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Chenfan Sun, Wei Zhan , Jinhui She, and Yangyang Zhang

School of Computer Science, Yangtze University, Jingzhou, Hubei, China

Correspondence should be addressed to Wei Zhan; zhanwei814@yangtzeu.edu.cn

Received 5 December 2020; Accepted 5 December 2020; Published 14 December 2020

Copyright © 2020 Chenfan Sun et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the article titled “Object Detection from the Video Taken
by Drone via Convolutional Neural Networks” [1], there was
a spell error in author Jinhiu She’s name in the author list,
where “Jinhiu She” should have read as “Jinhui She.” (is is
corrected as shown above.
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A gridless direction-of-arrival (DOA) estimation method to improve the estimation accuracy and resolution in nonuniform noise
is proposed in this paper. +is algorithm adopts the structure of minimum-redundancy linear array (MRA) and can be composed
of two stages. In the first stage, by minimizing the rank of the covariance matrix of the true signal, the covariance matrix that filters
out nonuniform noise is obtained, and then a gridless residual energy constraint scheme is designed to reconstruct the signal
covariance matrix of the Hermitian Toeplitz structure. Finally, the unknown DOAs can be determined from the recovered
covariance matrix, and the number of sources can be acquired as a byproduct. +e proposed algorithm can be regarded as a
gridless version method based on sparsity. Simulation results indicate that the proposed method has higher estimation accuracy
and resolution compared with existing algorithms.

1. Introduction

Direction-of-arrival (DOA) estimation is one of the most
important topics in the field of array signal processing [1]; its
main purpose is to estimate the angle information of un-
known signals spatially based on the array sensor model.
Many existing DOA estimation algorithms have good es-
timation accuracy and resolution [2–5] in additive white
Gaussian noise. However, in practical applications, the noise
is usually considered to be nonuniform due to the mis-
alignment of the antenna array or the nonidealities of the
receiving channels.+is nonuniformity leads to a decrease in
the estimation accuracy of many DOA estimation algo-
rithms based on the Gaussian white noise.

In recent decades, many measures have been taken to
improve the performance of DOA estimation in nonuniform
noise. He et al. [6] proposed a DOA estimation algorithm
based on the sparse representation of the covariance vector. A
linear transformation matrix is designed to remove the
nonuniform noise power component, and then it is converted
to solve the sparse reconstruction problem based on L1 norm.
+is algorithm is an improvement of the L1 norm-based array
covariance vector sparse representation (L1-SRACV)

algorithm [7], so it is also called improved L1-SRACV (IL1-
SRACV) algorithm. Yet the diagonal term information of the
signal covariance is lost in the process of removing non-
uniform noise power. Yang et al. [8] proposed a sparse pa-
rameter estimation technique (SPA) without discretization,
using the same covariancematching criteria as sparse iterative
covariance-based estimation (SPICE) [9] to transform the
covariance fitting problem into a positive semidefinite pro-
gramming (SDP) [10] problem to solve, and then the post-
processing technology is used to estimate the target position,
noise variance, and other information from the covariance
matrix. +is algorithm has many significant advantages, but
its performance is poor under low signal-to-noise ratio
(SNR). Liao et al. [11] proposed a rank and trace minimi-
zation (RTM) algorithm, which transforms the rank mini-
mization problem of the covariance matrix into the noise
power maximization problem and then uses the received
signal and the nonuniform noise covariance matrix to per-
form difference to achieve DOA estimation. +e algorithm is
simple to implement and has low computational complexity,
but the structural characteristics of the signal covariance
matrix are not taken into account, and the estimation ac-
curacy is low.

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 1580391, 8 pages
https://doi.org/10.1155/2020/1580391

mailto:gzhang@nuaa.edu.cn
https://orcid.org/0000-0002-7723-7538
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1580391


Besides, most of the algorithms are based on uniform
linear arrays, which results in the resolution being affected
by the array aperture. Using well-designed sparse arrays,
such as minimum-redundant arrays (MRAs) [12], nested
arrays [13], and coprime arrays [14], fewer array elements
can be used to obtain larger antenna apertures, and there-
fore, it becomes an effective way to improve resolution.
Among them, MRA is defined as the minimum redundancy
of the array element position difference under the condition
that the number of array element position difference is
continuous. Given the number of array elements, the relative
position can be easily determined by looking up the mini-
mum-redundant array structure given in reference [15].

In order to overcome the defects of the existing DOA
estimation algorithms in nonuniform noise and combine the
advantages of sparse arrays, this paper proposes a gridless
DOA estimation algorithm for MRA in nonuniform noise.
First, the matrix minimization problem is solved to obtain the
noise-removed signal covariance matrix. Since the actual
covariance matrix is obtained from the finite snapshot, even if
the noise is suppressed in the early stage, the covariance
matrix estimation error caused by the finite snapshot still
exists. In order to reduce the estimation error and improve the
estimation accuracy, a gridless residual constraint scheme that
does not rely on noise parameters is designed, and the
noiseless Toeplitz matrix is reconstructed. By operating on
this matrix, we can not only obtain target angle information
but also get the number of sources as a byproduct. +e
proposed algorithm can be viewed as a gridless version of
method based on sparsity, which overcomes the problem of
basis mismatch in compressed sensing algorithms.

2. Signal Model and Assumptions

Suppose that a sensor array composed of M elements re-
ceivesK sources in unknown directions, taking the first array
element as the reference array element and the position
information of the array element D � [d1, d2, ..., dM] �

d × [0, c1, c2, ..., cM−1], where d is usually taken as the half
wavelength of the signal. +e schematic diagram of the array
reception of the sparse linear array is shown in Figure 1.

Assuming K<M, the received data can be formulated as
follows:

y(t) � A(θ)s(t) + n(t), t � 1, 2, . . . , L, (1)

where t is the snapshot index, L stands for the number of
snapshots, y(t) � [y1(t), y2(t), . . . , yM(t)]T ∈ CM denotes
the observation vector, s(t) � [s1(t), s2(t), . . . , sK(t)]T

∈ CK represents the source signal vector, andn(t) � [n1(t),

n2(t), . . . , nM(t)]T ∈ CM is the noise vector, in which the
superscript T means transpose operation. C represents
the set of complex numbers, θ � [θ1, θ2, . . . , θK]T

∈ CK, where θk ∈ [−90∘, 90∘) denotes unknown source di-
rections, and A(θ) � [a(θ1), a(θ2), . . . , a(θK)]T ∈ CM×K

denotes the array manifold matrix, where the steering vector
of the kth signal a(θK) satisfies the following equation:

a θk( 􏼁 � 1, e
jπc1 sin θk( ), . . . , e

jπcM−1 sin θk( )􏼔 􏼕
T

∈ CM
. (2)

It is easy to see the sparse array can be regarded as a
uniform linear array with missing elements. In other words,
the received signal can be further expressed as follows:

y(t) � ΦA1(θ)s(t) +Φn1(t), t � 1, 2, . . . , L, (3)

where A1(θ) ∈ CC×K refers to the array manifold matrix of a
uniform linear array with C sensors, where C � cM−1 + 1,
Φ ∈ 0, 1{ }M×C represents a selection matrix, and in the ith
row of which, only the position of the column corresponding
to (ci−1 + 1) is 1, and the others are 0. Since the aperture of
the array has been expanded from (M− 1)d to (C− 1)d, a
sparse array composed of the same number of elements has a
higher resolution.

Some standard assumptions are formulated here for the
solution of the problem. We assume that the signal and the
nonuniform noise are considered to be uncorrelated spa-
tially and temporarily and independent of each other:

E s t1( 􏼁sH
t2( 􏼁􏽮 􏽯 � Pδt1 ,t2

,

E n t1( 􏼁nH
t2( 􏼁􏽮 􏽯 � Qδt1 ,t2

,

E s t1( 􏼁nH
t2( 􏼁􏽮 􏽯 � E n t1( 􏼁sH

t2( 􏼁􏽮 􏽯 � 0,

Q � diag σ{ },

σ � σ21, σ
2
2, ..., σ2M􏽨 􏽩

T
,

(4)

where E{∙} denotes the mathematical expectation and (∙)H
represents conjugate transpose operation. δt1,t2 represents
the Kronecker delta function, the value of which is one when
t1 � t2, and otherwise, it is zero. P ∈ CK×K andQ ∈ CM×M

represent the signal correlation matrix and noise correlation
matrix, respectively, diag(∙) denotes the diagonal matrix
formed by the vectors in brackets, and σ2m represents the
noise variance superimposed on the mth sensor.

Based on the above assumptions, the covariance matrix
of the signal received by an array can be modelled as follows:

R � E y(t)yH
(t)􏽨 􏽩 � A(θ)PAH

(θ) + Q

� ΦA1(θ)PAH
1 (θ)ΦH

+ΦQ1Φ
H

.
(5)

It should be noted that in practical applications, the
covariance matrix is usually replaced by the sampling co-
variance matrix Re:

Re �
1
L

􏽘

N

t�1
y(t)yH

(t). (6)

3. Rank Minimization-Based Gridless
DOA Estimation

+e gridless DOA estimation algorithm refers to the angle
estimation in the continuous domain to avoid discretization
of the angle [16], which effectively overcomes the base
mismatch problem in the compressed sensing algorithm [17]
and provides a fresh way to improve the estimation accuracy
and resolution.
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3.1. Denoising Method Based on Rank Minimization. For
noncoherent sources, rank(Re − Q) � rank(ΦA1
PAH

1 Φ
H) � K, where rank(∙) denotes the rank operation of

the matrix in brackets. For any diagonal matrix Λ composed
of real numbers, rank(Re − Λ) � rank (ΦA1(θ)PAH

1
(θ)ΦH+ΦQ1ΦH − Λ)≥K, and the equality holds if and only
if Λ � ΦQ1ΦH. On account of K<M, the problem of es-
timating the noise covariance matrixQ can be formulated as
follows:

minimize
Q

rank Re −ΦQ1Φ
H

􏼐 􏼑,

s.t.Re −ΦQ1Φ
H ≥ 0, Q1 ∈ Z

+
,

(7)

where ≥ 0 means matrix Re −ΦQ1ΦH is positive semi-
definite and Z+ represents a collection of positive definite
matrices. Since rank minimization problem is nonconvex
and not easy to solve [18], a common method is to use
nuclear norm minimization to approximate rank minimi-
zation through convex relaxation; since the matrix
Re −ΦQ1ΦH is a Hermitian matrix and has the charac-
teristic of positive semidefinite, trace (Re −ΦQ1ΦH) is able
to be used to take the place of ‖Re −ΦQ1ΦH‖∗ . Conse-
quently, the following expression can be obtained:

minimize
Q

trace Re −ΦQ1Φ
H

􏼐 􏼑,

s.t.Re −ΦQ1Φ
H ≥ 0, Q1 ∈ Z

+
,

(8)

where trace(∙) represents the trace operation of the matrix
which returns the sum of the elements on the main diagonal
of the matrix. According to the properties of the matrix trace
and the real diagonal characteristics of nonuniform noise,
we can easily obtain

trace Re −ΦQ1Φ
H

􏼐 􏼑 � trace Re( 􏼁 − trace ΦQ1Φ
H

􏼐 􏼑

� trace Re( 􏼁 − EMσ,
(9)

where EM ∈ 0, 1{ }C×1 denotes a vector, in which only the
elements at the (ci + 1) position are 1 and the others are 0.
Based on equations (8) and (9), the minimization
problem in equation (7) can be further transformed as
follows:

maximize
σ

EMσ,

s.t.Re −Φdiag(σ)ΦH ≥ 0,

σ2m ≥ 0, m � 1, 2, ..., C,

(10)

where diag(σ) signifies the diagonal matrix where the di-
agonal terms are in turn the elements in the vector σ. +e
optimal estimate of the noise power Qe can be acquired by
using the CVX optimization toolbox [19] to solve the above
positive semidefinite problem. +en, through the difference
of the covariance matrices:

Rw � Re −ΦQeΦ
H

, (11)

the signal covariance matrix with the noise component
removed can be obtained.

3.2. Residual Constraint Scheme Based on Covariance
Matching Criteria. Since the actual covariance matrix is
obtained from the finite snapshot, even if the noise is
suppressed in the early stage, the estimation error of the
covariance matrix caused by the finite snapshot still exists.
To make this problem solved, this paper puts forward a
gridless residual constraint scheme that does not depend on
the statistical parameters of noise and combines the struc-
tural priors of the covariance to achieve the reconstruction
of the covariance matrix.

Inspired by the prior information of the low-rank and
semidefinite Toeplitz structure of the noise-free signal co-
variance matrix T(u) and based on the covariance fitting
criterion CMC2 [20], the following low-rank matrix re-
construction model can be established:

minimize
u

rank(T(u)),

R−1/2
e Re −ΦRΦH􏼐 􏼑R−1/2

e

�����

�����
2

F
≤ β2,

s.t.ΦT(u)ΦH ≥ 0,

(12)

where ‖ · ‖2F represents the square of Frobenius norm of the
matrix, and let Δr � vec(Re −ΦRΦH), in which vec(∙) is a
vectorized operator. It can be obtained from reference [20]
that the residuals follow an asymptotic normal distribution,
that is,

c1d

c2d

 

d1 d2 d3 dM

S (t)
θ

Figure 1: Schematic diagram of sparse linear array reception.
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Δr ∼ AsN 0M2 ,Q( 􏼁, (13)

where Q � RT ⊗R/L can be replaced by its approximate
estimate Qe � RT

e ⊗Re/L, (∙)
T represents transpose opera-

tion, AsN(μ, σ2) represents an asymptotic normal distri-
bution whose mean and variance are μ and σ2, respectively,
and ⊗ refers to the Kronecker inner product of the matrix,
and it can be deduced further as follows:

Q−1/2
e Δr

����
����
2
2 ∼ Asχ2 M

2
􏼐 􏼑, (14)

where Asχ2(M2) stands for asymptotic chi-square distribution
withM2 degrees of freedom and ‖ · ‖22 represents the square of
Euclidean norm of the matrix. Combining the properties of
matrix traces and vectorized operators, we can obtain

R−1/2
e Re −ΦRΦH

􏼐 􏼑R−1/2
e

�����

�����
2

F

� tr Re −ΦRΦH
􏼐 􏼑R−1/2

e Re −ΦRΦH
􏼐 􏼑R−1/2

e􏽮 􏽯

� vecH Re −ΦRΦH
􏼐 􏼑vec R−1

e Re −ΦRΦH
􏼐 􏼑R−1

e􏽮 􏽯

� vecH Re −ΦRΦH
􏼐 􏼑 R−T

e ⊗R
−1
e􏽨 􏽩vec Re −ΦRΦH

􏼐 􏼑

� Q−1/2
e vec Re −ΦRΦH

􏼐 􏼑
�����

�����
2

2
� Q−1/2

e Δr
����

����
2
2.

(15)

Let Rw0 � R −ΦQeΦH, then Re − R � Rw − Rw0; it can
be further acquired that ‖Q−1/2

e vec(Rw − Rw0)‖
2
2 also follows

the chi-square distribution of M2. As a result, the value of β
becomes simple and convenient via MATLAB function
chi2inv(1− η,M2) [7], where η is a very small number, which
means that qualification in equation (12) is satisfied with
(1− η) probability. +us, a specific energy constraint solu-
tion can be obtained. Model (12) can be transformed into the
following:

minimize
u

rank[T(u)],

s.t. Q−1/2
e vec(E)

����
����
2
2 ≤ β

2
,

T(u)≥ 0,

(16)

where E � Rw −ΦT(u)ΦH. Same as the previous section, the
trace function is also used here to replace the rank function,
and as a consequence, model (16) can be equivalent to

minimize
u

trace[T(u)],

s.t. Q−1/2
e vec(E)

����
����
2
2 ≤ β

2
,

T(u)≥ 0.

(17)

+e above model can be solved by SDPT3 in the CVX
optimization toolbox; after the optimal solution ue of u is
obtained, T(ue) can be used to substitute the estimated value
of the noise-free covariance matrix T(u). Since the rank of
T(u) is equal to the number of incident sources in theory, an
estimation of the number of incident sources can be ob-
tained based on the calculated rank of T(ue). However,
errors inevitably exist in the actual system, which cause
T(ue) usually full rank matrix; the M-K smaller singular

values acquired by the singular value decomposition are not
strictly equal to zero. At this time, it is unreasonable to
obtain the number of sources based on the number of
nonzero singular values, but we can set a threshold to judge

􏽢K � m: 􏽢λm ≥ κ􏽮 􏽯, m ∈ [M], (18)

where 􏽢λm denotes themth singular value of the matrix T(ue)
and κ is the threshold. Reference [21] proves that the value of
κ is preferably equal to 0.05 􏽢λmax through extensive simu-
lation experiments. Finally, we can possess the estimated
values of the arrival angle and power of the incident sources
by performing Vandermonde decomposition [8] on T(ue).
Besides, since the estimated value of the number of sources is
known, subspace-based algorithms (e.g., MUSIC) can also
be used to further estimate the direction of the incident
signal.

4. Algorithm Analysis

4.1. Estimated Accuracy and Resolution. +e proposed
gridless DOA estimation algorithm makes use of the di-
agonal characteristics of the nonuniform noise covariance
matrix and the Toeplitz and Hermitian properties of the
noise-free signal covariancematrix to effectively improve the
estimation accuracy of the algorithm and obtain the number
of sources as a byproduct. +e array aperture is expanded by
using MRA, and the resolution is further improved com-
pared with the conventional uniform linear array.

4.2. Identifiability. It can be seen from Section 3.1 that the
proposed algorithm is mainly based on the knowledge that
the rank of the correlation matrix of incoherent signals is
equal to the number of sources in the stage of removing
nonuniform noise; therefore, this algorithm is no longer
applicable when the sources are coherent. In addition, the
number of signal sources should be as small as possible than
the number of sensors to ensure the accuracy of the noise
power estimation. Empirically, the number of sources that
can be identified by the algorithm is M/2.

4.3. Computational Complexity. +is article mainly mea-
sures the computational complexity of the algorithm by
comparing the running time of the CPU. When the pro-
posed algorithm is solved with CVX, in the scenario of
experiment 6, the number of iterations is basically about 13,
while IL1-SRACV needs about 28 iterations under the same
error tolerance. Compared with SPA, the proposed algo-
rithm requires a longer running time due to the two-step
operation, but in return, the estimation accuracy is higher.

All the experimental processes were completed on a
desktop computer with Win10, 3.6GHz, 8-core processor,
and the MATLAB software version used was R2019b.

4.4. Deterministic CRBs. As we all know, the Cramer–Rao
bound (CRB) provides a lowest lower bound for arbitrary
unbiased parameter estimation [22, 23]. +e CRB derivation
used in the subsequent simulation is mainly based on
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reference [24], and the specific formula can be written as
follows:

CRB �
σ2

2L
Re 􏽥D

HP⊥􏽥A
􏽥D􏼒 􏼓⊙ 􏽢P

T
􏼔 􏼕􏼚 􏼛

−1
, (19)

where 􏽥A � Q− 1/2ΦA1(θ), D � [(da1(θ)/θ)|θ � θ1, (da1
(θ)/θ)|θ � θ2, . . . , (da1(θ)/θ)θ � θk], 􏽥D � Q−1/2ΦD, 􏽢P �

(1/N) 􏽐
N
i�1 s(i)s(i)H, P⊥􏽥A

represents the orthogonal projec-
tion of matrix 􏽥A on P, and ⊙ means the Hadamard product
of a matrix.

5. Numerical Simulations

In this part, we conducted simulation experiments to test the
performance of the proposed two-stage method and com-
pared it with subspace-based method RTM, sparse repre-
sentation-based method IL1-SRACV, and gridless method
SPA. To be fair, we extend the algorithms listed above to
MRA. Unless other specified, we assume that the incident
sources are independent with the same power p, the array is
the MRA with 8 elements, and the relative position of MRA
is D � [0, 1, 4, 10, 16, 18, 21, 23] × d. +e covariance matrix
of nonuniform noise satisfies

Q � diag 10.0, 2.0, 8.5, 10.5, 5.0, 10.0, 10.5, 3.0{ }. (20)

+e SNR is defined as follows [22]:

SNR � 10log10
p
M

× 􏽘
M

m�1
1/qm( 􏼁⎡⎣ ⎤⎦dB. (21)

5.1. Experiment 1. We assume four independent sources
from the direction of θ � [−5.0°, 0°, 5.0°, 10.0°]. +e snapshot
number L� 300, SNR� 0 dB, and η� 0.001. Figure 2 presents
the spatial spectrum of the proposed algorithm, SPA, and
RTM. It is easy to see that the proposed method has a
relatively sharp peak and is easier to distinguish under the
same conditions.

5.2. Experiment 2. Let two independent sources are rela-
tively close, where θ � [−1.0°, 1.0°]; other experimental
conditions are consistent with experiment 1. Figure 3 shows
the spatial spectrum of the proposed algorithm in ULA and
MRA composed of 8 array elements. As can be seen from
Figure 3, the spatial spectrum of the proposed method in
MRA can better distinguish two sources that are closer
together. In other words, the adoption of MRA can effec-
tively improve the resolution.

5.3. Experiment 3. Let θ � [−3.41°, 6.37°] and L � 500; the
change of the SNR is increased from −10 dB in steps of
2 dB to 10 dB. 300 Monte Carlo experiments were con-
ducted to reduce the contingency of the experiment. +e
estimation accuracy of the algorithm is mainly measured
by root mean square error (RMSE), which can be
expressed as follows:

RMSE �

�������������������

􏽐
L
l�1 􏽐

K
k�1

􏽢θk(l) − θk􏼐 􏼑
2

L × K

􏽳

.
(22)

Figure 4 shows the plot of estimation error and success
probability with SNR, where Figure 4(a) shows the change
curve of RMSE and Figure 4(b) shows the change curve of
success probability. Here, the success probability refers to
the ratio of the number of experiments with the error
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Figure 2: Spatial spectrum of the proposed method (M� 8,
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between the estimated angles and the real angles not more
than 0.2∘ and the total number of Monte Carlo experiments.
It can be seen from Figure 4(a) that the RMSEs of all
methods decrease with the increase of SNR. Compared with
other algorithms, the proposed method has the smallest
RMSE and gradually fits to the CRB with the increase of
SNR. As can be seen from Figure 4(b), the proposed method
can guarantee the estimation error within 0.2∘ at
SNR � −6 dB. From the above results, we can conclude that
the proposed method has obvious advantages over other
methods in estimation accuracy.

5.4. Experiment 4. We set the SNR to 0 dB, and the number
of snapshots increased from 100 to 1000 with an interval of
100, and θ � [−3.41°, 5.37°]. 300 independent Monte Carlo
experiments were also conducted. Figure 5 shows the change
curve of RMSE with the number of snapshots. It can be
summarized from the figure that the estimation error of the
proposed method is smaller than that of other algorithms
overall. With the increase in the number of snapshots, the
RMSE of the proposed algorithm is closer to the CRB low
bound.

5.5. Experiment 5. Let L� 500; other experimental condi-
tions are the same as experiment 4, and the change of the
SNR is increased from −10 dB in steps of 2 dB to 10 dB.
Figure 6 shows the success rate of the source estimation of
the proposed algorithm compared with that of Akaike’s
information criterion (AIC), minimum description length

(MDL) [25], and Gershgorin disk estimator (GDE) [26]. +e
success rate is defined as the ratio of the number of accurate
estimations of all sources to the total number of Monte Carlo
experiments. It can be summarized from Figure 6 that the
proposed method has better estimation accuracy than other
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Figure 4:+e RMSE and the success probability of different methods vary with SNR (M� 8 and L� 500). (a)+e change curve of RMSE. (b)
+e change curve of success probability.
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algorithms under low SNR and has a higher success prob-
ability overall.

5.6. Experiment 6. Let θ � [−4.78°, 2.56°] and L� 400; other
experimental conditions are the same as experiment 3.
Figure 7 shows the curve of the average running time of
different algorithms versus SNR. It can be seen from the
figure that RTM has low computational complexity and
takes the shortest time. +e running time of the proposed
algorithm is much lower than that of IL1-SRACV and
slightly higher than that of SPA.+e average running time of
the algorithms increases slightly with the increase of the
SNR.

6. Conclusions

+is paper proposes a two-stage gridless DOA estimation
algorithm for MRA in nonuniform noise. +e proposed
method can not only effectively eliminate the effect of
nonuniform noise but also further improve the estimation
accuracy and resolution. Moreover, the number of signals is
also able to be acquired as a byproduct. Simulation exper-
iments prove the performance of the proposed method.
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+e problem of position estimation has always been widely discussed in the field of wireless communication. In recent years, deep
learning technology is rapidly developing and attracting numerous applications. +e high-dimension modeling capability of deep
learning makes it possible to solve the localization problems under many nonideal scenarios which are hard to handle by classical
models. Consequently, wireless localization based on deep learning has attracted extensive research during the last decade. +e
research and applications on wireless localization technology based on deep learning are reviewed in this paper. Typical deep
learning models are summarized with emphasis on their inputs, outputs, and localization methods. Technical details helpful for
enhancing localization ability are also mentioned. Finally, some problems worth further research are discussed.

1. Introduction

+e attribute of target position is as important as its identity
attribute. +e target position is a core element in commu-
nications, logistics, and military field. Localization can be
either self-positioning (e.g., target localization based on
Global Positioning System (GPS)) or positioning interested
objects (e.g., interference source positioning). We can either
transmit a signal actively to locate the target or receive the
signal from the target to determine its position. +e target
localization can be based on image data or signal data.

With the development of machine learning and arti-
ficial intelligence technology, some scholars began to pay
attention to target localization by machine learning
technology. In recent years, the powerful modeling ca-
pabilities of deep neural networks are attracting a large
number of scholars to study effective use of deep learning
techniques to solve the difficult problems in the field of
target localization. +e indoor localization problem is one
of the most difficult problems. Due to the problems such
as wall occlusion, the indoor localization accuracy based
on GPS signals is not desirable, and sometimes the lo-
calization function is interrupted if the signal is very weak.

On the other hand, with the development of the Internet
of +ings, robots, etc., it is desirable to obtain higher
localization accuracy even in indoor environment.
+erefore, it becomes valuable and interesting to solve the
problem of accurate target localization in indoor envi-
ronment with large dynamics, multiple reflections, and
occlusion by deep learning technology. In addition, some
scholars used some deep learning techniques for outdoor
large-scale sensor network localization [1], TDOA lo-
calization [2], and target tracking [3,4].

While deep learning technology is gradually applied in
the field of wireless localization, a work systematically
summarizing, classifying, and discussing related results
has not yet been reported to our best knowledge. For the
application of deep learning technology in the field of
wireless localization, the main purpose of this paper is to
propose some problems solved by deep learning tech-
nology, summarize the typical deep learning models,
explore the input forms and localization methods, and pay
attention to the technical details in literature which can
help to improve localization performance. Besides, we
raise some problems that need further study on the
wireless localization problem.
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2. Wireless Indoor Localization Technology
Based on Deep Learning

+e serious multipath transmission environment in indoor
wireless localization poses great challenges for localization
modeling. +e powerful modeling ability of deep neural
networks provides a powerful tool to deal with this problem.
In view of the wide application and urgent research on
indoor localization (e.g., there are international conferences
on indoor localization), the research studies on indoor lo-
calization are very abundant and the methods are very
various. +ere are many elements of wireless indoor lo-
calization technology based on deep learning that can be
classified. Indoor localization technology is divided into
device-oriented indoor localization and device-free indoor
localization according to whether the target carries equip-
ment or not in this paper. Certainly, these methods can also
be divided from network type, feature type, and localization
method. In addition, some localization issues for sound
source which are similar to the wireless indoor localization
issues are also introduced.

2.1. Device-Oriented Indoor Localization. Device-oriented
indoor localization means that a device carried by the target
is used in positioning process. +is device either receives the
environmental signal as a receiver to position itself (the basic
model is shown in Figure 1) or transmits a signal as a
transmitter, and this signal is received by peripheral sensors
to estimate the target position (the basic model is shown in
Figure 2).

2.1.1. Self-Positioning. In 2014, Zhang et al. [5] proposed an
indoor localization method based on the received wireless
LAN WiFi signal strength using Deep Neural Network
(DNN) and HiddenMarkovModel (HMM), which modeled
the indoor localization problem as a classification problem.
Firstly, the received signal strengths of multiple hotspots are
casted in a four-layer DNN to obtain a coarse estimate of the
position. +en, a precise estimate of the position is obtained
from the multiple coarse estimates by HMM processing.

In 2016, Félix et al. [6] proposed a fingerprinting indoor
localization algorithm based on DNN, Deep Belief Network,
and Gauss-Bernoulli Deep Belief Network Regression model
by the characteristics of received signal strength. +e sim-
ulation results show that the accuracy of DNN is the highest.

In 2016, Huang et al. [7] developed an indoor locali-
zation research based on deep neural networks with WiFi,
iBeacon signals, geomagnetic signals, and other signals and
compared the accuracy of localization algorithms with single
source data and fusion of multisource data.

In 2017, Xiao et al. [8] proposed two learning algorithms,
namely, a deep learning architecture for regression and
Support Vector Machine (SVM) for classification, to esti-
mate the target position from the measured signal finger-
print which is the received signal strength from each
transmitter, and particularly mentioned that the technique
of data enhancement based on random perturbation (the
order of signal strength from different transmitter is

independent of position) can improve the localization ac-
curacy by 10%.

In 2017, Zhang et al. [9] proposed a new indoor fin-
gerprinting localization system based on deep learning,
combining received signal strength of WiFi and pervasive
magnetic field to obtain richer fingerprinting, and investi-
gated the indoor localization method based on deep neural
networks in the form of classification and regression. At the
same time, the effects of different types of neural networks,
different mesh sizes, and different data on localization
performance were described.

In 2018, Aikawa et al. [10] introduced an indoor lo-
calizationmethod based on deep learning andWLAN signal.
+e method uses the received signal strengths of multiple
WLAN access points as features to construct a six-layer
neural network model. An experiment was conducted in an
underground shopping center in Himeji City in Japan to
validate the effectiveness of their approach. Experiment
results show that the method is finer than the traditional
least square method when the training time is sufficient.

In 2018, Lin et al. [11] proposed an indoor localization
method based on a multitask learning network to handle the
poor similarity of received signal strengths using WiFi
signals in adjacent locations. +e network mainly includes
three parts. Firstly, a neural network is used for extracting
robust regional features based on the received signal strength
of adjacent locations (this paper considers 5 adjacent lo-
cations). +en, a neural network is used for learning con-
sistent features to deal with the similarity inconsistency
problem. Finally, the position is estimated based on a re-
gression model.

In 2018, Liu et al. [12] pointed out that, although the
current fingerprinting localization technology can obtain
room level accuracy, the time-varying property of received
signal strength caused a large position estimation error.
+erefore, an autoencoder adopted to preprocess the noisy
received signal strength is designed to improve localization
accuracy. +e method includes offline phase and online
phase. In the offline phase, a deep autoencoder is trained to
denoise the data. In the online phase, the fingerprint
characteristics of received signal strength are obtained based
on the weights after the autoencoder training, and the
fingerprint characteristics are the input of three machine
learning algorithms, which are random forest regression,
multilayer perception classification, and multilayer per-
ception regression. +e final estimated position can be
obtained by averaging over the results of three algorithms.

In 2018, De Vita and Bruneo [13] presented an indoor
user localization method based on WiFi received signal
strength and introduced the fingerprint data collection
method in detail. +e indoor user position is estimated by a
DNN classification model using the Media Access Control
(MAC) addresses as feature labels and using the corre-
sponding received signal strengths as the feature value.

In 2018, Wu and Tseng [14] proposed a DNN-based
indoor localization method using unsupervised pre-
processing of channel state information (CSI) to extract
richer features of CSI at different reference points. +en, the
output of DNN which is the probabilities of received
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position at the reference points can be used for estimating
the weighted average position of the receiver.

In 2018, Hsu et al. [15] proposed an adaptive indoor
localization scheme based on WiFi signal strengths. +e
scheme can adaptively adopt the proper fingerprint database
built by the crossentropy algorithm or the mean squared
algorithm according to the noise level of the received signals.
+e Bayesian probability algorithm is used for position
estimation. Experimental results show that the scheme has
lower localization error whether in the noise-free environ-
ment or in the noisy environment.

In 2018, Le et al. [16] proposed a WLAN-fingerprint-
based indoor localization method using unsupervised deep
feature learning for the problem of small training samples.
Firstly, a large number of unlabeled received signal strengths
are used for extracting the deep features by the Deep Belief
Network training. +en, a small number of labeled samples
are used for training the shallow supervised learning algo-
rithms (such as SVM). +e experimental results show that

the localization method based on a large number of unla-
beled fingerprints and a small number of labeled fingerprints
with deep feature learning can obtain the same localization
accuracy as counterpart based on the same number of en-
tirely labeled fingerprints with shallow feature learning.

In 2018, Khatab et al. [17] also studied on the indoor
localization in wireless sensor networks based on the re-
ceived signal strength. Aiming at the problem that the deep
neural networks are training slowly, a deep extreme learning
machine is proposed for training. To deal with the dynamic
environment which leads to the time-varying characteristics
of the received signal strength, they increased the number of
training data and used high-level features by autoencoder to
train the model.

In 2018, Dou et al. [18] pointed out that WiFi finger-
prints localization technology based on the received signal
strength is widely used in vast indoor localization systems
due to the low cost and high localization accuracy. However,
the fluctuation of wireless signal will cause a great fluctuation
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on received signal strength, which poses great challenges to
indoor localization based on WiFi fingerprints. Dou et al.
proposed a top-down searching method based on deep
reinforcement learning to deal with the dynamic environ-
ment in WiFi fingerprints indoor localization. +e locali-
zation method based on deep reinforcement learning has
three advantages. Firstly, the method can be readily applied
to the fluctuation in received signal strength due to dynamic
environment. Secondly, the learning process can be online to
realize real-time positioning. +irdly, it is not necessary to
require the prior knowledge of floor plan.

In 2019, Elbes et al. [19] presented an indoor localization
approach based on WiFi received signal strengths and Long
Short-Term Memory (LSTM) Neural Networks. +e ex-
perimental results show that the localization approach is
effective in corridors of the L-shaped floor.

In 2019, Ebuchi and Yamamoto [20] described a smart
parking system based on a small number of beacon devices.
+e system uses the beacon signal strength measured by the
smartphones to locate vehicles and pedestrians, and then the
gateway broadcasts the position information to all smart-
phones in the parking lot so that contact accidents can be
avoided. A full connected layer DNN and Convolutional
Neural Network classification model is used for locating
vehicles and pedestrians. +e experimental results show that
estimation accuracy of the vehicle’s position is higher than
98%, and estimation accuracy of the pedestrian’s position is
about 70%.

In 2019, Jiang et al. [21] proposed fingerprinting-based
radio-frequency identification (RFID) indoor localization
algorithm based on deep belief network. +e collected re-
ceived signal strength data is input into a deep belief network
to extract deep features and then the target is located by the
similarity comparison with the deep features.

In 2019, Bae and Choi [22] proposed an indoor locali-
zation method based on LSTM Neural Network using
continuous geomagnetic data. +e localization accuracy of
LSTM Neural Network is higher than that of classical re-
current neural network and the existing RF-based finger-
printing techniques.

In 2019, Rizk et al. [23] pointed out that WiFi-based
indoor localization technology relies on WiFi chips which
limit wide application of the technology. In addition,
technologies based on inertial sensors such as accelerome-
ters, gyroscopes, and compasses are only available on high-
end phones. +erefore, they proposed an indoor localization
method based on cellular signals received by mobile phones.
And they proposed two training data augmentation tech-
niques: random augmenter and lower-bound cropper.

In 2019, Abbas et al. [24] pointed out that many indoor
localization systems have been proposed relying on WiFi
fingerprinting due to the wide use of indoor WiFi. However,
due to the inherent noise and instability of wireless signals,
the localization accuracy usually degrades. So, they proposed
a deep learning-based indoor localization system called
WiDeep to obtain high accuracy and robustness. An
autoencoder is trained for the signal strength of each access
point separately, and the position estimation is obtained by a
probabilistic fusion algorithm based on the output of latent

features from these autoencoders. It is worth noting that
Abbas et al. [24] also introduce two techniques adding
stochastic noise to the input training data in order to im-
prove the robustness of WiDeep in noisy environments.

In 2017, Takeda and Komatani [25] investigated a sound
source localization method based on deep neural networks
when sound source is at an unknown position in unknown
reverberant environments. +e sound source localization
accuracy can be improved by using unsupervised adaption of
parameters and early stopping of the parameter update.

In 2019, He et al. [26] pointed out that the DNN became
the main approaches for sound source localization and
directions of arrival estimation, but these approaches still
have two major drawbacks: (1) these approaches require a
large amount of training data for specific devices and it is
particularly difficult to obtain the true sound source posi-
tions, and (2) these methods are very sensitive to the mis-
match between the training and test conditions. To address
the problems, they have studied two domain adaptation
methods and their combination for multiple sound source
localization: weak supervision and domain adversarial
training. +e weak supervision regularizes the output of
neural network and makes it closer to the possible output
space based on the inexact labels. +e domain adversarial
training aims to find domain-invariant features. +e ex-
perimental results show that the neural network model
adapted with the weak supervision has been significantly
improved, but the domain adversarial training does not
further improve the performance of the model.

In 2019, Xu et al. [27] proposed a biologically inspired
binaural sound localization system for reverberant envi-
ronments. +is sound source localization system uses a
convolutional neural network to analyze the 2-D correlation
matrix generated by the stereo cochlear system. +e system
can obtain a lower average absolute error in the −90° to 90°
range.

2.1.2. Passive Positioning. In 2017, Xue et al. [28] proposed a
localization algorithm based on deep learning and asyn-
chronous time difference of arrival (TDOA) data, mea-
surement errors, and missing data. +e algorithm
determines the target state first and then predicts the
asynchronous TDOAs with measurement errors or missing
data. Finally, the target is located based on the predicted
TDOA data.

In 2018, Berruet et al. [29] proposed an indoor locali-
zation method based on CSI and convolutional neural
network in Internet of +ings context. +is method uses
different subcarriers and different receiving antenna CSI to
form a two-dimensional matrix as the input of the neural
network and uses the target position as the output (re-
gression model). In this method, the receiver is a gateway
with multiple antenna elements, while the transmitter is a
device with one antenna element, so only one receiver is
needed to estimate the target position.

In 2019, Chen et al. [30] used the WiFi routers to scan
smartphones so that a large amount of received signal
strengths can be collected. +en, they extracted the local
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features by consecutive received signal strength features for
each router. +e LSTM network is leveraged to learn high-
level representations from the extracted local features and
indoor localization was realized by a regression model.

2.2. Device-free Indoor Localization. Device-free indoor lo-
calization means that the located target does not carry any
receiving or transmitting equipment (basic model is shown
as Figure 3). +e localization system achieves the location
estimate by utilizing the target’s influence on the environ-
ment (e.g., communication channel).

In 2016, Wang et al. [31] proposed PhaseFi, an indoor
localization system based on calibrated CSI phase infor-
mation. In PhaseFi, firstly, the raw phase information is
extracted from the multiple antennas and multiple sub-
carriers of the IEEE802.11n network interface card. +en, a
linear transformation is applied to extract the calibrated
phase information. In the offline phase, a three-layer neural
network is designed to train the calibrated phase informa-
tion, and the weights of the neural network are used as
fingerprint features. In the online phase, a probabilistic
method based on radial basis functions is used for estimating
the target position.

Wang et al. [32,33] studied an indoor localization
scheme based on CSI information instead of CSI phase
information [28].

In 2017,Wang et al. [34] proposed an indoor localization
method (CiFi) based on deep convolutional neural net-
works. +e method uses one transmitter and some receivers
consisting of three direction-finding antennas. +e AOA
(angle of arriving) values of different subcarriers of WiFi
signal are used for forming CSI AOA images, and the images
are uses as the input of the neural network.

In 2017, in order to improve the localization accuracy,
Wang et al. [35] used bimodal CSI including AOA and CSI
amplitude to estimate indoor position. At the same time, in
order to reduce the training time and data storage re-
quirement, a deep residual sharing learning network was
used for model training. +e input of the network includes
two channels, and each input tensor of each signal includes
three images: two of them are AOA-time images obtained
from three antennas and the other is a CSI amplitude-time
image from one antenna. Experimental results show that the
localization accuracy of this method is significantly
improved.

In 2019, Abdul Samadh et al. [36] pointed out that the
advantages of device-free indoor localization methods in-
clude the following: (1) they can be used for tracking targets
that cannot be controlled directly, (2) they can be used for
locating in unexpected circumstances, and (3) they are
comparatively cost-effective with minimal infrastructure
setup requirements. +ey studied the localization method
based on CSI amplitude and convolutional neural network
(classification model) and also studied the impact of CSI
time-varying characteristics on localization accuracy. +e
results show that CSI time-varying characteristics have a
greater influence on localization accuracy using CSI am-
plitude information only.

In 2019, Hsieh et al. [37] formulated the indoor local-
ization as a classification problem, and developed four in-
door localization methods based on multilayer perceptron,
one-dimensional convolutional neural network, received
signal strength, and CSI. +e localization method based on
one-dimensional convolutional neural network is proposed
for the first time.+e experimental results show that the one-
dimensional convolutional network using CSI information
achieves excellent localization performance withmuch lower
network complexity.

In 2019, Liu et al. [38] pointed out that deep neural
networks have shown great potential in indoor high-pre-
cision localization, but the inner principles are not ade-
quately understood. So, they provide quantitative and visual
explanations for the deep learning process and the important
features learnt by deep neural network during the learning
process. Several visualization techniques are proposed in-
cluding dimensionality reduction visualization, visual
analysis, and information visualization.

3. Wireless Outdoor Localization Technology
Based on Deep Learning

Compared with the indoor localization problem, there are
even more issues associated with outdoor localization. +e
multipath effect is greatly reduced in outdoor localization, so
the contradiction of localizationmodeling is not as serious as
that of indoor localization.+erefore, while paying attention
to the methods, we should also pay attention to the moti-
vation and purpose of the research. Basic models of outdoor
localization are the same as those for indoor localization, as
shown in Figures 1–3.

In 2017, Houégnigan et al. [39] pointed out that, al-
though underwater range can be standardly estimated by
widely spaced sensors in the higher frequency ranges and
assuming direct path, opportunistically estimated using
surface and bottom reflection or using modal decomposition
at certain low frequencies, and it remains a big challenge to
develop a general system based on a single sensor or a small-
aperture array that can adapted to real time.+ey introduced
the early results of their ongoing underwater localization and
sound source range estimation based on a single sensor and
the experimental results of range estimation using shallow
and deep neural networks by a single sensor.+e deep neural
networks used in [39] are AlexNet, VGG-16, and VGG-19.

In 2019, Chang [40] proposed a threshold adaptive
varied method for tracking based on deep learning to im-
prove Extended Kalman Filter (EKF) algorithm because the
tracking threshold is difficult to update adaptively which
may lead to a divergence when tracking a high-speed target.
+is method uses a recurrent neural network model. +e
model inputs include current and previous position esti-
mation, and the model output is the target region. If the
target region estimation of improved EKF is inconsistent
with the neural network model, the tracking threshold
should be adjusted until they are consistent.

Existing telecommunication-based localization methods
suffer from the challenges of either high localization errors
or requiring intensive data samples or high sensitivity
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towards noisy Measurement Record (MR) data. To address
the challenges, Zhang [41] proposed a telecommunication
localization framework. +e framework mainly includes
three main parts: a localizationmodel, a method overcoming
the data scarcity issue, and a method repairing noisy MR
samples. +e localization models include single-point-based
localization model and sequence-based localization model.
+e idea of transfer learning is adopted to overcome the data
scarcity issue. In addition, a confidence level method is
proposed to detect those MR samples with high localization
errors by confidence levels and then repair the predicted
positions.

In 2019, Shen et al. [42] proposed a relative localization
method of high-density RFID tags via phase and received
signal strength indication (RSSI) based on deep learning
with convolutional neural networks.

4. Discussion and Conclusion

At present, the core elements of indoor localization
technology based on deep learning include the following.
(1) Application signal types: WiFi, WLAN, iBeacon,
geomagnetic signals, base station cellular signals, etc. (2)
Feature types: received signal strength, CSI (amplitude
and phase), angle of arrival etc. (3) Preprocessing
methods: normalization, adding noise, training data
increase, high-level feature learning based on autoen-
coder, etc. (4) Network frameworks: convolutional
neural networks, LSTM neural networks, fully connected
networks, etc. (5) Localization methods: classification
methods based on neural networks, regression methods
based on neural networks, probability methods based on
higher-level features, etc. Although there are research
results, it is difficult to evaluate the localization per-
formance of various methods based on a unified standard
at present. +erefore, further research on the optimal
combination of these will be a valuable research
direction.

+e major challenges of indoor localization are the
environmental interference and the time-varying charac-
teristics of the channel, so the transfer function between
position and position-sensitive parameters cannot be

established. However, the nonideal model can be solved by
deep learning because of the high-dimension modeling
capabilities. At present, a mount of methods based on in-
creasing the training samples, extracting higher-level fea-
tures, and using deep reinforcement learning have been
proposed. It is necessary to compare the cost and perfor-
mance of the methods with unified data and to find better
approaches.

+e complex environment in indoor localization greatly
promotes the application and research on deep learning
technology in indoor localization. In outdoor localization,
the first thing that deep learning needs to solve is the ap-
plication requirement. Although a few researches have been
carried out, it is difficult to conclude whether the application
of deep learning technology is the best choice in these
problems.

At present, most research studies on deep learning-based
localization problems focus on two-dimensional problems.
For three-dimensional localization problems, the cost of
collecting training samples will greatly increase.+erefore, it
is of great significance to research on how to reduce the
demand of training samples for three-dimensional
localization.

Compared with the indoor wireless environment, the
complexity of the underwater environment is increased.
Making full use of the technical achievements on indoor
localization, deep learning technology may be a powerful
tool to deal with underwater precise localization.

+is article focuses on the application of deep learning
technology in the field of wireless localization, the
problems solved by deep learning technology, the com-
mon deep learning models, the input form, and the
methods. And we discuss the need for further research on
wireless localization. With the advance and development
of big data and deep learning technology, better perfor-
mance and results are expected to be obtained from
wireless localization systems in complex practical appli-
cation environments.
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,e aim of this research is to show the implementation of object detection on drone videos using TensorFlow object detection API.
,e function of the research is the recognition effect and performance of the popular target detection algorithm and feature
extractor for recognizing people, trees, cars, and buildings from real-world video frames taken by drones. ,e study found that
using different target detection algorithms on the “normal” image (an ordinary camera) has different performance effects on the
number of instances, detection accuracy, and performance consumption of the target and the application of the algorithm to the
image data acquired by the drone is different. Object detection is a key part of the realization of any robot’s complete autonomy,
while unmanned aerial vehicles (UAVs) are a very active area of this field. In order to explore the performance of the most
advanced target detection algorithm in the image data captured by UAV, we have done a lot of experiments to solve our functional
problems and compared two different types of representative of the most advanced convolution target detection systems, such as
SSD and Faster R-CNN, with MobileNet, GoogleNet/Inception, and ResNet50 base feature extractors.

1. Introduction

An object recognition system uses a priori known object
model to find real-world pairs from images of the world
[1, 2]. Human beings can perform object detection very
easily and effortlessly, but this problem is amazingly difficult
for machines.

,e need for object detection systems is increasing due to
the ever-growing number of digital images in both public
and private collections. Object recognition systems are
important for reaching higher-level autonomy for robots [3].
Applying computer vision (CV) andmachine learning (ML),
it is a hot area of research in robotics. Drones are being used
more and more as robotic platforms. ,e research in this
article is to determine how to use existing object detection
systems andmodels can be used on image data from a drone.
One of the advantages of using a drone to detect objects in a
scene may be that the drone can move close to objects
compared to other robots [4], for example, a wheeled robot.
However, there are difficulties with UAVs because of top-
down view angels [5] and the issue to combine with a deep

learning system for compute-intensive operations [6]. When
a drone navigates a scene in search for objects, it is of interest
for the drone to be able to view as much of its surroundings
as possible [7, 8]. However, images taken by UAVs or drones
are quite different from images taken by using a normal
camera. For that reason, it cannot be assumed that object
detection algorithms normally used on “normal” images
perform well on taken by drone images. Previous works on
this stress that the images captured by a drone often are
different from those available for training, which are often
taken by a hand-held camera. Difficulties in detecting objects
in data from a drone may arise due to the positioning [9, 10]
of the camera compared to images taken by a human,
depending on what type of images the network is trained on.

In the previous research, the aim of work was to show
whether a network trained on normal camera images could be
used on images taken by a drone with satisfactory results.
,ey have used a fish-eye camera and conducted several
experiments on three kinds of datasets such as images from a
normal camera, images from a fish-eye camera, and rectified
images from a fish-eye camera. ,e result shows that using
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drone’s fish-eye camera, we can detect many objects–some of
the extra number of detected objects compared to the normal
camera and the outside field of the view can cause different
image quality. [11, 12]. ,ey have done some experiments to
prove that more objects can be detected from a closer
viewpoint, and the result proved the hypothesis. ,e result of
research work shows that the number of detected object
instance and accuracy of detection very depend on the angle
of the camera. ,eir observation tells that it is important to
use the same camera angle as in the training dataset. However,
different types of objects in the training data are generally
photographed from different angles. For example, many
images of cups are taken from the side while many images of
keyboards are taken from above [9]. ,erefore, each object
type has an optimal viewing angle depending on the training
data. However, as the camera on our drone is assumed to be in
a fixed position and the drone itself cannot tilt, one viewing
angle has to be chosen. ,at is why, in our project, we
retrained the model using images taken by the drone, and it
helped to improve the accuracy of detection.

Other recent studies have used real-time [13, 14]
identification of pedestrians, trees, and different types of
vehicles and ships from real-world videos of the Caffe
framework [15], which are captured with UAVs. In that
work, they have observed several experiments to derive the
optimal batch size, iteration count, and learning rate for the
model to converge [16].

In our experiment, we used TensorFlow object detection
API to realize object detection of UAV videos. In our ob-
servation, we compared SSD and Faster R-CNN object de-
tection systems depending on speed of detection for frame per
second (FPS) and accuracy. In our project, we use Single Shot
Detector (SSD) and Faster R-CNN topology as our detection
components. We have used them to assess the frame rate and
accuracy of several videos we have taken with drones [11].

Section 2 represents TensorFlow object detection API
and transfer learning. Section 3 describes design of solution,
methods, and network architecture. Section 4 presents the
analysis and experiments and shows the results. Section 5
closes the study with a conclusion.

2. Why Choose TensorFlow Object
Detection API

If you want to train a complete CNN from scratch, it will
take much time and requires very large image datasets
[17, 18]. ,ere is a solution to this problem: the solution is to
use the advantages of migration learning [12, 19] and
TensorFlow’s object detection API, which we can use to
train, build, and deploy object detection models. Fortu-
nately, API has some pretrained models. Some concepts of
transfer learning are described below.

Transfer learning [19] is mainly performed to extract the
best solution from another task, and after that, it is applied
for the different but related tasks. In deep learning, there are
three main ways to use it.

First method, we can use convolutional neural networks
as a fixed feature extractor [20], but we change the last fully

connected layer of it, and the front part is used as the fixed
feature extractor for our new image dataset.

,e second way is fine-tuning the CNNs, which is almost
the same as the first method, but there is a difference. ,is
method uses continuous back propagation to fine-tune the
weights of the pretrained network.

,e last is pretrained models. In order to have a new
CNN structure, it may take much time if we train it from
scratch. Fortunately, TensorFlow model zoo has several
pretrained models. Researchers usually open source the
checkpoint files of the CNNs [21] they finally trained, so we
can use the network for fine-tuning.

