
Complexity

Unmanned Autonomous Systems
in Complex Environments

Lead Guest Editor: Chenguang Yang
Guest Editors: Guang Li, Ning Wang, Xin Dong, and Rongxin Cui

 



Unmanned Autonomous Systems in Complex
Environments



Complexity

Unmanned Autonomous Systems in
Complex Environments

Lead Guest Editor: Chenguang Yang
Guest Editors: Guang Li, Ning Wang, Xin Dong,
and Rongxin Cui



Copyright © 2021 Hindawi Limited. All rights reserved.

is is a special issue published in “Complexity.” All articles are open access articles distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Chief Editor
Hiroki Sayama  , USA

Associate Editors
Albert Diaz-Guilera  , Spain
Carlos Gershenson  , Mexico
Sergio Gómez  , Spain
Sing Kiong Nguang  , New Zealand
Yongping Pan  , Singapore
Dimitrios Stamovlasis  , Greece
Christos Volos  , Greece
Yong Xu  , China
Xinggang Yan  , United Kingdom

Academic Editors
Andrew Adamatzky, United Kingdom
Marcus Aguiar   , Brazil
Tarek Ahmed-Ali, France
Maia Angelova  , Australia
David Arroyo, Spain
Tomaso Aste  , United Kingdom
Shonak Bansal  , India
George Bassel, United Kingdom
Mohamed Boutayeb, France
Dirk Brockmann, Germany
Seth Bullock, United Kingdom
Diyi Chen  , China
Alan Dorin  , Australia
Guilherme Ferraz de Arruda  , Italy
Harish Garg  , India
Sarangapani Jagannathan  , USA
Mahdi Jalili, Australia
Jeffrey H. Johnson, United Kingdom
Jurgen Kurths, Germany
C. H. Lai  , Singapore
Fredrik Liljeros, Sweden
Naoki Masuda, USA
Jose F. Mendes  , Portugal
Christopher P. Monterola, Philippines
Marcin Mrugalski  , Poland
Vincenzo Nicosia, United Kingdom
Nicola Perra  , United Kingdom
Andrea Rapisarda, Italy
Céline Rozenblat, Switzerland
M. San Miguel, Spain
Enzo Pasquale Scilingo  , Italy
Ana Teixeira de Melo, Portugal

Shahadat Uddin  , Australia
Jose C. Valverde  , Spain
Massimiliano Zanin  , Spain

https://orcid.org/0000-0002-2670-5864
https://orcid.org/0000-0002-3114-0984
https://orcid.org/0000-0003-0193-3067
https://orcid.org/0000-0003-1820-0062
https://orcid.org/0000-0003-4527-0082
https://orcid.org/0000-0002-8587-6065
https://orcid.org/0000-0003-0808-9065
https://orcid.org/0000-0001-8763-7255
https://orcid.org/0000-0002-8407-4650
https://orcid.org/0000-0003-2217-8398
https://orcid.org/0000-0003-1379-7568
https://orcid.org/0000-0002-0931-0916
https://orcid.org/0000-0002-4219-0215
https://orcid.org/0000-0002-6551-6011
https://orcid.org/0000-0002-0609-0129
https://orcid.org/0000-0002-5456-4835
https://orcid.org/0000-0003-1647-5126
https://orcid.org/0000-0001-9099-8422
https://orcid.org/0000-0002-2310-3737
https://orcid.org/0000-0003-3339-669X
https://orcid.org/0000-0002-4707-5945
https://orcid.org/0000-0003-3078-411X
https://orcid.org/0000-0002-5559-3064
https://orcid.org/0000-0003-2588-4917
https://orcid.org/0000-0003-0091-6919
https://orcid.org/0000-0002-3214-9606
https://orcid.org/0000-0002-5839-0393


Contents

High-Accuracy Real-Time Fish Detection Based on Self-Build Dataset and RIRD-YOLOv3
Wenkai Wang, Bingwei He  , and Liwei Zhang 

Research Article (8 pages), Article ID 4761670, Volume 2021 (2021)

Robust Control for the Suspension Cable System of the Unmanned Helicopter with Sensor Fault
under Complex Environment
Rong Mei 

Research Article (9 pages), Article ID 8869292, Volume 2021 (2021)

Multiscale Receptive Fields Graph Attention Network for Point Cloud Classification
Xi-An Li  , Li-Yan Wang  , and Jian Lu 

Research Article (9 pages), Article ID 8832081, Volume 2021 (2021)

Research on the Precession Characteristics of Hemispherical Resonator Gyro
Li-Jun Song  , Rui Yang, Wang-Liang Zhao, Xing He, Shaoliang Li, and You-Jun Ding
Research Article (9 pages), Article ID 8825017, Volume 2021 (2021)

Effect of Bird Yaw/Pitch Angles on So1 Impact Damage of a Fan Assembly
Junjie Li  , Yunfeng Lou  , Gaoyuan Yu  , Tong Li  , and Xianlong Jin 

Research Article (13 pages), Article ID 8879874, Volume 2021 (2021)

Stochastic Parameter Identification Method for Driving Trajectory Simulation Processes Based on
Mobile Edge Computing and Self-Organizing Feature Mapping
Jingfeng Yang, Zhiyong Luo  , Nanfeng Zhang, Jinchao Xiao, Honggang Wang, Shengpei Zhou, Xiaosong
Liu, and Ming Li 

Research Article (8 pages), Article ID 8884390, Volume 2021 (2021)

A Gradient-Based Recurrent Neural Network for Visual Servoing of Robot Manipulators with
Acceleration Command
Zhiguan Huang  , Zhengtai Xie  , Long Jin  , and Yuhe Li 

Research Article (11 pages), Article ID 2305459, Volume 2020 (2020)

Prediction of the RFID Identification Rate Based on the Neighborhood Rough Set and Random Forest
for Robot Application Scenarios
Hong-Gang Wang, Shan-Shan Wang  , Ruo-Yu Pan, Sheng-Li Pang, Xiao-Song Liu, Zhi-Yong Luo, and
Sheng-Pei Zhou
Research Article (15 pages), Article ID 8831963, Volume 2020 (2020)

Distributed Integrated Sliding Mode-Based Nonlinear Vehicle Platoon Control with Quadratic
Spacing Policy
Lei Zuo  , Ye Zhang, Maode Yan, and Wenrui Ma
Research Article (9 pages), Article ID 4949520, Volume 2020 (2020)

https://orcid.org/0000-0002-4386-8542
https://orcid.org/0000-0003-3083-9002
https://orcid.org/0000-0003-3821-2693
https://orcid.org/0000-0002-1509-9328
https://orcid.org/0000-0001-6604-7416
https://orcid.org/0000-0001-6447-1352
https://orcid.org/0000-0002-5169-962X
https://orcid.org/0000-0002-3507-8452
https://orcid.org/0000-0002-8019-5332
https://orcid.org/0000-0002-4909-3282
https://orcid.org/0000-0001-5293-3468
https://orcid.org/0000-0001-7861-8343
https://orcid.org/0000-0002-4084-4027
https://orcid.org/0000-0002-2671-5886
https://orcid.org/0000-0002-2057-7021
https://orcid.org/0000-0003-0414-7950
https://orcid.org/0000-0002-5329-5098
https://orcid.org/0000-0002-0725-9352
https://orcid.org/0000-0001-9036-1931
https://orcid.org/0000-0002-9938-7449


Extended Kalman Filter-Based Approach for Autonomous Synchronization and Ranging in GPS-Denied
Environments
Xiaobo Gu  , Weiqiang Tan  , Di Zhang  , Yudong Lu  , and Ruidian Zhan 

Research Article (7 pages), Article ID 8836584, Volume 2020 (2020)

Novel Robust Stability Criteria of Uncertain Systems with Interval Time-Varying Delay Based on Time-
Delay Segmentation Method and Multiple Integrals Functional
Xing He  , Li-Jun Song  , Yu-Bin Wu, and Zi-Yu Zhou
Research Article (13 pages), Article ID 8841137, Volume 2020 (2020)

Locomotion Prediction for Lower Limb Prostheses in Complex Environments via sEMG and Inertial
Sensors
Fang Peng  , Cheng Zhang  , Bugong Xu  , Jiehao Li  , Zhen Wang  , and Hang Su 

Research Article (12 pages), Article ID 8810663, Volume 2020 (2020)

Adaptive Visually Servoed Tracking Control for Wheeled Mobile Robot with Uncertain Model
Parameters in Complex Environment
Fujie Wang  , Yi Qin  , Fang Guo, Bin Ren, and John T. W. Yeow
Research Article (13 pages), Article ID 8836468, Volume 2020 (2020)

Disturbance-Observer-Based Fuzzy Control for a Robot Manipulator Using an EMG-Driven
Neuromusculoskeletal Model
Longbin Zhang  , Wen Qi, Yingbai Hu  , and Yue Chen
Research Article (10 pages), Article ID 8814460, Volume 2020 (2020)

Load Parameter Identification for Parallel Robot Manipulator Based on Extended Kalman Filter
Shijie Song, Xiaolin Dai, Zhangchao Huang, and Dawei Gong 

Research Article (12 pages), Article ID 8816374, Volume 2020 (2020)

Adaptive Robust Dynamic Surface Integral Sliding Mode Control for Quadrotor UAVs under Parametric
Uncertainties and External Disturbances
Ye Zhang  , Ning Xu, Guoqiang Zhu  , Lingfang Sun, Shengxian Cao  , and Xiuyu Zhang
Research Article (20 pages), Article ID 8879364, Volume 2020 (2020)

Acceleration Level Control of Redundant Manipulators with Physical Constraints Compliance and
Disturbance Rejection under Complex Environment
Jinglun Liang, Yisheng Rong, Guoliang Ye, Xiaoxiao Li  , Jianwen Guo, and Zhenzhen He
Research Article (14 pages), Article ID 8844209, Volume 2020 (2020)

Bottom Detection Method of Side-Scan Sonar Image for AUV Missions
Huapeng Yu  , Ziyuan Li, Dailin Li, and Tongsheng Shen 

Research Article (9 pages), Article ID 8890410, Volume 2020 (2020)

https://orcid.org/0000-0002-6755-7247
https://orcid.org/0000-0002-6055-5900
https://orcid.org/0000-0003-1326-7751
https://orcid.org/0000-0002-7341-6934
https://orcid.org/0000-0002-1918-3375
https://orcid.org/0000-0003-4361-0151
https://orcid.org/0000-0002-5169-962X
https://orcid.org/0000-0003-4743-7157
https://orcid.org/0000-0003-2135-7546
https://orcid.org/0000-0002-7241-8639
https://orcid.org/0000-0002-4946-4434
https://orcid.org/0000-0001-6106-2457
https://orcid.org/0000-0002-6877-6783
https://orcid.org/0000-0003-3756-1672
https://orcid.org/0000-0002-8517-1137
https://orcid.org/0000-0001-8785-5885
https://orcid.org/0000-0003-2452-3570
https://orcid.org/0000-0002-8022-907X
https://orcid.org/0000-0003-2829-1420
https://orcid.org/0000-0002-6565-2347
https://orcid.org/0000-0002-0797-5236
https://orcid.org/0000-0002-3789-2271
https://orcid.org/0000-0002-9526-8477
https://orcid.org/0000-0002-0004-2601


Contents

Analysis on the Impact of Data Augmentation on Target Recognition for UAV-Based Transmission
Line Inspection
Chunhe Song  , Wenxiang Xu, Zhongfeng Wang, Shimao Yu, Peng Zeng  , and Zhaojie Ju 

Research Article (11 pages), Article ID 3107450, Volume 2020 (2020)

Multimodal Multiobject Tracking by Fusing Deep Appearance Features and Motion Information
Liwei Zhang  , Jiahong Lai, Zenghui Zhang, Zhen Deng  , Bingwei He, and Yucheng He
Research Article (10 pages), Article ID 8810340, Volume 2020 (2020)

https://orcid.org/0000-0001-8392-1777
https://orcid.org/0000-0001-7863-3260
https://orcid.org/0000-0002-9524-7609
https://orcid.org/0000-0003-3083-9002
https://orcid.org/0000-0002-0240-0919


Research Article
High-Accuracy Real-Time Fish Detection Based on Self-Build
Dataset and RIRD-YOLOv3

Wenkai Wang, Bingwei He , and Liwei Zhang

School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350000, China

Correspondence should be addressed to Bingwei He; mebwhe@fzu.edu.cn

Received 19 July 2020; Revised 5 January 2021; Accepted 4 March 2021; Published 8 April 2021

Academic Editor: Xin Dong

Copyright © 2021WenkaiWang et al..is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To better detect fish in an aquaculture environment, a high-accuracy real-time detection model is proposed. An experimental
dataset was collected for fish detection in laboratory aquaculture environments using remotely operated vehicles. To overcome the
inaccuracy of the You Only Look Once v3 (YOLOv3) algorithm in underwater farming environment, a suitable set of
hyperparameters was obtained through multiple sets of experiments..en, a real-time image recovery algorithm is applied before
YOLOv3 to reduce the effects of both noise and light on images whilst keeping the real-time capability, leading to a mean average
precision of 0.85 and frame rate of 17.6 fps, respectively. Finally, compared with the base detection model using only the YOLOv3
algorithm, the enhanced detection model presented results in a reduction of miss detection rate from 23% to only 9% across
different environments and with the detection accuracy of the target in different environments being improved from 8% to 37%.

1. Introduction

Recently, ocean engineering and research have increasingly
relied on underwater images captured by autonomous un-
derwater vehicles (AUVs) and remotely operated vehicles
(ROVs) [1]. However, since the collection of underwater
datasets is more difficult than that for onshore datasets, there
are few generally accessible datasets for underwater crea-
tures, and public datasets for freshwater creatures are even
rarer. In addition, underwater images usually suffer from
various types of degeneration, such as low contrast, color
casts, and noise, due to wavelength-dependent light ab-
sorption and scattering as well as the effects of low-end
optical imaging devices [2]. To obtain much higher quality
underwater images, a number of advanced methods have
been designed and used. For example, Gray World [3] and
White Patch [4] are used in color correction. Fang et al.
proposed a single image enhancement approach based on
image fusion strategy to enhance the underwater image [5].
Li et al. presented a systematic underwater image en-
hancement method including underwater image dehazing
algorithms and a contrast enhancement algorithm for high-
quality underwater images [6], and Hitam et al. utilized the

contrast limit adaptive histogram equalization (CLAHE) to
enhance the contrast [7]. Recently, Peng and Cosman
proposed a depth and background light estimation method
for underwater scenes based on image blurriness and light
absorption, which can be used to restore and enhance un-
derwater images [8]. Besides, many studies try to address the
issue from the physical level. Typically, Schechner and
Karpel employed a polarizer in front of their camera [9].
.ese methods work well for underwater image processing,
but few of them took the degenerationmodel into account or
the proposed models are too complex to work in real-time.
Moreover, most existing algorithms are lacking in the ca-
pability of self-adaption and self-adjustment, which are
important for a robot working in a changing and complex
underwater environment.

Instead of traditional target detection, artificial neural
networks (ANNs) can be used to detect fish in images, and
some methods have shown promise for real-time perfor-
mance, such as Faster R-CNN [10], R-FCN [11], SSD [12],
and YOLO series [13–15], amongst others. Among them,
YOLOv3 performs well in both real-time and in terms of
mean average precision (mAP). However, YOLOv3 just
performs well in clear waters. When in dim and turbid
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waters, YOLOv3 loses almost all its original land-based
advantages.

In this paper, an experimental dataset was collected,
which solves the problem of the lack of datasets for fish in
aquaculture environments. Furthermore, a set of suitable
hyperparameters were obtained for the dataset through
multiple sets of experiments, reducing training time and
improving the detection accuracy. To improve the per-
formance of YOLOv3, a high-accuracy real-time fish de-
tection algorithm was proposed, named RIRD-YOLOv3.
.is paper is organized as follows: firstly, this paper in-
troduces the laboratory acquisition of the dataset, the
RIRD-YOLOv3 algorithm, and the matching of hyper-
parameters; secondly, we discuss the analytical results of
the experiments; finally, we present the conclusion. In this
paper, the proposed algorithm is tested, and it performs
well.

2. Dataset Collection and RIRD-
YOLOv3 Algorithm

2.1. Acquiring the Dataset. Deep learning [16] requires a
large amount of training samples, and the amount of data
used will directly affect the detection accuracy of fish for this
application. However, the problem faced by the fish dataset
is that its open source dataset is very scarce and does not
meet the training needs of grass carp detection models.

To solve the problem of the lack of grass carp dataset in
the breeding environment, in this paper, through a field
investigation, a simulated grass carp breeding environment
is established in the laboratory. Based on the growth en-
vironment of grass carp, the length, width, and height of the
pool are set to 600 cm, 450 cm, and 250 cm. .e pond can
simulate the real grass carp breeding environment. .e
experiment site is shown in Figure 1.

.e content of the sample of the dataset includes adult
grass carp and robot fish. Among them, the robotic fish is a
bionic robot purchased in the laboratory. It matches the
shape and characteristics of the real fish. .e purpose of
placing it in the dataset is to verify whether the classification
performance of the model obtained by the algorithm will be
affected. Each of the sample image contains zero or more
instances of fish. As a result, each image could contain from
zero to multiple annotations..is method enriches the types
of dataset samples and can be used to verify the classification
characteristics of the detection model..e sample content of
the dataset is shown in Figure 2.

To fully simulate the impact of light on grass carp in the
breeding environment and to fully collect images of grass
carp under different light environments, this paper ac-
complishes this by changing the lighting conditions at
different time periods..e specific implementation is shown
in Table 1.

According to Table 1, after using ROV to collect grass
carp images, through sorting out, it is found that three types
of images are useless, as shown in Figure 3..e three types of
images shown in Figure 3 do not contain much in the
dataset, but they still affect the accuracy of the subsequent
detection model. .erefore, in order to achieve the purpose

of improving the accuracy of the detection model, this paper
removes these three types of images manually.

A standard dataset should include a training set and a
testing set. .e training set and the testing set are mutually
exclusive. .e training set is used to obtain an excellent
detection model, and the testing set is used to test the
performance of the model. After removing the above three
types of useless samples, the dataset contains 3069 images. In
order to ensure the performance of the detection model, this
paper uses the ‘reserve method’ to randomly divide the
images of the dataset into a training set and a testing set
according to 7 : 3 ratio. After the division of “reserve
method,” the training set contains 2148 images and the
testing set 921 images. Besides, in this paper, the training set
is classified according to the three types of lighting condi-
tions shown in Table 1, and the number of the three types of
samples is NL 443, NOL 1228, and 477 NORL. .e dataset
named the Grass Carp Dataset before Restoration (GCDBR)
is composed of original images..e examples of GCDBR are
shown in Figure 4.

Besides, to improve the detection accuracy, it is neces-
sary to separate out the fish from the environment. Usually
fish have a similar color to the environment to protect
themselves. .erefore, a large number of optical images of
the underwater environment were collected and labelled as
‘negative sample.’

2.2. Dataset Labelling. .e dataset needs to be annotated to
accomplish and validate the goal of classification and de-
tection on the images. In this paper, labelling software is
used to create annotations of respective classes for the
images in the dataset based on the PASCAL VOC [17]
standard labelling format. Each annotation is created by
drawing a bounding box around the object of interest be-
longing to one of the classes and assigning the bounding box
and the class label associated with it. For simplicity, in this
paper, axis-aligned bounding boxes are used as described in
the PASCAL VOC dataset paper [17]. .e examples of
annotated images are shown in Figure 5.

2.3.'e RIRD-YOLOv3 Algorithm. .e water quality of the
grass carp farming environment is turbid, and due to the
absorption of light by the water, the scattering effect, and

Figure 1: .e experiment site.
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(a) (b)

Figure 2: .e sample content of the dataset: (a) robot fish; (b) grass carp.

Table 1: Different light conditions and implementation methods of grass carp growth.

Lighting conditions
Natural light (NL) Natural and outdoor light (NOL) Natural, outdoor, and ROV

light (NORL)Reasons and method of
implementation

Reason Sufficient sunlight, ROV without ROV
light can clearly collect grass carp images

With sunlight but weak, such as
cloudy, rainy, and evening

Late at night or without any
light

Method of
implementation

Just having sunlight, without any
additional auxiliary light source

Sunlight is the main light source;
outdoor light source is the

supplement

Outdoor light and ROV
light are main light sources

(a) (b) (c)

Figure 3: Cull images: (a) sports afterimage; (b) no target; (c) too many bubbles.

(a) (b) (c)

Figure 4: .e examples of GCDBR: (a) NL; (b) NOL; (c) NORL.

(a) (b)

Figure 5: Example images within the labelled dataset: (a) grass carp; (b) robot fish.
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the uneven illumination of the ROV, the quality of the
image will deteriorate and the grass carp cannot be dis-
tinguished by the naked eyes. .e examples of images of
grass carp sample of low quality are shown in Figure 6.

To overcome this problem, Chen et al. provided three
parameters, related to underwater image degradation and
color correction, by presearching in the first frame of image
sequences using an artificial fish school algorithm [18]. .e
core of image restoration is a Wiener Filter in frequency
domain as follows:

Vorig,C(u, v) �
H(u, v)

H(u, v)
2

+ R
􏼢 􏼣Vdeg,C(u, v), (1)

where Vorig,C represents one channel of the original image;
Vdeg,C represents one channel of the degraded image due to
underwater scattering and abortion; R is the reciprocal of
signal-to-noise ratio and was implemented to restrict scat-
tering; H(u, v) is originated as a general image degradation
model in turbulent media [18] expressed by

H(u, v) � e
− k u2+v2( )

(5/6)

, (2)

where k is a crucial parameter related to the depth of water
and the distance from the camera.

After Wiener Filter is applied, color correction is
implemented on the image by gamma factor as follows:

Icorrected,C � I
c
. (3)

At this point, R, K, and c have been introduced. To
obtain a reliable combination of these three parameters, we
employ a quality index of the restored image expressed as
follows:

Q �
αβ
1 + η

, (4)

where α is a haze indicator, describing the level of haze by
gradient computed by the modified Tenegrad evaluation,
given as follows:

α �
1
W

􏽘

M

i�0
􏽐
N

j�0
􏽘

7

k�0
Grandient Vg(i, j), k􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, (5)

where M × N is the size of an input image; Vg is a grayscale
map, and orientations of gradient are regulated as k × 45∘.
.is indicator takes the textural feature and edge feature into
consideration. Generally, a higher value of α reflects a clearer
restored image.

β is a contrast indicator, which is calculated by histogram
distribution in RGB channels, representing the image
contrast as defined in the following equation:

β �
1

MN
􏽘

C∈ R,G,B{ }

����������������

􏽘

255

i�0
hC(i) × i − μC( 􏼁

2

􏽶
􏽴

, (6)

where hC(i) stands for the data of histogram curves at gray
level i for channel C and μC shows the average of histogram

curves of channel C. .eoretically, objects can be distin-
guished more easily with a higher value of β.

η is an imbalance indicator, which denotes the level of
color correction as follows:

η � μr − μb

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + μr − μg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + μb − μg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (7)

Clearly, η diminishes along with a better color
correction.

A test result of a deep sea image is shown in Figure 7.
Clearly, the method is effective in contrast and color cor-
rection, and it takes only 17.5 milliseconds for each frame on
average. In addition, the amount of relevant information in
the restored image has been retained to a large degree, such
as color information, texture and edge information, and
illumination information.

2.4. Matching of Hyperparameters. To train the ANN effi-
ciently and well to predict the desired outcome, the
hyperparameters of the network should be properly deter-
mined. For the various values of number of epochs, mo-
mentum, learning rate, and batch size, a grid search was
performed to optimize the hyperparameters. All possible sets
of values described in Table 2 were tested to train the
network. .en, after training the network using each set of
values, the sensitivity was assessed using 100 test images.
.en, the values that maximize the quality of the network
were adopted for the hyperparameters.

3. Results and Discussion

3.1. Experimental Platform and GCDAR. First of all, the
experiment in this paper starts with image restoration. .e
specific implementation method is to restore the sample
image of GCDBR to obtain the grass carp dataset after
restoration (GCDAR). .e comparison of sample images of
grass carp dataset before and after restoration is shown in
Figure 8. .e appearance of the target in the image is dif-
ferent due to the influence of the light. In Figure 8(a), since
the color of the target is similar to the background envi-
ronment, it becomes difficult for the human eye to detect the
target. In Figure 8(b), under the action of the outdoor
auxiliary light, the underwater image halo is enhanced, and
the target is very blurred due to the presence of water mist. In
Figure 8(c), when natural light and ambient light do not
work, the self-contained light source of the ROV is used, but
the observation of the underwater target is still difficult due
to the limited light strength. After the image is restored, the
target in the restored image in Figure 8 becomes distinctly
clear.

When training the model, our device is NVIDIA Tesla
M40 with graphics card of 12GB. When performing image
recovery and detection, the actual ranges of K, R, and c are
[10− 7, 1.5 × 10− 4], [0.01, 15], and [0.4, 1] all of which are
normalized as [0.1, 150]. .e time-related data are obtained
with [640 × 360] pixel-size images, and the processor was a
Core i5-7300HQ CPUwith the main frequency increased up
to 2.5GHz.

4 Complexity



3.2. Training Result. .e best hyperparameters for training
are shown in Table 3. Figure 9 is a graph showing the rela-
tionship between batches and average loss. For each batch, 64
images are randomly selected and used to train the ANN.
Since the number of samples is limited, each image is used
multiple times. .e graph shows that the average loss is al-
most reduced to 0 as batches progress. A total of 30200 epochs
were run, and it took 48 hours to complete the training.
Compared with the initial training parameters, the best
hyperparameters reduce the training time by at least 48 hours.

To meet real-time requirements, through testing, the
frame rate of GCDAR’s model is shown in Table 4.

In addition, evaluation of the trained network is per-
formed by taking our validation dataset consisting of 300
images and executing detection on it using the trained
model.

.e metrics used to evaluate the object detection are as
follows:

(a) mAP. .is is the mean of the interpolated average
precision across all the classes in the dataset used for
object detection.

(b) IOU. .is is the ratio of the area of intersection to the
area of union of the predicted bounding box and the
corresponding maximally matched ground truth box
as defined in the following equation:

IOU �
Area(PredictedBox∩GroundtruthBox)

Area(PredictedBox∪GroundtruthBox)
. (8)

3.3. Comparison of Unrecovered and Recovered Images.
To verify the validity of RIRD-YOLOv3 in different envi-
ronments, two new evaluation parameters were proposed,
namely, missed detection rate (MDR) and target detection
accuracy (TDA) in a single environment. In addition, to
demonstrate the advantages of the method, a comparative
experiment of image detection capability before and after
restoration is proposed and conducted.

.e MDR and the TDA were also tested (as defined in
equations (9) and (10)). .e results are shown in Table 5. As
seen from Table 5, the restored image’s MDR is reduced
from 8.9% to 21.7% compared with the image before res-
toration. .e restored image’s TDA is increased from 7.8%
to 36.8% compared with the image before restoration. .e
large reduction in the rate of missed detection indicates the
effectiveness of the RIRD-YOLOv3 algorithm. .e im-
provement of detection accuracy in different environments
shows that the model has generally excellent performance.
Figure 10 shows the IOU contrast between the prerecovery
image and the restored image. In the original image, the
target detection showed missed detection and false detec-
tion. However, in the restored image, both missed detection

(a) (b)

Figure 7: .e performance of image restoration: (a) before restoration; (b) after restoration.

(a) (b)

Figure 6: Examples of image of grass carp sample of low quality.

Table 2: Tested values in grid search of hyperparameters.
Number of epochs 1000, 2000, . . ., 40000
Momentum 0.6, 0.7, 0.8, 0.9
Learning rate 0.00001, 0.00002, 0.00003, 0.00004
Batch size 8, 16, 32, 64
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(a) (b) (c)

Figure 8: Example of the comparison of sample images of grass carp dataset before and after restoration: (a) NL; (b) NOL; (c) NORL.

Table 3: Hyperparameters to train.

Parameter Number of epochs Momentum Batch size Learning rate
Numerical value 30200 0.9 64 0.00001

0 5000 10000 15000 20000 25000 30000

10

8

6

4

2

0

Av
g_
lo
ss

Batches

Avg_loss

Figure 9: .e average loss function of training.

Table 4: Performance of the test model based on the RIRD-YOLOv3 algorithm.

Metric Frame rate mAP IOU
Numerical value 17.6 0.85 0.82

Table 5: Comparison table of missed detection rate and target detection accuracy in three environments.

Miss detection rate Detection accuracy
Before recovery (%) After recovery (%) Before recovery (%) After recovery (%)

NL 12.1 3.2 89.3 97.1
NOL 26.4 12.5 62.9 99.71
NORL 33.3 11.6 73.1 86.7

6 Complexity



and false detection are reduced.

MDR �
M

M + N
× 100%, (9)

where M is the missing detection image and Nis the no
missing detection image.

TDA �
t1 + t2 + t3+, · · · , +tn

n
× 100%, (10)

where tis the detection accuracy of a single target in test
images and n is the number of targets.

4. Conclusions

In this paper, we presented a high-accuracy real-time fish
detection algorithm, called RIRD-YOLOv3. It is able to
solve the problem of image blur and noise caused by
processing in an underwater environment. In addition, a
set of suitable hyperparameters is provided for laboratory
freshwater aquaculture environmental dataset. When using
the hyperparameters is discovered, the experimental results
show that the training time for the dataset is reduced by 48
hours. During testing, the frame rate of RIRD-YOLOv3 was
17.6 FPS and the model’s mAP is 0.85. Prerecovery and
postrecovery images were contrasted in three environ-
ments, and the miss detection rate and detection accuracy

are reduced from 23% to 9% and increased from 13% to
37%, respectively. .erefore, overall RIRD-YOLOv3 has
demonstrated excellent performance for this type of
environment.

.e RIRD-YOLOv3 algorithm is of important signifi-
cance for underwater target detection applications. It can be
applied to underwater submersibles such as ROV and AUV.
It has potential for further contribution to the exploration of
underwater resources.

Data Availability

.is paper proposes the laboratory acquisition of the dataset,
which is published on CSDN, and data can be obtained from
the following links: https://download.csdn.net/download/
qie123zi456/12328847, https://download.csdn.net/download/
qie123zi456/12328855, https://download.csdn.net/download/
qie123zi456/12328879, https://download.csdn.net/download/
qie123zi456/12328894, and https://download.csdn.net/
download/qie123zi456/12328901, https://download.csdn.net/
download/qie123zi456/12328911.
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regarding the publication of this paper.

(a)

(b)

(c)

Figure 10: Comparison of fish detection between original image and restored image in three environments: (a) NL; (b) NOL; (c) NORL.
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Aiming at the suspension cable system of an unmanned helicopter with sensor fault under complex environment, this paper
studies the robust antiswing tolerant control scheme. To suppress the swing of the hanging load when the unmanned helicopter is
in the forward flight state, a nonlinear line motion model is firstly established. Considering the sensor fault of the unmanned
helicopter, a sensor fault estimator is developed. By using the fault estimator output, the robust antiswing tolerant controller is
proposed using the backstepping technique and sliding mode control method. Under the designed robust antiswing tolerant
controller, the desired tracking control performance can be obtained and the swing angle of the load is guaranteed small under the
sensor fault. Furthermore, the closed-loop system stability is analyzed by using the Lyapunov technique. Simulation studies are
given to show the efficiency of the designed robust antiswing control strategy.

1. Introduction

Due to the unique characteristics such as vertical takeoff,
vertical landing, good maneuverability, high work capa-
bility in complex environments, and hovering low-speed
flying, the helicopter has been widely used in different
practical areas during the past several decades [1]. Spe-
cially, considering the superiorities of long flight distance,
high altitude, strong robustness, and large load, the
medium-scale helicopter receives great attention [2]. By
using the ability of long flight distance and large load of
medium-scale helicopter, we can carry out the external
transport by using the suspension cable, which is one of
the main applications of medium-scale helicopters in the
military and civil application area [3]. Suspension flight
can transport bulk goods, which does not need to consider
the load capacity of helicopters and appearance of the
goods. Compared with the helicopter free flying state,
helicopter flight with additional load will increase the load
gravity load and load disturbance. 'us, it is necessary to
consider the influence of the hanging load on the system.
'e characteristics of the low-speed stability were ana-
lyzed for a helicopter with a sling load in [4]. In [5], the

flight dynamics were established for the articulated rotor
helicopter by considering an hanging load.

Because the working environment is complicated and
dynamically changeable, it is a challengeable task to develop
a good control law for a helicopter suspension cable system
[6–8]; for example, the medium-scale helicopter can be used
to monitor and suppress the forest fire. However, the
complex and changeable forest environment will increase
the probability of a crash for themedium-scale helicopter. To
avoid human sacrifice in the work process, the suspension
cable system of an unmanned helicopter is developed in
recent years. In [9], to deliver airborne cargo precisely, an
active control scheme was designed for an unmanned he-
licopter with a slung load. An antiswing controller was
designed for the unmanned helicopter with slung load by
nonlinear path tracking in [10]. In [11], an adaptation
controller was developed for autonomous helicopter slung
load operations. A nonlinear controller design was devel-
oped for a helicopter slung load system in [12]. In [13], an
adaptation backstepping controller by using prescribed
performance method was proposed for carrier used un-
manned aerial vehicle. Furthermore, in order to improve the
security and the economic efficiency, the efficient controller
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should be further designed for the suspension cable system
of an unmanned helicopter with sensor fault.

Sensor fault is an important fault of the practical systems
due to the external circuit fault and mechanical fault of sensor
and so on [14–18]. In general, there are four main types of
sensor faults which include the complete failure fault, the fixed
deviation fault, the drift deviation fault, and the precision
reduction fault [19]. Now, there are many research results for
the tolerant control problem of the various system with faults
and unknown disturbance [20–27]. In [28], the local stabili-
zation was studied for the Takagi–Sugeno (T-S) fuzzy discrete-
time time-delay system in the presence of sensor fault. 'e
sensor fault diagnosis technique and fault-tolerant control
methods were developed for stochastic time-delayed control
systems in [29]. In [30], the observer designmethod of the fault
estimation was given for descriptor switched systems with
sensor and actuator faults. 'e robust sensor fault estimator
was studied for the continuous interconnected system in [31].
In [32], the tolerant control strategy was designed for an au-
tonomous vehicle with proprioceptive sensors’ fault. A fault-
tolerant control was developed for the linear systemwith sensor
and actuator faults by using observer-based H∞ method in
[33]. However, the fault-tolerant control methods need further
development to improve their safety of various aircrafts with
sensor fault.

In the past several years, various tolerant control
schemes of the aircrafts with sensor fault have been studied
[34]. In [35], the detection and recovery method was studied
for the satellite attitude control system with sensor fault.
Aiming at the hypersonic flight vehicle with multisensor
faults, a nonlinear fault-tolerant control scheme was de-
veloped in [36]. In [37], an observer-based tolerant control
scheme was designed for unmanned aerial vehicle with
sensor faults. 'e reconstruction method was proposed for
the aircraft with sensor fault under disturbances in [38]. In
[39], the estimation method was studied for flight control
systems with sensor fault based on the identification of
aerodynamic parameters. In [40], a fuzzy adaptive tolerant
control scheme was proposed for a quadrotor unmanned
aerial vehicle with nonlinear sensor fault. However, the
fault-tolerant control methods are rare for the suspension
cable system of an unmanned helicopter with sensor fault
which needs to be further studied.

Motivated by above analysis, the scheme of a robust
antiswing control is studied for the suspension cable system
of an unmanned helicopter with sensor fault to improve its
reliability. 'e key innovations of this paper are stated as
follows:

(1) A design method of estimator is proposed to solve
the estimation problem of sensor fault in suspension
cable system of an unmanned helicopter.

(2) 'e robust antiswing control law is developed for the
suspension cable system of an unmanned helicopter
by using sensor fault estimator, backstepping tech-
nology, and the desired tracking trajectory.

(3) 'e closed-loop system stability of an unmanned
helicopter with sensor faults is strictly analyzed
under the robust antiswing control scheme.

'e organization of this paper is described as follows.
Section 2 gives the problem description, and the system
model is introduced. 'e sensor fault estimator is proposed
for the antiswing control in Section 3. Section 4 designs the
robust antiswing control scheme based on sensor fault es-
timator. In Section 5, simulation results and analysis are
given to show the effectiveness of the studied antiswing
control scheme, and some conclusions are drawn in Section
6.

2. Problem Description

In this paper, the load uses a single-point hanging method to
connect with the unmanned helicopter, which is the most
widely used one because of compact and simple structure. To
simplify the design of the controller, only the linear motion
of the suspension cable system of the unmanned helicopter
suspension system is considered, as shown in Figure 1 [3].

To establish the line motion model of the suspension
cable system of an unmanned helicopter, we assume that the
load swing amplitude at the initial time is zero; the un-
manned helicopter sling is assumed to be massless, always
straightened during flight, and will not come loose; the
distance between the sling point and the unmanned heli-
copter particle is ignored; unmanned helicopter and hanging
object are rigid bodies, without considering elastic defor-
mation, and the load is regarded as a particle without
considering the shape of the load. Ignore the influence of
rotor airflow on unmanned helicopter and load movement
and ignore the external disturbances, such as the wind,
during the movement [3].

Under above assumptions, by using the Lagrange
method, the nonlinear line motion model of the suspension
cable system of an unmanned helicopter can be described as
follows [3]:

€x �
ml sin θ L _θ

2
+ g cos θ􏼒 􏼓 + T

Mh + mlsin
2 θ

, €θ �
− Mh + ml( 􏼁g sin θ − mlL

_θ
2
sin θ cos θ − T cos θ

L Mh + mlsin
2 θ􏼐 􏼑

,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where T is the lift of unmanned helicopter which is the
control input. x is the unmanned helicopter displacement,

and θ is the swing angle of hanging load which are system
outputs. Mh is the unmanned helicopter mass, ml is the
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suspension load mass, g is the gravity acceleration, and L is
the length of suspension cable.

Define X � cx1 x2 x3 x4􏼂 􏼃
T

� cx θ _x _θ􏽨 􏽩
T

and
u � T. 'en, system (1) can be expressed as

_x1 � x3,

_x2 � x4,

_x3 � f1(X) + g1(X)u,

_x4 � f2(X) + g2(X)u,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where x1 denotes the helicopter displacement x, x2 is the
swing angle of hanging load θ, x3 is the forward flight speed
of helicopter _x, x4 denotes the angular velocity θ

.

of the swing
angle of hanging load θ, and u is the lift T. f1(X), g1(X),
f2(X), and g2(X) are given by

f1(X) �
ml sin θ L _θ

2
+ g cos θ􏼒 􏼓

Mh + mlsin
2 θ

,

g1(X) �
1

Mh + mlsin
2 θ

,

f2(X) �
− Mh + ml( 􏼁g sin θ − mlL

_θ
2
sin θ cos θ

L Mh + mlsin
2 θ􏼐 􏼑

,

g2(X) �
−cos θ

L Mh + mlsin
2 θ􏼐 􏼑

.

(3)

Define X1 � [x1, x2]
T and X2 � [x3, x4]

T. Assume that
the system output is y and y � X1. 'en, we have

_X1 � X2,

_X2 � F(X) + G(X)u,

y � X1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where F(X) � [f1(X), f2(X)]T and
G(X) � [g1(X), g2(X)]T.

In this paper, the forward speed _x is measured by air-
speed head and the swing angle of hanging load θ

.

is surveyed
using an optical camera. We assume that accuracy losses of
the airspeed head sensor and the optical camera sensor are

considered in this study. 'e loss of accuracy of two sensors
is given as follows [40]:

χ � X2 + D(t), ∀t≥ tf, (5)

where χ is the measured value of the airspeed head sensor
and the optical camera sensor with fault D(t) and tf is the
sensor fault occurring time.

'e control design goal of this paper is to develop a
robust antiswing control plan such that the system actual
output y can track the required one yc and the tracking error
e1 � y − yc is convergent when the suspension cable system
of the unmanned helicopter (3) suffers from the sensor fault.

To promote the design of the robust antiswing control
scheme for the suspension cable system of the unmanned
helicopter with sensor fault, some assumptions and lemmas
are required.

Assumption 1. (see [40]). For the sensor fault D, there exist
corresponding inequality conditions ‖D‖≤ τ0, ‖ _D‖≤ τ1, and
‖ €D‖≤ τ2 with τi > 0, i � 0, 1, 2.

Assumption 2. (see [2]). All states of the studied system are
measurable and available. 'e desired system tracking signal
yc and its derivative are always bounded. Furthermore, there
exists an unknown positive constant Δ0 which renders
C0: � (yc, _yc, €yc): ‖yc‖

2 + ‖ _yc‖
2 + ‖ €yc‖

2 ≤Δ0􏽮 􏽯.

Lemma 1. (see [41]). For the any bounded initial conditions,
if there is a C1 positive and continuous Lyapunov function
V(x) which satisfies ρ1(‖x‖)≤V(x)≤ ρ2(‖x‖) and makes
that _V(x)≤ − k1V(x) + k2, where ρ1, ρ2: Rn⟶ R are class
K functions and k1, k2 are positive constants, then its solution
x(t) is uniformly bounded.

Remark 1. In this paper, the sensor fault is considered for
the suspension cable system of an unmanned helicopter. As
well known, the sensor fault and its derivatives should be
bounded in the practical system. If they are not bounded, the
system controllability cannot be guaranteed. 'us, As-
sumption 1 is reasonable for the helicopter suspension cable
system. On the other hand, to design the robust antiswing
control law for the suspension cable system of an unmanned
helicopter, all states are needed. 'us, we assume that all
states are measurable and available. Furthermore, the de-
sired system tracking signal yc and its derivative are also
bounded. If they are not bounded, the tracking control goal
of the suspension cable system of an unmanned helicopter
with sensor fault cannot be realized. From above analysis, we
can conclude that Assumption 2 is also reasonable.

3. Design of Sensor Fault Estimator

In this section, the design of sensor fault estimator will be
given for the suspension cable system of the unmanned
helicopter. Considering (4) and (5), we have

_χ � _X2 + _D(t)

� F(X) + G(X)u + _D(t).
(6)

M

Z

x

m

l

fx

θ

Figure 1: 'e straight line motion of the suspension cable system
of the unmanned helicopter with single point hanging.
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Since F(X) includes θ
.

, F(X) can be written as
F(X) � F(X1, χ) + ΔF(X2). At the same time,
G(X) � G(X1). 'us, we obtain

_χ � F X1, χ( 􏼁 + ΔF X2( 􏼁 + G X1( 􏼁u + _D(t). (7)

Without loss of generality, we assume ΔF(X2) and its
derivative are bounded. 'en, ‖ΔF(X2)‖≤ τ3 with τ3 > 0.
Because the uncertain term ΔF(X2) is generated by the
sensor fault, this assumption is reasonable. Under the sensor
faults, the nonlinear line motion model (4) of the suspension
cable system of an unmanned helicopter can be described as

_X1 � X2,

_χ � F X1, χ( 􏼁 + G X1( 􏼁u + _D(t) + ΔF X2( 􏼁,

y � X1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

Invoking (5), system (8) can be modified as

_X1 � χ − D(t),

_χ � F X1, χ( 􏼁 + G X1( 􏼁u + _D(t) + ΔF X2( 􏼁,

y � X1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

To estimate the unknown sensor fault of the suspension
cable system of the unmanned helicopter, the sensor fault
estimator can be designed as follows [41]:

􏽢D � z1 + L1 X1( 􏼁,

_z1 � −P1 X1( 􏼁(χ − 􏽢D) + 􏽢_D,

_􏽢_D � z2 + L2(χ),

_z2 � −P2(χ) F X1, χ( 􏼁 + G X1( 􏼁u + 􏽢_D􏼒 􏼓,

(10)

where 􏽢D and 􏽢_D are the corresponding estimations of the
sensor fault D and the derivation of the sensor fault _D.

L1(X1) and L2(χ) are the parameters of the studied sensor
fault estimator which needs to be designed. 'e parameters
P1(X1) and P2(χ) should satisfy P1(X1) � (zL1(X1)/zX1)

and P2(χ) � (zL2(χ)/zχ). z1 and z2 are the internal states of
the fault estimator.

Define the estimation errors of the fault estimator as 􏽥D �
􏽢D − D and 􏽥_D � _D −

􏽢_D. 'en, considering (9) and (10), there
yields

_􏽥D � _D − _􏽢D � _D − _z1 − P1 X1( 􏼁 _X1

� −P1 X1( 􏼁 􏽥D + 􏽥_D,

(11)

_􏽥_D � €D −
_􏽢_D � €D − _z2 − P2(χ) _χ

− P2(χ) 􏽥D + €D − P2(χ)ΔF X2( 􏼁.
(12)

We define ef � [ 􏽥D
T
, 􏽥_D

T

]T. Invoking (11) and (12), we
obtain

_ef � Q(x)ef + H1
€D + H2ΔF X2( 􏼁, (13)

where x � [X1, χ], Q(x) �
−P1(X1) I2
−P2(χ) 0􏼢 􏼣, H1 �

0
I2

􏼢 􏼣,

H2 �
0

−P2(χ)
􏼢 􏼣, and P2(χ) is designed as bounded

function.
To investigate the convergence of the estimation error of

the designed sensor fault estimator, the Lyapunov function is
given as follows:

Vf �
1
2
e

T
fAef, (14)

where A is a designed positive definite matrix.
Invoking (13) and Assumption 1, the time derivative of

Vf can be described as

_Vf � e
T
f _ef � e

T
f 0.5 Q

T
(x)A + A

T
Q(x)􏼐 􏼑ef + H1

€D + H2ΔF X2( 􏼁􏼐 􏼑

≤ e
T
f 0.5 Q

T
(x)A + A

T
Q(x)􏼐 􏼑 + 0.5 H1

����
����
2
I4 + 0.5 H2

����
����
2
I4􏼒 􏼓ef + 0.5τ22 + 0.5τ23.

(15)

From above process analysis, the following theorem can
be obtained for the sensor fault estimator of suspension cable
system of the unmanned helicopter.

Theorem 1. Consider the suspension cable system of the
unmanned helicopter (4) with sensor faults satisfying As-
sumption 1, the nonlinear sensor estimator is designed as (10).
If the designed function parameters L1(X1) and L2(χ) are
chosen to render the following inequality valid:

Q
T
(x)A + A

T
Q(x) + H1

����
����
2
I4 + H2

����
����
2
I4 < 0, (16)

then the sensor fault estimation error is uniformly ultimately
bounded.

In accordance with equations (15) and (16) and Lemma 1,
we canmake a conclusion that the sensor estimation error 􏽥D is
uniformly ultimately bounded.

4. Design of Robust Antiswing Control Plan
Based on Sensor Fault Estimator

In this section, the fault-tolerant antiswing control law will be
developed for the suspension cable system of the unmanned
helicopter (4) with sensor faults based on the backstepping
technique. 'e particular design steps are as follows.

Step 1: considering e1 � y − yc and (9) yields

_e1 � _y − _yc � _X1 − _yc � χ − D − _yc. (17)
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To design the robust antiswing fault-tolerant control
plan, we define

e2 � χ − α1, (18)

where α1 is a designed virtual control law.
Substituting (18) into (17) yields

_e1 � e2 + α1 − D − _yc. (19)

'e virtual control law can be proposed as

α1 � −K1e1 + _yc + 􏽢D, (20)

where K1 � KT
1 > 0 is a given parameter.

Substituting (20) into (19), we have

_e1 � −K1e1 + e2 + 􏽥D. (21)

Choose the Lyapunov function in the form of

V1 � 0.5e
T
1 e1. (22)

Differentiating (22) and considering (21) yields

_V1 � e
T
1 _e1 � −e

T
1 K1e1 + e

T
1 e2 + e

T
1

􏽥D

≤ − e
T
1 K1 − 0.5I( 􏼁e1 + e

T
1 e2 + 0.5‖ 􏽥D‖

2
.

(23)

Step 2: differentiating (18), we obtain

_e2 � _χ − _α1. (24)

Considering (9), (24) can be described as

_e2 � F X1, χ( 􏼁 + G X1( 􏼁u + _D(t) + ΔF X2( 􏼁 − _α1. (25)

In this paper, the method of the dynamic surface control
technique is introduced to acquire the derivatives of the
virtual control law α1 to handle the sensor fault D in the first
step. Consider the following first-order filter α1 as follows
[2]:

c _α1 + α1 � α1,

α1(0) � α1(0),
(26)

where c � diag r1, r2􏼈 􏼉> 0 is a time constant.
By defining el � α1 − α1, we have

_el � _α1 − _α1 � −c
− 1

el + Δ1 _yc,
􏽢D, e1􏼐 􏼑, (27)

where Δ1( _yc,
􏽢D, e1) is the sufficiently smooth vector in

regard to Ω1( _yc,
􏽢D, e1). It can be obtained that the smooth

function Δ1(·) is bounded on set Ω1(·) with the maximum
being Δ1m [2].

In order to analyze the convergence of the first-order
filter (24), the Lyapunov function candidate is given by

Vl � 0.5e
T
l el. (28)

Differentiating (29) and invoking (27), we obtain

_Vl � e
T
l _el � e

T
l −c

− 1
el + Δ1 _yc,

􏽢D, e1􏼐 􏼑􏼐 􏼑

≤ − e
T
l c

− 1
− 0.5I􏼐 􏼑el + 0.5Δ21m.

(29)

To handle _D(t), the sensor fault estimator (10) is used.
Using the outputs of the sensor fault estimator and the first-
order filter, the controller law is designed as

u � −G X1( 􏼁
T

G X1( 􏼁G X1( 􏼁
T

􏼐 􏼑
− 1

K2e2 + F X1, χ( 􏼁 + e1 + 􏽢_D(t) − _α1 − βSign e2( 􏼁􏼒 􏼓. (30)

where K2 � KT
2 > 0, β> τ3, are designed parameter and

Sign(e2) � [sign(e21), sign(e22)]
T.

Substituting (30) into (25), we obtain

_e2 � F X1, χ( 􏼁 + _D(t) − _α1 + ΔF X2( 􏼁

− G X1( 􏼁G X1( 􏼁
T

G X1( 􏼁G X1( 􏼁
T

􏼐 􏼑 K2e2 + F X1, χ( 􏼁 + 􏽢_D(t) − _α1 + e1 − β sign e2( 􏼁) � −K2e2 + 􏽥_D + _el − e1 + ΔF X2( 􏼁 − β Sign e2( 􏼁.􏼒

(31)

Considering (27), (31) can be written as

_e2 � −K2e2 +
􏽥_D − e1 − c

− 1
el + Δ1 _yc,

􏽢D, e1􏼐 􏼑 + ΔF X2( 􏼁 − β sign e2( 􏼁.

(32)

Choose the Lyapunov function candidate as

V2 � 0.5e
T
2 e2. (33)

Differentiating (33) and considering (31) yields

_V2 � e
T
2 _e2 � −e

T
2 K2e2 − e

T
2 e1 + e

T
2

􏽥_D − e
T
2 −c

− 1
el + Δ1 _yc,

􏽢D, e1􏼐 􏼑􏼐 􏼑

+ e
T
2ΔF X2( 􏼁 − βe

T
2 sign e2( 􏼁.

(34)

Considering eT
2ΔF(X2) − βeT

2 Sign (e2)< 0, we have

_V2 ≤ − e
T
2 K2 − I2 − 0.5c

− 2
I2􏼐 􏼑e2 − e

T
2 e1 + 0.5‖

􏽥_D‖
2

+ 0.5e
2
l + 0.5Δ21m.

(35)
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'e following theorem is given to summarize the design
of the robust antiswing control scheme studied for the
suspension cable system of an unmanned helicopter with
sensor fault.

Theorem 2. For the studied suspension cable system of an
unmanned helicopter with sensor fault, based on the non-
linear dynamic (4) satisfying Assumption 1 and Assumption
2, the nonlinear sensor fault estimator is designed as (10). By
utilizing the designed sensor fault estimator, the robust
antiswing control scheme is designed as (20), (26), and (30).
Under the sensor fault estimator-based antiswing control of

the suspension cable system of an unmanned helicopter, the
closed-loop system is convergent and all signals are bounded.

Proof. In order to prove the stability of the whole system, the
Lyapunov function is selected as

V � Vf + V1 + V2 �
1
2
e

T
fef + 0.5e

T
1 e1 + 0.5e

T
2 e2. (36)

Differentiating (36) and considering (15), (23), and (35),
we have

_V≤ e
T
f 0.5 Q

T
(x)A + A

T
Q(x)􏼐 􏼑 + 0.5 H1

����
����
2
I4 + 0.5 H2

����
����
2
I4􏼒 􏼓ef + 0.5τ22

− e
T
1 K1 − 0.5I2( 􏼁e1 + e

T
1 e2 + 0.5‖ 􏽥D‖

2

− e
T
2 K2 − I2 − 0.5c

− 2
I2􏼐 􏼑e2 − e

T
2 e1 + 0.5‖ 􏽥_D‖

2
+ 0.5e

2
l + 0.5Δ21m

− e
T
l c

− 1
− 0.5I2􏼐 􏼑el + 0.5Δ21m + 0.5τ22 + 0.5τ23.

(37)

Using the definition ef � [ 􏽥D
T
, 􏽥_D

T

]T, we have

_V≤ e
T
f 0.5 Q

T
(x)A + A

T
Q(x)􏼐 􏼑 + 0.5 H1

����
����
2
I4 + 0.5 H2

����
����
2
I4 + I4􏼒 􏼓ef − e

T
1 K1 − 0.5I2( 􏼁e1

− e
T
2 K2 − I2 − 0.5c

− 2
I2􏼐 􏼑e2

− e
T
l c

− 1
− I2􏼐 􏼑el + τ22 + Δ21m + 0.5τ23.

(38)

Define

κ � λmin 0.5 Q
T
(x)A + A

T
Q(x)􏼐 􏼑 + 0.5 H1

����
����
2
I4 + 0.5 H2

����
����
2
I4 + I4􏼒 􏼓 − K1 − 0.5I2( 􏼁,􏼒

K2 − I2 − 0.5c
− 2

I2􏼐 􏼑, c
− 1

− I2􏼐 􏼑

ρ � τ22 + Δ21m + 0.5τ23.

(39)

'en, we have
_V≤ − κV + ρ. (40)

From (40) and Lemma 1, we can conclude that e1⟶ 0
when t⟶∞. 'us, the tracking control goal is realized for
the suspension cable system of an unmanned helicopter with
sensor fault. 'is concludes the proof. □

5. Simulation Study

In the following, simulation results and analysis are given to
illustrate the validity of the designed antiswing control of the
suspension cable system of an unmanned helicopter based
on the sensor fault estimator. 'e basic parameters of the

suspension cable system of an unmanned helicopter are
referred to [2] and are presented in Table 1.

In the given simulation analysis, the system initial
conditions are given by [XT

1 (0), XT
2 (0)] � [0, 0, 0, 0]T. 'e

desired trajectories of an unmanned helicopter are as
follows:

xc � 50m,

θc � 0∘.
(41)

Furthermore, the sensor fault vector is given by

D �
0.15 sin(t)

0.1 sin(t)

⎡⎢⎣ ⎤⎥⎦. (42)
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'e corresponding design parameters of the developed
antiswing control of the suspension cable system of an
unmanned helicopter based on the sensor fault estimator are
chosen as K1 � I2, K2 � 150I2, and c � 0.5. 'e nonlinear
sensor fault estimator is designed as (10). Based on the
designed sensor fault estimator, the robust antiswing control
scheme is developed as (20), (26), and (30). 'e simulation
results are presented in Figures 2–7.

Figures 2 and 3 show the tracking control result of the
suspension cable system of an unmanned helicopter with
sensor fault by using the designed robust antiswing control
plan which can verify the effectiveness of the developed
antiswing control method. 'e tracking control errors are

presented in Figures 4 and 5. 'ey can be seen that the
tracing errors of the suspension cable system of an un-
manned helicopter with sensor fault are convergent and
bounded. 'en, Figures 6 and 7 show the effectiveness of the
developed sensor fault estimator. We can note that the
estimation results 􏽢D are good and meet the antiswing
performance requirement by using the developed sensor
fault estimator. Specially, we can see that the swing angle of
the load is small in the flight process. 'us, the antiswing
performance is achieved under the sensor fault.

Table 1: System parameters.

Symbol Unit Value
M kg 2000
m kg 500
g m/s2 9.8
l m 15
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Figure 2:'e tracking control result of the helicopter displacement
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Figure 3: 'e tracking control result of the swing angle of hanging
load θ.

e 1
1 

(m
)

–50

–40

–30

–20

–10

0

10

20

t (sec)
0 5040302010

Figure 4:'e tracking control error of the helicopter displacement
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Figure 5: 'e tracking control error of the swing angle of hanging
load θ.
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Figure 6: 'e estimation result of the sensor fault D1.
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On the basis of the given simulation results and analysis,
we can draw a conclusion that the satisfactory antiswing
control performance can be guaranteed for the suspension
cable system of an unmanned helicopter based on the sensor
fault estimator.'us, the designed antiswing control scheme
is valid for the suspension cable system of an unmanned
helicopter.

6. Conclusion

'e robust antiswing control scheme has been proposed for
the suspension cable system of an unmanned helicopter with
sensor fault. In order to tackle the sensor fault, a sensor fault
estimator has been designed to estimate it. By using the
output of sensor fault estimator, the robust tolerant control
scheme has been developed to maintain the desired tracking
control performance during the flight progress. In accor-
dance with the designed antiswing controller, the system can
track the desired trajectory and the whole system stability is
guaranteed by using the Lyapunov method. Simulation
results have been presented to show the efficiency of the
studied antiswing control law for the suspension cable
system of an unmanned helicopter with sensor fault. In the
future work, the finite time sensor fault estimator can be
designed for the suspension cable system of an unmanned
helicopter.
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Understanding the implication of point cloud is still challenging in the aim of classification or segmentation for point cloud due to
its irregular and sparse structure. As we have known, PointNet architecture as a ground-breaking work for point cloud process can
learn shape features directly on unordered 3D point cloud and has achieved favorable performance, such as 86% mean accuracy
and 89.2% overall accuracy for classification task, respectively. However, this model fails to consider the fine-grained semantic
information of local structure for point cloud.2en, a multiscale receptive fields graph attention network (named after MRFGAT)
by means of semantic features of local patch for point cloud is proposed in this paper, and the learned feature map for our network
can well capture the abundant features information of point cloud. 2e proposed MRFGAT architecture is tested on ModelNet
datasets, and results show it achieves state-of-the-art performance in shape classification tasks, such as it outperforms GAPNet
(Chen et al.) model by 0.1% in terms of OA and compete with DGCNN (Wang et al.) model in terms of MA.

1. Introduction

Point cloud as a simple and efficient representation for 3D
shapes and scenes has becomemore andmore popular in the
fields of both academia and industry. For example, auton-
omous vehicle [1–4], robotic mapping and navigation [5–7],
3D shape representation and modelling [8, 9], and other
relevant applications [10–15]. Lots of ways can be used to
obtain 3D point cloud data, such as utilizing 3D scanners
including physical touch or noncontact measurements with
light, sound, LiDAR, etc.

Up to now, a variety of approaches have been developed
to handle this kind of data, such as the commonly used
traditional handcraft algorithms [16–18]. In terms of these
methods, it is significant to classify or segment point cloud
by choosing salient features of point cloud, such as normals,
curvatures, and colors. Handcrafted features are usually
employed to address specific problems but tough to transfer

to new tasks. 2en, it is a hot topic, in last decades, that how
to overcome the shortcomings for traditional methods.

With the development of deep learning, some existed
end-to-end neural networks have overcame many chal-
lenges’ stem from 3D data and made great breakthrough for
point cloud, see Figure 1. In particular, the modificatory
works of convolutional neural networks (CNNs) have
achieved significant success for point cloud data in computer
vision tasks, such as PointNet [19] and its improved version
[20], PointCNN [21, 22], and PointSift [23]. Unfortunately,
lots of neural networks for point cloud only capture global
feature without local information which are also an import
semantic feature for point cloud. Hence, exploiting rea-
sonably the local information of point cloud has become a
new research hotspot, and some valuable works also have
sprung up recently. PointNet++ [20] extends the PointNet
model by constructing a hierarchical neural network that
recursively applies PointNet with designed sampling and
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grouping layers to extract local features. Graph neural
networks [24, 25] can not only directly address a more
general class of graphs, e.g., cyclic, directed, and undirected
graphs, but also be applied to deal with point cloud data.
Recently, DGCNN [26] and its variant [27] well utilized the
graph network with respect to the edges’ convolution on
points and then obtained the local edges’ information of
point cloud. Other relevant works applying the graph
structure of point cloud can be found in [28–30].

Attention mechanism plays a significant role in machine
translation task [31], vision-based task [32], and graph-based
task [33]. Combining graph structure and attention
mechanism, some favorable network architectures are
constructed which leverage well the local semantic features
of point cloud. Readers can refer to [34–36].

However, the scale of different graphs for the existed graph
networks are fixed; then, the semantic expression of the point
will not be good.Hence, in thiswork, inspired by graph attention
network [33], graph convolution network [37], and local con-
textual information networks, we design a multiscale receptive
fields’ graph attention network for point cloud classification.
Unlike previous models that only consider the attribute infor-
mation such as coordinate of each single point or only exploit
local semantic information of point, we pay attention to the
spatial context information of both local and global structure for
point cloud. Finally, like the standard convolution in grid do-
main, our model can also be efficiently implemented for the
graph representation of a point cloud.

2e key contributions of our work are summarized as
follows:

(i) We construct graph of local patch for point cloud
and then enhance the feature representation of
point in point cloud by combining edges’ infor-
mation and neighbors’ information

(ii) We introduce a multiscale receptive fields’ mech-
anism to capture the local semantic features in
various ranges for point cloud

(iii) We balance the influence between neighbors and
centroid in the local graph by means of attention
mechanism

(iv) We release our code to facilitate reproducibility and
future research (https://github.com/Blue-Giant/
MRFGAT–NET)

2e rest parts of this paper are structured as follows. In
Section 2, we review the most closely related literatures on point

cloud. In Section 3, we introduce our proposed MRFGAT ar-
chitecture and provide the details of our framework in terms of
shape classification for point cloud. We describe the dataset and
design comparison algorithms in Section 4, followed by the
experiments’ results and discussion. Finally, some concluding
remarks are made in Section 5.

2. Related Works

2.1. Pointwise MLP and Point Convolution Networks.
Utilizing the deep learning technique, the classical PointNet [19]
was proposed to deal with directly unordered point clouds
without using any volumetric or grid-mesh representation. 2e
main idea of this network is as follows. At first, a Spatial
Transformer Network (STN) module similar to feature-
extracting process is constructed which guarantees the invari-
ance of transformations. 2en, a shared pointwise Multilayer-
Perceptron (MLP)module is introduced which is used to extract
semantic features form point sets. At last, the final semantic
information of point cloud is aggregated by means of a max
pooling layer. Due to the favorable ability to approximate any
continuous function for MLP which is easy to implement by
point convolution, some relatedworkswere presented according
to the PointNet architecture [38, 39].

Similar to convolution operator in 2D space, some
convolution kernels for points in 3D space are designed
which can capture the abundant information of point cloud.
PointCNN [21] used a local X-transformation kernel to
fulfill the invariance of permutation for points and then
generalized this technique to the hierarchical form in
analogy to that of image CNNs. 2e authors in [40–42]
extended the convolution operator of 2D space, applied at
individual point in local region of point cloud, and then
collected the neighbors’ information in the hierarchical
convolution layer to the center point. Kernel Point Con-
volution (KPConv) [43] consists of a set of local 3D filters
and overcomes stand point convolution limitation. 2is
novel kernel structure is very flexible to learn local geometric
patterns without any weights.

2.2. Learning Local Features. In order to overcome the
shortcoming for PointNet-like networks which fail to exploit
local features, some hierarchical architectures have been
developed, for example, PointNet [20] and So-Net [38], to
aggregate local information with MLP operation by con-
sidering local spatial relationships of 3D data. In contrast to
the previous type, these methods can avoid sparsity and
update dynamically in different feature dimensions.
According to a Capsule Networks, 3D Capsule Convolu-
tional Networks were developed which can learn well the
local features of point cloud, see [44–46].

2.3. Graph Convolutional Networks. Graph Convolutional
Neural Networks (GCNNs) have gained more and more
attraction to address irregularly structured data, such as
citation networks and social networks. In terms of 3D point
cloud data, GCNNs have shown its powerful ability on
classification and segmentation tasks. Using the convolution

N
 ×

 d Extraction

N
 ×

 d
′

Aggregation

Fe
at

ur
e v

ec
to

r

Classifier K

Figure 1: A typical framework of a 3D point cloud classification
process. 2e model takes N points in d-dimensional space as its
input and then extracts point features of dimension d′, followed by
an aggregation module used to form a feature vector which is
invariant to point permutation. Finally, a classifier is used to classify
the resulting feature vector into K categories.
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operator with respect to the graph in the spectral domain is
an important approach [47–49], but it needs to calculate a lot
of parameters on polynomial or rational spectral filters [50].
Recently, many researchers constructed local graph of point
cloud by utilizing each point’s neighbors in low-dimensional
manifold based on N-dimensional Euclidean distance and
then grouped each point’s neighbors in the form of high-
dimensional vectors, such as EdgeConv-like works
[26, 27, 51] and graph convolutions [37, 52]. Compared with
the spectral methods, its main merit is that it is more
consistent with the characteristics of data distribution.
Specially, EdgeConv extracts edge features through the re-
lationship between central point and neighbor points by
successively constructing graph in the hierarchical model. To
sum up, the graph convolution network combines features
on local surface patches which are invariant to the defor-
mations of patches for point cloud in Euclidean space.

2.4. Attention Mechanism. 2e idea of attention has been
successfully used in natural language processing (NLP) [31]
and graph-based work [33, 53]. Attention module can
balance the weight relationship of different nodes in graph
structure data or different parts in sequence data.

Recently, the attention idea has obtained more and more
attraction and made a great contribution to point cloud
processes [34, 35]. In these works, it is significant to ag-
gregate point or edge features by means of attention module.
Unlike the existing methods, we try to enhance the high-
level representation of point cloud by capturing the relation
of points and local information along its channel.

3. Our Approach

2e framework of point cloud classification includes two
contents: taking the 3D point cloud as input and assigning
one semantic class label for each point. Based on the
technique of extracting features from the local directed
graph and attention mechanism, a new architecture for
shape classification task is proposed to better learn point’s
representation for unstructured point cloud. 2is new ar-
chitecture is composed of three components which are the
point enhancement, the feature representation, and the
prediction. 2ese three components are fully coupled to-
gether, which leads to an end-to-end training pipeline.

3.1. Problem Statement. At first, we let
P � pi ∈ Rd, i � 1, 2, . . . , N􏽮 􏽯 represent a raw set of unor-
dered points as the input for our mode, where N is the
number of the points and pi is a feature vector with a di-
mension d. In actual applications, the feature vector pi might
contain 3D space coordinates (x, y, z), color, intensity,
surface normal, etc. For the sake of simplicity, we set d � 3 in
our work and only take 3D coordinates of point as the
feature representation for point. A classification or semantic
segmentation of a point cloud are map Φc or Φs, respec-
tively, which assign individual point semantic labels or point
cloud semantic labels, respectively, i.e.,

Φ: P⟶ L
k
. (1)

Here, Φ represents the map Φc or Φs. 2e objective of
our model is finding the optimal map that can obtain ac-
curate semantic labels.

2e above map should satisfy some constraints including
the following. (1) Permutation invariance: the order of
points may vary but does not influence the category of the
point or point cloud. (2) Transformation invariance: for the
uncertain translation and rotation of point cloud, the results
of classification or segmentation should not be changed for
point or point cloud.

3.2. Graph Generation for Point Cloud. Some works indicate
that local features of point cloud can be used to improve the
discriminability of point; then, exploring the relationship
among points in a whole sets or local patch is a keypoint for
our work. Graph neural network is a feasible approach to
process point cloud because it propagates on each node for
the whole sets or a local patch of point cloud individually,
ignores the permutation order of nodes, and then extracts
the local information between nodes. To apply the graph
neural network on the point cloud, we firstly convert it to a
directed graph. Like DGCNN [26, 27] and GAPNet [34], we
can obtain the neighbors (including self ) of each point in
point cloud by means of K–NN algorithm and then con-
struct a local directed graph in Euclidean space. Figure 2
depicts the directed graph G � (V; E) of local patch for point
cloud, V � 1, 2, . . . , K{ } is the vertice set of G, namely, the
nodes of local patch, E stands for the edge set of G, and each
edge is eij � pi − pij with pi ∈ P and pij ∈ V being centroid
and neighbors, respectively.

3.3. Single Receptive Field Graph Attention Layer (SRFGAT).
In order to aggregate the information of neighbors, we use a
neighboring-attention mechanism which is introduced to
obtain attention coefficients of neighbors for each point, see
Figure 3. Additionally, edge features are important local
features which can enhance the semantic expression of
point; then, an edge-attention mechanism is also introduced
to aggregate information of different edges, see Figure 3. In
light of the attention mechanism [33, 34], we firstly trans-
form the neighbors and edges into a high-level feature space
to obtain sufficient expressive power. To this end, as an
initial step, a parametric nonlinear function h(·) is applied to
every neighbor and edge, and the results are defined by

eij
′ � h eij, θ􏼐 􏼑 ∈ RF′

,

pij
′ � h pij, θ􏼐 􏼑 ∈ RF′

,
(2)

respectively, where θ is a set of learnable parameters of the
filter and F′ is output dimension. In our method, function
h(·) is set to a single-layer neural network.

It is worthwhile to noting that edges in Euclidean space
not only stand for the local features but also indicate the
dependency between centroid and neighbor. We then obtain
attentional coefficients of edges and neighbors which are
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aij � Leakly ReLU g eij
′ , θ􏼐 􏼑􏼐 􏼑 and bij � Leakly ReLU g eij, θ􏼐 􏼑􏼐 􏼑,

(3)

respectively, where g(eij
′ , θ) and g(eij, θ) are single-layer

neural network with 1-dimensional output. Leaky ReLU(·)

denotes nonlinear activation function leaky ReLU with
ReLU � max 0, x{ }. To make coefficients easily comparable
across different neighbors and edges, we use a softmax op-
eration to normalize the above coefficients which are defined as

αij �
exp aij􏼐 􏼑

􏽐kexp aik( 􏼁
,

βij �
exp bij􏼐 􏼑

􏽐kexp bik( 􏼁
,

(4)

respectively; then, the normalized coefficients are used to
compute contextual feature for every point, and it is
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Figure 2: Local graph of point cloud. pi and pi1, pi2, pi3, pi4, pi5, pi6􏼈 􏼉 are a central point and its neighbors, respectively. 2e directed edges
from the neighbors to the central point are denoted by ei1, ei2, ei3, ei4, ei5, ei6􏼈 􏼉.
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Figure 3: An illustration of attention coefficients’ generation. 2e edge feature not only serves as local information to center point but also
responses the effect of between neighbors and centroid. Edge attention and neighbor attention reflect the important of edge features and
neighbor features to centroid, respectively.
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􏽥xi � f 􏽘
j

αijeij
′⎛⎝ ⎞⎠ 􏽘

j

βijqij
′⎛⎝ ⎞⎠

����������

⎛⎝ ⎞⎠, (5)

where f(·) is a nonlinear activation function and ‖ is
concatenation operation. In our model, we choose ReLU
function as f(·).

3.4. Multiscale Receptive Fields Graph Attention Layer
(MRFGAT). In order to obtain sufficient feature informa-
tion and stabilize the network, the multiscale receptive field
strategy analogous to multiheads mechanism is proposed,
see Figure 4. Unlike previous works, the sizes of receptive
fields in our model are different for various branches.
2erefore, we concatenate M independent SRFGATmodule
and generate a semantic feature with M × F′ channels:

􏽥xi � ‖
M
m�1􏽥x

(m)
i , (6)

where 􏽥x
(m)
i is the receptive field feature of the mth branch, M

is the total number of branches, and ‖ is the concatenation
operation over feature channels.

3.5. MRFGAT Architecture. Our MRFGATmodel shown in
Figure 5 considers shape classification task for point cloud.
2e architecture is similar to PointNet [19]. However, there
are three main differences between the architectures of
MRFGATand PointNet. Firstly, according to the analyses of
LinkDGCNN model, we remove the transformation net-
work which is used in many architectures such as PointNet,
DGCNN, and GAPNet. Secondly, instead of only processing
individual points of point cloud, we also exploit local fea-
tures by a SRFGAT-layer before the stacked MLP layers.
2irdly, an attention pooling layer is used to obtain local
feature information that is connected to the intermediate
layer for forming a global descriptor. In addition, we ag-
gregate individually the original edge feature of every
SRFGAT channel and then obtain local features which can
enhance the semantic feature of MRFGAT.

4. Experiments

In this section, we evaluate ourMRFGATmodel on 3D point
cloud analysis for the classification tasks. To demonstrate
effectiveness of our model, we then compare the perfor-
mance for our model to recent state-of-the-art methods and
perform ablation study to investigate different design
variations.

4.1. Classification

4.1.1. Dataset. We demonstrate the feasibility and effec-
tiveness of our model on the ModelNet dataset such as
ModelNet40 benchmarks [54] for shape classification. 2e
ModelNet40 dataset contains 12,311 meshed CAD models

that are classified to 40 man-made categories. In this work,
we divide the ModelNet40 dataset into two parts: the part
one is named as training set which includes 9843 models and
the part two is called as testing set includes 2468 models.
2en, we normalize the models in the unit sphere and
uniformly sample 1,024 points over model surface. Besides,
we further augment the training dataset by randomly ro-
tating, scaling the point cloud, and jittering the location of
every point by means of Gaussian noise with zero mean and
0.01 standard deviation for all the models.

4.1.2. Implementation Details. According to the analysis of
the LinkDGCNN model [27], we omit the spatial trans-
formation network to align the point cloud to a canonical
space. 2e network employs four SRFGAP layer modules
with (8, 16, 16, 24) channels to capture attention features,
respectively. 2en, four shared MLP layers with sizes (128,
64, 64, 64), respectively, followed by it are used to aggregate
the feature information. Next, the output features are fed
into an aggregation operation followed by the MLP layer
with 1024 neurons. In the end of network, a max pooling
operation and two full-connected layers (512, 256) are used
to finally obtain the classification score. 2e training is
carried out using Adam optimizer with minibatch training
(batch size of 16) and an initial learning rate of 0.001. 2e
ReLU activate function and Batch Normalization (BN) are
also used in both the SRFGAP module and MLP layer. At
last, the network was implemented using TensorFlow and
executed on the server equipped with four NVIDIA
GTX2080Ti.

4.1.3. Results. Figures 6–8 depict the process for training
and testing. From the figures, we see that our model will
quickly attain the stage of high accuracy, which means our
model is highly efficient. Table 1 lists the results of our
method and several recent state-of-the-art works. 2e
methods listed in Table 1 have one thing in common. 2e
input is only raw point cloud with 3D coordinates (xi, yi, zi).
Based on these results, we can conclude that our model
performs better than other methods and obtains wonderful
performance on both the ModelNet40 benchmark. Com-
pared to other point-based methods, the performance for
our model is only a little weaker than that of DGCNN in
terms of MA on ModelNet 40. However, it outperforms the
previous state-of-the-art model GAPNet by 0.1% accuracy in
terms of OA. 2ese phenomena show that the strategy
employing local and global features in different receptive
fields is efficient, and it will help us to capture the prominent
semantic feature for point cloud. And, in our model, since
we introduce the structure of the data by providing the local
interconnection between points and explore graph features
from different scale field levels by the localized graph
convolutional layers, it guarantees the exploration of more
distinctive latent representations for each object class.
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Figure 4: Multiscale receptive fields.
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Figure 5: 2e architecture of classification. In this framework, it takes N points as input and applies M individual SRFGATmodules to
obtain multiattention features on multilocal graphs; then, the output features are recast by means of five shared MLP layers and attention
pooling layer, respectively. Finally, a shared full-connected layer is employed to form a global feature and then classification scores for c
categories are obtained.
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Figure 6: 2e curve of loss varying with epochs for ModelNet40, and it includes five training in one epoch.
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5. Conclusion

Enlightening by graph convolutional networks for the task
of classification in 3D computer vision, we design a novel
MRFGAT-based modules for point feature and context
aggregation. Utilizing different receptive fields and at-
tention strategies, the pipeline MRFGAT can capture

more fine features of point clouds for classification task. In
addition, we list some comparable results with recent
works which show that our model can achieve the state-of-
the-art performance on the dataset ModelNet for classi-
fication task of point clouds; it outperforms the GAPNet
model by 0.1 % in terms of OA and competes with the
DGCNN model in terms of MA. It is necessary to point
out that our model will have some burden for constructing
varying scale graphs. Based on the state-of-the-art Graph
Convolution Networks (GCN) for semantic segmentation
in point cloud, it would be interesting to introduce our
model to address this problem for unstructured data in the
future.

Data Availability

2is dataset used in this manuscript is available at https://
shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip.
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Table 1: Classification results on ModelNet40. MA represents
mean per-class accuracy, and the per-class accuracy is the ratio of
the number of correct classifications to that of the objects in a class.
OA denotes the overall accuracy, which is the ratio of the number of
overall correct classifications to that of overall objects.

Method Points MA (%) OA (%)
SO-Net [38] 2048 × 3 87.3 90.9
KD-Net [40] 1024 × 3 88.5 91.8
PointNet [19] 1024 × 3 86.0 89.2
PointNet++ [20] 1024 × 3 — 90.7
PointCNN [21] 1024 × 3 88.1 92.2
DGCNN [26] 1024 × 3 90.2 92.2
PCNN [22] 1024 × 3 — 92.3
GAPNet [34] 1024 × 3 89.7 92.4
Ours 1024 × 3 90.1 92.5
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Hemispherical Resonator Gyro (HRG) is a new type gyro with high precision, high reliability, shock resistance, no need of
preheating, short start time, and long life. It is a kind of vibrating gyro with standing wave rotating along the sensitive base of
annular precession, has a unique application prospect in the field of high precision inertial sensors, and is widely used in
unmanned aerial vehicle control in complex environments. Based on the theory of the structure characteristics of the hemi-
spherical resonator, the mathematical model of energy of the resonator is established to research the rule of resonant frequency
when the hemispherical resonator is rotated around the central axis. In this paper, the influence of precession factor, which are the
top angle, the bottom angle, and wall unevenness of the hemispherical resonator, are analyzed. A series of hemispherical resonator
models are constructed by ANSYS software to prove the results of theoretical research.,e simulation results show that precession
factor of the hemispherical resonator is more sensitive of the top angle than the bottom angle, and the error of angular velocity
which is caused by the change of the top angle is larger than that which is caused by the change of the bottom angle.

