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�e arts are one of the most complex of human endeavours,
and so it is fitting that a special issue on Complex Systems
in Aesthetics and Arts is being published. As the editors of
this special issue, we would like to thank the reviewers of the
submitted papers for their hard work in making this issue
possible, as well as the authors who submitted their work and
were very responsive to the comments of the reviewers and
editors.

�eword complexity has a specificmeaning in the context
of “complex systems” research, as the study of systems
made of many components—not in themselves necessarily
complex—that through loosely coupled, local interactions
generate complex, emergent behaviours. Such systems have
the potential to act as the basis for the production of artworks,
whether entirely computer generated or as a result of a
cocreative system between humans and computers. Such
art might make its impact through the intrinsic interest
of the complex behaviour in the system, by representing,
exploring, or connoting some worldly aspect of complexity,
or by using complex systems as a way of exploring a space of
possible works. Furthermore, complex systems research has
the potential to simulate emergent processes in the artworld,
such as the interaction between artists, audiences, and critics,
or the development of aesthetic ideas or artistic fashions over
time.

�e context for the special issue is explored in the
first paper, Understanding Aesthetics and Fitness Measures
in Evolutionary Art Systems, authored as an overview paper
on the topic by the editors and I. Santos. �is takes a
particular algorithm that is grounded in complexity science
ideas—evolutionary search—and explores links between the

construction of fitness measures in these systems, and mea-
sures and concepts of aesthetic value from the philosophy
and psychology of art. A common feature of complex systems
is that individual agents make evaluations as a driver for
behaviour, and so the links formed in this paper between
the human behaviour of making aesthetic judgements and
similar processes in computer systems have the potential to
inform work in many applications of complex systems to the
arts.

�is theme of aesthetic measures is continued in the
paper by A. Carballal et al., Avoiding the Inherent Limitations
in Datasets Used for Measuring Aesthetics When Using a
Machine LearningApproach. In this paper, the authors explore
how well a machine learning approach can replicate the
aesthetic and quality judgements of a number of humans
across a large set of photographs, exploring whether the
machine learning algorithms can learn to replicate and
generalise from human judgements and then apply these
accurately to new examples.�epaper also addresseswhether
the learned models replicate the phenomenon found in the
human results whereby aesthetic value and technical quality
are correlated. �ey conclude that the correlation is present
also in the learned models, though less strongly than with
humans, and that the machine learning models were typically
better at assessing (more objective) technical quality than
(more subjective) aesthetic value.

�e remaining articles explore a variety of other topics
concernedwith aesthetic aspects of images and graphics. Evo-
lutionary Computation for Modelling Social Traits in Realistic
Looking Synthetic Faces by F. Fuentes-Hurtado and colleagues
explores the use of evolutionary computation to select sets
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2 Complexity

of facial features that convey a particular social emotion and
then uses an automated image editing approach, Poisson
Image Editing, to create a realistic composite image that
combines the chosen features. By contrast with the realistic
images in that paper, Image Evolution Using 2D Power Spectra
by M. Gircys and B. J. Ross uses evolutionary algorithms
to produce abstract artworks based on realistic photographs
and paintings. �e system is based on a spectral analysis
of the original image, which is used to construct a fitness
function that then drives the evolutionary process to generate
novel images based on the same spectral profile. �e system
produces images that still connote features of the source
image but are more abstract.

Finally, the paper Evolving Stencils for Typefaces: Com-
bining Machine Learning, User’s Preferences and Novelty, by
T. Martins et al., explores a system with two components.
�e first of these is an evolutionary system for exploring the
complex search space of typefaces. �e second component is
a human-computer cocreative system to develop the fitness
function that is used by the evolutionary algorithm. �e
paper demonstrates an exemplary piece of work in combin-
ing human and computer expertise in a complex aesthetic
domain.

We believe that this selection of articles offers an inter-
esting and timely insight into the interactions between
aesthetics, machine learning, and computational creativity.
We hope that you enjoy and learn from reading the papers
in this issue.

Conflicts of Interest

�e editors have no conflict of interest regarding the publica-
tion of this special issue.

Juan Romero
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Typefaces have become an essential resource used by graphic designs to communicate. Some designers opt to create their own
typefaces or custom lettering that better suits each design project. This increases the demand for novelty in type design, and
consequently the need for good technologicalmeans to explore new thinking and approaches in the design of typefaces. In thiswork,
we continue our research on the automatic evolution of glyphs (letterforms or designs of characters). We present an evolutionary
framework for the automatic generation of type stencils based on fitness functions designed by the user. The proposed framework
comprises two modules: the evolutionary system, and the fitness function design interface. The first module, the evolutionary
system, operates aGenetic Algorithm,with a novelty searchmechanism, and the fitness assignment scheme.The secondmodule, the
fitness function design interface, enables the users to create fitness functions through a responsive graphical interface, by indicating
the desired values and weights of a set of behavioural features, based on machine learning approaches, andmorphological features.
The experimental results reveal the wide variety of type stencils and glyphs that can be evolved with the presented framework and
show how the design of fitness functions influences the outcomes, which are able to convey the preferences expressed by the user.
The creative possibilities createdwith the outcomes of the presented framework are explored by using one evolved stencil in a design
project. This research demonstrates how Evolutionary Computation and Machine Learning may address challenges in type design
and expand the tools for the creation of typefaces.

1. Introduction

Typefaces are an essential resource employed by graphic
designers [1], who are always willing to experiment with type
and to explore new thinking, tools, and techniques. However,
the creation of a typeface is a laborious process, involving
the design of several glyphs for different characters. In the
domain of type design, a glyph consists in a particular design
of a character, e.g., a letter, figure, or punctuation mark. This,
along with the increasing demand for new type design work,
increases the need for good technological means to assist the
designer in the creation of a typeface.

Although conventional computational design tools are
effective for precise design tasks during the later phases of
the design process, they offer insufficient support to design
exploration during the earliest, essentially conceptual, stages
of the design process. We also consider that most of the
prominent software design tools tend to bias and limit the
designers, who become accustomed to work and think in

terms of the primitives that these tools provide, the workflow
they induce, and the boundaries, implicit or explicit, that
they establish. As a result, the outcome of the design project
tends to be, at least partially, shaped by the tools, leading to
visual tendencies. Therefore, we argue that it is as important
to master and exploit the tools at hand, as it is to challenge
those tools, by modifying them or inventing new ones that
suit unique ideas and design projects.

In this work, we explore an evolutionary approach for
the computational generation of glyphs. This approach is
intended to provide the designer with a wide range of
alternative designs as stimuli for inspiration, working in a
mind-opening way and promoting new ideas. We do not
expect our approach to competing with more traditional type
design approaches, or to replace the designer. Our goal is to
develop a tool that aids the designer.

Although some evolutionary approaches for type design
exist [2–8]most of them rely on user evaluation, i.e.make use
of Interactive Evolutionary Computation (IEC). Although
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2 Complexity

asking the users to evaluate the designs being evolved enables
them to directly influence the course of the evolution, this
approach puts a considerable burden on them. This leads to
user fatigue and, consequently, to the inefficient exploration
of the search space. In addition, some of the identified
evolutionary approaches require pre-existing typefaces or
skeletons, the drawing of initial seed glyphs, or the identifi-
cation of letter parts.

In the work Evotype, we have been combining Evolu-
tionary Computation (EC) and Machine Learning (ML) to
evolve glyphs in an autonomously way, with automatic fitness
assignment. We started with a Genetic Algorithm (GA)
that evolved different populations of candidate glyphs, one
per target character, with and without migration of glyphs
between populations [9, 10]. Although these early approaches
were already able to evolve glyphs with expressiveness and
legibility, the glyphs often lacked coherence. In other words,
the evolved glyphs had no common visual structure and for
this reason, they did not seem to be part of a single typeface.
We addressed this limitation by evolving one population of
individuals, each being able to express all the glyphs [11].
Each individual consists of a stencil composed of lines that
can be used to construct glyphs. This approach provided
more coherence to the final glyphs, since their structure
share elements of the stencil. The fitness assignment was
autonomous, and it was able to guide evolution towards
stencils that produce simple, legible and coherent glyphs.

In this paper, we expand our approach to type stencil
design by:

(i) Developing an ML approach to evaluate the glyphs
produced by evolved stencils, combining a Convolu-
tional Neural Network (CNN) with Self-Organising
Maps (SOMs) to evaluate their recognisability as the
target character and similarity to existing glyphs,
respectively;

(ii) Changing the genetic representation of each stencil
to enable the encoding of Bézier curves, and this way
provide more expressiveness to the stencil;

(iii) Adopting an approach similar to the one developed by
[12, 13], allowing the users to design fitness functions
through a responsive user interface, thus allowing
them to express their design intentions at the meta-
level.Theuser-designed fitness functions are based on
features presented by the stencils, namely behavioural
features, related to how each stencil performs in draw-
ing glyphs for the target characters, and morphology
features, related to the structure and components of
each stencil;

(iv) Based on previous experimental results, as the evo-
lutionary process unfolds, the stencils being evolved
tend to converge towards an optimum, resulting in
visually similar stencils. The lack of diversity problem
is not new in the domain of arts and design, and
have been addressed by novelty search algorithms by
several authors in robotics [14], art [14, 15] and games
[14]. We employ an archive mechanism with hybrid
tournament selection [16] that allows us to address

Figure 1: Stencil, and its glyphs, evolved with the presented
framework in experiment I.

this issue, promoting diversity among the stencil
being evolved and providing a way to summarise the
evolutionary runs.

The experimentation described herein focuses on validating
the novel aspects of the approach. We begin by assessing the
adequacy of the representation and of the ML-based fitness
components by performing experiments on the evolution of
stencils that are compact, composed of lines with continuity
between them, and that produce glyphs that are recognisable
and similar to existing typefaces. Then we test the user
interface by performing and analysing runs with user-defined
fitness functions. The analysis of the experimental results
aims at two core aspects: the ability of the GA to optimise
fitness and the ability of the evolved stencils to (i) capture
the design preferences expressed by the users and (ii) meet
their expectations. Finally, we assess the ability of the novelty
search mechanism to generate diverse stencils in a single
evolutionary run and the adequacy of the archive, produced
during the process, to summarise the results that are then
presented to the user.

Overall, the experimental results (see Figure 1) show the
adequacy of the proposed approach, demonstrating how EC
and ML may address challenges in type design and expand
the tools for the optimisation of the design process. Addi-
tionally, they also show how meta-level interactive evolution
[12, 13] allows the expression of user intentions and goals
without imposing a burden to the user, and how novelty
search increases the diversity of feasible solutions.

The remainder of this paper is structured as follows. First,
we overview the proposed framework. Then, we conduct
experiments on the framework, describing the experimental
setup and analysing the experimental results. Finally, we
present conclusions and directions for future work.

2. Approach

Similarly to our previous work [11], the presented approach
is based on the idea of a stencil capable of generating every
letter of the alphabet in a coherent manner. In 1876, the
American engineer Joseph A. David developed the Plaque
Découpée Universelle (see Figure 2). This stencil consists of a
grid of lines that enables the construction of letters, numbers,
punctuation, accents, etc. [17]. The seven-segment display,
invented a few decades later, employs a similar approach as
the PDU by switching on and off its segments in different
combinations in order to represent figures and letters.

The design of typefaces typically involves the creation of
modular parts that are then combined by the designer to
form different glyphs. By careful looking at the glyphs of
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Figure 2: Plaque Découpée Universelle, Joseph A. David, 1876.

a given typeface, one may understand their anatomy [18],
i.e. the reuse of smaller parts among glyphs. This sharing of
parts between glyphs is fundamental to provide them visual
coherence. Similarly, the elements (e.g. lines) that construct
a stencil can work as a unifying grid that also provides
coherence to glyphs created with those elements.

We present a system that employs a Genetic Algorithm
(GA) to evolve type stencils (see, e.g., [19] for more details
about GAs). The system shares common traits of the works
presented in [11] and uses a feasible-unfeasible strategy
presented in [16]. We also use an archive to save the evolved
individuals based on a similarity criterion [16, 20, 21].

The system is schematically overviewed in Figure 3 and
behaves as follows. The evolutionary process begins with
the initialisation of the population with randomly created
stencils. The fitness of each stencil is calculated according
to a fitness function designed by the user. With the stencils
evaluated, a new generation of stencils is created using an
elitism strategy, i.e. a preset number of fittest stencils proceed
unchanged. This step has no effect on the first generation.
After the population is evaluated, stencils above a preset
threshold are considered feasible stencils.The feasible stencils
are compared with the stencils on the archive and if they
are dissimilar from the existing stencils they are added to
the archive. A stop criterion is tested to determine whether
evolution proceeds or stops. If evolution continues, the
system determines based on the number of feasible stencils
whether novelty search is performed or not, determining
how stencils are selected as parents. If novelty search is not
performed, stencils are selected by tournament based on their
fitness. If novelty search is performed the tournament is based
on the fitness and novelty of the individuals of the popula-
tion and the individuals that are on the archive. Variation
operators, i.e. crossover and mutation, are applied to the
stencils selected as parents to generate offspring stencils. The
offspring stencils are evaluated and a new generation is again
formed. The whole evolutionary process is repeated until the
stop criterion is satisfied. The following subsections detail
some mechanisms of the system.

2.1. Representation. Each stencil being evolved consists in
a composition of line segments and Bézier curves with
varying thicknesses. Therefore, each gene in the genotype of
each stencil encodes one line segment or curve in a two-
dimensional space.

We implemented an encoding that enables the represen-
tation of line segments and Bézier curves. Each gene consists
in a 9-tuple with the coordinates of the two endpoints, the
angles of the two control points, the lengths of the two control
points, and the thickness value. Genes with angle and/or
length of the control points set to zero represent straight lines.
Figure 4 illustrates the different attributes encoded in each
gene: (X1, Y1, X2, Y2, A1, A2, L1, L2, T). The position of
the endpoints is constrained by a square grid with a preset
density. Also, note that the number of lines may vary from
stencil to stencil.

The mapping mechanism that expresses each genotype
into its phenotype consists in the drawing of black lines
encoded in the genotype on a white canvas. However, the
mapping process of the stencils being evolved is not direct.
We need one mapping for each character we want to draw
with the stencil. This way, we developed a mapping mecha-
nism based on binary masks that define how a given stencil is
used to draw a given glyph.Whenwe say howwemean which
lines are used. This mechanism is illustrated in Figure 5. In
what concerns representation, a stencil-based approach may
hinder the evolutionary process, because the genetic algo-
rithm has to find a structure of lines (stencil) that is capable
of drawing any letter. One could say that we are dealing
with a compression problem, i.e. compressing all letters into
a stencil. Nonetheless, we believe the “compression” nature
behind this stencil-based approach may promote coherence
and unity among the resulting glyphs. Furthermore, it helps
to understand the anatomy of glyphs and how they share
their components/parts. Also, this representation enables
us to use an evolved stencil to draw more visual elements
other than letters, e.g. signage or symbols, that would be
coherent and have the same style as the letters encoded in that
stencil.

2.2. Variation. For the initial population the stencils are
created at random. We perform variation operations on
the stencils using crossover and mutation. The crossover
operation consists in the exchange of lines between two
stencils. The crossover operator can be summarised to the
following steps: (i) select a random rectangular area of the
grid; (ii) determine for both parents the lines whose middle
points are inside the random rectangular area; and (iii)
exchange those lines between the parents. This crossover
may be asymmetric as the number of genes it moves from
the individual A to individual B may be different from the
number of genes it moves from B to A.This results in stencils
with a different number of elements in comparison with their
parents.

The mutation of a stencil consists in the random mod-
ification of genes (lines) of its genotype and comprises
three procedures: deletion, modification, and insertion. Each
mutation procedure can occur independently with preset
probabilities. The deletion procedure selects a line at random
and removes it from the stencil. The modification procedure
changes one or more lines of the stencil by performing one
of the following options, each with a preset probability: (i)
moving one of the endpoints by the minimum translation in
the grid in one of the eight possible directions; (ii) varying
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Figure 4: Line encoding.

the angle of one of the control points; (iii) varying the
length of one of the control points; or (iv) varying the
thickness value. Finally, the insertion procedure inserts a
new randomly generated line into the stencil. The deletion
and insertion procedures cause the variation of the number
of lines, enabling the evolution of stencils with different
size. Either variation operators preserve the validity of the
stencils. A stencil is considered valid if: (i) all its lines are
different; (ii) all lines are located inside the limits of the grid;
(iii) the number of lines remains within a preset range; (iv)
no line has null length; and (v) no line contains another
one.

2.3. Evaluation. Based on the work of Romero et al. [22] and
previous approaches [9, 20, 23, 24], we adopt an automatic
fitness assignment scheme to evaluate the individuals, i.e.
stencils, and this way autonomously guide the evolutionary
process.

The evaluation of each stencil consists in the computation
of (i) behaviour features, related to how the stencil performs
in drawing glyphs for the target characters, and (ii) mor-
phology features, related to its structure and components. We
conceived the fitness assignment to enable any combination
of features to be pursued by the evolutionary process. Fur-
thermore, in a combination of features, each feature can have
more or less importance (weight) in comparison to the other

1 2

3

4

1011 1101

Figure 5: Mapping mechanism expressing the genotype of a stencil
(top) into two glyphs (bottom). Binary masks are used to indicate
which lines of the stencil should be used to draw the glyphs.

features. As a result, the fitness function consists in aweighted
product:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑖𝑛𝑑)

=
𝑛

∏
𝑖

(𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛𝑖 (𝑖𝑛𝑑) ∗ 𝑤𝑖 + 1 − 𝑤𝑖) ,
(1)

𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 (𝑖𝑛𝑑) = 1 − 𝑓𝑒𝑎𝑡𝑢𝑟𝑒V𝑎𝑙𝑢𝑒𝑖 (𝑖𝑛𝑑) − 𝑡𝑖
 , (2)

with𝑤𝑖, V𝑖, 𝑡𝑖 [0,1], where𝑤𝑖 is the weight of the 𝑖𝑡ℎ feature, 𝑡𝑖
is the desired target value for the feature i, and 𝑓𝑒𝑎𝑡𝑢𝑟𝑒V𝑎𝑙𝑢𝑒𝑖
is the value measured corresponding to the feature 𝑖. The
evolutionary process aims at maximising the value of Equa-
tion (1), whose theoretical optimum corresponds to a stencil
that simultaneously matches all features to their target values
according to Equation (2). All the features and weights are
normalised to the [0..1] domain. As such, maximising or
minimising a given feature consists in setting its target value
to 1 or 0, respectively.

The following subsections detail the behaviour and mor-
phology features of the stencils.

2.3.1. Behaviour. One of the preconditions of the stencils
evolved with the proposed framework is their ability to
produce glyphs that are legible, i.e. stencils should be able
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Table 1: Behaviour features.

feature description

recognisability character recognition using a Convolutional Neural Network (confidence value of the classifier in recognising
the potential glyph as the target character)

similarity visual similarity to existing glyphs using Self-Organising Maps (RMSE pixel-by-pixel similarity between the
potential glyph and the most similar neuron in the Self-Organising Map of the target character)

to express images that are recognised as characters. The
framework evaluates this ability by measuring features based
on the glyphs that each stencil is able to express. Table 1
presents an overview of these features, which we refer to as
behaviour features.

The expression of each stencil into glyphs takes a couple
of steps. As explained before, each stencil has several lines
that can be activated to draw glyphs. First, the system chooses
a character for which the stencil has to produce glyphs.
Next, among the lines that compose the stencil, we search
which mask of active lines better expresses glyphs for the
chosen character. This way, each mask stores the best use,
or configuration, of the stencil found during the evaluation
process to draw a given character.

We use a hill-climbing algorithm to perform the search
for the best configuration of the stencil being evaluated for
each target character. This way, the evolutionary process
includes a nested search to find optimal configurations for
each stencil. The search starts with all the lines deactivated,
activating one per step. At each step, all newly gener-
ated configurations are evaluated as a glyph for the target
character, i.e., how the expressed glyph matches the target
similarity and recognisability values. The search stops when
no improvement in the evaluation is achieved, storing the
best mask and evaluation value of the resulting glyph. This
process is repeated for all the target characters. In a typical
evolution, all target characters are equally considered, i.e. the
stencils being evolved should be able to draw glyphs for all
of them. However, the user can specify different importance
levels for the target characters. This enables the user, for
example, to evolve stencils that can express glyphs for a subset
of characters, or to improve the legibility of some glyphs of an
evolving stencil.

Recognisability. We use a Convolutional Neural Network
(CNN) classifier to calculate how much a glyph is recognised
as a given character. CNNs are a type of Deep Neural
Networks (DNNs) that have been used successfully in image
classification and recognition tasks [25, 26]. The main char-
acteristic of a CNN is the usage of convolutional and pooling
layers, which provide feature extraction and dimensionality
reduction in training [27]. Each layer can be seen as a filter
from which features are extracted and learnt.

The architecture of the CNN is based on the Lenet-5
network for digits recognition [28] but trained as multi-
class supervised classifier for the 26 capital letters of the
Roman alphabet. Our approach must perform several eval-
uations of several glyphs per generation, therefore the chosen
network was a trade-off between computational power and
efficiency. The classifier is trained on the 32-by-32 pixel

representation of the typefaces served by Google Fonts.
Besides the typefaces, we added a negative class represented
with random images generated by our approach that do not
resemble any characters, yielding a total of 27 classes. The
value of the recognisability feature of a stencil configuration
is the output of the classifier, indicating its confidence in
recognising the input image of the configuration as its target
character. An output of 1 indicates total confidence while an
output of 0 indicates the opposite. Note that the Machine
Learning model used is based on data available and off-the-
shelf architectures with its inherited limitations and exploits
[29, 30]. Furthermore, the models employed are not able to
harness the full potential of the human-like visual system.
With this inmind, this feature is used to evaluate the legibility,
recognisability and readability of the input images.

Similarity. An array of Self-Organising Maps (SOMs), one
for each target character, is used to calculate the similar-
ity feature. The SOM [31, 32] is among the most well-
known unsupervised learning and clustering approaches.The
architecture of the SOM consists in a feed-forward neural
network that reduces information while preserving the most
important topological relationships of the data elements.This
enables the calculation of the visual similarity of the glyphs
expressed by each stencil with existing glyphs.

Each SOM is constructed of 64 neurons and is trained
with 32-by-32 pixels images of several glyphs of the corre-
sponding target character. The glyphs used for training were
gathered from the typefaces of the Google Fonts platform.

To calculate the similarity feature of a stencil configu-
ration (glyph), an image representation of it is created with
the same size as the SOM neurons and then compared with
each neuron of the target character SOM. In this comparison,
the similarity between the image representation of the stencil
configuration and each neuron in the SOM is calculated
using the Root Mean Square Error (RMSE), which measures
how close, or far, the candidate glyph is to a reference
glyph (neuron) on a pixel-by-pixel basis. The value of the
similarity feature considers the distance between the glyph
expressed by the stencil and the most similar neuron in the
SOM, also called the best matching unit, and is given by:
1–normalisedRMSE.

2.3.2. Morphology. In addition to the behaviour features, the
framework considers a series of other features related to the
structure and components of the stencil. Table 2 presents an
overview of these features, which we refer to as morphology
features.

By adjusting the morphology features, one can promote
the evolution of stencils that exhibit particular structural
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Table 2: Morphology features.

feature description
size number of stencil lines (normalised to the [0..1] range according to a preset range)
coverage rectangular area occupied by the stencil lines (normalised to the [0..1] range according to the grid area)
continuity percentage of stencil lines that share endpoints with other line
intersection percentage of stencil lines that intersect other line
parallelism percentage of stencil lines that are parallel to other line

horizontal symmetry similarity between the top half of the stencil and the bottom half mirrored vertically (calculated using the RMSE
between the top and bottom half)

vertical symmetry similarity between the left half of the stencil and the right half mirrored horizontally (calculated using the
RMSE between the left and right half)

curves percentage of stencil lines that are curves

symmetric curves
percentage of stencil curves that are symmetric in relation to the line that (i) is perpendicular to line segment S
and (ii) intersects the middle point of S; where S is the line segment that connects the two end points of the
curved line.

length average length of the stencil lines (normalised to the [0..1] range)
length diversity standard deviation of the lengths of the stencil lines (normalised to the [0..1] range)
thickness average thickness of the stencil lines (normalised to the [0..1] range)
thickness diversity standard deviation of the thicknesses for the stencil lines

characteristics. The possibilities are vast. For instance, one
can configure the morphology features of the fitness function
to reward stencils with only curved lines that intersect little,
or horizontally symmetric stencils with only straight lines
with great continuity, or stencils with long curved lines that
intersect little.

The combination of morphology and behaviour features
enables the evolution of stencils that match particular visual
characteristics while ensuring the legibility of the glyphs.This
way, the user can explore different compromises between the
legibility and the style provided by the generated stencils.

2.4. Archive. Similar to the work done in [16], the archive
is used to evaluate our solutions during the evolutionary
process and prevents the algorithm from searching areas of
the search space that were already visited. The archive should
hold the set of stencils found to date by the evolutionary
process. The size of the archive shows how the algorithm can
generate diversified stencils.

The archive comes into play after the fitness assignment.
At this stage, a candidate stencil has its fitness assigned, and
it has to meet two requirements in order to be added to the
archive: (i) its fitness must be greater than or equal to an
adequacy threshold fmin; (ii) it needs to surpass a dissimilarity
threshold when compared to those that already belong to the
archive.

This process is performed by computing the average
dissimilarity between the candidate and a set of k-nearest
neighbours. When the average dissimilarity is above a pre-
defined dissimilarity threshold, dissimmin, the individual is
added to the archive. In this approach, we evaluate the stencils
based on their expression as glyphs, i. e., the stencils are
analysed in the form of images of their glyphs. As in [16], the
dissimilarity metric for an image 𝑖 is computed as:

Figure 6: A stencil’s expression rendered to a single image, which
is used to compute the similarity between stencils for the archive
algorithm.

𝑑𝑖𝑠𝑠𝑖𝑚 (𝑖) = 1
𝑚𝑎𝑥𝑎𝑟𝑐ℎ

𝑚𝑎𝑥𝑎𝑟𝑐ℎ

∑
𝑗

𝑑 (𝑖, 𝑗) (3)

Where maxarch is a predefined parameter for the number of
most similar images to consider when comparing with image
𝑖 and 𝑑(𝑖, 𝑗) is a distancemetric.The distancemetricmeasures
how different two images are.There are two exceptions to the
application of this measure: (i) if the archive is empty then the
first stencil that has a fitness above the fmin is added; and (ii)
if the number of entries on the archive is less than maxarch we
use the number of existing entries instead of maxarch.

In order to evaluate the similarity between stencils, we
resort to an image similarity metric applied to the stencil’s
behaviour, i.e. the image output of the configurations for
each letter. One image is created containing several letters
concatenated to form a “banner” image as shown in Figure 6.

The banner is used to evaluate the similarity among the
several candidate stencils and the archived ones. We use a
similarity metric the RMSE between the pixels. It is out of
the scope of this work to explore several dissimilarity metrics.
Since we are processing a considerable number of images
per generation, we resorted to RMSE for its fast calculation.
To the interested reader, we suggest consulting the works
by [33, 34] for more detail on similarity and dissimilarity
metrics. When a stencil is added to the archive, it counts as
a feasible solution.

Themechanism that selects feasible solutions is important
to shape how evolution will proceed, depending on the
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results obtained in a given generation. We introduce the
novelty approach presented in [16], a customised selection
mechanism that can switch between a fitness-based strategy
and a hybrid mechanism that considers both fitness and
novelty. As depicted in Figure 3 it can switch between fitness
and hybrid according to the following decision rule: if the
number of feasible solutions of the current generation is lower
than a threshold Tmin change to fitness guided evolution; or
if the number of feasible solutions of the current generation
is above a threshold Tmax change to hybrid mechanism. In
fitness guided evolution, the tournament selection is based on
the fitness values of the candidate solutions, as in a standard
Evolutionary Algorithm (EA). If hybrid is chosen, it is
necessary to compute the novelty of each selected individual,
and perform a Pareto-based tournament selection, using the
novelty and fitness of each selected individual as two different
objectives to maximise. The novelty computation process
is inspired by Lehman and Stanley’s work [35], with one
small change: the 𝑘most similar images are considered from
the set of the selected individuals and the archive, instead
of considering the whole population and the archive. At
this stage, each selected individual has a fitness and novelty
value, and there is the need to determine the winner of the
tournament. This process is inspired by multi-objective EAs,
namely the Pareto-based approaches, which select the best
individuals based on their dominance or non-dominance
when compared to other individuals. In this work, the
hybrid tournament selection determines the non-dominant
solutions by comparing, among the selected individuals, both
fitness and novelty. After the set of non-dominant individuals
are computed, we have the so-called Pareto front. Using
the hybrid mechanism, the tournament winner is selected
by randomly retrieving one of the solutions of the Pareto
front.

