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Fully autonomous vehicles (FAVs) lack monitoring inside the cabin. Therefore, an in-cabin monitoring system (IMS) is required
for surveilling people causing irregular or abnormal situations. However, monitoring in the public domain allows disclosure of an
individual’s face, which goes against privacy preservation. Furthermore, there is a contrary demand for privacy in the IMS of AVs.
Therefore, an intelligent IMS must simultaneously satisfy the contrary requirements of personal privacy protection and person
identification during abnormal situations. In this study, we proposed a privacy-preserved IMS, which can reidentify anonymized
virtual individual faces in an abnormal situation. This IMS includes a step for extracting facial features, which is accomplished by
the edge device (onboard unit) of the AV. This device anonymizes an individual’s facial identity before transmitting the video
frames to a data server. We created different abnormal scenarios in the vehicle cabin. Further, we reidentified the involved person
by using the anonymized virtual face and the reserved feature vectors extracted from the suspected individual. Overall, the
proposed approach preserves personal privacy while maintaining security in surveillance systems, such as for in-cabin monitoring

of FAVs.

1. Introduction

Intelligent monitoring and surveillance systems are widely
used to ensure safety and security. Popular applications of
monitoring in public are video surveillance cameras (closed-
circuit television); monitoring in intelligent transportation
systems, including in-cabin monitoring and road traffic
monitoring; and video monitoring for data generation and
navigational tasks around city centers, airports, and public
roads [1]. Driving automation also requires public visual
information for multiple tasks [2]. The Society of Automotive
Engineers defined six levels of autonomy in driving auto-
mation in 2014 (from no automation (level 0) to full auto-
mation (level 5)) [2-4]. Level 4 autonomous vehicles (AVs)
are highly automated and capable of performing all driving
tasks under certain conditions without human intervention.
However, the driver (human) may control such AVs as and
when required. In particular, fully autonomous vehicles
(FAVs) (level 5 AVs) have no drivers; all occupants are

passengers only [3, 4]. Therefore, no one oversees such AVs.
In addition, in public and shared vehicles (such as ridesharing,
carsharing, and car-full services in AVs), the passengers do
not know each other. Therefore, it is important to ensure the
security and safety of all occupants sitting in the cabin of such
AVs. Furthermore, the vehicle should be protected from any
malicious behavior of the occupants and/or external threats.
Therefore, FAVs essentially require a multipronged in-cabin
monitoring task in real time [5]. However, many countries
have imposed a ban or severe restrictions on facial recognition
techniques to secure personal information [6-16]. There are
legal and ethical issues that impose various restrictions on
public monitoring and surveillance systems [16-19]. Fur-
thermore, identification of the accused is also important in
abnormal (irregular) situations. This study was motivated by
the fact that facial monitoring is important for safety; how-
ever, it poses a threat to individual privacy. In this study, we
focused on the following two problems associated with in-
cabin monitoring systems (IMSes):
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(i) Protection of facial privacy.

(ii) Evidence of the accused in abnormal situations.

Therefore, a robust solution is required to provide pri-
vacy-preserved monitoring in public [20]. Moreover, it
should be capable of identifying the concerned person when
required. Figure 1 shows the dilemma of intelligent moni-
toring systems.

As illustrated in the above figure, an anonymous face
protects personal information during in-cabin monitoring
of an FAV. However, in certain irregular situations, personal
identity is required to identify the accused person. An ex-
ample of an abnormal incident or irregular situation can be
an occupant of the FAV acting violently or attempting
vandalism against the other occupants or toward the FAV
itself. In such cases, it is important to identify the concerned
person. Furthermore, this is an abnormal situation; however,
in-cabin monitoring with real faces is not a solution to this
problem. The breach of facial information leads to multiple
consequences, such as misuse of facial data and banking and
financial fraud [1, 6, 7, 13, 14]. One of our motivations for
this work was to provide an approach that can protect
against such problems in public monitoring systems, par-
ticularly the IMS. In-cabin monitoring with facial ano-
nymization has security issues, while those with facial
identity have privacy issues. Therefore, it creates a contra-
diction between privacy and security.

1.1. In-Cabin Monitoring. In-cabin monitoring is important
in level 4 and beyond AVs [5]. It provides safety and security
to the occupants. Simultaneously, it provides safety to the
vehicle itself in an irregular situation. Past research works
include in-cabin monitoring in various situations [21]. In-
cabin monitoring for violence detection inside a FAV was
reviewed in [22]. Bell et al. performed in-cabin monitoring
to detect harsh vehicle maneuvers and risky driving be-
haviors [23]. Szawarski et al. patented the idea of in-cabin
monitoring for a monitoring vehicle seat, occupants inside a
vehicle, and the orientation of both the occupants and the
vehicle seat [24]. Safety and cleaning problems of in-cabin
monitoring of a vehicle were presented in [25]. However, a
monitoring system should protect against any breach of
personal privacy (facial identity) with the simultaneous
ability to identify an actual person in case of irregular
situations.

1.2. Facial Privacy versus Facial Recognition in Monitoring
Applications. Real-time monitoring is essential in multiple
monitoring applications. However, privacy in the public
domain is an important concern in real-time monitoring
tasks [26-30]. Facial anonymization is a common practice
for preserving personal privacy. Recently, generative
adversarial network- (GAN-) based deep learning (DL)
models have been widely used for face swapping and ano-
nymization [31-34]. In our previous study [31], we dem-
onstrated a robust approach to preserving the facial identity
of the occupants in a FAV cabin. It incorporated the facial
swapping and reenactment technique to maintain privacy in
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in-cabin monitoring. However, in ab abnormal situation, the
anonymized face of the occupants made it difficult to
identify the concerned person [20].

1.3. Our Key Research Highlights. In this study, we propose
an intelligent IMS. It is an efficient approach for identifying a
person, even with an anonymized face. This method resolves
both privacy and security issues. Accordingly, we can
identify the person who causes an irregular situation, even
with their anonymized face. In this approach, we preserved
the key facial information of the occupants and stored these
identity features on the cloud. These key features help in
recognition of the person involved in the irregular situation.
The highlights of this study are as follows:

(i) The concept of having an appropriate source face for
each target face enhances puppeteering and reen-
actment of facial emotion and behavior. It helps in
event and behavior detection in intelligent moni-
toring and surveillance systems in the public
domain.

(ii) The involvement of the two-dimensional (2D)
landmark position in the reenactment generator
and separate segmentations of face and hair in the
segmentation generator with inpainting and
blending generators enhances the facial anonym-
ization and reenactment operations.

(iii) The 128D identity feature is a key marker for ac-
curate facial identification in an anonymized do-
main. The concept of storing a pair of IDs (original
and anonymized) leads to reidentification without
any privacy threat. It is not possible to know the
original face with only 128D identity features. For
reidentification, both the original visual input and
the ID are required. In the cloud, the anonymized
visual image with the original ID is stored. There-
fore, there is no threat of privacy breach, even
though the IDs are stored in the cloud.

(iv) Therefore, the proposed approach augments the
facial identity feature information to locate the
involved person in any abnormal situation without
any personal privacy breach.

This approach pioneers a newer method of monitoring
and surveillance to avoid any legal or ethical issues.
Therefore, a monitoring database can be created in the
anonymized domain, thereby facilitating further research on
events and behavior monitoring in the public domain.

2. Materials and Methods

Personal privacy with identification is a challenge as well as a
demand in real-time monitoring applications [20]. In this
study, we developed a privacy-preserved IMS with the rei-
dentification capability that can identify the accused person.
The framework of the proposed method is shown in Figure 2.
The proposed system operates in three stages. In stage 1,
facial anonymization was performed to ensure personal
privacy. It was performed using the onboard device of the
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FIGURE 1: System overview of the proposed IMS. (a) Few examples causing abnormal situations in the cabin of a vehicle. (b) The dilemma of
the legal and ethical issues (privacy) and practical problems (requirement of monitoring). Case 1: the masked face has no facial information,
which is crucial in surveillance and monitoring inside the cabin of a vehicle. Case 2: real face suffers from personal privacy threats. Case 3:
facial anonymization solves the problem of privacy; however, it has the problem of identifying the concerned person in case of irregular

situations.

Cloud
(Database)
(IDR +ID A)

A

Occupant face detection

(Target face)
Appropriate source face
generation (Source face)

Visual input
(Monitoring & Surveillance)

nxIDg

Datacenter and Control-room
(for further processing)

)

[ Monitoring and surveillance ’

(for any abnormal situation)

ID extractor

v
—D[ Facial Anonymization 4|>[ (128-D features)

Identlty I[)ls‘f(ﬁsgzon Identity mappin
matching (ID4) (ID, <—ID,)

For evidence during investigation

= Id extractor Person jp during
(128-D features) investiation (ID,,,,)

Identity matching r a
(ID, & ID,,,)
=~

Suspect face

FIGURE 2: Proposed privacy-preserved intelligent IMS. Here, the identity features (IDs) are as follows: real face ID (IDg), anonymized face ID
(ID,), ID of the occupant that caused an abnormal situation (ID,4 4s), and suspect face ID during the investigation (ID,,).

AV. In stage 2, a pair of identity features (IDs) was generated
for each face before and after anonymization (IDg and ID,).
Further, the anonymized video along with the IDs was fed to
the cloud. The pairs of IDs were kept in the cloud for person

reidentification when required. The anonymized video
frames were sent to the data center for further processing
(monitoring and surveillance). In stage 3, the IDs were
matched to search the accused (person involved in an



irregular situation (ID4_as)). During the investigation, the
similarity between IDs ensured the identification of the
concerned person (ID). Further, during the investigation,
this approach was verified by matching the IDs of the suspect
face (ID;,,) at the time of investigation with the accused
person’s ID.

The dilemma between monitoring requirements and
legal and ethical issues is also resolved through this ap-
proach. The details of the proposed approach are discussed
thoroughly in Section 2.2. This approach is suitable for
creating a monitoring and surveillance database with
legitimation.

2.1. Materials. Many research works have been published on
personal privacy and person identification considering these
two issues as separate research problems. In this study, we
briefly surveyed the related works and developments on both
face anonymization and person identification.

2.1.1. Face Anonymization. Face deidentification preserves
privacy-sensitive information. It alters the original face to
hide privacy-sensitive information. Anonymization of faces
is an easier and more robust solution to personal privacy-
related threats in the digital domain [35]. Blurring, masking
faces, or creating a patch over faces is slightly easier than any
other face anonymization approach; however, those
methods suffer from significant loss of facial information
[32, 36]. Therefore, face swapping has attracted significant
attention for facial anonymization purposes. The morphable
model-based facial exchange approach is considered a
pioneering work in face swapping [37]. Bitouk et al. dem-
onstrated automatic face replacement in their work [38].
Machine-learning-based face swapping was suggested in
[39]. A convolutional neural network (CNN) was used for
face segmentation and swapping in [40]. GAN-based deep
models have become popular for virtual human face gen-
eration [33, 34]. Therefore, along with autoencoders, GAN-
based face swapping has gained considerable attention
among researchers for seamless end-to-end face anonym-
ization [33, 34, 41]. Face swapping-based automatic gen-
eration and editing of faces was showcased in [42]. It used a
region-separative GAN (RSGAN). An autoencoder-based
algorithm for face swapping was presented to detect fake
videos [43]. In [44], a GAN-based encoder-decoder network
was suggested to swap human faces. Collateral privacy issues
have also been resolved using the face swapping method
[45]. Nirkin et al. suggested a face swapping GAN (FSGAN)
in [46]. It provided subject agnostic face swapping and
reenactment between a pair of faces. Naruniec et al. pre-
sented a fully automatic neural face swapping method in
[47]. Sun et al. proposed a hybrid model for face ano-
nymization [36]. Hukkelas et al. introduced a GAN-based
DeepPrivacy architecture for face deidentification to remove
all privacy-sensitive information [34].

2.1.2. Person Identification. Facial recognition has multi-
purpose objectives, such as recognition, classification, and
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discrimination. Urbanization and smart cities demand
widespread applications for face recognition [48-52].
Therefore, various face recognition approaches involving
person identification have been demonstrated by past re-
searchers. Face recognition approaches are classified into
three categories: local, holistic, and hybrid approaches [52].
Local approaches involve only partial facial features (such as
eyes, mouth, and nose) to recognize a face, whereas holistic
approaches involve complete facial features, including
background for facial recognition. Hybrid approaches, as the
name suggests, involve both local and holistic approaches. In
holistic approaches, popular algorithms involve indepen-
dent component analysis, linear discriminative analysis, and
principal component analysis [53, 54]. The development of
artificial intelligence (AI) incorporating DL and CNNs has
boosted the performance of facial recognition algorithms.
Taigman et al. presented a deep neural network-based face
recognition system, DeepFace [55]. Furthermore, many
other extended versions of DeepFace have been demon-
strated in multiple studies [56-59]. Adjabi et al. thoroughly
reviewed face recognition techniques and their comparisons
and future scope in their study [51]. Kortli et al. surveyed
popular face recognition techniques in all three categories,
that is, local, holistic, and hybrid approaches, in their study
[52]. They compared these techniques in terms of accuracy,
complexity, and robustness. They also discussed the ad-
vantages and disadvantages of the respective approaches.
Wang et al. efficiently surveyed DL-based face recognition
techniques in their study [60]. They exhaustively reviewed
various popular DL-based approaches, including autoen-
coder-based, CNN-based, and GAN-based techniques. They
also enumerated the key features, advantages, and disad-
vantages of these techniques. Furthermore, they summa-
rized some of the commonly used datasets for deep face
recognition. Moreover, they indexed the emerging real-
world issues and major technical key challenges in deep
facial recognition.

However, an application involving person identification
must address important privacy concerns [61]. In particular,
facial identification in the public domain must tackle in-
dividual freedom and ethics-related issues [51, 62]. There-
fore, the state-of-the-art research problem in face
recognition is the reidentification of an individual on
anonymized data. Rocher et al. demonstrated the likelihood
of correctly reidentifying a specific individual, even with the
anonymized dataset [30]. They suggested a generative
graphical model that can be trained on incomplete data to
accurately identify individuals. Rooijen et al. suggested 2D
video tracking for the reidentification of individuals in an
anonymized dataset [20]. They suggested that the real facial
information of a person is not necessary for reidentification.
Luo et al. suggested effective training tricks for person
reidentification [63]. A residual learning framework using
the residual network (ResNet) model was suggested in [64]
for visual recognition tasks. This facilitated the easier and
more efficient training of a substantially deeper network.
Schroff et al. suggested unified embedding using only
128 bytes per face for efficient face recognition [65]. They
developed their network by incorporating the batch input
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layer and deep CNN, followed by normalization. They used
triplet loss to minimize the training errors. The world’s
simplest face recognition library (Dlib face recognition) is a
popular and efficient tool for extracting facial landmarks
[66]. It is a cross-platform open-source machine-learning
toolkit that supports the development of machine-learning
algorithms. It helps in recognizing and manipulating faces.
Intent and behavior have been successfully detected using
various techniques. Facial gesture sensing is performed
using virtual reality (VR) and augmented reality (AR) de-
vices, respectively in [67, 68]. AR/VR devices provide sensor
responses to detect the intent or behavior of the user.
However, FAV in-cabin monitoring requires intent or be-
havior detection using visual (computer vision (CV)-based)
monitoring approaches.

2.2. Method. In this study, we proposed a representation
learning-based approach to generate the identity signature
of occupants. This signature is capable of deidentifying a
person concerned with an irregular situation in the cabin of
level 4 and beyond AVs. We proposed facial anonymization
and reidentification system to provide countermeasures in
case of an irregular situation. Therefore, this method pro-
vides personal information security with traces of the
concerned person in case of any abnormality. The proposed
method includes four main tasks. First, face anonymization
with reenrollment. This is performed by using the face
agnostic face swapping technique. It uses a set of GANs.
These GAN s are used for three purposes: facial reenactment
and segmentation, facial inpainting, and facial blending.
After accomplishing face anonymization, the second task is
to extract the facial identity features of the occupant’s faces
in pairs (before and after anonymization, i.e., IDg and ID,)
using the ResNet-based model. These IDs are stored in the
cloud, and the anonymized video frames of in-cabin
monitoring are transferred to the data center via the cloud
for further processing. The third task of the proposed ap-
proach is to identify the accused by identity feature
matching. Similarity matching of the ID of the accused
obtained at the data center with the IDs of the occupants
stored in the cloud ensures the identification of the con-
cerned person (ID,). However, it is the ID of the anony-
mized face of the accused. The Euclidean distance metric was
used for similarity matching. Similarly, using the stored pairs
of IDs (IDR and ID,), we can obtain the real face identity
feature of the accused (IDy). Finally, in the fourth task, the
evidence of the accused is obtained by matching the simi-
larities between the IDs of the suspects with the ID of the
accused during an investigation. Further details of the
proposed method are provided in the following sections.

2.2.1. Facial Identity Feature Vector. The facial identity
feature is (128, 1)-dimensional encoding of a facial image. It
contains the encoded landmarks of the face using the ResNet
model. The FaceNet-based CNN model and Facedlib face
recognition library are used to extract the 128D identity
teatures (ID) from the faces. Additionally, 128D is optimal
embedding, which results in appropriate features required

for reidentification or measuring the similarity between two
faces. It has already been validated in the “FaceNet” ar-
chitecture that fewer than 128D identity features deteriorate
the identification performance; however, increasing the
dimension only unnecessarily increases the number of pa-
rameters. This is the main reason for adopting the 128D
identity features for recognizing faces.

Figure 3 shows the (128, 1)-dimensional facial identity
feature vector generation of the occupant’s face image. It
uses a ResNet-based architecture consisting of 29 convolu-
tional layers for this purpose. The ResNet architecture fa-
cilitates the dipper layer accessibility. Additionally, they have
an inherent tendency to minimize the training error loss by
increasing the number of layers. The triplet loss function is
used to estimate the error in the reidentification of the
concerned person. It performs similarity matching on the
128D identity features. For the anonymized anchor image ID
(I4), positive anonymized image ID (Ip), and negative
anonymized image ID (Iy), the triplet loss is estimated by the
following equation:

Z(A,P,N) = max(|lI 4, Ip,ll - I, Iy, + margin,0). (1)

The anonymized anchor image ID (IA) represents the
128D ID of the person figured out in an irregular situation.
The positive anonymized image (IA) is the stored image
128D ID of the same person on the cloud, and the negative
anonymized image ID (IA) is the 128D ID of another oc-
cupant. Here, (||x, yll,) denotes the “Euclidean distance”
between pairs {x, y} in the triplet loss function. A factor
margin is included in equation (1) to reduce the chances of
misclassification. These facial features are incorporated in
128D encoding and are used as the facial recognizer using
only 128 bytes per face.

Furthermore, a distance-based classifier compares the
128D features to identify the person involved in an irregular
situation. It represents the difference between two feature
vectors in Euclidean space. Suppose that image (R) repre-
sents the person. Image (C) is the stored image (copy) of the
same person on the cloud, and image (D) is an image of
another occupant. Further, f(x) represents the 128D
encoding of the image f (x). The similarity (S) in the vector
space is measured by the following equation:

S =min(|lf (R), f (O)ll, (If (R), f (D)II,)). (2)

It guarantees that images (R) and (C) are of the same
occupant and are different from image (D), which is the
image of another occupant.

2.2.2. Source Image Generation. A source image was re-
quired for face swapping in facial anonymization. It is used
to replace the face appearing in the target image. This re-
placement, that is, swapping, should produce a realistic
result that seamlessly reenacts the anonymized face that is
similar to the target face. Our recommendation is to use a
nonreal face as the source image. It mitigates any chaos/
conflicts that may occur by using any real face as the source
image. Therefore, in our proposed method, we used GAN-
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F1Gure 3: Illustration of 128D facial identity feature vector generation (from the occupant’s face image). Image shown is taken from our in-
cabin monitoring database. The numerical values in the yellow, red, green, and blue colored boxes are representing respective passengers’

(128, 1)-dimensional facial identity feature vectors (ID).

generated virtual human faces as the source image. We have
considered generating appropriate source faces that can
effectively render the original emotions or behaviors per-
formed by the occupants. It helps in further event and
behavior-monitoring tasks. Figure 4 shows the proposed
source image generation process. We applied the concept of
similarity matching in vector space to select a similar source
face for each target face from the set of virtual human faces
(nonreal face as the source image). Similarity matching
between source and target faces facilitates reciprocating
similar emotions and intents, which is necessary for further
monitoring applications.

Figure 4 shows the source image generation process.
The face detector detects the faces (target faces) of the
occupants (from the in-cabin visual input). The identity
feature extractor extracts the IDs (128D identity features) of
faces (target faces) and matches the similarity of the target
faces with the set of virtual human faces (source faces) to
find the most appropriate source face. This similarity
matching is in the vector space (Euclidean distance
matching between the extracted face ID and IDs of the set of
virtual human faces).

2.2.3. Facial Anonymization. Facial anonymization requires
exactitude in the anonymized faces to mitigate errors in
further processing. Therefore, swapping should be per-
formed efficiently to provide unaltered expressions and
emotions over the anonymized face. We used the concept of
FSGAN for facial anonymization to provide personal privacy
during in-cabin monitoring of irregular situations. This
requires perfection in the following three tasks:

(i) Facial Reenactment and Segmentation. To obtain proper
facial swapping, we must estimate the proper reenacted face.
This is performed by the proper segmentation of the face and

hair segments of the target image. Proper facial reenactment
requires separate face and hair segmentations with the
mapping of 2D facial landmark positions. Therefore, the
stepwise loss function is considered as the objective function
for implementing facial reenactment. For i" layer feature
map (F; € REH>Wi) the perceptual loss (Z,,.,.) between
pairs of images (x, y) is expressed as follows:

perc

1
L (09) = L e w, XIECEDL )

The reconstruction loss (Z,..) between a pair of images
(%, y) is expressed as follows:

=‘?rec ('x’ )’) = Aperc x gperc (.X', )’) + )tpixel x gpixel (X, y)’ (4)

where “A” is the corresponding hyperparameter (A, = 1;
A 0.1; Ayqy = 0.001; A5 = 0.1; . = 15 Agepice = 1) and
Aseenactment 18 linearly increased from 0 to 1 during training.
Pixelwise loss (Z;) between a pair of images (x, y) is
calculated as (Zpixel (6, ¥) = x = yl). We have used the
multiscale discriminator adversarial loss objective function
to improve the realism of the generated images. The
adversarial loss (Z,4,) between the generator and dis-
criminator (G, D) is expressed as follows:

pixel =

Z.4v (G, D) = min(max( ) Zan (G, D))),
Zoan (G, D) = E(x,y) [log D(x, y)] + E(x)[log(1 — D (x,G(x)))],
(5)
where “E, ,)” is the expected value over all real data in-
stances. “E ,,” is the expected value over all random inputs

to the generator. The reenactment generator loss (&ys) is
given by the following equation:

*‘?RG = gperc + “‘[Zrec + gadv' (6)
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FIGURE 4: Source image generation using Al-generated faces with the best matching technique.

The perpetual loss is used to estimate the errors in
capturing fine facial details, and the reconstruction loss is
used to evaluate pixelwise color inaccuracy. Adversarial loss
improves the generated images and provides a realistic look.
The standard cross-entropy loss (&) is defined as (for
truth label “¢;” and the “SoftMax” probability “P,” for ith
class)

ZLep=- Y t;x log(Py). (7)

Further, segmentation generator loss (&) is obtained
by the following equation:

Zsg = ZLcp + Lpiel (8)

(ii) Facial Inpainting. This method estimates the
missing portions of the reenacted face based on the face
and hair segmentation of the target image. The inpainting
generator loss (Z;p) was calculated using the following
equation:

gIP = grec +"[Zadv' (9)

(iii) Facial Blending. It blends the completely reenacted
face such that the swapped face matches the
background environment like the original target
face. The loss function (&) for facial blending is
obtained using the following equation:

Fp=Loet L

perc adv* (10)

The identity signature is generated corresponding to
each occupant (a pair of identity signatures for real and
anonymized faces) in the FAV. After facial anonymization,
the video frames are transmitted to the cloud along with a
pair of identity signatures of the occupants.

2.2.4. Anonymized Person Reidentification in Abnormal
Situations. The proposed IMS facilitates the reidentification
of the person involved in an abnormal situation. In our
algorithm, in-cabin facial anonymization for preserving
identity before transmitting the video frames to the cloud
was achieved through the following pseudocode. The
identity signature is generated corresponding to each oc-
cupant in the FAV. Itis a vector of size 1 x 128. Therefore, for
each occupant, we have a pair of identity signatures cor-
responding to the original and anonymized faces. Each pair
is stored in the cloud. In any irregular situation, the con-
cerned person is back-traced by matching the identity sig-
nature and anonymized face. The following is Pseudocode 1
of our proposed approach for obtaining the identity features
(ID) of the person involved in an abnormal situation.

We considered virtual human face generation for the
source faces. These faces are used to swap the target face in
the captured visual in-cabin dataset. The source faces are
generated depending on the similarity of the target face in
the vector space. A similar source face provides the exac-
titude in replaying the facial gestures. This facilitates better
reenactment performances. The concept of virtual human
face generation for the source face protects any chaos or risk
of threatening others’ identities. Furthermore, we generated
the facial identity signatures of the original and anonymized
faces. These identity signatures help backtrack the concerned
person in the event of an irregular situation. The identity
signature is only vectored information. In other words, the
identity signature in our proposed approach is extracted
from a face that is used to reidentify the face. However, a face
cannot be recreated using this information. Therefore,
personal identity is not revealed through the identity sig-
nature. Our proposed approach provides proof or evidence
that confirms the identity of the concerned person. The
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(i) Definitions: Faces of the occupant (F); target face (T); appropriate source face (S); anonymized face (A); identity features (ID):
real face ID (IDg); anonymized face ID (ID,); ID of the occupant that caused an abnormal situation (ID4_4s); and an in-cabin
abnormal situation (AS).
(ii) Functions:F =face detector; S =source detector; A =anonymizer; | =IDextractor.
(iii) Input: video frames (in-cabin)
@ for i=1 to range of the occupant:
>iv) T(i) = F (Input)
v) S(i)= S (T(i)) # search most similar source face for target face
(vi) Ai) « A (T(), S()
(vii) IDg(i) = II (T(i)) # 128D feature vector of the target face ID4(i) = II (A(7))
(2) store: ID(i) < (IDg(i); ID4(i))
3) At datacenter: monitor event and behavior for AS:
(viii) if occupant j is involved in AS, then:
(xi) generate (ID4_4s(j)) #ID of jth occupant in abnormal situation
(x) match ID:
(xi) for ID from 1 to range of the ID:
(xii) k=argmin(|ID_as(j) IDA()I2)
(4) Map: IDg(k) « ID4(k)
(xiii) return (IDg(k)) # the algorithm returns the real face ID of an anonymized person

PseupocoDE 1: Algorithm for obtaining the ID of a person involved in an abnormal situation.

abnormal situation (O).
(ii) Functions: II =1ID extractor.
(iii) Input: Tj,,; IDg

(viii) return (O)

(i) Definitions: Target face (occupant’s face) captured during the investigation (T},,); ID of the occupant’s face obtained during an
investigation (ID;,,); ID of the person involved in the abnormal situation (IDg); and real face of the occupant involved in the

1) At investigation:

(iv) for i from 1 to range of the target faces:

(V) IDinv(i) =1 (va(l))

(vi) match ID: # compare IDy and the suspect face ID
(vii) j = argmin; (|[IDg, ID;,, ()ll,)

2) Map: O « j

Pseubpocobk 2: Algorithm for evidence of the person involved in the abnormal situation.

following is Pseudocode 2 of our proposed approach for
evidence of the person involved in an abnormal situation.

In the case of proof or evidence, our method determines
who is the concerned person. The returned identity feature
(real face IDg(k)) in Pseudocode 1 refers to the crucial
identity parameter of the person involved in an abnormal
situation. Matching the identity feature at the time of in-
vestigation with the obtained ID (real face IDy(k)) confirms
the person involved in an abnormal situation. Therefore, this
approach easily locates the person involved in an irregular
situation without any breach of others’ identities.

3. Results and Discussion

In our experiment, we first anonymized the occupants of the
FAV to secure their privacy in the public domain. Further,
we applied the concept of vector space similarity to match
the representation learning-based identity features for face
recognition to locate the person involved in an irregular
situation. The augmentation of the representation-learning-

based identity feature introduces a new domain in rei-
dentification. The proposed system was introduced to
maintain personal privacy during the monitoring. We ex-
amined our proposed system for the in-cabin monitoring
task of the FAV. We captured our database for in-cabin
monitoring in abnormal situations. The similarity measure
(8;,7) is calculated by the Euclidean distance (ED) metric that
is expressed as follows:

Si,j = "f(l)>f(])"2’ (11)

where f(i) and f(j) represent the 128D encoding of images i
and j, respectively. Therefore, the similarity measure iden-
tifies the distance (Euclidean distance) between two pairs of
IDs (128D encoding). The lesser the distance is, the closer the
faces are.

3.1. Appropriate Source Faces. We proposed the concept of
an appropriate source face in our facial anonymization
approach. For every occupant face (target face), an
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appropriate source face is obtained by matching their
similarity in the vector space. We considered various sce-
narios to assess the efficacy of our proposed approach, in-
cluding single and multiple faces in the input image frame.
Figure 5 shows the complete set of the considered source
faces in our experiment. We considered a set of 24 source
faces (shown below). All these faces were not real (AI-
generated). The source faces were used to swap the target
face in the facial anonymization process.

These faces are nonreal virtual human faces. Generated
Photos provides GAN-generated faces, which are human
faces of nonreal humans. This has the benefit of further
augmentation in anonymization. We considered various
scenarios in our experiments. Examples include images with
a single face only (for both males and females), multiple faces
for males only and females only, and multiple faces for both
males and females. These are in-cabin images obtained from
the public domain (through an image search on the web) and
are shown in Figure 6. We considered different scenarios for
the occupants in the cabin. Therefore, in F1 and F2, there is
only a single person in-cabin (F1: male and F2: female). In
other scenarios, we considered more than one person in the
cabin (only males, only females, and both males and fe-
males). Finally, we considered a family with children. There
are four most appropriate source faces (S1 to S4) chosen for
face anonymization.

Table 1 presents the similarities (in vector space) be-
tween the source and target faces, as shown in Figures 5 and
6.

These values follow the facial similarities of the source
and target faces. These values measure the distance between
the identity features of the source and target faces. The lower
the values are, the more similar the faces are. The values in
the green boxes represent the minimum Euclidean distances.
These minimum values indicate appropriate source faces for
anonymization. We can observe that the male target faces
have lesser distances for male source faces than for female
source faces. Interestingly, the distance values follow the
similarity in looks as well. The eastern looks target faces have
alesser distance for eastern source faces than for the western
source face, and vice versa. Female source faces have a lesser
distance than the identity features of children’s target faces.

3.2. Privacy Preservation during In-Cabin Monitoring.
Facial anonymization is performed after deciding the ap-
propriate source face using FSGAN-based face swapping
and reenactment. Figure 7 depicts the reenacted anonym-
ization of the target faces. Here, the first row (F1 to F8) and
the third row (F9 to F23) show the original in-cabin visual
inputs, and the corresponding anonymized output is rep-
resented in the second row (A1-A8) and fourth row
(A9-A23). We chose four source faces (S1 to S4 shown in
Figure 6) to swap the target faces (F1 to F23).

It is evident from this result that perfect reenactments are
achieved even in the anonymized domain. Thus, it discerns
the preservation of personal privacy during monitoring and
surveillance operations. Furthermore, this appropriate re-
enactment supports the detection of abnormal or irregular

situations in real time. To examine abnormality detection in
the anonymized domain, we have experimented by con-
sidering vandalism as an irregular situation inside the ve-
hicle cabin. We created our database for a similar situation.
Snippets of the vandalism inside the vehicle are shown in
Figure 8. We created a situation wherein occupants in the
back seat of the vehicle started fighting with the occupants in
the front seat. Four scenes were captured in our experiment.
Shoulder shaking is shown in scene #1. Scene #2 shows a
slapping scenario. Head shaking is discerned in scene #3,
and scene #4 represents a neck choking incident inside the
cabin of the vehicle. The identity features (IDs) of each
occupant were calculated for normal and irregular situa-
tions. It is clearly observed that O3 (in the green box) is
responsible for the irregular situation (in-cabin vandalism of
the vehicle shown in the red box).

3.3. Person Reidentification in Abnormal Situations.
Table 2 presents the similarities of the anonymized identity
feature (ID,) with the anonymized facial identity feature of
occupant #3 (ID, rs). Here, ID4 js is the anonymized
identity feature of the occupant who is involved in an ir-
regular situation calculated at the data center, and ID, is the
anonymized identity feature of the occupant stored in the
cloud.

The values in the green boxes represent the minimum
Euclidean distances. These minimum differences between the
IDs indicate the involved person. The original ID of this
person is stored in the cloud. Therefore, by mapping the ID,
we can easily identify the real person. Reidentification was
performed by backtracking the ID obtained from the cloud
and pictures of the occupants taken during the investigation.
The ID of the person involved in an abnormal situation from
the cloud (IDg) needs to be matched with the IDs of the
occupants inside the vehicle for facial identification of the
person. This approach provides proof or evidence confirming
the identity of the concerned person. For assurance of the
person involved in the abnormal situation, we took pictures of
the occupants (during an investigation). The images are
shown in Figure 9. Now, the identity feature of each occupant
is extracted to match the concerned person ID (IDy) (as per
Pseudocode 2). First, we compared the similarity between the
faces of the occupants inside the vehicle with those of the
other faces captured during the investigation. This is required
to ensure that the occupants are the same.

Table 3 presents the similarity measures between the
occupants’ IDs extracted during an investigation and their
IDs extracted from the in-cabin images.

The minimum Euclidean distances are represented by
the green boxes. Here, minima indicate that the occupants O
and O” are the same. Thereafter, assurance of the involved
person is performed by matching the identity feature of the
occupants extracted from the in-cabin image of the vehicle
with the ID of the person involved in an abnormal situation
(stored in cloud IDg). Table 4 presents the similarity mea-
sures between the occupants’ IDs extracted from the in-
cabin image with the obtained ID of the person involved in
an abnormal situation (stored in cloud IDy).
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FIGURE 5: Set of virtual human faces (AI-generated faces). These virtual human faces are obtained from Generated Photos. It provides Al-
generated images that are free from any copyrights, distribution rights, and infringement claims (source: Generated Photos (https://
generated.photos/)).

FIGURE 6: We have chosen single and multiple faces in the input images in different scenarios: single face (only male or only female),
multiple faces (only male), multiple faces (only female), and multiple faces (both male and female). Here, the target (occupant) faces are
indexed from F1 to F23, and considered source faces (both male and female) are indexed from S1 to S4.

TaBLE 1: Similarities between the source and target faces.

Similarity measure (using Euclidean distance)

Scenario Target (occupants’)
S1 S2 S3 S4
Single face Male F1 0.91489481 0.80287961 0.89433056 0.74069120
Female F2 0.78818484 0.81636149 0.68592050 0.76422129
Male F3 0.91414391 0.88400388 0.87615788 0.83486502
F4 0.79685733 0.71862379 0.93450242 0.75311709
Male F5 0.91205174 0.82094296 0.87266242 0.78036428
F6 0.81236709 0.80381698 0.93859941 0.67143296
Female F7 0.81097788 0.82709409 0.71891988 0.86480495
F8 0.85947196 0.78512872 0.77978978 0.90500906
Both F9 0.89428390 0.83158545 0.88401185 0.80949051
Both F10 0.84977716 0.90480697 0.71174311 0.94153902
Both F11 0.65831500 0.52838455 0.95610671 0.88142326
Both F12 0.38916649 0.45361382 0.89109294 0.88496564
Multiple face Both F13 0.79624321 0.80097813 0.88202307 0.71975099
Both F14 0.63660264 0.67343593 0.88004248 0.96042187
Both F15 0.84524707 0.89008615 0.77500429 0.86828727
Both F16 0.74547080 0.77676084 0.93155677 0.73583944
Both F17 0.79179192 0.80390987 0.73040828 0.88839209
Both F18 0.78950908 0.79986798 0.72049968 0.94658813
Both F19 0.90007099 0.85322199 0.99829307 0.85322199
Both F20 0.40197132 0.63806865 0.83032199 0.88047087
Both F21 0.46230089 0.53098278 0.85879277 0.86241199
Both F22 0.48055832 0.54356384 0.83216505 0.81304802
Both F23 0.55751665 0.45767183 0.90473598 0.78517239

"The occupants are numbered from left to right clockwise.
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FIGURE 7: Facial anonymization with reenactment. F1 to F23: original images. A1 to A23: corresponding anonymized images considering
appropriate source faces.

