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Let G be a graph. ,e Hosoya index of G, denoted by z(G), is defined as the total number of its matchings. ,e computation of
z(G) is NP-Complete. Wagner and Gutman pointed out that it is difficult to obtain results of the maximumHosoya index among
tree-like graphs with given diameter. In this paper, we focus on the problem, and a sharp bound of Hosoya indices of all bicyclic
graphs with diameter of 3 is determined.

1. Introduction

Hosoya index is an important topological index introduced by
Hosoya [1]. It was found that Hosoya index is related to a
variety of physicochemical properties of alkanes (� saturated
hydrocarbons). In particular, the boiling points of alkanes are
well correlated with Hosoya index. Another series of researches
revealed the applicability of Hosoya index in the theory of
conjugated π-electron systems [2, 3]. Jerrum [4] showed that
the computing complexity of Hosoya index is NP-Complete.
,e Hosoya index got much attention by many researchers in
the past decades. ,ey have been interested in identifying the
extremal value of Hosoya index for various classes of graphs,
such as trees [5–7], unicyclic graphs [8–12], bicyclic graphs
[13], and (n, m)-graphs [14, 15]. Wagner and Gutman [16]
gave an exhaustive survey for Hosoya index, and they pointed
out some open problems (also see [17]) as follows:

• It seems difficult to obtain results of the maximum
Hosoya index among trees with a given number of
leaves or given diameter. However, partial results are
available, so the problem might not be totally in-
tractable, and results in this direction would definitely
be interesting.

• If the aforementioned questions can be answered for
trees, then it is also natural to consider the analogous
questions for tree-like graphs.

According to the open problems, Liu et al. [17] dis-
cussed the problem in which unicyclic graph with di-
ameter of 3 or 4 has the maximum Hosoya index. In this
paper, we focus on similar problems to the above. ,at is,
which bicyclic graph with diameter of 3 has the maximum
Hosoya index? We give an answer of the problem as
follows.
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Theorem 1. G ∈B3
n and n≥ 10; each of the following holds:

(i) If 10≤ n≤ 15.Then z(G)≤

3
2

n
2

− 8n + 16,

where n is even, and the equality holds

iff G � G14
n − 4
2

,
n − 6
2

 ;

3
2

n
2

− 8n + 20,

where n is odd, and the equality holds

iff G � G14
n − 5
2

,
n − 5
2

 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ii) If n≥ 16.Then z(G)≤

2n
3

− 6n
2

+ 63n − 54
27

,

where n ≡ 0(mod3), and the equality holds

iff G � G10
n − 3
3

,
n

3
,
n − 3
3

 ;

2n
3

− 6n
2

+ 60n − 56
27

,

where n ≡ 1(mod3), and the equality holds iff

G � G10
n − 1
3

,
n − 1
3

,
n − 4
3

  � G10
n − 4
3

,
n − 1
3

,
n − 1
3

 ;

2n
3

− 6n
2

+ 63n − 64
27

,

where n ≡ 2(mod3), and the equality holds

iff G � G10
n − 2
3

,
n − 2
3

,
n − 2
3

 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

,e rest of this paper is organized as follows. In Section
2, we shall present some definitions and lemmas. In Section
3, we will prove ,eorem 1. Furthermore, some upper
bounds for Hosoya index of some special classes of bicyclic
graphs with diameter of 3 are also determined.

2. Preliminaries

In this paper, we only consider finite and simple graphs.
Let G � (V(G), E(G)) be a graph with n vertices and m

edges. ,e neighborhood of vertex v ∈ V(G) in a graph G,
denoted by NG(v), is the set of vertices adjacent to v. ,e
degree of v, denoted by d(v), is the number of neighbors of
v in G. ,e distance of two vertices u, v ∈ V(G) is the
length of a shortest path from u to v, denoted by dG(u, v).
We will use G − v to represent the graph after G deleting
the vertex v. ,e diameter of G is max dG(u, v)

| u, v ∈ v(G)}.
Let B3

n be the set of all bicyclic graphs with n vertices
and diameter of 3. It is easy to verify that the structure of
graph G ∈B3

n must be isomorphic to Gi, where
i � 1, 2, . . . , 14. ,e resulting graph Gi can be seen in
Figure 1.

Let m(G, k) be the number of k-matchings of G. It is
convenient to denote m(G, 0) � 1 and m(G, k) � 0 for
k> ⌊n/2⌋. ,e Hosoya index of G, denoted by z(G), is
defined as the sum of all the numbers of its matchings;
namely,

z(G) � 

⌊n/2⌋

k�0
m(G, k). (2)

Lemma 1 (see [16]). Let G be a graph and let v be a vertex of
graph G. )en

(i) z(G) � z(G − v) + u∈NG(v)(z(G − u, v{ }))

(ii) z(G) � 
t
i�1 z(Gi), where Gi is a component of G

Let G be a graph obtained by joining the centers of two
stars K1,p− 1 and K1,q− 1, denoted by S(p, q). By Lemma 1, we
obtain the following result.

Lemma 2

(i) z(K1,p) � 1 + p

(ii) z(Sp,q) � pq + 1
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3. The Proof of Theorem 1

In order to prove ,eorem 1, we first give some lemmas.

Lemma 3. Let G ∈ G1(a, b, c) be a graph with n vertices.
)en

z(G)≤

2
27

n
3

− 3n
2

+ 27n − 27 ,

where n ≡ 0(mod3), n≥ 9 and the equality holds iff

G � G1
n − 3
3

,
n − 3
3

,
n

3
  � G1

n − 3
3

,
n

3
,
n − 3
3

  � G1
n − 6
3

,
n

3
,
n

3
 ;

2
27

n
3

− 3n
2

+ 30n − 28 ,

where n ≡ 1(mod3), n≥ 10 and the equality holds

iff G � G1
n − 4
3

,
n − 1
3

,
n − 1
3

 ;

2
27

n
3

− 3n
2

+ 27n − 23 ,

where n ≡ 2(mod3), n≥ 11 and the equality holds

iff G � G1
n − 5
3

,
n − 2
3

,
n + 1
3

  � G1
n − 5
3

,
n + 1
3

,
n − 2
3

 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Proof. Consider that vertex v′ of degree 1 is adjacent to v1 in
G1(a, b, c). By Lemmas 1 and 2, we have z(G1
(a, b, c)) � 2abc + 2bc + 2a + 2b + 2c + 2. In the following,
we use the method of Lagrange multipliers to find the sharp

bound of Hosoya index of G ∈ G1(a, b, c). First, we make
auxiliary function as follows: L(a, b, c) � λ(a + b + c+

2 − n) + 2abc + 2a + 2b + 2c + 2bc + 2, where a + b + c + 2 �

n, a, b, c≥ 1, and at most one of them is 1. Taking the partial
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v1
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Figure 1: All bicyclic graphs Gi, i � 1, 2, . . . , 14, with diameter of 3.
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derivatives of a, b, c, and λ in L(a, b, c, λ), we can obtain the
following equations:

La � λ + 2bc + 2 � 0,

Lb � λ + 2ac + 2 + 2c � 0,

Lc � λ + 2ab + 2 + 2b � 0,

Lλ � a + b + c + 2 − n � 0,

a≥ 1, b≥ 1 and c≥ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Solving the equations as above, we obtain that
a � (n − 4)/3, b � (n − 1)/3, and c � (n − 1)/3. Because
(((n − 4)/3), t((n − 1)/3)n, q((n − 1)/3)) is a unique stable
point, (((n − 4)/3), t((n − 1)/3)n, q((n − 1)/3)) must be a
unique extreme point. Since a, b, and c are integers, we
consider three cases.

Case 1: assume that n ≡ 0(mod3). We know that
a � (n − 3)/3, b � (n − 3)/3, and c � (n/3); a �

(n − 3)/3, b � (n/3), and c � (n − 3)/3; or a �

(n − 6)/3, b � (n/3), and c � (n/3). ,us, z(G1 (((n −

3)/3), (n/3), ((n − 3)/3))) � z(G1(((n − 3)/3), ((n −

3)/3), (n/3))) � z(G1(((n − 6)/3), (n/3), (n/3))) �

(2/27)(n3 − 3n2 + 27n − 27). It is easy to verify that
z(G1(a, b, c))< (2/27)(n3 − 3n2 + 27n − 27) when
a≠ ((n − 6)/3), b≠ (n/3), and c≠ (n/3); a≠ ((n− 3)/3),
b≠ (n/3), and c≠ ((n − 3)/3); or a≠ ((n − 3)/3),
b≠ ((n − 3)/3), and c≠ (n/3) . ,is implies that
z(G)≤ (2/27)(n3 − 3n2 + 27n − 27) and the equality

holds iff G � G1(((n − 3)/3), ((n − 3)/3), (n/3)) �

G1(((n − 3)/3), (n/3), ((n − 3)/3)) � G1(((n − 6)/3), t

(n/3)n, q(n/3)).
Case 2: suppose that n ≡ 1(mod3). We have
a � ((n − 4)/3), b � ((n − 1)/3), and c � ((n − 1)/3).
So z(G1(((n − 4)/3), ((n − 1)/3), ((n − 1)/3))) �

(2/27)(n3 − 3n2 + 30n − 28). To simplify the calcula-
tion, we know that z(G1(a, b, c))< (2/27)(n3 − 3n2 +

30n − 28) when a≠ ((n − 4)/3), b≠ ((n − 1)/3), and
c≠ ((n − 1)/3). ,is means that z(G)≤ (2/27)(n3−

3n2 + 30n − 28) and the equality holds iff
G � G1(((n − 4)/3), t((n − 1)/3)n, q((n − 1)/3)).
Case 3: assume that n ≡ 2(mod3). ,en a �

((n − 5)/3), b � ((n − 2)/3), and c � ((n + 1)/3); or
a � ((n − 5)/3), b � ((n + 1)/3), and c � ((n − 2)/3).
,us, z(G1(((n − 5)/3), ((n − 2)/3), ((n + 1)/3))) �

z(G1(((n − 5)/3), ((n + 1)/3), ((n − 2) /3))) � (2/27)

(n3 − 3n2 + 27n − 23). It is easy to check that
z(G1(a, b, c))< (2/27)(n3 − 3n2 + 27n − 23) when
a≠ ((n − 5)/3), b≠ ((n − 2)/3), and c≠ ((n + 1)/3); or
a≠ ((n − 5)/3), b≠ ((n + 1)/3), and c≠ ((n − 2)/3).
,is indicates that z(G)≤ (2/27)(n3 − 3n2 + 27n − 23)

and the equality holds if and only if
G � G1(((n − 5)/3), ((n − 2)/3), ((n + 1)/3)) � G1
(((n − 5)/3), t((n + 1)/3)n, q ((n − 2)/3)). □

Lemma 4. Let G ∈ G2(a, b) be a graph with n vertices. )en

z(G)≤

n
2

− 4n + 8, where n≥ 8 is even, and the equality holds iff G � G2
n − 6
2

,
n − 2
2

 ;

n
2

− 4n + 7,

where n≥ 9 is odd, and the equality holds iff G � G2
n − 7
2

,
n − 1
2

 

orG � G2
n − 5
2

,
n − 3
2

 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and
2, we have z(G2(a, b)) � 4ab + 8b + 4. By the method of
Lagrange multipliers, we make an auxiliary function
L(a, b) � λ(a + b + 4 − n) + 4ab + 8b + 4, where
a + b + 4 � n, a≥ 1, and b≥ 2. Taking the partial deriva-
tives of a, b, and λ in L(a, b, λ), we get the following
equations:

La � λ + 4b � 0,

Lb � λ + 4a + 8 � 0,

Lλ � a + b + 4 − n � 0,

a≥ 1 and b≥ 2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

Solving the equations as above, we obtain that a � ((n −

6)/2) and b � ((n − 2)/2). Because (((n − 6)/2), t

((n − 2)/2)) is a unique stable point, (((n − 6)/2), t((n −

2)/2)) must be the unique extreme point. Since a and b are
integers, in the following we consider two cases:

Case 1: suppose that n is even.,en a � ((n − 6)/2) and
b � ((n − 2)/2). ,us, z(G2(((n − 6)/2), ((n − 2)/2))) �

4ab +8b +4� n2 − 4n +8. To simplify calculation, we
know that z(G2(a,b))<n2 − 4n +8 when a≠((n − 6)/2)

and b≠((n − 2)/2). ,is implies that z(G)≤n2 − 4n +8
and the equality holds iff G � G2(((n − 6)/2), t

((n − 2)/2)).
Case 2: assume that n is odd. We obtain a � ((n − 7)/2)

and b � ((n − 1)/2), or a � ((n − 5)/2) and
b � ((n − 3)/2). So, z(G2(((n − 7)/2), ((n − 1)/2))) �

z(G2(((n − 5)/2), ((n − 3)/2))) � n2 − 4n + 7. It is easy
to check that z(G2(a, b))< n2 − 4n + 7 when a≠ ((n −

7)/2) and b≠ ((n − 1)/2), or a≠ ((n − 5)/2) and
b≠ ((n − 3)/2). ,is means that z(G)≤ n2 − 4n + 7 and
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the equality holds iff G � G2(((n − 7)/2), ((n − 1)/2))

� G2(((n − 5)/2), t((n − 3)/2)). □
Lemma 5. Let G ∈ G3(a, b) be a graph with n vertices. )en

z(G)≤

n
2

− 4n + 8,

where n≥ 8 is even, and the equality holds iff

G � G3
n − 4
2

,
n − 4
2

  � G3
n − 2
2

,
n − 6
2

 ;

n
2

− 4n + 9, where n≥ 7 is odd, and the equality holds iff G � G3
n − 3
2

,
n − 5
2

 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
we get that z(G3(a, b)) � 4ab + 6a + 2b + 8. According to
the method of Lagrange multipliers, we make an auxiliary
function L(a, b) � λ(a + b + 4 − n) + 4ab + 6a + 2b + 8,
where a + b + 4 � n, a≥ 1, and b≥ 1. Taking the partial
derivatives of a, b, and λ in L(a, b, λ), we obtain the following
equations:

La � λ + 4b + 6 � 0,

Lb � λ + 4a + 2 � 0,

Lλ � a + b + 4 − n � 0,

a≥ 1 and b≥ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

Solving the equations as above, we obtain that a � ((n −

3)/2) and b � ((n − 5)/2). Because (((n − 3)/2), t((n−

5)/2)) is a unique stable point, (((n − 3)/2), t((n − 5)/2))

must be the unique extreme point. Since a and b are integers,
we only consider two cases.

Case 1: assume that n is even. We obtain a � ((n −

4)/2) and b � ((n − 4)/2), or a � ((n − 2)/2) and
b � ((n − 6)/2). ,us, z(G3(((n − 4)/2), ((n − 4)

/2))) � z(G3(((n − 2)/2), ((n − 6)/2))) � n2 − 4n + 8.
It is easy to check that z(G3(a, b))< n2 − 4n + 8 when
a≠ ((n − 4)/2) and b≠ ((n − 4)/2), or a≠ ((n − 2)/2)

and b≠ ((n − 6)/2). ,is implies that z(G)≤ n2 − 4n +

8 and the equality holds if and only if G � G3(((n −

4)/2), ((n − 4)/2)) � G3(((n − 2)/2), t((n − 6)/2)).
Case 2: consider that n is odd. We have a � ((n − 3)/2)

and b � ((n − 5)/2). So, z(G3(((n − 3)/2),

((n − 5)/2))) � n2 − 4n + 9. It is easy to verify that
z(G3(a, b))< n2 − 4n + 9 when a≠ ((n − 3)/2) and
b≠ ((n − 5)/2). ,is means that z(G)≤ n2 − 4n + 9 and
the equality holds if and only if G � G3
(((n − 3)/2), t((n − 5)/2)). □

Lemma 6. Let G ∈ G4(a, b) be a graph with n vertices. )en

z(G)≤

3
2

n
2

− 8n + 16, where n≥ 8 is even, and the equality holds iff G � G4
n − 6
2

,
n − 4
2

 ;

3
2

n
2

− 8n +
29
2

,

where n≥ 7 is odd, and the equality holds

iff G � G4
n − 5
2

,
n − 5
2

  � G4
n − 7
2

,
n − 3
2

 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
we get z(G4(a, b)) � 6ab + 4a + 10b + 12. According to the
method of Lagrange multipliers, we make an auxiliary function
L(a, b) � λ(a + b + 5 − n) + 6ab + 4a + 10b + 12, where
a + b + 5 � n, a≥ 1 , and b≥ 1. Taking the partial derivatives of
a, b, and λ in L(a, b, λ), we can obtain the following equations:

La � λ + 6b + 4 � 0,

Lb � λ + 6a + 10 � 0,

Lλ � a + b + 5 − n � 0,

a≥ 1 and b≥ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

Solving the equations as above, we obtain that a � ((n −

6)/2) and b � ((n − 4)/2). Because (((n − 6)/2), t

((n − 4)/2)) is a unique stable point, (((n − 6)/2), t((n −

4)/2)) must be the unique extreme point. Since a and b are
integers, we only consider two cases:

Case 1: consider that n is even. We have a � ((n − 6)/2)

and b � ((n − 4)/2). ,us z(G4(((n − 6)/2),

((n − 4)/2))) � (3/2)n2 − 8n + 16. To simplify calcula-
tion, we get z(G4(a, b))< (3/2)n2 − 8n + 16 when
a≠ ((n − 6)/2) and b≠ ((n − 4)/2). ,is implies that
z(G)≤ (3/2)n2 − 8n + 16 and the equality holds iff
G � G4(((n − 6)/2), t((n − 4)/2)).
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Case 2: assume that n is odd. ,en a � ((n − 5)/2) and
b � ((n − 5)/2), or a � ((n − 7)/2) and b � ((n − 3)/2).
So z(G4(((n − 5)/2), ((n − 5)/2))) � z(G4(((n − 7)/2),

((n − 3)/2))) � (3/2)n2 − 8n + (29/2). It is easy to
check that z(G4(a, b))< (3/2)n2 − 8n + (29/2) when
a≠ ((n − 5)/2) and b≠ ((n − 5)/2), or a≠ ((n − 7)/2)

and b≠ ((n − 3)/2). ,is implies that z(G)≤ (3/2)n2 −

8n + (29/2) and the equality holds if and only if G �

G4(((n − 5)/2), ((n − 5)/2)) � G4(((n − 7)/2), t((n−

3)/2)). □

Lemma 7. Let G ∈ G5(a, b) be a graph with n vertices. )en

z(G)≤

n
2

− 4n + 8, where n≥ 6 is even, and the equality holds iff G � G5
n − 4
2

,
n − 4
2

 ;

n
2

− 4n + 7,

where n≥ 7 is odd, and the equality holds

iff G � G5
n − 3
2

,
n − 5
2

  � G5
n − 5
2

,
n − 3
2

 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
we get z(G5(a, b)) � 4ab + 4a + 4b + 8. By the method of
Lagrange multipliers, we make an auxiliary function
L(a, b) � λ(a + b + 4 − n) + 4ab + 4a + 4b + 8, where
a + b + 4 � n, a≥ 1, and b≥ 1. Taking the partial derivatives
of a, b, and λ in L(a, b, λ), we can obtain the following
equations:

La � λ + 4b + 4 � 0,

Lb � λ + 4a + 4 � 0,

Lλ � a + b + 4 − n � 0,

a≥ 1 and b≥ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

Solving the equations as above, we obtain that
a � ((n − 4)/2) and b � ((n − 4)/2). Because (((n − 4)/2), t

((n − 4)/2)) is a unique stable point, (((n − 4)/2), t

((n − 4)/2)) must be the unique extreme point. Since a

and b are integers, in the following we only consider two
cases.

Case 1: consider that n is even. We have a � ((n − 4)/2)

and b � ((n − 4)/2). ,us z(G5(((n − 4)/2),

((n − 4)/2))) � n2 − 4n + 8. To simplify calculation, we
get z(G5(a, b))< n2 − 4n + 8 when a≠ ((n − 4)/2) and
b≠ ((n − 4)/2). ,is implies that z(G)≤ n2 − 4n + 8
and the equality holds iff G � G5(((n − 4)/2), t

((n − 4)/2)).
Case 2: assume that n is odd. ,en a � ((n − 3)/2) and
b � ((n − 5)/2), or a � ((n − 5)/2) and b � ((n − 3)/2).
So z(G5(((n − 3)/2), ((n − 5)/2))) � z(G5(((n − 5)/2),

((n − 3)/2))) � n2 − 4n + 7. It is easy to check that
z(G5(a, b))< n2 − 4n + 7 when a≠ ((n − 3)/2) and
b≠ ((n − 5)/2), or a≠ ((n − 5)/2) and b≠ ((n − 3)/2).
,is implies that z(G)≤ n2 − 4n + 7 and the equality
holds if and only if G � G5(((n − 3)/2), ((n − 5)/2)) �

G5(((n − 5)/2), t((n − 3)/2)). □

Lemma 8. Let G ∈ G6(a, b, c) be a graph with n vertices.
)en
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z(G)≤

n
3

+ 3n
2

+ 18n + 27
27

,

where n ≡ 0(mod3), n≥ 9 and the equality holds

if and only if G � G6
n − 3
3

,
n

3
,
n

3
  � G6

n

3
,
n − 3
3

,
n

3
 ;

n
3

+ 3n
2

+ 18n + 32
27

,

where n ≡ 1(mod3), n≥ 7 and the equality holds

if and only if G � G6
n − 1
3

,
n − 1
3

,
n − 1
3

 ;

n
3

+ 3n
2

+ 21n + 19
27

,

where n ≡ 2(mod3), n≥ 8 and the equality holds

if and only if G � G6
n − 2
3

,
n − 2
3

,
n + 1
3

 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
direct computing yields z(G6(a, b, c)) � abc +

bc + ac + a + b + c + 2. By the method of Lagrange multi-
pliers, we make auxiliary function L(a, b, c) �

λ(a + b + c + 1 − n) + abc + bc + ac + a + b + c + 2, where
a + b + c + 1 � n, a, b, c≥ 1, and at most one of them is 1.
Taking the partial derivatives of a, b, c, and λ in L(a, b, c, λ),
we can obtain the following equations:

La � λ + bc + c + 1 � 0,

Lb � λ + ac + c + 1 � 0,

Lc � λ + ab + b + a + 1 � 0,

Lλ � a + b + c + 1 − n � 0,

a≥ 1, b≥ 1 and c≥ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Solving the equations as above, we get
c � a + 1 − (1/(a + 1)). Since c � a + 1 − (1/(a + 1)) is an
integer, we know that c � ⌈a + 1 − (1/(a + 1))⌉ or
c � ⌊a + 1 − (1/(a + 1))⌋. By c � ⌈a + 1 − (1/(a + 1))⌉ and
a + b + c + 1 � n, we can obtain that a � ((n − 2)/3),
b � ((n − 2)/3), and c � ((n + 1)/3). Similarly, by c � ⌊a +

1 − (1/(a + 1))⌋ and a + b + c + 1 � n, we also can obtain
that a � ((n − 1)/3), b � ((n − 1)/3), and c � ((n − 1)/3).
,us, we discuss two cases as follows:

Case 1: a � ((n − 2)/3), b � ((n − 2)/3), and
c � ((n + 1)/3).
Because a � ((n − 2)/3), b � ((n − 2)/3), and c � ((n +

1)/3) is a unique root of (14), a � ((n − 2)/3),
b � ((n − 2)/3), and c � ((n + 1)/3) must be the unique
extreme point. Since a, b, and c are integers, we con-
sider three subcases:

Subcase 1: assume that n ≡ 0(mod3). ,en
a � ((n − 3)/3), b � (n/3), and c � (n/3), or
a � (n/3), b � ((n − 3)/3), and c � (n/3). ,us
z(G6(((n − 3)/3), (n/3), (n/3))) � z(G6((n/3), ((n −

3)/3), (n/3))) � (n3 + 3n2 + 18n + 27)/27. It is easy to
verify that z(G6(a, b, c))< ((n3 + 3n2 + 18n + 27)/27)

when a≠ ((n − 3)/3), b≠ ((n − 3)/3), and
c≠ ((n + 3)/3), or a≠ ((n − 3)/3), b≠ ((n − 3)/3), and
c≠ ((n + 3)/3). ,is implies that z(G)≤ ((n3 + 3n2 +

18n + 27)/27) and the equality holds if and only if G �

G6(((n − 3)/3), (n/3),(n/3)) � G6((n/3),((n − 3) /3), t

(n/3)).
Subcase 2: suppose that n ≡ 1(mod3). ,en
a � ((n − 1)/3), b � ((n − 1)/3), and c � ((n − 1)/3).
,us z(G6(((n − 1)/3), ((n − 1)/3), ((n − 1)/3))) �

(n3 + 3n2 + 18n + 32)/27. It is easy to check that
z(G6(a, b, c))< (n3 + 3n2 + 18n + 32)/27 when a≠
((n − 1)/3), b≠ ((n − 1)/3), and c≠ ((n − 1)/3). ,is
implies that z(G)≤ ((n3 + 3n2 + 18n + 32)/27) and
the equality holds iff G � G6(((n − 1) /3), t

((n − 1)/3)n, q((n − 1)/3)).
Subcase 3: consider that n ≡ 2(mod3). ,en
a � ((n − 2)/3), b � ((n − 2)/3), and c � ((n + 1)/3).
,us z(G6(((n − 2)/3), ((n − 2)/3), ((n + 1)/3))) �

((n3 + 3n2 + 21n + 19)/27). To simplify calculation,
we know that z(G6(a, b, c))< ((n3+ 3n2 + 21n+

19)/27) when a≠ ((n − 2)/3), b≠ ((n − 2)/3), and
c≠ ((n + 1)/3). ,is implies that z(G)≤ ((n3 + 3n2 +

21n + 19)/27) and the equality holds iff G � G6(((n −

2) /3), t((n − 2)/3)n, q((n + 1)/3)).

Case 2: a � ((n − 1)/3), b � ((n − 1)/3), and
c � ((n − 1)/3).
Similar to the proof of Case 1, because a � ((n − 1)/3),
b � ((n − 1)/3), and c � ((n − 1)/3) is a unique root of
(14), a � ((n − 1)/3), b � ((n − 1)/3), and
c � ((n − 1)/3) must be the unique extreme point.
Since a, b, and c are integers, we also consider the three
following subcases:

Subcase 1: set n ≡ 0(mod3). ,en a � ((n − 3)/3),
b � (n/3), and c � (n/3), or a � (n/3), b � ((n − 3)/3),
and c � (n/3). ,us z(G6(((n − 3) /3), (n/3),

(n/3))) � z(G6((n/3), ((n − 3)/3), (n/3))) � ((n3+

3n2 + 18n + 27)/27). It is easy to verify that
z(G6(a, b, c))< ((n3 + 3n2 + 18n + 27)/27) when
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a≠ ((n − 3)/3), b≠ ((n − 3)/3), and c≠ ((n + 3)/3), or
a≠ ((n − 3)/3), b≠ ((n − 3)/3), and c≠ ((n + 3)/3).
,is implies that z(G)≤ ((n3 + 3n2 + 18n + 27)/27)

and the equality holds if and only if G � G6(((n −

3)/3), (n/3), (n/3)) � G6((n/3), ((n − 3) /3), t(n/3)).
Subcase 2: suppose that n ≡ 1(mod3). ,en
a � ((n − 1)/3), b � ((n − 1)/3), and c � ((n − 1)/3).
,us z(G6(((n − 1)/3), ((n − 1)/3), ((n − 1)/3))) �

((n3 + 3n2 + 18n + 32)/27). It is easy to check that
z(G6(a, b, c))< ((n3+ 3n2 + 18n + 32)/27) when a≠
((n − 1)/3), b≠ ((n − 1)/3), and c≠ ((n − 1)/3). ,is
implies that z(G)≤ ((n3 + 3n2 + 18n + 32)/27) and
the equality holds iff G � G6(((n − 1)/3), t

((n − 1)/3)n, q ((n − 1)/3)).

Subcase 3: consider that n ≡ 2(mod3). ,en
a � ((n − 2)/3), b � ((n − 2)/3), and c � ((n + 1)/3).
,us z(G6(((n − 2)/3), ((n − 2)/3), ((n + 1)/3))) �

((n3 + 3n2 + 21n + 19)/27). To simplify calculation,
we know that z(G6(a, b, c))< ((n3+ 3n2+

21n + 19)/27) when a≠ ((n − 2)/3), b≠ ((n − 2)/3),
and c≠ ((n + 1)/3). ,is implies that z(G)≤ ((n3 +

3n2 + 21n + 19)/27) and the equality holds iff
G � G6(((n − 2)/3), t((n − 2)/3)n,q ((n +1)/3)). □

Lemma 9. Let G ∈ G7(a, b) be a graph with n vertices. )en

z(G)≤

3n
2

− 8n + 16
4

, where n≥ 6 is even, and the equality holds iff G � G7
n − 2
2

,
n − 4
2

 ;

3n
2

− 8n + 17
4

, where n≥ 7 is odd, and the equality holds iff G � G7
n − 1
2

,
n − 5
2

 .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(15)

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
direct computing yields z(G7(a, b)) � 3ab + 5a + 3. By the
method of Lagrange multipliers, we make auxiliary function
L(a, b) � λ(a + b + 3 − n) + 3ab + 5a + 3, where a + b + 3−

n, a≥ 2, and b≥ 1. Taking the partial derivatives of a, b, and λ
in L(a, b, λ), we can obtain the following equations:

La � λ + 3b + 5 � 0,

Lb � λ + 3a � 0,

Lλ � a + b + 3 − n � 0,

a≥ 2 and b≥ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

Solving the equations as above, we get a � b + (5/3).
Since a � b + (5/3) is an integer, we know that
a � ⌊b + (5/3)⌋ or a � ⌈b + (5/3)⌉. By a � ⌊b + (5/3)⌋ and
a + b + 3 � n, we can obtain that a � ((n − 2)/2) and
b � ((n − 4)/2). Similarly, by a � ⌈b + (5/3)⌉ and
a + b + 3 � n, we also can obtain that a � ((n − 1)/2) and
b � ((n − 5)/2). So, we discuss two cases as follows:

Case 1: a � ((n − 2)/2) and b � ((n − 4)/2).
Because a � ((n − 2)/2) and b � ((n − 4)/2) is a unique
root of (16), a � ((n − 2)/2) and b � ((n − 4)/2) must
be the unique extreme point. Since a and b are integers,
we consider two subcases:

Subcase 1: assume that n is even.,en a � ((n − 2)/2)

and b � ((n − 4)/2); thus z(G7(((n − 2)/2),

((n − 4)/2))) � (3n2 − 8n + 16)/4. It is easy to verify
that z(G7(a, b))< ((3n2 − 8n + 16)/4) when a≠ ((n −

2)/2) and b≠ ((n − 4)/2). ,is implies that

z(G)≤ ((3n2 − 8n + 16)/4) and the equality holds if
and only if G � G7(((n − 2)/2), t((n − 4)/2)).
Subcase 2: suppose that n is odd. We know that a �

((n − 1)/2) and b � ((n − 5)/2). ,us z(G7
(((n − 1)/2), ((n − 5)/2))) � ((3n2 − 8n + 17)/4). It is
easy to verify that z(G7(a, b))< ((3n2 − 8n + 17)/4)

when a≠ ((n − 1)/2) and b≠ ((n − 5)/2). ,is implies
that z(G)≤ ((3n2 − 8n + 17)/4) and the equality holds
iff G � G7(((n − 1)/2), t((n − 5)/2)).

Case 2: a � ((n − 1)/2) and b � ((n − 5)/2).

Similar to the proof of Case 1, because a � ((n − 1)/2)

and b � ((n − 5)/2) is a unique root of (2), a � ((n −

1)/2) and b � ((n − 5)/2) must be the unique extreme
point. Since a and b are integers, we also consider two
subcases.

Subcase 1: consider that n is even. ,en we get a �

((n − 2)/2) and b � ((n − 4)/2); thus z(G7
(((n − 2)/2), ((n − 4)/2))) � ((3n2 − 8n+ 16)/4). It is
easy to verify that z(G7(a, b))< ((3n2− 8n + 16)/4)

when a≠ ((n − 2)/2) and b≠ ((n − 4)/2). ,is implies
that z(G)≤ ((3n2 − 8n + 16)/4) and the equality holds
if and only if G � G7(((n − 2) /2), t((n − 4)/2)).
Subcase 2: assume that n is odd. We know that a �

((n − 1)/2) and b � ((n − 5)/2). ,us z(G7
(((n − 1)/2), ((n − 5)/2))) � ((3n2 − 8n + 17)/4). It is
easy to verify that z(G7(a, b))< ((3n2 − 8n + 17)/4)

when a≠ ((n − 1)/2) and b≠ ((n − 5)/2). ,is implies
that z(G)≤ ((3n2 − 8n + 17)/4) and the equality holds
iff G � G7(((n − 1)/2), t((n − 5)/2)). □
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Lemma 10. Let G ∈ G8(a, b) be a graph with n vertices. )en

z(G)≤

3n
2

− 8n + 16
4

, where n≥ 8 is even, and the equality holds iff G � G8
n − 2
2

,
n − 4
2

 ;

3n
2

− 8n + 29
4

, where n≥ 7 is odd, and the equality holds iff G � G8
n − 3
2

,
n − 3
2

 .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(17)

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
we get z(G8(a, b)) � 3ab + 3a + 2b + 5. By the method of
Lagrange multipliers, we make an auxiliary function
L(a, b) � λ(a + b + 3 − n) + 3ab + 3a + 2b + 5, where a+

b + 3 � n, a, b≥ 1, and at most one of them is 1. Taking the
partial derivatives of a, b, and λ in L(a, b, λ), we can obtain
the following equations:

La � λ + 3b + 3 � 0,

Lb � λ + 3a + 2 � 0,

Lλ � a + b + 3 − n � 0,

a≥ 1 and b≥ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(18)

Solving the equations as above, we get a � b + (1/3).
Since a � b + (1/3) is an integer, we know that
a � ⌊b + (1/3)⌋ or a � ⌈b + (1/3)⌉. By a � ⌊b + (1/3)⌋ and
a + b + 3 � n, we can obtain that a � ((n − 3)/2) and
b � ((n − 3)/2). Similarly, by a � ⌈b + (1/3)⌉ and
a + b + 3 � n, we also can obtain that a � ((n − 2)/2) and
b � ((n − 4)/2). So, we discuss two cases as follows:

Case 1: a � ((n − 3)/2) and b � ((n − 3)/2).
Because a � ((n − 3)/2) and b � ((n − 3)/2) is a unique
root of (18), a � ((n − 3)/2) and b � ((n − 3)/2) must
be the unique extreme point. Since a and b are integers,
we consider two subcases.

Subcase 1: consider that n is even. We have a � ((n −

2)/2) and b � ((n − 4)/2). ,us z(G8(((n − 2) /2),

((n − 4)/2))) � ((3n2 − 8n + 16)/4). To simplify cal-
culation, we get z(G8(a, b))< ((3n2 − 8n + 16)/4)

when a≠ ((n − 2)/2) and b≠ ((n − 4)/2). ,is implies
that z(G)≤ ((3n2 − 8n + 16)/4) and the equality holds
iff G � G8(((n − 2)/2), t((n − 4)/2)).

Subcase 2: assume that n is odd. ,en a � ((n − 3)/2)

and b � ((n − 3)/2). So z(G8(((n − 3)/2),

((n − 3)/2))) � ((3n2 − 8n + 29)/4). It is easy to check
that z(G8(a, b))< ((3n2 − 8n + 29)/4) when a≠ ((n −

3)/2) and b≠ ((n − 3)/2). ,is implies that
z(G)≤ ((3n2 − 8n + 29)/4) and the equality holds if
and only if G � G8(((n − 3)/2), t((n − 3)/2)).

Case 2: a � ((n − 2)/2) and b � ((n − 4)/2).
Similar to the proof of Case 1, because a � ((n − 2)/2)

and b � ((n − 4)/2) is a unique root of (18), a � ((n −

2)/2) and b � ((n − 4)/2) must be the unique extreme
point. Since a and b are integers, we consider two
subcases.

Subcase 1: consider that n is even. We have a � ((n −

2)/2) and b � ((n − 4)/2). ,us z(G8(((n − 2)/2),

((n − 4)/2))) � ((3n2 − 8n + 16)/4). To simplify cal-
culation, we get z(G8(a, b))< ((3n2 − 8n + 16)/4)

when a≠ ((n − 2)/2) and b≠ ((n − 4)/2). ,is implies
that z(G)≤ ((3n2 − 8n + 16)/4) and the equality holds
iff G � G8(((n − 2)/2), t((n − 4)/2)).
Subcase 2: assume that n is odd. ,en a � ((n − 3)/2)

and b � ((n − 3)/2). So z(G8(((n − 3)/2),

((n − 3)/2))) � ((3n2 − 8n + 29)/4). It is easy to check
that z(G8(a, b))< ((3n2 − 8n + 29)/4) when a≠ ((n −

3)/2) and b≠ ((n − 3)/2). ,is implies that
z(G)≤ ((3n2 − 8n + 29)/4) and the equality holds if
and only if G � G8(((n − 3)/2), t((n − 3)/2)). □

Lemma 11. Let G ∈ G9(a, b) be a graph with n vertices. )en

z(G)≤

n
2

− 4n + 8, where n≥ 8 is even, and the equality holds iff G � G2
n − 6
2

,
n − 2
2

 ;

n
2

− 4n + 7, where n≥ 9 is odd, and the equality holds iff G � G2
n − 7
2

,
n − 1
2

 

Or G � G2
n − 5
2

,
n − 3
2

 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
we get z(G9(a, b)) � 4ab + 2a + 2b + 5. By the method of

Lagrange multipliers, we make an auxiliary function
L(a, b) � λ(a + b + 3 − n) + 4ab + 2a + 2b + 5, where a + b+
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3 � n, a, b≥ 1, and at most one of them is 1. Taking the
partial derivatives of a, b, and λ in L(a, b, λ), we can obtain
the following equations:

La � λ + 4b + 2 � 0,

Lb � λ + 4a + 2 � 0,

Lλ � a + b + 3 − n � 0,

a≥ 1 and b≥ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

Solving the equations as above, we obtain that a � ((n −

3)/2) and b � ((n − 3)/2). Because (((n − 3)/2), t

((n − 3)/2)) is a unique stable point, (((n − 3)/2), t((n −

3)/2)) must be the unique extreme point. Since a and b are
integers, we consider the two following cases.

Case 1: consider that n is even. We have a � ((n − 2)/2)

and b � ((n − 4)/2), or a � ((n − 4)/2) and b �

((n − 2)/2). ,us z(G9(((n − 2)/2), ((n − 4)/2))) �

z(G9(((n − 4)/2), ((n − 2)/2))) � n2 − 4n + 7. To sim-
plify calculation, we get z(G9(a, b))< n2 − 4n + 7 when
a≠ ((n − 2)/2) and b≠ ((n − 4)/2), or a≠ ((n − 4)/2)

and b≠ ((n − 2)/2). ,is implies that z(G)≤ n2 − 4n +

7 and the equality holds iff G � G9(((n − 2)/2), ((n −

4)/2)) � G9(((n − 4)/2), t ((n − 2)/2)).
Case 2: assume that n is odd. We know that a � ((n −

3)/2) and b � ((n − 3)/2). ,us
z(G9(((n − 3)/2), ((n − 3)/2))) � n2 − 4n + 8. It is easy
to check that z(G9(a, b))< n2 − 4n + 8 when a≠ ((n −

3)/2) and b≠ ((n − 3)/2). ,is implies that z(G)≤ n2 −

4n + 8 and the equality holds if and only if
G � G9(((n − 3)/2), t((n − 3)/2)). □

Lemma 12. Let G ∈ G10(a, b, c) be a graph with n vertices.
)en

z(G)≤

2n
3

− 6n
2

+ 63n − 54
27

,

where n ≡ 0(mod3), n≥ 9 and the equality holds

if and only if G � G10
n − 3
3

,
n

3
,
n − 3
3

 ;

2n
3

− 6n
2

+ 60n − 56
27

,

where n ≡ 1(mod3), n≥ 10 and the equality holds

if and only if G � G10
n − 1
3

,
n − 1
3

,
n − 4
3

  � G10
n − 4
3

,
n − 1
3

,
n − 1
3

 ;

2n
3

− 6n
2

+ 63n − 64
27

,

where n ≡ 2(mod3), n≥ 8 and the equality holds

if and only if G � G10
n − 2
3

,
n − 2
3

,
n − 2
3

 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
direct computing yields z(G10(a, b, c)) � 2abc+

bc + ab + 2a + 3b + 2c + 2. By the method of Lagrange
multipliers, we make auxiliary function L(a, b, c) � λ(a +

b + c + 2 − n) + 2abc + bc + ab+ 2a + 3b + 2c + 2, where
a + b + c + 2 � n, a, b, c≥ 1, and at most one of them is 1.
Taking the partial derivatives of a, b, c, and λ in L(a, b, c, λ),
we can obtain the following equations:

La � λ + 2bc + b + 2 � 0,

Lb � λ + 2ac + c + a + 3 � 0,

Lc � λ + 2ab + b + 2 � 0,

Lλ � a + b + c + 2 − n � 0,

a≥ 1, b≥ 1 and c≥ 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(22)

Solving the equations as above, we get
b � a + 1 − (a/(a + 1)). Since b � a + 1 − (a/(a + 1)) is an
integer, we know that b � ⌈a + 1 − (a/(a + 1))⌉ or
b � ⌊a + 1 − (a/(a + 1))⌋. By b � ⌈a + 1 − (a/(a + 1))⌉ and
a + b + c + 2 � n, we can obtain that a � ((n − 3)/3),
b � (n/3), and c � ((n − 3)/3). Similarly, by
b � ⌊a + 1 − (a/(a + 1))⌋ and a + b + c + 2 � n, we also can
obtain that a � ((n − 2)/3), b � ((n − 2)/3), and
c � ((n − 2)/3). ,us, we discuss two cases as follows:

Case 1: a � ((n − 3)/3), b � (n/3), and c � ((n − 3)/3).
Because a � ((n − 3)/3), b � (n/3), and c � ((n − 3)/3)

is a unique root of (22), a � ((n − 3)/3), b � (n/3), and
c � ((n − 3)/3) must be the unique extreme point.
Since a, b, and c are integers, we consider three subcases
as follows:

Subcase 1: assume that n ≡ 0(mod3). ,en
a � ((n − 3)/3), b � (n/3), and c � ((n − 3)/3). ,us
z(G10(((n − 3)/3), (n/3),

((n − 3)/3))) � ((2n3 − 6n2 + 63n − 54)/27). It is easy
to verify that z(G10(a, b, c))< ((2n3 − 6n2+

63n − 54)/27) when a≠ ((n − 3)/3), b≠ (n/3), and
c≠ ((n − 3)/3).,is implies that z(G)≤ ((2n3 − 6n2 +

63n − 54)/27) and the equality holds if and only if
G � G10(((n − 3)/3), t(n/3)n, q((n − 3)/3)).
Subcase 2: suppose that n ≡ 1(mod3). ,en
a � ((n − 1)/3), b � ((n − 1)/3), and c � ((n − 4)/3),
or a � ((n − 4)/3), b � ((n − 1)/3), and
c � ((n − 1)/3). ,us z(G10(((n − 1)/3), ((n − 1)/3),

((n − 4)/3))) � z(G10(((n − 4)/3), ((n − 1)/3), ((n −

1)/3))) � ((2n3 − 6n2 + 60n − 56)/27). It is easy to
check that z(G10(a, b, c))< ((2n3 − 6n2+ 60n − 56)

/27) when a≠ ((n − 1)/3), b≠ ((n − 1)/3), and
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c≠ ((n − 4)/3), or a≠ ((n − 4)/3), b≠ ((n − 1)/3), and
c≠ ((n − 1)/3).,is implies that z(G)≤ ((2n3 − 6n2 +

60n − 56)/27) and the equality holds iff G � G10(((n −

1)/3), ((n − 1)/3), ((n − 4)/3)) � G10(((n − 4)/3), t

((n − 1)/3)n, q ((n − 1)/3)).
Subcase 3: consider that n ≡ 2(mod3). ,en
a � ((n − 2)/3), b � ((n − 2)/3), and c � ((n − 2)/3).
,us z(G10(((n − 2)/3), ((n − 2)/3), ((n − 2)/3))) �

((2n3 − 6n2 + 63n − 64)/27). To simplify calculation,
we know that z(G10(a, b, c))< ((2n3 − 6n2 + 63n −

64)/27) when a≠ ((n − 2)/3), b≠ ((n − 2)/3), and
c≠ ((n − 2)/3).,is implies that z(G)≤ ((2n3 − 6n2 +

63n − 64)/27) and the equality holds iff
G � G10(((n − 2)/3), t((n − 2)/3)n, q ((n − 2)/3)).

Case 2: a � ((n − 2)/3), b � ((n − 2)/3), and
c � ((n − 2)/3).
Similar to the proof of Case 1, because a � ((n − 2)/3),
b � ((n − 2)/3), and c � ((n − 2)/3) is a unique root of
(22), a � ((n − 2)/3), b � ((n − 2)/3), and
c � ((n − 2)/3) must be the unique extreme point.
Since a, b, and c are integers, after taking the integer, we
also consider three subcases as follows:

Subcase 1: assume that n ≡ 0(mod3). ,en
a � ((n − 3)/3), b � (n/3), and c � ((n − 3)/3). ,us
z(G10(((n − 3)/3), (n/3), ((n − 3)/3))) � (2n3 − 6n2+

63n − 54)/27. It is easy to verify that
z(G10(a, b, c))< ((2n3 − 6n2 + 63n − 54)/27) when
a≠ ((n − 3)/3), b≠ (n/3), and c≠ ((n − 3)/3). ,is
implies that z(G)≤ ((2n3 − 6n2 + 63n − 54)/27) and

the equality holds if and only if
G � G10(((n − 3)/3), t(n/3)n, q((n − 3)/3)).
Subcase 2: suppose that n ≡ 1(mod3). ,en
a � ((n − 1)/3), b � ((n − 1)/3), and c � ((n − 4)/3),
or a � ((n − 4)/3), b � ((n − 1)/3), and
c � ((n − 1)/3). ,us z(G10(((n − 1)/3), ((n − 1)/3),

((n − 4)/3))) � z(G10(((n − 4)/3), ((n − 1) /3), ((n −

1)/3))) � (2n3 − 6n2 + 60n − 56)/27. It is easy to check
that z(G10(a, b, c))< ((2n3 − 6n2 + 60n − 56)/27)

when a≠ ((n − 1)/3), b≠ ((n − 1)/3), and
c≠ ((n − 4)/3), or a≠ ((n − 4)/3), b≠ ((n − 1)/3), and
c≠ ((n − 1)/3).,is implies that z(G)≤ ((2n3 − 6n2 +

60n − 56)/27) and the equality holds iff G � G10(((n −

1)/3), ((n − 1)/3), ((n − 4)/3)) � G10(((n − 4)/3), t

((n − 1)/3)n, q((n − 1)/3)).
Subcase 3: consider that n ≡ 2(mod3). ,en
a � ((n − 2)/3), b � ((n − 2)/3), and c � ((n − 2)/3).
,us z(G10(((n − 2)/3), ((n − 2)/3), ((n − 2)/3))) �

(2n3 − 6n2 + 63n − 64)/27. To simplify calculation,
we know that z(G10(a, b, c))< ((2n3 − 6n2+

63n − 64)/27) when a≠ ((n − 2)/3), b≠ ((n − 2)/3),
and c≠ ((n − 2)/3). ,is implies that z(G)≤ ((2n3 −

6n2 + 63n − 64)/27) and the equality holds iff
G � G10(((n − 2)/3), t((n − 2)/3)n, q

((n − 2)/3)). □

Lemma 13. Let G ∈ G11(a, b) be a graph with n vertices.
)en

z(G)≤

3n
2

− 4n

4
, where n≥ 6 is even, and the equality holds iff G � G11

n − 4
2

,
n − 4
2

 ;

3n
2

− 4n − 3
4

,

where n≥ 8 is odd, and the equality holds

iff G � G11
n − 5
2

,
n − 3
2

  � G11
n − 3
2

,
n − 5
2

 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
we get z(G11(a, b)) � 3ab + 5a + 5b + 8. By the method of
Lagrange multipliers, we make an auxiliary function
L(a, b) � λ(a + b + 4 − n) + 3ab + 5a + 5b + 8, where a + b+

4 � n, a≥ 1, and b≥ 1. Taking the partial derivatives of a, b,
and λ in L(a, b, λ), we can obtain the following equations:

La � λ + 3b + 5 � 0,

Lb � λ + 3a + 5 � 0,

Lλ � a + b + 4 − n � 0,

a≥ 1 and b≥ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

Solving the equations as above, we obtain that a � ((n −

4)/2) and b � ((n − 4)/2). Because (((n − 4)/2), t

((n − 4)/2)) is a unique stable point, (((n − 4)/2), t((n −

4)/2)) must be the unique extreme point. Since a and b are
integers, in the following we consider two cases.

Case 1: consider that n is even. We have a � ((n − 4)/2)

and b � ((n − 4)/2). ,us z(G11(((n − 4)/2),

((n − 4)/2))) � (3n2 − 4n)/4. To simplify calculation,
we get z(G11(a, b))< ((3n2 − 4n)/4) when
a≠ ((n − 4)/2) and b≠ ((n − 4)/2). ,is implies that
z(G)≤ ((3n2 − 4n)/4) and the equality holds iff
G � G11(((n − 4)/2), t((n − 4)/2)).
Case 2: assume that n is odd. We know that a � ((n −

5)/2) and b � ((n − 3)/2), or a � ((n − 3)/2) and
b � ((n − 5)/2). ,us z(G11(((n − 5)/2), ((n − 3)/2))) �

z(G11(((n − 3)/2),((n − 5)/2))) � (3n2 − 4n − 3)/4. It is
easy to check that z(G11(a,b))<((3n2 − 4n − 3)/4)

when a≠((n − 5)/2) and b≠((n − 3)/2), or
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a≠((n − 3)/2) and b≠((n − 5)/2). ,is implies that
z(G)≤((3n2 − 4n − 3)/4) and the equality holds if and
only if G � G11(((n − 5)/2),((n − 3)/2)) � G11
(((n − 3)/2), t ((n − 5)/2)). □

Lemma 14. Let G ∈ G12(a, b) be a graph with n vertices.
)en

z(G)≤

5n
2

− 24n + 48
4

, where n≥ 6 is even, and the equality holds iff G � G12
n − 4
2

,
n − 4
2

 ;

5n
2

− 24n + 47
4

, where n≥ 7 is odd, and the equality holds iff G � G12
n − 3
2

,
n − 5
2

 .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(25)

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
direct computing yields z(G12(a, b)) � 5ab + 5a + 3b + 8.
Using the method of Lagrange multipliers, we make aux-
iliary function L(a, b) � λ(a + b + 4 − n)+ 5ab + 5a+ 3b + 8,
where a + b + 4 − n, a≥ 1, and b≥ 1. Taking the partial de-
rivatives of a, b, and λ in L(a, b, λ), we can obtain the fol-
lowing equations:

La � λ + 5b + 5 � 0,

Lb � λ + 5a + 3 � 0,

Lλ � a + b + 4 − n � 0,

a≥ 1 and b≥ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(26)

Solving the equations as above, we get a � b + (2/5).
Since a � b + (2/5) is an integer, we know that
a � ⌊b + (2/5)⌋ or a � ⌈b + (2/5)⌉. By a � ⌊b + (2/5)⌋ and
a + b + 4 � n, we can obtain that a � ((n − 4)/2) and
b � ((n − 4)/2). Similarly, by a � ⌈b + (2/5)⌉ and
a + b + 4 � n, we also can obtain that a � ((n − 3)/2) and
b � ((n − 5)/2). So, we discuss two cases as follows:

Case 1: a � ((n − 4)/2) and b � ((n − 4)/2).
Because a � ((n − 4)/2) and b � ((n − 4)/2) is a unique
root of (26), a � ((n − 4)/2) and b � ((n − 4)/2) must
be the unique extreme point. Since a and b are integers,
we consider two subcases.

Subcase 1: assume that n is even.,en a � ((n − 4)/2)

and b � ((n − 4)/2). ,us z(G12(((n − 4)/2), ((n −

4)/2))) � (5n2 − 24n + 48)/4. It is easy to verify that
z(G12(a, b))< ((5n2 − 24n + 48)/4) when a≠ ((n −

4)/2) and b≠ ((n − 4)/2). ,is implies that
z(G)≤ ((5n2 − 24n + 48)/4) and the equality holds if
and only if G � G12(((n − 4)/2), t((n − 4)/2)).

Subcase 2: suppose that n is odd. We know that a �

((n − 3)/2) and b � ((n − 5)/2). ,us z(G12 (((n −

3)/2), ((n − 5)/2))) � ((5n2 − 24n + 47)/4). It is easy
to check that z(G12(a, b))< ((5n2 − 24n + 47)/4)

when a≠ ((n − 3)/2) and b≠ ((n − 5)/2). ,is implies
that z(G)≤ ((5n2 − 24n + 47)/4) and the equality
holds iff G � G12(((n − 3)/2), t((n − 5)/2)).

Case 2: a � ((n − 3)/2) and b � ((n − 5)/2).
Similar to the proof of Case 1, because a � ((n − 4)/2)

and b � ((n − 4)/2) is a unique root of (26), a � ((n −

4)/2) and b � ((n − 4)/2) must be the unique extreme
point. Since a and b are integers, we consider two
subcases.

Subcase 1: assume that n is even. ,en a � ((n − 4)/2)

and b � ((n − 4)/2). ,us z(G12(((n − 4)/2),

((n − 4)/2))) � (5n2 − 24n + 48)/4. It is easy to verify
that z(G12(a, b))< ((5n2 − 24n + 48)/4) when
a≠ ((n − 4)/2) and b≠ ((n − 4)/2). ,is implies that
z(G)≤ ((5n2 − 24n + 48)/4) and the equality holds if
and only if G � G12(((n − 4)/2), t((n − 4)/2)).
Subcase 2: suppose that n is odd. We know that a �

((n − 3)/2) and b � ((n − 5)/2). ,us z(G12 (((n −

3)/2), ((n − 5)/2))) � (5n2 − 24n + 47)/4. It is easy to
check that z(G12(a, b))< ((5n2 − 24n + 47)/4) when
a≠ ((n − 3)/2) and b≠ ((n − 5)/2). ,is implies that
z(G)≤ ((5n2 − 24n + 47)/4) and the equality holds iff
G � G12(((n − 3)/2), t((n − 5)/2)). □

Lemma 15. Let G ∈ G13(a, b) be a graph with n vertices.
)en

z(G)≤

n
2

− 4n + 10, where n≥ 6 is even, and the equality holds iff G � G13
n − 4
2

,
n − 4
2

 ;

n
2

− 4n + 9,

where n≥ 7 is odd, and the equality holds

iff G � G13
n − 3
2

,
n − 5
2

  � G13
n − 5
2

,
n − 3
2

 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)
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Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2, we
get that z(G13(a, b)) � 4ab + 4a + 4b + 10. According to the
method of Lagrange multipliers, we make an auxiliary function
L(a, b) � λ(a + b + 4 − n) + 4ab + 4a + 4b + 10, where a+

b + 4 � n, a≥ 1, and b≥ 1. Taking the partial derivatives of a, b,
and λ in L(a, b, λ), we obtain the following equations:

La � λ + 4b + 4 � 0,

Lb � λ + 4a + 4 � 0,

Lλ � a + b + 4 − n � 0,

a≥ 1 and b≥ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(28)

Solving the equations as above, we obtain that a � ((n −

4)/2) and b � ((n − 4)/2). Because (((n − 4)/2), t

((n − 4)/2)) is a unique stable point, (((n − 4)/2), t((n −

4)/2)) must be the unique extreme point. Since a and b are
integers, we only consider two cases.

Case 1: assume that n is even. We obtain a � ((n −

4)/2) and b � ((n − 4)/2). ,us z(G13(((n−

4)/2), ((n − 4)/2))) � n2 − 4n + 10. It is easy to check
that z(G13(a, b))< n2 − 4n + 10 when a≠ ((n − 4)/2)

and b≠ ((n − 4)/2). ,is implies that z(G)≤ n2 − 4n +

10 and the equality holds if and only if
G � G13(((n − 4)/2), t((n − 4)/2)).
Case 2: consider that n is odd. We have a � ((n − 3)/2)

and b � ((n − 5)/2), or a � ((n − 5)/2) and
b � ((n − 3)/2). So, z(G13(((n − 3)/2), ((n − 5)/2))) �

z(G13(((n − 5)/2), ((n − 3)/2))) � n2 − 4n + 9. It is
easy to verify that z(G13(a, b))< n2 − 4n + 9 when
a≠ ((n − 3)/2) and b≠ ((n − 5)/2), or a≠ ((n − 5)/2)

and b≠ ((n − 3)/2). ,is means that z(G)≤ n2 − 4n + 9
and the equality holds if and only if G � G3(((n − 3)/2),

((n − 5)/2)) � G3(((n − 5)/2), t((n − 3)/2)). □

Lemma 16. Let G ∈ G14(a, b) be a graph with n vertices.
)en

z(G)≤

3
2

n
2

− 8n + 16,

where n is even, n≥ 8 and the equality holds iff

G � G14
n − 4
2

,
n − 6
2

  � G14
n − 6
2

,
n − 4
2

 ;

3
2

n
2

− 8n +
35
2

, where n is odd, n≥ 7 and the equality holds iff G � G14
n − 5
2

,
n − 5
2

 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
we obtain that z(G14(a, b)) � 6ab + 7a + 7b + 15. According
to the method of Lagrange multipliers, we make an auxiliary
function L(a, b) � λ(a + b + 5 − n) + 6ab + 7a + 7b + 15,
where a + b + 5 � n, a≥ 1, and b≥ 1. Taking the partial
derivatives of a, b, and λ in L(a, b, λ), we can obtain the
following equations:

La � λ + 6b + 7 � 0,

Lb � λ + 6a + 7 � 0,

Lλ � a + b + 5 − n � 0,

a≥ 1 and b≥ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(30)

Solving the equations as above, we obtain that a � ((n −

5)/2) and b � ((n − 5)/2). Because (((n − 5)/2), t

((n − 5)/2)) is a unique stable point, (((n − 5)/2), t((n −

5)/2)) must be the unique extreme point. Since a and b are
integers, we only consider two cases.

Case 1: consider that n is even. We have a � ((n − 4)/2)

and b � ((n − 6)/2), or a � ((n − 6)/2) and
b � ((n − 4)/2). ,us z(G14(((n − 4)/2), ((n − 6)

/2))) � z(G14(((n − 6)/2), ((n − 4)/2))) � (3/2)n2−

8n + 16. To simplify calculation, we get
z(G14(a, b))< (3/2)n2 − 8n + 16 when a≠ ((n − 4)/2)

and b≠ ((n − 6)/2), or a≠ ((n − 6)/2) and
b≠ ((n − 4)/2). ,is implies that z(G)≤ (3/2)n2 − 8n +

16 and the equality holds iff G � G14(((n − 4)/2),

((n − 6)/2)) � G14(((n − 6)/2), t((n − 4)/2)).
Case 2: assume that n is odd. ,en a � ((n − 5)/2) and
b � ((n − 5)/2). So z(G14(((n − 5)/2), ((n − 5)/2))) �

(3/2)n2 − 8n + (35/2). It is easy to check that
z(G14(a, b))< (3/2)n2 − 8n + (35/2) when a≠
((n − 5)/2) and b≠ ((n − 5)/2). ,is implies that
z(G)≤ (3/2)n2 − 8n + (35/2) and the equality holds if
and only if G � G14(((n − 5)/2), t((n − 5)/2)). □

Proof of )eorem 1. By Lemmas 3–16, we know the maxi-
mum Hosoya index in Gi (i � 1, 2, . . . , 14). Employing
Mathematica 12.0 to compute the difference of the maxi-
mumHosoya indices of Gi and Gj, it yields directly the result
in ,eorem 1. □

4. Concluding Remark

In this paper, we characterize the sharp upper bound of
Hosoya indices of all graphs in B3

n. Furthermore, we also
determine the upper bound of every type of bicyclic graphs.
,ere exists an interesting problem:

Journal of Chemistry 13



Problem 1. Which graph G ∈B3
n has the minimum Hosoya

index?

We attempted to find a solution to the problem; how-
ever, the problem is very difficult for us.
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Distance-based dimensions provide the foreground for the identification of chemical compounds that are chemically and
structurally different but show similarity in different reactions. &e reason behind this similarity is the occurrence of a set S of
atoms and their same relative distances to some ordered set T of atoms in both compounds. In this article, the aforementioned
problem is considered as a test case for characterising the (molecular) graphs bearing the fractional metric dimension (FMD) as 1.
For the illustration of the theoretical development, it is shown that the FMD of path graph is unity. Moreover, we evaluated the
extremal values of fractional metric dimension of a tetrahedral diamond lattice.

1. Introduction

Day by day, the nexus of chemistry is progressing by the
advancements in drug discovery, formation of chemical
compounds, and development of testing kits for the diag-
nosis of different diseases and medical anomalies. Besides
different concepts that arose as a result of the emergence of
cheminformatics, distance-based dimensions also have their
stake in this concern. Assume that, in a graphC, the shortest
path between the 2 vertices s, t is given by d(s, t). Let S �

s1, s2, s3, . . . , sk ⊆V(C) and u ∈ V(C); then, the k-tuple
metric form of S in terms of u is given by
r(u|S) � (d(u, s1), d(u, s2), d(u, s3), . . . , d(u, sk)). &e set S

becomes a resolving set having k elements for a graph C if
each pairs of vertices in C bears distinct k-tuple metric
forms. &e resolving set with minimum cardinality in C

forms its metric basis, and its cardinality represents its
metric dimension.

&e terminology of resolving sets was introduced by
Slatter [1, 2] by naming them as locating sets. Harary and
Melter [3] personally discovered these terminologies and

called them as the metric dimension of C. Afterward, many
researchers have studied different graph structures for the
calculation of metric dimensions. &e results for the metric
dimensions of path, cycle, Peterson, and generalized
Peterson graphs can be found in [4–6]. For various results on
metric dimensions of graphs, we refer to [7–9] and [10].
Chartrand et al. [11] employed metric dimension to find the
solution of an integer programming problem (IPP). Sub-
sequently, Currie and Oellermann introduced the concept of
fractional metric dimension (FMD) and obtained the so-
lution of IPP with higher accuracy [12]. Arumugam and
Mathew [13] after discovering the hidden properties of FMD
formally defined it. Since then, many researchers have tried
their luck in this area by attacking different graph structures.
&e results for the FMD of graph structures as obtained from
Cartesian, hierarchial, corona, lexicographic, and comb
product of connected graph structures can be seen in [14–16]
and [17, 18]. Recently, Liu et al. [19] calculated the fractional
metric dimension of the generalized Jahangir graph J5,k and
Raza et al. calculated the FMD of a metal organic network
[20, 21]. Alisyah et al. presented the concept of local
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fractional metric dimension (LFMD) and found the LFMD
of the corona product of two connected networks [22]. Liu
et al. calculated the LFMD of rotationally symmetric and
planar networks [23]. Recently, Javaid et al. calculated the
bounds for the LFMD of connected and cycle-related net-
works in [24, 25].

Johnson [26, 27] employed the concept of metric di-
mension for creating proficiency of large datasets of
chemical graph structures. &e mathematical study of
chemical structures concerns the development of mathe-
matical classification of chemical compounds. &e graph-
theoretic version of chemical compounds naturally exists.
Despite having different chemical and structural aspects, two
chemical compounds show similar behaviour during the
reactions. &e reason behind this peculiarity is the existence
of certain common substructures within these compounds.
If in two compounds, the elements of the set S of atoms and
the elements of the ordered set T are relatively equidistant,
then we call these compounds to be similar or equivalent
[28]. Finding a T with minimum cardinality such that the
ordered lists associated with every two distinct vertices of S
are distinct has applications to classification problems in
chemistry, as described in [11].

In this article, we are going to characterise the (mo-
lecular) graphs with FMDs as unity. As a test case, we have
considered the allotropic form of carbon called by tetra-
hedral diamond developed by Ali et al.&is article propels in
the followingmanner: Section 1 is for introduction, Section 2
is devoted for the applications of FMD in chemistry, Section
3 is for preliminaries, Section 4 concerns with the devel-
opment of a tool for the characterization of graphs with
FMD as 1, and Section 5 deals with the resolving neigh-
bourhood sets of TD(n). In Section 6, we have calculated the
FMD of TD(n). Section 7 gives the conclusion.

2. Applications in Chemistry

In a molecular graph, atoms are denoted by nodes and bond
between them by edges. &e fraternity of chemists and
pharmacists is always in search of finding out chemical
compounds in some collection bearing physiochemical
properties in common at some particular places. &is ob-
jective is achieved by the identification of the substructure
having the smallest number of atoms. In graph theory, this
problem is the same as finding the FMD of the graph under
consideration. In this way, druggists and chemists will be
able to capture the aforementioned features of these com-
pounds and comprehend whether they are responsible for
some pharmacological activity for a newly developed drug.
For more on the applications like these, see [11].

3. Preliminaries

For c ∈ V(C) and a, b{ }⊆V(C), a, b{ } is said to be resolved by
c if d(a, c)≠ d(b, c). &e set formed by the pair of nodes
comprising nodes such as c is called resolving neighbour-
hood. &e resolving neighbourhood (RN) of a, b{ } is
mathematically given by
R a, b{ } � c ∈ V(C)|d(a, c)≠d(b, c){ }.

Suppose a connected network C(V(C), E(C)) having
order p. A function τ: V(C)⟶ [0, 1] is known as the
resolving function (RF) of C if τ(R a, b{ })≥ 1 ∀a, b ∈ V(C),
where τ(R x, y ) � z∈R x,y{ }τ(z). An RF η of C is known as
a minimal resolving function (MRF) if any function
ϕ: V(C)⟶ [0, 1] such that ϕ≤ η and ϕ(z)≠ η(z) for at
least one z ∈ V(C) that is not an RF of C. &en, the FMD of
the network C is given by dimf(C) � min |η|:η is the MRF
of C}, where |η| � z∈V(C)η(z) [13].

3.1. Construction of Tetrahedral Diamond. &e tetrahedral
diamond graph is an n-dimensional lattice, comprising ni

layers where 1≤ i≤ n. Figures 1 and 2 show TD(n) for
3≤ n≤ 5.

Each ni layer is having n2
i vertices, ((ni − 2)(ni − 1)/2)

hexagons, and three pendent edges.&e vertices of each layer
are denoted by v

ni

j where 1≤ j≤ ni. &e first layer is iso-
morphic to K1, and layer two is isomorphic to K1.3, whereas
for 1≤ i≤ n, each ni−1 layer is the subgraph of the ni-th layer.
Hence, the graph formed by each layer is denoted by S

ni
ni
.

Similarly, following are the subgraphs found to be in all the
layers: S

ni,p
nj

, P
ni,p
ni−ni−1 , P

ni,p
s , and K

ni,p
1 , where 1≤ j, s≤ ni − 1

and p describes their position that can be top, top right, top
left, bottom, bottom right, bottom left, middle, middle right,
middle left, and bottom denoted by t, tr, tl, b, br, bl, m, mr,
and ml, respectively. Figure 3 shows all the subsets of TD(n).

It can be seen from the figure that, in each layer, v
ni

1 is
adjacent to v

ni+1
2 , v

ni

n2
i
−n2

i−1
is adjacent to v

ni+1
n2

i
−n2

i−1−1, and v
ni

n2
i

is
adjacent to v

ni+1
n2

i
−1. Apart from them, every vertex with an odd

label in the ni − 1 layer is adjacent to the vertex with an even
label in the ni layer and vice versa.

4. Characterization of Graphs with
FMD as Unity

In this section of the article, we are giving generic criteria for
identifying graphs with FMD as 1. &ese criteria have been
shaped up as a theorem given below.

Theorem 1. Let C be a connected graph and R a, b{ } be a
resolving neighbourhood set of the pair of vertices a, b in C. If
∩R a, b{ }≠Φ, then

dimfrac(C) � 1, (1)

where |V(C)|≥ 3.

Proof. Assume that R � R a, b{ } is an arbitrary resolving
neighbourhood set for a, b{ } ⊂ V(C) and Y � ∩R. Now, we
define the function ψ: V(C)⟶ [0, 1] as c � x∈Yψ(x) and
1 − c � x∈(R−Y)∩Xψ(x), where c is a real number that ap-
proaches to 1 and X � V(C). For a, b ∈ V(C) and c⟶ 1,

ψ(R) � 
x∈R

ψ(x) � 
x∈Y

ψ(x) + 
x∈(R−Y)∩X

ψ(x),

� c + w(1 − c)

≥ 1,

(2)
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where w � (|V(C)||V(C) − 1|/2). It implies that ψ is a re-
solving function. To check that ψ is a minimal resolving
function, assume that there is another minimal resolving
function τ such that τ ≤ψ. By definition, τ(x)<ψ(x) for
some x ∈ X. Now, for some resolving neighbourhood set R,
we have

τ(R) � 
x∈Y

τ(x) + 
x∈(R−Y)∩X

τ(x)

< 
x∈Y

ψ(x) + 
x∈(R−Y)∩X

ψ(x),

� c +(1 − c) � 1.

(3)

Consequently, τ(R)< 1 which implies that τ is not a
resolving function. &us, ψ is a minimal resolving function.
Let ψ be another minimal resolving function of C. Now, we
have the following possibilities:

(i) ψ(x)<ψ(x)∀x ∈ X

(ii) ψ(x)≥ψ(x)∀x ∈ X

(iii) ψ(x)<ψ(x) for some x ∈ X □

Case 1. If ψ(x)<ψ(x) for all x ∈ X, then for each resolving
neighbourhood set R, ψ(R)< 1⇒ψ is not a resolving
function; therefore, this case does not hold.

a1
3

a2
3

a7
3

a2
2

a3
3

a1
2

a1
1

a4
2

a3
2a8

3

a6
3

a3

a5
3

a9
3

a1
3

a2
3

a7
3

a2
2

a3
3

a1
2

a1
1

a4
2

a3
2a8

3

a6
3

a4
3

a5
3

a9
3

a1
4

a3
4

a4

a9
4

a6
4

a7
4

a8
4

a4
4

a5
4

a4
13

a4
12

a4
16

a4
15

a4
14

a4
10

a4
11

Figure 1: Tetrahedral diamond lattice with 3 (a) and 4 (b) layers.
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Figure 2: Tetrahedral diamond lattice with 5 layers.
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Case 2. If ψ(x)≥ψ(x) for all x ∈ X, then we have the
following subcases:

Subcase A: for 1≤ r, s≤w and Rr − Y∩Rs − Y � Φ, we
have

|ψ| � 
x∈Y

ψ(x) + 
x∈(R−Y)∩X

ψ(x)

> 
x∈Y

ψ(x) + 
x∈(R−Y)∩X

ψ(x),

� c + w(1 − c) � |ψ|.

(4)

As c⟶ 1, dimfrac(C) � |ψ| � c + w(1 − c) � 1.
Subcase B: for 1≤ r, s≤w and Rr − Y∩Rs − Y≠Φ, we
have

|ψ| � 
x∈Y

ψ(x) + 

x∈Rt

ψ(x),
(5)

where Rt � Rt ∩ [X − ∩ t−1
j�1Rt − Y]. &en,

|ψ| � 
x∈Y

ψ(x) + 

x∈Rt

ψ(x)

≥ 
x∈Y

ψ(x) + 

x∈Rt

ψ(x),

� c + 

x∈Rt

ψ(x).

(6)

So,

dimfrac(C) � c + 

x∈Rt

ψ(x)

≤ c + 
x∈(R−Y)∩X

ψ(x),

� c + w(1 − c),

� 1.

(7)

&us, dimfrac(C)≤ 1. But, by definition, dimfrac(C)≥ 1.
&erefore,

dimfrac(C) � 1. (8)

Case 3. If ψ(x)<ψ(x) for some x ∈ X, this case is a con-
sequent of the abovementioned two cases (Case I and II);
therefore, we have dimfrac(C) � 1.

Consequently, from Case 1–3, we arrive at the following
conclusion:

dimfrac(C) � 1. (9)

Using the result presented above, we are now going to
prove the following fact:

Proposition 1. Suppose that, for any n≥ 3, G � Pn; then,
dimfrac(G) � 1.

Proof
Case 1: for n � 3: the resolving neighbourhood sets for
the current case are R1 � R a1, a2  � a1, a2, a3},
R2 � R a2, a3  � a1, a2, a3 , and R3 �

R a1, a3  � a1, a3 . It can be seen that
∩ 3t�1Rt � a1, a3 ≠Φ. &erefore, from &eorem 1, we
arrive at the conclusion thatdimfrac(P3) � 1.
Case 2: for n≥ 4: the resolving neighbourhood sets of Pn

are R ai, ai+p  � V(Pn) − a(2i+p/2)  and
R ai, ai+s  � V(Pn), where p, s≥ 1, 1≤ i≤ n,
p ≡ 0(mod2), and s ≡ 1(mod2).

It can be seen that ∩

n
2 

t�1 R � a1, an ≠Φ. &erefore,
from &eorem 1, it implies that

dimfrac Pn(  � 1. (10)
□

Remark 1. &e abovementioned proposition strengthens the
result proved in [13].

