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Let G be a graph. The Hosoya index of G, denoted by z (G), is defined as the total number of its matchings. The computation of
z(G) is NP-Complete. Wagner and Gutman pointed out that it is difficult to obtain results of the maximum Hosoya index among
tree-like graphs with given diameter. In this paper, we focus on the problem, and a sharp bound of Hosoya indices of all bicyclic

graphs with diameter of 3 is determined.

1. Introduction

Hosoya index is an important topological index introduced by
Hosoya [1]. It was found that Hosoya index is related to a
variety of physicochemical properties of alkanes (= saturated
hydrocarbons). In particular, the boiling points of alkanes are
well correlated with Hosoya index. Another series of researches
revealed the applicability of Hosoya index in the theory of
conjugated 7-electron systems [2, 3]. Jerrum [4] showed that
the computing complexity of Hosoya index is NP-Complete.
The Hosoya index got much attention by many researchers in
the past decades. They have been interested in identifying the
extremal value of Hosoya index for various classes of graphs,
such as trees [5-7], unicyclic graphs [8-12], bicyclic graphs
[13], and (1, m)-graphs [14, 15]. Wagner and Gutman [16]
gave an exhaustive survey for Hosoya index, and they pointed
out some open problems (also see [17]) as follows:

o It seems difficult to obtain results of the maximum
Hosoya index among trees with a given number of
leaves or given diameter. However, partial results are
available, so the problem might not be totally in-
tractable, and results in this direction would definitely
be interesting.

o If the aforementioned questions can be answered for
trees, then it is also natural to consider the analogous
questions for tree-like graphs.

According to the open problems, Liu et al. [17] dis-
cussed the problem in which unicyclic graph with di-
ameter of 3 or 4 has the maximum Hosoya index. In this
paper, we focus on similar problems to the above. That is,
which bicyclic graph with diameter of 3 has the maximum
Hosoya index? We give an answer of the problem as
follows.
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Theorem 1. G € B’ and n>10; each of the following holds:

3 5

—n —8n+16,
2

(i) If10<n<15.Thenz (G) < A

35
—n" —8n+ 20,
2

2 — 6n* +63n— 54
27

>

21 — 6n* + 60n - 56
(i) If n> 16. Then z (G) < { = "27 n=-o0

21 — 6n* + 63n - 64
27

>

The rest of this paper is organized as follows. In Section
2, we shall present some definitions and lemmas. In Section
3, we will prove Theorem 1. Furthermore, some upper
bounds for Hosoya index of some special classes of bicyclic
graphs with diameter of 3 are also determined.

2. Preliminaries

In this paper, we only consider finite and simple graphs.
Let G = (V(G), E(G)) be a graph with n vertices and m
edges. The neighborhood of vertex v € V(G) in a graph G,
denoted by N, (v), is the set of vertices adjacent to v. The
degree of v, denoted by d (v), is the number of neighbors of
vy in G. The distance of two vertices u,v € V(G) is the
length of a shortest path from u to v, denoted by d; (1, v).
We will use G — v to represent the graph after G deleting
the vertex v. The diameter of G is max {dg;(u,v)
|u,v € v(G)}.

Let . be the set of all bicyclic graphs with 7 vertices
and diameter of 3. It is easy to verify that the structure of
graph G e % must be isomorphic to G, where
i=1,2,...,14. The resulting graph G; can be seen in
Figure 1.

ﬂGsQ&——,

ﬂGEQ&TT’
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where n is even, and the equality holds

n-4n-6
2

);

2

where nis odd, and the equality holds

n-5n-5
2

)

where n = 0(mod3), and the equality holds

)

where n = 1(mod3), and the equality holds iff

(1)

3nn-3

3

n—
3

ﬂczq( 2

= Y10

n-1n-1n-4
c=au’1 151

<n—4 n-1n-1
3 3

3737 3

)

where n = 2(mod3), and the equality holds

)

[\

-2
3

—2n-2
ifstG10<n3 ,”3 ,

n

Let m(G, k) be the number of k-matchings of G. It is
convenient to denote m(G,0) =1 and m(G,k) =0 for
k>|n/2]. The Hosoya index of G, denoted by z(G), is
defined as the sum of all the numbers of its matchings;

namely, .
n/2

z(G) = ) m(G k).

k=0

(2)

Lemma 1 (see [16]). Let G be a graph and let v be a vertex of
graph G. Then

(i) 2(G) = 2(G = V) + Yyen, (v (2 (G = {w, })
(ii) z(G) = ]_[f:1 z(G;), where G; is a component of G

Let G be a graph obtained by joining the centers of two
stars K; ,_; and K, ,_;, denoted by S(p,g). By Lemma 1, we
obtain tlI‘:e following result.

Lemma 2

(i) 2(Ky ) =1+ p
(i) 2(S,q) = pq +1
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Gy(a,b,0)

a-1 b-1 a.—.l
w“ a—lé 4 § "2 1 V1
V2 V1 v, " 3b—l
Vs b-1 : vy V3 Vs V4
v3 vy cl
Ggl(a,b) Gy(a,b) Gio(a,b0)
a-1

. b o
Gy, (a,b) Gjy(a,b) Gs(a,b) Gyyla,b)
Ficure 1: All bicyclic graphs G;, i = 1,2,. .., 14, with diameter of 3.
3. The Proof of Theorem 1 Lemma 3. Let G € G, (a,b,c) be a graph with n vertices.

Then
In order to prove Theorem 1, we first give some lemmas.

where n = 0(mod3), n > 9 and the equality holds iff

22—7(713 -3’ +27n - 27),

G~G(n—3n—3n>~G(n—3nn—3>~G(n—énn>.
- ’ 3)- "N 373 3 )7 ! ’3’3)

wheren = 1(mod3), n > 10 and the equality holds

2
2(G) < { = (n’ - 3n’ + 30n - 28), (3)
27 . n-4n-1n-1
1fszG1( Raniy )
3’3 3

i

where n = 2(mod3),n > 11 and the equality holds

22—7(n3 -3’ +27n - 23),

n

>

n—5n—2n+l>
’ 373 3

i G = Gl(— ,

<n—5 n+1n—2>
3’7373 ! ‘

Proof. Consider that vertex v' of degree 1 is adjacentto v, in ~ bound of Hosoya index of G € G, (a, b, c). First, we make
G,(a,b,c). By Lemmas 1 and 2, we have z(G, auxiliary function as follows: L(a,b,c)=A(a+b+c+
(a,b,¢c)) =2abc + 2bc + 2a + 2b + 2c + 2. In the following, 2 —-n)+2abc +2a+2b+2c+2bc+2,wherea+b+c+2=
we use the method of Lagrange multipliers to find the sharp 7, a,b,c¢>1, and at most one of them is 1. Taking the partial



derivatives of a,b, ¢, and A in L(a, b, c, 1), we can obtain the
following equations:

L,=A+2bc+2=0,
L,=A+2ac+2+2c=0,
4 L.=A+2ab+2+2b=0,

Ly=a+b+c+2-n=0,

4

la>1,b>1landc>1.

Solving the equations as above, we obtain that
a=(n-4)/3, b= (n-1)/3, and c= (n-1)/3. Because
(((n—4)/3),t((n—-1)/3)n,q((n—1)/3)) is a unique stable
point, (((n—4)/3),t((n—1)/3)n,q((n—1)/3)) must be a
unique extreme point. Since a, b, and ¢ are integers, we
consider three cases.

Case 1: assume that n=0(mod3). We know that
a=n-3)/3, b=m-3)/3, and c= (n/3); a=
(n-3)/3, b=(n/3), and c=(n-3)/3; or a=
(n—-6)/3, b= (n/3), and ¢ = (n/3). Thus, z (G, (((n—
3)13), (n/3), ((n-3)/3))) = z(G, (((n-3)/3), ((n-
3)/3), (n/3))) = z(G, (((n—6)/3), (n/3), (n/3))) =
(2/27)(n® = 3n* + 27n - 27). It is easy to verify that
z2(Gy(a,b,¢)) < (2/27) (n® = 3n* + 27n — 27) when
a# ((n-6)/3),b+# (n/3),and c# (n/3); a# ((n-3)/3),
b+ (n/3), and c# ((n-3)/3); or a# ((n-23)/3),
b# ((n-3)/3), and c# (n/3) . This implies that
z(G) < (2/27)(n® = 3n* + 27n - 27) and the equality

z(G) < A

n2—4n+7,

-5n-3
0rGEG2<n2 ,nz

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and
2, we have z(G,(a,b)) = 4ab + 8b + 4. By the method of
Lagrange multipliers, we make an auxiliary function
L(a,b)=A(a+b+4—-n)+4ab+8b +4, where
a+b+4=mn,a>1, and b>2. Taking the partial deriva-
tives of a, b, and A in L(a,b,1), we get the following
equations:

L,=A+4b=0,
L,=A+4a+8=0,
(6)
Ly=a+b+4-n=0,
a>landb>2.
Solving the equations as above, we obtain thata = ((n —

6)/2) and b= ((n-2)/2). Because (((n-6)/2),t
((n-12)/2)) is a unique stable point, (((n—6)/2),t((n—

[ 12— an+ 8, wheren>8iseven, and the equality holdsiff G = Gz( 5

wheren > 9is 0dd, and the equality holds iff G = G2< ,

)
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holds iff G =G, (((n-3)/3), ((n-3)/3),(n/3))=
G, (((n-3)/3), (n/3), ((n-3)/3)) =G, (((n-6)/3),t
(n/3)n, q(n/3)).

Case 2: suppose that »n=1(mod3). We have
a=((n-4)/3), b= ((n-1)/3), and ¢ = ((n—1)/3).
So z(G; (((n—4)/3), (n-1)/3), ((n-1)/3))) =
(2/27) (n* = 3n* + 30n — 28). To simplify the calcula-
tion, we know that z(G, (a,b,c)) < (2/27) (n® - 3n* +
30n —28) when a# ((n—4)/3), b# ((n-1)/3), and
c# ((n—1)/3). This means that z(G)< (2/27)(n*-

3n* +30n-28) and the equality holds iff
G=G(((n—-4)/3),t((n—1)/3)n,q((n—1)/3)).
Case 3: assume that n=2(mod3). Then a-=

((n-5)/3), b= ((n-2)/3), and c= ((n+1)/3); or
a=((n-5)/3), b= ((n+1)/3), and ¢ = ((n-2)/3).
Thus, z(G,(((n-5)/3), ((n-2)/3), ((n+1)/3))) =
z(Gy(((n—-5)/3), ((n+1)/3), ((n—-2) /3))) = (2/27)
(n®-3n*+27n-23). It is easy to check that
z(G, (a,b,¢c)) < (2/27) (n® - 3n* + 27n — 23) when
at ((n-5)/3),b+ ((n-2)/3), and c# ((n+ 1)/3); or
a# ((n=5)/3), b+ ((n+1)/3), and c# ((n-2)/3).
This indicates that z (G) < (2/27) (n® — 3n* + 27n — 23)

and the equality holds if and only if
G=G (((n=5)/3), ((n=2)3),  ((n+1)/3)) =G,
(((n=5)/3),t((n+1)/3)n,q ((n-2)/3)). O

Lemma 4. Let G € G, (a,b) be a graph with n vertices. Then

n-6n-2
> )

n-7n-1

)

5 5)

2)/2)) must be the unique extreme point. Since a and b are
integers, in the following we consider two cases:

Case 1: suppose that nis even. Thena = ((n — 6)/2) and
b= ((n-2)/2). Thus, z(G, (((n—-6)/2), ((n—-2)/2))) =
4ab+8b+4=n’—4n+8. To simplify calculation, we
know that z (G, (a,b)) <n? —4n+8 when a# ((n—6)/2)
and b# ((n-2)/2). This implies that z(G)<n*-4n+8
and the equality holds iff G=G,(((n-6)/2),t
((n—-2)/2)).

Case 2: assume that 7 is odd. We obtaina = ((n—7)/2)
and b=(n-1)2), or a=((n-5)2) and
b= ((n-3)2). So, z(G,(((n-7)/2), ((n-1)/2))) =
z2(G,(((n=5)/2), ((n-3)/2))) =n* —4n + 7. It is easy
to check that z(G, (a,b)) <n? —4n+7 when a # ((n -
7)/2) and b+ ((n—1)/2), or a# ((n->5)/2) and
b# ((n - 3)/2). This means that z (G) <n? — 4n + 7 and
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the equality holds iff G = G, (((n—7)/2), ((n—-1)/2))
=G, (((n-5)/2),t((n-3)/2)). O

n2—4n+8,

n-4n-4

Lemma 5. Let G € G;(a,b) be a graph with n vertices. Then

where n > 8 is even, and the equality holds iff

z(G) < 4 ,

GEG3<

2 2

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
we get that z(G;(a,b)) = 4ab + 6a + 2b + 8. According to
the method of Lagrange multipliers, we make an auxiliary
function L(a,b)=A(a+b+4-n)+4ab+6a+2b+8,
where a+b+4=mn, a>1, and b>1. Taking the partial
derivatives of a, b, and A in L (a, b, 1), we obtain the following
equations:

L,=A+4b+6=0,

Ly=A+4a+2=0,
(8)

Li=a+b+4-n=0,

a>landb>1.

Solving the equations as above, we obtain thata = ((n -
3)/2) and b= ((n-15)/2). Because (((n-3)/2),t((n—
5)/2)) is a unique stable point, (((n—3)/2),t((n—>5)/2))
must be the unique extreme point. Since a and b are integers,
we only consider two cases.

n* —4n+9, wheren>7isodd,and the equality holdsiff G = G3< 5

)6 (1321,

n-3 n—5>
5 )

Case 1: assume that » is even. We obtain a = ((n -
4)/2) and b= ((n—-4)/2), or a= ((n-2)/2) and
b= ((n-6)/2). Thus, z(G;(((n-4)/2), ((n-4)
12))) = z(G; (((n—2)/2), ((n—-6)/2))) =n?> —4n+8.
It is easy to check that z(G; (a,b)) <n* — 4n + 8 when
at ((n—4)/2) and b# ((n—4)/2), or a# ((n-2)/2)
and b # ((n - 6)/2). This implies that z (G) <n? — 4n +
8 and the equality holds if and only if G = G; (((n -
4)/2), ((n—4)/2)) = G;(((n—2)/2),t((n-6)/2)).

Case 2: consider that n is odd. We have a = ((n - 3)/2)
and b= ((n-5)2). So, z(G;5 (((n—3)/2),
((n=5)12))) =n*-4n+9. It is easy to verify that
z(G;(a,b))<n* —4n+9 when a# ((n—3)/2) and
b+ ((n-5)/2). This means that z (G) <#n? — 4n + 9 and
the equality holds if and only if G=G;
(((n-3)/2),t((n-5)/2)). O

Lemma 6. Let G € G, (a,b) be a graph with n vertices. Then

3 —6n-4
Enz —8n+ 16, wheren>8iseven, and the equality holdsiff G = G, (—n 5 1 3 );
z(G) < { where n>7 is odd, and the equality holds (9)
) 29
-n -8n+—,
2 2

2

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
we get z(G4(a,b)) = 6ab + 4a + 10b + 12. According to the
method of Lagrange multipliers, we make an auxiliary function
L(a,b)=A(a+b+5-n)+6ab+4a+10b+ 12, where
a+b+5=na>1,andb> 1. Taking the partial derivatives of
a,b,and A in L(a, b, 1), we can obtain the following equations:

L,=A+6b+4=0,
L,=A+6a+10=0,

(10)
Li=a+b+5-n=0,

a>landb>1.

iffG = G4("—_5,”—_5> = G4(”_ 7”T_S>

2

Solving the equations as above, we obtain thata = ((n -
6)/2) and b= ((n-4)/2). Because (((n-26)/2),t
((n—4)/2)) is a unique stable point, (((n—6)/2),t((n—
4)/2)) must be the unique extreme point. Since a and b are
integers, we only consider two cases:

Case 1: consider that n is even. We havea = ((n— 6)/2)
and b= ((n-4)2). Thus z(G4(((n—6)/2),
((n—4)/2))) = (3/2)n* — 8n + 16. To simplify calcula-
tion, we get z(G,(a,b))< (3/2)n* —8n+16 when
a# ((n-6)/2) and b# ((n—4)/2). This implies that
z(G)< (3/2)n* —8n+ 16 and the equality holds iff
G=G,(((n-6)2),t((n-4)2)).



Case 2: assume that n is odd. Then a = ((n - 5)/2) and
b= ((n-5)/2),ora= ((n-7)/2)andb = ((n-3)/2).
$02(G, (- 5)12), ((n-5)2) = 2(G, ((n-7)12),
((n=3)/2))) = (3/2)n* —8n+ (29/2). It is easy to
check that z(G,(a,b)) < (3/2)n® — 8n+ (29/2) when
a# ((n—15)/2) and b+ ((n—>5)/2), or a# ((n—7)/2)
and b # ((n - 3)/2). This implies that z (G) < (3/2)n* -

Journal of Chemistry

8n+ (29/2) and the equality holds if and only if G =
G, (((n=5)2), (n=5)2)) = G, (((n=7)/2),t((n—
3)/2)). O

Lemma 7. Let G € G5(a,b) be a graph with n vertices. Then

( -4n-4
n* —4n +8, wheren> 6iseven,and the equality holds iff G = Gs(n 5 " >;
2(G) < where»n > 7 is 0odd, and the equality holds (11)
" —4n+7,
-3n-5 -5n-3
iffGEGS<n z )sGS<” z )
L 2 2 2

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
we get z(G;(a,b)) = 4ab + 4a + 4b + 8. By the method of
Lagrange multipliers, we make an auxiliary function
L(a,b)=A(a+b+4—-n)+4ab+4a+4b+ 8, where
a+b+4=mn,a>1, and b> 1. Taking the partial derivatives
of a,b, and A in L(a,b,1), we can obtain the following
equations:

L,=A+4b+4=0,
Ly=A+4a+4=0,

(12)
Li=a+b+4-n=0,

a>landb>1.

Solving the equations as above, we obtain that
a=((n—4)/2)and b = ((n—4)/2). Because (((n—4)/2),t
((n-4)/2)) is a unique stable point, (((n-4)/2),¢t
((n—4)/2)) must be the unique extreme point. Since a
and b are integers, in the following we only consider two
cases.

Case 1: consider that n is even. We havea = ((n—4)/2)
and b=((n-4)/2). Thus z(Gs(((n-4)/2),
((n—4)/2))) = n* - 4n + 8. To simplify calculation, we
get z(Gs (a,b)) <n? —4n + 8 when a+ ((n—4)/2) and
b+ ((n—4)/2). This implies that z(G)<n® —4n+8
and the equality holds iff G =G;(((n-4)/2),t
((n—4)/2)).

Case 2: assume that n is odd. Then a = ((n — 3)/2) and
b= ((n-5)2),ora= ((n->5)/2)andb = ((n-3)/2).
S0z (G5 (((n - 3)/2), ((n-5)/2))) = z(G5(((n - 5)/2),
((n-3)/2))) =n*-4n+7. It is easy to check that
z(Gs(a,b))<n*—4n+7 when a# ((n-3)/2) and
b+ ((n-5)/2), or a# ((n—-5)/2) and b# ((n-3)/2).
This implies that z(G)<n* —4n+7 and the equality
holds if and only if G = G5 (((n - 3)/2), ((n - 5)/2)) =
G5 (((n—5)/2),t((n—3)/2)). O

Lemma 8. Let G € G4(a,b,c) be a graph with n vertices.
Then
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n +3n + 181 + 27
27

>

3 2
+3n" +18n+ 32
zG) <1’ = nros

o+ 30t +21n+19
27 ’

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
direct computing yields z(Gg(a,b,¢)) = abc+
bc+ac+a+b+c+2. By the method of Lagrange multi-
pliers, we make auxiliary function L(a,b,c)=
AMa+b+c+1-n)+abc+bc+ac+a+b+c+2, where
a+b+c+1=n,a,bc>1, and at most one of them is 1.
Taking the partial derivatives of a, b, ¢, and A in L(a, b, ¢, 1),
we can obtain the following equations:

[(L,=A+bc+c+1=0,
Ly=A+ac+c+1=0,
1 L. =A+ab+b+a+1=0, (14)

Ly=a+b+c+1-n=0,

a>1,b>landc>1.

Solving the equations as above, we get
c=a+1-(1/(a+1)). Since c=a+1- (1/(a+1)) is an
integer, we know that c=[a+1-(1/(a+1))] or
c=la+1-(l/(a+1))]. By c=[Ja+1-(1/(a+1))] and
a+b+c+1=n we can obtain that a= ((n-2)/3),
b= ((n-2)/3), and ¢ = ((n+1)/3). Similarly, by ¢ = |a +
1-(1/(a+1))] and a+b+c+1=mn, we also can obtain
that a= ((n-1)/3), b= ((n-1)/3), and c= ((n-1)/3).
Thus, we discuss two cases as follows:

Case 1: a=((n-2)/3), b= ((n-2)/3), and
c= ((n+1)/3).

Becausea = ((n—2)/3),b= ((n—-2)/3),andc = ((n+
1)/3) is a unique root of (14), a= ((n-2)/3),
b= ((n-2)/3),andc = ((n+ 1)/3) must be the unique
extreme point. Since a, b, and ¢ are integers, we con-
sider three subcases:

Subcase 1: assume that n=0(mod3). Then
a=((n-3)/3), b= m3), and c= (n/3), or
a= (n/3), b=((n-3)/3), and c= (n/3). Thus
z(Gg (((n—3)/3), (n/3), (n/3))) = z(Gg ((n/3), ((n—
3)13), (n/3))) = (n* + 3n® + 18n + 27)/27. It is easy to
verify that z (G (a, b, ¢)) < ((n® + 3n* + 18n + 27)/27)

ifandonlyif G = G, (—, _

ifand only if G = G (—, —

7
wheren = 0(mod3), n> 9 and the equality holds
-3 -3
ifandonlyif G = Gﬁ(n ﬂﬂ) = G6<E,n ﬁ);
3 33 3 3 3
where n = 1(mod3), n>7 and the equality holds
(13)

3

n—ln—ln—l)

3 3 3

wheren = 2(mod3), n> 8 and the equality holds

n-2n-2 n+1>

3 3 3

when a#((n-3)/3), b+((n-3)/3), and
c# ((n+3)/3),ora+ ((n-3)/3),b+ ((n-3)/3),and
c# ((n+ 3)/3). This implies that z (G) < ((n® + 3n* +
18n + 27)/27) and the equality holds if and only if G =
Ge (((n=3)/3), (n/3), (0/3)) =G ((n/3), ((n—3) /3),¢t
(n/3)).

Subcase 2: suppose that #n=1(mod3). Then
a=((n-1)3),b=((n-1)/3), and c = ((n-1)/3).
Thus z(G4(((n—-1)/3), ((n—-1)/3), ((n—-1)/3))) =
(n® +3n* + 18n+32)/27. It is easy to check that
z(Gg(a,b,¢)) < (n* +3n* + 18n + 32)/27 when a+#
((n-1)/3), b+ ((n-1)/3), and c# ((n - 1)/3). This
implies that z(G)< ((n® + 3n* + 18n+ 32)/27) and
the equality holds iff G=Gg(((n—-1) /3),¢t
((n—=1)/3)n,q((n-1)/3)).

Subcase 3: consider that n=2(mod3). Then
a=((n-2)/3),b=((n-2)/3),and c = ((n+ 1)/3).
Thus z (G4 (((n—-2)/3), ((n—=2)/3), ((n+1)/3))) =
((n® +3n® + 21n+ 19)/27). To simplify calculation,
we know that z(Gg(a,b,c))< ((”P+ 3n® +21n+
19)/27) when a# ((n—-2)/3), b# ((n—2)/3), and
c# ((n+1)/3). This implies that z(G) < ((n® + 3n* +
21n + 19)/27) and the equality holds iff G = G4 (((n -
2) /3),t((n - 2)/3)m q((n + 1)/3)).

Case 2: a=(n-1)/3), b= ((n-1)/3), and
c=((n-1)/3).

Similar to the proof of Case 1, because a = ((n — 1)/3),
b= ((n-1)/3),and c = ((n-1)/3) is a unique root of
(14), a=((n-1)/3), b= ((n-1)/3), and
¢=((n-1)/3) must be the unique extreme point.
Since a, b, and ¢ are integers, we also consider the three
following subcases:

Subcase 1: set n=0(mod3). Then a = ((n - 3)/3),
b= (n/3),andc = (n/3),ora = (n/3),b=((n-3)/3),
and c¢= (n/3). Thus z(Gg(((n-3) /3), (n/3),
(n/3))) = z(Gg((n/3), ((n-3)/3), (n/3)))= ((n*+
3n* + 18n+27)/27). It is easy to verify that
z(Gg(a,b,¢)) < (1 + 3n® + 18n + 27)/27) when



a+ ((n-3)/3),b+ ((n—-3)/3),and c+ ((n+ 3)/3), or
a# ((n—=3)/3), b+ ((n-13)/3), and c# ((n+3)/3).
This implies that z(G)< ((n® +3n? + 18n + 27)/27)
and the equality holds if and only if G = G4 (((n -
3)/3), (n/3), (n/3)) = G4 ((n/3), ((n—3) /3),t(n/3)).
Subcase 2: suppose that #n=1(mod3). Then
a=((n-1)3),b=((n-1)/3), and c = ((n-1)/3).
Thus z(Gg(((n-1)/3), ((n-1)/3), ((n-1)/3))) =
((n® +3n® + 18n + 32)/27). It is easy to check that
z2(Gg(a,b,¢)) < ((n*+ 3n* + 18n + 32)/27) when a +
((n=1)/3), b# ((n-1)/3), and c# ((n—1)/3). This
implies that z(G) < ((n’ + 3n* + 18n+32)/27) and
the equality holds iff G=Gg(((n-1)/3),t
((n=1)/3)n,q9 ((n-1)/3)).
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Subcase 3: consider that n=2(mod3). Then
a=((n-2)3),b=((n-2)/3),and c = ((n+1)/3).
Thus z(Gg(((n—2)/3), ((n-2)/3), ((n+1)/3))) =
((n® +3n® + 21n+ 19)/27). To simplify calculation,
we know that z(Gg(a,b,0)< ((WP+ 3n’+
21n+19)/27) when a# ((n-2)/3), b# ((n-2)/3),
and c# ((n+ 1)/3). This implies that z(G) < ((n* +
3n* +21n+19)/27) and the equality holds iff
G=Ge(((n—-2)/3),t((n—-2)/3)n,q ((n+1)/3)). O

Lemma 9. Let G € G,(a,b) be a graph with n vertices. Then

3n* —8n+ 16 =2
%, where n>6is even, and the equality holds iff G = G7<n 27 - 2 >;
z(G)< (15)
o —1n-5
%, wheren>7is odd, and the equality holds iff G = G, <n 27 : 2 )

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
direct computing yields z (G, (a,b)) = 3ab + 5a + 3. By the
method of Lagrange multipliers, we make auxiliary function
L(a,b)=A(a+b+3-n)+3ab+5a+3, where a+b+3—
n,a>2,and b > 1. Taking the partial derivatives of a, b, and A
in L(a,b, 1), we can obtain the following equations:

L,=A+3b+5=0,
L,=A+3a=0,

(16)
Li=a+b+3-n=0,

a>2andb>1.

Solving the equations as above, we get a = b+ (5/3).
Since a=b+(5/3) is an integer, we know that
a=1|b+ (5/3)] or a=[b+ (5/3)]. By a=|b+ (5/3)] and
a+b+3=n, we can obtain that a= ((n-2)/2) and
b= ((n-4)/2). Similarly, by a=/[b+(53)] and
a+b+3=n, we also can obtain that a = ((n—1)/2) and
b= ((n-5)/2). So, we discuss two cases as follows:

Case l:a=((n—-2)/2) and b= ((n-4)/2).
Becausea = ((n—2)/2) and b = ((n —4)/2) is a unique
root of (16), a= ((n—-2)/2) and b = ((n—4)/2) must
be the unique extreme point. Since a and b are integers,
we consider two subcases:

Subcase 1: assume that nis even. Thena = ((n - 2)/2)
and b= ((n-4)2); thus 2z(G,(((n-2)/2),
((n—4)/2))) = (3n* —8n+ 16)/4. It is easy to verify
that z (G, (a,b)) < ((3n* — 8n + 16)/4) whena# ((n -
2)/2) and b# ((n—4)/2). This implies that

z(G) < ((3n* — 8n + 16)/4) and the equality holds if
and only if G = G, (((n—2)/2),t((n—4)/2)).
Subcase 2: suppose that n is odd. We know that a =
(n-1)2) and b= ((n-5)/2). 'Thus =z(G,
(((n=1)/2), ((n=5)/2))) = ((3n*> — 8n + 17)/4). It is
easy to verify that z (G, (a,b)) < ((3n* — 8n+ 17)/4)
when a# ((n—1)/2) and b # ((n - 5)/2). This implies
that z (G) < ((3n? — 8n + 17)/4) and the equality holds
iff G=G,(((n-1)/2),t((n-5)/2)).

Case 2: a= ((n—-1)/2) and b = ((n-5)/2).

Similar to the proof of Case 1, because a = ((n—1)/2)
and b = ((n—-5)/2) is a unique root of (2), a = ((n-—
1)/2) and b = ((n— 5)/2) must be the unique extreme
point. Since a and b are integers, we also consider two
subcases.

Subcase 1: consider that # is even. Then we get a =
(n-2)2) and b= ((n-4)2); thus =z(G,
(((n=2)12), ((n—4)/2))) = ((3n* — 8n+ 16)/4). It is
easy to verify that z (G, (a,b)) < ((3n*~ 8n+ 16)/4)
when a# ((n—2)/2) and b # ((n —4)/2). This implies
that z (G) < ((3n® — 8n + 16)/4) and the equality holds
if and only if G = G, (((n-2) /2),t((n—-4)/2)).

Subcase 2: assume that n is odd. We know that a =
(n-1)2) and b= ((n-5)/2). Thus z(G,
(((n=1)/2), ((n=5)/2))) = ((3n> = 8n+ 17)/4). It is
easy to verify that z(G;(a,b)) < ((3n* - 8n+17)/4)
when a# ((n—1)/2) and b # ((n - 5)/2). This implies
that z (G) < ((3n% — 8n + 17)/4) and the equality holds
iff G=G,(((n-1)/2),t((n-5)/2)). O
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Lemma 10. Let G € Gg(a,b) be a graph with n vertices. Then
3" — 8n+ 16 -2n-4
%, where n > 8 is even, and the equality holds iff G = G, (nT’ nT),
z(G) < (17)
3n” - 8n+29 -3n-3
%, wheren > 7 is 0dd, and the equality holds iff G = G8<n 5 " 5 )

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
we get z(Gg(a,b)) = 3ab + 3a + 2b + 5. By the method of
Lagrange multipliers, we make an auxiliary function
L(a,b)=A(a+b+3-n)+3ab+3a+2b+5, where a+
b+3=n,a,b>1, and at most one of them is 1. Taking the
partial derivatives of a,b, and A in L(a,b, 1), we can obtain
the following equations:

L,=A+3b+3=0,
L,=A+3a+2=0,

(18)
Ly=a+b+3-n=0,

a>landb>1.

Solving the equations as above, we get a = b+ (1/3).
Since a=b+(1/3) is an integer, we know that
a=|b+ (1/3)] or a=[b+ (1/3)]. By a=[b+ (1/3)] and
a+b+3=n, we can obtain that a= ((n-3)/2) and
b= ((n-3)/2). Similarly, by a=[b+(1/3)] and
a+b+3=n, we also can obtain that a = ((n-2)/2) and
b= ((n-4)/2). So, we discuss two cases as follows:

Case 1: a= ((n—3)/2) and b= ((n-3)/2).
Becausea = ((n—3)/2) and b = ((n - 3)/2) is a unique
root of (18), a= ((n—-3)/2) and b = ((n - 3)/2) must
be the unique extreme point. Since a and b are integers,
we consider two subcases.

Subcase 1: consider that # is even. We havea = ((n —
2)/2) and b= ((n—4)/2). Thus z(Gg(((n-2) /2),
((n—4)/2))) = ((3n* — 8n+ 16)/4). To simplify cal-
culation, we get z(Gg(a,b))< ((3n*-8n+16)/4)
when a# ((n—-2)/2) and b# ((n —4)/2). This implies
that z (G) < ((3n* — 8n + 16)/4) and the equality holds
iff G = Gg(((n—-2)/2),t((n—4)/2)).

z(G) < A

Or

2 2

L

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
we get z(Gq(a,b)) = 4ab + 2a + 2b + 5. By the method of

n* —4n+8, wheren> 8iseven,and the equality holdsift G = Gz( ,——

n* —4n+7, wheren>9isodd,and the equality holds iff G = G2<—,

53
GEG2<L,L).

Subcase 2: assume that 7 is odd. Then a = ((n - 3)/2)
and b= ((n-3)2). So z(Gg (((n—3)/2),
((n=3)/2))) = ((3n* — 8n + 29)/4). It is easy to check
that z (Gg (a, b)) < ((3n® — 8n + 29)/4) when a # ((n -
3)/2) and b+# ((n-3)/2). This implies that
z(G) < ((3n* — 8n+29)/4) and the equality holds if
and only if G = Gy (((n— 3)/2),t((n—3)/2)).

Case 2:a=((n—-2)/2) and b = ((n-4)/2).

Similar to the proof of Case 1, because a = ((n —2)/2)
and b = ((n—4)/2) is a unique root of (18), a = ((n—
2)/2) and b = ((n — 4)/2) must be the unique extreme
point. Since a and b are integers, we consider two
subcases.

Subcase 1: consider that n is even. We have a = ((n -
2)/2) and b= ((n—-4)/2). Thus z(Gg(((n—-2)/2),
((n-4)/12))) = ((3n* — 8n+ 16)/4). To simplify cal-
culation, we get z(Gg(a,b))< ((3n* - 8n+16)/4)
when a# ((n—2)/2) and b # ((n —4)/2). This implies
that z (G) < ((3n% — 8n + 16)/4) and the equality holds
ift G=Gg(((n—2)/2),t((n—4)/2)).

Subcase 2: assume that 7 is odd. Thena = ((n - 3)/2)
and b= ((n-23)/2). So z(Gg (((n—3)/2),
((n=3)/12))) = ((3n* — 8n + 29)/4). It is easy to check
that z (Gg (a, b)) < ((3n* — 8n + 29)/4) when a # ((n -
3)/2) and b+# ((n-3)/2). This implies that
z(G) < ((3n* — 8n+29)/4) and the equality holds if
and only if G = Gy (((n— 3)/2),t((n—3)/2)). O

Lemma 11. Let G € Gy (a,b) be a graph with n vertices. Then

i

n—-=6 n—2>
2 2

”_7"__1> (19)

2 2

Lagrange multipliers, we make an auxiliary function
L(a,b) =A(a+b+3-n)+4ab+2a+2b+5, where a + b+
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3=mn, a,b>1, and at most one of them is 1. Taking the
partial derivatives of a,b, and A in L(a, b, ), we can obtain
the following equations:

L,=1A+4b+2=0,

L,=A+4a+2=0,
(20)
Li=a+b+3-n=0,

a>landb>1.

Solving the equations as above, we obtain thata = ((n -
3)/2) and b= ((n-3)/2). Because (((n-3)/2),t
((n—3)/2)) is a unique stable point, (((n—3)/2),t((n-
3)/2)) must be the unique extreme point. Since a and b are
integers, we consider the two following cases.

Case 1: consider that nis even. We have a = ((n — 2)/2)
and b= ((n—-4)/2), or a=((n—4)/2) and b=

((n=2)/2). Thus z(Gy(((n-2)/2), ((n-4)/2))) =
21° — 6n° + 63n — 54
27 ’
3 2
2(G) < | 2n —6n +60n—56’

27

21° — 61n° + 63n — 64
27

>

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
direct computing  yields z(Gyo(a,b,c)) = 2abc+
bc+ab+2a+3b+2c+2. By the method of Lagrange
multipliers, we make auxiliary function L(a,b,c) =A(a +
b+c+2-n)+2abc+bc+ab+ 2a+3b+2c+2, where
a+b+c+2=mn, ab,c>1, and at most one of them is 1.
Taking the partial derivatives of a, b, ¢, and A in L(a, b, c, 1),
we can obtain the following equations:
L,=A+2bc+b+2=0,
Ly,=A+2ac+c+a+3=0,
L.=A+2ab+b+2=0, (22)
Ly=a+b+c+2-n=0,
a>1l,b>landc>1.

Solving the equations as above, we get
b=a+1-(a/(a+1)). Since b=a+1- (a/(a+1)) is an
integer, we know that b=[a+1- (a/(a+1))] or
b=la+1-(al(a+1))]. Byb=[a+1- (a/(a+1))] and
a+b+c+2=n we can obtain that a= ((n-23)/3),
b= (n/3), and c= ((n-3)/3). Similarly, by
b=la+1-(a/(a+1))] and a+b+c+2=n, we also can
obtain that a=((n-2)/3), b= ((n-2)/3), and
¢ = ((n-2)/3). Thus, we discuss two cases as follows:

ifandonlyif G = Gw(—, )
ifandonlyif G = Gw(—, —

ifandonlyif G = Gm(—, — —)
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z(Gy (((n—4)/2), ((n-2)/2))) =n* —4n+7. To sim-
plify calculation, we get z (G, (a, b)) <n? — 4n + 7 when
a# ((n-2)/2) and b+ ((n—4)/2), or a#+ ((n—4)/2)
and b# ((n - 2)/2). This implies that z(G) <n?® — 4n +
7 and the equality holds iff G = G, (((n —2)/2), ((n—
4)/2)) = Gy (((n—4)/2),t ((n-2)/2)).

Case 2: assume that # is odd. We know thata = ((n—
3)/2) and b= ((n-23)/2). Thus
z(Gy (((n=3)/2), ((n—-3)/2))) =n* —4n + 8. It is easy
to check that z(Gy(a,b)) <n* —4n+ 8 when a # ((n -
3)/2) and b# ((n - 3)/2). This implies that z (G) <n® —
4n+8 and the equality holds if and only if
G=Gy(((n-3)2),t((n-3)/2)). O

Lemma 12. Let G € Gy (a,b,c) be a graph with n vertices.
Then

where n = 0(mod3), n > 9 and the equality holds

)

n—3nn—3>
3 '3 3

where n = 1(mod3), n> 10 and the equality holds

(21)

> > )

n—ln—ln—4)~ (n—4n—ln—l)
=L

3 3 3 3 3 3

wheren = 2(mod3), n> 8 and the equality holds

n-2n-2n-2

3 3 3

Case l:a = ((n-3)/3),b= (n/3),and c = ((n-3)/3).

Becausea = ((n—3)/3),b= (n/3),and c = ((n—3)/3)
is a unique root of (22),a = ((n—-3)/3),b = (n/3), and
¢ = ((n-3)/3) must be the unique extreme point.
Since a, b, and c are integers, we consider three subcases
as follows:

Subcase 1: assume that »n=0(mod3). Then
a= ((n-3)/3), b= (n/3), and ¢ = ((n - 3)/3). Thus
2(Gyo (11— 3)13), (n/3),

((n=3)/3))) = ((2n® — 6n* + 63n — 54)/27). It is easy
to  verify that z(Gy(a,b,c))< ((2n® —6n’+
63n—54)/27) when a# ((n-3)/3), b+ (n/3), and
c# ((n— 3)/3). This implies that z (G) < ((2n® — 61* +
63n —54)/27) and the equality holds if and only if
G =Gy (((n—3)/3),t(n/3)n,q((n—3)/3)).

Subcase 2: suppose that »n=1(mod3). Then
a=(n-1)/3),b=((n-1)/3), and c = ((n-—4)/3),
or a= ((n-4)/3), b= ((n-1)/3), and
c= ((n—-1)/3). Thus z(Gyy(((n—1)/3), ((n—1)/3),
((n=4)/3)) = z(Gy, (((n=4)/3), ((n-1)/3), ((n-
1)/3))) = ((2n® — 6n* + 60n — 56)/27). It is easy to
check that z(Gy,(a,b,c)) < ((2n® - 6n*+ 60n — 56)
/27) when a# ((n-1)/3), b# ((n-1)/3), and
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c+ ((n-4)/3),ora+ ((n-4)/3),b+ ((n-1)/3),and
c# ((n—1)/3). This implies that z (G) < ((2n® - 6n* +
60n — 56)/27) and the equality holds iff G = G, (((n —
1)/3), ((n=1)/3), ((n=4)/3)) = Gy (((n—4)/3),t
((n-1)3)n,q ((n-1)/3)).

Subcase 3: consider that n=2(mod3). Then
a=((n-2)3),b=((n-2)/3), and c = ((n-2)/3).
Thus z (G, (((n—-2)/3), ((n-2)/3), ((n-2)/3))) =
((2n — 6n* + 63n — 64)/27). To simplify calculation,
we know that z(G,y(a,b,¢)) < ((2n® - 6n* + 63n -
64)/27) when a# ((n-2)/3), b# ((n-2)/3), and
c# ((n—2)/3). This implies that z (G) < ( (21’ — 61 +

63n—64)/27) and the equality holds iff

G =Gy (((n—=2)/3),t((n-2)/3)n,q ((n-2)/3)).
Case 2: a=((n-2)/3), b=((n-2)/3), and
c=((n-2)/3).

Similar to the proof of Case 1, because a = ((n — 2)/3),
b= ((n-2)/3),and c = ((n-2)/3) is a unique root of
(22), a= ((n-2)/3), b= ((n-2)/3), and
¢ = ((n-2)/3) must be the unique extreme point.
Since a, b, and c are integers, after taking the integer, we
also consider three subcases as follows:

Subcase 1: assume that »n=0(mod3). Then
a= ((n-3)/3), b= (n/3), and c = ((n—3)/3). Thus
z(Gyo (((n=3)/3), (n/3), ((n—3)/3))) = (2n® — 6n*+
63n—54)/27. It is easy to verify that
z(Gyg(a,b,c)) < ((2n® — 6n* + 63n— 54)/27)  when
a# ((n-13)/3), b+ (n/3), and c# ((n-3)/3). This
implies that z(G) < ((2n® - 6n* + 63n — 54)/27) and
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the  equality holds if and only if
G =Gy (((n—3)/3),t (n/3)n,q((n—3)/3)).

Subcase 2: suppose that #n=1(mod3). Then
a=((n-1)3),b= ((n-1)/3), and c = ((n-4)/3),
or a= ((n-4)/3), b= ((n-1)/3), and
¢ = ((n-1)/3). Thus z(G,,(((n—1)/3), ((n—1)/3),
((n—4)/3))) = z(G,,(((n—4)/3), ((n—1)/3), ((n-
1)/3))) = (2n® — 6n* + 60n — 56)/27. It is easy to check
that  z(Gyo(a,b,¢)) < ((2n® — 6n* + 60n — 56)/27)
when a# ((n-1)/3), b+ ((n-1)/3), and
c#((n—4)/3),ora+ ((n—4)/3),b+ ((n—1)/3),and
c# ((n—1)/3). This implies that z (G) < ((2n® — 6n* +
60n — 56)/27) and the equality holds iff G = G, (((n -

D/3), ((n—-1)/3), (n—4)/3)) =G, (((n—4)/3),t
((n=1)/3)n,q((n—1)/3)).
Subcase 3: consider that n=2(mod3). Then

a=((n-2)3),b=((n-2)/3), and c = ((n-2)/3).
Thus z (G, (((n—-2)/3), ((n=-2)/3), ((n-2)/3))) =
(2n* — 6n* + 63n— 64)/27. To simplify calculation,
we know that z(Gy(a,b,c))< ((2n® —6n*+
63n—64)/27) when a# ((n-2)/3), b# ((n-2)/3),
and c# ((n—2)/3). This implies that z(G) < ((2n°® -

6n* + 63n—64)/27) and the equality holds iff
G =G (((n=-2)/3),t((n-2)/3)n,q
((n—2)/3)). O

Lemma 13. Let G € Gy, (a,b) be a graph with n vertices.
Then

(31" -4 —4n-4
" 1 n) where #n > 6 is even, and the equality holds iff G = G, <nT’ " 3 );
z(G) < A where n > 8is 0dd, and the equality holds (23)
3" —4n -3
4 ’ . n-5n-3 n-3n-5
1fstG11< , )EG11< , )
2 2 2 2

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
we get z(Gy; (a,b)) = 3ab + 5a + 5b + 8. By the method of
Lagrange multipliers, we make an auxiliary function
L(a,b)=A(a+b+4—n)+3ab+5a+5b+8, where a + b+
4 =n,a>1, and b>1. Taking the partial derivatives of a, b,
and A in L(a,b, 1), we can obtain the following equations:
L,=A+3b+5=0,
L,=A+3a+5=0,
(24)
Li=a+b+4-n=0,

a>landb>1.

Solving the equations as above, we obtain thata = ((n -
4)/2) and b= ((n-4)/2). Because (((n-4)/2),t
((n—-4)/2)) is a unique stable point, (((n—4)/2),t((n—

4)/2)) must be the unique extreme point. Since a and b are
integers, in the following we consider two cases.

Case 1: consider that n is even. We havea = ((n — 4)/2)
and b= ((n-4)/2). Thus z(G;(((n—4)/2),
((n—4)/2))) = (3n* —4n)/4. To simplify calculation,
we get z(Gy; (a,b)) < ((3n% — 4n)/4) when
a# ((n—4)/2) and b# ((n—4)/2). This implies that
z(G)< ((3n* —4n)/4) and the equality holds iff
G =Gy, (((n-42),t((n-4)2)).

Case 2: assume that » is odd. We know thata = ((n—
5)/2) and b= ((n-3)/2), or a= ((n—23)/2) and
b= ((n-5)/2). Thus z (G, (((n=5)/2), ((n—3)/2))) =
z(Gy (((n=3)/2), ((n—5)/2))) = (3n*-4n-3)/4. It is
easy to check that z(G,;(a,b))< ((3n*-4n-3)/4)
when a#((n-5)/2) and b+ ((n-3)/2), or
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a#((n—3)/2) and b+ ((n—5)/2). This implies that
z(G) < ((3n* —4n—-3)/4) and the equality holds if and
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Lemma 14. Let G € G, (a,b) be a graph with n vertices.
Then

only if G=G,; (((n=-5)/2),((n-3)/2)) =Gy,
(((n=3)/2),t ((n-5)/2)). O
5n’ — 24n + 48 _4n_4
%, where n > 6is even, and the equality holds iff G = G12<n 5 " 5 >;
z(G) < (25)
2
—-24n+4 — -
5114471”, where n>7is odd, and the equality holds iff G = Gu(nT?’, nT5>

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
direct computing yields z(G,,(a,b)) = 5ab + 5a + 3b + 8.
Using the method of Lagrange multipliers, we make aux-
iliary function L (a,b) = A(a + b + 4 — n)+ 5ab + 5a+ 3b + 8,
where a +b+4 —n, a>1, and b> 1. Taking the partial de-
rivatives of a, b, and A in L(a,b, ), we can obtain the fol-
lowing equations:

L,=A+5b+5=0,

L,=A+5a+3=0,
(26)
Li=a+b+4-n=0,

a>landb>1.

Solving the equations as above, we get a = b+ (2/5).
Since a=b+(2/5) is an integer, we know that
a=1|b+ (2/5)] or a=[b+ (2/5)]. By a=|b+ (2/5)] and
a+b+4=n, we can obtain that a= ((n—4)/2) and
b= ((n-4)/2). Similarly, by a=[b+(2/5)] and
a+b+4=mn, we also can obtain that a = ((n - 3)/2) and
b= ((n-5)/2). So, we discuss two cases as follows:

Case l:a=((n—4)/2) and b= ((n-4)/2).
Becausea = ((n—4)/2) and b = ((n - 4)/2) is a unique
root of (26), a = ((n—4)/2) and b = ((n—4)/2) must
be the unique extreme point. Since a and b are integers,
we consider two subcases.

Subcase 1: assume that nis even. Thena = ((n — 4)/2)
and b= ((n—4)/2). Thus z(G, (((n—4)/2), ((n-
4)/2))) = (5n* — 24n + 48)/4. 1t is easy to verify that
z(Gy, (a, b)) < ((5n* — 24n + 48)/4) when a# ((n-
4)/2) and b+ ((n—4)/2). This implies that
z(G) < ((5n* — 24n + 48)/4) and the equality holds if
and only if G = G, (((n—4)/2),t((n—4)/2)).

Subcase 2: suppose that n is odd. We know that a =
((n—-3)/2) and b= ((n-5)/2). Thus z(G,, (((n-
3)12), ((n-5)/2))) = ((5n* — 24n +47)/4). It is easy
to check that z(Gy,(a,b))< ((5n —24n + 47)/4)
when a# ((n —3)/2) and b # ((n - 5)/2). This implies
that z(G)< ((5n* — 24n +47)/4) and the equality
holds iff G = G, (((n—3)/2),t((n-5)/2)).

Case 2: a= ((n-3)/2) and b = ((n-5)/2).

Similar to the proof of Case 1, because a = ((n —4)/2)

and b = ((n—4)/2) is a unique root of (26), a = ((n -

4)/2) and b = ((n—4)/2) must be the unique extreme

point. Since a and b are integers, we consider two
subcases.

Subcase 1: assume that nis even. Thena = ((n — 4)/2)
and b= ((n-4)/2). Thus z(G,({((n—-4)/2),
((n—4)/12))) = (5n* — 24n + 48)/4. 1t is easy to verify
that  z(Gy,(a,b)) < ((5n* —24n +48)/4)  when
a+ ((n—4)/2) and b# ((n—4)/2). This implies that
z(G) < ((5n* — 24n + 48)/4) and the equality holds if
and only if G = G, (((n—4)/2),t((n—4)/2)).

Subcase 2: suppose that # is odd. We know that a =
((n—-3)/2) and b= ((n-5)/2). Thus z(G,, (((n-
3)12), ((n—15)/2))) = (5n* — 24n + 47)/4. Tt is easy to
check that z (G, (a,b)) < ((5n* — 24n + 47)/4) when
a# ((n-3)/2) and b+ ((n - 5)/2). This implies that
z(G) < ((5n% — 24n + 47)/4) and the equality holds iff
G =Gy, (((n=3)/2),t((n-5)/2)). O

Lemma 15. Let G € G;(a,b) be a graph with n vertices.
Then

( —4n-4
n* —4n+10, wheren> 6iseven, and the equality holds iff G = GB(HT, n 3 );
2(G) < where n > 7 is 0odd, and the equality holds (27)
n’ —4n+ 9,
. n-3n-5 n-5n-3
1fstG13< —, >EGI3< = )
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Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2, we
get that z(Gy; (a,b)) = 4ab + 4a + 4b + 10. According to the
method of Lagrange multipliers, we make an auxiliary function
L(a,b)=A(a+b+4-n)+4ab+ 4a + 4b + 10, where a+
b+4 =mn,a>1,andb> 1. Taking the partial derivatives of a, b,
and A in L(a, b, 1), we obtain the following equations:

L,=1+4b+4=0,

L,=A+4a+4=0,
(28)
Li=a+b+4-n=0,

a>landb>1.

Solving the equations as above, we obtain thata = ((n -
4)/2) and b= ((n—4)/2). Because (((n-4)/2),t
((n—4)/2)) is a unique stable point, (((n—4)/2),t((n—
4)/2)) must be the unique extreme point. Since a and b are
integers, we only consider two cases.

Case 1: assume that n is even. We obtain a = ((n—
4)/2) and b= ((n-4)/2). Thus z(G;(((n-

13

4)/2), ((n—4)/2))) =n* —4n + 10. It is easy to check
that z(Gy;(a, b)) <n? —4n+10 when a# ((n—4)/2)
and b# ((n—4)/2). This implies that z (G) <n® — 4n +
10 and the equality holds if and only if
G=G;(((n-4)/2),t((n—-4)/2)).

