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Previous studies have shown that training a reinforcement model for the sorting problem takes very long time, even for small sets
of data. To study whether transfer learning could improve the training process of reinforcement learning, we employ Q-learning as
the base of the reinforcement learning algorithm, apply the sorting problem as a case study, and assess the performance from two
aspects, the time expense and the brain capacity. We compare the total number of training steps between nontransfer and transfer
methods to study the efficiencies and evaluate their differences in brain capacity (i.e., the percentage of the updated Q-values in the
Q-table). According to our experimental results, the difference in the total number of training steps will become smaller when the
size of the numbers to be sorted increases. Our results also show that the brain capacities of transfer and nontransfer rein-

forcement learning will be similar when they both reach a similar training level.

1. Introduction

Reinforcement learning (RL) aims at learning policies to
map from states to actions for the purpose of maximizing the
expected accumulated reward and reaching the goal.
Compared with the supervised learning approaches where
the models are trained on the input set and the given output
set, the RL agent has to interact with the environment and
learn from those experiences through trial and error to yield
the optimal behaviour.

Mathematically, RL can be formulated as a Markov de-
cision process (MDP) which is a framework to model deci-
sion-making problems [1]. An MDP is represented by the
tuple <S, A, T, R> where S denotes the state space in the
environment and A is the action set to take in a given state.
Function T is defined as P(s/|st,na) which indicates the
probability of the next state s' € S at time step ¢+ 1 given the
current state s € S and the action a € A taken at time step .
Function R is a reward scheme used to assign the score for the
action performed under the state s and is used as a guidance for
the agent to produce suitable behaviours. Then, the objective of
the RL agent is to learn a policy 774 (als) which tells the agent

what the best action a € A to perform is while the envi-
ronment is in the state s € S with the parameter 6. In general,
there are two main approaches to solving RL problems,
model-based and model-free learning. In the model-based
approaches, the goal is to learn the model of the environment
and obtain the optimal policy relying on the past transitions.
On the other hand, model-free approaches learn to directly
acquire the optimal policy by the trial-and-error interactions
without modelling the underlying environment. Model-based
approaches are often sample-efficient, but the requirement of
specifying the model of real-world tasks is often restrictive and
difficult to satisfy. Therefore, model-free approach is com-
monly preferred over the model-based approach if it is not
hard to sample the trajectories [2, 3]. Q-learning [4] and
SARSA [5] are two well-known model-free RL algorithms
which fit the optimized policy by learning the action-value
(Q-value) function. Note that an action-value function is used
to express the expectation of the reward for each state-action
pair (s, a). In recent years, since the development of deep
learning methods has gained significant attention and
achieved innovations in many fields, it is common to adopt
deep learning methods for RL algorithms in order to boost the
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performance. A combination of the convolutional neural
network (CNN) [6] and Q-learning called deep Q-networks
(DQN) [7, 8] is proposed to handle large state-action space.
DQNs have been shown to reach at or even beyond
human-level performance on many games. An alternative
double estimator method, double Q-learning [9], is introduced
to reduce the overestimations of the action values in the
Q-learning algorithm. As double Q-learning was proposed in a
tabular setting and DQN algorithm suffers from overesti-
mations, double DQN is used for large-scale function ap-
proximation and to reduce the overestimations by combining
double Q-learning and DQN [10-12].

RL  algorithms wusually require large amounts
of trial-and-error and many learning iterations to determine an
effective policy from very large-scale state-action space, making
them very time-consuming. Recently, there has been a strong
interest in the development of deep learning models with the
ability to transfer experiences across similar tasks. The two
representative types of methods are the transfer of trained
models and transfer of learned knowledge [13]. The first
methods transform the neural network layers from the pre-
trained model to the target model [14, 15] whereas the second
approaches aim at transferring learned knowledge from the
trained network to the target network [16, 17]. A Q-learning-
based approach has been applied for the sorting problem [18].
However, it takes large number of training steps to finish the
training process, even for small sets of data. Since transfer
learning has been widely adopted to speed up the training
process, this motivates us to devise a transfer scheme and
compare it with the nontransfer method in the training per-
formance. In this paper, we conduct a series of experiments
using the sorting problem as a case study. We transfer the
knowledge learned from the task # to the task n+ 1 where # is
the size of the numbers to be sorted and continuously use a
Q-learning-based method to train the model. The total number
of training steps and the size of the brain capacity, which denotes
the knowledge in the Q-table, are two metrics to measure the
impact of transfer learning techniques.

The rest of this paper is organized as follows. Section 2
reviews the background and related work of this paper.
Section 3 describes our training strategies and detailed
methodology. Experimental setup and results are presented
and discussed in Section 4. In Section 5, we discuss con-
clusions and future work.

2. Background and Related Work

In this section, we first give an overview of Q-learning which
is the base RL algorithm in this paper. The application of RL
in the sorting problem is discussed as well.

Q-learning, a form of model-free method, is one of the
most known RL algorithms initially designed for the use of
Markov decision processes. It updates the Q-value with the
following rule:

Q(sp> a) «—Q(sp> a,) + “(Tt + ymaaXQ(SHl’a) - Qs at))’
(1)
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where Q(s,, a,) is the action-value function to compute the
expected reward of a state-action pair at time step t, « is the
learning rate, y is the discount factor, and r, is the reward
obtained after selecting action a, given state s,. The max
operator from the update rule indicates that the agent
chooses the best action a by computing the maximum
Q-value for the next state s,,,. The mechanism to exploit the
maximum Q-value while updating is called an off-policy
algorithm, i.e., the choice of taking action a, and a does not
follow the same policy. On the contrary, the SARSA updates
the Q-value based on the policy being followed by the
following equation:

Qs> a,) ——Qsp> @) + a(r, +y x Q(5151,a) = Q(sp ;).
(2)

When the algorithm uses the same mechanism for the
behaviour policy (i.e., Q(s;, a,)) and the estimation policy
(i.e., Q(s44,a)), it is called on-policy [19].

The sorting problem is a quintessential computer science
task and has been applied to many fields since its emergence.
Based on the analysis of all comparison-based sorting al-
gorithms, the computation requires O (n log n) complexity.
A RL-based approach, which applies stability and resiliency
ideas from feedback controls, is proposed to overcome the
errors and early program termination limitations for the
traditional computing [20]. An empirical exploration
compares the RL model with two traditional sorting algo-
rithms and shows that the RL sorting model completes the
task with less array manipulations. In order to investigate the
effect of two different reward schemes, immediate reward
and pure delayed reward, a Q-learning algorithm is
implemented to compare the total number of training steps
and average number of sorting steps [18]. A case study of the
sorting problem is conducted and concludes that immediate
reward takes much less steps to finish the task.

3. Methodology and Learning Design

In this section, we describe important features in our pro-
posed methodology, which include training level and brain
capacity. We also discuss how we designed the RL algorithm
in order to formulate the sorting problem into RL settings.

3.1. RL-Based Setting for Sorting Problem. We model the
initial state s, Step t, which consists of # elements, as the list
of numbers to be sorted, and hence, there will be n factorial
possible states denoted by S,. For any state s at time, an
action a (i, j) is defined as the swap of values in position i and

position j. Thus, there will be C ( Z ) possible actions in the

action set A,,. Once the action a (i, j) is chosen under state s,,
the next state s, is determined by exchanging the element
in position i with the element in position j of the state s,. For
example, assuming the initial state is s, = [4, 5, 3, 2, 1] and
an action a(l, 4) is performed, this state-action pair will
result in the next state s; = [2, 5, 3, 4, 1].

As suggested by the previous study [18] that immediate
reward performs better than pure delayed reward, we use
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immediate reward scheme in this research. We give the
reward by considering whether the action actually improves
the number of elements in the correct position. A similarity
value is introduced to measure the similarity between the
current state s, and the goal state Sy, (i.e., the sorted list) as
follows:

sim(st, Sgoal) = Z Equal(st (], Sgoa [1] ), (3)

i=1

where Equal function will return one if two states have the
same value at position i and zero otherwise. We then
compute the difference of sim (s, Syo5) and sim (5,1, Sgoq1) t0
assign the reward as follows:

goal)

reward_better, sim (s}, Sgo ) > Sim (s, Sgoa )»

Reward = { reward_equal,  sim (s, Sgoq) = SIM (s, Sgoa )s

reward_worse,  sim (1, Sgoq ) <SIM (s, Sgoq )-

(4)

In this paper, reward_better is 1, reward_equal is 0, and
reward_worse is —1. For the aforementioned example, since
So =14, 5, 3, 2, 1] will receive a similarity value of 1 and
sy = [2, 5, 3, 4, 1] will receive a value of 2, the reward value
of reward_better will be given.

