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Sensor network is composed of spatially distributed sensor
nodes to monitor the phenomenon of interest, where each
sensor node takes measurements and transmits them to the
data-processing center (fusion center). The main advantages
of sensor network include its low cost, rapid deployment,
self-organization, flexibility, and fault tolerance. Sensor net-
works, especially wireless sensor networks, have attracted
significant research interests due to their wide applications
and technological opportunities challenged by the limited
resources, such as the battery-powered node energy and
wireless bandwidth. Usually wireless channel in the network
is also unreliable, which results in random transmission
delays and packet losses when the sensor data are exchanged
among nodes or sent to the data-processing center.Moreover,
the quantization or compression of the sensor data is desired
to tradeoff between the signal processing performance and
the required network resources. It is very important to design
collaborative signal processing algorithms and systems with
network and sensor resource management under the uncer-
tain network environment featured with the delayed, lost,
or/and quantized data.

The main focus of this special issue will be on the new
results of resource-constrained signal processing in sen-
sor networks. It will provide an international platform for
researchers to summarize themost recent development in the
field. After a rigorous peer-reviewing process, 9 papers have
been selected for publication. These papers cover the topics
including compressed sensing, data compression, distributed
estimation, consensus, and tracking.

In the paper entitled “IDMA-based compressed sensing
for ocean monitoring information acquisition with sensor

networks” by G. Liu and W. Kang, an interleave-division
multiple-access- (IDMA-) based compressed sensing scheme
is proposed for underwater sensor networks with applica-
tions to underwater environmental monitoring. The pro-
posed scheme consists of three components: data sampling
with randomly selected sensors, interleave-divisionmultiple-
access of the sampled packets, and information recovery
with the successfully accessed measurements after chip-
by-chip (CBC) multiuser detection (MUD). In the paper
entitled “Data reduction with quantization constraints for
decentralized estimation in wireless sensor networks” by Y.
Weng, the unknown vector estimation problem is considered
for bandwidth constrained wireless sensor network. Due to
the power and communication bandwidth limitations, each
sensor node must compress its data and transmit them to the
fusion center. Both centralized and decentralized estimation
frameworks are developed. The closed-form solution for the
centralized estimation framework is proposed. The compu-
tational complexity of decentralized estimation problem is
proven to be NP-hard and a Gauss-Seidel algorithm is also
proposed to search for an optimal solution. In the paper
entitled “Weighted measurement fusion quantized filtering
with bandwidth constraints and missing measurements in
sensor networks” by J. Ding et al., the estimation problem
of a dynamic stochastic variable in a sensor network is
studied, where the quantization of scalar measurement,
the optimization of the bandwidth scheduling, and the
characteristic of transmission channels are considered. Two
weighted measurement fusion (WMF) quantized Kalman
filters based on the quantized measurements arriving at the
fusion center are presented for the imperfect channels with
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missing measurements in sensor networks. It is shown that
they have the reduced computational cost and the same
accuracy as the corresponding centralized fusion filter. The
approximate solution for the optimal bandwidth-scheduling
problem is given under a limited bandwidth constraint. In the
paper entitled “Distributed fusion estimation for multisensor
multirate systems with stochastic observation multiplicative
noises” by F. Peng and S. Sun, a distributed fusion estimation
algorithm is presented for a class of multisensor multirate
systems with observation multiplicative noises. Sampling
period of each sensor is uniform and the integer multiple
of the state updates period. Moreover, different sensors have
different sampling rates and observations of sensors are
subject to the stochastic uncertainties ofmultiplicative noises.
In the paper entitled “Average consensus analysis of distributed
inference with uncertain Markovian transition probability” by
W. I. Kim et al., the average consensus problem is studied
for the distributed inference in a wireless sensor network
under the Markovian communication topology with uncer-
tain transition probability. A sufficient condition is presented
for the average consensus of linear distributed inference
algorithm. Based on linear matrix inequalities and numerical
optimization, a designmethod is provided for fast distributed
inference. In the paper entitled “IMM filter based human
motion tracking using a wireless sensor network” by S. Zhang
and W. Xiao, using low cost range wireless sensor nodes,
an novel sensor selection algorithm is proposed for human
tracking based on the interactingmultiplemodel filter (IMM)
techniques and considering both the tracking accuracy and
the energy cost. In the paper entitled “Unknown clutter esti-
mation by FMM approach in multitarget tracking algorithm”
by N. Lv et al., a multitarget tracking algorithm based on
clutter model estimation is proposed to deal with severe
bias caused by unknown and complex clutters. Multitar-
get likelihood function is established with FMM. In this
frame, the algorithm of expectation maximum (EM) and
Markov Chain Monte Carlo (MCMC) are both consulted in
FMM parameters estimation. Furthermore, target number
and multitarget states can be estimated precisely after the
clutter model is fitted. In the paper entitled “Models and
algorithms for tracking target with coordinated turn motion”
by X. Yuan et al., firstly a number of widely used models are
compared under the single model tracking framework, and
the suggestions on the choice of models for different practical
target tracking problems are given; then, in themultiplemod-
els (MM) framework, the algorithm based on expectation
maximization (EM) algorithm is derived, including both the
batch form and the recursive form. In the paper entitled
“Self-similarity super resolution for resource-constrained image
sensor node in wireless sensor networks” by Y. Wang et al.,
a self-similarity super resolution with low computation cost
and high recovery performance is proposed. In the self-
similarity image super resolution model, a small size sparse
dictionary is learned from the image itself. The most similar
patch is searched and specially combined during the sparse
regulation iteration to preserve the detailed information.

The guest editors hope that this special issue can provide
a snapshot of the latest advances in sensor networks and
stimulatemore research interest and efforts in sensor network

research and development. They would like to acknowledge
all authors for their efforts in submitting high-quality papers
and are also very grateful to the reviewers for their profes-
sional contributions.

Shuli Sun
Wendong Xiao

Kung Yao
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Finite mixture model (FMM) approach is a research focus in multitarget tracking field. The clutter was treated as uniform
distribution previously. Aiming at severe bias caused by unknown and complex clutter, a multitarget tracking algorithm based
on clutter model estimation is put forward in this paper. Multitarget likelihood function is established with FMM. In this frame,
the algorithms of expectation maximum (EM) and Markov Chain Monte Carlo (MCMC) are both consulted in FMM parameters
estimation. Furthermore, target number and multitarget states can be estimated precisely after the clutter model fitted. Association
between target andmeasurement can be avoided. Simulation proved that the proposed algorithmhas a good performance in dealing
with unknown and complex clutter.

1. Introduction

Multiple target tracking (MTT), for its important theoretical
significance and widely applied engineering background,
is a research focus in tracking field in recent years [1–3].
In MTT problems, measurement set of sensors contains
not only the measurements from target, but also massive
clutters from interference caused by meteorological phe-
nomena, electromagnetism environment, and false target. In
addition, measurements from target and clutter cannot be
distinguished usually. How to estimate target number and
multitarget states using these mixture measurements is the
key.

Until now, MTT solutions could be concluded in two
classes. The first is data association solutions, such as the
nearest neighbor (NN) method [4], the joint probabilis-
tic data association (JPDA) method [5], and the multiple
hypothesis tracking (MHT) method [6]. In this class, cor-
responding relationship between target and measurement
should be established before target number and multitarget
states estimate. While the second solution dealing with MTT
problems is randomfinite sets (RFS)method based solutions,

such as the probability hypothesis density (PHD)filter [7] and
the cardinalized probability hypothesis density (CPHD) filter
[8]. Target state set can be updated with measurement set
directly. MTT in frame of RFS does not need data association
consequently.

ThementionedMTT solutions are all based on the known
clutter model. For randomness of clutter, its distribution
model usually includes clutter number and clutter position. If
there is not so many interference factors in surveillance area,
clutter number could be considered to obey Poisson distribu-
tion, while clutter position obeys uniform distribution. But in
many actual scenes, especially ground and sea level surveil-
lance, even battlefield surveillance, the clutter model appears
to be unknown and more complex as results of complicated
landform, jamming station, and unidentified interference
source such as electronic countermeasure systems. In this
case, assumptions of Poisson and uniform distribution which
the clutter model satisfied will lead to severe bias estimated
by the filter.

A novel MTT algorithm based on clutter model estima-
tion is put forward in the light of the problems mentioned
above. In this algorithm, multitarget likelihood function is
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established with finite mixture model (FMM) [9], whose
parameters can be estimated by the algorithms of expectation
maximum (EM) and Markov Chain Monte Carlo (MCMC).
Furthermore, target number and multitarget states can be
estimated as well as the clutter model fitted. Similarly with
the RFS based solution, association between target and
measurement can be avoided in this algorithm. Compared
with the MTT solution without clutter model fitting, it can
be proved from a simulation that the algorithm proposed in
this paper is more efficient.

2. Problem Description

2.1. Target Motion Model. Suppose that the sensor was mon-
itoring a fixed region. For situation of spontaneous birth,
spawned by existent targets and extinction, the number of
target detected over the surveillance region varies with time.
Supposing that 𝑡𝑘 is the number of existing targets at time 𝑘,
we model the motion of the multitarget system as

x𝑖
𝑘+1
= 𝑓
𝑖

𝑘
(x𝑖
𝑘
) + 𝜔
𝑖

𝑘
, 𝑖 = 1, . . . , 𝑡𝑘, (1)

where x𝑖
𝑘
= [𝑥
𝑖

𝑘
, ̇𝑥
𝑖

𝑘
, ̈𝑥
𝑖

𝑘
, 𝑦
𝑖

𝑘
, ̇𝑦
𝑖

𝑘
, ̈𝑦
𝑖

𝑘
]
𝑇 represents the state vector

of target 𝑖, including position, velocity, and acceleration
information and 𝑋𝑘 = {x1

𝑘
, . . . , x𝑇𝑘

𝑘
} represents multitarget

state set at time 𝑘, while 𝜔𝑖
𝑘
represents the process noise

vector, obeying Gaussian distribution 𝜔𝑖
𝑘
∼ N(0, 𝑄𝑖

𝑘
), where

𝑄
𝑖

𝑘
denotes the variance matrix of process noise.

2.2. Measurement Model. The measurement set received by
sensor at time 𝑘 could be represented as 𝑍𝑘 = {z1𝑘, . . . , z

𝑛𝑘

𝑘
},

where 𝑛𝑘 denotes the number of measurement at time 𝑘.
Sensor measurements are generally regarded as a mixture of
target-originated measurement and clutter-originated mea-
surement. Measurements from different targets and clutters
are statistically independent in this paper without additional
illustration.

2.2.1. Target-Originated Measurement. Supposing that mea-
surement 𝑗 is originated from target 𝑖,

z𝑗
𝑘
= h𝑘 (x

𝑖

𝑘
) + 𝜐
𝑗

𝑘
, z𝑗
𝑘
∈ 𝑍𝑘, (2)

where h𝑘(⋅) denotes the measurement function of sensor and
𝜐
𝑗

𝑘
denotes the measurement noise vector, obeying Gaussian

distribution 𝜐𝑗
𝑘
∼ N(0, 𝑅𝑘) as well, where 𝑅𝑘 denotes the

variance matrix of measurement noise.

2.2.2. Clutter Model. Assume that at time 𝑘 F𝑐,𝑘 denotes the
model of clutter position distribution, and measurement 𝑗 is
originated from clutter, then

z𝑗
𝑘
∼ F𝑐,𝑘, z𝑗

𝑘
∈ 𝑍𝑘, (3)

whereF𝑐,𝑘 is unknown and varies with time.
So far as mentioned above, at time 𝑘, the information

needed to be estimated includes the distribution model of

clutter position F𝑐,𝑘, target number 𝑡𝑘, and multitarget state
set 𝑋𝑘. In addition, the number model of clutter need not be
estimated, because this algorithm is adapted to any variation
of the clutter number.

3. Multitarget Likelihood Function
Based on FMM

Given the measurement set 𝑍𝑘 and condition of indepen-
dence, the multitarget likelihood function at time 𝑘 can be
described by FMM [9, 10] as

L𝑘 (𝑍𝑘;𝜓𝑘) =

𝑛𝑘

∏

𝑗=1

(F𝑐,𝑘 (z
𝑖

𝑘
;𝜓
𝑐,𝑘
) +F𝑡,𝑘 (z

𝑖

𝑘
;𝜓
𝑡,𝑘
)) . (4)

Finite mixture model is considered an effective method
dealing with multitarget tracking problem, especially under
complex unknown clutter environment. Distribution model
of target-originated measurement and clutter measurement
could be described as a superposition of some normative
distribution. Taking complex clutter, for example, it can be
considered as a superposition of uniform and finite Gaussian
models. By estimating the parameters of these potential
models, we can get the multitarget state ultimately.

Formula (4) could be explained as follows:
F𝑐,𝑘(⋅;𝜓𝑐,𝑘) denotes the distribution model of clutter

position at time 𝑘. Considering the complexity of clutter dis-
tribution model, multiple Gaussian models and one uniform
model will be used to fit this clutter model:

F𝑐,𝑘 (⋅;𝜓𝑐,𝑘) = 𝜋
1

𝑐,𝑘
U (⋅) +

𝑔𝑐,𝑘

∑

𝑖=2

𝜋
𝑖

𝑐,𝑘
N (⋅; 𝜃

𝑖

𝑐,𝑘
) , (5)

where 𝜓
𝑐,𝑘
= {𝑔𝑐,𝑘, 𝜋

1

𝑐,𝑘
, . . . , 𝜋

𝑔𝑐,𝑘

𝑐,𝑘
, 𝜃
2

𝑐,𝑘
, 𝜃
𝑔𝑐,𝑘

𝑐,𝑘
}, 𝑔𝑐,𝑘 denotes the

number of clutter model, 𝜋𝑖
𝑐,𝑘

denotes the weights of clutter
model, and 𝜃𝑖

𝑐,𝑘
= (𝜇
𝑖

𝑐,𝑘
, Σ
𝑖

𝑐,𝑘
), composed of the mean vector

and the covariance matrix, denotes the parameters of clutter
model.

F𝑡,𝑘(⋅;𝜓𝑡,𝑘) denotes the distribution model of target-
originated measurement position at time 𝑘. Assuming that
the number of existing targets in surveillance region is 𝑡𝑘,

F𝑡,𝑘 (⋅;𝜓𝑡,𝑘) =

𝑔𝑡,𝑘

∑

𝑖=1

𝜋
𝑖

𝑡,𝑘
𝑓
𝑖

𝑡,𝑘
(⋅; 𝜃
𝑖

𝑡,𝑘
) , (6)

where 𝜓
𝑡,𝑘
= {𝑔𝑡,𝑘, 𝜋

1

𝑡,𝑘
, . . . , 𝜋

𝑔𝑡,𝑘

𝑡,𝑘
, 𝜃
𝑡

𝑡,𝑘
, 𝜃
𝑔𝑡,𝑘

𝑡,𝑘
} and 𝑔𝑡,𝑘 = 𝑡𝑘,

which means that the number of models is equal to the
number of targets. 𝜋𝑖

𝑡,𝑘
denotes the weights of target model,

𝑓
𝑖

𝑡,𝑘
(⋅; 𝜃
𝑖

𝑡,𝑘
) denotes the distribution model of measurement

from a single target, and 𝜃𝑖
𝑡,𝑘

denotes the relevant parameters.
Letting 𝑔𝑘 = 𝑔𝑐,𝑘 + 𝑔𝑡,𝑘, all parameters to be esti-

mated in the mixture model can be represented as 𝜓
𝑘
=
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1

𝑘
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L𝑘 (𝑍𝑘;𝜓𝑘) =

𝑛𝑘

∏

𝑗=1

𝑔𝑘

∑

𝑖=1

𝜋
𝑖

𝑘
𝑓
𝑖

𝑘
( z𝑖
𝑘
; 𝜃
𝑖

𝑘
) ,

𝑔𝑘

∑

𝑖=1

𝜋
𝑖

𝑘
= 1, (7)

where 𝜋𝑖
𝑘
𝑛𝑘 is the number of targets at time 𝑘.
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EM and MCMC are the approaches most widely con-
sulted in FMM parameters estimation. Until now, EM
approach is considered a standard algorithm, but it is sen-
sitive to initial value. The iteration will converge to some
local extremum caused by worse initialization. Meanwhile
the convergence rate will be affected. Comparatively, MCMC
belongs to a stochastic algorithm, which is insensitive to
initial value. In addition, for some complex situation,MCMC
algorithmwill lead a better global Convergence. In fact, if the
Markov chain is long enough, MCMC approach can obtain
massive information of posterior distribution, so local extre-
mum could be avoided. Above all, robustness of MCMC is
better than EM, nevertheless, computational complexity of
MCMC is larger than EM. Now we will present these two ap-
proaches, respectively, in Sections 4 and 5.

4. FMM Parameters
Estimation by EM Approach

4.1. Parameters Initialization. Parameters in FMM should be
well initialized as much as possible before estimation in EM
algorithm. Initializations of clutter model and target-origi-
nated measurement model were discussed, respectively.

4.1.1. Initialization of Clutter Model. Considering that the
clutter model could vary with time, the initialization process
at time 𝑘 is listed as follows.

Inheritance of the value estimated at time 𝑡𝑘−1 is

𝜇
𝑖

𝑐,𝑘
(0) = 𝜇̂

𝑖

𝑐,𝑘−1
, Σ
𝑖

𝑐,𝑘
(0) = Σ̂

𝑖

𝑐,𝑘−1
, 𝑖 = 1, . . . , 𝑔𝑐,𝑘−1. (8)

Then add some clutter points randomly; the number of
the clutter points is 𝑔0. The initialization average 𝜇𝑖

𝑐,𝑘
(0) can

be got from these chosen points in surveillance region S. The
covariance matrix could be initialized as Σ𝑖

𝑐,𝑘
(0) = 𝜎

2
𝐼, 𝑖 =

𝑔𝑐,𝑘−1 + 1, . . . , 𝑔𝑐,𝑘−1 + 𝑔0, where

𝜎
2
=
1

10𝑑
trace( 1

𝑛𝑘

𝑛𝑘

∑

𝑗=1

(z𝑗
𝑘
− z𝑘) (z

𝑗

𝑘
− z𝑘)
𝑇

) , (9)

where z𝑘 = ∑
𝑛𝑘

𝑗=1
z𝑗
𝑘
/𝑛𝑘 denotes the average of measurement

data.
Consequently, the number of clutter models in initializa-

tion process 𝑔𝑐,𝑘(0) = 𝑔𝑐,𝑘−1 + 𝑔0. In order to ensure the
parameters of clutter models converging to the true value, the
value of 𝑔0 should be bigger than the number in reality.

4.1.2. Initialization of Target-Originated Measurement Model.
At time 𝑘, targets totally are composed of survival targets and
spontaneous birth targets and spawned by existent targets. So
the number of target models in initialization process is

𝑔𝑡,𝑘 (0) = 𝑔𝑠,𝑘 (0) + 𝑔𝑏,𝑘 (0) + 𝑔𝑝,𝑘 (0) , (10)

where 𝑔𝑠,𝑘(0) denotes the number of survival targets, 𝑔𝑏,𝑘(0)
denotes the number of spontaneous birth targets, and 𝑔𝑝,𝑘(0)
denotes the number of spawned by existent targets.

The initialization of target-originatedmeasurementmod-
el at time 𝑘 can be represented as

F𝑡,𝑘 (⋅;𝜓𝑐,𝑘 (0)) = F𝑠,𝑘 (⋅;𝜓𝑠,𝑘 (0)) +F𝑏,𝑘 (⋅;𝜓𝑏,𝑘 (0))

+F𝑝,𝑘 (⋅;𝜓𝑝,𝑘 (0)) .
(11)

(a) To Survival Targets. Measurement noise obeys Gaussian
distribution, as shown in (2), so 𝑓𝑖

𝑠,𝑘
(⋅; 𝜃
𝑖

𝑠,𝑘
) ∼ N(⋅;𝜇𝑖

𝑠,𝑘
, Σ
𝑖

𝑠,𝑘
).

Furthermore, measurement model initialization of survival
targets is

F𝑠,𝑘 (⋅;𝜓𝑠,𝑘 (0)) =

𝑔𝑠,𝑘(0)

∑

𝑖=1

𝜋
𝑖

𝑠,𝑘
(0)N (⋅;𝜇

𝑖

𝑠,𝑘
(0) , Σ

𝑖

𝑐,𝑘
(0)) . (12)

Let 𝑔𝑠,𝑘(0) = 𝑔𝑡,𝑘−1.
The initialization average 𝜇𝑖

𝑠,𝑘
(0) = ℎ𝑘(x̂𝑖𝑘|𝑘−1) could be got

from prediction of target state. The covariance is known, the
same withmeasurement noise of the sensor, Σ𝑖

𝑠,𝑘
(0) = 𝑅𝑘, 𝑖 =

1, . . . , 𝑔𝑠,𝑘(0).

(b) To Spontaneous Birth Targets. As is mentioned in [11–
13], assume that the initial position model obeys Gaussian
distribution either; that is,

F𝑏,𝑘 (⋅;𝜓𝑏,𝑘 (0)) =

𝑔𝑏,𝑘(0)

∑

𝑖=1

𝜋
𝑖

𝑏,𝑘
(0)N (⋅;𝜇

𝑖

𝑏,𝑘
(0) , Σ

𝑖

𝑏,𝑘
(0)) ,

(13)

where parameters of model initialization 𝑔𝑏,𝑘(0), 𝜇
𝑖

𝑏,𝑘
(0),

Σ
𝑖

𝑏,𝑘
(0) are all known, according to prior information.

(c) To Spawned by Existent Targets. Supposing that each
original target can create 𝑝𝑘 new targets at most, model
initialization can be represented as [11–13]

F𝑝,𝑘 (⋅;𝜓𝑝,𝑘 (0)) =

𝑝𝑘

∑

𝑗=1

𝑔𝑝,𝑘(0)

∑

𝑖=1

𝜋
𝑖𝑗

𝑝,𝑘
(0)N (⋅;𝜇

𝑖𝑗

𝑝,𝑘
(0) , Σ

𝑖𝑗

𝑝,𝑘
(0)) .

(14)

The target number and state average can be assumed as
𝑔𝑝,𝑘(0) = 𝑝𝑘𝑔𝑠,𝑘(0), 𝜇

𝑖,𝑗

𝑝,𝑘
(0) = ℎ𝑘(x̂𝑖𝑘|𝑘−1) + d𝑗

𝑝.𝑘
, where 𝑖 =

1, . . . , 𝑔𝑠,𝑘(0), 𝑗 = 1, . . . , 𝑝𝑘.
The parameters d𝑗

𝑝.𝑘
, Σ𝑖𝑗
𝑝,𝑘
(0) could be valued according to

prior information similarly.
Theweights ofmodels could be briefly treated as the same

in initialization process:

𝜋
𝑖

𝑘
(0) =

1

𝑔𝑘 (0)
, 𝑖 = 1, . . . , 𝑔𝑐,𝑘 (0) + 𝑔𝑡,𝑘 (0) . (15)

4.2. Estimation of FMM Parameters

4.2.1. EM Approach. As FMM Parameters Estimation with
EM approach, the loss variables can be treated as element
labeling 𝐸𝑘 = {e1𝑘, . . . , e

𝑛𝑘

𝑘
}, where e1

𝑘
is a vector of 𝑛𝑘 dimen-

sion. The element 𝑒𝑖𝑗
𝑘
= 1 or 0 illustrates whether z𝑗

𝑘
is
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originated from 𝑖th element of the FMM or not. So the
complete dataset at time 𝑘 is 𝑌𝑘 = {𝑍𝑘, 𝐸𝑘}, and logarithm
likelihood function of the complete data is

logC𝑘 (𝑌𝑘;𝜓𝑘) =
𝑔𝑘

∑

𝑖=1

𝑛𝑘

∑

𝑗=1

𝑒
𝑖𝑗

𝑘
{log𝜋𝑖

𝑘
+ log𝑓𝑖

𝑘
(𝑧
𝑗

𝑘
; 𝜃
𝑖

𝑘
)} . (16)

When the number of models 𝑔𝑘 is known, EM algorithm
can be iterated by E-step and M-step. But the number of
models is unknown in this paper. Some criteria will be
used for number estimation, such as minimum message
length (MML) criterion and Bayesian information criterion
(BIC) [10, 14]. Here in this paper, for the number of models
in initialization being more than reality, the technology of
model merging and pruning could be inserted into each step
of iteration in EM algorithm. In this way, the number of
FMM can be estimated. This method is more intuitive than
those based on criteria. Now, this modified EM algorithm is
described as follows:

(a) E-Step. Conditional expectations of C𝑘(𝑌𝑘;𝜓𝑘) will be
iterated. The expectations of loss data 𝑒𝑖𝑗

𝑘
at 𝑡th step is

𝐸𝜓
𝑘
(𝑡) [𝑒
𝑖𝑗

𝑘
; 𝑍𝑘] = pr𝜓

𝑘
(𝑡) {𝑒
𝑖𝑗

𝑘
= 1 | 𝑍𝑘}

= 𝜏
𝑖

𝑘
(𝑧
𝑗

𝑘
;𝜓
𝑘
(𝑡)) = 𝜏

𝑖𝑗

𝑘
(𝑡) ,

(17)

where 𝜏𝑖𝑗
𝑘
(𝑡) represents the posterior probability of z𝑗

𝑘
belong-

ing to model 𝑖. The formula for computing 𝜏𝑖𝑗
𝑘
(𝑡) is

𝜏
𝑖𝑗

𝑘
(𝑡) =

𝜋
𝑖

𝑘
(𝑡) 𝑓
𝑖

𝑘
(z𝑗
𝑘
; 𝜃
𝑖

𝑘
(𝑡))

∑
𝑔𝑘(𝑡)

𝑖=1
𝜋
𝑖

𝑘
(𝑡) 𝑓
𝑖

𝑘
(z𝑗
𝑘
; 𝜃
𝑖

𝑘
(𝑡))

. (18)

According to the formula above, the conditional expecta-
tions of logC𝑘(𝑌𝑘;𝜓𝑘) is

𝑄 (𝜓
𝑘
;𝜓
𝑘
(𝑡)) = 𝐸𝜓

𝑘
(𝑡) {logC𝑘 (𝑌𝑘;𝜓𝑘) | 𝑍𝑘}

=

𝑔𝑘

∑

𝑖=1

𝑛𝑘

∑

𝑗=1

𝜏
𝑖𝑗

𝑘
(𝑡) {log𝜋𝑖

𝑘
(𝑡) + log𝑓𝑖

𝑘
(z𝑗
𝑘
; 𝜃
𝑖

𝑘
(𝑡))} .

(19)

In fact, the loss variable has reflected the association
relationship between themeasurement and target, that is, why
association process can be avoided in this algorithm.

(b) M-Step.The value of 𝜓
𝑘
will be estimated throught global

maximum of 𝑄(𝜓
𝑘
;𝜓
𝑘
(𝑡)). By solving 𝜕𝑄𝑘(𝜓𝑘,𝜓𝑘(𝑡))/𝜕𝜓𝑘 =

0, the weights of all models will be reestimated as

𝜋
𝑖

𝑘
(𝑡) =

1

𝑛𝑘

𝑛𝑘

∑

𝑗=1

𝜏
𝑖𝑗

𝑘
(𝑡) . (20)

Estimation for the average of FMM is

𝜇
𝑖

𝑘
(𝑡) =

∑
𝑛𝑘

𝑗=1
𝜏
𝑖𝑗

𝑘
(𝑡) z𝑗
𝑘

∑
𝑛𝑘

𝑗=1
𝜏
𝑖𝑗

𝑘
(𝑡)

, 𝑖 = 1, . . . , 𝑔𝑘 (𝑡) . (21)

Considering the estimation for the covariance of FMM,
because the covariance of target-originated measurement
model is known or initialized, only covariance of clutter
model needs to be estimated here:

Σ
𝑖

𝑐,𝑘
(𝑡) =

∑
𝑛𝑘

𝑗=1
𝜏
𝑖𝑗

𝑘
(𝑡) (z𝑗
𝑘
− 𝜇
𝑖

𝑐,𝑘
(𝑡)) (z𝑗

𝑘
− 𝜇
𝑖

𝑐,𝑘
(𝑡))
𝑇

∑
𝑛𝑘

𝑗=1
𝜏
𝑖𝑗

𝑘
(𝑡)

, (22)

where 𝑖 = 1, . . . , 𝑔𝑐,𝑘(𝑡).

4.3. Component Management Step. The component manage-
ment step of model is completed by the technology of model
merging and pruning [12].

Notification. Models between clutter and target-originated
measurement cannot merge each other.

To clutter model, the process of merging and pruning is
listed as follows:

(a) Merging Step. Given the merging threshold 𝑈, let the set
𝐼𝑘 = {1, . . . , 𝑔𝑐,𝑘(𝑡)}, 𝑙 = 0, circulate
𝑙 = 𝑙 + 1, 𝑗 = argmax

𝑖∈𝐼𝑘
𝜋
𝑖

𝑐,𝑘
; take a model 𝑖 ∈ 𝐼𝑘, for

example,
if 𝑑𝑖𝑗
𝑘
(𝑡) ≤ 𝑈, where

𝑑
𝑖𝑗

𝑘
(𝑡) = (𝜇

𝑖

𝑐,𝑘
(𝑡) − 𝜇

𝑗

𝑐,𝑘
(𝑡))
𝑇

(Σ
𝑗

𝑐,𝑘
(𝑡))
−1

(𝜇
𝑖

𝑐,𝑘
(𝑡) − 𝜇

𝑗

𝑐,𝑘
(𝑡)) .

(23)

Then let 𝑖 ∈ 𝐿𝑘, and merge the models in set 𝐿𝑘, with the
following merging formula:

𝜋̃
𝑙

𝑐,𝑘
(𝑡 + 1) = ∑

𝑖∈𝐿𝑘

𝜋
𝑖

𝑐,𝑘
(𝑡) ,

𝜇̃
𝑙

𝑐,𝑘
(𝑡 + 1) =

1

𝜋̃
𝑙

𝑐,𝑘
(𝑡 + 1)

∑

𝑖∈𝐿𝑘

𝜋
𝑖

𝑐,𝑘
(𝑡)𝜇
𝑖

𝑐,𝑘
(𝑡 + 1) ,

Σ̃
𝑙

𝑐,𝑘
(𝑡 + 1) =

1

𝜋̃
𝑙

𝑐,𝑘
(𝑡 + 1)

× ∑

𝑖∈𝐿𝑘

𝜋
𝑖

𝑐,𝑘
(𝑡) (Σ

𝑖

𝑐,𝑘
(𝑡) + 𝜇̃

𝑙

𝑐,𝑘
(𝑡 + 1) − 𝜇

𝑖

𝑐,𝑘
(𝑡))

× (𝜇̃
𝑙

𝑐,𝑘
(𝑡 + 1) − 𝜇

𝑖

𝑐,𝑘
(𝑡))
𝑇

.

(24)

Let 𝐼𝑘,𝑡+1 = 𝐼𝑘,𝑡 − 𝐿𝑘,𝑡; repeat this process until the set
𝐼𝑘 = Φ; the merging ends.

(b) Pruning Step. If the weight 𝑛𝑘𝜋̃𝑐,𝑘 < 𝐷𝑐(𝑖 = 1, . . . , 𝑙),
where𝐷𝑐 denotes the pruning threshold of clutter model, the
corresponding model should be pruned.

Then let 𝑙 = 𝑙−1. Finally we can get the clutter model after
merging and pruning, with the target number 𝑔𝑐,𝑘(𝑡 + 1) = 𝑙.

To target-originated measurement model, the process of
merging and pruning is similar to the clutter model above.
But the difference is that a target can not generate more
measurements except one, the pruning gate𝐷𝑡 should be set
far less than𝐷𝑐 in clutter model.
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Iteration among the three steps above circulates until
L𝑘(𝑌𝑘;𝜓𝑘(𝑡 + 1)) −L𝑘(𝑌𝑘;𝜓𝑘(𝑡)) is under the convergence
threshold 𝜀 of EM or MCMC algorithm. Then we can get
𝜓̂
𝑘
, the estimation of parameter value in FMM at the time

𝑘. Furthermore, the estimation of clutter model F̂𝑐,𝑘(⋅; 𝜓̂𝑐,𝑘),
target number 𝑔𝑡,𝑘 and average value of target-originated
measurement model 𝜇̂𝑖

𝑡,𝑘
(𝑖 = 1, . . . , 𝑔𝑡,𝑘) are all obtained.

FMM Parameters Estimation by EM approach over
Section 4 could be described by Algorithm 1.

5. FMM Parameters Estimation by
MCMC Approach

MCMC is an approach which obtains a Markov chain sam-
pling fromposterior distribution.We can extract information
of posterior distribution through this Markov chain. Gibbs
samplingmethod is one ofMCMCapproach. In order to solve
the uncertainty of element number in mixture distribution,
merging and pruning technology was consulted after each
sampling step instead of RJMCMCmethod [15].

5.1. Posterior Distribution of FMM. Parameters to be esti-
mated consist of the weight ofmodels𝜋𝑗, the element labeling
𝑒𝑖,𝑗, variance 𝜎

2

𝑗
, and average value 𝜇

𝑗
. In order to get

posterior distribution in Bayesian frame, prior distribution of
these parameters is necessary [10].

Let the weight of models 𝜋𝑗 obey Dirichelet distribution:

(𝜋1, ⋅ ⋅ ⋅ 𝜋𝑚) ∼ D (𝑎1 + 𝑙1, ⋅ ⋅ ⋅ 𝑎𝑚 + 𝑙𝑚) , (25)

where 𝑎𝑗 > 0 is constant and 𝑙𝑗 is the number of measure-
ments which belong to model 𝑗.

The element labeling 𝑒𝑖,𝑗 could be estimated by Bayes
formula:

𝑒𝑖,𝑗 =

𝜋𝑗𝑓 (y𝑖 | 𝜃𝑗)

∑
𝑘

𝑗=1
𝜋𝑗𝑓 (y𝑖 | 𝜃𝑗)

, 𝑙𝑗 =

𝑛

∑

𝑖=1

𝑒𝑖,𝑗. (26)

Let variance 𝜎2
𝑗
obey Wishart distribution:

𝜎
2

𝑗
∼Wishart(𝛼0 +

𝑙𝑗

𝑀0

, 𝛽0 +

𝜅
2

𝑗

𝑁0

)

𝜅
2

𝑗
=

∑
𝑛

𝑖=1
(y𝑖 − 𝜇𝑖) (y𝑖 − 𝜇𝑖)

𝑇
⋅ 𝑒𝑖,𝑗

∑
𝑛

𝑖=1
𝑒𝑖,𝑗

,

(27)

where 𝛼0 and 𝛽0 are positive constant,𝑀0 and𝑁0 are positive
number.

The average value 𝜇
𝑗
obey Gaussian distribution:

𝜇
𝑗
∼N (𝜉𝑗,𝜎

2

𝑗
) , (28)

where 𝜉𝑗 = ∑
𝑛

𝑖=1
y𝑖 ⋅ 𝑒𝑖,𝑗/∑

𝑛

𝑖=1
𝑒𝑖,𝑗.

5.2. Parameters Initialization. Easier than those of EM ap-
proach, in MCMC approach, initial values can be randomly
selected in parameter space. While the number of models
should be larger than expected value.

5.2.1. Gibbs Sampling Method. Circulate

𝑒
(𝑡)

𝑖,𝑗
=

𝜋
𝑗

𝑖
𝑝 (y𝑖 | 𝜃 (𝑡 − 1))

∑
𝑘max
𝑗=1
𝜋
𝑗

𝑖
𝑝 (y𝑖 | 𝜃 (𝑡 − 1))

, 𝑙
(𝑡)

𝑗
=

𝑛

∑

𝑖=1

𝑒
(𝑡)

𝑖,𝑗
,

𝜇
(𝑡)

𝑗
=

𝑛

∑

𝑖=1

y𝑖 ⋅ 𝑒
(𝑡)

𝑖,𝑗

𝑙
(𝑡)

𝑗

,

𝜉
(𝑡)

𝑗
=

𝑛

∑

𝑖=1

(y𝑖 − 𝜇
(𝑡)

𝑗
) ⋅ 𝑒
(𝑡)

𝑖,𝑗
,

𝜅
(𝑡)

𝑗

2

=

∑
𝑛

𝑖=1
(y𝑖 − 𝜇

(𝑡)

𝑗
) (y𝑖 − 𝜇

(𝑡)

𝑗
)
𝑇

⋅ 𝑒
(𝑡)

𝑖,𝑗

∑
𝑛

𝑖=1
𝑒
(𝑡)

𝑖,𝑗

,

𝜎
(𝑡)

𝑗

2

∼Wishart(𝛼0 +
𝑙
(𝑡)

𝑗

𝑀0

, 𝛽0 +

𝜅
(𝑡)
2

𝑗

𝑁0

) ,

𝜇
(𝑡)

𝑗
∼N (𝜉

(𝑡)

𝑗
,𝜎
(𝑡)
2

𝑗
) ,

(𝜋
(𝑡)

1
, . . . , 𝜋

(𝑡)

𝑚
) ∼ D (𝑎1 + 𝑙

(𝑡)

1
, . . . , 𝑎𝑚 + 𝑙

(𝑡)

𝑚
) .

(29)

5.3. Management ofModel Number. Choosing proper thresh-
olds 𝜆𝜋, 𝜆𝜇, and 𝜆𝜎, use merging and pruning technology for
reference from EM approach. In this way, algorithm becomes
more concise ignoring jumping in parameter space.

6. Multitarget State Estimation

6.1. EquivalentMeasurement of Target. Therealmeasurement
originated from target is hardly obtained because of the
effect from clutter in MTT. In many circumstances, the real
measurement is always replaced by equivalent measurement
of target. Taking JPDA algorithm for example, the equivalent
measurement could be obtained by probability weighted
moments from actual measurement in the gate. To the
algorithm proposed in this paper, association probability
of target and measurement is represented by so-called loss
variable, so average value of target-originated measurement
model, that is, 𝜇̂𝑖

𝑡,𝑘
(𝑖 = 1, . . . , 𝑔𝑡,𝑘), represents the equivalent

measurement of target 𝑖, with variance 𝑅𝑘 still. And the so-
called gate is extended to the global surveillance region.

6.2. Multitarget State Estimation. Suppose that the state and
measurement functions are both of the linear systems. That
is,

𝑓
𝑖

𝑘
(x𝑖
𝑘
) = 𝐹
𝑖

𝑘
, ℎ
𝑖

𝑘
(x𝑖
𝑘
) = 𝐻

𝑖

𝑘
(x𝑖
𝑘
) , 𝑖 = 1, . . . , 𝑡𝑘. (30)

By substitution of the equivalent measurement 𝜇̂𝑖
𝑡,𝑘

into
Kalman filter, state estimation of target 𝑖 is acquired. The
algorithm of Kalman filter is
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Input: the convergence threshold 𝜀, the estimation of clutter model parameters at time 𝑡𝑘−1,
𝜇
𝑖

𝑐, 𝑘
(0) = 𝜇̂

𝑖

𝑐,𝑘−1
, Σ

𝑖

𝑐,𝑘
(0) = Σ̂

𝑖

𝑐,𝑘−1
, 𝑖 = 1, . . . , 𝑔

𝑐,𝑘−1
.

Initialization step:
(A) Initialization of Clutter Model:

sample some clutter points randomlyP𝑘 = {𝑝
𝑖

𝑘
}
𝑔0

𝑖=1
, the number of the clutter points is 𝑔0,

For 𝑖 = 𝑔𝑐,𝑘−1 + 1, . . . , 𝑔𝑐,𝑘−1 + 𝑔0, do,
𝜇
𝑖

𝑐,𝑘
(0) = 𝑝𝑘, Σ

𝑖

𝑐,𝑘
(0) = 𝜎

2
𝐼 , 𝑖 = 𝑔𝑐,𝑘−1 + 1, . . . , 𝑔𝑐,𝑘−1 + 𝑔0

where 𝜎2 = (1/10𝑑) trace((1/𝑛𝑘) ∑
𝑛𝑘

𝑗=1
(𝑧
𝑗

𝑘
− 𝑧𝑘)(𝑧

𝑗

𝑘
− 𝑧𝑘)
𝑇
)

end for 𝑖. 𝑔𝑐,𝑘(0) = 𝑔𝑐,𝑘−1 + 𝑔0.
(B) Initialization of Target-Originated Measurement Model:

To survival targets, 𝑔𝑠,𝑘(0) = 𝑔𝑡,𝑘−1, for 𝑖 = 1, . . . , 𝑔𝑠,𝑘(0), do
𝜇
𝑖

𝑠,𝑘
(0) = ℎ𝑘(𝑥

𝑖

𝑘|𝑘−1
), Σ

𝑖

𝑠,𝑘
(0) = 𝑅𝑘, (𝑖 = 1, . . . , 𝑔𝑠,𝑘(0))

F𝑠,𝑘 (⋅;𝜓𝑠,𝑘 (0)) = ∑
𝑔𝑠,𝑘(0)

𝑖=1
𝜋
𝑖

𝑠,𝑘
(0)N(⋅;𝜇𝑖

𝑠,𝑘
(0), Σ

𝑖

𝑐,𝑘
(0)). end for 𝑖.