1. Introduction

,e main sensitive part of the HRG is the hemispherical
resonator with ultralow damping [1–3]. It is the superior
performance of the hemispherical resonator that the HRG
which can be widely used in the fields of land, sea, air, and
sky electricity. In this paper, the characteristics of the HRG
are analyzed with the resonator forming process, perfor-
mance indicators, and user requirements, the mathematical
model of the resonator is established, and the optimum
mode and precession factor are determined. It provides the
theoretical research basis for large quantity and low cost, so
as to accelerate the development and application process of
the HRG.

2. The Equation of Motion of Resonator

,e hemispherical resonator consists of two parts: the thin-
walled hemispherical shell and the supporting rod. ,e
resonator material reaches the maximum value of bending

energy storage because of the thin-walled hemispherical
shell, and the support rod is fixed by indium welding, which
acts as a constraint and supports the resonator and also
carries on the transmission of electrical signals. ,e paper
discussed the mathematical model of the energy of the
hemispherical resonator based on the Kirchhoff and gave the
specific expressions of resonant frequency and precession
factor based on the principle of energy conservation. ,e
influence of resonator parameters on the precession factor
caused by process defects such as the bottom angle φ0, top
angle φF, and nonideal wall thickness h(φ) is also analyzed
by using the mathematical model of the energy resonator.

,e coordinates of the hemispherical resonator is shown
in Figure 1 [4, 5].

,e x-axis is the central axis of the resonator; R and h(φ)

are the center radius and wall thickness of the hemispherical
shell, respectively, φ0 is the bottom angle of the resonator,
which is the angle between the constrained end of the
resonator and the center axis, which is determined by the
ratio of the radius of the supporting rod of the resonator to
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the radius of the hemispherical shell, and φF is the top angle
of the resonator, which is the angle between the free end of
the resonator and the center axis without any constraint,
φ0 � 0o and φF � 90°.

,e displacement vector of point A on the shell is

V � au + bv + cw, (1)

where u, v, and w are the displacement components of shell,
tangent, and radial, respectively, and a, b, and c are the
corresponding dynamic vectors, respectively.

,e deformation and stress of the resonator are con-
strained by the elastic mechanics of the thin shell. Assuming
that the resonator rotates at an angular velocity Ω � Ωx +

Ωyz in the inertial space, the mode of the resonator in the
rotational space can be expressed as follows:

u(φ, θ, t) � u(φ)cos n(θ + ψ)cosωnt,

v(φ, θ, t) � v(φ)sin n(θ + ψ)cosωnt,

w(φ, θ, t) � w(φ)cos n(θ + ψ)cosωnt,

⎧⎪⎪⎨

⎪⎪⎩

ψ � 􏽚
t

t0

Pdt � K 􏽚
t

t0

Ωdt,

(2)

where u(φ), v(φ), and w(φ) are the modes distributed along
each direction; ψ is the precession angle of the modes; n is
circumferential waves; ωn is the resonant frequency; K is the
precession factor.

According to the theory of elastic thin shell, the elastic
potential energy of the hemispherical resonator is as follows:

U �
E

2 1 − μ2􏼐 􏼑
􏽚

S
ε2θ + ε2φ + 2μεθεφ +

1 − μ
2

ε2φθ +
h
2
(φ)

12
λ2θ + λ2φ + 2μλθλφ +

1 − μ
2

λ2φθ􏼒 􏼓􏼢 􏼣h(φ)dS, (3)

where E is the elastic modulus and μ is Poisson’s ratio of the
material.

In the hemispherical shell, the midplane strain and the
midplane bending deformation of the stretchable hemi-
spherical thin shell in formula (3) are as follows:

εφ �
(zu/zφ + w)

R
,

εθ �
(zv/zθ + u cosφ + w sinφ)

R sinφ
,

εφθ �
(zu/zθ + zv/zφ sinφ − v cosφ)

R sinφ
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λφ �
zu/zφ − z

2
w/zφ2

􏼐 􏼑

R
2 ,

λθ �
−1/sinφz

2
w/zθ2 − cosφzw/zφ + u cosφ + zv/zθ􏼐 􏼑

R
2 ,

λφθ �
zu/zθ + sinφzv/zφ − v cosφ + 2 cosφ/ sinφzw/zθ − z

2
w/zφ zθ􏼐 􏼑􏽨 􏽩

R
2 sinφ􏼐 􏼑

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)
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Figure 1: ,e coordinate of the hemispherical resonator.
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In the practical system, the top of the hemispherical shell
is free and the bottom is constrained and is in the state of
microamplitude vibration, so the hemispherical shell sat-
isfies the theory that the normal and tangential strain of the
middle plane is zero. u(φ), v(φ), and w(φ) have the fol-
lowing relations:

w(φ) � −
du(φ)

dφ
,

nv(φ) + u(φ)cos(φ) −
du(φ)

dφ
sinφ � 0,

nu(φ) + v(φ)cos(φ) −
dv(φ)

dφ
sinφ � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Due to the constraint boundary condition at the bottom,

u φ0( 􏼁 � v φ0( 􏼁 � w φ0( 􏼁 � 0, (6)

it can be obtained

u(φ) � v(φ) � C1 sinφ tan
nφ
2

,

w(φ) � −C1(n + cosφ)tannφ
2

,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

where C1 is a constant to be determined by the initial ex-
citation condition of the vibration [6–9].

3. The Precession Characteristics of the HRG

3.1.1eWorkingPrinciple ofHRG. HRG is measured by the
angular velocity or angle of the input based on the
Coriolis principle. When HRG does not rotate, the po-
sition of the wave belly point and the wave node is sta-
tionary relative to the hemispherical shell, and when the
external excitation is applied to the resonator, the energy
of the resonator can be converted between different
modes to form a stable vibration shape. When the HRG is
rotated, the resonant shape of the stable vibration will lag
the physical rotation of the gyroscope body, and its
hysteresis is about 0.3 times of the rotation angle; the
principle is shown in Figure 2.

3.2. 1e Resonant Frequency of the HRG. When the resonant
frequency of the hemispherical resonator is researched, the
inertial force acting on the hemispherical resonator should be
considered, and it is also necessary to consider the external
force acting on the edge of the surface of the resonator.

Assuming the elastic force of the virtual work is δWK,
external force caused by angular velocity Ω of the virtual work
is δWe and vibration inertia force of the virtual work is δT.

According to the reference [10], with the displacementV,
the virtual work of the vibration inertia force F can be
obtained as follows:

δT � 􏽚 V dF

� ρπR
2
e
2iωnt

􏽚
φF

φ0

n
2
P
2

+ ω2
􏼐 􏼑 sin2 φ + 2n cosφ􏼐

+ n
2

+ 1􏼑tan2n φ
2

􏼒 􏼓sinφh(φ)dφC1δC1.

(8)

,e external force caused by the angular velocity needs
to be considered because the rotating inertia force causes
the rotating acceleration a(Ω) � a(Ωx) + a(Ωyz). ,e vir-
tual work of the rotating inertia force can be obtained as
follows:

δWe � ρπR
2
e
2iωnt

􏽚
φF

φ0

−4n
2sin3 φ tan2n φ

2
􏼒 􏼓Ωx P􏼔

+ sin3 φ 1 + n
2

􏼐 􏼑an
2n φ

2
􏼒 􏼓Ω2x + f1(n,φ)Ω2yz􏼕

· h(φ)dφC1δC1,

f1(n,φ) �
1
2

sin2 φ 3 + 2n cosφ + cos2 φ􏼐 􏼑􏼐

+ cos2 φ + n􏼐 􏼑
2
1 + cos2 φ􏼐 􏼑􏼓tan2n φ

2
􏼒 􏼓.

(9)

,e elastic potential energy of the shell is produced by
the elastic force, and the virtual work of the elastic force is as
follows:

δWK � δ(−U). (10)

According to the reference [10], the virtual work of
elastic force can be obtained as follows:

δWK � −πe
2iωnt

􏽚
φF

φ0

E

(1 + μ)R
2

n
2

n
2

− 1􏼐 􏼑
2

3 sin3 φ
tan2n φ

2
􏼒 􏼓h

3
(φ)dφ + R

2 ρ􏽚
φF

φ0
f2(n,φ)Ω2x + f3(n,φ)Ω2yz􏼐 􏼑􏽨 􏽩h(φ)dφ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
C1δC1,

f2(n,φ) � (n + cosφ)
2 sin2 φ + n

2
􏼐 􏼑 φ cosφ + sin2 φ􏼐 􏼑tan2n φ

2
􏼒 􏼓 + sin4 φ sin2 φ − 2n(n + cosφ)􏼐 􏼑tan2n φ

2
􏼒 􏼓,

f3(n,φ) �
1
2

n
2

+ sin2 φ􏼐 􏼑(cosφ + n)
2 φ cosφ + 1 + cos2 φ􏼐 􏼑tan2n φ

2
􏼒 􏼓 + sin2 φ cos2 φ + 1􏼐 􏼑􏼐 􏼑 sin2 φ − 2n(n + cosφ)􏼐 􏼑tan2n φ

2
􏼒 􏼓.

(11)
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According to the principle of virtual displacement, the
total sum of work by virtual displacement is zero, it remains
still is that and the result can be obtained:

δT + δWe + δWK � 0. (12)

,e frequency of the hemispherical resonator is as
follows:

ωn �

���
k0

km

􏽳

, (13)

where

km � 􏽚
φF

φ0
sin2 φ + 2n cosφ + n

2
+ 1􏼐 􏼑tan2n φ

2
􏼒 􏼓sinφh(φ)dφ,

k0 �
En

2
n
2

− 1􏼐 􏼑
2

ρ(1 + μ)R
4 􏽚

φF

φ0

1
3 sin3 φ

tan2n φ
2

􏼒 􏼓h(φ)dφ.

(14)

3.3.1e Precession Factor of the HRGMode. When the HRG
rotates at an angular velocity Ω in the inertial space, the
circular mode turns the ψ angle in reverse at the rate P �

KΩx [11, 12].
,e inertial forces at any point in the hemispherical

resonator shell are

F � F0 + F Ωx( 􏼁 + F Ωyz􏼐 􏼑, (15)

where F0, F(Ωx), and F(Ωyz) are the inertia forces when the
hemispherical resonator does not rotate, respectively, and
the virtual work of the virtual displacement is

δT � δT0 + δT Ωx( 􏼁 + δT Ωyz􏼐 􏼑 + δT(Ω) − δW(Ω),

(16)

where

δT0 � ω2 πρcos2 ωt 􏽚
φF

φ0
[u(φ)δu + v(φ)δv + w(φ)δw]Rh(φ)dφ,

δT Ωx( 􏼁 � n
2
P
2πρcos2 ωt 􏽚

φF

φ0

[u(φ)δu + v(φ)δv + w(φ)δw]Rh(φ)dφ + 2πρnPΩxcos
2 ωt

· 􏽚
φF

φ0
[cosφv(φ)δu + cosφu(φ)δv + sinφv(φ)δw + sinφw(φ)δv]Rh(φ)dφ,

δT Ωyz􏼐 􏼑 � 0.

(17)

δW(Ω) is the virtual work of the initial elastic force
caused by the Ω, that is, δWK0, and it can be obtained from
the principle of virtual displacement:

δT + δWK0 � 0, (18)

that is,

δWK0 − δWK(Ω) + δT0 + δT(Ω) � 0. (19)

In the vibration mode of the resonator, δWK0 − δWK(Ω)

is the virtual work of modal elastic force and δT0 is the virtual
work of elastic force.When the HRG rotates at angular velocity
Ω � Ωx +Ωyz in the inertial space, Ωx is the main vibration.
According to the principle that the main vibration energy
remains unchanged, when the hemispherical resonator shell
rotates, the sum of the main vibration energy and potential
energy remains unchanged, and it can be obtained
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Figure 2: ,e angle hysteresis principle of the hemispherical resonator.
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δT Ωx( 􏼁 � 0. (20)

Suppose

G1 � 􏽚
φF

φ0

[cosφv(φ)δu + cosφu(φ)δv + sinφv(φ)δw

+ sinφw(φ)δv]Rh(φ)dφ,

G2 � 􏽚
φF

φ0

[u(φ)δu + v(φ)δv + w(φ)δw]R
2
h(φ)dφ.

(21)

,en,

nPG1 + 2G2Ωx � 0. (22)

,e precession factors can be obtained by finishing:

K �
P

Ωx

� −
2
n

G2

G1
, (23)

where G1 and G2 are only related to the shape of vibration,
the constraint relation of resonator, and the geometric
properties of shell; it also reflects the Coriolis effect and
inertial force on the shell.

4. The Parameter of Resonator Effect on the
Parameter of the HRG

According to the requirement of high precision, assuming the
radius is 15mm, the error of spherical shell radius is not
bigger than 0.014% (about 2 μm) to ensure the stability of the
resonant frequency.,e thickness of resonator wall is 0.6mm,
and the error is not bigger than 0.067%, about 0.402 μm.
Spherical shell sphericity is not bigger than 0.0003mm.
Bracket radius is 2mm, and the error support rod is not bigger
than 0.13%, about 7.8μm. ,e bottom angle φ0 � 7.3° can be
obtained from the ratio of the radius of the supporting rod
and the hemispherical shell.,e precision of the top angle and
the bottom angle is not greater than 0.01。; the brace bar and
hemispherical coaxiality are not bigger than 0.0015mm, and
the quality factor Q is not less than 1× 107.

4.1. 1e Optimal Number of Circumferential Waves.
Equations (13) and (23) were used to calculate the resonant
frequency and precession factor of the hemispherical res-
onator, as shown in Table 1.

With the increase of the number of circumferential
wave number n, the mode of the resonator is becoming
more and more complex, and the resonant frequency and
the energy which is to maintain the resonator vibration is
also increasing continuously. ,e precession factor of the
hemispherical resonator decreases with the number of
circumferential wave.

From the view of the energy loss of the hemispherical
resonator, it is hoped that less energy is needed to maintain
the mode of hemispherical resonator. Considering the ap-
plication and vibration realization condition of the HRG, the
optimal number of circumferential waves is n� 2, and at this
time, K ≈ 0.3.

4.2. Effect of Top Angle and Bottom Angle on Precession
Factor. Assuming the change rate of the mode precession
factor K of the resonator is

σK �
ΔK
K0

, (24)

where K0 is the precession factor when the structural pa-
rameters of the resonator meets the requirement of design
(φ0 � 7.3° and φF � 90°) and ΔK is the variable of precession
factor [13, 14].

,e precession factor K is

K � −
2
n

􏽒
φF

φ0
4 sin2 φ cosφ tannφ/2h(φ)dφ

􏽒
φF

φ0
n
2

+ 2n cosφ + cos2 φ − 3 sin2 φ􏼐 􏼑tannφ/2h(φ)dφ
.

(25)

When the number of circumferential waves is 2, the
relationship between φF and φ0 of the resonator and K is
shown in Figures 3 and 4:

When the structure parameters of the resonator meet
the requirement of design, that is, φ0 � 7.3° andφF � 90°,
the precession factor is K0 � −0.2981762; when the
change is [7°, 8°], σK change is [−0.0139%, 0.00037%], and
the precession factor K is insensitive to the change of the
bottom angle; while when the change is [89°, 91°], change
of σK is [1.2425%, −1.4761%], and the precession factor K
is relatively sensitive to the change of the top angle.

,e design requires that the precision of the top angle is
not bigger than 0.01.

When Δφ0 � 0.01° and ΔK � 1.2 × 10− 6, if the input
angular velocity is 1°/s, the error of angular velocity caused
by ΔK is ΔΩ � 0.00432°/h.

When ΔφF � 0.01° and ΔK � 4 × 10− 5, if the input
angular velocity is 1°/s, the error of angular velocity caused
by ΔK is ΔΩ � 0.144°/h.

It can be seen that the error of angular velocity caused by
Δφ0 is far less than that caused by the same ΔφF.

4.3. Effect of Uneven Wall 1ickness on Precession Factor.
,e processing of high-precision spherical shell structure is
the core of the hemispherical resonator gyro technology.
According to the material and structural characteristics of
the hemispherical resonator, the structure of the resonator is
analyzed, which is combined with the technical bottleneck
existing in the processing of fused quartz glass, and the
processing performance is studied.

For the vibration mode with fixed number of circum-
ferential waves, the uneven wall thickness caused by ma-
chining will cause the change of resonance frequency and
also affects the precession factor. ,e influence can be

Table 1: ,e frequency and precession factor of the hemispherical
resonator.

n � 2 n � 3 n � 4 n � 5
ωn (HZ) 905 2804 5620 9307

K
φ0 � 0o −0.2978239 −0.0659867 −0.0231877 −0.0102203
φ0 � 7.3o −0.2981762 −0.0659901 −0.0231877 −0.0102203
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divided into two cases. (1) When the wall thickness of the
bottom of the resonator increases, the variation of the wall
thickness is

h(φ) � h(1 + α cosφ). (26)

(2) When the wall thickness of the top of the resonator
increases, the function of the wall thickness is

h(φ) � h(1 + α sinφ). (27)

,e change of spherical angle φ of the resonator is
0° ≤φ≤ 90°, and α is the change factor of wall thickness.

When the mode shape circumferential wave number is 2,
the wall thickness of the bottom and top increases by K; the
changes are shown in Figures 5 and 6.

,e absolute value of the precession factor K decreases
with the increase of the wall thickness of the bottom. When
the change of α is [0, 0.25], the change of σK is
[−0.012308%, −1.1021%].

,e absolute value of the precession factor K increases
with the increase of the wall thickness of the bottom. When

the change of α is [0, 0.25], the change of σK is
[0.0126435%, 1.0503186%].

5. Design and Analysis of Simulation

5.1. Finite Element Analysis (FEA) of the Resonator. FEA is
used to simulate and analyze the actual physical system with
the mathematical approximation method. ,e characteristic
changes caused by the rotation of the hemispherical reso-
nator will affect the performance of the HRG, especially the
structure of the hemispherical resonator is the key factor
affecting the vibration characteristics of the HRG.

Assuming the hemispherical resonator is damped or
damped in a free state without rotation, the differential
equation of multi-degree-of-freedom motion is

M €x (t) + C _x(t) + Kx(t) � Q(t), (28)

where €x(t) is the acceleration vector, _x(t) is the velocity
vector, x(t) is the displacement vector, and Q(t) is the
resonator node load vector. M, C, and K are the mass matrix,
damping matrix, and stiffness matrix of the hemispherical
resonator, respectively [15].

Equation (29) in the time domain is transformed into a
complex variable in the Laplace domain p, and the initial
displacement and velocity are assumed to be zero, then the
Laplace domain equation is obtained:

Mp
2

+ Cp + K � Q(p). (29)

,e transfer function is

H(p) �
1/M

p
2

+(K/M)p +(K/M)
. (30)

Its root is the pole:

λ1,2 � −
C

(2M)
􏼠 􏼡 ±

��������������

C

(2M)
􏼠 􏼡

2

−
K

M
􏼒 􏼓

􏽶
􏽴

. (31)

,e natural frequencies are defined as ωn �
�����
K/M

√
.

It is assumed that the energy loss of the hemispherical
resonator is very small during an oscillation period, and the
damping of the hemispherical resonator is approximately
ignored in the analysis.,e differential equation is simplified
as follows:

M €x (t) + Kx(t) � Q(t). (32)

When the node load vector of the hemispherical reso-
nator is 0, the differential equation is further simplified as
follows:

M €x (t) + Kx(t) � 0. (33)

Equation (33) is the free vibration equation of the
hemispherical resonator, also known as the dynamic char-
acteristic equation.,e natural frequencies andmodes of the
resonator can be solved by this equation.
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5.2. Finite Element Simulation of Resonator. For high-quality
hemispherical resonator, on the one hand, it is necessary to
ensure the stability of resonant frequency and, on the other
hand, to ensure the stability of mode. At present, the ideal
material of the hemispherical resonator is fused silica glass.
,e hemispherical resonator made of this material has stable
vibration frequency, short delay time, high mechanical
stability, low thermal expansion rate, and large internal
stress.,e hemispherical resonator made of fused silica glass
can work in a wide temperature range and reduces the
energy loss needed to maintain the gyro vibration.

,e hemispherical resonator requires the fused silica
glass to have isotropic and high quality factor, and the
temperature coefficient is small and stable; usually, elastic
modulus is E � 7.67 × 1010Pa, Poisson’s ratio is μ � 0.17,
and density is ρ � 2500 kg/m3. In this paper, the boundary
constraint of the hemispherical resonator gyro is that the
bottom is fixed and the top is free. ,e specific method used
in the simulation is to constrain all the degrees of freedom of
the upper end of the support in ANSYS, and the resonator
and the following components adopt the free state.

To reduce the workload of the hemispherical resonator
modeling, AutoCAD is used to establish the model and then
imported into the ANSYS. Finally, the grid generation,

hemispherical resonator model, and grid generation are
mapped, as shown in Figures 7(a) and 7(b).

When the bottom of the middle support of the
hemispherical resonator is fixed, a force is applied to the
hemispherical resonator. ,e results show that the color of
the resonator changes with the color of the lower part of the
strut. From the total deformation level of the resonator, the
deformation of the hemispherical resonator and the rod is
closer to the edge of the hemisphere, and the greater the
deformation, the greater the tendency of gradual increase.
,e total deformed flat view and bottom view of the
hemispherical resonator are shown in Figures 8(a) and
8(b).

Under the condition that the bottom of the middle
supporting rod of the hemispherical resonator is fixed and
the top is free, the stress change is the largest between the
hemispherical resonator and the rod, and it gradually de-
creases from the supporting rod to the outside. ,e contact
surface of the central rod and the hemispherical resonator is
the place where the stress changes greatly, and it extends
from inside to outside, and with the movement of the
hemispherical resonator, some deformation occurs. ,e
resonator’s potential view and bottom view are shown in
Figures 9(a) and 9(b).
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6. Conclusion

,e mathematical model of the energy resonator is pre-
sented in the paper. ,e influence of nonideal factors on
resonant frequency and precession factor is studied, and the
influence of nonideal factors on the precession factor is
analyzed.,e precession factor of the HRG is more sensitive

to the change of the top angle than to the change of the
bottom angle. ,e angular velocity error of the HRG caused
by the change of the top angle is much larger than that
caused by the change of the bottom angle. ,erefore, in the
actual manufacturing process, the manufacturing precision
of the top corner is much higher than that of the bottom
corner. With the increase of the thickness of the

(a) (b)

Figure 7: ,e grid and model of the hemispherical resonator.

(a) (b)

Figure 8: ,e plane view and bottom view of the hemispherical resonator’s deformation.

(a) (b)

Figure 9: ,e plane view and bottom view of hemispherical resonator’s SEQV.
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hemispherical resonator, the stiffness and resonant fre-
quency of the hemispherical resonator will increase. ,e
increase of the resonant frequency makes the hemispherical
resonator difficult to excite. However, when the wall
thickness of the hemispherical shell decreases, the mea-
surement error will increase due to the asymmetry.
,erefore, in the actual manufacturing process, the selection
of wall thickness needs comprehensive consideration, and its
manufacturing precision is also the most difficult to ensure
in precision machining, which is the technical bottleneck of
the development of the resonator.
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+is paper presents a numerical investigation of bird attitude angles affecting the soft-impact damage of a full fan assembly. Firstly,
considering the geometry of a mallard, a real bird model is established by the Smoothed Particle Hydrodynamics (SPH) method
and calibrated with available test data. +en, complying with airworthiness requirements, simulations of a full-bladed fan as-
sembly subjected to a real bird were conducted to determine the critical ingestion parameters (CIP). Furthermore, a real bird with
different attitude angles aimed at a full fan assembly was simulated. Results show that attitude angles of the bird produce a
significant impact on the effect of the bird strike on rotating blades and would increase the possibility of blade failures, especially
for the yaw angle of -45° and the pitch angle of − 60°. It is invaluable for commercial airlines and engine manufactures to provide
safe flight and landing by adopting the real bird model with critical yaw and pitch angles in the design for resistance to
bird ingestion.

1. Introduction

Bird strikes have been presenting the main threat to aircrafts
since the beginning of aviation history. All available statistics
indicate that the bird-strike hazard is increasing dramati-
cally, due to the significant expansion of wild bird pop-
ulations, as well as, to some extent, because of the steady
increase in air transport [1]. +erefore, aviation authorities
require that all forward facing components need to prove a
certain level of bird-strike resistance in certification tests
before they are allowed for operational use [2]. However,
according to a large number of reported bird-strike inci-
dents, substantial damage to aircraft structures occurs even
though the involved energies of the bird did not achieve the
aircraft certification standard. It indicates that only taking
the mass and impact speed of the bird into account is far
from enough.

Initially, early studies were commonly based on theo-
retical and experimental studies. Wilbeck [3, 4] conducted a
comprehensive set of experimental studies on bird impacts

on various structures regarding different bird sizes, initial
velocities, bird substitutes, and oblique impacts. It was found
that real birds behave as fluids during impact at velocities
larger than 100m/s, and the impact process consists of four
typical phases. In recent times, much effort and significant
progress have been done to get better insight into simulating
the process of bird-strike events, involving substitute bird
models [5, 6], numerical methods [7–9], and material
models [10, 11]. It can be concluded that the substitute
model with bird shapes, namely, ellipsoid and hemispher-
ical-ended cylinder (aspect ratio of 2), is recommended,
associated with material properties of homogenized fluidic
materials. +e equation of state is used to describe the
compressibility characteristics of bird material.

However, the values of Hugoniot pressure obtained from
theoretical and experimental results are so far from each
other, especially at lower velocities [12]. Meanwhile, the
values obtained from numerical results calculated by dif-
ferent authors are in a wide range between the experimental
and theoretical values [2, 12]. +erefore, some scholars

Hindawi
Complexity
Volume 2021, Article ID 8879874, 13 pages
https://doi.org/10.1155/2021/8879874

mailto:jxlong@sjtu.edu.cn
https://orcid.org/0000-0002-3507-8452
https://orcid.org/0000-0002-8019-5332
https://orcid.org/0000-0002-4909-3282
https://orcid.org/0000-0001-5293-3468
https://orcid.org/0000-0001-7861-8343
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8879874


shifted the focus to the real bird model. Lakshmi [13] used a
multimaterial bird model with a more realistic bird shape to
capture a more detailed impact load spectrum. McCallum
et al. [14] developed a physically representative birdmodel of
a Canadian goose. +e results show that, compared with the
traditional model, the physically representative bird model
produces a lower Hugoniot pressure and higher magnitude
of peak impact force with longer duration. Hedayati et al.
[12, 15] established a real bird model based on the mallard
CT-scan image data. +ey found that the numerical results
of the realistic bird model are closer to the available ex-
perimental results than those in the case of the traditional
model.

Bird strikes are the major factor of blade damage for
aircraft engines [16]. It is worth noting that, in a large
number of incidents, the involved bird energy was lower
than the magnitude of impact energy in certification,
whereas aircraft structures can be substantially damaged
[17]. In a typical field-event of the bird strike, it is common
to observe a single bird coming into contact with multiple
blades with respect to arbitrary attitude angle. Projectile yaw
during impact would result in a variation in the impact
loading history [4]. On that point, several research works
have been done to capture the amount of damage imposed
on blades due to bird impact, considering bird orientation or
pitch/yaw angles [18–20]. +e results reveal that bird ori-
entation has a significant effect on the impact force. How-
ever, with respect to a realistic bird shape, not only is the bird
attitude far more complicated, but also the effect of bird
orientation on rotating blades during the bird strike is
different for yaw and pitch angles. Moreover, it is difficult
and complicated to record attitude angles of bird both in
physical tests and in a field-event of bird strikes. +e high-
pressure gas cannon is not capable of firing a real bird or a
substitute bird with arbitrary yaw/pitch angle. Biologically
inspired motion modelling and control algorithms [21–25]
may seem like a good choice to determine the bird attitude,
which is urgent to study. Attitude angles in our research are
assumed in a wide range from 0° to 60°.

+e study presented in this paper aims to focus on at-
titude angels of a realistic bird affecting soft impact damage
of jet engine blades. Considering the shape of a real mallard
in a published literature [12], a new bird model was
established using the SPH approach and validated against
the latest published experimental results [26]. To determine
the influence of bird orientation on the blade damage, the
realistic bird model with various attitude angles targeted at a
fan assembly has been developed. +e simulations were
performed based on Magic Cubic-II of Shanghai Super-
computer Centre, using LS-DYNA FE code.

2. Theoretical Background

2.1. Soft Impact+eory. Figure 1 shows the main stages and
the pressure profile of a typical bird-strike process, a normal
impact of a flat cylinder on a rigid plate. At the moment of
impact in Figure 1, the bird material is rapidly decelerated,
and a shock wave is initiated at the bird-target interface,
resulting in a sharp rise in pressure. +e shockwave pressure

exceeds the strength of bird material to a large extent.
Consequently, as the shockwave propagates through the bird
body in Figure 1, it rapidly breaks the internal bonds of
birds, generating a transition from a solid towards a fluid
phase. +e bird material is transitioned to a fluid-like me-
dium. +e high-pressure gradient across the free surface of
bird and the surrounding air forces out shocked material
radially [27]. +is behavior is known as shock release. With
the propagation of release waves towards the center of the
bird, the pressure of the bird material gradually decays to the
fluid pressure. As the bird strike progresses in Figure 1, the
bird material is progressively forced out of the original bird
volume and spreads outwards nonlinearly. With the bird tail
approaching the target, the bird-strike pressure decays to
zero. Figure 1 shows the pressure at the center of the impact.

+e shockwave pressure (Hugoniot pressure, PH) at the
initial impact (see Figure 1) is determined by [28]

PH � ρ0]S]0, (1)

in which

]S � (1 − z) C + S1]0( 􏼁 + z]a, (2)

where ρ0 is the initial density of the bird. ]S, ]0, and ]a
represent the speed of shock wave, impact speed of the bird,
and sound speed, respectively. z represents bird porosity. C
and S1 are coefficients of the relationship between the shock
and particle velocities.

+e stagnation pressure PS during the liquid impact (see
Figure 1) is given by the following equation [28]:
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Figure 1: Main phases and pressure profile of a bird strike event.
(a) Solid-structure impact. (b) Solid-fluid transition. (c) Fluid-
structure impact. (d) Impact pressure profile.
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PS �
k

1 − z
ρ0]

2
0, (3)

where the constant k is 0.5 for an incompressible fluid [27].

2.2. Loads on Blades during Impact. In a practical fan blade
application, the impact progress is far more complex. Fig-
ure 2 indicates the bird-slicing action during the impact. +e
bird is represented as a flat cylinder. As soon as a bird comes
into contact with blades, it undergoes cut into several slices
by the blade leading edge in the direction of the relative
velocity VRelative.

Blades subjected to a bird are invariably an “oblique
impact” event, consisting of two phases [29]: the bird-slicing
action by multiple rotating blades; each individual bird slice
travelling along the blade airfoil. +us, the impact generates
both a slicing-impact load on the blade leading edge and a
bird-slice turning load acting on the concave surface, which
can be expressed as [29]

FBird− slice � Fslicing + Ftravel. (4)

At the moment of the leading edge slicing a bird pro-
jectile, it produces a high-intensity shock wave. For the
initial impact area on the concave surface is almost a point,
the effective load generated by the shock-wave pressure is
not significant, and thus its contribution is ignored [29].
+us, the slicing-impact load is determined by the slicing
stagnation pressure [29].

Fslicing(t) � Ba(t)Pstagnation, (5)

in which the slicing stagnation pressure is determined by

Pstagnation �
1
2
ρ0 ]impact􏼐 􏼑

2
, (6)

where Ba(t) denotes the bird-foot-print area on the blade
leading edge. ]impact represents the normal component of the
relative velocity VRelative (see Figure 2) on the blade leading
edge.

2.3. Airworthiness Standards of Aircraft Engines.
Currently, aviation authorities require that all new com-
mercial aero-engines must substantiate physical certification
tests before operational use. +ese requirements are com-
piled in the Federal Aviation Regulations (FAR), Chinese
Civil Aviation Regulations (CCAR), and the Certification
Specifications (CS) of the European Aviation Safety Agency
(EASA) [2]. According to airworthiness standards of FAR
§33.76 [30], for the inlet throat area 2.37m2 of the jet engine
presented in this study, it must be substantiated that the fan
assembly is subjected to a medium bird of 1.15 kg under FAR
§33.76(c) (3), aimed at the most critical location outboard of
the primary core flow path [30]. Figure 3 indicates the lo-
cation of target point on the first exposed rotating stage of
the engine. +e airfoil height is measured at the leading edge
of the blade.+e target point for bird ingestion is determined
by impact loading on rotating blades, as well as the possi-
bility of blade failures [31].

3. Bird Modelling

3.1. +e SPHMethod. +e SPH method is increasingly used
in bird-strike simulations as it has already been proved to be
quite capable of simulating high deforming matter with
defragmentation [14]. With the SPH technique, the bird was
represented as a set of discrete particles, in which the in-
teraction between particles was achieved through a kernel
function rather than a structured mesh [12]. +e SPH
method is recommended in the simulation of the bird-strike
process, because of its high stability, low cost, and good
correlation with experimental observations in terms of
scattering particles [2]. +erefore, the SPH approach was
adopted to model a real bird of mallard.

3.2. Geometry of a Real Bird. According to the reported bird
strike incidents resulting in substantial damage to civil aircraft
components in the period 1990–2017 [32], the waterfowl had
been the most threatened species for civil aviation safety,
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accounting for 28% of the total specified species. +erefore, the
mallard (a typical species of waterfowl) is represented as a
general realistic bird model. Since a real bird consists of several
internal cavities, bone structures, etc. with complex geometry,
the presented bird model can reflect the bird shape to some
extent, not exactly the same as the real one.+emain geometric
characteristics are given as follows: (1) Wilbeck [3] found that
bone effect of a bird can be assumed negligible, and thus a
uniform density of the real bird model is used; (2) the head is
simplified to be an ellipsoid, and the neck was considered as a
circular-conical-frustum [19]; (3) geometric parameters of the
bird torso were modelled considering the geometry of a real
mallard bird in Ref. [12]; (4) the mass of bird wings accounted
for 19% of the total mass in accordance with Ref. [14]. +e
interparticular distance is 2mm, and the amount of SPH
particles is 153,621, as shown in Figure 4.

3.3. Bird Material Constitutive Model. With a general ma-
terial model for both solids and fluids to describe the fluidic
behavior of the bird material, the Cauchy stress tensor is
divided into a hydrostatic part and a deviatoric part [16].

σij � − Pδij + sij, (7)

in which the hydrostatic pressure P is written as

P � −
σkk

3
�

− σ11 + σ22 + σ33( 􏼁

3
, (8)

where σij represents stress tensor, and sij represents devia-
toric stress tensor. Variable δij represents Kronecker delta
symbol.

Since the compression of bird material during impact
induces a change in the bird density [27], the
Mie–Grüneisen equation of state (EOS) was used to reflect
the relationship between the pressure and the density [15].

P �
ρ0C

2μ 1 + 1 − c0/2( 􏼁( 􏼁μ − (a/2)μ2􏽨 􏽩

1 − S1 − 1( 􏼁μ − S2 μ2/μ + 1􏼐 􏼑 − S3 μ3/(μ + 1)
2

􏼐 􏼑􏽨 􏽩
2

+ c0 + aμ( 􏼁E.

(9)

A linear EOS is adopted for the bird material model [26],
and equation (9) can be written as

P �
ρ0C

2μ
1 − S1 − 1( 􏼁μ􏼂 􏼃

2, (10)

where C, S1, S2, and S3 are coefficients of the relationship
between the shock and particle velocities, and c0 represents
Mie–Grüneisen gamma. a is the first-order volume cor-
rection to c0. μ represents the relative change in density

Porcine gelatinewith 10%porosity is used instead of the bird
material [26]. Parameters of porcine gelatine can be obtained
from Ref. [33]. +us, for the developed bird model, parameters
are given as follows: ρ0� 954kg/m3, C� 1447m/s, S1� 1.77.

3.4. Attitude Angle Description. In this research work, bird
attitude was defined based on the Tait–Bryan angles. +e
Tait–Bryan angles are three angles, named as yaw angle α,
pitch angle β, and roll angle c. +ey were introduced to
describe the orientation of a bird. As shown in Figure 5, a
right-handed Cartesian coordinate system was defined in the
center of bird gravity, and any bird attitude can be pa-
rameterized by three Tait–Bryan angles α, β, and c.

In a field event of the bird strike, it is difficult and
complicated to record the Tait–Bryan angles of bird in-
gestion. Attitude angles of the real bird are assumed in a wide
range from 0° to 60° and the orientation of bird based on an
individual Tait–Bryan angle was studied at a time. Con-
sidering the weight of wings accounting for about 19% bird
mass [14], the effect of the roll angle on the slicing action of a
bird is relatively small. +erefore, bird attitude based on the
roll angle was neglected. Yaw angle α and pitch angle β were
selected as ±15°, ±30°, ±45°and ±60°, respectively. Figure 6
shows the attitude angles of a realistic bird, where the at-
titude angle is represented as the angle between the roll axis
and the impact velocity.

4. Numerical Model of a Fan Assembly

4.1. Fan Assembly Model. +e fan assembly consists of 24
equally spaced (15°) wide-chord blades and a fan disc. +e
fan assembly was modelled with 8-noded solid elements.
Bending is the basic mode of load carrying capacity for
blades during impact. With a single-point integration at
the element centroid, solid elements can carry membrane
stresses only [34]. +us, blades were assigned 3 layers of
solid elements through the thickness. A tied-contact re-
lationship was assumed to represent the attachment be-
tween the blade and the fan hub. Fixed boundary
constraints of z-displacement direction were defined on
the side of the hub component. To restrict nonphysical
deformations relevant to zero energy modes, stiffness
hourglass control with exact volume integration [34] was
applied to the simulation model. Figure 7 shows the finite
element model of the fan assembly. +e fan assembly
consists of 165,200 solid elements with a total of 222,912
nodes. +e minimum element size of the fan assembly
model was 0.42mm at the tip of the blade leading edge,
and the corresponding time step for explicit dynamic
simulation was 4.06E-8 s. In addition, Figure 7 gives
numbers to fan blades during slicing a bird so that it can
identify the blade damage in the simulation of the impact
on a fully bladed fan rotor.

4.2. Blade Material Constitutive Model. Bird strike events
can be described as high strains and high strain rates in short
duration with considerable intensity [35]. +erefore, the
empirical Johnson–Cook relation was selected [36].

σy � A + Bεn
( 􏼁 1 + C ln _ε∗( 􏼁 1 − T

∗m
( 􏼁, (11)

in which

4 Complexity



T
∗

� T − Troom( 􏼁 Tmelt − Troom( 􏼁, (12)

where σy represents the equivalent von Mises stress; ε
represents the equivalent plastic strain; and _ε∗ represents the
normalized equivalent plastic strain rate. +e parameters A,
B, C, m and n are material constants. T, Tmelt and Troom
represent the metal temperature, melting temperature, and
room temperature, respectively.

Material fracture is determined by a cumulative damage
law, a function of mean stress, strain rate, and temperature
[36].

D � 􏽘
Δε
εf

, (13)

in which Figure 5: Definition of the Tait–Bryan angles.
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Figure 4: A realistic birdmodel by the SPHmethod. (a) Left view. (b) Front view. (c) Bottom view. (d) A real mallard compared to the SPHmodel.
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εf � D1 + D2 exp D3σ
∗

( 􏼁􏼂 􏼃 1 + D4 ln _ε∗􏼂 􏼃 1 + D5T
∗

􏼂 􏼃,

(14)

where ∆ε is the increment of equivalent plastic strain, and σ∗
is the mean normalized by the equivalent stress. D1, D2, D3,
D4 and D5 are damage constants. Failures are assumed to
occur when D� 1.

+e fan assembly is made of titanium alloy Ti-6Al-4V,
and material parameters are derived from Ref. [37], as listed
in Table 1. In addition, the Mie–Grüneisen EOS (equation
(3)) was defined in conjunction with the material consti-
tutive model, and parameters for Ti-6Al-4V are as follows:
C� 5.13×103m/s, S1 � 1.028, c0 �1.23 and a� 0.17 [35].

4.3. Stress Initialization. +e rotating fan assembly un-
dergoes a constant centrifugal force, resulting in significant
deformation and initial stresses prior to impact. It is nec-
essary to evaluate the prestress of the rotating components,
especially for blades [16]. +us, a preload analysis procedure
was conducted by assigning rotational velocity of 542 rad/s
in an implicit solution.+e initial stress of blades assembly is
shown in Figure 8.

5. Results and Discussion

5.1. Bird Model Calibration. +e effect of the high-intensity
shock wave on the blade damage can be ignored for the
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Figure 6: Schematic of yaw and pitch angles. (a) Positive yaw angle α. (b) Negative yaw angle α. (c) Positive pitch angle β. (d) Negative pitch
angle β.
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reason that the initial bird loading area is almost like a point
loading [29]. +e focus of blade damage analysis needs to be
on accurately capturing the steady stagnation pressure phase
of impact [27]. +us, the stagnation pressure is represented
as a criterion to calibrate bird models. Numerical simulation
of a normal impact on a rigid plate was established in ac-
cordance with the experimental setup in Ref. [26]. A seg-
ment sensor was assigned at the center of the plate to extract
the impact pressure. +e stagnation pressures were esti-
mated by averaging the pressure between T0/3 and 2T0/3
[26], where T0 denotes the duration of the bird strike event.
+e theoretical curve of the stagnation pressure was de-
termined by equation (3), and test data was derived from
Ref. [26], as shown in Figure 9.+e numerical results were in
a range between theoretical and experimental values. +e
stagnation pressures captured by simulation of the real bird
were in closer agreement with the test data than those in the
case of the hemispherical-ended cylinder.

5.2.MostCritical IngestionParameters. +e critical ingestion
parameters are required to be identified for the specified bird
ingestion [30]. In this section, simulations of a full fan as-
sembly subjected to a real bird were performed to determine
the critical location and ingestion speed under FAR
§33.76(c) (1) and FAR §33.76(c) (3).

5.2.1. Most Critical Ingestion Speed. Complying with FAR
§33.76(c)(1), the critical ingestion speed is required to reflect
the most severe situation within the range of speeds used for
normal flight operations up to 460m (1,500 feet), but not less
than V1 minimum for airplanes [30]. +erefore, simulations
of the bird ingested at different speeds were performed,
aimed at the fan blade height of 80%. Figure 10(a) shows the
effect of ingestion speed on impact loading history. +e peak
values of impact force generated by a real bird targeted at
speeds of 60m/s, 65m/s, 70m/s, 80m/s, 105m/s, and 130m/
s are 183.35KN at 3.95ms, 182.53KN at 3.97ms, 198.91 KN
at 3.48ms, 210.96KN at 3.48ms, 212.16KN at 2.99ms, and
170.95KN at 2.50ms, respectively. As the speed increases,
the impact duration becomes shorter. It is also found that the
higher the impact speed is, the earlier the peak force occurs.
As the normalized sum of effective plastic strains shown in
Figure 10(b), the ingestion speed of 65m/s caused the most
severe plastic strain.+erefore, 65m/s was represented as the
most critical speed.

5.2.2. Most Critical Exposed Location. To find out the most
critical location under FAR §33.76(c)(1), the real bird aimed
at different target points on the leading edge of blades was
evaluated at a speed of 65m/s. Figure 11(a) shows the effect
of target location on the time histories of impact force. +e
peak values of impact force generated by a real bird aimed at

the fan blade height of 50%, 70%, 75%, 80%, 85%, and 90%
are 163.79KN at 3.84ms, 168.25KN at 4.30ms, 177.30KN at
3.92ms, 182.53KN at 3.97ms, 155.92KN at 4.39ms, and
171.69KN at 4.85ms, respectively. It can be observed that
the impact location of 80% blade height reaches the max-
imum value of peak impact force. As the blade damage
indicated in Figure 11(b), with the single medium bird
targeted at the fan blade height of 80%, it occurs to the most

Table 1: Material properties of Ti-6Al-4V.

Material ρ (kg/m3) A (MPa) B (MPa) C m n D1, D2, D3, D4, D5

Ti-6Al-4V 4.4×103 1098 1092 0.014 1.1 0.93 -0.09, 0.25, -0.5, 0.14, 3.87
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severe blade plastic strain. As a result, the most critical
location for a middle-sized bird should be aimed at 80% of
the fan blade height.

5.3. Effect of Attitude Angles on Soft-Impact Damage.
Figure 12 shows the deformation of bird oriented along the
engine axis. As expected, it can be clearly observed that, prior
to the impact of the bird torso, the real bird was sliced into
more pieces. +e orientation of bird has a direct effect on

slicing action of fan blades. With respect to different atti-
tudes, the contact area and duration of bird strikes change,
resulting in a significant impact on the effect of the bird
strike on rotatory blades and the possibility of blade failures.

Figure 13 shows the effect of the yaw angle on impact
loading history. As shown in Figure 13(a), peak values of
impact force generated by a real bird with respect to yaw
angle of 15°, 30°, 45° and 60° are 201.53KN at 3.97ms,
170.52KN at 4.31ms, 176.34KN at 4.33ms, and 186.97 KN
at 4.28ms, respectively. As shown in Figure 13(b), the peak
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values of impact force derived from a real bird with yaw
angle of − 15°, − 30°, − 45° and − 60° are 157.32KN at 5.22ms,
137.99KN at 4.33ms, 206.47KN at 3.70ms, and 246.66KN
at 4.85ms, respectively. It can be concluded that a yaw angle
of the bird would generate a variation in the impact loading
history, and a negative yaw angle has a more significant effect
on the impact loading history.

Figure 14 shows the effect of pitch angle on the time
histories of impact loads. As shown in Figure 14(a), with
respect to pitch angles of 15°, 30°, 45°, and 60°, the peak
impact loads are 205.15KN at 4.35ms, 227.20 KN at 3.91ms,
261.47 KN at 4.33ms, and 269.40 KN at 3.92ms, respectively.
Obviously, the peak impact force increases as the positive
pitch angle increases. As shown in Figure 14(b), peak values
of impact loading obtained from a real bird model with pitch
angles of − 15°, − 30°, − 45° and − 60° are 160.73KN at 3.93ms,

168.28KN at 3.90ms, 184.85KN at 3.86ms, and 224.06 KN
at 3.85ms, respectively. It is observed that a negative yaw
angle would result in a variation in the impact loading
history.

Figure 15 shows effective plastic strains of a single blade,
which undergoes the most severe plastic deformation during
impact. Obviously, with the change of the bird attitude angle,
the blade undergoes more severe plastic deformation. Es-
pecially, as subjected to a real bird with a yaw angle of − 45° or
a pitch angle of − 60°, the blade suffers more than twice the
magnitude of effective plastic strain compared with a real
bird oriented along the engine centerline. It can be con-
cluded that attitude angles would increase the possibility of
fan blade failure. Moreover, the yaw angle of bird ingestion
has a significant effect on the location of the blade with the
most severe plastic deformation.
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Figure 16 shows the effective plastic strains of the fan
assembly. It can be seen that a “cusp” plastic deformation
occurs at the leading edge, and the maximum plastic strain
occurred to the impact location. Compared with the plastic
deformation of a fan assembly during a normal impact (see
Figure 16(a)), subjected to a bird with an attitude angle of
α� − 45° and β� − 60°, fan blade failure occurs at the impact
location, and the plastic deformation at the root of the fan
blade leading edge is more significant, which would increase
the risk of a fan blade release event.

6. Conclusions

Considering a geometric shape similar to what has already
been published as a real mallard [12], a real bird model was
developed. +en, this paper discusses the effect of attitude
angles of the realistic bird model on the soft impact damage
of a full fan assembly. Besides, the stagnation pressure is
represented as a criterion to calibrate the developed bird

model. Results show a good correlation with available test
data [26].

In accordance with certification requirements, the most
critical ingestion parameters for the new bird model were
investigated. It is found that the real bird aimed at the fan
blade height of 80% with an ingestion speed of 65m/s
produces the most severe damage to the full fan assembly.

Complying with the critical ingestion parameters of the
bird, simulations of a full fan assembly subjected to a real
bird with respect to various attitude angles reveal that both
yaw and pitch angles of the bird have a significant effect on
the impact loading history. +e blade that undergoes the
highest magnitude of effective plastic strain would be
confronted with a more plastic deformation than that in the
case of a normal impact (attitude angle 0°), even though the
impact loading decreases. Especially, as subjected to a real
bird with yaw angle of − 45° or pitch angle of − 60°, the blade
suffers more than twice the magnitude of effective plastic
strain compared with that of attitude angle 0°, and the plastic
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deformation at the root of the leading edge is more sig-
nificant, which would increase the risk of a fan blade release
event.

Moreover, it is invaluable to ensure the safety of com-
mercial airlines and engine manufacture by adopting the
realistic bird model with the dangerous attitude angle in the
certification of engine designs for resistance to bird strikes,
which will provide sufficient resistance in actual bird-strike
events. However, attitude angles of the bird were set up
based on the assumption in this paper. If the bird attitude
could be determined through experiments or control al-
gorithms [38–42], it is of great significance to investigate the
effect of bird attitude on soft impact damage, as well as the
distribution of flocking bird.
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With the rapid development of sensor technology for automated driving applications, the fusion, analysis, and application of multimodal
data have become themain focus of different scenarios, especially in the development ofmobile edge computing technology that provides
more efficient algorithms for realizing the various application scenarios. In the present paper, the vehicle status and operation data were
acquired by vehicle-borne and roadside units of electronic registration identification ofmotor vehicles. In addition, amotionmodel and an
identification system for the single-vehicle lane-change process were established by mobile edge computing and self-organizing feature
mapping. Two scenarios were modeled and tested: lane change with no vehicles in the target lane and lane change with vehicles in the
target lane. It was found that the proposed method successfully identified the stochastic parameters in the process of driving trajectory
simulation, and the standard deviation between simulation and themeasured results obeyed a normal distribution./eproposedmethods
can provide significant practical information for improving the data processing efficiency in automated driving applications, for solving
single-vehicle lane-change applications, and for promoting the formation of a closed loop from sensing to service.

1. Introduction

With the development of automated driving technologies,
especially the onset of 5G technology, the demand for traffic
data collection in the field of intelligent networking has
increased significantly. Conventional driving environment
detection technologies use road monitoring equipment with
different traffic sensing technologies including video, GPS,
geomagnetism, and radar. /ese devices are installed on
roads by local public security agencies to ensure a safe and

smooth traffic flow, thus strengthening the law enforcement
against traffic violations and the intelligent control of city-
level transportation. However, these driving environment
detection technologies cannot satisfy automated driving
communication requirements of short time delay, high
reliability, wide coverage, and vehicle-to-vehicle commu-
nication. Under this backdrop, the application of electronic
registration identification of motor vehicles has been pro-
posed and promoted on a national level through such
measures as establishing national standards. Electronic
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registration identification of motor vehicles have been
promoted in a few cities and applied to several areas such as
smart parking [1, 2], intelligent signal control [3, 4], intel-
ligent connected vehicles [5], special vehicle traffic man-
agement and special vehicle identification monitoring [6],
and traffic operation supervision and environmental pro-
tection restrictions [7]. However, as a means of law en-
forcement, the application of vehicle interactions is still
lacking due to different technical problems; thus, it is dif-
ficult to achieve the required accuracy for vehicle driving
trajectory identification. Hence, researchers have proposed
different identification methods to solve this problem; for
example, grid-based methods have been successfully used in
multiobjective optimization algorithms [8–10], such as the
positioning of driverless cars [11–13]. Grewe et al. [14]
explored a series of MEC-enabled, high-quality, and reliable
vehicle-borne services (such as electronic horizon, which
assist vehicle movement), summarized the challenging
problems encountered in the application of MEC technology
to the network of vehicles, and proposed some potential
solutions. Truong et al. [15] advocated the use of a com-
bination of software-defined networking and MEC tech-
nology to address the problems of existing vehicle-borne
self-organizing networks, such as inadequate coverage of
communication range, unscalable network communication
capacity, and a management that lacks intelligence and
flexibility. /ey designed an edge computing network
framework (dubbed FSDN) for the Internet of vehicles and
MEC server that acts as a distributed zone controller to
provide different local services, such as streaming of media
content distribution and vehicle lane-change prompts,
aimed at providing excellent decision-making capabilities.
Real-time and accurate traffic information is the prerequisite
for an improved urban traffic efficiency; Dikaiakos et al. [16]
proposed the vehicle information transmission protocol
(VITP) and implemented dynamic route planning using the
forward traffic status and roadside points of interest ob-
tained from query requests to downstream vehicles through
the geographic routing protocol. Dombush and Joshi [17]
studied the automatic discovery mechanism of traffic con-
gestion and the distributed clustering of abnormal traffic
flow and achieved the aggregation of perceived data through
interactive sensing between vehicles. Zhang and Zhao [18]
constructed a mathematical model to automatically collect,
aggregate, process, and transmit traffic information and
dynamically update the traffic coverage of the entire road
network. Gramaglia et al. [19] used external data sources
such as vehicle beacon messages and weather conditions to
detect the degree of traffic congestion through complex
event processing. Terroso-Saenz et al. [20] and Li et al. [21]
detected traffic congestion from intervehicle collaboration
where each vehicle used the collected beacon messages to
estimate the surrounding traffic congestion using fuzzy logic
and then corrected the individual estimation error through
consultation. Bauza et al. [22] conducted traffic condition
sensing through VANETcollaboration andmade short-term
traffic condition forecasts using a linear least squares
method. However, these studies have only solved the
problems of cooperative traffic condition sensing and

neither consider implementation issues in automated
driving scenario nor analyze important driving trajectories
in vehicle-to-vehicle communication. In the present paper,
based on electronic registration identification of motor
vehicles and readers, a closed loop from perception to service
was formed using mobile edge computing and self-orga-
nizing feature mapping to identify stochastic parameters for
driving trajectory simulation processes and solve different
application problem of lane-change scenarios in automated
driving.

2. Driving Behavior, Speed, and Trajectory
Calculation Based on Electronic Registration
Identification of Motor Vehicles

/e vehicle data collection method integrated with electronic
registration identification of motor vehicles reads the vehicle
information of the vehicle from the on-board unit with the
electronic registration identification of motor vehicles reader
installed on the gantry frame./e collected information is then
uploaded to the comprehensive sensing base station on the test
section of the road for edge computing./e overall deployment
of the comprehensive sensing base station can complete data
collection, verification, transmission, and processing in actual
applications. /e overall layout and actual installation are
shown in Figure 1:

/e main method of acquiring the driving speed of a
vehicle with an electronic registration identification of
motor vehicles reader uses the UHF radio frequency
identification technology. /e directional horizontally-po-
larized UHF antenna of the registration reader interacts with
the unit installed on the front windshield of the vehicle and
calculates the speed of the vehicle by measuring the time
difference for the vehicle to pass through a fixed distance in
the identification zone. Specifically, the positions of the
vehicle at different times are calculated from RSSI values
returned by the electronic registration identification of
motor vehicles reader at different times, and the travel speed
can then be calculated from the time differences. By ana-
lyzing RSSI values returned by the vehicle after entering the
identification cross-section, it can be determined whether
the location of the vehicle is at the boundary between the
direct illumination zone and the blind zone or at the farthest
point in the reflection zone; subsequently, the vehicle speed
is calculated by the formula V � S/(To − Ti).

3. Mobile Edge Computing and Self-Organizing
Feature Mapping

3.1. Mobile Edge Computing. /e fundamental concept of
mobile edge computing is to move the cloud computing
platform to the edge of the mobile access network in an
attempt to deeply integrate a cellular network of conven-
tional telecommunication with Internet services and also to
reduce the end-to-end delay of mobile service delivery. It
changes the state of a separate network in conventional
wireless communication systems by exploiting the inherent
capabilities of wireless networks and improves the user
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experience. By adding mobile edge computing platform
network elements to a conventional wireless network, a
business platform including contents, services, and appli-
cations, can be lowered to the edge of a mobile network to
provide computing and data storage services to users. /e
basic characteristics of mobile edge computing include
service localization, short-distance, low time-delay service
delivery, user location awareness, and other network service
capabilities. It can, therefore, bring new changes to the mode
of operation for telecom operators and establish a new
ecosystem of industrial chains and networks.

/e edge computing architecture relies on the com-
munication infrastructure and services provided by Edge
Cloud Collaboration and LET/5G. /e edge side mainly
includes vehicle-borne edge computing units and RSU or
MEC servers. Vehicle units depend on the cooperation of
RSU or MEC servers. On the vehicle side, the control sys-
tems of intelligent networked vehicles are becoming in-
creasingly complex with the use of AI and V2X applications.
Load integration and simplified control systems are used to
integrate different systems into HMI, and complex vehicle-
borne information services including ADAD, IVI, digital
instruments, and HUD are made to run on the same
hardware platform through simulation technology. More-
over, load integration based on virtualization and the
hardware abstraction layer HAL are more amenable to
flexible business orchestration, deep learning model update,
and software and firmware upgrade for a cloud-based vehicle
driving system.

Due to several hardware constraints, the generation of a
large amount of V2X data, and the imbalance of task pro-
cessing, real-time scheduling is necessary for computing
tasks. In the present work, a hybrid critical computing task
scheduling technique was employed. /e proposed method
is linearly complex but is low cost and highly schedulable
and can lower the time consumption of a system by reducing
the number of repeated calculations in the passive delay
priority updating. By establishing a more accurate upper
bound of the peak period based on the quantitative rela-
tionship between the task number and the peak period, the
spatial overhead of the system can be reduced and the
scheduling performance can be improved.

3.2. Stochastic Parameter IdentificationMethod Based on Self-
Organizing Feature Mapping. According to the current
practice of data optimization through neural networks, a
self-organizing feature map (SOFM) was used in the current
work to perform data optimization. Self-organizing feature
map (SOFM) is a neural network with a clustering function
[23]. Self-organizing mapping is a multidimensional scaling
method, which can map any dimensional data in the input
space to an output space of lower dimension. A self-orga-
nizing map (SOM) is an array of neurons at a regular lo-
cation. Neurons can be placed on grid nodes in one, two, or
higher dimensions, however usually in a one-dimensional or
two-dimensional grid.

/e operation of a SOFM network can be divided into
two stages: training and work [24, 25]. In the training stage,
samples from the training set are randomly fed into the
network. For a specific input mode, the output layer
generally has a neuron that produces the largest response
to win. At the beginning of the training phase, it is
uncertain which neuron in the output layer will respond
most to the input mode. When the input mode changes to
a different category, the winning neuron in the two-di-
mensional plane also changes. Neurons surrounding the
winner neuron have a greater response due to the lateral
mutual excitation. /erefore, weight vectors connected
to the winner neuron and its surrounding neurons adjust
in different degrees to the direction of the input vector.
/e degree of adjustment gradually diminishes as the
distance from the winner neuron to its surrounding
neurons increases. /e network adjusts weights in a self-
organizing manner by a large number of training sam-
ples. Finally, each neuron in the output layer becomes a
sensitive neuron for a specific mode, and the corre-
sponding inner weight vector becomes the center vector
of each input mode. When the features of two input
modes approach each other, neurons representing these
two mode categories also approach each other, resulting
in the formation of an ordered feature map reflecting the
distribution of sample modes in the output layer.

After the completion of SOFM training, the specific
relationship between each neuron in the output layer and
each input mode category is completely determined, to use

Reader/ writer antenna
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Reader/ writer antenna controller
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HD camera
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Figure 1: Comprehensive layout diagram and actual installation figure.
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the network as a mode classifier. At each input mode, the
specific neuron in the output layer of the network generates
the maximum response and automatically classifies the
input. It should be noted that when the input mode of the
network does not belong to any of the modes of the training
set, SOFM can only assign it as belonging to the closest mode
category. /e classification process is performed by the
following steps [24, 25].

In the first step, the winner neuron is found, the dot
product of the input mode and the weight vector are cal-
culated, and the winner neuron with the largest dot product
is selected.

In the second step, the winning neighborhood is defined
and the weight adjustment domain at time t centered around
the winner neuron is determine. Generally, the initial
neighborhood N is larger and gradually shrinks with the
increase of the training time during the training process.

In the third step, the weights of all neurons in the
winning neighborhood are adjusted by the following
formula:

wi,j(t + 1) � wi,j(t) + η(t, N) x
P
i − wi,j(t)􏽨 􏽩,

i � 1, 2, . . . , n j ∈ Nj · (t),
(1)

where η(t, N) is a function of the training time t and the
topographical distance N between neuron j and the winner
neuron j∗ in the neighborhood.

Many functions can meet the above rules, for example,
the following function can be constructed:

η(t, N) � η(t)e
− N

. (2)

/e fourth step is the termination of the inspection.
Unlike a BP network, the concept of output errors does not
exist during the training of a SOFM network. As it is an
unsupervised training, the training ends when the rate of
learning η(t)decays to zero or a certain preset positive small
number. If the condition is not met, the process returns to
step 1.

Kalman filter, based on the model of a state space, es-
timates the recursive relationship of an algorithm for a given
process of filtering the state vector and constructs a mea-
surement function (structural parameter or state) as an
independent variable for an unknown quantity. It therefore
derives an estimate of the unknown quantity from the
measurement data. Kalman filter is widely applied to system
identification. /e conventional linear Kalman filter gen-
erally suffers from several shortcomings, such as low ac-
curacy, poor stability, and slow response to target maneuver.
In the application, the nonlinear motion equation of motion
of the estimated dynamic system can be linearized and
applied to the convergence of Kalman filter estimation.
Furthermore, considering the nonlinear characteristics of
the dynamic system near the reference trajectory and the
comparison between strategically estimated algorithms, the
real system can be described by a linearized equation.

Kalman filter can be divided into two parts: state pre-
diction equation (state prediction) and state correction
equation (observation update)./e state prediction equation

is responsible to predict current state variables and estimate
the error covariance in a timely manner to construct a priori
estimate for the next time state. /e state correction
equation is responsible for giving feedback and combines the
a priori estimate and the new observed variable to construct
an improved a posteriori estimate.

Let the following equations describe an n-dimensional
linear dynamic system and an m-dimensional linear ob-
servation system [26–28]:

xi+1 � Axi + wi,

zi � Hxi+1 + vi,
(3)

where xi+1 is ann-dimensional vector that represents the
state of the system at the time instance i − 1 andA is a n × n

ordered matrix, which becomes the state transition matrix of
the system, and reflects the state transition of the system
from the ith sampling time to the i + 1st sampling time. wi is
an n-dimensional vector and represents the random inter-
ference acting on the system at the time instance i + 1, and it
is assumed that wi is a Gaussian white noise sequence with a
known zero mean and a covariance matrix Qi, zi is an
m-dimensional observation vector, and H is a m × n ordered
observation matrix and represents the transition from the
state xi+1 to the observation vector zi. For them-dimensional
observation noise vi, it is also assumed that vi is a Gaussian
white noise sequence with a known zero mean and a co-
variance matrix Ri.

/erefore, the following recursive formula of the filter
can be obtained:

Ki � 􏽢PiH
T

H􏽢PiH
T

+ Ri􏼐 􏼑
− 1

,

􏽢Pi � APi−1A
T

+ Qi,

Pi � I − KiH( 􏼁􏽢Pi,

􏽢xi+1 � xi+1 + Ki zi − Hxi+1( 􏼁,

(4)

where Qi is an n × n-ordered covariance matrix of the model
noise wi, Ri is the m × m-ordered covariance matrix of the
observed noise vi, Ki is the n × m-ordered gain matrix, 􏽢xi+1is
an n-dimensional vector and represents the estimated value
after filtering at the time instancei + 1, and Pi is the esti-
mated error covariance matrix of order n × n.

According to the calculation method described above,
one can start with x1 and a given P0 and then recursively
calculate the estimate of each time state by the known
matrices Qi, Ri, H, and A and the observation value zi at the
time i. If the linear system is stationary, then A and H are
both constant matrices. If the model noise wi and the ob-
servation noise vi are stationary random sequences, then Qi

and Ri are constant matrices. Under such conditions, the
constant gain discrete Kalman filter becomes asymptotically
stable.

4. Tests and Results

In the present work, a single-vehicle changing lane was
used as the main application scenario to establish a motion
model and perform system identification. /e single-
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vehicle lane-change process was further divided into two
scenarios: (i) lane change with no vehicle in the target lane
and (ii) lane change with vehicles in the target lane. /e
trajectory of the lane-change execution phase began as the
vehicle started to move from the initial lane to the target
lane, and it proceeds to cross the lane line and reaches the
target lane. In the entire process of crossing the lane line,
any turning movement of the vehicle was considered as a
failure of the execution of the lane-change operation. As the
lane line information and the motion trajectory in the
environment were acquired by vehicle-borne units and
roadside units and calculated by edge computing, the
distance between the vehicle and the lane line was calcu-
lated directly at any time.

/e vehicle trajectory was expressed by the mathematical
expression η(t) � (X(t), Y(t), dX/dt(t), dY/dt(t)) to in-
clude the horizontal and vertical positions and speed in-
formation of the vehicle in the observation geodetic
coordinate system, where X,Y, and t represent, respectively,
the horizontal coordinate, vertical coordinate, and sampling
time. /e schematic diagram of a lane-change process is
shown in Figure 2.

Let t0 be the running speed of the vehicle at time v0; then,
its lateral displacement and longitudinal position are, re-
spectively, Lh � v0t0cosθ and Lz � v0t0sinθ. Starting from
the initial moment of the trajectory, a search could find two
points with the smallest time intervals on both sides of the
lane line. Now, setting them to tc1 and tc2, respectively, the
time for lane change can be obtained by the following
formula:

Δtc2−tc1
� ftc1

X tc1( 􏼁, Y tc1( 􏼁( 􏼁 · ftc2
X tc2( 􏼁, Y tc2( 􏼁( 􏼁. (5)

According to the above definition, >0 indicates a left lane
change and <0 indicates a right lane change.

Similarly, when there are other vehicles in the target lane,
according to the principle of safe lane change, the speed and
distance of the lane-change vehicle must exceed those of the
vehicle in the target lane. Moreover, the lateral speed of the
lane-change vehicle must be greater than that of the vehicle
in the target lane, and the lateral distance difference of the
lane-change vehicle must be greater than twice the length of
the vehicle.

On this basis, lane-change experiments were carried out
for two different scenarios where vehicles were present and
absent in the target lane, and the lane-change states during a
left lane change and a right lane change were compared.
Figures 3 and 4, respectively, present the results of left lane
change and right lane change with no vehicles in the target
lane.

/e curves in Figure 3 represent the simulated trajec-
tories obtained through system recognition, for three left
lane-change tests. /e data labeled by o, x, and ∗ indicate the
actual values of these three tests based on edge computing of
results acquired and obtained from vehicle-borne unit and
roadside units, and their corresponding relationships to
simulated trajectory curves are presented in blue, black, and

T1

t1

t0

T2

θ 

Figure 2: Schematic diagram of a lane-change process.
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Figure 3: Actual test data and simulation data of left lane change.
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Figure 4: Actual test data and simulation data of right lane change.
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red, respectively. Figure 4 displays the results for three right
lane-change tests. Under standard operating conditions, the
standard deviations between the actual value and the sim-
ulated trajectory for the three left lane-change operations
were 0.78, 0.82, and 0.88, respectively, thus obeying a normal
distribution. /e lateral displacements in right lane-change
operations were greater those in left lane-change operations,
and it can be attributed to the seat location of the driver. /e
standard deviations for the three right lane-change tests were
0.92, 0.93, and 0.89 (slightly large than those of left lane-
change operations), thereby still obeying a normal distri-
bution despite slightly larger.

When there were other vehicles in the target lane, tests
were carried out in the same way. Figures 5 and 6, re-
spectively, present the results of left lane change and right
lane change with vehicles in the target lane and with tra-
jectory recognition based on actual data acquired from the
vehicle-borne unit and roadside units. /e results are
compared with the actual data, as shown in Figure 5.

In comparison to the lane-change test results with no
vehicles in the target lane, the longitudinal distance for
completing the lane-change operation slightly increased
slightlyin this scenario. /e average longitudinal distance for
completing a left lane change increased by 1.42meters, whereas
the average lateral distance increased significantly (nearly 93.89
meters). It happened because the obtained results were affected
by an increased lane changing distance, the speed of vehicles in
the target lane, and a longer distance to ensure safety.

Under standard operating conditions, the standard de-
viations between the actual value and the simulated tra-
jectory for the three left lane-change tests were 1.12, 1.21, and
1.19, respectively, thus demonstrating a normal distribution.
/e lateral distances in right lane-change operations were
greater than those in left lane-change operations, and it can
be ascribed to the seat position of the driver. /e standard
deviations, for the three right lane-change tests were 1.36,
1.53, and 1.47, respectively (slightly larger than those of left
lane-change operations), thereby still conforming to a
normal distribution.

5. Conclusion

/e conventional automobile motion trajectory is mainly
constrained by the kinematic and dynamic characteristics and
real-time issues of a vehicle. In recent years, the research on
smart car movement trajectories has paid more attention to the
application of V2X communication among conventional au-
tomobiles. Transportation vehicles generally face a highly
complex and stochastic driving environment. In order to
strengthen the driving safety management, the present paper
considered the single-vehicle lane-change process as a research
topic. Based on electronic registration identification of motor
vehicles and the associated reader/writer, mobile edge com-
puting, and self-organizing feature mapping algorithms, a
stochastic parameter recognition method was proposed for the
driving trajectory simulation process, and its feasibility was
verified through testing. A vehicle trajectory data acquisition
method was first proposed based on electronic registration
identification of motor vehicles, and the detailed description
from the wiring and installation of the readers were then
provided to the acquisition, calibration, and application of data.
/e lane-change process was mathematically modeled by
mobile edge computing and self-organizing feature mapping,
and the obtained simulation results were compared with actual
test data. It was found that the standard deviation between the
actual value of the lane-change operation and the simulated
trajectory conformed to a normal distribution. /erefore, the
proposed method can effectively improve the accuracy of in-
telligent vehicle trajectory planning and the driving safety
during lane-change operation.

Data Availability

/e original data used to support the findings of this study are
restricted by the relevant law-enforcement departments in
order to protect vehicle information privacy and law en-
forcement basis. Data are available from relevant law-en-
forcement departments for researchers who meet the criteria
for access to confidential data.
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Figure 5: Actual test data and simulation data of left lane change.
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Figure 6: Actual test data and simulation data of right lane change.
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Recent decades have witnessed the rapid evolution of robotic applications and their expansion into a variety of spheres with
remarkable achievements. 1is article researches a crucial technique of robot manipulators referred to as visual servoing, which
relies on the visual feedback to respond to the external information. In this regard, the visual servoing issue is tactfully transformed
into a quadratic programming problem with equality and inequality constraints. Differing from the traditional methods, a
gradient-based recurrent neural network (GRNN) for solving the visual servoing issue is newly proposed in this article in the light
of the gradient descent method. 1en, the stability proof is presented in theory with the pixel error convergent exponentially to
zero. Specifically speaking, the proposed method is able to impel the manipulator to approach the desired static point while
maintaining physical constraints considered. After that, the feasibility and superiority of the proposed GRNN are verified by
simulative experiments. Significantly, the proposed visual servo method can be leveraged to medical robots and rehabilitation
robots to further assist doctors in treating patients remotely.

1. Introduction

As one of the greatest human inventions in the 20th century,
robot technology has undoubtedly made great progress in
the past decades with brilliant research achievements [1–4].
After the birth, growth, and maturity of robots, they have
become the indispensable core equipment in the
manufacturing industry due to their high automation and
efficiency. Especially as the rising star of the family of robots,
redundant robots, which possess more degrees of freedom
(DOFs) than the task requires, are capable of performing
complicated tasks efficiently with the great property and
versatility. In detail, the redundancy characteristic assists the
redundant robots in fulfilling additional task demands, for
example, repetitive motion planning [5], physical constraint
avoidance [6], and manipulability optimization [7, 8]. In
combination with medical technology, various medical ro-
bots have been developed and explored for patient

rehabilitation and surgical execution as an important ap-
plication prospect. Relying on high reliability and flexibility,
medical robots are able to perform complex medical tasks,
thus reducing the burden on doctors and improving
treatment. 1e learning and control ability of various robots
is also valued and explored by many scholars [9–11]. A novel
learning framework for the robot learning and generalizing
human-like variable impedance skills is developed in [9]
with great research and practical value. Further, some
adaptive control methods are presented for estimating the
unknown model of manipulator dynamic, which achieves
great parameter estimation and tracking effects [10, 11].

In current years, the kinematic control of redundant robots
has become a research hotspot, thus drawing the attention of
abundant scholars to expand their applications [12–16]. Zhang
and Zhang present aminimum-velocity-norm (MVN) scheme
for redundancy resolution of the redundant manipulators,
which retains the robot joints within safe bounds [17]. A
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modified neural network approach in [18] is well designed for
precise control of the robot manipulator, which can eliminate
the error accumulation with accurate results. Moreover, the
authors in [19] research an ingenious transformation method
to deal with the acceleration limitation problem from the
velocity level, and the experimental results illustrate the su-
periority of the method. It is deserved to notice that the above
investigations [15–19] all transform the kinematic control issue
of redundant robots into quadratic programming and then
exploit the Karush–Kuhn–Tucker (KKT) conditions [20] or
Lagrange multiplier method to solve the optimization
schemes. In addition, thementioned schemes in [15–19] are all
velocity-level solutions such that they cannot interfere directly
with the acceleration level.

With the continuous development of sensors and In-
ternet of1ings technology, robot applications have become
very rich owing to information acquisition and processing.
1e sensor can transmit the external information directly to
the control center of the robot and give appropriate feedback
to the information through specific intelligent algorithms.
As a greatly important robot application, the vision servoing
technology drives the robot to accurately feedback the ex-
ternal vision in real time through the visual information
collected by the vision sensor [21–23]. 1is technology is
already being used in industrial production and robotic
surgery [24, 25]. However, it is worth pointing out that the
existing techniques [26–28] for solving the vision servoing
problem often rely on the implementation of the pseu-
doinverse method to converge errors, which has achieved
great results in both the acceleration-level schemes and the
velocity-level schemes. By means of proportional-differen-
tial control, acceleration command for the visual servoing
control is generated with excellent stability [26]. Moreover,
an effective method to detect and compensate for faults in
visual servoing systems is presented in literature [27], which
is verified by simulation and experimental results. Based on
the pseudoinverse operation of the Jacobian matrix, the
robotic ball catching task is implemented [28]. 1is method
takes advantage of the eye-in-hand construction to establish
the motion capture system for locating fast-moving objects.
However, a large number of investigations do not consider
the existence of joint constraints and have potential for
damage to the robot manipulators [21–24, 26–28]. Due to
the physical limitations of the robot motor and robot
structure, the control signals need to be kept within a
reasonable range to maintain the normal operation of the
robot manipulators. To this end, this paper formulates the
visual servoing problem as a quadratic programming scheme
with equality and inequality constraints in consideration of
physical constraints.

1e rise of intelligent algorithms in recent years has
solved many difficult problems in electronic and engineering
fields [29–31]. Numerous intelligent algorithms have been
designed for powerful performance, such as noise sup-
pression [32], simplified computation [33, 34], and pre-
dictive learning [35, 36]. Among the intelligent algorithms to
solve the visual servoing of the manipulator, the neural
network method stands out due to its fast parallel processing
performance and learning ability [37–41]. In [42], a

recurrent neural network is constructed for the visual ser-
voing issue to force the feature point of the manipulator to
approach the designed target point. 1en, the extended
research [43] eliminates the pseudoinversion operation and
equips the neural network with powerful robustness. In
addition, as a common optimization method, the gradient
descent method has made some progress in the design of
robot control algorithms in recent years [44, 45]. It can be
used to accurately locate and control the robot by mini-
mizing the position error [46]. Based on the above research,
we establish the visual servoing issue based on acceleration
commands and transform it into a quadratic programming
scheme solved by the neural network method. Besides, the
contributions of this paper are summarized below:

(1) 1e proposed method regards the visual servoing
problem as a constrained quadratic programming
scheme with acceleration command and meanwhile
considers the joint constraints to ensure the safety of
the manipulator

(2) 1is paper proposes a gradient-based recurrent
neural network (GRNN) for dealing with the re-
search on the robot visual servoing via the gradient
descent method and exploiting compensation item

(3) 1e simulation example and illustrative experiment
illustrate the feasibility and superiority of the pro-
posed method

1e remainder of this paper is summarized as follows.
Section 2 covers the preliminaries and the visual servoing
kinematics. In Section 3, the visual servoing problem is
transformed into a constrained quadratic programming
scheme at the acceleration level with the corresponding
GRNN deduced. 1e theoretical analyses of the proposed
method are presented by using the Lyapunov method in
Section 4. Section 5 carries out a simulation example to
demonstrate the feasibility of the proposed method. In the
end, we summarily conclude the whole paper in Section 7.

2. Preliminaries

In this section, the visual servoing kinematics is introduced,
which records the conversion relationship between the joint
space and the image space.

Primarily, in consideration of an eye-in-hand vision
system [28], i.e., an n-DOF manipulator with a camera
attached to the end effector, the forward kinematics of the
manipulator is given as follows:

P(ϑ(t)) � p(t), (1)

where P(·) describes the transformation relationship be-
tween the joint space and Cartesian space; ϑ(t) ∈ Rn rep-
resents the joint angle of the manipulator; and p(t) ∈ Rm

denotes the Cartesian coordinates of the end effector. 1e
investigation of visual servoing issue always takes both the
position and posture of the end effector, and thus p(t) is set
as a six-dimensional vector hereinafter (m � 6). Taking the
derivative of time with respect to formula (1) leads to
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J(ϑ(t)) _ϑ(t) � _p(t), (2)

where J(ϑ(t)) ∈ Rm×n stands for the robot Jacobian matrix,
which is determined by the manipulator structure; ϑ

.