In our experiments, we applied transfer learning method
on a pretrained GoogleNet/Inception V3 model (trained on
Microsoft COCO dataset). ,e last fully connected layer of
the network will be initialized with random weights (or
zeroes), so when we input new data to train our model, the
final layer’s weights will be readjusted. Some of the initial
features such as edges and curves have been learned in the
topology basic layers. We can apply these initial features [22]
for our model to new problems, and this is the main concept
of transfer learning. In conclusion, the weight of the fully
connected layers will be changed according to the specific
tags trained in the dataset of the problem we want to solve.

3. Meta-architectures

Convolutional neural networks (ConvNets) are the most ad-
vanced artificial neural networks [23] used for high-accuracy
object detection in this decade. Most recently published papers
in the areas of ConvNets and computer vision come after this
default boxes approach and then reduce a regression loss and
associated classification [17, 23] that is explained below.
According to default box d, we catch paired ground truth box g

(if it exists). If there are pairs, we tag d as “positive” and attach a
class label yd ∈ 1, . . . , K{ } and box’s vector encoding g with
respect to default box d (called the box encoding φ(gd; d)). In
the case of no pairs, we mark d as “negative” and set the class
label to zero. If we suppose box encoding for default box d
floc(I; d, θ) and equivalent class fcls(I; d, θ), where I rep-
resents the image and θ is the model parameters, then the loss
of d and the loss of classification are as follows:

L(d, I; θ) � αlloc φ gd; d( 􏼁 − floc(I; d, θ)( 􏼁

+ βlcls yd, fcls(I; d, θ)( 􏼁,
(1)

where α and β weights are adjust localization and classification
losses [24]. Equation (1) is averaged in default boxes and
minimized with respect to parameters θ for training our model.

3.1. Single ShotDetector (SSD). ,e SSD approach discretizes
the output space of bounding boxes into a set of default
boxes over different aspect ratios and scales per feature map
location [8]. At prediction time, the network generates
scores for the presence of each object category in each
default box and produces adjustments to the box to better
match the object shape [13]. Additionally, the network
combines predictions from multiple feature maps with
different resolutions [25–27] to naturally handle objects of
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various sizes. SSD is simple and relative to methods that
require object proposals [28] because it eliminates proposal
generation and subsequent pixel or feature resampling stages
and encapsulates all computation in a single network
(Figure 1). ,is makes SSD easy to train and straightforward
to integrate into systems that require a detection component.

,e SSD training method is obtained from the MultiBox
method but can accommodate multiple object classes.
Suppose x

p
ij � 1, 0{ }, an indicator for pairing the i-th default

box to the j-th ground truth box of class p. From the pairing
method above, we can write 􏽐ix

p
i,j ≥ 1. ,e long-term loss

function is a weighted sum of the localization loss (loc) and
the confidence loss (conf):

L(x, c, l, g) �
1
N

Lconf(x, c) + αLloc(x, l, g)( 􏼁, (2)

where N is the number of paired default boxes. If N� 0, set
the loss to 0.

Lloc(x, l, g) � 􏽘
N

i ∈ Pos
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x
p
i,j smoothL1 l
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(3)

,e loss of confidence is the softmax on multiclasses
confidence (c):

Lconf(x, c) � − 􏽘
N

i ∈ Pos
x

p
i,jlog 􏽢c

p
i􏼐 􏼑 − 􏽘

i∈Neg
log 􏽢c

0
i􏼐 􏼑 , (4)

where

􏽢c
p
i �

exp c
p

i􏼐 􏼑

􏽘
p
exp c

p

i􏼐 􏼑
, (5)

and the weight term α is set to one through crossvalidation.

3.2. Faster Region-Based Convolutional Neural Networks
(Faster R-CNN). In the Faster R-CNN [13] model, the
detection process is divided into two stages (Figure 2). ,e
first stage is called as region proposal network (RPN),
images are processed by a feature extractor (in our case,
GoogleNet/Inception V3), and features at some selected
intermediate level (e.g., “conv5”) are used to predict class-
agnostic box proposals. ,e last stage is to crop features
from these box proposals, and then it is fed to the re-
mainder of the feature extractor (e.g., “fc6” followed by
“fc7”). We will get the predict from each proposal (a class
and class-specific box refinement) [28]. What we need to
know is that the running time depends on the number of
regions proposed by the RPN network [13] because a part
of the computation must be run in each region, but it does
not crop proposals directly from the image and rerun
crops through the feature extractor [11], and this is
repeated.

3.3. GoogleNet/Inception Module. GoogleNet devised a
module called inceptionmodule [13, 29] that approximates a
sparse CNNwith a normal dense construction (shown in the
Figure 3), which uses convolutions of varied sizes to capture
details at different scales, and the width/number of con-
volutional filters which have special kernel size is small just
because only a little neurons are efficient.

One of the salient points about the module is that it has a
so-called bottleneck layer (1× 1 convolutions in Figure 3).
Bottleneck layers help in massive decrease of the compu-
tation requirement as explained here.

We know the first inception module of GoogleNet,
which the input has 192 channels. ,is module has 128 3× 3
kernel size filters and 32 5× 5 size filters, and the calculation
order of 5× 5 filter is 25× 32×192. When the width of the
network and the number of 5× 5 filters increase further, it
will explode as we go deep into the network [23]. In order to

Detection generator

Multiway
classification

Box
regression

Feature extractor

(Vgg, inception,
resnet, etc.)

Figure 1: High-level diagram of SSD object detection system.

Mathematical Problems in Engineering 3



solve this problem, we need to use 1 × 1 convolution to
reduce the channel dimension of the input image before
we apply the larger size kernels and then feed them into
these larger convolution kernels. ,erefore, the input of

the inception module is first fed to a filter with only 16
1 × 1 convolutions and then fed to a 5 × 5 convolution. As
a result, these changes allow the network to have a greater
width and depth.

Proposal generator
Objectness

classification

Box
regression

Box
refinement

Box classifier
Multiway

classification

(Vgg, inception,
resnet, etc.)

Feature extractor

Figure 2: High-level diagram of Faster R-CNN object detection system.
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Figure 3: Inception modules.
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Figure 4: Residual blocks. (a) 64-d, (b) 256-d.
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3.4. ResNet. ResNet, or residual networks [30, 31], is one of
the deepest networks to this day, and this network won the
2015 ILSVRC.

For any network model we design, we need to calculate the
error gradient and then use the back propagation technology to
improve the network model. When we use gradient descent
(back propagation) to calculate the gradient error, we will use
the chain rule of multiplication to calculate the gradient error.
Whence, multiplication of many things less than one in the
long chain will lead the result to be very small. It will affect the
earlier layers in a deep architecture because it cannot update
parameters. ,is will cause the training to become very slow,
and the effect is not good; if the gradient becomes zero, the
early training parameters cannot be updated.

What will happen if we use back propagation via the
identity function? In that case, the gradient would be
multiplied by one, and the gradient will not be missed.
ResNet stacks residual blocks together [32, 33], which uses
the identity function tomaintain the gradient [19] (Figure 4).

Residual blocks are very simple to explain. We con-
catenate the result of applying some functions to the original
input with the original input to ensure that the gradient is
not less than 1, and no gradient disappears.

Mathematically, we can represent the residual block as
follows:

H(x) � F(x) + x. (6)

We can see from equation (1) that the gradient is unlikely
to become zero and we can propagate all gradients back-
wards. ,ese residual connections are just like a “gradient
highway” because the gradient distributes evenly at sums in a
computation graph [34].

,ese residual blocks are very powerful, which can make
our network structure deeper. ,e deepest variant of ResNet
was ResNet151 [31]. In our experiments, we have used
ResNet50 as a feature extractor.

After revolution of ResNets, now researchers can use
skip connections to create a deeper network architecture
[32]. Example of ResNet architecture is shown in Figure 5.

4. Experiment Results

In this section, we analyse the results of detections and
compare Single Shot Multibox Detector and Faster Region-
[31, 32] based convolutional neural network object detection
systems for accuracy, speed of detection on GPU and CPU,
and memory usage. We organized three sets of experiments
to explore object detection on videos captured by the drone.
,e first and second sets of experiments are focused on
testing accuracy of object detection via Faster R-CNNs, and
specially, reality of our idea is to apply object recognition
systems for drone [35, 36] videos. ,e third experiment is
done using the SSD object detection system.

4.1. Analyses

4.1.1. Accuracy and Time. In the scatter plot (Figure 6), the
average mAP of each meta–architecture is visualized. Each

image average running time is shown in the figure; it goes
from a few hundreds milliseconds to 200 milliseconds. In
general, our experiment shows that SSD meta-architectures
are faster but with lower accuracy, and Faster R-CNN meta-
architectures are more accurate; however, it requires at least
130 milliseconds for one image.

4.1.2. 7e Effect of the Feature Extractor. To explore the
effect of feature extractors, in Table 1, we show some well-
known feature extractors that have been used in other works.
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Figure 5: Example ResNet architecture.
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Stronger performance on detection is positively connected
with stronger performance on classification, and Figure 7
shows such an overall ratio relationship between classifi-
cation and detection performance really exists.

4.1.3. 7e Effect of Image Size. Image resolution can hugely
affect object detection accuracy, and it has been shown inmany
other state-of-the-art researches. Our experiments show that
decreasing image dimensions coherently decreases accuracy

(by 18% on average) and reduces average running time by a
relative factor of 23%. So high-resolution images can solve the
problem of small objects, just as Figure 8 shows.

4.1.4. Memory Analysis. In our experiments, the image
resolution is 300. We have measured total usage of alternate
peak usage for the memory benchmarking. Figure 9 shows
the memory usage of different meta-architecture and feature
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Table 1: Convolutional detection models.

Paper Meta-architecture Feature extractor Matching Box encoding φ (;) Location loss functions
Szegedy et al. SSD Inception V3| Bipartite [x0, y0, x1, y1] L2
Redmon et al. SSD R-CNN Box centre [xc, yc,

��
w

√
,

��
h

√
] L2

Ren et al. Faster R-CNN VGG Argmax [(xc/wd), (yc/hd), logw, log h] Smooth L1
He et al. Faster R-CNN ResNet101 Argmax (xc/wd), (yc/hd), logw, log h Smooth L1
Liu et al. SSD Inception V3 Argmax [x0, y0, x1, y1] L2
Liu et al. v1, v2 SSD VGG Argmax [(xc/wd), (yc/hd), logw, log h] Smooth L1

0

5

10

15

20

25

30

35

70 71 72 73 74 75 76 77 78 79 80

O
ve

ra
ll 

m
A

P

Feature extractor accuracy

Meta-architecture

SSD
Faster R-CNN

ResNet50
MobileNet

GoogleNet/
Inception V2

Figure 7: ,e effect of feature extractors for the overall mAP.

6 Mathematical Problems in Engineering



0

10

20

30

40

50

60

Faster R-CNN SSD Faster R-CNN SSD Faster R-CNN SSD

Over all mAP
mAP (large)

mAP (medium)
mAP (small)

Figure 8: ,e influence of different object sizes, meta-architectures and feature extractors on accuracy.

0

1000

2000

3000

4000

5000

6000

Faster R-CNN SSD Faster R-CNN SSD Faster R-CNN SSD

Memory (MB) for resolution 300

Memory

MobileNet GoogleNet/
Inception V2

ResNet50

Figure 9: Memory usage for each model.

(a) (b)

Figure 10: Continued.

Mathematical Problems in Engineering 7



extractors. Generally, experiments show that larger and
powerful feature extractors take much more memory.

We can see that Mobilenet requires the least memory,
even less than 1Gb (almost) in almost all settings.

5. Conclusion

,is research is based on object detection from the video
taken by the drone via convolutional neural network [37]. In
this research, we put forward for consideration to use CNNs
to allow drones to recognize some of object types such as
building, car, tree, and person [38]. Convolutional neural
networks are computationally expensive [39]; even so, we
use the method transfer learning to train our neural net-
works with smaller image datasets. In our project, we use

TensorFlow’s powerful object detection API, and it helped us
to easily construct a new model and deploy for detection.

From the results, we observed that the detection accu-
racy of the twomodels for buildings, trees, cars, and people is
very high, with an average of more than 85% and a maxi-
mum of 99%. We have done some experimental comparison
of two modern object detectors for memory usage, speed,
and accuracy. SSD models pay more attention to scale,
aspect ratio and predictions sampling location than Faster R-
CNN, the average time of each frame is 115ms, but the target
detection rate is low. However, Faster R-CNN is more ac-
curate and finds more objects from scene, almost 95% of all
objects in the image can be recognized, but the average time
of each frame is at least 140ms. In general, our experiments
show that the SSD model is faster on average. On the
contrary, Faster R-CNN is relatively slower but more

(c) (d)

(e) (f )

(g) (h)

Figure 10: Example detections from different models and feature extractors. (a) Result of detection with Faster R-CNN base on GoogleNet/
Inception V3. (b) Result of detection with Faster R-CNN base on GoogleNet/Inception V3. (c) Result of detection with Faster R-CNN base
on GoogleNet/Inception V3. (d) Result of detection with Faster R-CNN base on ResNet50. (e) Result of detection with Faster R-CNN base
on ResNet50. (f ) Result of detection with Faster R-CNN base on ResNet50. (g) Result of detection with SSD base on GoogleNet/Inception
V3. (h) Result of detection with SSD base on GoogleNet/Inception V3.
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accurate. But one way to speed up the Faster R-CNN model
is to limit the number of proposed regions. In our experi-
ment, we tested the memory and runtime requirements of
MobileNet, ResNet50, and GoogleNet/Inception V2.
MobileNet requires the least memory, which is less than
1GB, and ResNet50 has nearly 5GB of memory on Faster
R-CNN, while the memory required by GoogleNet/Incep-
tion V2 is in the middle, less than 2GB. In general, we
obtained high correlation with running time and memory
between the model and the feature extractors.

,e detection results shown in Figure 10 were obtained
after implementation on a video captured by a drone.

Hopefully, these experimental results help other re-
searchers to choose a suitable algorithm when selecting
object detection for deployment in the real word. ,e ex-
periment shows that viewing small objects from close is
important in order to detect as many objects as possible.,is
proposes the usage of a drone can be assumed for detecting
as many objects as possible as a drone is designed flexible.
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Unmanned vehicles are widely used in industrial scenarios; their positioning information is vital for emerging the industrial
internet of thing (IIOT); thus, it has aroused considerable interest. Cooperative vehicle positioning using multiple-input multiple-
output (MIMO) radars is one of the most promising techniques, the core of which is to measure the direction-of-arrival (DOA) of
the vehicle from various viewpoints. Owing to power limitations, the MIMO radar may be unable to utilize all the antenna
elements to transmit/receive (Tx/Rx) signal. Consequently, it is necessary to deploy a full array and select an optimal Tx/Rx
solution. Owing to the industrial big data (IBD), it is possible to obtain amassive labeled dataset offline, which contains all possible
DOAs and the array measurement. To pursuit fast and reliable Tx/Rx selection, a convolutional neural network (CNN) framework
is proposed in this paper, in which the antenna selection is formulated as a multiclass-classification problem. Herein, we assume
the DOA of the vehicle has been known as a prior, and the optimization criterion is to minimize the Crame´r–Rao based on DOA
estimation when we use the selected Tx/Rx subarrays. )e proposed framework is flexible and energy friendly. Simulation results
verify the effectiveness of the proposed framework.

1. Introduction

Industrial internet of thing (IIOT) is acknowledged as the
trend of the manufacturing industry [1], which aims to
promote product innovation, improve operation level, and
expand novel business models. In industrial logistics, un-
manned vehicles are widely used. For safe driving purpose, it
is important to enable the vehicles to the internet-of-vehicle
(IOV). IOV is an important branch of IIOT [1]. Vehicle
positioning is one of the most important tasks in IOV that
has gained extensive attention in the past decades. Several
frameworks have been put forward, the most commonly
used method rely on the global positioning system (GPS).
However, the high latency reduces the implementation
potential of GPS technique for the IOV. Moreover, the line-
of-sight transmission property of the GPS signal makes it
unavailable in tunnels, and it may fail to work due to cloud
cover. To develop a robust and reliable vehicle positioning
system, some advanced sensors have been investigated, for

instance, cameras, lidars, and radars [2]. On the basis of
comprehensive consideration of cost, latency, and reliability,
the radar approaches are promising. Generally, the vehicle
position can be measured from four principles in the radar
approaches [3, 4], i.e., radio-signal strength (RSS), time-of-
arrival (TOA), time-difference-of-arrival (TDOA), and di-
rection-of-arrival (DOA). Nevertheless, the RSS techniques
are difficult to accurately obtain vehicle position due to the
complexity of the wireless channel. )e TOA and TDOA
approaches rely on latency measurement, but it is usually
very hard to obtain high-accuracy time difference. )e DOA
approaches are appearing, since the DOA measurement has
adequate accuracy by exploiting an antenna array [5].

)e concept of DOA is shown in Figure 1, in which the
radar nodes measure the angle of the incoming radio signal
from various viewpoints. To achieve super angle resolution,
an antenna array is employed to transmit/receive (Tx/Rx)
signal at the radar node. Usually, antenna elements are
placed into uniform sharps, e.g., uniform linear array,
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uniform circular array, and uniform rectangular array, thus
spatial Nyquist sampling is available. By cooperating with
the existing estimation algorithms [6], e.g., multiple signal
classification (MUSIC), the estimation method of signal
parameters via the rotational invariance technique (ES-
PRIT), tensor estimator, the DOA can be easily achieved. As
is known to us, angular resolution of a uniform array can be
improved by increasing the array aperture at the expensive
of higher cost, larger physical area, and additional com-
putational burden. To mitigate this issue, several nonuni-
form alternatives have been proposed, such as minimum
redundancy arrays, coprime array, and nested array. )ese
arrays declare to achieve more degree-of-freedom, but the
antenna elements are fixed. To pursuit radar cognition,
reconfigurable circuitry is required, e.g., waveform agility
and array adaptively. To this end, the compressive sensing
concept was introduced [7], in which Tx/Rx is randomly
chosen from a full array. )e DOA can be accurately re-
covered with high probability via solving an optimization
problem, i.e., DOA estimation can be linked to the popular
sparse representation methods, e.g., [8]. Nonetheless, such
approach is hard to achieve an optimal array manifold since
it is agnostic to current target scenario. A adaptive frame-
work was investigated in [9–11], the goal of which is to
minimize the determinant of the estimation error covariance
matrix, and it was treated as a convex optimization problem.
In [12], the sensors were dynamically adjusted via mini-
mizing the Cram´er–Rao bound (CRB) on parameter esti-
mation, and the greedy search algorithm was adopted.
Another reconfigurable receive array selection framework
was addressed in [13], in which the conditional Bobrov-
ski–Zakai bound (BZB) on DOA estimation was chosen as a
performance metric. A reconfigurable Tx/Rx pair method-
ology was proposed for the multiple-input multiple-output
(MIMO) radar [14]. Similarly, the selection task is solved via
greedy search algorithm. A common feature the approaches
in [9, 14] share is that a mathematical optimization problem
needs to be solved, which is time-consuming.

With the explosive growth of industrial sensors, tre-
mendous complex real-time data can be obtained from the
physical and man-made environments, which leads to in-
dustrial big data (IBD). )e IBD provides an unprecedented
opportunity to facilitate data-driven prediction techniques

for array selection. A few works have interpreted the antenna
selection problem to multiclass-classification learning. To
realize different type classifications, various classifiers are
available, e.g., support vector machine (SVM), k-nearest
neighbor (KNN), decision tree (DT), multilayer perception
(MLP). In [15], a SVM architecture was presented, which
links antenna selection to the supervised machine learning.
Inspired by the artificial neural networks, the convolutional
neural networks (CNN) become the most popular generative
models in machine learning [16, 17]. CNN is a powerful tool,
since it is skilled in automatic feature extraction from
massive data. It has been proven that its superiority is in
extensive aspects, such as text and voice recognition, image
processing, and industrial manufacture. More recently, the
deep learning network was adopted for antenna selection in
[18]. In their work, a CNN is trained offline, in which the real
part, the image part, and the angle of the covariance matrix
were used as the input of the CNN; the object function is to
minimize the error bound on DOA estimation (e.g., BZB
and CRB). Compared with the SVM approach, the CNN
method provides more accurate and faster classification
performance. Similar to [18], the CNN approaches have
been exploited for Tx/Rx selection in MIMO communica-
tions [19]. Unlike MIMO communications, MIMO radars
illuminate an area of interest via emitting diversity wave-
forms and receive the echoes using multiple antennas.
Owing to the noncooperative operation mode, a MIMO
radar needs much more transmit power than a MIMO
communication system. In practical IOV network, however,
most of the radar nodes are far away from the power grid.
Usually, the radars are powered by solar panels. )erefore,
the transmit power of the radar system is limited.)e closest
prior study to our work is [18], but it is only suitable for
receiving antenna selection in passive radars. Moreover, the
training of CNN is inefficient.

In this paper, we investigated the problem of optimal Tx/
Rx selection for vehicle positioning in IIOT. )e object is to
minimize the CRB on MIMO radar DOA estimation error
with limited transmit power. )e Tx/Rx selection issue is
treated as a multiclass-classification problem, and a CNN-
auxiliary framework is proposed. Instead of inputting the
real part, the image part and the angle of the covariance
matrix, the amplitude values and phase values of the co-
variance matrix are identified as the input of the CNN.
Simulation results show the proposed framework offer faster
and more accuracy selection performance. )e main con-
tributions of this paper are illustrated as follows:

(a) A cooperative vehicle positioning architecture re-
lying on DOA estimation is presented. )e core is to
measure the DOA of the vehicle via MIMO radar
nodes. Combined with the location information of
the nodes, vehicle position can be accurately re-
covered. Unlike the RSS approaches, the TOA ap-
proaches, and the TDOA approaches, the DOA
approaches are insensitive to the environment.
Benefiting from the virtual aperture of the MIMO
radar, high-precision DOA estimation can be easily
obtained.

Radar node

θ

Vehicle

Figure 1: Illustration of DOA-based positioning techniques.
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(b) A practical scenario that the MIMO radar with
limited power is considered. We assume the target
vehicles are slow-moving so that their DOA infor-
mation area is prior to the radar nodes. To pursuit
efficient and high-accuracy vehicle positioning, we
need to choose an optimal Tx/Rx pair from a full
array. )e antenna selection is transformed into a
multiclass classification

(c) A CNN-auxiliary framework is proposed for fast
classification. To obtain the training data, the greedy
search strategy is adopted; the optimal Tx/Rx pair is
accepted if the minimum CRB is obtained. )ere-
after, the upper triangle measurement of the array
covariance matrices is designated as the input of
CNN to indicate the well-chosen Tx/Rx pairs. Fi-
nally, the CNN is utilized to Tx/Rx selection online.

)e paper is organized as follows. In Section 2, the
problem of vehicle positioning using the colocated MIMO
radar is formulated. In Section 3, the derivation of CRB is
given. In Section 4, the details of the proposed CNN
framework are described. In Section 5, the simulation results
are outlined. Finally, a brief conclusion is given in Section 6.

Notations. Lowercase italic letters, e.g., a, boldface lowercase
letters, e.g., a, and boldface capital letters, e.g., A, are re-
served for scalars, vectors, and matrices, respectively; the
superscripts(X)T, (X)H, (X)− 1, and (X)+ stand for the
operations of transpose, Hermitian transpose, inverse and
pseudoinverse, respectively; ⊗ , ⊙, and ⊗ represent, re-
spectively, the Kronecker product and the Khatri-Rao
product and the Hadamard product; E ·{ } is to get the
mathematical expectation; vec(·) denotes the vectorization
operation; IM denotes the M × M identity matrix; Cr

M de-
notes the combination of selecting r terms out of M.
blkdiag ·{ } accounts for the block diagonal matrix with the
diagonal blocks in the bracket.

2. Problem Formulation

)e architecture of the proposed vehicle positioning
system is illustrated in Figure 2. )e MIMO radar nodes
are fixed at the roadside with known position, and they are
connected with the cloud platform using low-latency
optical fiber. )e position of the target vehicle barely
changes during consecutive scans. In the first scan, a full
Tx/Rx array is utilized to detect the vehicle position. )e
covariance matrix of the MIMO radar node is fed to a
CNN to find an optimal Tx/Rx pair for the next scans. All
the nodes are well synchronized, and the measured DOAs
are uploaded to the cloud to calculate the vehicle position.

Now, we consider a colocated MIMO radar scenario,
as depicted in Figure 3. Each radar node is equipped with
M transmit antennas and N receive antennas, both of
which are uniform linear arrays (ULA) with the same
interelement distance d. Taking the first Tx/Rx antenna as
reference element, the position sets of the Tx/Rx are given
by

Ωt � 0, d, 2 d, . . . , (M − 1)d{ },

Ωr � 0, d, 2 d, . . . , (N − 1)d{ }.
(1)

Due to power limitation, we can only choose M1
transmit antennas andN1 receive antennas from a full Tx/Rx
array (the reference elements are enforced to be chosen).
)us, the position sets corresponding to the selected Tx/Rx
are Ωt
′ and Ωr

′, respectively. Suppose that K target vehicles
are appearing the far-field of the radar nodes, thus they can
be regarded as point targets. Let θk denote the k − th DOA of
the vehicle, and let at(θk) ∈ CM1×1 and ar(θk) ∈ CN1×1 de-
note the steering vectors corresponding to the selected
transmit array and the selected receive array, respectively.
)e m − th(m � 1, 2, . . . , M1) element of at(θk) and the n −

th(n � 1, 2, . . . , N1) entity of ar(θk) are respectively given by

am θk( 􏼁 � exp
−j2πxmsin θk( 􏼁

λ
􏼨 􏼩,

an θk( 􏼁 � exp
−j2πxn sin θk( 􏼁

λ
􏼨 􏼩,

(2)

where λ denotes the carrier wavelength and xmand xn are the
m − th and n − th entities ofΩt

′ andΩr
′, respectively. Assume

that the selected transmit antennas emit mutual orthogonal
pulse waveforms pm(t)􏼈 􏼉

M1
m�1. For any

m1, m2 ∈ 1, 2, . . . , M1􏼈 􏼉, there exists

􏽚
Tp

pm1
(t)p
∗
m2

(t)dt � δ m1 − m2( 􏼁, (3)

where t accounts for the fast time index, Tp denotes the pulse
duration, and δ(·) stands for the Kronecker delta.)e echoes
received by the array can be written as

r(t, τ) � 􏽘
K

k�1
sk(τ)ar θk( 􏼁a

T
t θk( 􏼁P(t) + w(t, τ), (4)

where τ is the pulse index, sk(τ) denotes the reflection
coefficient of thek − thvehicle,
P(t) � [p1(t), p2(t), . . . , pM(t)]T denotes the transmit
waveform vector, and w(tτ) is the noise vector, which is the
Gaussian white with variance σ2, i.e.,

E w t1, τ( 􏼁wH
t2, τ( 􏼁􏽮 􏽯 � σ2I · δ t1 − t2( 􏼁. (5)

Matching r(t, τ) with P(t) yields

y(τ) � vec 􏽚
Tp

r(t, τ)P
H

(t)dt􏼠 􏼡

� 􏽘
K

k�1
at θk( 􏼁⊗ ar θk( 􏼁􏼂 􏼃sk(τ) + e(τ) � As(τ) + n(τ),

(6)

where A � [a(θ1), a(θ2), . . . , a(θk)] ∈ CM1N1×K is the vir-
tual response matrix with the k − th virtual vector given by
a(θk) � at(θk)⊗ ar(θk) and s(τ) � [s1(τ), s2(τ), . . . ,

sk(τ)]T is the reflection coefficient vector.
n(τ) � vec(􏽒

Tp
w(t, τ)pH(t)dt) denotes the matched array
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noise. According to [6], n(τ) is still a Gaussian white with
variance σ2, i.e.,

Rn � E n(τ)n
H

(τ)􏽮 􏽯 � σ2IM1N1
. (7)

Consequently, the covariance matrix of y(τ) can be
expressed as

R � E y(τ)y
H

(τ)􏽮 􏽯 � ARsA
H

+ Rn, (8)

whereRs � E s(τ)sH(τ)􏼈 􏼉 accounts for the covariance matrix
of the reflection coefficient. In the presence of L samples
y(τ1), y(τ2), . . . , y(τL), R can be estimated via

􏽢R �
1
L

􏽘

L

l�1
y τl( 􏼁y

H τl( 􏼁. (9)

To estimate the DOA from y(τ) or its covariance matrix
R, thousands of estimations are available. Typical algorithms
include MUSIC, ESPRIT, PM, and tensor-aware approaches
[20–24]. Besides, additional information can be exploited to
improve the estimation accuracy [25–30]. How to estimate
the DOA is an interesting topic, but beyond the scope of this
paper. Once DOA of the target vehicle is obtained, the
position information can be accurately recovered via solving
an inverse problem [3]. In this paper, we only focus on how
to select the optimal Tx/Rx pair.

3. CRB Derivation

CRB provides a lower bound for unbiased parameter esti-
mation. It is usual to evaluate the parameter estimation
accuracy. In what follows, we will show how it is derived.
Firstly, we rewrite (6) as

xl � Asl + nl, l � 1, 2, . . . , L, (10)

where xl � x(l), sl � s(l), and nl � n(l). Next, we construct a
vector y � [xT

1 , xT
2 , . . . , xT

L ]T ∈ CM1N1L×1. Suppose that sl �

(l � 1, 2, . . . , L) are deterministic but unknown to the
MIMO system.)en, the mean μ ∈ CM1N1L×1 and covariance
matrix Γ ∈ CM1N1L×M1N1L of y are

μ �

Asl

⋮

AsL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � HS,

Γ � blkdiag σ2IM1N1
, σ2IM1N1

, . . . , σ2IM1N1
􏽮 􏽯
􏽼√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√􏽽

L

,

(11)

where H≜ blkdiag A,A, . . . ,A{ }􏽼√√√√√􏽻􏽺√√√√√􏽽
L

∈ CM1N1L×LK,

S≜ [sT
1 , sT

2 , L, sT
L ]T ∈ CLK×1. Next, let us define the following

vectors θ≜ [θ1, θ2, . . . , θK], c � [Re ST􏼈 􏼉, Im ST􏼈 􏼉] ∈ R1×2LK.
)e unknown parameter vector can be formulated as ζ �

[α, c]T . According to [31], the CRB matrix for ζ is given by

CRB �
σ2n
2

Re ΨHΨ􏽮 􏽯􏽨 􏽩
− 1

, (12)

where Ψ � [zμ/zα, zμ/zc].
We now focus on each part ofΨ. Firstly, it is to find that

zμ
zc

� [H, jH] ∈ CML×2LK
. (13)

Step further, we have zμ/zθ � Δ ∈ CM1N1L×K with

Δ �

za θ1( 􏼁

zθ1
s1,1 , · · · ,

za θK( 􏼁

zθK

sK,1

⋮ ⋱ ⋮

za θ1( 􏼁

zθ1
s1,L , · · · ,

za θK( 􏼁

zθK

sK,L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)
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Figure 2: )e architecture of the proposed vehicle positioning system.

Transmit antenna array

…

…

1 2 3

1 2 3

M

θ

θ

Receive antenna array
N

Vehicle

Figure 3: DOA estimation model for the colocated MIMO radar.
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where sk,l is the kth element of sl. )erefore,
zμ/zζT

� [Δ,H, jH]. Furthermore, we can obtain

J � Re ΨHΨ􏽮 􏽯 � Re
ΔH

HH

−jHH

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[Δ,H, jH]

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (15)

Since we are only interested in the CRB on DOA esti-
mation, by means of diagonalization, we can extract those
counterparts from J. Define

PΔ � HHH􏼐 􏼑
− 1
HHΔ ∈ CLK×K

, (16)

thanks to the nonsingular property of HHH, P−1
Δ is valid.

Now, we define

V≜

IK 0 0

−Re PΔ􏼈 􏼉 I 0

−Im PΔ􏼈 􏼉 0 I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (17)

It can be found that

[Δ,H, jH]V � Δ − HPΔ( 􏼁,H, jH􏼂 􏼃. (18)

Define Π(1/H) as the orthogonal projection of HH onto
null space

Π
1
H
≜ IM1N1L − H HHH􏼐 􏼑

− 1
HH

. (19)

Obviously, HHΠ(1/H) � 0. )en, we have

VHJV � Re

ΔHΠ
1
H

HH

−jHH

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Π
1
H
Δ,H, jH􏼔 􏼕

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

� Re

∇ 0 0

0 􏽥H j 􏽥H

0 −j 􏽥H 􏽥H

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(20)

with ∇ � ΔHΠ(1/H)Δ, 􏽥H � HHH. Based on the properties
of a partitioned diagonal matrix, we obtain

J− 1
� V VHJV􏼐 􏼑

− 1
VT

�
I 0

× Ι
􏼢 􏼣 ·

Re ∇{ } 0

0 ×
􏼢 􏼣

− 1 I ×

0 I
􏼢 􏼣

�
Re ∇{ } 0

0 ×
􏼢 􏼣

− 1

,

(21)

where × stands for the irrelevant part. Inserting (21) and (15)
in (12) and removing all the unaffected parts, we can get the
CRB on DOA estimation as

CRB �
σ2

2
[Re ∇{ }]

− 1
. (22)

Define D � [za(θ1)/zθ1, za(θ2)/zθ2, . . . , za(θK)/zθK],
and let F � [s1, s2, . . . , sL]T. Recalling (14), we can find thatΔ
can be rewritten as Δ � D⊗ s. )us, we have

Π
1
H
Δ � Π

1
A

d1 ⊗f1,Π
1
A

d2 ⊗f2, . . . ,Π
1
A

dK ⊗fK􏼔 􏼕,

(23)

where dk and fk account for the k − th column of D and F,
respectively. Hence, ∇ can be expressed as

∇ �

d
H
1 ⊗f

H
1

d
H
2 ⊗f

H
2

⋮

dK ⊗fK

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Π
1
H
Δ

� L ·

d
H
1 Π

1
A

d1R1,1 · · · d
H
1 Π

1
A

dKR1,K

⋮ ⋱ ⋮

d
H
KΠ

1
A

d1R1,1 · · · d
H
L Π

1
A

dKRK,K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� L · DHΠ
1
A
D􏼒 􏼓⊕􏽢RT

s ,

(24)

where Rm,n denotes the (m, n) − th element of 􏽢Rs and
􏽢Rs � (1/L) · FHF. Finally, we can get the CRB on DOA
estimation as

CRB �
σ2

2L
Re DHΠ

1
A
D⊕􏽢RT

s􏼚 􏼛􏼔 􏼕
− 1

. (25)

4. The Proposed TX/RX Selection Framework

4.1. 0e Proposed CNN Architecture. )e CNN model that
utilized in this paper is depicted in Figure 4. It consists of
four parts: input layer, convolutional layer, fully-connected
layer, and output layer. )e output of the CNN can be
formulated as the nonlinear mapping of the input. Among
which the activation function is a key point of each neuron,
and it is linear for input and output layers and sigmoid for
hidden layers. )e Input layer contains a dataset with
samples and associate labels. )e convolutional layer is to
extract features of the input. Herein, two convolutional
layers are depicted. )e convolutional kernel size is a key
issue in CNN, and it should be designed according to input
data. )e fully-connected layer is fundamentally a classifier,
and three dense layers are shown here. )e output layer is a
probability distribution, which contains the possibility of
each Tx/Rx pair.

Rectified linear unit (ReLU) acts as a role of activation
function following behind each available layer before the last
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dense layer. In the dense layer, SoftMax is applied. Let ni be
the output of the i − th neuron in a given layer, then the
function with respect to ReLU and SoftMax can be for-
mulated as

RLU ni( 􏼁 � max 0, ni􏼈 􏼉, (26a)

Softmax ni( 􏼁 �
exp ni􏼈 􏼉

􏽘
j
exp ni􏼈 􏼉

(26b)

4.2. TrainingDataGeneration. To pursuit the optimal Tx/Rx
pair, the CRB on DOA estimation is adopted to evaluate the
selection result. )e CRBs on the DOAs can be achieved
from the diagonal elements of the CRB matrix. For multiple
targets scenario, the optimal Tx/Rx selection criterion is
defined by minimizing the average CRBs.

In order to train the CNN, we need enough labeled
training data. To this end, the spatial domain is firstly dis-
cretized into Q grids, and we assume that all possible DOAs
are on the grid. For different DOA combinations, we calculate
the CRBs corresponding to various Tx/Rx pairs, and pick up
the optimal Tx/Rx pair corresponding to min CRB. )e
antenna selection problem can be interpreted as a problem of
permutation and combination; the optimal Tx/Rx pair can be
obtained by greedy searching. Since the reference antenna
must be chosen, there needs C

M1−1

M−1 × C
N1−1

N−1 searches. To al-
leviate the search burden, the random strategy can be adopted
[32]. )e labeled data include two essential factors: DOA pair
and Tx/Rx indexes. Some of the selected results are shown in
Table 1, in which the signal-to-noise ratio (SNR) is set to
−10 dB, and L� 200 snapshots are considered; all the results
are obtained from 100 independent trails. Some of the above
details are shown in Figures 5 and 6.

Before we train the CNN using the optimal Tx/Rx pair,
we need to label the dataset. According to the CRB ex-
pression, one should know the SNR and target number in the
training. )erefore, it is necessary for us to preprocess the
matched data, i.e., to estimate the target number K and the
noise power σ2. )ereafter, labeled datasets can be generated
via the preprocessing results. Finally, all the datasets can be
divided into two subsets: the training datasets and the test
datasets. )e training datasets are utilized to get the weight
values of the CNN, while the test datasets to evaluate the
classification results.

It should be noticed that the array data is complex
valued. However, only real-valued datasets are acceptable in
typical CNN. So, it is necessary for us to convert the complex
values to real ones. A common way is to extra the real part,
the image part, and the angle of the covariance matrix, as
illustrated in [18]. In this paper, however, instead of in-
putting these counterparts, the amplitude values and phase
values of the covariance matrix are identified as the input of
the CNN.)e detailed steps of training CNN are depicted in
Table 2.

5. Simulation Results

To verify the effectiveness of the improved CNN-based Tx/
Rx selection framework for the MIMO radar (marked with
CNN-MIMO), computer simulations have been carried out.
In the simulation, we consider a monostatic MIMO radar
setup, which is configured with M transmit elements and N
receive elements in total, both of which are ULAs with half-
wavelength spacing. Suppose there are K uncorrelated
sources, the reflection coefficients of which fulfill the
Swerling II model and L snapshots are available. For power
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Figure 4: )e architecture of a general CNN model.

Table 1: Part of the selected Tx/Rx results.

M� 8 N� 10 M1 � 3 N1 � 4
DOAs {13.6°, 1.2°} {13.6°, 41.2°} {43.6°, 61.2°} {53.6°, 81.2°} {3.6°, 21.4°}
Tx {1, 4, 5, 8} {1, 2, 7, 8} {1, 2, 7, 8} {1, 3, 7, 8} {1, 2, 6, 8}
Rx {1, 2, 3, 9, 10} {1, 2, 4, 9, 10} {1, 2, 5, 9, 10} {1, 2, 7, 9, 10} {1, 2, 4, 6, 8, 12}

M� 8 N� 10 M1 � 3 N1 � 4
DOAs {15.2°, 67.9°} {10°, 30°} {15°, 25°} {20°, 35°} {30°, 50°}
Tx {1, 2, 7, 8} {0, 3, 4, 7} {0, 1, 6, 7} {0, 3, 4, 7} {0, 1, 6, 7}
Rx {1, 2, 3, 10, 11, 12} {0, 1, 7, 8, 9} {0, 4, 1, 8, 9} {0, 1, 2, 8, 8} {0, 1, 4, 8, 9}
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saving purpose, M1 Tx and N1 Rx are chosen from the
transmit array and the receive array, respectively.

In the first example, we test the estimation performance
of the CNN-MIMO and the CS-MIMO framework in [7].
)e root mean square error (RMSE) is defined as

RSME �
1
K

􏽘

K

k�1

��������������

1
T

􏽘

T

i�1

􏽢θi,k − θk􏼐 􏼑
2

􏽶
􏽴

, (27)

where T denotes the total number of trail, θk and 􏽢θi,k rep-
resent the kth DOA and its estimate for the i − th Monte
Carlo trial. Herein, we assume there are two DOAs at di-
rections 65.7∘ and 76.9∘, respectively. M1 � 3, N1 � 4, and
L= 200 are fixed in the simulation. Figure 7 illustrates the
RMSE performance of the CNN-MIMO framework and the
CS-MIMO method. Obviously, the proposed CNN frame-
work provides much better estimation performance than the
CS-MIMO method.

In the second example, we evaluate the DOA estimate
performance of both methods with various snapshot
numbers L, where SNR is set to 0 dB; other simulation
conditions are the same to that in the first example. In
Figure 8, similar to the previous result, the performance of
all the methods gradually improved with L increasing. Be-
sides, )e CNN-MIMO framework offers much better
RMSE performance than the CS-MIMO method. )e above
improvement benefits from the fact that the CNN-MIMO
framework always brings the optimal Tx/Rx pair, while the
array geometry of the CS-MIMO method is randomly
generated.

In the third example, we give the loss function of the
proposed CNN-MIMO framework in one training duration.
Figure 9 shows that the loss function is quickly decreased at
the first few iterations. However, once the iteration step
reaches a threshold, the loss function is slowly decreased

Start

Input DOA, M1, N1

Traverse to get optimal
Rx/Tx combination

Yes

No

Output covariance matrix

Neural network training
using epoch and batch

CNN training
for training set

CNN training
for the test set

Output accuracy of
DOA estimation

End

Output
confusion matrix

Figure 5: System program flow chart.

Start
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Traverse optimal Tx/Rx
combination according to CRB
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No

Import algorithm module
and use SVM algorithm to

classify the data binary

End

Input covariance matrix

Train through CNN

Neural network training
using decision tree algorithm

through epoch and batch

Output the optimal
Rx/Tx combination

Figure 6: CNN training application map.
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with iterative steps increasing. Finally, it can reach the given
threshold and all the weight values will accomplished
temporally. After all, the training sets have been finished,
and the weight values will be fixed.

In the last example, we present the confusion matrices
with respect to the CNN framework and the traditional SVM
method, in which only ten optimal array configurations have
been utilized. Herein, 10000 datasets have been used.

Figure 10 summarizes the prediction results with respect to
the CNN framework and the SVM method. Each row of the
confusion matrix shows the accuracy of right shot and
wrong shot with the test set. From this, we observe that the
proposed framework provides better accuracy than the SVM
scheme, especially in class 4.

6. Conclusions

In this paper, we considered a realistic scenario in IIOV, in
which the MIMO sensor is with limited power to calculate
the vehicle position. To this end, the MIMO sensor needs to
get the optimal Tx/Rx pair with limited number of Tx/Rx.
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CS-MIMO

Figure 7: Performance comparison of CNN-MIMO and CS-
MIMO at different SNRs.

Table 2: )e proposed CNN-based Tx/Rx selection method.

Input: Tx/Rx pair, DOAs
Output: generalized CNN
Step one: generate the matched data model according to (6) with SNR∈[−10 dB, 20 dB] with interval 5 dB
Step two: mix all the datasets proportionally and randomly divide the mixed datasets into training datasets and validation datasets by 10 : 2
Step three: construct the CNN according to Figure 4. Set learning rate to 0.001
Step four: train the CNN on training dataset and update the corresponding weight values until validation loss is not improved
Return: generalized CNN
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Figure 8: Performance comparison of CNN-MIMO and CS-
MIMO with various snapshot numbers (L).
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Figure 9: Loss function of the CNN-MIMO framework. )e
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From all possible Tx/Rx pairs, which can be formulated
as a multiclass-classification problem, a CNN-based
framework is proposed for this issue. Firstly, the optimal Tx/
Rx pair is calculated at the cost of finding the minimumCRB
on DOA estimation. )ereafter, DOAs are classified into
various pairs, and the optimal Tx/Rx combinations are one-
to-one mapped to the DOAs. )en, 1200 sets are randomly
generated associated to each DOA pair, in which 200 groups
are used for training and the remainder are utilized for
testing. )e CNN is trained by the training set for learning
the best weight values. After this, the CNN can be utilized to
quickly determine the best array configuration once it gets
the matched array measurement. )e proposed framework
provides much better performance than the existing CS-
based method; it may get a bright prospect in future IIOV
applications.
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-e interferometer is a widely used direction-finding system with high precision. When there are comprehensive disturbances in
the direction-finding system, some scholars have proposed corresponding correction algorithms, but most of them require
hypothesis based on the geometric position of the array. -e method of using machine learning that has attracted much attention
recently is data driven, which can be independent of these assumptions. We propose a direction-finding method for the in-
terferometer by using multioutput least squares support vector regression (MLSSVR) model. -e application of this method
includes the following: the construction of MLSSVR model training data, training and construction of the MLSSVR model, and
the estimation of direction of arrival. Finally, themethod is verified through numerical simulation.When there are comprehensive
deviations in the system, the direction-finding accuracy can be effectively improved.

1. Introduction

Direction of arrival (DOA) estimation is a widely studied
problem in various fields, including wireless communica-
tions [1], radar detection [2–4], target localization, and
tracking [5, 6]. Various methods have been proposed to
estimate DOA of emitters, such as interferometer [7, 8] and
array processing [9–11].

-e interferometer estimates the DOA based on the
phase difference of different direction-finding baselines. -e
accuracy of interferometer is sensitive to the phase difference
of baselines. In engineering applications, there may be
various deviations, such as phase inconsistency between
channels, mutual coupling between the antennas, and an-
tenna location deviations. In order to achieve optimal di-
rection-finding performance, the methods including
correlation-coefficient [12], weighted least squares [13], and
parameter estimation [14] are always used. To facilitate
method implementation, simplified models are established
to describe the effects of various deviations, and autocali-
bration processes are proposed to improve DOA estimation
precision [15–21]. Most of the simplifications on array

deviations are made from mathematical perspectives ap-
proximately with various additional assumptions, such as
uniform linearity or circularity array geometries [15–17],
constrained antennas location deviations within a particular
line or plane [18, 19], and intersensor independence of gain
and phase errors [20, 21].

However, the effect of comprehensive disturbances,
which probably exist in practical systems, is much more
difficult to be modeled precisely and calibrated automati-
cally. -e multiple deviations have a great influence on the
amplitude and phase of each receiving channel, which
greatly affects the performance of the interferometer di-
rection-finding system. -e commonly used method to
reduce the effect of multiple deviations is the external field
calibration method; i.e., for the different directions of in-
coming signal with a large signal-to-noise ratio, the mea-
sured values of the phase difference from baselines are
directly recorded and saved together with the known cali-
bration directions [22]. In the application of the direction-
finding system, the DOA is calculated by least squares be-
tween the measured value of each phase difference with the
saved values from the external field. -e external field
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calibration method is simple in principle and easy to operate
and has been widely used in engineering. Due to the in-
fluence of multiple deviations, even if there are different
gains of each antenna, the external field calibration method
always uses the equal-weight least squares method. -e
influence of the inconsistency between the antennas on the
direction-finding accuracy has not been fully considered, i.e.,
the external field calibration method fails to maximize the
effectiveness of the direction-finding system.

Recently, some scholars have used machine learning to
solve the DOA estimation with comprehensive distur-
bances [23–31]. Machine learning have significant ad-
vantages over traditional methods based on array
geometries and least square in solving direction-finding
problems in complicated scenarios with multiple devia-
tions, such as radial basis function (RBF) [23], least squares
support vector classification (LSSVC) [24], support vector
regression (SVR) [25–29], and deep neural networks
(DNN) [30, 31]. -ese methods are data driven and do not
rely on preassumptions about array geometries and
whether they are calibrated or not. Despite its potential
usefulness, the standard formulation of the LS-SVR cannot
cope with the multioutput case [32]. -erefore, with the
angles around 0° and 360°, the accuracy has not been ef-
fectively improved. -e DNN for direction finding requires
large samples to perform well, resulting in too long model
training time, and if the samples size is insufficient, this
method cannot effectively perform. -is paper proposes a
direction-finding method for the interferometer based on
the multioutput least squares support vector regression
(MLSSVR) model. -e multioutput mode can avoid large
errors in the single-output mode around 0° and 360°, and it
is expected to achieve higher direction-finding accuracy
within the angle range. Due to the MLSSVR model, the
model training time can be greatly shortened. -e appli-
cation of this method includes the following: (1) the
construction of MLSSVR model training data, (2) training
and construction of the MLSSVR model, and (3) the es-
timation of direction of arrival.

-e organization of the rest of the paper is as follows.
Section 2 formulates the array output model with compli-
cated deviations. Section 3 presents the process of the
MLSSVR model for DOA estimation. Section 4 carries out
simulations to verify the validity of the method. Section 5
concludes this work.

-e main notation used in this paper is listed in Table 1.

2. Problem Formulation

Assume that the waveform of signal is s(t) and direction of
signal is α. -en, the antenna output is

x(t) � a(α)s(t) + v(t). (1)

When the comprehensive disturbances exist in the di-
rection-finding system, such as phase inconsistency between
channels, mutual coupling between the antennas, and an-
tenna location deviations, these disturbances cause devia-
tions to a(α), and the actual antenna output is

􏽥x(t) � a(α, e)s(t) + v(t). (2)

a(α, e) is the direction vector of array with compre-
hensive disturbances.

-e phase difference between the antennas may be far
away from the theoretical value. Obviously, at this time,
high-precision direction finding cannot be performed
according to the theoretical geometry of the antennas. In this
case, the external field calibration method can be used
generally. We propose the MLSSVR model to achieve
higher-precision direction finding, and this method is data
driven and do not rely on preassumptions about array ge-
ometries and whether they are calibrated or not.

3. MLSSVR Model for DOA Estimation

3.1. Construction Training Data of the MLSSVR Model.
For the MLSSVR model, the training data are constructed as
a matrix comprising phase differences of baselines and their
corresponding vectors related to the direction of incoming
signal, which is

φt, ηlabel􏼂 􏼃 �
φt1 φt2 . . . φtL

ηlabel1 ηlabel2 . . . ηlabelL
􏼢 􏼣

T

, (3)

where φti � φ12
ti . . . φ(N− 1)N

ti
􏽨 􏽩

T
, (i � 1, . . . , L) is the phase

difference vector of the i-th training sample, where T is the
transposed symbol, and ηlabeli is the i-th vector which is
related to the DOA of the signal. In order to avoid the large
direction-finding error around 0° or 360° caused by the
unreasonable loss function of the single-output SVR model,
we use the dual output form, namely,

ηlabeli � cos αlabeli( 􏼁 sin αlabeli( 􏼁􏼂 􏼃
T
. (4)

Here, αlabeli is the DOA corresponding to the i-th
training sample.

It should be pointed out that the MLSSVR model is not
acquired through only one experiment, and the acquisition
of its training data should be carried out under the condition
of similar signal-to-noise ratio in the application scenario.
On the other hand, in training data of the MLSSVR model,
for a given DOA, it is usually necessary to obtain several
samples (generally more than 10 [32]). In addition, the DOA
of the signal should cover the angle range in the application
as much as possible, namely,

αl ≤ αlabeli ≤ αu. (5)

Here, αu and αl represent the upper and lower limits of
the possible direction of arrival, respectively.

If the directions of adjacent known incoming signal in
the training samples are not the same, they will differ by a
fixed step Δαt, i.e., αlabeli+1 � αlabeli or αlabeli+1 � αlabeli + Δαt.
-e value should generally be less than the requisite accuracy
of direction finding in the application. Between αu and αl,
the number of sample categories is M.