2.5. Implementation. The proposed framework is imple-
mented in two modules: (i) the evolutionary system and
(ii) the fitness function design interface. The first module,
the evolutionary system, operates the GA and the fitness
assignment scheme that automatically guides it. The second
module, the fitness function design interface, enables the user
to adjust parameters of the fitness assignment and other inner
workings of the first module. Figure 7 shows a screenshot of
the evolutionary system (left) and the fitness function design
interface (right).

The fitness function design interface communicates with
the evolutionary system through a JSON file. Technically, one
could manually adjust the parameters stored in that file and
this way use the evolutionary system alone to evolve stencils.
However, this would hinder the design of fitness functions
and the configuration of the evolutionary process.

A typical use of the framework could be initiated as
follows. The user launches the evolutionary system and
selects the source of the setup parameters: (i) from a setup
file or (ii) from the fitness function design interface. When
the first source is selected, the user imports a setup file
stored in the computer, e.g., a setup file previously exported
using the fitness function design interface. This approach
is useful to test a series of experimental setups. When the

Figure 7: Screenshot of the framework, consisting of the evolution-
ary system (back) and the fitness function design interface (front).
A demo video can be seen at http://cdv.dei.uc.pt/2018/complexity/
evotype.mov.

second source is selected, the evolutionary system activates
a mode in which it listens for new parameters coming from
the fitness function design interface. In this approach, the
user uses the fitness function design interface to adjust the
setup parameters, which are directly sent to the evolution-
ary system. This enables the user, for example, to modify
the fitness function during the evolutionary process. After
selecting the source of the setup parameters, the user is
in position to evolve stencils. In the following subsections,
we overview some of the key functionalities of the two
modules.

2.5.1. Evolutionary System. The evolutionary system module
provides the necessary means to evolve, browse, test, and
export type stencils. After selecting the setup parameters, one
can command the evolution of stencils by setting the random
seed and instructing the system to generate a given number
of generations. During evolution, it is possible to browse
throughout the current generation of stencils, which are
arranged vertically by descending order of fitness.The system
features amode that renders the elements of each stencil using
different colours, either when previewing the entire stencil
or the glyphs produced with it. The purpose of this mode is
to visualise the reuse of elements of the stencil between the
different glyphs. The user can select each stencil to (i) test it
by typing a couple of words with the glyphs produced with
it; (ii) visualise its features, or measurements, that are being
considered by the fitness function; and (iii) export it to file,
enabling further refinements and its utilisation outside the
framework.

2.5.2. Fitness Function Design Interface. The module of the
fitness function design interface enables one to design fitness
functions to automatically guide the evolution of type sten-
cils. The interface empowers the user by enabling him/her
to express preferences through the specification of proper-
ties that he/she intends to observe in the evolved stencils.
Although themain goal of the interface is the configuration of
the fitness function, it also enables the adjustment of several

http://cdv.dei.uc.pt/2018/complexity/evotype.mov
http://cdv.dei.uc.pt/2018/complexity/evotype.mov
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parameters of the evolutionary process, e.g. population size,
elite size, tournament size, crossover rate, mutation rate,
grid size, phenotype size, and other parameters related to
the novelty search approach, including the minimum fitness
for a stencil to be considered feasible and the minimum
dissimilarity to be added to the archive.

The fitness function design interface consists of a web
page with multiple sliders and buttons that enable one to
adjust evaluation and evolution parameters in a high-level
way. One could say this module acts as an interactive facil-
itator of parameterisation of the first one, the evolutionary
system, abstracting the user from the inner workings of
the framework. This approach enables the user to submit
parameters to the evolutionary system at any time, as already
explained, and this way develop or change his/her preferences
throughout the generations. In addition to submitting the
current parameters to the evolutionary system, the user can
also export the parameters to file and import them later.
The decision of implementing this module as a web page is
related to our short-term goal of converting the framework
into a web application. This would enable anyone to use the
framework.

Based on the two levels of evaluation identified at the
beginning of this section, the fitness parameters presented
in the interface were arranged into two groups that are
visually distinguished using different colours. The top group
of parameters is related to the behaviour of the stencil,
while the bottom group is related to its morphology. The
interface employs tooltips to enable the user to understand
the different components of the interface, e.g. the semantics
associated with each feature and how it is calculated. When
the user hovers the cursor over a component, a tooltip appears
displaying information about it.

For each parameter, the user may set (i) the value that
should be matched by the stencils being evolved and (ii) a
weight that indicates the importance of that parameter in
the fitness function. The only exception is the last parameter
of the behaviour group, which presents an array of vertical
sliders to specify the relevance of each character the evolved
stencils should be able to draw glyphs for. Changing the
weight of one parameter results in having more or less impact
in comparison to the other parameters. In order to make the
adjustment of weights easier to understand, we adopted an
approach where the user indicates each weight by adding or
subtracting units to the weight. Nonetheless, one can also
set the weight to a specific floating value. For instance, one
parameter with a weight of 3 would have an importance three
times greater than a parameter with a weight of 1. Following
this reasoning, setting theweight of one parameter to 0means
that it will be ignored. One advantage of this approach is
the precision it provides to the user when adjusting each
weight, in comparison to other approaches that employ,
for example, sliders. The final weight of each parameter,
considering the other weights, is displayed on the right side.
This information helps the user understanding the overall
impact of each individual parameter in the fitness function.
Also, by only displaying the final weights greater than zero,
we are able to visually highlight the parameters that are being
considered.

3. Experimentation

We conduct four experiments on the proposed framework
with different goals in mind. In the first experiment, we study
the adequacy of the hybrid fitness function (similarity and
recognisability) for guiding the evolutionary process. In the
second experiment, we analyse how the design of fitness
functions influences the outcomes of the system and if, and
to what extent, it is able to convey the preferences of the user.
In the third experiment, we investigate the impact of novelty
search on the evolutionary convergence and on the diversity
of stencils evolved. In the last experiment, we explore the
creative possibilities provided by the outputs of the presented
framework by using one evolved stencil in a design project.

In this work, we evolve stencils to draw glyphs for the
uppercase letters of the Roman alphabet. The base experi-
mental parameters are summarised in Table 3.

3.1. Experiment I - Hardwired Fitness Functions. In this
section, we analyse the ability of the approach to evolve
stencils with hardwired fitness functions. In [11] we validated
that the evolutionary engine by performing experiments that
used and hardwired fitness function resorting to RMSE for
a predetermined target typeface. The results have shown
that the evolutionary algorithm is able to evolve stencils
that expressed visually coherent glyphs. However, in the first
set of experiments, the evolutionary algorithm generated
stencils which maximised the number of elements and some
presented several gaps. In the second set of experiments,
we redefined the fitness function to control the number
of elements and minimize gaps. The approach was able to
generate simpler stencils able to produce glyphs similar to the
targets using lesser elements, promoting the reuse of stencil’s
elements for multiple glyphs. An overall observation is that
in order to promote a specific behaviour we have to redefine
the hardwired fitness function, which is a sensible and time-
consuming process.

In the experiments of [11] the only behaviour feature
used to guide the fitness was the similarity feature. It was
based on the pixel-based RMSE between a glyph expression
to a predefined target typeface glyph. In order to promote
more flexibility in the solutions, we use a SOM for the
calculation of the similarity feature. The SOM organises and
reduces the instance space. We use RMSE to compute the
similarity of a candidate glyph expression with an expression
of the closest SOM neuron. The SOM trained with several
typefaces provides different targets to explore while reducing
the number of targets to be evaluated. This allows for a
more flexible evaluation of similarity. Nevertheless, there is
a possibility of the approach exploring the activations of
different SOM neurons belonging to different glyphs. We
also introduce the concept of recognisability, performed by
a CNN. The idea of using the CNN evaluation as part of the
concept of recognisability is to promote the generation of
stencils which retain recognisable characteristics of existing
glyphs.

In Table 4 we present three fitness functions defined with
different recognisability and similarity weights. The size and
continuity features were maintained from the experiments
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Table 3: Experimental Parameters.

parameter value
generations 1000
population size 100
elite size 1
selection Tournament
tournament size 3
rate crossover 0.5
max genes 40
rate deletion 0.05
rate insertion 0.05
rate modification 1 / genotype size
grid size 20 x 20
min length permitted (value relative to grid size) 0.15
control points angles permitted (rotation angles in
degrees and relative to the line segment that connects
the endpoints)

[–90, –45, 0, 45, 90]

control points lengths permitted (values relative to the
distance between the endpoints) [0.25, 0.5, 0.75]

thickness values permitted (values relative to the
phenotype size) [0.125]

phenotype size 32 x 32
hill-climbers 1

Table 4: Fitness functions designed and tested in experiment I.

fitness function feature target value weight

fitRec

recognisability 1 100
similarity - 0

size 0 2
continuity 1 2

fitSim

recognisability 0 0
similarity 1 100

size 0 2
continuity 1 2

fitHybrid

recognisability 1 67
similarity 1 33

size 0 2
continuity 1 2

in [11]. In all the experiments we track the response values
of each feature that compose the final fitness function for
analysis purposes, even if the weight is set 0, i.e. it does not
participate in the calculation of the fitness.

In fitRec, the evolutionary process is mainly guided by
the recognisability feature, i.e., based on the activation of the
CNN for each stencil’s glyph expression. In Figure 8, on the
top left plot we can observe the behaviour of the evolutionary
algorithm using the fitRec fitness function, showing that we
are able to guide evolution and optimise the stencils’ fitness. It
starts with a relatively low fitness value but rapidly converges
to high fitness values in a few generations. If we analyse the

progression of the values of the other components, we can
observe that the similarity is not affected by the progression
of the recognisability. The size feature in the first generations
tends to rapidly increase, meaning that elements are being
removed from the stencil. When the fitness stabilises, the
size feature increases, expressing the highest value amongst
the tested functions. It means that in the end, it has fewer
elements than the other fitness functions. Regarding conti-
nuity, it consistently rises along the generations. Based on the
values at the end of the evolutionary process, it seems to create
disconnected stencils when compared with the other fitness
results.

The fitSim function uses the similarity feature to guide
fitness. As shown in Figure 8, the evolutionary algorithm is
able to optimise the fitness function, although it does not
reach the maximum theoretical value. The recognisability
values tend to increase with the increase of the similarity
feature values. The size component consistently increases,
suggesting that the best stencil tends to remove elements
along the generations. When compared to the others, fitSim
reaches to the highest number of elements used by the stencil.
The high values of the continuity feature show that it tends to
create a connected stencil.

The fitHybrid is a fitness function that combines both
the similarity and the recognisability to guide evolution. The
values of Table 4 show that more weight was given towards
the recognisability. The idea is to have stencils able to pro-
duce expressive and functional typefaces, exploring different
compromises between the expressiveness and the legibility
of the glyphs while maintaining coherence. Once again, we
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Figure 8: Progression of the fitness and features’ values of the fittest stencil when fitness functions fitRec (top left plot), fitSim (top right plot),
and fitHybrid (bottom plot) guide the evolutionary process. The visualised results are the average of 30 runs.

are able to guide the evolutionary process and optimise the
fitness function. In terms of fitness, it is possible to observe
that it maintains a certain stable level of similarity and that
the recognisability contributes more to the fitness increase.
In terms of the other two features, size and continuity, we can
say that we get the good from both fitness features, i.e., a low
number of elements and a more connected stencil.

In Figure 9 we can observe generated stencils for the
fitness function used in this first experiment. It is noticeable
the difference between them at the visual level. The results
also cope with the analysis in terms of fitness components.
fitSim tends to generate stencils with more and connected
elements. Although the SOM gives us more flexibility than
theRMSE target approach of [11], in this approach it generates
stencils that fill the space of the target neurons of the SOM.
The flexibility comes with a trade-off, some of the glyphs
generated by the stencil appear to focus on different SOM
neurons, resulting in different glyphs expressions. fitRec uses
fewer elements but the used elements are more disconnected
and dispersed. However, we see some random features
around the generated glyphs that can be seen as exploits
of the classifier guiding the evolution. We are aware of the
propensity of the evolutionary algorithms to find shortcuts
and exploit weaknesses on fitness assignment schemes that

use ML approaches [28–30]. In fitHybrid we combined the
recognisability with the similarity to prevent the approach
to guide the evolution to recognisable but atypical glyphs.
fitHybrid tends to generate stencils with a small number
of elements that are connected generating glyphs that are
simpler, distinguishable elements, demonstrating variability
while maintaining coherence. Overall, we consider that using
the fitness functions defined for this experiment we are still
able to evolve stencils that generate coherent glyphs.

In the previous set of experiments, we used a stricter eval-
uation based on a target font [11]. The algorithm converged
to a structural representation of that font, i.e. a stencil to
draw it, showing that the approach can arguably generate
a compressed representation of a font. In the experiments
presented in this section, we observe a similar behaviour.This
enforces the idea that the representation is adequate to the
task at hand.

The results show that we can evolve recognisable and leg-
ible fonts, but this is not enough for them to be aesthetically
appealing. Performing more generations could marginally
augment the aesthetics of the results but would not lead us
to the high-quality solutions of a commercial font. This fact
leads us to two different hypotheses not mutually exclusive
about type design.When a type designer creates a font, it does
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Figure 9: Typical results evolved in different runs of fitRec (top
group), fitSim (middle group) and fitHybrid (bottom group). To bet-
ter identify each element of the stencils (left) in the corresponding
glyphs (right), a random colour is used for each element.

not look exclusively into its functionality [31–33]. The visual
features andML approaches in use are not able to harness the
potential of the human-like visual system to guarantee that if
something is legible from the machine point of view is legible
for the human and that the factors that lead to an increase or
decrease in terms of legibility, readability and recognisability
to a human are the same for the machine and vice-versa.
Assuming that this is the case, if we use more complex visual
models, trained to recognise other types of artefacts and, as
such, subject to the tasks that a human is subject to deal in a
daily basis it could contribute to enhancing the results.

Based on overall results and discussion, we consider
that experimenting with fitness function design in a semi-
automatic way can be beneficial. This path is explored in the
next set of experiments.

3.2. Experiment II – Designing Fitness Functions. In this
experiment, we analyse how the design of fitness functions
influence the outcome of the framework and if, and to what
extent, they are able to convey the specified preferences. We
focus on the morphology features because these are likely to
be perceived visually on the stencil as well as on the resulting
glyphs.

Using the experimental setup tested in experiment I as a
base, we add other features to the fitness function. We design
and test 4more fitness functions. Each one consists in the base
fitness function (fitHybrid) combined with one, or two, more
morphology feature(s).The features added to fitHybrid, along
with a name for the resulting fitness function, are listed in
Table 5.

Although many different combinations of features could
be tested, we selected some that we believe can be more

Table 5: Fitness functions designed and tested in experiment II.

fitness function feature target value weight
fitCurves curves 1 4
fitNoCurves curves 0 4

fitSymCurves curves 0.5 4
symmetric curves 1 4

fitUniformLength curves 0.5 2
length 0.66 4

noticeable in the evolved stencils. Since the encoding of
Bézier lines is an iteration of this framework (comparing to
our previous work [11]), we also focused this experiment on
features related to them.

We designed each fitness function to set the framework
to evolve stencils with specific visual characteristics:

(i) fitCurves— stencils entirely composed of curves;
(ii) fitNoCurves— stencils with no curves;
(iii) fitSymCurves — stencils with half of their elements

being symmetrical curves;
(iv) fitUniformLength — stencils also with half of their

elements being curves, and all lines should have a
length of two-thirds of the grid size.

Figure 10 summarises the results of this experiment. Per
fitness function, we visualise the progression of each feature
being evaluated and present one typical stencil evolved
using that fitness function. In general, and based on the
different runs of each fitness function, the results indicate
that: (i) different fitness functions lead to different stencils;
(ii) different runs with the same fitness function converge to
different stencils, thus providing diverse stencils; and (iii) the
four fitness functions designed are able to guide evolution
towards stencils with features that match the preferences
behind them, sometimes in surprising ways.

The framework frequently finds interesting ways tomatch
the fitness functions, generating unusual glyphs more or less
functional. On the other hand, sometimes, the framework
generates stencils that, from the type design point of view,
may be appealing due to their novelty and aesthetics, but
which do not maximise all features of the fitness func-
tion. Nevertheless, the results reveal the effectiveness of the
approach in exploring possibilities that are consistent with
the preferences expressed by the user who designed the
fitness function. Looking at each stencil, and their glyphs, in
Figure 10, one can see that they exhibit visual properties that
are aligned with the features added to each fitness function.
For instance, the stencil evolved with fitCurves is almost only
composed of curves (only one line segment is used); on the
other hand, the stencil evolved with fitNoCurves is almost
only composed of line segments (only three curves are used);
the stencil evolved with fitSymCurves, in addition to using
the same number of curves of line segments, most of the
curves used are symmetric (only one curve is asymmetric);
and the stencil evolved with fitUniformLength, has the same
balance of curves and line segments as the previous stencil all



12 Complexity

fitCurves

fitNoCurves

fitSymCurves

fitUniformLength

continuity
similarity
recognisability

size

curves

fitness

continuity
similarity
recognisability

size

curves

fitness

1

0.8

0.6

0.4

0.2

0

Fi
tn

es
s

0 250 500 750 1000
Generation

continuity

similarity
recognisability

size

curves
symmetric curves

fitness

0 250 500 750 1000
Generation

continuity

similarity
recognisability

size

curves
length

fitness

0

0.2

0.4

0.6

0.8

1
Fi

tn
es

s

250 500 750 10000
Generation

250 500 750 10000
Generation

0

0.2

0.4

0.6

0.8

1

Fi
tn

es
s

0

0.2

0.4

0.6

0.8

1

Fi
tn

es
s

Figure 10: Experimental results when the evolutionary process is guided by fitCurves, fitNoCurves, fitSymCurves, and fitUniformLength,
in descending order. For each fitness function, one can see the progression of the fitness and features’ values of the fittest stencil over the
generations (left) and one typical fittest stencil of the last generation (right).The visualised results are the average of 10 runs.
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Figure 11: On the left, the progression of the fitness and features’ values of the fittest stencil across generations using the novelty and no novelty
setups. On the right, the evolution of the archive size across generations. The visualised results are from a single run.

Table 6: Experimental parameters.

parameter value
tmin 5
tmax 15
maxarch 5
fmin 0.85
Dissimilarity metric RMSE
Dissimmin 0.66

elements have more or less the same length, approximately
two thirds the size of the stencil grid.

Overall, evolution was able to optimise all features being
tested without compromising the behaviour features, i.e.
similarity and recognisability of the glyphs. This should be
related to the substantial differences between the highweights
used for the behaviour features and the low weights used for
the morphology features.

3.3. Experiment III – Novelty Search Mechanisms. In this
experiment we assess the ability of the novelty search mech-
anism to generate diverse stencils in a single evolutionary
run and the adequacy of the archive, produced during the
process, to summarise the results that are presented to the
user. We preserve the experimental setup of fitHybrid from
the experiment I and used the parameters in Table 6 to be
used by the novelty mechanism.

For this experiment, we perform a single run of the fol-
lowing setups: novelty - uses the novelty search mechanism;
no novelty - does not use novelty search, the fitness guided
approach. The archive is used on both runs to analyse the
impact of the novelty mechanism.

In terms of fitness, in both cases we have a behaviour
similar to the one observed in experiment I, it optimizes
the fitness function. However, it is noticeable the differences
between the two setups in terms of fitness values along
the generations. In generation 50 we have the first entry
to the archive on both setups, i.e. at least one individual
that surpasses the fmin value. A few generations after that

Figure 12: On the left, the archive (sampled) of the expressions from
a run of evolving stencils guided by the hybrid mechanism. On the
right, the archive (sampled) of a run evolving stencils guided by
fitness. The top row instances are the fittest stencil found and the
remaining ones above them are the archive for the no novelty (on
the left) and novelty (on the right).

point, the novelty setup enters in hybrid tournament and we
can observe that it rapidly increases up to a certain point,
surpassing even the values observed for the fitness guided in
the same interval, for a few generations. Around the 100th,
generation the no novelty setup surpasses the maximum
value and continues increasing for a few generations until
it stabilizes. We can observe that for the novelty setup it
continues to slowly increase until the last generation. If we
observe in Figure 11 the archive size, we can see clearly that
the novelty setup adds much more instances to the archive,
suggesting that adds a lot of diversity to the evolutionary
process.

Figure 12 shows samples from the archive and the fittest
stencils found in no novelty and novelty setups. We start by
analysing the fittest stencils (top left and top right images of
Figure 12), observing that they are different from each other
which suggests that using novelty impacts the final result
of the evolutionary process. Moving towards the analysis of
the archives, on the left we show that the no novelty setup
only adds three stencils to the archive, indicating that for
the defined parameterization it does not found any stencil
behaviour more dissimilar than the three that we observe
in Figure 12. There is some dissimilarity among the stencils
but some of the letters remain very similar, e.g., “I”, “J”, “l”
and ”Z”. We can see that the archive stencils’ letters have
some resemblance with the fittest stencil’s letters. In novelty
setup, while analysing the values in the archive size, we see
that a lot of different stencils are added to the archive. Due
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to the high number of entries on the novelty setup archive
we employ a filter using RMSE to select the top-10 most
dissimilar instances on the archive. We clearly have some
diversity amongst the most dissimilar entries. Some of them
contain a mixture of clear letters with some letters that from
a subjective standpoint do not resemble the corresponding
letter (e.g. Figure 12 on the right in the 6th, 9th, 10th rows).
Overall, we can see that the evolutionary process explores
a larger area of the search space when compared with the
no novelty setup. Note that since we are only performing
a single run, we can say that is possible to create more
diversity and generate a more diverse archive of solutions
when compared to the traditional fitness guided solution
(no novelty). The trade-offs are in the extra parameterization
that can be difficult to tune, and it could come at the cost
of later convergence. Aside from the extra fine tuning, this
suffers from the sameproblemof tuning hardwired functions,
since the user is only a spectator on this process once the
evolutionary process starts.

3.4. Experiment IV – Applying Evolved Stencils. In this last
experiment, stencils evolved with the presented framework
are applied in a real design project: an interactive installation
integrated in a permanent exhibition dedicated to Portuguese
literature that enables visitors of a museum to generate their
own portraits made of letters.

The creation of imagery using text is a traditional design
task and is nothing but new.The process of drawing with text
can be traced back to manuscripts from many centuries ago
with illustrations made of handwritten words. Fast forward
to the late 1890s, Typewriter Art becomes an art form, with
the first piece of known Typewriter Art being documented,
an image of a butterfly created by Flora Stacey in 1898
[36]. Later, in 1966, at Bell Laboratories, Kenneth Knowlton
and Leon Harmon created the image “Studies in Perception
#1”, one of the earliest known examples of ASCII art and
probably the first computer nude. To create the image,
Knowlton and Harmon scanned a photograph and assigned
typographic symbols to the binary numbers according to
halftone densities [37].

The interactive installation employs a generative process
based on ASCII art to create the portraits. It dynamically
changes the typographic weight of each letter to render
different shades of grey and this way depict an input image.

The mapping of the darkness of the input image into
letters is best accomplished using a typeface with many
weights, so a continuous range of shades of grey can be
rendered typographically. We believe stencils evolved by the
presented framework can play a role here because by using
a stencil, each letter can be drawn with as many thickness
values as needed. In other words, a continuous range of
thickness values can be used to give body to the letters in the
portrait and this way enable the representation of different
shades.

The video at http://cdv.dei.uc.pt/2018/complexity/evo-
type.mov shows the interaction with the framework in order
to design fitness functions to guide an evolutionary run and
this way evolve a series of stencils. After selecting the stencils

Figure 13: Stencil evolved and applied in experiment IV. The
variation of the thickness of the stencil lines (left) generates a
wide, continuous range of typographic weights that provide different
visual emphasis (right).

from the framework archive, they were tested in the generator
of portraits in order to assess to what extent (i) the input
image remains recognisable in the typographic portrait and
(ii) the input text remains legible. Figure 13 shows one of the
stencils used in the creation of the portraits.

A detailed description of the computational system that
generates the typographic portraits is beyond the scope of
this paper. Nevertheless, it is worthwhile summarising the
main steps for the generation of each typographic portrait: (i)
the input image is converted to grayscale; (ii) the brightness
value of each pixel is calculated; (iii) an input text is composed
from left to right and from top to bottomwithin a rectangular
area proportional to the input image; (iv) for each glyph,
the average brightness of the pixels located inside its bounds
is calculated; and (v) the typographic weight of each glyph
is set inversely proportional to the average brightness just
calculated, i.e., a glyph positioned over a dark area of the input
image will be thicker than a glyph positioned over a lighter
area.

The system that generates the portraits can be config-
ured at different levels, e.g. number of text lines, leading,
space between glyphs, width of the glyphs, minimum and
maximum thickness of the glyphs. The adjusting of these
parameters enables the generation of typographic portraits
with different visual characteristics. For example, increasing
the number of text lines provides more detail to the portrait;
decreasing the leading and/or space between the glyphs
makes the portrait visually denser; increasing the difference
between theminimum andmaximum thickness of the glyphs
provides more contrast to the portrait. Furthermore, the
system exports the generated portraits to vectors graphics.
This way, one can print a postcard or a poster of his/her own
typographic portrait.

Figure 14 shows typical typographic portraits created in
this experiment. One can visualise animated versions of typo-
graphic portraits at http://cdv.dei.uc.pt/2018/complexity/por-
trait.mov. The obtained outcomes demonstrate that the sten-
cils are able tomaintain legibility and visual coherence among
their glyphs while their thickness varies, which is important
from a type design point of view.

The automatic evolution of new stencils enables the
generation of unique typographic portraits. This reveals
the potential of the evolved stencils for open-ended design
projects, enabling the on-demand generation of unique type-
faces.

http://cdv.dei.uc.pt/2018/complexity/evotype.mov
http://cdv.dei.uc.pt/2018/complexity/evotype.mov
http://cdv.dei.uc.pt/2018/complexity/portrait.mov
http://cdv.dei.uc.pt/2018/complexity/portrait.mov
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Figure 14: Typographic portraits composed of glyphs drawn with
a stencil evolved with the presented framework. Two possibilities
for the number of text lines are shown: 50 lines (left) and 100
lines (right). The input image is a photo of Sérgio Rebelo (graphic
designer and researcher at CISUC), who tested the framework in
experiment IV; and the input text is the poem “Eu Nunca Guardei
Rebanhos”, written in 1914 by Alberto Caeiro, an alter ego of
Fernando Pessoa.

This experiment, which has been presented in a typog-
raphy conference [38], demonstrates the application of the
outcomes of the presented framework in a real design project,
namely in the generation of typographic portraits.

4. Conclusion

An evolutionary framework for the automatic generation
of type stencils was presented. We conducted a series of
experiments to explore and assess this framework. Overall,
the experimental results show the adequacy of the proposed
framework to evolve stencils that (i) produce legible and
coherent glyphs and (ii) are consistent with the preferences
expressed by the user using the fitness function design
interface. The results indicate that the approach guided by
automatic fitness functions based on ML tend to optimise
the fitness function. The results also revealed that optimising
the different objectives of the fitness function will lead to
legible and recognisable fonts but not necessarily aesthetically
appealing. This behaviour is due to differences between
how the ML techniques employed and humans perceive the
inputs. Therefore, although legibility and recognisability are
fundamental criteria for evolving glyphs, other visual aspects
should be considered during evaluation in order to improve
their aesthetic appeal.

This work demonstrated how EC and ML can inform
contemporary design practices. The result is a framework
that intends to provide alternative designs as stimuli for
inspiration, working in a mind-opening way and promoting
new ideas to create custom typefaces and letterings. This is
useful, especially, when there will always be designers willing
to experiment with the creation of fonts and to pursue new
forms of typographic expression.