To Spontaneous Birth Targets, 𝑔𝑏,𝑘(0), 𝜇
𝑖

𝑏,𝑘
(0), Σ

𝑖

𝑏,𝑘
(0) will be set according to prior

information, for 𝑖 = 1, . . . , 𝑔
𝑏,𝑘
(0), do

F𝑏,𝑘 (⋅;𝜓𝑏,𝑘 (0)) = ∑
𝑔𝑏,𝑘(0)

𝑖=1
𝜋
𝑖

𝑏,𝑘
(0)N(⋅;𝜇𝑖

𝑏,𝑘
(0), Σ

𝑖

𝑏,𝑘
(0)). end for 𝑖.

To Spawned by Existent Targets, 𝑔𝑝,𝑘(0) = 𝑝𝑘𝑔𝑠,𝑘(0), for 𝑖 = 1, . . . , 𝑔𝑠,𝑘(0), 𝑗 = 1, . . . , 𝑝𝑘, do

𝜇
𝑖,𝑗

𝑝,𝑘
(0) = ℎ𝑘(𝑥

𝑖

𝑘|𝑘−1
) + 𝑑
𝑗

𝑝.𝑘
,F𝑝,𝑘(⋅;𝜓𝑝,𝑘(0)) =

𝑝𝑘

∑

𝑗=1

𝑔𝑝,𝑘(0)

∑

𝑖=1

𝜋
𝑖𝑗

𝑝,𝑘
(0)N(⋅;𝜇

𝑖𝑗

𝑝,𝑘
(0), Σ

𝑖𝑗

𝑝,𝑘
(0)).

end for 𝑗; end for 𝑖.
𝑔
𝑡,𝑘
(0) = 𝑔

𝑠,𝑘
(0) + 𝑔

𝑏,𝑘
(0) + 𝑔

𝑝,𝑘
(0). 𝑔

𝑘 (0) = 𝑔𝑐,𝑘 (0) + 𝑔𝑡,𝑘 (0) 𝜋
𝑖

𝑘
(0) = 1/𝑔

𝑘
(0). Set 𝑡 := 0.

Repeat:
Expectation-step: calculate the conditional expectation of missing-data 𝐸𝑘 = {𝑒

1

𝑘
, . . . , 𝑒

𝑛𝑘

𝑘
}

For 𝑖 = 1, . . . , 𝑔𝑘, 𝑗 = 1, . . . , 𝑛𝑘, do
𝐸𝜓𝑘(𝑡)

[𝑒
𝑖𝑗

𝑘
; 𝑍𝑘] = 𝜏

𝑖𝑗

𝑘
(𝑡) = (𝜋

𝑖

𝑘
(𝑡)𝑓
𝑖

𝑘
(𝑧
𝑗

𝑘
; 𝜃
𝑖

𝑘
(𝑡))) / (∑

𝑔𝑘(𝑡)

𝑖=1
𝜋
𝑖

𝑘
(𝑡)𝑓
𝑖

𝑘
(𝑧
𝑗

𝑘
; 𝜃
𝑖

𝑘
(𝑡))). end for 𝑗; end for 𝑖.

calculate the conditional expectation of complete-data log likelihood givenP𝑘 and 𝜓𝑘(𝑡)

𝑄(𝜓
𝑘
;𝜓
𝑘
(𝑡)) = 𝐸𝜓𝑘(𝑡)

{logC𝑘(𝑌𝑘;𝜓𝑘)
󵄨󵄨󵄨󵄨
𝑍𝑘} =

𝑔𝑘

∑

𝑖=1

𝑛𝑘

∑

𝑗=1

𝜏
𝑖𝑗

𝑘
(𝑡) {log 𝜋𝑖

𝑘
(𝑡) + log𝑓𝑖

𝑘
(𝑧
𝑗

𝑘
; 𝜃
𝑖

𝑘
(𝑡))}

Maximization-step: require the global maximization of 𝑄(𝜓
𝑘
;𝜓
𝑘
(𝑡)) with respect to 𝜓

𝑘
over the

parameter space to give the updated estimate 𝜓̂
𝑘
(𝑡) = arg max𝜓𝑘𝑄(𝜓𝑘;𝜓𝑘(𝑡)).

for 𝑖 = 1, . . . , 𝑔𝑘, 𝑗 = 1, . . . , 𝑛𝑘, do

𝜋
𝑖

𝑘
(𝑡) =

1

𝑛𝑘

𝑛𝑘

∑

𝑗=1

𝜏
𝑖𝑗

𝑘
(𝑡), 𝜇

𝑖

𝑘
(𝑡) =

∑
𝑛𝑘

𝑗=1
𝜏
𝑖𝑗

𝑘
(𝑡)𝑧
𝑗

𝑘

∑
𝑛𝑘

𝑗=1
𝜏
𝑖𝑗

𝑘
(𝑡)

, 𝑖 = 1, . . . , 𝑔𝑘(𝑡),
𝑖

∑

𝑐,𝑘

(𝑡) =

∑
𝑛𝑘

𝑗=1
𝜏
𝑖𝑗

𝑘
(𝑡)(𝑧
𝑗

𝑘
− 𝜇
𝑖

𝑐,𝑘
(𝑡))(𝑧

𝑗

𝑘
− 𝜇
𝑖

𝑐,𝑘
(𝑡))
𝑇

∑
𝑛𝑘

𝑗=1
𝜏
𝑖𝑗

𝑘
(𝑡)

end for 𝑗; end for 𝑖.
Component management step:manage the components of the set 𝜓̂

𝑘
(𝑡) = {𝜋̂

𝑖

𝑘
(𝑡), 𝜇̂
𝑖

𝑘
(𝑡), Σ̂
𝑖

𝑘
(𝑡)}
𝑔𝑘

𝑖=1

according to the merging and pruning strategy described in IV.C.
Update 𝑔𝑘(𝑡 + 1) and let 𝜓

𝑘
(𝑡 + 1) = {𝜋

𝑖

𝑘
(𝑡 + 1),𝜇

𝑖

𝑘
(𝑡 + 1), Σ

𝑖

𝑘
(𝑡 + 1)}

𝑔𝑘(𝑡+1)

𝑖=1
. denote the managed

component number and parameter set. Set 𝑡 := 𝑡 + 1.
Until 󵄨󵄨󵄨󵄨L𝑘(𝑌𝑘;𝜓𝑘(𝑡 + 1)) −L𝑘(𝑌𝑘;𝜓𝑘(𝑡))

󵄨󵄨󵄨󵄨
< 𝜀L𝑘(𝑌𝑘;𝜓𝑘(𝑡)).

Output: the set of estimated parameters 𝜓̂
𝑘
= 𝜓
𝑘
(𝑡 + 1)

Algorithm 1: FMM Parameters Estimation by EM approach.

(1) Prediction Step

x̂𝑖
𝑘|𝑘−1

= 𝐹
𝑖

𝑘−1
x̂𝑖
𝑘−1
,

𝑃
𝑖

𝑘|𝑘−1
= 𝑄
𝑖

𝑘−1
+ 𝐹
𝑖

𝑘−1
𝑃
𝑖

𝑘−1
(𝐹
𝑖

𝑘−1
)
𝑇

.

(31)

(2) Update Step

𝐾
𝑖

𝑘
= 𝑃
𝑖

𝑘|𝑘−1
𝐻
𝑇

𝑘
(𝐻𝑘𝑃

𝑖

𝑘|𝑘−1
𝐻
𝑇

𝑘
)
−1

,

x̂𝑖
𝑘
= x̂𝑖
𝑘|𝑘−1

+ 𝐾
𝑖

𝑘
(𝜇̂
𝑖

𝑐,𝑘
− 𝐻𝑘x̂

𝑖

𝑘|𝑘−1
) ,

𝑃
𝑖

𝑘
= (𝐼 − 𝐾

𝑖

𝑘
𝐻𝑘) 𝑃

𝑖

𝑘|𝑘−1
.

(32)

If the state function or measurement function cannot
meet linear condition, nonlinear filter methods such as
extended Kalman filter (EKF) and unscented filter (UF) [16]
will make contribution.

7. Simulation

7.1. Scene Generation. Themotionmodel of the targets can be
described as

x̂𝑖
𝑘
= 𝐹
𝑖

𝑘−1
x̂𝑖
𝑘−1
+ 𝜔
𝑖

𝑘−1
, 𝑖 = 1, . . . , 𝑡𝑘, (33)

where 𝑡𝑘 denotes the target number at time 𝑘, x𝑖
𝑘
= [𝑥
𝑖

𝑘
, ̇𝑥
𝑖

𝑘
,

̈𝑥
𝑖

𝑘
, 𝑦
𝑖

𝑘
, ̇𝑦
𝑖

𝑘
, ̈𝑦
𝑖

𝑘
] denotes the state vector of target 𝑖, 𝐹𝑖

𝑘
denotes
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Figure 1: Tracks of targets.

the state transition matrix, and 𝜔𝑖
𝑘
∼ N(0, 𝑄𝑖

𝑘
) denotes

the process noise. The tracking process lasted for 100 s
with a sampling interval 1 s. In two-dimensional coordi-
nate system, the surveillance region is [−1000m, 1000m] ×
[−1000m, 1000m]. The flight track is shown in Figure 1.

In Figure 1, the circle denotes starting point, while the
rectangular denotes the end points of a track.The solid line is
the track of target 1, which was born at time 1 and disappeared
at time 70. The dotted line is the track of target 2, which was
born at time 20 and disappeared at time 90. The dashed line
is the track of target 3, which was spawned by target 2 and
disappeared at time 100.

Target 1 and target 2 moved with constant acceleration
(CA). The state transition matrix 𝐹𝑖

𝑘
and variance matrix of

process noise 𝑄𝑖
𝑘
[17] are

𝐹
𝑖

𝑘
= [
𝐹CA

𝐹CA
] , 𝑄

𝑖

𝑘
= [
𝑄CA

𝑄CA
] , (34)

where

𝐹CA =
[
[
[
[

[

1 𝑇
𝑇
2

2

1 𝑇

1

]
]
]
]

]

, 𝑄CA = 𝜎
2

𝜔

[
[
[
[
[
[
[
[
[

[

𝑇
4

4

𝑇
3

2

𝑇
2

2

𝑇
3

2

𝑇
2

2
𝑇

𝑇
2

2
𝑇 1

]
]
]
]
]
]
]
]
]

]

. (35)

Target 3 moved with constant velocity (CV). The state
transition matrix 𝐹3

𝑘
and variance matrix of process noise 𝑄3

𝑘

are

𝐹
3

𝑘
= [
𝐹CV

𝐹CV
] , 𝑄

3

𝑘
= [
𝑄CV

𝑄CV
] , (36)

where

𝐹CV =
[

[

1 𝑇 0

1 0

0

]

]

, 𝑄CV = 𝜎
2

𝜔

[
[
[
[
[
[
[

[

𝑇
4

4

𝑇
3

2
0

𝑇
3

2
𝑇
2
0

0 0 0

]
]
]
]
]
]
]

]

, (37)

Table 1: Elliptic range of the complex clutter.

Model Weight Center
(×102m)

Long axis
(×102m)

Short axis
(×102m)

1 0.3 / /
2 0.3 [4, 2] 3 2
3 0.2 [−2, 4] 2 2
4 0.2 [2, −2] 2 2

where 𝜎𝜔 denotes the standard deviation of process noise,
𝜎𝜔 = 0.01m/s

2.
Supposing that the measurement function is linear,

z𝑘 = [
1 0 0 0 0 0

0 0 0 1 0 0
] x𝑘 + 𝜐𝑘. (38)

The sensor was in the origin of coordinate, with detection
probability𝑝𝐷 = 0.98 andmeasurement noise 𝜐𝑘 ∼N(0, 𝑅𝑘),
where variancematrix of measurement noise 𝑅𝑘 = 𝜎

2

𝜐
𝐼, 𝜎𝜐 =

12.5m.
Assume that the cluttermodel obeys stable Poisson distri-

bution in this tracking process, with the number of clutters𝑁𝑐
and parameter 𝜆𝑐 = 50.

𝑃 (𝑁𝑐 = 𝑐𝑘) =
𝑒
−𝜆𝑐𝜆
𝑐𝑘
𝑐

𝑐𝑘!
, (39)

where 𝑐𝑘 is the number of clutters and 𝜆𝑐 = 50 denotes the
average level that the sensor could receive 50 clutters each
frame.

Assume that the position distribution of clutter model is

F𝑐,𝑘 (⋅; 𝜃𝑐) = 𝜋
1

𝑐
U (⋅) +

4

∑

𝑖=2

𝜋
𝑖

𝑐
D (⋅) ,

4

∑

𝑖=1

𝜋
𝑖

𝑐
= 1, (40)

which is composed of one uniform distribution dispersed
over the whole surveillance region and three groups of com-
plex distribution concentrated in elliptic areas. Each group is
a superposition of different types clutter model, not limited
to uniform and Gaussian distribution, see in Figure 2.

Elliptic range of this complex clutter is listed as in Table 1.

7.2. Parameter Estimation in FMM. The effect of algorithm
proposed in this paper is compared with Gaussian mixture
PHD (GM-PHD) filter, which directly estimates the number
and state of multitarget without clutter model fitting.

To spontaneous birth targets, the measurement model
is represented by (13), with 𝑔𝑏,𝑘(0) = 2, 𝜇1

𝑏,𝑘
(0) =

[200, 800]
𝑇, 𝜇2
𝑏,𝑘
(0) = [800, −800]

𝑇, and Σ1
𝑏,𝑘
(0) = Σ

2

𝑏,𝑘
(0) =

diag([100, 100]). To the spawned targets generated from
existent targets, the measurement model is represented by
(14), with 𝑝𝑘 = 1, d1𝑝.𝑘 = [0, 0]

𝑇, and Σ𝑖1
𝑝,𝑘
= diag([100, 100]),

𝑖 = 1, . . . , 𝑡𝑘.
Let the merging threshold of the models 𝑈 = 4, pruning

threshold of clutter model 𝐷𝑐 = 3, and pruning threshold
of target-originated measurement model 𝐷𝑡 = 0.5. With
the algorithm proposed, estimation of clutter model can
approximately converge to realmodel, as is shown in Figure 2.
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Figure 2: Fitted clutter model.

In Figure 2, the solid line illustrates 95% ellipse of the
real clutter model, while the dotted line illustrates 95% ellipse
of the estimation. Times of Monte Carlo simulations have
shown that some estimation results could fit the region
which the clutter concentrated according to Table 1, shown
as Figure 2. But it does not exclude some results shown as
Figure 3, caused by the complexity of cluttermodel.Nomatter
how complex the clutter is, FMM algorithm would fit it as
a linear superposition of one uniform and many Gaussian
distributions, but the parameters may differ from each other,
as shown by different dotted ellipse in Figure 3. Nevertheless,
these situations do not affect the validity of FMM algorithm,
with estimation accuracy satisfied.

7.2.1. Effect Comparison of Target Number Estimation. The
target number estimated by GM-PHD filter is represented in
Figure 4, while the algorithm proposed in Figure 5.

In Figures 4 and 5, the solid line illustrates the real target
number varying with time, while it circles estimation. Appar-
ently, effect of GM-PHD filter is worse. In circumstances
of unknown complex clutter distribution, the assumption of
uniform style will lead to serious error in target number
estimation. Generally speaking, the more dense clutters the
target passing and more time spent in this area, the more
fake targets could emerge from estimation. As the algorithm
proposed can fit clutter model synchronous with tracking,
fake targets in high-density clutter area will decrease. Con-
sequently, estimation accuracy of target number improved
apparently. One attention: When target is passing high-
density clutter area, the state estimation will get lost provi-
sionally.

7.2.2. Effect Comparison of Target Position Estimation. Posi-
tion estimation of multitarget by GM-PHD filter is repre-
sented in Figure 6, while the method is proposed in Figure 7.

In Figures 6 and 7, the solid line illustrates the real target
track, while circles illustrate the position estimated. Similarly,

the assumption of uniform style will lead to a crowd of fake
targets emerging in high-density clutter area.

7.2.3. Evaluation of Effects. Different from single target track-
ing, root mean square error (RMSE) cannot measure error in
multiple targets tracking quantitatively, [18] suggesting that
Wasserstein distance can describe error in case of the number
of target varying with time in MTT.

Suppose that 𝑋𝑘 = {x1𝑘, . . . , x
𝑇𝑘

𝑘
} represents actual multi-

target state set at time 𝑘; estimated state set𝑋𝑘 = {x̂1𝑘, . . . , x̂
𝑇̂𝑘

𝑘
},

where 𝑇𝑘 and 𝑇̂𝑘 denote the actual and estimated number
of multitarget, respectively. The Wasserstein distance can be
defined as

𝑑𝑝,𝑘 (𝑋𝑘, 𝑋𝑘) = min
𝐶𝑘

𝑝
√

|𝑋̂𝑘|

∑

𝑖=1

|𝑋𝑘|

∑

𝑗=1

𝐶
𝑖𝑗

𝑘

󵄩󵄩󵄩󵄩󵄩
x̂𝑖
𝑘
− x𝑗
𝑘

󵄩󵄩󵄩󵄩󵄩

𝑝

, (41)

where𝐶𝑘 denotes transfer matrix with every element𝐶𝑖𝑗
𝑘
≥ 0,

Σ
|𝑋𝑘|

𝑗=1
𝐶
𝑖𝑗

𝑘
= 1/|𝑋|, and Σ|𝑋𝑘|

𝑖=1
𝐶
𝑖𝑗

𝑘
= 1/|𝑋|. Also, | ⋅ | represents

cardinality and ‖ ⋅ ‖𝑝 represents norm with 𝑝 = 2. When the
set of𝑋𝑘 or𝑋𝑘 is empty,Wasserstein distance can be assigned
to 0.When the number of elements in𝑋𝑘 and𝑋𝑘 is the same,
Wasserstein distance is the best association distance.

Wasserstein distance varying with time of these two
methods is shown in Figures 8 and 9. To punish themistake in
target number estimation, Wasserstein distance reaches peak
value when the number is wrongly estimated. From Figures
8 and 9, Wasserstein distance of the latter is better than that
of former, because the latter has more precise estimation.
When the target number is correctly estimated, the value of
Wasserstein distance is about 10m, approximately the square
root of trace(Σ𝑖

𝑏,𝑘
(0)) in Section 7.2.

8. Conclusion

FMM approach can solve unknown clutter problem in MTT.
A novel MTT algorithm based on clutter model preestima-
tion is put forward in this paper. In this algorithm,multitarget
likelihood function is established with the finite mixture
model (FMM), the parameters of which can be estimated by
the algorithm of EM andMCMC.These two algorithms were
put forward in the paper. Furthermore, target number and
multitarget states can be estimated as well as the cluttermodel
fitted. No matter how complex the clutter is, FMM algorithm
would fit it as a linear superposition of one uniform and
many Gaussian distributions, but the parameters may differ
from each other, but it will not affect the validity of FMM
algorithm.
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Figure 3: Other estimation result of complex clutter model.
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Figure 4: Target number estimation of GM-PHD filter.
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Figure 5: Target number estimation of the proposed method.
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Figure 6: Target position estimation of GM-PHD filter.
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Figure 7: Target position estimation of the proposed method.
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Figure 8: Wasserstein distance of GM-PHD filter.
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Figure 9: Wasserstein distance of the proposed method.
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This paper studies the fusion estimation problem of a class of multisensor multirate systems with observation multiplicative noises.
The dynamic system is sampled uniformly. Sampling period of each sensor is uniform and the integer multiple of the state update
period. Moreover, different sensors have the different sampling rates and observations of sensors are subject to the stochastic
uncertainties of multiplicative noises. At first, local filters at the observation sampling points are obtained based on the observations
of each sensor. Further, local estimators at the state update points are obtained by predictions of local filters at the observation
sampling points. They have the reduced computational cost and a good real-time property. Then, the cross-covariance matrices
between any two local estimators are derived at the state update points. At last, using thematrix weighted optimal fusion estimation
algorithm in the linear minimum variance sense, the distributed optimal fusion estimator is obtained based on the local estimators
and the cross-covariance matrices. An example shows the effectiveness of the proposed algorithms.

1. Introduction

In networked systems or sensor networks, there often exist
various uncertainties during the transmission process of sig-
nals due to the imperfection of the communication channels.
It makes impossible to use linear model to describe some sys-
tems.The uncertainties can be approximated mathematically
by an additive noise or a multiplicative noise [1–6]. These
systems are widely used in petroleum seismic exploration,
target detection, speech processing, and other areas; thus,
the research on systems with multiplicative noise has the
important practical significance. In the early references [1],
the optimal linear filters have been proposed for systems with
uncertain observations described by the multiplicative noise.
Formore general casewith stochastic parameters, the optimal
linear estimation is designed in [2]. References [3–5] study
the polynomial filters; however, the proposed nonlinear filters
have expensive computational cost. For networked systems
with multiplicative noises and packet dropouts, optimal
linear estimators including filter, predictor, and smoother
have been proposed in [6]. However, the above-mentioned

literatures are all concerned with single sensor case but do
not take multiple sensors into account.

As the sensor technology is widely used in military, civil-
ian, scientific research, and many other fields, single sensor
has failed to meet the performance requirements in many
aspects. Moreover, as the development of electronics tech-
nologies, various sensors have been developed and applied to
many practical fields such as target tracking since they can
provide more information than any single sensor. Therefore,
multisensor information fusion has received considerable
research attention in recent years [7]. For systems with a
single sampling rate, the optimal state weighted fusion filter
in the linear minimum variance sense [8] and the self-tuning
fusion filter with unknown noise variances [9] have been
presented. Recently, the multirate multisensor asynchronous
fusion algorithms have been studied in [10–12]. References
[13, 14] adopt the state augmentation approach to give the
estimators with the expensive computational cost. Though
[15, 16] adopt the nonaugmented approach to design the
filters, a modeling error is made by ignoring the process
noise. Therefore, there is the accuracy loss. By considering
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Figure 1: Sampling case of sensors.

the process noise to eliminate the modeling error, an optimal
filter is presented to improve the estimation accuracy [17].
Furthermore, the missing measurements are also taken into
account in [16, 18]. In [19], amultiratemultisensor distributed
fusion estimator is proposed for two-sensor systems with
one-step cross-covariance noises. However, most of the
above-mentioned literatures do not take the multiplicative
noises into account. In sensor networks, there often exist
various sensors with different sampling rates and stochastic
uncertainty of multiplicative noises. It is significant to use
the nonaugmented approach to deal with the multirate
multisensor systems. This motivates our work.

This paper studies the fusion estimation problem of a
class of multisensor multirate systems with observation mul-
tiplicative noises. State is sampled uniformly at the finest rate.
Different sensors have different sampling periods that are
integer multiples of the state update period. Local estimators
at the state sampling points are obtained based on the local
filters at the observation sampling points by the filtering
and prediction. By using the distributed optimal weighted
fusion estimation algorithm in the linear minimum variance
sense [8], a distributed optimal fusion estimator is obtained.
It avoids the state and observation augmentation. It has a
good reliability since it has the distributed parallel structure.
Moreover, the estimation error cross-covariance matrices
between any two local estimators are derived according to the
different sampling cases.

2. Problem Formulation

Consider the following multisensor multirate system with
observation multiplicative noises:

𝑥 (𝑡 + 1) = Φ𝑥 (𝑡) + Γ𝑤 (𝑡) , (1)

𝑦𝑖 (𝑙𝑖𝑡) = (𝐻0𝑖 + 𝜉𝑖 (𝑙𝑖𝑡)𝐻1𝑖) 𝑥 (𝑙𝑖𝑡) + V𝑖 (𝑙𝑖𝑡) ,

𝑖 = 1, 2, . . . 𝐿,

(2)

where 𝑥(𝑡) is the system state at time 𝑡𝑇 and 𝑇 is the state
update period.Φ, Γ,𝐻0𝑖, and𝐻1𝑖 are constantmatrices.𝑦𝑖(𝑙𝑖𝑡)
is the observation of the 𝑖th sensor at time 𝑙𝑖𝑡𝑇; 𝑙𝑖 is the
ratio of the observation sampling period and the state update
period. 𝐿 is the number of sensors. 𝑤(𝑡) and V𝑖(𝑙𝑖𝑡) are white
noises with zeromean and variances𝑄𝑤 and𝑄V𝑖 , respectively.

The observation multiplicative noise 𝜉𝑖(𝑙𝑖𝑡) is scalar white
noise with zero mean and variance 𝑄𝜉𝑖 . 𝑤(𝑡), V𝑖(𝑙𝑖𝑡), and
𝜉𝑖(𝑙𝑖𝑡) are uncorrelated with each other. The initial state 𝑥(0)
is independent of 𝑤(𝑡), V𝑖(𝑙𝑖𝑡), and 𝜉𝑖(𝑙𝑖𝑡) and satisfies that
𝐸{𝑥(0)} = 𝜇0 and 𝐸{[𝑥(0) − 𝜇0][𝑥(0) − 𝜇0]

𝑇
} = 𝑃0, where

the symbol 𝐸 is the mathematical expectation.

Remark 1. The sampling case of multisensor multirate sys-
tems can be described by Figure 1.Thehorizontal axis denotes
time while the vertical axis denotes different sensors. Three
sensors are shown in Figure 1. Black circle solid points repre-
sent the sampling time of different sensors.The sampling rate
goes from the highest (sensor 1) to the lowest (sensor 3). As
shown in Figure 1, the three sensors all sample uniformly.The
first sensor has the same sampling rate as the state update rate;
that is, the sampling period is 𝑇. The sampling period of the
second sensor is 2𝑇 and the third is 3𝑇. It is clear that the least
common multiple of three sample periods is 6𝑇. This means
that the samplings of different sensors are asynchronous in
each data block of the length 6𝑇.

The objective of this paper is to find the distributed
optimal fusion estimator 𝑥𝑜(𝑡) of 𝑥(𝑡) based on the local
estimators 𝑥𝑖(𝑡) from different sensors.

To obtain the distributed fusion estimator by using the
optimal weighted fusion estimation algorithm in the linear
minimum variance sense [8], we need to compute the local
estimators and variance matrices from each sensor and the
cross-covariance matrices between any two local estimators.
In the latter text, we will give the computation of local
estimators and cross-covariance matrices.

3. Local Filters at the Observation
Sampling Points

At first, we give the filter at the observation sampling points
of each sensor.

From the iteration of (1), we have

𝑥 (𝑙𝑖𝑡 + 𝑙𝑖) = Φ
𝑙𝑖
𝑥 (𝑙𝑖𝑡)

+

𝑙𝑖−1

∑

𝑚=0

Φ
𝑚
Γ𝑤 (𝑙𝑖𝑡 + 𝑙𝑖 − 𝑚 − 1) .

(3)
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LetΦ𝑖 = Φ
𝑙𝑖 and𝑤𝑖(𝑙𝑖𝑡) = ∑

𝑙𝑖−1

𝑚=0
Φ
𝑚
Γ𝑤(𝑙𝑖𝑡 + 𝑙𝑖 −𝑚−1); we

have the state spacemodel at the observation sampling points
for the 𝑖th sensor as follows:

𝑥 (𝑙𝑖𝑡 + 𝑙𝑖) = Φ𝑖𝑥 (𝑙𝑖𝑡) + 𝑤𝑖 (𝑙𝑖𝑡) ,

𝑦𝑖 (𝑙𝑖𝑡) = (𝐻0𝑖 + 𝜉𝑖 (𝑙𝑖𝑡)𝐻1𝑖) 𝑥 (𝑙𝑖𝑡) + V𝑖 (𝑙𝑖𝑡) ,

𝑖 = 1, 2, . . . , 𝐿

(4)

with the noise statistical information 𝑄𝑤𝑖 = 𝐸{𝑤𝑖(𝑙𝑖𝑡)

𝑤𝑖(𝑙𝑖𝑡)
𝑇
}=∑𝑙𝑖−1
𝑚=0
Φ
𝑚
Γ𝑄𝑤Γ

𝑇
(Φ
𝑚
)
𝑇.

Then,we have the filter at the observation sampling points
of each sensor based on the above model.

Lemma 2 (see [6]). For system (4), the local filters at the
observation sampling points of the 𝑖th sensor are computed by

𝑥𝑖 (𝑙𝑖𝑡 | 𝑙𝑖𝑡) = 𝑥𝑖 (𝑙𝑖𝑡 | 𝑙𝑖𝑡 − 𝑙𝑖) + 𝐾𝑖 (𝑙𝑖𝑡) 𝜀𝑖 (𝑙𝑖𝑡) ,

𝑥𝑖 (𝑙𝑖𝑡 + 𝑙𝑖 | 𝑙𝑖𝑡) = Φ𝑖𝑥𝑖 (𝑙𝑖𝑡 | 𝑙𝑖𝑡) ,

𝜀𝑖 (𝑙𝑖𝑡) = 𝑦𝑖 (𝑙𝑖𝑡) − 𝐻0𝑖𝑥𝑖 (𝑙𝑖𝑡 | 𝑙𝑖𝑡 − 𝑙𝑖) ,

𝐾𝑖 (𝑙𝑖𝑡) = 𝑃𝑖 (𝑙𝑖𝑡 | 𝑙𝑖𝑡 − 𝑙𝑖)𝐻
𝑇

0𝑖
𝑄𝜀𝑖
−1
(𝑙𝑖𝑡) ,

𝑄𝜀𝑖 (𝑙𝑖𝑡) = 𝐻0𝑖𝑃𝑖 (𝑙𝑖𝑡 | 𝑙𝑖𝑡 − 𝑙𝑖)𝐻
𝑇

0𝑖

+ 𝐻1𝑖𝑄𝜉𝑖
𝑞𝑖 (𝑙𝑖𝑡)𝐻

𝑇

1𝑖
+ 𝑄V𝑖 ,

𝑃𝑖 (𝑙𝑖𝑡 | 𝑙𝑖𝑡) = (𝐼𝑛 − 𝐾𝑖 (𝑙𝑖𝑡)𝐻0𝑖) 𝑃𝑖 (𝑙𝑖𝑡 | 𝑙𝑖𝑡 − 𝑙𝑖) ,

𝑃𝑖 (𝑙𝑖𝑡 + 𝑙𝑖 | 𝑙𝑖𝑡) = Φ𝑖𝑃𝑖 (𝑙𝑖𝑡 | 𝑙𝑖𝑡)Φ
𝑇

𝑖
+ 𝑄𝑤𝑖

,

𝑞𝑖 (𝑙𝑖𝑡) = Φ𝑖𝑞𝑖 (𝑙𝑖𝑡 − 𝑙𝑖)Φ
𝑇

𝑖
+ 𝑄𝑤𝑖

,

(5)

where 𝑥𝑖(𝑙𝑖𝑡 | 𝑙𝑖𝑡) and 𝑥𝑖(𝑙𝑖𝑡 | 𝑙𝑖𝑡 − 𝑙𝑖) are the filter and predictor
at the observation sampling points, respectively. 𝑃𝑖(𝑙𝑖𝑡 | 𝑙𝑖𝑡) and
𝑃𝑖(𝑙𝑖𝑡 | 𝑙𝑖𝑡− 𝑙𝑖) are the corresponding covariance matrices. 𝜀𝑖(𝑙𝑖𝑡)
is the innovation sequence with the covariance matrix 𝑄𝜀𝑖(𝑙𝑖𝑡).
𝐾𝑖(𝑙𝑖𝑡) is the filtering gain matrix. 𝑞𝑖(𝑙𝑖𝑡) is the state second-
order moment. The initial values are 𝑥𝑖(0 | 0) = 𝜇0, 𝑃𝑖(0 | 0) =
𝑃0, and 𝑞𝑖(0) = 𝜇0𝜇𝑇0 + 𝑃0.

4. Local Estimators at the State Update Points

Based on the filters at the observation sampling points in
Lemma 2, we have the following state estimation algorithms
at the state update points.

Theorem 3. For system (1)-(2), the local estimators at the state
update points of the 𝑖th sensor are computed by

𝑥𝑖 (𝑡) = {

𝑥𝑖 (𝑙𝑖𝑙 | 𝑙𝑖𝑙) , 𝑡 = 𝑙𝑖𝑙, 𝑙 = 0, 1, 2, . . .

Φ
𝑝
𝑥𝑖 (𝑙𝑖𝑙 | 𝑙𝑖𝑙) , 𝑡 = 𝑙𝑖𝑙 + 𝑝, 𝑝 = 1, 2, . . . , 𝑙𝑖 − 1.

(6)

The estimation error covariance matrices are computed by

𝑃𝑖 (𝑡)

=

{{{{{

{{{{{

{

𝑃𝑖 (𝑙𝑖𝑙 | 𝑙𝑖𝑙) , 𝑡 = 𝑙𝑖𝑙, 𝑙 = 0, 1, 2, . . .

Φ
𝑝
𝑃𝑖 (𝑙𝑖𝑙 | 𝑙𝑖𝑙) (Φ

𝑝
)
𝑇

+

𝑝−1

∑

𝑚=0

Φ
𝑚
Γ𝑄𝑤Γ

𝑇
(Φ
𝑚
)
𝑇
, 𝑡 = 𝑙𝑖𝑙 + 𝑝, 𝑝 = 1, 2, . . . , 𝑙𝑖 − 1,

(7)

where 𝑥𝑖(𝑙𝑖𝑙 | 𝑙𝑖𝑙) and 𝑃𝑖(𝑙𝑖𝑙 | 𝑙𝑖𝑙) are computed by Lemma 2.

Proof. When 𝑡 = 𝑙𝑖𝑙, 𝑙 = 0, 1, 2, . . ., we have the filters 𝑥𝑖(𝑡) =
𝑥𝑖(𝑙𝑖𝑙 | 𝑙𝑖𝑙). When 𝑡 = 𝑙𝑖𝑙 + 𝑝, 𝑝 = 1, 2, . . . , 𝑙𝑖 − 1, we have the
predictors 𝑥𝑖(𝑡) = 𝑥𝑖(𝑙𝑖𝑙 + 𝑝 | 𝑙𝑖𝑙). Then from the iteration of
(1), we have

𝑥 (𝑙𝑖𝑙 + 𝑝) = Φ
𝑝
𝑥 (𝑙𝑖𝑙)

+

𝑝−1

∑

𝑚=0

Φ
𝑚
Γ𝑤 (𝑙𝑖𝑙 + 𝑝 − 𝑚 − 1) ,

𝑝 = 1, 2, . . . 𝑙𝑖 − 1.

(8)

Taking projection of both sides of (8) onto the linear space
{𝑦𝑖(0), 𝑦𝑖(𝑙𝑖), . . . , 𝑦𝑖(𝑙𝑖𝑙)}, we have the second equation of (6).

From (6) and (8), we easily obtain the estimation error
equations:

𝑥𝑖 (𝑡)

=

{{{{{

{{{{{

{

𝑥𝑖 (𝑙𝑖𝑙 | 𝑙𝑖𝑙) , 𝑡 = 𝑙𝑖𝑙, 𝑙 = 0, 1, 2, . . .

Φ
𝑝
𝑥𝑖 (𝑙𝑖𝑙 | 𝑙𝑖𝑙)

+

𝑝−1

∑

𝑚=0

Φ
𝑚
Γ𝑤 (𝑙𝑖𝑙 + 𝑝 − 𝑚 − 1) , 𝑡 = 𝑙𝑖𝑙 + 𝑝, 𝑝 = 1, 2, . . . , 𝑙𝑖 − 1,

(9)

where the estimation error is 𝑥𝑖(𝑡) = 𝑥(𝑡)−𝑥𝑖(𝑡). Substituting
(9) into 𝑃𝑖(𝑡) = 𝐸[𝑥𝑖(𝑡)𝑥

𝑇

𝑖
(𝑡)], we have (7). This proof is

completed.

Remark 4. The local estimators at the state update points have
been obtained by filtering and prediction based on the filter
at the observation sampling points. State augmentation is
avoided.They are simple and have a good real-time property.

Now, we have obtained the local estimators at the state
update points based on the observations of each sensor. Next,
we compute the cross-covariance matrices between any two
local estimators.

5. Computation of Cross-Covariance Matrix

Theorem 5. The estimation error cross-covariance matrices
between any two local estimators can be computed in the
following three cases.
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(i) If the 𝑖th sensor and the 𝑗th sensor both have observa-
tions at time 𝑡𝑇, the estimation error cross-covariance
matrix is given as

𝑃𝑖𝑗 (𝑡) = Φ𝑃𝑖𝑗 (𝑡 − 1)Φ
𝑇
+ Γ𝑄𝑤Γ

𝑇

+ 𝐾𝑖 (𝑡)𝐻0𝑖 (Φ𝑃𝑖𝑗 (𝑡 − 1)Φ
𝑇
+ Γ𝑄𝑤Γ

𝑇
)𝐻
𝑇

0𝑗
𝐾
𝑇

𝑗
(𝑡)

− Φ𝑃𝑖𝑗 (𝑡 − 1)Φ
𝑇
𝐻
𝑇

0𝑗
𝐾
𝑇

𝑗
(𝑡) − Γ𝑄𝑤Γ

𝑇
𝐻
𝑇

0𝑗
𝐾
𝑇

𝑗
(𝑡)

− 𝐾𝑖 (𝑡)𝐻0𝑖Φ𝑃𝑖𝑗 (𝑡 − 1)Φ
𝑇
− 𝐾𝑖 (𝑡)𝐻0𝑖Γ𝑄𝑤Γ

𝑇
.

(10)

(ii) If the 𝑖th sensor has an observation and the 𝑗th
sensor does not have any observation at time 𝑡𝑇, the
estimation error cross-covariance matrix is given as

𝑃𝑖𝑗 (𝑡) = Φ𝑃𝑖𝑗 (𝑡 − 1)Φ
𝑇
+ Γ𝑄𝑤Γ

𝑇

− 𝐾𝑖 (𝑡)𝐻0𝑖Φ𝑃𝑖𝑗 (𝑡 − 1)Φ
𝑇
− 𝐾𝑖 (𝑡)𝐻0𝑖Γ𝑄𝑤Γ

𝑇
.

(11)

(iii) If both the 𝑖th sensor and the 𝑗th sensor do not have ob-
servations at time 𝑡𝑇, the estimation error cross-cova-
riance matrix is given as

𝑃𝑖𝑗 (𝑡) = Φ𝑃𝑖𝑗 (𝑡 − 1)Φ
𝑇
+ Γ𝑄𝑤Γ

𝑇
. (12)

The initial value is 𝑃𝑖𝑗(0) = 𝑃0.

Proof. (i) If the 𝑖th sensor and the 𝑗th sensor both have
observations at time 𝑡𝑇, we have local filters as

𝑥𝑖 (𝑡) = 𝑥𝑖 (𝑡 | 𝑡 − 1) + 𝐾𝑖 (𝑡) 𝜀𝑖 (𝑡)

= Φ𝑥𝑖 (𝑡 − 1) + 𝐾𝑖 (𝑡) 𝜀𝑖 (𝑡) ,

𝑥𝑗 (𝑡) = 𝑥𝑗 (𝑡 | 𝑡 − 1) + 𝐾𝑗 (𝑡) 𝜀𝑗 (𝑡)

= Φ𝑥𝑗 (𝑡 − 1) + 𝐾𝑗 (𝑡) 𝜀𝑗 (𝑡) ,

(13)

where

𝑥𝑖 (𝑡 − 1) = 𝑥𝑖 (𝑡 − 1 | 𝑡 − 𝑙𝑖) ,

𝑥𝑗 (𝑡 − 1) = 𝑥𝑗 (𝑡 − 1 | 𝑡 − 𝑙𝑗) .

