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Integral Transform maps an equation from its original
domain into another domain where it might be manipulated
and solved much more easily. In this research area, our main
objective of this special issue is to address some of the new
and interesting engineering and applied science research
problems. Although the theory of Integral Transform is not
new, we think it is still worthy of further research in an
application point of view, such as convolution in con-
volutional neural networks (CNN) or medical diagnosis
image processing. Computed tomography or magnetic
resonance imaging can be viewed as successful applications
of the typical Integral Transform.

$eories on Integral Transforms have been studied in the
form of creating a new type of transform by suitably
changing the kernel. $ere are two views here. One is the
view to see many Integral Transforms in this field as a variant
of Laplace transform, and the other is to view it as a new
transform. We consider the former to be a valid view.

Here, in this editorial, we describe the status of the
special issue as follows.

Overall, eight research papers have been submitted to
this special issue, of which four research papers have been
selected for publication.

In the paper “Some General Integral Operator In-
equalities Associated with φ-Quasiconvex Functions,” the
authors Y. C. Kwun et al. deal with generalized integral
operator inequalities which are established by using
φ-quasiconvex functions. Bounds of an integral operator are
established which have connections with different kinds of
known fractional integral operators. All results are deducible
for quasiconvex functions. Some fractional integral in-
equalities are deduced.

$e research paper submitted by A. K. Rathie et al.,
entitled “A Note on Certain Laplace Transforms of Con-
volution-Type Integrals Involving Product of Two Gener-
alized Hypergeometric Functions” provided as many as
forty-five attractive Laplace transforms of convolution type
related to the product of generalized hypergeometric
functions.

In the research paper “Combining Finite Element and
Analytical Methods to Contact Problems of 3D Structure on
Soft Foundation,” C. Su et al. proposed a method to analyze
the structural soft foundation system affected by time. $e
methodology is an explicit method, combining the finite
element method with the analytical method. $e creep
deformation of the soft foundation is obtained based on
Laplace transform. $e structural deformation contains the
statically determinate structural deformation and rigid body
displacement, solved by the finite method.$e contact forces
are calculated by the deformation coordination equations
and equilibrium equations. $e methodology is validated
through the augmented Lagrangian (AL) method. $e re-
sults can clearly illustrate the local disengagement phenom,
greatly overcome the nonconvergence of the iteration, and
significantly improve the computing efficiency.

In the research paper “Facial Image Segmentation Based
on Gabor Filter,” H.-A. Li et al. used the AdaBoost algorithm
and the Gabor texture analysis algorithm are used to seg-
ment an image containing multiple faces, which effectively
reduces the false detection rate of facial image segmentation.
In facial image segmentation, the image containing face
information is first analyzed for texture using the Gabor
algorithm and appropriate thresholds are set with different
thresholds of skin-like areas, where skin-like areas in the
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image’s background information are removed. $en, the
AdaBoost algorithm is used to detect the face regions, and
finally, the detected face regions are segmented. Experiments
show that this method can quickly and accurately segment
the faces in an image and effectively reduce the rate of missed
and false detections.

In our view, research on the intrinsic properties of In-
tegral Transforms, application to convolution of artificial
intelligence, and research on Radon transform related to
medical equipment are judged to be of high value. Finally, we
believe that the results published in this special issue would
be a definite contribution in the existing literature of the
Integral Transform and will be useful for the mathematicians
and research scholars working in this area. We look forward
to seeing a lot of further research in these areas in the coming
days.
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*e aim of this research paper is to provide as many as forty-five attractive Laplace transforms of convolution type related to the
product of generalized hypergeometric functions. *ese are achieved by employing summation theorems for the series pFp− 1
(for p � 2, 3, 4, and 5) available in the literature. *e obtained research result is to provide an easier method than the
existing method.

1. Introduction and Results’ Required

*e theory of hypergeometric and generalized hyper-
geometric functions [1–3] are fundamental in the field of
mathematics, engineering mathematics, and mathematical
physics. Most of the commonly used functions that occur in
the analysis are special cases or limiting cases of 2F1 and 1F1.

It is well known that 2F1 and 1F1 defined by
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(1)

where (a)n � Γ(a + n)/Γ(a) and a≠ 0. Applications related
to the detailed content can be found in [4–7].

A natural generalization of this function can be repre-
sented by

pFq
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(2)

In the theory of hypergeometric and generalized
hypergeometric functions, the following classical summa-
tion theorems for the series pFp− 1 (for p � 2, 3, 4, and 5) play
an important role [3, 4].

Gauss’ summation theorem [8]:

2F1

a, b

c
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Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
� Δ1(a, b, c), (3)

which provided R(c − a − b)> 0.
Gauss’s second summation theorem [9]:
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Bailey’s summation theorem [8]:
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Kummer’s summation theorem [8]:
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Watson summation theorem [8]:
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which provided R(2c − a − b)> − 1.
Dixon’s summation theorem [9]:
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which provided R(a − 2b − 2c)> − 2.
Whipple’s summation theorem [9]:
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which provided R(c)> 0. Second Whipple’s summation theorem [1]:
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Dougall’s summation theorem [1]:
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In addition to this, we have the following general result
of the Laplace transform of convolution-type integrals in-
volving the product of two generalized hypergeometric
functions available in the literature, see [6, 7]:
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*e aim of this note is to demonstrate how one can easily
obtain in all forty-five Laplace transforms of convolution
type related to the product of two generalized hyper-
geometric functions from the general result (12) by
employing various summation theorems (3) to (11). *e
results obtained earlier by Milovanovic̃ et al. [1, 2] follow
special cases of our main findings.

2. A Note on Certain Laplace Transforms of
Convolution-Type Integrals Involving
Product of Two Generalized
Hypergeometric Functions

In this section, we shall establish in all forty-five Laplace
transforms of convolution type related to the product of two
generalized hypergeometric functions mentioned in the
following theorems. All delta values that appear in this
section are shown in Section 1.

Theorem 1. For R(s)> 0, R(d)> 0, R(d′)> 0,
R(c − a − b)> 0, andR(c′ − a′ − b′)> 0, the following result
holds true:
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Theorem 2. For R(s)> 0, R(d)> 0, R(d′)> 0, and
R(c − a − b)> 0, the following result holds true:
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Theorem 3. For R(s)> 0, R(d)> 0, R(d′)> 0, and
R(c − a − b)> 0, the following result holds true:
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Theorem 4. For R(s)> 0, R(d)> 0, R(d′)> 0, and
R(c − a − b)> 0, the following result holds true:
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Theorem 5. For R(s)> 0, R(d)> 0, R(d′)> 0,
R(c − a − b)> 0, and R(2c′ − a′ − b′)> − 1, the following
result holds true:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ1(a, b, c)Δ5 a′, b′, c′( 􏼁.

(17)

Theorem 6. For R(s)> 0, R(d)> 0, R(d′)> 0,
R(c − a − b)> 0, and R(a′ − 2b′ − 2c′)> − 2, the following
result holds true:
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τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 3F3

a′, b′, c′

1 + a′ − b′, 1 + a′ − c′, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dτ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ1(a, b, c)Δ6 a′, b′, c′( 􏼁.

(18)

Theorem 7. For R(s)> 0, R(d)> 0, R(d′)> 0, and
R(c − a − b)> 0, the following result holds true:
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a′, 1 − a′, c′

e′, 1 + 2c′ − e′, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dτ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ1(a, b, c)Δ7 a′, c′, e′( 􏼁.

(19)

Theorem 8. For R(s)> 0, R(d)> 0, R(d′)> 0, and
R(c − a − b)> 0, the following result holds true:
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− (t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ1(a, b, c)Δ8 a′, b′, c′( 􏼁.

(20)

Theorem 9. For R(s)> 0, R(d)> 0, R(f′)> 0,
R(c − a − b)> 0, and R(a′ − c′ − d′ − e′ + 1)> 0, the fol-
lowing result holds true:
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(t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dt

�
Γ(d)Γ f′( 􏼁

s
d+f′
Δ1(a, b, c)Δ9 a′, c′, d′, e′( 􏼁.

(21)

Theorem 10. For R(s)> 0, R(d)> 0, and R(d′)> 0, the
following result holds true:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 2F2

a′, b′

1
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a′ + b′ + 1( 􏼁, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
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2

(t − τ)s
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ2(a, b)Δ2 a′, b′( 􏼁.

(22)

Theorem 11. For R(s)> 0, R(d)> 0, and R(d′)> 0, the
following result holds true:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(t − τ)s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dτ

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ2(a, b)Δ3 a′, b′( 􏼁.

(23)

Theorem 12. For R(s)> 0, R(d)> 0, and R(d′)> 0, the
following result holds true:
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τs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 2F2

a′, b′

1 + a′ − b′, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− (t − τ)s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dτ

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ2(a, b)Δ4 a′, b′( 􏼁.

(24)

Theorem 13. For R(s)> 0, R(d)> 0, R(d′)> 0, and
R(2c′ − a′ − b′)> − 1, the following result holds true:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 3F3

a′, b′, c′
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a′ + b′ + 1( 􏼁, 2c′, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ2(a, b)Δ5 a′, b′, c′( 􏼁.

(25)

Theorem 14. For R(s)> 0, R(d)> 0, R(d′)> 0, and
R(a′ − 2b′ − 2c′)> − 2, the following result holds true:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 3F3

a′, b′, c′

1 + a′ − b′, 1 + a′ − c′, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dτ

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

dt
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Γ(d)Γ d′( 􏼁

s
d+d′
Δ2(a, b)Δ6 a′, b′, c′( 􏼁.

(26)

Theorem 15. For R(s)> 0, R(d)> 0, and R(d′)> 0, the
following result holds true:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 3F3
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(t − τ)s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dτ

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

dt
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Γ(d)Γ d′( 􏼁

s
d+d′
Δ2(a, b)Δ7 a′, c′, e′( 􏼁.

(27)

Theorem 16. For R(s)> 0, R(d)> 0, and R(d′)> 0, the
following result holds true:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− (t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dt
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Γ(d)Γ d′( 􏼁

s
d+d′
Δ2(a, b)Δ8 a′, b′, c′( 􏼁.

(28)

Theorem 17. For R(s)> 0, R(d)> 0, R(f′)> 0, and
R(a′ − c′ − d′ − e′ + 1)> 0, the following result holds true:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(29)

Theorem 18. For R(s)> 0, R(d)> 0, and R(d′)> 0, the
following result holds true:
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(30)

Theorem 19. For R(s)> 0, R(d)> 0, and R(d′)> 0, the
following result holds true:
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⎫⎪⎬
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(31)

Theorem 20. For R(s)> 0, R(d)> 0, R(d′)> 0, and
R(2c′ − a′ − b′)> − 1, the following result holds true:
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dτ

⎧⎪⎪⎪⎨

⎪⎪⎪⎩
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Δ3(a, b)Δ5 a′, b′, c′( 􏼁.

(32)

Theorem 21. For R(s)> 0, R(d)> 0, R(d′)> 0, and
R(a′ − 2b′ − c′)> − 2, the following result holds true:
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0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

2F2

a, 1 − a

b, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1
2
τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 3F3

a′, b′, c′

1 + a′ − b′, 1 + a′ − c′, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dτ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ3(a, b)Δ6 a′, b′, c′( 􏼁.

(33)

Theorem 22. For R(s)> 0, R(d)> 0, and R(d′)> 0, the
following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′
2F2

a, 1 − a

b, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1
2
τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 3F3

a′, 1 − a′, c′

e′, 1 + 2c′ − e′, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dτ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ3(a, b)Δ7 a′, c′, e′( 􏼁.

(34)

Theorem 23. For R(s)> 0, R(d)> 0, and R(d′)> 0, the
following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

2F2

a, 1 − a

b, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1
2
τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 4F4

a′, 1 +
1
2
a′, b′, c′

1
2
a′, a′ − b′ + 1, a′ − c′ + 1, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− (t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ3(a, b)Δ8 a′, b′, c′( 􏼁.

(35)

Theorem 24. For R(s)> 0, R(d)> 0, R(f′)> 0, and
R(a′ − c′ − d′ − e′ + 1)> 0, the following result holds true:
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􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
f′− 1

2F2

a, 1 − a

b, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1
2
τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 5F5

a′, 1 +
1
2
a′, c′, d′, e′

1
2
a′, a′ − c′ + 1, a′ − d′ + 1, a′ − e′ + 1, f′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dt

�
Γ(d)Γ f′( 􏼁

s
d+f′
Δ3(a, b)Δ9 a′, c′, d′, e′( 􏼁.

(36)

Theorem 25. For R(s)> 0, R(d)> 0, and R(d′)> 0, the
following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

2F2

a, b

1 + a − b, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 2F2

a′, b′

1 + a′ − b′, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− (t − τ)s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dτ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ4(a, b)Δ4 a′, b′( 􏼁.

(37)

Theorem 26. For R(s)> 0, R(d)> 0, R(d′)> 0, and
R(2c′ − a′ − b′)> − 2, the following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

2F2

a, b

1 + a − b, d
| − τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 3F3

a′, b′, c′

1
2

a′ + b′ + 1( 􏼁, 2c′, d′
|(t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ4(a, b)Δ5 a′, b′, c′( 􏼁.

(38)

Theorem 27. For R(s)> 0, R(d)> 0, R(d′)> 0, and
R(a′ − 2b′ − c′)> − 2, the following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

2F2

a, b

1 + a − b, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 3F3

a′, b′, c′

1 + a′ − b′, 1 + a′ − c′, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dτ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ4(a, b)Δ6 a′, b′, c′( 􏼁.

(39)

Theorem 28. For R(s)> 0, R(d)> 0, and R(d′)> 0, the
following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

2F2

a, b

1 + a − b, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 3F3

a′, 1 − a′, c′

e′, 1 + 2c′ − e′, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dτ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ4(a, b)Δ7 a′, c′, e′( 􏼁.

(40)
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Theorem 29. For R(s)> 0, R(d)> 0, and R(d′)> 0, the
following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

2F2

a, b

1 + a − b, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 4F4

a′, 1 +
1
2
a′, b′, c′

1
2
a′, a′ − b′ + 1, a′ − c′ + 1, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− (t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ4(a, b)Δ8 a′, b′, c′( 􏼁.

(41)

Theorem 30. For R(s)> 0, R(d)> 0, R(f′)> 0, and
R(a′ − c′ − d′ − e′ + 1)> 0, the following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
f′− 1

2F2

a, b

1 + a − b, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 5F5

a′, 1 +
1
2
a′, c′, d′, e′

1
2
a′, a′ − c′ + 1, a′ − d′ + 1, a′ − e′ + 1, f′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dt

�
Γ(d)Γ f′( 􏼁

s
d+f′
Δ4(a, b)Δ9 a′, c′, d′, e′( 􏼁.

(42)

Theorem 31. For R(s)> 0, R(d)> 0, R(d′)> 0,
R(2c − a − b)> − 1, and R(2c′ − a′ − b′)> − 1, the fol-
lowing result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

3F3

a, b, c

1
2

(a + b + 1), 2c, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
τs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 3F3

a′, b′, c′

1
2

a′ + b′ + 1( 􏼁, 2c′, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ5(a, b, c)Δ5 a′, b′, c′( 􏼁.

(43)

Theorem 32. For R(s)> 0, R(d)> 0, R(d′)> 0,
R(2c − a − b)> − 1, and R(a′ − 2b′ − c′)> − 2, the fol-
lowing result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

3F3

a, b, c

1
2

(a + b + 1), 2c, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
τs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 3F3

a′, b′, c′

1 + a′ − b′, 1 + a′ − c′, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dτ

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ5(a, b, c)Δ6 a′, b′, c′( 􏼁.

(44)
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Theorem 33. For R(s)> 0, R(d)> 0, R(d′)> 0, and
R(2c′ − a′ − b′)> − 1, the following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

3F3

a, b, c

1
2

(a + b + 1), 2c, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
τs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 3F3

a′, 1 − a′, c′

e′, 1 + 2c′ − e′, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dτ

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ5(a, b, c)Δ7 a′, c′, e′( 􏼁.

(45)

Theorem 34. For R(s)> 0, R(d)> 0, R(d′)> 0, and
R(2c − a − b)> − 1, the following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

3F3

a, b, c

1
2

(a + b + 1), 2c, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
τs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 4F4

a′, 1 +
1
2
a′, b′, c′

1
2
a′, a′ − b′ + 1, a′ − c′ + 1, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− (t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ5(a, b, c)Δ8 a′, b′, c′( 􏼁.

(46)

Theorem 35. For R(s)> 0, R(d)> 0, R(f′)> 0,
R(2c − a − b)> − 1, and R(a′ − c′ − d′ − e′ + 1)> 0, the
following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
f′− 1

3F3

a, b

1
2

(a + b + 1), 2c, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
τs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 5F5

a′, 1 +
1
2
a′, c′, d′, e′

1
2
a′, a′ − c′ + 1, a′ − d′ + 1, a′ − e′ + 1, f′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dt

�
Γ(d)Γ f′( 􏼁

s
d+f′
Δ5(a, b, c)Δ9 a′, c′, d′, e′( 􏼁.

(47)

Theorem 36. For R(s)> 0, R(d)> 0, R(d′)> 0,
R(a − 2b − 2c)> − 2, and R(a′ − 2b′ − c′)> − 2, the fol-
lowing result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

3F3

a, b, c

1 + a − b, 1 + a − c, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 3F3

a′, b′, c′

1 + a′ − b′, 1 + a′ − c′, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dτ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ6(a, b, c)Δ6 a′, b′, c′( 􏼁.