Future work will focus on: (i) implementation of adaptive
mechanisms to the novelty search and archive mechanisms;

(ii) creation of an archive interface to enable the user to
change the behaviour of the archive mechanism during
the evolutionary runs; (iii) enabling the user to save and
insert evolved stencils into the evolutionary process; and (iv)
implementation of the framework as web application and this
way enable anyone to experiment with the evolution of type
stencils.
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One of the general aims of evolutionary art research is to build a computer system capable of creating interesting, beautiful, or
creative results, including images, videos, animations, text, and performances. In this context, it is crucial to understand how fitness
is conceived and implemented to explore the “interestingness,” beauty, or creativity that the system is capable of. In this paper,
we survey the recent research on fitness for evolutionary art related to aesthetics. We also cover research in the psychology of
aesthetics, including relation between complexity and aesthetics, measures of complexity, and complexity predictors. We try to
establish connections between human perception and understanding of aesthetics with current evolutionary techniques.

1. Introduction

An ancient dream of humanity is to create models of itself.
Ada Lovelace, often attributed as the first computer program-
mer, proposed to use computers for artistic tasks. Such tasks
constitute a “grand challenge” since they present a series of
subjective, social, and emotional characteristics that are often
considered exclusive to human cultures.

One of the main difficulties in addressing this challenge is
in developing formal models of human aesthetic preference.
Such models would allow computer systems to predict the
aesthetic taste of a human being or adapt to the aesthetic
tendencies of a human group: in simple terms, to be able to
make aesthetic evaluations and choices.

The term “aesthetic” derives from the Greek aisthesis,
denoting feeling or perception, and its original meaning
referred to sensory impressions. In the 18th century, it
acquired a new meaning when Baumgarten’s “Meditationes
Philosophicae de Nonnullis ad Poema Pertinentibus” was
published in Germany. This identified the relation between
sensory experience and knowledge and gave the study of the
knowledge of beauty the name aesthetics. From this moment,
the term aesthetics is not restricted to the arts, but many of

the things and experiences encountered in daily life. Hence,
aesthetic decisions affectmanymany aspects of human choice
and action, beyond those traditionally associated with fine
art, for example.

Computational aesthetics (CA) can be defined as “the
research of computational methods that can make applicable
aesthetic decisions in a similar fashion as humans can.” [1].
There are several papers that survey approaches to com-
putational aesthetics, e.g., [2–4]. The term “computational
aesthetics” is sometimes used in the sense of describing a par-
ticular class of artefacts made by computers, e.g., computer
design and generative systems. However, in this paper, we
will refer to computational aesthetics only as computational
models of human aesthetics.

CA and the psychology of aesthetics (PA) have studied
human aesthetics using a variety of different approaches. In
this paper, we attempt to establish connections between these
different approaches.

In the first section, we analyse several aesthetic modes
included in recent evolutionary computation systems. The
second section explores research results from psychology of
aesthetics that will be of interest to AI researchers. Finally,
we then propose some connections between the efforts of
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human psychology and AI and outline the advantages of this
collaboration for both groups.

2. Aesthetic Fitness in Evolutionary Art

Since classical times, if not before, philosophers have engaged
in the study of aesthetics: attempting to understand the nature
of art and its appreciation, and why people engage in a
specific set of aesthetic behaviours around artworks and make
particular statements that can be called aesthetic judgements.
In more recent times, these philosophical investigations have
been joined by experimental and observational methods
from psychology, neuroscience, and cognitive science, as well
as research taking a constructive stance by building machines
that produce work of aesthetic value, or machines that can
themselves exhibit aesthetic behaviour and make aesthetic
judgements.

A number of major strands exist in aesthetic theory [5, 6].
Early classical work focused on attempts to understand the
nature of beauty—not just pointing out specific examples of
beauty but identifying those aspects of objects that give rise
to aesthetic appreciation. The earliest theories focused on the
appreciation of skill in imitating the physical world, but later
theorists found this lacking. In particular, once mechanical
means for creating high-quality imitations were available
such as photography and sound recording, new theories to
explain the difference between simple reproductions and
objects of aesthetic value became needed.

One major strand of aesthetic theory is based around
the idea that aesthetic appreciation is a deliberate act of
expression by the art-maker. In these theories, the art-maker is
concerned with transmitting experiences and emotions that
they have experienced to the audience for their work, in a
way that cannot be readily done using more direct means
such as purely descriptive text or diagrams. This gives rise
to an immediate problem for computer art systems, which
have no emotional qualia to form the grounds for expression.
Nonetheless, even for machine-made art, we can sometimes
recover some value from such expression-focused theories.
One kind of computer art that can be said to be expressive
is that which exploits the fact that computers are now almost
universally networked systems, and for the expression to be
an expression of the zeitgeist around a particular area as
discovered online. For example, one version of the Painting
Fool system [7] uses newspaper articles as the material that it
“expresses” in a visual art form; the importance and salience
of the source material come from the fact that is important
enough to form a newspaper headline. Another way in which
we can see expression explaining the impact of computer art
systems is in those systems that act as a shaper and reinforcer
of the user’s interactions: not acting as an expressive device
of the computer’s own (absent) feelings, but allowing the user
to explore and reinforce their expressions in a way that is not
possible without the machine.

Another major strand of aesthetic theory is concerned
with ideas of form. These theories argue that what makes an
aesthetically engaging object distinct fromamundane one are
formal aspects such as the placement of objects in an image,
the use of symmetry, and the balance between order and

complexity.The content is less relevant—aesthetic objects still
have content, of course, but broadly similar content arranged
without regard to form will have little aesthetic interest. Such
theories are appealing to explain how computer art systems
can create aesthetically engaging objects, because aspects
of form can be encoded algorithmically, measures of form
can be used as fitness drivers within learning and evolution
systems, and different aspects of form canbe brought together
using multicriteria optimisation.

Another strand argues for the importance of social
interactions and the social construction of aesthetic value,
whether within a specific social discourse around art (e.g.,
Danto’s [8] idea of the Artworld) or by being influenced by,
and influencing, wider social and political issues. This has
been occasionally explored in computer art systems [9, 10],
by modelling a wider network of systems that create art and
systems that critique and contextualise that art; however,
there is much opportunity for more work in this area.

More recently, the focus has shifted from the wider
world to the inner world of the brain and nervous system,
examining the brain during aesthetic experiences [11]. Again,
there are opportunities for this to be used in the context of
fitness drivers for evolutionary art systems by modelling the
potential audience response to art, much as user modelling
[12] models the user response to more prosaic systems.

In contrast with theories that argue that aesthetics is a
social phenomenon, other philosophers of aesthetics have
taken a position that there are—at least at a very high
level—some common features to aesthetic objects and to the
act of aesthetic appreciation that remain constant over time.
Dutton [13], for example, lists seven “aesthetic universals”
that he claims form a feature of most social practices that are
regarded as art. These are that

(i) the production of art objects requires skill and exper-
tise

(ii) the objects give pleasure in-and-of themselves,
regardless of whether they satisfy a practical need

(iii) art is produced in styles that are socially developed
and are primarily about form and composition

(iv) art exists in the context of a critical and analytical
discourse

(v) art objects imitate or symbolise aspects of the wider
world

(vi) art objects are the subject of a special kind of attention
and evoke particular behaviours towards them

(vii) audiences engage in art by using their faculties of
imagination, and that artists make use of imagination
in creating and developing artistic ideas and objects.

There is not necessarily a conflict between the idea of
universals and the idea of social construction of aesthetics. It
could be argued that whilst the broad categories of concepts
that characterise art and aesthetic behaviour are broadly
universal, specifics vary with time in a socially constructed
way. Indeed, a major model of aesthetic appreciation and
aesthetic judgement developed by Leder and colleagues
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uses an information-processing relationship between com-
ponents that integrate into an aesthetic episode [14, 15]. The
model includes low-level “universal” aesthetic properties,
such as symmetry, complexity, contrast, and grouping, but
also social, cognitive, and emotional components that all
contribute in forming an aesthetic judgement.

2.1. Evolutionary Art Systems. Evolutionary art systems are
computer systems that employ evolutionary computation
(EC) methods to generate artworks [16]. Evolutionary art
systems have been devised to create drawings, designs,
buildings, poetry, sounds, music, 3D forms, images, and even
choreography. Typically, the way in which these systems vary
from other applications of EC is in the fitness function; other
aspects of EC (selection methods, crossover and mutation
operators, etc.) are largely the same as in more traditional
optimisation applications. Such fitness functions can give rise
to aesthetic value in two main ways. The first is explicitly,
where the fitness function drives the evolutionary search
towards items of greater aesthetic value. The second is
endogenously, where the fitness creates a process that is itself
of aesthetic value. An example of the latter is the body of work
in artificial life art and artwork based on simulated ecology
[17]. These might reflect a shift back towards an aesthetics of
imitation in a new way—by simulating processes that occur
on a temporal or spatial scale that is inaccessible to naked-eye
viewing, they imitate/represent natural processes in a scaled
or abstracted way making them accessible to immediate
perceptual apprehension. This allows unspecialised audi-
ences to reflect on these processes which are otherwise only
comprehensible to scientists.

An evolutionary system that aims to generate aesthet-
ically engaging material explicitly should therefore have a
fitness function that drives the evolution toward areas of
a search space that are aesthetically valued. So, the fitness
function should be grounded in some theory of aesthetics;
perhaps one of the established theories, or perhaps a newkind
of theory that is distinctive to computer art or evolutionary
art. Johnson [18] reviews a number of possible ideas onwhich
such fitness functions could be built.

Themost direct way to do this is via some kind of aesthetic
measure. That is, the fitness function directly enacts some
algorithmic method of scoring or ranking the aesthetic value
of a specific work. This fits particularly well with aesthetic
theories based around form—the most typical measures
used are measures of formal aspects such as symmetry and
complexity. In our discussion below on the psychology of
aesthetics, we will see that this is the dominant theory there
too; much of the experimental work in this area explores
correlations between formal aspects of visual images and the
viewer’s aesthetic or affective responses.

One of the most influential EC-art papers in recent times
that uses aesthetic measure is that of den Heijer and Eiben
[19], which compares four different aesthetic measures as
fitness functions for a EC system. The paper shows the
results of the different functions in using them as fitness
measures with an EC and by calculating the cross-evaluation
of each function with the others. However, the problem with
this type of approach is that whilst the functions proposed

are useful as tools to explore the capabilities of EC, their
connection to human aesthetic judgement is not clearly
explained prior to their being employed as fitness functions.
In some cases, the functions (called “measures” in the paper)
were employed as metrics in learning systems, so they can
be used for aesthetic purposes, but not necessary alone. In
fact, one of the metrics analysed in the paper—the one first
proposed by Machado and Cardoso [20]—was designed for
monochrome images but applied in this research to colour
ones.

Another way to create this fitness function is via a corpus
of examples, typically in the form of an inspiring set [21]
of examples that the computer system should use to inspire
work that is new but in a similar style. The features provided
to the learning system from the examples will dictate what
aesthetic theories are underpinning this use of the corpus.
For example, a system that uses geometrical analysis of the
corpus examples, or extracts features based on the histogram
of colours in the image, is driving towards aesthetics based
around form or colour distribution. By contrast, if the system
were using sentiment analysis to extract emotional cues from
the corpus, this can be seen as working closer to expression
and perceived emotion theories.

Another way to assign fitness is for the system to use
interaction with people in place of a fixed function [22].
In terms of aesthetic theories, this leaves the theory to the
user—rather than a computational fitness function being
used, the decision on fitness is referred to a human, who can
apply their own aesthetic judgement without having neces-
sarily to theorise it formally. One under-explored area for
futureworkwould be for the humanmaking the judgement to
provide a more detailed critique of the work rather than just
a selection or score, in some computer-readable form. This
fits into a recent trend in evolutionary computation which
uses richer fitness drivers containing much more information
than a simple score or ranking [23] for selection and focused
mutations. We can see this as fitting into amore social, critic-
based theory of aesthetics, where human critics engage in a
discourse with established or emerging artwork traditions.

3. Some Findings from
the Psychology of Aesthetics

There is some overlap between current research on PA and
CA. As an example, there are some researchers in PA looking
formeasures of aesthetic value or visual complexity. But at the
same time, looking at the cross-citation of both areas, there is
little communication between them.This section will analyse
some of the findings in PA from the point of view of an AI
researcher. We hope that this can help in creating computer
systems that work with concepts such us visual complexity,
aesthetics, and symmetry.

Firstly, a set of PA experiments only done with human
beings are explored that relate aesthetic judgements to the
complexity of the work produced. Next, we explore briefly
some works that employ algorithmic measures of complexity,
and other works that try tomodel visual complexity.Then, we
review research that relates measurable properties of images
to visual perception in the form of fractal analysis. Finally, we



4 Complexity

Figure 1: The twelve most-liked (left) and least-liked (right) of Eysenck’s [33] experiments.

focus on possible aesthetic tests from PA that could be useful
in AI research.

Before researchers came up with practical experiments
in the psychology of aesthetics, questions related to art
and aesthetics were answered by means of theories and
experiences of the theorists themselves. Themajority of cases
were based exclusively in the observation of the reactions of
a few viewers contemplating artistic works. Such informal
processes, whilst useful for clarifying ideas, do not provide
a strong basis for implementable theories.

In 1876, Fechner published “Elements of Aesthetics” [24],
where he described a study based on the observation of the
diverse answers of representative subjects of distinct popula-
tions with different visual material. These investigations laid
the foundations and experimental methods for hypothesis
formulation in aesthetics and its verification under controlled
conditions.

Once this experimental basis had been established [25],
the next step was to determine a method that was able to
quantify the aesthetics of an object. The complex dimensions
of a work of art, for example (form and location of the lines,
rhythmic sequences, variations of tone, etc.), are from this
moment objects of measurement: first the mathematician
Birkhoff and later Eysenck would propose the first formulas
for aesthetic measure. They were used as a measure of the
aesthetic “value” in a number of different experiments and,
as we shall see below, with contradictory results.

3.1. Experiments on Visual Complexity and Aesthetic. In the
1930s, Birkhoff set out the first mathematical formula that
was designed tomeasure aesthetic value.This formula asserts
that, for visual objects, the aestheticmeasure of the object (𝑀)
is related to its order (𝑂) and complexity (𝐶), specified in the
following relationship:

𝑀 =
𝑂

𝐶
. (1)

Equation (1) proposes that the aesthetic measure of an
image is correlated with the order and simplicity/complexity
of its visual stimuli. Together with the presentation of that
formula, Birkhoff [26] defined complexity as an expression
of multiplicity, such as the number of elements that make up
an image, while the order describes the regularity of those
elements (repetition and redundancy).

While Birkhoff provided many different visual examples,
he did not carry out experiments to validate his hypothesis.
Even so, there are several research papers on his theory, some
of which offer widely differing results. On the one hand,
Brighouse [27] and Meier [28] conclude that the theory of
Birkhoff is empirically founded, while, on the other hand,
Weber [29], Beebe-Center and Pratt [30], Davis [31], and
Eysenck [32] are not in agreement with this hypothesis. The
most complete study related to the Birkhoff hypothesis was
carried out by Eysenck [32–34]. Previously, Eysenck himself
had carried out experiments related to this theory, exposing
his disagreement with it. In order to be able to provide
an alternative measure, he performed his own experiment
in a controlled environment. A total of 11,000 participants,
including those with art studies and without them (artists,
students, teachers, and psychologists), were shown different
series of polygons and asked to sort them according to
their aesthetic preferences. These polygons were part of the
material provided by Birkhoff [26]. From the experiment,
Eysenck presents a formula different from that of Birkhoff,
although also based on ideas of order and complexity. In this
case, the relationship with complexity is positive, since both
order and complexity were found to positively contribute to
the appreciation of beauty.

It should be noted that the images employed by both
Birkhoff and Eysenck are images with set of polygons, created
for the experiment (not real-world images) and that both
researchers do not have exact, much less computational
measures that allow quantifying order or complexity. In the
Figure 1 it can be seen some images employed in Eysenck
experiments.
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Berlyne [35] proposed that judgements about the interest
and liking of an image depend, fundamentally, on the judge-
ment of the complexity of that stimulus [36]. This, in turn,
is related to factors such as the regularity of the model, the
number of elements that make up the scene, its heterogeneity,
or the irregularity of the forms [37].The optimum of aesthetic
pleasure would be latent until a subject encountered stimuli
of average complexity, in case of having a very moderate
stimulation potential, or stimuli that imply a very high
potential, but reducible by appropriate modifications. This
optimum varies according to learning [38].

Aesthetic preferences and judgements of beauty have
been the subject of numerous research experiments since
the formulation of order and complexity by Berlyne. Their
hypotheses have been the subject of study following two
different approaches: one based on general visual stimuli and
another on artistic stimuli. In the case of visual stimuli, Aitken
[39], Katz [40], and Vitz [41] use geometric objects while
Heath et al. [42], Ichikawa [43], and Stamps III [44] perform
their experiments with artificially generated images. With a
focus based on artistic stimuli, we highlight the work carried
out by Krupinski and Locher [45], Nicki and Moss [46],
and Osborne and Farley [47] by means of abstract paintings,
Nicki et al. [48] with works of Cubist art, Messinger [49]
using figurative images, and Saklofske [50] by means of por-
traits.

The conclusions obtained across the experiments are
contradictory, even within the same approach. Some find a
distribution of preference in the form of an inverted U, with
preference given to intermediate levels of complexity, whilst
others observe a linear increase of aesthetic engagement
with increasing complexity. A more detailed breakdown and
analysis can be found in the paper by Nadal [51].

Berlyne himself [37] expressed a problem in conceptu-
alisations of visual complexity. Attneave [52] and Berlyne
[53] surveyed the subjective aspect of visual complexity.
However, some experiments that use classification scales
and other techniques confirm that collative variables and
subjective information variables tend, as expected, to vary
concomitantly with the corresponding objective measure of
the classical theory of information [54].Hogeboomexplained
that the complexity perceived by each individual depends on
the way the scene is organized [55, 56]. This may be one of
the reasons that the previous conclusions were contradict-
ory.

Forsythe et al. [57] demonstrated that the subjective
image complexity measure can be conditioned by familiarity.
InNadal et al. [58], a group of individuals rated the beauty and
complexity of a set of images. The authors could not find any
correlation between ratings. The researchers proposed three
different types of complexity that can influence visual per-
ception of complexity (asymmetry, the amount and variety
of objects, and the way the objects are organised).

Also using ideas of priming and conditioning, Mallon
et al. [59] studied the changes in the evaluation of the
perceived beauty in abstract artworks andmaintained that the
perceived beauty increases after the exhibition of paintings
that have been described as less beautiful and diminishes after
the exhibition of paintings that were described as the most

beautiful, which again reinforces the idea of subjectivity in
aesthetic appreciation.

Güçlütürk et al. [60] call for a focus on individual differ-
ences in aesthetic preferences, and the adoption of alternative
methods of analysis that take into account these differences,
along with a reevaluation of the established rules of aesthetic
preferences in humans. The relationship between aesthetic
taste and stimulus complexity is commonly defined as an
inverted U-shaped curve; images that are too simple offer
too little to appeal to the aesthetic sense, whereas excessively
complex images present too many diverse stimuli to allow
aesthetically engaging patterns to be identified. However,
frequent individual differences between the preferences of
the participants’ complexity have been observed since the
first studies on the subject. The usual use of methods of
linear analysis that ignore these great individual differences
in aesthetic preferences gives an impression of high level of
coincidence between individuals. In their study, they gather
the qualities of taste and perception of the complexity of
30 participants for a set of 144 digitally generated grayscale
images. In addition, an objective measure of the complexity
of each image is calculated. The authors claim that the results
show that the U-shaped relationship between the taste and
the complexity of the stimulus is produced as the combi-
nation of different individual functions of taste. Specifically,
after automatically grouping the participants in relation to
their taste qualifications, they determine that a group of
sample participants assigned increasingly lower quality of
taste for more and more complex stimuli, while a second
group of participants had scores of taste increasingly higher
for more and more complex stimuli. The two groups differ as
to whether they prefer complex or simple patterns, but not in
the way in which they perceive the complexity. The group of
participants who prefer the simplest patterns were faster in
their taste assessments compared to the group that preferred
complex patterns. These differences in the assessment time
were not found in the evaluation of complexity. A partial
explanation of the results is provided by the theory of fluidity
of Reber et al. [61], according to which experience in fluid
processing has a positive effect on the stimulus, so a decrease
in taste towards complex stimuli could be expected (and
therefore processed with less fluidity) compared to simpler
stimuli (and processed more fluidly). This would validate the
results of a group, but not those of the other.

A recent framework by Graf and Landwehr [62] called
PIA (pleasure-interest model of aesthetic liking) aims to
provide a better explanation of the contradictory patterns of
preference for aesthetic stimuli that are easy or difficult to
process. According to the authors, an aesthetic object can
be processed in two stages. In the first stage, an automatic
processing is carried out, and then, if the viewer is sufficiently
motivated to continue the processing of the stimulus, there is
a controlled processing. Similar to the theory of fluidity, the
PIA model predicted that purely automatic processing of the
stimuli results in a decrease in taste as the complexity of them
increases. The prognostic model states furthermore that the
controlled processing could give rise to an inverted U curve,
if the levels of complexity of the stimuli are sufficiently high
to cause disgust and confusion.
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3.2. Measurements of Image Complexity. After exploring sev-
eral PA ideas that try to analyse the relation between visual
complexity and aesthetics using an ad hoc determination of
complexity, we will move on in this section to survey some
works that employ algorithmic measures of complexity.

As stated previously, perception of image complexity
is subjective. The first method to calculate the complexity
of a set of images is to relate complexity with another
objective factor of the image. As an example, complexity
could be related to the number of objects in an image. So,
a constructed image of two triangles has a complexity of 2,
while a constructed image with 9 triangles has a complexity
of 9. Similar approaches use the number of different objects,
and other objective qualities of constructed images. The first
works analysed in the previous section employ this method
by constructing the images used in the dataset (typically with
combinations of polygons and other simple forms).

Adifferent approach in order to determine the complexity
of a image is to ask a group of people to self-report the per-
ceived complexity and calculate the average of the responses.
This gives a complexity measure for images that were not
created specifically for the experiment (such us paintings or
real-world photographs) [63–65].Thismethod was employed
on most of the papers presented in the previous section.
While thismethod is not limited to any specific kind of image,
it may present a significant time or resource cost if the image
corpus is large.

A computer generated measure of complexity can be
applied to images with relatively little cost so it can be used
to feed computer systems that generate images or other novel
images [66]. Moreover, it can allow us to determinate the
factors (emotional, semantic, etc.) that affect the human
perception of image complexity, through a proportionate
objective measure. Hence, it can be used to analyse the dif-
ferences between objective and subjective values in different
types of images. We will see a clear example of that later in
the work of Jakesch and Leder [67]. Moreover, as we will see,
some PA researchers such as Forsythe et al. [68] suggest that
the objective measure (based on calculated metrics) can be
more useful to predict human aesthetic preference than the
subjective one (based on human scores).

Hochberg and Brooks [66] created a semiautomated
measure of image complexity, based on the combination of
number of interior angles, different angles, and lines. Garcı́a
et al. [69] developed an algorithm to measure the image
complexity of icons using the number of lines (horizontal,
vertical, and diagonal), forms (open and closed), and letters
in each icon. Mcdougall et al. [70] employ the same measure
for the complexity of a set of forms and achieve a correlation
with the judgement of humans of Rs=0.73 for abstract
icons.

Forsythe et al. [71] created an automatic system to mea-
sure the complexity of icons based on edge information and
structural variability. They found high correlation between
their scores and those provided by Garcia et al. (Rs=0.66
for edge information and Rs=0.65 for structural variability),
and also for the studies of McDougall et al. (Rs=0.64 for
edge information and Rs=0.65 for structural variability). To
our knowledge, this system is the first example published in

psychology that employs a computational metric to measure
complexity.

InAI research,Machado andCardoso [20] propose visual
complexity metrics based on the compression rate and error
of JPEG and Fractal compression. This was based on ideas
from Arnheim [72–74] and Moles [75]. They base their
measure of image complexity on findings from information
theory. Other authors propose similar theories [76–78],
where the complexity is related to the unpredictability of
the image (of the pixels in the image) [79]. As a highly
unpredictable image is not easy to compress, they used the
length of the compressed file and the degree of error as
estimates for the predictability of the image. The following
equation shows the formulation of the measure:

𝑉𝑖𝑠𝑢𝑎𝑙 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
𝑅𝑀𝑆 𝐸𝑟𝑟𝑜𝑟

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜
. (2)

In PA, Donderi and colleagues [80, 81] were also inspired
by algorithmic information theory. They used JPEG and
ZIP compression as an approximation of the minimum
code to describe an image, as a consequence estimating the
predictability of the image. An image with all pixels black is
(in principle) easy to compress and is readily predictable. On
the other hand, a random generated image with no relation
between each pixel is not predictable at all and is also not
compressible. InDonderi andMcFadden [82], the authors get
a correlation of Rs=0.77 between the length of JPEG and ZIP
compressed files and subjective image complexity.

Forsythe et al. [57] presented four metrics based on
perimeter, Canny, JPEG, and GIF compression. They tested
these metrics with a number of previous datasets, show-
ing high correlations with subjective complexity. In 2011,
Forsythe et al. [83] analysed the correlation between the
perceptual image complexity using several algorithmic mea-
sures: (i) length of JPEG compression, (ii) length of GIF com-
pression, and (iii) perimeter detection measures. The authors
employ a dataset of 800 images with 5 different categories:
Abstract Artistic, Abstract Nonartistic, Representative Artis-
tic, Representative Nonartistic, and Photographs. The results
show a correlation of Rs=0.74 with the length of the GIF
file for the Figurative Decorative category. Other categories
had lower correlations (Abstract Decorative: Rs=0.6, Natural
Pictures: Rs=0.55, Figurative Artistic: Rs=0.47, and Abstract
Artistic: Rs=0.42).

Chikhman et al. [84] test different measures of complex-
ity. With a dataset of 15 Chinese hieroglyphs, they found
that the best measure is the “product of squared spatial-
frequency median and the image areas.” For a set of 24
outline images of objects, they found that the best measure
is the number of turns in the image. Their conclusion is that
different complexity estimates are needed for different types
of images.

Marin and Leder [85] also analyse the correlation between
computer-generated measures and perceptual image com-
plexity. They use a subset of the International Affective
Picture Systems (IAPS) [86], which contains a collection
of images labelled with degrees of affective states that are
expressed through those pictures. The correlation between
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length of the TIFF (Rs=0,53) and JPEG (rs=0,52) was higher
than the one achieved using perimeter detection (Rs=0,44).
The highest correlation found in this experiment was the
RMS contrast, with a correlation of Rs=0.59. In a second
experiment, done with a set of paintings, the correlation
achieved was lower.

The differences in findings between Forsythe et al. [83]
and Marin and Leder [85] could be explained by the datasets
employed.Thedataset in Forsythe et al. [83] contained images
with highly differing complexity in five different categories.
On the other hand, the two datasets of Marin and Leder [85]
present less variation in complexity: the IASP dataset contains
nonprofessional photographs designed for exploring different
emotions and the dataset of paintings offers a very similar
degree of complexity.

Using the same datasets as Marin and Leder [85], Marin
et al. [87] analyse the effect of presentation time on perceptual
complexity of images. Seventy women classified 96 images
from IAPS dataset, presented each for 1, 5, and 25 seconds.
The correlations between the objective measures and the
subjective ones get higher with the longer exposition time.
As before, the experiment with paintings was less conclusive.

Cavalcante et al. [88] propose the use of a combination of
statistics of local contrast and spatial frequency as a measure
of complexity. Their dataset contains 74 streetscape images
from four cities, 40 daytime and 34 nighttime scenes. They
compare the results of this metric with some of the state-of-
the-art ones, including perimeter and JPEG complexity, find-
ing that their proposed metric is the more robust regarding
different time scenarios.