Irregular condition (vandalism inside vehicle cabin)

Normal condition
Scene#1 Scene#2 Scene#3 Scene#4

FIGURE 8: Snippets of our database showing vandalism inside the vehicle cabin. The original image under normal and irregular situations is
in row R1, and the corresponding anonymized images are shown in row R2. The occupants are numbered from left to right clockwise (O1,
02, 03, and O4). Scene #1: O3 shakes shoulder of O4; scene #2: O3 tries to slap O4; scene #3 O3 shakes head of O4; and scene #4: O3 chokes
neck of O4. Green box: concerned person and red box: in-cabin vandalism.

TaBLE 2: Identity feature matching between ID, s #3 at the data center and other stored IDs of the occupants in the cloud for different
scenarios.

Similarity measure (in Euclidean distance)

Scene

ID, #1 ID, #2 ID, #3 ID, #4
Scene #1 0.52893346 0.78363186 0.35424358 0.42124692
Scene #2 0.45234707 0.79687774 0.35880417 0.40963131
Scene #3 0.49863882 0.77615540 0.41716736 0.44500655
Scene #4 0.74701755 0.5816643 0.53716927 0.73605501

Detail description of scenes (scenes #1-#4) is mentioned in Section 3.2.

The zero value in the green box indicates that the oc-  Personal privacy preservation is achieved by using the
cupant (O3) is the person involved in an abnormal situation. concept of event and behavior monitoring in an anonymized
Overall, this approach focuses on in-cabin monitoring with ~ domain. The person’s reidentification is only for providing
personal privacy preservation to avoid abnormal situations.  evidence in cases where the involved person is denying it.
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03’

FIGUure 9: Other pictures of the occupants during investigation for matching. The numbering is the same as those in the in-cabin images

from left to right (01”7, 02”, 03", and 04").

TaBLE 3: Identity feature matching between the occupants’ IDs extracted during the investigation and their IDs extracted from in-cabin

images.

Occupant’s ID (in-cabin)

Occupant’s IDs were extracted during an investigation

IDy; 0.48432609 0.79061829 0.72076523 0.69776956
IDo; 0.75859866 0.66392154 0.79348079 0.72322158
IDos 0.52265982 0.77696899 0.36226176 0.47469558
IDoy4 0.64218059 0.81529880 0.52173335 0.42871777

TaBLE 4: Identity feature matching between IDy, stored in the cloud with other occupant’s IDs extracted from the in-cabin of the vehicle.

ID (person involved) D
o1

IDs of the occupants (In-cabin)

IDo; IDp3 IDpy

IDg 0.62511349

0.75967812 0 0.52087737

4. Conclusions

Identity feature augmentation in anonymization is a po-
tential solution for providing privacy in public domain
monitoring. Identification of the involved person is crucial,
especially in abnormal situations. The proposed intelligent
IMS augments the security features with privacy. This
method is suitable for creating a monitoring database
without any restrictions or legalities. We performed various
scenarios to assess the efficacy of the proposed system. It
provided an efficient algorithm to perform monitoring tasks
in the public domain without any threat to the personal
identity of a person. This helped in reidentification, even
with an anonymized face. In the future, this algorithm can be
implemented on various public domain monitoring plat-
forms, such as transportation systems, shopping centers,
theaters, hospitals, highways, fuel refilling stations, smart
city applications, and toll plazas.
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Real-time vehicle monitoring in highways, roads, and streets may provide useful data both for infrastructure planning and for
traffic management in general. Even though it is a classic research area in computer vision, advances in neural networks for object
detection and classification, especially in the last years, made this area even more appealing due to the effectiveness of these
methods. This study presents TrafficSensor, a system that employs deep learning techniques for automatic vehicle tracking and
classification on highways using a calibrated and fixed camera. A new traffic image dataset was created to train the models, which
includes real traffic images in poor lightning or weather conditions and low-resolution images. The proposed system consists
mainly of two modules, first one responsible of vehicle detection and classification and a second one for vehicle tracking. For the
first module, several neural models were tested and objectively compared, and finally, the YOLOv3 and YOLOv4-based network
trained on the new traffic dataset were selected. The second module combines a simple spatial association algorithm with a more
sophisticated KLT (Kanade-Lucas-Tomasi) tracker to follow the vehicles on the road. Several experiments have been conducted
on challenging traffic videos in order to validate the system with real data. Experimental results show that the proposed system is

able to successfully detect, track, and classify vehicles traveling on a highway on real time.

1. Introduction

Number of vehicles on earth is increasing rapidly. According
to data provided by International Organization of Motor
Vehicle Manufacturers (OICA, https://www.oica.net/), the
number of vehicles produced in the last years is way more
than 70 million vehicles per year. This number is increasing
very quickly, equally the number of travel kilometers in-
creases even more quickly. This explosion in the number of
moving vehicles raises several challenges of different types:
environmental, economical, and infrastructure manage-
ment. At this moment, it is clear that managing such large
number of vehicles is one of the biggest problems that
countries worldwide have to deal with. Classic vehicle
monitoring techniques cannot deal with such huge amount
of data nor make an intelligent use of it. It is clear that new
sophisticated paradigms are needed to deal with this chal-
lenging task.

The main goal of intelligent transportation systems
(ITSs) is to monitor the different vehicle transport networks

in a smart way. For this, they make use of the different
available technologies such as dedicated sensors and ad-
vanced video cameras. The objective of this monitoring is to
extract useful information that can be used to coordinate the
vehicle traffic networks. Eventually, by means of these
systems, we want to minimize congestion and to enhance
mobility.

Video cameras are the most used sensors on ITSs sys-
tems. Their simple installation and maintenance combined
with their rich nature of the information make them one of
the best solutions when it comes to surveillance and
monitoring. Depending on the conditions of the ITSs sys-
tem, it will be necessary to use moving cameras or fixed
cameras. In addition to the cameras, ITSs systems tradi-
tionally made use of other sensors such as radars for speed
enforcement or inductive loops and laser and infrared
sensors for vehicle classification [1-6]. Systems based on
these sensors try to classify the vehicles by extracting certain
information such as the vehicle’s length and number or
distance between axles. Although they may provide a better
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accuracy in general, they require an intrusive installation
and not all of them provide the possibility of multilane
monitoring. Another drawback is their initial high instal-
lation cost, which is an important factor to take into account
when comparing ITS systems. In fact, when evaluating this
kind of systems, not only the initial price but also the whole
system life cycle must be taken into consideration. Finally,
the information provided by these traditional systems is
basic and cannot be used to extract high level traffic data
such as vehicle orientation, position, or other parameters
that can be used for traffic law enforcement.

Usage of video cameras in traffic surveillance [7-9]
typically was limited to passive monitoring tasks or very
basic automated processing. The advances in image pro-
cessing algorithms in the last decade specially in the deep
neural networks area have opened the door to more so-
phisticated systems based on computer vision. Nowadays,
with these advances, we can create systems not only able to
detect vehicles in normal situations but with capacity to
recognize and classify vehicles in very challenging situations.
This may be the base to perform high level tasks such as
automated traffic management, automatic incident detec-
tion, law enforcement, fog, and other weather conditions
and many other incidents.

The study presents a vision-based traffic monitoring
system, named TrafficSensor, that includes a robust vehicle
detection and classification algorithm and a new technique
for dealing with occlusions [10-12]. It is the evolution of a
previous system [13] towards a higher reliability and good
performance even in challenging lightning or weather
conditions, and poor camera resolution while keeping real-
time operation. TrafficSensor is based on the use of a fixed
camera to detect and monitor vehicles. Section 2 (Related
Works) reviews relevant studies on vehicle classification
[14-18]. The system core functionality is described in the
Section 3 (TrafficSensor: A Deep Learning-Based Traffic
Monitoring Tool), where the details for the vehicle tracking
and deep learning-based detection algorithms are presented.
Section 4 (Experimental Validation) presents several tests
performed to validate the system functionality and the
quantitative obtained results. Finally, Section 5 (Conclusion)
summarizes the main lessons extracted from this work.

2. Related Works

The literature provides many publications dealing with
vehicle monitoring [19-21], even recognizing the vehicle
model [22]. To perform such monitoring, it is necessary to
detect the vehicles and then to follow them up. A technique
widely used for vehicle detection is background subtraction
[23-27]. The background subtraction technique is a tech-
nique widely used to detect objects such as the difference
between a current pixel and a reference pixel, called back-
ground. Huang [28] used the Gaussian mixture to detect the
background and subsequently subtract it. This guarantees
that the background we extract corresponds to the lighting
of that moment [29]. The mixture of Gaussian (MOG)
proposes to model the intensity of the pixels with a mixture
of k Gaussian distributions. MOG is a technique that first
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applied to the problem of background subtraction. Traf-
ficMonitor [13] makes use of an improved version of the
proposed MOG by Zivkovic [30]. The advantage of this
method is that for each pixel, the number of Gaussian to be
used can be adapted. Another technique very similar to
background subtraction is the absolute difference (sum of
absolute differences (SAD)) between two sequences. Sam-
hitha et al. [31] presented a technique based on the absolute
difference (SAD) between two consecutive frames. Guer-
rero-Gomez-Olmedo et al. [32] used the histogram of ori-
ented gradients (HOG) to detect vehicles. HOG is a type of
feature descriptor. It converts the local information of the
gradients for each pixel into a representation of the image
that captures the global shape of the object into a feature
vector.

For vehicle tracking [33-38], many solutions rely on the
features. To follow-up, Wang et al. [39] employed a tech-
nique based on features called scale-invariant feature
transform (SIFT) [34] and optical flow. SIFT is an algorithm
used to extract characteristics from images. Optical flow is
the pattern of movement of the image objects between two
consecutive frames caused by the movement of the object.
Mu et al. [35] also used SIFT to track vehicles. Huang and
Barth [40] proposed an algorithm to carry out vehicle
tracking and resolution of occlusions. In this algorithm, they
use a color model based on mean-shift to identify which
vehicle each 3 x 3 pixel patch belongs to when there is an
occlusion. In other cases, 2D or 3D [41] models are used to
do the tracking. Leotta and Mundy [42] employed this
technique to detect vehicles using a deformable template that
adjusts to identify different forms of vehicles. Huang [28]
and Baker and Sullivan [43] used Kalman filters and
Guerrero-Gémez-Olmedo et al. [32] employed extended
Kalman filters (EKF) [44]. The Kalman filter is an algorithm
to update, observation by observation, the linear projection
of a system of variables on the set of available information, as
new information becomes available. The extended Kalman
filter consists of a variation of the Kalman filter to trackle the
state estimation problem when the model is possibly
nonlinear.

Regarding image classifiers, Vedaldi et al. [45] proposed
a novel three-stage classifier, which combines linear, qua-
silinear, and nonlinear kernel SVMs. They showed that
increasing the nonlinearity of the kernels increases their
discriminative power, at the cost of an increased compu-
tational complexity. Their aim was to learn an SVM classifier
[46], where rather than using a prespecified kernel, the
kernel is learnt to be a linear combination of given base
kernels.

One of the most heavily studied paradigms for object
detection [47, 48] and classification is deep learning. The
convolutional neural network (CNN) is a feed-forward type
of the machine learning algorithm that have shown im-
pressive results and robustness in visual object detection.
They have been widely explored in the context of vehicle
monitoring too. In Migel et al’s work [49], the vehicle
identification and classification are performed for each
extracted portion of the input image, simultaneously using
the designed CNN. That is, a softmax layer is used as the
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classifier to perform vehicle classification. Caffe [50]
framework was used to benchmark the performance of the
vehicle detection system. Sensa et al. [51] presented an in-
telligent traffic congestion detection method using the CNN.
The dataset used in this experiment is the road traffic
condition images from CCTV camera in Jakarta during 29
April-5 May 2017 that can be obtained from lewatmana.com
http://lewatmana.com.

Yang et al. [52] proposed a detection method using a
single image to generate the 3D space coordinate infor-
mation of the object using monocular vision for autono-
mous driving. Their method is built by modifying the fast
R-CNN using multitask learning, and thus is named mul-
titask faster R-CNN (MT faster RCNN). For the experi-
ments, the KITTI dataset was used.

Luo et al. [53] presented a model based on the faster
RCNN with NAS optimization and feature enrichment to
perform the effective detection of multiscale vehicle targets
in traffic scenes. Luo et al. proposed a Retinex-based image
adaptive correction algorithm (RIAC) (to reduce the in-
fluence of shadows and illumination), conducted neural
architecture search (NAS) on the backbone network used
for feature extraction of the faster RCNN (to generate the
optimal cross-layer connection to extract multilayer fea-
tures more effectively), and used the object feature en-
richment that combines the multilayer feature information
and the context information of the last layer after cross-
layer connection (to enrich the information of vehicle
targets and improve the robustness of the model for
challenging targets such as small scale and severe occlu-
sion). Their model has been trained and tested on the UN-
DETRAC dataset.

Redmon et al. [54] presented YOLO, a new approach to
object detection. YOLO reframes object detection as a single
regression problem, straight from image pixels to bounding
box coordinates and class probabilities. Use You Only Look
Once (YOLO) at an image to predict what objects are present
and where they are. Jean-Francois Rajotte et al. [55] did
automatic annotations that were performed with the YOLO
detector. Kwan et al. [56] used YOLOVI to detect vehicle in
real time.

Mahto et al. [57] used the object detection algorithm
YOLOV4 and optimized it for vehicle detection. To improve
YOLOV4, they proposed optimize the anchor box using
k-means clustering (ABK), the nonmaximum suppression
with distance-IoU (DIoU-NMS), the spatial attention
module (Sam), and the self-adversarial training (SAT). The
UA-DETRAC Benchmark dataset was used to train and test
the method.

Zhang et al. [58] proposed an improved RetinaNet. Their
algorithm uses octave convolution instead of the traditional
convolution layer and a weighted feature pyramid network
(WEFPN) structure to limit the propagation of gradients
between different levels. To evaluate the result, the DETRAC
dataset was used.

Szegedy et al. [59] presented a network that is based on
the convolutional DNN defined by [60]. It consists of total 7
layers, the first 5 of which being convolutional and the last 2
fully connected. Each layer uses a rectified linear unit as a

nonlinear transformation. Three of the convolutional layers
have in addition max pooling.

3. TrafficSensor: A Deep Learning-Based Traffic
Monitoring Tool

TrafficSensor tool is able to monitor traffic in real time and
classify the vehicles into 7 categories: motorcycles, cars, vans,
buses, trucks, small trucks, and tank trucks. It consists of
three main blocks: vehicles detection, vehicles classification,
and vehicles tracking, as shown in Figure 1. They are
implemented in two separate modules, as detections and
their classification are carried out jointly because deep
learning is used. The tracking focuses on spatial proximity,
and if it fails, KLT is used. All detected blobs will be tracked
over time.

There is a single image area where detection, classifi-
cation, and tracking are carried out. This area, that is called
evaluation area, is marked in the image by the user to
identify where on the road we want to focus the detections,
as shown in Figure 2. TrafficSensor is designed to monitor
outgoing traffic flow, although it can be extrapolated to
incoming traffic flow.

3.1. Deep Learning-Based Detection and Classification.
The system takes input images acquired from the video being
monitored. These images pass as input to the neural net-
work, where various vehicles are detected and classified. All
information is stored at each moment, so that it can be
tracked based on the information recorded from the pre-
vious moment. TrafficSensor supports trained neural net-
works with different neural frameworks (TensorFlow,
Darknet, and Keras) in order to detect and classify the
different vehicles that appear in the image.

In the detection and classification block, the system
implements these criteria:

(i) Inside the evaluation area, there are two zones
(Figure 3). The zone 1 matches with the half of the
evaluation area where the vehicles enter. In this
zone, it is easier to detect and classify the vehicles
because they are bigger than that in other areas of
the image. The zone 2 refers to the half through
which vehicles leave the evaluation zone. This zone
is more complex, since the vehicles have smaller size
than in the zone 1.

(ii) Vehicles always enter in the evaluation area through
zone 1. They can never appear suddenly. For this
reason, no new vehicle can appear in the middle of
the road. A new vehicle can never be detected in
zone 2.

(iii) If a vehicle is not detected in zone 1 during five-
frame sequence, it will be a false positive. It will be
discarded.

(iv) Any vehicle that is in zone 2 will be considered a
correct vehicle. If the vehicle is not detected with
deep learning, KLT will be used to locate it.
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Three different frameworks (TensorFlow, Keras, and
Darknet) and four neural network models have been tested
in order to evaluate which one is better for the final Traf-
ficSensor application. Specifically, the SSD MobileNetV2
network with TensorFlow, the SSD VGG-16 network with
Keras, and YOLOv3 and YOLOv4 with Darknet.
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FiGUre 3: Evaluation zones.

3.1.1. SSD MobileNetV2 Network. The SSD MobileNetV2
network (Figure 4) used was trained with the COCO dataset.
To use this network, we utilized the configuration file ssd
mobilenet v2 coco.config.

This network is formed by a SSD and a MobileNet V2.
MobileNet V2 gets the maps of features to perform the
classification and detection in the subsequent layers. The
SSD approach is based on a convolutional feed-forward
network that produces a set of bounding boxes fixed in size
and punctuates the presence of object class instances in those
bounding boxes. After this, it carries out nonmaximum
suppression to produce the final detections.

3.1.2. SSD VGG-16 Network. Another SSD network has
been used with VGG-16 as its base network, pretrained with
ImageNet. Figure 5 shows this network model. VGG-16
consists of 16 layers, of which 13 are convolutional layers, 2
fully connected layers, and a softmax layer that is used to
classify. Figure 6 shows how the architecture of the VGG-16
network is.

3.1.3. YOLOv3. You Only Look Once (YOLO) imposes
strong spatial constraints on bounding box predictions,
since each cell in the grid only predicts N bounding boxes (N
being a fixed parameter) and can only have one class. This
spatial restriction limits the number of nearby objects that
our model can predict.

The YOLOV3 [61] network (Figure 7) is made up of a
total of 107 layers, which can be grouped into two groups,
one in charge of extracting features and another in charge of
detecting objects:

(i) Feature extraction (from layers 1 to 75): it is the
Darknet-53 network trained with ImageNet, which
is composed of 53 convolutional layers (Figure 8).
This network has 416 x 416 x 3 images as input and
features as output 3D 13x13x1024 and incorpo-
rates 23 residual layers. When a neural network
increases in depth its precision when it comes to
propagating the characteristics, it tends to degrade,
leading to a greater error in training. The residual
layers are used to solve this problem.
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Type Filters  Size Output
Convolutional 32 3x3 416 x 416
Convolutional 64 3x3/2 208 x 208
Convolutional 32 1x1
1 x |Convolutional 64 3x3
Residual 208 x 208
Convolutional 128 3 x3/2 104 x 104
Convolutional 64 1x1
2 x | Convolutional 128 3x3
Residual 104 x 104
Convolutional 256 3x3/2 52 x 52
Convolutional 128 1x1
8 x |Convolutional 256 3x3 —{ Convolutional —» For small objects detection
Residual 52 x 52 “
Convolutional 512 3x3/2 26 x 26 Concatenation
Convolutional 256 Ix1
8 x | Convolutional 512 3x3 —» Convolutional ¥ For medium objects detection
Residual 26 x 26 “
Convolutional ~ 1024 3 x3/2 13x 13 Concatenation
Convolutional 512 1x1
4 x |Convolutional 1024 3x3 —»{ Convolutional —» For big objects detection
Residual 13 x 13
Avgpool Global
Connected 1000
Softmax

Ficure 8: Darknet-53 model.

(ii) Objects detection (from layers 76 to 107): it takes the different scales, making it a very powerful network
3D features (13 x13x1024) as input and with that before the change of scale. To do this, it extracts
performs object detection. The uniqueness of this characteristics on three different scales (13 x 13 x 39,

network lies in its ability to detect objects on three 26 x26x 39, and 52 x 52 x 39). These characteristics
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pass to the final YOLO layer, which classifies the
object label with class logistic regressions and locates
objects with bounding boxes regressors.

3.1.4. YOLOv4. YOLOV4 [62] is the fourth iteration of the
famous YOLO architecture that continues improving the
previous versions with the latest advances introduced in the
literature. It consists of 3 main components: backbone, neck,
and head (Figure 9). For the backbone, it uses CSPDarknet53
[63], for the neck, SSP [64] and PAN [65], and YOLOv3 [61]
for the head.

This network allows real-time object detection on a
conventional GPU, thanks to its improvements on speed
comparing it to other approaches and even its previous
versions.

3.2. Vehicle Tracking. The execution flow of the tracking
module is shown in Figure 10, which shows the steps when a
new blob is detected inside the image, and in Figure 11,
which illustrates the procedure that is carried out on already
registered vehicles. The tracking focuses on associating the
current detections with the vehicles stored at the previous
instant. Several points are considered:

(i) If a vehicle arrives at the end of the evaluation area,
it will be removed from tracking

(ii) The vehicles stored of the instant (t—1) are ex-
amined in order to pair them with the vehicles
detected at the instant (f). This pairing will be
carried out between the vehicles in (¢) and (t-1),
which have the least Euclidean distance between
their centers.

(iii) If the vehicle t associated with the vehicle (t—1) is
not within the circular or elliptical area around the
center of the vehicle (¢ — 1), it will not be matched to
it

(iv) If through space proximity we are not able to pair a
(t—1) vehicle, we will use KLT

Spatial proximity and KLT algorithm are used to perform
the vehicle tracking. Spatial proximity works fine for sep-
arate vehicles, but in real videos, it is very likely that we have
occlusions and vehicles that are quite complex to detect,
especially when they are small in the image because they are
far from the camera. The feature-based tracking algorithm
KLT is used then, and it is a good complement to the deep
learning robustness.

3.2.1. Spatial Proximity Tracking. Typically, the difference of
pixels in the image between the position of a vehicle in (t — 1)
and in (¢) is very small. Therefore, a vehicle in (#) will be in an
area very close to that same vehicle in (#—1). When we
search for a vehicle in (¢), we should find it in a small circular
radius around the position of that same vehicle in (t—1).
Spatial proximity tracking in TrafficSensor is based on [13].
It estimates the area where you should locate a vehicle based

on its position in (t— 1). As the vehicles move forward, this
area will be updated.

At first, the area is taken as a circle because the system
does not have enough data about its orientation. But as the
vehicle advances, the system has enough information to
know its orientation, and so, it takes the area as an ellipse
whose center corresponds to the center of the vehicle in
(t—1). It is considered that we have enough information to
estimate its orientation when we have the position of the
vehicle in 6 frames. Linear regression is used to calculate the
orientation of the vehicle based on the position the vehicle
will take as it progresses. Once we have information about
the orientation, we will define the search area as an ellipse
whose center is the same as the vehicle in £ — 1 and direction
calculated with the following equation.

p(ri):2<\’1+r22—1>. (1)

The pairings between the vehicles detected at time (¢) and
the vehicles stored from time (t— 1) are limited to vehicles
that fall within the area of the circle or the ellipse that is
obtained based on the position of the vehicle at time (t—1).
The ellipses are defined as C, .. ., where w is the orientation
and (x,, y.) is the center of the vehicle. These parameters are
shown in Figure 12.

The 2D vehicle, whose center is B(x, y), will be inside the
ellipse C, y,» if it accomplishes the following equations:

C, = arctan(tlx) (2)
2y
(cos (Cw)(Bx - Cx_) +sin (Cw)(By -C, ))2
: s +
b
(3)

cos (Cw)(By - Cy[) —sin (Cw)(B,C - Cx[) ’ -
2 <l
where a, and a, are the components of the orientation
vector. Figure 13 shows the tracking between two consec-
utive vehicles.

Figure 14 shows an example of TrafficSensor where the
tracking of two vehicles by space proximity is shown. The
vehicle identified as 2 in the image of the instant (f—1) is
associated with the closest vehicle to its position in the
current image ().

A detection must be within a certain area around the
blob detected in (- 1) to be identified as the same vehicle.
It could happen in the case that two vehicles will fall into
that area. Therefore, it is necessary to take into account the
Euclidean distance between the center of the blob of the
instant (t— 1) and the center of the blob in (¢). The blob of
the instant (¢) that is at a smaller distance from the blob of
the instant (¢t — 1) and of course within the area around blob
(t—1) will be considered the same vehicle than that of
(t—1). That s to say, if this is true, the blobs of (£ — 1) and (¢)
correspond to the same vehicle but in consecutive
moments.
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Figure 10: Execution flowchart of detected blobs.

3.2.2. KLT Tracking. The follow-up is mainly based on
spatial proximity, but KLT will be used in problematic cases,
thus making our system more robust. KLT will be calculated
in all sequences to update the feature points. If a vehicle is
not detected either because there is an occlusion or it is very
far away, KLT will be used, as it has proven to work well even
in occlusions during a small number of consecutive frames.

To use KLT, we need to know the center of mass of the
vehicles and their visual features. Depending on the feature

points of the vehicle in (¢ - 1), KLT calculates the matching
for each feature point and as a result generates a new set of
feature points corresponding to the vehicle in question. In
order to achieve a correct match, the system is based on votes
of the feature points that an object has associated. Figure 15
shows an example.

KLT is a feature tracking algorithm [? ? ]. KLT is a
differential and local method in which the neighborhood of
each pixel is analyzed. The algorithm assumes that the
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FiGURrE 12: Vehicle-associated 2D ellipse.
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F1GURE 15: Tracking with KLT in TrafficSensor.

optical flow is constant in a neighborhood. The equation of
the optical flow is solved for all the pixels in this neigh-
borhood by the method of least squares. For the calculation
of the velocity vectors, the following formula is used:

u ZI; leini o _ZIinti
[ V:| ) ZIinyi ZIiz _ZIJ’J” .
i i i

The vector (u, v) is the displacement vector of the optical
flow. I, is the mean of gradient in x between two consecutive
images, that is, if I (¢) is the image of the instant current and
I(t+ 1) is the image at the next instant, I of these frames is

I =Ix(t)+£x(t+ 1), (5)

(4)

where I, (t) is the gradient in the x axis of the image I (t) and
I, (¢ +1) is the gradient in x of the image I ( + 1). I, is the
mean of the gradients in y of the image I(¢) and I(t + 1):

y:Iy(t)+Iy(t+1). 6)
2

It is the difference between I (t) smoothed and I (¢ + 1)
smoothed:

I=1'(t+1) -1 (). (7)

KLT is applied in the form of kernels of size wxw
throughout from image. The size of the kernels must be
defined according to the amount of movement that the
image has. A small kernel would be ideal for evaluating small
displacements of a point. Using a large kernel increases the
risk of getting an error, but there are cases where the dis-
placement of a point is very big and this is necessary.

TrafficSensor uses the pyramidal implementation [66],
which Jean-Yves Bouguet introduced. On it, the KLT al-
gorithm is applied recursively over an image pyramid, as
shown in Figure 16.

4. Experimental Validation

The proposed system has been validated with a dataset of real
traffic images, which has been divided into training and test
subsets. In addition, the 4 studied neural networks for the
detection and classification module of TrafficSensor have
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FIGURE 16: Pyramidal KLT.

been quantitatively compared using an open source tool,
named DetectionMetrics, so the best one could be selected
for the final system. This measuring tool is publicly available
and was created as a part of this work, but it is generic and
usable in any other visual detection application. In addition,
the final system was tested and validated both with good
lightning images and, in particular, with poor images or
images in bad weather conditions, which are typically
present in real deployments.

4.1. Dataset. To train and evaluate the networks, a new
dataset was created. This dataset includes images in good
weather conditions, images in bad weather conditions (with
fog and rain), and poor quality images. This dataset consists
of the following:

(i) The database built by Redouane Kachach in his
doctoral thesis [13]. That database consists of 3460
good quality images.

(ii) The GRAM Road-Traffic Monitoring (GRAM-
RTM) database created by Guerrero-Gomez-
Olmedo et al. [32]. This database is made up of
images extracted from three videos. The first video,
called M-30 (7520 frames), was recorded on a sunny
day. The second, called M-30-HD (9390 frames),
was recorded in a similar location but during a
cloudy day. The third, called Urbanl (23435
frames), was recorded at a busy intersection. From
this large database, 3646 images of the M-30-HD
video and 1348 of the M-30 video were used.

(iii) Images were collected from open online cameras.
615 were about rain situations and 705 of poor
quality images.

In total, the dataset for TrafficSensor consists of 9774
images. All of them have been manually tagged with the
labellmg tool https://github.com/tzutalin/labellmg, using 7
possible classes: car, motorcycle, van, bus, truck, small truck,
and tank truck. In these 9774 images, we have a total of
48914 samples distributed, as given in Table 1.

Table 2 provides the number of images that exist for each
type of image (good conditions, bad weather, and poor quality),
and Figure 17 shows some illustrative images of our database.
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Gaussian pyramid of image I
TaBLE 1: Database samples.
Class Sample
Car 38976
Motorcycle 1886
Van 5631
Bus 401
Truck 963
Small truck 938
Tank truck 119
TaBLE 2: Database images.
N of images
Good conditions 8406
Bad weather 663
Poor quality 705

Of these 9774 images, one part was used in training and
another in the test. Table 3 provides the distribution of
images according to training and test.

For the training of the involved neural networks, the
training database was divided itself into train and validation
subsets. Out of the 9246 images, 7401 were used as train and
1845 as validation. Table 4 provides the number of images
that has been used in training depending on its type (good
quality, poor quality, and bad weather).

4.2.  DetectionMetrics  Tool. DetectionMetrics  (https://
jderobot.github.io/DetectionMetrics/) is an opensource re-
search software application that has been created and used to
quantitatively evaluate the performance of pretrained neural
networks and our visual traffic surveillance application.

It provides a toolbox of utilities oriented to simplify
the development and testing of solutions based on visual
object detection. The application comes with a GUI
(based on Qt) and can also be used through command
line. It is designed to generate experiment results from
running a set of neural networks models over many
datasets. Currently, it comes with the following utilities:
viewer, detector, evaluator, deployer, labelling, and
converter.


https://github.com/tzutalin/labelImg
https://jderobot.github.io/DetectionMetrics/
https://jderobot.github.io/DetectionMetrics/
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FiGgure 17: TrafficSensor dataset samples.

TaBLE 3: Dataset distribution.

Type Training images Test images
Good conditions 6717 389
Bad weather 1892 71
Poor quality 637 68
Total 9246 528

TaBLE 4: Training dataset.

Type Training images Validation images Total
Good conditions 5323 1394 6717
Bad weather 1568 324 1892
Poor quality 510 127 637

Total 7401 1845 9246
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It comprises a generic infrastructure to evaluate object
detection algorithms against a dataset and calculate common
statistics:

(i) IntersectionOverUnion (IoU) measures the accu-
racy of a detection in a particular dataset and follows
the following formula:

_ AreaofOverlap

IoU (8)

AreaofUnion

Here, AreaofOverlap is the area that belongs to the
intersection between prediction and ground truth,
while AreaofUnion is the sum area (without repe-
tition of the overlap) of the prediction and ground
truth as shown in Figure 18.

(ii) Precision is the total correct detections among the
number of detections obtained. The precision of
DetectionMetrics is the average (mean average
precision (mAP)) for those predictions that have an
IoU greater than a threshold (0.5).

TP

- 9
TP + FP ®)

Precision =

(iii) Recall is the number of correct detections among
the number of actual detections, that is, ground
truth detections. Like precision, averaging (mean
average recall (mAR)) of detections having a higher
IoU is obtained to 0.5.

This tool is compatible with Linux, Windows, and
MacOS because it is provided as a Docker image in addition
to the common source code installation. It allows to evaluate
models trained in TensorFlow, PyTorch, Keras, Caffe, and
Darknet, and it supports the most common dataset formats
in object detection (YOLO, COCO, ImageNet, and Pascal
VOC) and can use different image input sources (videos and
webcam).

The main workflow used for the experiments is called
headless evaluation. This workflow involves mainly two of
the tools included in DetectionMetrics: detector and eval-
uator. In this mode, a researcher determines a set of ex-
periments that will run independently and unattended,
retrieving a final report with the previous described objective
metrics. DetectionMetrics receives a batch of datasets and
deep learning pretrained models, predicts the objects on the
images using each model over each dataset, and outputs the
report with metrics of the performance for each scenario.

4.2.1. Detector. Detector generates a new annotated dataset
with the predicted labels given a pretrained neural network
model and a dataset. This new generated dataset contains the
images from the datasets along with the detected objects,
their position, and the level of confidence for the predictions.
It supports the most common deep learning frameworks:
TensorFlow, Keras, Darknet, Caffe, and PyTorch.

During the detection process, DetectionMetrics shows
the predictions using viewer, showing the ground truth and
predictions on the image while running. This is very
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Area of Overlap
IoU =

Area of Union

FiGure 18: IoU formula.

convenient as qualitative feedback about the network
performance.

4.2.2. Evaluator. Evaluator receives two datasets with the
same format as input, one considered to be the ground truth
and the other the generated detections dataset, and retrieves
an evaluation report with metrics for every experiment,
showing how each network was performed over each
dataset. It supports both mAP and mAR metrics.

4.3. Comparison of Neural Networks. The four trained net-
works with 3 different neural frameworks were tested (SSD
MobilenetV2, SSD VGG-16, and YOLOv3 and YOLOv4)
with the images of good conditions. YOLOv3 and YOLOv4
have also been tested with the weights prior to training with
our database. This experiment was performed on a GeForce
RTX 3070 graphics card, whose main features are given in
Table 5.

The quantitative results obtained in the experiment
are given in Table 6. Those of the YOLO networks are
better than those of SSD MobilenetV2 and SSD VGG-16.
Looking at the detection times, it can be seen that all the
trained networks show similar speeds. With the pre-
trained weights, the detection times are bigger because
these weights have obtained training with more classes.
The achieved quality results (mAP and mAR) with the
pretrained weights are worse than with the trained
weights as expected. This makes clear the need to retrain
the network with an adequate database that adjusts the
network model to the data we want to detect.

As given, YOLOv4 further improves both the detection
quality and speed over YOLOv3. YOLOv4 uses data aug-
mentation. It interprets the same information from different
points of view. YOLOv4 is based on pixel-by-pixel modi-
fications in the training images (color changes, texture, black
or white patches, cuts, and other modifications) that help the
algorithm to increase its precision and flexibility, but
without affecting its performance in terms of speed. In the
performance achieved in the tests, the speed of YOLOv4
versus YOLOV3 has increased by 13%. The result is prac-
tically equal to that indicated by the authors of YOLOv4
[62], who reported a speed increase of 12%.
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TaBLE 5: GeForce RTX 3070 specs.

GPU engine specs

NVIDIA CUDA cores

Base clock (GHz)

Boost clock (GHz)

Memory specs
Memory speed
Standard memory config
Memory interface width
Memory bandwidth (GB/sec)

5888
1.5
1.73

14 Gbps
8 GB GDDRS56
256 bit
448

TABLE 6: Results of trained networks.