(48)
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Theorem 37. For R(s)> 0, R(d)> 0, R(d′)> 0, and
R(a − 2b − 2c)> − 2, the following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

3F3

a, b, c

1 + a − b, 1 + a − c, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 3F3

a′, 1 − a′, c′

e′, 1 + 2c′ − e′, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dτ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ6(a, b, c)Δ7 a′, c′, e′( 􏼁.

(49)

Theorem 38. For R(s)> 0, R(d)> 0, R(d′)> 0, and
R(a − 2b − 2c)> − 2, the following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

3F3

a, b, c

1 + a − b, 1 + a − c, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 4F4

a′, 1 +
1
2
a′, b′, c′

1
2
a′, a′ − b′ + 1, a′ − c′ + 1, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− (t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ6(a, b, c)Δ8 a′, b′, c′( 􏼁.

(50)

Theorem 39. For R(s)> 0, R(d)> 0, R(f′)> 0,
R(a − 2b − 2c)> − 2, and R(a′ − c′ − d′ − e′ + 1)> 0, the
following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
f′− 1

3F3

a, b, c

1 + a − b, 1 + a − c, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 5F5

a′, 1 +
1
2
a′, c′, d′, e′

1
2
a′, a′ − c′ + 1, a′ − d′ + 1, a′ − e′ + 1, f′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dt

�
Γ(d)Γ f′( 􏼁

s
d+f′
Δ6(a, b, c)Δ9 a′, c′, d′, e′( 􏼁.

(51)

Theorem 40. For R(s)> 0, R(d)> 0, and R(d′)> 0, the
following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

3F3

a, 1 − a, c

e, 1 + 2c − e, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 3F3

a′, 1 − a′, c′

e′, 1 + 2c′ − e′, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dτ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ7(a, c, e)Δ7 a′, c′, e′( 􏼁.

(52)

Theorem 41. For R(s)> 0, R(d)> 0, and R(d′)> 0, the
following result holds true:
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􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

3F3

a, 1 − a, c

e, 1 + 2c − e, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 4F4

a′, 1 +
1
2
a′, b′, c′

1
2
a′, a′ − b′ + 1, a′ − c′ + 1, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− (t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ7(a, c, e)Δ8 a′, b′, c′( 􏼁.

(53)

Theorem 42. For R(s)> 0, R(d)> 0, R(f′)> 0, and
R(a′ − c′ − d′ − e′ + 1)> 0, the following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
f′− 1

3F3

a, 1 − a, c

e, 1 + 2c − e, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
τs⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 5F5

a′, 1 +
1
2
a′, c′, d′, e′

1
2
a′, a′ − c′ + 1, a′ − d′ + 1, a′ − e′ + 1, f′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dt

�
Γ(d)Γ f′( 􏼁

s
d+f′
Δ7(a, c, e)Δ9 a′, c′, d′, e′( 􏼁.

(54)

Theorem 43. For R(s)> 0, R(d)> 0, and R(d′)> 0, the
following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

4F4

a, 1 +
1
2

a, b, c

1
2

a, a − b + 1, a − c + 1, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− τs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 4F4

a′, 1 +
1
2
a′, b′, c′

1
2
a′, a′ − b′ + 1, a′ − c′ + 1, d′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− (t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dt

�
Γ(d)Γ d′( 􏼁

s
d+d′
Δ8(a, b, c)Δ8 a′, b′, c′( 􏼁.

(55)

Theorem 44. For R(s)> 0, R(d)> 0, R(f′)> 0, and
R(a′ − c′ − d′ − e′ + 1)> 0, the following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
f′− 1

4F4

a, 1 +
1
2

a, b, c

1
2

a, a − b + 1, a − c + 1, d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− τs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 5F5

a′, 1 +
1
2
a′, c′, d′, e′

1
2
a′, a′ − c′ + 1, a′ − d′ + 1, a′ − e′ + 1, f′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dt

�
Γ(d)Γ f′( 􏼁

s
d+f′
Δ8(a, c, e)Δ9 a′, c′, d′, e′( 􏼁.

(56)
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Theorem 45. For R(s)> 0, R(f)> 0, R(f′)> 0,
R(a − c − d − e + 1)> 0, and R(a′ − c′ − d′ − e′ + 1)> 0,
the following result holds true:

􏽚
∞

0
e

− st
􏽚

t

0
τf− 1

(t − τ)
f′− 1

5F5

a, 1 +
1
2

a, c, d, e

1
2

a, a − c + 1, a − d + 1, a − e + 1, f

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
τs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 5F5

a′, 1 +
1
2
a′, c′, d′, e′

1
2
a′, a′ − c′ + 1, a′ − d′ + 1, a′ − e′ + 1, f′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(t − τ)s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dt

�
Γ(f)Γ f′( 􏼁

s
f+f′
Δ9(a, c, d, e)Δ9 a′, c′, d′, e′( 􏼁.

(57)

Proof. *eproofs of results (13) to (57) asserted in*eorems
1–45 are quite straight forward. For example, in order to
prove result (13) asserted in *eorem 1, we proceed as
follows. In the general result (9), if we get
p � q � p′ � q′ � 2, a1 � a, a2 � b, a1′ � a′, a2′ � b′, b1 � c,

b2 � d, b1′ � c′, b2′ � d′, k � k′ � s, μ � d, and ] � d′, then it
takes the following form:

􏽚
∞

0
e

− st
􏽚

t

0
τd− 1

(t − τ)
d′− 1

2F2
a, b

c, d
|τs􏼢 􏼣2F2

a′, b′

c′, d′
|(t − τ)s⎡⎣ ⎤⎦dτ

⎧⎨

⎩

⎫⎬

⎭dt

� Γ(d)Γ d′( 􏼁s
− d− d′

2F1
a, b

c
|1􏼢 􏼣2F1

a′, b′

c′
|1⎡⎣ ⎤⎦.

(58)

We now observe that the twice 2F1 appearing on the
right-hand side of (58) can be calculated by Gauss’ sum-
mation theorem (3), and we easily arrive at the desired result
(13). *is completes the proof of result (13) asserted by
*eorem 1. *e remaining results (14)–(57) can be estab-
lished in a similar way. We would like to leave the details to
the interested readers. □

3. Corollaries

In this section, we shall mention several known results of our
main findings:

(a) In *eorems 1, 2, 4, 40, 42, and 44, if we take d � b

and d′ � b′, we get the known results due to
Milovanovic̃ et al. (*eorems 2.1, 2, and 2.4 in [6]
and Corollary 1.3 and 1.5 in [7], respectively).

(b) In *eorems 3 and 11, if we take d � b and
d′ � 1 − a′, we get the known results due to Milo-
vanovic̃ et al. (*eorems 2.3 in [6] and Corollary 4 in
[7], respectively).

(c) In *eorems 5 to 8, 13–16, and 26–29, if we take
d � b and d′ � c′, we get the known results due to
Milovanovic̃ et al. (*eorems 2.5 to 2.10, 2.14 to 2.16,
2.23, 2.25, and 2.29 in [6] respectively).

(d) In *eorems 20–23, if we take d � 1 − a and d′ � c′,
we get the known results due to Milovanovic̃ et al.
(*eorems 2.11 to 2.13 and 2.27 in [6], respectively).

(e) In *eorems 31–34, 36–38, 40, 41, and 43, if we take
d � c and d′ � c′, we get the known results due to
Milovanovic̃ et al. (*eorems 2.17 to 2.22, 2.31, 2.33,
2.35, and 2.37 [6], respectively).

(f ) In *eorems 9, 17, 30, 35, 39, 42, and 44, if we take
d � b and f′ � c′, we get the known results due to
Milovanovic̃ et al. (*eorems 2.24, 2.26, 2.30, 2.32,
2.34, 2.36, and 2.38 in [6], respectively).

(g) In *eorem 24, if we take d � 1 − a and f′ � c, we
get the known result due to Milovanovic̃ et al.
(*eorem 2.28 in [6]).

(h) In *eorem 45, if we take f � c and f′ � c′, we get
the known result due to Milovanovic̃ et al. (*eorem
2.39 in [6]).

(i) In *eorem 18, if we take d � 1 − a and d′ � 1 − a′,
we get a known result due to Milovanovic̃ et al.
(Corollary 2 in [7]).

(j) In *eorem 19, if we take d � 1 − a and d′ � b′, we
get a known result due to Milovanovic̃ et al. (Cor-
ollary 6 in [7]).

4. Conclusion

In this note, our aim is to demonstrate how one can easily
obtain in all forty-five attractive Laplace transforms of
convolution type related to the generalized hypergeometric
functions from the general result recorded in [5].

Applications related to engineering will be addressed in
the next study. It is hoped that the results could be of po-
tential use in the areas of engineering mathematics and
mathematical physics.
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As an important part of face recognition, facial image segmentation has become a focus of human feature detection. In this paper,
the AdaBoost algorithm and the Gabor texture analysis algorithm are used to segment an image containing multiple faces, which
effectively reduces the false detection rate of facial image segmentation. In facial image segmentation, the image containing face
information is first analyzed for texture using the Gabor algorithm, and appropriate thresholds are set with different thresholds of
skin-like areas, where skin-like areas in the image’s background information are removed.*en, the AdaBoost algorithm is used to
detect face regions, and finally, the detected face regions are segmented. Experiments show that this method can quickly and
accurately segment faces in an image and effectively reduce the rate of missed and false detections.

1. Introduction

With the rapid development of biometric recognition
technology, face recognition [1] has been widely used in
many fields. As the basic research of face recognition, facial
image segmentation [2–4] is an important step in a face
recognition system. Accurate and fast segmentation of the
face is critical to improve the speed and accuracy of rec-
ognition. However, due to the influences of head position,
occlusion, image orientation, illumination conditions and
facial expression, facial segmentation is typically difficult.
Early research of images containing faces primarily focused
on the adjustment model, the adjustment subimage, and the
deformation model. Detection methods typically detect
images with frontal face regions with simple backgrounds
and other unchanged conditions; thus, their detection forms
are relatively fixed. Based on these facial image detection
systems, even if changes in facial image detection conditions
are not affected, certain system parameters must be adjusted.
*en, people paid more attention to positive facial image
research, facial recognition, and video coding system. In
recent years, facial image segmentation has become a re-
search hotspot. Researchers have developed many methods,

including methods that detect movement, skin color, and
general information. *e use of statistical methods and
neural networks can find face information in complex
backgrounds, markedly improving the accuracy of facial
image segmentation. In addition, considerable progress has
been made in the design of methods that can manage facial
features with precise positions. *e latest research of this
project focuses on the statistical analysis model [5], the
neural network learning method [6], the SVM (support
vector machine) method [7], the Markov random field
method [8], the BDF [9], face detection based on skin color,
and other statistical information.

Currently, the rapid development of facial image seg-
mentation and recognition has widened its possible ap-
plications. We divide existing facial image segmentation
and recognition methods into three categories. *e first is
knowledge-based methods [10], which use surface-based
rules for face recognition [11]. *ere are clear rules of
thumb for regional facial features, and facial expressions
can be used to set local features of facial features. Yang and
Huang [12] used a knowledge-based hierarchical method to
detect a human face and established a three-level detection
system. *e primary difficulty lies in transforming human

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 6620742, 7 pages
https://doi.org/10.1155/2021/6620742

mailto:an6860@126.com
https://orcid.org/0000-0003-1805-8430
https://orcid.org/0000-0002-3069-2189
https://orcid.org/0000-0003-2494-8077
https://orcid.org/0000-0002-6719-5346
https://orcid.org/0000-0002-9807-474X
https://orcid.org/0000-0002-7355-1589
https://orcid.org/0000-0002-2369-440X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6620742


perception experience into clear rules and methods, and it
is difficult to correctly detect facial areas outside these
detection rules and result in feature loss. However, if these
rules are too general, they can lead to error detection. In
addition, the method cannot recognize all possible situa-
tions; thus, it is difficult to detect the face in different
positions.

*e second type is based on skin color [13]. Skin color
can reveal the position of the face and is an important piece
of facial information that does not depend on the details of
the face. Skin color can rotate, is relatively stable, can be
distinguished from the complex and diverse colors in most
backgrounds, and has the advantages of pose and speed
invariance. *erefore, this method is commonly used in
facial image segmentation and provides good detection
results for certain detection algorithms. Second, the skin is
seriously disturbed by illumination, noise, and certain
occlusion, and the skin color function is weakened; thus,
the algorithm is difficult to use. Although skin color
technology has certain limitations, it has many benefits. For
example, face detection can be performed on a fine
background of repeated attributes. *is method does not
limit the size and direction of the face, and the processing
speed is relatively fast, and it is easy to define and locate the
real face. Particularly in color facial image segmentation
with complex and diverse colors in the background, this
method can segment candidate face regions based on the
different skin color thresholds, and through certain veri-
fication and face feature matching, the face region can be
effectively located.

*e third type is based on model matching [14]. A stored
face and algorithm can be used to create a standard model
[15], which describes the shape of the eyes, nose, and other
facial features; or a flexible model.*en, similarities between
the detection area and the standard model are calculated to
determine whether the region is a face or a corresponding
entity. Liang and Ai [16] used five types of face detection
templates to detect facial areas. *e original template was
used to detect eyes, and the other four templates were used to
detect facial styles with different length ratios. *is method
has been successfully implemented and achieved good re-
sults. However, to recognize a face in a complex background,
different interventions and basic models must be developed.
*e hidden interference model is difficult to describe, a
template that can represent different faces cannot distin-
guish complex backgrounds accurately, and a template that
can distinguish complex backgrounds cannot represent faces
accurately. Based on this method, researchers must balance
model accuracy and error detection.

In order to improve the accuracy and stability of the face
segmentation algorithm, this paper combined the AdaBoost
algorithm [17] and Gabor filter [18] to segment the face
image, and the texture of the image processed by Gabor filter
is clearer, which can effectively solve the omissions and
misdetection phenomenon when the AdaBoost algorithm
directly segments the face. Our proposed algorithm has a
significant improvement in the accuracy of face image
segmentation, especially in the complex background is more
obvious.

*e structure of this paper is as follows: Section 1 in-
troduces the existing facial image segmentation methods;
Section 2 introduces he Haar-like feature Gabor features,
and the AdaBoost algorithm; Section 3 proposes a facial
image segmentation algorithm combining the Gabor filter
and the AdaBoost algorithm; Section 4 presents experi-
mental results and analyses; and Section 5 summarizes the
full text.

2. Related Work

2.1. Haar Classifier. *e Haar classifier is a tree-based
classifier that creates a boost filter cascade classifier and
primarily includes Haar-like features, integral graph
method, AdaBoost algorithm, and cascading features, in-
cluding the following:

(1) Haar-like features are extracted, and the integral
graph method is used to process the Haar-like fea-
tures quickly

(2) *e AdaBoost algorithm is used to train the model
continuously to obtain a strong classifier to distin-
guish a face from nonfacial information

(3) Strong classifiers can be cascaded together by the
screening cascade method, which can improve de-
tection accuracy

A Haar-like feature is used to describe a human face.
*ere are two rectangles (a white and black matrix), and an
eigenvalue is defined as the sum of the black matrix pixels
minus the sum of the white matrix pixels. *ese Haar ei-
genvalues describe changes in gray levels. Because rectan-
gular features are only sensitive to simple graphic structures,
such as edges and line segments, they can only describe the
structure of a particular trend.

By changing the size and location of the model, we can
list many feature elements in the image pane. *e function
model in Figure 1 is called a “feature prototype.” We can
obtainmany rectangular features by changing the position in
the subwindow and the size of various templates and then
calculate all eigenvalues in the subwindow based on these
eigenvalues.

Figure 2 shows certain features of the face. For example,
the color of the eye area in the middle is darker than that of
the cheek, while the color on the right shows that the color of
the bridge of the nose is lighter than that of the side of the
nose. *e same is true for other targets such as eyes, which
can also be represented by appropriate rectangular elements.
Compared to the simple use of pixels, the use of features has
great advantages and yields faster computing speeds.

2.2. Gabor Filter. *e Gabor transform effectively extracts
spatial and local frequency information from a target region.
Although the Gabor wavelet itself does not form an or-
thogonal basis, it may be a narrow frame under certain
parameters. *e Gabor wave is sensitive to the edge of the
image and provides a good proportion selection charac-
teristics and directionality. *e Gabor wave is not sensitive
to changes in illumination, making it widely applicable to
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describing visual information accurately. Gabor filtering
with different scales in the same direction is shown in
Figure 3. Gabor filtering with different directions in the same
scale is shown in Figure 4.

Gabor transforms include dividing the signal into several
small time intervals and then using Fourier transform to
analyze each time interval to determine the signal frequency
during the corresponding time interval. *e processing
method includes adding a sliding window and performing
Fourier transform.