(t)

signifies the joint velocity of the manipulator; and _p(t) is the
end effector velocity containing angular velocity and
translational velocity. In addition, the physical constraints,
involving joint velocity _ϑ and joint acceleration €ϑ, to
maintain the safe operation of the manipulator system are
provided as below:

_ϑ
−
≤ _ϑ≤ _ϑ

+
, (3a)

€ϑ
−
≤ €ϑ≤ €ϑ

+
, (3b)

with _ϑ
−
and _ϑ

+
being the upper and lower bounds of joint

velocity and €ϑ
−
and €ϑ

+
denoting the upper and lower bounds

of joint acceleration. As for the camera frame and image
frame, the corresponding relationship is deduced by means
of similar triangle and given as follows [27, 42]:

ai

bi

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �
l

d

ac

bc

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (4)

of which [ai, bi]
T is a point coordinate in the image frame

with the superscript T denoting the transpose of a matrix or
a vector; [ac, bc, d]T stands for the coordinate in the camera
frame; and l denotes the focal length of the camera. Besides,
in the image frame, point coordinates can be converted to
pixel coordinates v � [u, v]T by the following formula [43]:

u � up + κaai, (5a)

v � vp + κbbi, (5b)

where [up, vp]T stands for the designed original point and κa

and κb are the pixel standard size. Furthermore, the rela-
tionship between the camera velocity, i.e., the end effector
velocity _p, and pixel coordinate velocity _v can be introduced
as

H(v, d) _p � _v, (6)

where H(v, d) ∈ R2×6 denotes the image Jacobian matrix
[47, 48] with its expression being

H(v, d) � M

−
l

d
0

lai

d

aibi
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−
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2
i + l

2

l
bi

0 −
l
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bi
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−

b
2
i + l

2

l
−

aibi

l
−ai

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

with

ai �
u − up

κa

,

bi �
v − vp

κb

,

M �

κa 0

0 κb

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(8)

Based on the above instructions, especially formula (2)
and formula (6), it can be readily obtained that
H(v, d)J _ϑ � _v, which involves the relationship between the
joint space and the image space. To simplify the presenta-
tion, one designs

J _ϑ � _vwithJ � H(v, d)J. (9)

Furthermore, the kinematic relationship at the accel-
eration level is derived by taking time derivative as

€v � J€ϑ + _J _ϑ, (10)

where €v represents the acceleration of feature point in the
image frame and _J denotes the time derivative of J.

3. Acceleration-Level IBVS Scheme and
Its Solution

1e robot vision servoing controls the robot manipulator to
interact with circumstances according to the visual infor-
mation.1is issue can be simplified to find the static point in
the image frame by feeding back the image information. To
this end, we turn this visual servoing problem into a con-
strained quadratic programming problem and design a
neural network-based solver.

3.1. Quadratic Programming Scheme with Constraints.
Above all, the visual servoing problem is formulated at the
acceleration level into the following quadratic programming
scheme:

minimize
1
2
€ϑ
T€ϑ, (11)

subject to €v � J€ϑ + _J _ϑ, (12)

v � v
∗
, (13)

€ϑ ∈ ρ, (14)

where v∗ denotes the desired feature point, which is a
designed constant vector and, ρ � €ϑ∈ Rn, ρ− ≤ €ϑ≤ ρ+􏽮 􏽯 is an
inequality constraint corresponding to the physical limit (3)
with ρ− and ρ+ devised as
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ρ−
i � max α _ϑ

−

i − _ϑi􏼐 􏼑, €ϑ
−

i􏽮 􏽯,

ρ+
i � min α _ϑ

+

i − _ϑi􏼐 􏼑, €ϑ
+

i􏽮 􏽯,
(15)

where α> 0 stands for the design parameter. Via (15), the
physical constraints of joint acceleration and joint velocity
could be considered and controlled within bounds simul-
taneously [15]. In this regard, take the upper limit of the
physical constraint ρ+

i � min α( _ϑ
+

i − _ϑi),
€ϑ

+

i􏽮 􏽯 as an example.
For the joint velocity, when the joint velocity _ϑi approaches
the upper bound of velocity-level joint constraint _ϑ

+

i , α( _ϑ
+

i −
_ϑi) gets small and even close to zero. Afterwards, ρ+

i becomes
tiny or even zero, so that the joint velocity stops growing and
stays in joint constraints. Simultaneously, the upper bound
of acceleration-level joint constraint €ϑ

+

i is activated to realize
acceleration-level joint constraint. Similarly, ρ−

i is able to
realize the velocity-level joint constraint and the accelera-
tion-level joint constraint simultaneously.

3.2. Neural Network Solution. Differing from the traditional
method to deal with equality constraints and inequality
constraints, the gradient descent method [49] is exploited to
derive the solution to the quadratic programming scheme
(11)–(14). Design an error function ε � v − v∗ to start the
derivation. Utilizing neural dynamic formula _ε � −δε(δ > 0)

[50] and _v∗ � €v∗ � 0, one can get

_v � −δ v − v
∗

( 􏼁, (16)

which can be arranged and rewritten into the form of two
norms as follows:

e �
_v + δ v − v

∗
( 􏼁

����
����
2
2

2
. (17)

Given the gradient descent formula [51],

€ϑ � −∇e � −c
z(e)

zϑ
. , (18)

with c> 0, it would be readily deduced that
€ϑ � cJ

T
− _v − δ v − v

∗
( 􏼁( 􏼁. (19)

1en, a compensation itemϖ is presented to make up for
the lagging error in equation (19) as below:

€ϑ � cJ
T

− _v − δ v − v
∗

( 􏼁( 􏼁 + ϖ. (20)

Via deliberating the final desired stable state, i.e.,
v − v∗ � _v � 0, one can simply get the expression of ϖ re-
ferring to the derivation below. Multiplying both sides of
equation (20) by J one gains

J€ϑ � cJJ
T

− _v − δ v − v
∗

( 􏼁( 􏼁 + Jϖ. (21)

Set v − v∗ � _v � 0, and it can be obtained that

J€ϑ � Jϖ. (22)

1en, taking the time derivative of _v � J _ϑ � 0 as

J€ϑ � − _J _ϑ. (23)

Comparing the two formulas above, one has

Jϖ � − _J _ϑ. (24)

Hence, it can be easily got that

ϖ � −J
† _J _ϑ, (25)

with superscript † being the pseudoinverse operator of a
matrix and J† � JT(JJT)− 1. Consequently, the GRNN solver
is structured for solving the quadratic programming scheme
(11)–(14) as follows:

€ϑ � Fρ(cJ
T

− _v − δ v − v∗( 􏼁( 􏼁 − J
† _J _ϑ, (26)

where Fρ(x) � argminy∈ρ‖y − x‖ can be regarded as a
bounded activation function and the usage of arg min can be
referred to [52, 53], which is equivalent to the inequality
constraint (14). As Figure 1 depicts, visual servoing scheme
(11)–(14) aided with GRNN solver (26) integrates the robot
frame and image frame and can be regarded as a restricted
online acceleration controller. For GRNN (26) and scheme
(11)–(14), the following corresponding relation is given.
Owing to the derivative process that GRNN (26) originates
from the error function (17), the gradient descent formula is
designed to reduce the image error, thus ultimately
achieving equality constraint (13). In the next place, the
output control command is established at the acceleration
level, which corresponds to the acceleration-level kinematics
formula (12). Note that compensation item ϖ is the pseu-
doinverse solution of the system function in a stable state,
i.e., the minimization of joint acceleration, which is
equivalent tominimizing objective function (11). As for joint
constraint (14), introducing Fρ(·) is able to impose re-
strictions on joint velocity and joint acceleration. In short,
the proposed GRNN solver (26) corresponds to the qua-
dratic programming scheme (11)–(14).

Remarks. Compared with the existing visual servo
technologies, the innovations of this paper are worth em-
phasizing as follows: regarding the scheme (11)–(14) con-
struction level, most of the previous strategies on visual
servoing are controlled at the joint velocity level, few of
which are controlled and driven by joint acceleration. In
addition, none of the existing acceleration-level visual servo
schemes takes joint limits into account, which is considered
in the quadratic programming scheme (11)–(14). From the
perspective of the intelligent algorithm, a majority of the
existing techniques apply the pseudoinverse method to di-
rectly deal with the errors, which incurs additional com-
putational overhead. However, GRNN (26) is deduced
according to the gradient descent method and compensation
term, which provides a novel approach to dealing with the
visual servoing problem.

4. Stability Proof

In this section, the stability proof is provided to prove the
feasibility and effectiveness of the proposed method (26) to
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dispose of the visual servoing issue. 1e relevant theorem is
given as follows.

Theorem 1. 0e error ε � v − v∗ synthesized by GRNN (26)
can approach zero globally, provided that −J† _J _ϑ ∈ ρ.

Proof. Declare that the setting of precondition −J† _J _ϑ ∈ ρ
has two core functions. 1e first is to determine the mini-
mum joint constraints, thus ensuring the safe operation of
the manipulator. It is easy to image that forcing the joint to
remain within the constraints may lead to the increase of
error as reported in [54]. 1e second point is worth men-
tioning that precondition −J† _J _ϑ ∈ ρ is of necessities for the
proper derivation of the theorem. According to (10), one can
get

J€ϑ + _J _ϑ � JFρ cJ
T

− _v − δ v − v
∗

( 􏼁( 􏼁 − J
† _J _ϑ􏼐 􏼑 + _J _ϑ.

(27)

In the light of ε � v − v∗, _ε � _v, and €ε � €v, equation (27)
can be rearranged as

€ε � J Fρ cJ
T
(−_ε − δE) − J

† _J _ϑ􏼐 􏼑 + J
† _J _ϑ􏼐 􏼑. (28)

Let V � _εT _ε/2 stand for a Lyapunov candidate.1erefore,
calculating its time derivative _V � _εT€ε results in

_V � _εTJ Fρ cJ
T
(−_ε − δE) − J

† _J _ϑ􏼐 􏼑 + J
† _J _ϑ􏼐 􏼑

� −
1
c

cJ
T
(−_ε − δE) − J

† _J _ϑ + δJT
E + J

† _J _ϑ􏼐 􏼑

× Fρ cJ
T
(−_ε − δE) − J

† _J _ϑ􏼐 􏼑 + J
† _J _ϑ􏼐 􏼑.

(29)

Consider the inequality relation ‖Fρ(x) −x‖2 ≤ ‖x − y‖2,
∀y ∈ ρ. We simply devise x � cJT(−_ε − δε) − J† _J _ϑ and
y � −cδJTε − J† _J _ϑ and get

Fρ cJ
T
(−_ε − δε) − J

† _J _ϑ􏼐 􏼑 − cJ
T
(−_ε − δE) + J

† _Jϑ
.�����

�����
2

≤ cJ
T
(−_ε − δε) − J

† _J _ϑ + cδJTε + J
† _J _ϑ

����
����
2
.

(30)

Expanding the left side of the above equation generates

Fρ cJ
T
(−_ε − δε) − J

† _J _ϑ􏼐 􏼑 + J
† _J _ϑ + cδJTε

�����

�����
2

+ cJ
T
(−_ε − δε) − J

† _J _ϑ + δJTε + J
† _J _ϑ

����
����
2

− 2 cJ
T
(−_ε − δε) − J

† _J _ϑ + δJTε + J
† _J _ϑ􏼐 􏼑

T

× Fρ cJ
T
(−_ε − δε) − J

† _J _ϑ􏼐 􏼑 + J
† _J _ϑ + cδJTε􏼐 􏼑.

(31)

Observe the two formulas above, and it can be easily
gained that

Fρ cJ
T
(−_ε − δε) − J

† _J _ϑ􏼐 􏼑 + J
† _J _ϑ + cδJTε

�����

�����
2

≤ 2 cJ
T
(−_ε − δε) − J

† _J _ϑ + δJT
E + J

† _J _ϑ􏼐 􏼑
T

Fρ cJ
T
(−_ε − δε) − J

† _J _ϑ􏼐 􏼑 + J
† _J _ϑ + cδJTε􏼐 􏼑.

(32)

Substituting equation (29) into equation (32) deduces

_V − cδ_εTJJ
T
E≤

−
1
2c

Fρ cJ
T
(−_ε − δε) − J

† _J _ϑ􏼐 􏼑 + J
† _J _ϑ + cδJTε

�����

�����
2
≤ 0.

(33)

Evidently, one has

_V≤ cδ_εTJJ
Tε. (34)

Recalling the neural dynamic formula _ε � −δε, it is ev-
ident that

cδ_εTJJ
Tε � −cδ2εTJJ

Tε≤ − cδ2σεTε≤ 0, (35)

with design parameter c> 0, δ > 0, and σ > 0 denoting the
minimum eigenvalue of positive definite matrix JJT.
1erefore, it can be naturally concluded that _ε is of great
convergence with _V≤ 0. Referring to the Lasalle invariance
principle [55], we let _V � 0 to derive the stable state and get
the following two conditions:

_ε � 0 or€ε � Fρ cJ
T
(−_ε − δE) − J

† _J _ϑ􏼐 􏼑 � −J
† _J _ϑ.

(36)

Given that −J† _J _ϑ ∈ ρ, the solutions to the above two
conditions can be gained:

V∗

Desird
feature

Visual
servoing
structure

H (v, d)

Image frame
Actual
feature

Robot frame
Camera

Joint acceleration ϑ

Physical
constraints

Compensation
term

Robot
controller

Robot

ßFρ (·)

Robot
structure

J (ϑ)

V V
. . .

Figure 1: Control flowchart of the visual servoing scheme (11)–(14).
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_ε � ε � 0. (37)

In this regard, a conclusion can be readily drawn that ε is
convergent to zero globally. 1e proof is thus competed
(Figure 2). □

5. Simulation Example

1is section provides a simulation example to demonstrate
the performance of GRNN (26) when confronted with the
robot visual servoing issue. Specifically speaking, the PUMA
560 manipulator (6-DOF) is modeled with a camera at-
tached to its end effector to track the desired static point in
the image frame. In addition, the structure information of
the PUMA 560 manipulator can be referred to the existing
literature [43] with the photo of PUMA 560 shown in
Figure 2. It is worth pointing out that when considering only
one desired feature point, the kinematic control of the
PUMA 560 manipulator can be regarded as utilizing the 6-
dimensional joint space to control 2-dimensional image
space, which can approximately treat the PUMA 560 ma-
nipulator as a redundant manipulator.

In the first place, the simulation setting and the neural
network parameters are introduced. Simply put, the pa-
rameters of the neural network and camera system are set as
up � vp � 256 pixel, κa � κb � 8 × 104pixel/m , l � 8 × 10
− 3m, d � 2m, v∗ � [256, 256]Tpixel, δ � 10, c � 103, and
α � 20. As to the state and physical constraints of the PUMA
560 manipulator, the states are chosen as
ϑ0 � [0.3, −0.9, 0.4, 0.3, −1, −0.2]Trad, the initial coordinate
of feature point v0 � [169, 104]T pixel,
_ϑ

+
� − _ϑ

−
� [0.4]6×1rad/s, and €ϑ

+
� −€ϑ

−
� [3]6×1 rad/s2.

1e simulation results are provided in Figure 3. As depicted
in Figure 3, the PUMA 560 manipulator successfully achieves
the desired feature point driven by GRNN (26). 1e error ε in
Figure 3(b) and _ε in Figure 3(c) converge to zero in 1 s. With
regard to joint information, Figure 3(d) through Figure 3(f)
record the joint acceleration, joint velocity, and joint angle
during the simulation, respectively. It is worth emphasizing
that joint acceleration and joint velocity are maintained within
the designed physical constraints, which ensures the safe ex-
ecution of the task. Overall, the above results indicate the
feasibility and efficiency of the proposed GRNN (26) when
handling the visual servoing issue.

To demonstrate the superiority of the proposed method,
the traditional pseudoinverse method is employed to deal
with the visual servoing problem with results provided in
Figure 4. 1e control law adopted by the traditional pseu-
doinverse method is generalized as

€ϑ � J
†

−β _v − ε v − v
∗

( 􏼁 − _J _ϑ􏼐 􏼑, (38)

with β � 25 and ε � 100. It is worth pointing out that the
investigations of visual servoing based on the pseu-
doinversion operation of the Jacobian matrix are common
and effective in the existing method [21, 26, 28]. Never-
theless, the pseudoinversion operation of a matrix brings
more computational complexity, and the conventional
pseudoinverse methods do not take joint limits into account,

which are regarded as the deficiencies of existing methods
[21, 26, 28]. As depicted in Figure 4(a), the error ε quickly
converges to zero in 1.5 s, i.e., the manipulator successfully
tracks the desired feature point. However, Figure 4(b) in-
dicates that due to the large value of the initial error ε, the
generated initial accelerations are even more than 10 rad/s2,
which would damage the PUMA 560 manipulator. On the
contrary, the proposed method (26) limits the acceleration
in the physical constraints, which emphasizes the superiority
of the proposed method (26).

Beyond that, an illustrative experiment is conducted on a
UR5manipulator (6-DOF) [25] with a visual sensor installed
on its end effector, which is assisted by Virtual Robot Ex-
perimentation Platform (V-rep). 1e experiment results
plotted in Figure 5 are synthesized by the proposed GRNN
(26). Note that in Figure 5(a), the measured object is
regarded as the desired point v∗, which can be captured by
the visual sensor, and that the center of the sensor view is the
feature point v of the robot visual system. By constantly
transmitting the error information ε � v − v∗ to GRNN (26),
the visual servoing issue can be solved with v approaching v∗

as described in Figures 5(b) and 5(c), which implies the
validity of the proposed GRNN (26).

6. Comparisons

In this section, some existing visual servoing approaches
[21, 25–27, 42, 43, 48] are assembled in Table 1 to highlight
the superiority of the proposed quadratic programming
scheme (11)–(14). 1e following points can be deter-
mined. A majority of the existing techniques
[21, 26, 27, 48] utilize the pseudoinverse method to carry
out research. 1ese approaches often take no account of
joint physical constraints, which may lead to a large
generated control signal and even cause damage to the
manipulator. On the other hand, it is well known that the
pseudoinverse operations involved are computationally
onerous. 1irdly, the present research on visual servoing
at acceleration level is relatively lacking [21, 26]. 1ere-
fore, in terms of joint acceleration, the quadratic pro-
gramming scheme (11)–(14) avoids the pseudoinverse
operation by utilizing the matrix transpose operation and
meanwhile takes the joint constraints into account. 1is
demonstrates the superiority of the proposed quadratic
programming scheme (11)–(14) (Table 1).

Joint 4

Joint 5
Joint 6

Joint 3 Joint 1

Joint 2

Figure 2: Photo of PUMA 560 with six joints.
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Figure 3: Simulation results on the PUMA 560manipulator driven by the quadratic programming scheme (11)–(14) aided with GRNN (26)
for the visual servoing task with execution time T � 5s. (a) Actual path and desired point in image space. (b) Time history of 2-norm of error
ε. (c) Time history of 2-norm of error _ε. (d) Time history of joint acceleration. (e) Time history of joint velocity. (f ) Time history of joint
angle.
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Figure 4: Simulation results on the PUMA 560 manipulator driven by the pseudoinverse method (38) for the visual servoing task with
execution time T � 5s. (a) Time history of 2-norm of error ε. (b) Time history of joint acceleration.

Complexity 7



7. Conclusion

In this paper, the vision servoing issue has been formu-
lated as a constrained quadratic programming scheme at
the acceleration level with physical constraints consid-
ered. 1en, a GRNN has been proposed via the gradient
descent method and compensation term with the stability
analyses provided. After that, simulation examples have
been carried out to demonstrate the correctness of

theoretical analyses and the validity of the proposed
method. Note that the proposed method has resolved the
visual servoing issue at the acceleration level and also has
considered the joint constraints of the manipulator to
guarantee the safe operation of the manipulator. For the
further research direction, the authors are going to in-
vestigate the uncertain conditions and optimization in the
visual system, such as noise suppression [56] or Jacobian
estimation [57] and manipulability optimization [58].

UR5 manipulator

Visual sensor

Sensor view
Measuring range

Measured object

(a) (b)

(c)

Figure 5: V-rep experiment results on the UR5manipulator driven by the quadratic programming scheme (11)–(14) aided with GRNN (26)
for the visual servoing task. (a) UR5manipulator installed with a visual sensor. (b) Initial state of the robot visual system. (c) Final state of the
robot visual system.

Table 1: Comparisons among different approaches for visual servoing of redundant manipulators.

Command
level

Gradient descent
method

Joint velocity
constraints

Joint acceleration
constraints Pseudoinverse operation

Number
of

neurons
Scheme (26) Acceleration Yes Yes Yes No n

Scheme in [21] Acceleration No No No Yes n

Scheme in [25] Velocity No Yes No No n + 2
Scheme in [26] Acceleration No No No Yes n

Scheme in [27] Velocity No No No Yes n

Scheme in [42] Velocity No Yes No No n + 2
Scheme in [43] Velocity No Yes No No n + 2
Scheme in [48] Velocity No No No Yes n
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With the rapid development of Internet of-ings technology, RFID technology has been widely used in various fields. In order to
optimize the RFID system hardware deployment strategy and improve the deployment efficiency, the prediction of the RFID
system identification rate has become a new challenge. In this paper, a neighborhood rough set and random forest (NRS-RF)
combination model is proposed to predict the identification rate of an RFID system. Firstly, the initial influencing factors of the
RFID system identification rate are reduced using neighborhood rough set theory combined with the principle of heuristic
attribute reduction of neighborhood weighted dependency, thus obtaining a kernel factor subset. Secondly, a random forest
prediction model is established based on the kernel factor subset, and a confusion matrix is established using out-of-bag (OOB)
data to evaluate the prediction results.-e test is conducted under the constructed RFID experimental environment, whose results
showed that the model can predict the identification rate of the RFID system in a fast and efficient way, and the classification
accuracy can reach 90.5%. It can effectively guide the hardware deployment and communication parameter protocol setting of the
system and improve the system performance. Compared with BP neural network (BPNN) and other prediction models, NRS-RF
has shorter prediction time and faster calculation speed. Finally, the validity of the proposed model was verified by the RFID
intelligent archives management platform.

1. Introduction

In recent years, ultra-high-frequency (UHF) passive RFID
technology has been widely applied in applications of un-
manned warehouse, industrial site, new retail store man-
agement, and other scenarios due to its excellent ability in
long-distance and multitag reading [1]. With respect to the
conventional quasistatic RFID system that is usually
deployed in a fixed way in particular areas, its system ar-
chitecture and parameter configuration are unadjustable to
some extent, making it difficult to be applied to certain

practical situations. In response to the abovementioned
circumstances, a novel mobile RFID system is, therefore,
proposed. RFID robots are not only to simply assemble the
robot with the RFID system but also to combine the RFID
system with the mobile robot to form a unified system. -e
optimization and control of the RFID system need to fully
consider the factors such as tag environment, space, moving
speed, and other factors. Compared with the existing con-
ventional quasistatic RFID system, the RFID system on the
robot is a typical dynamic system. In the conventional
quasistatic RFID system, the system deployment and reading
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strategy are relatively fixed, while in mobile RFID robots, the
RFID system needs to constantly adjust the parameters and
control the robot moving to maximize the adaptation of the
environment to obtain the best application performance.
When the mobile RFID robot is in task areas, it can
adaptively adjust protocol parameters and hardware de-
ployment strategies to accomplish tag reading tasks reliably
under dynamic scenarios, thereby improving identification
efficiency of the system. In domains of project planning and
designing, the RFID system identification rate is the key
technical index measuring system quality. In order to im-
prove efficiency of the system’s architecture and engineering
deployment, predicting the identification rate of the novel
mobile RFID system is of critical priority.

Among the existing prediction models of the RFID
system identification rate, Liu et al. successively proposed a
logistic regression analysis model, learning vector quanti-
zation neural network, and other intelligent algorithms to
predict the rate of RFID system identification, which
achieved good prediction effect. Despite the good effect
achieved through adopting the abovementioned proposals,
certain shortcomings still occur in practical applications
involving huge amount of computation and overfitting
[2, 3]. By introducing neighborhood rough set theory, Qiao
et al. conducted optimization works with respect to influ-
encing factors of the RFID system identification rate to
improve identification efficiency. However, those factors
being selected from actual test scenario are rather subjective,
whichmay impose potential disadvantageous impacts on the
identification rate of the actual system [4].

All the aforementioned algorithms are used to predict
the system identification rate in the conventional quasi-
static RFID system, yet few research studies focus on the
system in dynamic scenes so far. In response to various tag
numbers, complex multipath channel interference, and
other factors encountered in designing and deploying the
RFID system in dynamic scenes currently, tremendous
efforts have been made on validation tests and on reducing
miss rate of tags to avoid adjusting parameter deployment
to do a lot of testing. -rough applying RFID technology
to mobile robot while extending its corresponding ap-
plication schemes to dynamic scenes, a novel mobile RFID
system is, therefore, established, in which a new intelligent
learning algorithm being referred to as the neighborhood
rough set and random forest (NRS-RF) combination
model is introduced to predict the system’s identification
rate.

From the perspective of RFID system hardware de-
ployment, we comprehensively select initial influencing
factors to explore the relationship between the system
identification rate and each influencing factor. -is ap-
proach avoids doing a lot of verification tests in order to
obtain the optimal deployment strategy. -e NRS-RF model
predicts the system identification rate in a fast and efficient
way, so as to reverse guide the hardware deployment and
communication protocol parameters of the RFID system,
improve the performance of the RFID system, and meet the
engineering needs. -is novel mobile RFID system breaks
the conventional quasistatic RFID system design and

provides more in-depth scene perception and real-time
read-write strategy optimization for practical engineering
needs.

-e specific steps of the NRS-RF model are as follows:
Firstly, multiple initial influencing factors that affect the

identification rate of RFID system are identified compre-
hensively. In specific, NRS theory is adopted to reduce
influencing factors and data redundancy in between these
factors, by which the kernel factor subset is selected. Sec-
ondly, the bootstrap method is used to resample the training
set to support training the random forest prediction model
[5–7].-eNRS-RFmodel is compared with other prediction
models such as the backpropagation neural network
(BPNN) to verify its advantages in predicting the identifi-
cation rate of the RFID system.-e test results show that the
NRS-RF model can accurately and quickly complete the
prediction of the RFID system identification rate, and the
classification accuracy can reach 90.5%. It effectively guides
the project deployment and improves the performance of the
RFID system.

Compared with other models such as the BPNN, the
NRS-RF model has obvious advantages in terms of classi-
fication accuracy and training time. Last but not least, the
model is applied to the project of the RFID intelligent ar-
chives management platform, thus validating and verifying
effectiveness of the proposed model.

-e remainder of this paper is organized as follows:
Section 2 presents an overall review of related work. Section
3 highlights relevant theoretical methods. Section 4 outlines
experimental testing and analysis. Section 5 analyzes sim-
ulation results in detail and engineering application. Section
6 summarizes conclusions.

2. Related Work

Generally speaking, the deployment environment of the
conventional RFID system is usually located in fixed scenes
such as the entrance and exit of a corridor or passageway, for
which reason it is inconvenient to apply tag identification in
these areas. Under the circumstance of the scene with large
identification area, a multireader mechanism is generally
adopted [8]. However, the expenditure for improving the
mechanism will be huge and unaffordable, not to mention
potential collision between readers. Currently, as diverse
algorithms emerge, protocol algorithms of reader anticol-
lision has attracted much attention, among which heartbeat
algorithm [9] and color wave algorithm, as well as the
improved version of corresponding algorithms, prosper
[10, 11]. In this paper, as our study mainly concentrates on
single mobile reader mechanism, the RFID system with
multiple readers, therefore, does not need to be particularly
introduced in detail.

-e state-of-the-art mobile RFID system is suitable for
tag identification in small and medium areas. -is mobile
RFID system that works at UHF does not require any power
supply (passive), featuring with characteristics of long
identification distance, small size, strong directionality, and
outstanding robustness against environmental changes [12].
-e system ensures that not only all tags are covered within
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the identification range of readers’ signal and can be read
successfully but also corresponding information processing
belongs to the extended applications of the conventional
fixed RFID system. However, the aforementioned dynamic
RFID system cannot achieve its optimal status due to the
vulnerable identification rate being seriously affected by
external interference that may be induced by subjectivity,
experience, and real-time hardware deployment of the
system. -erefore, the dynamic RFID application scene
needs to guarantee more in-depth scene perception and real-
time read-write strategy optimization, which poses new
challenges for RFID read-write technology.

Under new technological strategies and formats such as
artificial intelligence, big data, new-generation robots, in-
telligent manufacturing, and new retail, RFID technology is
facilitating robots to complete automation and dehuman-
ization of warehouse management, industrial site, and new
retail management [13]. Minho et al. introduced relations
between thr RFID system identification rate and influencing
factors in a mobile system, established a support vector
machine (SVM) model, and predicted the RFID system
identification rate. However, certain errors still existed be-
tween the prediction results and the actual identification
rate. In the abovementioned methodology, factors that affect
the system identification rate were selected inadequately,
and the actual scene was neither validated nor verified [14].

In January 2016, Keonn technology company of United
States presented an RFID robot being referred to as
advanrobot and applied it to a clothing retail scene to
achieve fast and accurate mobile reading [15]. In April 2016,
a well-known United States manufacturer named -ing-
magic introduced adaptive duty cycle technology in the
reader to minimize the reader’s working time with respect to
tag numbers, thus reducing power consumption [16]. Wang
et al. proposed an efficient energy detection and calculation
method for the RFID system in a dynamic scene, which is
different from conventional anticollision algorithm. -e tag
helps the reader to judge whether the tags in the identifi-
cation area collide with each other or not by sending a PBD
burst time. If collision occurs, the collision problem will be
solved by recursive polling, thereby improving the tag
identification rate of the system [17]. In August 2016, Impinj
proposed a scheme of the Speedway Revolution RFID
reader, to which automatic performance setting is intro-
duced based on environmental noise detection and on au-
tomatic dynamic antenna switching technology to optimize
read-write time and efficiency [18].

In this paper, aiming at promoting sustainable devel-
opment of RFID technology, research studies on the RFID
robot and on developing new generation of adaptive read-
write technology are, therefore, conducted, satisfying
specific demand of niche market while accelerating tech-
nological progress of the industry. In order to improve the
system identification rate from a physical perspective of
hardware deployment, an intelligent learning algorithm
named RFID system identification rate prediction is pro-
posed based on the NRS-RF model. By using our proposed
method, not only is the relation mined between diverse
influencing factors and the system identification rate but

also intelligent scene perception is realized through model
matching instead of using conventional methods, thereby
improving the prediction accuracy. Moreover, by com-
bining the novel mobile RFID system, the optimal com-
bination of hardware deployment configuration scheme is
obtained to improve the RFID system’s identification rate,
thus maximizing effectiveness and efficiency of the hard-
ware deployment while ensuring cost efficiency in terms of
labor force and resources.

-e philosophy of using the NRS-RF model can be
summarized as follows:

(1) Influencing factors of the RFID system identification
rate are selected as the sample data, in which the NRS
theory is used to reduce the attribute of these factors,
to select the kernel factor subset that affects the
identification rate, and to reduce the input dimen-
sion of nonlinear mapping.

(2) Based on the kernel factor set, the prediction model
is constructed featuring with the 2-classification
random forests RFID system identification rate,
upon which a novel mobile RFID experimental test
platform is established accordingly. Due comparison
analysis is performed between the NRS-RF model
and the BPNN and other prediction models in terms
of OA, Kappa coefficient, RMSE, MAE, training time
and prediction time, and correlation. -e test results
show the superiority of the NRS-RF model.

(3) -e prediction model is applied to the intelligent
archives management platform, and the importance
distribution of influencing factors to RFID system
identification rate classification prediction is ana-
lyzed, verifying effectiveness and efficiency of the
proposed model.

3. Methods

3.1.ReductionFeatureFactors. Emerging as an innovation in
classical rough set theory, neighborhood rough set (NRS)
theory was put forward by Lin in 1988 [19, 20]. -e idea of
NRS algorithm is that, in the real space, each data point will
form a neighborhood δB(xi) and the data in the neigh-
borhood family will constitute the basic information par-
ticles [21–23]. NRS solves the problem of numerical data set
that is not easy to be processed in classical rough set theory,
removes redundant data features, and selects the key factors
that affect the identification rate of the RFID system [24, 25].

In the RFID system, the information system W is
composed of quad-tuple W� (U, Y, V, f ), where U is the
sample number set of the identification rate, Y is the sample
set of the identification rate (Y � C∪D), C is the influencing
factors of the identification rate functioning as the attribute
set, and D is the classification level of the identification rate
functioning as the decision attribute. -is quad-tuple in-
formation system W is called the decision table, within
which V denotes the value field of attribute and f represents
the mapping relation used to specify the property value of
sample x, that is, f�U×Y⟶V.
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If the sample xi ∈ U, the neighborhood condition of xi
needs to satisfy δB(xi) � xj|xjεU,ΔB(xi, xj)≤ δ􏽮 􏽯, where Δ
denotes distance function, for any x1, x2, x3 ∈ U, and Δ
satisfies

Δ x1, x2( 􏼁 � Δ x2, x1( 􏼁,

Δ x1, x2( 􏼁≥ 0,Δ x1, x2( 􏼁 � 0; at this time x1 � x2,

Δ x1, x3( 􏼁≤Δ x1, x2( 􏼁 + Δ x2, x3( 􏼁.

⎧⎪⎪⎨

⎪⎪⎩

(1)

For any attribute set L, when it is classified, the indis-
cernible data will be grouped into one class. -ey belong to
the indiscernible relation, which can be given by the fol-
lowing equation:

IND(L) � (x, y) ∈ U × U: f(x, a) � f(y, a), a ∈ P􏼈 􏼉.

(2)

For the indistinguishable relationship group H⊆Y,
a∊H, if the relationship IND(L) � IND(H − h{ }) is satis-
fied, it is considered that {h} is the redundant data on H,
which can be reduced. It can be defined that the value of
theory field is V, R is the equivalent relation on V, to which
the upper approximation, the lower approximation of
neighborhood rough set, and the boundary field of subset x
satisfy the following equations, respectively:

R(X) � ∪ Y ∈ U|R: Y∩X≠∅{ }, (3)

R(X) � ∪ Y ∈ U|R: Y⊆X{ }, (4)

BNR(X) � R(X) − R(X), (5)

where PosR(X) � R(X) is the positive domain of subset X
and NegR(X) � U − R(X) is the negative domain. For any
c∊C, the dependence degree of decision attribute D on
condition attribute c is defined as

ca �
Posa(D)

U
. (6)

If two random variables are defined, the correlation
degree calculated using mutual information measure can be
satisfied by the following equation:

I(X, Y) � − 􏽘
x∈Vx

􏽘
y∈Vy

p(x, y)log2
p(x, y)

p(x)p(y)
. (7)

3.2. Random Forest Prediction. Random forest (RF) algo-
rithm is based on the decision tree as a learning machine to
build bagging integration [26, 27], thus further introducing
the selection of random attributes. Specifically, conventional
decision tree algorithm selects an optimal attribute in the
current attribute set when selecting the partition attribute,
whereas the RF algorithm randomly selects a subset con-
taining K-th attributes in the attribute set, through which an
optimal attribute is selected from the subset selection for
classification. Using this kind of random selection, the
random forest can avoid disadvantages of overfitting,

exhibiting excellent antinoise performance. Outperforming
other intelligent algorithms, it only requires simple com-
putation while maintaining cost efficiency. -e principle of
RF algorithm is given below, as shown in Figure 1.

-e random forest algorithm adopts an integrated algo-
rithm; the classification accuracy of the algorithm itself is much
higher than other single algorithms, so the accuracy is higher.
-e random forest algorithm can handle high-dimensional
data without any feature selection.When bootstrap sampling is
performed on training samples, out-of-bag data will be gen-
erated. Unbiased estimates of true errors can be obtained in the
process of model generation without loss of training data. Due
to the simple implementation, high accuracy, and strong
antioverfitting ability of the algorithm, when faced with
nonlinear data such as the identification rate of the RFID
system, themodel shows high classification accuracy and is also
suitable as a benchmark model.

Due to the change of tag numbers and the complex
multipath channel interference in the architecture and de-
ployment of the RFID system, the prediction value of the
RFID system identification rate is, therefore, discretized. In
order to avoid adjusting the parameters to obtain optimal
deployment strategy and to do a lot of testing and verifi-
cation, it is necessary to comprehensively select the influ-
encing factors, thus mining the nonlinear relationship
between the RFID system identification rate and its influ-
encing factors. From the perspective of hardware deploy-
ment, the RFID hardware deployment and communication
protocol parameters should be optimized and adjusted with
the purpose to reduce the missed rate of tags and to improve
the system performance. -e relation between the influ-
encing factors and the identification rate is obtained using
RF classification prediction algorithm, to which its mathe-
matical model can be expressed by the following equations:

RFP � Tn, M{ }, (8)

d � f x1, x2, . . . , xn,RFP( 􏼁, (i � 1, 2, . . . , n). (9)

In equation (8), RFP is the parameter set of the random
forest prediction model, Tn is the number of regression trees
in the model, andM is the number of influencing factors. In
equation (9), the prediction method of the RFID system
identification rate is defined, where f is the uncertainty
function relation of random forest classification algorithm, d
is the system identification rate, and xi is the i-th index factor
affecting the identification rate, including number of tags,
number of antennas, reading distance, and other parameters.
n is the number of influencing factors of the system iden-
tification rate. Another advantage of the random forest al-
gorithm is that the influencing factors participating in the
algorithm can measure the importance degree of the clas-
sification. -e contribution value of the influencing factors
can be determined by calculating the information gain rate
of the dataset. -e information gain rate is positively cor-
related with certainty of the influencing factor, indicating
that the higher the information gain rate, the stronger the
certainty of the influencing factor. Calculation of the in-
formation gain is given by the following equations:
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g D, Xi( 􏼁 � H(D) − H D|Xi( 􏼁, (10)

whereH(D) is the information entropy of datasetD, namely,

H(D) � − 􏽘
n

i�1
Dilog2Di, (11)

where H(D|Xi) is the entropy change brought by Xi var-
iables under the condition of dataset D.

H D|Xi( 􏼁 � H D, Xi( 􏼁 − H Xi( 􏼁. (12)

4. Experiments

4.1. Selection of Influencing Factors. We use the UHF passive
RFID system as the experimental background to build a
novel mobile UHF passive RFID test platform. -is type of
RFID system has many advantages that users cannot refuse.
-is technology can achieve no human intervention and
without-contact identification. -is technology can realize
nonhuman intervention and noncontact identification. -e
system can be used in many harsh environments, such as
automatic container terminal yard operation system iden-
tification, high-speed moving object identification, multitag
identification, and other scenarios at low cost.

For the novel mobile RFID system, because of its mo-
bility, the tags in the identification area have the opportunity
to be identified and processed, which can linearly expand the
identification range of the reader. Under the same test
conditions, the novel mobile RFID system can identify more
tags and obtain the system identification rate faster than the

conventional quasistatic RFID system. However, when the
system is put into actual engineering deployment, it will
encounter factors such as changes in the number of tags and
complex multipath channel interference. When we adjust
the hardware deployment of the system, there will be
subjectivity and timeliness, resulting in the identification
range of the reader. In the blind area, we can reduce the error
of the RFID system identification rate by optimizing the
hardware configuration reasonably, so as to maximize the
performance of the system.

In RFID system project planning and designing, the
system identification rate that represents the number of tags
being successfully read in the inventory process accounts for
the total number of tags. It is an important indicator in
measuring the system performance. Generally, the system
identification rate correlates with controllable factors in-
volving moving speed of the reader, number of tags, and
other factors and with uncontrollable factors including
multipath channel interference, Doppler effect, and other
factors, as shown in Figure 2. During the experiment, eleven
controllable factors are selected as conditions, including
height of the antenna P1, number of tags P2, horizontal
distance between the tag and shelf P3, number of reader
polling cycles P4, moving speed of the antenna P5, hori-
zontal angle of the antenna P6, vertical angle of the antenna
P7, number of antennas P8, light intensity (the sunlight and
the dark room without light are selected under same ex-
perimental conditions) P9, shelf height P10, and reader
transmitting power P11. -e level of the RFID system
identification rate is regarded as the decision attribute.

In order to verify prediction accuracy of the proposed
intelligent prediction method for the RFID system, firstly,
orthogonal experiments are conducted using a variable-
controlling approach. -e antenna height is set to 0.6m,
0.9m, and 1.2m, respectively; the number of tags is set to 90,
130, 150, and 180, respectively; the distance between tags and
antennas is set to 0.8m, 1.5m, and 1.9m, respectively; the
number of polling turns of the reader is set to 1, 2, and 3,
respectively; the moving speed of the antenna is set to 0.3m/
s, 0.6m/s, and 0.9m/s, respectively; the horizontal angle of
antenna is set to 0° and 30°, respectively; the vertical angle of
antenna is set to 0° and 30°, respectively; the number of
antennas of the same specification is set to 1 and 2, re-
spectively; the light intensity is set to 0 (sunlight) and 1
(darkroom), respectively; the shelf height is set to 0.6m and
1.2m, respectively; and the reader transmitting power is set
to 18 dBm, 23 dBm, and 28 dBm, respectively.

We need to traverse 10368 sets of cross experiments and
record the identification rate of the RFID system, in which
each group of influencing factors is used to conduct 3 ex-
periments, and both the average value of the RFID system
identification rate and the influence factors can be taken as
the sample data.

In practical engineering applications, the new type of
portable RFID system should be expected to reach 100%
identification rate on tagged goods inventory. In practical
applications, however, due to complex constraining factors
such as multipath effect, it is not ideal to rely on the current
hardware. -erefore, the threshold of the identification rate
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Figure 1: Schematic diagram of the random forest algorithm.
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can only reach 95%, which needs to be adjusted with respect
to differing projects according to actual situations. We
believe that whether the identification rate is qualified or not
lies in satisfying the requirements of actual situations. If the
identification rate of the system exceeds 95%, it is regarded
as high rate and can be categorized into type 1; otherwise, it
is labelled as unqualified type 2 if the identification rate is less
than the threshold value of 95%.

4.2.ComprehensiveAnalysis of theTest Platform. According to
the proposed prediction model of the RFID system iden-
tification rate, a novel mobile UHF passive RFID system is
constructed combining a mobile robotic car reader antenna
and other devices as an RFID experimental test platform.
Featuring 9m length, 4m width, and 3.75m height, the
platform is built in the corridor of an open classroom, as
shown in Figure 3(a). -e product of water drop robot of
Beijing Yunji technology company is selected as the robotic
vehicle used in the experiment, which maneuvers with
abilities of highly sensitive intelligent perception and po-
sitioning navigation.

As shown in Figure 3(b), the robotic vehicle that is
enabled with a path scanning function can adjust its moving
speed following the experimental requirements. -e vehicle
scans the test site, where the white color represents the area it
walks within, the gray color represents the unexplored area,
and the black solid line represents the obstacle information
established in the map. -e scanning results are shown in
Figure 4. -e mobile robotic vehicle is equipped with an
adjustable tripod, reader, and antenna. -e detailed ex-
perimental specifications are introduced as follows.

An RFID reader (MODEL Mercury6, BingMagic) is
adopted, which has stable read-write performance sup-
porting reading ISO 18000-6C protocol standard in wired
mode with a 9 dBi circular polarization reader antenna. -e
four-layer book shelf on the left side is 1.5m ∗ 2m, with a
certain number of books evenly distributed on each layer
and with archive tags pasted on the side of each book.-e tag
used is UHF passive and its working frequency mainly
ranges from 860MHz to 920MHZ, exhibiting excellent
directionality and satisfactory read distance.

-e novel mobile RFID experimental system has the
following characteristics:

(1) -e novel mobile RFID system overcomes the tra-
ditional quasistatic RFID system because the iden-
tification area is static, there is always the problem of
blind spots in identification, and it avoids the dis-
advantages of manual handheld readers that cause

large errors in the identification rate of the RFID
system

(2) In order to identify all tags in the area, the novel
mobile RFID system requires a mobile robot to poll
the tags in the reading area, and the tags are covered
by the reader signal area, at least, once

(3) Some tags will repeatedly enter and leave the signal
area of the reader

(4) Some tags will be identified multiple times by the
reader

-e experiment builds a novel mobile UHF passive RFID
test platform. Because only a movable single reader mech-
anism can be used to realize multitag identification, the cost
is much less than the RFID system with multireader
mechanism, which also saves multiple readings. It also saves
equipment installation and wiring costs. However, the
system still has the following limitations.

Due to the sector-shaped antenna radiation field of RFID
mobile robotic vehicle, the echo signal of tags on both sides
of the sector is weak and vulnerable to interference. With the
range of sector coverage, the echo signal of far end tag A is
weak, whereas that of near end tag B is strong. During the
process of identifying tags, the tags on both ends of the sector
may block the reader antenna if the vehicle moves too fast,
thus resulting in information loss.

In order to facilitate simple and direct identification,
different moving speeds of the vehicle are selected as initial
influencing factors for the RFID system. As shown in Fig-
ure 5, it is required that the vehicle must move along the
linear path with the signal radiation radius R at a reasonable
and constant speed under specified conditions to obtain the
optimal identification rate of the RFID system. Our future
research will be focusing on the optimal disk point path to
obtain the maximum identification rate of the system.

-roughout the process of identifying tags, only by
adjusting the parameters from the physical perspective of
hardware deployment can the optimal deployment scheme
of combination be obtained. In the abovementioned ex-
periment, however, the ideal identification rate of 100%
cannot be achieved merely through adjusting hardware
configurations. Admittedly, there are still other detrimental
encumbrances that may potentially induce blind area
problems, to which limitation involving antenna polariza-
tion mismatching and multipath fading can be attributed
largely.

In response to the situation that the number of tags on
the shelf is positively correlated with the size of storage area,
only small-size tags are selected to be uniformly placed in the
identification area without considering the serious tag col-
lision problem in the scene with dense multiple UHF tags.
With respect to other initial factors selected in Section 4.1,
such as antenna height, polling circle of the reader, and
horizontal distance between the antenna and shelf, a rea-
sonable test range should be conscientiously selected. Fur-
thermore, there are still many important tasks to be
accomplished, which include, but not limited to, conducting
orthogonal combination of controllable variables and testing
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spot
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Figure 2: Influencing factors and the system identification rate.
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diverse combinations of influencing factors, as well as re-
cording the RFID system identification rate.

4.3. Proposed Algorithm

4.3.1. Reducing Influencing Factors. In Section 4.1, 11
controllable factors (see Section 4.1) are selected as condition
attributes, and the level of the RFID system identification
rate is taken as a decision attribute.

In order to reduce the redundancy in between the
aforementioned 11 groups of influencing factors and to
improve the prediction accuracy of system identification,
heuristic reduction algorithm of neighborhood weighted
dependency is, therefore, adopted. -e purpose of using this
algorithm aims on reducing the attribute reduction of
influencing factors and on obtaining the kernel factor subset
R [28, 29]. -e algorithm is a forward greedy attribute re-
duction algorithm based on the attribute importance of
weighted dependence (Algorithm 1). Detailed explanation of
the algorithm is described as follows [30, 31].

In a neighbourhood decision systemW� (U, C∪D, V, f,
ε), for Z⊂C, we define attribute x ∊Z−B and define w as
adjustment parameter and wcδ

B as weighted dependency, so
the importance degree of Z and D based on the weighted
dependence degree satisfies the following equation:

sig(x, Z, D) � wc
ε
B∪ x(D) − wc

ε
B(D). (13)

-e neighborhood radius ε� 0.28 was selected, the at-
tribute subset was selected from the empty set, and the
reduction subset was selected in turn to build an ordered
reduction attribute subset. -e dependence of the 11 groups
of influencing factors increased as the important attributes
of the reduction subset increase, thereby finally obtaining the
decision table M1, as shown in Table 1. From Table 1, it is
obvious that there are 500 sets of data after reducing sample
set U which is composed of P1, P2, P3, P4, P5, P8, and P11.
Compared with the initial influencing factors, after per-
forming heuristic reduction algorithm of neighborhood

Move

Reader

Antenna

Tag B

Tag A

Figure 5: Schematic diagram of the novel mobile RFID systemwith
the robotic vehicle.

(a) (b)

Figure 3: Test environment, (a) experimental test platform, and (b) water droplet robot.

Figure 4: Two-dimensional scanning image of the test
environment.
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rough set weighted dependency, some redundant factors are
removed, and the input features are changed from the
original 11 sets to 7 sets.

4.3.2. Random Forest Prediction. -e prediction model in
this paper is based on the random forest toolbox developed
by the University of Colorado [32], and the corresponding
codes were written in the operating environment of
MATLAB7.1. -e RFID identification rate prediction model
based on the NRS-RF includes 6 steps. Specific prediction
steps of the NRS-RF are demonstrated as follows:

(1) Normalized Input Data. -e kernel factor subset
{antenna height P1, number of tags P2, distance
between tags and shelf P3, number of polling cycles
P4, moving speed of the antenna P5, number of
antennas P8, and transmission power of the reader
P11} obtained by attribute reduction of neighbor-
hood rough set theory is used to construct 500 ∗ 7-
dimensional sample data as input variables of the
random forest model. -e sample data are processed
by the following equation:

xi
′ �

xi − min(x)

max(x) − min(x)
. (14)

-e predicted value of the identification rate of the
system is transformed by

x � x′ xmax−xmin( 􏼁 + xmin, (15)

where x is the initial RFID system identification rate
value and xmax and xmin are the maximum and
minimum value of the system identification rate,
respectively.

(2) Bootstrap Sampling Training Subsets and Decision
Tree. -e bootstrap method was used to perform n
times of resampling from the sample set S and to
randomly generate n training subsets Si with the
same number of samples. During bootstrap sampling
of training samples, 1/3 out-of-bag (OOB) data will
be left behind.-e OOB precision estimation of each
decision tree can be obtained through out-of-pocket

samples. -e OOB precision estimation of left and
right decision trees in the forest can be averaged to
obtain the generalization precision estimation of
random forest. For all the sample subsets Si, the
CART algorithm is performed to construct decision
trees, thus combining these trees to form a random
forest, which is expressed as C1, C2, . . . , Ci􏼈 􏼉.

(3) Node Split Growth. When the nodes of the decision
tree are splitting and growing, the input parameters
in the Mtry block prediction model are randomly
taken as the split subset of the current node. -e
value of Mtry represents the disturbance degree of
themodel attributes because the value in themodel is
sensitive which directly affects the prediction accu-
racy of the model. -e value can be given according
to the empirical equations:

Mtry �
M

3
􏼔 􏼕, (16)

Mtry � log2 M􏼂 􏼃, (17)

whereM is the number of input variables which is 6 in
this study. Hence, according to equations (16) and
(17), the Mtry value is 2. When the nodes are divided
in the subset, the Gini index in CART algorithm is
taken as the minimum principle to select the optimal
split influencing factor and optimal split value. During
the splitting process, none of pruning operations is
performed, and the Mtry block degree remains con-
stant. -e Gini system is defined by the following
equation:

Input: Neighborhood decision system W� (U, C∪D, V, f, ε), ε is neighborhood threshold, T is temporary subset.
Output: Reduction subset R.
Steps:

(1) ϕ⟶ R; T⟶ C − R;

(2) ∀xi ∈ T, Calculate the attribute importance sig of the sample sig(xi);
(3) xk � arg(max(sig(xi))), Find the attribute with the most important attribute of attribute reduction attribute subset xi;
(4) If (sig(xi)> 0)
(5) R⟵R⟵ xk􏼈 􏼉, T⟵T − xk􏼈 􏼉;
(6) Else
(7) return R;
(8) End for

ALGORITHM 1: Forward greedy attribute reduction.

Table 1: Decision table M1.

W 1 2 . . . 251 252 . . . 351 . . . 500
P1 1 3 . . . 2 3 . . . 2 . . . 6
P2 3 7 . . . 5 2 . . . 2 . . . 4
P3 5 6 . . . 2 1 . . . 7 . . . 2
P4 3 5 . . . 4 7 . . . 4 . . . 2
P5 5 2 . . . 5 2 . . . 1 . . . 6
P8 3 6 . . . 5 3 . . . 6 . . . 2
P11 2 3 1 4 5 3
V 1 1 . . . 1 1 . . . 1 . . . 1

8 Complexity



Gini ti( 􏼁 � 1 − 􏽘
K

K�1
P
2
k, (18)

where ti represents the current influencing factor, K
represents the number of groups of the influencing
factors ti, and PK represents the probability that the
sample point belongs to the K class. After determining
the optimal splitting influencing factor ti, if a subset Si

is split into two subsets St1 and St2 with respect to ti, the
optimal splitting value “a” can be calculated by the
following equation:

minGini ti, a( 􏼁 �
St1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

St

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
Gini St1( 􏼁 +

St2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

St

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
Gini St2( 􏼁, (19)

where |St|, |St1|, and |St2|, are the samples of St, St1,
and St2, respectively.

(4) Prediction Sample Category. After each decision tree
is constructed from the bottom to the top, the in-
tegrity of the tree is preserved without performing
pruning operations, and all the decision trees are
tested with test set X to obtain the test sample of the
prediction category of the RFID system identifica-
tion rate, which can be expressed as
C1(X), C2(X), . . . , Cn(X)􏼈 􏼉.

(5) Final Prediction Classification. After training, the
sample data x are input from test set data X into the
model to obtain the prediction classification results
and to select the final classification results of test set
by voting mechanism. -e principle of voting
mechanism can be expressed by the following
equation:

fRF(x) � arg
i�1,2,...,c

max I f
tree
l (x) � i􏼐 􏼑􏽮 􏽯. (20)

(6) Evaluation Model. -e confusion matrix is estab-
lished by the validation set of OOB data, and the
classification results are evaluated. Based on con-
fusion matrix, four evaluation indexes are selected,
including overall accuracy (OA), Kappa coefficient,
root mean square error (RMSE), and mean absolute
error (MAE). -e final prediction results of the
RFID system identification rate are compared with
the threshold condition of the system identification
rate in the actual project. -erefore, it can be judged
whether the hardware deployment scheme of the
RFID system can meet the application require-
ments. -e OA, Kappa coefficient, RMSE, and MAE
are expressed by the following equations,
respectively:

Overall accuracy �
􏽐

n
i�1 Xii

N
, (21)

Kappa �
N 􏽐

n
i�1 Xii − 􏽐

n
i�1 Xi+ × X+i( 􏼁

N
2

− 􏽐
n
i�1 Xi+ × X+i( 􏼁

, (22)

RMSE �

������������

􏽐
n
i�1 Yi − 􏽢Yi􏼐 􏼑

2

n

􏽳

, (23)

MAE �
1
n

􏽘

n

i�1

􏽢Yi − Yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (24)

4.3.3. Time Complexity Analysis. -is paper proposes a
neighborhood rough sets and random forest combination
model of the identification rate of the RFID system pre-
diction model. -e essence is to reduce the dimension of X
samples and Y initial influencing factors. Firstly, the initial
influencing factors are reduced using neighborhood rough
set theory combined with the principle of heuristic attribute
reduction of neighborhood weighted dependence, thus
obtaining a kernel factor subset. So, the dimension Y is
reduced toV. At this time, the time complexity of calculating
the kernel factor set of the neighborhood rough set is O
(V2XlogX). -en, the selected kernel factor subset is taken as
the input of the random forest model to establish the RFID
system identification rate prediction model. At this time, the
time complexity of the model is O (KVs (logs)2), where K
represents the number of basic classifier CART and s rep-
resents the number of training sets in the random forest
algorithm. It is obvious that the time complexity at this time
is lower than that of the random forest directly dealing with
the initial influencing factor. After all, the sample has been
dimensionally reduced, V≤Y.

5. Results and Discussion

5.1. Optimizing N-Tree and Constructing the Decision Tree.
Before performing the random forest algorithm, it is nec-
essary to optimize the super parameter N-Tree which is the
number of decision trees. -e 500 ∗ 7-dimensional sample
data are input variables of the random forest model. By
changing the N-Tree value, the OOB precision corre-
sponding to different N-Tree values can be calculated. -e
number of decision trees can be estimated byOOB precision,
as shown in Figure 6.

From Figure 6, it can be seen that the value of N-Tree
increases as the progress of model classification proceeds.
When the value of N-Tree is greater than 500, the accuracy
accordingly increases, to which the increasing tendency is
not obvious but declines instead. -erefore, taking the
model’s identification classification accuracy and the clas-
sification time as reference standards, the final value of
N-Tree is 500. Once the number of decision trees is de-
termined, each tree is divided by the Gini coefficient ex-
pression and optimal splitting value given in Section 4.3.2
from the root node until each tree accomplishes growing.
Here, we select a decision tree to observe its splitting and
growing process. -e optimal splitting influencing factor
and optimal splitting value of each node in the splitting
process of the decision tree are shown in Table 2. -e
complete construction process of the decision tree is drawn
from the root node to the bottom, as shown in Figure 7.
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5.2. Test Results. -e test set is used to verify the classifi-
cation accuracy of the constructed random forest model.-e
identification rate of the RFID system is obtained through
simulation, as shown in Figure 8. According to the pre-
diction results in Figure 8, the classification accuracy is

90.5%. -e horizontal and vertical axis represent 500 groups
of data, the red asterisk shape represents the error classi-
fication sample, and the blue circle denotes the correct
classification sample. -e data in the blue square represent
the error-prone range, the closer the sample approaches 250
decision trees, the more difficult it is to make decisions,
whereas the easier it is to make classification errors.

From the perspective of sample data, among the 500 sets
of sample data, there are 357 sets of qualified samples that
meet the threshold condition, which means the RFID system
identification rate is higher than 95%. -ere are 143 sets of
unqualified samples that do not meet the threshold con-
dition; that said, the RFID system identification rate is less
than 95%. Among 100 sets of data in the test set, there are 80
groups of qualified identification rate and the accurate
prediction rate is about 96.25%, with an average misjudg-
ment of 3 data groups. Among the unqualified identification
rate, there are 20 groups with an accuracy rate of 90% and an
average misjudgment of 2 data groups. At this time, the
NRS-RFmodel exhibits excellent performance on predicting
the RFID system identification rate.

In order to verify that the prediction accuracy can be
improved through using a neighborhood rough set to reduce
the initial influencing factor set, the relation between the
prediction accuracy and the number of influencing factors is,
therefore, analyzed adopting variable-controlling compari-
son experiment. First, accuracy verification was added to the
test samples one by one according to the importance of
influencing factors, as shown in Figure 9. It can be seen from
Figure 9 that, under the condition of ensuring consistency of
other parameters, the classification prediction accuracy was
significantly improved as the number of influencing factors
increases.

When the number of influencing factors reached 5, the
overall prediction accuracy of the test sample increased
slowly. When the number increased to 7, the accuracy
reached 90.5% and then stabilized following with a small
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Table 2: Optimal splitting influencing factor and the optimal
splitting value of nodes.

Optimal splitting influencing factor Optimal splitting value
P1 0.364
P2 0.854
P3 0.648
P4 0.985
P5 0.751
P8 0.651
P11 0.528
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decline. -e classification time was on an upward trend as
the number of influencing factors increased. When the
influencing factors reached 11, the accuracy increased more
significantly. Considering the combination of prediction
accuracy and classification time, the 7 influencing factors
obtained by attribute reduction are the optimal feature
combination which effectively improve the classification
accuracy while reducing the classification time.

In order to further verify the advantages of the NRS-RF
model in predicting the RFID system identification rate, two
new prediction algorithms are selected to construct the
prediction network model and make a comparative analysis
with the proposed NRS-RF model, including the K-nearest
neighbor-naive Bayesian (KNN-NB) and backpropagation
neural network (BPNN) [33–35].-ese three models predict
300 groups of RFID system identification rate sample data,
being compared in terms of OA, Kappa coefficient, RMSE,
MAE, training time and prediction time, and correlation.
-e prediction results are shown in Table 3 and
Figures 10–12.

-e Kappa statistic is a measurement value for evaluating
consistency, which indicates whether there is consistency
between the predicted results of the model and the actual
results. When the Kappa coefficient is greater than 0.75, it
indicates that the model is better and has a certain value. It
can be seen from Table 3 that the NRS-RF model with the
highest classification accuracy has OA and Kappa coeffi-
cients of 88.5% and 0.875, which are much higher than those
of other two models. It shows that the NRS-RF method can
effectively screen out the nuclear factor set of system
identification rate and improve the classification accuracy of
the model.

Admittedly, featuring with excellent performance on
applicability, the NRS-RF method can effectively eliminate
the influencing factors affecting the RFID system identifi-
cation rate. In Figure 10, the RMSE and MAE values of the
NRS-RF model are relatively small, the prediction error is
small, and the classification accuracy is higher. Comparing

the training set of the three models with the prediction set in
terms of operating time, the NRS-RF model requires shorter
time while ensuring lower computational complexity and
higher calculation speed, thereby better satisfying engi-
neering applications, as shown in Figure 11.

Different fromKNN-NB and BPNNmodels, the random
forest model is a kernel subset composed of 500 sample sets
as the input of the model. However, due to its simple bi-
furcation structure of the base learner decision tree, its
learning time is less than 6 s.

At the same time, when constructing the decision tree, it
randomly selects part of the features as the classification
basis of the tree growth, and when constructing the internal
base learning device, it adopts the random sampling to put
back the training samples, which ensures the generalization
ability of the final model. -erefore, the random forest al-
gorithm model has higher OA.

-e correlation between the predicted value of the
identification rate of the three models and the actual value is
analyzed, as shown in Figure 12.-e correlation coefficient R
of the three models is RNRS-RF � 0.891, RKNN-NB � 0.824, and
RBPNN � 0.798, respectively. -e R value of the NRS-RF
model is closer to 1, which indicates that the prediction value
of the model is closer to the actual measurement value,
exhibiting better prediction effect.

-e NRS-RF model compared with the other two kinds
of prediction model shows great advantages, mainly because
the initial influencing factors of redundant attributes is
more, and they not only increase the classifier identification
time but also make the classification accuracy of the RFID
system significantly decreased. -rough the reduction of
NRS algorithm, the kernel factor subset is obtained. -e
classification of kernel factors set contains stronger char-
acteristic sensitivity, improves the prediction precision, and
reduces the computational complexity of the model.

-e KNN-NB combination algorithm uses the KNN
algorithm to calculate the distance between the sample data
to be tested and the sample set. -e selected sample data are
used as the training sample of the NB algorithm, and then,
the NBmodel is used for prediction and classification, where
K� 3. Because the NB model needs to know the prior
probability, the prior probability often depends on the
hypothetical model. However, there are many kinds of
hypothetical models, so in some cases, the prediction effect
will be poor due to the hypothetical prior model, so there is a
certain error rate in classification decisions.

We use a three-layer BPNN model. -e number of
hidden layer nodes is set to 6, and the number of output layer
nodes is 1. Since the BPNN model is essentially a gradient
descent method, the objective function to be optimized is
more complicated and prone to the “sawtooth phenome-
non,” which makes the convergence speed of the BPNN
model slow and affects the final prediction classification
accuracy of the test set.

5.3. Engineering Application. As intelligent archives man-
agement inventory technology rapidly develops [36, 37], the
UHF passive RFID technology liberates the archives
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Figure 9: Influencing factors reduction verification.
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management from the relatively “stereotyped” impression
brought by barcodes. In order to further improve reading
efficiency of the archive inventory, the RFID system is
mounted on amobile robotic vehicle, and the effectiveness of
the NRS-RF model is verified in archives management
applications. Under diverse hardware deployment condi-
tions, this study selects 300 sets for the RFID system
identification rate and for influencing factors as the sample
data, on which heuristic attribute reduction of the initial
influencing factors is conducted using neighborhood rough
set theory. -e importance distribution of influencing fac-
tors is given in this paper, which is obtained by neighbor-
hood rough set reduction and by OOB error analysis of
random forest.

-e high importance score indicates that the influencing
factor has greater impacts and contributions on classification
results, as shown in Figure 13. It can be seen that the im-
portance scores all exceed 5, involving antenna height P1,
reader transmission power P2, distance between the tag and

antenna P3, and other 4 influencing factors. Finally, the set
of kernel factors is selected, which include antenna height
P1, number of tags P2, distance between tags and antennas
P3, reader polling cycles P4, antenna moving speed P5,
antenna number P8, and reader transmitting power P11.

-e average decline accuracy rate and average decline
Gini coefficient of 7 groups of influencing factors are ob-
tained through analyzing the Gini coefficient. Both the
abovementioned average decline accuracy rate and average
decline Gini coefficient can represent the degree of decline in
accuracy when the influencing factor is replaced, both of
which are positively correlated with the importance of the
influencing factors. As shown in Figure 14, the larger the
values of both the abovementioned rate and coefficient, the
higher the importance of the influencing factor. In addition,
some influencing samples of the RFID system identification
rate are shown in Table 4.

From the 300 sample data, 240 groups were selected as
training sets to train the model, and the remaining 60 groups
were test set data for verification and prediction. Ten groups
of test data were randomly selected from the test set samples,
and scatter plots were made, as shown in Table 5 and
Figure 15.-e RMSE is 0.548, and the correlation coefficient
R is 0.951, indicating outstanding prediction accuracy of the
model.

It can be seen from Table 5 that the predicted classifi-
cation level of 10 groups of test sample data is basically
consistent with the actual classification, satisfying the en-
gineering requirements. By comparing the third and fourth
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Table 3: Prediction accuracy comparison.

Prediction model Sample data Correct classification Error classification OA (%) Kappa coefficient
NRS-RF 300 265 35 88.5 0.875
KNN-NB 300 254 46 84.7 0.805
BPNN 300 245 35 82.3 0.784
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Table 4: Samples of the RFID system identification rate.

Sample number P1 P2 P3 P4 P5 P8 P11 RFID system identification rate level
1 0.6 90 0.8 1 0.3 2 18 1
2 0.9 150 1.5 2 0.6 1 23 2
3 0.6 90 1.9 3 0.9 2 28 1
4 1.2 130 0.8 3 0.9 1 18 1
5 0.9 110 1.5 2 0.3 2 23 1
6 1.2 180 1.9 1 0.6 1 28 2
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Table 5: NRS-RF model RFID system identification rate level prediction.

Sample number P1 P2 P3 P4 P5 P8 P11 Forecast level Actual level
1 0.6 90 0.8 1 0.6 1 18 2 2
2 0.9 150 1.5 2 0.3 2 23 2 1
3 1.2 130 0.8 3 0.6 1 18 1 1
4 1.2 130 0.8 2 0.9 1 18 1 2
5 0.9 180 1.5 1 0.9 2 23 2 2
6 1.2 90 1.5 3 0.9 1 28 1 1
7 0.6 180 0.8 1 0.3 1 18 2 2
8 0.9 180 1.5 2 0.6 2 23 2 2
9 1.2 90 1.9 3 0.9 2 28 1 1
10 0.6 150 0.8 1 0.3 2 18 1 2
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groups of samples in Table 5, it can be analyzed that the
system identification rate can be improved to type 1 by
reducing the moving speed of the antenna or increasing the
number of reader polling cycles when other influencing
factors are consistent. Comparative analysis of the second
and fifth groups of samples in Table 5 shows that the system
identification rate can be improved to type 1 when the
number of tags is reduced or the number of reader polling
cycles is increased, thereby accomplishing tag reading to the
largest extent. -e RFID system identification rate can,
therefore, be predicted in a prompt and effective way by
mining the relation between the identification rate and the
influencing factors. Furthermore, the system identification
rate can be improved by purposefully optimizing and
adjusting the corresponding hardware deployment, through
which the application requirements of more engineering
inventories will be satisfied.

6. Conclusions

In order to optimize the hardware deployment of the RFID
system and improve the system identification rate, a pre-
diction model of the RFID system identification rate based
on the combination model of neighborhood rough set and
random forest is proposed through mining the relation
between relevant influencing factors and the system iden-
tification rate. -is study uses neighborhood rough set
theory to conduct heuristic attribute reduction of weighted
dependence of initial influencing factors and takes the kernel
factor set as the input variable of random forest model for
model training. -e model is validated and verified in the
RFID experimental test platform. Simulation results suggest
that the fitting accuracy of the NRS-RF model is higher than
that of the BPNN and other prediction models. Finally, the
proposed model is applied to the RFID intelligent archives
management platform, thus proving the excellent perfor-
mance of the NRS-RF model. -e proposed model can
reversely configure the parameter setting of RFID hardware

deployment, and the system identification rate is, therefore,
improved to satisfy the requirements of engineering
applications.

Despite the abovementioned findings, the influence of
antenna polarization mismatch, multipath fading, or other
possible blind zone restrictions is not fully considered in the
process of mobile robotic vehicle inventory tags, which may
potentially affect the process of tag inventory. Our future
research will be focusing on in-depth exploration of the
automatic tag counting technology and on realizing the
function of automatic tracking and path planning for mobile
robots and robotic vehicles, paving way for the future de-
velopment of automation in tag reading and writing.
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)is paper investigates the nonlinear vehicle platoon control problems with external disturbances. )e quadratic spacing policy
(QSP) is applied into the platoon control, in which the desired intervehicle distance is a quadratic function in terms of the vehicle’s
velocities. Comparing with the general constant time headway policy (CTHP), the QSP is more suitable to the human driving
behaviors (HDB) and can improve the traffic capacity. )en, a novel platoon control scheme is proposed based on the distributed
integrated sliding mode (DISM). Since the external disturbances are taken into consideration, the sliding mode method is
employed to handle the disturbances. Moreover, the stability and string stability of the proposed platoon control system are
strictly analyzed. In final, numerical simulations are provided to verify the proposed approaches.

1. Introduction

In recent years, the vehicle platoon control has received
substantially increasing interests in the intelligent trans-
portation system [1–3] due to its significant advantages in
reducing traffic jams, improving the traffic safety, and in-
creasing traffic capacity [4–6]. Generally, the objective of the
vehicle platoon control is to drive a group of vehicles into a
desired platoon from arbitrary initial positions. From this
definition, we can find that the dynamics of vehicle, the
communication topology, and the spacing policy play im-
portant roles in the vehicle platoon control.

To reach the desired platoon, many control theories have
been applied to vehicle driving, including the consensus
control [7], adaptive control [8–10], model predictive
control [11], and the sliding mode control [12–17]. For
example, a distributed consensus strategy with second-order
dynamics is proposed to achieve the platooning of vehicles in
[7], where the actuator saturation and absent velocity
measurement are considered. In [8], the vehicle platoon
control with velocity constraints, input saturations, and
unknown driving resistances are handled by the adaptive
neural sliding mode control techniques. By using the model
predictive control method, a novel vehicle platoon control

scheme with multiple constraints and communication de-
lays is proposed in [11]. While considering the state of the
leader and the braking force, a distributed integrated sliding
mode-based platoon control algorithm is given in [12]. In
these existing results, the sliding mode control method has
attracted increasing interests due to its significant advan-
tages in dealing with the external disturbances. For instance,
the neuroadaptive quantized PID sliding mode control
method for heterogeneous vehicle platoon is presented with
external disturbances and unknown actuator dead-zone in
[13]. )e Pontryagin’s minimum principle (PMP) based set-
point optimization and sliding mode control law are pro-
posed for vehicle platoon in [14]. In [15], a distributed
adaptive integrated sliding mode control method is devel-
oped to show the stability and string stability of the proposed
vehicle platoon control system. Although these existing
sliding mode control methods have great advantages in
vehicle platoon control, the above studies mostly use the
linear dynamics, which greatly limits their applications.
Hence, it is necessary to further investigate the sliding mode-
based platoon control with nonlinear vehicles.

In addition, another key point of vehicle platoon is to
select a reasonable intervehicle spacing strategy. It can im-
prove the traffic capacity and reduce the road pressure [18].
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Generally, there are two strategies for the desired platoon: the
constant-spacing policy (CSP) and the variable-spacing policy
(VSP). )e differences between these spacing policies are the
evolution policies of the desired distance between any adja-
cent vehicles [19]. Comparing with the CSP, the desired
distances in VSP are usually time-varying and related to the
vehicle’s velocities. In detail, the constant time headway policy
(CTHP) and the quadratic spacing policy (QSP) are two
classical spacing policies in VSP. Particularly, the desired
distance in QSP is a quadratic function in terms of the ve-
hicle’s velocities. It can meet the requirement of human
driving behaviors (HDB). For example, the vehicle platoon
control with QSP is proposed in [20], where the traffic flow
stability and energy consumption are considered. In [21], a
novel platoon control scheme with QSP is presented for the
heavy trucks in mixed traffic situations, in which the fuel
economy and pollution are taken into consideration. While
considering the vehicle characteristics and road conditions, a
vehicle platoon control algorithm with novel QSP is proposed
for the longitudinal spacing control in [22]. Although the QSP
shows great advantages in vehicle platoon control, there are
few results applying the QSP into the vehicle platoon control
with nonlinear dynamics.

Motivated by this fact, a distributed integrated sliding
mode (DISM) based vehicle platoon control strategy with
both QSP and nonlinear dynamics is proposed. )e finite-
time stability and string stability of the proposed vehicle
platoon control system are strictly analyzed. In detail, a third-
order nonlinear dynamics with external disturbances is ap-
plied to describe the vehicles. )en, the vehicle platoon with
QSP is presented to maintain the desired intervehicle spacing.
Since the QSP is a quadratic function in terms of the vehicle’s
velocities, the characteristic of this policy is more practical
than the existing results with CTHP and CSP [23]. Moreover,
the finite-time stability for each vehicle is shown by using the
Lyapunov stability theory, and the string stability of the

proposed vehicle platoon control system is demonstrated
based on the coupled sliding mode method. In addition, an
approximation function is employed to overcome the chat-
tering in the sliding mode control.

)e remainder of this paper is presented as follows. In
Section 2, the preliminaries and problem formulation are
presented. )en, the DISM-based vehicle platoon control
with nonlinear dynamics and QSP is proposed, and the
stability of proposed platoon control system is analyzed in
Section 3. To illustrate the proposed approaches, numerical
simulations are presented in Section 4. In final, Section 5
draws the conclusion and describes the future work.

Notations: throughout this paper, (1) R and R+ represent
the set of all real numbers and the set of all nonnegative real
numbers, respectively. (2) ‖ · ‖ stands for the Euclidean norm
of a vector. (3) | · | denotes the absolute value of real
numbers. (4) )e sgn(·) denotes the signum function.

2. Preliminaries and Problem Formulation

2.1. Vehicle Dynamics. Consider a group of nonlinear ve-
hicles, which includes one leader and N followers. Index
these vehicles as 0, 1, . . . , N, where 0 denotes the leader, and
1, . . . , N are the followers. )e dynamic model of each
vehicle is shown as

_ri(t) � vi(t),

_vi(t) � ai(t),

_ai(t) � fi vi(t), ai(t)( 􏼁 + gi vi(t)( 􏼁bi(t) + ωi(t),

⎧⎪⎪⎨

⎪⎪⎩
(1)

where ai(t), vi(t), and ri(t) are the acceleration, velocity,
and position of the ith vehicle (i � 0, 1, 2, . . . , N), respec-
tively; ωi(t) is the external disturbance of the ith vehicle, and
|ωi(t)|≤Ω; bi(t) is the engine control input; fi(vi(t), ai(t)),
and gi(vi(t)) are the nonlinear terms and are given as

fi vi(t), ai(t)( 􏼁 � −
1
ζ i

ai(t) +
ρCidciv

2
i (t)

2mi

+
dmi

mi

􏼠 􏼡 −
ρCidcivi(t)ai(t)

mi

,

gi vi(t)( 􏼁 �
1

miζ i

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

where mi is the mass of the ith vehicle; ρ is the mass density of
the air; dci is the coefficient of drag; dmi is the mechanical
resistance;Ci is the cross-section area of the ith vehicle; and ζ i

is the engine time.
)en, in order to solve the nonlinear vehicle dynamics of

(1), a feedback linearization controller is introduced as
follows:

bi(t) � ui(t)mi +
ρCidciv

2
i (t)

2
+ dmi + ζ iρCidcivi(t)ai(t).

(3)

Substituting (2) and (3) into (1), the model of the ith

vehicle is described as

_ri(t) � vi(t),

_vi(t) � ai(t),

_ai(t) � −
ai(t)

ζ i

+
ui(t)

ζ i

+ ωi(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)
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where ui(t) denotes the control input for the ith vehicle after
linearization.

Remark 1. We use the real nonlinear vehicle dynamic model
in this paper, and a feedback linearization method is
deployed to transform the vehicle dynamic model into a
third-order linear system. Comparing with the existing
results, it is more similar to the real dynamics of a vehicle
and more practical significance in vehicle platoon control.

For the communication topology, we have the following
assumption.

Assumption 1. Suppose the communication topology
among the vehicles is bidirectional. )at is, each vehicle can
only communicate with its adjacent neighbors.

2.2. Intervehicle Spacing Policy. )e intervehicle spacing
policy plays an important role in vehicle platoon control. For
the intervehicle spacing policy, we usually select a proper
function to construct the desired distance among the ve-
hicles.)eQSP is a classical spacing policy in vehicle platoon
control. It is a quadratic function in terms of the vehicle’s
velocities, which is greatly suitable to the human driving
behavior (HDB, di,i− 1 � A + TV + GV2). )e detailed QSP is
shown by

di,i− 1 � p0v
2
i (t) + p1vi(t) + x, (5)

where di,i− 1 denotes the desired distance between two ad-
jacent vehicles; x is the standstill spacing; and p0 is the
designed positive parameter and is given as
p0 � (η/(2amax)), with η being the safety factor depending
on the road or weather, and amax denoting the absolute value
of themaximum possible deceleration. p1 is the time delay in
platoon systems, which compensates for the delay in braking
or acceleration (about 10ms–80ms [23]).