Case 2: consider that n is odd. We have a = ((n — 3)/2)
and b= ((n-5)2), or a=((n-5)/2) and
b= ((n-3)12). So, z(Gy; ((n—3)/2), ((n-5)2))) =
z(G3(((n=5)/2), ((n=3)/2)) =n*—4n+9. It is
easy to verify that z(G,;(a,b))<n®>—4n+9 when
a+ ((n-3)/2) and b+ ((n—-5)/2), or a# ((n->5)/2)
and b # ((n — 3)/2). This means that z (G) <n?> —4n + 9
and the equality holds if and only if G = G5 (((n — 3)/2),
((n-5)/2)) = G5(((n—5)/12),t((n—3)/2)). O

Lemma 16. Let G € G, (a,b) be a graph with n vertices.
Then

where nis even, n > 8 and the equality holds iff
32
En —8n+ 16,
n-4n-6 n-6n-4
z(G) < 3 GEGM( > 5 EGM(T’ 5 )§ (29)
35 -5n-5
Enz -8n+ > where nis odd, n > 7 and the equality holds iff G = G14<nT, nT>

Proof. Similar to the proof of Lemma 3, by Lemmas 1 and 2,
we obtain that (G4 (a, b)) = 6ab + 7a + 7b + 15. According
to the method of Lagrange multipliers, we make an auxiliary
function L(a,b)=A(a+b+5—-n)+6ab+7a+7b+ 15,
where a+b+5=mn, a>1, and b>1. Taking the partial
derivatives of a,b, and A in L(a,b,A), we can obtain the
following equations:

L,=A+6b+7=0,
Ly=A+6a+7=0,

(30)
Li=a+b+5-n=0,

a>landb>1.

Solving the equations as above, we obtain thata = ((n -
5)/2) and b= ((n-5)/2). Because (((n-5)/2),t
((n—5)/2)) is a unique stable point, (((n—5)/2),t((n—-
5)/2)) must be the unique extreme point. Since a and b are
integers, we only consider two cases.

Case 1: consider that nis even. We havea = ((n — 4)/2)
and b=((n-6)2), or a=((n-6)/2) and
b= ((n-4)/2). Thus z(G,({((n-4)/2), ((n-6)
) = 2(Gy(((n-6)/2), (n-4)2) = (3/2)w*~
8n+16. To  simplify calculation, we  get
z2(Gyy(a, b)) < (3/2)n* — 8n+ 16 when a# ((n—4)/2)

and b#((n-6)/2), or a+((n-6)2) and
b# ((n- 4)/2). This implies that z (G) < (3/2)n* — 8n +
16 and the equality holds iff G =Gy, (((n—4)/2),
((n—-6)/2)) = G4, (((n-6)/2),t((n—4)/2)).

Case 2: assume that n is odd. Then a = ((n - 5)/2) and
b= ((n-5)/2). So z(G4(((n-5)/2), ((n-75)/2))) =
(3/2)n* —8n+ (35/2). It is easy to check that
z(Gyy(a, b)) < (3/2)n* — 8n + (35/2) when a#
((n—5)/2) and b# ((n—-5)/2). This implies that
z(G) < (3/2)n* — 8n + (35/2) and the equality holds if
and only if G = G, (((n - 5)/2),t((n - 5)/2)). O

Proof of Theorem 1. By Lemmas 3-16, we know the maxi-
mum Hosoya index in G; (i=1,2,...,14). Employing
Mathematica 12.0 to compute the difference of the maxi-
mum Hosoya indices of G; and G, it yields directly the result
in Theorem 1. O

4. Concluding Remark

In this paper, we characterize the sharp upper bound of
Hosoya indices of all graphs in %’. Furthermore, we also
determine the upper bound of every type of bicyclic graphs.
There exists an interesting problem:
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Problem 1. Which graph G € %> has the minimum Hosoya
index?

We attempted to find a solution to the problem; how-
ever, the problem is very difficult for us.
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Distance-based dimensions provide the foreground for the identification of chemical compounds that are chemically and
structurally different but show similarity in different reactions. The reason behind this similarity is the occurrence of a set S of
atoms and their same relative distances to some ordered set T of atoms in both compounds. In this article, the aforementioned
problem is considered as a test case for characterising the (molecular) graphs bearing the fractional metric dimension (FMD) as 1.
For the illustration of the theoretical development, it is shown that the FMD of path graph is unity. Moreover, we evaluated the

extremal values of fractional metric dimension of a tetrahedral diamond lattice.

1. Introduction

Day by day, the nexus of chemistry is progressing by the
advancements in drug discovery, formation of chemical
compounds, and development of testing kits for the diag-
nosis of different diseases and medical anomalies. Besides
different concepts that arose as a result of the emergence of
cheminformatics, distance-based dimensions also have their
stake in this concern. Assume that, in a graph C, the shortest
path between the 2 vertices s, ¢ is given by d(s,t). Let S =
{s1,8,83, .., 5, }SV(C) and u € V(C); then, the k-tuple
metric form of S in terms of u is given by
r(ulS) = (d(u,s,),d(u,s,),d(u,s;),...,d(us;)). The set S
becomes a resolving set having k elements for a graph C if
each pairs of vertices in C bears distinct k-tuple metric
forms. The resolving set with minimum cardinality in C
forms its metric basis, and its cardinality represents its
metric dimension.

The terminology of resolving sets was introduced by
Slatter [1, 2] by naming them as locating sets. Harary and
Melter [3] personally discovered these terminologies and

called them as the metric dimension of C. Afterward, many
researchers have studied different graph structures for the
calculation of metric dimensions. The results for the metric
dimensions of path, cycle, Peterson, and generalized
Peterson graphs can be found in [4-6]. For various results on
metric dimensions of graphs, we refer to [7-9] and [10].
Chartrand et al. [11] employed metric dimension to find the
solution of an integer programming problem (IPP). Sub-
sequently, Currie and Oellermann introduced the concept of
fractional metric dimension (FMD) and obtained the so-
lution of IPP with higher accuracy [12]. Arumugam and
Mathew [13] after discovering the hidden properties of FMD
formally defined it. Since then, many researchers have tried
their luck in this area by attacking different graph structures.
The results for the FMD of graph structures as obtained from
Cartesian, hierarchial, corona, lexicographic, and comb
product of connected graph structures can be seen in [14-16]
and [17, 18]. Recently, Liu et al. [19] calculated the fractional
metric dimension of the generalized Jahangir graph J;, and
Raza et al. calculated the FMD of a metal organic network
[20, 21]. Alisyah et al. presented the concept of local
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fractional metric dimension (LFMD) and found the LFMD
of the corona product of two connected networks [22]. Liu
et al. calculated the LEMD of rotationally symmetric and
planar networks [23]. Recently, Javaid et al. calculated the
bounds for the LFMD of connected and cycle-related net-
works in [24, 25].

Johnson [26, 27] employed the concept of metric di-
mension for creating proficiency of large datasets of
chemical graph structures. The mathematical study of
chemical structures concerns the development of mathe-
matical classification of chemical compounds. The graph-
theoretic version of chemical compounds naturally exists.
Despite having different chemical and structural aspects, two
chemical compounds show similar behaviour during the
reactions. The reason behind this peculiarity is the existence
of certain common substructures within these compounds.
If in two compounds, the elements of the set S of atoms and
the elements of the ordered set T are relatively equidistant,
then we call these compounds to be similar or equivalent
[28]. Finding a T with minimum cardinality such that the
ordered lists associated with every two distinct vertices of S
are distinct has applications to classification problems in
chemistry, as described in [11].

In this article, we are going to characterise the (mo-
lecular) graphs with FMDs as unity. As a test case, we have
considered the allotropic form of carbon called by tetra-
hedral diamond developed by Ali et al. This article propels in
the following manner: Section 1 is for introduction, Section 2
is devoted for the applications of FMD in chemistry, Section
3 is for preliminaries, Section 4 concerns with the devel-
opment of a tool for the characterization of graphs with
FMD as 1, and Section 5 deals with the resolving neigh-
bourhood sets of TD (#). In Section 6, we have calculated the
FMD of TD (n). Section 7 gives the conclusion.

2. Applications in Chemistry

In a molecular graph, atoms are denoted by nodes and bond
between them by edges. The fraternity of chemists and
pharmacists is always in search of finding out chemical
compounds in some collection bearing physiochemical
properties in common at some particular places. This ob-
jective is achieved by the identification of the substructure
having the smallest number of atoms. In graph theory, this
problem is the same as finding the FMD of the graph under
consideration. In this way, druggists and chemists will be
able to capture the aforementioned features of these com-
pounds and comprehend whether they are responsible for
some pharmacological activity for a newly developed drug.
For more on the applications like these, see [11].

3. Preliminaries

Forc € V(C) and {a, b}cV (C), {a, b} is said to be resolved by
¢ if d(a,c)#d(b,c). The set formed by the pair of nodes
comprising nodes such as c is called resolving neighbour-
hood. The resolving neighbourhood (RN) of {a,b} is
mathematically given by
R{a,b} = {c e V(C)|d(a,c) +d(b,c)}.
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Suppose a connected network C(V (C), E(C)) having
order p. A function 7: V(C) — [0,1] is known as the
resolving function (RF) of C if 7(R{a,b}) >1 Va,b € V (C),
where 7(R{x, y}) = = Yeerfx, y}‘r(z) An RF 7 of C is known as
a minimal resolving function (MRF) if any function
¢: V(C) —> [0,1] such that ¢ <y and ¢(z)#7(z) for at
least one z € V (C) that is not an RF of C. Then, the FMD of
the network C is given by dim  (C) = min {|y|: is the MRF
of C}, where 5| = ¥ cvcyn(2) [13].

3.1. Construction of Tetrahedral Diamond. The tetrahedral
diamond graph is an n-dimensional lattice, comprising n;
layers where 1<i<n. Figures 1 and 2 show TD(n) for
3<n<s.

Each #; layer is having n? vertices, ((n; —2)(n; —1)/2)
hexagons, and three pendent edges. The vertices of each layer
are denoted by v;-"' where 1< j<mn;. The first layer is iso-
morphic to K, and layer two is isomorphic to K 5, whereas
for 1<i<n, each n;_, layer is the subgraph of the n;-th layer.
Hence, the graph formed by each layer is denoted by S’
Slmllarly, followmg are the subgraphs found to be in all the
layers: Sop Pn T PP and K?"’p, where 1<j,s<n; -1
and p descrlbes their position that can be top, top right, top
left, bottom, bottom right, bottom left, middle, middle right,
middle left, and bottom denoted by ¢, tr,tl, b, br, bl, m, mr,
and mil, respectively. Figure 3 shows all the subsets of TD (n).

It can be seen from the figure that, 1n each layer, vl' is
adjacent to vz' 1, v ot is adjacent to V! 2 12 _p and V" e is
adjacent to an Aﬁart from them, every V’ertex with an odd
label in the n;' — 1 layer is adjacent to the vertex with an even
label in the »; layer and vice versa.

4. Characterization of Graphs with
FMD as Unity

In this section of the article, we are giving generic criteria for
identifying graphs with FMD as 1. These criteria have been
shaped up as a theorem given below.

Theorem 1. Let C be a connected graph and R{a,b} be a
resolving neighbourhood set of the pair of vertices a, b in C. If
NR{a,b} + D, then

dimfrac (C) =1, (1)

where |V (C)| = 3.

Proof. Assume that R = R{a,b} is an arbitrary resolving
neighbourhood set for {a,b} ¢ V(C) and Y = N R. Now, we
define the function y: V(C) — [0,1]asc = ) .y ¥ (x) and
1-c=) crynx¥(x), where c is a real number that ap-
proaches to 1 and X = V(C). For a,b e V(C) and ¢ — 1,

YR =Y y) =Y y)+ Y y(x)
€ (R-Y)NX

x€R xeY
(2)

=c+w(l-c¢)

>1,



Journal of Chemistry

FIGURE 1: Tetrahedral diamond lattice with 3 (a) and 4 (b) layers.

P;’i’ P

FiGURE 3: Subsets of the tetrahedral diamond lattice.

where w = (|V(C)||[V (C) - 1|/2). It implies that y is a re-
solving function. To check that y is a minimal resolving
function, assume that there is another minimal resolving
function 7 such that 7<y. By definition, 7(x) < y(x) for
some x € X. Now, for some resolving neighbourhood set R,
we have

af
ﬂ4
%/ s
S
aé 4 a?n
1
/ “%4
4
4
O/ph /
ag L/I“%
at als
7(R) = Zr(x)+ Z 7(x)
xeY x€(R-Y)NX
<Y y@+ )Yy, (3)
xeY x€(R-Y)NX
=c+(l-¢)=1

Consequently, 7(R) <1 which implies that 7 is not a
resolving function. Thus, y is a minimal resolving function.
Let ¥ be another minimal resolving function of C. Now, we
have the following possibilities:

() F(0) <y (x)Vx € X
(ii) y(x) >y (x) Vx € X
(iii) ¥ (x) <y(x) for some x € X O

Case 1. If y(x) <y (x) for all x € X, then for each resolving
neighbourhood set R, ¥(R)<1=vy is not a resolving
function; therefore, this case does not hold.



Case 2. If y(x)>y(x) for all x € X, then we have the
following subcases:

Subcase A: for 1<r,s<wand R, -YNR, -Y = O, we

have
wl=)v@+ Y

x€Y x€(R-Y)NnX

>Zw(x)+ Z v (x), (4)

xeY xe(R-Y)NX

¥ (x)

=c+w(l-c) =yl

Asc— 1, dimg, (C) =yl =c+w(l-¢) =1.
Subcase B: for 1 <r,s<wand R, —-YNR, - Y # O, we

have
7= 70+ ) ¥, 5)
x€eY xeﬁ,
where R, = R, N [X — ﬂ _IR, - Y]. Then,
M=Zwm+2wu
xeY x€§[
> Yy + Y yx)
3 : (6)
x€ x€R,
=c+ Z v (x).
X€R,

So,

dimg,, (C) =c+ Y y(x)
X€R,
<c+ v (x),
P o
=c+w(l-c),

=1

Thus, dimg,,. (C) < 1. But, by definition, dimg,,. (C) > 1.
Therefore,

dimy,. (C) = 1. (8)

Case 3. If w(x) <y (x) for some x € X, this case is a con-
sequent of the abovementioned two cases (Case I and II);
therefore, we have dimg,.(C) = 1.

Consequently, from Case 1-3, we arrive at the following
conclusion:

dimy, (C) = 1. (9)

Using the result presented above, we are now going to
prove the following fact:

Proposition 1. Suppose that, for any n>3, G = P,; then,
dimfmc (G) =1.
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Proof
Case 1: for n = 3: the resolving neighbourhood sets for
the current case are R, =R{aj,a,}= {a;, a,as},
R, = R{ay, a5} = {a), a5, a5}, and R; =
R{a,,a;} ={a;,as}. It can Dbe seen that
N;_ R, = {a,,a;} # ©. Therefore, from Theorem 1, we
arrive at the conclusion thatdimg,, . (P;) = 1.

Case 2: for n > 4: the resolving neighbourhood sets of P,,
are R{ai,ai+p} =V(P,) - {a(2i+p/2)} and
R{a;a;,.} =V (P,), where p,s>1, 1<i<n,
p = 0(mod2), and s = 1 (mod2).

() o

It can be seen that N,
from Theorem 1, it implies that

dimg,, (P,) = 1. (10)
frac (Pr) 0

.} # ©. Therefore,

Remark 1. The abovementioned proposition strengthens the
result proved in [13].

5. Resolving Neighbourhood Sets of TD (n)

In this section, we present some the results regarding the re-
solving neighbourhood sets of TD (7). Lemma 1 deals with the
resolving neighbourhoods of TD (n) having minimum cardi-
nality followed by Lemma 2 and Lemma 3 that are concerned
with resolving neighbourhood sets of maximum cardinalities.

Lemma 1. Suppose that C =TD(n) is an n-dimensional
tetrahedral diamond lattice. Then, the minimum resolving
neighbourhood sets are as follows:

(a) For n>4, mn=0(mod2), a=m2),f=a+l,
y=2a-1, and n=2-1, |R|= |R{a‘lx,a’f}}| =
IRfa2, al}| = IR{aaz,a 2}| = (n(n® +3n+2)/12)
and |U;_| R, = (n(n*+3n+2)/6).

(b) Forn>3,n=1(mod2),a = (n—1/2), = (n+1/2),

=m+3/2),n=2a-LA=2-1,andu=2y-1,
IR,| = IR{a, ak}} = IR{af,al}| = IR{aZ, ai}| =
mﬁﬂM|q%,$ﬂﬂ@%$=
(n® +3n® + 51+ 3/12) and

[US,R,| = (n® + 6n* + 11n - 30/6).

Proof

(a) The resolving neighbourhood sets of R{a‘f, p },R{a;‘,
aq} and R{aaz, ﬁz} are R{a‘{‘, } V(C)- U] 5

(S =i ) Rlaganl =v(©-  uLy(sh-
Sjjblz)z) and R{a z,aﬁ } =V(C)-u" ﬁ(SJ

S] r)z) We note that |R,| = IR{al, }}| = |R{ as
ah)l = |R{a - }| = (n(? +3n+2)/12),

j n Jiot j.br i

S vYj Ml(s 2US(] a)? US]ot)2

bl), and |Ut:1R¢| = (n(n + 3n+2)/6).

UL R = UYL
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(b) The resolving neighbourhood sets of R{a‘f, aﬁz}},

R{a/f,a’f},R{afI‘,aﬁ} R{aﬁ, az} R{agz, agz},R{agz,
azz} are R{al, } V(C)—U”ﬁ(S] S]tz)z)
Rfas,dy} = V(C) - U5(S) = S)1 ), and Rl
d}=v(C)- U (S sf(]*,’_fz)z) and R{af,a}} =

G
i £ arl =
=S,k Rlanall= V(©)-

aza

V(C) - UL (SJ

U" (S] —S](]blz)z) and R{aﬁz,a } V(C)-
U;-’zy (S] J(]b’z)z) .We note that |R,|=|R{a],
A} = |R{a1, W =1IR{a,al}l = IR{a),  al}}l=
IR{ a%,a Z}I = IR{azz,a 2}I = (n® + 3n*+ 5n+
mflzuﬂRt = UL ShuUL (S LU ST

)2) and [US R = (n®+6n*+
lln 30/6). O

Lemma 2. Suppose that C = TD (n) is an n-dimensional tet-
rahedral diamond lattice with n>3 and n = 1 (modn). Then,

(a) For 1<a<n,f=a+1, y=2a-1, and n=2p-1,
IR <IR{at.al}l = IRfas,af}l = [R{az.af || and
|R{a1,alf} NUS R = |R{ay,a€}ﬂ Ut:lRtl =
IR aaz,aﬁz NUS R|> IR

(b) For 1<0c<n, f=a+1 and 2<y<2a-1,
IR,| <|R{as, aj}| and |R{a, ah} UL R, <|R,]

(c) For 2<a<n, f=2a—-1,y=2a+2,n=0a’-3, and
p=a IR)<IR|as, “}| = IR{a%,ac}l and IR
{aﬁ, }Ut 1R| = [R{aj, aiij} UL R, | =
IR{a%,as} UL R > IR,|

aﬁ} € E(C), y=1, #=2, y = 1(mod2),

IR < |R{ag, a§}| _
[V(C)| = (n(2n® + 3n+1)/6) and

(d) For any {ag,
and 1 = 0(mod2),

)
IR{as, agiy}l =

|R{ag‘,a§} NUS R|>IR,]

Proof

(a) The resolving neighbourhood sets of R{a},a?},

B B a

{al, a3}, {a}, a3}, {a‘f,al}, and R{a;‘,an} are R{a?%,

By _ n j Jot Bl _

al} = V(C) - U'j=l3 (5]2 - S(]-_l)z); R{ay) an} =

V(C) - Uf 2(5] —S]’?l 2) and R{aaz,aﬁz} =
V(C) - U” (SJ (] ,), respectively.

Since IR{al,al}I = IR{aY angl IR{( az,aﬁ }| =

(27 +3n* + n+6a(n+1)(a—n) - 6af 1)/

6), thus [R,| = (2n® +3n? + n+ 6a(n+1)(a—n)-

6af(a— ﬁ - 1)/6). Therefore, |R{a‘1",a/f} NUS R =

|R{a aln U R = |R{“az’ ‘;2} NUS RI=IR,.

(b) First of all, we introduce a notation for simplification.

%, forn = 0 (modn),
Y= (11)
y- 1, forn = 1 (modn).

The resolving ne1ghbourhood for R{a a } is R{ «
d=v(C)-u Shuu, p'shu u?*;g‘sﬂlt
can be seen that IR{a a,,l =(mn-1-4(u+ 1%+

6(u+1) —u+2b°~ 3P +b+2(u+n—a+1)°-
(u+n-a+1)*-a/6)>|R,|. Therefore, |R{a,a?}

US R|>IR, | Also, by the symmetry of the network,
IR,| < |R{a ayl and |R{a aﬁUtZIR | >|R,|.

(c) The resolving neighbourhood for Ryag,ayt and
R{az,a[‘f} are R{aﬁ, } V(C)-Sju U;"3P]l

] =a—p+1%j

jol il
Uhan (P} = S_) and Riaj,as} = V(C)- Sju

3“P”U un

j=a+l
|R{ag, a}] = |R{at
Mm+8-T7a+ 6(2a-2)(n—a+1)+2(n- a+1)-

3(n—a+1)%/6). Hence, R,/ < (2(n+ D} -3+
D> +2n+8-7a+6Qa-2) (n—a+1)+2(n- a+

1)?-3(n—-a+1)/6) and IR{ag,a;‘}

(P;’r - S]("jio()2 )- It can be seen that

a, D= Q2mn+11-3n+1)>*+

USR] = IR{a%, al} USR] > |R,|.

(d) The resolving neighbourhood sets Rja$,a;r and
R{ag, ag:)} =V(C) = R{a%, all}.
Clearly, |R{ag, ag By = R{a%,aii}l = (n(n+1)
(2n+1)/6)>[R,|.  Also, |R{ag, aﬁ} US R, =
IR{a%, age] US R| 2 |R,|.

B

a B
are R{aa,aﬁ

Lemma 3. Suppose that C = TD (n) is an n-dimensional tet-
rahedral diamond lattice with n>4 and n = 0 (modn). Then,
(a) For 1<as<n,f=a+1, y=2a—-1, and n=2-1,
IR,| < |R{a‘f, all;}| = |R{a$,a§}| = |R{ag2,a/€2}| and
IR{a‘f, af}ﬂ U R = IR{ag,ag} NU; R =
|R{a;‘2, a‘gz} NUY R|>IR]
(b) For 1<oc<n, f=a+1, and 2<y<2a-1,
IR,| <|R{a%,ap}| and |R{a%,ah} U7 R, <|R,]
(c) For2<a<mn, ,p=2a-1,y=2a+2,n=0a®-3, and
b= IRI<IR{as, “}| = IR{a,at}l and IR
as| UL R = IR{a aff1}UT Rl =

z+1

{apa
IR{as,a} UL R, 2 |R,|

} € E(C), y=1, §=2, y = 1(mod2),

B
(d) For any {ag,aﬁ
IR,| < |R{ag,ag}| =

and 7 = 0(mod2),



IR{a%, azij}l = IV(C)l = (n(2n* + 3n+1)/6) and
IR{aa, ag} N USRI IR/
Proof. 'The proof is the same as that of Lemma 2. |

6. Fractional Metric Dimension of TD (1)

In this section, the FMD of TD (n) is calculated and the cri-
terion of their evaluation is devised by the following result.

Theorem 2. If C = TD(n) is an n-dimensional tetrahedral
diamond lattice with n>3 and n = 1(mod2), then

g (12)

3 2
n +6n +11n—-30

1<dim, (C)<2 .
frac (n +3n2+5n+3)

Proof

Case 1: when n = 3.

The resolving neighbourhood sets are as shown in
Tables 1-4.

The resolving neighbourhood sets that are equal due to
symmetry are given by the following:

Now, for uv € E(C) and 47 <L <62, we have

R{uv} =V (C). (13)
In the same manner, the pairwise resolving neigh-
bourhood sets that equals V (C) are as follows:

As we can see, Table 3 shows the resolving neigh-
bourhood sets of 'I]'ID(3) having the maximum cardi-
nality of 13 and U¥ R, = V(TD(3)). Table 4, on the
other hand, shows the resolving neighbourhood sets
with  minimum  cardinality of 6 and
US| R, =V (TD(3)). Suppose that, for 63<L<84,
R, =y, for 1<t<6, |R|=A n=|ud Rl =

[V(TD(3))| =13,and 6 = |[US_|R,| = [V (TD (3))| = 13.
Now, we define a mapping «: V(TD(3)) — [0, 1]
such that x(a) = (1/13) for all a € U¥ . R;; assigning
the value of (1/13) to all the elements of U¥ R, and
summing up all the labels, we get [«|=
> s x(a) = (13/13) = 1; thus, dimg, (T D)(3) =

L=63""L

|kl =1, as all the R; for 63<L<84 are all having
V(TD(3)) in common. Similarly, we define another
mapping 7: V (TD (3)) — [0, 1] such that 7 = (1/A) =
(1/6) for all a € US_|R,, and giving labels to the ele-
ments of US| R, and later on summing them up, we get
|z] = Zaeuf,lRtT(a) = (13/6) = 2.33; hence, dimyg,,
(C)<2.33 as all the R, for 1<t<6 are pairwise
overlapping. Therefore, we arrive at the following
conclusion:

1<dimy,,, (TD(3)) <2.33. (14)

Case 2: when n>5.
The required minimum resolving neighbourhood sets

are R{a‘f,a[f},R{a‘f, aﬂ,R{a af} R{af,a}j},
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TaBLE 1: Resolving neighbourhood sets of TD (3).

Resolving
neighbourhood sets Elements
R, = Rjal,a} V(©)— [ a2} U e s a2t )
R, = R{ai,ag} V(C) - {ai,ag,ag} u {az,ag,a;;,ag,aé}
Ry = Ria;, ay} V(©) ~{a, @3, a3} Uay, a3, @3, aj, az}
§4 - ﬁ%ag,agi ggg; - Eag,ag,ag,ag,ag,ag,ag,ag%
=R{a’,a —{a’,a,a,a3,a2,a3,a3,a
R ra AR e O g i
6 {a42, a92} {“%’“2’ag»“%’as’“g’“g»“g}
R, :R{a%,a%} V(C) - a}}u{a%,a%}u{ag,ag,ag}
R, = R{a%,a%} V(C) - {“1}2U {“2)3613}3U {3“4>3“5’3“7}
R, = R{a%,ag} V(C) - {a3} Uz{al,a%,ag,ag,ag}
Ry = R{“%’“g} VEE% - {“%} Uz{a3’“s>“9}
R, = Riaj,q \%4 —qas, a;rUias, a
R ZRiabal VOl lebabat ol
R, = Riat.al) V() fai]uah ab ol
Ry = Rlatal] V(C) - {af} U fa},ab ot )
R, = Rlad ai] V(©) - {a2) - {2, 2,03, )
Ry, :R{ag,aé} V(C)-{a Z}Lé{a?,ag,ag,ag,%}
Ry :R{“gﬂé} ((g)(C)_{ at} U{a;, a, a3}
R, =Rja3,a 1% a;,az,az, g, a.
R B R b
Ry, =R{a} al} V(C) -{ailula},a,al, a3, al}
14 »% ap U1 43, 43, 43, a5
Ris = R{a%,ag} V(C) - {2”4} U {3’13’3“6}3
R = R}u%, a%% VEE% - Eagi U %ag,ug, ag{
Ry; = Riag, ay V(C) —{aifUay, as, a;
Rys = Rlaj, a3} V(C(g {ay, a3} {ag, a3, a3}
R, = Rja;,a 1% —1lastUliai, a3, a
P VOl e
R =R 2 3 V(C)— 2 U 3 3 .3 .3 .3
21 {“zlpag} {ai} {“4>a5’“6)“§>“9}
ﬁﬂ = ﬁ%a%,ag{ gggg %aS,a%U%al,a%{
= Ria;,a a,a’lula,a
Ry, = Rlal.al] V(©)~{al}u{a, w2} U fa. a5, )
R,s = R{aj, a3} V(C)-{allu{ailuial,as
Ry, = Rla}.al] V(C) - fal}ufad} U fad aj}
=R{al,a —la a as,a
Ry =Rlaball V(O -{aulel e i) Ulal el el al)
Rys = R{ag, as} V(O) - {aj} Ulaj, a3, a3} U{aj, a5, a7, a3}
Ry = R{ai,aé} Vgg - {a%} U {aé,aé} U {ag,ag,aé
R,, = Riaj,a Vv —ia;rUias,a5iUa;,az,a
Ry - R}fﬁ cﬁ{ V(O) - {a{l}lL}J {a{z e Z}Z}u{iﬁ g 2}3}
31 b §} V(C)l { ‘}10{2)2}4U{ 32’3}7) 8
R,, =Rjaj,a —-1a a as,a
Py RS b 1 e e g
Ry = Riab.al) V(©) - {al} U fat a2 fad adv
Ry, =R{a3, a3} V(C) - {altuiad, a3l u{al,ai,al}
s = Rlad.al) V(© -fal} ufad} uladaf}
Rys = Rias,a; 14 a4 a3, g
R aaz,aﬁz , and R aﬁz,a;}, where «a = (n-1/2),
B=m+1/2), y=(n+3/2), n=2a-1, A=2-1,
and pu=2y-1. Lemma 1 clarifies that
|M—mpp}_
IR a } IR{a ‘h} IR{af,a,)j}l =
|Rias,,a ﬁ}l IR{ Bz,a;}lz (n® +3n® +5n +
3/12) < |R{a, b}| for all a,beV(C) and
6 _ j it jibr jibl
Utlet—U S uu”+1 (S )ZUS(Nzus(Jyz)

Also, the resolvmg nelghbourhood sets with maximum
cardinality of [V (C)I as clarified by Lemma 2,are R, =
R{a% al.l} and R, = R{a “/3} and R, = R{aZ, ag},

UZ_ R, =V(C). Let

respectively. ~ Moreover,
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IR{ag, ai " H = IR{as.af} =y IRI= A, 103, Ryl =

and |US_ R,| = 8. To find the minimum value for the
dimg,,. (C), we define a mapping «: V(C) — [0, 1]
such that

1 2 2
K(Gl)="—, fora e U R;,0,fora eV (C)- UR,,
K 121 121

(15)

where y =1 = (n(2n* + 3n + 1)/6). Assigning the la-
bels to the elements of | J U?_,R; and summing them
up, we get || =) . (1/y) =1.

acUi_ Ry
Similarly, for the maximum value of dimg,,. (C), we

define another mapping 7: V(C) — [0, 1] such that
7(a) :{%) fora € L6J1 R,,0,fora e V(C) - tLGJlRt. (16)
t= =

It can be seen that 7 is a resolving function for C with n>3
because 7 (R{u, v}) > 1Vu, v € V(C). On the contrary, assume
that there is another resolving function p such that p (1) < 7 (u),
for at least one u € V(C)p(u)# v(u). As a consequence,
p(R{u, v}) <1, where R{u, v} is a resolving neighbourhood of
C with minimum cardinality A. It shows that p is not a resolving
function which is a contradiction. Therefore, T is a minimal
resolving function that attains minimum || for C. Since all the
R, have nonempty intersection, there is another minimal re-
solving function of 7 of C such that |7] <|7|. Hence, assigning
(1/1) to the vertices of C in U;_ R, and calculating the
summation of all the weights, we get

5 3 2
1 n +6n +11n-30

dimg, (C)= ) —-<2 . (17)

fac (©) tzzl/l n +3n*+5n+3

In the end, we arrive at the following finding:
3 2

n +6n +11n-30
1<dimg, (C)<2 . (18)
frac <n3+3n2+5n+3) 0

Theorem 3. If C = TD (n) is an n-dimensional tetrahedral
diamond lattice with n>4 and n = 0(mod2), then

1<dimg, (C)<2. (19)

Proof
Case 1: when n = 4.

The resolving neighbourhood sets are as shown in
Tables 4-6.

The resolving neighbourhood sets that are equal due to
symmetry are given by the following:

For 109 <L <149 and {uv} € V(C), we have
R, = R{uv} =V (C). (20)

Similarly, the pairwise resolving neighbourhood sets
that equals V (C) are as follows:

As we can see, Table 7 shows the resolving neigh-
bourhood sets of C having the maximum cardinality of

TaBLE 2: Resolving neighbourhood sets of TD(3) equal due to
symmetry.

Resolving neighbourhood sets Elements
Ry = R{ay,aj} R{ay, a;

Ry = R{ai,a%} R{ag,ag}
Ry = R{ag,ag} R{a%,ag}
Ry = R{ag,ug} R{a%,a%}
Ry = R{ag,ag} R{a%,a%}
Ry = R{a%,ag} R{a%,ag}
Ry, = R{a%,ag R{ag’“gl}
Ry = R{aé,ag R{azz, asz},
Ry = R{ag,u§ R{a%,u%}
Ry = R{ay, a5} R{af, a3}
Rys =R{aj,a3} R{aj, a3}

TaBLE 3: Resolving neighbourhood sets of TD(3) equal to
V(TD(3)).

Resolving neighbourhood sets Elements
Rg; = R{a}, a3} V(C)
Rgs = R{“}’“S} V(O
Ry; =R{a?, a3} V(C)
Rgo = R{a%,ag} V(O
R, =R{a3,a}} V(C)
Ry, = R{aj, a3} V(C)
R;s = R{ag,ai} V(O
R,, =R{ai,a3} V(C)
Ry = R{“i’“g} V(O
Ry = R{a}, a3} V(C)
Rg; =R{a3,a}} V(C)
Rgy = R{a{,ai} V(O
Rgs = R{a?,a}} V(C)
Rgg = R{“%’“?} V(O
R,y =R{a3,al} V(C)
Ry, =R{a, a3} V(O
Ry, = R{as, a5} V(€)
R,s =R{a3, a3} V(C)
Ry = R{“i’“i} V(O
Ryy =R{a},a}} V(C)
Ry, = R{az,ai} V(O
Ry, = R{as,as} V(C)

TaBLE 4: Resolving neighbourhood sets of TD (3) with minimum
cardinality.

Resolving
neighbourhood sets
R, = R{a}, a)}

R, = R{a,a;}

Ry = Riay, az}

Ry = Raj, a3}

R; = R{a3, az}

R, = Riaj, as}

Elements

V(C) - {a3,a%,a2} ulal,al,al,al, a3}

V(C) - {a},a},all u{aj, a3, a3, a3, a3}

V(C) —{aj, a3, a3} U{ai, a3, a3, 2}, as}
V(C) - {a3, a3, a;, a3, ag, a3, ag, ag}
V(C)-1{al,a},a},a3,a;,a3,a3,a3}
V(C) - {a},a3, a3, a3, a3, ag, a3, ag}

————

30 and U, R, = V(C). Table 8, on the other hand,
shows the resolving neighbourhood sets with a mini-
mum cardinality of 10 and U}, R, =V (C)-{a3,

3 3 3 3 3 4 4 4 4
a3,a;, a3, a3, a3} U{ay, ajy, ay;,al,}. Suppose that, for

150<L <240, [R;|=y, for 1<t<3, |R]|=A4,
n= |U%163RL| = |V (TD(3))| = 30, and 0=
|US R, =|V(TD(3))| =20. Now, we define a
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TaBLE 5: Resolving neighbourhood sets of TD (4) that are not equal to each other.

=
1=
)

Il
Q
o
Q

Resolving neighbourhood sets Elements
R = R{a}, a3} V(C) ~ (a5, a3, a3, a3, a3, a3, ag, ag} U {ay, a3, ag, aj, ag, ajo, aj), a1y, ays, aly, als, g}
R, = R{a%,a%} V(C) {a?,az,aya4,a3g,a§,a§,a33} U {QJ’af’af’af’a49’azfo’?“)alﬂ’alf’a14’a15’a16}
R; = R{a41, az} V(C)-{a 1)“2’“3»‘14>“5)‘16>“7»‘18} U {“v“2’“3»a4)“5>a6’“7»as’“9>a1o»a11>‘112>‘113}
R, =R{a}, a3} V(C) - {a3,a3, a5} U{a;, a3, ag, ag, ag} U {ag, a3, ag, a},, als, ajs, as}
R, =R{a}, a3} V(O - {a%ﬂz’“zx}U{“1)“;>“;>a8’“9}u{“4"142;@491)‘140"14 "1};5)‘1};6}
Ry = {“i’az;} V(O - {al,?z,%}U{al,ag,?g,%,as}U{al,ag,a‘é,ai,ag,ag,a‘%}
R, = R{aj,az} V(C) —{a}u{az,a;}u {“3>“8’a9} U{a3, ay,a3,ay,, ajs, ale}
Rs = R{aj,a;} V(O) - {al} Ufat, a2} Ufad, . a} Ulah ot al.alynaty.al )
R, =R{a? a3 V(C) -{a2lu{ad, a3, a3,al, a2l ufat al,at, a,, a?,, at., at
R6 —Ii N 33} ( )V(?EZ)S}— {21U2 9 % 39L {41 2 89 A1p> 14> A5 6}
12 = {“{“g} © {“32} 2{“3:“8;“93} {‘13‘;“44)‘15;“&11@419“416}
R,; =Riaj,a \%4 —1{as,a;Udas,a5{Uias, ay,a:,ay, ay,, a
R =Rl ) O et e e e
Ris =R{a?, a3} V(C) -{alu{al,al, a3t u{al, ai, aj, aty, at, a,}

S A N AN e
R = R{a%,ai} V(C) - {at}u {“4»“5’5’6’“8129} iJ {as’ai’ dg, d}y, a1, Ay, A1}
7 2 e €y Gt
R,y =Rjaj,a 14 —1ias,a;,az,a;Uias, a,,...,a
R18 =R%a§ a‘ﬁ V(C)- {5{133a34u35a3]?t {i41 at at azl}}

19 1 as 3 App s, ) U 1910, A1 A1 Bl
220 = ﬁ{ag’az} Vg/C()C) {“4’a6}u{“4’?11;“152“16}

= al,a a,,azirUia,,a;,, a
R21 =R%a§ agi V(C) - {a i 4a381i3}i)fa4 124 B as}

2 1 d 647,88, Aop V1AL 40> - 0 4y

Ry3 :R{aé’a}ll} V(C) - {a3,a4,a5,a7,a8,a9}Li{ai,az}

Ry, zR{“g“}{;} V(C) - {f‘s>‘§7";8>“9}g{‘Zwﬁyag:%}

Rys R{a§’a}16} V(C) R {asﬁs}g{as’aqaho’“u}

R,s = R{a}, a3} V(C)-{al}ula,al,.. . ag,ai,....a},

Ry; :R{a;“i} V(C) - {“g»ai’asﬂsv}U{“111"1‘2*»“491»‘1‘1}0»‘1‘1}4>‘111¥5»‘111}6}
Ryy = R{ay, ag} V(C) - {aj, ag} U{ay, ajy, als, ajg}

Ry = R{ay,ay} V(C) - {a3, a3, a3, 3.} U{ay, a3, a3, aj, a3, ag, az}
Ry = R{ag, “:1112} V(C) ~{a3, as’;‘g’%}‘lu {54’310’314}

ﬁm :gag,aﬁ} V(g)(c){as,{asiU}ai,ag,alg,}au}

3 = K43 ay —{a} as, s, dyg

R,; =R{a3, al} V(C)-{ailulal, a3, a,a], ..., ay, ..., a5}
Ry, :R{a?“?‘} V(C)_{as} {as’alsﬂ?s} .
Ry = R{ag,ag} V(C) - {a4,a§,ag,a§,ag} u {aﬁ’ai’alg’ali’a“}
Ry = Ri{a3, ag} V(C) - {a}, a3, a3, a3} U{ag, aj,, aty, ais }
Ry, =R{al, a},} V(C)-{al,al,a},altu{at,a3,...,a
Rys = R{a3, a3} V(C) - {ag, ag} U{ag, aj, ajy, a1, }
Rsg =R{a§,a‘1‘4} V(C)—{ag}u{ag,a‘fl,a‘fz,a‘ﬁ}
Ry :R{a%,aié} (C)V(C)3— éag}uiagla‘l*i} \
R,, =Rijaj,a 1% —Jay,astUlay, asz, a5, a
2 JRleb V() - o abs B0 o b ool ot )
Ry = R{aj,al} V(C)-{ailuiat,a3,a3.a],....4;,...,a}}
Ry = Rlal, b V(C) - {agaf} U faba]
Rys = R{aj,a}s} V(C) — {a3, az} U{ay,,ap,}
Ry = R{az,aj} V(C) - {a3, a3} U{aj, ay,, ais, aje}
Ry = R{az,a;} V(C) - {a3, a3} U{as, ay, ats}
Ry = R{az,as} V(O) - {a3}u{a,a3.a3, a3} Ulaj, a3, ..., a3, a3, %, ), ay, )
Ry = R{al,al} V(C)-{a},a3,....a%as ..., a5}
Ry :R{ag,ag} V(C) - {as’“;“g’%};J{“v?lz’is’“f“s’“y%}
R, = R{a, a} V(O - {a8>“9}u{“4)‘112)‘113}
Rs, =R{a3,a}} V(C) - {ag, as} U{ay, a,, a1}
Rs; = R{az,a;} V(C) - {a3, a3} U{aj, a3, a3, ay, ag}
Rsy = R{az,ay,} V(C) - {a}, a3, ag} U{as, aj, ag}
Rss = R{a, ayc} V(C) - {a3,a3} u{a}, a3, ajy, a1, }
Rss = R{ag,ai} V(C) - {at}u{as} u{al, a3, ajp. ajs}
Rs; :ﬁag,a%} V(C) - {al}u{a? Vz(Cz)}_ {{a‘l‘;a‘z*a...},ais}} {a},at,at,at, al}
Ry = ag,ag —{aj}u{at,a3,a3}lu a%,a%,ag,cy31 u a};’ai’ai’al"ai
Rsg = R{ai,ag} V(C) - {a] }U{al,az,a3}uial,a23a3,3a4}U;{lallaz,aya[pas}
Rgy = R{ay,a,} V(C) —{a} U {ai} u{a3, a3} U{aj, aly}
3 3 2 2 3 3 3 73 4 4 4 4 4 4
R = Rgaz’agﬁ V(C) —{a} u{a, ait U{al, ag, a’, a3} U{as, aj, as, ayy, ajs, ai
R 8

V(©) ~{aj} uiaj, a3} uaj, a5, @*, a7} Uag, a7, a5, aip, aly, a1}
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TaBLE 5: Continued.

Resolving neighbourhood sets

Elements

Rg; = R{a, a3}
Rgy = R{a3, a5}

Rgs = R{af,ag}
Res = R{aj, a3}
Ry, = R{aj, a3} V(C) -

Rgs = R{a‘f,a‘%}
Rgy = R{ag, ap}
Ry = R{ag,ag}
R; = R{"é’“ﬁ}
Ry, = R{a;,ajc}
Ry = R{a%’aél‘}
Ry, = R{aj, a3}
R;s = R{a{,ag}
Ry = R{a;,ag}
Ry = R{“;“h}
Ry = R{a3, a3}

V(C) -
V(C) -

V(C) -

V(C) - {a}}u{a, ag,ag, atuiat a3, ..

V(C) - {aj} u{as} u{ai, az} U a3, aj, als, aj}
V(C) - {aj} u{ast u{ag, a3} U{ag, a7, a5, af,}
fal} ot . a2 a3 a8, 3] U o ot s it
{ar}uiat, a3, a3} u{a3, a3, a, a3} U{ay, a3, ag, a7, ag}

fat}v{ar, a3 2] U o, 0, . a6 31 fad ol )
(ot} vl a3 a2} .} ab . faf ot o
v(©) - lal}ulatad et} ulad ab at.aifu fat ot i af ol

V(C) - {al}ual, a2} ulad.adal} Ufat,at,at ,at )
V(©) - {al}u{az, a2} Ulal.al, i} Ufal, al i, at
V(©) - {at}ulat adlUfar,ah.ad} U fat, ai, af a}

V(C) - {a;“g’ “;} U {a‘é,a‘%,a‘g, “%2’ a?s»“?s’ “1116}
V(C) —{a3, aj, ag} U{al, a3, ag, ay, ay 4y, as}

V(C) - {ag, a3,a3} U {ay, a5, a3, aj, a5, ag, a7}

V(C) —{ag, a3, a3} U{at, a3, a3, aj, as, ag, a}
-’a‘é»ﬂgﬂ‘fe,a‘hﬂﬁ}

V(C) - agaly,. .. ak

{aj}u{aj,as, ..

mapping k: V(TD(3)) — [0,1] such that
x(a) = (1/30) for all a € U R, and assigning the
value of (1/30) to all the elements of U3 R; and
summing up all the labels, we get |«
= Z - k(a) = (30/30) =1; thus, dimg, (C)=

84
|x| = 1 ‘2 all the R; for 150 <L <240 are all having
V(TD(3)) in common. Similarly, we define another
mapping 7: V (TD (3)) — [0, 1] such that 7 = (1/A) =
(1/ 10) foralla € U;_| R,, and giving labels to the elements
of U} R, and latter on summing them up, we get
|| = Zaeu3 R, 7(a) = (20/10) < 2; hence, dimg,. (C) < 2
as all the' R for 1<t<6 are pairwise overlapping.
Therefore, we arrive at the following conclusion:

1 < dimg,, (TD(3)) 2. (21)

Case 2: when n>6.

The required minimum resolving neighbourhood sets
are R{a‘f,aﬁ,R{a;‘, a’,‘;}, and R{aaz,aﬁz ,  where
a=(n2), f+1, y=2a—-1, and n=2F-1. As it is
evident from Lemma 1, |R|= |R{a‘f, af }I
= [R{a%, ah}| = |Rt “, ﬂ2| = (n(n? +3n+2)
/12) < |lacuteR{a,b}| for all a,beV(C) and
ULR = UL, SLU UL, (87 L uS L ust ).
Moreover, IR{u v}ﬂ U;_ R >R, for all u,v € V(C).
Also, by Lemma 3 (d), the resolving neighbourhood
sets with maximum cardinality of [V (C)| = (n(2n* +
3n+1)/6) are R, =R ag,ag and R, = {aa, agiz}

with , UZ_ R, =V(C). Let |[R|=A, |[R]=
|UZ_ Rl =7, and |U}_ R, = §; to find the minimum
value of dimg, (C), we define a mapping
k: V(C) — [0, 1] such that

! forac O R

o forae UR,
k(a) = (22)
, foraeV(C)- ;Jl R;.

(=}

TaBLE 6: Resolving neighbourhood sets of TD (4) that are equal due
to symmetry.

Resolving Resolving

neighbourhood sets Equality neighbourhood sets Equality
By ~Ribai] KoLl Ry -Rlaia) Ko
=Rlal,a al,a =Rl{az,a al,a
R:; = R%ag a% Rgaé a%% R82 = R{{a‘z a%)}} Ria% agi
6 %7 193 84 13> %14 193
Rgs = R{ay,aj} R{aj,a3} Ry =R{aj,az}  Raj,ar}
Rg; = R{aﬁ,ui} R{a%,ag} Rgg = R{ai,a?} R{ag>“3}
Ry = R{a3, ap} R{a}, a7} Ry = R{aj,a} Riaj, a3}
Ry =R{as,ay}  R{ajag} Ry, =R{asaj}  Riasag}
Ry; = R{aj,al,} R{ai,a;} Ry, =Rialay} Rlag ag)
Rys = R{a},,ajs} R{ag, a3} Ryq =R{agals}  R{ag,ap}
Ry; = R{“Asl’“i;} R{ag,ag} Rog = R{“;“ﬁ} R{ag,ag}
Ryy = R{aj,al,} R{ai,ai} Ry =Rlagal}  Riagap)
Ry = R{ay, aj,} R{“?)“g} Ry, = R{a; a3} R{af,ag}
Ryps = R{ag,a;*} R{ag,ag} Ry = R{aé’ai}l} R{af,a%}
Ryps = R{“;“i‘l} R{“?>“§} Rys = R{aéaﬁ} R{“;aﬁ}
Ryy; = R{ag,a‘é} R{ag,a‘ﬁ} Ry = R{ag,a;‘} R{ag,ag}

where y =1 = (n(2n* + 3n+ 1)/6). Assigning the la-
bels to the elements of | J U?_,R; and summing them
up, we get || =) - (1/y) = 1.

ae

Similarly, for the maximum value of dimg,,. (C), we

define another mapping 7: V(C) — [0, 1] such that
! forac UR
X, ora € t';Jl £
T(a) = (23)
0, foraeV(C)- EJI R,.

It can be seen that 7 is a resolving function for C with
n>3 because 7(R{u,v})>1Vu,v € V(N). On the contrary,
we assume that there is another resolving function p such
that p (1) < 7(u), for at least one u € V(C)p(u) #7(u). As a
consequence, p(R{u,v}) <1, where R{u,v} is a resolving
neighbourhood of C with minimum cardinality «. It shows
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TaBLE 7: Resolving neighbourhood sets of TD (4) that are equal to V (TD (4)).
Resolving neighbourhood sets Elements Resolving neighbourhood sets Elements
Ri5o = R{ay, a3} V(©) Ry = R{a}, a3} V(C)
Rys; :R{a{,ag} V(©) Rysy = R{a%,ag} V(C)
154 = R{a%,af;} V(C) Ryss = R{ai,a‘é} V(C)
Ryss = R{ay,ajp} V(©) Ris; = Riaj,a,} V(C)
s = Riap,ajs}h V(C) Risy = R{a}, a3} V(C)
Rygo = R{a%,ai} V(©) Ry = R{“l’ g} V(C)
62 = R{a, aj} V(C) Rygs = R{a3, a3} V(C)
Rigs = R{ag,ag} V(C) Rygs = R{“z’ g} V(C)
166 = R{“%J’;} V(©) Ryg; = R{“pag} V(C)
Ries = R{az, a5} V(C) Ry = R{a3, a3} V(C)
o = R{a%,ag} V(C) Ry = R{a4, ;} V(C)
Ry = R{aj,ay} V(C) Ryy3 = R{ag, g} V(C)
s = R{aj, a3} V(©) Ryys = R{a}, a3} V(C)
Ry = R{ag,ag} V(©) Ry;; =R{a), g} V(C)
78 = R{ag,ag} V(C) Ry = Riaj, i} V(C)
Rygo = R{aj,ajp} V(C) Rig = Ra},ag} V(C)
2 = R{a},a,} V(C) Rygs = Riaj,ajs} V(C)
184 = R{a‘z*,a‘é} V(O Rygs = R{“z» ?1} V(C)
186 = R{“;“ﬁ} V(C) Rig; = R{“2> A7l} V(C)
188 = R{a;‘,ag} V(C) Ryg = R{a;, 4113} V(C)
Rygy =R{a3, aly} V(C) Ry, =R{a3, ai} V(C)
2 = R{a3,a,} V(C) Ryg; = R{as3,ajs} V(C)
Rygs = R{a}, a7} V(©) Rygs = R{a}, ag} V(C)
19 = R{“i“ﬁ} V(C) Ryg; = R{“i’“?s} V(C)
Rygg = R{a{,a‘z*} V(C) Rygy = R{a%,ai} V(C)
200 = R{ay,ag} V(C) Ry, = R{aj,ai,} V(C)
Ry, = R{aj,aj,} V(C) Ry = R{a}, a5} V(C)
204 = Riaj,az} V(©) Rys = Riaj,a¢} V(C)
Ry = R{aj,a,} V(C) Ry, = R{aj,ay} V(C)
208 = R{af,ag} V(©) Ry = R{aj,a,} V(C)
Ry = R{a%,a;‘} V(©) Ry = R{ai,a;‘} V(C)
512 = R{a3, at} V(©) Ry3 = R{a3, a7} V(©€)
Ry, = R{a, ag} V(©) Ry5 = R{az,ay,} V(C)
ne = R{ag,aps} V(C) Ry, = R{a3,aj} V(C)
218 :R{ag,a‘z*} V(©) Ry = R{ag,ai} V(C)
20 = Ri{a3, ac} V(C) Ry = R{aj,aj,} V(C)
e = R{az,ap,} V(C) Ry; = R{aj,as} V(C)
Ry = R{aj, a5} V(©) Ry = R{aj, a} V(O
ne = R{ag,a¢} V(C) Ry, = R{aj,aj} V(C)
Ry = R{ag,a,} V(C) Ry = Ri{aj,ajs} V(C)
20 = R{aj, a5} V(C) R,y = R{a},ay} V(C)
Ry;, = Riaj,a¢} V(©) Ry = R{aj,a,} V(C)
234 = R{“ia?s} V(O Ry = R{“;aﬂ V(C)
Ry = R{ag,ag*} V(C) Rys; = R{ag,a‘é} V(C)
s = R}a%,az}} VEC% Ry5 =R{a3, a3} V(C)
R,y = Riay,aj; V(C
TaBLE 8: Resolving neighbourhood sets of TD (4) that are not equal to each other.
Resolving neighbourhood sets Elements
R, = R{“%’ “é} V(O - {az’ ag’“i’ “g’ ag, a;’“g’ “9} U {6’4’“5’ “g’ “é’ ag»“?o»‘l?va?r“?s»“14’“15’“16}
R, = R{a3, a3} V(C) ~{a}, a3, a3, a3, a5, a3, a3, a3} U {ay, a3, a3, aj, ag, aly, ay,, aty, a3, A1 4, a5, Al |

_pf2 3 33 3 3 3 3\, .4 4 4 4 4 4 4 4 ‘4 4
R; = R{aj, a3} V(©) - {“1»‘12’“3»‘14>“5)‘1&“7»‘18} y {“v“2’“3»a4’“5>a6)“7»as’“9>a1o»a11>‘112>‘113}
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that p is not a resolving function which is a contradiction.
Therefore, 7 is a minimal resolving function that attains
minimum |7] for C. Since 1<t<3R, has a nonempty in-
tersection, thus there exists another minimal resolving
tunction 7 of C such that [7] <|7|. Thus, assigning (1/1) to
the vertices of C in U?_ R, and calculating the summation of
all the weights, we get dim, (C) = Y2 (1/4) < (12n(n® +
3n+2)/6n(n® + 3n+2)) = 2. Therefore, we arrive at the
following result:

1<dim;,, (C)<2. (24)
O

7. Conclusions

We conclude our discussion by the following remarks:

(i) In this article, we have made a characterization of
graphs having the FMD as unity

(ii) It is computed that the FMD of the path is 1 that
strengthens the result proved in [13]

(iii) We have calculated the extremal values of FMD of
TD(n) as (i) for n=0(mod2), 1<dimg, (C)<2

and (ii) for n = 1(mod2),
1 <dimg, (C) <2(n’ + 6n* + 11n - 30/n° + 3n? +
5n+3)

(iv) Now, we close our discussion with the open
problem that investigates the families of graphs
other than P, having FMD as unity
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Graph theory is a subdivision of discrete mathematics. In graph theory, a graph is made up of vertices connected through edges.
Topological indices are numerical parameters or descriptors of graph. Topological index tells the symmetry of compound and
helps us to compare those mathematical values, with boiling point, melting point, density, viscosity, hydrophobic surface area,
polarity, etc., of that compound. In the present research paper, degree-based topological indices of Zeolite Socony Mobil-5 are
calculated. Names of those topological indices are Randi¢ index, first Zagreb index, general sum connectivity index, hyper-Zagreb

index, geometric index, ABC index, etc.