If f is a concrete function, and f ∈ L2(R), then the
Gabor transform is defined as

Gf(a, b, w) � 􏽚
∞

−∞
f(t)ga(t − b)e

− twtdt, (1)

where

ga(t) �
1

2
���
πa

√ exp −
t
2

4a
􏼠 􏼡. (2)

Equation (1) is a Gaussian function called a window
function, where A> 0, b> 0, ga(t − b) is a window function
of time localization, and the parameter b is used as a parallel
moving window to cover the entire time domain. If we
integrate the parameter b, then we have

􏽚
∞

−∞
Gf(a, b, w)db � 􏽢f(w), w ∈ R. (3)

*e signal reconstruction expression is

f(t) �
1
2π

􏽚
∞

−∞
􏽚
∞

−∞
Gf(a, b, w)ga(t − b)e

twtdwdb. (4)

*e value of the Gabor transform is Gaussian for two
reasons: (1) the Fourier transform of Gaussian function

remains Gaussian function; thus, the inverse Fourier
transform can also be located by the window function (i.e.,
the frequency-domain location); and (2) the Gabor trans-
form is the best Fourier transform of a window. Most im-
portantly, after the Gabor transform, a real analysis of time
and frequency is performed. *us, the Gabor transform can
locate time-frequency, including all signal information
concurrently, correlation information of signal change se-
verity, frequency-domain information, and local time-do-
main information.

2.3. AdaBoost Algorithm. Facial image segmentation refers
to the technology and process of dividing the facial image
into several specific and unique regions, and identifying
objects of interest in these regions. In recent years, facial
image segmentation technology has been widely used in
facial information processing. Facial image segmentation is
an important step between facial image processing and face
image analysis. Existing facial image segmentation methods
can be divided into the following categories: knowledge-
based, model matching, and skin color-based.

*ere are more types of facial image segmentation al-
gorithms, but most are hindered by noise or background.
Noise is typically difficult to distinguish from a face, which
leads to low accuracy and stability. *e original purpose of
the AdaBoost [19] algorithm is to improve the performance
of the simple classification algorithm by training various
weak classifiers on the same training set and then combining
these weak classifiers into a strong classifier (i.e., the final
classifier) [20]. We use the AdaBoost algorithm based on
Haar-like rectangle features for face detection.*eAdaBoost
method iteratively searches for feature vectors that can
distinguish a face from background based on the edge gray
features of a human face. In this iterative process, the weight

(a) (b) (c) (d)

Figure 1: Feature prototype.

Figure 2: Rectangular features.
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of this iteration is updated based on the classification ac-
curacy of the last training set, and finally the purpose of
changing the data distribution is achieved. *e specific steps
are as follows:

(1) *e training data set is searched, and both face re-
gions and nonface regions are manually segmented
from the image as positive and negative training
sample sets, respectively.

(2) A Haar-like feature is extracted, and its eigenvalue is
used to represent the contrast between the gray level
of the facial area and that of the nonface area within
the rectangular range. *e larger the eigenvalue, the
more marked the edge features are. *en, the ap-
proximate rate is used to detect the face. *e ei-
genvalue is defined as

f(r) � c × 􏽘
(x,y)∈SB

i(x, y) − 􏽘
(x,y)∈SW

i(x, y)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (5)

where f(r) is the eigenvalue corresponding to the
rectangular feature, i(x, y) is the gray value of pixels
(x, y) in the rectangle area, 􏽐(x,y)∈SB

i(x, y) is the
sum of the gray levels of the face area,
􏽐(x,y)∈SW

i(x, y) is the sum of the gray levels of the
background area, and c is the ratio of the size of the
background area and the face area in the rectangular
feature.

(3) *e classifier is selected, the weight in the iteration
process is adjusted, and the weight of the correct
classification samples is reduced:

wt+1,i � wt,iβ
1−εt

t , (6)

where i � 1, 2, · · ·, N. When the classification is
correct, the weight of εt decreases; otherwise, εt � 1,

and the weight value increases. *e weight is
updated, and iterations continue until the most ef-
fective n features are selected from the rectangular
features as weak classifiers, which makes the Ada-
Boost algorithm integrate strong classifiers.

(4) Because n weak classifiers may detect the same face
many times, we combine the detection results from
intersecting areas. We select the maximum value of
four vertices as the new vertices and synthesize them
into a detection result to reduce repeated face
detection.

3. Facial Image SegmentationAlgorithmDesign

To solve the problems of false and missing detections in facial
image segmentation, this paper proposes a facial image seg-
mentation algorithm combining the Gabor filter and the Ada-
Boost algorithm. *e AdaBoost algorithm can recognize and
detect faces in an image quickly. However, when the background
information of the image is complex, the face detection based on
the AdaBoost algorithmwill typically result in many background
information sections that are similar to skin color features being
detected as face information; face information may also be
missed. To solve this problem, we first use the textural features of
skin and the significant differences of other objects combined
with Gabor texture for further analysis.

*is method can be divided into two steps. First, the
Gabor filter is used to obtain the texture feature map of the
faces image, and then a threshold is set to extract the contour
information of skin color to identify a skin-like region. In
this way, black pixels can be added to the background in-
formation, which can significantly reduce the possibility of
falsely detecting background information near skin color
information. Second, the AdaBoost algorithm is used to
segment the faces image, and the face region can be ob-
tained. *e algorithm steps are shown in Figure 5.
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Figure 4: Gabor filtering in different directions under the same scale.
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Figure 5: Flow chart of the algorithm.
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Figure 6: *e detection was compared to that without Gabor filtering. (a) Original image. (b) AdaBoost detection result image.
(c) Gabor +AdaBoost detection result image.
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(1) After Gabor filtering, texture features of the facial
image are identified, and the contour information of
skin color is extracted.

(2) In this paper, the AdaBoost algorithm is used to
extract the rectangular features in the face images.
Based on the principle of minimum weighted error
rate in training samples, n features that are most
effective for classification are selected from the
rectangular features as weak classifiers. During the
iteration process, the weights are constantly modi-
fied to form a strong classifier.

(3) *e strong classifier is used for face segmentation,
and the regions intersected by boundary regions are
synthesized into a detection result.

4. Experiment and Analysis

4.1. Experimental Environment. To demonstrate the su-
periority of this algorithm, we use experimental and
control groups to segment the faces image. In the ex-
perimental group, Gabor filtering was performed first, and
then the AdaBoost algorithm was used for segmentation.
In the control group, AdaBoost face segmentation was
performed directly. *e experiment was conducted on a
64 bit Windows 10 operating system with an Intel core i5-
6300HQCPU@2.30 GHz2.30 GHz, 8 GB of RAM, an
Nvidia GeForce GTX 960Mx, OpenCV4.0.1, and Visual
Studio 2017.

4.2. Experimental Analysis. In the experiment, the Haar
face feature classifier haarcasade_frontalface_alt_XML
was trained by front face in OpenCV and then applied to
positive faces images. If you want to segment the side face
or other organs, OpenCV also provides a trained classifier.
*e experiment was divided into experimental and con-
trol groups. *e design of four-direction and seven-di-
mension Gabor filter can filter redundant information as

much as possible. For the experimental group, the original
image was filtered with a four-direction and seven-di-
mension Gabor filter. *e four directions were 0 degrees,
45 degrees, 90 degrees, 135 degrees, and the seven scales
were 1, 2, 3, 4, 5, 6, and 7 pixels, and then the filtered image
was segmented with the AdaBoost algorithm. *e control
group directly uses the AdaBoost algorithm to segment
the original image without Gabor filtering. *e purpose of
this experiment is to verify that our method has better
detection rate and stability for face segmentation com-
pared with AdaBoost algorithm.

For the facial image in Figure 6, we conducted 10 ex-
periments on all experimental images, and the results of
multiple experiments on each image were consistent, veri-
fying the stability of the two methods in the experimental
and control groups. In the control group without Gabor
filtering, the segmentation accuracy of a human face is low,
and more missed detections exist: clothes are frequently
mistakenly detected as a human face. In the experimental
group, spatial location and the local structure information of
directional selectivity maintain the details of the image
features and are not sensitive to illumination change because
the Gabor filter can describe spatial frequencies well. Ad-
ditionally, the experimental group after managing the Gabor
filter of the images is not mistakenly identified and markedly
improves the human face segmentation accuracy.

In Figure 6, we counted the face segmentation accuracy
of experimental group and the control group, and Figure 7
shows the accuracy of five experiments using different
methods in Figure 6, where the horizontal axis represents the
picture number and the vertical axis represents the seg-
mentation accuracy. As shown in Figure 7, the face seg-
mentation accuracy of the experimental group is higher than
that of the control group. Overall, the face segmentation
accuracy of the experimental group is significantly higher
than that of the control group. *e comparison experiment
proves the effectiveness of the method proposed in this
paper.
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*e detection data in Figure 6 are shown in Table 1.
Using AdaBoost-based face detection when the back-
ground information is complex, many background re-
gions that are similar to skin color features will be
detected as face information. In the experiment, the
background is recognized as a face. *e Gabor filter can
describe local structure information corresponding to
spatial frequency, spatial position, and direction selec-
tivity; can retain the detailed features of the image; and is
not sensitive to light changes. *e accuracy of face rec-
ognition after Gabor filtering is 26.5% higher than that of
direct face recognition.

5. Conclusion

Tomake facial image segmentation more accurate and efficient
and to create a better foundation for face recognition, this study
investigates a facial image segmentation algorithm based on the
Gabor filter and the AdaBoost algorithm. In this method, the
Gabor filter is used to filter the original images, and skin color-
like regions are extracted as the final image for recognition.
*en, the AdaBoost algorithm is used to recognize faces in the
image. Experimental results show that the proposed method
can effectively extract skin-like regions, solve the problem of
missing and false detections when the AdaBoost algorithm is
directly used for face segmentation, and thereby effectively
improve the accuracy of facial image segmentation.
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/is paper deals with generalized integral operator inequalities which are established by using φ-quasiconvex functions. Bounds of
an integral operator are established which have connections with different kinds of known fractional integral operators. All the
results are deducible for quasiconvex functions. Some fractional integral inequalities are deduced.

1. Introduction and Preliminaries

Convex functions play a vital role in the theory of mathe-
matical analysis. Many generalizations have been given for
the convex function, for example, α-convex, m-convex,
h-convex, (α, m)-convex, (h, m)-convex, s-convex,
(s, m)-convex, φ-convex, and quasiconvex functions (see
[1–10]). We will use φ-quasiconvex functions to study the
bounds of unified integral operators, and the established
results are directly related with fractional integral operators
in particular cases. All the fractional integral operators
defined in [11–15] satisfy the results of this paper for
φ-quasiconvex functions, and also the results of [16–19] are
reproduced in special cases.

Definition 1 (see [20]). A function f: J⟶ R is called
convex if

f tx0 +(1 − t)y0( 􏼁≤ tf x0( 􏼁 +(1 − t)f y0( 􏼁, t ∈ [0, 1],

(1)

holds ∀x0, y0 ∈ J, where J is an interval in R.

Definition 2 (see [21]). A function f: J⟶ R is called
φ-quasiconvex if

f tx0 +(1 − t)y0( 􏼁≤max f y0( 􏼁, f y0( 􏼁 + φ f x0( 􏼁, f y0( 􏼁( 􏼁􏼈 􏼉,

t ∈ [0, 1],

(2)

holds ∀x0, y0 ∈ J, where J is an interval in R and φ: f(J) ×

f(J)⟶ R is a bifunction.
For φ(x0, y0) � x0 − y0, (2) reduces to quasiconvex

function. It is to be noted that every convex function is
quasiconvex but converse does not hold.

Example 1 (see [22]). A function f: [− 2, 2]⟶ R defined
as

f(x) �
1, x ∈ [− 2, − 1],

x
2
, x ∈ (− 1, 2],

􏼨 (3)

is quasiconvex on [− 2, 2] but not a convex function on the
same interval.
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/e aim of this paper is to establish integral inequalities
by using φ-quasiconvex functions. /e results will provide
upper bounds of integral operators for φ-quasiconvex
functions, which will behave like compact formulas that
unify bounds of various kinds of operators already defined in
literature. Next, we give some generalized fractional integral
operators connected with the findings of this work.

Definition 3 (see [14]). Let f ∈ L[x0, y0] and g be positive
and increasing function on (x0, y0], and also, let g have
continuous derivative on (x0, y0). /e left and right frac-
tional integrals of f with respect to g on [x0, y0] of order λ,
where λ> 0, are given as follows:

λ
gI

x+
0
f(x) �

1
Γ(λ)

􏽚
x

x0

(g(x) − g(t))
λ− 1

g′(t)f(t)dt, x>x0,

λ
gI

y−
0
f(x) �

1
Γ(λ)

􏽚
y0

x
(g(t) − g(x))

λ− 1
g′(t)f(t)dt, x<y0,

(4)

where

Γ(λ) � 􏽚
∞

0
t
λ− 1

e
− tdt. (5)

Definition 4 (see [23]). Let f ∈ L[x0, y0] and g be positive
and increasing function on (x0, y0], and also let g have
continuous derivative on (x0, y0). /e left and right
k-fractional integrals of f with respect to g on [x0, y0] of
order λ, where λ, k> 0, are given as follows:

λ
gI

k

x+
0
f(x) �

1
kΓk(λ)

􏽚
x

x0

(g(x) − g(t))
(λ/k)− 1

g′(t)f(t)dt, x>x0,

λ
gI

k

y−
0
f(x) �

1
kΓk(λ)

􏽚
y0

x
(g(t) − g(x))

(λ/k)− 1
g′(t)f(t)dt, x<y0,

(6)

where

Γk(λ) � 􏽚
∞

0
t
λ− 1

e
− tk/kdt. (7)

Definition 5 (see [24]). Let f ∈ L1[x0, y0] and x ∈ [x0, y0];
also, let Φ, λ, ϱ, κ, c, σ ∈ C, R(λ),R(ϱ),R(κ)> 0,
R(χ)>R(c)> 0 with p≥ 0, ϑ> 0, and 0< k≤ ϑ + R(λ), then
the generalized fractional integral operators ϵc,ϑ,k,χ

λ,ϱ,κ,Φ,x+
0
f and

ϵc,ϑ,k,χ
λ,ϱ,κ,Φ,y−

0
f are defined as

ϵc,ϑ,k,χ
λ,ϱ,κ,Φ,x+

0
f􏼒 􏼓(x; p) � 􏽚

x

x0

(x − t)
ϱ− 1

E
c,ϑ,k,χ
λ,ϱ,κ Φ(x − t)

λ
; p􏼐 􏼑f(t)dt,

ϵc,ϑ,k,χ
λ,ϱ,κ,Φ,y−

0
f􏼒 􏼓(x; p) � 􏽚

y0

x
(t − x)

ϱ− 1
E

c,ϑ,k,χ
λ,ϱ,κ Φ(t − x)

λ
; p􏼐 􏼑f(t)dt,

(8)

where E
c,ϑ,k,χ
λ,ϱ,κ (t; p) is given by

E
c,ϑ,k,χ
λ,ϱ,κ (t; p) � 􏽘

∞

n�0

βp(c + nk, χ − c)

β(c, χ − c)

(χ)nk

Γ(λn + ϱ)
t
n

(κ)nϑ
. (9)

In [11], Farid defined a unified integral operator and
proved the boundedness, linearity, and continuity of these
integrals. It is given in the following definition.

Definition 6 (see [11]). Let f, g: [x0, y0]⟶ R where
0<x0 <y0 be the functions such that f is positive and in-
tegrable over [x0, y0] and g is differentiable and strictly
increasing. Also, let Ψ/x be an increasing function on
[x0,∞) and ϱ, κ, c, χ ∈ C, p, λ ,ϑ ≥ 0 and 0< k≤ ϑ + λ.
/en, for x ∈ [x0, y0], the left and right integral operators
are defined as

gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f􏼒 􏼓(x,Φ; p) � 􏽚

x

x0

G
y
x E

c,ϑ,k,χ
λ,ϱ,κ , g;Ψ􏼒 􏼓g′(y)f(y)dy,

(10)

gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,y−

0
f􏼒 􏼓(x,Φ; p) � 􏽚

y0

x
G

x
y E

c,ϑ,k,χ
λ,〉,κ , g;Ψ􏼒 􏼓g′(y)f(y)dy,

(11)

where

G
y
x E

c,ϑ,k,χ
λ,ϱ,κ , g;Ψ􏼒 􏼓 �

Ψ(g(x) − g(y))

g(x) − g(y)
E

c,ϑ,k,χ
λ,ϱ,κ Φ(g(x) − g(y))

λ
; p􏼐 􏼑.

(12)

Bymaking particular choices forΨ andg and parameters
involved in (9), several fractional integrals can be obtained
(see [19], Remarks 6 and 7). In [19], Zhao. et al. proved the
bounds of unified integral operators for quasiconvex
functions stated in /eorems 1 to 4.

Theorem 1. Consider f: [x0, y0]⟶ R be a positive qua-
siconvex function and g: [x0, y0]⟶ R be differentiable and
strictly increasing function. Also, Ψ/x be an increasing
function on [x0, y0] and ϱ, κ, c, χ ∈ C, p, λ, ], ϑ ≥ 0,
0< k≤ ϑ + λ, and 0< k≤ ϑ + ].Ben, for x ∈ [x0, y0], we have

gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f􏼒 􏼓(x,Φ; p) + gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,y−

0
f􏼒 􏼓(x,Φ; p)

≤E
c,ϑ,k,χ
λ,ϱ,κ Φ g(x) − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑Ψ(g(x)

− g x0( 􏼁max f x0( 􏼁, f(x)􏼈 􏼉

+ E
c,ϑ,k,χ
],ϱ,κ Φ g y0( 􏼁 − g(x)( 􏼁

]
; p( 􏼁Ψ

· g y0( 􏼁 − g(x)( 􏼁max f(x), f y0( 􏼁􏼈 􏼉.