3.2. Train and Build a MLSSVR Model. Given a data set
(xi, yi)

L
i�1, xi ∈ Rd and yi ∈ Rm.-e purpose of multioutput
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regression is to give a set of input vectors x ∈ Rd and predict
a set of output vectors y ∈ Rm. -e MLSSVR model solves
this problem by finding W � (w1, . . . ,wm) ∈ Rnh×m and b �

(b1, . . . , bm)T ∈ Rm that minimize the following objective
function with constraints:

minτ(W,Ξ) �
1
2
trace WTW􏼐 􏼑 + c

1
2
trace ΞTΞ􏼐 􏼑

s.t. Y � ZTW + repmat bT
, L, 1􏼐 􏼑 + Ξ.

(6)

Here, Y � [yi] ∈ RL×m, Ζ � (δ(x1), . . . , δ(xL)) ∈ Rnh×L,
δ(·) is the mapping function (kernel function) of
Rd⟶ Rnh , whose purpose is to transform xi into a more
distinguishable high-dimensional feature space with nh di-
mensions, Ξ � (ξ1, . . . , ξm) ∈ RL×m

+ , ξi � (ξi1, . . . , ξim)T and
ξij is a slack variable; trace(A) � 􏽐

m
i Ai,i where A is a m × m

matrix, and c ∈ R+ is a regularization parameter.
In order to achieve the solution of (6), the objective

function can be constructed as a heuristic Bayesian archi-
tecture. Let wi � w0 + vi, where w0 ∈ Rnh contains common
parameter information and vi ∈ Rnh carries the individual
information of each sample. To obtain a solution w0,
V � (v1, . . . , vm), and b, the following objective function
with constraints can be constructed:

minτ w0,V, Γ( 􏼁 �
1
2
wT

0w0 +
1
2
λ
m
trace VTV􏼐 􏼑 + c

1
2
trace ΓTΓ􏼐 􏼑

s.t. Y � ZTW + repmat bT
, L, 1􏼐 􏼑 + Γ.

(7)

Among them, λ ∈ R+ is another regularization
parameter.

Equation (7) can be transformed into Lagrange’s
equation, and then, the optimal solutions w ∗0 , V

∗, and b∗
can be achieved using the Karush–Kuhn–Tucker (KKT)
optimization conditions. After that, the corresponding de-
cision function is [32]

f(x) � δ(x)
TW∗ + b∗

T

� δ(x)
Trepmat w ∗0 , 1, m( 􏼁

+ δ(x)
TV∗ + b∗

T

.
(8)

3.3. DOA Estimate. Given a set of phase difference data φ,
based on equation (8), we have

η � cos(α) sin(α)􏼂 􏼃
T

� δ(φ)
Trepmat w ∗0 , 1, m( 􏼁

+ δ(φ)
TV∗ + b∗

T

.
(9)

Based on the result of equation (9), the final DOA is
estimated as

α � atan2(sin(α), cos(α)) � atan2(η(2, 1), η(1, 1)).

(10)

Here, atan2 is the four-quadrant inverse tangent
function.

4. Simulations and Analysis

-is section gives a numerical simulation in a typical sce-
nario to demonstrate the effectiveness of theMLSSVRmodel
applied to direction finding. Consider a 5-element uniform
circular array with a radius-to-wavelength ratio of 0.4. -e
radial basis kernel function is adopted to solve formula (8):
κ(x, z) � exp(−p‖x − z‖2) p> 0. After multiple trainings,
determine the parameters c � 0.5 and λ � 4 in formula (7)
and the radial basis function parameter p � 1.

4.1. Phase Inconsistency between Channels. Assume that the
RMSE of phase difference under 10 dB signal-to-noise ratio
is 25°, 5°, 5°, 10°, and 15° in 5 channels, respectively. -e
training data sets consist of phase difference and cosine and
sine functions of each angle from 0° to 360° with a step of 1°,
and 10 groups of samples are collected per angle, i.e., the
number of training data sets L� 3600. Under the same
signal-to-noise ratio, a total of 3600 testing samples of phase

Table 1: Symbol and notation.

Symbol Explanation
s(t) Waveform of signal
a(α) Direction vector of array
x(t) -e theoretical output of antennas
L -e number of training samples
Ra a-Dimensional real number space
R+ One-dimensional positive real number space
C Mutual coupling matrix

φkj
ti

-emeasured value of phase difference from baselines formed between the k-th antenna and the j-th antenna in the i-th training
sample

α Direction of signal
v(t) Zero-mean Gaussian noise
􏽥x(t) -e actually output of antennas
N -e number of antennas
Ra×b a × b-Dimensional real number space
Ra×b

+ a × b-Dimensional positive real number space
φt Phase differences matrix in the training data
ηlabel -e matrix formed by cosine and sine function of DOA in the training data
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difference are generated from 0° to 360°. As a comparison,
the DOA of testing samples is also calculated by using least
squares (LS) with training data sets. Figure 1 shows the
direction-finding error of testing samples.

4.2. Mutual Coupling between the Antennas. When there is
mutual coupling between antennas, assume the mutual
coupling matrix as follows:

C �

1 0.7821 + 0.2583j 0.4576 + 0.2469j 0.4576 + 0.2469j 0.7821 + 0.2583j

0.7821 + 0.2583j 1 0.7821 + 0.2583j 0.4576 + 0.2469j 0.4576 + 0.2469j

0.4576 + 0.2469j 0.7821 + 0.2583j 1 0.7821 + 0.2583j 0.4576 + 0.2469j

0.4576 + 0.2469j 0.4576 + 0.2469j 0.7821 + 0.2583j 1 0.7821 + 0.2583j

0.7821 + 0.2583j 0.4576 + 0.2469j 0.4576 + 0.2469j 0.7821 + 0.2583j 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Selecting 10 samples for each angle from 0° to 360°, and
the training data sets consist of phase difference and cosine
and sine functions of each angle. Under the same signal-to-
noise ratio and mutual coupling, 3600 groups of phase
difference from different DOA are generated as the testing
samples. Figure 2 shows the direction-finding error of
testing samples.

4.3. Both Phase Inconsistency and Mutual Coupling. In the
presence of phase inconsistency and mutual coupling si-
multaneously, 3600 groups of phase difference and cosine
and sine functions of DOA are generated as the training data
sets for 0°∼360° with a step of 1°, and 10 samples are selected
for each angle. Under the same signal-to-noise ratio, with the
comprehensive disturbances which consist of phase in-
consistency and mutual coupling, the testing samples are
composed of 3600 groups of phase difference from different
DOA. Figure 3 shows the direction-finding error of testing
samples.

4.4. Different SNRs. In the presence of phase inconsistency
and mutual coupling simultaneously, the training data sets
are generated in the same way as mentioned in Section 4.3
under 10 dB SNR, while testing samples are generated under
the 5 dB SNR. -e number of training data sets and testing
samples are both 3600. Figure 4 shows the direction-finding
error of testing samples.

Table 2 shows the RMSE of DOA of the testing samples
by using LS and MLSSVR, respectively, under different
disturbance scenarios. From the results in Table 2, it can be
seen that the MLSSVR model can significantly reduce the
direction-finding error and obtain high-precision direction-
finding results in the full range of 360°.

4.5. Comparison of MLSSVR and Neural Networks. -e
training data sets and testing samples are generated in the
same way as mentioned in Section 4.3. -e number of
training data sets and the number of testing samples are
both 3600. In additional, both phase inconsistency and
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Figure 1: Direction-finding error of testing samples with phase inconsistency.
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mutual coupling are still in existence. For the same
training data sets and testing samples, the two-layer
convolutional neural network is used to estimate the
DOA.-eMaxEpochs is set to 15 (For the neural network
model, it was obvious that the value of MaxEpochs in
neural network could be larger to reduce the direction-
finding error of the model. Here, a small value was de-
liberately selected to reduce the training time of neural

network to approximate the training time of MLSSVR
model.), so that the training time of the neural network
model is close to the MLSSVR model. Figure 5 shows the
direction-finding error of testing samples.

Table 3 shows the MLSSVR model is suitable for small
training data sets, and compared with neural networkmodel,
the MLSSVR model ensures direction-finding accuracy
while shortening training time.
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Figure 2: Direction-finding error of testing samples with mutual coupling.
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Figure 4: Direction-finding error of testing samples with different SNRs.

Table 2: RMSE of DOA of the testing samples.

-e number of testing samples Phase inconsistency Mutual coupling Phase inconsistency mutual coupling Different SNRs
RMSE of DOA (°)

LS 3600 4.0870 10.2529 15.9103 20.1085
MLSSVR 2.9695 5.2498 7.9172 11.3850
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Figure 5: Direction-finding error of testing samples.

Table 3: RMSE of DOA of the testing samples.

RMSE of DOA (°) Training times (s)
Neural network 14.7228 2.531350
MLSSVR 7.7232 2.548054
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5. Conclusion

-e standard formulation of support vector regression can
only deal with the single-output case, and when it is applied
to radio direction-finding, there may be a problem that the
direction-finding results have large errors around 0° or 360°.
-is paper applies the MLSSVR model to the field of radio
direction-finding; the training data sets consist of phase
differences of each baseline and the cosine and sine functions
of each angle from 0° to 360°. -e DOA is calculated by the
sine function and cosine function of the incident angle, thus
avoiding a larger case finding the error results in the vicinity
of 0° or 360°. In the case of comprehensive disturbances in
the direction-finding system, the effectiveness of the
MLSSVR model is verified by numerical simulation. And
with small training data sets, it can still effectively improve
the direction-finding accuracy compared to the LS method.
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For the data processing with increasing avalanche under large datasets, the k nearest neighbors (KNN) algorithm is a particularly
expensive operation for both classification and regression predictive problems. To predict the values of new data points, it can calculate
the feature similarity between each object in the test dataset and each object in the training dataset. However, due to expensive
computational cost, the single computer is out of work to deal with large-scale dataset. In this paper, we propose an adaptive vKNN
algorithm, which adopts on the Voronoi diagram under the MapReduce parallel framework and makes full use of the advantages of
parallel computing in processing large-scale data. In the process of partition selection, we design a new predictive strategy for sample
point to find the optimal relevant partition.,en, we can effectively collect irrelevant data, reduce KNN join computation, and improve
the operation efficiency. Finally, we use a large number of 54-dimensional datasets to conduct a large number of experiments on the
cluster. ,e experimental results show that our proposed method is effective and scalable with ensuring accuracy.

1. Introduction

In recent years, with the wide deployment of cloud com-
puting, network, and radio, Internet of ,ings (IOT)
products have been widely used in the natural sciences, such
as industrial pollution areas [1], mobile devices [2], vehicle
communication systems [3], and radar Systems [4]. In the
face of complex and diverse signals, the traditional radars
have limited performance in DOA estimating [5]. How to
enhance useful signals and extract useful information is the
focus of current research [6]. With the development of signal
processing technology, researchers propose a variety of al-
gorithms to achieve this purpose. Typical algorithms include
the multiple signal classification (MUSIC) and its variations
[3, 7], ULA-based method [8], reduced-complexity OGSBL
[9], PARAFAC decomposition [10], Tensor-based subspace
algorithm [11], and NNM [12].

To date, searching for approximate objects from the vast
amount of useful data is a very basic and critical operation.
With the continuous expansion of network scale, the data
scale presents explosive growth with large-volume, complex,

and growing datasets for multiple and autonomous sources.
As a result, the k nearest neighbors (KNN) algorithm with
high accuracy, insensitive to outliers, and no data input
assumptions represents an important paradigm shift in the
evolution of partition selection with the trained metric.
Existing KNN algorithm-based method assume the classi-
fication can be improved by learning a distance metric from
labeled examples.

In the classification process, the KNN algorithm cal-
culates the distance (similarity) between the data sample to
be classified and the entire known dataset. ,is method is
simple, convenient, and inexpensive for small datasets.
When dealing with such large-scale data, the complexity of
similarity calculation increases dramatically with the in-
tolerable calculation cost, which directly affects the classi-
fication efficiency and accuracy. When the dataset has more
attributes, the impact is more evident, and the dimension
catastrophes tend to occur to make distances very far when
calculated in high-dimensional space. At this point, a natural
idea is to introduce the idea of distribution with imple-
mentation of data parallel support.
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In particular, MapReduce is a distributed parallel pro-
gramming framework proposed by Google for processing
large datasets on large-scale clusters, in terms of a
streamlined computational framework to assemble se-
quential and parallel computation.,e programming model
via MapReduce was originally designed to simplify large-
scale data calculations [13, 14]. In recent years, MapReduce
has been studied in many ways [15–18] for large-scale data-
intensive computing under data-intensive [19], CPU-in-
tensive, and memory-intensive applications, such as in the
fields of smart cities [20], biological data management [21],
spatial geometry calculation [22], and distributed computing
over a wireless interference network [23].

,e goal of this paper is to propose an effective data
partitioning strategy. ,e proposed KNN algorithm
designed based on MapReduce framework is mainly used to
solve the problem of too much computation and low
classification efficiency. With this programming framework,
we can divide KNN’s computing tasks into several small
tasks and assign them to several computing nodes to cal-
culate at the same time for the speedup the operation. Only
by dividing the data reasonably and actually reducing the
calculation cost practically can the running efficiency of the
algorithm be effectively improved.

,e contributions of this paper are as follows:

(1) We introduce the idea of the Voronoi diagram to
partition the sample objects and design the partition
selection strategy to find the optimal relevant par-
tition for the sample to be tested, thereby avoiding
the extracalculation brought by irrelevant data.

(2) We address the MapReduce framework and propose
a vKNN algorithm, which is implemented on the
Hadoop cluster with KNN join processing, nearest
center points selecting, relevant-partition selecting,
and vKNN processing.

(3) We conduct many experiments using real datasets to
study the effects of various parameters on the al-
gorithm. ,e results show that our proposed algo-
rithm is effective and scalable with the accuracy in
relevant-partition selection.

,e contents of the paper are structured as follows.
Section 2 reviews the related work, Section 3 formally defines
the problems to be solved in this paper, Section 4 describes
the related technologies involved in this paper, Section 5
details the implementation and improvement of the KNN
algorithm based on MapReduce, Section 6 reports the ex-
perimental results, and finally Section 7 summarizes the
entire study.

2. Related Work

Existing KNN method assumed that the classification al-
gorithm can be widely applied in the field of machine
learning and large-scale data analysis. In order to better
apply the traditional KNN algorithm, previous studies
mainly used two kinds of methods, i.e., speeding up the
process of finding k nearest neighbors and eliminating

irrelevant data to reduce the overall computation. For in-
stance, Cui et al. [24] introduced a B+-tree method that maps
high-dimensional data points in one dimension. ,e one-
dimensional distance computed in the principal component
space and the first principal components of the sample
points were indexed using a B+-tree. At the same time, the
principal components were adopted to filter neighboring
query points to improve query efficiency. When working
with high-dimensional data, most indexing methods cannot
scale up well and perform worse than sequential scanning.
Xia et al. [25] designed and implemented KNN join algo-
rithm based on block nested join Gorder using a grid-based
sorting method, which can effectively assign similar objects
to the same grid. Amagata et al. [26] proposed a dynamic set
KNN self-join algorithm to trim unnecessary computations
using index technology.

However, the processing power of the single processor
greatly limits the development of the KNN algorithm, which
also makes the application of parallel and distributed
compute imperatively. In recent years, MapReduce has been
fully practiced in the field of machine learning [27–29]. In
order to solve those problems of KNN algorithm, Zhang
et al. [30] proposed the HBNJ algorithm implemented by
Hadoop and its improved algorithm H-BRJ in document.
However, due to the large impact of data size on the effi-
ciency of the algorithm, this research focused more on
approximate queries. Moutafis et al. [31] proposed a four-
stage algorithm, where three optimization strategies were
used to trim distant points, balance the number of reducers,
and halve the output, which significantly reduced the
computation time. In most studies, people chose to use the
first data partitioning to reduce data calculation, such as
R-tree, Δ-tree, Quad-Tree, and KDB-Tree [32]. ,ese spatial
partitioning-based indexing techniques will dramatically
reduce efficiency as dimensions increase. Zhang et al. [30]
proposed a Z-value-based partitioning strategy. ,e result of
the algorithm depends to a large extent on the quality of the
z-curve, which may cause problems in the processing of
high-dimensional data. Ji et al. [33] proposed a distance-
based partitioning method. However, this grid-based par-
titioning method is considered valid only for low-dimen-
sional datasets. We also use a partitioning strategy. In this
paper, we introduce the concept of Voronoi diagram because
it can be applied to any dimension of data [34]. We use
Voronoi diagrams to aggregate similar data so that irrelevant
data can be clipped. ,e Voronoi diagram was proposed
with the famous structure of computational geometry. It is
widely used in many fields such as geometry, architecture,
and geography [35–38]. Voronoi diagrams can partition
data into set spaces and are effective in the study of local
neighborhoods for each partition [39]. At the same time,
Voronoi diagrams can help improve the performance of
distance join queries [40].

3. Problem Formulation

In this part, we give the definition of KNN Join with its
formulation. Table 1 lists some symbols and their corre-
sponding meanings involved mainly in this paper.
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Let R and S be two different d-dimensional datasets, and
r(s) is the data object in R(S). For the convenience of dis-
cussion, we introduce the geometric space to represent them.
Rd is a d-dimensional geometric space, R and S can be
regarded as a sample point set in Rd, and the data objects r
and s can be viewed as a d-dimensional sample point; then,
we have r ∈ R(s ∈ S). In order to avoid loss of generality, the
distance measurement method adopted in this paper is
Euclidean distance. Also, the distance between the data
objects r and s, denoted as dis(r, s), can be calculated as
follows:

dis(r, s) � 􏽘
d

l�1
r

l
− s

l
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

⎛⎝ ⎞⎠

1/2

, (1)

where dis(r, s)≥ 0 and the necessary condition for dis(r, s)�

0 is r� s.
,e similarity between data objects r and s, denoted as

sim(r, s), is

sim(r, s) �
1

1 + dis(r, s)
, (2)

where the greater the distance, the greater the difference
between objects and the smaller the similarity.

Definition 1 (KNN). Given a sample set R, a newly input
sample point s. ,e KNN operation of them, denoted as
knn(s, R, k), involves the k nearest neighbors of s from R.
,e formal description is as follows:

knn(s, R, k) � z1, z2, . . . , zk z1, z2, . . . , zk ∈ R
􏼌􏼌􏼌􏼌􏽮 􏽯, (3)

for ∀zj ∈ R − z1, z2, . . . , zk | z1, z2, . . . , zk ∈ R􏼈 􏼉, and we
have

d s, zj􏼐 􏼑≥d s, zk( 􏼁≥ · · · ≥d s, z2( 􏼁≥d s, z1( 􏼁. (4)

Definition 2 (KNN Join). Given two sample sets R and S.,e
KNN join operation denoted as knnJ(R, S) returns each

object s ∈ S with its k nearest neighbors from R. ,e formal
description is as follows:

knnJ(R, S) � s, knn(s, R, k) | for all s ∈ S{ }. (5)

4. MapReduce for Data Processing under
Voronoi-Based KNN Processing

4.1. MapReduce for Flexible Data Processing. MapReduce, a
distributed parallel programming framework, is a member
of the core designs of Hadoop [41, 42]. It separates the users
from the bottom layer of the system. When users write the
corresponding programs, they only need to write the Map
function and Reduce function to give what needs to be
calculated and how to calculate automatically by the
framework. Meanwhile, MapReduce has been extensively
used due to its high fault tolerance and scalability.

MapReduce is mainly used for parallel computation of
large amounts of data. A MapReduce program contains only
two functions: Map function and Reduce function. ,e
corresponding processing of these two functions can be
customized by the user. At the beginning of the calculation
task, Hadoop divides the entire job into two sequential
phases:Map phase and Reduce phase. ,e model first breaks
down the computational tasks of large-scale data that need to
be processed into many individual tasks. ,ese individual
tasks can be run in parallel on a Hadoop server cluster; then,
the model combines the results calculated by the cluster and
calculates the final result. In theMap/Reduce phase, there are
multiple instance tasks, which can be executed in parallel on
each node. ,e MapReduce programs save both input and
output results in HDFS. ,ey use migration to transfer data
to the nearest available node only if the node does not have
local data or cannot process local data [43].

Figure 1 shows the specific execution process of Map-
Reduce.,eClient program divides the file data according to
the parameter (m). ,e ResourceManager picks the idle
nodes in the cluster and assigns the corresponding compute
resources to them. At the same time, the Job is assigned the
same number of Map tasks with the number of file blocks.

Table 1: Symbols and their meanings.

Symbol Definition
R(S) ,e d-dimensional dataset
r(s) ,e data object in R(S)
Rd ,e d-dimensional metric space
dis(r, s) ,e distance from r to s
k ,e number of nearest neighbors
knn(s, R, k) ,e k nearest neighbors of s from R
knnJ(R, S) ,e KNN Join of R and S
max(knn(s, R, k)) ,e maximum distance from s to its k nearest neighbors from R
N ,e number of mappers
N ,e number of center points
P ,e set of center points
pi ,e point in P

Ρi ,e partition corresponds to pi

Ρx ,e partition where x is located
Ρsi ,e partition corresponding to the ith center point close to s
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Before starting theMap task, the file on the node is read and
parsed into <key1, value1> key-value pairs by line, and then
the Map function converts it into new <key2, Value2> key-
value pairs. Next, the model uses the Hash function to
partition and sort <key2, value2> key-value pairs, and
groups them to <key2, {value2, . . .}> according to the key2.
Finally, the Reduce function accepts the data, generates new
<key3, value3> pairs from the corresponding business logic,
and saves it in HDFS. When the cluster resources are not
sufficient to host allMap (Reduce) tasks at the same time, the
corresponding tasks are started in batches. In addition, the
first Reduce task can only be started after the last Map task
has been executed [44].

4.2. Voronoi Diagram with Partition Selection. ,e Voronoi
diagram, also known as Dirichlet diagram, plays an im-
portant role in computational geometry. In the field of
mathematics, this diagram is a decomposition of a given
space, the simplest form to decompose a plane. ,e division
yields that all points in each area are closer to the center of
the area than to other centers.

To illustrate this, we can take a two-dimensional plane
as an example. Given a dataset R, each object in R can be
regarded as a point of R2. Partitioning using a Voronoi
diagram, means selecting n objects as the center points
and assigning all objects in R to the partition corre-
sponding to their nearest center points. ,is divides the
entire data space into n partitions, as shown in Figure 2.
,e large blue circle represents the center points of the
Voronoi diagram, and each point represents an object.
,e green points represent the k nearest neighbors of

object x, where the grid points represent the false k nearest
neighbors. ,e orange area is where the area of object x is
located, and the region enclosed by the red line is the set of
regions, where the true k nearest neighbors of object x are
located. ,e dashed areas correspond to the spatial ranges
of the true k nearest neighbors and the false k nearest
neighbors, respectively.

For the sake of brevity, letP be the selected set of center
points, where P � p1, . . . , pn􏼈 􏼉. Given two center points pi

and pj, PB(pi, pj) represents the hyperplane dividing the
partitions, where pi and pj are located for the point o on the
hyperplane PB(pi, pj), and we have
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Figure 1: ,e workflow of the MapReduce.
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∀o ∈ PB pi, pj􏼐 􏼑,

dis o, pi( 􏼁 � dis o, pj􏼐 􏼑.
(6)

According to formula (1), for any sample points s, lo-
cated in the corresponding subspace of pi, the distance
between s and pi, denoted as dis(s, pi), is

dis s, pi( 􏼁 � 􏽘
d

l�1
s

l
− p

l
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

⎛⎝ ⎞⎠

1/2

, (7)

for ∀pj ∈ P − pi􏼈 􏼉, and we have

dis s, pi( 􏼁< dis s, pj􏼐 􏼑. (8)

,e distance from s to PB(pi, pj), denoted as
dis(s, PB(pi, pj)), can be calculated as follows:

dis s, PB pi, pj􏼐 􏼑􏼐 􏼑 �
dis s, pj􏼐 􏼑􏼐 􏼑

2
− dis s, pi( 􏼁( 􏼁

2 × dis pi, pj􏼐 􏼑

2

. (9)

Figure 3 shows the distance dis(s, PB(pi, pj)). Based on
the characteristics of the Voronoi diagram, we can transform
the process of finding k nearest neighbors in R in Definition
1 into the process of finding k nearest neighbors in the
partition. Now, our work only considers the partition where
the sample point is located.

Hypothesis 1 Given a sample set R, perform a KNN oper-
ation on the newly input sample point x, that is, find k
nearest sample points of x in the partition px where x is
located. ,e formal description is as follows:

knn(x, R, k) � knn x, p
x
, k( 􏼁. (10)

In this case, the computational effort of the running
process is significantly reduced. However, when x is near the
px boundary of the partition where it is located, it is easy to
produce large errors by roughly limiting the size of the
partition involved in the calculation. Suppose k� 5, as shown
in Figure 2, the sample point x to be measured is located in
the partition corresponding to p4. According to Hypothesis
1, the k nearest sample points are z1, z2, . . . , z5􏼈 􏼉. And when
we look through Figure 2, it is easy to find that the real k

nearest sample points are z1, z2, z3′, z4′, z5′􏼈 􏼉, whereas the
sample points z3′, z4′, z5′􏼈 􏼉 outside of the partition.,is means
that, in the actual operation process, only the samples in the
partition where x is located may not necessarily yield true
results. Consequently, we introduce a new concept: relevant
partition, which is given in conjunction with Definition 1 as
follows.

Definition 3. (relevant partition). Given the sample set R, the
corresponding relevant partition Rx for the newly input
sample point x is the partition set of k nearest neighbors. We
have

R
x

� p
z1 ∪p

z2 ∪ · · · ∪p
zk . (11)

,erefore, KNN operation on x and R can be converted
to finding the k nearest neighbors of x in the relevant
partition Rx, and the formal description is as follows:

knn(x, R, k) � knn x, R
x
, k( 􏼁. (12)

5. KNN Algorithm with MapReduce
Performance Improvement

5.1. KNN Join Processing. ,e basic idea of the KNN join
algorithm based onMapReduce is in general agreement with
that of the KNN algorithm. Firstly, the MapReduce program
divides the input test dataset, each node calculates the
distance between the test samples in the corresponding slice
and each sample in the training dataset, finds out the k
nearest neighbors, and selects the label with the largest
proportion of these adjacent points. As shown in Algo-
rithm 1, the KNN join processing can be formulated by the
following.

In the Map function, it first sets the parameter k of the
algorithm. Next, it calculates the Euclidean distance between
each sample r of the training dataset R and the test sample s
and stores the labels of the k nearest training samples into
trainLabel. ,e form of the input data <key, value> is <row
number, sample>; the form of the output data <key, values>
is <sample, the label of adjacent sample>. ,e Hash function
partitions, sorts, and groups these intermediate results by
key values. ,e Reduce function then reads them.,e design
of the Reduce function is relatively simple. Its main task is to
obtain the label with the maximum number of k labels and
assign it to the test sample. First, iterate through the data
passed by the Map function in turn, and if the current data
exists in the HashMap, add 1 to its value. If the current data
does not exist in theHashMap, mark its value as 1, and add it
to the HashMap. Finally, the label with the largest value in
HashMap is used as the prediction label. ,e form of input
data <key, values> is <sample, set (the labels of adjacent k
samples)>. ,e form of output data <key, value> is <sample,
the prediction label>.

Obviously, the method is too expensive. It simply assigns
computing tasks to the computing nodes, and each mapper
needs to connect a subset from S to the entire dataset R.
Considering only the distance calculation to be performed

PB (pi, pj)
s

dis (s, PB (pi, pj)) = (dis (s, pj))2 – (dis (s, pi))2/2 × dis (pi, pj)

pjpi

Figure 3: ,e distance from (s) to PB(pi, pj).

Mathematical Problems in Engineering 5



for each node, the amount of computation reaches
|R| · (|S|/n). When the dataset involved in the calculation is
large, the amount of computation is still a huge amount in
comparison. In addition, the comparison of similarity may
exceed the computing capacity of the node, resulting in the
task being killed. ,erefore, it is unreliable to rely solely on
MapReduce to slice computational tasks for efficient clas-
sification. A better idea is to reduce the number of samples in
R that is involved in the calculation.

5.2. Relevant-Partition Selecting and vKNN Processing.
We consider the Voronoi diagrams for KNN join within the
MapReduce framework. ,e basic idea is to partition the
data using the Voronoi diagram and clip the unqualified data
to reduce the amount of calculation. ,ere are three main
steps as follows.

5.2.1. Preprocessing Step. Input dataset R and partition R
using Voronoi diagram. First, randomly select N samples
from the dataset R as the initial center point. ,en, we use k-
means clustering method to analyze the dataset globally to
obtain the center points set P and the corresponding data
clusters.

5.2.2. Nearest Center Point Selecting Step. In this step, we use
the output of the above processes and dataset S as input
objects. Find the k nearest center points of each sample in S
and save its index and distance information to help clip the
unqualified data.

Algorithm 2 shows the execution of the mappers at this
stage. Before the program starts, we can load the preprocess
center point data into the main memory of each mapper.

After each mapper reads the sample object s, it traverses each
center point and calculates the distance of s from all the
center points. In order to reduce the cost of data trans-
mission between nodes, we only save the index and distance
information of the k center points nearest to s. We use
TreeMap to store relevant information so that we can get the
first k center points more quickly, where TreeMap itself is an
ordered set of key values. All elements remain in a specific
order and are sorted in ascending order by default by the
value of the key. So, we can easily get information about the
nearest k center points.

5.2.3. vKNN Processing Step. In this step, we use the output
from the previous two processes as input. On the basis of the
distance, we can filter out the relevant partition Rs corre-
sponding to each sample s in S to find out the labels of the k
nearest neighbors. Finally, reducer counts the labels and
outputs the label that appears most often.

In order to ensure the accuracy of the prediction results,
the selected relevant partition Rs contains all knn(s, R, k) as
minimum as possible. How to determine the relevant par-
tition Rs that will participate in the final calculation is an
issue we need to consider now.

Theorem 1. Given a sample point s and a center point pi, s is
located in the partition pi corresponding to pi, and we have

pi ∈ R
s
. (13)

Proof. As s is located in the partition pi, s is very similar to
the sample points in pi. ,is means that the probability of
having the nearest neighbors in pi is greater than that in any

Input: k, R, S
Output: s.predictLabel//prediction label of s
map: <row number, s>
foreach r ∈R do

dis� dis(r, s);//calculate the Euclidean distance between r and s
for i� 0 to k do
if dis< distance[i] then//find the minimum k distances
distance[i]� dis;
trainLabel[i]� r.label;
break;

for j� 0 to k do
output(s, trainLabel[i]);

reduce: <s, Labels>
hmp� new HashMap(); //create a HashMap object hmp
foreach label ∈Labels do//count the number of each label
if hmp.get(label) !�NULL then//if the label exists in hmp
label.value ++; //take the value of the label and add 1
hmp.put(label)� label.value;//update the value of the label in hmp

else//if the label does not exist in hmp
hmp.put(label)� 1; //set the value of the label to 1 and insert to hmp

predictLabel� hmp.maxvalue; //the label with the largest value as the prediction label
output(s, predictLabel);

ALGORITHM 1: KNN join processing.
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other partition. In other words, pi are more likely to have the
nearest neighbors.

Based on the analysis of Hypothesis 1, we may have
errors in predicting using only the sample points within pi.
We can design a selection strategy to determine whether
other partitions meet the criteria.

Definition 4. Given two center points pi and pj, PB(pi, pj)

addresses the hyperplane dividing the subspace, where pi

and pj are located, s is located in the partition pi corre-
sponding to pi, and the maximum distance from s to it in its
k nearest neighbor samples, denoted as θ, is

θ � max knn s, pi, k( 􏼁( 􏼁. (14)

Theorem 2. Given two center points pi and pj, PB(pi, pj) is
the hyperplane dividing the subspace where pi and pj are
located, s is in the partition pi corresponding to pi, and the
necessary condition for pj ∈ Rs is

dis s, PB pi, pj􏼐 􏼑􏼐 􏼑< θ. (15)

Figure 4(a) shows the case of dis(s, PB(pi, pj))> θ, and
Figure 4(b) shows the case of dis(s, PB(pi, pj))< θ, re-
spectively. When dis(s, PB(pi, pj))> θ, there is no inter-
section between the hypersphere with a radius of θ and the
hyperplane PB(pi, pj). ,at is to say, ∀x ∈ pj, dis(s, x)> θ
all hold. At this time, we can directly discard the partition pj.
When dis(s, PB(pi, pj))< θ, the hypersphere with the radius
of θ intersect with the hyperplane PB(pi, pj). It means that
there is probably a sample point x in the partition pj, making
dis(s, x)< θ, which also means that the calculated
knn(s, Rs, k) are not the real nearest neighbors. ,erefore,
we need to add the partition pj to the relevant partition Rs.

In (Algorithm 3), due to the center point information
sorted using TreeMap before, according to ,eorem 1, we
can get that the initial relevant partition Rs is ps

1. We cal-
culated k nearest neighbors of s on Rs and saved them in
knnDisSet. Next, we judge the subsequent partitions in
sequence according to ,eorem 2. If the partition ps

i (i< k)

makes dis(s, PB(p1, pi))< θ, then the partition ps
i may

contain the actual k nearest neighbors of s. We need to
include the partition ps

i in Rs and calculate the k nearest
neighbors of s in the latest correlation partition. When a
certain partition ps

i (i< k) appears where
dis(s, PB(p1, pi))> θ, it means that the partition ps

i does not

contain the actual k nearest neighbors of s, and we can
discard the partition directly. Meanwhile, since the center
point of the subsequent partitions are farther away from s,
we also believe that they do not contain the actual k nearest
neighbors of s, so we do not continue tomake judgments and
discard them directly. Finally, we can assume that the
knnDisSet stores actual k nearest neighbors of s.

Algorithm 4 describes the specific details of vKNN.
Before running the Map function, the program loads the
center point data. In the Map function, call the select-
TrainSet() function to calculate the k nearest neighbors.
After the selectTrainSet() function finishes executing, knnSet
[k] accepts the k nearest neighbor samples returned.
Meanwhile, the Map function creates an array trainLable[k]
to hold their labels. In the Reduce function, we use the
HashMap to count the labels, find out the label that occur
most frequently, and merge the output with s.

In addition, we partition the data, and each partition is
roughly the same size, about |R|/N. ,e provided partition
selection policy limits the number of filtered partitions. ,is
means that even in the worst case, each sample only needs to
be compared with k × |R|/N training samples to find k
nearest neighbors, which greatly reduces the computational
effort of the entire KNN join process. Meanwhile, we use k-
means clustering in the partitioning process, which makes
the sample points in each partition highly similar, and the
partition to be filtered is also the most similar to the test
sample. ,erefore, in theory, we can still maintain a high
degree of accuracy while drastically reducing the number of
training samples involved in the calculation.

6. Experimental Evaluation

6.1. Experimental Environment and Dataset. ,e experi-
mental platform used to evaluate the performance of the
proposed algorithm is mainly configured as Intel (R) Core
(TM) i5-8300H 2.3GHz processor, 16G memory, and 500G
NVMe hard disk. ,e Hadoop cluster consists of six virtual
machines, and each allocating 2G of memory and 40G of
hard disk. On each node, we install CentOS 8.0 operating
system with Java 1.8.0 and Hadoop 2.10.0. We select one of
them as the Master node and the other five as Slave node to
be managed through VMware® Workstation 15 Pro. ,e
development environment used in the experiment is Eclipse-
jee-2019-12-R-linux-gtk-x86_64.

,e experimental data in this study uses the Forest
CoverType dataset, a standard dataset in the UCI database.

Input: S, P
Output: <s, Ρs1, Ρ

s
2, . . . , Ρsk􏼈 􏼉>//the partitions corresponding to the k nearest center points of s

foreach s ∈ S do
tmp�TreeMap(); //create a TreeMap object tmp
nearPointSet� [ ]; //create an empty set nearPointSet
foreach p ∈ P do//insert the distance and index information tmp.put(dis(p, s), p.index);
for i� 0 to k do//read the first k center points’ information nearPointSet.append(tmp.next()); //put the information to

nearPointSet

ALGORITHM 2: Nearest center point selecting.
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,e dataset has 581012 records, each comprising 54-di-
mensional features (10 quantitative variables, 4 binary
wilderness areas, and 40 binary soil type variables) and seven

labels: Spruce/Fir, Lodgepole Pine, Ponderosa Pine, Cot-
tonwood/Willow, Aspen, Douglas-fir, and Krummholz, each
represented by a number from 1–7. For simplicity, we first

pi pj

s

PB (pi, pj)

dis (s, PB (pi, pj))

θ

(a)

s

pi pj

PB (pi, pj)

dis (s, PB (pi, pj))

θ

(b)

Figure 4: Partition selection. (a) Discard Ρj. (b) Reserve Ρj.

Input: s, ps
1, ps

2, . . . , ps
k􏼈 􏼉

Output: knn(x, Rs, k)

selectTrainSet() {
Rs � ps

1; //determine the initial Relevant-partition
for i� 2 to k do

knn(x, Rs, k); //calculate the k nearest neighbors of s in Rs

θ � max(knn(s, Rs, k)); //calculate the maximum distance from s to its k nearest neighbors from R
dis(s, PB(p1, pi)) � (dis(s, pi))

2 − (dis(s, p1))
2/2 × dis(p1, pi); //calculate the distance from s to PB(p1, pi),

if (dis(s, PB(p1, pi))> θ) then//ps
ι does not belong to Rs

break;
else//ps

i belongs to Rs

Rs � Rs ∪ps
i ; //add the partition ps

i to Rs

}

ALGORITHM 3: Relevant partition selecting.

Input: ps
1, ps

2, . . . , ps
k􏼈 􏼉, S, k

Output: s.predictLabel//prediction label of s
map: <row number, s>
knnSet[k]← selectTrainSet(); //calculate the k nearest neighbors
for i� 0 to k do//fetch the k nearest neighbors label
trainLable[i]� knnSet[i].label;

for j� 0 to k do
output(s, trainLabel[j]);

reduce: <s, Labels>
hmp� new HashMap(); //create a HashMap object hmp
foreach label ∈ Labels do//count the number of each label
if hmp.get(label) !�NULL then//if the label exists in hmp
label.value ++; //take the value of the label and add 1
hmp.put(label)� label.value; //update the value of the label in hmp

else//if the label does not exist in hmp
hmp.put(label)� 1; //set the value of the label to 1 and insert to hmp

predictLabel� hmp.maxvalue;//the label with the largest value as the prediction label
output(s, predictLabel);

ALGORITHM 4: vKNN processing.
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randomly selected 200,000 data from the dataset as the train
set R, and the rest as the test set S.

Consequently, we evaluated the methods mentioned in
our experiments. For the two methods described in Section
5, we set the number of reducers to 1 by default.

6.2. Experimental Evaluation Indicators. ,ere are many
available evaluation indicators in the classification tasks of
machine learning.,e two most common types are accuracy
and error rate. For a given test set S, the classification error
rate is defined as

E(S) �
1

|S|
􏽘
s∈S

I stype ≠ snew_type􏼐 􏼑, (16)

and the accuracy is defined as

Acc(S) � 1 − E(S) �
1

|S|
􏽘
s∈S

I stype � snew_type􏼐 􏼑, (17)

where stype refers to the actual label of s and snew_type refers to
the label of s predicted by the model.

In addition, we will evaluate the proposed method in
terms of the elapsed time and the acceleration ratio. ,e
elapsed time involves the global time for the MapReduce
program to run. ,e acceleration ratio is the ratio of the
elapsed time of the original version to the improved version
of the relevant parameters:

Speedup �
original_time
improved_time

, (18)

where original_time is the time when the original version
runs and improved_time is the time when the program runs
after the improved parameter.

6.3. Evaluation of Experimental Results

6.3.1. Effect of Different Center Point Sizes. For our first
experiment, we analyze the effect of the number of center
points on the performance of vKNN. To further illustrate the
situation, the number of mappers is given (n� 4). ,en, we
randomly select 600, 800, 1000, 1200, and 1400 pieces of data
from the training set in 5 times as the initial center point set.
In Figure 5(a), the execution time of Algorithm 2 increases
approximately linearly as N increases. ,is is because when
finding the nearest k center points for each element of S, the
distance between each element and each center point needs
to be calculated with a time complexity of O(|S| × N). When
the center point increases linearly, it means that the com-
putation time will also increase linearly. We adopt the
TreeMap for sorting distances, so we need not spend any
extra time on it. In Figure 5(b), we can see that vKNN
execution time decreases as N increases. ,is is because, as
the number of center points increases, the training set is
divided more finely when dividing the partitions, i.e., the
number of distance calculations needed for each sample
decreases accordingly. Also, we notice that the actual re-
duction is getting smaller as the center point increases. ,is
is because when the partitions are divided more finely, the

probability of occurrence of the scenario shown in
Figure 4(b) increases as the set of corresponding partitions is
determined. It is shown that some of the samples correspond
to a larger set of partitions than before, which also results in
increased computation time. Figure 5(c) shows how the
accuracy of the algorithm varies from 600 to 1400. As N
increases, there is little change in accuracy, which also in-
dicates that the choice of N has no effect on the accuracy of
the proposed method.

6.3.2. Effect of the Number of Nearest Neighbors. Next, we
study the effect of k on the performance of the two algo-
rithms. Similarly, given the number of mappers (n� 4).
Figure 6 shows the experimental results of k increasing from
3 to 20 gradually.

Figures 6(a) and 6(b) address the operation of two
programs of vKNN algorithm. ,e running time of the
algorithm increases approximately with the increase of k
value, which means that the vKNN algorithm is not sensitive
to the change of the k value. In Algorithm 2, the effect of k is
mainly reflected in the following aspects: we added relevant
information about k nearest center points of each sample to
the training set. ,e greater the k value, the more infor-
mation will be added, and the communication cost of data
will increase. When the vKNN algorithm is run at the end,
the communication cost of the file on HDFS increases ac-
cordingly. ,e increase of k value shows that θ will be larger
in the same sample, and the hypersphere with this radius will
be larger and easier to cross the hyperplane, as shown in
Figure 4(b). At this point, more sample points will be added
to the relevant partition, resulting in more computational
effort.

Figure 6(c) shows the change of vKNN algorithm ac-
curacy in the process of k increasing from 3 to 20. When k
goes from 3 to 5, the algorithm accuracy is improved. As k
continued to increase, the accuracy begins to decrease
slightly. Explain that the k value of vKNN algorithm is not as
large as possible, and we need to select the appropriate k
value for the specific situation.

Figure 6(d) shows that vKNN performs better than KNN
for the results of the two methods. ,e execution time of
KNN increases linearly with the increase of k. ,e influence
of k value on KNN algorithm is mainly reflected in the
selection of the nearest k sample points. However, because
the KNN algorithm itself is too computationally intensive
when dealing with large datasets, the increase in the amount
of computations caused by the increase in k value is less
obvious than the amount of computations itself.

6.3.3. Effect of Speedup. Now, we measure the effect of the
number of mappers. Given the number of center points
(N� 1000) and the number of nearest neighbors (k� 5),
Figure 7 shows the running time and acceleration ratio of
vKNN as the number of mappers gradually increases from 1
to 4. Figure 7(a) shows that the run time decreases as the
number of mappers increases. However, the scale is
shrinking. ,is is also reflected in Figure 7(b), where the
acceleration ratio gradually stabilizes. It is because

Mathematical Problems in Engineering 9



increasing the number of mappers means increasing the
number of nodes participating in the operation, at which
point the amount of computation allocated to each node will
also be reduced, so the execution time of the map function
on each node will be shortened accordingly. With the in-
creasing number of nodes, the computing resources are
larger than the required resources actually needed. At this
time, the computing resources are not fully utilized, the
execution time decreases less and less obvious, and cluster
computing resources are also wasted. On the contrary, each
node needs to read files from the HDFS, which increases the
corresponding communication costs. When the acceleration
effect of computing node growth is insufficient to offset the
pressure of increased communication costs, the algorithm
execution efficiency will decrease. ,erefore, the number of
mappers needs to be selected appropriately when facing
datasets of different sizes.

6.3.4. Effect of Accuracy. Now, we study the accuracy of
the two algorithms. Given the number of center points
(N � 1000) and the number of nearest neighbors (k � 5).
Figure 8 shows the accuracy of the two methods when k is
gradually increased from 3 to 20. In general, vKNN is
more accurate than KNN. ,is is because the partitioned
data we use is the result of k-means clustering during the
preprocessing phase, in which samples with the same
characteristics are divided into the same cluster, i.e., the
data in the same partition are similar to each other.
Subsequently, we search for the center point closest to
the sample to be classified. Distance closest represents
less difference and more similarity. ,erefore, when the
vKNN algorithm is executed and compared with other
samples, the higher the degree of similarity with the
sample to be classified, the smaller the calculation error
will be.
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Figure 5: Effect of different center point sizes. (a) Running time of nearest center point selecting. (b) Running time of vKNN. (c) Accuracy of
vKNN.
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Figure 6: Effect of the number of nearest neighbors. (a) Running time of nearest center point selecting. (b) Running time of vKNN. (c)
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6.3.5. Effect of Scalability. In this section, we randomly
extract 100,000 pieces of data from the original dataset as a
training set. ,en, randomly extract 100,000, 200,000,
300,000, and 400,000 pieces of data from the rest of the set
four times as a test set. Based on this, the scalability of the
proposed method is evaluated. In the experiment, given the
number of center points (N� 1000) and the number of
nearest neighbors (k� 5). Figure 9(a) is the time-consuming
result of Algorithm 2, and Figure 9(b) is the time-consuming
result of two methods for performing KNN join.

On the whole, the execution time of both methods in-
creases approximately linearly with the increase of training
set data size. ,e reason is that, as the data size increases, the
data allocated to each computing node will also increase
proportionally, and the computing time of each node will
increase in the same proportion. However, when using
vKNN algorithm to perform KNN join, the growth is
gentler. ,e average growth time of Algorithm 2 is only 5

seconds, which indicates that the scalability of vKNN al-
gorithm is better than that of KNN algorithm. ,e time
complexity of KNN algorithm is O(|R| · |S|), which is a
Cartesian product of the sample set R and S. Obviously, no
matter which sample set is increased in size, the effect is
enormous. However, vKNN algorithm adopts the idea of
partition which alleviates the computational changes caused
by the increase of S. ,erefore, as the dataset increases, the
difference in execution time between the two methods
increases.

7. Conclusion

In this paper, we propose a vKNN algorithm based on
Voronoi diagram concerning MapReduce-based KNN join
scheme. Our algorithm can partition the training set using
the idea of Voronoi diagram. ,en, we design a partition
selection strategy to find the optimal relevant partition for
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the sample to be tested, which effectively avoids the enor-
mous amount of computation caused by irrelevant data.,is
strategy takes full advantage of the parallel processing ca-
pabilities of the MapReduce framework and is suitable for
large-scale data. A large number of experiments based on
real datasets show that our proposed algorithm can accel-
erate the calculation with good scalability while ensuring
accuracy.
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Leach (low energy adaptive clustering hierarchy) algorithm is a self-clustering topology algorithm. Its execution process is cyclical.
Each cycle is divided into two phases: cluster building phase and stable data communication phase. In the stage of cluster building,
the adjacent nodes cluster dynamically and randomly generate cluster heads. In the data communication phase, the nodes in the
cluster send the data to the cluster head, and the cluster head performs data fusion and sends the results to the aggregation node.
Because the cluster head needs to complete data fusion, communication with the convergence node and other works, the energy
consumption is large. Leach algorithm can ensure that each node acts as cluster head with equal probability, so that the nodes in
the network consume energy relatively evenly. ,e basic idea of Leach algorithm is to randomly select cluster head nodes in a
circular way. It evenly distributes the energy load of the whole network to each sensor node in the network. It can reduce network
energy consumption and improve network life cycle. Leach repeatedly performs cluster refactoring during its operation. ,is
paper studies the parameter detection of wireless sensor network based on Leach algorithm on the on-chip embedded debugging
system. Because the classical low-power adaptive clustering layered protocol (Leach) has the problem of energy imbalance and
short node life cycle, this paper uses embedded debugging technology based on Leach algorithm and the residual energy and
position of nodes in wireless sensor networks were tested for research.,is Leach algorithm uses the concept of wheel. Each round
consists of two phases: initialization and stabilization. In the initialization stage, each node generates a random number between 0
and 1. If the random number generated by a node is less than the set threshold T (n), the node publishes a message that it is a
cluster head.,rough the research on the parameter detection, the simulation results show that the research in this paper has good
feasibility and rationality.

1. Research Background

Since entering the 21st century, the development of high and
new technology is changing with each passing day. ,e
development and fusion of wireless communication tech-
nology, sensor technology, embedded computing technol-
ogy, and distributed information processing technology
promote the generation and development of modern
wireless sensor networks. Wireless sensor network is
composed of wireless sensor network nodes distributed
randomly in a monitoring area, which is used to monitor
specific environmental information in a certain area. As a

new technology in fields of communication, automation,
and computer, wireless sensor network has the advantages of
high monitoring accuracy, good fault tolerance, and wide
coverage. It has been widely used in military defense, urban
management, environmental monitoring, and hazardous
sites.,e field of remote control has been widely studied and
applied. As the product of various high-tech integrations,
wireless sensor network has become an active research
branch in computer science and network communication
science, which has attracted great attention from academia
and industry. It is thought to have a major impact on the 21st
century. One of these technologies is also one of the key
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research areas during the eleventh five-year plan period
[1, 2].

Research into wireless sensor networks began in the late
1990s with the Defense Advanced Research Projects Agency
(DAIRPA) funding the Network Embedded Software
Technology (NEST) project. ,e University of California,
Berkeley, has developed a wireless sensor network devel-
opment system called Mote. Since then, DARPA has spent
tens of millions of dollars a year on wireless sensor network
technology. In early August 2002, the national science
foundation (NSF), the defense advanced research projects
agency (DARPA), NASA, and other 12 main research in-
stitutes at the University of California, Berkeley, jointly
organized the “national seminar” on the future sensor
system [3] and discussed the future sensor system and its
development direction in the engineering application. ,e
meeting discussed the realization of wireless sensor net-
works and the research of sensor data transmission, analysis,
and decision making technologies, which are the same as the
new sensor technologies based on nanotechnology and
micromachinery, and represent the frontier direction of
future sensor research and battlefield information percep-
tion. Structural monitoring, homeland security, the war on
terrorism, and other applied fields have extremely important
research significance.

In the following years, several laboratories at the Uni-
versity of California, Berkeley, continued to conduct in-
depth research on wireless sensor networks and made some
pioneering studies on wireless sensor networks from dif-
ferent perspectives. Many other American universities and
research institutions have done a lot of work and made great
progress in wireless sensor networks, for example, CENS
(Embedded Network Sensor Center), WINS (wireless in-
tegrated network sensor), and NES (Network and Embedded
Systems Laboratory)[4]. ,e Massachusetts Institute of
Technology (MIT) is working on low-power wireless sensor
networks with DARPA support. SPIN Sensor Protocols for
Information via Negotiation is a protocol of MIT [5]. Au-
burn University has also received DARPA support for ex-
tensive research into self-organizing sensor networks. ,e
Computer Systems Research Laboratory of Binghamton
University has done a lot of research work in the design of
mobile self-organizing network protocol and sensor network
system application layer [6]. ,e Mobile Computing Lab-
oratory at Cleveland State University combines wireless
sensor network technology with IP-based mobile networks
and ad hoc networks [7]. Meanwhile, American companies
such as Intel, Crossbow, Freescale, and Ember have also
participated in the research of wireless sensor networks.
Some European companies like Philips, Siemens, Ericsson,
and Chipcon [8] have studied wireless sensor networks. In
March 2004, Japan’s Ministry of Internal Affairs and
Communications held a seminar on “ubiquitous wireless
sensor networks” [9], which mainly discussed the research
and development, standardization, social cognition, and
promotion policies of wireless sensor networks. NEC, OKI,
and other companies have also launched relevant products
and conducted some application tests. In China, the research
on wireless sensor networks is mainly led by some

universities and research institutions. Zhejiang University
has established the wireless sensor network test group, which
is specialized in the hardware implementation of wireless
sensor network.