1. Introduction

In graph theory, the term graph was suggested in eighteenth
century by Leonhard Euler (1702-1782). He was a Swiss
mathematician. He manipulated graphs to solve Konigsberg
bridge problem [1-3]. Chemical graph theory is a topological
division of mathematical chemistry that practices graph
theory to model chemical structures mathematically. It
studies chemistry and graph theory to view the detailed
physical and chemical properties of compounds. A graph
G=(V,E) is comprised through a set of vertices V and an
edges set E [4].

Topological indices study the properties of graphs that
remain constant/unchanged after continuous change in
structure. Topological indices explain formation and sym-
metry of chemical compounds numerically and then help in
advancement of QSAR (qualitative structure activity rela-
tionship) and QSPR (quantitative structure property rela-
tionship). Both QSAR and QSPR are used to build a relation
among molecular structure and mathematical tools. These
descriptors are helpful to correlate physio-chemical

properties of compounds (enthalpy, boiling and melting
point, strain energy, etc.) that is why these descriptors have a
large number of applications in chemistry, biotechnology,
nanotechnology, etc.

Topological indices are invariants of graph that is why
topological indices are independent of pictorial represen-
tation of graph. In other words, it is a numerical value that
describes the structure of chemical graph [5, 6]. Among the
three types of topological indices, degree-based indices have
great importance. The need to define these indices is to
explain physical properties of every chemical structure with
a number. Continuous change in shape does not affect the
value of topological index. Topological indices are useful in
the study of QSAR and QSPR because topological indices
show the physical properties and convert the chemical
structure into a numerical value.

Distance-based topological indices deal with distances of
graph, degree-based topological indices use the concept of
degree, and counting-based topological index depends upon
counting the edges. Randic explained some characteristics of
a topological index. Some of them are explained here.
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A topological index should

(i) have architectural interpretation
(ii) be well-defined

(iii) be related with at least one physio-chemical
property of compound

(iv) be uncomplicated

(v) display an appropriate size dependence
(vi) modify with modification in structure
(vii) locally defined

(viii) have related with other indices

Topological indices show translations of chemical
compounds into distinctive structural descriptors as a nu-
merical value that can be used by QSAR (7, 8]. Topological
indices are awfully beneficial in describing the properties of
given compound. Chemists can use these indices to correlate
considerable range of characteristics. Medicine industry is
developing new drug designs that are useful for humans,
plants, and animals. Many graph theoretical techniques have
been established for forecasting of medicinal, environ-
mental, and physio-chemical properties of compounds. It is
not astonishing to see such a great victory of graph theory
and topological indices in analyzing biological and physical
characteristics of chemical compounds.

1.1.ZSM. Zeolites (alumino silicate) are tetrahedrally-linked
structures based on silicate and aluminate tetrahedral.
Structural chemistry deals with the framework of zeolites; it
also works out on the arrangement of cations and other
molecules in pore spaces. It belongs to a pentasil class of
zeolite. It consists of silica (Si) and alumina (Al). It is named
as ZSM-5 due to pore diameter of five angstrom; also, it has
Si/Al ratio of five [9]. Size of the molecule depends on the
type of structure. It is a crystalline powder. Geometry of
pores can be connected in channels in one, two, or three
dimensions.

1.1.1. Motivations. The structure of ZSM-5 has great im-
portance in the field of chemistry, petroleum, and medicine
industry. ZSM-5 is useful because of its stability, favorable
selectivity, metal tolerance, and flexibility. It is also useful for
the treatment of fertilizers. It helps to separate oxygen and
nitrogen in the air. This unique structure is useful in pe-
troleum industry as a catalyst. It is generally used in the
conversion of methanol to gasoline as well as refining of oil.
Through dehydration, it changes alcohol into petrol. Effi-
ciency of LPG can also be increased through ZSM-5 catalyst.
It keeps unusual hydrophobicity that is useful to separate
hydrocarbons from polar compounds. Basic reason of cal-
culation of topological indices is the industrial uses of ZSM-5
structure.

(1) First General Zagreb Index. This index was first
presented by Li and Zhao. Its mathematical form is
defined in [10-12] as follows:
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M, (G)= ) (d,)" (1)

peV(G)

First and Second Zagreb Index. There are two
Zagreb groups of indices, denoted by M, and M,
[13-15]. Both of these indices are explained in 1970s
by Gutman and Tranjistic.

(2) First Zagreb Index. It is defined in [16, 17]:

M@= ) (dy+dy). )
PqeE(G)

(3) Second Zagreb Index. 1t is defined in [11, 16]:
MG = Y (d,xd,). 3)

PqeE(G)

Multiple and polynomial Zagreb indices:

In 2012, new kinds of Zagreb indices were intro-
duced by Ghorbani and Azimi, named as first and
second multiple Zagreb indices represented as
PM, (G) and PM, (G) [11, 15, 18]. The polynomials
are used to find the Zagreb index. First and second
Zagreb polynomial indices are written as M, (G, j)
and M, (G, j).

(4) First and second multiple Zagreb indices:

PM, (@) =[] (d,+d,). (4)
PgeE(G)

PM, (G) = [] (d,xd,). (5)
PgEE(G)

(5) First and second polynomial Zagreb indices:

M (Gj)= Y ), (6)
PqeE(G)

MG =Y L) 7)
PqeE(G)

(6) Hyper-Zagreb Index. Modified Zagreb index is
called hyper-Zagreb and that was introduced in
2013 by Shirdil, Rezapour, and Sayadi [19-21],
mathematically written as

HM (G) = Z (dp + dq)z. (8)
P9€E(G)

(7) Second modified Zagreb index:

1
M, (G) = S - 9
(@ 2 ) ©

(8) Reduced second Zagreb index. This index was
proposed by Furtula and it is defined as

RM,(G)= Y (d,-1xd,-1). (10)
P9eE(G)
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(9) Atom Bond Connectivity Index. It was written in
1998 by Ernesto Estrada and Torres [15, 22-24]. It is
used to model thermodynamic characteristics of

organic ~ compounds  (especially  alkanes).
Mathematically,
d,+d, -
ABC(G)= ) (11)
d d
P9EE(G)

(10) Fourth Atom Bond Connectivity Index. In 2010,
Ghorbani et al. introduced this index [13, 14]. It is
written as ABC, index:

S . +S -2
ABC,(G) = ) e (12)
PgeE(G) P-4q

(11) General Randi¢ Connectivity Index. First degree-
based TI was proposed in 1975 by Millan Randi¢. At
that time, it was called as branching index [8, 17, 18]
and used to measure the branching of hydrocar-
bons. In 1998, Eddrés and Bollobas wrote the
general term of this index by changing the factor
(—1/2) with ael R [25]. It is defined as the total sum
of weights (d (p)d(q))® of all the edges pq, d(p) is
the degree of p, d(q) is the degree of g, and a eI R.

R(G) = Y (dyd,)" (13)

PqeE(G)

(12) Randi¢ index:

This index can also be called as first genuine degree-
based topological index [15, 23]. Randi¢ index is
defined as

R(G) =

Z 1
P9eE(G) dpdq (1

(13) Reciprocal Randi¢ Index. This index was first
studied by Favaron, Mahéo, and Saclé [26]. The
index is helpful in modeling of boiling points of
hydrocarbons. It is defined as

RR(G) = Y +\d,d,. (15)
P9EE(G)

(14) Reduced Reciprocal Randi¢ Index. It is the analogue
of reciprocal Randi¢ index [26, 27]. It is defined as

follows:
> \(d,-1)(d, - 1). (16)

PqEE(G)

RRR(G) =

(15) Geometric Arithmetic Index. GA index was pro-
posed by Vukicevic and Furtula [6, 14, 15]; it is
stated as

2,/d,d,

P9EE(G) dP + d‘l

GA(G) = (17)

(16) Fifth Geometric Arithmetic Index. In 2011, Grovac
et al. introduced this index [7]. Mathematically, it is
written as

2,/8,8,

' (18)
Sp + Sq

GA;(G)= Y

P9eE(G)

(17) Forgotten Index. This index was given by Gutman
and Furtula in 2015 [16, 28, 29]. It is denoted by F

(G) or F index:
2 g

EG) = ) (d,+dy). (19)
PqeE(G)

(18) General Sum Connectivity Index. The index was
proposed by Zhou and Trinajsti¢ [15, 23, 30].

Mathematically,
(G = ) (d,+d,), (20)
PqeE(G)

where ael R.

(19) Symmetric Division Index. In 2010, Vukicevic and
Furtula proposed this useful index denoted by SD
(G) [28, 31, 32]:

2 2
SI(GEDY Ayrdy (21)
P9EE(G) (dp X dq)

(20) Harmonic Index. Siemion Fajtlowicz wrote a
computer program that works for the automatic
generation of conjectures in graph theory [11, 15].
He also examined the relationship between graph
invariants; while doing this work, he found a vertex
degree-based quantity. Later on, (in 2012) Zhang
rediscovered that unknown quantity and named it
as harmonic index. It is written as

HG)= ) &

7 T\ 22
PacE(G) (dp + dq) (22

2. Topological Indices of ZSM-5 Graphs

Topological indices remain constant for a given compound;
they do not depend on the direction or position of graph. We
can predict many physical properties of compounds such as
solubility, soil sorption, boiling and melting properties,
biodegradability, toxicity, vaporization, and thermodynamic
properties.

2.1. Description of ZSM-5 Graph. The graph of ZSM-5 is
given in Figure 1 and it is represented by G*. There are
24pq + 4p vertices and 36pq + 2p — 2q edges in G*.

Theorem 1. Let G* be a graph of ZSM-5. Then, first general
Zagreb index is
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FiGure 1: (p,q) form of graph of ZSM-5.

M, (G") =4p2” + (8p + 89)2" + (36pq — 10p — 10g)3".
(23)

Proof. G* is given in Figure 1. There are 24 pq + 4p vertices,
8p + 4q of degree 2 vertices, and 24pq — 4p — 4q of degree 3
vertices.

Also, M, (G*) is defined as (1):

2 (d,)"

peV(G)

M (G) = (24)

We get M, (G*) by using the following formula:
M, (G") =4p2" + (8p + 89)2" + (36pq — 10n — 10p)3”.

M, (G) = —4p — 20g + 216pq. (26)

Proof. Assume G* is a graph of ZSM-5. Then, E(G*) is
cleaved into 3 classes.

The 1% edges group E, (G*) contains 4p edges pq, and

d,=d,=2.
The 2™ class [, (G*) has 8p + 84 edges pg; here, d,=2,
d,=3.

q

The 3™ arc division E; (G*) has 36pg — 10p — 10g arcs
pg; here, dp =3, dq =3.

It is easily understood that

(25) & (G:)| o
O B> (G")] = €23, (27)
. . o |E;(G)
Theorem 2. G* is the graph of ZSM-5. First Zagreb index is
as follows: We define M, (G) in equation (29) as
M (G = ) (d,+d,)
PqeE(G)
M@= 3 (dy+dy)+ D (dp+dg)+ ) (d,+dy)
P4EE, (G) P4€E, (G) P9€E; (G)
(28)
=|E, (G4 +|E, (G)|5 +|E; (G)|6
= (4p)4 + (8p + 89)5 + (36pg — 10p — 109)6
=4p(4) +8p(5) +8q(5) + 36pq(6) — 10p(6) — 104 (6). -

Theorem 3. G* is a graph of ZSM-5 and its 1st and 2nd
polynomial Zagreb index is

(1) M, (G*, j) = (4p)j* + (8p +89)j° + (36pq — 10p —
10q) j%

(2) M,(G*, j) = (4p)j* + (8p +89)j° + (36pq — 10p—
10q) 7°.

Proof. G* is a graph of ZSM-5. E(G™) is divided into three
parts.

E, (G) has 4n edges pq (dp = dq =2), E,(G*) has 8n +
8m arcs pq (d,=2,d,=3), and [E;(G") keeps
36pg —10p — 10g arcs pq and (d, = 3,d, = 3).

By using the definition of M, (G*, j) in equation (6):
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MG = Y i), (29)
P9eE(G)
M, (G",j) = Z j(dp+dq) + Z j(dp+dq) + Z j(dp+dq)
P9€E, (G) P4€E, (G) P4EE; (G)
= 2 jr Y i X (30)
P9€E, (G) P9€E,; (G) P9€E; (G)
=|E, (G)|j" +|E, (G|} +|E; (G|
= (4p)j* +(8p +89)j + (36pq — 10p — 10g) j°.
From (3), we have
M, (G, j) = Z j(dedq)
P9<E(G)
M, (G*,j) = Z ]( PXd'Z) + Z ]( PXd'Z) + Z j(dPqu)
Pq€E, (G¥) P4€E, (G¥) P9€E; (G™) 31)
= Z j4 + Z j6 n Z j9
Pq€E, (G7) PqeE, (G¥) PqcE; (G7)
:|[E1 (]l +|[E2 (G) j6 +|[E3 (G) j9

= (4p)j* + (8p +89)j° + (36pq — 10p — 10g) j°,

which completes the proof. O

Theorem 4. First and second multiple Zagreb index of G* of
ZSM-5 is given as

(1) PM1 (G*) — 44p X 58p+8q X 636pq— 10p— IOq;

(2) PM2 (G*) — 44[,7 % 68p+8q % 936Pq— 10p— IOq'

Proof. E(G”) is classified into 3 edge classes based on the
degree of end vertices. E,(G*) has 4p edges pq, where
d,=d,=2. E,(G") contaips 8p +8q edges pq, where
d,=2,d,=3.E;(G") contains 36pqg — 10p — 10q edges pq,
where dp =3, dq =3. Also consider |E,(G*)|=e,,,
IE, (G™)| = e,3, and |E5 (G*)| = e33. We define PM, (G*) as
(4):

PM, (G")= [] (d,+4,)
PqeE(G*)
PM, (G) = 1_[ (dp+dq)>< H (dp+dq)>< H (dp+dq) (32)
P9<E, (G) Pq<eE, (G) P9<€E; (G)
_ 4|E1 @] % 5|E2(G)| % 6|E3 @] — 4P 58p+8q % 636pq— 10p— IOq.
Now, we define PM, (G*) as (5):
PM,(G) = [] (d,xd,)
PqEE(G)
PMy(GT) =[] (dyxdy)x [] (dpxd))x [] (dpxd,)
Pa<E, (G*) Pa€E, (G*) Pa€E; (G*) (33)

= 4lEr @] glE2(GN] o glE5 (G

— 44p > 68p+8q ~ 936pq— 10p- 10q’



which completes the proof. O
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Theorem 5. Then, hyper-Zagreb of G* is written as follows:

HM (G") = 4p(16) + 8p(25) + 89 (25) + 36pq (36) — 10p (36) — 10g(36). (34)
o g . B2 (G7)] = 2
Proof. E(G™) is divided into 3 edge divisions based on the . (35)
degree of end vertices. E, (G) holds 4p edges pg, where B (G7)] = es,5-
d,=d,=2.E,(G) holds 8p + 8q edges pq, where d, = 2, .
p 2 p
d, = 3! E,;(G) holds 36pg—10p — 10q edges pg, where Since, we have (8),
d,=3,d,=3.|E (G")] = e,
2
HMG)= Y (d,+d,),
P9€E(G)
* 2 2 2
HM(G") = Z [dp+dq] * Z [dp+dq] * Z [dp+dq]
PacE (G*) PacE; (G*) PqeE; (G*)
(36)
= 16|E, (G")| + 25|E, (G")| + 36|E; (G™)]
= 16(4p) + 25(8p + 89) + 36 (36pq — 10p — 10q)
= —96p — 160q + 1296 pq,
which completes our proof. O 1
M@= Y
pacEc) (dp X dy)
Theorem 6. G* is the graph of ZSM-5. The second modified
Zagreb index is gi . a1 a1 anif 1
agreb index is given as M,(G") :|E1 (G") (Z) +|E2(G ) (g) +|E3 (G") <§>
11 2
M,(G")(G) =—=p+=q+4pq. 37
(6@ g PTgd™"Pd (37) :(4p)+(8p+8q)+(36pq—10p—10q)
4 6 9

Proof. Consider G* to be a graph of ZSM-5. E(G™) is
divided into 3 sets based on the degree of end vertices.
E, (G") contains 4n edges pq, where d, =d, = 2. E,(G")
holds 8p + 8q edges pg, where d, = 2, d, = 3. E5(G") holds
36pq—10p—10q edges pg, where d,=3, d, =3.
[E, (G™)| = ey, |E,(G™)| = €53, and |E5 (G™)| = e3 3.

We know the definition of M, (G*) as (9):

_11 +2 +4
=5 Prga+ape

(38)
O

Theorem 7. Let G* be the graph of ZSM-5. Then, reduced
second Zagreb index is
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RM, (G") = 156pg — 8p — 84. (39) |E,(G)] = e
B2 (G7)] = e s (40)
Z(;o'};aﬁ;sume G* to be a graph of ZSM-5. E (G*) is divided |E5 (G")| = e33)-
E, (G*) holds 4p edges pg, where dp _ dq -9 From equation .(10), we have the definition of reduced
E, (G) has 8p + 84 lines pg, where d, =2, d, = 3. second Zagreb index:

E;(G”) holds 36 pq — 10p — 10q lines pg, where d,, = 3,
d, = 3. Also consider

RM,(G) = Y (d,-1xd,-1),
P9€E(G)

RM, (G") =|E, (G")|2-D(2-1)+ -1)(3-1)+|E(G -1D(3-1) (41)
= (4p) +(8p+89)(2) + (36pq - 10p - 10g) (4)
= 4p +8g(2) + 8p(2) + 36pq(4) — 10p (4) — 10g(4).
O
Theorem 8. Atom bond connectivity index of G* of ZSM-5is ~ Proof. G* is our graph of ZSM-5. E(G*) is divided into
as follows: three edge groups.
E, (G*) holds 4 , =d, =2).
ABC(G") =12p +8g . +36pq<g) 1(G7) holds 4n edges pg, (d, = d, .)
2\/_ 242 3 E,(G*) keeps 8n+8m number of lines pg, and
(42) (d,=2,d,=3).
_ 10P<§> _ 1061(%). E;(G*) has 36mn—10m—10n lines pg, where

(dp = 3,dq = 3). We define ABC(G) in (11):

d +d -2
ABC(G) = ) wff’di;,
P9<E(G) q

ABC(G") =

|E2

—+|E;s

2
=(4P)F+(8p+8q)m+(36pq— 10p - 109) 5 (43)

a3+ (s3) ) )
), :

Theorem 9. ABC-4 index of ZSM-5 is as follows:

ABC,(G") = 4p<7) 7\/_+8p<20\/1m)—4+4q<ﬁ>
warl3) 2 <_> (sf) (ﬁ) (44)
wo{am ) o) 20(5)-2n(5)




Proof. ZSM-5 has 36pq +2p — 2q number of edges.
Consider an arc set relies on degree summation of
neighbors of end vertices and E(G*) is divided into nine
disjoint groups of edges, such as
E,(G"), i=5,6,...,13;

here,
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E;s (G*) holds 4p number of edges pg, where S, = S, =5,
E¢ (G™) has 4 lines pg, where Sp=5 and S;=7E (G*) has
8p — 4 edges pq, where S, = 5and S, = 8,4 (G") has 4 + 4
edges pg, where S, =6 and S, = 7, [, (G") contains 4p — 4
edges pg, where S, =6 and S, =8, E;;(G") holds 29 + 4
lines pq, where S, =7 and S, =9, E;; (G") consists of 2p
number of arcs pg, where S, =S, =8, E;,(G") has 12p +

13 (45) 8q — 16 lines pg, where S,=8 and §;=9 and E;(G*)
E(G") = U E, (G"). contains 36 pg — 24p — 20q + 12 number of edges pg, where
=5 Sp=8,=9. The index is defined in equation (12):
S, +S, -2
ABC,(G) = R
PgEE(G) SPSq
P t5-2 . 5+7-2 N 5+8-2 N
ABC, (G) = \ s JBs ()] + T s (6] e g T (G)
6+7—-2 6+8-2 7+9-2
— |E. * — |E. * ——  |E *
Vo7 O g 1B (Gl B (@)
8+8-2 N 8+9-2 N 9+9-2 N (46)
L 8x8 |Eu(G )|+ 89 |E12(G )|+ 9%9 |E13(G)
8 N 10 " 11 . 11 "
=\|—|Es (G —|E (G —I|E, (G —|Eq (G
V= (6] + \ B () + s (6] + | alEa ()
12 N 14 N 14 " 15 "
1B (6] + | B (6] + By ()] + B (6)
17 "
+\/;|E13(G).
After putting the values of E(G*) = U%E; (G*), we get
8 10 11 11 12
=\—(4 () +\—(8p—4) +\—(4g +4) + \[—(4q - 4
\Es( p)+\g( )+\/;( p )+\/;( q+ )+\/;( q-4)
(47)
+\/1:4(2 +4)+\/1:4(2 )+\/1:5(12 +8 16)+\/E(36 24p —20g + 12)
631 g4 P T N7 P TR A e Rl
and after simplification,
__8 + 4 + ! 8p—4)+ ! (4g+4) 62 +10
“5v2? 7y 2oy F 0va62 1 91773
(48)
- (2q +4) + Loy ! (12p + 89— 16) + 16 32
3\/5 q 4\/ﬁp 12\/% p q Pq 3 9
O

Theorem 10. Let G* be the graph of ZSM-5. Fifth generation

geometric arithmetic index is as follows:
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22 7 2
+l (3\/7)+Ep(12\/5)+£p(12\/§)+2p (18)—ép(18) (49)
41 17 17 1 3
—19—0q(18).

Proof. ZSM-5 has 36pq + 2p —2q number of edges.

Consider an arc set relies on degree summation of
neighbors of end vertices and E(G*) is divided into nine
disjoint groups of edges, such as

E,(G"), i=5,6,...,13;
here,

13 (50)

E(G") = JE(G).

i=5

Z 2,/Sp><Sq

E5 (G*) holds 4p number of edges pg, where S, = S, =5,
E¢(G”) has 4 lines pg, where S, = 5and §, =7, E;(G") has
8p — 4 edges pq, where S, = 5and S, = 8,4 (G") has 4 + 4
edges pg, where S, =6 and S, = 7, £, (G") contains 4p — 4
edges pg, where S, =6 and S, =8, E,,(G") holds 29 +4
lines pg, where §, =7 and S, =9, E;; (G") consists of 2p
number of arcs pg, where S, =S, =8, E;,(G") has 12p +
8q — 16 lines pg, where S, =8 and S, =9, and E;;(G")
contains 36pg — 24p — 20g + 12 number of edges pg, where
Sp=8,=9 The index is defined in equation (18):

GA: (G) = ,
’ PqEE(G) SP+S‘1
2\/5>< 2\/5>< 24/5
GAs(G") =—— |E5(G )l | o (G +—— |E7(G )|
5+8 (51)
24/6 2\/6>< 27
+ﬁ|E( )+ |Es (G")| + ——5— -9 |E10(G )|
2\/8>< 2+/8 2v/9 %9 N
=9 l 12(G") +ﬁ|E13(G )|
After putting the values E(G*) = U % E; (G*), we get
2/25 2435 2
2V ) 2V ) IV ) D 44 VB g
(52)
+2\1/66_3(2q+4)+2\1/66_4(2p)+2\1/77_2(12p+8q—16)+2\/8_1(36pq—24p—20q+12).
After simplification,
18p+3\/_ \/_(Sp 4)+13\/_(4q+4)+7\/_(4q 4)
(53)
(2q+4)+—\/_(12p+8q—16)+36pq 20 + 12.
8\/—
O

Theorem 11. Let G* be the graph of ZSM-5. Then, general
Randic connectivity index is as follows:
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R, (G") = 4p(47) +8p(6") +8q(6") + 36pq (9%)

(54)
- 10p(9%) = 10g(9%).
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edges pq, whered,, = d, = 2, E,(G") contains 8p + 8g edges
pq, where d, =2 and d, = 3, and E;(G") supports 36pq —
10p — 10q arcs pq, where d, =d, = 3.

By using definition of Randi¢ index (13),

Proof. The graph G™ of zeolite encounters 36pq + 2p — R,(G) = Z (d d )""
edges and 24pq + 4p vertices. PaeE(G) P (55)
The numeral of vertices of degree 2 are 8p + 4q and of
degree 3 are 24pg —4p —4q. E of G* are 36pq +2p — 2q. Now, we have
E(G™) is divided into three edge groups. E,(G*) has 4p
Ri(@)= D (dpdg)'+ D (dpd))'+ D (dydy)
PqeE (G*) PqeE; (G*) xyek; (G”)
* * * 56
= 4[E, (6] + 6+ (G)] + [E (67) oo

= 4(4p) +6(8p +8g) + 9(36pq — 10p — 10q).

After simplification, we get

= —26p — 42 + 324pq. (57)
O

Theorem 12. Let G* be the graph of ZSM-5. Then, the re-
ciprocal Randi¢ index is as follows:

. 4 1 10
RRR(G") = —§p+ﬁ (8p+8g) + 12pq—?q. (58)

Proof. The graph G* of zeolite encounters 36mn + 2n — 2m
edges and 24pq + 4p vertices.

The numeral of vertices of degree 2 are 8p + 4q and of
degree 3 are 24pq —4p —4q. E of G* are 36pq+2p —2q.
E(G™) cleaves into three disunite edge groups:

E(G") = E, (G*)UE, (G")UE, (G"). (59)

E,(G") has 4p arcs pq, where d, =d, =2, E,(G")
contains 8p + 8g edges pg, where d, =2 and d, =3, and
E;(G*) supports 36pq—10p—10q arcs pg, where
d,=d,=3.

We define this index in equation (16):

RRR(G) = Y +/(d,-1)(d,-1),
P9€E(G)

RRR (G" \/ d, —1 d —1
PpqeE, (G

V(dp=1)(dg 1)

P9EE, (G¥)

DR Ay O g

PqeE; (G¥)

+V2E, (G

= (4p) + V2(8p + 89) + 2(36pq — 10p — 10q)
= —16p + V2(8p + 89) + 72pq — 20m. O

Theorem 13. Consider G* to be the graph of ZSM-5. Geo-
metric arithmetic index is described as follows:

GA(G") = \/_(8p+8q)+36pq—10p—10q (61)

Proof. The graph G* of zeolite encounters 36pg + 2p — 2q
edges and 24 pqg + 4p vertices. The grouping of the vertices is
given as follows:

The vertices of degree two are 8p +4q and of degree
three are 24pq—4p—4q. Cardinality of E of G* is
36pq +2p — 2q. The arc group E(G*) cleaves in 3 disjoint
arc groups that rely on the degrees of the end vertices, such
as

E(G") = E, (G*)UE, (G*) UE, (G*). (62)

E, (G) has 4p lines pg, where d, =d, = 2.
E, (G") has 8p + 84 lines pq, where d, =2 and d, = 3.
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E;(G*) supports 36pg—10p — 10gq lines pgq, where We define this index in equation (17) as
d,=d,=3.
2./d,d
GA(G) = —
PgeE(G) dP + dq
24/d,d 24/d,d 24/d,d
r"q r*q r%q
GA(G)= ) + 0y +
PgeEE; (G*) dP + dq PgeE, (G*) dP + dq xy€E; (G*) dP + d‘i
. 2 . . (63)
=1|E, (G7)[ + 56 |E, (G")| +1|E, (G7))]
= (4p) + 2 (8p+8g) +(36 10 10g)
=4p 5v6 p+oq Pq p q
=-6p+ 2 + 36 10 O
- p 5\/6 Pq q.

Theorem 14. Forgotten index of graph G* of ZSM-5 is as
follows:

F(G") =4p(4) +8p(13) + 8q(13) + 36pq(18) — 10p(18)
—10g(18).
(64)

Proof. 'The graph G* encounters 36pq + 2p — 2q edges and
24pq + 4p vertices.

The points of degree 2 are 8p + 4q and the points of
degree 3 are 24pq — 4p — 4q. The cardinality edge group E of
G* is 36pq + 2p — 2q. E(G™) cleaves into three disjoint line
groups that are as follows: E,(G*) holds 4n arcs and
d, =d, =2.E,(G") supports 8n + 8m arcs pq, whered , = 2
and d, =3, and E;(G") has 36mn—10n-10m arcs pq,
where d, =d, = 3.

By using the definition of forgotten index (19),

FG = ) (d+d)
P9eE(G)

FG)= ) (dp+d)+ ) (dp+d))+ ) (dy+dy)
P9€E, (G¥) PqEE; (G*)

xy€E; (G*) (65)

= 8|E, (G")| + 13|E, (G")| + 18|E; (G")|
= 8(4p) + 13(8p + 89) + 18(36pq — 10p — 10q)

=—44p - 76q + 648 pq.

Theorem 15. Let G* be the graph of ZSM-5, then the general
sum connectivity index is as follows:

Xy (G7) = 4p(47) +8p(57) +84q(5") + 36pq(6")

(66)
- 10p(6") — 10g(6%).

Proof. The graph G* of zeolite encounters 36pg + 2p — 2q
edges and 24pq + 4p vertices.

Vertices of degree two are 8n + 4m and of degree three
are 24pg—-4p—4q. E of G* are 36pg+2p —2q. E(G*)
cleaves into 3 disjoint edge groups. E, (G*) holds 4p edges
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pq, where d, =d, =2, E,(G") holds 8p +8q edges pq,
where d, =2 and d, =3, E;(G") holds 36pg - 10p — 10g

(@@= ) (dy+dy)’

Journal of Chemistry

edges pg, where d, =d, = 3. From (20), we get the defi-
nition of general sum connectivity index:

P9<E(G)
X(G7) = Z (dp + dq){x + (dp + dq)a + Z (dp + dqyx (67)
P49cE,; (G¥) PqEE, (G¥) xy€E; (G*)
= (4)a|E1 (G*) + (5)a|Ez (G*) + (6)W|E3 (G*)

= (4)" (4p) + (5)"(8p + 8q) + (6)* (36 pg — 10q — 10p).

Theorem 16. G* is the graph of ZSM-5 and its symmetric
division index is as follows:

. 16 8
SD(G )=?p—§q+72pq. (68)

Proof. G* of zeolite encounters 36 pq + 2p — 2q edges and
24pq + 4p vertices.

The number of vertices of degree two are 8n + 4m and
the number of vertices of degree 3 are 24pq — 4p — 4q. E of
G* are 36pg +2p —2q. E(G*) cleaves into three disjoint
edge groups. E; (G*) holds 4p edges pg, whered, =d, =2,
E,(G") holds 8p + 8q edges pq, where d, =2 and d, =3,
and [E;(G*) holds 36pg—10p—10g edges pq, where
d,=d;=3.

From (21), we get

& +d?
SD(G) = S
Pqe;(G) (dp X dq)
DG)- Y d +d; d; +d;
pactricn (dpxdyg)  pactrian (dp < dy)

2
9

(dp xdy)

- IE 6] +(2)|Ea (6] + )]s (6)

2
+ Z dp+
PacE; (G¥)

13
— 2(4p) +<?) (8p +89) + 2(36pq — 10q — 10p).

(69)
After simple calculations,
13

= —12p +— + 72pq — 20q. (70)

> O

Theorem 17. G* is the graph of ZSM-5 and its harmonic
index is as follows:

H(G) =—§p+8p<§>+8q<§)+12pq—§q. (71)

O

Proof. The graph G* of zeolite encounters 36pg +2p — 2q
edges and 24pq + 4p vertices.

The number of vertices of degree 2 are 8p + 4q and of
degree 3 are 24pq —4p —4q. E of G* are 36pq+2p —2q.
E(G”) cleaves into three disjoint edge groups.

E(G*) = E, (G*)U mathbb E, (G*) U mathbb E; (G¥).
mathbb E; (G*) holds 4p edges pq, where d,=d, =2,
mathbb E, (G*) holds 8p + 8q edges pq, where d, =2 and
d, =3, and mathbb E; (G*) holds 36pq — 10p — 10q edges
pq, where d, =d, =3. Harmonic index is defined in
equation (22) as

2
H(G) = —_—
pq;E(@ (dp + dq)
2 2
H(G) = N 2z
pacE, (G*) (dp + dq) PpacE, (G*) (dp + dq)
2
+

packion) (dp +dy)
=(D)E @)1+ (G +(G)IE )
= (%) (4p) +<§) (8p+8q) +<§) (36pg — 10g — 10p)

=2p +(é>(16p+ 169) +(§)(18pq -59-5p)

37

30
(72)

3. Conclusion

We correlate the uses of topological indices with chemical
structure of ZSM-5. The main interest of the research is to
present a concise introduction to some basic concepts about
topological indices and their uses to find physicochemical
properties of chemical structures. We conclude that physical
properties of ZSM-5 can easily be calculated through to-
pological indices. The consequences lay out noteworthy
contribution in the field of graph theory and chemistry. This



Journal of Chemistry

research  contains the results

experimentally.

theoretically  not

Data Availability

No data were used in this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] D. Chassapis and M. Kotsakosta, “Crossing the bridges of
Konigsberg in a primary mathematics classroom mathematics
in school,” vol. 32, no. 1, pp. 11-13, 2003.

[2] F. Harary, A Seminar on Graph Theory, Courier Dover
Publications, Mineola, NY, USA, 2015.

[3] B. Mondal and K. De, “An overview applications of graph
theory in real field,” International Journal of Scientific Re-
search in Computer Science, Engineering and Information
Technology, vol. 2, no. 5, pp. 751-759, 2017.

[4] J. A. Bondy and U. S. R. Murty, Graph Theory with Appli-
cations, Macmillan, London, UK, 1976.

[5] K. C. Das, I. Gutman, and B. Furtula, “Survey on geometric-
arithmetic indices of graphs,” MATCH Communications in
Mathematical and in Computer Chemistry, vol. 65, no. 3,
pp. 595-644, 2011.

[6] J. M. Rodriguez and J. M. Sigarreta, “On the geometric-
arithmetic index,” MATCH Communications in Mathematical
and in Computer Chemistry, vol. 74, pp. 103-120, 2015.

[7] K. C. Das, “On geometric-arithmetic index of graph,”
MATCH Communications in Mathematical and in Computer
Chemistry, vol. 64, no. 3, pp. 619-630, 2010.

[8] R. Gozalbes, J. Doucet, and F. Derouin, “Application of to-

pological descriptors in QSAR and drug design: history and

new trends,” Current Drug Target-Infectious Disorders, vol. 2,

no. 1, pp. 93-102, 2002.

G. Gottardi and E. Galli, Natural Zeolites, Springer Science &

Business Media, Berlin, Germany, 2012.

[10] G. H. Fath-Tabar, “Old and new Zagreb indices of graphs,”
MATCH Communications in Mathematical and in Computer

Chemistry, vol. 65, pp. 79-84, 2011.

[11] Y. Huo, H. Ali, M. A. Binyamin, S. S. Asghar, U. Babar, and
J.-B. Liu, “On topological indices of mth chain hex-derived
network of third type,” Frontiers in Physics, vol. 8, Article ID
593275, 2020.

[12] S. Zhang and H. Zhang, “Unicyclic graphs with the first three
smallest and largest first general Zagreb index,” MATCH
Communications in Mathematical and in Computer Chem-
istry, vol. 55, no. 20, p. 6, 2006.

[13] U. Babar, H. Ali, H. Ali, S. Hussain Arshad, and U. Sheikh,
“Multiplicative topological properties of graphs derived from
honeycomb structure,” AIMS Mathematics, vol. 5, no. 2,
pp. 1562-1587, 2020.

[14] M. Ghorbani and M. Ghazi, “Computing some topological
indices of Triangular Benzenoid,” Digest Journal of Nano-
materials and Biostructures, vol. 5, no. 4, pp. 1107-1111, 2010.

[15] I. Gutman, “Degree-based topological indices,” Croatica
Chemica Acta, vol. 86, no. 4, pp. 351-361, 2013.

[16] K. C. Das and I. Gutman, “Some properties of the second
Zagreb index,” MATCH Communications in Mathematical
and in Computer Chemistry, vol. 52, no. 1, pp. 3-1, 2004.

[9

13

[17] E. Deutsch and S. Klavzar, “M-polynomial and degree-based
topological indices,” 2014, https://arxiv.org/abs/1407.1592.

[18] S. C. Basak, A. T. Balaban, G. D. Grunwald, and B. D. Gute,
“Topological indices: their nature and mutual relatedness,”
Journal of Chemical Information and Computer Sciences,
vol. 40, no. 4, pp. 891-898, 2000.

[19] M. Imran, S. Hayat, and M. Y. H. Mailk, “On topological
indices of certain interconnection networks,” Applied
Mathematics and Computation, vol. 244, pp. 936-951, 2014.

[20] V. R. Kulli, “Reduced second hyper-Zagreb index and its
polynomial of certain silicate networks,” Journal of Mathe-
matics and Informatics, vol. 14, pp. 11-16, 2018.

[21] https://pisrt.org/psr-press/journals/oms-vol-4-2020/on-the-en
tire-zagreb-indices-of-the-line-graph-and-line-cut-vertex-grap
h-of-the-subdivision-graph.

[22] K. C. Das, I. Gutman, and B. Furtula, “On atom-bond con-
nectivity index,” Chemical Physical Letters, vol. 511, no. 4-6,
pp. 452-454, 2011.

[23] M. Munir, W. Nazeer, S. Rafique, and S. Kang, “M-polynomial
and related topological indices of nanostar dendrimers,”
Symmetry, vol. 8, no. 9, p. 97, 2016.

[24] https://pisrt.org/psr-press/journals/oms-vol-5-2021/super-
cyclic-antimagic-covering-for-some-families-of-graphs.

[25] X. Li and Y. Shi, “A survey on the Randic index,” MATCH
Communications in Mathematical and in Computer Chem-
istry, vol. 59, no. 1, pp. 127-156, 2008.

[26] I. Gutman, B. Furtula, and C. Elphick, “Three new/old vertex-
degree-based topological indices,” MATCH Communications
in Mathematical and in Computer Chemistry, vol. 72, no. 3,
pp. 617-632, 2014.

[27] M. Munir, W. Nazeer, S. Rafique, and S. Kang, “M-polynomial
and degree-based topological indices of polyhex nanotubes,”
Symmetry, vol. 8, no. 12, p. 149, 2016.

[28] G. Dustigeer, H. Ali, M. Imran Khan, and Y.-M. Chu, “On
multiplicative degree based topological indices for planar
octahedron networks,” Main Group Metal Chemistry, vol. 43,
no. 1, pp. 219-228, 2020.

[29] H. Siddiqui and M. R. Farahani, “Forgotten polynomial and
forgotten index of certain interconnection networks,” Open
Journal of Mathematical Analysis, vol. 1, no. 1, pp. 45-60,
2017.

[30] B. Zhou and N. Trinajsti¢, “On general sum-connectivity
index,” Journal of Mathematical Chemistry, vol. 47, no. 1,
pp. 210-218, 2010.

[31] A. Ali, S. Elumalai, and T. Mansour, “On the symmetric
division deg index of molecular graphs,” MATCH Commu-
nications in Mathematical and in Computer Chemistry,
vol. 83, pp. 205-220, 2020.

[32] S. Nikolig, G. Kovagevi¢, A. Miligevig, and N. Trinajstig, “The
Zagreb indices 30 years after,” Croatica Chemica Acta, vol. 76,
no. 2, pp. 113-124, 2003.


https://arxiv.org/abs/1407.1592
https://pisrt.org/psr-press/journals/oms-vol-4-2020/on-the-entire-zagreb-indices-of-the-line-graph-and-line-cut-vertex-graph-of-the-subdivision-graph
https://pisrt.org/psr-press/journals/oms-vol-4-2020/on-the-entire-zagreb-indices-of-the-line-graph-and-line-cut-vertex-graph-of-the-subdivision-graph
https://pisrt.org/psr-press/journals/oms-vol-4-2020/on-the-entire-zagreb-indices-of-the-line-graph-and-line-cut-vertex-graph-of-the-subdivision-graph
https://pisrt.org/psr-press/journals/oms-vol-5-2021/super-cyclic-antimagic-covering-for-some-families-of-graphs
https://pisrt.org/psr-press/journals/oms-vol-5-2021/super-cyclic-antimagic-covering-for-some-families-of-graphs

Hindawi

Journal of Chemistry

Volume 2021, Article ID 5533619, 16 pages
https://doi.org/10.1155/2021/5533619

Research Article

Hindawi

On the Computation of Some Topological Descriptors to Find
Closed Formulas for Certain Chemical Graphs

Muhammad Haroon Aftab (9,' Muhammad Rafaqat ,! M. Hussain ©,% and Tariq Zia

'Department of Mathematics, The University of Lahore, Lahore, Pakistan
Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Islamabad, Pakistan

Correspondence should be addressed to Muhammad Haroon Aftab; haroon.aftab@math.uol.edu.pk

Received 20 February 2021; Accepted 2 May 2021; Published 21 May 2021

Academic Editor: Muhammad Imran

Copyright © 2021 Muhammad Haroon Aftab et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this research paper, we will compute the topological indices (degree based) such as the ordinary generalized geometric-
arithmetic (OGA) index, first and second Gourava indices, first and second hyper-Gourava indices, general Randic” index
Ry (G), for ¢ = {1, £1/2}, harmonic index, general version of the harmonic index, atom-bond connectivity (ABC) index, SK, SKj,
and SK, indices, sum-connectivity index, general sum-connectivity index, and first general Zagreb and forgotten topological
indices for various types of chemical networks such as the subdivided polythiophene network, subdivided hexagonal network,
subdivided backbone DNA network, and subdivided honeycomb network. The discussion on the aforementioned networks will

give us very remarkable results by using the aforementioned topological indices.

1. Introduction

The branch of mathematics that is related to the study of
implementation of chemistry and graph theory together is
called chemical graph theory. This theory is used to model
the molecules of a chemical compound mathematically. This
theory helps us to understand the physical properties of that
chemical/molecular compound. In this theory, we construct
the structure of a chemical compound in the form of a graph.
In chemical graph theory, atoms are used as nodes, and
bonds between the atoms are utilized as edges. A topological
index is a numerical parameter of a graph that explains its
topology. The topological index is also called a molecular
descriptor and a connectivity index. It is obtained by
transforming the chemical information into a numerical
quantity. Topological indices are used as molecular de-
scriptors in the construction of quantitative structure-ac-
tivity relationships and quantitative structure-property
relationships as well. The theoretical models such as
quantitative structure-activity relationships (QSARs) relate
the quantitative measure of a chemical structure to a bio-
logical property or a physical property, and quantitative

structure-property relationships (QSPRs) relate mathemati-
cally physical/chemical properties to the structure of a mol-
ecule. Topological indices such as ordinary generalized
geometric-arithmetic (OGA) index, first and second Gourava
indices, first and second hyper-Gourava indices, general
Randic index R, (G),fory = {#1, +1/2}, harmonic index,
general version of harmonic index [1, 2], atom-bond con-
nectivity (ABC) index [3, 4], SK, SK;, and SK, indices, sum-
connectivity index, general sum-connectivity index, and first
general Zagreb [5] and forgotten topological indices have very
significant roles in QSAR and QSPR studies and are used to
discuss the bioactivity of molecular structures.

In 2009, D. Vukicevi¢ and B. Furtula established the first
GA index in [6-11]. The first geometric-arithmetic (GA)
index of a graph £ was calculated by

2l ()

GA®O= ), d,+d,

grkeE (&)

An ordinary geometric-arithmetic index of & was pro-
duced in 2011 in [12] and formulated by, for each positive
real number &,
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In 2017, V. R. Kulli proposed the first and second
Gourava and hyper-Gourava indices in [13, 14]. The first and
second Gourava and hyper-Gourava indices of a graph &
were formulated by

GO, = Y [, +dy)+(d,d)].
gheE (&)
GO, = Y [(d,+d,)+(d,d)]:
gheE (§) (3)
HGO, (O = Y [(d,+dy)+(dyd,)]"
gheE (&)
HGO,@®) = Y [(d,+d,)+(dyd,)]"
gheE (§)

In 1975, Randic” index [15-17] was introduced by Milan
Randic’. It is often used in chemoinformatics to investigate
the compounds of chemicals. The Randic’ index is also

called “the connectivity index of the graph” and formulated
by

1
Ry (9 = Z

uveE (&) \f (du . dv)’ )

where d, and d, are the degrees of the nodes.

Later, Bollobas and Erdos furnished its generalized
version for p, where y € R, known as the general Randic’
index [18-21] defined as

, 11
R(@= Y (dy- ). fory={-11—:l (5
gheE(G)

In 2012, L. Zhong described the harmonic index in
[22, 23], and it is given by
2

HI(G) = dg v, (6)

gheE(G)

In 2015, L. Yan introduced the general version of the
harmonic index in [24] and defined by

2 k
H.I(G) = .
d©)= ) )[dg+dh] (7)

gheE(G

In 2008, Ernesto” Estrada et al. [25, 26] introduced a new
topological index, named atom-bond connectivity (ABC)
index, calculated by

dy+dy, -2

ABC(G) = ) id (8)
g

gheE(G)

The ABC index is an excellent valuable index in the
formation of heat in alkanes [25, 26].

Definition 1. For a graph &, the SK index [27] can be
computed by
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d,+d
k= y % ©)

gheE (&)

Let d,andd), be the degrees of nodes g and h in &,
respectively.

Definition 2. For a graph &, the SK; index can be computed
by

d.d,

sk (= Y 2

gheE(§)

(10)

Let d,andd, be the degrees of nodes g and h in &,
respectively.

Definition 3. For a graph &, the SK, index can be computed
by
d, +d,]*
SK, (§) = <.
=) 5 ] (11)

gheE(§)

Let d,andd,, be the degrees of nodes g and h in &,
respectively.

In 2009, B. Luci¢ proposed the sum-connectivity index
(x) in [28] calculated by

-1/2
Xam (@)= ) [dg+d,] . (12)
gheE(G)

In 2010, B. Zhou and Trinajsti¢ furnished an index
named general sum-connectivity index in [24, 29] and
formulated as follows:

w@®= Y [dy+d]" (13)

gheE(§)

In 2005, X. Li and J. Zheng produced the generalized
form of the first Zagreb index by calling it the “first general
Zagreb index.” The first general Zagreb index [30-35] of a
graph ¢ was computed by *M, (&) = ¥ juer (s) [clf;’1 +df sk
belongs to R, and k#0 and k# 1.

In 2015, Boris Furtula and Ivan Gutman discovered an
index named as “forgotten topological index” [36-38] and

computed as
2, 2
FG)= ) |di+d;). (14)
gheE(G)

2. Topological Indices on Certain
Chemical Graphs

In this part of the research paper, we will compute the
topological indices (degree based) such as ordinary gener-
alized geometric-arithmetic (OGA) index, first and second
Gourava indices, first and second hyper-Gourava indices,
general Randic index Ry(f), fory = {£1, £1/2}, harmonic
index, general version of harmonic index, atom-bond
connectivity (ABC) index, SK, SK;, and SK, indices, sum-
connectivity index, general sum-connectivity index, first
general Zagreb index, and forgotten topological indices for
various types of chemical networks such as subdivided
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polythiophene network, subdivided hexagonal network,
subdivided backbone DNA network, and subdivided hon-
eycomb network.

2.1. Results for the Subdivided Polythiophene Network.
Polythiophenes are rings with five elements having one het-
eroatom together with their benzo and other carbocylic. Pol-
ythiophene is used in electronic devices such as water
purification devices, biosensors, and light-emitting diodes and
in hydrogen storage [39]. In a subdivided polythiophene
network, shown in Figure 1, we insert another vertex (degree 2)
in every edge of . In this way, we get a subdivided poly-
thiophene network. In this section, we compute the subdivided
polythiophene network using the above-defined topological
indices. In the subdivided polythiophene network SPLY,, we
have the number of nodes 11n—1 and edges 12n-2. A
subdivided polythiophene network for n=5 is shown in
Figure 1. We get two kinds of edges (degree based) that are
(2, 2) and (2, 3). Table 1 gives us two types of edges. A sub-
divided polythiophene network SPLY is displayed in Figure 1.

Theorem 1. For the subdivided polythiophene network,
SPLY,, the ordinary generalized geometric-arithmetic index is
calculated by

k k
OGA (&) = 6n{ 1 +[g] } +{4—6[g] }
(15)

Proof. By letting & as a subdivided polythiophene network
SPLY,, from Table 1, we know

=

d, +d,

0GA (= Y

gheE(§) (16)

k k
oom-or+ [ 25 +cor- o E'

and by doing some calculations, we get

k k
oono-afi(Z) | fi-oZ)]

Theorem 2. For the subdivided polythiophene network,
SPLY,, the first and second Gourava indices are calculated by
GO, (&) = 114n — 34 and GO, () = 276n — 116.

Proof. By letting & as a subdivided polythiophene network
SPLY,, from Table 1, we know

GO (O = ) [(dy+dy)+(dydy)],

gheE(§)

GO, = Y [(d,+d))+(d,d;)],

gheE (&)

(18)

and by doing some calculations, we get

Ficure 1: SPLYs.

TasLE 1: Division of edges of a graph & found on the degree of
terminating nodes of each of the edges.

(d.dy) for gh € E(§)

2,2
2.3

Number of E (&)

6n+4
6(n—1)

GO, (&) = (6n+4)[(4) + (4)] + (61— 6)[(5) + (6)] = 114n — 34,
GO, (&) = (6n + 4)[16] + (61 — 6)[30] = 276n — 116.
(19)

Theorem 3. For the subdivided polythiophene network,
SPLY,, the first and second hyper-Gourava indices are cal-
culated by HGO, () = 1110n — 470 and
HGO, (&) = 6936n — 4376.

Proof. By letting & as a subdivided polythiophene network,
SPLY,, from Table 1, we know

HGO = T[4, +d) +(d,d)]

gheE (&)
i (20)
HGO,(&) = Y [(d,+d;) +(d,dy)]"
gheE (&)
and by doing some calculations, we  get

HGO, (§) = (6n+4)[64] + (6n—6)[121] = 1110n — 470,
and

HGO, (£) = (6n + 4)[256] + (61 — 6)[900] = 69361 — 4376.
(21)

Theorem 4. For the subdivided polythiophene network,
SPLY,, the general Randic’ index is calculated by

(5
3 n, fory = -1,
109 8 1
() (5) Prr=-
R, (SPLY,) =1 (22)
267 67 1
)(5)
10 10 2
| 60 — 20, fory =

Proof. By letting & as a subdivided polythiophene network
SPLY,, of n dimensions, we have the number of nodes and



edges in SPLY, as |V(SPLY,)|=1ln-1 and
|E(SPLY,)| = 12n — 2, respectively.
We know that

R, (&) = Z (dy'dh)y’ (23)

gheE (&)
for y ={-1,1,-1/2,1/2}.
Case 1: if y = -1, the application of Randic” index R, ( 3]

1
R,(= Y — 24
gheE () dgdh (24
using  (23). From Table 1, we know
R, (&)= (6n+4)(4) '+ (6n-6)(6)"". By doing

some calculations, we get R_, (£) = (5/2)n.