3.2. Learning Algorithm. The objective of the learning al-
gorithm is to sort a given example which consists of n
numbers for a series of episodes until the success rate reaches
a predefined threshold. Algorithm 1 (RL_Sort) represents
how we executed the model training on one training instance
based on the Q-learning algorithm. The algorithm gives a list
Straining and a Q-table as inputs and then produces a new
Q-table and the number of training steps as output. RL_Sort
begins with the initialization of upper_bound, train_steps,
and success_rate. The upper_bound is used to define the
maximum allowed number of swaps for sorting and we set
n+1 as the threshold. The variable train_steps is to store the
number of episodes spent for training. The variable suc-
cess_rate is the criterion to terminate the training process and
is set to 0.75 in our experiments. Sy, is the correct sorting
result. The experimental parameters are as follows: a =0.05,
y=0.9, and £=0.85. In each episode from line 11 to line 31,
the model chooses an action a (i, j) given current state s based
on e-greedy [21] and receives a new state s’ (lines 12~13).
There are two conditions in which the episode will end. In one
condition, s’ is the S,, and a positive reward
(reward_win=1) will be given (lines 16~18). In the other
condition, the number of swapping times already exceeds
upper_bound and a negative reward (reward_lose = —1) will
be received. Since the first condition reaches a success state,
we will examine the success rate for the latest 100 episodes to
determine whether the training process should stop or a new
episode should begin. For the cases that the current episode
needs to continue (lines 23~28), the Q-table is updated based
on the reward equation (4).

When the training task moves from the example of
sorting n numbers to n+ 1 numbers, values in Q-table are

usually set to zero or randomly initialized. In our transfer
setting, the knowledge learned from sorting n numbers is
migrated to solve the problem of sorting 7 + 1 numbers. For
the Q-table obtained from sorting #» numbers (denoted as

Q_source with size (n!)xC(;)), we expand its state

representation by appending a number 7+ 1 at the end of
each state to fit in the Q-table representation for sorting n + 1

numbers (denoted as Q_target with size
+1 .
(n+1)!'x C( " ) ). Therefore, each state s in Q_source

will become s.append(n+1). We then are able to map the
Q-value of the state-action pair from Q_souce to Q_target.
In this way, as the number in position 7 + 1 is already in the
correct position, we try to encourage the model to exploit the
prior knowledge from Q_souce and avoid touching the
action related to the position n+ 1. For example, when »
equals 3 and one of the state is [1, 3, 2] with actions a(1, 2),
a(1, 3), and a(2, 3), we will transfer these 3 Q-values in
Q_source to Q_target where the corresponding state is [1, 3,
2, 4] with actions a(l, 2), a(l, 3), and a(2, 3). Those
nontransferable Q-values will be set to zero or randomly
initialized. Figure 1 demonstrates how we transfer a Q-table
from n=3 to n=4.

3.3. Performance Metrics. In this paper, we define three
performance metrics which include training level, number of
training steps, and brain capacity.

Training level is a performance-oriented indicator to
measure how well the model can use the existing knowledge
to perform the task during training. After finishing a training
procedure of one instance for sorting n numbers, the model
is scheduled to sort n! tasks where each task is given by a
permutation of those n numbers. Subsequently, we compute
the average number of sorting steps for these n! tasks as the
model’s training level. Number of training steps, which is
denoted as train_steps in Algorithm 1, is the number of
episodes that the model spends on training an example. It is
an important factor to measure the effectiveness of the al-
gorithm. Brain capacity is concerned with the status of
Q-table and is an important measure to compare the
knowledge usage between nontransfer and transfer methods.
It is defined as the ratio of entries which have been updated
in a Q-table.

3.4. Experimental Setup and Results. In order to compare the
difference and efficacy between nontransfer and transfer
methods, a case study in the sorting problem is presented.
We illustrate a series of experiments for both nontransfer
and transfer RL to investigate the difference of training speed
and the contrast of knowledge requirement.

3.4.1. Experimental Setup. We design an experimental set-
ting to train the model to sort lists of n numbers where each
list is from a permutation of {1, 2, ..., n}. In order to provide
an equitable comparison, we run nontransfer and transfer
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iHPUt: Straining) Qn[Sm An]
(1) initialize
(2) upper_bound=n+1
(3) train_steps =0
(4) success_rate =0.75
(5) Sgoal = [15 2, ..., 1]
(6) repeat
(7) end = FALSE
(8) swap_times =0
(9) $= Straining
(10) current_rate=0
(11) repeat
(12) Select an action a based on e-greedy
(13) Perform the action a and observe s’ and the corresponding reward
(14) swap_times = swap_times + 1
(15) if (s is S_goal) then
(16) Q,ls, a] «— Q,, [s, a] + ax (reward_win—-Q,, [s, a])
@17) end =TRUE
(18) Check the success rate for the latest 100 episodes and assign to current_rate
19) elseif (swap_times >upper_bound) then
(20) Q,ls, al < Q,[s, al + a x (reward_lose +y x max,;Q,[s’, a'] - Q,[s, al),
(21) end =TRUE
(22) else
(23) if (dist(s', S_goal) > dist(s, S_goal))
(24) Q,ls, a] «— Q,[s, a] + & x (reward_better + y x max,; Q,[s', a'] - Q,[s, al),
(25) elseif (dist(s’, S_goal) < dist(s, S_goal))
(26) Q,ls, a] «— Q,[s, a] + & x (reward_worse + y x max, Q,[s', a'] - Q,[s, al),
27) else
(28) Q,ls, a] — Q,[s, a] + a x (reward_equal + y x max, Q,[s", a'] - Q,[s, al),
(29) s
(30) until end is TRUE
(31) train_steps = train_steps + 1
(32) until current_rate >= success_rate
(33) return Q,, , train_steps

ArLGorIiTHM 1: The Q-learning based algorithm for the sorting task. RL_Sort.

RL in parallel and propose an algorithm, which is presented
as pseudocode in Algorithm 2, to satisfy our needs.

The input of Algorithm 2 consists of a list Syining
which is a permutation of {1, 2, ..., n} and a Q-table
(TRQ,_;[S,-1>A,_;]) which is learned from sorting n—1
numbers. A Q-table (NRQ,[S,, A4,]) of nontransfer RL is
initialized to zero for all Q-values and a Q-table
(TRQ,[S,,A,]) of transfer RL is transferred from TRQ,_,
[S,.1>A,_;] as the mechanism discussed in Section 3.
B. A variable upper_bound is used as one of the con-
straints for the training level. The input list ;5 is given
to both S, and §,, as the initial sorting list for both
methods. Then, the algorithm starts iteratively to solve the
sorting tasks. We will begin with the nontransfer RL. This
process consists of training and evaluation. In the training
part, we input the current Q-tables (NRQ,I[S,,4,]) and
the list S, to Algorithm 1 to train the model (line 11). The
number of training steps returned from Algorithm 1 is
accumulated to the variable NonTrans_Tr_Steps (line 13).
For the evaluation part, the returned NRQ,[S,, A,] of
Algorithm 1 is then used to sort n! lists from the

permutation of {1, 2, ..., n} and the average number of
sorting steps is model’s training level denoted as Avg,,.
We then select the list which takes the maximum number
of steps to sort as the new S, (line 15). The same pro-
cedure is also applied for transfer RL as seen in lines 12,
14, and 16. The above process is repeated until two models
reach a similar training level (i.e., Avg,, and Avg,, are very
close or both of them are lower than upper_bound). This
restriction is to ensure that both two methods exhibit
comparable abilities to sort n! lists and affirm that it is fair
to conduct a further comparison of the total number of
training steps and the brain capacity.

3.4.2. Experimental Results. As an empirical study, we il-
lustrate our results for n equal to 5, 6, 7, and 8. In order to
produce a more fair view of the comparison, we repeat Al-
gorithm 2 for 30 episodes for each n. The total number of
training steps and the brain capacity are two perspectives to
measure the performance. The total number of training steps
for the nontransfer method is abbreviated to
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(1,2) (1,3) (2,3) (1,2) | (1,3) (2,3) (1,4) (2,4) | (3,4)
{1,2,3} 0 0 0 {1,2,3,4} 0 0 0
{1,3,2} 0 0 0.05 {1,3,2,4} 0 0 0.05
2,1,3} | 0992 | -0272 | 0331 2,1,3,4) | 0992 | -0.272 | 0.331
2,3, 1} 0.05 0.05 0.691 2,3, 1,4} 0.05 | 0.05 | 0.691
{3,1,2} 0 0.265 0 3,1,2,4 0 0.265 0
(3,2,1} | -0.042 0 0 (3,2,1,4} | -0.042 0 0
{1,2,4,3
Append {1,3,4,2
T {1,4,2,3
(1,2) | (1,3) (2,3) i
{1,4,3,2
{1,2,3,4} 0 0 0
2,1,4,3
{1,3,2,4} 0 0 0.05
2,3,4,1
2,1,3,4} | 0992 | -0272 | 0.331 >
2,4,1,3
2,3,1,4} | 0.05 0.05 0.691
Transfer
2,4,3,1
3,1,2,4} 0 0.265 0
{3,2,1,4} | -0.042 0 0

(3,2,4,1

{3,4,1,2

3,4,2,1

4,1,2,3

4,1,3,2

{4,2,1,3

{4,2,3,1

{4,3,1,2

}
}
}
}
}
}
}
}
}
}
{3,1,4,2}
}
}
}
}
}
}
}
}
}

{4,3,2,1

FIGURE 1: An illustration of transferring the Q-table from n=3 to n=4.