Neural networks Framework mAP mAR Mean inference time (ms)
ssd300adam.h5 Keras 0.7478 0.7831 13
ssd_mobilenet.pb TensorFlow 0.5484 0.61361 10
yolov3voc.weights Darknet 0.8926 0.9009 15
yolov3voc_pre_trained.weights Darknet 0.4577 0.5843 34
yolov4.weights Darknet 0.9056 0.9670 13
yolov4_pre_trained.weights Darknet 0.4799 0.5879 24
4.4. Experimental Validation in Good Lightning Conditions. TaBLE 7: Results of good conditions video.
For the final TrafficSensor application, YOLOv3 and YOLOv4
were the selected networks, as they obtained the best results. To System mAP mAR
validate these final networks, the quality of the whole system has ~ TrafficSensor YOLOv3 0.8926 0.9009
been measured with DetectionMetrics and the created testing TrafficSensor YOLOv4 0.9056 0.9670
dataset. For the sake of comparison, the quality of the initial TrafficMonitor 0.4374 0.5940
Deep SORT 0.8164 0.8689

base-line system, named TrafficMonitor [13] and without deep
learning layers, has also been evaluated with the same dataset
and measuring tool. In addition, TrafficSensor has also been
compared to Deep SORT (Simple, Online and Realtime
Tracking with a Deep Association Metric) [67], which is an
algorithm commonly used in object tracking. It is an extension
to SORT (Simple, Online and Realtime Tracker) [68] that in-
corporates appearance information through a pretrained as-
sociation metric. All systems were evaluated with the same good
condition videos and images.

The results obtained are given in Table 7. YOLOv4 and
YOLOV3 have similar results although YOLOv4 is slightly
better. This result was expected as the authors of YOLOv4
[62] indicated that the quality of the detections was superior
to that of YOLOV3.

The results of TrafficSensor outperform those of Traffic-
Monitor. In the successive tests with TrafficMonitor, we have
appreciated that it does not work well with distant vehicles (in
many cases cars are classified how motorcycles), and it has
difficulty to differentiate between car and van. The small vans
are confused with cars. This is because the classification is done
using 3D models; for this reason, a small 3D van model can be
closer to the 3D model of a car than to that of a large van.

In Deep SORT, the YOLOv3 Darknet network trained
with our dataset has been used, and the results obtained
by TrafficSensor and Deep SORT are very similar. Traf-
ficSensor performs slightly better because it predicts the
position of vehicles when they are not detected. Deep
SORT uses the Kalman filter to predict and track, but
predictions are used to improve detections, not to predict
if there is no detection.

4.5. Experimental Validation in Poor Conditions. The final
TrafficSensor system was also evaluated with bad weather
conditions and poor quality videos, as shown in Figure 19.
Tables 8 and 9 provide the obtained experimental results.

Despite being in rainy conditions, the system is able to
work successfully and with very good results. In this test, it
can be seen that TrafficMonitor is not so robust because it is
not able to function correctly with rain. In the case of Deep
SORT, again the results are similar to TrafficSensor.

With all the experimental results gathered, it can be said
that TrafficSensor is robust against poor quality images and
bad weather conditions. In addition, it is able to continue
tracking vehicles when they are far away from the camera.
Obviously, it works better with nearby vehicles, as there they
are easier to detect, but it is still able to detect and track the
distant ones with great quality.

Comparing the experimental results in the videos, the
performance with poor quality videos and unfavorable
weather conditions is slightly better than for good quality
videos. This can be explained since the minimum re-
quirements we set for good quality images are higher than
those for bad weather conditions and poor-quality videos.
We do not expect the system to be able to detect distant
vehicles in bad weather conditions and poor quality videos.
It is not even easy for humans to classify such vehicles. The
images in the dataset have been labelled following this
approach.

When evaluating the results obtained by Deep SORT,
they are similar to those of TrafficSensor. TrafficSensor has
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FIGUre 19: TrafficSensor with poor resolution (a) and bad weather (b) videos.

TaBLE 8: Results of bad weather video.

System mAP mAR
TrafficSensor YOLOV3 0.9899 0.9926
TrafficSensor YOLOv4 0.9904 0.9949
TrafficMonitor 0.2407 0.3162
Deep SORT 0.9801 0.9824
TaBLE 9: Results of poor quality video.
System mAP mAR
TrafficSensor YOLOV3 0.9439 0.9444
TrafficSensor YOLOv4 0.9902 0.9911
TrafficMonitor 0.4479 0.6303
Deep SORT 0.8852 0.8910
TaBLE 10: Processing time.
Function With YOLOv3 With YOLOv4
(ms/call) (ms/call)

Image processing 10 10

Detection algorithm 15 13

Tracking algorithm 18 18

greater precision since in cases where the neural network is
not capable of detecting, it predicts such detection using the
tracking algorithm.

4.6. Processing times. In the TrafficSensor system, three
main processes can be identified: image processing
(obtaining images, displaying images, and obtaining data
from the delimited road), detection, and tracking. Their
computing time performance, both with YOLOv3 and
YOLOvV4, has been monitored and evaluated. Table 10
provides the obtained results.

5. Conclusion

TrafficSensor system is a solution for vehicle surveillance
using deep learning. It is based on a previous nondeep
learning solution, named TrafficMonitor [13]. The old

solution was based on volumetric 3D patterns, SVM for
vehicle classification and background subtraction. This
system was able to distinguish between 5 possible classes
(motorcycles, cars, vans, buses, and trucks). All these
steps were replaced by a neural network for detection and
classification. Four state-of-the-art network models have
been experimentally tested, even coming from different
neural frameworks (Keras, TensorFlow, and Darknet)
and with different types of images. The proposed deep
learning system classifies the vehicles based on 7 classes:
motorcycles, cars, vans, buses, small trucks, trucks, and
tank trucks.

A new dataset was created to train and evaluate the new
system, including a variety of images such as poor quality
images or adverse weather conditions besides the typical
good lightning images. TrafficSensor has proven to be robust
to bad weather conditions, blurred or low resolution traffic
images. This improvement was achieved, thanks to training
with the new extensive dataset and the combination of
spatial correspondence tracking and KLT tracking on the
deep learning-based detections.

Both the YOLOv3 and YOLOv4 networks have been
selected for TrafficSensor for their great results. Although,
YOLOV4 obtains better results in terms of quality and speed
than YOLOV3.

In addition, a new opensource tool has been created to
quantitatively and automatically measure the quality of
several neural networks for the visual detection task using
large datasets. It supports the most widely used neural
frameworks (PyTorch, TensorFlow, Keras, and Darknet) and
the most common dataset formats in object detection
(YOLO, COCO, ImageNet, and Pascal VOC). It measures
some useful detection statistics such as IntersectionOver-
Union, precision, recall, and inference times. It is publicly
available.

As future lines, we intend to test more new state-of-
the-art network models for visual object detection, to
extend the custom dataset with more images of bad
quality or bad lightning conditions, of incoming traffic
flow, and to explore the use of attention-based models. In
addition, we plan to use DetectionMetrics tool in the
medical images domain.
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Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request. Part
of them, the GRAM Road-Traffic Monitoring database,
comes from a third party source which has been properly
cited [32]. In addition, the source code of the Detection-
Metrics tool, which has been used for experiments, is
publicly  available at  https://github.com/JdeRobot/
DetectionMetrics.
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The rise of video-prediction algorithms has largely promoted the development of anomaly detection in video surveillance for
smart cities and public security. However, most current methods relied on single-scale information to extract appearance (spatial)
features and lacked motion (temporal) continuity between video frames. This can cause a loss of partial spatiotemporal in-
formation that has great potential to predict future frames, affecting the accuracy of abnormality detection. Thus, we propose a
novel prediction network to improve the performance of anomaly detection. Due to the objects of various scales in each video, we
use different receptive fields to extract detailed appearance features by the hybrid dilated convolution (HDC) module. Meanwhile,
the deeper bidirectional convolutional long short-term memory (DB-ConvLSTM) module can remember the motion information
between consecutive frames. Furthermore, we use RGB difference loss to replace optical flow loss as temporal constraint, which
greatly reduces the time for optical flow extraction. Compared with the state-of-the-art methods in the anomaly-detection task,
experiments prove that our method can more accurately detect abnormalities in various video surveillance scenes.

1. Introduction

Due to the corona virus disease of 2019 (COVID-19) out-
break, many countries have been accelerating the con-
struction of smart cities and public-safety systems [1] to
efficiently manage surrounding circumstances. As part of
these systems, traditional video surveillance systems rely on
manual monitoring to find abnormalities in massive video
data. This operation increases working time, labor costs, and
misjudgments. Therefore, automatic detection of anomalous
behaviors [2] has attracted increasing researcher attention
because of its potential application values. An intelligent
video surveillance system aims to provide a supervisor with
precise anomaly cues to deal with abnormal events as soon as
possible. However, it is a highly challenging task in the
computer vision field, because anomaly detection suffers two
core issues. First, only normal samples are readily available
during the training phase because of the rare occurrence of
abnormal events in most cases. Second, anomalous events
are various and complicated, and the definition of

“abnormality” heavily depends on the context; hence, there
is no standard definition. It is difficult to mark abnormal
events and detect these behaviors using supervised
technology.

To solve the aforementioned problems, most state-of-
the-art approaches adopt unsupervised techniques and then
use regular events as training samples to train the model.
When the test sample deviates significantly from the learned
model, it is detected as an anomaly. To date, the large variety
of anomaly-detection methods can be roughly divided into
two types: (1) hand-crafted feature approaches and (2) deep-
learning approaches. In hand-crafted feature methods, the
core idea is mainly to adopt hand-crafted features to rep-
resent video sequences. These features include trajectory
features [3] and low-level features (e.g., histograms of ori-
ented gradients [4], histograms of optical flow [5], and 3D
gradients [6]). They are heavily dependent on the feature-
extraction process and expert knowledge, which directly
limit the accurate representation of complex feature patterns
and affect the accuracy of anomaly detection. Deep-learning
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approaches commonly use reconstruction error-based
methods. These methods follow the rule that normal events
produce a small reconstruction error, whereas abnormal
events generate a large error. They evaluate the anomaly
based on the consistency between the generated and the
input frames. Specifically, Hasan et al. [7] presented an
approach based on the auto-encoder that reconstructs
regularities with low error but incurs higher reconstruction
error for irregularities. However, because a convolution
operation is only used for feature extraction, this structure
cannot model temporal information in a long video se-
quence. Consequently, Chong and Tay [8] and Luo et al. [9]
added convolutional long short-term memory (ConvLSTM)
layers to the auto-encoder for performing the memory of
temporal information. Li Chang [10] presented a multi-
variate Gaussian fully convolution adversarial auto-encoder
(MGFC-AAE) to model gradient and optical flow patches
for anomaly detection. George et al. [11] proposed a non-
uniform spatiotemporal region resembling parallelepipeds
to extract the histogram of optical flow orientation and
magnitude features. These approaches simultaneously
modelled spatial and temporal features from the input data,
making them more suitable for video analysis. Nevertheless,
it is challenging to obtain a large reconstruction error for
anomalies owing to the powerful learning capacity of a deep
neural network. Moreover, because of the self-reconstructed
generated frames, the methods identify anomalies regardless
of context information. Therefore, high missed and false
detection phenomena occur while executing these methods.
Considering the shortcomings of reconstruction ap-
proaches, some researchers have begun to use video-pre-
diction algorithms, namely, future-frame prediction based
on a sequence of previous video frames, to detect abnormal
behaviors. These methods agree with the idea that normal
events are predictable, whereas abnormal events are un-
predictable. By only training regular events to obtain a
prediction model, anomalies in videos refer to events that
rarely or should not occur in a particular scenario. For
example, Munawar et al. [12] created a deep prediction
network to detect the abnormal operation behaviors of
industrial robots. Villegas et al. [13] combined LSTM and
analogy-based encoder-decoder networks to tackle long-
term video-prediction tasks from a hierarchical perspective.
Additionally, Zhao et al. [14] proposed a spatiotemporal
auto-encoder involving the three-dimensional (3D) con-
volution for video anomaly detection. Nevertheless, these
methods based on an auto-encoder structure use only single-
scale information from the previous layer in the decoding
process, leading to the detailed information loss for the
different-size objects in the videos. Thus, Liu et al. [15]
proposed a method to predict future frames on the basis of
U-Net, which can effectively retain the multiscale structural
characteristics of the input frames by the skip connection.
However, the conventional U-Net cannot adequately con-
sider the motion continuity between video frames.
Motivated by the aforementioned anomaly detection
task, it is necessary to sufficiently consider multiscale spatial
features and temporal continuity for recognizing abnormal
behaviors. Recently, lots of works have achieved great
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detection performance by using multiscale features of im-
ages; for example, Gao et al. [16] adopted multiscale single-
stage object detector for pose detection in the classroom
scene. Oh et al. [17] proposed multiscale convolutional
recurrent neural network for inspecting and classifying
bearing fault defects. The literatures [18, 19] used multiview
receptive field network for foreground detection. Owing to
the camera position and angle, objects multiscale features
extraction can effectively improve the performance of target
detection. In this paper, we propose a novel spatiotemporal
prediction network, i.e., STP-net, which fuses the multiscale
appearance features and motion information extraction
module. The main idea is to utilize the network to model the
video content and internal dynamic changes by training the
ordinary events accurately. If the test-video prediction frame
is significantly different from the actual frame, an abnor-
mality is detected. First, we use the HDC module [20] to
extract multiscale spatial features and learn the objects scale
variations. Then, we adopt the DB-ConvLSTM [21] module
to memorize the temporal information and obtain the
complex motions features between consecutive frames. Fi-
nally, we perform the predicted future frame from the spatial
and temporal dimensions. At the same time, the literatures
[22, 23] showed that RGB difference is a valid substitute for
optical flow [24] as a new type of temporal loss. This op-
eration could achieve a similar effect but significantly reduce
the computational cost to extract optical flow information.

Specifically, the main contributions of our work are as
follows:

(1) Starting from the second downsampling of U-Net,
the HDC module acts on the previous convolution
layer of each downsampling layer to increase the
convolution kernel receptive field, making it easy to
retain more data detailed information and improve
the representational capacity of the model.

(2) Atthe end of the encoding process of U-Net, the DB-
ConvLSTM strategy can take full advantage of the
relationship between consecutive frames to extract
detailed temporal information, which can strengthen
the temporal continuity between the video frames
and effectively improves the accuracy of the pre-
diction results.

(3) Experimental results on several public benchmark
datasets indicate the superior ability of our method
compared with the state-of-the-art approaches in the
abnormality detection task.

The remainder of this paper is organized as follows.
Section 2 provides the overall framework of the proposed
method. Section 3 elucidates and discusses the experimental
validation through a series of primary public datasets. Fi-
nally, Section 4 summarizes the general conclusions and
discusses future research directions.

2. Proposed Method

As shown in Figure 1, the overall framework of our method
can be divided into two parts: video prediction and anomaly
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FiGure 1: Overall framework of the proposed method.

detection. The first part aims to train a generator network to
predict future frames. To generate a high-quality prediction
frame, we use the generative adversarial network (GAN) [25]
and several loss functions to optimize our network model.
We treat the STP-net as generator network (G) and then
adopt frames (I}, I, I, . . ., I;) before the current frame I, as
the input tensor, and the predicted frame I}, as the output
tensor. For the discriminative network (D), we choose
PatchGAN [26] to strengthen the recognizing ability be-
tween the actual and generated frames. Finally, we use the
total objective optimization function to minimize the dis-
tance between the predicted frame and the target frame,
making I}, closer to I,;. In the second part, we employ the
pretrained model to judge the extent of abnormality by
calculating each frame’s regular score. Next, we will illustrate
the different components of the proposed framework in
detail.

2.1. Video Prediction. On the basis of U-Net structure, the
details of STP-net are presented in Figure 2. We add HDC
module to extract multiscale spatial features of the training
samples and then insert DB-ConvLSTM to handle temporal
information between the continuous Tframes in a nonlinear
manner. The network comprises an encoding path and a
decoding path. The input and output size of the network are
both 256 x 256 x 3. The kernel sizes of all convolution and
deconvolution are set to 3 x 3 and the maxpool layers are set
to 2x2.

2.1.1. Multiscale Features Extracted Strategy. The objects
forms and sizes are different owing to the camera position
and angle. Inspired by the HDC applied in the semantic
segmentation field, it is essential to consider multiscale
feature information. Meanwhile, the multiple down-
sampling operations of the U-Net will lead to the severe loss
of spatial detailed information. In order to improve the
network’s learning ability, we should not only consider
extracting multiscale spatial information, but also consider
compensating for the loss due to the downsampling

operation; thus, starting from the second downsampling, the
HDC module acts on the previous convolution layer of each
downsampling layer to retain more image detail informa-
tion. The reason why HDC is not used before the first
downsampling layer is that several convolution operations
before first downsampling will not cause a lot of loss to
image information.

The structure of HDC module is shown in Figure 3. The
input feature maps are fed into three different branches.
These branches are used to acquire the different size of
receptive field and automatically extract multiscale features
through a set of dilated convolutions with different dilation
rates. It is also worth mentioning that a small dilation rate is
fit for extracting features of small objects, while a large
dilation rate is fit for obtaining features of large objects.
Finally, the features from each branch are concatenated with
the input feature maps for enhancing contextual informa-
tion and multiscale spatial features representation.

2.1.2. Temporal Information Extracted Strategy. The current
anomaly detection methods usually adopt three-dimen-
sional (3D) convolution or ConvLSTM [27] to extract the
temporal correlation of the input data. The 3D convolution
requires more computational time to process a large number
of model parameters. Therefore, lots of researchers choose
ConvLSTM structure for time modelling. However, the
ConvLSTM can only remember the sequence data in the
forward direction. According to study [21, 28], it is evident
that considering both forward and backward feature in-
formation is important and complementary for predicting
future frames. Thus, we use DB-ConvLSTM module to
capture more comprehensive spatiotemporal characteristics.

The input mode of our network is different from existing
methods that conventionally stack T consecutive frames
together into a network. In these methods, all the T frames
are connected to each channel in the first output feature
map, which results in the collapse of temporal information
[29]; thus, we input T frames into the encoder network
one by one to generate corresponding feature maps. As
shown in Figure 4, the DB-ConvLSTM structure includes a
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shallow forward layer and a deeper backward layer. Spe-
cifically, {H/} denotes the corresponding outputs of forward
sequential feature maps from the ConvLSTM units in the
forward layer. The deeper backward layer receives the for-
ward sequential outputs {H/} to generate {H} corre-
sponding outputs of backward sequential feature maps.
Then, we use equation (1) to process the forward and the
backward features maps to obtain the final output sequence
{Y;}. Finally, the information can exchange between the
forward and backward directional ConvLSTM units to
capture more powerful and complementary spatiotemporal
features. As shown in Figure 4, we feed the last output Y;
containing both spatial features and relevant temporal
features into the decoding process.

Y, = tanh(W?f «H + W HE 4 b). (1)

Lint(I*’I) =

Lga(I'.1) = Z"
ij

-1l

Lrgb (I*J) =|||I:+1 _It| _|It+1 _It|”1'

We also leveraged GAN to constrain the training process
owing to its excellent image generation [30] and video-pre-
diction [31] performance in recent years. Specifically, G at-
tempts to generate future frames that are as realistic as possible,
whereas D aims to distinguish the frames generated by
G. Ideally, the goal of the GAN is to reach the Nash equilibrium.
When training D, the procedure aims to classify I* into class 0
and I into class 1, where 0 represents the generated frame, and 1
indicates the genuine frame. The loss function used to train D is
imposed as equation (5). When training G, the goal is to let the
generated frames I+ classified into class 1 by D. Then, the
adversarial loss for G is defined as shown in equation (6):

L5 (1) = (D) =0 + (DM - 1P (5)

1

Laa, (I') = 5 (D(1") = 1" (6)

To obtain a well-trained model that has a better ability to
identify abnormalities, we considered all the aforementioned
constraints, such as spatial, temporal, and adversarial
training loss, into our final objective function (7). During
training D, we fixed the weights of G to optimize objective
function (8).

(7)

G
LG = ‘xintLint + “gdLgd + “rgergb + “adeadv’

Lp=L"

adv?
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2.1.3. Loss Function. We used spatial and temporal con-
straints to optimize the model and minimize the difference
between the predicted frame and its ground truth. The in-
tensity constraint can guarantee the similarity of all pixels in
the RGB space, and the gradient constraint can sharpen the
generated images. Therefore, we chose intensity and gradient
constraints as spatial constraint to promote the predicted
frames I* to be consistent with the corresponding ground
truth I. Moreover, the temporal loss defined as the RGB
difference between the prediction frame and the ground
truth guarantees the correctness of motion prediction for
anomaly detection. The intensity loss, gradient loss, and
temporal loss are defined as equations (2)-(4), respectively.

(2)

IZj‘Izj—l‘_|Ii,j_1ivf—1|"1’ (3)

(4)

where i, Ggdr rgps and a,g, are coefficients for the cor-
responding constraints, respectively.

2.2. Anomaly Detection. After training the model to rep-
resent regular events in video sequences, we used the dif-
ference between the predicted frame I* and ground truth I
for anomaly prediction. To the best of our knowledge, Peak
Signal to Noise Ratio (PSNR) [32] is widely used to assess the
image quality as follows:

[maxI*]?

UN SN, (17 - 1)"

PSNR(I%,1) = 10 log,, (9)

where I* represents the predicted frame, I denotes the
corresponding ground truth, max; represents the maxi-
mum value of the image intensities, N represents the total
number of pixels, and i represents the pixel index.

In the test phase, we chose the PSNR to evaluate the
predicted frame. A higher PSNR value means that the
predicted frame is more similar to its ground truth and
indicates that it is more likely to be a regular event and vice
versa. For comparison, we normalized the PSNR of all
frames in each test video to the range [0, 1], and the regular
score can be calculated as

PSNR(I;,1,) - min,PSNR (I}, I,)
max,PSNR (I}, I,) — min,PSNR (I}, I,)’

S(t) = (10)



where the min,PSNR and max,PSNR are the minimum and
maximum values of the PSNR in every test video frame,
respectively.

3. Experimental Results and Discussion

In this section, we validate the proposed method perfor-
mance on publicly available benchmark datasets, including
the Chinese University of Hong Kong (CUHK) Avenue
dataset [33] and the University of California San Diego
(UCSD) Pedestrian dataset [34]. We further utilize the
recorded real video data to verify the robustness of our
model. The proposed framework was implemented by
PyTorch and supported by an NVIDIA Tesla V100.

3.1. Evaluation Metric. To validate the effectiveness of the
proposed method, we followed the performance evaluation
of frame-level criteria. We selected the receiver operating
characteristic (ROC) curve as an indicator to evaluate the
anomaly detection algorithms. The ROC curve is obtained
by gradually changing the threshold and calculating the true
positive rate (TPR) and the false positive rate (FPR). In this
study, our approach is compared with the existing anomaly-
detection methods using the area under the curve (AUC)
and equal error rate (EER). Higher AUC values and lower
EER values indicated better anomaly detection performance.
The relationship between AUC and EER is illustrated in
Figure 5.

3.2. Dataset Description. CUHK Avenue Dataset is collected
on Campus Avenue at the Chinese University of Hong Kong
and includes 16 training videos (15,328 training frames) and
21 testing videos (15,324 testing frames). Each video-frame
resolution is 360 x 640 pixels, and the frame rate for each
video clip is 25 frames per second. Normal events are mainly
behaviors of pedestrians walking on the sidewalk. The
anomalies include abnormal events, such as running, loi-
tering, and throwing objects.

UCSD Dataset contains two subsets, Ped1 and Ped2,
which comprise videos collected by the University of Cal-
ifornia San Diego from public pedestrian areas taken at
different viewing angles. Ped1 comprises 34 training scenes
and 36 testing scenes with a frame resolution of 238 x 158
pixels. Ped2 includes 16 training scenes and 12 testing scenes
with a frame resolution of 360 x 240 pixels. Ped1l and Ped2
have the same definitions of normal and abnormal events. In
regular videos, some pedestrians walk on the sidewalk.
However, in abnormal cases, these are bicycles, vehicles,
skateboarders, and wheelchairs crossing pedestrian areas.

3.3. Training Details. For the training details of our model,
we adopted Adam [35] to train the network for parameter
optimization. We set T to 4, used a random clip of five
sequential frames, and set the mini-batch size to 4. For
greyscale datasets, we set the learning rates of the generator
and discriminator to 0.0001 and 0.00001, while we set them
to 0.0002 and 0.00002 for color-scale datasets. For different
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datasets, the coefficient factors oy, ttgg, &g, and g, were
slightly different.

3.4. Performance Analysis of the Proposed Method. We an-
alyze the corresponding experimental results of different
datasets. For a better illustration, in Figure 6, specific events
are chosen to display the anomaly detection results from the
seventh test video on the Avenue dataset. Figure 6(a) shows
the corresponding ground truth. Figure 6(b) presents the
difference between the ground truth and the corresponding
predicted frames. Figure 6(c) displays the relationship be-
tween the test video frames and the regular score. The blue
blocks represent the ground truth annotation of frames
containing abnormal events, and the red line represents the
regular score of every frame. As shown in Figure 6(c), higher
regular scores represent the usual events. In comparison, the
lower regular scores corresponding to the blue area are the
abnormal events shown in Figure 6(a) (e.g., the child run-
ning from a different direction). When executing the pre-
diction model, our method has learned prior information
and then predicts what will happen next. Under the pe-
destrian street scene, the model gains the appearance and
motion features of walking persons from the training
samples. As shown in Figure 6(b), when the testing frames of
a running person are fed into the model, it can only predict a
person while walking, which generates a big difference
(labelled with a red rectangle) between the predicted frame
and the ground truth.

The size and shape of the objects may change because of
the different position and angle of the camera. More spe-
cifically, Figures 7 and 8 show the detection results of
anomalous events from different video angles on the UCSD
Pedl and Ped2 datasets. The illustrations of these figures are
similar to Figure 6. As shown in Figures 7(a) and 7(b) and
8(a) and 8(b), objects located close to the camera appear to
be larger than those far from it, although they are the same
objects. Moreover, we can see that our method can easily
detect abnormal events (e.g., cars and cyclists) from different
situations. As shown in Figures 7(c) and 8(c), the lower
regular scores are consistent with the ground truth labelled
as abnormal events (e.g., the cars in the Pedl 19th test video
and the cyclists in the Ped2 2nd test video). Higher regular
scores indicate normal events. After analyzing the experi-
mental data, we find that our method is robust when facing
these different types of spatial features, because it uses the
advantages of HDC module to pay more attention to the
multiscale spatial characteristics.

To validate that our method is actually working on a real
scenario, we recorded the street scene next to our building
and verified the proposed model. The illustrations of these
figures are similar to Figure 6. As shown in Figures 9(a) and
9(b), we can see that our method can easily detect abnormal
events (e.g., car) from the recorded real video. As shown in
Figure 9(c), higher regular scores represent normal activities.
The lower regular scores are consistent with the ground truth
labelled as abnormal activity.

Additionally, Figure 10 shows the experimental failure
case of detecting anomalies in the initial stage on the UCSD
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and the regular score.

Ped2 dataset. As shown in Figure 10(a), we can see that
abnormal events (e.g., occluded cyclist) cannot be de-
tected, but the cyclist can be detected without occlusion.
The higher regular scores are consistent with the ground
truth labelled as abnormal events in the initial phase. As
shown in Figure 10(b), the difference (occluded cyclist
labelled with a red rectangle) between the ground truth
and the corresponding generated frame is ambiguous, but
the other one is clear. After analyzing the experimental
data, it is worth mentioning that our method might not
perform well, because the abnormal events could be
temporally occluded by other objects in the video. The
main attention of our future work is to solve the problem
caused by occlusion, by exploiting visual tracking tech-
nology to tackle the miss detection in highly occlusion
scenes.

3.5. Performance Comparison of Different Methods. To in-
tuitively display the changing trend of ROC curves of dif-
ferent methods in terms of the frame-level criterion,
Figure 11 depicts the results of our method compared with
three typical approaches, e.g,, MGFC-AAE [10], Baseline
[15], and 150FPS [33] on the Avenue dataset. We can ob-
serve that the ROC curve of our method is significantly
higher than that of the other algorithms. Table 1 presents a
quantitative comparison of our method with other recently
published approaches for AUC values. Compared with these
approaches, the proposed method achieved the highest AUC
value, which reached 86.4%, demonstrating good
performance.

Figures 12(a) and 12(b) depict the comparison results of
the ROC curves of different methods on the UCSD dataset.
We chose some deep-learning algorithms [10, 15] and
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traditional methods [34, 38], e.g., MGFC-AAE [10], Baseline
[15], mixtures of dynamic textures (MDT) [34], and motion
energy model [38]. From the comparison, we can see that
our method outperforms most of the existing methods. The
experimental results further demonstrate the superiority of
the deep-learning methods compared with the traditional
methods. Table 2 lists the detailed quantitative comparison
data of the different algorithms in the aspect of the AUC
metric. We set the literature [15] as the baseline during the
evaluation phase because of its excellent performance for
anomaly detection based on a prediction network. In detail,

our method raises 1.3% and 0.9% for Ped1 and Ped2 datasets
compared with Baseline [15]. In conclusion, our method is
effective for detecting anomalies on the UCSD dataset.
Through the aforementioned comparison, the proposed
method achieved better results in various video surveillance
scenes; the AUC value obtained by our model is superior to
most existing models. For a more comprehensive analysis,
we also adopted EER as the evaluation metric. Table 3
presents the detection results obtained from the proposed
method as well as other methods. It can be seen from the
data that our method reaches a lower EER compared with all
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other methods except ConvLSTM [8] (Pedl) and Anom-
alyNet [37] (Ped2). The experimental results demonstrate
the superiority of our approach in anomaly detection task.

Moreover, we choose the more typical per sample
prediction time (i.e., average running time comprises the
prediction frame generation and anomaly detection) to
evaluate the complexity of the proposed solution. Table 4
shows the running time of our approach in comparison with
several previous methods on UCSD Ped2 dataset. It can be
seen that our method is a little bit slow than MDT [34] and
Unmasking [36], but the AUC value obtained by our model

is superior to these methods. Besides, our approach runs
almost as fast as baseline [15]. The reason lies in that we add
the HDC module and the DB-ConvLSTM module, which
takes time. In general, our method can ensure running time
and accuracy to be better working on a real world.

3.6. Ablation Studies. To verify the effectiveness of each
component of the proposed method, we conducted an ab-
lation study for different component. For comparison, three
variants of the proposed method (i.e., STP-net only with
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TaBLE 2: Frame-level AUC performance of different methods on
UCSD dataset.

AUC (%)
Methods
UCSD Ped1 UCSD Ped2

MDT [34] 81.8 82.9
Motion energy model [38] 75 81
Conv-AE (7] 81.0 90.0
ConvLSTM [8] 89.9 87.4
ConvLSTM-AE [9] 75.5 88.1
MGFC-AAE [10] 85 91.6
Unmasking [36] 68.4 82.2
AnomalyNet [37] 83.5 94.9
Baseline [15] 83.1 95.4
Proposed method 84.4 96.3

TaBLE 3: Comparison of EER performance on different datasets.

EER (%)
Methods
UCSD Ped1 UCSD Ped2 Avenue

Conv-AE [7] 27.9 21.7 25.1
ConvLSTM [8] 12.5 12 20.7
MGFC-AAE [10] 20 16 22.3
AnomalyNet [37] 25.2 10.3 22
Baseline [15] 24 12 21
Proposed method 22.8 11 19.7

11
TasLE 5: Effect of different components on AUC values.
AUC (%)
Components
Avenue UCSD Pedl UCSD Ped2
HDC 85.4 83.8 95.7
ConvLSTM 85.2 83.5 95.4
DB-ConvLSTM 85.5 83.9 95.6
HDC and DB-ConvLSTM  86.4 84.4 96.3
TasLE 6: Effect of different type loss functions on runtimes.
. Running time (s/batch)
Loss function
Avenue UCSD Pedl UCSD Ped2
With optical flow loss 0.4685 0.4643 0.4615
With RGB difference loss  0.0036 0.0036 0.0036

TaBLE 7: Effect of different type motion loss function on AUC
values.

, AUC (%)
Loss function
Avenue UCSD Pedl UCSD Ped2
With optical flow loss 85.8 83.9 95.7
With RGB difference loss  86.4 84.4 96.3

TaBLE 4: Comparison of running time performance on UCSD Ped2
dataset.

Method Running time (frames per second)
MDT [34] 23
Unmasking [36] 20
Baseline [15] 32
Proposed method 29

HDC, with ConvLSTM, and with DB-ConvLSTM) were
trained to evaluate the performance for anomaly detection.
Table 5 shows the AUC values obtained from the variants
with different component on the different datasets. It can be
observed that the variant with all components achieves the
best results than those with fewer components, which shows
the importance to take full advantage of the spatiotemporal
features for anomaly detection. The HDC module can ex-
tract the more representative multiscale spatial features, and
the DB-ConvLSTM module can memorize the temporal
information. The experimental results indicate the effec-
tiveness of our method, which fully considers spatiotem-
poral information.

In addition, we evaluated the effect of optical flow loss
and RGB difference loss for our model on different datasets.
As shown in Tables 6 and 7, when the RGB difference loss
was employed in the network, the average runtime using
batch data reduced from 0.4648 (s/batch) to 0.0036 (s/batch)
and the AUC values significantly improve by 0.6% (Avenue),
0.5% (UCSD Ped1), and 0.6% (UCSD Ped2), respectively. It
is obvious that the RGB difference loss replaced optical flow
loss can greatly save the time of optical flow extraction and

shorten the training time. In summary, our method gives a
full consideration of the spatiotemporal information, thus
effectively improving the accuracy of the detection results.

4. Conclusions and Future Work

This paper proposes an effective anomaly-detection method
based on the STP-net by integrating HDC and DB-
ConvLSTM module. We employ the proposed network to
capture more comprehensive multiscale spatial features and
temporal information of regular events. In the testing stage,
the abnormalities of the test video were detected by the lower
regular scores calculated by the PSNR values between the
predicted frames and actual frames. Furthermore, using
RGB differences as motion loss can reduce the training time.
To further evaluate the proposed model, we conducted a
series of experiments on several public benchmark datasets.
The experimental results show that the AUC values of the
CUHK Avenue, UCSD Pedl, and Ped2 datasets reached
86.4%, 84.4%, and 96.3%, respectively. Our method per-
forms well compared with the state-of-the-art approaches in
terms of detection accuracy through qualitative analysis and
quantitative comparisons.

The proposed method does not limit the type of ab-
normality, and it can achieve the general detection of dif-
ferent abnormal behaviors in a specific scenario. Therefore,
our method can be conveniently applied to various video
surveillance scenarios. However, this approach still has some
shortcomings and limitations. First, the prediction method
is highly dependent on prior information; thus, the detection
results are sensitive to any changes of the previous frame.
Second, our method might perform poorly on fairly easy to
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detect the abnormalities due to the occluded abnormal
events. Third, the prediction network relies on the com-
pleteness of training data, implying that the training data
should contain all normal behaviors of the scenario. To
develop a complete anomaly detection system, as part of the
future scope, we plan to exploit visual tracking technology to
solve the problem of sensitivity and occlusion. Meanwhile,
we will extend existing datasets to cover as many different
surveillance video scenarios as possible to address smart-city
and public-security issues.
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Surveillance remains an important research area, and it has many applications. Smart surveillance requires a high level of accuracy
even when persons are uncooperative. Gait Recognition is the study of recognizing people by the way they walk even when they are
unwilling to cooperate. It is another form of a behavioral biometric system in which unique attributes of an individual’s gait are
analyzed to determine their identity. On the other hand, one of the big limitations of the gait recognition system is uncooperative
environments in which both gallery and probe sets are made under different and unknown walking conditions. In order to tackle
this problem, we propose a deep learning-based method that is trained on individuals with the normal walking condition, and to
deal with an uncooperative environment and recognize the individual with any dynamic walking conditions, a cycle consistent
generative adversarial network is used. This method translates a GEI disturbed from different covariate factors to a normal GEI. It
works like unsupervised learning, and during its training, a GEI disrupts from different covariate factors of each individual and
acts as a source domain while the normal walking conditions of individuals are our target domain to which translation is required.
The cycle consistent GANs automatically find an individual pair with the help of the Cycle Loss function and generate the required
GEIL which is tested by the CNN model to predict the person ID. The proposed system is evaluated over a publicly available data set
named CASIA-B, and it achieved excellent results. Moreover, this system can be implemented in sensitive areas, like banks,
seminar halls (events), airports, embassies, shopping malls, police stations, military areas, and other public service areas for
security purposes.