Case 2: if y=— (1/2), the application of Randic” index
R, (&)

Rupy@®= ) S (25)
aher®\(dy - dy)
using (23),
R (1) (&) = 61+ 4) % +(6n-6) % (26)
and by doing some calculations, we get

R_ (15 (&) = n(109/20) + (8/5).
Case 3: if y= (1/2), the application of Randic” index

R, (&)
Run @ = 3 \dy-d (27)
gheE(§)
using (23),
Ry (&) = (6n+4)V4 + (6n - 6) V6, (28)

and by doing some calculations, we get
R (12 (§) = n(267/10) - (67/10).

Case 4: if y =1, the application of Randic” index R, (£)

R@©= Y (dpd), 29)
gheE(§)
using (23),
R, (§) = (6n+4)(4) + (6n-6)(6), (30)

and by doing some calculations, we get R, () = 60n — 20.

Theorem 5. For the subdivided polythiophene network,
SPLY,, the harmonic index is calculated by
2n-2

HI() = = (31)

Proof. By letting & as a subdivided polythiophene network
SPLY,, from Table 1, we know
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HIEO= Y —
ghgi:(f) dg +d), 32

and by doing some calculations, we get

HI(£) = (61 + 4)[%] T (61— 6)[%] - % (n—1). (33)

Theorem 6. For the subdivided polythiophene network,
SPLY,, the general version of the harmonic index is calculated

by
6n{5" +4*} +4{5*} - 6{4*}

{10}

H,I(§) = (34)

Proof. By letting & as a subdivided polythiophene network
SPLY,, from Table 1, we know

HJI@E)= )

2 k
: (35)
gheE (&) [dg * dh]

and by doing some calculations, we get

HLI(E) = (6n + 4) [ﬁ] e (6n-6) [2%3] ;

(36)
6n(5" +4°) +4(5%) - 6(4%)

(10)*

Theorem 7. For the subdivided polythiophene network,
SPLY,, the atom-bond connectivity index is calculated by

ABC (§) = 6V2n - 2. (37)

Proof. By letting & as a subdivided polythiophene network
SPLY,, from Table 1, we know

dy+dy, -2

ABC (= ) id
g

gheE(§)

(38)

and by doing some calculations, we get

ABC (£)=(6n+4)\/2+2_2+(6n—6) 2+3-2
4 6 (39)

= /2(6n - 1).

Theorem 8. For the subdivided polythiophene network,
SPLY,, SK, SK;, and SK, indices are calculated by SK (§) =
27n -7, SK, () =30n-10, and SK, (&) = (1/2) (123n
—43), respectively.

Proof. By letting & as a subdivided polythiophene network
SPLY,, from Table 1, we know
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d, +d
K@=y |2 h],
gheE (&) 2
d,d
SK (9= Y 9—h] (40)
gheE(§)
d, +d, ]
SK (= ), [g; "],
gheE(9)

and by doing some calculations, we get

SK (8) = (61 +4) (2) + (61 - 6)(2) — -7,
SKl(f) =(6n+4)(2)+(6n-6)(3) =30n- 10,

SK, (&) = (61 +4) (4) + (61 - 6)(% - % (1231 — 43),
(41)

Theorem 9. For the subdivided polythiophene network,
SPLY,, the sum-connectivity index is calculated by

X-) (8) = n{.’; +%} +{2 —%} (42)

Proof. By letting & as a subdivided polythiophene network
SPLY,, from Table 1, we know

Xan@= ) [d,+ dh]_(m)’
gheE(8)

Xy (§) = (6n + 4)<%) + (61— 6)(%),

and by doing some calculations, we get

X~1/2) & = ”‘[3 +%} +{2 —%} (44)

(43)

Theorem 10. For the subdivided polythiophene network,
SPLY,, the general sum-connectivity index is calculated by

X (8) = 6n{5* + 4} + 4fa¥} — 6{5"]. (45)

Proof. By letting & as a subdivided polythiophene network
SPLY,, from Table 1, we know

w®=Y [d,+d,]"
gheE(§) (46)

X (§) = (6n + 4)(4k) +(6n— 6)(5"),

and by doing some calculations, we get

e (©) = 6n(5* +4%) +4(4¥) -6(s*).  (7)

Theorem 11. For the subdivided polythiophene network,
SPLY,, the first general Zagreb index is calculated by

k
M, (&) = 9n{2"} + 2n{3"} + 2{% - 3"}. (48)

Proof. By letting & as a subdivided polythiophene network
SPLY,, from Table 1, we know

M= Y Ayt ed] k>
€3]

gheE (49)
M, (§) = (6n+ 4)(2%) + (6n-6)(25 1 + 3571,
and by doing some calculations, we get
k
k k k 2 X
My () =9m2y+2 21=-3" 50
(9 91’1{ }+ n{3}+ {2 3} (50)

Theorem 12. For the subdivided polythiophene network,
SPLY,, the forgotten index is calculated by

F (&) = 2{63n - 23}. (51)

Proof. By letting & as a subdivided polythiophene network
SPLY,, from Table 1, we know

F®= ) |d+d)
gheE(§) (52)
F (&) = (6n+4)(8) + (61 - 6) (13),

and by doing some calculations, we get

F(§) = 126n — 46. (53)

2.2. Results for the Subdivided Hexagonal Network. We
construct a subdivided hexagonal network shown in Figure 2
by adding a new vertex in each edge. For this process, a
triangular tiling is used. In this way, an n-dimensional
subdivided hexagonal network is obtained and denoted by
SHX,,. A subdivided hexagonal network for n =6 is shown in
Figure 2, whereas n shows the number of nodes. The order of
SHX, is 12#n*-18n+7 for n>1, and the size is
18n° —30n + 12 for n > 1. After the subdivision of this net-
work, we have three types of edges that are (2, 3), (2, 4), and
(2, 6). The division of edges is shown in Table 2. A subdivided
hexagonal network SHXj is displayed in Figure 2.

Theorem 13. For the subdivided hexagonal network, SHX,,
the ordinary generalized geometric-arithmetic index is cal-
culated by
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FIGURE 2: SHXG.

TaBLE 2: Division of edges of a graph £ found on the degree of
terminating nodes of each of the edges.

(dg.dy) for gh € E(§)

Number of E (&)

(2,3) 18
(2,4) 24(n-2)
(2,6) 603> —9m+7)

(54)

Proof. By letting 1 as a subdivided hexagonal network SHX,,

from Table 2, we know
k
[1 /4dgdh]

d,+d,

0GA (= ¥

gheE(§)

R k+24(n—2) RNE2 RED)
5 6

OGA, (§) = (18)[
k
+ 6(3n2 -9+ 7) {\/3_8]» s

and by doing some calculations, we get
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k k k
OGAk(f):ISnz{m} +n|:24{g} _54{@}]

8 8
(56)
k k
(o] o9

Theorem 14. For the subdivided hexagonal network, SHX,,
the first and second Gourava indices are calculated by

GO, (&) = 360n" — 744n + 366, -
57
GO, (§) = 1728n” — 4032n + 2268.

Proof. By letting £ as a subdivided hexagonal network SHX,,
from Table 2, we know

GO, = Y [(d,+d))+(d,d;)],

gheE (&)

(58)
GO0 = ), [(dy+d)+(dydr)];
gheE(8)
and by doing some calculations, we get
GO, (&) = (18)[(5) + (6)] + 24 (n - 2)[(6) + (8)]
+6(3n" = 9n+7)[(8) + (12)]
= 360n" — 744n + 366,
(59)

GO, (&) = (18)[30] + 24 (n — 2) [48]
+6(3n” - 9n+7)[96],
= 17281 — 4032n + 2268.

Theorem 15. For the subdivided hexagonal network, SHX,,
the first and second hyper-Gourava indices are calculated
by HGO (&) = 7200n* — 16896n + 9570 and HGO, (§) =
165888n* — 442368n + 292680.

Proof. By letting £ as a subdivided hexagonal network SHX,,,
from Table 2, we know

HGO, (= Y [(d, +d,)+(d,d,)]

gheE(§)
(60)
2
HGO, (&) = Y [(d,+d;) +(d,dy)]"
gheE (&)
and by doing some calculations, we get
HGO, (§) = (18)[121] + 24(n - 2)[196]
+6(3n" — 9n + 7) [400]
= 7200n” — 168961 + 9570,
(61)

HGO, (£) = (18)[900] + 24 (n — 2) [2304]
+ 6(3n2 — 9+ 7) [9216],
= 165888n> — 4423681 + 292680.



Journal of Chemistry

Theorem 16. For the subdivided hexagonal network, SHX,,
n> 1, the general Randic” index is calculated by

(30 —3n+1
T e— fory = -1,
2

1
3n°V3 +n{V72 - 9V3} +2.501, fory=—,
Ry (SHXn) =4 2

1

62.35n" — 119.17n + 53.82, fory =2,

2161 — 4561 + 228, fory = 1.
(62)

Proof. By letting & as a subdivided hexagonal network SHX,,
of n dimensions, we have the number of nodes and edges in
SHX, as |V(SHX,)|=12n*-18N+7 for n>1 and
|E(SHX,)| = 18n* —30n+ 12 for n>1, respectively. We
know that

Y
R,(®= ) (dgd) (63)
gheE (&)
for y ={-1,1,-1/2,1/2}.
Case 1: if y = -1, the application of Randic” index R, €3]
1
R, (§= Z d—dh’ (64)

gheE(®) ™9

using (63). From Table 2, we know

R, (&) =(18)(6)" +24(n-2)(8)""

65
+6(3n" —9n+7)(12)"". (69

By  doing  some
R, (&) = (3n? - 3n+1/2).
Case 2: if y=— (1/2), the application of Randic” index
R, ()

calculations, = we  get

Rip®= Y e
—(1/2) HE® (dg -dh), (66)

using (63),
R (1 () = (18) = + 24 (0~ 2) —— + 6(3n* —9n + 7)L
—(1/2) - \/g \/g \/ﬁ
(67)
By doing some calculations, we get

Ry () = 3n° V3 + n{V72 = 9V3} +2.501.  (68)

Case 3: if y= (1/2), the application of Randic” index

R, ()
Rupy =) \dg - dp (69)

gheE(§)

7
using (63),
Ry (8) = (18)V6 + 24 (n— 2)V8 + 6(3n” — 9n + 7) V12.
(70)
By doing some calculations, we get
R 12 (£) = 62.35n" — 119.17n + 53.82. (71)

Case 4: if y =1, the application of Randic” index R, (£)

RO= Y (4 d)) o)
gheE (&)
using (63),
R, (&) = (18)(6) + 24 (n—2)(8) + 6(3n2 ~9n+7)(12).
(73)

By doing some calculations, we get

R, (&) = 2161° — 456n + 228, (74)

Theorem 17. For the subdivided hexagonal network, SHX,,
the harmonic index is calculated by

HI(§) = 4.5n* —5.5n+ 1.7. (75)

Proof. By letting £ as a subdivided hexagonal network SHX,,,
from Table 2, we know

HI@)= )

gheE (&)

2
d, +dy (76)

By doing some calculations, we get

HI(¢) = (18) E] +24(n-2) E] +6(3n" —9n+7) E]

1
= —(45n2 — 551 + 17) =4.51" —55n+1.7.
10

(77)

Theorem 18. For the subdivided hexagonal network, SHX,,

the general version of the harmonic index is calculated by
Hy I (§) = 18n* {4 "} + 2n{12{37*} - 27{a"*}} o9
78
+[18{2"{57"}} - 48{3 ¥} + 42{47}].

Proof. By letting £ as a subdivided hexagonal network SHX,,
from Table 2, we know

HJI@E= )

2 k
. (79)
gheE(®) [dﬂ * dh]

By doing some calculations, we get



k

3] +24(n—- 2)[ 2

09755 =

HI(8)
+6(3n° —9n+7) [ﬁ] ‘

() 55 ((5)- 5 )
*}+ 2n12{3™} - 27{a MY}
+[18{2"{57"}} - 48{37*} + 42{47}].

= 18n2{
(80)

Theorem 19. For the subdivided hexagonal network, SHX,,
the atom-bond connectivity index is calculated by

ABC (§) = 9v2n* — 15V2n + 6V2. (81)

Proof. By letting £ as a subdivided hexagonal network SHX,,,
from Table 2, we know

d, +d
ABC(®)= Y a, d” (82)
gheE (§) h
and by doing some calculations, we get
2 -2 2+4-2
ABC (§)= (18722 4 24n -2
2+6-2 (83)

+ 6(3n2 — 9+ 7) 5

=9\2n* - 15V2n + 612.

Theorem 20. For the subdivided hexagonal network, SHX,,
SK, SK,, and SK indices are calculated by SK (&) = 72n* —
144n + 69, SK, (§) = 108n? — 2281+ 498, and SK,(§) =
288n* — 648n + 7052, respectively.

Proof. By letting & as a subdivided hexagonal network SHX,,
from Table 2, we know

K@©= Y [M],
gheE(§) 2

d, dh]

d,+d,1?
2 bl

and by doing some calculations, we get

SK (&)= )

gheE(§)

(84)

SK, (&)= )

gheE ()
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SK (§) = (18)(%) +24(n - 2)<g) +6(3n" —9n+ 7)(2)
= 721" — 144n + 69.
SK, (§) = 18(3) +24(n - 2) (4) + 36(3n” = 9n +7)
= 108n” — 228n + 498.
SK, (§) = (18)(?) +24(n-2)(9) +6(3n" - 9n +7)(16)

705
= 288n” — 6481 + ER

(85)

Theorem 21. For the subdivided hexagonal network, SHX,,
the sum-connectivity index is calculated by

X{l/z)(E) = 18112{—1 } + n{—24 ——54 } +{—18 ——48 +—42 }
V8 Ve V8] |v5 Ve B8
(86)

Proof. By letting £ as a subdivided hexagonal network SHX,,,
from Table 2, we know

Y o] "

gheE(§)

X () = (18)(%) +24(n- z)(jg) (87)

5 1
+6(3n" —9n + 7)(ﬁ>

and by doing some calculations, we get

5)_ 5f 18 24 54 18 48 42
Xt _”<W>+"<%‘W>+(W‘%+%>

B 54 18 48 42
)55 +5)

(88)

X2y (§) =

Theorem 22. For the subdivided hexagonal network, SHX,,
the general sum-connectivity index is calculated by

(0 =180 5]+ n{24(6) - s4(5)]
+{18(5%) - 48(6") + 42(8")}.

(89)

Proof. By letting £ as a subdivided hexagonal network SHX,,
from Table 2, we know
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w®=Y [d+d,)"

gheE(8)
X () = (18)(5°) + 24(n - 2)(6") + 6(3n” — 9n + 7)(8),
(90)
and by doing some calculations, we get
X () = =18n7{8"} + nf24(6") - 54(8")} o

+{18(5") — 48(6") + 42(8")}.

Theorem 23. For the subdivided hexagonal network, SHX,,
the first general Zagreb index is calculated by

M, (&) = i {{3{6"}} + 9{2"}} + n{6{4*} - 15{2"}
- 9{6"}} +{6{2"} + 6{3"} - 12{4*} + 7{6"}}.

(92)

Proof. By letting £ as a subdivided hexagonal network SHX,,
from Table 2, we know

M&= Y [dyt+dy '] k>l
gheE(©)

k _ 2k 3k ok 4k (93)
M, (§) _{18}<7+ ?) +{24n - 48}(7 +Z>

+6(3n” —9n+7) (2" +6571),

and by doing some calculations, we get

k k

M, (&) = n*{36" + 92"} + n64* — 152 — 96

k k k k (94)
+{62 +63 124" + 76 }

Theorem 24. For the subdivided hexagonal network, SHX,,
the forgotten index is calculated by
F (&) = 2{360n" — 840n + 477}. (95)

Proof. By letting £ as a subdivided hexagonal network SHX,,
from Table 2, we know

F)= Y [d+d)

gheE(9)
F(&) = (18)(13) + 24 (n - 2) (20) + 6(3n" - 9n + 7) (40),
(96)
and by doing some calculations, we get
F (&) = 2{360n" — 840n + 477}. (97)

2.3. Results for the Subdivided Backbone DNA Network.
The structure of DNA is called a double helix as it is made of
two strands that wind around each other that looks like a

staircase [40]. Each strand has a backbone made of de-
oxyribose, sugar, and a phosphate group. These sugar and
phosphates make up the backbone, while the nitrogen bases
are found in the centre and hold the two strands together.
There are 4 bases attached to each sugar which are adenine,
cytosine, guanine, and thymine. Both ends of DNA have a
number, i.e., one end is ‘5 and the other is “3. In a subdivided
backbone DNA network, shown in Figure 3, we insert an-
other node (degree 2) in each edge of £. In this way, we get a
subdivided backbone DNA network of n dimensions. A
subdivided backbone DNA network for n =4 is displayed in
Figure 3. A subdivided backbone DNA network is sym-
bolized as SBBpya(#). The order and size of SBBpna(n) are
15n—5 and 16n -6, respectively. We obtain two types of
edges (degree based) that are (2, 2) and (2, 3). Table 3 gives us
two kinds of edges. A subdivided backbone DNA network
SBBpna(4) is shown in Figure 3.

Theorem 25. For the subdivided backbone DNA network,
SBBpna(n), the ordinary generalized geometric-arithmetic
index is calculated by

k k
OGAk(f)=2{n[5+3{g} ]—3{@} ]» (98)

Proof. By letting & as a subdivided backbone DNA network
SBBpna(n), from Table 3, we know

&

dg,+dy

0GA (= ¥

gheE(§)

V16
2+2

(99)

k k
24
| +on-o| 2.
5
and by doing some calculations, we get

k k
ocmufpz{;«[sw{@} ]—31@} } (100)

OGA, (&) = IOn[

Theorem 26. For the subdivided backbone DNA network,
SBBpna(n), the first and second Gourava indices are calcu-
lated by GO, (§) = 146n — 66 and GO, (§) = 340n — 180.

Proof. By letting & as a subdivided backbone DNA network
SBBpna(n), from Table 3, we know

GO, (&)= Y [d,+d,)+(d,d)],

gheE ()

GO,(&) = Y [(d,+d,)+(d,d))],

gheE (&)

(101)

and by doing some calculations, we get
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TaBLE 3: Division of edges of a graph £ found on the degree of
terminating nodes of each of the edges.

(d,.dy) for gh € E(¢) Number of E (&)

2, 3) 6(n—-1)

FI1GURE 3: SBBpna(4).

GO, (&) = 10n[(4) + (4)] + (61— 6)[(5) + (6)] = 146n — 66,
GO, (§) = 10n[16] + (6n — 6)[30] = 340n — 180.
(102)

Theorem 27. For the subdivided backbone DNA network,
SBBpna(n), the first and second hyper-Gourava indices are

calculated by
HGO, (§) = 1366n — 726,
(103)
HGO, (£) = 7960n — 5400.

Proof. By letting £ as a subdivided backbone DNA network
SBBpna(7), from Table 3, we know

HGO, (O = Y [(d, +dy) +(dyd,)]"
gheE (&)

HGO,(&) = Y [(d, +d,)+(dydy)]’.
gheE (&)

(104)

and by doing some calculations, we get
HGO, (§) = 10n[64] + (6n — 6)[121] = 13661 — 726,
HGO, (§) = 10n[256] + (61 — 6)[900] = 79601 — 5400.
(105)

Theorem 28. For the subdivided backbone DNA network,
SBBpna(n), the general Randic” index is calculated by

—-n-1,

3 fory = -1,

149 49 1
) faf =
R, (SBBpy 4 (1)) = 1 20 20

347 147 1
n{—} —{—}, fory =,
10 10 2

76n — 36,

fory = 1.
(106)

Proof. By letting ¢ as a subdivided backbone DNA network
SBBpna(n) of n dimensions, we have the order and size
of & in SBBpna(n) as |V (SBBpyu (1)) =151 -5 and
|E (SBBpya (1)) = 161 — 6, respectively.

Journal of Chemistry

We know that

R, (§) = Z (dg'dh>y’

107
gheE(§) (107)

for y = {-1,1,-1/2,1/2}.
Case 1:if y = -1, the application of Randic” index R, €3)

1
R, (&)= - (108)
gheE (&) dgd
using  (107). From Table 3, we know
R, (&)= 10n(4)" ' + (6n-6)(6)"". By doing some
calculations, we get R_; (§) = (7/2)n—1.
Case 2: if y=—(1/2), the application of Randic’ index

R,(®)

1
Rap@®= Y ——
(1/2) R 109
gheE (&) (dg-dh) (109)
using (107),

1 1
R (15 (&) = 10nﬁ+ (61— 6) 7 (110)
and by doing some calculations, we get

R_ (1 (§) = n(149/20) — (49/20).
Case 3: if y= (1/2), the application of Randic” index

R, (&)
Rum® = 3 dy-d (111)
gheE(©)
using (107),
Ry (§) = 10nV4 + (61 - 6) 6, (112)

and by doing some calculations, we get
Ry (§) = n(347/10) - (147/10).

Case 4: if y=1, the application of Randic’ index
R, (&)

R(@= Y (dy-d),

gheE(§)

(113)

using (107),

R, (&) = 10n(4) + (61 - 6) (6), (114)

and by doing some calculations, we get R, (§) = 76n — 36.

Theorem 29. For the subdivided backbone DNA network,
SBBpna(n), the harmonic index is calculated by
37n—12

5

HI(§) = (115)

Proof. By letting £ as a subdivided backbone DNA network
SBBpna(n), from Table 3, we know
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2
i dg * (116)
and by doing some calculations, we get
HI) = IOnB] +(6n— 6)[%] - 37”5_ 12 (117)

Theorem 30. For the subdivided backbone DNA network,
SBBpna(n), the general version of the harmonic index is
calculated by

6
-2~
5

5 3
H,I(¢) =2n{2k+5kzk} - (118)

Proof. By letting £ as a subdivided backbone DNA network
SBBpna(7), from Table 3, we know

k
2

HJ@®= ) [ ] ; (119)

gheE® Lg +

and by doing some calculations, we get

2 7k 2 1k
Hd (©) =101 ] +6n-6)[5]

(120)

5 3 6
= 271{—,{ + —ka} - —ka
255 5

Theorem 31. For the subdivided backbone DNA network,
SBBpna(n), the atom-bond connectivity index is calculated by
2{8n — 3}

ABC(§) = NG

(121)

Proof. By letting & as a subdivided backbone DNA network
SBBpna(n), from Table 3, we know
dg, +dy -

ABC (§) = Z T dh

gheE (&

(122)

By doing some calculations, we get

ABC (g) = 1071\/@ +(6n— 6)\J2 + Z -2 _ 2{8:/1/5_ 3}

(123)

Theorem 32. For the subdivided backbone DNA network,
SBBpna(n), SK, SK;, and SK, indices are calculated by
SK (&) = 35n - 15, SK, (§) = 38n— 18, and SK, ({) = (1/2)
(1551 — 75), respectively.

Proof. By letting & as a subdivided backbone DNA network
SBBpna(7), from Table 3, we know

11
d,+d
- g "h
SK(&) = ) [ : ]
gheE (%)
d,d,
SK, &= Z [QT], (124)
gheE (%)
d,+d,]*
- g "h
DGR Y ] |
gheE(©)
By doing some calculations, we get
SK(§) = 10n(2) + (61-6)(3 ) = 351~ 15,
SK, (&) =10n(2) + (6n—6)(3) = 38n— 18, (125)

SK, (§) = 10n(4) + (6n - 6)(% = % (1551 — 75).

Theorem 33. For the subdivided backbone DNA network,
SBBpna(n), the sum-connectivity index is calculated by

6

Xy (6) = n{5+%} -7 (126)

Proof. By letting £ as a subdivided backbone DNA network
SBBpna(n), from Table 3, we know

am (f) _ Z [d ] (1/2)

gheE (&)

(127)
1 1
X-12) () = 10”(5> +(6n—6) 7 )
By doing some calculations, we get
6 6
X1 (€)= n{5 + W]» -7 (128)

Theorem 34. For the subdivided backbone DNA network,
SBBpna(n), the general sum-connectivity index is calcu-
lated by

X () = n{10{4*} + 6{5*}} - 6{5"}. (129)

Proof. By letting £ as a subdivided backbone DNA network
SBBpna(7), from Table 3, we know

w®=Y [d,+dy]"

gheE(§) (130)
X (§) = 10n(4%) + (6n - 6)(5%).
By doing some calculations, we get
W = nfiofst} o] <ofs. a3
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Theorem 35. For the subdivided backbone DNA network,
SBBpna(n), the first general Zagreb index is calculated by

M, (&) = nf10{2"} + 3{2"} + 2{3°}} - {3{2"} + 2{3"}}.
(132)

Proof. By letting £ as a subdivided backbone DNA network
SBBpna(n), from Table 3, we know

M= Y At d] k>
gheE (&)

le (f) = 107’1(2k) +(6n — 6)(2k—1 + 3k—1))

(133)

and by doing some calculations, we get

M, (©) = nf10{2"} + 3{2"} + 2{3°}} - {3{2"} + 2{3"}}.
(134)

Theorem 36. For the subdivided backbone DNA network,

SBBpna(n), the forgotten index is calculated by
E (&) = 2{79n — 39}. (135)

Proof. By letting £ as a subdivided backbone DNA network
SBBpna(7), from Table 3, we know

FO= Y [ded)]

gheE () (136)
F(&) = 10n(8) + (6n - 6)(13),
and by doing some calculations, we get
F (&) = 2{79n - 39}. (137)

2.4. Results for the Subdivided Honeycomb Network. The
honeycomb network is a hexagon. It can be made in different
methods. The first honeycomb network is symbolized by
HCy). The next honeycomb network is produced by attaching
more hexagons to each of its edges. This newly formed
honeycomb network is symbolized by HC,); similarly, the
next honeycomb network is produced by attaching more
hexagons to each of its edges. In this way, the newly formed
honeycomb network is denoted by HC 3. By repeating this
process, we finally obtain a honeycomb network of » di-
mensions and denote by HC,y. The honeycomb network is
being used in computer graphics, image processing, and
cellular phone base stations; moreover, it is used in chemistry
for the representation of benzenoid hydrocarbons. To get the
subdivided honeycomb network shown in Figure 4, we insert
a new node on each of its edges. The n-dimensional sub-
divided honeycomb network is symbolized by SHC,. A
subdivided honeycomb network for n=4 is displayed in
Figure 4. The number of nodes and edges in the subdivided
honeycomb networks are 151> —3n and 18n” - 6n, respec-
tively. We have obtained two different types of edges in SHC,
shown in Table 4, whereas Figure 4 shows SHC,.

Journal of Chemistry

FIGURE 4: 4-dimensional SHC,.

TaBLE 4: Division of edges of a graph ¢ found on the degree of
terminating nodes of each of the edges.

(dg,dh) for gh € E(¢) Number of E (£)

2, 3) 18n(n-1)

Theorem 37. For the subdivided honeycomb network, SHC,,
the ordinary generalized geometric-arithmetic index is cal-
culated by

k k
oano - 2] eul o 2 )

(138)

Proof. By letting & as a subdivided honeycomb network
SHC,,, from Table 4, we know

&

d,+dy

0GA ()= ¥

gheE(§) (139)

V24

k
+ 187’[(1’1 - 1) |:T:| s

k
o0~ 1[5

and by doing some calculations, we get

k k
OGA.(§) = 6[3#{@} + n{Z - 3{@} H

(140)

Theorem 38. For the subdivided honeycomb network, SHC,,
the first and second Gourava indices are calculated by
GO, (&) = 198n% — 102n and GO, (§) = 540n* — 492n.
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Proof. By letting £ as a subdivided honeycomb network
SHC,,, from Table 4, we know

GO, ()= Y [(dy+d,)+(d,d,)],

gheE (&)
(141)
60:0= Y [(dy+di)+(dh))
gheE(§)
and by doing some calculations, we get
GO, (§) = (12n)[(4) + (4)] + 18n(n - 1)[(5) + (6)]
= 198n” - 1021,
GO, (&) = (12n)[16] + 18n(n—1)[30] = 540n” — 492n.
(142)

Theorem 39. For the subdivided honeycomb network, SHC,,
the first and second hyper-Gourava indices are calculated
by HGO, (§) = 2178n* — 1410n and HGO, (§) = 16200n*—
13128n.

Proof. By letting & as the subdivided honeycomb network
SHC,,, from Table 4, we know

HGO,(© = Y [(d,+dy)+(d,d,)]"

gheE(©)
5 (143)
HGO,0 = Y [(dy ) +(dd)]
gheE(8)
and by doing some calculations, we get
HGO, (&) = (12n)[64] + 18n(n— 1)[121]
=2178n" - 1410n,
(144)

HGO, (§) = (12n) [256] + 18n(n — 1)[900]
= 16200n° — 13128n.

Theorem 40. For the subdivided honeycomb network, SHC,,
the general Randic’ index is calculated by

[ 317, fory = -1,

3{n* V6 +nf2-V6}}, fory=—%,
R, (SHC,) =1

6{3712\/5 +n{4- 3\/6}}, fory = %,

| 108 — 60, fory =1.

(145)

Proof. By letting & as a subdivided honeycomb network
SHC,, of n dimensions, we have the order and size of ¢
in SHC, as |V(SHC,)|=15#*>-3n and |E(SHC,)| =
18n* — 6, respectively. We know that

13

y
R, = ) (dg-dy)’ (146)
GheE(®)

for y = {-1,1,-1/2,1/2}.

Case 1:if y = -1, the application of Randic” index R, &
1

Ry(O= Y —

4 id

gheE(§) ™9

(147)

using (146). From Table 4, we obtain R_, (§) =
12n(4)" ' +18n(n—-1)(6)"".
By doing some calculations, we obtain R_, (§) = 3n’.

Case 2: if y=—(1/2), the application of Randic’ index
R, (&)

1
Rapm®= Y

gheE(8) \/(dg : dh)’

using (146). From Table 4, we obtain R_(y) (&) =
12n(1/V/4) + 18n(n— 1) (1//6).

By doing some calculations, we
R (115 (&) = 3{n* /6 + n{2 - V6 }.

Case 3: if y=(1/2), the application of Randic index

(148)

obtain

R, (®)
Rap )= Y \dgdp (149)
gheE (&)
using  (146). From Table 4, we obtain
R(yp (&) = 12n/4 + 18n(n - 1)/6.
By doing some calculations, we  obtain

Riy () = 632 V6 +nfd - 36 }}.
Case 4: if y =1, the application of Randic” index R, (£)

R©E= Y (d.d,),

gheE(§)

(150)

using (146). From Table 4, we obtain R, ({) =
12n(4) + 18n(n— 1) (6).
By doing some
R, (&) = 1081 — 60n.

calculations, we  obtain

Theorem 41. For the subdivided honeycomb network, SHC,,
the harmonic index is calculated by

2
6n” — 6n. (151)

Hi(h =2

Proof. By letting £ as a subdivided honeycomb network
SHC,,, from Table 4, we know

2
HI(®) = ) ,
gheE® %o T

(152)

and by doing some calculations, we get
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2] 361" - 6n
==

2 (153)
5

HI(£) = (12n)[ﬂ +18n(n-— 1)[

Theorem 42. For the subdivided honeycomb network, SHC,,
the general version of the harmonic index is calculated by

HI(§) = 6[3n2{§}k + n{% - 3{§}kH

(154)

Proof. By letting & as a subdivided honeycomb network
SHC,,, from Table 4, we know

2 k
gh;a dg+d,

and by doing some calculations, we get

(155)

Hkl(f):(lzn)[%]k+18n(n—1)[22T3]k’

,(21% 2 21k
=6 3n{—} +n —k—3{—} .
5 2 5
(156)
Theorem 43. For the subdivided honeycomb network, SHC,,

the atom-bond connectivity index is calculated by

ABC (&) = nV2[9n - 3]. (157)

Proof. By letting £ as a subdivided honeycomb network
SHC,,, from Table 4, we know

d, +d, -2
ABC (§)= ) %, (158)
gheE (&) g~h
and by doing some calculations, we get
2+2-2 2+3-2
ABC (&) = 12m 22 4 18n(n - D\ 2,
4 6 (159)

=nV2 [9n - 3].

Theorem 44. For the subdivided honeycomb network,
SHC,, SK, SK;, and SK, indices are calculated by SK (§) =
45n* - 21n, SK,(§) =54n* —30n, and SK, (&) = (1/2)
(2251 — 129n), respectively.

Proof. By letting & as a subdivided honeycomb network
SHC,,, from Table 4, we know

Journal of Chemistry

SK®= ) |-

gheE(§)L

K, (©= Y

gheE(§)L

(160)

SK, (= Y

gheE(§)

d,+d,1?
2 bl

and by doing some calculations, we get

SK (&) = (12n) (2) + 18n(n — 1)(%) = 457° — 21n,
SK, (&) = (12n) (2) + 18n(n—1)(3) = 54n” — 30n,

SK, (&) = (12n) (4) + 18n(n — 1)(%) = %(225;12 - 129n).

(161)

Theorem 45. For the subdivided honeycomb network, SHC,,
the sum-connectivity index is calculated by
1

Xam @ = [18n” + n{6V5 - 18}]. (162)

Proof. By letting & as a subdivided honeycomb network
SHC,,, from Table 4, we know

Xam@® = [dg+ dh]_(m)’
gheE (&)

(163)
1 1
X (§ = 120)(5) + 18n(n - ”(ﬁ)’
and by doing some calculations, we get
1 2
Xy (©) = ﬁ[ISn +n{6V5 - 18}]. (164)

Theorem 46. For the subdivided honeycomb network, SHC,,
the general sum-connectivity index is calculated by

X () = 18{5"}” + 6nf2{4*} - 3{5"}}. (165)

Proof. By letting £ as a subdivided honeycomb network
SHC,,, from Table 4, we know

w®=Y [d,+d,]"

gheE (&)

X () = (120)(4%) + 18n(n - 1)(5%),

(166)

and by doing some calculations, we get
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X (§) = 18{5° |’ + 6nf2{a*} - 3{5"}}. (167)

Theorem 47. For the subdivided honeycomb network, SHC,,
the first general Zagreb index is calculated by

M () = lsnz{zk_l + 3k_1} + 6”{2{2k} - 3n{2k_1 + 3k_1}}.
(168)

Proof. By letting & as a subdivided honeycomb network
SHC,,, from Table 4, we know

M©= Y [dit+d] k>l
gheE(§)

M = (12m(21) + 18n(n- (2 +3),

(169)

and by doing some calculations, we get
M () = lsnz{zk_l + 3k_1} + 6”{2{2k} - 3»14{2](_1 + 3k_1}}.
(170)

Theorem 48. For the subdivided honeycomb network, SHC,,

the forgotten index is calculated by
E (&) = 2n{117n - 69}. (171)

Proof. By letting £ as a subdivided honeycomb network
SHC,,, from Table 4, we know

F= Y [d+d)

gheE (&) (172)
F(&) =(12n)(8) + 18n(n—1)(13),
and by doing some calculations, we get F(&) =

2n{117n — 69}.

3. Conclusions

In this paper, we have computed the topological indices
(degree based) such as ordinary generalized geometric-
arithmetic (OGA) index, first and second Gourava indices,
first and second hyper-Gourava indices, general Randic’
index R, (&), fory = { £1, £(1/2)}, harmonic index, general
version of the harmonic index, atom-bond connectivity
(ABC) index, SK, SK;, and SK, indices, sum-connectivity
index, general sum-connectivity index, and first general
Zagreb and forgotten topological indices for different kinds
of chemical networks such as the subdivided polythiophene
network, subdivided hexagonal network, subdivided back-
bone DNA network, and subdivided honeycomb network.
The above computed topological indices are used as mo-
lecular descriptors in the construction of “quantitative
structure-activity relationships and quantitative structure-
property relationships.” These indices give us results that can
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be correlated with the molecular structures to understand
their chemical and physical properties.

For the next research papers, our goal is to compute
more topological indices for some new graphs to know their
topologies.
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Dendrimers are highly branched, star-shaped macromolecules with nanometer-scale dimensions. Dendrimers are defined by three
components: a central core, an interior dendritic structure (the branches), and an exterior surface with functional surface groups.
Topological indices are numerical numbers that help us to understand the topology of different dendrimers and can be used to predict
the properties without performing experiments in the wet lab. In the present paper, we computed the Sombor index and the reduced
version of the Sombor index for the molecular graphs of phosphorus-containing dendrimers, porphyrin-cored dendrimers, PDI-cored
dendrimers, triazine-based dendrimers, and aliphatic polyamide dendrimers. We also plotted our results by using Maple 2015 which
help us to see the dependence of the Sombor index and reduced Sombor index on the involved parameters. Our results may help to
develop better understanding about phosphorus-containing dendrimers, porphyrin-cored dendrimers, PDI-cored dendrimers, triazine-
based dendrimers, and aliphatic polyamide dendrimers. Our results are also useful in the pharmaceutical industry and drug delivery.

1. Introduction

Dendrimers are highly branched star-molded macro-
molecules with nanometer-scale measurements [1]. A
dendrimer consists of three modules: a central core, an
interior surface (branches), and the outer surface. A
functional surface group is attached with the outer core.
Various blends of these parts yield results of various
shapes and sizes with protected inside centers that are an
ideal contender for applications in both organic and
materials sciences [2]. The characteristics of a dendrimer
depend on the external group attached with the outer
surface. Dendrimers have acquired a wide scope of uses
in supramolecular science, especially in drug delivery,
gene transfection, catalysis, energy harvesting, photo
activity, molecular weight and size determination, rhe-
ology modification, and nanoscale science and tech-
nology. A dendrimer acts as a solubilizing agent in
different reactions. Dendrimers have a wide range of
applications in different fields of sciences [3]. The con-
struction of dendrimers is presented in Figure 1.

Mathematical chemistry is the branch of mathematics
in which mathematical tools are used to solve the prob-
lems arising in chemistry [4]. One of these tools is
graphical representation of chemical compounds, and this
representation is known as the molecular graph of the
concerned chemical compound [5]. In the molecular
graph of a chemical compound, atoms are represented as
vertices, and bounds are represented as edges [6]. To-
pological invariants of molecular graphs are numerical
numbers that enable us to collect information about
concerned chemical structure and give us its hidden
properties without performing experiments [7-11]. The
first topological index was put forward by Wiener in 1947
[12] when he was trying to find the boiling points of
alkane. This discovery led to the beginning of the theory of
topological indices. The first degree-based topological
index was put forward by Randi¢ in 1975 [13]. After the
success of the Randi¢ index, Gutman introduced the
Zagreb indices. There are hundreds of topological indices
present in the literature [14-18]. Recently, Gutman, in
2021 [19], defined the idea of Sombor indices. Sombor
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FiGURE 1: Modules of the dendrimer.

indices have two variants, Sombor index and reduced
Sombor index, as follows:

SO(G) = \d + d;,
ije(E(G))
1
$0,4(G) = Y \](di ~1)’ 4+ (d; - 1)
ije(E(G))

The aim of this paper is to study the phosphorus-con-
taining dendrimers, porphyrin-cored dendrimers, PDI-
cored dendrimers, triazine-based dendrimers, and aliphatic
polyamide dendrimers. We computed the Sombor index and
the reduced version of the Sombor index for the afore-
mentioned dendrimers. We also present graphical repre-
sentations of our results to see the dependence of computed
indices on the involved parameters.

Throughout this paper, we consider all graphs to be
simple and connected, and d,, denotes the degree of vertex u
which is equal to the number of vertices at distance one to it.
For the notation used in this paper but not defined, we refer
to in [20, 21] and references therein.

2. Methodology

Firstly, we obtain the molecular graphs of phosphorus-
containing dendrimers, porphyrin-cored dendrimers,
PDI-cored dendrimers, triazine-based dendrimers, and
aliphatic polyamide dendrimers. Secondly, we compute
the order and size of these molecular graphs and classify
their edge sets and vertex sets into different classes with
respect to the degrees of vertices. Thirdly, we compute the
Sombor and reduced Sombor indices for the molecular

graphs of phosphorus-containing dendrimers, porphy-
rin-cored dendrimers, PDI-cored dendrimers, triazine-
based dendrimers, and aliphatic polyamide dendrimers.
Lastly, we plot our obtained results by using Maple 2015
software.

3. Main Results

In this section, we present Sombor and reduced Sombor
indices for phosphorus-containing dendrimers, porphyrin-
cored dendrimers, PDI-cored dendrimers, triazine-based
dendrimers, and aliphatic polyamide dendrimers.

3.1. Phosphorus-Containing Dendrimers. Phosphorus-
containing dendrimers have functionalities with pendant
nitroxyl radicals, and these radicals show a solid at-
tractive trade interaction. Let us consider D, (m) to be
the molecular graph of phosphorus-containing den-
drimers, where m shows the generation stage of D, (m).
Figure 2 shows the molecular graph D, (m) of phos-
phorus-containing dendrimers.

From Figure 2, we can observe that the order and size of
D, (m) are 9(11 x 2™ —8) and 6(9 x 2™ - 13), respec-
tively. If 7" (D, (m)) is the vertex set, then from Figure 2, we
can classify 77 (D, (m)) into four subsets 7"}, 7',, 75, and
7', of vertices of degrees 1, 2, 3, and 4 such that |7
(D, (m)| = |7, (D, (m)| + 17, (D, (m)| + |75 (D, (m)
+ |74 (Dy (m))|. The cardinalities of 7", (D, (m)), 7", (D,
(m)), 75(D,(m)), and 7 ,(D,(m)) are 42x2"- 12,
96 x 2™ — 39, 42 x 2™ — 18, and 18 x 2" — 3, respectively.

If & (D, (m)) represents the edge set, then Figure 2 shows
that there are the following six different types of edges with
respect to the degrees of end vertices present in the mo-
lecular graph of D, (m):
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TaBLE 1: Degree-based edge partition of D, ().

£ €(d,.d,) Frequency
& £(1,3) 6 (2"’; 1)
&2 €(1,4) 6 (5><21 -1
& €22 18 (2™ — 1)
€ € 6 (2™t —7)
84 8(2‘3) (3 x 2m*3)

5 (24)

& £(3.4) 6(3x2Mm-1)

& (D, (m)) = €(13) (D, (m)) ={e =uv e ¢(D,(m)): d, = 1,d, = 3},

& (D, (m)) = €14 (D, (m)) ={e=uv € (D, (m)): d,, = 1,d, = 4},
&3 (D, (m)) = €, (D, (m)) ={e =uv € (D, (m)): d,, = 2,d, = 2},
(2)
e4(D, (m)) = €3 (D, (m)) ={e = uv € (D, (m)): d,, = 2,d, = 3},
&5 (D) (m)) = €4 (D, (m)) ={e =uv € (D, (m)): d,, = 2,d, = 4},
g6 (D (m)) = €34 (D, (m)) ={e = uv € ¢(D, (m)): d,, = 3,d, = 4}.
Table 1 explains the edge partition of the edge set of (i) SO(G) = 2V2+m) /5 _ 62 /5 + 72 x 2((1/2+m) ;.
D, (m) in detail. 48+/52™ + 96+/132™ + 30+/172™ — 36/2 — 42 \/13~
Frequency means the total number of edges in the 6117 +90 x 2™ — 30

particular class. (ii) SO, (G) = 24 x2((V2+m) /5 18/T32M + 362 (12)+m)

Theorem 1. The SO and SO,,; indices for D, (m) are as follows: +961/52™ + 282 x 2™ — 18+/2 — 6/13 — 42+/5 — 66



Proof. For the edge partition of the vertex set of D, (m), we
have the following computations for SO and SO, 4 indices:

=Y \d +d; =1 +37(6(2
i

+ V22 + 4 (3x2") + 37+ 47 (6(3x 2" - 1)) =
+30V172"™ - 36V2 — 42+/13 - 6317 + 902" - 30,

—1)P+(B-17(6(2" - 1)) + (1 - 1)* + (4 -1 (6(5x2™ - 1))

S0 (D)) = Y\~ 1 +(d,- 1) =\

Journal of Chemistry

+ VP + 42 (6(5x 2" - 1)) + V22 +2°(18(2" - 1)) + 27 + 3°(6(27" - 7))

2W2Hm A5 _ 64/10 + 72 x 2P 4 48~/52™ + 961/132™

+ 2=+ 2-12(18(2" - 1)) + 2 - 1P + B - D*(6(2™ = 7)) + (2 - 1P + (4 - 1)*(3x 2"7)

+\(3 -1 +(4-1)(6(3x2"

- 18V2 - 613 — 42+/5 - 66.

3.2. Porphyrin-Cored Dendrimers. Figure 3 shows the mo-
lecular graph D, (m) of porphyrin-cored dendrimers, where
m represents different generations of D, (m).

From Figure 3, we can observe that the order and size of
D, (m) are 4(2™2 +9) and 4(2™* + 11), respectively. If
7 (D, (m)) is the vertex set, then from Figure 3, we can
classify this vertex set into four subsets 77, (D, (m)),
7, (D, (m)), ¥5(D,(m)), and 7', (D, (m)) with respect to

=& (1,4 (D, (m

=& 4 (D, (m)) =

2D
(
(
(
(
(
(
(

Table 2 gives the detailed explanation about the edge
partition of the edge set of D, (m).

Theorem 2. The SO and SO,,; indices for D,(m) are as
follows:

—1))24 x 25 4 181327 + 36 x 2P 1 96+/52™ + 282 x 2"

(3)

O
degrees such that |77 (D, (m))| =17, (D ,(m)|+ |7, (D,
m)| + 75 (D, (m))| + |74, (D, (m))|. The cardinalities of
V' (D, (m)), 7 5 (D, (m)), ¥ 5 (D, (m)),and 7", (D, (m)) are
12x2™ -8, 12x 2™+ 32, 4% 2" + 16, and 4 x 2" — 4 verti-
ces, respectively.
If & (D, (m)) represents the edge set, then Figure 3 shows
that there are the following eight different types of edges
present in the molecular graph of D, (m):

,(m)) ={e=uve &(D,(m)): d, =1,d, =2},
=& (13 (D,(m)) ={e=uv e &(D,(m)): d, = 1,d, = 3},
={e=uve &(D,(m)): d, =1,d, =4},

=&, (D,(m)) ={e=uv e &(D,(m)): d, =2,d, =2},

(4)

=& 3 (D, (m)) ={e =uv e &(D,(m)): d, = 2,d, = 3},
{e=uve &(D,(m)): d, =2,d, =4},
=& (33)(D,(m)) ={e =uv e &D,(m)): d, =3,d, =3},

=& (34)(Dy(m)) ={e =uv e &(D,(m)): d, = 3,d, = 4}.

(i) SO(G) = 4 x 2(V/2+m) (/5 1 20~/52" — 4+/2~/5 +
82((1/2+m) 4 A\/T72™ + 4~/132" — 16+/5 + 202" +
762 — 417 + 324/13 - 20

(ii) SO, (G) = 8 x 2((W2HmM \[5 1 41/50™ — 8+/2+/5 +
4 % 2(072)+m) | 41[T30m 4 32+/5 4
242" + 44+/2 — 4+/13 - 20
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FIGURE 3: D, (m) for m =1.

TaBLE 2: Degree-based edge partition of D, ().

& & a,d,) Frequency
&, & 4x2m
&, & (13 4x2" -4
&3 & (10 4x2m—4
8, €22 4x2™+20
&5 & (23 4x2M+32
&4 N 8x2m -8
&, & (33 12

&y 3(3,4) 4x2M—4

Proof. From the edge partition of D, (m) given in Table 2,
we have the following computations of SO and SO, indices:

SO(Dy) =Y \di +d; = V12 + 22 (4x2") + 17 + 37 (4x 2" = 4) + V1* + 47 (4 x 2" - 4) + V2? + 2 (4 2" + 20)
i

+\/22+32(4><2”‘+32)+\/22+42(8><2'”—8)+\/32+32(12)+\/32+42(4><2"“—4)

= 4x 2D /5 4 20+/52™ — 44/2+/5 + 82CVHM) L 4172 + 44/T32™ — 1645 + 202™ + 76+/2 — 44/17 + 32+/13 — 20,
80,4(Dy) = ) \(d; - 1)? +(d; - 1)2 =VA-17+Q2-1)2(@x2")+ VA - 1)+ (-1 (4x2" - 4) + (1 -1)" +4° (4x 2" - 4)
i
+V2 -1+ 2 -1 (4 x2"+20) + 2 -1 +(3-1)>(4x2" +32) + (2 -1)" + (4 - 1)*(8x 2" - 8)

+ \/(3 12+ (3-1)2(12) + \/(3 —1)P 4 (4-1)2(4x 2" —4) = 8 x 2D \5 4 4/50™ — 8425 + 4 x 2D 4 4/1327324/5
+242™ + 442 - 413 - 20.

(5)
O



3.3. PDI-Cored Dendrimers. The water-dissolvable PDI-
cored dendrimers have various accommodations, containing
low cytotoxicity, solid red fluorescence, high quantum yield,
amazing photostability, and flexible surface alteration. These
dendrimers have numerous applications in different fields
such as fluorescence live-cell imaging and labeling. Let
D, (m) be the molecular graph of PDI-cored dendrimers;
then, Figure 4 shows the 2D graph of D, (m).

From Figure 4, we can observe that the order and size of
D5 (m) are 20 x 2™ + 20 and 20 x 2% + 20, respectively. If

Journal of Chemistry

7 (D5 (m)) is the vertex set, then by observing Figure 4, we
can classify this vertex set into three subsets 7, (D5 (m)),
7, (D5 (m)), and 75 (D5 (m)) such that |7 (D5 (m) )| = |7,
(D5 (m)| + 17, (D5 (m))| + |75 (D5 (m))|. The cardinalities
of 7 ,(D;(m)), 7,(D;(m)), and % 5(D;(m)) are
2 x2m 44,6 x 2™ and 2 x 2™t + 16, respectively.

If & (D5 (m)) represents the edge set, then Figure 4 shows
that there are the following five different types of edges
present in the molecular graph of D; (m):

&1 (D3(m)) = & 15 (D3(m)) ={e=uv e &(D;(m)): d, = 1,d, = 2},
&, (D3 (m)) = & 13 (D;s(m)) ={e = uv € &(D;(m)): d, = 1,d, = 3},
&3 (D3 (m)) = & 15 (D3 (m)) ={e=uv € E(D;(m)): d, = 2,d, =2}, (6)
&4 (D3 (m)) = & 13 (D3(m)) ={e =uv € E(D;(m)): d, = 2,d, = 3},
&5 (D3 (m)) = & 33 (D (m)) ={e = uv € &(D;(m)): d, = 3,d, = 3}.

Table 3 gives the detailed explanation about the edge
partition of the edge set of D5 (m).

Theorem 3. The SO and SO,,; indices for D, (m) are as
follows:

(i) SO(Ds) = 22 \/5 1 /5 x 2(m+D) 12 x
2((W20m) 1 104/132™ + 44/10 + 682

(ii) SO, (D;) = 6 x 2((V2M) 4 10~/52™ + 6 x 2™ +
452 + 8

Proof. From the edge partition of D5 (m) given in Table 3,
we have the following computations of SO and SO, 4 indices:

SO(D;) = z \d; + d; + V2% + 22(3 x 2 4 1) =V1% + 22(2"4+1) 12+ 32(4(2%1 . 1))
ij

+ V27 +3%(20x 27 1) + 37 + 37 (22) = 2P NE 4+ V5 x 20D 4 12 x 2 4 1041327 + 410 + 682,

$Oyea (D3) = ) \/(d,. ~1)+(d; - 1)’ =

1=+ @2-D*(2") +ya -1+ 3 -1°(4(2" " +1))

+Vy2-1%*+(2- D?(3x 2™ +1) + V2 -172+(3- D*(20x 2" ) + (3 - 1)* + (3 - 1)* (22)

=6 x 2D 4 104/52™ 1+ 6 x 2™ + 452 + 8.

3.4. Triazine-Based Dendrimers. The divergent method is
used for the synthesis of triazine-based dendrimers. Tri-
azine-based dendrimers are less toxic and can be further
studied as drug carriers. Let D, (m) represent the molecular
graph of triazine-based dendrimer drug carriers in the fu-
ture. Figure 5 shows the molecular graph of D, (m).