(14)

Then we obtain the estimation error equation as

𝑥𝑖 (𝑡) = Φ𝑥𝑖 (𝑡 − 1 | 𝑡 − 𝑙𝑖)

+ Γ𝑤 (𝑡 − 1) − 𝐾𝑖 (𝑡) 𝜀𝑖 (𝑡) ,

𝑥𝑗 (𝑡) = Φ𝑥𝑗 (𝑡 − 1 | 𝑡 − 𝑙𝑗)

+ Γ𝑤 (𝑡 − 1) − 𝐾𝑗 (𝑡) 𝜀𝑗 (𝑡) .

(15)

The cross-covariance matrix can be computed by

𝑃𝑖𝑗 (𝑡) = 𝐸 [𝑥𝑖 (𝑡 | 𝑡) 𝑥
𝑇

𝑗
(𝑡 | 𝑡)]

= Φ𝑃𝑖𝑗 (𝑡 − 1)Φ
𝑇
+ Γ𝑄𝑤Γ

𝑇

+ 𝐾𝑖 (𝑡) 𝐸 {𝜀𝑖 (𝑡) 𝜀
𝑇

𝑗
(𝑡)}𝐾

𝑇

𝑗
(𝑡)

− Φ𝐸 {𝑥𝑖 (𝑡 − 1 | 𝑡 − 𝑙𝑗) 𝜀
𝑇

𝑗
(𝑡)}𝐾

𝑇

𝑗
(𝑡)

− Γ𝐸 {𝑤 (𝑡 − 1) 𝜀
𝑇

𝑗
(𝑡)}𝐾

𝑇

𝑗
(𝑡)

− 𝐾𝑖 (𝑡) 𝐸 {𝜀𝑖 (𝑡) 𝑥
𝑇

𝑗
(𝑡 − 1 | 𝑡 − 𝑙𝑗)}Φ

𝑇

− 𝐾𝑖 (𝑡) 𝐸 {𝜀𝑖 (𝑡) 𝑤
𝑇
(𝑡 − 1)} Γ

𝑇
,

(16)

where

𝐸 {𝜀𝑖 (𝑡) 𝜀
𝑇

𝑗
(𝑡)}

= 𝐻0𝑖 (Φ𝑃𝑖𝑗 (𝑡 − 1 | 𝑡 − 𝑙𝑖, 𝑡 − 𝑙𝑗)Φ
𝑇
+ Γ𝑄𝑤Γ

𝑇
)𝐻
𝑇

0𝑗
,

𝐸 {𝑤 (𝑡 − 1) 𝜀
𝑇

𝑗
(𝑡)} = 𝑄𝑤Γ

𝑇
𝐻
𝑇

0𝑗
,

𝐸 {𝜀𝑖 (𝑡) 𝑥
𝑇

𝑗
(𝑡 − 1 | 𝑡 − 𝑙𝑗)}

= 𝐻0𝑖Φ𝑃𝑖𝑗 (𝑡 − 1 | 𝑡 − 𝑙𝑖, 𝑡 − 𝑙𝑗) .

(17)

Substituting (17) into (24) and noting that 𝑃𝑖𝑗(𝑡 − 1) =
𝑃𝑖𝑗(𝑡 − 1 | 𝑡 − 𝑙𝑖, 𝑡 − 𝑙𝑗), (10) is obtained.

(ii) If the 𝑖th sensor has an observation and the 𝑗th sensor
does not have any observation at time 𝑡𝑇, we have local
estimators as

𝑥𝑖 (𝑡) = 𝑥𝑖 (𝑡 | 𝑡 − 1) + 𝐾𝑖 (𝑡) 𝜀𝑖 (𝑡)

= Φ𝑥𝑖 (𝑡 − 1) + 𝐾𝑖 (𝑡) 𝜀𝑖 (𝑡) ,

𝑥𝑗 (𝑡) = 𝑥𝑗 (𝑡 | 𝑡 − 1) = Φ𝑥𝑗 (𝑡 − 1) .

(18)

Then, we have the estimation error equation as

𝑥𝑖 (𝑡) = Φ𝑥𝑖 (𝑡 − 1 | 𝑡 − 𝑙𝑖)

+ Γ𝑤 (𝑡 − 1) − 𝐾𝑖 (𝑡) 𝜀𝑖 (𝑡) ,

𝑥𝑗 (𝑡) = 𝑥𝑗 (𝑡 | 𝑡 − 1)

= Φ𝑥𝑗 (𝑡 − 1 | 𝑡 − 𝑙𝑗) + Γ𝑤 (𝑡 − 1) .

(19)

Similarly to the derivation of the case (i), (11) can be
obtained by computing 𝑃𝑖𝑗(𝑡) = 𝐸[𝑥𝑖(𝑡)𝑥

𝑇

𝑗
(𝑡)].

(iii) If both the 𝑖th sensor and the 𝑗th sensor do not have
observations at time 𝑡𝑇, we have local estimators as

𝑥𝑖 (𝑡) = 𝑥𝑖 (𝑡 | 𝑡 − 1)

= Φ𝑥𝑖 (𝑡 − 1) = Φ𝑥𝑖 (𝑡 − 1 | 𝑡 − 𝑙𝑖) ,

𝑥𝑗 (𝑡) = 𝑥𝑗 (𝑡 | 𝑡 − 1)

= Φ𝑥𝑗 (𝑡 − 1) = Φ𝑥𝑗 (𝑡 − 1 | 𝑡 − 𝑙𝑗) .

(20)
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(c) The third state component

Figure 2: Distributed fusion filter.

We have the estimation error equation as

𝑥𝑖 (𝑡) = 𝑥𝑖 (𝑡 | 𝑡 − 1)

= Φ𝑥𝑖 (𝑡 − 1 | 𝑡 − 𝑙𝑖) + Γ𝑤 (𝑡 − 1) ,

𝑥𝑗 (𝑡) = 𝑥𝑗 (𝑡 | 𝑡 − 1)

= Φ𝑥𝑗 (𝑡 − 1 | 𝑡 − 𝑙𝑖) + Γ𝑤 (𝑡 − 1) .

(21)

Then (12) is obtained by computing𝑃𝑖𝑗(𝑡) = 𝐸[𝑥𝑖(𝑡)𝑥
𝑇

𝑗
(𝑡)].

This proof is completed.

6. Distributed Fusion Estimator

In the preceding sections, we have obtained the local estima-
tors at the state update points and their covariance matrices.
Applying the distributed matrix weighted optimal fusion
estimation algorithm in the linear minimum variance sense
[8], we can obtain the distributed fusion estimator as follows:

𝑥𝑜 (𝑡) =

𝐿

∑

𝑖=1

𝐴 𝑖 (𝑡) 𝑥𝑖 (𝑡) . (22)

The optimal weighted matrices are computed by

[𝐴1 (𝑡) , . . . , 𝐴𝐿 (𝑡)] = (𝑒
𝑇
𝑃
−1
(𝑡) 𝑒)
−1

𝑒
𝑇
𝑃
−1
(𝑡) , (23)
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Figure 3: Comparison of variances of distributed fusion filter and local filters.

where 𝑃(𝑡) = (𝑃𝑖𝑗(𝑡)) is an 𝑛𝐿 × 𝑛𝐿 matrix whose (𝑖, 𝑗) block
is 𝑃𝑖𝑗(𝑡) and 𝑒 = [𝐼𝑛, . . . , 𝐼𝑛]

𝑇 is an 𝑛𝐿 × 𝑛 matrix. Then, the
optimal fusion estimation error variance matrix is computed
by

𝑃𝑜 (𝑡) = (𝑒
𝑇
𝑃
−1
(𝑡) 𝑒)
−1

. (24)

Furthermore, we have 𝑃𝑜(𝑡) ≤ 𝑃𝑖(𝑡).

Remark 6. Compared to the centralized fusion estimator, the
distributed fusion estimator has the flexibility, fault tolerance,
and reliability since it has the distributed parallel structure
[8].

7. Simulation

An uninterruptible power system (UPS) with three sensors
subject to the multiplicative noises is taken as an example
to demonstrate the effectiveness and applicability of the
proposed method. We consider the UPS with 1KVA. The
discrete-time model (1) can be obtained with sampling time
10ms at half-load operating point as follows [20]:

𝑥 (𝑡 + 1)

= (

0.9226 −0.6330 0

1 0 0

0 1 0

)𝑥 (𝑡) + (

0.5

0

0.2

)𝑤 (𝑡)
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Figure 4: Comparison of variances of centralized and distributed fusion filters.

𝑦𝑖 (𝑙𝑖𝑡) = ((23.738 20.287 0) + 𝜉𝑖 (𝑙𝑖𝑡)𝐻1𝑖) 𝑥𝑖 (𝑙𝑖𝑡) + V𝑖 (𝑙𝑖𝑡) ,

𝑖 = 1, 2, 3,

(25)
where 𝑤(𝑡), V𝑖(𝑙𝑖𝑡), and 𝜉𝑖(𝑙𝑖𝑡) are uncorrelated white noises
with zeromean and variances𝑄𝑤,𝑄V𝑖 , and𝑄𝜉𝑖 . In simulation,
we take 𝑄𝑤 = 0.64, 𝑄𝜉1 = 1.2, 𝑄𝜉2 = 0.7, 𝑄𝜉3 = 0.3,
𝑄V1 = 3, 𝑄V2 = 2, 𝑄V3 = 1, 𝑙1 = 1, 𝑙2 = 2, 𝑙3 = 3, 𝐻11 =
[8 12 6], 𝐻12 = [10 8 5], 𝐻13 = [8 6 10], the initial
values 𝑥(0) = 0, and 𝑃0 = 0.1𝐼3. The sampling case is shown
in Figure 1. Figure 2 gives the distributed fusion estimator.
We see that the fusion estimator has the effective estimation
performance. Figure 3 gives the comparison of variances of
the distributed fusion estimator and local estimators. We see

that the proposed fusion estimator outperforms the local
estimators. Figure 4 gives the comparison of variances of the
distributed fusion estimator and centralized fusion estimator.
We see that the distributed fusion estimator has the small
accuracy loss. However, it is significant that the distributed
fusion estimator has better reliability than the centralized
fusion estimator since it is convenient to detect and isolate
the faults of sensors from distributed structure.

8. Conclusion

A distributed fusion estimator has been designed for systems
with multiple sensors of different sampling rates and obser-
vation multiplicative noises. Compared with the centralized
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fusion estimator, it has the small accuracy loss and better
reliability. Sampling period of each sensor is uniform and the
integer multiple of the state update period. By establishing
the state space model at the observation sampling points, the
local filters at the observation sampling points are obtained.
Further, the local estimators at the state update points are
obtained by the filtering and prediction approach. They
avoid the state augmentation and have a good real-time
property. The cross-covariance matrices between any two
local estimators are derived.The distributed fusion estimator
is obtained by well-known weighted fusion estimation algo-
rithm in linear minimum variance sense.
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This paper is concernedwith the estimation problem of a dynamic stochastic variable in a sensor network, where the quantization of
scalar measurement, the optimization of the bandwidth scheduling, and the characteristic of transmission channels are considered.
For the imperfect channels with missing measurements in sensor networks, two weighted measurement fusion (WMF) quantized
Kalman filters based on the quantized measurements arriving at the fusion center are presented. One is dependent on the known
message of whether a measurement is received. The other is dependent on the probability of missing measurements. They have
the reduced computational cost and same accuracy as the corresponding centralized fusion filter. The approximate solution for the
optimal bandwidth-scheduling problem is given under a limited bandwidth constraint. Furthermore, the vector measurement case
is also discussed. The simulation research shows the effectiveness.

1. Introduction

In recent years, sensor networks have been widely investi-
gated in decentralized estimation, detection, and control due
to the significant applications in environmental monitoring,
intelligent transportation, space exploration, and so forth
[1]. In wireless sensor networks (WSN), a large number of
sensors are spatially distributed to monitor the signal of
interest. Each sensor makes a measurement of the signal and
transmits it to the fusion center (data processing center).
Due to a bandwidth constraint, each sensor is only able to
transmit a finite number of bits. So the measurement must be
quantized to adapt the limited bandwidth before it is trans-
mitted. Due to the imperfection of networks, the quantized
measurement can be lost during the transmission. Then the
fusion centre will use the quantized measurements received
to obtain a fusion estimate of the signal. WSN introduce
many interesting research topics such as information fusion
[2], network lifetime maximization [3], sensor coverage or
scheduling [4], and optimization with bandwidth or energy-
efficient constraints [5].

Various algorithms have been proposed for network
estimation, detection, and control [5–18]. Decentralized

detection is investigated in a sensor network where the
communication channels between sensors and the fusion
centre are bandwidth constrained [5]. Several distributed
estimators for parameters have been designed in the presence
of additive sensor noise [6–10]. A universal decentralized
estimator taking into account local SNRand channel path loss
in sensor networks is studied [11] where the power scheduling
optimization is solved based on the Karush-Kuhn-Tucker
(KKT) condition. Quantization approach in many references
above is to quantize the sensor’s measurements directly. A
distributed estimation approach based on the sign of innova-
tions (SOI) is developed in [12] where only the transmission
of a single bit per measurement is required. However, the
cost of saving more communication is more accuracy loss.
As a generalization of [12], a multilevel quantized innovation
filter is presented [13, 14]. The estimation and control based
on the logarithm quantization approach are studied in [15,
16]. Quantized Kalman filters based on quantized scalar
measurements and innovations are presented for perfect
channels in sensor networks [17], respectively. However, the
quantized estimation for imperfect channels with missing
measurements is not taken into consideration. A centralized
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fusion quantized filter dependent on the packet dropout rate
is designed for sensor networks with packet dropouts [18].
However, it has the expensive computational burden due to
the augmented measurements.

In this paper, the quantized estimation problem for a
dynamic stochastic variable is studied in a sensor network.
Due to the limited bandwidth constraint, themeasurement of
sensors is quantized uniformly according to a given optimal
bandwidth scheduling. During the transmission of quantized
measurements, there are possible losses due to imperfect
channels. Due to the large number of data, the fusion
center compresses the received measurements to produce a
reduced dimensional fused measurement, based on which,
two weighted measurement fusion quantized filters are pre-
sented. One is dependent on the knowledge of whether a
packet is received.The other is dependent on the probabilities
of missing measurements. The front has the better accuracy
since more messages are used. They have the same accuracy
as the corresponding centralized fusion filters.

2. Problem Formulation

Consider the discrete-time system in a sensor network with
𝑁 sensors

𝑥 (𝑡 + 1) = Φ (𝑡) 𝑥 (𝑡) + Γ (𝑡) 𝑤 (𝑡) (1)

𝑦𝑖 (𝑡) = ℎ𝑖 (𝑡) 𝑥 (𝑡) + V𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁, (2)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state to be estimated, 𝑦𝑖(𝑡) ∈ 𝑅 is

the scalar measurement of the 𝑖th sensor, 𝑁 is the number of
sensors, and Φ(𝑡), Γ(𝑡), ℎ𝑖(𝑡) are time-varying matrices with
appropriate dimensions.

Assumption 1. 𝑤(𝑡) ∈ 𝑅
𝑟 and V𝑖(𝑡) ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑁

are uncorrelated white noises with zero mean and variances
𝑄𝑤(𝑡) and 𝜎

2

V𝑖
(𝑡). The initial value 𝑥(0) with mean 𝜇0 and

variance 𝑃0 is uncorrelated with 𝑤(𝑡) and V𝑖(𝑡).

Assumption 2. 𝑦𝑖(𝑡) ∈ [𝑈
𝑖
, 𝑈𝑖], where 𝑈𝑖 and 𝑈𝑖, 𝑖 =

1, 2, . . . , 𝑁, are known constants.

The estimation problem considered is shown in Figure 1.
Each sensor makes a measurement 𝑦𝑖(𝑡). Due to the lim-
ited bandwidth, it is quantized to produce a quantized
measurement 𝑚𝑖(𝑡) = 𝑞(𝑦𝑖(𝑡)) where 𝑞(⋅) is a quantized
function.Then,𝑚𝑖(𝑡) is transmitted to the fusion center by an
imperfect channel where there are possible packet losses. We
introduce a Bernoulli distributed random variable 𝛾𝑖(𝑡) with
the probabilities Prob{𝛾𝑖(𝑡) = 1} = 𝛼𝑖 and Prob{𝛾𝑖(𝑡) = 0} =
1 − 𝛼𝑖 to describe the phenomena of missing measurements.
Namely, the data received by the fusion center is 𝑚󸀠

𝑖
(𝑡) =

𝛾𝑖(𝑡)𝑚𝑖(𝑡), where 𝛾𝑖(𝑡) = 1means the quantizedmeasurement
is received and 𝛾𝑖(𝑡) = 0means loss. At last, the fusion center
will combine the received data 𝑚󸀠

𝑖
(𝑡) to give a final estimate

for state 𝑥(𝑡). We assume that the fusion center knows all the
parameters of system (1). If there is a sufficient bandwidth to
be supplied and the channel is perfect, that is, in the case of
𝑚
󸀠

𝑖
(𝑡) = 𝑦𝑖(𝑡), the standard Kalman filter can be used [19].

If the bandwidth is limited and the channel is perfect, that

is, in the case of 𝑚󸀠
𝑖
(𝑡) = 𝑚𝑖(𝑡), the fusion center will make

the estimate based on the received measurements {𝑚𝑖(𝑡), 𝑖 =
1, 2, . . . , 𝑁}. Otherwise, the fusion center has to make the
estimate based on the received measurements {𝑚󸀠

𝑖
(𝑡), 𝑖 =

1, 2, . . . , 𝑁}.
Our aim in this paper is to find the weighted measure-

ment fusion quantizedKalman filters (WMF-QKF) under the
limited bandwidth by imperfect channels. Two kinds of filters
are designed. One is dependent on the values of 𝛾𝑖(𝑡), the
other is dependent on the probability of 𝛾𝑖(𝑡).

3. WMF-QKF

3.1. Quantization and Bandwidth Scheduling. We adopt the
uniform quantization strategy in [11]. Measurement 𝑦𝑖(𝑡)
is quantized to 𝑚𝑖(𝑡) with the length of 𝑏𝑖(𝑡) bits, where
𝑏𝑖(𝑡) is to be determined later. We have 2𝑏𝑖(𝑡) quantization
points spaced uniformly within the interval [𝑈

𝑖
, 𝑈𝑖]. The

quantization noise 𝑛𝑖(𝑡) = 𝑚𝑖(𝑡) − 𝑦𝑖(𝑡) is uncorrelated white
noise with zero mean and variance 𝜎2

𝑛𝑖
(𝑡) = E(𝑛𝑖(𝑡))

2
=

E(𝑚𝑖(𝑡) − 𝑦𝑖(𝑡))
2
≤ 𝛿
2

𝑖
(𝑡) where 𝛿2

𝑖
(𝑡) = (𝑈𝑖 − 𝑈𝑖)

2
/[4(2
𝑏𝑖(𝑡) −

1)
2
]. Furthermore, 𝑛𝑖(𝑡), V𝑖(𝑡), 𝑖 = 1, 2, . . . , 𝑁, and 𝑤(𝑡) are

uncorrelated with each other.
In sensor networks, the whole bandwidth of communi-

cation channels is bounded. Let 𝐵 be the bits of the whole
bandwidth and let 𝑏𝑖(𝑡) be the bits scheduled to the 𝑖th
sensor. To obtain the good estimation performance under the
constraint of bounded bandwidths, we adopt the following
bandwidth scheduling strategy [17]:

min
𝑁

∑

𝑖=1

ℎ𝑖 (𝑡) ℎ
𝑇

𝑖
(𝑡)

𝜎
2
V𝑖
(𝑡)

𝛿
2

𝑖
(𝑡)

s.t.
𝑁

∑

𝑖=1

𝑏𝑖 (𝑡) ≤ 𝐵, 𝑏𝑖 (𝑡) ≥ 0, 𝑖 = 1, 2, . . . , 𝑁,

(3)

where ℎ𝑖(𝑡)ℎ
𝑇

𝑖
(𝑡)/𝜎
2

V𝑖
(𝑡) is the SNR (signal to noise ratio).Then

the optimal solution of 𝑏𝑖(𝑡) is given as

𝑏𝑖 (𝑡) =
[
[

[

log
2
(

√ln 2ℎ𝑖 (𝑡) ℎ𝑇𝑖 (𝑡) (𝑈𝑖 − 𝑈𝑖)

𝜎V𝑖 (𝑡)
√2𝜆 (𝑡)

)
]
]

]

,

𝜆 (𝑡) =

ln 2/2∏𝑁
𝑖=1
(ℎ𝑖 (𝑡) ℎ

𝑇

𝑖
(𝑡) (𝑈𝑖 − 𝑈𝑖)

2

/𝜎
2

V𝑖
(𝑡))

1/𝑁

2
2𝐵/𝑁

,

(4)

where the symbol [⋅] denotes the least integer greater than ⋅.

3.2. Design of Two Kinds of WMF-QKF

3.2.1. Filter Design Dependent on Values of 𝛾𝑖(𝑡). When the
values of 𝛾𝑖(𝑡) are known, that is, we knowwhether a packet is
received or lost, which can be carried out by the information
of time stamps, letting 𝐿(𝑡) be the number of measurements
received by the fusion center at 𝑡 time, then we have the
augmented measurement equation in the fusion center:

𝑚
󸀠
(𝑡) = ℎ (𝑡) 𝑥 (𝑡) + 𝜂 (𝑡) , (5)
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Figure 1: Distributed state estimation scheme based on quantized observations.

where the augmented quantized measurement received
by the fusion center is 𝑚󸀠(𝑡) = [𝑚

󸀠

𝑘1(𝑡)
(𝑡), 𝑚
󸀠

𝑘2(𝑡)
(𝑡), . . . ,

𝑚
󸀠

𝑘𝐿(𝑡)(𝑡)
(𝑡)]
𝑇, 1 ≤ 𝑘1(𝑡) < ⋅ ⋅ ⋅ < 𝑘𝐿(𝑡)(𝑡) ≤ 𝑁 and the

integer 𝑘𝑖(𝑡) denotes the 𝑘𝑖(𝑡)th sensor that arrives at the
fusion center. The augmented measurement matrix is ℎ(𝑡) =
[ℎ
𝑇

𝑘1(𝑡)
(𝑡), ℎ
𝑇

𝑘2(𝑡)
(𝑡), . . . , ℎ

𝑇

𝑘𝐿(𝑡)(𝑡)
(𝑡)]
𝑇 and the noise is 𝜂(𝑡) =

[𝜂𝑘1(𝑡)
(𝑡), 𝜂𝑘2(𝑡)

(𝑡), . . . , 𝜂𝑘𝐿(𝑡)(𝑡)
(𝑡)]
𝑇 with zero mean and vari-

ance matrix 𝑄𝜂(𝑡) = diag(𝜎2
𝜂𝑘1(𝑡)

(𝑡), 𝜎
2

𝜂𝑘2(𝑡)
(𝑡), . . . , 𝜎

2

𝜂𝑘𝐿(𝑡)(𝑡)
(𝑡))

where 𝜂𝑘𝑖(𝑡)(𝑡) = V𝑘𝑖(𝑡)(𝑡) + 𝑛𝑘𝑖(𝑡)(𝑡) are uncorrelated with one
another, with zero mean and variance 𝜎2

𝜂𝑘𝑖(𝑡)
(𝑡) = 𝜎

2

V𝑘𝑖(𝑡)
(𝑡) +

𝜎
2

𝑛𝑘𝑖(𝑡)
(𝑡) ≤ 𝜎

2

V𝑘𝑖(𝑡)
(𝑡) + 𝛿

2

𝑘𝑖(𝑡)
(𝑡). We approximately consider

the measurement noise 𝜂(𝑡) to be the white noise. Then, the
Kalman filtering can be used for the augmented systems (1)
and (5) where the upper bound of variance of the quantized
noise is used. However, the expensive computational cost is
required due to the high-dimensional augmented measure-
ment when the data of a large number of sensors arrive at
the fusion center. To reduce the computational cost, we will
present the WMF filter in the following text.

When 𝐿(𝑡) ≥ 1, that is, there are measurement data
arriving at the fusion center at time 𝑡, then we can obtain the
filter according to the following three cases.

(a) If ℎ(𝑡) is full row rank, we can apply the standard
Kalman filtering algorithm to obtain the fusion filter.

(b) If ℎ(𝑡) is full column rank, we have that
ℎ
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)ℎ(𝑡) is nonsingular.Then theWMFmeasurement

equation is given as follows:

𝑚(𝑡) = 𝑥 (𝑡) + 𝜂 (𝑡) , (6)

where 𝑚(𝑡) = [ℎ
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)ℎ(𝑡)]

−1

ℎ
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)𝑚
󸀠
(𝑡), 𝜂(𝑡) =

[ℎ
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)ℎ(𝑡)]

−1

ℎ
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)𝜂(𝑡), 𝑄−1

𝜂
(𝑡) = [ℎ

𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)

ℎ(𝑡)]
−1.
Then based on systems (1) and (6), we can apply the

standard Kalman filtering algorithm to obtain the fusion
filter.

(c) If ℎ(𝑡) is not full rank, that is, ℎ𝑇(𝑡)𝑄−1
𝜂
(𝑡)ℎ(𝑡) is

singular, letting rank{ℎ(𝑡)} = 𝑝(𝑡), 𝑝(𝑡) ≤ min{𝑛, 𝐿(𝑡)}, then
there is full-rank decomposition [20]; that is,

ℎ (𝑡) = 𝑓 (𝑡) ℎ (𝑡) , (7)

where 𝑓(𝑡) ∈ 𝑅𝐿(𝑡)×𝑝(𝑡) is full column rank and ℎ(𝑡) ∈ 𝑅𝑝(𝑡)×𝑛

is full row rank. 𝑓𝑇(𝑡)𝑄−1
𝜂
(𝑡)𝑓(𝑡) is a nonsingular matrix. So,

we have the WMF measurement equation as

𝑚(𝑡) = ℎ (𝑡) 𝑥 (𝑡) + 𝜂 (𝑡) , (8)

where 𝑚(𝑡) = [𝑓
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)𝑓(𝑡)]

−1

𝑓
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)𝑚
󸀠
(𝑡), 𝜂(𝑡) =

[𝑓
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)𝑓(𝑡)]

−1

𝑓
𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)𝜂(𝑡), 𝑄

𝜂
(𝑡) = [𝑓

𝑇
(𝑡)𝑄
−1

𝜂
(𝑡)

𝑓(𝑡)]
−1.

Then based on systems (1) and (8), we can apply the
standard Kalman filtering algorithm to obtain the fusion
filter.

When 𝐿(𝑡) = 0, that is, there are no measurement data
arriving at the fusion center at time 𝑡, then, the Kalman
predictor is used based on the last estimator.

Remark 3. From (6) and (8), we can know that the dimension
of the compressed measurement 𝑚(𝑡) or 𝑚(𝑡) is not greater
thanmin{𝑛, 𝐿(𝑡)}.When the number of sensors arriving at the
fusion center is large, that is, 𝐿(𝑡) ≫ 𝑛, the proposed WMF-
QKF with the computational order of magnitude 𝑂(𝑝3(𝑡))
can obviously reduce the computational cost compared to
the centralized fusion filter with the computational order of
magnitude 𝑂(𝐿3(𝑡)). However, they have the same accuracy;
that is, WMF-QKF has the global optimality [20].

3.2.2. Filter Design Dependent on Probabilities of 𝛾𝑖(𝑡). In
this section, we will design the filter dependent on the
probabilities of 𝛾𝑖(𝑡). At each time, the measurement of each
sensor arriving at the fusion center can be expressed as
follows:

𝑚
󸀠

𝑖
(𝑡) = 𝛾𝑖 (𝑡)𝑚𝑖 (𝑡)

= 𝛾𝑖 (𝑡) ℎ𝑖 (𝑡) 𝑥 (𝑡) + 𝛾𝑖 (𝑡) V𝑖 (𝑡)

+ 𝛾𝑖 (𝑡) 𝑛𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁

(9)

which can be rewritten as

𝑚
󸀠

𝑖
(𝑡) = 𝛼𝑖ℎ𝑖 (𝑡) 𝑥 (𝑡) + 𝜁𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁, (10)

where 𝜁𝑖(𝑡) = (𝛾𝑖(𝑡) − 𝛼𝑖)ℎ𝑖(𝑡)𝑥(𝑡) + 𝛾𝑖(𝑡)V𝑖(𝑡) + 𝛾𝑖(𝑡)𝑛𝑖(𝑡), 𝑖 =
1, 2, . . . , 𝑁 are uncorrelated white noises with zero mean and
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variances 𝜎2
𝜁𝑖
(𝑡) = 𝛼𝑖(1 − 𝛼𝑖)ℎ𝑖(𝑡)𝑞(𝑡)ℎ

𝑇

𝑖
(𝑡) + 𝛼𝑖𝜎

2

V𝑖
(𝑡) + 𝛼𝑖𝜎

2

𝑛𝑖
(𝑡);

𝑞(𝑡) = E[𝑥(𝑡)𝑥𝑇(𝑡)] is the state second-order moment which
can be computed by 𝑞(𝑡+1) = Φ(𝑡)𝑞(𝑡)Φ𝑇(𝑡)+Γ(𝑡)𝑄𝑤(𝑡)Γ

𝑇
(𝑡)

from (1).
Then the augmented measurements can be expressed as

𝑀
󸀠
(𝑡) = ℎ̃ (𝑡) 𝑥 (𝑡) + 𝜁 (𝑡) , (11)

where 𝑀
󸀠
(𝑡) = [𝑚

󸀠

1
(𝑡) 𝑚

󸀠

2
(𝑡) ⋅ ⋅ ⋅ 𝑚

󸀠

𝑁
(𝑡)]
𝑇,

ℎ̃(𝑡) = [𝛼1ℎ1(𝑡) 𝛼2ℎ2(𝑡) ⋅ ⋅ ⋅ 𝛼𝑁ℎ𝑁(𝑡)]
𝑇, 𝜁(𝑡) =

[𝜁1(𝑡) 𝜁2(𝑡) ⋅ ⋅ ⋅ 𝜁𝑁(𝑡)]
𝑇; 𝜁(𝑡) and 𝑤(𝑡) are

uncorrelated. The variance matrix of 𝜁(𝑡) is 𝑄𝜁(𝑡) =

diag (𝜎2𝜁1(𝑡) 𝜎
2

𝜁2
(𝑡) ⋅ ⋅ ⋅ 𝜎

2

𝜁𝑁
(𝑡)) where the symbol diag(⋅)

denotes the diagonal matrix.
According to the different cases that the matrix ℎ̃(𝑡) is full

row-rank, full column-rank, or not full-rank, we can obtain
the WMF-QKF dependent on probabilities of 𝛾𝑖(𝑡) similar to
design of the above subsection.

Remark 4. Two kinds of WMF-QKFs have been proposed.
The filter dependent on the values of 𝛾𝑖(𝑡) (WMF-QKFV) has
better accuracy than that dependent on the probabilities of
𝛾𝑖(𝑡) (WMF-QKFP) since more information is used. How-
ever,WMF-QKFV requires the online computation since it is
dependent on the stochastic variable 𝛾𝑖(𝑡) at each time.WMF-
QKFP can be computed offline since it is only dependent
on the probabilities. Moreover, WMF-QKFP has the reduced
online computational cost than WMF-QKFV.

3.3.MultipleDimensionMeasurementCase. WMF-QKFwith
optimization problems has been solved for systems with
scalar measurement in Sections 3.1 and 3.2. In this section, we
consider theWMF-QKF for systemswithmultiple dimension
measurements. We consider the system

𝑥 (𝑡 + 1) = Φ (𝑡) 𝑥 (𝑡) + Γ (𝑡) 𝑤 (𝑡)

𝑦𝑖 (𝑡) = 𝐻𝑖 (𝑡) 𝑥 (𝑡) + V𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

(12)

where 𝑦𝑖(𝑡) ∈ 𝑅
𝑞𝑖 is the measurement vector of the 𝑖th sensor;

other variables have the same definitions as Section 2. 𝐻𝑖(𝑡)
is full row rank. We make the following assumptions.

Assumption 5. 𝑤(𝑡) ∈ 𝑅
𝑟 and V𝑖(𝑡) ∈ 𝑅

𝑞𝑖 , 𝑖 = 1, 2, . . . , 𝑁,
are uncorrelated white noises with zero mean and variance
matrices 𝑄𝑤(𝑡) and 𝑄V𝑖(𝑡), and their each component is
uncorrelated with each other; that is, 𝑄𝑤(𝑡) and 𝑄V𝑖(𝑡) are
diagonal matrices.

Assumption 6. 𝑦(𝑘)
𝑖
(𝑡) ∈ [𝑈

(𝑘)

𝑖
, 𝑈
(𝑘)

𝑖
], 𝑘 = 1, 2, . . . , 𝑞𝑖; 𝑖 =

1, 2, . . . , 𝑁, where 𝑦(𝑘)
𝑖
(𝑡) is the kth component of observation

vector 𝑦𝑖(𝑡) and 𝑈
(𝑘)

𝑖
and 𝑈(𝑘)

𝑖
are known constants.

The system structure is similar to Figure 1. For each
component 𝑦(𝑘)

𝑖
(𝑡) of measurement 𝑦𝑖(𝑡) from the 𝑖th sensor,

we quantize each component 𝑦(𝑘)
𝑖
(𝑡) to 𝑚

(𝑘)

𝑖
(𝑡) with the

length of 𝑏(𝑘)
𝑖
(𝑡) bits according to the quantized approach in

Section 3.1. Let the quantized noise be 𝑛(𝑘)
𝑖
(𝑡) = 𝑚

(𝑘)

𝑖
(𝑡) −

𝑦
(𝑘)

𝑖
(𝑡); then the variance of the quantized noise 𝑛(𝑘)

𝑖
(𝑡) is

𝜎
2

𝑛
(𝑘)

𝑖

(𝑡) ≤ 𝛿
2

𝑛
(𝑘)

𝑖

(𝑡), 𝛿2
𝑛
(𝑘)

𝑖

(𝑡) = (𝑈
(𝑘)

𝑖
− 𝑈
(𝑘)

𝑖
)
2
/[4(2
𝑏
(𝑘)

𝑖
(𝑡)
− 1)
2
].

Furthermore, 𝑛(𝑘)
𝑖
(𝑡), V(𝑙)
𝑗
(𝑡), 𝑖, 𝑗 = 1, 2, . . . , 𝑁; 𝑘 = 1, 2, . . . , 𝑞𝑖;

𝑙 = 1, 2, . . . , 𝑞𝑗, and 𝑤(𝑡) are uncorrelated with each other.
Then, similar to scalar measurement case, we can deal with
the WMF-QKF. The detailed algorithm is omitted here.

Remark 7. For the case of multiple dimension measurements
of each sensor, 𝐻𝑖(𝑡) is assumed to be full row rank. If
not, the full-rank decomposition can be implemented. Then
the measurement of each sensor can be compressed to a
reduced dimension measurement without information loss.
Or other compressed algorithms [21, 22] can be used for
the multiple dimension measurements of each sensor. Then
its each component is quantized and transmitted. Thus, the
bandwidth can be saved.

4. Simulation Research

Consider a discrete-time system measured by five sensors:

𝑥 (𝑡 + 1) = [

[

0.9226 −0.633 0

1 0 0

0 1 0

]

]

𝑥 (𝑡) + [

[

0.5

0

0.2

]

]

𝑤 (𝑡)

𝑦𝑖 (𝑡) = ℎ𝑖𝑥 (𝑡) + V𝑖 (𝑡) , 𝑖 = 1, 2, 3,

(13)

where 𝑦𝑖(𝑡) is the measurement signal and V𝑖(𝑡) is the
measurement noise with mean zero and variance 𝜎2V𝑖 and is
independent with Gaussian noise 𝑤(𝑡) with mean zero and
variance 𝜎2

𝑤
. Our goal is to find the WMF-QKF dependent

on values (WMF-QKFV) of 𝛾𝑖(𝑡) and WMF-QKF dependent
on probabilities (WMF-QKFP) of 𝛾𝑖(𝑡). In the simulation, we
set noise variances 𝜎2

𝑤
= 1, 𝜎2V1 = 1, 𝜎2V2 = 2, 𝜎2V3 = 2.5,

𝜎
2

V4
= 2.5, 𝜎2V5 = 3, measurement matrices ℎ1 = ℎ2 = ℎ3 =

[23.738 20.287 0] and ℎ4 = ℎ5 = [0 20 23], the initial
values 𝑥(0) = [0 0 0]

𝑇 and 𝑃0 = 0.1𝐼3, where 𝐼3 is a 3 × 3

identity matrix, the bounds 𝑈
1
= 𝑈
2
= 𝑈
3
= 𝑈
4
= 𝑈
5
= −40

and 𝑈1 = 𝑈2 = 𝑈3 = 𝑈4 = 𝑈5 = 40 for measurements of five
sensors, the initial bandwidths 𝑏1 = 𝑏2 = 𝑏3 = 𝑏4 = 𝑏5 = 1,
and the probabilities 𝛼1 = 0.5, 𝛼2 = 0.7, 𝛼3 = 0.8, 𝛼4 = 0.8
and 𝛼5 = 0.7 and we take 100 sampling data.

We solve the optimization problem (3) with the bits of the
whole bandwidth 𝐵 = 12. We can compute the bandwidths
𝑏1 = 3, 𝑏2 = 3, 𝑏3 = 2, 𝑏4 = 2, and 𝑏5 = 2. Tracking
performance of WMF-QKFV and WMF-QKFP is shown in
Figure 2 where bold curves denote the true value, dotted
curves denote the estimates of WMF-QKFV, and dashed
curves denote the estimates of WMF-QKFP. We see that
WMF-QKFV has better accuracy than WMF-QKFP under
the same bandwidth constraint. The comparison of mean
square errors MSE𝑘 = (∑

500

𝑖=1
(𝑥
(𝑖)

𝑘
(𝑡 | 𝑡) − 𝑥𝑘(𝑡))

2

)/500 by 500
times Monte-Carlo test, 𝑘 = 1, 2, 3, denoting the kth compo-
nent of the state of all LFs, WMF-QKFV, and WMF-QKFP
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Figure 2: Comparison of tracking for WMF-QKFP and WMF-QKFV under whole bandwidth 𝐵 = 12.

is shown in Figure 3. We see that WMF-QKFP and WMF-
QKFV have better accuracy than any local filter and WMF-
QKFV has better accuracy thanWMF-QKFP. All simulations
verify the effectiveness of the proposed algorithms.

5. Conclusion

The weighted measurement fusion quantized filtering prob-
lem is investigated in a sensor network with bandwidth
constraint and imperfect channels of missing measurements.
Using the knowledge of whether a measurement is lost at
the present time or the probabilities of missing measure-
ments, two weighted measurement fusion quantized Kalman

filters are developed based on the quantized measurements
received, respectively. They have the same accuracy as the
corresponding centralized fusion estimators and have the
reduced computational cost.
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Wireless sensor networks, in combination with image sensors, open up a grand sensing application field. It is a challenging problem
to recover a high resolution (HR) image from its low resolution (LR) counterpart, especially for low-cost resource-constrained
image sensors with limited resolution. Sparse representation-based techniques have been developed recently and increasingly to
solve this ill-posed inverse problem. Most of these solutions are based on an external dictionary learned from huge image gallery,
consequently needing tremendous iteration and long time to match. In this paper, we explore the self-similarity inside the image
itself, and propose a new combined self-similarity superresolution (SR) solution, with low computation cost and high recover
performance. In the self-similarity image super resolution model (SSIR), a small size sparse dictionary is learned from the image
itself by the methods such as KSVD. The most similar patch is searched and specially combined during the sparse regulation
iteration. Detailed information, such as edge sharpness, is preserved more faithfully and clearly. Experiment results confirm the
effectiveness and efficiency of this double self-learning method in the image super resolution.

1. Introduction

Wireless sensor networks, in combination with image sen-
sors, open up a grand sensing application field. Visual
information provided by image sensor is the most intuitive
information perceived by human, especially for recogni-
tion, monitoring, and surveillance. Low-cost and resource-
constrained image sensors with limited resolution are mainly
employed [1–3]. Recovery from low resolution to high res-
olution is the pressing need for image sensor node. Image
super resolution (SR) receives more and more interests
recently, which has lots of applications in image sensor,
digital cameras, mobile phone, image enhancement, high
definition TV [4–6], and so forth. It aims to reconstruct a
high-resolution (HR) image from the low-resolution (LR)
one based on reasonable assumptions or prior knowledge.
From the view of the target HR image, the LR image can be
generated after downsampling and some blurring operator.