1. Introduction individual from the other [1]. Similarly, a Gait Recognition

system is also a biometric system that identifies an individual
Biometric systems employ the human unique characteristics ~ based on the way they walk. It is a relatively new technology
that are either physical or behavioral to determine their  that has attracted a large number of researchers in recent
identity. All of these characteristics distinguish one  years. Previously developed biometric systems, such as face
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recognition, iris recognition, and fingerprint recognition,
used physical attributes of individuals to establish their
identity, but gait recognition examines individual’s behavior
to identify them, making it a behavioral biometric system
[2]. The advantages of gait recognition biometric over visual
biometrics include that gait recognition is appropriate and
effective in recognizing people even when their faces are
covered and also when the distance between surveillance
cameras and individuals is about 50 meters. On the other
hand, iris recognition requires that an individual must be at a
distance of 3cm from the camera, and face recognition
requires about 5 meters. Besides this, visual biometrics also
requires high-quality images for accurate identification and
requires the involvement of the subject during identification.
On the other hand, gait recognition is such an admirable
biometric system that does not require subject cooperation
at the time of inspection from surveillance cameras, and this
aspect makes it effective in ensuring security at public safety
areas [3].

Different researchers carried out gait recognition in
two different experimental settings. One is the cooperative
manner, and other is the uncooperative environment. In a
cooperative manner, the model is trained and tested on
known walking conditions [4]. More specifically, if a model
is trained on several individuals who walk normally in a
video without carrying any objects or items and then tested
on different videos of individuals but with the same
walking condition, i.e., normal walk. In this case, the
walking condition of the individual being examined is
known to the model during validation. On the other hand,
in an uncooperative manner, the individual walking
condition is kept hidden from the model. The model is
trained on a set of individuals who walk with normal style
and tested on same individuals but with different walking
styles such as a walk with carrying items, such as bags and
suitcases in their hands, or with varied clothing conditions
such as coats and jackets. These items, or varied walking
conditions, are referred to as covariate factors, and they
cause individual gait characteristics to be disrupted.
Moreover, the second experimental setting is more realistic
and very challenging task in computer vision because the
performance of the gait recognition model drastically
drops when individuals come with unknown and variable
covariate conditions. All these are dynamic walking
conditions and strongly affect the recognition rate of
identifying individuals from their gait. In existing works,
when the subjects are considered as cooperative, that is,
covariate conditions are known during the training of the
system, then the model or system reveals a very superior
performance overall. However, there is a drop in outcomes
in an experimental scenario when uncooperative envi-
ronments are considered, and gallery and probe sets are
formed under unknown walking conditions.

In this research, we attempt to improve the recognition
performance of the deep learning model with the presence of
these covariate factors. So in order to improve the results and
make the system strong to any dynamic change, we employ
cycle consistent generative adversarial networks (CCGANs)
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[5]. The main objective of this research is to train a model
with one walking condition of an individual that is normal
walk and validate and test the model with unknown and
dynamic walking conditions, i.e., what if a person comes
with a bag or a coat and any other dynamic real-time
condition. We first utilized a deep CNN model, which is
train on a unique gallery set on all individuals with normal
walk style. In the second stage, we validated the model with
individuals carrying a bag or wearing coats or any other
thing. The presence of these covariate factors modifies the
gait features of individuals and is different from the features
that are extracted by the CNN on a normal walk. So, before
passing the tested image directly to trained CNN model, it
first goes via CCGANS, which translates a Gait energy image
(GEI [6], a more compact gait representation) disrupted
with varied covariate factors to a regular walking GEI and
recovers the gait features on which CNN is trained to
recognize the person. CCGANs are trained in an unsu-
pervised manner, that is, during translation of disrupted GEI
to normal GEIL it automatically picks up the right normal
GEI from the target domain for disrupted GEI using cycle
loss. In addition, currently, different types of GANSs are used
for different types of tasks. For example, a very basic GAN
[7] generates specific artificial images on which it was trained
from a random vector, and there is no control over the data
that are generated by the model. In our case, we do not want
to generate artificial data from a random vector; therefore,
basic types of GANs are not applicable. Similarly, condi-
tional GANSs [8] are used when we want to convert an image
from one domain to an image from a different domain. In
this case, we must have paired data, for example, if we want
to translate map photographs to aerial photographs, then we
must specify that a given instance of the map image is
translated to a specific image of aerial photograph during
training. In the presented problem, the disrupted probe set
needs to be translated into a normal probe set. But the probe
set contains images of various individuals, and it would be
unjust to indicate at the testing time that a certain GEI of a
person walking with bags, such as Person-ID-001, is
translated into Person-ID-001 with a normal walk. Because
at testing time, we do not know the person’s actual label or
ID. So, conditional GANs are also not suitable for this
problem. However, CCGANs do not have such limitations.
So, the main reason for employing CCGANSs is that we want
to translate the images affected from covariate factors to
normal GEIs without revealing the IDs of the persons.
CCGANS’ unsupervised mechanism is a perfect match for
the solution to the challenge at hand because it automatically
finds the exact pair for a particular person followed by a
translation of the image. The main contributions of this work
are as follows:

(i) Handling the unknown and dynamic walking en-
vironment using CCGANS.

(ii) Reconstruction of gait features, which are lost by
variable covariate factors.

(iii) CCGANSs are not previously used for gait analysis to
recover gait features. The experimental findings
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demonstrate the capability of CCGANSs in recov-
ering gait features of individuals for an uncooper-
ative environment and give better performance.

(iv) Comparative analysis of our approach with other
methods shows the superiority of the proposed
method.

The rest of the article is organized into several sections.
Section 2 presents the related work, Section 3 describes the
proposed methodology, and Section 4 presents the results
followed by conclusion.

2. Literature Review

Currently, gait recognition methods mainly fall into two
main approaches: one is model-based approaches [9-11] and
the other is appearance-based approaches [12-14]. In model-
based approaches, the human body structure is focused to
extract gait features with the use of different body param-
eters, including stride, speed, size of different body parts, and
all other static and dynamic parameters. This type of ap-
proach is computationally expensive because it requires
high-resolution images, even though the gait recognition
method is supposed to work with low-quality images and
with a minimum amount of light. On the other hand, the
appearance-based approaches work on the human silhou-
ettes extracted from different sequences, and mainly, the
motion of the human body is focused in this approach. This
type of method can work with low-quality images, which are
appropriate for real-time public surveillance. The appear-
ance-based approaches are further divided into hand-crafted
feature extraction-based methods and deep learning-based
methods.

In the context of traditional machine learning methods,
Anusha and Jaidhar [12] extract the hand-crafted features
from the selective regions of Gait energy image (GEI) [15],
which is a popular gait representation using Modified Local
Optimal Oriented Pattern (MLOOP) feature descriptor
followed by dimensionality reduction algorithm to reduce
extracted feature vectors, and then, classification is per-
formed. The proposed approach is validated on the CASIA-B
and OU-ISIR B gait data sets, and it works brilliantly in all
experiments. Similarly, Lishani et al. [16] also employed the
traditional machine learning technique for gait recognition.
In this work, Multiscale Local Binary Pattern (MLBP) and
Gabor filter bank feature descriptor are used to extract
features followed by Spectra Regression Kernel Discriminant
Analysis (SRKDA) algorithm for feature selection. In the
end, the K-nearest neighbor classifier is utilized for classi-
fication and achieved the recognition score of 92%. Roka-
nujjaman et al. [17] introduced a new gait representation
termed as frequency-domain gait entropy (EnDFT), from
which features are taken from the less affected part of
EnDFT, and a distance metric is used to distinguish humans.
Similarly, Bashir et al. [13] select the pairwise features using
their proposed gait entropy image (Genl) and Adaptive
Component and Discriminant Analysis (ACDA). Moreover,
Gupta et al. [18] proposed boundary Energy Image (BEI)
based gait representation in which contours of all silhouette

images of humans are averaged. They use Principal Com-
ponent Analysis (PCA) for dimensionality reduction and
Linear Discriminant Analysis (LDA) for classification and
attained encouraging performance.

Currently, deep learning-based methods show excep-
tional performances in computer vision-related tasks in
various domains [19-22]. Similarly, for gait recognition, it is
also proved to be an excellent approach in the recognition of
individuals from their gait characteristics. Alotaibi and
Mahmood [14] proposed a deep specialized convolutional
neural network (CNN) with eight layers to classify the
subjects. The proposed model is validated on the CASIA-B
gait data set with different experimental settings. Hawas et al.
[23] proposed the CNNs with the optical flow of GEI to
increase the performance of the model. The optical flow
excludes the static part of GEI having high pixel intensities
and represents only the dynamic part with high intensities of
GEL Similarly, Linda et al. [24] proposed color-mapped
contour gait images (CCGIs) and deep CNN for cross-view
gait recognition. CCGIs is helpful in discriminating tem-
poral information in human walking sequences. The model
is evaluated on CASIA-B gait data set and produces an
average accuracy score of 94.65%. Su et al. [25] introduced
center ranked loss in their deep neural network to integrate
information of all positive and negative samples. Huang et al.
[26] proposed the gait recognition model based on key-
frames with deep learning techniques. The total frames in a
sequence have different contributions towards gait charac-
teristics. For this, they proposed an extraction module that
extracts the keyframes from a given gait sequence and results
in the extraction of highly distinctive features. Yao et al. [27]
proposed a skeleton gait energy image (SGEI) using mul-
tibranch CNNs, in which one branch is responsible for
predicting confidence maps, and the second branch is used
to predict the affinity fields. After that, the results and
features of the image from both branches are concatenated
to perform gait recognition. Ling et al. [28] employed the
attention mechanism-based approach in gait recognition to
emphasize discriminating regions. They validate their ap-
proach on OU-ISIR TREADMILL data set B to handle the
problem of covariate conditions. Moreover, the use of
transfer learning is also employed to gait recognition in
which Wu et al. [29] proposed the DenseNet-based transfer
learning method. The spatial information of gait from GEI is
given as an input to DenseNet to extract features of each
subject, and finally, the KNN is used to classify individuals
respectively.

Furthermore, in some recent research studies, the study
of human behavior in different domains is also exploited. In
the context of activity recognition, Shu et al. [30] address the
problem of group activity recognition in the multiple-person
scene. They proposed the Graph LSTM-in-LSTM (GLIL)
based framework, which simultaneously models both in-
dividual- and group-level activities. Similarly, Tang et al. [31]
employed the motion characteristics of humans to solve the
problem of group activity recognition. Relevant motions of
individuals are captured by the constraint of Context Co-
herence (STCC) and a Global Context Coherence (GCC).
Kabir et al. [32] recognized the activity of humans



employing state-space linear modeling. A coefficient matrix
is used to define the association between states and inputs.
Furthermore, the most advanced research by Shu et al. [33]
aimed to predict future motions of individuals based on
currently observed motions. Moreover, the limitations of a
different algorithm for activity recognition are also well
researched. Choe et al. [34] showed the high operation
complexity of the KNN algorithm for activity recognition
and proposed a method to reduce this complexity. Besides
the gait recognition in the field of biometrics, there also
exists some other possible scenarios and application areas,
such as Big Data and other IoT systems, in which similar
kinds of work can be applied. Content analysis of videos is
also used in other fields. For example, Song et al. [35] an-
alyzed and reviewed the latest methods on the content
analysis of the videos for action recognition. Instead of
action recognition, the behaviors of humans are also used for
the gesture, speech, and wrist-activity recognition. For ex-
ample, Jo et al. [36] proposed the novel method for Hidden
Markov Model (HMM) based speech recognition. Their
approach is based on a modified version of the Viterbi
scoring method. In order to determine an optimal matching
model, Viterbi scoring plays a remarkable role in speech
recognition systems based on HMM. A dynamic recognition
system based on human gestures is introduced by Chen et al.
[37], which are applicable in IPTV remote control. A
hardware accelerator is also designed for object detection of
real-time moving objects. These surveillance systems cap-
tured the videos from several cameras, and these videos often
suffer from various noises. Different researchers also pro-
posed different techniques to overcome the noise problem.
For example, Niu et al. [38] proposed an approach to remove
blurriness in images of surveillance systems videos during a
raining environment. Wang et al. [39] proposed a novel
method of noise processing for underwater targets. This
approach is further integrated with CNNs to identify the
underwater target.

Currently, the advancements in computer vision-based
algorithms and techniques are increasing rapidly and
adopted for many daily life use cases. One of the most
advanced algorithm is generative adversarial networks [7].
They are generative models based on deep learning
methodologies and are categorized into supervised and
unsupervised models. Cycle consistent generative adver-
sarial network (CCGAN) is one of the types of unsuper-
vised generative models, which performs image translation
in unsupervised manner [5]. It is used in most of the
computer vision-related domains. Recently, Kearney et al.
[40] involved the attention mechanism in CCGANs to
perform image translation of MRI to CT scans. Similarly,
Armanious et al. [41] translated the Positron Emission-
computed Tomography (PET) images to CT scan images
using CCGAN s along with nonadversarial cycle losses. On
the other hand, when it comes to gait recognition, Yu et al.
[42] proposed a framework, namely, GaitGAN to select
invariant features of an individual’s gait to reduce the effect
of covariate factors. However, the presented approach
using GANs model is trained in the supervised manner in
which the source and target GEIs are already known.
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Similarly, for view-specific gait recognition, He et al. [43]
employed the multitask GANs to directly change view
specific attributes in the latent space. Furthermore, the
alpha-blending GANs are employed by Li et al. [44] to
translate the GEIs affected by carried objects to GEIs
without carried objects. It is reasonable to draw a con-
clusion that analysis of human behavior for different kinds
of tasks, such as person identification for the biometric
systems, speech recognition, gesture recognition, and ac-
tion recognition, are active research areas in the current
era.

3. Proposed Methodology

The proposed methodology of the gait recognition system is
presented in Figure 1. As shown in Figure 1, we first train the
CNN model on a gallery set, which is composed of indi-
vidual’s GEIs during a normal walk. Later, we used the
CCGAN model to convert the image disrupts from covariate
factors to regular GEIs and make recognition possible and
accurate in the uncooperative setting of experimentation.

3.1. Input Data. The popular gait representation, namely,
gait energy image (GEI) is used as an input to the proposed
approach [6]. It can be computed by first extracting the
frames of a sequence of an individual followed by compu-
tation of silhouettes using background subtraction from
each frame. Then, at the last, all the silhouette images of one
sequence of a particular individual are averaged and aligned
to form a gait energy image representation. Equation (1)
shows the mathematical formulation of GEI:

T
GEI:G(x,y):%ZI(x,y,t). (1)
t=1

In equation (1), the G (x, y) represents the resulting GEI,
where I(x, y,t) denotes the silhouette image with frame
number ¢ and coordinates x, y, while a total number of
frames are represented by T. The main advantage of this gait
representation is less storage space and computational time.
The silhouette images are prone to noise, and processing
each silhouette frame is too costly; therefore, GEIs are the
most effective gait representation. Furthermore, the GEIs are
also very sensitive to different covariate factors, which
strongly affect the shape of the GEI. Some examples of gait
energy images of the CASIA-B data set with different
walking conditions are shown in Figure 2.

3.2. CNN Architecture. After extracting the GEIs of all
subjects, we resized and rescaled them to 240 x 240 x 1
image dimension and give them as an input to CNN ar-
chitecture. We have used the same CNN architecture pro-
posed by Bukhari et al. [4]. In this CNN architecture, there
are four convolution blocks. Each block is composed of 3 x 3
convolution layers, followed by 2 x 2 max-pooling layers to
reduce the spatial dimensions of the input data and select the
maximum value from the input region as per the following
equation:
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FIGURE 1: The proposed framework for gait recognition in uncooperative environment.
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FIGURE 2: Examples of CASIA-B gait data set in which the first row corresponds to GEIs with a normal walk, the second rows correspond to
subjects carrying a bag, and the third row corresponds to subjects wearing coats.

y;cw = Og;)%)s(p(xikxpm,wxpw)- (2)
In the above equation, a neuron or unit y;'(.w on down
sampling layer is present on a particular position (k, w) in it
output map. On the region p X p, a maximum value is
chosen and assigned to y!  neuron in the i input map x;.
Subsequently, the activation function used after each con-
volution layer is Leaky ReLu to achieve nonlinearity. It is
defined in the following equation:

(3)

X if x>0 }
0.01x otherwise |

f(x)={

In the above equation, x is a feature map resulted from
the convolution layer. If the values in x are greater than zero,
they are preserved; otherwise, they are multiplied by a small
value of 0.01. This activation function is an improved form of
the ReLu activation. In the case of ReLu activation function,
the gradient is 0 for all input values less than zero,

deactivating the neurons in that region and perhaps causing
the dying ReLu problem. On the other hand, Leaky ReLu
overcomes this problem. In the case of Leaky ReLu, instead
of converting the gradient 0 for all negative values, it returns
a small number multiplied by 0.01 times x. This small value
shows the influence of negative values in feature maps x. The
higher the value, the lower the influence. As a consequence,
it also produces outputs for negative values. Furthermore, all
the convolutions are not padded. The feature maps, which
are the output of the convolutional layers, can be computed
by the following equation:

(Y W, %Y. (4)

In the above equation, X is the input to the layer and Y is
the output of layer in which * denotes the operation of
convolution, where b; is bias term and W;;(i,j € N) is
weight optimized by weight optimizer algorithm, and size of
input data is denoted by n. Moreover, all the convolution



blocks in our proposed architecture are responsible for
extracting the semantic information from the GEI and make
a feature set that discriminates each individual based on their
gait. At the last, two fully connected layers are used. The
number of neurons in the last layer is equal to a number of
class labels or individuals present in the data set followed by
the “softmax” activation function, which returns the
probabilities of every class.

The architecture is trained on 124 individuals present in
the CASIA-B gait data set with normal walking conditions.
In addition, the epochs are set to 30 with weight optimizer
Adam along with a learning rate of 0.0001, respectively.

3.3. Cycle Consistent Generative Adversarial Networks
(CCGANE ) for Reconstruction of Gait Features

3.3.1. Problem Formulation. To satisfy the contribution of
the presented work, we have employed the cycle consistent
generative adversarial network (CCGANs). The main ob-
jective of this study is to handle the unknown and dynamic
walking conditions. More specifically, we seek to reconstruct
the gait features, which are destroyed by the presence of
covariate factors. So, after compiling the input data in the
form of GEIs for each subject, we created the CNN model.
This CNN model is trained on normal walking sequences
(videos) of all subjects, that is, 124. Now, if one of those 124
individuals comes in front of a surveillance camera while
carrying a bag for identification, then the system performs
poorly due to the occlusion of the bags, which disrupts the
gait features. Because when a bag is placed in front of certain
areas of the body, they become hidden, and hence, important
information regarding the gait style of an individual is also
lost. The same is the case with other carrying items and
wearing conditions. Therefore, it is difficult to identify the
person. We may also consider it as how to recognize the
individuals from their faces if faces are covered by masks
because masks are occlusions that hide the features of the
face. So, a cycle consistent GAN model is deployed to re-
cover/reconstruct the original image or gait features that are
affected by these covariate factors. This model was proposed
by Zhu et al. for image-to-image translation tasks when the
source and target images are not paired [5]. The advantage of
this model is that it carries out training without paired
images. In our scenario, we reconstruct the GEIs of bags and
coats of each individual to a corresponding normal GEI so
that features are recovered and human recognition is pos-
sible and CNN is able to predict the subject ID with more
accurate results. Furthermore, CCGANS efficiently handle
dynamic covariate conditions of bags and coats that are
unknown to the model; that is, we train the CNN model on
individuals with normal walk styles and validate it on in-
dividuals’ walks while carrying bags and wearing coats.
Furthermore, Table 1 shows the symbol to describe all used
notations or keywords.

3.3.2. Architecture and Design Mechanism of CCGANS.
The model architecture of Cycle Consistent GANs is
composed of two generator models and two discriminator

Computational Intelligence and Neuroscience

TaBLE 1: Notations and definitions.

Notations Definitions

D, Discriminator model of domain A (probe bags/coats)
Dy Discriminator model of domain B (normal GEIs)
A Training samples of domain A {a,}~, € A

B Training samples of domain B {bi}fil €B
F{(b)} Translated normal GEIs

Leye Cycle consistency loss function

Lgan Adversarial loss function

G Translator of domain A

F Translator of domain B

min Minimizing the variable

max Maximizing the variable

models. The generator models are responsible for generating
the required images, and discriminator models are used to
discriminate between the real and fake images generated
artificially. Our source domain contains GEIs of bags and
coats (Domain A), whereas the target domain contains the
normal walk GEIs of individuals (Domain B). The input of
the first generator (generator A) is the images from Domain
B, that is, GEIs with a normal walk, and the output is the
translated images to Domain A, which is bags and coats
GEIs. Similarly, the input of the second generator (generator
B) is the images from Domain A, and the output is translated
images from Domain B. Each generator model is associated
with its corresponding discriminator model. The discrimi-
nator A takes input images of bags and coats, which are
domain A images along with the artificially generated images
from generator A and predicts that whether the images are
real or fake. Similarly, the second discriminator B takes
normal real GEIs and artificially generated normal GEls
from generator B and then predicts that whether they are
real or fake. The adversarial zero-sum loss is used to train
both generator and discriminator models. The main ob-
jective of the generator model is to best fool the discrimi-
nator model with the help of generated images, and the
discriminators models are learned to predict and detect the
fake and real images of both domains. Furthermore, the
CCGAN models use the term cycle because a cycle is created
in the whole process. The input of generator B is the images
from Domain A, that is, bags and coats, and the output of
generator B is the normal GEIs, which are our required
translation. This output is the input of the generator A to
generate images of domain A and hence the cycle is created.
Similarly, the identical procedure is followed with generator
A.

The architectural configurations of the discriminator and
generator model are the same as described in the previous
literature [5]. The discriminator is simply a CNN that
performs image classification and predicts that the image is
real or fake. A convolution operation, followed by instance
normalization instead of batch normalization is used in the
discriminator model of the CCGANs. The activation
function used in the whole discriminator model is Leaky
ReLu. All the convolutions are padded convolution with a
kernel size of 4 * 4. Furthermore, the hyperparameters of the
discriminator model include loss function, which is Mean
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Squared Loss (MSE), and Adam optimizer used for opti-
mizing weights with a learning rate of 0.0002. The formula of
computing MSE loss during GEI translation is given by the
following equation:

1 n
MSE = n Z (yi - )A’i)z’ (5)
i=1

where y; and y; are the actual and predicted class labels of
the model and # is the total number of classes. On other
hand, the architecture of the generator model is based on an
encoder-decoder structure. The generator model first
downsamples the image to get the context of the image up to
the bottleneck layer and then encodes this context with the
help of ResNet layers that uses the skip connections followed
by upsampling layers to decode the context to the required
output image.

3.3.3. Training Mechanism of CCGANs. The training of
discriminator models consists of real and artificially generated
images while the generator models are trained with the help of
their discriminator models. Generator models use the
adversarial loss and update and minimize it from the pre-
diction of the discriminator as “real” for generated images.
This encourages generator models to generate images that are
closer to our required target domain images, i.e., normal GEIs.
Moreover, the other loss functions that are used by the
generator model include identity loss, forward loss, and
backward loss. For the adversarial loss, consider the mapping
function for bags/coats to normal GEI translation as
G: A —> B and discriminator B of domain Dp, i.e., normal
GElIs, then the objective is expressed in the following equation:

LGAN (G’ DB’ A’ B) = IE[,NP da ta(b) [log DB (l’))]
+ Eqvp da ta(@ [108 (1 — Dy (G(a)],
(6)

where G is a generator that learns to generate the required
images G(a) that look closer to images of domain B, i.e.,
images with recovered gait features, while the objective of
the discriminator Dy is to distinguish the generated images
G (a) and real images b. G is attempting to minimize this
objective, whereas adversary D is seeking to maximize it.

min G max DLy (G, Dy, A, B). (7)

Similarly, for mapping function F: B — A, the similar
adversarial loss is introduced along with discriminator D,
and computed by the following equation:

min Fmax D Ly (F, D4, B, A). (8)

Moreover, the forward and backward cycle consistency
are also computed. Consider an image a from the domain A
for which the reconstruction of gait features is needed. So,
for the forward cycle consistency, the whole cycle in CCGAN
image translation can bring an image a to its original form,
ie.,a — G(a) — F(G(a)) = a. Similarly, for backward
cycle consistency, we have instance b from the domain B,
and G and F should also satisty the equation of backward

cycle consistency: b — F(b) — G(F (b)) = b. So, all the
mechanism of cycle consistency loss is given in the following
equation:

Ly (G, F) = Eyp data(a [IF (G (a)) —all]
+ Epep da taw) [IF (G (b)) = bl ].

Furthermore, the full objective is given by the following
equation:

L(G,F,D,,Dp) = Lgan (G, Dy, A, B)
+ Lgan (Fs Dy, B, A) + AL, (G, F).
(10)

In the above equation, the relative importance of two
objectives can be controlled by A. The main aim is to solve
the objective given in equation (10):

G*,F" = argmin max L(G, F, D, Dy). (11)
G,F,D,,D,

It is observed that this model can be viewed as training of
two “autoencoders” [45]. One auto encoder FoG: X — X
learned jointly with the second autoencoder GoF: Y — Y.
However, both autoencoders have their internal structures,
and an intermediate representation is used to map an image
to itself that is a translation of image from one domain to
another domain. These scenarios can be observed as a special
case in the work of “adversarial autoencoders” [46], in which
the bottleneck layer of an autoencoder is trained with the
help of adversarial loss to generate any arbitrary target. In
our case, the domain B, which contains normal GEIs of
different subjects, is the target distribution for the autoen-
coder A — A.

4. Experimental Setup and Results

4.1. Data Set. In our proposed work, we have used a popular
data set for gait recognition named CASIA Gait data set
provided by the Chinese Academy of Sciences (CASIA) [47].
It is composed of three main parts named CASIA A, B, and
C. For this research, CASIA B is considered. CASIA B is a
large multiview gait data set with viewpoints starting from 0
to 180 degrees. For each viewing angle, it consists of data of
124 subjects with each subject having a total of ten sequences
available. Of ten sequences, six sequences are normal walk
sequences [nm-01 to nm-06], two sequences in which
subjects are walking with a bag [bg-01, bg-02], and two
sequences in which clothing conditions are focused and
subjects walk with wearing a coat [c]-01, cl-02].

4.2. Evaluation Metrics. To evaluate the proposed model, the
performance measure includes the accuracy, Flscore, pre-
cision, and recall are considered [48]. The detail of each
measure is given below:

4.2.1. Accuracy. The total number of true predictions by the
underlying model from overall predictions is measured by
accuracy, and it is defined in the following equation:
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TaBLE 2: Results of CNN and CCGANS.
Sr. no Probe set Accuracy (%) Precision Recall Flscore
1 Normal (CNN) 97.98 0.98 0.97 0.97
2 Bags (CNN) 38 0.29 0.38 0.31
3 Coats (CNN) 24.19 0.17 0.24 0.19
5 Bags (CNN + CCGANs) 79 0.72 0.79 0.74
6 Coats (CNN + CCGANSs) 51.8 0.38 0.51 0.41
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FIGUure 3: Graphs of different loss functions on both probe sets.

R TP+ TN
ccuracy = .
Y TP+TN+FP+FEN

(12)

4.2.2. Precision. Precision measures the total number of
positive class predictions by the model that are in fact
positive class predictions, and it is mathematically computed
by the following equation:

TP

—_— 13
TP +FP (13)

Precision =

4.2.3. Recall. Recall measures the total number of positive
class predictions by the model from all positive cases, and it
is mathematically computed by the folllowing equation:

TP

_— (14)
TP+ FN

Recall =

4.2.4. F1 Score. The both precision and recall metrics are
merged in F1 score to measure the entire performance of the
model. Mathematically, it is described in the following
equation:

Precision - Recall

Fl1=2 (15)

Precision + Recall’

4.3. Results and Discussion. All the simulations with python
implementation are run on Google Colab with a single
12 GB NVIDIA Tesla K80 GPU. It is necessary to mention
here that in our whole experimental setup, we handle the
unknown and dynamic walking conditions; that is, our
gallery set consists of all 124 individuals with a normal
walking condition with each individual having four se-
quences [nm-01-nm-04] as used by other researchers
[13, 29, 49]. So, our CNN model is trained with this gallery
set having 124 individuals. After this, the trained CNN
model weights are saved. We created two probe sets for
model evaluation, one with clothing condition (coats) and
the other with carrying condition (bags) of all 124 indi-
viduals. When we input these probe sets directly to our
trained CNN model, then the results are poor. The CNN
model fails to recognize the same 124 individuals on which
it was trained because at this time, all 124 individuals come
with an unknown walking condition. They wear jackets and
carry bags; thus, these covariate factors alter the gait
characteristics of all 124 people, causing the system to fail
to detect them. As shown in Table 2, the accuracy of the
trained CNN model is only 38% and 24.19% on probe set
bags and coats. So as a solution, we recover the features set
by employing cycle consistent generative adversarial net-
works (CCGANSs). It converts the data of all 124 persons
with bags and jackets to normal walk images and removes
all covariate factors. At the time of training of CCGANSs, the
source and their corresponding target images are not
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FIGURE 4: Loss of discriminators on number of steps per epoch with bags.
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FIGURE 5: Loss of generators on number of steps per epoch with
bags.

already known; that is, CCGANs automatically find the
normal GEI for bag GEI of a particular individual with the
help of Cycle Loss. CCGANs eliminate all covariate factors
that make recognition difficult. Afterward, the translated
data are fed into the CNN in order for the subject to be
recognized. Table 2 shows the results of directly inputting
covariate data to the CNN and the results of
CNN + CCGAN:S. It is evident from the table that the ac-
curacy of our proposed approach improves with CCGAN's
due to the reconstruction of gait features. On probe set with
bags, we have achieved 79% accuracy, and with coats,
27.61% results are improved. Similarly, the accuracy, recall,
and F1 score for bags are 0.72, 0.79, and 0.79, respectively,
whereas on coats, they are 0.38, 0.51, and 0.41.

Generator Losses With Probe Set Coats
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FIGURE 6: Loss of discriminators on number of steps per epoch with
coats.

Besides this, at the time of training of CCGANSs, loss
values for generators and discriminators of both domains are
shown in Figure 3. In Figure 3, the dA_loss1 is the loss of
discriminator on real examples of domain A images, that is,
bag or coat images, whereas dA_loss2 is the loss of dis-
criminator of domain A on fake examples, i.e., artificially
generated bags or coats images. Similarly, dB_lossl and
dB_loss2 are the losses of discriminators of domain B on real
and fake examples, i.e., original and translated normal GEIs.
Moreover, the loss of generators of both domains is also
given as g_lossl and g_loss2 in Figure 3. Each of these losses
is a weighted average of cycle consistency loss L., (both
forward and backward) and adversarial losses L as given
in equation (10). All these losses are recorded as per epochs.
Furthermore, we have also calculated the loss per example
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FIGURE 7: Loss of generators on number of steps per epoch with coats.
TaBLE 3: Comparative analysis with the existing work under covariate conditions.
Sr. no. Method Normal Bags Coats (%) Average accuracy (%) Covariate
1 Bashir et al. [13] 100.0% 78.3% 44.4 74.2 Yes
2 Gupta et al. [18] NA 86.2% 61.4 73.8 Yes
3 Hawas et al. [23] 97.6% 45.3% 49.6 64.1 Yes
4 Yu et al. [50] 95.97% 65.32% 42.74 68.01 Yes
5 Yao et al. [27] NA NA 38 38 Yes
6 Su et al. [25] 93.2% 72.8% 59.1 75.03 Yes
7 Proposed method 97.98% 79% 51.8 76.26 Yes

during training termed as the number of steps per epoch.
The per example loss graphs for both of the probe sets is also
given in Figures 4, 5, 6, and 7. In these figures, the x-axis
represents the steps per epoch, and the y-axis denotes losses
of discriminators and generators. We terminated training

after 12400 steps (50 epochs) because there was no progress
in losses beyond that. Table 3 also includes a comparison
with prior approaches that take strict covariate conditions
into account. From Table 3, it is observed that our proposed
approach outperforms the existing approaches.



Computational Intelligence and Neuroscience

5. Conclusion

Gait Recognition without human involvement is a complex
task in computer vision because all deep learning algorithms
are not as much better to capture every possible dynamic
walk environment. Generally, the computer vision algo-
rithms are trained on a particular type of data to extract
unique features and then conduct classification based on
those extracted features. However, in the case of gait rec-
ognition without human involvement, the covariate factors
change the gait features of individuals present in GEIs from
those on which the deep learning model was trained. These
covariate factors are unknown to the model, causing it to
perform badly. So, this research work uses CCGANSs to
reconstruct the GEIs in which the same features are re-
covered on which model is trained. The CCGAN model is
trained in an unsupervised manner to find a corresponding
normal GEI for the bag/coat GEI of a particular individual.
Then, the resultant translated images are tested by the CNN
model. Moreover, we have achieved a very encouraging
accuracy score of 79% in carrying conditions and also ac-
ceptable performance in clothing conditions. This work is
further improved and extended using various sensors, to
acquire gait data instead of only visual data and combine it
with deep learning techniques to make the system more
accurate and reliable.
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With the rapid development of the marine industry, intelligent ship detection plays a very important role in the marine traffic
safety and the port management. Current detection methods mainly focus on synthetic aperture radar (SAR) images, which is of
great significance to the field of ship detection. However, these methods sometimes cannot meet the real-time requirement. To
solve the problems, a novel ship detection network based on SSD (Single Shot Detector), named NSD-SSD, is proposed in this
paper. Nowadays, the surveillance system is widely used in the indoor and outdoor environment, and its combination with deep
learning greatly promotes the development of intelligent object detection and recognition. The NSD-SSD uses visual images
captured by surveillance cameras to achieve real-time detection and further improves detection performance. First, dilated
convolution and multiscale feature fusion are combined to improve the small objects’ performance and detection accuracy.
Second, an improved prediction module is introduced to enhance deeper feature extraction ability of the model, and the mean
Average Precision (mAP) and recall are significant improved. Finally, the prior boxes are reconstructed by using the K-means
clustering algorithm, the Intersection-over-Union (IoU) is higher, and the visual effect is better. The experimental results based on
ship images show that the mAP and recall can reach 89.3% and 93.6%, respectively, which outperforms the representative model
(Faster R-CNN, SSD, and YOLOV3). Moreover, our model’s FPS is 45, which can meet real-time detection acquirement well.
Hence, the proposed method has the better overall performance and achieves higher detection efficiency and better robustness.