2. Leach Principle

2.1.,e Algorithm of Leach. Leach algorithm is a low-power
adaptive clustering routing algorithm. ,e algorithm is
executed periodically. Each cycle is defined as a “round,”
and each round is divided into two phases: the negotiation
phase and the stabilization phase. ,e negotiation stage is
also the formation stage of the cluster, mainly completing
the selection of cluster heads and routing of nodes in the
cluster, as well as the initialization of the algorithm. After
selecting the node as the cluster head, it first sends a
broadcast with its OWN ID and other information. ,e
other nodes will receive a large number of broadcasts from
different cluster heads. If the cluster head node receives the
broadcast information of other cluster head nodes, it will be
discarded directly. If the cluster node receives the broadcast
information, the judgment signal strength, sure you want to
join the cluster. It replies to the corresponding cluster head
request to join the packets, after joining cluster nodes in the
cluster. ,e members of the cluster head nodes are in the
cluster maintenance information table. ,e communica-
tion time slot for members of the node distribution is in
order to avoid confusion in the cluster communication. A
time slot is one frame with the same length of time. ,e
stabilization phase is the data communication phase of the
cluster. Member nodes in the cluster will collect data and
send it to the cluster head node in the way of polling
according to the time slot allocated by the cluster head
node. ,e cluster head node will fuse the received data first
and then send it to the aggregation node. ,e longer the
stability period is, the more effective the algorithm is. After
the data is sent, a new start is made. ,e implementation is
as follows.

,e selection of cluster heads in Leach algorithm is
random. ,ere are two main factors that determine the
cluster head: the number of rounds of the current algorithm
and the number of cluster head nodes and the total number
of nodes.,ere are no nodes that play a dominant role in the
whole cluster process. Each node is identified by an algo-
rithm, identified by itself, and added to the corresponding
cluster. At the beginning of cluster establishment, all sensor
nodes in the network are randomly generated into a random
number between [0,1]. If the random number is less than
threshold T (n), it is compared with threshold T (n), and
then the sensor node corresponding to the random number
is selected as the cluster head of the round. ,e broadcast
message is then sent to inform other sensor nodes that if the
random number is greater than the threshold T (n), it will
not be selected as the cluster head. If the selected cluster head
node has been selected as the cluster head, the value of T (n)
becomes 0, so as to avoid the same node continuously acting
as the cluster head, resulting in excessive energy con-
sumption of the node. ,e formula for calculating threshold
T (n) can be expressed as
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T(n) �

p

1 − p∗ (rmod (1/P))
, if n ∈ G,

0, n ∉ G,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where P is the percentage of cluster head in all nodes, r is the
number of election rounds, Rmod (1/P) represents the
number of nodes selected for cluster head in this round
cycle, and G is not the node set selected for cluster head in
this round cycle.

As can be seen from the above equation, as the algorithm
cycle continues to advance, the number of nodes assigned to
the cluster head will increase; that is, the value of Rmod
(1/P) will continue to increase, and the value of T (n) will
also increase. ,en, the probability of nodes not being
chosen as cluster heads will increase. When only one node is
not selected as cluster head, T (n)� 1; in addition, when r� 0
and r� 1/p, T (n) has the same value. When r� 1 and r� 1/P
+1, the result of T (n) is the same. ,en, after the algorithm
executes a 1/P loop, the sensor nodes in the network return
to the situation where cluster heads are selected with equal
probability, such as repeating the loop. ,e Leach algorithm
allows all nodes in the network to have a cluster head for a
period of 1/P and only one chance to get the cluster head.
After the 1/P loop, there is an opportunity to reselect the
cluster heads. ,erefore, T (n) is also the average probability
that a node that does not act as a cluster head is selected in
the RTH round.

Suppose that there are altogether N nodes in the sensor
network and each time k cluster heads are selected,
P � (N/K). ,e probability of nodes becoming cluster heads
in r+ 1th cycle is expressed by T (t), so the probability of
cluster heads is in r+ 1th cycle.

E � 􏽘
N

t�1
T(t) × 1 � k. (2)

After r rounds, the number of nodes in the current 1/P
round that have not yet become cluster head is
N − k × (rmod(N/k)).

If no node is selected as cluster head after r round, the
above formula can be obtained. ,e average probability of
r+ 1th round node becoming cluster head is
(p/(1 − p∗ (rmod(1/p)))).

,e average probability of p � (N/K) being substituted
into the above equation is(k/(N − K × (rmodN/k))).

Based on the above derivation, the following formula can
be obtained:

E � 􏽘
N

t�1
T(t) × 1

� (N − k ×(rmodN/k))
k

(N − k × rmod(N/K))
� k.

(3)

When a node is selected as a cluster head, a notification
message is sent informing the other nodes that they are new
cluster heads.,e noncluster head node selects the cluster to

be added according to its distance from the cluster head and
notifies the cluster head.When the cluster header receives all
connection information, it generates a TDMA timing
message and notifies all nodes in the cluster. In order to
avoid signal interference from nearby clusters, the cluster
head can determine the CDMA code used by all nodes in the
cluster.,e CURRENTphase of the CDMA code is sent with
the TDMA timing. When the nodes in the cluster receive the
message, they send data in their respective time slots. After a
period of data transmission, the cluster head node collects
the data sent by the nodes in the cluster, runs the data fusion
algorithm to process the data, and sends the results directly
to the sink node.

,e stabilization phase is the data communication phase.
,e member nodes communicate according to the time slot
allocated by the cluster head node. At the same time, other
clusters are also performing intracluster routing. ,e
neighboring nodes of different clusters can then generate
cluster crosstalk at the same frequency to reduce crosstalk
between clusters. ,e influence of cluster routing is based on
direct sequence spread spectrum (DSSS) mechanism. In this
way, the nodes in the cluster treat the non-self-group signal
as noise and shield it, thus effectively avoiding the occur-
rence of signals between adjacent group nodes. Crosstalk:
cluster heads communicate with sink nodes according to the
CSMA method, and all cluster heads use the same spread
spectrum code. ,erefore, in the process of establishing a
data connection between the cluster head and the sink node,
it is first necessary to monitor whether the channel is oc-
cupied. If so, the cluster head node that needs to commu-
nicate needs to queue until spread spectrum code is not used
and can preempt the channel to obtain data communication.
Otherwise, the cluster header can use channels to com-
municate directly with the Sink node.

2.2. Key Technologies of Wireless Sensor Network. ,e
premise of topology control of wireless sensor network is to
eliminate unnecessary communication lines between nodes
by controlling power and selecting corresponding backbone
nodes under the condition of network coverage and con-
nectivity and finally form efficient topology structure of data
forwarding network. Excellent network topology control
algorithm can effectively improve the efficiency of routing
protocol and MAC protocol, provide good support for data
fusion, time synchronization, and target positioning, save
the energy of nodes, and improve the network life cycle.
Topology control is very important for wireless sensor
networks with limited energy.

,e task realization of wireless sensor network protocol
makes each node form a multihop data transmission net-
work. Under the premise of effectively utilizing network
energy and improving network life cycle, network band-
width is effectively utilized to ensure service quality. At
present, network layer protocol and data link layer protocol
are the focus of research.

Data fusion technology is a combination of multiple data
processing processes to make data processing more efficient
and more humane process. However, because sensor nodes
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are prone to failure, the sensor network still needs data
fusion technology to process multiple data comprehensively
to improve the accuracy of information. According to the
different information content, data fusion can be divided
into two types: lossless fusion and lossy fusion. Lossless
fusion means to save all the details and remove the re-
dundant information. Lossy integration is when you save
storage space and energy by ignoring details or reducing data
quality. Data fusion technology can be combined with
multiple protocol layers of wireless sensor networks. At
present, data fusion technology has been widely used in
target tracking and automatic recognition. In the design of
wireless sensor networks, targeted data fusion methods are
often the most beneficial in application design.

Time synchronization is the key mechanism of wireless
sensor networks. When a network system performs some
time-sensitive tasks or adopts the time-basedMAC protocol,
it needs to synchronize the nodes’ clocks. Clock synchro-
nization lightweight synchronization and sensor network
time synchronization protocol based on receiver and re-
ceiver are three basic synchronization mechanisms. ,e
current location includes the location of the node itself and
the location of the external target. Positioning accuracy
directly affects the effectiveness of data acquisition. Due to
the limitations of sensor nodes themselves, the localization
mechanism must satisfy the robustness, self-organization,
and energy efficiency of network nodes. Generally, nodes are
divided into beacon nodes and unknown nodes according to
whether the node is determined by its position. Beacon
nodes can carry certain positioning equipment to obtain
their own accurate position information. Unknown nodes
take beacon nodes as reference points and use algorithms
such as triangulation, triangulation, and maximum likeli-
hood estimation to determine node position.

2.3. Embedded Debugging Technology. With the continuous
improvement of chip integration and the increasingly
powerful functions, the requirements for embedded soft-
ware development are higher and higher, and the embedded
debugging technology is also developing constantly. In the
development of embedded debugging system, many
debugging techniques are developed. ,ere are significant
differences between the different debugging techniques and
the implementation principles that depend on them. ,is
paper mainly analyzes and introduces the commonly used
debugging techniques on chip. With the popularity of SOC
technology, on-chip debugging technology began to appear
in embedded systems. On-chip debugging techniques embed
control modules in the processor. When a trigger condition
is met, the processor enters the specified state [10]. In this
state, debugging software running on the host can access
various resources (registers, memory, and so on) and execute
instructions through a specific communication interface
outside the processor (the debug support module port). ,e
basic idea of on-chip debugging is to add additional
hardware debugging modules inside the processor. ,e
debug software controls the operation and resource access of
the processor through the debug module. ,ere are many

different implementations of on-chip debugging techniques.
Currently, BDM (background debugging mode) and JTAG
(joint test action group) are commonly used on-chip
debugging techniques [11]. For users, the two technologies
provide similar debugging capabilities, but there are sig-
nificant differences in implementation principles and
debugging standards. ,eir debugging criteria are described
below.

MOTOROLA first recognized the development trend of
on-chip debugging technology and implemented the BDM
(background debugging mode) debugging interface for the
first time on the 68300 series processor. Later, the company
applied BDM debugging in a series of processors designed
for PowerPC and ColdFire [12].

Taking ColdFire as an example, the implementation
mechanism of BDM debugging function is briefly analyzed.
ColdFire has many levels of internal buses. ,e debug
module is embedded in the processor and can access the
internal bus and CPU kernel information connected to the
kernel and on-chip memory. Access to the internal bus
allows the debug module to obtain address space and data
information in the internal bus that cannot be accessed by
external modules. ,e ColdFire debugging system supports
three functions: BDM, real-time debugging, and real-time
tracking. ,e basic principle of BDM (background debug-
ging mode) is that when the processor stops running, the
debugging software running on the host machine sends
various instructions to the target system through the serial
interface of the debugging module to access registers and
storage. BDM mainly consists of two control registers: CSR
and TDR [13]. ,e Configuration Status Register (CSR) is
used to configure the operations of the processor and on-
chip storage and also reflects the state of the processor
breakpoint logic. ,e TDR (trigger definition register) is
used to configure and control the operations of the hardware
breakpoint logic in the debug module. ABHR (address
breakpoint low register) and ABLR (address breakpoint high
register) are valid breakpoint address ranges used to define.
PBR (program count breakpoint register) and PBMR
(program count breakpoint mask register) represent the PC
breakpoint register and its mask. ,e DBR (data breakpoint
register) and DBMR (data breakpoint mask register)repre-
sent the data breakpoint register and its mask [14].

JTAG (Joint Test Action Group) was established in 1985
and was originally developed by PCB manufacturer
(printed circuit board) and IC (integrated circuit) test
standards. In 1987, the organization proposed a new
testability design method: boundary scan test technology.
In 1988, IEEE (Institute of Electrical and Electronics En-
gineers) and JTAG agreed to jointly develop a boundary
scan test architecture. JTAG was approved by IEEE as
1149.1 standard in 1990 and is also known as JTAG
boundary scanning standard [15]. ,e standard defines the
boundary scan structure and interface of the standard. At
present, JTAG interface has become the standard debug-
ging interface widely used in the world, and most existing
microprocessors have JTAG interface. IC designers such as
Intel, ARM, MIPS, and TI have implemented JTAG
debugging interface.
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,e JTAG standard provides two main functions:

(1) It is used for chip electrical characteristic test to
detect whether there is a problem with the chip

(2) For debugging, debugging is the program running
on the chip

,e JTAG boundary scan standard allows users to test
and debug the hardware circuit with the JTAG interface
chip. ,e working mode of the processor based on JTAG is
generally divided into normal mode and debug mode. In
debugging mode, the debugger stops execution, and the
upper debugging software completes various debugging
functions by sending debugging commands to the debug-
ging module interface. Examples include setting breakpoints
and stepping. When the processor is in normal mode, the
processor is running or stopping.

A protocol conversion unit (either a hardware unit or a
software implementation) is required between the target
and the host. ,is unit converts the debugger commands
into commands that the processor debug interface recog-
nizes. When using JTAG debugging, the debugging in-
terface is provided to the user through debugging software,
the commands input by the user are received, and the
execution results are given after processing. ,e JTAG
debugger is built into the debugging module of the target
chip. Debugging can be regarded as a means to access the
target. JTAG debugging has the advantages of small de-
pendency, no change in program operation, stability, and
reliability.,e debugging system in this paper adopts JTAG
debugging standard.

3. Experiment on the Computer
Simulation Software

3.1.DataSource. In order to better evaluate the performance
of this paper in the field of wireless sensor, this paper
conducts experiments on wireless sensor networks based on
the classical Leach algorithm and research method. In order
to make the experimental data and evaluation results more
accurate and objective, the size of the wireless sensor net-
work model was set as 100M× 100 M, and 30 nodes were
distributed in the region. ,ese nodes are geographically
random, randomly generated. ,e experiment was repeated
50 times and then averaged over all the results to get the final
data.

3.2. Experimental Evaluation Criteria. Due to the limited
energy of wireless sensor network nodes, the energy of nodes
directly affects the life cycle of nodes. When the performance
of the judgment research method is getting higher and
higher, and it is more andmore in line with the requirements
of the network, there are several hard standards to judge
different research methods.

3.2.1. Time Length of Node Failure. ,is paper analyzes the
lifetime of network from three aspects: initial dead node,
half-dead node, and final dead node.

3.2.2. Node Energy Consumption. ,is paper will record the
total energy consumption of nodes in the network in real
time and judge whether the corresponding research method
is suitable for the network.

3.2.3. Energy Efficiency. When a node in the network
transmits data information, we change the packet size and
observe the energy utilization rate; the higher the utilization
rate is, the more balanced the energy load will be.

3.2.4. Remaining Nodes. At run time, different algorithms
have different number of remaining nodes at the same time.
,e more the nodes there are the less energy the network
consumes.

3.2.5. Information Received by the Base Station.
Obviously, the more information the base station receives in
the end, the more beneficial it is to the work of the observers,
thus improving the accuracy of the data.

3.3. Experimental Parameters. ,e specific parameters of the
experiment are shown in Table 1.

3.4. Experimental Data Results. Firstly, the wireless sensor
network method based on the classical Leach algorithm is
simulated and the data obtained is recorded. ,en, on the
basis of Leach algorithm, the residual energy and position
parameters of nodes are added to optimize the distribution
of nodes, and the strategy that the greater the residual energy
of nodes, the greater the probability of cluster head selection
is adopted. ,e experimental results are based on the
wireless sensor network parameters detection of the em-
bedded debugging system on the chip. ,e comparison of
the number of surviving nodes between the wireless sensor
network using the classical Leach algorithm and the wireless
sensor network using the research method is shown in
Figure 1 with one computer simulation software. ,e
comparison of the remaining energy of the nodes is shown in
Figure 2.

After sorting out the experimental data, the node death
of wireless sensor network using the classical Leach algo-
rithm and the research method in this paper is shown in
Table 2, respectively, and the node energy consumption is
shown in Table 3, where the data in the table is the number of
cycles.

3.5. Analysis of Experimental Data. Figure 1 shows the re-
lationship between the number of viable wireless sensor
network nodes and the number of rounds. When simulating
the Leach algorithm, the first death node appears at 580.
However, when the first node is present, the method is
simulated at 915. ,e occurrence time of the first dead node
is nearly twice longer than that of the classical Leach al-
gorithm. In the comparison of 50% network node death time
between the two methods, Leach algorithm takes 1098, but
this method extends the time by 53.2% to 1682. In the
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comparison of network lifetime, Leach algorithm’s time was
1897. However, the method adopted in this paper takes 2678
times, and the failure time of the whole network is longer
than the original. As can be seen from the comparison of
simulation results in Figure 1, under the same simulation
conditions, the research method has a longer network life
cycle than the single Leach algorithm. Figure 2 depicts the
relationship between the total residual energy consumption
of network nodes and the number of rounds.,e life cycle of
the whole network is related to the energy consumption of
each node. If a node consumes a lot of energy, it will soon
fail. If the energy consumption of each node is similar, the
network life cycle will be prolonged. ,e data in Figure 2
demonstrates this. In this paper, the method of residual
current energy and maximum current energy ratio as pa-
rameters is more reasonable. Parameters are distributed
between 0 and 1 and do not decrease with energy
consumption.

,e node death and residual energy consumption of
wireless sensor network can be seen. In this paper, we
improve the location of the aggregation nodes and find the
nodes with the minimum sum of squares of other nodes in
the distribution region. ,e center of these points acts as a
sink node. ,e positioning method is reasonable. In the
improvement of node energy parameters, the higher the
probability of nodes is, the larger the residual energy be-
coming cluster head nodes is. ,e parameters of each
election are more evenly distributed and are always less than
or equal to 1. According to the simulation data in Tables 2
and 3, the superiority of the research method is verified, the
node mortality is reduced, and the network life is extended.

4. Research Conclusions

Wireless sensor network (WSN) is a new technology, which
has broad application prospects in military, environmental,
medical, and civil fields. Wireless sensor networks have the
characteristics of limited communication capacity, limited
node energy, and limited computing capacity. ,ere are
many nodes, wide range of distribution, and dynamic
network. ,erefore, the research on wireless sensor network
is of great significance, and the research goal is to improve
the performance of wireless sensor network. As wireless
routing algorithm is an important topic in wireless sensor
network research, its performance directly affects the op-
eration efficiency of the whole network and relates to the
lifetime of wireless sensor network. ,erefore, this paper
first analyzes the Leach algorithm, adding residual energy to
the current maximum energy node energy ratio parameter of
the classical Leach algorithm and selecting cluster head
reasonably. Secondly, the embedded on-chip debugging

Table 1: Experimental parameter settings.

Parameter name Unit Set parameter
value

Number of nodes \ 30
WSN area size m2 100∗100
Transmission data length k 4000
Energy required for power
amplification (pj/(bit.m4)) 10

Initial energy of the node J 0.5

30

25

20

15

10

5

0
0 500 1000 1500 2000 2500 3000

N
um

be
r o

f n
od

e s
ur

vi
vo

rs

Leach algorithm
�e proposed method

Number of cycles

Figure 1: Comparison of the number of surviving nodes.
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Figure 2: Node residual energy comparison chart.

Table 2: Comparison of node deaths.

Experiment First node
death

15th node
death

15th node
death

Leach algorithm 580 1098 1897
Method of this paper 915 1682 2678

Table 3: Comparison of node energy consumption.

Experiment Consumption
33%

Consumption
66% Exhaust

Leach algorithm 348 705 1896
Method of this
paper 382 782 2533
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technology is used to detect the parameters of wireless sensor
network based on Leach algorithm. Finally, the classical
Leach algorithm and research method are used to carry out
simulation experiments, and the feasibility and effectiveness
of the method are verified.,e results show that this method
can balance the overall energy consumption of network
nodes and improve the lifetime of wireless sensor networks.
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It is difficult to carry out petrophysical experiments because of the serious damage caused to cores in the development of fractures
and pores in carbonate reservoirs. .e development of a three-dimensional digital core in carbonate reservoirs has become a hot
topic in rock physics research. Compared with the three-dimensional digital core, including basic rock skeletons and pores in
sandstone reservoirs, carbonate reservoirs also include secondary structures such as microfractures. .e carbonate contains
different components, and extracting these components is a very difficult problem. .e resolution on the electrical image log
image is high, which can clearly reflect the macrocomponents in various reservoirs..ere are some blank areas between electrodes
on the electrical image log, which affects the extraction of components in a three-dimensional digital core. Aiming at the serious
heterogeneities in the carbonate reservoirs and affecting image inpainting on the electrical image log image, a new method of
image inpainting based on a combination of multipoint geostatistics and an interpolation method is put forward. .e exper-
imental results show that this method generates faster and better full-bore images than other methods. Due to the multipeak
histogram, the maximum interclass variance in the two times method is proposed to extract macrocomponents such as basic rock
skeletons, pores, and connected parts. .e microfractures can be extracted from the CT scanned images by using image seg-
mentation from the combination of the watershed and OTSU methods. .e experimental results prove that using extraction
methods for different components enables better results to be obtained.

1. Introduction

Carbonate and other complex reservoirs have become a hot
topic in the study of rock physics. It is difficult to carry out
petrophysical experiments because of the serious damage
caused to cores during development of fractures and pores in
carbonate reservoirs. Rock physics numerical simulations
play a crucial role. It is necessary to study the three-di-
mensional digital core method in terms of carbonate res-
ervoirs [1].

Compared with a three-dimensional digital core in
sandstone, only two parts of basic rock skeletons and pores
are included. In addition to basic rock skeletons and pores of

a digital core in sandstone, the carbonate reservoirs also have
secondary structures such as microfractures. .e carbonate
contains different components. Extracting these compo-
nents is a very difficult problem [2–7].

Fractures can improve reservoir permeability. .e ac-
curate identification and evaluation of fractures are among
the important contents in exploration and development [8].
Well logging techniques that are currently used for fracture
identification include resistivity logging, sonic logging, ra-
diological logging, dip logging, density logging, compen-
sated neutron logging and electrical image log, and acoustic
image log [9–13]. .ese techniques have limitations when
using various conventional well logs to directly identify
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fractures, so some methods for identifying fractures by
conventional well logs have been proposed [14–19]. For
example, the differences between the real resistivity and
measured resistivity obtained from the apparent acoustic
porosity using rock-electricity by Yang Xue are used to
identify fractures in the formation [20]. At present, the
majority of hole recognition in carbonate reservoirs is
processed based on the OTSU (maximum between-class
variance) segmentation algorithm. For example, Jiang has
established a chart of facture-hole recognition based on
resistivity response [21]. However, this method does not
work well when there are multipeaks in the histogram of an
electrical image log image. Li and others automatically
identify the holes using the threshold segmentation algo-
rithm with the contour tracking algorithm after hollowing
out the interior point [22]. However, this algorithm is the
human fetching threshold, and the influence of human
factors is significant. One of the core problems in the in-
terpretation and evaluation of carbonate reservoirs is hole
identification. .e OTSU method is slow and computa-
tionally expensive for hole identification. An image seg-
mentation algorithm based on OTSU and watershed is
proposed to effectively extract hole targets from complex
backgrounds [23].

.ere are some blank areas between the electrodes of the
electrical image log image. .e electrical image log image
does not completely cover the stratum around the borehole
[24], and the information is relatively small, which affects the
extraction of components. Simultaneously, the heteroge-
neities in the carbonate reservoir are very serious, which
affects the image inpainting of the electric imaging image.
.e incomplete electrical image log image and severe het-
erogeneity in the carbonate reservoirs are solved by image
inpainting, which improves the extraction accuracy of dif-
ferent components in three-dimensional cores.

.e resolution on the electrical image log image is high,
which can clearly reflect the macrocomponents of various
reservoirs. Various macrocomponents (basic rock skeletons,
pores, and connected parts) in the carbonate reservoirs can
be extracted from the electrical image log image. Some
microfractures can be extracted from the CT (computed
tomography) scanned images, which can provide micro-
scopic component information of rocks.

In this paper, the full-bore image is first generated from
the electrical image log image, and then, the macro-
components (rock skeletons, pores, and connected parts) are
extracted. .e CT scanned images can provide the micro-
scopic component information of rocks in the carbonate
reservoirs, and the microfractures can be extracted from the
CT scanned images. .ese methods make the extraction of
different components more accurate.

2. Method Principle

2.1. Image Inpainting Based on Combining the Multipoint
Geostatisticswithan InterpolationMethod. Image inpainting
refers to the process of reconstructing the lost or damaged
parts of images and videos [25]. Image inpainting tech-
nologies have many goals and applications [26]. .e

inpainting steps of the Criminisi image inpainting algorithm
are composed of four parts: marking of the area to be
repaired, the calculation of priority, searching and filling the
best matching blocks, and confidence of updating. Aiming at
the defects of the Criminisi algorithm, such as the long
period of image inpainting, many researchers have improved
the algorithm [27]. Image inpainting is implemented by the
Filtersim simulation algorithm based on multipoint geo-
statistics [28]. .e image inpainting method for significant
heterogeneities in carbonate reservoirs, which affect
inpainting of the electrical image, is proposed based on
combining multipoint geostatistics with an interpolation
method.

Training: the Filtersim simulation algorithm requires a
set of 6 directional filters to filter the training images. Each
pattern in the training images is classified according to the
filtering scores.

Inpainting: find the nearest pattern in the training fil-
tering scores for the repaired areas, and then, the pattern is
chosen for the repaired areas.

.e image inpainting method based on multipoint
geological statistics has a good effect on homogeneous
reservoirs, but when image inpainting is ineffective on large
significantly heterogeneous reservoirs, matching of the ef-
fects will be uncertain, and the image inpainting results will
be abnormal. In view of this situation, the image inpainting
method is improved based on multipoint geostatistics [29].
.is paper combines multipoint geostatistics with an in-
terpolation method to make full use of the fast interpolation
method of quickly inpainting the basic blank areas of the
electrical image log image. .e preliminary inpainting re-
sults are used to filter and match the pattern in the filtering
domain to find the optimum matching pattern. After the
image inpainting is processed on blanks with serious het-
erogeneities, using the preliminary image inpainting results
and multipoint geostatistics, the amount of information is
increased, the uncertainty in matching patterns in this area is
reduced, and the image inpainting results are made more
reliable.

2.2. Denoising of the Inpainting Image and the CT Scanned
Images. First, the SNR (signal-to-noise ratio) of the images
is calculated to determine whether there are some noises in
the images whose SNR is larger than a certain threshold.
Finally, there should be various denoising methods for the
noise images, and the image inpainting and CT scanned
images should be processed to eliminate some noises.

2.3. Different Methods Are Used to Extract Different Com-
ponents of the Electrical Image Log Image and the CT Scanned
Images. .e electrical image log image produces the full-
bore image, and different components can be extracted after
denoising from the full-bore image and the CT scanned
images. .e electrical image log image and the CT scanned
images contain different components (basic rock skeletons,
pores, connected parts, and microfractures). Different
components in the carbonate reservoirs have different
distributions of gray levels in the electrical image log images
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and CT scanned images. Different components are
extracted using the improved methods.

After preprocessing of the full-bore images, there are
different distributions of gray levels in the basic rock skel-
etons, pores, and connected parts extracted by the maximum
interclass variance in the two times method. Microfractures
are extracted using the improved image segmentation be-
tween the watershed and OTSU methods.

2.3.1. Different Component Extractions from the Electrical
Image Log Image. .e method of maximum interclass
variance was proposed by Nobuyuki Otsu, a Japanese
scholar, in 1979 [30]. .is method is an adaptive threshold
determination method, also known as the OTSU method, or
OTSU for short. OTSU divides an image into two parts, the
background and the target, according to the gray level
distribution of the images..e larger the variance is between
the background and the target, the greater the difference will
be between the two parts of the images. When part of the
target is misclassified into the background or part of the
background is misclassified into the target, the difference
between the two parts will decrease. .erefore, maximizing
interclass variance minimizes the probability of misclassi-
fication. .e threshold of the image is obtained by using the
maximum interclass variance method [31]. An automatic
extraction method of basic rock skeletons, pores, and
connected parts based on the maximum interclass variance
in the two times method is proposed for the histogram of the
electrical image log image. .ere is one threshold in the
maximum interclass variance method:

g(i, j) �
∈ p f(i, j)≥T,

∉ p f(i, j)<T,
􏼨 (1)

where f(i, j) is the gray value of the original image, g(i, j) is
the gray value of the image after segmentation, and p

represents the gray value of the target; (i, j) represents the
coordinates of the current location, such as
i ∈ [0, l] and j ∈ [0, w], l is the length of the image, w is the
width of the image, and T is the threshold. .ere are two
thresholds in the interclass maximum variance twice
method:

g(i, j) �

p1 f(i, j)≥T1,

p2 T2 ≤f(i, j)<T1,

p3 f(i, j)<T2,

⎧⎪⎪⎨

⎪⎪⎩
(2)

where f(i, j) is the gray value of the original image, g(i, j) is
the gray value of the image after segmentation, (i, j) rep-
resents the coordinates of the current location, such as
i ∈ [0, l] and j ∈ [0, w], l is the length of the image, w is the
width of the image, P1 is the gray value of target 1, P2 is the
gray value of target 2, P3 is the gray value of target 3, T1 is the
first threshold, and T2 is the second threshold. .e histo-
gram of the measured electrical image log image does not
have single peaks but three peaks. .e segmentation results
cannot be obtained by using the maximum interclass var-
iance. .e maximum interclass variance in the two times
method is proposed. According to different distribution

characteristics of the gray levels of different components in
the electrical image log, two threshold segmentation points
with the largest variance and the second largest variance are
calculated sequentially to obtain the automatic segmentation
of basic rock skeletons, pores, and connected parts.

.e maximum interclass variance in the two times
method is the maximum interclass variance method for
extended classes among three classes segmentation. First, the
image is segmented into two classes by using the maximum
interclass variance method, which means that the optimal
threshold T is determined by the maximum interclass
variance method, and the gray level of the full-bore image is
segmented into two parts according to the first threshold T.
.en, the maximum interclass variance method is also used
to calculate the best classifications in each subclass, and the
two best thresholds T1 and T2 are determined, which means
that region P11 and region P12 are determined from sub-
region P1 according to the second threshold T1, and region
P21 and region P22 are determined from subregion P2
according to the third threshold T2. .e second and third
thresholds are determined using the maximum interclass
variance among subclass methods. .e other optimal
threshold T3 is determined from the two best thresholds T1
and T2. Some components are extracted from the full-bore
image using the two best thresholds T3 and T. .e two best
thresholds T3 and T are used to clarify the basic rock
skeletons, pores, and connected parts.

2.3.2. Microfracture Extraction from the CT Scanned Images.
Generally, strata with microfractures show dark or black
features on CT scanned images, which mean that the gray
values are much smaller than the background values.
However, when the underground situations are complex, the
backgrounds of the image become complex, and there will be
dark spots similar to the microfractures, which make
identification of the microfractures difficult. To effectively
separate the targets and backgrounds, the key step is to
segment the CT scanned images, and the OTSU method
proposed by Japanese scholars is a widely used image seg-
mentation method. However, because of the complexity of
the underground strata, there are many dark spots in the
backgrounds, and there are many peaks in the gray histo-
gram. .e segmentation effects of the OTSU are not ideal in
this case. .is method divides many backgrounds into the
microfractures and enlarges the range of dark spots. .ere
are many burrs in the contour of the microfractures, the
boundary is not clear, and the segmentation effects are not
good. .erefore, an image segmentation-based method that
combines the OTSU and watershed methods is proposed,
which can denoise effectively and is suitable for image
segmentation with complex backgrounds.

(1)8e Principle of the Watershed Segmentation Method. .e
basic idea of the watershed method is that the image is
regarded as a topographic surface [32]. .e gray value
represents the height of the ground, and each minimum
represents a low-lying area where water continuously gushes
out and gradually fills the catchment basin related to the low-
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lying area. When water from different low-lying areas
converges at some points, dams will be built at these points
to prevent the water from overflowing..ese dams are called
watersheds, which divide the whole topographic surface into
many areas. .e watershed method usually can be divided
into three kinds: the rainfall method, the submergence
method, and the Vincent–Soille method..e Vincent–Soille
method is adopted in this paper.

(2) 8e Improved Image Segmentation between the Water-
shed and OTSUMethods. .e principle of the OTSUmethod
has been introduced in detail in many articles. .e specific
steps of the combined OTSU and watershed method are as
follows: converting the image into a 8-bit pseudocolor
image, performing morphological open-close filtering to
denoise the image, and converting the image RGB (red-
green-blue) into LUV (light-uniform-variation) color space,
and then, the watershed is segmented to obtain the 24 true
color segmentation image. Additionally, the segmented true
color image is converted into an 8-bit gray image, and finally,
the final segmentation image is obtained by using the im-
proved image segmentation combining the watershed and
OTSU methods. Compared with the traditional OTSU
method, this improved image segmentation method that
combines the watershed and OTSU methods can effectively
extract microfractures, eliminate dark spots in the back-
grounds, and reduce the interference of noise. .is method
is more conducive to microfracture identification and
subsequent fusion processing.

3. Example Analysis

3.1. Extraction of Basic Rock Skeletons, Pores, and Connected
Parts in the Electrical Image Log Image. Figure 1 is the
measured electrical image log image with 5mm resolu-
tion. .e electrical logging image was measured by
EILOG instrument of CPL company. Figure 2 is the full-
bore electrical image log image based on the combination
of multipoint geostatistics and an interpolation method.
Based on Figure 2, compared with the measured image,
the full-bore image can be obtained from the inpainting
image. .rough image inpainting, the amount of in-
formation in the image is increased, which is conducive
to improve the recognition accuracy of subsequent
geological targets. Figure 3 shows extraction of some
components of the image segmentation by using the
maximum interclass variance in the two times method.
Figure 3 shows the extracted macrocomponents such as
basic rock skeletons, pores, and connected parts. Blue
part represents the extracted pores, green part represents
the extracted rock skeleton, and red part represents the
extracted connected parts in Figure 3.

3.2. Extraction of Microfractures in the CT Scanned Images.
Figure 4 is the CT scanned image with 8 micron reso-
lution. CT images were measured with GE scanner.
Figure 5 is the histogram corresponding to Figure 4.
Figure 6 is the CT scanned image showing the

microfractures and some noise. For the single-peak
classification problem shown in the histogram of Fig-
ure 5, when the basic pixels are the background and the
proportion of the foreground pixels is very small, the

Figure 1: .e measured electrical image log image.

Figure 2: .e full-bore image after image inpainting.

Figure 3: Extraction of rock skeletons, pores, and connected parts
using the maximum interclass variance in the two times method.
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OTSU and watershed methods are used to classify
component from the CT scanned images. After the image
noises are removed by filtering, the microcomponents
are extracted. Figure 6 shows the microfractures with
some noises. Figure 7 shows the final extracted

microcomponents after removing noise. .e experi-
mental results prove that using extraction methods for
different components enables better results to be
obtained.

4. Conclusions

Compared with a three-dimensional digital core in sand-
stone reservoirs, carbonate reservoirs include secondary
structures in addition to the basic rock skeleton and pore
components. .ese different components have different
properties. Extracting these different components is a very
difficult problem.

Based on generation of the full-bore image, different
macroscopic components such as basic rock skeletons,
pores, and connected parts are extracted from the full-bore
image, and microfractures are extracted from the CT
scanned images. .e maximum interclass variance in the
two times method is proposed in this paper. .e macro-
scopic components with different properties can be calcu-
lated from the electrical image log images. .e histogram of
multipeaks of different macroscopic components can be well
processed..emethod is proposed to make the extraction of
different components with different properties more accu-
rate. .e improved image segmentation from the combined
watershed and OTSU methods can effectively eliminate
black spots and reduce noise interference in the CT scanned
images.
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)e research and applications of radio direction-finding technology based on machine learning are reviewed. Detailed application
scenarios are summarized with focus on the advantages of machine learning-based direction-finding models. Important elements
such as problem formulation and model inputs and outputs are introduced in detail. Finally, some valuable future research topics
are discussed.

1. Introduction

Radio direction finding is the measurement of the direction
from which a received signal is transmitted. Recently, direc-
tion-finding technology has been widely applied in emitter
localization, jamming guide, determination of communication
relationship, communication network division, cooperative
communication, etc. Radio direction finding is essentially an
inverse problem of signal reception from a given direction, and
the core is the mapping relationship of several signal param-
eters with its incidence direction.

With the advances in machine learning and artificial
intelligence, some researchers gradually began to consider
the problem of direction finding using machine learning
techniques. )e idea of direction finding using machine
learning techniques can be dated back to the 1990s. At that
time, some researchers considered the application of arti-
ficial neural networks (ANNs) to direction finding with fast
development in different types of shallow neural networks.
At about 2000s, support vector machines (SVMs) achieved
satisfactory results in many fields including direction
finding. Recently, deep learning techniques greatly improve
the modeling capability of neural networks and are
attracting more and more researchers and engineers in the
field of direction finding.

With wide applications of machine learning techniques
to direction finding problems, however, a systematic

overview that collects, organizes, clarifies, and compares the
related works has not yet been reported. By this motivation,
facing the applications of machine learning techniques in
direction finding, the main objective of the paper is to collect
and extract the specific problems solved bymachine learning
models, to summarize the main types of model inputs and
outputs, and to raise several problems that deserve further
research.

2. Research and Applications of Machine
Learning Techniques in Direction Finding

In general, machine learning techniques have special
advantages for direction finding in complex scenarios
compared with classical approaches such as analytical
methods and the least square (LS) method. Such complex
scenarios include complex receiving systems, complex
channels, and complex signals. In addition, machine
learning techniques are usually applied to improve di-
rection finding capabilities such as computing speed and
angle resolution. Figure 1 summarizes the direction
finding scenarios where machine learning techniques have
been utilized. In the following, we will review the research
works that could be categorized into the corresponding
application scenarios, with focus on the problems to be
solved and the model inputs and outputs.
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2.1. Concrete Scenarios

2.1.1. Complex Receiving Systems. Scenarios of complex
receiving systems include the scenarios where there are
position errors of antenna elements, the scenarios where
there are mutual coupling of antenna elements and receiving
channel inconformity, the scenarios of nonideal antenna
pattern, and the scenarios where some antenna elements
malfunction.

Shieh and Lin [1] pointed out that high resolution
methods such as multiple signal classification (MUSIC) were
highly sensitive to the structure of the covariance matrix and
required excessively large computation effort. )e estima-
tion of signal parameters by rotational invariance techniques
(ESPRIT) was faster at the expense of increased number of
sensors. Both MUSIC and ESPRIT algorithms were very
sensitive to imperfections of models of signals and noise. To
handle the abovementioned problem, a neural fuzzy scheme
was proposed in [1] based on the phase differences from an
interferometer. A self-constructing neural fuzzy inference
network (SONFIN) was used in [1] which was a general
connectionist model of a fuzzy logic system and could find
its optimal structure and parameters automatically. In ad-
dition, to avoid the discontinuities caused by the input phase
transition, a quadrature representation of the phase differ-
ences was used as the input of SONFIN. )e output of
SONFIN is the direction of arrival (DOA). Simulation re-
sults showed that the SONFIN always produced DOA es-
timates close to the desired DOA values, and the required
number of parameters of SONFIN was much less than that
in classical radial basis function network (RBFN) under the
same root mean square error in DOA.

Motivated by the fact that once an antenna is built and
placed on a certain platform, changes that affect both the
shape of the structure and effectiveness of the materials used
to fabricate the antenna may occur. Christodoulou et al. [2]
proposed a least square support vector machine (LSSVM)
approach to direction finding to make arrays smart so that
the beamforming and beamsteering performance of the

array degraded gracefully when one of the antenna elements
failed. )e LSSVM algorithm was trained with projection
vectors generated from the signal subspace eigenvectors and
the respective covariance matrices. And the output labels
from the multiclass LSSVM system were the DOA estimates.
Rohwer et al. [3] adopted a similar approach for DOA es-
timation. Following the works by Rohwer et al. [3], an
extensive sensitivity analysis was carried out in [4] to un-
derstand how parameters of the LSSVM formulation affect
the performance of the resulting multiclass classifier system,
with a clear dependence on the width of the radial basis
kernel function.

Motivated by the requirement of not monitoring the
failed antenna element and time of failure, S. Vigneshwaran
et al. [5] proposed a direction-finding approach based on the
minimal resource allocation network (MRAN). )e training
for MRAN was conducted under no failure and no noise
cases and the trained network was then used when there was
a failure. To overcome the problem of high direction finding
error near ±90°, Vigneshwaran et al. [5] used the magnitude
and phase angles of the elements of the correlation matrix
instead of their real and imaginary parts as the network
inputs. During the training process, MRAN has larger
number of tunable parameters as it tunes the centers,
weights, and spread of the neurons, whereas the classical
RBFN tunes just the weights. And this leads to higher
generalization capability of MARN.

Dehghanpour et al. [6] dealt with direction finding in
presence of mutual coupling of antenna elements using a
multiple kernel SVM.)e normalized elements of the upper
triangle part of the correlationmatrix were used as the inputs
of the multiple kernel SVM, whereas the DOAs are used as
the model outputs. Simulation results demonstrated the
superiority of the proposed method over classical methods
such as MUSIC, single kernel support vector regression
(SVR), and smooth SVR.

Wang et al. [7] pointed out that the performance of
MUSIC algorithm relied on the precision of the antenna
pattern which could be contaminated by nearby
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Figure 1: Overview of applications of machine learning techniques in direction finding.
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electromagnetic interference and was not easy to measure,
and therefore it was meaningful to seek a direction finding
approach without the need of precise measurement of the
antenna pattern. )ey developed a SVR-based direction
finding method for an M-element radar receiving system.
)e relative magnitude and phase of signals to those of the
reference receiving channel were used as the model input.
)e field experiments conducted in Pingtan and Liuao
validated that the SVR-based method outperformed the
classical MUSIC algorithm.

Liu et al. [8] pointed out that the existing learning-based
direction finding methods suffered the following drawbacks:
(1) the generalization capability was questionable where the
volume of the training set was limited; (2) the existing
methods were mainly applicable to the case of single object
and could not be applied to a general direction-finding
problem when the number of objects was unknown. )ey
proposed a hierarchical framework of deep NNs (DNNs) to
deal with the general DOA estimation problem. )e
framework consists of an autoencoder for spatial filtering
and a multiclass classifier for DOA estimation. )e nor-
malized elements in the upper triangle part of the correlation
matrix were used as the model input. )e simulation results
showed that the proposed method was applicable to the
scenarios when the number of incident directions differed
from those of training samples.

2.1.2. Complex Channels. Research on machine learning-
based direction finding in complex transmitting channels
mainly focuses on indoor direction finding and localization
in presence of multipath effect and heavy reverberation.

Xiao et al. [9] pointed out existing direction finding
approaches faced either one or a combination of the fol-
lowing problems: high-computational cost, nonrealistic
assumptions on signal/noise models, and unreliable per-
formance in real environments. To estimate DOAs in noisy
and reverberate environments, they formulated the task of
direction finding as a classification problem, extracted
features from the generalized cross correlation (GCC)
vectors, and used a multilayer perception (MLP) NN to learn
the nonlinear mapping from such features to the DOA.
Experimental results on simulated data showed that the
method performed much better than the LS method.

To address the problem of localization in adverse en-
vironments such as high reverberation and low signal-to-
noise ratio (SNR), Sun et al. [10] proposed an indoor sound
source localization approach with a probabilistic NN (PNN).
)e GCC features were again used as the network inputs,
whereas the space of interest was divided into a number of
equal-dimensional rectangular clusters.

Cheng et al. [11] compared the capability of several
SVMs and the k-means approach for indoor localization
using the magnitudes of ambient FM and DVB-T signals.
)e comparison results demonstrated the superiority of the
SVMs. In addition, Cheng et al. [11] discussed the problem
of feature extraction and ensemble learning.

Yue et al. [12] pointed out that traditional signal pro-
cessing methods could not handle noise and reverberation

effectively and proposed a learning-based approach of DOA
estimation in a three-dimensional room space. GCC with
phase transform (GCC-PHAT) was used as the input to a
convolutional NN (CNN), and it was formulated as a
classification problem. Accuracy of single sound source
direction detection and compatibility of multiple sound
sources were verified by extensive simulations.

Li et al. [13] proposed a method combining CNN and
long short-term memory (LSTM) network to address the
online DOA estimation in noisy and reverberant environ-
ments. )e proposed approach used a two-dimensional
input matrix spreading over the time and frequency domain
for GCC-PHAT. In addition, the feature matrixes for all
sensor pairs were summed up for robustness improvement.
Experimental results showed that the method was robust to
the topologies of microphone array and the trained model
could get better performance on a new microphone array
structure using only very few new data for adaptation.

Mane et al. [14] proposed a CNN-based classification
method for broadband DOA estimation of a single steady
sound source in noisy and reverberation conditions. )e
input to the CNN was given as the short-time Fourier
transform (STFT) coefficients of the phase components
obtained from the uniform linear array (ULA) of micro-
phones. Similar approach was suggested in [15] with ex-
tension to multiple sources with the assumption of disjoint
speaker activity in STFT domain.

Khan et al. [16] pointed out that the MUSIC spectrum
would not produce a clean outstanding peak in the case of
multipath and proposed a NN-based DOA estimationmodel
with the MUSIC spectrum as the input. )e performance of
the proposed model showed consistent improvement over a
range of channel parameters including elevation angles,
single-to-noise ratios (SNRs), and channel configuration.

Fahim et al. [17] proposed a multisource DOA esti-
mation technique using a CNN algorithm which learnt the
modal coherence patterns of an incident sound field through
measured spherical harmonic coefficients. )e model was
trained with individual time-frequency bins in the STFT
spectrum. )e proposed model was capable of estimating
multiple sound sources on a three-dimensional space using a
single-source training set.

2.1.3. Complex Signals. Wideband signals and coherent
signals impose special difficulties for accurate direction
finding. Recently, some researchers tried to solve the
problem of DOA estimation of wideband or coherent signals
using machine learning techniques.

A novel class of focusing matrices for coherent signal
subspace method was proposed in [18]. )ese matrices are
formed based on a backpropagation (BP) NN and the
concept of uniform focusing transformation of the DOA of
wideband sources.)e proposed DOA estimating procedure
is efficient without prior knowledge of the DOAs.

Lizzi et al. [19] presented an approach for DOA esti-
mation of correlated signals based on a SVM classifier and an
iterative multiscaling approach (IMSA). )e use of SVM
guarantees real-time operations, while the IMSA enhances
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the angular resolution within the regions of incidence of the
incoming signals.

Terabayashi et al. [20] proposed a DOA estimation
method using a complex-valued spatiotemporal NN
(CVSTNN) for ultrawideband (UWB) systems. )e
CVSTNN was combined with the power-inversion adaptive
array (PIAA) for null steering without the knowledge of
incident directions. Simulation and experimental results
demonstrated that the CVSTNN showed a higher accuracy
than the conventional MUSIC method.

A fast DOA estimation method based on CNN for
broadband radio direction finding system was proposed in
[21]. )e phase component of the covariance matrix was fed
into the network, whereas each DOA label was consisted of
the sine and cosine values of the angel of arrival (AOA).

Mack et al. [22] extended broadband DOA estimation to
broadband signal-aware DOA estimation by focusing on
narrow frequency bands dominated by the desired source
and removing the spatial information in other bands. )e
experiments with estimated masks showed the possibility to
combine signal-independent DOA with independently
trained mask estimators to perform signal-aware DOA
estimation.

2.1.4. Capability Enhancement. Capability enhancement is
continuously a core topic for research on direction finding
systems. With the help of machine learning techniques,
researchers have made progress on weight parameter op-
timization for beamforming, computation acceleration, and
direction finding resolution improvement.

)e 1st part of capability enhancement is beamforming
optimization. Xu et al. [23] proposed a beamforming al-
gorithm using SVM. )e sampled signals were used as the
model input, whereas the expected signal sequences served
as the model output.

Savitha et al. [24] compared the performance of
beamforming using the fully complex-valuved RBF (FC-
RBF) network with the fully complex-valued activation
function with the performance of the existing complex-
valued RBF network. )e received signals were used as the
model input and the expected transmitted signals were used
as the model output.

One of smart antennas’ main functions is adaptive
beamforming, which forms a high-gain beam at the desirable
signal directions and weakens interference signals in the
other directions. However, the real-time calculation of
adaptive weighting coefficients is computationally intensive,
especially in the case of a large number of antenna array
elements. Hence, Pei et al. [25] proposed an efficient method
for real-time calculation of beamforming weighting coeffi-
cients based on the generalized regression NN. )e nor-
malized elements of the upper triangle part of the correlation
matrix were used as the model input and the normalized
weighting matrix was used as the model output. )e sim-
ulation results verified the superiority of the proposed
method over the minimum variance distortionless response
(MVDR) method in terms of computing speed.

Salvati et al. [26] presented a weighted MVDR algorithm
for far-field broadband sound source localization in a noisy
environment. A machine learning method based on a SVM
was used for selecting the narrowband components that
positively contributed to the broadband fusion. )e skew-
ness measure of response power function was used as the
input feature for the supervised SVM learning. Simulations
demonstrated the effectiveness of the weighted MVDR in an
outdoor noisy environment.

Zaharis et al. [27] introduced the implementation of
antenna array beamforming based on a simplified CNN.)e
inputs to the CNNwere the AOAs of signals of interest (SOI)
and signals of avoidance (SOA), whereas the output was the
expected magnitude and phase of exciting weights. In the
proposed NN structure, the first hidden layer was divided
into sublayers, and a direct connection between every input
and a respective sublayer was performed in order to alleviate
the performance degradation due to uncertainties in in-
terference correlation.

)e 2nd part of capability enhancement is fast com-
puting. Jha and Durrani [28] pointed out that the maximum
likelihood estimator was the optimal estimator of the di-
rection of sources, but it required the minimization of a
complex, multimode, andmultidimensional cost function. A
neural optimization procedure was presented that did not
require an initial estimate of the direction of sources, which
offered the potential of real-time solutions to the DOA
estimation problem by utilizing the fast relaxation properties
of the Hopfield network.

In 1998, Zooghby et al. [29–31] pointed out that super-
resolution algorithms for DOA estimation were computa-
tionally intensive and hard to implement in real time and
proposed a NN-based direction finding approach. )e ap-
proach was claimed to be able to track any numbers of
incident directions with any angle separation without prior
knowledge on the emitter number. )e approach firstly
divided the angle region of interest into several subregions
and trained the same number of NNs to judge if the emitter
belonged to a given subregion with the normalized upper
triangle part of the covariance matrix as the model input.
Afterwards, several NNs were trained to accurately estimate
the DOAs in each subregion, and each subregion was further
divided into N girds. Simulation results demonstrated that
the proposed NN could estimate different numbers of DOAs
from those of the training samples. )ey also considered
using the DOAs as the NN output directly [32, 33]. Similar
inputs are considered in [34, 35], except that Pour et al. [34]
used a MLP network along with ant colony optimization for
NN training and a BP NN was used in [35]. A similar
treatment for a uniform linear array was adopted in [36].

Jeong et al. [37] addressed the problem for the DOA
estimation of narrowband emitter signals impinging on an
array of sensors by the modified Hopfield NN. )ey showed
that the operation of the NN had an analog with the co-
variance fit estimator in estimating the DOA.

To reduce the computation complexity, Tong et al. [38]
studied satellite interference location through a RBF net-
work. )e time averaged and normalized signals were used
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as the model input, whereas the DOAs were designed as the
model output.