Hence, the SR work has always been formulated as an inverse
problem:

𝑌 = Φ𝐻𝑋 +𝑁, (1)

where 𝑋 is the HR image to be recovered, 𝑌 is the known
LR image,Φ is the downsampling operator,𝐻 is the blurring
operator that minimizes the high frequency aliasing effect,
and𝑁 is the noise. Traditionally, the downsampling operator
Φ and blurring operator 𝐻 are conducted at the same time.
Hence, we can use the following formulation (2) instead of
(1):

𝑌 = H𝑋 +𝑁, (2)

where H = Φ𝐻 is the generalized blurring and downsam-
pling operator. However, the detailed information, especially
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the high frequency part, is lost after these two operations.
Hence, image super resolution has become a highly under-
determined reconstruction problem.

The classical SR solutions are interpolation-based meth-
ods, including bilinear, bicubic, spline interpolation and
some other improved versions [7, 8]. These methods tend to
generate overly smooth HR images with ringing and jaggy
effects. Their visual clarity is very limited. Edge preserving
and directional interpolators have been proposed to improve
the reconstruction image’s visual clarity [9–11]. However, the
blurring and noises are still obstacles to overcome.

Sparse representation-based SR methods are becoming
more popular recently since the issue of sparse representation
is consistent with (2). Sparse representation provides a dif-
ferent perspective in solving the underdetermined problems
[12–15]. This powerful and promising tool has proven to
be effective for a wide range of problems, such as sub-
Nyquist sensing of signals and coding, image denoising, and
deblurring [16–23]. Several sparse representation based SR
algorithms have been proposedwith superior results reported
[12, 22, 24, 25]. Most of them need training dictionaries based
on a large scale external image gallery, which have limited
matching degree to the target image and time consuming.
Another issue is that the external dictionary depends on
the blurring modal with less generality. Self-learning SR
algorithms, lately emerged, show that the internal statistics in
the image itself often have stronger prediction power than the
external statistics and can give more powerful image-specific
priors [26, 27].

In this paper, we explore the self-similarity inside the
image and propose a new combined self-similarity super
resolution (SR) solution, which successfully restores themiss-
ing detailed image information. In this self-similarity image
super resolutionmodel (SSIR), the patches from the LR image
are downsampled firstly to form smaller LR patches (SLR).
Small-sized sparse dictionary is learned from the image itself
by methods such as KSVD.Then, a most similar patch for the
unrecovered LR patch is searched and combined, during the
sparse iteration, to preserve the faithful detailed information.
Experiment results confirm the effectiveness and efficiency of
the double self-similarity learningmethod in the image super
resolution.

The rest of this paper is organized as follows. Section 2
describes our approach of SSIR framework with self-learning
dictionary. In Section 3, experiments are taken to compare
the proposed method with other ones. The conclusions are
finally given in Section 4.

2. The Proposed Self-Similarity-Based Image
Super Resolution Approach

2.1. Sparse Representation of Image Super Resolution. For
sparse representation-based SR methods, high resolution
image 𝑋 can be represented by sparse coefficients 𝛼 under
dictionary𝐷 as follows:

𝑋 = 𝐷𝛼. (3)

Hence, the HR image recovering procedure can be seen
as the minimization of the 𝑙1-norm problem:

𝛼̂ = arg min ‖𝛼‖1 s.t. 𝑌 = H𝑋 = H𝐷𝛼, (4)

where 𝑌 is the LR image and H is the generalized blur-
ring and downsampling degradation matrix. The quality of
recover HR image is always determined by the details, such
as edges and contrast. However, such details are lost when
the HR image is downsampled. Hence, small patch based
recovery is more popular than the whole image based ones to
prevent large scale details losing. We follow the patch based
learning strategy in our approach. For𝑁×𝑁 sized LR image,
the atoms in𝐷 are learned by patches sized by 𝑛 × 𝑛, where 𝑛
can be 8, 10, and so forth. Then the sparse representation (4)
can be rewritten as

𝛼̂𝑘 = arg min 󵄩󵄩󵄩󵄩𝛼𝑘
󵄩󵄩󵄩󵄩1

s.t. 𝑦𝑘 = H𝑥𝑘 = H𝐷𝛼𝑘, (5)

where 𝑦 is the LR patch with size of (1/scale) × 𝑛 × 𝑛, 𝑥𝑘 is
the HR patch, 𝛼𝑘 is the coefficient of the patch, and H and
𝐷 are corresponding patch with the size of 𝑛 × 𝑛. The image
reconstruction scheme based on self-learning dictionary can
be presented more intuitively by

𝛼̂ = argmin 󵄩󵄩󵄩󵄩𝑦 −H𝐷𝛼
󵄩󵄩󵄩󵄩

2

𝐹
+ 𝜆‖𝛼‖1.

(6)

2.2. Internal Dictionary Learning. Most of the sparse rep-
resentation SR methods are based on dictionary learning
from the external image library [12, 22, 25]. The number
of the atoms in dictionary 𝐷 should be huge enough to
confirm the sparsity of 𝛼 and avoid image hallucination and
blurring [16]. Normally, the dimension of external dictionary
should be above thousand and the recovery time is huge.
For various natural images, especially the high-gradient
ones, high recover performance could not be easily and fast
reached if the dictionary is learned from the outside image
gallery. External dictionary approaches are not suitable for
the resource-constrained image sensor node. A different idea
is that we should make full use of the information inside of
the image itself as shown in [26, 27]. The feature of the same
structure textures or patterns can bemore easily foundwithin
the image. For the destination image, the dictionary does not
need to be tremendous to mate different kinds of natural
images. Inspired by [26, 27], the dictionary𝐷 is learned firstly
fromLR image in our approach to classify the local structures.

The internal training patches are extracted from LR
image and then used to generate an overcomplete dictionary
𝐷 ∈ 𝑅

𝑛×𝑛×𝐾 which contains 𝐾 atoms. It is assumed that a
training patch 𝑦TS can be represented as 𝑦TS = 𝐷𝛽, which
satisfies ‖𝑦TS −𝐷𝛽‖ < 𝜀. Hence, the training dictionary is the
solution of

[𝐷, 𝛽] = arg min 󵄩󵄩󵄩󵄩𝑦TS − 𝐷𝛽
󵄩󵄩󵄩󵄩

s.t.󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩 0

< 𝐾. (7)

Iterative optimization is used to solve this dictionary
training problem. The iteration consists of two basic steps:
(1) sparse coding: fix the dictionary 𝐷 and search for the
sparse representation of 𝛽 and (2) dictionary update: update
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Table 1: HR patch, corresponding LR patch, and reconstruction patch under KSVD dictionary.

HR patch LR patch Reconstruction patch under KSVD dictionary
100 99 96 91 90 88 85 83 99 95 89 84 100 99 96 94 91 88 84 84
98 100 98 93 90 87 84 83 98 93 88 85 101 99 96 92 90 86 83 84
99 99 96 92 89 86 85 84 99 94 90 84 100 98 95 92 88 85 84 85
100 96 93 91 89 87 85 85 99 94 87 85 99 97 94 92 90 87 84 85
99 97 95 95 91 88 85 83 100 97 94 93 92 88 85 85
101 99 95 91 91 89 86 84 101 99 96 93 91 88 85 84
101 99 95 91 89 88 86 85 100 99 96 92 89 87 85 84
98 97 96 93 88 85 84 84 99 98 96 92 88 86 86 85

the dictionary atoms {𝑑𝑗}
𝐾

𝑗=1
and their corresponding coeffi-

cients 𝛽 one by one. Inspired by [28, 29], we use orthogonal
matching pursuit (OMP) algorithm in the sparse coding
step and K-singular value decomposition (K − SVD) based
iterative optimization in dictionary update step, respectively.
These two steps run iteratively until the maximum iteration
or the convergence is reached.

Typically, the self-leaning dictionary size 𝐾 is set below
256 in our approach, and we get similar recovery perfor-
mance with the external dictionary. Detailed comparison is
illustrated in Section 3.

2.3. Self-Similarity Regulation Scheme. Local image struc-
tures in LR image can be classified by the patch dictionary
learned from itself. However, detailed information, such as
sharp edges and corners, could not be clustered perfectly
by limit atoms and may be lost for some extent after
downsampled from the HR patch. The following Table 1
demonstrates a real HR patch in Lena, its corresponding
LR patch, and reconstruction patch by self-learning KSVD
dictionary with 256 atoms. From Table 1, the rich variation
between the HR pixels is omitted in LR patch and smoothed
in the reconstruction patch. The reason of smooth effect
under KSVD dictionary is mainly that the dictionary atoms
are trained not only for the special patch, but also for all the
patches in the image.

Hence, accurate reconstruction for each patch is tough
even under the sparse self-learning dictionary. More prior
information should be incorporated into the recover proce-
dure to improve the HR image quality. Several additional
parameters have been studied such as frequency, histogram,
low-pass, nonlocal means constraints [22, 25]. Unlike these
statistic constraints, we consider true information inside of
the image as the regulation index.

As aforementioned, distinct edges and corners become
blur after downsample operation. The information loss phe-
nomenon appears when the HR image is downsampled
to LR image. Similar information loss phenomenon also
appears when the LR image is down-sampled to an even
lower resolution image. The lost information during the
latter procedure can be recovered from the image before
down-sample. It provides a learning way to recover more
realistic HR patches. A new self-similarity regulation scheme
is proposed based on finding image patch similar to the

Input
LR patch

Searching zone 
in LR image

Similar 
patch

Down 
sample

LR 
residual

Sparse 
recovery by 
dictionary

HR 
residual

HR patch 
recoverd

Search

+

−

Figure 1: Self-similarity regulation step.

destination HR patch.The new sparse regulation scheme can
be formulated as

𝛼̂ = arg min 󵄩󵄩󵄩󵄩𝑦 −H𝐷𝛼
󵄩󵄩󵄩󵄩

2

𝐹
+ 𝜆‖𝛼‖1 + 𝛾similar‖𝐽 (𝛼)‖1, (8)

where 𝛾similar is the regulation threshold and 𝐽(𝛼) is the
similarity prior. We divide the whole sparse regulation into
two steps: self-similarity regulation and sparse dictionary
regulation. The self-similarity regulation step can be seen as
an internal regulation step to compensate the sharpness of
the edges. The sparse dictionary regulation step provides the
basic framework to enlarge the LR image.

The detailed self-similarity regulation step is described in
Figure 1. Firstly, the input unrecovered LR patch, named as
𝑦LR, is upscaled by bicubic operator.Then, a similar HR patch
of the same up-scaled size, named as 𝑆HR, is searched around
the LR patch 𝑦LR inside of LR image 𝑌. If a similar HR patch
𝑆HR is found, we can get its corresponding down-sampled
LR patch 𝑆LR. The true HR patch 𝑥HR is approximated
by the similar HR patch 𝑆HR. This recovered HR patch
𝑥HR coming from real pixels can be closer to the ground
truth 𝑥HR than that recovered by statistic constraints studied
previously.During approximation, the similar down-sampled
LR patch 𝑆LR is firstly subtracted from the unrecovered LR
patch 𝑦LR. Then, the above difference is estimated from the
residual 𝑅𝑆LR by the self-learning sparse dictionary, which
is named as 𝑅𝑆HR. At last, the recovered HR patch 𝑥HR is
computed by adding the similar patch 𝑆HR and the difference
estimation 𝑅𝑆HR.Thewell-known sparse regulationmethods,
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Input: LR image 𝑌, LR image patches’ size𝑚 and HR image patches’ size 𝑛, the degradation matrixH.
Output: HR image𝑋
Step 1. Extract patches 𝑦LR ∈ 𝑅𝑚 from LR image 𝑌, follow the raster-scan order, and start from the upper-left corner

(some pixel overlap in each direction is allowed).
Step 2. Recover HR image patches 𝑥HR iteratively by Steps 2.1 and 2.2, until the maximum iteration times

or convergence is reached.
Step 2.1 Self-similarity regulation step:

Step 2.1.1. Use bicubic method to up scale the unrecovered LR patch 𝑦LR to the same size 𝑛 as HR patch, defined as 𝑦HR.
Step 2.1.2. Searching for a similar 𝑛 sized patch in 𝑦LR’s neighbor:

Step 2.1.2.1. Compute each searching patch’s SSE as the self-similarity prior 𝐽(𝛼),
𝐽 (𝛼) = SSE = ∑

𝑙

∑

𝑘

(𝐵𝑙𝑘 − 𝐵𝑙𝑘)
2

Step 2.1.2.2. Find the least SSE patch, and compare its SSE with the adaptive threshold
𝛼Var+𝛽. If SSE < 𝛼Var+𝛽, define this least SSE patch as the similar patch 𝑆HR.

Step 2.1.3. Use degradation matrixH to down sample similar patch 𝑆HR, define as 𝑆LR.
Step 2.1.4. Subtract 𝑆LR from LR patch 𝑦LR, and get the residual 𝑅𝑆LR = 𝑦LR − 𝑆LR.
Step 2.1.5. Recover the residual 𝑅𝑆LR to 𝑅𝑆HR using IRLS algorithm according (9).
Step 2.1.6. Add the 𝑅𝑆HR to 𝑆HR, according to (10).

Step 2.2 Sparse dictionary regulation step: update 𝑥𝑙+1HR according to (11).
Step 3. Ensemble all 𝑥HR to recover HR image𝑋 (if there is pixel overlap, the weighted average method is needed).

Algorithm 1: Self-similarity regulation scheme.

like IRLS and OMP, can be used in the recovery procedure
[27–30].

The above self-similarity regulation step can be repre-
sented as

𝑅𝑆
𝑙

HR = 𝐷𝐻 ∗ IRLS (𝑦LR −H𝑆
𝑙

HR, 𝐷𝐿) ,

𝑥
𝑙+1/2

HR = 𝑆
𝑙

HR + 𝑅𝑆
𝑙

HR,

(9)

where 𝑙 is the current iteration index, 𝑆𝑙HR is the most similar
patch found in 𝑙th iteration, 𝑅𝑆𝑙HR is the recovered difference
between 𝑆𝑙HR and 𝑥HR, 𝑥

𝑙+1/2

HR represents updated 𝑥HR, and𝐷𝐿
and 𝐷𝐻 are dictionary trained for low-resolution patch and
high-resolution patch, respectively.

We introduced sum square error (SSE) as the self-
similarity prior 𝐽(𝛼) and use it to decide which patch is the
most matching one. The definition of the SSE is given by

𝐽 (𝛼) = SSE = ∑
𝑙

∑

𝑘

(𝐵𝑙𝑘 − 𝐵𝑙𝑘)
2

, (10)

where 𝐵𝑙𝑘 is the pixels taken from 𝑦LR neighbor patch in the
searching zone and 𝐵𝑙𝑘 is the pixels taken from the bicubic
up-scaled patch 𝑦HR. Both have the same size as the output
HR patch 𝑥HR. The patches we searched for come from the
LR image, so the fidelity can be guaranteed.

Sparse threshold 𝛾similar is used to decide whether a patch
is similar to destination HR patch. 𝛾similar is adaptive to 𝑦LR,
instead of being a fixed value.The adaptive threshold 𝛾similar is
defined as 𝛼Var+𝛽, where Var is variance of the processing
patch𝑦LR and 𝛼, 𝛽 are associated parameters. If theminimum
𝐽(𝛼) within the searching zone is smaller than 𝛾similar, its
corresponding patch is named as the most similar patch 𝑆HR.

The sparse dictionary regulation step is then performed
under self-learned dictionary, which can be represented by

𝑥
𝑙+1

HR = 𝑥
𝑙+1/2

HR + 𝜆𝐷𝐻 ∗ IRLS (𝑦LR −H𝑥
𝑙+1/2

HR , 𝐷𝐿) . (11)

The above two regulation steps are performed until the
maximum iteration times or the convergence is reached.

The procedure of self-similarity regulation scheme is
described in detail by Algorithm 1.

2.4. Overall Diagram of Self-Similarity Based Image Super
Resolution Approach. After all the analyses above, the over-
all diagram of self-similarity based image super resolution
approach is shown in Figure 2. Firstly, the input LR image
𝑌, regarded as a down-sampled version from corresponding
HR image 𝑋, is segmented into patches 𝑦LR. Then the sparse
representation dictionaries 𝐷𝐿 and 𝐷𝐻 are trained by these
internal patches. Next, the self-similarity regulation scheme
is applied to find a matching patch 𝑆HR. Afterwards, HR
patch 𝑥HR is recovered by sparse regulation based on the self-
learning dictionary. At last, we ensemble all these recovered
HR patches 𝑥HR to get a high-quality HR image𝑋.

3. Experimental Results

3.1. Experimental Background. In this section, several exper-
imental results for the proposed method are given. All the
simulations are conducted in MATLAB 7.5 on PC with
Intel Core2/1.6GHz/1 GB.The test LR images include several
typical 256 × 256 natural images. We aim to recover their
512 × 512HR images. The input LR images with different
degradation matrix H (direct downsampling degradation
matrix H𝑑 and blur down-sampling degradation matrix
H𝑏) are tested. Every experiment is evaluated from the
luminance peak signal-to-noise ratio (Y PSNR) and SSIM
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Figure 2: The overall diagram of the self-similarity-based image super resolution.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Experiment results on image Lena, from left to right: (a) original 512×512 HR image, (b)H𝑏 sampled Bicubic (PSNR = 34.87 dB),
and (c) H𝑏 sampled Yang et al.’s [24] (PSNR = 35.75 dB), (d) H𝑏 sampled Proposed method (PSNR = 35.80 dB), (e) Dong et al.’s [25]
NCSR (PSNR = 35.45 dB), (f) H𝑑 sampled Bicubic (PSNR = 30.96 dB), (g) H𝑑 sampled Yang et al’s. [24] (PSNR = 29.09 dB), and (h) H𝑑
sampled proposed method (PSNR = 33.82 dB).

and is compared with the state of the art methods such as
Yang et al.’s [12, 22], Dong et al.’s [25]. We thank the above
authors to provide their program codes.

3.2. Experiments on Different Downsampled Image. In this
test, our method is tested on several 512 × 512 common
experimental natural images such as Lena, Plane, and Pepper.
The input 256×256 LR image is down-sampled from the orig-
inal 512 × 512 HR image. We use both direct downsampling
degradation matrixH𝑑 and blur downsampling degradation
matrixH𝑏 to test the algorithm’s adaptability. At first, a sparse
dictionary is trained by the 8×8 patches taken from input LR
image. The dictionary has 128 atoms. Hence, the dictionary
is a 64 × 128 matrix. Then, the 8 × 8 HR image patches are
recovered by 4×4 LR image patches under our self-similarity
based SR approach. We set 3 pixels overlap in LR patches by
default. The neighbor searching zone is set to 10 × 10.

Figure 3 shows the experiment on the image Lena under
different downsampling matrix. Figure 3(a) plots the original

Lena image. Figures 3(b)–3(d) plot the HR Lena images
recovered from H𝑏 down-sampled LR image, respectively,
by Bicubic, Yang et al.’s [24], and our proposed methods.
Recovered image by Dong et al.’s [25] NCSR method is also
illustrated in Figure 3(e), which uses the elaborate Gaussian
low-pass filter. Figures 3(e)–3(g) show the recoveredHRLena
images from H𝑑 down-sampled LR image, respectively, by
Bicubic, Yang et al.’s [24] method, and the proposed method.
Dong et al.’s [25] NCSR method cannot get acceptable
performance without Gaussian low-pass filter, which is not
illustrated in Figure 3. These experimental results show that
our method has better performance than the state of the art
methods [12, 24, 25] in both cases.The Bicubic method could
not recover the high frequency details in both cases. Although
Yang et al.’s [24] method can recover the blur downsampled-
LR image very well but produce too much artifact and fake
high frequency details in the direct downsampling case.

Experiment result on image Pepper is shown in
Figure 4. Pepper has lots of edge, which is a preferable image
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Experiment results on image Pepper, from left to right: (a) original 512×512HR image, (b)H𝑏 sampled Bicubic (PSNR = 33.08 dB),
(c) H𝑏 sampled Yang et al.’s [24] (PSNR = 33.84 dB), (d) H𝑏 sampled proposed method (PSNR = 35.68 dB), (e) Dong et al.’s [25]
NCSR (PSNR = 34.92 dB) (f), H𝑑 sampled bicubic (PSNR = 29.78 dB), (g) H𝑑 sampled Yang et al.’s [24] (PSNR = 28.3943 dB), and (h)
H𝑑 sampled proposed method (PSNR = 33.25 dB).

Table 2: Comparison results of different SR methods.

Image Downsampling matrix Measures Methods
Bicubic Yang et al. [24] Dong et al. [25] Proposed

Lena
Blur PSNR (dB) 34.8671 35.7477 35.46 35.8

SSIM 0.8538 0.8586 0.9067 0.9237

Direct PSNR (dB) 30.964 29.0875 33.8206
SSIM 0.7873 0.7322 0.8098

Plane
Blur PSNR (dB) 32.6525 33.5788 34.05 34.9828

SSIM 0.9341 0.9369 0.9487 0.9629

Direct PSNR (dB) 28.8573 27.5349 31.5616
SSIM 0.8985 0.8525 0.9141

Pepper
Blur PSNR (dB) 33.0847 33.8412 34.92 35.6808

SSIM 0.8382 0.8474 0.9028 0.9173

Direct PSNR (dB) 29.7824 28.3943 33.2525
SSIM 0.7712 0.7229 0.7754

Sailboat
Blur PSNR (dB) 31.065 31.6411 32.05 32.1125

SSIM 0.8143 0.8294 0.8826 0.8979

Direct PSNR (dB) 27.7443 26.0675 30.0478
SSIM 0.7537 0.6893 0.756

Baboon
Blur PSNR (dB) 25.0694 25.0966 25.13 25.4071

SSIM 0.7068 0.7388 0.7375 0.7479

Direct PSNR (dB) 22.661 20.5052 23.6535
SSIM 0.611 0.5595 0.6217

to test the recover effect about edge. Similar result is derived.
The edge recovered by Yang et al.’s [24] method is not clear
when LR image is down-sampled byH𝑑. This failure may be
caused by the inconsistency between Yang et al.’s [24] pair
of HR and LR dictionaries. In comparison, our proposed

method can preserve the edge’s sharpness well. Besides
the edge’s sharpness, recovered information by self-learning
is more faithful to the true HR details.

More bench-mark comparisons are illustrated in Table 2.
Our proposed method shows high recovery performance
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Table 3: Recovery PSNR of three sparse based SR methods with different dictionary sizes.

Image Bicubic (dB) Yang et al. [24] (dB)
1024 atoms

Yang et al. [22] (dB)
500 atoms

Proposed (dB)
128 atoms

Lena 29.8545 33.4116 33.4302 33.6360
Pepper 28.8546 31.4435 31.5071 31.9216
Boat 26.7158 30.4966 30.5984 30.8878

Table 4: Recovery effects of different size searching zones on image Tank.

Searching zone 8 × 8 10 × 10 12 × 12 14 × 14

PSNR (dB) 34.4982 34.6764 34.8211 34.8985
SSIM 0.9057 0.9085 0.9106 0.9114

under both kinds of downsampling degradation matrix. The
comparison shows that self-similarity is a powerful image-
specific prior for sparse representation SR method.

Images produced by industrial environment sensors are
tested too, as shown below in Figures 5 and 6. Recovered high
resolution images in Figure 6 show the effectiveness of our
approach.

Furthermore, we do experiments on Forman video
sequence to test the stability of our algorithm. All the frames
are processed as an image. Figure 7 shows the PSNR compar-
ison between the proposed method and Bicubic method.The
proposed approach stably outperforms the Bicubic method.
From about the 210th frame, recovery performance decays
rapidly, since the followed frames are full of wild high
frequency details.

3.3. Influence of Different Parameters. To further observe dif-
ferent parameter’s impact, several comparison experiments
are conducted.

3.3.1. Influence of Dictionary Size. Another advantage of the
proposed approach is that the sparse dictionary only needs
a small amount of atoms. 128 atoms are enough to get a
favorable result for the proposedmethod.Meanwhile, Yang et
al.’smethod [12, 24] needs to train external dictionaries at least
512 atoms. In [22], Yang et al. propose a CS-based SRmethod,
which also needs to train a dictionary with 500 atoms by
external database. Comparison experiments are conducted
on gray 512×512 natural images, including Lena, Pepper, and
Boat. Table 3 shows the recovery PSNR of three sparse based
SR methods with different dictionary sizes. The proposed
method can recover favorable HR images by the smallest
dictionary. Test results show that the proposed self-similarity
learning method is more suitable for resource-constrained
image sensor node.

For external dictionary based SR method, the recovery
performance gets better as the dictionary size is growing
larger. Figure 8 shows another comparison on Lena between
Yang et al.’s method [24] and the proposed method. Yang et
al.’s method [24] is conducted by a series of dictionary sizes of

Figure 5: Low resolution test images from industrial environment
sensors.

256, 512, 1024, and 2048. The proposed method is conducted
by different dictionary sizes of 64, 128, 256, and 512. We use
the increment PSNR to Bicubic method as the comparison
index. As PSNR growth curve shown in Figure 8, we can see
that the recovery performance of Yang et al.’s method relies
much more on the dictionary size. Its dictionary size should
be three times larger than the dictionary size in the proposed
method. By contrast, our approach gives a stable performance
on different dictionary sizes.

3.3.2. Influence of Self-Similarity Searching Zone. Self-
similarity is introduced as the sparse regulation prior in
our approach. The above tests show its effectiveness and
stability in preserving the detailed information such as
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Figure 6: Recovered high resolution test images from industrial environment sensors scale factor = 2.
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Figure 7: Self-similarity based SR performance on Foreman video
sequence.

edge sharpness. The size of self-similarity searching zone
is tested here, using test image Tank from 8 × 8 to 14 × 14

neighborhood. Results are illustrated in Table 4 and
Figure 9. The similar patches found are shown in
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Figure 8: Recovery performance comparison over different dictio-
nary sizes.

Figure 10.The experiment tells us that more edge patches can
be found, and the recovery performance gets better, when
the searching zone size increases.

3.4. Limitation and Further Research Direction. Although we
have shown the outstanding performance of the proposed
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(a) (b) (c) (d)

Figure 9: Recovery effects of different sized searching zones on image Tank, from left to right: (a) 8 × 8, (b) 10 × 10, (c) 12 × 12, and (d)
14 × 14.

(a) (b) (c) (d)

Figure 10: Similar patches found by different sized searching zones, from left to right: (a) 8 × 8, (b) 10 × 10, (c) 12 × 12, and (d) 14 × 14.

self-similarity super resolution approach, there are still some
limitation that should be considered. The proposed method
assumes that the blur matrix is known as most SR methods.
Further research should consider how to estimate the optimal
blur kernel under the blind circumstance. Another point
is that the SSE self-similarity prior used in the proposed
algorithm is quite simple. We will use more delicate prior
such as Parzen window estimation [31], BM3D [32], and
so forth, to get a better match with the destination HR
patch.

4. Conclusion

This paper has presented a novel double self-similarity super
resolution approach for the resource-constrained image sen-
sor node in the wireless sensor networks. The proposed
method does not need external database and only uses the
LR image itself as the training sample for sparse repre-
sentation dictionary with a small number of atoms. Self-
similarity sparse prior is combined in the regulation iteration
to preserve the detailed information. Experiments are con-
ducted on bench-mark test images. The effects of different
parameters have been surveyed. Comparative tests show the
effectiveness and stability of the proposed method over the
state of the art sparse based SR methods.
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Tracking target with coordinated turn (CT) motion is highly dependent on the models and algorithms. First, the widely used
models are compared in this paper—coordinated turn (CT)modelwith known turn rate, augmented coordinated turn (ACT)model
with Cartesian velocity, ACT model with polar velocity, CT model using a kinematic constraint, and maneuver centered circular
motion model. Then, in the single model tracking framework, the tracking algorithms for the last four models are compared and
the suggestions on the choice of models for different practical target tracking problems are given. Finally, in the multiple models
(MM) framework, the algorithm based on expectation maximization (EM) algorithm is derived, including both the batch form
and the recursive form. Compared with the widely used interacting multiple model (IMM) algorithm, the EM algorithm shows its
effectiveness.

1. Introduction

Theproblem of tracking a single target with coordinated turn
(CT) motion is considered. The motion of a civil aircraft can
usually be modeled as moving by constant speed in straight
lines and circle segments. The former is known as constant
velocity (CV)model and the latter is coordinated turnmodel.
In tracking applications, only the position part of the state can
be measured by the sensor and the turn rate 𝜔 is often un-
known. So the measurement data can be seen as the incom-
plete data. This is a resource-constrained problem for track-
ing target with coordinated turn motion.

CTmodel is highly dependent on the choice of state com-
ponents [1]. The turn rate 𝜔 can be augmented in the CT
model, called ACT model. There are two types of ACT mod-
els: ACTmodel with Cartesian velocity and ACTmodel with
polar velocity. The state vectors are [𝑥, 𝑦, ̇𝑥, ̇𝑦, 𝜔]

󸀠 and
[𝑥, 𝑦, V, 𝜙, 𝜔]󸀠, respectively. The two are both nonlinear mod-
els and have been compared in [2, 3] based on EKF. For
unscentedKalman filter (UKF) is a very efficient tool for non-
linear estimation [4, 5], here the two models are compared
based on UKF.

When the target with CT motion has a constant speed, it
satisfies a kinematic constraint:𝑉⋅𝐴 = 0, where𝑉 is the target

velocity vector and 𝐴 is the target acceleration vector. If the
dynamic model incorporates the constraint directly, it will
become a highly nonlinear one. To avoid this nonlinearity, the
kinematic constraint was incorporated into a pseudomea-
surement model [6–8].

A maneuver-centered model is introduced in [9]. The
state components are [𝑟, 𝜃, 𝜔]󸀠.Themodel’s state equation has
a linear form, but its measurement equation is pseudolinear
because the noise covariance is actually state dependent [10].
The center of the turn should be accurately determined,
which is inherently a nonlinear problem.

Target dynamic models and tracking algorithms have
intimate ties [1]. In the single model tracking framework, the
tracking algorithms are interpreted and compared.

The interactingmultiplemodel (IMM) approach has been
generally considered to be the mainstream approach to
maneuvering target tracking. It utilizes a bank of 𝑁 Kalman
filters, each designed tomodel a differentmaneuver [11]. IMM
algorithm is a suboptimal algorithm based on the minimum
mean square error (MMSE) criterion.Under theMMSE crite-
rion, to get the optimal estimation of the target state, the com-
putational load grows exponentially when the measurements
are increasing. In recent years, tracking target based onmaxi-
mum a posteriori (MAP) criterion has received a lot of
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interest [12–17]. Expectation maximization (EM) algorithm
is the state estimation approach based on MAP criterion. Us
ing EMalgorithm, the computational load grows linearly dur-
ing per iteration and the optimal estimation based on MAP
criterion can be achieved finally.

The existing EM algorithm to track maneuvering target
can be classified into two categories: one formulates the
maneuver as the unknown input [12–14] and the other for-
mulates themaneuver as the system’s process noise [15]. Aim-
ing at the problem to track a target with CTmaneuver, an EM
algorithm is presented. The maneuver is formulated by the
turn rate. First, the turn rate sequence is estimated using the
EM algorithm. Then, with the estimated turn rate sequence,
the target state sequence is estimated accurately.

The rest of this paper is organized as follows. Section 2
presents all the CTmodels’ state equations and measurement
equations.The tracking algorithms based on single model are
interpreted in Section 3; the simulations are also presented. In
Section 4, the batch and recursive EM algorithms are derived
and compared with the IMM algorithm in simulation.
Section 5 provides the paper’s conclusions.

2. Dynamic Models for CT Motion

A maneuvering target can be modeled by

𝑋𝑘+1 = 𝑓𝑘 (𝑋𝑘) + 𝑤𝑘,

𝑧𝑘 = ℎ𝑘 (𝑋𝑘) + 𝑒𝑘,

(1)

where 𝑋𝑘 and 𝑧𝑘 are target state and observation, respec-
tively, at discrete time 𝑡𝑘; 𝑤𝑘 and 𝑒𝑘 are process noise and
measurement noise sequences, respectively; 𝑓𝑘 and ℎ𝑘 are
vector-valued functions.

2.1. CT Model with Known Turn Rate. The coordinated turn
motion can be described by the following equation:

𝑋𝑘+1 = 𝐹 (𝜔𝑘)𝑋𝑘 + 𝑤𝑘. (2)

The measurement equation is:

𝑧𝑘 = 𝐻CT𝑋𝑘 + 𝑒𝑘. (3)

The components of state are𝑋 = [𝑥 ̇𝑥 𝑦 ̇𝑦]
󸀠. 𝜔𝑘 stands

for the turn rate in time 𝑘.
Where

𝐹 (𝜔𝑘) =

[
[
[
[
[
[
[
[
[
[
[
[

[

1
sin (𝜔𝑘𝑇)
𝜔𝑘

0 −
1 − cos (𝜔𝑘𝑇)

𝜔𝑘

0 cos (𝜔𝑘𝑇) 0 − sin (𝜔𝑘𝑇)

0
1 − cos (𝜔𝑘𝑇)

𝜔𝑘

1
sin (𝜔𝑘𝑇)
𝜔𝑘

0 sin (𝜔𝑘𝑇) 0 cos (𝜔𝑘𝑇)

]
]
]
]
]
]
]
]
]
]
]
]

]

𝑤 = [𝑤𝑥 𝑤𝑦]
󸀠

𝐸 [𝑤𝑘] = 0, 𝐸 [𝑤𝑘𝑤
󸀠

𝑙
] = 𝑄CT𝛿𝑘𝑙.

(4)

Assume only position could be measured, where

𝐻CT = [
1 0 0 0

0 0 1 0
]

𝐸 [𝑒𝑘] = 0, 𝐸 [𝑒𝑘𝑒
󸀠

𝑙
] = 𝑅𝛿𝑘𝑙.

(5)

This model assumes that the turn rate is known or could
be estimated. When the range rate measurements are avail-
able, the turn rate could be estimated by using range ratemea-
surements [18, 19]. The tracking performance will be deteri-
orated when the assumed turn rate is far away from the true
one.Thismodel is usually used as one of themodels in amul-
tiple models framework.

2.2. ACT Model with Cartesian Velocity. In this model, the
state vector is chosen to be 𝑋 = [𝑥, 𝑦, ̇𝑥, ̇𝑦, 𝜔]

󸀠; the state space
equation can be written as

𝑋𝑘+1 = 𝑓ACT1 (𝑋𝑘) + 𝐺ACT1𝑤𝑘, (6)

where

𝑓ACT1 (𝑋) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑥 +
̇𝑥

𝜔
sin (𝜔𝑇) −

̇𝑦

𝜔
(1 − cos (𝜔𝑇))

𝑦 +
̇𝑥

𝜔
(1 − cos (𝜔𝑇)) +

̇𝑦

𝜔
(sin (𝜔𝑇))

̇𝑥 cos (𝜔𝑇) − ̇𝑦 sin (𝜔𝑇)

̇𝑥 sin (𝜔𝑇) + ̇𝑦 cos (𝜔𝑇)

𝜔

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (7)

𝐺ACT1 =
[
[
[
[

[

𝑇
2

2
0 𝑇 0 0

0
𝑇
2

2
0 𝑇 0

0 0 0 0 1

]
]
]
]

]

󸀠

, (8)

𝑤 = [𝑤𝑥 𝑤𝑦 𝑤𝜔]
󸀠
, (9)

𝐸 [𝑤𝑘] = 0, 𝐸 [𝑤𝑘𝑤
󸀠

𝑙
] = 𝑄ACT1𝛿𝑘𝑙. (10)

Assume only position could be measured, the measure-
ment equation can be written as

𝑧𝑘 = 𝐻ACT1𝑋𝑘 + 𝑒𝑘, (11)

where

𝐻ACT1 = [
1 0 0 0 0

0 1 0 0 0
] , (12)

𝐸 [𝑒𝑘] = 0, 𝐸 [𝑒𝑘𝑒
󸀠

𝑙
] = 𝑅𝛿𝑘𝑙. (13)

2.3. ACT Model with Polar Velocity. This model’s state vector
is𝑋 = [𝑥, 𝑦, V, 𝜙, 𝜔]󸀠, and the dynamic state equation is given
by

𝑋𝑘+1 = 𝑓ACT2 (𝑋𝑘) + 𝐺ACT2𝑤𝑘, (14)
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where

𝑓ACT2 (𝑋) =

[
[
[
[
[
[
[
[
[
[
[

[

𝑥 + (
2V
𝜔
) sin(𝜔𝑇

2
) cos(𝜙 + 𝜔𝑇

2
)

𝑦 + (
2V
𝜔
) sin(𝜔𝑇

2
) sin(𝜙 + 𝜔𝑇

2
)

V

𝜙 + 𝜔𝑇

𝜔

]
]
]
]
]
]
]
]
]
]
]

]

𝐺ACT2 =
[

[

0 0 𝑇
2

0 0

0 0 0
𝑇
2

2
𝑇
2
]

]

󸀠

𝑤 = [𝑤V 𝑤𝜔]
󸀠

𝐸 [𝑤𝑘] = 0, 𝐸 [𝑤𝑘𝑤
󸀠

𝑙
] = 𝑄ACT2𝛿𝑘𝑙.

(15)

However themeasurement equation is the same as (11) to (13).

2.4. Kinematic Constraint Model. For a constant speed target,
the acceleration vector is orthogonal to the velocity vector:

𝐶 (𝑋) = 𝑉 ⋅ 𝐴 = 0, (16)
where 𝑉 is the target velocity vector and𝐴 is the target accel-
eration vector.

This kinematic constraint can be used as a pseudom-
easurement. The state vector is chosen to be 𝑋 =

[𝑥 ̇𝑥 ̈𝑥 𝑦 ̇𝑦 ̈𝑦]
󸀠. So the dynamic model is the constant

acceleration (CA) model, given by
𝑋𝑘+1 = 𝐹𝑋𝑘 + 𝐺𝑤𝑘, (17)

where

𝐹 =

[
[
[
[
[
[
[
[
[
[
[

[

1 𝑇
𝑇
2

2
0 0 0

0 1 𝑇 0 0 0

0 0 1 0 0 0

0 0 0 1 𝑇
𝑇
2

2

0 0 0 0 1 𝑇

0 0 0 0 0 1

]
]
]
]
]
]
]
]
]
]
]

]

𝐺 =

[
[
[

[

𝑇
2

2
𝑇 1 0 0 0

0 0 0
𝑇
2

2
𝑇 1

]
]
]

]

󸀠

𝑤 = [𝑤𝑥 𝑤𝑦]
󸀠

𝐸 [𝑤𝑘] = 0, 𝐸 [𝑤𝑘𝑤
󸀠

𝑙
] = 𝑄CA𝛿𝑘𝑙.

(18)

The measurement equation is given by
𝑧𝑘 = 𝐻𝑥𝑘 + 𝑒𝑘, (19)

where

𝐻 = [
1 0 0 0 0 0

0 0 0 1 0 0
]

𝐸 [𝑒𝑘] = 0, 𝐸 [𝑒𝑘𝑒
󸀠

𝑙
] = 𝑅𝛿𝑘𝑙.

(20)

The pseudomeasurement is

𝑉𝑘|𝑘

𝑆𝑘|𝑘

⋅ 𝐴𝑘 + 𝜇𝑘 = 0, (21)

where 𝑉𝑘|𝑘 = [ ̇𝑥𝑘|𝑘 ̇𝑦𝑘|𝑘]
󸀠 and 𝐴𝑘 = [ ̈𝑥𝑘 ̈𝑦𝑘]

󸀠.
𝑆𝑘|𝑘 is the filtered speed at time 𝑘 :

𝑆𝑘|𝑘 = √ ̇𝑥
2

𝑘|𝑘
+ ̇𝑦
2

𝑘|𝑘
, (22)

𝜇𝑘 ∼ 𝑁 (0, 𝑅
𝜇

𝑘
) , (23)

𝑅
𝜇

𝑘
= 𝑟1(𝛿)

𝑘
+ 𝑟0, 0 ≤ 𝛿 < 1, (24)

where 𝑟1 is chosen to be large for initialization and 𝑟0 is chosen
for steady-state conditions.