1. Introduction

With the rapid development of the shipping industry, there
are more frequent human activities on the ocean in recent
years. Therefore, robust ship detection is strongly needed to
meet the demand. Currently, ship detection is used in port
transportation management, sea area monitoring over illegal
activities, and ship abnormal behavior detection for navi-
gation safety. Modern radar target tracking equipment and
ship automatic identification systems are mainly based on
positioning, and thus, ship detection needs substantial
improvements. In response to these problems, many re-
searchers have used traditional machine learning methods to
explore this field in search of better results. For example,
they used features of ships combined with classifiers [1, 2].
Although these methods achieve good results, they require

manual extraction of features and a classifier with good
performance, which needs further validation in terms of
efficiency and accuracy. Fortunately, the development of
deep learning has enabled object detection to be widely used
in many scenarios, such as surveillance security and au-
tonomous driving. In 2019, Jiao et al. [3] provided a com-
prehensive analysis of the current state and future trends of
deep learning-based object detection. Convolutional Neural
Networks (CNN) can effectively learn the corresponding
features from massive samples, which avoids the compli-
cated feature extraction process and achieves higher accu-
racy. In 1998, Lecun et al. [4] proposed LeNet-5 and
achieved success in the recognition of handwritten char-
acters. Since then, the performance of CNNs has been
improved with the appearance of deeper and more complex
CNNs such as AlexNet [5], VGGNet [6], GoogLeNet [7],


mailto:zjxu@shmtu.edu.cn
https://orcid.org/0000-0002-1959-8597
https://orcid.org/0000-0002-1182-4537
https://orcid.org/0000-0003-0336-3977
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7018035

ResNet [8], and DenseNet [9]. In 2020, Abdollahi et al. [10]
used a generative adversarial network (GAN) architecture to
extract building footprints from high-resolution aerial im-
ages. However, the algorithms of regular CNNs combined
with feature pyramid networks (FPN) have become a new
focus in the field of object detection. The object detection
algorithms currently mainly include two technical routes:
two-stage detection and one-stage detection. The two-stage
detection is divided into two steps. First obtain the region
proposals, and then, these region proposals are classified and
regressed to get the final detection results. Two-stage de-
tectors mainly include R-CNN [11], SPP-Net [12], Fast
R-CNN [13], Faster R-CNN [14], and Mask R-CNN [15]. For
one-stage detection, it treats the object detection problem as
a regression problem. A unified CNN completes the object
classification and location, which is an end-to-end target
detection solution. One-stage detectors mainly include
OverFeat [16], SSD [17], and YOLO [18-21]. Many scholars
proposed improved YOLOv3 and SSD for object detection
and obtained outstanding detection performance [22, 23].
The two-stage detection algorithm such as Faster R-CNN has
high accuracy, but its region proposal network (RPN) is
time-consuming and therefore reduces the detection effi-
ciency. On the contrary, although the YOLO series has a
great advantage in terms of detection speed, they cannot
achieve high accuracy.

The SSD is used as a one-stage detector and introduces a
multiscale feature layer for object detection, which has faster
detection speed but accuracy needs to be improved. In this
paper, the SSD is applied to ship detection and several
improvements are used to improve the overall performance
of the network.

(1) To address the problem of poor performance of small
target detection, we apply a dilated convolution on the low-
level feature layer to expand the receptive field so that the
low-level feature layer can also contain more feature in-
formation. At the same time, we perform multiscale fusion
on the original feature layers after up-sampling so that the
network can make full use of the contextual information. (2)
We introduce a residual structure in the prediction module
of the network to enable the network to extract deeper
dimensional feature information for better classification and
regression. (3) We use the K-means clustering algorithm to
reconstruct the prior bounding box so as to obtain a more
suitable scale and aspect ratio, which can improve both the
visual effect and the efficiency of ship detection. Finally, we
propose a new SSD-based network, called NSD-SSD, which
is significantly better than the original SSD. Compared with
SSD and other detection networks, the proposed network
provides a good trade-off between real-time detection and
accuracy.

The rest of this paper is organized as follows. In Section
2, we introduce the related work of the ship detection. In
Section 3, we give detailed program of our proposed ap-
proach. Section 4 outlines the experimental results and
comparisons against other state-of-the-art methods. Finally,
conclusions are made in Section 5.
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2. Related Work

This paper categorizes the previous work of ship object
detection to traditional methods and deep learning methods.

The traditional detection methods include two types. (1)
Ship-radiated noise-based methods: Kang et al. [24] pro-
posed a multiple classifier fusion algorithm based on many-
person decision theory to identify ship radiated noise, with
accuracy rate of over 96%. Zhao et al. [25] proposed a
decision tree support vector machine (SVM) classification
method based on the ship-radiated noise multidimension
feature vector for the measured radiated noise of three kinds
of ship targets. Luo and Wang [26] used the time-frequency
range characteristics of ship noise to distinguish ship’s stern,
ship’s mid-aft, and ship’s middle part to complete the po-
sitioning and identification of ship targets. Peng et al. [27]
proposed a ship-radiated noise model based on the winger’s
higher-order spectrum for feature extraction. (2) Ship
structure and shape characteristics-based methods: Zhu
et al. [28] proposed a novel hierarchical method of ship
detection from spaceborne optical image based on shape and
texture features, and this method can effectively distinguish
ships from nonships on the optical image dataset. Liu et al.
[29] used segmentation and shape analysis to detect inshore
ships and proved their method was effective and robust
under various situations. Shi et al. [30] proposed an ap-
proach involving a predetection stage and an accurate de-
tection stage to detect ships in a coarse-to-fine manner in
high-resolution optical images. Wang et al. [31] proposed a
detection method based on DoG (Difference of Gaussian)
preprocessing and shape features to detect ship targets in
remote sensing images.

Most of the traditional methods use manually extracted
features, which will lead to low efficiency and high time
consumption. At the same time, even if a classifier with good
performance is used to classify these features, the accuracy
cannot meet the actual demand. Therefore, the recognition
rate of these methods in complex environmental back-
ground and multivessel classification is not ideal.

The deep learning detection methods: with the boom
development of deep learning, many ship object detection
methods based on deep CNN have been proposed. Zou et al.
[32] proposed an improved SSD algorithm based on
MobilenetV2 [33] and finally achieved better detection re-
sults in three types of ship images. Zhao et al. [34] proposed a
new network architecture based on the Faster R-CNN by
using squeeze and excitation for ship detection in SAR
images. Shao et al. [35] proposed a saliency-aware CNN
framework and coastline segmentation method to improve
the accuracy and robustness of ship detection under com-
plex seashore surveillance conditions. Nie et al. [36] pro-
posed an improved Mask R-CNN model, which can
accurately detect and segment ships from remote sensing
images at the pixel level. Guo et al. [37] proposed a novel
SSD network structure to improve the semantic information
by deconvoluting high-level features into a low-level feature
and then fusing it with original low-level features, and the
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model performed well on both the PASCAL VOC and
railway datasets. Huang et al. [38] proposed a new network
by referring to the feature extraction layer of YOLOvV2 and
feature pyramid network of YOLOV3, and the new network
model can detect seven types of ships. Zhao et al. [39]
proposed the Attention Receptive Pyramid Network
(ARPN), which detected multiscale ships in SAR images. Li
et al. [40] proposed a new method, combining the Saliency
Estimation Algorithms (SEAs) and the Deep CNN (DCNN)
object detection to ensure the extraction of large-scale ships.
In 2021, Zhao et al. [41] proposed a feature pyramid en-
hancement strategy (FPES) and a cascade detection mech-
anism to improve SSD, and the improved model can be
applied to vehicle detection quickly and efficiently.

In short, although the existing ship target detection
methods have made major breakthroughs, they still have
certain limitations. Firstly, the low-level feature map con-
tains less semantic information but can accurately present
the location of the target. In contrast, high-level feature maps
contain rich semantic information but cannot accurately
display the location of objects. In addition, the previous
methods cannot extract the features of small objects well. In
this paper, we use a multiscale feature fusion algorithm,
which considers the ability of the entire network to combine
the context information and improve small target detection
performance. In addition, we have also improved the pre-
diction module and the settings of prior boxes. Finally, we
test the improved model on the ship dataset.

3. Materials and Methods

3.1. Single-Shot Multibox Detector. Figure 1 shows the SSD
network structure diagram with a backbone network VGG-
16. VGG-16 has stable network structure and good feature
extraction capabilities. The SSD network converts FC6 and
FC7 in VGG-16 into convolutional layers, removes all
Dropout layers and FC8 layers, and adds four additional
convolutional layers: Conv6, Conv7, Conv8, and Conv9. The
feature pyramid structure is to detect objects of different
sizes. In the process of detection, a large number of prior
boxes are usually generated, and these prior boxes have
multiple predefines scales and ratios. Finally, it is required to
apply a Nonmaximum Suppression (NMS) process to obtain
the final test results. The biggest advantage of the SSD
network is that classification and regression are carried out
at the same time, which improves the detection speed
compared with other models such as Faster R-CNN.

3.2. Our Proposed Network. The overall architecture of the
Novel Ship Detection SSD (NSD-SSD) is shown in Figure 2.
From the figure, the architecture mainly is formed by three
parts, a dilated convolution layer, a multiscale feature fusion
layer, and a prediction layer. In addition, the prior boxes are
reconstructed within this network. Ship images are sent to
the NSD-SSD network for a series of operations, and finally,
the specific location and type of ship can be obtained.

To understand the features extracted by the network
more clearly, a visualization of the feature maps is given in

Figure 3. In the figure, from left to right, the input image, the
feature maps extracted by SSD, and the feature maps
extracted after feature layer fusion are shown. From the
figure, we can see that the feature maps extracted by the
original SSD network lack rich semantic information. For
example, the main characteristics of the low-level feature
layer Conv4_3 are small perceptual field and too poor ability
to extract target features. However, after the dilated con-
volution and features fusion, the feature information of the
target is greatly enriched. Similarly, all other scale layers also
extract a large amount of meaningful contextual information
after feature fusion, which greatly improves the accuracy of
object detection.

3.2.1. Dilated Convolution Layer. Traditional SSD network
mainly uses low-level feature layer Conv4_3 to detect small
objects. However, due to insufficient feature extraction in the
Conv4_3 layer, the detection effect of small objects is not
ideal. To address this issue, we use dilated convolution to
map high-dimensional features to low-dimensional input. In
this paper, we choose the lower-level feature layer Conv3_1
for dilated convolution and merge it with Conv4_3 for
feature fusion. In this way, the range of the receptive field can
be enlarged without loss of image detail information and
obtains more global information.

Dilated convolution is to inject dilation on map of the
standard convolution to increase the receptive field. The
dilated convolution has another hyperparameter called the
dilation rate, which refers to the number of intervals of the
convolution kernel. Assuming that the original convolution
kernel is f and the dilation rate is &, the new convolution
kernel size n after dilated convolution is

n=ax(f-1)+1 (1)

The receptive field size r after dilated convolution is
;e [z(a/2)+2 _ 1] » [2(0c/2)+2 B 1]. 2)

Suppose that there is a dilated convolution with f =3
and « = 1, which is equivalent to a standard convolution. Its
receptive field is 3 X 3. When f = 3 and « = 2, according to
equations (1) and (2), its new convolution kernel is 5 x 5, and
the receptive field size is expanded to 7 x 7 without losing
detailed information.

In this paper, we choose the Conv3_1 layer for dilated
convolution. The original kernel is 3 x 3, stride is 2, pad is
2, and dilation rate is 2. From equation (1), the new
convolution kernel is 5 x 5. The original feature map of
Conv3_1 layer is 75 x 75 x 256. After performing dilated
convolution, it obtains a feature map size which is
38 x 38 x512. From equation (2), the receptive filed is
7 x 7. The Conv3_1 layer undergoes feature map fusion
with the Conv4_3 layer after dilated convolution. There are
two main ways of feature map fusion: additive fusion and
cascade fusion. Because the cascade fusion has a small
amount of calculation and high accuracy, in this paper, we
choose cascade fusion method. Figure 4 shows the process
of feature map fusion.
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FIGURE 2: The architecture of the proposed novel ship detection SSD (NSD-SSD).

To better explain how the dilated convolution improves
the performance of the network with the addition of feature
maps, Figure 5 shows the feature maps of the image before
and after the dilated convolution.

In the figure, (a) is the original image, (b) are the feature
maps of Conv4_3 in the SSD network, and (c) are the feature
maps with dilated convolution and feature fusion. The
original features of the Conv4_3 activation area and

perceptual field are small and cannot detect the ship targets
at the corresponding scales well. The original features of the
Conv4_3 activation area and perceptual field are small and
cannot detect the ship targets at the corresponding scales
well. On the contrary, the dilated convolution and feature
fusion are able to more richly extract the texture and detail
features on the low-level feature maps, and the contours and
shapes are more clearly distinguished.
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FIGURE 3: Feature maps of ship images extracted by the network.
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FiGure 5: Comparison of the feature maps in the original SSD and after the dilated convolution.



3.2.2. Multiscale Feature Fusion Layer. The original SSD
network uses the Feature Pyramid Network (FPN) to detect
different feature layers so that it can adapt to different object
sizes. Although this detection method provides the possi-
bility of multiscale object detection, it does not consider the
combination of shallow features and deep features. In this
study, on the basis of the original SSD network, we introduce
a multiscale feature fusion mechanism. This method can
synthesize shallow high-resolution features and deep se-
mantic features to make joint decisions. The green dotted
box in Figure 2 shows the specific fusion connections of
different feature layers. The left half of the figure is the
original SSD network feature layer, and the right half is the
fused feature layer. The specific implementation process of
this feature fusion method will be described in detail below.
First, perform 1 x 1 convolution of Convll_2 to obtain P6,
then perform up-sampling of P6, and finally perform 1 x 1
convolution of Conv10_2 with the feature layer obtained by
up-sampling P6 to obtain P5. The purpose of up-sampling
here is to obtain the feature map of the size required for
fusion. After the same fusion process, the fused feature layers
are successively P4, P3, P2, and P1. In this way, the com-
bination of shallow features and deep features is considered
comprehensively, and it is possible to improve the detection
accuracy. P1 is formed by fusion of dilated convolutional
layer and P2 up-sampling. The parameters of the prediction
layer are shown in Table 1.

3.2.3. Improved Prediction Module. The SSD network uses a
set of convolution filters at each effective feature layer to
obtain prediction results. For each effective feature layer
with a size of h x w with dchannels, use a 3 x 3 convolution
operation on each route to obtain the score of each category
and the change of each prior bounding box.

MS-CNN [42] points out that improving the subnetwork
of each task can improve the accuracy. DSSD [43] follows
this principle and proposes an improved prediction module,
and experimental results show that this method can improve
detection accuracy. Therefore, we transplant the idea of
DSSD into our network model to better improve the de-
tection performance. The prediction layer corresponds to the
red box in Figure 2. That is, on the basis of SSD, the original
structure is changed to a residual module. The residual
prediction block allows the use of 1x1 convolution to
predict the score of each category and the changes of prior
boxes. The structure of the original predictor and the im-
proved predictor are shown in Figure 6. In this way, deeper
dimensional features can be extracted for classification and
regression.

3.2.4. Reconstruction of Regional Prior Box. The perfor-
mance of deep learning object detection algorithms largely
depends on the quality of feature learning driven by training
data. In the SSD object detection task, the training data is the
regional prior box. The SSD network has selected a total of 6
effective feature layers as the prediction layer, the sizes of
which are (38, 38), (19, 19), (10, 10), (5, 5), (3, 3), and (1, 1),
but the number of a prior bounding boxes set on each feature
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map is different. The prior bounding box has two hyper-
parameters: scale and aspect ratio. The scale of a prior
bounding box in each prediction layer is

St = Soin +M (k-1), kel[l,m]. (3)
m—1

Among them, m refers to the number of feature maps
(m = 6 in the SSD algorithm), s, represents the ratio of the
prior box size of the kth feature map to the picture, S,;,
represents the minimum value of the ratio, and the value is
0.2, and S, indicates the maximum value of the ratio, and
the value is 0.9. The aspect ratio of the prior bounding box is
generally set to a, = {1,2,3,1/2,1/3}. The width and height

of the prior bounding box are as follows:

wi = Si\a,
a Sk (4)
h = —.
N

By default, each feature map will have a prior bounding
box with a, =1 and a scale of S;. In addition, the prior
bounding box with a scale of S} = /S;S,; will be added. In
this way, each feature map has two square prior bounding
boxes with an aspect ratio of 1 but different sizes. The
maximum side length of the square prior bounding box is
Si = \/S;Sks1> and the minimum side length is S;. Table 2
lists the min-size and max-size of the prior bounding boxes
used in this paper.

As shown in Figure 7, 4 prior bounding boxes are
generated, two squares (red dashed line) and two rectangles
(blue dashed line). At this time, the aspect ratio a, = {1, 2}.
Among them, Sy * 300 is the side length of the small square
and ~/S; S, * 300 is the side length of the large square. 300
is the size of the input image in the SSD algorithm. The width
and height of the corresponding two rectangles are

1
a;

1 1
— %S, %300, —— *S;, *300.
\a, k \1/a, k

When 6 prior bounding boxes are to be generated, the
aspect ratio a, = {1,2, 3}. The center point of each prior box
is (i +0.5/|fil, j+0.5/|f]),iand j € [0,]f ], and f is the
size length of the feature map. In this paper,
fr=138,19,10,5,3,1}. Table 3 shows the detailed param-
eters of the prior bounding boxes of the SSD algorithm.

In the SSD algorithm, the scale and aspect ratio of the
prior boxes in the network cannot be obtained through
learning, but manually set. Since each feature map in the
network uses different prior bounding boxes in scale and
shape, the debugging process is very dependent on expe-
rience. In this paper, we use the K-means algorithm to
predict the scale and proportion of the prior bounding box
to improve the detection efliciency of the network. The
standard K-means clustering algorithm uses Euclidean
distance to measure distance. But if Euclidean distance is

V@, # Si % 300, * S * 300,

(5)
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TaBLE 1: Parameters of the prediction layer.

Prediction layer Kernel size Padding Kernel numbers Strides Feature map
P1 3x3 1 1024 1 38 x38
P2 3x3 1 1024 1 19x19
P3 3x3 1 512 1 10x10
P4 3x3 1 256 1 5x5
P5 3x3 1 256 1 3x3
P6 3x3 1 256 1 1x1
Conv
»l 3x3 box
Conv
Feature map
(a)
Conv
1
024
Eltw Sum
L/ L/ 3x3 box
Conv
. 1
1
R56 256

Feature map

(b)

F1GuRre 6: The prediction process of the feature layer. (a) The original SSD predictor: obtain the score of each category and the change of the
prior box after two convolution routes. (b) The improved predictor: add the residual structure on the basis of (a) to obtain the prediction

result.

TaBLE 2: Size of prior bounding boxes for different feature layers.

Feature layer Min-size Max-size
Conv4_3 30 60
FC7 60 111
Conv8_2 111 162
Conv9_2 162 213
Convl10_2 213 264
Convll_2 264 315

used here, the larger boxes will produce more errors than the
small boxes. Therefore, we use other distance measurement

methods, and the specific equation is as follows:

d (box, centroid) = 1 — IOU (box, centroid)
(6)
= 1-10U(x}, yj wj, by), (% 33 Wi H )|

IoU is the intersection ratio between the regional prior
bounding boxes and the ground truth boxes, and we expect a

larger IoU. The purpose of clustering is that the prior
bounding boxes and the adjacent ground truth have a large
IoU value. Equation (6) just ensures that the smaller the
distance, the larger the IoU value.

In this paper, we will traverse different types of labeled
boxes in the dataset and cluster different types of boxes.
Some specific parameters in equation (6) are as follows:
(xj,yj,wj,hj), je{l,2,...,k}, is the coordinates of the
label boxes. (x;, yj) is the center point of the box, (wj, hj) is
the width and height of the boxes, and N is the number of all
label boxes. Given k cluster center points (W;, H;),
i€{1,2,...,k}, where W; and H; are the width and height of
the prior bounding box. Calculate the distance between each
label box and each cluster center, and the center of each label
box coincides with the cluster center during calculation. In
this way, the label box is assigned to the nearest cluster
center. After all the label boxes are allocated, the cluster
centers are recalculated for each cluster. The equation is as
follows:
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FIGURE 7: Schematic diagram of the prior bounding box. At this time, the aspect ratio a, = {1, 2}, and there are 4 prior bounding boxes.

TaBLE 3: The specific parameters of prior bounding boxes in the SSD algorithm.

Feature map Size Numbers a,
Conv4_3 38x38 4 1,2
FC7 19x19 6 1,2,3
Convs8_2 10x10 6 1,2,3
Conv9_2 5x5 6 1,23
Conv10_2 3x3 4 1,2
Convll_2 I1x1 4 1,2
1 0.85
w = _— )
i Ni z Wi,
X (7) 0.80 -
H.=— ) h,
"N 2h 0.75
where N; is the number of label boxes in the ith cluster, that %
is, find the average of all label boxes in the cluster. Repeat the 2 0.70 1
above steps until the cluster center changes very little. z
In this paper, we set the number of cluster center k = {0, 0.65 ~
1,2,3,4,5,6,7,8,9, 10} to conduct experiments and use the
average IoU to measure the results of the experiment, so as to 0.60 -
complete the reconstruction of the prior box. It can be seen
from Figure 8 that when k<6, the average IoU increases 0.55
greatly, and when k> 6, it basically tends to be flat. By 0 11

combining the calculation amount of the entire algorithm
for comprehensive consideration, we choose k = 6. At this
time, the aspect ratio of the prior bounding box is predicted
to be [0.35, 0.89, 1.18, 1.69, 1.89, 2.86]. Table 4 shows the
specific parameters of the prior bounding box setting in the
NSD-SSD algorithm. Through the method of prior bounding
box reconstruction, the error of the algorithm is reduced
with improved accuracy and efficiency.

3.3. Loss Function. When training the detection network, we
need to measure the error between the candidate boxes and

FIGURE 8: The clustering map of the prior bounding box.

the truth value boxes and minimize this error. At this time,
for each candidate box, the offset of the center point of the
candidate box relative to the center of the truth box and the
confidence of the candidate box needs to be calculated. In the
training phase, there are generally two samples, called
positive samples and negative samples. Here, we consider the
matching value of the candidate box and the truth box to be
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TaBLE 4: The specific parameters of prior bounding boxes in the NSD-SSD algorithm.

Feature map Size Numbers a,

Conv4_3 38x38 6 1,23
FC7 19x19 6 1,23
Conv8_2 10 x10 6 1,23
Conv9_2 5%x5 6 1,2,3
Conv10_2 3x3 6 1,23
Convll_2 Ix1 6 1,2,3

greater than the threshold as positive samples, denoted by
d', and other candidate boxes that do not satisfy minimum
matching value are considered negative samples, denoted by
d?. In order to ensure the balance of the sample, the ratio of
positive and negative samples is required to be at most 3: 1.

The loss function of the NSD-SSD algorithm is basically
similar to that of the SSD. In this study, the total loss
function includes the classification loss and the localization
loss:

1
L(x,cl,g) = N (Lys (x5 ¢) + aLi (%, 1, 9)), (8)

where N is the number of the positive samples. If N = 0, we
set the loss to 0. ¢ is confidence, [ is the predicted box, and g
is the ground truth box. « is the balance coefficient between
classification loss and localization loss, and its value usually
is 1.

The localization loss is smooth L1 loss, x/’ is an indicator,
and x;’} ={0,1}. When xf’. = 1, it means that the ith can-
didate box matches jth ground truth box of ship category p:

N
Lloc (.X, ls g) = Z Z xfjsmoothLl (l:n — g;n)) (9)
ied! me{cx,xy,w,h}

where
0.5x” |x] <1,
smoothL1 (x) = (10)
|x] — 0.5 otherwise.

The classification loss is the Softmax loss. When clas-
sifying, the confidence level belonging to the ship category p
is expressed by ¢, and the confidence level belonging to the
background is expressed as c’:

N
Ly (x,¢) = - Z xf}log(?f) - Z log(E?), (11)
ied! ied?

where ¢ = exp (c/)/Y pEXP (c?). In the first half of equation
(11), the predicted frame i and the real frame j match with
respect to the ship category p. The higher the predicted
probability of p, the smaller the loss. In the second half of the
equation, there is no ship in the predicted box. That is, the
higher the predicted probability of the background, the
smaller the loss. In this study, we use Stochastic Gradient
Descent to optimize the loss function to find the optimal
solution. The final loss function curve of NSD-SSD is shown
in Figure 9. Note that due to the result of deep learning in
this model, the loss function in the early stage will fluctuate,
but it will eventually become stable.

train loss vs epochs
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Figure 9: The loss function curve of the NSD-SSD.

4. Experimental Results

To prove the effectiveness of our proposed method, we
designed experiments and quantitatively evaluated the
proposed method on the public ship dataset. Subjective and
objective results will be presented in this section, and the
results will also be analyzed.

4.1. Dataset. In this paper, we use a public dataset called
SeaShips [44] for ship detection. This dataset consists of 6
common ship categories and 7000 images in total, including
ore carrier, bulk cargo carrier, general cargo ship, container
ship, fishing boat, and passenger ship. All of the images are
video clips taken by surveillance camera, covering all pos-
sible imaging changes, with different proportions, hull parts,
background, and occlusion. All images are marked with ship
category labels and bounding boxes. The example images of
each ship category are shown in Figure 10. In order to better
train and evaluate the model, we divided the dataset into a
training set, a validation set, and a testing set. The 3500
images were randomly selected as the training set, 1750
images as the validation set, and the rest as the testing set. In
particular, the validation set was useful to avoid overfitting
for better model selection.

4.2. Test Settings. All the models in our experiment are run
on a 64-bit Ubuntu operating system using a 2.9 GHz Intel
Core-i5 with 15.6 GB of RAM and NVIDIA GTX 1080Ti
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F1GuRre 10: The ship category in our used dataset. (a) Bulk cargo carrier. (b) Container ship. (c) Fishing boat. (d) General cargo ship. (e) Ore

carrier. (f) Passenger ship.

GPU with 11 GB of video RAM. The deep learning frame-
work that we use is Pytorch which runs on GPU.

Our proposed network structure is modified from SSD,
and the NSD-SSD and SSD use the same hyperparameters
for training. The batch size we used is 32, and the num_-
workers is 4. The initial learning rate is set to 0.001. Mo-
mentum is 0.9, and weight decay is 0.0002.

4.3. Evaluation Index. Since this article studies the task of
ship object detection, several mature indicators are needed
to evaluate the detection model. These indicators will be
described in detail below.

(1) Intersection-over-Union (IoU): IoU is a standard for
measuring the accuracy of detecting the position of
corresponding objects in a specific dataset. In other
words, this standard is used to measure the corre-
lation between real and predicted. The higher the
correlation, the greater the value. The equation is as
follows:

_G,nD,

IoU = .
G,UD,

(12)

In equation (12), G, is the ground-truth bounding
box, D, is the predicted bounding box, G, N D, is the
intersection of G, and D,, and G, U D, is the union of
G, and D,. The range of IoU is 0-1; in this paper, we
set the threshold to 0.5. Once the IoU calculation
result is greater than 0.5, it is marked as a positive
sample; otherwise, it is also a negative sample.

(2) Average precision: After the IoU threshold is given,

there will be two indicators called precision and
recall. The precision refers to the number of ground
truth ships in all predictions. The recall refers to the
number of ground truth ships predicted in all ground
truth ships. So, precision and recall are as follows:

.. TP
recision = ————,
b TP + FP
(13)
Lo TP
recall = —.
TP + EN

According to precision and recall, a precision-recall
curve can be drawn, referred to as the PR curve. AP is
the area enclosed by this curve, and the specific
equation is as follows:
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AP = Jl P(R)dR, (14)
0

(3) mean Average Precision (mAP): mAP shows the
average values of AP; of each class i:

" AP.
mAP = L. (15)
n

Here, n represents the number of classes of ships that
need to be detected.

(4) Frames Per Second (FPS): the FPS is used to judge the
detection speed of different models, and the larger
the FPS value, the faster the speed.

4.4. Results and Analysis. Our model is based on the SSD
network with the backbone of VGG16. To test the detection
performance of NSD-SSD, the comparative experiments are
implemented using several popular baseline methods: Faster
R-CNN, SSD series, and YOLO series. The backbone net-
works of these models are pretrained on ImageNet. To
achieve a fair comparison, we train and test the four models
using the same dataset. At the same time, to ensure the
consistency of training, we set the hyperparameters and the
number of training echoes of these three baseline models to
be the same as the NSD-SSD.

According to our detection method (NSD-SSD), the AP
performance of the six categories of ship is shown in Fig-
ure 11. The IoU threshold is set to 0.5 in the experiment.

We record the accuracy of the four models based on the
evaluation indicators, as shown in Table 5. The detection
performance of Faster R-CNN is significantly better than
YOLO series and SSD series. On average, Faster R-CNN’s
mAP is 22.5% and 17.8% higher than SSD series and 12.5%
and 8.2% higher than YOLO series, respectively. Although
our proposed model (NSD-SSD) has a little gap with Faster
R-CNN in mAP, our approach significantly improves the
performance of SSD. Moreover, it performs better than
Faster R-CNN on general cargo ship.

Our proposed method is based on SSD (VGG16). The
detection effect of the original SSD network is indeed not
good, and the accuracy is extremely average. But compared
with SSD, the mAP of each category of ship in our model has
a good improvement and the NSD-SSD’s mAP is 20.2%
higher than original SSD. Among six categories of ships, the
container ships have the best detection results. Because they
mainly transport containers, and these cargoes have very
distinct shape characteristics that are different from other
ships. The ore carriers also achieve excellent detection re-
sults. Because they usually transport ore, they have the
special features like container ships. In addition, since the
general cargo ships are very large in the images, their results
are also extremely good. On the contrary, the performance of
fishing boats is the worst among these six categories of ships.
The main season is that fishing boats are too small, occu-
pying a few pixels in the 1920 x 1080 image. Detectors are
generally not good at detecting small objects. After layers of
convolution, the feature information of small objects will
become blurred, and even the SSD model is worse.

11

We perform structural improvements on the basis of
SSD and add detailed detection techniques, which makes it
possible for us to better detect small targets and improve the
overall accuracy. For fishing boats, we have increased from
60.4% to 82.4%, which already exceeds the mAP of the
YOLOvV3 model. As shown in examples in Figure 12, our
proposed method greatly improves the detection effect of
fishing boats against SSD. For the passenger ships, our
method has increased by nearly 10%. For the general cargo
ships, our method makes their performance become better
and has a significant improvement over Faster R-CNN.

In terms of detection speed, FPS of 24 is called the
standard for real-time detection in object detection. As can
be seen from Table 6, the detection speed of YOLOV3 is
much better than other detection model, and the FPS reaches
79. Unfortunately, its detection effect is not good. The de-
tection speed of SSD series can be ranked second, and the
FPS can reach 75 and 68.0, respectively, but detection
performance is worse. Since the Faster R-CNN is a two-stage
detector, the detection process is more complicated, which
results in its FPS of only 7 and cannot meet real-time de-
tection. Our proposed model adds many parameters and
calculations on the basis of SSD, thereby reducing the speed.
The FPS given by our method is 45, which not only guar-
antees the real-time detection requirements but also im-
proves the detection accuracy. In addition, we also give the
parameters of IoU and recall for different models, and our
method is better than other methods.

In Figure 13 we show the detection examples of our
model against Faster R-CNN and YOLOV3, and our pro-
posed method has a better visual effect. Specifically, when the
two ships are very close together, the bounding box of
YOLOvV3 is much larger or smaller than ship, but our
method can mark a more accurate box. Furthermore, the
Faster R-CNN sometimes detects the background as a ship,
but our proposed method can avoid the false detection.

We compare the proposed method with [35], and they
propose a detection method that combines YOLOvV2 and
saliency detection and achieve good results. The comparison
results are shown in Table 7. From the table, our method is
slightly better than the comparison method on mAP. Among
the six categories of ships, container ships and fishing boats
can achieve better results. Specifically, these two categories
of ships’ AP is 7.7% and 4.1% higher than the comparison
method, respectively. For passenger ships, our method is
3.8% lower than Shao’s method because the color charac-
teristic of passenger ships is very salient, the performance of
their proposed saliency detection is particularly good, and
the accuracy is higher. In addition, the IoU of our method is
higher and the detection visual effect is better, but the FPS of
Shao’s model is 4 higher than the FPS of our model.

To verify the effectiveness of our proposed various
modules, we conduct the ablation experiment for comparison,
and the original SSD is the baseline network. Moreover, our
proposed three modules are considered as setting items, and
the experimental results are shown in Table 8.

As can be seen from the table that the detection accuracy
of SSD is 10.7% higher than that of the backbone network
VGG16, indicating that SSD is a better detection network.
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FIGUre 11: Precision-recall curves of our proposed method (NSD-SSD) on six categories of ships.

When introducing the feature fusion in SSD, the mAP has
increased from 69.1% to 83.2%. Because our algorithm
considers the combination of shallow features and deep
features and makes full use of contextual information. When
adding the remaining two parts of modules, the mAP has
increased by 6.1%. The above results prove that our proposed
method can effectively improve the accuracy of ship
detection.

Furthermore, we validate our proposed method under
practical extreme conditions, as shown in Figure 14, and
under different weather conditions, such as sunny, rainy,
and night. On the contrary, the ships in the images are
incomplete. However, our method still achieves excellent
detection performance, and the marked bounding boxes
and the classifications are reasonable and accurate,
respectively.
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TaBLE 5: Detection accuracy of different detection models.

Model mAP  Bulk cargo ship  Container ship  Fishing boat  General cargo ship  Ore carrier =~ Passenger ship
Faster R-CNN 0.916 0.893 0.986 0.908 0.927 0.914 0.868
SSD (VGG16) 0.691 0.661 0.801 0.604 0.703 0.620 0.755
SSD (Mobilev2) 0.738 0.703 0.876 0.635 0.742 0.686 0.783
YOLOvV3 0.791 0.681 0.959 0.690 0.893 0.734 0.786
YOLOv4 0.834 0.849 0.929 0.732 0.851 0.778 0.862
NSD-SSD 0.893 0.863 0.980 0.824 0.937 0.908 0.848

(a) (b)

(e)

FIGURE 12: Some fishing boats’ detection results. (a—c) The original SSD. (d-f) Our proposed method.

TaBLE 6: The detection results of other indicators for different detectors.

Model ToU Recall FPS
Faster R-CNN 0.603 0.865 7
YOLOvV3 0.616 0.834 79
SSD (VGG16) 0.781 0.700 75
SSD (Mobilev2) 0.745 0.787 68
YOLOv4 0.716 0.854 56

Ours 0.808 0.936 45
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(c) (d)

FIGURE 13: Ship detection results. (a) The Faster R-CNN. (b) YOLOV3. (¢, d) Our proposed model.

TABLE 7: Detection results of different detection models.

Model IoU  mAP Bulk cargo ship Container ship Fishing boat General cargo ship Ore carrier Passenger ship FPS

Ours  0.8082 0.893 0.863 0.980 0.824 0.937 0.908 0.848 45
Shao’s  0.7453  0.874 0.876 0.903 0.783 0.917 0.881 0.886 49
TaBLE 8: The results of the ablation experiment.

VGG16 SSD Feature fusion Improved predicted module Prior boxes reconstruction mAP
4 0.584
v 0.691
v v 0.832
v v v 4 0.893

(g) (h) (i)

FiGure 14: Continued.
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FIGURE 14: Visualization of ship detection with the proposed method under different conditions. (a-c) Sunny. (d-f) Rainy. (g-i) Night. (j-1)

Incomplete ship.

5. Conclusion

In this paper, based on real-time ship detection task as our
basic goal as well as the characterization of the ship dataset, a
novel ships’ detector in visual images captured by the
monitoring sensor, named NSD-SSD, is proposed. The
NSD-SSD is mainly based on multiscale feature fusion
(MFF), predicted module (PM), and reconstruction of prior
boxes (RPB). Regarding the problem of small objects de-
tection, the dilated convolution is used to expand the re-
ceptive field of low-level feature layers, and the network can
fully use the contextual information by the MFF. For the
problem of setting prior boxes manually, we propose RPB by
using the K-means clustering algorithm to improve the
detection efficiency. In addition, the PM is introduced to
extract deeper features. We train our model on the ship
dataset and compare it with other conventional methods.
The experimental results prove that our proposed method is
able to acquire higher accuracy and recall, and it can meet
the requirement of real-time detection. Moreover, the NSD-
SSD can also guarantee high-quality detection performance
in the relatively extreme environment. We also noticed that
the method could be improved for ship detection in complex
backgrounds. We will address this issue in our future work.

