product-
moment correlation coefficient of merely .254 can reach
statistical significance level 𝑃 < .01. Thus, a unit could
be classified as a “numerosity neuron” without being able
to selectively identify specific numbers. Second, many units
showed overlapped sensitivity to both numerosity and size.
That is, our finding appears to be more consistent with
the proposal by Dakin et al. [48] that people’s senses of
number and density are intertwined (note that density =
numerosity/size). Combined with the results shown above
(e.g., Figures 9 and 10), it appears that perfect dissociation
between numerosity and size can indeed occur, provided that
there are specific goal-directed top-down controls.

8. Discussion

In this paper, we describe an integrated model of the parietal
cortex for spatial-temporal information processing in sense-
making. In summary, the development of the PC module
suggests that, with quite similar structures, different types
of environmental statistics (e.g., numerosity, size, Euclidean
distance between two points, and length of curved line seg-
ment) can be extracted from visual inputs then represented
as a magnitude value, supporting the proposal of a “common
metric” housed in the parietal cortex (e.g., [5]).

The most significant finding from our simulations is that
although early visual dissociation can occur between different
types of environmental statistics, the goal-directed top-down
control appears to be critical towards a complete dissociation.
This finding is consistent with the current understanding in
the literature on selective attention. In our model, the top-
down control was implemented by the PFCcPC-to-Hidden
connections. We demonstrated that high model-target cor-
relations could be achieved only when the connections are
specified with particular top-down projections. The interfer-
ence without specific top-down controls can be more easily
understood regarding how the kWTA inhibition mechanism
would affect the dissociation between different types of
environmental statistics. Crucially, different types of environ-
mental statistics are obtained at different levels of abstraction.
For example, a completely accurate estimation of numerosity
(DistanceWalk and Numerosity) requires a complete spatial
invariance whereas estimation of Euclidean distance (Dis-
tanceFly) or dispersion (Radius) is essentially based on spatial
correlation. By the randomly initialized weights, some units
may be biased towards a certain level of spatial invariance.
However, with the kWTA inhibition in place, only the most
active units have the chance to be updated and associatedwith
the current target value. Thus, even when some units have
shown some sensitivity to a certain type of target statistics
at the early perceptual stage, such sensitivity may not be
able to propagate further for the selectivity to be developed.
One direct way to neurologically corroborate our simulation
findings is to examine whether the task demand from the
learning environment can interfere with the roles of neurons,
for example, causing neurons initially sensitive to numerosity
to be sensitive to size.
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Figure 11: The dissociation and interference between numerosity and size. (a) A visual input with high numerosity but small patch size. (b)
A visual input with low numerosity but large patch-size. (c) Without top-down control and teaching signals, units on the same hidden layer
show sensitivity to either numerosity (left panel) or size (right panel), or both (the overlap of unit locations). Sensitivity is measured by 𝑅2 in
a linear regression of the activation on the respective magnitude.

Moreover, whereas our current model focuses on the
interference and dissociation of different types of spatial
information within the parietal cortex, it is also possible that
other cortical topologies and mechanisms may contribute to
the similar process. For example, it has been suggested that
the mosaic organization of the superficial layers of the dor-
socaudal medial entorhinal cortex (dMEC) represents a pos-
sible substrate for the modularity of the spatial map, which
is an indication of early dissociation of different types of
spatial information [72]. In addition, our current emphasis
in modeling the parietal cortex is on the dissociation and
representation of magnitude values, and a major goal is to
reduce interference thus achieve high accuracy in perfor-
mance. Accordingly, we have made several simplifications
in modeling many of the subtasks. For example, we did not
distinguish the processes of exact counting and subitizing
(when the enumeration of objects is fast and accurate for sets
of up to three or four items) [36]. And, we have avoided the
problemof finding the shortest path in estimating thewalking
distance along the road.

In general, our modeling effort attempts to strike a bal-
ance between two types of preferences: whether to emphasize
the mechanism of “attentional foveation” or to emphasize the
mechanism of “perceptual segmentation” and “topological

grouping.”The former requires multiple sequential represen-
tations in the model (e.g., multiple scans in a crowded scene,
exploration of all road segments between two points), and
the latter makes it plausible to represent a set of stimuli as
a whole (e.g., multiple objects of the same color segmented
from others, a single road segment between two points).
For example, the “zoom lens model” postulates that curve
tracing has to be carried out in multiple passes each with
a different foveation [73]. That is, in estimating the walking
distance along the road, it would involve scanning multiple
road segments between multiple intersections and points
of interests and estimating distances according to different
reference points. Neurologically, it has been posited that the
parietal cortex is responsible for the transition between refer-
ence systems (e.g., [24, 74]). From behavioral studies, we have
argued that the selection of reference systems (e.g., egocentric
versus intrinsic) is an essential component in the internal
representation of physical distances and relative locations
[21, 23]. Thus, implementing the mechanisms of attentional
foveation and selection of reference systems would lead to
a more realistic model with the ability to identify some of
the human heuristics and biases in spatial representation and
reasoning. In the current model, all of the visual information
is presented on the input layers at once. Thus, the model



12 Computational Intelligence and Neuroscience

completely lacked the mechanism of attentional foveation.
In addition, the selection of reference systems was rather
fixed such that the model lacked the mechanism of flexibly
changing the anchors of the reference system.We will further
pursue these potential improvements in future research.
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