Jakesch and Leder [67] tested the role of ambiguity in
human complexity perception. To do this, they employed
artworks with high degree of ambiguity, and modifications
of artworks with a low level of ambiguity. While both sets
present similar results regarding computer measures (Jpeg,
GIF, and perimeter detection), the perceptual complexity was
different between the two sets. Humans considered those
images with higher ambiguity to be more complex than the
low ambiguity images.

Ciocca et al. [89] analyse the role of colour in complexity.
They found that subjective scores for colour images present a
high correlation to those of greyscale images, suggesting that
colour is not related to perception of complexity. They use a
range of image features but do not find any one capable of
predicting image complexity.

Marin et al. [87] analyse the differences between three
alternate ways to asses the ’hedonic tone’ of an image:
beauty, pleasantness, or liking. They used two datasets, one
with 96 representational paintings and the other with 96
attractive environmental scenes converted into cartoons. The
correlation between the three hedonic tone measures was
higher in cartoons (Rs=0.85) than on paintings (Rs=0.73).
With the dataset of paintings, correlation of complexity and
beauty was Rs=0.26, with a “pleasantness” of Rs=-0.16 and
not present for liking. In the cartoons dataset, correlation
between complexity and the three hedonic tonemeasures was
not found.

Friedenberg and Liby [90] analysed the correlation
between beauty and compression metrics. The datasets

contain images that are patterns of different density cre-
ated for the experiment. They reported high correlations
between beauty and GIF complexity (0.56) and contour
length (0.47). They found no correlations between beauty
and numbers of parts. Building on this work and using the
same datasets, Gauvrit et al. [91] analysed the correlation
between subjective beauty and several different complexity
measures: density, number of blocks, GIF compression rate,
edge length, entropy, and algorithmic complexity.They found
that the participants tend to have a preference for some
types of complexity, but not for all. That can explain partially
the differences between reported results related to image
complexity. The authors propose that researchers should
specify which notion of complexity is behind each work.

Forsythe et al. [68] evaluated human scores for beauty,
complexity, familiarity, and encounter.The authors calculated
two automatic measures of complexity based on GIF and
JPEG compression. The results show a high correlation
between automatic measures and human perception of com-
plexity (Rs=.78 for GIF compression). The better predictor
for human beauty was GIF complexity. The authors state that
“The data reported here suggests GIF complexity contributed
in a small way to perceptions of beauty, but that beauty
has no significant relationship with human judgements of
visual complexity or familiarity with an image”. The authors
consider computer measures more reliable and valid than
human collected perceptions of complexity.

Following this line of research, Madan et al. [92] found
that emotional arousal and valence influence image complex-
ity ratings. They found a correlation between arousal and
visual complexity of Rs=.50, which was attenuated with bias-
aware instructions to Rs=.40. Also, Forsythe et al. [57] found
that familiarity and learning also influence image complexity
ratings.

3.3. Visual Complexity Prediction. In this section, we analyse
several works that employ a set of metrics and a machine
learning system to predict the visual complexity of images.
Most of the systems are created by AI researchers but some
are created by PA and CA researchers together, with one
published in a psychology journal.

Machado et al. [93] is the first attempt to create an auto-
matic predictor of image complexity based on a combination
ofmetrics.Thedataset employed is the one used in Forsythe et
al. [83], consisting of 800 images in 5 different categories. In
the first experiment, the individual correlation is calculated
between a large set of computer generated measures and
the average perceptual image complexity. Higher correlation
was obtained using a canny edge filter, with Rs=0.77. JPEG
compression achieved a correlation of Rs=0.74. In the second
experiment, the large set of measures was fed into a machine
learning systembased onArtificialNeuralNetworks (ANNs),
which form a predictor of complexity. The correlation
between the best predictor and the subjective image complex-
ity was Rs=0.83. Edge density and JPEG compression error
were the strongest predictors of human complexity rates. The
predictor error was 0.09 (0.4 in a scale 1-5). The error was
higher on “Representational Artistic” and “Photographs of
Natural andMan-made Scenes” images, possibly due tomore
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semantic meaning than Abstract (Artistic and Nonartistic)
and Representational Nonartistic image categories.

Ciocca et al. [94] used genetic programming to build an
image complexity predictor, using four measures: roughness,
number of regions, chroma variance, andmemorability. They
reported a correlation of Rs=0.890 on the training set, 0.728
on the validation set, and 0.724 on the test set, outperforming
the results of each of the measures individually.

Gartus and Leder [95] calculate a wide range of compu-
tational measures of complexity and combine them using a
random forest (a standard machine learning technique) to
predict image complexity. The images were a set of abstract
patterns from the set used by Gartus and Leder [95], with
different numbers of triangles on a white background. The
dataset contains 152 asymmetric and 76 symmetric patters for
five types of symmetry. They found several computer metrics
to have positive correlation with complexity. One metric
based on GIF compression had the highest correlation with
Rs=0.634 andmirror symmetry having a negative correlation
of Rs=-0.578. Combining themetric based onGIF andmirror
symmetry together, they reported a correlation of Rs=0.903.

3.4. Measuring Visual Concepts. In this section, we focus on
different visual concepts that relate to visual aesthetics and
how they can be modelled using metrics. We begin with
fractal dimension, then on principles of symmetry, colour
gradient, and low-level processing.

The first work we are aware of to relate fractal dimension
and aesthetics is that of Aks and Sprott [96], who analysed
the correlation between aesthetic preferences and (i) fractal
dimension and (ii) Lyapunov exponent of abstract patterns.
They found a preference for values of fractal dimension and
Lyapunov exponents that are typical in natural objects.

Taylor et al. [97] analysed the fractal dimension of
paintings by the artist Jackson Pollock. Later, Taylor et al.
[98] demonstrated that the fractal dimension of Pollock’s
paintings increased almost linearly for a decade. From that
moment, the fractal dimension was considered a measure
related to the image complexity and was employed on both
psychological studies of aesthetics and artificial intelligence
applied to aesthetics.

Spehar et al. [99] found a consistent aesthetic preference
for fractal images. They employed forced-choice method of
paired comparison and used images with different fractal
dimension. They use three different datasets: (i) natural
images, (ii) simulated coastlines, and (iii) Pollock’s images.
The results showed a “consistent trend for aesthetic preference
to peak within the fractal dimension range 1.3–1.5 for the
three different origins of fractal image.”The authors consider
this range as typical for natural objects.

Taylor et al. [100] analysed different responses to fractal
patterns (visual preferences to physiological responses) in the
work of painter Jackson Pollock. Jones-Smith and Mathur
[101], however, question the use of fractal dimension in the
work of Pollock.

Street et al. [102] present a large scale analysis of aesthetic
preferences involving fractal and complexity metrics. The
dataset used was composed of 81 abstract monochrome frac-
tal images. After calculating a series of complexity measures,

they found a strong negative correlation between fractal
dimension (FD) and GIF ratio complexity measure, 𝑅𝑠 =
−0.93. They also used two-alternative forced choice analysis
(TAFC) and obtained demographic information (age, gender,
and continent of residence) fromeach participant.The results
suggest strong differences related to continent and gender:
in these experiments, females consistently preferred complex
images over males.

In Spehar et al. [103], the authors use a set of 27
synthetic fractal images: nine 1/𝑓 filtered greyscale images
with spectral slopes ranging from 0.5 to 2.5 in increments
of 0.25, their thresholded black and white images and edges
only counterparts. In a second experiment, they employed
two further variations of the filtered greyscale images, called
’mountain’ (that simulate a binary view of a mountain)
and ’terrain’ (that simulates a satellite view of a field with
altitude shown in greyscale). They found that the majority of
participants exhibited a peak preference for the intermediate
fractal-scaling characteristics while other participants exhib-
ited either a linear increase (aprox 20%) in preference with
increasing amplitude spectrum slope or a linear decrease in
preference with increasing amplitude spectrum slope (aprox
20%). The different tendencies were highly stable across all
image types.

In his Ph.D.Thesis, Patuano [104] applied fractal dimen-
sion to landscapes. In order to do that, he employ several
preprocessing stages to create a binary version of the image
(using edges, silhouette outline, etc.) and then applied the
box-counting method. The measure with the highest corre-
lation to human preference was the fractal dimension of the
image’s extracted edges.

In Viengkham and Spehar [105], a set of images of
tree levels of fractal dimension (low, medium, and high)
are presented to a group of people, who are asked to
rate liking, pleasantness, complexity, and interestingness.
The study includes three types of synthetic fractal images
and seven types of paintings. In most of the categories,
a majority of participants prefer images with intermediate
fractal dimension, with 40.13% compared with 33.05% of low
fractal dimension and 26.82% of high FD.

Zipf [106] proposed that many phenomena follow a
distribution where the frequency of occurrence is inversely
proportional to its rank in the frequency table. So, the largest
city of a country has double the population of the second
one, three times more than the third one, and so on. Zipf ’s
distribution is usual in language, but it can also describe city
population sizes in a country, the number of people watching
TV channels, and so on. Manaris and colleagues employ
this distribution as metrics for music in several works, e.g.,
[107, 108]. Machado et al. [93] obtain a correlation with visual
perceptual complexity of Rs=0.64.

The histogram of oriented gradients (HOG) counts
occurrences of gradient orientation in localised portions of
an image. The Pyramid Histogram of Orientation Gradients
(PHOG) contains the HOG of the image with HOGs of parts
of the image. Redies et al. [109] propose two metrics based
on PHOG: self-similarity and complexity. They calculated
the metrics for different datasets and found that one of
those datasets (containing images of art paintings) could be
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characterised by a specific combination of values of these
metrics.

Lyssenko et al. [110] found a correlation between subjec-
tive visual complexity and (i) PHOG self-similarity (𝑅𝑠 =
0.56) and HOG complexity (𝑅𝑠 = 0.682). The dataset con-
sisted of 79 abstracts artworks. They also found correlations
between these metrics and subjective terms that participants
use to describe the artworks.

There are some studies that have tried to establish
relationships between aesthetic value and colour gamut.
Nascimento et al. [111] analyse the effects of changing the
colour gamut of paintings to increase their aesthetic value.
They asked a group of users to change the colour gamut of
ten paintings. Themaximum of the distribution was the same
as the original, suggesting, unsurprisingly, that the chromatic
compositions of the paintings employedmatched the viewers’
preferences.

Other works have investigated the relation between
aesthetics and symmetry. Weichselbaum et al. [112] tested
symmetry preferences of participants over different levels of
individual art expertise. They found that “with higher art
expertise, the ratings for the beauty of asymmetrical patterns
significantly increased, but, again, participants preferred
symmetrical over asymmetrical patterns”. Thömmes and
Hübner [113] analysed the relation between Instagram “likes”
and three computational measures: two measures of visual
balance and the preference for curvature over angularity.
They utilised 700 architectural photographs from Instagram
accounts. They found a positive correlation between visual
balance and likes in 3D photographs, and a negative corre-
lation in 2D ones. To the best of our knowledge, it is the first
work that employees “likes” as a measure of aesthetic appeal.

3.5. Psychological Testing Related to Aesthetics. There are a
number of psychological tests related to aesthetic judgement.
These tests are relatively objective and easy to reproduce and
provide quantified results [51, 52, 55, 56, 114–117]. The main
problem with these tests, however, is the lack of consensus
about them. The validity of concepts behind each test are
debatable, typically being based on aesthetic principles pro-
posed by the author of the test, but not accepted universally.
The results of individual tests also vary between different
studies, maybe due to selection of participants and other
exogenous factors. As an example, Weichselbaum et al. [112]
show that artistic experience affects symmetry preferences.

Graves [118] developed the Design Judgement Test. This
test is based on theories of artistic creation and appreciation
[119]. The author claims that this test can estimate certain
capabilities related to artistic and aesthetic evaluation. To
do this, the test estimates the degree of reaction to specific
principles of aesthetics (according to the author) such us
unity, drive, predominance, variety, balance, continuity, sym-
metry, proportion, and rhythm. Such principals may not be
universally accepted or applicable [120–122]. A test consists of
ninety pages. Each page contains two or three similar designs.
One of the designs obeys all the commented principles while
the remaining ones break at least one of them.The task of the
individual doing the test is to select those designs that do not
break any of the principles.

The average results obtained by participants in this test
vary between studies [121, 122]. Although this can be, at
least partially, explained by the selection of participants and
other exogenous factors, it makes it hard to understand what
constitutes a good score in this test. In the test done byGraves,
art students get a higher average score than students who
did not study art [118]. Graves concludes that the test can
be used to differentiate between those two groups. Eysenck
and Castle [121] obtain very different results, showing only
minor differences between artistic and no-artistic students
(64,4% vs. 60%), and differences between males and females.
Eysench explains that the different results regarding art
students can be related to changes in artistic education that
in 1971 promote more regularity and simplicity than in 1948.
Götz and Götz [123] report that “22 different arts experts
(designers, painters, sculptors) had 0.92 agreement on choice
of preferred design, albeit being critical of them” [124].

Machado and Cardoso [20] propose an aesthetic mea-
sure based on processing complexity and image complexity:
“images that are simultaneously visually complex and easy
to process are the images that have higher aesthetic value.”
Fractals are an easy example of very complex images but
easy to process due to the self-similarity. Using metrics based
on compression described below, and a fixed equation for
aesthetics, they obtain scores up to 66 (corresponding to
a 73.3% success rate), which is larger than those obtained
with fine art graduates. In Machado and Cardoso [125], the
authors employ a similar equation as fitness for a genetic
programming engine that creates images. Romero et al. [126]
employ some metrics related to JPEG, fractal compression
and Zipf ’s law, and an ANN-based machine learning system
to predict the answer of the test, resulting in an accuracy of
74.49%, similar to the previous study.

Hayn-Leichsenring et al. [127] studied a relationship be-
tween objective image measures and the subjective evalu-
ations of the JenAesthetics dataset. This dataset consists of
1628 high-quality images of paintings (http://www.inf-cv
.uni-jena.de/en/jenaesthetics). The objective measures are
low-level image statistics related to aesthetics in previous
research, such as those from Braun et al. [128], related to
selfishness, anisotropy, and complexity. The subjective eval-
uations were aesthetic (defined as artistic value) and beauty
(defined as individual attachment). The results revealed
that the paintings of each period present specific statistical
properties of the images. Moreover, they show evidence of
correlation between beauty and aesthetics, and correlation
between aesthetics and some objective measures on different
subsets. The highest correlation was found between self-
similarity and the beauty of a subset of paintings of buildings
with 𝑅𝑠 = 0.50.They found differences between aesthetic and
beauty scores.

4. Conclusions

The researches from PA and CA have several main dif-
ferences. First, we analyse some differences regarding the
datasets and the results. The datasets used in the PA exper-
iments usually contain a small number of images, due to
the need to evaluate each of them by a group of human

http://www.inf-cv.uni-jena.de/en/jenaesthetics
http://www.inf-cv.uni-jena.de/en/jenaesthetics
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participants. In CA, the ideal is to have a large dataset
of images that can allow machine learning to have more
complete and diverse information.

Some datasets used in CAwork are based onwebsite pho-
tographic collections that have a large number of contributed
images [129–131]. However, the images in these datasets were
evaluated online in an uncontrolled environment and may
have potential biases depending on relations with the author
of the image, popularity reinforcement, display environment,
and so on. Finally, as the information (images and evalua-
tions)was provided fromphotographicwebsites, it is not clear
what the users are evaluating (photograph quality, originality,
visual aesthetic, and liking). An interesting approach is to
employ a game to obtain evaluations of images. That allows
the researcher to provide clear choices for evaluation and
may encourage participants to spendmore time contributing
to the research. In Hacker and von Ahn [132], the authors
employ a two-player game where each participant should
evaluate images following the taste of the other participant.
They recruited thousands of players and have collected
millions of judgements.

From PA research, we learn that, even in PA experiments
done in controlled conditions, users provide substantially dif-
ferent evaluations depending on the term and context of the
question [87, 127]. Hence, we propose that when using such
website datasets it is necessary to experimentally test what
users are evaluating. And if possible, the best way to proceed
is to create datasets in collaboration with PA researchers,
with evaluations done in controlled environments and with
a number of images that support the use of machine learning
techniques.

Many of the curated datasets of art images are restricted
to Western or European art, raising issues of cultural bias.
Likewise, many of the reported studies are undertaken in
Europe or North America, which may impact the diversity
of study participants. With increasing scrutiny on how AI
datasets are obtained for machine learning applications,
researchers need to be aware of implicit or explicit bias in
their selection of training data. This is an ongoing issue for
research in this field.

Finally, some recent PA research comments on the main
differences between individuals in appreciation of visual aes-
thetics and complexity [60]. A more detailed analysis of this
issue could be very interesting. Moreover, it can be interesting
to create a large set of images with individual evaluations of
human beings, allowing the training of computer system to
evolve to the aesthetic preferences of one individual human.

Regarding the results, CA research typically reports
results using a success rate or RMS error, while psychologists
aremore likely to use correlation.This is not amajor problem:
some papers get good results in correlation employing ML
systems that try to minimise RMS error [93], but future
systems trained to maximise correlation can achieve better
results.

Closer collaboration between PA and CA can give rise
to results that advance both disciplines. Given the general
quality of datasets (PA), enormous sets of computer metrics
(CA) andML techniques (CA), and posterior analysis (both),
more powerful predictors of visual complexity can be built.

AI researchers can even use AI methods to build newmetrics
that no one was thinking about (using GP programming such
as in Ciocca et al. [94], Artificial Neural Networks [133], or
deep learning [134]). Predictors can be implemented that
allow remote access (via a web page, for example), allowing
any researcher to get a visual complexity value for an image
or set of images online. This will help make the analysis of
aesthetics and complexity objective metrics more accurate
than individual feature analysis, and accessible for everyone.
In this context, it is remarkable that the work of Forsythe et al.
[68] finds more correlation between aesthetics with objective
complexity measures (GIF compression metric) than with
subjective complexity. It could be interesting to undertake
a similar analysis with a complexity predictor made by a
combination of metrics. Additionally, the detailed analysis
of the predictor then allows us to know more information
about the relevant metrics related to complexity. Obviously,
the definition of some standards, one dataset, one complexity
predictor, etc., that is acceptable for everyone will help in this
schema of common research.

Some CA researchers begin the research with the idea
of creating a computer system able to create original and
aesthetically valuable artworks [135]. Generative techniques
such us genetic programming are very interesting for this
research because they can be used to illustrate the results of
a metric or combination of them [19, 136]. However, better
research results in complexity and aesthetic prediction are
needed in order to advance image generation systems. Here,
a collaboration between PA and CA is needed in order to
achieve the new research results required. Moreover, even
without being used in conjunction with generative systems,
computer aesthetics systems can have enormous real-world
applications.

Evolutionary art and computational aesthetics are rela-
tively young areas of research. Yet, some authors may think
that there is nothing new that can be done. Our purpose
with this paper is to help the development of both areas by
highlighting some possible underexplored pathways and to
illustrate the exciting and valuable prior research from the
psychology of aesthetics.

We hope for a future where several visual complexity and
aesthetic predictors are accessible online, where evolutionary
art tools are widely employed by people as ways of exploring
their creative capacity, and where computer systems can
convincingly create paintings in the style of any human artist
and beyond.
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An important topic in evolutionary art is the development of systems that canmimic the aesthetics decisionsmade by humanbegins,
e.g., fitness evaluations made by humans using interactive evolution in generative art. This paper focuses on the analysis of several
datasets used for aesthetic prediction based on ratings from photography websites and psychological experiments. Since these
datasets present problems, we proposed a new dataset that is a subset of DPChallenge.com. Subsequently, three different evaluation
methods were considered, one derived from the ratings available at DPChallenge.com and two obtained under experimental
conditions related to the aesthetics and quality of images. We observed different criteria in the DPChallenge.com ratings, which
had more to do with the photographic quality than with the aesthetic value. Finally, we explored learning systems other than state-
of-the-art ones, in order to predict these three values. The obtained results were similar to those using state-of-the-art procedures.

1. Introduction

Estimating aesthetic value and the complexity of an image is
a technological challenge that has recently been addressed by
numerous fields, including psychology and artificial intelli-
gence. Several research groups have attempted to create com-
puter systems that are able to learn the aesthetics perception
of a group of human beings as a part of a generative system
(such as evolutionary art systems) or that can be used for
automatic image selection or ordering. Given the subjective
nature of the aesthetic problem, the selection of the dataset
for the training is vital.This paper explores a newway to build
a dataset and provide initial results by usingmachine learning
techniques.

Previous research studies [1, 2] have concluded that the
degree of generalisation of some existing sample sets was not
enough to take them as reference in the training of automated
prediction and classification of images. Other functional

limitations were identified in these datasets, which are also
mentioned in this paper.

In order to solve the problems identified in these datasets,
this paper describes the creation of a new set of images
from the website DPChallenge.com, with greater statistical
consistency. Besides, this new dataset was evaluated in terms
of aesthetics and quality by a group of individuals under con-
trolled experimental conditions.Thismakes it the first dataset
evaluated by two different populations (the one evaluating
at the DPChallenge.com portal and the one evaluating it in
person).

With the new dataset created, several Machine Learning-
based models were trained for the automated prediction of
the aesthetic and quality value and that of DPChallenge.com.

This paper starts with a state-of-the-art section on the
datasets created for the automated prediction and classifica-
tion of images. In Section 3, the limitations found in such
sample sets are provided. Section 4 describes the method for
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the creation of a new dataset with greater statistical coherence
and the results of the evaluation procedure obtained under
experimental conditions. Section 5 presents the Machine
Learning models based on the prediction that were used as
well as the results obtained in the training based on the three
available criteria for the images of the proposed set. There is
a section discussing the results and another one with the final
conclusions.

2. State of the Art

Some authors, such as Datta et al. [3], Wang et al. [4], Ke
et al. [5], and Luo et al. [6], conducted studies aimed at
automated aesthetic classification using a number of technical
characteristics such as lightness, saturation, Rule of Thirds,
etc. For these experiments, sets of large-format photographs
from websites and the evaluations made by the users of such
sites were used. On the other hand, other authors, including
Cela-Conde et al. [7], Forsythe et al. [8], and Nadal et al.
[9], carried out aesthetic perception and image complexity
experiments using a sample set with a more limited number
of images, but evaluated by a specific set of people under
controlled experimental conditions. A brief analysis of these
sample sets is presented below.

2.1. Photo.net (2006). Datta et al. [3] created a dataset based
on the photography website Photo.net, which has over a
million images and 400,000 users. In this dataset, each image
is rated on a range from 1 to 7 (1 being the worst possible score
and 7 the best) based on aesthetics and originality. Statistical
information on the rating can be found on the website. It does
not provide information on the image evaluators, though.The
full dataset comprises 3,581 images rated by at least 2 persons
and has an average score between 3.55 and 7 and an overall
total average of 5.06, with a standard deviation of 0.83. The
high correlation found between the criterion of originality
and aesthetics (Pearson’s r = 0.891) might indicate that users
most assuredly are not making such distinctions.

Datta et al. [3] and other researchers such as Wong et al.
[8], who used this sample group, have established a division
to obtain two different groups: (i) the images with an average
score equal to or higher than 5.8 were branded high quality
and (ii) those with scores equal to or lower than 4.2 were
branded low quality. In the case of the study conducted by
Datta et al. [3] a success rate of 70.12% was achieved in the
global classification using Support Vector Machines (SVM):
68.08% for high quality images and 72.31% for low quality
images.

2.2. Photo.net (2008). In 2008, a new study was published by
Datta et al. [10], which introduced a second set of data from
the website consisting of 20,278 images rated by an average of
16.81 persons with a standard deviation of 16.19. It should be
noted that there were images evaluated by aminimumof four
people and others by a maximum of 395. When comparing
this study with the previous one, it becomes apparent that
this statistical analysis ismore complete, as it provides specific
data for each image. The total set of images had at least four

ratings per image, with scores ranging between 2.33 and 6.99,
and a global average of 5.15, with amean standard deviation of
0.58. From the same set, Wong et al. [8] displayed 44 metrics
grouped into three categories with global characteristics, for
which they used a reduced set of images from the original
experiment down to a total of 3,161. After performing a
classification using SVM with linear kernel and resorting to
a crossed validation with 5 independent runs, 78.2% of the
images were successfully classified (82.9% high quality and
75.6% low quality).

2.3. DPChallenge.com. Ke et al. [5] created a different sample
set, which became one of the most commonly used in
aesthetic classification experiments. For the construction of
this set, the photography portal DPChallenge.com was used,
with a total of 60,000 images rated by at least 100 persons
being selected.

For the aesthetic classification experiments, two sets of
6,000 photographs were created by selecting the top and
bottom 10% after arranging them according to their mean
score. Subsequently, Ke et al. [5] carried out a subdivision
into two new random subsets, thus obtaining 4 sets of 3,000
images (two high quality and two low quality sets). A set of
each type was used to train the proposed systems, while the
other was used to validate their capacity and efficacy.

2.4. Dataset Created by Psychologists. Cela-Conde et al. [7]
created a dataset consisting of a final standardized set of 800
images divided into 5 categories: artistic abstract (AA), non-
artistic abstract (AN), artistic representational (RA), non-
artistic representational (RN), and photographs of natural
scenes and human constructions (NHS).

The images were shown to a group of 240 participants (112
men and 128 women, with a mean age of 22.03 years and a
standard deviation of 3.75), randomly divided into subgroups
of 30 persons in a controlled experimental environment. The
images were shown for five seconds and participants were
asked to rate the visual complexity of a subset of stimuli on
a Likert scale from 1 to 5 (1 being the worst possible score and
5 the best). Consequently, each image had a total of 30 ratings.
Themean value obtained by each subgroup for each stimulus
was the value considered to represent the complexity of this
stimulus in the final set. The stimuli in this set were used by
Cela-Conde et al. [7], Forsythe et al. [8], Nadal et al. [9], and
Machado et al. [11].

3. Limitations Found in the Dataset Available

The study of the generalisation capacity of the analysed
datasets led to the conclusion that they did not provide a
satisfactory degree of generalisation: the correlation is greater
when the validation set belongs to the same source of data
as the training set. However, in experiments where the test
was performed with a set from a source different from the
training set, the correlation results decreased notably. A clear
example in this regard can be seen in experiments conducted
in previous research studies [1, 2]: when training a subset of
6,000 images from DPChallenge.com carried out by Ke et
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al. [5], the result of the correlation was 91.38%. If validated
with another subset from the same source, however, the
resulting percentage decreased down to 56.21%, when using,
for example, the dataset from Photo.net created by Datta et
al. in 2006 [3], and down to 55.39% with the dataset from
Photo.net created by Datta et al. in 2008 [10].

Besides, the sample sets trained with ratings from the
photography portals had some defects: the evaluation system
did not have the same control as a psychological test because
it was not possible to obtain all the information about the
evaluating users or about the device used to see the image
(smartphone, computer), or distance or lighting conditions;
the amount of images might be insufficient as there was no
justified reason to choose a sample size and there was a
huge difference in the number of people rating each image;
user evaluations could be easily conditioned by personal
relationships with the creator of the work or a momentary
surge in popularity of certain styles. Lastly, in one of the
cases [3] it was shown that the users of these portals did
not have enough basis to differentiate between aesthetic and
originality criteria, with Pearson’s correlation coefficient of
0.891. Furthermore, as these datasetswere designed for binary
classification, only the images rated with extreme scores
(those obtaining the highest and lowest ratings) were used,
leaving out of the set the images with intermediate ratings.

In the set created by Ke et al. [5] there was another lim-
itation in the collected evaluations, as the DPChallenge.com
portal operated as if it were a photography competition and
there was no specification of any criteria to assess the images.
Consequently, any user can evaluate the image on their own
criteria, which may have nothing to do with those of other
people.

On the other hand, in the dataset created by Cela-
Conde et al. [7] the number of images presented by category
was not balanced. Therefore, the obtained results cannot be
considered as representative of the whole. Besides, the set
was built on the basis of a considerable number of subsets
of images, which resulted in the dataset eventually becoming
a number of datasets of independent themes of smaller size,
with less internal coherence.

Once the limitations of the studied datasets were iden-
tified, a new dataset was built for the aesthetic prediction
of images. This dataset was evaluated by humans under
controlled experimental conditions using a coherent set of
images.