5. Resolving Neighbourhood Sets of TD(n)

In this section, we present some the results regarding the re-
solving neighbourhood sets of TD(n). Lemma 1 deals with the
resolving neighbourhoods of TD(n) having minimum cardi-
nality followed by Lemma 2 and Lemma 3 that are concerned
with resolving neighbourhood sets of maximum cardinalities.

Lemma 1. Suppose that C � TD(n) is an n-dimensional
tetrahedral diamond lattice. .en, the minimum resolving
neighbourhood sets are as follows:

(a) For n≥ 4, n ≡ 0(mod2), α � (n/2), β � α + 1,
c � 2α − 1, and η � 2β − 1, |Rt| � |R aα

1 , a
β
1 }| �

|R aα
c , a

β
η | � |R aα

α2 , a
β
β2 | � (n(n2 + 3n + 2)/12)

and |∪ 3t�1Rt| � (n(n2 + 3n + 2)/6).
(b) For n≥ 3, n ≡ 1(mod2), α � (n − 1/2), β � (n + 1/2),

c � (n + 3/2), η � 2α − 1, λ � 2β − 1, and μ � 2c − 1,
|Rt| � |R aα

1 , a
β
1 }| � |R a

β
1 , a

c
1 | � |R aα

η , a
β
λ | �

|R a
β
λ , a

c
μ }| � |R aα

α2 , a
β
β2 | � |R a

β
β2 , a

c

c2 | �

(n3 + 3n2 + 5n + 3/12) and
|∪ 6t�1Rt| � (n3 + 6n2 + 11n − 30/6).

Proof

(a) &e resolving neighbourhood sets of R aα
1 , a

β
1 , R aα

c ,

a
β
η}, and R aα

α2 , a
β
β2  are R aα

1 , a
β
1  � V(C)− ∪ n

j�β

(S
j

j2
− S

j,t

(j−2)2
), R aα

c , a
β
η  � V(C)− ∪ n

j�β(S
j

j2
−

S
j,bl

(j−2)2
), and R aα

c2
, a

β
η2  � V(C) − ∪ n

j�β(S
j

j2
−

S
j,br

(j−2)2
). We note that |Rt| � |R aα

1 , a
β
1 }| � |R aα

c ,

a
β
η}| � |R aα

(α)2
, a

β
(α+1)2

 | � (n(n2 + 3n + 2)/12),

∪ 3t�1Rt � ∪ αj�1S
j

j2
∪ ∪ n

j�α+1(S
j,t

(j−α)2
∪ S

j,br

(j−α)2
∪ S

j,

(j−α)2

bl), and |∪ 3t�1Rt| � (n(n2 + 3n + 2)/6).
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(b) &e resolving neighbourhood sets of R aα
1 , a

β
1 },

R a
β
1, a

c
1 , R aα

η, a
β
λ , R a

β
λ , a

c
μ , R aα

α2 , a
β
β2}, R a

β
β2 ,

a
c

c2
} are R aα

1 , a
β
1  � V(C) − ∪ n

j�β(S
j

j2
− S

j,t

(j−2)2
),

R aα
c , a

β
η  � V(C) − ∪ n

j�β(S
j

j2
− S

j,bl

(j−2)2
), and R aα

α2 ,

a
β
β2} � V(C) − ∪ n

j�β(S
j

j2
− S

j,br

(j−2)2
) and R a

β
1, a

c
1  �

V(C) − ∪ n
j�c(S

j

j2
− S

j,t

(j−2)2
), R a

β
λ , a

c
μ  � V(C) −

∪ n
j�c(S

j

j2
− S

j,bl

(j−2)2
), and R a

β
β2 , a

c

c2  � V(C) −

∪ n
j�c(S

j

j2
− S

j,br

(j−2)2
) .We note that |Rt| � |R aα

1 ,

a
β
1}}| � |R a

β
1 , a

c
1 | � |R aα

η, a
β
λ | � |R a

β
λ , a

c
μ}}| �

|R aα
α2 , a

β
β2 | � |R a

β
β2 , a

c

c2 | � (n3 + 3n2+ 5n+

3/12),∪ 6t�1Rt � ∪ c
j�1S

j

j2
∪ ∪ n

j�c+1(S
j,t

(j−c)2
∪ S

j,br

(j−c)2

∪ S
j,bl

(j−c)2
), and |∪ 6t�1Rt| � (n3 + 6n2+

11n − 30/6). □

Lemma 2. Suppose that C � TD(n) is an n-dimensional tet-
rahedral diamond lattice with n≥ 3 and n ≡ 1(modn). .en,

(a) For 1≤ α≤ n, β � α + 1, c � 2α − 1, and η � 2β − 1,

|Rt|< |R aα
1 , a

β
1 | � |R aα

c , a
β
η | � |R aα

α2 , a
β
β2 | and

|R aα
1 , a

β
1 ∩ ∪ 6t�1Rt| � |R aα

c , a
β
η ∩ ∪ 6t�1Rt| �

|R aα
α2 , a

β
β2 ∩ ∪ 6t�1Rt|≥ |Rt|

(b) For 1≤ α≤ n, β � α + 1 and 2≤ c≤ 2α − 1,
|Rt|< |R aα

c , a
β
c | and |R aα

c , a
β
c ∪ 6t�1Rt|≤ |Rt|

(c) For 2≤ α≤ n, β � 2α − 1, c � 2α + 2, η � α2 − 3, and

μ � α2, |Rt|< |R aα
β , aα

c | � |R aα
η , aα

μ | and |R

aα
β , aα

c ∪ 6t�1Rt| � |R ai
i, ai+1

i+1 ∪ 6t�1Rt| �

|R aα
η, aα

μ ∪ 6t�1Rt|≥ |Rt|

(d) For any aα
α, a

β
β  ∈ E(C), c≥ 1, η≥ 2, c ≡ 1(mod2),

and η ≡ 0(mod2), |Rt|< |R aα
α, a

β
β | �

|R aα
α, a

α+η
α+c | � |V(C)| � (n(2n2 + 3n + 1)/6) and

|R aα
α, a

β
β ∩ ∪ 6t�1Rt|≥ |Rt|

Proof

(a) &e resolving neighbourhood sets of R a1
1, a2

1 ,

a1
1, a2

3 , a1
1, a2

4 , aα
1 , a

β
1 , and R aα

c , a
β
η  are R aα

1 ,

a
β
1} � V(C) − ∪ n

j�β(S
j

j2
− S

j,t

(j−1)2
), R aα

c , a
β
η  �

V(C) − ∪ βj�2(S
j

j2
− S

j,bl

(j−1)2
), and R aα

α2 , a
β
β2  �

V(C) − ∪ n
j�β(S

j

j2
− S

j,br

(j−1)2
), respectively.

Since |R aα
1 , a

β
1 | � |R aα

c , a
β
η | � |R aα

α2 , a
β
β2 | �

(2n3 + 3n2 + n + 6α(n + 1)(α − n) − 6αβ(α −β− 1)/
6), thus |Rt| � (2n3 + 3n2 + n+ 6α(n + 1)(α − n)−

6αβ(α − β − 1)/6). &erefore, |R aα
1 , a

β
1 ∩ ∪ 6t�1Rt| �

|R aα
c , a

β
η}∩ ∪ 6t�1Rt| � |R aα

α2 , a
β
β2 ∩ ∪ 6t�1Rt|≥ |Rt|.

(b) First of all, we introduce a notation for simplification.

μ �

c

2
, forn ≡ 0(modn),

c − 1
2

, forn ≡ 1(modn).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

&e resolving neighbourhood for R aα
c , a

β
c  is R aα

c ,

a
β
c � V(C) − ∪ αj�α−μ+1S

j

j2
∪ ∪ j� β

nS
j,t

j2
∪ ∪ μ+n−α

j�μ+1S
j,t

j2
. It

can be seen that |R aα
c , a

β
c| � (n − 1 − 4(μ+ 1)3 +

6(μ + 1)2 − μ + 2b3− 3b2 + b + 2(μ + n − α + 1)3−

(μ + n − α + 1)2 − α/6)> |Rt|. &erefore, |R a2
3, a2

4 

∪ 6t�1Rt|≥ |Rt|. Also, by the symmetry of the network,
|Rt|< |R aα

c , a
β
c| and |R aα

c , a
β
c ∪ 6t�1Rt|≥ |Rt| .

(c) &e resolving neighbourhood for R aα
β, aα

c  and

R aα
η , aα

μ  are R aα
β , aα

c  � V(C) − S11 ∪ ∪ αj�3P
j,l
j ∪

∪ n
j�α+1(P

j,l
j − S

j,l

(j−α)2
) and R aα

η, aα
μ  � V(C)− S11 ∪

∪ j� 3αP
j,r
j ∪ ∪ n

j�α+1(P
j,r
j − S

j,r

(j−α)2
). It can be seen that

|R aα
β , aα

c}| � |R aα
η , aμ α}| � (2(n + 1)3− 3(n + 1)2 +

2n + 8 − 7α+ 6(2α − 2)(n − α + 1) + 2(n− α + 1)3−

3(n − α + 1)2/6). Hence, |Rt|< (2(n + 1)3 − 3(n +

1)2 + 2n + 8 − 7α + 6(2α − 2) (n − α + 1) + 2(n− α +

1)3 − 3(n − α + 1)2/6) and |R aα
β , aα

c 

∪ 6t�1Rt| � |R aα
η, aα

μ ∪ 6t�1Rt|≥ |Rt|.
(d) &e resolving neighbourhood sets R aα

α, a
β
β  and

R aα
α, a

α+η
aα+c  are R aα

α, a
β
β  � V(C) � R aα

α, a
α+η
aα+c .

Clearly, |R aα
α, aβ β}| � |R aα

α, a
α+η
aα+c | � (n(n + 1)

(2n + 1)/6)> |Rt|. Also, |R aα
α, a

β
β ∪ 6t�1Rt| �

|R aα
α, a

α+η
aα+c ∪ 6t�1Rt|≥ |Rt| . □

Lemma 3. Suppose that C � TD(n) is an n-dimensional tet-
rahedral diamond lattice with n≥ 4 and n ≡ 0(modn). .en,

(a) For 1≤ α≤ n, β � α + 1, c � 2α − 1, and η � 2β − 1,
|Rt|< |R aα

1 , a
β
1 | � |R aα

c , a
β
η | � |R aα

α2 , a
β
β2 | and

|R aα
1 , a

β
1 ∩ ∪ 3t�1Rt| � |R aα

c , a
β
η ∩ ∪ 3t�1Rt| �

|R aα
α2 , a

β
β2 ∩ ∪ 3t�1Rt|≥ |Rt|

(b) For 1≤ α≤ n, β � α + 1, and 2≤ c≤ 2α − 1,
|Rt|< |R aα

c , a
β
c | and |R aα

c , a
β
c ∪ 3t�1Rt|≤ |Rt|

(c) For 2≤ α≤ n, ,β � 2α − 1, c � 2α + 2, η � α2 − 3, and
μ � α2, |Rt|< |R aα

β , aα
c | � |R aα

η , aα
μ | and |R

aα
β , aα

c ∪ 3t�1Rt| � |R ai
i, ai+1

i+1 ∪ 3t�1Rt| �

|R aα
η , aα

μ ∪ 3t�1Rt|≥ |Rt|

(d) For any aα
α, a

β
β  ∈ E(C), c≥ 1, η≥ 2, c ≡ 1(mod2),

and η ≡ 0(mod2), |Rt|< |R aα
α, a

β
β | �
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|R aα
α, a

α+η
α+c | � |V(C)| � (n(2n2 + 3n + 1)/6) and

|R aα
α, a

β
β ∩ ∪ 3t�1Rt|≥ |Rt|

Proof. &e proof is the same as that of Lemma 2. □

6. Fractional Metric Dimension of TD(n)

In this section, the FMD of TD(n) is calculated and the cri-
terion of their evaluation is devised by the following result.

Theorem 2. If C � TD(n) is an n-dimensional tetrahedral
diamond lattice with n≥ 3 and n ≡ 1(mod2), then

1< dimfrac(C)≤ 2
n
3

+ 6n
2

+ 11n − 30
n
3

+ 3n
2

+ 5n + 3
 . (12)

Proof
Case 1: when n � 3.
&e resolving neighbourhood sets are as shown in
Tables 1–4.
&e resolving neighbourhood sets that are equal due to
symmetry are given by the following:
Now, for uv ∈ E(C) and 47≤ L≤ 62, we have

R uv{ } � V(C). (13)

In the same manner, the pairwise resolving neigh-
bourhood sets that equals V(C) are as follows:
As we can see, Table 3 shows the resolving neigh-
bourhood sets of TD(3) having the maximum cardi-
nality of 13 and ∪ 84L�63R

�

L � V(TD(3)). Table 4, on the
other hand, shows the resolving neighbourhood sets
with minimum cardinality of 6 and
∪ 6t�1Rt � V(TD(3)). Suppose that, for 63≤L≤ 84,
|R

�

L| � c, for 1≤ t≤ 6, |Rt| � λ, η � |∪ 84L�63R
�

L| �

|V(TD(3))| � 13, and δ � |∪ 6t�1Rt| � |V(TD(3))| � 13.
Now, we define a mapping κ: V(TD(3))⟶ [0, 1]

such that κ(a) � (1/13) for all a ∈ ∪ 84L�63R
�

L; assigning
the value of (1/13) to all the elements of ∪ 84L�63R

�

L and
summing up all the labels, we get |κ| �


a∈∪ 84

L�63R
�

L

κ(a) � (13/13) � 1; thus, dimfrac(T D)(3) �

|κ| � 1, as all the R
�

L for 63≤L≤ 84 are all having
V(TD(3)) in common. Similarly, we define another
mapping τ: V(TD(3))⟶ [0, 1] such that τ � (1/λ) �

(1/6) for all a ∈ ∪ 6t�1Rt, and giving labels to the ele-
ments of ∪ 6t�1Rt and later on summing them up, we get
|τ| � a∈ ∪ 6

t�1Rt
τ(a) � (13/6) � 2.33; hence, dimfrac

(C)< 2.33 as all the Rt for 1≤ t≤ 6 are pairwise
overlapping. &erefore, we arrive at the following
conclusion:

1< dimfrac(TD(3))≤ 2.33. (14)

Case 2: when n≥ 5.
&e required minimum resolving neighbourhood sets
are R aα

1 , a
β
1 , R a

β
1, a

c
1 , R aα

η, a
β
λ , R a

β
λ , a

c
μ ,

R aα
α2 , a

β
β2 , and R a

β
β2 , a

c

c2 , where α � (n − 1/2),
β � (n + 1/2), c � (n + 3/2), η � 2α − 1, λ � 2β − 1,
and μ � 2c − 1. Lemma 1 clarifies that

|Rt| � |R aα
1 , a

β
1 | �

|R a
β
1 , a

c
1 | � |R aα

η, a
β
λ | � |R a

β
λ, a

c
μ | �

|R aα
α2 , a

β
β2 | � |R a

β
β2 , a

c

c2 | � (n3 + 3n2 + 5n +

3/12)≤ |R
�

a, b{ }| for all a, b ∈ V(C) and

∪ 6t�1Rt � ∪ c
j�1S

j

j2
∪ ∪ n

j�c+1 (S
j,t

(j−c)2
∪ S

j,br

(j−c)2
∪ S

j,bl

(j−c)2
).

Also, the resolving neighbourhood sets with maximum

cardinality of |V(C)|, as clarified by Lemma 2, are R
�

1 �

R aα
α, a

α+η
aα+c  and R

�

1 � R aα
α, a

β
β  and R

�

1 � R aα
α, a

α+η
aα+c ,

respectively. Moreover, ∪ 2L�1R
�

L � V(C). Let

Table 1: Resolving neighbourhood sets of TD(3).

Resolving
neighbourhood sets Elements

R1 � R a1
1, a1

2  V(C) − a2
2, a2

3, a2
4 ∪ a3

4, a3
5, a3

6, a3
8, a3

9 

R2 � R a1
1, a3

2  V(C) − a2
1, a2

2, a2
4 ∪ a3

1, a3
2, a3

7, a3
8, a3

9 

R3 � R a1
1, a2

4  V(C) − a2
1, a2

2, a2
3 ∪ a3

1, a3
2, a3

3, a3
4, a3

5 

R4 � R a1
2, a1

3  V(C) − a3
2, a3

3, a3
4, a3

5, a3
6, a3

7, a3
8, a3

9 

R5 � R a2
3, a3

5  V(C) − a3
1, a3

2, a3
3, a3

4, a3
6, a3

7, a3
8, a3

9 

R6 � R a2
4, a3

9  V(C) − a3
1, a3

2, a3
3, a3

4, a3
5, a3

6, a3
7, a3

8 

R1
�

� R a2
1, a2

3  V(C) − a1
1 ∪ a2

2, a2
4 ∪ a3

3, a3
8, a3

9 

R2
�

� R a2
1, a2

4  V(C) − a1
1 ∪ a2

2, a2
3 ∪ a3

4, a3
5, a3

7 

R3
�

� R a2
1, a3

3  V(C) − a2
3 ∪ a3

1, a3
2, a3

7, a3
8, a3

9 

R4
�

� R a2
1, a3

5  V(C) − a2
3 ∪ a3

3, a3
8, a3

9 

R5
�

� R a2
1, a3

6  V(C) − a2
3, a2

4 ∪ a3
3, a3

7 

R6
�

� R a2
1, a3

7  V(C) − a2
4 ∪ a3

1, a3
2, a3

3, a3
4, a3

5 

R7
�

� R a2
1, a3

9  V(C) − a2
4 ∪ a3

4, a3
5, a3

7 

R8
�

� R a2
2, a3

2  V(C) − a2
1 ∪ a3

1, a3
2, a3

3, a3
7 

R9
�

� R a2
2, a3

4  V(C) − a2
3  − a3

1, a3
2, a3

7, a3
8, a3

9 

R10
�

� R a2
2, a3

8  V(C) − a2
4 ∪ a3

1, a3
2, a3

3, a3
4, a3

5 

R11
�

� R a2
3, a3

1  V(C) − a2
1 ∪ a3

3, a3
8, a3

9 

R12
�

� R a2
3, a3

3  V(C) − a2
1 ∪ a3

4, a3
5, a3

6, a3
8, a3

9 

R13
�

� R a2
3, a3

5  V(C) − a3
1, a3

2, a3
3, a3

4, a3
6, a3

7, a3
8, a3

9 

R14
�

� R a2
3, a3

6  V(C) − a2
4 ∪ a3

1, a3
2, a3

3, a3
4, a3

5 

R15
�

� R a2
3, a3

7  V(C) − a2
4 ∪ a3

3, a3
6 

R16
�

� R a2
3, a3

9  V(C) − a2
4 ∪ a3

4, a3
5, a3

7 

R17
�

� R a2
4, a3

1  V(C) − a2
1 ∪ a3

4, a3
5, a3

7 

R18
�

� R a2
4, a3

3  V(C) − a2
1, a2

3 ∪ a3
6, a3

7, a3
7 

R19
�

� R a2
4, a3

5  V(C) − a2
3 ∪ a3

1, a3
2, a3

6 

R20
�

� R a2
4, a3

6  V(C) − ∪ a3
1, a3

2, a3
8, a3

9 

R21
�

� R a2
4, a3

7  V(C) − a2
1 ∪ a3

4, a3
5, a3

6, a3
8, a3

9 

R22
�

� R a1
1, a3

6  V(C) − a2
3, a2

4 ∪ a3
1, a3

2 

R23
�

� R a1
1, a3

7  V(C) − a2
1, a2

4 ∪ a3
4, a3

5 

R24
�

� R a2
3, a2

4  V(C) − a1
1 ∪ a2

1, a2
2 ∪ a3

1, a3
2, a3

6 

R25
�

� R a3
3, a3

9  V(C) − a1
1 ∪ a2

2 ∪ a3
6, a3

7 

R26
�

� R a3
4, a3

7  V(C) − a1
1 ∪ a2

2 ∪ a3
3, a3

6 

R27
�

� R a3
5, a3

6  V(C) − a1
1 ∪ a2

1, a2
2, a2

3 ∪ a3
1, a3

2, a3
3, a3

4 

R28
�

� R a3
6, a3

9  V(C) − a1
1 ∪ a2

1, a2
2, a2

4 ∪ a3
1, a3

2, a3
7, a3

8 

R29
�

� R a2
1, a2

3  V(C) − a1
1 ∪ a2

2, a2
4 ∪ a3

3, a3
8, a3

9 

R30
�

� R a2
1, a2

4  V(C) − a1
1 ∪ a2

2, a2
3 ∪ a3

4, a3
5, a3

7 

R31
�

� R a3
1, a3

3  V(C) − a1
1 ∪ a2

1, a2
2, a2

4 ∪ a3
2, a3

7, a3
8 

R32
�

� R a3
1, a3

6  V(C) − a1
1 ∪ a2

2 ∪ a3
3, a3

7 

R43
�

� R a3
1, a3

7  V(C) − a1
1 ∪ a2

1, a2
2, a2

3 ∪ a3
2, a3

3, a3
4, a3

5 

R33
�

� R a3
2, a3

4  V(C) − a1
1 ∪ a2

2, a2
4 ∪ a3

3, a3
8, a3

9 

R34
�

� R a3
2, a3

8  V(C) − a1
1 ∪ a2

2, a2
3 ∪ a3

4, a3
5, a3

7 

R35
�

� R a3
5, a3

7  V(C) − a1
1 ∪ a2

2 ∪ a3
3, a3

6 
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|R aα
α, a

α+η
aα+c | � |R aα

α, a
β
β | � c, |Rt| � λ, |∪ 2L�1R

�

L| � η,

and |∪ 6t�1Rt| � δ. To find the minimum value for the
dimfrac(C), we define a mapping κ: V(C)⟶ [0, 1]

such that

κ(a) �
1
κ
, for a ∈ ∪

2

L�1
R
�

L, 0, for a ∈ V(C) − ∪
2

L�1
R
�

L,

(15)

where c � η � (n(2n2 + 3n + 1)/6). Assigning the la-
bels to the elements of ⋃ ∪ 2L�1R

�

L and summing them
up, we get |κ| � 

a∈ ∪ 2
L�1R

�

L

(1/c) � 1.

Similarly, for the maximum value of dimfrac(C), we
define another mapping τ: V(C)⟶ [0, 1] such that

τ(a) �
1
λ
, for a ∈ ∪

6

t�1
Rt, 0, for a ∈ V(C) − ∪

6

t�1
Rt. (16)

It can be seen that τ is a resolving function forC with n≥ 3
because τ(R u, v{ })≥ 1∀u, v ∈ V(C). On the contrary, assume
that there is another resolving function ρ such that ρ(u)≤ τ(u),
for at least one u ∈ V(C)ρ(u)≠ τ(u). As a consequence,
ρ(R u, v{ })< 1, where R u, v{ } is a resolving neighbourhood of
Cwithminimumcardinality λ. It shows that ρ is not a resolving
function which is a contradiction. &erefore, τ is a minimal
resolving function that attains minimum |τ| forC. Since all the
Rt have nonempty intersection, there is another minimal re-
solving function of τ of C such that |τ|≤ |τ|. Hence, assigning
(1/λ) to the vertices of C in ∪ 3t�1Rt and calculating the
summation of all the weights, we get

dimfrac(C) � 
δ

t�1

1
λ
≤ 2

n
3

+ 6n
2

+ 11n − 30
n
3

+ 3n
2

+ 5n + 3
. (17)

In the end, we arrive at the following finding:

1< dimfrac(C)≤ 2
n
3

+ 6n
2

+ 11n − 30
n
3

+ 3n
2

+ 5n + 3
 . (18)

□

Theorem 3. If C � TD(n) is an n-dimensional tetrahedral
diamond lattice with n≥ 4 and n ≡ 0(mod2), then

1< dimfrac(C)≤ 2. (19)

Proof
Case 1: when n � 4.
&e resolving neighbourhood sets are as shown in
Tables 4–6.
&e resolving neighbourhood sets that are equal due to
symmetry are given by the following:
For 109≤L≤ 149 and uv{ } ∈ V(C), we have

RL � R uv{ } � V(C). (20)

Similarly, the pairwise resolving neighbourhood sets
that equals V(C) are as follows:
As we can see, Table 7 shows the resolving neigh-
bourhood sets of C having the maximum cardinality of

30 and ∪ 240L�150R
�

L � V(C). Table 8, on the other hand,
shows the resolving neighbourhood sets with a mini-
mum cardinality of 10 and ∪ 3t�1Rt � V(C) − a3

2,

a3
3, a3

4, a3
6, a3

7, a3
8}∪ a4

4, a4
10, a4

11, a4
12 . Suppose that, for

150≤L≤ 240, |R
�

L| � c, for 1≤ t≤ 3, |Rt| � λ,
η � |∪ 84L�63R

�

L| � |V(TD(3))| � 30, and δ �

|∪ 6t�1Rt| � |V(TD(3))| � 20. Now, we define a

Table 2: Resolving neighbourhood sets of TD(3) equal due to
symmetry.

Resolving neighbourhood sets Elements
R36

�

� R a1
1, a3

1  R a2
2, a3

2 

R38
�

� R a1
1, a3

5  R a2
2, a3

4 

R40
�

� R a3
3, a3

7  R a2
3, a2

4 

R42
�

� R a3
6, a3

7  R a2
1, a2

3 

R44
�

� R a3
3, a3

6  R a2
1, a2

4 

R46
�

� R a3
1, a3

9  R a2
1, a2

4 

R37
�

� R a1
1, a3

3  R a2
2, a3

4 

R39
�

� R a1
1, a3

9  R a2
2, a3

8 ,
R41

�

� R a3
4, a3

8  R a2
3, a2

4 

R43
�

� R a3
7, a3

9  R a2
1, a2

3 

R45
�

� R a3
1, a3

5  R a2
1, a2

3 

Table 3: Resolving neighbourhood sets of TD(3) equal to
V(TD(3)).

Resolving neighbourhood sets Elements
R63

�

� R a1
1, a3

2  V(C)

R65
�

� R a1
1, a3

8  V(C)

R67
�

� R a2
1, a3

8  V(C)

R69
�

� R a2
2, a3

3  V(C)

R71
�

� R a2
2, a3

6  V(C)

R73
�

� R a2
2, a3

9  V(C)

R75
�

� R a2
3, a3

4  V(C)

R77
�

� R a2
4, a3

2  V(C)

R79
�

� R a2
4, a3

8  V(C)

R81
�

� R a3
1, a3

8  V(C)

R83
�

� R a3
2, a3

6  V(C)

R64
�

� R a1
1, a3

4  V(C)

R66
�

� R a2
1, a3

4  V(C)

R68
�

� R a2
2, a3

1  V(C)

R70
�

� R a2
2, a3

5  V(C)

R72
�

� R a2
2, a3

7  V(C)

R74
�

� R a2
3, a3

2  V(C)

R76
�

� R a2
3, a3

8  V(C)

R78
�

� R a2
4, a3

4  V(C)

R80
�

� R a3
1, a3

4  V(C)

R82
�

� R a3
2, a3

5  V(C)

R84
�

� R a3
2, a3

9  V(C)

Table 4: Resolving neighbourhood sets of TD(3) with minimum
cardinality.

Resolving
neighbourhood sets Elements

R1 � R a1
1, a1

2  V(C) − a2
2, a2

3, a2
4 ∪ a3

4, a3
5, a3

6, a3
8, a3

9 

R2 � R a1
1, a3

2  V(C) − a2
1, a2

2, a2
4 ∪ a3

1, a3
2, a3

7, a3
8, a3

9 

R3 � R a1
1, a2

4  V(C) − a2
1, a2

2, a2
3 ∪ a3

1, a3
2, a3

3, a3
4, a3

5 

R4 � R a1
2, a1

3  V(C) − a3
2, a3

3, a3
4, a3

5, a3
6, a3

7, a3
8, a3

9 

R5 � R a2
3, a3

5  V(C) − a3
1, a3

2, a3
3, a3

4, a3
6, a3

7, a3
8, a3

9 

R6 � R a2
4, a3

9  V(C) − a3
1, a3

2, a3
3, a3

4, a3
5, a3

6, a3
7, a3

8 
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Table 5: Resolving neighbourhood sets of TD(4) that are not equal to each other.

Resolving neighbourhood sets Elements
R1 � R a1

2, a1
3  V(C) − a3

2, a3
3, a3

4, a3
5, a3

6, a3
7, a3

8, a3
9 ∪ a4

4, a4
5, a4

6, a4
7, a4

8, a4
10, a4

11, a4
12, a4

13, a4
14, a4

15, a4
16 

R2 � R a2
3, a3

5  V(C) − a3
1, a3

2, a3
3, a3

4, a3
6, a3

7, a3
8, a3

9 ∪ a4
1, a4

2, a4
3, a4

4, a4
9, a4

10, a4
11, a4

12, a4
13, a4

14, a4
15, a4

16 

R3 � R a2
4, a3

9  V(C) − a3
1, a3

2, a3
3, a3

4, a3
5, a3

6, a3
7, a3

8 ∪ a4
1, a4

2, a4
3, a4

4, a4
5, a4

6, a4
7, a4

8, a4
9, a4

10, a4
11, a4

12, a4
13 

R1
�

� R a1
1, a1

2  V(C) − a2
2, a2

3, a2
4 ∪ a3

4, a3
5, a3

6, a3
8, a3

9 ∪ a4
6, a4

7, a4
8, a4

12, a4
13, a4

15, a4
16 

R2
�

� R a1
1, a3

2  V(C) − a2
1, a2

2, a2
4 ∪ a3

1, a3
2, a3

7, a3
8, a3

9 ∪ a1
4, a2

4, a9
4, a10

4 , a14
4 , a15

4 , a16
4 

R3
�

� R a1
1, a2

4  V(C) − a2
1, a2

2, a2
3 ∪ a3

1, a3
2, a3

3, a3
4, a3

5 ∪ a4
1, a4

2, a4
3, a4

4, a4
5, a4

6, a4
7 

R4
�

� R a2
1, a2

3  V(C) − a1
1 ∪ a2

2, a2
4 ∪ a3

3, a3
8, a3

9 ∪ a4
3, a4

4, a4
5, a4

11, a4
15, a4

16 

R5
�

� R a2
1, a2

4  V(C) − a1
1 ∪ a2

2, a2
3 ∪ a3

4, a3
5, a3

7 ∪ a4
6, a4

7, a4
9, a4

10, a4
11, a4

14 

R6
�

� R a2
1, a3

3  V(C) − a2
3 ∪ a3

1, a3
2, a3

7, a3
8, a3

9 ∪ a4
1, a4

2, a4
9, a4

10, a4
14, a4

15, a4
16 

R12
�

� R a2
1, a3

5  V(C) − a2
3 ∪ a3

3, a3
8, a3

9 ∪ a4
3, a4

4, a4
5, a4

11, a4
15, a4

16 

R13
�

� R a2
1, a3

6  V(C) − a2
3, a2

4 ∪ a3
3, a3

7 ∪ a4
3, a4

4, a4
5, a4

9, a4
10, a4

14 

R14
�

� R a2
1, a3

7  V(C) − a2
4 ∪ a3

1, a3
2, a3

3, a3
4, a3

5 ∪ a4
1, a4

2, a4
3, a4

4, a4
5, a4

6, a4
7 

R15
�

� R a2
1, a3

9  V(C) − a2
4 ∪ a3

4, a3
5, a3

7 ∪ a4
6, a4

7, a4
9, a4

10, a4
11, a4

14 

R16
�

� R a2
2, a3

2  V(C) − a2
1 ∪ a3

4, a3
5, a3

6, a3
8, a3

9 ∪ a4
6, a4

7, a4
8, a4

12, a4
13, a4

15, a4
16 

R17
�

� R a3
1, a4

1  V(C) − a4
2, a4

3, . . . , a4
16 

R18
�

� R a3
1, a4

3  V(C) − a3
3, a3

4, a3
5, a3

6 ∪ a4
1, a4

2, . . . , a4
7 

R19
�

� R a3
1, a4

5  V(C) − a3
3, a3

4, a3
5, a3

6 ∪ a4
10, a4

14, a4
15, a4

16 

R20
�

� R a3
1, a4

7  V(C) − a3
4, a3

6 ∪ a4
4, a4

11, a4
15, a4

16 

R21
�

� R a3
1, a4

8  V(C) − a3
4, a3

8 ∪ a4
4, a4

10, a4
14 

R22
�

� R a3
1, a4

9  V(C) − a3
6, a3

7, a3
8, a3

9 ∪ a4
1, a4

2, . . . , a4
7 

R23
�

� R a3
1, a4

11  V(C) − a3
3, a3

4, a3
5, a3

7, a3
8, a3

9 ∪ a4
3, a4

9 

R24
�

� R a3
1, a4

14  V(C) − a3
6, a3

7, a3
8, a3

9 ∪ a4
4, a4

5, a4
6, a4

7 

R25
�

� R a3
1, a4

16  V(C) − a3
6, a3

8 ∪ a4
6, a4

7, a4
10, a4

11 

R26
�

� R a3
2, a4

2  V(C) − a3
1 ∪ a4

4, a4
5, . . . , a4

8, a4
10 . . . , a4

10 

R27
�

� R a3
2, a4

4  V(C) − a3
3, a3

4, a3
5, a3

6, ∪ a4
1, a4

2, a4
9, a4

10, a4
14, a4

15, a4
16 

R28
�

� R a3
2, a4

6  V(C) − a3
4, a3

6 ∪ a4
4, a4

11, a4
15, a4

16 

R29
�

� R a3
2, a4

10  V(C) − a3
6, a3

7, a3
8, a3

9, ∪ a4
1, a4

2, a4
3, a4

4, a4
5, a4

6, a4
7 

R30
�

� R a3
2, a4

12  V(C) − a3
4, a3

5, a3
8, a3

9 ∪ a4
4, a4

10, a4
14 

R31
�

� R a3
2, a4

15  V(C) − a3
6, a3

8 ∪ a4
5, a4

6, a4
10, a4

11 

R32
�

� R a3
3, a4

1  V(C) − a3
1 ∪ a4

3, a4
15, a4

16 

R33
�

� R a3
3, a4

5  V(C) − a3
5 ∪ a4

1, a4
2, a4

3, a4
4, . . . , a4

9, . . . , a4
16 

R34
�

� R a3
3, a4

7  V(C) − a3
5 ∪ a4

5, a4
15, a4

16 

R35
�

� R a3
3, a4

8  V(C) − a3
4, a3

5, a3
6, a3

8, a3
9 ∪ a4

4, a4
5, a4

10, a4
11, a3

14 

R36
�

� R a3
3, a4

9  V(C) − a3
1, a3

7, a3
8, a3

9 ∪ a4
8, a4

11, a4
12, a4

13 

R37
�

� R a3
3, a4

11  V(C) − a3
6, a3

7, a3
8, a3

9 ∪ a4
1, a4

2, . . . , a4
7 

R38
�

� R a3
3, a4

13  V(C) − a3
6, a3

8 ∪ a4
6, a4

7, a4
10, a4

11 

R39
�

� R a3
3, a4

14  V(C) − a3
8 ∪ a4

8, a4
11, a4

12, a4
13 

R40
�

� R a3
3, a4

16  V(C) − a3
8 ∪ a4

8, a4
12 

R41
�

� R a3
4, a4

2  V(C) − a3
2, a3

7 ∪ a4
4, a4

5, a4
15, a4

16 

R42
�

� R a3
4, a4

4  V(C) − a3
1, a3

2, a3
3, a3

7 ∪ a4
6, a4

7, a4
8, a4

12, a4
13, a4

15, a4
16 

R43
�

� R a3
4, a4

6  V(C) − a3
5 ∪ a4

1, a4
2, a4

3, a4
4, . . . , a4

9, . . . , a4
16 

R44
�

� R a3
4, a4

10  V(C) − a3
8, a3

9 ∪ a4
4, a4

5 

R45
�

� R a3
4, a4

15  V(C) − a3
7, a3

8 ∪ a4
11, a4

12 

R46
�

� R a3
5, a4

1  V(C) − a3
2, a3

7 ∪ a4
4, a4

11, a4
15, a4

16 

R47
�

� R a3
5, a4

3  V(C) − a3
2, a3

7 ∪ a4
5, a4

12, a4
13 

R48
�

� R a3
5, a4

5  V(C) − a2
2 ∪ a3

1, a3
2, a3

3, a3
7 ∪ a4

1, a4
2, . . . , a4

5, a4
9, a4

10, a4
11, a4

14 

R49
�

� R a3
5, a4

7  V(C) − a4
1, a4

2, . . . , a4
6, a4

8 . . . , a4
16 

R50
�

� R a3
5, a4

8  V(C) − a3
6, a3

7, a3
8, a3

9 ∪ a4
1, a4

2, a4
3, a4

4, a4
5, a4

6, a4
7 

R51
�

� R a3
5, a4

9  V(C) − a3
8, a3

9 ∪ a4
4, a4

12, a4
13 

R52
�

� R a3
5, a4

11  V(C) − a3
8, a3

9 ∪ a4
4, a4

12, a4
13 

R53
�

� R a3
5, a4

13  V(C) − a3
7, a3

8 ∪ a4
1, a4

2, a4
3, a4

4, a4
8 

R54
�

� R a3
5, a4

14  V(C) − a3
1, a3

2, a3
8 ∪ a4

3, a4
4, a4

8 

R55
�

� R a3
5, a4

16  V(C) − a3
7, a3

8 ∪ a4
1, a4

2, a4
11, a4

12 

R56
�

� R a3
6, a4

1  V(C) − a2
1 ∪ a3

2 ∪ a4
4, a4

5, a4
10, a4

15 

R57
�

� R a3
9, a4

16  V(C) − a4
1, a4

2 . . . , a4
15 

R58
�

� R a2
3, a2

4  V(C) − a1
1 ∪ a2

1, a2
2, a2

3 ∪ a3
1, a3

2, a3
3, a3

4 ∪ a4
1, a4

2, a4
3, a4

4, a4
8 

R59
�

� R a3
5, a3

6  V(C) − a1
1 ∪ a2

1, a2
2, a2

3 ∪ a3
1, a3

2, a3
3, a3

4 ∪ a4
1, a4

2, a4
3, a4

4, a4
8 

R60
�

� R a4
2, a4

12  V(C) − a1
1 ∪ a2

1 ∪ a3
3, a3

7 ∪ a4
4, a4

10 

R61
�

� R a3
2, a3

4  V(C) − a1
1 ∪ a2

2, a2
4 ∪ a3

3, a3
8, a3, a3

9 ∪ a4
3, a4

4, a4
5, a4

11, a4
15, a4

16 

R62
�

� R a3
2, a3

8  V(C) − a1
1 ∪ a2

2, a2
3 ∪ a3

4, a3
5, a3, a3

7 ∪ a4
6, a4

7, a4
9, a4

10, a4
11, a4

14 
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mapping κ: V(TD(3))⟶ [0, 1] such that
κ(a) � (1/30) for all a ∈ ∪ 84L�63R

�

L, and assigning the
value of (1/30) to all the elements of ∪ 84L�63R

�

L and
summing up all the labels, we get |κ|

� 
a∈∪ 84

L�63R
�

L

κ(a) � (30/30) � 1; thus, dimfrac(C) �

|κ| � 1, as all the R
�

L for 150≤L≤ 240 are all having
V(TD(3)) in common. Similarly, we define another
mapping τ: V(TD(3))⟶ [0, 1] such that τ � (1/λ) �

(1/10) for all a ∈ ∪ 3t�1Rt, and giving labels to the elements
of ∪ 3t�1Rt and latter on summing them up, we get
|τ| � a∈ ∪ 3

t�1Rt
τ(a) � (20/10)≤ 2; hence, dimfrac(C)< 2

as all the Rt for 1≤ t≤ 6 are pairwise overlapping.
&erefore, we arrive at the following conclusion:

1< dimfrac(TD(3))≤ 2. (21)

Case 2: when n≥ 6.
&e required minimum resolving neighbourhood sets
are R aα

1 , a
β
1 , R aα

c , a
β
η , and R aα

α2 , a
β
β2 , where

α � (n/2), β + 1, c � 2α − 1, and η � 2β − 1. As it is
evident from Lemma 1, |Rt| � |R aα

1 , a
β
1 |

� |R aα
c , a

β
η | � |R aα

α2 , a
β
β2 | � (n(n2 + 3n + 2)

/12)≤ ‖acuteR a, b{ }| for all a, b ∈ V(C) and
∪ 3t�1Rt � ∪ αj�1S

j

j2
∪ ∪ n

j�α+1(S
j,t

(j−α)2
∪ S

j,br

(j−α)2
∪ S

j,bl

(j−α)2
).

Moreover, |R u, v{ }∩ ∪ 3t�1Rt|≥ |Rt| for all u, v ∈ V(C).
Also, by Lemma 3 (d), the resolving neighbourhood
sets with maximum cardinality of |V(C)| � (n(2n2 +

3n + 1)/6) are R
�

1 � R aα
α, a

β
β  and R

�

2 � R aα
α, a

α+η
α+c 

with ∪ 2L�1R
�

L � V(C). Let |Rt| � λ, |R
�

L| � c,
|∪ 2L�1R

�

L| � η, and |∪ 3t�1Rt| � δ; to find the minimum
value of dimfrac(C), we define a mapping
κ: V(C)⟶ [0, 1] such that

k(a) �

1
k

, for a ∈ ∪
3

L�1
Rt,

0, for a ∈ V(C) − ∪
3

t�1
RL.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

where c � η � (n(2n2 + 3n + 1)/6). Assigning the la-
bels to the elements of ⋃ ∪ 2L�1R

�

L and summing them
up, we get |κ| � 

a∈∪ 2
L�1R

�

L

(1/c) � 1.

Similarly, for the maximum value of dimfrac(C), we
define another mapping τ: V(C)⟶ [0, 1] such that

τ(a) �

1
λ
, for a ∈ ∪

3

t�1
Rt,

0, for a ∈ V(C) − ∪
3

t�1
Rt.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

It can be seen that τ is a resolving function for C with
n≥ 3 because τ(R u, v{ })≥ 1∀u, v ∈ V(N). On the contrary,
we assume that there is another resolving function ρ such
that ρ(u)≤ τ(u), for at least one u ∈ V(C)ρ(u)≠ τ(u). As a
consequence, ρ(R u, v{ })< 1, where R u, v{ } is a resolving
neighbourhood of C with minimum cardinality κ. It shows

Table 5: Continued.

Resolving neighbourhood sets Elements
R63

�

� R a3
5, a3

7  V(C) − a1
1 ∪ a2

2 ∪ a3
3, a3

6 ∪ a4
3, a4

4, a4
15, a4

16 

R64
�

� R a3
3, a3

9  V(C) − a1
1 ∪ a2

2 ∪ a3
6, a3

7 ∪ a4
6, a4

7, a4
9, a4

10 

R65
�

� R a3
1, a3

3  V(C) − a1
1 ∪ a2

1, a2
2, a2

4 ∪ a3
2, a3

7, a3
8 ∪ a4

3, a4
10, a4

14, a4
15, a4

16 

R66
�

� R a3
1, a3

7  V(C) − a1
1 ∪ a2

1, a2
2, a2

3 ∪ a3
2, a3

3, a3
4, a3

5 ∪ a4
4, a4

5, a4
6, a4

7, a4
9 

R67
�

� R a4
1, a4

3  V(C) − a1
1 ∪ a2

1, a2
2, a2

4 ∪ a3
1, a3

2, a3
7, a3

8, a3
9 ∪ a4

2, a4
9, a4

10, a4
14, a4

15, a4
16 

R68
�

� R a4
1, a4

7  V(C) − a1
1 ∪ a2

1, a2
2, a2

3 ∪ a3
1, a3

2, a3
3, a3

4, a3
5 ∪ a4

2, a4
3, a4

4, a4
5, a4

6, a4
7 

R69
�

� R a3
6, a3

9  V(C) − a1
1 ∪ a2

1, a2
2, a2

4 ∪ a3
1, a3

2, a3
7, a3

8 ∪ a4
1, a4

2, a4
9, a4

10, a4
13 

R70
�

� R a3
5, a3

9  V(C) − a1
1 ∪ a2

1, a2
2 ∪ a3

1, a3
2, a3

6 ∪ a4
1, a4

2, a4
11, a4

12 

R71
�

� R a4
5, a4

14  V(C) − a1
1 ∪ a2

1, a2
2 ∪ a3

1, a3
2, a3

6 ∪ a4
1, a4

2, a4
11, a4

12 

R72
�

� R a4
7, a4

16  V(C) − a1
1 ∪ a2

1, a2
2 ∪ a3

1, a3
2, a3

6 ∪ a4
1, a4

2, a4
11, a4

12 

R73
�

� R a1
1, a4

1  V(C) − a3
2, a3

3, a3
7 ∪ a4

6, a4
7, a4

8, a4
12, a4

13, a4
15, a4

16 

R74
�

� R a1
1, a4

7  V(C) − a3
3, a3

4, a3
6 ∪ a4

1, a4
2, a4

9, a4
10, a4

14, a4
15, a4

16 

R75
�

� R a1
1, a4

9  V(C) − a3
6, a3

7, a3
8 ∪ a4

1, a4
2, a4

3, a4
4, a4

5, a4
6, a4

7 

R76
�

� R a3
2, a4

9  V(C) − a3
6, a3

7, a3
8 ∪ a4

1, a4
2, a4

3, a4
4, a4

5, a4
6, a4

7 

R77
�

� R a3
9, a4

14  V(C) − a2
1 ∪ a3

1, a3
2, a3

3, a3
7 ∪ a4

1, a4
2, . . . , a4

5, a4
9, a4

10, a4
11, a4

14 

R78
�

� R a3
2, a4

2  V(C) − a3
1 ∪ a4

4, a4
5, . . . , a4

8, a4
10, . . . , a4

16 

Table 6: Resolving neighbourhood sets of TD(4) that are equal due
to symmetry.

Resolving
neighbourhood sets Equality Resolving

neighbourhood sets Equality

R79
�

� R a3
1, a4

13  R a3
1, a4

8  R80
�

� R a3
3, a3

6  R a2
1, a2

4 

R81
�

� R a4
5, a4

8  R a2
1, a2

4  R82
�

� R a5
7, a5

10  R a2
1, a2

4 

R83
�

� R a3
6, a3

7  R a2
1, a2

3  R84
�

� R a4
13, a4

14  R a2
1, a2

3 

R85
�

� R a2
2, a3

4  R a2
1, a3

3  R86
�

� R a2
2, a3

8  R a2
1, a3

7 

R87
�

� R a2
3, a3

3  R a2
2, a3

2  R88
�

� R a2
4, a3

7  R a2
2, a3

2 

R89
�

� R a2
3, a3

6  R a2
1, a3

7  R90
�

� R a2
4, a3

6  R a2
1, a3

3 

R91
�

� R a4
5, a4

11  R a3
5, a3

6  R92
�

� R a4
5, a4

11  R a3
5, a3

6 

R93
�

� R a4
7, a4

13  R a3
5, a3

6  R94
�

� R a4
11, a4

14  R a3
6, a3

9 

R95
�

� R a4
12, a4

15  R a3
6, a3

9  R96
�

� R a4
8, a4

16  R a3
6, a3

9 

R97
�

� R a4
5, a4

14  R a3
5, a3

9  R98
�

� R a4
5, a4

14  R a3
5, a3

9 

R99
�

� R a4
7, a4

13  R a3
5, a3

6  R100
�

� R a4
8, a4

16  R a3
6, a3

9 

R101
�

� R a4
2, a4

10  R a3
1, a3

7  R102
�

� R a4
2, a4

4  R a3
1, a3

3 

R103
�

� R a3
3, a4

3  R a3
2, a4

2  R104
�

� R a4
3, a4

11  R a3
1, a3

7 

R105
�

� R a4
9, a4

11  R a3
1, a3

3  R106
�

� R a3
6, a4

11  R a3
9, a4

14 

R107
�

� R a3
5, a4

5  R a3
9, a4

14  R108
�

� R a3
3, a4

3  R a3
2, a4

2 
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Table 7: Resolving neighbourhood sets of TD(4) that are equal to V(TD(4)).

Resolving neighbourhood sets Elements Resolving neighbourhood sets Elements
R150

�

� R a1
1, a3

2  V(C) R151
�

� R a1
1, a3

4  V(C)

R152
�

� R a1
1, a3

8  V(C) R153
�

� R a1
1, a4

2  V(C)

R154
�

� R a1
1, a4

4  V(C) R155
�

� R a1
1, a4

6  V(C)

R156
�

� R a1
1, a4

10  V(C) R157
�

� R a1
1, a4

12  V(C)

R158
�

� R a1
1, a4

15  V(C) R159
�

� R a2
1, a3

2  V(C)

R160
�

� R a2
1, a3

4  V(C) R161
�

� R a2
1, a3

8  V(C)

R162
�

� R a2
2, a3

1  V(C) R163
�

� R a2
2, a3

3  V(C)

R164
�

� R a2
2, a3

5  V(C) R165
�

� R a2
2, a3

6  V(C)

R166
�

� R a2
2, a3

7  V(C) R167
�

� R a2
2, a3

9  V(C)

R168
�

� R a2
3, a3

2  V(C) R169
�

� R a2
3, a3

4  V(C)

R170
�

� R a2
3, a3

8  V(C) R171
�

� R a2
4, a3

2  V(C)

R172
�

� R a2
4, a3

4  V(C) R173
�

� R a2
4, a3

8  V(C)

R174
�

� R a3
1, a3

4  V(C) R175
�

� R a3
1, a3

8  V(C)

R176
�

� R a3
2, a3

5  V(C) R177
�

� R a3
2, a3

6  V(C)

R178
�

� R a3
2, a3

9  V(C) R179
�

� R a4
1, a4

4  V(C)

R180
�

� R a4
1, a4

10  V(C) R181
�

� R a4
1, a4

6  V(C)

R182
�

� R a4
1, a4

12  V(C) R183
�

� R a4
1, a4

15  V(C)

R184
�

� R a4
2, a4

5  V(C) R185
�

� R a4
2, a4

11  V(C)

R186
�

� R a4
2, a4

14  V(C) R187
�

� R a4
2, a4

7  V(C)

R188
�

� R a4
2, a4

8  V(C) R189
�

� R a4
2, a4

13  V(C)

R190
�

� R a4
2, a4

16  V(C) R191
�

� R a4
3, a4

6  V(C)

R192
�

� R a4
3, a4

12  V(C) R193
�

� R a4
3, a4

15  V(C)

R194
�

� R a4
4, a4

7  V(C) R195
�

� R a4
4, a4

8  V(C)

R196
�

� R a4
4, a4

13  V(C) R197
�

� R a4
4, a4

16  V(C)

R198
�

� R a1
1, a4

2  V(C) R199
�

� R a1
1, a4

4  V(C)

R200
�

� R a1
1, a4

6  V(C) R201
�

� R a1
1, a4

12  V(C)

R202
�

� R a1
1, a4

15  V(C) R203
�

� R a2
1, a4

2  V(C)

R204
�

� R a2
1, a4

4  V(C) R205
�

� R a2
1, a4

6  V(C)

R206
�

� R a2
1, a4

12  V(C) R207
�

� R a2
1, a4

4  V(C)

R208
�

� R a2
1, a4

6  V(C) R209
�

� R a2
1, a4

12  V(C)

R210
�

� R a2
2, a4

1  V(C) R211
�

� R a2
2, a4

3  V(C)

R212
�

� R a2
2, a4

5  V(C) R213
�

� R a2
2, a4

7  V(C)

R214
�

� R a2
2, a4

8  V(C) R215
�

� R a2
2, a4

11  V(C)

R216
�

� R a2
2, a4

13  V(C) R217
�

� R a2
2, a4

16  V(C)

R218
�

� R a2
3, a4

2  V(C) R219
�

� R a2
3, a4

4  V(C)

R220
�

� R a2
3, a4

6  V(C) R221
�

� R a2
3, a4

10  V(C)

R222
�

� R a2
3, a4

12  V(C) R223
�

� R a2
3, a4

15  V(C)

R224
�

� R a2
4, a4

2  V(C) R225
�

� R a2
4, a4

4  V(C)

R226
�

� R a2
4, a4

6  V(C) R227
�

� R a2
4, a4

10  V(C)

R228
�

� R a2
4, a4

12  V(C) R229
�

� R a2
4, a4

15  V(C)

R230
�

� R a3
1, a4

2  V(C) R231
�

� R a3
1, a4

4  V(C)

R232
�

� R a3
1, a4

6  V(C) R233
�

� R a3
1, a4

12  V(C)

R234
�

� R a3
1, a4

15  V(C) R235
�

� R a3
2, a4

1  V(C)

R236
�

� R a3
2, a4

3  V(C) R237
�

� R a3
2, a4

5  V(C)

R238
�

� R a3
2, a4

7  V(C) R239
�

� R a3
2, a4

8  V(C)

R240
�

� R a3
2, a4

11  V(C)

Table 8: Resolving neighbourhood sets of TD(4) that are not equal to each other.

Resolving neighbourhood sets Elements
R1 � R a1

2, a1
3  V(C) − a3

2, a3
3, a3

4, a3
5, a3

6, a3
7, a3

8, a3
9 ∪ a4

4, a4
5, a4

6, a4
7, a4

8, a4
10, a4

11, a4
12, a4

13, a4
14, a4

15, a4
16 

R2 � R a2
3, a3

5  V(C) − a3
1, a3

2, a3
3, a3

4, a3
6, a3

7, a3
8, a3

9 ∪ a4
1, a4

2, a4
3, a4

4, a4
9, a4

10, a4
11, a4

12, a4
13, a4

14, a4
15, a4

16 

R3 � R a2
4, a3

9  V(C) − a3
1, a3

2, a3
3, a3

4, a3
5, a3

6, a3
7, a3

8 ∪ a4
1, a4

2, a4
3, a4

4, a4
5, a4

6, a4
7, a4

8, a4
9, a4

10, a4
11, a4

12, a4
13 
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that ρ is not a resolving function which is a contradiction.
&erefore, τ is a minimal resolving function that attains
minimum |τ| for C. Since 1≤ t≤ 3Rt has a nonempty in-
tersection, thus there exists another minimal resolving
function τ of C such that |τ|≤ |τ|. &us, assigning (1/λ) to
the vertices ofC in ∪ 3t�1Rt and calculating the summation of
all the weights, we get dimfrac(C) � 

δ
t�1 (1/λ)≤ (12n(n2 +

3n + 2)/6n(n2 + 3n + 2)) � 2. &erefore, we arrive at the
following result:

1< dimfrac(C)≤ 2. (24)
□

7. Conclusions

We conclude our discussion by the following remarks:

(i) In this article, we have made a characterization of
graphs having the FMD as unity

(ii) It is computed that the FMD of the path is 1 that
strengthens the result proved in [13]

(iii) We have calculated the extremal values of FMD of
TD(n) as (i) for n ≡ 0(mod2), 1< dimfrac(C)≤ 2
and (ii) for n ≡ 1(mod2),
1< dimfrac(C)≤ 2(n3 + 6n2 + 11n − 30/n3 + 3n2 +

5n + 3)

(iv) Now, we close our discussion with the open
problem that investigates the families of graphs
other than Pn having FMD as unity

Data Availability

All the data are included within this article. However, the
reader may contact the corresponding author for more
details of the data.

Conflicts of Interest

&e authors have no conflicts of interest.

References

[1] P. J. Slater, “Leaves of trees,” Congruent number, vol. 14, no. 1,
pp. 549–559, 1975.

[2] P. J. Slater, “Domination and location in acyclic graphs,”
Networks, vol. 17, no. 1, pp. 55–64, 1987.

[3] F. Harary and R. A. Melter, “On the metric dimension of a
graph,” Ars Combinatoria, vol. 2, no. 1, pp. 191–195, 1976.

[4] I. Javaid, M. T. Rahim, and K. Ali, “Families of regular graphs
with constant metric dimension,” Utilitas Mathematica,
vol. 75, no. 1, pp. 21–33, 2008.

[5] I. Tomescu and I. Javaid, “On the metric dimension of the
Jahangir graph,” Bulletin mathématique de la Société des
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Graph theory is a subdivision of discrete mathematics. In graph theory, a graph is made up of vertices connected through edges.
Topological indices are numerical parameters or descriptors of graph. Topological index tells the symmetry of compound and
helps us to compare those mathematical values, with boiling point, melting point, density, viscosity, hydrophobic surface area,
polarity, etc., of that compound. In the present research paper, degree-based topological indices of Zeolite Socony Mobil-5 are
calculated. Names of those topological indices are Randić index, first Zagreb index, general sum connectivity index, hyper-Zagreb
index, geometric index, ABC index, etc.

1. Introduction

In graph theory, the term graph was suggested in eighteenth
century by Leonhard Euler (1702–1782). He was a Swiss
mathematician. He manipulated graphs to solve Konigsberg
bridge problem [1–3]. Chemical graph theory is a topological
division of mathematical chemistry that practices graph
theory to model chemical structures mathematically. It
studies chemistry and graph theory to view the detailed
physical and chemical properties of compounds. A graph
G� (V,E) is comprised through a set of vertices V and an
edges set E [4].

Topological indices study the properties of graphs that
remain constant/unchanged after continuous change in
structure. Topological indices explain formation and sym-
metry of chemical compounds numerically and then help in
advancement of QSAR (qualitative structure activity rela-
tionship) and QSPR (quantitative structure property rela-
tionship). Both QSAR and QSPR are used to build a relation
among molecular structure and mathematical tools. (ese
descriptors are helpful to correlate physio-chemical

properties of compounds (enthalpy, boiling and melting
point, strain energy, etc.) that is why these descriptors have a
large number of applications in chemistry, biotechnology,
nanotechnology, etc.

Topological indices are invariants of graph that is why
topological indices are independent of pictorial represen-
tation of graph. In other words, it is a numerical value that
describes the structure of chemical graph [5, 6]. Among the
three types of topological indices, degree-based indices have
great importance. (e need to define these indices is to
explain physical properties of every chemical structure with
a number. Continuous change in shape does not affect the
value of topological index. Topological indices are useful in
the study of QSAR and QSPR because topological indices
show the physical properties and convert the chemical
structure into a numerical value.

Distance-based topological indices deal with distances of
graph, degree-based topological indices use the concept of
degree, and counting-based topological index depends upon
counting the edges. Randic explained some characteristics of
a topological index. Some of them are explained here.
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A topological index should

(i) have architectural interpretation
(ii) be well-defined
(iii) be related with at least one physio-chemical

property of compound
(iv) be uncomplicated
(v) display an appropriate size dependence
(vi) modify with modification in structure
(vii) locally defined
(viii) have related with other indices

Topological indices show translations of chemical
compounds into distinctive structural descriptors as a nu-
merical value that can be used by QSAR [7, 8]. Topological
indices are awfully beneficial in describing the properties of
given compound. Chemists can use these indices to correlate
considerable range of characteristics. Medicine industry is
developing new drug designs that are useful for humans,
plants, and animals. Many graph theoretical techniques have
been established for forecasting of medicinal, environ-
mental, and physio-chemical properties of compounds. It is
not astonishing to see such a great victory of graph theory
and topological indices in analyzing biological and physical
characteristics of chemical compounds.

1.1.ZSM. Zeolites (alumino silicate) are tetrahedrally-linked
structures based on silicate and aluminate tetrahedral.
Structural chemistry deals with the framework of zeolites; it
also works out on the arrangement of cations and other
molecules in pore spaces. It belongs to a pentasil class of
zeolite. It consists of silica (Si) and alumina (Al). It is named
as ZSM-5 due to pore diameter of five angstrom; also, it has
Si/Al ratio of five [9]. Size of the molecule depends on the
type of structure. It is a crystalline powder. Geometry of
pores can be connected in channels in one, two, or three
dimensions.

1.1.1. Motivations. (e structure of ZSM-5 has great im-
portance in the field of chemistry, petroleum, and medicine
industry. ZSM-5 is useful because of its stability, favorable
selectivity, metal tolerance, and flexibility. It is also useful for
the treatment of fertilizers. It helps to separate oxygen and
nitrogen in the air. (is unique structure is useful in pe-
troleum industry as a catalyst. It is generally used in the
conversion of methanol to gasoline as well as refining of oil.
(rough dehydration, it changes alcohol into petrol. Effi-
ciency of LPG can also be increased through ZSM-5 catalyst.
It keeps unusual hydrophobicity that is useful to separate
hydrocarbons from polar compounds. Basic reason of cal-
culation of topological indices is the industrial uses of ZSM-5
structure.

(1) First General Zagreb Index. (is index was first
presented by Li and Zhao. Its mathematical form is
defined in [10–12] as follows:

Mα(G) � 
p∈V(G)

dp 
α
. (1)

First and Second Zagreb Index. (ere are two
Zagreb groups of indices, denoted by M1 and M2
[13–15]. Both of these indices are explained in 1970s
by Gutman and Tranjistic.

(2) First Zagreb Index. It is defined in [16, 17]:

M1(G) � 
pq∈E(G)

dp + dq .
(2)

(3) Second Zagreb Index. It is defined in [11, 16]:

M2(G) � 
pq∈E(G)

dp × dq .
(3)

Multiple and polynomial Zagreb indices:
In 2012, new kinds of Zagreb indices were intro-
duced by Ghorbani and Azimi, named as first and
second multiple Zagreb indices represented as
PM1(G) and PM2(G) [11, 15, 18]. (e polynomials
are used to find the Zagreb index. First and second
Zagreb polynomial indices are written as M1(G, j)

and M2(G, j).
(4) First and second multiple Zagreb indices:

PM1(G) � 
pq∈E(G)

dp + dq ,
(4)

PM2(G) � 
pq∈E(G)

dp × dq .
(5)

(5) First and second polynomial Zagreb indices:

M1(G, j) � 
pq∈E(G)

j
dp+dq( 

, (6)

M2(G, j) � 
pq∈E(G)

j
dp×dq( 

. (7)

(6) Hyper-Zagreb Index. Modified Zagreb index is
called hyper-Zagreb and that was introduced in
2013 by Shirdil, Rezapour, and Sayadi [19–21],
mathematically written as

HM(G) � 
pq∈E(G)

dp + dq 
2
. (8)

(7) Second modified Zagreb index:

M2(G) � 
pq∈E(G)

1
dp × dq 

. (9)

(8) Reduced second Zagreb index. (is index was
proposed by Furtula and it is defined as

RM2(G) � 
pq∈E(G)

dp − 1 × dq − 1 .
(10)
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(9) Atom Bond Connectivity Index. It was written in
1998 by Ernesto Estrada and Torres [15, 22–24]. It is
used to model thermodynamic characteristics of
organic compounds (especially alkanes).
Mathematically,

ABC(G) � 
pq∈E(G)

���������
dp + dq − 2

dpdq



. (11)

(10) Fourth Atom Bond Connectivity Index. In 2010,
Ghorbani et al. introduced this index [13, 14]. It is
written as ABC4 index:

ABC4(G) � 
pq∈E(G)

���������
Sp + Sq − 2

SpSq



. (12)

(11) General Randić Connectivity Index. First degree-
based TI was proposed in 1975 byMillan Randić. At
that time, it was called as branching index [8, 17, 18]
and used to measure the branching of hydrocar-
bons. In 1998, Eddrös and Bollobás wrote the
general term of this index by changing the factor
(−1/2) with αεI R [25]. It is defined as the total sum
of weights (d(p)d(q))α of all the edges pq, d(p) is
the degree of p, d(q) is the degree of q, and α ε I R.

Rα(G) � 
pq∈E(G)

dpdq 
α
. (13)

(12) Randić index:
(is index can also be called as first genuine degree-
based topological index [15, 23]. Randić index is
defined as

R(G) � 
pq∈E(G)

1
����
dpdq

 . (14)

(13) Reciprocal Randić Index. (is index was first
studied by Favaron, Mahéo, and Saclé [26]. (e
index is helpful in modeling of boiling points of
hydrocarbons. It is defined as

RR(G) � 
pq∈E(G)

����
dpdq


. (15)

(14) Reduced Reciprocal Randić Index. It is the analogue
of reciprocal Randić index [26, 27]. It is defined as
follows:

RRR(G) � 
pq∈E(G)

��������������

dp − 1  dq − 1 



. (16)

(15) Geometric Arithmetic Index. GA index was pro-
posed by Vukicevic̀ and Furtula [6, 14, 15]; it is
stated as

GA(G) � 
pq∈E(G)

2
����
dpdq



dp + dq

. (17)

(16) Fifth Geometric Arithmetic Index. In 2011, Grovac
et al. introduced this index [7]. Mathematically, it is
written as

GA5(G) � 
pq∈E(G)

2
����
SpSq



Sp + Sq

. (18)

(17) Forgotten Index. (is index was given by Gutman
and Furtula in 2015 [16, 28, 29]. It is denoted by F
(G) or F index:

F(G) � 
pq∈E(G)

d
2
p + d

2
q .

(19)

(18) General Sum Connectivity Index. (e index was
proposed by Zhou and Trinajstić [15, 23, 30].
Mathematically,

χα(G) � 
pq∈E(G)

dp + dq 
α
, (20)

where α ε I R.
(19) Symmetric Division Index. In 2010, Vukicevic̀ and

Furtula proposed this useful index denoted by SD
(G) [28, 31, 32]:

SD(G) � 
pq∈E(G)

d
2
p + d

2
q

dp × dq 
. (21)

(20) Harmonic Index. Siemion Fajtlowicz wrote a
computer program that works for the automatic
generation of conjectures in graph theory [11, 15].
He also examined the relationship between graph
invariants; while doing this work, he found a vertex
degree-based quantity. Later on, (in 2012) Zhang
rediscovered that unknown quantity and named it
as harmonic index. It is written as

H(G) � 
pq∈E(G)

2
dp + dq 

. (22)

2. Topological Indices of ZSM-5 Graphs

Topological indices remain constant for a given compound;
they do not depend on the direction or position of graph.We
can predict many physical properties of compounds such as
solubility, soil sorption, boiling and melting properties,
biodegradability, toxicity, vaporization, and thermodynamic
properties.

2.1. Description of ZSM-5 Graph. (e graph of ZSM-5 is
given in Figure 1 and it is represented by G∗. (ere are
24pq + 4p vertices and 36pq + 2p − 2q edges in G∗.

Theorem 1. Let G∗ be a graph of ZSM-5. *en, first general
Zagreb index is
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Mα G
∗

(  � 4p2α +(8p + 8q)2α +(36pq − 10p − 10q)3α.

(23)

Proof. G∗ is given in Figure 1. (ere are 24pq + 4p vertices,
8p + 4q of degree 2 vertices, and 24pq − 4p − 4q of degree 3
vertices.

Also, Mα(G∗) is defined as (1):

Mα(G) � 
p∈V(G)

dp 
α
. (24)

We get Mα(G∗) by using the following formula:

Mα G
∗

(  � 4p2α +(8p + 8q)2α +(36pq − 10n − 10p)3α.

(25)
□

Theorem 2. G∗ is the graph of ZSM-5. First Zagreb index is
as follows:

M1(G) � −4p − 20q + 216pq. (26)

Proof. Assume G∗ is a graph of ZSM-5. (en, E(G∗) is
cleaved into 3 classes.

(e 1st edges group E1(G∗) contains 4p edges pq, and
dp � dq � 2.
(e 2nd class E2(G∗) has 8p + 8q edgespq; here, dp � 2,
dq � 3.
(e 3rd arc division E3(G∗) has 36pq − 10p − 10q arcs
pq; here, dp � 3, dq � 3.

It is easily understood that

E1 G
∗

( 


 � e2,2,

E2 G
∗

( 


 � e2,3,

E3 G
∗

( 


 � e3,3.

(27)

We define M1(G) in equation (29) as

□

M1(G) � 
pq∈E(G)

dp + dq ,

M1(G) � 
pq∈E1(G)

dp + dq  + 
pq∈E2(G)

dp + dq  + 
pq∈E3(G)

dp + dq 

� E1(G)


4 + E2(G)


5 + E3(G)


6

� (4p)4 +(8p + 8q)5 +(36pq − 10p − 10q)6

� 4p(4) + 8p(5) + 8q(5) + 36pq(6) − 10p(6) − 10q(6).

(28)

Theorem 3. G∗ is a graph of ZSM-5 and its 1st and 2nd
polynomial Zagreb index is

(1) M1(G∗, j) � (4p)j4 + (8p + 8q)j5 + (36pq − 10p −

10q)j6;
(2) M2(G∗, j) � (4p)j4 + (8p + 8q)j6 + (36pq − 10p−

10q)j9.

Proof. G∗ is a graph of ZSM-5. E(G∗) is divided into three
parts.

E1(G∗) has 4n edges pq (dp � dq � 2), E2(G∗) has 8n +

8m arcs pq (dp � 2, dq � 3), and E3(G∗) keeps
36pq − 10p − 10q arcs pq and (dp � 3, dq � 3).

By using the definition of M1(G∗, j) in equation (6):

1

3

q

p

2

32

Figure 1: (p, q) form of graph of ZSM-5.
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M1(G, j) � 
pq∈E(G)

j
dp+dq( 

, (29)

M1 G
∗
, j(  � 

pq∈E1(G)

j
dp+dq( 

+ 
pq∈E2(G)

j
dp+dq( 

+ 
pq∈E3(G)

j
dp+dq( 

� 
pq∈E1(G)

j
4

+ 
pq∈E2(G)

j
5

+ 
pq∈E3(G)

j
6

� E1(G)


j
4

+ E2(G)


j
5

+ E3(G)


j
6

� (4p)j
4

+(8p + 8q)j
5

+(36pq − 10p − 10q)j
6
.

(30)

From (3), we have

M2(G, j) � 
pq∈E(G)

j
dp×dq( 

M2 G
∗
, j(  � 

pq∈E1 G∗( )

j
dp×dq( 

+ 
pq∈E2 G∗( )

j
dp×dq( 

+ 
pq∈E3 G∗( )

j
dp×dq( 

� 
pq∈E1 G∗( )

j
4

+ 
pq∈E2 G∗( )

j
6

+ 
pq∈E3 G∗( )

j
9

� E1 G
∗

( 


j
4

+ E2 G
∗

( 


j
6

+ E3 G
∗

( 


j
9

� (4p)j
4

+(8p + 8q)j
6

+(36pq − 10p − 10q)j
9
,

(31)

which completes the proof. □

Theorem 4. First and second multiple Zagreb index of G∗ of
ZSM-5 is given as

(1) PM1(G∗) � 44p × 58p+8q × 636pq− 10p− 10q;
(2) PM2(G∗) � 44p × 68p+8q × 936pq− 10p− 10q.

Proof. E(G∗) is classified into 3 edge classes based on the
degree of end vertices. E1(G∗) has 4p edges pq, where
dp � dq � 2. E2(G∗) contains 8p + 8q edges pq, where
dp � 2, dq � 3. E3(G∗) contains 36pq − 10p − 10q edges pq,
where dp � 3, dq � 3. Also consider |E1(G∗)| � e2,2,
|E2(G∗)| � e2,3, and |E3(G∗)| � e3,3. We define PM1(G∗) as
(4):

PM1 G
∗

(  � 
pq∈E G∗( )

dp + dq ,

PM1 G
∗

(  � 
pq∈E1(G)

dp + dq  × 
pq∈E2(G)

dp + dq  × 
pq∈E3(G)

dp + dq 

� 4 E1(G)| | × 5 E2(G)| | × 6 E3(G)| | � 44p
× 58p+8q

× 636pq− 10p− 10q
.

(32)

Now, we define PM2(G∗) as (5):

PM2(G) � 
pq∈E(G)

dp × dq ,

PM2 G
∗

(  � 
pq∈E1 G∗( )

dp × dq  × 
pq∈E2 G∗( )

dp × dq  × 
pq∈E3 G∗( )

dp × dq 

� 4 E1 G∗( )| | × 6 E2 G∗( )| | × 9 E3 G∗( )| |

� 44p
× 68p+8q

× 936pq− 10p− 10q
,

(33)
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which completes the proof. □ Theorem 5. *en, hyper-Zagreb of G∗ is written as follows:

HM G
∗

(  � 4p(16) + 8p(25) + 8q(25) + 36pq(36) − 10p(36) − 10q(36). (34)

Proof. E(G∗) is divided into 3 edge divisions based on the
degree of end vertices. E1(G) holds 4p edges pq, where
dp � dq � 2. E2(G) holds 8p + 8q edges pq, where dp � 2,
dq � 3. E3(G) holds 36pq − 10p − 10q edges pq, where
dp � 3, dq � 3. |E1(G∗)| � e2,2,

E2 G
∗

( 


 � e2,3,

E3 G
∗

( 


 � e3,3.
(35)

Since, we have (8),

HM(G) � 
pq∈E(G)

dp + dq 
2
,

HM G
∗

(  � 
pq∈E1 G∗( )

dp + dq 
2

+ 
pq∈E2 G∗( )

dp + dq 
2

+ 
pq∈E3 G∗( )

dp + dq 
2

� 16 E1 G
∗

( 


 + 25 E2 G
∗

( 


 + 36 E3 G
∗

( 




� 16(4p) + 25(8p + 8q) + 36(36pq − 10p − 10q)

� −96p − 160q + 1296pq,

(36)

which completes our proof. □

Theorem 6. G∗ is the graph of ZSM-5. *e second modified
Zagreb index is given as

M2 G
∗

( (G) �
11
9

p +
2
9

q + 4pq. (37)

Proof. Consider G∗ to be a graph of ZSM-5. E(G∗) is
divided into 3 sets based on the degree of end vertices.
E1(G∗) contains 4n edges pq, where dp � dq � 2. E2(G∗)

holds 8p + 8q edges pq, where dp � 2, dq � 3. E3(G∗) holds
36pq − 10p − 10q edges pq, where dp � 3, dq � 3.
|E1(G∗)| � e2,2, |E2(G∗)| � e2,3, and |E3(G∗)| � e3,3.