From Figure 5, we can observe that the order and size
of Dy(m) are (2(5x 22 +1)/3) and 7 x 22" + 1, re-
spectively. If 7" (D, (m)) is the vertex set, then by observing

(7)

O
Figure 5, we can classify this vertex set into four subsets
7, (D,(m)), 7,(D,(m)), and 75(D,(m)) such that |7
(D, (m)| = |7, (D, (m)| + |7, (D, ()| + 175 (D, (m)].
The cardinalities of 7', (D,(m)), 7,(D,(m)), and
V5 (D, (m)) are 2™+, 22m+1 4 (7 x 4™*1/6) + (4™+1/3), and
4+ (5x4™1/6) — (10/3), respectively.
If & (D, (m)) represents the edge set, then Figure 5 shows
that there are the following four different types of edges
present in the molecular graph of D, (m):
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TaBLE 3: Degree-based edge partition of D, ().
& &, d,) Frequency
gl %(1)2) 2m+1
&, €13 4(2m1+1)
g3 %(2)2) 3 x 2m+1 +1
8, € 20 x 2m-1
& &3 22
FIGURe 5: D, (m) for m =2.
&1 (Dy(m)) = & 15 (Dy(m)) ={e=uv € &(Dy(m)): d, = 1,d, =2},
&,(Dy(m)) = &, (Dy(m)) ={e =uv € &(Dy(m)): d, = 2,d, =2},
(8)
&3 (Dy(m)) = & 53 (Dy(m)) ={e = uv € &(Dy(m)): d,, = 2,d, = 3},
&,(Dy(m)) = & (33 (D, (m)) ={e=uve &(Dy(m)): d, =3,d, =3}.
Table 4 gives the detailed explanation about the edge set (ii) SO,,; (D,) = 4 x 2™ +6~/24™ — (8/3)V2 + (22/3)
of D, (m). 1/52™ + (8/3)/5
Theorem 4. The SO and SO,,; indices for D,(m) are as
Jollows: Proof. From the edge partition of the edge set of D, (m)
(i) SO(D,) = \/52(™D 1 (32/3)/24™ — (14/3)V2 + given in Table 4, we have the following computations for SO

(22/3)\/132™ + (8/3)V/13 and SO,4 indices:
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TaBLE 4: Degree-based edge partition of D, (in).

& &, d,) Frequency

&, & (12 om+l

&, €0 (2(5 % 22m —2)/3)

&, (23) (2(11 x 22" + 4)/3)

&, (3.3) (2 x 221 —1/3)

2m
SO(D) Y A&+ + V21 2(3x 2" 1) = VI 1 2(2) 4 V224 2 %M)
7

2(11x2°™ + 4 2x 22
+ \/22 + 32<¥> +\3%+ 32(#)

SOt (D) = Y. (d - 1)

VB2 Ve - T VTR VTS,
+(d;-1) = V-1 +(2- 12(2™)
9)
5 5[ 2(5%x27" -2)
F2-12+2-1) <f
+\[(2_1)2+(3_1)2<M>
3
2m+1
(3-1)72+ (3- 1)2(2><Z_l>
3
4x2™ +6V24" ——\/—+ 2 52" 4 x/’
O

3.5. Aliphatic Polyamide Dendrimers. Recently, Jishkariani,
for the first time, studied aliphatic polyamide dendrimers
containing ethylenediamine and piperazine. These den-
drimers are enzymatically and hydrolytically stable. Let
D (m) represent the molecular graph of the aliphatic
polyamide-based dendrimer. Figure 6 shows the molecular
graph of D; (m).

From Figure 6, we can observe that the order and size of
Ds (m) are 2 (2™ - 5). If 7" (D5 (m)) is the vertex set, then

by observing Figure 6, we can classify this vertex set into
three subsets 77, (D5 (m)), 7, (D5 (m)), and 75 (D5 (m))
such that |7 (D5 (m)) | = |7, (D5 (m))| + |7, (D5 (m))|+
|75 (D5 (m))| + |7 4 (D5 (m))|. The cardinalities of 7", (Ds
(m)), 7, (Ds (m)), and 7’5 (Ds(m)) are 4(3 x 2™ 1 1),
4(3x2m 1 —1), and 2™12(2™ - 1), respectively.

If & (D5 (m)) represents the edge set, then Figure 6 shows
that there are the following four different types of edges
present in the molecular graph of Dy (m):

&1 (Ds(m)) = & 1,5 (Ds(m)) ={e =uv € E(D;s(m)): d, = 1,d, =2},
&, (Ds(m)) = & 53 (D5 ( ) fe=uv e &(Ds(m)): d, =2,d, =3}, (10)
&3 (Ds(m)) = & 13 (Ds(m)) ={e =uv € &(Ds(m)): d, = 1,d, = 3},
&4(Ds(m)) = & 14 (Ds(m)) ={e=uv € &(Ds(m)): d, =1,d, = 4}.
Table 5 gives the detailed explanation about the edge set ~ Theorem 5. The SO and SO,,; indices for Ds(m) are as

of Ds (m).

follows:
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FIGURE 6: Ds (m) for m =4.

(ii) SO,q (D) = 6132 + /52m+1 4 2((3/27m) 4 18 %

TaBLE 5: Degree-based edge partition of Dy (m). e 3~ 6T3 - 14
& &, d) Frequency
gl g(l)z) 2m+l
&, (23) 2m+l Proof. From the edge partition of the edge set of Ds(m)
&, &3 22" -1) given in Table 5, we have the following computations of SO
&4 & (1,9) 22" -1) and SO, indices:
&s &) 2(2"-1)
&s & (3.0) 22" -1)
&, & 33 2
%8 g(2,4) 2m+2 —4

(i) SO (D;) = 22 \[5 4+ 104/52m + 20m+D /17 —
2V10 + V1320mD 4 4 x 2(W24m) _ 917 — 8+/5+
2v/2 +10x 2™ - 10

SO(D5) = Y. \fd} +d + V2 + 2(3x 2" 1) = V1P + 22(2") + 2P 4 37(2")
+ VP37 22" - 1)+ VP +42(2(2" - 1)) + V22 + 2° (2 (2" - 1))

+\3°+47(2(2" - 1))

V32 +32(2) + V2R + 42(277 - 4) = 2B 4 104527 4+ 2D VI - 210 + V132

+4x 2D 5 17 —84/5 + 232 + 10 x 2™ - 10,

80,4 (Ds) = Z \/(di —1)*+(d; - 1)2 =\VI-1D+ -2 + @ -1+ (G- 12 (2™)

FA-12+G-12 (22" - 1) +m(2
\/(2—1) +(2-1)7(2(2"-1)) +m(2
\/(3—1)2+(3—1)2(2)+ (2_1)2+(4_1)2(2m+2_4)

= 6V132™ + /52 4 2(G2m) 18 ™ L 22 — 6413 - 14.

(11)
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4. Conclusion

Topological indices found numerous applications in many
regions of material science, arithmetic, informatics, biology,
and so on. However, their most important use is in the

Journal of Chemistry

nonexact quantitative structure-property relationships
(QSPR) and quantitative structure-activity relationships
(QSAR). Topological indices have an interconnection with
the structure of the chemical structure. In this paper, we
computed the newly introduced Sombor indices for phos-
phorus-containing dendrimers, porphyrin-cored den-
drimers, PDI-cored dendrimers, triazine-based dendrimers,
and aliphatic polyamide dendrimers. Figures 7 and 8 give the
graphical comparison of computed results for the afore-
mentioned dendrimers.
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In theoretical chemistry, several distance-based, degree-based, and counting polynomial-related topological indices (TIs) are used
to investigate the different chemical and structural properties of the molecular graphs. Furtula and Gutman redefined the F-index
as the sum of cubes of degrees of the vertices of the molecular graphs to study the different properties of their structure-
dependency. In this paper, we compute F-index of generalized sum graphs in terms of various TIs of their factor graphs, where
generalized sum graphs are obtained by using four generalized subdivision-related operations and the strong product of graphs.
We have analyzed our results through the numerical tables and the graphical presentations for the particular generalized sum
graphs constructed with the help of path (alkane) graphs.

1. Introduction

Throughout the paper, we consider a simple and undirected
graph H = (V(H),E(H)) with vertex-set V(H) = {v,,
VyV3...>v,)  and  edge-set  E={epe,...,e,}C
V(H) x V(H), where n=|V(G)| and m = |[E(G)|. A mo-
lecular graph is a connected and undirected graph in which
atoms are presented by vertices, and chemical bonds be-
tween these atoms are shown by edges (see Figure 1). For
a finite set of graphs € and set of real numbers R, the
function I: € — R defined by I(H) =} ey f (u) is
called a degree-based topological index (TI), where the
graph H belongs to € and f (u) is a degree-function from
the vertex-set of H to the degree-set of its vertices. It is
important to know that I(H) = I(K) if and only if H is
isomorphic to K. For more details, see [1, 2].
Graph-theoretic modeling of the molecular graphs plays
a fundamental part in the analysis of the quantitative
structures activity/property relationships (QSAR/QSPR). In
chemistry, the study of structural relationships is used to
characterize the various physicochemical properties of

organic molecules such as surface tension, density, melting,
freezing point, solubility, heat of evaporation, and heat of
formation [3]. In last two decades, many TIs are introduced,
but degree-based TIs got much more attention of the re-
searchers, see the latest survey [4]. In 1947, Winer in-
troduced the first distance-based TI to compute the boiling
point of paraffin [5]. Also, we refer [6].

In molecular graph theory, the different operations on
a graph perform a fundamental role in the formation of
different new classes of graphs. Yan et al. [7] introduced the
four operations S;, R;, Q;, and T, on a graph H and
computed the Wiener indices for the graphs F, (H), where
F, € {S,R,,Q,,T,}. Eliasi and Taeri [8] defined the F,-sum
graphs (H,,r H,) using the Cartesian product on graphs
F,(H,) and H,, where H, and H, are any two simple and
connected graphs. They also computed the Wiener indices
for these F,-sum graphs. Furthermore, Deng et al. [9]
calculated the M, and M, Zagreb indices, Imran and
Shehnaz [10] computed the F-index, Liu et al. [11] computed
the first general Zagreb, Chu et al. [12] calculated the bounds
of first general Zagreb index and general Randic index, and
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Butane

FiGure 1: Clearly, structural formula of butane is isomorphic to P,.

Sarala et al. [13] computed the F-index for these F;-sum
graphs under the Cartesian and strong products. We also
refer [14-20].

Recently, for k> 1, Liu et al. [21] defined the generalized
F-sum (F;-sum) graphs using Cartesian product and
computed their Zagreb indices. Moreover, Awais et al.
computed the F-index [22], hyper-Zagreb [23], and FGZ
index [24] for these generalized F-sum graphs. Recently,
Javaid et al. [25] computed first and second Zagreb indices
for the generalized F-sum graphs under the strong product.

In this paper, we compute F-index of generalized sum
graphs in terms of various TIs of their factor graphs, where
generalized sum graphs are obtained by using four gener-
alized subdivision-related operations and the strong product
of graphs. We have analyzed our results through the nu-
merical tables and the graphical presentations for the par-
ticular generalized sum graphs constructed with the help of
path (alkane) graphs. The remaining paper is managed as
follows: Section 2 consists of elementary definitions, Section
3 includes main results, and Section 4 covers the application
and conclusion.

2. Preliminaries

2.1. Degree-Based Topological Indices. In 1972, Trainajsi and
Gutman defined first and second Zagreb indices that are
utilized to find the m-electron energy of molecular graphs
[26]. Let H be any graph (molecular structure), then the first
and second Zagreb indices are defined as
M, (H) = ¥ ey nd* (v) and M, (H) = ¥,epmd (w)d (v).

In 2015, Furtula and Gutman [22] redefined a TI called
by forgotten TI [27]. The forgotten TI of a (molecular) graph
H is defined as

F(H= ) &@. ()

veV (H)

They also verified that the different predictive abilities of
F-index and first Zagreb index are same. In particular, both
the indices yield the values of correlation coefficients for
entropy and acentric factor more than 0.95. For more results
on its mathematical properties and chemical applications,
see [23].

2.2. Four Generalized Operations. Let H, be a (molecular)
graph, then for the integral value k > 1, the graphs (F; (H,)
under the four generalized operations (F; € {S, Ry, Q. Ti})
on H, are defined as follows [21]:

(i) k-subdivision graph: we add k new vertices in every
edge of H, and obtain the new k-subdivision graph
Sk (H,)

(ii) k-semitotal point graph: the graph k-semitotal point
(R, (H,)) is defined from the graph S;(H,;) by
joining the vertices of S; (H;) which were adjacent
in H,

(iii) k-semitotal line graph: the k-semitotal line graph
Qy (H,) is defined from the graph S, (H,) by joining
the newly added k vertices for each incident pair of
edges of H,

(iv) k-total point graph: the k-total point graph is de-
fined from the graph S, (H,) by applying both the
operations R; and Qy, respectively. For more details,
see Figures 2-4.

2.3. Generalized Sum Operation for Strong Product. Let H,
and H, be two graphs, F € {S;, R, Qy, T} presents gen-
eralized operations and F) (H,) is obtained after applying F
on H, having edge-set E (F; (H,)) and node-set V (F; (H,)).
The generalized F-sum graphs (H,p ®H,) under the op-
eration of strong product is a graph having a vertex-set:
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V(Hwk X Hz) =V (F,(H,))xV (H,)

(2)
= (V(H,) UKE(H,)) x V (H,),

such that two vertices (s;,#;) and (s,,1,) of V(H 5 ®H,)
are adjacent iff s, =s, € V(H,) and (t,,¢t,) € E(H,) ort, =
t, € V(H,) and (s;,s,) € E(F(H;)) or (t,,t,) € E(H,)
and (s;,s,) € E(F,(H,)), where k>1 is natural number.
Furthermore, the generalized F-sum graphs (H,; ®H,)
contain |V (H,)| copies of graphs F, (H,) that are labeled

Journal of Chemistry

with the vertices of H,. For more explanation, see
Figures 5-7.

3. Methodology

This section presents the main results.

Theorem 1. Let H, and H, be two connected graphs, then

F(H1sk tz) = [|V(H2)| +3M,; (H,) + 6|E(H2)”F(H1) + “V(Hl)l +3M, (H,) + 14|E(H1)|]F(H2)

+ 6|E(H2)|Ml (Hl) + 3OlE(Hl)lMl (Hl) + 6M1 (Hl)Ml (HZ) + 48|E(H1)"E(H2)”

(3)

+8(k - 1)|E(H1)|[6|E(H2)| +|V(H2)| +F(H,) +3M, (Hz)] +F(H,)F(H,)

Proof.. Let d(s,t) = dHls & H, (s, t) is the degree of the vertex
(s,t) in H; ®H,, then"
“k

d(s 1)’ =

F(Hlsk tz) = Y

(s,t)eV(ngk &H2>

=) 2

seV (H,) t,t,eE (H,)

Y [t s deny]

(sl,tl) (sz,tz)eE(Hlsk X H,

[d(s, tl)2 +d(s, tz)z] + z

teV (H,) s,5,€E (S (H,))

Z [d(svt)z +d(52)t)2]

+ Z Z [d(sl’f1)2+d(52’t2)2]=;+§+;'

t\t,€E (H,) s,5,€E (S, (H,))

2= 2 2

A seV(H,)t,t,eE (H,)

)

seV (H,) t,t,eE (H,)

[(d(s)+d(ty) +d()d(t)))’ +(d(s) +d(t,) +d(s)d(1,))’]

[2d(s) +(d(t,)* +d(t,)°) + & (5)(d (1)) + d (1,))]

+2d(s)(d(t,) +d(t,)) +2d° (s)(d(t,) + d (t,)) + 2 d (s)(d (1)) +d’ (t,))]
= 2|E(H,)|M, (H,) +|V (H,)|F (H,) + 4|E(H,)|M, (H,) + M, (H,)F (H,) (4)

+2M; (H,)M, (H,) + 4|E(H,)|F (H,),

2= 2 2

B teV (H,) s,5,¢E (S, (Hy))

[dz(sl,t)+d2 (Sz)t)] = Z Z

[ (s1,t) + d* (55,1)]
teV (H,) s,&V (H,),
5,6V (S (H,)-H,)

+ Z Z [dz(sl’f)"Ldz(sz’t)] :Z+Z'

teV (H,) s15,eV (S, (H,)-H,)

B, B,

2= > [(d(s1) +d(@) +d(s)d (1)) +(d(s,) + d(s,)d (1)’]

B, tsV(Hz) s;5,€E (Sk (Hl))sleV(Hl),
5,6V (S, (H,)-H,)

= 2 2

teV (Hy) s15,¢E (S (Hy))sieV (Hy),
5,V (S (H,)-H,)

[d(s))* +d(sy)* +d(®)(d(s,)" +d(s))]

+2d(0)(d(s,)* +d(s,)*) +2d(®)(d(s,) + 2d° (0)(d (s,) + d° (1)) ]



Journal of Chemistry

(a) (b)

Figure 5: (a) H, =C;. (b) H, =P,.
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Since s,eV (H,) and s,eV (S, (H,) — H,)), therefore

= |V(H2)|F(Sl (Hy)) + 2|E(H1)|M1 (H,) + 4|E(H2)M1 (Hy) + 4|E(H2)F(Sl (Hy))

5
+ M, (H,)F (S, (Hy)) +2M, (H,)M, (H,). ©
We know that F (S, (H,)) = F(H,) +8|E(H))I.
= “V(Hz)| +4|E(H,) + M, (Hz)] [F(Hl) + 8|E(H1)” +2|E(H,)|M, (H,) +4|E(H,)M, (H,)
+4|E(H,) +2M, (H,)M, (H,),
Y= > > [(d(s1) +d(s,)d @) + (d(s) +d(s,)d (1))’]
B, teV(Hz) slszeE(Sk (Hl))s1>
5,6V (S, (H,)-H,)
(6)
=y Y [d(s))" +d(sp)* +d®)(d(s,)" +d(sy)") +2 d(B)(d (5,)" +d(s)")]
te 2) s15€E (S (Hy))sy»
V(H ) szeVI(ES(k (Igll{)—)l?ll)
=y > [(2) +(2)* + 8dyy, (1) + 16d,y, (1)].
teV (Hz) s15,€E (Sk (H1))51:
5,€V (S, (H,)-H,)
Since in this case |E (S, (H,))| = |[E(H,)|(k - 1), so
= 8(k - )|V (H,)||[E(H,)|| + 8 (k = )M, (H,)IE (H, )| + 32 (k - DIE (H,)|E(H,)|I,
Z = Z Z [d2(51>t1)+d2(52>t2)] = Z Z [d2(517t1)+d2(52>t2)]
C  tt,eE(H,) s5,¢E (S, (H,y)) t,t,eE (H,) s,V (H,),
5,€V (S, (H,)-H,)
+ ) D [ (s, 1)) + A (55, 155) | = D + ).
t,t,€E (H,) s,,5,€V (S, (H,)-H,) ¢ G
Z = Z Z [(d(sl)+d(t1)+d(51)d(t1))2+(d(52)+d(52)d(t2))2]
G e 2) S1:€E (S (Hy))s,€ 1)
F sy )
= Z Z [d(sl)2 +d(52)2 +d(t1)2d(51)2 +d(tz)2d(52)2]
teV (H,) s,5,€E (S, (H,))s,eV (H,),
s,€V (S (H,)-H,) (7)

+2d(t1)d(51)2 +2 d(tz)d(52)2 +2 d(tl)(d (51) + 24 (tl))(d(sl) + d?—lz (tl))]
= 2|E(H2)”F(Gl) * 16|E(H1)”E(H2)| + 2|E(H1)|F(G2) +F(G,)F(G,) +2M, (H,)M, (H,)
+2F (Gy)M, (H,) +2M, (H)F(G,) + 8|E (H})|F (G,) + 16|E(H, )| M, (H,),
Y= > [(d(s)) +d(s))d(t,))" +(d(s,) +d(s,)d (t,))"]

G, tltzeE(HZ) s15,€E (Sk (Hl))sl,
5,6V (S (H,)-H,)

= ) Y [8+4(d> (t)) +d* (1)) + 8(d (t)) +d(t,))]
HiaeB (i) i;ii’ésffé’fﬁﬁfj

=16 (k - D|E(H,)||E(H,)||| + 8 (k - 1)F (H,)|E (H,)| + 16 (k - 1)|E(H,)|M, (H,).

We arrive at our desired result. O  Theorem 2. Let H, and H, be two connected graphs, then
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F(H,, mH, ) 8[|V (1) + 6| (HL)|1JF (HL) + [V (H,)| + 201E (H,)|F(H,) + 8F (H,)F (H))
+ 24lE(H2)|M1 (Hl) + 3'6|E(I_Il)|M1 (HZ) + 24]\/Il (HI)MI (HZ) + 24F(H1)M1 (HZ)
+ 81V (H)[E (H)| 1+ 8k = DIE(H)|[IV ()| + F (H) + 4|E(Hy)| + 30, (1,)]
+48|E (H,)|E (H,)| + 12F (H,)M, (H)).

Proof. Letd(s,t) =dy, gy, (s,t) is the degree of the vertex
(s,t) in Hy, tz, ther*

F(Hle tz) - Y dst’= ¥ [d(st,) +d (s 1,)°]
(s,t)eV(Hle tz) (svt1) (sz,tz)eE(HIRk tz)
= Z Z [d(s, t,) +d(s,t2)2] + Z Z [d(sl,t)2 +d(sz,t)2]
seV (H,) t,t,eE (H,) teV (H,) s,5,¢E (R, (H,))

DD R CCRBLCEA RO RO RDR

tityeE (H,) s5,€E (Ry (Hy))
Y= X Y [dsn) +d(st)] = sEH)M, (H) +[v (H)|F(H)
A seV (H,) ttyeE (H,)

+4M, (H,)F (H,) + 8|E(H,)|M, (H,) + 8M, (H,)M, (H,) + 8|E(H, )|F (H,),

Y= Yo @)+ d ()] + ) > [d® (s1t) + d’ (s,1)]
B teV (H,) s;5,¢V (Hy), teV (H,) s,V (H,),
$1,5,€V (Hl) 5,eV (Rk (H )7H)

+ ) D [d(SterZ(sz]ZlZzZ

teV(Hz) sl,szeV(Rk (Hl)—Hl)

X=X Y () +d@) +d(s)d®) + (d(s) +d(0) +d(s,)d (1)’]
B teV(H,) s;5,€E (R (Hy))sps
5,€V (Hy)

[4(d? (s,) + @ (s)) + 2d° (¢) + 4d” (1) (d* (s,) + d (s,)) ]
teV (H,) s;5,€E (Sg (Hy))s1s
szeV(Hl)

+4d () (d(s)) +d(sy)) +4d” () (s,) + d(s,)) + 8d (t)(d’ (s,) + d*(s,))]

4V (H,)|F (H,) +2|E(H,)|M, (H,) +4M, (H,)F (H,) + 8|E(H,)|M, (H,)
+4M, (H,)M, (H,) + 16|E(H2)|F(H1)

IEED) > [(@(s)) +d(®) +d(5)d () +(d(s,) + d(s,)d (O]

B, teV(HZ) slsZeE(Rk (Hl))sleV(Hl),
5,6V (R (H,)-H,)

[4d(s,)’ +d(s,)" +d(®)*(4 d(s,)* +d(s,)’)]
teV(Hz) slsZeE(Rk (Hl))sleV(H,),
5,€V (R (H,)-H,)
+8 d(D)(d(s,)’ +4d (Dd (s,) +4d” (1)(d (s,) +d* (1) +2d (5,)’d (1))]
= 4|V (H,)|F (H,) + 10|E (H,)|M, (H,) + 4M, (H,)F (H,) + 8|E (H,)|M, (H, )a
+4M, (H,)M, (H,) + 16|E(H,)|F (H,) + 8|V (H,)||E (H,)| + 32|E(H,)|E (H,)I,
Z [(d(51)+d(51)d(t)) +(d(s;) +d(s,)d (1)) ]

By teV(HZ) s‘sst(Rk (H]))sl,
5,6V (R (H,)-H,)

[(d(s)* +d(s,)°) +d (@ (d(s,)* +d(s5)") + 2 d (&) (51) + d (s,))]
teV(Hz) s15,€E (Rk (Hl))sl,
5,6V (R (H,)-H,)

™M
Il
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= 8(k - 1)|(V (H,)|E(H,)| + 8(k - )M, (H,)|E(H,)| + 32(k - 1)|E(H,)|E (H,)!,

2= 2 2 [Feen)rdi(mn)]e ) Y [Eon)rdi ()]
C  t1t,eE(H,) 55,6V (H,) t,tyeE (H,) s,€V (H)),
5,eV (R (H,)-H,)

+ Z Z [d (siot)) +d* (55, tz)]—Z+Z+Z.

tt,eE (Hz) sl,szeV(Rk (Hl)—H ) o G G

Z = Z Z [(d(51)+d(t1)+d(51)d(t1))2+(d(52)+d(t2)+d(52)d(t2))2]

G tltzeV(Hz) slsst(Rk (Hl))sl,

sZeV(H])
= ) Y [ds) vd(s) +d () +d () +d () d(s) +d (6)d(s)" + 2 d()d(s)]
tt,eV (Hz) 515,€E (Rk (Hl))sl,
SZSV(HI)

+2d(t,)d (sy) +2d° (t,)d (s,) +2d° (,)d (s,) + 2d (,)d” (s,) + 2d° (t,)d (s,)
= 8|E(H,)|F (H,) +2|E(H,)|F (H,) + 4F (H,)F (H,) + 4M, (H,)M, (H,)
+4M, (H,)F (H,) + 8M, (H,)F (H,),
Z = Z Z [(d(sl) +d(t)) +d(s)d (fl))2 +(d(sy) +d(s,)d (tz))z] ©)

G 4,eV (H,) sy5,€E (R (H,))sy€V (H,),
s,eV (R, (H,)-H,)

[d (51)° +d(sy)" +d° (t,) +d(t,)°d (s))* +2 d(t,)d (s;) + 2 d(tl)d(sl)z]
teV (H,) s,5,¢E (R (H,))s,¢V (H,),
5,6V (R, (H,)-H;)

+2d* (t)d(s;) + d(tz)zd (32)2 +2d(ty)d (32)2]

8|E(Hz)lF(G1) + 16|E(H1)"E(H2)| +4F (G))F(G,) + 4M, (H,)M, (H,) + 8F (G,)M, (H,)
+ 2|E(H1)|F(G2) +4M, (H,)F(G,) + 8|E(H1)|F(G2) + 16|E(H1)|M1 (H,),

Z = Z Z [(d (s1) +d(s1)d (tl))z +(d(sy) +d(s,)d (tz))z]

G tltzeE(Hz) slszeE(Rk (Hl))sl,
5,6V (R, (H,)-H,)

= ) D [2+2d(t))" +(2+2d(t))]
tltzeE(Hz) slszeE(Rk (Hl))sl,
5,6V (R, (H,)-H,)

= 16(k — 1)|E (H,)||E (H,)| + 8(k — 1)F (H,)|E (H,)| + 16(k — 1)|E (H, )| M, (H,).

We arrive at our desired result. O  Theorem 3. Let H, and H, be two connected graphs, then

F(Hlele2> =2(k-1)[F(H,) +2M, (H,)] [3n(H,) + 5M, (H,) + 14|E (H,)| + F (H,)| + k[|V (H,)|
+6|E(H2)| +3M, (H,) +F(H2)] [My(H,) - 2F (H,) +2M, (H;) - 4M, (H,)

Z d’ (w) Z d()] + 6lE(H2)|M1 (H;) + 10|E(H2)|F(H2) +3F(H,)F(H,) (10)
ueV (H,) veN (u)

+6M, (H,)M, (H,) + F(Hz)“V(Hl)l +3M, (H,) + 6|E(H,) + 4M, (Hl)]
+ F(Hl)[lV(Hz)l +7M, (Hz)] + 6|E(H2)|M2 (H;) +8M, (HI)HE(H2)| +M, (Hz)]-

Proof. Letd(s,t) = dH ®H, (s,t) is the degree of the vertex
(s,t) in H, IZIH2 ther*
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F<H1Q xH2> - Y A= Y [d(s0,t,)* +d (5,15)°]
k
(s,t)eV(Hle xH2> (sot1) (52,t2)6E<H1Qk |ZH2>

= Z Z [d(s,t1)2+d(s,t2)2]+ Z Z [d(sl,t)2+d(sz,t)2]

seV (H,) t,t,eE (H,) teV (H,) s;5,¢E (Q (H,))

T Y [d(sl,t1)2+d(52atz)2]:;+;+;'

tltzeE(Hz) s;5,€E (Qk (H1))

Y= 2 X [dlsn) +d(st)’] = 2lE(H)|M, (H,) +|V (H)|F (H,)

A seV(H,)t,t,eE (H,)
+ M, (H,)F(H,) + 4|E(H1)|M1 (H,) +2M, (H,)M, (H,) + 4|E(H1)|F(H2)~

Z - Z Z [d2 (s.0) +d* (pay t)] = Z Z [dz (sp,t) +d’ (55 t)]
B teV (H,) s;5,€E (Q (H,)) teV (H,) i€V (H,),
5€V (Qk (Hl)*H1)

DD R U G R R O ED R

teV (H,) s1,5,¢V (Q (H,)-H,) B B

2= 2 > [(d(s) +d(e) +d(s,)d(0)) + (d(s;) + d (,)d (1))’]
B, teV (Hz) s;5,€E (Qk (Hl))sleV (Hl),s
2€V (Qk (Hl)*Hl)

= D [d(s)* +d(s)? +d®*(d(s,)’ +d(sy)*) +2 d(D)d (s,)* +2 d(t)d* (s,)°]
teV (H,) s,5,¢E (Qq (H,))s,6V (H,),
5,6V (Q (H,)-H,)

+2d()d’ (s,)" +2 d()d (s,) +d (1)]-
(11)

D, = Z d (52)-
Consider s;eV (H,) and d? (s,) occurs d (s, ) times. Thus, 5B (Q(H)) (13)

D1 _ Z d3 (Sl) — F(Hl) s1eV (H,).5,eV (Q(H,))-V (H,)

5152 (Q(Hy)), as s, = uveE (H,) and d?(s,) occurs two times. Therefore
sieV (H,)s,eV (Q (H,))-V (H,) 2 (H,) (s) ’

Let

D,=2 Y [dw+dW*=2 Y [dw+d (v)+2dwdv)|=2[F(H,)+2M,(H,)]
szzuveV(Q(Hl))—V(Hl) uveE (H1)

= IV(H2)|F(H1) + 2|E(H1)|M1 (H,) + M, (H,)F (H,) + 4|E(H2)|[M1 (H,) +F(H,)] +2M, (H,)M, (H,)
+2|V(H2)|[F(H1) +2M, (H;)] + 2M, (H,)[F (H,) + 2M, (H,)] + 8|E(H2)|[F(H1) +2M, (H;)].
Z = Z Z [(d(51) + d(sl)d(t))2 +(d(sy) + d(sz)d(t))2]~

By teV (H,) s;5,€E (Q (Hy))s156V (Q (Hy)-H,)

(14)

Now, we split sum in two parts, s; and s,, where s;s,6 ~ same edges of H, and ) B,, of Q,(H,) in two different
V(Qx(H,)) -V (H;). Suppose that }p =3 B, +} By,  adjacent edges of H;.
where ) B,; covers the edges of Q; (H,;) which are in the
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Y= % ) (Z( ))[{d(sl) +d(s)d @} +{d(s,) +d(s,)d (B)}]
By teV (H,) s;,5,€E (Q(H,
[ (s)) + @ (s5)] + d* () [ (s,) + d* (55) ] + 2d () [ (5,) + d* (s5,) ]
teV (H,) s,,5,¢E (Q(H,))
z 2 (k- 1)[[F(H1) +2M, (H,)] +d2(l‘)[F(H1) +2M, (H,)] +2d (t)[F (H,) +2M2(H1)]
teV (H,)
2(k = D[F(H,) + 2M, (H)] [V ()| + My () + 4[E(H)| ), (15)
D [d(s))" +d(s)* +d(®*(d(s))’ +d(s,)*) +2 d(®)(d(s,)* +d (5,)°)]

By tev (Hz) 515,€E (Qk (Hl))sl,
5,6V (Q (H,)-H,)

D, = Z [dz (s1) + 42 (52)].
slszeE(Q (Hl))sl,
5,¢V (Q(H,))-V (H,)

g
I

In D, the coefficient of For the coefficient of dudv, let s;s,eE(Q(H,)) with s; =
) uvands, = wz. As s,5,eE(Q(H,)), we have either v=w or z
a2 (n) = 2( > + Z dv) —d(u) or u=w or z. So, uv is adjacent to all those vertices in H,
d(H,) (u) veN (u) (16) which are adjacent to u and v. So, the number of such dudv is
=d*(w)-2du)+ z d(v). (du + dv - 2). Therefore,
veN ) 2 Y dudv=2 ) (du+dv-2)dudv
Therefore, uveE (H,) uveE (Hy)

Y )= M(H)2EH)+ Y dw) =2 ) (du+dvdudv-4 ) dudv  (18)

eV (Hl) eV (Hl) uveE (Hl) uveE (Hl)

. Z dv). :2M;(H1)_4M2(H1)-
veN (u) SO,

(17)

Dy=M,(H,)-2F(H,)+ Y & @) ) d@) +2M,(H,)-4M,(H,)

ueV (H,) veN (u)
z = (k)“V(Hz)l + 4'E(H2)| +M, (Hz)] [M4 (H,)-2F(H,) + 2M; (H,) - 4M,(H,)
BZZ
+ Yy & )Y dw),
ueV (H,) veN (u)
Z = z Z [d2(51>t1)+d2(52>t2)] = z Z [d2(51>t1)+d2(52»t2)]
C  tt,eE(H,) s;5,€E (Q (H})) t,t,eE (H,) €V (H,),

5,6V (Qe (H,)-H,)
+ Z Z [dz(sl’t1)+d2(52’t2)] :Z+Z'

tltzeE(Hz)sl,szeV (Qk (Hl)—Hl) G G

Y- ¥ Y [(d(s)) +d(t) +d(s)d () +(d(s) +d(5,)d (1)) (19)
G tt,eV (Hz) sy5,€E (Qk (Hl))sleV (Hl),
5,6V (Q (H,)-H,)

= Z Z [d(51)2+d(t1)2d(31)2+2 d(t)d (sy) +2d (t,)d (s) +2 d(tl)d(sl)2]
teV (Hz) 515,€E (Qk (Hl))s,eV (Hl),
5,6V (Q (H,)-H,)

+d (t)) + d(sz)z + d(tz)zd(52)2 +2 d(tz)d(sz)z]
= 6[|E(H2)| +M, (HZ)]F(HI) +3F(H,)F(H,) +2M, (H)M, (H,) + 2[|E(H1)| +M,; (H,)
+2M, (H))]F (H,) + 8M, (Hl)[lE(H2)| +M, (Hz)]-|
Y= > Y [(d(s)) +d(s)d (1)) +(d(sy) + () (,))°]

G tltzeE(Hz) 5152€E(Qk (Hl))sl’
5,6V (Qk (Hl)—Hl)
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TaBLE 1: F-index of F,-sum path graphs.

11

[n,,m,] F(P, ®P,) F(P, ®P,) F(P, ®P,) F(P, ®P,)
(3,3) 1808 6414 3442 8048

(4, 4) 4836 18120 8826 22,110
(5,5) 9320 35,746 16,692 43,118

(6, 6) 15,260 59,292 27,040 71,072
(7,7) 22,656 88,758 39,870 105,972

TaBLE 2: F-index of F,-sum path graphs.

[, 1,] F(P, ®P,) F(P, ®@P,) F(P,, ®@P,) F(P,, ®@P,)
(3, 3) 2496 7102 5764 10,370
(4, 4) 6516 19,800 14,496 27,780
(5,5) 12,424 38,850 27,168 53,594
(6, 6) 20,220 64,252 43,780 87,812
(7,7) 29,904 96,006 64,332 130,434

Now, we split this sum into two parts for the vertices, ¢,

and t,,

5156V (Qi (G) -
(Tex translation failed), where (Tex translation failed) cover

the edges of Q, (H,) which are in the same edges of H, and
Assume that (Tex translation failed) of Q; (H,) in two different adjacent
edges of H,.

[(@(s1) +d(s1)d (1)) + (d(s,) +d(5,)d (1))’

2= X 2
Cu  t)t,eE(H,) s,5,¢E(Q (H)))s;
5,6V (Q (H,)-H,)

= Z Z [clz(s1 )+ d>(s,) +d (s))d” (t;) + d° (s,)d’ (t,) +2[al2 )d (t,) +d* (s,)d tz)”
tltzeE(HZ) slszeE(Qk (Hl))s1
5,eV (Q (H,)-H,)

=2(k-1D[F(H,) +2M,(H,)] [2|E(Hz)| +F(H,) +2M, (Hz)]’ (20)
>= 2 > [(d(s1) +d(s1)d (1)) + (d(s2) + d (2)d (£2))°]
Cn  tt,eE(H,) s,5,6E(Q (H,))s)»

5,6V (Q (H,)-H,)
= (R[2|E(H,)| + F(H,) + 2M, (H,) | ([M, (H,) - 2F (H,) + 2M, (H,) - 4M, (H)

+ Yy dw Z d()l.

ueV’ (H ) veN (u

We arrive at our desired result. O  Theorem 4. Let H, and H, be two connected graphs, then

F(HlTkgHz) =2(k-1)[F(H,) +2M,(H,)][n(H,) + 3M, (H,) + 6|E (H,)| + F (H,)] + k[|V (H,)|
+6|E (H,)| +3M, (H,) +F(H2)] [M,(H,)-2F(H;) +2M,(H,) - 4M, (H,)

+ ) dw Y dW)+[F(H,)+2M,(H,)|[2n(H,) + 6M, (H,) + 12|E(H,)| + 2F (H,)] (21
ueV(H) veN (u)

+4F (H,) [Zn(HZ) +6M, (H,) + 12|E(H,)| + 2F(H2)] + F(H,)[n(H,) + 12M, (H,)
+12|E(H,)|| + 12|E(H,)|M, (H,) + 16|E (H,)|M, (H,) + 20M, (H,)M, (H,).

Proof. It follows from Theorems 2 and 3. O
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FiGure 8: (a) F(P, ®P,) F(P, ®P,) F(P, ®P,) and F(P, ®P,)denoted by red, purple, green, and pink colours, respectively.
(b) F(P EP ) F(P IZP ) F(P EP ) and F(P IZP ) denoted by purple, green, pink, and red colours, respectively.

14 T T T T T T T

y-axis
y-axis

FIGURe 9: Compression between F-index of F,-sum and F,-sum graphs. (a) F (P ®P, ) and F (P ®P, ) are denoted by light green
dotted line and dark green solid line, and F(P ®P, ) and F(P xP, ) are denoted by sky blue dotted line and blue solid line,
respectively. (b) F(P XP, ) and F(P xP, ) are denoted by p1nk dotted line and red solid line, and F(P IZI p 2) and F(P, g, X P, Z)
by grey dotted line and black solid hne, respectlvely

4. Applications and Discussion (i) F(P, ®P,)=128k(n; —1)+216k(n, —1)(n, -
2) + 2744 (h, — 2) (n, — 2) + 1458n, + 1024n, — 4464

In this pa}p:er,Awe comglut[e(;l{the f)—lndezl( gthepgenerahzed (iii) F(P, wP,)=432k(n, - 1)+ 729k (n, — 1) (n, -

sum graphs. Assume that H, = P, and H, = P, are par- 2) 4512 N —2) + 250 (1. + 1) — 892

ticular alkane called as paths of orders n;, n, >3, and k> 1, ) 3= 2)(m, - 2) (m +m)

respectively. Then, the following outcomes are the direct (iv) F(P, ®P,)=432k(n —1)+72%(n, ~1)(n, -

consequences of the achieved results: 2) +2744 (ﬁ 2) (ny = 2) +1458n, +1024n, — 4464

(i)) F(P, ®P,) =128k (n, — 1) +250(n, +n,) + (1) Four subdivision operations (S, (G), R, (G),
512 (n, — 1295(;11 2 2) + 216k (1, — 1) (n, — 2) — 892 Q,(G), T,(G)) are restricted in case of newly
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addition of vertices upto k = 1, while four subdivision
operations (S, (G), R, (G), Q. (G), T, (G)) are not
restricted in case of newly addition of vertices as k
can be any natural number.

(2) For a certain graph G, newly constructed graphs
(8,(G),R,(G),Q,(G), T{(G)) will have specific
number of edges. While, in (S;(G),R.(G),
Qi (G), Tt (G)), the number of edges will be varying
according to k.

(3) Molecular  structure of (S (G), R (G), Qi (G),
T, (G)) is more general as compared to the (S, (G),
R, (G),Q, (G),T, (G)).

(4) Molecular structure of F;-sum is more complex and
general as compared to the molecular structure of
F,-sum.

(5) In this paper, main results F(H, ®RH,),
F(H, ®H,), F(H, ®H,), and F(H, ®H,)
based on strong product are generalization of
F(H, wH,), F(H, ®H,), F(H, ®H,), and
F(H, ®H,) based on strong product.

Now, we present its tabular form, Table 1 and Table 2 and
graphical representations in Figures 8 and 9 for k =1 and
k=2

In this paper, we computed the F-index of the sub-
division-related generalized F-sum graphs based on strong
product. However, the problem is still open for other to-
pological indices on the generalized F-sum graphs.
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Polyphenyl is used in a variety of applications including high-vacuum devices, optics, and electronics, and in high-temperature
and radiation-resistant fluids and greases, it has low volatility, ionizing radiation stability, and high thermal-oxidative properties.
The structure of polyphenyls can be represented using a molecular graph, where atoms represent vertices and bonds between atom
edges. In a chemical structure, an item/vertex v resolves two items v, and v, if d (v;, v) # d (v,, v); similarly, the ordered subset ¢ of
vertices resolves each pair of distinct vertices named as the resolving set, and its minimum cardinality is described as metric
dimension. In the pharmaceutical industry, the competition to find new chemical entities for treating a disease dictates larger
project teams that encompass more extensive and diverse synthetic efforts directed at increasingly complicated activity spectra. In
this paper, we determine the metric dimension of para-, meta-, and ortho-polyphenyl structures, which are used for structure-

activity analysis of these polyphenyl structures.

1. Introduction

Chemists require the mathematical representation of a
chemical compound to work with the chemical structure. In
a chemical structure, a set of selected atoms gave mathe-
matical representations so that it gave distinct representa-
tions to distinct atoms of the structure. The chemical
structure can be defined in the form of vertices, which
mentions the atom and edges indicate the bonds types,
respectively. Thus, a graph-theoretic analysis of this idea
yields the representations of all vertices in a structure in such
a way that different vertices have distinct representations
with respect to some specific atoms of that structure. The

following are some mathematical definitions to indicate
these concepts.

In 1975, the concept of locating set was proposed by
Slater [1] and called the minimum cardinality of a locating
set of a graph locating number. On the same pattern, in
1976, the idea of metric dimension of a graph was indi-
vidually introduced by Harary and Melter in [2], and these
time metric generators were named as resolving sets.
Members of metric basis set were assigned as a sonar or
loran station [1].

A connected, simple graph G (V, E) with V is the set of
vertices (also can say atoms), and E is the set of edges (bond
types); the distance between two vertices/bonds a,,a, € V is
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the length of geodesic between them and denoted by
d(ay,ay). Let ¢ ={¢,,¢,,...,¢;} be an order subset of
vertices belonging to a graph G and a be a vertex. The
representation r (al¢) of a corresponding to ¢ is the I-tuple
(d(a,¢,),d(a, ¢,),d(a,¢5),...,d(a, ¢;)), where ¢ is called a
resolving set [2] or locating set [1], if every vertex of G is
uniquely determined by its distances from the vertices of ¢
or, on the contrary, if different vertices of G have unique
representations with respect to ¢. The minimum cardinality
of the resolving set ¢ is called the metric dimension of G, and
it is denoted by dim(G) [1]. For a given ordered set of
vertices ¢ = {¢, ¢,, ..., ¢;} €V, the cthlocation of  (al¢) =
0 ifand only if a = ¢.. Thus, to verify that ¢ is a resolving set,
it is enough to show that r (a,|§) # r (a,|¢) for every possible
distinct pair of vertices a,,a, € V(G)\¢.

Metric dimension of a graph or a structure is a
resolvability parameter that has been applied in numerous
applications of graph theory, for the drug discovery in
pharmaceutical chemistry [3, 4], robot navigation [5],
combinatorial optimization concept studied in [6], vari-
ous coin weighing problems [7, 8], and utilization of the
idea in pattern recognition and processing of images, few
of which also associate with the use in hierarchical data
structures [1].

Due to numerous uses of resolvability parameters in the
chemical field, many works have been done with graph
perspectives, and metric dimension is also considered im-
portant to study different structures with it, such as the
structure of H-naphtalenic and VC;C, nanotubes discussed
with metric concept [9], some upper bounds of cellulose
network considering metric dimension as a point of dis-
cussion [10], resolving sets of silicate star determined in [11],
metric basis of 2 D lattice of alpha-boron nanotubes dis-
cussed with specific applications [12], and sharps bound on
the metric dimension of honeycomb and its related network
[13]; for more interesting literature work on metric di-
mension, metric basis, resolving set, and other resolvability
parameters, refer to [13-28].

2. Results of Polyphenyl Chemical Networks

In the results of this article, we discuss the metric dimension
of para-, meta-, and ortho-polyphenyl chemical networks
constructed by different polygons. Usually, the networks are
made up with the chain of hexagons using chemical oper-
ations ortho, para, and meta; in this work, we extend this to
any order of polygons. Moreover, using # = 6 with arbitrary
h in Theorems 1-5, we can produce the para-, meta-, and
ortho-polyphenyl chain of hexagons and retrieve its cor-
responding metric dimension as well.

2.1. Metric Dimension of O (,h). Let O(#, h) be a connected
graph of ortho-polyphenyl network of cycle graph C,, and h
are the copies of cycle graph with order A = #h and size
h(n + 1) — 1. For the following theorems, Figure 1 shows the
resolving set in dark black vertices.

Theorem 1. If >3 and h = 2, then dim(O(y,2)) is 2.
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FIGURE 1: O(#, h).

Proof. 'To prove that dim(O(#,2)) <2, for this assume, a

resolving set ¢ = {vl, V11~ We construct the following cases

on vertex set of O(#,2):

C—1; if(:1,2,3,...,g+1;
e .
n-C+1; 1f(—5+2,...,117
rl(v<|¢)=
(-n+2; if(zn+1,n+2,...,;1+g;
2n-(+2; if(=11+g+1,...,211.
(1)
Second vector representations are as follows:
{42 if(:1,2,3,...,%1,
. n-1
n={+2 if{="——+1..n,
ra(vl¢) =
(- if{:;7+1,11+2,...,;7+nT+2,
2n-C+1; if{:;7+1+%2,11+2+’77+2,...,2;1.
(2)

Hence, it follows from the above arguments in the form
of representation that dim(O(#,2))<2 because all the
vertices of O (#,2) have unique representations with respect
to resolving set ¢.

For reverse inequality that dim(O(#,2))>2, by con-
tradiction, our assertion becomes dim (O (#,2)) <2, imply-
ing that dim (O (#, 2)) = 1, and it is not possible because only
the path graph exists having the metric dimension 1. All
discussion concludes that when #>3 and h = 2,

dim (O (y,2)) = 2. (3)
O
Theorem 2. If y,h >3, then dim(O(#,h)) is h.

Proof. To show that dim (O (#, h)) = h, we will apply the
induction method on & the number of copies of base graph.
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The base case for h = 2 is proved in Theorem 1; now, assume
that the assertion is true for h = m:

dim (O (1, m)) = m. (4)
We will show that it is true for & = m + 1. Suppose
dim (O (y,m + 1)) = dim (O (1, m)) + dim (O (y,2)) — 1.
(5)
Using equations (3) and (4) in equation (5), we will get
dim(O(g,m+1)=m+2-1=m+ 1 (6)

Hence, the result is true for all positive integers
h=3. O

2.2. Metric Dimension of M (n,h). Let M (n,h) be a con-
nected graph of meta-polyphenyl network of cycle graph C,,
and h are the copies of cycle graph with order A = #h and size
h(n + 1) — 1. For the following theorems, Figure 2 shows the
resolving set in dark black vertices.

Theorem 3. If1 >4 (even) and h = 2, then dim (M (1, 2)) is 2.
Proof. To prove that dim (M (#,2)) <2, we construct a re-

solving set ¢ = {vl, V12| from the vertex set of M (17,2). We
assume the following cases on vertex set of M (#,2):

(V(|¢) <ﬂ&4_£>) (=1,3,5...,n—-1,

2 2
r(V(|¢):<%,%2—%), (=2,4,6,...,1,
r(vclsb):(%,(_?l), (=n+1,n+3,1+5 27 -1
r("("p):(g’(_z_Z) (=n+2,n+4,n+6,..., 27

(7)

Hence, it follows from the above discussion that
dim (M (#,2)) <2 because all the vertices of M (#,2) have
unique representations with respect to resolving set ¢.

For converse dim (M (#,2))>2, we use contradiction,
and dim (M (%, 2)) = 1 is not possible because only the path

o<

FIGURE 2: M (1, h

graph exists having the metric dimension 1. All discussion
concludes that when 7 >4 (even) and h = 2,

dim (M (7,2)) = 2. (8)
O

Theorem 4. If 1>4 (even) and h> 3, then dim (M (n, h)) is
h.

Proof. To show that dim (M (#, h)) = h, we will apply the
induction method on h showing the copies of base graph.
The base case for h = 2 is proved in Theorem 3; now, assume
that the assertion is true for h = m:

dim (M (, m)) = m. (9)
We will show that it is true for h = m + 1. Suppose

dim (M (y,m + 1)) = dim (M (1, m)) + dim (M (%, 2)) — 1.
(10)

Using equations (8) and (9) in equation (10), we have
dm(M(p,m+1)=m+2-1=m+1. (11)

Hence, the result is true for all positive integers
h>3. O

2.3. Metric Dimension of L(n, h). Let L(#, h) be a connected
graph of para-polyphenyl network of cycle graph C,, and h
are the copies of cycle graph with order A = yh and size
h(n +1) — 1. For the following theorems, vertices are la-
beled, as shown in Figure 3; moreover, it also shows the
resolving set in dark black vertices.

Theorem 5. If =5 and h>2, then dim(L(#y, h)) is 2.

Proof.  Firstly, we prove that dim(L(#, h)) <2; for this
construction, a resolving set ¢ = {vl, iy +1} from the vertex
set of L (7, h). We assume the following cases on vertex set of
G and on the copies of cycle graph, i.e., h:

(-1, if0=1,23..., 171
1 1
-{+1, if{:L+l,%+2,. N
rl(v<|¢) =l ¢ ¢ . (12)
324+(-1-1n2, if{El,2,3,...,’7—(m0d11),
{ n-
112+2—( if( = 0 +1 5 +2,...,n1—1(modp).
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Vlfq+4
VA—n+3
VA—n+2
Vi-2n+1
FIGURE 3: L(#, h).
If {=0,((n-1)/2)+1, (n-1)/2)+2,...,n—1(mod 3, if{=1;
n)and { > 27,
(+((n-1)/2)+1 ey n+2
7’1(V(|</>) [ rz(v(kp) - ¢ 1f(_2,3,...,T, (14)
(13)
-1)/2)+1
—(+2+3<(+((ﬂ+—2>. n-_+4, if(znTJrz+l,...,11.
Second vector representations are as follows: Case 2. h>3:
Case 1. h = 2:
3(’W_1>+(’ if(=l,
n
B { . n+2
ry(velg) =| 3 E—l +0, if{=2,3,..., o (15)
n—6+4+3<M—1>, =120y
n 2
Subcase 21. If (=nth-1)+1Lxh-1)+2,..., Subcase 2.5. If { = 1(mod #),and { =% + 1,
n(h-1)+ (n/2),
ry(velg) = ¢ =n(h-1) - 1. (16) ¢
rz(v(|¢) = 3(h——— 1>. (20)
Subcase 2.2. If (=nh-1)+ (n/2)+Lnh-1)+ n
(/2)+2,....nh, Hence, it follows from the above discussion that
rz(v(|(p) =nh-{+1. (17) dim (L (%, h)) <2 because all the vertices of L(#,h) have
unique representations with respect to resolving set ¢.
Subcase 2.3. If {=2,3,..., ((n+2)/2) (mod #), and For reverse inequality that dim(L(#,h))>2, by con-
(=n+1, tradiction, our assertion becomes dim (L (7, h)) <2, imply-
ing that dim (L (n, h)) = 1, and it is not possible because onl
(-1 ¢ 8 n p Y
rz(v(Igb) = 3(h - 2) +2+¢ —(2 + n—). the path graph exists having the metric dimension 1. All
n n discussion concluding that when #>5 and h>2,
(18) dim (L (n, h)) = 2. (21)
Subcase 24. If (=0,((n+2)/2)+1,...,n—-1 t
(mod#),and{>7n+1,
r(vilg) = 3<h -1 2) r4-Cq 17(‘* (7 + 2)/2)' 2.4. Metric Dimension of Lg(n,h). Let Lg(n,h) be a con-
i i nected graph of para-polyphenyl network of sun graph §,,
(19)  where h are the copies of sun graph and 7 is the order of

interior cycle of sun graph. The order and size of network are
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[V(Lg(n,h))| = A =2nh and |E(Lg(n,h))| =h(2n+1) -1,
respectively. The vertices are labeled, as shown in Figure 4.