(13)

Theorem 2. Under the assumptions of Beorem 1, the fol-
lowing result holds:

gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
􏼒 􏼓 y0,Φ; p( 􏼁 + gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,y−

0
􏼒 􏼓 x0,Φ; p( 􏼁

≤Ψ g y0( 􏼁 − g x0( 􏼁( 􏼁 E
c,ϑ,k,χ
λ,ϱ,κ Φ g y0( 􏼁 − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑􏼒

+ E
c,ϑ,k,χ
],ϱ,κ Φ g y0( 􏼁 − g x0( 􏼁( 􏼁

]
; p( 􏼁􏼓

max f x0( 􏼁, f y0( 􏼁􏼈 􏼉.

(14)
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Theorem 3. Along with the assumptions of Beorem 1, if
f(x0 + y0 − x) � f(x), then the following result holds:

f
x0 + y0

2
􏼒 􏼓 gF

Ψ,c,ϑ,k,χ
],ϱ,κ,y−

0
1􏼒 􏼓 x0,Φ; p( 􏼁 + gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
1􏼒 􏼓 y0,Φ; p( 􏼁􏼒 􏼓

≤ gF
Ψ,c,ϑ,k,χ
],ϱ,κ,y−

0
f􏼒 􏼓 x0,Φ; p( 􏼁 + gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f􏼒 􏼓 y0,Φ; p( 􏼁

≤Ψ g y0( 􏼁 − g x0( 􏼁( 􏼁 E
c,ϑ,k,χ
λ,ϱ,κ Φ g y0( 􏼁 − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑􏼒

+ E
c,ϑ,k,χ
],ϱ,κ Φ g y0( 􏼁 − g x0( 􏼁( 􏼁

]
; p( 􏼁􏼓

max f x0( 􏼁, f y0( 􏼁􏼈 􏼉.

(15)

Theorem 4. Consider f, g: [x0, y0]⟶ R be two differ-
entiable functions such that |f′| is quasiconvex and g be
strictly increasing for 0<x0 <y0. Also, Ψ/x be an increasing
function on [x0, y0] and ϱ, κ, c, χ ∈ C, p, λ, ], ϑ ≥ 0 and
0< k≤ ϑ + λ and 0< k≤ ϑ + ]. Ben, for x ∈ (x0, y0), we have

gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f∗g􏼒 􏼓(x,Φ; p) + gF

Ψ,c,ϑ,k,χ
],ϱ,κ,y−

0
f∗g􏼒 􏼓(x,Φ; p)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤E
c,ϑ,k,χ
λ,ϱ,κ Φ g(x) − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑Ψ g(x) − g x0( 􏼁( 􏼁

· max f′ x0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, f′(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑

+ E
c,ϑ,k,χ
],ϱ,κ Φ g y0( 􏼁 − g(x)( 􏼁

]
; p( 􏼁Ψ

· g y0( 􏼁 − g(x)( 􏼁max f′(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, f′ y0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑,

(16)

where

gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f∗g􏼒 􏼓(x,Φ; p) � 􏽚

x

x0

G
t
x E

c,ϑ,k,χ
λ,ϱ,κ , g;Ψ􏼒 􏼓g′(t)f′(t)dt,

(17)

gF
Ψ,c,ϑ,k,χ
],ϱ,κ,y−

0
f∗g􏼒 􏼓(x,Φ; p) � 􏽚

y0

x
G

x
t E

c,ϑ,k,χ
],ϱ,κ , g;Ψ􏼐 􏼑g′(t)f′(t)dt.

(18)

All of the above results are direct consequences of the
results of this paper. Also, some of the results in papers
[16–18] are very special cases. In the next section, φ-qua-
siconvexity has been used frequently to obtain the upper
bounds and the Hadamard inequality, which gives upper as
well as lower bounds of unified integral operators. Also
defining convolution of two functions, some bounds have
been obtained for φ-quasiconvexity of |f′| of differential
function f. In Section 3, some applications of the main
results are given. In the whole paper, we use the notation

max f y0( 􏼁, f y0( 􏼁 + φ f x0( 􏼁, f y0( 􏼁( 􏼁􏼈 􏼉 � M
f
φ x0, y0( 􏼁.

(19)

2. Main Results

Theorem 5. Consider f: [x0, y0]⟶ R is φ-quasiconvex
and positive and g: [x0, y0]⟶ R differentiable and strictly
increasing functions. If Ψ/x is increasing function on [x0, y0]

and ϱ, κ, c, χ ∈ C, p, λ, ], ϑ≥ 0, 0< k≤ ϑ + λ and
0< k≤ ϑ + ], then for x ∈ [x0, y0], the following inequality
holds:

gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f􏼒 􏼓(x,Φ; p) + gF

Ψ,c,ϑ,k,χ
],ϱ,κ,y−

0
f􏼒 􏼓(x,Φ; p)

≤E
c,ϑ,k,χ
λ,ϱ,κ Φ g(x) − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑Ψ

· g(x) − g x0( 􏼁( 􏼁M
f
φ x0, x( 􏼁

+ E
c,ϑ,k,χ
],ϱ,κ Φ g y0( 􏼁 − g(x)( 􏼁

]
; p( 􏼁Ψ

· g y0( 􏼁 − g(x)( 􏼁M
f
φ x, y0( 􏼁.

(20)

Proof. For the kernel defined in (12) and the function g, we
can write the following inequality:

G
t
x E

c,ϑ,k,χ
λ,ϱ,κ , g;Ψ􏼒 􏼓g′(t)≤G

x0
x E

c,ϑ,k,χ
λ,ϱ,κ , g;Ψ􏼒 􏼓g′(t),

x ∈ x0, y0( 􏼁, t ∈ x0, x􏼂 􏼁.

(21)

By using φ-quasiconvexity of f on [x0, x], one can get

f(t)≤M
f
φ x0, x( 􏼁, x ∈ x0, y0( 􏼁, t ∈ x0, x􏼂 􏼃. (22)

/e following integral inequality is constituted from (21)
and (22):

􏽚
x

x0

G
t
x E

c,ϑ,k,χ
λ,ϱ,κ , g;Ψ􏼒 􏼓g′(t)f(t)dt

≤M
f
φ x0, x( 􏼁G

x0
x E

c,ϑ,k,χ
λ,ϱ,κ , g;Ψ􏼒 􏼓 􏽚

x

x0

g′(t)dt.

(23)

Using (10) in the left and integrating on the right side of
inequality (23), we obtain the following upper bound of the
left integral operator:

gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f􏼒 􏼓(x,Φ; p)≤E

c,ϑ,k,χ
λ,ϱ,κ Φ g(x) − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑Ψ

· g(x) − g x0( 􏼁( 􏼁M
f
φ x0, x( 􏼁.

(24)

Now, following the similar technique for t ∈ (x, y0] and
x ∈ (x0, y0), we can write

G
x
t E

c,ϑ,k,χ
],ϱ,κ , g;Ψ􏼐 􏼑g′(t)≤G

x
y0

E
c,ϑ,k,χ
],ϱ,κ , g;Ψ􏼐 􏼑g′(t). (25)

Using φ-quasiconvexity for t ∈ (x, y0] and x ∈ (x0, y0),
we obtain

f(t)≤M
f
φ x, y0( 􏼁. (26)
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/e following integral inequality is constituted from (25)
and (26):

􏽚
y0

x
G

x
t E

c,ϑ,k,χ
],ϱ,κ , g;Ψ􏼐 􏼑g′(t)f(t)dt≤G

x
y0

E
c,ϑ,k,χ
],ϱ,κ , g;Ψ􏼐 􏼑

· M
f
φ x, y0( 􏼁 􏽚

y0

x
g′(t)dt.

(27)

Using (11) in the left and integrating on the right side of
the above inequality, we obtain the following upper bound of
the right integral operator:

gF
Ψ,c,ϑ,k,χ
],ϱ,κ,y−

0
f􏼒 􏼓(x; p)≤E

c,ϑ,k,χ
],ϱ,κ Φ g y0( 􏼁 − g(x)( 􏼁

]
; p( 􏼁Ψ

· g y0( 􏼁 − g(x)( 􏼁M
f
φ x, y0( 􏼁.

(28)

By summing (24) and (28), the inequality (20) can be
obtained. □

Corollary 1. Using λ � ] in (20), we get the following result:

gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f􏼒 􏼓(x,Φ; p) + gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,y−

0
f􏼒 􏼓(x,Φ; p)

≤E
c,ϑ,k,χ
λ,ϱ,κ Φ g(x) − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑Ψ(g(x) − g x0( 􏼁

· M
f
φ x0, x( 􏼁

+ E
c,ϑ,k,χ
λ,ϱ,κ Φ g y0( 􏼁 − g(x)( 􏼁

λ
; p􏼐 􏼑Ψ

· g y0( 􏼁 − g(x)( 􏼁M
f
φ x, y0( 􏼁.

(29)

Remark 1
(i) For φ(x0, y0) � x0 − y0 in (20), we obtain in-

equality (13) of /eorem 1.
(ii) For φ(x0, y0) � x0 − y0, Ψ(x) � xλ/k for the left-

hand integral and Ψ(x) � xv/k for the right-hand
integral in (20) with p � Φ � 0, we obtain/eorem
2.1 in [17].

(iii) For λ � ] in the resulting inequality of (ii), we
obtain Corollary 2.2 in [17].

(iv) For φ(x0, y0) � x0 − y0, Ψ(x) � xλ for the left-
hand integral and Ψ(x) � x] for the right-hand
integral in (20) with p � Φ � 0, we obtain Cor-
ollary 2.3 in [17].

(v) Under the same assumptions as in (ii) along with g

as identity function, the result (20) reduces to
Corollary 2.4 in [17].

(vi) Under the same assumptions as in (iv) along with g

as identity function, the result (20) reduces to
Corollary 2.5 in [17].

(vii) Under the same assumptions as in (ii), if f is
increasing on [x0, y0], the result (20) reduces to
Corollary 2.6 in [17].

(viii) Under the same assumptions as in (ii), if f is
decreasing on [x0, y0], the result (20) reduces to
Corollary 2.7 in [17].

(iix) For λ � ] in the resulting inequality of (viii), we
obtain Corollary 2.2 in [18].

Theorem 6. Be following result holds under the suppositions
of Beorem 5:

gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f􏼒 􏼓 y0,Φ; p( 􏼁 + gF

Ψ,c,ϑ,k,χ
],ϱ,κ,y−

0
f􏼒 􏼓 x0,Φ; p( 􏼁

≤Ψ(g y0( 􏼁 − g x0( 􏼁􏼁 E
c,ϑ,k,χ
λ,ϱ,κ Φ g y0( 􏼁 − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑􏼔

+ E
c,ϑ,k,χ
],ϱ,κ Φ g y0( 􏼁 − g x0( 􏼁( 􏼁

]
; p( 􏼁􏽩M

f
φ x0, y0( 􏼁.

(30)

Proof. Using x � y0 in (24) and x � x0 in (28) and then
adding the obtained inequalities, we get (30). □

Corollary 2. Using λ � ] in (30), we get the following result:

gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f􏼒 􏼓 y0,Φ; p( 􏼁 + gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,y−

0
f􏼒 􏼓 x0,Φ; p( 􏼁

≤ 2Ψ g y0( 􏼁 − g x0( 􏼁( 􏼁

· E
c,ϑ,k,χ
λ,ϱ,κ Φ g y0( 􏼁 − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑M

f
φ x0, y0( 􏼁.

(31)

Remark 2
(i) For φ(x0, y0) � x0 − y0 in (30), we obtain inequality

(14) of /eorem 2.
(ii) For φ(x0, y0) � x0 − y0, Ψ(x) � xλ/k for the left-

hand integral and Ψ(x) � x]/k for the right-hand
integral in (30) with p � Φ � 0, we obtain /eorem
3.1 in [17].

(iii) For φ(x0, y0) � x0 − y0, Ψ(x) � xλ/k for the left-
hand integral and Ψ(x) � x]/k for the right-hand
integral in (31) with p � Φ � 0, we obtain Corollary
3.2 in [17].

(iv) For φ(x0, y0) � x0 − y0, replacing Φ with
Φ′ � Φ/(y0 − x0)

λ, Ψ(x) � xλ for the left-hand
integral, Ψ(x) � x] for the right-hand integral, and
g as identity function in (30), we obtain/eorem 2.1
in [18].

(v) Under the same assumptions as in (iv) along with
λ � k � 1, the result (30) reduces to /eorem 3.3 in
[16].

Before proceeding to the next result, we will prove the
following lemma. /is lemma is necessary to prove the
upcoming result.

Lemma 1. Let f: [x0, y0]⟶ R be φ-quasiconvex function.
If f(x) � f(x0 + y0 − x), then the following inequality holds:
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f
x0 + y0

2
􏼒 􏼓≤M

f
φ(x, x), x ∈ x0, y0􏼂 􏼃. (32)

Proof. Using φ-quasiconvexity of the function f, the up-
coming inequality holds:

f
x0 + y0

2
􏼒 􏼓≤max

f
x − x0

y0 − x0
x0 +

y0 − x

y0 − x0
y0􏼠 􏼡, f

x − x0

y0 − x0
x0 +

y0 − x

y0 − x0
y0􏼠 􏼡

+φ f
x − x0

y0 − x0
y0 +

y0 − x

y0 − x0
x0􏼠 􏼡, f

x − x0

y0 − x0
x0 +

y0 − x

y0 − x0
y0􏼠 􏼡􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

f
x0 + y0

2
􏼒 􏼓≤M

f
φ x, x0 + y0 − x( 􏼁.

(33)

Using f(x0 + y0 − x) � f(x) in above inequality, we get
the required inequality. □

Remark 3. Using φ(x0, y0) � x0 − y0, (32) coincides with
Lemma 1 in [19].

Theorem 7. Along with the assumptions of Beorem 5, if
f(x0 + y0 − x) � f(x) and φ(x, y) � x + y, then the fol-
lowing results hold:

1
3

f
x0 + y0

2
􏼒 􏼓 gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
1􏼒 􏼓 y0,Φ; p( 􏼁 + gF

Ψ,c,ϑ,k,χ
],ϱ,κ,y−

0
1􏼒 􏼓 x0,Φ; p( 􏼁􏼒 􏼓

≤ gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f􏼒 􏼓 y0,Φ; p( 􏼁 + gF

Ψ,c,ϑ,k,χ
],ϱ,κ,y−

0
f􏼒 􏼓 x0,Φ; p( 􏼁≤Ψ g y0( 􏼁 − g x0( 􏼁( 􏼁

· E
c,ϑ,k,χ
λ,ϱ,κ Φ g y0( 􏼁 − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑 + E

c,ϑ,k,χ
],ϱ,κ Φ g y0( 􏼁 − g x0( 􏼁( 􏼁

]
; p( 􏼁􏼒 􏼓M

f
φ x0, y0( 􏼁,

(34)

f
x0 + y0

2
􏼒 􏼓 gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
1􏼒 􏼓 y0,Φ; p( 􏼁 + gF

Ψ,c,ϑ,k,χ
],ϱ,κ,y−

0
1􏼒 􏼓 x0,Φ; p( 􏼁􏼒 􏼓

≤ gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f􏼒 􏼓 y0,Φ; p( 􏼁 + gF

Ψ,c,ϑ,k,χ
],ϱ,κ,y−

0
f􏼒 􏼓 x0,Φ; p( 􏼁≤Ψ g y0( 􏼁 − g x0( 􏼁( 􏼁

· E
c,ϑ,k,χ
λ,ϱ,κ Φ g y0( 􏼁 − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑 + E

c,ϑ,k,χ
],ϱ,κ Φ g y0( 􏼁 − g x0( 􏼁( 􏼁

]
; p( 􏼁􏼒 􏼓M

f
φ x0, y0( 􏼁,

(35)

provided M
f
φ(x, x) � f(x) + φ(f(x), f(x)) or M

f
φ(x, x) �

f(x).

Proof. From the kernel defined in (12) and the function g,
we can write

G
x0
x E

c,ϑ,k,χ
],ϱ,κ , g;Ψ􏼐 􏼑g′(x)≤G

x0
y0

E
c,ϑ,k,χ
],ϱ,κ , g;Ψ􏼐 􏼑g′(x),

x ∈ x0, y0( 􏼁.

(36)

Using φ-quasiconvexity of f on [x0, y0], we have

f(x)≤M
f
φ x0, y0( 􏼁, x ∈ x0, y0( 􏼁. (37)

/e following inequality is constituted from (36) and
(37):

􏽚
y0

x0

G
x0
x E

c,ϑ,k,χ
],ϱ,κ , g;Ψ􏼐 􏼑g′(x)f(x)dx

≤G
x0
y0

E
c,ϑ,k,χ
],ϱ,κ , g;Ψ􏼐 􏼑M

f
φ x0, y0( 􏼁 􏽚

y0

x0

g′(x)dx.