1)
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(4)
(5)
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input: Straining: TRanl[Snfb An—l]

initialize
new NRQ,[S,, A,]
new TRQ,[S,, A,]
TRQn[Sn’ An] — TRQn—l[Sn—l) An—l]
upper_bound=#n+1
Assign Siraining t0 St and s
finish = FALSE
NonTrans_Tr_Steps =0
Trans_Tr_Steps=0
repeat
NRQ,[S,, A,], Steps,=RL_Sort(s,; , NRQ,[S,, A,.])
TRQ,[Sh, Anl 5 Stepsy = RL_Sort(s, , TRQ,[S,, A,])
NonTrans_Tr_Steps = NonTrans_Tr_Steps + Steps.
Trans_Tr_Steps =Trans_Tr_Steps + Steps,,
Sort n! lists in S,, by NRQ,,, compute the average Avg,, and pick the list with max value as s,
Sort n! lists in S, by TRQ,, compute the average Avg, and pick the list with max value as s,
if (|Avgne— Avgy|/Avg, <=0.1) or (Avg, <=upper_bound and Avg, <=upper_bound)
finish =" TRUE
until finish is TRUE

ALGORITHM 2: The algorithm for training the non-transfer and transfer RL methods.
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TaBLE 1: Detailed training results of nontransfer and transfer methods to solve sorting 5 numbers for 30 episodes.

n=>5
NonTrans_Tr_Steps  Trans_Tr_Steps  Ratio_Tr_Steps = NonTrans_Br_Capacity = Trans_Br_Capacity = Ratio_Br_Capacity
0 167 20 8.35 0.1983 0.1500 1.32
1 215 94 2.29 0.1808 0.2342 0.77
2 964 365 2.64 0.2808 0.2142 1.31
3 207 42 4.93 0.2025 0.1533 1.32
4 94 120 0.78 0.1817 0.1717 1.06
5 189 110 1.72 0.1633 0.1825 0.89
6 361 22 16.41 0.2092 0.1783 117
7 146 22 6.64 0.1675 0.1642 1.02
8 94 335 0.28 0.1892 0.2083 0.91
9 382 118 3.24 0.2208 0.1742 1.27
10 230 118 1.95 0.1817 0.1850 0.98
11 78 32 2.44 0.1225 0.1775 0.69
12 276 48 5.75 0.1825 0.1517 1.20
13 130 60 217 0.2067 0.1525 1.36
14 320 64 5.00 0.2242 0.1658 1.35
15 241 96 2.51 0.1875 0.1883 1.00
16 286 38 7.53 0.2075 0.1633 1.27
17 246 128 1.92 0.2058 0.2042 1.01
18 140 114 1.23 0.1867 0.1567 1.19
19 249 46 5.41 0.3217 0.1575 2.04
20 130 532 0.24 0.1775 0.2183 0.81
21 154 10 15.40 0.0983 0.1000 0.98
22 10 36 0.28 0.0558 0.1042 0.54
23 456 175 2.61 0.2242 0.1842 1.22
24 101 12 8.42 0.0717 0.1175 0.61
25 400 84 4.76 0.1775 0.1183 1.50
26 117 109 1.07 0.0983 0.1283 0.77
27 241 113 213 0.1433 0.1633 0.88
28 184 50 3.68 0.2008 0.1858 1.08
29 102 56 1.82 0.1583 0.1617 0.98
TaBLE 2: Detailed training results of nontransfer and transfer methods to solve sorting 6 numbers for 30 episodes.
n==6
NonTrans_Tr_Steps  Trans_Tr_Steps  Ratio_Tr_Steps ~ NonTrans_Br_Capacity = Trans_Br_Capacity = Ratio_Br_Capacity
0 936 417 2.24 0.0598 0.0603 0.99
1 1020 508 2.01 0.0878 0.0719 1.22
2 1203 684 1.76 0.1020 0.0725 1.41
3 1253 411 3.05 0.0801 0.0647 1.24
4 750 241 3.11 0.0620 0.0456 1.36
5 1446 1344 1.08 0.1035 0.1137 0.91
6 871 142 6.13 0.0612 0.0395 1.55
7 1386 476 291 0.0878 0.0650 1.35
8 972 565 1.72 0.0708 0.0717 0.99
9 1272 752 1.69 0.0874 0.0746 1.17
10 857 426 2.01 0.0697 0.0560 1.24
11 1175 3850 0.31 0.1052 0.1300 0.81
12 1199 563 213 0.0882 0.0673 1.31
13 945 543 1.74 0.0809 0.0710 1.14
14 1634 915 1.79 0.1110 0.0873 1.27
15 1281 944 1.36 0.0971 0.0956 1.02
16 970 628 1.54 0.0847 0.0780 1.09
17 1070 428 2.50 0.0719 0.0593 1.21
18 3918 4929 0.79 0.1569 0.1664 0.94
19 1578 955 1.65 0.1133 0.0908 1.25
20 857 203 4.22 0.0530 0.0437 1.21
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TaBLE 2: Continued.

n==6

NonTrans_Tr_Steps  Trans_Tr_Steps  Ratio_Tr_Steps
21 1461 1008 1.45
22 743 364 2.04
23 1299 633 2.05
24 1665 686 2.43
25 4582 1216 3.77
26 945 695 1.36
27 4021 1201 3.35
28 942 474 1.99
29 1453 1276 1.14

NonTrans_Br_Capacity ~ Trans_Br_Capacity ~ Ratio_Br_Capacity
0.1050 0.0975 1.08
0.0639 0.0534 1.20
0.0866 0.0734 1.18
0.1037 0.0734 1.41
0.1469 0.1098 1.34
0.0768 0.0680 1.13
0.1384 0.1086 1.27
0.0737 0.0597 1.23
0.1109 0.1165 0.95

TaBLE 3: Detailed training results of nontransfer and transfer methods to solve sorting 7 numbers for 30 episodes.

n="7

NonTrans_Tr_Steps  Trans_Tr Steps  Ratio_Tr_Steps
0 7444 3725 2.00
1 17430 10013 1.74
2 10969 3716 2.95
3 11175 2908 3.84
4 9032 2744 3.29
5 3097 731 4.24
6 16747 15702 1.07
7 6947 4555 1.53
8 5964 3726 1.60
9 4137 1214 341
10 11132 12738 0.87
11 6983 9039 0.77
12 7727 1751 4.41
13 12421 28476 0.44
14 14832 25429 0.58
15 12450 7392 1.68
16 10787 6533 1.65
17 8659 22808 0.38
18 7670 2634 291
19 8086 9071 0.89
20 9687 6631 1.46
21 2474 580 4.27
22 10906 15964 0.68
23 11889 5882 2.02
24 5962 4259 1.40
25 19346 13054 1.48
26 5705 3114 1.83
27 7431 12660 0.59
28 3096 927 3.34
29 4668 953 4.90

NonTrans_Br_Capacity ~ Trans_Br_Capacity = Ratio_Br_Capacity
0.0575 0.0476 1.21
0.0895 0.0761 1.18
0.0605 0.0494 1.22
0.0541 0.0420 1.29
0.0514 0.0417 1.23
0.0257 0.0233 1.10
0.0830 0.0868 0.96
0.0566 0.0524 1.08
0.0502 0.0488 1.03
0.0290 0.0273 1.06
0.0710 0.0782 0.91
0.0594 0.0660 0.90
0.0408 0.0316 1.29
0.0877 0.1083 0.81
0.0920 0.1187 0.77
0.0769 0.0689 1.12
0.0539 0.0529 1.02
0.1045 0.1001 1.04
0.0428 0.0387 1.10
0.0615 0.0659 0.93
0.0556 0.0553 1.00
0.0314 0.0296 1.06
0.0664 0.0851 0.78
0.0587 0.0514 1.14
0.0478 0.0493 0.97
0.0886 0.0767 1.16
0.0468 0.0396 1.18
0.0642 0.0762 0.84
0.0249 0.0246 1.01
0.0337 0.0257 1.31