4. Building a New Dataset

After identifying the limitations discussed above in the
existing sets of images, we created a new dataset for the
prediction and classification of images, in which the process
of human evaluation of the images was carried out under
controlled experimental conditions. This new method is
generally put forward in [1] and includes the advantages of
the sets of images studied in this article. This new method
of creation makes it possible to build a set of images with
greater statistical coherence from the rating results on the
photography website DPChallenge.com and is subsequently
evaluated in a manner similar to the procedure used by

Forsythe et al. [8]. Thus, we shall be able to analyse the
correlation between the results obtained with subjects under
controlled circumstances and those obtained through the
photography portal.

4.1. Source Data. We began by collecting a set of images from
theDPChallenge.com photography portal.The images on the
DPChallenge.com portal are rated by users within the range
[1, 10], where 1 is the lowest possible score and 10 the highest.
The only information about the score in DPChallenge.com
is that a score of 1 is a “bad” photo, and a score of 10
is a “good” photo. So the score is not clearly related to
aesthetics, photographic quality, or originality. Nevertheless,
this portal has been used in the past to obtain data for
aesthetic classification experiments [5, 12, 13]. The original
idea behind this site was for it to be a place where friends
could teach themselves to be better photographers by giving
each other a “challenge” for the week. Methodologically,
DPChallenge organises weekly competitions into “themes”
represented by a word of phrase (e.g., “Alfred Hitchcock”,
“Abstract: Black and White II”, “Color Portrait IV”). For the
current study, this aspect of the evaluation is not taken into
account.

Imageswere collected using a brute force processwhereby
all data fromall imageswhose identifierswere between 10,000
and 172,000 in May 2012. All statistical information of the
ratings was available for only 40,047 images. The images in
this initial set were rated by an average of 233 subjects and the
mean rating was 5.23 ± 0.78. All descriptive data are shown in
Figure 1(a). The file with the evaluation data and the links to
the images used (for copyright reasons) are publicly available
at https://doi.org/10.6084/m9.figshare.6127295.v1. Figure 1(c)
shows the arrangement of votes based on each range and
Figure 1(b) displays the distribution of the mean evaluations
of the images within the range of scores, showing in both
cases that they apparently follow a Gaussian model.

4.2. Dataset Proposed. As noted above, only the images in
which all the evaluation data were available were used. Then,
only the images with at least 100 ratings were selected. The
objective was that the mean value subsequently attributed to
each image was the least biased possible.

Once this selection was made, images were arranged in
groups according to the mean ratings given on DPChal-
lenge.com.The images in our selectionwere classified accord-
ing to 9 scoring ranges, one for each integer value of valid
evaluation. Then, a minimum number of images were set for
all groups. In our case, the minimum number was 200 (see
Figure 2(b)). There were no sets of images numerous enough
withmean scores below 3 or higher than 8. Consequently, the
used groups were collected from the [3, 8] range. From these
groups, 200 images with the lowest standard deviation were
selected. In other words, these were images with the most
internally consistent scores. We used the more consistent
image set in order to build a dataset that can be used
as ground truth dataset. The descriptive data for each of
the ranges are detailed in Table 1. Figure 2 shows (a) the
distribution of the number of votes within the range of valid

https://doi.org/10.6084/m9.figshare.6127295.v1
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Table 1: Descriptive data for each of the five sets of 200 images that make up the proposed dataset.

Range [3, 4) [4, 5) [5, 6) [6, 7) [7, 8)

Average 3.5943 4.4695 5.4975 6.4715 7.3112
Deviation 0.2613 0.2868 0.2894 0.2845 0.2335
Variance 0.0683 0.0822 0.0837 0.0809 0.0545
Kurtosis -0.8224 -1.2370 -1.1765 -1.1595 -0.4500
Bias -0.3998 0.1611 -0.0005 0.1099 0.6879
Minimum 3.0070 4.0130 5.0060 6.0030 7.0000
Maximum 3.9970 4.9970 5.9970 6.9940 7.9530

Images 44047
Average 5.2405
Deviation 0.7821
Variance 0.6117
Kurtosis 0.2480
Bias -0.0182
Minimum 1.9951
Maximum 8.3900

Descriptive data
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Figure 1: Characterisation of all 44,047 images initially obtained from DPChallenge. (a) Descriptive data, (b) arrangement of the number of
votes within the range of valid ratings, and (c) distribution of mean image evaluations within the range of valid ratings.

scores and (b) the distribution of the mean ratings within the
range of valid scores for the 1000-image dataset.

This process provides a set of images with equal number
of elements for each range, with high scoring consistence, and
which could eventually be the most representative.

4.3. Human Evaluation. The dataset proposed above was
evaluated by a number of humans under controlled exper-
imental conditions. According to Infinite Population Sam-
pling [14] with a minimum sample size of 8 individuals and
95% of confidence level, the true population rating of an
image can be obtained, with a margin of error of 3%.

To this end, 5 subsets were createdwith randomly selected
images out of a total of 1,000 available. Each person could
rate the images in one or several of these subsets with a score
between 1 and 5, where 1 is the lowest possible score and 5 the
highest. Each set was evaluated by at least 10 persons (a total
of 10,000 ratings).

Evaluations were carried out on February 1st and March
5th, 2018, by student volunteers of theUniversity ofACoruña,
Spain (mainly, students at the School of Communication
Sciences). Ninety (33 male and 66 female) participants
(18.7 years, age range 18-30) took part in this study. Each
participant evaluated at least 200 images before the research
study and under the same viewing conditions: screens with
the same specifications, same lighting conditions, and same
distance between evaluators and the screens.

For every image, users independently rated its aesthetic
value and quality. The English translation of the text of the

survey questions verbatim is: “In this task we want you to
evaluate the quality and aesthetic value of each of the images
that we propose. To score the “quality” you should look
at the framing, focus, colors, etc. In general, professional
photographs have higher quality than photographs taken by
amateurs. The editing of images (use of Photoshop, filters,
etc.) does not have to affect its quality. It may be that you do
not like an image, but if it is well made, your quality score
should be high. For the aesthetic score value we look for
your personal opinion about the image, whether you like it or
not. The semantic value should not influence. That is, a nice
picture of a crying baby can have a high aesthetic value score.”

The data shown in Figure 3 correspond to the mean
obtained for each image from the different evaluations made
for both aesthetic and quality criteria.

The correlation between the scores given in person and
those registered on the Dpchallenge.com platformwas calcu-
lated (see Figure 4). Pearson’s correlation between the mean
score on Dpchallenge.com and the mean score was 0.692
according to the aesthetic criterion and 0.690 according to
Spearman’s.Themean correlation betweenDPChallenge.com
and themean according to the quality valuewas 0.748 accord-
ing to Pearson’s and 0.756 according to Spearman’s. Lastly,
the correlation between the two measures obtained in the in-
person experiment (aesthetics/quality) was 0.787 according
to Pearson’s and 0.786 according to Spearman’s, higher than
in the other two correlations. Figure 4 shows the Scatterplots
between ranks for the three possible combinations given the
three criteria that are evaluated for the entire study.
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Figure 2: Characterisation of the 1000 images in the proposed set. (a) Distribution of the number of votes within the scoring range and (b)
distribution of mean ratings in the images within the valid range of scores.
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Figure 3: Distribution of the mean aesthetic (a) and quality (b) ratings obtained in the control group.

5. Machine Learning Approach

In this study, some state-of-the-art models based onMachine
Learning applied to the proposed input were proposed. The
aim of these experiments was to study whether the existing
correlation values between both human populations seen in
the previous sections (DPChallenge and control group) can
be replicated by a computer system for the proposed dataset.

5.1. Materials and Methods. To characterise the images that
make up the study set, a feature extractor available in WND-
CHARM [15] was used, which is a multipurpose image
classifier that can be applied to a wide variety of image tasks.
According to its developers, the system extracts a large set of
image features, including polynomial decompositions, high
contrast features, pixel statistics, and textures, among others.
These features are computed on the raw image, transforms of
the image, and transforms of transforms of the image. The
final feature vector comprises 2905 variables, each of which
reporting on a different aspect of image content. All features
are based on greyscale images, so colour information is not
currently used.

The authors tested the different computational models
using a 10-fold cross-validation to split the data and 50
runs per model in order to evaluate the performance across
different experiments. The performance of the models was
evaluated using Spearman’s correlation coefficient (rho) and
Pearson’s correlation coefficient (Pearson’s r).

5.2. Computational Models. The authors performed several
experiments in order to select the best model using the R
package and MATLAB©. Some of the used computational
models looked for the smallest subset of variables of the
original set which provided a better performance [16], or
at least equal to that obtained when using all the possible
variables, considering this was a Feature Selection (FS)
approach [17–19].

More specifically, the used methods were the following:
the well-known Support Vector Machines-Recursive Feature
Elimination (SVM-RFE) [20, 21] and the Generalized Linear
Model with Stepwise Feature Selection (GLM) [22] which
selects features that minimise the AIC score and the most
basic standard Multiple Linear Regression (LM) without FS.
The abilities of the RRegrs Package [23] were enhanced in
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Figure 4: Scatterplots between ranks for the three possible combinations given the criteria evaluated for the entire study.

order to implement the SVM-RFE and GLM to avoid finding
the best model according to the proposed methodology as,
according to [24], it should be performed based on a null
hypothesis test. This package was also enhanced in order
to avoid the initial splitting process, and an external cross-
validation process was performed to avoid selection bias as
suggested by [25].The last stepwasmodified in order to easily
extract the results for all the models.

TheK-nearest neighbour (k-NN) algorithm is a technique
based on the cluster theory. In this case, a variant called
weighted k-NN [26] was used. It is based on the fact that a
new observation particularly close to an observation within
the learning set should have great importance in the decision-
making process and, conversely, an observation that is at a
further distance should have much less importance [27]. For
this algorithm, only the hyperparameter k was tuned, which
represented the number of neighbour data points that were
considered closest. The range of values was from 1 to 5.

The generalized boosted models (GBM) applied the
approach described in [28], to establish the foundation of
boosting algorithms. GBM estimation involves an iterative
process with multiple regression trees to capture complex
and nonlinear relationships without overfitting the data [29,
30]. It works with continuous and discrete variables and
is invariant to their monotonic transformations [31]. For
this algorithm, the interactive depth was represented by the
number of splits it had to perform on a tree (starting from
a single node) and the number of trees that were tuned. The
range of values used was from 1 to 4 and 100, 250, and 500 for
the number of trees.

The design of our experiments was based on a novel
methodology for the development of experimental designs in
regression problems with multiple machine learning regres-
sion algorithms [32]. For each model described above, the
optimal set of parameters was sought using hyperparameter
optimisation.

5.3. Results. Figure 5 andTable 2 show the results obtained for
each of the four methods studied according to Pearson’s and
Spearman’s correlation value, using as reference the average
ratings from the DPChallenge.com portal. Firstly, examining
Spearman’s correlation values, the maximum value of the

SVM-based model was 0.574, using 1024 variables. The input
set could be decreased down to 256 with no significant loss
of performance (0.570), as the correlation values remained
statistically constant between both figures. On the other
hand, if we look at the values for Pearson’s r, the same
pattern remained, since, with 1024 input variables, 0.581 was
obtained, whereas, with 256, 0.574 was obtained (with no
significant difference in performance). In any case, both
Spearman’s and Pearson’s values show a moderate uphill
(positive) relationship, with the exception of k-NN.

The authors checked the significance of the difference
between GLM, SVM, GBM, and k-NN with 256 input
variables (see Figure 6) using a Kruskal-Wallis test, and our
results showed that, with a very high level of confidence, SVM
(cost = 2−6 y gamma=2−9) was significantly better than the
others with a p-value < 2.2 x 10−16. Consequently, it could be
stated that the minimum input set with the best results was
the one with 256 input variables in combinationwith an SVM
prediction model with specified parameters.

Once the method with the best results was identified
using the average ratings obtained by the users of DPChal-
lenge.com, the best SVM hyperparameters were calculated
(cost = 2−4 and gamma=2−12 in both cases) training the
scores for “aesthetics” and “quality” obtained in the above-
mentioned experiment with humans.

As shown in Figure 7, the values for any of the 3 cases
are below 0.60 on average. Specifically, it was 0.578 for
DPChallenge, 0.456 for aesthetics, and 0.539 for quality, using
as mean of performance Spearman’s rho and 0.574, 0.451, and
0.562, respectively, using Pearson’s r. On the negative side, it
is particularly relevant that in the case of “aesthetics” there is
a weak uphill (positive) relationship given the average value
obtained with both measures.

6. Discussion

A correlation of 0.78 was obtained between the ratings based
on aesthetics and those based on quality. This indicated that
the evaluation teams distinguished between both criteria
when compared with the measurements made by Datta et
al. [3], where Pearson’s correlation between aesthetics and
originality was 0.891.
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Table 2: Average results presented in Figure 5, identifying hyperparameters and input size for each model.

Size Model Pearson SD Hyperparameters
16 GLMNET 0.5320 0.0717 Alpha=0
16 GBM 0.5234 0.0738 Interaction.depth=4, n.trees=500
16 k-NN 0.4831 0.0744 k=12; distance=2
16 SVM 0.5389 0.0713 Cost = 16 Gamma=0.00984
32 GLMNET 0.5451 0.0709 Alpha=0
32 GBM 0.5266 0.0733 Interaction.depth=4, n.trees=500
32 k-NN 0.4851 0.0750 k=12; distance=2
32 SVM 0.5581 0.0732 Cost=0.397 Gamma=0.00984
64 GLMNET 0.5406 0.0669 Alpha=0
64 GBM 0.5474 0.0723 Interaction.depth=4, n.trees=500
64 k-NN 0.4898 0.0752 k=12; distance=2
64 SVM 0.5503 0.0691 Cost=2.52 Gamma=0.000244
128 GLMNET 0.5473 0.0745 Alpha=0
128 GBM 0.5425 0.0679 Interaction.depth=4, n.trees=500
128 k-NN 0.4926 0.0720 k=12; distance=2
128 SVM 0.5687 0.0676 Cost=0.397 Gamma=0.00155
256 GLMNET 0.5555 0.0719 Alpha=0,15
256 GBM 0.5479 0.0704 Interaction.depth=4, n.trees=500
256 k-NN 0.4776 0.0774 k=12; distance=2
256 SVM 0.5778 0.0671 Cost=2.52 Gamma=0.000244
512 GLMNET 0.5748 0.0701 Alpha=0,15
512 GBM 0.5482 0.0765 Interaction.depth=4, n.trees=500
512 k-NN 0.4845 0.0758 k=12; distance=2
512 SVM 0.5747 0.0683 Cost=2.52 Gamma=0.000244
1024 GLMNET 0.5644 0.0708 Alpha=0,15
1024 GBM 0.5473 0.0685 Interaction.depth=4, n.trees=500
1024 k-NN 0.4908 0.0777 k=12; distance=2
1024 SVM 0.5782 0.0670 Cost=0.397 Gamma=0.000244
2048 GLMNET 0.5602 0.0733 Alpha=0,15
2048 GBM 0.5465 0.0692 Interaction.depth=4, n.trees=500
2048 k-NN 0.4482 0.0815 k=12; distance=2
2048 SVM 0.5723 0.0685 Cost = 2.52 Gamma=0.000244
fulldataset GLMNET 0.5590 0.0719 Alpha=0,15
fulldataset GBM 0.5476 0.0690 Interaction.depth=4, n.trees=500
fulldataset k-NN 0.4299 0.0825 k=12; distance=2
fulldataset SVM 0.5554 0.0721 Cost=2.52 Gamma=0.000244

Regarding the correlation between DPChallenge and
quality and aesthetics individually, we should begin by under-
scoring that the highest correlation was between DPChal-
lenge and quality, which suggests that, at DPChallenge, the
photographic quality is valued over the aesthetic value of the
image.

In our opinion, there was no single reason that explained
the difference between the correlations regarding DPChal-
lenge, as far as the aesthetic and quality values were con-
cerned:

(i) In the case of DPChallenge, the users’ rating may be
conditioned by affinity with the author of the photo-
graph as we were dealing with a competition whereas
in the case of the control group, the experimental

conditions were controlled (for instance, everyone
used the same screen model, at the same distance,
with the same ambient light, etc.).

(ii) At DPChallenge, numerous devices can be used
(smartphones, tablets, and high resolution screens)
and conditions such as viewing distance and ambient
light are heterogeneous.

(iii) In the case of the in-person group, the evaluation
criteria were established: aesthetics and quality. At
DPChallenge, as mentioned above, we were dealing
with a photography competition and many different
things may be evaluated such as quality, aesthetics,
originality, etc.
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Figure 5: Results obtained for the four models proposed and optimised by hyperparameterisation. On the right, the mean values for
Spearman’s (top) and Pearson’s r (bottom) are shown. On the left, the distributions of all 50 independent runs for each optimum model
(Spearman top and Pearson bottom) are shown with different input sizes tested using FS.

(iv) On the other hand, in the case of in-person ratings,
the minimum per image was 10 whereas, for the
evaluations from DPChallenge, the minimum was
100 for each image. It should be borne in mind that
the used images had the lowest standard deviation at
DPChallenge, which means that the mean rating at
DPChallenge had a standard deviation (0.27) lower
than that of in-person ratings (1.18 for aesthetics and
1.10 for quality).

If we pay attention to the visual characteristics of some of
the images of the set (Figure 8), some noteworthy cases were
found:

(i) Figure 8(a) was wrongly rated by the users of the pho-
tography portal as having some overexposed areas.
It showed a palm tree on the foreground which was
slightly incorrectly exposed. However, it obtained a
high score in aesthetics because it had some aesthetic
value for the evaluators (these motifs tend to have
certain aesthetic value). The value of quality was
closer to that of DPChallenge in this case.

(ii) Figure 8(b) in DPChallenge obtained a low rating,
whereas as far as quality and aesthetics were con-
cerned, it was clearly over average. This difference
could be due to the experimental conditions in which
the in-person evaluation took place (good quality of
image on a big-enough screen, well exposed sky).
Under these conditions, evaluators might have paid
more attention to the drop and the sky to the detri-
ment of darker area.

(iii) Figure 8(c) at DPChallenge had a high rating, which
may be due to the fact that its originality and editing
were taken into account.

(iv) Lastly, in Figure 8(d) quality was again closer to
DPChallenge. However, a lower score was given in
aesthetics.

All this shows that, at DPChallenge, in specific cases, different
parametersmight be evaluated: originality, quality, aesthetics,
photo editing, etc.

As to the use of machine learning techniques to predict
each of the three criteria studied, the highest correlation
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Figure 6: Distribution of the correlations obtained for each optimised model (Pearson’s on the right and Spearman’s on the left). For each
pair, the p-value obtained using a Kruskal-Wallis test is shown.
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Figure 7: Distribution of correlations (Spearman’s on the right and Pearson’s on the left) obtained for each of the three criteria (DPChallenge,
Aesthetic, and Quality) using 256 input variables and an SVMmodel optimised using hyperparameterisation.

obtained was 0.578 using SVM. This value is similar to
those obtained by Marin and Leder [33] using as criteria
“arousal” (Spearman’s rho=0.44) and “pleasantness” (Spear-
man’s rho=0.64) or by Nadal [9] with “beauty” (Spear-
man’s rho=0.648) under similar experimental conditions
with humans. These values were obtained using numerous

state-of-the-art methods in predicting and determining the
best configuration for each of them through hyperparame-
terisation.

As to the correlation between the SVMmodelwith quality
and aesthetics individually (Figure 8), it follows that for
the system it was simpler to learn the quality values than
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Figure 8: Examples of images with different scores based on the three evaluation criteria. For each image, a number value is given according
to each criterion, while bars show the normalised weight of such value within each assessment range (DPChallenge in the [1, 10] range and
aesthetics and quality in the [1, 5] range).

the aesthetic ones, which makes sense considering that the
former is a less subjective component andmore related to the
characteristics of the image.

7. Conclusions

Taking into account a number of problems found regarding
the state-of-the-art datasets, a dataset was developed follow-
ing a new methodology. This dataset consists of 1000 images
from the DPChallenge portal, which were evaluated in 3
different ways: (1) evaluation from the DPChallenge portal
with at least 100 scores per image; (2) an aesthetic evaluation
conducted under controlled experimental conditions and a
minimum of 10 votes per image; (3) a quality assessment
made under the same conditions as (2). As far as the authors
are aware, this is the first time a dataset is evaluated based on
three different criteria by two different populations.

The results of the correlation suggest that the evaluation
of DPChallenge is closer to a quality criterion than to
an aesthetic one. The DPChallenge users and in-person
evaluators rate images differently and it is apparent that at
DPChallenge each user may be following different criteria for

the evaluation of images, such as originality, image editing,
quality, aesthetics, etc.

Numerous state-of-the-art computational techniques
were used and their optimal configurations were identified
and applied to all three criteria (DPChallenge, aesthetic,
and quality) and correlations of 0.578, 0.456, and 0.539,
respectively, were achieved. These results are similar to those
obtained in the state-of-the-art experiments. They show that
machine learning techniques are more able to learn human
assessment of technical quality than aesthetic value, despite
the fact that the gap between them is very narrow.

It should be emphasized that machine learning
approaches are better at predicting quality than aesthetics,
perhaps because of their lower subjective component and
their greater association with the intrinsic characteristics of
the images.
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Procedurally generated images and textures have beenwidely explored in evolutionary art. One active research direction in the field
is the discovery of suitable heuristics for measuring perceived characteristics of evolved images. This is important in order to help
influence the nature of evolved images and thereby evolve more meaningful and pleasing art. In this regard, particular challenges
exist for quantifying aspects of style and shape. In an attempt to bridge the divide between computer vision and cognitive perception,
we propose the use of measures related to image spatial frequencies. Based on existing research that uses power spectral density of
spatial frequencies as an effective metric for image classification and retrieval, we posit that Fourier decomposition can be effective
for guiding image evolution. We refine fitness measures based on Fourier analysis and spatial frequency and apply them within
a genetic programming environment for image synthesis. We implement fitness strategies using 2D Fourier power spectra and
phase, with the goal of evolving images that share spectral properties of supplied target images. Adaptations and extensions of the
fitness strategies are considered for their utility in art systems. Experiments were conducted using a variety of greyscale and colour
target images, spatial fitness criteria, and procedural texture languages. Results were promising, in that some target images were
trivially evolved, while others were more challenging to characterize.We also observed that some evolved images which we found
discordant and “uncomfortable” show a previously identified spectral phenomenon. Future research should further investigate this
result, as it could extend the use of 2D power spectra in fitness evaluations to promote new aesthetic properties.

1. Introduction

1.1. Overview of Problem. Digital art brings to mind many
wide and varying concepts and examples, with many digitally
produced, original pieces finding their own acclaim [1, 2]. It
is trivial for software to precisely replicate a digital image.
On the other hand, we find it difficult to autonomously pro-
duce new images which share similar visual characteristics
with images provided. Forming correct abstractions between
digital data and their visual interpretations is an ongoing
challenge covering many fields of study [3–6].

We focus on procedural textures, which are images
generatedwithmathematical formulae and/or algorithms [7].
The terms “images” and “textures” are used interchangeably.
Texture synthesis shows its use in applications ranging from
interactive art systems [8], adaptive image filters [9], camou-
flage generation [10], and game asset generation [11] amongst
others.

The ability to form minor alterations in these procedures
allows us to easily make changes in a structured manner.
However, it may not always be clear a priori how these
changes will come to manifest. By combining together parts
between the better performing generated images, we may
gradually refine them and allow them to exceed the quality
of any single prior image. With this process of evolutionary
refinement, we are able to exploremany similar images which
can feature novel and creative variation. A technique to
capture and replicate spatial properties would be of great
benefit for improving these existing systems or expanding to
new applications.

Evolutionary algorithms (EA)—and notably genetic pro-
gramming (GP)—are able to nonexhaustively explore the
space of possible images with little explicit understanding of
how to affect high-level image changes [12–15]. Perhaps the
most critical component in all EAs is the fitness measure,
defining themetaheuristicwhich guides the search to optimal
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solutions. With image synthesis, a bridge is needed to cross
the divide from computer vision, information theory, and
computational intelligence attributes we can evaluate from
our rendering, to the psychological and cognitive under-
standings of perception.

With evo-art, we are often attempting to recreate charac-
teristics of a target image, and not to precisely duplicate it.The
idea of evolving near-matches, or “variations on a theme”, has
been a goal in many previous applications [16–18]. Using an
evolutionary approach, exact matches are possible for simple
images, but become rather difficult for more complex targets.

In investigating the existing measures that can be com-
puted from a rendered image, measures related to power
spectral density appear to be promising. Estimates of power
spectral density are based on the discrete Fourier transform
of a signal, a measure of power across each component
frequency. For 2D applications, a radial average of the 2D
DFT coefficients with common polar distance (same spatial
frequency) can be obtained for a more robust, abstract mea-
sure. A number of papers on image analysis/retrieval [4, 5, 19,
20] have been foundwhich use this tomore effectively classify
images based on computationally tricky but perceptively
obvious attributes (i.e., Eastern versus Western art; Portrait
versus Sketch versus Landscape). Despite this, little can be
found relating to the use of power spectra for evolutionary
art.

Power spectral density also plays a key role in spatial fre-
quency theory. The theory purports that a human or animal
visual cortex operates through coded signals in relation to
observed spatial frequencies (in contrast to edge and line
detection which can be prominently found in wavelets) [21–
25]. An interesting adaptation of this research enables the
identification of uncomfortable images through contrast and
frequency analysis [3]. Power spectra of an image’s luminance
were investigated, and certain frequency octaves were found
to provide higher ratings of perceptual discomfort. We find
numerous motivations toward the exploration of power
spectral density as an art fitness measure, and promise in
modelling perceptual spatial characteristics.

1.2. Goals. With spatial frequency being one of the more
human-intuitive measures for shape and composition, and
with the amount of existing research linking the measure to
human perception, this paper shows its potential as a tool
for guiding evolutionary textures. Our goal is to explore the
use of these measures in evolutionary texture synthesis and
evaluate their utility in production of digital evolutionary art.
We consider our models of shape from a target image for
use as a guide when evolving new images. It is hoped that by
capturing and reproducing key spatial attributes of the image,
we can see novel images with similar properties emerge in a
creative exploration.

Our research presents a pair of milestones. Using genetic
programming, we produce grayscale textures and explore
the ability of Fourier-based fitness measures to replicate
spatial properties of target images. The focus on grayscale
images simplifies the texture formulae evolved, and permits
experiments to concentrate on shape information. We then

explore the use of these measures for colour image synthesis.
Most evo-art systems use colour, and so it is important to
examine the applicability of our Fourier analyses to the colour
domain. Doing so helps establish the utility of Fourier shape
analysis as a tool for serious applications in evolutionary art.

1.3. Organization of Paper. The paper is organized as follows.
Section 2 reviews the Fourier transform and its application
toward 2D images. Section 3 discusses some of the important
research literature of relevance to this paper, with a focus
on evolutionary textures, and application of power spectral
density measures. We outline the details of our experimental
system in Section 4, and summarize the key findings of our
initial experiments in Section 5. Later work with adaptations
toward evolutionary art is discussed in Section 6. Conclusions
are given in Section 7.

The paper presumes familiarity with genetic program-
ming [14]. Further details of this research are in [26].

2. Background

2.1. Fourier Transform. The following briefly outlines some
of the main technical details of Fourier analyses. A complete
introduction is beyond the scope of this paper. We refer the
reader to detailed discussions in [27–29].

Fourier analysis is a well-known tool which sees substan-
tial use in signal processing applications [28]. The Fourier
transform converts a signal with samples based on amplitude
at points in time, to a representation which shows the
power and phase of the signal’s constituent frequencies. The
Fourier transform translates a signal into a sum of sinusoids,
where the frequency of each periodic term relates to a
component frequency found in the signal.The result of such a
decomposition is typically encoded as a complex number for
each frequency (see (1) to (3)).

𝑓 (𝑡) = ∞∑
�푛=−∞

𝐶�푛𝑒�푖�푛�휔�푡 (1)

𝐶�푛 = 1𝑇 ∫
�푇

0
𝑓 (𝑡) 𝑒−�푖�푛�휔�푡𝑑𝑡 (2)

= 12 (𝑎�푛 − 𝑖𝑏�푛) (3)

The real part of the coefficient (𝑎�푛) scales each term and
may maintain its definition as the amplitude of the particular
frequency.The additional imaginary component of the coeffi-
cient (𝑏�푛) can be used in conjunction with the real component
to recover the phase of the frequency, as declared through the
complex phase angle.