Theorem 6. Ifn>5 (odd) and h > 2, then dim (Lg (1, h)) is 2.
Proof. To prove that dim (Lg (7, h)) <2, for this construct, a

resolving set ¢ = {V((n+3)/2)’vf}’ where & = ((7(4h-3) - 1)/
2) from the vertex set of Lg (1, h). We assume the following

Case 2. If {= ((n+1)/2), ((n+3)/2),...
(= ((57 + 1)/2),

ri(vel¢) =<%1+ 3;1+2<(3_71>,7_(+32i;1+2<2%> - 1),

(23)

, 7 (mod 27),

Case 3. If { = 1,2,..., (7 - 1)/2) (mod 27), { =25 + 1,

cases on vertex set of L¢(#n, h): -1 4h-3)-1 -5
o VKWM)=(1——+C+&£—U( o1, )
Case 1. 1<{<2n: 2 2n 2 2
24
A P A 2
Case 4. If {(=n+1,1+2,..., (34— 1/2)(mod 2y),
>3n+1,
4((¢/2 1)-3)-1
T1(V(|¢)=<(—}1( (¢ ’1);r )-3) +3%+2<%_1>>.
1
r(ww)=<ﬂ%_ ifC=p+1, (25)
Case 5. If (=0, ((3n+1)/2), (37 +3)/2),...,2n-1
3 5 3 3
N L S AT A e (mod 21), {> (75 + 1)/2),
3+l 3n+53n+7
¢ — 1f(—7,72 SN
(22)

where z = -2 when { = 0(mod2x) and {>4; otherwise,

z=0.

rl(v(|</>) = (’1_1+ 4—+

(-1
2 2y

The representations of all vertices with respect to the
second vertex of resolving set are as follows:

rz(v(l(/)) =9

2<(—1)—(+q(2(_12)—(_”_1+z>, (26)
21 21 31
Case 1. 1<(<3n+1:
if(=£+1,£+2,...,2£+2411_1,
if(=2£+’7+1,
2
ﬁ(=2£+"+{25+"+1+1pu,a
2 2
(27)
if(=£+17,£+r]+1,€+17+2,...,2£+3+_1,
2 1
if(':—jité;Lt—3

if{=3n+1.
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3545
v, iy Van+a

+1 v
1 S+l VA-3+41 Vil

FIGURE 4: Lg (1, h).

Case 2. If { =2,3,4,..., ((n + 3)/2) (mod 21),

ry(vl9) =(%1+3<h—2—€1— 1) +2<h—2—%> +(—(2+2’72—€7))~ (28)

Case 3. If { = ((n +5)/2), (1 + 7)/2), ...,y (mod 2y),

ra(ete) (2w a(h-1- (2= L) ca (), >

Case 4. If { = 1(mod 27),

ry(vel9) =<'7;1+ 3(h —2(’7— 1) +2<h -2 —2;> +(—<2;12€1)). (30)

Case 5. If {=n+2,1+3,..., (37 +3)/2) (mod 27),

_(n=3 ¢ o S (0 S
rz(v(l(p)—( 5 +3<h 2 1>+2<h 2 2’7)+( (2172’7 n+z) (31)
where z =-2 when {=7(mod2#) and, otherwise, Case 6. If (=0,((31+5)/2), (3 +7)2),...,2n—
z=0. 1 (mod2y),

ro(velo) =<5'72+ >, 3(h —;;7— 1) + 2<h ) —2;> - +<2;12€7>). (32)

Case 7. If { =+ 1(mod 27),
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¢

3
n+5 oSy
2n

2

(o) =(

o

Hence, it follows from the above discussion that
dim (Lg (%, h)) <2 because all the vertices of Lg(#,h) have
unique representations with respect to resolving set ¢. For
reverse inequality that dim (Lg (7, h)) > 2, by contradiction,
our assertion becomes dim (Lg (#, h)) <2, implying dim (Lg
(#,h)) = 1, and it is not possible because only the path graph
exists having the metric dimension 1. All discussion con-
cluding that when #>5 (odd) and h>2,

dim (Lg (1, h)) = 2. (34)

O

3. Conclusion

We found the metric dimension of some chemical networks
ortho-, meta-, and para-polyphenyl chains constructed with
base graph C, and sun graph S, and these networks have
metric dimension dim(O(#, h)) = dim (M (4, h)) = h and
dim (L (n, h)) = 2.
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Starch is a polymer of glucose where alpha-linkages are associated with glucopyranose units. It comprises a mixture of amylose
and amylopectin. Furthermore, amylose is a linear chain of hundreds of glucose molecules. Starches are not allowed to be
dissolved in water. They can be digested by breaking down alpha bonds (glycosidic bonds). Its cyclic degradation products, called
cyclodextrins, are the best role models for amylose. They can be considered simple turns of the amylose propeller that has
imploded into a circular path. Both humans and animals have amylases, which allow them to digest starches. The important
sources of starch include potatoes, rice, wheat, and maize for human consumption. The production of starches is how plants store
glucose. The blue colour of starch produced by an iodine solution or iodine reaction is used for its identification. Polysaccharides
with a reduced degree of polymerization, known as dextrins, are produced in the starch’s partial acid hydrolysis. Complete
hydrolysis leads to glucose. In this article, we compute the topological properties: Zagreb index M, (') and M, (I'), Randi¢ index
R, (T) for « = —(1/2), -1, (1/2), 1, atom-bond connectivity index ABC (), geometric-arithmetic index GA (T), fourth atom-bond
connectivity index ABC, (T), fifth geometric-arithmetic index GA;(T), and degree-based topological indices of a graph T
representing polysaccharides, namely, amylose and blue starch-iodine complex. In the end, we compare these indices and depict
their graphic behavior.

1. Introduction

Amylose has the most basic structure of all nutritional
polysaccharides, composed purely of glucose polymers
connected only by (1 —4) bonds. Notice that starch is, in
fact, a combination of amylose and amylopectin. Amylose is
not allowed to be dissolved in water and is more difficult to
digest compared to amylopectin. The complexing of amy-
lopectin with amylose facilitates its water—another view of
amylose solubility and digestibility. Amylose plays an im-
portant role in the storage of plant energy, and as plants do
not require glucose to explode, its dense structure and slow
breakdown features are under plant’s growth. Another
function of polysaccharides within cells refers to structural
support. Besides, hemicelluloses are another group of
polysaccharides located in plant cell walls.

In 1814, Colin and Claubry discovered the starch-iodine
reaction, which is well renowned to any chemist from basic
courses in qualitative and quantitative analysis.

The first topological index was derived in 1947 when
Wiener worked on the boiling point of paraffin alkanes. It
was known as the Wiener number. Later on, it is called a
path number. The work [1] described the M-polynomial and
degree-based topological indices of graphs. The authors in
[2, 3] discussed the symmetric divisor deg index of graphs,
first Zagreb after 30 years in changed form and topological
indices of molecular structure. The authors in [4] also
discussed the 7 electron energy of hydrocarbons. In recent
years, Hasni et al. computed the degree-based topological
indices of the line graph of benzene ring embedded in P-type
surface in the 2D network [5]. In [6], the authors calculated
the index numbers for the edge version of the geometric-
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arithmetic index of nanocones. Much research has been
done to explain the nature of chromophore absorption at
620nm that yields starch-iodine complex, the distinctive
dark blue colour. Still, there seem to have been many dis-
putes that might be addressed to some extent in recent
decades.

Let I' be connected simple graph with V(I') a set of
vertices and E (T') a set of edges. Let u € V (T') and its degree
is represented by R,,. The idea of degree-based topological
indices began from Wiener index; in 1945, Wiener defined
them while studying alkane’s boiling point cf. [7]. The first
degree-based topological index is Randi¢ index given by
Milan Randi¢ in [8] and is described as

1
R,y = -
e uVEZE:(F) \’ﬁ;ﬁi‘, (1)

Generalized Randi¢ index (denoted as R, (I)) is de-
scribed as follows:

R“ (r) = Z <iﬁ;iﬁ;)a> @ = 1,%, —%,—1. (2)

uveE(T)

Inverse generalized Randi¢ index (denoted as RR,, (T')) is
described as

1
w;E:(r) ( /g,rugfv ), (3)

In [4, 9, 10], Gutman and Trinajsti¢ introduced and
defined the first Zagreb index (denoted as M, (I)) and
second Zagreb index (denoted as M, (I)) as

M D= ) (R +R)MD= Y (RR) (4

uveE (T) uveE(T)

RRa (r) =

In [11], Estrada introduced and studied about the atom-
bond connectivity index (denoted as ABC(T)). It is defined
as follows:

ABC(T) = Z (5)

uveE(T)

Geometric-arithmetic index (denoted as GA(T)) was
given by Vukicevic cf. [12] and is defined as follows:

GA(M)= ) o PR (6)

R, +R,

uveE (T)

The fourth version of the ABC index (denoted as
ABC, (T')) was introduced by Ghorbani in [13] and is defined

as
S, +S, -2
ABC,(N = Y (s 7)
S,S
uveE (T) u-v

where S, = ZV:NF(M){RT, and Ny (u) = {v e V(D)|uv € E(I)}.
The fifth version of the GA index (denoted as GA; (T))
was given by Graovac cf. [14] and is defined as
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2+/5.3,

uveE(T) S” + SV

GA;(I) = (8)

2. Result for Amylose

Starch is a polymer of glucose whose glucopyranose alpha
bonds bind cells. It is a mixture of amylose and amylopectin.
Amylose is a linear chain of hundreds of glucose molecules.
Starches cannot be dissolved in water. They can be digested
by breaking the alpha bonds (glycosidic bonds). Amylose is a
polysaccharide composed of a-D-glucose units, linked by
a(1 —4) glycosidic bonds. It is one of the two starch
components that make up about 20 to 30 percent. Due to its
tight spiral structure, amylose seems to be more resilient to
digestion than other starch molecules and is, thus, a sig-
nificant form of resistant starch [15] (see Figure 1 for a
molecular structure of amylose and Figure 2 for its unit
graph and the graph model corresponding to amylose for
n=4, where n is the number of units). In amylose, there are
three types of vertices having degrees 1, 2, and 3. For n>2,
amylose has four types of edge partitions as

E,,(I) ={R, =1L,R, =2andu,ve V(D)},
E;(D) ={R, =1L, R, =3andu,v e V(I)}, o
E,; (D) ={R, =2,R, =3andu,v e V(I)},
Ey; (D) ={R, =3,R, =3andu,v e V(D)}.

Theorem 1. For all n>2, let I be the graph of amylose, then
we have the following:

R (I) = 74n -6,
Ry (D) = 29.1258n — 1.4349,
Ry (1) = 5.2363n + 0.3382,
R_; (T) = 2.4444n + 0.3334.

(10)

Proof. The general Randi¢ connectivity index R, (T') for a = 1
is

R(= ) RAR, (11)

uveE (T)

From Table 1 and equation (2), we get
R(T)=n(1x2)+(2n+2)(1x3)+(5n—-2)(2x3)
+4n(3x3) =74n-6.
(12)

Now, for a = (1/2), the general Randi¢ connectivity

index R, (T) is
R(1/2)(F) = Z \/5";% (13)

uveE(T)

Again, from Table 1 and equation (2), we have
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FIGURE 1: Molecular structure of amylose.

(a) (b)

FIGURE 2: (a) Graph of amylose for n=1 and (b) graph of amylose
for n=4.

TasLE 1: Edge partition of edges based on the degree of vertices.

Types of edges Eq 5 Ey 5 Eps E 5
Edges 1,2) 1, 3) (2, 3) (3, 3)
Frequency n 2n+2 5n—2 4n

Ry (T) =ny (1 x2) +(2n+2)y/(1x3)
+(5n—-2)V (2 x3) +4n\/ (3 x 3) (14)
=29.1258n — 1.4349.

If « = —(1/2), then
1

Ry = ) ——= 15
uveE(T) w?{,ﬂiv. ( )

From Table 1 and equation (2), it follows that

R (I) = n . (2n+2) . (5n-2) . 4n
WDEIT [ x2) J(Ax3) J2x3) J(Bx23)
= 5.2363n + 0.3382.
(16)
Now, for a = —1, we have
1

R_, (D)= —— 17
uv;(l’) ?{umv' ( )

3
From Table 1 and equation (2), we get
n 2n+2) (5n-2) 4in
R_1 (r) =
(Ix2) (1x3) (2x3) (3x3) (18)
= 2.4444n + 0.3334.
O

Theorem 2. Foralln>2, let I' be the graph of amylose, then,
we have the following:

M, (T) = 60n -2,
M, (T) = 74n - 6,

ABC(T) = 8.5423n + 0.2188,
GA(T) = 11.5738n — 0.2276.

(19)

Proof. By using Table 1 and equation (4), we get
M, (T) = Z (ﬁ;‘*ﬁ;)

uveE (T)
n(1+2)+Q2n+2)(1+3)+(5n-2)(2+3)
+4n(3 +3)
60n — 2,
> RR,
uveE (T)
=n(1x2)+2n+2)(1x3)+(5n—-2)(2x3)
+4n(3 x 3)
=74n - 6.
M,D)= Y RR,
uveE (T)
=n(1x2)+(2n+2)(1x3)+(5n-2)(2x3)
+4n(3 x 3)
=74n - 6.

M, (T)

(20)
By using Table 1 and equation (5), we get

ABC(T) = Z

uveE(T)

. fv2-2 (2n42) 1+3-2
T\ Tk VT 1x3 (21)

2+3-2 \]3+3—2
3x3

= 8.5423n + 0.2188.

By using Table 1 and equation (6), we get
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In Table 2, we give the edge partition centered on degree
sum of end vertices for each edge. O

Theorem 3. Foralln>2, let I' be the graph of amylose, then

B n\/1><2+(n+2)\/1><3 we have
(1+2) (1+3) (22)
ABC,(T) = 6.4972n + 0.2874, (23)
V2x3 V3x3 GA, (T) = 11.7142n - 0.123.
+(5n-2) +4n
(2+3) (3+3)
= 11.5738n - 0.2276. Proof. By using Table 2 and equation (7), we get
S, +S, -
ABC,(D) = )
uveE (T) S S
B \/2+4—2 B+6-2 fQne 1) 3 7_2+ \/4+7 2 [6+6-2
"M Toxa T\ 3xe TN T "\ oxe (24)
7+8-2
F G-y 2 —1)\/ +(2n +1)\/ 2 (2n-2) ;
= 6.4972n + 0.2874.
By using Table 2 and equation (8), we get
24/S,S
GA;(I) = )
uveE (T) Su + SV
\/2>< \/3><6 V3 x7 Vix7 +J6x6 V6 x7
=2 +(2n+1) +n +(3n-1)
(2+4) (3+6) (3+7) 4+7) (6+6) (6+7) (25)
V6 x 8 V7 X7 V7 X8
-1 2 1 2n—2
=D gy t @ Doy =D
=11.7142n - 0.123. O

3. Numerical and Graphical Representation

The numeric representation of the results calculated above is
illustrated in Tables 3 and 4 , while the graphic represen-
tation is devoted to Figures 3 and 4 .

4. Results for Blue Starch-Iodine Complex

The main structure of amylose are cyclic degradants
known as cyclodextrins. They are obtained enzymatically
and may be considered as single turns of the helix of
amylose imploding into a circular path. In all of these
complexes, cyclodextrin molecules are positioned in

front to form dimers and they are piled together to
generate large cylinders that resemble the amylose helix
in its global structure. The most interesting one is (tri-
mesic acid H,0),,HI; with linear polyiodide chain. This
structural model was accepted, but, unfortunately,
cannot shed light on the actual configuration of the
polyiodide chain (see Figure 5 for the molecular struc-
ture of blue starch-iodine and Figure 6 for its unit graph
and the graph model corresponding to blue starch-iodine
for n=6, where n is the number of units). In starch-
iodine, there are three types of vertices having degrees 1,
2, and 3. For n>3, blue starch-iodine complex has five
types of edge partitions as
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TaBLE 2: Edge partition based on the degree sum of end vertices of each edge.

Types of edges Epy Egg Eg Eyz Ee Eez Eg g Eg Eg g
Number of edges (2, 4) (3, 6) 3,7) 4, 7) (6, 6) 6, 7) (6, 8) (7, 7) (7, 8)
Frequency n 1 2n+1 n 1 3n-1 n-1 2n+1 2n—2

TasLE 3: Numerical comparison of M, (I), M, (T), ABC(T), GA(T), R, (I'), R_; (), Ry (), and R_(y,, (I).

n M, (T) M, () ABC(T) GA(T) Ry (D) R, (D) Ry (T) R_ (15 (D)
1 58 68 8.7611 11.3462 68 2.7778 27.6909 5.5746
2 118 142 17.3034 22.92 142 5.2222 56.8166 10.8109
3 178 216 25.8457 34,4938 216 7.6667 85.9424 16.0474
4 238 290 34.388 46.0676 290 10.1111 115.0682 21.2837
5 298 364 42.9303 57.6414 364 12.5556 144.1939 26.5201
6 358 438 51.4726 69.2152 438 15 173.3197 31.7565
7 418 512 60.0149 80.789 512 17.4444 202.4455 36.9929
8 478 586 68.5572 92.3628 586 19.8889 231.5712 42.2293
9 538 660 77.0995 103.9366 660 22.3333 260.6969 47.4656
10 598 734 85.6418 115.5104 734 24.7778 289.8228 52.7020
TaBLE 4: Numerical comparison of ABC, (') and GA; (T).
n 1 2 3 4 5 6 7 8 9 10
ABC, (T) 6.785 13.282 19.779 26.276 32.773 39.271 45.768 52.265 58.762 65.259
GA; () 11.591 23.305 35.019 46.734 58.448 70.162 81.876 93.5906 105.305 117.019
800 800
700 700
= =
2 600 2 600
§-' 500 §< 500
8 g
S 400 S 400
< [+
2 300 2 300
(5} L
§ 200 § 200
100 100
0 0
n n
—— R_1(G) —o— R_1/2(G) —— M_1(G) —o— ABC (G)
—— R_-1(G) —o— R_-1/2(G) —— M_2(G) —o— GA (G)
(a) (b)
FiGure 3: (a) Comparison of R, for « = 1, -1, (1/2), —(1/2) and (b) comparison of M, (T), M, ('), ABC(T), and GA(T)
140
120
=}
o
-2 100
<
g
g 80
g 60
o)
g 40
z
20
0
1 2 3 4 5 6 7 8 9 10
n
—e— ABC_4(G)
—o— GA_5(G)

FIGURE 4: Comparison of ABC,(T) and GA; (T)
F1GURE 5: Molecular structure of blue starch-iodine.
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FIGURE 6: (a) Graph of blue starch-iodine for n =1 and (b) graph of
blue starch-iodine for n==6.

E,(I) ={R,=1,R, =2andu,v e V(D)},
E5(I) ={R, =1,R, =3andu,v e V(D)},
E,, (D) ={R, =2,R, =2andu,ve V(I)},  (26)
E,;(I) ={R, =2,R, =3andu,v e V(I)},
Ey, () ={R, =3,%, =3andu,v e V(I)}.

Theorem 4. For all n>3, let I' be the graph of blue starch-
iodine complex, we have the following R, (I'), &« € R:

R, (T) =391 —n+ 12,
Ry () = 16.429n" — 1.0354 + 2.8695,
Ry (D) = 3.02721" +.5585n — 0.6764,
R, () = 0.751" + 0.6944n — 0.6667.

Proof. For a=1, the general Randi¢ connectivity index is

R (T) = Z R.R,. (28)

uveE (T)

From Table 5 (for edge partition) and equation (2), we
get

n—1
R, (I) =2n(1 x2)+[z (n+2)—2:|(1 x 3)
i=1
n—1
+n(2><2)+[z (6n—2)+2](2x3)+4n(3x3)

i1
=39%" —n+12.
(29)
Now, for a = (1/2), we have

Ry (D) = Z \/ﬁ;ﬁ; (30)

uveE (T)
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By using Table 5 and equation (2), after simplification,
we have

n-1

Ry (D) =20/ (1 x2) + [Z (n+2)- z]m
i=1

n-1

+n/(2x2) +[Z (6n—2) +2]\/(2 x 3)
i=1
+4n\ (3 x 3)

= 16.429n" — 1.0354 + 2.8695.
(31)

For a = —(1/2), we have
1

Ryp@= ) .
(172) — — 32
uveE (T) \W{umv ( )
From Table 5 and equation (2), it follows that
m X (n+2)-2]

Ram D = 5" iy
n_ . (2 (6n—2) +2] L, dn
(2x2) V(2x3) V(Bx3)
= 3.0272n* + .5585n — 0.6764.
(33)
For a = -1, we have

1

R—l (T) = Z —_—— (34)

uveE(T) umv
Again by using Table 5 and equation (2), we get

2n [Z::ll (n+2)- 2] n
+ +

R’l(r):(lxz) (1x3) (2x2)

[Z:’;ll (6n-2) + 2] 4n (35)
+ +
(2x3) (3% 3)

= 0.751" + 0.6944n — 0.6667. 0

Theorem 5. For all n>3, let I' be the graph of blue starch-
iodine complex, then we have the following:

M, (T) = 34n> - 2n + 4,
M, (T) = 397> —n + 12,
5 (36)
ABC(T) = 5.05911° — 0.0523n — 0.4376,

GA (T) = 6.7448n* — 3.0868n + 0.4552.

Proof. By using Table 5 and equation (4), we get
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TaBLE 5: Edge partition based on the degree of vertices.

Types of edges E; gy E 5 Epy Eps Es
Number of edges 1,2) 1, 3) 2,2) (2, 3) (3, 3)
Frequency 2n Z:’;II n+2)-2 n Z:’:’f (6n—2)+2 4n
M. (T) = R +R. TaBLE 6: Edge partition based on the degree sum of end vertices of
(D) W;(r)( “ V) each edge.
n-l Types of edges No. of edges Frequency
=2n(1+2)+[z (n+2)—2](1+3)+n(2+2) Eoy 2.3) »
- Epy (2, 4) n
5 E, (3, 5)
=-2)+2|(2 4 {35} >
+ ; (6n—=2)+2{(2+3)+4n(3+3) Epy 3. 6) 5 11(1)
2 E (3,7) (n) -1
= 3417~ 2n+ 4, 2 oo X €
M,D= ) RAR, Egsy) (5.7) n
uveE(T) Eis) (6, 6) n;,.:f 1)-1
n-1 E.7y 6, 7) Y (Bn-2)+2
=2n(1x2)+| Y (n+2)-2{(1x3)+n(2x2) Es) (6, 8) m
[Zl Egs) (7, 7) X (@) -
Epg (7, 8) >l (an - 3) +3

n—1
+[Z (6n—2)+2](2x3)+4n(3x3)

i=1
=397 —n+ 12.

(37) By using Table 5 and equation (5), we get

ABC(I) = )

uveE (T)

o[22 1+3-2 \/2+2—2+”§(6 242 R+3-2
- : 1x3 \N2xz | 2x3 (38)

i=1

=5.05911% — 0.0523n — 0.4376.

By using Table 5 and equation (6), we get

GA(T) = R,

uveE(T) (m~ + ﬁ)

VIx3  \2x2 V2x3 V3x3 (39)
:2< [Z(n+2) ](1+3) "Gyt [Z(6n 2)+2](2 3 +4n (3+3)>

= 6.7448n" — 3.0868n + 0.4552. O
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TasLe 7: Numerical comparison of M, (I'), M, (T), ABC(T), GA(T), R, (), R_; ('), R(y5) (), and R_(y,) (I).

n M, (T) M, (T) ABC(T) GA(I) R, (D) R, (D) Ry (D) R_(1 (D)
1 36 50 4.5692 41132 50 1.361 18.2633 2.9093

2 136 166 19.6942 21.2608 166 6.0553 66.5148 12.5488
3 304 360 449374 51.898 360 13.4162 147.6243 28.2419
4 540 632 80.2988 96.0248 632 23.4437 261.5918 49.9887
5 844 982 125.7784 153.6412 982 36.1378 408.4173 77.7891
6 1216 1410 181.3762 224.7472 1410 51.4985 588.1007 111.6433
7 1656 1916 247.0922 309.3428 1916 69.5258 800.6421 151.5512
8 2164 2500 322.9264 407.428 2500 90.2197 1046.0415 197.5126
9 2740 3162 408.8788 519.0028 3162 113.5802 1324.2989 249.5278
10 3384 3902 504.9494 644.0672 3902 139.6073 1635.4143 307.5967

TaBLE 8: Numerical comparison of ABC, (') and GA; (T).

n 1 2 3 4 5 6 7 8 9 10
ABC, (T) 3.35 14.82 34.45 62.24 98.19 142.30 194.57 255 323.59 400.34
GA; () 5.94 26.49 62.86 115.02 182.97 266.72 366.27 481.62 612.76 759.70

Theorem 6. For all n>3, let I' be the graph of blue starch-

iodine complex, we have

ABC, (T) = 4.0798n" — 0.7682n + 0.04, ()
40
GA, (T) = 7.8987n" — 3.1339n + 1.1727.

ABC, (T)

Z S, +S, -
uveE (T SS
2+3-2 [2+4—2 I3+5—2 3+6-2 5 3+7-2
n +n +n +(n-2) 7+<n —n—l) —_—
2x3 "\ T2axa "™\ 3xs 3x6 3x7

4+8-2 5+7-2 6+6—-2 5 6+7-2
n +n +(n-2) 7+(3n —5n+4) —_—

4x8 5x7 6%x6 6x7

6+8-2 7+7-2 5 7+8-2
+n\———+ (2n-—4) —+(4n —7n+6) —_—

6x8 7%x7 7%x8

= 4.0798n* — 0.7682n + 0.04.

By using Table 6 and equation (8), we get

Proof. By using Table 6 and equation (7), we get

2+/S,S,
GA: () = VT
s= 2 (5,v5)
) V2x3 V2 x4 V3 x5 (_2)\/3><6 2 V3x7 V4 x8 V5x7
A\ 23 v TG (3+6)+(" " )(3+7)+"(4+8)+”(5+7)
V6 X6 2 V6 X7 V6 x 8 V7 x7 2 V7 x 8
+(n - 2)(6 & +(3n —5n+4)(6+7)+n(6+8) +(2n —4)(7 7 +(4n —7n+6)(7+8))

=7.8987n* — 3.1339n + 1.1727.

(42)
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5. Numerical and Graphical Representation

Here, we give numeric and graphic representation for the
results calculated in the above section (see Tables 7 and 8 ).

6. Conclusion

Amylose has a significant function in the storage of plant
energy. It is not easy to digest compared to amylopectin;
however, it occupies less space than amylopectin due to its
spiral structure. Consequently, for storage in plants, it is the
preferred starch. A mixture of iodine and potassium iodide
in water is light orange-brown. When added to a sample
containing starch, such as the bread pictured above, the
colour will change to a deep blue (see the comparison of
different indices in Figures 7 and 8 ). In this study, we have
calculated degree-dependent topological indices of amylose
and blue starch-iodine. We observed that R_,,, is closely
related to geometric-arithmetic, R_; is closely related to
atom-bond  connectivity and modified atom-bond

connectivity, the second Zagreb is the first Randic index,
while R/, is approximately equal to the modified geo-
metric-arithmetic of amylose. Similarly, other observations
can take place from the graphical representations given in
this paper.

Data Availability

All kinds of data and materials, used to compute the results,
are provided in Section 1.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This project was sponsored by the Deanship of Scientific
Research under Nasher Proposal no. 206152, King Faisal
University.



10

References

(1]

(2]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

E. Deutsch and S. Klavzar, “M-polynomial and degree-based
topological indices,” Iranian Journal of Mathematical
Chemistry, vol. 6, no. 2, pp. 93-102, 2015.

C. Gupta, V. Lokesha, S. Shwetha, and P. Ranjini, “On the
symmetric division deg index of graph,” Southeast Asian
Bulletin of Mathematics, vol. 40, no. 1, pp. 41-51, 2016.

I. Gutman and O. Polansky, Topological Indices, Mathematical
Concepts In Organic Chemistry, Springer, Berlin, Germany,
1986.

I. Gutman and N. Trinajsti¢, “Graph theory and molecular
orbitals. Total ¢-electron energy of alternant hydrocarbons,”
Chemical Physics Letters, vol. 17, no. 4, pp. 535-538, 1972.
A. Ahmad, K. Elahi, R. Hasni, and M. F. Nadeem, “Computing
the degree based topological indices of line graph of benzene
ring embedded in P-type-surface in 2D network,” Journal of
Information and Optimization Sciences, vol. 40, no. 7,
pp. 1511-1528, 2019.

M. F. Nadeem, S. Zafar, and Z. Zahid, “On the edge version of
geomeetric-arithmetic index of nanocones,” Studia Uni-
versitatis Babes-Bolyai series Chemia, vol. 61, no. 1, pp. 273—
282, 2016.

H. Wiener, “Structural determination of paraffin boiling
points,” Journal of the American Chemical Society, vol. 69,
no. 1, pp. 17-20, 1947.

M. Randic, “Characterization of molecular branching,”
Journal of the American Chemical Society, vol. 97, no. 23,
pp. 6609-6615, 1975.

I. Gutman and K. Das, “The first zagreb index 30 years after,”
MATCH Communications in Mathematical and in Computer
Chemistry, vol. 50, no. 1, pp. 83-92, 2004.

N. Trinajsti¢, S. Nikoli¢, A. Mili¢evi¢, and 1. Gutman, “About
the zagreb indices,” Kemija U Industriji: Casopis Kemitara I
Kemijskih Inzenjera Hrvatske, vol. 59, no. 12, pp. 577-589,
2010.

E. Estrada, L. Torres, L. Rodriguez, and I. Gutman, “An atom-
bond connectivity index: modelling the enthalpy of formation
of alkanes,” Indian Journal of Chemistry, vol. 37A, pp. 849-
855, 1998.

D. Vucki ¢ evi ¢ and B. Furtula, “Topological index based on
the ratios of geometrical and arithmetical means of end-vertex
degree of edges,” Journal of Mathematical Chemistry, vol. 46,
pp. 1369-1376, 2009.

M. Ghorbani and M. Hosseinzadeh, “Computing ABC, index
of nanostar dendrimers,” Optoelectronics and Advanced
Materials, Rapid Communications, vol. 4, pp. 1419-1422, 2010.
A. Graovac, M. Ghorbani, and M. Hosseinzadeh, “Computing
fifth geometric-arithmetic index for nanostar dendrimers,”
Journal of Mathematical Nanoscience, vol. 1, pp. 33-42, 2011.
M. M. Green, G. Blankenhorn, and H. Hart, “Which starch
fraction is water-soluble, Amylose or Amylopectin?” Journal
of Chemical Education, vol. 52, no. 11, p. 729, 1975.

Journal of Chemistry



Hindawi

Journal of Chemistry

Volume 2021, Article ID 5563218, 6 pages
https://doi.org/10.1155/2021/5563218

Research Article

Hindawi

Degree-Based Topological Indices of Boron B,

Nouman Saeed ©,' Kai Long ,! Zeeshan Saleem Mufti®,> Hafsa Sajid,2
and Abdul Rehman 02

IState Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources,
North China Electric Power University, Beijing 102206, China
’The University of Lahore, Lahore Campus, Lahore, Pakistan

Correspondence should be addressed to Kai Long; longkail978@163.com
Received 11 February 2021; Revised 1 March 2021; Accepted 22 March 2021; Published 29 March 2021
Academic Editor: Kashif Ali

Copyright © 2021 Nouman Saeed et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Topological index sometimes called molecular descriptor is a numerical value which associates a chemical composition for
correlating chemical structure with numerous physical properties, chemical reactivity, or biological activity. In this paper, we
study some topological indices of boron and try to correlate the physicochemical properties such as freezing points, boiling points,
melting points, infrared spectrum, electronic parameters, viscosity, and density of chemical graphs. We discuss these topological
indices, and some of them are mentioned here such as Randic index, the first general Zagreb index, the general sum connectivity
index, hyper-Zagreb index (HM), the atom-bond connectivity index (ABC), the geometric-arithmetic index (GA), the harmonic

index (H), and the forgotten index (F).

1. Introduction and Applications

A chemical graph theory is an outlet of mathematical
chemistry which applied graph theory to the molecular
structure of chemical compounds. Topological index is a
part of chemical graph theory which correlates the physi-
cochemical properties such as freezing point, boiling point,
melting point, infrared spectrum, electronic parameters,
viscosity, and density of the underlying chemical graphs. The
reader can find bulk of papers on topological indices which
have been in print so far [1-5].

A graph can be recognized by a polynomial, a matrix, a
sequence of numbers, or a numeric number which repre-
sents the whole graph, and these representations are
designed to be uniquely defined for that graph. Topological
indices are major tools for analyzing many physicochemical
properties of molecules without performing any testing.
Some most significant types of topological indices of graphs
are distance-based topological indices, degree-based topo-
logical indices, and spectrum-based topological indices. One
of the most investigated categories of topological indices
used in mathematical chemistry is called degree-based

topological indices, which are defined in terms of the degrees
of the vertices of a graph.

Topological index is a graph invariant which charac-
terizes the topology of the molecular structure and converts
the molecular graph into a real number that predicts some
physicochemical properties such as freezing point, boiling
point, and melting point. Nowadays, a biological testing of
chemical compounds is too much expensive. It requires a
very large laboratory and advanced equipment to test these
compounds. This process is costly and time-consuming. Due
to this factor, pharmaceutical companies are very eager to
find such new ideas or methods by which cost could be
reduced. One can reduce the cost in which no need of
laboratories and no need of equipment, but just need to
study the certain chemical structure using topological
indices

Topological indices are of different types such as degree-
based topological indices, distance-based topological indi-
ces, and spectrum-based topological indices. The notion of
topological index was discovered in 1947 when Harold
Wiener was working on the boiling point of paraffin. He
named this index as path number. Later on, the path number
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was renamed as the Wiener index, and then the theory of
topological index started. The Wiener index is the first and
the most studied topological index. Wiener index is defined
as the sum of distances among all the sets of vertices in G [6].
Among all the types of topological indices, degree-based
topological indices play an extensive role in chemical graph
theory [7]. That motivated us to study the chemical structure
of boron B;, under this phenomenon.

B, is a two-dimensional icosahedral network. A recent
study of high-pressure solid boron affirmed that the icosahedral
By,-containing structures are quite universal [8]. On the other
hand, previous experimental and theoretical studies of free-
standing boron clusters have shown that the By, structure is
unstable in the gas phase [9, 10]. The (#, m) unit of boron By,
structure is given in the figure, where “#” represents the
number of rows and “m” represents the number of columns of
the boron By, structure.

Let G be a simple graph with order p and size gq. Let d,
represent the degree of the vertex v and is defined as the number
of edges incident on v. Let S, represent the sum of the degree of
all the neighbors of v [11]. Graph theory is closely connected to
the computer science, applied mathematics, optimization the-
ory, web designing, operation research, biology, and chemistry.

The general Randic connectivity index of G is defined as

R(X(G): Z (drds)a’ (1)

rs€E(G)

where & represents a real number. If a is —1/2, then R_,,5(G) is
said to be the Randic connectivity index of G. Gutman and
Trinajstic presented the first general Zagreb index in 1972 [12]:

M,(G) = ) (d)" @)

reV (G)

In 2010, the general sum connectivity index y, (G) has
been invented:

Xa (G) = Z (dr + ds)a' (3)

rs€E(G)

The ABC index was presented by Estrada and Torres
et al. in [13]. The ABC index of graph G is expressed as

Z d, +d, - @

ABC(G) =
rs€E(G) d d

Das announced the geometric-arithmetic (GA) index in
[14, 15]. The geometric-arithmetic index denoted by GA for
graph G is presented by

2d
d+d, (5)

GA(G) =
rs€E(G)

In 2013, the hyper-Zagreb index has been introduced by
Shirdel et al. as

HM(G) = Z (dr + ds)z. (6)

rs€E(G)

In 2012, Zhang introduced the harmonic index. It is
defined as follows [16]:
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2
HO= 2 Grdy g

rs€E(G)

After working on the Zagreb index, in 2015, Furtula and
Gutman introduce the forgotten index F(G):

F(G)= ) (d+d7). (8)

rs€E(G)

Ghorbani and Azimi proposed two new types of Zagreb
indices of a graph G in 2012. PM, is the first multiple Zagreb
index, and PM, is the second multiple Zagreb index [6]:

PMI (G) = H (d,, + ds), (9)
rs€E(G)

PM,(G) = [] (d,xd,) (10)
rs€E(G)

M, (G, p) and M, (G, p), the first Zagreb polynomial and
the second Zagreb polynomial [12, 17], respectively, are

defined as
M, G, p)= ) ), (11)
rs€E(G)
M, @Gp)= ). pla®). (12)
rseE(G)

Recently, Furtula et al. proposed the second Zagreb
index:

RM,(G) = ) (d,-1)(d,-1). (13)

rs€E(G)

After the success of the ABC index, Furtula et al. put
forward its modified version in 2010 that they somewhat in-
adequately named “augmented Zagreb index.” It is defined as

follows [18]:
_dd, 3 14
d.+d,-2)"° (14)

The invariant RR seems to be first encountered in a paper
by Favaron, Mah’eo. The reciprocal Randic index is defined

as follows:
RR(G) = ), 4, (15)

rs€E(G)

AZI(G) = )

rs€E(G)

In the same manner, the reduced second Zagreb index
(equation (13)), is related to the ordinary second Zagreb
index (equation (12)). The reduced reciprocal Randic index
might be viewed as the reduced analogue of the reciprocal
Randic index (equation (15)):

Z \ (dr - 1)(ds - 1)' (16)

rs€E(G)

RRR(G) =

Vukicevic et al. introduce the symmetric division deg
index in 2010 [19, 20] as
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&+ d

SDD(G) = Y o

rs€E(G)

(17)

Vukicevic and Gasperov in [20] initiated the study on the
inverse sum indeg index of a network. The inverse sum indeg
index is defined as follows [21]:

d,d,
2 ogd (18)

rs€E(G) T

SDD(G) =

Another index which belongs to the 4th class of ABC index
was invented by Ghorbani and Hosseinzadeh in 2010 [22] as

Z S, + S, — (19)

ABC(G) =
rs€E(G) S S

The fifth class of geometric-arithmetic index, denoted by
GAs;, was presented by Graovac et al. in 2011 [23] as

24/S;3,

S, +8S,

GAG)= )

rs€E(G)

(20)

2. Main Results of Boron B,, Graph

In this paper, we deal with the topological properties of boron
B,,. Boron By, is a two-dimensional icosahedral network. A
recent study of high-pressure solid boron affirmed that the
icosahedral Bj,-containing structures are quite universal [8].
On the other hand, previous experimental and theoretical
studies of freestanding boron clusters have shown that the B;,
structure is unstable in the gas phase [9, 10].

The molecular graph of Boron B, is shown in Figure 1.
There are 11mn + 11m + 11n + 9 vertices and 24mn + 22m +
22n + 18 edges.

Theorem 1. Let G be the boron B;, network with m > 1 and
n>1, then
M, =2(2m+2n)2" + 3mn +m + 5)3°
+(Bmn+2m+3n+4)3% + (m +2n + 1)4"
+(9mn + 7m + 6n+ 5)4% + (9mn + 7m + 7n + 3)5"
(21)

Proof. In G, there are total 11mn + 11m + 11n + 9 vertices.
There are 2m + 2n vertices of degree 2, 2mn+m+n+3
vertices of degree 3, 3mn + 3m + 3n + 3 vertices of degree 4,
and 36mn + 5m + 5n + 3 vertices of degree 5. Since M, is
expressed in equation (2),

M,(G) = ) (d), (22)

reV (G)

M, =202m+2n)2" + (3mn + m + 5)3°
+ (3mn + 2m + 3n + 4)3%
(23)

+(m+2n+ 14" + (9mn + 7m + 6n + 5)4%
+ (9mn + 7m + 7n + 3)5%.

In the following six theorems, we considered the Randic
index, sum connectivity index, ABC index, GA index,
harmonic index, reduced Randic index, forgotten index,
symmetric division deg index, inverse sum indeg index,
ABC, index, and GA; index. This is the edge partition of
boron B, on the basis of starting and ending vertices of each
edge, and we proceed this edge division to compute the
topological indices.

Theorem 2. Let G be the boron B;, network with m > 1 and
n>1, then

(1) R, (G) = (2m +2n)8% + (2m + 2n)10%+ (3mn+m +
512 + (m+2n+1)16* + (Bmn+2m+3n+4)
15% + (9mn + 7m)20% + (9mn + 7m + 7n + 3)25% +
(61 + 5)20%

(2) x,(G) = 2m +2n)6* + 2m+ 2n)7* + Bmn+m+
57+ (m+2n+1)8% + Bmn+2m+3n+  4)8%+
(9mn+7m+6n+5)9%+ (9mn +7m + 7n + 3)10%

(3) ABC(G) = (2m + 2n)V2 + (1/6) (3mn + m+ 5)
V15 + (1/5) (3mn + 2m + 3n + 4)V10+  (1/4) (m +
2n+1)V6 + (1/10) (9mn + 7m)/35 + (1/10) (61 +
5)4/35 + (2/5) (9mn + 7m + 7n + 3)\/2

(4) GA(G) = (2/3) 2m +2n)V2 + (2/7) (2m+ 2n)\/10 +
(4/7)B3mn + m+5)V3 + (1/4) B3mn + 2m + 3n +
415 + (4/9) (9mn+7m+6n+5)v5+ (9mn+
8m+9In+4)

Proof. The network of boron B;, has 24mn + 22m + 22n +
18 number of edges. There are seven disjoint edge sets of
edge set E(G) depending on the degrees of the end vertices,
ie, E(G)=E (G)UE,(GIUE;(G)U E,(G)UE;(G)U
E¢(G)UE, (G). The edge partition E,(G) holds 2m + 2n
edges rs, where d, = 2 and d, = 4, the edge partition E, (G)
holds 2m + 2n edges rs, where d, =2 and d, = 5, the edge
partition E;(G) holds 3mn +m + 5 edges rs, where d, =3
and d, = 4, the edge partition E, (G) holds 3mn + 2m + 3n +
4 edges rs, where d, = 3 and d, = 5, the edge partition E; (G)
holds m+2n+1 edges rs, where d, =d, =4, the edge
partition E¢(G) holds 9mn + 7m + 6n+5 edges rs, where
d, = 4and d, = 5, and the edge partition E, (G) holds 9mn +
7m + 7n + 3 edges rs, where d, = d, = 5. From formulas (1)
and (3)-(5), we get the desired results.

Theorem 3. Let G be the boron B;, network with m > 1 and
n>1, then

(1) HM (G) = 1678m + 1676n + 1968mn + 1270

(2) PM1 (G) — 62m+2n X 72m+2n x 73mn+m+5 X 83mn+2m+3n+4
% 8m+2n+1 % 99mn+7m+6n+5 x 109mn+7m+7n+3

(3) PM2 (G) — 82m+2n X 102m+2n X 123mn+m+5 x
15371171+2m+3n+4>< 16m+2n+1 X 209mn+7m+6n+5 % 259mn+7m+7n+3

Proof. Let G be the network of boron B;,. The edge set E (G)
is distributed in seven categories which depend on the
degrees of the end vertices. The first disjoint edge set E; (G)
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FiGURE 1: (1, m) unit of boron.

holds 2m + 2n edges s, where d, = 2 and d, = 4, the second
disjoint edge set E, (G) holds 2m + 2n edges rs, where d, = 2
and d, = 5, the third disjoint edge set E; (G) holds 3mn +
m+ 5 edges rs, where d, = 3 and d, = 4, the forth disjoint
edge set E, (G) holds 3mn + 2m + 3n + 4 edges rs, where d, =
3 and d, =5, the fifth disjoint edge set E;(G) holds m +
2n + 1 edges rs, where d, = d, = 4, the sixth disjoint edge set
E (G) holds 9mn + 7m + 6n + 5 edges rs, where d, = 4 and
d, = 5, and the seventh disjoint edge set E, (G) holds 9mn +
7m+7n+3 edges rs, where d,=d,=5  Now,
|E1 Q) = €345 |E2 (G = €555 |E3 (@)= €345 |E4 (@)= €35,
|Es(G)| = eyy, |Eg(G)| =eys5, and |E;(G)| = es5. We ob-
tained results by using formulas (6), (9), and (10).

Theorem 4. Let G be the boron B;, network with m > 1 and
n>1, then

(1) M, (G, p) = 2m+2n)p® + 2m +2n)p’+ (3mn+ m
+5)p" + (m+2n+1)p® + (Bmn+2m)p® + (3n
+4))p® + (Imn+7m+6n+5)p° + (Imn+7m+
7n + 3)p'°

(2) M,(G, {7) = 2m+ 211)p8 + (2m+ 2n)p10 + (Bmn +
m+5)p + (3mn +2m)p"” + Bn+4)p"” + (m+
2n + l)p16 + (9mn+7m +6n + 5)p20 + (9mn +
7m+ Tn+3)p>

Proof. Let G be the network of boron B;,. The edge set E (G)
is distributed in seven categories which depend on the
degree of end vertices of each edge. The disjoint set is
represented by e, . The first disjoint set is e, 4, the second
disjoint set is e, s, the third disjoint set is e; 4, the fourth
disjoint set is e; 5, the fifth disjoint set is e, 4, the sixth disjoint
set is e,s, and the seventh disjoint set is ess. By using
formulas (11) and (12), we obtained the required results.

Theorem 5. Let G be the boron B;, network with m > 1 and
n>1, then

(1) RM, (G) = 241m + 240n + 294mn + 179

(2) AZI(G) = (12576690219/21952000)mn + (4004353
2353/84672000)m + (2230300883/4741632)n + (42
526959271/118540800)

Proof. Let G be the network of boron By,. The edge set E (G)
is distributed in seven categories which depend on the
degree of end vertices of each edge. The disjoint set is
represented by e, . The first disjoint set is e, 4, the second
disjoint set is e, s, the third disjoint set is e; 4, the fourth
disjoint set is e; 5, the fifth disjoint set is e, 4, the sixth disjoint
set is e, 5, and the seventh disjoint set is e;5. We get the
results by using formulas (13) and (14). O

Theorem 6. Let G be the boron B;, network with m > 1 and
n>1, then

(1) H(G) = (6589/1260)m + (731/140)n + (757/ 140)
mn + (5531/1260)

(2) RR(G) = 2(2m + 2n)V2 + (2m+ 2n)V/10 + 2 (3mn +
m+5)V3 + (Bmn+2m)V15 + (3n+4))V15+
2(9mn + 7m + 6n + 5)/5 + 45mn + 39m + 43n + 19

(3) RRR(G) = (2m+2n)V3 +2B3mn+2mv2+ 2(3n
+4))V2 +2(B3mn+m+5)V6 + 2(9mn + 7m + 6n +
5)/3 + 36mn + 35m + 38n + 15

Proof. Let G be the network of boron B,. The edge set E (G)
is distributed in seven categories which depend on the
degree of end vertices of each edge. The disjoint set is
represented by e, .. The first disjoint set is e, 4, the second
disjoint set is e, s, the third disjoint set is e; 4, the fourth
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disjoint set is e 5, the fifth disjoint set is e, 4, the sixth disjoint
set is eys, and the seventh disjoint set is e5s;. By using
formulas (7), (15), and (16), we get the desired results.

Theorem 7. Let G be the boron B;, network with m > 1 and
n>1, then
(1) F(G) = 860m + 860n + 996mn + 648

(2) SDD (G) = (1433/30)m + (479/10)n + (99/2)ymn +
(566/15)

(3) ISI(G) = (11603/252)m + (2575/25562)n + (2983/
56)mn + (2311/63)

Proof. Let G be the network of boron B,. The edge set E (G)
is distributed in seven categories which depend on the

degree of end vertices of each edge. The disjoint set is
represented by e, .. The first disjoint set is e, 4, the second
disjoint set is e, s, the third disjoint set is e; 4, the fourth
disjoint set is e 5, the fifth disjoint set is e, 4, the sixth disjoint
set is e, 5, and the seventh disjoint set is e5 5. We obtained the
required results by using formulas (8), (17), and (18).

In the following two theorems, we considered the fourth
atom-bond connectivity index and the fifth geometric-
arithmetic index. This is the edge partition of boron B;, on
the basis of the degree sum of neighbors of end vertices of
each edge. We proceed this edge division to compute
ABC4(G) and GA;5(G).

Theorem 8. Let G be the boron B, network with m > 1 and
n>1, then

ABC, (G) = (1/2)V2 + (4/221)V1547 + (4/273)V/546 — (2/3) + (2/22) V22
+(1/22)V42 + (1/10) (m — 1)V10 + (1/114) (m + 2n + 1)V1330 + (1/68) (m — 1) V442
+(1/391) (m + 3) V14858 + (1/374) (m + 1)V/13838 + (1/34) (m — 1) V119 + (2/119) (m + 1)V/357
+(1/92) (m + 2n + 1)V/851 + (1/12) (m + 2n + 1)V15 + (1/68) (m + 3)V/527 + (2/115) (n — 1) V345
+(4/285) (21 — 2)V/570 + (1/238) (m + 1)V/6902 + (1/266) (m + 3)/8246 + (1/154) (m + 3)V/2618
+(1/10) (m — 1)V14 + (1/8) (m + 2n + 1) V11 + (1/68) (m — 1)V782 + (3/190) (m + 2n + 1)V/570 + (1/6)mn /30
+(1/35)mnV1190 + (1/6)mnV42 + (1/42) (3mn — 2n — 1)V46 + (1/92) (m + 4n — 3)V/690 + (2/3)nV11 + (1/6) (m + 3)V/3
+(1/506) (m + 1)V/21758 + (1/84) (6mn — m — 2n — 1)V602 + (1/23) (m + 21 + 3) V46 + (1/20) (2m — 2)V/35
+(1/228) (m + 2n + 1) V4674 + (2/437) (2n — 2) V4370 + (1/418) (m + 3) V16302 + (1/138) (2n — 2)V/1794

+(1/126) (6mn — 2m — 2n) V1554 + (2/3)n.

Proof. The network of boron B;, has 24mn + 22m + 22n +
18 number of edges. There are 41 disjoint degree sum of
neighbors of end vertices of each edge, i.e., eg 16, €575 €10,195
10205 €12,18> - - » €424~ By using formula (19), we get the
desired result.

(24)

Theorem 9. Let G be the boron B;, network with m > 1 and
n>1, then

GA;5 (G) = (1/20) (m + 3)V391 + (1/19) (m + 1)V/357 + (1/39) (m + 1) V374 + (1/19) (n — 1)V/345
+(1/17) (2n — 2) V285 + (2/29) (m + 2n + 1)V190 + (2/31) (m + 1)V238 + (2/33) (m + 3)V/266
+(2/41) (m + 3)V418 + (1/21) (21 — 2)V437 + (1/22) (m + 2n + 3) /483 + (2/45) (m + 1)V/506
+(2/15)V273 + (2/13) (6mn — 2m — 2n) V42 + (6/37) (m + 2n + 1)V/38 + (6/19) (m — 1) V10 + (4/41) (m — 1)V102
+(8/37) (m + 2n + 1) V21 + (4/37) (m — 1) V85 + (8/39) (m + 2n + 1) V23 + (8/33) (m + 3) V17 + (12/17) (2n — 2)V2
+(2/3)(m = 1)V2 + (1/9) (m + 3)V77 + (2/3) (m + 21 + 1)V2 + (4/25) (m — 1)V34 + (12/7)mn /3 + (1/2)mn~/35
+(6/5)mn\6 + (6/41) (2n — 2)\V/46 + (2/11) (2m — 2)V30 + (4/43) (m + 2n + 1)V114 + (4/15) (6mn — m — 2n — 1)V14
+(4/23) (m + 3)V33 + (4/47) (m + 4n — 3)V138 + (8/15) V14 + (8/19)V22 — n + 3mn.