We know the definition of M2(G∗) as (9):

M2(G) � 
pq∈E(G)

1
dp × dq 

,

M2 G
∗

(  � E1 G
∗

( 



1
4

  + E2 G
∗

( 



1
6

  + E3 G
∗

( 



1
9

 

�
(4p)

4
+

(8p + 8q)

6
+

(36pq − 10p − 10q)

9

�
11
9

p +
2
9

q + 4pq.

(38)
□

Theorem 7. Let G∗ be the graph of ZSM-5. *en, reduced
second Zagreb index is
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RM2 G
∗

(  � 156pq − 8p − 8q. (39)

Proof. Assume G∗ to be a graph of ZSM-5. E(G∗) is divided
into parts.

E1(G∗) holds 4p edges pq, where dp � dq � 2.
E2(G) has 8p + 8q lines pq, where dp � 2, dq � 3.
E3(G∗) holds 36pq − 10p − 10q lines pq, where dp � 3,
dq � 3. Also consider

E1 G
∗

( 


 � e(2,2),

E2 G
∗

( 


 � e(2,3),

E3 G
∗

( 


 � e(3,3).

(40)

From equation (10), we have the definition of reduced
second Zagreb index:

RM2(G) � 
pq∈E(G)

dp − 1 × dq − 1 ,

RM2 G
∗

(  � E1 G
∗

( 


(2 − 1)(2 − 1) + E2 G
∗

( 


(2 − 1)(3 − 1) + E3 G
∗

( 


(3 − 1)(3 − 1)

� (4p) +(8p + 8q)(2) +(36pq − 10p − 10q)(4)

� 4p + 8q(2) + 8p(2) + 36pq(4) − 10p(4) − 10q(4).

(41)

□
Theorem 8. Atom bond connectivity index of G∗ of ZSM-5 is
as follows:

ABC G
∗

(  � 12p
1

2
�
2

√  + 8q
1

2
�
2

√  + 36pq
2
3

 

− 10p
2
3

  − 10q
2
3

 .

(42)

Proof. G∗ is our graph of ZSM-5. E(G∗) is divided into
three edge groups.

E1(G∗) holds 4n edges pq, (dp � dq � 2).
E2(G∗) keeps 8n + 8m number of lines pq, and
(dp � 2, dq � 3).
E3(G∗) has 36mn − 10m − 10n lines pq, where
(dp � 3, dq � 3). We define ABC(G) in (11):

□

ABC(G) � 
pq∈E(G)

���������
dp + dq − 2

dpdq



,

ABC G
∗

(  � E1 G
∗

( 



1

2
�
2

√ + E2 G
∗

( 



1

2
�
2

√ + E3 G
∗

( 



2
3

� (4p)
1

2
�
2

√ +(8p + 8q)
1

2
�
2

√ +(36pq − 10p − 10q)
2
3

� 4p
1
2

 
�
2

√
+ 8p

1
2

  + 8q
1
2

  
�
2

√
+ 36pq

2
3

 

− 10p
2
3

  − 10q
2
3

 .

(43)

Theorem 9. ABC-4 index of ZSM-5 is as follows:

ABC4 G
∗

(  � 4p
2

5
�
2

√  +
4

7
��
14

√ + 8p
1

20
���
110

√  − 4 + 4q
1

42
���
462

√ 

+ 4p
1
2

  + 2q
1

3
�
2

√  + 2p
1

8
��
14

√  + 12q
1

12
��
30

√ 

+ 8p
1

12
��
30

√  + 36pq
4
9

  − 24p
4
9

  − 20q
4
9

 .

(44)
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Proof. ZSM-5 has 36pq+ 2p− 2q number of edges.
Consider an arc set relies on degree summation of

neighbors of end vertices and E(G∗) is divided into nine
disjoint groups of edges, such as

Ei G
∗

( , i � 5, 6, . . . , 13;

here,

E G
∗

(  � 

13

i�5
Ei G
∗

( .

(45)

E5(G∗) holds 4p number of edges pq, where Sp � Sq � 5,
E6(G∗) has 4 lines pq, where Sp � 5 and Sq � 7, E7(G∗) has
8p − 4 edges pq, where Sp � 5 and Sq � 8, E8(G∗) has 4q + 4
edges pq, where Sp � 6 and Sq � 7, E9(G∗) contains 4p − 4
edges pq, where Sp � 6 and Sq � 8, E10(G∗) holds 2q + 4
lines pq, where Sp � 7 and Sq � 9, E11(G∗) consists of 2p

number of arcs pq, where Sp � Sq � 8, E12(G∗) has 12p +

8q − 16 lines pq, where Sp � 8 and Sq � 9, and E13(G∗)

contains 36pq − 24p − 20q + 12 number of edges pq, where
Sp � Sq � 9. (e index is defined in equation (12):

ABC4(G) � 
pq∈E(G)

���������
Sp + Sq − 2

SpSq



,

ABC4 G
∗

(  �

�������
5 + 5 − 2
5 × 5



E5 G
∗

( 


 +

�������
5 + 7 − 2
5 × 7



E6 G
∗

( 


 +

�������
5 + 8 − 2
5 × 8



E7 G
∗

( 




+

�������
6 + 7 − 2
6 × 7



E8 G
∗

( 


 +

�������
6 + 8 − 2
6 × 8



E9 G
∗

( 


 +

�������
7 + 9 − 2
7 × 9



E10 G
∗

( 




+

�������
8 + 8 − 2
8 × 8



E11 G
∗

( 


 +

�������
8 + 9 − 2
8 × 9



E12 G
∗

( 


 +

�������
9 + 9 − 2
9 × 9



E13 G
∗

( 




�

��
8
25



E5 G
∗

( 


 +

��
10
35



E6 G
∗

( 


 +

��
11
40



E7 G
∗

( 


 +

��
11
42



E8 G
∗

( 




+

��
12
48



E9 G
∗

( 


 +

��
14
63



E10 G
∗

( 


 +

��
14
64



E11 G
∗

( 


 +

��
15
72



E12 G
∗

( 




+

��
17
81



E13 G
∗

( 


.

(46)

After putting the values of E(G∗) � ∪ 13i�5Ei(G∗), we get

�

��
8
25



(4p) +

��
10
35



(4) +

��
11
40



(8p − 4) +

��
11
42



(4q + 4) +

��
12
48



(4q − 4)

+

��
14
63



(2q + 4) +

��
14
64



(2p) +

��
15
72



(12p + 8q − 16) +

��
16
81



(36pq − 24p − 20q + 12),

(47)

and after simplification,

�
8

5
�
2

√ p +
4

7
��
14

√ +
1

20
���
110

√ (8p − 4) +
1

42
���
462

√ (4q + 4) −
62
9

q +
10
3

+
1

3
�
2

√ (2q + 4) +
1

4
��
14

√ p +
1

12
��
30

√ (12p + 8q − 16) + 16pq −
32
3

q,

(48)

□
Theorem 10. Let G∗ be the graph of ZSM-5. Fifth generation
geometric arithmetic index is as follows:

8 Journal of Chemistry



GA5(G) � 6p +
2

3
��
35

√ +
4
13

(8p − 4)
��
10

√
+

4
13

q(2
��
42

√
) +

2297
9282

+
2
7

q(8
�
3

√
)

+
1
4

q(3
�
7

√
) +

12
17

p(12
�
2

√
) +

8
17

p(12
�
2

√
) + 2pq(18) −

4
3

p(18)

−
10
9

q(18).

(49)

Proof. ZSM-5 has 36pq+ 2p− 2q number of edges.
Consider an arc set relies on degree summation of

neighbors of end vertices and E(G∗) is divided into nine
disjoint groups of edges, such as

Ei G
∗

( , i � 5, 6, . . . , 13;

here,

E G
∗

(  � 

13

i�5
Ei G
∗

( .

(50)

E5(G∗) holds 4p number of edges pq, where Sp � Sq � 5,
E6(G∗) has 4 lines pq, where Sp � 5 and Sq � 7, E7(G∗) has
8p − 4 edges pq, where Sp � 5 and Sq � 8, E8(G∗) has 4q + 4
edges pq, where Sp � 6 and Sq � 7, E9(G∗) contains 4p − 4
edges pq, where Sp � 6 and Sq � 8, E10(G∗) holds 2q + 4
lines pq, where Sp � 7 and Sq � 9, E11(G∗) consists of 2p

number of arcs pq, where Sp � Sq � 8, E12(G∗) has 12p +

8q − 16 lines pq, where Sp � 8 and Sq � 9, and E13(G∗)

contains 36pq − 24p − 20q + 12 number of edges pq, where
Sp � Sq � 9. (e index is defined in equation (18):

GA5(G) � 
pq∈E(G)

2
������
Sp × Sq



Sp + Sq

,

GA5 G
∗

(  �
2

����
5 × 5

√

5 + 5
E5 G
∗

( 


 +
2

����
5 × 7

√

5 + 7
E6 G
∗

( 


 +
2

����
5 × 8

√

5 + 8
E7 G
∗

( 




+
2

����
6 × 7

√

6 + 7
E8 G
∗

( 


 +
2

����
6 × 8

√

6 + 8
E9 G
∗

( 


 +
2

����
7 × 9

√

7 + 9
E10 G

∗
( 




+
2

����
8 × 8

√

8 + 8
E11 G

∗
( 


 +

2
����
8 × 9

√

8 + 9
E12 G

∗
( 


 +

2
����
9 × 9

√

9 + 9
E13 G

∗
( 


.

(51)

After putting the values E(G∗) � ∪ 13i�5Ei(G∗), we get

�
2

��
25

√

10
(4p) +

2
��
35

√

12
(4) +

2
��
40

√

13
(8p − 4) +

2
��
42

√

13
(4q + 4) +

2
��
48

√

14
(4q − 4)

+
2

��
63

√

16
(2q + 4) +

2
��
64

√

16
(2p) +

2
��
72

√

17
(12p + 8q − 16) +

2
��
81

√

18
(36pq − 24p − 20q + 12).

(52)

After simplification,

� −18p +
2

3
��
35

√ +
4
13

��
10

√
(8p − 4) +

2
13

��
42

√ (4q + 4) +
4

7
�
3

√ (4q − 4)

+
3

8
�
7

√ (2q + 4) +
12
17

�
2

√
(12p + 8q − 16) + 36pq − 20q + 12.

(53)

□
Theorem 11. Let G∗ be the graph of ZSM-5. *en, general
Randic connectivity index is as follows:
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Rα G
∗

(  � 4p 4α(  + 8p 6α(  + 8q 6α(  + 36pq 9α( 

− 10p 9α(  − 10q 9α( .
(54)

Proof. (e graph G∗ of zeolite encounters 36pq + 2p − 2q

edges and 24pq + 4p vertices.
(e numeral of vertices of degree 2 are 8p + 4q and of

degree 3 are 24pq − 4p − 4q. E of G∗ are 36pq + 2p − 2q.
E(G∗) is divided into three edge groups. E1(G∗) has 4p

edges pq, where dp � dq � 2, E2(G∗) contains 8p + 8q edges
pq, where dp � 2 and dq � 3, and E3(G∗) supports 36pq −

10p − 10q arcs pq, where dp � dq � 3.
By using definition of Randić index (13),

Rα(G) � 
pq∈E(G)

dpdq 
α
. (55)

Now, we have

Rα G
∗

(  � 
pq∈E1 G∗( )

dpdq 
α

+ 
pq∈E2 G∗( )

dpdq 
α

+ 
xy∈E3 G∗( )

dpdq 
α

� 4 E1 G
∗

( 


 + 6 E2 G
∗

( 


 + 9 E3 G
∗

( 




� 4(4p) + 6(8p + 8q) + 9(36pq − 10p − 10q).

(56)

After simplification, we get

� −26p − 42q + 324pq. (57)
□

Theorem 12. Let G∗ be the graph of ZSM-5. *en, the re-
ciprocal Randić index is as follows:

RRR G
∗

(  � −
4
3

p +
1

6
�
6

√ (8p + 8q) + 12pq −
10
3

q. (58)

Proof. (e graph G∗ of zeolite encounters 36mn + 2n − 2m

edges and 24pq + 4p vertices.

(e numeral of vertices of degree 2 are 8p + 4q and of
degree 3 are 24pq − 4p − 4q. E of G∗ are 36pq + 2p − 2q.
E(G∗) cleaves into three disunite edge groups:

E G
∗

(  � E1 G
∗

( ∪E2 G
∗

( ∪E3 G
∗

( . (59)

E1(G∗) has 4p arcs pq, where dp � dq � 2, E2(G∗)

contains 8p + 8q edges pq, where dp � 2 and dq � 3, and
E3(G∗) supports 36pq − 10p − 10q arcs pq, where
dp � dq � 3.

We define this index in equation (16):

□

RRR(G) � 
pq∈E(G)

��������������

dp − 1  dq − 1 



,

RRR G
∗

(  � 
pq∈E1 G∗( )

��������������

dp − 1  dq − 1 



+ 
pq∈E2 G∗( )

��������������

dp − 1  dq − 1 



+ 
pq∈E3 G∗( )

��������������

dp − 1  dq − 1 



� 1 E1 G
∗

( 


 +
�
2

√
E2 G
∗

( 


 + 2 E3 G
∗

( 




� (4p) +
�
2

√
(8p + 8q) + 2(36pq − 10p − 10q)

� −16p +
�
2

√
(8p + 8q) + 72pq − 20m.

(60)

Theorem 13. Consider G∗ to be the graph of ZSM-5. Geo-
metric arithmetic index is described as follows:

GA G
∗

(  �
2

5
�
6

√ (8p + 8q) + 36pq − 10p − 10q. (61)

Proof. (e graph G∗ of zeolite encounters 36pq + 2p − 2q

edges and 24pq + 4p vertices. (e grouping of the vertices is
given as follows:

(e vertices of degree two are 8p + 4q and of degree
three are 24pq − 4p − 4q. Cardinality of E of G∗ is
36pq + 2p − 2q. (e arc group E(G∗) cleaves in 3 disjoint
arc groups that rely on the degrees of the end vertices, such
as

E G
∗

(  � E1 G
∗

( ∪E2 G
∗

( ∪E3 G
∗

( . (62)

E1(G∗) has 4p lines pq, where dp � dq � 2.
E2(G∗) has 8p + 8q lines pq, where dp � 2 and dq � 3.
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E3(G∗) supports 36pq − 10p − 10q lines pq, where
dp � dq � 3.

We define this index in equation (17) as

□

GA(G) � 
pq∈E(G)

2
����
dpdq



dp + dq

,

GA G
∗

(  � 
pq∈E1 G∗( )

2
����
dpdq



dp + dq

+ 
pq∈E2 G∗( )

2
����
dpdq



dp + dq

+ 
xy∈E3 G∗( )

2
����
dpdq



dp + dq

� 1 E1 G
∗

( 


 +
2

5
�
6

√  E2 G
∗

( 


 + 1 E3 G
∗

( 




� (4p) +
2

5
�
6

√ (8p + 8q) +(36pq − 10p − 10q)

� −6p +
2

5
�
6

√  + 36pq − 10q.

(63)

Theorem 14. Forgotten index of graph G∗ of ZSM-5 is as
follows:

F G
∗

(  � 4p(4) + 8p(13) + 8q(13) + 36pq(18) − 10p(18)

− 10q(18).

(64)

Proof. (e graph G∗ encounters 36pq + 2p − 2q edges and
24pq + 4p vertices.

(e points of degree 2 are 8p + 4q and the points of
degree 3 are 24pq − 4p − 4q. (e cardinality edge group E of
G∗ is 36pq + 2p − 2q. E(G∗) cleaves into three disjoint line
groups that are as follows: E1(G∗) holds 4n arcs and
dp � dq � 2. E2(G∗) supports 8n + 8m arcs pq, where dp � 2
and dq � 3, and E3(G∗) has 36mn − 10n − 10m arcs pq,
where dp � dq � 3.

By using the definition of forgotten index (19),

□

F(G) � 
pq∈E(G)

d
2
p + d

2
q ,

F G
∗

(  � 
pq∈E1 G∗( )

d
2
p + d

2
q  + 

pq∈E2 G∗( )

d
2
p + d

2
q  + 

xy∈E3 G∗( )

d
2
p + d

2
q 

� 8 E1 G
∗

( 


 + 13 E2 G
∗

( 


 + 18 E3 G
∗

( 




� 8(4p) + 13(8p + 8q) + 18(36pq − 10p − 10q)

� −44p − 76q + 648pq.

(65)

Theorem 15. Let G∗ be the graph of ZSM-5, then the general
sum connectivity index is as follows:

Xα G
∗

(  � 4p 4α(  + 8p 5α(  + 8q 5α(  + 36pq 6α( 

− 10p 6α(  − 10q 6α( .
(66)

Proof. (e graph G∗ of zeolite encounters 36pq + 2p − 2q

edges and 24pq + 4p vertices.
Vertices of degree two are 8n + 4m and of degree three

are 24pq − 4p − 4q. E of G∗ are 36pq + 2p − 2q. E(G∗)

cleaves into 3 disjoint edge groups. E1(G∗) holds 4p edges
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pq, where dp � dq � 2, E2(G∗) holds 8p + 8q edges pq,
where dp � 2 and dq � 3, E3(G∗) holds 36pq − 10p − 10q

edges pq, where dp � dq � 3. From (20), we get the defi-
nition of general sum connectivity index:

□

χα(G) � 
pq∈E(G)

dp + dq 
α
,

χα G
∗

(  � 
pq∈E1 G∗( )

dp + dq 
α

+ 
pq∈E2 G∗( )

dp + dq 
α

+ 
xy∈E3 G∗( )

dp + dq 
α

� (4)
α

E1 G
∗

( 


 +(5)
α

E2 G
∗

( 


 +(6)
α

E3 G
∗

( 




� (4)
α
(4p) +(5)

α
(8p + 8q) +(6)

α
(36pq − 10q − 10p).

(67)

Theorem 16. G∗ is the graph of ZSM-5 and its symmetric
division index is as follows:

SD G
∗

(  �
16
3

p −
8
3

q + 72pq. (68)

Proof. G∗ of zeolite encounters 36pq + 2p − 2q edges and
24pq + 4p vertices.

(e number of vertices of degree two are 8n + 4m and
the number of vertices of degree 3 are 24pq − 4p − 4q. E of
G∗ are 36pq + 2p − 2q. E(G∗) cleaves into three disjoint
edge groups. E1(G∗) holds 4p edges pq, where dp � dq � 2,
E2(G∗) holds 8p + 8q edges pq, where dp � 2 and dq � 3,
and E3(G∗) holds 36pq − 10p − 10q edges pq, where
dp � dq � 3.

From (21), we get

SD(G) � 
pq∈E(G)

d
2
p + d

2
q

dp × dq 
,

SD G
∗

(  � 
pq∈E1 G∗( )

d
2
p + d

2
q

dp × dq 
+ 

pq∈E2 G∗( )

d
2
p + d

2
q

dp × dq 

+ 
pq∈E3 G∗( )

d
2
p +

d
2
q

dp × dq 

� (2) E1 G
∗

( 


 +
13
5

  E2 G
∗

( 


 +(2) E3 G
∗

( 




� 2(4p) +
13
5

 (8p + 8q) + 2(36pq − 10q − 10p).

(69)

After simple calculations,

� −12p +
13
5

+ 72pq − 20q. (70)
□

Theorem 17. G∗ is the graph of ZSM-5 and its harmonic
index is as follows:

H(G) � −
4
3

p + 8p
2
5

  + 8q
2
5

  + 12pq −
10
3

q. (71)

Proof. (e graph G∗ of zeolite encounters 36pq + 2p − 2q

edges and 24pq + 4p vertices.
(e number of vertices of degree 2 are 8p + 4q and of

degree 3 are 24pq − 4p − 4q. E of G∗ are 36pq + 2p − 2q.
E(G∗) cleaves into three disjoint edge groups.

E(G∗) � E1(G∗)∪ mathbbE2(G∗)∪ mathbbE3(G∗).
mathbbE1(G∗) holds 4p edges pq, where dp � dq � 2,
mathbbE2(G∗) holds 8p + 8q edges pq, where dp � 2 and
dq � 3, and mathbbE3(G∗) holds 36pq − 10p − 10q edges
pq, where dp � dq � 3. Harmonic index is defined in
equation (22) as

H(G) � 
pq∈E(G)

2
dp + dq 

,

H G
∗

(  � 
pq∈E1 G∗( )

2
dp + dq 

+ 
pq∈E2 G∗( )

2
dp + dq 

+ 
pq∈E3 G∗( )

2
dp + dq 

�
2
4

  E1 G
∗

( 


 +
2
5

  E2 G
∗

( 


 +
2
6

  E3 G
∗

( 




�
1
2

 (4p) +
2
5

 (8p + 8q) +
1
3

 (36pq − 10q − 10p)

� 2p +
1
5

 (16p + 16q) +
2
3

 (18pq − 5q − 5p)

�
37
30

.

(72)
□

3. Conclusion

We correlate the uses of topological indices with chemical
structure of ZSM-5. (e main interest of the research is to
present a concise introduction to some basic concepts about
topological indices and their uses to find physicochemical
properties of chemical structures. We conclude that physical
properties of ZSM-5 can easily be calculated through to-
pological indices. (e consequences lay out noteworthy
contribution in the field of graph theory and chemistry. (is
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research contains the results theoretically not
experimentally.
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In this research paper, we will compute the topological indices (degree based) such as the ordinary generalized geometric-
arithmetic (OGA) index, first and second Gourava indices, first and second hyper-Gourava indices, general Randic´ index
Rc(G), for c � ±1, ±1/2{ }, harmonic index, general version of the harmonic index, atom-bond connectivity (ABC) index, SK, SK1,
and SK2 indices, sum-connectivity index, general sum-connectivity index, and first general Zagreb and forgotten topological
indices for various types of chemical networks such as the subdivided polythiophene network, subdivided hexagonal network,
subdivided backbone DNA network, and subdivided honeycomb network. &e discussion on the aforementioned networks will
give us very remarkable results by using the aforementioned topological indices.

1. Introduction

&e branch of mathematics that is related to the study of
implementation of chemistry and graph theory together is
called chemical graph theory. &is theory is used to model
the molecules of a chemical compound mathematically. &is
theory helps us to understand the physical properties of that
chemical/molecular compound. In this theory, we construct
the structure of a chemical compound in the form of a graph.
In chemical graph theory, atoms are used as nodes, and
bonds between the atoms are utilized as edges. A topological
index is a numerical parameter of a graph that explains its
topology. &e topological index is also called a molecular
descriptor and a connectivity index. It is obtained by
transforming the chemical information into a numerical
quantity. Topological indices are used as molecular de-
scriptors in the construction of quantitative structure-ac-
tivity relationships and quantitative structure-property
relationships as well. &e theoretical models such as
quantitative structure-activity relationships (QSARs) relate
the quantitative measure of a chemical structure to a bio-
logical property or a physical property, and quantitative

structure-property relationships (QSPRs) relate mathemati-
cally physical/chemical properties to the structure of a mol-
ecule. Topological indices such as ordinary generalized
geometric-arithmetic (OGA) index, first and second Gourava
indices, first and second hyper-Gourava indices, general
Randic index Rc(G), for c � ±1, ±1/2{ }, harmonic index,
general version of harmonic index [1, 2], atom-bond con-
nectivity (ABC) index [3, 4], SK, SK1, and SK2 indices, sum-
connectivity index, general sum-connectivity index, and first
general Zagreb [5] and forgotten topological indices have very
significant roles in QSAR and QSPR studies and are used to
discuss the bioactivity of molecular structures.

In 2009, D. Vukičević and B. Furtula established the first
GA index in [6–11]. &e first geometric-arithmetic (GA)
index of a graph ξ was calculated by

GA (ξ) � 
gh∈E(ξ)

2
����
dgdh



dg + dh

. (1)

An ordinary geometric-arithmetic index of ξ was pro-
duced in 2011 in [12] and formulated by, for each positive
real number k,

Hindawi
Journal of Chemistry
Volume 2021, Article ID 5533619, 16 pages
https://doi.org/10.1155/2021/5533619

mailto:haroon.aftab@math.uol.edu.pk
https://orcid.org/0000-0001-6441-2133
https://orcid.org/0000-0002-8880-9079
https://orcid.org/0000-0003-1768-3111
https://orcid.org/0000-0002-9722-2317
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5533619


OGAk(ξ) � 
gh∈E(ξ)

�����
4dgdh



dg + dh

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

k

. (2)

In 2017, V. R. Kulli proposed the first and second
Gourava and hyper-Gourava indices in [13, 14].&e first and
second Gourava and hyper-Gourava indices of a graph ξ
were formulated by

GO1(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  ,

GO2(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  ,

HGO1(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  
2
,

HGO2(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  
2
.

(3)

In 1975, Randic´ index [15–17] was introduced by Milan
Randic´. It is often used in chemoinformatics to investigate
the compounds of chemicals. &e Randic´ index is also
called “the connectivity index of the graph” and formulated
by

R(1/2)(ξ) � 
uv∈E(ξ)

1
�������

du . dv( 

 , (4)

where du and dv are the degrees of the nodes.
Later, Bollobás and Erdos furnished its generalized

version for c, where c ∈R, known as the general Randic´
index [18–21] defined as

Rc(G) � 
gh∈E(G)

dg · dh 
c
, for c � − 1, 1, −

1
2
,
1
2

 . (5)

In 2012, L. Zhong described the harmonic index in
[22, 23], and it is given by

HI(G) � 
gh∈E(G)

2
dg + dh

. (6)

In 2015, L. Yan introduced the general version of the
harmonic index in [24] and defined by

HkI(G) � 
gh∈E(G)

2
dg + dh

 

k

. (7)

In 2008, Ernesto¨ Estrada et al. [25, 26] introduced a new
topological index, named atom-bond connectivity (ABC)
index, calculated by

ABC (G) � 
gh∈E(G)

���������
dg + dh − 2

dgdh



. (8)

&e ABC index is an excellent valuable index in the
formation of heat in alkanes [25, 26].

Definition 1. For a graph ξ, the SK index [27] can be
computed by

SK(ξ) � 
gh∈E(ξ)

dg + dh

2
. (9)

Let dg and dh be the degrees of nodes g and h in ξ,
respectively.

Definition 2. For a graph ξ, the SK1 index can be computed
by

SK1(ξ) � 
gh∈E(ξ)

dgdh

2
. (10)

Let dg and dh be the degrees of nodes g and h in ξ,
respectively.

Definition 3. For a graph ξ, the SK2 index can be computed
by

SK2(ξ) � 
gh∈E(ξ)

dg + dh

2
 

2

. (11)

Let dg and dh be the degrees of nodes g and h in ξ,
respectively.

In 2009, B. Lučić proposed the sum-connectivity index
(χ) in [28] calculated by

χ− (1/2)(G) � 
gh∈E(G)

dg + dh 
− 1/2

. (12)

In 2010, B. Zhou and Trinajstić furnished an index
named general sum-connectivity index in [24, 29] and
formulated as follows:

χk(ξ) � 
gh∈E(ξ)

dg + dh 
k
. (13)

In 2005, X. Li and J. Zheng produced the generalized
form of the first Zagreb index by calling it the “first general
Zagreb index.” &e first general Zagreb index [30–35] of a
graph ξ was computed by kM1(ξ) � gh∈E(ξ)[dk− 1

g + dk− 1
h ]; k

belongs to R, and k≠ 0 and k≠ 1.
In 2015, Boris Furtula and Ivan Gutman discovered an

index named as “forgotten topological index” [36–38] and
computed as

F(G) � 
gh∈E(G)

d
2
g + d

2
h .

(14)

2. Topological Indices on Certain
Chemical Graphs

In this part of the research paper, we will compute the
topological indices (degree based) such as ordinary gener-
alized geometric-arithmetic (OGA) index, first and second
Gourava indices, first and second hyper-Gourava indices,
general Randic index Rc(ξ), for c � ±1, ±1/2{ }, harmonic
index, general version of harmonic index, atom-bond
connectivity (ABC) index, SK, SK1, and SK2 indices, sum-
connectivity index, general sum-connectivity index, first
general Zagreb index, and forgotten topological indices for
various types of chemical networks such as subdivided
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polythiophene network, subdivided hexagonal network,
subdivided backbone DNA network, and subdivided hon-
eycomb network.

2.1. Results for the Subdivided Polythiophene Network.
Polythiophenes are rings with five elements having one het-
eroatom together with their benzo and other carbocylic. Pol-
ythiophene is used in electronic devices such as water
purification devices, biosensors, and light-emitting diodes and
in hydrogen storage [39]. In a subdivided polythiophene
network, shown in Figure 1, we insert another vertex (degree 2)
in every edge of ξ. In this way, we get a subdivided poly-
thiophene network. In this section, we compute the subdivided
polythiophene network using the above-defined topological
indices. In the subdivided polythiophene network SPLYn, we
have the number of nodes 11n − 1 and edges 12n − 2. A
subdivided polythiophene network for n� 5 is shown in
Figure 1. We get two kinds of edges (degree based) that are
(2, 2) and (2, 3). Table 1 gives us two types of edges. A sub-
divided polythiophene network SPLY5 is displayed in Figure 1.

Theorem 1. For the subdivided polythiophene network,
SPLYn, the ordinary generalized geometric-arithmetic index is
calculated by

OGAk(ξ) � 6n 1 +

��
24

√

5
 

k⎧⎨

⎩

⎫⎬

⎭ + 4 − 6
��
24

√

5
 

k⎧⎨

⎩

⎫⎬

⎭.

(15)

Proof. By letting ξ as a subdivided polythiophene network
SPLYn, from Table 1, we know

OGAk(ξ) � 
gh∈E(ξ)

�����
4dgdh



dg + dh

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

k

,

OGAk(ξ) � (6n + 4)

��
16

√

2 + 2
 

k

+(6n − 6)

��
24

√

5
 

k

,

(16)

and by doing some calculations, we get

OGAk(ξ) � 6n 1 +

��
24

√

5
 

k

⎡⎣ ⎤⎦ + 4 − 6
��
24

√

5
 

k

⎡⎣ ⎤⎦. (17)

Theorem 2. For the subdivided polythiophene network,
SPLYn, the first and second Gourava indices are calculated by
GO1(ξ) � 114n − 34 and GO2(ξ) � 276n − 116.

Proof. By letting ξ as a subdivided polythiophene network
SPLYn, from Table 1, we know

GO1(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  ,

GO2(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  ,
(18)

and by doing some calculations, we get

GO1(ξ) � (6n + 4)[(4) +(4)] +(6n − 6)[(5) +(6)] � 114n − 34,

GO2(ξ) � (6n + 4)[16] +(6n − 6)[30] � 276n − 116.

(19)

Theorem 3. For the subdivided polythiophene network,
SPLYn, the first and second hyper-Gourava indices are cal-
culated by HGO1(ξ) � 1110n − 470 and
HGO2(ξ) � 6936n − 4376.

Proof. By letting ξ as a subdivided polythiophene network,
SPLYn, from Table 1, we know

HGO1(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  
2
,

HGO2(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  
2
,

(20)

and by doing some calculations, we get
HGO1(ξ) � (6n + 4)[64] + (6n − 6)[121] � 1110n − 470,
and

HGO2(ξ) � (6n + 4)[256] +(6n − 6)[900] � 6936n − 4376.

(21)

Theorem 4. For the subdivided polythiophene network,
SPLYn, the general Randic´ index is calculated by

Rc SPLYn(  �

5
2

n, for c � − 1,

n
109
20

  +
8
5

 , for c � −
1
2
,

n
267
10

  −
67
10

 , for c �
1
2
,

60n − 20, for c � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Proof. By letting ξ as a subdivided polythiophene network
SPLYn of n dimensions, we have the number of nodes and

Figure 1: SPLY5.

Table 1: Division of edges of a graph ξ found on the degree of
terminating nodes of each of the edges.

(dg, dh) for gh ∈ E(ξ) Number of E(ξ)

(2, 2) 6n + 4
(2, 3) 6(n − 1)
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edges in SPLYn as |V(SPLYn)| � 11n − 1 and
|E(SPLYn)| � 12n − 2, respectively.

We know that

Rc(ξ) � 
gh∈E(ξ)

dg · dh 
c
,

(23)

for c � − 1, 1, − 1/2, 1/2{ }.

Case 1: if c � − 1, the application of Randic´ index Rc(ξ)

R− 1(ξ) � 
gh∈E(ξ)

1
dgdh

, (24)

using (23). From Table 1, we know
R− 1(ξ) � (6n + 4)(4)− 1 + (6n − 6)(6)− 1. By doing
some calculations, we get R− 1(ξ) � (5/2)n.

Case 2: if c � − (1/2), the application of Randic´ index
Rc(ξ)

R− (1/2)(ξ) � 
gh∈E(ξ)

1
��������
dg · dh 

 , (25)

using (23),

R− (1/2)(ξ) � (6n + 4)
1
�
4

√ +(6n − 6)
1
�
6

√ , (26)

and by doing some calculations, we get
R− (1/2)(ξ) � n(109/20) + (8/5).

Case 3: if c � (1/2), the application of Randic´ index
Rc(ξ)

R(1/2)(ξ) � 
gh∈E(ξ)

�����
dg. dh


, (27)

using (23),

R(1/2)(ξ) � (6n + 4)
�
4

√
+(6n − 6)

�
6

√
, (28)

and by doing some calculations, we get
R(1/2)(ξ) � n(267/10) − (67/10).

Case 4: if c � 1, the application of Randic´ index Rc(ξ)

R1(ξ) � 
gh∈E(ξ)

dg. dh 
1
, (29)

using (23),

R1(ξ) � (6n + 4)(4) +(6n − 6)(6), (30)

and by doing some calculations, we get R1(ξ) � 60n − 20.

Theorem 5. For the subdivided polythiophene network,
SPLYn, the harmonic index is calculated by

HI(ξ) �
2n − 2

5
. (31)

Proof. By letting ξ as a subdivided polythiophene network
SPLYn, from Table 1, we know

HI(ξ) � 
gh∈E(ξ)

2
dg + dh

, (32)

and by doing some calculations, we get

HI(ξ) � (6n + 4)
1
2

  +(6n − 6)
2
5

  �
2
5

(n − 1). (33)

Theorem 6. For the subdivided polythiophene network,
SPLYn, the general version of the harmonic index is calculated
by

HkI(ξ) �
6n 5 k

+ 4 k
  + 4 5 k

  − 6 4 k
 

10 k
 

. (34)

Proof. By letting ξ as a subdivided polythiophene network
SPLYn, from Table 1, we know

HkI(ξ) � 
gh∈E(ξ)

2
dg + dh

 

k

, (35)

and by doing some calculations, we get

HkI(ξ) � (6n + 4)
2

2 + 2
 

k

+(6n − 6)
2

2 + 3
 

k

,

�
6n 5 k

+ 4 k
  + 4 5 k

  − 6 4 k
 

(10)
k

.

(36)

Theorem 7. For the subdivided polythiophene network,
SPLYn, the atom-bond connectivity index is calculated by

ABC(ξ) � 6
�
2

√
n −

�
2

√
. (37)

Proof. By letting ξ as a subdivided polythiophene network
SPLYn, from Table 1, we know

ABC (ξ) � 
gh∈E(ξ)

���������
dg + dh − 2

dgdh



, (38)

and by doing some calculations, we get

ABC (ξ) � (6n + 4)

�������
2 + 2 − 2

4



+(6n − 6)

�������
2 + 3 − 2

6



�
�
2

√
(6n − 1).

(39)

Theorem 8. For the subdivided polythiophene network,
SPLYn, SK, SK1, and SK2 indices are calculated by SK(ξ) �

27n − 7, SK1(ξ) � 30n − 10 , and SK2(ξ) � (1/2) (123n

− 43), respectively.

Proof. By letting ξ as a subdivided polythiophene network
SPLYn, from Table 1, we know
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SK(ξ) � 
gh∈E(ξ)

dg + dh

2
 ,

SK1(ξ) � 
gh∈E(ξ)

dgdh

2
 ,

SK2(ξ) � 
gh∈E(ξ)

dg + dh

2
 

2

,

(40)

and by doing some calculations, we get

SK(ξ) � (6n + 4)(2) +(6n − 6)
5
2

  � 27n − 7,

SK1(ξ) � (6n + 4)(2) +(6n − 6)( 3 ) � 30n − 10,

SK2(ξ) � (6n + 4)(4) +(6n − 6)
25
4

  �
1
2

(123n − 43).

(41)

Theorem 9. For the subdivided polythiophene network,
SPLYn, the sum-connectivity index is calculated by

χ− (1/2)(ξ) � n 3 +
6
�
5

√  + 2 −
6
�
5

√ . (42)

Proof. By letting ξ as a subdivided polythiophene network
SPLYn, from Table 1, we know

χ− (1/2)(ξ) � 
gh∈E(ξ)

dg + dh 
− (1/2)

,

χ− (1/2)(ξ) � (6n + 4)
1
2

  +(6n − 6)
1
�
5

√ ,

(43)

and by doing some calculations, we get

χ− (1/2)(ξ) � n 3 +
6
�
5

√  + 2 −
6
�
5

√ . (44)

Theorem 10. For the subdivided polythiophene network,
SPLYn, the general sum-connectivity index is calculated by

χk(ξ) � 6n 5 k
+ 4 k

  + 4 4 k
  − 6 5 k

 . (45)

Proof. By letting ξ as a subdivided polythiophene network
SPLYn, from Table 1, we know

χk(ξ) � 
gh∈E(ξ)

dg + dh 
k
,

χk(ξ) � (6n + 4) 4 k
  +(6n − 6) 5 k

 ,

(46)

and by doing some calculations, we get

χk(ξ) � 6n 5 k
+ 4 k

  + 4 4 k
  − 6 5 k

 . (47)

Theorem 11. For the subdivided polythiophene network,
SPLYn, the first general Zagreb index is calculated by

k
M1(ξ) � 9n 2k

  + 2n 3k
  + 2

2k

2
− 3k

 . (48)

Proof. By letting ξ as a subdivided polythiophene network
SPLYn, from Table 1, we know

k
M1(ξ) � 

gh∈E(ξ)

d
k− 1
g + d

k− 1
h , k> 1,

k
M1(ξ) � (6n + 4) 2 k

  +(6n − 6) 2 k− 1
+ 3 k− 1

 ,

(49)

and by doing some calculations, we get

k
M1(ξ) � 9n 2k

  + 2n 3k
  + 2

2k

2
− 3k

 . (50)

Theorem 12. For the subdivided polythiophene network,
SPLYn, the forgotten index is calculated by

F(ξ) � 2 63n − 23{ }. (51)

Proof. By letting ξ as a subdivided polythiophene network
SPLYn, from Table 1, we know

F(ξ) � 
gh∈E(ξ)

d
2
g + d

2
h ,

F(ξ) � (6n + 4)(8) +(6n − 6)(13),

(52)

and by doing some calculations, we get

F(ξ) � 126n − 46. (53)

2.2. Results for the Subdivided Hexagonal Network. We
construct a subdivided hexagonal network shown in Figure 2
by adding a new vertex in each edge. For this process, a
triangular tiling is used. In this way, an n-dimensional
subdivided hexagonal network is obtained and denoted by
SHXn. A subdivided hexagonal network for n� 6 is shown in
Figure 2, whereas n shows the number of nodes.&e order of
SHXn is 12n2 − 18n+ 7 for n> 1, and the size is
18n2 − 30n+ 12 for n> 1. After the subdivision of this net-
work, we have three types of edges that are (2, 3), (2, 4), and
(2, 6).&e division of edges is shown in Table 2. A subdivided
hexagonal network SHX6 is displayed in Figure 2.

Theorem 13. For the subdivided hexagonal network, SHXn,
the ordinary generalized geometric-arithmetic index is cal-
culated by
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OGAk(ξ) � 18n
2

��
48

√

8
 

k

+ n 24
��
32

√

6
 

k

− 54
��
48

√

8
 

k

⎡⎣ ⎤⎦

+ 42
��
48

√

8
 

k

− 48
��
32

√

6
 

k

⎡⎣ ⎤⎦.

(54)

Proof. By letting 1 as a subdivided hexagonal network SHXn,
from Table 2, we know

OGAk(ξ) � 
gh∈E(ξ)

�����
4dgdh



dg + dh

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

k

,

OGAk(ξ) � (18)

��
24

√

5
 

k

+ 24(n − 2)

��
32

√

6
 

k

+ 6 3n
2

− 9n + 7 

��
48

√

8
 

k

,

(55)

and by doing some calculations, we get

OGAk(ξ) � 18n
2

��
48

√

8
 

k

+ n 24
��
32

√

6
 

k

− 54
��
48

√

8
 

k

⎡⎣ ⎤⎦

+ 42
��
48

√

8
 

k

− 48
��
32

√

6
 

k

⎡⎣ ⎤⎦.

(56)

Theorem 14. For the subdivided hexagonal network, SHXn,
the first and second Gourava indices are calculated by

GO1(ξ) � 360n
2

− 744n + 366,

GO2(ξ) � 1728n
2

− 4032n + 2268.
(57)

Proof. By letting ξ as a subdivided hexagonal network SHXn,
from Table 2, we know

GO1(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  ,

GO2(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  ,
(58)

and by doing some calculations, we get

GO1(ξ) � (18)[(5) +(6)] + 24(n − 2)[(6) +(8)]

+ 6 3n
2

− 9n + 7 [(8) +(12)]

� 360n
2

− 744n + 366,

GO2(ξ) � (18)[30] + 24(n − 2)[48]

+ 6 3n
2

− 9n + 7 [96],

� 1728n
2

− 4032n + 2268.

(59)

Theorem 15. For the subdivided hexagonal network, SHXn,
the first and second hyper-Gourava indices are calculated
by HGO1(ξ) � 7200n2 − 16896n + 9570 and HGO2(ξ) �

165888n2 − 442368n + 292680.

Proof. By letting ξ as a subdivided hexagonal network SHXn,
from Table 2, we know

HGO1(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  
2
,

HGO2(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  
2
,

(60)

and by doing some calculations, we get

HGO1(ξ) � (18)[121] + 24(n − 2)[196]

+ 6 3n
2

− 9n + 7 [400]

� 7200n
2

− 16896n + 9570,

HGO2(ξ) � (18)[900] + 24(n − 2)[2304]

+ 6 3n
2

− 9n + 7 [9216],

� 165888n
2

− 442368n + 292680.

(61)

Figure 2: SHX6.

Table 2: Division of edges of a graph ξ found on the degree of
terminating nodes of each of the edges.

(dg, dh) for gh ∈ E(ξ) Number of E(ξ)

(2, 3) 18
(2, 4) 24(n − 2)

(2, 6) 6(3n2 − 9n + 7)
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Theorem 16. For the subdivided hexagonal network, SHXn,
n> 1, the general Randic´ index is calculated by

Rc SHXn(  �

3n
2

− 3n + 1
2

, for c � − 1,

3n
2 �

3
√

+ n
��
72

√
− 9

�
3

√
  + 2.501, for c � −

1
2
,

62.35n
2

− 119.17n + 53.82, for c �
1
2
,

216n
2

− 456n + 228, for c � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(62)

Proof. By letting ξ as a subdivided hexagonal network SHXn
of n dimensions, we have the number of nodes and edges in
SHXn as |V(SHXn)| � 12n2 − 18N + 7 for n> 1 and
|E(SHXn)| � 18n2 − 30n + 12 for n> 1, respectively. We
know that

Rc(ξ) � 
gh∈E(ξ)

dg · dh 
c
,

(63)

for c � − 1, 1, − 1/2, 1/2{ }.

Case 1: if c � − 1, the application of Randic´ index Rc(ξ)

R− 1(ξ) � 
gh∈E(ξ)

1
dgdh

, (64)

using (63). From Table 2, we know

R− 1(ξ) �(18)(6)
− 1

+ 24(n − 2)(8)
− 1

+ 6 3n
2

− 9n + 7 (12)
− 1

.
(65)

By doing some calculations, we get
R− 1(ξ) � (3n2 − 3n + 1/2).

Case 2: if c � − (1/2), the application of Randic´ index
Rc(ξ)

R− (1/2)(ξ) � 
gh∈E(ξ)

1
��������
dg · dh 

 , (66)

using (63),

R− (1/2)(ξ) � (18)
1
�
6

√ + 24(n − 2)
1
�
8

√ + 6 3n
2

− 9n + 7 
1
��
12

√ .

(67)

By doing some calculations, we get

R− (1/2)(ξ) � 3n
2 �

3
√

+ n
��
72

√
− 9

�
3

√
  + 2.501. (68)

Case 3: if c � (1/2), the application of Randic´ index
Rc(ξ)

R(1/2)(ξ) � 
gh∈E(ξ)

������
dg · dh


, (69)

using (63),

R(1/2)(ξ) � (18)
�
6

√
+ 24(n − 2)

�
8

√
+ 6 3n

2
− 9n + 7 

��
12

√
.

(70)

By doing some calculations, we get

R(1/2)(ξ) � 62.35n
2

− 119.17n + 53.82. (71)

Case 4: if c � 1, the application of Randic´ index Rc(ξ)

R1(ξ) � 
gh∈E(ξ)

dg . dh 
1
, (72)

using (63),

R1(ξ) � (18)(6) + 24(n − 2)(8) + 6 3n
2

− 9n + 7 (12).

(73)

By doing some calculations, we get

R1(ξ) � 216n
2

− 456n + 228. (74)

Theorem 17. For the subdivided hexagonal network, SHXn,
the harmonic index is calculated by

HI(ξ) � 4.5n
2

− 5.5n + 1.7. (75)

Proof. By letting ξ as a subdivided hexagonal network SHXn,
from Table 2, we know

HI(ξ) � 
gh∈E(ξ)

2
dg + dh

. (76)

By doing some calculations, we get

HI(ξ) � (18)
2
5

  + 24(n − 2)
2
6

  + 6 3n
2

− 9n + 7 
2
8

 ,

�
1
10

45n
2

− 55n + 17  � 4.5n
2

− 5.5n + 1.7.

(77)

Theorem 18. For the subdivided hexagonal network, SHXn,
the general version of the harmonic index is calculated by

HkI(ξ) � 18n
2 4− k
  + 2n 12 3− k

  − 27 4− k
  

+ 18 2k 5− k
   − 48 3− k

  + 42 4− k
  .

(78)

Proof. By letting ξ as a subdivided hexagonal network SHXn,
from Table 2, we know

HkI(ξ) � 
gh∈E(ξ)

2
dg + dh

 

k

. (79)

By doing some calculations, we get
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HkI(ξ) � (18)
2

2 + 3
 

k

+ 24(n − 2)
2

2 + 4
 

k

+ 6 3n
2

− 9n + 7 
2

2 + 6
 

k

� n
2 18

4k
  + n

24
3k

−
54
4k

  + 18
2k

5k
  −

48
3k

+
42
4k

 

� 18n
2 4− k
  + 2n 12 3− k

  − 27 4− k
  

+ 18 2k 5− k
   − 48 3− k

  + 42 4− k
  .

(80)

Theorem 19. For the subdivided hexagonal network, SHXn,
the atom-bond connectivity index is calculated by

ABC(ξ) � 9
�
2

√
n
2

− 15
�
2

√
n + 6

�
2

√
. (81)

Proof. By letting ξ as a subdivided hexagonal network SHXn,
from Table 2, we know

ABC(ξ) � 
gh∈E(ξ)

���������
dg + dh − 2

dgdh



, (82)

and by doing some calculations, we get

ABC (ξ) � (18)

�������
2 + 3 − 2

6



+ 24(n − 2)

�������
2 + 4 − 2

8



+ 6 3n
2

− 9n + 7 

�������
2 + 6 − 2

12



� 9
�
2

√
n
2

− 15
�
2

√
n + 6

�
2

√
.

(83)

Theorem 20. For the subdivided hexagonal network, SHXn,
SK, SK1, and SK2 indices are calculated by SK(ξ) � 72n2 −

144n + 69, SK1(ξ) � 108n2 − 228n + 498, and SK2(ξ) �

288n2 − 648n + 7052, respectively.

Proof. By letting ξ as a subdivided hexagonal network SHXn,
from Table 2, we know

SK(ξ) � 
gh∈E(ξ)

dg + dh

2
 ,

SK1(ξ) � 
gh∈E(ξ)

dgdh

2
 ,

SK2(ξ) � 
gh∈E(ξ)

dg + dh

2
 

2

,

(84)

and by doing some calculations, we get

SK(ξ) � (18)
5
2

  + 24(n − 2)
6
2

  + 6 3n
2

− 9n + 7 
8
2

 

� 72n
2

− 144n + 69.

SK1(ξ) � 18(3) + 24(n − 2)(4) + 36 3n
2

− 9n + 7 

� 108n
2

− 228n + 498.

SK2(ξ) � (18)
25
4

  + 24(n − 2)(9) + 6 3n
2

− 9n + 7 (16)

� 288n
2

− 648n +
705
2

.

(85)

Theorem 21. For the subdivided hexagonal network, SHXn,
the sum-connectivity index is calculated by

χ− (1/2)(ξ) � 18n
2 1

�
8

√  + n
24

�
6

√ −
54

�
8

√  +
18

�
5

√ −
48

�
6

√ +
42

�
8

√ .

(86)

Proof. By letting ξ as a subdivided hexagonal network SHXn,
from Table 2, we know

χ− (1/2)(ξ) � 
gh∈E(ξ)

dg + dh 
− (1/2)

,

χ− (1/2)(ξ) � (18)
1
�
6

√  + 24(n − 2)
1
�
8

√ 

+ 6 3n
2

− 9n + 7 
1
��
12

√ ,

(87)

and by doing some calculations, we get

χ− (1/2)(ξ) � n
2 18

�
8

√  + n
24

�
6

√ −
54

�
8

√  +
18

�
5

√ −
48

�
6

√ +
42

�
8

√ 

� 18n
2 1

�
8

√  + n
24

�
6

√ −
54

�
8

√  +
18

�
5

√ −
48

�
6

√ +
42

�
8

√ .

(88)

Theorem 22. For the subdivided hexagonal network, SHXn,
the general sum-connectivity index is calculated by

χk(ξ) � 18n
2 8k
  + n 24 6k

  − 54 8k
  

+ 18 5k
  − 48 6k

  + 42 8k
  .

(89)

Proof. By letting ξ as a subdivided hexagonal network SHXn,
from Table 2, we know
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χk(ξ) � 
gh∈E(ξ)

dg + dh 
k
,

χk(ξ) � (18) 5k
  + 24(n − 2) 6k

  + 6 3n
2

− 9n + 7  8k
 ,

(90)

and by doing some calculations, we get

χk(ξ) � � 18n
2 8k
  + n 24 6k

  − 54 8k
  

+ 18 5k
  − 48 6k

  + 42 8k
  .

(91)

Theorem 23. For the subdivided hexagonal network, SHXn,
the first general Zagreb index is calculated by

k
M1(ξ) � n

2 3 6k
   + 9 2k

   + n 6 4k
  − 15 2k

 

− 9 6k
  + 6 2k

  + 6 3k
  − 12 4k

  + 7 6k
  .

(92)

Proof. By letting ξ as a subdivided hexagonal network SHXn,
from Table 2, we know

k
M1(ξ) � 

gh∈E(ξ)

d
k− 1
g + d

k− 1
h , k> 1,

k
M1(ξ) � 18{ }

2k

2
+
3k

3
  + 24n − 48{ }

2k

2
+
4k

4
 

+ 6 3n
2

− 9n + 7  2 k− 1
+ 6 k− 1

 ,

(93)

and by doing some calculations, we get
k
M1(ξ) � n

2 36k
+ 92k

  + n64k
− 152k

− 96k

+ 62k
+ 63k

− 124k
+ 76k

 .
(94)

Theorem 24. For the subdivided hexagonal network, SHXn,
the forgotten index is calculated by

F(ξ) � 2 360n
2

− 840n + 477 . (95)

Proof. By letting ξ as a subdivided hexagonal network SHXn,
from Table 2, we know

F(ξ) � 
gh∈E(ξ)

d
2
g + d

2
h ,

F(ξ) � (18)(13) + 24(n − 2)(20) + 6 3n
2

− 9n + 7 (40),

(96)
and by doing some calculations, we get

F(ξ) � 2 360n
2

− 840n + 477 . (97)

2.3. Results for the Subdivided Backbone DNA Network.
&e structure of DNA is called a double helix as it is made of
two strands that wind around each other that looks like a

staircase [40]. Each strand has a backbone made of de-
oxyribose, sugar, and a phosphate group. &ese sugar and
phosphates make up the backbone, while the nitrogen bases
are found in the centre and hold the two strands together.
&ere are 4 bases attached to each sugar which are adenine,
cytosine, guanine, and thymine. Both ends of DNA have a
number, i.e., one end is ´5 and the other is ´3. In a subdivided
backbone DNA network, shown in Figure 3, we insert an-
other node (degree 2) in each edge of ξ. In this way, we get a
subdivided backbone DNA network of n dimensions. A
subdivided backbone DNA network for n� 4 is displayed in
Figure 3. A subdivided backbone DNA network is sym-
bolized as SBBDNA(n). &e order and size of SBBDNA(n) are
15n − 5 and 16n − 6, respectively. We obtain two types of
edges (degree based) that are (2, 2) and (2, 3). Table 3 gives us
two kinds of edges. A subdivided backbone DNA network
SBBDNA(4) is shown in Figure 3.

Theorem 25. For the subdivided backbone DNA network,
SBBDNA(n), the ordinary generalized geometric-arithmetic
index is calculated by

OGAk(ξ) � 2 n 5 + 3
��
24

√

5
 

k

⎡⎣ ⎤⎦ − 3
��
24

√

5
 

k⎧⎨

⎩

⎫⎬

⎭. (98)

Proof. By letting ξ as a subdivided backbone DNA network
SBBDNA(n), from Table 3, we know

OGAk(ξ) � 
gh∈E(ξ)

�����
4dgdh



dg + dh

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

k

,

OGAk(ξ) � 10n

��
16

√

2 + 2
 

k

+(6n − 6)

��
24

√

5
 

k

,

(99)

and by doing some calculations, we get

OGAk(ξ) � 2 n 5 + 3
��
24

√

5
 

k

⎡⎣ ⎤⎦ − 3
��
24

√

5
 

k⎧⎨

⎩

⎫⎬

⎭. (100)

Theorem 26. For the subdivided backbone DNA network,
SBBDNA(n), the first and second Gourava indices are calcu-
lated by GO1(ξ) � 146n − 66 and GO2(ξ) � 340n − 180.

Proof. By letting ξ as a subdivided backbone DNA network
SBBDNA(n), from Table 3, we know

GO1(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  ,

GO2(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  ,
(101)

and by doing some calculations, we get
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GO1(ξ) � 10n[(4) +(4)] +(6n − 6)[(5) +(6)] � 146n − 66,

GO2(ξ) � 10n[16] +(6n − 6)[30] � 340n − 180.

(102)

Theorem 27. For the subdivided backbone DNA network,
SBBDNA(n), the first and second hyper-Gourava indices are
calculated by

HGO1(ξ) � 1366n − 726,

HGO2(ξ) � 7960n − 5400.
(103)

Proof. By letting ξ as a subdivided backbone DNA network
SBBDNA(n), from Table 3, we know

HGO1(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  
2
,

HGO2(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  
2
,

(104)

and by doing some calculations, we get

HGO1(ξ) � 10n[64] +(6n − 6)[121] � 1366n − 726,

HGO2(ξ) � 10n[256] +(6n − 6)[900] � 7960n − 5400.

(105)

Theorem 28. For the subdivided backbone DNA network,
SBBDNA(n), the general Randic´ index is calculated by

Rc SBBDN A(n)(  �

7
2

n − 1, for c � − 1,

n
149
20

  −
49
20

 , for c � −
1
2
,

n
347
10

  −
147
10

 , for c �
1
2
,

76n − 36, for c � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(106)

Proof. By letting ξ as a subdivided backbone DNA network
SBBDNA(n) of n dimensions, we have the order and size
of ξ in SBBDNA(n) as |V(SBBDNA(n))| � 15n − 5 and
|E(SBBDNA(n))| � 16n − 6, respectively.

We know that

Rc(ξ) � 
gh∈E(ξ)

dg · dh 
c
,

(107)

for c � − 1, 1, − 1/2, 1/2{ }.

Case 1: if c � − 1, the application of Randic´ index Rc(ξ)

R− 1(ξ) � 
gh∈E(ξ)

1
dgdh

, (108)

using (107). From Table 3, we know
R− 1(ξ) � 10n(4)− 1 + (6n − 6)(6)− 1. By doing some
calculations, we get R− 1(ξ) � (7/2) n − 1 .

Case 2: if c � − (1/2), the application of Randic´ index
Rc(ξ)

R− (1/2)(ξ) � 
gh∈E(ξ)

1
��������
dg · dh 

 , (109)

using (107),

R− (1/2)(ξ) � 10n
1
�
4

√ +(6n − 6)
1
�
6

√ , (110)

and by doing some calculations, we get
R− (1/2)(ξ) � n(149/20) − (49/20).

Case 3: if c � (1/2), the application of Randic´ index
Rc(ξ)

R(1/2)(ξ) � 
gh∈E(ξ)

������
dg . dh


, (111)

using (107),

R(1/2)(ξ) � 10n
�
4

√
+(6n − 6)

�
6

√
, (112)

and by doing some calculations, we get
R(1/2)(ξ) � n(347/10) − (147/10).

Case 4: if c � 1, the application of Randic´ index
Rc(ξ)

R1(ξ) � 
gh∈E(ξ)

dg · dh 
1
, (113)

using (107),

R1(ξ) � 10n(4) +(6n − 6)(6), (114)

and by doing some calculations, we get R1(ξ) � 76n − 36.

Theorem 29. For the subdivided backbone DNA network,
SBBDNA(n), the harmonic index is calculated by

HI(ξ) �
37n − 12

5
. (115)

Proof. By letting ξ as a subdivided backbone DNA network
SBBDNA(n), from Table 3, we know

Table 3: Division of edges of a graph ξ found on the degree of
terminating nodes of each of the edges.

(dg, dh) for gh ∈ E(ξ) Number of E(ξ)

(2, 2) 10n

(2, 3) 6(n − 1)

Figure 3: SBBDNA(4).
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HI(ξ) � 
gh∈E(ξ)

2
dg + dh

, (116)

and by doing some calculations, we get

HI(ξ) � 10n
1
2

  +(6n − 6)
2
5

  �
37n − 12

5
. (117)

Theorem 30. For the subdivided backbone DNA network,
SBBDNA(n), the general version of the harmonic index is
calculated by

HkI(ξ) � 2n
5
2k

+
3
5k
2k

  −
6
5k
2k

. (118)

Proof. By letting ξ as a subdivided backbone DNA network
SBBDNA(n), from Table 3, we know

HkI(ξ) � 
gh∈E(ξ)

2
dg + dh

 

k

, (119)

and by doing some calculations, we get

HkI(ξ) � 10n
2

2 + 2
 

k

+(6n − 6)
2

2 + 3
 

k

� 2n
5
2k

+
3
5k
2k

  −
6
5k
2k

.

(120)

Theorem 31. For the subdivided backbone DNA network,
SBBDNA(n), the atom-bond connectivity index is calculated by

ABC(ξ) �
2 8n − 3{ }

�
2

√ . (121)

Proof. By letting ξ as a subdivided backbone DNA network
SBBDNA(n), from Table 3, we know

ABC (ξ) � 
gh∈E(ξ)

���������
dg + dh − 2

dgdh



. (122)

By doing some calculations, we get

ABC (ξ) � 10n

�������
2 + 2 − 2

4



+(6n − 6)

�������
2 + 3 − 2

6



�
2 8n − 3{ }

�
2

√ .

(123)

Theorem 32. For the subdivided backbone DNA network,
SBBDNA(n), SK, SK1, and SK2 indices are calculated by
SK(ξ) � 35n − 15, SK1(ξ) � 38n − 18, and SK2(ξ) � (1/2)

(155n − 75), respectively.

Proof. By letting ξ as a subdivided backbone DNA network
SBBDNA(n), from Table 3, we know

SK(ξ) � 
gh∈E(ξ)

dg + dh

2
 ,

SK1(ξ) � 
gh∈E(ξ)

dgdh

2
 ,

SK2(ξ) � 
gh∈E(ξ)

dg + dh

2
 

2

.

(124)

By doing some calculations, we get

SK(ξ) � 10n(2) +(6n − 6)
5
2

  � 35n − 15,

SK1(ξ) � 10n(2) +(6n − 6)(3) � 38n − 18,

SK2(ξ) � 10n(4) +(6n − 6)
25
4

  �
1
2

(155n − 75).

(125)

Theorem 33. For the subdivided backbone DNA network,
SBBDNA(n), the sum-connectivity index is calculated by

χ− (1/2)(ξ) � n 5 +
6
�
5

√  −
6
�
5

√ . (126)

Proof. By letting ξ as a subdivided backbone DNA network
SBBDNA(n), from Table 3, we know

χ− (1/2)(ξ) � 
gh∈E(ξ)

dg + dh 
− (1/2)

,

χ− (1/2)(ξ) � 10n
1
2

  +(6n − 6)
1
�
5

√ .

(127)

By doing some calculations, we get

χ− (1/2)(ξ) � n 5 +
6
�
5

√  −
6
�
5

√ . (128)

Theorem 34. For the subdivided backbone DNA network,
SBBDNA(n), the general sum-connectivity index is calcu-
lated by

χk(ξ) � n 10 4k
  + 6 5k

   − 6 5k
 . (129)

Proof. By letting ξ as a subdivided backbone DNA network
SBBDNA(n), from Table 3, we know

χk(ξ) � 
gh∈E(ξ)

dg + dh 
k
,

χk(ξ) � 10n 4 k
  +(6n − 6) 5 k

 .

(130)

By doing some calculations, we get

χk(ξ) � n 10 4k
  + 6 5k

   − 6 5 k
 . (131)
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Theorem 35. For the subdivided backbone DNA network,
SBBDNA(n), the first general Zagreb index is calculated by

k
M1(ξ) � n 10 2k

  + 3 2k
  + 2 3k

   − 3 2k
  + 2 3k

  .

(132)

Proof. By letting ξ as a subdivided backbone DNA network
SBBDNA(n), from Table 3, we know

k
M1(ξ) � 

gh∈E(ξ)

d
k− 1
g + d

k− 1
h , k> 1,

k
M1(ξ) � 10n 2 k

  +(6n − 6) 2 k− 1
+ 3 k− 1

 ,

(133)

and by doing some calculations, we get
k
M1(ξ) � n 10 2k

  + 3 2k
  + 2 3k

   − 3 2k
  + 2 3k

  .

(134)

Theorem 36. For the subdivided backbone DNA network,
SBBDNA(n), the forgotten index is calculated by

F(ξ) � 2 79n − 39{ }. (135)

Proof. By letting ξ as a subdivided backbone DNA network
SBBDNA(n), from Table 3, we know

F(ξ) � 
gh∈E(ξ)

d
2
g + d

2
h ,

F(ξ) � 10n(8) +(6n − 6)(13),

(136)

and by doing some calculations, we get

F(ξ) � 2 79n − 39{ }. (137)

2.4. Results for the Subdivided Honeycomb Network. &e
honeycomb network is a hexagon. It can be made in different
methods. &e first honeycomb network is symbolized by
HC(1).&e next honeycomb network is produced by attaching
more hexagons to each of its edges. &is newly formed
honeycomb network is symbolized by HC(2); similarly, the
next honeycomb network is produced by attaching more
hexagons to each of its edges. In this way, the newly formed
honeycomb network is denoted by HC(3). By repeating this
process, we finally obtain a honeycomb network of n di-
mensions and denote by HC(n). &e honeycomb network is
being used in computer graphics, image processing, and
cellular phone base stations; moreover, it is used in chemistry
for the representation of benzenoid hydrocarbons. To get the
subdivided honeycomb network shown in Figure 4, we insert
a new node on each of its edges. &e n-dimensional sub-
divided honeycomb network is symbolized by SHCn. A
subdivided honeycomb network for n� 4 is displayed in
Figure 4. &e number of nodes and edges in the subdivided
honeycomb networks are 15n2 − 3n and 18n2 − 6n, respec-
tively. We have obtained two different types of edges in SHC4
shown in Table 4, whereas Figure 4 shows SHC4.

Theorem 37. For the subdivided honeycomb network, SHCn,
the ordinary generalized geometric-arithmetic index is cal-
culated by

OGAk(ξ) � 6 3n
2

��
24

√

5
 

k

+ n 2 − 3
��
24

√

5
 

k⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦.

(138)

Proof. By letting ξ as a subdivided honeycomb network
SHCn, from Table 4, we know

OGAk(ξ) � 
gh∈E(ξ)

�����
4dgdh



dg + dh

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

k

,

OGAk(ξ) � (12n)

��
16

√

2 + 2
 

k

+ 18n(n − 1)

��
24

√

5
 

k

,

(139)

and by doing some calculations, we get

OGAk(ξ) � 6 3n
2

��
24

√

5
 

k

+ n 2 − 3
��
24

√

5
 

k⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦.

(140)

Theorem 38. For the subdivided honeycomb network, SHCn,
the first and second Gourava indices are calculated by
GO1(ξ) � 198n2 − 102n and GO2(ξ) � 540n2 − 492n.

Figure 4: 4-dimensional SHC4.

Table 4: Division of edges of a graph ξ found on the degree of
terminating nodes of each of the edges.

(dg, dh) for gh ∈ E(ξ) Number of E(ξ)

(2, 2) 12n

(2, 3) 18n(n − 1)
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Proof. By letting ξ as a subdivided honeycomb network
SHCn, from Table 4, we know

GO1(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  ,

GO2(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  ,
(141)

and by doing some calculations, we get

GO1(ξ) � (12n)[(4) +(4)] + 18n(n − 1)[(5) +(6)]

� 198n
2

− 102n,

GO2(ξ) � (12n)[16] + 18n(n − 1)[30] � 540n
2

− 492n.

(142)

Theorem 39. For the subdivided honeycomb network, SHCn,
the first and second hyper-Gourava indices are calculated
by HGO1(ξ) � 2178n2 − 1410n and HGO2(ξ) � 16200n2−

13128n.

Proof. By letting ξ as the subdivided honeycomb network
SHCn, from Table 4, we know

HGO1(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  
2
,

HGO2(ξ) � 
gh∈E(ξ)

dg + dh  + dgdh  
2
,

(143)

and by doing some calculations, we get

HGO1(ξ) � (12n)[64] + 18n(n − 1)[121]

� 2178n
2

− 1410n,

HGO2(ξ) � (12n)[256] + 18n(n − 1)[900]

� 16200n
2

− 13128n.

(144)

Theorem 40. For the subdivided honeycomb network, SHCn,
the general Randic´ index is calculated by

Rc SHCn(  �

3n
2
, for c � − 1,

3 n
2 �

6
√

+ n 2 −
�
6

√
  , for c � −

1
2
,

6 3n
2 �

6
√

+ n 4 − 3
�
6

√
  , for c �

1
2
,

108n
2

− 60n, for c � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(145)

Proof. By letting ξ as a subdivided honeycomb network
SHCn of n dimensions, we have the order and size of ξ
in SHCn as |V(SHCn)| � 15n2 − 3n and |E(SHCn)| �

18n2 − 6n, respectively. We know that

Rc(ξ) � 
gh∈E(ξ)

dg · dh 
c
,

(146)

for c � − 1, 1, − 1/2, 1/2{ }.

Case 1: if c � − 1, the application of Randic´ index Rc(ξ)

R− 1(ξ) � 
gh∈E(ξ)

1
dgdh

, (147)

using (146). From Table 4, we obtain R− 1(ξ) �

12n(4)− 1 + 18n(n − 1)(6)− 1.
By doing some calculations, we obtain R− 1(ξ) � 3n2.

Case 2: if c � − (1/2), the application of Randic´ index
Rc(ξ)

R− (1/2)(ξ) � 
gh∈E(ξ)

1
��������
dg · dh 

 , (148)

using (146). From Table 4, we obtain R− (1/2)(ξ) �

12n(1/
�
4

√
) + 18n(n − 1)(1/

�
6

√
).

By doing some calculations, we obtain
R− (1/2)(ξ) � 3 n2

�
6

√
+ n 2 −

�
6

√
 }.

Case 3: if c � (1/2), the application of Randic index
Rc(ξ)

R(1/2)(ξ) � 
gh∈E(ξ)

�����
dg. dh


, (149)

using (146). From Table 4, we obtain
R(1/2)(ξ) � 12n

�
4

√
+ 18n(n − 1)

�
6

√
.

By doing some calculations, we obtain
R(1/2)(ξ) � 6 3n2

�
6

√
+ n 4 − 3

�
6

√
  .

Case 4: if c � 1, the application of Randic´ index Rc(ξ)

R1(ξ) � 
gh∈E(ξ)

dg. dh 
1
, (150)

using (146). From Table 4, we obtain R1(ξ) �

12n(4) + 18n(n − 1)(6).
By doing some calculations, we obtain
R1(ξ) � 108n2 − 60n.

Theorem 41. For the subdivided honeycomb network, SHCn,
the harmonic index is calculated by

HI(ξ) �
36n

2
− 6n

5
. (151)

Proof. By letting ξ as a subdivided honeycomb network
SHCn, from Table 4, we know

HI(ξ) � 
gh∈E(ξ)

2
dg + dh

, (152)

and by doing some calculations, we get
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HI(ξ) � (12n)
1
2

  + 18n(n − 1)
2
5

  �
36n

2
− 6n

5
. (153)

Theorem 42. For the subdivided honeycomb network, SHCn,
the general version of the harmonic index is calculated by

HkI(ξ) � 6 3n
2 2
5

 
k

+ n
2
2k

− 3
2
5

 
k

  . (154)

Proof. By letting ξ as a subdivided honeycomb network
SHCn, from Table 4, we know

HkI(ξ) � 
gh∈E(ξ)

2
dg + dh

 

k

, (155)

and by doing some calculations, we get

HkI(ξ) � (12n)
2

2 + 2
 

k

+ 18n(n − 1)
2

2 + 3
 

k

,

� 6 3n
2 2
5

 
k

+ n
2
2k

− 3
2
5

 
k

  .

(156)

Theorem 43. For the subdivided honeycomb network, SHCn,
the atom-bond connectivity index is calculated by

ABC(ξ) � n
�
2

√
[9n − 3]. (157)

Proof. By letting ξ as a subdivided honeycomb network
SHCn, from Table 4, we know

ABC (ξ) � 
gh∈E(ξ)

���������
dg + dh − 2

dgdh



, (158)

and by doing some calculations, we get

ABC (ξ) � 12n

�������
2 + 2 − 2

4



+ 18n(n − 1)

�������
2 + 3 − 2

6



,

� n
�
2

√
[9n − 3].

(159)

Theorem 44. For the subdivided honeycomb network,
SHCn, SK, SK1, and SK2 indices are calculated by SK(ξ) �

45n2 − 21n, SK1(ξ) � 54n2 − 30n , and SK2(ξ) � (1/2)

(225n2 − 129n), respectively.

Proof. By letting ξ as a subdivided honeycomb network
SHCn, from Table 4, we know

SK(ξ) � 
gh∈E(ξ)

dg + dh

2
 ,

SK1(ξ) � 
gh∈E(ξ)

dgdh

2
 ,

SK2(ξ) � 
gh∈E(ξ)

dg + dh

2
 

2

,

(160)

and by doing some calculations, we get

SK(ξ) � (12n)(2) + 18n(n − 1)
5
2

  � 45n
2

− 21n,

SK1(ξ) � (12n)(2) + 18n(n − 1)( 3 ) � 54n
2

− 30n,

SK2(ξ) � (12n)(4) + 18n(n − 1)
25
4

  �
1
2

225n
2

− 129n .

(161)

Theorem 45. For the subdivided honeycomb network, SHCn,
the sum-connectivity index is calculated by

χ− (1/2)(ξ) �
1
�
5

√ 18n
2

+ n 6
�
5

√
− 18  . (162)

Proof. By letting ξ as a subdivided honeycomb network
SHCn, from Table 4, we know

χ− (1/2)(ξ) � 
gh∈E(ξ)

dg + dh 
− (1/2)

,

χ− (1/2)(ξ) � (12n)
1
2

  + 18n(n − 1)
1
�
5

√ ,

(163)

and by doing some calculations, we get

χ− (1/2)(ξ) �
1
�
5

√ 18n
2

+ n 6
�
5

√
− 18  . (164)

Theorem 46. For the subdivided honeycomb network, SHCn,
the general sum-connectivity index is calculated by

χk(ξ) � 18 5k
 n

2
+ 6n 2 4k

  − 3 5k
  . (165)

Proof. By letting ξ as a subdivided honeycomb network
SHCn, from Table 4, we know

χk(ξ) � 
gh∈E(ξ)

dg + dh 
k
,

χk(ξ) � (12n) 4 k
  + 18n(n − 1) 5 k

 ,

(166)

and by doing some calculations, we get
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χk(ξ) � 18 5k
 n

2
+ 6n 2 4k

  − 3 5k
  . (167)

Theorem 47. For the subdivided honeycomb network, SHCn,
the first general Zagreb index is calculated by

k
M1(ξ) � 18n

2 2k− 1
+ 3k− 1

  + 6n 2 2k
  − 3n 2k− 1

+ 3k− 1
  .