Remark 2. Generally, the intervehicle spacing policy is
closely related to the parameters p0 and p1. When p0, p1 > 0,
the intervehicle spacing policy is QSP. In contrast, when
p0 � 0, p1 > 0 and p0 � 0, p1 � 0, the intervehicle spacing
policy reduces to a CTHP and a CSP, respectively, which
have been studied extensively in vehicle platoon. Hence,
comparing to the CTHP and CSP, the QSP is more general
and practical. For the CSP, supposed that the distance of the
adjacent vehicles maintained the same constant spacing,
which may increase the traffic jams, the CTHP is also re-
quired to maintain a constant time headway parameter.
Comparing with the general CSP and CTHP, the nonlinear
QSP can be regarded as the VTHP to adjust the time
headway and increase traffic capacity, which can also
guarantee string stability and traffic flow stability. Hence, the
vehicle platoon control with QSP is more practical in
applications.

2.3. Problem Formulation. Based on the QSP, the spacing
error ei(t) can be written as

ei(t) � δi(t) − x − p0v
2
i (t) − p1vi(t), (6)

where δi(t) � ri− 1(t) − ri(t) − l denotes the distance be-
tween any two adjacent vehicles; l is the length of each
vehicle.

On this basis, we intend to design a DISM-based vehicle
platoon control scheme with nonlinear dynamics and QSP.
)is paper has to meet the following requirements:

(1) Stability: the finite-time stability of each vehicle is
guaranteed

(2) String stability [24]: the transient errors are not
enlarging with vehicle index due to any maneuver of
the lead vehicle, if the error propagation transfer
function Gi(s) satisfies

Gi(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
Ei+1(s)

Ei(s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 1, for i � 1, . . . , N, (7)

where Ei(s) denotes the Laplace transform of ei(t)

(3) For each vehicle, it must satisfy that

vi(t)⟶ v0(t),

δi(t)⟶ x + p0v
2
0(t) + p1v0(t), for i � 1, . . . , N.

(8)

3. The DISM-Based Platoon Control Scheme

In this section, a novel DISM-based vehicle platoon control
scheme is proposed for a group of nonlinear vehicles with
QSP. )e finite-time stability of each vehicle and string
stability of the proposed platoon control system are strictly
analyzed.

First, the integrated sliding mode surface for the ith

vehicle is shown as

si(t) � _ei(t) + α1ei(t) + α2 􏽚
t

0
ei(τ) dτ, (9)

where α1 and α2 are the positive constants.
According to Hurwitz stability theory, α1 and α2 are

required to make all the eigenvalues of p2 + α1p + α2 � 0
contain a real-negative part. In this case, let α1 � 2ϵ and
α2 � ϵ2, where ϵ is a positive constant [25].

Since the sliding mode surface in (9) cannot guarantee
the string stability of the vehicle platoon, an improved
coupled sliding mode surface is provided as follows:

Si( t ) �
si+1(t) − βsi(t), i � 1, . . . , N − 1,

− βsi(t), i � N,
􏼨 (10)
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where β is the parameter of coupled intensity satisfying
0< β≤ 1. )e relationship between Si(t) and si(t) is shown
as

S(t) � Bs(t), (11)

where s(t) � s1(t) s2(t) . . . sN(t)􏼂 􏼃
T, S(t) � S1(t) S2(􏼂

t). . .SN(t)]T, and

B �

− β 1 · · · 0 0

0 − β 1 · · · 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · − β 1

0 0 · · · 0 − β

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

To further show the relationship between si and Si, we
have the following lemmas.

Lemma 1. Equivalence of the convergence of the CSS and
each sliding surface toward zero [26]: Si becomes zero for all
i � 1, . . . , N, if and only if si becomes zero.

According to (6), (9), and (10), _Si is presented as

_Si(t) � _si+1 − β _si, i � 1, 2, . . . , N − 1,

� €ei+1(t) + α1 _ei+1 + α2ei+1(t)􏼂 􏼃 − β €ei(t) + α1 _ei(t) + α2ei(t)􏼂 􏼃

� − β ai− 1(t) − ai(t)􏼂 􏼃 − ϕi(t) −
ai(t)

ζ i

+
ui(t)

ζ i

+ ωi(t)􏼢 􏼣 − 2p0a
2
i (t)􏼠 􏼡 + Di(t)

� βϕi(t) −
ai(t)

ζ i

+
ui(t)

ζ i

+ ωi(t)􏼢 􏼣 − β ai− 1(t) − ai(t)􏼂 􏼃 + 2βp0a
2
i (t) + Di(t),

(13)

where ϕi(t)≜ 2p0vi(t) + p1, and Di(t) � [€ei+1(t)+ α1 _ei+1(t)

+α2ei+1(t)] − β [α1 _ei(t) + α2ei(t)].
For i � N, we obtain that

_SN(t) � − β _sN

� − β €eN(t) + α1 _eN(t) + α2eN(t)􏼂 􏼃

� − β aN− 1(t) − aN(t)􏼂 􏼃 − ϕN(t) −
aN(t)

ζN

+
uN(t)

ζN

+ ωN(t)􏼢 􏼣 − 2p0a
2
N(t)􏼠 􏼡 + DN(t)

� βϕN(t) −
aN(t)

ζN

+
uN(t)

ζN

+ ωN(t)􏼢 􏼣 − β aN− 1(t) − aN(t)􏼂 􏼃 + 2βp0a
2
N(t) + DN(t),

(14)

where ϕN(t)≜ 2p0vN(t) + p1, and DN(t) � − β[α1 _eN(t) +

α2eN(t)].
)en, the following two lemmas are provided to show

the finite-time stability and string stability.

Lemma 2. (Barbalat Lemma [27]). If ϕ(t): R⟶ R+ is a
uniformly continuous function for t≥ 0 and the limit of the
integral limt⟶∞ 􏽒

t

0 ϕ(τ) dτ exists and is finite, then

lim
t⟶∞

ϕ(t) � 0. (15)

Lemma 3. (Finite-Time Stability [28]). Suppose there is a
positive definite Lyapunov function V(x, t) defined on
U × R+, where U is the neighborhood of the origin. >ere are
positive real constants c> 0 and a ∈ (0, 1), such that _V(x, t) +

cVa(x, t) is negative semidefinite on U. >en, V(x, t) is lo-
cally finite-time convergent. In addition, the settling time T

satisfies T≤ ( V1− a(x0, t) )/(c(1 − a)) for any given initial
condition x(t0) in the neighborhood of the origin in U.

)en, we have the following DISM-based vehicle platoon
control schemes.
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ui(t) � −
1

βϕi(t)
− βζ i ai− 1(t) − ai(t)􏼂 􏼃 + ζ iDi(t) + 2βζ ip0a

2
i (t) + ζ icsgn Si(t)( 􏼁􏽮 􏽯 + ai(t), i � 1, 2, . . . , N, (16)

with

Di( t ) �
€ei+1(t) + α1 _ei+1(t) + α2ei+1(t)􏼂 􏼃 − β α1 _ei(t) + α2ei(t)􏼂 􏼃, i � 1, . . . , N − 1,

− β α1 _eN(t) + α2eN(t)􏼂 􏼃, i � N,
􏼨 (17)

where ϕi(t)≜ 2p0vi(t) + p1; according to the velocity of each
vehicle bound, |ϕi(t)|≤Φ. c is the positive design parameter
of the controller and satisfies that c> βΩΦ.

To formally show the finite-time stability of each vehicle
and string stability of the whole vehicle platoon, the fol-
lowing theorems are proposed.

Theorem 1. Consider a vehicle platoon system described by
(4). >e communication topology among vehicles is bidirec-
tional, and the QSP is shown in (5). >en, by using the
proposed platoon control law in (16), the finite-time stability
of each vehicle can be guaranteed.

Proof. Consider the following Lyapunov function candidate:

V(t) � 􏽘
n

i�1
V(t)i � 􏽘

n

i�1

1
2
S
2
i (t). (18)

)en, taking the derivation of Vi(t), we obtain that

_V(t) � 􏽘
n

i�1
Si(t) _Si(t). (19)

Substituting (13)–(16) into (19), it follows

_V( t ) � 􏽘
n

i�1
Si( t )[ βϕi( t ) −

ai( t )

ζ i

+
ui( t )

ζ i

+ ωi( t )􏼠 􏼡􏼨

− β( ai− 1( t ) − ai( t ) ) + 2βp0a
2
i ( t ) + Di( t ) ]􏼩

� 􏽘
n

i�1
Si( t )[ − csgn( Si( t ) ) + βϕi( t )ωi( t )􏼈 􏼉

� 􏽘
n

i�1
− csgn( Si( t ) )Si( t ) + βϕi( t )ωi( t )Si( t )􏼈 􏼉

≤ 􏽘
n

i�1
− c Si( t )

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + βΦΩ Si( t )

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯

� 􏽘
n

i�1
− [ c − βΦΩ ] Si( t )

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯≤ 0.

(20)

Denoting φ(t)≜ [c − βΦΩ] 􏽐
n
i�1 |Si(t)| and integrating it

from 0 to t, we have that

V(0) − V(t)≥ 􏽚
t

0
φ(τ) dτ. (21)

Since _V(t)≤ 0, we have that V(0) − V(t)≥ 0 is positive
and bounded if V(0) is bounded.)en, according to Lemma
2, we obtain that

lim
t⟶∞

φ(t) � lim
t⟶∞

[c − ΦβΩ] 􏽘
n

i�1
Si(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0. (22)

As c − ΦβΩ> 0, it follows that limt⟶∞Si(t) � 0. )en,
according to (9), (11), and Lemma 1, si(t) and ei(t) would
converge to zeros. Furthermore, as c − ΦβΩ≥ c> 0, (20) can
also be written as

_V(t)≤ − [c − βΦΩ] 􏽘
n

i�1
Si(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ − c

�����
2V(t)

􏽰
, (23)

and equivalently _V(t) + c
�����
2V(t)

􏽰
≤ 0, where

�����
2V(t)

􏽰
satis-

fying
�����
2V(t)

􏽰
≤

������
2V(0)

􏽰
− ct. )en, we can get that V(t) � 0

and equivalently Si(t) � 0 when T≥ (
������
2V(0)

􏽰
/c) by Lemma

3. It indicates that si(t) and spacing error ei(t) converge to
zero in a finite time. On this basis, the finite-time stability of
each vehicle is guaranteed.

Theorem 2. Since 0< β≤ 1 and Si(t)⟶ 0 in finite time,
then the string stability of whole vehicle platoon system is
guaranteed.

Proof. Since Si(t)⟶ 0 in a finite time, si+1(t) − βsi(t) � 0.
)en, we can obtain that

β _ei(t) + α1ei(t) + α2 􏽚
t

0
ei(τ)dτ􏼠 􏼡 � _ei+1(t) + α1ei+1(t) + α2 􏽚

t

0
ei+1(τ)dτ. (24)
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Since _ei(0) � 0, ei(0) � 0, and e− 1
i ≜ 􏽒

0
− ∞ ei(t)dt � 0,

take the Laplace transform of (24) and obtain that

β s + α1 +
α2
s

􏼒 􏼓Ei(s) � s + α1 +
α2
s

􏼒 􏼓Ei+1(s). (25)

According to the condition 0< β≤ 1, we obtain that

Gi(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
Ei+1(s)

Ei(s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� |β|≤ 1. (26)

From (26), the string stability of the vehicle platoon can
be achieved. □

Remark 3. Since we have employed the signum function
sgn(Si(t)) in (16), it may cause chattering in practical ap-
plications. In this case, a sigmoid-like function
( Si(t)/( |Si(t)| + σ ) ) is employed to eliminate this chat-
tering. In addition, the σ in this sigmoid-like function should
be small enough. It is because when a large σ is chosen, it
would lead to a less accurate control result. )us, we should
trade-off the relationship between the value of σ and the
control accuracy in practical applications.

Invoking the sigmoid-like function ( Si(t)/( |Si(t)| + σ ) ),
ui(t) can be rewritten as

ui(t) � −
1

βϕi(t)
− βζ i ai− 1(t) − ai(t)􏼂 􏼃 + ζ iDi(t) + 2βp0a

2
i (t)ζ i􏽮 􏽯 +

ζ ic

βϕi(t)

Si(t)

Si(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + σ
+ ai(t), i � 1, 2, . . . , N. (27)

Based on the above theorems and analyses, the following
algorithm is provided to illustrate the proposed vehicle
platoon scheme.

In Algorithm 1, it is worth noting that the initial spacing
errors and the initial velocity errors of all vehicles are re-
quired to be zero, simultaneously. Furthermore, to facilitate
the adjustment of parameters p0 and p1, it is better to choose
some small initial velocities for all the vehicles. Since the
variable range, the time headway is limited [20], the pa-
rameters p0 and p1 are also limited by 0<p0, p1 ≤ 1.)en, in
order to guarantee the string stability, the βmust satisfy that
0< β≤ 1.

4. Numerical Simulation

In this section, the numerical simulations are provided for a
platoon with 4 followers and one leader to verify the pro-
posed approaches.

)e initial states of the leader are set as r0 � 0m and
v0 � 2m/s, and the evolution of leader’s velocity is shown as

v0( t ) �

2m/s, 0 s< t≤ 3 s,

2 + 2(t − 3)m/s, 3 s< t≤ 5 s,

6m/s, 5 s< t≤ 10 s,

6 − 2(t − 10)m/s, 10 s< t≤ 12 s,

2m/s, 12 s< t≤ 18 s,

2 +(t − 18)m/s, 18s< t≤ 20s,

4m/s, 20 s< t≤ 25 s,

4 − (t − 25)m/s, 25 s< t≤ 27 s,

2m/s, 27 s< t≤ 60 s.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

)e initial positions and initial velocities of the followers
are set as x(0) � [− 24.76, − 49.52, − 74.28, − 99.04] and
v(0) � [2, 2, 2, 2], respectively. All controller’s parameters
are set as c � 1.5, β � 0.6, α1 � 2, α2 � 1, p0 � 0.155,
p1 � 0.07, σ � 0.02, and ζ � 0.3. )en, the standstill distance
is given as x � 18m, and the length of each vehicle is l � 6m.

)e external disturbance of the ith vehicle is given by
wi(t) � 0.003 sin(2πt).

On this basis, the simulation results of proposed vehicle
platoon control scheme are shown as follows.

Figure 1 illustrates the positions and velocities of all
vehicles. As shown in Figure 1, there is no collision between
any two adjacent vehicles during the steady-state condition
and the initial transient. )en, followers track the velocity of
lead vehicle, in which the velocities of followers converge to
the velocity of leader (2m/s). )e convergence time of the
velocities is about 35 s.

)e distances and spacing errors of the platoon with QSP
are illustrated in Figure 2. As shown in this figure, the
distances of all adjacent vehicles converge a constant value
(18.5m). Meanwhile, the spacing errors converge to zero in a
finite time, and the string stability of the vehicle platoon is
guaranteed. From Figures 1 and 2, it can be obtained that all
vehicles satisfy the control objective in (8). )e proposed
vehicle platoon system is stable and reaches the desired
formation under the DISM control scheme with QSP.

)e sliding mode surface is shown in Figure 3. From
Figure 3, it can be observed that the Si(t) reaches the sliding
mode surface Si(t) � 0 in a finite time and there is no
chattering.

)e distances and spacing errors of the platoon with
CTHP are presented in Figure 4. From Figure 4, it can be
seen that the distance between any two adjacent vehicles
converges to a constant value (20m) and the spacing errors
converge to zero in a finite time. )en, in order to show the
advantage of the vehicle platoon control with QSP, we
compared our proposed approaches in Figure 3 with the
vehicle platoon with CTHP in Figure 4; the platoon with
QSP has smaller intervehicle distance than the platoon with
CTHP. Apparently, the platoon with QSP can provide
greater traffic capacity. Hence, the platoon with QSP is
superior to the platoon with CTHP. )e simulation results
validate the proposed approaches.

According to the vehicle platoon performance index in
[29], Table 1 shows the simulation results of different spacing
policies in tracking performance, fuel economy, and ride
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comfort. As shown in Table 1, the fuel economy and ride
comfort of the platoon with the QSP are better, and the
platoon with the CTHP has better tracking performance. In
detail, the energy consumption and comfort ride of the
vehicle platoon is mainly caused by unnecessary braking or

acceleration. Comparing with the CTHP, the QSP can be
regarded as the variable time headway spacing policy; thus,
the energy consumption value of the vehicle platoon with
QSP is smaller. )erefore, the QSP can reduce the fuel
consumption and enhance ride comfort.
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Figure 1: Positions and velocities of vehicles.
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Figure 2: Spacing errors and distances of the platoon.

Input: the initial position, velocity, acceleration of each vehicle;
)e controller parameters;

Output: the spacing error of the any two adjacent vehicles converges to zero;
(1) Initialization: the initial positions, velocities, accelerations of one lead vehicle and 4 followers: ri(0), vi(0), ai(0); Controller

parameters: p0, p1, x, l, β, α1, α2, ζ i, c;
(2) for t � t0: Δt: tf do
(3) calculate ei(t), _ei(t), €ei(t) by using (6);
(4) construct integrated sliding surface si(t) by employing (9);
(5) calculate Si(t) and Di based on (10), (13), (14);
(6) according to (16), calculate ui(t);
(7) update the acceleration, velocity, and position information of the ith vehicle respectively by using (4);
(8) end for

ALGORITHM 1: )e DISM-based platoon control algorithm with QSP.
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5. Conclusion

In this paper, we study the nonlinear vehicle platoon
problems with external disturbances, in which the QSP is
applied into the platoon control. )e desired intervehicle
distance in the QSP is a quadratic function in terms of the
vehicle’s velocities. Comparing with CTHP, the QSP can be
regarded as the VTHP to improve traffic capacity and reduce
energy consumption. )en, a novel platoon control scheme
based on the DISM with QSP and nonlinear dynamics is
proposed. Moreover, the finite-time stability of each vehicle
is shown by using the Lyapunov theory, and a coupled
sliding mode surface is adopted to guarantee the string
stability of the vehicle platoon system. In final, the numerical
simulations are provided to verify the proposed approaches.
In the future, we will continue to investigate the vehicle

platoon with VSP where the unknown external disturbances
and mixed traffic situations will be considered.
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2 8.1891 10.1266 8.5112 7.1400 0.3128 0.2319
3 6.5083 7.4740 6.6575 5.4629 0.1689 0.1295
4 5.3897 5.8381 5.4872 4.4124 0.1102 0.0923
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Network ranging and clock synchronization based on two-way timing stamps exchange mechanism in complex GPS-denied
environments is addressed in this paper. An estimator based on the Extended Kalman filter (EKF) is derived, according to which,
the clock skew, clock offset, and ranging information can be jointly estimated. )e proposed estimator provides off-line
computation by storing the transmitting timing stamps in advance and could be implemented in asymmetrical and asynchronous
scenarios. )e simulation results show that the proposed estimator achieves a relative good performance than the existed es-
timators. In addition, a new Bayesian Cramér–Rao Lower Bound (B-CRLB) is derived. Numerous simulation results show that the
proposed estimator meets the B-CRLB.

1. Introduction

)e Unmanned Autonomous System (UAS) [1–3] has be-
come a hotspot in the past decades with the development of
technology. In order to carry out unmanned and autono-
mous missions, the real-time information of positions, ve-
locities, and timing tags of the system agents are required to
be collected. A common approach is to deploy Global Po-
sitioning System (GPS) receivers on the network members,
which is able to provide precise and accurate Positioning,
Velocity, and Timing (PVT) service [4]. However, such a
design is no longer available in the complex scenarios where
GPS service is not sky visible or of low quality: underwater,
valley, indoors, and underground. To solve this problem, the
fixed anchor nodes with known positions are implemented
to substitute for the PVT service of GPS [5–8]. By broad-
casting its timing information, the network agents in the
certain area could be able to perform relative positioning,
motion estimation and cooperative missions by way of Time

of Arrival (TOA) [9] and Time Difference of Arrival
(TDOA) [10] in complex environments. It is noted that
achieving time synchronization among the anchor nodes is
the first step to carry out the subsequence missions.

Normally, the anchor nodes are of low overall cost, which
implies that the on-board oscillators are not highly qualified
and the measurement devices are not absolutely accurate.
Moreover, the nodes might be affected by the external en-
vironmental changes as well. )ese factors bring a problem
that the impacts owing to the relative clock skews and offsets
between the clocks could not be ignored [11]. How to correct
these errors becomes paramount, especially for the UASs
which require all the anchor nodes to provide the synchro-
nized timing tags. Furthermore, power consumption is an-
other important issue for the low-end sensor nodes.
)erefore, the message transaction times among the anchor
nodes and the message itself should be as few as possible.

In order to estimate both clock skew and clock offset
under unknown delay, a Maximum Likelihood-like
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Estimator (MLLE) was derived in [12]. A step further, Leng
and Wu proposed a Low Complexity Least Square (LCLS)
[13] method which outperforms MLLE. Rajan and van der
Veen proposed a Global Least Square (GLS) method [14],
which was an extension of the LCLS estimator and had the
function of jointly estimating the clock offsets, clock skews,
and relative distances in an anchor network or even in an
anchorless network [15]. An algorithm based on the alter-
nating direction method of multipliers was proposed in [16],
and the simulations results show that it outperforms the
distributed least squares algorithm. In addition, Luo andWu
proposed an approach based on Kalman Filter (KF) [17],
according to which, the accumulated clock offsets and clock
skews were estimated once each pair of forward link and
corresponding reverse link was collected. A similar scheme
was also proposed in [18], which extended the state esti-
mation model to a clock adjustment approach.

To the best of our knowledge, the existed estimators
based on two-way timing stamp exchange mechanism and
the KF require both the information of the forward and
reverse links to difference away the time of flight when
performing estimation. )is kind of property leads to two
problems: one is that there might be a long idle time es-
pecially when the time interval between each round trans-
action is very long and the other problem is that this type of
structure could not deal with the circumstance of transaction
link loss.

)emain contribution of this paper is to propose a novel
estimator in the context of complex environments, by which
the unknown clock skew, clock offset, and propagation delay
can be jointly estimated.)e proposed estimator adopts EKF
to iteratively update the state estimation on clock parameters
and ranging measurements. )e two-way timing stamp
exchange mechanism is implemented as a basic element to
establish the communication network. Moreover, for the
sake of decreasing the burden on memory, the transmitting
time of each node are recorded in advance so that the EKF
estimator can provide explicit off-line computation of the
estimation error confidence intervals, since these do not
depend on the real-time measurements. Unlike the LS-based
estimators, which are less than desirable to collect sufficient
observations before doing an update in one big calculation,
the proposed estimator could perform the updates once a
new observation is collected.

Notation: (·)+
k stands for (·) at time index k + 1, diag(·)

denotes a diagonal matrix formed from its vector argument,
the transposition is denoted by (·)T, the matrices are denoted
by boldface letters, and IN denotes an identity matrix of size
N.

2. System Model

We consider a fully asynchronous network consisting of N

anchor nodes. Each anchor node deploys an imperfect
frequency source, and the clock skews and the clock offsets
among the network agents are not identical due to various
reasons. )e relative distance between each pair of anchor
nodes is fixed and unknown.

2.1. Clock Model. Since the free-running clock is not ideal
owing to various external and internal reasons, the clock
error must be taken into consideration. Let t be the global
time and ti be the local time of node i, then the relationship
between t and ti could be expressed by

ti � ωit + ϕi⇔Ci ti( 􏼁≜ t � αiti + βi, (1)

where ωi ∈ R+ and ϕi ∈ R denote the clock skew and the
initial clock offset of node i, respectively, Ci(ti) denotes the
global time of node i at local time ti, and αi ∈ R+ and βi ∈ R
are virtual parameters derived from ωi and ϕi. For an au-
tonomous time synchronization system, generally, a real or
virtual clock is elected as the reference. Let node 1 be the
reference in this paper, that is to say, ω1 � 1 and ϕ1 � 0,
which is equivalent to α1 � 1 and β1 � 0. Comparing the two
equations in (1) and extending to a vector form yields

α � 1N− 1⊘ω,

β � − ϕ⊘ω,
(2)

where ω � [ω2, . . . ,ωN]T ∈ R(N− 1)×1
+ , ϕ � [ϕ2, . . . ,ϕN]T ∈

R(N− 1)×1, α � [α2, . . . , αN]T ∈ R(N− 1)×1
+ , and β � [β2, . . . ,

βN]T ∈ R(N− 1)×1.
It is worth noting that the clock skew might vary versus

time and the clock drift term might not be ignored in some
cases. However, the proposed model could be reasonable for
a small period of time and has been largely adopted in the
network clock synchronization literature.

2.2. Ranging Model. )e two-way timing stamp exchange
mechanismwith a centralized scenario, as shown in Figure 1,
is implemented to realize time synchronization and ranging
in this paper. )e two nodes are capable of communicating
with each other with a master-slave structure. For the kth
forward link between node i and node j, two timing stamps
{Tk

1,ij, Tk
2,ij} are collected by this round of communication,

which represent the transmitting time instant and reception
time instant, respectively. Similarly, the timing stamps
{Tk

3,ij, Tk
4,ij} could be collected by the reverse link as well. All

the data of two-way communication timing stamps are
stored in the center processing unit to preform estimation.
)e kth forward link and reverse link can be modelled as

Cj T
k
2,ij + n

k
1􏼐 􏼑 − Ci T

k
1,ij + n

k
2􏼐 􏼑 � τi,j + n

k
3, (3)

Ci T
k
4,ij + n

k
4􏼐 􏼑 − Cj T

k
3,ij + n

k
5􏼐 􏼑 � τj,i + n

k
6, (4)

where nk
1, nk

2, nk
4, nk

5􏼈 􏼉 ∼ N(0, σ2p)} and nk
3, nk

6􏼈 􏼉 ∼ N(0, σ2q) are
independent aggregate Gaussian noise variables, which
originate from measurements and space disturbances, re-
spectively. τi,j denotes the propagation delay between node i

and node j. Since the relative positions of the anchor nodes
are fixed, the propagation delays of the forward links and
reverse links for each pair of master and slave nodes are
identical, namely, τi,j � τj,i. It can be seen that the maximum
number of direct communication links is L � (N!/(N − 2)!)

when there is a full connection topology. )e unknown
propagation delay is expressed as τ � [τ1,2, . . . , τ1,N,
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τ2,3, . . . , τ2,N, τ(N− 1),N, ]T ∈ R(L/2)×1. Substituting (1) into (3)
and (4) yields

αiT
k
1,ij � αjT

k
2,ij − βi + βj − τi,j + αjn

k
1 − αin

k
2 − n

k
3, (5)

αiT
k
4,ij � αjT

k
3,ij − βi + βj + τi,j − αin

k
4 + αjn

k
5 + n

k
6. (6)

Rearranging (5) and (6) yields

T
k
2,ij �

αiT
k
1,ij

αj

+
βi

αj

−
βj

αj

+
τi,j

αj

− n
k
1 +

αin
k
2

αj

+
n

k
3
αj

, (7)

T
k
4,ij �

αjT
k
3,ij

αi

−
βi

αi

+
βj

αi

+
τi,j

αi

− n
k
4 +

αjn
k
5

αi

+
n

k
6
αi

. (8)

2.3. Proposed Estimator. By combining the clock model and
ranging model, a new state estimation model is proposed in
this paper. According to this model, the clock error and
ranging error could be jointly considered and estimated by
the discrete state estimation method.

Substituting (2) into (5) and (6) leads to

T
k
2,ij �

T
k
1,ijωj

ωi

−
ϕiωj

ωi

+ ϕj + τi,jωj − n
k
1 +

n
k
2ωj

ωi

+ n
k
3ωj, (9)

T
k
4,ij �

T
k
3,ijωi

ωj

−
ϕjωi

ωj

+ ϕi + τi,jωi − n
k
4 +

n
k
5ωi

ωj

+ n
k
6ωi. (10)

It is worth noting that the transmitting time series Tk
1,ij

and Tk
3,ij are timing tags recorded by the member nodes. For

the sake of convenience and building up the discrete time
state model, they normally are set as periodic series. In this
case, Tk

1,ij and Tk
3,ij could be considered as known param-

eters, and the left sides of (7) and (8) could be considered as
observations. )e state estimation could be updated once a
new observation has been collected. )erefore, this process
can be expressed by a nonlinear state estimation model:

X+
k � AXk + rk,

zk � fk Xk( 􏼁 + vk,

⎧⎨

⎩ (11)

where the unknown state matrix Xk � [ω, ϕ, τ]T ∈
R(2N− 2+(L/2))×1.A � I(2N− 2+(L/2)) and vk􏼈 􏼉 are white Gaussian,
independent random processes with zero mean and covari-
ance matrix E[rkrT

k ] � Rk ∈ R(2N− 2+(L/2))×(2N− 2+(L/2)) and

E[vkvT
k ] � Qk ∈ R1×1. fk(Xk) varies versus the direction of

the link. From (9) and (10), we can infer that if the trans-
mission direction is from node i to node j, the observation
equation follows (9), otherwise it follows (10). )e estimation
could be performed by an extended Kalman filter (EKF) in
this case. In addition, if the two-way timing stamps exchange
mechanism operates between the master and slave, the ob-
servation function fk(Xk) can be simplified as Tk

1,ijωj + ϕj +

τi,jωj and (Tk
3,ij/ωj) − (ϕj/ωj) + τi,j, respectively.

Based on the discussions above, the proposed EKF es-
timator is expressed by Algorithm 1.

Remark 1 (off-line computation). Note that the matrices K
and Pm|m can be computed off-line; the reason is that they do
not depend on the timing stamp data of reception. )ere-
fore, the computation of 􏽢X can be performed very rapidly on
the center processing unit. It can be found that one dis-
advantage of EKF is that it might take a large amount of
memories to store the transmission data especially when the
data is large, but this problem could be easily solved by
setting the transmission time instants periodically.

Remark 2 (real-time process). Compared with the existed
LS-based estimators, which need to collect the information
with respect to forward links and reverse links as much as
possible to improve the estimation accuracy, EKF could
update its estimation once there is a new observation of a
forward or a reverse link. On the contrary, although the
Kalman-filter-based algorithms proposed in [17, 18] are also
able to carry out real-time processing, the symmetrical links
are required to eliminate the nuisance term. In addition,
another advantage owing to not to put any constraint on
symmetrical structure is that the update rate could be faster
than those symmetrical required algorithms. )is kind of
feature is paramount especially for the low power con-
sumption systems, such as the sleep wake-up scheduling
system.

Remark 3 (one-way estimation). According to (7) and (8),
we can infer that the EKF estimator will not lose its entire
function even when the transmitting device or receiving
device on any node suddenly stops working. For instance, if
(10) could not be observed, that is to say, only a series of
information with respect to (9) can be used to perform
estimation, in this case, the estimation rate and the ro-
bustness of the estimator could be improved.

3. Bayesian Cramér–Rao Lower Bound

)e Cramér–Rao lower bound on the estimation error states

E ( 􏽢X − X)( 􏽢X − X)
T

􏽨 􏽩≥ J− 1
, (12)

where J is the Fisher information matrix, which obeys the
recursion [19]:

Jk+1 � D22
k − D12

k􏼐 􏼑
T
Jk + D11

k􏼐 􏼑
− 1
D12

k , (13)

where

T1
2,ij

T1
1,ij

T2
2,ij

T2
1,ij

T3
2,ij

T3
1,ij

Tk
2,ij

Tk
1,ij

Tk
3,ij

Tk
4,ij

T1
3,ij

T1
4,ij

Node j

Node i

…… …… ……

Figure 1: Two-way timing stamp exchange mechanism between
node i and node j. )e solid (dashed) lines denote the forward
(reverse) links.
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D11
k � E −

z
2

zXkz
TXk

logp X+
k |Xk( 􏼁􏼨 􏼩, (14)

D12
k � E −

z
2

zXkz
TX+

k

logp X+
k |Xk( 􏼁

⎧⎨

⎩

⎫⎬

⎭, (15)

D22
k � E −

z
2

zX+
kz

TX+
k

logp X+
k |Xk( 􏼁

⎧⎨

⎩

⎫⎬

⎭

+ E −
z
2

zX+
k z

TX+
k

logp z
+
k |X+

k( 􏼁
⎧⎨

⎩

⎫⎬

⎭.

(16)

From (11), it follows that

− logp X+
k |Xk( 􏼁 � c1 +

1
2
X+

k − AXk( 􏼁
T

· R− 1 X+
k − AXk( 􏼁, (17)

− logp z
+
k |X+

k( 􏼁 � c2 +
1
2

z
+
k − f+

k
􏽢X

+

k􏼐 􏼑􏽨 􏽩
T

· Q− 1
z

+
k − f+

k
􏽢X

+

k􏼐 􏼑􏽨 􏽩,

(18)

where c1 and c2 are constants. A straightforward calculation
of (14)–(18) leads to D11

k � ATR− 1A, D12
k � − ATR− 1, and

D22
k � R− 1 + (zf+

k ( 􏽢X
+

k )/z 􏽢X
+

k )􏽮 􏽯
T
Q− 1(zf+

k ( 􏽢X
+

k )/z 􏽢X
+

k ). Hence,
(13) can be written as

Jk+1 � R− 1
+

zf+
k

􏽢X
+

k􏼐 􏼑

z 􏽢X
+

k

⎧⎨

⎩

⎫⎬

⎭

T

Q− 1zf
+
k

􏽢X
+

k􏼐 􏼑

z 􏽢X
+

k

− R− 1
􏼐 􏼑

T
A Jk + ATR− 1A􏼐 􏼑

− 1
ATR− 1

.

(19)

Applying the matrix inversion lemma, (19) can be fur-
ther simplified as

Jk+1 � R + AJ− 1
k AT

􏼐 􏼑
− 1

+
zf+

k
􏽢X

+

k􏼐 􏼑

z 􏽢X
+

k

⎧⎨

⎩

⎫⎬

⎭

T

Q− 1zf
+
k

􏽢X
+

k􏼐 􏼑

z 􏽢X
+

k

.

(20)

)e inverse of the Fisher information matrix for θ could
be written as [20]

I− 1
(θ) � J− 1

. (21)

4. Simulations

In this section, we provide a scenario with asynchronous
links to evaluate the performance of the EKF estimator. )e
number of the nodes N� 10, and each node is capable of
performing two-way communications with the other nodes.
All the member nodes are assumed to be visible during the
signal transaction process. )e locations of the member
nodes are uniformly distributed variables in the region of
1 km × 1 km.)e propagation speed is the speed of light.)e
clock skew and clock offset of the slave nodes are randomly
distributed in the range [0.9998, 1.0002] and [− 2, 2]s, re-
spectively. )e transmission time interval for both forward
links and reverse links is 5 s, and the reverse links always
transmit backwards by 3 s. )e noise standard deviations
σp � 1 × 10− 3 and σq � 1 × 10− 3. )e Root Mean Square
Error (RMSE) is adopted as the performance metric. All the
given results are averaged over 10,000 Monte Carlo runs.

In order to investigate the performance of the proposed
method, the conventional Kalman estimator based on the
traditional clock model and the iterative form of LCLS are
compared in this section. Figure 2 shows the RMSEs of the
unknown parameters by applying different estimators. As
shown in the figure, the iterative LCLS achieve the best
performance than the other estimators. )e proposed EKF

Require: T1
1,ij, T2

1,ij, . . . , T
Ki

1,ij􏽮 􏽯, T1
3,ij, T2

3,ij, . . . , T
Ui

3,ij􏽮 􏽯, K ∈ N, σp, σq, 􏽢X0|0, P0|0
(1) m � 0
(2) repeat
(3) m � m + 1
(4) 􏽢Xm|m− 1 � A 􏽢Xm− 1|m− 1
(5) Pm|m− 1 � APm− 1|m− 1AT + Rm

(6) if j⟶ i then
(7) zm � Tu

4,ij

(8) fm(Xm) � Tk
3,ij/ωj − ϕj/ωj + τi,j, if i �� 1

(9) fm(Xm) � Tk
3,ijωi/ωj − ϕjωi/ωj + ϕi + τi,jωi, if i! � 1

(10) else
(11) zm � Tu

2,ij

(12) fm(Xm) � Tk
1,ijωj − ϕiωj + ϕj + τi,jωj, if i �� 1

(13) fm(Xm) � Tk
1,ijωj/ωi − ϕiωj/ωi + ϕj + τi,jωj, if i! � 1

(14) Fm � (zfm/zXm)|
Xm�􏽢Xm|m− 1

(15) Km � Pm|m− 1FT
m(Qm + FmPm∣m− 1FT

m)− 1

(16) 􏽢Xm|m � 􏽢Xm|m− 1 + Km(zm − fm( 􏽢Xm|m− 1))

(17) Pm|m � (I − KmFm)Pmm− 1|

(18) end if
(19) untilm � Ki + Ui

ALGORITHM 1: Proposed EKF estimator.
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Figure 2: RMSEs of the estimated clock skew ωj (a), offset ϕj (b), and propagation delay τi,j (c) with respect to the number of iterations.
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Figure 3: RMSEs of the estimated clock skew ωj (a), offset ϕj (b), and propagation delay τi,j (c) with respect to the varying noise deviations.
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converges at a slower rate than the conventional KF, but
performs relatively better on the estimation precision after a
long iteration time. Compared with the other two estima-
tors, the precision degradation of the EKF originates from
the nonlinear process of the observation equation, and it
could be improved by omitting a virtual parameter trans-
forming process. However, the proposed EKF estimator has
its own superiorities mentioned in Section 2, namely, its
update rate is two times faster than the other estimators and
it frees the restriction on the symmetrical structure.
Meanwhile, it is able to provide off-line computation.

Furthermore, the performances of the estimators for
varying noise deviation are presented in Figure 3. )e de-
viation of the time markers and propagation disturbance are
set in the range [− 88, − 70] dB seconds. It is noted that the
meter level accuracies could be achieved by the proposed
EKF estimator when the Signal-to-Noise Ratio (SNR) is
high. In addition, the proposed estimator is able to carry out
range estimation directly, which is coupled with the esti-
mation process of clock parameter tracking.

5. Conclusion

In this work, the problem of joint clock synchronization
and ranging for UAS in a complex GPS-denied envi-
ronment is addressed. )e proposed EKF estimator is
shown to achieve nearly the same performance compared
with the existed Kalman-filter-based estimator, but can
provide off-line computations. By comparing its per-
formance bounds with the B-CRLB, it has been found that
although the EKF estimator suffers performance degra-
dation, it is capable of estimating the clock skew even in
the context of one-way communication and updating the
estimates faster than the existed estimators. Furthermore,
it has the function of estimating the unknown propa-
gation delay between each node. Future research direc-
tions include the extension of recursive joint clock
synchronization and localization estimation in anchor-
less networks.
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Interval time-varying delay is common in control process, e.g., automatic robot control system, and its stability analysis is of great
significance to ensure the reliable control of industrial processes. In order to improve the conservation of the existing robust
stability analysis method, this paper considers a class of linear systems with norm-bounded uncertainty and interval time-varying
delay as the research object. Less conservative robust stability criterion is put forward based on augmented Lyapunov-Krasovskii
(L-K) functional method and reciprocally convex combination. Firstly, the delay interval is partitioned into multiple equidistant
subintervals, and a new Lyapunov-Krasovskii functional comprising quadruple-integral term is introduced for each subinterval.
Secondly, a novel delay-dependent stability criterion in terms of linear matrix inequalities (LMIs) is given by less conservative
Wirtinger-based integral inequality approach. -ree numerical comparative examples are given to verify the superiority of the
proposed approach in reducing the conservation of conclusion. For the first example about closed-loop control systems with
interval time-varying delays, the proposed robust stability criterion could get MADB (Maximum Allowable Delay Bound) about
0.3 more than the best results in the previous literature; and, for two other uncertain systems with interval time-varying delays, the
MADB results obtained by the proposed method are better than those in the previous literature by about 0.045 and 0.054,
respectively. All the example results obtained in this paper clearly show that our approach is better than other existing methods.

1. Introduction

Many dynamic model systems in the real world contain very
significant time delays in the transmission of data and
materials, in automatic robot control system, the acquisition
and transmission of sensor signals, and the calculation of
controller and the drive of brake may lead to time delay. In
many kinds of time-delay types, the interval time-varying
delay is more representative. -e lower bound of its time
delay is not necessarily zero, and the time delay is within a
changing interval. It is common in practical application of
engineering, especially in chemical reactors, internal com-
bustion engines, and network control [1, 2]. Consequently,
the stability analysis about interval time-delay systems has
attracted wide attention in these years.

Generally, aiming to analyze the stability of time-delay
system, the most common method is to construct an ap-
propriate LK functional (Lyapunov–Krasovskii functional,
LKF) in time domain and combine it with linear matrix
inequalities (LMIs). In general, the free weight matrix
method, the time-delay segmentation method, the integral
inequality method, the interactive convex combination
method, and so forth are used to analyze its stability.
Augmented functional method [3–5] can make full use of
the system’s time-delay information to reduce the conser-
vativeness of conclusion, but the introduction of matrix
variables inevitably burdens the theoretical analysis and
engineering calculation. Zhang et al. and Shen et al. [6, 7]
obtain a conservative less stable stability criterion for linear
systems with time-varying delays by constructing LKF with
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triple integral functional terms and optimize the stability
conditions of time-delay systems. -e integral inequality
method has the characteristics of simple form and few
matrix variables, which can promote the stability analysis of
time-delay systems. Gu [8] first introduced Jensen’s in-
equality into the stability analysis of time-delay systems, and
then Ramakrishnan [9, 10], Zhang [11], and Gouaisbaut [12]
further promoted Jensen’s inequality, resulting in different
and novel forms. In various forms, we have obtained ef-
fective conclusions of different conservation. As an inno-
vative method, the interactive convex combination method
[13, 14] can solve the stability problems of systems with
interactive convex combination. Wu et al. [15] studied the
issue of robust stability analysis for a sort of uncertain
neutral system with mixed time-varying delays, and a novel
discrete and neutral delay-dependent stability criterion
based on linear matrix inequalities was given, which could
greatly reduce the complexity of theoretical derivation and
computation. Li et al. [16] deal with a set of positive
functions combined with inverse convex weighting pa-
rameters by interactive convex combination technique in-
stead of directly ignoring the term and deduce the stability
criterion for uncertain neutral systems with mixed time
delay.-is criterion reduces the number of relevant decision
variables while ensuring the conservativeness and avoids the
complexity of numerical calculation.

Farnam et al. [17] studied the robust stability problem
for a class of linear systems with time-varying delays. By
constructing LKF with more time-delay information, the
stability condition of LMIs is obtained by means of inter-
active convex combination definition technique. Finally, the
numbers are used to demonstrate that the given stability
conditions are less conservative in computational efficiency.
Ding et al. [18] construct an augmented functional with
specific time-delay information based on the idea of time-
delayed partitioning. -e free-weight matrix inequality is
used to define the cross terms generated by the functional
derivatives, and a lower-conservative stability criterion is
obtained. Senthilraj et al. [19] introduced a novel method to
study the robust stability problem of an interval-delayed
neural network system by using a nonuniform time-delay
segmentation method and the integral inequality definition
technique. Delay-dependent stability conditions for ensur-
ing the stability of the system are obtained. Cheng et al. [20]
studied a time-delay-related state feedback control problem
for a class of time-varying delay continuous systems via
improved interactive convex combination techniques and
Wirtinger-based integral inequalities, and new stability
conditions and state feedback control are obtained. Zhang
et al. [21] proposed a robust stability criterion for a class of
linear systems with time-varying delays by using the Wir-
tinger-based integral inequality and the interactive convex
combination lemma to effectively define the cross terms
emerging in the LKF derivatives. -e conclusions obtained
are superior in terms of stability analysis. Chang et al.
studied the control problem with time-varying norm
bounded uncertainties and discrete-time nonlinear systems
with parametric uncertainties; LMI are used to obtain the
sufficient conditions for robust stabilization [22, 23].

On the basis of the above research results, for the sake of
further revealing the relationship between the asymptotical
stability of uncertain systems with interval time-varying
delay and the constructed LKF and then to lower the
conservatism caused by dealing with the functional deriv-
atives, this paper attempts to study the robust stability
problem of uncertain systems with interval time-varying
delay by constructing a novel LKF and realizing less con-
servative integral inequalities.-emain contributions of this
paper include the following:

In this paper, the robust stability criterion is proposed
based on the time-delay segmentation method. Spe-
cifically, the time-delay interval is divided into N equal
parts. -en, a new LKF with quadruple integral term is
constructed for different subintervals.
-e constructed LKF is augmented with single integral
terms and multiple integrals terms, which can make
more connections among different vectors and then
eliminate the redundant conservatism arising from
estimating the interval time-varying delay. Moreover,
in addition to the single integral, the double integral,
and the triple integral, the quadruple integral is used as
a term to construct the integral functional, which would
make full use of more information about the upper and
lower bounds of the time delay existing in the systems.
-eWirtinger-based integral inequality and interactive
convex combination technique are used to give con-
clusion in the form of LMIs without any extra
parameters.

Rndenotes n-dimensional Euclidean space. Rn×m de-
notes the set of all n × m real matrices. ∗ denotes symmetric
terms in symmetric matrices. I denotes the identity matrix
with proper dimensions. M � MT > 0 denotes that Mis
symmetric matrix. ei denotes block input matrix with proper
dimensions; for instance, eT

6 � 0 0 0 0 0 1 0 0 0 0􏼂 􏼃.

2. Problem Description

-e uncertain linear systems with interval time-varying
delay are as follows:

_x(t) � (A + ΔA(t))x(t) +(B + ΔB(t))x(t − h(t)),

x(t) � φ(t), t ∈ − hM, 0􏼂 􏼃,
􏼨 (1)

where x(t) ∈ Rn is the state vector of the system, A and B are
system matrices with appropriate dimensions, h(t) is time-
varying delay satisfying 0≤ hm ≤ h(t)≤ hM, and ΔA(t) and
ΔB(t) are unknown matrices with time-varying structure
uncertainty. When ΔA(t) and ΔB(t) have norm bounded
uncertainty, they can be described as follows:

ΔA(t) ΔB(t)􏼂 􏼃 � DF(t) Ea Eb􏼂 􏼃, (2)

where D, Ea, and Eb are known matrices with appropriate
dimensions, while F(t) is an uncertain matrix with mea-
surable elements satisfying F(t)TF(t)≤ I,∀t, in which I
represents the unit matrix of the appropriate dimension.
When F(t) � 0, system (1) becomes a nominal system.
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In this paper, assuming that N is a positive integer
greater than zero, hi(i � 1, 2, . . . , N + 1) are scalars, and the
time-delay interval [hm, hM] can be averaged as follows:

hm � h1 < h2 < h3 < · · · < hN < hN+1 � hM, (3)

where hm � h1; hM � hN+1; then hΔ represents the length of
subinterval [hi, hi+1]; namely, hΔ � hi+1 − hi � (hM − hm)/N.

To facilitate the proof of stability criteria, the following
lemmas are summarized as follows:

Lemma 1 (see [12]). Assuming any positive definite matrix
M � MT > 0, scalar h> 0, and continuous vector functions
x(t): [0, h]⟶ Rn, the following inequality is established:

− h 􏽚
t

t− h
_x
T
(s)M _x(s)ds≤ − [x(t) − x(t − h)]

T

· M[x(t) − x(t − h)] − 3ΘT
MΘ,

(4)

where Θ � x(t) + x(t − h) − (2/h) 􏽒
t

t− h
x(s)ds.

Lemma 2 (see [17]). Assuming any positive definite matrix
M � MT > 0, scalar h> 0, and continuous vector functions
x(t): [0, h]⟶ Rn, the following inequality is established:

− h 􏽚
t

t− h
x

T
(s)Mx(s)ds≤ − 􏽚

t

t− h
x

T
(s)dsM 􏽚

t

t− h
x(s)ds

− h
2/2􏼐 􏼑 􏽚

0

− h
􏽚

t

t+β
x

T
(s)Mx(s)dsdβ

≤ − 􏽚
0

− h
􏽚

t

t+β
x

T
(s)dsdβM 􏽚

0

− h
􏽚

t

t+β
x(s)dsdβ,

− h
3/6􏼐 􏼑 􏽚

0

− h
􏽚
0

β
􏽚

t

t+λ
x

T
(s)Mx(s)dsdλdβ

≤ − 􏽚
0

− h
􏽚
0

β
􏽚

t

t+λ
x

T
(s)dsdλdβM 􏽚

0

− h
􏽚
0

β
􏽚

t

t+λ
x(s)dsdλdβ.

(5)

Lemma 3 (see [17]). Assuming any positive definite matrix
M � MT > 0, scalars 0≤ α, ε≤ 1, α � ((h(t)− hi)/(hi+1 − hi)),
ε � (((h(t))2 − h2

i )/(h2
i+1 − h2

i )), hi ≤ h(t)≤ hi+1, and vector

functions x(t): [0, h]⟶ Rn, the following inequality is
established:

− hi+1 − hi( 􏼁 􏽚
t− hi

t− hi+1

x
T
(s)Mx(s)ds≤ − ζT

(t) e7Me
T
7 + e6Me

T
6􏼐 􏼑ζ(t)

− αζT
(t)e7Me

T
7 ζ(t) − (1 − α)ζT

(t)e6Me
T
6 ζ(t),

− h
2
i+1 − h

2
i􏼐 􏼑/2􏼐 􏼑 􏽚

− hi

− hi+1

􏽚
t

t+β
x

T
(s)Mx(s)dsdβ

≤ − ζT
(t) e10Me

T
10 + e9Me

T
9􏼐 􏼑ζ(t)

− εζT
(t)e10Me

T
10ζ(t) − (1 − ε)ζT

(t)e9Me
T
9 ζ(t),

(6)

where

ζT
(t) � x(t)x(t − h(t))x t − hi( 􏼁x t − hi+1( 􏼁 􏽚

t

t− hi

x(s)ds 􏽚
t− hi

t− h(t)
x(s)ds 􏽚

t− h(t)

t− hi+1

x(s)ds 􏽚
0

− hi

􏽚
t

t+β
x(s)dsdβ􏼢

· 􏽚
− hi

− h(t)
􏽚

t

t+β
x(s)dsdβ􏽚

− h(t)

− hi+1

􏽚
t

t+β
x(s)dsdβ􏼣.

(7)
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3. Main Results

In this section, the stability of the system is discussed in two
steps. First, the stability criterion of the nominal system is
given, and then the stability of the uncertain system is
analyzed. -e nominal system of system (1) is as follows:

_x(t) � Ax(t) + Bx(t − h(t)),

x(t) � φ(t), t ∈ − hM, 0􏼂 􏼃.
􏼨 (8)

For nominal systems (8), a new quadruple integral term
L-K functional containing more time-delay information is

constructed in each subinterval. -e following conclusions
are obtained by combining Lemmas 1–3.

Theorem 1. For given scalars hm, hM , and λ1, λ2 (λ1 > λ2),
it is asymptotically stable for the nominal system (8), if
there exist positive definite symmetric matrices
Pi(i � 1, 2, 3, 4, 5), Q1, Q2, U1, U2, Xj, Rj(j � 1, 2, 3, 4), such
that the following linear matrix inequalities (LMIs) hold:

Φ � Φi,j􏼐 􏼑10×10< 0, (9)

where

Φ11 � P1A + A
T
P1 + Q1 + h

2
i X1 + h

2
i A

T
X2A − X2 + h

2
ΔX3 + h

2
ΔA

T
X4A +

h
4
i

4
􏼠 􏼡R1 − h

2
i R2

+
h
4
i

4
􏼠 􏼡A

T
R2A +

h
2
i+1 − h

2
i􏼐 􏼑

2

4
⎛⎝ ⎞⎠R3 − 2h

2
ΔR4 +

h
2
i+1 − h

2
i􏼐 􏼑

2

4
⎛⎝ ⎞⎠A

T
R4A −

h
4
i

4
􏼠 􏼡U1 +

h
6
i

36
􏼠 􏼡A

T
U1A

+
h
2
i+1 − h

2
i􏼐 􏼑

2

4
⎛⎝ ⎞⎠U2 −

h
3
i+1 − h

3
i􏼐 􏼑

2

36
⎛⎝ ⎞⎠A

T
U2A,

Φ12 � P1B + h
2
i A

T
X2B + h

2
ΔA

T
X4B +

h
4
i

4
􏼠 􏼡A

T
R2B

+
h
2
i+1 − h

2
i􏼐 􏼑

2

4
⎛⎝ ⎞⎠A

T
R4B +

h
6
i

36
􏼠 􏼡A

T
U1B +

h
3
i+1 − h

3
i􏼐 􏼑

2

36
⎛⎝ ⎞⎠A

T
U2B,

Φ13 � X,Φ14 � 0,Φ15 � P2 + hiR2,Φ16 � Φ17 � hΔR4,

Φ18 � hiP4 + h
2
i /2􏼐 􏼑U1,Φ19 � Φ110 � hΔP5 +

h
2
i+1 − h

2
i􏼐 􏼑

2
⎛⎝ ⎞⎠U2,

Φ22 � h
2
i B

T
X2B − 2X4 + h

2
ΔB

T
X4B +

h
4
i

4
􏼠 􏼡B

T
R2B +

h
6
i

36
􏼠 􏼡B

T
U1B

+
h
2
i+1 − h

2
i􏼐 􏼑

2

4
⎛⎝ ⎞⎠B

T
R4B +

h
3
i+1 − h

3
i􏼐 􏼑

2

36
⎛⎝ ⎞⎠B

T
U2B,

Φ23 � Φ24 � X4,Φ25 � Φ26 � Φ27 � Φ28 � Φ29 � Φ210 � 0,

Φ33 � − Q1 + Q2 − X2 − X4,Φ34 � 0,Φ35 � − P2,Φ36 � Φ37 � P3,

Φ38 � Φ39 � Φ310 � 0,Φ44 � − Q2 − X4,Φ45 � 0,Φ46 � Φ47 � − P3,

Φ48 � Φ49 � Φ410 � 0,Φ55 � − X1 − R2,Φ56 � Φ57 � 0,Φ58 � − P4,

Φ59 � Φ510 � 0,Φ66 � − X3 − R4,Φ67 � Φ68 � 0,Φ69 � Φ610 � − P5,

Φn � − X3 − R4,Φ78 � 0,Φ79 � Φ710 � − P5,Φ88 � − R1 − U1,

Φ89 � Φ810 � 0,Φ99 � − R3 − U2,Φ910 � U2,Φ1010 � − R3 − U2,

hΔ � hi+1 � hi �
hM − hm( 􏼁

N
, hi � h1 +

i − 1 hM − hm( 􏼁( 􏼁

N
.

(10)

4 Complexity



Proof. For the sake of simplicity, -eorem 1 holds when
h(t) ∈ [h2, h3] first; and then -eorem 1 is generalized to be
established when h(t) ∈ [hi + hi+1](i � 1, 3, . . . , N).

When h(t) ∈ [h2, h3], the L-K functional is constructed
as follows:

V2(x(t)) � V21(x(t)) + V22(x(t)) + V23(x(t))

+ V24(x(t)) + V25(x(t)),
(11)

where

V21(x(t)) � x
T

(t)P1x(t) + 􏽚
t

t− h2

x
T
(s)dsP2 􏽚

t

t− h2

x(s)ds

+ 􏽚
t− h2

t− h3

x
T
(s)dsP3 􏽚

t− h2

t− h3

x(s)ds + 􏽚
0

− h2

􏽚
t

t+β
x

T
(s)dsdβP4 􏽚

0

− h2

􏽚
t

t+β
x(s)dsdβ

+ 􏽚
− h2

− h3

􏽚
t

t+β
x

T
(s)dsdβP5 􏽚

− h2

− h3

􏽚
t

t+β
x(s)dsdβ,

V22(x(t)) � 􏽚
t

t− h2

x
T
(s)Q1x(s)ds + 􏽚

t− h2

t− h3

x
T
(s)Q2x(s)ds,

V23(x(t)) � h2 􏽚
0

− h2

􏽚
t

t+β
x

T
(s)X1x(s)dsdβ + h2 􏽚

0

− h2

􏽚
t

t+β
_x
T
(s)X2 _x(s)dsdβ

+ h3 − h2( 􏼁 􏽚
− h2

− h3

􏽚
t

t+β
x

T
(s)X3x(s)dsdβ + h3 − h2( 􏼁 􏽚

− h2

− h3

􏽚
t

t+β
_x
T
(s)X4 _x(s)dsdβ,

V24(x(t)) �
h
2
2
2

􏼠 􏼡 􏽚
0

− h2

􏽚
0

β
􏽚

t

t+λ
x

T
(s)R1x(s)dsdλdβ

+
h
2
2
2

􏼠 􏼡 􏽚
0

− h2

􏽚
0

β
􏽚

t

t+λ
_x
T
(s)R2 _x(s)dsdλdβ

+
h
2
3 − h

2
2􏼐 􏼑

2
⎛⎝ ⎞⎠ 􏽚

− h2

− h3

􏽚
0

β
􏽚

t

t+λ
x

T
(s)R3x(s)dsdλdβ

+
h
2
3 − h

2
2􏼐 􏼑

2
⎛⎝ ⎞⎠ 􏽚

− h2

− h3

􏽚
0

β
􏽚

t

t+λ
_x
T
(s)R4 _x(s)dsdλdβ,

V25(x(t)) �
h
3
2
6

􏼠 􏼡 􏽚
0

− h2

􏽚
0

β
􏽚
0

λ
􏽚

t

t+φ
_x
T
(s)U1 _x(s)dsdφdλdβ

+
h
3
3 − h

3
2􏼐 􏼑

6
⎛⎝ ⎞⎠ 􏽚

− h2

− h3

􏽚
0

β
􏽚
0

λ
􏽚

t

t+φ
_x
T
(s)U2 _x(s)dsdφdλdβ.

(12)

-e derivative of L-K functional V(t) along the nominal
system (8) is calculated as follows:

_V2(t) � _V21(t) + _V22(t) + _V23(t) + _V24(t) + _V25(t),

(13)
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where

_V21(t) � 2x
T
(t)A

T
P1x(t) + 2x

T
(t − h(t))B

T
P1x(t) + 2x

T
(t)P2 􏽚

t

t− h2

x(s)ds

− 2x
T

t − h2( 􏼁P2 􏽚
t

t− h2

x(s)ds + 2x
T

t − h2( 􏼁P3 􏽚
t− h2

t− h3

x(s)ds

− 2x
T

t − h3( 􏼁P3 􏽚
t− h2

t− h3

x(s)ds − 2􏽚
t

t− h2

x
T
(s)dsP4 􏽚

0

− h2

􏽚
t

t+β
x(s)dsdβ

+ 2h2x
T
(t)P4 􏽚

0

− h2

􏽚
t

t+β
x(s)dsdβ + 2 h3 − h2( 􏼁x

T
(t)P5 􏽚

− h2

− h3

􏽚
t

t+β
x(s)dsdβ

− 2􏽚
t− h2

t− h3

x
T
(s)dsP5 􏽚

− h2

− h3

􏽚
t

t+β
x(s)dsdβ,

_V22(t) � x
T
(t)Q1x(t) − x

T
t − h2( 􏼁Q1x t − h2( 􏼁 + x

T
t − h2( 􏼁Q2x t − h2( 􏼁 − x

T
t − h3( 􏼁Q2x t − h3( 􏼁,

_V23(t) � h
2
2x

T
(t)X1x(t) − h2 􏽚

t

t− h2

x
T
(s)X1x(s)ds − h2 􏽚

t

t− h2

_x
T
(s)X2 _x(s)ds

+ h
2
2 _x

T
(t)X2 _x(t) + h3 − h2( 􏼁

2
x

T
(t)X3x(t) + h3 − h2( 􏼁

2
_x
T
(t)X4 _x(t)

− h3 − h2( 􏼁 􏽚
t− h2

t− h3

x
T
(s)X3x(s)ds − h3 − h2( 􏼁 􏽚

t− h2

t− h3

_x
T
(s)X4 _x(s)ds,

_V24(t) �
h
4
2
4

􏼠 􏼡x
T
(t)R1x(t) −

h
2
2
2

􏼠 􏼡 􏽚
0

− h2

􏽚
t

t+β
x

T
(s)R1x(s)dsdβ

+
h
4
2
4

􏼠 􏼡 _x
T
(t)R2 _x(t) −

h
2
2
2

􏼠 􏼡 􏽚
0

− h2

􏽚
t

t+β
_x
T
(s)R2 _x(s)dsdβ

+
h
2
3 − h

2
2􏼐 􏼑

2

4
⎛⎝ ⎞⎠x

T
(t)R3x(t) −

h
2
3 − h

2
2􏼐 􏼑

2
⎛⎝ ⎞⎠ 􏽚

− h2

− h3

􏽚
t

t+β
x

T
(s)R3x(s)dsdβ

+
h
2
3 − h

2
2􏼐 􏼑

2

4
⎛⎝ ⎞⎠ _x

T
(t)R4 _x(t) −

h
2
3 − h

2
2􏼐 􏼑

2
⎛⎝ ⎞⎠ 􏽚

− h2

− h3

􏽚
t

t+β
_x
T
(s)R4 _x(s)dsdβ,

_V25(t) �
h
6
2

36
􏼠 􏼡 _x

T
(t)U1 _x(t) +

h
3
3 − h

3
2􏼐 􏼑

2

36
⎛⎝ ⎞⎠ _x

T
(t)U2 _x(t)

−
h
3
2
6

􏼠 􏼡 􏽚
0

− h2

􏽚
0

β
􏽚

t

t+λ
_x
T
(s)U1 _x(s)dsdλdβ −

h
3
3 − h

3
2􏼐 􏼑

6
⎛⎝ ⎞⎠ 􏽚

− h2

− h3

􏽚
0

β
􏽚

t

t+λ
_x
T
(s)U2 _x(s)dsdλdβ.

(14)
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From Lemmas 1 and 2, we can obtain the following:

− h2 􏽚
t

t− h2

x
T
(s)X1x(s)ds≤ − ζT

(t)e5X1e
T
5 ζ(t), (15)

− h2 􏽚
t

t− h2

_x
T
(s)X2 _x(s)ds≤ − ζT

(t) e1 − e3( 􏼁X2 e
T
1 − e

T
3􏼐 􏼑ζ(t)−

· 3ζT
(t) e1 + e3 −

2
h2

􏼠 􏼡e5􏼠 􏼡X2 e
T
1 + e

T
3 −

2
h2

􏼠 􏼡e
T
5􏼠 􏼡ζ(t),

(16)

where ζ(t) is consistent with i � 2 in Lemma 3. From Lemma 3, we can obtain the following:

− h3 − h2( 􏼁 􏽚
t− h2

t− h3

x
T
(s)X3x(s)ds≤ − ζT

(t)e7X3e
T
7 ζ(t)

− ζT
(t)e6X3e

T
6 ζ(t) − αζT

(t)e7X3e
T
7 ζ(t) − (1 − α)ζT

(t)e6X3e
T
6 ζ(t).

(17)

Similarly, according to Lemma 3, we can obtain the
following:

− h3 − h2( 􏼁 􏽚
t− h2

t− h3

_x
T

(s)X4 _x(s)ds≤ − ζT
(t) e2 − e4( 􏼁X4 e

T
2 − e

T
4􏼐 􏼑ζ(t)

− ζT
(t) e3 − e2( 􏼁X4 e

T
3 − e

T
2􏼐 􏼑ζ(t) − αζT

(t) e2 − e4( 􏼁X4 e
T
2 − e

T
4􏼐 􏼑ζ(t)

− (1 − α)ζT
(t) e3 − e2( 􏼁X4 e

T
3 − e

T
2􏼐 􏼑ζ(t),

(18)

−
h
2
2
2

􏼠 􏼡 􏽚
0

− h2

􏽚
t

t+β
x

T
(s)R1x(s)dsdβ≤ − ζT

(t)e8R1e
T
8 ζ(t), (19)

−
h
2
2
2

􏼠 􏼡 􏽚
0

− h2

􏽚
t

t+β
_x
T

(s)R2 _x(s)dsdβ≤ − ζT
(t) h2e1 − e5( 􏼁R2 h2e

T
1 − e

T
5􏼐 􏼑ζ(t), (20)

−
h
2
3 − h

2
2􏼐 􏼑

2
⎛⎝ ⎞⎠ 􏽚

− h2

− h3

􏽚
t

t+β
x

T
(s)R3x(s)dsdβ≤ − ζT

(t)e10R3e
T
10ζ(t)

− ζT
(t)e9R3e

T
9 ζ(t) − εζT

(t)e10R3e
T
10ζ(t) − (1 − ε)ζT

(t)e9R3e
T
9 ζ(t),

(21)

−
h
2
3 − h

2
2􏼐 􏼑

2
⎛⎝ ⎞⎠ 􏽚

− h2

− h3

􏽚
t

t+β
_x
T
(s)R4 _x(s)dsdβ≤

− ζT
(t) h3 − h2( 􏼁e1 − e7( 􏼁R4 h3 − h2( 􏼁e

T
1 − e

T
7􏼐 􏼑ζ(t)

− ζT
(t) h3 − h2( 􏼁e1 − e6( 􏼁R4 h3 − h2( 􏼁e

T
1 − e

T
6􏼐 􏼑ζ(t)

− εζT
(t) h3 − h2( 􏼁e1 − e7( 􏼁R4 h3 − h2( 􏼁e

T
1 − e

T
7􏼐 􏼑ζ(t)

− (1 − ε)ζT
(t) h3 − h2( 􏼁e1 − e6( 􏼁R4 h3 − h2( 􏼁e

T
1 − e

T
6􏼐 􏼑ζ(t),

(22)
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−
h
3
2
6

􏼠 􏼡 􏽚
0

− h2

􏽚
0

β
􏽚

t

t+λ
_x
T
(s)U1 _x(s)dsdλdβ≤

− ζT
(t)

h
2
2
2

􏼠 􏼡e1 − e8􏼠 􏼡U1
h
2
2
2

􏼠 􏼡e
T
1 − e

T
8􏼠 􏼡ζ(t),

(23)

−
h
3
3 − h

3
2􏼐 􏼑

6
⎛⎝ ⎞⎠ 􏽚

− h2

− h3

􏽚
0

β
􏽚

t

t+λ
_x
T
(s)U2 _x(s)dsdλdβ≤

− ζT
(t)

h
2
3 − h

2
2􏼐 􏼑

2
⎛⎝ ⎞⎠e1 − e9 − e10

⎛⎝ ⎞⎠U2
h
2
3 − h

2
2􏼐 􏼑

2
⎛⎝ ⎞⎠e

T
1 − e

T
9 − e

T
10

⎛⎝ ⎞⎠ζ(t).

(24)

Substituting (15)～(24) into (13), _V2(x(t)) can be
expressed as follows:

_V2(x(t))≤ ζT
(t) αΓ1 +(1 − α)Γ2 + εΓ3 +(1 − ε)Γ2􏼂 􏼃ζ(t),

(25)

where

Γi1 �
Φ
2

􏼒 􏼓 − e7X3e
T
7 − e2 − e4( 􏼁X4 e

T
2 − e

T
4􏼐 􏼑,

Γi2 �
Φ
2

􏼒 􏼓 − e6X3e
T
6 − e3 − e2( 􏼁X4 e

T
3 − e

T
2􏼐 􏼑,

Γi3 �
Φ
2

􏼒 􏼓 − e10R3e
T
10 − hi+1 − hi( 􏼁e1 − e7( 􏼁R4 hi+1 − hi( 􏼁e

T
1 − e

T
7􏼐 􏼑,

Γi4 �
Φ
2

􏼒 􏼓 − e9R3e
T
9 − hi+1 − hi( 􏼁e1 − e6( 􏼁R4 hi+1 − hi( 􏼁e

T
1 − e

T
6􏼐 􏼑.

(26)

For 0≤ α, ε≤ 1, according to convex combination tech-
nique, the following inequality is established:

α Γ1 + λ1I( 􏼁 +(1 − α) Γ2 + λ1I( 􏼁< 0,

ε Γ3 + λ2I( 􏼁 +(1 − ε) Γ4 + λ2I( 􏼁< 0.
(27)

Namely,

αΓ1 +(1 − α)Γ2 < − λ1I, (28)

εΓ3 +(1 − ε)Γ4 < λ2I. (29)

As a result of λ1 > λ2, combining (28) and (29), the
following formula is available:

αΓ1 +(1 − α)Γ2 + εΓ3 +(1 − ε)Γ4 < λ2 − λ1( 􏼁I< 0. (30)

If αΓ1 + (1 − α)Γ2 + εΓ3 + (1 − ε)Γ4 < 0, according to L-K
stability theorem, there exists a sufficient small positive
number δ2 for _V2(t)< − δ2‖x(t)‖2 to hold, and then the
nominal system (8) is asymptotically stable.

Without losing generality, when
h(t) ∈ [hi, hi+1](i � 1, 3, . . . , N), the L-K function is con-
structed as follows:

Vi(x(t)) � Vi1(x(t)) + Vi2(x(t)) + Vi3(x(t))

+ Vi4(x(t)) + Vi5(x(t)),
(31)

where
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Vi1(x(t)) � x
T
(t)P1x(t) + 􏽚

t

t− hi

x
T
(s)dsP2 􏽚

t

t− hi

x(s)ds

+ 􏽚
t− hi

t− hi+1

x
T
(s)dsP3 􏽚

t− hi

t− hi+1

x(s)ds + 􏽚
0

− hi

􏽚
t

t+β
x

T
(s)dsdβP4 􏽚

0

− hi

􏽚
t

t+β
x(s)dsdβ

+ 􏽚
− hi

− hi+1

􏽚
t

t+β
x

T
(s)dsdβP5 􏽚

− hi

− hi+1

􏽚
t

t+β
x(s)dsdβ,

Vi2(x(t)) � 􏽚
t

t+β
x

T
(s)Q1x(s)ds + 􏽚

hi

t− hi+1

x
T
(s)Q2x(s)ds,

Vi3(x(t)) � hi 􏽚
0

− hi

􏽚
t

t+β
x

T
(s)X1x(s)dsdβ + hi 􏽚

0

− hi

􏽚
t

t+β
_x
T
(s)X2 _x(s)dsdβ

+ hi+1 − hi( 􏼁 􏽚
− hi

− hi+1

􏽚
t

t+β
x

T
(s)X3x(s)dsdβ + hi+1 − hi( 􏼁 􏽚

− hi

− hi+1

􏽚
t

t+β
_x
T
(s)X4 _x(s)dsdβ,

Vi4(x(t)) �
h
2
i

2
􏼠 􏼡 􏽚

0

− hi

􏽚
0

β
􏽚

t

t+λ
x

T
(s)R1x(s)dsdλdβ +

h
2
i

2
􏼠 􏼡 􏽚

0

− hi

􏽚
0

β
􏽚

t

t+λ
_x
T
(s)R2 _x(s)dsdλdβ

+
h
2
i+1 − h

2
i􏼐 􏼑

2
⎛⎝ ⎞⎠ 􏽚

− hi

− hi+1

􏽚
0

β
􏽚

t

t+λ
x

T
(s)R3x(s)dsdλdβ +

h
2
i+1 − h

2
i􏼐 􏼑

2
⎛⎝ ⎞⎠ 􏽚

− hi

− hi+1

􏽚
0

β
􏽚

t

t+λ
_x
T
(s)R4 _x(s)dsdλdβ,

Vi5(x(t)) �
h
3
i

6
􏼠 􏼡 􏽚

0

− hi

􏽚
0

β
􏽚
0

λ
􏽚

t

t+φ
_x
T
(s)U1 _x(s)dsdφdλdβ +

h
3
i+1 − h

3
i􏼐 􏼑

6
⎛⎝ ⎞⎠ 􏽚

− hi

− hi+1

􏽚
0

β
􏽚
0

λ
􏽚

t

t+φ
_x
T
(s)U2 _x(s)dsdφdλdβ,

(32)

where the definition of ζ(t) is the same as that in Lemma 3.
Pi(i � 1, 2, 3, 4, 5), Q1, Q2, Q3, U1, U2, Xj, and
Rj(j � 1, 2, 3, 4) are the matrices defined in the same for-
mula (9). -e same method is available. -e following
conclusions can be reached by the same method:

_Vi(x(t))≤ ζT
(t) αΓi1 +(1 − α)Γi2 + εΓi3 +(1 − ε)Γi4􏼂 􏼃ζ(t),

(33)

where

Γi1 �
Φ
2

− e7X3e
T
7 − e2 − e4( 􏼁X4 e

T
2 − e

T
4􏼐 􏼑,

Γi2 �
Φ
2

− e6X3e
T
6 − e3 − e2( 􏼁X4 e

T
3 − e

T
2􏼐 􏼑,

Γi3 �
Φ
2

− e10R3e
T
10 − hi+1 − hi( 􏼁e1 − e7( 􏼁R4 hi+1 − hi( 􏼁e

T
1 − e

T
7􏼐 􏼑,

Γi4 �
Φ
2

− e9R3e
T
9 − hi+1 − hi( 􏼁e1 − e6( 􏼁R4 hi+1 − hi( 􏼁e

T
1 − e

T
6􏼐 􏼑.

(34)

In the same way, it is known that there exists a sufficient
small positive number δi to make _Vt(t)< − δ‖x(t)‖2 hold,
and then the nominal system (8) is asymptotically stable.

-e combination of (25) and (33) is equivalent to (9).
-is fulfills the proof.

Remark 1. Firstly, different from [15], in which the delay
range was divided into two equidistant subintervals, new
LKF comprising quadruple-integral term and quadratic
forms of double-integral termwas constructed. In this paper,
for each subinterval, the time-delay interval is divided into N
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equal parts by using the method of time-delay partitioning.
A new LKF with four integral terms is designed for each
partitioned interval, and the quadratic form of double in-
tegral is introduced, such as JxT(s)dsdβMJx(s)dsdβ.
Although the double integral functional term
􏽒
0
− h

􏽒
t

t+β x(s)dsdβ is also used in [1, 10], it is not introduced
into the definition of augmented vector. Secondly, the triple
integral functional term integrand used in the new LKF
contains the state vector x, and the lower bound information
of the delay interval is introduced. -anks to the coexistence
of the quadratic integral functional term and the quadratic
term 􏽒 xT(s)dsdβ, the conservativeness of the stability
conclusion is significantly reduced.

Remark 2. In formula (9), the new stability criterion does
not involve redundant free-weight matrices but skillfully
uses Wirtinger-based integral inequality to define the cross
terms generated by LKF derivatives and uses a few free
matrices to represent the relationship between the relevant
terms. -erefore, the complexity of theoretical derivation
and computation is reduced, and the conservatism of
conclusions is reduced.

Remark 3. For a given scalar μ and time-delay rate _h(t)

satisfying 0< _h(t)≤ μ, substituting the functional term
􏽒

t

t− h(t)
xT(s)Q3x(s)ds into the LKF constructed, the stability

criterion containing the time-delay rate μ can be obtained
according to the proof process of -eorem 1. -e form is
shown in -eorem 2.

Theorem 2. For the scalars hm, hM, and μ, λ1,λ2 (λ1 > λ2), it
is asymptotically stable for the nominal system (8), if there
exist positive definite symmetric matrices Pi(i � 1, 2, 3, 4, 5),
Q1, Q2, Q3, U1, U2, Xj, and Rj(j � 1, 2, 3, 4), such that the
following LMIs hold:

􏽥Φ � 􏽥Φi,j􏼐 􏼑10×10< 0, (35)

where 􏽥Φ11 � Φ11 + Q3 and 􏽥Φ22 � Φ22 − μQ3; other items in 􏽥Φ
are defined the same as in Φ Ceorem 1.

Next, the robust stability of uncertain systems with
interval time-varying delays (1) is considered.

Theorem 3. For the scalars 0< hm < hM and μ, λ1,λ2
(λ1 > λ2), it is asymptotically stable for the uncertain system
(1), if there exist positive definite symmetric matrices
Pi(i � 1, 2, 3, 4, 5), Q1, Q2, Q3, U1, U2, Xj, and
Rj(j � 1, 2, 3, 4), the scalar δ > 0, and the free matrices with
suitable dimension T1, T2, such that the following LMIs hold:

􏽥Φ Γ1D δΓT2
∗ − δI 0

∗ ∗ − δI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (36)

where

Γ1 � T
T
1 0 0 0 0 0 T

T
2􏽨 􏽩,

Γ2 � Ea 0 Eb 0 0 0 0􏼂 􏼃.
(37)

Proof. For the uncertain system (1), A and B in equation (9)
are replaced by A+ΔA and B+ΔB, respectively. According
to the proof of -eorem 1, the asymptotic stability of system
(1) is obtained. -is fulfills the proof.

4. Numerical Examples

-e following three numerical examples are used to compare
the results of the existing literature with the method pro-
posed in this paper. MADB (Maximum Allowable Delay
Bound) is defined as the upper bound of the maximum
allowable delay to ensure the stability of the system, and it is
the most common criterion to compare the conservativeness
of the stability conclusions of time-delay systems.

Example 1. First consider the following closed-loop control
systems with interval time-varying delays:

_x(t) �
0 1

− 1 − 2
􏼢 􏼣x(t) +

0 0

− 1 1
􏼢 􏼣x(t − h(t)). (38)

For given hm, according to (35) in -eorem 2 and (9) in
-eorem 1, Tables 1 and 2 give corresponding MADB from
two aspects, μ� 0.3 and μ� any, respectively. It can be clearly
seen from Tables 1 and 2 that the method proposed in this
paper is obviously better than the conclusion in the existing
literature.

To verify the validity of the results, given μ � 0.3, hm � 1,
and hM � 3.0796 and given initial condition
x(t) � 2 − 2􏼂 􏼃

T, the state response curve of x(t) is shown in
Figure 1. It can be seen that the state trajectory of the above-
mentioned system can quickly reach a stable state under the
action of the obtained MADB, which further verifies the
correctness of the proposed stability criterion.

Example 2. Uncertain systems with interval time-varying
delays are considered:

_x(t) �
− 2 + λ1 0

0 − 1 + λ1
􏼢 􏼣x(t)

+
− 1 + λ3 0

− 1 − 1 + λ4
􏼢 􏼣x(t − h(t)),

(39)

where λ1, λ2, λ3, and λ4 are unknown parameters satisfying
|λ1|≤ 1.6, |λ2|≤ 0.05, |λ3|≤ 0.1, |λ4|≤ 0.3.