Data Availability

SeaShip: http://www.Imars.whu.edu.cn/prof_web/
shaozhenfeng/datasets/SeaShips(7000).zip (accessed on 2
November 2020).
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The growing interest in deep learning approaches to video surveillance raises concerns about the accuracy and efficiency of neural
networks. However, fast and reliable detection of abnormal events is still a challenging work. Here, we introduce a two-stream
approach that offers an autoencoder-based structure for fast and efficient detection to facilitate anomaly detection from sur-
veillance video without labeled abnormal events. Furthermore, we present post hoc interpretability of feature map visualization to
show the process of feature learning, revealing uncertain and ambiguous decision boundaries in the video sequence. Experimental
results on Avenue, UCSD Ped2, and Subway datasets show that our method can detect abnormal events well and explain the

internal logic of the model at the object level.

1. Introduction

The video’s abnormal event detection is to find events
different from usual, such as people fighting or urgent events
like fire. It is an essential task in the computer vision field,
from both academia and industry. As video cameras con-
tinue to expand, exploiting video data is currently severely
limited by the amount of human effort, so that the automatic
detection of rare or unusual incidents and activities in a
surveillance video is urgently needed [1]. Although abnor-
mal event detection has inspired plenty of works based on
computer vision techniques [2-4], it is still quite challenging
to design a general detection framework because of the
definition uncertainty and limitations of the data-generating
mechanism.

Deep learning technologies have been widely used to
detect abnormal events, including unsupervised methods
[5, 6] and weakly supervised methods [7]. Recently, another
developing approach for video processing in the deep
learning framework is two-stream networks, which have
been successfully applied to video-based action recognition
[1, 4], often with state-of-the-art results. Despite the ex-
cellent performance, none of these methods considers the

black-box problem brought by deep learning models. Re-
garding practical use, to ensure the proposed method can
produce reliable results, a model’s interpretability is
required.

Advances in computer vision have led to an interest in
automated computational methods for video surveillance.
The anomaly detection task [5-12] mainly trains a regular
model with only normal samples and then marks the
samples in the test dataset different from the normal sam-
ples. Recently, more and more approaches have employed
deep learning [5-7, 12-20] to learn the features of the video
frame. Those methods train the model to get better detection
results. For instance, Ravanbakhsh et al. [17] proposed
combining CNN high-level semantic information and low-
level Optical-Flow as a new method of measuring anomalies.

Besides, Feichtenhofer et al. [3] proposed to use SlowFast
Networks for video recognition. SlowFast networks can be
described as a single stream architecture that operates at two
different frame rates. In contrast, we use the two-stream
autoencoder network to learn features and generate the
reconstructed video sequence to detect anomalies. Tudor
Ionescu et al. [10] first proposed to use unmasking to deal
with learned characteristics. Different from our method, it is
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to use a binary classifier to determine anomalies. Fan et al.
[11] proposed the Gaussian Mixture Variational Autoen-
coder, which used the Gaussian Mixture Model (GMM) to fit
the distribution of the feature space through the variational
method. Sabokrou et al. [13] proposed a cubic-patch-based
way containing 3D deep autoencoders and 3D convolutional
neural networks for an advanced feature-learning approach.
Luo et al. [18] proposed to combine Convolutional Long
Short-Term Memory (Conv-LSTM) with Autoencoder to
learn the appearance and action information of the video.
The model will output the reconstructed sequence input at
the current time and last time. Chong and Tay [20] proposed
an effective method for video anomaly detection, which is
suitable for the spatiotemporal structure of video anomaly
detection, including crowded scenes.

Herein, we propose an unsupervised learning scheme to
detect abnormal events using a novel two-stream network by
utilizing late fusion, with its inherent logic through post hoc
interpretability: (1) We propose an abnormal event detection
algorithm in surveillance video that offers a potential im-
provement on two key elements, that is, the interpretability
and the performance of detection, which is of great sig-
nificance in video surveillance. (2) The proposed two-stream
architecture learns the appearance characteristics of the
video through a spatial model, and the temporal model is a
temporal autoencoder to learn the regular pattern in the
video. The advantage is the suitability of modeling the spatial
characteristics using relatively few training samples. (3) We
visualize the feature map of the convolution layers and
outputs the features learned by the convolution layers at the
object level through a heatmap, enabling abnormal object
detection. Furthermore, it helps users identify essential
features of surveillance tasks, demonstrate the importance of
features, and reproduce the decisions made by the black-box
model.

2. Related Work

Applying the method of interpretable deep learning to
anomaly detection is an emerging research direction, and it
is still in the development stage. The extension includes two
significant aspects.

2.1. Semantics of the CNN. Although CNNs have achieved
significant momentum in computer vision tasks, the end-to-
end learning strategy brings about infrequent interpret-
ability [21]. On the other hand, it can help ensure impar-
tiality in decision-making and provides a truthful causality
in model inference [22]. The visualization of filters in CNNs
is the most direct way to explore the visual patterns hidden
in neural units. Firstly, most visualizations are gradient-
based methods [23-27]. These methods mainly calculated
the gradient scores of convolutional neural network units
and used them to evaluate the image’s appearance to
maximize its unit fraction. Similar approaches, up-con-
volutional networks [28], were a typical way of visualizing
the representations of CNNs. Besides, Zhou et al. [29]
provided a method to precisely calculate the neural
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activation image receptive field. However, these methods are
postinterpretation of online learning, which did not adjust
the model or affect the final decision.

Apart from neural network visualization methods,
machine learning models can also explain neural networks.
Some approaches focused on learning networks with dis-
entangled representations to represent the semantic hier-
archy hidden inside CNNs [30, 31]. Zhang et al. [32]
proposed a quantitative interpretation of convolutional
networks’ prediction logic through decision trees. This
method can learn explicit representations of object parts in
the high convolutional layers of CNNs while mining po-
tential decision modes in fully connected layers. Besides,
Zhang et al. [33] proposed modifying CNNs by adding a loss
to each filter of a high convolutional layer to receive the
deentanglement representation. Wu et al. [34] proposed an
interpretable localized convolutional neural network for
object detection. These interpretation methods are different
from network visualization. In particular, a previous study
[35, 36] showed the potential of interpretable deep learning
techniques for predicting properties of simulated low-di-
mensional magnetic systems.

2.2. Abnormal Event Detection. Previous studies in abnor-
mal event detection have suggested that the detection model
can be trained from the reconstruction task. Hasan et al. [7]
introduced a full autoencoder with manually annotated data,
and anomaly detection was based on reconstruction loss.
Luo et al. [16] used time-coherent sparse coding to encode
two adjacent frames with similar reconstruction coefficients.
However, the abnormal events observed in these models
were primarily dependent on reconstruction error. As a
result, it might fit abnormal events unexceptionally. Thus,
the prediction model compared the predicted frame with the
actual video frames for anomaly detection. GANSs are usually
used to enhance the predictive ability [37-40]. Moreover,
constraints in motion and gradient are also proven effective.
Liu et al. [41] proposed a framework based on future frame
prediction to detect anomalies. However, the prediction
method can be sensitive to noise and perturbation, especially
in scenes with illumination changes, leading to inferior
robustness in anomaly detection. Thus, Qiang et al. [42]
proposed an anomaly detection model based on the latent
feature space, combining the above two methods. In addi-
tion to detecting abnormal events from learning-based
techniques, Yu et al. [43] proposed a neuromorphic vision
sensor, a natural motion detector for abnormal objects.
Recently, several authors have presented abnormal video
detection by the two-stream convolutional network.
Simonyan and Zisserman [44] proposed a two-stream
network to recognize the actions of video objects. Kingma
and Welling [22] proposed a new fusion method based on
the two-stream structure to identify the action information
in the video. They found that spatial and temporal networks
can be fused in the convolutional layer but not in the softmax
layer. Subsequently, Yan et al. [1] proposed a two-stream
abnormal detection method, and the model is composed of
an appearance stream and action stream.
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However, most of the video abnormal event detection
algorithms cannot achieve online monitoring. The first
difficulty is that the model has many layers, the structure is
more complex, and detecting anomalies is too time-con-
suming. Therefore, we want to learn spatial-temporal fea-
tures through the two-stream network and learn features
through some relatively lightweight architectures, but the
detection performance can also be excellent. Besides, none of
these deep methods considers the “black-box” characteris-
tics, and it demonstrates the urgent need to apply the in-
ternal logic of anomaly detection at the semantic level.
Therefore, we want to show the most critical features of
surveillance tasks and reproduce the decisions made by the
black-box model.

3. Proposed Method

The general workflow for our method (Figure 1) includes
two streams (spatial stream and temporal stream), which
learn features during the encoding stage, and then generate
reconstructed sequences of the raw video sequence through
decoding. The method can be considered as unsupervised
learning scheme in which an autoencoder is trained on the
normal data through reconstruction. If an abnormal event
occurs, the corresponding reconstruction error score is
higher than the normal data since the model has not met the
irregular pattern during training. Besides, we visualized the
spatial model’s convolutional layer features to identify ways
that could help further understand and display the process of
model learning at the object level to help people comprehend
and trust the detection results of our model.

3.1. Autoencoder-Based Reconstruction. The input to the
two-stream network is regular video frames. We trained the
model, and the reconstruction error was calculated between
the initial and reconstructed frames. Reconstruction error is
used to calculate the regularity score that can be further
evaluated for the detection performance of the system. Our
approach generates reconstruction errors from both the
spatial and temporal streams in the testing stage and then
tuses them appropriately.
Our approach contains three main steps.

3.1.1. Preprocessing. The various video clips were used to
build and test our model, which differed in size, shooting
time, and definition. We decomposed the anomaly detection
datasets into a sequence of video frames and unified the
video frame size to 224 x 224 pixels. To ensure that the input
video frames are all on the same scale, we computed the
training image’s pixel average. Then, we subtracted each
frame from the average global image for normalization. We
also converted the image to grayscale to reduce the di-
mensionality. Because of the large number of learnable
parameters and limited given training datasets, we used data
augmentation [7] to enlarge the training data set in the
temporal dimension. The enlargement is done by generating
the new cuboids with various skipping strides to construct 7-
sized original video frames (for example, In stride-1 cuboids,

all T frames are consecutive, whereas, in stride-2 and stride-
3, cuboids skip one and two video frames, respectively).

3.1.2. Feature Learning. We used a spatial stream to learn
the appearance and used a temporal stream to learn the
temporal coherency on adjacent video frames. The temporal
model consists of three parts, the convolution layers, the
deconvolution layers, and the convolution long short-term
memory (Conv-LSTM) layers. The convolutional layer is
used to learn each frame’s spatial or behavioural charac-
teristics. The deconvolutional layer is used to restore the
original input size, and the Conv-LSTM layer outperforms
the temporal rules of the video. Our spatial model is similar
to the temporal model, but the spatial model lacks a Conv-
LSTM layer, and its input is in the form of a single frame
instead of consecutive frames.

(1) Spatial Model. Figure 2 shows the detailed configu-
ration of the proposed spatial model. It only consists of
three convolutional layers, followed by two deconvolu-
tional layers to improve efficiency. Since anomaly detec-
tion focuses more on low-level contours, edge features, the
spatial model only uses three convolutional layers for
feature extraction. On the other hand, the role of the
deconvolutional layer is to generate reconstructed video
frames and densify the sparse inputs by operations with
multiple filters. Hence, the spatial size of the output feature
maps of a deconvolutional layer is larger than the spatial
size of its corresponding inputs. Therefore, we extract the
person’s appearance feature in the video through the
three-layer convolution layer and restore the initial input
dimensions through the connected two deconvolution
layers. The parameters are designed to balance the strength
of the convolutional and deconvolutional layers. There-
fore, we optimize them alternatively with the layer-pa-
rameter set through the training process. During the
training stage, the learnable parameters were updated
toward the direction minimizing the loss function. We
used MSE loss based on the Relu function. By calculating
the partial derivatives of the loss function, we could update
the parameters in an SGD scheme.

The feature-learning process is the essential stage of
model training. In the encoding stage, the model learns the
spatial features of the monitored object in the video frame
and the critical background information in the monitored
scene. Also, the spatial model architecture and input are
relatively simple. The feature map visualization algorithm is
to transparentize the “black box” of the spatial model,
understand the model’s learning process, and trust the final
detection results.

(2) Temporal Model. The temporal model may have similarly
formulated but different layers based on LSTM require-
ments. To better learn the temporal coherency on adjacent
frames, we added three layers of Conv-LSTM between the
convolution layers and deconvolution layers (Figure 3). The
dimensions of the three layers are the same, and the main
difference is the number of convolution kernels.
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FIGURE 2: Spatial model architecture. The rightmost number in-
dicates the output size of each layer.

The input to the temporal model is the video volume.
Considering the effect of frame length on model training
and memory consumption speed, we chose four consec-
utive frames with various skipping strides in this paper. The
frame number is a trade-off parameter in learning. This
length of training on the subway dataset is just what our
machine can meet, and the speed of training and testing
was relatively good. Shi et al. [45] proposed the Conv-
LSTM model first, and Patraucean et al. [46] utilized the
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|
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onv- ayers
Y y / 4720730764
I
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4*160*240

Input video
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FIGUure 3: Temporal model architecture. The final output is the
reconstructed frame sequence.

model to predict the next video frame. To extract both
temporal and spatial features of the Conv-LSTM model, we
inputted the image as X, and a convolution filter replaces
the set of weights for each connection, which can get the
timing relationship and extract the spatial features like the
convolutional layer.
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3.1.3. Reconstruction Error. After we got the reconstructed
sequence of the video frame, we calculated its reconstruction
error between the initial video frame and the reconstructed
frame to model standard data’s probability distribution. In
our proposal, reconstruction is a stochastic process that
considers the distance between the reconstruction and the
initial video frame and the variability of the distribution
itself. To qualitatively analyze whether our model can detect
anomalies well, we used the regularity score graph to in-
dicate the ability of our model to detect anomalies. The
regularity score corresponds to the level of normality of each
frame in the video.

In practice, we first counted the reconstruction error of
the video frame before getting the regularity score sr(t).
Then, we calculated the reconstruction error of the pixel
intensity value I at the location (x, y) in frame ¢ as follows:

P(x)%t) :”I(xsyat)_f(I(xsyst))Hz) (1)

where f represents our two-stream model. We calculate the
Euclidean distance between the initial pixel of the ¢-th frame
and the pixel of the reconstructed frame as the recon-
struction error of the pixel. For each frame, we compute the
reconstruction error probability by summing up all the
pixel-based probabilities.

R(t) = ) plxy.t). 2)

(x.y)

After calculating the reconstruction error of the spatial
model Rg(t) and temporal model Ry (1), respectively. We
calculated the reconstruction error of the fusion model
Ry (t). Due to the different dimensions of the two models.
The fused reconstruction error Ry (¢) can be obtained using
the following equation:

Ry (£) = Rg(t) * Ry (1). (3)

After we define the reconstruction error probability of a
frame as Ry (t), the abnormality score can be defined as
follows:

Rp () — min, Ry (1)
max, Ry () — min, R (¢)’

Sa(t) = (4)

The abnormality score S, (t) corresponds to the level of
abnormality of each frame in the video, which plays a role in
indicating the confidence of detection results. On the other
hand, the regularity score S, () corresponds to the level of
normality can be defined as follows:

s, (1) =1-s, (1), (5)

Assume that the regularity score of the current frame is
relatively low. In this case, the possibility of abnormality in
the video frame is high. On the other hand, if there is no
abnormality in the video frame, the regularity score of the
frame should also be relatively high.

3.2. Feature Map Visualization Algorithm. This algorithm is
based on the visualization of the feature map in CNN,
transforming the image’s interior features into a visible and

understandable image pattern, which helps us clearly un-
derstand the features learned by the model. The feature
learning of convolutional neural networks is an incom-
prehensible process for humans to confirm whether it has
learned features that have a natural effect on prediction, for
example, in detecting abnormal events, whether it judges or
predicts an abnormality based on understanding the ab-
normal behaviour characteristics of the monitored object.
After extracting each convolutional layer’s features, the
model generated a certain number of feature maps. We can
use the visual feature map to explain the features learned by
the model in each convolutional layer, helping us under-
stand and trust the final result. Inspired by Grad-CAM [26],
we combined the feature map of the convolutional layer with
the input image to generate the heatmap and display the
features learned by the model’s convolutional layer in the
form of objects in the heatmap. Compared with other
studies, the main difference in our work performs the
reconstructed video sequence that does not need to get the
gradient of the convolutional layers. Therefore, we directly
superimposed the feature map into the abnormal frame in
the form of a heatmap without changing its gradient. The
method proposed in this paper can realize visual feature
maps in any convolutional layer in spatial and temporal
models and has particular applicability in deep learning
models in other fields.

Assuming that the current convolutional layer of the
model has n feature maps, the convolutional layer here can
be any layer, denoted as A!, A2, ..., A", the size of the feature
map isr * ¢, S = r * ¢.The pixel values of the k-th row and the
j-th column of the i-th feature map are A} ;- The activation
mapping LAM for this layer is as follows:

LAM = ReLU <Z w; * A">,

i=1

ilrci
A=2 Y ) A (6)

1 n r Cc ;
LAM = ReLU <§ Z D Zw" * Akj>.

Among them, w; corresponding to the weight of each
neuron, the value is 1 in this paper. Because the spatial model
is based on the Autoencoder, it learns the characteristics of
many monitored objects in the video frame. Unlike the
object classification task, the video anomaly detection task
needs to learn the features of all objects. Therefore, each
feature map may contain multiple object parts, adding each
feature map in a one-to-one ratio. Using the ReLU function
is that only the part with the feature value greater than 0 is
needed, that is, the part that the model focuses on.

3.3. Abnormal Detection. This method combines the feature
map visualization algorithm with the two-stream network to
solve the low reliability of the deep learning model in video
anomaly detection. When abnormal events were detected,



the internal logic of the model was explained through a heat
map. Thus, the method was divided into two parts: (1)
anomaly detection based on a two-stream network; (2) vi-
sualization based on the heat map. The two parts can operate
independently or put together.

The anomaly detection process can also be divided into
two parts (Figure 4): (1) merge the spatial flow network and
the temporal flow network to detect anomalies; (2) use a
separate subnetwork to learn features to detect anomalies.
Both parts need to preprocess the video, decompose the
video clip into video frames, learn the features, reconstruct
the video frame, and calculate the frame’s regularity score.
Temporal and spatial networks are autoencoders, and they
can generate reconstructed frames through reconstruction
methods and calculate regularity scores. Because the inputs
of the two networks are different, the spatial model was input
in a single video frame, which reduced the memory con-
sumption of model training. The temporal model needs to
model the correlation between adjacent video frames, so the
Conv-LSTM layer was used and input in four video frames.
The advantage of the model design was that relatively few
training samples were used to model spatial features, and
learned spatial and temporal features were separated
through two submodels. Then, the two models can be fused
to achieve better anomaly detection results. In addition, the
model design is relatively simple, which improves the speed
of learning and finding anomalies. Through model fusion,
the detection performance can be guaranteed within a
reasonable range.

4. Experiment and Results

4.1. Datasets. We conducted experiments on four public
benchmark datasets: Avenue [47], UCSD, Ped2 [48], and
Subway Exit and Entrance datasets [49]. The Avenue
dataset has 16 training video clips and 21 test video clips.
The duration of each clip varies from less than one minute
to two minutes. The UCSD Ped2 dataset is where pedes-
trians move parallel to the camera plane, containing 16
training and 12 test videos. The Subway Entrance video is 1
hour and 36 min long and consists of 66 abnormal events,
while the Subway Exit dataset includes 19 abnormal events,
and the duration is 43 minutes. Since the subway video
clips are too long and the amount of data is too large, we
only used the first 5 minutes of the Subway Exit video for
training and the first 15 minutes of the Subway Entrance
video. Then, the test dataset is divided into 4 and 6 test
videos. Each test video is a continuous segment, and the
approximate duration is 10 minutes and 13 minutes, re-
spectively. (The former is the Subway Exit dataset; the latter
is the Subway Entrance dataset.) Table 1 shows the details of
the datasets.

4.2. Model Configuration. Here, we provide a detailed
configuration of our method in Table 2. Moreover, all ex-
periments running on a PC equipped with a GeForce
RTX2080 GPU, 64G RAM, and running the Windows 10
operating system.
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4.3. Experiment on Anomaly Detection

4.3.1. Quantitative Analysis: Frame-Level AUC. To better
compare with other methods, all the experiments are carried
out on the same PC with Intel CPU I7 8700K, NVIDIA GTX
2080, and 64G RAM. If a frame contains at least one ab-
normal event, it is considered as a correct detection. This
detection is compared to the frame-level ground-truth label.
The area under the curve (AUC) and the equal error rate
(EER) are the evaluation’s two metrics. Furthermore, some
contemporary documents [9, 10] believe that the EER
evaluation criteria are a severe sample imbalance between
normal and abnormal events. Using EER as an indicator will
be misleading in practical applications. We agree with this
view and use AUC for evaluation, assuming that the local
minimum within 50 frames belongs to the same abnormal
event.

(1) Effectiveness Analysis. Table 3 presents the AUC of our
method and a series of state-of-the-art methods
[7,10-12, 14, 18, 20] on the Avenue, the UCSD Ped2, and the
Subway Entrance and Exit datasets. As expected, our model
performs the best performance on the avenue and subway
entrance and exit datasets. In addition, although the version
in Avenue and Ped datasets appears to be slightly lower than
that in the other complicated architectures, it is still sig-
nificantly higher than that of lightweight models and that
single-level models. These results indicate that a multilevel
model [14] or 3D indicator [12] can perform better in crowd-
scene, such as the UCSD Ped2 dataset. However, the time
cost of these methods was also higher. Besides, comparing
our spatial model and temporal model and the fusion model,
temporal and spatial model have their advantages and
disadvantages. Still, the fusion model performs better than
the former two on all data sets.

(2) Time-Cost Analysis. Besides the effectiveness analysis, we
also compare the computation time cost of the proposed
approach. Since the proposed methods are based on the
reconstruction techniques with deep learning, the model
during the test is compared with other reconstruction-based
deep methods. Table 4 shows the average computation time
of different deep ways. Only four video frames in the
temporal stream and a single video frame in the spatial
stream generate the reconstruction error in our process.
Thus, less time is needed for reconstruction error compu-
tation. The result shows the proposed approach is compa-
rable with other methods.

4.3.2. Qualitative Analysis: Visualizing Frame Regularity.
The regularity score graphs obtained by the spatial and
temporal models are similar, so only the spatial model’s
regularity scores are shown. Figures 5-8 illustrate the reg-
ularity score of each frame on the Avenue, UCSD Ped2,
Subway Entrance, and Exit video, respectively. When an
anomaly is detected, the regularity score of the anomaly
frame is significantly decreased. Further, our model can also
detect unlabelled abnormal events.
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FIGURE 4: Anomaly detection flowchart. The first step is to process the video, learn the features through the two-stream network, and
calculate the reconstruction error to detect anomalies.

TaBLE 1: Details of the datasets.

Dataset Frames Training frames Testing frames
Subway 125475 22500 102975
UCSD Ped 18560 9350 9210
CUHK Avenue 30652 15328 15324

TaBLE 2: The parameter settings of our method.

Parameter Value
Height 160
Width 240
Batch size 16
Lr 0.01
Epoch 200
Optimizer SGD
Stride 4
Loss MSE

TaBLE 3: Comparison of area under ROC curve (frame-level AUC) of different methods.

Method Avenue Ped2 Subway Entrance Subway Exit
ST-AE [20] 76.5 81.7 81.8 86.4
Unmasking [10] 80.6 82.2 70.6 85.7
GMFC-VAE [11] 78.6 84.9 83.7 87.4
RBM [12] 78.7 86.4 — —
DAEs + cGAN [14] 73.6 86.1 84.1 87.3
ConvAe [7] 74.3 79.7 84.9 83.9
Conv-LSTM-AE [18] 76.4 82.9 83.3 86.4
Spatial model 78.1 83.8 84.7 90.2
Temporal model 77.8 84.0 85.0 85.4
Spatial + temporal 80.3 84.5 87.3 90.8

Higher AUC is better.

TaBLE 4: Comparison of the average computation time (per epoch) on four data sets.

Method Avenue (m) Ped2 (m) Subway Entrance (m) Subway Exit (m)
ST-AE [20] 180 30 640 360
ConvAe [7] 244 40 320 120
Conv-LSTM-AE [18] 312 73 766 452
GMEFC-VAE [11] 220 65 712 432

DAEs + cGAN [14] 430 194 904 642
Spatial model 19 3 24 8
Temporal model 95 15 120 50

Spatial + temporal 142 24 182 70
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Although our training process only used the usual scenes
in the data set, our method can detect abnormal events that
do not appear in the ordinary scene (Figure 5). For example,
people enter the subway station from the subway station’s
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exit for some prominent abnormal events and then enter and
take the subway from here. As can be seen from the figures,
the detection results match well with the ground-truth
frames. The lower regularity scores correspond to abnormal
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FIGURE 8: Regularity score of frames 20000-40000 and 80000-100000 from the Subway Entrance dataset.

events, while high regularity scores correspond to regular
video frames. In the regularity score graph, the blue line is
the regularity score of the video frame, and the red part is the
abnormal event occurrence area marked by the ground
truth. In Figures 5-7, according to the ground-truth
anomaly labels, we can easily find abnormal events by setting
the threshold to 0.5, excluding any false-positive detection.
However, in some scenarios, false-positive detection will
occur when the threshold is set to 0.5.

To better analyze the performance of our method, we
also plot the anomaly score from Avenue, Ped, and Subway
datasets. Figures 9-12 provide the detected events and the
corresponding anomaly scores on the related data sets, with
the anomaly score curve of the spatial, temporal, and two-
stream fusion. The peak color regions indicate the frame-
level ground-truth label of abnormal events. As can be seen
from the figures, the detection results match well with the
ground-truth frames.

4.4. Post Hoc Interpretability with Feature Visualization.
Besides the quantitative and qualitative analysis, we use a
heatmap to visualize the features of abnormal behaviour,
such as skateboarding on the sidewalk, or entering the
subway without playing, etc. Since the first three layers of the
model’s learned features are similar, this paper only shows
the visualized heatmap of the first convolutional layer.
Figures 13-16 provide different visualization of the same
data and show the features of the first convolutional layer on
the Avenue dataset, UCSD Ped2 dataset, Subway Entrance,
and Exit scenes, respectively. The frames are containing
abnormal events and ordinary events. We achieve compa-
rable results with the other two leading methods, and
comparison experiments show that our method can detect
anomalous objects well. Figure 13 shows our model learns a
specific behaviour characteristic of people, such as losing the
packet or walking around. As the running person is too fast,
detecting abnormal behaviour characteristics is not so ob-
vious. Figure 14 shows that our model is more interested in
pedestrians walking and riding bicycles or carts. As shown in
Figures 15 and 16, our model is interested in the people and
characteristics of the track or train. These features can help
our model identify the subway entrance and exit scene and
the two videos” anomalies. In contrast, Grad-CAM [26] only

visualizes some abnormal object regions, and Grad-CAM
[27] visualizes many abnormal object regions.

Figures 13-16 show that our model can learn visual
appearances and motion in the scene, helping to understand
images and infer abnormal events. For example, Figure 13
shows an example illustrating the appearance and contour of
vehicles with a darker color. Similarly, Figure 16 shows a
person jumping over the fence and entering the subway exit.
Thus, the model learns that the visual impressions and
behaviours of individuals, combined with the scene.
Therefore, it can be concluded that an abnormal event has
occurred here. Therefore, our feature map visualization
experiment can also verify the accuracy and authenticity of
the abnormal detection results. Besides, the visualization
method can explain the learning process of the model, but
the visualization result will not affect the learning process
and the final detection. Therefore, the interpretation method
of this article can be considered as post hoc interpretability.

Conceptually, abnormal events are emerging from un-
common objects. Thus, while visualization of a trained model
provides insight into its operation, it can also assist with
selecting anomalous objects in abnormal video frames. The
critical question is if the model identifies the object’s location
in the image with unnatural object detection approaches.

4.5. Discussion. Our results suggest that the proposed
method enables fast and reliable detection of abnormal events,
with label-free identification of abnormal events. In the
quantitative experiment introduced in 4.3.1, we used four
video frames in the temporal stream and a single video frame
in the spatial stream to generate the reconstruction error,
while number frames preferring ten were most frequently
used by other methods. Using only the spatial or temporal
stream cannot cause the best result. However, with the in-
formation from the two-stream fused, the model has im-
proved efficiency compared with a single stream, while the
accuracy is also competitive. It should also be noted that our
current model is lightweight and does not consider the
complete appearance and motion of the video scenario.
Therefore, the training process in our method does not re-
construct all the changes in the properties of appearance and
motion, and it may be weak compared with other techniques
in a particular dataset—for example, GMFC-VAE in Ped2.
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Figure 10: Anomaly score of videos #2, #4, and #7 from the UCSD Ped2 video.

Compared with other anomaly detection methods
[5, 6, 16-20], we use a heat map to visualize the internal logic
of the video frames, which is more interested in the darker
part. Therefore, we can better understand the network’s

learning process and the basis for making abnormal be-
haviour judgments. We also compare the visualization of
feature maps of different convolutional layers. Due to the
relatively small number of layers, we find the features
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F1GURE 13: Feature visualization results on our method, Grad-CAM, and Score-CAM on Avenue dataset. Top-3 rows are abnormal video
frames, and the last row is a normal video frame. (a) Initial video frame. (b) Our method. (c) Grad-CAM. (d) Score-CAM.

learned by the first and second convolutional layers are
almost the same. They are relatively low-level edge and
contour information rather than high-level abstract details.
Our method exhibited interpretability and much better
location stability than other anomaly detection methods.

In summary, these results highlight the effectiveness and

high efficiency of the proposed method in abnormal event
detection. However, although it can show interpretability in
abnormal event detection, it is challenging to present in-
terpretable loss terms in end-to-end training.
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FIGURE 14: Feature visualization results on our method, Grad-CAM, and Score-CAM on UCSD Ped2 dataset. Top-3 rows are abnormal
video frames, and the last row is a normal video frame. (a) Initial video frame. (b) Our method. (c) Grad-CAM. (d) Score-CAM.
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F1GURE 15: Feature visualization results on our method, Grad-CAM, and Score-CAM on Subway Entrance dataset. Top-3 rows are abnormal
video frames, and the last row is a normal video frame. (a) Initial video frame. (b) Our method. (¢) Grad-CAM. (d) Score-CAM.
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FIGURE 16: Feature visualization results on our method, Grad-CAM, and Score-CAM on Subway Exit dataset. Top-3 rows are abnormal
video frames, and the last row is a normal frame. (a) Initial video frame. (b) Our method. (c) Grad-CAM. (d) Score-CAM.

5. Conclusions and Future Work

We have presented a prevailing method to detect abnormal
events from videos to intensify detection ability and feature
interpretability with a two-stream framework. Our approach
fuses the visual appearances, behavioural characteristics, and
motion of the video object and can determine abnormal
events from many regular activities. To critically assess the
robustness of detecting in capturing abnormal events, we
performed several challenging data sets that allow our al-
gorithm to operate robustly for long periods in various scenes,
including crowded ones. Experiments have shown that our
method is accurate and robust to noise. Furthermore, the
visualization of feature maps semanticizes the internal logic.

Meanwhile, applying explainable deep learning methods
to anomaly detection will be a future research direction. It
has excellent benefits for handling abnormal events and even
preventing abnormal events from happening in advance,
which has great significance in public security.
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Recognition of human activities is an essential field in computer vision. The most human activity consists of the interaction
between humans and objects. Many successful works have been done on human-object interaction (HOI) recognition and
achieved acceptable results in recent years. Still, they are fully supervised and need to train labeled data for all HOIs. Due to the
enormous space of human-object interactions, listing and providing the training data for all possible categories is costly and
impractical. We propose an approach for scaling human-object interaction recognition in video data through the zero-shot
learning technique to solve this problem. Our method recognizes a verb and an object from the video and makes an HOI class.
Recognition of the verbs and objects instead of HOIs allows identifying a new combination of verbs and objects. So, a new HOI
class can be identified, which is not seen by the recognizer system. We introduce a neural network architecture that can un-
derstand and represent the video data. The proposed system learns verbs and objects from available training data at the training
phase and can identify the verb-object pairs in a video at test time. So, the system can identify the HOI class with different
combinations of objects and verbs. Also, we propose to use lateral information for combining the verbs and the objects to make
valid verb-object pairs. It helps to prevent the detection of rare and probably wrong HOIs. The lateral information comes from
word embedding techniques. Furthermore, we propose a new feature aggregation method for aggregating extracted high-level
features from video frames before feeding them to the classifier. We illustrate that this feature aggregation method is more effective
for actions that include multiple subactions. We evaluated our system by recently introduced Charades challengeable dataset,
which has lots of HOI categories in videos. We show that our proposed system can detect unseen HOI classes in addition to the
acceptable recognition of seen types. Therefore, the number of classes identifiable by the system is greater than the number of
classes used for training.

1. Introduction

Humans play a significant role in most of the activities that
take place in the world. Human action recognition is one of
the fundamental problems in computer vision and has many
applications, such as video navigation, human-robot col-
laboration, and predicting human behavior for security
purposes. Many human activities are made up of two parts: a
verb and an object. The verb is what a man does on an object.
In fact, a verb represents the movement of the human body.
This type of activity is referred to as human-object inter-
action (HOI). For example, “opening the door” or “reading a
book” has a verb and an object. Therefore, recognizing HOI

is as important and challenging as recognizing human ac-
tivities in the field of machine vision.

Many researchers have been working on human-object
interaction (HOI) understanding [1-6]. HOI understanding
can be followed in images or videos (sequence of frames).
Distinguishing the full range of human activities in real
environments is a significant challenge in computer vision.
Some problems are as follows: large intraclass variation in
actions, high variability in spatiotemporal scaling, human
pose variations, occlusions, and, most importantly, the vast
space of human activities. The most effective HOI recog-
nition task methods are methods based on deep learning
approaches that need a lot of labeled data [6-11]. The
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existing machine learning approaches for action under-
standing require fully annotated datasets. Some datasets
have been prepared for this purpose, such as the “Humans
Interacting with Common Objects” dataset for action
classification (HICO) [3] and action detection (HICO-DET)
[5] that are image benchmark. For HOI analysis in videos,
not many datasets are provided. Charades dataset [12] was
recently supplied for the HOI understanding tasks in video
data. It has many human-object interaction categories and is
suitable for action detection, HOI recognition, and video
captioning purposes.

One of the essential HOI recognition challenges is the
high number of possible categories in the real environment.
Since the space of possible HOIs in real situations is
enormous, list all possible HOI classes and obtain enough
data for each group, and annotating the collected data is
impractical. How can we reduce the need for training data
for training an HOI recognizer model? Can a recognition
model be taught with data from only part of the target
classes? We focus on this question and tackle it through
zero-shot learning for scaling HOI recognition in video data.
In the recognition approaches based on zero-shot learning,
the main class is decomposed into its components, and
recognizing the main class components is applied instead of
understanding the main category. So, the recognizer model
learns the components of unseen classes that probably ap-
pear in other seen classes. In this case, if components of the
novel HOI class appeared in other seen HOI classes, the
model can recognize them and identify the new HOI class.
Zero-shot learning for scaling HOI recognition is used
previously for image data [13]. Our previous work presented
a simple structure for zero-shot recognizing of HOI in video
data [14].

In this work, we expand our previous work [14] and
address the scaling of human-object interaction in video
data through zero-shot learning. In this approach, the HOIs
decompose into verbs and objects as the components of an
HOIL. For each input video containing an HOI, the detection
system recognizes a verb and an object. For this purpose, the
central proposed scheme has a two-branch deep neural
network structure consisting of object recognition and verb
recognition branches. A convolutional neural network
(CNN) is used to extract the feature maps of each frame. We
use recurrent neural networks (RNNs) in the verb recog-
nition branch due to the video’s temporal information.
RNNs can represent the long dependencies in video data,
which can help recognize verbs in the video.

We propose using lateral information to combine the
verbs and the objects better to make valid verb-object pairs.
It helps to prevent the detection of rare and probably wrong
HOIs. The lateral information comes from word embedding
techniques.