(38)

Using (11) in the left and integrating on the right side of
the above inequality, we obtain the following upper bound of
the right integral operator:
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gF
Ψ,c,ϑ,k,χ
],ϱ,κ,y−

0
f􏼒 􏼓 x0,Φ; p( 􏼁≤E

c,ϑ,k,χ
],ϱ,κ Φ g y0( 􏼁 − g x0( 􏼁( 􏼁

]
; p( 􏼁Ψ

· g y0( 􏼁 − g x0( 􏼁( 􏼁M
f
φ x0, y0( 􏼁.

(39)
Also,

G
x
y0

E
c,ϑ,k,χ
λ,ϱ,κ , g;Ψ􏼒 􏼓g′(x)≤G

x0
y0

E
c,ϑ,k,χ
λ,ϱ,κ , g;Ψ􏼒 􏼓g′(x),

x ∈ x0, y0( 􏼁.

(40)
From (37) and (40), we get

􏽚
y0

x0

G
x
y0

E
c,ϑ,k,χ
λ,ϱ,κ , g;Ψ􏼒 􏼓g′(x)f(x)dx

≤G
x0
y0

E
c,ϑ,k,χ
λ,ϱ,κ , g;Ψ􏼒 􏼓M

f
φ x0, y0( 􏼁 􏽚

y0

x0

g′(x)dx.

(41)

Using (10) in the left and integrating on the right side of
the above inequality, we obtain the following upper bound of
the left integral operator:

gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f􏼒 􏼓 y0,Φ; p( 􏼁≤E

c,ϑ,k,χ
λ,ϱ,κ Φ g y0( 􏼁 − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑Ψ

· g y0( 􏼁 − g x0( 􏼁( 􏼁M
f
φ x0, y0( 􏼁.

(42)
Now using (32) of Lemma 1, we can have

f
x0 + y0

2
􏼒 􏼓G

x0
x E

c,ϑ,k,χ
],ϱ,κ , g;Ψ􏼐 􏼑g′(x)

≤G
x0
x E

c,ϑ,k,χ
],ϱ,κ , g;Ψ􏼐 􏼑g′(x)M

f
φ(x, x).

(43)

Case 1. If M
f
φ(x, x) � f(x) + φ(f(x), f(x)), then by using

(11), φ(x, y) � x + y in (43), and integrating over [x0, y0],
we get

f
x0 + y0

2
􏼒 􏼓 gF

Ψ,c,ϑ,k,χ
],ϱ,κ,y−

0
1􏼒 􏼓 x0,Φ; p( 􏼁

≤ 3 gF
Ψ,c,ϑ,k,χ
],ϱ,κ,y−

0
f􏼒 􏼓 x0,Φ; p( 􏼁.

(44)

In this case, we also have

f
x0 + y0

2
􏼒 􏼓 gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
1􏼒 􏼓 y0,Φ; p( 􏼁

≤ 3 gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f􏼒 􏼓 y0,Φ; p( 􏼁.

(45)

Case 2. If M
f
φ(x, x) � f(x), then by using (11) in (43), we

get

f
x0 + y0

2
􏼒 􏼓 gF

Ψ,c,ϑ,k,χ
v,ϱ,κ,y−

0
1􏼒 􏼓 x0,Φ; p( 􏼁≤ gF

Ψ,c,ϑ,k,χ
v,ϱ,κ,y−

0
f􏼒 􏼓 x0,Φ; p( 􏼁.

(46)

In this case, we also have

f
x0 + y0

2
􏼒 􏼓 gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
1􏼒 􏼓 y0,Φ; p( 􏼁≤ gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f􏼒 􏼓 y0,Φ; p( 􏼁.

(47)

/e inequality (34) will be obtained by summing (39)
with (42) and (44) with (45) and then combining the
resulting inequalities. /e inequality (35) will be obtained by
summing (39) with (42) and (46) with (47) and then
combining the resulting inequalities.

Corollary 3. For λ � ] in (34) and (35), we get the following
results:

1
3

f
x0 + y0

2
􏼒 􏼓 gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
1􏼒 􏼓 y0,Φ; p( 􏼁 + gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,y−

0
1􏼒 􏼓 x0,Φ; p( 􏼁􏼒 􏼓

≤ gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f􏼒 􏼓 y0,Φ; p( 􏼁 + gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,y−

0
f􏼒 􏼓 x0,Φ; p( 􏼁

≤ 2Ψ g y0( 􏼁 − g x0( 􏼁( 􏼁E
c,ϑ,k,χ
λ,ϱ,κ Φ g y0( 􏼁 − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑M

f
φ x0, y0( 􏼁,

(48)

f
x0 + y0

2
􏼒 􏼓 gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
1􏼒 􏼓 y0,Φ; p( 􏼁 + gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,y−

0
1􏼒 􏼓 x0,Φ; p( 􏼁􏼒 􏼓

≤ gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f􏼒 􏼓 y0,Φ; p( 􏼁 + gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,y−

0
f􏼒 􏼓 x0,Φ; p( 􏼁

≤ 2Ψ g y0( 􏼁 − g x0( 􏼁( 􏼁E
c,ϑ,k,χ
λ,ϱ,κ Φ g y0( 􏼁 − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑M

f
φ x0, y0( 􏼁.

(49)
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Remark 4.

(i) For φ(x0, y0) � x0 − y0 in (34), we get inequality
(15) of /eorem 3.

(ii) For φ(x0, y0) � x0 − y0, Ψ(x) � xλ/k for the left-
hand integral and Ψ(x) � x]/k for the right-hand
integral in (34) with p � Φ � 0, we obtain/eorem
2.16 in [17].

(iii) For φ(x0, y0) � x0 − y0, Ψ(x) � xλ/k for the left-
hand integral and Ψ(x) � x]/k for the right-hand
integral in (48) with p � Φ � 0, we obtain Cor-
ollary 2.17 in [17].

(iv) For φ(x0, y0) � x0 − y0, Ψ(x) � xλ for the left-
hand integral and Ψ(x) � x] for the right-hand
integral in (34) with p � Φ � 0, we obtain Cor-
ollary 2.18 in [17].

(v) Under the same assumptions as in (ii) along with g

as identity function, the result (34) reduces to
Corollary 2.19 in [17].

(vi) Under the same assumptions as in (iv) along with g

as identity function, the result (34) reduces to
Corollary 2.20 in [17].

(vii) Under the same assumptions as in (ii), if f is
increasing on [x0, y0], the result (34) reduces to
Corollary 2.21 in [17].

(viii) Under the same assumptions as in (ii), if f is
decreasing on [x0, y0], the result (34) reduces to
Corollary 2.22 in [17].

Theorem 8. Consider f, g: [x0, y0]⟶ R are two differ-
entiable functions such that |f′| is φ-quasiconvex and g is
strictly increasing for 0<x0 <y0. IfΨ/x is increasing function
on [x0, y0] and ϱ, κ, c, χ ∈ C, p, λ, ], ϑ ≥ 0, 0< k≤ ϑ + λ and
0< k≤ ϑ + ], then for x ∈ (x0, y0), the following inequality
holds:

gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f∗g􏼒 􏼓(x,Φ; p) + gF

Ψ,c,ϑ,k,χ
v,ϱ,κ,y−

0
f∗g􏼒 􏼓(x,Φ; p)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤E
c,ϑ,k,χ
λ,ϱ,κ Φ g(x) − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑Ψ g(x) − g x0( 􏼁( 􏼁

· M
f′| |
φ x0, x( 􏼁

+ E
c,ϑ,k,χ
],ϱ,κ Φ g y0( 􏼁 − g(x)( 􏼁

]
; p( 􏼁Ψ

· g y0( 􏼁 − g(x)( 􏼁M
f′| |
φ x, y0( 􏼁,

(50)

where (gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f∗g)(x,Φ; p) and (gFΨ,c,ϑ,k,χ

v,ϱ,κ,y−
0

f∗g)

(x,Φ; p) are defined in (17) and (18).

Proof. /e φ-quasiconvexity of |f′| implies the following
inequality:

f′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤M
f′| |
φ x0, x( 􏼁, t ∈ x0, x􏼂 􏼃, x ∈ x0, y0( 􏼁, (51)

which is equivalent to

− M
f′| |
φ x0, x( 􏼁􏼒 􏼓≤f′(t)≤M

f′| |
φ x0, x( 􏼁. (52)

First consider

f′(t)≤M
f′| |
φ x0, x( 􏼁. (53)

/e following inequality is constituted from (21) and
(53):

􏽚
x

x0

G
t
x E

c,ϑ,k,χ
λ,ϱ,κ , g;Ψ􏼒 􏼓g′(t)f′(t)dt

≤M
f′| |
φ x0, x( 􏼁G

x0
x E

c,ϑ,k,χ
λ,ϱ,κ , g;Ψ􏼒 􏼓 􏽚

x

x0

g′(t)dt,

(54)

from which we get

gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f∗g􏼒 􏼓(x,Φ; p)≤E

c,ϑ,k,χ
λ,ϱ,κ Φ g(x) − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑Ψ

· g(x) − g x0( 􏼁( 􏼁M
f′| |
φ x0, x( 􏼁.

(55)

Now, we consider

− M
f′| |
φ x0, x( 􏼁􏼒 􏼓≤f′(t). (56)

Using (21) and (56), we get

gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f∗g􏼒 􏼓(x,Φ; p)≥ − E

c,ϑ,k,χ
λ,ϱ,κ Φ g(x) − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑Ψ

· g(x) − g x0( 􏼁( 􏼁M
f′| |
φ x0, x( 􏼁.

(57)

Now, again using φ-quasiconvexity of |f′|, we have

f′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤M
f′| |
φ x, y0( 􏼁, t ∈ x, y0( 􏼃, x ∈ x0, y0( 􏼁. (58)

Similarly using (25) and (58), one can obtain

gF
Ψ,c,ϑ,k,χ
v,ϱ,κ,y−

0
f∗g􏼒 􏼓(x,Φ; p)≤E

c,ϑ,k,χ
],ϱ,κ Φ g y0( 􏼁 − g(x)( 􏼁

]
; p( 􏼁Ψ

· g y0( 􏼁 − g(x)( 􏼁M
f′| |
φ x, y0( 􏼁,

(59)

gF
Ψ,c,ϑ,k,χ
v,ϱ,κ,y−

0
f∗g􏼒 􏼓(x,Φ; p)≥ − E

c,ϑ,k,χ
],ϱ,κ

· Φ g y0( 􏼁 − g(x)( 􏼁
]
; p( 􏼁Ψ g y0( 􏼁 − g(x)( 􏼁M

f′| |
φ x, y0( 􏼁.

(60)

/e inequality (50) will be obtained by summing (55),
(57), (59), and (60). □
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Corollary 4. For λ � ] in (50), we get the following result:

gF
Ψ,c,ϑ,k,χ
λ,ϱ,κ,x+

0
f∗g􏼒 􏼓(x,Φ; p) + gF

Ψ,c,ϑ,k,χ
λ,ϱ,κ,y−

0
f∗g􏼒 􏼓(x,Φ; p)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤E
c,ϑ,k,χ
λ,ϱ,κ Φ g(x) − g x0( 􏼁( 􏼁

λ
; p􏼐 􏼑Ψ g(x) − g x0( 􏼁( 􏼁M

f′| |
φ

· x0, x( 􏼁

+ E
c,ϑ,k,χ
λ,ϱ,κ Φ g y0( 􏼁 − g(x)( 􏼁

λ
; p􏼐 􏼑Ψ

· g y0( 􏼁 − g(x)( 􏼁M
f′| |
φ x, y0( 􏼁.

(61)

Remark 5.

(i) For φ(x0, y0) � x0 − y0 in (50), we obtain in-
equality (16) of /eorem 4.

(ii) For φ(x0, y0) � x0 − y0, Ψ(x) � xλ/k for the left-
hand integral and Ψ(x) � x]/k for right-hand in-
tegral in (50) with p � Φ � 0, we obtain /eorem
2.8 in [17].

(iii) For φ(x0, y0) � x0 − y0, Ψ(x) � xλ/k for the left-
hand integral and Ψ(x) � x]/k for the right-hand
integral in (61) with p � Φ � 0, we obtain Cor-
ollary 2.9 in [17].

(iv) For φ(x0, y0) � x0 − y0, Ψ(x) � xλ for the left-
hand integral and Ψ(x) � x] for the right-hand
integral in (50) with p � Φ � 0, we obtain Cor-
ollary 2.10 in [17].

(v) Under the same assumptions as in (ii) along with g

as identity function, the result (50) reduces to
Corollary 2.11 in [17].

(vi) Under the same assumptions as in (iv) along with g

as identity function, the result (50) reduces to
Corollary 2.12 in [17].

(vii) Under the same assumptions as in (ii), if f is
increasing on [x0, y0], the result (50) reduces to
Corollary 2.13 in [17].

(viii) Under the same assumptions as in (ii), if f is
decreasing on [x0, y0], the result (50) reduces to
Corollary 2.14 in [17].

(ix) Under the same assumptions as in (ii), if in ad-
dition we put x � x0 and x � y0 in the left- and
right-hand integrals, respectively, we obtain /e-
orem 3.2 in [17].

(x) For λ � ] in the resulting inequality of (ix), we
obtain Corollary 3.5 in [17].

(xi) For λ � k � 1 in the resulting inequality of (x), we
obtain Corollary 3.6 in [17].

3. Applications

In this section, we present some results by applying theo-
rems of previous section.

Proposition 1. Be following result holds under the suppo-
sitions of Beorem 5:

Γ(ϱ) ϱgI
x+
0
f􏼒 􏼓(x) +

9
gI

y−
0
f􏼒 􏼓(x)􏼒 􏼓≤ g(x) − g x0( 􏼁( 􏼁

ϱ

· M
f
φ x0, x( 􏼁 + g y0( 􏼁 − g(x)( 􏼁

ϱ
M

f
φ x, y0( 􏼁.

(62)

Proof. For Ψ(t) � tϱ, ϱ > 0 and p � Φ � 0, λ � ] with Ψ/t is
increasing for ϱ ≥ 1 in the proof of /eorem 5 we get
(62). □

Proposition 2. Be following result holds under the suppo-
sitions of Beorem 5:

x+
0
I
Ψ

f􏼒 􏼓(x) + y−
0
I
Ψ

f􏼒 􏼓(x)≤Ψ x − x0( 􏼁M
f
φ x0, x( 􏼁

+ Ψ y0 − x( 􏼁M
f
φ x, y0( 􏼁.

(63)

Proof. Using g as identity function,Φ � p � 0, and λ � ] in
the proof of /eorem 5, we get inequality (63). □

Corollary 5. For Ψ(t) � Γ(ϱ)tϱ/k/kΓk(ϱ) in Beorem 5, the
following bound for ϱ ≥ k is satisfied:

ϱ
gI

k

x+
0
f􏼒 􏼓(x) +

9
gI

k

y−
0
f􏼒 􏼓(x)≤

1
kΓk(ϱ)

g(x) − g x0( 􏼁( 􏼁
ϱ/k

􏽨

· M
f
φ x0, x( 􏼁 + g y0( 􏼁 − g(x)( 􏼁

ϱ/k
M

f
φ x, y0( 􏼁􏽩.

(64)

Corollary 6. Using Ψ(t) � tϱ in (63), fractional integrals
9Ix+

0
f(x) and 9Iy−

0
f(x) defined in [14] are obtained which

satisfy the following bound:

Γ(ϱ) ϱIx+
0
f􏼒 􏼓(x) +

9
Iy−

0
f􏼒 􏼓(x)􏼒 􏼓≤ x − x0( 􏼁

ϱ
M

f
φ x0, x( 􏼁

+ y0 − x( 􏼁
ϱ
M

f
φ x, y0( 􏼁.

(65)

Corollary 7. Using Ψ(t) � Γ(ϱ)tϱ/k/kΓk(ϱ) in (63), frac-
tional integral operators 9Ik

x+
0
f(x) and 9Ik

y−
0
f(x) given in [26]

are obtained which satisfy the following bound:

ϱ
I

k

x+
0
f􏼒 􏼓(x) +

9
I

k

y−
0
f􏼒 􏼓(x)≤

1
kΓk(ϱ)

x − x0( 􏼁
ϱ/k

M
f
φ x0, x( 􏼁􏽨

+ y0 − x( 􏼁
ϱ/k

M
f
φ x, y0( 􏼁􏼕.

(66)

Corollary 8. Using Ψ(t) � tϱ, ϱ > 0, and g(x) � xε/ε, ε> 0,
in (10) and (11), respectively, with p � Φ � 0, then fractional
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integral operators (εI
ϱ
x+
0
f)(x) and (εI

ϱ
y−
0
f)(x) given in [27]

are obtained which satisfy the following bound:

ε
I
ϱ
x+
0
f􏼒 􏼓(x) +

ε
I
ϱ
y−
0
f􏼒 􏼓(x)≤

1
εϱΓ(ϱ)

x
ε

− x
ε
0( 􏼁
ϱ
M

f
φ x0, x( 􏼁􏽨

+ y
ε
0 − x

ε
( 􏼁

ϱ
M

f
φ x, y0( 􏼁􏽩.