(25)



Proof. The network of boron B;, has 24mn + 22m + 22n +
18 number of edges. There are 41 disjoint degree sum of
neighbors of end vertices of each edge, i.e., eg 16, €575 €19,195
10205 €12,18> - - - €2424- By using formula (20), we get the
desired result.

3. Conclusion

We have computed the following topological indices such as
Zagreb index, the Randic index, sum connectivity index,
ABC index, GA index, hyper-Zagreb index, multiple Zagreb
indices, Zagreb polynomials, reduced second Zagreb index,
augmented Zagreb index, harmonic index, reduced Randic
index, reduced reciprocal Randic index, forgotten index,
ABC, index, and GA; index for boron B, structure.

In cheminformatics, Randic index is used to study the
organic compounds. It is correlated with physicochemical
properties of alkane such as boiling points, surface area, and
enthalpy of formation. ABC index is based on some phys-
icochemical properties like the stability of cyclo-alkane as
well as strain energy. GA index has more predictive power
than Randic and ABC index. Multiple Zagreb indices and
Zagreb polynomials are applied to predict the bioactivity of
graphs. The forgotten index is correlated with some chemical
properties relating to energies of molecular graphs. AZI
index is a valuable predictive index which is used in the study
of the heat of formation. RRR index is used to study the
normal boiling points of the graphs.

We have discussed the graph theoretically not experi-
mentally. The results obtained in this paper provide a sig-
nificant contribution to graph theory and correlate the
chemical structure of boron By, with the large amount of
information about physicochemical properties.
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The change of water quality can reflect the important indicators of ecological environment measurement. Sewage discharge is an
important factor causing environmental pollution. Establishing an effective water ecological prediction model can detect changes
in the ecological environment system quickly and effectively. In order to detect high error rate and poor convergence of the water
ecological chemical oxygen demand (COD) prediction model, combining the limit learning machine (ELM) model and whale
optimization algorithm, CAWOA is improved by the sin chaos search strategy, while the ELM optimizes the parameters of the
algorithm to improve convergence speed, thus improving the generalization performance of the ELM. In the CAWOA, the global
optimization results of the WOA are promoted by introducing a sin chaotic search strategy and adaptive inertia weights. On this
basis, the COD prediction model of CAWOA-ELM is established and compared with similar algorithms by using the optimized
ELM to predict the water ecological COD in a region. Finally, from the experimental results of the CAWOA-ELM algorithm, it has
excellent prediction effect and practical application value.

1. Introduction

With the acceleration of economic development and in-
dustrialization, the situation of China’s water pollution
ecological environment is becoming more and more se-
rious, and industrial and urban water discharge have
become the main pollution source [1]. Therefore, the
establishment of an effective water quality ecological
prediction model can not only optimize urban water
ecological detection but also is essential for reducing
ecological water pollution. However, the formation of the
water ecological environment is a complex physical and
chemical process, which is influenced by many factors
such as factory emissions, domestic water use, and human
factors [2]. These variables are coupled with each other,
making it difficult to describe these complex processes
with mechanism models. The emergence of learning
technology provides an effective way to establish a water
ecological detection optimization model [3, 4].

A multiobjective problem proposed in the literature [5]
is applied in the activated sludge process. Through the ge-
netic algorithm, it is used to process under the conditions of
14 optimized parameters, and the wastewater COD con-
centration is reduced by 2.22 mg/L after optimization. The
effect of multiobjective problem optimization is obvious,
and the parameter optimization combination is the best.
Dong et al. [6] proposed a system optimization plan to adjust
sewage discharge and predicted COD concentration to
adjust the sewage discharge model. The optimized model can
improve the water quality of the river and optimize the
drainage system more effectively. An et al. [7] proposed to
optimize the low dissolved oxygen-oxygen-anoxia process,
which can solve the problem of low-cost wastewater treat-
ment, thereby providing a new method for low-cost treat-
ment of COD. Nazrifar et al. [8] optimized the influence of
COD, pH, H202, FeSO4,-and 7H20 content on the overall
target. When the value reaches 4, 8 ml/L, 2.33 g/L, the model
is optimal, and the effect of COD is 83.51. In the CO,
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emissions, Lim and Kim [9] proposed dynamic optimization
to evaluate the production of concrete components. Reuse
kinetics to optimize related parameters, and as a result, CO,
emission costs can be saved. In the NO, and CO emission
model, the dynamic optimization algorithm proposed in
[10] greatly reduces the NO, and CO emissions. In terms of
performance, the proposed dynamic optimization model
can reduce emissions.

ELM is a new and effective machine learning technology
based on the Moore-Penrose (MP) generalized inverse
matrix theory [11]. Weights and thresholds in the neuron
weights are given randomly, and then the output weights are
calculated by the regularization principle. The ELM network
can still approximate any continuous system. Compared
with the ANN and SVM, ELM has an advantage of greatly
improving learning speed relatively, which has attracted
more and more scholars’ attention [12, 13]. Therefore, the
prediction model of boiler water ecological COD is adopted
by the ELM.

However, ELM regression method is given at random.
Without any prior experience, it is easy to cause problems
such as the generalization ability and stability of the re-
gression model. In practice, in order to achieve the desired
error precision, the ELM usually needs to adjust the weight
and threshold. Therefore, a sin chaos AWOA is proposed to
accelerate the convergence of ELM parameters to improve
the stability and the ELM prediction model and further
propose a water ecological optimization prediction model of
CAWOA-ELM. It is applied to the prediction of river surface
water, domestic sewage, and industrial wastewater in a city.
The results show that CAWOA-ELM can accurately predict
COD, accurately predict water ecology, and provide an
effective means for the promotion of relevant emission
optimization.

2. Chaos Adaptive Whale
Optimization Algorithm

2.1. WOA. WOA [14] is an optimization algorithm that
simulates the natural world and was put forward in 2016 to
simulate the predation behavior of whale populations. This
algorithm is simple to set up and has few parameters. When
optimizing the benchmark function, it has the advantages of
the traditional imitation algorithm (such as particle swarm
optimization algorithm (PSO) [15] and gravity search al-
gorithm (GSA) [16]). However, compared with other swarm
intelligence algorithms, traditional WOA also have prob-
lems of slow convergence, premature convergence, and
global optimal value is not available. Based on this, in recent
years, many scholars have implemented many effective
improved WOA, such as Kaur and Arora [17] used the
chaotic map to optimize the update probability p in WOA,
proposed a CWOA, and verified the algorithm with higher
convergence speed through the test of benchmark function;
Mafarja and Mirjalili [18] combined the annealing algorithm
and WOA for the optimization precision of the algorithm,
improved the global search ability, and obtained good results
in the experiment of publicly testing 18 datasets in the UCI
library.

Journal of Chemistry

2.1.1. Shrinkage Surrounding Mechanism. In the WOA,
assuming that the size of the whale population is expressed
as N and d is to represent the dimensionality, the i-th po-
sition whale in the d-th dimension can be expressed as
X;=(xh...,x%), i=1,...,N. The position keeps
changing as the problem is solved, and the most optimal
solution is described by the optimal position. The whales are
all surrounded by optimal solutions. The mathematical
model is described as follows:

X;=(x},..,xf), i=1,...,N, (1)

where t is the number of iterations. A and C are coefficient
vectors, which are defined as follows:

A=2axr, —a, (2)

C=2xr,, (3)

where r; and r, are the random numbers [0, 1] in the
formula. The control parameters are defined as follows:

t
=2-2X=
a 7 (4)

max
where T, is the maximum iteration number. The con-
traction bounding mechanism is realized through the re-
duction of parameter & by means of (1) and (4).

2.1.2. Bubble Network Attack. Inthe WOA, two methods are
designed to describe the predation behavior of whales:
shrinkage surrounding mechanism and spiral renewal
position.

(a) Shrinkage enveloping mechanism: it is achieved by
reducing the convergence factor « in equations (2)
and (4).

(b) Spiral update position: first, the distance between the
whale individual and the current optimal position is
calculated, and then the whale is simulated to cap-
ture food in a spiral manner. The mathematical
model can be expressed as

X(t+1)= XP(t) +D-". cos (2ml), (5)

in which D' = |X » () — X (t)| denotes the distance between
whales and the prey, b is a constant that defines the shape of a
logarithmic spiral, and L is a random number [-1, 1] in the
middle.

The whale’s contraction and envelopment mechanism
and spiral updating position’s mode are synchronized. The
new mode of upd

ating P; is usually chosen according to the probability
value: if p < P;, X (t + 1) is updated in formula (5); otherwise,
formula (6) is used to update:

X()-A-[CX, (1) -X (0], p<P,
X(t+1)= (6)

X, (1) +D- . cos(2nl), p=P;
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When |A| > 1, the whales are randomly selected to force
them away from the reference whales to find a better prey in
order to enhance the global exploration ability of the al-
gorithm. The mathematical model is expressed as follows:

X(t+1)=X,-A-|C-X,-X()], (7)

in which X, indicates the position vector of the whale
randomly selected.

2.2. CAWOA. The shortcomings of the WOA algorithm in
dealing with complex optimization problems are low con-
vergence accuracy and easy to fall into local optimum. In
view of the above deficiencies, the CAWOA is proposed to
improve the global optimization capability of the algorithm.
On the basis of WOA, logistic chaotic search strategy is
introduced to enhance the ability of the algorithm to jump
out of the local optimum. In addition, adaptive inertia
weights are introduced into position updating to solve the
problem of low convergence accuracy by balancing the
development and exploration capabilities.

2.2.1. Sin Chaotic Search Strategy. Chaotic mapping is a
stochastic motion state obtained by the deterministic
equation, which has periodicity and inherent randomness in
the phase space, realizing global optimization by optimizing
the search ability. Yang and Jiaqiang [19] verified that sin
chaos has more obvious chaotic characteristics than logistic
chaos does. In order to overcome the shortcomings of the
local optimum when WOA deals with complex function
optimization problems, sin chaotic search is used to search
the optimal individuals (elite individuals) of each generation
of the WOA for M times of chaotic search. If better indi-
viduals are found, they are replaced. It can avoid the local
optimum and effectively avoid the WOA falling into the
local optimum. The sin chaotic mapping model is defined as
follows:

2
Z,Hl:sin(Z), n=0,1,...,N,
" (8)

-1<Z,<1, Z,#0,
in which Z° = [Z29,Z9,...,Z%] is a randomly generated
initial vector whose dimension cannot be zero, thus avoiding
producing fixed points and zeros in [-1, 1], and its di-
mension is the same as that of the optimization problem. The
iteration counter of the chaotic map is represented by t, and
the output of the system traverses the whole solution space
by M chaotic iterations.

Assuming that the optimal individuals in the WOA
population are X, the chaos optimization process in the
feasible region is

V§+l = Xi + OCZt+1, V§+l € [Vmin’ Vmax]’
{Lyzoa ©)
B —1, otherwise.

Among them, V! represents a new individual searched
by the algorithm; « is the adaptive parameter that controls
the chaotic search direction; y € [0, 1];and [V, Vel 1S
the chaotic search space. Assuming that the elitist solution of
the 7 generation of the WOA is X; = (x;;,X;5,...,X; p), the

sin chaotic search steps are as follows:

Step 1: normalization of X; by using the following

formula:
X — X] .
xuzlfL—i$L i=1,2,...,mj=12,...,D.
(Xmax - Xmin)

(10)

Step 2: generating chaotic sequences. Random gener-
ation vector Z° = [29,Z9,...,Z%] based on formula
(8) iterative generation of M chaotic sequences.

Step 3: generating M chaotic sequences by substituting
formula (9), and generating M chaotic variable se-
quences VK = [vK, 05 .. k=1,2,...,M.
Step 4: using formula (10) to reverse the normalization
of V¥ and generate a new solution Uy in the field of the
original solution space, where (k=1, 2,...,M):

> V?D])

xi _xi
Wj:xﬁ+—ﬁE%;—EQX(b@—l) (11)

The fitness value f (U,) of Uy is calculated and compared
with the fitness value f (X;) of X;, retaining the best solution.

2.2.2. Adaptive Inertia Weight. Inertia weight is an im-
portant parameter in WOA. The inertia weight of formulas
(1) and (5) is larger than that of formula (1). Constant in-
variant inertia weight will reduce the efficiency of the al-
gorithm, which is not conducive to the global optimization
of the algorithm. Zhang et al. [20] pointed out that, as the
inertia weight increases, the global optimal value is easier to
obtain, while a smaller inertia weight can easily achieve local
optimization [21, 22]. On this basis, an adaptive inertial
weight algorithm based on the fitness value is proposed to
ensure that Algorithm 1 has a large nonlinear weight at the
beginning of the iteration, with different adaptive values, and
a small nonlinear weight strategy at the end of the iteration.

The following adaptive inertia weights are introduced in
formulas (1) and (6):

w=02+ !

0.4 + exp (—fﬁt (x)/u)lter (12)

In the formula, f 4 (x) represents the individual fitness
value, u represents the best fitness value, and u represents the
iteration number.

The updated formula is as follows:

wX*(t)-A-D, p<P,

X(t+1)= . bl
wX (1) +D,-e” - cos(2nl), p=P,

(13)
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CAWOA is as follows:

While (£ < Tay) do
fori=1to N do

If (p<0.05) do
Else if (p <0.05) do
End if

End for

T=t+1;
end while t=t+1;

Using the dynamic nonlinear characteristics to improve the convergence accuracy and speed of the WOA, the flowchart of the
The maximum iteration is T,y the population number is N, and N initial whale populations {X;, i=1, 2,...,N} are generated.

The fitness value { f (X;), i=1, 2,...,N } of each whale individual is calculated, and the best individuals are recorded.

According to formula (10), the value of adaptive inertia weight W is calculated.
According to formula (4), the value of control parameter alpha is calculated.
Updating the values of other parameters A, C, I, and P.
According to formula (11), updating the current whale individual position;
According to formula (11), updating the current whale individual position;

Calculating the fitness values of individuals in groups {f (X;), i=1, 2,...,N}, and preserving and recording elite individuals.
Using sin chaotic search strategy to update elite individuals;

ALGORITHM 1: CAWOA algorithm flow.

3. ELM Optimization Model

3.1. Basic ELM. ELM solves the problem of long time
consumption of the BP neural network. However, because
the common limit learning machine only contains one
hidden layer, the characterization ability of the network is
very limited. Compared with the BP neural network which
uses the gradient descent method to update weights, ELM
has two characteristics:

(1) The weights are randomly set and do not need to be
adjusted after setting

(2) The weights are generated by solving the least
squares without iterative updating

To solve the output weight of the hidden layer, a standard
model can be expressed as follows.
The ELM model is defined as

M
Zﬂig(wi-xi+bi):oj, j=12,...,N, (14)
i1

where o is the actual model output, the training purpose of
SLFNs is to minimize the output error, and the cost function
E of the limit learning machine can be seen as follows:

N
ES.P =) |o;- | (15)
j=1

where y is the actual data tag, in the limit case, the output of
the network is close to the zero error of the actual data tag,
and min (E (S, 8)) can be seen:

min E = min||H (w, b, x) - T|, (16)

where H,f3, and T are, respectively, expressed by the fol-
lowing formula:

[ g(wyx; +by) - g(wyx, +by)
H(w,b,x) = : : ,
Lg(wyxy +by) -+ g(@pxn +bar) Iy
L 4
p=|:| 7=
-ﬁ?/[ Mxn t% Nxn

(17)

ELM uses this above model to obtain the output weight
of the hidden layer. The above model can be expressed as
follows:

Y = Hp. (18)

Then, the solution model of the hidden layer output
weight can be expressed as

min||HB - Y. (19)
The least squares solution is defined as
B=H'T, (20)

where H' is the generalized inverse matrix of H, which can
be obtained by singular value decomposition.

As can be seen from the above introduction, the learning
process of the whole network of the limit learning machine
only needs to be solved once. Relative to the BP network, the
training time of the network is very short. At the same time,
because the hidden layer input weights of the limit learning
machine are randomly generated and do not need iterative
updating, ELM solves the local minimum problem existing
in the BP neural network.
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3.2. ELM Work Flow. Because ELM has a good performance
in function regression without prior knowledge, CAWOA is
used in combination with the ELM model. The ELM model
trains the input sample data, and CAWOA optimization is
used to obtain the optimal parameter value.

Step 1: initialization of WOA: N is the population
number, and the random input value of each individual
is set to x;= (w,...
W0 01> 005 - -5 bpp).

Step 2: variable selection and data acquisition: to verify
good performance of the algorithm proposed, a variety
of functions are applied for comparative analysis.
Unimodal function and multimodal function are used.

s WM Wops Wans e v o> Wyl -« -5

Step 3: determining fitness function J:

1+\/Z

in which ¢; = [t;,t;,...,t;,]"

>rin

S 20

is the output, and o; =

Step 4: model selection: generating the initial pop-
ulation (115« « > Wypp> Wap> Wao»
e Wips - e o Wypg> b1, by, o, by) by the random ini-
tialization method, randomly generating the sample
data prediction model according to the initial pop-
ulation, optimizing parameters in this model until
satisfactory results are obtained, and establishing the
CAWOA-ELM model.

Step 5: model validation: verifying the performance of
the CAWOA-ELM model using test data.

4. CAWOA-ELM Test Comparison

4.1. Test Function Selection. In order to test the CAWOA-
ELM performance, a comprehensive and reasonable ex-
periment is provided. Simulation experiments (including
unimodal function and multimodal function) are carried out
on 4 benchmark tests, and the corresponding functions are
selected as follows:

[0;1,05 - - .,0;,] represents the predicted output.
Z|x|+H|x|D 30, Ib = 10, ub = 10, £, = 0, (22)
i
n-1 2
f,= Z(loo(x,.+1 -x}) ) +(x;+1)*)D =30, Ib = =30, ub = 30, f,;, =0, (23)

i=1

f3 =20 exp| -0.2

1o,
fa= 4oozx’

flo(

where D is the dimension, ub and [b are the min and max
bounds of decision variables, respectively, and f.,;, repre-
sents the global optimal value.

Among the above four functions, formulas (22) and (23)
are unimodal test functions, and formulas (25) and (26) are
bimodal test functions.

4.2. Algorithm Parameter Setting. When simulating the al-
gorithm, the population size N = 30, the dimension D = 30, and
the maximum iteration #,,,x = 1000. The running environment
of the algorithm is “Windows 7 (64-bit),” “CPU E3-1230 with
32GB,” and “MATLAB 2016b.” For the statistical analysis of
the algorithm, each algorithm runs M = 20 times independently
for each benchmark test function and counts its results. All
function experiment parameter settings are consistent, and the
initial population of all algorithms is consistent.

1< 1 &
- lez) - exp<; ;cos(Zﬂxi)> +20+eD =30,1b=-32, ub=232, f,,. =0, (24)

)+ 1 D = 30,1b = =600, ub = 600, f,,, =0, (25)

In order to accurately analyze the CAWOA-ELM effect,
the following five indexes are selected:

Best = min{best,, best,, . . ., best,},

Worst = max{best,, best,, . . ., best,},

1 d
Mean = — ) best;,
ean n; est;

(26)

STD = (best; — Mean)’,

I~
2

I
—

k
SR = — % 100%.
m



In the formula, k represents the number of successes in m
repeated experiments (i.e., the results calculated by the al-
gorithm in this experiment are better than the set standard).

4.3. Algorithm Test Comparison. In order to test the per-
formance of CAWOA-ELM algorithm and the correlation
test function to obtain the correlation output value when
different input values are used, CAWOA-ELM is compared
with whale optimization algorithm (WOA), particle swarm
optimization (POS), and biogeography-based optimization
(BBO).

Table 1 displays the simulation value of 4 algorithms on 4
benchmark test functions. The best value (BV), worst value
(WV), mean value (MV), standard deviation (SD), and
success rate (SR) obtained by running all algorithms for 30
times are given. Table 1 shows that, under the condition of
test level a = 0.5, taking CAWOA-ELM algorithm as the
benchmark, and comparing the other three algorithms, it is
found that the proposed algorithm can have high experi-
mental results.

The WOA, PSO algorithm, BBO algorithm, and
CAWOA-ELM algorithm in Table 1 verify the good value
and analyze the performance under the above four func-
tions. When the variable dimension is 30, it can be seen from
Table 1 that CAWOA-ELM algorithm obtains the optimal
value in more aspects of sex.

After comparing the data obtained from 30 simulation
experiments, the functions f2 and f4 can be optimized, all of
which are 0. However, CAWOA-ELM is better than WOA,
PSO, and BBO algorithms in the average and SD of func-
tions. In CAWOA-ELM, the mean value and standard de-
viation of optimal values are obviously better than those of
PSO algorithm. For test functions, GA, BBO algorithm, and
CAWOA-ELM algorithm are obviously superior to the PSO
algorithm in terms of MV and SD optimal values.

The convergence of CAWOA-ELM algorithm is further
verified. By iterating through four algorithms, the conver-
gence of the algorithm at different times is verified. The SD
value decreases continuously with the increase of iteration
times. The algorithm convergence analysis is shown in
Figure 1.

The convergence analysis of the overall algorithm shows
that CAWOA-ELM algorithm has better convergence than
other algorithms in the overall performance. When the
number of iterations is 500, the convergence of the
CAWOA-ELM model tends to be stable, and the overall
fitness value is better than that of other algorithms.

5. Water Ecological Environment COD Model
Simulation Example

5.1. Experimental Data. The water environment quality
prediction is the creation of a reliable prediction model
through the stored water quality monitoring data. It is well
known that water quality monitoring data are obtained
through real-time monitoring of national or provincial water
quality monitoring stations. pH, conductivity, turbidity,
dissolved oxygen (DO), CODKMnO4, ammonia nitrogen,
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total nitrogen, and total phosphorus are proposed in the
environmental protection industry standard “Automatic
Analyzer Technology for Water Quality Index” (HJ-T100-
2003) issued by the Ministry of Environmental Protection.
The total organic carbon (TOC) 9 standards are environ-
mental protection industry standards. The revised an-
nouncement includes routine monitoring projects such as
pH, ammonia nitrogen, total nitrogen, and total phos-
phorus. At the same time, chemical oxygen demand
(COD), biochemical oxygen demand (BOD), and some
heavy metal ions are also the water quality parameters that
people hope to monitor. Therefore, combined with the
national announcement and actual needs, this paper selects
five indicators that indicate water environmental quality
provided by water quality monitoring stations, namely,
COD, pH, dissolved oxygen, ammonia nitrogen, and total
phosphorus. COD refers to the mass concentration of
oxygen corresponding to an oxidant consumed by a strong
oxidant in a chemical process to oxidize a reducing sub-
stance in water. COD is a key indicator for indicating the
degree of pollutants in water and an important pollution
parameter in the operation and management of wastewater
treatment plants.

The monitoring data of a water plant monitoring station
in a city are taken as the research object. The water plant
monitoring station records the data of each parameter in the
water body every 6 hours. Due to the reasonable interval
between data collection, the recorded data can fully reflect
the water quality of the water plant. The data of the water
plant monitoring station from January 20 to June 18 are
selected in the experiment, and the CAWOA model is
trained using the data from January to May 2018. Subse-
quently, the water quality parameter data of June are input
into other trained prediction models for testing, and the
expected value is compared with the actual value and
analyzed.

5.2. CAWOA-ELM Simulation Experiment. The CAWOA is
combined with the ELM model to optimize the parameters
of the water ecosystem to reduce the COD emission con-
centration of water pollution. Firstly, the CAWOA is applied
to optimize the ELM model parameters, and then the test
samples are used to verify the accuracy and generalization
ability of the CAWOA-ELM model. Taking the ecological
environment of a certain water area as the research object,
the data of COD emissions are tested in multiple groups, and
various operational parameters such as pH, DO, NH3-N,
TP, and COD that affect the water quality characteristics are
predicted and selected. 30 groups of data are compared
experimentally, 20 groups of samples are selected for
training optimization modeling, and the remaining 10
groups are used as test samples to verify the accuracy and
generalization ability of the model. The selected 20 sets of
training data and the other 10 sets of predicted data are
subjected to regression prediction, and the predicted values
are as shown in Figure 2. In order to verify the superiority of
this algorithm in modeling, this algorithm is compared with
four models of BBO-ELM, PSO-ELM, WOA-ELM, and
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TaBLE 1: Simulation results.
Function Indicators WOA PSO BBO CAWOA-ELM
BV 1.391E-65 5.352E-55 1.127 X E—45 1.987E - 167
WV 4.117E-49 4.961E -39 5238 xE—-34 2.343E -89
fn MV 2.106E — 55 9.871E—-47 2921 xE-39 4782 x E—-107
SD 9.109E — 57 6.431E—49 9.302x E—-41 1.412x E-124
SR 10% 10% 16.67% 3.33%
BV 3.345E-75 3.522E-65 3.342xE—-42 0
WV 5.727E—-62 1.719E - 51 7.231 X E-31 0
f2 MV 8.234E — 68 3.371E-58 8.823 X E-35 0
SD 6.349E—-70 8.569E — 62 7.467 X E—36 0
SR 13.33% 10% 13.33% 0
BV 8.881E—-18 5.169E — 37 1.122 x E- 31 7.387E—197
WV 7.991E-16 5.387E-27 3.378xE-23 2.343E-78
JE MV 5.442E-17 9.871E—30 2278 XE—28 478 xE—-116
SD 2.833E-17 6.431E—32 9.976 Xx E—29 1.42xE—-135
SR 13.33% 13.33% 16.67% 3.33%
BV 3.764E - 23 7.654E — 39 2.138xXE-37 0
WV 7.761E —17 8.659E — 26 3.891 x E—-28 0
fA MV 5.581E—-20 9.871E—47 5.892x E-32 0
SD 8.874E - 21 6.431E—49 7.319xE-35 0
SR 13.33% 13.33% 10% 0
40 45
35 4 40 { - o
30 4 35 1
30 |
25 2
g s 25
3 204 4
] 2 20 A
£ 15 i3
15 A
10 4 10 A
5 1 5 J
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Number of iterations Number of iterations
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(a) (b)
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454,
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] 2 30
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20 4 15 4
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5
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Number of iterations
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—— BBO
—«— CAWOA-ELM
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FiGure 1: The algorithm convergence analysis (Dim = 30).
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Ficure 2: COD prediction model and comparison.
TaBLE 2: Performance comparison of 4 algorithms.
CAWOA-ELM PSO-ELM BBO-ELM WOA-ELM
Sample  True data

PV ER RE (%) PV ER RE (%) 19% ER RE (%) PV ER RE (%)
1 1.766 1.84  0.07 3.96 202 025 14.16 1.85  0.08 4.53 205 0.28 15.86
1.895 2.01 0.11 5.80 213 0.23 12.14 211 0.21 11.08 219 0.29 15.30
3 1.543 1.75  0.21 13.61 1.92  0.38 24.63 1.81 0.27 17.50 1.81 0.27 17.50

standard ELM. The absolute value of the prediction error of
each method is shown in Figure 2.

As can be seen from Figure 2(a), the CAWOA-ELM
model can better predict training and test samples, and there
are some errors in predicting samples. As can be seen from
Figure 2(b), the data in samples 17, 18, and 19 do not
participate in the training of the model, and compared with
other participating training samples, the error is relatively
large, which is in line with the principle of system modeling.
It can be further found that the predicted performance of
BBO-ELM is comparable to that of PSO-ELM, while the
predictive performance of WOA-ELM is poor, especially for
the three future samples that are not involved in training.
The performance of the ELWO model optimized by
CAWOA has been greatly improved compared with the
WOA-ELM model.

To further describe the superiority of the CAWOA-ELM,
the predictive value (PV) and relative error (RE) of training
samples 17, 18, and 19 are shown in Table 2. From Table 2,
we can see that the predicted value of CAWOA-ELM works
very well, and the error values are 0.07, 0.11, and 0.21, re-
spectively. The error values of 0.07, 0.11, and 0.21 are the
smallest of the five models, especially for WOA-ELM and
standard ELM models. It shows that the CAWOA-ELM

model has good accuracy and generalization ability. The
CAWOA-ELM prediction model provides an effective
means for accurate prediction calculation of COD.

6. Conclusion

Water ecological environment discharge has multidimen-
sional characteristics, many factors lead to the prediction
effect, and the multidimensional characteristic relationship
is relatively complex, which makes the prediction difficult. It
can effectively predict the COD value of water ecological
discharge. A combined prediction model based on the
CAWOA-ELM algorithm is proposed. In order to test the
advantages of the algorithm, CAWOA-ELM algorithm is
compared with WOA, PSO, and BBO algorithms. The
convergence proves that the CAWOA-ELM algorithm has
faster convergence effect. A CAWOA-ELM model for
predicting COD is set up, in which 30% of the samples are
used as test samples and 70% as training sets. The model is
used to train and test datasets. The COD values detected by
the CAWOA-ELM model have good accuracy, and the
differences between the other models can be used as an
application model for predicting COD values.
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Metal organic graphs are hollow structures of metal atoms that are connected by ligands, where metal atoms are represented
by the vertices and ligands are referred as edges. A vertex x resolves the vertices u and v of a graph G if d (u, x) #d (v, x). For a
pair (u,v) of vertices of G, R(u,v) = {x € V(G): d(x,u) #d (x,v)} is called its resolving neighbourhood set. For each pair of
vertices u and v in V(G), if f (R(u,v)) > 1, then f from V (G) to the interval [0, 1] is called resolving function. Moreover, for
two functions f and g, f is called minimal if f <gand f (v) # g(v) for atleast one v € V (G). The fractional metric dimension
(FMD) of G is denoted by dimf (G) and defined as dimf (G) = min{|gl: gisaminimalresolving function of G}, where
19l = Y1ev (69 (V). If we take a pair of vertices (u,v) of G as an edge e = uv of G, then it becomes local fractional metric
dimension (LFMD) (dimlf (G)). In this paper, local fractional and fractional metric dimensions of MOG (n) are computed
for n = 1 (mod2) in the terms of upper bounds. Moreover, it is obtained that metal organic is one of the graphs that has the

same local and fractional metric dimension.

1. Introduction

For a connected graph G, a vertex x € V (G) is said to resolve
a pair (u,v) of vertices of G if d(x,u)#d(x,v). A set
ScV(G) is called a resolving set of G if each pair of vertices
of G is resolved by some vertex in S. The metric dimension of
G is denoted by dim (G) and is defined as

dim (G) = min{|S|: Sisaresolving set of G}. (1)

For a pair (u, v) of vertices of G, the resolving neighborhood
R(u,v) is defined as R(u,v) = {weV(G): d(w,u)+
d(w,v)}. A resolving function is a real-valued function
g: V(G) — [0, 1] such that g(R(u,v)) > 1 for each distinct
pair of vertices of G, where g(R (&, 7)) = Y crung (X). A
resolving function g is called minimal if any function
f: V(G) — [0,1] such that f<g and f(v)#g(v) for at
least one v € V' is not a resolving function of G. The fractional
metric dimension (FMD) of G is denoted by dim 7 (G) and
defined as

dim,(G) = min{|g|: gisaminimal resolving function of G},
(2)

where [g] = <} ,cy (9 (v). Now, if we take a pair of
vertices (u,v) of G as an edge e =uv of G, then the
aforesaid defined resolving neighborhood R (u,v), mini-
mal resolving function g, and FMD dim ¢ (G) become local
resolving neighborhood (LR (uv)), local minimal resolv-
ing function, and local fractional metric dimension
(dimy; (G)), respectively.

First of all, Harary and Melter [1] defined the concept of
metric dimension to study the substructures of chemical
compounds having similar properties which are used in
pharmaceutical industries for the drug discoveries. Later on,
Chartrand et al. [2] and Currie & Oellermann [3, 4] im-
proved the solution of IPP with the help of the procedure of
metric dimension. Moreover, it is used in navigation system,
image processing, and robotic problems [5]. For various
results of metric dimension on different graphs, refer to
[6-9].
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Fehr et al. [10] introduced the concept of fractional
metric dimension (FMD), and they obtained the optimal
solution of a certain linear programming relaxation problem
with the help of FMD. Arumugam and Mathew [11] present
various properties of FMD. The FMD of metal organic
framework (MOF) is computed in [12], where MOF is
obtained from the cycle of odd order. Moreover, different
classes of graphs such as product-based graphs and Ham-
ming, Johnson, and permutation graphs are studied with the
help of FMD [13-17]. Liu et al. [18] computed the FMD of
generalized Jahangir graph. Recently, Aisyah et al. defined
the concept of local fractional metric dimension (LFMD)
and computed it for the corona product of graphs [19]. Liu
et al. [20] computed the LFMD of rotationally symmetric
networks. Javaid et al. [21] calculated the sharp bounds of
LFMD of connected networks.

Metal organic graph (MOG) consists of metal atoms,
where atoms are linked with thes help of organic ligands
which act like a linker. Therefore, MOG has led to a new
world of remarkable applications and it has a large surface
area that allows these chemicals compounds to absorb huge
quantity of several gases such as carbon dioxide hydrogen
and methane acting as a gas storage chemical compound. It
is also utilized for environmental protection and cleaning
energy with the help of capturing carbon dioxide. Being
small density, high surface structure flexibility, and tuneable
pore functionality, metal organic frameworks also play an
important role in liquid-phase separation that is industrial
step with critical roles in petrochemical, chemical, nuclear,
and pharmaceutical industries. These frame works are also
used in heterogeneous catalyst, drugs delivery, and sensing
conductivity [22-25].

In this paper, upper bounds for LFMD and FMD of the
metal organic graphs are calculated, where MOGs are ob-
tained with the help of the cycles of even order. Moreover,
the unboundedness of the obtained results is also discussed.
Rest of the paper is organized as follows: Section 1 includes
the introduction. Construction of MOG is discussed in
Section 2. LFMD of metal organic graphs is added in Section
3. FMD of MOG is calculated in Section 4. Conclusion is
presented in Section 5.

2. Construction of Metal Organic Graphs

In this section, we describe the construction of metal organic
graphs. Let MOG (n) for n> 3 be a metal organic graph with
vertex set V(MOG(n)) = {u;: 1<i<n}u {vj: 1 SjSZn}
and edge set E(MOG(n)) = {uu;,,: 1<i<n—- 1}uU
{vjvjﬂz 1<j<2n- 1} Uty vy v f Uy v 1<
i<n, 1< j<2n}, where [V (MOG (n))| = E[(MOG (n))| = 3n.
Figure 1 shows MOG (n) for n € {5,7,9}.

3. LFMD of Metal Organic Graphs

In this section, local resolving neighbourhood sets of metal
organic graphs are discussed in Lemmas 1 and 2 and local
fractional metric dimension is calculated in Theorem 1.

Journal of Chemistry

Lemma 1. Let MOG (n) forn = 1 (mod2) and n>5 be metal
organic graph, then |LR(e,)| =|LR(e, = vivj)l =8. For
1<k<n, j=i+1l, ie[2k—-1], 1<t<n. Moreover,
ULR(e,) = {v,,;: 1<m<2n} and |ULR(e,)| = a = 2n.

Proof. The local resolving neighborhood of metal organic
graphs, for 1<k<n, j=i+1, i€ [2k-1], 1<t<n.
LR(viv]-)z{vl: 2k—1<I1<k-3,2k-4<1<2k-2} with
ILR (e,)| = 8 and U} LR(e,) = {v,: 1 <s<2n}, and we have
[UIL,LR(e)| = 2n. O

Lemma 2. Let MOG (n) for n=1(mod2) and n>9 be a
metal organic graph with 1 <t <n. Then, the following holds:
(a) For 1<k<m, j=i+1,i¢ [2k], |[LR(e,)| < ILR(vivj)I
and ILR(vl-vj) N (UL, LR(e)|l =|LR(e,)l.
(b) For 1<i<n-—1, j=i+1, |[LR(e)l < ILR(uiuj)I and
ILR (u;u;) N (UL, LR(e,)| = |LR (e,)].
(c) For 1<i<mn, j=2i-1,2i,|LR(e,)| < ILR(ul-uj)I and
ILR (u;u;) N (UL, LR(e,)| > [LR (e,)].
(d) For 1<i<m, j=2i,|LR(e,)|< ILR(uiu]-)I and
ILR (u;u;) N (U, LR(e,)| 2 |LR (e,)].

Proof. (a) The local resolving neighborhood for 1<k<n,
j=i+1,i€[2k],1<t<n,

u,:

n+1
» lspgn,wherepaé—2 +k=m,
LR(V<V<)=

ivj
v,:  1<q<2n, whereq#2m,2m -1,

q
(3)

with |LR(vivj)| =3n-3>8=|LR(¢e)l, LR(vivj) n
(UL, LRe;) = {vq: 1<q<2n,q9#2m,2m — 1}.
Therefore,
|LR(vl-vj) N (UL, LRe)| =2n—-2>|LR(e,)l.

(b) The local resolving neighborhood for 1<i<n -1,
j=i+1,1<t<n,

Uy 1£p£n,wherep;&n+;+1+k:m,
LR(uiuj) =
vy 1<q<2n, whereq#2m,2m -1,

(4)
with ILR(uiuj)I =3n-3>8=|LR(e,)l and
LR(u,-u]-)ﬂ (UL, LRe,) = {vq: 1<q<2n, q+2m,
2m—1}.  Therefore, we have ILR (u;u;) N

(U, LRe,)| =2n—2>|LR(e,)|.

(c) The local resolving neighborhood for 1<i<wn,
j=2i-1,1<t<n,
Uy
LR(uiw) =47 .
! vy l<q<2nwhereq#j+1,2,-2,-3,

(5)

I<p<m
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(c)

FiGure 1: MOG(n) forn=5 (a), n=7 (b), and n =9 (c).

with |LR(uiuj)| =3n-4>8=|LR(e,)| and Therefore, we have |LR(uiuj) N (ULLRe)| =
LR (uu;) N (UL LRe;) = {v,: q#j+1,2,-2,-3}. 2n—4>|LR(e,)|. O
Therefore, we have ILR (u;u j)

N (UL LRe,)| = 2n - 4> |LR(e,)I.

(d) The local resolving neighborhood for 1<i<n, Theorem 1. Let MOG (n) for n = 1(mod2) and n>5 be the

j=2i-1,1<t<n, metal organic graphs, then dim,; (MOG (n)) <n/4.
u,: l1<p<m Proof. In view of Lemmas 1 and 2 for for 1 <k<mn, j=i+1,
LR V) = . _ _ . _ _
(ulvj) vy 1<q<2n, whereq# j+2,3,-1,-2, i€[2k-1], 1<t<n, [LR(e)| = [LR(v;v;)| =8 and |X]

[U} LR (e,)| = 2n.

(6) We have |R(xy)|<|R(e,)| for all xy e E(MOG (n)).
Moreover, the local resolving neighbourhood of minimum
cardinality is not disjoint. Therefore, local fractional metric
of MOG (n) is given as follows:

with ILR(uiuj)I =3n-4>8=|LR(e,)| and
LR(uiuj) N (UL, LRe,) = {vq: q#j+2,3,-1, —2}.



) 1X| 1
dlmlf (MOG(n) < Z m (7)

For |X| = 2n and |LR(e,)| = 8, we have

2n
dim;; (MOG (n)) < ) % (8)

t=1

Hence, dim,f (MOG (n)) <n/4. O

4. FMD of Metal Organic Graphs

In this section, the resolving neighbourhood sets of metal
organic graphs are calculated in Lemmas 3-8. Bounds of
FMD are computed in Theorems 2 and 3.

Lemma 3. Let MOG (n) for n = 1(mod2) and n>9 be metal
organic graph, then |R(e,)|=|R(e, = vi,vj)l =8. For
1<k<n, j=i+1, ie[2k-1], 1<t<n  Moreover,
U™ R(e) = {v,: 1<m<2n} and |U! R(e,)| = a = 2n.

Proof. The resolving neighborhood sets of metal organic
graph for 1<k<n, j=i+1, ie[2k-1], 1<t<nm,
R(vi,vj):{vl: 2k—1<I<k-3,2k—-4<1<2k-2}  with
IR(e,)| =8 and U’ R(e,) ={v,: 1<s<2n}, and we have
UL R(e)| = 2n. O

Lemma 4. Let MOG (n) for n = 1(mod2) and n>9 be metal
organic graphs, then for 1<k<n, i€ [2k-1], 1<t<n,
IR(e)| <IR(v;;v)l and |R(v;,v;) N (U R(e,)| >R (e,)l:

(a) jeli+1}

(b) jeli+2,i+6}

(c) jeli+3,i+7}

(d) jeli+4,i+8}

(e) je{i+5}

Proof. (a) The resolving neighborhood for 1<k<n,
ie2k-1]jei+1,1<t<n,

n+1

Uy 1< p<n, where p# +k=m,
R(vi,vj) =
Vg 1<g<2n,whereq+2m,2m — 1,
9)
with IR(v,-,vj)I =3n-3>8=|R(e,)| and
R(v;, v]-)ﬂ (UL Re,) = {vq: 1<g<2n: q#2m,
2m — 1} Therefore, we have

[R(v;, vj) N (U Re)| =2n-2>|R(e)l.

(b) The resolving neighborhood for 1<k<n,
icRk—1]jei+2,i+6 1<t<n.

When j € {i + 2},
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n+2i+1_

u,. 1<p<n, wherep# 2

P

R(v;vj) =
v, 1<q<2n, whereq#2m,2m—1,i+ 1.
(10)

When j € {i + 6},

n+2i+3
Uy 1Sp£n,wherep;&f: ,
R(viv;) =
vy 1<q<2n, whereq#2m,2m-1,i+3,
(11)
with IR (v;, vj)l =3n-4>8=|R(e,),

R(vi,vj)ﬂ (UL Re) = vy 1<q<2n: q#2m,
2m—1,i+1},and j € i+ 2. |R(v;, v)n (UL Re)| =
{vq: 1<q<2n: q#2m,2m — 1,i+3} and jei+6.
Therefore, we  have IR(vi,vj) N (U} Re,)l
=2n-3>|R(e)l.

(c) The resolving neighborhood for 1<k<n,
ie2k-1]jei+3,i+7, 1<t<n.

When j € {i + 3},

) n+2i+1
Uy lsp3n,wherep;&f:m,
R(vi,vj) =
vy 1<q<2n, whereq#2m,2m 1.
(12)
When j € {i + 7},
) n+2i+3
Uy lspSn,Wherepqéf: ,
R(v,-,vj) =
vyt 1<q<2n, whereq#2m,2m - 1,
(13)

with [R(v;,v;)| =3n-3>8=|R(e)|, R(v,v)N
(U7 Re,) = {vq: 1<gq<2n: q#2m,2m—1}, and
jei+3.  R(v,v)N (UL, Re) = {vq: 1<gq<2nm:
q#2m,2m—1} and j € i+7. Therefore, we have
IR(v;,v;) N (U Re,)| = 2n—2>|R(e).

(d) The resolving neighborhood for 1<k<n,
ie2k-1]jei+4,i+8, 1<t<n.
When j € {i + 4},

ji—1
l<p<n, wherepaﬁ—2 )

R(viv) = o ay
vy 1<q<2n, whereq:/zhLT].

When j € {i + 8},
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j—3
1<p<n, WherepqﬁJT,

R(vi,vj) = (15)
vy 1<g9<2n whereq;bHT],
with |R (v;, vj)I =3n-2>8=|R(e,)| and R(v;, v]-) n
(UL Re,) = {vq: 1<g<2n: q#i+ j/2}. Therefore,
we have |R(v;, vj) N (U Re)| =2n—1>|R(e)l.
(e) The resolving neighborhood for 1<k<n,
i€2k-1]jei+5 1<t<n.

j—2
= lspgnnﬂwwpii——
R(vi, v]-) = (16)

178 1<g<2n,

u.:

with |R (v}, vj)l =3n-1>8 =|R(e,)| and R(v;, v]-) n
(UL Re,) = {vq: ISqSZn}. Therefore, we have
[R(v;, v]-) N (UL Re,)| =2n>|R(e,)l. O

Lemma 5. Let MOG (n) for n = 1(mod2) and n>9 be metal
organic graph. Then, for 1<k<n, iec [2k], 1<t<n,
IR (e,)| < IR(vi,vj)I and IR(vi,vj) N (U Re,)l =R (e,)l:

(a) jeli+2,i+6}

(b) jeli+3,i+7}

(c) jeli+4,i+8}

(d) je{i+5}

Proof. (a) The resolving neighborhood for 1<k<mn,
ie[2kljei+2,i+6,1<t<n.
When j € {i + 2},
n+i+l
u,s  1<p<n, wherep+ S =™

R(v;vj) =
v, 1<q<2n, whereq#2m,2m—1,i+ 1.
(17)

When j € {i + 6},

n+i+3

u,:  1<p<n, wherep#

. :
R(viv;) =

(18)

with IR(vi,vj)I =3n-4>8=|R(e)l, R(vi,vj)ﬂ
(UL Re,) = {vq: 1<q<2n: q#2m,2m—1,i + 1},

and jei+2. R(vi,vj)n (UL Re,) = {vq: 1<
q<2n: q#2m,2m—1,i+3} and j € i+ 6. There-

fore, we have
[R(v;, vj) N (U} Re,)| =2n-3>|R(e,)l
(b) The resolving neighborhood for 1<k<n,

i€[2k]jei+3,i+7,1<t<n.

v, 1<gq<2n, whereq#2m,2m—1,i+ 3,

5
) h jti+1
u,: l<ps<n, wherep# i
R(vi,vj) =
vy 1<q<2n,
(19)
with IR(v,-,vj)I =3n-1>8=|R(e,)| and

R(v,v))N (UL Re,) = {vg: 1<q<2ny. Therefore,
we have |R(v;,v;)N (UL Re,)| = 2n> |R(e,)].

(c) The resolving neighborhood for 1<k<n,
i€ [2k]jei+4,i+8 1<t<n,
u,  l<ps<n, wherep;ﬁHT],
R(vp,v;) = o (20)
i+j
Vg 1§q§2n:q¢7,

with [R(v;, vj)l =3n-2>8=|R(e,)| and R(v;, v)n
(U™L|Re,) = {vq: 1<q<2nm: q#+i+ j/2}. Therefore,
we have |R(v;, vj) N (U} Re)| =2n—1>|R(e)l.

(d) The resolving neighborhood for 1<k<n,
i€ [2k]jefi+5}, 1<t<n.
n+i+3
u,:  1<p<n, wherep# S =m

R(v;,v;) =
v,:  1<q<2n, whereq+2m,2m - 1,

(21)

with [R(v;,v;)| = 3n—3>8 = |R(e,)| and R(v;,v;) N
(U™L|Re,) = {vq: 1<q<2n: q#2m,2m — 1}.

Therefore, we have
IR (v;, v))N (UL Re))| =2n—2>|R(e,)l. O

Lemma 6. Let MOG (n) for n = 1(mod2) and n>9 be metal
organic graph. Then, the following holds.

(a) For  1<k<mn, j=i+1, i€[2k], 1<t<n,
IR(e)| <IR(vyv))l and |R(v;,v;)Nn (UL Re)| =
>|R(e,)l.

Proof. The resolving neighborhood for 1<i<n,
je{9+i+k 1<k<2n-18}.

When k =4t —3,4t -2, for 1<t<n-9/2,

n+i+6

u,: 1<p<n, wherep# =m,
R(v;,v;) =

vy 1<g<2n, whereq#2m,2m - 1.

(22)
When k = 4t — 1,4¢, for 1 <t<n-9/2,
) h i+7
u,: l<spsnw erep¢T= m,

R(vi,vj) =
vy 1<q<2n, whereq#2m,2m -1,
(23)



with  |R(v;, vj)I =3n-3>8=|R(¢,)] and R(v, v]-) n
(UL Re,) = {vq: 1<q<2n: q#2m,2m — 1;. Therefore, we
have |R(v;, v;))n (U Re)| =2n—-2>|R(e,)|. O

Corollary 1.

(i) For 1<k<mn, i€ [2k-1], |R(v;, vl = [R(v;,v,)l,
where je{i+s:2<s<8}andme {i—s: 2<s<8}.

(ii) For 1<k<n, i€ [2Kk]|IR(v;,v))| = [R(v;,v;)|, where
jeli+si-s:12<s<T7h

Lemma 7. Let MOG (n) for n = 1(mod2) and n>9 be metal
organic graph. Then, for 1<i<mn,1<k<n-1, j=i+k,
1<t<n, IR (e,)| < IR(u,-uj)I and IR(u,-,u]-)ﬂ
(UL Re)| = =|R(e,)l.

Proof. The resolving neighborhood for 1<i<n,
1<k<n-1,j=i+k
When k = 1(mod2),
) n+i+j
u,s  1<p<n, wherep# =m,

R(u;u;) =
v : 1<q<2n, whereq#2m,2m — 1.
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with IR(u,-,uj)I =3n-3>8=|R(e)| and R(ui,u]-) n
(UL Re) ={v,: 1<q<2n,q+2m,2m — 1;. Therefore, we
have IR(ui,uj)ﬂ (UL Re)| =2n—2>|R(e,)l. O

Lemma 8. Let MOG (n) for n = 1(mod2) and n>9 be metal
organic graph. Then, for 1<i<n, |R(et)|<|R(ui,vj)| and
IR(ui,u]-) N (U Re,)| = |R(e,)l.

(a) j € {2i - 1,2i}.

(b) je{2i+1}.

(c) jef2i+2}

(d) je{2i+3,2i+4}

(e) j € {2i+5}

(f) j € {2i + 6}

(0) j e f2i+7).

(h) j e {2i+8}.

(i) je{2i+9}

() j € {2i + 10}.

(k) je{2i+10+k: 1 <k<2n-22}.

Proof:

(a) The resolving neighborhood for 1 <i<n.

(24) When j € {2i — 1},
When k = 0(mod2), u,: 1<ps<n,
R(ui,vj) = . . . .
i+j Vg 1<q<2nigq#j+1,j+2,j-2,j-3.
u,s  1<p<n, wherep#—==m,
2 (26)
R(upu;) =
vy 1<q<2n, whereq+2m,2m -1, When j € {2i},
(25)
u,: 1<p<n,
R(“i"’j) -{7 i ) ) . . (27)
vy 1<q<2n,where,q#j+2,j+3,j-1,j-1,
with IR(ui,vj)I =3n-4>8=|R(e,)| and j—1}, when je{2i}. Therefore, we have

R(u;uj)n (U;’ZIRet):{vq: 1<q<2nm: q#j+1,
j+2j-2j-3} when je{2i-1} R(u,v)N
(UL Re,) = {vq: 1<q<2nq#j+2,j+3,j-1,

IR (u;, uj) N (UL Re)| =2n—4>|R(e,)l.
(b) The resolving neighborhood for 1 <i<n, j € {2i + 1}:

) L. n+1
u,: 1<p<n, wherep#mandj—i<m< ,
R(ui,v]) (28)
vyt 1<q<2n, whereq#j—1,swherej+3<s<n+j-2,

with IR (u;,v;)| =3n—16>8 = |R(e,)| and
R(u;v))N (UL Re) = (v 1<q<2nm: q#j-1,
s, where, j+ 3<s<n+ j—2}. Therefore, we have
IR (u;, vj) N (UL Re)| =2n-7>|R(e,)l.

(c) The resolving neighborhood for 1<i<n, j € {2i + 2}.
When jei+3,
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o n+1
Uy lspsn,wherepqém,and]—z—ISmT,
R(ui,vj) = (29)
vy 1<q<2n, whereq#sand2(j-i-1)<s<n+j-4,

) h n+2i+3
with  |R(u,v)| =3n-13>8=[R(e)|  and up:  lspsn wherep#——m—-=s
5((%’?1)?) (U?l:lBeti}: Th{vq}l <q<2n: 6;19& S, R(u;v;) =

j—i—1)<s<n+j-4}. erefore, we have . 1<g<2n wh £252s — 1
IR (1, v)) N (UL Re,)| = 21— 8> |R(e). Yt TSASAL WACIEGT S S ’( |
34

(d) The  resolving  neighborhood  for 1<i<mn,
j€1{2i+3,2i +4}:

u.:

pt 1<p<n, wherep#——-=s,
R(u;v;) =

n+l

=
vy:  1<q<2n, whereq#j—2,9+2s,2s-1,
(30)

with |R (u;, vj)l =3n-4>8=|R(e,)| and R (u;, v]-) n
(UL Re,) = {vq: 1<q<2n:q+j—2,q#2s,2s— 1}.
Therefore, ~we  have IR(ui,vj) N (UL Re,)| =
2n—3>|R(e,)l.