(168)

Proof. By letting ξ as a subdivided honeycomb network
SHCn, from Table 4, we know

k
M1(ξ) � 

gh∈E(ξ)

d
k− 1
g + d

k− 1
h , k> 1,

k
M1(ξ) � (12n) 2 k

  + 18n(n − 1) 2 k− 1
+ 3 k− 1

 ,

(169)

and by doing some calculations, we get
k
M1(ξ) � 18n

2 2k− 1
+ 3k− 1

  + 6n 2 2k
  − 3n 2k− 1

+ 3k− 1
  .

(170)

Theorem 48. For the subdivided honeycomb network, SHCn,
the forgotten index is calculated by

F(ξ) � 2n 117n − 69{ }. (171)

Proof. By letting ξ as a subdivided honeycomb network
SHCn, from Table 4, we know

F(ξ) � 
gh∈E(ξ)

d
2
g + d

2
h ,

F(ξ) � (12n)(8) + 18n(n − 1)(13),

(172)

and by doing some calculations, we get F(ξ) �

2n 117n − 69{ }.

3. Conclusions

In this paper, we have computed the topological indices
(degree based) such as ordinary generalized geometric-
arithmetic (OGA) index, first and second Gourava indices,
first and second hyper-Gourava indices, general Randic´
index Rc(ξ), for c � ±1, ±(1/2){ }, harmonic index, general
version of the harmonic index, atom-bond connectivity
(ABC) index, SK, SK1, and SK2 indices, sum-connectivity
index, general sum-connectivity index, and first general
Zagreb and forgotten topological indices for different kinds
of chemical networks such as the subdivided polythiophene
network, subdivided hexagonal network, subdivided back-
bone DNA network, and subdivided honeycomb network.
&e above computed topological indices are used as mo-
lecular descriptors in the construction of “quantitative
structure-activity relationships and quantitative structure-
property relationships.”&ese indices give us results that can

be correlated with the molecular structures to understand
their chemical and physical properties.

For the next research papers, our goal is to compute
more topological indices for some new graphs to know their
topologies.
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Dendrimers are highly branched, star-shaped macromolecules with nanometer-scale dimensions. Dendrimers are defined by three
components: a central core, an interior dendritic structure (the branches), and an exterior surface with functional surface groups.
Topological indices are numerical numbers that help us to understand the topology of different dendrimers and can be used to predict
the properties without performing experiments in the wet lab. In the present paper, we computed the Sombor index and the reduced
version of the Sombor index for the molecular graphs of phosphorus-containing dendrimers, porphyrin-cored dendrimers, PDI-cored
dendrimers, triazine-based dendrimers, and aliphatic polyamide dendrimers. We also plotted our results by using Maple 2015 which
help us to see the dependence of the Sombor index and reduced Sombor index on the involved parameters. Our results may help to
develop better understanding about phosphorus-containing dendrimers, porphyrin-cored dendrimers, PDI-cored dendrimers, triazine-
based dendrimers, and aliphatic polyamide dendrimers. Our results are also useful in the pharmaceutical industry and drug delivery.

1. Introduction

Dendrimers are highly branched star-molded macro-
molecules with nanometer-scale measurements [1]. A
dendrimer consists of three modules: a central core, an
interior surface (branches), and the outer surface. A
functional surface group is attached with the outer core.
Various blends of these parts yield results of various
shapes and sizes with protected inside centers that are an
ideal contender for applications in both organic and
materials sciences [2]. (e characteristics of a dendrimer
depend on the external group attached with the outer
surface. Dendrimers have acquired a wide scope of uses
in supramolecular science, especially in drug delivery,
gene transfection, catalysis, energy harvesting, photo
activity, molecular weight and size determination, rhe-
ology modification, and nanoscale science and tech-
nology. A dendrimer acts as a solubilizing agent in
different reactions. Dendrimers have a wide range of
applications in different fields of sciences [3]. (e con-
struction of dendrimers is presented in Figure 1.

Mathematical chemistry is the branch of mathematics
in which mathematical tools are used to solve the prob-
lems arising in chemistry [4]. One of these tools is
graphical representation of chemical compounds, and this
representation is known as the molecular graph of the
concerned chemical compound [5]. In the molecular
graph of a chemical compound, atoms are represented as
vertices, and bounds are represented as edges [6]. To-
pological invariants of molecular graphs are numerical
numbers that enable us to collect information about
concerned chemical structure and give us its hidden
properties without performing experiments [7–11]. (e
first topological index was put forward by Wiener in 1947
[12] when he was trying to find the boiling points of
alkane. (is discovery led to the beginning of the theory of
topological indices. (e first degree-based topological
index was put forward by Randić in 1975 [13]. After the
success of the Randić index, Gutman introduced the
Zagreb indices. (ere are hundreds of topological indices
present in the literature [14–18]. Recently, Gutman, in
2021 [19], defined the idea of Sombor indices. Sombor
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indices have two variants, Sombor index and reduced
Sombor index, as follows:

SO(G) � 
ij∈(E(G))

������

d
2
i + d

2
j



,

SOred(G) � 
ij∈(E(G))

�����������������

di − 1( 
2

+ dj − 1 
2



.

(1)

(e aim of this paper is to study the phosphorus-con-
taining dendrimers, porphyrin-cored dendrimers, PDI-
cored dendrimers, triazine-based dendrimers, and aliphatic
polyamide dendrimers.We computed the Sombor index and
the reduced version of the Sombor index for the afore-
mentioned dendrimers. We also present graphical repre-
sentations of our results to see the dependence of computed
indices on the involved parameters.

(roughout this paper, we consider all graphs to be
simple and connected, and du denotes the degree of vertex u

which is equal to the number of vertices at distance one to it.
For the notation used in this paper but not defined, we refer
to in [20, 21] and references therein.

2. Methodology

Firstly, we obtain the molecular graphs of phosphorus-
containing dendrimers, porphyrin-cored dendrimers,
PDI-cored dendrimers, triazine-based dendrimers, and
aliphatic polyamide dendrimers. Secondly, we compute
the order and size of these molecular graphs and classify
their edge sets and vertex sets into different classes with
respect to the degrees of vertices. (irdly, we compute the
Sombor and reduced Sombor indices for the molecular

graphs of phosphorus-containing dendrimers, porphy-
rin-cored dendrimers, PDI-cored dendrimers, triazine-
based dendrimers, and aliphatic polyamide dendrimers.
Lastly, we plot our obtained results by using Maple 2015
software.

3. Main Results

In this section, we present Sombor and reduced Sombor
indices for phosphorus-containing dendrimers, porphyrin-
cored dendrimers, PDI-cored dendrimers, triazine-based
dendrimers, and aliphatic polyamide dendrimers.

3.1. Phosphorus-Containing Dendrimers. Phosphorus-
containing dendrimers have functionalities with pendant
nitroxyl radicals, and these radicals show a solid at-
tractive trade interaction. Let us consider D1 (m) to be
the molecular graph of phosphorus-containing den-
drimers, where m shows the generation stage of D1(m).
Figure 2 shows the molecular graph D1(m) of phos-
phorus-containing dendrimers.

From Figure 2, we can observe that the order and size of
D1(m) are 9(11 × 2m+1 − 8) and 6(9 × 2m+2 − 13), respec-
tively. IfV(D1(m)) is the vertex set, then from Figure 2, we
can classify V(D1(m)) into four subsets V1, V2, V3, and
V4 of vertices of degrees 1, 2, 3, and 4 such that |V

(D1(m))| � |V1(D 1(m))| + |V2(D1(m))| + |V3 (D1(m))|

+ |V4(D1(m))|. (e cardinalities of V1(D1(m)), V2(D1
(m)), V3(D1(m)), and V4(D1(m)) are 42 × 2m− 12,
96 × 2m − 39, 42 × 2m − 18, and 18 × 2n − 3, respectively.

IfE(D1(m)) represents the edge set, then Figure 2 shows
that there are the following six different types of edges with
respect to the degrees of end vertices present in the mo-
lecular graph of D1(m):
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Core

Small molecule
Nanoparticles
Polymer

(i)
(ii)

(iii)

Space for molecular cargo

G0
Generations G1

G2
G3

G4

BranchingSurface group
Cationic, anionic, neutral
Biocompatible

(i)
(ii)

Robust covalent structure 
connects the core to the surface

Figure 1: Modules of the dendrimer.
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ε1 D1(m)(  � ε(1,3) D1(m)(  � e � uv ∈ ε D1(m)( : du � 1, dv � 3 ,

ε2 D1(m)(  � ε(1,4) D1(m)(  � e � uv ∈ ε D1(m)( : du � 1, dv � 4 ,

ε3 D1(m)(  � ε(2,2) D1(m)(  � e � uv ∈ ε D1(m)( : du � 2, dv � 2 ,

ε4 D1(m)(  � ε(2,3) D1(m)(  � e � uv ∈ ε D1(m)( : du � 2, dv � 3 ,

ε5 D1(m)(  � ε(2,4) D1(m)(  � e � uv ∈ ε D1(m)( : du � 2, dv � 4 ,

ε6 D1(m)(  � ε(3,4) D1(m)(  � e � uv ∈ ε D1(m)( : du � 3, dv � 4 .

(2)

Table 1 explains the edge partition of the edge set of
D1(m) in detail.

Frequency means the total number of edges in the
particular class.

Theorem 1. $eSO and SOred indices forD1(m) are as follows:

(i) SO(G) � 2((1/2)+m)
�
5

√
− 6

�
2

√ �
5

√
+ 72 × 2((1/2)+m) +

48
�
5

√
2m + 96

��
13

√
2m + 30

��
17

√
2m − 36

�
2

√
− 42

��
13

√
−

6
��
17

√
+ 90 × 2m − 30

(ii) SOred(G) � 24 ×2((1/2)+m)
�
5

√
+18

��
13

√
2m + 362((1/2)+m)

+96
�
5

√
2m + 282 × 2m − 18

�
2

√
− 6

��
13

√
− 42

�
5

√
− 66

Figure 2: D1(m) for m � 3.

Table 1: Degree-based edge partition of D1(m).

ε ε(du,dv) Frequency

ε1 ε(1,3) 6 (2m − 1)

ε2 ε(1,4) 6 (5 × 2m − 1)

ε3 ε(2,2) 18 (2m+1 − 1)

ε4 ε(2,3) 6 (2m+4 − 7)

ε5 ε(2,4) (3 × 2m+3)

ε6 ε(3,4) 6 (3 × 2m − 1)

Journal of Chemistry 3



Proof. For the edge partition of the vertex set of D1(m), we
have the following computations for SO and SOred indices:
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ij
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2
j
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2
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(3)

□
3.2. Porphyrin-Cored Dendrimers. Figure 3 shows the mo-
lecular graph D2(m) of porphyrin-cored dendrimers, where
m represents different generations of D2(m).

From Figure 3, we can observe that the order and size of
D2(m) are 4(2m+3 + 9) and 4(2m+3 + 11), respectively. If
V(D2(m)) is the vertex set, then from Figure 3, we can
classify this vertex set into four subsets V1(D2(m)),
V2(D2(m)), V3(D2(m)), and V4(D2(m)) with respect to

degrees such that |V(D2(m))| � |V1(D 2(m))|+ |V2(D2
(m))| + |V3(D2(m))| + |V4(D2(m))|. (e cardinalities of
V1(D2(m)),V2(D2(m)),V3(D2(m)), andV4(D2(m)) are
12 × 2m − 8, 12 × 2m + 32, 4 × 2m + 16, and 4 × 2n − 4 verti-
ces, respectively.

IfE(D2(m)) represents the edge set, then Figure 3 shows
that there are the following eight different types of edges
present in the molecular graph of D2(m):

E1 D2(m)(  � E(1,2) D2(m)(  � e � uv ∈ E D2(m)( : du � 1, dv � 2 ,

E2 D2(m)(  � E(1,3) D2(m)(  � e � uv ∈ E D2(m)( : du � 1, dv � 3 ,

E3 D2(m)(  � E(1,4) D2(m)(  � e � uv ∈ E D2(m)( : du � 1, dv � 4 ,

E4 D2(m)(  � E(2,2) D2(m)(  � e � uv ∈ E D2(m)( : du � 2, dv � 2 ,

E5 D2(m)(  � E(2,3) D2(m)(  � e � uv ∈ E D2(m)( : du � 2, dv � 3 ,

E6 D2(m)(  � E(2,4) D2(m)(  � e � uv ∈ E D2(m)( : du � 2, dv � 4 ,

E7 D2(m)(  � E(3,3) D2(m)(  � e � uv ∈ E D2(m)( : du � 3, dv � 3 ,

E8 D2(m)(  � E(3,4) D2(m)(  � e � uv ∈ E D2(m)( : du � 3, dv � 4 .

(4)

Table 2 gives the detailed explanation about the edge
partition of the edge set of D1(m).

Theorem 2. $e SO and SOred indices for D2(m) are as
follows:

(i) SO(G) � 4 × 2((1/2)+m)
�
5

√
+ 20

�
5

√
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�
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(ii) SOred(G) � 8 × 2((1/2)+m)
�
5

√
+ 4

�
5

√
2m − 8

�
2

√ �
5

√
+

4 × 2((1/2)+m) + 4
��
13

√
2m + 32

�
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Proof. From the edge partition of D2(m) given in Table 2,
we have the following computations of SO and SOred indices:
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□

Figure 3: D2(m) for m � 1.

Table 2: Degree-based edge partition of D2(m).

E E(du,dv) Frequency

E1 E(1,2) 4 × 2m

E2 E(1,3) 4 × 2m − 4
E3 E(1,4) 4 × 2m − 4
E4 E(2,2) 4 × 2m + 20
E5 E(2,3) 4 × 2m + 32
E6 E(2,4) 8 × 2m − 8
E7 E(3,3) 12
E8 E(3,4) 4 × 2m − 4
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3.3. PDI-Cored Dendrimers. (e water-dissolvable PDI-
cored dendrimers have various accommodations, containing
low cytotoxicity, solid red fluorescence, high quantum yield,
amazing photostability, and flexible surface alteration. (ese
dendrimers have numerous applications in different fields
such as fluorescence live-cell imaging and labeling. Let
D3(m) be the molecular graph of PDI-cored dendrimers;
then, Figure 4 shows the 2D graph of D3(m).

From Figure 4, we can observe that the order and size of
D3(m) are 20 × 2m + 20 and 20 × 22m + 20, respectively. If

V(D3(m)) is the vertex set, then by observing Figure 4, we
can classify this vertex set into three subsets V1(D3(m)),
V2(D3(m)), andV3(D3(m)) such that |V(D3(m) )| � |V1
(D3(m))| + |V2(D3(m))| + |V3(D3(m))|. (e cardinalities
of V1(D3(m)), V2(D3(m)), and V3(D3(m)) are
2 × 2m+1 + 4, 6 × 2m+1, and 2 × 2m+1 + 16, respectively.

IfE(D3(m)) represents the edge set, then Figure 4 shows
that there are the following five different types of edges
present in the molecular graph of D3(m):

E1 D3(m)(  � E(1,2) D3(m)(  � e � uv ∈ E D3(m)( : du � 1, dv � 2 ,

E2 D3(m)(  � E(1,3) D3(m)(  � e � uv ∈ E D3(m)( : du � 1, dv � 3 ,

E3 D3(m)(  � E(2,2) D3(m)(  � e � uv ∈ E D3(m)( : du � 2, dv � 2 ,

E4 D3(m)(  � E(2,3) D3(m)(  � e � uv ∈ E D3(m)( : du � 2, dv � 3 ,

E5 D3(m)(  � E(3,3) D3(m)(  � e � uv ∈ E D3(m)( : du � 3, dv � 3 .

(6)

Table 3 gives the detailed explanation about the edge
partition of the edge set of D3(m).

Theorem 3. $e SO and SOred indices for D3(m) are as
follows:

(i) SO(D3) � 2((3/2)+m)
�
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Proof. From the edge partition of D3(m) given in Table 3,
we have the following computations of SO and SOred indices:
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□
3.4. Triazine-Based Dendrimers. (e divergent method is
used for the synthesis of triazine-based dendrimers. Tri-
azine-based dendrimers are less toxic and can be further
studied as drug carriers. Let D4(m) represent the molecular
graph of triazine-based dendrimer drug carriers in the fu-
ture. Figure 5 shows the molecular graph of D4(m).

From Figure 5, we can observe that the order and size
of D3(m) are (2(5 × 22m+2 + 1)/3) and 7 × 22m+1 + 1, re-
spectively. If V(D4(m)) is the vertex set, then by observing

Figure 5, we can classify this vertex set into four subsets
V1(D4(m)), V2(D4(m)), and V3(D4(m)) such that |V

(D4(m))| � |V1(D4(m))| + |V2(D4(m))| + |V3 (D4 (m))|.

(e cardinalities of V1(D4(m)), V2(D4(m)), and
V3(D4(m)) are 22m+1, 22m+1 + (7 × 4m+1/6) + (4m+1/3), and
4 + (5 × 4m+1/6) − (10/3), respectively.

IfE(D4(m)) represents the edge set, then Figure 5 shows
that there are the following four different types of edges
present in the molecular graph of D4(m):
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E1 D4(m)(  � E(1,2) D4(m)(  � e � uv ∈ E D4(m)( : du � 1, dv � 2 ,

E2 D4(m)(  � E(2,2) D4(m)(  � e � uv ∈ E D4(m)( : du � 2, dv � 2 ,

E3 D4(m)(  � E(2,3) D4(m)(  � e � uv ∈ E D4(m)( : du � 2, dv � 3 ,

E4 D4(m)(  � E(3,3) D4(m)(  � e � uv ∈ E D4(m)( : du � 3, dv � 3 .

(8)

Table 4 gives the detailed explanation about the edge set
of D4(m).

Theorem 4. $e SO and SOred indices for D4(m) are as
follows:

(i) SO(D4) �
�
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Proof. From the edge partition of the edge set of D4(m)

given in Table 4, we have the following computations for SO
and SOred indices:

Figure 4: D3(m) for m � 1.

Table 3: Degree-based edge partition of D3(m).

E E(du,dv) Frequency

E1 E(1,2) 2m+1

E2 E(1,3) 4(2m− 1 + 1)

E3 E(2,2) 3 × 2m+1 + 1
E4 E(2,3) 20 × 2m− 1

E5 E(3,3) 22

Figure 5: D4(m) for m � 2.
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□
3.5. Aliphatic Polyamide Dendrimers. Recently, Jishkariani,
for the first time, studied aliphatic polyamide dendrimers
containing ethylenediamine and piperazine. (ese den-
drimers are enzymatically and hydrolytically stable. Let
D5(m) represent the molecular graph of the aliphatic
polyamide-based dendrimer. Figure 6 shows the molecular
graph of D5(m).

From Figure 6, we can observe that the order and size of
D5(m) are 2(2m+3 − 5). If V(D5(m)) is the vertex set, then

by observing Figure 6, we can classify this vertex set into
three subsets V1(D5(m)), V2(D5(m)), and V3(D5(m))

such that |V(D5(m)) | � |V1(D5(m))| + |V2(D5 (m))|+

|V3(D5(m))| + |V4(D5(m))|. (e cardinalities of V1(D5
(m)), V2 (D5 (m)), and V3(D5(m)) are 4(3 × 2m− 1 − 1),
4(3 × 2m− 1 − 1), and 2m+12(2m − 1), respectively.

IfE(D5(m)) represents the edge set, then Figure 6 shows
that there are the following four different types of edges
present in the molecular graph of D5(m):

E1 D5(m)(  � E(1,2) D5(m)(  � e � uv ∈ E D5(m)( : du � 1, dv � 2 ,

E2 D5(m)(  � E(2,3) D5(m)(  � e � uv ∈ E D5(m)( : du � 2, dv � 3 ,

E3 D5(m)(  � E(1,3) D5(m)(  � e � uv ∈ E D5(m)( : du � 1, dv � 3 ,

E4 D5(m)(  � E(1,4) D5(m)(  � e � uv ∈ E D5(m)( : du � 1, dv � 4 .

(10)

Table 5 gives the detailed explanation about the edge set
of D5(m).

Theorem 5. $e SO and SOred indices for D5(m) are as
follows:

Table 4: Degree-based edge partition of D4(m).

E E(du,dv) Frequency

E1 E(1,2) 2m+1

E2 E(2,2) (2(5 × 22m − 2)/3)

E3 E(2,3) (2(11 × 22m + 4)/3)

E4 E(3,3) (2 × 22m+1 − 1/3)
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Proof. From the edge partition of the edge set of D5(m)

given in Table 5, we have the following computations of SO
and SOred indices:
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□

Figure 6: D5(m) for m � 4.

Table 5: Degree-based edge partition of D5(m).

E E(du,dv) Frequency

E1 E(1,2) 2m+1

E2 E(2,3) 2m+1

E3 E(1,3) 2(2m − 1)

E4 E(1,4) 2(2m − 1)

E5 E(2,2) 2(2m − 1)

E6 E(3,4) 2(2m − 1)

E7 E(3,3) 2
E8 E(2,4) 2m+2 − 4
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4. Conclusion

Topological indices found numerous applications in many
regions of material science, arithmetic, informatics, biology,
and so on. However, their most important use is in the

nonexact quantitative structure-property relationships
(QSPR) and quantitative structure-activity relationships
(QSAR). Topological indices have an interconnection with
the structure of the chemical structure. In this paper, we
computed the newly introduced Sombor indices for phos-
phorus-containing dendrimers, porphyrin-cored den-
drimers, PDI-cored dendrimers, triazine-based dendrimers,
and aliphatic polyamide dendrimers. Figures 7 and 8 give the
graphical comparison of computed results for the afore-
mentioned dendrimers.
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In theoretical chemistry, several distance-based, degree-based, and counting polynomial-related topological indices (TIs) are used
to investigate the different chemical and structural properties of the molecular graphs. Furtula and Gutman redefined the F-index
as the sum of cubes of degrees of the vertices of the molecular graphs to study the different properties of their structure-
dependency. In this paper, we compute F-index of generalized sum graphs in terms of various TIs of their factor graphs, where
generalized sum graphs are obtained by using four generalized subdivision-related operations and the strong product of graphs.
We have analyzed our results through the numerical tables and the graphical presentations for the particular generalized sum
graphs constructed with the help of path (alkane) graphs.

1. Introduction

'roughout the paper, we consider a simple and undirected
graph H � (V(H), E(H)) with vertex-set V(H) � v1,

v2, v3, . . . , vn} and edge-set E � e1, e2, . . . , em ⊆
V(H) × V(H), where n � |V(G)| and m � |E(G)|. A mo-
lecular graph is a connected and undirected graph in which
atoms are presented by vertices, and chemical bonds be-
tween these atoms are shown by edges (see Figure 1). For
a finite set of graphs C and set of real numbers R, the
function I: C⟶ R defined by I(H) � u∈V(H)f(u) is
called a degree-based topological index (TI), where the
graph H belongs to C and f(u) is a degree-function from
the vertex-set of H to the degree-set of its vertices. It is
important to know that I(H) � I(K) if and only if H is
isomorphic to K. For more details, see [1, 2].

Graph-theoretic modeling of the molecular graphs plays
a fundamental part in the analysis of the quantitative
structures activity/property relationships (QSAR/QSPR). In
chemistry, the study of structural relationships is used to
characterize the various physicochemical properties of

organic molecules such as surface tension, density, melting,
freezing point, solubility, heat of evaporation, and heat of
formation [3]. In last two decades, many TIs are introduced,
but degree-based TIs got much more attention of the re-
searchers, see the latest survey [4]. In 1947, Winer in-
troduced the first distance-based TI to compute the boiling
point of paraffin [5]. Also, we refer [6].

In molecular graph theory, the different operations on
a graph perform a fundamental role in the formation of
different new classes of graphs. Yan et al. [7] introduced the
four operations S1, R1, Q1, and T1 on a graph H and
computed the Wiener indices for the graphs F1(H), where
F1 ∈ S1, R1, Q1, T1 . Eliasi and Taeri [8] defined the F1-sum
graphs (H1+F1

H2) using the Cartesian product on graphs
F1(H1) and H2, where H1 and H2 are any two simple and
connected graphs. 'ey also computed the Wiener indices
for these F1-sum graphs. Furthermore, Deng et al. [9]
calculated the M1 and M2 Zagreb indices, Imran and
Shehnaz [10] computed the F-index, Liu et al. [11] computed
the first general Zagreb, Chu et al. [12] calculated the bounds
of first general Zagreb index and general Randic index, and
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Sarala et al. [13] computed the F-index for these F1-sum
graphs under the Cartesian and strong products. We also
refer [14–20].

Recently, for k≥ 1, Liu et al. [21] defined the generalized
F-sum (Fk-sum) graphs using Cartesian product and
computed their Zagreb indices. Moreover, Awais et al.
computed the F-index [22], hyper-Zagreb [23], and FGZ
index [24] for these generalized F-sum graphs. Recently,
Javaid et al. [25] computed first and second Zagreb indices
for the generalized F-sum graphs under the strong product.

In this paper, we compute F-index of generalized sum
graphs in terms of various TIs of their factor graphs, where
generalized sum graphs are obtained by using four gener-
alized subdivision-related operations and the strong product
of graphs. We have analyzed our results through the nu-
merical tables and the graphical presentations for the par-
ticular generalized sum graphs constructed with the help of
path (alkane) graphs. 'e remaining paper is managed as
follows: Section 2 consists of elementary definitions, Section
3 includes main results, and Section 4 covers the application
and conclusion.

2. Preliminaries

2.1. Degree-Based Topological Indices. In 1972, Trainajsi and
Gutman defined first and second Zagreb indices that are
utilized to find the π-electron energy of molecular graphs
[26]. Let H be any graph (molecular structure), then the first
and second Zagreb indices are defined as
M1(H) � v∈V(H)d

2(v) and M2(H) � uv∈E(H)d(u)d(v).
In 2015, Furtula and Gutman [22] redefined a TI called

by forgotten TI [27]. 'e forgotten TI of a (molecular) graph
H is defined as

F(H) � 
v∈V(H)

d
3
(v). (1)

'ey also verified that the different predictive abilities of
F-index and first Zagreb index are same. In particular, both
the indices yield the values of correlation coefficients for
entropy and acentric factor more than 0.95. For more results
on its mathematical properties and chemical applications,
see [23].

2.2. Four Generalized Operations. Let H1 be a (molecular)
graph, then for the integral value k≥ 1, the graphs (Fk(H1)

under the four generalized operations (Fk ∈ Sk, Rk, Qk, Tk )
on H1 are defined as follows [21]:

(i) k-subdivision graph: we add k new vertices in every
edge of H1 and obtain the new k-subdivision graph
Sk(H1)

(ii) k-semitotal point graph: the graph k-semitotal point
(Rk(H1)) is defined from the graph Sk(H1) by
joining the vertices of Sk(H1) which were adjacent
in H1

(iii) k-semitotal line graph: the k-semitotal line graph
Qk(H1) is defined from the graph Sk(H1) by joining
the newly added k vertices for each incident pair of
edges of H1

(iv) k-total point graph: the k-total point graph is de-
fined from the graph Sk(H1) by applying both the
operationsRk andQk, respectively. For more details,
see Figures 2–4.

2.3. Generalized Sum Operation for Strong Product. Let H1
and H2 be two graphs, Fk ∈ Sk, Rk, Qk, Tk  presents gen-
eralized operations and Fk(H1) is obtained after applying Fk

on H1 having edge-set E(Fk(H1)) and node-set V(Fk(H1)).
'e generalized F-sum graphs (H1Fk

⊠H2) under the op-
eration of strong product is a graph having a vertex-set:

H

C

H

H

C

H

H

C

H

H

C

H

H

H

CH3

CH2

CH2

CH3

Butane

Figure 1: Clearly, structural formula of butane is isomorphic to P4.
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Figure 3: (a) R3(H1). (b) Q3(H1).
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Figure 2: (a) H1 � C3. (b) S3(H1).
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V H1Fk
⊠ H2  � V Fk H1( (  × V H2( 

� V H1( ∪ kE H1( (  × V H2( ,
(2)

such that two vertices (s1, t1) and (s2, t2) of V(H1Fk
⊠H2)

are adjacent iff s1 � s2 ∈ V(H1) and (t1, t2) ∈ E(H2) or t1 �

t2 ∈ V(H2) and (s1, s2) ∈ E(Fk(H1)) or (t1, t2) ∈ E(H2)

and (s1, s2) ∈ E(Fk(H1)), where k≥ 1 is natural number.
Furthermore, the generalized F-sum graphs (H1Fk

⊠H2)

contain |V(H2)| copies of graphs Fk(H1) that are labeled

with the vertices of H2. For more explanation, see
Figures 5–7.

3. Methodology

'is section presents the main results.

Theorem 1. Let H1 and H2 be two connected graphs, then

F H1Sk

⊠H2  � V H2( 


 + 3M1 H2(  + 6 E H2( 


 F H1(  + V H1( 


 + 3M1 H1(  + 14 E H1( 
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 6 E H2( 


 + V H2( 
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+ 8|V H2(  E H1( 
����

(3)

Proof. Let d(s, t) � dH1Sk
⊠H2

(s, t) is the degree of the vertex
(s, t) in H1Sk

⊠H2, then
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Figure 5: (a) H1 � C3. (b) H2 � P2.
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Figure 6: (a) H1S2
⊠H2. (b) H1R2

⊠H2.
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Figure 7: (a) H1Q2
⊠H2. (b) H1T2

⊠H2.
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Since s1ϵV(H1) and s2ϵV(Sk(H1) − H1)), therefore
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(5)

We know that F(S1(H1)) � F(H1) + 8|E(H1)|.
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B2

� 

tϵV H2( )



s1s2ϵE Sk H1( )( )s1 ,

s2ϵV Sk H1( )−H1( )

d s1(  + d s1( d(t)( 
2

+ d s2(  + d s2( d(t)( 
2

 

� 

tϵV H2( )



s1s2ϵE Sk H1( )( )s1 ,

s2ϵV Sk H1( )−H1( )

d s1( 
2

+ d s2( 
2

+ d(t)
2

d s1( 
2

+ d s2( 
2

  + 2 d(t) d s1( 
2

+ d s2( 
2

  

� 

tϵV H2( )



s1s2ϵE Sk H1( )( )s1 ,

s2ϵV Sk H1( )−H1( )

(2)
2

+(2)
2

+ 8dH2
(t)

2
+ 16dH2

(t) .

(6)

Since in this case |E(Sk(H1))| � |E(H1)|(k − 1), so

� 8(k − 1)|V H2(  E H1( 
����

����| + 8(k − 1)M1 H2( |E H1( | + 32(k − 1)|E H2(  E H1( 
����

����|,


C

� 

t1t2ϵE H2( )



s1s2ϵE Sk H1( )( )

d
2

s1, t1(  + d
2

s2, t2(   � 

t1t2ϵE H2( )



s1ϵV H1( ),

s2ϵV Sk H1( )−H1( )

d
2

s1, t1(  + d
2

s2, t2(  

+ 

t1t2ϵE H2( )



s1 ,s2ϵV Sk H1( )−H1( )

d
2

s1, t1(  + d
2

s2, t2(   � 
C1

+ 
C1

.


C1

� 

t1t2ϵV H2( )



s1s2ϵE Sk H1( )( )s1ϵV H1( ),

s2ϵV Sk H1( )−H1( )

d s1(  + d t1(  + d s1( d t1( ( 
2

+ d s2(  + d s2( d t2( ( 
2

 

� 

tϵV H2( )



s1s2ϵE Sk H1( )( )s1ϵV H1( ),

s2ϵV Sk H1( )−H1( )

d s1( 
2

+ d s2( 
2

+ d t1( 
2
d s1( 

2
+ d t2( 

2
d s2( 

2
 

+2d t1( d s1( 
2

+ 2 d t2( d s2( 
2

+ 2 d t1(  d s1(  + 2d
2

t1(   d s1(  + d
2
H2

t1(  

� 2 E H2( 


 F G1(  + 16


E H1(  E H2( 
����

 + 2 E H1( 


F G2(  + F G1( F G2(  + 2M1 H1( M1 H2( 

+ 2F G1( M1 H2(  + 2M1 H1( F G2(  + 8 E H1( 


F G2(  + 16 E H1( 


M1 H2( ,


C2

� 

t1t2ϵE H2( )



s1s2ϵE Sk H1( )( )s1 ,

s2ϵV Sk H1( )−H1( )

d s1(  + d s1( d t1( ( 
2

+ d s2(  + d s2( d t2( ( 
2

 

� 

t1t2ϵE H2( )



s1s2ϵE Sk H1( )( )s1 ,

s2ϵV Sk H1( )−H1( )

8 + 4 d
2

t1(  + d
2

t2(   + 8 d t1(  + d t2( (  

� 16(k − 1)|E H2(  E H1( 
����

����| + 8(k − 1)F H2( |E H1( | + 16(k − 1)|E H1( |M1 H2( .

(7)

We arrive at our desired result. □ Theorem 2. Let H1 and H2 be two connected graphs, then
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F H1Rk

⊠H2  �8 V H2( 


 + 6 E H2( 


 |F H1(  + V H1( 


 + 20|E H1(  F H2(  + 8F H1( F H2( 

+ 24 E H2( 


M1 H1(  + 36 E H1( 


M1 H2(  + 24M1 H1( M1 H2(  + 24F H1( M1 H2( 

+ 8|V H2(  E H1( 
����

����| + 8(k − 1) E H1( 


 V H2( 


 + F H2(  + 4 E H2( 


 + 3M1 H2(  

+ 48|E H1( 
����E H2( | + 12F H2( M1 H1( .

(8)

Proof. Let d(s, t) � dH1Rk
⊠H2

(s, t) is the degree of the vertex
(s, t) in H1Rk

⊠H2, then

F H1Rk

⊠H2  � 

(s,t)εV H1Rk
⊠H2 

d(s, t)
3

� 

s1 ,t1( ) s2,t2( )εE H1Rk
⊠H2 

d s1, t1( 
2

+ d s2, t2( 
2

 

� 

sϵV H1( )



t1t2ϵE H2( )

d s, t1( 
2

+ d s, t2( 
2

  + 

tϵV H2( )



s1s2ϵE Rk H1( )( )

d s1, t( 
2

+ d s2, t( 
2

 

+ 

t1t2ϵE H2( )



s1s2ϵE Rk H1( )( )

d s1, t1( 
2

+ d s2, t2( 
2

  � 
A

+ 
B

+ 
C

.


A

� 

sϵV H1( )



t1t2ϵE H2( )

d s, t1( 
2

+ d s, t2( 
2

  � 8 E H2( 


M1 H1(  + V H1( 


F H2( 

+ 4M1 H1( F H2(  + 8 E H1( 


M1 H2(  + 8M1 H1( M1 H2(  + 8 E H1( 


F H2( ,


B

� 

tϵV H2( )



s1s2ϵV H1( ),

s1,s2ϵV H1( )

d
2

s1, t(  + d
2

s2, t(   + 

tϵV H2( )



s1ϵV H1( ),

s2ϵV Rk H1( )−H1( )

d
2

s1, t(  + d
2

s2, t(  

+ 

tϵV H2( )



s1 ,s2ϵV Rk H1( )−H1( )

d
2

s1, t(  + d
2

s2, t(   � 
B1

+ 
B2

+ 
B3

.


B1

� 

tϵV H2( )



s1s2ϵE Rk H1( )( )s1 ,

s2ϵV H1( )

d s1(  + d(t) + d s1( d(t)( 
2

+ d s2(  + d(t) + d s2( d(t)( 
2

 

� 

tϵV H2( )



s1s2ϵE Sk H1( )( )s1 ,

s2ϵV H1( )

4 d
2

s1(  + d
2

s2(   + 2d
2
(t) + 4d

2
(t) d

2
s1(  + d

2
s2(   

+4 d(t) d s1(  + d s2( (  +4d
2
(t)d s1(  + d s2(  + 8 d(t) d

2
s1(  + d

2
s2(  

� 4 V H2( 


F H1(  + 2 E H1( 


M1 H2(  + 4M1 H2( F H1(  + 8 E H2( 


M1 H1( 

+ 4M1 H1( M1 H2(  + 16 E H2( 


F H1( ,


B2

� 

tϵV H2( )



s1s2ϵE Rk H1( )( )s1ϵV H1( ),

s2ϵV Rk H1( )−H1( )

d s1(  + d(t) + d s1( d(t)( 
2

+ d s2(  + d s2( d(t)( 
2

 

� 

tϵV H2( )



s1s2ϵE Rk H1( )( )s1ϵV H1( ),

s2ϵV Rk H1( )−H1( )

4 d s1( 
2

+ d s2( 
2

+ d(t)
2 4 d s1( 

2
+ d s2( 

2
  

+8 d(t) d s1( 
2

 + 4 d(t)d s1(  + 4d
2
(t) d s1(  + d

2
(t) + 2 d s2( 

2
d(t) 

� 4 V H2( 


F H1(  + 10 E H1( 


M1 H2(  + 4M1 H2( F H1(  + 8 E H2( 


M1 H1( a

+ 4M1 H1( M1 H2(  + 16 E H2( 


F H1(  + 8|V H2( 
����E H1( | + 32|E H1( 

����E H2( |,


B3

� 

tϵV H2( )



s1s2ϵE Rk H1( )( )s1 ,

s2ϵV Rk H1( )−H1( )

d s1(  + d s1( d(t)( 
2

+ d s2(  + d s2( d(t)( 
2

 

� 

tϵV H2( )



s1s2ϵE Rk H1( )( )s1 ,

s2ϵV Rk H1( )−H1( )

d s1( 
2

+ d s2( 
2

  + d(t)
2

d s1( 
2

+ d s2( 
2

  + 2 d(t) d
2

s1(  + d
2

s2(   
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� 8(k − 1)| V H2( (
����E H1( | + 8(k − 1)M1 H2(  E H1( 


 + 32(k − 1)|E H2( 

����E H1( |,


C

� 

t1t2ϵE H2( )



s1s2ϵV H1( )

d
2

s1, t1(  + d
2

s2, t2(   + 

t1t2ϵE H2( )



s1ϵV H1( ),

s2ϵV Rk H1( )−H1( )

d
2

s1, t1(  + d
2

s2, t2(  

+ 

t1t2ϵE H2( )



s1 ,s2ϵV Rk H1( )−H1( )

d
2

s1, t1(  + d
2

s2, t2(   � 
C1

+ 
C2

+ 
C3

.


C1

� 

t1t2ϵV H2( )



s1s2ϵE Rk H1( )( )s1 ,

s2ϵV H1( )

d s1(  + d t1(  + d s1( d t1( ( 
2

+ d s2(  + d t2(  + d s2( d t2( ( 
2

 

� 

t1t2ϵV H2( )



s1s2ϵE Rk H1( )( )s1 ,

s2ϵV H1( )

d s1( 
2

+ d s2( 
2

+ d
2

t1(  + d
2

t2(  + d t1( 
2
d s1( 

2
+ d

2
t2( d s2( 

2
+ 2 d t1( d s1(  

+2 d t2( d s2(  + 2d
2

t1( d s1(  + 2d
2

t2( d s2(  + 2 d t1( d
2

s1(  + 2d
2

t2( d s2( 

� 8 E H2( 


F H1(  + 2 E H1( 


F H2(  + 4F H1( F H2(  + 4M1 H1( M1 H2( 

+ 4M1 H1( F H2(  + 8M1 H2( F H1( ,


C2

� 

t1t2ϵV H2( )



s1s2ϵE Rk H1( )( )s1ϵV H1( ),

s2ϵV Rk H1( )−H1( )

d s1(  + d t1(  + d s1( d t1( ( 
2

+ d s2(  + d s2( d t2( ( 
2

 

� 

tεV H2( )



s1s2εE Rk H1( )( )s1εV H1( ),

s2εV Rk H1( )−H1( )

d s1( 
2

+ d s2( 
2

+ d
2

t1(  + d t1( 
2
d s1( 

2
+ 2 d t1( d s1(  + 2 d t1( d s1( 

2
 

+2d
2

t1( d s1(  + d t2( 
2
d s2( 

2
+ 2 d t2( d s2( 

2


� 8 E H2( 


F G1(  + 16|E H1( 
����E H2( | + 4F G1( F G2(  + 4M1 H1( M1 H2(  + 8F G1( M1 H2( 

+ 2 E H1( 


F G2(  + 4M1 H1( F G2(  + 8 E H1( 


F G2(  + 16 E H1( 


M1 H2( ,


C3

� 

t1t2ϵE H2( )



s1s2ϵE Rk H1( )( )s1 ,

s2ϵV Rk H1( )−H1( )

d s1(  + d s1( d t1( ( 
2

+ d s2(  + d s2( d t2( ( 
2

 

� 

t1t2ϵE H2( )



s1s2ϵE Rk H1( )( )s1 ,

s2ϵV Rk H1( )−H1( )

2 + 2 d t1( ( 
2

+ 2 + 2 d t2( ( 
2

 

� 16(k − 1)|E H2( 
����E H1( | + 8(k − 1)F H2( |E H1( | + 16(k − 1)|E H1( |M1 H2( .

(9)

We arrive at our desired result. □ Theorem 3. Let H1 and H2 be two connected graphs, then

F H1Qk

⊠H2  � 2(k − 1) F H1(  + 2M2 H1(   3n H2(  + 5M1 H2(  + 14 E H2( 


 + F H2(   + k V H2( 




+6 E H2( 


 + 3M1 H2(  + F H2(  M4 H1(  − 2F H1(  + 2M2 H1(  − 4M2 H1( 

+ 

uϵV H1( )

d
2
(u) 

vϵN(u)

d(v)] + 6 E H2( 


M1 H1(  + 10 E H2( 


F H2(  + 3F H1( F H2( 

+ 6M1 H1( M1 H2(  + F H2(  V H1( 


 + 3M1 H1(  + 6|E H2(  + 4M2 H1(  

+ F H1(  V H2( 


 + 7M1 H2(   + 6 E H2( 


M2 H1(  + 8M2 H1(  E H2( 


 + M1 H2(  .

(10)

Proof. Let d(s, t) � dH1Qk
⊠H2

(s, t) is the degree of the vertex
(s, t) in H1Qk

⊠H2, then
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F H1Qk

⊠H2  � 

(s,t)ϵV H1Qk
⊠H2 

d(s, t)
3

� 

s1 ,t1( ) s2,t2( )ϵE H1Qk
⊠H2 

d s1, t1( 
2

+ d s2, t2( 
2

 

� 

sϵV H1( )



t1t2ϵE H2( )

d s, t1( 
2

+ d s, t2( 
2

  + 

tϵV H2( )



s1s2ϵE Qk H1( )( )

d s1, t( 
2

+ d s2, t( 
2

 

+ 

t1t2ϵE H2( )



s1s2ϵE Qk H1( )( )

d s1, t1( 
2

+ d s2, t2( 
2

  � 
A

+ 
B

+ 
C

.


A

� 

sϵV H1( )



t1t2ϵE H2( )

d s, t1( 
2

+ d s, t2( 
2

  � 2 E H2( 


M1 H1(  + V H1( 


F H2( 

+ M1 H1( F H2(  + 4 E H1( 


M1 H2(  + 2M1 H1( M1 H2(  + 4 E H1( 


F H2( .


B

� 

tϵV H2( )



s1s2ϵE Qk H1( )( )

d
2

s1, t(  + d
2

p2, t(   � 

tϵV H2( )



s1ϵV H1( ),

s2ϵV Qk H1( )−H1( )

d
2

s1, t(  + d
2

s2, t(  

+ 

tϵV H2( )



s1 ,s2ϵV Qk H1( )−H1( )

d
2

s1, t(  + d
2

s2, t(   � 
B1

+ 
B2

.


B1

� 

tϵV H2( )



s1s2ϵE Qk H1( )( )s1ϵV H1( ),s

2ϵV Qk H1( )−H1( )

d s1(  + d(t) + d s1( d(t)( 
2

+ d s2(  + d s2( d(t)( 
2

 

� 

tεV H2( )



s1s2εE Qk H1( )( )s1εV H1( ),

s2εV Qk H1( )−H1( )

d s1( 
2

+ d s2( 
2

+ d(t)
2

d s1( 
2

+ d s2( 
2

  + 2 d(t)d s1( 
2

+ 2 d(t)d
2

s2( 
2

 

+2 d(t)d
2

s2( 
2

+ 2 d(t)d s1(  + d
2
(t).

(11)

Consider s1ϵV(H1) and d2(s1) occurs d(s1) times. 'us,

D1 � 

s1s2ϵE Q H1( )( ),

s1εV H1( ),s2εV Q H1( )( )−V H1( )

d
3

s1(  � F H1( .
(12)

Let

D2 � 

s1s2ϵE Q H1( )( ),

s1εV H1( ),s2ϵV Q H1( )( )−V H1( )

d
2

s2( .
(13)

as s2 � uvϵE(H1) and d2(s2) occurs two times. 'erefore,

D2 � 2 

s2�uvϵV Q H1( )( )−V H1( )

[d(u) + d(v)]
2

� 2 

uvϵE H1( )

d
2
(u) + d

2
(v) + 2 d(u)d(v)  � 2 F H1(  + 2M2 H1(  

� V H2( 


F H1(  + 2 E H1( 


M1 H2(  + M1 H2( F H1(  + 4 E H2( 


 M1 H1(  + F H1(   + 2M1 H1( M1 H2( 

+ 2 V H2( 


 F H1(  + 2M2 H1(   + 2M1 H2(  F H1(  + 2M2 H1(   + 8 E H2( 


 F H1(  + 2M2 H1(  .


B2

� 

tϵV H2( )



s1s2ϵE Qk H1( )( )s1 ,s2ϵV Qk H1( )−H1( )

d s1(  + d s1( d(t)( 
2

+ d s2(  + d s2( d(t)( 
2

 .

(14)

Now, we split sum in two parts, s1 and s2, where s1s2ϵ
V(Qk(H1)) − V(H1). Suppose that B2

�  B21 +  B22,
where  B21 covers the edges of Qk(H1) which are in the

same edges of H1 and  B22 of Qk(H1) in two different
adjacent edges of H1.
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B21

� 

tϵV H1( )



s1,s2ϵE Q H1( )( )

d s1(  + d s1( d(t) 
2

+ d s2(  + d s2( d(t) 
2

 

� 

tϵV H2( )



s1,s2ϵE Q H1( )( )

d
2

s1(  + d
2

s2(   + d
2
(t) d

2
s1(  + d

2
s2(   + 2 d(t) d

2
s1(  + d

2
s2(   

� 

tϵV H2( )

2(k − 1) F H1(  + 2M2 H1(   + d
2
(t) F H1(  + 2M2 H1(   + 2 d(t) F H1(  + 2M2 H1(  

� 2(k − 1) F H1(  + 2M2 H1(   V H2( 


 + M1 H2(  + 4 E H2( 


 ,


B22

� 

tϵV H2( )



s1s2ϵE Qk H1( )( )s1 ,

s2ϵV Qk H1( )−H1( )

d s1( 
2

+ d s2( 
2

+ d(t)
2

d s1( 
2

+ d s2( 
2

  + 2 d(t) d s1( 
2

+ d s2( 
2

  

D3 � 

s1s2ϵE Q H1( )( )s1,

s2ϵV Q H1( )( )−V H1( )

d
2

s1(  + d
2

s2(  .

(15)

In D3, the coefficient of

d
2
(u) � 2

2
d H1( (u)

  + 
vϵN(u)

d(v) − d(u)

� d
2
(u) − 2 d(u) + 

vϵN(u)

d(v).
(16)

'erefore,



uϵV H1( )

d
2
(u) � M4 H1(  − 2F H1(  + 

uϵV H1( )

d
2
(u)

· 
vϵN(u)

d(v).

(17)

For the coefficient of dudv, let s1s2ϵE(Q(H1)) with s1 �

uv and s2 � wz. As s1s2ϵE(Q(H1)), we have either v � w or z

or u � w or z. So, uv is adjacent to all those vertices in H1
which are adjacent to u and v. So, the number of such dudv is
(du + dv − 2). 'erefore,

2 

uvϵE H1( )

dudv � 2 

uvϵE H1( )

(du + dv − 2)dudv

� 2 

uvϵE H1( )

(du + dv)dudv − 4 

uvϵE H1( )

dudv

� 2M
1
2 H1(  − 4M2 H1( .

(18)

So,

D3 � M4 H1(  − 2F H1(  + 

uϵV H1( )

d2(u) 
vϵN(u)

d(v) + 2M
1
2 H1(  − 4M2 H1( 


B22

� (k) V H2( 


 + 4 E H2( 


 + M1 H2(   M4 H1(  − 2F H1(  + 2M
1
2 H1(  − 4M2 H1( 

+ 

uϵV H1( )

d2(u) 
vϵN(u)

d(v)
⎤⎥⎥⎥⎥⎥⎥⎥⎦,


C

� 

t1t2ϵE H2( )



s1s2ϵE Qk H1( )( )

d
2

s1, t1(  + d
2

s2, t2(   � 

t1t2ϵE H2( )



s1ϵV H1( ),

s2ϵV Qk H1( )−H1( )

d
2

s1, t1(  + d
2

s2, t2(  

+ 

t1t2ϵE H2( )



s1 ,s2ϵV Qk H1( )−H1( )

d
2

s1, t1(  + d
2

s2, t2(   � 
C1

+ 
C2

.


C1

� 

t1t2ϵV H2( )



s1s2ϵE Qk H1( )( )s1ϵV H1( ),

s2ϵV Qk H1( )−H1( )

d s1(  + d t1(  + d s1( d t1( ( 
2

+ d s2(  + d s2( d t2( ( 
2

 

� 

tϵV H2( )



s1s2ϵE Qk H1( )( )s1ϵV H1( ),

s2ϵV Qk H1( )−H1( )

d s1( 
2

+ d t1( 
2
d s1( 

2
+ 2 d t1( d s1(  + 2d

2
t1( d s1(  + 2 d t1( d s1( 

2
 

+ d
2

t1(  + d s2( 
2

+ d t2( 
2
d s2( 

2
+ 2 d t2( d s2( 

2


� 6 E H2( 


 + M1 H2(  F H1(  + 3F H1( F H2(  + 2M1 H1( M1 H2(  + 2 E H1( 


 + M1 H1( 

+2M2 H1( F H2(  + 8M2 H1(  E H2( 


 + M1 H2(  .|


C2

� 

t1t2ϵE H2( )



s1s2ϵE Qk H1( )( )s1 ,

s2ϵV Qk H1( )−H1( )

d s1(  + d s1( d t1( ( 
2

+ d s2(  + d s2( d t2( ( 
2

 .

(19)
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Now, we split this sum into two parts for the vertices, t1
and t2, where s1s2ϵV(Qk(G) − V(G). Assume that
(Tex translation failed), where (Tex translation failed) cover

the edges of Qk(H1) which are in the same edges of H1 and
(Tex translation failed) of Qk(H1) in two different adjacent
edges of H1.


C21

� 

t1t2ϵE H2( )



s1s2ϵE Qk H1( )( )s1 ,

s2ϵV Qk H1( )−H1( )

d s1(  + d s1( d t1( ( 
2

+ d s2(  + d s2( d t2( ( 
2

 

� 

t1t2ϵE H2( )



s1s2ϵE Qk H1( )( )s1 ,

s2ϵV Qk H1( )−H1( )

d
2

s1(  + d
2

s2(  + d
2

s1( d
2

t1(  + d
2

s2( d
2

t2(  + 2 d
2

s1( d t1(  + d
2

s2( d t2(   

� 2(k − 1) F H1(  + 2M2 H1(   2 E H2( 


 + F H2(  + 2M1 H2(  ,


C22

� 

t1t2ϵE H2( )



s1s2ϵE Qk H1( )( )s1 ,

s2ϵV Qk H1( )−H1( )

d s1(  + d s1( d t1( ( 
2

+ d s2(  + d s2( d t2( ( 
2

 

� (k) 2 E H2( 


 + F H2(  + 2M1 H2(   M4 H1(  − 2F H1(  + 2M2 H1(  − 4M2 H1( (

+ 

uϵV H1( )

d
2
(u) 

vϵN(u)

d(v)].

(20)

We arrive at our desired result. □ Theorem 4. Let H1 and H2 be two connected graphs, then

F H1Tk

⊠H2  � 2(k − 1) F H1(  + 2M2 H1(   n H2(  + 3M1 H2(  + 6 E H2( 


 + F H2(   + k V H2( 




+ 6 E H2( 


 + 3M1 H2(  + F H2(  M4 H1(  − 2F H1(  + 2M2 H1(  − 4M2 H1( 

+ 

uϵV H1( )

d
2
(u) 

vϵN(u)

d(v)] + F H1(  + 2M2 H1(   2n H2(  + 6M1 H2(  + 12 E H2( 


 + 2F H2(  

+ 4F H1(  2n H2(  + 6M1 H2(  + 12 E H2( 


 + 2F H2(   + F H2(  n H1(  + 12M1 H1( 

+12 E H2( 


 + 12 E H1( 


M1 H2(  + 16 E H2( 


M1 H1(  + 20M1 H1( M1 H2( .

(21)

Proof. It follows from 'eorems 2 and 3. □

Table 1: F-index of F1-sum path graphs.

[n1, n2] F(Pn1S1
⊠Pn2

) F(Pn1R1
⊠Pn2

) F(Pn1Q1
⊠Pn2

) F(Pn1T1
⊠Pn2

)

(3, 3) 1808 6414 3442 8048
(4, 4) 4836 18120 8826 22,110
(5, 5) 9320 35,746 16,692 43,118
(6, 6) 15,260 59,292 27,040 71,072
(7, 7) 22,656 88,758 39,870 105,972

Table 2: F-index of F2-sum path graphs.

[n1, n2] F(Pn1S2
⊠Pn2

) F(Pn1R2
⊠Pn2

) F(Pn1Q2
⊠Pn2

) F(Pn1T2
⊠Pn2

)

(3, 3) 2496 7102 5764 10,370
(4, 4) 6516 19,800 14,496 27,780
(5, 5) 12,424 38,850 27,168 53,594
(6, 6) 20,220 64,252 43,780 87,812
(7, 7) 29,904 96,006 64,332 130,434
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4. Applications and Discussion

In this paper, we computed the F-index of the generalized
sum graphs. Assume that H1 � Pn1

and H2 � Pn2
are par-

ticular alkane called as paths of orders n1, n2 ≥ 3, and k≥ 1,
respectively. 'en, the following outcomes are the direct
consequences of the achieved results:

(i)) F(Pn1Sk

⊠Pn2
) � 128k(n1 − 1) + 250(n2 + n1) +

512(n2 − 2)(n1 − 2) + 216k(n1 − 1)(n2 − 2) − 892

(ii) F(Pn1Rk

⊠Pn2
) � 128k(n1 − 1) + 216k(n1 − 1)(n2 −

2) + 2744(n2 − 2)(n1 − 2) + 1458n1 + 1024n2 − 4464
(iii) F(Pn1Qk

⊠Pn2
) � 432k(n1 − 1) + 729k(n1 − 1)(n2 −

2) + 512(n2 − 2)(n1 − 2) + 250(n1 + n2) − 892
(iv) F(Pn1Tk

⊠Pn2
) � 432k(n1 − 1) + 729k(n1 − 1)(n2 −

2) + 2744(n2 − 2)(n1 − 2) + 1458n1 + 1024n2 − 4464

(1) Four subdivision operations (S1(G), R1(G),

Q1(G), T1(G)) are restricted in case of newly
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Figure 9: Compression between F-index of F1-sum and F2-sum graphs. (a) F(Pn1S1
⊠Pn2

) and F(Pn1S2
⊠Pn2

) are denoted by light green
dotted line and dark green solid line, and F(Pn1R1

⊠Pn2
) and F(Pn1R2

⊠Pn2
) are denoted by sky blue dotted line and blue solid line,

respectively. (b) F(Pn1Q1
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⊠Pn2

) are denoted by pink dotted line and red solid line, and F(Pn1T1
⊠Pn2
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)

by grey dotted line and black solid line, respectively.
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Figure 8: (a) F(Pn1S1
⊠Pn2

), F(Pn1Q1
⊠Pn2

), F(Pn1R1
⊠Pn2

), and F(Pn1T1
⊠Pn2

) denoted by red, purple, green, and pink colours, respectively.
(b) F(Pn1S2

⊠Pn2
), F(Pn1Q2

⊠Pn2
), F(Pn1R2

⊠Pn2
), and F(Pn1T2

⊠Pn2
) denoted by purple, green, pink, and red colours, respectively.
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addition of vertices upto k� 1, while four subdivision
operations (Sk(G), Rk(G), Qk(G), Tk(G)) are not
restricted in case of newly addition of vertices as k
can be any natural number.

(2) For a certain graph G, newly constructed graphs
(S1(G), R1(G), Q1(G), T1(G)) will have specific
number of edges. While, in (Sk(G), Rk(G),

Qk(G), Tk(G)), the number of edges will be varying
according to k.

(3) Molecular structure of (Sk(G), Rk(G), Qk(G),

Tk(G)) is more general as compared to the (S1(G),

R1(G), Q1(G), T1(G)).
(4) Molecular structure of Fk-sum is more complex and

general as compared to the molecular structure of
F1-sum.

(5) In this paper, main results F(H1Sk
⊠H2),

F(H1Qk
⊠H2), F(H1Rk

⊠H2), and F(H1Tk
⊠H2)

based on strong product are generalization of
F(H1S1
⊠H2), F(H1Q1

⊠H2), F(H1R1
⊠H2), and

F(H1T1
⊠H2) based on strong product.

Now, we present its tabular form, Table 1 and Table 2 and
graphical representations in Figures 8 and 9 for k � 1 and
k � 2.

In this paper, we computed the F-index of the sub-
division-related generalized F-sum graphs based on strong
product. However, the problem is still open for other to-
pological indices on the generalized F-sum graphs.
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Polyphenyl is used in a variety of applications including high-vacuum devices, optics, and electronics, and in high-temperature
and radiation-resistant fluids and greases, it has low volatility, ionizing radiation stability, and high thermal-oxidative properties.
+e structure of polyphenyls can be represented using a molecular graph, where atoms represent vertices and bonds between atom
edges. In a chemical structure, an item/vertex v resolves two items v1 and v2 if d(v1, v)≠ d(v2, v); similarly, the ordered subset ϕ of
vertices resolves each pair of distinct vertices named as the resolving set, and its minimum cardinality is described as metric
dimension. In the pharmaceutical industry, the competition to find new chemical entities for treating a disease dictates larger
project teams that encompass more extensive and diverse synthetic efforts directed at increasingly complicated activity spectra. In
this paper, we determine the metric dimension of para-, meta-, and ortho-polyphenyl structures, which are used for structure-
activity analysis of these polyphenyl structures.

1. Introduction

Chemists require the mathematical representation of a
chemical compound to work with the chemical structure. In
a chemical structure, a set of selected atoms gave mathe-
matical representations so that it gave distinct representa-
tions to distinct atoms of the structure. +e chemical
structure can be defined in the form of vertices, which
mentions the atom and edges indicate the bonds types,
respectively. +us, a graph-theoretic analysis of this idea
yields the representations of all vertices in a structure in such
a way that different vertices have distinct representations
with respect to some specific atoms of that structure. +e

following are some mathematical definitions to indicate
these concepts.

In 1975, the concept of locating set was proposed by
Slater [1] and called the minimum cardinality of a locating
set of a graph locating number. On the same pattern, in
1976, the idea of metric dimension of a graph was indi-
vidually introduced by Harary and Melter in [2], and these
time metric generators were named as resolving sets.
Members of metric basis set were assigned as a sonar or
loran station [1].

A connected, simple graph G(V, E) with V is the set of
vertices (also can say atoms), and E is the set of edges (bond
types); the distance between two vertices/bonds a1, a2 ∈ V is
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the length of geodesic between them and denoted by
d(a1, a2). Let ϕ � ϕ1, ϕ2, . . . ,ϕl  be an order subset of
vertices belonging to a graph G and a be a vertex. +e
representation r(a|ϕ) of a corresponding to ϕ is the l-tuple
(d(a, ϕ1), d(a, ϕ2), d(a, ϕ3), . . . , d(a, ϕl)), where ϕ is called a
resolving set [2] or locating set [1], if every vertex of G is
uniquely determined by its distances from the vertices of ϕ
or, on the contrary, if different vertices of G have unique
representations with respect to ϕ. +e minimum cardinality
of the resolving set ϕ is called the metric dimension of G, and
it is denoted by dim(G) [1]. For a given ordered set of
vertices ϕ � ϕ1,ϕ2, . . . , ϕl  ⊂ V, the cth location of r(a|ϕ) �

0 if and only if a � ϕc. +us, to verify that ϕ is a resolving set,
it is enough to show that r(a1|ϕ)≠ r(a2|ϕ) for every possible
distinct pair of vertices a1, a2 ∈ V(G)\ϕ.

Metric dimension of a graph or a structure is a
resolvability parameter that has been applied in numerous
applications of graph theory, for the drug discovery in
pharmaceutical chemistry [3, 4], robot navigation [5],
combinatorial optimization concept studied in [6], vari-
ous coin weighing problems [7, 8], and utilization of the
idea in pattern recognition and processing of images, few
of which also associate with the use in hierarchical data
structures [1].

Due to numerous uses of resolvability parameters in the
chemical field, many works have been done with graph
perspectives, and metric dimension is also considered im-
portant to study different structures with it, such as the
structure of H-naphtalenic and VC5C7 nanotubes discussed
with metric concept [9], some upper bounds of cellulose
network considering metric dimension as a point of dis-
cussion [10], resolving sets of silicate star determined in [11],
metric basis of 2 D lattice of alpha-boron nanotubes dis-
cussed with specific applications [12], and sharps bound on
the metric dimension of honeycomb and its related network
[13]; for more interesting literature work on metric di-
mension, metric basis, resolving set, and other resolvability
parameters, refer to [13–28].

2. Results of Polyphenyl Chemical Networks

In the results of this article, we discuss the metric dimension
of para-, meta-, and ortho-polyphenyl chemical networks
constructed by different polygons. Usually, the networks are
made up with the chain of hexagons using chemical oper-
ations ortho, para, and meta; in this work, we extend this to
any order of polygons. Moreover, using η � 6 with arbitrary
h in +eorems 1–5, we can produce the para-, meta-, and
ortho-polyphenyl chain of hexagons and retrieve its cor-
responding metric dimension as well.

2.1.MetricDimension ofO(η,h). Let O(η, h) be a connected
graph of ortho-polyphenyl network of cycle graph Cη, and h

are the copies of cycle graph with order λ � ηh and size
h(η + 1) − 1. For the following theorems, Figure 1 shows the
resolving set in dark black vertices.

Theorem 1. If η≥ 3 and h � 2, then dim(O(η, 2)) is 2.

Proof. To prove that dim(O(η, 2))≤ 2, for this assume, a
resolving set ϕ � v1, vη+1 . We construct the following cases
on vertex set of O(η, 2):

r1 vζ | ϕ  �

ζ − 1; if ζ � 1, 2, 3, . . . ,
η
2

+ 1;

η − ζ + 1; if ζ �
η
2

+ 2, . . . , η;

ζ − η + 2; if ζ � η + 1, η + 2, . . . , η +
η
2
;

2η − ζ + 2; if ζ � η +
η
2

+ 1, . . . , 2η.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1)

Second vector representations are as follows:

r2 vζ |ϕ  �

ζ + 2; if ζ � 1, 2, 3, . . . ,
η − 1
2

,

η − ζ + 2; if ζ �
η − 1
2

+ 1, . . . , η,

ζ − η; if ζ � η + 1, η + 2, . . . , η +
η + 2
2

,

2η − ζ + 1; if ζ � η + 1 +
η + 2
2

, η + 2 +
η + 2
2

, . . . , 2η.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2)

Hence, it follows from the above arguments in the form
of representation that dim(O(η, 2))≤ 2 because all the
vertices of O(η, 2) have unique representations with respect
to resolving set ϕ.

For reverse inequality that dim(O(η, 2))≥ 2, by con-
tradiction, our assertion becomes dim(O(η, 2))< 2, imply-
ing that dim(O(η, 2)) � 1, and it is not possible because only
the path graph exists having the metric dimension 1. All
discussion concludes that when η≥ 3 and h � 2,

dim(O(η, 2)) � 2. (3)
□

Theorem 2. If η, h≥ 3, then dim(O(η, h)) is h.

Proof. To show that dim(O(η, h)) � h, we will apply the
induction method on h the number of copies of base graph.

1 2 h – 1 h

Figure 1: O(η, h).
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+e base case for h � 2 is proved in+eorem 1; now, assume
that the assertion is true for h � m:

dim(O(η, m)) � m. (4)

We will show that it is true for h � m + 1. Suppose

dim(O(η, m + 1)) � dim(O(η, m)) + dim(O(η, 2)) − 1.

(5)

Using equations (3) and (4) in equation (5), we will get

dim(O(η, m + 1)) � m + 2 − 1 � m + 1. (6)

Hence, the result is true for all positive integers
h≥ 3. □

2.2. Metric Dimension of M(η, h). Let M(η, h) be a con-
nected graph of meta-polyphenyl network of cycle graph Cη,
and h are the copies of cycle graph with order λ � ηh and size
h(η + 1) − 1. For the following theorems, Figure 2 shows the
resolving set in dark black vertices.

Theorem 3. If η≥ 4 (even) and h � 2, then dim(M(η, 2)) is 2.

Proof. To prove that dim(M(η, 2))≤ 2, we construct a re-
solving set ϕ � v1, vη+2  from the vertex set of M(η, 2). We
assume the following cases on vertex set of M(η, 2):

r vζ |ϕ  �
ζ + 1
2

,
η + 4
2

−
ζ
2

 , ζ � 1, 3, 5, . . . , η − 1,

r vζ |ϕ  �
ζ − 1
2

,
η + 2
2

−
ζ − 1
2

 , ζ � 2, 4, 6, . . . , η,

r vζ |ϕ  �
ζ − 1
2

,
ζ − η + 1

2
 , ζ � η + 1, η + 3, η + 5, . . . , 2η − 1,

r vζ |ϕ  �
ζ
2
,
ζ − η − 2

2
 , ζ � η + 2, η + 4, η + 6, . . . , 2η.

(7)

Hence, it follows from the above discussion that
dim(M(η, 2))≤ 2 because all the vertices of M(η, 2) have
unique representations with respect to resolving set ϕ.

For converse dim(M(η, 2))≥ 2, we use contradiction,
and dim(M(η, 2)) � 1 is not possible because only the path

graph exists having the metric dimension 1. All discussion
concludes that when η≥ 4 (even) and h � 2,

dim(M(η, 2)) � 2. (8)
□

Theorem 4. If η≥ 4 (even) and h≥ 3, then dim(M(η, h)) is
h.

Proof. To show that dim(M(η, h)) � h, we will apply the
induction method on h showing the copies of base graph.
+e base case for h � 2 is proved in+eorem 3; now, assume
that the assertion is true for h � m:

dim(M(η, m)) � m. (9)

We will show that it is true for h � m + 1. Suppose

dim(M(η, m + 1)) � dim(M(η, m)) + dim(M(η, 2)) − 1.

(10)

Using equations (8) and (9) in equation (10), we have

dim(M(η, m + 1)) � m + 2 − 1 � m + 1. (11)

Hence, the result is true for all positive integers
h≥ 3. □

2.3. Metric Dimension of L(η, h). Let L(η, h) be a connected
graph of para-polyphenyl network of cycle graph Cη, and h

are the copies of cycle graph with order λ � ηh and size
h(η + 1) − 1. For the following theorems, vertices are la-
beled, as shown in Figure 3; moreover, it also shows the
resolving set in dark black vertices.

Theorem 5. If η≥ 5 and h≥ 2, then dim(L(η, h)) is 2.

Proof. Firstly, we prove that dim(L(η, h))≤ 2; for this
construction, a resolving set ϕ � v1, vλ−η+1  from the vertex
set of L(η, h). We assume the following cases on vertex set of
G and on the copies of cycle graph, i.e., h:

r1 vζ |ϕ  �

ζ − 1, if ζ � 1, 2, 3, . . . ,
η + 1
2

,

η − ζ + 1, if ζ �
η + 1
2

+ 1,
η + 1
2

+ 2, . . . , η,

3
ζ
η

+ ζ − 1 − η
ζ
η

, if ζ ≡ 1, 2, 3, . . . ,
η − 1
2

(mod η),

η
ζ
η

+ 2 − ζ, if ζ ≡ 0,
η − 1
2

+ 1,
η − 1
2

+ 2, . . . , η − 1(mod η).

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(12)

1 2 h – 1 h

Figure 2: M(η, h).
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If ζ ≡ 0, ((η − 1)/2) + 1, ((η − 1)/2) + 2, . . . , η − 1(mod
η) and ζ > 2η,

r1 vζ |ϕ  � η
ζ +((η − 1)/2) + 1

η

− ζ + 2 + 3
ζ +((η − 1)/2) + 1

η
− 2 .

(13)

Second vector representations are as follows:

Case 1. h � 2:

r2 vζ |ϕ  �

3, if ζ � 1;

ζ, if ζ � 2, 3, . . . ,
η + 2
2

,

η − ζ + 4, if ζ �
η + 2
2

+ 1, . . . , η.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(14)

Case 2. h≥ 3:

r2 vζ |ϕ  �

3
η(h − 1) + 1

η
− 1  + ζ, if ζ � 1,

3
ζ
η

− 1  + ζ, if ζ � 2, 3, . . . ,
η + 2
2

,

η − ζ + 4 + 3
η(h − 1) + 1

η
− 1 , if ζ �

η + 2
2

+ 1, . . . , η.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(15)

Subcase 2.1. If ζ � η(h − 1) + 1, η(h − 1) + 2, . . . ,

η(h − 1) + (η/2),

r2 vζ |ϕ  � ζ − η(h − 1) − 1. (16)

Subcase 2.2. If ζ � η(h − 1) + (η/2) + 1, η(h − 1) +

(η/2) + 2, . . . , ηh,

r2 vζ |ϕ  � ηh − ζ + 1. (17)

Subcase 2.3. If ζ ≡ 2, 3, . . . , ((η + 2)/2)(mod η), and
ζ ≥ η + 1,

r2 vζ |ϕ  � 3 h −
ζ − 1
η

− 2  + 2 + ζ − 2 + η
ζ
η

 .

(18)

Subcase 2.4. If ζ ≡ 0, ((η + 2)/2) + 1, . . . , η − 1
(mod η), and ζ ≥ η + 1,

r2 vζ |ϕ  � 3 h −
ζ − 1
η

− 2  + 4 − ζ + η
ζ +((η + 2)/2)

η
.

(19)

Subcase 2.5. If ζ ≡ 1(mod η), and ζ ≥ η + 1,

r2 vζ |ϕ  � 3 h −
ζ
η

− 1 . (20)

Hence, it follows from the above discussion that
dim(L(η, h))≤ 2 because all the vertices of L(η, h) have
unique representations with respect to resolving set ϕ.

For reverse inequality that dim(L(η, h))≥ 2, by con-
tradiction, our assertion becomes dim(L(η, h))< 2, imply-
ing that dim(L(η, h)) � 1, and it is not possible because only
the path graph exists having the metric dimension 1. All
discussion concluding that when η≥ 5 and h≥ 2,

dim(L(η, h)) � 2. (21)
□

2.4. Metric Dimension of LS(η, h). Let LS(η, h) be a con-
nected graph of para-polyphenyl network of sun graph Sη,
where h are the copies of sun graph and η is the order of
interior cycle of sun graph.+e order and size of network are

v5

v1

1 2 h – 1 h

v4

v3

v2

vη–2

vη–1

vη+5

vη+1

vη+4 vλ–η–2

vλ–η–1 vλ–1

vλ

vλ–2

vλ–η

vλ–2η+5

vλ–2η+1

vλ–2η+4 vλ–η+4

vλ–η+3

vλ–η+2

vλ–η+5

vλ–η+1

vλ–2η+3

vλ–2η+2

vη+3

vη+2
vη

v2η–2

v2η–1

v2η

Figure 3: L(η, h).
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|V(LS(η, h))| � λ � 2ηh and |E(LS(η, h))| � h(2η + 1) − 1,
respectively. +e vertices are labeled, as shown in Figure 4.

Theorem 6. If η≥ 5 (odd) and h≥ 2, then dim(LS(η, h)) is 2.