For given hm, according to (36) in -eorem 3, Table 3
gives corresponding MADB in the simulation. From the
comparison results, it can be seen that, for this example, this
method improves the conclusions of the existing literature.

Given the initial condition x(t) � 0.1 0.2􏼂 􏼃
T, the state

response curve of x(t) is shown in Figure 2 when the
constant of time-varying delay h(t) is 1.4723. When h(t)

takes variable 1.51 + 0.51 sin t, the state response curve of
x(t) is shown in Figure 3. It can be seen that x(t) can quickly
reach a stable state under the action of the nonlinear dis-
turbance and the obtained MADB, thus verifying the cor-
rectness of the proposed stability criterion.
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Example 3. Consider another uncertain system with interval
time-varying delays. -e system parameters are as follows:

A �
− 0.4 0

0 − 1
􏼢 􏼣,

B �
− 0.9 0

− 1 − 0.7
􏼢 􏼣,

D �
1 0

0 1
􏼢 􏼣,

Ea� � Eb �
0.2 0

0 0.2
􏼢 􏼣.

(40)

Similarly, according to (36) in -eorem 3, for given hm

and μ � any, Table 4 gives corresponding MADB in the
simulation. As can be seen from Table 4, the robust stability
theorem proposed in this paper enlarges the upper bound of

the maximum allowable delay to guarantee the stability of
the system. It has lower conservatism.

Table 1: In Example 1, MADB is simulated to be obtained for
different hm and different methods.

μ Method hm � 1 hm � 2 hm � 3

0.3

Literature [24] 2.4042 2.5870 3.4766
Literature [18] 2.4328 2.6322 ——

Literature [11] (N� 2) 2.5278 3.0744 3.9136
Literature [11] (N� 3) 2.7368 3.4836 4.2857

Literature [25] 3.16 3.50 4.32
-eorem 2 3.0796 3.9064 4.4152

Table 2: In Example 1, when μ� any, MADB is simulated to be
obtained for different hm and different methods.

Method hm � 0.3 hm � 0.5 hm � 0.8

Literature [13] (N� 2) 1.1677 1.3078 1.5333
Literature [13] (N� 4) 1.2043 1.3429 1.5633
Literature [18] 1.3531 1.4663 1.6592
Literature [26] 1.4347 1.5336 1.7140
Literature [14] 1.6837 1.8120 2.0209
Literature [27] 1.78 1.81 1.90
-eorem 1 1.9236 2.1384 2.2473

z (
t)

z1 (t)
z2 (t)

–2.5
–2

–1.5
–1

–0.5
0

0.5
1

1.5
2

2.5

2 4 6 8 10 12 140
Time (s)

Figure 1: State response curve of x(t) when hM � 3.0796.

Table 3: In Example 2, MADB is simulated to be obtained for
different hm and different methods.

Method hm � 0.2 hm � 0.4 hm � 0.6

Literature [10] (N� 2) 1.1337 1.1703 1.2123
Literature [28] (N� 2) 1.1783 1.2123 1.2527
Literature [28] (N� 4) 1.1871 1.2246 1.2686
Literature [11] (N� 2) 1.3369 1.3571 1.3817
Literature [11] (N� 3) 1.3809 1.4003 1.4216
-eorem 3 1.4241 1.4413 1.4723

x 
(t 1

)
x 

(t 2
)

–0.2

0

0.2

–0.05
0

0.05
0.1

0.15

5 10 15 20 25 300
Time (s)

5 10 15 20 25 300
Time (s)

Figure 2: State response curve of x(t) when h(t) � 1.4723.

x 
(t 1

)
x 

(t 2
)

–0.1

0

0.1

–0.2

0

0.2

5 10 15 20 25 300
Time (s)

5 10 15 20 25 300
Time (s)

Figure 3: State response curve of x(t) when
h(t) � 1.51 + 0.51 sin t.

Table 4: In Example 3, when μ� any, MADB is simulated to be
obtained for different hm and different methods.

Method hm � 0 hm � 0.4 hm � 0.8

Literature [9] 1.0571 1.1385 1.2392
Literature [10] (N� 2) 1.1030 1.1703 1.2594
Literature [11] (N� 2) 1.3213 1.3571 1.4102
Literature [11] (N� 3) 1.3634 1.4003 1.4445
-eorem 3 1.4127 1.4594 1.4987
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5. Conclusion

In this paper, we study the robust stability of a class of
uncertain systems with interval time-varying delays. A new
stability criterion based on LMI is proposed by constructing
a new LKF containing a generalized term of quadruple
integral. In order to improve the computational efficiency
and simplify the conclusion, the criterion avoids the use of
model transformation and free weight matrix definition
techniques. Instead, Wirtinger-based integral inequalities
and interactive convex combination techniques with tighter
definition techniques are adopted, which make full use of the
lower bound information of the delay and obtain a lower
conservative conclusion. Finally, numerical simulations
show that the proposed criterion enlarges the upper bound
of the maximum delay allowed to guarantee the stability of
the system and is more competitive than the existing
methods.

However, the new stability criterion proposed in this
paper mainly focuses on a class of linear systems with norm-
bounded uncertainty and interval time-varying delay. How
to get the similar conclusion for nonlinear system is another
interesting topic and the next work for us; and some related
researches are hopeful to supply reference to us [29, 30].
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Previous studies have shown that the motion intention recognition for lower limb prosthesis mainly focused on the identification
of performed gait. However, the bionic prosthesis needs to know the next movement at the beginning of a new gait, especially in
complex operation environments. In this paper, an upcoming locomotion prediction scheme via multilevel classifier fusion was
proposed for the complex operation. At first, two motion states, including steady state and transient state, were defined. Steady-
state recognition was backtracking of a completed gait, which would be used as prior knowledge of motion prediction. In steady-
state recognition, surface electromyographic (sEMG) and inertial sensors were fused to improve recognition accuracy; five typical
locomotion modes were recognized by random forest classifier with over 97.8% accuracy. )e transient state was defined as an
observation period at the initial stage of upcoming movement, in which only the sEMG signal was recorded due to the limitation
of sliding window length. LightGBM classifier was validated to outperform other methods in the accuracy and prediction time of
transient-state recognition. Finally, a simplified HMMmodel based on prior knowledge and observation result was constructed to
predict upcoming locomotion.)e results indicated that the locomotion prediction was over 91% accuracy.)e proposed scheme
implements the locomotion prediction at the initial stage of each gait and provides critical information for the gait control of lower
limb prosthesis.

1. Introduction

)e powered lower limb prosthesis, which can provide
active torque for amputees and imitate the movement of
healthy human leg better than a passive prosthesis, has
been widely studied for a decade [1–4]. For developing
powered lower limb prostheses, one major challenge is
how to recognize the current locomotion mode of am-
putee and further identify the motion intention of am-
putee under complex scenarios [5–7] so as to realize the
seamless transition of different locomotive tasks and
then control lower limb prostheses with correct pa-
rameters. Otherwise, the actual trajectory or torque of
the lower limb prostheses will deviate from expectations.
For example, the actual terrain is upstairs, but the

prostheses controller still uses the control parameters in
level walking, which will lead to discomfort for amputees
and even the risk of falling down. )erefore, it is nec-
essary to consider the suitable control method for safe
locomotion.

)erefore, several sensors, especially electromyogram
and mechanical sensors, have been widely used for loco-
motion detection. Surface electromyography (sEMG) signals
can adequately represent the action state of the corre-
sponding muscle group; many researchers used them as the
only control input to recognize human locomotion [8–12].
Huang et al. [8] used the sEMG signals of two gluteal
muscles and nine residual thigh muscles to realize the gait
phase classification. However, sEMG signals are susceptible
to skin sweat, muscle fatigue, and physical illness of subjects.
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)us, other researchers have tried to confirm that a set of
different mechanical sensors could identify locomotion
modes [13–15]. )ese mechanical sensors can be commonly
classified into two groups: kinematic sensors and kinetic
sensors. )e former included angular, velocity, acceleration,
etc. )e latter included interaction force or torque between
user and prosthesis (or environment). In [16], the sensor
system consisted of an accelerometer and a gyroscope, re-
spectively, located on the prosthetic pylon and two pressure
sensors under the prosthetic foot. In [17], three six-axis
IMUs were employed for identifying different locomotion.
Although mechanical sensors are more easily embedded in
lower limb prostheses than sEMG, they are challenging to
achieve onset prediction alone [18]. Compared to the
physical data from the prostheses or sound side leg, the
sEMG signal can directly reflect the volitional control of the
human body. A few studies have fused both mechanical
information and sEMG signals to recognize locomotion
modes. On the basis of the sEMG signals mentioned above
[8], the authors added a 6-DOF load cell mounted on the
prosthetic socket for better identifying continuous loco-
motion modes. Ai et al. [19] fused sEMG and accelerometer
signals to classify five lower limb’s motions. Additionally,
Young et al. [20] compared the contribution of sEMG
sensors and mechanical sensors embedded on powered
prostheses and found that the recognition accuracy obtained
by sEMG and inertial sensors (a six-axis inertial measure-
ment unit (IMU) located on the shank) was significantly
higher than that of other sensors. )ese results have indi-
cated that multisensor fusion can obviously improve clas-
sification accuracy; especially, sEMG sensor and inertial
sensor fusion is encouraging [21, 22]. )us, the remaining
problem is how to utilize the sensors to predict upcoming
locomotion modes, which is essential for the powered
prosthesis to actuate the artificial joints correctly.

In most previous work, the recognition of locomotion
intention was accomplished by collecting and analyzing
multisensor signals before the critical events of gait, such as
heel contact or toe off, which denote the beginning of the
stance phase or swing phase. At the same time, a lot of
pattern recognition schemes have been studied in gait
recognition. In [23], a transition period about 300–650ms
was reported before critical events for locomotion switch,
and support vector machine (SVM) was used as a classifier.
In another study [20], four 300ms windows were extracted
before critical events of the stance and swing phase, and a
dynamic Bayesian network (DBN) classification algorithm
was employed to recognize movement intention. In [24], the
authors proposed a forward predictor to identify and re-
spond to the user’s intent, built an adaptive sEMG model,
and added the label of backward estimation into forwarding
predictor, and they extracted a 300ms window of data before
a gait event for forward prediction and used DBN and linear
discriminant analysis (LDA) as forward and backward
classifiers, respectively. However, these intention recogni-
tion methods mainly focused on the recognition of the
performed gait or the transitional movement had been
occurred. In fact, when the lower limb prosthesis led by the
amputee’s residual limbmoves, whether the next phase is the

stance phase of weight acceptance of the swing phase of
lifting leg, the lower limb prosthesis should know the up-
coming movement before action. If an amputee is walking
slowly or intermittently, it is not accurate to predict the next
step based entirely on the prior gait.

In this paper, an intention prediction scheme in complex
environment via sEMG and inertial sensors fusion is pro-
posed to recognize five locomotion modes at gait initiations.
We expanded the previous studies from the following
aspects:

(1) A multilevel classifier fusion strategy that combines
prior gait information and current observation was
proposed to infer the amputee’s intent for switch
control of lower limb prostheses.

(2) )e designed prediction scheme provided decision at
the initiations of each stance phase and swing phase.

(3) Surface EMG from four thigh muscles and inertial
sensors located on thigh and shank were fused to
recognize locomotion modes. )e contribution of
each sensor in gait recognition was studied.

(4) )e pattern recognition schemes, including two
traditional algorithms and two ensemble learning
algorithms, were analyzed. Besides, several feature
extraction and reduction dimension methods are
discussed.

2. Experiments and Data Processing

2.1. Experimental Protocol. )e previous gait recognition
experiment has been conducted on the able-bodied subjects
[17, 25] or amputee subjects wearing prothesis [26–28]. In
this study, we recruited five able-bodied subjects between 20
to 50 years old, and one 31-year-old male subject with
unilateral amputations was also recruited. )e study was
conducted following the ethical approval of confidential
research involving human participants, and the protocol was
approved by the University of Electronic Science and
Technology of China, Zhongshan Institute (Project identi-
fication code is 2016A020220003).

Surface EMG signals were recorded from the key thigh
muscles: rectus femoris, lateral thigh muscle, medial thigh
muscle, and biceps femoris, which were verified to be ef-
fective for gait recognition in [1]. )e locations for electrode
placements are shown in Figure 1; the center spacing for
electrodes is about 3 cm. )e sEMG signals were collected
from all subjects with a 16-channel EMG sensor (Myomove)
and uploaded to the processing system with a sampling
frequency of 1024Hz. )e processing system filtered sEMG
signals with a comb filter and an IIR bandpass filter. )e
former was selected to offset the noise of the 50Hz band.)e
latter signals are between 10 and 500Hz.)e inertial sensors
including two nine-axis IMUs (Witmotion JY-901) were
located on the thigh and shank, respectively. Each JY-901
integrated a triaxial gyroscope, a triaxial accelerometer, and
a triaxial geomagnetic survey. With the addition of the
geomagnetic sensor, JY-901 can obtain more accurate tri-
axial posture information than the six-axis IMU by
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eliminating the accumulation error of direction angle. IMU
signals were collected at 200Hz and filtered with a dynamic
Kalman filter.

A pressure sensor detected critical events of gait. Two
pressure sensors (FlexiForce-A201) were placed, respec-
tively, on the heel and the first metatarsal of the subject’s
forefoot. )e pressure sensor information is uploaded to the
processing system through an acquisition card, and the
sampling frequency is 700Hz.

After receiving instructions and training, each subject
was asked to complete five locomotion modes at a natural,
average speed. Level walking was tested on the treadmill.
Ramp ascent and ramp descent were collected with the aid of
a treadmill. We used the treadmill to build a ramp with a
slope of about 20 degrees. All subjects were asked to walk on
these three terrains three times, one minute at a time. Stair
ascends and stair descends were tested on a 3-step staircase,
as shown in Figure 1. Each subject was asked to go up and
down the stairs 30 times. All subjects should rest for 5
minutes between different locomotion modes to avoid the
influence of muscle fatigue on the experiment and ensure the
objectivity and accuracy of the experimental data.

2.2. sEMG Signal Acquisition via Compressed Sensing.
Compressed sensing is a signal acquisition framework that
could reduce the data storage much lower than that with
conventional Nyquist sampling rate. )e reduction in data
storage or sampling rate could reduce the energy dissipation
for the battery-powered wearable sEMG sensor. Moreover,
the data deluge problem and the urgency in communication
bandwidth could be lightened as well [9].

)e work in [29] reported that the sEMG signal is sparser
in the transform domain than that in the time domain, and
the Daubechies wavelet basis can be chosen as the more
appropriate selection for the sparse basis compared with
DCT and Haar wavelet basis [30]. Under the framework of
compressed sensing, the following linear equation holds:

y � ΦΨs + n � Hs + n, (1)

where y ∈ RM×1 and s ∈ RN×1 denote the undersampled
sEMG measurement and the sparse representation of the
sEMG signal in the Daubechies wavelet basis. Note M<N is
met under compressed sensing. Φ ∈ RM×N and Ψ ∈ RN×N

stand for the Bernoulli random sampling matrix and the
Daubechies wavelet sparse basis, respectively, and
H � ΦΨ ∈ RM×N. n ∈ RM×1 represents the error term oc-
curring from measurement noise and modeling error from
sparse representation.

)e sparse representation s is solved using the hetero-
geneous Bayesian compressed sensing (HBCS) algorithm,
which has shown superior performances than orthogonal
matching pursuit (OMP), basis pursuit (BP), and Bayesian
compressed sensing (BCS) in our previous work [31–34]. In
HBCS, all the unknowns are taken as random variables and
follow certain probability distributions. Here each element
of s is considered to be iid (identically independent distri-
bution) and assumed to meet the following zero-mean
Gaussian distribution, and the reciprocal of the variance in
Gaussian distribution is then imposed by gamma distri-
bution; the two-layer hierarchical prior distribution is shown
as follows:

P(s|α) � 􏽙
N

i�1
N si|0, α− 1

i􏼐 􏼑,

P(α|a, b) � 􏽙
N

i�1
Gamma αi|a, b( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where α− 1
i is the variance of the Gaussian distribution and a

and b are the user-defined shape and scale parameters in the
Gamma distribution. )e noise n is also restricted by a two-
layer hierarchical iid distribution, which is presented as

P(n|β) � 􏽙
M

i�1
N ni|0, β− 1

i􏼐 􏼑,

P(β|c, d) � 􏽙
M

i�1
Gamma βi|c, d( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

(a) (b)

Figure 1: Experiments of different locomotion: (a) level walking; (b) stair ascend.
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where β− 1
i is the reciprocal of the noise variance and c and d

are also used to characterize the shape and scale parameters
in gamma distribution.

)e conditional distribution is also allocated with
Gaussian distribution as follows:

P(y|st; nβ) � N y|Htsn, qB
− 1

􏼐 􏼑, (4)

where B � diag(β), β � [β1, β2, . . . , βM]T. )e posterior
estimation is obtained by seeking for the maximum-a-
posterior (MAP) solution, which is expressed as

P(s|y, α, β) �
P(y|s; β)P(s|α)

P(y, α, β)
,

�
P(y|s; β)P(s|α)

􏽒 P(y|s; β)P(s|α)ds
,

� (2π)
− (M/2)

|Σ|− (1/2) exp −
1
2

􏼒 􏼓(s − 􏽢s)
TΣ− 1

(s − 􏽢s)􏼔 􏼕,

(5)

where 􏽢s and Σ are represented as follows:

􏽢s � ΣHT
By,

Σ � H
T
BH + A􏽨 􏽩

− 1
,

(6)

where A � diag(α), α � [α1, α2, . . . , αN]T and B � diag(β),
β � [β1, β2, . . . , βM]T. For the hyperparameters α and β, they
are learned from the measured sEMG signal by performing a
type-II maximum likelihood (ML) or evidence procedure.
)e update formulas are expressed as follows:

αi �
ci + 2(a − 1)

􏽢s
2
i + 2b

,

βi �
1 + 2(c − 1)

yi − Hi􏽢s( 􏼁
2

+ tr ΣHT
i Hi􏼐 􏼑 + 2 d

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where ci � 1 − αiΣii with Σii representing the ith diagonal
element of Σ, 􏽢si is the ith element of 􏽢s, and Hi is the ith row of
H. Detailed derivation of the above Bayesian inference
procedure has been omitted here (the readers can refer to
[31, 35, 36] and the references therein).

After the sparse representation 􏽢s is reconstructed, the
estimated sEMG signal x is then obtained via the following
transform.

x � Ψ􏽢s. (8)

2.3. Data Acquisition. In this paper, we defined two states
for collecting sensor data: steady state and transient state.
)e steady state referred to a completely performed gait.
)e transient state was a short transitional period when
subjects began new gait. )e division of the states depended
on the identification of the gait phase by pressure signal, as
shown in Figure 2(a). )e stance phase began when the foot
touched the ground (i.e., heel contact) and terminated at
the foot off the ground (i.e., toe off). )e swing phase was

from toe off to heel contact. Two different frames of the
sliding window were designed to process the steady-state
and the transient-state information separately. For steady-
state recognition, i.e., state backtracking, which was used to
identify performed gaits, a sliding window covering a full
stride cycle was designed.)e steady state was from the heel
contact to next heel contact or from the toe off to next toe
off, as shown in Figure 2(b), in which, sEMG and IMU
sensors were fused to analyze performed locomotion mode.
For transient state, the shorter the time of the data ac-
quisition window, the better the smooth control of lower
limb prosthesis. )erefore, a 50ms small sliding window
with only sEMG signal recorded was designed at every
initial of the heel contact and toe off. )ree reasons for
choosing 50ms sEMG signal were (1) the sEMG signal
generally precedes mechanical signal at responding to
movement onset; (2) it takes about 20 ∼ 50 ms for human
muscles to respond to an action potential; and (3) due to
the limitation of IMU signal acquisition frequency, only
several data could be recorded within 50ms, which might
lead to confusion for identification. During the transient
state, the control system of the powered prosthesis also
used the previous gait controller, which means that the
response of the prothesis was at least 50ms slower than that
of the healthy leg. )is delay time is relatively short
compared with the whole cycle, which will not have an
adverse effect on the walking status of the powered
prothesis but can ensure the accuracy of the next state
control.

2.4. Feature Extraction

2.4.1. Feature Extraction of sEMG Signals. To take into
account the timeliness of signal processing, the time-domain
feature extraction method for sEMG was considered in this
work [37]. In preliminary work [12], over 20 features of
sEMG signals were quantitatively compared, and the fol-
lowing enumerated features were optimal time-domain
feature groups for gait recognition.

(i) Slope sign change (SSC).
SSC characterizes the frequency information of
sEMG signals:

SSC � 􏽘
N− 1

i�2
f xi − xi+1( 􏼁∗ xi − xi− 1( 􏼁( 􏼁, (9)

where f(x) �
1, if x>ThSSC
0, if x≤ThSSC

􏼨 . We set the
threshold ThSSC to 40mV.

(ii) Willison amplitude (WAMP).
WAMP refers to the number of times that the dif-
ference of sEMG signal amplitude between adjacent
two points exceeds a predetermined threshold and is
related to the level of muscle contraction.

WAMP � 􏽘
N

i�1
sgn xi+1 − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ThWAMP􏼐 􏼑. (10)
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)e parameter ThWAMP is optimized by experi-
mental comparison, and we obtain the optimized
ThWAMP value of 50mV.

(iii) Waveform length (WL).
Waveform length is the cumulative length of the
waveform at a given time.

WL � 􏽘
N− 1

i�1
xi+1 − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (11)

(iv) Logarithmic variance (LogVAR).
Variance is the average of the deviation square of the
variable. However, the average of the sEMG signal is
close to zero. )erefore, the variance of sEMG is
generally replaced by the following formula:

VAR �
1

N − 1
􏽘

N

i�1
x
2
i . (12)

In order to make the variance have better normal
distribution characteristics, the logarithm of the vari-
ance was extracted as a new feature, which was defined
as LogVAR.

2.4.2. Feature Extraction of IMU Signals. A multifeature
fusion method is proposed to extract the feature vectors of
IMU signals. )is method can express the motion charac-
teristics of lower limbs more comprehensively and effec-
tively and provide a guarantee for the better training
classification model.

(i) Discrete wavelet transform (DWT).
DWTwas used to decompose the filtered IMUs data.
After wavelet decomposition, the high- and low-
frequency coefficients were extracted in time domain
to obtain more comprehensive and clearer pattern
information and to eliminate the influence of noise
further. Wavelet decomposition decomposed the
IMU signal into high-frequency details and low-
frequency approximation. For gait information, the
low-frequency component is quite important and
contains the main characteristics of the signal, while
the high-frequency component gives the details or
differences of the signal.)e approximate valueAj[n]

(i.e., low frequency part) and detail part Dj[n] (i.e.,

high frequency part) of the decomposed original
signal are formulated as

Aj+1[n] � 􏽘
k

Aj[n]h(2n − k), Dj+1[n] � 􏽘
k

Aj[n]g(2n − k),

(13)

where h(·) means scale function coefficient, g(·)

presents wavelet function coefficient, and j repre-
sents the scale of decomposition.
By experimental comparison, Daubechies 9 was
selected to decompose acceleration and angular
velocity signals and extract the characteristic values
of wavelet transform coefficients. Furthermore, the
time-domain features of the high- and low-fre-
quency coefficients were extracted, including abso-
lute mean (MAV) and standard deviation (STD).

(ii) Cross-correlation coefficient.
)e cross-correlation function can extract and an-
alyze the correlation characteristics of different pe-
riodic signals or quasiperiodic signals [38, 39].
)erefore, in the human locomotion pattern rec-
ognition, the characteristic parameters of different
locomotion modes can be represented by the cor-
relation characteristics of different inertial signals.
)e cross-correlation function describes the corre-
lation between two random signals X(t), Y(t) at any
time. It is given by

RXY �
(1/n − 1) 􏽐

n
i�1 Xi − X( 􏼁 Yi − Y( 􏼁

�������������

􏽐
n
i�1 Xi − X( 􏼁

2
􏽱 ������������

􏽐
n
i�1 Yi − Y( 􏼁

2
􏽱 , (14)

where X and Y denote the average value of a sequence
frame and n is the number of samples. We calculated
the correlation coefficients of the acceleration and
angular velocity between the thigh and shank as the
features.

2.5. Feature Reduction Dimension. )e feature extraction
from the sEGM and IMU signals produced the data of 68
dimensions. To improve the characterization ability of
features, we obtain more valuable information and reduce
the computational cost of the classification algorithm, and a
lower dimensionality should be acquired by dimension

Toe offForefoot
(first metatarsal)

Heel contact
Heel

Stance
phase

Swing
phase

(a)

Toe off Toe off

Stance phase Swing phase Stance phase

Heel contact Heel contact

Rectus femoris
sEMG signal

50ms 50ms 50ms

Transient stateSteady state
Steady state

(b)

Figure 2: Data processing methods. (a) Gait phase detection by pressure sensors. (b) Sliding window scheme and definition.
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reduction. In this paper, two common dimension reduction
approaches were considered: principal component analysis
(PCA) and linear discriminant analysis (LDA). PCA is the
most classical and widely used dimension reduction algo-
rithm in information fusion. )e basic idea of PCA is to
retain the main features in the original data (the covariance
structure of the data) and map the data from the high-di-
mensional feature space to the low-dimensional feature
space by linear projection. LDA is a supervised linear di-
mensionality reduction method, which considers the labels
of classes and facilitates the discrimination of the data after
dimensionality reduction. Both methods were proved to be
effective in biometric pattern recognition [40–42].

3. Intention Recognition and Locomotion
Prediction Method

Locomotion prediction for the powered lower prosthesis
refers to make accurate decisions of upcoming human
motion based on sensor information. In this paper, a
multilevel classifier fusion scheme was proposed to predict
the motion intention as shown in Figure 3. )e locomotion
prediction system combined the steady-state recognition
with transient-state recognition. )e former is the back-
tracking of completed gait, and the latter is a preliminary
identification of the upcoming gait. )en, a HMM model as
a decision fusion model was designed to fuse the recognition
of the steady state and transient state, the result of which is
the prediction of locomotion mode.

3.1. Steady-State Recognition. In order to improve the rec-
ognition accuracy, the recognizer of the steady state was
accomplished based on the fusion of sEMG and inertial
signals. A variety of classifiers have been approached for
intent pattern recognition. In this paper, we evaluated the
performance of four classification algorithms, which include
support vector machine (SVM), quadratic discriminant
analysis (QDA), light gradient boosting machine
(LightGBM), and random forest (RF).)e SVM is a machine
learning algorithm based on the statistical learning theory.
)e classification performance of SVM has been proved to
be better than that of LDA in sEMG pattern recognition for
prosthetic legs [23]. QDA is a variant of LDA, allowing
nonlinear separation of data with small computation and
high efficiency. )e QDA classification had higher classifi-
cation accuracies than LDA in classifying intention of the
knee motion. [43]. LightGBM and RF are both ensemble
learning algorithms that train different classifiers (weak
classifiers) and then assemble these weak classifiers to form a
more reliable final classifier (robust classifier). Compared to
the single model learning method, ensemble learning al-
gorithms are more likely to obtain high accuracy and
generalization. LightGBM is a distributed framework of the
gradient boosting decision (GBDT) tree algorithm. It was
proposed by the Microsoft team’s Guolin Ke et al. in 2017 to
solve the problem of GBDTcomputing efficiency. Compared
with other traditional classifiers, the LightGBM classifier
performed well in the accuracy and prediction time of gait

phase recognition based on sEMG [44]. Random forest is
also a conventional classification algorithm with a decision
tree as the base learner. Random forest has a strong anti-
interference ability and is more suitable for processing high-
dimensional data than SVM. Random forest has been val-
idated to recognize five types of locomotion of lower limbs
and obtain better accuracy than SVM.

3.2. Transient-State Recognition. Transient state is defined as
the observation period for a motion switch, during which the
lower limb prosthesis detects the upcoming movement.
Because of the real-time requirement, a challenge was put
forward for recognition accuracy and time. If the recognition
time is too long, the prosthetic locomotion mode will be
inconsistent with the actual walking terrain, which will lead
to the amputee walking unnaturally. In the four classification
algorithms mentioned above, QDA and LGBM have the
advantage of fast computation speed in a single classification
model and ensemble learning model, respectively. All four
classifiers were compared and analyzed for transient-state
recognition.

3.3. LocomotionPrediction. Locomotion switch is a response
on account of the actual walking terrain, while pedestrian
facilities of roads or buildings have an extreme regularity.
)e transition of various terrain is not random. Generally,
the ends of a flight of stairs are usually flat, not ramps.
Similarly, the ends of a ramp are usually flat, too, not stairs.
)erefore, there is a certain probability of human gait switch,
as shown in Table 1. For example, the current gait is level
walking (LW), and then the next gait is level walking (LW),
ramp ascend (RA), ramp descend (RD), stair ascend (SA), or
stair descend (SD) with a probability of 20% each. If the prior
gait is SA, then the next gait is LWor SA, with the probability
of 50% each.

In this way, the recognition of gait intention is trans-
formed into a probabilistic model construction problem.)e
next gait state recognition process can be described as a
typically hidden Markov model (HMM) with strong prior
knowledge. HMM is a probability model about time se-
quence. For human walking, a transition from one gait to
another gait is a hidden process that cannot be directly
observed, but the observations in transient state can be used
to infer the gait transition. In this paper, the first-order
HMM was utilized to fuse the backtracking gait information
and the transient-state information to achieve the final lo-
comotion prediction.

4. Results and Discussion

4.1. Steady-State Recognition Performance. Four classifiers
with PCA and LDA dimensional reduction were conducted
based on sEGM and IMU fusion. Recognition evaluation
was performed using 10-fold cross validation. A Bayesian
method based on tree-structured Parzen estimator (TPE)
was utilized to solve the hyperparameter optimization
problem for RF and LightGBM classifiers. SVM and QDA
parameters were optimized by the grid search method.
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Different subject groups, including all subjects and subjects
except amputee (i.e., only able-bodied subjects), were
compared. )e experimental results are shown in Figure 4.
In view of the dimensionality reduction algorithm, although
different methods had different effects on the classifiers,
LDA was more favorable for the accuracy of the classifier
than PCA. RF algorithm represented good fusion perfor-
mance for both dimensional-reduction methods. After LDA
dimensional reduction, the classification accuracy of four
classifiers was all over 99% for 5 able-bodied subjects. When
the data from the amputee subject were added, the accuracy
dropped slightly by 2%, but it was also over 97.4%. )at
means there was a discrepancy in walking posture between a
healthy person and a lower limb amputee. In general,
LDA+RF was the optimal combination with the highest
classification accuracy, 99.1% for five able-bodied subjects

and 97.8% for all six subjects. It is worth noting that all the
following results are for all subjects.

)e contribution of different sensors or sensor combi-
nations in gait recognition of multisource information
perception was analyzed. )e IMU and sEMG signals were
compared and analyzed, respectively. )e result in terms of
misclassification for all subjects was reported, as shown in
Figure 5. For the steady-state recognition, the effect of using
the IMU sensor alone was better than that of using the sEMG
signal alone. )e recognition accuracy of using IMUs on the
thigh or shank alone was the range from 81.3% to 85%; after
the combination of the two IMUs, the recognition rate was
greatly improved to above 95%. It could be concluded that
for improving the identification of lower limb movement
identification, it was very significant to detect both the thigh
and shank mechanical signals at the same time due to the
difference in the movement of them. Furthermore, after the
sEMG signal was combined with two IMU signals, the
recognition rate continued to be improved by 1 ∼ 2%. )at
means that the multisensor fusion is beneficial and useful for
gait recognition.

Actually, different sensor signals had different effects on
recognition algorithms. When only using the sEMG signal,
the error rate of LDA+LGBM and LDA+RF was lower than
the others. However, whatever sensor signals were used, the
LDA+RF method had the lowest classification error. From
the aforementioned results, there was an essential correla-
tion between the selection of human gait recognition
methods and the sensors used in the detection.

)e confusion matrix from four classifiers was derived
from analyzing the specific situation of the misclassification.
It can be seen from Figure 6 that the accuracy of four
classifiers in distinguishing five locomotion modes was in
the range of 95 ∼ 100%.)emisclassification of all classifiers
mainly occurred between the level walking and ramp ascend.

4.2. Transient-State Recognition Performance. )e 50ms
sEMG signals of 4 channels were collected from the heel
contact (i.e., beginning of stance phase) and toe off (i.e.,
beginning of swing phase) moment, respectively. )e fea-
tures of SSC, WAMP, WL, and LogVAR were extracted for
classification recognition. After repeated verification, the
feature dimensionality reduction could not significantly
improve the classification accuracy. Consequently, classifiers
were directly trained by utilizing the features data, which

Table 1: Transition probability between locomotion modes.

LW RA RD SA SD
LW 20 20 20 20 20
RA 50 50 0 0 0
RD 50 0 50 0 0
SA 50 0 0 50 0
SD 50 0 0 0 50
Note. LW, level walking; RA, ramp ascend; RD, ramp descend; SA, stair
ascend; SD, stair descend.
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would obviously shorten the data processing time. Using 10-
fold cross validation, the average prediction accuracy and
prediction time are shown in Table 2. Whether in the
preswing or the prestance, the recognition accuracy of the
LightGBM algorithm was higher than that of other classi-
fiers. Even though the QDA algorithm had the shortest
prediction time, the accuracy was the lowest. On account of
gradient-based one-side sampling (GOSS) and exclusive
feature bundling (EFB) techniques, LightGBM has a faster
speed without lowering its accuracy. )e average classifi-
cation accuracy of different types of locomotion in transient
state is shown in Figures 7 and 8. On the whole, the ramp
ascend movement can be most accurately detected. When
moving up or down the stairs, the sEMG signal at the
prestance phase could be distinguished more easily, prob-
ably because the muscle stretching and contraction are more
obvious in this stage.

Furthermore, we take the confusionmatrix of LightGBM
recognition in preswing as an example to analyze the dis-
tribution of misidentification. )e confusion matrix is de-
scribed in Table 3. It can be seen that stair descent movement
had the highest classification error in the preswing phase,
23% of which were misclassified as level walking, 3% as ramp
ascend, and 8% as stair ascend. Compared with the prestance
phase, it is much more difficult to detect stair descend
movement at the preswing.

4.3. Results and Deficiencies of Locomotion Prediction. A
simplified HMM model was constructed combining the
prior knowledge of steady-state and transient-state obser-
vation, and it was defined as follows:

λ � (S, O,Π, A, B), (15)

where S denotes the set of hidden states, which refers to the
five states of LW, RA, RD, SA, and SD. O is observation
sequence, which is obtained from transient-state classifier.
Π � [π1, π2, π3, π4, π5], where πi represents the initial
probability of the ith (1-LW, 2-RA, 3-RD, 4-SA, 5-SD) state.
πi is set to 0.2 at the beginning of a new cycle, but reset
according to steady-state recognition in continuous gaits.
A � [aij]1≤ i,j≤ 5 is the state transition probability matrix
which can be generated from Table 1. B � [bij]1≤ i,j≤ 5 is the
state observation probability matrix which can be inferred
from Table 3. Next, we use Viterbi algorithm to solve the
predictive problem of HMM. In this paper, the locomotion
prediction only depends on the prior state and transient
state, so the algorithm is simplified as the following two
steps.

Step 1:

δ1(i) � πibij. (16)

Step 2:

δ2(i) � max1≤j≤5 δ1aji􏽨 􏽩bij,

ψ � argmax1≤j≤5 δ1(j)aji􏽨 􏽩,
(17)

where i denotes the number of states, j is the obser-
vation state, δ(i) represents the probability of ith lo-
comotion mode, and ψ refers to the upcoming gait with
a value of 1, 2, 3, 4, 5, which is the final result for lo-
comotion prediction.
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Figure 5: Contributions of different sensors and sensor combinations. Error bars represent ± SD.
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By observing the inconsistency between the observed
value and the predicted value, we can judge whether the
observed value is wrong or not. Combined with the results of
steady gait analysis, this method can effectively reduce the
misclassification of Table 3. )e final predictive accuracy is
shown in Table 4, and it improves the accuracy of transient-
state recognition from 84.2% to 91.2%.

In addition, because the transition probabilities between
level walking to other locomotion modes are all equal to
20%, the prediction accuracy rate for level walking seems not
as useful as the other modes. Similarly, the probability of
other movements switching to level walking is 50%; if the
movement is misclassified as level walking, the error cannot

be corrected by using this method. )e above two cases are
inherent deficiencies of this method.
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Figure 6: Confusion matrix for steady-state recognition from different classifiers. (a) LDA+ SVM confusion matrix estimation. (b)
LDA+QDA confusion matrix estimation. (c) LDA+LGBM confusion matrix estimation. (d) LDA+RF confusion matrix estimation.

Table 2: Average accuracy and consumption time of transient-state
recognition (unit: %(ms)).

SVM QDA LGBM RF
Preswing 72.8 (42.3) 49.6 (1.0) 85.1 (14.3) 83.9 (39.7)
Prestance 75.4 (25.6) 49.4 (0.7) 83.5 (11.6) 82.5 (34.1)
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Figure 7: Transient-state recognition at preswing phase.
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5. Conclusions

In this paper, a multilevel classifier fusion strategy based on
steady gait recognition and transient-state recognition is
proposed to realize human motion intention and prediction
under complex environment. )e steady-state recognition
based on inertial and sEMG fusion as prior gait intention
recognition, as well as the LDA+RF classifier, produced
over 97.8% accuracy. )e transient-state recognition only
based on 50ms sEMG signal as upcoming movement ob-
servation and LightGBM classifier outperformed other
traditional methods in the accuracy and prediction time,
85.1% accuracy/14.3ms in the prestance phase and 83.5%
accuracy/11.6ms in the preswing phase. A simplified HMM
model that combined prior knowledge and observation was
constructed to predict upcoming locomotion with over 91%
accuracy. )e prediction time could be guaranteed within
70ms, which ensures that the lower limb prosthesis can
switch locomotion in time. )e method proposed in this

paper can be used in the control of lower limb prosthesis in
the future to improve the movement coordination of am-
putees. In future work, we will consider more application
scenarios combined with multisensor information fusion
technology.
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,is paper investigates the stabilization and trajectory tracking problem of wheeled mobile robot with a ceiling-mounted camera
in complex environment. First, an adaptive visual servoing controller is proposed based on the uncalibrated kinematic model due
to the complex operation environment. ,en, an adaptive controller is derived to provide a solution of uncertain dynamic control
for a wheeled mobile robot subject to parametric uncertainties. Furthermore, the proposed controllers can be applied to a more
general situation where the parallelism requirement between the image plane and operation plane is no more needed. ,e
overparameterization of regressor matrices is avoided by exploring the structure of the camera-robot system, and thus, the
computational complexity of the controller can be simplified.,e Lyapunovmethod is employed to testify the stability of a closed-
loop system. Finally, simulation results are presented to demonstrate the performance of the suggested control.

1. Introduction

In recent decades, the wheeled mobile robots (WMRs) have
received increasing attention due to their promising ap-
plications in transportation, health care, security, and so on,
which promotes the research of high-accuracy tracking
control and stability analysis of the WMRs [1–4]. Particu-
larly, WMR belongs to the nonholonomic mechanical sys-
tem which is unable to be stabilized at one equilibrium by
means of continuous and static state feedback controller
[5–7], leading to the great complexity of the study about
WMRs. A significant direction of the motion control of
WMR is to employ various kinds of sensors in a closed-loop
controller. ,e visual sensor, one of the typical noncontact
sensors, has particular advantages such as abundant visual
information and high efficiency; hence, visual servoing
control of WMR has become a vigorous research field
worldwide.

Numerous scientific achievements have been reported
on visual servoing and vision-based manipulations [8, 9].
Just like the robot manipulators, the vision system in a
mobile robot can be formed by two kinds of configurations,

namely, eye-in-hand configuration [10, 11] and fixed-
camera configuration [12, 13], respectively. For the first
category configuration, the camera is mounted on the end-
effecter. In contrast, the camera is called a static-camera or
fixed-camera configuration when the camera is located on
the ceiling. Till now, there has been a plethora of prominent
literature concerning the visual servoing of nonholonomic
mobile robots. To mention a few, in [14], position-based
visual servoing (PBVS) was employed for visual tracking
between a WMR and a multi-DOF crane. In [15], a visual
servoing scheme was presented for a nonholonomic mobile
robot to combine the merits of PBVS and image-based visual
servoing (IBVS). In [16], a novel strategy was proposed for
visual servoing of a mobile robot and the difficult issue of the
automatic extrinsic calibration was addressed. It should be
noted that the above-mentioned works require the camera
mounted on the end-effector to be tediously calibrated
beforehand. Unfortunately, the controllers are very sensitive
to camera calibration errors which may give rise to reduced
accuracy. To obviate this limitation, the uncalibrated camera
system has emerged as a valid tool for practical systems. In
[17], two independent uncalibrated cameras were used to
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accomplish person tracking for a vision-based mobile robot
subject to nonholonomic constraint. ,e authors in [18]
addressed a visual servo regulation approach which can
work well without the perfectly calibrated camera. To deal
with the imperfect calibration of the camera, the visual
servoing of nonholonomic mobile robots was proposed in
[19], considering both unknown extrinsic parameters and
unknown depth from the camera to the motion plane. In
[20], without calibrating the camera, the eye-in-hand visual
trajectory tracking control strategy was constructed to en-
sure that the WMR is able to track the desired trajectory.

,e aforesaid papers mainly discuss the visual servoing
of nonholonomic mobile robots with eye-in-hand config-
uration. ,e fixed-camera configuration has the global sight
and it enables the camera system to keep the observed object
always in the field of view. ,erefore, many researchers also
devote themselves to the solutions of a WMR with the fixed
uncalibrated camera. For instance, in [21], the unified
tracking and regulation WMR visual servoing control was
studied and the state information can be utilized to for-
mulate the WMR kinematic model. In [22], a monocular
camera with a fixed position and orientation was used to
track the desired trajectory for a WMR and the controller
does not require the camera to be mounted. Taking the
limited velocity of a WMR into account, the control scheme
for tracking a moving target by a WMR was presented in
[23]. Despite the significant progress of visual servoing with
the fixed uncalibrated camera, the adaptability of these
controllers is unsatisfactory since the camera plane is always
required to be parallel to the motion plane of the robots. It
means that the controllers in [21–23] are no longer effective
when the camera is fixed at a general orientation on the
ceiling. To overcome this drawback, the authors in [24, 25]
proposed the visual servoing of a mobile robot without the
parallelism requirement. By employing an adaptive image-
based visual servoing approach, the camera image plane and
themotion plane ofWMRs are free from position constraint.
However, all these methods suffer from the over-
parameterization in the process of the decoupled linear
transformation. In addition, the previous controllers are
developed via a kinematics-based model and the nonlinear
dynamics are not taken into consideration in controller
design.

Dynamic model-based control methods [26–29] reflect
the motion of real mobile robots with significant dynamics
characterized by mass and inertia as well as friction, which
are otherwise not considered in kinematics-based model
control. ,e nonlinear dynamics of the mobile robot usually
contain uncertain and time-varying parameters. Conse-
quently, the nonlinear dynamic controllers to deal with
unmodeled robot dynamics diverse further research. Con-
trol methodologies such as adaptive control technique [6],
sliding mode control technique [27], and neural network
control technique [28] have been developed on dynamic
model with uncertain parameters of mobile robots. By far,
visual servoing control for mobile robots at the dynamic
level can be found in [8, 30–32]. In [32], position/orientation
tracking control of WMRs via an uncalibrated camera was
considered and the adaptive controller was designed to

compensate for the dynamic and the camera system un-
certainties. It is noteworthy that the preceding studies are
confined to visual servoing of mobile robots based on dy-
namic model, and these methods are invalid in a more
general situation where the uncalibrated camera is fixed at an
arbitrary position. Additionally, overparameterization limits
the applicability of these controllers to a great extent.

In this paper, the stabilization and trajectory tracking
problems of a wheeled mobile robot in complex environ-
ments are studied. ,e main contributions of this paper are
threefold:

(1) Two visual servoing controllers are proposed to
stabilize a wheeled mobile robot with a ceiling-
mounted camera and the desired trajectory tracking
can be realized. First, an adaptive visual servoing
controller is proposed based on the kinematic model.
,en, an adaptive controller is derived to provide a
solution of uncertain dynamic wheeled mobile robot
subject to parametric uncertainties related to the
camera system.

(2) An uncalibrated visual servoing control strategy is
proposed to realize trajectory tracking of a WMR,
whose major superiority lies in the avoidance of both
the requirement that the camera plane must be
parallel to the motion plane of the robots and the
overparameterization as in [24, 25]. Such a solution
allows the controllers to be applied in a more general
situation with a simpler structure and higher
efficiency.

(3) In comparison with the existing works for visual
servoing mobile robot control in [19, 33], the camera
parameters, including the intrinsic and extrinsic
parameters, are unnecessary to be well calibrated,
and the tracking control can be ensured in the
presence of uncertain dynamics.

2. Preliminaries and System Descriptions

,roughout this paper, a typical setup for the visually
servoed wheeled mobile robot is considered, as shown in
Figure 1, where the camera is mounted on the ceiling to
observe the movement of feature point labeled on the mobile
robot. Let ObXbYbZb be the base coordinate frame,
OcXcYcZc be the camera coordinate frame, and
OmXmYmZm be the mobile robot coordinate frame, re-
spectively. Furthermore, let Om be the center of mass of
wheeled mobile robot, P be the feature point, and d be the
distance from Om to P along the positive direction of axis
Xm. Without loss of generality, it is assumed that the robot
moves in a specific plane. Note that both the image-based
kinematic and dynamic control are fully considered in this
paper.

2.1. Kinematics Model of Nonholonomic Mobile Robot in
Task Space. Let us firstly review the kinematics model of a
mobile robot. Denote the task-space position of wheeled
mobile robot with respect to the base coordinate frame by
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[xB, 0]T � [xb, yb, 0]T and the orientation by θ, whose for-
ward rotation direction is set to counterclockwise from axis
Xb. ,en, the kinematic model of the mobile robot can be
written as [32, 34]

_xB �
_xb

_yb

􏼢 􏼣 �
] cos θ

] sin θ
􏼢 􏼣 (1)

θ
.

� ω, (2)

where ] and ω denote the linear velocity and angular velocity
of wheeled mobile robot in task space, respectively. From
[32], the nonholonomic constraint of wheeled mobile robot
can be formulated as follows:

_xb sin θ − _yb cos θ � 0. (3)

,is nonholonomic constraint indicates that the velocity
along the connected direction between the left and right
driving wheels is restricted to be zero; that is, the wheeled
mobile robot will not slip during task execution. Combining
the definition of θ and mobile robot kinematics, the task-
space position of P with respect to the base coordinate frame
can be described as [24]

x

0
􏼢 􏼣 �

xp

yp

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

xb + d cos θ

yb + d sin θ

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

Differentiating (4) with respect to time gives rise to

_x �
cos θ −d sin θ

sin θ d cos θ
􏼢 􏼣

]

ω
􏼢 􏼣. (5)

2.2. Transformation from Task Space to Image Space. Let
y ∈ R2 be the position of feature point P on the image
plane. Via the perspective projection model [8, 35], the
mapping relation of P from task space to image space is
given by

Y

1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

1
z

D

x

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

where z is the depth information of feature point,
D � ΩT ∈ R3×4 is the so-called perspective projection matrix
(see [8]), T ∈ R4×4 denotes the homogenous transformation
matrix from the base frame to camera frame, and Ω ∈ R3×4

denotes the internal transformation matrix of camera. It
should be noted that Ω and T depend on the intrinsic and
extrinsic parameters, respectively. In addition, the depth
information is defined as

z � D
T
3

x

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (7)

where DT
3 denotes the 3rd row of matrix D. Differentiating

(6) and utilizing the definition of depth, we can obtain

_y �
1
z

D2×2 − yD
T

3􏼒 􏼓 _x

�
1
z

D2×2 − yD
T

3􏼒 􏼓

cos θ −d sin θ

sin θ d cos θ
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

􏽼√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√􏽽
N(y,θ)

]

ω
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

􏽼√􏽻􏽺√􏽽
τK

,
(8)

where τK can be interpreted as the kinematic control input
and D � [D

T

2×2, D3]
T ∈ R3×2 is the left 3 × 2 submatrix of D.

Note that N(y, θ) ∈ R2×1 depends on both the intrinsic and
extrinsic parameters of the visual model. In addition,
N(y, θ) is called the depth-independent interaction matrix
since the depth information z is separated. By exploiting the
structure of N(y, θ), we can further obtain

N(y, θ) � D2×2 − yD
T

3􏼒 􏼓
cos θ −d sin θ

sin θ d cos θ
􏼢 􏼣

� D2×2
cos θ −d sin θ

sin θ d cos θ
􏼢 􏼣

􏽼√√√√√√√√√√􏽻􏽺√√√√√√√√√√􏽽
Na(θ)

−y D
T

3
cos θ −d sin θ

sin θ d cos θ
􏼢 􏼣

􏽼√√√√√√√√√􏽻􏽺√√√√√√√√√􏽽
Nb(θ)

.

(9)

Similarly, the time differential of depth information z

can be written as

_z � D
T

3 _x � D
T

3
cos θ −d sin θ

sin θ d cos θ
􏼢 􏼣

􏽼√√√√√√√√√􏽻􏽺√√√√√√√√√􏽽
Nb(θ)

τK.
(10)

,e linearization properties, which are important to
simplify the control design, are given as follows [34, 35].

Property 1. ,e products of Na(θ)ζ and ΞNb(θ)ζ can be
linearly decomposed and recombined as

Na(θ)ζ � EK,a(θ, ζ)ϕk,a, (11)

ΞNb(θ)ζ � EK,b(θ, ζ, ξ)ϕk,b, (12)

where ζ ∈ R2×1 is a constant vector, Ξ � diag(ξ) ∈ R2×2 is a
diagonal matrix with ξ � [ξ1, ξ2]

T, ϕk,a ∈ Re1×1 and
ϕk,b ∈ Re2×1 are visual model parameter vector, and
EK,a(θ, ζ) ∈ R2×e1 and EKb(θ, ζ, ξ) ∈ R2×e2 are the regressor
matrices without depending on the parameter vectors ϕk,a

and ϕk,b. Specifically, by observing (7), (9), and (10), it can be
further obtained as follows:

_zξ � ΞNb(θ)τK � EK,b θ, τK, ξ( 􏼁ϕk,b, (13)

zξ � EK,b(θ, x, ξ)ϕk,b, (14)

where EKb(θ, x, ζ) ∈ R2×e2 is the depth regressor matrix.
Note that the vector ϕk,b should involve all the depth pa-
rameters. By employing (9), (11), and (12), we have

N(y, θ)ζ � EK,a(θ, ζ)ϕk,a + EK,b(θ, ζ, −y)ϕk,b. (15)
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Remark 1. In this paper, parameter uncertainties of visual
servoing robot system are addressed, which means that the
real parameter values ϕk,a and ϕk,b in (11)–(15) are unknown
in the control design. Moreover, the image depth is not
required to be consistent during robot operation as in
[25, 36]; that is, the fixed-camera image plane can be not
parallel to the operation plane, where a more realistic sce-
nario is considered in both kinematic and dynamic control.
In addition, the distance d between the feature point and the
origin of the coordinate system OmXmYmZm is assumed to
be uncalibrated, which, together with the above parameter
uncertainties, imposes great complexity and challenge in
visual tracking control.

,roughout this paper, the following assumptions hold.

Assumption 1. ,e feature point P can always be detected
throughout the entire robot workspace such that the image
position is continuously available. Moreover, the orientation
θ of mobile robot can be measured by the encoders or other
optical sensors mounted on the actuators.

2.3. Dynamics Model of Nonholonomic Mobile Robot. ,e
dynamic behavior of wheeled mobile robot can be expressed
by the Euler-Lagrangian equation as follows [6, 37]:

M(θ)€q + V(θ, _θ ) _q + G � B(θ)τD + A
T
(θ)λ, (16)

where q � [xb, yb, θ]T ∈ R3×1,M(θ) ∈ R3×3 is the symmetric
and positive-definite inertia matrix, V(θ, θ

·

) ∈ R3×3 is the
Coriolis and centrifugal matrix, G ∈ R3×1 denotes the
gravitational force, B(θ) ∈ R3×2 denotes the input trans-
formation matrix, τD ∈ R2×1 represents the dynamic input
torque, A(θ) ∈ R1×3 is the so-called constraint vector with λ
being the constraint force, and the constraint form can be
further represented as

A(θ) _q � 0. (17)

It must be noted that matrices M(θ), V(θ, θ
.

), G, B(θ),
and A(θ) do not depend on the actual position of xb and yb

(more details of the robotic dynamics model can be referred
to [37]). Based on the kinematics (1) and (2), the following
holds:

_q �

cos θ 0

sin θ 0

0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽼√√√√􏽻􏽺√√√√􏽽
S(θ)

τK.
(18)

Differentiating both sides of (18) and then substituting
into the robot dynamics (16) and premultiplying both sides
by ST(θ), we have

M(θ) _τK + V(θ, θ
.

)τK + G(θ) � B(θ)τD, (19)

where (17) is utilized in the process of formula simplification
and M(θ) � ST(θ)M(θ)S(θ), V(θ, θ

.

) � ST(θ)(M(θ) _S(θ) +

V(θ, θ
.

)S(θ)), G(θ) � ST(θ)G(θ), and B(θ) � ST(θ)B(θ),
respectively. To facilitate the control scheme, the dynamics
properties of WMR are employed [37].

Property 2. ,e inertia matrix M(θ) is symmetric and
positive definite, which also satisfies

μ1‖θ‖
2 ≤ θT

M(θ)θ≤ μ2‖θ‖
2
, (20)

where μ1 and μ2 are positive constants and ‖ · ‖ denotes the
standard Euclidean norm.

Property 3. ,e matrix _M(θ) − 2V(θ, θ
.

) is skew-symmetric
such that

ℵT
[ _M(θ) − 2V(θ, θ

.

)]ℵ � 0, (21)

with ℵ ∈ R2×1 being a constant vector.

Property 4. ,e dynamic equation (19) can be linearly
restructured as

M(θ) _ρ + V(θ, θ
.

)ρ + G(θ) � ED(θ, θ
.

, ρ, _ρ)ϕd, (22)

where ρ ∈ R2×1 is a differentiable vector, ϕd ∈ Re3×1 denotes
the constant parameter vector of dynamics and is unknown
in the control design, and ED(θ, θ

.

, ρ, _ρ) ∈ R2×e3 is the re-
gressor matrix of dynamics.

Remark 2. Via observing (8) and (19), it can be found that
the kinematic control and the dynamic control are related by
τK and τD, respectively. If the designed kinematic input τK is
actually achievable in the task execution without any time
delay, the visual tracking control can be conveniently re-
alized by the kinematic loop. However, in most state-of-the-
art researches on wheeled mobile robot control
[19, 32, 33, 38], it is stressed that the motors assembled on
the left and right wheels may not respond fast enough with
the result that the actual kinematic control values τK may lag
behind the design values. ,us, in this paper, the dynamics
control for visual servoing WMR is also addressed, simul-
taneously taking the mechanical parameter uncertainties
into consideration; that is, the precise parameter values (e.g.,
robot mass, inertia, and friction) are not required to be
exactly measured.

2.4. Problem Statement. Based on the above system model
and assumptions, the control problems from two different
perspectives, namely, the kinematic and dynamic control,
are addressed. Given a continuous desired trajectory
yd, _yd, €yd ∈ R2×1 on the image plane, this paper aims to
solve the following problems:

P1L: assuming that the WMR responds fast enough,
design an adaptive visual servoing kinematic controller
(AVSKC) τK such that the precise trajectory tracking
performance can be obtained in the absence of cali-
brated camera model; that is,

lim
t⟶∞

y − yd⟶ 0. (23)

P2: when the kinematic input τK is not always
achievable, design an adaptive visual servoing dynamic
controller (AVSDC) τD such that (23) holds,
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simultaneously taking into account the uncalibrated
camera-robot model.

3. Adaptive Visual Servoing Kinematic
Control for Wheeled Mobile Robot under
Uncalibrated Visual Model

In this part, we focus on the adaptive visual servoing ki-
nematic control scheme for wheeled mobile robot with
uncalibrated camera model, where the projection plane of
camera does not need to be parallel to the operation plane
during the execution of the mission, and the dynamic
control will be exhibited in the next section. Since the pa-
rameters of the visual model are unknown, adaption laws are
presented to estimate the real parameter values, and based
on the estimated parameters, AVSKC is developed to realize
the asymptotic image trajectory tracking.

3.1. ControllerDesign. Let 􏽢N(y, θ), 􏽢z, and 􏽢_z be the estimated
values of N(y, θ), z, and _z by replacing the unknown pa-
rameters ϕk,a and ϕk,b in N(y, θ), z, and _z with the esti-
mations 􏽢ϕk,a and 􏽢ϕk,b, respectively, and the estimations are
offered by the adaption laws. Define Δy � y − yd as the
image error. ,en, inspired by [25], the AVSKC is designed
as

τK � 􏽢N
− 1

(y, θ) 􏽢z _yd − α +
1
2

􏽢_z􏼒 􏼓Δy􏼔 􏼕, (24)

where α is a positive constant. In (24), the estimated visual
model rather than the calibrated model is utilized, and the
estimated depth and its differential are also introduced to
compensate the model error since the image plane and the
operation plane are nonparallel. Now, we can further analyze
the closed-loop kinematics with depth information as
follows:

zΔ _y +
1
2

_zΔy � N(y, θ)τK − z _yd +
1
2

_zΔy

� N(y, θ)τK − 􏽢N(y, θ)τK􏽨 􏽩 + 􏽢N(y, θ)τK

+ z _yd − 􏽢z _yd􏼂 􏼃 + 􏽢z _yd +
1
2

[ _zΔy − 􏽢_zΔy] +
1
2

􏽢_zΔy

� EK,a θ, τK( 􏼁Δϕk,a + EK,b θ, τK, −y( 􏼁Δϕk,b

+ EK,b θ, x, τK( 􏼁Δϕk,b + EK,b θ, τK,
1
2
Δy􏼒 􏼓Δϕk,b􏼒

+ 􏽢N(y, θ)τK + 􏽢z _yd +
1
2

􏽢_zΔy, (25)

where Δϕk,a � ϕk,a − 􏽢ϕk,a and Δϕk,b � ϕk,b − 􏽢ϕk,b, and Prop-
erty 1 is used. Substituting the AVSKC (24) into (25) gives
rise to

zΔ _y +
1
2

_zΔy � EK,a θ, τK( 􏼁Δϕk,a − αΔy

+ EK,b θ, τK, −
y + yd

2
􏼒 􏼓 + EK,b θ, x, τK( 􏼁􏼔 􏼕Δϕk,b.

(26)

3.2. Unknown Parameter Estimation. By observing (24), it is
obvious that the estimation of N(y, θ) is employed, which
requires that the parameters 􏽢ϕa and 􏽢ϕb are updated online.
,e kinematic parameter updating laws are presented as

_􏽢ϕa � −Φ−1
a E

T
K,a θ, τK( 􏼁Δy, (27)

_􏽢ϕb � −Φ−1
b E

T
K,b θ, τK, −

y + yd

2
􏼒 􏼓 + E

T

K,b θ, x, τK( 􏼁􏼔 􏼕Δy,

(28)

where Φa ∈ Re1×e1 and Φa ∈ Re2×e2 are the positive-definite
diagonal matrices. ,us, by integrating (27) and (28),
􏽢N(y, θ), 􏽢z, and 􏽢_z in (24) are then available.

3.3. Stability Analysis. At this point, we are going to for-
mulate the first theorem.

Theorem 1. Consider the visual servoing wheeled mobile
robot represented by (1), (2), (4), (6), and (8) satisfying the
assumption that the estimated interaction matrix 􏽢N(y, θ) is
nonsingular. In the case that the design kinematic input τK is
actually achievable in the task execution, the adaptive visual
servoing kinematic controller (AVSKC) given by (24) together
with the visual parameter adaption laws (27) and (28) ensures
the global stability of (26) and the asymptotical convergence of
Δy to zero such that limt⟶∞y − yd⟶ 0.

Proof. Construct the kinematic-based Lyapunov function
candidate as
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Vk �
1
2

zΔyTΔy +
1
2
ΔϕT

k,aΦaΔϕk,a +
1
2
ΔϕT

k,bΦbΔϕk,b.

(29)

Differentiating Vk with respect to time yields

_Vk � ΔyT
zΔ _y +

1
2

_zΔy􏼔 􏼕 + ΔϕT
k,aΦa

_􏽢ϕk,a + ΔϕT
k,bΦb

_􏽢ϕk,b.

(30)

Substituting the closed-loop kinematics (26) and the
parameter updating laws (27) and (28) into (30), the de-
rivative of Vk can be denoted as

_Vk � ΔyT
EK,a θ, τK( 􏼁Δϕk,a − ΔϕT

k,aE
T
K,a θ, τK( 􏼁Δy − ΔyTαΔy

+ ΔyT
EK,b θ, τK, −

y + yd

2
􏼒 􏼓 + EK,b θ, x, τK( 􏼁􏼔 􏼕Δϕk,b

− ΔϕT
k,b E

T
K,b θ, τK, −

y + yd

2
􏼒 􏼓 + E

T

K,b θ, x, τK( 􏼁􏼔 􏼕Δy

� −ΔyTαΔy≤ 0.

(31)

Since VK ≥ 0 and _VK(t)≤ 0, we can obtain that VK(t) is
bounded; that is, Δy, Δϕk,a, and Δϕk,b are bounded, which
directly implies that 􏽢ϕk,a and 􏽢ϕk,b are both bounded since ϕk,a

and ϕk,b are constants. ,us, 􏽢N(y, θ), 􏽢z, and 􏽢_z are all
bounded, giving rise to the boundness of τK from (24),
which means that _y,Δ _y ∈L∞ from (8) and the boundness
of (26) is guaranteed. From the result of (29) and (38), we
have Δy ∈L2 ∩L∞. ,erefore, we can obtain that
limt⟶∞y − yd⟶ 0. ,us, the proof is completed.

From the result in [34], it has been proven that the
matrix N(y, θ) is always nonsingular. ,us, if the param-
eters of 􏽢N(y, θ) in 􏽢ϕk,a and 􏽢ϕk,a are updated properly, it can
be ensured that 􏽢N(y, θ) is full rank by modifying the pa-
rameter adaption laws. In this paper, the so-called parameter
projection [39] is introduced to avoid nonsingularity of
􏽢N(y, θ). ,e adaption laws for visual kinematic parameters
are presented as

℧a � −Φ−1
a E

T
K,a θ, τK( 􏼁Δy, (32)

_􏽢ϕa,i � proj ℧a,i􏽮 􏽯,

(33)

℧b � −Φ−1
b E

T
K,b θ, τK, −

y + yd

2
􏼒 􏼓 + E

T

K,b θ, x, τK( 􏼁􏼔 􏼕Δy,

(34)

_􏽢ϕb,i � proj ℧b,i􏽮 􏽯, (35)

where _􏽢ϕa,i,
_􏽢ϕb,i,℧a,i, and℧b,i are the ith element of _􏽢ϕa,

_􏽢ϕb,℧a,
and ℧b. Furthermore, the projection function is given as
[39, 40]

proj ℧a,i􏽮 􏽯 �

℧a,i, if 􏽢ϕa,i >ϕa,i

℧a,i,
if 􏽢ϕa,i � ϕ

a,i
,

℧a,i ≥ 0,

℧a,i,
if 􏽢ϕa,i � ϕa,i,

℧a,i ≤ 0,

℧a,i, if 􏽢ϕa,i <ϕa,i,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

proj ℧b,i􏽮 􏽯 �

℧b,i, if 􏽢ϕb,i >ϕb,i
,

℧b,i,
if 􏽢ϕb,i � ϕ

b,i
,

℧b,i ≥ 0,

℧b,i,
if 􏽢ϕb,i � ϕb,i,

℧b,i ≤ 0,

℧b,i, if 􏽢ϕb,i <ϕb,i,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

where (· ) and (·
�
) denote the upper and lower bounds of

parameter (·). In this way, if the condition (·
�
)≤ (􏽢·(0))≤ (· )

is satisfied, then the parameter (􏽢·) will locate in the region

Zb

Yb

Xc Zc

Ym Xm

Om

d P

θZm

Yc

Ob Xb

Figure 1: Visually servoed wheeled mobile robot system and coordinate representation.
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[(·
�
), (· )]. ,en, we are ready to state the following

proposition.

Proposition 1. Consider the visual servoing wheeled mobile
robot represented by (1), (2), (4), (6), and (8). In the case that
τK is achievable, the adaptive visual servoing kinematic
controller (AVSKC) given by (24) together with the visual
parameter adaption laws (33) and (35) ensures the global
stability of (26) and the asymptotical convergence of image
errors such that limt⟶∞y − yd⟶ 0.

Proof. Choose the same Lyapunov function candidate Vk

(29), whose time derivative can be written as

_Vk � −ΔyTαΔy + ΔϕT
k,aΦa

_􏽢ϕk,a −℧a􏼒 􏼓 + ΔϕT
k,bΦb

_􏽢ϕk,b −℧b􏼒 􏼓

≤ − ΔyTαΔy.

(38)

,us, the proof of Proposition 1 can be referred to that of
,eorem 1.

Remark 3. It is noted that the considerations on visual kine-
matic model in this paper are similar to that in
[19, 24, 25, 32, 33, 36], where the visual model parameters are
uncalibrated in kinematic control design. However, the pro-
jection plane is set to be parallel to the operation plane in [32].
Also, note that eye-in-hand configuration is addressed in
[19, 33] rather than the eye-to-hand setup in this paper, and in
addition, only partial camera intrinsic parameters are taken into
consideration in [33], and only the extrinsic camera parameters
are considered in [19], respectively. Furthermore, the over-
parametrization problem is still unresolved in [24, 25], where a
2 × 14 regressor matrix needs to be determined. Extra two
particular feature points are introduced in [36] for the purpose
of preventing the direct use of image Jacobian matrix from
control design. ,e major difference between the proposed
AVSKC scheme and the uncalibrated visual tracking control
scheme [19, 24, 25, 32, 33, 36] is that the parameters in image
projection matrix, including the intrinsic and extrinsic camera
parameters, are estimated by adaption laws while avoiding the
overparametrization problem. ,is is realized by exploiting the
structure of image Jacobian matrix inspired by [35] (see
Property 1). Specifically, the salient features of the proposed
AVSKC scheme lie in (I) the structurally simple implementa-
tion of control law τK (24); (II) the inexpensive obtainment of
regressor matrices EK,a and EK,b in adaption laws (27) and (28)
(or using (33) and (35)); (III) the nonsingularity property of
􏽢N(y, θ) and the receptivity of uncertain parameters processed
by adaption laws (33) and (35).

Remark 4. If the actuators of WMR perform effectively, the
visual tracking on image plane can be conveniently realized
by the proposed AVSKC scheme. However, it is well rec-
ognized that the presence of dynamic uncertainties will
cause a great negative impact on control performance. In the
next section, we will pertinently propose the dynamic
control scheme for visual servoing WMR together with the
handling of dynamic uncertainties.

4. Adaptive Visual Servoing Dynamic
Control for Wheeled Mobile Robot with
Uncalibrated Visual Model and Dynamics

,e focus in this section is extending the wheeled mobile
robot kinematic control to dynamic control in the pres-
ence of uncalibrated visual model and uncertain dy-
namics; that is, both the kinematics and dynamics
parameters are not required to be measured accurately.
Note that, in this case, the designed controller becomes
the dynamic input torque τD, in which case a deeper
control loop is considered.

4.1. Controller Design. Define a referenced image velocity as

_yr � _yd − cΔy, (39)

where c is a positive constant. ,en, the reference errors of
image velocity can be denoted as

ry � _y − _yr � Δ _y + cΔy. (40)

,us, the reference errors ry contain both the image
errors and image velocity errors. Furthermore, define a
kinematic auxiliary variable

τr � 􏽢N
− 1

(y, θ)􏽢z _yr. (41)

Differentiating (41) with respect to time, we have

_τr � − 􏽢N
− 1

(y, θ)[ _􏽢N(y, θ)] 􏽢N
− 1

(y, θ)

+ 􏽢N
− 1

(y, θ) _􏽢z _yr + 􏽢N
− 1

(y, θ)􏽢zry.
(42)

,e purpose of designing this auxiliary variable is to
connect the kinematic control variable τK, which can be
specified as

rτ � τK − τr. (43)

Note that, in (41), τK is a real response due to the
evolution of robot dynamics (19) rather than a designed
input. ,e relation between rτ and ry can be interestingly
derived as

r
T
τ

􏽢N
T
(y, θ)βy􏽢zry

� 􏽢N(y, θ)τK − 􏽢N(y, θ)τr􏽨 􏽩
T
βy􏽢zry

� 􏽢N(y, θ)τK − N(y, θ)τK + z _y − 􏽢z _y + 􏽢z _y − 􏽢z _yr􏽨 􏽩
T
βy􏽢zry,

(44)

where βy is a positive constant. Using Property 1, we can further
obtain 􏽢N(y, θ)τK − 􏽢N(y, θ)τr � − EK,a(θ, τK)Δϕk,a + EK,b

(θ, τK, y)Δϕk,b and z _y − 􏽢z _y � EK,b(θ, x, _y)Δϕk,b. ,us, (44)
can be rewritten as

Complexity 7



rτ
􏽢N

T
(y, θ)βy􏽢zry

� −ΔϕT
k,aE

T
K,a θ, τK( 􏼁βy􏽢zry + r

T
y

􏽢zβy􏽢zry

+ ΔϕT
k,b E

T

K,b(θ, x, _y) + E
T
K,b θ, τK, y( 􏼁􏼔 􏼕βy􏽢zry.

(45)

Based on the kinematic control errors rτ and reference
errors ry, the adaptive visual servoing dynamic controller
(AVSDC) is proposed as

τD � B
− 1

(θ) ED θ, θ
.

, τr, _τr􏼒 􏼓􏽢ϕd − βτrτ − 􏽢N
T
(y, θ)βy􏽢zry􏼔 􏼕.

(46)

where βτ is a positive constant.

Remark 5. Since B(θ) � ST(θ)B(θ) is related to the actuator
dynamics rather than the robot dynamics, in this paper, we
assume that the exact structure and parameters of B(θ) are
known. In particular, B(θ) is defined as the I2×2 identity
matrix in [6, 38] if the actuators are free of operation faults.

Remark 6. It seems interesting that, in the proposed AVSDC
scheme, both image errors and velocity errors (ry � Δ _y +

cΔy) are introduced in the control law, which will
strengthen the tracking performance and robustness of the

dynamic closed-loop system. As will be shown in the sta-
bility analysis, the asymptotical convergence of ry leads to
the asymptotical convergence of both Δ _y and Δy.

By substituting the AVSDC (46) into (19) and employing
Property 4, one can obtain the closed-loop dynamics:

M(θ) _rτ + V(θ, θ
.

)rτ � ED θ, θ
.

, τr, _τr􏼒 􏼓Δϕd − βτrτ − 􏽢N
T
(y, θ)βy􏽢zry.

(47)

4.2. Unknown Parameter Estimation. In the AVSDC design
(46), the estimated dynamics and visual kinematics are
employed, and the estimated parameters are updated online
by

_􏽢ϕd � −Φ−1
d E

T
D θ, θ

.

, τr, _τr􏼒 􏼓rτ , (48)

_􏽢ϕa,i � proj ℧ a,i},􏽮 (49)

_􏽢ϕb,i � proj ℧ b,i},􏽮 (50)

where Φd ∈ Re3×e3 is a positive-definite diagonal matrix, the
projection operation is given in (36) and (37), and

℧ a � Φ−1
a E

T
K,a θ, τK( 􏼁βy􏽢zry,℧ b � −Φ−1

b E
T

K,b(θ, x, _y) + E
T
K,b θ, τK, y( 􏼁􏼔 􏼕βy􏽢zry. (51)

4.3. StabilityAnalysis. Based on the above system analysis of
closed-loop dynamics, we have the following result.

Theorem 2. Consider the visually servoed WMR system
consisting of the uncalibrated kinematics (1), (2), (4), (6),
and (8) and uncertain dynamics (19), under the control of
AVSDC (46) with parameter updating laws (48), (49), and
(50). Den, the closed-loop dynamics system of WMR is
globally bounded, and the image errors are convergent to
zero asymptotically.

Proof. Similarly, consider the Lyapunov function candidate

VD �
1
2

r
T
τ M(θ)rτ +

1
2
ΔϕT

k,aΦaΔϕk,a +
1
2
ΔϕT

k,bΦbΔϕk,b +
1
2
ΔϕT

dΦbΔϕd.

(52)

Taking the derivative of VD yields

_VD � r
T
τ M(θ) _rτ +

1
2

r
T
τ

_M(θ)rτ + ΔϕT
k,aΦa

_􏽢ϕk,a

ΔϕT
k,bΦb

_􏽢ϕk,b + ΔϕT
dΦb

_􏽢ϕd.

(53)

Premultiplying both sides of (47) by rT
τ and then

substituting it into (53), we have

_VD � r
T
τ ED θ, θ

.

, τr, _τr􏼒 􏼓Δϕd − r
T
τ βτrτ − r

T
τ

􏽢N
T
(y, θ)βy􏽢zry

+ ΔϕT
k,aΦa

_􏽢ϕk,a + ΔϕT
k,bΦb

_􏽢ϕk,b + ΔϕT
dΦb

_􏽢ϕd,

(54)

where Property 3 is used. Subsequently, substituting (45)
and the parameter updating laws (48), (49), and (50) into
(54), we can obtain the following result:

_VD � −r
T
τ βτrτ − r

T
y

􏽢zβy􏽢zry + ΔϕT
k,aΦa

_􏽢ϕk,a −℧ a] + ΔϕT
k,bΦb

_􏽢ϕk,b −℧ b]≤ − r
T
τ βτrτ − r

T
y

􏽢zβy􏽢zry.􏼔􏼔 (55)

As VD ≥ 0 and VD ≤ 0 are simultaneously established, we
can obtain that VD(t) must be bounded; that is, rτ , M(θ),
Δϕk,a, Δϕk,b, and Δϕd are all bounded, giving rise to the

boundedness of θ, 􏽢ϕk,a,
_􏽢ϕk,a, 􏽢ϕk,b, and 􏽢ϕd since ϕk,a, ϕk,b, and

ϕd are all constants. Moreover, 􏽢N(y, θ)) is bounded and
nonsingular, and 􏽢z, _yr, and ry ∈L∞ by observing (40) and
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(43). From (42), we have _τr ∈L∞, leading to τD ∈L∞ from
(46). According to the robot dynamics (19), we have
_τK ∈L∞, which directly implies that _rτ ∈L∞. ,us, the
closed-loop dynamics of WMR in (47) is globally bounded.

Furthermore, from the result of (52) and (55), we get
rτ ∈L∞ ∩L2 and 􏽢zry ∈L∞ ∩L2. Differentiating (8) with
respect to time leads to €y � ( _N(y, θ)τK + N(y, θ) _τK)/z−

N(y, θ)τK _z/z2 ∈L∞. Additionally, from the above

Table 1: Visual model parameters.

f uk vk uo vo ε

Camera parameters 0.04 2000 2000 300 300 π/2

Transformation matrix in parallel camera case Rot(x, π)

1
1

−3
01×3 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

Transformation matrix in unparallel camera case Rot(x, π − π/10)

1
1
3

01×3 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1
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Figure 2: Control responses of AVSKC schemes. (a) Position errors on image plane in PCC. (b) ,e real and desired trajectory in
PCC. (c) Control input in PCC. (d) Image errors in UPCC. (e) ,e real and desired trajectory in UPCC. (f ) Control input in UPCC.
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analysis, €yr � €yd − cΔ _y ∈L∞, which thus results in
_􏽢zry + 􏽢z _ry ∈L∞. ,erefore, we have limt⟶∞􏽢zry⟶ 0,
since 􏽢z≠ 0 is defined by the projection function, which fi-
nally indicates that the image errors converge to zero such
that limt⟶∞y − yd⟶ 0 and limt⟶∞ _y − _yd⟶ 0.

Remark 7. Compared with the recent work on handing
uncertain parameters for WMR [19, 33, 34, 36], where only
kinematic uncertainties are addressed, this paper extends the
uncalibrated visual servoing control to a dynamic control
loop in the presence of parameter uncertainties and varying
depth. It can be seen in AVSDC (46) that both the reference
image errors ry and kinematic control errors rτ , which
contain velocity errors Δ _y and _yr, are concurrently
employed, giving rise to asymptotical convergence of both
Δ _y and Δy by comparing with the AVSKC (24). Further-
more, the parameter uncertainties of visual kinematics and
dynamics are adaptively compensated by the parameter

updating laws (48), (49), and (50). Actually, the AVSDC
(46), to some extent, can be potentially regarded as con-
taining the kinematic control by designing the kinematic
auxiliary variable τr.

5. Numerical Simulations

In order to demonstrate the tracking performance of
AVSKC and AVSDC schemes, simulation studies are carried
out. As in Figure 1, a two-wheeled mobile robot with a
camera in a fixed place is considered.

5.1. Trajectory Tracking for AVSKC. In the simulation task,
we firstly address the AVSKC scheme under parallel and
unparallel camera case. Assume that one feature point is
marked on the WMR, and the distance d is set to be 0.3m.
,e simulated parameters of the perspective projection
matrix in [8, 25] are given in Table 1, where f denotes the
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Figure 3: Control responses of AVSDC schemes. (a) Position errors on image plane in TLC. (b) ,e real and desired trajectory in
TLC. (c) Velocity errors on image plane in TLC. (d) Position errors in TCC. (e) ,e real and desired trajectory in TCC. (f ) Velocity
errors on image plane in TCC.