NonTrans_Tr_Steps and Trans_Tr_Steps for the transfer
method. These two variable names are used in Algorithm 2 as
well. Subsequently, we apply similar abbreviations to the brain
capacity and denote them by NonTrans Br_Capacity and
Trans Br_Capacity. NonTrans_Br_Capacity is calculated as
the ratio of Q-values which have been updated in the
NRQ,[A,, S,] and Trans Br_Capacity is the percentage of
updated Q-values in the TRQ, [S,, A,]. The detailed results
are reported in Tables 1-4 for different n. Looking at the
comparison of the total number of training steps, we can see
that the values of NonTrans_Tr_Steps and Trans_Tr_Steps
increase significantly when # increases. It is worth noting that

some of these two values are less than 100 when n is 5.
Therefore, instead of using the latest 100 episodes to check the
success rate mentioned in Section 3. B, we opt for the latest 10
episodes to examine that. Regarding the comparison of the
brain capacity, the values of NonTrans_Br_Capacity and
Trans_Br_Capacity are generally smaller than 0.25 and their
values are almost less than 0.1 while # is greater than 6. This
implies that the knowledge requirement only occupies a small
portion of the Q-table in order to solve the sorting task.
For each episode, we also calculate the ratio of the total
number of training steps (Ratio_Tr_Steps) as the division of
NonTrans_Tr_Steps by Trans_Tr_Steps and the ratio of the
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TaBLE 4: Detailed training results of nontransfer and transfer methods to solve sorting 8 numbers for 30 episodes.

n=8
NonTrans_Tr_Steps  Trans_Tr_Steps  Ratio_Tr_Steps = NonTrans_Br_Capacity = Trans_Br_Capacity = Ratio_Br_Capacity
0 82101 92246 0.89 0.0624 0.0710 0.88
1 77386 83553 0.93 0.0606 0.0689 0.88
2 32674 17731 1.84 0.0358 0.0452 0.79
3 19818 17490 1.13 0.0340 0.0451 0.75
4 24449 11835 2.07 0.0336 0.0443 0.76
5 34761 27067 1.28 0.0399 0.0487 0.82
6 30299 12635 2.40 0.0348 0.0448 0.78
7 26920 14774 1.82 0.0351 0.0448 0.78
8 53885 44233 1.22 0.0479 0.0546 0.88
9 21150 6778 3.12 0.0293 0.0439 0.67
10 56551 73505 0.77 0.0533 0.0650 0.82
11 47152 43085 1.09 0.0477 0.0544 0.88
12 57590 51508 1.12 0.0505 0.0569 0.89
13 21072 9521 2.21 0.0332 0.0457 0.73
14 57659 36219 1.59 0.0445 0.0500 0.89
15 64347 41492 1.55 0.0523 0.0546 0.96
16 31041 15146 2.05 0.0356 0.0443 0.80
17 72028 72386 1.00 0.0594 0.0678 0.88
18 42305 9869 4.29 0.0393 0.0441 0.89
19 29735 20833 1.43 0.0353 0.0468 0.75
20 50376 46719 1.08 0.0485 0.0559 0.87
21 29481 11004 2.68 0.0452 0.0439 1.03
22 37180 32229 1.15 0.0415 0.0500 0.83
23 42596 25663 1.66 0.0400 0.0473 0.85
24 30466 14245 2.14 0.0337 0.0456 0.74
25 62672 60769 1.03 0.0515 0.0593 0.87
26 57160 55132 1.04 0.0520 0.0538 0.97
27 27488 12747 2.16 0.0466 0.0447 1.04
28 28282 19243 1.47 0.0375 0.0410 0.91
29 34866 26506 1.32 0.0435 0.0477 0.91

brain capacity (Ratio_Br_Capacity) as the division of 16 .

NonTrans_Br_Capacity by Trans_Br_Capacity. For the 14 '

value of Ratio_Tr_Steps, there are nine numbers greater than 2 12

or equal to 5.00 when 7 equals 5. But, as n increases, this %I 10

phenomenon does not appear and the transfer effects di- e o8

minish. For the value of Ratio_Br_Capacity, the range is 2 6 .

much narrower and is largely concentrated between 0.75 and & 4 .
1.25. As described in Algorithm 2, both nontransfer and 2

transfer methods are required to have very close training 0

levels in order to finish a training episode. Since close n=>5 n=6 n=7 n=38
training level means that two methods have similar abilities "

and performance for sorting n! lists, this could explain why FiGure 2: The boxplots of Ratio_Tr_Steps for different n.
the value of Ratio_Br_Capacity is around 1. In general,

transfer method exhibits better performance in terms of

training steps. However, in some cases, Ratio_Tr_Steps is 20 R

smaller than 1, which means nontransfer method takes less 1' g

steps to complete the training. Since both methods require & 1'6

similar size of the brain capacity to sort #! lists, there may be g

Ratio_Br

the training process. 06
To explore the distribution of the Ratio_Tr_Steps and ’ . .

Ratio_Br_Capacity, boxplots are presented in Figures 2 and n=>5 = n=7 n=38

3 to do the statistical analyses. A boxplot represents the "

minimum, 25" percentiles, median, 75" percentiles, and Figure 3: The boxplots of Ratio_Br_Capacity for different n.

possibilities that the transfer model exploits the transferred < 1;
knowledge but does not explore enough to expand its | 1'0 %
knowledge. This will lead to take more training steps to finish 08 ;’
N
n - 6
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TaBLE 5: The averages of Ratio_Tr_Steps and Ratio_Br_Capacity
for different n.

Average item n=>5 n=6 n=7 n=_8
Ratio_Tr_Steps 4.12 2.26 2.07 1.65
Ratio_Br_Capacity 1.08 1.18 1.06 0.85

maximum of the given dataset. In Figure 2, we observe that
the medians of the Ratio_Tr_Steps, which are the red lines
inside the box, gradually decrease when # increases. This is
in accordance with our previous observation that the
growth of n may lower the transfer effects. In Figure 3, the
medians of the Ratio_Br_Capacity all occur around 1.00
mostly aligning with our previous conjecture. In addition
to the statistics in boxplots, we also compute the averages of
Ratio_Tr_Steps and Ratio_Br_Capacity in Table 5. The
average performance shows very similar trends as the
boxplots.

4. Conclusions

It is reported from prior research that the Q-learning-based
approach for the sorting problem requires a large number of
training steps. Since the transfer learning method is able to
share the knowledge learned from the source domains with
the target domain, we devised a transfer scheme to inves-
tigate the time cost and knowledge usage issues between
nontransfer and transfer models. The Q-table obtained from
the prior task is served as the knowledge source to be
transferred to the next task. We chose the sorting problem as
our case study to analyse two important performance
metrics, number of training steps and brain capacity. As a
result of the experiment, the brain capacity for two models
will be similar after reaching a similar training level. The
difference of the total number of training steps between two
models will be significant when # is smaller. However, as n
increases, the proportion of the transferred knowledge will
be smaller and the difference will become less pronounced,
making the transfer effect insignificant.

As shown in Table 4, the maximum number of total
training steps is close to 100,000 while # equals 8. It would be
necessary to enable faster learning in order to handle larger
n. Future work will therefore be concerned with the re-
duction of the state space. State abstraction [22, 23] with the
ability to leverage the knowledge learned from prior expe-
riences is worth the effort to improve the scalability of the
current approach. Another area of future work is to extend
the current tabular representation approach to the deep
learning-based methods in order to improve the learning
stability and computational efficiency.
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DNA Microarray technology is an emergent field, which offers the possibility of obtaining simultaneous estimates of the ex-
pression levels of several thousand genes in an organism in a single experiment. One of the most significant challenges in this
research field is to select high relevant genes from gene expression data. To address this problem, feature selection is a well-known
technique to eliminate unnecessary genes in order to ensure accurate classification results. This paper proposes a binary version of
Political Optimizer (PO) to solve feature selection problem using gene expression data. Two transfer functions are used to design a
binary PO. The first one is based on Sigmoid function and will be noted as BPO-S, while the second one is based on V-shaped
function and will be noted as BPO-V. The proposed methods are evaluated using 9 biological datasets and compared with 8 binary
well-known metaheuristics. The comparative results show the prevalent performance of the BPO methods especially BPO-V in

comparison with other techniques.

1. Introduction

Molecular biology research evolves through the develop-
ment of technologies used to carry them out. It is not
possible to investigate a countless number of genes using
conventional strategies. DNA Microarray is a technology
that allows researchers to investigate and treat problems that
were once considered untraceable. The expression of many
genes can be examined in a solitary response rapidly and
productively. DNA Microarray technology is enabling the
scientific community to understand the fundamental aspects
underlying the growth and development of life, as well as to
investigate the hereditary reasons for irregularities in the
working of the human body.