Proof. To prove that dim(LS(η, h))≤ 2, for this construct, a
resolving set ϕ � v((η+3)/2), vξ , where ξ � ((η(4h − 3) − 1)/
2) from the vertex set of LS(η, h). We assume the following
cases on vertex set of LS(η, h):

Case 1. 1≤ ζ ≤ 2η:

r1 vζ |ϕ  �

η + 3
2

− ζ, if ζ � 1, 2, . . . ,
η + 3
2

,

ζ −
η + 3
2

, if ζ �
η + 5
2

,
η + 5
2

, . . . , η,

η + 1
2

, if ζ � η + 1,

3η + 5
2

− ζ, if ζ � η + 2, η + 3, . . . ,
3η + 3

2
,

ζ −
3η + 1

2
, if ζ �

3η + 5
2

,
3η + 7

2
, . . . , 2η.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Case 2. If ζ ≡ ((η + 1)/2), ((η + 3)/2), . . . , η(mod 2η),
ζ ≥ ((5η + 1)/2),

r1 vζ |ϕ  �
η − 1
2

+ 3η + 2
ζ − 1
3η

 η − ζ + 3
ζ
2η

+ 2
ζ
2η

  − 1 .

(23)

Case 3. If ζ ≡ 1, 2, . . . , ((η − 1)/2)(mod 2η), ζ ≥ 2η + 1,

r1 vζ |ϕ  �
η − 1
2

+ ζ + 5
ζ
2η

−
η(4h − 3) − 1

2
+
η − 5
2

 .

(24)

Case 4. If ζ ≡ η + 1, η + 2, . . . , (3η − 1/2)(mod 2η),
ζ ≥ 3η + 1,

r1 vζ |ϕ  � ζ −
η(4((ζ/2η) + 1) − 3) − 1

2
+ 3

ζ
2η

+ 2
ζ
2η

− 1  .

(25)

Case 5. If ζ ≡ 0, ((3η + 1)/2), ((3η + 3)/2), . . . , 2η − 1
(mod 2η), ζ ≥ ((7η + 1)/2),

r1 vζ |ϕ  �
η − 1
2

+ 4
ζ − 1
2η

+ 2
ζ
2η

− 1  − ζ + η 2
ζ − 1
2η

2  −
ζ − η − 1

3η
+ z , (26)

where z � −2 when ζ ≡ 0(mod 2η) and ζ ≥ 4η; otherwise,
z � 0.

+e representations of all vertices with respect to the
second vertex of resolving set are as follows:

Case 1. 1≤ ζ ≤ 3η + 1:

r2 vζ |ϕ  �

ζ − ξ, if ζ � ξ + 1, ξ + 2, . . . ,
2ξ + η − 1

2
,

η + 1
2

, if ζ �
2ξ + η + 1

2
,

ξ − ζ, if ζ �
2ξ + η + 1

2
,
2ξ + η + 1

2
+ 1, . . . , ξ,

ζ − ξ − η + 1, if ζ � ξ + η, ξ + η + 1, ξ + η + 2, . . . ,
2ξ + 3η − 1

2
,

η + 3
2

, if ζ �
2ξ + 3η + 1

2
,

η − 1
2

, if ζ � 3η + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)
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Case 2. If ζ ≡ 2, 3, 4, . . . , ((η + 3)/2)(mod 2η),

r2 vζ |ϕ  �
η − 1
2

+ 3 h −
ζ
2η

− 1  + 2 h − 2 −
ζ
2η

  + ζ − 2 + 2η
ζ
2η

  . (28)

Case 3. If ζ ≡ ((η + 5)/2), ((η + 7)/2), . . . , η(mod 2η),

r2 vζ |ϕ  �
3η + 3

2
+ 3 h − 1 −

ζ
2η

  + 2 h − 2 −
ζ
2η

  − ζ + 2η
ζ
2η

  . (29)

Case 4. If ζ ≡ 1(mod 2η),

r2 vζ |ϕ  �
η − 1
2

+ 3 h −
ζ
2η

− 1  + 2 h − 2 −
ζ
2η

  + ζ − 2η
ζ
2η

  . (30)

Case 5. If ζ ≡ η + 2, η + 3, . . . , ((3η + 3)/2)(mod 2η),

r2 vζ |ϕ  �
η − 3
2

+ 3 h −
ζ
2η

− 1  + 2 h − 2 −
ζ
2η

  + ζ − 2η
ζ
2η

  − η + z , (31)

where z � −2 when ζ ≡ 7(mod 2η) and, otherwise,
z � 0.

Case 6. If ζ ≡ 0, ((3η + 5)/2), ((3η + 7)/2), . . . , 2η−

1(mod2η),

r2 vζ |ϕ  �
5η + 5

2
+ 3 h −

ζ
2η

− 1  + 2 h − 2 −
ζ
2η

  − ζ + 2η
ζ
2η

  . (32)

Case 7. If ζ ≡ η + 1(mod 2η),

v5
v4

v4η

v2η+5

v2η+2
v2η+1

v2η+3

v2η+4

v3η+5 v3η+4

v3η+3

v3η+2

v2v1

vn

v3

vη+5
vη+4

vη+1

vη+3

v3η+1

v3η

vη+2
v2η

vλ–2η

vλ–3η+5

vλ–4η+5

vλ–3η+4

vλ–4η+4

vλ–4η+3

vλ–3η

vλ–3η+2
vλ

vλ–4η+2
vλ–ηvλ–4η+1

vλ–3η+1 vλ–η+1

vλ–η+2

vλ–3η+3

vλ–η+5

vλ–2η+5

vλ–η+4

vλ–η+3vλ–2η+4

vλ–2η+3

vλ–2η+2
vλ–2η+1

Figure 4: LS(η, h).
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r2 vζ |ϕ  �
3η + 5

2
+ 3 h −

ζ
2η

− 1  + 2 h − 2 −
ζ
2η

  − ζ + 2η
ζ
2η

  . (33)

Hence, it follows from the above discussion that
dim(LS(η, h))≤ 2 because all the vertices of LS(η, h) have
unique representations with respect to resolving set ϕ. For
reverse inequality that dim(LS(η, h))≥ 2, by contradiction,
our assertion becomes dim(LS(η, h))< 2, implying dim(LS

(η, h)) � 1, and it is not possible because only the path graph
exists having the metric dimension 1. All discussion con-
cluding that when η≥ 5 (odd) and h≥ 2,

dim LS(η, h)(  � 2. (34)
□

3. Conclusion

We found the metric dimension of some chemical networks
ortho-, meta-, and para-polyphenyl chains constructed with
base graph Cη and sun graph Sη, and these networks have
metric dimension dim(O(η, h)) � dim(M(η, h)) � h and
dim(L(η, h)) � 2.
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Starch is a polymer of glucose where alpha-linkages are associated with glucopyranose units. It comprises a mixture of amylose
and amylopectin. Furthermore, amylose is a linear chain of hundreds of glucose molecules. Starches are not allowed to be
dissolved in water. )ey can be digested by breaking down alpha bonds (glycosidic bonds). Its cyclic degradation products, called
cyclodextrins, are the best role models for amylose. )ey can be considered simple turns of the amylose propeller that has
imploded into a circular path. Both humans and animals have amylases, which allow them to digest starches. )e important
sources of starch include potatoes, rice, wheat, and maize for human consumption. )e production of starches is how plants store
glucose. )e blue colour of starch produced by an iodine solution or iodine reaction is used for its identification. Polysaccharides
with a reduced degree of polymerization, known as dextrins, are produced in the starch’s partial acid hydrolysis. Complete
hydrolysis leads to glucose. In this article, we compute the topological properties: Zagreb index M1(Γ) and M2(Γ), Randić index
Rα(Γ) for α � − (1/2), − 1, (1/2), 1, atom-bond connectivity index ABC(Γ), geometric-arithmetic index GA(Γ), fourth atom-bond
connectivity index ABC4(Γ), fifth geometric-arithmetic index GA5(Γ), and degree-based topological indices of a graph Γ
representing polysaccharides, namely, amylose and blue starch-iodine complex. In the end, we compare these indices and depict
their graphic behavior.

1. Introduction

Amylose has the most basic structure of all nutritional
polysaccharides, composed purely of glucose polymers
connected only by α(1 − 4) bonds. Notice that starch is, in
fact, a combination of amylose and amylopectin. Amylose is
not allowed to be dissolved in water and is more difficult to
digest compared to amylopectin. )e complexing of amy-
lopectin with amylose facilitates its water—another view of
amylose solubility and digestibility. Amylose plays an im-
portant role in the storage of plant energy, and as plants do
not require glucose to explode, its dense structure and slow
breakdown features are under plant’s growth. Another
function of polysaccharides within cells refers to structural
support. Besides, hemicelluloses are another group of
polysaccharides located in plant cell walls.

In 1814, Colin and Claubry discovered the starch-iodine
reaction, which is well renowned to any chemist from basic
courses in qualitative and quantitative analysis.

)e first topological index was derived in 1947 when
Wiener worked on the boiling point of paraffin alkanes. It
was known as the Wiener number. Later on, it is called a
path number. )e work [1] described the M-polynomial and
degree-based topological indices of graphs. )e authors in
[2, 3] discussed the symmetric divisor deg index of graphs,
first Zagreb after 30 years in changed form and topological
indices of molecular structure. )e authors in [4] also
discussed the π electron energy of hydrocarbons. In recent
years, Hasni et al. computed the degree-based topological
indices of the line graph of benzene ring embedded in P-type
surface in the 2D network [5]. In [6], the authors calculated
the index numbers for the edge version of the geometric-
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arithmetic index of nanocones. Much research has been
done to explain the nature of chromophore absorption at
620 nm that yields starch-iodine complex, the distinctive
dark blue colour. Still, there seem to have been many dis-
putes that might be addressed to some extent in recent
decades.

Let Γ be connected simple graph with V(Γ) a set of
vertices and E(Γ) a set of edges. Let u ∈ V(Γ) and its degree
is represented by Ru. )e idea of degree-based topological
indices began from Wiener index; in 1945, Wiener defined
them while studying alkane’s boiling point cf. [7]. )e first
degree-based topological index is Randić index given by
Milan Randić in [8] and is described as

R− (1/2) � 
uv∈E(Γ)

1
������
Ru

Rv



.
(1)

Generalized Randić index (denoted as Rα(Γ)) is de-
scribed as follows:

Rα(Γ) � 
uv∈E(Γ)

Ru
Rv)

α
, α � 1,

1
2
, −
1
2
, − 1. (2)

Inverse generalized Randić index (denoted as RRα(Γ)) is
described as

RRα(Γ) � 
uv∈E(Γ)

1
�������
Ru

Rv )α


.
(3)

In [4, 9, 10], Gutman and Trinajstić introduced and
defined the first Zagreb index (denoted as M1(Γ)) and
second Zagreb index (denoted as M2(Γ)) as

M1(Γ) � 
uv∈E(Γ)

Ru + Rv , M2(Γ) � 
uv∈E(Γ)

Ru
Rv). (4)

In [11], Estrada introduced and studied about the atom-
bond connectivity index (denoted as ABC(Γ)). It is defined
as follows:

ABC(Γ) � 
uv∈E(Γ)

�����������

Ru + Rv − 2
Ru

Rv

.




(5)

Geometric-arithmetic index (denoted as GA(Γ)) was
given by Vuki�cevic

�
cf. [12] and is defined as follows:

GA(Γ) � 
uv∈E(Γ)

2

������
Ru

Rv



Ru + Rv.
(6)

)e fourth version of the ABC index (denoted as
ABC4(Γ)) was introduced by Ghorbani in [13] and is defined
as

ABC4(Γ) � 
uv∈E(Γ)

���������
Su + Sv − 2

SuSv



, (7)

where Su � v�NΓ(u)
Rv and NΓ(u) � v ∈ V(Γ)|uv ∈ E(Γ){ }.

)e fifth version of the GA index (denoted as GA5(Γ))
was given by Graovac cf. [14] and is defined as

GA5(Γ) � 
uv∈E(Γ)

2
����
SuSv



Su + Sv

. (8)

2. Result for Amylose

Starch is a polymer of glucose whose glucopyranose alpha
bonds bind cells. It is a mixture of amylose and amylopectin.
Amylose is a linear chain of hundreds of glucose molecules.
Starches cannot be dissolved in water. )ey can be digested
by breaking the alpha bonds (glycosidic bonds). Amylose is a
polysaccharide composed of α-D-glucose units, linked by
α(1 − 4) glycosidic bonds. It is one of the two starch
components that make up about 20 to 30 percent. Due to its
tight spiral structure, amylose seems to be more resilient to
digestion than other starch molecules and is, thus, a sig-
nificant form of resistant starch [15] (see Figure 1 for a
molecular structure of amylose and Figure 2 for its unit
graph and the graph model corresponding to amylose for
n � 4, where n is the number of units). In amylose, there are
three types of vertices having degrees 1, 2, and 3. For n≥ 2,
amylose has four types of edge partitions as

E1,2(Γ) � Ru � 1, Rv � 2 and u, v ∈ V(Γ) ,

E1,3(Γ) � Ru � 1, Rv � 3 and u, v ∈ V(Γ) ,

E2,3(Γ) � Ru � 2, Rv � 3 and u, v ∈ V(Γ) ,

E3,3(Γ) � Ru � 3, Rv � 3 and u, v ∈ V(Γ) .

(9)

Theorem 1. For all n≥ 2, let Γ be the graph of amylose, then
we have the following:

R1(Γ) � 74n − 6,

R(1/2)(Γ) � 29.1258n − 1.4349,

R− (1/2)(Γ) � 5.2363n + 0.3382,

R− 1(Γ) � 2.4444n + 0.3334.

(10)

Proof. )e general Randić connectivity indexRα(Γ) for α � 1
is

R1(Γ) � 
uv∈E(Γ)

Ru
Rv. (11)

From Table 1 and equation (2), we get

R1(Γ) � n(1 × 2) +(2n + 2)(1 × 3) +(5n − 2)(2 × 3)

+ 4n(3 × 3) � 74n − 6.

(12)

Now, for α � (1/2), the general Randić connectivity
index Rα(Γ) is

R(1/2)(Γ) � 
uv∈E(Γ)

������
Ru

Rv.



(13)

Again, from Table 1 and equation (2), we have
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R(1/2)(Γ) � n
������
(1 × 2)


+(2n + 2)

������
(1 × 3)



+(5n − 2)
������
(2 × 3)


+ 4n

������
(3 × 3)



� 29.1258n − 1.4349.

(14)

If α � − (1/2), then

R− (1/2)(Γ) � 
uv∈E(Γ)

1
������
Ru

Rv



.
(15)

From Table 1 and equation (2), it follows that

R− (1/2)(Γ) �
n

������
(1 × 2)

 +
(2n + 2)

������
(1 × 3)

 +
(5n − 2)

������
(2 × 3)

 +
4n

������
(3 × 3)



� 5.2363n + 0.3382.

(16)

Now, for α � − 1, we have

R− 1(Γ) � 
uv∈E(Γ)

1
Ru

Rv.
(17)

From Table 1 and equation (2), we get

R− 1(Γ) �
n

(1 × 2)
+

(2n + 2)

(1 × 3)
+

(5n − 2)

(2 × 3)
+

4n

(3 × 3)

� 2.4444n + 0.3334.

(18)

□

Theorem 2. For all n≥ 2, let Γ be the graph of amylose, then,
we have the following:

M1(Γ) � 60n − 2,

M2(Γ) � 74n − 6,

ABC(Γ) � 8.5423n + 0.2188,

GA(Γ) � 11.5738n − 0.2276.

(19)

Proof. By using Table 1 and equation (4), we get

M1(Γ) � 
uv∈E(Γ)

Ru + Rv 

� n(1 + 2) +(2n + 2)(1 + 3) +(5n − 2)(2 + 3)

+ 4n(3 + 3)

� 60n − 2,

M2(Γ) � 
uv∈E(Γ)

Ru
Rv

� n(1 × 2) +(2n + 2)(1 × 3) +(5n − 2)(2 × 3)

+ 4n(3 × 3)

� 74n − 6.

M2(Γ) � 
uv∈E(Γ)

Ru
Rv

� n(1 × 2) +(2n + 2)(1 × 3) +(5n − 2)(2 × 3)

+ 4n(3 × 3)

� 74n − 6.

(20)

By using Table 1 and equation (5), we get

ABC(Γ) � 
uv∈E(Γ)

�����������

Ru + Rv − 2
Ru

Rv




� n

�������
1 + 2 − 2
1 × 2



+(2n + 2)

�������
1 + 3 − 2
1 × 3



+(5n − 2)

�������
2 + 3 − 2
2 × 3



+ 4n

�������
3 + 3 − 2
3 × 3



� 8.5423n + 0.2188.

(21)

By using Table 1 and equation (6), we get

HO

HO

HO
HO

HO HO

HO HO

HOHO

HO

HO

O
O

O

O
O

O
O

O

O

n

Figure 1: Molecular structure of amylose.

(a) (b)

Figure 2: (a) Graph of amylose for n� 1 and (b) graph of amylose
for n� 4.

Table 1: Edge partition of edges based on the degree of vertices.

Types of edges E 1,2{ } E 1,3{ } E 2,3{ } E 3,3{ }

Edges (1, 2) (1, 3) (2, 3) (3, 3)
Frequency n 2n + 2 5n − 2 4n
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GA(Γ) � 
uv∈E(Γ)

2
������
Ru

Rv



Ru + Rv

� 2 n

����
1 × 2

√

(1 + 2)
+(2n + 2)

����
1 × 3

√

(1 + 3)


+(5n − 2)

����
2 × 3

√

(2 + 3)
+ 4n

����
3 × 3

√

(3 + 3)


� 11.5738n − 0.2276.

(22)

In Table 2, we give the edge partition centered on degree
sum of end vertices for each edge. □

Theorem 3. For all n≥ 2, let Γ be the graph of amylose, then
we have

ABC4(Γ) � 6.4972n + 0.2874,

GA5(Γ) � 11.7142n − 0.123.
(23)

Proof. By using Table 2 and equation (7), we get

ABC4(Γ) � 
uv∈E(Γ)

���������
Su + Sv − 2

SuSv



� n

�������
2 + 4 − 2
2 × 4



+

�������
3 + 6 − 2
3 × 6



+(2n + 1)

�������
3 + 7 − 2
3 × 7



+ n

�������
4 + 7 − 2
4 × 7



+

�������
6 + 6 − 2
6 × 6



+(3n − 1)

�������
6 + 7 − 2
6 × 7



+(n − 1)

�������
6 + 8 − 2
6 × 8



+(2n + 1)

�������
7 + 7 − 2
7 × 7



+(2n − 2)

�������
7 + 8 − 2
7 × 8



� 6.4972n + 0.2874.

(24)

By using Table 2 and equation (8), we get

GA5(Γ) � 
uv∈E(Γ)

2
����
SuSv



Su + Sv

� 2 n

����
2 × 4

√

(2 + 4)
+

����
3 × 6

√

(3 + 6)
+(2n + 1)

����
3 × 7

√

(3 + 7)
+ n

����
4 × 7

√

(4 + 7)
+

����
6 × 6

√

(6 + 6)
+(3n − 1)

����
6 × 7

√

(6 + 7)


+(n − 1)

����
6 × 8

√

(6 + 8)
+(2n + 1)

����
7 × 7

√

(7 + 7)
+(2n − 2)

����
7 × 8

√

(7 + 8)


� 11.7142n − 0.123.

(25)

□

3. Numerical and Graphical Representation

)e numeric representation of the results calculated above is
illustrated in Tables 3 and 4 , while the graphic represen-
tation is devoted to Figures 3 and 4 .

4. Results for Blue Starch-Iodine Complex

)e main structure of amylose are cyclic degradants
known as cyclodextrins. )ey are obtained enzymatically
and may be considered as single turns of the helix of
amylose imploding into a circular path. In all of these
complexes, cyclodextrin molecules are positioned in

front to form dimers and they are piled together to
generate large cylinders that resemble the amylose helix
in its global structure. )e most interesting one is (tri-
mesic acid H20)10HI5 with linear polyiodide chain. )is
structural model was accepted, but, unfortunately,
cannot shed light on the actual configuration of the
polyiodide chain (see Figure 5 for the molecular struc-
ture of blue starch-iodine and Figure 6 for its unit graph
and the graph model corresponding to blue starch-iodine
for n � 6, where n is the number of units). In starch-
iodine, there are three types of vertices having degrees 1,
2, and 3. For n≥ 3, blue starch-iodine complex has five
types of edge partitions as
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Table 2: Edge partition based on the degree sum of end vertices of each edge.

Types of edges E 2,4{ } E 3,6{ } E 3,7{ } E 4,7{ } E 6,6{ } E 6,7{ } E 6,8{ } E 7,7{ } E 7,8{ }

Number of edges (2, 4) (3, 6) (3, 7) (4, 7) (6, 6) (6, 7) (6, 8) (7, 7) (7, 8)
Frequency n 1 2n + 1 n 1 3n − 1 n − 1 2n + 1 2n − 2

Table 3: Numerical comparison of M1(Γ), M2(Γ), ABC(Γ), GA(Γ), R1(Γ), R− 1(Γ), R(1/2)(Γ), and R− (1/2)(Γ).

n M1(Γ) M2(Γ) ABC(Γ) GA(Γ) R1(Γ) R− 1(Γ) R(1/2)(Γ) R− (1/2)(Γ)

1 58 68 8.7611 11.3462 68 2.7778 27.6909 5.5746
2 118 142 17.3034 22.92 142 5.2222 56.8166 10.8109
3 178 216 25.8457 34.4938 216 7.6667 85.9424 16.0474
4 238 290 34.388 46.0676 290 10.1111 115.0682 21.2837
5 298 364 42.9303 57.6414 364 12.5556 144.1939 26.5201
6 358 438 51.4726 69.2152 438 15 173.3197 31.7565
7 418 512 60.0149 80.789 512 17.4444 202.4455 36.9929
8 478 586 68.5572 92.3628 586 19.8889 231.5712 42.2293
9 538 660 77.0995 103.9366 660 22.3333 260.6969 47.4656
10 598 734 85.6418 115.5104 734 24.7778 289.8228 52.7020

Table 4: Numerical comparison of ABC4(Γ) and GA5(Γ).

n 1 2 3 4 5 6 7 8 9 10
ABC4(Γ) 6.785 13.282 19.779 26.276 32.773 39.271 45.768 52.265 58.762 65.259
GA5(Γ) 11.591 23.305 35.019 46.734 58.448 70.162 81.876 93.5906 105.305 117.019

800
700
600
500
400
300
200
100

0

N
um

er
ic

al
 co

m
pa

ris
on

1 2 3 4 5 6 7 8 9 10
n

R_1 (G)
R_–1 (G)

R_1/2 (G)
R_–1/2 (G)

(a)

800
700
600
500
400
300
200
100

0

N
um

er
ic

al
 co

m
pa

ris
on

1 2 3 4 5 6 7 8 9 10
n

M_1 (G)
M_2 (G)

ABC (G)
GA (G)

(b)

Figure 3: (a) Comparison of Rα for α � 1, − 1, (1/2), − (1/2) and (b) comparison of M1(Γ), M2(Γ), ABC(Γ), and GA(Γ)

140

120

100

80

60

40

20

0

N
um

er
ic

al
 co

m
pa

ris
on

1 2 3 4 5 6 7 8 9 10
n

ABC_4 (G)
GA_5 (G)

Figure 4: Comparison of ABC4(Γ) and GA5(Γ)

O

O
O

O

O

O O O

O

O
O

O O

O

O
O

O

O

O

O

OO

O

O
O

O

O

O

HO

HO

HO

HO

OH

OH

OH

Figure 5: Molecular structure of blue starch-iodine.
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E1,2(Γ) � Ru � 1, Rv � 2 and u, v ∈ V(Γ) ,

E1,3(Γ) � Ru � 1, Rv � 3 and u, v ∈ V(Γ) ,

E2,2(Γ) � Ru � 2, Rv � 2 and u, v ∈ V(Γ) ,

E2,3(Γ) � Ru � 2, Rv � 3 and u, v ∈ V(Γ) ,

E3,3(Γ) � Ru � 3, Rv � 3 and u, v ∈ V(Γ) .

(26)

Theorem 4. For all n≥ 3, let Γ be the graph of blue starch-
iodine complex, we have the following Rα(Γ), α ∈ R:

R1(Γ) � 39n
2

− n + 12,

R(1/2)(Γ) � 16.429n
2

− 1.0354 + 2.8695,

R− (1/2)(Γ) � 3.0272n
2

+ .5585n − 0.6764,

R− 1(Γ) � 0.75n
2

+ 0.6944n − 0.6667.

(27)

Proof. For α� 1, the general Randić connectivity index is

R1(Γ) � 
uv∈E(Γ)

Ru
Rv. (28)

From Table 5 (for edge partition) and equation (2), we
get

R1(Γ) � 2n(1 × 2) + 
n− 1

i�1
(n + 2) − 2⎡⎣ ⎤⎦(1 × 3)

+ n(2 × 2) + 
n− 1

i�1
(6n − 2) + 2⎡⎣ ⎤⎦(2 × 3) + 4n(3 × 3)

� 39n
2

− n + 12.

(29)

Now, for α � (1/2), we have

R(1/2)(Γ) � 
uv∈E(Γ)

������
Ru

Rv



. (30)

By using Table 5 and equation (2), after simplification,
we have

R(1/2)(Γ) � 2n
������
(1 × 2)


+ 

n− 1

i�1
(n + 2) − 2⎡⎣ ⎤⎦

������
(1 × 3)



+ n
������
(2 × 2)


+ 

n− 1

i�1
(6n − 2) + 2⎡⎣ ⎤⎦

������
(2 × 3)



+ 4n
������
(3 × 3)



� 16.429n
2

− 1.0354 + 2.8695.

(31)

For α � − (1/2), we have

R− (1/2)(Γ) � 
uv∈E(Γ)

1
������
Ru

Rv

 . (32)

From Table 5 and equation (2), it follows that

R− (1/2)(Γ) �
2n

������
(1 × 2)

 +


n− 1
i�1 (n + 2) − 2 

������
(1 × 3)



+
n

������
(2 × 2)

 +


n− 1
i�1 (6n − 2) + 2 

������
(2 × 3)

 +
4n

������
(3 × 3)



� 3.0272n
2

+ .5585n − 0.6764.

(33)

For α � − 1, we have

R− 1(Γ) � 
uv∈E(Γ)

1
Ru

Rv

. (34)

Again by using Table 5 and equation (2), we get

R− 1(Γ) �
2n

(1 × 2)
+


n− 1
i�1 (n + 2) − 2 

(1 × 3)
+

n

(2 × 2)

+


n− 1
i�1 (6n − 2) + 2 

(2 × 3)
+

4n

(3 × 3)

� 0.75n
2

+ 0.6944n − 0.6667.

(35)

□

Theorem 5. For all n≥ 3, let Γ be the graph of blue starch-
iodine complex, then we have the following:

M1(Γ) � 34n
2

− 2n + 4,

M2(Γ) � 39n
2

− n + 12,

ABC(Γ) � 5.0591n
2

− 0.0523n − 0.4376,

GA(Γ) � 6.7448n
2

− 3.0868n + 0.4552.

(36)

Proof. By using Table 5 and equation (4), we get

(a) (b)

Figure 6: (a) Graph of blue starch-iodine for n� 1 and (b) graph of
blue starch-iodine for n� 6.
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M1(Γ) � 
uv∈E(Γ)

Ru + Rv 

� 2n(1 + 2) + 
n− 1

i�1
(n + 2) − 2⎡⎣ ⎤⎦(1 + 3) + n(2 + 2)

+ 

n− 1

i�1
(6n − 2) + 2⎡⎣ ⎤⎦(2 + 3) + 4n(3 + 3)

� 34n
2

− 2n + 4,

M2(Γ) � 
uv∈E(Γ)

Ru
Rv

� 2n(1 × 2) + 
n− 1

i�1
(n + 2) − 2⎡⎣ ⎤⎦(1 × 3) + n(2 × 2)

+ 
n− 1

i�1
(6n − 2) + 2⎡⎣ ⎤⎦(2 × 3) + 4n(3 × 3)

� 39n
2

− n + 12.

(37) By using Table 5 and equation (5), we get

ABC(Γ) � 
uv∈E(Γ)

�����������

Ru + Rv − 2
Ru

Rv




� 2n

�������
1 + 2 − 2
1 × 2



+ 
n− 1

i�1
(n + 2) − 2⎡⎣ ⎤⎦

�������
1 + 3 − 2
1 × 3



+ n

�������
2 + 2 − 2
2 × 2



+ 
n− 1

i�1
(6n − 2) + 2⎡⎣ ⎤⎦

�������
2 + 3 − 2
2 × 3



+ 4n

�������
3 + 3 − 2
3 × 3



� 5.0591n
2

− 0.0523n − 0.4376.

(38)

By using Table 5 and equation (6), we get

GA(Γ) � 
uv∈E(Γ)

2
������
Ru

Rv



Ru + Rv 

� 2 2n

����
1 × 2

√

(1 + 2)
+ 

n− 1

i�1
(n + 2) − 2⎡⎣ ⎤⎦

����
1 × 3

√

(1 + 3)
+ n

����
2 × 2

√

(2 + 2)
+ 

n− 1

i�1
(6n − 2) + 2⎡⎣ ⎤⎦

����
2 × 3

√

(2 + 3)
+ 4n

����
3 × 3

√

(3 + 3)
⎛⎝ ⎞⎠

� 6.7448n
2

− 3.0868n + 0.4552.

(39)

□

Table 5: Edge partition based on the degree of vertices.

Types of edges E 1,2{ } E 1,3{ } E 2,2{ } E 2,3{ } E 3,3{ }

Number of edges (1, 2) (1, 3) (2, 2) (2, 3) (3, 3)
Frequency 2n 

n− 1
i�1 (n + 2) − 2 n 

n− 1
i�1 (6n − 2) + 2 4n

Table 6: Edge partition based on the degree sum of end vertices of
each edge.

Types of edges No. of edges Frequency
E 2,3{ } (2, 3) n

E 2,4{ } (2, 4) n

E 3,5{ } (3, 5) n

E 3,6{ } (3, 6) 
n− 1
i�1 (1) − 1

E 3,7{ } (3, 7) 
n− 1
i�1 (n) − 1

E 4,8{ } (4, 8) n

E 5,7{ } (5, 7) n

E 6,6{ } (6, 6) 
n− 1
i�1 (1) − 1

E 6,7{ } (6, 7) 
n− 1
i�1 (3n − 2) + 2

E 6,8{ } (6, 8) n

E 7,7{ } (7, 7) 
n− 1
i�1 (2) − 2

E 7,8{ } (7, 8) 
n− 1
i�1 (4n − 3) + 3
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Theorem 6. For all n≥ 3, let Γ be the graph of blue starch-
iodine complex, we have

ABC4(Γ) � 4.0798n
2

− 0.7682n + 0.04,

GA5(Γ) � 7.8987n
2

− 3.1339n + 1.1727.
(40)

Proof. By using Table 6 and equation (7), we get

ABC4(Γ) � 
uv∈E(Γ)

���������
Su + Sv − 2

SuSv



� n

�������
2 + 3 − 2
2 × 3



+ n

�������
2 + 4 − 2
2 × 4



+ n

�������
3 + 5 − 2
3 × 5



+(n − 2)

�������
3 + 6 − 2
3 × 6



+ n
2

− n − 1 

�������
3 + 7 − 2
3 × 7



+ n

�������
4 + 8 − 2
4 × 8



+ n

�������
5 + 7 − 2
5 × 7



+(n − 2)

�������
6 + 6 − 2
6 × 6



+ 3n
2

− 5n + 4 

�������
6 + 7 − 2
6 × 7



+ n

�������
6 + 8 − 2
6 × 8



+(2n − 4)

�������
7 + 7 − 2
7 × 7



+ 4n
2

− 7n + 6 

�������
7 + 8 − 2
7 × 8



� 4.0798n
2

− 0.7682n + 0.04.

(41)

By using Table 6 and equation (8), we get

GA5(Γ) � 
uv∈E(Γ)

2
����
SuSv



Su + Sv( 

� 2 n

����
2 × 3

√

(2 + 3)
+ n

����
2 × 4

√

(2 + 4)
+ n

����
3 × 5

√

(3 + 5)
+(n − 2)

����
3 × 6

√

(3 + 6)
+ n

2
− n − 1 

����
3 × 7

√

(3 + 7)
+ n

����
4 × 8

√

(4 + 8)
+ n

����
5 × 7

√

(5 + 7)


+(n − 2)

����
6 × 6

√

(6 + 6)
+ 3n

2
− 5n + 4 

����
6 × 7

√

(6 + 7)
+ n

����
6 × 8

√

(6 + 8)
+(2n − 4)

����
7 × 7

√

(7 + 7)
+ 4n

2
− 7n + 6 

����
7 × 8

√

(7 + 8)


� 7.8987n
2

− 3.1339n + 1.1727.

(42)

□

Table 7: Numerical comparison of M1(Γ), M2(Γ), ABC(Γ), GA(Γ), R1(Γ), R− 1(Γ), R(1/2)(Γ), and R− (1/2)(Γ).

n M1(Γ) M2(Γ) ABC(Γ) GA(Γ) R1(Γ) R− 1(Γ) R(1/2)(Γ) R− (1/2)(Γ)

1 36 50 4.5692 4.1132 50 1.361 18.2633 2.9093
2 136 166 19.6942 21.2608 166 6.0553 66.5148 12.5488
3 304 360 44.9374 51.898 360 13.4162 147.6243 28.2419
4 540 632 80.2988 96.0248 632 23.4437 261.5918 49.9887
5 844 982 125.7784 153.6412 982 36.1378 408.4173 77.7891
6 1216 1410 181.3762 224.7472 1410 51.4985 588.1007 111.6433
7 1656 1916 247.0922 309.3428 1916 69.5258 800.6421 151.5512
8 2164 2500 322.9264 407.428 2500 90.2197 1046.0415 197.5126
9 2740 3162 408.8788 519.0028 3162 113.5802 1324.2989 249.5278
10 3384 3902 504.9494 644.0672 3902 139.6073 1635.4143 307.5967

Table 8: Numerical comparison of ABC4(Γ) and GA5(Γ).

n 1 2 3 4 5 6 7 8 9 10
ABC4(Γ) 3.35 14.82 34.45 62.24 98.19 142.30 194.57 255 323.59 400.34
GA5(Γ) 5.94 26.49 62.86 115.02 182.97 266.72 366.27 481.62 612.76 759.70
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5. Numerical and Graphical Representation

Here, we give numeric and graphic representation for the
results calculated in the above section (see Tables 7 and 8 ).

6. Conclusion

Amylose has a significant function in the storage of plant
energy. It is not easy to digest compared to amylopectin;
however, it occupies less space than amylopectin due to its
spiral structure. Consequently, for storage in plants, it is the
preferred starch. A mixture of iodine and potassium iodide
in water is light orange-brown. When added to a sample
containing starch, such as the bread pictured above, the
colour will change to a deep blue (see the comparison of
different indices in Figures 7 and 8 ). In this study, we have
calculated degree-dependent topological indices of amylose
and blue starch-iodine. We observed that R(− 1/2) is closely
related to geometric-arithmetic, R− 1 is closely related to
atom-bond connectivity and modified atom-bond

connectivity, the second Zagreb is the first Randic index,
while R(1/2) is approximately equal to the modified geo-
metric-arithmetic of amylose. Similarly, other observations
can take place from the graphical representations given in
this paper.
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Figure 7: (a) Comparison of Rα(Γ) for 1, − 1, (1/2), − (1/2) and (b) comparison of M1(Γ), M2(Γ), ABC(Γ), and GA(Γ).
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bond connectivity index: modelling the enthalpy of formation
of alkanes,” Indian Journal of Chemistry, vol. 37A, pp. 849–
855, 1998.

[12] D. Vucki c evi c and B. Furtula, “Topological index based on
the ratios of geometrical and arithmetical means of end-vertex
degree of edges,” Journal of Mathematical Chemistry, vol. 46,
pp. 1369–1376, 2009.

[13] M. Ghorbani and M. Hosseinzadeh, “Computing ABC4 index
of nanostar dendrimers,” Optoelectronics and Advanced
Materials, Rapid Communications, vol. 4, pp. 1419–1422, 2010.

[14] A. Graovac, M. Ghorbani, and M. Hosseinzadeh, “Computing
fifth geometric-arithmetic index for nanostar dendrimers,”
Journal of Mathematical Nanoscience, vol. 1, pp. 33–42, 2011.

[15] M. M. Green, G. Blankenhorn, and H. Hart, “Which starch
fraction is water-soluble, Amylose or Amylopectin?” Journal
of Chemical Education, vol. 52, no. 11, p. 729, 1975.

10 Journal of Chemistry



Research Article
Degree-Based Topological Indices of Boron B12

Nouman Saeed ,1 Kai Long ,1 Zeeshan Saleem Mufti ,2 Hafsa Sajid,2

and Abdul Rehman 2

1State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources,
North China Electric Power University, Beijing 102206, China
2%e University of Lahore, Lahore Campus, Lahore, Pakistan

Correspondence should be addressed to Kai Long; longkai1978@163.com

Received 11 February 2021; Revised 1 March 2021; Accepted 22 March 2021; Published 29 March 2021

Academic Editor: Kashif Ali

Copyright © 2021Nouman Saeed et al.-is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Topological index sometimes called molecular descriptor is a numerical value which associates a chemical composition for
correlating chemical structure with numerous physical properties, chemical reactivity, or biological activity. In this paper, we
study some topological indices of boron and try to correlate the physicochemical properties such as freezing points, boiling points,
melting points, infrared spectrum, electronic parameters, viscosity, and density of chemical graphs. We discuss these topological
indices, and some of them are mentioned here such as Randic index, the first general Zagreb index, the general sum connectivity
index, hyper-Zagreb index (HM), the atom-bond connectivity index (ABC), the geometric-arithmetic index (GA), the harmonic
index (H), and the forgotten index (F).

1. Introduction and Applications

A chemical graph theory is an outlet of mathematical
chemistry which applied graph theory to the molecular
structure of chemical compounds. Topological index is a
part of chemical graph theory which correlates the physi-
cochemical properties such as freezing point, boiling point,
melting point, infrared spectrum, electronic parameters,
viscosity, and density of the underlying chemical graphs.-e
reader can find bulk of papers on topological indices which
have been in print so far [1–5].

A graph can be recognized by a polynomial, a matrix, a
sequence of numbers, or a numeric number which repre-
sents the whole graph, and these representations are
designed to be uniquely defined for that graph. Topological
indices are major tools for analyzing many physicochemical
properties of molecules without performing any testing.
Some most significant types of topological indices of graphs
are distance-based topological indices, degree-based topo-
logical indices, and spectrum-based topological indices. One
of the most investigated categories of topological indices
used in mathematical chemistry is called degree-based

topological indices, which are defined in terms of the degrees
of the vertices of a graph.

Topological index is a graph invariant which charac-
terizes the topology of the molecular structure and converts
the molecular graph into a real number that predicts some
physicochemical properties such as freezing point, boiling
point, and melting point. Nowadays, a biological testing of
chemical compounds is too much expensive. It requires a
very large laboratory and advanced equipment to test these
compounds.-is process is costly and time-consuming. Due
to this factor, pharmaceutical companies are very eager to
find such new ideas or methods by which cost could be
reduced. One can reduce the cost in which no need of
laboratories and no need of equipment, but just need to
study the certain chemical structure using topological
indices

Topological indices are of different types such as degree-
based topological indices, distance-based topological indi-
ces, and spectrum-based topological indices. -e notion of
topological index was discovered in 1947 when Harold
Wiener was working on the boiling point of paraffin. He
named this index as path number. Later on, the path number
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was renamed as the Wiener index, and then the theory of
topological index started. -e Wiener index is the first and
the most studied topological index. Wiener index is defined
as the sum of distances among all the sets of vertices inG [6].
Among all the types of topological indices, degree-based
topological indices play an extensive role in chemical graph
theory [7].-at motivated us to study the chemical structure
of boron B12 under this phenomenon.

B12 is a two-dimensional icosahedral network. A recent
study of high-pressure solid boron affirmed that the icosahedral
B12-containing structures are quite universal [8]. On the other
hand, previous experimental and theoretical studies of free-
standing boron clusters have shown that the B12 structure is
unstable in the gas phase [9, 10]. -e (n, m) unit of boron B12
structure is given in the figure, where “n” represents the
number of rows and “m” represents the number of columns of
the boron B12 structure.

Let G be a simple graph with order p and size q. Let dv

represent the degree of the vertex v and is defined as the number
of edges incident on v. Let Sv represent the sum of the degree of
all the neighbors of v [11]. Graph theory is closely connected to
the computer science, applied mathematics, optimization the-
ory, web designing, operation research, biology, and chemistry.

-e general Randic connectivity index of G is defined as

Rα(G) � 
rs∈E(G)

drds( 
α
, (1)

where α represents a real number. If α is − 1/2, then R− 1/2(G) is
said to be the Randic connectivity index of G. Gutman and
Trinajstic presented the first general Zagreb index in 1972 [12]:

Mα(G) � 
r∈V(G)

dr( 
α
. (2)

In 2010, the general sum connectivity index χα(G) has
been invented:

χα(G) � 
rs∈E(G)

dr + ds( 
α
. (3)

-e ABC index was presented by Estrada and Torres
et al. in [13]. -e ABC index of graph G is expressed as

ABC(G) � 
rs∈E(G)

���������
dr + ds − 2

drds



. (4)

Das announced the geometric-arithmetic (GA) index in
[14, 15]. -e geometric-arithmetic index denoted by GA for
graph G is presented by

GA(G) � 
rs∈E(G)

2
����
drds



dr + ds

. (5)

In 2013, the hyper-Zagreb index has been introduced by
Shirdel et al. as

HM(G) � 
rs∈E(G)

dr + ds( 
2
. (6)

In 2012, Zhang introduced the harmonic index. It is
defined as follows [16]:

H(G) � 
rs∈E(G)

2
dr + ds( 

. (7)

After working on the Zagreb index, in 2015, Furtula and
Gutman introduce the forgotten index F(G):

F(G) � 
rs∈E(G)

d
2
r + d

2
s . (8)

Ghorbani and Azimi proposed two new types of Zagreb
indices of a graph G in 2012. PM1 is the first multiple Zagreb
index, and PM2 is the second multiple Zagreb index [6]:

PM1(G) � 
rs∈E(G)

dr + ds( , (9)

PM2(G) � 
rs∈E(G)

dr × ds( , (10)

M1(G, p) andM2(G, p), the first Zagreb polynomial and
the second Zagreb polynomial [12, 17], respectively, are
defined as

M1(G, p) � 
rs∈E(G)

p
dr+ds( ), (11)

M2(G, p) � 
rs∈E(G)

p
dr×ds( ). (12)

Recently, Furtula et al. proposed the second Zagreb
index:

RM2(G) � 
rs∈E(G)

dr − 1(  ds − 1( . (13)

After the success of the ABC index, Furtula et al. put
forward its modified version in 2010 that they somewhat in-
adequately named “augmented Zagreb index.” It is defined as
follows [18]:

AZI(G) � 
rs∈E(G)

drds

dr + ds − 2
 

3

. (14)

-e invariant RR seems to be first encountered in a paper
by Favaron, Mah’eo. -e reciprocal Randic index is defined
as follows:

RR(G) � 
rs∈E(G)

����

drds



. (15)

In the same manner, the reduced second Zagreb index
(equation (13)), is related to the ordinary second Zagreb
index (equation (12)). -e reduced reciprocal Randic index
might be viewed as the reduced analogue of the reciprocal
Randic index (equation (15)):

RRR(G) � 
rs∈E(G)

��������������

dr − 1(  ds − 1( 



. (16)

Vukicevic et al. introduce the symmetric division deg
index in 2010 [19, 20] as
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SDD(G) � 
rs∈E(G)

d
2
r + d

2
s

drds

. (17)

Vukicevic and Gašperov in [20] initiated the study on the
inverse sum indeg index of a network.-e inverse sum indeg
index is defined as follows [21]:

SDD(G) � 
rs∈E(G)

drds

dr + ds

. (18)

Another index which belongs to the 4th class of ABC index
was invented by Ghorbani and Hosseinzadeh in 2010 [22] as

ABC(G) � 
rs∈E(G)

���������
Sr + Ss − 2

SrSs



. (19)

-e fifth class of geometric-arithmetic index, denoted by
GA5, was presented by Graovac et al. in 2011 [23] as

GA(G) � 
rs∈E(G)

2
����
SrSs



Sr + Ss

. (20)

2. Main Results of Boron B12 Graph

In this paper, we deal with the topological properties of boron
B12. Boron B12 is a two-dimensional icosahedral network. A
recent study of high-pressure solid boron affirmed that the
icosahedral B12-containing structures are quite universal [8].
On the other hand, previous experimental and theoretical
studies of freestanding boron clusters have shown that the B12
structure is unstable in the gas phase [9, 10].

-e molecular graph of Boron B12 is shown in Figure 1.
-ere are 11mn + 11m + 11n + 9 vertices and 24mn + 22m +

22n + 18 edges.

Theorem 1. Let G be the boron B12 network with m> 1 and
n> 1, then

Mα � 2(2m + 2n)2α +(3mn + m + 5)3α

+(3mn + 2m + 3n + 4)3α +(m + 2n + 1)4α

+(9mn + 7m + 6n + 5)4α +(9mn + 7m + 7n + 3)5α.

(21)

Proof. In G, there are total 11mn + 11m + 11n + 9 vertices.
-ere are 2m + 2n vertices of degree 2, 2mn + m + n + 3
vertices of degree 3, 3mn + 3m + 3n + 3 vertices of degree 4,
and 36mn + 5m + 5n + 3 vertices of degree 5. Since Mα is
expressed in equation (2),

Mα(G) � 
r∈V(G)

dr( 
α
, (22)

Mα � 2(2m + 2n)2α +(3mn + m + 5)3α

+(3mn + 2m + 3n + 4)3α

+(m + 2n + 1)4α +(9mn + 7m + 6n + 5)4α

+(9mn + 7m + 7n + 3)5α.

(23)

In the following six theorems, we considered the Randic
index, sum connectivity index, ABC index, GA index,
harmonic index, reduced Randic index, forgotten index,
symmetric division deg index, inverse sum indeg index,
ABC4 index, and GA5 index. -is is the edge partition of
boron B12 on the basis of starting and ending vertices of each
edge, and we proceed this edge division to compute the
topological indices.

Theorem 2. Let G be the boron B12 network with m> 1 and
n> 1, then

(1) Rα(G) � (2m + 2n)8α + (2m + 2n)10α+ (3mn + m +

5)12α + (m + 2n + 1)16α + (3mn + 2m + 3n + 4)

15α + (9mn + 7m)20α + (9mn + 7m + 7n + 3)25α +

(6n + 5)20α

(2) χα(G) � (2m + 2n)6α + (2m+ 2n)7α + (3mn + m +

5)7α + (m + 2n + 1)8α + (3mn + 2m + 3n+ 4)8α +

(9mn + 7m + 6n + 5)9α + (9mn + 7m + 7n + 3)10α

(3) ABC(G) � (2m + 2n)
�
2

√
+ (1/6)(3mn + m+ 5)��

15
√

+ (1/5)(3mn + 2m + 3n + 4)
��
10

√
+ (1/4)(m +

2n + 1)
�
6

√
+ (1/10)(9mn + 7m)

��
35

√
+ (1/10)(6n +

5)
��
35

√
+ (2/5)(9mn + 7m + 7n + 3)

�
2

√

(4) GA(G) � (2/3)(2m + 2n)
�
2

√
+ (2/7)(2m+ 2n)

��
10

√
+

(4/7)(3mn + m + 5)
�
3

√
+ (1/4)(3mn + 2m + 3n +

4)
��
15

√
+ (4/9) (9mn + 7m + 6n + 5)

�
5

√
+ (9mn +

8m + 9n + 4)

Proof. -e network of boron B12 has 24mn + 22m + 22n +

18 number of edges. -ere are seven disjoint edge sets of
edge set E(G) depending on the degrees of the end vertices,
i.e., E(G) � E1(G)∪E2(G)∪E3(G)∪ E4(G)∪E5(G)∪
E6(G)∪E7(G). -e edge partition E1(G) holds 2m + 2n

edges rs, where dr � 2 and ds � 4, the edge partition E2(G)

holds 2m + 2n edges rs, where dr � 2 and ds � 5, the edge
partition E3(G) holds 3mn + m + 5 edges rs, where dr � 3
and ds � 4, the edge partition E4(G) holds 3mn + 2m + 3n +

4 edges rs, where dr � 3 and ds � 5, the edge partition E5(G)

holds m + 2n + 1 edges rs, where dr � ds � 4, the edge
partition E6(G) holds 9mn + 7m + 6n + 5 edges rs, where
dr � 4 and ds � 5, and the edge partition E7(G) holds 9mn +

7m + 7n + 3 edges rs, where dr � ds � 5. From formulas (1)
and (3)–(5), we get the desired results.

Theorem 3. Let G be the boron B12 network with m> 1 and
n> 1, then

(1) HM(G) � 1678m + 1676n + 1968mn + 1270
(2) PM1(G) � 62m+2n × 72m+2n × 73mn+m+5 × 83mn+2m+3n+4

× 8m+2n+1 × 99mn+7m+6n+5 × 109mn+7m+7n+3

(3) PM2(G) � 82m+2n × 102m+2n × 123mn+m+5 ×

153mn+2m+3n+4× 16m+2n+1 × 209mn+7m+6n+5 × 259mn+7m+7n+3

Proof. Let G be the network of boron B12. -e edge set E(G)

is distributed in seven categories which depend on the
degrees of the end vertices. -e first disjoint edge set E1(G)
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holds 2m + 2n edges rs, where dr � 2 and ds � 4, the second
disjoint edge set E2(G) holds 2m + 2n edges rs, where dr � 2
and ds � 5, the third disjoint edge set E3(G) holds 3mn +

m + 5 edges rs, where dr � 3 and ds � 4, the forth disjoint
edge setE4(G) holds 3mn + 2m + 3n + 4 edges rs, where dr �

3 and ds � 5, the fifth disjoint edge set E5(G) holds m +

2n + 1 edges rs, where dr � ds � 4, the sixth disjoint edge set
E6(G) holds 9mn + 7m + 6n + 5 edges rs, where dr � 4 and
ds � 5, and the seventh disjoint edge set E7(G) holds 9mn +

7m + 7n + 3 edges rs, where dr � ds � 5. Now,
|E1(G)| � e2,4, |E2(G)| � e2,5, |E3(G)| � e3,4, |E4(G)| � e3,5,
|E5(G)| � e4,4, |E6(G)| � e4,5, and |E7(G)| � e5,5. We ob-
tained results by using formulas (6), (9), and (10).

Theorem 4. Let G be the boron B12 network with m> 1 and
n> 1, then

(1) M1(G, p) � (2m + 2n)p6 + (2m + 2n)p7+ (3mn+ m

+5)p7 + (m + 2n + 1)p8 + ((3mn + 2m)p8 + (3n

+4))p8 + (9mn + 7m + 6n + 5)p9 + (9mn + 7m+

7n + 3)p10

(2) M1(G, p) � (2m + 2n)p
8

+ (2m + 2n)p
10

+ (3mn +

m + 5)p
12

+ ((3mn + 2m)p
15

+ (3n + 4))p
15

+ (m +

2n + 1)p
16

+ (9mn + 7m + 6n + 5)p
20

+ (9mn +

7m+ 7n + 3)p
25

Proof. Let G be the network of boron B12. -e edge set E(G)

is distributed in seven categories which depend on the
degree of end vertices of each edge. -e disjoint set is
represented by er,s. -e first disjoint set is e2,4, the second
disjoint set is e2,5, the third disjoint set is e3,4, the fourth
disjoint set is e3,5, the fifth disjoint set is e4,4, the sixth disjoint
set is e4,5, and the seventh disjoint set is e5,5. By using
formulas (11) and (12), we obtained the required results.

Theorem 5. Let G be the boron B12 network with m> 1 and
n> 1, then

(1) RM2(G) � 241m + 240n + 294mn + 179
(2) AZI(G) � (12576690219/21952000)mn + (4004353

2353/84672000)m + (2230300883/4741632)n + (42
526959271/118540800)

Proof. Let G be the network of boron B12. -e edge set E(G)

is distributed in seven categories which depend on the
degree of end vertices of each edge. -e disjoint set is
represented by er,s. -e first disjoint set is e2,4, the second
disjoint set is e2,5, the third disjoint set is e3,4, the fourth
disjoint set is e3,5, the fifth disjoint set is e4,4, the sixth disjoint
set is e4,5, and the seventh disjoint set is e5,5. We get the
results by using formulas (13) and (14). □

Theorem 6. Let G be the boron B12 network with m> 1 and
n> 1, then

(1) H(G) � (6589/1260)m + (731/140)n + (757/ 140)

mn + (5531/1260)

(2) RR(G) � 2(2m + 2n)
�
2

√
+ (2m+ 2n)

��
10

√
+ 2(3mn +

m + 5)
�
3

√
+ ((3mn + 2m)

��
15

√
+ (3n + 4))

��
15

√
+

2(9mn + 7m + 6n + 5)
�
5

√
+ 45mn + 39m + 43n + 19

(3) RRR(G) � (2m + 2n)
�
3

√
+ 2(3mn + 2m

�
2

√
+ 2(3n

+4))
�
2

√
+ 2(3mn + m + 5)

�
6

√
+ 2(9mn + 7m + 6n +

5)
�
3

√
+ 36mn + 35m + 38n + 15

Proof. Let G be the network of boron B12. -e edge set E(G)

is distributed in seven categories which depend on the
degree of end vertices of each edge. -e disjoint set is
represented by er,s. -e first disjoint set is e2,4, the second
disjoint set is e2,5, the third disjoint set is e3,4, the fourth

1

2

3

m

n

2 3

Figure 1: (n, m) unit of boron.
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disjoint set is e3,5, the fifth disjoint set is e4,4, the sixth disjoint
set is e4,5, and the seventh disjoint set is e5,5. By using
formulas (7), (15), and (16), we get the desired results.

Theorem 7. Let G be the boron B12 network with m> 1 and
n> 1, then

(1) F(G) � 860m + 860n + 996mn + 648
(2) SDD (G) � (1433/30)m + (479/10)n + (99/2)mn +

(566/15)

(3) ISI(G) � (11603/252)m + (2575/25562)n + (2983/
56)mn + (2311/63)

Proof. Let G be the network of boron B12. -e edge set E(G)

is distributed in seven categories which depend on the

degree of end vertices of each edge. -e disjoint set is
represented by er,s. -e first disjoint set is e2,4, the second
disjoint set is e2,5, the third disjoint set is e3,4, the fourth
disjoint set is e3,5, the fifth disjoint set is e4,4, the sixth disjoint
set is e4,5, and the seventh disjoint set is e5,5. We obtained the
required results by using formulas (8), (17), and (18).

In the following two theorems, we considered the fourth
atom-bond connectivity index and the fifth geometric-
arithmetic index. -is is the edge partition of boron B12 on
the basis of the degree sum of neighbors of end vertices of
each edge. We proceed this edge division to compute
ABC4(G) and GA5(G).

Theorem 8. Let G be the boron B12 network with m> 1 and
n> 1, then

ABC4(G) � (1/2)
�
2

√
+(4/221)

����
1547

√
+(4/273)

���
546

√
− (2/3) +(2/22)

��
22

√

+(1/22)
��
42

√
+(1/10)(m − 1)

��
10

√
+(1/114)(m + 2n + 1)

����
1330

√
+(1/68)(m − 1)

���
442

√

+(1/391)(m + 3)
�����
14858

√
+(1/374)(m + 1)

�����
13838

√
+(1/34)(m − 1)

���
119

√
+(2/119)(m + 1)

���
357

√

+(1/92)(m + 2n + 1)
���
851

√
+(1/12)(m + 2n + 1)

��
15

√
+(1/68)(m + 3)

���
527

√
+(2/115)(n − 1)

���
345

√

+(4/285)(2n − 2)
���
570

√
+(1/238)(m + 1)

����
6902

√
+(1/266)(m + 3)

����
8246

√
+(1/154)(m + 3)

����
2618

√

+(1/10)(m − 1)
��
14

√
+(1/8)(m + 2n + 1)

��
11

√
+(1/68)(m − 1)

���
782

√
+(3/190)(m + 2n + 1)

���
570

√
+(1/6)mn

��
30

√

+(1/35)mn
����
1190

√
+(1/6)mn

��
42

√
+(1/42)(3mn − 2n − 1)

��
46

√
+(1/92)(m + 4n − 3)

���
690

√
+(2/3)n

��
11

√
+(1/6)(m + 3)

�
3

√

+(1/506)(m + 1)
�����
21758

√
+(1/84)(6mn − m − 2n − 1)

���
602

√
+(1/23)(m + 2n + 3)

��
46

√
+(1/20)(2m − 2)

��
35

√

+(1/228)(m + 2n + 1)
����
4674

√
+(2/437)(2n − 2)

����
4370

√
+(1/418)(m + 3)

�����
16302

√
+(1/138)(2n − 2)

����
1794

√

+(1/126)(6mn − 2m − 2n)
����
1554

√
+(2/3)n.

(24)

Proof. -e network of boron B12 has 24mn + 22m + 22n +

18 number of edges. -ere are 41 disjoint degree sum of
neighbors of end vertices of each edge, i.e., e8,16, e8,17, e10,19,
e10,20, e12,18, . . ., e24,24. By using formula (19), we get the
desired result.

Theorem 9. Let G be the boron B12 network with m> 1 and
n> 1, then

GA5(G) � (1/20)(m + 3)
���
391

√
+(1/19)(m + 1)

���
357

√
+(1/39)(m + 1)

���
374

√
+(1/19)(n − 1)

���
345

√

+(1/17)(2n − 2)
���
285

√
+(2/29)(m + 2n + 1)

���
190

√
+(2/31)(m + 1)

���
238

√
+(2/33)(m + 3)

���
266

√

+(2/41)(m + 3)
���
418

√
+(1/21)(2n − 2)

���
437

√
+(1/22)(m + 2n + 3)

���
483

√
+(2/45)(m + 1)

���
506

√

+(2/15)
���
273

√
+(2/13)(6mn − 2m − 2n)

��
42

√
+(6/37)(m + 2n + 1)

��
38

√
+(6/19)(m − 1)

��
10

√
+(4/41)(m − 1)

���
102

√

+(8/37)(m + 2n + 1)
��
21

√
+(4/37)(m − 1)

��
85

√
+(8/39)(m + 2n + 1)

��
23

√
+(8/33)(m + 3)

��
17

√
+(12/17)(2n − 2)

�
2

√

+(2/3)(m − 1)
�
2

√
+(1/9)(m + 3)

��
77

√
+(2/3)(m + 2n + 1)

�
2

√
+(4/25)(m − 1)

��
34

√
+(12/7)mn

�
3

√
+(1/2)mn

��
35

√

+(6/5)mn
�
6

√
+(6/41)(2n − 2)

��
46

√
+(2/11)(2m − 2)

��
30

√
+(4/43)(m + 2n + 1)

���
114

√
+(4/15)(6mn − m − 2n − 1)

��
14

√

+(4/23)(m + 3)
��
33

√
+(4/47)(m + 4n − 3)

���
138

√
+(8/15)

��
14

√
+(8/19)

��
22

√
− n + 3mn.

(25)
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Proof. -e network of boron B12 has 24mn + 22m + 22n +

18 number of edges. -ere are 41 disjoint degree sum of
neighbors of end vertices of each edge, i.e., e8,16, e8,17, e10,19,
e10,20, e12,18, . . ., e24,24. By using formula (20), we get the
desired result.

3. Conclusion

We have computed the following topological indices such as
Zagreb index, the Randic index, sum connectivity index,
ABC index, GA index, hyper-Zagreb index, multiple Zagreb
indices, Zagreb polynomials, reduced second Zagreb index,
augmented Zagreb index, harmonic index, reduced Randic
index, reduced reciprocal Randic index, forgotten index,
ABC4 index, and GA5 index for boron B12 structure.

In cheminformatics, Randic index is used to study the
organic compounds. It is correlated with physicochemical
properties of alkane such as boiling points, surface area, and
enthalpy of formation. ABC index is based on some phys-
icochemical properties like the stability of cyclo-alkane as
well as strain energy. GA index has more predictive power
than Randic and ABC index. Multiple Zagreb indices and
Zagreb polynomials are applied to predict the bioactivity of
graphs.-e forgotten index is correlated with some chemical
properties relating to energies of molecular graphs. AZI
index is a valuable predictive index which is used in the study
of the heat of formation. RRR index is used to study the
normal boiling points of the graphs.

We have discussed the graph theoretically not experi-
mentally. -e results obtained in this paper provide a sig-
nificant contribution to graph theory and correlate the
chemical structure of boron B12 with the large amount of
information about physicochemical properties.
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,e change of water quality can reflect the important indicators of ecological environment measurement. Sewage discharge is an
important factor causing environmental pollution. Establishing an effective water ecological prediction model can detect changes
in the ecological environment system quickly and effectively. In order to detect high error rate and poor convergence of the water
ecological chemical oxygen demand (COD) prediction model, combining the limit learning machine (ELM) model and whale
optimization algorithm, CAWOA is improved by the sin chaos search strategy, while the ELM optimizes the parameters of the
algorithm to improve convergence speed, thus improving the generalization performance of the ELM. In the CAWOA, the global
optimization results of the WOA are promoted by introducing a sin chaotic search strategy and adaptive inertia weights. On this
basis, the COD prediction model of CAWOA-ELM is established and compared with similar algorithms by using the optimized
ELM to predict the water ecological COD in a region. Finally, from the experimental results of the CAWOA-ELM algorithm, it has
excellent prediction effect and practical application value.

1. Introduction

With the acceleration of economic development and in-
dustrialization, the situation of China’s water pollution
ecological environment is becoming more and more se-
rious, and industrial and urban water discharge have
become the main pollution source [1]. ,erefore, the
establishment of an effective water quality ecological
prediction model can not only optimize urban water
ecological detection but also is essential for reducing
ecological water pollution. However, the formation of the
water ecological environment is a complex physical and
chemical process, which is influenced by many factors
such as factory emissions, domestic water use, and human
factors [2]. ,ese variables are coupled with each other,
making it difficult to describe these complex processes
with mechanism models. ,e emergence of learning
technology provides an effective way to establish a water
ecological detection optimization model [3, 4].

A multiobjective problem proposed in the literature [5]
is applied in the activated sludge process. ,rough the ge-
netic algorithm, it is used to process under the conditions of
14 optimized parameters, and the wastewater COD con-
centration is reduced by 2.22mg/L after optimization. ,e
effect of multiobjective problem optimization is obvious,
and the parameter optimization combination is the best.
Dong et al. [6] proposed a system optimization plan to adjust
sewage discharge and predicted COD concentration to
adjust the sewage discharge model.,e optimizedmodel can
improve the water quality of the river and optimize the
drainage system more effectively. An et al. [7] proposed to
optimize the low dissolved oxygen-oxygen-anoxia process,
which can solve the problem of low-cost wastewater treat-
ment, thereby providing a new method for low-cost treat-
ment of COD. Nazrifar et al. [8] optimized the influence of
COD, pH, H2O2, FeSO4,·and 7H2O content on the overall
target. When the value reaches 4, 8ml/L, 2.33 g/L, the model
is optimal, and the effect of COD is 83.51. In the CO2
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emissions, Lim and Kim [9] proposed dynamic optimization
to evaluate the production of concrete components. Reuse
kinetics to optimize related parameters, and as a result, CO2
emission costs can be saved. In the NOx and CO emission
model, the dynamic optimization algorithm proposed in
[10] greatly reduces the NOx and CO emissions. In terms of
performance, the proposed dynamic optimization model
can reduce emissions.

ELM is a new and effective machine learning technology
based on the Moore–Penrose (MP) generalized inverse
matrix theory [11]. Weights and thresholds in the neuron
weights are given randomly, and then the output weights are
calculated by the regularization principle. ,e ELM network
can still approximate any continuous system. Compared
with the ANN and SVM, ELM has an advantage of greatly
improving learning speed relatively, which has attracted
more and more scholars’ attention [12, 13]. ,erefore, the
prediction model of boiler water ecological COD is adopted
by the ELM.

However, ELM regression method is given at random.
Without any prior experience, it is easy to cause problems
such as the generalization ability and stability of the re-
gression model. In practice, in order to achieve the desired
error precision, the ELM usually needs to adjust the weight
and threshold. ,erefore, a sin chaos AWOA is proposed to
accelerate the convergence of ELM parameters to improve
the stability and the ELM prediction model and further
propose a water ecological optimization prediction model of
CAWOA-ELM. It is applied to the prediction of river surface
water, domestic sewage, and industrial wastewater in a city.
,e results show that CAWOA-ELM can accurately predict
COD, accurately predict water ecology, and provide an
effective means for the promotion of relevant emission
optimization.

2. Chaos Adaptive Whale
Optimization Algorithm

2.1. WOA. WOA [14] is an optimization algorithm that
simulates the natural world and was put forward in 2016 to
simulate the predation behavior of whale populations. ,is
algorithm is simple to set up and has few parameters. When
optimizing the benchmark function, it has the advantages of
the traditional imitation algorithm (such as particle swarm
optimization algorithm (PSO) [15] and gravity search al-
gorithm (GSA) [16]). However, compared with other swarm
intelligence algorithms, traditional WOA also have prob-
lems of slow convergence, premature convergence, and
global optimal value is not available. Based on this, in recent
years, many scholars have implemented many effective
improved WOA, such as Kaur and Arora [17] used the
chaotic map to optimize the update probability p in WOA,
proposed a CWOA, and verified the algorithm with higher
convergence speed through the test of benchmark function;
Mafarja andMirjalili [18] combined the annealing algorithm
and WOA for the optimization precision of the algorithm,
improved the global search ability, and obtained good results
in the experiment of publicly testing 18 datasets in the UCI
library.

2.1.1. Shrinkage Surrounding Mechanism. In the WOA,
assuming that the size of the whale population is expressed
as N and d is to represent the dimensionality, the i-th po-
sition whale in the d-th dimension can be expressed as
Xi � (x1

i , . . . , xd
i ), i � 1, . . . , N. ,e position keeps

changing as the problem is solved, and the most optimal
solution is described by the optimal position. ,e whales are
all surrounded by optimal solutions. ,e mathematical
model is described as follows:

Xi � x
1
i , . . . , x

d
i , i � 1, . . . , N, (1)

where t is the number of iterations. A and C are coefficient
vectors, which are defined as follows:

A � 2a × r1 − a, (2)

C � 2 × r2, (3)

where r1 and r2 are the random numbers [0, 1] in the
formula. ,e control parameters are defined as follows:

a � 2 − 2 ×
t

Tmax
, (4)

where Tmax is the maximum iteration number. ,e con-
traction bounding mechanism is realized through the re-
duction of parameter α by means of (1) and (4).

2.1.2. Bubble Network Attack. In theWOA, twomethods are
designed to describe the predation behavior of whales:
shrinkage surrounding mechanism and spiral renewal
position.

(a) Shrinkage enveloping mechanism: it is achieved by
reducing the convergence factor α in equations (2)
and (4).

(b) Spiral update position: first, the distance between the
whale individual and the current optimal position is
calculated, and then the whale is simulated to cap-
ture food in a spiral manner. ,e mathematical
model can be expressed as

X(t + 1) � Xp(t) + _D · e
bl

· cos(2πl), (5)

in which D′ � |Xp(t) − X(t)| denotes the distance between
whales and the prey, b is a constant that defines the shape of a
logarithmic spiral, and L is a random number [−1, 1] in the
middle.

,e whale’s contraction and envelopment mechanism
and spiral updating position’s mode are synchronized. ,e
new mode of upd

ating Pi is usually chosen according to the probability
value: if p<Pi,X(t + 1) is updated in formula (5); otherwise,
formula (6) is used to update:

X(t + 1) �
X(t) − A · CXp(t) − X(t)



, p<Pi,

Xp(t) + _D · e
bl

· cos(2πl), p≥Pi.

⎧⎪⎨

⎪⎩
(6)
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When |A|≥ 1, the whales are randomly selected to force
them away from the reference whales to find a better prey in
order to enhance the global exploration ability of the al-
gorithm. ,e mathematical model is expressed as follows:

X(t + 1) � Xr − A · C · Xr − X(t)


, (7)

in which Xr indicates the position vector of the whale
randomly selected.

2.2. CAWOA. ,e shortcomings of the WOA algorithm in
dealing with complex optimization problems are low con-
vergence accuracy and easy to fall into local optimum. In
view of the above deficiencies, the CAWOA is proposed to
improve the global optimization capability of the algorithm.
On the basis of WOA, logistic chaotic search strategy is
introduced to enhance the ability of the algorithm to jump
out of the local optimum. In addition, adaptive inertia
weights are introduced into position updating to solve the
problem of low convergence accuracy by balancing the
development and exploration capabilities.

2.2.1. Sin Chaotic Search Strategy. Chaotic mapping is a
stochastic motion state obtained by the deterministic
equation, which has periodicity and inherent randomness in
the phase space, realizing global optimization by optimizing
the search ability. Yang and Jiaqiang [19] verified that sin
chaos has more obvious chaotic characteristics than logistic
chaos does. In order to overcome the shortcomings of the
local optimum when WOA deals with complex function
optimization problems, sin chaotic search is used to search
the optimal individuals (elite individuals) of each generation
of the WOA for M times of chaotic search. If better indi-
viduals are found, they are replaced. It can avoid the local
optimum and effectively avoid the WOA falling into the
local optimum. ,e sin chaotic mapping model is defined as
follows:

Zn+1 � sin
2

Zn

 , n � 0, 1, . . . , N,

− 1≤Zn ≤ 1, Zn ≠ 0,

(8)

in which Z0 � [Z0
1, Z0

2, . . . , Z0
D] is a randomly generated

initial vector whose dimension cannot be zero, thus avoiding
producing fixed points and zeros in [−1, 1], and its di-
mension is the same as that of the optimization problem.,e
iteration counter of the chaotic map is represented by t, and
the output of the system traverses the whole solution space
by M chaotic iterations.

Assuming that the optimal individuals in the WOA
population are Xi, the chaos optimization process in the
feasible region is

V
t+1
i � Xi + αZ

t+1
, V

t+1
i ∈ Vmin, Vmax ,

α �
1, c≥ 0.5,

−1, otherwise.


(9)

Among them, Vt
i represents a new individual searched

by the algorithm; α is the adaptive parameter that controls
the chaotic search direction; c ∈ 0, 1 ; and [Vmin, Vmax] is
the chaotic search space. Assuming that the elitist solution of
the i generation of the WOA is Xi � (xi1, xi2, . . . , xi D), the
sin chaotic search steps are as follows:

Step 1: normalization of Xi by using the following
formula:

xij �
xij − X

j

min 

X
j
max − X

j

min 
i � 1, 2, . . . , n; j � 1, 2, . . . , D.

(10)

Step 2: generating chaotic sequences. Random gener-
ation vector Z0 � [Z0

1, Z0
2, . . . , Z0

D] based on formula
(8) iterative generation of M chaotic sequences.
Step 3: generating M chaotic sequences by substituting
formula (9), and generating M chaotic variable se-
quences Vk

i � [vk
i1, vk

i2, . . . , vk
i D], k � 1, 2, . . . , M.

Step 4: using formula (10) to reverse the normalization
of Vk

i and generate a new solution Uk in the field of the
original solution space, where (k� 1, 2,. . .,M):

uij � xij +
X

j
max − X

j

min
2

× 2vij − 1 . (11)

,e fitness value f(Uk) ofUk is calculated and compared
with the fitness value f(Xi) of Xi, retaining the best solution.

2.2.2. Adaptive Inertia Weight. Inertia weight is an im-
portant parameter in WOA. ,e inertia weight of formulas
(1) and (5) is larger than that of formula (1). Constant in-
variant inertia weight will reduce the efficiency of the al-
gorithm, which is not conducive to the global optimization
of the algorithm. Zhang et al. [20] pointed out that, as the
inertia weight increases, the global optimal value is easier to
obtain, while a smaller inertia weight can easily achieve local
optimization [21, 22]. On this basis, an adaptive inertial
weight algorithm based on the fitness value is proposed to
ensure that Algorithm 1 has a large nonlinear weight at the
beginning of the iteration, with different adaptive values, and
a small nonlinear weight strategy at the end of the iteration.

,e following adaptive inertia weights are introduced in
formulas (1) and (6):

ω � 0.2 +
1

0.4 + exp −ffit(x)/u 
iter. (12)

In the formula, ffit(x) represents the individual fitness
value, u represents the best fitness value, and u represents the
iteration number.

,e updated formula is as follows:

X(t + 1) �
wX
∗
(t) − A · D, p<Pi,

wX
∗
(t) + Dp · e

bl
· cos(2πl), p≥Pi.

⎧⎨

⎩

(13)
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3. ELM Optimization Model

3.1. Basic ELM. ELM solves the problem of long time
consumption of the BP neural network. However, because
the common limit learning machine only contains one
hidden layer, the characterization ability of the network is
very limited. Compared with the BP neural network which
uses the gradient descent method to update weights, ELM
has two characteristics:

(1) ,e weights are randomly set and do not need to be
adjusted after setting

(2) ,e weights are generated by solving the least
squares without iterative updating

To solve the output weight of the hidden layer, a standard
model can be expressed as follows.