2.5. Maneuver-Centered CT Model. This model’s state vector
is given by𝑋 = [𝑟 𝜃 𝜔]

󸀠. The process state space equation is

𝑋𝑘+1 = Φ𝑋𝑘 + Γ𝑤𝑘, (25)

where

Φ = [

[

1 0 0

0 1 𝑇

0 0 1

]

]

Γ =
[
[

[

1 0

0
𝑇

2

0 1

]
]

]

𝑤 = [𝑤𝑟 𝑤𝜔]
󸀠

𝐸 [𝑤𝑘] = 0, 𝐸 [𝑤𝑘𝑤
󸀠

𝑙
] = 𝑄𝑚𝛿𝑘𝑙.

(26)

Assume the center of the CTmotion is (𝑥𝑐, 𝑦𝑐).The trans-
formation between Cartesian coordinates and maneuver-
centered coordinates is given by

𝑟 = √(𝑥 − 𝑥𝑐)
2
+ (𝑦 − 𝑦𝑐)

2

𝜃 = tan−1 (
𝑦 − 𝑦𝑐

𝑥 − 𝑥𝑐

) .

(27)

So the measurement equation is given by

𝑧𝑘 = 𝐻
𝑚
𝑋𝑘 + 𝑒𝑘, (28)

where

𝐻
𝑚
= [

1 0 0

0 1 0
]

𝐸 [𝑒𝑘𝑒
󸀠

𝑙
] = 𝑅
𝑚
= 𝐽𝑟𝜃𝑅𝐽

󸀠

𝑟𝜃
.

(29)

𝐽𝑟𝜃 is the Jacobian matrix based on (27), which leads to

𝐽𝑟𝜃 =
[

[

cos 𝜃 sin 𝜃

− sin 𝜃
𝑟

cos 𝜃
𝑟

]

]

. (30)
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3. Tracking Algorithms in
a Single Model Framework

3.1. UKF Filter with ACT Models. If the turn rate is aug-
mented to the state vector, it will become a nonlinear pro-
blem. The extended Kalman filter (EKF) has been used to
track this kind of motion. Since unscented Kalman filter
(UKF) is very suitable for nonlinear estimation [4, 5], here the
UKF algorithm is introduced.

(i) Calculate the Weights of Sigma Points

𝑊
𝑚

0
=

𝜆

(𝑛 + 𝜆)
𝑊
𝑐

0

=
𝜆

(𝑛 + 𝜆)
+ (1 − 𝛼

2
+ 𝛽)𝑊

𝑚

𝑖

= 𝑊
𝑐

𝑖
=

0.5

(𝑛 + 𝜆)
, 𝑖 = 1, 2, . . . 2𝑛,

(31)

where 𝑛 is the dimension of the state vector. 𝜆 =

𝛼
2
(𝑛 + 𝜅) − 𝑛 is a scaling parameter. 𝛼 determines

the sigma points around 𝑥 and is usually set to a small
positive value (e.g., 1𝑒 − 3). 𝜅 is a secondary scaling
parameter which is usually set to 0, and 𝛽 = 2

is optimal forGauss distributions.Where the (√(𝑛 + 𝜆)𝑃𝑥)𝑖 is
the 𝑖th row of the matrix square root.

(ii) Calculate the Sigma Points

𝜉
0

𝑘−1|𝑘−1
= 𝑋𝑘−1|𝑘−1

𝜉
(𝑖)

𝑘−1|𝑘−1
= 𝑋𝑘−1|𝑘−1 + (

√(𝑛 + 𝜆) 𝑃𝑥)

𝑖

𝑖 = 1, 2, . . . , 𝑛

𝜉
(𝑖)

𝑘−1|𝑘−1
= 𝑋𝑘−1|𝑘−1 − (

√(𝑛 + 𝜆) 𝑃𝑥)

𝑖

𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛.

(32)

(iii) Time Update

𝜉
(𝑖)

𝑘
= 𝑓𝑘 (𝜉

(𝑖)

𝑘−1|𝑘−1
) , 𝑖 = 0, 1, . . . 2𝑛𝑋𝑘|𝑘−1

=

2𝑛

∑

𝑖=0

𝑊
𝑚

𝑖
𝜉
(𝑖)

𝑘
𝑃𝑘|𝑘−1

=

2𝑛

∑

𝑖=0

𝑊
𝑐

𝑖
(𝜉
(𝑖)

𝑘
− 𝑋𝑘|𝑘−1) (𝜉

(𝑖)

𝑘
− 𝑋𝑘|𝑘−1)

󸀠

+ 𝐺𝑄𝑘−1𝐺
󸀠
.

(33)

(iv) Measurement Update. Because we assume the measure-
ment equation is linear, the following is just the same as the
traditional Kalman filter:

𝑧̂𝑘|𝑘−1 = 𝐻𝑋𝑘|𝑘−1𝑆𝑘

= 𝐻𝑃𝑘|𝑘−1𝐻
󸀠
+ 𝑅𝑘𝐾𝑘

= 𝑃𝑘|𝑘−1𝐻
󸀠
𝑆
−1

𝑘
𝑋𝑘|𝑘

= 𝑋𝑘|𝑘−1 + 𝐾𝑘 (𝑧𝑘 − 𝑧𝑘|𝑘−1) 𝑃𝑘|𝑘

= 𝑃𝑘|𝑘−1 − 𝐾𝑘𝑆𝑘𝐾
󸀠

𝑘
.

(34)

For the cases where the measurement equation is also non-
linear, the measurement update can be referred to [10] for
details.

3.2. Kinematic Constraint Tracking Filter. The Kalman filter-
ing equations for processing this kinematic constraint as a
pseudomeasurement are given below, where the filtered state
estimate and error covariance after the constraint have been
applied are denoted by𝑋𝐶

𝑘|𝑘
and 𝑃𝐶

𝑘|𝑘
, respectively [8].

(i) Time Update

𝑋𝑘|𝑘−1 = 𝐹𝑋
𝐶

𝑘−1|𝑘−1

𝑃𝑘|𝑘−1 = 𝐹𝑃
𝐶

𝑘−1|𝑘−1
𝐹
󸀠
+ 𝐺𝑄𝑘−1𝐺

󸀠
.

(35)

(ii) Measurement Update. The measurement update is the
same as (34).

(iii) Constraint Update

𝐾
𝐶

𝑘
= 𝑃𝑘|𝑘𝐶

𝑇

𝑘
[𝐶𝑘𝑃𝑘|𝑘𝐶

󸀠

𝑘
+ 𝑅
𝜇

𝑘
]
−1

𝑋
𝐶

𝑘|𝑘

= [𝐼 − 𝐾
𝐶

𝑘
𝐶𝑘]𝑋𝑘|𝑘𝑃

𝐶

𝑘|𝑘

= [𝐼 − 𝐾
𝐶

𝑘
𝐶𝑘] 𝑃𝑘|𝑘,

(36)

where

𝐶𝑘 =
1

𝑆𝑘|𝑘

[0 0 ̂̇𝑥𝑘|𝑘 0 0 ̂̇𝑦
𝑘|𝑘
] . (37)

3.3. Maneuver-Centered Tracking Filter

(i) EstimatingCenter ofManeuver.The center of themaneuver
should be estimated from the measurements. It can be esti-
mated through least square method which requires an iter-
ative search procedure. The following simple geometrically
oriented procedure of estimating the center was proposed in
[9]. The main idea is as follows: if two points are on a circle
then the perpendicular bisector of the chord between those
points will pass through the center of the circle.The slope (𝑚)
and 𝑦 intercept (𝑏) of the perpendicular bisector is given by

𝑚 =
(𝑥1 − 𝑥2)

(𝑦2 − 𝑦1)

𝑏 =
(𝑦1 + 𝑦2)

2
− 𝑚

(𝑥1 + 𝑥2)

2
,

(38)
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where (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are the coordinates of the two
points. The center can be given by

𝑥𝑐 =
(𝑏1 − 𝑏2)

(𝑚2 − 𝑚1)

𝑦𝑐 =
(𝑚1𝑏2 − 𝑚2𝑏1)

(𝑚1 − 𝑚2)
.

(39)

(ii) Maneuver Detection. In the absence of a maneuver, the
target is assumed to be traveling in a straight line andmodeled
by a constant velocity (CV)motion. (CVmodel is very simple
and commonly used, which will not be listed here.)When the
maneuver is detected, the filter switches to the maneuver-
centerCTmodel.While the endof amaneuver is detected, the
filter will then switch back to CV model.

Here a fading memory average of the innovations is used
to detect if a maneuver occurs. The equation is given by

𝑢𝑘 = 𝜌𝑢𝑘−1 + 𝑑𝑘 (40)

with

𝑑𝑘 = ]󸀠
𝑘
𝑆
−1

𝑘
]𝑘, (41)

where 0 < 𝜌 < 1, ]𝑘 is the innovation vector, and 𝑆𝑘 is its cov-
ariance matrix.

𝑢𝑘 will have a chi-squared distribution with degrees

𝑛𝑢 = 𝑛𝑧

1 + 𝜌

1 − 𝜌
, (42)

where 𝑛𝑧 is the dimension of the measurement vector. When
𝑢𝑘 exceeds a threshold (e.g., 95% or 99% confidence interval),
then a maneuver onset is declared. The end time of a maneu-
verwill be determined in a similar fashion.Theprocedure can
be referred to [9] for details.

3.4. Simulation Results

(i)The Scenario.The scenario simulated here is very similar to
that described in [20]. It includes few rectilinear stages and
few CT maneuvers. Four consecutive 180∘ turns with rates
𝜔 = 1.87,−2.8, 5.6,−4.68 are simulated, respectively, for scans
[56, 150], [182, 245], [285, 314], and [343, 379]. The target
trajectory can be seen in Figure 1.

The initial target position and velocities are 𝑋0 = 60 km,
𝑌0 = 40 km, 𝑋0 = −172 km, and ̇𝑌0 = 246 km. It is assumed
that the sensor measures Cartesian coordinates 𝑋 and 𝑌 di-
rectly. It is also assumed that𝜎𝑋 = 𝜎𝑌 = 100mand the sample
rate 𝑇 = 1.

(ii) Algorithms’ Parameters. UKF controlled ACT model’s
parameter:

𝛼 = 10
−3
, 𝛽 = 2, 𝜅 = 0

𝑄ACT1 = diag {1 1 10
−4
}

𝑄ACT2 = diag {1 10
−4
} .

(43)
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4
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4

Y
(m

)

X (m)

Figure 1: The test trajectory.

Kinematic constraint model’s parameter:

𝑄CA = diag {1 1}

𝛿 = 0.92, 𝑟0 = 1, 𝑟1 = 200.

(44)

Maneuver centered model’s parameter:

𝑄𝑚 = diag {106 10−4}

𝜌 = 0.8.

(45)

(iii) Results. The four models are listed as follows.

Method 1: ACT model with Cartesian velocity.
Method 2: ACT model with polar velocity.
Method 3: kinematic constraint model.
Method 4: maneuver-centered CT model.

Rootmean squared errors (RMSE) are used here for com-
parison. The RME position errors are defined as follows:

RMS.P.E (𝑘) = √ 1

𝑀

𝑀

∑

𝑖=1

[(𝑥
𝑖

𝑘
− 𝑥
𝑖

𝑘
)
2
+ (𝑦
𝑖

𝑘
− 𝑦
𝑖

𝑘
)
2
] , (46)

where𝑀 = 200 are the Monte-Carlo simulation runs. 𝑥𝑖
𝑘
and

𝑦
𝑖

𝑘
stand for the true position, while 𝑥𝑖

𝑘|𝑘
and 𝑦𝑖

𝑘
are the posi-

tion estimates.
The RMS position errors of all but the first ten are shown

in Figure 2.
Table 1 summarizes the average RMS of the position

errors.
Table 2 summarizes the relative computational complex-

ity, normalized to method 4.
It can be seen from the figure and tables thatmethod 2 has

the best performance and its computational load is roughly
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Figure 2: RMS position errors of the four methods.

Table 1: Average RMS of position errors.

Method Average RMS of position errors (m)
1 94.26
2 81.57
3 109.51
4 183.46

Table 2: Relative computational load.

Method Relative computational load
1 7.26
2 7.07
3 1.42
4 1

the same as method 1. So we can conclude that ACT model
with polar velocity is better than ACT model with Cartesian
velocity. Method 4 has the least computational load but its
performance is poor. Method 3 is slightly more complex
than method 4 but can decrease the error greatly. So if the
computational load is of great concern, kinematic constraint
model is a good choice.

4. The Expectation Maximization (EM)
Algorithm for Tracking CT Motion Target

In this part, the model in Section 2.1 is used.
The turn rate 𝜔𝑘 can be described by a Markov chain [21,

22] and has 𝑟 possible values:

𝜔𝑘 ∈ 𝑀𝑟 = {𝜔 (1) , 𝜔 (2) , . . . , 𝜔 (𝑟)} . (47)

Assume the initial probability 𝜏𝑖 and the one-step transi-
tion matrix are known, as follows:

𝜏𝑖 = 𝑝 (𝜔0 = 𝜔 (𝑖)) , 𝑖 = 1, 2, . . . , 𝑟

𝜋𝑖,𝑗 = 𝑝 (𝜔𝑘+1 = 𝜔 (𝑗) | 𝜔𝑘 = 𝜔 (𝑖)) , 𝑖, 𝑗 = 1, 2, . . . , 𝑟.

(48)

The measurement sequence is defined by 𝑍1:𝑁 =

{𝑧1, 𝑧2, . . . , 𝑧𝑁}, state sequence is 𝑋1:𝑁 = {𝑋1, 𝑋2, . . . , 𝑋𝑁},
and maneuver sequence isΩ1:𝑁 = {𝜔1, 𝜔2, . . . , 𝜔𝑁}.

4.1. Batch EMAlgorithm. Assume themeasurement sequence
is known, this algorithm focuses on finding the best maneu-
ver sequence based onMAP criterion.There is one best man-
euver sequenceΩ(B)

1:𝑁
in 𝑟𝑁 possible sequences that makes the

conditional probability density function be the maximum.
WhenΩ(B)

1:𝑁
is achieved, the state sequence𝑋1:𝑁 can be estim-

ated accurately.
According to EM algorithm, 𝑍1:𝑁 is considered to be the

incomplete data,𝑋1:𝑁 to be the “lost” data, andΩ1:𝑁 to be the
data that needs to be estimated. EM algorithm carries out the
following two steps iteratively.

(1) Expectation Step (E step)

𝐽 (Ω1:𝑁, Ω
(𝑗)

1:𝑁
)

= 𝐸X1:𝑁 {ln𝑝 (𝑋1:𝑁, 𝑍1:𝑁, Ω1:𝑁) | 𝑍1:𝑁, Ω
(𝑗)

1:𝑁
} ,

(49)

where 𝐽(Ω1:𝑁, Ω
(𝑗)

1:𝑁
) is defined as the cost function,Ω(𝑗)

1:𝑁
is the

maneuver sequence estimation after 𝑗 times iteration.

(2) Maximization step (M step)

Ω
(𝑗+1)

1:𝑁
= argmax

Ω1:𝑁

𝐽 (Ω1:𝑁, Ω
(𝑗)

1:𝑁
) . (50)

If the initial value is given, the above E step and M step are
carried out repeatedly, until convergence.

(i) E step. The union probability density function can be de-
composed as follows:

𝑝 (𝑋1:𝑁, 𝑍1:𝑁, Ω1:𝑁)

=

𝑁

∏

𝑘=1

𝑝 (𝑧𝑘 | 𝑋𝑘) ×

𝑁

∏

𝑘=1

𝑝 (𝑋𝑘 | 𝑋𝑘−1, 𝜔𝑘−1) × 𝑝 (𝑋0)

×

𝑁

∏

𝑖=1

𝑝 (𝜔𝑖𝜔𝑖−1) × 𝑝 (𝜔0) .

(51)

𝑝(𝑋𝑘 | 𝑋𝑘−1, 𝜔𝑘−1) and 𝑝(𝜔𝑖 | 𝜔𝑖−1) rely on the maneuver
sequenceΩ1:𝑁. The state equation is Gaussian distribution:

𝑝 (𝑋𝑘 | 𝑋𝑘−1, 𝜔𝑘−1) = 𝑁 {𝑋𝑘 − 𝐹 (𝜔𝑘−1)𝑋𝑘−1, 𝑄𝑘} , (52)

where 𝑁{𝜇; Σ} is the Gaussian probability density function
with mean 𝜇 and covariance Σ.
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From the above analysis,

𝐽 (Ω1:𝑁, Ω
(𝑗)

1:𝑁
)

= 𝐸𝑋1:𝑁
{ln𝑝 (𝑋1:𝑁, 𝑍1:𝑁, Ω1:𝑁) | 𝑍1:𝑁, Ω

(𝑗)

1:𝑁
}

=

𝑁

∑

𝑘=1

{ln𝑝 (𝜔𝑘 | 𝜔𝑘−1) −
1

2
(𝑋𝑘|𝑁 − 𝐹(𝜔𝑘−1)𝑋𝑘−1|𝑁)

󸀠

× 𝑄
−1

𝑘
(𝑋𝑘|𝑁 − 𝐹 (𝜔𝑘−1)𝑋𝑘−1|𝑁) } ,

(53)

where

𝑋𝑘|𝑁 = 𝐸 [𝑋𝑘 | 𝑍1:𝑁, Ω
(𝑗)

1:𝑁
] . (54)

Those terms which are independent of Ω1:𝑁 are omitted
here.

In the E step, if Ω(𝑗)
1:𝑁

is given, the cost function can be
achieved using Kalman smoothing algorithm.

(ii) M step. In themaximization step, a newΩ1:𝑁 is chosen for
a higher conditional probability.Then a better parameter esti-
mation is achieved compared to the former iteration.The fol-
lowing Viterbi algorithm can solve this problem perfectly.

Viterbi algorithm is a recursive algorithm looking for the
best path. As shown in Figure 3, the path connects the adjac-
ent points with theweights to be the logarithm function of the
likelihood, named cost. The path’s total cost is the sum of its
each point’s cost. The best path has the maximum cost. The
detailed method to find the best path can be found in [12].

(iii) Calculating Algorithm

(1) Initialization: the initial maneuver sequenceΩ(1)
1:𝑁

and
threshold 𝜀 should be given.

(2) Iteration: for each circle (𝑗 = 1, 2, . . .), carry out
the following steps: (1) E step, according to (53),
calculate the cost between the adjacent point. (2) M
step, according to Viterbi algorithm, find a better
maneuver sequence.

(3) Stop: if ‖Ω(𝑗+1)
1:𝑁

−Ω
(𝑗)

1:𝑁
‖ ≤ 𝜀, then stop the iteration.The

best maneuver sequence is Ω(B)
1:𝑁

= Ω
(𝑗+1)

1:𝑁
; then the

state estimation sequence is calculated according to
Ω
(B)
1:𝑁

.

4.2. Recursive EM Algorithm. In target tracking applications,
the target’s state always needs online estimation. So a recur-
sive EM algorithm is needed for calculating 𝜔𝑘.

(i) Recursive Equation. Under the MAP criterion,

Ω
(B)
1:𝑘
= argmax

Ω1:𝑘

{𝑝 (Ω1:𝑘 | 𝑍1:𝑘)} , (55)
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Figure 3: Viterbi algorithm for path following.

where 𝑝(Ω1:𝑘 | 𝑍1:𝑘) can be calculated online.

𝑝 (Ω1:𝑘 | 𝑍1:𝑘) = 𝑝 (Ω1:𝑘 | 𝑧𝑘, 𝑍1:𝑘−1)

=
𝑝 (𝑧𝑘 | Ω𝑘, 𝑍1:𝑘−1) 𝑝 (Ω𝑘 | 𝑍1:𝑘−1)

𝑝 (𝑧𝑘 | Ω1:𝑘−1)

= 𝑝 (𝑧𝑘 | Ω1:𝑘, 𝑍1:𝑘−1) 𝑝 (𝜔𝑘 | Ω1:𝑘−1)

× 𝑝 (Ω1:𝑘−1 | 𝑍1:𝑘−1) (𝑝 (𝑧𝑘 | 𝑍1:𝑘−1))
−1
.

(56)

Because Ω1:𝑘 is Markov chain,

𝑝 (𝜔𝑘 | Ω1:𝑘−1) = 𝑝 (𝜔𝑘 | 𝜔𝑘−1) . (57)

The possible maneuver sequence grows exponentially as the
time grows. For the computation to be feasibility, it is assumed
that

𝑝 (𝑧𝑘 | Ω1:𝑘, 𝑍1:𝑘−1) ≈ 𝑝 (𝑧𝑘 | 𝜔𝑘, 𝑍1:𝑘−1)

= 𝑁 (𝜐𝑘, S𝑘) ,
(58)

where 𝜐𝑘 is the Kalman filter’s innovation and S𝑘 is the covari-
ance of the innovation.

The cost function is defined as

𝐽 (𝜔𝑘 (𝑖)) = ln𝑝 (Ω1:𝑘, 𝜔𝑘 (𝑖) 𝑍1:𝑘) , 𝑖 = 1, 2, . . . , 𝑟,

(59)

which stands for the cost to model 𝑖 until time 𝑘.
From (57) to (59),

𝐽 (𝜔𝑘 (𝑗)) = 𝐽 (𝜔𝑘−1 (𝑖)) + ln𝜋𝑖𝑗

−
1

2
𝜐
󸀠

𝑘
(𝑖, 𝑗) S−1

𝑘
(𝑖, 𝑗) 𝜐𝑘 (𝑖, 𝑗) 𝑖, 𝑗 = 1, 2, . . . , 𝑟,

(60)

where 𝜐𝑘(𝑖, 𝑗) stands for the innovation when model 𝑖 is
chosen in time 𝑘−1 andmodel 𝑗 is chosen in time 𝑘. S𝑘(𝑖, 𝑗) is
the corresponding covariance.
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Because of using the assumption (58), the iteration algo-
rithm is not the optimal algorithm under MAP criterion, but
a suboptimal one.

(ii) Calculating Algorithm. Only one-step iteration is listed
here.

(1) E Step Calculation. Using (10), calculate each cost
from time 𝑘 − 1 to 𝑘; 𝑟2 costs are needed.

(2) M Step Calculation. According to Viterbi algorithm,
find out themaximum cost 𝐽max(𝜔𝑘(𝑖)) related to each
model. 𝐽max(𝜔𝑘(𝑖)) is the initial value to be the next
iteration.

(3) Filtering. According to the path which reaches each
model, calculate each model’s state estimation 𝑋𝑘(𝑖)
and covariance 𝑃𝑘|𝑘(𝑖), 𝑖 = 1, 2, . . . , 𝑟.

(4) The Final Results. From 𝐽max(𝜔𝑘(𝑖)), 𝑖 = 1, 2, . . . , 𝑟,
choose the maximum one as the final filtering result:

𝑗 = argmax
𝑖

{𝐽max (𝜔𝑘(𝑖))}
𝑟

𝑖=1
. (61)

𝑋
(B)
𝑘
= 𝑋𝑘 (𝑗) , 𝑃

(B)
𝑘|𝑘

= 𝑃𝑘|𝑘 (𝑗) . (62)

4.3. Simulation Results

(i) Simulation Scenario. Target initial state is 𝑋0 =

[60000m −172m/s 40000m 246m/s]󸀠 . The sample rate
𝑇 = 1 s. The covariance of process noise

𝑄 = [
𝑄𝑥 0

0 𝑄𝑦
] , 𝑄𝑥 = 𝑄𝑦 =

[
[
[
[
[

[

𝑇
4

3

𝑇
3

2

𝑇
3

2
𝑇
2

]
]
]
]
]

]

. (63)

Assume only position can bemeasured, themeasurement
equation is the following:

𝑧𝑘 = [
1 0 0 0

0 0 1 0
]𝑋𝑘 + V𝑘. (64)

The covariance of measurement noise 𝑅 = 2500I, where I
is the 2 × 2 unit matrix.

The simulation lasts for 300 s. Target’s true turn rate is

𝜔𝑘 =

{{

{{

{

0 0 ≤ 𝑘 < 103

0.033 rad/s 104 ≤ 𝑘 < 198

0 198 ≤ 𝑘 < 300.

(65)

Figure 4 gives the target’s true trajectory.
Assume target’s maximum centripetal acceleration is

30m/s2. Under the speed 300m/s, the corresponding turn
rate is 0.1 rad/s. Seven models are used for this simulation.
From -0.1 to 0.1, the sevenmodels are distributed evenly.Their
values are −0.1, −0.067, −0.033, 0, 0.033, 0.067, and 0.1. The
initial probability matrix is

𝜏 = [
1

7

1

7

1

7

1

7

1

7

1

7

1

7
] . (66)
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Figure 4: Target trajectory.

The model transition matrix is

𝜋𝑖,𝑗 = {
0.7 𝑖 = 𝑗

0.05 𝑖 ̸=𝑗

𝑖, 𝑗 = 1, 2, . . . , 7.

(67)

(ii) Simulation Results and Analysis. Batch EM algorithm,
recursive algorithm, and IMMalgorithmare compared in this
scenario. Rootmean squared errors (RMSE) are used here for
comparison.The RME position errors are defined as (46) and
velocity error are defined as follows:

RMS.V.E (𝑘) = √ 1

𝑀

𝑀

∑

𝑖=1

[( ̇𝑥
𝑖

𝑘
− ̂̇𝑥
𝑖

𝑘
)

2

+ ( ̇𝑦
𝑖

𝑘
− ̂̇𝑦
𝑖

𝑘
)

2

], (68)

where𝑀 = 200 are Monte-Carlo simulation runs and ̇𝑥
𝑖

𝑘
, ̇𝑦
𝑖

𝑘

and ̂̇𝑥𝑖
𝑘
, ̂̇𝑦𝑖
𝑘
stand for the true and estimated velocity at time 𝑘

in the 𝑖th simulation runs, respectively.
Figures 5 and 6 show the position and velocity perfor-

mance comparison. It can be concluded that the batch EM
algorithm has much less tracking errors compared to IMM
algorithm. During maneuver onset time and termination
time, the IMM algorithm is better than recursive EM algo-
rithm. But on stable period, the recursive EM algorithm
performs better.

5. Conclusions

Aiming at the CTmotion target tracking, several models and
algorithms are introduced and simulated in this paper.

In single model framework, four CT models have been
compared for tracking applications: ACT model with Carte-
sian velocity, ACT model with polar velocity, kinematic con-
straint model, and maneuver-centered model. The Monte-
Carlo simulations show that the ACT model with polar
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Figure 6: Velocity performance comparison.

velocity has the best tracking performance but the compu-
tational load is a bit heavier. The kinematic constraint model
has a moderate tracking performance, but its computational
load decreases greatly compared with UKF controlled ACT
model. So if the computational load is of a great concern,
the kinematic constraint model is suggested. If the tracking
performance is very important and the computational load is
not a problem, the ACTmodel with polar velocity is suitable.

In multiple models framework, EM algorithm is used for
tracking CT motion target. First a batch EM algorithm is
derived. The turn rate is acted as the maneuver sequence and
estimated based on the MAP criterion. Under the E step, the
cost function is calculated using the Kalman smoothing algo-
rithm. Under the M step, Viterbi algorithm is used for path
following to find out the pathwithmaximumcost. Simulation
results show that the Batch EM algorithm has better tracking
performance than IMM algorithm. Through modification of

the cost function, a recursive EM algorithm is presented.The
algorithm can track the target online. Compared with the
IMM algorithm, on the stable period, the recursive EM algo-
rithm has better tracking performance.
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The unknown vector estimation problem with bandwidth constrained wireless sensor network is considered. In such networks,
sensor nodesmake distributed observations on the unknown vector and collaborate with a fusion center to generate a final estimate.
Due to power and communication bandwidth limitations, each sensor nodemust compress its data and transmit to the fusion center.
In this paper, both centralized and decentralized estimation frameworks are developed.The closed-form solution for the centralized
estimation framework is proposed. The computational complexity of decentralized estimation problem is proven to be NP-hard
and a Gauss-Seidel algorithm to search for an optimal solution is also proposed. Simulation results show the good performance of
the proposed algorithms.

1. Introduction

The developments in microelectromechanical systems tech-
nology, wireless communications, and digital electronics have
enabled the deployment of low-cost wireless sensor networks
(WSNs) in large scale using small size sensor nodes [1]. In
such networks, the distributed sensors collaborate with a
fusion center to jointly estimate the unknown parameter. If
fusion center receives all measurement data from all sensors
directly and processes them in real time, the correspond-
ing processing of sensor data is known as the centralized
estimation, which has several serious drawbacks, including
poor survivability and reliability, heavy communications, and
computational burdens. Since all sensors have limited battery
power, their computation and communication capability are
severely limited; the decentralized estimation methods are
widely discussed in recent years [2–6]. In the decentralized
estimation framework, every sensor is also a subprocessor. It
first preprocesses the measurements in terms of a criterion
and then transmits its local compression data to the fusion
center. Upon receiving the sensor messages, the fusion center
combines them according to a fusion rule to generate the
final result. In such networks, less information is transmitted
leading to a significant power-saving advantage which is very
important in the case of WSNs.

To minimize the communication cost, only limited
amount of information is allowed to be transmitted through
networks; dimensionality reduction estimationmethods have
attracted considerable attentions [7–9]. The basic idea of the
dimensionality reduction estimation strategy is to prefilter
the high-dimensional observation vector by a linear transfor-
mation (matrix) to project the observation onto the subspace
spanned by basis vectors and filter the result with a low-rank
estimation. Indeed, dimensionality reduction estimation and
filtering are important for a wide range of signal processing
applications where data reduction, robustness against noise,
and high computational efficiency are desired.

Quantization has been viewed as a fundamental element
in saving bandwidth by reducing the amount of data to
represent a signal and well studied in digital signal processing
and control where a signal with continuous values is quan-
tized due to a finite word-length of microprocessor [10]. In
WSNs, quantization is also necessary to reduce the energy
consumption as communications consume the most energy
as the amount of energy consumed is related to the amount
of data transmitted. An interesting distributed estimation
approach based on the sign of innovation (SOI) has been
developed for dynamic stochastic systems in [11] where only
transmission of innovation of a single bit is required. A
general multiple-level quantized innovation Kalman filter for
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estimation of linear dynamic stochastic systems has been
presented in [12]. The solution to the optimal filter is given in
terms of a simple Riccati recursion as in the standard Kalman
filter. A random field estimation problem with quantized
measurements in sensor networks has been considered in
[13]. In the early work [14], the trade-off between dimension
reduction and quantization in minimummean squared error
estimation problem is investigated.

In this paper, different from the existing work, the
dimensionality reduction and quantization for local data
compression are considered in an integrated way. Data
reduction with quantization constraints estimation for an
unknown vector is formulated as an optimization problem.
Both centralized and decentralized estimation frameworks
are developed. The closed-form solution for the centralized
estimation framework is proposed. By using computational
complexity theory, the intractability of decentralized estima-
tion problem is established. A Gauss-Seidel type iteration
algorithm to search for an optimal solution is also proposed
for the decentralized estimation problem.

The rest of this paper is organized as follows. With given
communication bandwidth, the bits allocation problem has
been formulated as an optimization problem in Section 2.The
closed-form solution for the centralized estimation frame-
work is proposed in Section 3.The computational complexity
of decentralized estimation problem is proved to be NP-
hard and a Gauss-Seidel algorithm to search for an optimal
solution is also proposed in Section 4. Simulation results
are reported in Section 5 to show the performance of our
methods. Concluding remarks are given in Section 6.

2. Problem Formulation

Consider a sensor network deployed with 𝐿 sensor nodes.
Each sensor, say the 𝑖th sensor, can take observation 𝑦𝑖 ∈

R𝑛𝑖 which is correlated with an unknown random parameter
𝑥 ∈ R𝑚. The observations will be transmitted to a fusion
center to estimate the unknown parameter 𝑥 under some
certain criterion. In this paper, we consider the minimum
mean squared error (MMSE) criterion [15, 16].

Through a transform matrix 𝐾𝑖 ∈ R𝑟𝑖×𝑛𝑖 , 𝑟𝑖 ≤ 𝑛𝑖, each
sensor transforms the observation into a 𝑟𝑖 × 1 vector 𝐾𝑖𝑦𝑖,
whereafter the transformed vector will be quantized into
several bits and transmited to the fusion center. In this paper,
we assume that there is no information exchange among
sensors. We also assume without loss of generality that the
unknown parameter 𝑥 and observations𝑦𝑖 are zeromean.The
auto- and cross-covariance matrices 𝑅𝑥𝑥, 𝑅𝑥𝑦𝑖 , 𝑅𝑦𝑖𝑦𝑗 , ∀𝑖, 𝑗 ∈

{1, . . . , 𝐿} are available at the FC.The role of FC is to combine
the received quantization information

{𝑄 (𝐾1𝑦1) , 𝑄 (𝐾2𝑦2) , . . . , 𝑄 (𝐾𝐿𝑦𝐿)} , (1)

according to

𝑥 = 𝑓 (𝑄 (𝐾1𝑦1) , 𝑄 (𝐾2𝑦2) , . . . , 𝑄 (𝐾𝐿𝑦𝐿)) , (2)

where𝑓(⋅) is the fusion function and𝑄(⋅) is a given quantizer.
Our goal is to design the linear transforms {𝐾1, . . . , 𝐾𝐿} and

the fusion function 𝑓(⋅) such that the mean squared error
(MSE) is as small as possible under the constraint that the
total number of bits can be transmitted to FC. Throughout
this work, we will focus only on the linear design of fusion
function 𝑓(⋅) which can be represented in the form

𝑥 = 𝑓 (𝑄 (𝐾1𝑦1) , 𝑄 (𝐾2𝑦2) , . . . , 𝑄 (𝐾𝐿𝑦𝐿))

=

𝐿

∑

𝑖=1

𝐶𝑖𝑄 (𝐾𝑖𝑦𝑖) .

(3)

The given quantizer 𝑄(⋅) is considered as a minimum
squared error distortion quantizer [17]. We assume that the
quantizer input vector 𝑍 = (𝑧1, . . . , 𝑧𝑟)

𝑇 is a random vec-
tor with uncorrelated components. Each component has zero
mean and variance 𝜎

2

𝑖
. Under the Gaussian assumption,

the quantizer output 𝑄(𝑍) is treated as a noise source that
introduces independent white noise V as

𝑍 = 𝑄 (𝑍) + V, (4)

whose mean is zero and covariance is [17]

ΣVV = 𝐸 (VV𝑇)

= diag {𝛾2
1
, . . . , 𝛾

2

𝑟
}

= diag {𝜎2
1
2
−2𝐵1

, . . . , 𝜎
2

𝑟
2
−2𝐵𝑟

} ,

(5)

where 𝛾2
𝑖
= 𝜎
2

𝑖
2
−2𝐵𝑖 is the squared error distortion for the 𝑖th

component and 𝐵𝑖 is the bits used by the the 𝑖th component
𝑧𝑖.

Therefore, themean squared error at the fusion center can
be calculated as follows:

𝐸‖𝑥 − 𝑥‖
2
= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖𝑄 (𝐾𝑖𝑦𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖 (𝐾𝑖𝑦𝑖 − V𝑖)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

𝐿

∑

𝑖=1

𝐸
󵄩󵄩󵄩󵄩
𝐶𝑖V𝑖

󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖𝑦𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

𝐿

∑

𝑖=1

𝑚

∑

𝑠=1

𝑟𝑖

∑

𝑡=1

𝑐
𝑖

𝑠𝑡
𝛾
2

𝑖𝑡
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𝑥 −

𝐿

∑

𝑖=1
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2

+

𝐿

∑
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𝑐
𝑖
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2
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,

(6)

where 𝐾𝑖 is the local linear transform operator, 𝐶𝑖 = {𝑐
𝑖

𝑠𝑡
}𝑚×𝑟𝑖

is the fusion operator at the fusion center and 𝐵𝑖𝑡 is the
quantization bits for the tth elements of vector 𝐾𝑖𝑦𝑖. The
optimal estimation of random vector 𝑥 under individual sen-
sor bandwidth constraint can be formulated as follows:

minimize 𝐸 (‖𝑥 − 𝑥‖
2
)

subject to
𝐿

∑

𝑖=1

𝑟𝑖

∑

𝑡=1

𝐵𝑖𝑡 ≤ 𝐵, 𝐶𝑖 ∈ R
𝑚×𝑟𝑖

, 𝐾𝑖 ∈ R
𝑟𝑖×𝑛𝑖

.

(7)



Mathematical Problems in Engineering 3

By appropriate pre- and postwhitening process if neces-
sary, we assume without loss of generality that the auto- and
cross-covariance matrices 𝑅𝑥𝑥, 𝑅𝑥𝑦𝑖 , 𝑅𝑦𝑖𝑦𝑗 , ∀ 𝑖, 𝑗 ∈ {1, . . . , 𝐿}

have full rank and the elements of observation vector taken
by each sensor are uncorrelated [18].

3. Centralized Data Reduction with
Quantization Constraints

In this section, we consider a simple centralized framework
where the entire data is available at a single sensor node
and the centralized case of optimization problem (7) can be
simplified as follows:

minimize 𝐸‖𝑥 − 𝑥‖
2
= 𝐸

󵄩󵄩󵄩󵄩
𝑥 − 𝐾 (𝑟) 𝑦

󵄩󵄩󵄩󵄩

2
+

𝑟

∑

𝑖=1

𝜎
2

𝑖
2
−2𝐵𝑖

subject to
𝑟

∑

𝑖=1

𝐵𝑖 ≤ 𝐵, 𝐾 (𝑟) ∈ R
𝑚×𝑛

,

(8)

where𝐾(𝑟) is the approximationmatrix and B is the total bits
to be transmitted.

The optimal estimation without observation compression
in the MMSE sense is as follows:

𝑥 = 𝑅𝑥𝑦𝑅
−1

𝑦𝑦
𝑦 = 𝐾𝑦, (9)

with estimation error covariance matrix

𝑃 = 𝑅𝑥𝑥 − 𝑅𝑥𝑦𝑅
−1

𝑦𝑦
𝑅𝑦𝑥, (10)

where 𝐾 is called optimal estimation matrix. We write for-
mula (9) as a linear model by introducing an estimation error
𝑒 as

𝑥 = 𝑥 + 𝑒 = 𝑅𝑥𝑦𝑅
−1

𝑦𝑦
𝑦 + 𝑒. (11)

We consider the problem that the optimal estimation
matrix 𝐾 is replaced by an approximating matrix 𝐾(𝑟) with
lower rank 𝑟 < 𝑛. With a given compressed dimension 𝑟, we
want to find an optimal𝐾(𝑟) such that the MMSE is as small
as possible. The linear model (11) is modified as

𝑥 = 𝑥 (𝑟) + 𝑒 (𝑟) = 𝐾 (𝑟) 𝑦 + 𝑒 (𝑟) . (12)

The estimation error covariance matrix can be calculated as
follows:

𝑃 (𝑟) = 𝐸 (𝑒 (𝑟) 𝑒(𝑟)
𝑇
)

= 𝐸 ((𝑒 + 𝐾𝑦 − 𝐾 (𝑟) 𝑦) (𝑒 + 𝐾𝑦 − 𝐾 (𝑟) 𝑦)
𝑇
)

= 𝑃 + (𝐾 − 𝐾 (𝑟)) 𝑅𝑦𝑦(𝐾 − 𝐾 (𝑟))
𝑇
.

(13)

Therefore, the approximationmatrix𝐾(𝑟) introduces an extra
variance term

𝜀
2
= tr [(𝐾 − 𝐾 (𝑟)) 𝑅𝑦𝑦(𝐾 − 𝐾 (𝑟))

𝑇
]

= tr [(𝐾𝑅1/2
𝑦𝑦

− 𝐾 (𝑟) 𝑅
1/2

𝑦𝑦
) (𝐾𝑅

1/2

𝑦𝑦
− 𝐾 (𝑟) 𝑅

1/2

𝑦𝑦
)
𝑇

] .

(14)

The matrix𝐾𝑅1/2
𝑦𝑦

= 𝑅𝑥𝑦𝑅
−1/2

𝑦𝑦
has an SVD of the form

𝐾𝑅
1/2

𝑦𝑦
= 𝑈Σ𝑉

𝑇
. (15)

By minimizing 𝜀
2, it is not hard to show that the best

approximation matrix is

𝐾 (𝑟) = 𝑈Σ (𝑟) 𝑉
𝑇
𝑅
1/2

𝑦𝑦
. (16)

The extra variance is then

𝜀
2
=

𝑚

∑

𝑖=𝑟+1

𝜆
2

𝑖
, (17)

where 𝜆𝑟+1, . . . , 𝜆𝑚 are the smallest 𝑚 − 𝑟 singular values of
𝐾𝑅
1/2

𝑦𝑦
.