Adapting the Fourier transform to a 2D image can be
done by applying the discrete Fourier transform (DFT) on
each index of the first dimension, and then again along each
row of the results. This gives us the amplitude and phase
of how each frequency contributes to the total 2D signal.
In applications with images, we often see most of the high-
energy coefficients appear around the central positions and
main axes of the shifted DFT [29], as seen in Figure 1.
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Figure 1: Power spectra pipeline.The source image in subfigure (a), undergoing 2D Fourier analysis, and its power spectral estimation shown
in subfigure (b). As it provides for more interpretable charting and easier radial estimation, we “center” the coefficients by shifting them to
diagonally opposite quadrants as seen in subfigure (c). We can then reduce dimensionality and produce useful aggregates by using radial
averaging measures (d) and subsequent regressions (e).

Where the amplitude of an audio signal may have an intuitive
correspondence with sound wave pressure, amplitudes for
a 2D image will be a measured in relation to their pixel
intensity, or as is typically the case in colour images, the
intensity across a particular colour channel.

While the Fourier transform can scale to higher dimen-
sional signals, the use of DFT for colour textures is still
potentially problematic [30]. In consideration of applying
the DFT to colour channels in isolation, we should note
that spatial properties are not necessarily clear from average
intensity nor from inspection of individual colour channels.
The related quaternion Fourier transform [31] might assist in
this matter.

2.1.1. Power Spectral Density. The power spectral density
(PSD), or power spectrum, is a measure of the power across
the frequency domain of a signal. We can acquire an estimate
of the PSD 𝑃�푗 at frequency 𝑗, by multiplying the Fourier

terms 𝐶�푗 by their complex conjugate 𝐶�푗 and scaling by the
number of samples 𝑛 to produce a periodogram [32]. Due to
the simple, real-valued coefficients of our image signal, we
can simplify this to normalizing and squaring the real part
of the DFT, as in (4).

𝑃�푗 = (𝐶�푗𝐶�푗𝑛2 ) (4)

= (
𝐶�푗𝑛 )

2

(5)

For a 2D signal, we will be interested in the radial average
of this measure, requiring us to shift the quadrants of our
estimate, and then interpreting the average in a polar coor-
dinate system. An overview of the steps in our measurement
pipeline is shown in Figure 1. Between the DFT and the radial
averaging methods, the power spectral estimate measure has
the benefit of being approximately equal across rotation, and
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Figure 2: Power spectra interpretation and reconstruction. Rows from top to bottom: source image, shifted, and normalized constituent FFT
power coefficients, radially averaged power spectra, and radially averaged power spectra plotted in a log-log scale (log2) with linear regression.

preserving shape across resolution. This measure relates to
the contrast of luminance intensity, and we may also see
a relation with image complexity. A further abstraction is
to take a linear regression of the averaged power spectral
density. While a display of the 2D power coefficients may
more accurately represent the true power spectral density of
a 2D signal, we find in some of the literature (i.e., [4, 20]) that
“power spectral density” and related terms often refer to the
radial average or similar abstractions.

Figure 2 illustrates various representations of an image
with a single component frequency. Shifting from the first to
second column of the figure, we can see that lower frequency
(those which have larger periods/cycles over greater areas
of the image) is contained at the center of the shifted FFT
power coefficient display. The first column shows a wave
whose period is half of the canvas (input signal), and so the
charted radially averaged power spectrum shows high power
at a frequency of 2. As we move to the outer edge of the
power coefficient display, we find the powers of increasing

frequency ranges being displayed. The fifth column faintly
shows a suitable example of minor aliasing artefacts having
both lower power and higher frequency as we move from the
key frequencies toward the image edges. We can also observe
that the orientation of the wave-like pattern in the top image
corresponds to the angle (from center) of the coefficient
responsible for the effect, while still maintaining a distance
(from center) corresponding to the actual frequency. Observ-
ing the subsequently charted radially averaged power spectra
plots, we can see that all have a high power at frequency 4.
Finally, we can see the multiplicative combination of the two
component frequencies in the last column, as a grid begins
to form with both horizontal and vertical frequency, again
reflected in the power coefficient display.The final row of the
figure displays the radially averaged power spectrum in a log-
log scale, to assist in showing the much larger 0�푡ℎ coefficient,
and the more subtle changes in the lower-powered high
frequencies. However, in simple images, there may not always
be power at every frequency. A problematic consequence of
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this is that these frequencies cannot be charted in a log-log
scale, and may affect the results of any regression, as is visible
in the figure.

3. Literature Review

Although evolutionary algorithms have been applied tomany
forms of art over the years, we focus on literature involving
the targeted evolution of procedural textures.

3.1. Spatial Measures. The need for measures permitting
comparison of spatial properties tends to get resolved
through one of two main concepts. Common approaches
either extracted key features (and their positions) from a
source or target image, or performed some type of frequency
analysis. Many early attempts to capture spatial aspects for
image database systems relied on basic algebraic and statisti-
cal measurements across intensity. The QBIC Project (which
explored image querying through use of colour, texture,
and shape measures) proposed spatial measures derived
from capturing intensity areas, circularity, eccentricity, axis
orientation, and algebraic central moment information [6].

A notable paper pertaining to image retrieval was pub-
lished by Jacobs et al. [33], in which the proposed algorithm
was capable of efficiently extracting the key coefficients
from wavelet analysis. Extracted coefficients are limited to
the 𝐾 greatest absolute values, before being quantized and
compared for mismatch. While the algorithm may have been
intended for a retrieval system, the comparative abilities of
themeasure proved effective in guiding evolutionary systems.
In [33], the set of coefficients were “truncated” by zeroing all
but the top 𝐾 greatest absolute value coefficients. Following
this was a “quantization”, setting all nonzero components
into their sign of {−1, +1}. The total error between images
could then be found by summing of differences between each
truncated, quantized coefficient position. This quantization
scheme was found to be quite beneficial; despite the resulting
loss of precision, as “the mere presence or absence of such
features appears to have more discriminatory power for
image querying than the features’ precise magnitudes” [33].

3.2. Evolutionary Textures. The use of evolutionary algo-
rithms for texture synthesis was pioneered by Sims [13],
and used interactive user guidance, which enabled a user to
gradually manipulate sets of graphical shaders to produce
images fitting a desired aesthetic.

An early attempt in the transition to unsupervised
approaches came from Baluja et al. [15]. Simple topologies
of artificial neural networks were used in an attempt to learn
a user’s aesthetic preferences by training against user ratings
and groups of raw pixel values. This approach saw some
shortcomings, but highlighted the need for abstracted image
measures to be used as guides. The idea of learning aesthetic
preferences through neural networks has since been revisited
with the inclusion ofmultiple abstracted imagemeasureswith
some reported success [34].

A critical successor to Sims’ work was the Genshade
system by Ibrahim [16]. Genshade introduced unsupervised,

automatic fitness evaluation of images as generated by
evolved Renderman shaders. Various image analyses were
compared between the evolved images and a provided target
image.Thesemeasureswere used in lieu of user input to guide
the evolution of textures toward those showing similar visual
characteristics of the targeted image.

The Gentropy system by Wiens and Ross [17] expanded
upon the unsupervised approach of Genshade by providing
additional image analysis measures, and use of a simple pro-
cedural texture language, in contrast to Genshade’s evolution
of high-level Renderman shaders. A suite of image analyses
were performed during fitness evaluation, which benefited
with the use of island-model parallelism for maintaining
diversity and accelerating the quality of evolved results.
Gentropy was later enhanced in [35] by replacing island-
model evolution with multiobjective evaluation, by treating
the different image analysis tests as separate objectives for
Pareto ranking.

Genshade [16] and Gentropy [17] employ the tech-
niques from [33], where spatial features were compared
via these extracted coefficients from wavelet measures.
The technique appears to have been successfully adapted
for use with texture synthesis. Results of wavelet analyses
in both systems were positive, although a comprehensive
investigation regarding the extent of their abilities was not
undertaken.

More recently, there have been developments in using
aesthetic modelling to guide image evolution [36–39]. Aes-
thetic modelling is a pioneering frontier for art and image
analyses, and proposed models are not yet mature enough to
be comprehensive theories of artistic beauty and aesthetics.
Nevertheless, these efforts attempt to use higher-level image
analyses as guides for evolution, which contrasts to the lower-
level image processing used by systems like Genshade and
Gentropy.

Recent work by Tanjil [40] uses ideas from deep learning
to guide evolutionary image synthesis. A heuristic is pro-
posed that enables activation nodes of a deep convolution
neural network (trained for classification) to be identified
for use by fitness evaluation. Using a set of images sharing
desired visual features, the heuristic determines the activation
nodes of the network most likely to be activated by the
visual characteristics of interest. These nodes are then used as
guides by fitness. A number of experiments showed that the
genetic programming systemwas able to evolve imageswhich
shared desired properties of target images, such as shape
and colour. Tanjil concludes that, as deep learning networks
become better understood, they may be even more effectively
exploited by evo-art systems.

While these and other systems attempt to capture spatial
attributes, that was only a part of their purpose as a more
generic art system.There was no extensive evaluation of their
spatial guidance capabilities, and the use of Fourier analysis in
texture synthesis or aesthetic modelling has been left largely
unexplored.

Further examples and surveys of evolutionary art can be
found in [1, 2], and contemporary research is published at the
annual EvoMusArt conference (http://www.evostar.org/).

http://www.evostar.org/
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3.3. Limitations. Although the use of wavelet-based analysis
showed effectiveness, alternative approaches are possible.
One considered problem with a frequency analysis approach
was in the inability to effectively handle images with multiple
colour channels [30]. One potential solution to this was pro-
posed through the use of the quaternion Fourier transform
[31], which does not have a direct equivalence with wavelet
analysis.

A criticism common to all types of frequency analysis
remains in the fact that a perfect solution would exactly
replicate the target image [41]. In evolutionary art, we never
desire to make a reproduction of a given image. Rather, we
only want to capture key characteristics of an image, and
explore the landscape of possible solutions which are in some
way similar. While fitness evaluations could be adjusted to
prefer some amount of error, we found that there is often
still sufficient challenge presented to our system outside of toy
problems, permitting for novel solutions to emerge while we
pursue higher numerical accuracy.

4. System Design

There are two key components which form the core of our
experimental system. The first component is a library which
could process an image to provide the power spectral density
(PSD), regression, and other FFT related measures. The
second, and largest, component is the evolutionary system
which used genetic programming to evolve and synthesize
procedural textures.

4.1. Power Spectral Density Measures. A number of PSD-
related calculationswere required for this research. For exam-
ple, the 2D power coefficient matrices, the radially averaged
power spectral density, and its linear regressions. MATLAB
[42] (release 2016a) was used to assist with computation of
power spectral density measures. MATLAB allowed us to
generate native C code, which was integrated into the Java-
based evolutionary system (Section 4.2) through use of the
Java Native Interface (or commonly, JNI) framework.

For the experiments using regression measures of the
radially averaged power spectral density, the regression was
obtained first by converting the power measures to a log-
log scaling, to better match the conventional practices seen
in the literature. Charting of PSD throughout this paper
uses log10 scaling to remain consistent with other charted
scales, though evaluations used for the various applicable
experiments have used a log�푒 scaling. For a linear regression,
the slope measures should remain identical across log bases,
though the offset will vary. Regressions were found by using
MATLAB’s polyfit function, which itself performs a least-
squares error fit. While uncommon for natural images, some
abstract images produced by our system were found to have
no power at certain frequencies. To lessen the biased effects of
these values from the regression, any infinite or invalid power
measures were removed from the set of points considered
during the regression.

We decided to forgo any image windowing functions
prior to sending the image data through the DFT and PSD

measure pipelines.The use of a windowing function has been
advised for nonregular signals, such as typical nonrepeating
images, to reduce heavy artefacts in the decomposition.
Specific window functions and parameters would be depen-
dent on the expected signal. However, initial trials using
windowing did not significantly impact our results, and so
windowing was henceforth ignored.

In summary, tests found that our library produced results
closely matching existing literature, and specifically those
from Graham et al. [20].

4.2. Genetic Programming Engine. The evolutionary art sys-
tem we used to generate textures is a custom extension of
the ECJ system (version 23), a Java-based system for genetic
programming and other techniques [43].

We used a genetic programming tree representation to
evolve symbolic expressions for procedural textures. Much
of our early experimentation focused on spatial attributes of
an image. We found that grayscale textures were not only
adequate, but were indeed preferable over the artistic colour
texture renderings. To suitably represent this, GP individuals
needed only a single tree to evaluate luminosity or intensity.
Later experimentation expanded to colour textures, and we
consequently expanded our individuals to hold 3 trees; one
tree was used for each colour channel in the RGB colour-
space.

The wall-clock run times for the system configured for
basic grayscale textures were found to be approximately 45
minutes per run, when executed using a single thread of
an AMD FX-8350 processor. In this configuration, multiple
runs were evaluated concurrently. With the parallel nature
of the system, we could see substantial reductions in single-
run execution time if reconfigured to use multiple threads.
The introduction of noise operators and RGB colour chan-
nels each increased runtime by factors of approximately 6
and 3, respectively. Coloured textures using noise language
operators required an approximate average of 12 hours for
completion of a run.

4.2.1. GP Parameters. Table 1 lists the GP parameters nor-
mally used in our experiments. Although most are standard
in the literature [14], a few require explanation. Three vari-
ants of ephemeral random constants (ERCs) were included
corresponding to orders of magnitude, and each of the ERC
nodes are instantiated to random values within their respec-
tive ranges. The introduction of ephemeral value mutation
allowed for the randomized constants to be slightly altered
by 1%, which permitted for finer adjustments to the rendered
image. The ERC mutation operator had been included at a
probability of 10% and was responsible for a proportional
decrease in likelihood to execute the crossover operator. So as
to remove the possibility of losing the best found individual in
a generation, we allowed elitism for the single best individual
of a generation to be retained unaltered in the subsequent
generation.

The termination criteria for a run were the completion
of 100 generations. While “perfect” individuals had been
produced for some simple compositional targets, this was
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Table 1: Genetic programming engine parameters overview.

Parameter Value
Runs 30
Generations 100
Population Size 1000
Elitism 1

Sum-of-Ranks Fitness
Diversity Penalty, Initial 10
Diversity Penalty, Increment 10

Generation 0
Builder Ramped Half & Half (see [14])
New Node Depth 2 . . . 6
Grow Probability 50%

Reproductive Operators
Crossover 70%
Mutation 20%
ERC Mutation 10%
Crossover Max Depth 17
Mutation Max Depth 17
Mutation New Node Depth 5
Selection Method Tournament
Tournament Size 3

otherwise a difficult problem, where finding such a “perfect”
solution was not typically expected.

4.2.2. Texture Languages. The GP language is in Table 2.
Standard mathematical operators were used, as well as spe-
cialized texture generating primitives. Optimized Perlin and
simplex noise generators have been borrowed from [44, 45]
respectively. The fractalsum, turbulence, and marble noises
have been based on the Perlin noise implementation as
originally conceived. For these noise variants, coordinate
scaling had been used to ensure noise is applied across the[−1, 1] rendering window. Initial experiments in Section 5
excluded the spatial and noise operators.

4.3. Multiobjective Evaluation. Some problems permit us to
evaluate solutions with a single measurement, for example,
the overall error in a regression problem. However, there
are problems where multiple criteria are necessary. These
metrics can be independent, or can interact in complex,
nonlinear ways. Reconciling such factors into a single metric
score, for example, by a weighted sum, can be challenging
to do effectively, and detrimental to search. The field of
multiobjective optimization is concerned with problems such
as these, in whichmultiple objectives are involved in defining
the search criteria for a problem [46].

A popular scheme for scoring multiobjective problem
spaces is Pareto ranking [47]. With Pareto, individuals are
scored in relation to the others in the population. Unfortu-
nately, Pareto ranking is not suitable for problems involving
more than 3 objectives.

Our system uses the sum of ranks (or average rank)
strategy, which was devised for multiobjective problems

involving a high number of objectives (termed “many-
objective” problems) [48, 49]. Sum of ranks encourages
solutions to performwell across all considered objectives. It is
also effective for problemshaving a large number of objectives
(unlike Pareto ranking). The sum of ranks approach has been
found effective in evolutionary art applications [35, 39].

Table 3 illustrates the calculations for sum of ranks. After
obtaining the raw measures (𝑂�푖) for each fitness objective,
each measurement is separately ranked (𝑅�푖) relative to other
individuals in the population.The rank scores are normalized
(𝑁�푖) by dividing each 𝑅�푖 by the maximum rank value for
that objective. The normalized ranks are summed for each
individual, resulting in a fitness measure. The sum of ranks
score denotes an individual’s relative performance of its
objectives relative to the population at large.The final column
Rank shows the relative fitness quality of each individual in
the population. For example, individual #1 has the best score
in each objective relative to the rest of the population, and
thus has the best (lowest) sum of ranks. Individual #3 has
an extremely poor score of 99 for objective 2. However, this
raw score is converted to a rank of 5, and therefore does not
unduly penalize the final ranking.

By using sum of ranks in our system, we are able to
maintain a consistent diversity penalty scheme across all
experiments. For individuals whose ranks in all objectives
are identical, the second individual would have a penalty
of 10 added to each of their ranks. Additional individuals
found with the same scores as the first would incrementally
receive an additional penalty of 10 rank points (the fourth
common individual would receive a total of +30, and so on).
These penalties are used to maintain genetic diversity in the
population by penalizing identical results.

5. 2D Fourier Fitness Strategies

5.1. Simple Regression and Error. Wefirst considered the error
between FFT decomposition from evolved individuals and
its target at a high level of abstraction. Beginning with the
technique common in the literature (e.g., [4]), we considered
a fitness scheme which measured the difference between
slopes found through linear regression.

Measures of linearly regressed, radially averaged power
spectra displayed some effectiveness previously with classifi-
cation and retrieval. Consequently, evaluating fitness through
this measure seemed like a promising start. Previous liter-
ature showed an improved ability to distinguish genre by
incorporating this measure, and it was hoped that some
spatial property capable of distinguishing these genres might
emerge in our evolutionary synthesis.

In selection of a target set (Figure 3), we focused our
efforts on aspects of spatial composition similarity. Though
visually simple, the target images included basic composi-
tions which might be used for evolutionary art.

Some concerns arose early into the process of construct-
ing the linear regression module for our GP system. While
much of the earlier explored work focused on evaluating
natural images or complex art pieces, little investigation had
been done into simple synthesized textures. In the process of
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Table 2: Genetic programming engine base language overview.

Category Arity Display Description
Variables 0 X, Y Texel rendering coordinates (−1 ≤ 𝑋, 𝑌 ≤ 1)

Rho Polar coordinate; distance from {0, 0}
Phi Polar coordinate; angle about {0, 0} to𝑋 axis

Ephemerals 0 E[1] Ephemeral in range [0, 1]
E[10] Ephemeral in range [0, 10]
E[100] Ephemeral in range [0, 100]

Math 1 - Negation / sign change
abs Absolute value / magnitude

floor Floor; lesser or equal whole integer
ceil Ceiling; greater or equal whole integer

sin, cos, tan Periodic, trigonometric functions
sqrt Square root
exp 𝑒 (Euler’s number) raised to the operand

pow2, pow3 The operand raised to a fixed power of 2 or 3
log E, log 10 Natural log, and log of base 10

2 +, -, * Addition, subtraction, multiplication
/ Safe division; a zero divisor returns zero

max, min, avg The greater, lesser, or mean of two operands
pow arg[0] raised to arg[1]

3 lerp Linear interpolation between arg[0] and arg[1]
based on normalized (clamped to [0, 1]) arg[2]

Conditionals 4 IfGT If arg[0] > arg[1] then arg[2], else arg[3]
Spatial 1 Circle Gives 1.0 where 𝑅ℎ𝑜 <= arg[0], otherwise 0.0

3 Shift arg[0] evaluated in rendering position shifted by arg[1] horizontally, and arg[2] vertically
Tile arg[0] evaluated in rendering position scaled and offset for a arg[1] × arg[2] window tiling

Noise 0 Simplex † Simplex noise generator
Marble † Marble noise (see [7])

1 FractalSum † FractalSum/Smooth noise
Turbulence † Turbulence noise

†All noise functions include a variant symmetric about the X and Y axis. These variants would have a Sym prefix and function otherwise identical to the base
function.

Table 3: Example of sum of ranks for a 3-objective problem. Lower objective scores and ranks are preferred. The maximum rank for each
objective 𝑅�푖 used for normalization is in boldface.

Objectives Rank Normalized Rank Final
# 𝑂1 𝑂2 𝑂3 𝑅1 𝑅2 𝑅3 𝑁1 𝑁2 𝑁3 Σ𝑁�푖 Rank
1 1 1 3 1 1 1 0.25 0.2 0.33 0.78 1
2 2 2 4 2 2 2 0.5 0.4 0.67 1.57 2
3 2 99 3 2 5 1 0.5 1.0 0.33 1.83 3
4 4 4 4 3 3 2 0.75 0.6 0.67 2.02 4
5 6 7 5 4 4 3 1.0 0.8 1.0 2.8 5

charting the linearly averaged power spectra, and producing
its regression, a transform into the log-log scale was required.
Often, simple geometric images would result in frequencies
with zero power. These anomalous frequencies needed to
be removed, which could have an impact to the quality of
regression.

Some example solutions for the slope results are shown
in Figure 4. One positive aspect is that GP easily evolved
images with a high degree of fitness to the targeted slopes.

The slope measure alone was insufficient in capturing any
sufficient amount of spatial details. We found our GP system
invariably converged to visually simple textures. The fitness
criteria was too easily satisfied, and language biases were
prevalent through our choice of simple mathematical oper-
ators. Unlike the use of regressed slope in image classification
where it was applied to highly defined image sets (artwork,
natural photographs, etc.), GP was capable of finding trivial
solutions with the given slope criteria. Other experiments
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Figure 3: Compositional target set.

(a) Slope: -1.0 (b) Slope: -5.0

(c) Slope: -2.0 (d) Slope: -6.0

(e) Slope: -3.0 (f) Slope: -7.0

(g) Slope: -4.0 (h) Slope: -8.0

Figure 4: Regressed slope example evolved images. Target slopes were specified at regular integer intervals from −1.0 to−8.0. Best candidates
per run hadmean 𝜀 < 1.0𝐸−5, except for the last target, where it was found that errors greatly increasedwhen target slope exceeded -7.0.These
initial runs relied on Cartesian coordinate variables (omitting the polar coordinate variables).

using power spectra regressions and similar basic measures
were performed with only modest improvements to results
(see [26]).

5.2. Filtering Relevant Coefficients. A promising strategy for
coefficient isolation in frequency analysiswas found by Jacobs
et al. [33] using wavelets (See Section 3.1). There were a

few considerations to note before attempting similar schemes
using Fourier transforms. A quantization to {−1, 0, +1} was
not as meaningful in the context of a Fourier transform,
where power coefficients were strictly positive. Amplitude
coefficients may have held negative values, but these could
change sign when set with appropriate phase. We could
truncate coefficients as per the paper, but the solution we
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Target

Candidate

Figure 5: Truncation and quantization example. Target and candidate coefficient sets were reduced to the top 𝐾 = 50 most powerful
positions and then quantized to 0, 1, before checking for matches. The rightmost image shows the top 𝐾 positions matching between target
and candidate, with those absent from the target being displayed in red.

attempted instead quantized all remaining values in Boolean
to 1. This effectively turned the score into a count of how
many positions shared a top𝐾 coefficient between target and
candidate. For a target and candidate of equal size, we ranked
the target’s coefficient positions by their power, and truncated
all but the top𝐾. Each candidate could thenundergo the same
coefficient ranking process, and check its top𝐾 for a nonzero
value in the corresponding location of the target’s truncated
coefficients (see Figure 5).

While a wavelet decomposition would require further
choices for wavelet type, decomposition type, and basis nor-
malization schemes, Fourier compositions are constrained
but simplified. A choice of 𝐾 value was still required to
determine the size of our coefficient truncation. Jacobs et al.
found values of 40 to 60 performed well with their image
retrieval data sets [33]. In our selection of a suitable 𝐾 value,
we considered possible reconstructions of the target images
where power was removed from all but the top 𝐾 positions.
Prominent recreations began to form in the range of 𝐾 =[50, 150], where certain targets performed well with as low
as𝐾 = 10.
5.3. Phase Refinement. A critical difference between the
wavelet strategy of Jacobs et al. [33] using wavelets, and
our adaptation with Fourier transforms, was the inherent
removal of any spatial localization in our frequency analysis.
When measuring coefficients, the index and position (the

radial angle of the coefficient from center) encouraged
evolution of component frequencies with similar placement.
However, this tended to overlook how these component
frequencies should be offset and overlap. The other key
aspect of a Fourier transform, the phase component, must
therefore be considered. By reincorporating phase into our
fitness scheme, we provided further constraints on the
location of where the component frequencies crest. See
Figure 6 for examples showing the effect of phase in Fourier
reconstruction.

We adapted the Jacobs et al. approach—or, top 𝐾
mismatch— and considered the difference of phase angle
for those top 𝐾 positions. Being mindful that phase error
should wrap about 2𝜋, the maximum difference in phase
angle should be 𝜋. We normalized the phase error to [0, 1]
and squared it for each of the top positions. This error was
then used to slightly penalize the top matching positions if
they are out of phase.

We separated the phase error component to its own sum
of ranks fitness objective, and applied a scaling factor on the
phase to prioritize the more visually prominent (powerful)
components. This is more formally defined in (6) and (7) and
was also used for the next experiment.

Errorpower = �퐾∑
�푖=1

{{{
0.0, 𝑇�푖 ∈ 𝐶
1.0, 𝑇�푖 ∉ 𝐶 (6)
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K = 50

K = 50

Copied Phase Zeroed Phase Random Phase

Figure 6: Reconstructing target images with varied phase. A pair of targets were chosen for reconstruction with a truncated set of Fourier
amplitudes paired to different phase angle values. By zeroing power in all positions except the top 𝐾 = 50 most powerful positions, we can
see the most salient positions alongside the target in the second column. The third column is the inversed FFT reconstruction with power
limited to these truncated positions. We also show reconstruction variants using the same truncated amplitude set, but with zeroed phase
angles, or phase angles which have been produced randomly. This may adjust expectations for the types of images evolved when phase is not
considered.

Errorphase

= �퐾∑
�푖=1

{[𝜋−1Δ (𝜃 (𝑇, 𝑇�푖) , 𝜃 (𝐶, 𝑇�푖))]2 , 𝑇�푖 ∈ 𝐶1.0, 𝑇�푖 ∉ 𝐶}
⋅ (𝐾 − 𝑖 + 1𝐾 )

(7)

The equation assumes an 𝑛 × 𝑛 power coefficient set, where𝑇 and 𝐶 are the truncated set of coefficient positions for the
target and candidate as ordered by power. We have Φ(𝑉, 𝑝)
and 𝜃(𝑉, 𝑝) return the power and phase angle respectively
of the coefficients (complex/vectors) in set 𝑉 corresponding
to coordinate 𝑝. With a slight abuse in notation, we denote
the coordinates of the 𝑖�푡ℎ ranked position (by power) of a
coefficient set as 𝑆�푖.

We show our key results in Figure 7. Using our measure,
we were able to evolve images which show variations of
their targets’ key features. Similar regions of intensity can
be seen for Composition 01, consistent horizontal stripes
are produced for Composition 06, and vertical regions and
gradients can be found in Composition 09 (some of which
capture the finer details near its center). To have the regions of
intensity seen in compositions 01 and 09 reproduced, proper
capturing and recreation of phase information would be
required. The low phase error seen for these targets (Table 4)
is reflected in their visual similarity. The curves produced for
the spiral target of Composition 10 are also quite interesting;
the target was expected to be more difficult to satisfy, be we
find variations of the key radial aspects are reliably recreated
despite slightly elevated fitness error. Some notable examples
produced have been highlighted in Figure 8.