,e ELM model is defined as


M

i�1
βig ωi · xi + bi(  � oj, j � 1, 2, . . . , N, (14)

where o is the actual model output, the training purpose of
SLFNs is to minimize the output error, and the cost function
E of the limit learning machine can be seen as follows:

E(S, β) � 
N

j�1
oj − yj

�����

�����, (15)

where y is the actual data tag, in the limit case, the output of
the network is close to the zero error of the actual data tag,
and min(E(S, β)) can be seen:

minE � min‖H(ω, b, x)β − T‖, (16)

where H, β, andT are, respectively, expressed by the fol-
lowing formula:

H(ω, b, x) �

g ω1x1 + b1(  · · · g ωMx1 + bM( 

⋮ ⋮

g ω1xN + b1(  · · · g ωMxN + bM( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×M

,

β �

βT
1

⋮

βT
M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M×n

, T �

tT
1

⋮

tT
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×n

.

(17)

ELM uses this above model to obtain the output weight
of the hidden layer. ,e above model can be expressed as
follows:

Y � Hβ. (18)

,en, the solution model of the hidden layer output
weight can be expressed as

min‖Hβ − Y‖
2
. (19)

,e least squares solution is defined as

β � H
†
T, (20)

where H† is the generalized inverse matrix of H, which can
be obtained by singular value decomposition.

As can be seen from the above introduction, the learning
process of the whole network of the limit learning machine
only needs to be solved once. Relative to the BP network, the
training time of the network is very short. At the same time,
because the hidden layer input weights of the limit learning
machine are randomly generated and do not need iterative
updating, ELM solves the local minimum problem existing
in the BP neural network.

Using the dynamic nonlinear characteristics to improve the convergence accuracy and speed of the WOA, the flowchart of the
CAWOA is as follows:

,e maximum iteration is Tmax, the population number is N, and N initial whale populations {Xi, i� 1, 2,. . .,N} are generated.
,e fitness value { f (Xi), i� 1, 2,. . .,N } of each whale individual is calculated, and the best individuals are recorded.
While (t<Tmax) do

for i� 1 to N do
According to formula (10), the value of adaptive inertia weight W is calculated.
According to formula (4), the value of control parameter alpha is calculated.
Updating the values of other parameters A, C, l, and P.
If (p< 0.05) do

According to formula (11), updating the current whale individual position;
Else if (p< 0.05) do

According to formula (11), updating the current whale individual position;
End if

End for
Calculating the fitness values of individuals in groups { f (Xi), i� 1, 2,. . .,N}, and preserving and recording elite individuals.
Using sin chaotic search strategy to update elite individuals;
T� t+ 1;

end while t� t+ 1;

ALGORITHM 1: CAWOA algorithm flow.
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3.2. ELMWork Flow. Because ELM has a good performance
in function regression without prior knowledge, CAWOA is
used in combination with the ELM model. ,e ELM model
trains the input sample data, and CAWOA optimization is
used to obtain the optimal parameter value.

Step 1: initialization of WOA: N is the population
number, and the random input value of each individual
is set to xj � (ω11, . . . ,ω1M, ω21,ω22, . . . ,ωm1, . . . ,

ωmM, b1, b2, . . . , bM).
Step 2: variable selection and data acquisition: to verify
good performance of the algorithm proposed, a variety
of functions are applied for comparative analysis.
Unimodal function and multimodal function are used.
Step 3: determining fitness function J:

J �
1

1 +

���������������


N
j�1 oj − tj

�����

�����
2

2
/nN

 ,
(21)

in which ti � [ti1, ti2, . . . , tin]T is the output, and oi �

[oi1, oi2, . . . , oin]T represents the predicted output.

Step 4: model selection: generating the initial pop-
ulation (ω11, . . . ,ω1M,ω21,ω22,

. . . ,ωm1, . . . ,ωmM, b1, b2, . . . , bM) by the random ini-
tialization method, randomly generating the sample
data prediction model according to the initial pop-
ulation, optimizing parameters in this model until
satisfactory results are obtained, and establishing the
CAWOA-ELM model.
Step 5: model validation: verifying the performance of
the CAWOA-ELM model using test data.

4. CAWOA-ELM Test Comparison

4.1. Test Function Selection. In order to test the CAWOA-
ELM performance, a comprehensive and reasonable ex-
periment is provided. Simulation experiments (including
unimodal function andmultimodal function) are carried out
on 4 benchmark tests, and the corresponding functions are
selected as follows:

f1 � 
n

i�1
xi


 + 

n

i�1
xi


D � 30, lb � −10, ub � 10, fmin � 0, (22)

f2 � 
n−1

i�1
100 xi+1 − x

2
i 

2
  + xi + 1( 

2
D � 30, lb � −30, ub � 30, fmin � 0, (23)

f3 � 20 exp −0.2

����

1
n



n

i�1




x
2
i  − exp

1
n



n

i�1
cos 2πxi( ⎛⎝ ⎞⎠ + 20 + eD � 30, lb � −32, ub � 32, fmin � 0⎛⎜⎜⎜⎜⎜⎜⎝ , (24)

f4 �
1
400



n

i�1
x
2
i − 

n

i�1
cos

xi�
i

√  + 1 D � 30, lb � −600, ub � 600, fmin � 0, (25)

where D is the dimension, ub and lb are the min and max
bounds of decision variables, respectively, and fmin repre-
sents the global optimal value.

Among the above four functions, formulas (22) and (23)
are unimodal test functions, and formulas (25) and (26) are
bimodal test functions.

4.2. Algorithm Parameter Setting. When simulating the al-
gorithm, the population sizeN� 30, the dimensionD� 30, and
the maximum iteration tmax� 1000. ,e running environment
of the algorithm is “Windows 7 (64-bit),” “CPU E3-1230 with
32GB,” and “MATLAB 2016b.” For the statistical analysis of
the algorithm, each algorithm runsM� 20 times independently
for each benchmark test function and counts its results. All
function experiment parameter settings are consistent, and the
initial population of all algorithms is consistent.

In order to accurately analyze the CAWOA-ELM effect,
the following five indexes are selected:

Best � min best1, best2, . . . , bestn ,

Worst � max best1, best2, . . . , bestn ,

Mean �
1
n



1

n

besti,

STD �

������������������

1
m



m

i�1
besti − Mean( 

2




,

SR �
k

m
∗ 100%.

(26)
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In the formula, k represents the number of successes inm
repeated experiments (i.e., the results calculated by the al-
gorithm in this experiment are better than the set standard).

4.3. Algorithm Test Comparison. In order to test the per-
formance of CAWOA-ELM algorithm and the correlation
test function to obtain the correlation output value when
different input values are used, CAWOA-ELM is compared
with whale optimization algorithm (WOA), particle swarm
optimization (POS), and biogeography-based optimization
(BBO).

Table 1 displays the simulation value of 4 algorithms on 4
benchmark test functions. ,e best value (BV), worst value
(WV), mean value (MV), standard deviation (SD), and
success rate (SR) obtained by running all algorithms for 30
times are given. Table 1 shows that, under the condition of
test level α � 0.5, taking CAWOA-ELM algorithm as the
benchmark, and comparing the other three algorithms, it is
found that the proposed algorithm can have high experi-
mental results.

,e WOA, PSO algorithm, BBO algorithm, and
CAWOA-ELM algorithm in Table 1 verify the good value
and analyze the performance under the above four func-
tions. When the variable dimension is 30, it can be seen from
Table 1 that CAWOA-ELM algorithm obtains the optimal
value in more aspects of sex.

After comparing the data obtained from 30 simulation
experiments, the functions f2 and f4 can be optimized, all of
which are 0. However, CAWOA-ELM is better than WOA,
PSO, and BBO algorithms in the average and SD of func-
tions. In CAWOA-ELM, the mean value and standard de-
viation of optimal values are obviously better than those of
PSO algorithm. For test functions, GA, BBO algorithm, and
CAWOA-ELM algorithm are obviously superior to the PSO
algorithm in terms of MV and SD optimal values.

,e convergence of CAWOA-ELM algorithm is further
verified. By iterating through four algorithms, the conver-
gence of the algorithm at different times is verified. ,e SD
value decreases continuously with the increase of iteration
times. ,e algorithm convergence analysis is shown in
Figure 1.

,e convergence analysis of the overall algorithm shows
that CAWOA-ELM algorithm has better convergence than
other algorithms in the overall performance. When the
number of iterations is 500, the convergence of the
CAWOA-ELM model tends to be stable, and the overall
fitness value is better than that of other algorithms.

5. Water Ecological Environment COD Model
Simulation Example

5.1. Experimental Data. ,e water environment quality
prediction is the creation of a reliable prediction model
through the stored water quality monitoring data. It is well
known that water quality monitoring data are obtained
through real-timemonitoring of national or provincial water
quality monitoring stations. pH, conductivity, turbidity,
dissolved oxygen (DO), CODKMnO4, ammonia nitrogen,

total nitrogen, and total phosphorus are proposed in the
environmental protection industry standard “Automatic
Analyzer Technology for Water Quality Index” (HJ-T100-
2003) issued by the Ministry of Environmental Protection.
,e total organic carbon (TOC) 9 standards are environ-
mental protection industry standards. ,e revised an-
nouncement includes routine monitoring projects such as
pH, ammonia nitrogen, total nitrogen, and total phos-
phorus. At the same time, chemical oxygen demand
(COD), biochemical oxygen demand (BOD), and some
heavy metal ions are also the water quality parameters that
people hope to monitor. ,erefore, combined with the
national announcement and actual needs, this paper selects
five indicators that indicate water environmental quality
provided by water quality monitoring stations, namely,
COD, pH, dissolved oxygen, ammonia nitrogen, and total
phosphorus. COD refers to the mass concentration of
oxygen corresponding to an oxidant consumed by a strong
oxidant in a chemical process to oxidize a reducing sub-
stance in water. COD is a key indicator for indicating the
degree of pollutants in water and an important pollution
parameter in the operation and management of wastewater
treatment plants.

,e monitoring data of a water plant monitoring station
in a city are taken as the research object. ,e water plant
monitoring station records the data of each parameter in the
water body every 6 hours. Due to the reasonable interval
between data collection, the recorded data can fully reflect
the water quality of the water plant. ,e data of the water
plant monitoring station from January 20 to June 18 are
selected in the experiment, and the CAWOA model is
trained using the data from January to May 2018. Subse-
quently, the water quality parameter data of June are input
into other trained prediction models for testing, and the
expected value is compared with the actual value and
analyzed.

5.2. CAWOA-ELM Simulation Experiment. ,e CAWOA is
combined with the ELM model to optimize the parameters
of the water ecosystem to reduce the COD emission con-
centration of water pollution. Firstly, the CAWOA is applied
to optimize the ELM model parameters, and then the test
samples are used to verify the accuracy and generalization
ability of the CAWOA-ELM model. Taking the ecological
environment of a certain water area as the research object,
the data of COD emissions are tested in multiple groups, and
various operational parameters such as pH, DO, NH3-N,
TP, and COD that affect the water quality characteristics are
predicted and selected. 30 groups of data are compared
experimentally, 20 groups of samples are selected for
training optimization modeling, and the remaining 10
groups are used as test samples to verify the accuracy and
generalization ability of the model. ,e selected 20 sets of
training data and the other 10 sets of predicted data are
subjected to regression prediction, and the predicted values
are as shown in Figure 2. In order to verify the superiority of
this algorithm in modeling, this algorithm is compared with
four models of BBO-ELM, PSO-ELM, WOA-ELM, and
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Table 1: Simulation results.

Function Indicators WOA PSO BBO CAWOA-ELM

f1

BV 1.391E− 65 5.352E− 55 1.127× E− 45 1.987E− 167
WV 4.117E− 49 4.961E− 39 5.238× E− 34 2.343E− 89
MV 2.106E− 55 9.871E− 47 2.921× E− 39 4.782×E− 107
SD 9.109E− 57 6.431E− 49 9.302×E− 41 1.412× E− 124
SR 10% 10% 16.67% 3.33%

f2

BV 3.345E− 75 3.522E− 65 3.342× E− 42 0
WV 5.727E− 62 1.719E− 51 7.231× E− 31 0
MV 8.234E− 68 3.371E− 58 8.823× E− 35 0
SD 6.349E− 70 8.569E− 62 7.467× E− 36 0
SR 13.33% 10% 13.33% 0

f3

BV 8.881E− 18 5.169E− 37 1.122× E− 31 7.387E− 197
WV 7.991E− 16 5.387E− 27 3.378× E− 23 2.343E− 78
MV 5.442E− 17 9.871E− 30 2.278× E− 28 4.78×E− 116
SD 2.833E− 17 6.431E− 32 9.976× E− 29 1.42×E− 135
SR 13.33% 13.33% 16.67% 3.33%

f4

BV 3.764E− 23 7.654E− 39 2.138× E− 37 0
WV 7.761E− 17 8.659E− 26 3.891× E− 28 0
MV 5.581E− 20 9.871E− 47 5.892× E− 32 0
SD 8.874E− 21 6.431E− 49 7.319× E− 35 0
SR 13.33% 13.33% 10% 0
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Figure 1: ,e algorithm convergence analysis (Dim� 30).
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standard ELM. ,e absolute value of the prediction error of
each method is shown in Figure 2.

As can be seen from Figure 2(a), the CAWOA-ELM
model can better predict training and test samples, and there
are some errors in predicting samples. As can be seen from
Figure 2(b), the data in samples 17, 18, and 19 do not
participate in the training of the model, and compared with
other participating training samples, the error is relatively
large, which is in line with the principle of system modeling.
It can be further found that the predicted performance of
BBO-ELM is comparable to that of PSO-ELM, while the
predictive performance of WOA-ELM is poor, especially for
the three future samples that are not involved in training.
,e performance of the ELWO model optimized by
CAWOA has been greatly improved compared with the
WOA-ELM model.

To further describe the superiority of the CAWOA-ELM,
the predictive value (PV) and relative error (RE) of training
samples 17, 18, and 19 are shown in Table 2. From Table 2,
we can see that the predicted value of CAWOA-ELM works
very well, and the error values are 0.07, 0.11, and 0.21, re-
spectively. ,e error values of 0.07, 0.11, and 0.21 are the
smallest of the five models, especially for WOA-ELM and
standard ELM models. It shows that the CAWOA-ELM

model has good accuracy and generalization ability. ,e
CAWOA-ELM prediction model provides an effective
means for accurate prediction calculation of COD.

6. Conclusion

Water ecological environment discharge has multidimen-
sional characteristics, many factors lead to the prediction
effect, and the multidimensional characteristic relationship
is relatively complex, which makes the prediction difficult. It
can effectively predict the COD value of water ecological
discharge. A combined prediction model based on the
CAWOA-ELM algorithm is proposed. In order to test the
advantages of the algorithm, CAWOA-ELM algorithm is
compared with WOA, PSO, and BBO algorithms. ,e
convergence proves that the CAWOA-ELM algorithm has
faster convergence effect. A CAWOA-ELM model for
predicting COD is set up, in which 30% of the samples are
used as test samples and 70% as training sets. ,e model is
used to train and test datasets. ,e COD values detected by
the CAWOA-ELM model have good accuracy, and the
differences between the other models can be used as an
application model for predicting COD values.
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Figure 2: COD prediction model and comparison.

Table 2: Performance comparison of 4 algorithms.

Sample True data
CAWOA-ELM PSO-ELM BBO-ELM WOA-ELM

PV ER RE (%) PV ER RE (%) PV ER RE (%) PV ER RE (%)
1 1.766 1.84 0.07 3.96 2.02 0.25 14.16 1.85 0.08 4.53 2.05 0.28 15.86
2 1.895 2.01 0.11 5.80 2.13 0.23 12.14 2.11 0.21 11.08 2.19 0.29 15.30
3 1.543 1.75 0.21 13.61 1.92 0.38 24.63 1.81 0.27 17.50 1.81 0.27 17.50
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Metal organic graphs are hollow structures of metal atoms that are connected by ligands, where metal atoms are represented
by the vertices and ligands are referred as edges. A vertex x resolves the vertices u and v of a graph G if d(u, x)≠ d(v, x). For a
pair (u, v) of vertices of G, R(u, v) � x ∈ V(G): d(x, u)≠d(x, v){ } is called its resolving neighbourhood set. For each pair of
vertices u and v in V(G), if f(R(u, v))≥ 1, then f from V(G) to the interval [0, 1] is called resolving function. Moreover, for
two functions f and g, f is called minimal if f≤g and f(v)≠g(v) for at least one v ∈ V(G). )e fractional metric dimension
(FMD) of G is denoted by dimf(G) and defined as dimf(G) � min |g|: g is aminimal resolving function of G , where
|g| � v∈V(G)g(v). If we take a pair of vertices (u, v) of G as an edge e � uv of G, then it becomes local fractional metric
dimension (LFMD) (dimlf(G)). In this paper, local fractional and fractional metric dimensions of MOG(n) are computed
for n � 1(mod2) in the terms of upper bounds. Moreover, it is obtained that metal organic is one of the graphs that has the
same local and fractional metric dimension.

1. Introduction

For a connected graph G, a vertex x ∈ V(G) is said to resolve
a pair (u, v) of vertices of G if d(x, u)≠d(x, v). A set
S⊆V(G) is called a resolving set of G if each pair of vertices
of G is resolved by some vertex in S.)emetric dimension of
G is denoted by dim(G) and is defined as

dim(G) � min |S|: S is a resolving set of G . (1)

For a pair (u, v) of vertices ofG, the resolving neighborhood
R(u, v) is defined as R(u, v) � w ∈ V(G): d(w, u)≠{

d(w, v)}. A resolving function is a real-valued function
g: V(G)⟶ [0, 1] such that g(R(u, v))≥ 1 for each distinct
pair of vertices of G, where g(R(u, v)) � x∈R(u,v)g(x). A
resolving function g is called minimal if any function
f: V(G)⟶ [0, 1] such that f≤g and f(v)≠g(v) for at
least one v ∈ V is not a resolving function of G. )e fractional
metric dimension (FMD) of G is denoted by dimf(G) and
defined as

dimf(G) � min |g|: g is aminimal resolving function of G ,

(2)

where |g| � ≤v∈V(G)g(v). Now, if we take a pair of
vertices (u, v) of G as an edge e � uv of G, then the
aforesaid defined resolving neighborhood R(u, v), mini-
mal resolving function g, and FMD dimf(G) become local
resolving neighborhood (LR(uv)), local minimal resolv-
ing function, and local fractional metric dimension
(dimlf(G)), respectively.

First of all, Harary and Melter [1] defined the concept of
metric dimension to study the substructures of chemical
compounds having similar properties which are used in
pharmaceutical industries for the drug discoveries. Later on,
Chartrand et al. [2] and Currie & Oellermann [3, 4] im-
proved the solution of IPP with the help of the procedure of
metric dimension. Moreover, it is used in navigation system,
image processing, and robotic problems [5]. For various
results of metric dimension on different graphs, refer to
[6–9].

Hindawi
Journal of Chemistry
Volume 2021, Article ID 5539569, 12 pages
https://doi.org/10.1155/2021/5539569

mailto:javaidmath@gmail.com
https://orcid.org/0000-0001-7241-8172
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5539569


Fehr et al. [10] introduced the concept of fractional
metric dimension (FMD), and they obtained the optimal
solution of a certain linear programming relaxation problem
with the help of FMD. Arumugam and Mathew [11] present
various properties of FMD. )e FMD of metal organic
framework (MOF) is computed in [12], where MOF is
obtained from the cycle of odd order. Moreover, different
classes of graphs such as product-based graphs and Ham-
ming, Johnson, and permutation graphs are studied with the
help of FMD [13–17]. Liu et al. [18] computed the FMD of
generalized Jahangir graph. Recently, Aisyah et al. defined
the concept of local fractional metric dimension (LFMD)
and computed it for the corona product of graphs [19]. Liu
et al. [20] computed the LFMD of rotationally symmetric
networks. Javaid et al. [21] calculated the sharp bounds of
LFMD of connected networks.

Metal organic graph (MOG) consists of metal atoms,
where atoms are linked with thes help of organic ligands
which act like a linker. )erefore, MOG has led to a new
world of remarkable applications and it has a large surface
area that allows these chemicals compounds to absorb huge
quantity of several gases such as carbon dioxide hydrogen
and methane acting as a gas storage chemical compound. It
is also utilized for environmental protection and cleaning
energy with the help of capturing carbon dioxide. Being
small density, high surface structure flexibility, and tuneable
pore functionality, metal organic frameworks also play an
important role in liquid-phase separation that is industrial
step with critical roles in petrochemical, chemical, nuclear,
and pharmaceutical industries. )ese frame works are also
used in heterogeneous catalyst, drugs delivery, and sensing
conductivity [22–25].

In this paper, upper bounds for LFMD and FMD of the
metal organic graphs are calculated, where MOGs are ob-
tained with the help of the cycles of even order. Moreover,
the unboundedness of the obtained results is also discussed.
Rest of the paper is organized as follows: Section 1 includes
the introduction. Construction of MOG is discussed in
Section 2. LFMD of metal organic graphs is added in Section
3. FMD of MOG is calculated in Section 4. Conclusion is
presented in Section 5.

2. Construction of Metal Organic Graphs

In this section, we describe the construction of metal organic
graphs. Let MOG(n) for n≥ 3 be a metal organic graph with
vertex set V(MOG(n)) � ui: 1≤ i≤ n ∪ vj: 1≤ j≤ 2n 

and edge set E(MOG(n)) � uiui+1: 1≤ i≤ n− 1}∪
vjvj+1: 1≤ j≤ 2n − 1 ∪ unu1, v2nv1 ∪ uivj, uivj+1: 1≤

i≤ n, 1≤ j≤ 2n}, where |V(MOG(n))| � E|(MOG(n))| � 3n.
Figure 1 shows MOG(n) for n ∈ 5, 7, 9{ }.

3. LFMD of Metal Organic Graphs

In this section, local resolving neighbourhood sets of metal
organic graphs are discussed in Lemmas 1 and 2 and local
fractional metric dimension is calculated in )eorem 1.

Lemma 1. Let MOG(n) for n ≡ 1 (mod2) and n≥ 5 be metal
organic graph, then |LR(et)| � |LR(et � vivj)| � 8. For
1≤ k≤ n, j � i + 1, i ∈ [2k − 1], 1≤ t≤ n. Moreover,
∪LR(et) � vm: 1≤m≤ 2n  and |∪LR(et)| � α � 2n.

Proof. )e local resolving neighborhood of metal organic
graphs, for 1≤ k≤ n, j � i + 1, i ∈ [2k − 1], 1≤ t≤ n.
LR(vivj) � vl: 2k − 1≤ l≤ k − 3, 2k − 4≤ l≤ 2k − 2  with
|LR(et)| � 8 and ∪ n

t�1LR(et) � vs: 1≤ s≤ 2n , and we have
|∪ n

t�1LR(et)| � 2n. □

Lemma 2. Let MOG(n) for n ≡ 1(mod2) and n≥ 9 be a
metal organic graph with 1≤ t≤ n. /en, the following holds:

(a) For 1≤ k≤ n, j � i + 1, i ∈ [2k], |LR(et)|< |LR(vivj)|

and |LR(vivj)∩ (∪ n
t�1LR(et)|≥ |LR(et)|.

(b) For 1≤ i≤ n − 1, j � i + 1, |LR(et)|< |LR(uiuj)| and
|LR(uiuj)∩ (∪ n

t�1LR(et)|≥ |LR(et)|.
(c) For 1≤ i≤ n, j � 2i − 1, 2i, |LR(et)|< |LR(uiuj)| and

|LR(uiuj)∩ (∪ n
t�1LR(et)|≥ |LR(et)|.

(d) For 1≤ i≤ n, j � 2i, |LR(et)|< |LR(uiuj)| and
|LR(uiuj)∩ (∪ n

t�1LR(et)|≥ |LR(et)|.

Proof. (a) )e local resolving neighborhood for 1≤ k≤ n,
j � i + 1, i ∈ [2k], 1≤ t≤ n,

LR vivj  �

up: 1≤p≤ n, wherep≠
n + 1
2

+ k � m,

vq: 1≤ q≤ 2 n, where q≠ 2m, 2m − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

with |LR(vivj)| � 3n − 3> 8 � |LR(et)|, LR(vivj)∩
(∪ n

t�1LRet) � vq: 1≤ q≤ 2n, q≠ 2m, 2m − 1 .
)erefore,
|LR(vivj)∩ (∪ n

t�1LRet)| � 2n − 2> |LR(et)|.
(b) )e local resolving neighborhood for 1≤ i≤ n − 1,

j � i + 1, 1≤ t≤ n,

LR uiuj  �

up: 1≤p≤ n ,wherep≠
n + i + j

2
+ k � m,

vq: 1≤ q≤ 2n, where q≠ 2m, 2m − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

with |LR(uiuj)| � 3n − 3> 8 � |LR(et)| and
LR(uiuj)∩ (∪ n

t�1LRet) � vq: 1≤ q≤ 2n, q≠ 2m,

2m − 1}. )erefore, we have |LR(uiuj)∩
(∪ n

t�1LRet)| � 2n − 2> |LR(et)|.
(c) )e local resolving neighborhood for 1≤ i≤ n,

j � 2i − 1, 1≤ t≤ n,

LR uivj  �
up: 1≤p≤ n;

vq: 1≤ q≤ 2nwhere q≠ j + 1, 2, −2, −3,

⎧⎨

⎩

(5)
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with |LR(uiuj)| � 3n − 4> 8 � |LR(et)| and
LR(uiuj)∩ (∪ n

t�1LRet) � vq: q≠ j + 1, 2, −2, −3 .
)erefore, we have |LR(uiuj)

∩ (∪ n
t�1LRet)| � 2n − 4> |LR(et)|.

(d) )e local resolving neighborhood for 1≤ i≤ n,
j � 2i − 1, 1≤ t≤ n,

LR uivj  �
up: 1≤p≤ n;

vq: 1≤ q≤ 2n, where q≠ j + 2, 3, −1, −2,

⎧⎨

⎩

(6)

with |LR(uiuj)| � 3n − 4> 8 � |LR(et)| and
LR(uiuj)∩ (∪ n

t�1LRet) � vq: q≠ j + 2, 3, −1, −2 .

)erefore, we have |LR(uiuj)∩ (∪ n
t�1LRet)| �

2n − 4> |LR(et)|. □

Theorem 1. Let MOG(n) for n ≡ 1(mod2) and n≥ 5 be the
metal organic graphs, then dimlf(MOG(n))≤ n/4.

Proof. In view of Lemmas 1 and 2 for for 1≤ k≤ n, j � i + 1,
i ∈ [2k − 1], 1≤ t≤ n, |LR(et)| � |LR(vivj)| � 8 and |X| �

|∪ n
t�1LR(et)| � 2n.
We have |R(xy)|≤ |R(et)| for all xy ∈ E(MOG(n)).

Moreover, the local resolving neighbourhood of minimum
cardinality is not disjoint. )erefore, local fractional metric
of MOG(n) is given as follows:

u1

u2

u3

u4

u5

v1
v2

v3

v4

v5

v6

v7

v8

v9

v10
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v9v10

v11

v12

v13
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(b)
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v1 v2
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v4
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v6
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(c)

Figure 1: MOG(n) for n � 5 (a), n � 7 (b), and n � 9 (c).
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dimlf(MOG(n))≤ 

|X|

t�1

1
LR et( 



. (7)

For |X| � 2n and |LR(et)| � 8, we have

dimlf(MOG(n))≤ 

2n

t�1

1
8
. (8)

Hence, dimlf(MOG(n))≤ n/4. □

4. FMD of Metal Organic Graphs

In this section, the resolving neighbourhood sets of metal
organic graphs are calculated in Lemmas 3–8. Bounds of
FMD are computed in )eorems 2 and 3.

Lemma 3. Let MOG(n) for n ≡ 1(mod2) and n≥ 9 be metal
organic graph, then |R(et)| � |R(et � vi, vj)| � 8. For
1≤ k≤ n, j � i + 1, i ∈ [2k − 1], 1≤ t≤ n. Moreover,
∪ n

t�1R(et) � vm: 1≤m≤ 2n  and |∪ n
t�1R(et)| � α � 2n.

Proof. )e resolving neighborhood sets of metal organic
graph for 1≤ k≤ n, j � i + 1, i ∈ [2k − 1], 1≤ t≤ n,
R(vi, vj) � vl: 2k − 1≤ l≤ k − 3, 2k − 4≤ l≤ 2k − 2  with
|R(et)| � 8 and ∪ n

t�1R(et) � vs: 1≤ s≤ 2n , and we have
|∪ n

t�1R(et)| � 2n. □

Lemma 4. Let MOG(n) for n ≡ 1(mod2) and n≥ 9 be metal
organic graphs, then for 1≤ k≤ n, i ∈ [2k − 1], 1≤ t≤ n,
|R(et)|< |R(vi, vj)| and |R(vi, vj)∩ (∪ n

t�1R(et)|≥ |R(et)|:

(a) j ∈ i + 1{ }.
(b) j ∈ i + 2, i + 6{ }.
(c) j ∈ i + 3, i + 7{ }.
(d) j ∈ i + 4, i + 8{ }.
(e) j ∈ i + 5{ }.

Proof. (a) )e resolving neighborhood for 1≤ k≤ n,
i ∈ [2k − 1] j ∈ i + 1, 1≤ t≤ n,

R vi, vj  �

up: 1≤p≤ n, wherep≠
n + 1
2

+ k � m,

vq: 1≤ q≤ 2n ,where q≠ 2m, 2m − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

with |R(vi, vj)| � 3n − 3> 8 � |R(et)| and
R(vi, vj)∩ (∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ 2m,

2m − 1}. )erefore, we have
|R(vi, vj)∩ (∪ n

t�1Ret)| � 2n − 2> |R(et)|.
(b) )e resolving neighborhood for 1≤ k≤ n,

i ∈ [2k − 1] j ∈ i + 2, i + 6, 1≤ t≤ n.
When j ∈ i + 2{ },

R vi, vj  �

up: 1≤p≤ n, wherep≠
n + 2i + 1

2
� m,

vq: 1≤ q≤ 2n, where q≠ 2m, 2m − 1, i + 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

When j ∈ i + 6{ },

R vi, vj  �

up: 1≤p≤ n, wherep≠
n + 2i + 3

2
� m,

vq: 1≤ q≤ 2n, where q≠ 2m, 2m − 1, i + 3,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

with |R(vi, vj)| � 3n − 4> 8 � |R(et)|,
R(vi, vj)∩ (∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ 2m,

2m − 1, i + 1}, and j ∈ i + 2. |R(vi, vj)∩ (∪ n
t�1Ret)| �

vq: 1≤ q≤ 2n: q≠ 2m, 2m − 1, i + 3  and j ∈ i + 6.
)erefore, we have |R(vi, vj)∩ (∪ n

t�1Ret)|

� 2n − 3> |R(et)|.
(c) )e resolving neighborhood for 1≤ k≤ n,

i ∈ [2k − 1]j ∈ i + 3, i + 7, 1≤ t≤ n.
When j ∈ i + 3{ },

R vi, vj  �

up: 1≤p≤ n, wherep≠
n + 2i + 1

2
� m,

vq: 1≤ q≤ 2n, where q≠ 2m, 2m − 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

When j ∈ i + 7{ },

R vi, vj  �

up: 1≤p≤ n, wherep≠
n + 2i + 3

2
� m,

vq: 1≤ q≤ 2n, where q≠ 2m, 2m − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

with |R(vi, vj)| � 3n − 3> 8 � |R(et)|, R(vi, vj)∩
(∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ 2m, 2m − 1}, and
j ∈ i + 3. R(vi, vj)∩ (∪ n

t�1Ret) � vq: 1≤ q≤ 2n:

q≠ 2m, 2m − 1} and j ∈ i + 7. )erefore, we have
|R(vi, vj)∩ (∪ n

t�1Ret)| � 2n − 2> |R(et)|.
(d) )e resolving neighborhood for 1≤ k≤ n,

i ∈ [2k − 1]j ∈ i + 4, i + 8, 1≤ t≤ n.
When j ∈ i + 4{ },

R vi, vj  �

up: 1≤p≤ n, wherep≠
j − 1
2

,

vq: 1≤ q≤ 2n, where q≠
i + j

2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

When j ∈ i + 8{ },
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R vi, vj  �

up: 1≤p≤ n, wherep≠
j − 3
2

,

vq: 1≤ q≤ 2n, where q≠
i + j

2
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

with |R(vi, vj)| � 3n − 2> 8 � |R(et)| and R(vi, vj)∩
(∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ i + j/2 . )erefore,
we have |R(vi, vj)∩ (∪ n

t�1Ret)| � 2n − 1> |R(et)|.
(e) )e resolving neighborhood for 1≤ k≤ n,

i ∈ [2k − 1]j ∈ i + 5, 1≤ t≤ n.

R vi, vj  �

up: 1≤p≤ n, wherep≠
j − 2
2

,

vq: 1≤ q≤ 2n,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

with |R(vi, vj)| � 3n − 1> 8 � |R(et)| and R(vi, vj)∩
(∪ n

t�1Ret) � vq: 1≤ q≤ 2n . )erefore, we have
|R(vi, vj)∩ (∪ n

t�1Ret)| � 2n> |R(et)|. □

Lemma 5. Let MOG(n) for n ≡ 1(mod2) and n≥ 9 be metal
organic graph. /en, for 1≤ k≤ n, i ∈ [2k], 1≤ t≤ n,
|R(et)|< |R(vi, vj)| and |R(vi, vj)∩ (∪ n

t�1Ret)|≥ |R(et)|:

(a) j ∈ i + 2, i + 6{ }.
(b) j ∈ i + 3, i + 7{ }.
(c) j ∈ i + 4, i + 8{ }.
(d) j ∈ i + 5{ }.

Proof. (a) )e resolving neighborhood for 1≤ k≤ n,
i ∈ [2k]j ∈ i + 2, i + 6, 1≤ t≤ n.

When j ∈ i + 2{ },

R vi, vj  �

up: 1≤p≤ n, wherep≠
n + i + 1

2
� m,

vq: 1≤ q≤ 2n, where q≠ 2m, 2m − 1, i + 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

When j ∈ i + 6{ },

R vi, vj  �

up: 1≤p≤ n, wherep≠
n + i + 3

2
� m,

vq: 1≤ q≤ 2n, where q≠ 2m, 2m − 1, i + 3,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(18)

with |R(vi, vj)| � 3n − 4> 8 � |R(et)|, R(vi, vj)∩
(∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ 2m, 2m − 1, i + 1 ,
and j ∈ i + 2. R(vi, vj)∩ (∪ n

t�1Ret) � vq: 1≤

q≤ 2n: q≠ 2m, 2m − 1, i + 3} and j ∈ i + 6. )ere-
fore, we have
|R(vi, vj)∩ (∪ n

t�1Ret)| � 2n − 3> |R(et)|.
(b) )e resolving neighborhood for 1≤ k≤ n,

i ∈ [2k]j ∈ i + 3, i + 7, 1≤ t≤ n.

R vi, vj  �

up: 1≤p≤ n, wherep≠
j + i + 1

4
,

vq: 1≤ q≤ 2n,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)

with |R(vi, vj)| � 3n − 1> 8 � |R(et)| and
R(vi, vj)∩ (∪ n

t�1Ret) � vq: 1≤ q≤ 2n . )erefore,
we have |R(vi, vj)∩ (∪ n

t�1Ret)| � 2n> |R(et)|.
(c) )e resolving neighborhood for 1≤ k≤ n,

i ∈ [2k]j ∈ i + 4, i + 8, 1≤ t≤ n,

R vi, vj  �

up: 1≤p≤ n, wherep≠
i + j

4
,

vq: 1≤ q≤ 2n: q≠
i + j

2
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(20)

with |R(vi, vj)| � 3n − 2> 8 � |R(et)| and R(vi, vj)∩
(∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ i + j/2 . )erefore,
we have |R(vi, vj)∩ (∪ n

t�1Ret)| � 2n − 1> |R(et)|.
(d) )e resolving neighborhood for 1≤ k≤ n,

i ∈ [2k]j ∈ i + 5{ }, 1≤ t≤ n.

R vi, vj  �
up: 1≤p≤ n, wherep≠

n + i + 3
2

� m,

vq: 1≤ q≤ 2n, where q≠ 2m, 2m − 1,

⎧⎪⎪⎨

⎪⎪⎩

(21)

with |R(vi, vj)| � 3n − 3> 8 � |R(et)| and R(vi, vj)∩
(∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ 2m, 2m − 1 .
)erefore, we have
|R(vi, vj)∩ (∪ n

t�1Ret)| � 2n − 2> |R(et)|. □

Lemma 6. Let MOG(n) for n ≡ 1(mod2) and n≥ 9 be metal
organic graph. /en, the following holds.

(a) For 1≤ k≤ n, j � i + 1, i ∈ [2k], 1≤ t≤ n,
|R(et)|< |R(vivj)| and |R(vi, vj)∩ (∪ n

t�1Ret)| �

≥ |R(et)|.

Proof. )e resolving neighborhood for 1≤ i≤ n,
j ∈ 9 + i + k: 1≤ k≤ 2n − 18{ }.

When k � 4t − 3, 4t − 2, for 1≤ t≤ n − 9/2,

R vi, vj  �
up: 1≤p≤ n, wherep≠

n + i + 6
2

� m,

vq: 1≤ q≤ 2n, where q≠ 2m, 2m − 1.

⎧⎪⎪⎨

⎪⎪⎩

(22)

When k � 4t − 1, 4t, for 1≤ t≤ n − 9/2,

R vi, vj  �

up: 1≤p≤ n, wherep≠
i + 7
2

� m,

vq: 1≤ q≤ 2n, where q≠ 2m, 2m − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(23)
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with |R(vi, vj)| � 3n − 3> 8 � |R(et)| and R(vi, vj)∩
(∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ 2m, 2m − 1 . )erefore, we
have |R(vi, vj)∩ (∪ n

t�1Ret)| � 2n − 2> |R(et)|. □

Corollary 1.

(i) For 1≤ k≤ n, i ∈ [2k − 1], |R(vi, vj)| � |R(vi, vm)|,
where j ∈ i + s: 2≤ s≤ 8{ } and m ∈ i − s: 2≤ s≤ 8{ }.

(ii) For 1≤ k≤ n, i ∈ [2k]|R(vi, vj)| � |R(vi, vj)|, where
j ∈ i + s, i − s: 2≤ s≤ 7{ }.

Lemma 7. Let MOG(n) for n ≡ 1(mod2) and n≥ 9 be metal
organic graph. /en, for 1≤ i≤ n, 1≤ k≤ n − 1, j � i + k,
1≤ t≤ n, |R(et)|< |R(uiuj)| and |R(ui, uj)∩
(∪ n

t�1Ret)| � ≥ |R(et)|.

Proof. )e resolving neighborhood for 1≤ i≤ n,
1≤ k≤ n − 1, j � i + k.

When k � 1(mod2),

R ui, uj  �

up: 1≤p≤ n, wherep≠
n + i + j

2
� m,

vq: 1≤ q≤ 2n, where q≠ 2m, 2m − 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

When k � 0(mod2),

R ui, uj  �

up: 1≤p≤ n, wherep≠
i + j

2
� m,

vq: 1≤ q≤ 2n, where q≠ 2m, 2m − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

with |R(ui, uj)| � 3n − 3> 8 � |R(et)| and R(ui, uj)∩
(∪ n

t�1Ret) � vq: 1≤ q≤ 2n, q≠ 2m, 2m − 1 . )erefore, we
have |R(ui, uj)∩ (∪ n

t�1Ret)| � 2n − 2> |R(et)|. □

Lemma 8. Let MOG(n) for n ≡ 1(mod2) and n≥ 9 be metal
organic graph. /en, for 1≤ i≤ n, |R(et)|< |R(ui, vj)| and
|R(ui, uj)∩ (∪ n

t�1Ret)|≥ |R(et)|.

(a) j ∈ 2i − 1, 2i{ }.
(b) j ∈ 2i + 1{ }.
(c) j ∈ 2i + 2{ }.
(d) j ∈ 2i + 3, 2i + 4{ }.
(e) j ∈ 2i + 5{ }.
(f ) j ∈ 2i + 6{ }.
(g) j ∈ 2i + 7{ }.
(h) j ∈ 2i + 8{ }.
(i) j ∈ 2i + 9{ }.
(j) j ∈ 2i + 10{ }.
(k) j ∈ 2i + 10 + k: 1≤ k≤ 2n − 22{ }.

Proof:

(a) /e resolving neighborhood for 1≤ i≤ n.
When j ∈ 2i − 1{ },

R ui, vj  �
up: 1≤p≤ n,

vq: 1≤ q≤ 2n: q≠ j + 1, j + 2, j − 2, j − 3.

⎧⎨

⎩

(26)

When j ∈ 2i{ },

R ui, vj  �
up: 1≤p≤ n,

vq: 1≤ q≤ 2n,where, q≠ j + 2, j + 3, j − 1, j − 1,

⎧⎨

⎩ (27)

with |R(ui, vj)| � 3n − 4> 8 � |R(et)| and
R(ui, uj)∩ (∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ j + 1,

j + 2, j − 2, j − 3}, when j ∈ 2i − 1{ }. R(ui, vj)∩
(∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ j + 2, j + 3, j − 1,

j − 1}, when j ∈ 2i{ }. /erefore, we have
|R(ui, uj)∩ (∪ n

t�1Ret)| � 2n − 4> |R(et)|.
(b) /e resolving neighborhood for 1≤ i≤ n, j ∈ 2i + 1{ }:

R ui, vj  �

up: 1≤p≤ n, wherep≠m and j − i≤m≤
n + 1
2

,

vq: 1≤ q≤ 2n, where q≠ j − 1, swhere j + 3≤ s≤ n + j − 2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(28)

with |R(ui, vj)| � 3n − 16> 8 � |R(et)| and
R(ui, vj)∩ (∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ j − 1,

s,where, j+ 3≤ s≤ n + j − 2}. /erefore, we have
|R(ui, vj)∩ (∪ n

t�1Ret)| � 2n − 7> |R(et)|.

(c) /e resolving neighborhood for 1≤ i≤ n, j ∈ 2i + 2{ }.
When j ∈ i + 3,
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R ui, vj  �

up: 1≤p≤ n, wherep≠m, and j − i − 1≤m
n + 1
2

,

vq: 1≤ q≤ 2n, where q≠ s and 2(j − i − 1)≤ s≤ n + j − 4,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(29)

with |R(ui, vj)| � 3n − 13> 8 � |R(et)| and
R(ui, vj)∩ (∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ s,

2(j − i − 1)≤ s≤ n + j − 4}. /erefore, we have
|R(ui, vj)∩ (∪ n

t�1Ret)| � 2n − 8> |R(et)|.
(d) /e resolving neighborhood for 1≤ i≤ n,

j ∈ 2i + 3, 2i + 4{ }:

R ui, vj  �

up: 1≤p≤ n, wherep≠
n + 1
2

� s,

vq: 1≤ q≤ 2n, where q≠ j − 2, q≠ 2s, 2s − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

with |R(ui, vj)| � 3n − 4> 8 � |R(et)| andR(ui, vj)∩
(∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ j − 2, q≠ 2s, 2s − 1 .
/erefore, we have |R(ui, vj)∩ (∪ n

t�1Ret)| �

2n − 3> |R(et)|.
(e) /e resolving neighborhood for 1≤ i≤ n, j ∈ 2i + 5{ }:

R ui, vj  �

up: 1≤p≤ n, wherep≠
j − 1
2

,

vq: 1≤ q≤ 2n,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(31)

with |R(ui, vj)| � 3n − 1> 8 � |R(et)| and
R(ui, vj)∩ (∪ n

t�1Ret) � vq: 1≤ q≤ 2n . /erefore,
we have |R(ui, vj)∩ (∪ n

t�1Ret)| � 2n> |R(et)|.
(f ) /e resolving neighborhood for 1≤ i≤ n, j ∈ 2i + 6{ }:

R ui, vj  �

up: 1≤p≤ n, wherep≠
j − 1
2

,

vq: 1≤ q≤ 2n, where q≠ j − 3,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(32)

with |R(ui, vj)| � 3n − 2> 8 � |R(et)| and
R(ui, vj)∩ (∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ j − 3 .
/erefore, we have
|R(ui, vj)∩ (∪ n

t�1Ret)| � 2n − 1> |R(et)|.
(g) /e resolving neighborhood for 1≤ i≤ n,

j ∈ 2i + 3, 2i + 4{ }:

R ui, vj  �

up: 1≤p≤ n, wherep≠
n + 2i + 3

2
� s,

vq: 1≤ q≤ 2n, where q≠ j − 3, q≠ 2s, 2s − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(33)

with |R(ui, vj)| � 3n − 4> 8 � |R(et)| andR(ui, vj)∩
(∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ j − 3, q≠ 2s, 2s − 1 .
/erefore, we have |R(ui, vj)∩ (∪ n

t�1Ret)| �

2n − 3> |R(et)|.
(h) /e resolving neighborhood for 1≤ i≤ n, j ∈ 2i + 8{ }:

R ui, vj  �

up: 1≤p≤ n, wherep≠
n + 2i + 3

2
� s,

vq: 1≤ q≤ 2n, where q≠ 2s, 2s − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(34)

with |R(ui, vj)| � 3n − 3> 8 � |R(et)| and R(ui, vj)∩
(∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ 2s, 2s − 1 . /ere-
fore, we have
|R(ui, vj)∩ (∪ n

t�1Ret)| � 2n − 2> |R(et)|.
(i) /e resolving neighborhood for 1≤ i≤ n, j ∈ 2i + 9{ },

R ui, vj  �

up, 1≤p≤ n, wherep≠
j − 3
2

� s,

vq, 1≤ q≤ 2n, where q≠ j − 4,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(35)

with |R(ui, vj)| � 3n − 2> 8 � |R(et)| and
R(ui, vj)∩ (∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ j − 4 .
/erefore, we have |R(ui, vj)∩ (∪ n

t�1Ret)| �

2n − 1> |R(et)|.
(j) /e resolving neighborhood for 1≤ i≤ n, j ∈ 2i + 9{ }:

R ui, vj  �

up: 1≤p≤ n, wherep≠
j − 4
2

� s,

vq: 1≤ q≤ 2n, where q≠ 2s, 2s − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(36)

with |R(ui, vj)| � 3n − 3> 8 � |R(et)| and R(ui, vj)∩
(∪ n

t�1Ret) � vq: 1≤ q≤ 2n: q≠ 2s, 2s − 1}. /ere-
fore, we have |R(ui, vj)∩ (∪ n

t�1Ret)| �

2n − 2> |R(et)|.
(k) /e resolving neighborhood for 1≤ i≤ n,

j ∈ 10 + 2i + k: 1≤ k≤ 2n − 22{ }.
When k � 1(mod)4, 2(mod)4,

R ui, vj  �

up: 1≤p≤ n, wherep≠
n + 7
2

� m,

vq: 1≤ q≤ 2n, where q≠ 2m, 2m − 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(37)

When k � 0(mod)4, 3(mod)4,

R ui, vj  �

up: 1≤p≤ n, wherep≠
i + 4
2

� s,

vq: 1≤ q≤ 2n, where q≠ 2s, 2s − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(38)
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with |R(vi, vj)| � 3n − 3> 8 � |R(et)| and R(ui, vj)∩
(∪ n

t�1Ret) � vq: 1≤ q≤ 2n, q≠ 2m, 2m − 1 , when
k � 1(mod)4, 2(mod) 4 andR(ui, vj)∩ (∪ n

t�1Ret) �

vq: 1≤ q≤ 2n, q≠ 2s, 2s − 1 , when k � 1(mod)4, 2
(mod)4. /erefore, we have |R(ui, vj)∩ (∪ n

t�1Ret)| �

2n − 2> |R(et)|.

Corollary 2. For 1≤ i≤ n, |R(ui, vj)| � |R(ui, vm)|, where
j ∈ 2i + s: − 1≤ s≤ 10{ } and m ∈ 2i + s: − 2≤ s≤ − 9{ }.

Table 1: FMD of metal organic graphs.

Resolving sets (n � 3) Elements
R(e1) � R(u1, u2) V(MOG(3) − u3, v5, v6 

R(e2) � R(u1, u3) V(MOG(3) − u2, v3, v4 

R(e3) � R(u1, v1) V(MOG(3) − v2, v3, v5 

R(e4) � R(u1, v2) V(MOG(3) − v1, v4, v6 

R(e5) � R(u1, v3) V(MOG(3) − u2, v2, v5 

R(e6) � R(u1, v6) V(MOG(3)) − u3, v1, v4 

R(e7) � R(u2, u3) V(MOG(3) − u1, v1, v2 

R(e8) � R(u2, v2) V(MOG(3) − u1, v3, v6 

R(e9) � R(u2, v3) V(MOG(3) − v1, v4, v5 

R(e10) � R(u2, v4) V(MOG(3) − v2, v3, v6 

R(e11) � R(u2, v5) V(MOG(3) − u3, v1, v4 

R(e12) � R(u3, v1) V(MOG(3) − u1, v3, v6 

R(e13) � R(u3, v4) V(MOG(3) − u2, v2, v5 

R(e14) � R(u3, v5) V(MOG(3) − v1, v3, v6 

R(e15) � R(u3, v6) V(MOG(3) − v2, v4, v5 

R(e16) � R(v1, v2) V(MOG(3) − u1, u2, u3 

R(e17) � R(v1, v3) V(MOG(3) − u3, v2, v5 

R(e18) � R(v1, v5) V(MOG(3) − u2, v3, v6 

R(e19) � R(v2, v4) V(MOG(3) − u3, v3, v6 

R(e20) � R(v2, v6) V(MOG(3) − u2, v1, v4 

R(e21) � R(v3, v4) V(MOG(3) − u1, u2, u3 

R(e22) � R(v3, v5) V(MOG(3) − u1, v1, v4 

R(e23) � R(v4, v6) V(MOG(3) − u1, v4, v5 

R(e24) � R(v5, v6) V(MOG(3) − u1, u2, u3 

Table 2: FMD of metal organic graphs.

Resolving sets (n � 3) Elements
R1 � R(u1, v4) V(MOG(3) − u2, v6 

R2 � R(u1, v5) V(MOG(3) − u3, v3 

R3 � R(u2, v1) V(MOG(3) − u1, v5 

R4 � R(u2, v6) V(MOG(3) − u3, v2 

R5 � R(u3, v2) V(MOG(3) − u1, v4 

R6 � R(u3, v3) V(MOG(3) − u2, v1 

R7 � R(v1, v4) V(MOG(3) − u3 

R8 � R(v1, v6) V(MOG(3) − u5 

R9 � R(v2, v3) VMOG(3) − u3 

R11 � R(v3, v6) V(MOG(3) − u1 

R12 � R(v4, v5) V(MOG(3) − u1 

Table 3: FMD of metal organic graphs.

Resolving sets (n � 5) Elements
R(e1) � R(v1, v2) V(MOG(5) − u1, u2, u3, u4, u5, v6, v7 

R(e1) � R(v3, v4) V(MOG(5) − u1, u2, u3, u4, u5, v8, v9 

R(e1) � R(v5, v6) V(MOG(5) − u1, u2, u3, u4, u5, v1, v10 

R(e1) � R(v7, v8) V(MOG(5) − u1, u2, u3, u4, u5, v2, v3 

R(e1) � R(v9, v10) V(MOG(5) − u1, u2, u3, u4, u5, v4, v5 

Table 4: FMD of metal organic graphs.

Resolving sets (n � 5) Elements
R1 � R(u1, u2) V(MOG(5) − u4, v7, v8 

R2 � R(u1, u3) V(MOG(5) − u2, v3, v4 

R3 � R(u1, u4) V(MOG(5) − u5, v9, v10 

R4 � R(u1, u5) V(MOG(5) − u3, v5, v06 

R5 � R(u1, v1) V(MOG(5) − v2, v3, v8, v09 

R6 � R(u1, v2) V(MOG(5) − v1, v4, v5, v10 

R7 � R(u1, v3) V(MOG(5) − u2, u3, v2, v6 

R8 � R(u1, v4) V(MOG(5) − u2, u3, v7 

R9 � R(u1, v5) V(MOG(5) − u4, v3, v8 

R10 � R(u1, v6) V(MOG(5) − u4, v4 

R11 � R(u1, v7) V(MOG(5) − u3, v9 

R12 � R(u1, v8) V(MOG(5) − u3, v5, v10 

R13 � R(u1, v9) V(MOG(5) − u4, u5, v6 

R14 � R(u1, v10) V(MOG(5) − u4, u5, v1, v7 

R15 � R(u2, u3) V(MOG(5) − u5, v9, v10 

R16 � R(u2, u4) V(MOG(5) − u3, v5, v6 

R17 � R(u2, u5) V(MOG(5) − u1, v1, v2 

R18 � R(u2, v1) V(MOG(5) − u1, u5, v8 

R19 � R(u2, v2) V(MOG(5) − u1, u5, v9 

R20 � R(u2, v3) V(MOG(5) − v1, v4, v5, v10 

R21 � R(u2, v4) V(MOG(5) − v2, v3, v6, v7 

R22 � R(u2, v5) V(MOG(5) − u3, u4, v4, v8 

R23 � R(u2, v6) V(MOG(5) − u3, u4, v9 

R24 � R(u2, v7) V(MOG(5) − u5, v5, v10 

R25 � R(u2, v8) V(MOG(5) − u5, v6 

R26 � R(u2, v9) V(MOG(5) − u4, v1 

R27 � R(u2, v10) V(MOG(5) − u4, v2, v7 

R28 � R(u3, u4) V(MOG(5) − u1, v1, v2 

R29 � R(u3, u5) V(MOG(5) − u4, v7, v8 

R30 � R(u3, v1) V(MOG(5) − u5, v3 

R31 � R(u3, v2) V(MOG(5) − u5, v4, v9 

R32 � R(u3, v3) V(MOG(5) − u1, u2, v10 

R33 � R(u3, v4) V(MOG(5) − u1, u2, v1, v5 

R34 � R(u3, v5) V(MOG(5) − v2, v3, v6, v7 

R35 � R(u3, v6) V(MOG(5) − v4, v5, v8, v9 

R36 � R(u3, v7) V(MOG(5) − u4, u5, v6, v10 

R37 � R(u3, v8) V(MOG(5) − u4, u5, v1 

R38 � R(u3, v9) V(MOG(5) − u1, v2, v7 

R39 � R(u3, v10) V(MOG(5) − u1, v8 

R40 � R(u4, u5) V(MOG(5) − u2, v3, v4 

R41 � R(u4, v1) V(MOG(5) − u2, v4, v9 

R42 � R(u4, v2) V(MOG(5) − u2, v10 

R43 � R(u4, v3) V(MOG(5) − u1, v5 

R44 � R(u4, v4) V(MOG(5) − u1, v1, v6 

R45 � R(u4, v5) V(MOG(5) − u2, u3, v2 

R46 � R(u4, v6) V(MOG(5) − u2, u3, v2, v7 

R47 � R(u4, v7) V(MOG(5) − v4, v5, v8, v9 

R48 � R(u4, v8) V(MOG(5) − v1, v6, v7, v10 

R49 � R(u4, v9) V(MOG(5) − u1, u5, v2, v8 

R50 � R(u4, v10) V(MOG(5) − u1, u5, v3 

R51 � R(u5, v1) V(MOG(5) − u1, u2, v4, v10 

R52 � R(u5, v2) V(MOG(5) − u1, u2, v5 

R53 � R(u5, v3) V(MOG(5) − u3, v1, v6 

R54 � R(u5, v4) V(MOG(5) − u3, v2 

R55 � R(u5, v5) V(MOG(5) − u2, v7 

R56 � R(u5, v6) V(MOG(5) − u2, v3, v8 

R57 � R(u5, v7) V(MOG(5) − u3, u4, v4 

R58 � R(u5, v8) V(MOG(5) − u3, u4, v5, v9 

R59 � R(u5, v9) V(MOG(5) − v1, v6, v7, v9 

R60 � R(u5, v10) V(MOG(5) − v2, v3, v8, v9 
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Theorem 2. /e FMD of metal organic graph MOG(n) for
3≤ n≤ 7, n � 1(mod2) is

dimfMOG(n) �

3
2

if n � 3,

5
4

if n � 5,

7
4

if n � 7.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

Proof. Case 1: when n � 3, then the RNs are as follows.
Since, for 1≤ t≤ 24, the cardinality of each RN R(et) is
6, as given in Table 1, which is less than the cardinalities
of all other RNs Rm of MOG(3), as given in Table 2,
where 1≤m≤ 12. Moreover, ∪ 24t�1R(et) � V(MOG(3);

this implies that ∪ 24t�1R(et) � 9 and |Rm ∩ ∪ 24t�1R(et)|>
R(et)| � 6.
Consequently, dimf(MOG(3) � 

9
t�1 1/6≤ 3/2.

Case 2: when n � 5, as shown in Figure 1, the RNs are as
follows.
Since, for 1≤ t≤ 5, the cardinality of each RN R(et) is 8,
as given in Table 3, which is less than the cardinalities of
all other RNs Rm of (MOG(5), as given in Table 4,
where 1≤m≤ 100. Moreover, ∪ 5t�1R(et) �

V((MOG(5); this implies that |∪ 5t�1R(et)| � 10 and
Rm ∩ |∪ 5t�1R(et)|>R(et)| � 8.
Consequently, dimf((MOG(5))≤

10
t�11/8 � 5/4.

Case 3: when n � 7, as shown in Figure 1, then the RNs
are as follows.

Since, for 1≤ t≤ 7, the cardinality of each RN R(et) is 8,
as given in Table 5, which is less than the cardinalities of all
other RNs Rm of (MOG(5)), as given in Table 6, where
1≤m≤ 203. Moreover, ∪ 7t�1R(et) � V(MOG(7); this im-
plies that |∪ 7t�1R(et)| � 14 and |Rm ∩ ∪ 7t�1R(et)|>
R(et)| � 8.

Consequently, dimf(MOG(5)≤
14
t�11/8≤ 7/4. □

Theorem 3. Let MOG(n) for n≥ 9 and n � 1(mod)2 be the
metal organic graph. /en, dimlfMOG(n)≤ n/4.

Proof. In view of Lemmas 3–8 for 1≤ k≤ n, j � i + 1,
i ∈ [2k − 1], 1≤ t≤ n, |R(et)| � |R(vivj)| � 8 and
|X| � |∪ n

t�1R(et)| � 2n. Also, we have |R(xy)|≤ |R(et)| for
all xy ∈ E(MOG(n)). Moreover, the local resolving
neighbourhood of minimum cardinality is not disjoint.
)erefore, the fractional metric of MOG(n) is given as
follows:

dimfMOG(n)≤ 

|X|

t�1

1
R et( 



. (40)

For |X| � 2n and |R(et)| � 8, we have

dimfMOG(n)≤ 
2n

t�1

1
8
. (41)

Hence, dimfMOG(n)≤ n/4. □

Table 4: Continued.

Resolving sets (n � 5) Elements
R61 � R(v01, v03) V(MOG(5) − u4, v2, v7 

R62 � R(v01, v04) V(MOG(5) − u4 

R63 � R(v01, v05) V(MOG(5) − u2, v3, v8 

R64 � R(v01, v06) V(MOG(5) − u2 

R65 � R(v01, v07) V(MOG(5) − u5, v4, v9 

R66 � R(v01, v08) V(MOG(5) − u5 

R67 � R(v01, v09) V(MOG(5) − u3, v5 

R68 � R(v01, v10) V(MOG(5) − u3, v5, v6 

R69 � R(v02, v03) V(MOG(5) − u4, v7, v8 

R70 � R(v02, v04) V(MOG(5) − u4, v3, v8 

R71 � R(v02, v05) V(MOG(5) − u2 

R72 � R(v02, v06) V(MOG(5) − u2, v4, v9 

R73 � R(v02, v07) V(MOG(5) − u5 

R74 � R(v02, v08) V(MOG(5) − u5, v5, v10 

R75 � R(v02, v09) V(MOG(5) − u6 

R76 � R(v02, v10) V(MOG(5) − u3, v1, v6 

R77 � R(v03, v05) V(MOG(5) − u5, v4, v9 

R78 � R(v03, v06) V(MOG(5) − u5 

R79 � R(v03, v07) V(MOG(5) − u3, v5, v10 

R80 � R(v03, v08) V(MOG(5) − u3 

R81 � R(v03, v09) V(MOG(5) − u1, v1, v6 

R82 � R(v03, v10) V(MOG(5) − u1 

R83 � R(v04, v05) V(MOG(5) − u5, v9, v10 

R84 � R(v04, v06) V(MOG(5) − u5, v5, v10 

R85 � R(v04, v07) V(MOG(5) − u3 

R86 � R(v04, v08) V(MOG(5) − u3, v1, v6 

R87 � R(v04, v09) V(MOG(5) − u1 

R88 � R(v04, v10) V(MOG(5) − u1, v2, v7 

R89 � R(v05, v07) V(MOG(5) − u1, v1, v6 

R90 � R(v05, v08) V(MOG(5) − u1 

R91 � R(v05, v09) V(MOG(5) − u4, v42, v7 

R92 � R(v05, v10) V(MOG(5) − u4 

R93 � R(v06, v07) V(MOG(5) − u1, v1, v2 

R94 � R(v06, v08) V(MOG(5) − u1, v2, v7 

R95 � R(v06, v09) V(MOG(5) − u4 

R96 � R(v06, v10) V(MOG(5) − u4, v3, v8 

R97 � R(v07, v09) V(MOG(5) − u2, v3, v8 

R98 � R(v07, v10) V(MOG(5) − u2 

R99 � R(v08, v09) V(MOG(5) − u2, v3, v4 

R100 � R(v08, v10) V(MOG(5) − u2, v4, v9 

Table 5: FMD of metal organic graphs.

Resolving sets (n � 5) Elements
R(e1) � R(v1, v2) v1, v2, v3, v4, v5, v12, v13, v14 

R(e2) � R(v3, v4) v1, v2, v3, v4, v5, v6, v7, v14 

R(e3) � R(v5, v6) v2, v3, v4, v5, v6, v7, v8, v9 

R(e4)R(v7, v8) v4, v5, v6, v7, v8, v9, v10, v11 

R(e5) � R(v9, v10) v6, v7, v8, v9, v10, v11, v12, v13 

R(e6) � R(v11, v12) v1, v8, v9, v10, v11, v12, v13, v14 

R(e7) � R(v13, v14) v1, v2, v3, v10, v11, v12, v13, v14 
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Table 6: FMD of MOG(7).

Resolving sets (n � 7) Elements
R1 � R(u1, u2) V(MOG(7) − u5, v9, v10 

R2 � R(u1, u3) V(MOG(7) − u2, v3, v4 

R3 � R(u1, u4) V(MOG(7) − u6, v11, v12 

R4 � R(u1, u5) V(MOG(7) − u3, v5, v06 

R5 � R(u1, u6) V(MOG(7) − u7, v13, v14 

R6 � R(u1, u7) V(MOG(7) − u4, v7, v08 

R7 � R(u1, v1) V(MOG(7) − v2, v3, v12, v13 

R8 � R(u1, v2) V(MOG(7) − v1, v4, v5, v14 

R9 � R(u1, v3) V(MOG(7) − u2, u3, u4, v2, v6, v7, v8 

R10 � R(u1, v4) V(MOG(7) − u2, u3, u4, v8 

R11 � R(u1, v5) V(MOG(7) − u5, v3, v9, v10 

R12 � R(u1, v6) V(MOG(7) − u5, v4, v10 

R13 � R(u1, v7) V(MOG(7) − u3 

R14 � R(u1, v8) V(MOG(7) − u3, v5, v11 

R15 � R(u1, v9) V(MOG(7) − u6, v6, v12 

R16 � R(u1, v10) V(MOG(7) − u6 

R17 � R(u1, v11) V(MOG(7) − u4, v7 

R18 � R(u1, v12) V(MOG(7) − u4, v7, v8, v14 

R19 � R(u1, v13) V(MOG(7) − u5, u6, u7, v9 

R20 � R(u1, v14) V(MOG(7) − u5, u6, u7, v1, v9 

R21 � R(u2, u3) V(MOG(7) − u6, v11, v12 

R22 � R(u2, u4) V(MOG(7) − u3, v5, v6 

R23 � R(u2, u5) V(MOG(7) − u7, v13, v14 

R24 � R(u2, u6) V(MOG(7) − u4, v7, v8 

R25 � R(u2, u7) V(MOG(7) − u1, v1, v2, 

R26 � R(u2, v1) V(MOG(7) − u1, u6, u7, v11, 

R27 � R(u2, v2) V(MOG(7) − u1, u6, u7, v3, u11, v12, v13 

R28 � R(u2, v3) V(MOG(7) − v1, v4, v5, v14 

R29 � R(u2, v4) V(MOG(7) − v2, v3, v6, v7 

R30 � R(u2, v5) V(MOG(7) − u3, u4, u5, v4, v8, v9, v10 

R31 � R(u2, v6) V(MOG(7) − u3, u4, u5, v10 

R32 � R(u2, v7) V(MOG(7) − u6, v5, v11, v12 

R33 � R(u2, v8) V(MOG(7) − u6, v6, v12 

R34 � R(u2, v9) V(MOG(7) − u4 

R35 � R(u2, v10) V(MOG(7) − u4, v7, v13 

R36 � R(u2, v11) V(MOG(7) − v8, v14 

R37 � R(u2, v12) V(MOG(7) − u7 

R38 � R(u2, v13) V(MOG(7) − u5, v1, v9 

R39 � R(u2, v14) V(MOG(7) − u5, v2, v9, v10 

R40 � R(u3, u4) V(MOG(7) − u7, v13, v14, 

R41 � R(u3, u5) V(MOG(7) − u4, v7, v8 

R42 � R(u3, u6) V(MOG(7) − u1, v1, v2 

R43 � R(u3, u7) V(MOG(7) − u5, v9, v10 

R44 � R(u3, v1) V(MOG(7) − u6, v3, v11 

R45 � R(u3, v2) V(MOG(7) − u6, v4, v11, v12 

R46 � R(u3, v3) V(MOG(7) − u1, u2, u7, v13, v14 

R47 � R(u3, v4) V(MOG(7) − u1, u2, u7, v1, v5, v13, v14 

R48 � R(u3, v5) V(MOG(7) − v2, v3, v6, v7 

R49 � R(u3, v6) V(MOG(7) − v4, v5, v8, v9 

R50 � R(u3, v7) V(MOG(7) − u4, u5, u6, v6, v10, v11, v12 

R51 � R(u3, v8) V(MOG(7) − u4, u5, u6, v12 

R52 � R(u3, v9) V(MOG(7) − u7, v7, v13 

R53 � R(u3, v10) V(MOG(7) − u7, v8, v14 

R54 � R(u3, v11) V(MOG(7) − u5 

R55 � R(u3, v12) V(MOG(7) − u5, v1 

R56 � R(u3, v13) V(MOG(7) − u1, u2, v10 

R57 � R(u3, v14) V(MOG(7) − u1, v10 

R58 � R(u4, u5) V(MOG(7) − u1, v1, v2 

R59 � R(u4, u6) V(MOG(7) − u5, v9, v10 

R60 � R(u4, u7) V(MOG(7) − u2, v3, v4 

Table 6: Continued.

Resolving sets (n � 7) Elements
R61 � R(u4, v1) V(MOG(7) − u2, u7, v4, v12 

R62 � R(u4, v2) V(MOG(7) − u2, u7 

R63 � R(u4, v3) V(MOG(7) − u7, v5, v13 

R64 � R(u4, v4) V(MOG(7) − u7, u6, v13, v14 

R65 � R(u4, v5) V(MOG(7) − u2, u3, v1 

R66 � R(u4, v6) V(MOG(7) − u2, u3, u7, v1, v2, v3, v7 

R67 � R(u4, v7) V(MOG(7) − v4, v5, v8, v9 

R68 � R(u4, v8) V(MOG(7) − v6, v7, v10, v11 

R69 � R(u4, v9) V(MOG(7) − u5, u6, v7, v8, v12, v13 

R70 � R(u4, v10) V(MOG(7) − u5, u6, u7, v14 

R71 � R(u4, v11) V(MOG(7) − u1, v1, v2, v9 

R72 � R(u4, v12) V(MOG(7) − u1, v1, v2, v10 

R73 � R(u4, v13) V(MOG(7) − u6, v11 

R74 � R(u4, v14) V(MOG(7) − u6, v3, v11 

R75 � R(u5, u6) V(MOG(7) − u2, v3, v4 

R76 � R(u5, u7) V(MOG(7) − u6, v11, v12 

R77 � R(u5, v1) V(MOG(7) − u7 

R78 � R(u5, v2) V(MOG(7) − u7, u5, v13 

R79 � R(u5, v3) V(MOG(7) − u3, v6, v14 

R80 � R(u5, v4) V(MOG(7) − u3 

R81 � R(u5, v5) V(MOG(7) − u1, v1, v7 

R82 � R(u5, v6) V(MOG(7) − u1, v1, v2, v8 

R83 � R(u5, v7) V(MOG(7) − u2, u3, u4, v3 

R84 � R(u5, v8) V(MOG(7) − u2, u3, u4, v3, v4, v5, v9 

R85 � R(u5, v9) V(MOG(7) − v6, v7, v10, v11 

R86 � R(u5, v10) V(MOG(7) − v8, v9, v12, v13 

R87 � R(u5, v11) V(MOG(7) − u1, u6, u7, v1v2, v10, v14 

R88 � R(u5, v12) V(MOG(7) − u1, u6, u7, v2 

R89 � R(u5, v13) V(MOG(7) − u2, v3, v4, v11 

R90 � R(u5, v14) V(MOG(7) − u2, v4, v12 

R91 � R(u6, u7) V(MOG(7) − u3, v5, v6 

R92 � R(u6, v1) V(MOG(7) − u3, v5, v6, v13 

R93 � R(u6, v2) V(MOG(7) − u1, v6 

R94 � R(u6, v3) V(MOG(7) − u1 

R95 � R(u6, v4) V(MOG(7) − u1, v1 

R96 � R(u6, v5) V(MOG(7) − u1, u4, v2, v8 

R97 � R(u6, v6) V(MOG(7) − u1, u4 

R98 � R(u6, v7) V(MOG(7) − u2, v3, v9 

R99 � R(u6, v8) V(MOG(7) − u2, v3, v4, v10 

R100 � R(u6, v9) V(MOG(7) − u3, u4, u5, v5 

R101 � R(u6, v10) V(MOG(7) − u3, u4, u5, v5, v6, v7 

R102 � R(u6, v11) V(MOG(7) − v8, v9, v12, v13 

R103 � R(u6, v12) V(MOG(7) − v1, v10, v11, v14 

R104 � R(u6, v13) V(MOG(7) − u1, u2, u7, v2, v3, v4 

R105 � R(u6, v14) V(MOG(7) − u1, u2, u7, v4 

R106 � R(u7, v1) V(MOG(7) − u1, u2, u3, v4, v5, v6, v14 

R107 � R(u7, v2) V(MOG(7) − u1, u2, u3, v6 

R108 � R(u7, v3) V(MOG(7) − u4, v1, v7, v8 

R109 � R(u7, v4) V(MOG(7) − u4, v2, v8 

R110 � R(u7, v5) V(MOG(7) − u2 

R111 � R(u7, v6) V(MOG(7) − u2, v3, v9 

R112 � R(u7, v7) V(MOG(7) − u5, v4, v10 

R113 � R(u7, v8) V(MOG(7) − u5, v4 

R114 � R(u7, v9) V(MOG(7) − u3, v5, v11 

R115 � R(u7, v10) V(MOG(7) − u3, v5, v6, v12 

R116 � R(u7, v11) V(MOG(7) − u4, u5, u6, v7 

R117 � R(u7, v12) V(MOG(7) − u4, u5, u6, v7, v8, v9, v13 

R118 � R(u7, v13) V(MOG(7) − v1, v10, v11, v14 

R119 � R(u7, v14) V(MOG(7) − v2, v3, v12, v13 

R120 � R(v1, v3) V(MOG(7) − u5, v2, v9, v10 
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5. Conclusion

In this section, we conclude the obtained results as follows:

(i) )e FMD of MOG(n) for n ≡ 1(mod2) is obtained
as given in Table 7.

(ii) We note that as we increase n in MOG(n) for
n ≡ 1(mod2), the FMD also increases.

(iii) )is is one of the important graphs that has same
FMD and LFMD having unique resolving and local
resolving neighbourhood sets.

(iv) )e problem is still open to characterize the graphs
with same FMD and LFMD.
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Table 6: Continued.