Therefore, microarray technology remains to this day a
useful asset for measuring of gene expression. Beyond the
technology itself, the analysis of the data from microarrays is
a complex statistical problem. And this is due to the large
number of genes and the complexity of biological networks
which increase the challenges of understanding and

interpreting the resulting mass of data, which often consists
of millions of measurements. Hence, extracting relevant
biological knowledge from microarray data turns into a hard
task due to the curse of dimensionality problem [1].
Generally, gene expression data are often redundant and
noisy with large number of genes. In order to reduce the
dimensionality of such datasets by selecting the most in-
formative features, Feature Selection (FS) procedure seems
to be an essential preprocessing phase before the imple-
mentation of machine learning classifiers in order to min-
imize training times and memory requirements [2].
Feature selection methods are classified into three cat-
egories based on the evaluation criteria used: filter, wrapper,
and embedded [3]. This categorization depends on the in-
volvement of a learning algorithm in the used approach.
The filter methods (Chi-Square [4], Information Gain
[5], Gain Ratio [6], and ReliefF [7]) select a subset of var-
iables by preprocessing the data from a model. The selection
process is independent of the classification process. One of
the advantages is that it is completely independent of the
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data model we are trying to build. It proposes a satisfactory
subset of variables to explain the structure of the hidden data
and that the subset is independent of the chosen learning
algorithm. On the contrary, wrapper methods aim to gen-
erate representative subsets and evaluate them using a
classification algorithm. This evaluation is carried out by
calculating a score, e.g., a score of a set will be a compromise
between the number of variables eliminated and the success
rate of the classification on a test set. Therefore, wrapper
methods are more exact than the filter approaches since they
consider the relations among the features. Another ad-
vantage is its conceptual simplicity; we do not need to
understand how induction is affected by the selection of
variables, just generate and test. Nevertheless, the compu-
tational cost is significantly increased and depends on the
used learning algorithm [8]. Finally, embedded methods
integrate selection directly into the learning process, and
decision trees are the most emblematic illustration. How-
ever, we classify in this group all techniques that evaluate the
importance of a variable in coherence with the criterion used
to evaluate the overall relevance of the model. They are
generally known by their reasonable trade-off between ef-
ficiency and computing costs [9, 10].

FS is regarded as an NP-complete combinatorial optimi-
zation problem [11]. The search space size is strongly de-
pendent to the increase of the number of features in the studied
dataset. An exhaustive search for the optimal relevant feature
often leads to stagnation in local optima [12]. Therefore,
metaheuristic methods are potentially more suitable to deal
with this problem because of their ability to find acceptable
solutions in reasonable periods of time [13]. The objective
function may be the accuracy of the classification or another
criterion that could consider the best compromise between the
computational burden of attribute extraction and efficiency
[14]. Metaheuristics are stochastic approaches and fall into two
categories: population-based approaches and single-solution
approaches [14, 15]. Generally, they are inspired by nature,
social behavior, biological behavior of animals or birds or
insects, physical or chemical phenomena, etc.

In the literature, many works were introduced in order to
implement stochastic methods to address the FS problem,
such as Simulated Annealing (SA) [16], Tabu Search (TS)
[17, 18], Genetic Algorithm (GA) [19-22], Particle Swarm
Optimization (PSO) [23, 24], Ant Colony Optimization
(ACO) [25, 26], Artificial Bee Colony (ABC) [27, 28], and
Differential Evolution (DE) [29, 30].

Generally, these traditional methods suffer from a slow
convergence rate, and they have a lot number of parameters
to be tuned. Hence, a simple and efficient global search
technique is needed. For that, during this work, we use the
Policy Optimizer (PO) [31] as the main resolution technique
since it is a newly introduced metaheuristic which is human
behavior-based algorithm. Moreover, as mentioned in [31],
PO produces better solutions for dealing with optimization
problems than other well-known metaheuristics in the lit-
erature. In this paper, a novel binary version is proposed to
find the most representative subset of a given dataset. The
binary version introduced here is performed using two
different transfer functions.
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The structure of this paper is as follows: the standard
(continuous) version of Political Optimizer (PO) is pre-
sented in Section 2. In Section 3, we introduce the binary
version of the latter algorithm called BPO. The obtained
results and conducted comparisons are reported in Section
4. Finally, the conclusion and several directions for future
papers are stated in Section 5.

2. Overview of the Political Optimizer (PO)

Political Optimizer is a newly proposed metaheuristic based
on human behavior and inspired by the multiphased po-
litical process. However, it should be noted that the proposed
algorithm is not the first of this kind. In PO, the concept of
politics is mapped from a different perspective and unlike
the recent politics-inspired algorithms, and this is due to
four reasons. First, PO tries to model all the important steps
in politics such as party formation, party-ticket/constituency
allocation, election campaign and party switching, interparty
election, and parliamentary affairs after government for-
mation. Second, PO introduces a novel position updating
strategy called recent past-based position updating strategy
(RPPUS). This latter represents the learning behavior of
politicians from the previous election. Third, each individual
solution assumes a double job: a party member and an
election candidate. Using this concept, each solution can be
updated according to two better solutions: the party leader
and the constituency winner. Finally, to improve the results,
intermediary solutions needs to cooperate and communicate
via a phase named parliamentary affairs.

In PO, each party member is viewed as a candidate
solution where its goodwill is considered the position in the
search space. Moreover, the evaluation function is computed
during the election phase where the number of votes ob-
tained by each member party represents the fitness of the
candidate solution.

Political Optimizer (PO) is formed by five main phases as
follows: party formation and constituency allocation, elec-
tion campaign, party switching, interparty election, and
parliamentary affairs. It should be mentioned that the first
phase (party formation and constituency allocation) is ex-
ecuted only one time to initialize and affect different vari-
ables. However, the remaining phases are running in loop, as
detailed in Algorithm 1. The used variables in PO are
summarized in Table 1.

2.1. Party Formation and Constituency Allocation. In the
beginning, the population P is partitioned in N parties,
where each party P; includes N members (potential solu-
tion). Moreover, each jth member is noted as P! and rep-
resented by a d-dimensional vector, where the value d is the
number of input variables of the treated problem and Pl{k is
kth dimension of P/.

As mentioned before, each member is considered as an
election candidate besides its role as a party member. Hence,
N constituencies are formed and contain jth member of each
contesting party. This division is illustrated in Figure 1.
Furthermore, the leader of the ith party after computing the
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number of iterations)

Output: final population % (T,
/+ Initialization/

Initialize (n * n) candidate members P
compute the fitness of each member p/

max)

winners C*, by using equation (3)
t=1;
P(t-1)=P;
F(P(t-1)) = f(P)
A = Amax;
while t<T
p temp =P >
F (Pra) = £ (P)
foreach P; € P do
foreach p! € P; do o ‘
p! = ElectionCampaign (p/, p/ (t - 1), p/ i)
end
end
PartySwitching (P,1);
/# Election phase #/ )
compute the fitness of each member p;
compute the set of the party leaders P* and the set of the
constituency winners C*, by using equation (3)
Parliamentary Affairs (C*, P);
P(t—1) = Prepnps
F(P(t-1)) = f (P
A= (/\ - Amax/TmaX);
t=t+1;
end

do

temp) 5

Input: #n (number of constituencies, political parties and party members), A, (upper limit of the party switching rate), T

compute the set of the party leaders P* and the set of the constituency

(total

max

ALGORITHM 1: Pseudocode of PO.

TasLE 1: List of the used variables.

Variable

P Set of all political parties (whole population)
ith political party
P/ jth member of ith party
Pl kth dimension of jth member of ith political party
C Set of all constituencies
C; jth constituency
P Leader of ith political party

Winner of jth constituency

Party switching rate
Number of parties, constituencies, and members in each
party
Total number of iterations

Description

N oz

max

fitness of all member is noted as P; and the set of all the party
leaders is represented by P*. On the contrary, after the
election, C* regroups the winners from all the constituencies
named the parliamentarians, where C; denotes the winner
of jth constituency.

2.2. Election Campaign. During this phase, party members
are trying to enhance their chances of being elected by
changing their positions according to three aspects. First,
they try to learn from previous experience using a novel
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F1GURE 1: Illustration of the logical division of the population P in
political parties and constituencies [31].

position updating strategy called recent past-based position
updating strategy (RPPUS), as formulated in equations (1)
and (2). Second, each party member is trying to update his
current position according to the party leader. Finally,
candidate positions are updated with reference to the
constituency winner:



m* + r(m* - sz,k (t)),

Pl (t+1)=1 m" +(@r-1)|m" - P} (),
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if P/, (t—1)< P, (t)<m" or P, (t = 1) P, (t) 2m",

if P/ (t—=1)<m” < P/, (t)or P/, (t =1)2m" > P] (1), (1)

m* + (2r — 1)|m* ~ Pl (t- 1)], if m* <P/ (t—1)< P, (t)orm" =P/ (t-1)> P} (1),

m" +(2r = 1)|m" - P, (1)
PL(t+1)=1 Pl (t-1)+r(Pl () - Pl (t- 1)),
m* +(2r — 1)‘m* —P{k(t - 1)|,

According to Algorithm 2, which describes the whole
process of election campaign, the relationship between
current fitness and the previous fitness is the main factor to
choose between using equations (1) or (2).

2.3. Party Switching. In order to balance between explora-
tion and exploitation, a phase called party switching is
started after the election campaign phase. Using an adaptive
parameter A named party switching rate, each party member
P/ can be selected and switched to some randomly chosen
party P, Hence, it is swapped with the least fit member of the
party P,, as presented in Algorithm 3.