(67)

Corollary 9. Using Ψ(t) � tϱ, ϱ > 0, and g(x) � xs+1/s + 1,

s> 0, in (10) and (11), respectively, with p � Φ � 0, then
fractional integral operators (sI

ϱ
x+
0
f)(x) and (sI

ϱ
y−
0
f)(x) are

obtained which satisfy the following bound:

s
I
ϱ
x+
0
f􏼒 􏼓(x) +

s
I
ϱ
y−
0
f􏼒 􏼓(x)≤

1
(s + 1)

ϱΓ(ϱ)
x

s+1
− x

s+1
0􏼐 􏼑
ϱ

􏽨

· M
f
φ x0, x( 􏼁 + y

s+1
0 − x

s+1
􏼐 􏼑

ϱ
M

f
φ x, y0( 􏼁􏽩.

(68)

Corollary 10. Using Ψ(t) � Γ(ϱ)tϱ/k/kΓk(ϱ) and g(x) �

xs+1/s + 1, s> 0 in (10) and (11), respectively, with p � Φ � 0,
then fractional integral operators (s

kI
ϱ
x+
0
f)(x) and (s

kIϱy−
0
f)(x)

given in [28] are obtained which satisfy the following bound:

s
kI
ϱ
x+
0
f􏼒 􏼓(x) +

s
kI
ϱ
y−
0
f􏼒 􏼓(x)≤

1
(s + 1)

ϱ/k
kΓk(ϱ)

· x
s+1

− x
s+1
0􏼐 􏼑
ϱ/k

M
f
φ x0, x( 􏼁 + y

s+1
0 − x

s+1
􏼐 􏼑

ϱ/k
M

f
φ x, y0( 􏼁􏼔 􏼕.

(69)

Corollary 11. Using Ψ(t) � tϱ, ϱ > 0, g(x) � xβ+s/β+

s, β, s> 0, in (10) and (11), respectively, with p � Φ � 0,
fractional integral operators (s

βIϱ
x+
0
f)(x) and (s

βIϱ
y−
0
f)(x) are

obtained given in [13] which satisfy the following bound:

s
βI
ϱ
x+
0
f􏼒 􏼓(x) +

s
βI
ϱ
y−
0
f􏼒 􏼓(x)≤

1
(β + s)

ϱΓ(ϱ)

· x
β+s

− x
β+s
0􏼐 􏼑
ϱ
M

f
φ x0, x( 􏼁 + y

β+s
0 − x

β+s
􏼐 􏼑

ϱ
M

f
φ x, y0( 􏼁􏼔 􏼕.

(70)

Corollary 12. Using Ψ(t) � tϱ, ϱ > 0, g(x) � (x − x0)
ε/ε in

(10), and g(x) � − (y0 − x)ε/ε in (11), where ε> 0 with
p � Φ � 0, then following fractional integral operators are
obtained given in [12]:

F
tϱ ,c,ϑ,κ,χ
λ,δ,κ,x+

0
f􏼒 􏼓(x) �

ε
I
ϱ
x+
0
f􏼒 􏼓(x) �

ε1− ϱ

Γ(ϱ)
􏽚

x

x0

x − x0( 􏼁
ε

− t − x0( 􏼁
ε

( 􏼁
ϱ− 1

t − x0( 􏼁
ε− 1

f(t)dt,

F
tϱ ,c,ϑ,κ,χ
λ,δ,κ,y−

0
f􏼒 􏼓(x) �

ε
I
ϱ
y−
0
f􏼒 􏼓(x) �

ε1− ϱ

Γ(ϱ)
􏽚

y0

x
y0 − x( 􏼁

ε
− y0 − t( 􏼁

ε
( 􏼁

ϱ− 1
y0 − t( 􏼁

ε− 1
f(t)dt.

(71)

Furthermore, the following bound is also satisfied:

ε
I
ϱ
x+
0
f􏼒 􏼓(x) +

ε
I
ϱ
y−
0
f􏼒 􏼓(x)≤

1
εϱΓ(ϱ)

· x − x0( 􏼁
εϱ

M
f
φ x0, x( 􏼁 + y0 − x( 􏼁

εϱ
M

f
φ x, y0( 􏼁􏽨 􏽩.

(72)

Corollary 13. For Ψ(t) � Γ(ϱ)tϱ/k/kΓk(ϱ), ϱ > k and
g(x) � (x − x0)

ε/ε in (10) and g(x) � − (y0 − x)ε/ε in (11),
where ε> 0 with p � Φ � 0, then the following fractional
integral operators are obtained given in [29]:

F
Γ(ϱ)tϱ/k/kΓk(ϱ)( ),c,ϑ,κ,χ

λ,δ,κ,x+
0

f􏼒 􏼓(x) �
ε
kI
ϱ
x+
0
f􏼒 􏼓(x) �

ε1− (ϱ/k)

kΓk(ϱ)
􏽚

x

x0

x − x0( 􏼁
ε

− t − x0( 􏼁
ε

( 􏼁
(ϱ/k)− 1

t − x0( 􏼁
ε− 1

f(t)dt,

F
Γ(ϱ)tϱ/k/kΓk(ϱ)( ),c,ϑ,κ,χ

λ,δ,κ,y−
0

f􏼒 􏼓(x) �
ε
kI
ϱ
y−
0
f􏼒 􏼓(x) �

ε1− (ϱ/k)

kΓk(ϱ)
􏽚

y0

x
y0 − x( 􏼁

ε
− y0 − t( 􏼁

ε
( 􏼁

(ϱ/k)− 1
y0 − t( 􏼁

ε− 1
f(t)dt.

(73)

Furthermore, the following bound is also satisfied:

ε
kI
ϱ
x+
0
f􏼒 􏼓(x) +

ε
kI
ϱ
y−
0
f􏼒 􏼓(x)≤

1
εϱ/kkΓk(ϱ)

x − x0( 􏼁
εϱ/k

M
f
φ x0, x( 􏼁 + y0 − x( 􏼁

εϱ/k
M

f
φ x, y0( 􏼁􏽨 􏽩. (74)

Mathematical Problems in Engineering 9



Similar bounds can be obtained for Theorems 7 and 8
which we leave for the reader.

4. Concluding Remarks

A notion namely φ-quasiconvexity is studied under an in-
tegral operator that associates with different kinds of op-
erators independently defined by various authors during the
last two decades. /e consequences of the results are
compiled in the form of corollaries and remarks. Although
some of the particular cases are analyzed in Section 3 by
applying /eorem 5, the reader can further compute more
results as desired by applying other theorems.
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*e computational efficiency and nonconvergence of the iteration are two main difficulties in contact problems, especially in the
creep of the foundation. *is paper proposes a method to analyze the structural soft foundation system affected by time. *e
methodology is an explicit method, combining the finite element method with the analytical method. *e creep deformation of
soft foundation is obtained based on Laplace transforms.*e structural deformation contains the statically determinate structural
deformation and rigid body displacement, solved by the finite method. *e contact forces are calculated by the deformation
coordination equations and equilibrium equations. *e methodology is validated through augmented Lagrangian (AL) method.
*e results can clearly illustrate the local disengagement phenome, greatly overcome the nonconvergence of the iteration, and
significantly improve computing efficiency.

1. Introduction

Hydraulic structures in plain areas are mostly built on soft
soil which have high water content, low strength, and low
bearing capacity. It often needs taking measures to
strengthen the foundation during the construction period.
*e soil layer bottom of the foundation is the bottleneck
controlling the bearing capacity and also the main place
where the creep occurs [1]. *e creep property results in the
significant alteration of the foundation deformation, which
leads to the uneven settlement in the upper structure [2]. In
contrast to traditional problem of beam or plate on an elastic
foundation, the influence of creep can be recognized as a
necessary long-term stability method to analyze stress state
of the structure [3]. Long-term monitoring data show that
the creep deformation continues to increase during the
operation period, and it can reachmore than twice at the end
of construction period [4]. *e creep creates unique contact
changing laws of the soft foundation and is cognized as the
most serious factor that directly affects stress redistribution
of the structure. In addition, the computational efficiency
and calculation accuracy of the contact forces also face great
challenge.

In structural soft foundation system, the contact surfaces
are deterministic and searching of contact surfaces is not
necessary. Contact forces are time-sensitive and spatiality-
nonlinear. *erefore, the contact problem can be simplified
to finding the solution of contact forces, which mainly in-
clude analytical method, direct iterative method, mathe-
matical programming method, penalty method, augmented
Lagrangian method, and contact element method. In 1881,
Hertz obtained an analytical solution in two contact bodies
[5]. Signorini added the general formulation and defined it
as a unilateral contact problem [6]. Winkler established the
liner relationship between contact forces and deflection
deformation, and got the analytical solution of contact
problem in beam on elastic foundation [7]. Analytical
method is still studied today and is widely used to solve the
problem of dynamic load in rail transportation [8, 9]. *e
direct iterative method is numerical. For typical example,
Francavilla obtained flexibility matrices in terms of contact
forces at possible contact surfaces of two bodies and solved
the quasilinear problem [10].*e direct iterative method has
a clear concept, but the computational complexity is heavy
owing to large quantities of the possible contact forces. In
mathematical programming method, it is regarded as linear
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complementarity problem (LCP) or parametric linear
complementarity problem (PLCP). Anders and Gunnar
formulated the contact problems including varying contact
surfaces and friction through the mathematical program-
ming method [11, 12]. *e advantage of the penalty method
is imposing the contact conditions without increasing the
number of variables. A penalty term is used to enforce the
contact constraints. Luenberger discussed the ill-condi-
tioned numerical problem caused by large values for penalty
parameters [13]. Augmented Lagrangian method combines
the penalty method and the Lagrangian method. It trans-
forms the problem of original constraints into optimization
so that it is well suited to the method of finite element and
widely used in related software. Simo proposed the tech-
nique updating Lagrangian multipliers with penalty pa-
rameters to inherit the advantage of Lagrangian method
[14]. Contact element method describes the contact behavior
in interfaces. It expresses the contact stresses regarded as a
function of the relative displacements in the mean planes of
the microscopically rough surfaces. In another word, it
assumes that the interface is a kind of element type and has
constitutive laws. Goodman proposed the four-node planar
and nonthickness contact surface element [15].

A series of studies in contact problems of beam on elastic
foundation make excellent contributions to long-span en-
gineering programs [8]. It assumes that the reactive force of
the foundation carrying a loaded beam at every point is
proportional to the corresponding deflection of the beam
[7]. Higher-order nonlinear partial differential equation can
be used to reflect the contact phenomena [16, 17]. *rough
these researches, Gao considered the beam and foundation
as two different element types, and each can use an own type
of finite element [18]. *is idea inspires us to study further.
*e key to contact problem lies in finding the solution of
unilateral problems. *e structure and soft foundation are
two different contacting bodies, and each can be solved
independently. *erefore, when the time-affection rela-
tionship of soft foundation is established, the same of the
contact problems can be solved.

*e creep deformation of soft foundation has received
extensive attention. Any foundation needs to quantitatively
descript soil structure, rheological characteristic, spatial
distribution, and mechanical property, evaluating accurately
the bearing capacity, the effective stress, and settlement
deformation. Terzaghi and Biot derived the three-dimen-
sional consolidation equations based on the principle of
effective stress [19, 20]. *ese equations have been well
applied in complex foundation so far [21–23]. Singh adopted
creep rate and creep function to construct a famous em-
pirical creep model [24]. When the characterization of
deformation is obtained, it is necessary to develop visco-
elastic or elastic-viscoplastic constitutive theories based on
micromechanics. *e component models are applied to
describe the rheological property and comprised of varying
Hooke units and Kelvin units, such as the Kelvin model, the
Maxwell model, and the Burgers model [25, 26]. Some
elastic-viscoplastic constitutive models are built based on the
Can-Clay creep model and modified Can-Clay creep model
[27, 28]. Furthermore, Lee proposed an analytical method to

solve the viscoelastic deformation by Laplace transform [29].
*is analytical method has few parameters and can be easily
used in soft foundation. *erefore, this method can be used
to describe the contact forces and deformation of the soft
foundation in the unilateral constraint problem.

In this paper, the contact problem is considered as a
unilateral constraint problem. *is paper introduces a
methodology to analyze the time affection on structural soft
foundation system. *e methodology is presented as a
numerical implementation and combining finite element
method with analytical method. It aims to solve the contact
problem and focus on the contact forces varying with time.
In this methodology, the finite element method is used to
solve the structure deformation. *e analytical method is
based on the Maxwell model and Lee’s theory, extended to
three dimensions and applied to the soft foundation. *en,
the deformation coordination equation and force-method
asymmetric matrix equation for quasilinear problems of the
contact surface can be established. *e contact situations,
contact forces, and deformation at each time increment step
are determined finally.

2. Analysis of the Problem Formulations

Similar to the direct method, contact forces are split into
forces and reaction forces in the structural soft foundation
system [7]. *erefore, the contact problems of the structural
soft foundation system are divided into two unilateral
constraint problems. As Figure 1 shows, contact forces are
treated as unknown variables and act on the structure and
foundation separately. *e deformation coordination
equations of contact surface can be put on solving the
contact forces. *en, these contact forces can act on the
structure, and the stress state of the structure is obtained.

*e deformation of structure contains the statically
determinate structural deformation and rigid body dis-
placement. *e force method based on the Boltzmann su-
perposition principle is used to solve the statically
determinate structural deformation. Firstly, the basic de-
formation caused by each unit force of contact surface is
calculated. Secondly, the deformation caused by external
forces of contact surface is calculated. *irdly, the statically
determinate structural deformation is shown as

Ust � Uf0 + δ1 × X1 + · · · + δn × Xn, (1)

where Ust is the deformation obtained by all forces in the
statically determinate structural system; Uf0 is the defor-
mation obtained by the external forces; δ1 . . . δn. are the
deformation obtained by each unit force separately; and
X1 . . . Xn are the unknown contact forces.

*e rigid body displacement of the structure can be
shown by the deformation of six supports.*rough the Lee’s
method, the deformation of contact surface can also be
shown by n contact force on the soft foundation multiplied
by the deformation caused by the corresponding unit force.
A total of n+ 6 variables are formed. It still needs to add the
force and bending moment equilibrium equations. Finally,
the contact surface equations include n deformation
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coordination equations and 6 equilibrium equations. It can
be simplified as follows:

Ust + Urb � Usf,

􏽘 Fx � 0; 􏽘 Fy � 0; 􏽘 Fz � 0,

􏽘 Mx � 0; 􏽘 My � 0; 􏽘 Mz � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where Urb is the rigid body displacement of structural
contact surface; Ust is the contact surface deformation of soft
foundation; and 􏽐 F � 0􏽐 M � 0 are composited by the
forces and bending moments in three directions. *e de-
formation coordination equations of the contact surface are
built in the first line in (2). *e force and bending moment
equilibrium equations in three directions are added. *e
contact forces and rigid body displacement are calculated.
*en, the stress state of the structure can be calculated.

3. Analytical Solution of Soft Foundation

*e analytical solution of viscoelastic deformation is ob-
tained by Lee’s method. Taking Kelvin model as an example,
the elastic solution of a semi-infinite space body subjected to
concentrated load is integrated to derive the solution of
distributed force based on the principle of superposition.
*en, the viscoelastic deformation in the Laplace space is
obtained based on the elastic-viscoelastic correspondence
principle. Finally, the solution of the viscoelastic deforma-
tion under distributed force can be obtained by inverse
Laplace transformation.

As shown in Figure 2, there is a rectangle with length a
and width b on the boundary of the semi-infinite foundation.
*e normal uniform load (Figure 2(a)) and tangential
uniform load (Figure 2(b)) are concentration of 1/ab. *ey
act on the rectangle. *e elastic deformation acted normal
concentrated force is shown:

uzz �
(1 + μ)P

2πER
2(1 − μ) +

z
2

R
2􏼢 􏼣,

uzr �
(1 + μ)P

2πER

rz

R
2 −

(1 − 2μ)r

R + z
􏼢 􏼣,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where uzr is the radial deformation; uzz is the normal de-
formation; P is the normal concentrated force; R is the
distance from a point to the origin of coordinates; r is the
distance from a point to the normal line; E is the elasticity
modulus; and μ is Poisson’s ratio. (3) has no solution when
R� 0 so that unit distribution force is considered. *e
normal differential force dP shown based on Lagrangian
coordinate system is dηdξ/ab. *e elastic deformation acted
normal concentrated force is shown:

δzz �
1 − μ2

abπE
􏽚
η�x+(a/2)

η�x− (a/2)
􏽚
ξ�y +(b/2)

ξ�y− (b/2)

dξdη
������

ξ2 + η2
􏽱 ,

δzx �
(1 + μ)(2μ − 1)

abπE
􏽚
η�x+(a/2)

η�x− (a/2)
􏽚
ξ�y +(b/2)

ξ�y− (b/2)

dξdη
������

ξ2 + η2
􏽱

x
������

x
2

+ y
2

􏽱 ,

δzy �
(1 + μ)(2μ − 1)

abπE
􏽚
η�x+(a/2)

η�x− (a/2)
􏽚
ξ�y+(b/2)

ξ�y− (b/2)

dξdη
������

ξ2 + η2
􏽱

y
������

x
2

+ y
2

􏽱 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where δzx, δzy, δzz are the deformation in x, y, z directions
under unit distribution force in z direction. According to
elastic-viscoelastic correspondence principle, after Laplace
transforms, the viscoelastic deformation formula is
obtained:

δzz(s) �
1 − [μ(s)]

2

abπ[E(s)]

e
− ts

s
Fk,

δzx(s) �
(1 +[μ(s)])(2[μ(s)] − 1)

abπ[E(s)]

e
− ts

s

x
������

x
2

+ y
2

􏽱 Fk,

δzy(s) �
(1 +[μ(s)])(2[μ(s)] − 1)

abπ[E(s)]

e
− ts

s

y
������

x
2

+ y
2

􏽱 Fk,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where Fk � 􏽒
η�x+(a/2)

η�x− (a/2)
􏽒
ξ�y+(b/2)

ξ�y− (b/2)
dξdη/

������

ξ2 + η2
􏽱

is obtained by
the numerical integration method.