Based on a four-element linear array, Lee [39] compared
the performance of three types of NNs for direction finding,
namely, a Hopfield NN, a BPNN, and a RBFNN. He pointed
out that appropriately choosing the center would accelerate
the training process of the RBF NN.

Chen et al. [40] proposed amethod for reducing the volume
of training samples for two-dimensional direction finding using
a uniform circular array. )e elevation and azimuth were es-
timated in two separate NNs, respectively. A similar strategy for
two-dimensional DOA estimation was adopted in [41] based on
a linear vector quantization (LVQ) NN.

Matsumoto and Kuwahara [42] conducted a direction
finding experiment using a RBF NN. To avoid the discon-
tinuity near 0°, the outputs of the NNwere designed as [sinα,
cosα], where α was the AOA.)e input of the NN is a vector
composed of the normalized elements of the upper triangle
part of the covariance matrix.

Raj et al. [43] pointed out that there were two main
disadvantages of the direction-finding algorithms such as
MUSIC, root-MUSIC, and ESPRIT. Firstly, they are com-
putational intensive. And secondly, they assume that the
antenna elements are exactly equal. Raj et al. [43] used a
nonlinear SVR approach for direction finding where the
fixed number of angles and their corresponding normalized
array input vectors were used as the output/input pair.

Gotsis et al. [44, 45] proposed a DOA estimation
methodology based on NNs and designed for a switched-
beam system. )e method incorporated the benefits of NNs
and switch-beam systems to achieve DOA estimation in a
less complex and expensive way compared to the corre-
sponding widely known super-resolution algorithms. )e
NN firstly despreaded direct sequence code divisionmultiple
access (DS-CDMA) signals and the signal amplitudes of
multiple beams were used as the model inputs. It was shown
that a properly trained NN could accurately find the SOI
AOA at the presence of a varying number of mobile users
and a varying SOI to interference ratio. Similar inputs were
used in [46] to design a compact DOA estimation system
which used only four circularly patch elements. NNs were
used to firstly classify the antenna signals and then estimate
the DOA.

George and Sajjanshetty [47] proposed a technique for
the estimation of DOA of moving signals using two ar-
chitectures of NNs, i.e., feedforward and RBF NNs. A
fundamental assumption made was that the number of
signals was either known, or could be estimated in priori.
)e normalized sensor array output was given as the input to
the network.

Agatonovic et al. [48–51] proposed a two-level NN for
two-dimensional direction finding. )e first-level NN
classified the AOA into a small subregion, whereas the
second-level NN estimated the AOA accurately. )e inputs
to the two NNs were the normalized elements of the first
array of the covariance matrix. To deal with the mutual
coupling among antenna elements, similar methods are
adopted in [52–54]. Similar features are used in [55] for
DOA estimation of a multiple input multiple output

(MIMO) orthogonal frequency division multiplexing
(OFDM) radar.

To reduce the real-time computation burden, Stankovic
et al. [56–59] proposed a direction-finding approach using a
MLP NN. )e inputs of the NN are all elements of the
covariancematrix and the output are the DOAs. NN training
was conducted for the scenarios of one emitter and two
emitters with fixed DOA separation.

Chakrabarty and Habets [60] pointed out that the
existing NNs used generalized correlation or covariance
matrix as model inputs, and even the process of feature
extraction was time consuming. )ey proposed a direction
finding approach for wideband signals using only phase of
each spectral lines. A classification NN was established for
direction finding. )e experimental results demonstrated
that the NN trained by simulated data could be effectively
applied in real signal environments.

Faye et al. [61] demonstrated the ability of a single
uniform linear array (ULA) of isotropic elements along with
an NN approach to achieve two-dimensional DOA esti-
mation. LVQ NNs were sequentially trained on elevation
and azimuth-dependent datasets built from received signal
in predefined spatial sectors chosen in accordance with
pattern symmetry and radiation intensity.

Efimov et al. [62] presented the approach to the design of
AOA estimator for narrowband noise-like signal based on
NN to improve the signal processing speed. )e signal time
delay of each sensor pair was used as themodel input and the
associated AOA was designed as the model output.

Huang et al. [63] proposed a deep learning based super-
resolution DOA estimation model in the uplink MIMO
system with the model input and output to be the array
received signals and the DOA, respectively. Similar treat-
ment was adopted in [64] for sound source localization and
direction finding with a CNN.

)e 3rd part of capability enhancement is resolution
improvement. Wang and Ma [65] compared the estimation
bias and angle resolution of a NN-based direction finding
approach with MUSIC when signals were uncorrelated,
partially correlated, and correlated.

Chen and Hou [66] proposed a principle component
decomposition approach based on a complex-valued NN.
)e estimated feature vectors from the NN were used for
direction finding based on MUSIC to obtain high resolution
estimations. Similarly, Chang et al. [67] proposed a high
resolution bearing estimation method via unitary decom-
position artificial NN.

A DOA estimation method based on a cascaded NN was
proposed in [68] for two closely spaced sources. )e NN
contained two parts: SNR classification network and DOA
estimation network. Due to the cascade structure, the
method could be applied to a wider range of SNR than other
existing algorithms.

3. Summary

Based on the reported studies, Figure 2 summarizes the
commonly used inputs, models, and outputs for machine
learning-based direction finding.
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4. Future Challenges

Based on the above review, it is evident that machine
learning techniques have been widely used in direction
finding. However, there are still many challenges when these
intelligent models are applied to practical engineering
problems.

)e first problem in performing two-dimensional di-
rection finding is the huge volume of training samples which
prohibits practical use of NN models of direction finding.
Chen et al. [40] has suggested a method for reducing the
necessity for training samples for a uniform circular array.
However, an effective training method is still an open issue
for general array formulations.

Section 2 has summarized the common features for
machine learning models. However, it is still unclear which
type is most effective. Deep learning techniques may shed
light on this problem by feeding original signal samples into
a DNN and letting the network learn the feature vectors by
itself.

In the application process of machine learning-based
direction-finding approaches, more training samples can be
collected. It might be interesting to study the incremental
learning method for direction finding which could quickly
update the model capability without batch processing.

For the scenario where elements of an antenna array
fails and the failure time is unknown, Vigneshwaran et al.
[5] suggests an MRAN-based method, but the capability
loss is still remarkable. In engineering applications, it is
common to see failures or degradation of antenna ele-
ments, and it would be beneficial to establish a more
robust direction-finding system by considering the pos-
sibility of element failure even in the training phase of the
NN.

In some cases such as field calibration of satellite an-
tennas, the AOAs may even be uncertain to some extent for
the training samples, and how to establish the mapping
between the extracted features and the AOAs remains an
unsolved problem.

To solve the problem of direction finding when the
AOAs of a testing sample are different from those in the
training samples [8], it is common to use 01 vector as the
model output. It is recognized that a NN for general di-
rection finding is necessary to deal with the problem

effectively, but it is still unclear whether there are other
effective modeling forms of the NN output.

Most current works consider the case of direction
finding for a single central frequency explicitly or inex-
plicitly. For practical cases whenmultiple central frequencies
are of interest, the frequency information must be consid-
ered which may significantly influence array manifold.
Establishing a NN separately for each central frequency may
be very time consuming and hard to implement in real time;
hence, it is necessary to establish a unified NN which could
handle direction finding for multiple central frequencies.

5. Concluding Remarks

)e research and applications of machine learning-based
direction finding are reviewed and discussed, with focus on
application scenarios, concrete problems to be solved, and
model inputs and outputs. Some future challenges and in-
teresting research topics are also discussed. It has been
twenty years since the initial use of machine learning
techniques for direction finding, and it is expected that
direction finding systems have better performance in more
and more complex application scenarios with rapid devel-
opment of dig data and deep learning techniques. And this
all depends on continuous research on related theories and
applications.
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Sparse recovery is one of the most important methods for single snapshot DOA estimation. Due to fact that the original
l0-minimization problem is a NP-hard problem, we design a new alternative fraction function to solve DOA estimation problem.
First, we discuss the theoretical guarantee about the new alternative model for solving DOA estimation problem.(e equivalence
between the alternative model and the original model is proved. Second, we present the optimal property about this new model
and a fixed point algorithm with convergence conclusion are given. Finally, some simulation experiments are provided to
demonstrate the effectiveness of the new algorithm compared with the classic sparse recovery method.

1. Introduction

(e problem of estimating the direction of arrival (DOA) of
signals impinging on an array of sensors is widely applied in
radar, sonar, and wireless communication systems [1–9]. For
fast-moving sources and multipath propagation problems,
snapshots are limited, so high resolution adaptive DOA
estimation approaches such as MVDR [10], MUSIC [11],
and covariance matching methods [12, 13] fail due to in-
accurate estimation of the spatial covariance matrix.

As one of the most important methods designed for
single snapshot DOA estimation, sparse recovery has its own
advantage for single snapshot case [14–17]. By dividing the
angle range into grid points, the number of source is much
less than that of grid points. By matching the grid points,
these methods usually consider to solve the following
l0-minimization:

min ‖x‖0

s.t. Ax � y,
(1)

where ‖ · ‖0 stands for the number of nonzero elements. In
recent years, many sparse algorithms such as OMP and

l1-minimization [18–22] have been applied to solve this
problem. Although a lot of work has given the rationality
of sparse recovery algorithms [23–25], these conditions
not only require the measurement matrix to meet the RIP
condition, but also the corresponding RIC constant to
meet certain conditions. However, verifying RIP condi-
tions for a given matrix is itself an NP-hard problem, and
the current RIP estimation conclusion is only valid for
random matrices. However, DOA measurement matrix
does not have such a random structure, so it is difficult to
directly verify its RIP conditions. (erefore, there is no
sufficient guarantee of model theory. In order to over-
come these difficulties, we use the following fraction
function:

gp(x) �
|x|

������

x
2

+ p

􏽱 , (2)

to replace the original 0-norm. In Figure 1, it is easy to get
that the new alternative function tends to 0-norm when
p⟶ 0. (erefore, it is reasonable to believe this function is
a good choice.
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1.1. $e Existed Main Problems of Classic Sparse DOA Esti-
mationMethods. As the main idea of these methods, the real
DOA is recovered bymatching the real solution with the grid
points. In order to deal with off-grid cases, we have to reduce
the spacing between these points and increase the number of
grid points. If we do not care about the hardware, the main
problem caused by a big number of grid points is the
measurement matrix A with high coherence μ(A) which
leads to invalidation of the existed sparse methods, such as
l1-minimization and OMP.

For a given matrix A, the coherence μ(A) is defined as

μ(A) � max
i≠j

A
T
i Aj

Ai

����
����2 Aj

�����

�����2

. (3)

In [24], OMP can recover the real sparse solution as long
as the number of sources k satisfies the following inequalities:

k<
1
2

1 +
1

μ(A)
􏼠 􏼡. (4)

Meanwhile, it is obvious that the coherence will increase
as long as the number of grid points increases. In Figure 2,
the coherence of measurement matrices changes as the
number of grid points increases, and it is obvious that OMP
only can guarantee one source when the number of grid
points is more than ten.

Besides, increasing the number of grid points also lead to
the RIP condition deterioration of the measurement matrix.
A matrix A is said to satisfy RIP of order 2k if and only if
there exists a constant δ2k ∈ (0, 1) such that

1 − δ2k( 􏼁‖x‖
2
2 ≤ ‖Ax‖

2
2 ≤ 1 + δ2k( 􏼁‖x‖

2
2, (5)

for any 2k sparse vector x. It is obvious that δ2k increases as
the number of grid points increases until RIP is no longer

satisfied. For the alternative method, [25] has proved that k

sources can be recovered as long as δ2k ≤ (
�
2

√
/2), and this

condition is theoretical optimal.
(erefore, both greedy algorithms and l1-minimization

are difficult to deal with situation when the number of grid
points increases.

1.2.$eMain Contribution of$is Paper. To summarize, the
main contribution of this paper can be expressed as follows:

(1) In order to design a reasonable sparse recovery
model for solving DOA estimation, we use the al-
ternative function gp(·) to replace 0-norm and give
some theoretical analysis about the new alternative
function

(2) With theoretical guarantee about the new alternative
model, we design a fixed iterative algorithm and the
convergence conclusion is also given

(is paper is organized as follows. In Section 2, we
review the model processing of DOA estimation problem
and give the upper number of sources that the sparse method
can recover. We give a new alternative function gp(·) for
l0-minimization and prove the equivalence between the new
models and the original sparse model both in noiseless and
noise cases. By analysing the optimal property about this
new model in Section 3, an algorithm designed for mini-
mizing the fraction function gp(·) and its convergence are
presented. Some simulation experiments are given. Com-
pared to some classic methods, the proposed method has a
better result than others.

1.3. Symbols. (rough this paper, we use θ∗ ∈ RK,

θ∗ � α1, α2, . . . , αK􏼈 􏼉, (6)

which stands for the real DOA solution, and use Θ ∈ Rn,
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Θ � θ1, θ2, . . . , θn􏼈 􏼉, (7)

which stands for the grid point sets. For convenience, for
x ∈ Rn, its support is defined by suppt(x) � i: xi ≠ 0􏼈 􏼉 and
the cardinality of set Ω is denoted by |Ω|. Let Ker(A) �

x ∈ Rn: Ax � 0{ } be the null space of the matrix A. We
define subscript notation xΩ to be such a vector that is equal
to x on the index set Ω and zero everywhere else and use the
subscript notation AΩ to denote a submatrix whose columns
are those of the columns of A that are in the set index Ω. Let
Ωc be the complement of Ω. For any positive integer n, we
denote [n] � 1, 2, 3, . . . , n{ }.

2. Sparse DOA Estimation Model and Some
Theory Analysis

2.1. Data Model. Assume that K far-field stationary and
narrowband signals impinge on an M-element uniform
linear array with DOAs ofΘ∗ � [θ1, θ2, . . . , θK]. For a given
θ ∈ R, define a vector A(θ) ∈ RM,

A(θ)m � exp −j2π(m − 1)
d · sin θ

λ
􏼠 􏼡􏼠 􏼡, (8)

where m ∈ [M] and where d is the distance between ad-
jacent sensors and λ is the wavelength of the incident signals.
(en, the array outputs of N snapshots can be expressed as

y(t) � A Θ∗( 􏼁s(t) + n(t), t � 1, 2, . . . , N, (9)

where s(t) � [s1(t), s2(t), . . . , sK(t)]T stands for far-field
signals and n(t) stands for the noise vector. A(Θ∗) is an
M × K array manifold matrix, whose elements

A Θ∗( 􏼁 � A θ1( 􏼁, A θ2( 􏼁, . . . , A θK( 􏼁􏼂 􏼃. (10)

We consider to recover θ∗ from a grid points set
Ω � α1, α2, . . . , αn􏼈 􏼉 ∈ Rn. If Θ∗ ⊆Θ, then there exist two
mappings πΘ∗ ,Ω: [K]⟶ [n] and μΘ∗ ,Ω: Θ∗ ⟶ Ω such
that

uΘ∗,Ω θi( 􏼁 � απΘ∗ ,Ω(i). (11)

It is obvious that

A(Θ)x
∗
(t) � y(t), (12)

where

x
∗
(t)i �

sπΘ∗ ,Ω(i)(t), i ∈ πΘ∗,Ω([K]),

0, else.
􏼨 (13)

Once n≫M and N � 1, we can recover Θ∗ via the
following l0-minimization:

min
x∈Rn

‖x‖0

s.t. A(Ω)x � y(t).
(14)

(en, we can recover Θ∗ by
supp(x) � i ∈ [n] | ‖xi‖2> 0􏼈 􏼉.

2.2. Sparse DOA Estimation via Minimizing Fraction
Function. As one of the most important methods designed
for single snapshot DOA estimation, the following theorem
shows the upper bound on the number of sources by the
sparse method.

Theorem 1. For the measurement matrix A(Ω) ∈ CM×n

defined in (10), if θ∗ ⊆Θ, K< ((M + 1)/2) and there is no
noise during the measurement; then, the real solution Θ∗ of
DOA estimation can be recovered by l0-minimization (14),
i.e.,

Θ∗ � αi

􏼌􏼌􏼌􏼌 i ∈ supp(x)􏽮 􏽯, (15)

where x is the solution of model (14).

Proof. Without loss of generality, we consider the following
vector x∗ ∈ Rn:

x
∗
i �

sπΘ∗ ,Ω(i), i ∈ πΘ∗,Ω([K]),

0, else.
􏼨 (16)

It is obvious that A(Ω)x∗ � y and ‖x∗‖0 ≤K. (erefore,
it is enough to prove that x∗ is the sparsest solution of
A(Ω)x∗ � y.

If there exists another solution z∗ ∈ Rn such that

A(Ω)z
∗

� y,

z
∗����
����0 < x

∗����
����0 ≤K.

(17)

(erefore, we can get that z∗ − x∗ ∈ Ker(A(Ω)) and

z
∗

− x
∗����
����0 ≤ z

∗����
����0 + x

∗����
����0 ≤ 2K≤M, (18)

since K<M + (1/2).
However, for the given Vandermonde matrix A(Ω), it is

obvious that any of its submatrix of order M is a full-rank
matrix; i.e., for ∀S ∈ [n], we have that

A(Ω)S

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 􏽙

u,v∈S
u<v

exp
−j2πd · sin θu

λ
􏼠 􏼡 − exp

−j2πd · sin θv

λ
􏼠 􏼡􏼠 􏼡≠ 0,

(19)

since θu ≠ θv, which is contradict conclusion (18).
By (eorem 1, the performance of the sparse recovery

method is clearly demonstrated. In practices, we usually
consider the following model because of noise:

min
x∈Rn

‖x‖0

s.t. ‖A(Ω)x − y‖f ≤ ε,
(20)

where ‖ · ‖f stand for a certain norm. Similar to discussion
above, in this paper, we use the following l

f
gp

(ε)-minimi-
zation model instead of (20):

min
x∈Rn

‖x‖gp

s.t. ‖A(Ω)x − y‖f ≤ ε.
(21)
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Before, we prove the equivalence between (20) and (21),
some lemmas are needed.(e following lemma is easy to get
by the definition of ‖ · ‖0, and we leave the proof to the
readers. □

Lemma 1. If x∗ is the solution of l0-minimization (22), then
the column vectors belong to supp(x∗) are linearly
independent.

Lemma 2. If x∗ is the solution of l
f
gp

(ε)-minimization (23),
then the column vectors belong to supp(x∗) are linearly
independent.

Proof. If the submatrix Asupp(x∗) is not full rank, then there
exists a vector h ∈ Ker(A) such that supp(h)⊆ supp(x∗).
For such x∗ and h, let

a � max
hi≠0

x
∗
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

hi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

. (22)

(erefore, it is easy to get that

sgn x
∗
i + αhi( 􏼁 � sgn x

∗
i − αhi( 􏼁 � sgn x

∗
i( 􏼁, (23)

for α ∈ [0, a] with x∗i ≠ 0.
Since gp(x) is a concave function when x≥ 0, it is easy to

get that

gp x
∗
i( 􏼁 � gp

1
2
x
∗
i + αhi +

1
2
x
∗
i − αhi􏼒 􏼓≥

1
2
gp x
∗
i + αhi( 􏼁

+
1
2
gp x
∗
i − αhi( 􏼁.

(24)

(erefore, we can get that

gp x
∗
i( 􏼁≥

1
2
gp x
∗
i + αhi( 􏼁 +

1
2
gp x
∗
i − αhi( 􏼁, (25)

and it is easy to get that

x
∗����
����gp
≥
1
2

x
∗

+ αh
����

����gp
+
1
2

x
∗

− αh
����

����gp
, (26)

which contradicts the assumptions.
In order to extend of application of gp(·) in sparse

recovery, we consider the following models, F0(r)-mini-
mization and Fgp

(r)-minimization. Furthermore, (20) and
(21) can be treated as special cases of these two models:

min ‖x‖0

s.t.
Ax≤ b,

‖x‖∞ ≤ r,
􏼨

(27)

min ‖x‖gp

s.t.
Ax≤ b,

‖x‖∞ ≤ r.
􏼨

(28)

Next, the following theorem shows the equivalence
between F0(r)-minimization and Fgp

(r)-minimization. □

Theorem 2. For any A, b, and r, there exists a constant
p∗(A, b, r) such that the solution of Fgp

(r)-minimization (28)
also solves F0(r)-minimization (27) whenever
0<p<p∗(A, b, r).

Proof. It is easy to get the constraint region in model (27)
and model (28) are polygons which is a convex combination
of its limited extreme points.

Define a set V � ] ∈ Rn | ]i ∈ −1, 0, 1{ }􏼈 􏼉, and ‖ · ‖gp
is a

concave function for a given quadrant x | sgn(x) � ],􏼈

] ∈ V} so the solution of the following problem must be
contained in the extreme points of the convex polygon
x ∈ Rn | sgn(x) � ], Ax≤y, ‖x‖∞ ≤ r􏼈 􏼉:

min
sgn(x)�]

‖x‖gp

s.t.
Ax≤y,

‖x‖∞ ≤ r.
􏼨

(29)

Since the number of quadrants in Rn is limited, so there
exists a limited point set 􏽢V such that model (28) is equal to

min
x∈􏽢V

‖x‖gp

s.t.
Ax≤y,

‖x‖∞ ≤ r.
􏼨

(30)

For such limited points set 􏽢V, define its subset V∗ as

V
∗

� x ∈ 􏽢V | ‖x‖0 ≤ ‖y‖0,∀y ∈ 􏽢V􏽮 􏽯. (31)

Since ‖ · ‖gp
is a continuous function and the element

number of 􏽢V is limited, we can define a constant p∗(A, y, r)

such that

‖x‖gp
<‖y‖gp

, (32)

for any x ∈ V∗, y ∈ 􏽢V \ V∗, and 0<p<p∗(A, y, r). Finally, it
is obvious that the elements of V∗ also solve F0(r)-mini-
mization (27) since ‖ · ‖gp

is a continuous function.
(e proof is completed. □

Corollary 1. For the noiseless cases and the measurement
matrix A(Ω) ∈ CM×n defined in (10), if Θ∗⊆Ω and
K< ((M + 1)/2), then there exists a constant p∗(A, y) such
that the real solutionΘ∗ of DOA estimation can be recovered
by both model (20) and model (21) whenever
0<p<p∗(A, y).

Proof. By Lemma 2, it is obvious that both of model (20) and
model (21) are equal to the themselves with a bounded
constrained ‖x‖∞ ≤T(A(Ω), y), where

T(A(Ω), y) � min
xi≠0

xi

􏼌􏼌􏼌􏼌 A(Ω)x � y, rank A(Ω)supp(x)􏼐 􏼑 � ‖x‖0􏽮 􏽯.

(33)

Since the solution x of Ax � y with Asupp(x) � ‖x‖0 is
limited, it is impossible to calculate T(A(Ω), y) for given
A(Ω) and y.
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By(eorem 1, we can conclude the equivalence between
model (27) and model (28), and the proof is completed. □

Corollary 2. Let f � 1 or f �∞, then there exists a constant
p∗f (A, b, ε) such that the solution of l

f
gp

(ε)-minimization (28)

also solves l
f
gp

(ε)-minimization (27) whenever
0<p<p∗f (A, b, ε).

Proof. By the prove in (eorem 1, it is enough to prove the
constraint zone in (27) and (28) are polytopes. By Lemmas 1
and 2 and (33), it is easy to find that the solutions of (27) and
(28) are contained in a bounded zone.

When f � 1 or f �∞, the constraint zone ‖Ax − y‖f

can be rewritten as

Δ(Ax − y)≤ ε1,

− ε1 + y≤Ax≤ ε1 + y,
(34)

where the matrix Δ ∈ R2n×n with Δi,j ∈ −1, 1{ } stands for the
whole permutations by −1, 1.

(e proof is completed. □

3. A Sparse Recovery Algorithm Designed for
DOA Estimation

In Section 2, we show the theoretical performance of DOA
sparse methods and the equivalence between the alternative
function gp(·) and the original 0-norm. In this section, we
will focus on the algorithm designed for DOA estimation. As
the theoretical basis for new algorithm, the following the-
orem shows us the local property of lgp

-minimization.

Theorem 3. If Θ∗ ⊆Ω, 2K<m + 1, and
0<p<p∗(A(Ω), y), then x∗ is the solution of model (14):

x
∗
i �

sπΘ∗ ,Ω(i), i ∈ πΘ∗ ,Ω([K]),

0, else,
􏼨 (35)

and x∗ satisfies the following equalities:

x
∗

� Γ x
∗

( 􏼁A
T

AΓ x
∗

( 􏼁A
T

􏼐 􏼑
†
y, (36)

where Γ(x) is a diagonal matrix with
Γ(x)i,i � (|xi|(x2

i + p)1.5/p).

Proof. Without loss of generality, we assume that supp(x) �

[K] and consider the following problem:

min
t∈Rs

‖t‖gp

s.t. Bt � y,
(37)

where B � A(Ω)[K]. It is obvious that x[K] is the solution of
model (37) and there exists a constant η small enough such that
the function ‖ · ‖gp

is differentiable at the point x � x[K] when
‖t − x[K]‖2≤ η. (erefore, KKT condition can be applied in
such area. Define the Lagrange function L(t, λ) as follows:

L(t, λ) � ‖t‖gp
− λT

(Bt − y). (38)

(erefore, x[K] must be the solution of the following
equations:

zL

zx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0,

Bt � y.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(39)

To solve equation (39), we can get that

λ∗ � BF(z)B
T

􏼐 􏼑
−1

b,

x[K] � Γ x[K]􏼐 􏼑B
T

BΓ x[K]􏼐 􏼑B
T

􏼐 􏼑
−1

y.

(40)

Since supp(x∗) � [K], it is easy to get that

x � Γ(x)A(Ω)
T

A(Ω)Γ(x)A(Ω)
T

􏼐 􏼑
−†

y. (41)

By analysis expression (36), a fixed point iterative al-
gorithm is presented in Algorithm 1. Next, the following
theorem shows the convergence conclusion of this new
algorithm. □

Theorem 4. $e sequence xk􏼈 􏼉 produced by

x
k+1

� Γ x
k

􏼐 􏼑A
T

AΓ x
k

􏼐 􏼑A
T

􏼐 􏼑
†
y, (42)

satisfies the following equality:

x
k+1

�����

�����gp

≤ x
k

�����

�����gp

, (43)

and the limit point x∗ satisfies equality (36).

Proof. Since xk+1 � Γ(xk)AT(AΓ(xk)AT)†y, it is obvious
that

Γ x
k

􏼐 􏼑
†
x

k+1
� A

T
AΓ x

k
􏼐 􏼑A

T
􏼐 􏼑

†
y,

Ax
k+1

� y.

⎧⎪⎨

⎪⎩
(44)

(erefore, we can conclude that xk+1 is the solution of
the following problem:

min
x

x
TΓ x

k
􏼐 􏼑

†
x

s.t. Ax � y,

(45)

i.e.,

􏽘

xk
i
≠0

gp x
k
i􏼐 􏼑

x
k
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
x

k+1
i􏼐 􏼑

2
≤ 􏽘

xk
i
≠0

gp x
k
i􏼐 􏼑 x

k
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (46)

By the expression of gp(·), it is easy to get that

gp x
k+1
i􏼐 􏼑 −

gp
′ x

k
i􏼐 􏼑 x

k+1
i􏼐 􏼑

2

2 x
k
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
≤gp x

k
i􏼐 􏼑 −

x
k
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌gp
′ x

k
i􏼐 􏼑

2
. (47)

By (46) and (47), we can conclude that

x
k+1

�����

�����gp

≤ x
k

�����

�����gp

. (48)
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Since ‖ · ‖gp
≥ 0 and ‖x‖gp

� 0 if and only if x � 0, the
sequence ‖xk+1‖gp

is convergent and the limit point x∗ is the
solution of

min
x

x
TΓ x
∗

( 􏼁
†
x

s.t. Ax � y.
(49)

By the Lagrange function of (49), we can get the con-
clusion of this theorem.

Next, we will give some experiment results to show the
effective of the proposed method. In Figure 3, we consider
the case when Θ∗ ⊆Ω. In this experiments, we take M � 40
and n � 180, and the range of angle is [−90o, 90o]. Under
different SNR 80 dB, 20 dB, 15 dB, 10 dB, 5 dB, and 0 dB, it is

Require: A ∈ Rm×n, b ∈ Rn, p, x1

Ensure: x∗

F � Γ(x1)

for k � 1, 2, · · · until convergence do
xk+1 � FAT(AFAT)†b

F � Γ(xk+1)

k � k + 1
end for
x∗ � xk+1

ALGORITHM 1: An sparse recovery algorithms for DOA estimation.
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Figure 3: (e result of the proposed method and classic method: (a) 80 dB, (b) 20 dB, (c) 15 dB, (d) 10 dB, (e) 5 dB, and (f) 0 dB.
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obvious that the proposed method has a better result than
other classic algorithms and it should be emphasized that the
proposed method can recover 10 sources which are much
closer to theoretical optimal value in (eorem 1. □

For off-grid case, we give a reasonable estimation of the
real solution by FFT [26] and then divide the responding zone
to match the real solution by a more nuanced division. In
Figure 4, the real DOA solution Θ∗ � −17.7°, 19.25°, 51°{ },
the left one shows us a rough estimation of real solution by
FFT, then we divide 200 grid points around −21.1°, 16.26° and
46.05° with a 0.1° interval, the right one shows the result of a
more precise segmentation by the estimation.

4. Conclusion

In this paper, we consider the alternative function gp(x) to
replace 0-norm. Furthermore, the equivalence relationship
between these twomodels is presented. Although gp(x) is not
a smooth function, we give an analysis expression of its local
optimal solution and a fixed point algorithm. Finally, we use
this new alternative function to solve DOA estimation
problem. Compared to some classic algorithms, the result of
our method is better than the classic algorithms. In con-
clusion, the authors hope that in publishing this paper, a brick
will be thrown out and be replaced with a gem.
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Sparse arrays, which can localize multiple sources with less physical sensors, have attracted more attention since they were
proposed. However, for optimal performance of sparse arrays, it is usually assumed that the circumstances are ideal. But in
practice, the performance of sparse arrays will suffer from the model errors like mutual coupling, gain and phase error, and
sensor’s location error, which causes severe performance degradation or even failure of the direction of arrival (DOA) estimation
algorithms. In this study, we follow with interest and propose a covariance-based sparse representation method in the presence of
gain and phase errors, where a generalized nested array is employed. )e proposed strategy not only enhances the degrees of
freedom (DOFs) to deal with more sources but also obtains more accurate DOA estimations despite gain and phase errors. )e
Cramer–Rao bound (CRB) derivation is analyzed to demonstrate the robustness of the method. Finally, numerical examples
illustrate the effectiveness of the proposed method from DOA estimation.

1. Introduction

Superresolution direction finding is a key branch of signal
processing, which has received much attention in many
fields like radar systems, communication, and navigation
[1, 2]. In the last decades, the research of direction of arrival
(DOA) estimation has successively gone through three
stages: adaptive beamforming, subspace decomposition
(such as multiple signal classification (MUSIC) [3], esti-
mation of signal parameters via the rotational invariance
technique (ESPRIT) [4], etc.), and subspace fitting (such as
maximum-likelihood (ML) algorithm [5], weighted sub-
space fitting (WSF) algorithm [6], etc.). With the develop-
ment of the algorithms, issues such as aperture expansion,
optimization of hardware resource requirements, array
structure design, and resolution accuracy improvement
[7, 8] have been gradually solved, laying a solid foundation
for further broadening the application prospects.

However, the uniform linear array (ULA) is always
applied in most of the traditional DOA estimation methods
due to modeling and computation convenience. For ULAs,
most N − 1 sources can be detected with N physical sensors.

Besides, the arrangement of ULAs will make it difficult to
achieve in some scenarios and increase the system cost.
Several sparse arrays are designed in this context. Nested
array [9] and coprime array [10] are the most representative
geometries, which can resolve O(MN) sources with only
M + N − 1 physical sensors. Attracted by the effectiveness of
sparse array (e.g., enhancing degrees of freedom, reducing
mutual coupling, and eliminating angle ambiguity), a series
of DOA estimation algorithms have been developed [11–19].
A spatial smoothing method was proposed in [8], which
achieved superresolution direction finding for sparse arrays.
However, discrete virtual elements limit the ability to detect
more sources by utilizing the spatial smoothing method. In
order to improve the utilization of the discrete virtual ele-
ments, the multifrequency high-order cumulant algorithms
were proposed in [13] and virtual array interpolation
methods were introduced to build a nonuniform virtual
array by the idea of array interpolation [14, 15]. To achieve
better estimation performance, the category of sparse re-
construction algorithms, which can also be utilized to deal
with the coherent sources, was extended to sparse arrays
[16–19]. Another method of taking advantage of difference
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coarray is array geometry optimization method; the super
nested array (SNA) and generalized nested array (GNA)
were designed in [20, 21]. All the new forms of sparse arrays
aimed to construct the optimal array geometry with largest
DOFs and least mutual coupling.

However, the foregoing strategies are highly sensitive
to the accuracy of the manifold matrix. In practice, the
DOA estimation system will suffer from one or more
model uncertainties inevitably like gain and phase error,
mutual coupling, and sensor location error, which will
lead to severe performance degradation or even failure of
the direction of arrival estimations [22, 23]. Various
corresponding algorithms have been proposed to elimi-
nate the influence of gain and phase error, such as
Hadamard product method [24], eigenstructure method
[25], and ESPRIT-like method [26]. Unfortunately, most
of the calibration strategies were proposed based on the
assumption of ULA, which was invalid for sparse arrays in
underdetermined cases. Partial Toeplitz structure of the
covariance matrix and the sparse total least squares
(STLS) method were utilized to estimate the parameters
for nested array in [27]. But the prior knowledge of the
noise power was required. Tian aimed to calibrate the
error in the underdetermined case by applying a partly
calibrated nested array and a high-power calibrated
source [28]. )ough the mathematical derivation and
simulations demonstrated the effectiveness of the method,
it was difficult to find sensors with accurate calibration in
practice.

Motivated by the sparse arrays and the proposed
methods, a novel strategy for an underdetermined case is
proposed in this paper. Firstly, a GNA is applied to enhance
the DOFs which enable us to deal with more sources than
traditional sparse arrays. To achieve better DOA estimation
performance and reduce the adverse effect of gain and phase
error, we transfer the DOA estimation into a sparse re-
construction problem with nonnegativity constraint by
exploiting a covariance-based sparse representation method.
To further demonstrate the robustness of the strategy, the
Cramer–Rao bound is derived subsequently.

)e remainder of this paper is organized as follows. In
Section 2, the geometry and signal model of GNA are
constructed, respectively. Next, it is proved that the tradi-
tional eigenstructure method is invalid in the under-
determined case and a covariance-based sparse
representation method is introduced in Section 3. In Section
4, we derive the Cramer–Rao bound (CRB) for further
demonstration. Numerical results are provided to evaluate
the effectiveness of the proposed method in Section 5, and
the conclusion is drawn in Section 6.

Notations: throughout this paper, ⊗, ∘, and ⊛ represent
the Kronecker product, Khatri–Rao product, and con-
volution product, respectively. (·)T, (·)H, and (·)∗ denote
the transpose, conjugate transpose, and complex conju-
gate operations, respectively. R(·) and I(·) denote the
real part and imagery part of a complex number. diag(·),
vec(·), and E[·] represent the diagonal matrix operation,
vectorization operation, and expectation operation,
respectively.

2. Problem Formulation

2.1. Generalized Nested Array. Generalized nested array is a
flexible sparse array with more DOFs and less mutual
coupling. As shown in Figure 1, the GNA is constructed by
two concatenated ULAs, where the inner subarray is an
N1-elements ULA with interelement spacing of αd and the
outer is an N2-elements array with spacing β d. Herein, d

equals λ/2, where λ represents the wavelength of the signal.
Different from the traditional nested array, the element
spacings α and β are two arbitrary coprime integers.

Figure 1 indicates that the sensor position set as follows:

DGNA � 1, 1 + α, ..., 1 + N1α, 1 + N1α + β, ..., 1 + N1α + N2 − 1( 􏼁β􏼈 􏼉.

(1)

According to (1), it is easy to find that the GNA has two
special cases. When α � 1 and β � N1 + 1, the GNA becomes
the nested array. When α � N2 and β � N1, the GNA can be
interpreted as Coprime Array with Displaced Subarrays
(CADiS) [19].

Based on the sensor position setDGNA, we can obtain the
difference coarray of GNA by the following equation:

SGNA � S+
GNA∪S

−
GNA

S+
GNA � n1α + n2β, n1 ∈ 0, N1􏼂 􏼃, n2 ∈ 0, N2 − 1􏼂 􏼃􏼈 􏼉,

(2)

where S+
GNA and S−

GNA denote the positive and negative part
of the difference coarray, respectively. And the values in
S+
GNA and S−

GNA are symmetric to zero.
By analyzing the vectorized covariance matrix, only

when α � 1 or β � 1 can the values in difference coarray
SGNA be contiguous. )e larger α and β are, the more in-
consecutive lags exist. According to the proof in Ref. [13],
when α ∈ [1, N2] and β ∈ [1, N1 + 1], the range of contig-
uous lags in the positive part of S+

GNA is
[(α − 1)(β − 1), N1αN2β − αβ + α − 1]. In addition, if we
define [f � N1α + N2β − αβ + α − 1], the number of unique
lags in SGNA can reach 2f + 1 in the same assumption.

Consider a GNA with N � N1 + N2 sensors, the DOFs
of the array under the constraints of α ∈ [1, N2] and
β ∈ [1, N1 + 1] can be obtained by the following equation:

fmax �
N2 + 2N − 1( 􏼁/2, N is odd, N1 � N2 − 1,

N2 + 2N − 2( 􏼁/2, N is even, N1 � N2.

⎧⎨

⎩

(3)

With the optimal factors of α � N2, β ∈ [1, N1 + 1], or
α ∈ [1, N2], β � N1 + 1. In that case, the DOFs of GNA are
the same as the nested array or SNA.

)e nested array and coprime array with the same el-
ements as GNA (α � 4, β � 3) are selected for direct com-
parison. Sensors location and DOFs of the three kinds of
arrays are listed in Table 1.

Figure 2 shows the coarray location of the sparse arrays.
Compared with nested array and coprime array, both the
GNA and nested array have the same DOFs, while the
coprime array has the least DOFs.

In general, the GNA possesses the advantages of both
nested array and coprime array. )e GNA not only provides
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the larger DOFs but also reduces the mutual coupling
owning to the large element spacing. However, the large
factors lead to short contiguous lags, which makes spatial
smoothing MUSIC (SS-MUSIC) algorithm inapplicable. In
practice, the compressive sensing (CS) algorithm can be
widely utilized to estimate the DOA in this case.

2.2.ArraySignalModel. Consider a GNAwith N � N1 + N2
sensors, which receives K uncorrelated far-field narrow-
band sources from θ1, θ2, ..., θK􏼈 􏼉. )en the received signal
under ideal condition is denoted by the following equation:

x(t) � As(t) + n(t), (4)

where s(t) denotes the signal vector and
A � [a(θ1), a(θ2), ..., a(θK)]T is the manifold matrix. a(θk) �

[e− j2πd1d sin θk/λ, ..., e− j2πdNd sin θk/λ]T represents the steering
vector, where dn(n � 1, 2, ..., N) denotes the n-th sensor’s
position. n(t) is the noise vector, which is assumed to follow
the Gaussian distribution and uncorrelated with the sources.

Now consider the scenario that each sensor is affected by
gain and phase error, then (4) can be rewritten as follows:

x(t) � 􏽦As(t) + n(t) � ΦΨAs(t) + n(t), (5)

whereΦ andΨ denote the gain error matrix and phase error
matrix, respectively. Φ and Ψ are both N × N diagonal
matrices, whose diagonal entries are given by the following
equation:

[Φ]ii � ρi, [Ψ]ii � e
jψi , i � 1, 2, ..., N. (6)

)en, we obtain the covariance matrix of the received
signal based on (5)

􏽥R � E x(t)xH
(t)􏽨 􏽩� ΦΨARSA

HΨHΦH
+ σ2IN ≈

1
L

􏽘
L

l�1
x(t)xH

(t),

(7)

where RS � diag(p) � diag([σ21, σ22, ..., σ2K]T) denotes the
source covariance matrix and σ2k represents the power of the
k-th source. In addition, σ2 denotes the power of the noise
signal and L is the number of snapshots.

Define the covariance matrix S without gain and phase
error or noise, then we have the following equation:

S � ARSA
H

. (8)

Rewriting the relation in (7), it can be obtained as
follows:

􏽥R � ΦΨSΨHΦH
+ σ2IN. (9)

As we all know, gain and phase errors will lead to severe
performance degradation or even failure of traditional DOA
estimation algorithms. For ULA conditions, the covariance
matrix 􏽥R has Toeplitz structure, which makes it easy to
correct the model errors. However, the nonuniformity of
GNA destroys the Toeplitz structure and increases the
difficulty of DOA estimation.

Sparse ULA with N1 elements

dd

Sparse ULA with N2 elements

Figure 1: Geometry of generalized nested array.

Table 1: Sensor location and DOFs of NA, CPA, and GNA.

NA CPA GNA
Sensors location {1, 2, 3, 4, 5, 10, 15, 20} {0, 3, 6, 9, 4, 8, 12, 16} {1, 5, 9, 13, 17, 20, 23, 26}
DOFs 39 27 39
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Figure 2: Coarray location of the (a) nested array, (b) coprime array, and (c) GNA.
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3. DOA Estimation Strategy

Although the Toeplitz structure of the covariance matrix will
be destroyed by the nonuniformity of sparse arrays, it still
can be utilized to estimate some parameters of the gain and
phase error. Define a function zp,q � dp − dq, p, q ∈ [1, N]

to indicate the positions of the virtual elements.
It is obvious that the (p, q)-th element of S can be

defined as follows:

[S]p,q � 􏽘
K

k�1
σ2ke

j2π dp−dq( 􏼁d sin θk/λ. (10)

)en, we rewrite the covariance matrix without noise as
follows:

R � 􏽥R − σ2I. (11)

σ2 denotes the noise power, which can be obtained by es-
timating theminimum eigenvalue of 􏽥R.)e element ofR can
be defined as rp,q � [S]p,qρpρqej(ψp−ψq).

Considering the gain error, a series of equations can be
given by the following equation:

μi,t,p,q � ln
|r|i,t
|r|p,q

􏼨 􏼩 � ln
ρiρt

ρpρq

􏼠 􏼡 + ln
[S]i,te

j ψi−ψt( )
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

[S]p,qej ψp−ψq( 􏼁
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

(12)

where μi,t,p,q denotes a quantity determined from R.
Similar to the ULA case [27], select the elements which

satisfy di − dt � dp − dq. )erefore, (12) can be simplified as
follows:

μi,t,p,q � ln ρi + ln ρt − ln ρp − ln ρq. (13)

In order to estimate the gain error, no less than N

equations are required; otherwise, the parameter estimation
will be underdetermined. However, by analyzing the

elements of 􏽥R, the number of equations like (13) is as follows
[29]:

􏽘
w(n)≥2,n≥0

w(n)(w(n) − 1)

2
, (14)

where w(n) � (c⊛ c− )(n) denotes weight function calcu-
lated by convolution. c(n) is a conditional function. If there
is a virtual element located at znd, the value of c(n) is 1;
otherwise it is 0 and c− (n) � c(−n). It is obvious that w(0) �

N when n � 0; thus, the number of equations provided
similar to (13) is (N(N − 1)/2). )at means the gain error
can be estimated by an overdetermined equation set.

Taking all the nonredundant relations satisfy di − dt �

dp − dq and constructing an equation set, it can be described
compactly as follows:

Bρ ln ρ1, ln ρ2, ..., ln ρN􏼂 􏼃
T

� . . . , μi,t,p,q, . . .􏽨 􏽩
T
, (15)

where Bρ is a kρ × N matrix that the 1 × N row vector
[1, 1, ..., 1]T is its lone null space spanning vector, kρ denotes
the result of (14).

However, due to the estimation error of μi,t,p,q, (15) is not
strictly correct. )e singular value decomposition (SVD)
method can be utilized to obtain the least squares solution.

ln ρ1, ln ρ2, ..., ln ρN􏼂 􏼃
T

� B
+
ρ . . . , μi,t,p,q, . . .􏽨 􏽩

T
, (16)

where B+
ρ represents the pseudoinverse of Bρ.

Equation (16) provides a minimum norm least squares
solution, and a general solution can be regarded as adding an
arbitrary scalar to the null space spanning vector. )en, the
gain error can be estimated by an arbitrary multiplicative
constant; i.e., 􏽥Φ � eεΦ, where ε is an arbitrary scalar.

Hence, the previous conclusionmeans that the gain error
will only affect the amplitude of the spectrum.

For phase error, we utilize a similar strategy. Defining

τi,t,p,q � angle r|i,t
􏼌􏼌􏼌􏼌􏼐 􏼑 − angle |r|p,q􏼐 􏼑 � angle [S]i,t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + ψi − ψt − angle [S]p,q

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 − ψp + ψq, (17)

where angle(r) � arctan(I(r)/R(r)) and τi,t,p,q is a quan-
tity determined from R.

If di − dt � dp − dq is satisfied, (17) can be simplified as
follows:

τi,t,p,q � ψi − ψt − ψp + ψq. (18)

Since the elements in the main diagonal are inapplicable
as they have no phase error information, the number of
meaningful equations provided by (18) is as follows [29]:

􏽘
w(n)≥2,n≥1

w(n)(w(n) − 1)

2
. (19)

Unfortunately, the large coprime factors of GNA lead to
a few repeated virtual sensors, making the number of
meaningful equations even less than the estimated param-
eters. In other words, we cannot construct an overdeter-
mined equation set like (15) to estimate the phase error in
most scenarios.

To deal with the situation, a covariance-based sparse
representation method is introduced for DOA estimation.

Based on (9) and 􏽥Φ � eεΦ, the covariance matrix after
gain error calibration can be obtained by the following
equation:
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􏽥R′ � 􏽥Φ−1 ΦΨSΨHΦH
+ σ2IN􏼐 􏼑Φ− H

� Ψ
S

e2ε
ΨH

+ σ2IN,

(20)

)en, vectorizing the covariance matrix with calibrated
gain error, we have the following:

z � vec 􏽥R′( 􏼁 � vec Ψ
S

e2ε
ΨH

+ σ2IN􏼒 􏼓 � 􏽥A∗ ∘ 􏽥A􏼐 􏼑
p

e2ε
+ σ2 1

→
,

(21)

where (􏽥A
∗∘􏽥A)� [􏽥α∗(θ1)⊗􏽥α(θ1), 􏽥α∗(θ2)⊗􏽥α(θ2), ..., 􏽥α∗(θK)⊗

􏽥α(θK)] and 1
→

� [ e→T

1 , e→T

2 , ..., e→T

N]T. e→i is a column vector
whose i-th element is 1 and the rest elements are all zeros. As
there are onlyN nonzero values in specific positions of 1

→
, an

N(N −1) × N2 selection matrix to remove the nonzero
values can be defined as follows [30]:

JT
� J1, J2, ..., JN−1􏼂 􏼃, (22)

where Jn � [e(n−1)(N+1)+2, e(n−1)(N+1)+3, ..., en(N+1)] ∈ RN2×N,

n � 1, 2, ..., N − 1. en is an N2 × 1 column vector of all zeros
except a 1 at the n-th position. )erefore, (21) can be re-
written as follows:

z � Jz � J 􏽥A∗∘􏽥A􏼐 􏼑
p

e2ε
+ σ2 1

→
􏼒 􏼓 � J 􏽥A∗∘􏽥A􏼐 􏼑

p
e2ε

. (23)

After this arithmetical operation, the noise item can be
completely eliminated.

Directions of source signals impinging on the GNA
range from (−π/2, π/2) as the assumption, then the grid
sampling over the space domain is utilized. Next, we can
construct a grid set Θ � θ1, θ2, ..., θL􏼈 􏼉, L≫N(N − 1) which
contains all the origin signal directions.

)e equivalent expression of (23) is denoted by the
following equation:

z � J 􏽥A∗(Θ) ∘ 􏽥A(Θ)􏼐 􏼑
p

e2ε
, (24)

where J(􏽥A∗(Θ) ∘ 􏽥A(Θ)) represents the overcomplete dic-
tionary. p denotes the K-sparse vector whose ℓ0-norm is K,
and its nonzero values correspond to the exact DOAs in Θ.
Based on the analysis, the DOA estimation can be trans-
formed into the recovery of p and the location detection of
nonzero values.

For the convenience of calculations, it would be better to
transform the high-computation ℓ0-norm minimization
problem into the ℓ1-norm minimization problem. )us, the
equivalent expression is represented as follows:

min
p

‖p‖1

s.t. z � J 􏽥A∗(Θ)∘􏽥A(Θ)􏼐 􏼑
p

e2ε
, [p]i ≥ 0,

(25)

where [p]i denotes the i-th elements of p.
However, as the number of snapshots is limited, the

estimated covariance matrix cannot be equal to the exact
covariance matrix, and the error exists. )e relations can be
expressed by the following:

Δz � 􏽢z − z, Δz � 􏽢z − z � JΔz. (26)

)erefore, we can transform (25) into the following
optimization problem:

min
p

‖p‖1

s.t. 􏽢z − J 􏽥A∗(Θ)∘􏽥A(Θ)􏼐 􏼑
p

e2ε

�����

�����
2

2
≤ ξ, [p]i ≥ 0,

(27)

where ξ denotes the threshold parameter on the upper
bound of Δz. By applying the Orthogonal Matching Pursuit
(OMP) algorithm or other sparse reconstruction algorithms
like L1-SVD algorithm [31], the optimal solution is obtained,
and the DOA can be estimated accurately. It should be noted
that e2ε has no influence on the locations of nonzero value in
p.

4. The Cramer–Rao Bound

)e Cramer–Rao bound provides a theoretical lower bound
on the variance of any unbiased estimation, which can be
applied for the evaluation of the optimal performance of the
estimation algorithms. However, traditional mathematical
derivations are based on the assumption of the overdeter-
mined system (the number of sensors is more than sources),
which may be invalid for underdetermined cases like a
nested array, coprime array, and GNA.

Assuming that the signal model is unconditional, we
derive the CRB for DOAs based on the Ref. [32,33], the
expression is shown as follows:

CRBθ �
1
L

MθΠ
⊥
MG

Mθ􏼐 􏼑
−1

,

Π⊥MG
� I − MG MH

GMG􏼐 􏼑
−1
MG,

Mθ � 􏽥RT ⊗ 􏽥R􏼒 􏼓
−1/2

Nθ,

MG � 􏽥RT ⊗ 􏽥R􏼒 􏼓
−1/2

NG,

Nθ � 􏽥Ad
′RS, NG � 􏽥Aρ′RS, j􏽥Aψ′RS􏽨 􏽩,

􏽥Ad
′ � 􏽥A∗′∘􏽥A + 􏽥A∗∘􏽥A′, 􏽥A′ �

z􏽥a θ1( 􏼁

zθ1
,
z􏽥a θ2( 􏼁

zθ2
, ...,

z􏽥a θK( 􏼁

zθK

􏼢 􏼣,

􏽥Aρ′ �
z(􏽥A∘􏽥A)

zρ1
,
z( 􏽥A∘􏽥A)

zρ2
, ...,

z(􏽥A∘􏽥A)

zρN

􏼢 􏼣,

􏽥Aψ′ �
z(􏽥A∘􏽥A)

zψ1
,
z( 􏽥A∘􏽥A)

zψ2
, ...,

z(􏽥A∘􏽥A)

zψN

􏼢 􏼣,

(28)

where Π⊥MG
represents the orthogonal projection matrix of

MG.
)e detailed derivation is presented in the Appendix.
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5. Simulation Results

In order to verify the DOA estimation performance of the
proposed strategy, several numerical simulations are pro-
vided in this section. For DOA estimation performance
comparison, the nested array and coprime array are utilized.
Meanwhile, sparse total least squares (STSL) algorithm and
CRB are provided for error calibration performance com-
parison. )roughout the experiments, we assume that the
physical sensors of GNA are 8 and the coprime factors are
α � 4 and β � 3, respectively. Further, the noise term satisfies
zero-mean Gaussian distribution.