Composition 06 (horizontal stripes) evolved candidates
which scored well with our measure, and certainly captured
the idea of horizontal stripes, but were not as uniform as seen
elsewhere (see [26]). Despite closely matching the top 𝐾 =10 coefficients with its target, many evolved candidates also
held large amounts of power in other coefficients. We found
this was mitigated by adjusting 𝐾 (at the cost of increasing
outlier results), or trivialized by reducing the GP language.
Particular difficulty was seen with Composition 07 (circle
grid), but for different reasons. With this target, the produced
solutions had high levels of error throughour fitnessmeasure.
Our GP system allowed for the easy formation of unit circles
and lines along the dimension axes, which makes for an
underwhelming capture of the grid and circular aspects
desired.

Extended runs terminating at 200 generations were
attempted with little change to image quality. We can find
further improvements on the targets with circular compo-
sition aspects by adjusting our GP language (Section 6.1.1).
While certain targets may have performed better individually
with various adjustments to the fitness measure (see [26]),
the results from the above measure (shown in Figure 7)
performed generally well across the majority of our target
images.

6. More Advanced Artistic Explorations

Whereas Section 5 considered greyscale image synthesis, this
section expands the scope of image evolution by considering
more complex colour images. We first consider enhance-
ments and extensions to our GP language which may better
reflect some of the more full-featured languages used for
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Figure 7: Compositional summary charts and examples. Each row of the figure captures the summary for a target over 30 runs. Leading with
the target image, the next two columns show performance plots of the fitness measure (average over 30 runs). The leftmost plot displays the
performance through the population average, where the rightmost plot shows the performance of the best individual of the generation. Aside
the plots are the best candidate images produced at termination for each run.

Figure 8: Compositional experiment highlights. Images were produced using targets (from left to right): Composition 01, Composition 09,
and Composition 10. Choice of𝐾 is outlined in Table 4. These examples show fair replication of compositional aspects, including placement
of positions of intensity, contrasts and gradients, and shape characteristics.
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Table 4: Compositional fitness summary table. Summaries for the remainder of the section were produced over 30 runs. For each target,
a row is included for the mean and standard deviation for each fitness objective aggregate. Our experiment held two objectives, aiming to
minimize error in power and phase coefficient matching. The row for “mean” shows the mean of terminal populations’ average fitness and
the mean of terminal populations’ best found candidates across 30 runs. Maximum and expected error values are constrained by choice of𝐾.

Target 𝐾 Agg. Power Phase
Mean Best Mean Best

Composition 01 25 Mean 2.34 0.40 0.79 0.08
StdDev 0.68 0.81 0.18 0.05

Composition 06 10 Mean 1.23 0.23 0.53 0.05
StdDev 0.38 0.43 0.17 0.05

Composition 07 50 Mean 34.36 30.47 14.31 12.09
StdDev 3.26 4.44 1.16 1.46

Composition 09 25 Mean 2.79 0.13 1.17 0.08
StdDev 0.78 0.51 0.36 0.13

Composition 10 50 Mean 15.79 9.50 8.51 5.51
StdDev 4.82 4.66 2.89 3.04

evolutionary art applications. We then evaluate some possible
multiobjective adaptations of our measures, and expand our
capabilities from grayscale to coloured textures across mul-
tiple colour schemes. Finally, we present a brief discussion
which corroborates a relatedmeasure in previously published
research relating to computational aesthetics.

6.1. Language and Representation

6.1.1. Polar Coordinates, Geometric Operators. The first
adjustment to our GP language was motivated by the poor
performance observed when using targets which displayed
strong radial attributes. We found that the inclusion of polar
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Figure 9: Circle, grid, and offset language summary examples.

coordinate variables improved results for certain composi-
tional targets (e.g., spirals) and some artistic genre targets.
Some difficulty was still found with other targets using radial
variations and repetitions. We therefore added a set of GP
language operators well-suited for these target images.

With inspiration from the Gentropy system by Weins
[50], we included the circle geometric operator (which returns
1.0 if the current texel is within the provided radius from
the origin), along with the coordinate operators of tile and
shift. The circle operator provided a simplified way for the
candidate programs to show hard transitions about a radius,
and the tile operator provided an easy way to create arbitrary𝑛 × 𝑚 tilings.

Figure 9 shows amuch-improved set of evolved candidate
textures over our previous experiments. We see the error for
these two targets decreases by ∼40% in both objectives, and
a 2-sample t-test provides at most 𝑝 < 0.0001 across objec-
tives and targets, suggesting fair statistical significance when
considered with the reduced run count. The performance
gains seenwith these additional language operators is another
promising sign for our fitness measure, and reinforces the
importance for GP texture language adequacy.

6.1.2. Noise Generation. Tohelp generate images havingmore
visual complexity and interest, we included numerous noise
generation operators (Section 4.2.2). With regard to error
values, the introduction of the noise operators appears to
be an improvement for most targets. We find minor but
consistent reductions in both phase and power errors.

Figure 10 highlights some of the finer details in a pair of
larger renderings using a target photograph of a flower.

6.1.3. Coordinate Variable Reduction. One final language
experiment was performed by removing the 𝑋 coordinate
variable from the language set. It was expected that removing
a fundamental coordinate variable would result in substantial
difficulty for our system to produce results, and consequently,
high error scores.

It is surprising to see that, despite the previous problems
encountered while lacking the polar coordinate variables,
there were few noted changes to performance. For the
compositional target set, most targets performed only slightly
better numericallywith the inclusion of the𝑋 coordinate, and
no statistical significance was found to favour either language
set.

When we inspect the evolved textures a little more
closely, there appears to be two main ways that our system
and its textures adapted to the missing coordinate variable.
Some candidates were able to glean sufficient positional
information from the remaining coordinate variables: 𝑌, 𝜌,
and 𝜙.

An alternative approach appears to largely forgo any
direct positional information and instead builds upon layer-
ing multiple noise operators. We see this with the highlighted
flower images in Figure 11, and a particularly interesting
example of the Van Gogh target in Figure 12.

6.2. Colour. Here we considered the approach of evolving
colour textures through separate evaluation of each colour
channel, along with evaluation across average luminance.
Further experimentation with HSL colour models, and other
colour analyses can be found in [26].
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Figure 10: Produced image highlights; noisy language; flower. The leftmost image shows the target, followed by a pair of notable evolved
candidates.

Figure 11: Produced image highlights; noisy language, no𝑋; flower.The leftmost image shows the target, followed by a pair of notable evolved
candidates.

We maintained the selection of 𝐾 = 50 as it produced
suitable compositional results. To produce colour images, we
evolved three GP trees per individual, corresponding to the
RGB colour channels. With the increased tree count, and
proportional increase in rendering complexity, we performed
9 runs per target. The system was then given 8 fitness
objectives to optimize: the original grayscale power (Y) and
phase (Y), colour power (R, G, B), colour phase (R, G, B).

6.2.1. Y+RGB Colour Channels. As we found success with
our existing measure on grayscale textures, we expanded
upon this as a base. The placement and proportion of
specific colours is guided using the same measurement
technique across each individual RGB colour channel.Where
a grayscale texture had two objectives (power and phase), our
4-channel (Y+RGB) colour image used 2 × 4 = 8 objectives.
Each channel was evaluated similarly to a separate grayscale
texture.

Wemaintained the use of a luminance channel evaluation
as it was expected to further constrain the overall compo-
sition of the image. It was also hoped that the luminance

channel could capture some spatial information lost by
assessing colour channels in isolation. We hypothesized that
including this combination of luminance and colour channel
objectives should reduce attempts to sacrifice any individual
colour channel objective by incurring further penalties from
mean luminance degradation. TheNTSC (CCIR 601)method
was used for conversion from colour (RGB) to grayscale:

𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵 (8)

This provided a close approximation of colorimetric lumi-
nance from the nonlinear, gamma corrected RGB values.

The results in Figure 13 show that the control of colour
through relative proportion and overlay of RGB channels,
while basic and limited, is successful with certain targets.
From the charting, we see similar sacrifices being made to
the blue channel power error on target Composition 15. For
Composition 14-15, the green channel, while still worse than
when evolved in monochrome, sees some slight improve-
ments. Composition 13 sees an overall improvement to
shape, where Composition 01 remains consistent.
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Figure 12: Produced image highlights; noisy language, no 𝑋; Van Gogh. On the left, we can see a snapshot of the candidate at every 20
generations. An evolutionary strategy has emerged which gradually applies layers and refines noise operators. The candidate is viewed atop
the target image with partial transparency in the bottom left.

While we had hoped that the inclusion of a luminance
channelwould reduce the occurrence of sacrificing individual
colour objectives, we occasionally see the opposite. There is
now further pressure to sacrifice an objective if its channel
is not contributing positively to the compositional shape as
viewed through the lens of averaged luminance.

While overall colour distribution could be improved, we
see increased performance when targets hold colour channels
which can be replicated as grayscale targets individually.
While considering the limitations, we are still able to replicate
variations of shape and colour for a number of targets. Some
highlights have been shown in Figures 14, 15, and 16.

6.3. Spatial Frequencies and Comfort. In the course of
evolving the many candidate images with each target and

experiment set, we identified a number of evolved images
which we found unpleasant or uncomfortable to view (see
Figure 17). Previous research fromFernandez andWilkins [3]
found correlations between intensity level contrasts at certain
spatial frequencies with increased levels of discomfort. We
direct readers to their paper for an excellent example of the
“uncomfortable property”.

The concept of spatial frequency denotes a cyclical nature
across a measured space, such as the reoccurrence of Gabor
and grating peaks along the width of an image. Our study is
predicated over power coefficient positions directly relating
to these spatial frequencies. While we found great utility
in comparing spatial frequencies relative to image width,
human perception requires consideration of an observers
field of view. To better capture this, we can use calculations
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Figure 13: Colour experiment summary charts and examples. Power and phase errors for each of the red, green, and blue colour channels
are plotted with their respective colour. Errors considered across the average luminance have been plotted in black. Power error is denoted
with solid lines, where phase error uses a dashed line.

Figure 14: Colour experiment highlights; Composition 13; noise language.The leftmost image shows the target, followed by a pair of notable
evolved candidates.

of visual angle – when paired with known viewing distance
and image size – to compute a relative measure of angular
spatial frequency. With spatial frequencies known in relation
to image width, we can interpolate their corresponding visual
angle when observed with known size and view distance.

Fernandez and Wilkins observed that images with
increased amplitudes at a few octaves around 3 cycles per
visual degree corresponded with higher reports of image
discomfort. We explored numerous schemes in the previous
sections to constrain and obtain specific spatial frequencies
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Figure 15: Colour experiment highlights; flower; noise language.The leftmost image shows the target, followed by a notable evolved candidate.

Figure 16: Colour experiment highlights; flower; noise language, no 𝑋. The leftmost image shows the target, followed by a pair of notable
evolved candidates.

Figure 17: Evolved images with uncomfortable spatial properties. Selection of images with uncomfortable aspectswas performed with images
sized to 12” side lengths at a viewing distance of 24” (identical angular spatial frequencies can be obtainedwhen this page is viewed at a distance
of 4.1”, though we suspect that the eye strain induced from close proximity viewing will cause further undue discomfort).
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Figure 18: Angular spatial frequency analysis, distance variations. At the top left we have the analysed image, beneath which there are power
spectra coefficients display and radially averaged power spectra.The top right graph plots power of the absolute spatial frequencies relative to
image width, below which there are the spatial frequencies calculated relative to visual angle at a specific viewing distance. As recommended
by Fernandez andWilkins [3], octaves about 3 cycles/degree have been marked.

of a target image in our newly evolved candidates. With a
direct relation between relative visual degree and absolute
image spatial frequencies, we posit that these findings may
be combined to the effect of a new aesthetic model.

Spatial frequency theory proposes that the human visual
cortex operates through analysis of light receptor spatial fre-
quencies [21, 22]. With supporting works finding sensitivity
in animals to certain spatial frequency ranges [25, 51], it
is not surprising to think that humans may also be more
sensitive to contrasts at certain spatial frequencies. As seen
in Figure 17, we can corroborate that intensity contrasts at
certain visual frequencies are uncomfortable, discordant, and
at times even painful. Figure 18 shows a frequency analysis
of one of these evolved images. As can be seen, there is a
peak in amplitude at the 3 cycles/degree frequency identified
by Fernandez and Wilkins [3]. However, this measurement
is dependent upon the viewing distance to the image, and
this peak at 3 cycles/degree changes with different viewing
distances.

With these findings, we identify a couple of limitations
in using frequency for the analysis of uncomfortable images.
The first, and least negotiable concern, holds that viewing
size and distance must be considered before evolution. With
interactive or hybrid fitness depending on user-evaluated
thumbnails, large incongruitiesmay appear between the rated
thumbnails and full-size renderings.

There is another critical concern, though one we are
now most capable of identifying and accommodating: näıve
reduction to power within a range of frequencies can alter

an image to something unrecognisable. We have seen that
core compositional information can be stored in 50 or so
positions, as witnessed with our experiments in choice for
truncation size, 𝐾. We can easily expect some of these
critical frequencies to lay within the “3.0± two octaves”
range identified, and so a blanket frequency reduction should
expect poor results with spatial similarity. If no other spatial
attributes are sought in the evolved images, this penalty
for power in the 3.0 angular spatial frequency range could
provide a novel aesthetic measure for exploration. Some
refinements will be needed otherwise. If provided target
power spectra, wemight propose an aesthetic objective which
penalizes a surplus of power in these frequency ranges. From
our observations above, we might also suggest a distribution
of weights to provide harsher penalties when closer to the 3.0
cycles/degree mark.

Despite a number of concerns having been identified, our
exploration with power spectra fitness measures has given
us a tool to resolve some of them. We also suspect that
beyond the correlation with discomfort and the given angular
spatial frequency ranges, there may be a need to consider
interactions with the phase of these frequencies and their
harmonics. With further exploration in the future, novel
aesthetic models can be developed from these findings.

7. Conclusion

2D power spectra can be an effective tool for guiding the
evolutionary synthesis of images. By applying a 2D Fourier
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analysis of a target image, key spatial characteristics can be
extracted from it and used as a guide for the evolution of
images that share these characteristics. Precise duplication
of a target image is not desirable. Rather, by focussing on
the major frequencies and their spatial orientations, the
evolutionary art system is given enough freedom to “fill
in the gaps” and generate interesting variations of images
that have visual relationships to a target. Thus the approach
acknowledges one of the strengths of evolutionary art, and
evolution in general: the ability to generate creative and
interesting solutions to problems.

Another unexpected result is the possible application
of power spectra in identifying evolved images which have
uncomfortable properties. A few example images show the
spectral properties previously identified by Fernandez and
Wilkins [3] in their study of uncomfortable art. Although
more research on this topic is needed, there is the possibility
of using such analyses within fitness strategies in order to
avoid production of images with undesirable visual proper-
ties.

The success of the results shown in this paper depends
upon two key factors. First, our coefficient reduction scheme
proves effective in refining the search by simplifying the com-
putational optimizations required in reproducing Fourier
coefficients. Although further improvements and enhance-
ments to this strategy are possible, our approach is generally
effective for compositional targets and produced the results
shown. Second, it is important that the procedural texture
language used in the GP system has adequate power for
producing images that conform to characteristics seen in
the target image. The property of language adequacy and
bias is well known in GP research. With our system, some
target images are trivial to reproduce, where others are
consistently difficult to handle with the basic procedural
texture language. Improvements immediately arise when
the language is supplemented with polar coordinates, noise
generators, tiling operators, or other language features as
needed by the target. On the other hand, some photographs
we used as target images rarely yield successful outcomes,
even with these additions. We hypothesize that our texture
language remains incapable of easily generating images that
match these targets. An enhanced texture language and
coefficient reduction schememay be warranted in these more
challenging cases.

In summary, computer vision strategies such as spectral
analysis continue to showwide success in applications involv-
ing image analysis, art classification, image retrieval, and
other applications. These techniques should be given serious
consideration in evolutionary art as well, in order to improve
the quality and sophistication of machine-synthesized art.
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Human faces play a central role in our lives. Thanks to our behavioural capacity to perceive faces, how a face looks in a painting, a
movie, or an advertisement can dramatically influence what we feel about them and what emotions are elicited. Facial information
is processed by our brain in such a way that we immediately make judgements like attractiveness or masculinity or interpret
personality traits or moods of other people. Due to the importance of appearance-driven judgements of faces, this has become
a major focus not only for psychological research, but for neuroscientists, artists, engineers, and software developers. New
technologies are now able to create realistic looking synthetic faces that are used in arts, online activities, advertisement, or movies.
However, there is not a method to generate virtual faces that convey the desired sensations to the observers. In this work, we
present a genetic algorithm based procedure to create realistic faces combining facial features in the adequate relative positions. A
model of how observers will perceive a face based on its features’ appearances and relative positions was developed and used as the
fitness function of the algorithm. Themodel is able to predict 15 facial social traits related to aesthetic, moods, and personality.The
proposed procedure was validated comparing its results with the opinion of human observers.This procedure is useful not only for
creating characters with artistic purposes, but also for online activities, advertising, surgery, or criminology.

1. Introduction

Since ancient times, people believe that the face is a window
to the true nature of a person, the most direct way to
their emotions and feelings [1]. People use information
from faces to identify others, to guess their gender, age, or
race, to make attributions such as personality, intelligence,
or trustworthiness [2], or even to judge the emotions and
intentions of the owners of the faces [3]. Our brain is specially
efficient perceiving faces [4, 5] and processing the informa-
tion extracted from them.These attributions are formed very
fast; 34 milliseconds of exposition is enough for human brain
to create a first impression of a face. So, the appearance of
faces plays a central role in our everyday decisions [6–8]
and in our relationships with other people [9]. For example,
voting decisions [6, 10], criminal justice decisions [11, 12],
mate selection [13–15], or how we choose social partners [16]
is influenced by what we perceive in the face of others.

Faces play a central role in art, design, or advertising to
convey and elicit emotions. How a face looks in a painting
or an advertisement can dramatically influence what we feel
about them and what emotions are elicited. Studies are still
being made on the face of the Mona Lisa and the emotions
that her face conveys [17]. Previous works have proved that
when looking at scenes containing human faces, observers
tend to rapidly focus on the faces [18], even if faces do
not occupy the most part of the scene. But faces are not
important only for arts. Due to the importance of appearance-
driven judgements of faces, face perception has become a
major focus not only for psychological research, but for
neuroscientists, engineers, and software developers [19]. New
human-machine interaction systems and online activities like
e-commerce, e-learning, games, dating, or social networks
are fields in which it is common to use human digital rep-
resentations that symbolize the user’s presence or that act as
virtual interlocutor [20]. The importance of communicative
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behaviours of these avatars in new interaction systems [21–
25] has led to an increasing interest in creating realistic virtual
faces able to convey appropriated sensations to users [26–29].

The objective of this work is to develop a system to
generate realistic looking synthetic faces that transmit to
human observers the sensation of having a set of social traits
each of them in a preestablished amount. The developed
system must create faces with appropriate facial features to
achieve this objective. Hereinafter, social traits will be used
as any judgement that a human observer can make about the
aesthetic characteristics of a face (e.g., attractiveness) or about
the emotional state (e.g., sadness) or personality (e.g., domi-
nance) of the owner of the face. In the sameway, facial features
will refer to the morphological characteristics of the faces.

Developing such a system must overcome two great
difficulties. The first one is to establish the relationships
between the facial features of a face and its social traits. Visual
perception research has shown that human brain processes
faces in different way to other kinds of objects [30]. Part-
based perceptual models suppose that objects are processed
on the basis of their components or parts [31]; although
it is commonly agreed that this is the way in which we
process most objects, faces are thought to be processed in
a different way. In relational [32] or configural [33] models
of perception, first-order features (like isolated face features)
are processed in a part-based way, but second- and higher-
order features emerge from the combination of several lower-
order features, and these are used to make judgments from
faces. The amount of information derived from second- and
higher-order features used depends on the kind of judgment
that is made from faces [32]. For example, it is suggested
that face recognition depends mainly on first-order features
and part-based information processing [34, 35], while more
complex judgments require information from second- and
higher-order features. Holistic perceptual models integrate
facial features into a gestalt whole when the human brain
processes a face’s information (holistic face processing) [36].
The pure holistic processing of faces, with no decomposition
into parts, is not supported by the evidences that suggest that
some judgements rely mainly on part-based processing of
faces [30].This leads to themixed holistic/part-basedmodels.
These models do not exclude part-based processing from the
global holistic processing during face perception [37, 38].

Therefore, to establish the relationships between facial
characteristics and social traits elicited in the observers is
challenging due to the complexity of the face perception pro-
cess itself. But, if such a model that relates facial features and
social traits is developed, another difficulty remains to create
faces that convey a predefined set of social traits. It is possible
to consider a face like a set of facial features. This way, the
problem is to find the optimal combination of facial features
that elicits, simultaneously, a preestablished quantity of each
social trait. Therefore, the problem becomes a multiobjective
combinatorial optimization problem. Moreover, the number
of facial features to be considered can be high (nose, mouth,
eyes, eyebrows, relative distances, etc.), as well as the number
of possible types of each facial feature (how many types of
noses, eyes, jaws, etc.).Therefore, the space of solutions of the
problem can be huge.

There are systems to generate realistic synthetic faces
and to synthesize emotional facial expressions since the last
century [39–42]. A common approach for modelling social
traits in artificially generated faces is to systematically modify
one facial feature over an existing face, asking people to
assess the modified face in the range of the social traits of
interest. The modified feature that obtains the best score is
fixed and the process is repeated over another facial feature.
Considering the holistic face perceptionmodel, this approach
is far from being optimal. Some other techniques bear in
mind that faces are perceived in a gestalt whole rather than
as a collection of features independently considered. Among
them, two sets of methods can be differentiated: psycho-
logical reverse correlation methods (PRCM) and reverse
correlation methods in the context of face space models
(FSRCM) [3]. PRCM alter faces using randomly generated
noise.There are two popular PRCM techniques, both of them
consisting in superimposing noise on images. In the first
approach, the base face is unambiguous (e.g., a prototypical
sad face), while in the second approach, the face is ambiguous
(e.g., two facial expressions morphed in one face) [43–45].

While the previous approachmade use of noise to achieve
its objective, FSRCM approach is focused on changing some
characteristics of the faces directly. The procedure can be
divided into two tasks: the first one is to develop a model
of a face representation, and the second one is to establish
the changes in the facial features of the face that lead
to the desired changes in social judgments. Similarly to
PRCM, FSRCMdoes not explicitly manipulate facial features.
This approach makes use of a faces space, where faces are
represented as points in a multidimensional space and each
dimension is a property of the face [46]. Oosterhof and
Todorov [47] followed this approach to generate models of
perceived face trustworthiness, threat, and dominance. In
a posterior work, they also built models of several other
social traits, such as attractiveness [3, 48]. Walker and Vetter
[49] used this procedure for aggressiveness, extroversion,
likeability, risk-seeking, social skills, and trustworthiness and
used the obtained models to manipulate real faces leading to
the expected social attributions.

However, these previous methods have some important
limitations. The results of PRCM procedures are models of
the strategy used by observers when they assess faces. These
models are obtained from a survey in which each participant
assesses a big set of artificially degraded faces.The enthusiasm
of the participant to perform the task will most likely decay
with time, affecting the obtained models [43].Moreover, both
mentioned approaches need a large number of trials tomodel
the expected social attributions in faces, which can lead to
lose the participant’s motivation and to worsen the quality of
the results. Another limitation of reverse correlation methods
is that they are limited to create models of one category
(e.g., trustworthy, dominant, etc.) per task. Outcomes may
change considerably when the objective is to create faces
that convey several social traits to some extent, considering
simultaneously multiple traits.

In this work, we propose a very different approach to
automatically create virtual realistic faces that convey several
social traits simultaneously, each of them in a predefined
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Figure 1: Structure of the chromosomes. A face is constructed by placing on the base face the features indicated by genes 1, 3, 6, 8, and 10, at
the positions indicated by genes 2, 4, 5, 7, and 9.

quantity. This approach is, basically, to combine the appro-
priate set of facial features to form the faces. The facial
features and their relative positions must be selected in such
a way that impressions elicited in observers were as similar as
possible to those established by the designer. In the first step
of this approach, an evolutionary algorithm that looks for the
adequate set of facial features to elicit the desired social traits
is proposed. This kind of algorithms has been used before in
evolutionary systems to generate faces of specific identity like
EFIT-V [50] or EvoFIT [51].

Secondly, a model that relates the facial features of the
faces to the social traits perceived by human observers is
developed. This model is used as the fitness function of
the evolutionary algorithm. Finally, the optimal set of facial
features is combined to shape a realistic looking face. Using
this new approach, the designer of the virtual face establishes
the amount of each social trait that must be elicited (profile
of social traits), and the system automatically generates the
proper face.

2. A Genetic Algorithm to Generate Faces

Faces are characterized by their features (two specific eyes,
a particular nose, a mouth, etc.) and by the spatial relation
between them (relational information). The facial features
considered in this work were selected considering previous
studies. Internal features (i.e., eyes, nose, and mouth) seem
to have significant importance in face recognition [52, 53].
Among the internal features, eyes play a key role in face
information processing [54]. Some authors include the eye-
brows in the eye area [55, 56] or consider the eyebrows as a
major factor in the perception of a face [57]. Blais et al. [58]
found that the mouth area is an important cue for both static
and dynamic facial expressions, which was consistent with
previous researches [59]. However, external facial features

such as hair or the shapes of the cheek, the chin, or the jaw also
play an important role in theway inwhich the brain processes
the face information. According to Axelrod and Yovel [60],
the fusiform face area of the brain is not only sensitive to
external features but is also sensitive to their influence on
the representation of internal facial features. Some works
found that the face shape contributes significantly to faces
discrimination [61, 62]. Considering these previous works,
we decided to consider the internal facial features (eyebrows,
eyes, nose, and mouth) and the jaw contour in this study.
Although other features have effect on faces perception, e.g.,
hair and facial hair, skin tone, and facial proportions [14, 63–
67], we limited our study to those features that have a main
effect on face perception, rather than considering features
that may vary from time to time like hair (people can get a
haircut). In addition to these five facial features, the relative
positions between them will be considered. DEB, DE, DN,
and DM are the vertical positions of the eyebrows, the eyes,
the nose, and the mouth, respectively, measured from a
horizontal line that passes through the base of the jaw line
(Figure 1). DEE is the distance between the centres of the eyes.
Therefore, one face can be defined by 10 parameters (EB, E, N,
M, J, DEB, DE, DN, DM, and DEE).

The number of faces that can be generated as a combina-
tion of these parameters depends on the number of different
values that each parameter can take (the number of different
eyebrows, noses, mouths, etc.). The number of features of
each class included in this study will be discussed later.
Considering a minimum of 10 features of each class, the size
of the solution space is, at least, 1e10. Due to its complexity,
the problem cannot be solved using enumerative or analytic
procedures. Therefore, a genetic algorithm (GA) [68, 69] is
used to look for the optimal combination of parameters. GAs
explore the faces space performing a stochastic guided search
based on the evolution of a set (population) of structures
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(chromosomes). Each chromosome represents a solution to
the problem (a face). The population of faces is evaluated
using a fitness function to measure its suitability for the
requirements of the problem. Based on the fitness of each
chromosome, a new population of faces, which inherit the
best characteristics of their predecessors, is obtained. The
new population of faces is the result of several transfor-
mations guided by genetic operators (selection, crossover,
and mutation), which combine or alter the chromosomes
obtaining new faces. This iterative procedure is repeated
with a predefined number of iterations or until another stop
criterion is reached.

Each chromosome is composed of 10 genes (Figure 1).
Genes 1, 3, 6, 8, and 10 codify one facial feature of each class.
The remaining genes codify the positions in which the fea-
tureswill be located in the face. According to the fundamental
theorem of genetic algorithms [69], codifications that favour
short and low-order schemata are preferable.Therefore, genes
that codify the position of one specific feature have been
placed close to the gene that codifies that feature.

The flow chart of the algorithm employed in this work
is shown in Figure 2. An initial population of n (popu-
lation size) chromosomes of faces is randomly generated.
Roulette wheel selection [68] is used to choose the survivor
and reproducer chromosomes in each generation. The ratio
between survivors and reproducer is controlled by the Pc
(crossover probability) parameter. The number of survivors
is n∙(1- Pc) - 1, while the number of reproducers is n∙Pc. A
single-point crossover operator is used to obtain the offspring
from the parents. Mutation operator acts over survivors and
the offspring to form a new generation. To complete the n

chromosomes of the new generation, the best face of the
previous generation is always selected to go on to the next
(elitism).