Resolving sets (n � 7) Elements
R121 � R(v1, v4) V(MOG(7) − u5, v9, v10 

R122 � R(v1, v5) V(MOG(7) − u2, v3 

R123 � R(v1, v6) V(MOG(7) − u2 

R124 � R(v1, v7) V(MOG(7) − u6, v4, v11 

R125 � R(v1, v8) V(MOG(7) − u6 

R126 � R(v1, v9) V(MOG(7) − u3, v5, v12 

R127 � R(v1, v10) V(MOG(7) − u3, v5, v6 

R128 � R(v1, v11) V(MOG(7) − u7, v13 

R129 � R(v1, v12) V(MOG(7) − u7 

R130 � R(v1, v13) V(MOG(7) − u4, v7, v8, v14 

R131 � R(v1, v14) V(MOG(7) − u4, v7, v8 

R132 � R(v2, v3) V(MOG(7) − u5, v9, v10 

R133 � R(v2, v4) V(MOG(7) − u5, v3, v9, v10 

R134 � R(v2, v5) V(MOG(7) − u2 

R135 � R(v2, v6) V(MOG(7) − u2, v4 

R136 � R(v2, v7) V(MOG(7) − u6, u11, v12 

R137 � R(v2, v8) V(MOG(7) − u6, v5, v12 

R138 � R(v2, v9) V(MOG(7) − u3 

R139 � R(v2, v10) V(MOG(7) − u3, v6, v13 

R140 � R(v2, v11) V(MOG(7) − u7 

R141 � R(v2, v12) V(MOG(7) − u7, v14 

R142 � R(v2, v13) V(MOG(7) − u4, v7, v8 

R143 � R(v2, v14) V(MOG(7) − u4, v1, v7, v8 

R144 � R(v3, v5) V(MOG(7) − u6, v4, v11, v12 

R145 � R(v3, v6) V(MOG(7) − u6, v11, v12 

R146 � R(v3, v7) V(MOG(7) − u3, v5 

R147 � R(v3, v8) V(MOG(7) − u3 

R148 � R(v3, v9) V(MOG(7) − u7, v6, v13 

R149 � R(v3, v10) V(MOG(7) − u7 

R150 � R(v3, v11) V(MOG(7) − u4, v7, v14 

R151 � R(v3, v12) V(MOG(7) − u4, v7, v8 

R152 � R(v3, v13) V(MOG(7) − u1, v1 

R153 � R(v3, v14) V(MOG(7) − u1 

R154 � R(v4, v5) V(MOG(7) − u6, v11, v12 

R155 � R(v4, v6) V(MOG(7) − u6, v5, v11, v12 

R156 � R(v4, v7) V(MOG(7) − u3 

R157 � R(v4, v8) V(MOG(7) − u3, v6 

R158 � R(v4, v9) V(MOG(7) − u7, v13, v14 

R159 � R(v4, v10) V(MOG(7) − u7, v7, v14 

R160 � R(v4, v11) V(MOG(7) − u4 

R161 � R(v4, v12) V(MOG(7) − u4, v1, v8 

R162 � R(v4, v13) V(MOG(7) − u1 

R163 � R(v4, v14) V(MOG(7) − u1, v2 

R164 � R(v5, v7) V(MOG(7) − u7, v6 

R165 � R(v5, v8) V(MOG(7) − u7, u12, v14 

R166 � R(v5, v9) V(MOG(7) − u4, v7 

R167 � R(v5, v10) V(MOG(7) − u4 

R168 � R(v5, v11) V(MOG(7) − u1, v1, v8 

R169 � R(v5, v12) V(MOG(7) − u1 

R170 � R(v5, v13) V(MOG(7) − u5, v2, v9 

R171 � R(v5, v14) V(MOG(7) − u5, v9, v10 

R172 � R(v6, v7) V(MOG(7) − u7, v13, v14 

R173 � R(v6, v8) V(MOG(7) − u7, v7, v13, v14 

R174 � R(v6, v9) V(MOG(7) − u4 

R175 � R(v6, v10) V(MOG(7) − u4, v8, 

R176 � R(v6, v11) V(MOG(7) − u1, v1, v2 

R177 � R(v6, v12) V(MOG(7) − u1, v2, v9 

R178 � R(v6, v13) V(MOG(7) − u5 

R179 � R(v6, v14) V(MOG(7) − u5, v3, v10 

R180 � R(v7, v9) V(MOG(7) − u1, v1, v2, v8 

Table 6: Continued.

Resolving sets (n � 7) Elements
R181 � R(v7, v10) V(MOG(7) − u1, v1, v2 

R182 � R(v7, v11) V(MOG(7) − u5, v9 

R183 � R(v7, v12) V(MOG(7) − u5 

R184 � R(v7, v13) V(MOG(7) − u3, v3, v10 

R185 � R(v7, v14) V(MOG(7) − u2 

R186 � R(v8, v9) V(MOG(7) − u1, v1, v2 

R187 � R(v8, v10) V(MOG(7) − u1, v1, v2, v9 

R188 � R(v8, v11) V(MOG(7) − u5 

R189 � R(v8, v12) V(MOG(7) − u5, v10 

R190 � R(v8, v13) V(MOG(7) − u2, v3, v4 

R191 � R(v8, v14) V(MOG(7) − u2, v4, v11 

R192 � R(v9, v11) V(MOG(7) − u2, v3, v4, v10 

R193 � R(v9, v12) V(MOG(7) − u2, v3, v4 

R194 � R(v9, v13) V(MOG(7) − u6, v11 

R195 � R(v9, v14) V(MOG(7) − u6 

R196 � R(v10, v11) V(MOG(7) − u2, v3, v4 

R197 � R(v10, v12) V(MOG(7) − u2, v3, v4, v11 

R198 � R(v10, v13) V(MOG(7) − u6 

R199 � R(v10, v14) V(MOG(7) − u6, v12 

R200 � R(v11, v13) V(MOG(7) − u3, v5, v6, v12 

R201 � R(v11, v14) V(MOG(7) − u3, v5, v6 

R202 � R(v12, v13) V(MOG(7) − u3, v5, v6 

R203 � R(v12, v14) V(MOG(7) − u3, v5, v6, v13 

Table 7: FMD of metal organic graphs.

MOG(n) and n ≡ 1(mod2) Upper bounds of FMD
MOG(3) 3/2
MOG(5) 5/4
MOG(7) 7/4
MOG(n) if n≥ 9 n/4
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*e inverse degree index is a topological index first appeared as a conjuncture made by computer program Graffiti in 1988. In this
work, we use transformations over graphs and characterize the inverse degree index for these transformed families of graphs. We
established bonds for different families of n-vertex connected graph with pendent paths of fixed length attached with fully
connected vertices under the effect of transformations applied on these paths. Moreover, we computed exact values of the inverse
degree index for regular graph specifically unicyclic graph.

1. Introduction and Preliminary Results

Graph theory has many applications in chemistry, physics,
computer sciences, and other applied sciences. Topological
indices are graph invariants used to study the topology of
graphs. Along with the computer networks, graph theory
considers as a powerful tool in other areas of research, such
as in coding theory, database management system, circuit
design, secret sharing schemes, and theoretical chemistry
[1]. Cheminformatics is the combination of technology,
graph theory, and chemistry. It develops a relationship
between structure of organic substances and their physi-
ochemical properties through some useful graph invariants
with the help of their associated molecular graph. *e
molecular graph is the combination of vertices and edges
which are representatives of atoms and bonds between
atoms of corresponding substance, respectively. *eoretical
study of underlying chemical structure by some useful graph
invariants is an attractive area of research in mathematical

chemistry due to its effective applications in the QSAR/
QSPR investigation [2, 3]. Topological indices among these
invariants have special place and used to estimate the
physiochemical properties of chemical compound. A to-
pological index can be considered as a function which maps
a graph to a real number.

*roughout this work, we used standard notations, G �

G(V, E) for graph, V(G) set of vertices, E(G) the set of
edges, dvi

degree of vertex vi (the number of edges incident to
vi), Δ and δ be the maximum and minimum degrees of fully
connected vertices, vertices with degree one are pendent
vertices, and path attached with fully connected vertices
taken as a pendent paths.

In the last five decades, after the Wiener index, many
topological indices had been introduced. Probably, the
Randić connectivity index [4]

R(G) � 
uv∈E(G)

1
����
dudv

 , (1)
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is one of the best predictive invariants among these topo-
logical indices.*e accuracy in predictability of indices is the
main interest of researchers which leads them to purpose a
new topological index.

*e zeroth-order general Randić index 0Rα(G) �

u∈V(G)d
α
u was conceived by Li and Zheng in their work [5].

0R1/2(G) � u∈V(G)1/
��
du


equivalent to 0Rα(G) for

α � − 1/2. Hu et al. in [6] and others [7–10] characterize 0Rα
for different values of α. For α � − 1, 0R− 1 � ID is modified
total adjacency index or inverse degree, first appears in the
conjecture over computer program Graffiti [11]. *e

ID(G) � 
v∈V(G)

1
dv

� 
uv∈E(G)

d
2
u + d

2
v

d
2
ud

2
v

, (2)

for graphs without isolated vertices are well discussed in
[12, 13]. Extremal characterization and bonds of ID(G) also
discussed at some extent in [14–18]. For more detail, one can
review survey [19].

In this work, we investigated the effect of transforma-
tions over families of graphs for ID and established in-
equalities for these transformed graphs. Graph
transformations are very important in chemistry, computer
designing, and animations. Moreover, we determined the
exact value of ID for somemajor families of graphs under the
effect of transformations over pendent paths.

2. Results and Discussion

In this section, we present some transformations over
pendent paths. *ese have solid effect over increase and
decrease of ID(G). *rough out this work, we considered

n0-vertex connected graph G0. Gl
k be the graph G0 with k

pendent paths of length l≥ 1 having order n � n0 + kl with
degree sequence d1 � δ ≤d2 ≤ d3 ≤ · · · ≤Δ + 1.

2.1. Graph Transformations. Let E′(G) ⊂ E(G), the
G1 � G − E′(G) be subgraph obtained by removing edges of
E(G′), and G1′ � G − V′(G) be the subgraph obtained by
deleting vertices set V′(G) ⊂ V(G) along with their incident
edges. We give following transformations using these
techniques which have solid effect on ID(G).

2.1.1. Transformation A. Let wj ∈ V(G0), dwj
≥ 3,

j � 1, 2, 3, . . . , k≤ n and wju
1
j , u1

ju2
j , u2

ju3
j , . . . , ul− 1

j ul
j  be

the pendent paths attached with fully connected vertex wj of
G0 forms Gl

k. *en,

A G
l
k  � G1 � G0 − 

k

j�1
u
2
ju

3
j , u

3
ju

4
j , . . . , u

l− 1
j u

l
j 

+ 
k

j�1
wju

2
j , u

2
ju

3
j , . . . , u

l− 1
j u

l
j .

(3)

Figure 1 depicts successive application of transformation
A as Ai, i � 1, 2, 3, . . . , l − 1.

2.1.2. Transformation B. Let wj ∈ V(G0), dwj
≥ 3,

j � 1, 2, 3, . . . , k≤ n and wju
1
j , wju

1
j , wju

3
j , . . . , wju

l− i
j  be

the leafs attached with fully connected vertex wj of G. *en,
for fixed vertex w1,

Gj
′ � G − u

1
j , u

2
j , u

3
j , . . . , u

l− q
j ∪ u

l− (q− 1)
j u

l− (q− 2)
j , u

l− (q− 2)
j u

l− (q− 3)
j , . . . , u

l− 1
j u

l
j 

+ w1u
1
j , w1u

1
j , w1u

3
j , . . . , w1u

l− q
j ∪ w1u

l− (q− 1)
j , u

l− (q− 1)
j u

l− (q− 2)
j , u

l− (q− 2)
j u

l− (q− 3)
j , . . . , u

l− 1
j u

l
j .

(4)

Theorem 1. Let G0 be the graph of order n1 with maximum
degrees Δ and minimum δ. 8en,

ID G
l
k ≤ ID A G

l
k  ,

ID G
l
k ≤ ID B G

l
k  .

(5)

Proof. Let Gl
k be the graph of order n � n1 + kl, minimum

degree δ, and maximum degree Δ + 1. Gl
k is the composition

of G0 and k pendent paths of length l. In Gl
k, there are at least

k vertices of degree 1 and k(l − 1) having 2 and n1 vertices
with degree dvs

+ 1, δ ≤dvs
+ 1≤Δ + 1:

ID G
l
k  � 

n− k(l+1)

s�1

1
dvs

+ 
k

s�1

1
dvs

+ 1
+ k +

k(l − 1)

2
. (6)

*e transformation A transforms k vertices from degree
2 to 1 and another k vertices from ds + 1 to ds + 2 which have
an effect in ID as

ID A G
l
k   � 

n− k(l+1)

s�1

1
dvs

+ 
k

s�1

1
dvs

+ 2
+ 2k +

k(l − 2)

2
. (7)

So, from equations (6) and (7), we have

ID G
l
k  − ID A G

l
k   � 

k

s�1

1
dvs

+ 1
−

1
dvs

+ 2
  − k +

k

2

� 

k

s�1

1
dvs

+ 1  dvs
+ 2 

−
k

2
.

(8)

Replace dvs
with minimum degree δ. It maximizes the

term 
k
s�1 1/((dvs

+ 1)(dvs
+ 2)), which implies

� 
k

s�1

1
(δ + 1)(δ + 2)

−
k

2
�

k

(δ + 1)(δ + 2)
−

k

2

�
k(2 − (δ + 1)(δ + 2))

(δ + 1)(δ + 2)
�

k − δ2 − 3δ 

(δ + 1)(δ + 2)
.

(9)
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It is clear from (9) that ID(Gl
k) − ID(A(Gl

k))≤ 0. Hence,

ID G
l
k ≤ ID A G

l
k  . (10)

*e transformation B shown in Figure 2 decreases the
degree of one vertex and makes the same increase into the
degree of fixed selected vertex:

ID B G
l
k   � 

n− k(l+1)

s�1

1
dvs

+ 
k− 2

s�1

1
dvs

+ 1
+

1
dvk

+
1

dv(k− 1)
+ 2

+
k(l − 2)

2
+ k.

(11)

So, from equations (6) and (11), we get

ID G
l
k  − ID B G

l
k   � 

k

s�1

1
dvs

+ 1
− 

k− 2

s�1

1
dvs

+ 1

−
1

dvk

−
1

dv(k− 1)
+ 2

,

(12)

to maximize the fraction involved in above expression re-
place dvs

, 0≤ s≤ k with δ, and we get

ID G
l
k  − ID B G

l
k   �

2
δ + 1

−
1
δ

−
1

δ + 2

�
− 2δ − 2δ2 − 2

(δ)(δ + 1)(δ + 2)
≤ 0.

(13)

*e equation (13) implies

ID G
l
k ≤ ID B G

l
k  . (14)

□

2.1.3. Transformation A
j
i . *e transformation A

j
i is com-

position of Ai, 0≤ i≤ l − 1 and Bj, 0≤ j≤ k − 1 which is

shown in Figure 3. Here, Ai, 0≤ i≤ l − 1 be the repetition of
transformation A and Bj, 0≤ j≤ k − 1 be the repetition of
transformation B.

For main results related to the transformation A
j
i shown

in Figure 3, we need to prove Propositions 1 and 2.

Proposition 1. Let g: N × W⟶ Q defined as
g(η, ζ) � 1/(η + ζ). 8en,

(1) g(η, ζ) + 1≥g(η, ζ − 1) + (1/2) for ζ ≥ 1
(2) For α, β≥ 0, g[η, (α + 1)(β + 1)] + g(η, 0)≥ [g[η, α

(β + 1)] + g(η, β + 1)]

Proof. (1) If transformation A applied on pendent path
attached with vertex wj of G having degree η + ζ. *e degree
of vertex wj increased by one with change of vertex having
degree 2 to leaf attached to wj. *is change has effect on ID
in the following way.

Let g(η, ζ) � 1/(η + ζ). *en,

g(η, ζ) + 1 − g(η, ζ − 1) +
1
2

  �
1

η + ζ
+ 1 −

1
η + ζ − 1

−
1
2

�
1
2

−
1

(η + ζ)(η + ζ − 1)
.

(15)

It is clear from basic calculus that
(1/α)≥ (1/(α + β)); β≥ 0. So,

�
1
2

−
1

(η + ζ)(η + ζ − 1)
≥ 0, (16)

implies g(η, ζ) + ζ ≥g(η, ζ − 1).
(2)*e 2nd part of this preposition is related to the effect

of transformation A
j
i shown in Figure 3:

A A A Auk
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uk3
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2
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l
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Figure 1: Transformation A.
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g[η, (α + 1)(β + 1)] + g(η, 0) − g[η, α(β + 1)] + g(η, β + 1)

�
1

(α + 1)β + η
+
1
η

−
1

α∗ β + η
−

1
β + η + 1

�
α2β3 + 3α2β2 + 3α2β + α2 + αβ3 + 2αβ2η + 3αβ2 + 4αβη + 3αβ + 2aη + α

η(β + η + 1)(α(β + 1) + η)(η + b + 1)
≥ 0.

(17)

*us, g[η, (α + 1)(β + 1)] + g(η, 0)≥g[η, α(β + 1)] +

g(η, β + 1). □

Proposition 2. Let f(η) � (1/η) + (3/2) and g(η) �

(1/(η + 1)) + 2, then for η≥ 1, g(η)≥f(η).

Proof

g(η) − f(η) �
1

η + 1
+ 2 −

1
η

+
3
2

  �
1

η + 1
−
1
η

+
1
2

�
2η − 2(η + 1) + η(η + 1)

2η(η + 1)

�
(η − 1) + η2 − 1 

2η(η + 1)
≥ 0.

(18)

*is fraction is nonnegative for all η≥ 1 which implies
that g(η)≥f(η). □

Theorem 2. Let G be the graph of order n having p pendent
vertices. Gl

k is the graph having k pendent paths attached to
the fully connected vertices with maximum degree of a vertex
Δ + 1. 8en, for 0≤ i≤ l − 1 and α≤ β,

ID A
α
i G

l
k  ≤ ID A

β
i G

l
k  . (19)

Proof. Let Gl
k be the graph with order n � n + kl, minimum

degree δ, and maximum degree Δ + 1. Using the fact of A
j

i

over Gl
k, we get

ID A
j
i G

l
k   � k(i + 1) +

k[l − (i + 1)]

2
+ 

k− (j+1)

r�1

1
dvr

+(i + 1)

+ 

n− p− k+j

s�1

1
dvs

+
1

dvr
+(j + 1)(i + 1)

+ p,

(20)

for 1≤dr, ds ≤Δ≤ n − 1 and 0≤ i≤ l − 1, 0≤ j≤ k − 1. *en,
for α≤ β,

ID A
α
i G

l
k   − ID A

β
i G

l
k  

� 

k− (α+1)

r�1

1
dvr

+ i + 1
+ 

n− p− k+α

s�1

1
dvs

+
1

dvr
+(α + 1)(i + 1)

− 

k− (β+1)

r�1

1
dvr

+ i + 1
+ 

n− p− k+β

s�1

1
dvs

+
1

dvr
+(β + 1)(i + 1)

⎡⎢⎣ ⎤⎥⎦

� 
k− α− 1

r�k− β

1
dvr

+ i + 1
− 

n− p− k+β

s�n− p− k+α+1

1
dvs

+
(i + 1)(β − α)

dvr
+(i + 1)(α + 1)  dvr

+(i + 1)(β + 1) 
.

(21)

So, by using Proposition 1 and replacing Δwith dvr
and δ

with dvs
, it is clear that Δminimizes the positive terms and δ

maximizes the negative term. After simplification, we get
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Figure 2: Transformation B for q � 1.
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�
(β − α)(δ − Δ)(Δ +(i + 1)(β + 1))(Δ +(i + 1)(α + 1)) +(δ − Δ)(Δ + i + 1)(i + 1) − (i + 1)

2
(αΔ +(Δ +(i + 1)(α + 1))(β + 1))

(Δ + l(α + 1))(Δ + l(β + 1))δ(Δ + 1)
.

(22)

It is clear that for α≤ β, the nominator is a negative
number and denominator is positive which implies that

ID A
α
i G

l
k   − ID A

β
i G

l
k  ≤ 0. (23)

*us, for β≥ α,

ID A
α
i G

l
k  ≤ ID A

β
i G

l
k  . (24)

□

In the following theorem, we determined bonds of ID for
graph Gl

k under the effect of transformation A
j
i by using

Propositions 1 and 2.

Theorem 3. Let G be the graph of order n having p pendent
vertices. Gl

k is the graph with maximum degree Δ + 1 having
order n + kl with k≤ n − p of pendent paths of length l. 8en,
for ID(A

j
i (Gl

k)); 0≤ i≤ l − 1, 0≤ j≤ k − 1,

(Δ + 1)[Δ(l + 1) + 2(pΔ + n − p − 1)] + 2Δ
2Δ(Δ + 1)

≤ ID A
j
i G

l
k  .

(25)

Equality holds for r-regular graph with i � 0, j � 0, and
k � 1. And

ID A
j
i G

l
k  ≤

(δ +(n − p)l)[δl(n − p) + n − 1 + pδ] + δ
((n − p)l + δ)δ

,

(26)

equality holds if under consideration graph is r-regular with
k � n − p pendent paths of length l and i � l − 1, j � k − 1.

Proof. Let G be the graph having order n≥ 3 with 0≤p≤ n −

1 pendent vertices with minimum degree δ and maximum
degree Δ. Gl

k is the graph with maximum degree Δ + 1 and

maximum number of pendent paths k � n − p of length l.
*en, by using equation (20),

ID A
j
i G

l
k   � k(i + 1) +

k[l − (i + 1)]

2

+ 

k− (j+1)

r�1

1
dvr

+(i + 1)
+ 

n− p− k+j

s�1

1
dvs

+
1

dvr
+(j + 1)(i + 1)

+ p,

(27)

where 1≤ dr, ds ≤Δ≤ n − 1, and 0≤ i≤ l − 1, 0≤ j≤ k − 1.
*e order of Gl

k is fixed. So, the increase in pendent paths
causes to decrease their lengths l. *is fact increases the
number of pendent paths and decreases the vertices of
degree two. So, Proposition 2 clears that ID(A

j

i (Gl
k)) in-

creases with the increase in k. It is clear from*eorems 1 and
2 and Propositions 1 and 2 that the least value of
ID(A

j
i (Gl

k)) was obtained by setting i, j � 0, dr � ds � Δ,
and k � 1:

ID A
0
0 G

l
1  ≥ 1 +

1[l − 1]

2
+
1 − 1
Δ + 1

+
n − p − 1
Δ

+
1
Δ + 1

+ p.

(28)

After simplification, we get

(Δ + 1)[Δ(l + 1) + 2(pΔ + n − p − 1)] + 2Δ
2Δ(Δ + 1)

≤ ID A
j
i G

l
k  ,

(29)

and equality holds in (28) for r-regular graph with the k � 1
pendent path of length l and i � 0, j � 0.

Now again from (20), setting i � l − 1, j � k − 1, dr �

ds � δ, k � n − p and using Proposition 1 and*eorems 1, 2,
we get maximal value of ID(A

j

i (Gl
k)) as
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Figure 3: Transformation A
j
i .
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ID A
k− 1
l− 1 G

l
k  ≤ (n − p)(l − 1 + 1) +

(n − p)[l − (l − 1 + 1)]

2
+ 

n− (n− p)+(n− p)− 1

s�1

1
δ

+ 

(n− p)− ((n− p)− 1+1)

r�1

1
δ +(l − 1 + 1)

+
1

[δ +((n − p) − 1 + 1)(l − 1 + 1)]
+ p.

(30)

After simplification, we get maximal value of
ID(A

j

i (Gl
k)) as

ID A
j
i G

l
k  ≤

(δ +(n − p)l)[δl(n − p) + n − 1 + pδ] + δ
((n − p)l + δ)δ

,

(31)

in which equality holds for r-regular graph with k � n − p

pendent paths of length l and i � l − 1, j � k − 1.
Inequalities (29) and (31) complete the proof. □

Theorem 4. Let G be the graph without pendent vertices and
Gl

k for k> 1 be the graph with maximum degree Δ + 1. 8en,
for 0≤ i≤ l − 1, 0≤ j≤ k − 1, the lower bond of ID(A

j

i (Gl
k)) is

ID A
j
i G

l
k  ≥

(Δ + 1)[Δk(l + 1) + 2(n − k)] + 2kΔ
2Δ(Δ + 1)

.

(32)

Equality holds for r-regular graph with k pendent paths
of length l and i� 0, j� 0.

Proof. Let G be the graph of order n without pendent
vertices having minimum degree δ and maximum degree Δ.
Gl

k be the graph with maximum degreeΔ + 1 and k≥ 1 be the
count of pendent paths of length l. *en, by using (20),

ID A
j
i G

l
k   � k(i + 1) +

k[l − (i + 1)]

2
+ 

k− (j+1)

r�1

1
dvr

+(i + 1)

+ 

n− k+j

s�1

1
dvs

+
1

dvr
+(j + 1)(i + 1)

,

(33)

where 1≤ dr, ds ≤Δ≤ n − 1, and 0≤ i≤ l − 1, 0≤ j≤ k − 1.
Using Propositions 1 and 2 and setting i, j � 0, dr � ds � Δ,
we get least value of ID(A

j
i (Gl

k)) as ID(A0
0(Gl

k)):

ID A
0
0 G

l
k   � k +

k[l − 1]

2
+

k − 1
Δ + 1

+
n − k

Δ
+

1
Δ + 1

. (34)

After simplification, we get minimal value as

(Δ + 1)[Δk(l + 1) + 2(n − k)] + 2kΔ
2Δ(Δ + 1)

≤ ID A
j

i G
l
k  .

(35)

Equality for equation (3) holds for r-regular graph with k
pendent paths of length l and i � 0, j � 0. □

Theorem 5. Let G be theΔ-regular graph. ID(A
j

i (Gl
k)) be the

graph with k pendent paths of length l. 8en, for
0≤ i≤ l − 1, 0≤ j≤ k − 1:

ID A
j
i G

l
k   �

[Δ +(i + 1)j](Δ + i + 1)[2(n − k + j) + k(i + l + 1)][2Δ(Δ +(i + 1)j)](k − j) + Δ(k − j − 1) + Δ(Δ + l)

2Δ(Δ + i + 1)(Δ + j(i + 1))
.

(36)

Proof. Let G be the Δ-regular graph and k be the count of
pendent paths of length l. *en, Gl

k is the graph with
maximum degree Δ + 1. *en, for 0≤ i≤ l − 1, 0≤ j≤ k − 1,
equation (20) takes the form

ID A
j
i G

l
k   � k(i +1) +

k[l − (i +1)]

2
+ 

k− (j+1)

r�1

1
Δ+(i +1)

+ 

n− k+j

s�1

1
Δ

+
1

[Δ+(j +1)(i +1)]
.

(37)

After simplification, we get required result:

ID A
j
i G

l
k   �

[Δ +(i + 1)j](Δ + i + 1)[2(n − k + j) + k(i + l + 1)][2Δ(Δ +(i + 1)j)](k − j) + Δ(k − j − 1) + Δ(Δ + l)

2Δ(Δ + i + 1)(Δ + j(i + 1))
.

(38)□
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In Corollary 1, we determined exact values of ID for
unicyclic graphs with k pendent paths of length l under
transformation A

j
i . Figure 4(a) depicts transformed graph

A
j

i (Cl
n,k) for i � j � 1, k � 2 with fixed vertex w1 and

Figure 4(b) with fixed vertex w2.

Corollary 1. Let Cn be the unicyclic graph of order n. Cl
n,k is

the graph with k pendent paths of length l. 8en, for
0≤ i≤ l − 1, 0≤ j≤ k − 1,

ID A
j

G
l
k   �

(2 +(i + 1)j)(3 + i)[2(n − k + j) + k(i + l + 1)]4(2 +(i + 1)j)(k − j) + 2(k − j − 1) + 2(2 + l)

4(3 + i)(2 + j(i + 1))
. (39)

Proof. Cn is the unicyclic graph of order n. Cn is 2-regular
graph. *en, we get required result by replacing Δ by 2 in
*eorem 5:

ID A
j

G
l
k   �

(2 +(i + 1)j)(3 + i)[2(n − k + j) + k(i + l + 1)]4(2 +(i + 1)j)(k − j) + 2(k − j − 1) + 2(2 + l)

4(3 + i)(2 + j(i + 1))
. (40)

3. Conclusions

Topological indices and graph transformations play a signifi-
cant role in modern chemistry and computer networks. It is an
interesting problem to determine the bonds of the topological
index for different families of graphs [5, 6, 9, 16]. In this work,
we give graph transformations, A, B, and A

j

i for variable values
of i and j over pendent paths attached with the fully connected
vertices of graphs and characterized ID for these transformed
graphs. At first, we determined the effect of transformations A

and B over increase and decrease of ID individually. *en, we
established result for A

j
i for arbitrary values of i and j which

provides moving graphs such as animation. We also deter-
mined the exact result for Δ-regular graph under transfor-
mation effect. Moreover, we computed the exact formula for
the family of unicyclic graphs with pendent paths under the
action of transformation as an application of proved results.
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Topological indices are numerical parameters used to study the physical and chemical residences of compounds. Degree-based
topological indices have been studied extensively and can be correlated with many properties of the understudy compounds. In the
factors of degree-based topological indices, M-polynomial played an important role. In this paper, we derived closed formulas for
some well-known degree-based topological indices like first and second Zagreb indices, the modified Zagreb index, the symmetric
division index, the harmonic index, the Randić index and inverse Randić index, and the augmented Zagreb index using calculus.

1. Introduction

1.1. Application Background. A graph that represents the
construction of a molecule and also their connectivity is
known as a molecular graph, and such a representation is
generally known as topological representations of molecule.
Molecular graphs are normally characterized by means of
exclusive topological basis for parallel of chemicals shape of
a molecule with organic, chemical, or bodily homes. Study of
graph has some programs of various topological indices in
quantitative structure-activity relationship (QSAR) and
quantitative structure-property relationship (QSPR), digital
screenings, and computational drug designing citations as
shown in [1, 2]. +us far, several exclusive topological in-
dices have been established, and maximum of them are most
effective graph descriptors in [3, 4]; apart, some indices have
proven their parallel with organic, chemical, or physical
residences of secure molecules in [5–17].

In the field of mathematics, any graph has vertices and
edges that are represented by the atoms and chemical bonds.

Graph that represents the construction of molecules and
their connectivity is known as a molecular graph, and such
representation is usually referred as topological represen-
tation of molecules. +ere are some significant topological
indices like distance-based topological indices, degree-based
topological indices, and primarily based topological indices.
Among these works, distance primarily based topological
indices unit works out a crucial task in a chemical graph
started, specifically in chemistry [18,19]. Many fields have
many features that can be solved with the help of graphs. In
the physiochemical compounds or network systems, we have
a tendency to abstractly outline exclusive ideas in modeling
of mathematics. We have a tendency to refer to as the
distinctive names, such as Randić index and national capital
index.

A topological index is a numerical parameter of a graph
and describes its topology. It describes the molecular shape
numerically and is applied within the advancement of
qualitative structure-activity relationships (QSARs). +e
following are the 3 types of topological indices:

Hindawi
Journal of Chemistry
Volume 2021, Article ID 6679819, 12 pages
https://doi.org/10.1155/2021/6679819

mailto:baak@hanyang.ac.kr
mailto:mrfarahani88@gmail.com
mailto:mrfarahani88@gmail.com
https://orcid.org/0000-0001-5268-7260
https://orcid.org/0000-0001-6329-8228
https://orcid.org/0000-0002-8606-2274
https://orcid.org/0000-0003-2969-4280
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6679819


(1) Degree-based.
(2) Distance-based.
(3) Spectral-based.

Degree-based topological indices were studied exten-
sively and may be correlated with many residences of the
understudy molecular compounds. +ere is a strong rela-
tionship among distance-based and degree-based topolog-
ical indices in [20]. Most commonly known invariants of
such kinds are degree-based topological indices. +ese are
actually the numerical values that correlate the structure
with various physical properties, chemical reactivities, and
biological activities. Topological indices are sincerely the
numerical values that relate the shape to one of a kind of
physical residences, artificial reactivity, and natural bio-
logical activities [21,22].

Loads of research has been executed inside the course of
M-polynomial, as in the case of Munir et al., processed
M-polynomial and related lists of triangular boron nanotubes
in [6], polyhex nanotubes in [23], nanostar dendrimers in [4],
and titania nanotubes in [5]. M-Polynomials and topological
lists of V-phenylenic nanotubes and nanotori. In this paper, the
objective is to process theM-polynomial of the crystallographic
realistic structure of the atom copper(I) oxide (Cu2O) [8,24].

1.2. Crystallographic Structure of Cu2O(m; n). Copper oxide
is a p-type semiconductor and inorganic compound. Copper
oxide is a chemical element with formula Cu2O(m; n).
Cu2O(m; n) is a certainly happening reddish coral that is
particularly used in chemical sensors and solar orientated
cells in [8, 24]. It has many advantages such as photo-
chemical effects, stability, pigment, a fungicide, nontoxicity,
and low cost. It has potential applications in new energy,
sensing, sterilization, and other fields. It has narrow band
gap and is easily excited by visible light.

Cu2O(m; n) is additionally responsible for the pink
shading in Benedict’s test and is the essential cause to select
Cu2O (see Figures 1 and 2). +e promising projects of
Cu2O(m; n) are mainly on chemical sensors, sunlight-based
cells, photocatalysis, lithium particle batteries, and catalysis.
Here, we have taken into consideration a monolayer of
Cu2O(m; n) for satisfaction. To ultimate the basis for
Cu2O(m; n), we pick out the setting of this graph as Cu2O(m;
n) be the chemical graph of copper(I) oxide with (m; n) unit
cells within the aircraft.

2. Definitions and Literature Review

2.1. M-Polynomial. M-Polynomial is defined by S. Klavžar
or E. Deutsch in 2015 [3, 8]. Within the factors of degree-
based topological indices, we compete necessary role of
M-polynomial. Readers can refer to [9–17, 27–35]. It is the
foremost general progressive polynomial and an additionally
closed formula alongside 10 distance-based topological in-
dices is given by M-polynomial. It is explained as

M(G, a, b) � 
δ≤i≤j≤Δ

mij(G)a
i
b

J
,

(1)

and we have δ � Min dr | r ∈ V(G)  and Δ � Max dr | r ∈ V

(G)}, where mij(G) is the edge E(G), where i≤ j.

2.2. Degree-Based Topological Indices. Any purpose on a
graph which does not build upon numbering of its vertices is
molecular descriptor. +is is also called as topological index.
Topological indices are most useful in the field of isomeric
discrimination, chemical validation, QSAR, QSPR, and a
pharmaceutical drug form. Topological indices are accessed
from the system of molecule.

+ere are some important degree-based topological
indices defined, and the first Zagreb index was introduced by
Gutman and Trinajstić as follows:

M1(G) � 
rsεE(G)

dr + ds( . (2)

Gutman and Trinajstić proposed the second Zagreb
index in 1972, which is stated as

M2(G) � 
rsεE(G)

dr × ds( . (3)

+e second modified Zagreb index is defined as

m
M2(G) � 

rsεE(G)

1
d(r)d(s)

. (4)

General 1st and 2nd multiplicative Zagreb indices are
introduced by Kulli, Stone, Wang, and Wei and are stated as

MZ
a
1II(G) � 

r,s∈E(G)

dr + ds( 
a
,

MZ
a
2II(G) � 

r,s∈E(G)

dr + ds( 
a
.

(5)

+e general 1st and 2nd Zagreb indices proposed by Kulli,
Stone, Wang, and Wei are stated as

Z
a
1(G) � 

r,s∈E(G)

dr + ds( 
a
,

Z
a
2(G) � 

r,s∈E(G)

drds( 
a
.

(6)

In 1987, Fajtlowicz in [36] proposed the harmonic index
and stated

H(G) � 
r,s∈E(G)

2
dr + ds

. (7)

+e inverse sum index is defined:

I(G) � 
r,s∈E(G)

drds

dr + ds

. (8)

Symmetric division index is described as

SS D(G) � 
r,s∈E(G)

min dr, ds( 

max dr, ds( 
+
max dr, ds( 

min dr, ds( 
. (9)

SU and XU recognized general Randić index or general
multiplicative Randić index stated as follows (Table 1):

2 Journal of Chemistry



Rα(G) � 
r,s∈E(G)

dr + ds
α
,

RαII(G) � 
r,s∈E(G)

dr + ds
α
.

(10)

Theorem 1. Crystallographic structure of the graph of cop-
per(I) oxide G≈Cu20[m; n], where n; m≥ 1. We have

M(G; a; b) � f(a; b) � (4m + 4n − 4)ab
2

+(4mn − 4n − 4m + 4)a
2
b
2

+ 4mna
2
b
4
.

(11)

Proof. suppose G be the crystallographic structure of Cu2O
[l;m; n].+e edge set of Cu2O[l;m; n] has the following three
partitions by Figures 1 and 2:

E1 � E 1;2{ } � e � rs ∈ E(G)|dr � 1; ds � 2 ,

E2 � E 2;2{ } � e � rs ∈ E(G)|dr � 2; ds � 2 ,

E3 � E 2;4{ } � e � rs ∈ E(G)|dr � 2; ds � 4 ,

(12)

such that

E1(G)


 � 4mm + 4n − 4,

E2(G)


 � 4mn − 4m − 4n + 4,

E3(G)


 � 4mn.

(13)

+us, the M-polynomial of Cu2O[l; m; n] is

M(G, a, b) � 
i≤ j

mij(G)a
i
b

j
,

M(G, a, b) � 
1≤ 2

m12(G)ab
2

+ 
2≤ 2

m22(G)a
2
b
2

+ 
2≤ 4

m24(G)a
2
b
4
,

M(G, a, b) � 
rs∈E1

m12(G)ab
2

+ 
uv∈E2

m22(G)a
2
b
2

+ 
uv∈E3

m24(G)a
2
b
4
,

M(G; a; b) � E1(G)


ab
2

+ E2(G)


a
2
b
2

+ E3(G)


a
2
y
4
,

M(G; a; b) � (4m + 4n − 4)ab
2

+(4mn − 4n − 4m + 4)a
2
b
2

+ 4mna
2
b
4
.

(14)

□
Theorem 2. Crystallographic structure of the graph of cop-
per(I) oxide G≈Cu20[m; n], where n; m≥ 1. We have
M1(G) � 40mn − 4m − 4n + 4.

Proof. suppose

M(G; a; b) � f(a; b) � (4m + 4n − 4) × ab
2

+(4mn − 4n − 4m + 4) × a
2
b
2

+ 4mn × a
2
b
4
.

(15)

We have to find

Cu

O

(a) (b)

Figure 1: (a) Cu2O [1, 1] [25]; (b) Cu2O [2, 2] [1].

Figure 2: Copper(I) oxide [4, 4] [26].

Journal of Chemistry 3



Da �
zf

za
a,

zf

za
� (4n + 4m − 4)b

2
+ 2(4mn − 4n − 4m + 4)ab

2
+ 8mnab

4
.

(16)

Multiply a on both sides:

Da � a
zf

za
� (4m + 4n − 4)ab

2

+ 2(4mn − 4m − 4n + 4)a
2
b
2

+ 8mna
2
b
4
.

(17)

Similarly,

Dbf(a, b) � b
zf

zb
� 2(4n + 4m − 4)ab

2

+ 2(4mn − 4n − 4m + 4)a
2
b
2

+ 16mnab
4
,

M1(G) � Da + Dy f(a, b)|a�b�1.

(18)

Now, the first Zagreb index is

M1(G) � Da + Dy f(a; b)|a�b�1,

M1(G) � [(4m + 4n − 4) + 2(4mn − 4m − 4n + 4)

+ 8mn] +[2(4n + 4m − 4)]

+ 2(4mn − 4m − 4n + 4) + 16mn),

M1(G) � [4m + 4n − 4 + 8mn − 8m − 8n + 8 + 8mn

+ 8n + 8m − 8 + 8mn − 8m − 8n + 8 + 16mn].

(19)

After solving, the result is

M(G) � 40mn − 4m − 4n + 4. (20)

+e 3D plot of first Zagreb index is given in Figure 3 (f or
u� 1 left, v � 1 middle, and w � 1 right), and we see the
dependent variables of the first Zagreb index on the involved
parameters. □

Theorem 3. Crystallographic structure of the graph of cop-
per(I) oxide G≈Cu20[m; n], where n; m≥ 1. We have
M2(G) � 48mn − 8m − 8n + 8.

Proof. suppose

M(G; a; b) � (4m + 4n − 4) × ab
2

+(4mn − 4n − 4m + 4)

× a
2
b
2

+ 4mn × a
2
b
4
.

(21)

We have to find DbDa; first, we take Da:

Da � (4m + 4n − 4) × ab
2

+(4mn − 4m − 4n + 4)
2
a

× a × b
2

+ 4mn
2
a × a × b

4
,

Da � (4m + 4n − 4) × ab
2

+ 2(4mn − 4m − 4n + 4)

× a
2
b
2

+ 8mn × a
2
b
4
.

(22)

Now, take Db:

DbDaf(a; b) � 2(4m + 4n − 4)ab

+ 2(4mn − 4m − 4n + 4)a
2

× 2b: b

+ 8mna
2

× 4b
3

× b,

DbDaf(a; b) � 2(4m + 4n − 4) × ab
2

+ 4(4mn − 4m − 4n + 4) × a
2
b
2

+ 32mn × a
2
b
4
.

(23)

+e second Zagreb index is

M2(G) � DbDa(f(a, b))|a�b�1,

M2(G) � 2(4m + 4n − 4) + 4(4mn − 4m − 4n + 4) + 32mn,

M2(G) � 8nn + 8m − 8 + 16mn − 16m − 16n + 16 + 32mn.

(24)

After solving, the result is

M2(G) � 48mn − 8m − 8n + 8. (25)

+e 3D plot of second Zagreb index is given in Figure 4 (f
or u� 1 left, v � 1 middle, and w � 1 right), and we see the
dependent variables of the second Zagreb index on the
involved parameters. □

Theorem 4. Crystallographic structure of the graph of cop-
per(I) oxide G≈Cu20[m; n], where n; m≥ 1, and we have

m
M

2
(G) �

3
2

mn + m + n − 1.3. (26)

Table 1: Formulas of degree-based topological indices from M-polynomial.

Topological Indices f(t, s) M(G; t, s)
First Zagreb index t + s M1(G; t, s) � (Dt + Ds)M(G; t, s)|t�s�1
Second Zagreb index Ts M2(G; t, s) � (DtDs)M(G; t, s)|t�s�1
Second modified Zagreb index 1/ts mM2(G; t, s) � (δtδs)M(G; t, s)|t�s�1
General Randić index, α≠ 0 (ts)α Rα(G) � (Dα

t Dα
s )M(G; t, s)|t�s�1

Inverse general Randić index, α≠ 0 1/(ts)α RRα(G)(δαt δ
α
s )M(G; t, s)|t�s�1

Symmetric division index (t2 + s2)/ts SS D(G) � |Dtδs � δsDt|t�s�1
Harmonic index 2/(t + s) H(G) � 2δtJM(G; t, s)|t�1
Inverse sum index ts/(t + s) I(G) � δtJDtDsM(G; t, s)|t�1

Ds � s(z/zs)M(G; t, s)|t � s � 1, Dt � t(z/zt)M(G; t, s)|t � s � 1, δt � 
t

0(M(G; y, s))/ydt, δs � 
t

0 M(G; t, y)/yds, J � M(G; t, t), Qα � xαM(G; t, s), α≠ 0.
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Proof. suppose

M(G; a; b) � (4m + 4n − 4)ab
2

+(4mn − 4m − 4n + 4)a
2
b
2

+ 4mna
2
b
4
.

(27)

Now, we have to find SaSb; first, we find Sa:

Sa � 
a

0

f(x, b)

x
dx,

f(x, b) � (4n + 4m − 4)xb
2

+(4mn − 4m − 4n + 4)x
2
b
2

+ 4mnx
2
b
4
,

f(x, b)

x
� (4m + 4n − 4)b

2
+(4mn − 4n − 4m + 4)xb

2

+ 4mnxb
4
.

(28)

Taking integration on both sides,


a

0

f(x, b)

x
dx � 

a

0
(4m + 4n − 4)b

2
dx

+ 
a

0
(4mn − 4m − 4n + 4)xb

2dx

+ 4mn 
a

0
xdxb

4
,

Sa � (4m + 4n − 4)ab
2

+
1
2

(4mn − 4n − 4m + 4)a
2
b
2

+ 2mna
2
b
4
.

(29)

Now, take Sb and then
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Figure 3: First Zagreb index plotted in 3D.
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Figure 4: Second Zagreb index plotted in 3D.
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SaSbf(a, b) � (4m + 4n − 4)ax
2

+
1
2

(4mn − 4m − 4n + 4)a
2
x
2

+ 2mna
2
x
4
,

SaSbf(a, b) �
1
2

(4m + 4n − 4)ab
2

+
1
4

(4mn − 4m − 4n + 4)a
2
b
2

+
1
2

mna
2
b
4
.

(30)

Now, the second modified Zagreb index is

m
M2(G) � SaSbf(a, b)|a�b�1 �

1
2

(4m + 4n − 4) +
1
4

(4mn − 4m − 4n + 4) +
1
2

mn

� (2m + 2n − 2) +(mn − m − n + 1) +
1
2

mn

� 2m − m + 2n − n − 2 + 1 + mn 1 +
1
2

 .

(31)

After solving, the result is

m
M2(G) �

3
2

mn + m + n − 1. (32)

+e 3D plot of modified second Zagreb index is given in
Figure 5 (f or u� 1 left, v � 1 middle, and w � 1 right), and we
see the dependent variables of the modified second Zagreb
index on the involved parameters. □

Theorem 5. Crystallographic structure of the graph of cop-
per(I) oxide G≈Cu20[m; n], where n; m≥ 1, and we have

Rα(G) � 2α+2
− 22α+2

 (m + n − 1) + 22α+2
+ 23α+2

 mn.

(33)

Proof. suppose

M(G; a; b) � (4m + 4n − 4) × ab
2

+(4mn − 4m − 4n + 4)

× a
2
b
2

+(4mn) × a
2
b
4
.

(34)

We have to find DaDb first, and we find Da:

Da � (4m + 4n − 4) × ab
2

+ 2(4mn − 4m − 4n + 4)

× a
2
b
2

+ 8mn × a
2
b
4
.

(35)

Now, take Db:

DaDb � (4m + 4n − 4)a × 2b × b + 2(4mn − 4n − 4m + 4)a
2

× 2b × b + 2(4mn)a
2

× 4b
3

× b.

(36)

Take α on the above equation:

D
α
aD

α
b � 2α(4m + 4n − 4)ab

2
+ 4α(4mn − 4m − 4n + 4)a

2
b
2

+ 8α(4mn)a
2
b
4
,

D
α
aD

α
b � 2α+2

m + n − 1ab
2

+ 22α+2
(mn − m − n + 1)a

2
b
2

+ 23α+2
mna

2
b
4
.

(37)

Now, the general Randić index is

Rα(G) � D
α
aD

α
b(f(a, b))|a�b�1,

Rα(G) � 2α+2
(m + n − 1) + 22α+2

(mn − m − n + 1) + 23α+2
mn,

Rα(G) � 2α+2
m + 2α+2

n − 2α+2
+ 22α+2

mn − 22α+2
m

− 22α+2
n + 22α+2

+ 23α+2
mn.

(38)

+e result is

Rα(G) � 2α+2
− 22α+2

 (m + n − 1) + 22α+2
+ 23α+2

 mn.

(39)

+e 3D plot of Randić index is given in Figure 6 (f or
u� 1 left, v � 1 middle, and w � 1 right), and we see the
dependent variables of the Randić index on the involved
parameters. □

Theorem 6. Crystallographic structure of the graph of cop-
per(I) oxide G≈Cu20[m; n], where n; m≥ 1, and we have

RRα(G) �
1

2α− 2 −
1

22α− 2 (m + n) +
1

22α− 2 +
2

23α− 2 (mn)

+
1

2α− 2 +
1

22α− 2 .

(40)
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Proof. suppose

M(G; a; b) � (4m + 4n − 4) × ab
2

+(4mn − 4m − 4n + 4)

× a
2
b
2

+(4mn) × a
2
b
4
.

(41)

Now, we have to find SaSb, and first, we find Sa:

Sa � (4m + 4n − 4) 
a

0
dx.b

2
+(4mn − 4m − 4n + 4)

· 
a

0
xdx.b

2
+ 8mn 

a

0
xdx.b

4

Sa � (4m + 4n − 4)ab
2

+ 2(mn − m − n + 1)a
2
b
2

+ 4mna
2
b
4
.

(42)

Similarly, take Sb:

SaSb � 4(m + n − 1)a. 
b

0
xdx + 2(mn − n − m + 1)a

2

· 
b

0
xdx + 4mna

2


b

0
x
3dx,

SaSb � 2(m + n − 1)ab
2

+(mn − m − n + 1)a
2
b
2

+ mna
2
b
4
.

(43)
Take α on the above equation:

S
α
aS

α
b �

1
2α− 2 (m + n − 1)ab

2
+

1
22α− 2 (mn − m − n + 1)a

2
b
2

+
1

23α− 2 mna
2
b
4
.

(44)

+e inverse Randić is
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Figure 5: Modified the second Zagreb index plotted in 3D.
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Figure 6: Randić index plotted in 3D.
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RRα(G) � (f(a, b))|a�b�1 �
1

2α− 2 (m + n − 1)

+
1

22α− 2 (mn − m − n + 1)

+
2

23α− 2 mn �
1

2α− 2 −
1

22α− 2 (m + n)

+
1

22α− 2 +
2

23α− 2 (mn) +
1

2α− 2 +
1

22α− 2 .

(45)

+e 3D plot of inverse Randić index is represented in
Figure 7 (f or u� 1 left, v � 1 middle, and w � 1 right), and we
see the dependent variables of the inverse Randić index on
the involved parameters. □

Theorem 7. Crystallographic structure of the graph of cop-
per(I) oxide G≈Cu20[m; n], where n; m≥ 1, and we have
SS D(G) � 18mn + 2m + 2n − 2.

Proof. suppose

M(G; a; b) � (4m + 4n − 4) × ab
2

+(4mn − 4m − 4n + 4)

× a
2
b
2

+(4mn) × a
2
b
4
.

(46)

First, we have to find Sb:

Sb � (4n + 4m − 4)a 
b

0
xdx +(4mn − 4m − 4n + 4)a

2

· 
b

0
xdx + 4mna

2


b

0
x
3dx,

Sb �
1
2

(4n + 4m − 4)ab
2

+
1
2

(4mn − 4m − 4n + 4)a
2
b
2

+ mna
2
b
4
.

(47)

Now, take Da:

SbDa �
1
2

(4m + 4n − 4)ab
2

+(4mn − 4m − 4n + 4)a
2
b
2

+ 2mna
2
b
4
.

(48)

Similarly,

Sa � (4m + 4n − 4)ab
2

+
1
2

(4mn − 4n − 4m + 4)a
2
b
2

+ 2mna
2
b
4
.

(49)

Take Db:

SaDb(f(a, b)) � 2(4m + 4n − 4)ab
2

+(4mn − 4m − 4n + 4)a
2
b
2

+ 8mna
2
b
4
.

(50)

Now, the symmetric division index is

SS D(G) � SbDa + SaDb( (f(a, b))|a�b�1. (51)

Put the values

SS D(G) �
1
2

(4m + 4n − 4) +(4mn − 4m − 4n + 4) + 2mn  +[2(4m + 4n − 4) +(4mn − 4m − 4n + 4) + 8mn],

SS D(G) � (2m + 2n − 2) +(4mn − 4m − 4n + 4) +(2mn + 8m + 8n − 8) +(4mn − 4m − 4n + 4) + 8mn,

SS D(G) � (2m − 4m + 8m − 4m) +(2n − 4n + 8n − 4n) − (2 − 4 + 8 − 8) +(4mn + 2mn + 4mn + 8mn).

(52)

After the calculation, the result is

SS D(G) � 18mn + 2m + 2n − 2. (53)

+e 3D plot of symmetric division index is given in
Figure 8 (f or u� 1 left, v � 1 middle, and w � 1 right), and we
see the dependent variables of the symmetric division index
on the involved parameters. □

Theorem 8. Crystallographic structure of the graph of cop-
per(I) oxide G≈Cu20[m; n], where n; m≥ 1, and we have

H(G) �
5
3

(m + n − 1) +
7
3

mn. (54)

Proof. suppose

M(G; a; b) � (4m + 4n − 4) × ab
2

+(4mn − 4m − 4n + 4)

× a
2
b
2

+(4mn) × a
2
b
4
.

(55)

First, we have to find Jf(a;b):

Jf(a, b) � Jf(a, a) � 4(m + n − 1)a
3

+ 4(mn − m − n + 1)a
4

+ 8mna
6
.

(56)

Take Sa:
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SaJf(x, b) � 4(m + n − 1) 
a

0
x
2dx + 4(mn − m − n + 1)

· 
a

0
x
3dt + 8mn 

a

0
x
5dx,

SaJf(a, b) �
4
3

(m + n − 1)a
3

+
1
2

(mn − m − n + 1)a
4

+
2
3

mna
6
.

(57)

+e harmonic index is

H(G) � 2SaJf(a, b)|a�1

� 2
4
3

(m + n − 1) +
1
2

(mn − m − n + 1) +
2
3

mn ,

H(G) � 2
4
3

−
1
2

 m +
4
3

−
1
2

 n +
1
2

−
4
3

  +
4
3

+
1
2

  mn,

H(G) � 2
5
6

m +
5
6

n +
7
6

mn −
5
6

 .

(58)

Now, the result is

H(G) �
5
3

(m + n − 1) +
7
3

mn. (59)

+e 3D plot of harmonic index is given in Figure 9 (f or
u� 1 left, v � 1 middle, and w � 1 right), and we see the
dependent variables of the harmonic index on the involved
parameters. □

Theorem 9. Crystallographic structure of the graph of cop-
per(I) oxide G≈Cu20[m; n], where n; m≥ 1, and we have

SaJDaDb(f(a, b)) �
44
3

mn −
4
3

(m + n − 1). (60)

Proof. suppose

M(G; a; b) � (4m + 4n − 4) × ab
2

+(4mn − 4m − 4n + 4)

× a
2
b
2

+(4mn) × a
2
b
4
.

(61)

First, we have to find Db:
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Figure 7: Inverse Randić index plotted in 3D.
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Figure 8: Symmetric division index plotted in 3D.

Journal of Chemistry 9



Dbf(a, b) � 8(m + n − 1)ab
2

+ 8(mn + m + n − 1)a
2
b
2

+ 32mna
2
b
4
.

(62)
Take Da:

DaDbf(a, b) � 8(m + n − 1)ab
2

+ 16(mn − n − m + 1)a
2
b
2

+ 64mna
2
b
4
.

(63)
Take Jf(a; b):

JDaDbf(a, b) � 8(m + n − 1)x
3

+ 16(mn − m − n + 1)x
4

+ 64mnx
6
.

(64)

Take S(a):

SaJDaDbf(a, b) �
8
3

(m + n − 1)a
3

+ 4(mn − n − m + 1)a
4

+
32
3

mna
6
.

(65)
+e inverse sum index is

SaJDaDb(f(a, b))|a�1 �
8
3

(m + n − 1)

+ 4(mn − m − n + 1) +
32
3

mn

�
8
3

− 4 m +
8
3

− 4 n

+
32
3

+ 4 mn + 4 −
8
3

 .

(66)

50

0

–50 –50

0

50

6000
4000
2000

0
–2000
–4000
–6000

(a)

50

0

–50 –50

0

50

6000
4000
2000

0
–2000
–4000
–6000

(b)

Figure 9: Harmonic index plotted in 3D.
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Figure 10: Inverse sum index plotted in 3D.
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After the calculation, the result is

SaJDaDb(f(a, b)) �
44
3

mn −
4
3

(m + n − 1). (67)

+e 3D plot of inverse sum index is given in Figure 10 (f
or u� 1 left, v � 1 middle, and w � 1 right), and we see the
dependent variables of the inverse sum index on the in-
volved parameters. □
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Topological index (TI) is a numerical number assigned to the molecular structure that is used for correlation analysis in
pharmacology, toxicology, and theoretical and environmental chemistry. Benzene ring embedded in the P-type surface on 2D

network has stability similar toC60 and can be defined as 3D linkage ofC8 rings.'is structure is the simplest possible tilling of the
periodic minimal surface P which contains one type of carbon atom. In this paper, we compute general Randić, general Zagreb,
general sum-connectivity, first Zagreb, second Zagreb, and ABC and GA indices of two operations (simple medial and stellation)
of 2D network of benzene ring. Also, the exact expressions of ABC4 and GA5 indices of these structures are computed.

1. Introduction and Preliminaries

All the graphs in this work are finite and connected. Let H
be a graph with vertex set and edge set denoted by V(H) and
E(H), respectively. We denote the degree of a vertex
u ∈ V(G) by du and it is the number of edges incident to u.
'e neighbor of a vertex v is a vertex u such that uv ∈ E(G).
'e neighborhood of a vertex u is the set of all its neighbors
and is denoted by N(u). Let Su be the sum of degrees of all
the vertices that are adjacent to u. In other words,

S(u) � 
v∈N(u)

dv, whereN(u) � v ∈ V(H): uv ∈ E(H){ }.

(1)

For more insight on basic definitions and terminologies
of graph theory, see [1].

In this paper, we consider two operations, stellation and
simple medial of 2D network of benzene ring. 'e medial of
a graph H, denoted by M(H), is defined as follows: we put
a new vertex in the middle of every old edge of H and the
new vertices have an edge if they lie on the consecutive edges.

Note that the medial of a graph H is a 4-regular planner
graph and not necessarily simple. Sjostrand [2] introduced
the idea of transforming the graph with multiple edges and
loops in to a simple graph by finite sequence of double edge
swaps. If M(H) is not simple, we transform the graph into
simple graph and call it the simple medial of H, denoted by
SM(H). Stellation of a graph planar H, denoted as St(H),
is obtained by putting a vertex in every face of H and then
we join this vertex to each vertex of respective face.

In the last couple of decades, topological and graph
theoretical models have shown applications in many sci-
entific research areas such as theoretical physics, chemistry,
pharmaceutical chemistry, and toxicology. 'e interaction
of graph theory with chemistry has enriched both the field.
Topological index/descriptor is a numerical number at-
tached to a molecular graph which is expected to predict
certain physical or chemical properties of the underlying
molecular structure. 'e simplest topological descriptors
one can attach to a graph H is its order and size. 'e
importance of the topological indices is because of their use
in quantitative structure activity relationship (QSAR)/
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quantitative structure property relationship (QSPR). 'e
first topological index was introduced by Weiner in 1947,
who showed that the index is well correlated with boiling
point of alkanes. In 1975, the first degree based topological
index was proposed by Milan Randić [3]. After that many
degree-based topological indices were defined which were
found to be useful in modeling the properties of organic
molecules. Few of the important degree-based topological
indices are presented in Table 1.

'e Randić index was first named as branching index
and is found appropriate for calculating the extent of
branching of the carbon atom skeleton of saturated hy-
drocarbons. 'e first and second Zagreb indices were first
introduced by Gutman and Transjistic in [8] and applied
to branching problem. 'e Zagreb indices and their
different variants are used to study chirality [16], mo-
lecular complexity [17, 18], ZE isomerism [19], and
heterosystems [20]. 'e overall Zagreb indices are used to
derive multilinear regression models. 'e importance of
ABC index is due to its correlation with the thermody-
namic properties of alkanes, see [21, 22]. Details on the
computation of topological indices of graphs can be seen
in [23–25].

2. Topological Indices of Simple
Medial of P[m, n]

'e preparation [26] of C60 leads to assumption about the
stability of other crystalline forms of three coordinated
carbons. In particular, Mackay and Terrones [27] raised the
interesting prospect of creating possible tricoordinated solid
carbon forms by lining the infinite periodic minimal surfaces
known as P and D. 'ese surfaces divide the space into two
unconnected labyrinths. OKeeffe et al. [28] reported the
results of initial calculations of molecular dynamic re-
laxation in the simplest treatment, which contains only one
type of carbon atom.'ese structures contain six- and eight-
membered rings in ratio of 2 : 3 and their primitive single
cells have only 24 atoms. 'e stability of this structure is
similar to C60 and it can be defined as a three-dimensional
connection of C8 rings.'is structure is the simplest possible
treatment of the periodic minimum surface P, which has
only one type of carbon atom. From now onward, we denote
the molecular structure of 2D network of benzene ring
embedded in P-type surface by P[m, n]. Figure 1 depicts the
molecular graph of P[m, n].

Note that P[m, n] contains 24mn vertices and 32mn −

2m − 2n edges. 'e medial of P[m, n] is obtained as follows:

we put a new vertex in the middle of every old edge of
P[m, n] and the new vertices have an edge if they lie on the
consecutive edges.'e graph of medial ofP[m, n] is depicted
in Figure 2. Observe that the graph of medial of P[m, n]

contains multiple edges. It can be made simple by using the
double edge swaps defined by Sjostrand [2]. Figure 3 depicts
the graph of simple medial of P[m, n] and we denote it by
SM(P[m, n]). By a simple calculation, we can compute that
SM(P[m, n]) contains 32mn − 2m − 2n vertices and 64mn −

20m − 20n + 12 edges. Suppose Vi � u ∈ V(SM(P{

[m, n])): du � i} and Ei,j � uv ∈ E(SM(P[m, n])):{

du � i, dv � j}. Let ni and ei,j be the cardinalities of Vi and
Ei,j, respectively.

Theorem 1. Let K be the graph of SM(P[m, n]) and α is
a real number, then we have

(1) Mα(K) � (16m + 16n − 12)2α+ (32mn − 18m−

18n+ 12)4α,
(2) Rα(K) � (4m + 4n)22α + (24m + 24n − 24)23α+ (64

mn − 48m − 48n + 36)24α,
(3) χα(K)�(4m+4n)22α+ (24m+24n − 24)6α+ (64mn−

48m − 48n+36)23α,
(4) ABC(K) � (1/

�
2

√
)(28m +28n − 24) + (1/2)

�����
(3/2)



(64mn − 48m − 48n +36),
(5) GA (K) � (4m + 4n) + (

�
2

√
/3)(24m + 24n − 24)+

(64mn − 48m − 48n + 36),
(6) PM1(K) � 2192mn− 136m− 136n+108 × 624m+24n− 24, and
(7) PM2(K) � 2256mn− 112m− 112n+72.

Proof. We can partition V(K) into three sets based on
vertex degrees. Table 2 shows this partition. By using the
values presented in Table 2, the general Zagreb index of K
can be computed as follows:

Mα(K) � 
u∈V(H)

du( 
α

� (16m + 16n − 12)2α +(32mn − 18m − 18n + 12)4α.

(2)

Similarly, we can partition E(K) into three sets based on
the degree of end vertices of each edge. Table 3 shows this
partition. By using the values presented in Table 3, the values
of Rα, χα, ABC, GA, PM1, and PM2 indices of K can be
computed as
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Figure 2: Molecular graph of medial of P[m, n]. Figure 3: Molecular graph SM(P[m, n]) of simplemedial ofP[m, n].

m

...

2

21 3 ... n – 1 n

Figure 1: Graph of P[m, n].

Table 1: Degree-based topological descriptors.

Topological descriptors Mathematical forms
General Randić index [4,5] Rα(H) � uv∈E(H)(dudv)α

General sum-connectivity index [6] χα(H) � uv∈E(H)(du + dv)α

First general Zagreb index [7] Mα(H) � u∈V(H)(du)α

Randić index [3] R(− 1/2)(H) � uv∈E(H)(1/
�����
dudv


)

First Zagreb index [8] M1(H) � uv∈E(H)(du + dv)

Second Zagreb index [8] M2(H) � uv∈E(H)(du × dv)

First multiplicative Zagreb index [9] PM1(H) � uv∈E(H)(du + dv)

Second multiplicative Zagreb index [10] PM2(H) � uv∈E(H)(dudv)

Hyper-Zagreb index [11] HM(H) � uv∈E(H)(du + dv)2.
Atom-bond connectivity index [12] ABC(H) � uv∈E(H)

�������������������
((du + dv − 2)/(dudv))



Geometric arithmetic index [13] GA(H) � uv∈E(H)((2
�����
dudv


)/(du + dv))

Fourth version of atom-bond connectivity index [14] ABC4(H) � uv∈E(H)

��������������������������
((S(u) + S(v) − 2)/(S(u)S(v)))



Fifth version of geometric arithmetic index [15] GA5(H) � uv∈E(H)((2
��������
S(u)S(v)


)/(S(u) + S(v)))
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Rα(K) � 
uv∈E(K)

dudv( 
α

� (4m + 4n)(2 × 2)
α

+(24m + 24n − 24)(2 × 4)
α

+(64mn − 48m − 48n + 32)(4 × 4)
α

� (4m + 4n)22α +(24m + 24n − 24)23α +(64mn − 48m − 48n + 36)24α,

χα(K) � 
uv∈E(K)

du + dv( 
α

� (4m + 4n)(2 + 2)
α

+(24m + 24n − 24)(2 + 4)
α

+(64mn − 48m − 48n + 32)(4 + 4)
α

� (4m + 4n)22α +(24m + 24n − 24)6α +(64mn − 48m − 48n + 36)23α,

ABC(K) � 
uv∈E(K)

����������
du + dv − 2

dudv



� (4m + 4n)

�������
2 + 2 − 2
2 × 2



+(24m + 24n − 24)

�������
2 + 4 − 2
2 × 4



+(64mn − 48m − 48n + 32)

�������
4 + 4 − 2
4 × 4



�
1
�
2

√ (28m + 28n − 24) +
1
2

�
3
2



(64mn − 48m − 48n + 36),

GA(K) � 
uv∈E(K)

2
�����
dudv



du + dv

� (4m + 4n)
2

����
2 × 2

√

2 + 2
+(24m + 24n − 24)

2
����
2 × 4

√

2 + 4

+(64mn − 48m − 48n + 32)
2

����
4 × 4

√

4 + 4

� (4m + 4n) +

�
2

√

3
(24m + 24n − 24) +(64mn − 48m − 48n + 36),

PM1(K) � 
uv∈E(K)

du + dv( 

� (2 + 2)
4m+4n

×(2 + 4)
24m+24n− 24

×(4 + 4)
64mn− 48m− 48n+32

� 2192mn− 136m− 136n+108
× 624m+24n− 24

,

PM2(K) � 
uv∈E(K)

dudv( 

� (2 × 2)
4m+4n

×(2 × 4)
24m+24n− 24

×(4 × 4)
64mn− 48m− 48n+32

� 2(256mn− 112m− 112n+72)
.

(3)

□

4 Journal of Chemistry



From 'eorem 1, we can compute the values of Randić,
first Zagreb, second Zagreb, and hyper-Zagreb index of K.

Corollary 1. LetK be the graph of simple medial of P[m, n],
then we have

(1) R(− 1/2)(K) � ((4m + 4n)/2)+ ((24m + 24n − 24)/
(2

�
2

√
))+ (((64mn − 48m − 48n + 36))/4),

(2) M1(K) � 512mn − 224(m + n) + 144,

(3) M2(K) � 1024mn − 560(m + n) + 384, and
(4) HM(K) � 4096mn − 2144(m + n) + 1440.

Next, we will compute the ABC4 and GA5 indices of K.
For this, we need to find the edge partition Si,j of the graph
K, where Si,j � uv ∈ E(K): Su � i, Sv � j . Let mi,j denote
the cardinality of the set Si,j. 'e edge partition Si,j of K is
given in Table 4.

Theorem 2. LetK be the graph of simple medial of P[m, n],
then we have

(1) ABC4(K) �
1
3

�
5
2



(4m + 4n) +

��
7
30



(8m + 8n) +

�
1
5



(4m + 4n) +
1
2

�
5
7



(4m + 4n − 8)

+
12
5

�
1
2



+

�
1
7



(4m + 4n − 8) +
1
2

��
13
21



(4m + 4n − 8) +
1
2

�
1
2



(4m + 4n − 8)

+

��
11
70



(4m + 4n − 8) +
1
8

��
15
2



(64mn − 60m − 60n + 56),

(2) GA5(K) � (4m + 4n) +
1
4

��
15

√
(8m + 8n) +

4
9

�
5

√
(4m + 4n) +

4
11

�
7

√
(4m + 4n − 8) +(4)

+
1
3

��
35

√
(4m + 4n − 8) +

2
13

��
42

√
(4m + 4n − 8) +

4
7

�
3

√
(4m + 4n − 8)

+
4
15

��
14

√
(4m + 4n − 8) + 64mn − 60m − 60n + 56.

(4)

Proof. 'e edge partition of K depending on the sum of
degree of end vertices is presented in Table 4. 'e result
follows by using the values from Table 4 in the definition of
ABC4(K) and GA5(K). □

3. Topological Indices of Stellation of P[m, n]

Let L be the molecular graph of stellation of P[m, n]. It is
obtained adding a vertex in each face of P[m, n] and then
joining this vertex to each vertex of the respective face. 'e
graph of L is shown in Figure 4. In L, there are 32mn −

2n + 1 vertices and 96mn − 22m − 22n + 12 edges. Suppose
Vi � u ∈ V(L): du � i  and Ei,j � uv ∈ E(L): du �

i, dv � j}. Let ni and ei,j be the cardinalities of the vertex set
Vi and edge set Ei,j, respectively.

Theorem 3. LetL be the graph of stellation of P[m, n] and α
is a real number, then we have

(1) Mα(L) � (8m + 8n − 4)3α + (8mn − 4m − 4n + 4)

4α + (8m + 8n − 8)5α + (20mn− )12m − 12n + 8)6α

+(2mn − 6m − 6n)8α + (2mn − m − n + 1)12α,
(2) Rα(L) � (4m + 4n)32α + (8m + 8n − 8)15α+ (8m +

8n − 4)18α + (4m + 4n)20α + (24mn − 16m − 16n +

12)24α + (24mn − 16m − 16n + 12)48α + (4m + 4n −

4)52α +(12m + 12n − 16)30α + (4m + 4n − 8)40α+

(4m + 4n)60α + (32mn − 26m − 26n + 20)62α +

(16mn − 12m − 12n + 8) 72α,
(3) χα(L) � (4m + 4n)6α + (8m + 8n − 8)8α +(12m+

12n − 4)32α + (24mn − 16m − 16n + 12)10α + (8mn

− 4m − 4n + 4)16α + (4m + 4n − 4)10α + (12m+ 12n

− 16)11α+(4m + 4n − 8)13α+(4m + 4n)17α + (32mn

− 26m − 26n + 20)12α +(16mn − 12m − 12n + 8) 14α

+(16mn − 12m − 12n + 8)18α,
(4) ABC(L) � (((24

�
3

√
+ 2

��
42

√
+ 16

��
10

√
+ 16

�
2

√
)/3) +

8)mn + (((4
��
14

√
− 16

�
3

√
−

��
42

√
− 13

��
10

√
− 4)/3) +

((8
��
10

√
+ 2

��
35

√
+ 6

��
30

√
+

���
110

√
− 12

�
2

√
)/5))(m +

n) + (((− 2
��
14

√
+ 12

�
3

√
+ 10

��
10

√
+

��
42

√
+ 8

�
2

√
)/3)

+((− 8
�
2

√
− 8

��
30

√
− 2

���
110

√
− 8

��
10

√
)/5)+ 4),

(5) GA(L) � (32 + ((48
�
6

√
)/5) + ((32

�
2

√
)/3) + ((92�

3
√

)/7))mn + (((16
�
5

√
)/9) − ((32

�
6

√
)/5) + ((24

��
30

√
)

/11) + ((16
��
10

√
)/13) − ((8

�
2

√
)/3) + ((50

��
15

√
)/17)

− ((62
�
3

√
)/7))(m + n) + (((24

�
6

√
)/5) − ((32

��
30

√
)/

11) − (32
��
10

√
/13) + ((8

�
2

√
)/3) + ((46

�
3

√
)/7)−

2
��
15

√
),

(6) PM1(L) � 2(152mn− 76m− 76n+56)
× 3(64mn− 22m− 22n+28)

×5(24mn− 12m− 12n+8)
× 7(16mn− 12m− 12n+8)

× 11(12m+12n−

16) × 13(4m+4n− 8)
× 17(4m+4n), and

Table 3: Edge partition Ei,j of K.

Ei,j E2,2 E2,4 E4,4

ei,j 4m+ 4n 24m+ 24n − 24 64mn − 48m − 48n+ 36

Table 2: Vertex partition of K.

Vi 2 4

ni 16m + 16n − 12 32mn − 18m − 18n + 12
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(7) PM2(L) � 2(216mn− 100m− 100n+64) × 3(144mn− 60m− 60n+

48) × 5(40m+40n− 40).
Proof. We can partition V(L) into six sets based on vertex
degrees. Table 5 shows this partition. By using the values
presented in Table 5, the general Zagreb index of L can be
computed as

Mα(L) � 
u∈V(L)

du( 
α

� (8m + 8n − 4)3α +(8mn − 4m − 4n + 4)4α +(8m + 8n − 4)5α

+(20mn − 12m − 12n + 8)6α +(2mn − m − n)8α +(2mn − m − n + 1)12α.

(5)

Similarly, we can partitionE(L) into three sets based on the
degree of end vertices of each edge. Table 6 shows this partition.

By using the values presented in Table 6, the values of Rα, χα,

ABC, GA, PM1, and PM2 indices of L can be computed as

Rα(L) � 
uv∈E(L)

dudv( 
α

� (4m + 4n)(3 × 3)
α

+(24mn − 16m − 16n + 12)(3 × 5)
α

+(8m + 8n − 8)(3 × 6)
α

+(4m + 4n)(4 × 5)
α

+(8m + 8n − 8)(4 × 6)
α

+(8mn − 4m − 4n + 4)(4 × 12)
α

+(4m + 4n − 4)(5 × 5)
α

+(12m + 12n − 16)(5 × 6)
α

+(4m + 4n − 8)(5 × 8)
α

+(4m + 4n)(5 × 12)
α

+(32mn − 26m − 26n + 20)(6 × 6)
α

+(16mn − 12m − 12n + 8)(6 × 8)
α

+(16mn − 12m − 12n + 8)(6 × 12)
α

� (4m + 4n)32α +(8m + 8n − 8)15α +(8m + 8n − 4)18α +(4m + 4n)20α

+(24mn − 16m − 16n + 12)24α +(24mn − 16m − 16n + 12)48α +(4m + 4n − 4)52α

+(12m + 12n − 16)30α +(4m + 4n − 8)40α +(4m + 4n)60α

+(32mn − 26m − 26n + 20)62α +(16mn − 12m − 12n + 8)72α.