10 Complexity



focal length of the camera, uk and vk denote the scalar factors
of two-dimensional axes on image plane, uo and vo are the
positions of principal point, ε is the included angle between
the coordinate axis and is assumed to be known, and the
rotation matrix in transformation matrix is set as
Rot− 1(x, π) in parallel camera case and Rot− 1(x, π − π/10)

in unparallel camera case, respectively. Note that these
parameters are only used to construct the simulated model,
but are unavailable in the control design. For simplicity, the
detailed expression of system model in (6) and (7) and
Property 1 can be referred to in [8, 35]. ,e designed control
gains and adaption gains are set as α � 10 and
Φa � Φb � 10000, respectively. ,e upper and lower bounds
in parameter projection are designed as ϕ

a,i
� 0.6ϕa,i,

ϕa,i � 1.3ϕa,i, ϕb,i
� 0.6ϕb,i, and ϕb,i � 1.3ϕb,i, and the initial

parameters are 􏽢ϕa,i(0) � 0.8ϕa,i and 􏽢ϕb,i(0) � 0.8ϕb,i, re-
spectively. ,e initial states of WMR are
θ1(0) � θ2(0) � θ3(0) � 0, where the superscript i denotes
ith initial condition in simulation task, and the referenced
trajectory is given as

yd �
10∗ sin(t) + 310

10∗ cos(t) + 340
􏼢 􏼣pixel. (56)

5.1.1. Parallel Camera Case (PCC). In this case, the image
plane is parallel to the operation plane. ,e initial states of
WMR are set as x1

b(0) � y1
b(0) � 0.1m,

x2
b(0) � y2

b(0) � 0.1m, and x3
b(0) � y3

b(0) � 0.1m, respec-
tively. ,e graphs in Figures 2(a)–2(c) demonstrate the
corresponding simulation results, from which we can ob-
serve that the real trajectory converges to the referenced
trajectory in about 2.5 s. Note that, in this case, the desired
velocity _yd is time varying; however, smoothly real trajectory
and bounded states are still achievable.

5.1.2. Unparallel Camera Case (UPCC). In this case, the
camera is placed in a position unparallel to the operation
plane. ,e initial states of WMR are the same as in PCC.,e
simulation results are depicted in Figures 2(d)–2(f ). Note
that, in Figures 2(e) and 2(b), the initial points on image
plane are noncoincident since the camera parameters are
chosen in different values. Moreover, the image errors as-
ymptotically converge to zero as expected, verifying the
effectiveness of AVSKC scheme.

5.2. Trajectory Tracking for AVSDC. In this subsection, we
will test the tracking performance of AVSDC scheme under
tracking line case and tracking circle case. Due to the
limitation of space, the parametric dynamics model of WMR
is omitted, whose detailed expressions are given in [38], and
the initial value for 􏽢ϕ is set as 􏽢ϕd(0) � 0.8ϕd. ,e designed
gains are set as c � 5, βτ � 5, βy � 10, and Φd � 1000; apart
from this, all the simulated model and system parameters are
given in UPCC.

5.2.1. Tracking Line Case (TLC). ,e reference line is given
as

yd �
3t + 310

3t + 340
􏼢 􏼣pixel. (57)

In this case, the desired velocity is constant. Based on the
theoretical analysis in ,eorem 2, the real trajectory on the
image plane asymptotically converges to the desired tra-
jectory in the sense of position and velocity, confirmed by
the simulation results in Figures 3(a)–3(c).

5.2.2. Tracking Circle Case (TCC). In this case, the desired
trajectory in this case is chosen as in UPCC, and the external
disturbance f � [3 sin(t), 3 cos(t)]T is applied to the robot
dynamics such that

M(θ)€q + V(θ, θ
.

) _q + G � B(θ)τD + A
T
(θ)λ + f. (58)

,e time histories of the corresponding results are
plotted in Figures 3(d)–3(f ). As predicted by ,eorem 2,
both Δy and Δ _y asymptotically converge to zero in about 1 s
even under the influence of external interference. Further-
more, faster responses are expectedly obtained as compared
with the simulation results in AVSKC scheme (see
Figures 2(d) and 3(d)).

6. Conclusions

Two uncalibrated visual servoing control schemes for the
wheeled mobile robot were developed from different
perspectives, namely, the kinematic control and dynamic
control. By utilizing the linearization characteristics of
visual kinematics and robot dynamics, image-based
tracking control laws (i.e., ASVKC and ASVDC) together
with the parameter adaption algorithms were proposed to
realize asymptotical convergence of image errors without
the knowledge of visual model robot parameters. Fur-
thermore, the overparametrization problem is avoided by
exploiting the structure of depth-independent interaction
matrix, giving less dimensional regressor matrices and
simple configuration of parameter adaption laws. It was
proven by the Lyapunov theory that both ASVKC and
ASVDC schemes are capable of achieving global stability of
closed-loop system. Lastly, numerical simulations were
carried out to confirm the performance of ASVKC and
ASVDC.

In this paper, we assume that the image trajectory is
given in advance, and the external forces of robot system are
not considered in complex environment. Furthermore, the
applicability of visual servoing WMR control is worth
further exploring. ,us, the further work encompasses the
deterministic learning and accurate identification of system
dynamics [41], the applicability of WMR with actuator
constraint [42], and obstacle avoidance [43–45].
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Robot manipulators have been extensively used in complex environments to complete diverse tasks. (e teleoperation control
based on human-like adaptivity in the robot manipulator is a growing and challenging field. (is paper developed a disturbance-
observer-based fuzzy control framework for a robot manipulator using an electromyography- (EMG-) driven neuro-
musculoskeletal (NMS) model. (e motion intention (desired torque) was estimated by the EMG-driven NMS model with EMG
signals and joint angles from the user. (e desired torque was transmitted into the desired velocity for the robot manipulator
system through an admittance filter. In the robot manipulator system, a fuzzy logic system, utilizing an integral Lyapunov
function, was applied for robot manipulator systems subject to model uncertainties and external disturbances. To compensate for
the external disturbances, fuzzy approximation errors, and nonlinear dynamics, a disturbance observer was integrated into the
controller.(e developed control algorithmwas validated with a 2-DOFs robot manipulator in simulation.(e results indicate the
proposed control framework is effective and crucial for the applications in robot manipulator control.

1. Introduction

Robotic manipulators are increasingly used in welding au-
tomation, robotic surgery [1], and space, as they are able to
complete diverse tasks in complex environments, such as
uncertain system dynamics, time-vary delays, and unknown
external disturbances. (e robot manipulator may work
within dangerous environments for unfriendly tasks, such as
handing radioactive material and searching, and the tele-
operation control of the robot manipulator has been widely
utilized into the controller design. Yang et al. [2] proposed an
admittance-adaptation-based methodology for robot ma-
nipulators when interacting with unknown environments and
guaranteed trajectory tracking performance. Recently, there is
a growing demand for the natural interface between the
robotic manipulator and the user [3]. Specifically, the robotic
manipulator is teleoperated by the user with human-like

characteristics. A human-like learning controller was pro-
posed to optimally adapt interaction with unknown envi-
ronments [4], and the human-like adaptivity was shown well
by the robot manipulator in stable and unstable tasks.

(e development of robot manipulator controller with
human-like characteristics (the user’s intention) requires
accurate and robust decoding of motor function. Muscle
electromyographic (EMG) signals from the central nervous
system (CNS) [5, 6] are widely used in the user’s intention
detection as EMG signals are relatively easy to acquire and
process and provide essential information on human mo-
tion. EMG-based modelling methodologies have been uti-
lized into various human-machine control algorithms for
robot manipulators. Ryu et al. [7] developed a continuous
position-based strategy for a robot manipulator with EMG
signals and the manipulator could replicate the movements
from the user well, thereby improving the control strategy
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for teleoperated robot manipulators. Artemiadis et al. [3]
proposed a teleportation methodology for a robot manip-
ulator based on EMG signals and position feedback and
realized a good master-slave manipulator system with hu-
man-like adaptivity. Bu et al. [8] proposed a Bayesian-
network-based model to predict occurrence probabilities of
the motions with the given information of the previous
motion and classify hybrid motions with EMG signals. (eir
results demonstrated that the EMG-based Bayesian network
model could improve the robustness and stability for motion
classification. (erefore, integrating an EMG-driven neu-
romusculoskeletal (NMS) model with human-like charac-
teristics into the robotmanipulator controller is valuable and
could be crucial in the robot manipulator control field [9].

Diverse control strategies for robot manipulators have
been developed in complex environments [10–12], as these
environments could degrade the performance of the robot
manipulator system [13, 14]. Lin et al. [15] developed fuzzy
Gaussian mixture models to approximate the objects’ shape
for robot manipulator grasping tasks under unknown en-
vironments, and the model has a good grasp quality. He et al.
[16] proposed a disturbance-observer-based control strategy
to approximate unknown parameters and disturbance for
multimanipulator robots and validated on a dual-arm co-
operative robot (Baxter). (eir results showed that the
controller has an accurate control performance and was able
to compensate for the errors due to the model uncertainties
and external disturbances. Yang et al. [17] proposed a
disturbance-observer-based impedance control for uncer-
tain robot manipulators in unknown environments. Fuzzy
logic system and disturbance observer are two commonly
used techniques in the control system to compensate for
unknown functions, parameters, and disturbance [18–20].
(erefore, in this study, a disturbance-observer-based fuzzy
algorithm was integrated into the control framework for a
robot manipulator, subjected to practical problems in-
cluding external disturbances and model uncertainties.

(e objective of this study was to design a disturbance-
observer-based fuzzy controller for a 2-DOFs robot ma-
nipulator using an EMG-driven NMS model. (e main
contributions of this paper are as follows: (1) a disturbance-
observer-based fuzzy control framework is developed that
fully incorporates a robot manipulator system with an EMG-
driven NMS model and could be applied in controlling the
movement of robot manipulators with human-like char-
acteristics; (2) the user’s motion intention was able to be
well-predicted by the EMG-driven model and transmitted
into the desired velocity through an admittance filter, which
allows the robot manipulator system behave with human-
like adaptivity; (3) in the current paper, the control
framework we proposed in general is useful for obtaining the
human-like characteristics, as well as simulating the control
strategy in the robot manipulator system, and thus be of
large benefit for teleoperation robot manipulator
applications.

2. Methods

2.1. Controller Framework. A disturbance-observer-based
fuzzy control framework (Figure 1) was developed for a
robot manipulator system in complex environments. In the
robot manipulator controller design, to complete tasks with
human-like characteristics, an EMG-driven NMS model
through the EMG signals and joint angles from the user was
used to estimate the desired torque. (e desired torque was
transmitted into the desired velocity through an admittance
filter. A disturbance-observer-based adaptive controller with
fuzzy compensation was developed for the robot manipu-
lator with unknown model dynamics.

2.2. EMG-DrivenNeuromusculoskeletalModel. A previously
developed EMG-driven NMS model [21] was used in this
study. It reproduces the transformations from EMG signal
generation and joint angles to musculotendon forces and
joint torques. (e NMS model consists of four components:
musculotendon kinematics, muscle contraction dynamics,
muscle activation dynamics, and joint dynamics [22].

(e musculotendon kinematics component used the 3D
joint angles to calculate musculotendon lengths and mo-
ment arms of individual musculotendon units (MTUs)
through a musculoskeletal model. (e muscle activation
dynamics component calculated muscle activation based on
filtered EMG signals. (e relation between neural activation
u(t) and filtered EMG signal e(t) was represented by a
recursive filter [23] as shown in the following equation:

ui(t) � μei(t − d) − β1ui(t − 1) − β2ui(t − 2), (1)

where ei(t) is the linear envelope of the EMG signal of ith

muscle; ui(t) is the neural activation of ith muscle; d is the
electromechanical delay; μ is the muscle gain coefficient; and
β1 and β2 are the recursive coefficients and are subject to the
following constraints to obtain a stable solution [21, 23, 24]:
β1 � C1 + C2, β2 � C1 · C2, where |C1|< 1, |C2|< 1, and
μ − β1 − β2 � 1.

(e relationship from neural activation to muscle acti-
vation is nonlinear and was formulated to describe muscle
activation dynamics as follows:

ai(t) �
e

Aiui(t)
− 1

e
Ai − 1

, (2)

where ai(t) is the ith muscle activation and Ai is the non-
linear shape factor of ith muscle and subjected to the interval
(− 3, 0) with zero representing a linear relationship and
negative values introduce a nonlinear relationship [24, 25].

Musculotendon forces were computed through muscle
contraction dynamics, based on a 3-element Hill-type
muscle model; a series elastic element (SE), a contractile
element (CE), and a parallel elastic element (PE). Each
MTU’s force (Fmt) could be represented as a function of
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muscle activation and muscle kinematics as shown in the
following equation:

F
mt

� F
m
0 fa

􏽥lm􏼐 􏼑 · fv 􏽥vm( 􏼁 · a + fp
􏽥lm􏼐 􏼑 + dm􏽥vm􏽨 􏽩cos(ϕ),

(3)

where Fm
0 is the maximum isometric muscle force; fa(􏽥lm) is

the active force-length relationship that describes the ability
of muscle fibres to generate forces at different lengths; 􏽥lm is
the fibre length normalized with the optimal fibre length;
fv(􏽥vm) is the force-velocity relationship that represents the
muscle fibre force contribution of the fibres’ contraction
velocity (􏽥vm), and the velocity was normalized with maxi-
mum contraction velocity and optimal fibre length; fp(􏽥lm) is
the passive force-length relationship that expresses the force
response to the fibres to strain; dm is the muscle damping
coefficient which represents the muscle damping charac-
teristics; and ϕ is the pennation angle of the fibres.

Joint torques were then estimated by the product of
musculotendon forces Fmt and moment arms rmt through
the joint dynamics component as shown in the following
equation:

M � rmt × F
mt

. (4)

2.3. Admittance Filter. To control the robot manipulator
based on the user’s adaptivity (desired torque estimated
from EMG signals), an admittance filter was used to
transform the joint torque into the desired angular velocity
[26, 27].

Δτ(s)

Ms
2

+ Bs + K
� Δq(s), (5)

where Δτ and Δq are the torque and position regulation and
M, B and K are the mass, damping, and stiffness parameters
of the admittance filter, respectively.

2.4. Robot Manipulator Dynamic Modelling. (e dynamics
of a robot manipulator was generally modeled as follows
[28]:

M(q)€q + C(q, _q) _q + G(q) + fdis � τ, (6)

where M(q) is inertial matrix; q is the joint angle; C(q, _q) is
centripetal and Coriolis force; G(q) is the gravitational force;
τ is the joint torque; and fdis is the unknown disturbance.

We rewrite this robot manipulator dynamics as follows:

y � x1,

_x2 � B− 1
(x)[U(x) + r + τ],

_x1 � x2,

⎧⎪⎪⎨

⎪⎪⎩
(7)

where x1 � [q1, q2, . . . , qm]T, x2 � [ _q1, _q2, . . . , _qm]T,
B(x) � M(q), U(x) � − C(q, _q) _q − G(q), r � − fdis, and
τ � [τ1, . . . , τm]T.

We aim to design an adaptive controller that could
ensure the robot manipulator system has satisfactory
tracking performance under input nonlinearity and un-
certain model dynamics.

(e B(x) could be divided as follows:

B(x) � Bd(x) + ΔB, (8)

where Bd(x) component matrix is diagonal and ΔB com-
ponent is unknown.

With (7), we could obtain

Bd(x) _x2 � I − ΔBB
− 1

(x)􏼐 􏼑U(x) + τ

+ I − ΔBB
− 1

(x)􏼐 􏼑r − ΔBB
− 1

(x)τ,

� F(x) + R + τ + p,

(9)

where F(x) � (I − ΔBB− 1(x))U(x) ∈ Rm, R � (I − ΔBB− 1

(x))r ∈ Rm, and p � − ΔBB− 1(x)τ ∈ Rm.
(e tracking errors ei are represented as

EMG
signal 

Joint
angle 

Moment arms Disturbance observer

Controller

Exoskeleton

+

–

Musculotendon length

Muscle activation

A1. Musculotendon
kinematics

(musculoskeletal model)

A3. Muscle contraction
dynamics

(hill-type muscle model)

A2. Muscle activation
dynamics

Musculotendon
forces

A4. Joint
dynamics

Desired
torque

Admittance
filter

Desired
velocity

EMG-driven NMS model

Figure 1: Schematic structure of the controller framework based on an EMG-driven NMS model. (e NMS model consists of four
components: (A1) the model’s musculotendon kinematics were used to compute musculotendon lengths and moment arms; (A2) muscle
activation dynamics were employed to calculate the level of muscle activation involved in the processed EMG signals; (A3) muscle
contraction dynamics according to a Hill-type muscle model were applied to predict musculotendon force, using calculated musculotendon
length and muscle activation as inputs; (A4) joint dynamics was used to compute joint torques, using the calculated musculotendon forces
and moment arms as inputs. (e EMG signals and joint angles from the user were used to estimate the motion intention (desired torque)
through the EMG-driven NMS model. (en, the desired torque was transmitted to the desired velocity through an admittance filter. A
disturbance-observer-based adaptive fuzzy controller was developed for the robot manipulator system with model uncertainties.
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si � _ei + λiei, (10)

ei � yi − ydi, i � 1, . . . , m, (11)

where λ1, λ2, . . . , λm are controlled parameters.
(erefore, combining (7) with (10), we can obtain

_s � B− 1
d (x)[F(x) + R + τ + p] + ν, (12)

where s � [s1, . . . , sm]T and ] � []1, . . . , ]m]T with
]i � − y(2)

di + λi _ei, i � 1, . . . , m.

2.5. Integral Lyapunov Analysis. An integral Lyapunov
function is modeled as

V1 � sTBϑs, (13)

where

Bϑ � 􏽚
1

0
ϑBαdϑ � diag 􏽚

1

0
ϑBαii x, tϑnsiq + hvi( 􏼁dϑ􏼢 􏼣,

(14)
with Bα � Bd(x, ϑsi + vi)α � diag[bdi i(x, ϑsi + vi)αii]m×m,
x � x1, α ∈ Rm×m, and α11 � · · · � αmm. v � _yd − ξ where ξ �

[ξ1, ξ2, . . . , ξm]T ∈ Rm with ξi � λiei, i � 1, 2, . . . , m.
According to (14), then (13) is remodelled as a high-

dimensional Lyapunov function

V1 � 􏽘
m

i�1
s2i 􏽚

1

0
ϑBαii x, ϑsi + vi( 􏼁dϑ. (15)

Based on the definition of Bα, Bα has minimum and
maximum eigenvalues λmin(Bα) and λmax(Bα),

0≤ λmin Bα( 􏼁sTs≤ sTBαs≤ λmax Bα( 􏼁sTs. (16)

Considering ϑ component in Bα function, which is in-
dependent of s, x, and v, we can obtain

0≤ sT
􏽚
1

0
ϑBαdϑ􏼠 􏼡s≤ 􏽚

1

0
ϑλmax Bα( 􏼁dϑ􏼠 􏼡sTs. (17)

(us, V1 ≥ 0 is proved.
As Bα and Bϑ are symmetric, the derivative of V1 is

modeled as

_V1 � 2sTBϑ _s + sT zBϑ

zs
_s􏼠 􏼡s + sT zBϑ

zx
_x􏼠 􏼡s + sT zBϑ

zv
_v􏼠 􏼡s,

(18)

with

zBϑ

zs
_s � diag 􏽚

1

0
ϑ

zBαii

zsi

_sidϑ􏼢 􏼣,

zBϑ

zx
_x � diag 􏽚

1

0
ϑ􏽘

m

j�1

zBαii

zxj

_xjdϑ⎡⎢⎢⎣ ⎤⎥⎥⎦,

zBϑ

zv
_v � diag 􏽚

1

0
ϑ

zBαii

zvi

_vidϑ􏼢 􏼣, i � 1, . . . , m.

(19)

Considering the following equations,

zBϑ

zs
s � diag 􏽚

1

0
ϑ

zBαii

zsi

sidϑ􏼢 􏼣 � 􏽚
1

0
ϑ2

zBα

zϑ
dϑ, (20)

we have

sT zBϑ

zs
_s􏼠 􏼡s � sT ϑ2Bα􏽨 􏽩|

1
0 − 2􏽚

1

0
ϑBαdϑ􏼠 􏼡 _s

� sTBα _s − 2sTBϑ _s.

(21)

As ϑ is a scalar, and σ � ϑsi, we have
(zBϑ/zv)s � diag􏼔 􏽒

1
0 ϑ(zBαii/zvi)sidϑ􏼕 � 􏽒

1
0 ϑ(zBα/zϑ)dϑ

and ] � − _v. (en, we have

sT zBϑ

zv
_v􏼠 􏼡s � sT

− 􏽚
1

0
ϑ

zBα

zϑ
dϑ􏼠 􏼡ν

� − sTBαν + sT
􏽚
1

0
Bαν dϑ.

(22)

Combining (21) and (22), (18) can be rewritten as

_V1 � sTBα _s − sTBα + sT zBϑ

zx
_x􏼠 􏼡s + 􏽚

1

0
Bανdϑ􏼢 􏼣. (23)

Considering (12), we rewritten (23) as

_V1 � sTBαB
− 1
d (x)[F(x) + τ + R + p]

+ sT zBϑ

zx
_x􏼠 􏼡s + 􏽚

1

0
Bανdϑ􏼢 􏼣.

(24)

Since Bd, α, and Bdα are symmetric, we have

BαB
− 1
d (x) � Bd(x)αB− 1

d (x) � α, (25)

and rewrite (24) as

_V1 � sTα[F(x) + τ + R + p] + sT zBϑ

zx
_x􏼠 􏼡s + 􏽚

1

0
Bανdϑ􏼢 􏼣.

(26)

Considering (14) and Bα � Bdα,

_V1 � sTα[F(x) + τ + R + p]

+ sT
􏽚
1

0
ϑ

zBα

zx
_x􏼠 􏼡sdϑ + 􏽚

1

0
Bανdϑ􏼢 􏼣

� sTα[F(x) +Φ + τ + R + p].

(27)

where

Φ � 􏽚
1

0
ϑ

zBd

zx
_x􏼠 􏼡sdϑ + 􏽚

1

0
Bd]dϑ,

zBd

zx
_x � diag 􏽘

m

j�1

zbdi i

zxj

_xj
⎡⎢⎢⎣ ⎤⎥⎥⎦, i � 1, . . . , m.

(28)
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2.6. Disturbance-Observer-Based Fuzzy Controller. As the
accurate and complete dynamics of a robot manipulator is
difficult to obtain, especially in complex environments with
unknown external disturbance, a fuzzy logic system is
adopted for the estimation of unknown functions in the
robot manipulator. Generally, the fuzzy rules are given as

Λi: if Z1 isK
i
1 and , . . . , andZl isK

i
l, then h is hi, (29)

where hi represents ith fuzzy rule.

h(Z) �
􏽐

m
l�1 h

l
􏽑

n
j�1 φ Zj􏼐 􏼑􏼐 􏼑

􏽐
m
l�1 􏽑

n
j�1 φ Zj􏼐 􏼑􏼐 􏼑

� ΘT
S(Z), (30)

where Z � [Z1, Z2, . . . , Zn] ∈ Rn is the input variable; Si �

((􏽑
n
j�1 φ(Zj))/(􏽐

m
l�1(􏽑

n
j�1 φ(Zj)))) are the fuzzy basis

functions; m is the number of fuzzy rules; and W denotes the
adaptable weight parameters.

In this study, the uncertain term F(x) is estimated as

F(x) � − Θ∗TS(Z) − ς, (31)

where Z � [xT
1 , xT

2 ]T and ς represents the approximate error
and ‖ς‖≤ ς∗ (ς∗ > 0).

(en, we rewritten (9) as

Bd(x) _x2 � − Θ∗TS(Z) − ς + R + τ + p. (32)

To eliminate the effect of the external disturbance and
unknown terms in the system, a disturbance observer is
utilized in the controller design. We define D � R + p − ς,
and (32) can be represented as

Bd(x) _x2 � − Θ∗TS(Z) + τ + D. (33)

As in the robotic system, the actuator and input satu-
ration exist [29]; the motor torque is normally assumed to be
constrained with saturation in practical. (erefore,
p � − ΔBB− 1(x)τ is bounded. In this study, the r in this robot
manipulator system is assumed as bounded with ‖r‖≤ dc,
where dc is a positive constant. As the derivative of a dif-
ferential continuous function with bounded constraints is
also bounded [30], we can obtain ‖ _D‖≤ ϱ, where ϱ > 0.

For the disturbance observer design, an auxiliary variable
Ω is defined asΩ � D − Ψx2 with Ψ � ΨT > 0. With (33), we
can obtain

_Ω � _D − Ψx2
.

� _D − ΨB− 1
d (x) − Θ∗TS(Z) + τ + D􏽨 􏽩.

(34)

(en, the estimate of _Ω is calculated as

_􏽢Ω � − ΨB− 1
d (x) τ + 􏽢D − 􏽢ΘT

S(Z)􏼔 􏼕, (35)

where 􏽢D � 􏽢Ω + Ψx2 and is the estimate of D. (en, we define
􏽥D � D − 􏽢D as the disturbance estimate error, and we have

􏽥Ω � Ω − 􏽢Ω � D − 􏽢D � 􏽥D. (36)

(en, the derivative of 􏽥D is computed as

_􏽥D � _􏽥Ω � _Ω −
_􏽢Ω

� _D − ΨB− 1
d (x) 􏽥D + 􏽥ΘT

S(Z)􏼔 􏼕,
(37)

with 􏽥Θ � 􏽢Θ − Θ∗ .
Based on the disturbance observer [31] and fuzzy logic

rules, the control law of this robot manipulator is developed
as

τ � 􏽢ΘT
S(Z) − Φ − K1αs − 􏽢D. (38)

(e updated law of the fuzzy controller is developed as
_􏽢Θi � − Γi Si(Z)αiisi + ε􏽢Θi􏽨 􏽩, (39)

where Γi and ε are positive constants.

Theorem 1. According to the designed controller in (38) and
the disturbance-observer-based fuzzy controller, all closed-
loop signals are uniformly bounded in this complex envi-
ronment with unknown disturbances and model uncertainties
(proof is shown in Appendix A).

3. Simulation

(e EMG-driven NMSmodel was implemented in OpenSim
3.3 through the calibrated EMG-informed NMS modelling
toolbox (CEINMS) [21]. OpenSim was also used to calculate
musculotendon lengths andmoment arms using joint angles
through the scaled musculoskeletal model [32]. CEINMS
was then employed to calibrate a subject-specific EMG-
driven NMS model to predict joint torques. A generic
reaching task was simulated with a musculoskeletal arm
model (Figure 2), and the data were acquired from a publicly
available database (https://simtk.org/frs/index.php?
group_id�657) [33]. (e input data include EMG signals
and joint kinematics of right arm shoulder and elbow. (e
EMG signals of 6 muscles of the right arm were simulated
through static optimization tool (resolving the net joint
moments into individual muscle forces by minimizing the
sum of squared muscle activations) in OpenSim, including
triceps long, triceps lateral, triceps medial, biceps long, bi-
ceps short, and brachialis.

Before using the EMG-driven NMS model to predict
joint torque, a calibration process was applied to obtain a
subject-specific EMG-driven NMS model with individual’s
muscle-tendon properties. To perform the calibration, in-
verse dynamics was used to calculate the joint moment as
measured joint moments. Inverse dynamics calculated the
forces and torques of joints by solving dynamic equation of
motion of the user as shown in the following equation:

M(q)€q + C(q, _q) + G(q) � τ, (40)

where q, _q, €q are the position, velocity, and acceleration of
the generalised coordinates; M(q) is the mass matrix;
C(q, _q) is the centripetal and Coriolis forces matrix; G(q) is
the gravitational forces matrix; and τ is the vector of un-
known generalised forces.
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During the calibration of the subject-specific EMG-
driven NMSmodel, optimal fibre length lm0 and tendon slack
length lts of each MTU were bounded within ±15% from
their initial values, and muscle activation dynamics pa-
rameters A, C1, C2 were calibrated globally. (e shape factor
A was bounded between − 3 and 0 and coefficients C1, C2
were bounded between − 1 and 1. A strength coefficient
constrained between 0.5 and 2.5 was assigned to each MTU
and was used to calibrate maximum isometric force. During
the calibration, these subject-specific parameters were re-
fined by an optimization algorithm to minimize the error
between estimated and measured/actual ankle joint torques
[21].

Correlation analysis of joint torque estimated via inverse
dynamics and EMG-driven NMS model was carried out
across all trials using MATLAB (MatlabR2018a, MathWorks
Inc., Natick, MA, USA). A significance level of 0.05 was set
for all statistical tests.

For the robot manipulator, our aim was to design a
controller that could complete tasks with human-like
characteristics as to follow the desired velocity. In the sys-
tem, we consider 2-DOFs shoulder and elbow manipulator,
and the dynamic modelling of the shoulder and elbow
manipulator is modeled as

M(q)€q + C(q, _q) _q + G(q) + fdis � τ, (41)

where τ is the joint torque and q � [q1, q2]
T. We model

M(q), C(q, _q), G(q), and fdis as

M(q) �
M11 M12

M21 M22
􏼢 􏼣,

C(q, _q) �
C11 C12

C21 C22
􏼢 􏼣,

G(q) �
G1

G2
􏼢 􏼣,

fdis �
D1

D2
􏼢 􏼣,

(42)

where M11 � m1l
2
c1 + m2(l21 + l2c2 + 2l1lc2 cos q2) + I1 + I2,

M12 � m2(l2c2 + l1lc2 cosq2) + I2, M21 � m2(l2c2 + l1lc2 cosq2)+

I2, M22 � m2l
2
c2 + I2; C11 � − m2l1lc2 _q2 sinq2, C12 � − m2l1lc2

( _q1 + _q2)sinq2, C21 � m2l1lc2 _q1 sinq2, C22 � 0; G1 � (m1lc2+

m2l1) gcosq1 + m2lc2gcos(q1 + q2), G2 � m2lc2gcos(q1 + q2);
D1 � 0.21cosq22 +0.04sin(0.3q2t); and D1 � 0.12sinq21+

0.03sin(0.2q1t).

(e robotic system parameters aremodeled asm1 � 2 kg,
m2 � 1.5 kg, l1 � 0.35m, l2 � 0.2m, g � 9.81m/s2,
I1 � (1/4)m1l

2
1, and I2 � (1/2)m2l

2
2, and lc is the center of

mass with lc � (l/2).
We transform (41) into the model we used in (7), which is

y � x1,

_x2 � B− 1
(x)[U(x) + r + τ],

_x1 � x2,

⎧⎪⎪⎨

⎪⎪⎩
(43)

where x1 � [q1, q2]
T, x2 � [q1

.
, q2

.
]T, B(x) � M(q),

U(x) � − C(q, _q)q2
.

− G(q), r � − fdis, and τ is the joint
torque.

Let 􏽢θi(0) � [0, . . . , 0]T be the initial values of the
adaptive law (39). (e design parameters’ values were set to
α � I2×2, Bd(x) � diag[cosx1(2) + 2, 1 + 0.5 sinx1(1)],
λ11 � λ21 � 24, Γ1 � Γ2 � Γτ1 � Γτ2 � 1, and σ � στ � 9.

(e joint torque (normalized by the arm mass) estimated
via inverse dynamics and EMG-drivenNMSmodel is shown in
Figures 3 and 4. (e results of the correlation analysis showed
that there was a significant correlation of joint torque estimated
via inverse dynamics and EMG-driven NMSmodel (p< 0.01).
(e Pearson coefficients r1 � 0.991 and r2 � 0.507 were ob-
served at the shoulder and elbow flexion/extensionDOFs in the
arm reaching movement, respectively. (e root mean square
error (RMSE) of shoulder flexion/extension torque between
inverse dynamics and EMG-driven NMS model was
0.048Nm/kg. Similar RMSE 0.046Nm/kg was observed at the
elbow flexion/extension DOFs in the arm reaching movement.
Figures 5 and 6 demonstrated the desired and actual joint
angular velocity of the robot manipulator in the reaching task,
and the results validated the effectiveness of the proposed
controller which could complete the task with users-like ad-
aptivity and had a good performance.

4. Discussion

We developed a disturbance-observer-based fuzzy control
framework that fully incorporates a robot manipulator
system with an EMG-driven NMS model and could be
applied in the controlling of the movement of robot ma-
nipulators with human-like characteristics. In the developed
framework, a reaching task for a robot manipulator was
studied to test performance of the disturbance-observer-
based fuzzy controller. We found that the user’s intention
was well-predicted by the EMG-driven NMSmodel and then
transmitted to the desired velocities of the robot manipu-
lator system, which allows the robot manipulator system
behave with human-like adaptivity. In the robot manipu-
lator system with external disturbances and model uncer-
tainties, the proposed disturbance-observer-based fuzzy
control was also able to provide a good performance of
motion tracking. In the current paper, the control frame-
work we proposed in general is useful for obtaining the
human-like characteristics, as well as simulating the control
strategy in the robot manipulator system, and thus be of

Figure 2: (e reaching task illustration of the manipulator.
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large benefit for teleoperation robot manipulator
applications.

EMG-driven NMS model is a popular method in users’
motion intention (joint torque) estimation [34–36]. (e
EMG-driven NMS model uses mathematical equations to
reproduce the transformations from EMG signal generation
and joint angles to musculotendon forces and joint torques.
To better predict joint torque, subject-specified EMG-driven
model was calibrated with personalized musculoskeletal
geometry such as moment arms and muscle characteristics.
During the calibration, these subject-specific parameters
were refined by an optimization algorithm to minimize the
error between estimated and measured/actual ankle joint
torques. With the mathematical equations approximately
reproducing the transformations and optimization algo-
rithm included in the calibration process, inevitable error
existed in the EMG-driven NMSmodel whenmapping EMG

signals and angles into the joint torque. Despite this, the
EMG-driven NMSmodel was able to estimate joint torque in
close agreement to the reference data (with RMSE lower
than 0.048Nm/kg).

It is important to notice that unknown dynamics and
external disturbance commonly exist in robotic manipulator
systems. Fuzzy logic system [37], neural network [38], and
disturbance observer [39] are commonly applied to solve
these problems and maintain the system stability. Su et al.
[40] integrated a fuzzy compensator into a teleoperation
controller for a robot manipulator, and this controller was
able to guarantee a safety-enhanced behavior in the null
space. Li et al. [41] utilized a disturbance observer to
compensate for the external disturbance in an admittance
control for an upper robotic exoskeleton and guaranteed the
robustness of the robotic arm. In the current study, a dis-
turbance-observer-based controller with a high-dimensional
integral-type Lyapunov function was developed for a robotic
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manipulator with external disturbances and model uncer-
tainties. (e good tracking performance (Figures 5 and 6)
demonstrate the effectiveness of the proposed control
framework and the semiglobally uniformly ultimate
boundness of the closed-loop control system is also
established.

One limitation of this study was that only reaching task
at one speed was studied as an example in the proposed
framework. Reaching task at different speeds as well as
different situations and other daily activities such as grasp
could be also tested in the proposed framework. Another
limitation was that we only tested the control framework in a
simulation environment with one subject data. Large sample
size of subjects could be enrolled in the future study to see
whether the proposed control framework would be able to
generalize across subjects.

5. Conclusions

We developed an adaptive control framework that fully
incorporates a robot manipulator system with an EMG-
driven NMS model and use it to control the motion of the
robot manipulator with human-like characteristics. In the
developed framework, an example was studied to test per-
formance of the disturbance-observer-based fuzzy control-
ler, which was applied to a robot manipulator during a
reaching task. We found that the EMG-driven NMS model
was able to predict the user’s intention (desired torque) and
transmitted these human-like characteristics to the desired
trajectories of the robot manipulator system. Moreover,
external disturbances as well as model uncertainties were
simulated in the robot manipulator system, and the pro-
posed adaptive fuzzy controller integrated with a distur-
bance observer was able to provide a good performance of
motion tracking. In the current paper, the control frame-
work we proposed in general is useful for obtaining the
human-like characteristics, as well as simulating the control
strategy in the robot manipulator system that is subjected to
realistic conditions, such asmodel uncertainties and external
disturbances, and thus be of large benefit for teleoperation
robot manipulator applications.

Appendix

Proof of the Proposed Lyapunov
Function Stability

(e Lyapunov function candidate is modeled as

V2 � V1 +
1
2

􏽥D
T 􏽥D +

1
2

􏽘

m

i�1

􏽥ΘT

i Γ
− 1
i

􏽥Θi. (A.1)

Based on (31), the derivative of V2 is calculated as

_V2 � sTα − Θ∗TS(Z) − ς +Φ + τ + R + p􏽨 􏽩

+ 􏽥D
T _􏽥D + 􏽘

m

i�1

􏽥ΘT

i Γ
− 1
i

_􏽥Θi.
(A.2)

Considering (33), (38), and D � R + p − ς, we have

_V2 � sTα 􏽥ΘS(Z) + 􏽥D − K1αs􏽨 􏽩

+ 􏽥D
T _􏽥D + 􏽘

m

i�1

􏽥ΘT

i Γ
− 1
i

_􏽥Θi.
(A.3)

Considering ‖ _D‖ is bounded, ‖S(Z)‖ ≤ δ, (37), (39), and
the following terms

sTα 􏽥D≤
sTααs
2

+
􏽥D

T 􏽥D

2
,

􏽥D
T _D≤

􏽥D
T 􏽥D

2
+

‖ _D‖
2

2
,

􏽘

m

i�1

􏽥ΘT

i Si(Z)siαii � sTα􏽥ΘT
S(Z),

(A.4)

we have

_V2 ≤ − sTα K1 − 0.5Im×m( 􏼁αs +
ϱ2

2

− 􏽥D
T ΨB− 1

d − 2Im×m􏼐 􏼑 􏽥D +
ε Θ∗
����

����
2

2
,

−
ε − ΨB− 1

d δ
2

􏽘

m

j�1

􏽥ΘT

i
􏽥Θi

(A.5)

where 􏽥D
TΨB− 1

d
􏽥ΘT

S(Z)≤ ((‖ 􏽥D‖2)/2) + ((ΨB− 1
d S(Z)‖ 􏽥Θ‖2)/2)

and − ε􏽥Θ T
i

􏽢Θi � − ε‖ 􏽥Θi‖
2 − ε􏽥ΘT

i Θ
∗
i ≤ − ((ε‖ 􏽥Θi‖

2)/2)+

((ε‖Θ∗i ‖2)/2).
If we choose K1, Ψ, and ε appropriately satisfying

λmin(α(K1 − 0.5Im×m)α)≥ 􏽒
1
0 ϑλmax(Bα)dϑ, ΨB− 1

d −

2Im×m > 0, and ε − ΨB− 1
d δ > 0, we can obtain
_V2 ≤ − κV2 + C, (A.6)

where

κ � min

λmin ΨB
− 1
d − 2Im×m􏼐 􏼑

ε − ΨB− 1
d δ

λmax 􏽐
m
i�1 Γ

− 1
i􏼐 􏼑

, 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

C �
ε Θ∗
����

����
2

2
+
ϱ2

2
.

(A.7)

By multiplying eκt and integrating the both sides of
inequality (A.6), we have

V2 ≤ V2(0) −
C

κ
􏼒 􏼓e

− κt
+

C

κ
≤V2(0) +

C

κ
. (A.8)

Based on (A.8), V2 is ultimately bounded as t⟶∞; 􏽥D,
s, and 􏽥Θ are also bounded.
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Load is the main external disturbance of a parallel robot manipulator. ,is disturbance will cause dynamic coupling among
different degrees of freedom and make heaps of model-based control methods difficult to apply. In order to compensate this
disturbance, it is crucial to obtain an accurate dynamic model of load. However, in practice, the load is always uncertain and its
dynamic parameters are arduous to know a priori. To cope with this problem, this paper proposes a novel and simple approach to
identify the dynamic parameters of load. Firstly, the dynamic model of the parallel robot manipulator with uncertain load is
established and the dynamic coupling caused by load is also analyzed.,en, according to the dynamic model, the excitation signal
is designed and a weak nonlinear dynamic model is derived. Furthermore, the identification model is presented and the
identification algorithm based on the extended Kalman filter is designed. Lastly, numerical simulation results, obtained using a
six-degree-of-freedom Gough–Stewart parallel manipulator, demonstrate the good estimation performance of the
proposed method.

1. Introduction

Parallel robot manipulator (PRM) entails the advantages of
higher precision, faster response, higher rigidity, and
stronger carrying capacity over serial robots and, hence, is
widely applied in many fields of industry [1, 2]. Currently,
the standard industrial control technique applied in PRMs is
PID control, which neglected the complex dynamic char-
acteristics of robots, so that it can hardly meet the re-
quirement of fast and accurate motion [3, 4]. During the past
decade, several model-based control methods, such as
computed torque control [5], dynamic feedforward control
[6], and modal control [7, 8], are used in controlling PRMs
because of the excellent control accuracy and dynamic
performance of these methods. However, these methods are
all based on the dynamic model to design, which makes the
control performance of these methods strongly depend on
the accurate knowledge of the dynamic model.

In practical applications, PRMs always have to hold an
uncertain load to work, and the dynamic parameters of load

are hard to know a priori and cannot be measured directly,
which makes several model-based control schemes unable to
be applied [9]. Take modal control as an example, the key of
the control strategy is the modal conversion matrix. ,e
calculation of modal conversion needs the system mass
matrix, but the uncertainty of the load will make the accurate
systemmass matrix impossible to obtain [10, 11]. Otherwise,
the uncertain load, which is a main external disturbance of
the system [12], has a significant impact on system dynamic
performance; it will cause dynamic coupling among different
degrees of freedom (DOFs) [13, 14]. ,us, in order to
achieve the high-performance control of the system, the
uncertain load disturbance is necessary to be estimated and
compensated.

In parameter identification, three kinds of methods have
been proposed to estimate the robot dynamic parameters.
,e first method is using computer-aided design (CAD)
techniques to obtain the dynamic parameters of robots. ,e
3-dimensional (3D) model of robots generally provided by
the robot manufacturer and the parameters, such as the
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inertia tensor and centroid position, can be solved by any
CAD software based on these models. However, the pa-
rameters obtained from the CAD techniques are not
identical to the real robot because of the manufacturing and
assembling error. In addition, for the PRMs with uncertain
load, it is difficult to build a 3D model for load, which is
usually not provided by the manufacturer and is made up of
many complex parts. To avoid this problem, the method of
the physical experiment is used to perform the determi-
nation of the dynamic parameter. ,is method can better
estimate the mass, centroid position, and inertia tensor of
the part. However, the necessity of disassembling the robot
and measuring by special devices limits the application of
this method. Moreover, this method is inappropriate for the
measurement of large-sized parts, such as aircraft and
submarine, which are common types of loads and are
generally too big to be measured and too complex to be
disassembled. ,e last method is the theoretical identifica-
tion method, which can obtain better identification result,
and does not require disassembly of robots and special
devices for measurement compared to the above two
methods. Until now, many identification algorithms have
been presented to estimate the parameters of robots [15],
such as the least squares method [16, 17], Kalman filtering
method [18–20], maximum-likelihood method [21, 22]. In
addition, among these identification algorithms, the most
used method is the least squares method [23]. However,
most of the research objects of these methods are serial
manipulators, while for parallel manipulators, there is little
research at present.

Compared to the serial manipulator, the research on
parameter identification of PRMs started late, and too little
work has been devoted to the load parameters identification.
Chen derived the estimation equation in a linear form of
identified parameters based on a new structured Boltz-
mann–Hamel–d’Alembert approach and used the least
square method to identify the parameters [24]. Tian pro-
posed an inertial parameter identification method based on
sinusoidal vibrations of a six-degree-of-freedom parallel
manipulator and used the least square method to identify the
parameters [25]. Briot and Gautier used total least squares to
identify the parallel robot dynamic parameters [26]. Wu
et al. investigated the dynamic parameter identification of a
redundantly actuated parallel manipulator and proposed a
two-step identification approach based on the least squares
method to identify the dynamic parameters of the system
[27]. ,anh used the direct pattern search technique to do
the dynamics identification for a redundant 3-(P) RRR
manipulator [28].

Normally, the methods to identify the parameters of the
PRM adopt the methods of the least squares method and the
weighted least squares method. However, the least square
method is not suitable for the identification of parallel
manipulators. ,e main reasons are as follows:

(1) ,e LMS needs to establish an inverse dynamic
model that is linear with respect to the dynamic
parameters. However, due to the complex and
coupled dynamics of the parallel manipulators, it is

still not easy to rewrite the dynamic equation into a
linear form that is suitable for using the parameter
identification algorithm [29].

(2) ,e LSM is sensitive to measurement noise. How-
ever, parallel manipulators are generally driven by
hydraulic pressure, and the noise of driving force,
displacement, speed, and acceleration is relatively
large, which seriously limits the identification ac-
curacy and convergence speed of the method
[30, 31].

(3) For the LSM, the observation matrix in the inverse
dynamic model requires the value of displacement,
speed, and acceleration in the task space. Since the
displacement and speed of each leg of the parallel
mechanism are relatively easy to measure, the dis-
placement in the task space can be obtained by the
positive kinematics solution, and the speed in the
task space can be solved by the speed Jacobian
matrix. But, for acceleration, it is not easy to be
directly measured.

,is paper proposed a method to identify the load of a
parallel robot manipulator. Compared with the traditional
least square method, the proposed identification approach
does not require linearization of the dynamic model and
optimization of the excitation trajectory, which are two
complex problems to solve. Under the specific signals, the
dynamic equation derived by the Newton–Euler method can
be simplified and the simplified dynamic equation has two
advantages: (1) this equation is weakly nonlinear with re-
spect to the dynamic parameters of load and (2) the pa-
rameters to be identified are independent of each other in the
equation and there is no product form. According to the
simplified model, we designed the excitation trajectory,
which has a simple form and can excite the dynamic pa-
rameters of the load. Importantly, the EKF algorithm is
applied to estimate the load parameters, which is not sen-
sitive to measurement noise and without acceleration
measurements in the process of identification.

,e organization of this paper is as follows. In Section 2,
the dynamic model of PRM with uncertain load is estab-
lished and the influence of load disturbance for the system is
also analyzed. Section 3 presents the design of excitation
trajectory and the process of load parameters identification
based on the EKF algorithm. Section 4 shows the numerical
simulation for verifying the proposed method. Finally, the
main conclusions of this paper are presented in Section 5.

2. Mathematical Modeling

,e parallel manipulator studied in this paper is a six-de-
gree-of-freedom Gough–Stewart parallel manipulator, as
shown in Figure 1(a). ,is manipulator is mainly composed
of two platforms and six driving legs. ,e lower platform
fixed on the ground is named static platform and the upper
platform used to carry loads is named moving platform. ,e
driving leg is the actuator to drive the moving platform to
realize translation and rotation. In order to facilitate the
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analysis of the parallel manipulator, the coordinate system is
established and shown in Figure 1(b). ,e static coordinate
system OB − XBYBZB is fixed on the static platform and the
origin OB is in the center of the lower platform. ,e moving
coordinate OA − XAYAZA is fixed on the upper platform
and the origin O is in the center of the upper platform. Not
only is OA the centroid point of the upper platform, but also
it is the control point C of the system. GP is the centroid
point of load. ai and bi are the upper and lower hinge points,
respectively.

2.1. Kinematics Modeling. According to the space geometry
theory, the length vector of the six legs can be expressed by

L � L1, . . . , L6􏼂 􏼃 � R · A + p + p0 − B, (1)

where A is the coordinate matrix of six lower hinges in the
static coordinate. B is the coordinate matrix of six upper
hinges in the moving coordinate. R denotes the transfor-
mation matrix from the static coordinate to the moving
coordinate. p � x y z􏼂 􏼃

T is a translation displacement
vector. x, y and z are the displacement of platform mass
center along the x-axis, y-axis, and z-axis, respectively. p0 is
the initial height matrix composed of six initial height
vectors, and each vector is 0 0 h0􏼂 􏼃

T. h0 is the initial height
when the upper platform motion table in the middle
position.

By differentiating equation (1), one obtains

_L �
dL
dt

� _p + _R · RT
· R · A � _p + ω × RAA. (2)

,e matrix form of equation (2) is

_L � LT
n R · A × Ln( 􏼁

T
􏽨 􏽩 · _q � Jv _q, (3)

where Jv is velocity Jacobian matrix between the velocity of
the upper platform and the leg velocity. Ln is the unit di-
rection vector matrix of the six legs’ direction and
Ln � [L1/|L1|, . . . , L6/|L6|]. _q � _q � [ _p, ω]T is the upper
platform velocity, in which ω � ωx ωy ωz􏽨 􏽩

T
is the an-

gular velocity of the moving platform and _L is the leg ve-
locity. Importantly, matrix J is the key to derive the dynamic
equation of joint space.

In addition, kinematic analysis of the load is also re-
quired, such as centroid position and acceleration. Let the
load eccentric position along three axes of the moving co-
ordinate system be Δx, Δy, and Δz. ,e load eccentric
position along three axes of the static coordinate can be
expressed as

lx � c q5( 􏼁c q6( 􏼁Δx + s q4( 􏼁s q5( 􏼁c q6( 􏼁c q4( 􏼁s q6( 􏼁􏼂 􏼃Δy

+ c q4( 􏼁s q5( 􏼁c q6( 􏼁 + s q4( 􏼁s q6( 􏼁􏼂 􏼃Δz,

ly � c q5( 􏼁s q6( 􏼁Δx + s q4( 􏼁s q5( 􏼁s q6( 􏼁 + c q4( 􏼁c q6( 􏼁􏼂 􏼃Δy

+ c q4( 􏼁s q5( 􏼁s q6( 􏼁 − s q4( 􏼁c q6( 􏼁􏼂 􏼃Δz,

lz � −s q5( 􏼁Δx + s q4( 􏼁c q5( 􏼁Δy + c q4( 􏼁c q5( 􏼁Δz,

(4)

where c () and s () are abbreviations for the trigonometric
functions cosine and sine; q4, q5, and q6 are the three Euler
angles of the system; and lx, ly, and lz are the load eccentric
position along three main axes. From equation (4), it is easy
to know that the lx, ly, and lz are related to the Euler anglers
of the upper platform.
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Figure 1: Schematic of the Stewart robot. (a) Simplified structure. (b) Mathematical representation.

Complexity 3



Let the load centroid acceleration in the static coordinate
be €pl � €xa€ya€za􏼂 􏼃

T. According to the rigid body dynamics
theory, the relation between the load centroid acceleration
and the upper platform centroid acceleration can be
expressed by

€xa � €x + lz _ωy − ly _ωz, €ya � €y + lz _ωx − lx _ωz, €za

� €z + ly _ωx − lx _ωy. (5)

,e relationship between €pl and €p is shown in Figure 2.
Note that the OC − XCYCZC coordinate system in Figure 1 is
not the same as the OB − XBYBZB coordinate system in
Figure 2. ,e origin of the OC − XCYCZC coordinate system
is always coincident with the origin of the moving coor-
dinate system, and the axes are always in the same direction
as the axes in the static coordinate system. OC − XCYCZC

coordinate system is the coordinate system used to establish
the dynamic equation. In addition, Gp is the position of the
load center of mass.

2.2.DynamicModeling. First, we analyze the load dynamics.
Based on Newton’s second law and angular momentum
theory, inertia force and moment of load can be described:

fL � ml
€pl � ml

€p − mlQ _ω, (6)

TL �
B
IL _ω − mlQ€p , (7)

where ml is the mass of load; BIL is the inertia tensor of load
in the static coordinate system; and Q is the antisymmetric
matrix composed of each element of the eccentric vector of
the center of mass loaded in the static coordinate system and
is as follows:

Q �

0 −lz ly

lz 0 −lx

−ly lx 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

Based on the Newton–Euler method, the dynamic model
in task space can be obtained:

􏽘
6

i�1
ei · fi � fL + mp

€p + mp + ml􏼐 􏼑g, (9)

􏽘

6

i�1
R · ai( 􏼁 × ei · fi( 􏼁 � TL +

BIP _ω + ω ×
BIL +

BIP􏼐 􏼑ω,

(10)

where fi is the force of hydraulic cylinder of ith leg; ei is the
unit direction vector of the ith legs; fL is inertia force of load;
TL is inertia moment of load; mp is the mass of moving
platform; and BIP is the inertia tensor of moving platform in
the static coordinate system. In addition, the third term on
the right of equation (9) is the gravity of the system. ,e
second term on the right of equation (9) represents the
inertia force of the moving platform and the second term on
the right of equation (10) represents the inertia force of the
moving platform. Moreover, the third term on the right of
equation (10) is Coriolis/centrifugal forces.

From equations (9) and (10), it can be obtained that

τ � M(q) · €q + H( _q, q) · _q + G, (11)

where τ is the driving force vector in the task space; H( _q, q)

is the centrifugal/Coriolis term; G is the gravity term; and
M(q) is the mass of the system.

,e relationship between the driving force vector in the
task space and the driving force vector in the joint space can
be expressed by

τ � JTf . (12)

From equations (11) and (12), the dynamic model of the
robot in joint space can be rewritten as

f � ML(l) · €l + HL(l, _l) · _l + GL, (13)

where ML(l) is the system mass matrix in joint space,
HL(l, _l) is the centrifugal/Coriolis term in joint space, GL is
the gravity term in joint space, and

ML(l) � J−1TM(q)J−1
,

HL(l, _l) � J− 1T M(q) _J
− 1

+ H( _q, q)J−1
􏼒 􏼓,

GL � J− 1TGq.

(14)

,e impact of the centrifugal/Coriolis term is small,
which can be ignored, and equation (13) can be rewritten as

f � ML(l) · €l + GL. (15)

2.3. Dynamic Effects of Load. Before establishing the iden-
tification model and designing the excitation trajectory, it is
necessary to analyze the impact of the load on the dynamics
of the manipulator. Analyzing the dynamic equation (11),
the equation mainly includes three items, Coriolis/cen-
tripetal force, gravity force, and inertial force. ,e load will
affect the value of the Coriolis force/centripetal force, but
this item of parallel manipulator is generally small and
generally ignored. ,e gravity term is only related to the
mass of the system. For parallel manipulators, the mass of
the load is usually a constant value and can be easily
measured, so it is not necessary to identify the load mass.
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Figure 2: Kinematic relationship.
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,erefore, we mainly analyze the effect of load on the inertial
force of the system.

,e inertial forces and torques of the system are as
follows:

fI,x � ma€x + mp€x + mplz _ωy − mply _ωz,

fI,y � ma€y + mp€y − mplz _ωx + mplx _ωz,

fI,z � ma€z + mp€z + mply _ωx + mplx _ωy,

MI,rx �
B
Ip,xx +

B
Il,xx􏼐 􏼑 _ωx − mplz€y + mply€z − mplxly _ωy − mplxlz _ωz −

B
Il,xy _ωy −

B
Il,xz _ωz −

B
Ip,xy _ωy −

B
Ip,xz _ωz,

MI,ry �
B
Ip,yy +

B
Il,yy􏼐 􏼑 _ωy + mplz€x − mplx€z − mplylz _ωz − mplxly _ωx −

B
Il,xy _ωx −

B
Il,yz _ωz −

B
Ip,xy _ωx −

B
Ip,yz _ωz,

MI,rz �
B
Ip,zz +

B
Il,zz􏼐 􏼑 _ωz − mply€x + mplx€y − mplxlz _ωx − mplylz _ωy −

B
Il,xz _ωx −

B
Il,yz _ωy −

B
Ip,xz _ωx −

B
Ip,yz _ωy,

(16)

where BIp,xx, BIp,yy, and BIp,zz are the moments of inertia of
moving platform in the static coordinate system, and BIp,xx,
BIp,xx, and BIp,xx are the products of inertia of moving
platform in the static coordinate system; BIp,xx, BIp,yy, and
BIp,zz are the moments of inertia of load in the static co-
ordinate system, and BIl,xx, BIl,xx and BIl,xx are the products
of inertia of load in the static coordinate system.

Equation (16) is the inertial force equation of the PM
with load. ,e equation shows that the load dynamic pa-
rameters, such as mass, inertia tensor, and position of load
centroid have an effect on the inertial force or moment of the
system. Analyzing equation (16), we can see that the inertial

force or moment on a certain degree of freedom is not only
determined by the acceleration on that degree of freedom,
but also determined by the acceleration on the other degrees
of freedom. So the PM with load has strong dynamic
coupling characteristics among the six degrees of freedom.
In addition, it is easy to know that the dynamic coupling is
mainly caused by load.

Equation (16) can be rewritten as

FI � M(q)€q . (17)

,e mass matrix of equation (17) can be expressed by

M(q) �

m 0 0 0 mplz −mply

0 m 0 −mplz 0 mplx

0 0 m mply −mplx 0

0 −mplz mply
BIl,xx + BIp,xx −BIp,xy − BIl,xy − mplxly −BIp,xz − BIl,xz − mplxlz

mplz 0 −mplx −BIp,xy − BIl,xy − mplxly
BIl,yy + BIp,yy −BIp,yz − BIl,yz − mplylz

−mply mplx 0 −BIp,xz − BIl,xz − mplxlz −BIp,yz − BIl,yz − mplylz
BIl,zz + BIp,zz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

,e off-diagonal elements in M(q) are the cause of the
dynamic coupling among the six DOFs. Extracting these
nondiagonal elements, the coupled mass matrix Mc(q) can
be obtained:

MC(q) �
03×3 L3×3

J3×3 K3×3
􏼢 􏼣 �

0 0 0 0 mplz −mply

0 0 0 −mplz 0 mplx

0 0 0 mply −mplx 0

0 −mplz mply 0 −BIp,xy − BIl,xy − mplxly −BIp,xz − BIl,xz − mplxlz

mplz 0 −mplx −BIp,xy − BIl,xy − mplxly 0 −BIp,yz − BIl,yz − mplylz

−mply mplx 0 −BIp,xz − BIl,xz − mplxlz −BIp,yz − BIl,yz − mplylz 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(19)

where 03×3 is third-order zero matrix and L3×3, J3×3, andK3×3
are the third-order submatrix of MC(q). First, analyze the

submatrix L. ,e nonzero elements in the matrix L are the
coefficients of angular acceleration in the inertial force
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equation. ,us, the element value in this matrix can be used
to measure the dynamic coupling influence of rotational
motion on the translational motion. ,e larger the element
value, the stronger the coupling effect. For example, if the
matrix is a zero matrix, the coefficients representing the
angular acceleration in the inertial force term are all zero,
indicating that the rotational motion does not affect the
translational motion. In the same way, the matrix L is
composed of the coefficients of each translational acceler-
ation in the moment of inertia, which represents the in-
fluence of translational motion on rotational motion. It can
be seen from equation (19) that the elements in J and L are
only related to the load, and the value of each nonzero el-
ement is determined by the load mass and the position of the
centroid, so it is important to know their values a priori.
Matrix K describes the dynamic coupling between the three
rotational degrees of freedom and the nondiagonal elements
in the matrix K are mainly determined by the load dynamic
parameters.

In summary, the load has a greater impact on the dy-
namics of the system, especially the inertial force of the load.
,erefore, the dynamic identification of the load is very
important.

3. Identification Process

In order to eliminate the influence of the load on the dy-
namic characteristics of the parallel manipulator and ensure
the application of some advanced model-based control
strategies, it is necessary to identify the parameters of the
dynamic model of the load. Since the mass of the load is
generally easier to determine, this paper only studies the
parameter identification of the position of the centroid and
the inertia tensor of the load. ,e inertia tensor and the
position of the center of mass used in equation (11) are
referred to as the dynamic parameters in the static coor-
dinate system.

,e inertia tensor of load is a 3∗ 3 matrix and can be
expressed by

BIL � R ·
AIL · RT

, (20)

where AIL is the inertial tensor of load in moving coordinate
system.

,e position of the center of mass is a column vector and
its equation is

Bb � R ·
Ab, (21)

where Ab � Δx Δy Δz􏼂 􏼃
T is Bb � lx ly lz􏽨 􏽩

T
.

From equations (20) and (21), it is easy to know that the
dynamic parameters are not constant and they change with
the excitation trajectory of three rotational DOFs. However,
the parameter identification of variables is very difficult and
the corresponding real-time identification algorithm needs
to be designed. To cope with this problem, the inertia tensor
and the position of the center of mass relative to the moving
coordinate system are selected as a base parameters set
because these two parameters are constant and not affected
by the trajectory of excitation, which can reduce the diffi-
culty of identification.

3.1. Excitation Trajectory. Although there is no variable in
the basic parameters set, the equation of inertial force/
moment with regard to the identified parameters is not
simple. In equation (16), the identification parameters are
coupled with each other, which is impossible to separate. In
order to reduce the coupling degree of the identified pa-
rameters in the dynamic equation, it is necessary to sim-
plify the dynamic equation with regard to the identified
parameters. When the given signal is a translational degree
of freedom signal with a small amplitude, the coupling
amplitude of each rotational degree of freedom is relatively
small, and the system can be regarded as a small transla-
tional movement near the zero position, and the rotation
matrix R can be treated as the identity matrix. In addition,
when the given signal is a rotation signal with a small
amplitude (less than 1 degree), the rotation matrix can also
be regarded as the identity matrix. When the rotation
matrix R is the identity matrix, formula (16) can be sim-
plified to formula

fI,x(t) � ma€x(t) + mp€x(t) + mpΔz _ωy(t),

fI,y(t) � ma€y(t) + mp€y(t) − mpΔz(t) _ωx,

fI,z(t) � ma€z(t) + mp€z(t),

MI,rx(t) �
A

Ip,xx +
A

Il,xx(t) + mpΔz(t)
2

􏼐 􏼑 _ωx(t) − mpΔz(t)y(t),

MI,ry(t) �
A

Ip,yy +
A

Il,yy(t) + mpΔz(t)
2

􏼐 􏼑 _ωy(t) + mpΔz(t)€x(t),

MI,rz(t) �
A

Ip,zz +
A

Il,zz(t)􏼐 􏼑 _ωz(t).

(22)

,e identified parameters in equation (22) are AIl,xx,
AIl,yy, AIl,zz, and Δz. In order to obtain sufficient infor-
mation on these parameters, the exciting trajectory should
be well designed.

Equation (3) requires that the amplitude of the given
excitation signal on rotational direction should be small
enough. Because when the rotation degree of freedom
excitation signal is applied, the simplified model will
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have a large modeling error relative to the original
model. Due to the dynamic coupling characteristics
between Dx and Ry, the motion on Dx and Ry both can
excite dynamic parameters AIl,yy and Δz. For these two
parameters, the dx direction is selected to apply an ex-
citation signal because the translation signal satisfies
equation (6) better than the rotation signal. Similarly, the
dx direction is selected to apply an excitation signal to
excite dynamic parameters AIl,xx and Δz. Since the last
dynamic parameter AIl,zz only exits in the equation of
MI,rz, the Rz direction is selected to apply an excitation
signal to excite dynamic parameter AIl,zz. Note that the
amplitude of the excitation signal on Rz direction should
satisfy the condition of equation (22).

,e excitation trajectory of the system is as follows:

dx � 0.2 · sin(πt),

dy � 0.2 · sin(πt),

rz � 0.2 · sin(πt).

(23)

It can be seen from the above equation that the excitation
signals of the system are two translational signals, one ro-
tational signal, and the rotational signal with a small am-
plitude, so it satisfies the system dynamics equation (22).
Note that the excitation signal in the rotation direction
cannot be too small; otherwise, the dynamic characteristics
of the system cannot be well excited.

3.2. EKF Identification Process. Select the state variable of the
system: angular velocity in Rx, Ry, and Rz directions, centroid
eccentricity z, and load moment of inertia AIl,xx, AIl,yy, AIl,zz.

,e state vector of the system is

x � vrx(t) vry(t) vrz(t) z(t) AIl,xx (t)
A

Il,yy(t)
A

Il,zz(t)􏽨 􏽩
T
.

(24)

Establish the system differential equation as follows:

_vrx(t) �
mpz(t)fI,y(t) + mMI,rx(t)

m AIp,xx + AIl,xx(t) + mpz(t)
2

􏼐 􏼑􏼐 􏼑 − m
2
pz(t)

2,

_vry(t) �
mpz(t)fI,x(t) − mMI,ry(t)

m
2
pz(t)

2
− m

A
Ip,yy +

A
Il,yy(t)􏼐 􏼑 + mpz(t)

2
􏼐 􏼑

,

_vrz(t) �
MI,rz(t)

AIp,zz + AIl,zz(t)
,

_z(t) � 0,

A _Il,xx(t) � 0

A _Il,yy(t) � 0,

A _Il,zz(k) � 0.

(25)

,e discrete form of formula (25) is as follows:

_vrx(k) �
mpz(k − 1)fI,y(k − 1) + mMI,rx(k − 1)

m AIp,yy + AIl,yy(t)(k − 1) + mpz(k − 1)
2

􏼐 􏼑􏼐 􏼑 − m
2
pz(k − 1)

2,

_vry(k) �
mpz(k − 1)fI,x(k − 1) − mMI,ry(k − 1)

m
2
pz(k − 1)

2
− m

A
Ip,xx +

A
Il,xx(t)(k − 1) + mpz(k − 1)

2
􏼐 􏼑􏼐 􏼑

,

_vrz(k) �
MI,rz(k − 1)

AIp,zz + AIl,zz(t)(k − 1)
,

_z(k) � 0,

_Ipc,xx(k) � 0,

Ipc,yy(k) � 0,

_Ipc,zz(k) � 0.

(26)

,e derivative of the state vector is as follows:

_xk � _vrx(k) _vry(k) _vrz(k) _z(k) A _Il,xx (k)
A _Il,yy(k)

A _Il,zz(k)􏽨 􏽩
T
.

(27)

From formulas (26) and (27), the state equation of the
system is

xk � _xk−1Δt + xk−1 + Wk−1. (28)

,e observed values of the system are the angular ve-
locities in the directions of the three degrees of freedom of
Rx, Ry, and Rz, and the observation equation is as follows:

zrx(k) � vrx(k) + Vrx(k),

zry(k) � vry(k) + Vry(k),

zrz(k) � vrz(k) + Vrz(k).

(29)

,e observation vector and the observation noise vector
are as follows:

zk � zrx(k) zrx(k) zrx(k)􏼂 􏼃
T
,

Vk � Vrx(k) Vrx(k) Vrx(k)􏼂 􏼃
T
.

(30)

Equations (28) and (29) are the state space equation and
observation equation of the system, respectively, which are
written as

xk � f xk−1( 􏼁 + Wk−1,

zk � Hxk + Vk−1,
􏼨 (31)

where H � E3×3 04×3􏼂 􏼃 is the observation matrix of the
system.

Equation (31) is the system model that needs to be
identified. ,e extended Kalman filter algorithm is used to
estimate the parameters of the model. ,e extended Kalman
filter algorithm is mainly divided into two parts, the time
update part and the measurement update part.,e two parts
are introduced separately below.

3.2.1. Time Update. ,e main purpose of the time update
equation is to calculate the next prior estimate vector on the
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basis of the last optimal estimate vector and also to update
the prior error covariance matrix. ,e time update (pre-
diction) equation is

􏽢x
−
k � f 􏽢xk−1( 􏼁,

P
−
k � Jk−1Pk−1J

T
k−1 + Qk−1.

(32)

When the system performs state transition, there will be
state transition noise, which is Gaussian white noise, and its
covariance matrix is Q in the time update equation.

J is the Jacobian matrix of the system, which is obtained
by the partial derivative of the state function f on the state
vector x. ,e expression of the Jacobian matrix of the
identification model in this paper is as follows

:

J �

zf1

zx1

zf1

zx2
. . .

zf1

zx7

zf2

zx1

zf2

zx2
. . .

zf2

zx7

⋮ ⋮ ⋱ ⋮

zf7

zx1

zf7

zx2
. . .

zf7

zx7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

E3×3 N

04×3 E4×4

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (33)

N is the submatrix of J, and its expression is as follows:

N �

j11 j12 0 0

j21 0 j22 0

0 0 0 j34

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (34)

where

j11 �
ΔtfI,x(k − 1)mp

m
2
pz(k − 1)

2
− m

A
Ip,xx +

A
Il,xx(t)(k − 1) + m

2
pz

2
(k − 1)􏼐 􏼑

,

−
Δt 2m

2
pz(k − 1) − 2mmpz(k − 1)􏼐 􏼑 mpz(k − 1)fI,x(k − 1) − mMI,ry(k − 1)􏼐 􏼑

m
2
pz

2
(k − 1) − m

A
Ip,xx +

A
Il,xx(t)(k − 1) + mpz

2
(k − 1)􏼐 􏼑􏽨 􏽩

2 ,

j12 �
m mpz(k − 1)fI,x(k − 1) − mMI,ry(k − 1)􏼐 􏼑

m
2
pz

2
(k − 1) − m

A
Ip,xx +

A
Il,xx(t)(k − 1) + mpz

2
(k − 1)􏼐 􏼑􏽨 􏽩

2
⎛⎜⎝ ⎞⎟⎠Δt,

j21 �
fI,y(k − 1)mpΔt

m AIp,yy + AIl,yy(t) + mpz(k − 1)
2

􏼐 􏼑􏼐 􏼑 − m
2
pz(k − 1)

2

−
2mmpz(k − 1) − 2m

2
pz(k − 1)􏼐 􏼑 mpz(k − 1)fI,y(k − 1) + mMI,rx(k − 1)􏼐 􏼑Δt

m
A

Ip,yy +
A

Il,yy(t)(k − 1) + mpz(k − 1)
2

􏼐 􏼑􏼐 􏼑 − m
2
pz(k − 1)

2
􏽨 􏽩

2 ,

j22 �
m mpz(k − 1)fI,y(k − 1) + mMI,rx(k − 1)􏼐 􏼑Δt

m
A

Ip,yy +
A

Il,yy(k − 1) + mpz(k − 1)
2

􏼐 􏼑􏼐 􏼑 − m
2
pz(k − 1)

2
􏽨 􏽩

2,

j34 �
MI,rz(k − 1)

A
Ip,zz +

A
Il,zz(k − 1)􏽨 􏽩

2
⎛⎜⎝ ⎞⎟⎠Δt.

(35)
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3.2.2. Measurement Update. ,e a priori estimated value
and the actual value of the system are not necessarily equal,
so the a priori estimated value needs to be corrected by the
measured value. ,e main purpose of the measurement
update equation is to find the optimal estimated value of the
current iteration of the system. Update the Kalman gain, the
optimal estimate of the system, and the posterior error
covariance. ,e measurement update equation is

Kk � P
−
k H

T HP−
k H

T
+ Rk􏼐 􏼑

−1
,

􏽢xk � 􏽢x
−
k + Kk zk − H􏽢x

−
k( 􏼁,

Pk � I − KkH( 􏼁P
−
k .

(36)

In the equation, K is the Kalman gain and P is the
posterior error covariance matrix. ,e system will produce
measurement noise during measurement.,is noise is white
noise. R in the measurement update equation is the co-
variance matrix of the measurement noise. Now, we sum-
marize the EKF identification algorithm for the parallel
robot manipulator as shown in Algorithm 1.

4. Numerical Simulations

In this section, the simulation analysis is carried out in
MATLAB/Simulink. For the simulation model, the me-
chanical model is built using Multibody and the sampling
time is set to 1ms. Moreover, the main parameters of the
Stewart robot with uncertain load are shown in Table 1.

Corresponding simulation strategies are designed for load
dynamics parameter identification, as shown in Figure 3.

First, a specific excitation signal is used to excite the
dynamic characteristics of the load. ,en, the displacement,
velocity, and output force of each leg were collected.
According to the kinematic analysis of the parallel manip-
ulator, the displacement, velocity, and force in the DOF
space can be obtained by the kinematic positive solution or
the velocity Jacobian matrix transformation of these mea-
sured values. Finally, the displacement, velocity, and force in
the DOF space are input into the estimator and the estimator
can calculate the dynamic parameters of the load based on
the previously designed identification algorithm.

According to Figure 4, the corresponding simulation
system was built in MATLAB/Simulink, as shown in

Figure 4. ,e first is a signal generator block used to
generate a target trajectory. ,e second is the kinematics
block and its main function is to convert the task space
signal to the joint space signal and calculate the speed
Jacobian matrix. ,e third is the PID controller block. ,e
fourth is the hydraulic system block. ,e fifth is the
mechanical model of the Stewart parallel mechanism. ,e
sixth is the EKF estimator.

In the simulation, the initial estimated value of the
state variables is all 0 and the initial error covariance
matrix is diag 1 1 1 1 10 500 500( 􏼁. Moreover, the
value of the dynamic parameters to be identified is shown
in Table 2.

,e identification results of load dynamics parameters
are shown in Figure 4.

It can be seen from Figure 5 that the proposed method in
this paper can estimate the dynamic parameters of loads. It
can be seen from Figure 5(a) that this identification method
has a high estimation accuracy for centroid eccentricity
along the z-axis direction, and the identification of Δz curve
in the figure almost overlaps with the real value.
Figures 5(b)–5(d) are identification curves of load dynamics
parameters AIl,xx, AIl,yy, and AIl,zz, respectively. Although
there is a certain error between the values of the three inertial
parameters and the real values, the error is not large.

Table 3 shows the true value Xr, identification value Xid,
and relative error er of the load dynamic parameters ob-
tained by the proposed method. ,e relative error er is
defined as

er �
Xr − Xid

Xr

× 100%. (37)

Algorithm extended Kalman filter algorithm
(1) Initialize the estimated value of the state variable and the error covariance matrix
(2) Repeat
(3) Calculate prior state estimates, 􏽢x−

k � f(􏽢xk−1)

(4) Calculate the Jacobian matrix, Jk−1
(5) Calculate the prior error covariance, P−

k � Jk−1Pk−1J
T
k−1 + Qk−1

(6) Calculate Kalman gain, Kk � P−
KHT(HP−

KHT + Rk)− 1

(7) Update the posterior state estimate, 􏽢xk � 􏽢x−
K + Kk(zk − H􏽢x−

K)

(8) Update posterior error covariance, Pk � (I − KkH)P−
K

(9) Output the best estimate of this iteration
(10) Until Simulation stopped
(11) End

ALGORITHM 1: Identification algorithm.

Table 1: Main parameters of the Stewart robot with load.

Parameters Value
Radius of upper/lower platform (m) 0.4/0.6
Initial length of the linear hydraulic cylinder (m) 0.8741
Min/max stroke of the hydraulic cylinder (m) −0.3/0.3
Mass of load (kg) 500
Mass of upper platform (kg) 100
Moment of inertia of the upper platform
(kg·m2) diag (25, 25, 44)
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Table 2: Load dynamics parameters to be identified.

Symbol Parameters Value Unit
Δz Centroid position 0.3 m
diag AIl,xx

AIl,yy
AIl,zz􏼐 􏼑 Moment of inertia of load (kg·m2) diag (25, 25, 25) kg·m2
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5. Conclusion

,e proposed method has been successfully applied to a six-
degree-of-freedom Gough–Stewart parallel manipulator for
load dynamic parameters estimation. ,e identification al-
gorithm is simple and easy to implement. Compared with
the traditional least square method, the proposed identifi-
cation approach does not require linearization of the dy-
namic model and optimization of the excitation trajectory.
Moreover, this method is not sensitive tomeasurement noise
and without acceleration measurements in the process of
identification.

Note that the method proposed in this paper is an offline
identification method. How to study a load real-time
identification algorithm not limited to trajectory needs
further study.
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A robust adaptive fuzzy nonlinear controller based on dynamic surface and integral sliding mode control strategy (ADSISMC) is
proposed to realize trajectory tracking for a class of quadrotor UAVs. In this study, the composite factors including parametric
uncertainties and external disturbances are added to controller design, which make it more realistic. +e quadrotor model is
divided into two subsystems of attitude and position that make the control design become feasible. +e main contributions of the
proposed ADSISMC strategy are as follows: (1) +e combination of dynamic surface and integral sliding mode makes the system
always in sliding stage by finding the appropriate initial position compared with the common sliding mode, and the complexity of
explosion in backstepping method is eliminated. (2) By introducing the fuzzy system, the unknown functions and uncertainties
can be approximated which significantly improves the robustness and the tracking performance. (3) +e switching control
strategy is utilized to compensate for the errors between estimated and ideal inputs; the tracking performance of the whole system
has been significantly improved. +e simulation results show the effectiveness of the proposed control method.

1. Introduction

As a newborn member of the small unmanned aerial vehicle
(UVA) family, quadrotor has attracted much research in-
terest due to its extensive utility in several important ap-
plicants, such as commercial photography, military
surveillance, rescue mission, and agricultural investigation
[1–4]. Compared with traditional unmanned fixed-wing
flight vehicles and manned airplanes, the main advantages of
the quadrotor lie in small size, low cost, stable hovering,
vertical take-off and landing (VTOL), convenient porta-
bility, and versatile features [5]. However, trajectory tracking
control of the quadrotor is a thorny problem because of its
nonlinear, underactuated dynamics, and strong coupling
[6, 7]. Moreover, the quadrotor system is susceptible to
external disturbances such as wind and nonlinear frictions.
What is more, taking robustness of the trajectory tracking
controller into consideration poses a bigger challenge [8].

In early quadrotor research stage, many studies used
conventional linear control methods such as proportional-
integral-derivative (PID) [9, 10] and linear quadratic reg-
ulator (LQR) [11] to design the quadrotor controller in order
to improve the simpleness and practicability. +e linear
control technology was developed to stabilize the quadrotor
by neglecting the unimportant factors and linearizing the
dynamic model.+erefore, it is poor and even not acceptable
for the tracking accuracy and the robustness of the quad-
rotor. To overcome the drawbacks of the aforementioned
linear control approaches, a large number of nonlinear
control strategies, including backstepping control [12–15],
sliding mode control (SMC) [16–20], and feedback linear-
ization control, are utilized to improve the tracking per-
formance of the flight control system.

Backstepping control method has received extensive at-
tention, not only in the quadrotor control, but also in some
mechanical systems.+emain idea of backstepping technology
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is to select the appropriate state variable function as the re-
cursive virtual control input. Once the final control input is
received, the stability of the whole system is guaranteed. In
[21–24], a backstepping controller has been designed to sta-
bilize the attitude system of quadrotor. In [24], attitude control
using hybrid backstepping methodology based on Fre-
net–Serret theory is studied in detail. +e results show that the
controller has good robustness under wind disturbance. To
solve the problem of trajectory tracking, in [25], an adaptive
controller combining parameter adaptive and backstepping
control is designed. However, the obvious limitation of con-
ventional backstepping design is the problem of “complexity of
explosion” caused by the repeated differentiation of some
nonlinear functions and the lack of robustness against un-
certainties. To overcome this limitation of traditional back-
stepping control, dynamic surface control (DSC) is proposed
as an effective alternative method [26–30]. In [27], a dynamic
surface control method based on RBF neural network ap-
proximation is proposed for a class of nonlinear time-delay
systems with state variables all measurable, which greatly
simplifies the design process of the controller.