The single-point crossover process is shown in Figure 3.
After selecting two parents, a crossover point is randomly
chosen. Two descendants are produced by merging the genes
that remain on each side of the crossover point in each of
the parents. The crossover is a closed operator since it always
produces chromosomes that represent feasible solutions to
the problem. The mutation operator is applied changing the
allele that occupies a gene if a random number between 0
and 1 is less than Pm (mutation probability). The new allele
is selected randomly. A typical value for Pm ranges between 0
and 0.1 [70].

3. A Model to Predict Social Traits
Elicited from Facial Features

Two questions remain unsolved in the previously defined
evolutionary algorithm. The first one is to establish the alleles
of each gene that represent a facial feature in the chromo-
somes, i.e., the different eyebrows, eyes, noses, mouths, and
jaws that will be considered as alleles. The second one is to
create a model that relates the facial features that form a face
and the social traits perceived by the observers, i.e., the fitness
function of the algorithm.

3.1. Alleles of the Facial Features’ Genes. The sensations that
a face elicits in human observers arise from the visual
characteristics of the face. It is not possible to establish
the number of different shapes that a human facial feature
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Figure 3: Single-point crossover process. Offspring is obtained bymerging the genes on each side of the crossover point in each of the parents.

can take, but it can be supposed that features with similar
appearance have the same effect on the perceived social traits.
Considering this, we propose to create groups or clusters of
features with the same appearance. All the features included
in one cluster will elicit very similar sensations in observers.
Therefore, all of them can be properly represented by one of
the features of this cluster (representative feature). In this way,
the number of possible alleles of a gene can be reduced to the
number of representative features, i.e., the number of clusters
of the feature.

To obtain the features clusters, a set of 93 images of
faces (Figure 4(a)) was analysed. After reviewing several
well-known databases [71], we selected the Chicago Face
Database (CFD) [72].This database contains high-resolution
standardized images of real faces of Asian, Black, Latino, and
White males and females with several expressions (including
neutral). All the images in the database have the same
size and resolution; faces have the same position, pose,
and orientation, and the background and illumination are
uniform. The homogeneity of the conditions in which the
images were obtained was an important factor to select
this face database because, for example, differences in the
illumination can affect the way in which a face is perceived
[73]. For this study, we selected the subset of 93 photographs
of white males with neutral expression.

Using CFD supposes another advantage for our study.
Each photograph is accompanied by information about
the target face, and it has been rated by a large sam-
ple of participants on several social traits. We selected
the following social traits: Afraid, Angry, Attractive, Baby-
Faced, Disgusted, Dominant, Feminine, Happy, Masculine,
Prototypic, Sad, Surprised, Threatening, Trustworthy, and
Unusual. Participants responded on a 1–7 Likert scale (1 =

not at all, 7 = extremely) except for Prototypic, that was
responded on a 1–5 Likert scale. Prototypic was defined as in
which degree the face seems typical; in our case, how much
their physical features resemble the typical features of white
people. Detailed information on the database generation and
characteristics of the participants is available in Ma et al.
[72].

We developed an algorithm to automatically process
images from the database and to extract individual images
of the facial features of each face (Figure 4(b)). Our objective
was to extract the internal features (eyebrows, eyes, nose, and
mouth) and the jaw contour. Two automatic facial landmark
detectors were employed, one for the internal features [74]
and another one for the jaw contour [75]. Then, each feature
was extracted individually, centred within the image and crop
so all images of a given type of feature have the same size and
alignment.

Using this procedure, five databases of images of each
feature were created. Then, eigenfaces (a holistic approach
usually applied on whole faces) are used to characterize each
facial feature by its global appearance [76] (Figure 4(c)). This
method performs a principal components analysis over an
ensemble of images to form a set of basis images. These basis
images, known as eigenpictures, can be linearly combined to
reconstruct images in the original set. This procedure allows
for automatic, robust, fast, and objective characterization of
the facial features considering their global appearance while
summarizing the central information to characterize them.
In this case, each facial feature was characterized using 45
eigenvalues. The same value was chosen for all of them in
order to facilitate the subsequent clustering process, bearing
in mind that the explained variances were about 85% or
higher in all cases.
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Figure 4: Process to establish the alleles of each gene. (a) A set of 93 images of faces is analysed. (b) Individual images of the facial features
of each face are automatically extracted. (c) Eigenfaces are used to characterize each facial feature by its global appearance. (d) The facial
features are grouped by appearance using their eigenvalues. (e) The features closest to the centre of their clusters will be used as alleles of the
corresponding gene in the chromosomes of the faces.

At this stage, the appearance of each feature could be
characterized using 45 real values (eigenvalues). K-Means
clustering algorithm [77] was selected to cluster the facial fea-
tures using their eigenvalues as characteristics (Figure 4(d)).
A drawback of using this method is that the number of
clusters (K) must be predefined. The approach used to face
this problem was to perform several K-Means executions
varying K and to calculate Dunn’s Index [78] for each set
of clusters. Dunn’s Index measures the compactness and
separation of the clusters obtained for each K. A higher
Dunn’s Index points to a small intracluster variance and a
high intercluster distance; namely, the features included in
each cluster are more similar among them andmore different
from the features belonging to other clusters. Therefore, the
number of clusters for each feature was selected as the K that
maximized Dunn’s Index. Using this procedure, eyebrows
were classified in 10 clusters (EB1 to EB10), eyes in 19 (E1 to
E19), noses in 12 clusters (N1 to N12), mouths in 9 clusters
(M1 to M9), and jaws in 11 (J1 to J11). The classification of
the facial features for each face in the CFD can be found in
the Supplementary Materials of this work (available here).
Finally, the features closest to the centre of their clusters were
selected as representatives of their groups, and they will be
used as alleles of the corresponding gene in the chromosomes
of the faces (Figure 4(e)). In this way, all the features in
the sample are represented by some allele that has similar
appearance. As an example, Figure 5 shows the 9 mouths
selected as representatives (alleles). Each allele represents all
the mouths in its cluster.Themouths in clustersM3, M5,M6,
and M7 are shown in Figure 5.

3.2. Predicting Social Traits from Facial Features. The GA
proposed in this work needs an objective function able to
measure the fitness of a chromosome with respect to the
social traits profile that is looked for. A social traits profile of
a face is composed of the scores of the 15 traits selected in the
previous section: Afraid, Angry, Attractive, Baby-Faced, Dis-
gusted, Dominant, Feminine, Happy, Masculine, Prototypic,
Sad, Surprised, Threatening, Trustworthy, and Unusual. The
fitness function for this problem can be formulated as in
(1), being 𝑇𝑑𝑡 the desired score for the social trait t andTt
the predicted score for the social trait t of the chromosome
evaluated. While the scores 𝑇𝑑𝑡 are known, the values ofTt
must be obtained from 15models, each of them able to predict
how human observers would rate the face represented by a
chromosome for one of the 15 social traits.

𝐹 =
15

∑
𝑡=1

𝑇𝑑𝑡 − 𝑇𝑡
 (1)

Although how the social traits of a face are perceived depends
on the whole face, the individual effect of each feature can
explain part of the variation within the faces appraisals [79,
80]. A comprehensive discussion on this approach can be
found in [81]. From this point of view, some studies have used
additive models of the facial attributes appraisals that explain
the majority of the feasible explained variance [82, 83], have
related individual facial features to perceptions of the targets’
personality [84], or have predicted social traits evaluations
from facial features with high accuracy [85]. Obviously, using
these additive models some unexplained variation remains
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Figure 5: Alleles (representatives) M1 to M9 of the mouths. The mouths belonging to clusters M3, M5, M6, and M7 are shown.

due to the interaction among the considered features and
because the facial features included in the models do not
cover the whole face.

Let us suppose a chromosome with alleles EB, DEB, E, DE,
DEE, N, DN, M, DM, and J. To predictTt (the score of the
face represented by this chromosome for the social trait t),
we propose the additive model shown in (2). In this equation,
each 𝑆𝑓𝑡 is the individual score of the allele of the feature f
assessed with respect to the trait t, and𝑤𝑓𝑡 is the weight of the
feature f in the assessment of the global face with respect to
the trait t.

𝑇𝑡 =

[[[[[[[[[[[[[[[[[[[[[[[[
[

𝑆𝐸𝐵𝑡
𝑆𝐷𝐸𝐵𝑡
𝑆𝐸𝑡
𝑆𝐷𝐸𝑡
𝑆𝐷𝐸𝐸𝑡
𝑆𝑁𝑡
𝑆𝐷𝑁𝑡
𝑆𝑀𝑡
𝑆𝐷𝑀𝑡
𝑆𝐽𝑡

]]]]]]]]]]]]]]]]]]]]]]]]
]

∗

[[[[[[[[[[[[[[[[[[[[[[[[
[

𝑤𝐸𝐵𝑡
𝑤𝐷𝐸𝐵𝑡
𝑤𝐸𝑡
𝑤𝐷𝐸𝑡
𝑤𝐷𝐸𝐸𝑡
𝑤𝑁𝑡
𝑤𝐷𝑁𝑡
𝑤𝑀𝑡
𝑤𝐷𝑀𝑡
𝑤𝐽𝑡

]]]]]]]]]]]]]]]]]]]]]]]]
]

𝑇

(2)

The predicted scores of each allele of the feature f with respect
to each social trait (𝑆𝑓𝑡 ) are calculated using (3). In this
equation, 𝑆

𝑓

𝑡 is obtained from (4), where nc is the number of
features in the cluster that is represented by the allele and Sft i
is the score in the social trait f of the face to which belongs
the cluster member i. For example, Figure 6 shows how 𝑆

𝑓

𝑡

is calculated for the M5 allele (of the feature mouth) for a
social trait t. The mouth M5 (a) is representative of a cluster
of mouths (b). Each mouth in this cluster has been extracted
from a whole face in the CFD (c), and these faces have scores
(𝑆𝑓𝑡 𝑖) for all the social traits obtained from a group of human
observers (d). 𝑆𝑀5𝑡 is calculated as the mean value of these
scores.The scores of each face in the CFD for each social trait
can be found in the Supplementary Materials of this work.

𝑆𝑓𝑡 =
𝑆𝑓𝑡 − 𝜇𝑆𝑓𝑡
𝜎
𝑆
𝑓

𝑡

∙ 𝜎𝐶𝐹𝐷𝑡 + 𝜇𝐶𝐹𝐷𝑡 (3)

𝑆𝑓𝑡 = ∑
𝑛𝑐
𝑖=1 𝑆𝑓𝑡 𝑖
𝑛𝑐 (4)

As 𝑆
𝑓

𝑡 are computed using the mean of the scores of the faces
of the CFD, the variance of 𝑆𝑓𝑡 values is much smaller than
that of the scores given by the human raters. So that the
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Table 1: Weight of each feature on social traits appraisals normalized to sum up 1 for each trait.

Eyebrow Eye Nose Mouth Jaw DEB DE DN DM DEE
Afraid 0.115 0.170 0.085 0.132 0.089 0.053 0.001 0.106 0.139 0.110
Angry 0.108 0.111 0.102 0.046 0.097 0.017 0.159 0.076 0.125 0.159
Attractive 0.183 0.141 0.144 0.104 0.039 0.051 0.048 0.095 0.063 0.133
Baby-faced 0.152 0.120 0.065 0.121 0.096 0.077 0.069 0.058 0.104 0.137
Disgusted 0.113 0.148 0.100 0.079 0.128 0.037 0.032 0.172 0.032 0.159
Dominant 0.085 0.085 0.131 0.036 0.108 0.117 0.161 0.017 0.083 0.176
Feminine 0.087 0.067 0.088 0.046 0.088 0.199 0.041 0.145 0.074 0.166
Happy 0.184 0.171 0.060 0.181 0.095 0.003 0.017 0.068 0.134 0.088
Masculine 0.138 0.097 0.084 0.090 0.111 0.073 0.136 0.053 0.065 0.153
Prototypic 0.168 0.203 0.055 0.163 0.007 0.055 0.094 0.060 0.163 0.033
Sad 0.117 0.115 0.112 0.105 0.059 0.149 0.028 0.000 0.148 0.166
Surprised 0.123 0.119 0.091 0.104 0.094 0.128 0.062 0.085 0.104 0.091
Threat. 0.084 0.148 0.084 0.028 0.123 0.072 0.173 0.036 0.089 0.162
Trust. 0.135 0.184 0.016 0.163 0.092 0.083 0.056 0.141 0.054 0.075
Unusual 0.127 0.117 0.058 0.102 0.129 0.085 0.134 0.068 0.086 0.095
Mean 0.128 0.133 0.085 0.100 0.090 0.080 0.081 0.079 0.098 0.127

models can take extreme values present in the CFD scores,
𝑆
𝑓

𝑡 are transformed like in (3). In this equation, 𝜇
𝑆
𝑓

𝑡

and 𝜎
𝑆
𝑓

𝑡

are the mean and the standard deviation of the 𝑆𝑓𝑡 values of all
the alleles of the feature f for the trait t, and 𝜇𝐶𝐹𝐷𝑡 and 𝜎𝐶𝐹𝐷𝑡
are the mean and the standard deviation of the scores in the
CFD for the trait t. In this way, 𝑆𝑓𝑡 values have the same mean
and standard deviation as the original CFD scores.

The individual effect of each feature can explain part of
the variation within the faces appraisals [79, 80], but each
facial feature has different effect size. Using a weight per facial
feature and social trait, like in (2), gives different importance
to each facial feature on the formation of the impression of
each social trait. The capability of the developed models to
predict the perceived social traits lies in achieving a good
fitting to the scores of human observers (available on the
CFD). Therefore, it is necessary to find the best combination
of weights. To do that, all the faces in the CFD were codified
as their corresponding chromosomes. Then, we used a GA in
which the fitness function was defined as the mean squared
error between the model predictions on the chromosomes
and the actual face scores of the assessed faces. Given the
characteristics of the problem, using gradient-based methods

such as Quasi-Newton method might be sufficient in this
case; however, we used a GA because the structure of our big
dataset was well conditioned to be used by our calculation
module, and using another procedure would have required a
time-consuming dataset processing.

TheGAwas configured to perform single-point crossover
and uniform mutation. The crossover probability was set at
0.6 and the mutation probability at 0.001 on a population of
50 individuals. The permitted range for the weights was set
to the interval [0; 1]. The selection method employed was
Stochastic Universal Sampling, and the Survivor Selection
Policy was fitness-based with elitism. The number of itera-
tions was established at 200 000; however, this limit was never
reached due to the early stopping condition implemented.
This condition allowed for a maximum of 100 consecutive
iterations without a change higher than 0.0001 in the best
solution fitness. With this configuration, the optimization
was performed individually for each social trait, resulting
in a total of 15 sets of weights, one for each trait. The
obtained weights, normalized to sumup 1 for each social trait,
are shown in Table 1. Table 2 shows Pearson’s r correlation
coefficient andmean square errors (MSE) between the results



Complexity 9

(a)

EB3 DEB6 E4 DE5 DEE4 N 7 DN3 M1 DM4 J8
Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6 Gen 7 Gen 8 Gen 9 Gen 10

(b) (c)
DEE4

DEB3
DE5

DN5
DM4

DEE4
DEB3

DE5

DN5
DM4

Figure 7: Generating a realistic looking face from a chromosome combining facial features. (a) Mask positioning. (b) Pasting the features.
(c) Applying the Poisson Image Editing method.

Table 2: Pearson’s r correlation coefficient and mean square errors
(MSE) between the results of the models and the actual faces scores
by social trait.

Social trait r MSE
Afraid 0.70 0.1013
Angry 0.73 0.1872
Attractive 0.77 0.1923
Baby-faced 0.81 0.1661
Disgusted 0.70 0.0841
Dominant 0.74 0.2480
Feminine 0.81 0.0528
Happy 0.76 0.1222
Masculine 0.79 0.1051
Prototypical 0.82 0.7067
Sad 0.73 0.2183
Surprised 0.78 0.0220
Threatening 0.76 0.1730
Trustworthy 0.75 0.0633
Unusual 0.75 0.1896
Mean 0.76 0.1755

of the models and the actual faces scores. All the correlations
were highly significant (p values under 0.01).

4. Generating Realistic Looking
Faces from Chromosomes

Once the GA has found the optimal combination of facial
features for eliciting a preestablished social traits profile, it

is necessary to generate a realistic looking face combining
these facial features. In order to achieve a realistic face, it is
necessary to use an automatic seamless fusionmethod, which
further adapts the illumination and tone of the different
patches being sewed. The algorithm used in this work to
achieve this task is the Poisson Image Editing method [86].
This algorithm makes use of the Poisson Equation and
information of the gradient of the images in order to achieve
a seamless fusion.

The process is depicted in Figure 7. A base face in which
to paste the different features was generated using FaceGen
software [87]. This base face is common for all the faces. The
genes that codify the facial features (1, 3, 6, 8, and 10) are
used to get the images corresponding to the facial features
to be pasted and to create masks using the landmarks of
the features. The masks are positioned over the base face
in the positions established in the genes 2, 4, 5, 7, and 9 of
chromosome (Figure 7(a)). Then, the images of each feature
are pasted over the correspondingmask (Figure 7(b)). Finally,
the Poisson Image Editing method automatically configures
the new face.

5. Materials and Methods

A software implementing the GA and the Poisson Image
Editing method was developed (Figure 8). This application
permits two different tasks. On the one hand, it makes
evaluating an existing face obtaining its predicted social
traits profile possible. On the other hand, the software allows
defining a social traits profile to be obtained, establishing the



10 Complexity

Face 1
�reatening
Attractive

Angry
Disgusted

Face 2
Afraid

Sad
Unusual

Feminine

Face 3
Baby-faced
Attractive

Trustworthy
Sad

Face 4
Angry

�reatening
Feminine
Disgusted

Face 5
Trustworthy

Happy
Unusual

Baby-faced

Face 6
Unusual

Disgusted
Afraid

Sad

Face 7
�reatening

Feminine
Surprised

Afraid

Face 8
Happy

Trustworthy
Surprised
Feminine

Face 9
Masculine

�reatening
Dominant

Angry

Face 10
Dominant
Feminine

Trustworthy
Angry

Figure 8: Software implementing the genetic algorithm and the Poisson Image Editing method, and 10 faces generated using the software.

parameters of the GA, and generating a realistic looking face
corresponding to the best chromosome found by the GA.

10 faces were generated using the software to test the
performance of the GA to produce faces that elicit a preestab-
lished social traits profile and the capacity of the models
developed to predict the sensations elicited. To generate the
faces, 10 different social traits profiles were used.The software
was used to obtain 10 faces from these profiles. The 10 faces
are shown inFigure 8.Theobjectivewas to compare the social
traits profiles of the obtained faces with the opinion of human
evaluators.

We must distinguish here between the desired profile of
social traits that we initially established as objective and the
profiles finally obtained for the faces. There are correlations
between the perceived social traits. For example, a highly
masculine face is usually perceived as dominant [72] or a
baby-faced one as trustworthy. Some of the profiles used to
generate the faces combined some usually highly correlated
social traits like Masculine, Threatening and Dominant,

or Baby-Faced and Trustworthy (like the faces 9 or 3 in
Figure 8). In these cases, the algorithm was able to find
a combination of facial features with a social traits profile
very similar to the desired profile. On the other hand, some
other desired profiles joint an unusual combination of social
traits, like Dominant and Feminine (face 10), or Angry,
Threatening, and Feminine (face 4), or include Unusual as
a main social trait (faces 2, 5, and 6). These combinations
include social traits that have negative correlations [72].
This means, for example, that changing a facial feature in
a given face to increase the perception of Dominant will
decrease the perception of Feminine. In these cases, the
algorithm will find the face with the social traits profile
nearest to the desired one; however, the differences between
them will increase as the negative correlation between the
desired social traits increases. In some extreme cases, the
profile of the face finally obtained could be far of the desired
one, for example, if the desired profile includes Feminine
and Masculine simultaneously. In these cases, there is no
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Table 3: Pearson’s r correlation coefficient, p values, and MSE
between the predicted scores and the actual faces scores by social
trait.

Social trait r P value MSE
Afraid 0.7138 0.0204∗ 0.3183
Angry 0.4555 0.1859 0.5461
Attractive 0.6635 0.0365∗ 1.1713
Baby-faced 0.7081 0.0219∗ 0.4359
Disgusted 0.1993 0.5809 0.7178
Dominant 0.7444 0.0135∗ 0.4712
Feminine 0.7992 0.0055∗ 0.1928
Happy 0.2829 0.4284 0.8351
Masculine 0.8222 0.0035∗ 0.7031
Prototypic 0.1410 0.6977 0.9038
Sad 0.6751 0.0322∗ 0.2351
Surprised 0.5437 0.1042 1.1461
Threatening 0.5429 0.1048 0.8069
Trustworthy 0.1930 0.5931 0.7370
Unusual 0.6575 0.0388∗ 0.3852

combination of facial features that can achieve a social traits
profile as the desired one.

Under each face in Figure 8, the 4 main social traits we
used to define its desired profile are shown.

6. Results and Discussion

This work proposes an evolutionary algorithm to automati-
cally create virtual realistic faces that convey 15 facial social
traits, each of them in a predefined quantity, combining
the appropriate set of facial features to form the faces. For
each social trait, a model that predicts the scores of human
raters has been developed. 10 faces with different social traits
profiles were generated using the proposed procedure. To test
the performance of the system, the results were compared
with the opinion of human evaluators. 35 people participated
in the survey, 16 men and 19 women. The ages of the
participants were between 18 and 71 years old, with a mean
age of 37. Participants were asked to assess the 10 created
faces using the same scale as the CFD (1–7 Likert). To avoid
the learning effect, the social traits and the face order were
randomly presented to each participant.

Table 3 shows Pearson’s r correlation coefficient, p values,
and MSE between the predicted scores and the actual faces
scores by social trait. Positive correlations were found for
all the traits, being strong and statistically significant for 8
of them, namely, Afraid, Attractive, Baby-Faced, Dominant,
Feminine, Masculine, Sad, and Unusual. Low MSE between
the predicted scores and the actual faces scores by social
trait were obtained for these traits. Although moderate
positive correlations were found for Angry, Surprised, and
Threatening, these were not significant.

Themain objective of this work was to generate faces that
elicit a preestablished set of social traits on most observers.
Figure 9 shows the results for each face. Blue bars represent
the social traits profile predicted by the models. The orange

lines are the mean of the scores of human participants
(whiskers represent ± 1 times the standard deviation about
the mean).TheMSE between predicted scores and the means
of the scores of the participants are shown for each face
in Figure 9. The mean MSE between the predicted scores
and the actual faces scores of 10 faces generated by the
proposed system was lower than 0.64. Considering only
the 8 social traits in which significant correlations were
found (Afraid, Attractive, Baby-Faced, Dominant, Feminine,
Masculine, Sad, and Unusual), the meanMSE for all the faces
was 0.26.

Despite the complexity of the face perception process,
the results obtained show that 8 of the models developed
in this work have been able to establish the relationships
between the facial features and the social traits elicited in
the observers. In addition, the interrater agreement among
people’s judgements on social traits of faces is usually low [72].
However, the proposed procedure was able to approximate
the mean opinion of the human observers, finding strong
correlations for these 8 social traits.

On the other hand, finding the combination of facial
features that elicits several social traits simultaneously, each
of them in a predefined amount, is a complex multiobjective
problem.This work approached the problem using eigenfaces
to create clusters of facial features with the same appearance
and selecting one representative feature of each cluster to be
used as alleles in a GA.ThemeanMSE obtained for the tested
faces (0.26 on a 1–7 Likert scale) suggests the validity of this
approach.

The models obtained in this work to predict social traits
from facial features give insights on how important each
facial feature is in the formation of each impression of a face.
Each additive model considers the individual contribution of
each facial feature to explain part of the variation within the
appraisals of a social trait.Themodels add the individual con-
tribution of each feature, weighted by its relative importance
in the social trait assessed. The weights presented in Table 1
suggest the effect of each facial feature on the variation of
each social trait. For example, in the case of Afraid, the eyes,
the mouth, and the position of the mouth seem to have a
bigger effect than, for example, the nose or the jaw.Therefore,
if it is necessary to change the level in which a given face is
perceived as Afraid, shifting the facial features with higher
weights will have a bigger effect.

Even though there exists some works on this topic, any
of them allows creating realistic faces conveying more than
one social trait at a time. Dotsch and Todorov [45] use grey
images with superimposed noise in order to achieve faces
which convey trustworthiness or dominance. Vernon et al.
[88] propose a system able to model social traits and produce
cartoon-like computer-generated faces able to elicit three
social traits: approachability, youthfulness, and dominance.
Perhaps, the proposal closest to the one presented in this
work is the one of Walker and Vetter [49], which is capable
of creating realistic faces expressing only one social trait at
a time. According to our best knowledge, this is the most
comprehensive work, in terms of number of social traits
considered, generating realistic looking faces that elicit a
preestablished set of sensations on most observers.
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Figure 9: Scores for each face. Blue bars represent the social traits profile predicted by the models.The orange lines are the mean of the scores
of human participants (whiskers represent ± 1 times the standard deviation about the mean).
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However, some limitations of this study must be pointed
out, mainly regarding the generalization of the findings. 93
faces of the Chicago Face Database were used to obtain the
models relating facial features and facial assessments. The
set of faces belongs to men between the ages of 18 and
40 years living in the Chicago (USA) area. The subjective
classifications of the faces were made by a specific group of
women andmen probably from the same city [72].Therefore,
both the faces and the appraisals used to develop the models
come from a specific community. The generalization of the
results to faces of people from other communities must be
carefully addressed.

Our future works will be intended for developing similar
studies for female faces and for extending the results to other
races. On the other hand, visual perception research has
shown that human brain processes faces in a very complex
way [30]. Although the first-order features play a central role
in how a face is perceived, second- and higher-order features
emerge from the combination of several lower-order features
and are used to make judgments from faces. Using a larger
face database in our future works would allow us to consider
interactions between the facial features, at least of second
order, and, probably, to improve the results obtained.

7. Conclusions

This work proposes a new approach to automatically create
virtual realistic faces that convey several social traits simul-
taneously, each of them in a predefined quantity. To create
the faces, a genetic algorithm selects the appropriate facial
features (including eyes, eyebrows, nose,mouth, and jaw) and
their relative positions, in such away that impressions elicited
in observers are as similar as possible to those established
by the designer. The facial features used by the algorithm as
alleles are obtained using the eigenfaces method. Using this
method clusters of facial features with the same appearance
were created, and one representative feature of each cluster is
used as alleles. Several models that relate the facial features
of the faces to the social traits perceived by human observers
were developed.Thesemodels are used as the fitness function
of the genetic algorithm. Finally, the Poisson Image Editing
method is used to combine the selected facial features in a
face.

15 models were developed to establish the relationships
between the facial features and the social traits elicited in
human observers. Positive, strong, and statistically significant
correlations were found for 8 of them, namely, Afraid, Attrac-
tive, Baby-Faced, Dominant, Feminine, Masculine, Sad, and
Unusual. To test the proposed procedure, several social traits
profiles were established and the developed system was used
to generate faces with these social traits. The social traits of
the generated faces predicted by the models were compared
to the opinion of human observers. The mean squared error
obtained for the tested faces (0.26 on a 1–7 Likert scale)
suggests the validity of this approach and that the system
is able to approximate the mean opinion of the human
observers.

Using the developed system, the designer can establish
the amount of each social trait that must be elicited by a

face, and the system automatically generates the proper face.
People use information from faces to judge the emotions and
intentions of the owners of the faces. How a face looks in
a painting or an advertisement can dramatically influence
what we feel about them and what emotions are elicited.
In these fields, the procedure presented in this work can
be used for creating faces that conveys the desired set of
sensations to the observer. In the same way, it can be used
in other fields like online activities or new human-machine
interaction systems in which it is common to use human
digital representations that symbolize the user’s presence or
that act as virtual interlocutor.

Data Availability

The Chicago Face Database used to support the findings of
this study is freely accessible on http://faculty.chicagobooth
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clustering are available on https://github.com/flifuehu/.
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