2.4. Election. This phase aims to evaluate the fitness of all
candidates contesting in constituency. After that, the party
leaders and constituency winners are updated as follows:

q = argmin f(Pf),
C; =P, (3)

1<i<N,
* _ pi
Pj—Pq.

2.5. Parliamentary Affairs. After determining the party
leaders and constituency winners (parliamentarians), each
parliamentarian aims to improve his performance in order
to mimic the interaction and cooperation of the winning
candidates to run the government in the postelection phase.
This process is presented in Algorithm 4, where each par-
liamentarian C} updates its position in relation to randomly
chosen parliamentarian C7. It should be noted that the
movement is applied only if the performance of C} is
enhanced.

3. Binary Political Optimizer (BOP)

As mentioned before, political member’s goodwill is con-
sidered as a candidate position and moves in the search
space towards continuous-valued positions. However, in
binary optimization problems, such as feature selection, the
search space is modelled as a n-dimensional Boolean lattice,
and political member’s goodwill needs to be represented by
binary vectors.

In order to convert a continuous algorithm to a binary
version, we should utilize transfer functions (TF), and it

if Py (t = 1)< Pl () <m”or Pl (t = 1)= Pl () =m",
if P (t - D<m" < Pl (Dor Pl (t-D=m"> Pl (1), (2)
if m* <Pl (t—1)< P, ()orm" > P/, (t-1)2 P/ (b).

considered as the most efficient and convenient way [32].
Transfer functions are classified into two categories
according to their shapes: S-shaped and V-shaped, as il-
lustrated in Figure 2.

In this work, two versions are proposed, based on the
transfer function used. In the first one, the political mem-
ber’s goodwill is updated using the Sigmoid function (S-
shaped) and called BPO-S. While, in the second one, we used
the Hyperbolic Tangent transfer function, called BPO-V.

Without any modification in the previously detailed phases,
only two steps are integrated after the continuous computation.
The first step is to calculate the probability of changing a po-
sition’s element to 0 or 1 according to the following equation:

P(xl; () = TF(x; (1)), (4)

where TF is the used transfer function that could be Sigmoid
(e;quation (5)) or Hyperbolic Tangent (equation (6)) and
x; (t) is the ith political member in the dth in the iteration t:

TF(9) = — (5)
l1+e
TF (x) =|tanh (x)|. (6)

In the second step, the probability computed by equation
(4) is then inserted in equation (7) in order to convert
continuous value of each member position to 0 or 1:

xfj ) = { 1, ifP(xfj (t)) > rand, 7

0, otherwise,

where rand is a uniform random number between 0 and 1.
The flowchart of the proposed binary algorithm is
presented in Figure 3.

3.1. Binary Political Optimizer Applied for Feature Selection.
In this section, we exploited the proposed BPO in feature
selection for classification problems. As mentioned before,
the feature selection problem is an NP-hard combinatorial
binary optimization problem. For a feature vector sized N,
the different feature combinations would be 2N which in-
crease exponentially the number of possible solutions where
an exhaustive search is probably not practical. Therefore, we
used the proposed BPO in order to find an acceptable so-
lution with reasonable execution time. The main objective is
to maximize the classification accuracy and minimize the
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Result: p/ (t + 1)> updated position of p!
if f(p!(t))< f(p!(t-1)) then
for k1 to d do
m* «— p; > where p; is the leader of ith party
r «—— random number from the interval [0, 1]
> Update the position with respect to the party leader
p{,k «—— update pi{ « (t) by using equation (1)
m* «—c; > where c; is the winner of jth constituency
r «— random number from the interval [0, 1]
> Update the position with repect to the constituency winner
ply (t+1) —— update p!, by using equation (1)
end
else
for k——1 to d do
m* e piy
r «— random number from the interval [0, 1]
> Update the position w.r.t the party leader
pl, — update p/, (t) by using equation (2)
m*e—cjy
r «—— random number from the interval [0, 1]
> Update the position w.r.t the constituency winner
ply(t +1) — update p/, by using equation (2)
end
end

ALGORITHM 2: ElectionCampaign (Plj,pf (t- 1),pf,c7).

foreach P; € P do
foreach p! € P; do
sp = random number from the interval [0, 1]
if sp<A then
r = random integer from the range [1, n]
q=argmax f (p}),1<j<n
swap (p, p))
end
end
end

ALGORITHM 3: PartySwitching (P, ).

for j«—1 to n do
r «— random integer in the range 1 to n, where r # j
a < random number from the interval [0, 1]
Crew ¢ + 2a—1)c - ¢}
compute the fitness if ¢,
if f(c;ew)SC;'f then
fej) e fchen) ,
i« party index of the winner of jth constituency p; «—c
FD e f (€
end
end

5
new

ALGORITHM 4: PartySwitching (parliamentary affairs (C*, P)).
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FIGURE 2: (a) S-shaped and (b) V-shaped family of transfer functions [32].

number of selected features. The used fitness function is
presented in the following equation [33]:

1F = Acc + a)(l— :1";), (8)

where Acc is the classification accuracy given a chosen
classifier, w is the weight factor which is a value between 0
and 1, sf is the length of selected feature subset, and nf is
the total number of features. In this study, we set w to 0.5 for
all the experiments in the next section. For the classifier, we
chose to use k-Nearest Neighbor (k-NN) to compute the
accuracy of selected subset. Moreover, to ensure the ro-
bustness of the obtained results, every used dataset is divided
randomly into two different parts: training and testing set,
according to 10-fold crossvalidation method.

4. Experimental Results

In this section, all experiments were repeated for 100 in-
dependent times to obtain statistically meaningful results.
Furthermore, each algorithm was implemented using
MATLAB R2020a and was run on an Intel Core i7 machine,
2.6 GHz CPU, and 16 GB of RAM.

4.1. Dataset. In this study, nine benchmark biological
datasets are used to assess the performance of the proposed
approach [34-44]. Table 2 outlines the datasets used in this
work.

4.2. Parameter Settings. To evaluate the proposed model,
several experiments were conducted to compare the BPO
algorithm with seven different metaheuristic optimization
algorithms: Binary Particle Swarm Optimization (BPSO)
[45], Binary Genetic Algorithm (BGA) [46], Binary Bat

Algorithm (BBA) [47], Binary Differential Evolution (BDE)
[48], Binary Grey Wolf Optimizer (BGWO) [49], Binary
Atom Search Algorithm (BASO) [50], Binary Harris Hawks
Optimizer (BHHO) [51], and Binary Tree Growth Algorithm
(BTGA) [52]. The parameters settings for all metaheuristic
optimization algorithms are shown in Table 3.

4.3. Results and Discussion. In this section, we start to
evaluate statically the performance of the two proposed
version of BPO compared to other algorithms. Therefore,
four different statistical measures are used to start the first
step of evaluation. These measurements were the worst
fitness value, the best fitness value, the mean fitness value
(avg), and standard deviation (std). Table 4 outlines the
obtained results using these measures where the best ones
are highlighted in bold text. From the table, we assess the
superiority of proposed algorithms, especially BPO-V,
compared to others binary version of well-known algo-
rithms. However, BPO-V and BPO-S can be described as
unstable methods in most cases. This fact can be explained
by the complexity of position update strategy adopted by PO.
Furthermore, it can be observed that BASO is the most
competitive algorithm with the two version of BPO. From
these findings, it can be concluded that BPO-V is better than
BPO-S, BGA, BGWO, BBA, BHHO, BDE, BASO, BPSO, and
BTGA in extracting the most relevant feature of the tested
datasets with the aim to maximize the classification per-
formance and minimization of the number of selected
features. This deduction was confirmed by applying a
Wilcoxon Ranked Signed Test to the proposed algorithms
compared in pairs with the other algorithms. This test is
performed with a statistical significance value a=0.05. In
Tables 5 and 6, the sign “+” in the winner lines designates
that the null hypothesis is rejected and the proposed
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Start

Initialization of all party
members individual

Fitness calculation of each

Determining party leader and constituency winners

Initially set previous positions and previous fitness equals to current

positions and fitness

No
t < Trnax End

Yes

Make temporary copies of current positions and fitness of
party members

|

Update position of each party member through election
campaign phase

A4

Run party switching phase of each party member

Election phase: fitness calculation of party member and
determination of party leaders and constituency winners

Run parliamentary affair phase for each constituency
winner

Update previous positions and fitness with temporary copies

Convert updated positions to
binary using equation 4

Increment t and update A

F1Gure 3: Flowchart of the proposed algorithm.

TaBLE 2: Details of datasets.

Convert updated positions to
binary using equation 4

Dataset No. of instances No. of features No. of classes Type
CLL_SUB_111 [34] 111 11340 3 Continuous, multiclass
Colon [35] 62 2000 2 Discrete, binary
Leukemia [36] 72 7070 2 Discrete, binary
Lung [37] 203 3312 5 Continuous, multiclass
Lung_discrete [38] 73 325 7 Discrete, multiclass
Lymphoma [39] 96 4026 9 Discrete, multiclass
nci9 [40, 41] 60 9712 9 Discrete, multiclass
Prostate_GE [42, 43] 102 5966 2 Continuous, binary
SMK_CAN_187 [44] 187 19993 2 Continuous, binary
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TaBLE 3: Parameter settings for all used algorithms.