Therefore the optimization problem (18) is as follows:

minimize
𝑚

∑

𝑖=𝑟+1

𝜆
2

𝑖
+

𝑟

∑

𝑖=1

𝜎
2

𝑖
2
−2𝐵𝑖

subject to
𝑟

∑

𝑖=1

𝐵𝑖 ≤ 𝐵, 𝑟.

(18)

If 𝑟 is given, we can solve this optimization problem by a
Laplacian multiplier [19].

4. Decentralized Data Reduction with
Quantization Constraints

Let us now consider the estimation framework in a multisen-
sor setup, under a total available rate𝐵which has to be shared
among all sensors. In the decentralizedmanner, the 𝑖th sensor
transforms the observation 𝑦𝑖 ∈ R𝑛𝑖 into a 𝑟𝑖 × 1 vector 𝐾𝑖𝑦𝑖
through a transform matrix 𝐾𝑖 ∈ R𝑟𝑖×𝑛𝑖 , 𝑟𝑖 ≤ 𝑛𝑖, whereafter
the transformed vector will be quantized into several bits and
transmited to the fusion center. By the linear fusion rule at
the fusion center, the mean squared error at the fusion center
can be calculated as follows:

𝐸‖𝑥 − 𝑥‖
2
= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖𝑄 (𝐾𝑖𝑦𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖𝑦𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

𝐿

∑

𝑖=1

𝑚

∑

𝑠=1

𝑟𝑖

∑

𝑡=1

𝑐
𝑖

𝑠𝑡
𝜎
2

𝑖𝑡
2
−2𝐵𝑖𝑡

,

(19)

where 𝐾𝑖 is the local linear transform operator, 𝐶𝑖 = {𝑐
𝑖

𝑠𝑡
}𝑚×𝑟𝑖

is the fusion operator at the fusion center and 𝐵𝑖𝑡 is the
quantization bits for the tth elements of vector 𝐾𝑖𝑦𝑖. There-
fore, the decentralized estimation of random vector 𝑥 under



4 Mathematical Problems in Engineering

individual sensor bandwidth constraint can be formulated as
follows:

minimize 𝐸‖𝑥 − 𝑥‖
2
= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖𝑦𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

𝐿

∑

𝑖=1

𝑚

∑

𝑠=1

𝑟𝑖

∑

𝑡=1

𝑐
𝑖

𝑠𝑡
𝜎
2

𝑖𝑡
2
−2𝐵𝑖𝑡

subject to
𝐿

∑

𝑖=1

𝑟𝑖

∑

𝑡=1

𝐵𝑖𝑡 ≤ 𝐵, 𝐶𝑖 ∈ R
𝑚×𝑟𝑖

, 𝐾𝑖 ∈ R
𝑟𝑖×𝑛𝑖

.

(20)

Theorem 1. The computational complexity of solving problem
(20) is NP-hard even in the case with absence of channel
distortions for quantization of each sensor.

Proof. We present the simplified formulations to analyze the
computation complexity of problem (7). Let the 𝐿 distributed
sensor nodes make observations on a common random
parameter vector 𝑥 ∈ R𝑚 according to

𝑦𝑖 = 𝐻𝑖𝑥 + V𝑖, 𝑖 = 1, 2, . . . , 𝐿, (21)

where 𝐻𝑖 ∈ R𝑚𝑖×𝑚 is the observation matrix and V𝑖 ∈

R𝑚𝑖 is the additive noise which is zero mean and spatially
uncorrelated. According to [18], we can assume that the sen-
sor noises are uncorrelated with the input signal 𝑥. Without
loss of generality, we can assume that the unknown para-
meter vector 𝑥 has an autocovariance matrix 𝑅𝑥𝑥 = 𝐼𝑚 and
the noise covariance matrix is 𝑅V𝑖 = 𝐼𝑚𝑖

.
The MSE at the FC can be calculated as follows:

𝐸‖𝑥 − 𝑥‖
2
= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖𝑄 (𝐾𝑖𝑦𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖𝑦𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

𝐿

∑

𝑖=1

𝑚

∑

𝑠=1

𝑟𝑖

∑

𝑡=1

𝑐
𝑖

𝑠𝑡
𝜎
2

𝑖𝑡
2
−2𝐵𝑖𝑡

.

(22)

In the absence of channel distortions, the MSE at the FC can
be simplified as

𝐸 (‖𝑥 − 𝑥‖
2
) = 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖𝑄 (𝐾𝑖𝑦𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖 (𝐾𝑖𝑦𝑖 − V𝑖)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

𝐿

∑

𝑖=1

𝐸
󵄩󵄩󵄩󵄩
𝐶𝑖V𝑖

󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖𝑦𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

𝐿

∑

𝑖=1

𝑚

∑

𝑠=1

𝑟𝑖

∑

𝑡=1

𝑐
𝑖

𝑠𝑡
𝛾
2

𝑖𝑡

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖𝑦𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖 (𝐻𝑖𝑥 + V𝑖)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝐸(𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖 (𝐻𝑖𝑥 + V𝑖))
𝑇

× (𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖 (𝐻𝑖𝑥 + V𝑖))

= Tr(𝐸(𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖 (𝐻𝑖𝑥 + V𝑖))

× (𝑥 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖 (𝐻𝑖𝑥 + V𝑖))
𝑇

)

= Tr[(𝐼𝑚 −
𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖𝐻𝑖)𝐸(𝑥𝑥
𝑇
)

× (𝐼𝑚 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖𝐻𝑖)

𝑇

+

𝐿

∑

𝑖=1

(𝐶𝑖𝐾𝑖𝐸 (V𝑖V
𝑇

𝑖
)𝐾
𝑇

𝑖
𝐶
𝑇

𝑖
)]

= Tr[

[

(𝐼𝑚 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖𝐻𝑖)(𝐼𝑚 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖𝐻𝑖)

𝑇

+

𝐿

∑

𝑖=1

(𝐶𝑖𝐾𝑖𝐾
𝑇

𝑖
𝐶
𝑇

𝑖
)]

]

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐼𝑚 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖𝐻𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

+

𝐿

∑

𝑖=1

Tr (𝐶𝑖𝐾𝑖𝐾
𝑇

𝑖
𝐶
𝑇

𝑖
) ,

(23)

where the last step follows from the independence assump-
tions and the fact that the autocovariance of 𝑥 and V𝑖 is
normalized to 𝐼𝑚 and 𝐼𝑚𝑖

, respectively; the notation Tr(⋅)
denotes the trace of a matrix, and the subscript 𝐹 denotes
the usual Frobenius norm of a matrix. Therefore, the optimal
linear DES design problem under individual sensor power
constraint can be formulated as follows:

minimize 𝐸‖𝑥 − 𝑥‖
2
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐼 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖𝐻𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

+

𝐿

∑

𝑖=1

Tr (𝐶𝑖𝐾𝑖𝐾
𝑇

𝑖
𝐶
𝑇

𝑖
)

subject to
𝐿

∑

𝑖=1

Tr (𝐾𝑖𝐾
𝑇

𝑖
) ≤ 𝑘, 𝐶𝑖 ∈ R

𝑚×𝑟𝑖
,

𝐾𝑖 ∈ R
𝑟𝑖×𝑛𝑖

,

(24)

where 𝑘 is the total rate constraint since the transmission
power for sensor 𝑖 to send 𝐾𝑖𝑦𝑖 to fusion center is linearly
proportional to Tr(𝐾𝑖𝐾

𝑇

𝑖
).
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From (23), the MSE at the FC can be written as

𝐸 (‖𝑥 − 𝑥‖
2
)

= Tr[

[

(𝐼𝑚 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖𝐻𝑖)(𝐼𝑚 −

𝐿

∑

𝑖=1

𝐶𝑖𝐾𝑖𝐻𝑖)

𝑇

+

𝐿

∑

𝑖=1

(𝐶
𝑇

𝑖
𝐾
𝑇

𝑖
𝐾𝑖𝐶𝑖)

]

]

.

(25)

Following the fact of matrix derivatives of traces [20],

𝜕

𝜕𝑋
Tr (𝑋𝐴) = 𝐴

𝑇
,

𝜕

𝜕𝑋
Tr (𝑋𝑇𝐵𝑋) = 𝐵𝑋 + 𝐵

𝑇
𝑋,

(26)

we can eliminate variables {𝐶𝑖} byminimizing𝐸‖𝑥 − 𝑥‖
2 with

respect to {𝐶𝑖}. As a result, the optimization problem (24) is
equivalent to

minimize Tr(𝐼 +
𝐿

∑

𝑖=1

𝐻
𝑇

𝑖
𝐾
𝑇

𝑖
(𝐾
𝑇

𝑖
𝐾𝑖)
−1

𝐾𝑖𝐻𝑖)

−1

subject to
𝐿

∑

𝑖=1

Tr (𝐾𝑖𝐾
𝑇

𝑖
) ≤ 𝑘, 𝐾𝑖 ∈ R

𝑟𝑖×𝑛𝑖
.

(27)

When𝐾𝑖 is a vector, problem (27) is equivalent to “minimum
sum of squares” problem which is NP-complete [21].

Therefore, the computational complexity of solving prob-
lem (20) is NP-hard even in the case with absence of channel
distortions for quantization of each sensor.

Remark 2. The NP-completeness of optimization problem
(20) leads to the intractability of finding the globally optimal
solution in polynomial time. Instead of finding a globally
optimal solution, a locally optimal solution may be sufficient
in many applications. An effective heuristic algorithm should
be proposed to search for the optimal solution of optimiza-
tion problem (20).

An algorithm that could be used to search for the optimal
solution is the Gauss-Seidel type iteration algorithm which
may converge to a locally optimal solution and widely used in
estimation, detection, and classificationwith sensor networks
[22–27]. In this paper, a Gauss-Seidel type iteration algorithm
is proposed to search the optimal solution for that problem
sensor by sensor.

Suppose that all sensor nodes except node 𝑗 have fixed
transformation matrix 𝐾𝑙, 𝑙 ̸= 𝑗, 𝑙 = 1, . . . , 𝐿. The goal is
to determine the optimal 𝐾𝑗. From the perspective of a
selected node 𝑗, suppose that all other nodes have decided on
(arbitrary) suitable approximations of their observations, and
the question becomes to optimally choose the approximation
to be provided by terminal 𝑗, where we without loss of
generality set 𝑗 = 1. Observations taken by sensor node 1
are denoted by 𝑦1. The remaining observations which may

be thought of as being merged into one node are denoted by
𝑦2. In line with this, we can partition the covariance matrix
of the entire vector into four parts, according to

𝑅𝑦 = (
𝑅𝑦1

𝑅𝑦1𝑦2

𝑅𝑦2𝑦1
𝑅𝑦2

) . (28)

Denoting 𝜉 = 𝑥 − 𝐶1𝐾1𝑦1, 𝜂 = 𝐾2𝑦2, the distortion by
dimension reduction is

𝐸‖𝑥 − 𝑥‖
2
= 𝐸

󵄩󵄩󵄩󵄩
𝑥 − (𝐶1𝐾1𝑦1 + 𝐶2𝐾2𝑦2)

󵄩󵄩󵄩󵄩

2
= 𝐸

󵄩󵄩󵄩󵄩
𝜉 − 𝐶2𝜂

󵄩󵄩󵄩󵄩

2
.

(29)

The optimal estimation matrix is

𝐶2 = 𝑅𝜉𝜂𝑅
−1

𝜂

= 𝐸 [(𝑥 − 𝐶1𝐾1𝑦1) (𝐾2𝑦2)
𝑇
] (𝐸 (𝐾2𝑦2) (𝐾2𝑦2)

𝑇
)

−1

= (𝑅𝑥𝑦2
𝐾
𝑇

2
− 𝐶1𝐾1𝑅𝑦1𝑦2

𝐾
𝑇

2
) (𝐾2𝑅𝑦2

𝐾
𝑇

2
)
−1

𝐾2𝑦2.

(30)

Take (30) into (29) as

𝐸‖𝑥 − 𝑥‖
2

=

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝐶1𝐾1𝑦1 − (𝑅𝑥𝑦2

𝐾
𝑇

2
− 𝐶1𝐾1𝑅𝑦1𝑦2

𝐾
𝑇

2
)

×(𝐾2𝑅𝑦2
𝐾
𝑇

2
)
−1

𝐾2𝑦2

󵄩󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩
𝜁 − 𝐶1𝐾1]

󵄩󵄩󵄩󵄩

2
.

(31)

Denote

𝜁 = 𝑥 − 𝑅𝑥𝑦2
𝐾
𝑇

2
(𝐾2𝑅𝑦2

𝐾
𝑇

2
)
−1

𝐾2𝑦2,

] = 𝑦1 − 𝑅𝑦1𝑦2
𝐾
𝑇

2
(𝐾2𝑅𝑦2

𝐾
𝑇

2
)
−1

𝐾2𝑦2.

(32)

Equation (31) is simplified as

𝐸‖𝑥 − 𝑥‖
2
=
󵄩󵄩󵄩󵄩
𝜁 − 𝐶1𝐾1]

󵄩󵄩󵄩󵄩

2
. (33)

Obviously, the optimal solution of sensor by sensor optimiza-
tion problem can be solved because the question has been
reduced to that in the centralized case. Based on the previous
analysis, it is easy to construct a Gauss-Seidel type iteration
algorithm to search for an optimal solution of optimization
problem (20). We omit it here.

5. Simulations

In this section, we implement several simulations to show the
performance of our proposed method. Both centralized and
decentralized estimation frameworks are considered.

5.1. Centralized Estimation Framework. In centralized esti-
mation framework, entire data is available at a single sensor
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Figure 1: Estimation performance for centralized estimation with
different bandwidth constraints.

and the observation data compression is needed in order to
reduce communication requirement. Consider a linearmodel

𝑦 = 𝐻𝑥 + 𝜀, 𝐻 ∈ R
𝑛×𝑚

, (34)

where 𝐻 ∈ R𝑛×𝑚 and 𝜀 is a white noise with covariance
matrix Σ𝜀 = 𝜎

2
𝐼. In addition, 𝑥 and 𝜀 are uncorrelated. In

simulation, we set 𝑛 = 50, 𝑚 = 10, 𝜎2 = 1, and Σ𝑥 =

𝑅𝑅
𝑇, where 𝑅 is drawn from a standard normal distribu-

tion. The estimation performance for centralized estimation
framework with different bandwidth constraints is shown
in Figure 1. The bottom solid line is the Cramer-Rao lower
bound (CRLB). The dimension reduction and quantization
lead to the gap between the centralized estimation curve and
CRLB.

We plot the estimation performance for different reduced
dimensions in Figure 2. Three cases of bandwidth constraint
are considered (𝐵 = 20, 25, 30). The bottom solid line is
the CRLB. The blue line with circle is the MSE for the
data only with dimension reduction. When quantization is
implemented after dimension reduction, the optimal strategy
allocates the bandwidth to the most important dimension.
Do not waste the bandwidth on the less important dimension
which would leads to bad performance.

The comparison of estimation performance for different
signal-to-noise ratios (SNR) is shown in Figure 4.The SNR is
defined as

SNR =

Tr (𝐻Σ𝑦𝐻
𝑇
)

𝑛𝜎
2

. (35)
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Figure 2: Comparison of estimation performance with different
reduced dimensions.

5.2. Decentralized Estimation Framework. In decentralized
estimation framework, the distributed sensors collaborate
with a fusion center to jointly estimate the parameter 𝑠. Since
all sensors have limited battery power, their computation
and communication capability are severely limited. As a
result, local data compression is needed in order to reduce
communication requirement.

Let the 3 distributed sensor nodes make observations on
a common random parameter vector 𝑥 ∈ R𝑚 according to

𝑦𝑖 = 𝐻𝑖𝑥 + V𝑖, 𝑖 = 1, 2, 3, (36)

where 𝐻𝑖 ∈ R𝑚𝑖×𝑚 is the observation matrix and V𝑖 ∈ R𝑚𝑖

is the additive noise which is zero mean and spatially unco-
rrelated. In addition, 𝑥 and V𝑖 are uncorrelated. In simulation,
we set 𝑚𝑖 = 15, 𝑚 = 10, 𝜎2 = 1, and Σ𝑥 = 𝑅𝑅

𝑇, where 𝑅 is
drawn from a standard normal distribution.

The comparison of centralized and decentralized estima-
tion performance is shown in Figure 3. The bottom solid line
is the CRLB.The estimation for centralized and decentralized
framework are plotted in red dash line with circle and blue
dot line with square for different bandwidth constraints,
respectively. The decentralized estimation performance is
slightly worse than the centralized estimation since the
Gauss-Seidel method cannot guarantee the optimal solution
[22].

6. Conclusion

In this paper, we have considered a bandwidth constrained
sensor network in which a set of distributed sensors and



Mathematical Problems in Engineering 7

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Reduced dimension (r)

M
SE

J-dim-SNR2
J-dim-SNR6

J-30bits-SNR2
J-30bits-SNR6

Figure 3: Comparison of estimation performance with different
SNR.
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Figure 4: Comparison of estimation performance for centralized
and decentralized framework.

a fusion center collaborate to estimate an unknown vector.
With given communication bandwidth, the bits allocation
problem has been formulated as an optimization prob-
lem. Both centralized and decentralized estimation frame-
works have been developed. The closed-form solution for
the centralized estimation framework has been proposed.

The computational complexity of decentralized estimation
problem has been proved to be NP-hard and a Gauss-Seidel
type iteration algorithm to search for an optimal solution
has been also proposed. Simulation results show the good
performance of the proposed algorithms.
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The ocean monitoring sensor network is a typically energy-limited and bandwidth-limited system, and the technical bottleneck of
which is the asymmetry between the demand for large-scale and high-resolution information acquisition and the limited network
resources. The newly arising compressed sensing theory provides a chance for breaking through the bottleneck. In view of this
and considering the potential advantages of the emerging interleave-division multiple access (IDMA) technology in underwater
channels, this paper proposes an IDMA-based compressed sensing scheme in underwater sensor networks with applications to
environmentalmonitoring information acquisition. Exploiting the sparse property of themonitored objects, only a subset of sensors
is required to measure and transmit the measurements to the monitoring center for accurate information reconstruction, reducing
the requirements for channel bandwidth and energy consumption significantly. Furthermore, with the aid of the semianalytical
technique of IDMA, the optimal sensing probability of each sensor is determined to minimize the reconstruction error of the
information map. Simulation results with real oceanic monitoring data validate the efficiency of the proposed scheme.

1. Introduction

With the ever-increasing demand formarine exploitation and
the rapid development of network communication technolo-
gies, underwater sensor network (UWSN) [1] has become
a new research hotspot in recent years. As the extension
of wireless sensor networks (WSN) into ocean, UWSN has
potential values in thewide application fields, such as oceano-
graphic information collection, hydrological and environ-
mental monitoring, resources exploration, disaster forecast,
underwater navigation, and military defense. This paper
focuses on the ocean environmental monitoring application.
In this kind of UWSN, a large number of underwater sensor
nodes are deployed in the concerned area, which measure
the required physical, chemical, or biological phenomena and
transmit the measurements to the monitoring center. Then,
the monitoring center forms the information map of the
monitoring area according to the measurements it received.
Due to the particularity of underwater environments [2],
wireless acoustic communication is believed as the most suit-
able physical layer transmission technology in underwater

networks. However, wireless acoustic communication has
some distinct disadvantages in the following aspects: (1) low
carrier frequency leads to limited available bandwidth; (2)
low propagation speed of sound leads to long end-to-end
delay. Furthermore, considering the application environment
of UWSN, the batteries of sensor nodes can hardly be
replaced. According to the above analysis, UWSN is be-
lieved to be a typical energy-limited and bandwidth-limited
system.

In order to distinguish the measurements of different
sensors from each other, the multiple access scheme is an
important issue in underwater sensor networks, as well as
in other communication systems with multiple users. Time-
division multiple access (TDMA) is a popular scheme in
the existing underwater networks, but it has some insur-
mountable disadvantages. (1) TDMA scheme is based on
the accurate synchronization. The long propagation delay
and large amount of sensors bring great difficulties for
the timing system, especially when the system has a large
number of sensors. (2) TDMA mechanism has feeblish
capability against interference and multipath fading and
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cannot accommodate to the complicated and time-varying
underwater environment. (3) The capacity of TDMA system
is restricted by the factors such as frame architecture and
channel rate. Hence, the network scale is difficult to be
extended. In recent years, code-division multiple access
(CDMA) has been regarded as the promising multiple access
scheme for underwater sensor networks.With the aid ofmul-
tiuser detection (MUD) technologies, CDMA outperforms
TDMA in the aspects of frequency utilization, feasibility,
multiple access interference (MAI) suppression capability,
and immunity against multipath effects. However, most of
the MUD algorithms have high-computational complexity,
and the detection cost increases greatly with the amount of
sensor nodes.Therefore, a simple and efficientmultiple access
scheme is required for the large-scale underwater sensor
networks. This requirement is expected to be realized with
the emergence of interleave-division multiple access (IDMA)
[3] technology.

IDMA is a relative new multiple access scheme, which
employs random interleavers as the only method for user
separation. As a particular case of CDMA, IDMA inherits
many distinguished features of the well-studied CDMA.
Furthermore, it allows a low-cost turbo-type chip-by-chip
(CBC) multiuser detection (MUD) algorithm applicable to
system with a large number of users, which is crucial for the
large-scale underwater sensor networks.

With applications to wide area ocean monitoring, under-
water sensor networks are usually required to deploy a large
amount of sensor nodes in the concerned region. Due to
the rigorous limitations on bandwidth and energy of the
underwater sensor networks, there is an asymmetry between
the requirement for high-rate sampling and the restricted
network resources. This becomes the technical bottleneck of
developing a practical large-scale underwater sensor network
for ocean monitoring. The traditional information acquisi-
tion methods cannot solve the above problem, while the
newly arising compressed sensing (CS) technology [4–6]
provides a potentially reasonable solution. Different from
the traditional Nyquist sampling theory, the CS theory is
concerned more with the information structure rather than
the signal bandwidth. According to the CS theory, if a signal
is sparse or compressible in a certain domain (e.g., spatial
domain or frequency domain), it can be accurately recon-
structed from a small number of nonadaptive, randomized
linear projection measurements by solving an optimization
problem.

Fortunately, most of the nature phenomena are sparse
in an appropriate basis, so the sparsity of the nature phe-
nomena provides the feasibility to widely apply CS theory
into practical engineering field. In the last few years, the
researchers have attempted to utilize CS technology in the
aspects of wireless communications [7], image processing
[8], compressive radar [9], and so on. To the best of our
knowledge, [10] is the first attempt for CS-based network
data processing, which is followed by a series of influential
work. References [11, 12] investigate the routing issue in
wireless networks under the framework of compressed sens-
ing. Reference [13] focuses on the CS-based target detection

scheme in wireless sensor networks, where the observed
signal is spatially sparse. A compressed sensing framework
for on-off random access channels is provided in [14], and
the theoretical bounds for channel capacity are given after
thorough derivation. In [15], authors proposed an energy-
efficient random access compressed sensing (RACS) scheme
for underwater sensor networks, which is the most impor-
tant work for applying CS theory into underwater sensor
networks so far. However, the authors of [15] did not take
the effect of channel error into consideration, which is in
fact a crucial issue affecting the quality of reconstructed
information map. Reference [16] proposed a CS-based mul-
tiple access control (MAC) scheme and provided the in-
depth analysis from a physical layer perspective. However,
the effects of multiple access interference (MAI) are not
considered in this paper. In our previouswork of [17], we have
proposed a novel CS-based information collection scheme
for the large-scale underwater networks, which realized accu-
rate “information collection” for the large-scale underwater
sensor network with a reduced number of measurements,
instead of the traditional “data collection”methods. However,
this scheme is based on the traditional TDMA technology,
which has some insurmountable disadvantages as mentioned
above. Moreover, [17] did not consider the issue of optimal
sensing probability. These problems will be solved in this
paper.

Inspired by the theory of compressed sensing and the
above extensive applications, in this paper, we propose an
IDMA-based compressed sensing information acquisition
scheme for the large-scale underwater sensor networks. After
a subrate sampling step with the random selected sensor
nodes, the measurements are transmitted to the monitor-
ing center through the underwater multiple access channel
(MAC) with IDMA method. Then, the monitoring center
distinguishes the reduced-dimensional measurements from
each other with online CBC MUD. Finally, the monitoring
center reconstructs the information map according to the
output of MUD. On the framework of compressed sensing
and by the aid of signal-to-interference-plus-noise ratio
(SINR) evolution semianalytical technique of IDMA, we
further investigate the problemof optimal sensing probability
at each sensor, with which the minimal reconstruction error
will be achieved. To the best of our knowledge, our work
introduced compressed sensing into the IDMA system for
the first time, and we made the first attempt in studying
the optimal sensing probability of CS-based information
acquisition scheme by exploiting the advantages of the
specific SINR evolution semianalytical technique of IDMA
system. The remainder of this paper is organized as follows.
In Section 2, the system model and problem description are
given. After introducing the mathematical foundations of
compressed sensing and IDMA in Section 3, the CS-IDMA
scheme is proposed in Section 4. Then, thorough analytical
observations on reconstruction error and resource require-
ments of our scheme are given in Section 5. In Section 6,
simulation results and performance evaluation are provided
to validate the proposed scheme. Finally, the paper concludes
in Section 7.
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2. System Model and Problem Description

Consider a 2-dimensional underwater monitoring area, with
𝐿 sensor nodes in 𝑥 direction and 𝑊sensor nodes in 𝑦

direction, as shown in Figure 1. The sensors are regularly
deployed to collect some kinds of oceanmonitoring elements,
such as temperature, salinity, and ocean current, and transmit
the measurements to the monitoring center by one hop. The
distance between two neighbor nodes is D, the both in 𝑥 and
𝑦 directions.Themonitored plane where the sensor is located
is H (meters) under the ocean surface.

In this paper, the simple single-path multiple access
underwater channel model is taken into consideration. Sup-
pose ideal power control is adopted and the required power of
each sensor at the receiver side (sink node) is 𝑃0, the distance
between the sender and the receiver is d (km), and the carrier
frequency is f (kHz). In order to achieve the required BER,
the transmitted power should be 𝑃0 ⋅ 𝐴(𝑑, 𝑓), where

𝐴 (𝑑, 𝑓) = 𝑑
𝑐
⋅ 𝑎(𝑓)

𝑑
. (1)

The constant 𝑐 is usually set as 1.5, and

𝑎 (𝑓) = 10
𝛼(𝑓)/10

, (2)

where 𝛼(𝑓) is the absorption coefficient, with an experiential
formula as follows [18]:

𝛼 (𝑓) =
0.11𝑓

2

1 + 𝑓
2
+

44𝑓
2

4100 + 𝑓
2
+

2.75𝑓
2

10
4

+ 0.003. (3)

For such an oceanmonitoring application, the traditional
method is to collect the measurements from all sensors to
form an information map about certain characteristic, for
example, temperature, salinity, or ocean current. However,
with the augment of network scale, more sensors are required
to measure and transmit together, leading to a burdensome
energy consumption and bandwidth cost. Furthermore, in
a quasi-orthogonal network, such as a CDMA or IDMA
network, the performance of bit error rate (BER) and packet
error rate (PER) will turn worse significantly when the
number of nodes increases. Although a long spread sequence
is helpful for interference suppression, it leads to higher
demand for the channel bandwidth, which is severely limited
in the underwater sensor networks. In view of the above facts,
this paper aims to find an efficient information acquisition
approach for the large-scale ocean monitoring underwater
sensor networks as shown in Figure 1. As an emerging
information sample theory, compressed sensing provides a
novel perspective to the potential solution.

3. Preliminaries

3.1. Mathematical Foundation of Compressed Sensing. The
core of CS theory is briefly expressed as follows [4]: consider
a discrete signal X = [𝑥1, 𝑥2, . . . , 𝑥𝑛]

T, which is an 𝑛 × 1

vector; that is, X ∈ R𝑛. According to the compressed sensing
theory, if X is sparse or compressible in a certain transform
domain, it can be accurately recovered from a compressed

Sink node

Sensor node

W

L

H

Figure 1: Two-dimensional underwater sensor network for ocean
monitoring applications.

measurementY = [𝑦1, 𝑦2, . . . , 𝑦𝑚]
T, which is an𝑚×1 vector,

𝑚 ≪ 𝑛. The framework of compressed sensing theory mainly
consists of three steps: (1) sparse transformation, (2) reduced-
dimensional observation, and (3) signal recovery.

Sparse Transformation. Suppose the original signal X ∈ R𝑛

is s-sparse (s ≤ n) on the orthogonal basis of Ψ,Ψ :=

[Ψ1,Ψ2, . . . ,Ψ𝑛], whereΨ𝑖 ∈ R𝑛, 𝑖 = 1, 2, . . . , 𝑛. As shown in
(4), X can be expressed as the linear combination of a subset
of basis vector:

X =

𝑛

∑

𝑖=1

𝜃 (𝑖)Ψ𝑖 =

𝑠

∑

𝑙=1

𝜃 (𝑖𝑙)Ψ𝑖𝑙
, (4)

where {𝑖𝑙} is the set of serial number with the selected basis
vectors. The 𝑛 × 1 transform coefficient vector, Θ = Ψ

TX,
is the sparse representation of X, which has 𝑠 none-zero
elements.

Reduced-Dimensional Observation. Design an𝑚×𝑛 (𝑚 ≪ 𝑛)
independent identically distributed (i.i.d.) matrix Φ, which
is independent from Ψ. Using Φ, an m-length measurement
vector is obtained by

Y = ΦΘ = ΦΨ
TX = RX, (5)

where R = ΦΨ
T is the CS matrix from X to Y.

Signal Reconstruction. The last step of compressed sensing is
to recover the original n-length signalX from the compressed
m-length measurement vector Y. Because 𝑚 is smaller than
n, (5) is originally undetermined and has no unique definite
solution. However, the s-sparsity characteristic of X makes
the signal reconstruction realizable. If the matrix R orΦ sat-
isfies the restricted isometry property (RIP) [5], the original
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signalX can be recovered from the compressedmeasurement
Y by solving the following optimization problem:

arg min 󵄩󵄩󵄩󵄩󵄩
Ψ

TX󵄩󵄩󵄩󵄩󵄩1

subject to Y = RX,

(6)

where ‖ΨTX‖1 = ‖Θ‖1 = ∑
𝑛

𝑖=1
𝜃𝑖 denotes the ℓ1-norm ofΘ.

In the application of ocean monitoring with underwater
sensor networks, the ultimate purpose is to acquire the
concerned information of the monitored area by means of
data collection and transmission. Because most of the ocean
elements (temperature, ocean current, etc.) are sparse in an
appropriate domain (such as Fourier domain), it is realizable
to reconstruct the information map with reduced mea-
surements under the theoretical framework of compressed
sensing.

3.2. Interleave-Division Multiple Access. IDMA is a relatively
new multiple access scheme, in which user-specific inter-
leavers are adopted as the only method for user separation.
Compared to CDMA, it has smaller MUD complexity and
higher bandwidth utilization and power efficiency. In view
of this, IDMA is a promising candidate for the resource-
limited underwater sensor networks and is adopted in the
uplink channels for the random selected underwater sensors
in our scheme. As the background of our work, here we first
elaborate on the concept of IDMA [3].

3.2.1. IDMA Model and CBC Algorithm. In this study, the
IDMA-CBC MUD channel model and its operational prin-
ciples are confined to single-path synchronous channel and
BPSKmodulation. Figure 2 illustrates the generic transmitter
and the IDMA-CBC MUD receiver with 𝐾 simultaneous
users. The input data sequence of user-k is first encoded by
a forward error correction (FEC) code. After spreading, the
respective chips are interleaved by user-specific interleaver
𝜋𝑘, producing 𝑥𝑘 ≡ [𝑥𝑘(1), . . . , 𝑥𝑘(𝑗), . . . , 𝑥𝑘(𝐽)]. The main
difference between CDMA and IDMA at the transmitter side
is the position exchange of spreader and interleaver, leading
to chip-level interleaving for IDMA and bit-level interleaving
for the CDMA. Compared with CDMA, the distinguished
feature of IDMA is that different interleavers are used to
separate signals from different users. Thus, the adjacent
chips from the same users are approximately uncorrelated,
which facilitates the simple chip-by-chip multiuser detection
scheme discussed below.

As illustrated in Figure 2, an iterative suboptimal receiver
structure is adopted, consisting of an elementary signal
estimator (ESE) and 𝐾 single-user a posteriori probability
decoders (DECs). In the global turbo-type iterative process,
the ESE and DECs exchange extrinsic log-likelihood ratios
(LLRs) about {𝑥𝑘(𝑗)}, defined as follows:

𝑒 (𝑥𝑘 (𝑗)) ≡ log(
Pr (y | 𝑥𝑘 (𝑗) = +1)

Pr (y | 𝑥𝑘 (𝑗) = −1)
) , ∀𝑘, 𝑗. (7)

The CBC MUD algorithm contains two parts, listed as
follows [3].

(1 )The basic ESE function.The jth received chip from𝐾 users
can be written as

𝑟 (𝑗) = ℎ𝑘𝑥𝑘 (𝑗) + 𝜁𝑘 (𝑗) (8)

with

𝜁𝑘 (𝑗) =

𝐾

∑

𝑘
󸀠
=1

𝑘
󸀠
̸=𝑘

ℎ𝑘󸀠𝑥𝑘󸀠 (𝑗) + 𝑛 (𝑗) , (9)

where 𝜁𝑘(𝑗) is the distortion (including interference-plus-
noise) with respect to user-k, ℎ𝑘 is a priori channel coefficient
at the receiver side, and 𝑛(𝑗) is sample of an AWGN with
variance 𝜎2 = 𝑁0/2.

Step i. Estimation of interference mean and variance:

𝐸 (𝑟 (𝑗)) =

𝐾

∑

𝑘=1

ℎ𝑘𝐸 (𝑥𝑘 (𝑗)) , ∀𝑗

Var (𝑟 (𝑗)) =

𝐾

∑

𝑘=1

󵄨󵄨󵄨󵄨
ℎ𝑘

󵄨󵄨󵄨󵄨

2 Var (𝑥𝑘 (𝑗)) + 𝜎
2
, ∀𝑗

𝐸 (𝜁𝑘 (𝑗)) = 𝐸 (𝑟 (𝑗)) − ℎ𝑘𝐸 (𝑥𝑘 (𝑗)) , ∀𝑘, 𝑗

Var (𝜁𝑘 (𝑗)) = Var (𝑟 (𝑗)) − 󵄨󵄨󵄨󵄨
ℎ𝑘

󵄨󵄨󵄨󵄨

2 Var (𝑥𝑘 (𝑗)) , ∀𝑘, 𝑗

(10)

Step ii. LLR generation:

𝑒ESE (𝑥𝑘 (𝑗)) = 2ℎ𝑘 ⋅
𝑟 (𝑗) − 𝐸 (𝜁𝑘 (𝑗))

Var (𝜁𝑘 (𝑗))
, ∀𝑘, 𝑗. (11)

(2)TheDEC Function.TheDECs in Figure 2 implement APP
decodingwith the output of the ESE as the input.Their output
is the extrinsic LLRs 𝑒DEC(𝑥𝑘(𝑗)), generating the following
statistics:

𝐸 (𝑥𝑘 (𝑗)) = tanh(
𝑒DEC (𝑥𝑘 (𝑗))

2
) ,

Var (𝑥𝑘 (𝑗)) = 1 − (𝐸 (𝑥𝑘 (𝑗)))
2
.

(12)

As discussed above, {𝐸(𝑥𝑘(𝑗))} and {Var(𝑥𝑘(𝑗))} will be
used in the ESE to update the interferencemean and variance
in the next iteration. APP decoding is a standard operation;
thus, we will not discuss it in detail.

The DEC cost is dominated by the APP decoding cost.
Compared with CDMA, the extra cost the MUD described
above is mainly related to the ESE, while it costs seven
multiplications and five additions per coded bit per user in
the ESE, which is verymodest.Thus, the overall complexity of
the multiuser detector can be roughly comparable to that of a
single-user one.This is considerably lower than those of other
schemes, for example, the well-knownMMSE algorithmwith
a complexity of 𝑂(𝐾

2
) and the MAP MUD algorithm with a

complexity of O(2 K).
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Figure 2: Transmitter and receiver structure of IDMA.

3.2.2. Performance Comparison between IDMA and CDMA.
It is interesting to compare the performance of IDMA and
CDMA using the same detection algorithm. Figure 3 illus-
trates such performance comparison for different number
of users with the same spreading length 𝐿 = 15. For
CDMA, 𝑚-sequence is employed as the spreading sequence,
while for IDMA, [+1, −1, +1, −1, . . .] is adopted. The length
of the information block is 𝑁 = 1500. As we can see, the
performance advantage of IDMA increases with the number
of users.When the number of users is small, the performance
of IDMA and CDMA is almost the same. However, the
performance of CDMA becomes worse when the number
of users is larger than 15. IDMA can achieve near single-
user performance even for 𝐾 = 24. Thus, compared with
CDMA, IDMA can achieve better performance with low
computational cost.

4. IDMA-Based Compressed Sensing
Information Acquisition Scheme

In this section, the IDMA-based compressed sensing (CS-
IDMA) information acquisition scheme is proposed and
illustrated for the large-scale ocean monitoring underwater
sensor networks.

The framework of the proposed scheme is simple and
clear. As shown in Figure 4, the proposed scheme consists
of three main components: (1) data sensing with randomly
selected sensors; (2) interleave-division multiple access to
the monitoring center over noisy channels; (3) informa-
tion recovery with the available measurements. Under the
compressed sensing framework, the procedure of random
sampling and the following multiple access is mapped to
the mathematical operation of reduced-dimensional obser-
vation.The performance of IDMAmultiuser detection deter-
mines the precision of the reconstructed information map.

4.1. Random Sensing at Sensor Side. In order to prolong the
lifetime of the underwater sensor networks, in each moni-
toring round only a subset of the sensor nodes is randomly
selected to make sensing and transmit the measurement
to the monitoring center. The number of active nodes in
one round is determined by a parameter named sensing
probability p.

According to the compressed sensing theory, in order
to realize accurate recovery, the sensing matrix R should
satisfy two basic conditions: the independency between R
and Ψ and the RIP property. The commonly used sensing
matrixes include randomGaussianmatrix, randomBernoulli
matrix, and partial Hadamard matrix. However, they cannot
contribute to energy and bandwidth saving for the considered
scenario. In view of this, a simple and efficient sensingmatrix,
random extractive matrix, is used in this paper. The random
extractive matrix is easily formed by randomly selecting 𝑚

rows from the 𝑛 × 𝑛 identity matrix, where 𝑛 is the number
of sensors in the monitored area and m is the number of the
selected sensors in one round. The elements in the random
extractive matrix have the following property:

𝑚

∑

𝑖=1

𝑟𝑖𝑗 ≤ 1, 𝑗 = 1, 2, . . . , 𝑛,

𝑛

∑

𝑗=1

𝑟𝑖𝑗 = 1, 𝑖 = 1, 2, . . . , 𝑚.

(13)

4.2. Interleave-Division Multiple Access over Noisy Channels.
Suppose there are 𝑁 underwater sensor nodes deployed in
themonitoring area. In one round of information acquisition,
each node performs measurement with probability 𝑝. Then,
the random 𝐾 = 𝑝𝑁 measurements will be transmitted to
the monitoring center simultaneously. In this study, IDMA is
employed to distinguish the measurements from each other.
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Figure 3: Performance comparison between IDMA and CDMA
systems.

Compared to CDMA, the transmitter of IDMA system
exchanges the sequence of the spreader and interleaver;
that is, it employs a chip-level interleaver to randomize
the chip-level information. Consequently, the MAI in IDMA
system can be regarded as the additive Gaussian white noise
(AWGN), which is not reasonable in the traditional CDMA
system. Similar to Turbo decoding, IDMA-CBC MUD is an
iterative procedure with two decoding components, namely,
an elementary signal estimator (ESE) and 𝐾 a posteriori
probability (APP) decoders (DECs). During each iteration,
they exchange extrinsic log-likelihood ratios (LLRs) about
𝑥𝑘(𝑗), which is the jth chip output from the user-k dependent
permutation. From the central limited theorem, the MAI
of every chip is reasonably approximated by a Gaussian
distribution. Furthermore, the key principle of IDMA is
that the user separation is made possible by using differ-
ent interleavers invoked after the spreading, and chip-level
interleaving makes MAI appear as an additive uncorrelated
Gaussian process. Based on the above assumptions, the
extrinsic LLRs about each chip become equivalent to the
mean and variance of 𝑥𝑗(𝑘) upon iteration convergence. The
complete computational procedure of IDMA-CBCMUD has
been given in Section 3.2.1.