5.1. Effect of Gain and Phase Error on DOA Estimation.
In this simulation, we study the effect of gain error and phase
error, respectively. In the first case, only gain error exists.
Similarly, only phase error affects in the second case. Assume
that the gain error matrix and phase error matrix are Φ �

diag([1, 0.95, 1.2, 0.75, 0.81, 1.36, 1.14, 0.9]) and Ψ � diag
([1, ejπ/6, e−jπ/3, ejπ/15, ejπ/4, e−jπ/8, e−jπ/6, ejπ/5]), respectively.
We choose 9 sources ranging from −40° to 40°, with a step 10°.
)e snapshot number is L � 200. Simulation results when
SNR � 0dB are given by Figure 3. In the following figures, the
dotted red line represents the real DOAs.

Compared with Figures 3(a) and 3(b), it can be found
that only phase error affects the performance of DOA es-
timation, leading to large performance degradation or even
failure, while the gain error only leads to influence on the
amplitude of the spectrum.

5.2.DOAEstimationPerformanceunderGainandPhaseError
Condition. Firstly, assume that the gain error matrix and
phase error matrix in this experiment are the same as the
matrices in Section 1. )en, we plot the CS spectrum [34] of
GNA in Figure 4. We observe that the effect of gain and
phase error can be eliminated and all the sources can be
identified by the proposed method at the same time.

For further evaluations, we discuss the effect of SNR and
snapshot numbers on DOA estimation performance.
)erefore, the root mean square error (RMSE) is introduced
for quantitative analysis. )e STSL algorithm is selected as a
comparison for DOA estimation performance simulations
under the gain and phase error. In this section, it is assumed
that two uncorrelated sources impinge on the array from
directions of 10° and 20°. )en, we provide the estimation
performance curves versus SNR and snapshot numbers by
fixing snapshot numbers or SNR, respectively.)e RMSE via
200 Monte Carlo trails is denoted by the following equation:

RMSE �

�������������������

1
200K

􏽘

200

q�1
􏽘

K

k�1

􏽢θ
q

k − θk􏼐 􏼑
2

􏽶
􏽴

, (29)

where 􏽢θ
q

k represents the estimated value of θk in the q-th trail.
Firstly, assume that SNR ranges from −10 dB to 10 dB,

while the snapshot number is 200. )e DOA estimation
performances of two strategies and CRB versus SNR under
gain and phase error condition are shown in Figure 5.
Similarly, the SNR is set to 0 dB and the snapshot number
varies from 20 to 400. )en, we obtain the DOA estimation
performance of three strategies and CRB versus snapshot
numbers under the influence of gain and phase error as
shown in Figure 6. It can be found from Figures 5 and 6 that
the DOA estimation of each strategy will be more accurate as
SNR or snapshot number increasing. However, compared
with the STSL method, the proposed method in this paper
has the lower RMSE curve and becomes closest to the CRB.

6. Conclusions

)is paper investigates into sparsity-based strategy for DOA
estimation in the case of gain and phase errors via gener-
alized nested array. With the advantage of sparsity, the
generalized nested array is utilized to enhance the degrees of
freedom and decrease the influence of mutual coupling
firstly. )en, the signal model and error model are estab-
lished, and a covariance-based sparse representation method
is provided to estimate the DOAs. Besides, the Cramer–Rao
bound is derived, and the robustness of DOA estimation is
analyzed. Although the covariance matrix no longer has the
Toeplitz structure in the case of gain and phase errors, which
makes DOA estimation become an underdetermined
problem, the proposed strategy still has excellent parameter
estimation performance. Numerical simulations verify the
advantages and effectiveness of the theoretical analysis.

Appendix

CRB for DOA

Under the assumption of unconditional signal model as-
sumption, a parameter vector can be defined as follows:

η � θ1, θ2, ..., θK, ρ1, ρ2, ..., ρN,ψ1,ψ2, ...,ψN􏼂 􏼃
T
. (A.1)

)us, the entries of the Fisher Information Matrix (FIM)
is formulated by the following equation:

FIMi,j � Ltr
z􏽥R
zηi

􏽥R− 1 z􏽥R
zηj

􏽥R− 1
􏼢 􏼣 � L

z􏽥r
zηi

􏼢 􏼣 􏽥RT ⊗ 􏽥R􏼒 􏼓
−1 z􏽥r

zηj

,

(A.2)

where 􏽥r � vec(􏽥R), tr[·] represents the trace of a matrix, ηi is
the i-th element of the vector η, and ηj is the j-th element,
respectively.

Assume that

z􏽥r
zη

�
z􏽥r
zθ1

, ...,
z􏽥r

zθK

,
z􏽥r
zρ1

, ...,
z􏽥r

zρN

,
z􏽥r

zψ1
, ...,

z􏽥r
zψN

􏼢 􏼣 � 􏽥Ad
′RS, 􏽥Aρ′RS, j􏽥Aψ′RS􏽨 􏽩 � Nθ,NG􏼂 􏼃, (A.3)
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where
􏽥Ad
′ � 􏽥A∗′∘􏽥A + 􏽥A∗∘􏽥A′,

􏽥A′ �
z􏽥a θ1( 􏼁

zθ1
,
z􏽥a θ2( 􏼁

zθ2
, ...,

z􏽥a θK( 􏼁

zθK

􏼢 􏼣,

􏽥Aρ′ �
z(􏽥A∘􏽥A)

zρ1
,
z(􏽥A∘􏽥A)

zρ2
, ...,

z(􏽥A∘􏽥A)

zρN

􏼢 􏼣,

􏽥Aψ′ �
z(􏽥A∘􏽥A)

zψ1
,
z(􏽥A∘􏽥A)

zψ2
, ...,

z(􏽥A∘􏽥A)

zψN

􏼢 􏼣.

(A.4)

)en, (A.3) can be further transferred to the following
equation:

FIM � L
z􏽥r
zη

􏼢 􏼣 􏽥RT ⊗ 􏽥R􏼒 􏼓
−1z􏽥r

zη
. (A.5)

Since 􏽥R is positive semidefinite, it is easy to obtain that
the FIM is positive semidefinite.

)erefore, we can obtain the following:

FIM � L
MH

θ Mθ MH
θ MG

MH
GMθ MH

GMG

⎡⎣ ⎤⎦, (A.6)

where

Mθ � 􏽥RT ⊗ 􏽥R􏼒 􏼓
−1/2

Nθ, (A.7)

MG � 􏽥RT ⊗ 􏽥R􏼒 􏼓
−1/2

NG. (A.8)

According to (A.8), the CRB for DOAs can be calculated
by the following:

CRBθ �
1
L

MθΠ
⊥
MG

Mθ􏼐 􏼑
−1

, (A.9)
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where Π⊥MG
denotes the orthogonal projection matrix of

MG.
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(anks to the rapid development of hyperspectral sensors, hyperspectral videos (HSV) can now be collected with high temporal
and spectral resolutions and utilized to handle invisible dynamic monitoring missions, such as chemical gas plume tracking.
However, using such sequential large-scale data effectively is challenged, because the direct process of these data requires huge
demands in terms of computational loads and memory. (is paper presents a key-frame and target-detecting algorithm based on
cumulative tensor CANDECOMP/PARAFAC (CP) factorization (CTCF) to select the frames where the target shows up, and a
novel super-resolution (SR) method using sparse-based tensor Tucker factorization (STTF) is used to improve the spatial
resolution. In the CTCF method, the HSV sequence is seen as cumulative tensors and the correlation of adjacent frames is
exploited by applying CP tensor approximation. In the proposed STTF-based SR method, we consider the HSV frame as a third-
order tensor; then, HSV frame super-resolution problem is transformed into estimations of the dictionaries along three di-
mensions and estimation of the core tensor. In order to promote sparse core tensors, a regularizer is incorporated to model the
high spatial-spectral correlations.(e estimations of the core tensor and the dictionaries along three dimensions are formulated as
sparse-based Tucker factorizations of each HSV frame. Experimental results on real HSV data set demonstrate the superiority of
the proposed CTCF and STTF algorithms over the comparative state-of-the-art target detection and SR approaches.

1. Introduction

Hyperspectral imaging has been one of the most popular
research fields due to its ability of identifying the materials
from very high spectral resolution and coverage. In the last
decade, researchers focused on the processing and appli-
cation of hyperspectral image (HSI), such as denoising [1, 2],
feature extraction [3, 4], classification [5–11], detection
[12–14], and super-resolution (fusion) [15–18]. In this
section, researching of the latter two fields which are related
to this paper will be briefly introduced.

Basically, target detection is a kind of binary classifier
with the purpose of labeling every image pixel as a target or
background. In HSIs, pixels with a significantly different
spectral signature from their neighboring background pixels
are defined as spectral anomalies. Anomaly detectors are

statistical or pattern recognition methods used to detect
distinct pixels that differ from the background. It is worth
mentioning that, in spectral anomaly detection approaches
[19–22], such as Reed-Xiaoli (RX) algorithm [23], no prior
information of the target spectral signature is assumed or
used. However, we focus on the detection of invisible gas
plumes in this paper, and the prior knowledge of the desired
targets spectral characteristics is assumed to be known. In
such cases, signature-based target detection algorithms are
presented instead of anomaly detection. In these algorithms,
the spectral characteristics of the target can be represented
by a target subspace or a single target spectrum [24].
Likewise, the characteristics of background can be statisti-
cally expressed by a Gaussian distribution or a subspace
defining the local or whole background statistics. As for this
category, the matched subspace detector (MSD)method [25]
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is one of the most typical algorithms. In the MSD, the target
pixel vectors are represented by a linear combination of the
target spectral signature and the background spectral sig-
nature, which stand for the subspace target spectra and the
subspace background spectra, respectively. (en, the gen-
eralized likelihood ratio test (GLRT) is applied, using pro-
jection matrices associated with the background subspace
and the target-and-background subspace. At last, the
comparison between the output of GLRT and a preset
threshold makes a final decision about whether the target is
absent or present. From pixel level to subpixel level, a single
pixel may contain several distinct pure materials (end-
members), also known as the mixed pixel. (e presence of
mixed pixels is a tough problem caused by the low spatial
resolution of HSIs. Accordingly, some unmixing ap-
proaches [26–28] have been designed to compute frac-
tional abundance of endmembers. In [29], a hyperspectral
unmixing approach based on constrained matrix factor-
ization (CMF) was proposed. Unlike conventional methods,
each column vector of endmember matrix is represented as
a nonnegative linear combination of pixel spectra. After
endmember matrix and the corresponding fractional abun-
dance matrix are obtained by solving optimization problems,
abundance map of the target endmember shows the de-
tection result.

As mentioned before, the HSIs often suffered from low
spatial resolution. To acquire an HSI, the number of sun
photons in each spectral band has to be greater than a
minimum value, and the number of spectral bands is so
huge in an HSI that the spatial resolution has to be sac-
rificed. (erefore, super-resolution (SR) techniques have
aroused great interest in the last decade. Generally, the SR
methods of HSI can be classified into four categories:
Bayesian [30], component analysis [31], deep learning
[32], and sparse representation. Due to the limited length
of this paper, we focus on the introduction of sparse-based
algorithms. In such HSI super-resolution schemes, images
are expressed by dictionaries and corresponding sparse
coefficients. On the basis of the spatial-spectral sparsity in
the HSIs, the dictionaries and sparse coefficients are es-
timated jointly [33]. Huang et al. [34] introduced a fusion
method of multispectral images (MSIs) with different
spectral and spatial resolutions based on sparse matrix
factorization. Akhtar et al. [35] presented an MSI-HSI
fusion approach using sparse coding and Bayesian dic-
tionary learning. Moreover, some algorithms based on
matrix factorization [36–38] or unmixing [39] can also be
regarded as the sparse representation schemes because the
source images are decomposed into some basis and the
corresponding coefficients. Yokoya et al. proposed a
couple nonnegative matrix factorization (CNMF) [40]
algorithm, where the unmixing techniques are employed
to yield the endmember matrices and the high-resolution
(HR) abundance matrices of HSI. In [41], Lanaras et al.
suggested a joint scheme to solve the spectral unmixing
problems. In [42], Zhang et al. fused the low-resolution
(LR) HSI and HR-MSI based on the group spectral em-
bedding and low-rank factorization.

However, the matrix factorization based schemes cannot
fully exploit the spatial-spectral correlations of the HSIs. It is
believed that considering HSIs as tensors is better because an
HSI can be naturally expressed as a third-order tensor. In
this paper, a detection algorithm based on cumulative tensor
CP factorization (CTCF) is proposed. (e sequential HSV
data is expressed as a four-dimensional (4D) cumulative
tensor; factor matrices are obtained by decomposing original
4D tensor using CP factorization. When a new frame
presents and is added to the time dimension of the original
tensor, this 4D cumulative tensor is updated together with
the factor matrices. Consequently, a CP tensor approxi-
mation of the new frame is computed by updated factor
matrices and the fitness between the new frame and the
approximation is calculated. After comparing the fitness to a
preset threshold, we can make the decision that whether the
new frame continues to be used to update the cumulative
tensor or the new frame is the key-frame where the target
presents. CTCF-based method exploits not only the spatial-
spectral correlations of the HSIs by applying tensor model,
but also the temporal correlation between adjacent frames of
the HSV.

On the other hand, tensor-based analysis has also been
widely used in HSI super-resolution [43–45]. To the best
of our knowledge, most of the SR algorithms enhance
spatial resolution by fusing high-resolution MSI (HR-
MSI) and low-resolution HSI (LR-HSI) from the same
scene. Unfortunately, it is less practical in real application.
In some situations, LR-HSI is the only data we have rather
than both. In this paper, we suggest an SR algorithm using
sparse-based tensor Tucker factorization (STTF). Inspired
by the Tucker factorization and its related works, the HSV
frames are represented as third-order tensors, which are
approximated by the multiplication of the dictionaries
along three dimensions (i.e., the dictionaries of the height
mode, the width mode, and the spectral mode: they are
named “three modes dictionaries” for short in the rest of
this paper) and a core tensor. (en, the problem of SR is
transformed into the estimations of the three modes
dictionaries and estimation of the core tensor. Specifically,
the spatial information is represented by the height mode
dictionary and the width mode dictionary, the spectral
information is represented by the spectral mode dictio-
nary, and the correlations of the three modes dictionaries
are modeled by the core tensor. HSIs are generally self-
similar so that a sparse prior can be imposed on the core
tensor; then, the estimations of the core tensor and three
modes dictionaries are formulated as the STTF of the LR
and HR HSV frames. In the iteration of STTF, core tensor
and dictionaries are all updated and accurate estimates are
yielded when convergence is achieved.

(e remainder of this paper is organized as follows.
Section 2 presents the materials and methods, including the
basic notations and preliminaries of tensor and tensor
factorization, the proposed CTCF approach for key-frame
detection, and the proposed STTF method for key-frame
super-resolution problem. In Section 3, experimental results
on real HSV and the discussions are given. (e paper is
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summarized in Section 4 with ideas for future work along the
path presented here.

2. Materials and Methods

2.1. Tensor Notations and Preliminaries

2.1.1. Tensor Notations. In this paper, vectors are denoted by
boldface lowercase letters (a, b, c, · · ·), matrices are denoted
by boldface capital letters (A,B,C, · · ·), and tensors are
denoted by bold Euler script letters (A,B,C, · · ·). Generally,
a tensor is a kind of multidimensional array, denoted by
A ∈ RI1×I2×···×IN . Here, tensor A is an Nth-order tensor and
In(1≤ n≤N) is the dimension of the nth mode. Obviously,
vectors are first-order tensors and matrices are second-order
tensors. We use A(i1, · · · , in−1, : , in+1, · · · , iN) to denote the
mode-n fiber, which are vectors yielded from tensor A by
changing index in with other indexes fixed. (e mode-n
unfolding matrix of tensor A is generated by placing all the
mode-n fibers in a matrix as columns, denoted by
A(n) ∈ RIn×I1 ,···,In−1In+1 ,···,IN .

An important calculation between a tensor and a matrix
is the n-mode product, which is defined as

F � A×nB, (1)

where B ∈ RJn×In and F ∈ RI1×···×In−1×Jn×In+1×···×IN . (e ele-
ments of A are denoted by ai1i2 ,···,iN

, so the elements of F are
computed by

fi1 ,···,in−1jnin+1 ,···,iN
� 􏽘

in

ai1 ,···,in−1inin+1 ,···,iN
bjnin

. (2)

Given the definition of n-mode product, we can obtain
F � A×n B⇔F(n) � BA(n). (3)

For continuous multiplication of a tensor and matrices
in distinct modes, the result is not affected by the multi-
plication order, described by

A×nB×mC � A×mC×nB(m≠ n). (4)

If the modes are equivalent, equation (4) is transformed
into

A×nB×nC � A×n(CB). (5)

Suppose that En ∈ RJn×In (1≤ n≤N) is a collection of
matrices; we define tensor G ∈ RJ1×J2×···×JN as

G � A×1E1×2E2 · · · ×NEN. (6)

(e matricization form of equation (6) is presented by
g � EN ⊗EN−1⊗, · · · ,⊗E1( 􏼁a, (7)

where g � vec(G) ∈ RJ (J � 􏽑
N
n�1 Jn) and a � vec(A) ∈ RI

(I � 􏽑
N
n�1 In) are vectors yielded by arranging the mode-1

fibers of the tensors G and A. (e Kronecker product is
denoted by symbol “⊗.”

Moreover, given the tensor A, ‖A‖0 represents the
ℓ0-norm which equals the number of nonzero elements ofA,
‖A‖1 � 􏽐i1 ,i2 ,···,iN

|ai1i2 ,···,iN
|denotes the ℓ1-norm, and ‖A‖F �

���������������
􏽐i1 ,i2 ,···,iN

|ai1i2 ,···,iN
|2

􏽱
denotes the Frobenius norm.

(e definition of rank-one tensor is introduced at last.
(eNth-order tensor A is rank-one if it can be written as the
outer product of N vectors, i.e., A � a1 ∘ a2∘ · · · ∘ aN. (e
symbol “∘” denotes the vector outer product [46].

2.1.2. Tensor Factorizations. CANDECOMP/PARAFAC
(CP) factorization decomposes a tensor into a sum of
component rank-one tensors [47]. For example, given a
third-order tensor X ∈ RI×J×K, we may formulate it as

X ≈ 􏽘
R

r�1
ar∘ br∘ cr, (8)

where R is a positive integer and ar ∈ RI, br ∈ RJ, and
cr ∈ RK (r � 1, 2, · · · , R). (e element of tensor X can be
computed by

xijk ≈ 􏽘
R

r�1
airbjrckr, i � 1, · · · , I, j � 1, · · · , J, k � 1, · · · , K.

(9)
CP factorization is illustrated in Figure 1.
(e factorization result can be expressed by factor

matrices of three dimensions. Factor matrices refer to the
combination of the vectors from the rank-one components;
i.e.,

A � a1, a2, · · · , aR􏼂 􏼃,

B � b1, b2, · · · , bR􏼂 􏼃,

C � c1, c2, · · · , cR􏼂 􏼃.

(10)

Following [48], the CP model can be concisely repre-
sented as

X ≈ MA,B,CN ≡ 􏽘
R

r�1
ar∘ br∘ cr. (11)

On the basis of factor matrices, the mode-n unfolding
matrices X(n) (n � 1, 2, 3) of X can be represented as

X(1) ≈ A(C⊙B)
T
,

X(2) ≈ B(C⊙A)
T
,

X(3) ≈ C(B⊙A)
T
,

(12)

where the symbol “⊙” denotes the Khatri-Rao product [49].
In this way, loss functions can be modeled as the approx-
imation of the mode-n unfolding matrices; then the factor
matrices of CP factorization can be obtained by solving the
corresponding optimization problem.

Tucker factorization is another popular tensor decom-
posing approach [50]. It decomposes a tensor into a core
tensor multiplied by a matrix along each mode. (us, in the
same case as above where X ∈ RI×J×K, the factorization can
be described as

X ≈ Z×1A×2B×3C � 􏽘

P

p�1
􏽘

Q

q�1
􏽘

R

r�1
zpqrap∘ bq∘ cr, (13)

whereA ∈ RI×P,B ∈ RJ×Q, andC ∈ RK×R are factormatrices
which can be regarded as the principal components in each
mode. (erefore, Tucker factorization is a form of higher-
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order principal component analysis (PCA). Tensor
Z ∈ RP×Q×R is the core tensor and its elements stand for the
correlation level between the different components. Similar
to (11), the Tucker model can be concisely represented by
X ≈ MZ;A,B,CN. Elementwise equation (13) can be repre-
sented as

xijk ≈ 􏽘
P

p�1
􏽘

Q

q�1
􏽘
R

r�1
zpqraipbjqckr, i � 1, · · · , I, j � 1, · · · , J, k � 1, · · · , K.

(14)

(e Tucker factorization is illustrated in Figure 2.

2.2. .e Proposed CTCF-Based Detection Method. In this
subsection, the optimization problem of updating factor
matrix is presented, followed with the proposed cumulative
tensor CP factorization (CTCF) of third-order tensors. It is
then extended to Nth-order tensors. (e CTCF-based de-
tection method is described in the end of this subsection
with its flowchart shown in Figure 3.

2.2.1. CP Tensor Approximation by Factor Matrices.
Similar to equation (12), the mode-n unfolding matrix of
X ∈ RI1×I2×···×IN can be approximated by factor matrices; i.e.,

X(n) ≈ A
(n) A(N)⊙ · · ·⊙A(n+1) ⊙A(n−1)⊙ · · ·⊙A(1)

􏼐 􏼑
T

� A(n) ⊙Ni≠ nA
(i)

􏼐 􏼑
T
,

(15)

where the factor matrices A(1), · · · ,A(N) are obtained by CP
factorization. (e corresponding loss function is

L �
1
2
X(n) − A(n) ⊙Ni≠ nA

(i)
􏼐 􏼑

T
������

������

2
. (16)

(e Alternating Least Squares (ALS) algorithm is often
applied to obtain factor matrices by solving the following
optimization problem:

A(n)
� argmin

A(n)

1
2
X(n) − A(n) ⊙Ni≠ nA

(i)
􏼐 􏼑

T
������

������

2
. (17)

When the tensor updates, the new tensor can be com-
puted by the updated factor matrices which are given by
equation (17).

2.2.2. CTCF of .ird-Order Tensor. Generally, an image is a
second-order tensor; then sequential images form a third-
order tensor, i.e., a video, adding a temporal dimension on
two spatial dimensions. When a new video frame presents
and is added to the time dimension of the original tensor, it
is defined as a three-dimensional (3D) cumulative tensor.
With the number of new frames increasing, the 3D cu-
mulative tensor updates frame by frame.

In conventional CP tensor approximation, whenever a
new frame of image is added in the time dimension, ALS
algorithm needs to be reused to approximate the new cu-
mulative tensor, which is a time consuming process. In
addition, the temporal correlation between neighboring
frames is not exploited in the decomposition of the cu-
mulative tensor.(is paper proposes CTCF to update the CP
factorization of original cumulative tensor, obtain the
updated factor matrices, and approximate the new frame.

Given an original 3D cumulative tensor Xori ∈ RI×J×Tori ,
the result of CP factorization is denoted by
Xori ≈ MAori,Bori,CoriN. When a new tensor Xnew ∈ RI×J×Tnew

is added in the time dimension, the updated cumulative
tensor is X ∈ RI×J×(Tori+Tnew), of which the CP factorization
appears as X ≈ MA,B,CN. We focus on obtaining A, B, and C
by updating Aori, Bori, and Cori.

(e updating process is operated in an alternating way.
Firstly, temporal dimensional factor matrix C is computed
while factor matrices A and B are fixed; i.e.,

C � argmin
C

1
2
X(3) − C(B⊙A)

T����
����
2

� argmin
C

1
2

Xori(3)

Xnew(3)

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ −
C(1)

C(2)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦(B⊙A)

T

�����������

�����������

2

� argmin
C

1
2

Xori(3) − C(1)(B⊙A)T

Xnew(3) − C(2)(B⊙A)T

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

������������

������������

2

,

(18)

a1 a2 aP

c1 c2 cR

b1 b2 bQ

C

B

A

=
•••

•••

•••

Figure 2: Tucker factorization of a third-order tensor.

=
c1 c2 cR

a1 a2 aR

bRb2b1
+···++

Figure 1: CP factorization of a third-order tensor.
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where C is divided into two terms. For A and B are fixed as
Aori and Bori, the first row of (18) will be minimized if
C(1) � Cori. To minimize the second row, according to (12),
the optimal solution of C(2) is Xnew(3)((B⊙A)T)†, where the
symbol “†” denotes Moore–Penrose pseudoinverse of the
matrix [51]. So, C can be updated by adding Cnew which is
represented by

C �
Cori

Cnew
􏼢 􏼣 �

Cori

Xnew(3) (B⊙A)T􏼐 􏼑
†

⎡⎢⎢⎣ ⎤⎥⎥⎦. (19)

Secondly, factor matrix A is computed while factor
matrices B and C are fixed. Similar to 16, the loss function of
estimating A is written as

L �
1
2
X(1) − A(C⊙B)

T����
����
2
. (20)

Derive L with respect to A; then, we have
zL

zA
� X(1)(C⊙B) − A(C⊙B)

T
(C⊙B). (21)

To simplifyequation (21), denote P � X(1)(C⊙B) and
Q � (C⊙B)T(C⊙B); thus, when zL/zA � 0, we have
A � PQ−1. According to [47], Q can be rewritten as

Q � (C⊙B)
T
(C⊙B) � CTC􏼐 􏼑⊗ BTB􏼐 􏼑. (22)

For computing P, we also divide X(1) and C into two
terms; i.e.,

New 
HSV 

frame

HSV 
Frame n

HSV 
Frame 2HSV 

frame 1

... ... ...

... ... ...

...

...

Frame 
approximation

New 
HSV 

FrameHSV 
Frame n

HSV 
Frame 2HSV 

frame 1

Aori
(1) I1×R

fitness (

≥η <η

~

CP factorization of original cumulative tensor

Factor matrices update 

CP tensor approximation

ori
I1×I2×I3×n

new

new new

I1×I2×I3

I1×I2×I3×(n+1)

Aori
(2) I2×R Aori

(3) I3×R Aori
(4) n×R

A(1) I1×R A(2) I2×R A(3) I3×R A(4) (n+1)×R

)

~
new ≈ [[A(1), A(2), A(3), A(4)(n + 1, :)]]

, Aori Aori
(n) (n) ≈ ~

newnew –tar

,

Figure 3: Flowchart of CTCF-based detection method.
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P � X(1)(C⊙B) � Xori(1),Xnew(1)􏽨 􏽩
Cori

Cnew
􏼢 􏼣⊙B􏼠 􏼡

� Xori(1),Xnew(1)􏽨 􏽩
Cori⊙B

Cnew⊙B
􏼢 􏼣􏼠 􏼡 � Xori(1) Cori⊙B( 􏼁 + Xnew(1) Cnew⊙B( 􏼁.

(23)

Since B are fixed as Bori, the first term of equation (23)
contains only the information of original tensor, which can
be expressed by

Pori � Xori(1) Cori⊙B( 􏼁, (24)

so,equation (23) is rewritten as

P � Pori + Xnew(1) Cnew⊙B( 􏼁, (25)

Hence, P can be updated from Pori using mode-1
unfolding matrix of Xnew and factor matrix mentioned
above Cnew. Generally, P is initialized by X(τ) ∈ RI×J×τ ,
which is a small front part of Xori, and updated iteratively
by (25). Analogously, the update process of Q can be
represented by

Q � Qori + Cnew ⊙B( 􏼁
T Cnew⊙B( 􏼁 � Qori + CT

newCnew􏼐 􏼑⊗ BTB􏼐 􏼑.

(26)

(e update of A may be summarized as

P←P + Xnew(1) Cnew ⊙B( 􏼁,

Q←Q + CT
newCnew􏼐 􏼑⊗ BTB􏼐 􏼑,

A←PQ−1
.

(27)

Finally, the update of factor matrix B may likewise be
expressed by

U←U + Xnew(2) Cnew ⊙A( 􏼁,

V←V + CT
newCnew􏼐 􏼑⊗ ATA􏼐 􏼑,

B←UV−1
,

(28)

where U � X(2)(C⊙A) and V � (CTC)⊗ (ATA).
To make the process clearer, the proposed CTCF of

third-order tensor is summarized by Algorithm 1.

2.2.3. CTCF of Nth-Order Tensor. On the basis of Section
2.2.2, we try to extend CTCF to higher-order tensors.
Suppose an N-dimensional cumulative tensor
Xori ∈ RI1×I2×···×IN−1×Tori where the last dimension is temporal
dimension. (e CP factorization of Xori is represented as
Xori ≈ MA(1)

ori , · · · ,A(N−1)
ori ,A(N)

ori N. When a new tensor
Xori ∈ RI1×I2×···×IN−1×Tnew is added in the time dimension, the
updated cumulative tensor is X ∈ RI1×I2×···×IN−1×(Tori+Tnew), of
which the CP factorization is denoted by
X ≈ MA(1), · · · ,A(N− 1),A(N)N.

Similar to Section 2.2.2, temporal dimensional factor
matrix A(N) is firstly updated with other N − 1 matrices
fixed. Like 17, the optimization problem of estimating A(N)

is formulated by

A(N)
� argmin

A(N)

1
2
X(N) − A(N) ⊙N− 1A(i)

􏼐 􏼑
T

������

������

2
. (29)

We also separate original part from new added part; i.e.,

A(N)
�

A(N)
ori

A(N)
new

⎡⎣ ⎤⎦ �

A(N)
ori

Xnew ⊙N− 1A(i)􏼐 􏼑
T

􏼒 􏼓
†

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, i � 1, 2, · · · , N − 1.

(30)

(e original part is minimized by fixing the first N − 1
factor matrix and the new part is updated by Xnew.

(e updates of nontemporal dimensional factor matrices
A(n) (n ∈ [1, N − 1]) may refer to the ones of factor matrices
A and B in Section 2.2.2. (e loss function L(n) of esti-
mating A(n) is the same as 16. Let zL(n)/zA(n) � 0 and
introduce matrices P(n) and Q(n); the update of A(n) may be
summarized as

P(n)←P(n)
+ Xnew(n) A(N)

new⊙K
(n)

􏼐 􏼑,

Q(n)←Q(n)
+ A(N)T

new A(N)
new􏼒 􏼓⊗R(n)

,

A(n)←P(n) Q(n)
􏼐 􏼑

−1
,

(31)

where K(n) � ⊙N−1
i≠n A(i) and R(n) � ⊗N−1

i≠n A(i)TA(i).

2.2.4. CTCF-Based Detection Method. In HSV, the se-
quential data is expressed as a 4D cumulative tensor; the
temporal dimension increases with new frames are added in.
Whenever a new frame presents, the results of original
cumulative tensor CP factorization are updated to obtain the
factor matrices of the new cumulative tensor, and the CP
tensor approximation of the newly added frame is obtained
at the same time. If the target is absent, the CP tensor
approximation will lead to a small error, since the back-
ground information is similar between adjacent frames. On
the contrary, if the error is large, the target is likely to
present. We define the fitness between the new frame and its
approximation in 34. If the fitness is smaller than the
threshold, the target is supposed to appear in the new frame.
Otherwise, the new frame is added in the temporal di-
mension and used to update original cumulative tensor.

(e original 4D cumulative tensor is denoted by
Xori ∈ RI1×I2×I3×n; n denotes the frame number of initial
video. (e factor matrices of four dimensions are repre-
sented as

Xori ≈ ⟦A
(1)
ori ,A

(2)
ori ,A

(3)
ori ,A

(4)
ori ⟧, (32)

where A(1)
ori ∈ R

I1×R, A(2)
ori ∈ R

I2×R, A(3)
ori ∈ R

I3×R, and
A(4)

ori ∈ R
n×R and R denotes the number of component rank-

one tensors in CP factorization. When a new frame
Xnew ∈ RI1×I2×I3 is added in the temporal dimension of
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original 4D cumulative tensor, the 4D cumulative tensor is
updated and denoted by X ∈ RI1×I2×I3×(n+1). (e factor
matrices of X are expressed by

X ≈ ⟦A(1)
,A(2)

,A(3)
,A(4)⟧, (33)

where A(1) ∈ RI1×R, A(2) ∈ RI2×R, A(3) ∈ RI3×R, and
A(4) ∈ R(n+1)×R. Based on Section 2.2.3, we estimate
A(1)∼A(4) and obtain the approximation of X and 􏽥Xnew,
where 􏽥Xnew ≈ MA(1),A(2),A(3),A(4)(n + 1, : )N. Actually, it is
the specific case when N � 4.

We define the fitness (Xnew, 􏽥Xnew) as

fitness Xnew, 􏽥Xnew( 􏼁 � 1 −
Xnew − 􏽥Xnew

����
����F

Xnew
����

����F

. (34)

If the target does not appear, the approximation error is
small and the result of fitness is large. Given a preset
threshold η, when fitness(Xnew, 􏽥Xnew)> η, i.e., the fitness is
larger than η, we decide that the target is absent. (en, the
nontarget frame is added in temporal dimension and the
updated 4D cumulative tensor becomes the new original 4D
cumulative tensor, which can be expressed as

Xori⇐X,A(n)
ori⇐A

(n)
, n ∈ [1, 4]. (35)

If the target appears, the approximation error is large and
the fitness is smaller than η. (e residual of Xnew and 􏽥Xnew is
the approximation of the target tensor; i.e.,

Xtar ≈ Xnew − 􏽥Xnew. (36)

(e target of each frame will be shown in 2D form by
taking the maximum value of every spectrum. In this way,
the proposed CTCF-based detection method can extract not
only the key-frames where the target presents, but also the
approximate region of target in every key-frame. (e
flowchart of the proposed method is shown in Figure 3. In
Section 3, experiments on real HSV data are conducted and
the proposed method is compared with some representative
techniques.

2.3. .e Proposed STTF-Based Super-Resolution Method.
In Section 2.2, we present an approach to detect the frames
where the target appears in HSV and the approximate region
of the target. However, as discussed in Section 1, there has to
be a tradeoff between spectral resolution and the spatial
resolution in HSI imaging systems [52]. (e spatial reso-
lution is always low since high spectral resolution is required

in HSIs and HSV. So, we are interested in improving the
spatial resolution of targets after the detecting process. In-
stead of fusing HR-MSI and LR-HSI, we try to handle the
target SR problem by what we have got, which is more
practical in real cases.

2.3.1. Problem Formulation. In this subsection, HSIs are
represented as 3D tensors with three indexes (H, W, S),
which stand for the height, width, and spectral modes.
X ∈ RH×W×S denotes the HR-HSI and the LR-HSI is denoted
by Y ∈ Rh×w×S, where W>w and H> h. (e goal is to es-
timate X from Y.

(ere are two significant characteristics of HR-HSIs [53]:
the first one is that spectral vectors can be well approximated
in low dimensional subspaces, and the second one is that
HSIs are spatially self-similar. (is means that sparsity exists
in both spectral and spatial dimensions. Inspired by sparse
representation [54], the low dimensionality in spectral do-
main gives the possibility to form a spectral mode dictionary
S with few nonzero atoms; the self-similarities in spatial
domain guarantee the sparse representations of the height
and width modes with spatial dictionaries H and W. In this
way, the conventional Tucker factorization is transformed
into the multiplication of the core tensor and three modes
dictionaries. (e factorization is illustrated in Figure 4. (e
HR-HSI is represented as

X � Z×1 H×2 W×3 S, (37)

where H ∈ RH×zh , W ∈ RW×zw , and S ∈ RS×zs . (e variables
zh, zw, and zs denote the atoms (i.e., the number of columns)
of H, W, and S, respectively. (e core tensor Z contains the
coefficients of X over three modes dictionaries. We can see
that 37 incorporates the information of separated modes
into a unified framework.

(e LR key-frame of HSV Y can be seen as the spatially
downsampled version of HR-HSI X, which is written as

Y � X×1 D1 ×2 D2, (38)

where D1 ∈ Rh×H and D2 ∈ Rw×W are downsampling ma-
trices of the height and width modes. Substituting 37 into
(38), Y is represented by

Y�Z ×1 D1H( 􏼁 ×2 D2W( 􏼁 ×3S�Z ×1H
∗

×2W
∗

×3S,

(39)

where H∗ � D1H ∈ Rh×zh and W∗ � D2W ∈ Rw×zw denotes
the downsampled dictionary of height and width modes. To

Input: original 3D cumulative tensor Xori ∈ RI×J×Tori ≈ MAori,Bori,CoriN new tensor Xnew ∈ RI×J×Tnew

Step 1: new tensor is added in the time dimension and X ∈ RI×J×(Tori+Tnew) is obtained
Step 2: decompose X by CP factorization X ≈ MA,B,CN
Step 3: update C by (19), with A and B are fixed
Step 4: update A by (27), with B and C are fixed
Step 5: update B by (28), with A and C are fixed
Step 6: estimate X by updated A, B and C

Output: approximation of updated cumulative tensor X

ALGORITHM 1: CTCF of third-order tensor.
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recoverX, we focus on estimating the dictionariesH,W, and
S and the core tensor Z.

2.3.2. .e Proposed STTF-Based SR Algorithm. Since Y is a
downsampled version, recovering X from Y is a typical
inverse problem, which is badly ill-posed. So, some prior
knowledge of X is needed to regularize the super-resolution
problem. In HSI processing, the spectral sparsity is a
widespread regularizer applied to solve varieties of ill-posed
problems [55–58]. In such regularization, spectral vectors
are linearly combined by a small quantity of different
spectral signatures. However, these schemes only take ad-
vantage of the sparsity of the spectral domain. In the pro-
posed algorithm, taking into account the HSI self-similarity,
sparsity regularization is extended to the spatial domain by
exploiting the sparse-based tensor Tucker factorization
(STTF). In STTF, the HR-HSI performs a united sparse
representation of the core tensor and three modes
dictionaries.

On the basis of equation (39), the HSV frame super-
resolution is formulated as a constrained least-squares op-
timization problem:

min
H,W,S,Z

Y − Z×1 H
∗

×2 W
∗

×3S
����

����
2
F
,

s.t. ‖Z‖0 ≤ θ,

(40)

where ‖ · ‖F represents the Frobenius norm and θ denotes
the number of maximum nonzero elements of Z. Because of
the ℓ0-norm constraint, equation (40) is nonconvex. To
make the optimization processable, the ℓ0-norm is replaced
by the ℓ1-norm and 40 is transformed into an unconstrained
version:

min
H,W,S,Z

Y − Z×1 H
∗

×2 W
∗

×3 S
����

����
2
F

+ λ‖Z‖1, (41)

where λ is the parameter of sparse regularizer. Equation (41)
is also nonconvex, and the solutions of H, W, and S and Z
are not unique. Nonetheless, if we focus on only one variable
with other variables fixed, the objective function in equation
(41) is convex. Inspired by [59, 60], equation (41) can be
solved by proximal alternating optimization scheme, which
is guaranteed to reach convergence in a particular situation.
Concretely, H, W, S, and Z are updated iteratively by

H � argmin
H

f(H,W, S,Z) + α H − Hpre

�����

�����
2

F
,

W � argmin
W

f(H,W, S,Z) + α W − Wpre

�����

�����
2

F
,

S � argmin
S

f(H,W, S,Z) + α S − Spre
�����

�����
2

F
,

Z � argmin
Z

f(H,W, S,Z) + α Z − Zpre

�����

�����
2

F
,

(42)

where (·)pre denotes the previous estimation in the last it-
eration and α denotes a positive number. Equation (41)
defines the object function f(H,W, S,Z). (e optimizations
of H, W, S, and Z will be presented detailedly in the ap-
pendix. (e conjugate gradient (CG) method [61] and the
alternating direction method of multipliers (ADMM) [62]
will be used in the optimizations.

2.3.3. Initialization of the Proposed Method. Since the op-
timization problem in (41) is nonconvex, the solution would
result in poor local minima if we set the initialization
carelessly. In this paper, we initialize the spatial dictionaries
H∗ and W∗ from Y(1) and Y(2) dictionary-updates-cycles
KSVD (DUC-KSVD) [63]; this method can promote sparse
representations. (en, initialization of spectral dictionary S
is accomplished by simplex identification split augmented
Lagrangian (SISAL) algorithm [64]; this approach can ef-
ficiently identify a minimum unit that contains the spectral
vectors.

(e proposed STTF-based SR algorithm is summarized
in Algorithm 2.

3. Results and Discussion

3.1. Experimental Data Set. To highlight the advantages of
HSIs, we choose invisible gas plume to be the target. (e
proposed algorithms can be extended to other types of data
reasonably. In this section, the HSV data set is acquired by
the infrared imaging spectrometer “HyperCam-LW.” Sulfur
hexafluoride (SF6) is chosen to be the target, since it is a kind
of odorless and colorless gas plume with a distinct ab-
sorption peak in LWIR range. (e HSV data set consists of
60 infrared hyperspectral frames with the size of
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Figure 4: Sparse-based tensor Tucker factorization of an HSI.
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128 × 320 × 127. (e imaging interval is 4.8 s, and the
wavelength of the data ranges from 7.8 μm to 11.8 μm.

In SR method, only the middle 128 × 128 pixels are used
in the experiment (specifically, column 71 to column 198)
for reasons connected with the algorithm process. And we
remove the spectral band 41–127 because of water vapor
absorption and extremely low SNR. At last, the size of input
LR-HSI is 128 × 128 × 40.

3.2.ComparedMethods. For CTCF-based detectionmethod,
we compare it with two representative methods: MSD
(matched subspace detector) [25] and CMF (constrained
matrix factorization) [29]. For STTF-based SR method, we
compare it with three state-of-the-art algorithms: bicubic
interpolation, sparse representation-based SR method [54],
and sequence information-based SR method [65].

3.3. Qualitative and Quantitative Metrics. For detection
methods, receiver operating characteristic (ROC) curves
[66] are used to evaluate the performance. Generally, a
detector outperforms another one if the area under its ROC
curve is larger [67]. As suggested in [68], the area under the
ROC curve (AUC) is also calculated as a measure of per-
formance of these detection methods. Usually, a better
detector gets a higher AUC value.

For SR algorithms, since we directly process the LR-HSI,
there is no original HR-HSI (i.e., the ground truth) for
reference. (us, some popular quantitative metrics are not
available, such as RMSE (root-mean-square error) [69],
PSNR (peak signal to noise ratio), and SAM (spectral angle
mapper). In this section, entropy and average gradient are
introduced to evaluate the performance of SR methods.

3.3.1. Entropy. Super-resolution aims to introduce more
useful information into images, so we may measure the
performance of SR methods by calculating the contained
information in the experimental results. (e entropy is
indicated as

E � − 􏽘
n

i�1
P(i)log2 P(i). (43)

(e probability of a pixel i in the image is denoted by
P(i) and n denotes the grey value range (0∼255). (e larger
the entropy value of the image, the richer the information
contained in the image.

3.3.2. Average Gradient. Another assessment to measure the
performance of super-resolution is the change of the amount
of detailed information in the image. We may evaluate the
experimental results by average gradient, since it can reflect
the ability of expressing the details and measuring the clarity
of the image.(e gradient increases if the greyscale level rate
in one direction of the image varies quickly. (e average
gradient is formulated as

G �
1

m × n
􏽘

m

i�1
􏽘

n

j�1

�������������������������

zfi,j/zxi􏼐 􏼑
2

+ zfi,j/zyi􏼐 􏼑
2

􏼒 􏼓/2
􏽲

, (44)

where m and n denote the height and width of the image,
respectively; fi,j denotes the greyscale value of pixel (i, j) in
the image.(e larger the average gradient value of the image
is, the clearer the image will be.

Besides, the visual quality of output images is an im-
portant qualitative metric.

3.4. Parameters Setting. In MSD, we pick 463 spectrums of
gas target and 846 spectrums of background from the 12th
frame of HSV to build up the training set. (e size of the
target subspace and background space is 127 × 112 and
127 × 115, respectively. In CMF, the number of endmembers
is 3, the sparsity of factor matrices is 2, and number of it-
eration is 3. In the proposed CTCF-based method, the
original cumulative tensor is obtained by ALS, the tensor
rank is 3, the maximum iteration number is 100, and the
reconstruction error is 10−8; in update stage, the threshold of
fitness is 0.9. In the proposed STTF-based SR method, the

Input: LR-HSI Y
Initialize S with SISAL
Initialize H∗ and W∗ with DUC-KSVD
Initialize Z with (39)
while no convergence do
Step 1: update H by solving (A.3) with CG

H∗ � D1H,Hpre � H
Step 2: update W by solving (A.6) with CG

W∗ � D2W,Wpre � W
Step 3: update S by solving (A.9) with CG

Spre � S
Step 4: update Z by solving (A.15) with CG

Zpre � Z
end while

Estimate X by (37)
Output: HR-HSI X

ALGORITHM 2: STTF-based SR method.
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Figure 6: (e comparison of ROC curves of three detection methods: (a) frame 13; (b) frame 23; (c) frame 34; (d) frame 44.
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Figure 7: (e ROC curves of 39 key-frames by three detection methods: (a) MSD; (b) CMF; (c) CTCF.

Table 1: Detection quantitative results (AUC value) of the test methods on key-frames.

Frame MSD [25] CMF [29] CTCF
12 0.9655 0.9993 0.9980
13 0.8462 0.9995 0.9980
14 0.8878 0.9994 0.9981
15 0.8189 0.9965 0.9981
16 0.8734 0.9995 0.9977
17 0.9348 0.9987 0.9946
18 0.5792 0.7477 0.9915
19 0.7894 0.9988 0.9958
20 0.9336 0.8991 0.9934
21 0.8222 0.9980 0.9966
22 0.9001 0.9915 0.9969
23 0.8388 0.9986 0.9945
24 0.8914 0.9990 0.9983
25 0.9169 0.9989 0.9961
26 0.9254 0.9947 0.9989
27 0.8722 0.9974 0.9951
28 0.8503 0.9978 0.9930
29 0.9490 0.9892 0.9974
30 0.9011 0.9341 0.9885
31 0.9157 0.9867 0.9965
32 0.8881 0.8582 0.9811
33 0.9345 0.9771 0.9933
34 0.9007 0.9977 0.9922
35 0.9273 0.9952 0.9933
36 0.9349 0.9989 0.9950
37 0.9528 0.9986 0.9984
38 0.9299 0.9875 0.9981
39 0.8838 0.9979 0.9962
40 0.9295 0.9976 0.9966
41 0.9165 0.9939 0.9976
42 0.9665 0.9986 0.9988
43 0.9660 0.9763 0.9969
44 0.9083 0.9995 0.9979
45 0.9046 0.9977 0.9935
46 0.9156 0.9964 0.9918
47 0.9225 0.9979 0.9950
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number of iterations is 5; the parameter α is the weight in
(42) and we set α � 10−3; parameter λ controls the sparsity of
Z; we set λ � 10−5; parameter μ is set by μ � 10−2; the size of
Z is set by zh � 240, zw � 240, and zs � 12. (e parameters
above are decided after sufficient number of experiments to
make a balance between efficiency and stability.

3.5. Experimental Results and Discussion. In this subsection,
we show the experimental results of the various methods for
detection and super-resolution.

After processing the HSV by the proposed CTCF-based
method, we compute the values of Frobenius norm of each
frame, which are presented in Figure 5. It is obvious that
target gas appears in the 12th frame and disappears in the
51st frame. Figure 6 compares the ROC curves of test
methods on four frames in detail, and Figure 7 illustrates the
general trends of ROC curves of MSD, CMF, and CTCF,
respectively. As can be seen from Figures 6 and 7, the
proposed CTCF-based detection algorithm outperforms the
other two methods. (e AUC values of three approaches are
shown in Table 1. In each row, the bold value represents the
highest AUC value. Although the AUC values of CMF in
some frames are better, we can see that the AUC values of
CMF in some other frames are very low (less than 0.98). On
the contrast, all the results of CTCF lie in the range of 0.98 to
1. From the average value and the variance (the bold value

represents the highest value), we can conclude that the
proposed method is superior and more stable. (e graphical
results are illustrated in Figure 8.

(e target of each key-frame is shown in 2D form (grey
image) by taking the maximum value of every spectrum. To
save the length of the paper, we choose 8 frames to show the
comparison of three detectors, which are shown in Figure 9.
(e first row to the eighth row present the detection result of
the chosen frame, of which the frame number is 15, 18, 22,
28, 31, 39, 48, and 50. (e higher the greyscale of the pixel in
the image is, the closer it is to the target. It is apparent that
our method extracts more accurate targets.

Table 2 shows the entropy and average gradient of the key-
frames by four SR algorithms. Since sequence-based method
needs 5 LR frames to form 1 HR frame, the compared frame
number is changed from range 12∼50 to range 14∼48. In each
row, the bold values represent the highest entropy value and the
highest average gradient value. From Table 2, we can conclude
that firstly, although interpolation can addmore information in
the frame, the details of the target are lost; secondly, sparse
representation SR and sequence information SR have almost
the same entropy, but the latter approach offers more details
because in the method the HR dictionary is formed by several
LR dictionaries; finally, the proposed STTF-based SR method
outperforms the other three methods in both metrics.

Figure 10 presents the visual quality of the results ob-
tained by four test methods. We choose the 16th, 21st, 34th,

Table 1: Continued.

Frame MSD [25] CMF [29] CTCF
48 0.8623 0.9980 0.9967
49 0.8894 0.9992 0.9980
50 0.8640 0.9969 0.9947
Average 0.8926 0.9817 0.9954
Variance 0.4407×10−2 0.2290×10−2 0.1134 × 10−6
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Figure 8: (e AUC values 39 key-frames by three detection methods.
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Figure 9: (e 2D form of the detection results by three detection methods.

Table 2: SR quantitative results (entropy and average gradient) of the test methods on key-frames.

Methods LR frame Bicubic interpolation Sparse representation-
based SR [54]

Sequence information-
based SR [65] STTF-based SR

Frame Entropy Average
gradient Entropy Average

gradient Entropy Average
gradient Entropy Average

gradient Entropy Average
gradient

14 5.1603 0.0076 5.3744 0.0052 5.4996 0.0078 5.4259 0.0090 5.6098 0.0121
15 4.7086 0.0077 5.1407 0.0063 5.2398 0.0089 5.2184 0.0103 5.3678 0.0139
16 5.5521 0.0084 5.8013 0.0060 5.8765 0.0085 5.8203 0.0103 5.9772 0.0135
17 5.5293 0.0086 5.7054 0.0056 5.7918 0.0081 5.6125 0.0094 5.8831 0.0129
18 4.2989 0.0072 4.8339 0.0062 4.9794 0.0088 5.0423 0.0106 5.1108 0.0138
19 4.4843 0.0073 5.0045 0.0063 5.1327 0.0089 5.1831 0.0106 5.2644 0.0140
20 5.1442 0.0075 5.4307 0.0060 5.5039 0.0086 5.3987 0.0099 5.6122 0.0137
21 4.8821 0.0071 5.2234 0.0060 5.3264 0.0086 5.2578 0.0100 5.4491 0.0137
22 4.3472 0.0067 4.8929 0.0065 4.9858 0.0090 4.9409 0.0102 5.1261 0.0141
23 4.6127 0.0067 5.0430 0.0061 5.1534 0.0086 5.0806 0.0098 5.2823 0.0135
24 4.4189 0.0064 4.8688 0.0060 4.9850 0.0085 4.8916 0.0096 5.1168 0.0133
25 4.3273 0.0066 4.9091 0.0066 5.0061 0.0091 4.9607 0.0103 5.1494 0.0143
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Table 2: Continued.