Algorithm Parameter Value
BPO Parties (number of political parties) 5
Lambda (max limit of party switching rate) 1
cl (cognitive factor) 2
c2 (social factor) 2
BPSO Vmax (maximum velocity) 6
Wmax (maximum bound on inertia weight) 0.9
Wmin (minimum bound on inertia weight) 0.4
BGWO a 2
Goma 1
Alpha 1
Zigma 1
BBA Beta 1
frequencyMin 20
frequencyMax 50
BDE CrossRate 0.9
N1 (number of trees in first group) 3
N2 (number of trees in second group) 5
BTGA N4 (number of trees in fourth group) 3
Tree reduction rate 0.8
Parameter controls nearest tree 0.5
BHHO Beta (levywalk) 1.5
Alpha (depth weight) 50
BASO Beta (multiplier weight) 0.2
Vmax (maximum velocity) 6
crossoverRate 0.9
BGA mutationRate 0.1
All of them SearchAgent(BatS, w'olfs, Partlcles, o)) 30
Maximum iterations 100

TaBLE 4: Experimental result of the fitness function of the proposed algorithms compared to eight metaheuristics.

Dataset BPO-S  BPO-V BGA BGWO BBA BHHO BASO BDE BPSO BTGA

Best 1.409 1.4217 1.2065 1.1769 1.2059 1.2547 1.4237 1.1254 1.2053 1.208
Avg 1.2509 1.3254 1.1287 1.0926 1.1239 1.1433 1.2922 1.0498 1.1254 1.119

CLL_SUB_111 Worst 1.0681 1.2528 1.0707 1.0368 1.0701 1.0894 1.2164 0.9753 1.0684 1.0685
std 0.0698 0.0347 0.0262 0.0288 0.0264 0.0317 0.037 0.0268 0.0282 0.0296

Best 1.4995 1.4998 1.284 1.2632 1.2715 1.3807 1.4888 1.2637 1.275 1.2712

Colon Avg 1.4302 1.4922 1.2732 1.2551 1.2639 1.3433 1.4888 1.242 1.269 1.2633
Worst 1.3308 1.433 1.2637 1.237 1.257 1.3093 1.45 1.2043 1.2635 1.258

std 0.0527 0.0163 0.0036 0.0052 0.0026 0.0165 0.0086 0.0144 0.0025 0.0024

Best 1.4999 1.4999 1.276 1.2612 1.2627 1.3848 1.4914 1.2576 1.267 1.2637

Leukemia Avg 1.458 1.497 1.2708 1.2546 1.2593 1.3613 1.476 1.2526 1.2626 1.2595
Worst 1.2772 1.4792 1.2649 1.2494 1.2567 1.3397 1.4628 1.2477 1.2597 1.2566

std 0.0433 0.0039 0.002 0.0022 0.0012 0.0102 0.0064  0.0023 0.0012 0.0015

Best 1.4967 1.4953 1.2876 1.2634 1.2674 1.3818 1.4857 1.2655 1.2736 1.2714

Lung Avg 1.4491 1.4758 1.2791 1.2561 1.2631 1.361 1.471 1.254 1.2685 1.2635

Worst 1.394 1.4502 1.2716 1.2462 1.2597 1.341 1.4576 1.2446 1.2654 1.2601
std 0.0228 0.0101 0.003 0.0034 0.0016 0.0091 0.0064  0.0036 0.0019 0.002

Best 1.4892 1.4938 1.3292 1.2954 1.3062 1.3815 1.48 1.2862 1.3231 1.3062
Avg 1.3954 1.4257 1.3127 1.2693 1.2866 1.354 1.4611 1.2563 1.3012 1.2881
Worst 1.2631 1.3409 1.2954 1.2308 1.2754 1.32 1.4292 1.2108 1.2877 1.2754
std 0.0562 0.0281 0.0072 0.0136 0.0063 0.0124 0.0096 0.0137 0.0067 0.0064

Lung_discrete

Best 1.422 1.4389 1.2083 1.161 1.1616 1.2821 1.4268 1.1574 1.1696 1.1644
Avg 1.3632 1.388 1.1992 1.1549 1.1583 1.2678 1.3785 1.1514 1.1656 1.1599
Worst 1.1578 1.3489 1.1909 1.1501 1.1563 1.2532 1.3636 1.1465 1.1624 1.1567
std 0.0358 0.0105 0.0036 0.0023 0.0012 0.006 0.0104 0.0022 0.0016 0.0016

Lymphoma
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TaBLE 4: Continued.
Dataset BPO-S BPO-V BGA BGWO BBA BHHO BASO BDE BPSO BTGA
Best 1.3296 1.3267 1.1735 1.1629 1.1726 1.2093 1.3127 1.0949 1.1728 1.1663
nci9 Avg 1.0929 1.1854 1.0703 1.0431 1.0681 1.0809 1.217 0.9878 1.0679 1.053
Worst 0.9786 1.0738 1.0061 0.975 1.0022 0.993 1.1225 0.9168 1.0025 1.0006
std 0.0729 0.0509 0.043 0.0401 0.0403 0.0428 0.0393 0.0375 0.0394 0.0422
Best 1.4972 1.4999 1.2674 1.2583 1.2614 1.3822 1.4828 1.2572 1.2649 1.2622
Prostate GE Avg 1.4272 1.4751 1.2625 1.2458 1.2583 1.3452 1.4644 1.2413 1.2609 1.2584
- Worst 1.2551 1.4378 1.258 1.2182 1.2557 1.3098 1.446 1.2059 1.2575 1.255
std 0.0452 0.0204 0.0019 0.0114 0.0014 0.0151 0.0089 0.0135 0.0015 0.0016
Best 1.3883 1.3916 1.1738 1.1665 1.1959 1.261 1.3986 1.1425 1.1969 1.1976
SMK CAN 187 Avg 1.2885 1.3294 1.1351 1.107 1.134 1.1691 1.3057 1.0722 1.1278 1.1305
- - Worst 1.1754 1.276 1.1118 1.0616 1.089 0.0261 1.2642 1.0299 1.089 1.0889
std 0.043 0.0231 0.017 0.0226 0.0203 0.0261 0.0261 0.0225 0.0197 0.024

TaBLE 5: Pairwise statistical comparison of the BPO-S algorithm with other algorithms using the Wilcoxon signed-rank test («=0.05).

Dataset BPO-S  BPO-V BGA BGWO BBA BHHA BASO BDE BPSO BTGA

CLL SUB 111 p-value — 1.786E—-04 1.827E-04 1.827E-04 1.786E-04 1.827E-04 1.827E-04 1.827E—-04 1.827E—-04 1.827E-04
B - ‘Winner — - + + + + _ N i .

Colon p-value — 1.575E—-04 1.766E—-04 1.766E—-04 1.746E—-04 1.776E—-04 1.776E-04 1.766E—-04 1.776E—-04 1.756E —04
‘Winner — — + + + + _ N 4 +

Leukemia p-value — 1.817E-04 1.817E-04 1.817E-04 1.806E-04 1.827E-04 1.827E-04 1.817E—-04 1.806E-04 1.817E-04
Winner — — + + + + + N + .

Lung p-value — 1.827E-04 1.827E—-04 1.827E-04 1.827E-04 1.827E-04 1.827E-04 1.817E—-04 1.796E—-04 1.817E-04
Winner — - + + + + _ + + +

Lung_discrete p-value — 1.817E-04 1.806E—-04 1.817E-04 1.766E—-04 1.817E-04 1.776E—04 1.786E—-04 1.806E—-04 1.806E—04
Winner — - + + + + _ + + +

Lymphoma p-value — 1.827E-04 1.817E-04 1.817E-04 1.817E-04 1.817E-04 1.000E+00 1.817E—-04 1.817E-04 1.796E-04
Winner — - + + + + - + + 4

ncio p-value — 3.600E-03 1.405E-04 2.730E—-04 3.447E-04 1.817E-04 1.932E-03 1.706E—-03 8.501E—-04 5.708E-04
Winner — — + + + + + N 4 +

Prostate GE p-value — 4.600E—-03 1.806E—04 1.806E-04 1.817E—-04 7.650E-04 1.004E-03 1.817E—-04 1.806E—-04 1.806E—04
- Winner — - + + + + + + + +

SMK CAN 187 p-value — 2.100E-02 1.827E—-04 1.827E—-04 1.827E—-04 1.827E—-04 9.097E-01 1.827E-04 1.827E-04 1.817E-04
- - Winner — - + + + + _ + + ¥

TABLE 6: Pairwise statistical comparison of the BPO-V algorithm with other algorithms using the Wilcoxon signed-rank test (a=0.05).