The choice of interleaver is an important problem for
the IDMA system. In theory, the user-specific interleavers
can be generated independently and randomly, while for
the considered underwater sensor networks, the monitoring
center has to use a considerable amount of memory to
store these interleavers, which may cause serious concern
when the number of users is large. Furthermore, during the
initial link setting-up phase, a large number of messages are
changed between the sensors and the monitoring center to
inform each other about their interleavers. Extra bandwidth
resource will be consumed for this purpose if the interleavers

used by the sensors and the monitoring center are long
and randomly generated. The case will be more serious for
the long-propagation-delay, bandwidth-limited, and energy-
limited underwater sensor networks. In view of this, the
power-interleaver method [19] is employed in our scheme as
follows.

Assume that we have a master interleaver 𝜙. Then the 𝐾

interleavers for each sensor can be generated as

𝜋𝑘 ≡ 𝜙
𝑘
, (14)

where 𝜙𝑘(𝑐) is defined as

𝜙
𝑘
(𝑐) ≡ {

𝜙 (𝑐) , 𝑘 = 1

𝜙 (𝜙
𝑘−1

(𝑐)) , 𝑘 = 2, . . . , 𝐾.
(15)

In this way, every interleaver is a “power” of 𝜙. The rationale
for this method is that if 𝜙 is an “ideal” random permutation,
so are all {𝜙𝑘}, and these permutations are also approximately
independent of each other. Based on this method, we simply
assume that the monitoring center assigns the power index
𝑘 to each user k, and then 𝜙

k will be generated at the sensor
nodes for user 𝑘 accordingly. Considering that the number
of active sensors is usually large in the ocean monitoring
sensor networks, the uplink frame will be split into several
subframes and IDMA scheme is operated in each subframe.
The procedure is illustrated in Figure 5. At the beginning of
each monitoring round, the monitoring center broadcasts a
downlink control information packet to the underwater sen-
sors. The control information packet contains the following
contents: (1) ID of each selected sensor according to a given
sensing probability p; (2) subframe index assigned to each
selected sensor; (3) power index assigned to each selected
sensor. Then, the selected sensors perform sampling and
transmit the measurements with the allocated interleavers at
the corresponding subframes. Next, the iterative CBC MUD
algorithm is carried out in the monitoring center.

4.3. Reconstructing the InformationMap. Theoutput ofMUD
is used for reconstructing the informationmap. Traditionally,
if barely K (K≪N) measurements are obtained for the
monitoring field, it is insurmountable to achieve the required
monitoring resolution. Furthermore, due to the effect ofMAI
and AWGN, some of the measurements may be destroyed in
the multiple access procedure. The packet error rate (PER)
is affected by the SINR of uplink channels, the length of the
uplink data packet, and the error correction code it used.
Detailed analysis will be given in Section 5.

However, in view of the fact that most of the monitored
underwater characteristics are sparse in the spatial domain
(e.g., the objective tracking information) or the frequency
domain (such as the temperature, salinity, and sea currents),
the CS theory provides the possibility to reconstruct a high-
resolution information map of the monitoring field with
𝑁 elements. For a frequency-sparse scenario, in which the
Fourier coefficients of the original signal X make up an
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𝑁 × 1 vectorΘ with only 𝑠 none-zero elements, the trans-
formmatrixΨ consists of𝑁 orthogonal Fourier basis shown
as follows:

X = ΨΘ,

Ψ = [Ψ1,Ψ2, . . . ,Ψ𝑁] ,

Ψ𝑖 (𝑘) = 𝑒
−𝑗2𝜋𝑖𝑘/𝑁

, 𝑖 = 1, 2, . . . , 𝑁; 𝑘 = 1, 2, . . . , 𝑁.

(16)

According to the CS theory, if the sensing matrix is
random and independent from Ψ and the number of mea-
surements exceeds a certain threshold 𝑁𝑠, the original data
of X can be reconstructed by solving the problem of (6).
Considering that the active sensors are selected randomly
and the packet error is random in the multiple access
procedure, the corresponding sensing matrix is feasible for
information recovery under CS framework. Several simpler
and practicable methods have been proposed to solve this
problem, such as BP (Basic Pursuit) [5], OMP (Orthogonal
Matching Pursuit) [20], and BCS (Bayesian Compressed
Sensing) [21]. In this paper, the OMP algorithm is adopted
for information recovery, by which the theoretical threshold
is𝑁𝑠 = 2𝑘 ln(𝑁) [20].

5. Analytical Observations

5.1. Consideration of Optimal Sensing Probability. As men-
tioned above, among the 𝑁 underwater sensor nodes
deployed in the monitoring area, only 𝐾 nodes are active
in one monitoring round. The active nodes are selected
randomly by the monitoring center according to the sensing
probability 𝑝. During the multiple access phase, part of the
𝐾 transmitted measurements will be dropped for packet
error due to the adverse effects such as thermal noise and
multiple access interference (MAI). Obviously, when the
sensing probability 𝑝 turns larger, the MAI will be more

severe, and, consequently, the packet error rate (PER) will
increase.The amount of availablemeasurements for informa-
tion reconstruction is expressed as follows:

𝑁avl = 𝑁act𝑝suc = 𝑝𝑁 (1 − PER) , (17)

where𝑁act = 𝑝𝑁 is the number of active sensors in one round
of information gathering and𝑝suc = 1−PER is the probability
that the measurements are successfully received after noisy
multiple access channel.

In our compressed sensing information acquisition
scheme, the performance of reconstruction error 𝑃𝑒 is one of
the most important evaluating indicators. Let us define it as a
function of the sensing probability p:

𝑃𝑒 = 𝑓 (𝑝) . (18)

Obviously, 𝑝𝑒 decreases with larger 𝑁avl. However, the
relationship between 𝑁avl and 𝑝 is not clear. In (17), 𝑁avl is
a linearly increasing function of p, while 𝑝suc is a decreasing
function of 𝑝. Therefore, the authors wonder whether an
optimal sensing probability 𝑝 exists, which leads to the
minimal reconstruction error under CS framework. This is
a key perspective of this paper.

Without loss of generality, supposing a BCH(m,n,t) FEC
code is used in IDMA system, followed by a length-r
repetition code, as shown in Figure 2, then the PER can be
calculated as

PER =

𝑚

∑

𝑠=𝑡+1

C𝑠
𝑚
𝑝
𝑠

𝑏
(1 − 𝑝𝑏)

𝑚−𝑠
, (19)

where 𝑝𝑏 is the bit error ratio after the decoding of repetition
code, which is a function of the chip error ration 𝑝𝑐 and the
repletion code length 𝑟. Given 𝑝𝑐 and r, the solution of 𝑝𝑏 is
detailed as follows:

𝑝𝑏 =

𝑟

∑

𝑖=[𝑟/2]

C𝑖
𝑟
𝑝
𝑖

𝑐
(1 − 𝑝𝑐)

𝑟−𝑖
. (20)
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Suppose BPSK modulation with coherent demodulation
is adopted and AWGN channel is taken into consideration.
Then, the channel error ration, that is, the chip error ration
𝑝𝑐, is theoretically expressed as

𝑝𝑐 =
1

2
erfc (√𝛾) , (21)

where 𝛾 is the signal-to-noise ratio (SNR) of single-user
system, or the signal-to-interference-plus-noise ratio (SINR)
at the iteration convergence point, that is, after multiuser
detection.

It is usually difficult to evaluate the efficiency of MUD
accurately for a quasi-orthogonal multiuser system. Fortu-
nately, the SINR evolution technique of IDMA system pro-
vides a simple semianalytical method to solve this problem,
which in turn helps to build the relationship between the
reconstruction error and sensing probability 𝑝 under CS-
IDMA framework.

5.2. Semianalytical Method Based on SINR Evolution. We
now outline a performance evaluation technique for IDMA-
CBC multiuser detection algorithm. The performance of
IDMA-CBC detection scheme at the iteration convergence
point is concerned, which depends on the amount of can-
celled MAI, equivalently, the amount of variance reduced
from chip {𝑥𝑘(𝑗), ∀𝑘, 𝑗} variables [21]:

𝑉𝑘 = 1 − tanh2 (
𝑌SINR𝑘

2
) , 𝑘 = 1, . . . , 𝐾. (22)

For each user-k, a fixed received power, 𝑃𝑘, can be
maintained under the perfect power control (PPC).Thus, the
total interference power received by user-k can be estimated
as

𝐼𝑘 = 𝑃𝑁 + ∑

𝑖 ̸= 𝑘

𝑃𝑖 ⋅ 𝐸 (𝑉𝑖) , (23)

where 𝑃𝑁 is the thermal background noise, and by (22), we
define

𝑓 (SINR𝑘, 𝑟) = 𝐸 (𝑉𝑘) = 1 − 𝐸 [tanh2 (
𝑌SINR𝑘

2
)] ,

𝑘 = 1, . . . , 𝐾.

(24)

It is shown in [22], for large number of chips and
BPSK with repetition code (each bit is replicated 𝑟 times
over the symbol chips), that 𝑌SINR𝑘 is approximately Gaussian
with mean and variance 2(𝑟 − 1)SINR𝑘 and 4(𝑟 − 1)SINR𝑘,
respectively. Thus, the average variance of an arbitrary chip
from user-k, 𝑓(SINR𝑘, 𝑟), is a function of SINR𝑘, which by
definition is the uncancelled percentage of the interference
power introduced by user-k. The corresponding MUD effi-
ciency in the uplink is equivalent to 1−𝑓(SINR, 𝑟). Generally,
𝑓(SINR, 𝑟) does not have an analytical expression, but it can
be easily obtained by the Monte Carlo method, which is
depicted in Figure 6 as the solid curve. In the situation of
perfect power control, the SINR evolution for the iterative
process can be expressed as

SINR𝑘 new =
1

(𝐾 − 1) 𝑓 (SINR𝑘 old) + 𝜎
2
. (25)

At the start, we initialize 𝑓(SINR𝑘 old) = 1 for all 𝑘.
Repeating (25), SINRk will converge towards a steady value
and we call it SINR𝑘 final. Thus, at the convergence point, we
have

SINR𝑘 final ≈
1

(𝐾 − 1) 𝑓 (SINR𝑘 final) + 𝜎
2
. (26)

The above expression can be modified as

𝑓 (SINR𝑘 final) ≈ (
1

SINR𝑘 final
− 𝜎
2
)

1

𝐾 − 1
. (27)

The above function is depicted in Figure 6 as the dashed
curve. Obviously, the cross point of the solid curve and
the dashed curve corresponds to the final SINR value after
CBC iterative MUD in IDMA system, which is the required
value of 𝛾 in (21). Substituting the value of 𝛾 into (21) and
by using (20), (19), and (17), we can solve the number of
available measurements for reconstructing an information
map. Thus, based on this special semianalytical technique
of IDMA system, SINR evolution, we can further optimize
systemperformance in a simpleway.Using the abovemethod,
the optimal sensing probability will be observed in Section 6.

5.3. Resource Requirements. In this section, we give a thor-
ough analysis of the resource requirements for the proposed
scheme. Suppose the channel rate (digital bandwidth) is 𝑅𝐵

and a frame is divided into 𝐼 subframes; in each subframe
K/Imeasurements are distinguished by different interleavers.
As mentioned above, a BCH(m,n,t) FEC code followed by a
length-r repetition code is used, in which an n-bit block is
coded as anm-bit block, and a corrupted packet with nomore
than 𝑡 bit errors can be corrected after decoding. Thus, the
subframe length is calculated as

T𝑝 =
𝑚𝑟

𝑅𝐵

. (28)

And the frame length for one monitoring period is

T𝑓 = RTT + 𝐼 ⋅ T𝑝 + (𝐼 − 1)T𝑔, (29)

where RTT is the maximal round trip time between the sink
node and the sensors and T𝑔 is the guard time between two
neighboring subframes.

If the monitored element has a correlation time of T𝑠,
equivalently, the signal is stationary during T𝑠, one round
of information acquisition should be completed in this
correlation time. So we have

T𝑓 ≤ T𝑠. (30)

Substituting (29) into (30), we get

T𝑝 ≤
T𝑠 − RTT − (𝐼 − 1)T𝑔

𝐼
. (31)

Combining (28) and (31), we get the requirement for the
digital bandwidth of the underwater channel:

𝑅𝐵 ≥
𝑚𝑟𝐼

T𝑠 − RTT − (𝐼 − 1)T𝑔
. (32)
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Considering that the transmitted signal is shaped by a
square root raised cosine filter with a roll-off factor equivalent
to 𝛽, the minimal requirement for the occupied bandwidth is
as follows:

𝐵req =

𝑅𝐵,req (1 + 𝛽)

log
2
𝑀

=
𝑚𝑟𝐼 (1 + 𝛽)

[T𝑠 − RTT − (𝐼 − 1)T𝑔] log2𝑀
,

(33)

where𝑀 = 2 for the BPSK method.
Similarly, we can get the requirement for energy con-

sumption. Supposing the consumed energy of each sensor
for one round of data sampling is 𝐸𝑔, the average energy
cost for transmitting one bit is 𝐸𝑡, and the average energy
cost for receiving a downlink control packet is 𝐸𝑟, then the
total energy cost of thewhole network during onemonitoring
round is

𝐸 = 𝑁𝐸𝑟 + 𝐾 (𝐸𝑔 + 𝑚𝐸𝑡) . (34)

Thus, the average energy consumption per sensor per
round is

𝐸 =
𝐸

𝑁
= 𝐸𝑟 + 𝑝 (𝐸𝑔 + 𝑚𝐸𝑡) . (35)

According to the channel model described in Section 2,
we have

𝐸𝑡 = 𝐴 (𝑑, 𝑓) ⋅ 𝐸𝑏, (36)

where 𝐸𝑏 is the required energy per bit at the receiver side.

6. Performance Evaluation and Discussion

In order to evaluate the performance of the CS-IDMA
scheme in underwater sensor networks, necessary simula-
tions are carried out in this section. The ocean environ-
mental data is available from the website of NASA JPL
(http://ourocean.jpl.nasa.gov/). In the following simulations,
the simple single-path multiple access underwater channel
model with ideal power control is taken into consideration.

The main simulation parameters are given in Table 1.

6.1. Simulation Results on 2D Real Data. We take the real
ocean meridional current data of Monterey Bay as the
experimental subject. The data is obtained by the Regional
Ocean Modeling System (ROMS) at 3GMT 05/13/2012. The
monitored region is 100 meters below the sea surface and
ranged over [−122.8∘E,−122.6∘E] in longitude and [36.6∘N,
36.8∘N] in latitude, and the required spatial resolution is
0.01∘× 0.01∘. In the traditional method, we should divide
the concerned area into 20 × 20 grids, and, in each grid, a
sensor node is deployed for data sampling in order to build
an information map of the monitored region. It should be
noticed that any data missing will destroy the integrality of
the information map. On the contrary, the proposed CS-
IDMA scheme needs much fewer measurements for recon-
structing an information map of the concerned area with

SINR at chip level

Final SINR

Convergence point

10
−3

10
−2

10
−1

10
0

10
−6

10
−4

10
−2

10
0

10
2

f
(S

IN
R)

 an
d

f
(S

IN
R fi

na
l)

Figure 6: f (SINR) and f (SINRfinal) versus chip level SINR, with
𝑟 = 16, 𝐾 = 16, and 𝐸𝑏/𝑁0 = 4 dB.

Table 1: Simulation parameters.

Parameters Value
Data packet length 16 bits
Forward error correction coding BCH (34, 16, 3)
Repetition code length 16
Average energy cost for receiving a downlink
control packet, 𝐸𝑟

100 nJ

Average energy cost of each sensor for one
round data sampling, 𝐸𝑔

1000 nJ

Number of sensors in the region 400
Number of sumframes, 𝐼 20
Roll-off factor of the square root raised cosine
filter, 𝛽 0.98

Correlation time of the monitored element, T𝑠 100 s
Maximal round trip time 10 s
Guard time, T𝑔 20ms
Noise power spectral density,𝑁0 −100 dBm
Carrier frequency 10 kHz

the same spatial resolution. Moreover, data loss is tolerable
with our scheme.

Figure 7(a) is the original information map of the given
region, with a spatial resolution of 0.01∘× 0.01∘; Figure 7(b)
illustrates the compressed sensing measurements by the 100
random selected sensors; Figure 7(c) describes the success-
fully received data after CBC iterative MUD; and Figure 7(d)
shows the reconstructed result with OMP algorithm. In this
simulation, 𝐸𝑏/𝑁0 at the sink side is set to be 8 dB. The
simulation result of packet loss rate (PER) is 0.1055. As a
result, about 90 of the 100 random measurements are avail-
able for the information reconstruction procedure, leading
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Figure 7: Information map about ocean meridional current of the given area. (a) Original information map; (b) measurement with random
selected sensor nodes; (c) successfully collected data after CBC MUD; (d) reconstructed information map with OMP algorithm.

to a reconstruction error of 0.12389. Here, the reconstruction
error 𝑃𝑒 is defined as

𝑃𝑒 =

󵄩󵄩󵄩󵄩󵄩
X̂ − X󵄩󵄩󵄩󵄩󵄩2

‖X‖2

=

√∑
𝑛

𝑖=1
(𝑥𝑖 − 𝑥𝑖)

2

√∑
𝑛

𝑖=1
𝑥
2

𝑖

. (37)

6.2. Optimal Sensing Probability and Resource Requirements.
As mentioned above, the relationship between the recon-
struction error 𝑃𝑒 and the sensing probability 𝑝 is not clear
originally, while by using the semianalytical method peculiar
to IDMA, we can plot the relationship curve in Figure 8. An
interesting phenomenon is observed where, as the sensing
probability increases from 0.1 to 1, the reconstruction error
declines at the beginning phase and ascends quickly after a
turning point.The turning point varies with different channel

conditions. The larger the value of 𝐸𝑏/𝑁0 is, the latter the
turning point appears. Consequently, for a given channel
condition, there exists an optimal sensing probability. This
result is significant for system designing.

It can also be seen from Figure 8 that the reconstruction
error decreases evidently with the increase of 𝐸𝑏/𝑁0, due to
the higher packet loss rate. However, higher 𝐸𝑏/𝑁0 means
that more energy consumption is required, as shown in
Figure 9. In system designing, the performance tradeoff
between resource requirement and quality of reconstructed
information map should be considered according to the
simulation results.

Furthermore, we discuss the issue of bandwidth require-
ment of our scheme. From (33) we can find the relationship
between the minimum required bandwidth and the number
of subframes.Meanwhile, given the number of active sensors,
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Figure 8: Reconstruction error versus sensing probability.

the number of subframes will affect theMAI of IDMA system
and hence lead to different BER performance. As a result,
the relationship between the reconstructed error and the
minimum required bandwidth is given in Figure 10, where
𝐸𝑏/𝑁0 = 8 dB and 𝑝 = 0.6. We can see from Figure 10 that, in
order to reconstruct an informationmap with reconstruction
error below 0.1, at least 0.265 kHz bandwidth is required
for the uplink multiple access channel. If more bandwidth
is available, the reconstruction error keeps smooth because
enough measurements are already provided for information
reconstruction with the minimal required bandwidth. It
should be noticed that the issue of overdesigning should be
considered in real applications.

6.3. Comparisons with the Traditional Method. In order to
illustrate the advantages of compressed sensing in resource
saving, the energy and bandwidth costs of the proposed CS-
based scheme and the traditional information acquisition
scheme are given in Figures 11 and 12, respectively. From
the figures we can find that, if an information map with
the reconstruction error of no more than 0.1 is needed for
the tested area, the CS-based new scheme requires far less
network resources than the traditional scheme, saving 65%
energy and 88% bandwidth, respectively.

6.4. Simulation Result on 3D Real Data. The above research
is carried out on the two-dimensional scenario; however, the
proposed scheme is also suitable for the three-dimensional
environment. In order to prove it, reconstruction experiment
is implemented on the zonal current data collected at South
California Bay at 3 GMT on May 16, 2012, at latitude
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Figure 9: Average energy consumption per sensor versus 𝐸𝑏/𝑁0 at
receiver side.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Minimum required bandwidth (kHz)

Re
co

ns
tr

uc
tio

n 
er

ro
r

0.265
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[34.3∘, 34.5∘], longitude [−122.2∘, −122.0∘], and depth [100m,
600m]. The original information map and reconstructed
information map with optimal sensing probability are given
in Figure 13.The reconstruction error is only 0.1136, with 62%
energy saving and 75% bandwidth saving, respectively.
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7. Conclusions

In this paper, a novel information acquisition scheme, CS-
IDMA, is proposed for the large-scale ocean monitoring
sensor networks. Exploiting the advantages of compressed
sensing in low-sampling signal reconstruction and the advan-
tages of IDMA in low-complexity multiuser detection, the
proposed scheme can realize high-resolution information
reconstruction with lower network cost, and the packet
error during transmission can be greatly tolerant. With the
aid of the particular semianalytical method based on SINR
evolution, we give elaborate analytical observations on the
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Figure 13: Simulation result on 3D zonal current data. (a) Original
information map; (b) reconstructed result.

proposed scheme. The simulation results carried on real
ocean monitoring data show that our scheme can realize
accurate information map reconstruction with much fewer
measurements compared to the traditional method in which
all sensors should participate in data sampling and trans-
mitting, leading to less energy consumption and bandwidth
requirement. Furthermore, an interesting phenomenon is
observed where an optimal sensing probability exists for
a given value of 𝐸𝑏/𝑁0 at the receiver side, with which
the minimal reconstruction error is achieved. This result is
significant for system designing.
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This paper proposes a human tracking approach in a distributed wireless sensor network. Most of the efforts on human tracking
focus on vision techniques. However, most vision-based approaches to moving object detection involve intensive real-time
computations. In this paper, we present an algorithm for human tracking using low-cost range wireless sensor nodes which can
contribute lower computational burden based on a distributed computing system, while the centralized computing system often
makes some information from sensors delay. Because the human target oftenmoveswith highmaneuvering, the proposed algorithm
applies the interacting multiple model (IMM) filter techniques and a novel sensor node selection scheme developed considering
both the tracking accuracy and the energy cost which is based on the tacking results of IMM filter at each time step.This paper also
proposed a novel sensor management scheme which can manage the sensor node effectively during the sensor node selection and
the tracking process. Simulations results show that the proposed approach can achieve superior tracking accuracy compared to the
most recent human motion tracking scheme.

1. Introduction

In the daily life surveillance system, if the human actions can
be tracked accurately, the results can help greatly and readily
improve the ability of the identification of the whole system.
Therefore, devices that can accurately track humanmotion in
space are essential components of such a surveillance system.
A complete model of human consists of both the movements
and the shape of the body. Many of the available systems
consider the two modeling processes as separate even if they
are very close. In our study, the movement of the body is the
target.

There have been some approaches to the human motion
tracking. Most of the human motion tracking systems are
based on vision sensors. The camera-based human track-
ing system is much more popular nowadays. Some of the
proposed approaches present systems that are capable of
segmenting, detecting, and tracking people using multiple
synchronized surveillance cameras located far from each
other. But they try to hand off image-based tracking from

camera to camera without recovering real-world coordinates
[1–3]. Some other work has to deal with large video sequences
involved when the image capture time interval is short [4, 5].
However, most vision-based approaches to moving human
tracking are computationally intensive and costly expensive
[6]. For example, they often involve intensive real-time com-
putations such as image matching, background subtraction,
and overlapping identification [6]. In fact, in many cases,
due to the availability of prior knowledge on target motion
kinematics, the intensive and expensive imaging detector
array appears inefficient and unnecessary. For example, a
video image consisting of 100×100 pixels with 8-bit gray level
contains 80 kbits of data, while the position and velocity can
be represented by only a few bits [7].

Recently wireless sensor network (WSN) technique has
been developed quickly. A WSN consists of many low-cost
spatially dispersed position sensor nodes. Each node can pro-
cess information that it collected and received and exchange
information with its neighboring nodes or the fusion center.
Although there are many applications of WSNs on target
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tracking [8–12], few papers can be found on human motion
tracking in real-time systems [13, 14]. The recent proposed
low-resolution camera-based WSNs for people tracking [15,
16] are still very computational and energy expensive. In this
paper, we will develop an energy-efficientWSN technique for
human motion tracking using low-cost ranging sensors.

Due to the limited resources of the sensor nodes for
sensing, computation, and communication, the WSN will
rely on collaborative information processing among sensor
nodes to manage network resources and process the related
information from different sensor nodes. Although various
data fusion schemes and techniques have been proposed for
combining measurements from many sensing nodes with
limited accuracy and reliability, to achieve better accuracy
and more robustness [14, 17, 18], the tracking accuracy is still
limited due to the high maneuvering property of the human
target. In this paper, an interacting multiple model (IMM)
filter is employed to estimate the velocity and position of the
human trajectory. IMMfilter has the ability to switch between
a high-process noise (or alternatively, higher order or turn)
model in the presence of maneuvers and a low-process noise
model in the absence of maneuvers.This gives the IMM filter
its advantage over simpler estimators like the Kalman filter
and extended Kalman filter (EKF). Based on the IMM filter,
an adaptive sensor selection scheme is proposed in this paper
for the tracking framework in order to save energy. Verified
by simulations and a real testbed, the proposed algorithm can
achieve more accurate estimation performance for human
motion tracking compared to EKF [14].

The layout of the paper is arranged as follows. Section 2
presents the multiple models for human motion tracking.
Section 3 presents the IMM estimator for our applica-
tion. Section 4 proposes the sensor node selection method.
Section 5 presents the simulation results and experimental
results. Conclusions and future work are given in Section 6.

2. Problem Formulation

We consider the humanmoving in a 2DCartesian coordinate
system. The target state includes the human velocity, the
human position in the coordinate, and the turn rate when the
trajectory is along a curve. Assuming the human target has
a nearly constant velocity and a nearly constant angular rate,
we can build up the system models in this section.

2.1. Constant Velocity Model. Denote the human’s position
at time step 𝑘 in the coordinate system as (𝑃𝑥(𝑘), 𝑃𝑦(𝑘)),
the velocity as (𝑉𝑥(𝑘), 𝑉𝑦(𝑘)), and the sampling time interval
as 𝑇. A constant velocity model that describes the human
movement with a nearly constant velocity is

x1 (𝑘 + 1) = F1 (x1 (𝑘)) + G1k1 (𝑘) , (1)

where 𝑥1(𝑘) = [𝑃𝑥(𝑘) 𝑉𝑥(𝑘) 𝑃𝑦(𝑘) 𝑉𝑦(𝑘)]
𝑇,

F1 (x (𝑘)) = [𝑃𝑥 (𝑘) + 𝑇 ⋅ 𝑉𝑥 (𝑘) 𝑉𝑥 (𝑘) 𝑃𝑦 (𝑘)

+𝑇 ⋅ 𝑉𝑦 (𝑘) 𝑉𝑦 (𝑘)] ,

(2)

and k1(𝑘) is the process noise which reflects possible imper-
fection of the assumption of the constant velocity. For
convenience, we assume that k1 is a zero-mean Gaussian
white noise with varianceQ1(𝑘).

2.2. Coordinated Turn Model. In order to describe the hu-
man’s more complex trajectory, such as turn left or turn right,
here we adopt the coordinated turn model similar to [11]:

x2 (𝑘 + 1) = F2 (x2 (𝑘)) + G2k2 (𝑘) , (3)

where x2(𝑘) = [𝑃𝑥(𝑘) 𝑉𝑥(𝑘) 𝑃𝑦(𝑘) 𝑉𝑦(𝑘) 𝜔(𝑘)]
𝑇,

F2 (x2 (𝑘))

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑃𝑥 (𝑘) +
sin𝜔 (𝑘) 𝑇
𝜔 (𝑘)

⋅ 𝑉𝑥 (𝑘) −
1 − cos𝜔 (𝑘) 𝑇

𝜔 (𝑘)
⋅ 𝑉𝑦 (𝑘)

cos𝜔 (𝑘) 𝑇 ⋅ 𝑉𝑥 (𝑘) − sin𝜔 (𝑘) 𝑇 ⋅ 𝑉𝑦 (𝑘)

𝑃𝑦 (𝑘) +
1 − cos𝜔 (𝑘) 𝑇

𝜔 (𝑘)
⋅ 𝑉𝑥 (𝑘) +

sin𝜔 (𝑘) 𝑇
𝜔 (𝑘)

⋅ 𝑉𝑦 (𝑘)

sin𝜔 (𝑘) 𝑇 ⋅ 𝑉𝑥 (𝑘) + cos𝜔 (𝑘) 𝑇 ⋅ 𝑉𝑦 (𝑘)

𝜔 (𝑘)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

G2 (𝐾) =
[
[
[
[
[

[

1

2
𝑇
2
𝑇 0 0 0

0 0
1

2
𝑇
2
𝑇 0

0 0 0 0 𝑇

]
]
]
]
]

]

𝑇

.

(4)

Here 𝜔(𝑘) is the unknown constant turn rate and k2(𝑘) is
the process noise. Although the actual turn rate is not exactly
a constant, we can assume that it is not changed in a very short
time interval. For convenience, we assume that k2 is a zero-
mean Gaussian white noise with varianceQ2(𝑘).

Since the above model is nonlinear, the estimation of
the state will be done via EKF when the IMM is applied
during the subprediction for different models. This needs the
linearization of the system model. Thus the Jacobian matrix
Jaco(𝑘) of (3) is given by

Jaco (𝑘)

=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

1
sin (𝜔̂ (𝑘) 𝑇)

𝜔̂ (𝑘)
0 −

1 − cos (𝜔̂ (𝑘) 𝑇)
𝜔̂ (𝑘)

𝑓𝜔1 (𝑘)

0 cos (𝜔̂ (𝑘) 𝑇) 0 − sin (𝜔̂ (𝑘) 𝑇) 𝑓𝜔2 (𝑘)

0
1 − cos (𝜔̂ (𝑘) 𝑇)

𝜔̂ (𝑘)
1

sin (𝜔̂ (𝑘) 𝑇)
𝜔̂ (𝑘)

𝑓𝜔3 (𝑘)

0 sin (𝜔̂ (𝑘) 𝑇) 0 cos (𝜔̂ (𝑘) 𝑇) 𝑓𝜔4 (𝑘)

0 0 0 0 1

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(5)
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where

𝑓𝜔1 (𝑘) =
cos (𝜔̂ (𝑘) 𝑇) 𝑇𝑉𝑥 (𝑘)

𝜔̂ (𝑘)
+
sin (𝜔̂ (𝑘) 𝑇)𝑉𝑥 (𝑘)

𝜔̂(𝑘)
2

−

sin (𝜔̂ (𝑘) 𝑇) 𝑇𝑉𝑦 (𝑘)
𝜔̂ (𝑘)

−

−1 + cos (𝜔̂ (𝑘) 𝑇)𝑉𝑦 (𝑘)
𝜔̂(𝑘)
2

,

𝑓𝜔2 (𝑘) = − sin (𝜔̂ (𝑘) 𝑇) 𝑇𝑉𝑥 (𝑘) − cos (𝜔̂ (𝑘) 𝑇) 𝑇𝑉𝑦 (𝑘) ,

𝑓𝜔3 (𝑘) =
sin (𝜔̂ (𝑘) 𝑇) 𝑇𝑉𝑥 (𝑘)

𝜔̂ (𝑘)
+
1 − cos (𝜔̂ (𝑘) 𝑇)𝑉𝑥 (𝑘)

𝜔̂(𝑘)
2

+

cos (𝜔̂ (𝑘) 𝑇) 𝑇𝑉𝑦 (𝑘)
𝜔̂ (𝑘)

−

sin (𝜔̂ (𝑘) 𝑇)𝑉𝑦 (𝑘)

𝜔̂(𝑘)
2

,

𝑓𝜔4 (𝑘) = cos (𝜔̂ (𝑘) 𝑇) 𝑇𝑉𝑥 (𝑘) − sin (𝜔̂ (𝑘) 𝑇) 𝑇𝑉𝑦 (𝑘) ,

𝑅1 = 𝑥2(𝑘)
2
+ 𝑥3(𝑘)

2
− 2𝑥2 (𝑘) 𝑥3 (𝑘) cos 𝛾,

𝑅2 = 𝑥3 (𝑘) cos 𝛾 − 𝑥2 (𝑘) cos (2𝛾) ,

𝑅3 = 𝑥2 (𝑘) − 𝑥3 (𝑘) cos 𝛾,

𝑅4 =−𝑥2 (𝑘) 𝑥3 (𝑘) cos (2𝑥1 (𝑘)) cos
2
𝛾+𝑥2 (𝑘) 𝑥3 (𝑘) cos (2𝛾)

+ cos 𝛾 [−𝑥3(𝑘)
2
+ (𝑥2(𝑘)

2
+ 𝑥3(𝑘)

2
) cos2𝑥1 (𝑘)

−𝑥2(𝑘)
2 cos 2𝛾] .

(6)

2.3. System Observation Model. Let 𝑍𝑗(𝑘) denote the 𝑘-th
measurement of the target at time step 𝑡𝑘 if sensor 𝑗 is used.
The measurement model is given by

𝑍𝑗 (𝑘) = ℎ𝑗 (𝑥 (𝑘)) + V𝑗 (𝑘) , (7)

where ℎ𝑗 is a (generally nonlinear) measurement function
depending on sensor 𝑗’s measurement characteristic and
parameters (e.g., its location). V𝑗(𝑘) is the measurement noise
of sensor 𝑗 which is assumed independent and to be zero-
mean Gaussian white noise with covariance 𝑅𝑗(𝑘).

Based on the above velocity constant model, the coor-
dinated constant turn model, and the system observation
model, the interacting multiple model filter is applied to
estimate the system state variable which includes the human’s
position coordinate and velocity.

2.4. IMM Filter. The basic IMM algorithm (one cycle) is as
follows.

Step 1. We calculate the mixing probabilities and interaction
between different models:

𝜇𝑖󸀠|𝑗󸀠 (𝑘 | 𝑘) =
1

𝑐𝑗󸀠
𝑝𝑖󸀠𝑗󸀠𝜇𝑖󸀠 (𝑘) ,

𝑐𝑗󸀠 = ∑

𝑖󸀠

𝑝𝑖󸀠𝑗󸀠𝜇𝑖󸀠 (𝑘) ,

𝑥0𝑗󸀠 (𝑘 | 𝑘) = ∑

𝑖󸀠

𝑥𝑖󸀠 (𝑘 | 𝑘) 𝜇𝑖󸀠|𝑗󸀠 (𝑘 | 𝑘) ,

𝑃0𝑗󸀠 (𝑘 | 𝑘)

= ∑

𝑖󸀠

{𝑃𝑖󸀠 (𝑘 | 𝑘) + [𝑥𝑖󸀠 (𝑘 | 𝑘) − 𝑥0𝑗󸀠 (𝑘 | 𝑘)]

× [𝑥𝑖󸀠 (𝑘 | 𝑘) − 𝑥0𝑗󸀠 (𝑘 | 𝑘)]
𝑇

}

× 𝜇𝑖󸀠|𝑗󸀠 (𝑘 | 𝑘) .

(8)

In these equations, 𝜇𝑖󸀠|𝑗󸀠(𝑘 | 𝑘) is the mixing probability
at time 𝑘 (the weights with which the estimates from the
previous cycle are given to each filter at the beginning of the
current cycle); 𝑥0𝑗󸀠(𝑘 | 𝑘) and 𝑃0𝑗󸀠(𝑘 | 𝑘) are the mixed initial
condition for mode-matched filter 𝑗󸀠 at time 𝑘; 𝑝𝑖󸀠𝑗󸀠 is the
transition probability between mode 𝑖󸀠 and mode 𝑗󸀠. 𝜇𝑖󸀠(𝑘)
is the mode 𝑖󸀠 probability at time 𝑘.

Step 2. Prediction and filtering are as follows:

𝑥𝑗󸀠 (𝑘 + 1 | 𝑘) = 𝐹𝑗󸀠𝑥0𝑗󸀠 (𝑘 | 𝑘) + Γ𝑗󸀠 (𝑘) V𝑗󸀠 (𝑘) ,

𝑃𝑗󸀠 (𝑘 + 1 | 𝑘) = 𝐹𝑗󸀠𝑃0𝑗󸀠 (𝑘 | 𝑘) 𝐹
𝑇

𝑗󸀠
+ Γ𝑗󸀠 (𝑘)

× 𝑄𝑗 (𝑘) Γ𝑗󸀠(𝑘)
𝑇
,

𝑥𝑗󸀠 (𝑘 + 1 | 𝑘 + 1) = 𝑥𝑗󸀠 (𝑘 + 1 | 𝑘) + 𝑊𝑗󸀠 (𝑘)

× 𝑟𝑗󸀠 (𝑘 + 1) ,

𝑃𝑗󸀠 (𝑘 + 1 | 𝑘 + 1) = 𝑃𝑗󸀠 (𝑘 + 1 | 𝑘) 𝐹
𝑇

𝑗󸀠
−𝑊𝑗󸀠 (𝑘)

× 𝑆𝑗󸀠 (𝑘)𝑊𝑗󸀠(𝑘)
𝑇
,

(9)

where 𝑥𝑗󸀠(𝑘 + 1 | 𝑘) and 𝑃𝑗󸀠(𝑘 + 1 | 𝑘) are the state estimate
and its covariance inmodel-matched filter 𝑗󸀠 at time step 𝑘+1.
𝐹𝑗󸀠(𝑘 + 1) is the Jacobin matrix of the system model 𝑗󸀠.

The observation residenital is

𝑟𝑗󸀠 (𝑘 + 1 | 𝑘 + 1) = 𝑧 (𝑘 + 1) − 𝑧̂𝑗󸀠 (𝑘 + 1 | 𝑘) . (10)

The measurement prediction is

𝑧̂𝑗󸀠 (𝑘 + 1 | 𝑘) = 𝐻𝑗󸀠 (𝑘 + 1) 𝑥𝑗󸀠 (𝑘 + 1 | 𝑘) , (11)

where𝐻𝑗󸀠(𝑘 + 1)𝑥𝑗󸀠(𝑘 + 1 | 𝑘) is Jacobin matrix of the system
observation model of sensor 𝑗󸀠.

The residential covariance is

𝑆𝑗󸀠 (𝑘 + 1 | 𝑘) = 𝐻𝑗󸀠 (𝑘 + 1) 𝑃𝑗󸀠 (𝑘 + 1 | 𝑘)

× 𝐻𝑗󸀠(𝑘 + 1)
𝑇
+ 𝑅𝑗󸀠 (𝑘 + 1) ,

𝑊𝑗󸀠 (𝑘 + 1) = 𝑃𝑗󸀠 (𝑘 + 1 | 𝑘)𝐻𝑗󸀠(𝑘 + 1)
𝑇

× 𝑆𝑗󸀠(𝑘 + 1)
−1
.

(12)
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The likelihood function for filter 𝑗󸀠 is

Λ 𝑗󸀠 (𝑘 + 1) = 𝑁(𝑟𝑗󸀠 (𝑘 + 1) ; 0, 𝑆𝑗󸀠 (𝑘 + 1)) . (13)

The mode 𝑗󸀠 probability at time 𝑘 is

𝜇𝑗󸀠 =
1

𝑐
Λ 𝑗󸀠 (𝑘 + 1)∑

𝑖󸀠

𝑝𝑖󸀠𝑗󸀠𝜇𝑖󸀠 (𝑘) , (14)

where 𝑐 is a normalizing factor. 𝑥𝑗󸀠(𝑘 + 1 | 𝑘 + 1) and 𝑃𝑗󸀠(𝑘 +
1 | 𝑘 + 1) are the state estimate and its covariance in mode-
matched filter 𝑗󸀠 at time 𝑘 + 1.

Step 3. Combination of the different mode update results is

𝑥 (𝑘 + 1 | 𝑘 + 1) = ∑

𝑗󸀠

𝑥𝑗󸀠 (𝑘 + 1 | 𝑘 + 1) 𝜇𝑗󸀠 (𝑘 + 1) ,

𝑃 (𝑘 + 1 | 𝑘 + 1)

= ∑

𝑗󸀠

{𝑃𝑗󸀠 (𝑘 + 1 | 𝑘 + 1)

+ [𝑥𝑗󸀠 (𝑘 + 1 | 𝑘 + 1) − 𝑥 (𝑘 + 1 | 𝑘 + 1)]

×[𝑥𝑗󸀠 (𝑘 + 1 | 𝑘 + 1) − 𝑥 (𝑘 + 1 | 𝑘 + 1)]
𝑇

}

× 𝜇𝑗󸀠 (𝑘 + 1) .