Moreover, to enhance the attitude performance ro-
bustness, disturbance observer (DOB), parameter estimation
[31], and the approximation-based adaptive control are
generally combined with DSC to handle external distur-
bances and parameterized uncertainties. For instance, a class
of adaptive control methods using fuzzy logic systems or
neural networks to approximate unknown functions in
nonlinear systems have been proposed in [32–38]. In [33], a
dynamic surface control-based adaptive fuzzy control
method is proposed to overcome the “explosion of com-
plexity” problem of classical backstepping. In [35], a robust
dynamic surface controller based on extended state observer
is presented for a quadrotor UAV subject to external dis-
turbances and parametric uncertainties. In [36], both in-
direct and direct global neural controllers with the dynamic
surface design are developed for the strict-feedback systems.
+e simulation results are presented to demonstrate the
feasibility of the proposed global neural DSC design. A robot
control scheme based on dynamic surface considering
output error constraints, unknown dynamics, and bounded
disturbance has been proposed in [39]; by introducing an
improved virtual variable, the robustness of the control
system was improved. However, the performance properties
and robustness are not taken into account in these papers. As
a commonly used nonlinear control method, the SMC is
utilized as an effective method to design robust controllers
for a specific class of nonlinear tracking problems in the
presence of uncertain conditions [40–45]. Traditional SMC
features the low sensitivity to the disturbances and pa-
rameter variations of the system [46–51]. In [50], a method
based on second-order sliding mode control is used to avoid
the chattering phenomenon for quadrotor UAVs. In [51], a
robust backstepping sliding mode nonlinear controller for
quadrotor UAVs is proposed to improve the robustness of
the controller against model uncertainty and external dis-
turbances. Compared with traditional sliding mode control
method, the integral sliding mode (ISM) can guarantee that
the system always meets the desired dynamic performance

index during the whole arrival period which significantly
improves the robustness of the control system.

Motivated by the aforementioned observations, a new
control methodology combined with dynamic surface and
ISMC is proposed for the quadrotor trajectory tracking
problem under parametric uncertainties and external dis-
turbances. +e main contributions of this paper are sum-
marized as follows: (1) By fusing the technique of DSC and
the integral SMC, a new integral sliding mode robust dy-
namic surface trajectory tracking controller is designed,
which eliminates the “explosion of complexity” in the
backstepping and improves the robustness of the whole
system. (2) +e FLSs are introduced to approach the ideal
control law. And the estimations of the weight vector norm
are utilized in the FLSs to significantly reduce the number of
online estimation parameters. +erefore, the amount of
calculation is obviously reduced, and the structure of the
proposed controller is simplified. (3) +e adaptive switching
control is introduced to compensate the error between the
real control law and the ideal control law, and the tracking
performance of the whole system has been significantly
improved.

+e rest of this paper is organized as follows. +e
modeling of a quadrotor and some preliminaries are in-
troduced in Section 2.+e control algorithms are introduced
in Section 3. Section 4 gives the stability analysis of the
control system. Extensive simulations under different op-
erating scenarios are given in Section 5.+is paper ends with
the conclusions in Section 6.

2. Problem Formulation and Preliminaries

2.1.#eMathematicalModel ofUAV. +e quadrotor UAV is
an underactuated system because it has six degrees of
freedom, but only four actual inputs [1, 2]. In this paper, the
quadrotor UAV with four rotors is shown in Figure 1. +e
equations of the dynamic quadrotor UAV are basically a
rotating rigid body with six degrees of freedom [4, 5] which
are usually derived by Newton–Euler formulas [8–10].

Define ξ � [ϕ, θ, φ]T and ωb � [p, q, r]T, with φ, θ, and ϕ
being the angle of roll, pitch, and yaw with respect to the
inertia frame. p, q, and r are the angular velocity of roll,
pitch, and yaw with respect to the body-fixed frame. +e
rotation matrix from the rigid frame to the inertia frame can
be expressed as

Rt �

CφCθ CφSθSϕ − SφCϕ CφSθCϕ + SφSϕ

SφCθ SφSθSϕ + CφCϕ SφSθCϕ − CφSϕ

− Sθ CθSϕ CθCϕ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (1)

where S(·) and C(·) denote sin(·) and cos(·), respectively.
According to the rotation matrix Rt, the relationship be-
tween _ξ and ωb can be described as

ωb � Rr
_ξ �

1 0 − Sθ

0 Cϕ CθSϕ

0 − Sϕ CθCϕ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

_ϕ
_θ

_φ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (2)
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Define Mb as the torque provided by the rotors with
respect to the body-fixed frame, and it is presented as
follows:

Mb �

Mbx

Mby

Mbz

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

lk Ω
2
4 − Ω22􏼐 􏼑

lk Ω
2
3 − Ω21􏼐 􏼑

l Ω24 +Ω22 − Ω21 − Ω23􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3)

where Ωi denotes the rotary speed of the front, right, rear,
and left rotors, respectively; lk is the distance between a rotor
and the center of mass of the quadrotor; k is the drag force
coefficient; and l is the reverse moment coefficient. Using the
Newton–Euler equation, the rotational dynamic equation of
the quadrotor is obtained as follows:

Mb � Jb _ωb + ωb × Jbωb + Mg + Md, (4)

where Jb � diag(Jx, Jy, Jz) is a symmetric positive definite
constant matrix with Jx, Jy, and Jz being the rotary inertia
with respect to the ObXb, ObYb, and ObZb axes, respectively;
the notation × denotes cross multiplication; Mg and Md are
the resultant torques due to the resultant of aerodynamic
frictions torque and the gyroscopic effects. +ey are given as

Mg � 􏽘
4

i�1
ωb × Jr 0, 0, (− 1)

i+1Ωi􏽨 􏽩
T

, Md � diag dϕ, dθ, dφ􏼐 􏼑 _ξ,

(5)
where Jr denotes the moment of inertia of each rotor; dϕ, dθ,
and dφ are the corresponding aerodynamic drag coefficients.
According to (4), the following equation can be obtained:

_ωb � J
− 1
b Mb − Mg − Md − ωb × Jbωb( 􏼁􏽨 􏽩. (6)

Furthermore, with the help of approximation of Euler
angles at equilibrium point, the following dynamic equa-
tions can be obtained:

€ϕ �
_θ _φ Jy − Jz􏼐 􏼑 − Jr

_θϖ − dϕ
_ϕ + Mbx􏽨 􏽩

Jx

,

€θ �
_ϕ _φ Jz − Jx( 􏼁 − Jr

_ϕϖ − dθ
_θ + Mby􏽨 􏽩

Jy

€φ �
_ϕ _θ Jx − Jy􏼐 􏼑 − dφ _φ + Mbz􏽨 􏽩

Jz

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (7)

where ϖ � Ω4 +Ω3 − Ω2 − Ω1 can be got easily online. It
should be noted that to make the roll and pitch angles
physically meaningful, they are both limited to (− π/2, π/2).
In particular, the yaw angle is also limited to (− π/2, π/2) in
this study, while P � [x, y, z]T ∈ R3 is the position with
respect to the inertial frame. +e translational dynamic
equations of the quadrotor are given as

m €P � Rt · F +

0
0

− mg

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ −

dx _x

dy _y

dz _z

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦, (8)

where dx, dy, and dz are the air drag coefficients which are
added in (8) to model the drag force caused by translational
motions; F is the lift force generated by rotors with respect to
the body-fixed frame.

F �

0

0

k Ω21 +Ω22 +Ω23 +Ω24􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

By combining (7) and (8), a compact affine nonlinear
equation of the quadrotor UAV is given as

_X � f(X) + g(X)U, (10)

whereX � [x, _x, y, _y, z, _z, ϕ, _ϕ, θ, _θ,φ, _φ]T ∈ R12 is the state
variable; f(X) and g(X) are smooth functions on X.
Equation (10) is expended as follows:

_x1 � x2,

_x2 � Cx7Sx9Cx11 + Sx7Sx11( 􏼁U1 − a1x2 + d1,

_x3 � x4,

_x4 � Cx7Sx9Sx11 − Sx7Sx11( 􏼁U1 − a2x4 + d2,

_x5 � x6,

_x6 � Cx7Cx9( 􏼁U1 − g − a3x6 + d3,

_x7 � x8,

_x8 � a4x10x12 + a5ϖx10 − a6x8 + U2 + d4,

_x9 � x10,

_x10 � a7x8x12 + a8ϖx8 − a9x10 + U3 + d5,

_x11 � x12,

_x12 � a10x8x10 − a11x12 + U4 + d6,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where Ui, i � 1, 2, 3, 4 represents the control inputs defined
as follows:

U1 �
lk Ω

2
1 +Ω22 +Ω23 +Ω24􏼐 􏼑

m
,

U2 �
lk Ω

2
4 − Ω22􏼐 􏼑

Jx
,

U3 �
lk Ω

2
3 − Ω21􏼐 􏼑

Jy
,

U4 �
lk Ω

2
4 +Ω22 − Ω23 − Ω21􏼐 􏼑

Jz
,

(12)
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Figure 1: Schematic of the quadrotor UAV.
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and ai, i � 1, 2, . . . , 11, are the normalized parameters de-
fined as follows:

a1 �
dx

m
,

a2 �
dy

m
,

a3 �
dz

m
,

a4 �
Jy − Jz

Jx

,

a5 �
Jr

Jx

,

a6 �
dϕ

Jx

,

a7 �
Jz − Jx

Jy

,

a8 �
Jr

Jy

,

a9 �
dθ

Jy

,

a10 �
Jx − Jy

Jz

,

a11 �
dφ

Jz

.

(13)

2.2. Fuzzy Logic Systems (FLSs). In this study, the Fuzzy
Logic Systems (FLSs) are introduced to approximate the
continuous unknown functions on a given compact set. +e
FLSs consist of three main parts: fuzzy rule base, fuzzifi-
cation, and defuzzification operators. +e form of the fuzzy
rules of the fuzzy controller is

Rule l: If x1 is Fl
1 and x2 is Fl

2 and . . .and xn is Fl
n.

+en y is Gl, l � 1, 2, . . . , N. where
x(t) � [x1, x2, . . . , xn]T and y are the input and output of
the whole fuzzy system, respectively. And N is the number of
the rules. +e fuzzy basis functions forms are defined as

y(x) �
􏽐

N
l�1 y

l
􏽑

n
i�1 μFl

i
xi( 􏼁􏼒 􏼓

􏽐
N
l�1 􏽑

n
i�1 μFl

i
xi( 􏼁􏼒 􏼓

, (14)

where yl � maxy∈RμGl (y).

ξl(x) �
􏽑

n
i�1 μFl

i
xi( 􏼁

􏽐
N
l�1 􏽑

n
i�1 μFl

i
xi( 􏼁􏼒 􏼓

. (15)

Denoting αT � [y1, y2, . . . , yN] � [α1, α2, . . . , αN] and
ξ(x) � [ξ1(x), ξ2(x), . . . , ξN(x)]T, then equation of the
fuzzy system can be rewritten as

y(x) � αTξ(x). (16)

Lemma 1. For a continuous nonlinear function f(x) in a
compact set Ωx, it can be effectively approximated by FLSs
with any small approximated error ε> 0. f(x) can be
expressed as follows:

sup
x∈Ωx

f(x) − αTξ(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< ε, (17)
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Figure 2: Schematic diagram of the proposed control scheme.
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if x ∈ Ωx, then the smooth nonlinear function f(x) can be
expressed as

f(x) � α∗Tξ(x) + ε(x), (18)

where α∗ is the optimal fuzzy parameter vector, ε(x) is the
approximation error satisfies ‖ε(x)‖≤ ε ε> 0.

3. DSISMC Controller Design Procedure

In this section, the design process of dynamic surface in-
tegral sliding mode controller is proposed and the control
system block diagram is shown in Figure 2. +e controller
design process is divided into two parts: the position
tracking controller design and attitude tracking controller
design, as shown in Tables 1 and 2, respectively. To make the
presentation clear, the specific controller design process is
given in Appendix A.

In Table 1, ei, (i � 1, 2, 3) are the tracking error, and
xi, (i � 2, 4, 6) are the virtual laws. +e low-pass first-order
filters (T1.3), (T1.9), and (T1.15) are presented in each step to
get a new variable xid, (i � 2, 4, 6) with the time constants
τi, (i � 1, 2, 3). +e integral sliding mode surfaces Si, (i �

1, 2, 3) are selected in each step which improves the ro-
bustness of the system against disturbances and parameters
uncertainties. Due to the existence of unknown functions
and parameters, the fuzzy system vifs, (i � 1, 2, 3) are uti-
lized to approximate vi, (i � 1, 2, 3) with αi, (i � 1, 2, 3) and
ξi, (i � 1, 2, 3) being the adjustable parameters and fuzzy
basis vectors, respectively. +en, the switching control law
vivs, (i � 1, 2, 3) are introduced to compensate the error of
vi, (i � 1, 2, 3) and the ideal input. Ei, (i � 1, 2, 3) are the
switching gain, ci, ηi, ρi, (i � 1, 2, 3), and ki, (i � 1, 2, . . . , 6)

Table 1: Position control algorithm of UAVs.

Step 1
e1 � x1 − x1 d, (T1.1)
x2 � _x1 d − c1e1, (T1.2)
τ1 _x2d + x2d � x2, x2 d(0) � x2(0), (T1.3)
S1 � x2 − 􏽒

t

0( _x2 d − k1 _e1 − k2e1)dt, (T1.4)
v1fs � αT

1 ξ1, _􏽢α1 � − η1S1ξ1, (T1.5)
v1vs � − 􏽢E1sgn(S1),

_􏽢E1 � ρ1|S1|,
v1 � v1fs + v1vs. (T1.6)
Step 2
e3 � x3 − x3 d, (T1.7)
x4 � _x3 d − c2e3, (T1.8)
τ2 _x4d + x4d � x4, x4 d(0) � x4(0), (T1.9)
S2 � x4 − 􏽒

t

o
( _x4d − k3 _e3 − k4e3)dt, (T1.10)

v2fs � αT
2 ξ2, _􏽢α2 � − η2S2ξ2,

(T1.11)v2vs � − 􏽢E2sgn(S2),

v2vs � − 􏽢E2sgn(S2),

v2 � v2fs + v2vs. (T1.12)
Step 3
e5 � x5 − x5 d, (T1.13)
x6 � _x5 d − c3e5, (T1.14)
τ3 _x6d + x6d � x6, x6 d(0) � x6(0), (T1.15)
S3 � x6 − 􏽒

t

0( _x6 d − k5 _e5 − k6e5)dt, (T1.16)
v3fs � αT

3 ξ3, _􏽢α3 � − η3S3ξ3,
(T1.17)v3vs � − 􏽢E3sgn(S3),

v3vs � − 􏽢E3sgn(S3),

v3 � v3fs + v3vs. (T1.18)

Table 2: Attitude control algorithm of UAVs.

Step 4
e7 � x7 − x7d, (T2.1)
x8 � _x7 d − c4e7, (T2.2)
τ4 _x8 d + x8 d � x8, x8 d(0) � x8(0), (T2.3)
S4 � x8 − 􏽒

t

0( _x8 d − k7 _e7 − k8e8)dt, (T2.4)
U2fs � αT

4 ξ4, _􏽢α4 � − η4S4ξ4, (T2.5)
U2vs � − 􏽢E4sgn(S4),

_􏽢E4 � ρ4|S4|,
U2 � U2fs + U2vs. (T2.6)
Step 5
e9 � x9 − x9d, (T2.7)
x10 � _x9 d − c5e9, (T2.8)
τ5 _x10 d + x10 d � x10, x10 d(0) � x10(0), (T2.9)
S5 � x10 − 􏽒

t

0( _x10d − k9 _e9 − k10e11)dt, (T2.10)
U3fs � αT

5 ξ5, _􏽢α5 � − η5S5ξ5, (T2.11)
U3vs � − 􏽢E5sgn(S5),

_􏽢E5 � ρ5|S5|,
U3 � U3fs + U3vs. (T2.12)
Step 6
e11 � x11 − x11 d, (T2.13)
x12 � _x11 d − c6e11, (T2.14)
τ6 _x12 d + x12 d � x12, x12 d(0) � x12(0), (T2.15)
S6 � x12 − 􏽒

t

0( _x12d − k11 _e11 − k12e12)dt, (T2.16)
U4fs � αT

6 ξ6, _􏽢α6 � − η6S6ξ6, (T2.17)
U4vs � − 􏽢E6sgn(S6),

_􏽢E6 � ρ6|S6|,
U4 � U4fs + U4vs. (T2.18)

Table 3: Quadrotor parameters.

Symbol Case1 Case 2 Case 3 Case 4 Units
m 2 2 2 2 kg
l 0.2 0.2 0.2 0.2 m
κ 2.98 2.98 2.98 2.98 10− 6 N · s2 · rad− 2

τ 1.14 1.14 1.14 1.14 10− 7 N · s2 · rad− 2

dϕ 1.2 1.2 1.2 1.2 10− 2 N · s · rad− 1

dθdϕ 1.2 1.2 1.2 1.2 10− 2 N · s · rad− 1

Jx 1.25 1.25 1.25 1.25 N · s2 · rad− 1

Jy 1.25 1.25 1.25 1.25 N · s2 · rad− 1

Jz 2.50 2.88 3.25 3.75 N · s2 · rad− 1
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Figure 3: Space diagram of position in normal case.
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are positive constant. It is worth noting that v � [v1, v2, v3]
T

is a group of virtual control laws and they can be given by
v1 � (Cx7Sx9Cx11 + Sx7Sx11)U1, v2 � (Cx7Sx9Sx11 − Sx7Sx11)

U1, v3 � (Cx7Cx9)U1.
In Table 2, ei, (i � 4, 5, 6) are the tracking error,

andxi, (i � 8, 10, 12) are the virtual laws. +e low-pass first-
order filters (T2.3), (T2.9), and (T2.15) are presented in each
step to get a new variable xid, (i � 8, 10, 12) with the time
constants τi, (i � 4, 5, 6). +e integral sliding mode surfaces

Si, (i � 4, 5, 6) are selected in each step to improve the
robustness of the system. +e fuzzy system Uifs, (i � 2, 3, 4)

are utilized to approximate Ui, (i � 2, 3, 4) with
αi, (i � 4, 5, 6) and ξi, (i � 4, 5, 6) being adjustable param-
eters and fuzzy basis vectors, respectively. +en, the
switching control law Uivs, (i � 2, 3, 4) are introduced to
compensate for Ui, (i � 2, 3, 4) and the ideal input. Ei, (i �

4, 5, 6) are the switching gain. ci, ηi, ρi, (i � 4, 5, 6), and
ki, (i � 7, 8, . . . , 12) are positive constant.
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Remark 1. v1, v2, and v3 are combinations of available terms
that can be given directly or measured in Tables 1 and 2.
+erefore, the control input U1 can be solved by
U1 � v3/CX7

CX9
.

4. Stability Analysis of the Closed-Loop System

In this section, stability analysis of the proposed control
system is established to confirm that all signals in the closed
loop are ultimately bounded. +e errors of the first-order
filter are presented as follows:

yi � xid − xi, (i � 2, 4, . . . , 12). (19)

From (T1.3), (T1.9), (T1.15), (T2.3), (T2.9), and (T2.15),
one can obtain

_xid � −
yi

τi/2
, (i � 2, 4, . . . , 12). (20)

+e derivative of yi(i � 2) in time can be obtained as

_y2 � _x2d − x2 � −
y2

τ1
− €x2d + c1 _e1, (21)

then, one can obtain

_y2 � −
y2

τ1
+ B2 e1, e2, y2, €x2d( 􏼁, (22)

where B2(e1, e2, y2, €x2 d) � − €x2 d + c1 _e1 is a continuous
function. +e following formula can also be obtained:

_yi � −
yi

τi/2
+ Bi(·), (i � 2, 4, 6, 8, 10, 12). (23)

+en, the following inequalities hold:

yi _yi ≤ −
y
2
i

τi/2
+ Bi yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (i � 2, 4, 6, 8, 10, 12). (24)

Consider the Lyapunov function candidate

V � V1 + V2, (25)
with V1 � (1/2) 􏽐

6
i�1(e22i− 1 + y2

2i) and
V2 � (1/2) 􏽐

6
i�1(S2i + (1/ηi)􏽥αT

i 􏽥αi + (1/ρi)
􏽥E
2
i ). +en, the fol-

lowing theorem can be obtained.
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Theorem 1. Consider the closed-loop system which consists
of the position and attitude system, with the virtual control
signals (T1.2), (T1.8), (T1.14), (T2.2), (T2.8), and (T2.14), the
adaptive laws (T1.5), (T1.11), (T1.17), (T2.5), (T2.11), and
(T2.17), and the switching control laws (T1.6), (T1.12),
(T1.18), (T2.6), (T2.12), and (T2.18). If all the parametersci,
ηi, ρi, (i � 1, 2, . . . , 6), ki, (i � 1, 2, . . . , 12) and the time
constant of first-order filter τi, (i � 1, 2, . . . , 6) are designed
properly to satisfy V(0)≤p, (p> 0), all the closed-loop signals
are uniformly bounded and the tracking error can be kept
arbitrarily small.

Proof. +e specific proof process is presented in Appendix
B. □

5. Simulations

In this section, the following simulations are given to val-
idate the effectiveness and the performance of the proposed

adaptive dynamic surface integral sliding mode control. +e
parameters for the quadrotor UAV adopted in this paper are
presented in Table 3. In the following simulation, the desired
trajectory of the position and yaw angle
x(t), y(t), z(t), φ(t)􏼈 􏼉are chosen as
sin(t), cos(t), 0.5t, sin(0.5t){ }. +e controller parameters
chosen for simulation are ci � 0.01, τi � 0.001, ηi � 200,
ρi � 0.1, (i � 1, 2, . . . , 6), ki � 9, (i � 1, 3, 5, 7, 9, 11), and
ki � 20, (i � 2, 4, 6, 8, 10, 12). +e fuzzy membership func-
tions are chosen as follows:
ul(si) � exp(− [(si + (π/6) − (l − 1) × (π/12))/
(π/24)]2), (i � 1, 2, 3; l � 1, 2, 3, 4, 5, 6). +e disturbances
are chosen as follows: d1 � cos(t), d2 � sin(t),
d3 � sin(t)cos(t), d4 � 0.5 sin(0.5t), d5 � 0.5 cos(0.5t),
d6 � 0.25 sin(0.5t)cos(0.5t).

Case 1. In this case, the parameters of the quadrotor are
assumed normal. +e simulations for this case are
presented.
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Table 4: +e MVTE and RMSVTE of different schemes.

Kind of errors Proposed scheme ADSC scheme ASMC scheme
MVTE of x (m) 7.66e− 4 4.90e− 2 9.76e− 3

MVTE of y (m) 6.58e− 4 5.03e− 2 7.15e− 3

MVTE of z (m) 5.70e− 4 1.50e− 2 3.15e− 3

MVTE of φ (rad) 4.83e− 4 1.53e− 2 7.84e− 4

RMSVTE of x (m) 3.33e− 4 3.81e− 2 7.02e− 3

RMSVTE of y (m) 2.92e− 4 4.03e− 2 5.16e− 3

RMSVTE of z (m) 2.16e− 4 9.82e− 3 2.73e− 3

RMSVTE of φ(rad) 1.34e− 4 1.16e− 2 5.04e− 4
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Cases 2–4. Uncertainty (15%, 30%, and 50% added) in
the rotary inertia as well as the presence of external
disturbance. In these cases, we give a consideration to
both external disturbance and uncertainty in rotary
inertia. +e uncertainty in yaw axis is 15%, 30%, and
50%, respectively.

+e simulation results of Case 1 are presented from
Figures 3 to 7. Figure 3 shows the 3D tracking trajectory by
using the proposed controller. +e position and yaw angle
trajectories are shown in Figure 4, and the tracking errors are
given in Figure 5. Figure 6 shows the control signals. Figure 7
shows the change of roll and pitch angles. From the tracking
performance, it can be concluded that the proposed control
scheme can guarantee that all the variables are bounded and
that the control system has strong robustness. Figures 8 to 10
illustrate the tracking performance under the different
uncertainty cases. +e proposed scheme has the better ro-
bustness against external disturbances and uncertainty pa-
rameters. Figures 11 to 13 show the tracking error
comparisons between the ADSISMC, the ADSC, and the
ASMC methods. Meanwhile, the maximum values (MVTE)
and the root mean square values (RMSVTE) of tracking
error in steady of the proposed scheme and the other two
schemes are given in Table 4. +e simulation results show
that the proposed scheme has better tracking performance
and robustness compared with the ADSC and the ASMC
methods.

6. Conclusion

+is paper proposed a dynamic surface integral sliding mode
control scheme for a quadrotor UAV under the conditions
of parameter uncertainty and external disturbances. Virtual
control inputs are introduced in the robust controller design
to guarantee the trajectory tracking performance, and the
problem of “explosion of complexity” in the backstepping
design has been greatly simplified. +e fuzzy systems are
utilized to approximate the ideal control inputs and the
switch control is introduced to compensate for errors be-
tween estimated and ideal inputs which improves the control
performance and robustness of the whole system. In addi-
tion, the stability analysis of the overall system through
Lyapunov stability theory is presented, and all signals of the
closed loop are ultimately bounded. Finally, the simulation
results show that robustness and improved tracking per-
formance can be achieved with the proposed control scheme.

Appendix

A. The Controller Design Procedures

Step 1. Define the position error:

e1 � x1 − x1d, (A.1)

where x1 d is the desired x position command, and the
derivative of e1 with respect to time is

_e1 � x2 − _x1d. (A.2)

Define the virtual control x2,

x2 � − c1e1 + _x1d, (A.3)

where c1 is a positive constant. To solve the problem of
“complexity of explosion” caused by the repeated differ-
entiation, a new state variable x2 d is introduced and let x2
pass through the following first-order filter with constant τ1
(T1.3) to obtain x2 d

τ1 _x2d + x2d � x2, x2d(0) � x2(0), (A.4)

where x2 d is the output of the first-order filter; the filter error
is y1 � x2 d − x2. A proper integral sliding mode manifold is
chosen (T1.4):

S1 � x2 − 􏽚
t

0
_x2 d − k1 _e1 − k2e1( 􏼁dt, (A.5)

where k1 and k2 are both the positive constant. If the sliding
mode control is in an ideal state, the derivative of S1 with
respect to time is

S1 � _S1 � _x2 − _x2d + k1 _e1 + k2e1 � _e2 + k1 _e1 + k2e1 � 0.

(A.6)

+en, a variable v1 � (Cx7Sx9Cx11 + Sx7Sx11)U1 is in-
troduced to be a new control input; then

v1 − a1x2 + d1 − _x2d + k1 _e1 + k2e1 � _e2 + k1 _e1 + k2e1 � 0.

(A.7)

Assuming that the perturbations and parameters in the
equation are known, the control law for xmotion in an ideal
state is designed as follows:

v
∗
1 � a1x2 − d1 + _x2d − k1 _e1 − k2e1. (A.8)

In most cases, the system parameters are uncertain and
there are also unknown external disturbances, which makes
it difficult to obtain the ideal control signalv∗1 . +erefore, the
fuzzy system is used to approximate the ideal control sig-
nalv∗1 and obtain

v
∗
1 � v1fz s1, α1( 􏼁 + ε1 � αT

1 ξ1 + ε1, (A.9)

where ε1 is the approximation error, and |ε1|<E1. Intro-
ducing switching control law v1vs (T1.5) to compensate for v∗1
and v1fz,

v1vs � − 􏽢E1sgn S1( 􏼁, (A.10)

where 􏽢E1 is the estimation of E1.
+en, the actual control law (T1.6) is obtained as

v1 � v1fz + v1vs. (A.11)

Consider the Lyapunov function

Γ1 �
1
2
S
2
1 +

1
2η1

􏽥αT
1 􏽥α1 +

1
2ρ1

􏽥E
2
1, (A.12)

where η1 and ρ1are positive constant. +e derivative of Γ1
with respect to time can be presented below:

Complexity 13



_Γ1 � S1
_S1 +

1
η1

􏽥αT
1

_􏽥α1 +
1
ρ1

􏽥E1
_􏽥E1, (A.13)

while

v
∗
1 � a1x2 − d1 + _x2 d − k1 _e1 − k2e1

� a1x2 − d1 + _x2 − _S1

� v1 − _S1.

(A.14)

So
_S1 � v1 − v

∗
1 � v1fz + v1vs − v

∗
1 . (A.15)

Substituting (A.15) into (A.13), then

_Γ1 � S1
_S1 +

1
η1

􏽥αT
1

_􏽥α1 +
1
ρ1

􏽥E1
_􏽥E1

� S1 v1fz + v1vs − v
∗
1􏼐 􏼑 +

1
η1

􏽥αT
1

_􏽥α1 +
1
ρ1

􏽥E1
_􏽥E1

� 􏽥αT
1 S1ξ1 +

1
η1

_􏽥α1􏼠 􏼡 + S1 v1vs − ε1( 􏼁 +
1
ρ1

􏽥E1
_􏽥E1.

(A.16)

+e adaptive law and the switching control (T1.5) are
chosen below:

_􏽢α1 � − η1S1ξ1. (A.17)

And formula (A.16) becomes

_Γ1 � S1
_S1 +

1
η1

􏽥αT
1

_􏽥α1 +
1
ρ1

􏽥E1
_􏽥E1

� 􏽥αT
1 S1ξ1 +

1
η1

_􏽥α1􏼠 􏼡 + S1 v1vs − ε1( 􏼁 +
1
ρ1

􏽥E1
_􏽥E1

� − 􏽢E1 S1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε1S1 +
1
ρ1

􏽢E1 − E1􏼐 􏼑
_􏽢E1.

(A.18)

To make the Lyapunov function _Γ1 ≤ 0, the adaptive law
of switching control is updated below:

_􏽢E1 � ρ1 S1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (A.19)

+en,

_Γ1 � − 􏽢E1 S1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε1S1 +
1
ρ1

􏽢E1 − E1􏼐 􏼑
_􏽢E1

≤ − E1 S1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε1S1

≤ − E1 − ε1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 S1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 0.

(A.20)

+e similar design processes are presented to design the
trajectory tracking of y-axis position x3 and z-axis position
x5 using the dynamic surface integral sliding mode control.
Introduce the variables v2 � (Cx7Sx9Sx11 − Sx7Sx11)U1 and
v3 � (Cx7Cx9)U1, the specific procedures are presented in
Step 2 and Step 3.

Step 2. Define the position error:

e3 � x3 − x3d, (A.21)

where x3 d is the desired y-position command, and the
derivative of e3 with respect to time is

_e3 � x4 − _x3d. (A.22)

Define the virtual control x4,

x4 � − c2e3 + _x3d, (A.23)

where c2 is a positive constant. A new state variable x4d is
introduced and let x4 pass through the following first-order
filter with constant τ2 (T1.9) to obtain x4 d

τ2 _x4d + x4 d � x4, x4 d(0) � x4(0), (A.24)

where x4 d is the output of the first-order filter; the filter error
is y4 � x4 d − x4. A proper integral sliding mode manifold is
chosen (T1.10):

S2 � x4 − 􏽚
t

0
_x4d − k3 _e3 − k4e3( 􏼁dt, (A.25)

where k3 and k4 are the positive constant. If the sliding mode
control is in an ideal state, and the derivative of S2 with
respect to time is

S2 � _S2 � _x4 − _x4d + k3 _e3 + k4e3 � _e4 + k3 _e3 + k4e3 � 0.

(A.26)

+en, a variable v2 � (Cx7Sx9Sx11 − Sx7Sx11)U1 is in-
troduced to be a new control input. Assuming that the
perturbations and parameters in the equation are known, the
control law for y-motion in an ideal state is designed as
follows:

v
∗
2 � a2x4 − d2 + _x4 d − k3 _e3 − k4e3. (A.27)

In most cases, the system parameters are uncertain and
there are also unknown external disturbances, which makes
it difficult to obtain the ideal control signal v∗2 . +erefore, the
fuzzy system is used to approximate the ideal control signal
v∗2 and obtain

v
∗
2 � v2fz s2, α2( 􏼁 + ε2 � αT

2 ξ2 + ε2, (A.28)

where ε2 is the approximation error, and |ε2|<E2. Intro-
ducing switching control law v2vs to compensate for v∗2 and
v2fz
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v2vs � − 􏽢E2sgn S2( 􏼁, (A.29)

where 􏽢E2 is the estimation of E2. +en, the actual control law
(T1.12) is obtained

v2 � v2fz + v2vs. (A.30)

Consider the Lyapunov function

Γ2 �
1
2
S
2
2 +

1
2η2

􏽥αT
2 􏽥α2 +

1
2ρ2

􏽥E
2
2, (A.31)

where η2 and ρ2 are positive constant. +e derivative of Γ2
with respect to time can be presented as below:

_Γ2 � S2
_S2 +

1
η2

􏽥αT
2

_􏽥α2 +
1
ρ2

􏽥E2
_􏽥E2, (A.32)

while

v
∗
2 � a2x4 − d2 + _x4 d − k3 _e3 − k4e3

� a2x4 − d2 + _x4 − _S2

� v2 − _S2.

(A.33)

So,
_S2 � v2 − v

∗
2 � v2fz + v2vs − v

∗
2 . (A.34)

Substituting (A.34) into (A.32), then

_Γ2 � S2
_S2 +

1
η2

􏽥αT
2

_􏽥α2 +
1
ρ2

􏽥E2
_􏽥E2

� S2 v2fz + v2vs − v
∗
2􏼐 􏼑 +

1
η2

􏽥αT
2

_􏽥α2 +
1
ρ2

􏽥E2
_􏽥E2

� 􏽥αT
2 S2ξ2 +

1
η2

_􏽥α2􏼠 􏼡 + S2 v2vs − ε2( 􏼁 +
1
ρ2

􏽥E2
_􏽥E2.

(A.35)

+e adaptive law (T1.11) is chosen below:

_􏽢α2 � − η2S2ξ2. (A.36)

And formula (A.35) becomes

_Γ2 � S2
_S2 +

1
η2

􏽥αT
2

_􏽥α2 +
1
ρ2

􏽥E2
_􏽥E2

� 􏽥αT
2 S2ξ2 +

1
η2

_􏽥α2􏼠 􏼡 + S2 v2vs − ε2( 􏼁 +
1
ρ2

􏽥E2
_􏽥E2

� − 􏽢E2 S2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε2S2 +
1
ρ2

􏽢E2 − E2􏼐 􏼑
_􏽢E2.

(A.37)

To make the Lyapunov function _Γ2 ≤ 0, the adaptive law
of switching control is updated below:

_􏽢E2 � ρ2 S2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (A.38)

+en,

_Γ2 � − 􏽢E2 S2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε2S2 +
1
ρ2

􏽢E2 − E2􏼐 􏼑
_􏽢E2

≤ − E2 S2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε2S2

≤ − E2 − ε2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 S2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 0.

(A.39)

Step 3. Define the position error:

e5 � x5 − x5d, (A.40)

where x5 d is the desired z-position command, and the
derivative of e5 with respect to time is

_e5 � x6 − _x5d. (A.41)

Define the virtual control x6,

x6 � − c3e5 + _x5d, (A.42)

where c3 is a positive constant. A new state variable x6d is
introduced and let x6 pass through the following first-order
filter with constant τ3 (T1.15) to obtain x6d

τ3 _x6d + x6 d � x6,

x6 d(0) � x6(0),
(A.43)

where x6 d is the output of the first-order filter; the filter error
is y6 � x6 d − x6. A proper integral sliding mode manifold is
chosen (T1.16):

S3 � x6 − 􏽚
t

0
_x6d − k5 _e5 − k6e5( 􏼁dt, (A.44)

where k5 and k6 are the positive constant. If the sliding mode
control is in an ideal state, and the derivative of S3 with
respect to time is

S3 � _S3 � _x6 − _x6d + k5 _e5 + k6e5 � _e6 + k5 _e5 + k6e5 � 0.

(A.45)

+en, a variable v3 � (Cx7Cx9)U1 is introduced to be a
new control input. Assuming that the perturbations and
parameters in the equation are known, the control law for z

motion in an ideal state is designed as follows:

v
∗
3 � a3x6 − d3 + g + _x6 d − k5 _e5 − k6e5. (A.46)

In most cases, the system parameters are uncertain and
there are also unknown external disturbances, which makes
it difficult to obtain the ideal control signalv∗3 . +erefore, the
fuzzy system is used to approximate the ideal control signal
v∗3 and obtain

v
∗
3 � v3fz s3, α3( 􏼁 + ε3 � αT

3 ξ3 + ε3, (A.47)

where ε3 is the approximation error, and |ε3|<E3. Intro-
ducing switching control law v3vs (T1.17) to compensate for
v∗3 and v3fz
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v3vs � − 􏽢E3sgn S3( 􏼁, (A.48)

where 􏽢E3 is the estimation of E3. +en, the actual control law
(T1.18) is obtained as

v3 � v3fz + v3vs. (A.49)

Consider the Lyapunov function

Γ3 �
1
2
S
2
3 +

1
2η3

􏽥αT
3 􏽥α3 +

1
2ρ3

􏽥E
2
3, (A.50)

where η3 and ρ3 are the positive constant. +e derivative of
Γ3 with respect to time can be presented as below:

_Γ3 � S3
_S3 +

1
η3

􏽥αT
3

_􏽥α3 +
1
ρ3

􏽥E3
_􏽥E3, (A.51)

while

v
∗
3 � a3x6 − d3 + g + _x6 d − k5 _e5 − k6e5

� a3x6 − d3 + g + _x6 − _S3

� v3 − _S3.

(A.52)

So,
_S3 � v3 − v

∗
3 � v3fz + v3vs − v

∗
3 . (A.53)

Substituting (A.53) into (A.51), then

_Γ3 � S3
_S3 +

1
η3

􏽥αT
3

_􏽥α3 +
1
ρ3

􏽥E3
_􏽥E3

� S3 v3fz + v3vs − v
∗
3􏼐 􏼑 +

1
η3

􏽥αT
3

_􏽥α3 +
1
ρ3

􏽥E3
_􏽥E3

� 􏽥αT
3 S3ξ3 +

1
η3

_􏽥α3􏼠 􏼡 + S3 v3vs − ε3( 􏼁 +
1
ρ3

􏽥E3
_􏽥E3.

(A.54)

+e adaptive law (T1.17) is chosen below:

_􏽢α3 � − η3S3ξ3. (A.55)

And formula (A.54) becomes

_Γ3 � S3
_S3 +

1
η3

􏽥αT
3

_􏽥α3 +
1
ρ3

􏽥E3
_􏽥E3

� 􏽥αT
3 S3ξ3 +

1
η3

_􏽥α3􏼠 􏼡 + S3 v3vs − ε3( 􏼁 +
1
ρ3

􏽥E3
_􏽥E3

� − 􏽢E3 S3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε3S3 +
1
ρ3

􏽢E3 − E3􏼐 􏼑
_􏽢E3.

(A.56)

To make the Lyapunov function _Γ3 ≤ 0, the adaptive law
of switching control is updated below:

_􏽢E3 � ρ3 S3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (A.57)

+en,

_Γ3 � − 􏽢E3 S3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε3S3 +
1
ρ3

􏽢E3 − E3􏼐 􏼑
_􏽢E3

≤ − E3 S3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε3S3

≤ − E3 − ε3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 S3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 0.

(A.58)

By associating v1,v2, andv3, a group of virtual controls is
obtained as follows:

v1 � Cx7Sx9Cx11 + Sx7Sx11( 􏼁U1,

v2 � Cx7Sx9Sx11 − Sx7Sx11( 􏼁U1,

v3 � Cx7Cx9( 􏼁U1.

⎧⎪⎪⎨

⎪⎪⎩
(A.59)

Remark 2. v1,v2, andv3 are combinations of available terms
that can be given directly or measured above. +erefore, the
control input U1 can be solved by regarding them as known
in the controlled system (A.59). Apparently, (A.59) has four
unknown variables, namely, x7, x9, x11, and U1. However,
x11 d is usually given as an extra reference signal in advance
and the integral SMC controller is designed above to ensure
the rapid convergence of x11 to x11 d. +us, x11 is regarded as
known and can be replaced by x11 d in this situation, and the
unknown variables are reduced. So, we can obtain the un-
known variables as follows:

x7 d � arctan Cx9

bv1 − av2

v3
􏼠 􏼡,

x9 d � arctan
av1 + bv2

v3
􏼠 􏼡,

U1 �
v3

CX7
CX9

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.60)

where x7 d and x9 d are desired the roll and pitch angle
trajectory, and U1 is part of the ultimate control laws, a �

cos(x11d) and b � sin(x11d).
In the attitude tracking system, x7d, x9d, and x11 d are

taken as the desired attitude trajectory, and the design
procedure of attitude tracking contains three steps.

Step 4. Define the roll error:

e7 � x7 − x7d, (A.61)

where x7 dis the desired roll command, and the derivative of
e7 with respect to time is:

_e7 � x8 − _x7d. (A.62)

Define the virtual controlx8,

x8 � − c4e7 + _x7d, (A.63)
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where c4 is a positive constant. A new state variable x8 d is
introduced and let x8 pass through the following first-order
filter with constant τ4 (T2.3) to obtain x8d

τ4 _x8 d + x8d � x8,

x8d(0) � x8(0),
(A.64)

where x8d is the output of the first-order filter; the filter error
is y8 � x8d − x8. A proper integral sliding mode manifold is
chosen (T2.4):

S4 � x8 − 􏽚
t

0
_x8 d − k7 _e7 − k8e7( 􏼁dt, (A.65)

where k7 and k8 are the positive constant. If the sliding mode
control is in an ideal state, the derivative of S4 with respect to
time is

S4 � _S4 � _x8 − _x8 d + k7 _e7 + k8e7 � _e8 + k7 _e7 + k8e7 � 0.

(A.66)

Assuming that the perturbations and parameters in the
equation are known, the control law for roll motion in an
ideal state is designed as follows:

U
∗
2 � − a4x10x12 − a5ϖx10 + a6x8 − d4 + _x8 d − k7 _e7 − k8e7.

(A.67)

In most cases, the system parameters are uncertain and
there are also unknown external disturbances, which makes
it difficult to obtain the ideal control signalU∗2 .+erefore, the
fuzzy system is used to approximate the ideal control sig-
nalU∗2 and obtain

U
∗
2 � U2fz s2, α4( 􏼁 + ε4 � αT

4 ξ4 + ε4, (A.68)

where ε4 is the approximation error, and |ε4|<E4. Intro-
ducing switching control law U2vs (T2.5) to compensate for
U∗2 and U2fz

U2vs � − 􏽢E4sgn S4( 􏼁, (A.69)

where 􏽢E4 is the estimation of E4. +en, the actual control law
(T2.6) is obtained as

U2 � U2fz + U2vs. (A.70)

Consider the Lyapunov function

Γ4 �
1
2
S
2
4 +

1
2η4

􏽥αT
4 􏽥α4 +

1
2ρ4

􏽥E
2
4, (A.71)

where η4 and ρ4 are the positive constant. +e derivative of
Γ4 with respect to time can be presented as below:

_Γ4 � S4
_S4 +

1
η4

􏽥αT
4

_􏽥α4 +
1
ρ4

􏽥E4
_􏽥E4, (A.72)

while

U
∗
2 � − a4x10x12 − a5ϖx10 + a6x8 − d4 + _x8d − k7 _e7 − k8e7

� − a4x10x12 − a5ϖx10 + a6x8 − d4 + _x8 − _S4

� U3 − _S4.

(A.73)

So,
_S4 � U2 − U

∗
2 � U2fz + U2vs − U

∗
2 . (A.74)

Substituting (A.74) into (A.72), then

_Γ4 � S4
_S4 +

1
η4

􏽥αT
4

_􏽥α4 +
1
ρ4

􏽥E4
_􏽥E4

� S4 U2fz + U2vs − U
∗
2􏼐 􏼑 +

1
η4

􏽥αT
4

_􏽥α4 +
1
ρ4

􏽥E4
_􏽥E4

� 􏽥αT
4 S4ξ4 +

1
η4

_􏽥α4􏼠 􏼡 + S4 U2vs − ε4( 􏼁 +
1
ρ4

􏽥E4
_􏽥E4.

(A.75)

+e adaptive law (T2.5) is chosen below:
_􏽢α4 � − η4S4ξ4. (A.76)

And formula (A.75) becomes

_Γ4 � S4
_S4 +

1
η4

􏽥αT
4

_􏽥α4 +
1
ρ4

􏽥E4
_􏽥E4

� 􏽥αT
4 S4ξ4 +

1
η4

_􏽥α4􏼠 􏼡 + S4 U2vs − ε4( 􏼁 +
1
ρ4

􏽥E4
_􏽥E4

� − 􏽢E4 S4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε4S4 +
1
ρ4

􏽢E4 − E4􏼐 􏼑
_􏽢E4.

(A.77)

To make the Lyapunov function _Γ4 ≤ 0, the adaptive law
of switching control is updated below:

_􏽢E4 � ρ4 S4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (A.78)

+en,
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_Γ4 � − 􏽢E4 S4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε4S4 +
1
ρ4

􏽢E4 − E4􏼐 􏼑
_􏽢E4

≤ − E4 S4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε4S4

≤ − E4 − ε4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 S4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 0.

(A.79)

+e similar design processes are presented to design the
trajectory tracking of pitch x9 and yaw x11 using the dy-
namic surface integral sliding mode control. +e integral
sliding mode manifolds (T2.10), (T2.16) and the first-order
filter (T2.9), (T2.15) are chosen properly. +e adaptive law
and the switching control (T2.11), (T2.18) of the pitch and
yaw are presented in Table 2. And (T2.12), (T2.18) are the
actual control inputs of the pitch and yaw equation. c5, c6, τ5,
τ6, k9, k10, k11, k12, η5, η6, ρ5, and ρ6 are positive constants
which need to be assigned to meet the performance re-
quirements of the pitch and yaw angle system. +e deriv-
atives of Lyapunov function of pitch and yaw angle are
presented as follows:

_Γ5 � − 􏽢E5 S5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε5S5 +
1
ρ5

􏽢E5 − E5􏼐 􏼑
_􏽢E5

≤ − E5 S5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε5S5

≤ − E5 − ε5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 S5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 0,

_Γ6 � − 􏽢E6 S6
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε6S6 +
1
ρ6

􏽢E6 − E6􏼐 􏼑
_􏽢E6

≤ − E6 S6
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ε6S6

≤ − E6 − ε6
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 S6
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 0.

(A.80)

B. The Proof of Theorem

Proof. Consider the Lyapunov function candidate

V � V1 + V2,

V1 �
1
2

􏽘

6

i�1
e
2
2i− 1 + y

2
2i􏼐 􏼑,

V2 �
1
2

􏽘

6

i�1
S
2
i +

1
ηi

􏽥αT
i 􏽥αi +

1
ρi

􏽥E
2
i􏼠 􏼡.

(B.1)

+e derivative of V1 with respect to time can be obtained
as follows:

_V1 � 􏽘
6

i�1
e2i− 1 _e2i− 1 + y2i _y2i( 􏼁. (B.2)

Substitute the adaptive law and the switching control law
into (B.2):

_V1 � 􏽘
6
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− cie

2
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y
2
2i

τi
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􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼠 􏼡
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6

i�1
− cie

2
2i− 1 −

y
2
2i

τi

+ y2iB2i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼠 􏼡.

(B.3)

Noting that, for any positive number
λ,|y2iB2i|≤ (y2

2iB
2
2i/2λ) + (λ/2). Assume that |B2i|<M2i,

where M2i is a positive constant.
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(B.4)

Let

ci � α0,

2
τi

−
M

2
2i

λ
� α0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(B.5)

where α0 is a positive constant.
_V1 ≤ − α0V1 + 3λ. (B.6)

Let α0 > (3λ/2p); then _V1 ≤ 0 on V1 � p. And V1 ≤p is
an invariant set. +us, if V1(0)≤p, then V1(t)≤p for all
t≥ 0. +us, (B.6) holds for all V1(t)≤p and all t≥ 0.

0≤V1(t)≤
3λ
4α0

+ V1(0) −
3λ
4α0

􏼠 􏼡e
− 2α0t

, ∀t≥ 0. (B.7)

From (B.7), we can get that V1(t) is eventually is
bounded by (3λ/4α0).

V2 �
1
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i�1
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1
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􏽥αT
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1
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􏽥E
2
i􏼠 􏼡. (B.8)

+e derivative of V2 with respect to time can be obtained
as follows:

_V2 � 􏽘
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ρi

􏽥Ei
_􏽥Ei􏼢 􏼣.

(B.9)

Substitute the adaptive laws and the switching control
laws (T1.5), (T1.11), (T1.17), (T2.5), (T2.11), and (T2.17) into
(B.9)
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(B.10)

where Ei ≥ |εi|, so we can know that V2(t) is eventually is
bounded. Hence, all signals in the closed loop are ultimately
bounded. Particularly, the tracking errors and the estimation
errors can be arbitrarily small. □
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Investigation of joint torque constraint compliance is of significance for robot manipulators especially working in complex
environments. A lot of which is attributed to that, on the one hand, it is beneficial to the improvement of both safety and reliability
of themission execution. On the other hand, the energy consumption required by the robot to complete the desiredmission can be
reduced. Most existing schemes do not take the joint torque limit and other inherent physical structure limits in a manipulator
into account at the same time. In addition, many unavoidable uncertainties such as the external environmental disturbance and/or
electromagnetism interferences in the circuit systemmay influence the accuracy and effectiveness of the task execution for a robot.
In this study, we cast light on the acceleration level control of redundant robot manipulators considering both four physical
constraint limits and interference rejection. A robust unified quadratic-programming-based hybrid control scheme is proposed,
where the joint torque constraints are converted as two inequality constraints based on the robots’ dynamics equation. A re-
current-neural-network-based controller is designed for solving the control variable. Numerical experiments performing in
PUMA 560 manipulator and planer manipulator illustrate that a rational torque distribution is obtained among the joints and the
considered physical structural vectors are all restricted to the respective constraint range. In addition, even disturbed by the noise,
the manipulator still successfully tracks the desired trajectory under the proposed control scheme.

1. Introduction

With the gradually mature robotic technology, the robot is
being applied to all kinds of complicated or dangerous tasks
such as deep-sea exploring, search, and rescue tasks in
quake-hit areas [1]. It imposes a challenge on the safety and
reliability of the mission execution for a robot [2, 3]. A
manipulator is considered to be redundant if its degrees of
freedom (DOFs) is more than the minimal ones required by
the robot to complete the desired end-effector task [4–8].
Due to redundancy, except that the manipulator can
complete the primary end-effector task, optimization of

some performance indices and multiple additional subtasks
such as physical constraints compliance [9, 10], avoiding
collision with the detected obstacles [11, 12], repetitive
motion planning [13, 14], etc., can be achieved simulta-
neously for redundant manipulators [15]. Multiobjectives-
integrated hybrid tasks have been achieved in both a single
manipulator [4–6] and collective ones [7–9]. As one of the
important physical variables, joint torque limits compliance
of a redundant manipulator is necessary to be considered. If
the joint torque is suddenly enlarged, the robotic structure or
the surrounding things will be possible to be damaged.
Moreover, if too large torque is always imposed on the
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manipulator, the service life of the motor embedded inside
the robot will be reduced. More importantly, if the torque is
overload, the desired end-effector task cannot be done at all
owing to the deviation between the desired driving force and
the actual driving force output by the motor-driven robot.
Joint torque optimization is equivalent to optimize the input
power of the manipulators’ joint actuator [15, 16].+erefore,
to improve both the safety and reliability of mission exe-
cution for a robot manipulator and reduce energy con-
sumption while completing the desired task, it is necessary to
consider the joint torque limits of redundant manipulator
among the robot control scheme.

Many efforts taking joint torque limits into account have
been made. +e easier schemes are solved through the null-
space or pseudoinverse method [17, 18]. In addition to the
found instability problem for both, the pseudoinverse
method is with the higher computational cost due to the
pseudoinverse of the Jacobian matrix needs to be computed.
Moreover, high demand for the robot working in a com-
plicated environment makes the robot expected to simul-
taneously achieve the primary end-effector task andmultiple
secondary subtasks. It has no ability to meet this require-
ment obviously owing to the pseudoinverse method that
does not handle such physical constraints inherent in the
robot. To solve it, the quadratic-programming- (QP-) based
optimization scheme is developed and widely used, whose
typical feature is that these subtasks such as obstacle
avoidance and physical constraints are uniformly described
as independent attachment equality or inequality constraint.

+e literature [19] investigated the inverse kinematics
problem of redundant manipulators subject to torque limit,
where minimum torque infinity norm (MIN) was chosen as
the objective function that was to be minimized, the primary
task was described as an equality constraint. +erefore, a
time-varying QP formulation was obtained, which was
solved by the recurrent neural network (RNN) or called
Lagrange neural network. Merely, the joint angle, velocity,
and acceleration limits were ignored. As an extension of [19],
Zhang et al. considered joint angle physical constraint in
[20] by describing it as an inequality constraint. +e re-
sultant QP formulation was solved with a dual neural
network, where the cost function was chosen as a minimum
torque norm (MTN). In [15] and [21], physical constraints
such as joint velocity and joint acceleration were considered
in the QP formulation and a linear-variational-inequalities-
based primal-dual neural network was then employed to
solve the control variable. Five schemes were investigated in
[15] by minimizing different objective functions. It was
concluded that the minimum acceleration norm (MAN) was
superior to the MTN scheme. However, these three papers
did not take the joint torque limit into account. In [16] and
[21], the bicriteria joint torque minimization was consid-
ered, where the objective functions were chosen as a
weighted combination of the MTN and MIN schemes. In
[14], bicriteria minimization integrating both the MTN and
the repetitive motion planning schemes was studied.
However, any joint limits were not considered in this paper.
In [22], the motion-force control problem of redundant
manipulators was investigated based on RNN. +e joint

acceleration limit and the dynamics were not be considered
yet. Among the above-mentioned control scheme, they did
not take physical limits including joint torque, joint angle,
velocity, and acceleration into account at the same time.
Considering the physical structure of a robot manipulator,
whose every joint is usually driven by a motor, the reachable
workspace and the output torque of a robot are eventually
constrained. No matter what any physical constraints are
satisfied, the robot would have no ability to execute the
desired task, and the output control variables are
unavailable.

A consensus in [14–16, 19–21] is that neural networks
are utilized to control the redundant manipulators. Recently,
the neural network method is popular and has been widely
used, such as in [22–30] and references therein due to its
being parallel, nonlinear, and simple to be realized by
hardware [31]. However, most of them are based on an
assumption of disturbance-free inverse kinematic control of
the manipulators among the reported products. In practice,
many uncertainties such as the external environmental
disturbance and/or electromagnetism interferences in cir-
cuit system inevitably exist during the control signal
transmission [32–35]. Disturbed by them, the accuracy and
effectiveness of the task execution may be influenced greatly
by a robot system.

To sum up, although some brilliant advances have been
made in joint torque optimization for redundant manipu-
lators, there exist some limits. For one thing, some works do
not take the torque limit into account or joint limits such as
velocity, angle, and acceleration are not considered. For
another thing, the existing torque optimization works take
the disturbance into account except for reference [14].
However, [14] did not take any physical limits from robots
into account. Motivated by it, this paper investigates the
inverse kinematics control problem of redundant manipu-
lator considering both the interference rejection and the
above-mentioned four physical constraints compliance and
proposes a robust unified QP-based hybrid optimization
scheme. Among the resultant QP scheme, the MAN is
chosen as the objective function, and the inverse kinematics
problem is described as an equality constraint. Joint angle,
velocity, and acceleration limits are uniformly described as
inequality constraints and solved in acceleration level. Joint
torque limits are converted to two inequality constraints
based on the robot’s dynamics equation. To illustrate the
difference between this paper and the previous QP-based
works, a comparison between them is conducted and listed
in Table 1. +e main contributions of this paper are sum-
marized as follows:

(1) Based on RNN, this paper investigates the acceler-
ation level inverse kinematics control problem of
redundant manipulators with physical constraints
compliance and disturbance rejection. A multi-
objectives-integrated robust unified QP hybrid
scheme is proposed.

(2) Different from the previous works, this paper con-
siders joint angle, velocity, acceleration, and joint
torque limits simultaneously. A simple way is given
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to handle the considered four double-sides in-
equality constraints because they are built in dif-
ferent levels.

(3) Under the hybrid scheme, high joint acceleration
and joint torque can be avoided during the mission
execution. Constant-valued and time-varying noises
are investigated, validating the robustness of the
proposed scheme against external interferences.

(4) +e theoretical analysis and numerical experiment
combinatorially show that the effectiveness and
feasibility of the designed dynamic RNN controller
for the redundant manipulators’ acceleration level
control.

2. QP Problem Formulation

In this paper, we are aimed at achieving that in addition to
successfully complete the desired end-effector tracking task,
high joint angle, velocity, acceleration, and torque are all
avoided, and they all should be restricted within the re-
spective constrained range. At the same time, the control
scheme is expected to be robust against external interfer-
ences. +erefore, three objectives need to be achieved si-
multaneously. +ey are as follows:

Objective 1 (inverse kinematic control): +e inverse
kinematic control of the manipulator is a fundamental
problem in robotic control. Given the desired trajectory
of the manipulators’ end-effector, to find the corre-
sponding joint variables is called the inverse kinematics
problem of the robot. As for Objective 1, we have the
following:

r⟶ rd, (1)

where rd ∈ Rm denotes the desired end-effector coor-
dinate that the robot is expected to follow in Cartesian
space. +e actual end-effector coordinate achieved by
the manipulator is denoted by the vector r and r ∈ Rm.
In addition, the relationship between the Cartesian
coordinate r of the manipulators’ end-effector and its
joint space coordinate vector θ is described as follows:

r � f(θ), (2)

where θ ∈ Rn. f(·) denotes a nonlinear mapping from
joint space to Cartesian space.

Objective 2 (physical constraint compliance): Every joint is
usually driven by a motor for a manipulator. +erefore its
reachable workspace and the output joint torque, velocity,
and acceleration are all limited. No matter which con-
straints are violated, the accuracy of task execution for a
manipulator will be affected. For practicability and safety,
therefore, overloaded or high joint velocity, acceleration,
and joint torque should be avoided when the manipulator
executes the desired task. +ese above-mentioned robot
physical limits can be described by the following two-sides
inequality constraints:

θ− ≤ θ≤ θ+
, (3a)

θ−
.

≤ θ
.

≤ θ+
.

, (3b)

θ−
..

≤ θ
‥
≤ θ+

..

, (3c)

τ− ≤ τ ≤ τ+
, (3d)

where the variables θ, θ
.

, θ
‥
, and τ ∈ Rn are joint angle

vector, joint velocity vector, joint acceleration vector,
and joint torque vector of themanipulator, respectively.
θ− , θ−

.

, θ−
..

, τ− and θ+, θ+
.

, θ+
..

, τ+ correspond to lower
bound and upper bound of θ, θ

.

, θ
‥
, τ, respectively.

Due to redundancy (m< n), the unique solution satisfying
equation (2) does not exist. In addition, because joint
variables θ, θ

.

, θ
‥
, and τ are built in different levels, directly

solving them is difficult. In this paper, the control problem
is solved at the acceleration level. Specially, computing the
second-derivatives of equation (2), the acceleration level
kinematics is described as follows:

€r � Jθ
‥

+ _Jθ
.

, (4)

where _J is derivative of J. J ∈ Rm×n is a Jacobian matrix,
determined by the DH parameters of the manipulator.
In general, the manipulators’ physical structure and
DH parameters are known in advance; therefore J and _J

are convenient to be obtained. €r is the second-deriv-
ative of r, denoting acceleration vector of the robot in
Cartesian space.
As for the two-sides inequality constraints equations
(3a)–(3c), based on [36, 37], they can be described as
follows:

Table 1: Comparison between this paper and the existing QP-based torque schemes.

Methods Joint angle limit Joint velocity limit Joint acceleration limit Joint torque limit Disturbances Dynamics
Our Yes Yes Yes Yes Yes Yes
[19] No No No No No Yes
[20] Yes No No No No Yes
[15] Yes Yes Yes No No Yes
[16] No No No Yes No Yes
[21] Yes Yes Yes No No Yes
[14] No No No No Yes Yes
[22] Yes Yes No Yes No No
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ξ+
� min κ1 θ+

− ϑ − θ( 􏼁, κ2 θ+
.

− θ
.

􏼒 􏼓, θ+
..

􏼚 􏼛,

ξ−
� max κ1 θ−

+ ϑ − θ( ), κ2 θ−
.

− θ
.

􏼒 􏼓, θ−
..

􏼚 􏼛,

(5)

where constants ϑ, κ1, κ2 > 0 ∈ R are adjusted by the
designer based on the required experimental results.
For τ, based on the manipulator’s dynamics, it is ob-
tained [15, 20] that

τ � M(θ)θ
‥

+ c(θ, θ
.

) + g(θ), (6)

where M(θ) ∈ Rn×n is the inertia matrix, c(θ, θ
.

) ∈ Rn is
the Coriolis and centrifugal force vector, and g(θ) ∈ Rn is
the gravitational force vector. +erefore, equation (3d)
can be rewritten as two inequality constraints related to θ

‥
:

M(θ)θ
‥
≤ τ+

− c(θ, θ
.

) − g(θ),

− M(θ)θ
‥
≤ − τ−

+ c(θ, θ
.

) + g(θ).

⎧⎪⎨

⎪⎩
(7)

Objective 3 (disturbance rejection): Many uncertainties
originating from external and internal interferences are
possible to influence both the accuracy and effective-
ness of the manipulator’s mission execution. Uncer-
tainties caused by the change of external environment
or interaction between the robot and environment are
viewed as external disturbances. Uncertainties caused
by the internal parameters deviation among the ma-
nipulator structure are then viewed as the internal
disturbances, such as differential error.

In this paper, we focus on the external disturbance re-
jection. +e rejection investigation of the internal disturbance
can refer to [14]. Uncertainties that disturb the task execution
precision of the robot system can be described mathematically.
As described in [35], the external disturbances can be math-
ematically described as linear-form disturbance, sine-form,
exponential-form, and random disturbances and so on, re-
spectively. Specifically, offset errors in robot hardware
implementation could be described as linear disturbances. In
the process of signal processing and transmission for robots,
the signal disturbances caused by electromagnetic interference
are described as sine-form disturbances. +e case of instan-
taneous decline of a power source which causes the loss of
control signal is viewed as the exponential-decay-form dis-
turbance. Interferences caused by the change of external en-
vironment is then described as a random disturbance. +e
Objective 1 disturbed by the external disturbance in acceler-
ation level can be rewritten as follows:

€r + ω⟶ €rd , Jθ
‥

+ _Jθ
.

+ ω⟶ €rd, (8)

where ω ∈ Rm denotes the external disturbance vector. €rd is
the second-order derivation of rd, denoting the desired
acceleration vector.

To reject these noises and achieve €r + ω⟶ €rd, inspired
by [38–40], an integration-enhanced negative feedback is
introduced in equation (8), that is to say,

Jθ
‥

� rd

‥
− _Jθ

.

− α r − rd( 􏼁 − β Jθ
.

− _rd􏼒 􏼓 − c 􏽚
t

0
r − rd( 􏼁dt + ω,

(9)

where constants α, β, c> 0 ∈ R are used to scale the tracking
accuracy to the desired tracking trajectory. _rd denotes the
desired velocity vector. +e specific derivation of equation
(9) would be shown in the appendix.

In conclusion, the above-mentioned three objectives are
able to be uniformly described as a dynamic QP formulation:

min
θ
‥ θ
‥T θ

..

2
⎛⎝ ⎞⎠, (10a)

s.t. Jθ
‥

� b0, (10b)

M(θ)θ
‥
≤ b1, (10c)

− M(θ)θ
‥
≤ b2, (10d)

ξ+
� min κ1 θ+

− ϑ − θ( 􏼁, κ2 θ+
.

− θ
.

􏼒 􏼓, θ+
..

􏼚 􏼛, (10e)

ξ−
� max κ1 θ−

+ ϑ − θ( ), κ2 θ−
.

− θ
.

􏼒 􏼓, θ−
.

􏼚 􏼛, (10f)

where the cost function is chosen as the minimization of the
joint acceleration norm. b0, b1, and b2 are defined as
b0 � €rd − _Jθ

.

− αe − β _e − c 􏽒
t

0 edt +ω, b1 � τ+ − c(θ,θ
.

)− g(θ),
b2 � − τ− + c(θ,θ

.

) + g(θ), respectively. e � r − rd, denoting the
tracking error between the desired trajectory and the actual
trajectory achieved by the manipulator, and _e is derivative of
e, _e � Jθ

.

− _rd.

Remark 1. For comparison, we give the velocity level QP
formulation without considering the joint acceleration and
torque limits in [12], as follows:

min
θ
.

θ
. T θ

.

2
⎛⎝ ⎞⎠, (11a)

s.t. Jθ
.

� _rd − k1 r − rd( 􏼁, (11b)

max k2 θ−
− θ( ), θ−

.

􏼒 􏼓≤ θ
.

≤min θ+
.

, k2 θ+
.

− θ􏼒 􏼓􏼒 􏼓,

(11c)

where the minimization of the joint velocity norm is chosen
as the cost function because the kinematics of redundant
manipulator is solved in velocity level. Parameters k1 is
similar to α, β, c in equation (10), k2 > 0 ∈ R.

3. RNN Solver

In this section, we will design a dynamic neural solver to
solve equation (10) based on RNN. +en, the theoretical
proof is given that under the designed solver, the optimal
solution of equation (10) can be found.
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To solve equation (10), a Lagrange function is defined as
follows:

L � θ
‥Tθ
‥

2
+ λT

1 b0 − Jθ
‥

􏼒 􏼓 + λT
2 M(θ)θ

‥
− b1􏼒 􏼓 + λT

3 − M(θ)θ
‥

− b2􏼒 􏼓,

(12)

where λ1, λ2, and λ3 are the Lagrange multiplier. Based on
the KKT conditions, the optimal solution of equation (12)
can be equivalently rewritten as follows:

θ
‥

� PΩ θ
‥

−
zL

zθ
‥􏼠 􏼡, (13a)

Jθ
‥

� b0, (13b)

λ2 � 0, if M(θ)θ
‥
≤ b1,

λ2 > 0, othewise,

⎧⎨

⎩ (13c)

λ3 � 0, if − M(θ)θ
‥
≤ b2,

λ3 > 0, othewise,

⎧⎨

⎩ (13d)

where PΩ is a projection operation to a set Ω, and PΩ(x) �

argminy∈Ω‖y − x‖ [41]. Equations (13c) and (13d) can be
further written as follows:

λ2 � max λ2 + M(θ)θ
‥

− b1􏼒 􏼓, 0􏼒 􏼓,

λ3 � max λ3 − M(θ)θ
‥

− b2􏼒 􏼓, 0􏼒 􏼓.

(14)

+e designed RNN controller is as follows:

ϵθ
...

� − θ
‥

+ PΩ J
Tλ1 − M(θ)

Tλ2 + M(θ)
Tλ3􏼐 􏼑, (15a)

ϵ _λ1 � b0 − Jθ
‥
, (15b)

ϵ _λ2 � max M(θ)θ
‥

− b1 + λ2􏼒 􏼓, 0􏼒 􏼓 − λ2, (15c)

ϵ _λ3 � max − M(θ)θ
‥

− b2 + λ3􏼒 􏼓, 0􏼒 􏼓 − λ3, (15d)

where (ϵ> 0) is a constant which is used to scale the con-
vergence rate of the neural network. In general, the smaller ϵ,
the faster the RNN controller converges.

Rewrite the designed RNN controller equation (15) as
follows:

ϵ

θ
...

_λ1
_λ2
_λ3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

− θ
‥

+ PΩ(θ
‥

+ δ − θ
‥
)

− λ1 + λ1 + b0 − Jθ
‥

􏼒 􏼓

− λ2 + λ2 + M(θ)θ
‥

− b1􏼒 􏼓

− λ3 + λ3 − M(θ)θ
‥

− b2􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

where δ � JTλ1 − M(θ)Tλ2 + M(θ)Tλ3.

Let η � [θ
‥T

, λT
1 , λT

2 , λT
3 ]T, equation (16) is reformulated as

follows:
ϵ _η � − η + PΩ(η − F(η)), (17)

in which

F(η) �

θ
‥

− J
Tλ1 + M(θ)

Tλ2 − M(θ)
Tλ3

Jθ
‥

− b0

− M(θ)
Tθ
‥

− b1

M(θ)
Tθ
‥

+ b2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

+erefore, the gradient of F is as follows:

∇F �
zF

zη
�

I − J
T

M(θ)
T

− M(θ)
T

J 0 0 0

− M(θ)
T 0 0 0

M(θ)
T 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

∇F(η) + ∇FT(η) �

2I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is positive semidefinite;

thereforeF(η) is a monotone function. Following [9], it can
be said that the constructed RNN controller equation (15)
will globally converge to an equilibrium that is equivalent to
the optimal solution of equation (10).

4. Numerical Experiments

In this part, numerical experiments are performed based on
MATLAB ROBOTIC TOOLBOX. +e effectiveness and
robustness of the proposed QP control scheme equation (10)
are shown by a six-DOFs PUMA 560 manipulator and a
four-DOFs planer manipulator to show application feasi-
bility of the proposed scheme equation (10) in all kinds of
redundant robot manipulators.

4.1. PUMA 560 Manipulator Experiments. In this experi-
ment, two different trajectory tracking experiments, i.e., the
butterfly and triangle trajectories, are conducted. Table 2
shows DH parameters of the used PUMA 560 redundant
manipulator. Other parameters involved in the simulation
experiment are concluded in Table 3, where θ(0), θ

.

(0), θ
‥
(0)

denote the initial value of θ, θ
.

, θ
‥
at the initial instant, re-

spectively. +e simulation duration Td is 20 s.

4.1.1. Butterfly Trajectory Tracking. Assume that the ma-
nipulator is required to track a butterfly trajectory with the
following definition:

rd �

0.05 sin(0.5t)(exp(a) − 2b) + 0.4521

0.05 cos(0.5t)(exp(a) − 2b) − 0.3

0.6318

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (20)
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where a � cos(0.5t), b � cos(2t). Firstly, a comparison
between the velocity level scheme equation (11) and the
acceleration level scheme equation (10) is conducted with
corresponding simulative results illustrated in Figure 1.
Figures 1(a)–1(f) represent results achieved by equation
(11). Figures 1(g)–1(l) represent the ones achieved by
equation (10). From left to right are 3D tracking results,
planer tracking results, tracking error profiles at x-axis,
y-axis, and z-axis, joint speed profiles, joint acceleration
profiles, and joint torque profiles consecutively. Note that in
the velocity level experiment, parameters k1 and k2 are
valued as 10 and 20, respectively. We observe from
Figures 1(a) and 1(b) that the actual trajectory (black color
path) achieved by the manipulator successfully coincides
with the desired butterfly path (red color path). It can also be
observed from Figure 1(c) that the deviations between the
desired trajectory and the actual trajectory at x-axis, y-axis,
and z-axis quickly reduces to zero. Following Figure 1(d),
the manipulator’s six joint speeds are smooth and within the
respective constraint ranges. For now, equation (11) without
considering the joint acceleration limit seems to be effective
for the kinematic control of the PUMA 560 manipulator.
However, in this case that does not consider the joint ac-
celeration limit, the manipulator’s acceleration and torque
profiles are extremely high (up to − 200(rad/s2) and
− 600Nm, respectively) at the beginning, as shown in
Figures 1(e) and 1(f). It is unreasonable in practice, obvi-
ously. Compared to the velocity level scheme equations (11)
and (10) taking the joint acceleration and the joint torque
limits into account, the kinematics problem is solved in
acceleration level. Following the simulation results illus-
trated in Figures 1(g)–1(l), what the naked eye can see is that
the manipulator does not only track the desired butterfly
trajectory, its joint speed, joint acceleration, and torque are

all restricted to the constrained range. As shown in
Figure 1(k), when the acceleration of the joint 1 exceed its
lower bound, the joint acceleration would be restricted and
maintained in its lower bound, avoiding the high acceler-
ation and joint torque. +erefore, it is concluded that the
acceleration level optimization scheme considering the joint
acceleration and torque limits is superior to the velocity level
for the butterfly path tracking.

4.1.2. Triangle Trajectory Tracking. To further validate the
effectiveness and superiority of the proposed hybrid accel-
eration level scheme equation (10), in this experiment, the
manipulator is required to track a triangle trajectory with the
following definition:

rd �

0.075 sin(ρ) − 0.0325 cos(2ρ) + 0.48

0.075 cos(ρ) − 0.0325 sin(2ρ) − 0.10

0.6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (21)

where ρ � (2πt/10). Comparative results between the
scheme equation (11) and the scheme equation (10) are
illustrated in Figure 2. Figures 2(a)–2(f) represent results
achieved by equation (11). Others represent ones achieved
by equation (10). +e simulation environment and pa-
rameters in the triangle trajectory tracking experiment are
the same as the butterfly trajectory tracking experiment.
Similar to the previous butterfly experiment, we observe
from Figures 2(a)–2(f) that the manipulator successfully
tracks the desired triangle path with a tracking error being
10− 4 level, and the manipulator’s six joint speeds are smooth
and within the respective constraint ranges. However, the
manipulator’s acceleration and torque profiles that are
shown in Figures 2(e) and 2(f) are extremely high (up to
(200 rad/s2) and 600Nm, respectively) at the beginning.
When both the inherent joint acceleration limit and torque
limit are considered, the manipulator does not only track the
desired triangle trajectory. Its joint speed, joint acceleration,
and torque are all restricted to the respective constrained
ranges. As shown in Figure 2(k), when the acceleration of
joint 1 exceeds its upper bound, the joint acceleration would
be restricted and maintained in the upper bound, avoiding
the high acceleration and joint torque. +erefore, it is
concluded that the acceleration level optimization scheme
equation (10) considering the joint acceleration and torque
limits is superior to the velocity level scheme equation (11).
+is experiment validates the effectiveness of the proposed
hybrid scheme equation (10) and the RNN controller
equation (15) for butterfly trajectory tracking task.

4.1.3. Robustness Comparison. In real scenes, the external
disturbance is unavoidable and may influence the tracking
accuracy of the manipulator in the trajectory tracking
mission. To this, we propose a robust hybrid QP minimi-
zation scheme equation (10) by introducing integration-
enhanced feedback to reject these interferences. In general,
these disturbances can be mathematically described as
constant-valued noise and time-varying noise.

Table 3: Parameters involved in the simulative experiment.

Parameters Value Parameters Value
θ(0) 0 ∈ R6 θ+ +4
θ
.

(0) 0 ∈ R6 θ− − 4
θ
..

(0) 0 ∈ R6 θ
. +

+4
(ε) 0.002 θ

. −

− 4
α 21 θ

..+

+4
β 7 θ

.. −

− 4
c 21 ϑ 0.1
κ1 20 τ+ 40
κ2 20 τ− − 40

Table 2: +e D-H parameter of the redundant manipulator PUMA
560 used in this paper.

Link a (m) α (rad) d (m)
1 0 (π/2) 0
2 0.4318 0 0
3 0.0203 − (π/2) 0.15005
4 0 (π/2) 0.4318
5 0 − (π/2) 0
6 0 0 0.2
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In this part, we would show the robustness of the scheme
equation (10) against external disturbances, where four
common types of time-varying external disturbances are
considered. +ey are linear disturbances denoting offset
errors in robot hardware implementation, sine-form dis-
turbances caused by signal electromagnetic interference in
the process of signal processing and transmission, the ex-
ponential-decay-form disturbance, and random disturbance
caused by the change of the external environment, respec-
tively. For comparison, the conventional acceleration level
scheme is given as follows:

min
θ
‥ θ

‥T θ
‥

2
⎛⎝ ⎞⎠, (22a)

s.t. Jθ
‥

� €rd
− _Jθ

.

− δ1e − δ2 _e + ω, (22b)

M(θ)θ
‥
≤ b1, (22c)

− M(θ)θ
‥
≤ b2, (22d)

ξ+
� min κ1 θ+

− ϑ − θ( 􏼁, κ2 θ+
.

− θ
.

􏼒 􏼓, θ+
‥

􏼚 􏼛, (22e)

ξ−
� max κ1 θ−

+ ϑ − θ( ), κ2 θ−
.

− θ
.

􏼒 􏼓, θ−
‥

􏼚 􏼛, (22f)

where δ1, δ2 > 0 ∈ R are feedback gain parameters, which are
used to scale the trajectory tracking accuracy. δ1 � 21, δ2 � 7
in the noise-rejection experiments; other parameters are the
same as the ones used in equation (10). Figure 3 shows
tracking results of two desired trajectories achieved by
schemes (10) and (22) disturbed by the constant-valued
noise and time-varying random noise, respectively. In
simulative experiments, the constant-valued disturbance
and time-varying random disturbance are formulated as 1
and rand, respectively, where rand ∈ 0, 1{ }. Figure 3 shows
the trajectory tracking results achieved by equation (22) and
our scheme equation (10). Following it, it can be observed
that the conventional scheme equation (22) successfully
tracks the triangle and butterfly shapes of the desired fol-
lowing trajectories. However, due to the disturbance by the
constant-valued and time-varying random noise, the actual
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Figure 2: Comparison between the velocity level scheme equation (11) (a–f) and the acceleration scheme equation (10) (g–l) when the
manipulator is expected to follow a triangle path. From left to right are 3D tracking results, planer tracking results, tracking error profiles,
joint speed profiles, joint acceleration profiles, and joint torque profiles.
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trajectories generated by the manipulator deviate from the
desired position. +is is to say that equation (22) fails in
rejecting these two kinds of noise. On the contrary, although
disturbed by the noise, our scheme equation (10) accurately
and stably generates the desired triangle and butterfly
trajectories.