Structure

So� foundation
Gravel soil

Gravel soil

(a)

External forces
External forces

So� foundation

Control forces

Structure

(b)

Figure 1: Structural soft foundation system. (a) Structure and soft foundation. (b) Load combination.
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Kelvin viscoelastic solution is derived by inverse Laplace
transformation.

δzz �
3

6K + 2G1
􏼠 􏼡 1 − e

− 6K+2G1( )/2η1( )􏼒 􏼓 +
1

2G1
1 − e

− G1/η1􏼐 􏼑􏼢 􏼣
Fk

2abπ
,

δzx �
− 3

6K + 2G1
􏼠 􏼡 1 − e

− 6K+2G1( )/2η1( )􏼒 􏼓
Fk

2abπ
x

������

x
2

+ y
2

􏽱 ,

δzy �
− 3

6K + 2G1
􏼠 􏼡 1 − e

− 6K+2G1( )/2η1( )􏼒 􏼓
Fk

2abπ
y

������

x
2

+ y
2

􏽱 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where K is the bulk modulus; G1 is the shear stiffness; and η1
is the coefficient of viscosity. Tangential load causes the

deformation; the elastic deformation is shown in the fol-
lowing equation [30]:

uxx �
(1 + μ)P

2πER
1 +

x
2

R
2 +(1 − 2μ)

R

R + z
−

x
2

(R + z)
2􏼢 􏼣􏼨 􏼩,

uxy �
(1 + μ)P

2πER

xy

R
2 −

(1 − 2μ)xy

(R + z)
2􏼢 􏼣,

uxz �
(1 + μ)P

2πER

xy

R
2 +

(1 − 2μ)x

R + z
􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

b/
2

b/
2

a/2 a/2

z

y

x

η dη

ξ
dξ

(a)

b/
2

b/
2

a/2 a/2

z

y

x

η dη

ξ dξ

(b)

Figure 2: Normal and tangential uniform loads act on space semi-infinite foundation. (a) Normal uniform load. (b) Tangential uniform
load.
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*rough the Laplace transformation and inverse Laplace
transformation, the viscoelastic deformation can also be
solved and shown in the following equation:

δxx �
1

2πab

1
2G1

e
− G1/η1( )t

􏼒 􏼓 +
3

6K + 2G1
e

− 6K+2G1( )/2η1( )t
􏼒 􏼓􏼢 􏼣Fk +

1
2πab

1
2G1

e
− G1/η1( )t

􏼒 􏼓 −
3

6K + 2G1
e

− 6K+2G1( )/2η1( )t
􏼒 􏼓􏼢 􏼣x

2
Fg,

δxy �
xyFg

2πab

1
2G1

e
− G1/η1( )t

􏼒 􏼓 −
3

6K + 2G1
e

− 6K+2G1( )/2η1( )t
􏼒 􏼓􏼢 􏼣,

δxz �
xFi

2πab

3
6K + 2G1

e
− 6K+2G1( )/2η1( )t

􏼒 􏼓􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

Fi � 􏽚
η�x+(a/2)

η�x− (a/2)
􏽚
ξ�y+(b/2)

ξ�y− (b/2)
dξdη/

������

ξ2 + η2
􏽱

Fg � 􏽚
η�x+(a/2)

η�x− (a/2)
􏽚
ξ�y+(b/2)

ξ�y− (b/2)
dξdη/(

������

ξ2 + η2
􏽱

)
3/2

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

is ob-

tained by the numerical integrationmethod, where δxx, δxy, δxz

are the deformation in x, y, z directions under unit distribution

force in x direction. *e analytical solution of viscoelastic de-
formation based on the Maxwell model can be calculated by
MATLAB. *e process is given in the appendix. *e final
equation is shown as follows:

δxx �
4G3Fi3KFi − 2G3Fgx

2
+ 3KFgx

2

4G3abπ G3 + 3K( 􏼁
−
3η1e t G2G3 + 3G2K( 􏼁/G2η1 + G3η1 + 3Kη1( 􏼁 G2Fi − G2Fgx

2
􏼐 􏼑

4abπ G3 + 3K( 􏼁 G2η1 + G3η1 + 3Kη1( 􏼁

−
η1e G2G3t( 􏼁/G2η1 + G3η1( 􏼁 G2Fgx

2
+ G2Fi􏼐 􏼑

4G3abπ G2η1 + G3η1( 􏼁
,

δxy �
3G2η1Fgxye t G2G3 + 3G2K( 􏼁/ G2η1 + G3η1 + 3Kη1( 􏼁( 􏼁

4abπ G3 + 3K( 􏼁 G2η1 + G3η1 + 3Kη1( 􏼁
−

Fgxy 2G3 − 3K( 􏼁

4G3abπ G3 + 3K( 􏼁
−

G2η1Fgxye G2G3t( 􏼁/ G2η1 + G3η1( 􏼁􏼐 􏼑

4G3abπ G2η1 + G3η1( 􏼁
,

δxz �
3Fkx

4abπ G3 + 3K( 􏼁

3G2η1Fgxye t G2G3 + 3G2K( 􏼁/ G2η1 + G3η1 + 3Kη1( 􏼁( 􏼁

4abπ G3 + 3K( 􏼁 G2η1 + G3η1 + 3Kη1( 􏼁
,

δzx �
3G2η1Fgxye t G2G3 + 3G2K( 􏼁/ G2η1 + G3η1 + 3Kη1( 􏼁( 􏼁

4abπ G3 + 3K( 􏼁 G2η1 + G3η1 + 3Kη1( 􏼁
−

3Fix

4abπ
���������������

x
2

+ y
2

G3 + 3K( 􏼁

􏽱 ,

δzy �
3G2η1Fgxye t G2G3 + 3G2K( 􏼁/ G2η1 + G3η1 + 3Kη1( 􏼁( 􏼁

4abπ
���������������������������������

x
2

+ y
2

G3 + 3K( 􏼁 G2η1 + G3η1 + 3Kη1( 􏼁

􏽱 −
3Fiy

4abπ
���������������

x
2

+ y
2

G3 + 3K( 􏼁

􏽱 ,

δzz �
Fi 4G3 + 3K( 􏼁

4G3abπ G3 + 3K( 􏼁
−
3G2η1Fgxye t G2G3 + 3G2K( 􏼁/ G2η1 + G3η1 + 3Kη1( 􏼁( 􏼁

4abπ
���������������������������������

x
2

+ y
2

G3 + 3K( 􏼁 G2η1 + G3η1 + 3Kη1( 􏼁

􏽱 −
G2η1Fke G2G3t( 􏼁/ G2η1 + G3η1( 􏼁( 􏼁

4abπ G2η1 + G3η1( 􏼁
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where G2, G3 are the parameters of shear stiffness. *e
deformation at any point of the contact surface on soft
foundation acted on a force can be shown as

Usfx

Usfy

Usfz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

δxx δyx δzx

δxy δyy δzy

δxz δyz δzz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fx

Fy

Fz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (10)
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where Usfx, Usfy, andUsfz are the deformation of soft
foundation in three directions. Fx, Fy , andFz are the
contact forces of soft foundation in three directions. (10)
shows the deformation of a single point under a distribution
force. *e real contact surface deformation is more
complicated.

4. Structure Deformation

4.1. Statically Determinate Structural Deformation. *e
contact forces are treated as unknown variables and act on
the structure and foundation separately. As Figure 3
shows, in order to ensure the structure statically deter-
minate, the structure has six constraints on the contact
surface. It is divided into multiple hexahedrons. Each unit
distribution force acts on the bottom of underside ele-
ment. Note that the unit distribution force acting on the
contact surface separating two adjacent volume elements
in the structure and the soft foundation must be equal and
opposite. *e resultant point of distributed force is under
the bottom of element. *e deformation of the resultant
point can be shown by deformation of element nodes. *e
equation is as follows:

u

v

w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

N1 0 0 . . . N4 0 0

0 N1 0 ... 0 N4 0

0 0 N1 . . . 0 0 N4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦q
e
, (11)

where N1, N2, N3, N4 are the shape function of the four
nodes which are at the bottom of the hexahedron element
and qe is the deformation of element. *e programming of
these deformations can be finished with DLOAD sub-
routine and UTRACLOAD subroutine in Abaqus. *e
DLOAD subroutine is used to get the solution of the
deformation acted by each unit distribution force in z-axis
direction. *e UTRACLOAD subroutine is used to get the
solution of the deformation acted by each unit distribu-
tion force in x and y direction. *e xleft, xright, yleft, and
yright are the four boundaries of the unit distributed
force. *e xstart, xend, ystart, and yend are the first and
final coordinates of the unit distributed force. *e
T_user(1), T_user(2), and T_user(3) are the direction of
the unit distribution force. *e v and time are the speed
and time of the unit distributed force. *e coord (1) and
coord (2) are the x and y coordinates of each position of
the contact surface. It determines where the unit dis-
tributed force is applied and where the force is zero.
Figure 4 shows the flow chart of subroutines in Abaqus. (1)
All parameters are input in the subroutine. (2) *e pa-
rameters of xleft, xright, yleft, and yright are updated. (3)
*e position of force is determined. (4) *e time is
updated and the above process is repeated.

A unit distributed force moves from the bottom of the
first element to the bottom of the last element on the un-
derside element. *e deformation during the movement is
recorded. According to equation (11), the deformation of the
resultant point is calculated by numerical software.*en, the
statically determinate structural deformation can also be
expressed in the same form as (10).

5. Rigid Body Displacement

*e rigid body displacement of statically determinate
structure can be described by Cauchy equations. It means
that the strain of the structure is zero. For infinitesimal
motion, the relationship between strain and displacement is

εx �
zu

zx
, εy �

zv

zy
, εz �

zw

zz
,

cyz �
zw

zy
+

zv

zz
, czx �

zu

zz
+

zw

zx
, cxy �

zv

zx
+

zu

zy
,

εx � εy � εz � cyz � czx � cxy � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where εx, εy, εz are the normal strain in x, y, z directions and
cyz, czx, cxy are the shearing strain in x, y, z directions.
Solving the above formulas, the rigid body displacement can
be obtained as

u � u0 + φyz − φzy,

v � v0 + φzx − φxz,

w � w0 + φxy − φyx,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

where u, v, w are the rigid body displacement in x, y, z
directions; φx,φy,φz are the rigid body rotation angles in x,
y, z directions; and u0, v0, w0 are the translational defor-
mations in x, y, z directions. *ese equations can be com-
prehended through geometric transformation in Figure 5. It
is important that the sign of rigid body rotation angles
follows the right hand’s spiral rule. When z� 0, the equation
shows the deformation of undersurface. (13) can be sim-
plified as linear matrix equation:

u

v

w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

1 0 0 0 0 − y

0 1 0 0 0 x

0 0 1 y x 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u0

v0

w0

φx

φy

φz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

After the statically determinate structural deformation
and rigid body displacement are obtained, the contact
surface deformation can be described as the sum of them in
the structure.

Figure 3: Statically determinate structure deformation.
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6. Force Equilibrium Equations and Bending
Moment Equilibrium Equations

By means of rational mechanics, the force equilibrium
equations and bendingmoment equilibrium equations of 3D

structure can be elucidated in three directions. *ese
equations are as follows:

􏽘

n

k�1
Xk + Fx � 0, 􏽘

n

k�1
Yk + Fy � 0, 􏽘

n

k�1
Zk + Fz � 0, 􏽘

n

k�1
bkZk − 􏽘

n

k�1
ckYk

⎛⎝ ⎞⎠ + yFFz − zFFy􏼐 􏼑 � 0, 􏽘

n

k�1
ckXk − 􏽘

n

k�1
akZk

⎛⎝ ⎞⎠
⎧⎨

⎩

+ zFFx − xFFz( 􏼁 � 0, 􏽘

n

k�1
akYk − 􏽘

n

k�1
bkXk

⎛⎝ ⎞⎠ + xFFy − yFFx􏼐 􏼑 � 0,

(15)

Input: xstart, xend, ystart, yend, xle�, xright, yle�, yright, loadwighth,
v, time, endtime, coords(1), coords(2), T_user(1), T_user(2), T_user(3)

xright < xend ?

Yes

Calculate: xright, yle�, yright

Update: xle�, xright, yle�, yright

Calculate: xle� = xle� + v∗ (time – 1)

Begin: time = 1

xle� < coords(1) < xright
yle� < coords(2) < yright ?

No

No

Yes

F = 0 F = 1

Time = time + 1

Time > endtime

No

End

Yes

(a)

Input: xstart, xend, ystart, yend, xle�, xright, yle�, yright, 
loadwighth, v, time, endtime, coords(1), coords(2)

xright < xend ?

Yes

Calculate: xright, yle�, yright

Update: xle�, xright, yle�, yright

Calculate: xle� = xle� + v∗ (time – 1)

Begin: time = 1

xle� < coords(1) < xright
yle� < coords(2) < yright ?

No

No

Yes

F = 0 F = 1

Time = time + 1

Time > endtime

No

End

Yes

(b)

Figure 4: Flow chart of subroutines in Abaqus. (a) UTRACLOAD subroutine. (b) DLOAD subroutine.
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Figure 5: Rigid body displacement of contact surface.
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where 􏽐
n
k�1 Xk, 􏽐

n
k�1 Yk, 􏽐

n
k�1 Zk are the sum of contact

forces in x, y, z directions; ak, bk, ck are the coordinates of
the contact forces’ functional point; xF, yF, zF are the

coordinates of the external forces’ functional point; and
Fx, Fy, Fz are the external forces in x, y, z directions. When
c� 0, (15) can be simplified as linear matrix equation:

1 ... 1 0 ... 0 0 ... 0

0 ... 0 1 ... 1 0 ... 0

0 ... 0 0 ... 0 1 ... 1

0 ... 0 0 ... 0 b1 ... bn

0 ... 0 0 ... 0 − a1 ... − an

− b1 ... − bn a1 ... an 0 ... 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X1

...

Xn

Y1

...

Yn

Z1

...

Zn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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�

− Fx

− Fy

− Fz

− yFFz + zFFy

− zFFx + xFFz

− xFFy + yFFx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

7. Mixed Finite Element Methodology

*rough the analysis of Sections 3, the time affection of soft
foundation can be resolved. When the parameters of
foundation are determined, the contact forces can be dis-
cussed. *is contact problem is solved based on the de-
formation coordination equations.

*e eight-node isoparametric elements are used to make
the structure discrete. *ree connecting rods at the bottom
center point of the underside element are set along the x, y,
and z directions. *ey are used to connect the structure with

foundation. *e increment of the normal deformation Δz
and the increment of the rigid body rotation angles ΔφxΔφy

are taken as unknown quantities. Taking time step l for
example, the finite element method is used to obtain the
deformation of nodes and the deflection of the bottom
center point of the underside elements.*e deformation and
deflection are caused by the external loads and unit link
force. *e normal incremental equation of structure on
viscoelastic foundation is solved by combining finite element
with the analytical method. It is shown as

􏽘
n

k�1
δ(l)

ki ΔZ
(l)
k + Δz + biΔφx − aiΔφy + Δ(l)

ip � 0,

n formulas in total, i � 1, 2, . . . , n,

􏽘

n

k�1
ΔZ(l)

k + 􏽘ΔF(l)
z � 0,

􏽘

n

k�1
bkΔZ

(l)
k + 􏽘ΔM(l)

x � 0,

􏽘

n

k�1
akΔZ

(l)
k + 􏽘ΔM(l)

y � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where δ(l)
ki is the deformation of i position under unit dis-

tribution force acting on k position in z direction in the time
step l; Δ(l)

ip is the deformation of i position under external
forces at z direction in the time step l; ai is the coordinate of
y-axis at i position in the time step l; bi is the coordinate of x-
axis at i position in the time step l; ΔZ(l)

k is the element
connecting rod force at z direction in the time step l; ΔF(l)

z is

the composition of forces at z direction in the time step l;
ΔM(l)

x , ΔM(l)
y are the composition of bending moments at x

and y directions in the time step l.*e basic unknown quantities
can be solved by the Gaussian elimination with partial pivoting
method. *en, the increment of each unknown quantity of the
system in the time step is obtained. *e equations of contact
surface in three-dimensional are also shown as
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􏽘

n

k�1
δ(l)

xxkiΔX
(l)
k + δ(l)

yxkiΔY
(l)
k + δ(l)

zxkiΔZ
(l)
k􏼔 􏼕 + Δx(l)

− biΔφ
(l)
z􏼐 􏼑 + Δ(l)

ipx � 0,

􏽘

n

k�1
δ(l)

xykiΔX
(l)
k + δ(l)

yykiΔY
(l)
k + δ(l)

zykiΔZ
(l)
k􏼔 􏼕 + Δy(l)

− aiΔφ
(l)
z􏼐 􏼑 + Δ(l)

ipy � 0,

􏽘

n

k�1
δ(l)

xzkiΔX
(l)
k + δ(l)

yzkiΔY
(l)
k + δ(l)

zzkiΔZ
(l)
k􏼔 􏼕 + Δz(l)

+ aiΔφ
(l)
x − biΔφ

(l)
y􏼐 􏼑 + Δ(l)

ipz � 0,

3n formulas in total, i � 1, 2, . . . , n,

􏽘

n

k�1
ΔX(l)

k + 􏽘ΔF(l)
x � 0,

􏽘

n

k�1
ΔY(l)

k + 􏽘ΔF(l)
y � 0,

􏽘

n

k�1
ΔZ(l)

k + 􏽘ΔF(l)
z � 0,

􏽘

n

k�1
akΔZ

(l)
k + 􏽘ΔM(l)

x � 0,

􏽘

n

k�1
bkΔZ

(l)
k + 􏽘ΔM(l)

y � 0,

􏽘

n

k�1
bkΔX

(l)
k + 􏽘

n

k�1
akΔY

(l)
k + 􏽘ΔM(l)

z � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(l)
mki � δ(l)

stmki + δ(l)
sfmki, m � xx, yx, zx, xy, yy, zy, xz, yz, zz,

(18)

where δ(l)
mki is the deformation of i position under unit

distribution force acting on k position atm-axis direction in
the time step l; δ(l)

sfmki, δ
(l)
stmki are the deformation of foun-

dation and structure under unit distribution force;
ΔX(l)

k , ΔY(l)
k , ΔZ(l)

k are the contact forces at k position in x, y,
and z directions in the time step l.