We also propose a new feature aggregation method for
aggregating extracted high-level features from video frames
before feeding them to the classifier. We use a local feature
aggregation method that does not turn the entire extracted
features space into a single space. We illustrate that this
feature aggregation method is more effective for actions that
include multi subactions.
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We evaluate our proposed algorithm on the Charades
dataset [12] and illustrate that our model can identify the
novel HOI categories not seen by the model before. The
Charades dataset has many human-object interaction cat-
egories and is suitable for action detection, HOI recognition,
and video captioning purposes. This dataset contains 9848
video clips of HOIs captured in real environments. It has 157
categories of human activities, including some actions with “no
interaction,” 149, which can be considered valid verb-object
pairs. This 149 category consists of 34 verbs and 37 objects.
Also, we compare our model in a fully supervised manner with
the best-reported methods on this dataset and show that our
method’s performance can be comparable to them.

This study’s primary purpose is to reduce the need for
data to train an HOI recognition system by increasing the
number of identifiable HOIs without increasing HOIs in
training data. We focus on this purpose through zero-shot
learning, in which we decompose the HOI into a verb
(human action) and an object and recognize them in the
video. We use CNNs and RNNs for implementing our
proposed algorithm.

In the rest of the paper, we review some related works in
part 2. The model architecture and proposed algorithm are
presented in Section 3. We present the experimental results,
evaluations, and discuss the results in Section 4, and con-
clude in Section 5.

2. Related Works

2.1. Human Action and HOI Recognition. Initial works on
understanding human activities were in modeling actions.
Many works can be found that used semantics for modeling
and understanding of activities [15]. The HOI modeling
started with the affordances idea introduced by J. Gibson
[16], and then some works were done in the field of func-
tionality understanding of objects and verbs [17]. Several
approaches have been used to model semantic relationships
[18, 19] for HOI understanding. Modeling humans and
objects’ spatial relationships using the interactional features
are introduced by Delaitre et al. [20]. Also, learning dis-
tributed representations of humans and objects by poselet
[21] and phraselets [22] are proposed for HOI recognition.
Most of these efforts require costly-labeled data (pose, body
parts, and object segmentation, etc.), making it difficult to
collect data for any type of activity and make them applicable
for cases with a limited number of classes. In fact, they fail
for cases with more classes.

Recently, with providing large datasets 3, 5, 23] and the
success of neural network-based approaches in classification
and recognition tasks, the problem of understanding and
recognizing HOIs has received a lot of attention. Inspired by
this impressive progress, the researchers tried to develop
deep networks for video analysis applications such as action
recognition [24-28] and HOI understanding [23, 29].

The recognition in video is more complicated than
recognition in still images because of the complexity of video
sequences’ motion patterns. Therefore, the mere use of
appearance cues for successful recognition may not be
enough. Most existing approaches have introduced a two-
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stream framework that considers both temporal and spatial
domains [25, 30-37]. Classifiers operate on the two streams
of inputs, the RGB and the optical flow, as spatial and
temporal cues, respectively. Motion cues are used separately
from appearance cues for final representing in the video.
Two streams are trained individually in the training phase,
and the outputs of them fuse to predict the output class in
the testing phase.

Some approaches use 3D networks that work by spa-
tiotemporal convolutions [26]. These networks usually
consider a short video interval with a predefined number of
frames and encode the local and short-term motion patterns.
For example, 15, 7, 16, and 2 frames are used in
[26, 30, 38, 39]. Also, other types of spatiotemporal networks
like RNNSs [26] and the extended versions of them which are
called Long Short-Term Memory (LSTM) [40] are used to
describe the temporal cues for video classification. The
approaches based on spatiotemporal networks have a huge
amount of computing due to many trainable parameters
tuned in the training phase. A component-based approach is
proposed to represent the video content, weakly supervised
learning (WSL) method [41], and requires less annotated
data. A three-stream CNN is suggested that receives two
representations and were fused with the motion-encoding
stream. The LSTM block models each of the three streams’
temporal relationship. For the fusion of the three streams
and the final prediction generation, an fc layer is used.

The literature study showed that the best methods for
activity understanding are the deep learning-based ap-
proach. An essential issue in these methods is much data for
all recognizable classes required for model training. They are
only able to detect activities seen by the model. Providing the
training data for all possible HOI categories is costly and
impractical. We focus on this problem and try to solve it
through the zero-shot learning approach.

2.2. Zero-Shot Learning. Zero-shot learning is an exciting
approach in different areas [42-45]. Most new methods
based on zero-shot learning have two stages and focus on
attributes [46-50]. The attributes are predicted in the first
step and then infers class labels in the second step. The
compositional learning for Visual Question Answering
(VQA) has been explored [51], in which the VQA task
breaks down into a sequence of modular subproblems. Each
subproblem is modeled by one neural network.

For zero-shot action recognition, simultaneous object-
action detectors training in the videos is suggested to identify
object-action pairs [52], which uses the two-stream faster
R-CNN [53], and one fc layer operates on both streams’
concatenated features. This approach is not just for human
action recognition and includes actions, such as “cat eatings”
or “dog jumping.” The attributes have also been used to
understand human activities in an independent learning
framework for recognizing objects and actions [54, 55]. The
strong relationship between the objects and the actions is
used for zero-shot recognition of action [56, 57].

HOI recognition through zero-shot learning is proposed
in [13] that predicts the verb-object pairs from a still image.

This method used a two-branch neural architecture that
jointly trained for simultaneous recognition of objects and
verbs. A similar approach is presented to zero-shot HOI
recognition in video data [14]. An external knowledge graph
is suggested [58] to validate predicted verb-object pairs and
identify the most valid pairs. The external knowledge graph
is made by extracting subject, verb, and object (SVO) triplets
from knowledge bases [23, 59]. Each node in the graph is a
verb or a noun (object), and its word embedding is the
node’s feature.

Our work is also scaling HOI recognition through zero-
shot learning, but we focus on video data, which has more
challenges. We present a neural architecture that can un-
derstand videos and detect objects and verbs in videos
containing an HOI activity. We also proposed the use of side
information to prevent predicting the invalid verb-object
pairs (see Section 3.6).

2.3. Object Detection. Our proposed zero-shot learning
method is compositional learning, in which the HOI de-
composes into two components, verbs and objects. In other
words, there are two components for recognition, verbs
(human action) and objects. Recent advances in object
detection have been achieved by the successful methods of
region proposal [60] and region-based convolutional neural
networks (R-CNN) [61]. Some works focused on processing
time that is appropriate for real-time object recognition
tasks. Only one processing step for recognizing the object in
the image is suggested (YOLO) that concentrates on pro-
cessing time [62]. Single-shot detector (SSD) [63] presented
high-speed multiobject detection that uses different feature
maps extracted from different layers of CNN to detect
objects and their location in the image with varying sizes.

3. Proposed Approach

The primary purpose of this work is the ability to identify a
novel HOIL We use the zero-shot learning approach because
it increases identifiable HOIs without increasing HOI cat-
egories in training data. In other words, to train a recognizer
model for a given number of classes, part of the target
classes’ data is sufficient. It is not necessary to have the data
of all categories. Therefore, the need for training data is
reduced. In this work, the input is a video (sequence of
frames) containing a human-object interaction, and the
output is a pair of “verb, object” as an HOI label.

Reducing the number of invalid predicted HOI classes,
which are probably incorrect, is another goal of this work.
For this purpose, the use of external information is
suggested.

3.1. Zero-Shot on HOI Recognition. In zero-shot learning,
the main class is decomposed into its components, and
components recognition is applied instead of recognizing
the main category. Identifying a new class in the zero-shot
learning approaches is done by recognizing the class’
components, which have been present separately in other
classes seen by the model. In the test phase, the class



components are recognized, and the predicted class is
identified as a combination of the predicted components.
Thus, a new combination of components, which the model
did not see at the time of training, indicates the identification
of a new class and is not labeling as a more similar existing
class. Decomposing an HOI into a verb and object is pre-
viously introduced to identify the limited number of HOIs in
still images [13]. Each HOI class decomposes into a verb and
an object as its components. A particular verb can be per-
formed on several different objects, for example, “writing on
the whiteboard,” and “writing on the notebook.” Different
verbs can also be performed on the same objects, such as
“writing on the notebook” and “ reading a notebook.” If the
system learns verb and object classes separately instead of
HOI classes, it can recognize those verbs and objects in seen
and unseen HOI classes and make verb-object pairs as an
HOI class at test time. Suppose a particular object learned by
a model from an HOI (with a specific verb) and that object
exist in another HOI (with a different verb). In that case, the
model can identify it, and it is not necessary to learn this
object to model by second HOI class. The same applies to
verbs. In other words, it is not required to feed all HOI
categories to model for understanding all of them, and it
only needs to have a training dataset, which includes all
verbs and all objects. In other words, the problem of HOI
recognition is decomposed into two recognition issues: verb
recognition and object recognition. Therefore, the designed
system must include two separate parts: verb recognition
and object recognition.

Suppose the available HOI dataset includes v verbs and o
objects. So, the identification system can recognize v verbs
and o objects. Since an HOI class consists of a verb and an
object, this system theoretically can identify |v|.|o| categories.
Training a recognizer system for understanding |v|.|o| classes
in a fully supervised manner needs to labeled training data for
[v|]-|lo] HOI classes. But in the proposed approach, we only
need labeled data for |v|+ |o| categories. Also, since an HOI
has one verb and one object, it can train both verb and object.

According to the above, the central system has two
branches due to recognizing two components, namely, verb
and object. The output of one branch is the predicted verb
applied to the object, and the production of another branch is
the object(s), which a verb is applied to it. The combination of
the two outputs can be considered as a predicted HOI class.

The zero-shot learning methods have two stages: (1)
predicting the components and (2) inferring the class label
from predicted parts. The first stage in our problem is
predicting the verb and objects, and the second is combining
object and verb to infer HOI class. For the first stage, we use
a two-branch structure that predicts the verb and objects.
The second stage is done using side information to form an
HOI class with verbs and objects obtained in the first stage.

The main idea of zero-shot on HOI recognition is in-
troduced for the limited number of classes in still images
[13]. Understanding video and, in particular, understanding
HOI in video data is more challenging and more applicable
than still image data, since, in this work, the zero-shot on
HOI recognition in the video data is desired. Since the HOI
is decomposed into two components (verb and object), the
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central recognizer system includes two main branches as two
recognition tasks: one branch for verb recognition and one
branch for object recognition. In this work, each recognition
task is implemented by a neural structure. Figure 1 shows the
simple architecture for the mentioned system. The verb
recognition branch uses the RGB frames and optical flow of
input video, while the object recognition branch uses only
RBG frames for detection. In each branch, the input video
(RGB frames and/or optical flow) feeds to the CNN module
for extracting high-level features, and then these features are
used for the corresponding recognition tasks. The object
recognition branch is more straightforward because it can be
recognized from a single frame. So, we use a typical CNN-
based object recognition structure. But the nature of verb
recognition is more complicated than the object. To rec-
ognize the verb, we use a three-stream structure based on
CNNs and RNNs.

3.2. Object Recognition Branch. Our focus and innovation are
on the verb recognition branch. The object recognizer’s de-
sired output is the recognized objects from the input video
and their reliability score. The objects of each frame of the
input video are recognized by the existing successful object
recognition method, SSD [63]. The SSD approach is based on
the feed-forward CNN that produces a fixed-size collection of
bounding boxes. After that, the score of object class instances
in those boxes is predicted, and a nonmaximum suppression
step makes the final detections. SSD is a fast object detection
method because of eliminating bounding box proposals and
subsequent feature resampling stage. The early network layers
are based on standard architecture used for high-quality
image classification. Some convolutional feature layers are
added to the previous layers, which decrease in size pro-
gressively and allow predictions of detections at multiple
scales. SSD uses separate predictors (filters) for different
aspect-ratio detections. These filters apply to multiple feature
maps to perform detection at multiple scales. So, the location
of objects in an image and their reliability scores are predicted
in a short time. See reference [63] for more details. In this
work, we have not used the location information of the
objects, and we have considered only the detected objects
along with their score. Still, in future works, we can use the
location information of the objects and salience areas of
action to distinguish the target object from the background
objects.

After detecting objects in each frame by SSD, the objects
are obtained in the whole video. These objects combine with
the recognized verb using side information (see Section 3.6)
and reliability scores to make a valid verb-object pair, and
the HOI class is identified.

3.3. Verb Recognition Branch. Verb recognition or, in
general, activity understanding in video space is different
from single image space. For activity-based video classifi-
cation in deep learning approaches, usually, the features of
each frame of input video extracted with a neural structure
and class of video clip predicted by a set of features came
from all frames. The use of two-stream structures is common
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FIGURE 1: A simple overview of the main system architecture. The verb recognition branch uses the RGB frames and optical flow of input
video, while the object recognition branch uses only RBG frames for detection.

for this purpose, in which one stream considers appearance
cues (from RGB frames) and the other considers temporal
cues (from optical flow). One input to activity understanding
systems usually is a sequence of RGB frames of an input
video clip. Much of an RGB image is the background and is
not necessarily related to the activity. Hence, the features
extracted from it are strongly affected by the background.
Estimating susceptible areas to activity and extracting fea-
tures from them can help us solve this problem. On the other
hand, the background can also contain information about
the event that occurred, and completely removing it can lead
to performance degradation. Estimating the region related to
activity and blurring the background can be useful. Thus, the
RGB stream is split into two streams. The first stream es-
timates activity region patches and extracts features from
them as patch-based representation. The second stream
estimates the activity region, blurts other areas, and extracts
features from the new RGB image as focal representation.
The video data includes temporal information of what is
happening, which is not in still images. The short-time
temporal information can be represented by optical flow.
Therefore, a common input to activity understanding sys-
tems can be an optical flow of input video for motion
representation. These processing streams are described more
detail in Section 3.5.

Given the above and that the nature of the verb’s rec-
ognition is a subset of the action, we propose to use three
inputs for the verb recognition task. These three inputs are
estimated activity region patches, RGB image with blurred
background, and the optical flow. So, the central system’s
verb recognition branch is a three-stream structure, in-
cluding patch-based representation, focal representation,
and motion representation. This three-stream structure was
previously introduced for action recognition in the video
[41]. We use this structure with a new feature aggregation
technique to recognize the verb in the video.

3.4. Feature Aggregation. The final step in the recognition
system is classification on a feature vector derived from three
processing streams. Features obtained from each stream
must aggregate to produce the final feature vector of each
stream, and then the ultimate features of the overall system
for classification are obtained. Conventional feature ag-
gregation methods, such as average or max-pooling, rep-
resent the entire space of features as a single descriptor.

These methods may be suboptimal to representing a video
containing several subactions. Locally aggregation features
were introduced in [64] and extended to spatiotemporal
feature aggregation for action recognition as Action VLAD
[7]. In this scenario, the features are clustered to K cluster
and pooled jointly across space and time. Figure 2 shows the
difference between spatiotemporal and average or max-
pooling aggregation. In the average and max pooling sce-
narios (Figures 2(a) and 2(b)), the entire space of the feature
map is represented as a single descriptor. But in the Action
VLAD scenario (Figure 2(c)), the feature space is repre-
sented by several (K) descriptors. With this technique, if the
nature of the action consists of several sub-actions, we hope
that it will be described more optimally. Therefore, it is more
likely to recognize the correct action because the feature
space is represented by multiple descriptors instead of one,
and the deletion of information is less in the feature ag-
gregation step.

Consider the extracted descriptors from each frame of
the video in each spatial location be x;,eRP, where
ie{l ... N} is related to spatial location and te{l ... T} is the
frame index. For spatiotemporal aggregation, the descriptor
space RP is divided into K cells using K anchor points {c;}
(stars in Figure 2(c)). Then, each descriptor x;, was assigned
to one of the cells due to its distance from the anchor. The
new descriptor is presented by the difference vectors cal-
culated across the entire video as follows.

T N e—tx”x,»)t—ck”z
VIjkl=) (il -alil), )

2T S -
where x;,[j] and ¢, [j] are the j-th component of the de-
scriptor vector x;, and anchor c;. Parameter « is a tunable
hyperparameter. The output is a matrix V where each column
shows an aggregated descriptor related to one cell. The matrix
intranormalized across columns, stacked, and L2-normalized
[65] into a single descriptor of the entire video.

The difference vectors record the differences of extracted
descriptors from subactions represented by anchors ¢. So,
this aggregating scenario can help to recognize the verbs that
consist of some subactions.

3.5. Details of Each Stream in Verb Recognition. Our pro-
posed model for verb recognition is a three-stream RNN-
based structure. Each stream has three main processing
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Ficurk 2: Difference pooling scenario for aggregate features. Different colors points correspond to different subactions in the video. (a) and
(b) are good for similar features, but they do not adequately capture the complete distribution of features if the input video contains several
subactions. Scenario (c) clusters features in spatiotemporal manner [59].

Extract convolutional
features of each frame
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F1GURE 3: Block diagram of the process in each processing stream in the verb recognition branch shown in Figure 1. First, the convolutional
features of each frame were extracted. Then, the whole input video is represented by the LSTM block. Finally, the elements are locally

aggregated.
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FIGURE 4: Patch-based representation. At first, the areas related to the target verb are detected, and the patches are extracted from the input
frame. Then, the features of each patch in each frame are extracted. The LSTM block represents the whole input video. Finally, the elements
are locally aggregated, and the class scores for each verb class are estimated.

steps, which are shown in Figure 3. The processing flow of
the three streams is almost similar. Each stream’s input is a
sequence of frames in the form of RGB and/or optical flow.
CNN extracts the convolutional features of each frame.
Then, the extracted features of the T consecutive frames of
video feed to LSTM blocks to represent the temporal in-
formation. The output is several spatiotemporal feature
vectors. These vectors are then locally aggregated, and the
final representation vector of each stream is prepared for the
final classification. The following is a detailed description of
each shown module in Figure 3.

3.5.1. Path-Based Representation. This stream aims to find
areas related to the target verb and use it to identify the verb.
These regions are appropriate to represent the video clip
based on the event that occurred in it. Figure 4 shows the
structure and processing process in this stream. The prob-
able areas are selected using the method proposed by
Papazoglou et al. [66], which uses the RGB frame and its
optical flow. Other proposed regions are taken from the
region proposal network (RPN) offered by Ren et al. [53].
The RPN extracts the areas that are prone to the presence of
objects or entities. The RPN processes a still image and
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outputs lots of proposal windows, many of which are ir-
relevant. The final action patches were selected by merging
the already and previously extracted regions. We see Al-
gorithm 1 in [41] to choosing actionness patches process (see
Algorithm 1 for more details). After selecting each frame’s
actionness patches, these are fed to CNN, and the con-
volutional features are extracted. All of these processes are
related to the second block in Figure 3. After obtaining
convolutional features of all T frames of the input clip, T
feature vectors are fed to the RNN block and outputs T'time-
distributed feature vectors as the input video’s temporal
representation (third block in Figure 3). Of course, we use
the LSTM block as an RNN for the video’s temporal rep-
resentation in all three streams. The final step in this stream
is local feature aggregation (see Section 3.4). The time-
distributed features are locally aggregated to the K de-
scriptor, and the target activity is represented as its sub-
actions. The output vectors are used to classify the occurred
verb in the video clip, and the classification scores are
predicted for each verb class.

3.5.2. Focal Representation. As previously stated, much of an
RGB image is the background and is not necessarily related
to the event. So, it may lead to overfitting in the training
phase if the background is not discarded. On the other hand,
completely removing the background can lead to perfor-
mance degradation because it can also contain information
about the event. To handle this issue, after finding the
foreground (selecting the probable area in patch-based
representation stream), the background of the RGB image is
blurred by a Gaussian low pass filter, and the other areas
remain unchanged. The idea is inspired by the human focal
vision system [41]. The resulting image is a focused image on
the area prone to activity, which also retains background
information. Subsequent steps, including convolutional
feature extraction from all T'frames, obtain time-distributed
feature vectors using LSTM block, local feature aggregation,
and predicting the classification scores, are quite similar to
patch-based representation stream’ steps. Figure 5 shows the
structure of this processing stream.

3.5.3. Motion Representation. According to the contents of
Section 3.3, the short-term temporal information in the
video clip can be represented by optical flow. The RNN block
can obtain long-term temporal information. So, the third
stream of the verb recognition branch can be motion rep-
resentation by optical flow (Figure 6). Each frame’s con-
volutional features are extracted from optical flow by a CNN.
The structure used for this stream is the motion-CNN
proposed in [31]. The optical flow is computed between each
consecutive frame using the Brox algorithm [67], which
assumes the camera is static. As shown in Figure 6, the next
steps are exactly like the two other streams.

As observed, the processing flow is the same in all three
streams. Only the inputs of these streams are different. The
first stream uses the salience patches of the input image, the
second stream uses a focal image whose background is
blurred, and the third stream uses optical flow. The output of

each stream is classification scores for verb classes. Finally,
these three streams’ results are merged to recognize the
target verb in the input video.

3.6. Side Information for Reducing Invalid HOIs. The zero-
shot learning approach has two stages: (1) predicting the
components and (2) inferring the class label from predicted
parts. The first stage of this approach in our work is to
recognize the verbs and objects done by the central system
(two-branch HOI recognition system). The second stage is
not complicated. It is enough to put the recognized verb and
the object together and create the “verb-object” pair as a
predicted HOI. But is any combination of verb-object ac-
ceptable? For example, the “eating a laptop” is a presumable
verb-object combination that may be the central system’s
output. Is it acceptable? Of course not. So, there is a need for
a scenario to solve this problem. We also tackle this problem
in this work.

Many of our interactions with objects are based on our
prior knowledge. We know that a s “laptop” is not edible,
and we cannot eat it. Hence, we argue that the detected pair
of verb-object (eating a laptop) is invalid. This argument is
based on our prior knowledge. If the system has prior
knowledge like humans, it can validate the output pairs and
identify invalid states. In this case, the system realizes that
“eating a laptop” is an incorrect HOI and seeks another verb
or object to create a valid HOL

The use of an external information graph is proposed for
compositional learning for HOI [58]. The idea of using the
side information comes from the concept of word embed-
ding. The external graph encodes two essential types of
knowledge: (1) the “affordance” of objects, such as “laptop
can be held,” and (2) the semantic similarity between verbs
or objects. SVO triplets define objects’ affordance from the
external knowledge base [59], and the similarity between
verbs or objects is defined by lexical information from
WordNet [68].

We propose a simple graph to modeling and using side
information (Figure 7). The graph has three categories of
nodes: verb, object, and interaction. Each verb and object is
modeled as a separate node, and their attributes are pro-
vided from nltk [69] based on the concept of word em-
bedding [70, 71]. These attributes are conceptual
representations of words so that words with close meanings
have similar attributes. For example, both the words
“Sandwich” and “pizza” are related to a type of food, so they
have a similar concept and are used in a similar sense. A
verb node can only connect to an object node via a valid
interaction node and create a graph path. So, each path in
this graph shows a valid HOI. Valid HOIs are HOIs that
exist in the dataset. There is no path between verbs together
or objects together. Also, conceptually similar verbs (or
objects) are connected with a link. The similarity between
verbs (or objects) is computed by nltk [69]. The links help
in finding the valid secondary HOIs. For example, let “hold
a laptop” is a valid HOI (it existed in the database and its
path exists in the graph), and “take a laptop” has not a path
in the graph (it did not exist in the dataset), but there is a
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FIGURE 5: Focal representation. At first, the area related to the foreground is detected from the input frame, and the background is blurred
with a lowpass Gaussian filter. Then, the features of each blurred frame are extracted. The whole input video is represented by the LSTM
block. Finally, the elements are locally aggregated and the class scores for each verb classes are estimated.
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FIGURE 6: Motion representation. The short-term temporal information in the video clip can be represented by optical flow. In first, the
features of each optical flow of each frame extracted. Then the whole input video is represented by the LSTM block. Finally, the elements are
locally aggregated, and the class scores for each verb classes are estimated.

link within the “hold” and “take” nodes. Therefore, “take a
laptop” can be a valid HOI (it is a valid secondary HOI).
This rule also applies to object nodes.

The side information graph is used to validate the central
system’s results and enhance the overall performance. The
central system’s output is the classification score for the verb
classes and the identified objects with their reliability score.
The three verb classes with the highest classification score are
combined with the identified objects to form possible “verb-
objects ” pairs and are sorted by score. The validity of the
obtained pairs is then checked using the side information
graph, and the first valid pair is selected as the final predicted
HOI class. In fact, this is the second stage of the zero-shot
learning approach.

4. Results and Discussion

We present the results of our method in this section and
compare it to some other works. The used dataset is in-
troduced first, and then the implementation setups are
described. Finally, we report our results and compare the
proposed approach against state-of-the-art methods.

4.1. Dataset. For human action understanding in videos,
several appropriate datasets have been provided and pub-
lished, such as UCF101 [72], HMDB51 [73], and Actor-
Action Dataset (A2D) [74]. Most of these datasets involve
many human activities, not just HOIs. So, they are not
suitable for the evaluation of HOI understanding tasks.

The recently published challengeable dataset for human
activity understanding is Charades [12]. This dataset con-
tains 9848 video clips of HOIs captured in real environ-
ments. It has 157 categories of human activities including
some actions with “no interaction.s ” After excluding cat-
egories with “no interaction,s ” there are 149 valid HOI
categories defined as verb-object pairs. This 149 category
includes 34 verbs and 37 objects. Clips of this dataset cover
both the third and first person’s actions. We use the third
person’s clips of these 149 categories as our Charades
benchmark.

We have two scenarios for evaluating our system. First,
we assess the model for fully supervised HOI recognition
and compare model performance with some state-of-the-art
approaches. Afterward, we present the performance of the
proposed model on the zero-shot detection of HOIs. For
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F1GURE 7: Side information graph. The green ellipse shows the verb
nodes, the blue ellipse shows the object nodes, and the yellow ball
shows an interaction. Each valid HOI is specified by the triple
connected nodes (verb, interaction, and object). The conceptually
similar verbs or objects nodes connected by a link (dashed lines).

zero-shot analysis, we split each set of verbs and objects into
two subsets. The object set is divided into subsets 1 and 2,
and the verb set is divided into subsets A and B. So, we can
provide four subgroups of HOI, including 1A, 1B, 2A, and
2B. For example, subgroup 1A consists of 49 HOIs whose
verbs are in the verb subset A, and their objects are in the
object subset 1. The same applies to the other three sub-
groups. Subgroup 1B includes 22 HOI classes, 2A includes
47 HOISs, and 2B includes 31 HOIs.

If we train the model with 1A +2B, it does not see all
HOIs but see all verbs and objects. So, it can identify the
unseen HOIs that are in the subgroups of 1A and 2B. In
other words, we are using 80 HOI classes (1A +2B) to train a
system that can recognize 149 HOI classes of the used
dataset.

4.2. Implementation Details. The proposed system has three
processing streams for verb recognition and one stream for
object recognition. For the two spatial CNN streams of the
verb recognition branch, an AlexNet architecture that
pretrained on UCF sports, JHMDB, and HMDB51 datasets,
is used. The first spatial network inputs are the action
patches, and for the second spatial network, the proposed
focal representation is fed. Moreover, a VGG16-RPN, which
is trained on the ImageNet dataset, is used for region
proposal to select the actionness patches process. For the 3rd
stream of the verb branch as motion representation, we used
the CNN network like the network architecture used by
Gkioxari et al. [31]. This motion-CNN is pretrained on the
optical flow images of UCF sports and JHMDB datasets. The
optical flow is computed between each consecutive frame
using the Brox algorithm [67]. For motion-CNN input, a 3D
image is created by stacking the x-component, y-compo-
nent, and optical flow magnitude. The FC7 layer of three
CNNss extracts a 4096-dimensional feature vector for each
input video frame. After obtaining feature vectors for all T
frames of input clip in three CNNGs, these feature vectors are
fed to the RNN block and outputs T time-distributed feature
vectors. For the RNN block, the LSTM module with 1024
hidden units is used. The last step before the final classifi-
cation is local feature aggregation (see Section 3.4), in which
the value 64 is selected for parameter K. The time-distributed

features are locally aggregated with ActionVLAD, and the
target activity is represented as its subactions. The output of
this step is used to classify the occurred verb in the video clip.
Two FC layers with the number of neurons equal to 256 and
the number of verbs (here 34) are used as a classifier in each
stream. For training the LSTM and its following dense
network, a stochastic gradient descent optimizer (SGD) is
utilized. The last FC layer determines the final prediction
with a Softmax activation. For preventing overfitting, the
flipping video frames technique is used for data augmen-
tation. The learning rate is set to value 5 x 107>, Also, we use
T'=25 frames per video for both optical flow and RGB for
learning and evaluation. The final verb class scores are
obtained by averaging the three streams’ results.

Another processing branch of the main system is the
object recognizer. In this branch, the objects of each frame of
input video are recognized by the existing successful object
recognition method, SSD [63]. So, the objects are obtained in
the whole input video. The results are objects with their
reliability scores. These results combine with the recognized
verb by using side information (see Section 3.5), and a valid
verb-object pair is identified as the HOI class. Our deep
learning system is implemented in python based on the
Tensorflow open-source toolbox and Keras library.

4.3. Experimental Results. We start the experiments by
comparing the zero-shot recognition accuracy of our initial
model and the state of the art. The initial model has two
spatial processing streams in the verb recognition branch
(without motion representation). Table 1 shows the results.
The effect of using side information has also been investi-
gated. The two last rows in Table 1 show the results of our
simple system with or without side information (SI). The
compared methods are all in the field of zero-shot learning,
and, like us, they have tried to identify unseen classes. Our
previous model [14] has one stream in verb branch recog-
nition. The method [58] uses the convolutional graph net-
works, which learn how to compose classifiers for verb-noun
pairs. The SES [68] and DEM [75] use the verb and noun
embeddings, which are matched to visual features using L2
loss. CC [76] does not combine word embeddings but
considers the composition of classifiers.

Our model better represents the video due to RNN blocks’
use, which leads to better verb recognition. So, it has had better
results. The use of side information graphs also had a positive
effect on the results in Table 1. In Figure 8, two samples showed
that they were misclassified without using the side information
and were classified correctly after using the side information.
The patterns of the right verbs and the false detected verbs are
similar. Therefore, the model may classify incorrectly, but
using the side information can correct such errors.

We propose using local feature aggregation to aggregate
the feature maps extracted from input frames (Section 3.4).
The proposed model for this evaluation is named
2Stream + WE + VLAD. The effect of this technique is shown
in Table 2. The reported results indicate a slight performance
improvement. We used the local aggregation after the RNN
module, but it is possible to apply this technique to the
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TaBLE 1: Zero-shot HOI recognition mAP on Charades dataset. The model trained with 1A +2B and tested on 2A + 1B and all data.

mAP (%) on the test set

Method
All data Unseen data (2A + 1B)

Chance 1.43 1.45
Compositional [58] 14.32 10.48
SES [68] 13.12 9.56
DEM [75] 11.78 8.97
CC [76] 14.31 10.13
Istream [14] 16.48 11.23
2Stream - SI 17.8 14.83
2Stream + SI 19.5 16.08

F1GURE 8: Two samples were misclassified without using side information and were classified correctly after using the side information. In
the first row, the true HOI class is “smiling at a book.“ Without using the side information, the predicted class was “playing, book.” After
using the side information, the predicted class is “smiling, book.” In the second row, the true HOI class is “making a sandwich.s ” Without
using the side information, the predicted class was “fixing, sandwich.” After using the side information, the predicted class is corrected as

“making, sandwich.”

TaBLE 2: The effect of local feature aggregation on HOI recognition
performance. The model was trained with 1A +2B and tested on
2A +1B and all data.

mAP (%)
Method
ALL data Unseen data (2A + 1B)

2Stream - WE - VLAD 17.8 14.83
2S8tream + WE - VLAD 19.5 16.08
2Stream - WE + VLAD (rnn) 18.7 15.33
2Stream + WE + VLAD (rnn)  20.96 16.96
2Stream + WE + VLAD (cnn)  20.65 16.65

TaBLE 3: The impact of the optical flow on the proposed system’s
performance. The model trained with 1A +2B and tested on
2A +1B and all data.

mAP (%)
Method
ALL data Unseen data (2A + 1B)

2Stream - WE-VLAD 17.8 14.83
3Stream - WE-VLAD 19.21 16.65
2Stream + WE-VLAD 19.5 16.08
3Stream + WE-VLAD 20.84 17.32
2Stream + WE + VLAD (rnn) 20.86 16.96
3Stream + WE + VLAD (rnn)  21.27 17.63

outputs of the CNNs. The results show that its application to
the RNN module has a slight performance improvement.
For the representation of the temporal information in
the input video, the potential of recurrent neural networks
(RNNs) has been exploited. Furthermore, the use of the
optical flow of the input video as the 3 stream in the verb

TaBLE 4: The impact of the RNNs (LSTM/GRU) on the proposed
system’s performance. Training and testing are performed on the
same subset (averaged on four subsets).

V)
Method mAP (%)
LSTM GRU
2Stream + WE - VLAD 20.28 20.33
3Stream + WE - VLAD 20.94 20.94
2Stream + WE + VLAD (rnn) 20.74 20.78
3Stream + WE + VLAD (rnn) 21.31 21.35

TaBLE 5: The impact of the RNNs (LSTM/GRU) on the proposed
system’s performance. The model is trained with 1A + 2B and tested
on all data.

mAP (%)
Method
LSTM GRU
2Stream + WE - VLAD 19.5 19.42
3Stream + WE - VLAD 20.84 20.63
2Stream + WE + VLAD (rnn) 20.86 20.64
3Stream + WE + VLAD (rnn) 21.27 21.19

recognition branch has been investigated. The impact of
using this stream is shown in Table 3. The model named
3Stream + WE + VLAD(rnn) is our final proposed system,
which uses the LSTM block as the RNN module. According
to the results, using optical flow is observed in the slight
improvement of system performance.

We used the RNNs for the representation of the tem-
poral information in the input video. In previous evalua-
tions, the LSTM block is used for the RNN module. Another
choice is the GRU blocks, which are simpler than LSTMs
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TasLE 6: The impact of the RNNs (LSTM/GRU) on the proposed system’s performance. Training and testing are performed on all data.

mAP (%
Method (%)
LSTM GRU
2Stream + WE - VLAD 22.45 22.20
3Stream + WE - VLAD 23.76 23.52
2Stream + WE + VLAD(rnn) 23.64 23.43
3Stream + WE + VLAD(rnn) 24.73 24.58
TaBLE 7: HOIs recognition results (mAP(%)) on Charades dataset. The model sees all HOI classes in the training phase.
mAP (%)
Method .
RGB RGB + optical flow
ActionVLAD [7] 17.6 21.0
Sigurdsson et al. [8] 18.3 22.4
CoViAR [9] 21.9 241
Ours 23.64 24.73

L
I I ]

FIGURE 9: Such samples of incorrect classification of our final model. In the first row, the true class is “opening a laptop” but predicted as
“fixing a laptop.” In the second row, the class of “fixing a vacuum” was predicted as “holding a vacuum.” Row 3 shows the “working at a
table” that is predicted as “watching at a book,” and the final row shows the “grasping onto a doorknob,” which is predicted by our model as

“fixing a door.”

and have a similar function. The GRU blocks are used with
1024 hidden units. The comparison between the use of the
LSTMs and GRUs is made, taking into account the volume
of training data. The results are shown in Tables 4-6. The
values reported in Table 4 indicate that the GRU has a slight
improvement to the LSTM. But looking at the results of
Tables 5 and 6 shows the opposite. The difference is the
amount of training data. In other words, the GRUs are
simpler than the LSTMs, and they converge faster. So, we
conclude that the GRU is appropriate for cases that the
amount of training data is small (due to the rapid con-
vergence), and the LSTM is the right choice for cases with a
large amount of training data due to its excellent
performance.