Figure 4 shows the tracking error profiles achieved by
equations (22) and (10) disturbed by the other three time-
varying external noises, where the tracking error is defined
as

����������
e2x + e2y + e2z

􏽱
. Linear disturbances, sine disturbances, and

exponential disturbances are formulated as
[0.03t, 0.02t, 0.01t]T,
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Figure 3: Comparison between schemes equations (22) and (10) under (a) constant-valued noise ω � 1 and (b) time-varying random noise
ω � rand ∈ 0, 1{ }, respectively.
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Figure 4: (a–f) Tracking error comparison for butterfly and triangle trajectory tracking tasks under sine-form noise, exponential noise, and
linear noise, respectively. Top: butterfly trajectory. Below: triangle trajectory.
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[0.01 sin(2t), 0.01 cos(0.5t), 0.01 sin(t)]T, and
[0.35 exp(− 0.5t), 0.15 exp(− 0.8t); 0.1 exp(− t)]T, respec-
tively. Based on the simulative results, we conclude that
under control of the schemes equations (10) and (22), the
manipulator disturbed by the sine-form noise and expo-
nential-form noise can track the desired butterfly and tri-
angle trajectories. +e tracking error can reach 10− 3 level.
For linear disturbance, the tracking errors achieved by the
scheme equation (22) would not converge to zero, as shown
in Figures 4(c) and 4(f). In contrast, the tracking errors
corresponding to our proposed scheme equation (10) would
evaluate toward zero quickly and maintain a bounded value.

4.2. Planer Manipulator Experiments. +e 4-DOFs planer
redundant manipulator is employed in this experiment,

which is assumed to track a circle trajectory with the fol-
lowing definition:

rd �
0.5 + 0.1 cos(0.5t)

0.3 + 0.1 sin(0.5t)
􏼢 􏼣. (23)

Table 4 gives the DH parameters corresponding to the
used planer manipulator in this study. Among the simu-
lation setup, θ(0) � [(π/2), − (π/3), − (π/4), 0]Trad,
τ+ � 2Nm, τ− � − 0.3Nm, θ

.

(0) � 0 ∈ R4(rad/s), and
θ
‥
(0) � 0 ∈ R4(rad/s)2, θ+

‥
� − θ−
‥

� 1. Other parameters
remain the same as the previous experiment. Simulation
duration is 15 s.

Simulative results achieved by the proposed hybrid
scheme equation (10) are illustrated in Figure 5 when the
manipulator is expected to follow a circle path. Similar to the

Table 4: +e D-H parameter of the planer redundant manipulator with 4-DOFs.

Link a (m) α (rad) d (m)
1 0.3 0 0
2 0.3 0 0
3 0.2 0 0
4 0.2 0 0

x (m)
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trajectory

Actual
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Figure 5: Simulative results achieved by equation (10) when the manipulator is expected to follow a circle path. (a) Tracking result. (b) Joint
speed profiles. (c) Joint acceleration profiles. (d) Joint torque profiles. (e) State variables λ2. (f ) State variables λ3.
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previous experiment, the actual trajectory achieved by the
planer manipulator quickly coincides with the desired path,
simultaneously avoiding high joint velocity, acceleration, and
torque values. Following Figures 5(c) and 5(d), when joint
acceleration and joint torque vectors exceed their respective
bound, they would be restrained within the upper or lower
bound. Figures 5(e) and 5(f) show the process profiles cor-
responding to state variables λ2 and λ3. When the inequality
constraints equations (10c) and (10d) are not satisfied, i.e., joint
torque bounds of the manipulator are not reached, λ2 and λ3
would remain on zero. On the contrary, λ2 and λ3 would be
greater than zero. Figure 6 shows circle trajectory tracking
results achieved by equation (10) disturbed by five external
noises and the corresponding tracking errors. It can be seen
from it that for the considered five noises, the manipulator
successfully tracks the desired circle trajectory with different
tracking accuracies. Compared to other types of noises, the
influence of random noise on the trajectory tracking error of
the manipulator is stronger.

Based on Figures 1–6, we can conclude that under the
proposed hybrid scheme equation (10), the manipulator can
accurately track the desired trajectory, simultaneously
avoiding high joint velocity, acceleration, and joint torque.
In addition, equation (10) is robust against the constant-
valued external disturbance and four types of time-varying
external disturbances.

5. Conclusion

In this paper, a robust multiobjectives-integrated hybrid
scheme equation (10) has been proposed and used for
controlling a redundant manipulator to track the desired
trajectory. Under equation (10), high joint velocity, accel-
eration, and joint torque may exceed the manipulator ac-
tuators’ ability that can be avoided.+ey all are restrained on
respective constraint bound. In addition, integrated-en-
hanced feedback has been generalized into the inverse

kinematics of themanipulator to reject the influence of external
disturbances on the tracking tasks. Numerical experiments
have been performed on the PUMA 560 manipulator and the
planer manipulator, validating the effectiveness and robustness
of the hybrid scheme equation (10).

Multiple robots cooperative control is being investigated
and has made success in environmental monitoring [42] and
source seeking [43]. In future work, we will be devoted to the
motion-force hybrid cooperative control of multiple robots
at dynamics level.

Appendix

In this appendix, the authors give the derivation process of
equation (9). +e velocity level inverse kinematics of the
manipulator is usually described as follows [6, 9, 12]:

_r � _rd − μ r − rd( 􏼁, (A.1)

where μ> 0 is a constant, which is used to scale accuracy of
the trajectory tracking task.

Define a new error function ℓ � _r − _rd + μ(r − rd). Based
on [38, 39], the time-derivative evolution formulation of the
error function ℓ can be constructed as follows:

_ℓ � − μ1ℓ − μ2 􏽚
t

0
ℓdt, (A.2)

where the same as μ, μ1, μ2 > 0 ∈ R. Differentiating ℓ, we
obtain that
_ℓ � €r − €rd + μ _r − _rd( 􏼁. (A.3)

Combining equations (A.2) with (A.3), we have the
following:

€r � €rd − μ _r − _rd( 􏼁 − μ1 _r − _rd( 􏼁 − μ1μ r − rd( 􏼁

− μ2 􏽚
t

0
_r − _rd( 􏼁dt − μ2μ􏽚

t

0
r − rd( 􏼁dt.

(A.4)
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Figure 6: Circle trajectory tracking results and tracking errors achieved by equation (10) disturbed by the external disturbances.
(a) Constant-valued noise ω � 1. (b) Random noise ω ∈ 0, 1{ }. (c) Sine-form noise ω � [0.01 sin(2t), 0.01 cos(0.5t)]T. (d) Exponential-form
noise ω � [0.35 exp(− 0.5t), 0.15 exp(− 0.8t)]T. (e) Linear noise ω � [0.03t, 0.02t]T.
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It can be further rewritten as follows:

€r � €rd − μ + μ1( 􏼁 _r − _rd) − μ1μ + μ2( 􏼁 r − rd( 􏼁 − μ2μ􏽚
t

0
r − rd( 􏼁dt.􏼠

(A.5)

Because μ, μ1, μ2 are constants >0, therefore, equation
(A.5) can be converted as follows:

Jθ
‥

� €rd
− _Jθ

.

− α r − rd( 􏼁 − β Jθ
.

− _rd􏼒 􏼓 − c 􏽚
t

0
r − rd( 􏼁dt,

(A.6)

by using α, β, c to replace μ1μ + μ2, μ + μ1, μ2μ, respectively.
Li et al. have proved the inherent noise tolerance of equation
(A.2) to constant-valued and time-varying disturbances in
[38].+erefore, robustness proof of equation (A.6) disturbed
by external disturbances (i.e., equation (9)) is omitted here.
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In order to obtain the measurement parameters of the sea bottom geomorphology or underwater objects, the first step in side-scan
sonar (SSS) image processing is bottom detection. Due to the complexity of the marine environment, the acoustic signals received
by SSS are usually polluted by noises, which affect its image quality and make the extraction of image features difficult. To address
this problem, this study proposes an automatic detection method for the sea bottom line based on the actual experimental
acquisition of SSS images, which is supposed to support the autonomous underwater vehicle (AUV) for intelligent target detection
and classification..e proposed method comprises four main steps. First, the raw SSS data is analyzed to obtain a grayscale image,
and the blind zone boundary of the image is obtained using the threshold method..en, the noise characteristics of the image are
analyzed and the denoising algorithm is optimized to effectively remove high-frequency noise. Next, spatial-temporal matching
calculations are performed on each ping port and starboard data, and the accurate coordinates of first bottom returns are obtained
through extreme value detection. Finally, automatic and accurate detection of the bottom line is realized according to the smooth
processing of the coordinate sequence of first bottom returns. .e experiments have demonstrated the effectiveness of the
proposed method. As the method does not require human intervention in adjusting parameters during operation, the proposed
method with a certain time window imposed during image acquisition will be suitable for AUV missions when the SSS
is determined.

1. Introduction

Side-scan sonar (SSS) is an active sonar system, which
mainly consists of a transducer array, peripheral auxiliary
sensors, and a real-time data acquisition processing module.
.e transducer array is the core component of the SSS,
which is usually designed to be receive-transmit combined
line array [1]. SSS uses the principle of echo bathymetry to
record scattered echo intensity from the sea bottom and
generate sonar images according to echo intensities [1–3].
.e SSS images can be utilized to observe changes in pa-
rameters such as sea bottom geomorphology, presence of
obstructions, and types of sea bottom substrate, and its
features have important applications in fields such as marine
scientific research, marine engineering, and marine military.

In a SSS image, there is a clear junction line between the
water column region and the seabed image region—called
the sea bottom line, which is the distance from SSS to the sea
bottom and an important parameter for measurements of
the sea bottom topography or underwater objects, slant
range correction, and SSS image grayscale equalization
[1, 2, 4, 5].

Al-Rawi et al. [2] proposed two bottom detection
methods: one to take the logarithm of the SSS echo data and
use cubic spline regression algorithm for fitting and the
other to filter the SSS data by sliding average filtering within
a certain time window. Based on the data processed using
these two methods, the center track line of the water column
region is detected, and then, the first bottom return of each
Ping data is obtained using the threshold method. Zhang
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et al. [6] solved the problem of the weak echoes of the sea
bottom line in the actual SSS data by introducing the
Laplacian of the Gaussian function, which is comparable to
the bottom detection by commercial SSS data processing
software. However, when the water noises are rather strong,
the noises will be mistakenly extracted as the sea bottom line
and it is difficult to obtain accurate bottom detection results,
as the Gaussian smoothing filter can only eliminate the scales
of intensity changes less than the smoothing factor. In view
of the interferences of the SSS image in the water column
region by the transmitting pulse, the sea surface echo, the
wake, and the large area suspended matter, Zhao et al. [7, 8]
proposed a last-peak detection method of the bottom line.
Further, to tackle with ping data loss and ping observation
anomaly that often exist in SSS measurements, Zhao pro-
posed a Kalman filtering based sea bottom line repair
method, which uses the asymptotic nature of the sea bottom
variation and sea bottom line symmetry on SSS both sides.
Ku et al. [9] measured single beam bathymetry and real-time
depth of towed body using GPS time synchronization, and
then, the bottom line was obtained by combination with
these two kinds of data through interpolation and
smoothing. Using actual measured data, the advantages of
this method compared with the method proposed by Zhao
et al. [7, 8] were verified. Moreover, the bathymetry mea-
surement on this method was relatively less influenced by
the environment and its accuracy was higher. According to
the spatial characteristics of the continuous and dense
distribution of the sea bottom line, Wang et al. [10] con-
structed a point set including the bottom points along the
roughly parallel direction of the track and then clustered on
the chain densely distributed along the track by the “density-
based spatial clustering of applications with noise
(DBSCAN)” algorithm for chain searching to extract sea
bottom line. Compared with the traditional bottom detec-
tion method, this method also has good stability and anti-
interference ability in relatively complex environment. Yan
et al. [11] used a one-dimensional convolution neural net-
work to traverse and identify the backscatter intensity se-
quence in the SSS data and established a complete processing
method for real-time sea bottom line detection and tracking,
which has strong robustness in the field test environment.

An autonomous underwater vehicle (AUV) is capable of
carrying detection equipment to accomplish automatic tasks
such as marine surveys and seabed mapping [12–14]. Due to
its advantages of high autonomy and low risk, AUVs are
gradually being widely used, and their combinations with
the SSS for underwater operations will become more fre-
quent so that the superiority of SSS in target positioning and
identification can be fully exploited [2, 12, 14–16]. However,
few of the published research studies have mature engi-
neering applications for the automatic bottom detection in
SSS images suitable for AUV missions.

One of the main objectives of this study is to develop an
automatic bottom detection method in SSS images suitable
for AUV missions. .e remainder of this paper is arranged
as follows. Section 1 briefly introduces the characteristics of
an SSS image and detailedly analyzes the published research
studies and results of bottom detection. In Section 2, the

current problems of bottom detection in SSS image for AUV
missions are stated. Section 3 elaborates the proposed
bottom detection method and verifies its effectiveness using
the SSS actual test data on an AUV. Section 4 summarizes
this study.

2. Preliminaries and Problem Statements

For AUV missions, there are two main deficiencies in the
current research on SSS bottom detection.

(1) Under the hypothesis that there is either small and
negligible or no blind zone between the port and
starboard sonar transducer arrays, the installation of
SSS is always taken as an ideal geometry. However, in
actual working environments, the sonar transducers
transmit sound waves to both sides, so there is a
blind zone in the sonar image, and the space oc-
cupied by the blind zone in the sonar image should
not be ignored. To avoid destroying the true ge-
ometry of the seabed image, it is necessary to con-
sider eliminating the effects of the blind zone in the
water column area.

(2) .e published research results were obtained
through complex postprocessing processes [7–9]
or high online computing capability for AUV
[10, 11]. Moreover, due to the complex influence
factors of SSS images, manual intervention is often
required to set the initial value according to the
situation, and most mature SSS image processing
software, such as Triton and Prism, can only
achieve reliable semiautomatic bottom detection
[7, 10, 12, 17].

3. Automatic SSS Bottom Detection

3.1. Automatic Bottom Detection Procedure. Figure 1 shows
the designed automatic bottom detection procedure for the
SSS suitable for AUV missions. .e procedure is described
in four main steps.

3.1.1. Step 1. Obtaining the Blind Zone Boundary according to
the SSS Parameters. In view of the geometry problem de-
scribed in Section 2, first, it is necessary to calculate the
parameters of the blind zone.

Since the blind zone is located directly below the SSS, the
echo intensities of each ping are mutated from the blind
zone to the outside, and the numerical values drop pre-
cipitously (see Figure 2). According to this feature, blind
zone boundary detection can be realized. In general, the echo
directly below the SSS is a strong positive emission wave, so a
threshold can be used to detect the blind zone boundary
detection.

Given a SSS, the ping data format is fixed (i.e., to 8, 16, or
32 bits). If the ping data bits of the SSS is N, then the
threshold value for the blind zone boundary detection can be
determined according to the measurement environment as
follows:
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Dm � 2N− 2
. (1)

From the blind zone to the outside, the first echo in-
tensities of each ping on the port and starboard sides that are
less than the threshold value are denoted as Kleft and Kright,
respectively. As the transducer arrays are mounted sym-
metrically on the port and starboard sides of the AUV with
respect to its center axis, the width of the blind zone of each
ping, Km, according to the principle of bilateral symmetry, is
determined as follows:

Km �

Kleft + Kright − 2
2

, Kleft + Kright􏼐 􏼑 is even,

Kleft + Kright − 1
2

, Kleft + Kright􏼐 􏼑 is odd.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

For each ping, the maximum sampling numbers of AUV
left and right echo data are Kleftmax and Krightmax, respec-
tively. .us, the left echo data [Km, Kleftmax] and right echo
data [Km, Krightmax] of all pings, which imply the seabed
image region, can be obtained.

3.1.2. Step 2. Elimination of Anomalies in the SSS Port and
Starboard Seabed Image Region. .e median filtering al-
gorithm can be used to remove the anomalies in SSS echo
data, that is, the high-frequency noise and outliers [6, 9].
Herein, anomalies in both port and starboard SSS echo data
are eliminated with an improved median filtering algorithm,
and its calculation flow is as follows:

(1) Calculate the intensity median of every sampling
echo in each ping of the port and starboard SSS data.

(2) Calculate the absolute intensity deviation of every
sampling echo in each ping and determine the in-
tensity value for the corresponding sampling echo
based on its absolute intensity deviation. When the
absolute intensity deviation is greater than a set
value, the intensity median of the said sampling echo
is taken as its new intensity value. Otherwise, no
anomaly removal is performed and the intensity
value for the said sampling echo is its sampling
measured value. .e above set value is a calculated
value based on the echo intensity sampling values in
each ping.

For example, for the SSS port echo data [Km, Kleftmax], let
[i, j] indicate the index of the jth echo sampling measure of
the ith ping, and let Iij and Pmax denote the intensity value of
the [i, j]th port echo data and the total number of SSS pings,
respectively. .en, for all [i, j] combinations satisfying
1< i<Pmax and Km≤ j<Kleftmax, the following processing is
performed:

(1) Calculate the intensity median Zij using the [i− 1,
j− 1]th, [i− 1, j]th, [i− 1, j+ 1]th, [i, j− 1]th, [i, j]th,
[i, j+ 1]th, [i+ 1, j− 1]th, [i+ 1, j]th, and [i+ 1, j+ 1]
th sampling measured intensity values in port echo
data, as well as the absolute intensity deviation
Eij � abs (Iij −Zij).
It is obvious from the above example that the
number of adjacent pings and the number of adja-
cent echo sampling measures in each ping are both
determined according to the actual needs. .e same
can be said for the numerical calculation of the
intensity value of every sampling echo in each ping of
the starboard SSS data, which is described
subsequently.

(2) Deciding absolute intensity deviation Eij [18]: if
Eij> 9.78 + 1.44× Iij − 8.86×10−4 × I2ij + 2.95×10−7 ×

I3ij − 3.26×10−11 × I4ij, then Zij is used as the new
intensity value for the [i, j]th echo sampling measure
in SSS port data; otherwise, no anomaly removal is
performed.

For the SSS starboard echo data [Km, Krightmax], let [i, l]
indicate the index of the lth echo samplingmeasure of the ith
ping, and let Iil denote the intensity value of the [i, j]th
starboard echo data. .en, for all [i, l] combinations sat-
isfying 1< i< Pmax and Km≤ l<Krightmax, the following
processing is performed:
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Figure 2: SSS waterfall image.

Obtaining the blind zone boundary according to the SSS parameters

Elimination of anomalies in the SSS port and starboard
seabed image region

Computing coordinates of first bottom returns

Extraction of sea bottom line

Figure 1: Automatic bottom detection procedure for SSS.
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(1) Calculate the intensity median Zil using the [i− 1,
l− 1]th, [i− 1, l]th, [i− 1, l+ 1]th, [i, l− 1]th, [i, l]th,
[i, l+ 1]th, [i+ 1, l− 1]th, [i+ 1, l]th, and [i+ 1, l+ 1]
th sampling measured intensity values in starboard
echo data, as well as the absolute intensity deviation
Eil � abs (Iil −Zil).

(2) Deciding absolute intensity deviation Eil: if
Eil> 9.78 + 1.44× Iil − 8.86×10−4 × I2ij
+ 2.95×10−7 × I3ij − 3.26×10−11 × I4ij, then Zil is used
as the new intensity value for the [i, l]th echo
sampling measure in SSS starboard data; otherwise,
no anomaly removal is performed.

3.1.3. Step 3: Computing Coordinates of First Bottom Returns.
According to the principle of bilateral symmetry of the sea
bottom line, the first bottom returns received by the
transducer arrays on the port and starboard sides of the SSS
come from directly below AUV, the distances of the first
bottom return echoes are equal, and the detected sea bottom
lines on both sides are symmetrical to the AUV track
[7, 9–11]. .e above principle allows for better sea bottom
line detection.

Herein, calculation of the coordinates of first bottom
returns involves the following flow:

(1) .e two spatial-temporal echo sampling measure
sequences in each ping of SSS port and starboard
data are matched and aligned.
.e issue of unequal maximum numbers, Kleftmax
and Krightmax, of the port and starboard echo sam-
pling measures in one ping results in different
temporal and spatial information implied by Iij and
Iil when l� j. To maximize the usage of the principle
of bilateral symmetry of the sea bottom line and to
achieve a combined comparison between the port
and starboard measures, the above problem must
first be solved for removing as many influences of the
suspended matter as possible.
In this study, bottom detection focuses on the water
column region data and the mutated part of the
seabed region data from the water column region.
.erefore, to maintain the robustness of the bottom
detection method, the SSS port and starboard echo
data in each ping can be regarded as two spatial-
temporal sequences for matching and alignment.

When performing matching the alignment, consis-
tency in the spatial-temporal information of muta-
tions from the water column region to the seabed
region should be maintained. .us, the dynamic
time warping (DTW) algorithm is used to achieve
this goal [19], which includes the following
processes:

(a) For the ith ping, there are two spatial-temporal
sequences, the port echo sampling measures {Iij,
Km≤ j≤Kleftmax}, and the starboard echo sam-
pling measures {Iil, Km≤ l≤Krightmax}. Take one
echo from each of the two sequences and cal-
culate the Euclidean distance D (Iij, Iil) between
them, where Km≤ j≤Kleftmax, Km≤ l≤Krightmax.
By calculating the Euclidean distances for all
echoes in the two sequences, the Euclidean
distance table can be constructed, as shown in
Table 1.

(b) Search for the shortest path in the above Eu-
clidean distance table. In the above table, dy-
namic planning is used to search for the shortest
path from node D (IiKm, IiKm) to node D
(IiKleftmax, IiKrightmax). .e shortest path must
satisfy the condition that if the current node is D
(Iij, Iil), then the next node must be selected
amongD (Iij+1, Iil),D (Iij, Iil+1), andD (Iij+1, Iil+1),
and the chosen path must be the shortest.

(c) According to the nodes on the shortest path
through the Euclidean distance table, two dis-
crete sequences can be obtained as aligned echo
sampling measure pairs with the same sequence
length recorded as Kmax.

(2) Perform logarithm transformation on the matched
and aligned port and starboard echo sampling
measures in each ping; that is, take the base 10
logarithm.

(3) Calculate the standard deviation of the logarithmic
sequence of the port and starboard echo sampling
measures in each ping, and use them to construct a
composite sequence of this ping.
Set a window toW, with a value as small as possible,
to avoid flooding the mutant features of the first
bottom return. Empirically, W can be calculated as
follows:

W �
minimumheight of SSS from seabed × min Kleftmax, Krightmax􏼐 􏼑

(3 ∼ 6) × slant range
. (3)

By calculating the standard deviation of the loga-
rithmic sequence of the port and starboard echo
sampling measures in each ping, two standard de-
viation sequences, denoted as {Liq,
1≤ q≤Kmax −W+ 1} and {Lis, 1≤ s≤Kmax −W+ 1},

are obtained, where the sequence length is
Kmax −W+ 1.
In SSS echo data, there may be echo anomalies in the
water column region, which will cause large fluc-
tuations during the calculation of its standard
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deviation sequence and, in turn, will affect the ac-
curacy of subsequent extreme value detection.
.erefore, to maximize the usage of the principle of
bilateral symmetry of the sea bottom lines, we further
take the minimum value of the port and starboard
logarithmic sequence standard deviation of each
ping. Consequently, for any s� q,
1≤ q≤Kmax −W+ 1, and 1≤ s≤Kmax −W+ 1, take
Lig �min (Liq, Lis), and a composite sequence of ith
ping {Lig, 1≤g≤Kmax −W+ 1} is constructed.

(4) Perform extreme value detection on the composite
sequence of each ping to obtain the extreme point
coordinates.
Based on the characteristics of the SSS data, the sea
bottom line comprises the first strong sea bottom
echoes on the port and starboard side. .us, the
mutation of the echo intensity from the water col-
umn region to the seabed region will result in the first
maximum value in the composite sequence {Lig,
1≤g≤Kmax −W+ 1}. .erefore, the extreme point
coordinates, denoted as gb, can be obtained by
performing extreme value detection.

(5) .e coordinates of the port and starboard first
bottom returns are obtained using the above extreme
point coordinates.

.e coordinates qb and sb of the standard deviation
sequences corresponding to the logarithm of the obtained
port and starboard echo sampling measures can be obtained
using the extreme point coordinate gb. In turn, the echo
intensity Ibleft corresponding to the coordinate qb+W− 1

and Ibright corresponding to the coordinate sb+W− 1 of the
matched and aligned port and starboard sampling measure
sequences are obtained by searching algorithms:

{Iij, Km≤ j≤Kleftmax}, and the starboard echo sampling
measures {Iil, Km≤ l≤Krightmax}.

For each ping, by searching the port sequence {Iij,
Km≤ j≤Kleftmax} and finding the first echo intensity value
that equals Ibleft, the coordinate of the first bottom return is
derived as jb. Similarly, by searching the port sequence {Iil,
Km≤ l≤Krightmax} and finding the first echo intensity value
that equals Ibright, the coordinate of the first bottom return is
derived as lb.

3.1.4. Step 4: Extraction of Sea Bottom Line. Considering the
asymptotic nature of the sea bottom variation, precise sea
bottom lines can be detected by sliding average filtering of
the coordinates of the port first bottom returns {jb} and the
coordinates of the starboard first bottom returns {lb} of all
pings obtained through the above calculation [2].

3.2. ExperimentalResults andDiscussion. In this experiment,
the Sea Scan® ARC SCOUT Mk-II from the Marine Sonic
Technology mounted on an AUV is used. .e main oper-
ating parameters of the SSS are set to a ping frequency of
900 kHz and a slant range of 10 meters. Raw data of all pings
are collected through actual measurements in the offshore
test.

.e waterfall plot of the SSS echo data in reverse of the
image displayed at 256 grayscale levels is shown in Figure 3.
.e corresponding separate SSS images for the port and

Table 1: Euclidean distance table.
D (IiKm, IiKm) D (IiKm, IiKm+1) . . . D (IiKm, IiKrightmax)
D (IiKm+1, IiKm) D (IiKm+1, IiKm+1) . . . D (IiKm+1, IiKrightmax)
. . . . . . . . . . . .

D (IiKleftmax, IiKm) D (IiKleftmax, IiKm+1) . . . D (IiKleftmax, IiKrightmax)
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Figure 3: Echo data of a single ping scan line.
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Figure 4: Separate SSS images for port and starboard sides with blind zone: (a) port side and (b) starboard side.
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Figure 5: Main distribution parameters of the SSS waterfall image.
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Figure 6: Separate SSS images of the port and starboard sides without blind zone: (a) port side and (b) starboard side.
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Figure 7: Separate SSS images of the port and starboard sides without blind zone after high-frequency noise and outliers filtering: (a) port
side and (b) starboard side.
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Figure 8: Detected sea bottom line marked separately on the port and starboard sides without showing the blind zone: (a) port side and (b)
starboard side.
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Figure 9: Sea bottom line marked in the waterfall of the SSS image without showing the blind zone.
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starboard sides with blind zone are shown in Figures 4(a)
and 4(b).

A waterfall plot of considerable echo data intercepted after
the ping starting in Figure 3 is shown in Figure 5, where A1,
A2, A3, A4, and A5 indicate the sea bottom line, sea surface
line, blind zone, water column region, and seabed image
region, respectively. It can be seen obviously that the darker
the color, the stronger the echo intensity, and, conversely, the
whiter (brighter) the color, the weaker the echo intensity.

Echo sampling measures of a single ping are shown in
Figure 2. After removing the blind zone according to Step 1
in Section 3.1, separate SSS images of the port and starboard
sides without showing the blind zone can be obtained, as
shown in Figure 6.

In Figure 6, it can be seen that there are many anomalies
in the echo data which may interfere with the detection of
the sea bottom line and even cause false detection in complex
environments, such as suspended matter present in the
water column region. .ese echo anomalies are essentially
high-frequency noise and outliers that can be effectively
removed from the image during data processing according
to an improved median filtering algorithm in Step 2 in
Section 3.1, as shown in Figure 7.

.e separate SSS images of the port and starboard sides
without the blind zone after high-frequency noise and
outliers filtering are shown in Figure 7. Compared to Fig-
ure 6, the echo anomalies in the water column region can be
eliminated to some extent.

Processed with Step 3 and Step 4 in Section 3.1, the detected
sea bottom line marked separately on the port and starboard
sides without showing the blind zone is shown in Figure 8,
while the sea bottom line marked in the waterfall of the SSS
image without showing the blind zone is shown in Figure 9.

4. Conclusions

In this study, the automatic bottom detection method of SSS
image for AUV missions is presented. .e existence of blind
zone in the SSS image is taken into account, and the blind zone
boundary of the SSS image is calculated based on the SSS
parameters conveniently. .e anomalies in SSS image are
eliminated effectively using an improved median filtering al-
gorithm. Further, to perform extreme value detection
according to the principle of bilateral symmetry of the sea
bottom lines, the SSS port and starboard echo data sequences in
each ping are retained by using the logarithm of the space-time
align-matched data. .erefore, an accurate sea bottom line is
obtained through a sliding average filter with the coordinate
sequences of the first bottom returns. .e experimental results
show that, without manual intervention to set the initial values
online, the proposed method can overcome the strong noise
interferences and achieve high detection accuracy and good
detailed continuity in the process of sea bottom line detection.
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Target recognition is one of the core tasks of transmission line inspection based on Unmanned Aerial Vehicle (UAV), and at
present plenty of deep learning-based methods have been developed for it. To enhance the generalization ability of the recognition
models, a huge number of training samples are needed to cover most of all possible situations. However, due to the complexity of
the environmental conditions and targets, and the limitations of images’ collection and annotation, the samples usually are
insufficient when training a deep learning model for target recognition, which is one of the main factors reducing the performance
of the model. To overcome this issue, some data augmentation methods have been developed to generate additional samples for
model training. Although these methods have been widely used, currently there is no quantitative study on the impact of the data
augmentation methods on target recognition. In this paper, taking insulator strings as the target, the impact of a series of widely
used data augmentation methods on the accuracy of target recognition is studied, including histogram equalization, Gaussian
blur, random translation, scaling, cutout, and rotation. Extensive tests are carried out to verify the impact of the augmented
samples in the training set, the test set, or the both. Experimental results show that data augmentation plays an important role in
improving the accuracy of recognition models, in which the impacts of the data augmentation methods such as Gaussian blur,
scaling, and rotation are significant.

1. Introduction

Transmission line inspection plays a very important role in
ensuring the safety of the power system. In recent years, with
the development of Unmanned Aerial Vehicle (UAV)
technology, UAVs have been successfully applied in power
transmission line inspection. In the traditional transmission
line inspection method based on UAV, under the control of
the operators, the UAVs fly along the specific inspection
route and use the cameras to collect images or videos at
certain locations. *ese images or videos will be transmitted
back to the operators to obtain the actual flight paths, the

environment around the UAVs, and the targets to be
identified. In this method, target recognition mainly de-
pends on human experience, which limits the efficiency and
accuracy of it [1].

With the progress of artificial intelligence technology,
increasing attention has been paid to UAV autonomous
inspection technology. As shown in Figure 1, by using GPS
and intelligent image recognition technology, UAV can
realize autonomous planning of inspection path, automatic
obstacle avoidance, and intelligent recognition of suspicious
targets. It is clear that the accuracy of image recognition
directly determines the success of UAV autonomous
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inspection. In recent years, the development of the deep
learning technology has greatly improved the performance
of image target recognition [2–4]. *e performance of deep
learning models highly rely on the number of valid training
samples; unfortunately, lack of valid training samples is a
common problem in deep learning model training. Due to
the complexity of the environmental conditions and targets,
as well as the limitations of images collection and annota-
tion, the valid samples usually cannot cover most of all
possible situations. As a result, the generalization ability of
the recognition models is reduced, making them hardly
usable in the practical scenes. To overcome this issue, some
data augmentation methods have been developed to gen-
erate additional samples for deep learning models training
[5–10]. Although these methods have been widely used,
currently there is no quantitative study on the impacts of
them on target recognition, which greatly limits the usage of
these data augmentation methods.

In this paper, taking insulator strings as the target, the
impact of a series of widely used data augmentation
methods on the accuracy of target recognition is studied.
*e reason of choosing insulator strings as the target is
that, in the transmission line, insulator strings are widely
installed and have a variety of types, which are also fault
prone elements. Once an insulator string fails, the
transmission line cannot work normally and a large area
of power failure is caused, which poses a great threat to the
safe and stable operation of the power system. *e rec-
ognition of insulator strings is a very important step to
detect the fault of them, and the recognition accuracy of
the insulator strings directly determines the result of
insulator string fault detection. However, due to the
complex background, the various shapes of insulator
strings, uncertain shooting parameters of the cameras, and
the recognition of insulator string are still a very chal-
lenging work. Although the recent advanced deep
learning-based methods provide a promising approach to
solve this issue, they suffer the insufficient training sample
issue, similar with many other practical scenes. *erefore,
data augmentation methods are usually adopted when
training a deep learning-based model for insulator string
recognition. Currently, the widely used data augmenta-
tion methods include histogram equalization [1, 6, 8],
Gaussian blur [1, 7], translation [1, 5, 10], scaling [9, 10],
and rotation [1, 9, 10]. Although these data augmentation
methods have been widely used, there is still a lack of
quantitative analysis of the impact of different

augmentation methods on recognition results, which
seriously hinders the further improvement of data aug-
mentation impact.

To overcome this issue, this paper studies the impact of
some widely used data augmentation methods on the ac-
curacy of target recognition, including histogram equal-
ization, Gaussian blur, random translation, scaling, cutout,
and rotation. Extensive experiments are carried out, and it is
found that data augmentation plays an important role in
improving the recognition performance of the model when
the dataset is small. Meanwhile, Gaussian blur, scaling, and
rotation have a great impact on the target recognition
performance.

*e rest of this paper is arranged as follows. Section 2
reviews the related works, and Section 3 gives the details of
different data augmentation methods and examples. Section
4 presents extensive experiments and analyzes the impact of
data augmentation methods on target recognition, and
Section 5 is the conclusion.

2. Related Works

*e safe and stable operation of the power system is of great
significance to human life. Intelligent analysis of the power
system has always been a research hotspot [11, 12]. As a key
element of the power transmission line, insulator string
recognition and defect detection is a research hotspot. As an
important part of the transmission line, the state of insulator
string directly determines the operation safety of the
transmission line. *erefore, insulator string recognition
and fault detection has always been a research hotspot.
Insulator string recognition can be carried out using tra-
ditional image processing methods or the recent advanced
deep learning-basedmethods. Because the insulator string in
the image does not always follow certain directions, the
recognition methods need to detect the insulator string
along all possible direction, which is very time consuming.
To overcome this issue, Zhao et al. [13] propose an insulator
string recognition method based on orientation angle de-
tection and binary shape prior knowledge. Zhao et al. [14]
propose an insulator strings recognition method in infrared
image based on binary robust invariant scalable keypoints
(BRISK) and vector of locally aggregated descriptors
(VLAD).

With the development of deep learning technology,
many neural networks or convolutional neural networks
(CNNs) methods have been proposed [15–20]. Zhao et al.
[15] adopt the VGG16 structure and replace the last three
fully connected layers with a VLAD pooling layer, and a
SVM is trained for binary image classification. Sadykova
et al. [9] adopt the You Only Look Once (YOLO) model for
insulator string recognition. Chen et al. [18] use the You
YOLO V3 algorithm for insulator strings recognition.
Meanwhile, they improve the image quality using a super-
resolution method based on Super-Resolution Convolu-
tional Neural Network (SRCNN). In [20], Kang et al. use a
faster R-CNN network for insulator string recognition, and a
deep multitask neural network for insulator string defect
detection. Miao et al. [5] use a single shot multibox detector

Figure 1: UAV-based autonomous transmission line inspection.
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(SSD) for insulator string recognition. Jiang et al. [6] use SSD
for insulator string defect detection from the entire image,
the multi-insulator image, and the single-insulator image
and then adopt ensemble learning to combine the results. In
[7], Sampedro et al. first propose Up-Net, a fully convolu-
tional network (FCN) architecture, for insulator string
segmentation, and then design a Siamese convolutional
neural network- (SCNN-) based method for insulator string
defect detection. Ling et al. [8] and Li et al. [10] use a faster
R-CNN network for insulator string recognition and a U-net
for insulator string defect detection. Tao et al. [1] propose a
CNN cascading architecture for insulator string recognition
and defect detection.

Similar with many other practical recognition tasks
based on deep leaning technology, the performance of deep
learning models of insulator string recognition highly rely
on the number of valid training samples. However, due to
the complexity of the environmental conditions and targets,
as well as the limitations of image collection and annotation,
the valid samples usually cannot cover most of all possible
situations. To overcome this issue, some data augmentation
methods have been developed to generate additional sam-
ples for deep learning model training. For example, Miao
et al. [5] adopt horizontal and vertical flip; Jiang et al. [6]
adopt horizontal flip and gamma correction; Tao et al. [1]
adopt affine transformation, insulator and new background
fusion, Gaussian blur, and brightness transformation; Ling
et al. [8] adopt augmentation methods including random
flip, crop, random saturation, brightness, and contract
perturbation. Sadykova et al. [9] adopt many augmentation
methods such as Gaussian noise, Gaussian blur, average
blur, Median blur, rotation, scaling, addition, and multi-
plication. Li et al. [10] adopt more augmentation methods
such as mirroring, rotation, affine transformation, Gaussian
white noise, brightness and color transformation, and other
data augment operations. Although these image augmen-
tation methods have been widely used, at present, there is
lack of quantitative study on the impacts of them on target
recognition.

3. Data Augmentation

3.1. Histogram Equalization. Histogram equalization is to
stretch the image nonlinearly and redistribute the pixel value
of the image so that the gray histogram of the original image
changes from a certain gray range to a uniform distribution
in the whole range. For a RGB image in this paper, first, the
image is converted from RGB space to HSV space, and then
histogram equalization is performed on the V channel in
HSV space as

pr rk( 􏼁 �
nk

n
, k � 0, 1, ..., L − 1, (1)

where n is the total number of pixels in the image, nk is the
number of pixels with gray level rk, and L is the total number
of possible gray levels in the image.

Meanwhile, the pixels of the gray level rk in the image
can be mapped to the corresponding pixels of the gray level
sk in the output image by

sk � 􏽘
k

j�0
pr rk( 􏼁 � 􏽘

k

j�0

nj

n
, k � 0, 1, ..., L − 1. (2)

Figure 2 gives two examples of histogram equalization, in
which Figures 2(a) and 2(c) are original images, and
Figures 2(b) and 2(d) are corresponding images after his-
togram equalization. From Figure 2, it can be seen that,
compared with the original images Figures 2(a) and 2(c), the
images after histogram equalization Figures 2(b) and 2(d)
have a better visual impact. However, whether this impact
can benefit the performance of target recognition is not
clear, which will be verified in Section 4.

3.2. Gaussian Blur. Gaussian blur is to transform the weight
of each pixel in an image according to the Gaussian dis-
tribution function using the weighted average value with the
surrounding pixels:

G(x, y) �
1

2πσ2
e

− x2+y2/2σ2( ), (3)

where σ is the standard deviation, and x and y are the
coordinates of pixels in the Gaussian blur kernel. *en a
Gaussian blurred image Ib can be obtained by

Ib � I⊕G(x, y), (4)

where ⊕ is the convolution operator.
*e impact of Gaussian blur depends on the standard

deviation σ and the size of the Gaussian blur kernel. In this
paper, the standard deviation of Gaussian blur is fixed as 5,
and the sizes of the Gaussian blur kernels are set to 3∗ 3,
7∗ 7, and 11 ∗ 11, respectively. Figure 3 gives an example of
an image blurred by different Gaussian blur kernels, where
Figure 3(a) is the original image and Figures 3(b)–3(d) are
burred images resulted from Gaussian blur with the kernels
3 ∗ 3, 7 ∗ 7, and 11 ∗ 11, respectively.

*e Gaussian blurred image is to simulate the defocusing
effect when the target is not in the focus position of the
camera during exposure, which is a common phenomenon.
*erefore, it may be an effective data augmentation method.

3.3. RandomTranslation. Random translation is to keep the
size of the image unchanged and move the whole image up/
down/left/right for a certain distance. In this paper, the
translation distance is random, but ensures that the insulator
string will not be moved out of the image. Figure 4 gives two
examples of random translation, in which Figures 4(a) and
4(c) are original images, and Figures 4(b) and 4(d) are
corresponding images after random translation. Note that
the vacant area resulted from random translation are filled
by zeroes.

3.4. Image Scaling. Image scaling is to resize the image while
keeping the image aspect ratio of the length and width
unchanged. *is strategy is used to simulate the effect of
different focal lengths of the camera on the shooting results.
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(a) (b)

(c) (d)

Figure 2: Images before and after histogram equalization.

(a) (b)

Figure 3: Continued.
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In this paper, two scaling ratios 0.5 and 2 are applied.
Figure 5 gives two examples of image scaling, in which
Figures 5(a) and 5(c) are original images and Figures 5(b)
and 5(d) are corresponding images after image scaling.
Similar with random translation, the vacant area resulted
from image scaling are filled by zeroes. Note that, for some
images, parts of insulator strings may be out of the images.

3.5. Image Cutout. Image cutout is the process of generating
a new image by eliminating a certain region of the image.
Cutout can simulate the situation that the target is partially
occluded, which is a common phenomenon in a natural
image. In this paper, image cutout is carried out by elimi-
nating a region with the size of 100 ∗ 100. *e region is
randomly selected in any position of the image. Note that the

(c) (d)

Figure 3: Images burred by different Gaussian blur kernels.

(a) (b)

(c) (d)

Figure 4: Images before and after random translation.
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region may not be completely in the image, e.g., at the
boundary of the image. Meanwhile, if less than 50% of the
region appears in the image, then the region will be rese-
lected. *is strategy is used to ensure that the valid area of
the eliminated region will not be significantly reduced at the
boundary of the image. Figure 6 gives two examples of image
cutout, in which Figures 6(a) and 6(c) are original images
and Figures 6(b) and 6(d) are corresponding images after
image cutout.

3.6. Image Rotation. Compared with general objects in
natural images, the aspect ratio of insulator string is ex-
tremely large. *e algorithms based on CNN are to search
the region in the current image with high similarity with the
labeled region in the training samples. When the algorithm
based on CNN is applied to the identification of insulator
strings, the overlapping area of insulator strings at different
directions is greatly reduced due to the influence of the
extremely large aspect ratio.*erefore, when the direction of
the insulator string in the detected image is different from
that in the training sample set, the detection rate will be
greatly reduced. As a result, image rotation [1, 9, 10] has
been adopted to increase the coverage of insulator string
directions in the training set. In this paper, the relationship
between the target rotation angle and recognition rate will be
analyzed quantitatively. In order to achieve this goal, first,

the image is rotated to make the insulator string in the image
in a horizontal position; second, the aspect ratio of the
insulator strings in the images are calculated, and the images
are divided into the large class and the small class according
to the aspect ratio; finally, the images belonging to the large
class and the small class are used for training and testing,
respectively; for the test set image, it is rotated to −87°, −84°,
. . ., −3°, 0°, 3°, 6°, . . ., 87°, and 90°, respectively, to test
whether it can be recognized by the trained model.

Figure 7 gives examples of image rotation, in which
Figure 7(a) is the original image and Figure 7(b) is a rotated
image that the insulator string in the image is in horizontal
position. Figures 7(c) and 7(d) are rotated images, where the
insulator strings in the images are 3° and −3° from the
horizontal.

4. Experiment and Discussion

*e basic dataset used in this paper contains 848 insulator
string images with a resolution of 1152 ∗ 864, including 600
images with insulator strings and 248 images without in-
sulator string. *e dataset is divided into the training set and
test set with a ratio of 4 :1, and the number of images of the
training set and test set is 678 and 170, respectively.

*e experiments are carried out on a server with
ubuntu18.04, python 3.6, and rtx2080ti, and the deep
learning framework is Caffe. In this paper, the software

(a) (b)

(c) (d)

Figure 5: Images before and after scaling.
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(a) (b)

(c) (d)

Figure 6: Images before and after cutout.

(a) (b)

Figure 7: Continued.

Complexity 7



LabelImg is used to label the 848 images in the basic dataset.
*e target recognition algorithm is faster RCNN [2], and the
pretrained model is ZF. For the training process, the initial
learning rate is set to 0.001, the weight attenuation coefficient
is set to 0.0005, and the momentum value is 0.9.

4.1. Histogram Equalization. For this test, first the training
set and test set are augmented by Gaussian blur with a kernel
3 ∗ 3, random translation, scaling (×0.5), and cutout, re-
spectively. After that, the training set and test set are 4 times
of the basic dataset, and these data are taken as the original
dataset. In order to verify the impact of histogram equal-
ization on recognition performance, the images in the
original dataset are processed by histogram equalization, and
then a new training set and test set are formed for training
and testing. *e test results before and after histogram
equalization are shown in Table 1, where Ori, Aug, and All
are the test results based on the original dataset, the aug-
mented dataset, and all dataset, respectively.

It can be seen from Table 1 that when histogram
equalization is used to augment the dataset, the recognition
accuracy of the test set processed by histogram equalization is
improved by 0.6%. For the original test data and augmented
data, the recognition accuracy of the insulator string is im-
proved by 0.22%, which shows that histogram equalization is
a useful method to improve the accuracy of insulator strings
recognition, although the impact is not significant.

4.2.GaussianBlur. For this test, first the training set and test
set are augmented by histogram equalization, random
translation, scaling (×0.5), and cutout, respectively. After
that, the training set and test set are 4 times of the basic
dataset. In order to verify the impact of different Gaussian
blur kernels on the recognition performance, the dataset is
blurred by Gaussian blur with different kernels, and then a
new training set and test set are formed. *e test results with
different Gaussian blur kernels are shown in Table 2, where
K1, K2, and K3 are Gaussian blur with kernels 3 ∗ 3, 7 ∗ 7,
and 11 ∗ 11, respectively.

It can be seen from Table 2 that the recognition accuracy of
the model trained only with the original data on the test set
images with 3 ∗ 3, 7 ∗ 7, and 11 ∗ 11 blur kernels decreases
in turn; while for the model trained with blurred images and
original images or only using the original image, when the test
images are blurred with small Gaussian blur kernels (e.g.,
3 ∗ 3), the difference of the recognition accuracy among
different test datasets is not significant. It means that Gaussian
blur with a small kernel has little impact on the result. However,
when the training set contains images blurred by large kernels,
the recognition accuracy on the test dataset is improved sig-
nificantly. From the above analysis it can be seen that Gaussian
blur is an effective method to improve the accuracy of insulator
strings recognition, and the impact is significant.

4.3. Random Translation. For this test, first the training set
and test set are augmented by histogram equalization,
Gaussian blur with a kernel 3 ∗ 3, scaling (×0.5), and

(c) (d)

Figure 7: Images before and after rotation.

Table 1: Test results before and after histogram equalization.

Test set
Ori Aug All

Training set
Ori 0.9002 0.8932 0.8975
All 0.9003 0.8992 0.8997

Table 2: Test results on Gaussian blur.

Test set
Ori K1 K2 K3 All

Training set
Ori 0.9014 0.8924 0.7923 0.6038 0.8013
Ori +K1 0.9021 0.9004 0.8129 0.6307 0.8108
Ori +K2 0.9030 0.8999 0.8971 0.8100 0.8889
Ori +K3 0.9010 0.9006 0.8921 0.8922 0.8978
Ori +K1 +K2 0.9021 0.9012 0.8963 0.8136 0.8942
Ori +K1 +K3 0.9001 0.8994 0.8956 0.8798 0.8970
Ori +K2 +K3 0.9035 0.8995 0.8999 0.8821 0.8981
All 0.9033 0.9016 0.8975 0.8739 0.8985
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cutout, respectively. After that, the training set and test set
are 4 times of the basic dataset, and these data are taken as
the original dataset. In order to verify the impact of random
translation on recognition performance, the original dataset
is randomly translated, and then a new training set and test
set are formed for training and testing.*e test results before
and after random translation are shown in Table 3.

It can be seen from Table 3 that when the random
translation method is used to augment the dataset, the
recognition accuracy rate of the test set processed by random
translation is improved by 0.36%, and the recognition ac-
curacy rate of the insulator string is improved by 0.23% for
the original test data and augmented data, which indicates
that the recognition performance of the insulator string can
be improved by using the random translation method.

4.4. ImageScaling. For this test, first the training set and test
set are augmented by histogram equalization, Gaussian
blur with a kernel 3 ∗ 3, random translation, and cutout,
respectively. After that, the training set and test set are 4
times of the basic dataset, and these data are taken as the
original dataset. To verify the impact of different scaling on
recognition performance, the images in the original dataset
are scaled by 0.5 and 2, respectively, and then a new
training set and test set are formed for training and testing.
*e test results before and after scaling are shown in
Table 4.

It can be seen from Table 4 that when using the model
trained based on the original dataset, the recognition ac-
curacy on the test images with the scale of 0.5 and 2 is
obviously lower than on the original dataset. When the
training set contains the images scaled by 0.5, the recog-
nition accuracy of all dataset is improved. Furthermore,
when the training set contains the images scaled by 2, the
recognition accuracy of images scaled by 2 is improved. It
shows that the recognition accuracy of images with different
scaling ratios can be improved when the images with dif-
ferent scales are used for training.

4.5. Image Cutout. For this test, first the training set and test
set are augmented by histogram equalization, Gaussian blur
with a kernel 3 ∗ 3, random translation, and scaling (×0.5),
respectively. After that, the training set and test set are 4
times of the basic dataset, and these data are taken as the
original dataset. In order to verify the impact of image cutout
on recognition performance, the images in the original
dataset are processed by cutout, and then a new training set
and test set are formed for training and testing. *e test
results before and after histogram equalization are shown in
Table 5.

It can be seen from Table 5 that when using cutout to
augment the original dataset, the recognition accuracy of the
test set processed by cutout is improved by 0.56%. For the
original test data and augmented data, the recognition ac-
curacy of the insulator string is improved by 0.27%, which
indicates that cutout is a useful method to improve the
accuracy of insulator string recognition.

4.6. Image Rotation. For the basic dataset, first, rotate the
image so that the insulator string in the image is in the
horizontal position. Second, based on the statistics of the
aspect ratio of insulator strings, it can be seen that the aspect
ratio of insulator strings is from 1 :1 to 14 :1. In this paper,
taking the aspect ratio 8 :1 as the threshold, the images with
the insulator string’s aspect ratio greater than 8 :1 are
classified as class L, and those with the insulator string’s
aspect ratio greater than 8 :1 are classified as class S. If there
are both class L and class S insulator strings in an image, the
image belongs to class L and class S at the same time. After
that the images of class L and class s are divided into training
set and test set according to the ratio of 4 :1, and then
histogram equalization, Gaussian blur, random translation,
scaling, and cutout are used to expand the training set and
test set of these two types of images, respectively.

During the test process, for an image, first, rotate it to
make the insulator strings are at −87°, −84°, −3°, 0°, 3°, . . .,
87°and 90°to the horizontal line, respectively; then, the
recognition accuracies of the model for insulator strings in
different angle are calculated and shown in Figure 8, where
Figure 8(a) is the result of the L class images and Figure 8(b)
is the result of the S class images. From Figure 8, it can be
seen that the recognition accuracy of the model for insulator
strings at 0°is the highest; however, with the angle deviation
of 0°, the recognition accuracy of insulator string decreases
dramatically. When the deviation angle is more than 12°, the
model can hardly recognize the insulator string. Meanwhile,
although the rotation angle is the same, the recognition

Table 3: Test results before and after random translation.

Test set
Ori Aug All

Training set
Ori 0.8996 0.8981 0.8981
All 0.9011 0.9017 0.9004

Table 4: Test results before and after scaling.

Test set
Ori ×0.5 ×2 All

Training set
Ori 0.9026 0.7955 0.6230 0.7928
Ori + (×0.5) 0.9045 0.8121 0.6539 0.8016
Ori + (×2) 0.9024 0.7240 0.9080 0.8154
All 0.9030 0.8131 0.9087 0.9010

Table 5: Test results before and after cutout.

Test set
Ori Aug All

Training set
Ori 0.8997 0.8965 0.8996
All 0.9031 0.9021 0.9023
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accuracy is not the same due to different rotation directions.
*e results show that the general convolution neural net-
work-based recognition method such as faster RCNN used
in this paper cannot deal with the issue of target rotation
well, and additional strategies are needed to solve the target
rotation issue.

5. Conclusion

In this paper, the impact of data augmentation on target
recognition for UAV-based transmission line inspection is
analyzed. Based on extensive experiments on different data
augmentation methods, it can be found that the data aug-
mentation methods such as histogram equalization, random
translation, and cutout can improve the target recognition
accuracy, but the impact is not significant. Compared with
above data augmentation methods, Gaussian blur, scaling,
and rotation have a greater impact on the recognition
performance of insulator strings. For rotation, the general
convolution neural network-based recognition method such
as faster RCNN used in this paper cannot deal with the issue
of target rotation well, and additional methods should be
adopted to solve this issue.
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Multiobject Tracking (MOT) is one of the most important abilities of autonomous driving systems. However, most of the existing
MOT methods only use a single sensor, such as a camera, which has the problem of insufficient reliability. In this paper, we
propose a novel Multiobject Tracking method by fusing deep appearance features and motion information of objects. In this
method, the locations of objects are first determined based on a 2D object detector and a 3D object detector. We use the
Nonmaximum Suppression (NMS) algorithm to combine the detection results of the two detectors to ensure the detection
accuracy in complex scenes. After that, we use Convolutional Neural Network (CNN) to learn the deep appearance features of
objects and employ Kalman Filter to obtain the motion information of objects. Finally, theMOTtask is achieved by associating the
motion information and deep appearance features. A successful match indicates that the object was tracked successfully. A set of
experiments on the KITTI Tracking Benchmark shows that the proposedMOTmethod can effectively perform the MOTtask.+e
Multiobject Tracking Accuracy (MOTA) is up to 76.40% and the Multiobject Tracking Precision (MOTP) is up to 83.50%.

1. Introduction

+e objective of Multiobject Tracking (MOT) is to track
multiple objects at the same time and estimate their current
states, such as locations, velocities, and sizes, while main-
taining their motion identifications. Hence, the MOT is one
of themost important abilities of autonomous systems, but it
remains challenging because the target objects may be ob-
scured, or it may be interfered by objects of similar shape.
Owing to the rapid development of object detectors, several
tracking-by-detection methods [1–5] have been widely
proposed to address the MOT problem. Typically, the
existing tracking-by-detection methods involve two main
computational steps: object detection and tracking. +ese
methods first detect the location of objects and then com-
pute the trajectories of the objects based on the results of
object detection [6–8]. +e accuracy of object tracking is
highly related to the performance of object detection. Hence,

the important thing about the MOT is to track the new
targets that appear at any time and find lost tracking target
objects from detections and associate again. However, most
of the tracking-by-detection methods are based on vision-
based object detections. In the case of occlusion and
overexposure, vision-based object detectionmay lead to false
association with existing trajectories. For example,
Figure 1(a) shows the failure of vehicle detection on the
image with the occlusion of humans. Figure 1(b) shows the
camera is disabled when overexposure.

+e scene of autonomous driving may contain mul-
tiple objects, and the states of the objects are usually
uncertain [9, 10]. In this case, the vision-based object
detections are susceptible to occlusion or overexposure,
which will easily lead to false checks or loss of target
tracking. Besides, one major challenge of the MOT is how
to reduce incorrect identity switching. Because the
tracked objects often have high similarities, it is
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challenging to track objects correctly and perform correct
Re-Identification(RE-ID).

Multimodal data fusion has the potential to improve
the stability and accuracy of the MOT. However, a ma-
jority of traditional methods use the camera, LiDAR, or
radar. +ese methods need to design hand-crafted fea-
tures [11]. However, the hand-crafted features are often
not of high precision, and it is difficult to guarantee the
tracking performance. Hence, it is necessary to design a
feature learning method that can automatically learn
appearance features from raw visual data. Moreover, in
autonomous driving systems, since the objects are moving
rather than stationary, the motion information of objects
should be integrated with the appearance features to
achieve the MOT tasks. In addition, some MOTmethods
include depth information in the tracking process by
using depth camera in order to improve tracking per-
formance. For example, Mehner et al. [12] used an or-
dinary camera to obtain 2D information of objects and
used a depth camera to obtain depth information to assist
in locating the objects in world coordinates. Although it
can improve the accuracy, the depth camera has a small
field of view, high noise, and is easily affected by sunlight,
so it is not effective as LiDAR. Moreover, they only use
Kalman Filter for tracking, which does not work well in
complex scenarios.

In this paper, we propose a multimodal MOTmethod by
fusing the motion information and the deep appearance
features of objects. +is paper employs a 2D object detector,
i.e., You Only Look Once (YOLOv3) [3] and a 3D object
detector, i.e., PointRCNN [5] to process the RGB image and
laser point cloud, respectively. +e combination of 2D de-
tection and 3D detection is helpful to improve the ro-
bustness of object detection. +en, the MOT is achieved by
associating the motion information and the deep appearance
features of the target object. A set of experiments on the
KITTI Tracking Benchmark is performed to demonstrate the
effectiveness of the proposed MOT method. Our contri-
butions are summarized as follows:

(1) +e 2D object detection based on the image and the
3D object detection-based laser point cloud are
combined to detect the location of objects, which is
robust against light changes and occlusion.

(2) We apply CNN that is pretrained to discriminate
vehicles on a large-scale vehicle Re-Identification
dataset to automatically extract the deep appearance
features of the target object without manually de-
signing features.

(3) A multimodal MOT method is proposed by fusing
the motion information and deep appearance fea-
tures of the object to achieve the MOT task. In
addition, the proposed method obtains competitive
qualitative and quantitative tracking results on the
KITTI tracking benchmark.

+e rest of the paper is organized as follows. Section 2
introduces related works. Section 3 presents the proposed
multimodal MOTmethod. Experiments and their results are
presented in Section 4. Finally, the conclusion and future
work are summarized in Section 5.

2. Related Works

+is section provides an overview of the two related research
topics: multiobject tracking and object detection.

2.1. Multiobject Tracking. +e problem of the MOT first
appeared in the tracking of object trajectory. For example,
tracking of multiple enemy aircraft or passing missiles. With
the development of computer vision, researchers have
proposed several MOTmethods from different aspects in the
past few decades. For example, the single-object tracking
method is extended to support multiple objects. According
to the data association, the existing MOT methods can be
divided into two categories: offline and online MOT
methods. In offline methods [13–16], the detection of all
frames in the sequence is combined to obtain the object
trajectory robustly.+ese methods need to construct a global
graph structure, which leads to high computational com-
plexity. However, in the online MOT method [17–20], the
target detector is only associated with the existing trajec-
tories frame by frame. Hence, online methods are more
suitable for real-time tracking.

Most of the existing MOT methods rely on motion
information produced from Kalman Filter [21], Hungarian
algorithm with Kalman Filter [17], Particle Filter [22], or
probability hypothesis density filter [23]. However, in au-
tonomous driving systems, due to the uncertainty of the
scene, it is impossible to track objects stably only by using
motion information. +erefore, more recent methods
combine the motion features with the appearance features to
improve the re-identification of target objects. Traditionally,
the appearance features of objects are manually designed
[24], which cannot provide reliable features, especially, in
complex scenes. Owing to the rapid development of deep
learning, deep convolutional networks [9, 25, 26] have been
widely used to extract the appearance features from raw

Image LiDAR

(a)

Image LiDAR

(b)

Figure 1: Examples of object detection in the case of occlusion and overexposure.
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visual data. For example, Wojke et al. [17] used CNN to
extract the pedestrian image features and measure the
distance between features for human detection.

2.2. ObjectDetection. Most of the existing 2D object detection
methods are based on CNNs, which can be divided into two-
stage detectors and one-stage detectors. In the two-stage de-
tectors, such as RCNN [27], Fast RCNN [28], Faster RCNN [1],
and FPN [29], they use Region Proposal Networks (RPN) to
generate the candidate regions and then perform bounding-
box classification and regression. For example, RCNN starts
with the extraction of a set of object proposals by the selective
search.+en, each proposal is rescaled to a fixed size image and
fed into a CNNmodel that is trained on ImageNet. In this way,
the presence of an object within each region is predicted and its
category is recognized. Although the two-stage detectors have
made great progress, theirmain drawback is that the redundant
feature calculation of a large number of overlapping schemes
results in a very slow detection speed.

+e One-stage detectors have YOLO [3, 30, 31], Single
Shot MultiBox Detector (SSD) [2], and RetinaNet [32].
+ese detectors do not need the RPN.+ey directly generate
the categories’ probability and bounding boxes of the ob-
jects.+esemethods only use one-stage calculation to get the
final detection results. For example, the YOLO applies a
single neural network to the whole image. +is network
divides the images into regions and predicts the bounding
boxes and the probabilities for each region simultaneously.
Compared with the two-stage detectors, the one-stage de-
tectors have a higher detection speed.

Because the point-cloud data contains richer geometric
features, 3D object detection has attracted more and more
attention. Compared with 2D object detection, 3D object
detection is more challenging because it needs to process the
point clouds of the scene. Chen et al. [33] projected point cloud
to the bird’s view and used 2D CNNs to learn the features of
point cloud for 3D boxes’ generation. Song and Xiao [34, 35]
divided the point cloud into equally spaced 3D voxels and used
3D CNNs to learn the features of voxels to generate 3D boxes.
Shi et al. [36] used PointNet++ [37] to process the point-cloud
inputs for 3D boxes’ generation. Besides, some methods
[38, 39] estimate 3D bounding boxes based on images.

3. Method

+is section introduces the proposed multimodal MOT
method that tracks multiple objects at the same time and
records their trajectories. +e proposed MOTmethod includes
the four main computations: object detection with Non-
maximum Suppression, motion information extraction,
learning deep appearance feature, and object tracking with data
association. Figure 2 shows an overview of the proposed MOT
method. We combine the result of 2D object detection and 3D
object detection such that the location of the object can be
detected robustly. Based on this, the motion information and
appearance features of objects are computed respectively. Fi-
nally, the motion information and appearance features of
objects are associated to track the target object.

3.1. Object Detection with NMS. +e first task of the MOT is
to detect the location of objects in the scene. In this paper, we
propose to combine the results of 2D object detection and
3D object detection for robust object detection. We use the
2D detector, i.e., YOLOV3 [3] that is trained on the training
set of the KITTI 2D object detection benchmark and uses the
3D detector, i.e., PointRCNN [5], that is trained on the
training set of the KITTI 3D object detection benchmark.

+e 2D detector processes the RGB image. +e output of
2D object detection is a set of detections
Dt

2 d � D1
2d, D2

2d, . . . , D
n1
2d􏽮 􏽯, where n1 is the number of objects

at frame t. +e 3D detector processes the point clouds that
were collected from a LiDAR. +e output of 3D object de-
tection is Dt

3d � D1
3d, D2

3d, . . . , D
n2
3d􏽮 􏽯, where n2 is the number

of objects at frame t. For further calculation, we project the
LiDAR point in the 3D space into the 2D space according to
combine camera and LiDAR calibration:

y � Prect ∗Rrect ∗Tproj ∗ x, (1)

where y is the projected point in the RGB image. x denotes
the 3D LiDAR point. Prect and Rrect are the intrinsic camera
parameters.+ePrect is the cameramatrix, and theRrect is the
rectification matrix to make the image co-planar. Tproj
projects the point X in the LiDAR coordinates onto the
camera coordinate system. Both the intrinsic and extrinsic
parameters are available in the KITTI dataset [40]. Figure 3
shows an example of point projections.

After the 3D point clouds are projected onto the image,
two overlapping boxes will appear on the same object. +is
paper further uses the Nonmaximum Suppression (NMS)
algorithm to get rid of the extra boxes. +e NMS sorts all
detection boxes on the basis of their scores and selects boxM
with the highest score. All other detection boxes with the
large overlapping area with M are suppressed by using a
predefined threshold Nt:

Si �

Si, IOU M, bi( 􏼁<Nt,

0, IOU M, bi( 􏼁≥Nt,

⎧⎪⎨

⎪⎩

with IOU M, bi( 􏼁 �
area(M)∩ area bi( 􏼁

area(M)∪ area bi( 􏼁
,

(2)

where bi is the detection box to be screened, when
IOU(M, bi) is greater than Nt, bi will be removed. In our
experiment, Nt is set to 0.7. Figure 4 shows a comparison
result by the detection method without NMS and with NMS.

3.2. Learning Object Appearance Features. Before imple-
menting the MOT, we need to extract the appearance fea-
tures of the object. +is paper employs CNN to
automatically learn the deep appearance features of objects
from raw visual data. +e CNN is trained on a large-scale
benchmark dataset [41]. +e dataset contains over 50,000
images of 776 vehicles captured by 20 cameras. Figure 5
shows several samples in this dataset.

Table 1 illustrates the architecture of CNN used in this
paper. +e CNN model is inspired by the wide residual
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network [40, 42] that consists of two convolution layers and
six residual blocks. +e Dense layer 10 extracts a 128-di-
mensional global feature. +e final batch and l2-norm layer
projects feature to a unit hypersphere. By resizing the
tracked vehicle image to 224× 224, then inputting it into the
network. Finally, we get a 128-dimensional feature vector
that is used as the deep appearance features of the object.

3.3. Extraction of Object Motion Information. Since the
objects are usually moving rather than stationary, it is
necessary to extract the motion information of objects for
the MOT. +is paper employs the Kalman filter to predict
the state of the object and then extract its motion infor-
mation. We use eight parameters xk � (a, b, c, h, a

.
, b

.

, c
.
, h

.

) to
describe the tracking state at frame k, where (a, b) is the
bounding box center position, c is the aspect ratio, h is the
height of the bounding box, and (a

.
, b

.

, c
.
, h

.

) represents the
corresponding velocity in the image coordinate system.

Because the interval of time between each frame is very
short, it can be regarded as a linear model of constant-ve-
locity motion. We get the predicted object state at the next
frame and calculate the error covariance matrix P−

k between
the predicted state and the true state:

x
−
k � Axk−1,

P
−
k � APk−1A

T
+ Q,

(3)

where x−
k is the predicted object state at frame k. A is a state

transitionmatrix, andxk−1 is the object state at frame k − 1. And
Q is the covariance matrix of the predict noise.+en, we can get
the Kalman gain matrix K and calculate the estimated state xk:

Kk � P
−
k H

T
HP

−
k H

T
+ R􏼐 􏼑

−1
,

xk � x
−
k + Kk zk − Hx

−
k( 􏼁,

(4)

where zk is the measured value and H is the conversion
matrix from x−

k to zk. R is the covariance matrix of the
measurement noise. Finally, update the covariance matrix
Pk:

Pk � I − KkH( 􏼁P
−
k . (5)

3.4. Object Tracking Based on Data Association. +e next is
to associate the deep appearance features and the motion
information of the object for the MOT. First, this paper uses
theMahalanobis distance to compare the motion correlation
between the predicted state of the Kalman Filter and the
newly detected bounding boxes:

d
(1)

(i, j) � dj − yi􏼐 􏼑
T
S

−1
i dj − yi􏼐 􏼑, (6)

where dj denotes the jth bounding box detection, yi and Si

represent the mean and covariance of the ith predicted
bounding box. A threshold can be adjusted to control the
minimum confidence of the motion information association
between objects i and j. We denote this decision with an
indicator b

(1)
i,j , as shown in equation (7).+e indicator will be

equal to 1 if the Mahalanobis distance is smaller or equal to a
threshold t(1), which is set to 9.4877 for our four-dimen-
sional measurement space:

b
(1)
i,j �

1, d
(1)

(i, j)≤ t
(1)

,

0, d
(1)

(i, j)> t
(1)

.

⎧⎨

⎩ (7)

Next, the above method is only a suitable related
measurement index when motion uncertainty is very low.
However, in the image space, only using the Kalman filter
framework is a rough prediction. +erefore, this paper also
adopted the second metric. It measures the smallest cosine
distance of the appearance features between the ith track and
jth detection as follows:

d
(2)

(i, j) � min 1 − r
T
j r

(i)
k􏼐 􏼑, (8)

RGB image

Laser point clouds

Result of MOT

2D object detection
(YOLO-V3)

3D object detection
(PointRCNN)

Combination of
detection results

with NMS

Extraction of object
motion information

Learning object 
appearance features

MOT with data 
association

Figure 2: An overview of the proposed multimodal MOT method.

Figure 3: Result of point projections, where the 3D LiDAR points
are projected onto the RGB image.
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where rj is the appearance feature vector of detection dj and
r

(i)
k represents the feature vector of the ith tracked object at
the most recent frame k. In our experiment, parameter k is
set to a maximum number of 100 available vectors. In ad-
dition, in order to determine whether the appearance fea-
tures are related, we introduce a binary indicator, as shown
in equation (9). A threshold t(2) is set for this indicator on a
VeRi dataset:

b
(2)
i,j �

1, d
(2)

(i, j)≤ t
(2)

,

0, d
(2)

(i, j)> t
(2)

.

⎧⎨

⎩ (9)

+en, the Mahalanobis distance determines whether the
prediction position of the Kalman filter is related to the new
detection, which is especially useful for short-term predic-
tion. And the cosine distance considers the appearance of
tracking objects, which is especially useful for recovering
identity after a long period of occlusion. +erefore, this
paper combines the two metrics using a weighted sum:

di,j � λd
(1)

(i, j) +(1 − λ)d
(2)

(i, j),

with bi,j � 􏽙
2

m�1
b

(m)
i,j ,

(10)

where we call an association admissible if b
(1)
i,j � 1 and

b
(2)
i,j � 1. +e hyperparameter λ is used to control the in-
fluence of each metric on the combined association. For
example, when there is substantial object motion, the pre-
diction of the constant-velocity motion model becomes less
effective. +us, the appearance metric becomes more sig-
nificant by reducing the valve of λ; on the contrary, when
there are limited vehicles on the road without long-term
partial occlusions, increasing the valve of λ can improve the
importance of distance metric.

Finally, in our implementation, the maximum number
of frames allowed to lose the target Amax is considered. In
order to avoid redundant computations, if a tracked object is
not re-identified in the most recent Amax frames passed since

(a) (b)

Figure 4: +e comparison results by the detection method without NMS (a) and with NMS (b).

Figure 5: Some samples in the VERI dataset. From top to bottom are cars, trucks, and buses.

Table 1: +e architecture of the used CNN.

Name Patch size/stride Output size
Conv 1 3× 3/1 32×128× 64
Conv 2 3× 3/1 32×128× 64
Max pool 3 3× 3/2 32× 64× 32
Residual 4 3× 3/1 32× 64× 32
Residual 5 3× 3/1 32× 64× 32
Residual 6 3× 3/2 64× 32×16
Residual 7 3× 3/1 64× 32×16
Residual 8 3× 3/2 128×16× 8
Residual 9 3× 3/1 128×16× 8
Dense 10 — 128
Batch and l2 normalization — 128
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its last instantiation, it will be assumed that it has left the scene.
If the object is seen again, a new ID will be assigned to it. +e
judgement of a new track is that an object in the result of
detection can never be associated with the existing MOT
methods. If the prediction of the object position can be cor-
rectly correlated with the detection in the consecutive Fmin
frames, we can confirm that a new track target has appeared.

4. Experiment

+is section introduces the dataset, evaluation metric,
training parameters, and experimental evaluation results in
the experiments on the KITTI Tracking Benchmark.

4.1. Dataset. +e proposed method was evaluated on the
KITTI tracking benchmark [43]. +e KITTI dataset was
collected under 4 different scenarios, including city, resi-
dential, road, and campus. Some samples of the KITTI
dataset are shown in Figure 6. +e dataset consists of 21
training sequences and 29 test sequences. In each sequence,
LIDAR point clouds, RGB images, and calibration files were
provided. In the training sequences, eight different classes
were labeled, including car, pedestrian, and cyclist. +e
objects in images were annotated with 3D and 2D bounding
boxes between different frames and had a unique ID. In this
work, we used all 29 testing sequences for modal validation
and only used on the car subset for model evaluation because
it had the most instances of all object types.

4.2. Evaluation Metric. +e indexes used to evaluate the
performance of the proposed MOTmethod were as follows:

(1) Mostly Tracked (MT) : objects are successfully
tracked to at least 80% of their trajectories during
their life span.

(2) Mostly Lost (ML) : objects are successfully tracked to
less than 20% of their trajectories during their life
span.

(3) Identity Switches (IDS) : the number of times objects’
identities have changed during their life span.

(4) Fragmentation (Frag) : due to the missing detection,
the number of times a trajectory is interrupted.

(5) FP and FN : the total number of false positives and
false negatives (missed targets).

(6) Multiobject Tracking Accuracy (MOTA) : it com-
bines three error sources, i.e., FP, FN, and IDS as
follows [44]. Equation (11) shows the computation of
the MOTA, where t is the index of the frame and G is
the number of the ground truth:

MOTA � 1 −
􏽐t FPt + FNt + IDSt( 􏼁

􏽐tGt

. (11)

(7) Multiobject Tracking Precision(MOTP) : the align-
ment accuracy between the annotated and the pre-
dicted bounding boxes [44].

4.3.TrainingParameters. +is paper trained the 2D detector,
i.e., the YOLOv3, on the training set of the KITTI 2D object
detection benchmark [5], and trained the 3D detector, i.e.,
the PointRCNN, on the training set of the KITTI 3D object
detection benchmark [36]. +e IOU threshold Nt of the
NMS module was set to 0.7. +e minimum number of
matched frames required to create a new trajectory Fmin is
set to 3 and the maximum number of frames allowed to lose
the target Amax � 30. And because the prediction results of
Kalman Filter is rough and there are many scenes with long-
term partial occlusions in the KITTI dataset, we set λ � 0.1.

4.4. Qualitative Evaluation. We evaluated the proposed
tracking method qualitatively by using the KITTI test se-
quence. Different scenarios including occlusions, clutter,
parked vehicles, and false positives from detectors were
considered in the qualitative evaluation.

Figure 7 shows an example of the test sequence 0 in the
test set. Each vehicle was assigned a tracking ID as a ref-
erence. Despite the compact and messy parking of the ve-
hicle, the proposed MOT method can continuously detect
and track the vehicles. Moreover, from this figure, we can see
that, since the image is easily affected by the environment,
such as illumination changes and partial occlusion, the shape
of the detected target will change. In addition, the scale of the
target object may be very different. In this case, the proposed
MOT method still obtained a relatively high tracking per-
formance. +e experimental results show that our method
can locate each car well even in the cluttered and strong
lighting scene and maintain the ID of the car unchanged.

Figure 8 shows another example from the test sequence
1. Figure 8(a) shows that the object detector produces a false
detection result, and Figure 8(b) shows the false positive of
the detector is overcome by data association. In the case of
transient errors in object detection, the proposed MOT
method can still track the target stably. Hence, these ex-
perimental results demonstrated the robustness of the
proposed MOT method.

4.5. Benchmark Results. We further evaluated the proposed
MOT method on the KITTI Tracking Benchmark. In this
evaluation, we considered some published online MOT
methods for comparison. +e results are presented in Ta-
ble 2. It can be seen that the proposed MOTmethod is very
competitive. In particular, the proposed MOT method
returns the fewest number of identity switches, while
maintaining competitive MOTA scores, MOTP scores, and
track fragmentations. +e tracking accuracy is mainly af-
fected by a large number of false positives. Given their
overall impact on the MOTA score, the combination of the
2D and 3D object detection results can significantly improve
the performance of the MOT. Besides, because we set the
maximum allowed trackage and associate the object motion
information and appearance features, the proposed MOT
method has the fewest number of identity switches.
+erefore, the proposed MOT method can generate a rel-
atively stable trajectory of the target object.
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4.6. Ablation Study. +e ablation study was to evaluate the
effects of hyperparameters on the performance of the proposed
MOTmethod. Table 3 shows the results of the ablation study on
the KITTI benchmark.+e hyperparameterNt is the threshold
of IOU, and the Fmin denotes the minimum number of
matching frames required to create a new trajectory. From the
table, we can be seen that when Nt � 0.6, this may miss some

correct detection results. +at is because the number of de-
tected objects is reduced. When Nt � 0.8, this may result in
some wrong detection results, which is also the reason why it
has themost IDS.Fmin � 1 means that track immediately when
a new target is detected, which leads to more IDS and FRAG.
+e Fmin � 5 makes the minimum IDS, but MOTA is lower.
+erefore, we finally set Nt � 0.7 and Fmin � 3.

(a) (b) (c) (d)

Figure 6: Some samples in the KITTI dataset. (a) City. (b) Residential. (c) Road. (d) Campus.

Frame 1

Frame 5

Frame 9

Frame 13

Figure 7: Result of the qualitative evaluation with the test sequence 0. Each vehicle is assigned a tracking ID as a reference.

Frame 2 Frame 3Frame 1

(a)

Frame 1 Frame 2 Frame 3

(b)

Figure 8: Result of the qualitative evaluation with the test sequence 1. (a) +e detector generates an error detection and disappears in the
next frame. (b) +e proposed MOT method can track objects stably.
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5. Conclusion

+is paper proposed a multimodal MOTmethod by fusing
the motion information and the deep appearance feature of
objects. In this method, we use a Nonmaximum Suppression
algorithm to combine a 2D object detector and a 3D object
detector for robust object detection. +en, the deep ap-
pearance features of objects are learned by a CNN, and the
motion information of objects is computed by the Kalman
Filter. +e MOT task is achieved by associating the ap-
pearance features and the motion information of the target
object. +e effectiveness of the proposed MOTmethod was
demonstrated in a set of experiments. +e proposed MOT
method can track objects stably in crowded scenes and
effectively avoid false detection. In the KITTI tracking
benchmark, the proposed method also shows competitive
results.

Although 3D object detection is used in the proposed
MOTmethod, it is only used as the auxiliary information for
2D object detection. 3D object detection can provide ac-
curate position and size estimation for automatic driving.
+erefore, our future work will be towards the direction of
3D multitarget tracking that can adapt to a more complex
environment.
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