Table 4: Edge partition Si,j of K.

Si,j S6,6 S6,10 S8,10 S8,12 S8,14 S10,10
mi,j 4m+ 4n 8m+ 8n 4m+ 4n 4m+ 4n − 8 4m+ 4n − 8 4
Si,j S10,14 S12,14 S12,16 S14,16 S16,16
mi,j 4m+ 4n − 8 4m+ 4n − 8 4m+ 4n − 8 4m+ 4n − 8 64mn − 60m − 60n+ 56

Figure 4: Molecular graph of st(P[m, n]).
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χα(L) � 
uv∈E(L)

du + dv( 
α

� (4m + 4n)(3 + 3)
α
(24mn − 16m − 16n + 12)(3 + 5)

α
+(8m + 8n − 8)(3 + 6)

α

+(4m + 4n)(4 + 5)
α

+(8m + 8n − 8)(4 + 6)
α

+(8mn − 4m − 4n + 4)(4 + 12)
α

+(4m + 4n − 4)(5 + 5)
α

+(12m + 12n − 16)(5 + 6)
α

+(4m + 4n − 8)(5 + 8)
α

+(4m + 4n)(5 + 12)
α

+(32mn − 26m − 26n + 20)(6 + 6)
α

+(16mn − 12m − 12n + 8)(6 + 8)
α

+(16mn − 12m − 12n + 8)(6 + 12)
α

� (4m + 4n)6α +(8m + 8n − 8)8α +(12m + 12n − 4)32α
+(24mn − 16m − 16n + 12)10α +(8mn − 4m − 4n + 4)16α +(4m + 4n − 4)10α
+(12m + 12n − 16)11α +(4m + 4n − 8)13α +(4m + 4n)17α
+(32mn − 26m − 26n + 20)12α +(16mn − 12m − 12n + 8)14α
+(16mn − 12m − 12n + 8)18α.

ABC(L) � 
uv∈E(L)

����������
du + dv − 2

dudv



� (4m + 4n)

�������
3 + 3 − 2
3 × 3



+(24mn − 16m − 16n + 12)

�������
3 + 5 − 2
3 × 5



+(8m + 8n − 8)

�������
3 + 6 − 2
3 × 6



+(4m + 4n)

�������
4 + 5 − 2
4 × 5



+(8m + 8n − 8)

�������
4 + 6 − 2
4 × 6



+(8mn − 4m − 4n + 4)

��������
4 + 12 − 2
4 × 12



+(4m + 4n − 4)

�������
5 + 5 − 2
5 × 5



+(12m + 12n − 16)

�������
5 + 6 − 2
5 × 6



+(4m + 4n − 8)

�������
5 + 8 − 2
5 × 8



+(4m + 4n)

��������
5 + 12 − 2
5 × 12



+(32mn − 26m − 26n + 20)

�������
6 + 6 − 2
6 × 6



+(16mn − 12m − 12n + 8)

�������
6 + 8 − 2
6 × 8



+(16mn − 12m − 12n + 8)

��������
6 + 12 − 2
6 × 12



�
24

�
3

√
+ 2

��
42

√
+ 16

��
10

√
+ 16

�
2

√

3
+ 8 mn

+
4

��
14

√
− 16

�
3

√
−

��
42

√
− 13

��
10

√
− 4

3
+
8

��
10

√
+ 2

��
35

√
+ 6

��
30

√
+

���
110

√
− 12

�
2

√

5
 (m + n)

+
− 2

��
14

√
+ 12

�
3

√
+ 10

��
10

√
+

��
42

√
+ 8

�
2

√

3
+

− 8
�
2

√
− 8

��
30

√
− 2

���
110

√
− 8

��
10

√

5
+ 4 

GA(L) � 
uv∈E(L)

2
�����
dudv



du + dv

� (4m + 4n)
2

����
3 × 3

√

3 + 3
+(24mn − 16m − 16n + 12)

2
����
3 × 5

√

3 + 5
+(8m + 8n − 8)

2
����
3 × 6

√

3 + 6
+(4m + 4n)

2
����
4 × 5

√

4 + 5
+(8m + 8n − 8)

2
����
4 × 6

√

4 + 6
+(8mn − 4m − 4n + 4)

2
�����
4 × 12

√

4 + 12
+(4m + 4n − 4)

2
����
5 × 5

√

5 + 5
+(12m + 12n − 16)

2
����
5 × 6

√

5 + 6
+(4m + 4n − 8)

2
����
5 × 8

√

5 + 8
+(4m + 4n)

2
�����
5 × 12

√

5 + 12
+(32mn − 26m − 26n + 20)

2
����
6 × 6

√

6 + 6
+(16mn − 12m − 12n + 8)

2
����
6 × 8

√

6 + 8
+(16mn − 12m − 12n + 8)

2
�����
6 × 12

√

6 + 12
� 32 +

48
�
6

√

5
+
32

�
2

√

3
+
92

�
3

√

7
 mn

+
16

�
5

√

9
−
32

�
6

√

5
+
24

��
30

√

11
+
16

��
10

√

13
−
8

�
2

√

3
+
50

��
15

√

17
−
62

�
3

√

7
 (m + n)

+
24

�
6

√

5
−
32

��
30

√

11
−
32

��
10

√

13
+
8

�
2

√

3
+
46

�
3

√

7
− 2

��
15

√
 ,
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PM1(L) � 
uv∈E(L)

du + dv( 

� (3 + 3)
4m+4n

×(3 + 5)
24mn− 16m− 16n+12

×(3 + 6)
(8m+8n− 8)

×(4 + 5)
4m+4n

×(4 + 6)
8m+8n− 8

×(4 + 12)
8mn− 4m− 4n+4

×(5 + 5)
4m+4n− 4

×(5 + 6)
12m+12n− 16

×(5 + 8)
4m+4n− 8

×(5 + 12)
4m+4n

×(6 + 6)
32mn− 26m− 26n+20

×(6 + 8)
16mn− 12m− 12n+8

×(6 + 12)
16mn− 12m− 12n+8

� 2(152mn− 76m− 76n+56)
× 3(64mn− 22m− 22n+28)

× 5(24mn− 12m− 12n+8)
× 7(16mn− 12m− 12n+8)

× 11(12m+12n− 16)
× 13(4m+4n− 8)

× 17(4m+4n)
,

PM2(L) � 
uv∈E(L)

dudv( 

� (3 × 3)
4m+4n

×(3 × 5)
24mn− 16m− 16n+12

×(3 × 6)
(8m+8n− 8)

×(4 × 5)
4m+4n

×(4 × 6)
8m+8n− 8

×(4 × 12)
8mn− 4m− 4n+4

×(5 × 5)
4m+4n− 4

×(5 × 6)
12m+12n− 16

×(5 × 8)
4m+4n− 8

×(5 × 12)
4m+4n

×(6 × 6)
32mn− 26m− 26n+20

×(6 × 8)
16mn− 12m− 12n+8

×(6 × 12)
16mn− 12m− 12n+8

� 2(216mn− 100m− 100n+64)
× 3(144mn− 60m− 60n+48)

× 5(40m+40n− 40)
. (6)

□

From 'eorem 3, we can compute the values of Randić,
first Zagreb, second Zagreb, and hyper-Zagreb index of L.

Corollary 2. LetL be the graph of stellation of P[m, n], then
we have

(1) Rα(L) � (
��
24

√
+ (24/

��
48

√
) + (16/

��
72

√
) + (16/3))

mn + ((8/
��
15

√
) − (8/

��
18

√
) + (4/

��
20

√
) − (16/

��
24

√
)

− (16/
��
48

√
) + (12/

��
30

√
) + (4/

��
40

√
) − (4/

��
60

√
) −

(12/
��
72

√
) − (11/5))(m + n) − (8/

��
15

√
) − (4/

��
18

√
) −

(12/
��
24

√
) + (12/

��
48

√
) − (16/

��
30

√
) − (8/

��
40

√
)+ (8/��

72
√

) + (12/5),
(2) M1(L) � 1372mn − 432(m + n) + 260,

(3) M2(L) � 4032mn − 1712(m + n) + 1068, and
(4) HM(L) � 17376mn − 7296(m + n) + 4740.

Next, we will compute the ABC4 and GA5 indices of L.
For this, we need to find the edge partition Si,j of the graph
L, where Si,j � uv ∈E(L): Su � i,Sv � j . Let mi,j denote

Table 6: Edge partition of Ei,j of L.

Ei,j E3,3 E3,5 E3,6

ei,j 4m + 4n 8m + 8n − 8 8m + 8n − 4
Ei,j E4,5 E4,6 E4,12
ei,j 4m + 4n 24mn − 16m − 16n + 12 8mn − 4m − 4n + 4
Ei,j E5,5 E5,6 E5,8
ei,j 4m + 4n − 4 12m + 12n − 16 4m + 4n − 8
Ei,j E5,12 E6,6 E6,8
ei,j 4m + 4n 32mn − 26m − 26n + 20 16mn − 12m − 12n + 8
Ei,j E6,12
ei,j 16mn − 12m − 12n + 8

Table 5: Vertex partition of L.

Vi 3 4 5

ni 8m + 8n − 4 8mn − 4m − 4n + 4 8m + 8n − 8
Vi 6 8 12
ni 20mn − 12m − 12n + 8 2mn − m − n 2mn − m − n + 1
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the cardinality of the set Si,j. 'e edge partition Si,j of L is
given in Table 7.

Theorem 4. LetL be the graph of stellation of P[m, n], then
we have

(1) ABC4(L) �
8

��
82

√

21
+
8

�
2

√

3
+
4

��
42

√

7
+
4

���
273

√

21
+

���
690

√

15
+
8

��
77

√

21
+ 2 mn +

2
��
10

√

5
+

��
58

√

15
+
3

�
6

√

14
+

4
����
3458

√

91
+
2

�����
41538

√

249
+
4

�
5

√

7
+
2

��
26

√

7
+
2

��
14

√

7
+
2

�����
39962

√

377
+
2

����
5510

√

145
+
4

�����
80852

√

1189
+
2

�����
19229

√

287
+
6

���
130

√

65
+

2
���
410

√

41
+
2

������
160310

√

943
+
12

���
161

√

161
+
6

����
1722

√

287
−
3

��
82

√

7
−
8

�
2

√

3
−
4

��
42

√

7
−
2

���
273

√

7
−

���
690

√

10
−
4

��
77

√

7
+
2

������
160022

√

899
+

2
������
256742

√

1271
+
4

���
186

√

31
+
4

����
7378

√

217
− 2(m + n) + −

3
�
6

√

7
−
8

����
3458

√

91
−
8

�����
41538

√

483
−
8

�
5

√

7
−
4

��
26

√

7


4
��
14

√

7
−
4

�����
39962

√

377
−
4

����
5510

√

145
−
8

�����
80852

√

1189
−
4

�����
19229

√

287
−
12

���
130

√

65
−
4

���
410

√

41
−
4

������
160310

√

943
−
24

���
161

√

161
−

12
����
1722

√

287
+
10

��
82

√

21
+
8

�
2

√

3
+
4

��
42

√

7
+
10

���
273

√

21
+

���
690

√

6
+
16

��
77

√

21
−
8

������
160022

√

899
−
8

������
256742

√

1271
−
16

���
186

√

31
−

16
����
7378

√

217
+
8

�
7

√

7
+
4

���
230

√

23
+
8

��
15

√

15
+
4

�
5

√

5
+
4

����
6765

√

205
+
4

��
70

√

21
+
2

���
253

√

23
+
2

���
161

√

23
+

����
9030

√

105
+
20

��
11

√

15
+ 2,

(2) GA5(L) � 8
��
35

√

3
+
128

��
21

√

37
+
64

��
15

√

31
+
128

��
42

√

53
+
64

��
30

√

47
+
64

��
14

√

15
+ 16 mn +

4
���
105

√

11
+
4

��
91

√

5
+

4
���
483

√

11
+
8

�
2

√

3
+
8

���
182

√

27
+
8

���
754

√

55
+
8

���
870

√

59
+
4

����
1189

√

35
+
16

���
287

√

69
+
2

���
195

√

7
+
8

����
1066

√

67
+
8

����
1886

√

87
+

8
���
322

√

37
+
8

����
1722

√

83
−
8

��
35

√

3
−
128

��
21

√

37
−
64

��
15

√

31
−
192

��
42

√

53
−
96

��
30

√

47
−
96

��
14

√

15
+
8

����
1798

√

91
+
8

����
2542

√

103
+

8
���
465

√

23
+
8

���
651

√

26
− 10(m + n) + −

8
��
91

√

5
−
8

���
483

√

11
−
16

���
182

√

27
−
16

���
754

√

55
−
16

���
870

√

59
−
8

����
1189

√

35
−

32
���
287

√

69
−
4

���
195

√

7
−
16

����
1066

√

67
−
16

����
1886

√

87
−
16

���
322

√

37
−
16

����
1722

√

83
+
8

��
35

√

3
+
128

��
21

√

37
+
64

��
15

√

31
+
320

��
42

√

53
+

160
��
30

√

47
+
128

��
14

√

15
−
32

����
1798

√

91
−
32

����
2542

√

103
−
32

���
465

√

23
−
16

���
651

√

13
+
16

��
42

√

13
+
16

���
322

√

37
+
16

���
690

√

53
+

16
���
210

√

29
+
32

���
435

√

89
+
32

���
615

√

101
+
16

��
70

√

17
+
16

��
69

√

35
+
61

���
161

√

51
+
4

���
105

√

11
+ 8

�
2

√
+ 16.

4
����
3458

√

91
+
2

�����
41538

√

249
+
4

�
5

√

7
+
2

��
26

√

7
+
2

��
14

√

7
+
2

�����
39962

√

377
+
2

����
5510

√

145
+
4

�����
80852

√

1189
+
2

�����
19229

√

287
+
6

���
130

√

65
+

2
���
410

√

41
+
2

������
160310

√

943
+
12

���
161

√

161
+
6

����
1722

√

287
−
3

��
82

√

7
−
8

�
2

√

3
−
4

��
42

√

7
−
2

���
273

√

7
−

���
690

√

10
−
4

��
77

√

7
+
2

������
160022

√

899
+

2
������
256742

√

1271
+
4

���
186

√

31
+
4

����
7378

√

217
− 2)(m + n) +(−

3
�
6

√

7
−
8

����
3458

√

91
−
8

�����
41538

√

483
−
8

�
5

√

7
−
4

��
26

√

7
−

4
��
14

√

7
−
4

�����
39962

√

377
−
4

����
5510

√

145
−
8

�����
80852

√

1189
−
4

�����
19229

√

287
−
12

���
130

√

65
−
4

���
410

√

41
−
4

������
160310

√

943
−
24

���
161

√

161
−

12
����
1722

√

287
+
10

��
82

√

21
+
8

�
2

√

3
+
4

��
42

√

7
+
10

���
273

√

21
+

���
690

√

6
+
16

��
77

√

21
−
8

������
160022

√

899
−
8

������
256742

√

1271
−
16

���
186

√

31
−

16
����
7378

√

217
+
8

�
7

√

7
+
4

���
230

√

23
+
8

��
15

√

15
+
4

�
5

√

5
+
4

����
6765

√

205
+
4

��
70

√

21
+
2

���
253

√

23
+
2

���
161

√

23
+

����
9030

√

105
+
20

��
11

√

15
+2).

(7)
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Proof. 'e edge partition of L depending on the sum of
degree of end vertices is presented in Table 7. 'e result
follows by using the values from Table 7 in the definition of
ABC4(L) and GA5(L). □

4. Conclusion

In this work, we have considered two transformations
(medial and stellation) on benzene ring embedded in P-type
surface on 2D network. We have computed general Randić,
general Zagreb, general sum-connectivity, first Zagreb,
second Zagreb, first multiple Zagreb, second multiple
Zagreb, ABC, GA, ABC4, and GA5 indices of these trans-
formation graphs.
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[6] B. Zhou and N. Trinajstić, “On general sum-connectivity
index,” Journal of Mathematical Chemistry, vol. 47, no. 1,
pp. 210–218, 2010.

[7] X. Li and H. Zhao, “Trees with the first three smallest and
largest generalized topological indices,” MATCH

Communications in Mathematical and in Computer Chem-
istry, vol. 50, pp. 57–62, 2004.

[8] I. Gutman and N. Trinajstić, “Graph theory and molecular
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Numerous studies based on mathematical models and tools indicate that there is a strong inherent relationship between the
chemical properties of the chemical compounds and drugs with their molecular structures. In the last two decades, the graph-
theoretic techniques are frequently used to analyse the various physicochemical and structural properties of the molecular graphs
which play a vital role in chemical engineering and pharmaceutical industry. In this paper, we compute Zagreb indices of the
generalized sum graphs in the form of the different indices of their factor graphs, where generalized sum graphs are obtained
under the operations of subdivision and strong product of graphs. Moreover, the obtained results are illustrated with the help of
particular classes of graphs and analysed to find the efficient subclass with dominant indices.

1. Introduction

In many fields (chemistry, physics, computer science, and
electrical networks) various physicochemical and structural
properties such as melting point, boiling point, chemical
bonds, bond energy, solubility, surface tension, critical
temperature, connectivity, stability, density, and polariz-
ability are studied with the help of various TIs (degree-based,
distance-based, and polynomial-based). Moreover, degree-
based TIs have been used as a powerful approach to discover
many new drugs, such as anineoplastics, anticonvulsants,
antiallergics, antimalarials, and silico generation (see [1]).
(erefore, this practice has proven that the TIs and the
quantitative structure-activity (or structure-property) rela-
tionships (QSAR or QSPR) have presented a foundation
stone in chemical engineering and pharmaceutical industry
for the process of the drug design and discovery (see [2, 3]).

LetΩ be a collection of (molecular) graphs in which each
graph is considered as a simple graph without multiedges
and loops. A topological index (TI) is a function

Top: Ω⟶ R that assigns a real number to each element
(graph) ofΩ, whereR is a set of real numbers. Moreover, for
two graphs G1 and G2, Top(G1) � Top(G2) if and only if G1
is isomorphic to G2. Mostly, TIs are computed for the
hydrogen-suppressed molecular graphs in which the atoms
are represented by nodes and bonds between them by edges.
In 1947, Wiener index (path number), first distance-based
TI, is utilized in the study of paraffin’s boiling point [4].
Gutman and Trinajstic [5] calculated total π-electrons en-
ergy of the molecules through a degree-based TI called as the
first Zagreb index (FZI). (ey also studied the various
properties of the second Zagreb index (SZI) in the same
paper. In chemical graph theory, many more TIs are in-
troduced in [6], but degree-based TIs are prominent than
others. For more details, we refer to [7, 8].

On the other hand, operations on graphs (addition,
complement, deletion, switching, subdivision, union, in-
tersection, and product) also play a very important role in
the construction of new graphs and structures. Yan et al. [9]
introduced the four operations S1, R1, Q1, andT1 on the
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subdivision of a graph and obtained the Wiener index of
these resultant graphs (S1(G), R1(G), Q1(G), T1(G)). For
Φ1 ∈ S1, R1, Q1, T1 , Taeri and Eliasi [10] defined the
Φ1-sum graphs (G1+Φ1G2) using the Cartesian product on
graphs Φ1(G1) and G2, where G1 andG2 are connected
graphs. (ey also studied the Wiener index of these Φ1-sum
graphs. Liu et al. [11] constructed Φ-sum graphs with the
help of the Cartesian product on the graphs Φ(G1) and G2
and calculated the first general Zagreb index for these
graphs, i.e., Mα

1 G1+Φ1 G2  . Liu et al. [12] introduced the
generalized Φ-sum (Φk-sum) graphs with the help of the
Cartesian product on the graphs Φk(G1) and G2, where k

represents some integral value. Moreover, they calculated
the mathematical expressions of the Zagreb indices for these
graphs, i.e., M1 G1+Φ1 G2   and M2 G1+Φk

G2  . Fur-
thermore, Awais et al. [13, 14] computed the forgotten
topological and hyper-Zagreb indices of generalized F-sum
graphs based on Cartesian product in terms of its factor
graphs. Recently, Awais et al. [15] computed the first general
Zagreb index of Fk-sum graphs in terms of TIs of their factor
graphs.

In the current study, we study the generalized Φ-sum
graphs which are obtained under the operation of strong
product on the graphs Φk(G1) and G2, where
Φk ∈ Sk, Rk, Qk, Tk  and k is some counting number.
Mainly, we compute the Zagreb indices of these generalized
Φ-sum graphs based on strong product such as
M1 G1⊠Φk

G2   and M2 G1⊠Φk
G2  . Moreover, a

comparison is also organized of the generalized Φ-sum
graphs G1⊠Sk

G2 , G1⊠Rk
G2 , G1⊠Qk

G2 , and
G1⊠Tk

G2  with respect to both the Zagreb indices (M1
and M2). (e rest of the paper is settled as follows: Section 2
covers basic notions, Section 3 predicated on main results,
and conclusively Section 4 included the application and
conclusion.”

2. Preliminaries

A graph G1 is a structure consisting of two finite sets of
vertices V(G) and edges E(G) in which pairs of vertices are
connected by edges. In particular, a graph will refer to a
simple undirected graph if each edge connects two distinct
vertices and there are no parallel edges. (roughout the
paper, the order of G1 is |V(G1)| � nG1

, and the size of a G1 is
|E(G1)| � eG1

. Given two vertices p and z, if pz ∈ G1, then p

and z are said to be adjacent.(e strength of edges which are
incident on any node p ∈ V(G1) is known as its degree
dG1

(p) [16]. Here, we defined few topological indices.

Definition 1. Let G1 be a simple undirected graph. (e first
Zagreb index (M1(G1) and second Zagreb index (M2(G1))

are:

M1 G1(  � 

pεV G1( )

dG1
(p) 

2
� 

pzεE G1( )

dG1
(p) + dG1

(z) ,

M2 G1(  � 

pzεE G1( )

dG1
(p) × dG1

(z) .

(1)

In 1972, Trinajsti and Gutman [5] introduced these two
TIs which are used in study of structure-based properties of
(molecular) graphs (see [17–19]). In 1960, Sabidussi [6]
introduced the strong product (G1⊠G2) for two graphs G1
and G2 with vertex set as Cartesian product V(G1⊠G2) �

V(G1) × V(G2) such that (p1, p2) and (z1, z2) will be ad-
jacent inG1⊠G2 iff p1 � z1 and p2 is adjacent to z2 or p2 � z2
and p1 is adjacent to z1 or p1 is adjacent to z1 and p2 is
adjacent to z2. Strong product is union of tensor product and
Cartesian product.

Definition 2. (e four generalized operations related to the
subdivision of graphs defined in [15] are given as follows:

(i) k-subdivision operation Sk � Sk(G1) can be made
by adding k new node in each uvεE(G1) of G1,
where k≥ 1 is an integral value

(ii) k-semitotal-point graph Rk � Rk(G1) with node set
V(Rk) � V(G1)∪ kE(G1) and link set E(Rk) �

E(Sk)∪E(G1)

(iii) k-semitotal line graph Qk � Qk(G1) with node set
V(Qk) � V(G1)∪ kE(G1) and link set E(Qk) �

E(Sk)∪E(Lk).
(iv) k-total point graph Tk � Tk(G1) with node set

V(Tk) � V(G1)∪ kE(G1) and link set E(Tk) �

E(Sk)∪E(Lk)∪E(G1) (for more details, see
Figure 1).

Definition 3. Let G1 andG2 be two graphs,
Φk ∈ Sk, Rk, Qk, Tk  is an operation, and Φk(H1) is ob-
tained after applying Φk on G1 having edge-set E(Φk(G1))

and node set V(Φk(G1)). (e generalized Φ-sum graph
G1⊠Φk

G2  is a graph having node set:

V G1⊠Φk
G2  � V Φk G1( (  × V G2( 

� V G1( ∪ kE G1( (  × V G2( ,
(2)

such that two nodes (p1, z1)&(p2, z2) of V G1⊠Φk
G2  are

adjacent iff p1 � p2 ∈ V(G1) and (z1, z2) ∈ E(G2) or
z1 � z2 ∈ V(G2) and (p1, p2) ∈ E(Φk(G1)) or
[(z1, z2) ∈ E(G2) and (p1, p2) ∈ E(Φk(G1))], where k≥ 1 is
a positive number. We noticed that the generalized Φ-sum
graphs G1⊠Φk

G2  contain |V(G2)| copies of graphs
Φk(G1) that are labeled with the nodes of G2. For more
details, see Figures 2 and 3.

3. Main Results

Now, we will prove the key results of M1 G1⊠Φk
G2  and

M2 G1⊠Φk
G2  in terms of its factor graphs G1 and G2. We

assume that G1 andG2 be two simple, undirected, and
connected graphs with order and size, |V(G1)| �

nG1
&|E(G1)| � eG1

and |V(G2)| � nG2
&|E(G2)| � eG2

respectively.

Theorem 1. LetG1 and G2 be two connected graphs such that
|V(G1)|≥ 3, |V(G2)|≥ 2. For k≥ 1,

2 Journal of Chemistry
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Figure 1: (a) G1 � P4. (b) S3(G1). (c) R3(Gp1). (d) Q3(G1). (e). T3(G1).
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Figure 2: Right:� P3⊠S2P4. Left:� P3⊠R2
P4.
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Figure 3: Right:� P3⊠Q2
P4. Left:� P3⊠T2

P4.
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(a) M1 G1⊠Sk
G2  � M1 S1G1(  nG2

+ 2eG2
  + 8(2k − 1)eG1

eG2
+ M1 G1(  + 4eG1

  M1 G2(  + 2eG2
 

+ M1 G2(  4eG1
+ nG1

  + 4(k − 1)eG1
n2 + M1 G2(  ,

(b) M2 G1⊠Sk
G2  � M2 G1(  + 4eG1

  5eG2
+ 3M1 G2(  + 2M2 G2(  + nG2

  + M1 G1(  eG2
+ M1 G2(  + M2 G2(  

+ 4(k − 1)eG1
6eG2

 + 3M1 G2(  + M2 G2(  +nG2
 + M2 G2(  12eG1

 +nG1


+ 8eG1
eG2

+ M1 G2(  14eG1
 .

(3)

Proof. Let d(p, z) � dG1⊠Sk
G2

(p, z) be the degree of a vertex
(p, z) in the graph G1⊠Sk

G2.

M1 G1⊠Sk
G2  � 

p,z)εV G1( ⊠Sk
G2 

d
2
(p, z) � 

p1 ,z1) p2 ,z2( )εE G1( ⊠Sk
G2 

[d p1( , z1 + d p2, z2( 

� 

pεV G1( )



z1p2εE G2( )

d p, z1(  + d p, z2(   + 

zεV G2( )



p1p2εE Sk G1( )( )

d p1, z(  + d p2, z(  

+ 

p1p2εE Sk G1( )( )



z1z2εV G2( )

d p1, z1(  + d p2, z2(   �  1 +  2 +  3.

(4)
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Figure 4: (a) Graphical representation of M1(PnS1
⊠Pm), M1(PnQ1

⊠Pm), M1(PnR1
⊠Pm), and M1(PnT1

⊠Pm) by red, green, orange, and purple
colour, respectively. (b) M2(PnS1

⊠Pm), M2(PnQ1
⊠Pm), M2(PnR1

⊠Pm), and M2(PnT1
⊠Pm) by purple, orange, pink, and green colour,

respectively.
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Consider

 1 � 

pεV G1( )



z1z2εE G2( )

d p, z1(  + d p, z2(   � 
pεV(G)


z1z2εE(H)

2 d(p) + d z1(  + d z2(  + d(p) d z1(  + d z2( (  

� 4eG1
eG2

+ M1 G2( nG1
+ 2M1 G2( eG1

.

 2 � 

zεV G2( )



p1p2εE Sk G1( )( )

d p1, y(  + d p2, z(   � 

zεV G2( )



p1εV G1( ),p2εV Sk G1( )−G1( )

d p1, z(  + d p2, z(  

+ 

zεV G2( )



p1 ,p2εV Sk G1( )−G1( )

d p1, z(  + d p2, z(   �  2′ +  2″,

 2′ � 

zεV G2( )



p1p2εE Sk G1( )( )p1εV G1( ),p2εV Sk G1( )( )−V G1( )

d p1, z(  + d p2, z(  

� 

zεV G2( )



p1p2εE Sk G1( )( )p1εV G1( ),p2εV Sk G1( )( )−V G1( )

d p1(  + d p2( (  + d(z) + d p1(  + d p2( ( d(z) .

(5)

Since in this case |E(S1(G))| � 2|E(G)|, we have

� M1 S1 G1( ( nG2
+ 4eG1

eG2
+ 2M1 S1 G1( ( eG2

,

 2″ � 
zεV(G2)



p1p2εE Sk(G1)( )p1 ,p2εV Sk(G1)( )−V(G1)

d p1, z(  + d p2, z(  

� 
zεV(G2)



p1p2εE Sk(G1)( )p1 ,p2εV Sk(G1)( )−V(G1)

d p1(  + d p1( d(z) + d p2(  + d p2( d(z) .

(6)

Since in this case |E(Sk(G1))| � (k − 1)|E(G1)|, we have

� 
zεV(G2)

4(k − 1)eG1
+ 4d(z)(k − 1)eG1

  � 4(k − 1)eG1
nG2

+ 8eG1
(k − 1)eG2

,

 3 � 

p1p2εE Sk G1( )( )



z1z2εV G2( )

d p1, z1(  + d p2, z2(  

� 

z1z2εV G2( )



p1p2εE Sk G1( )( )p1εV G1( ),p2εV Sk G1( )( )−V G1( )

d p1, z1(  + d p2, z2(  

+ 

z1z2εV G2( )



p1p2εE Sk G1( )( )p1 ,p2εV Sk G1( )( )−V G1( )

d p1, z1(  + d p2, z2(   �  3′ +  3″,

 3′ � 

z1z2εV G2( )



p1p2εE Sk G1( )( )p1εV G1( ),p2εV Sk G1( )( )−V G1( )

d p1, z1(  + d p2, z2(  

� 

z1z2εV G2( )



p1εV G1( ),p2εV Sk G1( )( )−V G1( )

d p1(  + d p2( (  + d z1(  + d p1( d z1(  + d p2( d z2(  

� 2eG2
M1 G1(  + 4eG1

  + 2eG1
M1 G2(  + M1 G2(  M1 G1(  + 4eG1

 ,

 3″ � 

z1z2εV G2( )



p1p2εE Sk G1( )( )p1 ,p2εV Sk G1( )( )−V G1( )

d p1, z1(  + d p2, z2(  

� 

z1z2εV G2( )



p1p2εE Sk G1( )( )p1 ,p2εV Sk G1( )( )−V G1( )

4 + 2 d z1(  + d z2( (   � 8(k − 1)eG1
eG2

+ 4(k − 1)eG1
M1 G2( .

(7)
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Consequently, we get

M1 G1⊠Sk
G2  � M1 S1G1(  nG2

+ 2eG2
  + 8(2k − 1)eG1

eG2
+ M1 G1(  + 4eG1

  M1 G2(  + 2eG2
 

+ M1 G2(  4eG1
+ nG1

  + 4(k − 1)eG1
n2 + M1 G2(  ,

(b)M2 G1⊠Sk
G2  � 

(p,z)εV G1⊠Sk
G2 

d
2
(p, z) � 

p1 ,z1( ) p2 ,z2( )εE G1⊠Sk
G2 

d p1, z1( d p2, z2(  

� 

pεV G1( )



z1z2εE G2( )

d p, z1( d p, z2(   + 

zεV G2( )



p1p2εE Sk G1( )( )

d p1, z( d p2, z(  

+ 

p1p2εE Sk G1( )( )



z1z2εV G2( )

d p1, z1( d p2, z2(   �  1 +  2 +  3.

(8)

Consider

 1 � 

pεV G1( )



z1z2εE G2( )

d p, z1( d p, z2(   � 

pεV G1( )



z1z2εE G2( )

d(p) + d z1(   d(p) + d z2(  

� 

pεV G1( )



z1z2εE G2( )

d
2
(p) + d

2
(p)(d z1 + d z2( (  + d(p) d z1(  + d z2(  + 2 d z1( d z2( (  + d z1( d z2(  

� M1 G1( eG2
+ M1 G1(  M1 G2(  + M2 G2(   + 2eG1

M1 G2(  + 2M2 G2(   + M2 G2( nG1
,

 2 � 

zεV G2( )



p1p2εE Sk G1( )( )p1εV G1( ),p2εV Sk G1( )−G1( )

d p1, z( d p2, z(  

+ 

zεV G2( )



p1p2εE Sk G1( )( )p1 ,p2εV Sk G1( )−G1( )

d p1, z( d p2, z(  

�  2′ +  2″,

 2′ � 

zεV G2( )



p1p2εE Sk G1( )( )p1εV G1( ),p2εV Sk G1( )( )−V G1( )

d p1, z( d p2, z(  

� 

zεV G2( )



p1p2εE Sk G1( )( )p1εV G1( ),p2εV Sk G1( )( )−V G1( )

d p1(  + d(z) + d p1( d(z)(  d p2(  + d p2( d(z)(  

� 

zεV G2( )



p1p2εE Sk G1( )( )p1εV G1( ),p2εV Sk G1( )( )−V G1( )

d p1( d p2(  + 2 d p1( d p2( d(z) + d p2( d(y) + d p2( d
2
(z)

+ d p1( d p2( d
2
(z)

� M2 G1(  + 4eG1
  nG2

+ 4eG2
+ M1 G2(   + 8eG1

eG2
+ 4eG1

M1 G2( ,

 2″ � 

zεV G2( )



p1p2εE Sk G1( )( )p1 ,p2εV Sk G1( )( )−V G1( )

d p1, z( d p2, z(  

� 

zεV G2( )



p1p2εE Sk G1( )( )p1 ,p2εV Sk G1( )( )−V G1( )

d p1(  + d p1( d(z)(  d p2(  + d p2( d(z)(  

� 

zεV G2( )



p1p2εE Sk G1( )( )p1εV G1( ),p2εV Sk G1( )( )−V G1( )

4 + 8d(z) + 4d
2
(z)  � 4(k − 1)eG1

nG2
+ 4eG2

+ M1 G2(  ,

 3 � 

z1z2εV G2( )



p1p2εE Sk G1( )( )p1εV G1( ),p2εV Sk G1( )( )−V G1( )

d p1, z1( d p2, z2(  

+ 

z1z2εV G2( )



p1p2εE Sk G1( )( )p1,p2εV Sk G1( )( )−V G1( )

d p1, z1( d p2, z2(   �  3′ +  3″,
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 3′ � 

z1z2εV G2( )



p1p2εE Sk G1( )( )p1εV G1( ),p2εV Sk G1( )( )−V G1( )

d p1, z1( d p2, z2(  

� 

z1z2εV G2( )



p1p2εE Sk G1( )( )p1εV G1( ),p2εV Sk G1( )( )−V G1( )

d p1(  + d z1(  + d p1( d z1( (  d p2(  + d p2( d z2( ( 

� 

zεV G2( )



p1p2εE Sk G1( )( )p1εV G1( ),p2εV Sk G1( )( )−V G1( )

· d p1( d p2(  + d p1( d p2( d z2(  + d p2( d z1(  + d p1( d z1( d z2(  + d p1( d p2( d z1(  + d p1( d p2( d z1( d z2(  

� M2 G1(  + 4eG1
  eG2

+ 2M1 G2(  + 2M2 G2(   + 8eG1
M1 G2(  + 8eG1

M2 G2( ,

 3″ � 
zεV(G2)



p1p2εE Sk(G1)( )z1 ,p2εV Sk(G1)( )−V(G1)

d p1, z1( d p2, z2(  

� 
zεV(G2)



p1p2εE Sk(G1)( )p1 ,p2εV Sk(G1)( )−V(G1)

d p1(  + d p1( d z1( (  d p2(  + d p2( d z2( (  

� 

zεV G2( )



p1εV G1( ),p2εV Sk G1( )( )−V G1( )

4 + 4 d z2(  + d z1( (  + 4 d z1( d z2(   � 8(k − 1)eG1
eG2

+ M1 G2(  + M2 G2(  .

(9)

(erefore,

M2 G1⊠Sk
G2  � M2 G1(  + 4eG1

  5eG2
+ 3M1 G2(  + 2M2 G2(  + nG2

  + M1 G1(  eG2
+ M1 G2(  + M2 G2(  

+ 4(k − 1)eG1
6eG2

+ 3M1 G2(  + M2 G2(  + nG2
  + M2 G2(  12eG1

+ nG1
 

+ 8eG1
eG2

+ M1 G2(  14eG1
 .

(10)

□
Theorem 2. LetG1 andG2 be two connected graphs such that
|V(G1)|, |V(G2)|≥ 4. For k≥ 1,

(a) M1 G1⊠Rk
G2  � M1 G2(  nG1

+ 12eG1
+ 4M1 G1(   + M1 G1(  12eG2

+ 2nG2
  + 24eG1

eG2

+ M1 R1 G1( (  − 2M1G1  nG2
+ 2eG2

  + 4(k − 1)eG1
nG2

+ 4eG2
+ M1 G2(  ,

(b) M2 G1⊠Rk
G2  � M1 G1(  8eG2

+ 12M1 G2(  + 4M2 G2(   + 4M2 G1(  nG2
+ 6eG2

+ 3M1 G2(  

+ M2 R1 G1( (  − 4M2G1 + 4(k − 1)eG1
  6eG2

+ 3M1 G2(  + 2M2 G2(  + nG2
 

+ M2 G2(  nG1
+ 2eG1

  + 4eG1
3M1 G2(  + 3M2 G2(  + 4eG2

  + eG1
M1 G2( .

(11)
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Proof. Let d(p, z) � dG1⊠Rk
G2

(p, z) be the degree of a vertex
(p, z) in the graph G1⊠Rk

G2.

M1 G1⊠Rk
G2  � 

(p,z)εV G1⊠Rk
G2 

d
2
(x, z) � 

p1 ,z1( ) p2 ,z2( )εE G1⊠Rk
G2 

d p1, z1(  + d z2, z2(  

� 

pεV G1( )



z1z2εE G2( )

d p, z1(  + d p, z2(   + 

zεV G2( )



p1p2εE Rk G1( )( )

d p1, z(  + d p2, z(  

+ 

p1p2εE Rk G1( )( )



z1z2εV G2( )

d p1, z1(  + d p2, z2(   �  1 +  2 +  3,

 1 � 

pεV G1( )



z1z2εE G2( )

d p, y1(  + d p, y2(  

� 

pεV G1( )



z1z2εE G2( )

2 d(p) + d z1(  + 2d(p)d z1(  + 2d(p) + d z2(  + 2 d(p)d z2(  

� 

pεV G1( )



z1z2εE G2( )

4 d(p) + d z1(  + d z2(  + 2d(p) d z1(  + d z2( (  

� 8eG1
eG2

+ M1 G2( nG1
+ 4M1 G2( eG1

,

 2 � 

zεV G2( )



p1p2εE Rk G1( )( )

d p1, z(  + d p2, z(   � 

zεV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV G1( )

d p1, z(  + d p2, z(  

+ 

zεV G2( )



p1p2εE Rk G1( )( )p1εV G1( ),p2εV Rk G1( )−G1( )

d p1, y(  + d p2, z(   + 

zεV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV Rk G1( )−G1( )

· d p1, z(  + d p2, y(  

�  2′ +  2″ +  2‴,

 2′ � 

zεV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV G1( )

d p1, z(  + d p2, z(  

� 

zεV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV G1( )

d p1(  + d(z) + d p1( d(z) + d p2(  + d(z) + d p2( d(z) 

� 

zεV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV G1( )

d p1(  + d p2(  + 2 d(z) + d(y) d p1(  + d p2( (  

� 2nG2
M1 G1(  + 4eG1

eG2
+ 4eG2

M1 G1( ,

 2″ � 

zεV G2( )



p1p2εE Rk G1( )( )p1εV G1( ),p2εV Sk G1( )( )−V G1( )

d p1, z(  + d p2, y(  

� 

zεV G2( )



p1p2εE Rk G1( )( )p1εV G1( ),p2εV Sk G1( )( )−V G1( )

d p1(  + d p2(  + d(z) + d p1(  + d p2( ( d(z) 

� M1 R1 G1( (  − 2M1 G1(   nG2
+ 2eG2

  + 4eG1
eG2

,

 2‴ � 
zεV(G2)



p1p2εE Rk(G1)( )p1 ,p2εV Rk(G1)( )−V(G1)

d p1, z(  + d p2, z(  

� 
zεV(G2)



p1p2εE Rk(G1)( )p1 ,p2εV Rk(G1)( )−V(G1)

d p1(  + d p2(  + d p1(  + d p2( ( d(z) 

� 4(k − 1)eG1
nG2

+ 8(k − 1)eG1
eG2

,

 3 � 

p1p2εE Rk G1( )( )



z1z2εV G2( )

d p1, z1(  + d p2, z2(   � 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV G1( )

d p1, z1(  + d p2, z2(  

+ 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1εV G1( ),p2εV Rk G1( )( )−V G1( )

d p1, z1(  + d p2, z2(  

+ 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV Rk G1( )( )−V G1( )

d p1, z1(  + d p2, z2(   �  3′ +  3″ +  3‴,
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 3′ � 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV G1( )

d p1, z1(  + d p2, z2(  

� 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV G1( )

d p1(  + d z1(  + d p1( d z1(  + d p2(  + d z2(  + d p2( d z2(  

� 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV G1( )

d p1(  + d p2(  + d z1(  + d z2(  + d p1( d z1(  + d p2( d z2(  

� 4eG2
M1 G1(  + 2M1 G2( eG1

+ 2M1 G2( M1 G1( ,

 3″ � 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1εV G1( ),p2εV Rk G1( )( )−V G1( )

d p1, z1(  + d p2, z2(  

� 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1εV G1( ),p2εV Rk G1( )( )−V G1( )

d p1(  + d z1(  + d p1( d z1(  + d p2(  + d p2z2(  

� 4eG2
M1 G1(  + 2M1 G2( eG1

+ 2M1 G2( M1 G1(  + 8eG1
eG2

+ 4eG1
M1 G2( ,

 3‴ � 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV Rk G1( )( )−V G1( )

d p1, z1(  + d p2, z2(  

� 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV Rk G1( )( )−V G1( )

d p1(  + d p2(  + d p1( d z1(  + d p2( d z2(  

� 8(k − 1)eG1
eG2

+ 4(k − 1)eG1
M1 G2( . (12)

Hence,

M1 G1⊠Rk
G2  � M1 G2(  nG1

+ 12eG1
+ 4M1 G1(   + M1 G1(  12eG2

+ 2nG2
  + 24eG1

eG2

+ M1 R1 G1( (  − 2M1G1  nG2
+ 2eG2

  + 4(k − 1)eG1
nG2

+ 4eG2
+ M1 G2(  ,

(b)M2 G1⊠Rk
G2  � 

(x,z)εV G1⊠Rk
G2 

d
2
(p, z) � 

p1 ,z1( ) p2 ,z2( )εE G1⊠Rk
G2 

d p1, z1( d p2, z2(  

� 

pεV G1( )



z1z2εE G2( )

d p, z1( d p, z2(   + 

zεV G2( )



p1p2εE Rk G1( )( )

d p1, z( d p2, z(  

+ 

p1p2εE Rk G1( )( )



z1z2εV G2( )

d p1, z1( d p2, z2(   �  1 +  2 +  3.

(13)
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Consider

 1 � 

pεV G1( )



z1z2εE G2( )

d p, z1( d p, z2(   � 

pεV G1( )



z1z2εE G2( )

d(p) + d z1(   d(p) + d z2(  

� 

pεV G1( )



z1z2εE G2( )

d
2
(p) + d

2
(p) d z1(  + d z2( (  + d

2
(p) d z1(  + d z2( (  + 2d(p)d z1( d z2(  + d z1( d z2( 

� 

z1z2εE G2( )

4M1 G1(  + 4M1 G1(   d z1(  + d z2(  + d z1( d z2(  + 4eG1
[d z1(  + d z2(  + 2d z1( d z2(  

+ d z1( d z2(  nG1
  � 4M1 G1(  eG2

+ M1 G2(  + M2 G2(   + 4eG1
M1 G2(  + 2M2 G2(   + M2 G2( nG1

,

 2 � 

zεV G2( )



p1p2εE Rk G1( )( )

d p1, z( d p2, z(  

� 

zεV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV G1( )

d p1, z( d p2, z(   + 

zεV G2( )



p1p2εE Rk G1( )( )p1εV G1( ),p2εV Rk G1( )−G1( )

d p1, z( d p2, z(  

+ 

zεV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV Rk G1( )−G1( )

d p1, z( d p2, z(   �  2′ +  2″ +  2‴,

 2′ � 

zεV G2( )



p1p2εE Rk G1( )( )

d p1, z( d p2, z(  

� 

zεV G2( )



p1p2εE Rk G1( )( )

d p1(  + d(z) + d p1( d(z)  d p2(  + d(z) + d p2( d(z) 

� 

zεV G2( )



p1p2εE Rk G1( )( )

4d p1( d p2(  + 2 d p1( d(z) + 4d p1( d p2( d(z) + 2 d p2( d(z)

+d
2
(z) + 2 d p2( d

2
(z) + 4 d p1( d p2( d(z) + 4 d p1( d p2( d

2
(z)

� 4M2 G1(  nG2
+ 4eG2

+ M1 G2(  + 2M1 G1(  M1 G2(  + 2eG2
 + eG1

M1 G2( ,

 2″ � 

zεV G2( )



p1p2εE Rk G1( )( )p1εV G1( ),p2εV Rk G1( )( )−V G1( )

d p1, z( d p2, z(  

� 

zεV G2( )



p1p2εE Rk G1( )( )p1εV G1( ),p2εV Rk G1( )( )−V G1( )

(d p1 + d(z) + d p1( d(z)(  d p2(  + d p2( d(z)(  

� 

zεV G2( )



p1p2εE Rk G1( )( )p1εV G1( ),p2εV Rk G1( )( )−V G1( )

2 d p1(  1 + d(z) + d(y) + d
2
(z) + 2 d(z) + 2d

2
(y) 

� M2 R1 G1( (  − 4M2 G1(  nG2
+ 4eG2

+ M1 G2(  + 8eG1
eG2

+ 4eG1
M1 G2( ,


″′

2
� 

zεV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV Rk G1( )( )−V G1( )

d p1, z( d p2, z(  

� 

zεV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV Rk G1( )( )−V G1( )

d p1(  + d p1( d(z)(  d p2(  + d p2( d(z)(  

� 

zεV G2( )



p1εV G1( ),p2εV Rk G1( )( )−V G1( )

4 + 8 d(y) + 4d
2
(z)] � 4(k − 1)eG1

nG2
 + 4eG2

+ M1 G2(  ,
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 3 � 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV G1( )

d p1, z1( d p2, z2(  

+ 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1εV G1( ),p2εV Rk G1( )( )−V G1( )

d p1, z1( d p2, z2(  

+ 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV Rk G1( )( )−V G1( )

d p1, z1( d p2, z2(   �  3′ +  3″ +  3‴,

 3′ � 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV G1( )

d p1, z1( d p2, z2(  

� 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1 ,p2εV G1( )

4d p1( d p2(  + 2 d p1( d z2(  + d p2( d z1(   + d z1( d z2( 

+4 d p1( d p2( d z1( d z2(  + 4 d p1( d p2(  d z1(  + d z2(   + 2 d p1(  + d p2(  d z1( d z2( 

� 8M2 G1( eG2
+ 2M1 G1( M1 G2(  + 2M2 G2( eG1

+ 8M2 G1(  M2 G2(  + M1 G2(   + 4M1 G1( M2 G2( ,

 3″ � 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1εV G1( ),p2εV Rk G1( )( )−V G1( )

d p1, z1( d p2, z2(  

� 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1εV G1( ),p2εV Rk G1( )( )−V G1( )

d p1(  + d z1(  + d p1( d z1( (  d p2(  + d p2( d z2( (  

� 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1εV G1( ),p2εV Rk G1( )( )−V G1( )

4 d p1(  1 + d z2(  + d z1( 

+ d z1( d z2(  + 2 d z1(  + d z1( d z2(  

� M2 R1 G1( (  − 4M2 G1(   2eG2
+ 2M1 G2(  + 2M2 G2(   + 4eG1

M1 G2(  + M2 G2(  ,


″′

3
� 

z1z2εV G2( )



p1p2εE Rk(G1)( )p1 ,p2εV Rk(G1)( )−V(G1)

d p1, z1( d p2, z2(  

� 

z1z2εV G2( )



p1p2εE Rk(G1)( )p1 ,p2εV Rk(G1)( )−V(G1)

d p1(  + d p1( d z1( (  d p2(  + d p2( d z2( (  

� 

z1z2εV G2( )



p1p2εE Rk G1( )( )p1εV G1( ),p2εV Rk G1( )( )−V G1( )

d p1( d p2(  1 + d y2(  + d z1( (  + d z1( d z2(   

� 8(k − 1)eG1
eG2

+ M1 G2(  + M2 G2(  . (14)

Consequently, we have

M2 G1⊠Rk
G2  � M1 G1(  8eG2

+ 12M1 G2(  + 4M2 G2(   + 4M2 G1(  nG2
+ 6eG2

+ 3M1 G2(  

+ M2 R1 G1( (  − 4M2G1 + 4(k − 1)eG1
  6eG2

+ 3M1 G2(  + 2M2 G2(  + nG2
 

+ M2 G2(  nG1
+ 2eG1

  + 4eG1
3M1 G2(  + 3M2 G2(  + 4eG2

  + eG1
M1 G2( .

(15)

□
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Theorem 3. LetG1 andG2 be two connected graphs such that
|V(G1)|, |V(G2)|≥ 4. For k≥ 1,

(a) M1 G1⊠Qk
G2  � k M3 G1(  + 2M2 G1(  − 2M1 G1(   nG2

+ 4eG2
+ M1 G2(   + 8eG1

eG2

+ M1 G1( [2(k − 1) + 3] nG2
+ 4eG2

+ M1 G2(   + M1 G2(  nG1
+ 4eG1

 ,

(b) M2 G1⊠Qk
G2  � k nG2

+ 6eG2
+ 3M1 G2(  + 2M2 G2(  

1
2



vεV G1( )

d
4
G1

(v) − d
3
G1

(v) 
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ 

uvεV G1( )

rdG1
(u)dG1

(v) + 

vεV G1( )

d
2
G1

(v) 

uεV G1( )

uvεE G1( )

dG1
(u) − 2M2 G1( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ M2 G2(  4eG1
+ nG1

  + 2eG1
M1 G2(  + M1 G1(  5e2 + 5M1 G2(  + 5M2 G2(  

+ k M3 G1(  + 2M2 G1(   6eG2
+ 3M1 G2(  + 2M2 G2(  + nG2

 .

(16)

Proof. Let d(p, z) � dG1⊠Qk
G2

(p, z) be the degree of a vertex
(p, z) in the graph G1⊠Qk

G2.

M1 G1⊠Qk
G2  � 

(p,z)εV G1⊠Qk
G2 

d
2
(p, z) � 

p1 ,z1( ) p2 ,z2( )εE G1⊠Qk
G2 

d p1, z1(  + d p2, z2(  

� 

pεV G1( )



z1z2εE G2( )

d p, z1(  + d p, z2(   + 

zεV G2( )



p1p2εE Qk G1( )( )

d p1, z(  + d p2, z(  

+ 

p1p2εE Qk G1( )( )



z1z2εV G2( )

d p1, z1(  + d p2, z2(   �  1 +  2 +  3,

 1 � 

pεV G1( )



z1z2εE G2( )

d p, z1(  + d p, z2(  

� 

pεV G1( )



z1z2εE G2( )

d(p) + d z1(  + d(p)d z1(  + d(p) + d z2(  + d(p)d z2(  

� 
pεV(G)



z1z2εE G2( )

2d(p) + d z1(  + d z2(  + d(p) d z1(  + d z2(   

� 4eG1
eG2

+ M1 G2( nG1
+ 2M1 G2( eG1

,

 2 � 

zεV G2( )



p1p2εE Qk G1( )( )

d p1, z(  + d p2, z(  

� 

zεV G2( )



p1p2εE Qk G1( )( )p1εV G1( ),p2εV Qk G1( )−G1( )

d p1, z(  + d p2, z(  

+ 

zεV G2( )



p1p2εE Qk G1( )( )p1 ,p2εV Qk G1( )−G1( )

d p1, y(  + d p2, z(   �  2′ +  2″,

12 Journal of Chemistry



 2′ � 

zεV G2( )



p1p2εE Qk G1( )( )p1εV G1( ),p2εV Qk G1( )( )−V G1( )

d p1, z(  + d p2, z(  

� 

zεV G2( )



p1p2εE Qk G1( )( )p1εV G1( ),p2εV Qk G1( )( )−V G1( )

d p1(  + d(z) + d p1( d(y) + d p2(  + d p2( d(z) 

� M1 G1( nG2
+ 4eG1

eG2
+ 6M1 G1( eG2

+ 2nG2
M1 G1( ,

 2″ � 

zεV G2( )



p1p2εE Qk G1( )( )

p1p2εV Qk G1( )( )−V G1( )

d p1, z( d p2, z(  . (17)

Now, we split this sum into two parts for the vertices, p1
and p2, where p1p2εV(Qk(G1)) − V(G1). Assume that
 2″ �  2″a +  2″b, where  2″a cover the edges of

Qk(G1) which are in the same edges of G1 and  2″b of
Qk(G1) in two different adjacent edges of G1.

 2″a � 

zεV G2( )



p1p2εE Qk G1( )( )p1 ,p2εV Qk G1( )( )−V G1( )

d p1, z(  + d p2, z(  

� 

zεV G2( )



p1p2εE Qk G1( )( )p1 ,p2εV Qk G1( )( )−V G1( )

d p1(  + d p1( d(z) + d p2(  + d p2( d(z) 

� 2(k − 1)nG2
M1 G1(  + 4(k − 1)eG2

M1 G1( ,

 2″b � 

zεV G2( )



p1p2εE Qk G1( )( )p1 ,p2εV Qk G1( )( )−V G1( )

d p1, y(  + d p2, z(  

� 

zεV G2( )



p1p2εE Qk G1( )( )p1 ,p2εV Qk G1( )( )−V G1( )

d p1(  + d p1( d(z) + d p2(  + d p2( d(z) 

� 

zεV G2( )



u,v,wεV G1( )uv,vwεE G1( )

[d(u) + d(v) + d(v) + d(w) +[d(u) + d(v) + d(v) + d(w)]d(z)]

� k M3 G1(  + 2M2 G1(  − 2M1 G1(   nG2
+ 2eG2

 ,

 3 � 

p1p2εE Qk G1( )( )



z1z2εV G2( )

d p1, z1(  + d p2, z2(  

� 

z1z2εV G2( )



p1p2εE Qk G1( )( )p1εV G1( ),p2εV Qk G1( )( )−V G1( )

d p1, z1(  + d p2, z2(  

+ 

z1z2εV G2( )



p1p2εE Qk G1( )( )p1 ,p2εV Qk G1( )( )−V G1( )

d p1, z1(  + d p2, z2(  

�  3′ +  3″,

 3′ � 

z1z2εV G2( )



p1p2εE Qk G1( )( )p1 ,p2εV G1( )

d p1, z1(  + d p2, z2(  

� 

z1z2εV G2( )



p1p2εE Qk G1( )( )p1 ,p2εV G1( )

d p1(  + d z1(  + d p1( d z1(  + d p2(  + d z2(  + d p2z2(  

� 6eG2
M1 G1(  + 2M1 G2( eG1

+ 3M1 G2( M1 G1( .

(18)
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Now, we split this sum into two parts for the vertices, p1
and p2, where p1p2ϵV(Qk(Γ1)) − V(Γ1). Assume that
 3″ �  3″a +  3″b, where  3″a cover the edges of

Qk(G1) which are in the same edges of G1 and  3″b of
Qk(G1) in two different adjacent edges of G1.

 3″a � 

z1z2εV G2( )



p1p2εE Qk G1( )( )p1εV G1( ),p2εV Qk G1( )( )−V G1( )

d p1, z1(  + d p2, z2(  

� 

z1z2εV G2( )



p1p2εE Qk G1( )( )p1εV G1( ),p2εV Qk G1( )( )−V G1( )

d p1(  + d p1( d z1(  + d p2(  + d p2( d z2(  

� 4(k − 1)eG2
M1 G1(  + 2(k − 1)M1 G2( M1 G1( ,

 3″b � 

z1z2εV G2( )



p1p2εE Qk G1( )( )p1 ,p2εV Qk G1( )( )−V G1( )

d p1, z1(  + d p2, z2(  

� 

z1z2εV G2( )



p1p2εE Qk G1( )( )p1 ,p2εV Qk G1( )( )−V G1( )

d p1(  + d p2(  + d p1( d z1(  + d p2( d z2(  

� k M3 G1(  + 2M2 G1(  − 2M1G1  2eG2
+ M1 G2(  .

(19)

Consequently, we have

M1 G1⊠Qk
G2  � k M3 G1(  + 2M2 G1(  − 2M1 G1(   nG2

+ 4eG2
+ M1 G2(   + 8eG1

eG2

+ M1 G1( [2(k − 1) + 3] nG2
+ 4eG2

+ M1 G2(   + M1 G2(  nG1
+ 4eG1

 .

(20)

Next,

(b) M2 G1⊠Qk
G2  � 

(p,z)εV G1⊠Qk
G2 

d
2
(p, z) � 

p1 ,1( ) p2 ,z2( )εE G1⊠Qk
G2 

d p1, z1( d p2, z2(  

� 

pεV G1( )



z1z2εE G2( )

d p, z1( d p, z2(   + 

zεV G2( )



p1p2εE Qk G1( )( )

d p1, z( d p2, z(  

+ 

p1p2εE Qk G1( )( )



z1z2εV G2( )

d p1, z1( d p2, z2(   �  1 +  2 +  3.

(21)
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Consider

 1 � 

pεV G1( )



z1z2εE G2( )

d p, z1( d p, z2(   � 

pεV G1( )



z1z2εE G2( )

d(p) + d z1(   d(p) + d z2(  

� M1 G1( eG2
+ M1 G1(  M1 G2(  + M2 G2(   + 2eG1

M1 G2(  + 2M2 G2(   + M2 G2( nG1
,

 2 � 

zεV G2( )



p1p2εE Qk G1( )( )

d p1, z( d p2, z(   � 

zεV G2( )



p1p2εE Qk G1( )( )
p1εV G1( )p2εV Qk G1( )( )−V G2( )

d p1, z( d p2, z(  

+ 

zεV G2( )



p1p2εE Qk G1( )( )
p1p2εV Qk G1( )( )−V G1( )

d p1, z( d p2, z(   � ′ 2 + ″ 2,

′ 2 � 

zεV G2( )



p1p2εE Qk G1( )( )p1εV G1( )p2εV Qk G1( )( )−V G1( )

d p1, z( d p2, z(  

� 

zεV G2( )



p1p2εE Qk G1( )( )p1εV G1( )p2εV Qk G1( )( )−V G1( )

d p1(  + d(z) + d p1( d(z)  d p2(  + d(z) + d p2( d(z) 

� 

zεV G2( )



p1p2εE Qk G1( )( )

d p1( d p2(  1 + 2 d(z) + d
2
(z)  + d p2(  d(z) + d

2
(z)  

� M3 G1(  + 2M2 G1(   nG2
+ 4eG2

+ M1 G2(   + 2M1 G1(  2eG2
+ M1 G2(  ,

 2″ � 

zεV G2( )



p1p2εE Qk G1( )( )
p1p2εV Qk G1( )( )−V G1( )

d p1, z( d p2, z(  .

(22)

Now, we split this sum into two parts for the vertices, p1
and p2, where p1p2εV(Qk(G1)) − V(G1). Assume that

 2″a which are in the same edges of G1 and  2″b of
Qk(G1) in two different adjacent edges of G1.

 2″a � 

zεV G2( )



p1p2εE Qk G1( )( )
p1p2εV Qk G1( )( )−V G1( )

d p1(  + d p1( d(z)(  d p2(  + d p2( d(z)(  

� 

zεV G2( )



p1p2εE Qk G1( )( )
p1p2εV Qk G1( )( )−V G1( )

d p1( d p2(  + 2d p1( d p2( d(z) + d p1( d p2( d
2
(z) 

� 

zεV G2( )



p1p2εE Qk G1( )( )
p1p2εV Qk G1( )( )−V G1( )

d p1( d p2(   1 + 2 d(z) + d
2
(z) 

� (k − 1) M3 G1(  + 2M2 G1(   nG2
+ 4eG2

+ M1 G2(  ,

 2″b � 

zεV G2( )



p1p2εE Qk G1( )( )
p1p2εV Qk G1( )( )−V G1( )

d p1(  + d p1( d(z)(  d p2(  + d p2( d(z)(  

� k 

zεV G2( )

1 + 2d(z) + d
2
(z)  

p1p2εE Qk G1( )( )
p1p2εV Qk G1( )( )−V G1( )

d p1( d p2(  

� k nG2
+ 4eG2

+ M1 G2(   

uvεE G1( )
vwεE G2( )

dG1
(u) + dG1

(v)  dG1
(v) + dG1

(w) ,

(23)
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where p1 is the added vertex in the edge uv and p2 is added
vertex in the edges vw of G1:

� (k) nG2
+ 4eG2

+ M1 G2(  
1
2



vεV G1( )

d
4
G1

(v) − d
3
G1

(v)  + 

uvεV G1( )

rdG1
(u)dG1

(v)
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ 

vεV G1( )

d
2
G1

(v) 

uεV G1( )

uvεE G1( )

dG1
(u) − 2M2 G1( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(24)

where r is the number of neighbors which are common
vertices of u and v in (Γ1).

 3 � 

z1z2εV G2( )



p1p2εE Qk G1( )( )p1εV G1( ),p2εV Qk G1( )( )−V G1( )

d p1, z1( d p2, z2(  

+ 

y1z2εV G2( )



p1ps2εE Qk G1( )( )p1 ,p2εV Qk G1( )( )−V G1( )

d p1, z1( d p2, z2(   �  3′ +  3″,

 3′ � 

z1z2εV G2( )



p1p2εE Qk G1( )( )p1εV G1( ),p2εV Qk G1( )( )−V G1( )

d p1, z1( d p2, z2(  

� 

z1z2εV G2( )



p1p2εE Qk G1( )( )p1εV G1( ),p2εV Qk G1( )( )−V G1( )

d p1(  + d z1(  + d p1( d z1( (  d p2(  + d p2( d z2( (  

� M3 G1(  + 2M2 G1(   2eG2
+ 2M1 G2(  + 2M2 G2(   + 2M1 G1(  2M2 G2(  + M1 G2(  ,

 3″ � 

z1z2εV G2( )



p1p2εE Qk G1( )( )

p1p2εV Qk G1( )( )−V G1( )

d p1, z( d p2, z(  .

(25)

Now, we split this sum into two parts for the vertices, p1
and p2, where p1p2εV(Qk(G1)) − V(G1). Assume that

 3″a which are in the same edges of G1 and  3″b of
Qk(G1) in two different adjacent edges of G1.
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 3″a � 

z1z2εV G2( )



p1p2εE Qk(G1)( )p1 ,p2εV Qk(G1)( )−V(G1)

d p1, z1( d p2, z2(  

� 

z1z2εV G2( )



p1p2εE Qk(G1)( )p1 ,p2εV Qk(G1)( )−V(G1)

d p1(  + d p1( d z1( (  d p2(  + d p2( d z2( (  

� 

z1z2εV G2( )

1 + d z2(  + d z1(  + d z1( d z2(   

p1p2εE Qk G1( )( )p1εV G1( ),p2εV Qk G1( )( )−V G1( )

d p1( d p2(  

� (k − 1) 2eG2
+ 2M1 G2(  + 2M2 G2(   M3 G1(  + 2M2 G1(  ,

 3″b � 

z1z2εV G2( )



p1p2εE Qk(G1)( )p1 ,p2εV Qk(G1)( )−V(G1)

d p1, z1( d p2, z2(  

� 

z1z2εV G2( )



p1p2εE Qk(G1)( )p1 ,p2εV Qk(G1)( )−V(G1)

d p1(  + d p1( d z1( (  d p2(  + d p2( d z2( (  

� 

z1z2εV G2( )

1 + d z2(  + d z1(  + d z1( d z2(   

p1p2εE Qk G1( )( )p1εV G1( ),p2εV Qk G1( )( )−V G1( )

d p1( d p2(  

� k 2eG2
+ 2M1 G2(  + 2M2 G2(   

uvεE G1( )
vwεE G2( )

dG1
(u) + dG1

(v)  dG1
(v) + dG1

(w) ,

(26)

where p1 is the added vertex in the edge uv and p2 is added
vertex in the edges vw of G1:

� (k) 2eG2
+ 2M1 G2(  + 2M2 G2(  

1
2



vεV G1( )

d
4
G1

(v) − d
3
G1

(v)  + 

uvεV G1( )

rdG1
(u)dG1

(v)
⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ 

vεV G1( )

d
2
G1

(v) 

uεV G1( )

uvεE G1( )

dG1
(u) − 2M2 G1( 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(27)

where r is the number of neighbors which are common
vertices of u and v in (G1).

Consequently, we have

M2 G1⊠Qk
G2  � k nG2

+ 6eG2
+ 3M1 G2(  + 2M2 G2(  

1
2



vεV G1( )

d
4
G1

(v) − d
3
G1

(v) 
⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ 

uvεV G1( )

rdG1
(u)dG1

(v) + 

vεV G1( )

d
2
G1

(v) 

uεV G1( )

uvεE G1( )

dG1
(u) − 2M2 G1( 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ M2 G2(  4eG1
+ nG1

  + 2eG1
M1 G2(  + M1 G1(  5e2 + 5M1 G2(  + 5M2 G2(  

+ k M3 G1(  + 2M2 G1(   6eG2
+ 3M1 G2(  + 2M2 G2(  + nG2

 .

(28)

□
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Theorem 4. LetG1 andG2 be two connected graphs such that
|V(G1)|, |V(G2)|≥ 4. For k≥ 1,

(a) M1 G1⊠Tk
G2  � M1 G2(  8eG1

+ nG1
+ 6M1 G1(   + 2(k − 1)M1 G1(  2eG2

+ M1 G2(  

+ k M3 G1(  + 2M2 G1(  − 2M1 G1(   4eG2
+ nG2

+ M1 G2(   + 16eG1
eG2

+ M1 G1(  2(11 + k)eG2
+ 2(k + 2)nG2

 ,

(b) M2 G1⊠Tk
G2  � k nG2

+ 6eG2
+ 3M1 G2(  + 2M2 G2(  

1
2



vεV G1( )

d
4
G1

(v) − d
3
G1

(v)  + 

uvεV G1( )

rdG1
(u)dG1

(v)
⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ 

vεV G1( )

d
2
G1

(v) 

uεV G1( )

uvεE G1( )

dG1
(u) − 2M2 G1( 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ M2 G1(  4nG2
+ 24eG2

+ 8M2 G2(  + 12M1 G2(  

+ k M3 G1(  + 2M2 G1(   6eG2
+ nG2

+ 3M1 G2(  + 2M2 G2(   + 5M1 G2( eG1

+ M2 G2(  10eG1
+ nG1

  + M1 G1(  10eG2
+ 11M1 G2(  + 10M2 G2(  .

(29)

4. Applications and Conclusion

In this section, we have computed the first and second
Zagreb indices of generalizedΦ-sum graphs based on strong
product as application of (eorem 1 to (eorem 4 for k � 1

given as follows. We also find the subclass with better Zagreb
indices as presented in Tables 1 and 2 and Figure 4

(i) S1-sum:

(a) M1 G1⊠S1G2  � M1 S1G1(  nG2
+ 2eG2

  + 8eG1
eG2

+ M1 G1(  + 4eG1
  M1 G2(  + 2eG2

 

+ M1 G2(  4eG1
+ nG1

 ,

(b) M2 G1⊠S1G2  � M2 G1(  + 4eG1
  5eG2

+ 3M1 G2(  + 2M2 G2(  + nG2
  + 14eG1

M1 G2( 

+ M2 G2(  12eG1
+ nG1

  + M1 G1(  eG2
+ M1 G2(  + M2 G2(   + 8eG1

eG2
.

(30)

(ii) R1-sum:

(a) M1 G1⊠R1
G2  � 24eG1

eG2
+ M1 G2(  nG1

 + 12eG1
+ M1 G1(  12eG2

+ 2nG2
 

+ M1 R1 G1( (  − 2M1G1  nG2
+ 2eG2

 ,

(b) M2 G1⊠R1
G2  � 2M1 G1(  4eG2

+ 6M1 G2(  + 2M2 G2(   + 4eG1
3M1 G2(  + 3M2 G2(  + 4eG2

 

+ M2 R1 G1( (  − 4M2G1  6eG2
+ 3M1 G2(  + 2M2 G2(  + nG2

  + eG1
M1 G2( 

+ 4M2 G1(  nG2
+ 6eG2

+ 3M1 G2(   + M2 G2(  nG1
+ 2eG1

 .

(31)
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(iii) Q1-sum:

(a) M1 G1⊠Q1
G2  � M3 G1(  + 2M2 G1(  − 2M1 G1(   nG2

+ 4eG2
+ M1 G2(   + 8eG1

eG2

+ 3M1 G1(  nG2
+ 4eG2

+ M1 G2(   + M1 G2(  nG1
+ 4eG1

 ,

(b) M2 G1⊠Q1
G2  � nG2

+ 6eG2
+ 3M1 G2(  + 2M2 G2(  

1
2



vεV G1( )

d
4
G1

(v) − d
3
G1

(v) 
⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ 

uvεV G1( )

rdG1
(u)dG1

(v) + 

vεV G1( )

d
2
G1

(v) 

uεV G1( )

uvεE G1( )

dG1
(u) − 2M2 G1( 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ M2 G2(  4eG1
+ nG1

  + 2eG1
M1 G2(  + M1 G1(  5e2 + 5M1 G2(  + 5M2 G2(  

+ M3 G1(  + 2M2 G1(   6eG2
+ 3M1 G2(  + 2M2 G2(  + nG2

 ,

(32)

(iv) T1-sum:

(a) M1 G1⊠T1
G2  � M1 G2(  8eG1

+ nG1
+ 6M1 G1(   + M1 G1(  24eG2

+ 6nG2
 

+ M3 G1(  + 2M2 G1(  − 2M1 G1(   4eG2
+ nG2

+ M1 G2(   + 16eG1
eG2

,

(b) M2 G1⊠T1
G2  � nG2

+ 6eG2
+ 3M1 G2(  + 2M2 G2(  

1
2



vεV G1( )

d
4
G1

(v) − d
3
G1

(v) 
⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ 

uvεV G1( )

rdG1
(u)dG1

(v) + 

vεV G1( )

d
2
G1

(v) 

uεV G1( )

uvεE G1( )

dG1
(u) − 2M2 G1( 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ M3 G1(  + 2M2 G1(   6eG2
+ nG2

+ 3M1 G2(  + 2M2 G2(   + 5M1 G2( eG1

+ M2 G2(  10eG1
+ nG1

  + M1 G1(  10eG2
+ 11M1 G2(  + 10M2 G2(  

+ M2 G1(  4nG2
+ 24eG2

+ 8M2 G2(  + 12M1 G2(  .

(33)

Table 1: M1(Pn⊠Φ1Pm) for path graph.

[m, n] M1(Pn⊠S1Pm) M1(Pn⊠R1
Pm) M1(Pn⊠Q1

Pm) M1(Pn⊠T1
Pm)

(3, 3) 336 722 472 892
(4, 4) 804 1776 1220 2204
(5, 5) 1086 3294 2296 4108
(6, 6) 1854 7040 3700 8368
(7, 7) 2606 9878 5432 11848

Table 2: M2(Pn⊠Φ1Pm) for path graph.

[m, n] M2(Pn⊠S1Pm) M2(Pn⊠R1
Pm) M2(Pn⊠Q1

Pm) M2(Pn⊠T1
Pm)

(3, 3) 824 2384 1535 2899
(4, 4) 2262 5230 5002 9700
(5, 5) 4404 11636 9674 17818
(6, 6) 6738 17546 15818 28696
(7, 7) 10740 25816 23026 40942
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Now, we close our discussion with the conclusion that
both the Zagreb indices of the generalized T-sum graph are
dominant among the Zagreb indices of all the generalized
sum graphs as shown in Figure 4. We also conclude that, in
the generalized T-sum graph, the number of vertices (atoms)
and edges (bonds) between them are more than the other
graphs of this family for each integral values of k. (us, the
role of Zagreb indices for generalized T-sum graph remains
dominant for each integral values of k. However, the
problem is still open to find different degree- and distance-
based TIs for the generalized sum graphs obtained under the
various operations of product of graphs.
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