For the last evaluation, we examine our proposed system
in a fully supervised scenario. In other words, the model sees
all HOI classes in the training phase. 80% of all videos were
used as training data, and the remaining 20% of videos were
used for testing. Also, 10% of the training data are used as the

validation set. We compared our model’s performance to
three other state-of-the-art action recognition methods on
the Charades dataset. These three approaches are
ActionVLAD [7], Sigurdsson et al. [8], and CoViAR [9],
which are DNN-based. Our method in this evaluation for
RGB input is 2Stream + WE + VLAD and for RGB + optical
flow is 3Stream + WE + VLAD. According to the result of the
previous evaluation, the LSTM has been selected for the
RNN module. The results are reported in Table 7, which
shows our method’s better performance compared to the
other three methods.

5. Discussion

This work’s primary goal is to identify HOI classes that the
model had not seen before. The main idea is to decompose
the HOI into verb-object pairs and recognize them inde-
pendently. Tables 1-3 compare our proposed system to the
state of the art from the perspective of the intended



12

purpose. Using the side information, representing the
video by 3-stream structure and the RNN blocks, and using
the local feature aggregation have ultimately led to our
system’s better performance. Using the side information
has corrected some invalid misclassifications (see Fig-
ure 8.). Using the local feature aggregation technique leads
to a better representation of some of the classes that consist
of several subactions.

Figure 9 shows some misclassified samples of our final
system. Observing these misclassified examples shows the
visual patterns of the predicted classes are similar to the
actual classes. These errors indicate that a lack of educational
data for different categories has made the model unable to
learn a general pattern. For example, the “opening” class has
several patterns: opening the door, opening the refrigerator,
opening the cabinet, and opening the laptop. If the model
learns the pattern of “opening” for the class of opening the
door, it can predict the “opening” in opening the cabinet
without observing it during training. But the visual pattern
of the “opening” of opening a laptop is different, and the
model cannot predict correctly. If the training data for a verb
exists in other cases, the model can learn a more general
pattern and perform better during testing.

In addition to the zero-shot performance, which was the
primary purpose of the work, we evaluate our method in a
fully supervised scenario and compare it to some methods
(Table 7). In this case, the model sees all HOI classes in the
training phase. Our system’s performance is slightly better
due to its potential in video representation and the cor-
rection of some errors.

6. Conclusion

In this research, we propose a CNN-based system for HOI
understanding in video data through a zero-shot learning
approach, which can identify new classes that have not been
seen before. So, the proposed method can identify more HOI
classes than available HOIs for training and partly resolve
data unavailability for all possible HOI classes. Our approach
decomposes the HOIs to verbs and objects and addresses the
problem as verb and object recognition in the videos. The
model has a two-branch neural structure for two recognition
tasks, and it uses a CNN for feature extraction. We showed
that we could use 80 HOI classes (1A + 2B) to train a system
that can recognize 149 HOI classes of the used dataset
(1A +2B+2A +1B). Of course, there can be more predict-
able classes in the real world because not all possible real-
world combinations of objects and objects are in this used
dataset. In other words, the information and potential of the
available data can be better used.

We proposed using a local feature aggregation to better
represent verbs (actions), especially verbs with multi-
subaction, before final classification. Conventional feature
aggregation methods represent the entire space of features as
a single descriptor, which may be suboptimal to representing
a video containing several subactions. The used local feature
aggregation technique prevents the deletion of information
when merging features. So, the recognition of verbs with
several subaction is improved.

Computational Intelligence and Neuroscience

We also proposed using side information to reduce the
prediction of invalid verb-object combinations. Because of
the separate recognition of verb and object, predicting the
invalid verb-object pairs is possible. The side information
shows the relations between verbs and objects defined by
lexical information.

We showed the effect of each proposed technique on
HOI recognition system performance. We also showed that
our method could work slightly better than some fully su-
pervised HOI recognition methods that reported the best
results on the used dataset, although this improvement is
tiny.

A more appropriate structure can be provided with
better accuracy in recognizing the verb from the input video
for future work. The distinction between background objects
and activity-related objects can be used in future work,
taking into account the location of the detected objects. We
will also work on updating the system to learn new verbs or
object classes without the need for data from previous
classes. In other words, it is possible to apply incremental
learning to the proposed system.

Data Availability
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study and are available at https://doi.org/10.1007/978-3-319-
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The most common approaches for classification rely on the inference of a specific class. However, every category could be naturally
organized within a taxonomic tree, from the most general concept to the specific element, and that is how human knowledge
works. This representation avoids the necessity of learning roughly the same features for a range of very similar categories, and it is
easier to understand and work with and provides a classification for each abstraction level. In this paper, we carry out an
exhaustive study of different methods to perform multilevel classification applied to the task of classifying wild animals and plant
species. Different convolutional backbones, data setups, and ensembling techniques are explored to find the model which provides
the best performance. As our experimentation remarks, in order to achieve the best performance on the datasets that are arranged
in a tree-like structure, the classifier must feature an EfficientNetB5 backbone with an input size of 300 x 300 px, followed by a
multilevel classifier. In addition, a Multiscale Crop data augmentation process must be carried out. Finally, the accuracy of this
setup is a 62% top-1 accuracy and 88% top-5 accuracy. The architecture could benefit for an accuracy boost if it is involved in an

ensemble of cascade classifiers, but the computational demand is unbearable for any real application.

1. Introduction

The most common pipeline for object recognition relies in
the prediction of the most specific class as stated by the
dataset that is used for training the system. For instance, a
dataset could be composed of the categories “pedestrian,”
“bike,” “car,” “van,” and “motorbike.” A classic machine
learning approach using a labeled dataset would state if the
input sample match any of the classes. Nonetheless, every
category is inherently organized as a taxonomic tree. For
instance, “bike” and “motorbike” are “two-wheel vehicles”;
“car” and “van” are “four-wheel vehicles”; likewise, “two-
wheel vehicles” and “two-wheel vehicles” are “vehicles,” and
“vehicles” and “pedestrian” are “urban objects.” Thus, we
organized plain categories in a taxonomic tree. The cate-
gories that are grouped under the same node share common
features.

Tackling the classification problem within this
framework introduces several advantages. First, the fea-
tures that would learn the classifier are grouped, so it does
not have to learn roughly the same features for several,

slightly different categories. Then, in this case, the clas-
sifier states the proper category for each level of the
taxonomic tree, so it would provide a set of predictions at
different abstraction levels.

Thus, in this paper, we study different architectures,
approaches, and data setups focused on performing classi-
fication on a multilevel fashion. To do so, we tackled the
iNaturalist challenge, as it sets a multilevel classification
problem, and being a challenge as it is, it also provides an
easy comparison framework. In addition, being able to
automatically recognize wildlife entities could be applied for
a range of different applications. For instance, it could be
used for early detection of plagues, to easily analyze the
migration habits of several animals, or for protecting en-
dangered flora and fauna population. So far, the precise
identification of species is required to be performed by an
expert. This takes time and effort. Thus, being able to au-
tomatically state the species of a sample could lead to take
early actions that would dramatically reduce the conse-
quences of, as we mentioned before, an insect plague in
agricultural plantings.
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Specifically, the main contributions of this work include
the following:

(i) A study of different convolutional backbones and
setups to perform multilevel classification

(ii) A study of different methods to create ensemble
models for improving the accuracy of the whole
system

(iii) Application of the approach to tackle the iNaturalist
challenge for automatically recognizing wildlife
entities in images

The rest of the document is structured as follows. First,
we briefly discuss related works to classic and multilevel
classification approaches and wildlife entity automatic
recognition in Section 2. In Section 3, a summary of the
details regarding the iNaturalist dataset are given, which is
the dataset we use in our experiments. Then, in Section 4, we
explain the architectures that were involved in this study, the
ensemble models, and the data setup we used in the ex-
periments. The results of the exhaustive experimentation we
carried out are discussed in Section 5. Finally, the conclu-
sions of the work and future research directions are drawn in
Section 6.

2. Related Works

2.1. Image Classification. Multiclass classification of images
has been a widely studied topic in the history of artificial
intelligence. One of the simplest approaches to performing
multiclass classification is to train a series of binary classi-
fiers, where the output of each classifier is used to produce
the final multiclass classification. This approach was ex-
plored in early neural networks and in support vector
machines. The solution, although it is simple, also has se-
rious drawbacks. For example, the feature space is not
properly scanned and can lead to overfitting issues. In the
past, a single classifier that made multiclass predictions was
theoretically introduced. However, it could not be tested due
to lack of computing power. With the emergence of mas-
sively parallel platforms such as GPUs and the deep learning
paradigm, this approach has been widely explored. In [1-3],
the traditional approach of a binary classifier set is compared
to a pure multiclass classifier. The authors claim that the
multiclass approach has several advantages, such as reduced
training and inference time and a broader exploration of the
feature space. However, these approaches do not take ad-
vantage of the fact that labels are organized taxonomically.
In [4], it is concluded that multiclass classification works best
with well-balanced data, while the approach that uses a set of
classifiers works best in the presence of unbalanced data.
Since the recent increase in popularity of neural net-
works, the research of new network architectures has
experimented a great development. The increasing number
of layers in modern networks amplifies the differences be-
tween architectures and motivates the exploration of dif-
ferent connectivity patterns. One of the most popular
architectures was the ResNet, and this kind of neural net-
work achieved an impressive performance on many
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challenging image recognition tasks, such as ImageNet.
However, in [5] a comparison is made with other modern
architectures. Unlike ResNet architectures, DenseNet con-
catenates feature maps learned by different layers which
increases variation in the input of subsequent layers and
improves efficiency. The authors assure that compared to
Inception [6] networks, which also concatenate features
from different layers, DenseNet are simpler and more effi-
cient. There are other interesting architectures that have
recently emerged, one of them is EfficientNet network, and
in [7], it is said that in general, the EfficientNet models
achieve both higher accuracy and better efficiency over
existing convolutional neural networks (CNNs), reducing
parameter size, and floating point operations per second
(FLOPS). Compared with the widely used ResNet50, Effi-
cientNetB4 uses similar FLOPS and improves significantly
the results on ImageNet.

2.2. Wildlife Identification. In 2017, Brust et al. [8] trained an
object detection method YOLO to extract cropped images of
gorilla faces. Once the faces are extracted, they trained a
CNN model that had an accuracy of 90%. In this work, the
authors discuss how deep learning could be really helpful for
ecological studies, specifically, in the fields of identification
of natural species, spatiotemporal coverage, and socio-
ecological insights. Another significant work is [9], where
the authors take the iNaturalist 2017 dataset as a basis to
analyze the existing difficulties in identifying plants and
animals. Wildlife identification belongs to a specific field of
image classification in which the different categories have
great visual similarities between them. This kind of identi-
fication is usually called fine-grained classification. For in-
stance, facial identification can be seen as a type of
classification with similar visual features. However, because
of the underlying geometric similarity between faces, current
approaches tend to perform a large amount of specific face
preprocessing [10-12]. Moreover, images of natural species
have their own characteristics, and for instance, individuals
from the same species can differ in appearance due to sex
and age and may also appear in different environments. In
[13], a solution for the identification of wild animals is
discussed, and in this case, the work focuses on identifying
animals among 20 species from low-quality images taken
from camera traps. The authors claim that unbalanced data
are one of the biggest drawbacks to building an effective
solution. They also pay attention to other facts, such as data
augmentation or using modern network architectures as
EfficientNet. However, although they use ensemble learning
and admit a great improvement on these systems, it does not
go too deep into them.

Due to the similarity between the different categories,
only a few experts can identify accurately the corresponding
class, so the number of images is usually fewer as detailed
expert annotations are more difficult to obtain. To solve this
problem, Cui et al. [14] proposed a data transfer learning
scheme. However, this technique requires retraining models
using large datasets without obtaining significant perfor-
mance compared to the needed computation time.
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Furthermore, as we go down into the spectrum of similarity,
the number of instances in each class becomes smaller. This
motivates the need for automated systems that are able to
discriminate between a large number of potentially similar
categories, having only a small number of examples for some
categories.

2.3. Multilevel Classification. Multilevel or hierarchical
classification is a very discussed problem within the machine
learning community. For instance, in [15], the authors
propose a cascade of classifiers to perform Attention Deficit
Hyperactivity Disorder from a set of traditional features.
This very same approach is used in [16] to create a generic
multilevel classifier for medical datasets. Following on,
different multilevel architectures are explored in the context
of deep learning in [17]. The authors also applied their
findings to a Diptera dataset. Finally, a comprehensive and
exhaustive review on multilevel and hierarchical classifica-
tion is provided in [18]. In this review, the multilevel ap-
proaches are classified in one classifier per node, which
consists on a binary classifier per category; one multilabel
classifier per level; and one classifier per parent node, which
is also known as cascade of classifiers.

2.4. Related Datasets. There are some state-of-the-art
datasets that include images of categories with great visual
similarities among them. Currently, there are fine-grained
datasets related with natural species, for instance, we found
datasets about birds [19-21] and dogs [22, 23]. The ImageNet
[24] dataset is not usually defined as a fine-grained dataset;
however, it does contain several groups of fine-grained
classes, including about 60 species of birds and 120 breeds of
dogs. Many of these data sets were built with the intention
that they would have a uniform distribution of images across
the different categories. Another characteristic that this type
of datasets usually has is that they only contain images of a
single domain, for example, images of birds. However, they
do not usually have similar categories from different do-
mains in the same set, such as fungi, plants, insects, and
reptiles.

3. The iNaturalist Dataset

To train, test, and validate the architectures, we used the
iNaturalist 2019 dataset as provided by the corresponding
Kaggle challenge (https://www.kaggle.com/c/inaturalist-
2019-fgvc6). This dataset is composed of a high number
of wildlife samples, which are labeled in a hierarchy fashion
following the taxonomic rank of the biological entities.
Namely, they provide the category for each level of the
taxonomic tree, from first to last level. The dataset depicts
images of 1010 different plants, insects, birds, and reptilians.

The iNaturalist dataset has a total of 268.243 images, each
containing one of the different animal and plant species to
classify. All images are labeled with the species to which each
individual belongs, and in each case, we have the complete
taxonomic tree of the corresponding species, as we men-
tioned earlier. The shape of this hierarchy is specified is as

follows (from higher abstraction to the finest grain category):
Kingdom, 3 categories; Phylum, 4 categories; Class, 9 cat-
egories; Order, 34 categories; Family, 57 categories; Genus,
72 categories; and Species, 1010 categories. As stated before,
each image has only one category assigned for each level.
Some random samples of the iNaturalist dataset are shown
in Figure 1. Finally, it is worth mentioning that an exhaustive
analysis of this dataset could be found in [9].

Despite providing images of fine quality and resolution,
and a high number of samples, the dataset has some issues
that could affect the performance of the algorithms that are
trained with it.

For instance, species that share the same taxonomic
categories are more similar to each other and, in some cases,
can only be distinguished from some small details. For
instance, in Figure 2, different species of frogs belonging to
the dataset are shown. As it can be seen, distinguishing the
species to which each image belongs is a difficult task that
can only be done precisely by an expert, due to the high
visual similarity between them. The similarity between
categories increases as the categories are more fine-grain.

Another problem of this dataset that includes flora and
fauna at the same time is that elements belonging to different
classes appear at the same time in some photographs. In other
words, insects or other animals may appear in an image
labeled as vegetation. For instance, in the leftmost image of
Figure 3, we can clearly observe an insect, but the labeled
category is a type of plant. This kind of samples could also be
challenging for the algorithms that are trained on this dataset.

In addition to that, in several occasions, the subject to be
identified and the background of the image appear blurred
or with a very low quality. An example of this can be seen in
the central image of Figure 3, where the image has a low
resolution and the bird is hard to identify. There are other
cases, in which regardless of the quality of the image, the
subject to identify is barely perceptible or is quite hidden in
the image. In the rightmost image of Figure 3, we can see that
an amphibian appears in the photograph, but only part of it
is seen, since it is hidden among the grass.

Considering the features discussed here, this dataset is
suitable for properly benchmarking any multilevel classifi-
cation approach, also bearing in mind that some samples are
extremely challenging to classify, even for a human, due to
the ambiguity they represent.

4. Accurate Multilevel Classification

As explained before, our goal is to provide the best archi-
tecture to perform multilevel classification from color im-
ages. Namely, given a taxonomic classification tree, the
architectures predict the most probable category for each
level of the mentioned tree taking a single color image as an
input. An example of the prediction provided by our ar-
chitectures is shown in Figure 4.

To do this, we put to test different deep learning-based
convolutional backbones. The architectures of choice were
ResNet50 [25], InceptionV3 [26], DenseNet [5], and Effi-
cientNet B5 [7]. These architectures were chosen because
they are state of the art, reportedly achieving great accuracy
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Multilevel model
| | | | | |
Kingdom Phylum Class Order Family Genus Species
Animalia Arthropoda Insecta Odonata Libellulidae Libellula Libellula
depressa

FIGURE 4: The proposed architectures are able to provide the most probable category for each level in a taxonomic tree.

in other datasets such as the ImageNet one. In addition, we
also put to test different data setups and ensemble meth-
odologies in order to provide the best configuration to tackle
multilevel classification problems.

4.1. Classification Convolutional Backbones. As expected, the
architectures mentioned before are intended for classifica-
tion at the finest grain as possible, so we had to modify them

in order to enable the multilevel classification. To do so, we
removed the last fully connected layer of each architecture
and replaced them for seven parallel fully connected layers.
Namely, the feature maps provided by the convolutional
backbone are forwarded to seven isolated fully connected
layers. Each of these layers is a single-level classifier. We put
7 layers to match the iNaturalist annotations that provide
seven levels in the taxonomic tree. The number of output
neurons of each layer is different as each level has a different
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number of categories. For instance, the layer for the level
“Species” has 1010 neurons whilst the layer for the level
“Family” has 57.

It is worth noting that this methodology was applied for
the experiments that involve multilevel predictions, such as
the experiments explained in Section 5.3.

The experiments shown in Section 5.1 and Section 5.2
were performed following a flat classifier approach in the
sake of comparison. Namely, these architecture do not
perform multilevel classification, but they provide directly
the finest-grain label as possible. To to this, the convolutional
backbone is connected to a single fully connected layer with
1010 neurons, matching the number of categories of the
“Species” level, which is the most specific level provided by
the dataset, as mentioned before. In all cases, the activation
function of the output neurons is softmax, which is defined
as in equation (1). This function is applied to generate a
probability for each class from the logits provided by the
convolutional backbone:

Zi

Zj’il e

Whether the benchmarked approach was multilevel or
flat, all the architectures involved in the experiments were
trained following the same setup. First, the dataset already
provides a train set and a test set, so we adopted the splits
with no modifications. Some experiments involved different
data augmentation techniques, which we applied to the
training set as explained in Section 4.2. In each training
procedure, the data are shuffled so they are fed to the
network with a random order. The optimization procedure
was carried out by the Adam solver which was initialized
with a learning rate of 0.0001. The Adam weight update
protocol is shown in equation (2). The error function to
minimize was categorical crossentropy. The architectures
were initially configured to be trained on a forever loop, and
an early stopping criterium was used to halt the training
procedure. This criterium consisted of 10 consecutive tests
with no significant improvement in the classification ac-
curacy on the test set. A test was performed every 10 training
epochs:

0(2); =

(1)

my = Bymy_y +(1-B) gy

v =Bovey +(1- /31)9?’

- _ (2)
v, = max (v, v,),

n
01 =6, - W’”
t

4.2. Data Setup. Regarding the data, the architectures were
trained on the training split and tested with the test split.
Both sets are provided by the dataset itself, and we adopted
them with no modifications. The original training split is
composed of 187770 samples, whilst the test split has 80529
samples. It is worth bearing in mind that the images of the
dataset are of different resolution, so they are resized to fit

the input size of each architecture. This original data setup
was explored in the experiments and is referred as the “No”
data augmentation setting.

Some of the experiments we carried out involve dif-
ferent data augmentation techniques. The data augmen-
tation is a common method to artificially create new
samples from the existing ones by slightly modifying them.
This method is a default procedure when it comes to train
machine learning methods and specially to train deep
learning models, which is reportedly used to improve its
generalization capabilities. We applied data augmentation
on the least represented categories in order to match the
number of samples of the most represented category of the
dataset.

First, the Standard data augmentation technique consists
on the application of a range of different operators. Namely,
horizontal and vertical flipping, color channel shifting,
Gaussian noise addition, brightness and contrast alterations,
and Gaussian blur were randomly combined and applied,
with random parameters each. The Standard data aug-
mentation is applied to the training data, so an augmented
training set of 353500 samples is generated. This set is the
same for all the experiments that involved the Standard data
augmentation technique.

Then, the Central Crop data augmentation technique
consists on generating new samples by extracting the central
patch of each image. The center patch covered over the 80%
of the original image. As the images of the dataset are of
different resolution, the crop is performed before the resize
operation. This data augmentation technique is applied
together with the Standard setup described before, so when
an experiment is setup with the Central Crop method, it also
includes the Standard one. We applied this technique be-
cause sometimes the input image depicts too much back-
ground in addition to the labeled sample. By cropping the
central patch, we try to remove the uninteresting back-
ground whilst keeping the visual features of the target
sample intact.

Finally, the Multiscale Crop data augmentation tech-
nique is about extracting the central crop of the image but at
different resolution. In this case, three central crops of
random size, ranging from 80% to 50% the size of the
original sample, were extracted following the same meth-
odology explained before. In this case, the Standard data
augmentation method is also applied alongside the Multi-
scale one. The reason behind the application of this method
is that the relative size of the target sample with respect to the
whole image is not fixed. Thus, we can find samples where
the subject covers the whole image, and others where it is
depicted on a small section of it, and the rest is background.

Some samples after applying these data augmentation
techniques are shown in Figure 5.

4.3. Ensemble Methodologies. A common technique to im-
prove the results of a classification system is to combine the
decision of different classifiers to provide the final result. The
goal of this method is to enhance the strong points while
complementing the weakest features of each classifier. We
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FIGURE 5: Some random augmented samples.

implemented three different ensemble models: boosting,
stacking, and a cascade of classifiers which is a collection of
specialized classifiers. These ensemble methodologies are
explored in the experiments shown in Section 5.4.
Boosting [27] is based on weighting the decision of each
architecture based on its theoretical accuracy on the vali-
dation set as described in equation (3). In our case, different
architectures are fed so the individual decisions are com-
puted. Then, the results of each architecture are multiplied
by its theoretical accuracy. Next, the results of all the ar-
chitectures are summed together and the highest scores for
each level are returned as the final decision of the ensemble:

d/(—-’?) = Z)’i'wi' (3)

Regarding the stacking technique [28], it is based on
creating an intelligent system that learns the mistakes that
make a range of other classifiers, which outputs are used as
the input, in order to correct them. In our case, we trained a
fully connected layer that takes the output of a range of
different multilevel architectures as an input and predicts the
final multilevel decision.

Finally, the specialized cascading classifiers [29] consist
of creating specialized classifiers for each possible category
in a multilevel approach. Thus, the prediction of a specific
level is trusted to be correct in order to forward the data to
the proper specific classifier which will provide the pre-
diction for the next level, namely, the next classifier. As we
have 9 levels deep and more than 1000 categories, training
one classifier for each is unbearable. Thus, we only per-
formed this technique for the Phylum level, which includes 4
different categories. Thus, in our incarnation of this ap-
proach, a classifier is in charge of deciding the proper
Phylum of the input sample. Then, based on this decision,
the sample is forwarded to the classifier of the predicted
Phylum so it states the rest of the more specific levels.
Namely, we trained a general classifier that predicts the
Phylum, and a specialized classifier for each Phylum that
predicts the category for the rest of the levels.

5. Experimentation and Discussion

In this section, the results of the experiments we carried out
are reported. In addition to each setup, we also provide the
top-1 and top-5 accuracy.

All the experiments were conducted on the same ma-
chine, which features an Intel i7-7700 @ 3.6 GHz CPU with
16 GB of DDR3 RAM. The chipset of choice is Z370. All the
computations were accelerated by a Nvidia Quadro P6000

GPU unit. Regarding the software, the SO is Ubuntu 18.04
LTS and all the architectures were implemented on Keras
2.2.4 and tensorflow 1.4.0 frameworks using CUDA 9.0 and
CuDNN.

5.1. Baseline Convolutional Backbone Flat Classifiers. In this
section, the experiments are intended to compare different
convolutional backbones. In addition to that, it is also
intended to discover whether the data augmentation impacts
on the accuracy. It is worth noting that these experiments do
not involve multilevel classification, but just flat classifica-
tion on the most specific level of the taxonomy. The results
are reported in Table 1.

As it can be seen, the most accurate convolutional ar-
chitectures are the DenseNet201 and the EfficientNetB5 with
a marginal accuracy difference between them. On one hand,
the DenseNet architecture features residual connections
between every convolutional block. This fact allows the
network to explicitly learn powerful multiscale features that
are very helpful for correctly classifying the images in which
the sample is depicted in a small part. In a convolutional
pipeline with no residual connections, the mentioned visual
features would disappear as per effect of the convolution and
pooling operations in the earliest stages of the network. On
the other hand, the EfficientNet family of architectures was
created by performing a Neural Architecture Search.
Namely, this collection of architectures was proposed by an
intelligent system that aims to achieve the best trade-off
between accuracy and runtime. The EfficientNetB5 is the
most powerful in terms of accuracy, and it provides the best
top-1 and top-5 results too in our experiments.

Regarding the inclusion of data augmentation, it clearly
impacted the accuracy of every architecture. As it can be
seen, all of them experienced a significant accuracy boost
when data augmentation was involved in both top-1 and
top-5 metrics.

Thus, we can conclude that the setups involving data
augmentation techniques, and DenseNetl01 and Effi-
cientNetB5 convolutional backbones provide the best
accuracy.

5.2. Resolution Experiments on Flat Classifiers. In this sec-
tion, we put to test the impact of the input resolution on the
accuracy of the architectures for flat classification. No
multilevel prediction is involved in these experiments.
Despite being DenseNet101 and EfficientNetB5, the archi-
tectures that provided the best performance on the
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TaBLE 1: Results on flat classification for different convolutional
backbones and data augmentation.

Conv. . Data
1D backbone Resolution augmentation Top-1. Top-5
BA ResNet50 250 x 250 No 0.27 0.62
BB ResNet50 250 x 250 Standard 045 0.73
BC InceptionV3 250 x 250 No 034 0.63
BD  InceptionV3 250 x 250 Standard 0.46 0.75
BE DenseNet201 250 x250 No 0.33 0.64
BF  DenseNet201 250 x 250 Standard 0.51 0.77
BG EfficientNetB5 250 x 250 No 0.36 0.65
BH EfficientNetB5 250 x 250 Standard 0.53 0.8

experiments of Section 5.1, they are very computationally
expensive. Namely, due to hardware restrictions, we cannot
test these networks with a resolution greater than 300 x 300
pixels. Thus, we adopted ResNet50 to carry out these ex-
periments up to 350 x 350 and we will assume that the
results apply to DenseNet and EfficientNetB5.

The results of testing ResNet50 with a range of different
resolutions are shown in Table 2. For this particular problem,
the accuracy is proportional to the resolution. Namely, the
accuracy improves as the resolution of the input images
increases. It is expected that the improvement becomes
marginal at a certain resolution onwards, but we cannot
reach that limit due to hardware limitations as explained
before. It is also worth noting that the accuracy of ResNet50
with a resolution of 350 x 350 is similar to the accuracy
achieved by EfficientNetB5 with 250 x 250 resolution, being
also similarly computationally expensive.

At this point, the setup that provides the best accuracy is
DenseNet and EfficientNet with data augmentation and the
largest resolution allowed by the hardware, which in our case
is 300 x 300 pixels.

5.3. Convolutional Multilevel Classifiers. In this section, we
benchmarked the best setup for performing multilevel
classification. As the experiments we performed before on
flat classification conclude, only DenseNet and Effi-
cientNetB5 are considered because they provide the best
accuracy. In addition, 250 x 250 and 300 x 300 resolutions
are put to test. Finally, the three different types of data
augmentation explained in Section 4.2 are also
benchmarked.

The results of the experiments on multilevel classifica-
tion are reported in Tables 3 and 4. Regarding the con-
volutional backbone, the one that provides the best top-1
and top-5 accuracy regardless the input image resolution
and the data augmentation type is EfficientNetB5. Effi-
cientNetB5 consistently outperformed DenseNet201 in ev-
ery experiment if it is compared pairwise with the same
setup.

The impact of the resolution is also noticeable in this
experiment, as the increment of resolution led to an accuracy
boost in every experiment as well. This is expected as the
visual features of the samples are of more quality, and they
also can reach deeper in the convolutional pipeline, which
improves the classification accuracy. This effect is more

noticeable on the DenseNet101 architecture as it explicitly
provides multiscale feature extraction through its dense
residual connections.

The inclusion of Central Crop and Multiscale Crop data
augmentation techniques increased the accuracy of the
models too. However, the improvement is marginal respect
to the Standard method. It seems that it is preferable to
enlarge the input resolution rather than to apply Central
Crop or Multiscale Crop data augmentation techniques
when possible. In addition, we can conclude that the
Standard data augmentation technique indeed helps to
improve the generalization capabilities and the overall ac-
curacy of the model in this multilevel classification
configuration.

As we can see in Figure 6, the probability distributions
computed with the Fl-score results show that the perfor-
mance of both models look pretty similar. F1-scores for the
ML model can be represented as a normal distribution of
0.60 mean and 0.04 of typical deviation, while the results for
MF model can be expressed as a normal distribution of 0.62
mean and 0.03 of typical deviation.

These distributions mean that the ML model has ap-
proximately 659 classes (65.2%) whose F1-score is between
0.56 and 0.64, and 964 classes (95.4%) whose F1-score varies
from 0.52 to 0.68. On the other hand, the MF model has
approximately 659 classes (65.2%) whose Fl-score is be-
tween 0.59 and 0.65, and 964 classes (95.4%) whose F1-score
varies from 0.56 to 0.68.

In the light of the experiments, both models (Dense-
Net201 and EfficientNetB5 with Multiscale Crop) show a
similar performance, DenseNet201 is slightly superior in the
Fl-score and AUC score test, whilst EfficientNetB5 is
moderately superior in the top-1 and top-5 test, which we
considerate crucial, so we selected EfficientNetB5 as the
convolutional backbone for performing multilevel classifi-
cation of wildlife imagery, with input images of 300 x 300
pixels resolution and Multiscale Crop data augmentation.
However, it is worth mentioning that the improvement over
the Standard data augmentation configuration is marginal.

5.4. Multilevel Ensemble Approaches. In this section, we put
to test the performance on multilevel classification of the
ensemble setups discussed on Section 4.3. As the aim of the
ensemble models is to combine different approaches so that
their weaknesses are compensated and their strong points
enhanced, we chose the setups MF and ML, as reported in
Table 3, to create the ensembles. These setups provide the
best accuracy levels thus far and feature two different
convolutional backbones.

The results of both ensemble methods, boosting and
stacking, are reported in Table 5. In the light of the results,
both methods led to an important improvement in terms of
accuracy compared with using just one architecture. Fur-
thermore, the boosting approach provides an even better
accuracy, reaching a top-1 71%.

We also tested the cascade of classifiers approach. De-
spite a pure cascade of classifiers would involve a classifier
per category in each level, we only trained specialized
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TaBLE 2: Results of flat classification for a range of different input image resolutions.

ID Conv. backbone Resolution Data augmentation Top-1 Top-5

RA ResNet50 200 x 200 Standard 0.43 0.72

RB ResNet50 250 x 250 Standard 0.45 0.73

RC ResNet50 300 x 300 Standard 0.48 0.76

RD ResNet50 350 x 350 Standard 0.53 0.83

TaBLE 3: Results for multilevel classification that includes different convolutional backbones, input image resolution, and data augmentation

techniques.

ID Conv. backbone Resolution Data augmentation Top-1 Top-5
MA DenseNet201 250 % 250 Standard 0.51 0.78
MB DenseNet201 250 x 250 Central Crop 0.52 0.79
MC DenseNet201 250 % 250 Multiscale Crop 0.51 0.78
MD DenseNet201 300 x 300 Standard 0.58 0.83
ME DenseNet201 300 x 300 Central Crop 0.59 0.84
MF DenseNet201 300 % 300 Multiscale Crop 0.61 0.85
MG EfficientNetB5 250 % 250 Standard 0.53 0.82
MH EfficientNetB5 250 % 250 Central Crop 0.53 0.81
MI EfficientNetB5 250 x 250 Multiscale Crop 0.54 0.84
MJ EfficientNetB5 300 x 300 Standard 0.61 0.87
MK EfficientNetB5 300 x 300 Central Crop 0.62 0.87
ML EfficientNetB5 300 x 300 Multiscale Crop 0.62 0.88

Probability

ML (F1 probability distribution)

MEF (F1 probability distribution)
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FIGURE 6: Probability distribution of F1-score for the ML (leftmost) and MF (rightmost) experiments.

TaBLE 4: Results for multilevel classification that includes area
under the ROC curve and weighted F1-score.

1D Conv. Resolution Data . AUC Fl-score
backbone augmentation
ME DenseNet201 300x300  Multiscale o0 062
Crop
ML EfficientNetB5 300 x 300 Mucl?sgale 0.806  0.60

classifiers for each Phylum in this case. As we have 9 levels
deep and more than 1000 categories, training one classifier
for each is unbearable. The setup of choice for the classifiers
was based on the experiment ML, as reported in Table 3. The
results for this setup show a slightly better accuracy

compared with the original ML experiment. Nonetheless,
even if the improvement was not marginal, the requirement
of a single classifier per category in each level makes this
approach very time consuming, which could be inadequate
for a range of applications.

Finally, some results of correctly classified subjects as
provided by the EC setup are shown in Figure 7. As it can be
seen, the approach is able to work with images that do not
depict the subject entirely, with cluttered scenarios, with
several subjects in the same picture and with a range of
different poses.

In addition, some errors are shown in Figure 8. In this
case, the first image depicts a sample of Thamnophis
sirtalis and the second one a sample of Thamnophis
elegans incorrectly classified. The main difference
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TaBLE 5: Results for multilevel ensemble methods.

ID Setup Ensemble Mode Top-1 Top-5

EA MF + ML Boosting 0.71 0.95

EB MF + ML Stacking 0.68 0.93

EC ML Cascade classifiers 0.63 0.89

Tringa flavip

'\;’7“

FIGURE 8: A sample of Thamnophis sirtalis (correctly classified) and sample of Thamnophis elegans (incorrectly classified). Note the high

visual similarity of both species.

between these two species is that the first has a dash-like
pattern of red marks along the lateral parts of its body.
This kind of error happens sometimes with species that
look so similar.

6. Conclusion and Future Work

In this work, we have presented an exhaustive study of
different methods to perform multilevel classification from
color images applied to the problem of classifying wild
animals and plant species.

In order to solve this problem, data from different
competitions of iNaturalist have been fused and processed
with data augmentation techniques. Moreover, several dif-
ferent state-of-the-art architectures have been adapted to the
taxonomy of our problem to find the best model.

Our experiments show that increasing the resolution of
the images impact on the final accuracy, as the finer details
are very important to determine the exact specie of each
being are preserved. In addition to that, the best architecture

is EfficientNetB5 with the Multiscale data augmentation
method. Furthermore, the ensemble models show even
better accuracy, being the boosting technique that provides
the best results.

It is important to note that, additionally to the results
presented in this paper, our system has been applied with
success to a range of real-life videos that contain moving
species. A sample of this functionality could be seen at
https://youtu.be/rzEIYt4GjOA. This test has let us check the
performance of our system in real scenarios, being capable of
classifying more than 1000 species with high robustness.

Regarding the limitation of the methods, they still have
room for improvement in terms of accuracy. In addition to
that, it is worth noting that the error of the classifiers is
greater as they got deeper in the taxonomy. Namely, the
classifier of the Species level is the most prone to error. This
is expected as the samples of different categories are more
visually alike. Thus, in future research studies, we plan to
tackle this problem so that the accuracy is kept no matter the
depth level in the taxonomic tree.


https://youtu.be/rzEIYt4Gj0A
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