Methods LR frame Bicubic interpolation Sparse representation-
based SR [54]

Sequence information-
based SR [65] STTF-based SR

Frame Entropy Average
gradient Entropy Average

gradient Entropy Average
gradient Entropy Average

gradient Entropy Average
gradient

26 4.1394 0.0064 4.7589 0.0066 4.8438 0.0090 4.8078 0.0103 4.9919 0.0141
27 4.1127 0.0065 4.6995 0.0066 4.7878 0.0091 4.7713 0.0104 4.9366 0.0142
28 3.9657 0.0061 4.6576 0.0066 4.7467 0.0091 4.7507 0.0107 4.8902 0.0142
29 4.1885 0.0063 4.7545 0.0064 4.8611 0.0088 4.8481 0.0101 5.0066 0.0137
30 3.9672 0.0063 4.6345 0.0067 4.7253 0.0092 4.7241 0.0106 4.8752 0.0144
31 3.9440 0.0061 4.6135 0.0065 4.7131 0.0090 4.7349 0.0104 4.8654 0.0141
32 3.8661 0.0060 4.5799 0.0064 4.6914 0.0088 4.6971 0.0101 4.8497 0.0138
33 4.0479 0.0060 4.7100 0.0064 4.8126 0.0088 4.8114 0.0100 4.9631 0.0137
34 4.1691 0.0060 4.7824 0.0066 4.8621 0.0088 4.8462 0.0102 5.0072 0.0136
35 4.0933 0.0062 4.7169 0.0067 4.8010 0.0091 4.8245 0.0108 4.9515 0.0143
36 3.9157 0.0063 4.5995 0.0067 4.6881 0.0092 4.6712 0.0103 4.8508 0.0142
37 3.7810 0.0059 4.5028 0.0064 4.6088 0.0089 4.5984 0.0100 4.7666 0.0138
38 3.8814 0.0061 4.5479 0.0065 4.6483 0.0090 4.6395 0.0101 4.8050 0.0140
39 4.3168 0.0060 4.8397 0.0061 4.9406 0.0084 4.9135 0.0099 5.0792 0.0130
40 3.9333 0.0061 4.6597 0.0067 4.7380 0.0091 4.7209 0.0104 4.8906 0.0142
41 4.2009 0.0063 4.7897 0.0066 4.8711 0.0089 4.8346 0.0102 5.0138 0.0138
42 4.1083 0.0063 4.7514 0.0067 4.8362 0.0091 4.8398 0.0103 4.9836 0.0142
43 4.0485 0.0063 4.6827 0.0067 4.7602 0.0091 4.7117 0.0101 4.9109 0.0142
44 4.0521 0.0062 4.6510 0.0063 4.7587 0.0087 4.7273 0.0097 4.9165 0.0136
45 4.3442 0.0060 4.9011 0.0061 5.0079 0.0085 4.9380 0.0097 5.1413 0.0134
46 4.0006 0.0061 4.5913 0.0062 4.7080 0.0087 4.6467 0.0097 4.8587 0.0136
47 4.4749 0.0062 5.0109 0.0060 5.1015 0.0084 5.0007 0.0095 5.2302 0.0131
48 4.0685 0.0065 4.6843 0.0065 4.7859 0.0090 4.7607 0.0101 4.9384 0.0141
Avg. 4.3167 0.0066 4.8671 0.0063 4.9651 0.0088 4.9329 0.0101 5.1049 0.0138

(a)

(b)

Figure 10: Continued.
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and 47th frames as a representative. (e smaller one with
size of 128 × 128 is the LR 2D-form frame. (e bigger ones
with size of 256 × 256 are the SR results of different algo-
rithms. As can be seen from Figure 10, the proposed ap-
proach yields clearer outputs with sharper edges and more
textures. A drawback is the “checkerboard artifacts,” which
may be caused by the deconvolution operations in the
method. We desired to fix it in our future work.

4. Conclusions

In this paper, aiming at hyperspectral video, we propose a
novel key-frame and target detection method based on cu-
mulative tensor CP factorization, termed as CTCF, and a
super-resolution algorithm based on sparse-based tensor
Tucker factorization, called STTF. Unlike conventional matrix
factorization based methods, CTCF considers hyperspectral
video (HSV) as 4D cumulative tensor and approximates new
added frames by updating factor matrices. To break the limit
of conventional methods and make super-resolution (SR)
more practical, STTF exploits the sparsity of HSV frames and
factorizes them as a sparse core tensor multiplied by three
modes dictionaries. In this way, spatial resolution of LR-HSI is
enhanced directly without HR samples. (e experimental
results systematically prove that the proposed CTCF and
STTF methods outperform other state-of-the-art algorithms.

In the future works, we focus on tensor factorization
based target tracking methods which are able to extract target
region more accurately and clearly. For super-resolution, we
aim at exploiting nonlocal similarities in tensor factorization
framework, which has been widely used in inverse problems.
Besides target tracking and super-resolution, regions of in-
terest (ROI) approaches will be investigated, in order to make

HSV target recognition more efficient and full featured. In-
spired by [70] and other related works, we believe that the
researches of chemical gas detecting methods will benefit the
agricultural application of HSI/HSV. (ese studies will be of
great significance in internet of things (IoT), smart agricul-
ture, pollution monitoring, etc.

Appendix

(e optimizations of H, W, S, and Z in Section 2.3.2 are
presented as follows.

(1) Optimization of H: when W, S, and Z are fixed, the
optimization of H in (42) is represented as

min
H

Y − Z×1 H
∗

×2 W
∗

×3 S
����

����
2
F

+ α H − Hpre

�����

�����
2

F
, (A.1)

where Hpre denotes the previous estimation of height mode
dictionary in last iteration. Using characteristics of n-mode
product (see (3)), (A.1) is represented as

min
H

Y(1) − D1HMh

����
����
2
F

+ α H − Hpre

�����

�����
2

F
, (A.2)

where Y(1) denotes the mode-1 unfolding matrix of Y and
Mh � (Z×2 W∗ ×3 S)(1). Equation (A.2) is quadratic and can
be solved by computing general Sylvester matrix equation; i.e.,

DT
1D1HMhM

T
h + αH � DT

1Y(1)M
T
h + αHpre. (A.3)

(e conjugate gradient (CG) method is utilized to solve
(A.3). After several iterations, CGwill reach the convergence in
certain conditions. In our experiments, it has been found that
the solution of (A.3) is well approximated after 20 iterations.

(c)

(d)

Figure 10: (e SR results of four test methods, from left to right: original LR frame, bicubic interpolation, sparse representation-based SR
method [54], sequence information-based SR method [65], the proposed STTF-based SR method: (a) frame 16; (b) frame 21; (c) frame 34;
(d) frame 47.
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(2) Optimization of W: when H, S, and Z are fixed, the
optimization of W in (42) is expressed by

min
W

Y−Z×1H
∗

×2W
∗

×3 S
����

����
2
F

+α W−Wpre

�����

�����
2

F
, (A.4)

where Wpre denotes the previous estimation of width mode
dictionary in last iteration. Similar to the optimization of H,
(A.4) can be transformed into

min
W

Y(2) − D2WMw

����
����
2
F

+ α W − Wpre

�����

�����
2

F
, (A.5)

where Y(2) denotes the mode-2 unfolding matrix of Y and
Mw � (Z ×1 H∗ ×3 S)(2). Equation (A.5) is also quadratic and
can be solved by computing general Sylvester matrix
equation; i.e.,

DT
2D2WMwM

T
w + αW � DT

2Y(2)M
T
w + αWpre. (A.6)

Likewise, CG is used to solve (A.6).

(3) Optimization of S: when H, W, and Z are fixed, the
optimization with respect to S in (42) can be for-
mulated as

min
S

Y − Z×1 H
∗

×2 W
∗

×3 S
����

����
2
F

+ α S − Spre
�����

�����
2

F
, (A.7)

where Spre denotes the previous estimation of spectral mode
dictionary in last iteration. Same as the processing in the two
subsections above, we have

min
S

Y(3) − SMs

����
����
2
F

+ α S − Spre
�����

�����
2

F
, (A.8)

where Y(3) denotes the mode-3 unfolding matrix of Y and
Ms � (Z×1H∗×2W∗)(3). Similarly, (A.8) can be solved by
computing general Sylvester matrix equation; i.e.,

SMsM
T
s + αS � Y(3)M

T
s + αSpre. (A.9)

We apply CG to solve (A.9) and the convergence is
achieved in a few iterations.

(4) Optimization of Z: when H, W, and S are fixed, the
optimization of Z in (42) can be written as

min
Z

Y − Z×1 H
∗

×2 W
∗

×3 S
����

����
2
F

+ λ‖Z‖1 + α Z − Zpre

�����

�����
2

F
,

(A.10)

where Zpre denotes the previous estimation of core tensor in
last iteration. Equation (A.10) is convex, so we can employ
the ADMM to solve the optimization problem. Introducing
splitting variables Z1 � Z and Z2 � Z, (A.10) can be trans-
formed into the equivalent constrained form:

min
Z1 ,Z2

f1 Z1( 􏼁 + f2 Z2( 􏼁,

s.t.Z1 � Z,

Z2 � Z,

(A.11)

where

f1 Z1( 􏼁 � λ Z1
����

����1 + α Z1 − Z1pre

�����

�����
2

F
,

f2 Z2( 􏼁 � Y − Z2 ×1 H
∗

×2 W
∗

×3 S
����

����
2
F
.

(A.12)

Equation (A.11) is a typical form of optimization
problem that corresponds to the standard ADMM. (e
augmented Lagrangian function for (A.11) is represented as

g Z1,Z2, β( 􏼁 � λ Z1
����

����1 + α Z1 − Z1pre

�����

�����
2

F

+ Y − Z2 ×1 H
∗

×2 W
∗

×3 S
����

����
2
F

+ μ Z1 − Z2 − β
����

����
2
F
,

(A.13)

where β denotes the Lagrangian multiplier and μ denotes the
penalty parameter. (e process of ADMM is formulated as

Z1← argmin
Z1

g Z1,Z2, β( 􏼁;

Z2← argmin
Z2

g Z1,Z2, β( 􏼁;

β← β − Z1 − Z2( 􏼁,

(A.14)

Here, the optimizations of Z1 and Z2 are independent
because function g(·) is decoupled with respect to these
variables. Next, (A.14) will be discussed more detailedly.

(i) Update Z1: based on (A.13), we have

Z1 ∈ argmin
Z1

λ Z1
����

����1 + α Z1 − Z1pre

�����

�����
2

F
+ μ Z1 − Z2 − β

����
����
2
F
,

(A.15)

and the closed-form solution of (A.15) is

Z1 � soft
μ Z2 + β( 􏼁 + αZ1pre

μ + α
,

λ
2μ + 2α

􏼢 􏼣, (A.16)

where soft(m, n) � sign(m)∗ max(|m| − n, 0).

(ii) Update Z2: based on (A.13), we have

Z2 ∈ argmin
Z2

Y − Z2 ×1 H
∗

×2 W
∗

×3 S
����

����
2
F

+ μ Z2 − Z1 + β
����

����
2
F
.

(A.17)

Based on (6) and (7), (A.17) is equivalent to

argmin
z2

y − Ez2
����

����
2
F

+ μ z2 − z1 + β
����

����
2
F
, (A.18)

where the vectors y � vec(Y), z2 � vec(Z2), z1 � vec(Z1),
and β � vec(β) are the vectorization form of tensors Y, Z2,
Z1, and β, respectively, and matrix E � S⊗W∗ ⊗H∗.
Equation (A.18) has the closed-form solution which is
denoted by

z2 � ETE + μI􏼐 􏼑
−1

ETy + μz1 − μβ􏼐 􏼑. (A.19)

However, E ∈ RhwS×zhzwzs is so large that (A.19) is too
heavy to be solved. We rewrite the first term of (A.19) as
follows:
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ETE + μI􏼐 􏼑
−1

� P3 ⊗P2 ⊗P1( 􏼁 Q3 ⊗Q2 ⊗Q1 + μI( 􏼁
−1

× PT
3 ⊗P

T
2 ⊗P

T
1􏼐 􏼑,

(A.20)

where Pi andQi (i � [1, 3]) denote eigenvector matrices and
eigenvalue matrices of H∗TH∗, W∗TW∗, and STS, respec-
tively. So, (Q3⊗Q2⊗Q1 + μI)−1 is diagonal and can be
computed easily. Moreover, the operation of Pi and of PT

i is
i-mode products and the multiplication in (A.20) is ele-
mentwise. Finally, ETy in the second term of (A.19) can be
computed by

ETy � vec Y×1 H
∗T

×2 W
∗T

×3 S
T

􏼐 􏼑. (A.21)

(iii) Update β: based on (A.14), β is updated by

β← β − Z1 − Z2( 􏼁. (A.22)
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A multiple measurement vector (MMV) model blocks sparse signal recovery. ISAR imaging algorithm is proposed to improve
ISAR imaging quality. Firstly, the sparse imaging model is built, and block sparse signal recovery algorithm-based MMVmodel is
applied to ISAR imaging. -en, a negative exponential function is proposed to approximately block L0 norm. -e optimization
solution of smoothed function is obtained by constructing a decreasing sequence. Finally, the correction steps are added to ensure
the optimal solution of the block sparse signal along the fastest descent direction. Several simulations and real data simulation
experiments verify the proposed algorithm has advantages in imaging time and quality.

1. Introduction

Due to the characteristics of long distance, all-weather and
all-weather, the inverse synthetic aperture radar (ISAR)
imaging technology has been widely used in military, civil,
and other fields [1, 2]. Generally, the wide-band signal is
used to improve range resolution in ISAR imaging. In order
to obtain a high azimuth resolution, it is necessary to im-
prove the target rotation accumulation angle or increase the
time interval of coherent processing. For a long coherent
processing interval (CPI), complex motion compensation is
needed; however, it is difficult to achieve real-time imaging.
When the number of echo pulses is limited or the echo pulse
is interfered strongly, it is difficult to achieve the effect.
-erefore, the imaging algorithm based on short CPI is
necessary.

-e theory of compressive sensing (CS) uses a small
amount of measurement information to reconstruct the
original signal with a large probability through optimization,
which is the research hot spot in the field of signal processing
[3–6]. It has been used in ISAR imaging [7, 8], MIMO radar
signal processing [9, 10], and radar parameter estimation
[11–14]. Because the actual contour of the target in sky
imaging background is smaller than imaging area, the
scatters of the target have sparse structure compared with

the imaging area. -e traditional sparse ISAR imaging al-
gorithmmainly considers the recovery of individual scatters.
However, the scatters are not independent. Because the
target is a whole, different parts of the target are connected
together. -e strong scatterers of ISAR target can occupy
many resolution cells, which have usually clusters or blocks
in the imaging region. In this case, the common sparse
reconstruction algorithm cannot completely describe the
characteristic of target.

-e analysis shows that, by using the inherent structural
characteristics of the signal, it can the improve signal re-
construction performance greatly. If the block property
structure of ISAR target is exploited, the better recovery
performance can be obtained. Two-dimensional pattern-
coupled sparse Bayesian learning (PC-SBL) algorithm is
proposed in [15]. However, the algorithm is computational
expensive. One block sparse reconstruction algorithm is
proposed to reconstruct the scattering coefficient of the
target in the paper.

At present, most of the applications of sparse signal
recovery algorithm in ISAR imaging are based on the single
measurement vector (SMV) model, in which the ISAR echo
signals are divided according to the distance unit and then
the image can be obtained by combining the reconstructed
result of each distance unit. However, ISAR imaging
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reconstruction algorithm based on the SMV model has low
efficiency and poor real-time performance. -e compressive
sensing multiple measurement vector model can repeat
observations of the information, and the MMV model can
obtain better performance and improve the sparse signal
reconstruction efficiency compared with that of the SMV
model.

In order to improve ISAR imaging quality, a two-di-
mensional sparse signal reconstruction algorithm of ISAR
imaging based on MMV model is proposed. All one-
dimensional range images are written together as a whole to
be recovered by utilizing the potential block characteristics
of ISAR target. -e algorithm can not only improve the
efficiency of reconstruction but also improve the quality of
ISAR imaging.

-e structure of the article is as follows: Section 2 in-
troduces necessary ISAR imaging model and sparse signal
recovery ISAR imaging algorithm. In section 3, the block
sparse recovery algorithm for ISAR imaging algorithm based
on MMV model is introduced in detail. Simulation and real
data imaging results of ISAR are presented in section 4.
Finally, section 5 provides the conclusion.

2. ISAR Imaging Model

ISAR uses the relative motion of target and radar to obtain
high resolution azimuth. Assuming the LFM signal trans-
mitted by the radar is

y(t) � rect
t

Ta

􏼠 􏼡exp j2π fct +
1
2
λt

2
􏼒 􏼓􏼔 􏼕, (1)

where t is the fast time, fc expresses the carrier frequency, c

is the chirp rate, and Ta indicates the pulse duration, the
backscattered ISAR signal can be written as

s(t) � A · rect
t

Ta

􏼠 􏼡 · rect
t

T
􏼒 􏼓 · exp j2π t −

2R(t)

c
􏼠 􏼡􏼠􏼨

+
1
2

c t −
2R(t)

c
􏼠 􏼡

2
⎞⎠

⎫⎬

⎭,

(2)

where c is the speed of light, T is the CPI, and A is the signal
amplitude. After the distance pulse is compressed, the re-
ceived signal can be expressed as

s(t) � A · sin c Tac t −
2 R0 + y( 􏼁

c
􏼠 􏼡􏼢 􏼣 · exp − j4π

R0 + y( 􏼁

λ
􏼢 􏼣

· rect
t

T
􏼒 􏼓 · exp − j2π f · t +

1
2
β · t

2
􏼒 􏼓􏼔 􏼕,

(3)

where λ is the wavelength, f is the Doppler frequency, and β
is change rate of Doppler frequency. It is assumed that there
are K strong scattering centers in a certain distance unit and
the time-varying scattering can be ignored in short coher-
ence processing; it can be expressed as

y(t) � 􏽘
K

k�1
xk · rect

t

T
􏼒 􏼓 · exp − j2πfkt( 􏼁 + n, (4)

where xk and fk are the kth scattering centers’ complex
coefficient and Doppler frequency, respectively, and n is the
noise, -e time sequence can be expressed as
t � [1: N]T · Δt, where Δt � (1/fr) is the time interval and
fr is the pulse repetition frequency. N � (T/Δt) is the
number of pulses. Δfd is the Doppler frequency resolution
interval, and the sparse Doppler sequence is
fd � [1: M] · Δfd, where M � (fr/Δfd) and M is the
number of Doppler unit corresponding toΔfd. So, construct
the basis matrix as Ψ � ϕ1, ϕ2, . . . , ϕm, . . . , ϕM􏼈 􏼉,
φM(t) � exp(− j2πfd(m)t), 0<m≤M. -e discrete signal
equation received by ISAR can be expressed as

y � Φw + n, (5)

where w is the coefficient vector composed of the reflection
coefficient and n is the noise vector.

Because w contains the information of the strong
scattering point of the target, it is a sparse vector. -e so-
lution of w is equivalent to the following optimization
problem:

􏽢w � argmin ‖w‖P subject to ‖y − Φw‖2 < η, (6)

where η is a small constant, and the value is related to noise
variance; P is the Lp norm.

According to the above optimization, the signal of each
distance unit is recovered and then combined together to
obtain the ISAR image. Because every distance element
needs to be recovered, it will increase the computational
burden and affect the imaging efficiency. Based on this, the
paper studies the ISAR imaging model based on MMV. If all
one-dimensional range profiles are written together as a
whole, the total received signal can be expressed as

Y � ΦW + N, (7)

where W is the target scatter point coefficient matrix, which
is the ISAR image.

In the traditional MMV model, the nonzero signals in
each column of matrix W have the same supporting set. For
the equation (7), the scatter points of distance unit have
different supporting set. Because the scatter points of ISAR
targets have the characteristics of cluster or block distri-
bution, the imaging result can be obtained by the following
block L0 sparse signal recovery algorithm:

min
w

‖W‖0 s.t.‖Y(:, n) − ΦW(:, n)‖< η n � 1, . . . N,

(8)

where ‖W‖0 expresses a block sparse L0 norm of a matrix, η
is a small positive number relating with noise, and N is the
number of columns of W.

-e smoothed function Gσ(w) � N − 􏽐iexp(− w2
i /σ)

approaches the L0 norm when the parameter σ approaches
zero [16]. When the parameter σ⟶∞, Gσ(w) approxi-
mates the L2 norm.-erefore, the algorithm does not search
for sparse solution because L2 norm cannot describe
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sparsity. A negative exponential function
Fσ(w) � N − 􏽐iexp(− |wi|/σ) as smoothed function is pro-
posed to obtain an approximate L0 norm solution.When the
parameter σ⟶∞, Fσ(w) approaches L0 norm. -us, the
sparse solution can be obtained by using the new function at
the very beginning of iteration.

For the one-dimensional block discrete signal w, the
block structure is expressed as follows:

w � w1, . . . , wd, . . . , w2d, . . . , wPd􏼂 􏼃, (9)

where P is the size of the block and d is the number of blocks.
-e block smoothed L0 function can be expressed as

Fσ(w) � P − 􏽘
P

P�1
gσ

�����������������

􏽘

d

i�1
|w((P − 1)d) + i|2

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠. (10)

3. MMV Block Sparse Signal ISAR
Imaging Algorithm

In the double-loop-layer SL0 algorithm [16], the solution of
σ � σj is only the initial value when σ � σj+1. So, it is not
necessary to solve the precise solution of σ � σj. According
to this observation, the inner loop layer is canceled, at the
same time, the step size in the out layer is decreased. It means
that the searching density of the variable parameter σ is
increased. For every σj, only one fastest descent searching is
used to solve the minimization solution of the function
Fσj

(w). -e proposed algorithm ensures the block recon-
struction accuracy, and the computation amount does not
increase.-e steepest descent method should reduce the cost
function in every step, but it is not necessarily the descent
direction in the actual solution process. -erefore, for the
above algorithm, the step of checking whether the solution is
descending is added in each iteration. If it is not along
descent direction, the midpoint of the previous point and the

current point is used to ensure that the search direction
follows the fastest descent direction.-e proposed algorithm
is called improved MMB block sparse smoothed L0 algo-
rithm (simplified as MBSSL0). -e high ISAR imaging al-
gorithm based on MMV mode is expressed as Algorithm 1.

If the selected step size is large, the algorithm will not
converge. If the selected step size is too small, it will affect the
convergence speed and reduce the calculation efficiency.
-erefore, a larger step size is selected in the initial search
because the search point is far from the minimum value
point. When the search point is gradually close to the
minimum value, the search step size should be gradually
reduced. J is the iterative loop number, and σJ should be
chosen as less than the minimum value of the sparse so-
lution. Letting μ � βmax|X|/L0 guarantees that it moves
only a small part of the maximum value.

4. Simulation Results

4.1.One-Dimensional Block Spike Signal Recovery. -e signal
model is y � Aw + n, and the sparse matrix A is 80×160.
Each element of A is Gaussian distributed. wis a block sparse
signal, whose nonzero block coefficients are uniform ± 1.
-e block size is 8. n is the independent Gaussian random
vector. -e performance using BOMP [17], BCoSaMp [18],
BSL0 [19], BSPG L1 [20], and MBSSL0 are compared. For
BSL0 algorithm, the number of outer loops and inner loops
is 20 and 10, respectively. For BSSL0 algorithm, the loop
number is 200. Define minimum mean absolute value error
MAE � 10 log10(‖x − 􏽢x‖/N), where x is the true solution
and 􏽢x is the estimation value. -e experiment was repeated
500 times. -e computational times, correct position re-
construction frequencies, and MAE are averaged.

Figure 1 shows the average computational times with
different block sparsity by different algorithms. We can see
that BOMP, BSL0, and MBSSL0 algorithms have less
computation than the other algorithms.-e correct position

(I) Initialization
(1) 􏽢W0 is the minimum l2 norm solution of Y � ΦW

(2) One decreasing sequence σ: [σ1, . . . σJ]

(II) For j � 1, . . . , J:
(1) Let σ � σj, β � (J − (j/2) + 1/J)

(2) Minimize the function Fσ(W) on the feasible set
(a) Initialization: W � 􏽢Wj− 1
(b) Let δ be gradient of Fσ(W)

(c) W(: , n)←W(: , n) − μσδ (where μ is a small positive constant)
(d) If |AW(: , n) − Y(: .n)|2 > η, project W back into the feasible set W:

Gσ(W2)>Gσ(W)

(e) Compare step
If Fσ(X2)>Fσ(X)

􏽢Wj � W

If Fσ(X2)<Fσ(X)

W � 􏽢WJ

(3) Set 􏽢Wj � W.
(III) Final solution is W � 􏽢WJ

ALGORITHM 1: -e block SL0 sparse signal recovery algorithm based on MMV model.
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estimation and MAE with different block sparsities for
different algorithms are shown in Figures 2 and 3. We can
see that the performances of MBSSL0 algorithm are com-
petitive with other algorithms.

4.2. ISAR Imaging Using Real Data. -e real data are the
measured echo data of yak-42 aircraft from the ISAR system.
-e radar parameters are as follows: the signal frequency
band width 400MHz, the center carrier frequency 10GHz,
and the data pulse repetition frequency 100Hz. 256 echo
pulses are selected in the simulation. Figures 4–6 show the
imaging results obtained by these algorithms using 16, 32,
and 64 pulses that are randomly chosen from 256 pulses.-e

uniform block is used in the block sparse reconstruction.-e
ISAR image is divided as 4 × 2small blocks, where 4 is 4
cross-range units. -e loop number of algorithm is 200. -e
simulation results are compared visually and quantitatively
with those images obtained by some sparse signal recovery
methods including MOMP algorithm [21], SBL algorithm
[22], PC-SBL algorithm, and MBSSL0 algorithm in this
paper, respectively. -e recovery images of MBSSL0 algo-
rithm show more information in the neck of plane when
pulse number is 16. -e images obtained by MBSSL0 al-
gorithm are similar to PC-SBL algorithm when the plus
numbers are 32 and 64. -e imaging results of MBSSL0
algorithm generate better visual quality, and the ISAR im-
ages are more intensive than MOMP algorithm and MSBL.
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Figure 1: Computational costs for different algorithms with block sparsity.
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Figure 4: Reconstructed images using 16 pulse numbers: (a) MOMP, (b) MSBL, (c) PC-SBL, and (d) MBSSL0.
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Figure 5: Reconstructed images using 32 pulse numbers: (a) MOMP, (b) MSBL, (c) PC-SBL, and (d) MBSSL0.
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Figure 6: Continued.

6 Mathematical Problems in Engineering



Considering the block sparsity, MBSSL0 algorithm can
describe the characteristics of the signal better and has better
signal reconstruction performance. -e computation time
using different algorithms are provided when the pulse
number is 32 in Table 1. It can be seen that the MBSSL0
algorithm saves computational time.

5. Conclusion

In this paper, one ISAR imaging algorithm of MMV block
sparse reconstruction is proposed by considering the block
structure of ISAR target in the imaging scene. Based on the
recovery algorithm of smoothed block L0 norm, a revised
step is added to ensure that the optimal solution is searched
along the direction of the fastest descent. Experimental
results show that the algorithm can save imaging time and
improve ISAR imaging quality effectively with fewer pulses.
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*is paper proposes a JPEG lifting algorithm based on adaptive block compressed sensing (ABCS), which solves the fusion
between the ABCS algorithm for 1-dimension vector data processing and the JPEG compression algorithm for 2-dimension image
data processing and improves the compression rate of the same quality image in comparison with the existing JPEG-like image
compression algorithms. Specifically, mean information entropy and multifeature saliency indexes are used to provide a basis for
adaptive blocking and observing, respectively, joint model and curve fitting are adopted for bit rate control, and a noise analysis
model is introduced to improve the antinoise capability of the current JPEG decoding algorithm. Experimental results show that
the proposed method has good performance of fidelity and antinoise, especially at a medium compression ratio.

1. Introduction

Image processing technology has always been a research
hotspot in the field of computer science. Especially, in the
recent years, under the emergence of high-definition and
large-scale images and the impact of massive video infor-
mation, image compression processing technology has be-
come particularly noticeable. Image compression
technology can use limited storage space to save a larger
proportion of image data; at the same time, it can also reduce
the data size of images of the same quality, which can ef-
fectively improve the efficiency of network data transmis-
sion.*e traditional image compression technology includes
two independent parts, image acquisition and image com-
pression, which limit the fusion improvement method of the
two correlated compression technology parts. *e emer-
gence of compressed sensing (CS) theory breaks the above
frame of image compression, and it completes the image
acquisition and compression in the step of sparse obser-
vation synchronously; on the one hand, it simplifies the
image processing process, and on the other hand, it also
provides new research areas for image fusion compression.

*ere are many types of images processed in image
compression technology, and this article selects a still image
as the research object. *e common still image compression
formats include JPEG, JPEG2000, JPEG-XR, TIFF, GIF, and
PCX. *is paper focuses on the research of image com-
pression algorithms with a JPEG similar structure and
improves them with the combination of CS technology. In
addition, the algorithms with a similar principle architecture
to JPEG are collectively referred to as JPEG-like algorithms,
including traditional JPEG, JPEG-LS, JPEG2000, and JPEG-
XR. Data redundancy is essential to the compression of a still
image. JPEG-like algorithms use time-frequency transform
algorithms and entropy coding as main methods to elimi-
nate data redundancy [1–3]. Although having achieved
certain effects of still image compression, these algorithms
have insufficient considerations on three types of data re-
dundancy (coding redundancy, interpixel redundancy, and
psychological visual redundancy) [4]. Firstly, the simple
image blocking without guidance could not support the
effective coding efficiency to eliminate redundancy in the
existing JPEG-like algorithms. Secondly, the uniform time-
frequency transform of the same dimension cannot
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reasonably use the a priori information between pixels of
different subimage blocks to reduce interpixel redundancy.
In the end, the former JPEG-like algorithms fail to eliminate
psychological visual redundancy by considering overall and
local saliency. CS technology breaks through the limitations
of the Nyquist sampling theorem to provide innovative ideas
for sparse reconstruction of signals [5]. In particular, the
adaptive block compressed sensing (ABCS) combined with
adaptive partitioning and sampling provides a feasible so-
lution for the optimization of JPEG-like algorithms [6, 7].
*at is, the block compressionmeasurement matrix could be
used as the forward discrete cosine transform (FDCT)
matrix in the JPEG coding, and the inverse discrete cosine
transform (IDCT) process is replaced by sparse recon-
struction. In addition, multiple feature saliency and noise
analysis are introduced to implement adaptive control of the
observation matrix and minimal error iterative recon-
struction [8, 9].

In this article, we proposed a JPEG lifting algorithm
based on the ABCS, and named it as JPEG-ABCS. *is
proposed algorithm focuses on the following aspects: (1)
guiding best morphological blocking by minimizing mean
information entropy (MIE); (2) generating an element
vector of subimage pixels using the texture feature and 2-
dimensional direction DCT; (3) selecting the dimension of
the measurement matrix by variance and local significance
factors; (4) rate control by matching the overall sampling
rate and the quantization matrix; (5) realizing iterative re-
construction of a minimum error under noise condition by
using noise influence model analysis.

*e remainder of this paper is organized as follows. In
Section 2, the basic theories of JPEG-like algorithms and the
ABCS algorithm are illustrated. In Section 3, we focus on the
introduction of the JPEG-ABCS algorithm. *en, the
implementation of the proposed JPEG-ABCS algorithm is
analyzed in Section 4. In Section 5, the experiment and result
analysis shows the benefit of the JPEG-ABCS. *e paper
concludes in Section 6.

2. Preliminary Knowledge

2.1. Background of the Existing JPEG-Like Algorithms. *e
existing JPEG-like algorithms are similar in structure,
mainly including blocking, forward time-frequency trans-
form, quantization, entropy coding, and the inverse oper-
ation of the above four processes. As the basic one of JPEG-
like algorithms, the structure of the JPEG model is shown in
Figure 1.

It can be seen from Figure 1 that in the entire JPEG
model, the original image I is treated as two-dimensional
data, and its key link is adopting the 2-dimensional DCT.
Generally, the block size is square, such as 8∗8, and the
recommended quantization matrix (light-table) is given in
equation (1) [10]. Based on the Hoffman coding, the
encoding part adopts differential pulse code modulation
(DPCM) for DC coefficients and run length coding (RLC)
for AC coefficients:

light − table � Q0 �

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 84 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(1)

Compared with the fixed bit rate of the JPEG algorithm,
the JPEG-LS algorithm adds the function of rate control by
using a quality factor. JPEG2000 adopts nonfixed square
blocking (tile) and discrete wavelet transform (DWT) to
improve the quality of the restored image. JPEG-XR in-
troduces the lapped orthogonal transform (LOT) to reduce
the blocking artifact at low bit rates.

2.2. Basic 1eory of CS Algorithm. CS theory was originally
proposed by Candès et al. in 2006, which proved that the
original signal can be accurately reconstructed by partial
Fourier transform coefficients. *e advent of CS technology
solves the problem that image sampling and compression
cannot be performed simultaneously. In general, the main
contents of the research on CS theory include sparse rep-
resentation, compression observation, and optimization
reconstruction [11]. Firstly, the main task of sparse repre-
sentation is to find a set of bases that can make the signal
sparse representation, which is the premise and foundation
of the entire CS theory. Secondly, the primary task of
compression observation is to design a linear measurement
matrix uncorrelated with the basis vector to obtain di-
mensionality reduction observation data, which is the key
content of CS theory. Lastly, optimization reconstruction is a
difficult problem in CS theory, and its main goal is to solve
the original signal through the reverse optimization problem
of the sparse vector. *e specific solution method of this
process is the constrained optimization method.

CS mathematical model is based on the assumption of
signal sparsity. Let x ∈ RN be the original signal with n
dimension. Suppose that the sparse matrix Ψ ∈ RN×N makes
the sparse representation coefficient of x as s � Ψ−1x, where
s ∈ RN contains only K (K≪N) nonzero elements. *e
original signal x is called the K sparse signal under sparse
basis Ψ. *e number of nonzero elements in the coefficient
vector s can be calculated by K � ‖s‖0, where ‖∗‖0 denotes l0
norm.

CS theory states that the information content in sparse
signals can be effectively captured by a smaller number of
observations. Let Φ ∈ RM×N be the measurement matrix,
where M<N. *e linear dimension-reduction acquisition
vector of the original signal x is given as y � Φx, where
y ∈ RM represents the CS observation signal. In addition, the
CS theory points out that to accurately recover the original
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signal by the observation signal, its dimensions must obey
the following condition: M≥ cK log(N), where c is an ad-
justment constant.

Since M<N, the reconstruction of the sparse signal x
from themeasurement vector y is ill-posed which requires us
to solve the underdetermined system of equations. *ere are
many solutions for such a system. It is common practice to
achieve effective signal reconstruction by using signal
sparsity as an additional constraint. *e accurate signal
reconstruction is accomplished through solving the fol-
lowing optimization problem:

min
s

‖s‖p s.t. y � Φx � ΦΨs � Ωs , (2)

whereΩ is the sensing matrix, ‖∗‖p denotes the lp norm, and
the value of p is usually 0, 1, and 2 according to different
optimization goals. *is is a NP-hard problem, and in order
to ensure the stability and robustness of the reconstruction
process, the measurement matrix Φ must satisfy the re-
stricted isometric property (RIP).

*e above is the description of the three important
problems of the CS algorithm, which solves the separation
problem of traditional image acquisition and compression.
However, when CS is applied to large-scale high-definition
images and video processing, because the 2-dimensional
image contains a lot of information, the overall projection
requires a large-scale measurement matrix, which will in-
evitably lead to two major problems: excessive storage and
reconstruction algorithm complexity. *e above problems
limit the application of CS in image processing. *e
emergence of block compressed sensing (BCS) theory solves
this problem well.*e solution is to cut the whole image into
several small unit blocks, reconstruct after independent
observation, and then perform stitching to restore and re-
construct the original image.

Traditional block compressed sensing (BCS) technology
introduces the idea of blocks in CS theory to solve the di-
mensional disaster of data processing, and then improves the
processing speed of the algorithm [12]. Its basic model is
shown in the following equation:

y �

y1
y2
⋮

yT1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Φx �

ΦB · · · 0

⋮ ⋱ ⋮

0 · · · ΦB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1
x2
⋮

xT1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where xi ∈ Rn, yi ∈ Rm, andΦB ∈ Rm×n are the i-th subblocks
of the original signal, observation signal, and block mea-
surement matrix and T1 � (N/n) � (M/m) is the number of
blocks. In addition, a coefficient η � (M/N) is often defined
in the BCS, which is called the mean sampling rate. In the
analysis of the above BCS algorithm model, although the
blocking strategy solves the problems of dimensional di-
saster and computational complexity, the model uses a
unified measurement matrix which can neither reflect the
inherent differences between each subimage, nor can it
achieve differentiated blocking.

In order to overcome the above shortcomings, the
nonuniform blocking and observing are introduced into
BCS, and combined with the idea of the adaptive algorithm,
the ABCS algorithm is generated. *e ABCS algorithm
mentioned in this article is the introduction of the adaptive
strategy into BCS, which is mainly reflected in adaptive
blocking and observation [13, 14]. *e ABCS algorithm
model is as follows:

y �

y1
y2
⋮

yT1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Φx �

Φ1 · · · 0

⋮ Φi ⋮

0 · · · ΦT1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1
x2
⋮

xT1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where xi ∈ Rni , yi ∈ Rmi , and Φi ∈ Rmi×ni are the i-th sub-
blocks of the original signal, observation signal, and mea-
surement matrix. *e difference between the ABCS
algorithm and the BCS algorithm is that it gives the di-
mensional freedom of subblock and measurement matrix,
which provides conditions for the reasonable use of the
correlation of the internal elements of the original signal.

3. Fusion of JPEG Model and ABCS Algorithm

3.1. Workflow of JPEG Lifting Algorithm. According to the
above section, the JPEG image compression model mainly
includes blocking, FDCT, quantization, coding, and the
inverse process of the above four parts. *e focus of this
section is to do the research about the method on how to
embed the advantages of the ABCS algorithm into the JPEG
model. *e basis for the fusion of the JPEG model and the
ABCS algorithm is that the consistent purpose is for image
compression. *e former mainly compresses the image by
reducing the number of bits occupied by each pixel, and the
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Figure 1: Structure of the JPEG model.
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latter mainly compresses the data by reducing the amount
of sampled data, so the ABCS algorithm is suitable to be
embedded to the data acquisition stage of the JPEG model;
that is, the ABCS algorithm is fused in the blocking and
FDCT processes to reduce the amount of input data in the
quantization process. In addition, the distinction of the
data processing method in JPEG and ABCS is noticed. *e
image data in the JPEG algorithm are processed in the form
of two-dimensional data, which is conducive to saving the
two-dimensional structural characteristics of the image,
while the input signal in the ABCS algorithm is a simple
one-dimensional vector form and does not have two-di-
mensional characteristics. *e proposed algorithm JPEG-
ABCS mainly includes the solution of two main problems:
(a) the conversion problem between two-dimensional
time-frequency transformation of JPEG and one-dimen-
sional measurement model of ABCS; (b) the specific
method of applying ABCS to the JPEG compression
algorithm.

In typical JPEG image compression, after the pre-
processing stage, an R×C input image I is divided into 8× 8
size subimages Ii, i � 1, 2, . . . , T1, T1 � ((R × C)/(8 × 8)).
Each subimage is transmitted to a 2D DCT transform, and
the 2D DCT can be completed using two one-dimensional
DCTs according to the separability of the DCT. In addition,
the blocking method designed in this paper adopts the
variable shape blocking method under a unified dimension
(n � r × c), so the FDCTprocess can be described as follows:

If

i � dct2 Ii( 􏼁 � DrIiD
T
c , (5)

where If
i is the subimage in the DCTdomain, Dr ∈ Rr×r and

Dc ∈ Rc×c are the 1D vertical and horizontal DCTorthogonal
matrices, respectively, and r and c are the number of rows
and columns of each subimage [15].

*e block sparse representation and the flexible uni-
form-dimension blocking are introduced into the ABCS
algorithm. Equation (4) can be rewritten as follows:

yi􏼈 􏼉
T1
i�1 � Φixi􏼈 􏼉

T1
i�1 � ΦiΨisi􏼈 􏼉

T1
i�1 � Ωisi􏼈 􏼉

T1
i�1, (6)

where xi ∈ Rn, yi ∈ Rmi , and si ∈ Rn are the i-th subblocks of
the original signal, observation signal, and sparse signal;
Φi ∈ Rmi×n, Ψi ∈ Rn×n, and Ωi ∈ Rmi×n are the i-th subblocks
of the measurement matrix, sparse matrix, and sensing
matrix; ηi � (mi/n) is the subsampling rate of the i-th
subblock.

For retaining the two-dimensional characteristics of the
image signal in the application of JPEG-ABCS, it is necessary
to analyze the two-dimensional DCT transform in JPEG and
the compression observation in ABCS. It is impossible that
the 1-dimension vector xi generated directly from the
subimage Ii through column/row scanning has two-di-
mensional structural characteristics. *e inverse solution of
the reconstructed signal 􏽢xi in the ABCS algorithm is
generally denoted as 􏽢xi � Ψi􏽢si � ΨiΩ+

i yi � ΨiΩ+
i Φixi �

ΨiΩ+
i Ωisi; that is, the reconstruction of the original signal is

only related to the sparse representation coefficient si. If the
sparse representation coefficient si has two-dimensional
structure information, it is equivalent to the original signal xi

with two-dimensional structure information. *erefore, the
equivalent two-dimensional block vector generation can be
achieved by taking the sparse matrix of ABCS as the cor-
responding matrix under the two-dimensional DCT
transform:

DrIiD
T
c � If

i ⇔Ψ
+
i xi � si. (7)

Analyzing equation (7), the function between the sparse
matrix and the DCT orthogonal matrices is established as
follows:

Ψi � kron DT
c ,DT

r􏼐 􏼑, (8)

where kron(∗) represents the Kronecker product function.
Original signal vector xi is obtained by scanning the pixel
value of the subimage Ii vertically. In addition, if the texture
of the image is not in the vertical and horizontal directions,
the directional DCT is used instead of the horizontal and
vertical DCT orthogonal matrix.

Replacing FDCT and IDCT in the JPEG with adaptive
sparse observing and sparse restoring, respectively, replacing
blocking in the JPEG with adaptive blocking and vectori-
zation, adding noise to the data storage or data transmission
are done, and then the workflow of the proposed JPEG-
ABCS algorithm is shown in Figure 2. Comparing the two
image compressionmodels shown in Figures 1 and 2, the key
points of the JPEG-ABCS model are (1) adaptive blocking,
that is, replacing a fixed block with a variable block; (2)
adaptive vectorization, that is, providing a matching vector
generation method based on image orientation character-
istics; (3) adaptive observing, that is, replacing uniform
observing with nonuniform observing; (4) adding a con-
trollable variable in the rate control process to improve the
JPEG algorithm; (5) designing a denoising method in
adaptive restoring to reduce the noise impaction on restored
data.

3.2. Innovation of JPEG Lifting Algorithm. *e innovations
of the above JPEG lifting algorithm are as follows:

(1) Adding the mean sampling rate to overcome the
deficiency of the traditional JPEG-like algorithm that
can only use the time-frequency transform and the
quantization matrix to eliminate redundant infor-
mation in image compression.

(2) By analyzing the correlation between sparseness and
error, the optimal OMP iterative algorithm is
established to enhance the JPEG-like algorithm’s
noise immunity performance.

(3) In the adaptive block observation, the MIE-based
adaptive block reduces the information entropy of
the subimage set to lower the bpp, the ASM-based
adaptive vectorization can ensure the maximum
avoidance of image information loss, and the
adaptive observation based on multifeature saliency
ensures a reasonable distribution of the total mea-
surement number.

4 Mathematical Problems in Engineering



4. Implementation of JPEG-ABCS

*is section mainly describes the implementation of the
JPEG-ABCS algorithm mentioned in the previous section.
*e specific implementation is discussed from four aspects:
adaptive blocking, adaptive vectorization, adaptive observ-
ing, and denoising by optimizing the number of iterations.

4.1. Adaptive Blocking Method Based on MIE. *e adaptive
blocking method proposed in this paper is a variable par-
titioning in the same dimension, that is, n � r × c, where n is
a fixed value, typical value is 64, and r and c are the number
of rows and columns of the variable block, typical value
r × c{ }j � 2j × 26− j, j � 0, 1, 2, . . . , 6. Specifically, the opti-
mized block nopt � ropt × copt is based on minimizing the
mean information entropy (MIE) of the block observation
signal set. Since blocking process needs to be completed
before observation, it is impossible to use an ungenerated
observation set yi􏼈 􏼉

T1
i�1 for guiding the blocking optimization.

*erefore, an alternative method is introduced to guide the
reasonable blocking by minimizing the MIE of the original
signal’s block set:

ropt × copt � arg min
r×c{ }j

MIE xi􏼈 􏼉
T1
i�1􏼐 􏼑􏽮 􏽯

T2−1

j�0

MIE xi􏼈 􏼉
T1
i�1􏼐 􏼑 �

1
T1

􏽘

T1

i�1
IE xi( 􏼁 �

1
T1

􏽘

T1

i�1
− 􏽘

hmax

j�hmin

pi,jlog2pi,j
⎞⎠,⎛⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where MIE(∗) represents the MIE function of the pixel set,
IE(xi) represents the information entropy of the i-th sub-
image in the pixel domain, pi,j represents the proportion of
elements with the pixel gray value j in the i-th subimage, T2
is the number of blocking ways, and hmin and hmax are the
minimum and maximum values of the pixel gray in the
original signal, respectively. However, the effectiveness of
the above method lies on consistency between the obser-
vation signal’s MIE and the original signal’s MIE at the same
partitioning. In order to verify the above consistency
problem, this paper conducted a test experiment using
multiple standard images, and its experimental results are
shown in Figure 3. *e experimental data show that, under
the constraint of minimizing MIE, the optimal block of the

original signal and the observed signal is consistent, which
verifies the feasibility and rationality of the proposed block
optimization method. Specifically, it can be seen from
Figure 3 that under the constraint of minimum MIE, the
optimal block shape is only related to the test image itself,
not to the sampling rate. In addition, it has been verified by a
large number of other standard test images that the method
of finding the best block has the same trend whenever
applied to the observation signal and the original signal, and
there must be an extreme point.

4.2. Adaptive Vectorization Based on ASM. *e basis of
adaptive vectorization is how to identify the directional
characteristics of the image. *ere are many methods for
identifying direction features in the field of array signal
processing, especially in DOA estimation research, such as
the Capon algorithm, MUSIC algorithm, maximum likeli-
hood algorithm, subspace fitting algorithm, and ESPRIT
algorithm [16, 17]. In this article, the angular second-order
moment (ASM) value under the gray-level cooccurrence
matrix (GLCM) is used to characterize the saliency of the
direction [18]:

gASM(i, j | d, θ) � 􏽘

Nh− 1

i�0
􏽘

Nh− 1

j�0
p(i, j | d, θ)􏼈 􏼉

2
� 􏽘

Nh− 1

i�0
􏽘

Nh− 1

j�0

P(i, j | d, θ)

R
􏼨 􏼩

2

,

P � gray comatrix(I | d, θ),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

where gray comatrix(∗) is the GLCM function, P(i, j | d, θ)

is the (i, j) term of P, p(i, j | d, θ) is the normalized form of
P(i, j | d, θ), I(i, j | d, θ) is the adjacent pixel pairs in the
image with distance d, direction θ, and gray values (i, j), and
R is the ideal maximum number of pixel pairs under the
selected conditions.

Combined with the rectangular shape of adaptive
blocking, the ASM values in four directions are defined for
adaptive vectorization, namely, g0

ASM, g90
ASM, g45

ASM, and g135
ASM

[19]. In addition, the maximum value of these four values is
defined as gMAX � max g0

ASM, g90
ASM, g45

ASM, g135
ASM􏼈 􏼉.

g0
ASM � gASM i � j 1,0°|( 􏼁, g90

ASM � gASM i � j 1,90°|( 􏼁,

g45
ASM � gASM i � j 1,45°|( 􏼁, g135

ASM � gASM i � j 1,135°|( 􏼁.

⎧⎨

⎩

(11)
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Figure 2: Workflow of JPEG-ABCS.
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*e specific method of adaptive vectorization is based on
the relationship between the four ASM values. If g0

ASM ×

g90
ASM ≥g45

ASM × g135
ASM and gMAX � g0

ASM, then the vectoriza-
tion set 􏽐

T1
i�1 xi of the original subimage set 􏽐

T1
i�1 Ii is gen-

erated using horizontal scanning and vertical linking; if
g0
ASM × g90

ASM ≥g45
ASM × g135

ASM and gMAX � g90
ASM, then the

vectorization set 􏽐
T1
i�1 xi of the original subimage set 􏽐

T1
i�1 Ii is

generated using vertical scanning and horizontal linking; if
g0
ASM × g90

ASM <g45
ASM × g135

ASM and gMAX � g45
ASM, then the

vectorization set 􏽐
T1
i�1 xi of the original subimage set 􏽐

T1
i�1 Ii

uses zigzag generation along the main diagonal direction; if
g0
ASM × g90

ASM <g45
ASM × g135

ASM and gMAX � g135
ASM, then the

vectorization set 􏽐
T1
i�1 xi of the original subimage set 􏽐

T1
i�1 Ii

uses zigzag generation along the counter-diagonal direction.
It should be noted that the adaptive vectorization of each
subimage must be related to the design of the sparse matrix
to jointly realize the one-dimensional vectorization that
preserves the two-dimensional structural characteristics of
the subimage data.

4.3. Adaptive Observing Based on Multifeature Saliency and
Bit Rate Control. *e key point of the nonuniform mea-
surement matrix Φi ∈ Rmi×n is the determination of mi.
Considering that different subimages contain different
amounts of information and the sensitivity of the human
eye’s attention mechanism to different images is different,
this paper proposes an adaptive measurement matrix Φi �����

n/mi

􏽰
Γmi

based on multifeature saliency J(xi) and the or-
thogonal symmetric Toeplitz matrix (OSTM):

Γmi
� OSTM mi, n( 􏼁,

mi � ηi × n �
J xi( 􏼁

􏽐
T1
i�1 J xi( 􏼁/T1􏼐 􏼑

× η × n,

J xi( 􏼁 � clog2 J1 xi( 􏼁
α

× J2 xi( 􏼁
β

􏼐 􏼑,

J1 xi( 􏼁 �
1
n

􏽘

n

j�1
xij − μi􏼐 􏼑

2
, J2 xi( 􏼁 �

1
n

􏽘

n

j�1

􏽐
q

k�1 x
k
ij − xij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

xij

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where c is the adjustment factor, J1(
∗) stands for the overall

variance function, J2(
∗) is the local saliency function

according to Weber’s theorem [20], q is the number of
elements in the salient domain determined by the optimal
bounding box, OSTM(mi, n) is formed by randomly taking
mi rows of n × n-dimensional OSTM [21], and α� 2 and
β� 1 are the recommended values. *e purpose of designing
the adaptive measurement matrix in this way is to rationalize
the sampling process and to achieve more sampling of detail
blocks and less sampling of smooth blocks.