Dataset BPO-S BPO-V BGA BGWO BBA BHHA BASO BDE BPSO BTGA

CLL SUB 111 p-value 1.786E-04  — 1.786E-04 1.786E-04 1.786E—04 1.786E—-04 5.354E—-02 1.786E—-04 1.786E—-04 1.786E-04
-~ Winner + — + + + + = + + +

Colon p-value 1575E-04  — 1.612E-04 1.612E-04 1.593E-04 1.621E-04 3.954E-04 1.612E-04 1.621E-04 1.602E-04
Winner + — + + + + + + + +

Leukemia p-value 1.817E-04 — 1.806E-04 1.806E-04 1.796E—04 1.817E-04 2.821E-04 1.806E—-04 1.796E-04 1.806E—04
Winner + — + + + + + + + +

Lun p-value 1.827E-04  — 1.827E-04 1.827E-04 1.827E—-04 1.827E-04 4.274E-01 1817E-04 1.796E-04 1.817E-04
& Winner + — + + + + = + + +

Lune discrete p-value 1.817E-04 — 1.796E-04 1.806E—04 1.756E—04 1.806E—04 1.238E—-02 1.776E—-04 1.796E-04 1.796E-04
& Winner + — + + + + = + + +

p-value 1.827E-04  — 1.817E-04 1817E-04 1817E-04 1.817E-04 1.133E-02 1.817E-04 1.817E—04 1.796E-04

Lymphoma

Winner + — + + + + = + + +

nci9 p-value 3.600E - 03 — 1.827E-04 3.298E—-04 5828E-04 1.827E—-04 1.827E-04 1.827E—-04 1.827E-04 5.828E-04
Winner + — + + + + + + + +

Prostate GE p-value 4.600E—03 — 1.817E-04 1817E-04 1.827E-04 1.827E-04 7.337E-01 1.827E-04 1.817E-04 1.817E-04
- Winner + — + + + + = + + +

p-value 2.100E - 02 — 1.806E—-04 1.806E—04 1.806E—04 1.806E—04 3.108E-02 1.806E—-04 1.806E-04 1.796E-04

SMK_CAN_187

Winner

+ —

+

+

+

+

+

+

+

+
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TaBLE 7: The average number of selected features of the proposed algorithms compared to eight metaheuristics.

Dataset BPO-S BPO-V BGA BGWO BBA BHHO BASO BDE BPSO BTGA
CLL_SUB_111 257.3 187.62 5585.41 6384.14 5623.11 4399.46 1103.75 6901.91 5630.84  5662.63
Colon 42.34 31.03 907.2 979.4 944.51 626.94 125.54 1032.07 924.18 946.87
Leukemia 209.45 42.16 3240.73 3470.59 3404.03 1961.36 339.51 3498.41 3356.92 3400.45
Lung 83.61 109.25 1463.4 1615.38 1569.27 915.67 192.23 1629.41 1533.21 1566.4
Lung_discrete 45.69 31.56 121.74 149.94 138.7 94.9 25.31 158.4 129.2 137.73
Lymphoma 152.41 71.52 1574.2 1931.39 1903.45 1022.39 155.81 1959.52 1844.89 1890.76
nci9 1627.87 785.56 4720.81 5232.5 4811.22 3932.79 1062.24 6128.74 4799.88  4879.49
Prostate_GE 170.27 171.27 2833.86 3032.71 2883.41 1841.66 424.93 3086.76 2853.46  2883.27

SMK_CAN_187 222.56 371.68 9922.05 11069.31 9945.36 7199.64 1945.67 11519.65  9945.69 9977.48
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FIGURE 4: Average number of genes (features) selected for each of the 9 datasets (numbers on the bars indicate the percentage of selected

genes).
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TasLE 8: The average accuracy of the proposed algorithms compared to eight metaheuristics.

11

Dataset/time (s) BPOV1 BPOV2 BGA BGWO BBA BHHO BASO BDE BPSO BTGA
CLL_SUB_111 0.6864 0.6909 0.6818 0.5909 0.4545 0.5455 0.5000 0.6818 0.5000 0.5909
Colon 0.8667 0.8500 0.8333 0.8333 0.7500 0.7500 0.8167 0.7500 0.7500 0.7500
Leukemia 0.7714 0.9286 0.9286 0.8571 0.8571 0.8571 0.7143 0.7857 0.8571 0.9286
Lung 0.9200 0.9250 0.9150 0.9150 0.9150 0.9000 0.8750 0.9250 0.9150 0.9200
lung_discrete 0.8214 0.8571 0.7857 0.7857 0.8571 0.7143 0.6429 0.8571 0.7857 0.7143
Lymphoma 0.8263 0.8947 0.8947 0.7895 0.8421 0.8947 0.7895 0.8421 0.8947 0.8947
nci9 0.4417 0.5167 0.3333 0.3333 0.5000 0.5000 0.2500 0.5000 0.4167 0.5000
Prostate_GE 0.8650 0.9500 0.9000 0.9500 0.8500 0.9000 0.8500 0.7500 0.9500 0.9000
SMK_CAN_187 0.8949 0.8516 0.6216 0.8108 0.8649 0.7297 0.7027 0.5946 0.6757 0.7568
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F1GURE 5: Convergence curves of the proposed approaches compared to 8 metaheuristics for each of the 9 datasets.
TaBLE 9: The average execution time of the proposed algorithms compared to eight metaheuristics.
Dataset/time (s) BPO-S BPO-V BGA BGWO BBA BHHO BASO BDE BPSO BTGA
CLL_SUB_111 211.5163  166.0972  156.3265 156.1411 166.7361  269.3532  245.7208 172.91 235.5515 160.3811
Colon 103.2834  110.327 94.1061 96.418 94.6258  164.3746  105.777 89.9312  123.4293  93.9638
Leukemia 140.8718  117.0147 113.6496 127.0532 127.4182 195.2044 170.5102 115.6307 137.6324 110.3661
Lung 168.1855 135.1064  130.194 132.89 125.6319  227.7096 157.0562 139.6336 126.6119 116.7391
lung_discrete 111.4208 108.97 94.692 90.6665 82.4157  178.5376 101.8686  93.4482 80.0484 78.4514
Lymphoma 139.1397  117.5715 1353171 109.7464 114.0983 202.2584 147.4745 116.1915 103.0365 100.1243
nci9 163.066  127.4642 141.5162 138.7996 137.8389  226.385  236.8451 130.9642 128.7595 116.3961
Prostate_GE 161.4066  131.6549 125.0905 130.5117 130.1564 211.7674 188.3833  134.1632  119.473  114.9097
SMK_CAN_187 519.7175 351.3269  253.5977 342.1177 332.1609 564.8705 423.7244 368.1337 342.0833  289.6829

algorithms (BPO-S or BPO-V) statistically outperform in
pairs the other ones with 95% significance level (« =0.05). In
case of inferiority, the sign “~” is used. From these tables, we
can reaffirm in first place the superiority of BPO-S and BPO-
V. Moreover, as mentioned before, the BASO algorithm is
the most concurrent algorithm.

In the second step, to confirm this superiority, BPO-S
and BPO-V are evaluated in terms of accuracy and average
number of selected features. From Table 7, it can be con-
cluded that BPO-S and BPO-V outperform in an inescapable
way the other algorithms regarding the number of selected
features. Hence, Figure 4 is drawn to better visualize the
obtained results. One more time, BASO showed the most
competitive behavior. On the contrary, Table 8 outlines the

comparative results in term of accuracy, where it can be seen
that BPO-V is the best algorithm. Therefore, the proposed
algorithms strongly reduce the number of selected features
without losing important information to deal with the
problem treated by the dataset.

At the end of this evaluation, we compare BPO-V and
BPO-S in terms of execution time and convergence. Regarding
convergence speed and best fitness score obtained, Figure 5
shows that BPO-V also excels in this point. Generally, after 20
iterations, it reaches its optimum solution. On the contrary,
despite the good results of BPO-S in terms of fitness score, this
algorithm arrives at its best performance late, generally after 50
iterations. In the second term and which concerns the exe-
cution time, BPO-V and BPO-S showed poor results according
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to Table 9. This fact can be explained by the complexity of the
algorithm proposed in [31] and its large number of functions to
execute and large number of conditions to verify.

5. Conclusions

In this paper, we proposed two versions of binary PO al-
gorithm and applied to feature selection problem on gene
expression data. To assess the robustness of our work, we
used 9 standard datasets characterized by their huge di-
mensionality. Obtained results are compared to 8 binary
versions of well-known metaheuristics. Experimental results
prove the excellence performance of proposed algorithm.
The results are evaluated using different indicators assessing
convergence, reduction size, accuracy, performance (fitness
score), and runtime. In future work, BPO could be hy-
bridized with other metaheuristic algorithms as well as
another classifier instead of KNN such as SVM.

Data Availability

The data used to support the findings of the study are
available at http://featureselection.asu.edu/datasets.php.
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