(15)

In this paper for human motion tracking, we adopt 2 models
in IMM to estimate the system state variable including the
target’s position coordinate and velocity, that is, the constant
velocity model and the coordinated constant turn model
introduced in Section 2.

3. Adaptive Sensor Selection Scheme

The sensor node selection scheme based on the IMMfilter for
maneuvering target tracking framework will be proposed in
this section. We assumed that each sensor node can detect
the human target and determine the range of the sensor
node, and the locations of all the sensor nodes are known.
The popular approach only selects the sensor nodes which
are closest to the predicted human location as estimated by
the estimator such as EKF [14]. One of the shortcomings
of this “closest” node approach is that it does not consider
its contribution to the tracking accuracy and the energy
consumption quantitatively and simultaneously but simply
selects the sensor nodes. Therefore, we proposed an adaptive
sensor selection scheme in this paper, which is similar to the
work in [19]. In our proposed method, IMM filter will be
applied instead of EKF in order to avoid the maneuvering
property of the human target.The approach jointly selects the
next tasking sensor node and automatically determines the
sampling time interval simultaneously based on both of the
prediction of the tracking accuracy and tracking energy cost.

Tracking accuracy can be measured by various criteria,
such as the trace and the determinant of the covariance
matrix andFisher information defined on the Fisher informa-
tionmatrix. In our proposed approach, the tracking accuracy

is reflected by tracking error 𝜙(𝑘) at time step 𝑘 which is
defined as the trace of the covariance matrix 𝑃(𝑘 | 𝑘); that
is,

𝜙 (𝑘) = trace (𝑃 (𝑘 | 𝑘)) . (16)

Given a predefined threshold 𝜙0(𝑘), the tracking accuracy at
time step 𝑘 is considered to be satisfactory if

𝜙 (𝑘) < 𝜙0 (𝑘) ; (17)

otherwise it is considered to be unsatisfactory.
Energy consumption is a main consideration in this

paper. We utilize the following energy model. If current
sensor 𝑖 selects sensor 𝑗 as the next tasking sensor, then the
total energy consumed by sensor 𝑖 in transmission is

𝐸𝑡 (𝑖, 𝑗) = (𝑒𝑡 + 𝑒𝑑𝑟
𝛼

𝑖𝑗
) 𝑏𝑐, (18)

where 𝑒𝑡 and 𝑒𝑑 are decided by the specifications of the
transceivers used by the nodes, 𝑟𝑖𝑗 is the distance between
sensor 𝑖 and sensor 𝑗, 𝑏𝑐 is the number of bits sent, and 𝛼

depends on the channel characteristics and is assumed to be
time invariant. Energy consumed in receiving is

𝐸𝑟 (𝑗) = 𝑒𝑟𝑏𝑐, (19)

where 𝑒𝑟 is decided by the specification of the receiver of
sensor 𝑗. The energy spent in sensing/processing data of 𝑏𝑠
bits by sensor 𝑗 is

𝐸𝑠 (𝑗) = 𝑒𝑠𝑏𝑠. (20)

Therefore the total energy consumption is

𝐸 (𝑖, 𝑗) = 𝐸𝑡 (𝑖, 𝑗) + 𝐸𝑟 (𝑗) + 𝐸𝑠 (𝑗) . (21)

In this paper, we will ignore the energy consumption for
idling state of the node.

Suppose the current time step is 𝑘 and the current tasking
sensor is the sensor 𝑖which receives state estimation 𝑥(𝑘−1 |
𝑘−1) and estimation covariance matrix 𝑃(𝑘−1 | 𝑘−1) of the
time step 𝑘 − 1 from its parent tasking sensor. It first updates
the state estimation by incorporating its new measurement
𝑍𝑗(𝑘) using IMM algorithm described in Section 2. Then
it uses the sensor scheduling algorithm to select the next
tasking sensor 𝑗 and the next sampling interval Δ𝑡𝑘 such that
the sensor 𝑗 can undertake the sensing task at the time 𝑡𝑘+1 =
𝑡𝑘 + Δ𝑡𝑘. We suppose Δ𝑡𝑘 should be in the range [𝑇min, 𝑇max],
where 𝑇min and 𝑇max are the minimal and maximal sampling
intervals, respectively. If sensor 𝑗 is selectedwith the sampling
interval Δ𝑡𝑘, its associated predicted objective function is
defined as

𝐽 (𝑗, Δ𝑡𝑘) = 𝑤Φ𝑗 (𝑘) + (1 − 𝑤)
𝐸 (𝑖, 𝑗)

Δ𝑡𝑘

, (22)

where Φ𝑗(𝑘) is the predicted tracking accuracy according to
the IMM algorithm, 𝐸(𝑖, 𝑗) is the corresponding predicted
cost given by (21), is the averaged energy consumption over
the period. 𝑤 ∈ [0, 1] is the weighting parameter used to
balance the tracking accuracy and the energy consumption.
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The sensors are scheduled in the following two tracking
methods.

(1) After prediction, none of the sensors can achieve the
satisfactory tracking accuracy using any sampling interval in
𝑇min and𝑇max. In this case,Δ𝑡𝑘 is set to the minimal sampling
interval 𝑇min and the sensor is selected by

𝑗
∗
= arg
𝑗⊂𝐴

min {𝐽 (𝑗, 𝑇min)} , (23)

where 𝐴 is the candidate sensors that can be selected by
sensor 𝑖. Generally in (23), 𝑤 ̸= 0. The purpose of this mode
is to drive the tracking accuracy to be satisfactory as soon as
possible with consideration of the energy consumption.

(2) After prediction, at least one sensor can achieve
the satisfactory tracking accuracy. In this case, the optimal
(𝑗
∗
, Δ𝑡
∗

𝑘
) is selected by

(𝑗
∗
, Δ𝑡
∗

𝑘
) = arg
𝑗⊂𝐴∗ ,Φ(𝑗,𝑘)≤Φ0

min{
𝐸 (𝑖, 𝑗)

Δ𝑡𝑘

} , (24)

where 𝐴∗ is the set of sensors that can achieve the satisfac-
tory tracking accuracy. Equation (24) utilizes the objective
function (22) with 𝑤 = 0. The basic idea of this mode is
that when the predicted tracking accuracy is satisfactory, the
sensors and the sampling interval are selected according to
the energy efficiency.

It is easy to see that information-driven sensor querying
(IDSQ) [18] corresponds to the special case of the above
adaptive sensor selection approach where the fast tracking
approach mode is used in each time step (by set Φ0 = 0).

For simplification, we suppose the sampling interval is
selected from predefined 𝑁 values {𝑇𝑡}

𝑁

1
where 𝑇1 = 𝑇min,

𝑇𝑁 = 𝑇max, and 𝑇𝑡1 < 𝑇𝑡2
if 𝑡1 < 𝑡2. In addition the set {𝑇𝑡}

𝑁

1

is selected such that its values can evenly divide the interval
[𝑇min, 𝑇max] into𝑁 − 1 subintervals.

4. Sensor Node Management Scheme

If the static sensor nodes’ location estimation is to be built
incrementally as information is gathered from sensors, there
is typically a need for a sensor node localizationmanagement
process in order to prevent the heavy computational burden
when the system state matrix is augmented. This process
has the function of managing the information present in
the knowledge base and possibly aiding the sensing process.
Given the fact that computational resources are limited, an
information management technique that reduces the stored
data without sacrificing much information is required. To
improve the applicability of a spatial description to a larger
variety of scenarios, it should present the ability to iteratively
adapt its geometry to application-specific requirements. The
sensor node management process can be divided into three
aspects in dynamic environments as follows.

(1) Adding observed sensor nodes: when a sensor node
observed in the current scan cannot be matched to the
existing sensor node list, a new sensor node is initialized.

(2) Removing redundant sensor nodes: if all static sensor
nodes are included for updating the state, the computational

requirement will be high. Thus, redundant sensor nodes that
have not been observed for a long time interval should be
removed.

(3) Removing unstable sensor nodes: sensor nodes
become unstable or obsolete if they move or become perma-
nently occluded. For example, sensor nodesmight be station-
ary for a long period of time and can be considered suitable
sensor nodes. But if theymove, they are unstable sensor nodes
and should be removed from the sensormanagement scheme.
Another case is that structural changes may occur in the
environment, such as some static sensor nodes removing. In
other cases an object might be placed in front of a sensor
node, occluding it from view. For whatever reason, some
sensor nodes may cease to exist and no longer provide useful
information. These unstable sensor nodes should be deleted
from the sensor management scheme.

After data association, if a sensor node cannot bematched
to any existing sensor node in the map, it is considered as a
new sensor node. The sensor node initialization is activated.
Otherwise, this observation is used for the system update.

After a specified time interval, we shall check if this sensor
node is still matched by any new coming observations during
this period. If it is matched by none of the observations
sensed from external sensors within the specified interval,
this sensor node should be removed from the sensor node
listing. Otherwise, this sensor node will still be kept in our
system variables.

Finally, the sensing process can be improved if sensors are
told where to look at. This directed sensing technique will
naturally have benefits, such as to speed up the estimation
process or to extract information about the environment in
a predefined way.

5. Experimental Results

The human target is assumed to move in the 𝑋 − 𝑌 plane
of the Cartesian coordinate frame and the ground truth
trajectory consists of the curves and lines. The monitored
field is 100m × 150m and covered by 25 randomly placed
sensors. It is assumed that the sensors can only collect
the range measurements from the target. The sensors are
placed randomly in the field.We assume the noise covariance
𝜎𝑗 = 0.001 for any sensor 𝑗 in the covariance matrix of the
process noise. We will apply the adaptive sensor scheduling
algorithm presented in Section 3 in tracking a human object.
The measurement model for sensor 𝑗 is assumed as follows:

𝑍𝑗 (𝑘) =
√(𝑥 (𝑘) − 𝑥𝑗 (𝑘))

2

+ (𝑦 (𝑘) − 𝑦𝑗 (𝑘))
2

+ V𝑗 (𝑘) ,

(25)

where (𝑥(𝑘), 𝑦(𝑘)) is the location of the human object,
(𝑥𝑗(𝑘), 𝑦𝑗(𝑘)) is the known position of sensor 𝑗, and V𝑗(𝑘) is
the zero-meanGaussianmeasurement noisewith variance𝜎𝑗.
In this simulation, we use the constant velocitymodel and the
constant angular rate (coordinated turn) model explained in
Section 2 as the target motion model. IMM filter and sensor
selection scheme is applied to predict the trajectory.
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Figure 1: HumanMotion Tracking Simulation Results Based on the
Proposed Algorithm.
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Figure 2: The estimation error between the ground truth of the
trajectory and the predicted path.

The following parameter values taken from [20] are used
in the energy model: 𝛼 = 2, 𝑒𝑡 = 45 × 10

−6, 𝑒𝑟 = 135 × 10
−6,

𝑒𝑠 = 50 × 10
−6, all in J/bit, and 𝑒𝑑 = 10 × 10

−9 in mJ/bit⋅m2.
In addition, 𝑏𝑐 and 𝑏𝑠 are assumed to be 1024. Thus in (21),
𝑒0 = 0.23552mJ and 𝑒1 = 1.024 × 10

−4 mJ/m2.
For the sampling interval, we suppose𝑁 = 5, 𝑇min = 0.1,

and 𝑇max = 0.5. We also assume 𝑤 = 0.16 for the objective
function (22) and the threshold of the tracking accuracy is
set as Φ0 = 2.

Figure 1 shows the human tracking simulation results by
the proposed IMM algorithm and range sensor nodes in the
WSN. The green path means the ground truth we assumed
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Figure 3: The estimation error between the ground truth of the
trajectory and the predicted path.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150
The selected sensor node for different time steps

x (m)

y
 (m

)

Figure 4:The selected sensor node for different time steps using the
proposed sensor selection method.

and the red path is the estimation of the human trajectory.
The blue points are the sensor nodes we randomly placed.
Figures 2 and 3 give the estimation errors for Figure 1.

Figure 4 showed the sensor selected every ten steps
during the target moving. The pink color line indicated the
association of the selected sensor and the human position at
that time step. We can see that a sensor can be chosen for
several different steps.

We compare the performance of the proposed IMM
based adaptive sensor scheduling schemewith the EKF based
adaptive sensor scheduling scheme. Figures 5 and 6 showed
the tracking accuracy comparison of the 𝑥 coordinates and 𝑦
coordinates when we use IMM filter and EKF together with
the sensor selection method proposed in this paper. Clearly
we can see that more accurate tracking accuracy is obtained
when the IMM filter is used.
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Figure 5:The 𝑥 axis estimation error comparison of IMMfilter and
EKF.
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Figure 6:The 𝑦 axis estimation error comparison of IMMfilter and
EKF.

6. Conclusions

This paper presented an IMM filter based human track-
ing approach and proposed an adaptive sensor schedul-
ing scheme for the IMM filter based tracking framework
in wireless sensor networks. The proposed method uses
cheap range sensor nodes in wireless sensor networks by
jointly selecting the next tasking sensor and determining
the sampling interval based on predicted tracking accuracy
and tracking cost under the IMM filter frame. Simulation
results show that the new scheme can achieve significant

tracking accuracy considering the energy cost at each time
step. Real testbed for human motion tracking is built up
and the real time data implementation showed that the
IMM filter based human motion tracking can give better
results compared to the EKF based human motion tracking
scheme. There are still many issues remaining for future
study. Multistep, multisensor selection based adaptive sensor
scheduling and sensor scheduling formultitarget tracking are
both challenging problems for further investigations.
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The average consensus problem of distributed inference in a wireless sensor network underMarkovian communication topology of
uncertain transition probability is studied. A sufficient condition for average consensus of linear distributed inference algorithm is
presented. Based on linearmatrix inequalities andnumerical optimization, a designmethod of fast distributed inference is provided.

1. Introduction

During the past few decades, consensus problems of multia-
gent systems by information exchange have been extensively
studied by many researchers, due to their widespread appli-
cations in autonomous spacecraft, unmanned air vehicles,
mobile robots, and distributed sensor networks. Olfati-Saber
and Murray introduced in [1, 2] a theoretical framework for
solving consensus problems. In [3, 4], consensus problems of
first-order integrator systemswere proposed based on algebra
graph theory. In [5, 6], consensus problems of directed
second-order systems were presented. In [5], the authors pro-
vided necessary and sufficient condition for reaching mean
square consensus of discrete-time second order systems.
Consensus conditions were studied in [6] of continuous-
time second order systems by LinearMatrix Inequality (LMI)
approach.

Among consensus problems, the average consensus prob-
lem is challenging which requires distributed computation
of the average of the initial state of a network [1, 2]. For
a strongly connected network, [1] proved that the average
consensus problem is solvable if and only if the network
is balanced. The discrete-time average consensus plays a
key role in distributed inference in sensor networks. In
networks of fixed topology, [7] gave necessary and sufficient
conditions for linear distributed inference to achieve aver-
age consensus. A design method was presented in [7] to

implement linear distributed inference of fastest consensus.
Because of noisy communication channels, link failures often
occur in a real network. Therefore, it is meaningful to study
distributed inference in networks of swing topology.Through
a common Lyapunov function, a result of [1] stated that
distributed inference reaches average consensus in a network
of swing topology if the network holds strongly connected
and balanced topology. Reference [8] modeled a network
of swing topology using a Bernoulli process and established
a necessary and sufficient condition for average consensus
of distributed inference. The condition is related to a mean
Laplacian matrix.

The Bernoulli process in [8] means that the network
link failure events are temporally independent. From the
viewpoint of engineering, it is more reasonable to consider
network link failures of temporal independence. The most
famous and most tractable stochastic process of temporal
independence is Markovian chain in which any future event
is independent of the past events and depends only on
the present event. This motivates us to model a network
of swing topology using a Markovian chain and hence to
study distributed inference using Markovian jump linear
system method [9–12]. In practice, transition probabilities
of a Markovian chain are not known precisely a priori, and
only estimated values of transition probabilities are available.
Hence, this paper thinks of networks with Markovian com-
munication of uncertain transition probability.
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In fact, in the research on networked control systems,
Markovian chain has been used by several authors to
describe random communication in networks. Reference
[13] provided packet-loss model by Markovian chain in
𝐻∞ networked control. Under network communication of
update times driven by Markovian chain, [14] gave stabil-
ity conditions of model-based networked control systems.
Networked control systems with bounded packet losses and
transmission delays aremodeled throughMarkovian chain in
[15].The networked predictive control system in [16] adopted
2 Markovian chains to express date transmission in both
the controller-actuator channel and the sensor-controller
channel.

In this paper,Z is used to denote the set of all nonnegative
integers.The real identitymatrix of 𝑛×𝑛 is denoted by 𝐼𝑛. Let 1
be the vector whose elements are all equal to 1.The Euclidean
norm is denoted by ‖ ∙ ‖. If a matrix 𝑃 is positive (negative)
definite, it is denoted by 𝑃 > 0(<0). The notation ⋇ within
a matrix represents the symmetric term of the matrix. The
expected value is represented by 𝐸[∙].

The paper is organized as follows. Section 2 contains
a description of the network and linear distributed infer-
ence. Section 3 presents average consensus conditions and a
designmethod.Numerical simulation results are in Section 4.
Finally, Section 5 draws conclusions.

2. Network Description

Consider distributed inference in a wireless sensor network
consisting of 𝑛 sensor. Each sensor 𝑖 ∈ 𝑁 ≜ {1, 2, . . . , 𝑛}

collects a local measurement 𝑦𝑖 ∈ R about the situation of
environment. It is assumed that these local measurements
𝑦1, 𝑦2, . . . , 𝑦𝑛 are independent and identically distributed
random variables. The goal of inference is for all sensors to
reach the global measurement

𝑦 =
1

𝑛

𝑛

∑

𝑖=1

𝑦𝑖 (1)

such that the true situation of environment can be monitored
convincingly.

This paper studies iterative distributed inference. Define

𝑈 = {(𝑠, 𝑡) | 𝑠 < 𝑡, 𝑠 ∈ 𝑁, 𝑡 ∈ 𝑁} (2)

which includes all realizable undirected links in the wireless
sensor network. At the 𝑘th iteration 𝑘 ∈ Z, the successful
communication links in the wireless sensor network are
described by the set

𝐸 (𝑘) ⊂ 𝑈. (3)

A pair (𝑠1, 𝑡1) ∈ 𝐸(𝑘) means that the sensors 𝑠1 and 𝑡1
communicate with each other at 𝑘. A pair (𝑠2, 𝑡2) ∈ 𝑈

but (𝑠2, 𝑡2) ∉ 𝐸(𝑘) means that there is no communication
link between the sensors 𝑠2 and 𝑡2 at 𝑘. Due to noisy
communication channels and limited network power budget,
𝐸(𝑘) is assumed to be random and to be modeled as follows.
Given 𝑚 distinct subsets 𝐹1, 𝐹2, . . . , 𝐹𝑚 ⊂ 𝑈. Let 𝜃𝑘 be

a stochastic process taking values in 𝑀 = {1, 2, . . . , 𝑚} and
driven by aMarkov chain with a transition probability matrix
Γ = [𝛾ℎ𝑙] ∈ R𝑚×𝑚, where 𝛾ℎ𝑙 = Pr(𝜃𝑘+1 = 𝑙 | 𝜃𝑘 = ℎ), for all
ℎ ∈ 𝑀, for all 𝑙 ∈ 𝑀. However, these 𝛾ℎ𝑙s are not known
precisely. Each 𝛾ℎ𝑙 is expressed as

𝛾ℎ𝑙 = 𝛾ℎ𝑙 + Δ𝛾ℎ𝑙, (4)

with a known 𝛾
ℎ𝑙
and a unknownΔ𝛾ℎ𝑙 whose absolute value is

less than a given positive constant 2𝜋ℎ𝑙. For any for all ℎ ∈ 𝑀,
∑
𝑚

𝑙=1
𝛾
ℎ𝑙
= 1 and ∑𝑚

𝑙=1
Δ𝛾ℎ𝑙 = 0. This paper models

𝐸 (𝑘) = 𝐹𝜃𝑘
. (5)

The neighborhood of sensor 𝑖 at 𝑘 is denoted by

Ω𝑖 (𝑘) = {𝑗 ∈ 𝑁 | (𝑖, 𝑗) ∈ 𝐹𝜃𝑘
or (𝑗, 𝑖) ∈ 𝐹𝜃𝑘} , (6)

and the element number of set Ω𝑖(𝑘) is denoted by 𝑑𝑖(𝑘).
For sensor 𝑖, set its initial state 𝑥𝑖(0) = 𝑦𝑖. At the

𝑘th iteration, each sensor 𝑖 obtains its neighbors’ states and
updates its state using the following linear iteration law:

𝑥𝑖 (𝑘 + 1) = 𝑥𝑖 (𝑘) + 𝛼 ∑

𝑗∈Ω𝑖(𝑘)

(𝑥𝑗 (𝑘) − 𝑥𝑖 (𝑘)) ,

𝑖 ∈ 𝑁,

(7)

where 𝛼 > 0 is the weight parameter which is assigned
by designers. Our study on the above distributed inference
has two objectives: one is to derive a condition on the
convergence of 𝑥𝑖(𝑘) to 𝑦 in the sense of mean square; the
other is how to find 𝛼 such that a fast convergence is achieved.

3. Average Consensus Analysis

3.1. Convergence Condition. Denote

𝑥 (𝑘) =

[
[
[
[

[

𝑥1 (𝑘)

𝑥2 (𝑘)

...
𝑥𝑛 (𝑘)

]
]
]
]

]

∈ R
𝑛
. (8)

The system in Section 2 can be described as

𝑥 (𝑘 + 1) = 𝑊(𝛼, 𝜃𝑘) 𝑥 (𝑘) , 𝑘 ∈ Z,

𝑥 (0) = [𝑦1 𝑦2 ⋅ ⋅ ⋅ 𝑦𝑛]
𝑇
,

(9)

where𝑊(𝛼, 𝜃𝑘) is a 𝑛 × 𝑛 matrix with entries 𝑤𝑖𝑗(𝛼, 𝜃𝑘). For
𝑖 ̸= 𝑗,

𝑤𝑖𝑗 (𝛼, 𝜃𝑘) = {
𝛼, when 𝑗 ∈ Ω𝑖 (𝑘)
0, when 𝑗 ∉ Ω𝑖 (𝑘)

. (10)

For 𝑖 = 𝑗,

𝑤𝑖𝑖 (𝛼, 𝜃𝑘) = 1 − 𝛼𝑑𝑖 (𝑘) . (11)
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Figure 1: Three communication situations.
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Figure 3: State curve when 𝛼opt = 0.4812.

From (2)∼(6), it is seen that 𝑖 ∈ Ω𝑗(𝑘) if and only if 𝑗 ∈ Ω𝑖(𝑘),
and hence

𝑊(𝛼, 𝜃𝑘) = 𝑊
𝑇
(𝛼, 𝜃𝑘) . (12)

Furthermore, (10)∼(12) imply that for all 𝑘 ∈ Z

1𝑇𝑊(𝛼, 𝜃𝑘) = 1𝑇,

𝑊 (𝛼, 𝜃𝑘) 1 = 1.
(13)
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Figure 4: State curve when 𝛼1 = 0.5528.
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Figure 5: State curve when 𝛼2 = 0.5359.

Then, we have

𝑊(𝛼, 𝜃𝑘) 𝑦1 = 𝑦𝑊(𝛼, 𝜃𝑘) 1 = 𝑦1, (14)
1

𝑛
11𝑇𝑥 (𝑘 + 1) = 1

𝑛
11𝑇𝑊(𝛼, 𝜃𝑘) 𝑥 (𝑘) =

1

𝑛
11𝑇𝑥 (𝑘) ,

(15)

which means that for all 𝑘 ∈ Z
1

𝑛
11𝑇𝑥 (𝑘) = 1

𝑛
11𝑇𝑥 (𝑘 − 1) = ⋅ ⋅ ⋅ = 1

𝑛
11𝑇𝑥 (0) = 𝑦1.

(16)
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Denote 𝑒(𝑘) = 𝑥(𝑘) − 𝑦1. The iterative distributed inference
is said to be average consensus in mean square sense if
lim𝑘→∞𝐸[‖𝑒(𝑘)‖

2
] = 0 for any initial condition 𝑥(0) ∈ R𝑛

and 𝜃0 ∈ 𝑀.

Theorem 1. The linear distributed inference (7) reaches aver-
age consensus by choice of 𝛼, if there exist m positive definite
matrices 𝑃1, 𝑃2, . . . , 𝑃𝑚 ∈ R𝑛×𝑛 such that for all ℎ ∈ 𝑀

𝑄
𝑇
(𝛼, ℎ)(

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃𝑙 +

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

𝜋
2

ℎ𝑙
𝐼𝑛)𝑄 (𝛼, ℎ) + 𝑄

𝑇
(𝛼, ℎ)

×

𝑚

∑

𝑙=1

(𝑃ℎ − 𝑃𝑙)
2
𝑄 (𝛼, ℎ) − 𝑃ℎ < 0

(17)

with 𝑄(𝛼, ℎ) = 𝑊(𝛼, ℎ) − 1/𝑛11𝑇.

Proof. Assume 𝜃𝑘 = ℎ ∈ 𝑀 at time step 𝑘. From (9), (14), and
(16), one has

𝑒 (𝑘 + 1) = 𝑥 (𝑘 + 1) − 𝑦1

= 𝑊(𝛼, ℎ) 𝑥 (𝑘) − 𝑊 (𝛼, ℎ) 𝑦1 − 1
𝑛
11𝑇𝑥 (𝑘) + 𝑦1

= 𝑊(𝛼, ℎ) 𝑥 (𝑘) − 𝑊 (𝛼, ℎ) 𝑦1 − 1
𝑛
11𝑇𝑥 (𝑘)

+
1

𝑛
11𝑇𝑦1

= (𝑊(𝛼, ℎ) −
1

𝑛
11𝑇) (𝑥 (𝑘) − 𝑦1)

= 𝑄 (𝛼, ℎ) 𝑒 (𝑘) .

(18)

We now consider the stochastic Lyapunov function

𝑉 (𝑒 (𝑘) , 𝜃𝑘) = 𝑒
𝑇
(𝑘) 𝑃𝜃𝑘

𝑒 (𝑘) . (19)

Then for all 𝜃𝑘 = ℎ ∈ 𝑀, we have

𝐸 [𝑉 (𝑒 (𝑘 + 1) , 𝜃𝑘+1 | 𝑒 (𝑘) , 𝜃𝑘)] − 𝑉 (𝑒 (𝑘) , 𝜃𝑘)

= 𝑒
𝑇
(𝑘)(𝑄

𝑇
(𝛼, ℎ)

𝑚

∑

𝑙=1

𝛾ℎ𝑙𝑃𝑙𝑄 (𝛼, ℎ) − 𝑃ℎ)𝑒 (𝑘)

= 𝑒
𝑇
(𝑘)(𝑄

𝑇
(𝛼, ℎ)

𝑚

∑

𝑙=1

(𝛾
ℎ𝑙
+Δ𝛾ℎ𝑙) 𝑃𝑙𝑄 (𝛼, ℎ)−𝑃ℎ)𝑒 (𝑘)

= 𝑒
𝑇
(𝑘)(𝑄

𝑇
(𝛼, ℎ)

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃𝑙𝑄 (𝛼, ℎ) + 𝑄

𝑇
(𝛼, ℎ)

× (

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

Δ𝛾ℎ𝑙𝑃𝑙 + Δ𝛾ℎℎ𝑃ℎ)

×𝑄 (𝛼, ℎ) − 𝑃ℎ)𝑒 (𝑘)

= 𝑒
𝑇
(𝑘)(𝑄

𝑇
(𝛼, ℎ)

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃𝑙𝑄 (𝛼, ℎ)

+ 𝑄
𝑇
(𝛼, ℎ)(

𝑚

∑

𝑙=1,𝑙 ̸= ℎ

Δ𝛾ℎ𝑙𝑃𝑙 −

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

Δ𝛾ℎ𝑙𝑃ℎ)

×𝑄 (𝛼, ℎ) − 𝑃ℎ)𝑒 (𝑘)

= 𝑒
𝑇
(𝑘)(𝑄

𝑇
(𝛼, ℎ)

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃𝑙𝑄 (𝛼, ℎ)

+ 𝑄
𝑇
(𝛼, ℎ)(

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

Δ𝛾ℎ𝑙 (𝑃𝑙 − 𝑃ℎ))

×𝑄 (𝛼, ℎ) − 𝑃ℎ)𝑒 (𝑘)

≤ 𝑒
𝑇
(𝑘)(𝑄

𝑇
(𝛼, ℎ)

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃𝑙𝑄 (𝛼, ℎ)

+ 𝑄
𝑇
(𝛼, ℎ)

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

(
1

4
Δ𝛾
2

ℎ𝑙
𝐼𝑛 + (𝑃𝑙 − 𝑃ℎ)

2
)

×𝑄 (𝛼, ℎ) − 𝑃ℎ)𝑒 (𝑘)

≤ 𝑒
𝑇
(𝑘)(𝑄

𝑇
(𝛼, ℎ)

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃𝑙𝑄 (𝛼, ℎ)

+ 𝑄
𝑇
(𝛼, ℎ)

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

(𝜋
2

ℎ𝑙
𝐼𝑛 + (𝑃𝑙 − 𝑃ℎ)

2
)

×𝑄 (𝛼, ℎ) − 𝑃ℎ)𝑒 (𝑘)

≤ 𝑒
𝑇
(𝑘)(𝑄

𝑇
(𝛼, ℎ)(

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃𝑙 +

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

𝜋
2

ℎ𝑙
𝐼𝑛)𝑄 (𝛼, ℎ)

+𝑄
𝑇
(𝛼, ℎ)

𝑚

∑

𝑙=1

(𝑃𝑙 − 𝑃ℎ)
2
𝑄 (𝛼, ℎ) − 𝑃ℎ)𝑒 (𝑘) .

(20)

Denote

Θℎ = 𝑄
𝑇
(𝛼, ℎ)(

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃𝑙 +

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

𝜋
2

ℎ𝑙
𝐼𝑛)𝑄 (𝛼, ℎ)

+ 𝑄
𝑇
(𝛼, ℎ)

𝑚

∑

𝑙=1

(𝑃ℎ − 𝑃𝑙)
2
𝑄 (𝛼, ℎ) − 𝑃ℎ.

(21)

When the conditions inTheorem 1 are satisfied, we have

𝐸 [𝑉 (𝑒 (𝑘 + 1) , 𝜃𝑘+1 | 𝑒 (𝑘) , 𝜃𝑘)] − 𝑉 (𝑒 (𝑘) , 𝜃𝑘)

≤ −𝜆min (−Θℎ) ‖𝑒 (𝑘)‖
2

≤ −𝜂‖𝑒 (𝑘)‖
2
,

(22)

where 𝜆min(−Θℎ) denotes theminimal eigenvalue of−Θℎ and

𝜂 = inf {𝜆min (−Θℎ) , ℎ ∈ 𝑀} . (23)
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Therefore, for all 𝑒(0) ∈ R𝑛, for all 𝜃0 ∈ 𝑀, for all 𝑇 ∈ Z,

𝑇

∑

𝑘=0

𝐸 [‖𝑒 (𝑘)‖
2
] ≤

1

𝜂

𝑇

∑

𝑘=0

(𝐸 [𝑉 (𝑒 (𝑘) , 𝜃𝑘)]

−𝐸 [𝑉 (𝑒 (𝑘 + 1) , 𝜃𝑘+1)])

≤
1

𝜂
(𝑉 (𝑒 (0) , 𝜃0) − 𝐸 [𝑉 (𝑒 (𝑇 + 1) , 𝜃𝑇+1)])

≤
1

𝜂
𝑉 (𝑒 (0) , 𝜃0) .

(24)

This means lim𝑘→∞𝐸[‖𝑒(𝑘)‖
2
] = 0.

3.2. Optimal Design. From the above proof, it is seen that
the conditions in Theorem 1 result in not only lim𝑘→∞𝐸 [‖
𝑒(𝑘)‖
2
] = 0 but also decreasing 𝐸[𝑉(𝑒(𝑘), 𝜃𝑘)]. Moreover,

lim𝑘→∞𝐸[‖ 𝑒(𝑘)‖
2
] = 0 implies lim𝑘→∞𝐸[𝑉(𝑒(𝑘), 𝜃𝑘)] = 0;

that is, 𝐸[𝑉(𝑒(𝑘), 𝜃𝑘)] also converges to zero. Therefore, the
decrease rate of 𝐸[𝑉(𝑒(𝑘), 𝜃𝑘)] can express the convergence
speed of distributed inference. The following theorem is
about the decrease rate of 𝐸[𝑉(𝑒(𝑘), 𝜃𝑘)].

Theorem 2. Given 𝛼 > 0 and 𝜌 ∈ R, if there exist m positive
definite matrices 𝑃1, 𝑃2, . . . , 𝑃𝑚 ∈ R𝑛×𝑛 such that for all ℎ ∈ 𝑀,

[
[
[
[
[
[
[

[

𝑄
𝑇
(𝛼, ℎ)(

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃𝑙 +

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

𝜋
2

ℎ𝑙
𝐼𝑛)𝑄 (𝛼, ℎ) − (1 + 𝜌) 𝑃ℎ ⋇

(𝑃ℎ − 𝑃1) 𝑄 (𝛼, ℎ)

... −𝐼𝑚𝑛

(𝑃ℎ − 𝑃𝑚) 𝑄 (𝛼, ℎ)

]
]
]
]
]
]
]

]

< 0, (25)

then in linear distributed inference (7), for any nonzero 𝑒(𝑘) ∈
R𝑛,

𝐸 [𝑉 (𝑒 (𝑘 + 1) , 𝜃𝑘+1)] − 𝐸 [𝑉 (𝑒 (𝑘) , 𝜃𝑘)]

𝐸 [𝑉 (𝑒 (𝑘) , 𝜃𝑘)]
< 𝜌. (26)

Proof. According to Schur complement [17], condition (25)
can be rewritten as

𝑄
𝑇
(𝛼, ℎ)(

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃𝑙 +

𝑚

∑

𝑙=1,𝑙 ̸= ℎ

𝜋
2

ℎ𝑙
𝐼𝑛

+

𝑚

∑

𝑙=1

(𝑃ℎ − 𝑃𝑙)
2
)𝑄 (𝛼, ℎ) − (1 + 𝜌) 𝑃ℎ < 0.

(27)

From (27), for any nonzero 𝑒(𝑘) ∈ R𝑛, one has

𝑒
𝑇
(𝑘)(𝑄

𝑇
(𝛼, ℎ)(

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃𝑙 +

𝑚

∑

𝑙=1,𝑙 ̸= ℎ

𝜋
2

ℎ𝑙
𝐼𝑛

+

𝑚

∑

𝑙=1

(𝑃ℎ − 𝑃𝑙)

2

)

×𝑄 (𝛼, ℎ) − 𝑃ℎ)𝑒 (𝑘)

< 𝜌𝑒
𝑇
(𝑘) 𝑃ℎ𝑒 (𝑘) ,

(28)

for all 𝜃𝑘 = ℎ ∈ 𝑀 and for all 𝜃𝑘+1 = 𝑙 ∈ 𝑀. From (28), (19),
and (20), it is known that

𝐸 [𝑉 (𝑒 (𝑘 + 1) , 𝜃𝑘+1 | 𝑒 (𝑘) , 𝜃𝑘)]

− 𝑉 (𝑒 (𝑘) , 𝜃𝑘) < 𝜌𝑉 (𝑒 (𝑘) , 𝜃𝑘) ,

(29)

and hence

𝐸 [𝑉 (𝑒 (𝑘 + 1) , 𝜃𝑘+1)] − 𝐸 [𝑉 (𝑒 (𝑘) , 𝜃𝑘)]

𝐸 [𝑉 (𝑒 (𝑘) , 𝜃𝑘)]
< 𝜌. (30)

Condition (25) in Theorem 2 is a LMI. We denote condi-
tion (25) as Ξ(𝛼, 𝜌) < 0 and for any 𝛼 > 0 define

𝜌 (𝛼) = inf {𝜌 | 𝜌 ∈ R, Ξ (𝛼, 𝜌) < 0 has solutions} . (31)

Using the LMI toolbox of MATLAB, 𝜌(𝛼) can be computed
by Algorithm 1.

For a 𝛼 > 0with 𝜌 < 0, it is known fromTheorems 1 and 2
that linear distributed inference (7) is average consensus and
that 𝜌 is a bound of convergence speed. Since a less value of
𝜌 < 0 gives a faster convergence speed, the fast distributed
inference problem is addressed as

𝜇 = inf
𝛼>0
𝜌 (𝛼) (32)

which is an unconstrainted optimization problem of only one
variable. Many existing numerical optimizationmethods [18]
can be utilized to solve this problem efficiently. When 𝜇 < 0,
the optimal parameter

𝛼opt = arginf
𝛼>0

𝜌 (𝛼) (33)

provides a fast linear distributed inference which reaches
average consensus.
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Choose TOL > 0;
Choose enough large 𝜌

1
∈ R such that Ξ(𝛼, 𝜌

1
) has solutions;

Choose enough small 𝜌2 ∈ R such that Ξ(𝛼, 𝜌2) has no solution;
repeat until 𝜌1 − 𝜌2 < TOL

𝜌0 ← (𝜌1 + 𝜌2)/2;
Solve Ξ(𝛼, 𝜌0) < 0
if Ξ(𝛼, 𝜌0) < 0 has solutions

𝜌1 ← 𝜌0;
else

𝜌2 ← 𝜌0;
end (repeat)
Set 𝜌(𝛼) ← 𝜌1.

Algorithm 1

4. Numerical Example

In this section, we present simulation results for average
consensus of distributed inference in a simple sensor net-
work. The network has 10 sensor nodes and switched in
three possible communication situations. Figure 1 illustrates
3 communication situations. The estimated transition proba-
bilities of 𝜃𝑘 is

Γ = [𝛾
ℎ𝑙
] = [

[

0.7 0.2 0.1

0.45 0.3 0.25

0.5 0.1 0.4

]

]

. (34)

The estimate error Δ𝛾ℎ𝑙 satisfies
󵄨󵄨󵄨󵄨
Δ𝛾ℎ𝑙

󵄨󵄨󵄨󵄨
≤ 2𝜋ℎ𝑙 = 0.1, ∀ℎ ∈ {1, 2, 3} , ∀𝑙 ∈ {1, 2, 3} . (35)

Using the computation procedure in Section 3, the optimiza-
tion problem (32) is solved. Graph of 𝜌(𝛼) is displayed in
Figure 2. The result is 𝜇 = −0.2407 < 0 and 𝛼opt = 0.4812.
For the communication situation in Figure 1(1), we use the
design method in [7] of minimizing asymptotic convergence
factor and obtain 𝛼1 = 0.5528. The design method in [7]
is also applied to the other 2 situations in Figure 1 and get
𝛼2 = 𝛼3 = 0.5359.

In order to compare our method with that in [7], the
initial states of each sensor node is selected as

𝑥 (0) = [𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 𝑦9 𝑦10]
𝑇

= [15.2 14.6 14.3 15.6 15.3 14.5 15.7 14.9 15.1 14.8]
𝑇
.

(36)

Thus from (1), we have 𝑦 = 15. The real transition probability
matrix is set as

Γ = [𝛾ℎ𝑙] =
[

[

0.68 0.24 0.08

0.4 0.27 0.33

0.53 0.11 0.36

]

]

. (37)

Figures 3, 4, and 5 show state curves of all sensor nodes
under 𝛼opt, 𝛼1, and 𝛼2, respectively. It can be seen that all
sensor states convergence to 𝑦 = 15 and that our 𝛼opt has
faster convergence rate than 𝛼1 or 𝛼2 has. Achieving faster
convergence is because our method considers the random
switching among the 3 communication situations while [7]’s
method considers only 1 communication situation.

5. Conclusion

The distributed average consensus problem in sensor net-
works has been studied under a Markovian switching com-
munication topology of uncertain transition probabilities.

Stochastic Lyapunov functions have been employed to inves-
tigate average consensus of linear distributed inference. A
sufficient condition of average consensus has been proposed
based on feasibility of a set of coupled LMIs. The design
problem of fast distributed inference has been solved by
numerical optimization techniques.
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