*e traditional JPEG-like algorithms control the bit rate
(bits per pixel, bpp) through the quantization matrix,
encoding, and bit-stream organization [22]. In this paper,
the mean sampling rate η has been used to improve the
compression performance of the JPEG-ABCS algorithm.*e
bit rate control for an 8-bit 256-level grayscale image is as
follows:
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Figure 3: MIE changes in terms of different blocking. (a) MIE comparison of different images; (b) MIE consistency between original and
observation data.
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bpp � 8 ×
η

μ × ε
, (13)

where η is the mean sampling rate and also corresponds to
information decay ratio caused by sparse measurement, μ
(μ≥ 1) represents information decay ratio caused by the
quantization, and ε (ε≥ 1) is the bit compression ratio of the
entropy encoding and bit-stream organization.

Analysis of the above three factors that affect the rate
control in the JPEG-ABCS model shows that once the
encoding method is determined, the only factors that can be
optimized are η and μ, while ε is a fixed number. In order to
reduce the bit rate of restored images at the same quality, the
value of these two factors must be set reasonably. *is article
focuses on the analysis of image performance impact in
terms of different η under the same bpp andmatching design
of the quantization matrix that can determine the value of μ.
In the process of analyzing the impact of η on the perfor-
mance of compressed images, the synthetic indicator
composed of the peak signal-to-noise rate (PSNR) and
structural similarity (SSIM) is used as evaluation criteria to
find the best η under different bpp. At the same time, in
order to complete the comparison experiment of different η
under the same bpp, it is necessary to set different quan-
tization matrixes. *is article uses the quality factor (QF) to
design different quantization matrices [23]. Because the data
(􏽐T1

i�1 yi) quantized in the JPEG-ABCS algorithm are a one-
dimensional vector and are also a normalized measurement
of the frequency domain sparse coefficients of the original
signal (􏽐T1

i�1 xi), the quantization matrix is weakened into a
quantization vector whose elements no longer characterize
frequency domain property and have the same importance.
*erefore, the elements of the quantization matrix for the
subimage designed in this paper have the same value
(Q∗0 � ones(mi)). *e goal of the quantization matrix
matching design is only to find a fitting function to ap-
proximate the relationship between bpp and QF. Figure 4
shows the experimental data of the above test process using
Lena. According to Figure 4(a), it can be seen that under the
constraint of maximizing synthetic features, the optimal
mean sampling rate (η) increases with the increase in bpp.
Meanwhile, an η obtaining function can be summarized, as
shown in equation (14), and the typical values of B1

th and B2
th

in the equation are 0.15 and 0.3. In addition, it should be
noted that equation (14) can only be directly applied to
images with a similar MIE of Lena. For other images, the
threshold determination condition in the equation should be
corrected according to the MIE of the image block set.
Specifically, the coefficient ξ is introduced for the correction
of the above two threshold conditions (that is, B1

th � 0.15ξ
and B2

th � 0.3ξ). *e coefficient ξ can be defined as the MIE
ratio of other images to the Lena image. *e design of the
fitting function (QF � f(bpp)) adopts the cubic curve fitting
method whose data are derived from the actual measure-
ment value of QF and bpp. Figure 4(b) shows the com-
parison of consistency between the actual light-table’s QF
and the design value obtained from equation (15). From the
results, the QF obtained by equation (15) satisfies the actual
requirements well:

η �

0.3, bpp<B1
th,

0.4 +⌊
bpp − 0.15

0.05
⌋ × 0.1, B1

th ≤ bpp≤B2
th,

0.7, bpp>B2
th,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

light − table � ⌊
QFS × Q∗0 + 50

100
⌋,

Q∗0 � ones mi( 􏼁,

QFS �

5000
QF

, 0<QF≤ 50,

200 − 2QF, 100≥QF> 50,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

QF � f(bpp) � λ2 × bpp2 + λ1 × bpp + λ0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where ⌊ is the floor function and λ2 � 38.5972, λ1 � 6.1241,
and λ0 � −0.0938 are obtained by quadratic curve fitting.

4.4. Denoising by Optimizing the Number of Iterations.
Consider the noise observation model as follows:

􏽥yi � Φixi + wi � Φi xi + Φ+
i wi( 􏼁 � Φi􏽥xi, (16)

where wi is the additive white Gaussian noise with zero-
mean and standard deviation σw and 􏽥xi is the equivalent
noisy original signal.

Since the reconstructed original signal (x ∗i ) is recovered
from the noisy observation signal (􏽥yi), the reconstruction
error (exi

) is mainly caused by the noise and reconstruction
algorithm, and its mathematical expression can be defined as
the following equation using the l2 norm:

exi
�
1
n
xi − x ∗i

����
����
2
2, (17)

where x ∗i is restored by the pseudoinverse operation, that is,
x ∗i � Ψis∗i � ΨiΩ+

i 􏽥yi, and s∗i is the reconstructed sparse
signal. *e abovementioned Ω+

i is the pseudoinverse of Ωi,
usually Ω+

i � ΩT
i (ΩiΩT

i )− 1, and also represents the recon-
struction algorithm in CS. *e reconstruction algorithm of
CS is based on the sparse representation of the signal [24],
that is, the reconstruction sparsity (vi) of s∗i satisfies the
inequation (vi≪m< n), so the pseudoinverse operation to
get x ∗i can be rewritten as follows:

x ∗i � Ψi,vΩ
+
i,v 􏽥yi � Ψi,v ΩT

i,vΩi,v􏼐 􏼑
− 1
ΩT

i,v 􏽥yi

� Ψi,v ΩT
i,vΩi,v􏼐 􏼑

−1
ΩT

i,vΦi􏽥xi,

(18)

whereΨi,v is the n × vi matrix generated of vi column vectors
in Ψi � ψi,1 ψi,2 . . . ψi,n􏼂 􏼃 and Ωi,v is the m × vi matrix
generated of vi column vectors in Ωi � ωi,1 ωi,2 . . . ωi,n􏼂 􏼃

that has the greatest correlation with 􏽥yi.
Because equation (17) cannot be calculated directly, we

add 􏽥xi to help in analysis and calculation:
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exi
�
1
n

xi − 􏽥xi( 􏼁 + 􏽥xi − x ∗i( 􏼁
����

����
2
2

�
1
n

−Φ+
i wi + I − Ψi,vΩ

+
i,vΦi􏼐 􏼑􏽥xi

�����

�����
2

2

�
1
n

−Ψi,vΩ
+
i,vwi + I − Ψi,vΩ

+
i,vΦi􏼐 􏼑xi

�����

�����
2

2

�
1
n
Gxi

xi − Gwi
wi

�����

�����
2

2
,

(19)

Gxi
� I − Ψi,vΩ+

i,vΦi,

Gwi
� Ψi,vΩ+

i,v,
􏼨 (20)

where Gxi
is a projection matrix of rank n − vi and Gwi

is a
projection matrix of rank vi. Since Gxi

and Gwi
satisfy or-

thogonality, the inner product of Gxi
xi and Gwi

wi is equal to
zero. *erefore, equation (19) can be transformed into the
following form:

exi
�
1
n
Gxi

xi − Gwi
wi

�����

�����
2

2
�
1
n
Gxi

xi

�����

�����
2

2
+
1
n
Gwi

wi

�����

�����
2

2
� e

a
xi

+ e
b
xi

.

(21)

Equation (21) reveals that the reconstruction error (exi
) is

composed of the algorithmerror (ea
xi
) and thenoise error (eb

xi
). ea

xi

decreases as the reconstruction sparsity (vi) increases, and eb
xi

increases with the reconstruction sparsity (vi) [25, 26].*erefore,
reconstruction error and reconstruction sparsity are a bias-var-
iance trade-off, and there must be an optimal reconstruction
sparsity (vopti ) that minimizes the reconstruction error (exi

):

v
opt
i � argmin

]i

exi
􏽮 􏽯 � argmin

]i

1
n
Gxi

xi

�����

�����
2

2
+
1
n
Gwi

wi

�����

�����
2

2
􏼚 􏼛.

(22)

Figure 5 shows the relationship between reconstruction
sparsity and reconstruction error under different noise
conditions by using a modified Lena test image. *e
modified Lena image is generated by intercepting 60 sparse
coefficients under a discrete cosine basis; that is, its original
sparsity (K) is 60. *e noise added in the test is zero-mean
Gaussian white noise, and its standard deviation
(σw � noise− std) also represents the intensity of the noise.
*e indicator PSNR is used to characterize the size of the
reconstruction error. It can be seen from Figure 5 that the
optimal reconstruction sparsity decreases as the noise in-
tensity increases and is less than the original sparsity
(vopti ≤K).

From the verification experiment shown in Figure 5, we
can see that there is indeed an optimal reconstruction
sparsity in the reconstruction process under the noise
background. However, equation (22) is not a feasible so-
lution that can be directly used to optimize the recon-
struction process. In the actual reconstruction process, only
the observation data at the receiving end can be used for the
optimization algorithm. *erefore, this paper designs a
solution that uses observation data to optimize the recon-
struction sparsity.

According to the definition of CS, the measurement
matrix (Φi) obeys the RIP criteria, and therefore

1 − δK( 􏼁exi
≤ eyi
≤ 1 + δK( 􏼁exi

,

eyi
�

1
mi

yi − y ∗i
����

����
2
2 �

1
mi

Φi xi − x ∗i( 􏼁
����

����
2
2,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(23)

where δK is a coefficient related to Φi and K, and eyi
is the

reconstruction error of observation data.*e transformation
of formula (23) can get the boundaries of the original data
reconstruction error as follows:
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Figure 4: Optimization of mean sampling rate (η) and quality factor (QF) in terms of bpp. (a) Impact of mean sampling rate (η) on image
quality. (b) Comparison of the actual optimal value of QF with the value calculated by equation (15).
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eyi

1 + δK( 􏼁
≤ exi
≤

eyi

1 − δK( 􏼁
. (24)

It can be seen from the above two equations that the
reconstruction errors of the original data and the obser-
vation data are consistent, so the reconstruction sparsity can
be optimized by minimizing the errors of the observation
data:

v
opt
i � argmin

]i

eyi
􏽮 􏽯 � argmin

]i

1
mi

yi − y ∗i
����

����
2
2􏼨 􏼩

� argmin
]i

1
mi

Cyi
yi

�����

�����
2

2
+

1
mi

Cwi
wi

�����

�����
2

2
􏼨 􏼩,

Cyi
� I − Ωi,vΩ+

i,v,

Cwi
� Ωi,vΩ+

i,v,

⎧⎪⎨

⎪⎩

mi

σ2w
eyi

∼ χ2vi
.

(25)

It is known from the above equation that the recon-
struction errors of the observation signal satisfies the chi-
square distribution, so the upper and lower boundary of eyi

can be derived from the chi-square distribution probability.
In addition, when calculating the minimum value of eyi

, the
worst condition is considered, that is, by calculating the
minimum value of the upper bound of eyi

.
In the l0 norm reconstruction algorithm of CS, the re-

construction sparsity is equal to the number of iterations.
*erefore, optimizing the number of iterations can reduce
the noise impact on image quality in using orthogonal
matching pursuit (OMP) as the signal recovery algorithm
[27, 28]. According to the Bayesian information criterion
(the tuning parameters of confidence probability and ef-
fective probability are taken as ��

vi

√ logm and 0, respectively)

[29], the optimal value of iteration number v
opt
i can be

achieved by minimizing the noise influence:

]opti � argmin
]i

2 +
�
2

√
log2mi( 􏼁 × ]i

mi

− 1􏼠 􏼡σ2w + e􏽥yi
􏼨 􏼩,

(26)

where e􏽥yi
� (1/mi)‖􏽥yi − y ∗i ‖22 � (1/mi)‖􏽥yi −Φix ∗i ‖22 is the

noise error of observation data.

4.5. Pseudocode of JPEG-ABCS. *e JPEG lifting algorithm
(JPEG-ABCS) described in this article mainly consists of the
above four sections, except for the entropy codec, and its full
pseudocode is shown in Algorithm 1.

5. Experiment and Result Analysis

In order verify the superiority of the JPEG-ABCS algorithm,
experiments were conducted in two cases: noiseless and
noisy. Standard JPEG and JPEG2000 algorithms were used
as comparison algorithms, and multiple grayscale standard
images with 256× 256 resolution were used in the following
experiments which were conducted in the simulation soft-
ware environment of Matlab2016b. In order to objectively
evaluate the performance of the algorithm, peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) were
introduced as image reconstruction evaluation indexes.

*e PSNR index is the most widely used objective standard
for characterizing the quality of reconstructed images:

PSNR � 20 × log10
255

����������������������

(1/N) 􏽐
N
i�1 x(i) − x∗(i)[ ]

2
􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(27)

where x(i) and x∗(i) are the i-th element of the original
image signal and the reconstructed original image signal,
respectively.

*e SSIM is another common signal reconstruction
quality evaluation index used to describe the similarity
between the original image signal and the reconstructed
image signal:

SSIM �
2μxμx∗ + c1( 􏼁 2σxx∗ + c2( 􏼁

μ2x + μ2x∗ + c1( 􏼁 σ2x + σ2x∗ + c2( 􏼁
, (28)

where μx and μx∗ are the average gray value of all elements in
x and x∗, σx and σx∗ are the standard deviation of all ele-
ments in x and x∗, σxx∗ is the covariance of x and x∗, c1 �

0.01 × H2 and c2 � 0.03 × H2 are the constants, and H �

hmax − hmin is the range of pixel gray values.

5.1. Experiments and Analysis without Noise. *e experi-
ments under noiseless condition is mainly divided into three
parts.

5.1.1. Effectiveness Experiment about Reducing bpp of JPEG
Image by MIE Minimization Adaptive Blocking. In order to
verify the effectiveness of the proposed MIE

Correlation between PSNR and V (K = 60)
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Figure 5: Testing the correlation between PSNR and vi using
modified Lena as a test image.
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minimization adaptive blocking method, this paper has
conducted experiments on two standard images (Lena
and Parrots), whose MIE under different blocks is known
in the above section, and the experimental data are
recorded in Table 1. *e basic JPEG algorithm is used in
the experiment, and the quantization matrix (light-table)
is generated using formula (15), where QF is 50 and 25,
respectively.

From the data in Table 1, it can be seen that the Lena and
Parrots recovery images have the minimum bpp in the block
shape of 16× 4 and 8× 8, which just coincides with the
minimum MIE block in the above section.

5.1.2. Verification Experiment of ASM-Based Adaptive
Vectorization to Improve the 2D Image Reconstruction
Performance in BCS Algorithm. *e application of CS to
image signal processing requires vectorization of two-di-
mensional images. *erefore, the proposed JPEG-ABCS
algorithm also needs to vectorize the subimages. Different
vectorization methods directly affect the reconstruction
quality of the image.

In this article, three common vectorization methods
(vertical scanning, 2D scanning, and zigzag scanning) are
compared and analyzed. *e verification experiment is
carried out in the CS algorithm, using two kinds of images
(standard test image and texture test image) to test under
different blocking and sampling rates.*e experimental data
are recorded in Tables 2 and 3, respectively.

It can be seen from Table 2 that for standard test images
that meet ASM conditions 1 or 2, vectorization using 2D
scanning is optimal, and its PSNR and SSIM of the
reconstructed image have a relative advantage than the other
two methods.

Table 3 shows the results of texture test image recon-
struction using three vectorization methods. Obviously, the
vector generation using zigzag scanning has better perfor-
mance at this case.

It can be seen from the above tables that for different
types of test images, the use of a single mode of the vector
generation method cannot always effectively improve the
quality of image reconstruction, and the multimode method
combined with image texture direction feature detection is
recommended. *erefore, this paper proposes an adaptive
vectorization method based on ASM to maximize the
performance of 2D image reconstruction in the BCS
algorithm.

5.1.3. Performance Comparison of Various JPEG-Like
Algorithms. *e image reconstruction quality of the three
algorithms was compared with each other under noiseless
condition to verify the benefit and universality of the
proposed JPEG-ABCS. *e experiment includes two
parts: verification under different bpp and different test
images. Figure 6 shows the experimental results of the
Lena test image under three JPEG-like algorithms.
Figures 6(a) and 6(b) show that compared with the JPEG
and JPEG2000 algorithms, the proposed algorithm has
advantages in PSNR and SSIM indicators under different

bpp conditions. Furthermore, from the transformation
trend of the curve, it can be seen that the JPEG-ABCS
algorithm has good performance at medium and high bit
rates, but as the bit rate decreases, the performance of the
algorithm proposed in this article has declined, the main
reason is that as the dimension of the measurement
matrix decreases with bpp, the observation process
cannot cover all the information of the image. Figure 6(c)
is the restored grayscale images of Lena using the three
algorithms under 0.25 bpp condition. It can be seen from
a subjective vision that JPEG-ABCS’s performance is
better than the other two algorithms.

In addition, Table 4 records the experimental results of
the three algorithms for different images under the condition
of bpp� 0.25, 0.3, and 0.4.*e data in the table show that the
improvement effect of the proposed algorithm is universal
for different images. For instance, at the condition of
bpp� 0.3, the PSNR index of the four standard test images
under the JPEG-ABCS algorithm is improved by 8.34%,
15.09%, 4.46%, and 8.13% compared to the JPEG algorithm
and 6.19%, 12.98%, 3.39%, and 6.39% compared to the
JPEG2000 algorithm, respectively; the SSIM index has also
been improved, compared to JPEG it increased by 0.96%,
0.88%, 1.22%, and 0.59% and compared to JPEG2000 it
increased by 0.62%, 0.64%, 0.84%, and 0.30%.

As can be seen from Figure 6 and Table 4, compared to
the JPEG and JPEG2000 algorithms, the proposed JPEG-
ABCS algorithm has a large improvement on PSNR and
SSIM, mainly due to the adaptive blocking and adaptive
sampling reducing MIE of image blocks under the same
conditions, while sparse restoration guarantees image res-
toration quality.

5.2. Experiments and Analysis under Gaussian Noisy
Conditions. In the Gaussian noise condition, it is verified
that the JPEG-ABCS algorithm has improved antinoise
performance compared to the standard JPEG algorithm.
Figure 7 shows the experimental results which are obtained
by using the monarch, peppers, and cameraman as test
images. It can be clearly seen from Figure 7 that the test
images reconstructed using JPEG-ABCS are superior to the
test images reconstructed by JPEG in different noise in-
tensities (here, the noise standard deviation is used as the
noise intensity), especially themore noise intensity, themore
obvious the superiority.

Table 5 shows the PSNR and SSIM comparison records
of the noisy monarch test image under two different algo-
rithms. As can be seen from the data in Table 5, the noisy
image reconstruction performance of the JPEG-ABCS al-
gorithm under different bpp conditions is better than that of
the JPEG algorithm. For example, at the condition of
bpp� 0.25, the PSNR index of the JPEG-ABCS algorithm
under the four noise intensities is improved by 9.68%, 4.25%,
0.74%, and 3.06% compared to the JPEG algorithm; the
SSIM index has also been improved, compared to JPEG by
4.54%, 3.69%, 1.53%, and 7.71%. In other words, JPEG-
ABCS adds antinoise capability that the JPEG algorithm
does not have.
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(1) Input:
Original image I; rate control bpp;
Subimage dimension n� 64;

(2) Initialization:
(R, C) � size of(I); N�R×C;
T1 � (N/n);//quantity of subimages
T2 � 1 + log2 n;//type number of adaptive blocking
//step1: adaptive blocking and vectorization

(3) for j� 1, . . ., T2 do
(4) rj × cj � 2j− 1 × 2T2− j;
(5) Ii | size of(Ii) � rj × cj, i � 1, . . . , T1􏽮 􏽯

j
⟵ I

(6) xi, i � 1, . . . , T1􏼈 􏼉j⟵ Ii, i � 1, . . . , T1􏼈 􏼉j;
(7) g

j
MIE � MIE( xi, i � 1, . . . , T1􏼈 􏼉j);

(8) end for
(9) jopt � argmin

j
( g

j
MIE, j � 1, . . . , T2􏽮 􏽯);

(10) r × c � 2jopt− 1 × 2T2− jopt ;
(11) Ii | size of(Ii) � r × c, i � 1, . . . , T1􏼈 􏼉⟵ I;
(12) g0

ASM, g45
ASM, g90

ASM, g135
ASM􏼈 􏼉⟵ I

(13) if (g0
ASM × g90

ASM ≥g45
ASM × g135

ASM);
(14) if (gMAX � g0

ASM)//Condition� 1
(15) xi, i � 1, . . . , T1􏼈 􏼉1⟵ Ii, i � 1, . . . , T1􏼈 􏼉;

//1⟵ : horizontal scanning and vertical linking
(16) else if (gMAX � g90

ASM)//Condition� 2
(17) xi, i � 1, . . . , T1􏼈 􏼉2⟵ Ii, i � 1, . . . , T1􏼈 􏼉;

//2⟵ : vertical scanning and horizontal linking
(18) end if
(19) else if (g0

ASM × g90
ASM < g45

ASM × g135
ASM)

(20) if (gMAX � g45
ASM)//Condition� 3

(21) xi, i � 1, . . . , T1􏼈 􏼉3⟵ Ii, i � 1, . . . , T1􏼈 􏼉;
//3⟵ : zigzag along the main diagonal direction

(22) else if (gMAX � g135
ASM) //Condition� 4

(23) xi, i � 1, . . . , T1􏼈 􏼉4⟵ Ii, i � 1, . . . , T1􏼈 􏼉;
//4⟵ : zigzag along the counter-diagonal direction

(24) end if
(25) end if

//step2: adaptive observing and bit rate control
(26) for i� 1, . . ., T1 do
(27) J1(xi)⟵ xi; J2(xi)⟵ Ii;
(28) J(xi) � c log2(J1(xi)

α · J2(xi)
β);

//synthetic feature (J)
(29) end for
(30) λi, i � 1, . . . , T1􏼈 􏼉 � (log2 J( xi, i � 1, . . . , T1􏼈 􏼉)/(1/T1) 􏽐

T1
i�1 log2 J(xi));

(31) η⟵ equation (14)bpp;
(32) ηi, i � 1, . . . , T1􏼈 􏼉 � λi, i � 1, . . . , T1􏼈 􏼉 × η;

//ηi-- sampling ratio of subimages
(33) mi, i � 1, . . . , T1􏼈 􏼉 � ηi, i � 1, . . . , T1􏼈 􏼉 × n;
(34) m

⌢

i, i � 1, . . . , T1􏽮 􏽯⟵ mi, i � 1, . . . , T1􏼈 􏼉&mmin&mmax
//prevent undersampling and oversampling

(35) Γ � OSTM(n), χi � randperm(n), Γχi
� Γ(χi, : );

(36) Φi, i � 1, . . . , T1􏼈 􏼉 �

����

n/m⌢ i

􏽱

Φχi
([1, . . . , m

⌢

i], : ), i � 1, . . . , T1􏼚 􏼛;

(37) yi, i � 1, . . . , T1􏼈 􏼉⟵ equation(16) Φixi, i � 1, . . . , T1􏼈 􏼉&σw;
//σw � 0: noiseless; σw ≠ 0: noise

(38) light − table⟵ equation(15)QF⟵ equation(15)bpp;
(39) yq

i , i � 1, . . . , T1􏼈 􏼉⟵ light − table& yi, i � 1, . . . , T1􏼈 􏼉

//step3: codec and antiquantization
(40) Bit Stream⟵ yq

i , i � 1, . . . , T1􏼈 􏼉&RLC encoding
(41) yq

⌢

i , i � 1, . . . , T1􏼚 􏼛⟵Bit Stream&RLCdecoding

(42) y
⌢

i, i � 1, . . . , T1􏽮 􏽯⟵ light − table& yq
⌢

i , i � 1, . . . , T1􏼚 􏼛

ALGORITHM 1: Continued.
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//step4: reconstruction and denoising
(43) if Condition� � 1
(44) Ψ � kron(DT

c ,DT
r )

(45) else if Condition� � 2
(46) Ψ � kron(DT

r ,DT
c )

(47) else Ψ � DT
n

(48) end if
(49) Ωi, i � 1, . . . , T1􏼈 􏼉 � ΦiΨ, i � 1, . . . , T1􏼈 􏼉

(50) for i� 1, . . ., T1 do
(51) Ωi � ωi1, . . . ,ωin􏼈 􏼉, r � y

⌢

i, A � ∅, s∗ � 0n;
// ωij, j � 1, . . . , n􏽮 􏽯-- column vector of Ωi

(52) v
opt
i ⟵ equation(28) vi | argminvi

eyi
}􏽮 ;

//calculate optimal iterative of subimages
(53) for j � 1, . . . , v

opt
i do

(54) ∧ � argminj|〈r, wij〉|;
(55) A � A∪ ∧{ };
(56) r � y

⌢

i −Ωi(: , A)[Ωi(: , A)]+y
⌢

i;
(57) end for
(58) s∗i � [Ωi(: , A)]+y

⌢

i;
//s∗i : reconstruction sparse representation

(59) x∗i � Ψs∗i ;
//x∗i : reconstruction original signal of subimages

(60) end for
(61) x∗ � x∗i , i � 1, . . . , T1􏼈 􏼉;

//step5: antivectorization and jointing
(62) I∗i � x ∗i , r, c􏼈 􏼉; I∗ � I∗i | i � 1, . . . , T1, size of(I∗) � R × C􏼈 􏼉

//I∗: recovered image with JPEG-ABCS

ALGORITHM 1: JPEG-ABCS algorithm based on OMP (orthogonal matching pursuit).

Table 1: Effection of different block shapes on bpp of the JPEG image.

Test image QF
Correlation between bpp and block shape (r × c)

1× 64 2× 32 4×16 8× 8 16× 4 32× 2 64×1

Lena 50 1.3235 1.2179 0.9351 0.7430 0.7290 0.8324 0.9068
25 0.8776 0.8304 0.6227 0.4838 0.4733 0.5462 0.5892

Parrots 50 1.1168 0.9629 0.7463 0.6161 0.6498 0.7674 0.8308
25 0.7104 0.6353 0.4824 0.3988 0.4246 0.4972 0.5403

Table 2: Comparison experiments of different vectorization methods on image reconstruction performance using standard test images.

Verification method Vertical scanning 2D scanning Zigzag scanning
Test image ASM condition r× c PSNR/SSIM

Lena Condition� 2

64× 4
32× 8
16×16
8× 32
4× 64

30.69/0.8907
31.39/0.9150
31.72/0.9227
31.68/0.9248
31.07/0.9221

32.11/0.9402
32.74/0.9477
32.87/0.9470
32.02/0.9325
31.64/0.9321

30.86/0.8984
31.31/0.9138
31.73/0.9261
31.72/0.9257
30.78/0.9175

Goldhill Condition� 1

64× 4
32× 8
16×16
8× 32
4× 64

29.12/0.8783
29.45/0.8977
29.83/0.9134
30.02/0.9113
29.98/0.9102

29.71/0.9211
30.21/0.9251
30.35/0.9335
30.28/0.9288
30.17/0.9191

29.14/0.8787
29.38/0.8923
29.95/0.9146
30.13/0.9192
29.87/0.9112

Peppers Condition� 2

64× 4
32× 8
16×16
8× 32
4× 64

29.73/0.9031
30.09/0.9068
30.77/0.9309
30.91/0.9413
30.38/0.9421

30.90/0.9547
31.67/0.9585
32.02/0.9638
31.36/0.9565
30.63/0.9506

29.70/0.9034
30.20/0.9158
30.76/0.9293
30.60/0.9325
30.38/0.9418
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Figure 6: Comparative experiment of the three JPEG-like algorithms using Lena as a test image. (a) PSNR of the three algorithms in terms of
different bpp. (b) SSIM of the three algorithms in terms of different bpp. (c) Restored images generated by three JPEG-like algorithms
(bpp� 0.25).

Table 3: Comparison experiments of different vectorization methods on image reconstruction performance using texture test images.

Verification method Vertical scanning 2D scanning Zigzag scanning
Test image η r× c PSNR/SSIM

ASM condition� 4

0.3
32× 8
16×16
8× 32

30.92/0.7101
31.50/0.7620
31.39/0.7433

31.52/0.7461
32.04/0.7878
31.54/0.7439

32.43/0.8244
33.06/0.8407
32.55/0.8291

0.4
32× 8
16×16
8× 32

32.05/0.8195
32.53/0.8430
32.39/0.8377

32.51/0.8276
32.91/0.8497
32.27/0.8256

33.97/0.8846
34.01/0.8823
33.87/0.8851

ASM Condition� 3

0.3
32× 8
16×16
8× 32

28.47/0.8046
28.62/0.8179
28.53/0.8113

28.84/0.8715
29.01/0.8834
28.90/0.8740

29.14/0.9033
29.17/0.8967
29.25/0.9119

0.4
32× 8
16×16
8× 32

28.84/0.8659
29.04/0.8817
29.08/0.8941

29.44/0.9261
29.65/0.9329
29.34/0.9220

29.69/0.9365
29.74/0.9353
29.67/0.9354
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Figure 7: Continued.
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Figure 7: Monarch, peppers, and cameraman restored images under different noise intensities (bpp� 0.4). (a) Using the JPEG algorithm.
(b) Using the JPEG-ABCS algorithm.

Table 4: Performance comparison of the three algorithms in terms of different test images.

Test image Lena Peppers Goldhill Parrots
PSNR/SSIM

bpp� 0.25
JPEG 33.97/0.9785 33.17/0.9845 31.62/0.9685 35.80/0.9882

JPEG2000 35.25/0.9850 34.32/0.9887 32.05/0.9718 36.52/0.9923
JPEG-ABCS 37.09/0.9918 37.42/0.9962 32.29/0.9767 39.38/0.9966

bpp� 0.3
JPEG 35.02/0.9842 34.25/0.9890 32.09/0.9729 36.79/0.9912

JPEG2000 35.73/0.9875 34.89/0.9914 32.42/0.9766 37.39/0.9940
JPEG-ABCS 37.94/0.9936 39.42/0.9977 33.52/0.9848 39.78/0.9970

bpp� 0.4
JPEG 36.63/0.9902 35.76/0.9934 32.72/0.9789 38.27/0.9944

JPEG2000 37.33/0.9922 36.33/0.9945 32.84/0.9814 39.11/0.9963
JPEG-ABCS 42.01/0.9976 41.36/0.9985 33.84/0.9868 42.78/0.9985

Table 5: PSNR and SSIM of the monarch restored image using JPEG and JPEG-ABCS under different noise intensities.

Method Condition Noise− std� 5 Noise− std� 10 Noise− std� 20 Noise− std� 50

JPEG
bpp� 0.25 32.14/0.9452 32.03/0.9432 31.05/0.9309 28.39/0.7677
bpp� 0.3 32.73/0.9601 32.45/0.9576 30.85/0.9387 28.27/0.7459
bpp� 0.4 33.69/0.9726 32.94/0.9671 30.84/0.9373 28.44/0.7820

JPEG-ABCS
bpp� 0.25 35.25/0.9881 33.39/0.9780 31.28/0.9451 29.26/0.8269
bpp� 0.3 36.48/0.9921 33.68/0.9803 31.46/0.9488 29.27/0.8245
bpp� 0.4 36.74/0.9925 33.82/0.9809 31.43/0.9488 29.31/0.8290
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*e main reason for the above improvement is that the
algorithm itself considers the noise model in the recon-
struction algorithm and adds the idea of iterative
optimization.

6. Conclusions

In this paper, a JPEG lifting algorithm based on ABCS was
proposed, and its structure and implementation method
were specifically introduced. At the same time, the im-
provements of the algorithm were described, and the fea-
sibility and rationality of the above improvements were
demonstrated by experiments. Finally, through comparison
experiments with similar algorithms, the contribution of this
lifting algorithm to JPEG-like algorithms, that is, to improve
the quality of image reconstruction, reduce bit rate (bpp),
and add the antinoise function has been evaluated
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Estimating the covariance matrix of a random vector is essential and challenging in large dimension and small sample size
scenarios.*e purpose of this paper is to produce an outperformed large-dimensional covariance matrix estimator in the complex
domain via the linear shrinkage regularization. Firstly, we develop a necessary moment property of the complex Wishart
distribution. Secondly, by minimizing the mean squared error between the real covariance matrix and its shrinkage estimator, we
obtain the optimal shrinkage intensity in a closed form for the spherical target matrix under the complex Gaussian distribution.
*irdly, we propose a newly available shrinkage estimator by unbiasedly estimating the unknown scalars involved in the optimal
shrinkage intensity. Both the numerical simulations and an example application to array signal processing reveal that the proposed
covariance matrix estimator performs well in large dimension and small sample size scenarios.

1. Introduction

*e problem of estimating the covariance matrix of a
random vector arises in both multivariate statistical theory
and various applications [1, 2]. In large sample setting, where
the dimension of a random vector is small and the sample
size is large enough, the sample covariance matrix (SCM) is a
reliable estimator of the real covariance matrix and is widely
employed in many scenarios. However, suffering from the
curse of dimensionality, the SCMbecomes ill-conditioned or
even singular in large dimension scenarios [3]. *en, severe
consequences may appear if the SCM remained as the co-
variance matrix estimator [4, 5].

During the last two decades, scientists have proposed
many regularization strategies to generate outperformed
covariance matrix estimators in large dimension scenarios
[6–10]. Among these, the linear shrinkage estimation is an
effective strategy to inspire a well-conditioned covariance
matrix estimator when the dimension is large compared to
the sample size [11, 12]. When the prior information of the
covariance structure is available, the linear shrinkage

estimator is modeled as a linear combination between the
SCM and a proper target matrix. In the existing literature,
the target matrices, which are usually formed through
structuring the SCM in line with the prior information,
include the spherical target and others, such as the diagonal
target, the Toeplitz rectified target, and the tapered SCM
[13].

With the aid of prior information, the linear shrinkage
estimator can always outperform the SCM when the in-
volved tuning parameter is carefully selected [14]. *erefore,
one of the crucial difficulties in linear shrinkage estimation is
to determine the optimal tuning parameter which is also
called as the shrinkage intensity. By minimizing the mean
squared error (MSE) between the shrinkage estimator and
the real covariance matrix, the optimal tuning parameter can
be expressed in a closed form for an arbitrary target.
However, it is comprised of unknown scalars which involve
the expectation operator and the real covariance matrix,
leading to a chief difficulty in generating an available
shrinkage estimator. In particular, when the data follow a
specific distribution such as Gaussian distribution or
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elliptical distribution, the expectation can be further cal-
culated [11]. What is noteworthy is that the optimal tuning
parameter owns different expressions under different dis-
tributions, even for the same target [15]. *erefore, it is
necessary to discover the specific properties of shrinkage
intensity under some typical distributions. In many appli-
cations, such as array signal processing, the data come from
the complex domain. *ere have been some related research
studies on it. In [16], a linear shrinkage estimator for Toeplitz
rectified target is developed under the complex Gaussian
distribution, whereas the involved unknown scalars in the
optimal tuning parameter are not unbiasedly estimated,
resulting in a suboptimal covariance matrix estimator [17].
In [18], a linear shrinkage estimator is proposed via low-
complexity crossvalidation under an arbitrary complex
distribution. *erefore, when the data follow a specific
distribution, the linear shrinkage estimator could be further
improved by making full use of the distribution information.

In this paper, we further research the linear shrinkage
estimator under the complex Gaussian distribution. *e
target matrix is chosen as the spherical target which has been
widely studied under the real number field [6, 11, 14]. *e
optimal tuning parameter is obtained by minimizing the
MSE. We remind that the above optimal tuning parameter
involves both the expectation operator and the real co-
variance matrix. By developing a novel moment property of
the complex Wishart distribution, we can calculate the
expectation operator. *en, the optimal tuning parameter
turns to be only related to some unknown scalars concerning
the real covariancematrix. A popular approach is adopted by
replacing these unknown scalars with their estimates to
obtain an available tuning parameter. Furthermore, good
estimates of unknown scalars can benefit the corresponding
available tuning parameter and the corresponding shrinkage
estimator [11, 19].

*e main contributions of this paper are summarized as
three-fold:

(1) A necessary moment property of the complex
Wishart distribution is developed. On this basis, the
optimal tuning parameter for the spherical target is
analytically expressed under the complex Gaussian
distribution.

(2) All the unknown scalars involved in the optimal
tuning parameter are unbiasedly estimated. *en,
the corresponding available linear shrinkage esti-
mator under the complex Gaussian distribution is
proposed.

(3) *e performance of the proposed covariance matrix
estimator is verified with comparison to the existing
estimators in numerical simulations and an example
application to adaptive beamforming.

*e rest of this paper is organized as follows: Section 2
formulates the linear shrinkage estimation under the
complex Gaussian distribution as a quadratic programming
problem. *e optimal solution is analytically obtained.
Section 3 unbiasedly estimates the relative unknown scalars
and subsequently proposes a new shrinkage estimator for the

spherical target. Section 4 provides some numerical simu-
lations and an example application for verifying the per-
formance of the proposed covariance matrix estimator.
Section 5 concludes.

1.1. Notations. *e notation Cm is the set of all m-dimen-
sional complex column vectors, and Hn is the set of all n × n

Hermitian matrices.*e symbol E denotes the mathematical
expectation. *e bold symbols 0 and 1 respectively denote
the column vectors having all entries 0 and 1 with an ap-
propriate dimension. *e symbol In denotes the n × n

identity matrix. For a matrix A, AH and ‖A‖ respectively
denote its conjugate transpose and Frobenius matrix norm.
For a squared matrix A, A− 1 and tr(A) respectively denote
its inverse and trace. For two real numbers a and b, a∧b and
a∨b respectively mean the maximum andminimum of a and
b.

2. Formulation and the Optimal Solution

Assume a p-dimensional random vector x ∈ Cp follows the
complex Gaussian distribution CN(0,Σ), where Σ is the
unknown covariance matrix. Let x1, x2, . . . , xn ∈ Cp be an
independent and identically distributed (i.i.d.) sample, then
the sample covariance matrix S is defined by

S �
1
n

􏽘

n

i�1
xix

H
i . (1)

For an arbitrary prespecified target matrix T ∈ Hp which
represents an aspect prior information of the real covariance
matrix structure [20], the linear shrinkage estimator of
covariance matrix Σ is modeled as

􏽢Σ � (1 − w)S + wT, (2)

where w ∈ [0, 1] is the tuning parameter which is also called
shrinkage intensity [21]. Because S and T are Hermitian, we
have 􏽢Σ∈ Hp for an arbitrary w ∈ [0, 1].

To find the optimal shrinkage intensity, we employ the
MSE criterion:

MT(w) � E ‖􏽢Σ − Σ‖
2

􏽨 􏽩 � E ‖(1 − w)S + wT − Σ‖
2

􏽨 􏽩. (3)

Furthermore, we have

MT(w) � w
2
E tr(T − S)

2
􏽨 􏽩 − 2wE[tr(T − S)(Σ − S)] + c,

(4)

where c � E[tr(Σ − S)(Σ − S)2] is a constant. *erefore, the
optimal shrinkage intensity can be obtained through solving
the following optimization problem:

min w2E tr(T − S)2􏽨 􏽩 − 2E[tr(T − S)(Σ − S)]w,

s.t. 0≤w≤ 1.
(5)

It is worth noticing that the objective function in op-
timization problem (5) is a convex quadratic function of w,
and the optimal shrinkage intensity can be expressed in a
closed form as follows:
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w
∗
0 � 0∧

E[tr(T − S)(Σ − S)]

E tr(T − S)2􏽨 􏽩
∨1. (6)

Furthermore, for the spherical target T � (tr(S)/p)Ip,
the optimal shrinkage intensity w∗0 given by (6) becomes

w
∗
1 � 0∧

(1/p)tr2(Σ) − tr Σ2( 􏼁 + E tr S2( 􏼁􏼂 􏼃 − (1/p)E tr2(S)􏼂 􏼃

E tr S2( 􏼁􏼂 􏼃 − (1/p)E tr2(S)[ ]
∨1.

(7)

Denote the matrix

En �

1
1
n

1
n

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8)

We can obtain the following moment property of the
complex Gaussian distribution.

Proposition 1. Assume an i.i.d. sample x1, x2, . . . , xn ∈ Cp

follows the complex Gaussian distributionCN(0,Σ) and S is
the sample covariance matrix; we have

E
tr S2( 􏼁

tr2(S)
􏼠 􏼡 � En

tr Σ2( 􏼁

tr2(Σ)
􏼠 􏼡. (9)

Proof. Because the sample x1, x2, . . . , xn ∈ Cp follows a
complex Gaussian distribution with mean 0, we have
nS ∼ CW(Σ, n). By the moment properties of complex
Wishart distribution [22], we can obtain

E tr S2􏼐 􏼑􏽨 􏽩 � tr Σ2
􏼐 􏼑 +(1/n)tr2(Σ). (10)

Furthermore, when a random matrix W � (wij)p×p

follows complex Wishart distribution CW(Ip, n) with de-
gree of freedom n, we have

tr(W) � 􏽘

p

i�1
􏽘

p

j�1
wij, (11)

tr2(W) � 􏽘

p

i�1
􏽘

p

j�1
􏽘

p

k�1
􏽘

p

l�1
wijwkl. (12)

By taking expectation on both sides, we have

E tr2(W)􏽨 􏽩 � 􏽘

p

i�1
􏽘

p

j�1
􏽘

p

k�1
􏽘

p

l�1
E wijwkl􏽨 􏽩 � 􏽘

p

i�1
􏽘

p

j�1
􏽘

p

k�1
􏽘

p

l�1
b1δijδkl + b2δilδjk􏼐 􏼑 � b1tr

2 Ip􏼐 􏼑 + b2tr Ip􏼐 􏼑, (13)

where b1 � n2 and b2 � n. For a random matrix W which
follows complexWishart distributionCW(Σ, n)with degree
of freedom n, let Σ � GGH; then, we have
G− 1WG− H ∼ CW(Ip, n). In the same manner, we can
obtain

E tr2(W)􏽨 􏽩 � n
2tr2(Σ) + ntr Σ2

􏼐 􏼑. (14)

Noticing that nS ∼ CW(Σ, n), we can obtain

E tr2(nS)􏽨 􏽩 � n
2tr2(Σ) + ntr Σ2

􏼐 􏼑. (15)

*erefore, we have

E tr2(S)􏽨 􏽩 � tr2(Σ) +
1
n
tr Σ2

􏼐 􏼑. (16)

By (10) and (16), equality (9) holds. □

Theorem 1. When the target matrix is T � (tr(S)/p)Ip, the
optimal shrinkage intensity under the complex Gaussian
distribution is

w
∗

�
ptr2(Σ) − tr Σ2( 􏼁

(p − n)tr2(Σ) +(np − 1)tr Σ2( 􏼁
∈ [0, 1]. (17)

Proof. By plugging equalities (10) and (16) into (7), we have

E tr S2􏼐 􏼑􏽨 􏽩 −
1
p
E tr2(S)􏽨 􏽩 �

np − 1
np

tr Σ2
􏼐 􏼑 +

p − n

np
tr2(Σ).

(18)

*erefore, we can obtain

w
∗

� 0∧
ptr2(Σ) − tr Σ2( 􏼁

(p − n)tr2(Σ) +(np − 1)tr Σ2( 􏼁
∨1. (19)

By Cauchy–Schwarz inequality, we have w∗ ∈ [0, 1]. Hence,
we have

w
∗

�
ptr2(Σ) − tr Σ2( 􏼁

(p − n)tr2(Σ) +(np − 1)tr Σ2( 􏼁
∈ [0, 1]. (20)

By *eorem 1, the corresponding optimal linear
shrinkage estimator is

􏽢Σ � 1 − w
∗

( 􏼁S + w
∗tr(S)

p
Ip. (21)

We remind that the optimal shrinkage estimator
concerns with the real covariance matrix. *us, it is un-
available in practical applications. Despite this, it provides a
theoretical optimal value for evaluating the available
ones. □
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3. Available Linear Shrinkage Estimator

Theorem 2. Under the complex Gaussian distribution, the
unbiased estimates of tr(Σ2) and tr2(Σ) are, respectively,
given by

α �
1

n2 − 1
n
2tr S2􏼐 􏼑 − ntr2(S)􏼐 􏼑,

β �
1

n2 − 1
n
2tr2(S) − ntr S2􏼐 􏼑􏼐 􏼑.

(22)

Proof. Because the inverse matrix of En is

E− 1
n �

n2

n2 − 1

1 −
1
n

−
1
n

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (23)

we have

E E− 1
n

tr S2( 􏼁

tr2(S)
􏼠 􏼡􏼠 􏼡 �

tr Σ2( 􏼁

tr2(Σ)
􏼠 􏼡. (24)

*erefore, we can obtain

E[α] � tr Σ2
􏼐 􏼑,

E[β] � tr2(Σ),
(25)

revealing that α and β are unbiased estimates of tr(Σ2) and
tr2(Σ), respectively.

*rough plugging the unbiased estimates given by (22)
into the optimal shrinkage intensity w∗, we can obtain the
available shrinkage intensity:

􏽢w � 0∧
pβ − α

(p − n)β +(np − 1)α
∨1. (26)

*erefore, the available linear shrinkage estimator is

􏽢Σ � (1 − 􏽢w)S + 􏽢w
tr(S)

p
Ip. (27)

*e linear shrinkage estimator given by (27) is positive
definite even when the dimension exceeds the sample size,
except that 􏽢Σ degenerates into the SCM. □

4. Numerical Simulations and
Adaptive Beamforming

In this section, we provide some numerical simulations and
an example application to adaptive beamforming for veri-
fying the performance of the proposed covariance matrix
estimator. *e proposed linear shrinkage estimator is
denoted as T1cg. *e linear shrinkage estimator corre-
sponding to the spherical target matrix in [18] is denoted as
T1cv.

4.1. Numerical Simulations. As mentioned before, an ac-
curate shrinkage intensity estimate can benefit the linear
shrinkage estimator. In this section, we compare the

proposed available shrinkage intensity and the existing one
based on crossvalidation in [18] to reveal the advantage of
the proposed shrinkage estimator. In our simulations, the
real covariance matrix is Σ � (σij)p×p with

σij � t
|i− j|

. (28)

*e model parameter t is set to be 0.5, resulting in the
real covariance matrix being close to a spherical structured
matrix. *e data come from the complex Gaussian distri-
bution CN(0,Σ). *e MSE of each available shrinkage
intensity relative to the optimal intensity given by (17) is
computed by averaging 5 × 104 Marlo runs.

Figure 1 reports the MSEs of available shrinkage
intensities versus the sample size and the dimension. We
can see that the MSEs of available shrinkage intensities in
T1cv and T1cg decrease as the sample size or the di-
mension gets larger. Because the proposed T1cg by
plugging in the unbiased estimates of unknown scalars
employs the complex Gaussian distribution information,
it outperforms the T1cv based on the nonparameter
approach.

4.2. Adaptive Beamforming. In this section, we apply the
proposed covariance estimators to array signal processing.
Specifically, we consider a uniform linear array (ULA) which
consists of p sensors with half-wavelength spacing. At time
t � 1, . . . , n, the received signal can be modeled as

x(t) � a θ0( 􏼁s0(t) + 􏽘
K

k�1
a θk( 􏼁sk(t) + n(t) ∈ Cp

, (29)

where θ0 and θk are the directions of desired signal s0(t) and
interference signals sk(t), respectively, a(θ0) and a(θk) are
the corresponding array responses, and n(t) is the noise
[23]. *en, the minimum variance distortionless response
(MVDR) beamformer is expressed as

w �
Σ− 1a θ0( 􏼁

a θ0( 􏼁
HΣ− 1a θ0( 􏼁

. (30)

*e covariance matrix Σ in (30) is unknown and sug-
gested to be replaced with its estimate 􏽢Σ [24]. *en, the
corresponding output signal-to-interference-plus-noise ra-
tio (SINR) is

SINR �
σ20 􏽢wHa θ0( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽢wH 􏽢Σ − a θ0( 􏼁a θ0( 􏼁
H

􏼐 􏼑􏽢w
, (31)

where 􏽢w is the estimated beamformer corresponding to 􏽢Σ.
*e covariance matrix estimator with larger output SINR is
preferred in array signal processing.

In our simulations, we assume the desired signal has an
angle of arrival of θ0 � 5° with power σ20 � 10 dB, and the
interference signals come from the directions − 10°, 0°, 10°{ }

with power 8 dB. For each covariance estimator, the cor-
responding output SINR is approximated by averaging 5 ×

106 repetitions.
Figures 2 and 3 report the SINR and corresponding

elapsed time of the adaptive beamformers based on different
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covariance matrix estimators under the complex Gaussian
scenario, where the noise n(t) follows the complex Gaussian
distribution with power 0 dB. In Figure 2, the dimension is
p � 60 and the sample size ranges from 20 to 120. In Fig-
ure 3, the sample size is n � 60 and the dimension ranges
from 20 to 120. Our observations and analyses are sum-
marized as follows:

(1) Even though enjoying the lowest computation cost,
the classic covariance estimator SCM has an un-
satisfactory performance in small sample size sce-
narios. *erefore, it is not an ideal covariance matrix
estimator any more in these scenarios.

(2) *e SINR based on each covariance matrix estimator
increases when the sample size gets larger but
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Figure 1: *e MSEs of available shrinkage intensities when p � 60 (a) and n � 60 (b).
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Figure 2: *e SINR (a) and corresponding elapsed time (b) of adaptive beamformer based on each covariance matrix estimator versus the
sample size under the complex Gaussian distribution.
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decreases when the dimension gets larger. It reveals
that the covariance matrix estimators play an im-
portant role in adaptive beamforming in large di-
mension and small sample size scenarios.

(3) Both the proposed shrinkage estimator T1cg and
the existing shrinkage estimator T1cv outperform
the SCM with an additional but reasonable

computation cost. Furthermore, the proposed
T1cg dominates the T1cv on both SINR and
computation cost because the signal comes from
the complex Gaussian distribution in the simula-
tion setting, and the proposed covariance matrix
estimator has considered the specific distribution
information.
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Figure 3: *e SINR (a) and corresponding elapsed time (b) of adaptive beamformer based on each covariance matrix estimator versus the
dimension under the complex Gaussian distribution.
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Figure 4: *e SINR (a) and corresponding elapsed time (b) of adaptive beamformer based on each covariance matrix estimator versus the
sample size under the complex non-Gaussian distribution.
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Figures 4 and 5 report the SINR and corresponding
elapsed time of the adaptive beamformers when each variate
in the noise follows the complex Gaussian mixture distri-
bution 0.3CN(− 20, 1) + 0.4CN(0, 1) + 0.3CN(20, 1) with
power 6 dB.We can see that the SINR and elapsed time show
the same varying tendencies, as in Figures 2 and 3. When the
received signal comes from the complex non-Gaussian
distribution, the proposed estimator T1cg performs inferior
to the existing T1cv in adaptive beamforming. It is worthy
noticing that both T1cg and T1cv have analytical expres-
sions, and there are (np2 + np + 3p2) multiplication in the
proposed estimators T1cg and (np2 + 3np + 5p2) multipli-
cation in T1cv. *erefore, the proposed T1cg can always
enjoy a lower computation complexity than T1cv.

On the whole, by employing additional distribution
information, the proposed estimator T1cg outperforms T1cv
in the complex Gaussian scenario and enjoys a comparable
performance with T1cv in the complex non-Gaussian sce-
nario. Moreover, the proposed estimator T1cg always enjoys
an advantage over T1cv in computation cost.

5. Conclusion

In this paper, we have proposed a new covariance matrix
estimator via linear shrinkage procedure under the complex
Gaussian distribution. *rough calculating the moment of
Wishart distribution, we obtain the optimal shrinkage in-
tensity for the spherical target. Furthermore, the involved
unknown scalars are unbiasedly estimated. Subsequently, we
propose the corresponding available linear shrinkage esti-
mator. Numerical simulations and application to adaptive
beamforming show that the proposed covariance matrix
estimator is outperformed compared with the existing es-
timators. In future work, we will investigate the Cramér–Rao

bound for the linear shrinkage estimation and develop
nonlinear shrinkage estimation of the large-dimensional
covariance matrix.
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