*e program flow chart is shown in Figure 6. (1) *e
structure is meshed with hexahedral elements and the
position of each connecting rod on the contact surface is
set. (2) *e analytical solution for soft foundation of each
unit distribution force and FEM solution for the structure
are obtained. (3) *e coefficient matrix and typical

Meshing the structure with hexahedral elements

Getting the analytical solution of so� foundation

Getting the FEM solution of structure 

Reading the basic data of each time step l = 1,2...

Forming a matrix of the coefficients

Forminga column matrix of loads

Getting the solution of the contact forces and foundation deformation

Judging the contact status and redistributing the contact forces

End

Figure 6: Program flow chart.
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equation are formed. (4) *e increment of contact forces
and foundation deformation are solved. (5) *e contact
state is judged and the redistribution of contact forces are
calculated.

8. Model Validation

8.1. Example 1. *e model validation can be finished
through comparative analysis of our method and the
augmented Lagrangian (AL) method. *e augmented
Lagrangian (AL) method is calculated by Abaqus. *e
time affection of soft foundation is described by Maxwell

UMAT [31]. *e length, width, and height of structure is
separately 10m, 6m, and 3m. *e pressure acting on the
upper surface in z direction is 1000 Pa. *e pressure acting
on the left surface in x direction is 500 Pa. *e total time is
1200 d. *e time increment is 30 d. *e structure can be
dispersed into multiple hexahedrons. *e labels of the
bottom center point of the underside element on the
contact surface are 1, 2,...,240. Each label has three degrees
of freedom (DOF). *ere is a total of 720 contact forces in
three DOF. From (18), the contact forces equations are
shown at time step l:

δxx,1,1 . . . δxx,240,1 δyx,1,1 . . . δyx,240,1 δzx,1,1 . . . δzx,240,1 1 0 0 0 0 − b| x � 0.25

y � 0.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δxx,1,240 . . . δxx,240,240 δyx,1,240 . . . δyx,240,240 δzx,1,240 . . . δzx,240,240 1 0 0 0 0 − b| x � 9.75

y � 5.75

δxy,1,1 . . . δxy,240,1 δyy,1,1 . . . δyx,240,1 δzy,1,1 . . . δzy,240,1 0 1 0 0 0 a| x � 0.25

y � 0.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δxy,1,240 . . . δxy,240,240 δyy,1,240 . . . δyy,240,240 δzy,1,240 . . . δzy,1,240 0 1 0 0 0 a| x � 9.75

y � 5.75

δxz,1,1 . . . δxz,240,1 δyz,1,1 . . . δyz,240,1 δzz,1,1 . . . δzz,240,1 0 0 1 b| x � 9.75

y � 5.75

a| x � 9.75

y � 5.75

0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δxz,1,240 . . . δxz,240,240 δyz,1,240 . . . δyz,240,240 δyz,1,240 . . . δzz,240,240 0 0 1 b| x � 9.75

y � 2.75

− a| x � 9.75

y � 2.75

0

1 . . . 1 0 . . . 0 0 . . . 0 0 0 0 0 0 0

0 . . . 0 1 . . . 1 0 . . . 0 0 0 0 0 0 0

0 . . . 0 0 . . . 0 1 . . . 0 0 0 0 0 0 0

0 . . . 0 0 . . . 0 a| x � 0.25

y � 0.25

. . . 0 0 0 0 0 0 0

0 . . . 0 0 . . . 0 − a| x � 9.75

y � 2.75

. . . 0 0 0 0 0 0 0

− b| x � 0.25

y � 0.25

. . . − b| x � 9.75

y � 5.75

a| x � 0.25

y � 0.25

. . . a| x � 9.75

y � 2.75

0 . . . 0 0 0 0 0 0 0
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X1

. . .

X240

Y1

. . .

Y240

Z1

. . .

Z240

l1

l2

l3

l4

l5

l6
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,

(19)

A B

C 0
􏼢 􏼣

F

G
􏼢 􏼣 �

D

E
􏼢 􏼣, (20)

where a, b is the coordinate of center point in x and y di-
rections, respectively. *e matrices in (19) can be portioned
into seven blocks in (20) for programming, as shown in (20).
*e block A stands for the sum of the deformation of
structure and foundation resulted by unit distribution force.
*e block B∗G stands for the rigid body displacement. *e

block C∗F stands for the external forces and bending mo-
ment.*e parameters of structure and foundation are shown
in Table 1.

Figure 7 shows the deformation of soft foundation in
three directions under unit distribution force at 30th day and
1200th day. *e deformation results of δsfxy and δsfyx are

10 Mathematical Problems in Engineering



Table 1: *e parameters of structure and foundation.

Structure Soft foundation
E 3.425∗1010 Pa E1 1.7546∗107 Pa
μ 0.167 E2 1.552∗107 Pa
— — μ 0.31
— — η1 8.139∗108 Pa∗d
— — K 1.5391∗107 Pa
— — G2 6.6969∗106 Pa
— — G3 5.9237∗106 Pa
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Figure 7: Continued.
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center symmetrical about the point of force. *e defor-
mation results of δsfxx, δsfxz , δsfyy, δsfyz, δsfzx, δsfzy, and
δsfzz are symmetrical about one axis. *e influential sphere
of deformation caused by the unit distribution force is
restricted from 0 to 3.5m. *is is mainly attributed to the
elastic modulus and Poisson’s ratio of the soft foundation.
Maximum deformation ranges from 7.93e-8m at the first
step to 1.26e-7m at the final step. It shows a 59.52% in-
crement within the time. Overall, the Lee’s method can be
well used to describe the creep property of soft
foundation.

Figure 8 shows the contact forces in three directions by
two methods on the 30th day. Figure 9 shows the contact
forces in three directions by two methods on the 1200th day.
Figure 10 shows the deformation of the center point in the

contact surface. *rough the contrastive analysis of our
method and AL method, some similarities and differences
can be shown:

(1) From the distribution of contact forces perspective,
both of the two methods almost have the same
distribution of contact forces. *e contact forces in x
direction are fan-shaped distribution and focused on
the boundary. *e contact forces in y direction are
symmetrical about x-axis. *e contact forces in z
direction are basin-shaped distribution. Our method
has larger values of corner points than the AL
method.*e reason behind this scenario may be that
the deformation of soft foundation in Lee’s method is
different with finite method. Overall, contact forces
can be well solved by our method.
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Figure 7: *e deformation of soft foundation in three directions under unit distribution force. (a) On 30th day. (b) On 1200th day.
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Figure 8: Distribution of contact forces in three directions by two methods on 30th day. (a) Our method. (b) Augmented Lagrangian
method.
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Figure 9: Distribution of contact forces in three directions by two methods on 1200th day. (a) Our method. (b) Augmented Lagrangian
method.
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(2) From the creep property perspective, our method
shows the redistribution of the contact forces. *e
maximum contact force in z direction increases from
796N to 868N, with 9.01% increment. However, the
maximum contact forces in x and y directions, re-
spectively, decrease from 464N to 410N and 286N to
236N, with 13.17% and 21.19% reduction.

(3) From deformations perspective, the displacements of
our method are more viscous than the AL method
with time changing. Both of them almost have the
same final settlement displacement and displace-
ment in x direction.

*e difference between our method and the AL method is
mainly influenced by the solution of foundation. *e AL
method is based on the finite elementmethod and related to the
size of the foundationmodel.*e analytical method is based on
the Laplace transformation and irrelevant to the size of the
foundation model. *erefore, the results are influenced by two
reasons: (1) the principle of calculation; (2) the size of foun-
dation model.*e heavy loading combination and large size of
the foundation model can make these differences not obvious.
In this example, the external loads are in x and z directions and
the length, width, and height of the foundation are three times
of the structure. *e results show good agreement in the final
settlement displacement and displacement in x and z directions
with the AL method and proposed method, while there exists
large difference in y direction.

8.2. Example 2. Example 1 shows that our method has well
adaptability. *e local disengagement of contact surface is
shown in example 2. *e basic situation of this example is
the same as example 1, but the external forces are different
with example 1.*e upper surface of the structure is affected
by pressure and tension. *e pressure acting on the left
square (4.5m∗6m) and right square (4.5m∗6m) is 10 kPa.
*e tension acting on the middle square (1.0m∗6m) is
8.9 kPa.

Figure 11 shows the contact forces in three directions
on the 30th and the 1200th day. *e contact forces in z
direction are directly affected by the external forces. It
represents that there are negative contact forces in the
middle of the contact surface. It means the local dis-
engagement phenomenon appears. Actually, these neg-
ative contact forces in the disengagement area are zeros.
By comparing the positive with negative values, the
disengagement area can be intuitively found. After the
contact forces redistribute, the real contact state and
contact forces are explicitly calculated. *e total time of
the process is usually less than 10 seconds. *e defor-
mation of the center point in the contact surface is shown
in Figure 12, where the center point is in the disen-
gagement area. *e displacement of the point in z di-
rection has creep property. As time increases, the
disengagement area will gradually close, and the contact
forces will regenerate. *e disengagement area does not
always exist.
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Figure 11: Contact forces in three directions. (a) Contact forces at 30th d. (b) Contact forces at 1200th d.
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9. Conclusion

*is paper reports a methodology to analyze the time af-
fection on a structural soft foundation system. *e contact
forces are treated as unknown variables and act on the
structure and foundation separately. *e deformation of
structure contains the statically determinate structural de-
formation and rigid body displacement. It can be solved by
the finite method. *e creep deformation of soft foundation
is solved by Lee’s method. *e final equations are formed by
the deformation coordination equations and equilibrium
equations. It is solved by the Gaussian elimination with the
partial pivoting method.*e augmented Lagrangianmethod
is used to verify the accuracy of the method. *e following
important conclusions are summarized:

(1) *e simulations of contact bodies show that our
method shows more viscous than the AL method

with time changing. Our method has larger values of
corner points than the AL method.

(2) *is methodology is an explicit calculating method,
avoiding the occurrence of iteration non-
convergence. It is simpler and more efficient in
solving the contact forces compared with the AL
method.

(3) It is shown that our method can directly describe
local disengagement of two contact bodies. *e re-
distribution phenomenon of contact forces is well
shown with time changing.

Appendix

*e analytical solution of viscoelastic deformation based on
the Maxwell model can be calculated by MATLAB. *e
codes are as follows:

%% in x direction, laplacetransform
syms inta1 G2 G3 s K a b � fi fg x y
p1 = inta1/G2; q1 = (G3/G2 + 1)∗inta1;
xs = 2∗(G3 + q1∗s)/(1 + p1∗s)
miu_0 = (3∗K – xs)/(6∗K + xs)
e_0 = 9∗K∗xs/(6∗K + xs)
udx_la = (1 + miu_0)/(pi∗e_0∗a∗b)∗((1 – miu_0)∗� + miu_0∗x∗x∗fg)/s;
udy_la = (1 + miu_0)∗miu_0/(pi∗e_0∗a∗b)∗x∗y∗fg/s
udz_la = (1+miu_0)∗(1 – 2∗miu_0)/(2∗pi∗e_0∗a∗b)∗x∗fi/s
udx_ila = ilaplace(udx_la, s)
udy_ila = ilaplace(udy_la, s)
udz_ila = ilaplace(udz_la, s)
%% laplace inverse transform
syms inta1 G2 G3 s K a b � fi fg x y t
t01 = t;
disp ----------udx-----------
udx = subs(udx_ila, [s], [t01])
disp ----------udy-----------
udy = subs(udy_ila, [s] ,[t01])
disp ----------udz-----------
udz = subs(udz_ila, [s], [t01])

%% in z direction, laplacetransform
syms inta1 G2 G3 s K a b � x y
p1 = inta1/G2; q1 = (G3/G2 + 1)∗inta1
xs = 2∗(G3 + q1∗s)/(1 + p1∗s)
miu_0 = (3∗K – xs)/(6∗K + xs)
e_0 = 9∗K∗xs/(6∗K + xs)
wdx_la = (1 + miu_0)∗(2∗miu_0 – 1)/(2∗pi∗e_0∗a∗b)/s∗x/((x^2 + y^2)^(1/2))∗�
wdy_la = (1 + miu_0)∗(2*miu_0 – 1)/(2∗pi∗e_0∗a∗b)/s∗y/((x^2 + y^2)^(1/2))∗�
wdz_la = (1 – miu_0∗miu_0)/(a∗b∗pi∗e_0)/s∗�
wdx_ila = ilaplace(wdx_la, s)
wdy_ila = ilaplace(wdy_la, s)
wdz_ila = ilaplace(wdz_la, s)
%% laplace inverse transform
syms inta1 G2 G3 s K a b � x y t 
t01 = t;
disp --------wdx--------
wdx = subs(wdx_ila, [s], [t01])
disp --------wdy--------
wdy = subs(wdy_ila, [s], [t01])
disp --------wdz---------
wdz = subs(wdz_ila, [s], [t01])
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Figure 12: Deformation of the center point in the contact surface.
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[18] D. Gao, J. Machalová, and H. Netuka, “Mixed finite element
solutions to contact problems of nonlinear Gao beam on
elastic foundation,” Nonlinear Analysis: Real World Appli-
cations, vol. 22, pp. 537–550, Elsevier, Amsterdam, Nether-
lands, 2015.

[19] K. Terzaghi, “*eoretical soil mechanics,” 1943.
[20] M. A. Biot, “General theory of three-dimensional consoli-

dation,” Journal of Applied Physics, vol. 12, no. 2, pp. 155–164,
1941.

[21] Y. Chen, G. Chen, and X. Xie, “Weak Galerkin finite element
method for Biot’s consolidation problem,” Journal of Com-
putational and Applied Mathematics, vol. 330, pp. 398–416,
2018.

[22] M. Borregales, K. Kumar, F. A. Radu, C. Rodrigo, and
F. J. Gaspar, “A partially parallel-in-time fixed-stress splitting
method for Biot’s consolidation model,” Computers &
Mathematics with Applications, vol. 77, no. 6, pp. 1466–1478,
2019.

[23] L. Wang, Y. Xu, X. Xia, and A. Zhou, “Semi-analytical so-
lutions to the two-dimensional plane strain consolidation for
unsaturated soil with the lateral semi-permeable drainage
boundary under time-dependent loading,” Computers and
Geotechnics, vol. 124, Article ID 103562, 2020.

[24] J. Mitchell and A. Singh, “General stress-strain-time function
for soils,” ASCE, vol. 94, no. 1, pp. 21–46, 1968.

[25] F. Cavalieri, A. A. Correia, H. Crowley, and R. Pinho, “Dy-
namic soil-structure interaction models for fragility charac-
terisation of buildings with shallow foundations,” Soil
Dynamics and Earthquake Engineering, vol. 132, Article ID
106004, 2020.

[26] Z. Chang, H. Gao, F. Huang, J. Chen, J. Huang, and Z. Guo,
“Study on the creep behaviours and the improved burgers
model of a loess landslide considering matric suction,”
Natural Hazards, vol. 103, no. 1, pp. 1479–1497, 2020.

[27] X. Li, M. Huang, and L. Wang, “Bounding surface elasto-
viscoplastic constitutive model for rheological behaviors of
soft clays,” Chinese Journal of Rock Mechanics and Engi-
neering, vol. 26, no. 7, pp. 1393–1401, 2007.

[28] V. M. G. Zapata, E. B. Jaramillo, and A. O. Lopez, “Imple-
mentation of a model of elastoviscoplastic consolidation
behavior in Flac 3D,” Computers and Geotechnics, vol. 98,
pp. 132–143, 2018.

[29] E. H. Lee, “Stress analysis in visco-elastic bodies,”Quarterly of
Applied Mathematics, vol. 13, no. 2, pp. 183–190, 1955.
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