(e) The resolving neighborhood for 1 <i<m, j € {2i + 5}:

i—1
1< p<n, where p#——,

Uy 5

R(ui, vj) = (31)
Vg 1<q<2n,

with IR(u;,v))| =3n—1>8 = |R(e,)| and

R(u;pv) N (UL Rey) = {vq: 1§q§2n}. Therefore,
we have |R(u;, vj) N (UL Re)| =2n>|R(e)l.
(f) The resolving neighborhood for 1<i<n, j € {2i + 6}:

i—1
1<p<n, wherep;E]—,

Uy
R(ui,vj) = (32)
Vg 1<q<2n, whereq#j -3,
with IR(u;,v))| = 3n—2>8 = |R(e,)| and
R(u;vi) N (UL Rey) = {vq: 1<q<2n:q#j- 3}.
Therefore, we have

IR (u;, vj) N (UL Re)| =2n~1>|R(e)l.

(g) The  resolving  meighborhood  for 1<i<mn,
jef{2i+3,2i+4}:

n+2i+3
1< p<n, wherep+ 5 =5,

Uy

R(u;v;) =

v,  1<q<2n, whereq# j—3,9+2s,2s -1,
(33)

with |R (u;, vi)l =3n-4>8=|R(e)l and R (u;, v;)n
(UL Re,) = {vq: 1<q<2n: q#j—3,9#2s,2s - 1}.
Therefore, ~we  have IR(ui,vj) N (U Re,)| =
2n—3>|R(e,)|.

(h) The resolving neighborhood for 1 <i<n, j € {2i + 8}:

with |R (u;, vj)I =3n-3>8=|R(e,)| and R(u;, v;))n
(UL|Re,) = {vq: 1<q<2n: q#2s,2s - 1}. There-
fore, we have
IR (u;, vj) N (UL Re)| =2n~-2>|R(e,)l.

(i) The resolving neighborhood for 1 <i<n, j € {2i + 9},

i—3
u 1§p§n,wherepq&T:s,

P,
R(ui, vj) =
Vp  1<q<2n, whereq# j -4,
(35)
with IR(u;,v))| = 3n—2>8 = |R(e,)| and

R(u,-,vj) N (U Re,) = {vq: 1<q<2n:q#j- 4}.
Therefore, ~we  have  |R(u;, v))N (UL Re)| =
2n—1>|R(e)l.

(j) The resolving neighborhood for 1<i<mn, j € {2i + 9}:

j—4
u,s l<p<n, wherep:#T:s,
R(u;v;) =
v,:  1<gq<2n, whereq#2s,2s -1,

(36)

with |R (u;, vj)l =3n-3>8=|R(e)| and R(u;, V]-) n
(UL Re,) = {vq: 1<q<2n: q#2s,2s—1}. There-
fore, we have IR (u;, vi)N (UL Re)| =
2n—2>|R(e)l.

(k) The  resolving  neighborhood  for 1<i<n,
jef{lo+2i+k: 1<k<2n-22}
When k = 1(mod)4, 2 (mod)4,

n+7

Uy 1<p<n, wherep#T:m,

R(u;v;) =
v,:  1<q<2n, whereq#2m,2m — 1.

(37)
When k = 0(mod)4, 3 (mod)4,
i+4
1<p<n, wherep#T =s,
R(u;v;) =
v,:  1<q<2n, whereq#2s,2s -1,
(38)
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TaBLE 1: FMD of metal organic graphs. TaBLE 4: FMD of metal organic graphs.
Resolving sets (n = 3) Elements Resolving sets (n = 5) Elements
R(e;) = R(uy,u,) V(MOG (3) = {us, vs, v} R, = R(uy,u,) V(MOG (5) - {uy, v, vg}
R(e,) = R(uy,u;) V(MOG (3) = {uy, v3, v4} R, = R(uy,us) V (MOG (5) — {uy, v3, vy}
R(e;) = R(uy,vy) V(MOG (3) = {v,,v3, v5} Ry = R(uy,uy) V (MOG (5) = {ug, vo, v1o}
R(ey) = R(uy,v,) V(MOG (3) = {v, vy, v} R, = R(u,,us) V (MOG (5) = {u3, vs, Voo }
R(es) = R(uy,v3) V(MOG (3) = {uy, vy, v5} Ry = R(uy,vy) V(MOG (5) = {,, 3, vg, Vo
R(eg) = R(uy, vg) V(MOG(3)) - {uz, vy, vy} R¢ = R(uy,v,) V(MOG (5) = {1, vy, V5, 1o}
R(e;) = R(uy, u3) V(MOG (3) = {uy, v, v,} R, = R(uy,vs) V(MOG (5) = {u,, t3, vy, vg}
R(eg) = R(uy,v,) V(MOG (3) = {uy, v3, v} Ry = R(uy,vy) V(MOG (5) = {u,, uz, v}
R(ey) = R(uy,v3) V (MOG (3) — {1 Ve vs} Ry = R(uy,vs) V (MOG (5) — {uy, v3, vg}
R(eyy) = R(uy, vy) V(MOG (3) = {v,, v3, v} Rio = R(uy,vg) V(MOG (5) — {uy, vy}
R(ey;) = R(uy, vs5) V(MOG(3) {uz, vy, vy} Ry, =R(uy,vy) V(MOG (5) — {u3, vo}
R(ey,) = R(us,v)) V(MOG (3) = {uy, vs, v} Ry, = R(uy,vg) V (MOG (5) = {us, vs, vio}
R(ey3) = R(us,vy) V(MOG (3) = {uy, vy, v5} Ry3 = R(uy,vy) V(MOG (5) — {uy, us, v}
R(ey,) = R(us, vs5) V(MOG (3) = {v;, 3, v} Ry, = R(uy,vy) V (MOG (5) = {uy, us, v, v;}
R(eys) = R(us, vg) V(MOG (3) = {v,, vy, v5} Ris = R(u,,us) V(MOG (5) = {ug, vo, v1o}
R(eys) = R(vy,vy) V (MOG (3) = {uy, uy, us} Ry = R(uy,uy) V (MOG (5) — {u3, vs, v}
R(ey;) = R(vy,v3) V(MOG (3) = {us, vy, v5} Ry; = R(u,, us) V(MOG (5) = {uy, vy, v,}
R(ejg) = R(vy,vs) V(MOG (3) = {uy, v3, v} Rig = R(u,,v)) V(MOG (5) = {uy, us, v}
R(ey) = R(vy,vy) V(MOG (3) — {u3, v3, v} Ry = R(uy,v,) V(MOG (5) — {uy, us, vo}
R(eyy) = R(vy, vg) V(MOG (3) = {uy, vy, vy} Ry, = R(uy,v3) V(MOG (5) = {1, vy, V5, 15}
R(ey) = R(vs,vy) V(MOG (3) — {uy, uy, us} Ry, = R(uy,vy) V(MOG (5) = {v,, 3, Ve, 7}
R(ey,) = R(v3,v5) V(MOG (3) = {uy, v, vy} Ry, = R(uy, vs) V(MOG (5) — {us, tty, vy, vg}
R(ey) = R(vy, vg) V(MOG (3) = {uy, vy, v5} Ry; = R(u,, vg) V(MOG (5) = {uz, 11y, v}
R(e,y) = R(vg,vg) V (MOG (3) — {uy, uy, us} Ry, = R(u,,v,) V (MOG (5) — {us, vs, vyo}
Rys = R(uy, vg) V(MOG (5) — {us, ve}
Ryg = R(uy,vy) V(MOG (5) = {uy, v}
TaBLE 2: FMD of metal organic graphs. R,; = R(uy, vyp) V (MOG (5) = {uy, v,, v;}
Recolvi P— m : Ryg = R(us,uy) V(MOG (5) - {uy, v, v,}
esolving sets (7 ements Rzg — R(“S’MS) V(MOG(S) _ {M4, Vs, VS}
R, = R(up V4) V(MOG(3) - {uz» Vﬁ} R30 = R(MS,VI) V(MOG (5) - {us,v3}
R, = R(uy,vs) V(MOG (3) - {u3, v3} R;; = R(u3,v,) V (MOG (5) — {us, vy, vo}
Ry = R(u,,vy) V(MOG (3) — {uy, vs} Ry, = R(u3,v3) V (MOG (5) = {uy, ty, vy}
Ry = R(uy, v6) V (MOG (3) = {u3, v, } Ry; = R(uy,v,) V (MOG (5) — {uy, ty, vy, v5}

Rs = R(u3,v,)
R = R(us,v3)

V(MOG (3) = {uy, vy}
V(MOG(3) - {u,, v}

R, =R(v;,v,) V(MOG (3) - {u;}
Ry = R(vy,v) V(MOG (3) - {us}
Ry = R(v,,v3) VMOG (3) — {us}

Ry, = R(v3,vg)
Ry, = R(vy,v5)

V(MOG (3) - {u,}
V(MOG (3) - {u,}

TaBLE 3: FMD of metal organic graphs.

Resolving sets (n = 5) Elements

R(el) = R(Vl’v2) V(MOG(S) {ulyuZ: Uz, Uy, Us, Ve, V7}
R(e)) = R(v3,7,) V (MOG (5) = {uy, ty, th3, Uy, ths, Vs, Vo |
R(e;) = R(vs,v¢) V(MOG (5) — {uy, ty, 3, thy, s, vy, vy}
R(e;) = R(vy,vg) V (MOG (5) — {uy, uy, g, Uy, Us, V5, V3

}
R(e;) = R(vy,vyg) V (MOG (5) — {uy, ty, s, thy, Us, V4, Vs }

with IR(vi,vj)I =3n-3>8=|R(e,)| and R(u;, v]-) n
(UL Re,) = {vq: 1<q<2n,q#2m,2m — 1}, when
k = 1(mod)4, 2 (mod) 4andR(u,»,vj) N (Uj Re) =

Vg 1<q<2n,q#2s,2s - 1}, when k = 1(mod)4,2
(mod)4. Therefore, we have |R (u;, vj) N (UL Re,)| =
2n—2>|R(e,)l.

Corollary 2. For 1<i<n, IR(ui,vj)l = |R(u;, v,,)|, where
jef2i+s: —1<s<10}and me {2i+s: —2<s< -9}

Rs, = R(us3,v5)
Rss = R(us3,vg)
Ry6 = R(us3,v,)
Rs; = R(us,vg)
Ri5 = R(u3,vg)
Rsg = R(u3, 1)
Ryo = R(uy, us)
Ry = R(uy,vy)
Ry, = R(uy,v,)
Ry3 = R(uy, v5)
Ry = R(uy,vy)
Rys = R(uy,vs)
Ry = R(uy,vg)
R,; = R(uy,v,)
Ryg = R(uy,vg)
Ryo = R(uy, vo)
Ry = R(uy, vy9)
Rs; = R(us,vy)
Ry, = R(us,v,)
Rs3 = R(us,v3)
Ry, = R(us,vy)
Rs5 = R(us,vs)
Rs = R(us,vg)
Ry, = R(us,v;)
Rsg = R(us,vg)
Rso = R(us,vy)
Rego = R(us, vy9)

V(MOG (5) = {v,, 3, vg, 7}
V(MOG (5) = {v4, Vs, vg, Vo}
V (MOG (5) — {uy, us, vg, v1o}
V(MOG (5) = {uy, us, v }
V(MOG (5) - {uy, vy, v;}
V(MOG (5) — {uy, vg}

V (MOG (5) — {uy, v3, v4}
V (MOG (5) = {uy, vy, vo}
V(MOG (5) = {uy, vy}
V(MOG (5) = {uy, vs}
V(MOG (5) - {uy, vy, vg}
V(MOG (5) = {uy, u3, v, }
V(MOG (5) = {u,, u3, v, v;}
V(MOG (5) = {v4, Vs, Vg, Vo}
V (MOG(5) = {}, 6> V7, v10}
V(MOG (5) = {uy, us, v5, vg}
V(MOG (5) — {uy, us, v}
V (MOG (5) = {uy, thy, vy, v1o}
V(MOG (5) = {uy, uy, vs}
V(MOG (5) = {us, vy, v}
V(MOG (5) — {us, v,}
V(MOG (5) = {uy, v,}
V(MOG (5) - {u,, v3, vg}
V(MOG (5) = {us, 11y, v}
V(MOG (5) — {us, ty, vs, vo}
V(MOG (5) = {vy, g, V7, Vo}
V(MOG (5) — {v,, 3, Vg, Vo}
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Resolving sets (n = 5)

Elements

Rg1 = R(vgp» vp3)
Ry = R(vop» vou)
Rg3 = R(vg;» vo5)
Ry = R(vgp» vo6)
Rgs = R(vgp, vo7)
Rgs = R(vy;> vos)
Rz = R(vyy, Vo)
Rgs = R(vg;,v10)
Rgo = R(vpp, vp3)
Ryy = R(vgp, vou)
R71 = R(vgy vo5)
Ry, = R(vpp, vo6)
R73 = R(vgy, vo7)
R4 = R(vpp, vos)
R75 = R(vpp, Vo)
Rz = R(vpp, vyp)
Ry; = R(vy3, vp5)
R;g = R(vy3, vg6)
Ry = R(vy3, vg7)
Rgy = R(vy3, vos)
Rg; = R(vy3, Vo)
Ry, = R(vy3,v10)
Rg3 = R(vyy, vo5)
Rgy = R(voy vo6)
Rgs = R(voy, vo7)
Rgg = R(voy vps)
Rg; = R(vo4, Vo)
Rgg = R(voy, V1)
Rgo = R(vys, vg7)
Ryy = R(vys, vog)
Rg; = R(vys, Vo)
Rg, = R(vgs, v19)
Ro3 = RVog vo7)
Rgy = R(vys> vos)
Ry5 = R(vys, Vo)
Rqs = R(vys, v10)
Rg; = R(vy7, Vo)
Rog = R(vy7, V1)
Rgg = R(vgs, Vo)
Rigo = R(vgs> V1o)

V(MOG (5) = {uy, vy, v;}
V (MOG (5) - {u,}
V(MOG (5) = {u,, v3, vg}
V(MOG (5)  {u,}
V(MOG (5) — {us, vy, vo}
V(MOG (5) — [us}
V(MOG (5) — {us, vs}
V(MOG (5) = {us, vs, vg}
V(MOG (5) — {uy, v;, vg}
V (MOG (5) = {uy, vs, v}
V(MOG (5)  [u,}

V (MOG (5) = {uy, vy, vo}
V (MOG (5) - {us}

V (MOG (5) — {us, vs, v1o}
V (MOG(5) - {ug}
V(MOG (5) = {us, vy, vg}
V (MOG (5) — {us, vy, vo}
V(MOG (5) - [us}
V(MOG (5) — {u3, vs, v1o}
V (MOG (5) - {us}
V(MOG (5) = {uy, vy, vg}
V (MOG(5) - {u,}
V(MOG (5) — {ug, vo, v1o}
V(MOG (5) = {us, vs, vio}
V (MOG (5) - {u}
V(MOG (5) — {us, vy, v}
V(MOG(5) - {u,}
V(MOG (5) = {uy,v,, v,}
V (MOG (5) = {uy, vy, vg}
V(MOG (5)  [u,}
V(MOG (5) — {uy, v42,v;}
V (MOG (5) - {u,}
V(MOG (5) = {uy, v, v,}
V(MOG (5) = {uy, vy, v;}
V(MOG (5)  [u,}
V(MOG (5) — {uy, v3, v}
V(MOG (5) = {u,, v3, vg}
V (MOG (5) - {u,}

V (MOG (5) = {u,, v3, v}
V (MOG (5) — {uy, vy, vo}

Theorem 2. The FMD of metal organic graph MOG (n) for

3<n<7,n=1(mod2) is

ifn=3,
5
— ifn=5, 39
1 ifn (39)
7
- ifn=7.
L 4

Proof. Case 1: when n = 3, then the RNs are as follows.

Since, for 1 <t <24, the cardinality of each RN R(e,) is
6, as given in Table 1, which is less than the cardinalities
of all other RNs R,, of MOG(3), as given in Table 2,
where 1 <m < 12. Moreover, U R(e,) = V(MOG(3);

TaBLE 5: FMD of metal organic graphs.

Elements

{Vp V2> V3 Vi V55 Vi Vi3s V14}
{Vl’ V25 V35 Vi V55 Vs V75 V14}
{2 V35 V4 Vs, V6, V7, Vg, Vo)
{Vzp Vs> Ve V75 Vs> Vgs Vip» Vu}

{Va» V75 V8> V9> V10> V11> V12> V13}

{Vp V8> Y9, V10> V11> V12> V13> V14}
V1, v20 V3, Vigs Vits Vias Vizs Via )

Resolving sets (n = 5)
R(e;) = R(v;,v,)
R(e,) = R(vs,v,)
R(e;) = R(vs, vg)
R(e )R (v;,vg)

R(es) = R(vg, 1)
R(eg) = R(vy1,v,)
R(e;) = R(vy3,v14)

this implies that U R(e,) = 9and |R,,n U R(e,)| >
R(e,)| = 6.
Consequently, dimf (MOG(3) = Z?zl 1/6 < 3/2.

Case 2: when n = 5, as shown in Figure 1, the RNs are as
follows.

Since, for 1 <t <5, the cardinality of each RN R (e, ) is 8,
as given in Table 3, which is less than the cardinalities of
all other RNs R,, of (MOG(5), as given in Table 4,
where 1<m<100.  Moreover, U;_,R(e,) =
V ((MOG(5); this implies that |U;_ R(e,)| = 10 and
R, N|U;_R(e)l>R(e)| = 8.

Consequently, dimf (MOG(5)) < t1211/8 = 5/4.

Case 3: when n = 7, as shown in Figure 1, then the RNs
are as follows.

Since, for 1 <t <7, the cardinality of each RN R(e,) is 8,
as given in Table 5, which is less than the cardinalities of all
other RNs R,, of (MOG(5)), as given in Table 6, where
1<m<203. Moreover, U/_R(e,) =V (MOG(7); this im-
plies that |U/ ,R(e)l=14 and |R,N U/ R(e)l>
R(e,)| = 8.

Consequently, dimf (MOG(5) < Ztljl 1/8<7/4. O

Theorem 3. Let MOG (n) for n>9 and n = 1(mod)2 be the
metal organic graph. Then, dim;;MOG (n) <n/4.

Proof. In view of Lemmas 3-8 for 1<k<mn, j=i+1,
i€ [2k-1], 1<t<n, IR (e,)| = IR(vivj)I =8 and
|X] =]UJR(e,)| = 2n. Also, we have [R(xy)| <|R(e,)| for
all xy € E(MOG (n)). Moreover, the local resolving
neighbourhood of minimum cardinality is not disjoint.
Therefore, the fractional metric of MOG (n) is given as
follows:

1X]
1
dim MOG(n)< ) ———. (40)
/ t=1 |R(et)|
For |X| = 2n and |R(e,)| = 8, we have
2n

1
dim ;MOG () < ;g' (41)

Hence, dimeOG (n) <n/4. O
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TABLE 6: FMD of MOG(7).
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Resolving sets (n = 7)

Elements

Resolving sets (n =

Elements

R, = R(u;,u,)
R, = R(uy,u;)
Ry = R(uy,uy)
R, = R(uy,us)
Rs = R(uy,ug)
Ry = R(uy,u;)
R, = R(uy,v;)
Rg = R(uy,v,)
Ry = R(uy,v3)
Ryo = R(uy,vy)
Ry; = R(uy,vs5)
Ry, = R(uy,v)
Ry3 = R(uy, v7)
Ry, = R(uy,vg)
Ris = R(uy, vy)
Ryg = R(uy,vy0)
Ry; = R(uy,vyy)
Ryg = R(uy,vyp)
Ryg = R(uy, v13)
Ryp = R(uy,vyy)
Ry, = R(uy,u3)
Ry, = R(uy,uy)
Ry = R(uy, us)
Ry, = R(uy,uq)
Ry5 = R(uy, uy)
Ry = R(uy,vy)
Ry; = R(up, v,)
R,5 = R(uy,v3)
Ry = R(uy,vy)
R3y = R(uy, v5)
R;; = R(uy,vg)
Rs, = R(uy,v,)
Ry = R(u,,vg)
Ry, = R(uy,vo)
Rs5 = R(uy, vy)
Rss = R(uy,vyy)
Ry; = R(uy, vy,)
Rag = R(uy,vy3)
Ryg = R(uy,vy4)
Ry = R(us,uy)
Ry = R(u3,us)
Ryy = R(us, ug)
Ry3 = R(u3,u7)
Ry, = R(us,v))
Rys = R(u3,v,)
Rys = R(u3,v3)
Ry7 = R(us, vy)
Ryg = R(us, vs)
Ry9 = R(u3,v)
Rsy = R(u3,v7)
Rs) = R(u3,vg)
Rs; = R(u3,vy)
Rs3 = R(u3,v,0)
Rsy = R(u3,vy,)
Rss = R(u3,v)5)
Rsg = R(u3,v3)
Rs; = R(u3,v,4)
Rsg = R(uy, us)
Rsg = R(uy, tg)
Rgo = R(uy,u7)

V (MOG (7) - {us, vo, vy}
V(MOG(7) = {uy, v3, v4}
V(MOG (7) = {ug, 11, v15}

V (MOG (7) = {u3, vs, vos}
V(MOG (7) = {ti7, V13, Via}

V (MOG(7) = {uy, v, g}

V (MOG(7) = {v, V3, Vi, vi3}
V (MOG (7) = {vy, v, Vs, 14}
V(MOG(7) = {uy, ths, thy, v, V> V5, Vg }
V(MOG(7) = {u,, u3, uy, vg}

V (MOG (7) — {us, v3, vos v10}

V (MOG (7) — {us, vy v1o}
V(MOG(7) - {u;}
V(MOG(7) ~ {us, vs, vy, }
V(MOG (7) — {ug, ve, V1> }

V (MOG(7) — {ug}

V (MOG(7) = {uy, v;}
V(MOG (7) — {uy, V7> vg» 14}
V(MOG (7) — {us, ug, ti7, Vo }
V(MOG(7) — {us, ug, tz, vy, Vo}
V (MOG(7) — {ug, v115 V1, }

V (MOG(7) ~ {u3, vs, v}

V (MOG (7) = {u7, 13, v14}

V (MOG(7) — {uy, v7, v}
V(MOG(7) = {uy, vy, v5,}

V (MOG(7) — {uy, ug, tt7, vy}
V(MOG (7) = {uy, g, iz, V35 thy 15 V155 Vi3 }
V(MOG(7) = {vy, v s, Vi)
V(MOG (7) = {v,, v3, v, v}
V(MOG (7) = {u3, g, s, vy, vg, g, vy}
V (MOG(7) = {us, uy, tis, vyo |
V (MOG(7) = {ug, vs, 11, v12}
V (MOG(7) = {ug, v V12 }

V (MOG(7) - {u,}
V(MOG(7) = {uy, v, vi3}
V(MOG(7) = {vg, vi4}

V (MOG(7) — {u}
V(MOG (7) = {us, v, vo}

V (MOG (7) = {uis, v, vy, 1}
V(MOG (7) = {uz, v13, V145}
V(MOG(7) = {uy, v, vg}
V(MOG(7) = {uy, vy, v,}

V (MOG (7) — {us, vo, 10}
V(MOG(7) = {ug, v3, v11}
V(MOG (7) = {ug, V4> V11> V12 }
V(MOG(7) = {uy, ty, th7, V3, 14}
V(MOG (7) = {uy, thy, Uz, V1, Vs, Vi3, Viaf
V (MOG(7) = {vy, v3, Ve, v7}
V(MOG (7) = {v4, vs, Vg, Vo }
V(MOG (7) — {uy, us, s, Ve> V1> V11> V12 }
V(MOG (7) - {uy, ts, g, vy, |
V (MOG(7) = {uy, v, v13}
V(MOG(7) = {uy, vg, v14}
V(MOG(7) - {us}

V (MOG(7) - {us, v, }
V(MOG (7) = {uy,uy, vio}
V(MOG(7) = {uy, vy}
V(MOG(7) = {uy, vy, v,}
V(MOG (7) = {us, vo, v10}

V (MOG (7) = {uy, v3, va}

Rgi = R(uyvy)
R¢; = R(uy, v,)
Rg3 = R(uy, v3)
R¢y = R(uy,vy)
Rgs = R(uy,vs)
Rgs = R(uy, v6)
Rg; = R(uy,v;)
Rgg = R(uy,vg)
Rgo = R(uy,vg)
Ryg = R(uy, v1p)
Ry = R(uy,vyy)
Ry, = R(uyvyy)
R73 = R(uy,v13)
Ryy = R(ugviy)
R,s = R(us, ug)
Ry = R(us,uy)
R, = R(us,vy)
R;g = R(us,v,)
R,g = R(us,v5)
Rgy = R(us, vy)
Rg; = R(us,vs)
Rg, = R(us,vg)
Rgs = R(us,v;)
Rgy = R(us,vg)
Rgs = R(us,vy)
Rgg = R(us,v19)
Rg; = R(us, 1)
Rgg = R(us,v15)
Rgo = R(us5,v13)
Ry = R(us,vyy)
Ry, = R(ug,u;)
Ry, = R(ug,vy)
Rg3 = R(ug, v,)
Ro, = R(ug,v3)
Rgs = R(ug, v4)
Ry = R(ug,v5)
Ry, = R(ug, V)
Rog = R(ug, v7)
Rgo = R (144, vg)
Rygo = R(ug, vg)
Ryo; = R(ug, vip)
Ry, = R(ug, vy;)
Ryp3 = R(ug, v12)
Rios = R(ug, v13)
Ryg5 = R(ug, vyy)
Ryg = R(uz,vy)
Ryp7 = R(uz,v,)
Ryog = R(u7,v3)
Rigo = R(1t7,vy)
Ryyo = R(uy,vs)
Ryyy = R(uy, v6)
Rz = R(uz,v;)
Ry15 = R(uy, vg)
Ry14 = R(uy,v9)
Ryi5 = R(uy,vyp)
Ry6 = R(uz, vyy)
Ryy7 = R(uy,vy,)
Ry1s = R(uz, vy3)
Ry = R(u7, Vig)
Rizo = R(v,v3)

V(MOG(7) = {uy, tt7, V4> V15 }
V(MOG (7) - {uy, u;}
V(MOG(7) = {u,vs, v13}
V(MOG (7) = {tiy, tig, V135 Vi4}
V(MOG(7) = {u,, uz, v}
V(MOG (7) = {uy, t3, iy, vy, V55 V3, V7
V(MOG(7) {ve Vs> Vg, Vo)
V(MOG(7) = {vg, V7, V19, V11 }
V(MOG(7) - {us,u6,v7,v8,v12,vl3}
V(MOG(7) - {us, ug, 7, v14}
V(MOG(7) = {uy, vy, vy, vo}
V(MOG (7) = {uy, v1, v, v10}
V(MOG(7) = {ug, v, }
V(MOG (7) - {ug, v3, V11 }
V(MOG(7) = {uy, v5, vy}
V(MOG(7) = {ug, V1> V12 }
V(MOG(7) - {u,}
V(MOG(7) = {uy, us, vi3}
V(MOG (7) = {u3, vg, v14}
V(MOG(7) - {us}
V(MOG(7) = {uy, v, v;}
V(MOG(7) = {uy, vy, v, vg}
V(MOG (7) = {uy, u3, 1y, v3}
V(MOG (7) = {uy, ti3, iy, V3, V4, Vs, Vo }
V(MOG(7) = {vg, V7, V19, V11 }
V(MOG (7) — {vg, Vg, V12, V13}
V(MOG(7) = {uy, ug, Uz, V1 V5, V19> V14 }
V(MOG (7) — {uy, ug, . v, }

V (MOG (7) = {uz, 3, vp v11}
V(MOG(7) = {uy, vy, v15}

V (MOG (7) — {u3, vs, vg}
V(MOG(7) = {us, vs, v, i3}
V(MOG(7) = {uy, ve}

V (MOG (7) - {u,}
V(MOG(7) = {uy, v, }
V(MOG (7) = {uy, uy, v, vg}
V(MOG(7) = {uy, uy}
V(MOG (7) = {uy, v3, vo}
V(MOG (7) = {ty, v3, V45 1o}

V (MOG(7) = {us, uy, us, vs}
V(MOG(7) = {uy, uy, us, vs, v, v}
V(MOG(7) = {vg, Vg, V12, V13}
V(MOG(7) = {vy, V19, Vi1, Via}
V(MOG (7) = {uy, uy, uz, v, v, vy}
V (MOG (7) = {uy, ty, 7, v}
V(MOG(7) = {uy, uy, U, vy, V5, Ve, V14 }
V(MOG (7) = {uy, uy, t3, v6}
V(MOG (7) = {ug, vy, V7, vg}
V(MOG(7) = {uy, vy, vg}
V/(MOG (7) — [u,)}
V(MOG(7) = {uy, v3, vo}
V(MOG (7) = {us, vy, vi0}
V(MOG(7) - {us, v,}
V(MOG(7) = {us,vs, vy, }
V(MOG (7) = {u3, vs, V> 12}
V(MOG(7) - {uy, us, ug, v, }
V(MOG (7) — {uy, us, g, V5, Vgs Vo, V13}
V(MOG(7) = {v1, V10> V11> V1a}
V(MOG(7) = {v,,v3, V15, V13}

V (MOG (7) — {us, v;, Vs, V1o }
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Resolving sets (n = 7) Elements Resolving sets (n = 7) Elements

Ry = R(vy,vy) V(MOG (7) = {us, vo, v10} Rig, = R(v;,vy) V(MOG(7) = {uy, vy, v,}
Ry =R(vy,v5) V(MOG(7) - {uy, v5} Rig, = R(v;,vyy) V(MOG (7) - {us, vo}
Riy; = R(vy,v) V(MOG(7) - {u,} Rig3 = R(v5,vy5) V(MOG(7) - {us}

Ry =R(vy,vy) V(MOG (7) = {ug, vy v11} Rigy = R(v;,vy3) V(MOG (7) = {u3,v3, v1o}
Riys = R(vy,vg) V(MOG(7) - {ug} Rigs = R(v5,vyy) V(MOG(7) - {u,}

Ry = R(vy,vg) V(MOG(7) = {us, vs, v1,} Ryg6 = R(vg,vg) V(MOG(7) = {uy, vy, v,}
Ry, = R(vy,vy) V (MOG (7) = {u3, vs, v} Rig; = R(vg,vyg) V(MOG (7) = {uy, vy, v, Vo
Riys = R(vy,vy;) V(MOG(7) = {uy, vy5} Rigs = R(vg,vy;) V(MOG(7) - {us}

Riyo =R(vy,vy) V(MOG(7) - {uy} Rigo = R(vg,vy5) V(MOG(7) - {us, vy}
Ry = R(vy,vy3) V(MOG (7) = {uy, v;, vg, 14} Rigo = R(vg,vy3) V(MOG(7) = {uy, v3, vy}
Ry3, = R(vy,vyy) V(MOG(7) = {uy, v7, vg} Ry, = R(vg, v14) V(MOG(7) = {uy, vy, v11}
Ry3, = R(vy,v3) V (MOG (7) = {us, vo, v1o} Ry, = R(vg,vyy) V(MOG (7) = {ty, v3, V4> 1o}
Riz3 = R(vy,vy) V(MOG (7) = {us, v3, Vg, 1o} Rig3 = R(vg,vy5) V(MOG(7) = {uy, v3, vy}
Risy =R(vy,v5) V(MOG(7) - {u,} Rigy = R(vy,v43) V(MOG(7) - {ug, v, }
Rizs = R(v,, ) V(MOG(7) - {u,, vy} Rigs = R(vg,vyy) V(MOG(7) — {ug}

Ryz6 = R(vy,v7) V(MOG(7) = {ug, uy1, vin} Rygs = R(vyp,v11) V(MOG(7) = {uy, v3, va}
Ryz7 = R(vy, vg) V(MOG(7) - {ug> vs, v1o} Rig7 = R(vy9, 1) V (MOG(7) = {tt, v3, vy V11 }
Ry35 = R(vy,vg) V(MOG(7) - {u;} Rigs = R(vyg,vy3) V(MOG(7) - {ug}

Ryz9 = R(vy,v)0) V(MOG (7) - {u3, ve, v13} Rigg = R(vy9, v14) V(MOG(7) - {ug, vy}
Rygo = R(vy,vy1) V(MOG(7) - {u,} Ry = R(v11,v13) V(MOG(7) = {u3, s, ve> v1}
Ry = R(vyvyn) V(MOG (7) = {uz, vy} Ryor = R(vy1,v14) V (MOG(7) = {u3, Vs, ve}
Rip = R(vy,vy3) V(MOG(7) = {uy, v, vg} Ry, = R(vyy,vy3) V(MOG(7) = {us, vs, vg}

Ryy3 = R(vy,vyy)
Ry = R(v3,v5)
Ryy5 = R(v3,v)
Ry = R(vs,v7)
Ryy7 = R(v3,vg)
Ryyg = R(v3,v9)
Ry49 = R(v3,vy9)
Risg = R(vs,vyy)
Ris; = R(vs,vp5)
Ris; = R(v3,v13)
Rys3 = R(v3,vyy)
Rys4 = R(vy, v5)
Rys55 = R(vy, v6)
Rys6 = R(vy,v7)
R;s; = R(vy, vg)
Risg = R(vy, v)
Ry50 = R(vy,vyg)
Rigp = R(vyvyy)
Rigr = R(vy,vyp)
Rig = R(vy,vy3)
Rigs = R(vyv14)
Rie4 = R(vs,v7)
Rygs = R(vs,vg)
Ryg6 = R(vs,vg)
Ryg; = R(vs,vyg)
Rygs = R(vs,vyy)
Rigo = R(v5,v15)
Ry = R(vs,vy3)
Rz = R(vs,viy)
Ry7, = R(vg,v7)
Ry73 = R(vg, vg)
Ry74 = R(vg, vg)
Ry75 = R(ve, V1)
Ry76 = R(ve, v11)
Ry77 = R(vg,vy,)
Ry75 = R(vg,v13)
Riz9 = R(ve, v14)
Rigo = R(v7,v)

V(MOG(7) = {uy, vy, v7, vg}
V(MOG(7) = {ug, vy, V11> Via}
V(MOG (7) = {ug, vi1> V15 }
V(MOG(7) - {u3, vs}
V(MOG (7) - {us}
V(MOG(7) - {u7,v6,v13}
V (MOG (7) - {u,}
V(MOG (7) = {ug, v, v14}
V(MOG (7) = {ug, v;, vg}

V(MOG(7) = {uy, v }

V (MOG (7) - {u,}
V(MOG(7) = {ug, vi1, vi5}
V(MOG(7) - {ug, vs, V11, V12}
V (MOG (7) - {15}
V(MOG(7) - {us, ve}
V(MOG (7) = {tt7, V13, V14}
V(MOG(7) = {u7, vy, v14}
V(MOG (7) - {u,}
V(MOG(7) = {uy, vy, vg}
V(MOG (7) - {u,}
V(MOG(7) = {uy, v,}
V(MOG(7) - {uy, ve}
V(MOG (7) = {u7, ty5, v14}
V(MOG(7) - {uy, v,}
V(MOG(7) - {u,}
V(MOG (7) = {uy, vy, vs}
V (MOG (7) - {u,}
V(MOG(7) {us, v, vo}
V (MOG(7) = {us, vo, v1o}
V(MOG(7) {17, V13 via}
V(MOG(7) = {u7, v, V13, Vis}
V (MOG (7) - {u,}

V (MOG(7) = {uy, v}
V(MOG(7) = {uy, v, v,}
V(MOG(7) = {uy,v5, vo}
V (MOG (7) — {us}
V(MOG(7) = {us, v3, v10}
V(MOG(7) = {uy, vy, v, vg}

Ryps = R(vip, vi4) V(MOG(7) - {u3, Vs> Vo> V13}

TaBLE 7: FMD of metal organic graphs.

MOG (n) and n = 1(mod2) Upper bounds of FMD

MOG (3) 32
MOG (5) 5/4
MOG (7) 7/4
MOG (n) if n>9 n/4

5. Conclusion

In this section, we conclude the obtained results as follows:
(i) The FMD of MOG (n) for n = 1 (mod2) is obtained
as given in Table 7.

(i) We note that as we increase n in MOG (n) for
n = 1(mod2), the FMD also increases.

(iii) This is one of the important graphs that has same
FMD and LEMD having unique resolving and local
resolving neighbourhood sets.

(iv) The problem is still open to characterize the graphs
with same FMD and LEMD.
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The inverse degree index is a topological index first appeared as a conjuncture made by computer program Graffiti in 1988. In this
work, we use transformations over graphs and characterize the inverse degree index for these transformed families of graphs. We
established bonds for different families of #n-vertex connected graph with pendent paths of fixed length attached with fully
connected vertices under the effect of transformations applied on these paths. Moreover, we computed exact values of the inverse
degree index for regular graph specifically unicyclic graph.

1. Introduction and Preliminary Results

Graph theory has many applications in chemistry, physics,
computer sciences, and other applied sciences. Topological
indices are graph invariants used to study the topology of
graphs. Along with the computer networks, graph theory
considers as a powerful tool in other areas of research, such
as in coding theory, database management system, circuit
design, secret sharing schemes, and theoretical chemistry
[1]. Cheminformatics is the combination of technology,
graph theory, and chemistry. It develops a relationship
between structure of organic substances and their physi-
ochemical properties through some useful graph invariants
with the help of their associated molecular graph. The
molecular graph is the combination of vertices and edges
which are representatives of atoms and bonds between
atoms of corresponding substance, respectively. Theoretical
study of underlying chemical structure by some useful graph
invariants is an attractive area of research in mathematical

chemistry due to its effective applications in the QSAR/
QSPR investigation [2, 3]. Topological indices among these
invariants have special place and used to estimate the
physiochemical properties of chemical compound. A to-
pological index can be considered as a function which maps
a graph to a real number.

Throughout this work, we used standard notations, G =
G(V,E) for graph, V(G) set of vertices, E(G) the set of
edges, d, degree of vertex v; (the number of edges incident to
v;), A and & be the maximum and minimum degrees of fully
connected vertices, vertices with degree one are pendent
vertices, and path attached with fully connected vertices
taken as a pendent paths.

In the last five decades, after the Wiener index, many
topological indices had been introduced. Probably, the
Randi¢ connectivity index [4]

1
R(G) = —
uve%:(G) dud" (1)



mailto:halmohamedh@kacst.edu.sa
mailto:almotairi@mu.edu.sa
mailto:almotairi@mu.edu.sa
https://orcid.org/0000-0001-8669-942X
https://orcid.org/0000-0003-1768-3111
https://orcid.org/0000-0001-8328-2979
https://orcid.org/0000-0002-6048-3724
https://orcid.org/0000-0003-2050-5236
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6657039

is one of the best predictive invariants among these topo-
logical indices. The accuracy in predictability of indices is the
main interest of researchers which leads them to purpose a
new topological index.

The zeroth-order general Randi¢ index °R,(G) =
Yuev (G)dy, was conceived by Li and Zheng in their work [5].
'Ry, (G) = Y ev1/\/d, equivalent to °R,(G) for
a = —1/2. Hu et al. in [6] and others [7-10] characterize °R,
for different values of &. For « = —1,°R_; = ID is modified
total adjacency index or inverse degree, first appears in the
conjecture over computer program Graffiti [11]. The

Zi

veV (G) V

d+d
>

ID(G) = —
uveE (G) dudv

(2)

for graphs without isolated vertices are well discussed in
[12, 13]. Extremal characterization and bonds of ID (G) also
discussed at some extent in [14-18]. For more detail, one can
review survey [19].

In this work, we investigated the effect of transforma-
tions over families of graphs for ID and established in-
equalities for these transformed graphs. Graph
transformations are very important in chemistry, computer
designing, and animations. Moreover, we determined the
exact value of ID for some major families of graphs under the
effect of transformations over pendent paths.

2. Results and Discussion

In this section, we present some transformations over
pendent paths. These have solid effect over increase and
decrease of ID (G). Through out this work, we considered

2 3 l—q} {l—(q—l) I<q-2) I
G G- {u UG Ujs o5 U Uiy, u; u
1 3 I-q
+{w1u] s WG WU, - WU }U{wluj

Theorem 1. Let G, be the graph of order n, with maximum
degrees A and minimum 6. Then,

ID (G}.) <ID(A(G})),

D (6) <1D(B(GL). ©

Proof. Let G. be the graph of order n = n; + kI, minimum
degree 6, and maximum degree A + 1. G, is the composition
of G, and k pendent paths of length I. In G, there are at least
k vertices of degree 1 and k(I — 1) having 2 and n, vertices
with degree d, +1,6<d, + <A+ 1:

nk(l+1)
d,

s=1 Vs

k
1 k(I-1)

. 6

;dv5+1+k+ 2 ©)

The transformation A transforms k vertices from degree
2 to 1 and another k vertices from d; + 1 to d, + 2 which have
an effect in ID as

ID (Gy) =
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ny-vertex connected graph G,. G} be the graph G, with k
pendent paths of length />1 having order n = n; + kI with
degree sequence d; =0<d,<d;<--- <A+ 1.

21. Graph Transformations. Let E'(G) C E(G), the
G, = G - E' (G) be subgraph obtained by removing edges of
E(G'), and G| = G-V'(G) be the subgraph obtained by
deleting vertices set V' (G) ¢ V (G) along with their incident
edges. We give following transformations using these
techniques which have solid effect on ID (G).

2.1.1.  Transformation  A. Let w] e V(Gy), d, =3,
j=1,2,3, ..., k<nand {wju] S UGUT, USUS, ulj’lul;} be
the pendent paths attached with fully connected vertex w; of
G, forms Gf(. Then,

k

1 2.3 3 4 -1 1
A(Gk)—G1—GO—Z{Mij,Mjuj,--.,uj uj}
- 3)
k
+Z{w i’ uHul}
& TR A bt e B |
i

Figure 1 depicts successive application of transformation
AasA;,i=1,23,...,]-1.

2.1.2.  Transformation  B. Let w; € V(G),d, >3,
j=1,2,3,...,k<n and {w]u] w]u] wjui ,w]uj be

the leafs attached with fully connected vertex w; of G. Then,
for fixed vertex w,

—(q-2), 1H(q-3) -1 1
U u; see sl u].} "
(gD Ha-D) HaD) | 1H4-2) 1-4-3) -1 1
Uj U; Uj U; oo U ”j}'
n—k(I1+1) k
I 1 1 k(l-2)
D(A(G,)) = —+ + 2k + . (7
(4(G)) ; d, szzldvsu 2 @)

So, from equations (6) and (7), we have
001 1 k
k
k
S; (d + 1)(dvs + 2) 2
(8)

Replace d, with minimum degree §. It maximizes the
term ZS 1 1/ (d + 1)(d +2)), which implies

k k k
2 (0+10+2) 2

Z (6 + 1) (6 + 2)
9)

k(-8 - 39)

T+ (0+2)

k(2—(8+ 1(8+2)
b+1)(6+2)
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FiGure 1: Transformation A.

It is clear from (9) that ID (G )-ID(A (G )) <0. Hence,
ID (G}.) <ID (A(Gy))- (10)

The transformation B shown in Figure 2 decreases the
degree of one vertex and makes the same increase into the
degree of fixed selected vertex:

n—k (l+1) k

1 2 1
ID(B(G})) = 2 a3t Z d+17d
" o (11)
1 k(1-2) k
+dv +2+ 5 +k.
(k-
So, from equations (6) and (11), we get
D(ch) -0 (3(et) =3 -8
(12)
1 1
4 d,
k (k-1)

to maximize the fraction involved in above expression re-
place d,, 0<s<k with 4, and we get

2 1 1

ID (G},) - 1D (B(G)) = 5175 5.2
(13)

-20-28" -2

=~ <o
(8 (6+1)(5+2)
The equation (13) implies

ID (G},) <ID (B(G})). (1;13)

2.1.3. Transformation AZ . The transformation Alj is com-
position of A;, 0<i</-1 and Bj, 0<j<k-1 which is

shown in Figure 3. Here, A;, 0<i <] - 1 be the repetition of
transformation A and B, 0< j<k -1 be the repetition of
transformation B. ‘

For main results related to the transformation A} shown
in Figure 3, we need to prove Propositions 1 and 2.

Proposition 1. Let defined  as

g(n,0) =1/(n +{). Then,
(1) g, )+ 129, - 1)+ (1/2) for {21

(2) For a,3>0, gly, (a +1)(B+ D] +g(n,0)> [gly,«
B+DI+gnp+1)]

g NxW —Q

Proof. (1) If transformation A applied on pendent path
attached with vertex w; of G having degree 7 + (. The degree
of vertex w; increased by one with change of vertex having
degree 2 to leaf attached to w;. This change has effect on ID
in the following way.

Let g(1,{) = 1/(n + {). Then,

1 1 1 1
O+1-|gn (-1 +-| = 1- —=
g ) +1-1g(m{=1) +7 PR Ry g
_r 1
2 (n+O(+{-1)y
(15)
It is clear from basic calculus that

(/o) = (1/(a + 3)); f=0. So,

1 1
T I (16)

implies g(n, ) +{>g (4, (- 1).
(2) The 2nd part of this preposition is related to the effect
of transformation Af shown in Figure 3:
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G G'
FIGURE 2: Transformation B for g = 1.
gln, (a+ B+ DI +g(1,0) - gly,a(B+ 1]+ g, p+1)
-1 .t
_(oc+1)[3+17+17 axf+n Pf+n+1 (17)
(xﬁ +30°B° + 30’ B+ o + af’ + 20y + 3ap’ +4oc[§11+30c/5+2a17+(x
nPB+y+D(a(B+D)+y)(n+b+1)
‘ o k=(ji+1)

Thus, gln, (@+ 1) (B+ D]+ g(1,0)2gly, a(B+1)]+ D(A{(GQ)):k(i+1)+k” G+ DI, L
g(n, B+1). O 2 S od, +(i+1)
P 2 Let f()= (U + (372) and g(n) 5 !

roposition 2. Let n) = (1/n)+ and g(n) = + —+ . . +p
(1/(n+ 1)) + 2, then for =1, g(n) = f (). S 4, 4, +(+D3E+1)
(20)

Proof
1 3 1 1 1
S fp =2 D)=
r7+1 n 2 17+1 n 2
2n=2(n+1)+ +1
_ 27 =2+ D+nn+1) (18)
2n(n+1)
_=n+(-1)
2n(n+1)
This fraction is nonnegative for all #>1 which implies
that g(#) > f (). O

Theorem 2. Let G be the graph of order n having p pendent
vertices. G\ is the graph having k pendent paths attached to
the fully connected vertices with maximum degree of a vertex
A+ 1. Then, for 0<i<l—1 and a<p,

D (A(G})) <ID (4(G})). (19)

Proof. Let G\ be the graph with order n = n + kI, minimum
degree &, and maximum degree A + 1. Using the fact of A/
over Gi, we get

for 1<d,,d,.<A<mn-1and 0<i<l-1,0<j<k-1. Then,
for a<pf,

D (47(Gi)) -0 (47(Gi)

n—p-k+a

k~(a+1) 1 1
- Z d, +1+1+ d d  t(a+1)(i+1)

n—p—k+f

1 1
—+
d, +i+1 +z+1 ; d,

d, +(B+1(@i+1)

—a- —p—k
kil 1 n—p—k+p 1
r=k-p d"y ti+l s=n—p—-k+a+1 Vs

N (i+1)(B-
(d, + G+ D(a+D)(d, +(+1D(B+1)

(21)

So, by using Proposition 1 and replacing A with d, and §
withd, , it is clear that A minimizes the positive terms and §
maximizes the negative term. After simplification, we get
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FiGure 3: Transformation A{ .
B -NA+E+ DB+ D)A+(E+ D@+ 1) +(0-A)(A+i+ 1[I+ 1) - (i + D (aA+(A+ G+ 1) (a+ D)(B+ 1)
- (A+1(a+1)(A+1(B+1)5(A+1)
(22)

It is clear that for a<f, the nominator is a negative
number and denominator is positive which implies that

D (A%(Gy)) - 1ID (A(G})) <o. (23)
Thus, for f>a,
D (A(G})) <ID (A(G})). (24|1:|)

In the following theorem, we determined bonds of ID for
graph G, under the effect of transformation A! by using
Propositions 1 and 2.

Theorem 3. Let G be the graph of order n having p pendent
vertices. G\ is the graph with maximum degree A + 1 having
order n + kl with k <n — p of pendent paths of length . Then,
for ID(A](GL)); 0<i<I-1,0<j<k-1,

(A+D[AI+D)+2(pA+n—-p-1)] +2A
2A(A +1)

ID (4/(Gi))-

(25)

Equality holds for r-regular graph with i = 0, j = 0, and
k=1. And

; 8+ (n-p))[6l(n- p)+n—1+p6]+8
ID (41(Gk)) < (1= P+ )0

(26)

equality holds if under consideration graph is r-regular with
k = n— p pendent paths of length l andi=1-1,j=k-1.

Proof. Let G be the graph having ordern>3 with0< p<n -
1 pendent vertices with minimum degree ¢ and maximum
degree A. G} is the graph with maximum degree A + 1 and

maximum number of pendent paths k = n — p of length [.
Then, by using equation (20),

ID (4](G})) = k(i + 1+ L0V

k—(j+1) n—p-k+j
+ +
Z dv + (z +1)

r= s=1

1
i @

1
Td, +G+nGr P

where 1<d,,d,<A<n-1,and 0<i<]-1,0<j<k-1.

The order of G}, is fixed. So, the increase in pendent paths
causes to decrease their lengths I. This fact increases the
number of pendent paths and decreases the vertices of
degree two. So, Proposition 2 clears that ID (Af (Gi)) in-
creases with the increase in k. It is clear from Theorems 1 and
2 and Propositions 1 and 2 that the least value of
ID(A] (GL)) was obtained by setting i,j =0, d, =d, = A,
and k = L:

1fI-1] 1-1 -p-1 1
ID(A8(G§))21+ > +A+1+n§ +A+1+p.

(28)

After simplification, we get

(A+D[AI+D+2(pA+n-— p—l)]+2A
2A(A +1)

D (47(GL))-
(29)

and equality holds in (28) for r-regular graph with the k = 1
pendent path of length / and i =0, j = 0.

Now again from (20), setting i=1-1,j= k—-1,d, =
d, = 6,k = n— pand using Propos1t10n 1 and Theorems 1, 2,
we get maximal value of ID (A/ (G )) as
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n~(n-p)Hn-p)-1

k-1( (n-p)[I-(-1+1)] 1
ID (A5 (G))<(n-p)I-1+1)+ 5 DI
) (30)
(n-p)~((n=p)-1+1) | |
T4 sv(-1+D) r-p-1+nd-1+D] P
i i( Al ) k[I-G+1)] D
After simplification, we get maximal value of ID (A{(Gk)) =k(i+1)+ +
ID(A! (GL)) as & d, + (z +1)
ID(AZ(GD)S(5+(n—p)l)[6l(n—p)+n—1+p8]+8) b | 1
((n—p)l +08)8 + Y+ , —
s=1 dv dv + (] + 1)(1 + 1)
(31) s
(33)

in which equality holds for r-regular graph with k =n-p
pendent paths of length l and i=[-1,j=k- 1.
Inequalities (29) and (31) complete the proof. O

Theorem 4. Let G be the graph without pendent vertices and
G\ for k> 1 be the graph with maximum degree A + 1. Then,
forO <i<l-1,0<j<k -1, the lower bond ofID(A] (GL)) is
(A+D[Ak(I+1)+2(n—k)] +2kA
j
D (4/(G1)) 2 2A(A +1)

(32)

Equality holds for r-regular graph with k pendent paths
of length / and i=0, j=0.

Proof. Let G be the graph of order n without pendent
vertices having minimum degree § and maximum degree A.
G}, be the graph with maximum degree A + 1 and k > 1 be the
count of pendent paths of length I. Then, by using (20),

where 1<d,,d, <A<n-1, and 0<i<[-1,0<j<k-1.
Using Propositions 1 and 2 and setting i, j = 0,d, = d, = A,
we get least value of ID (AJ (G)) as ID (A)(GL ))

kll-1] k-1 -k 1
D (43(Gi)) =k +— +A+1+nA faer Y

After simplification, we get minimal value as

(A+1D)[Ak(I+1) +2(n—k)] + 2kA o
TXOPEY <ID(A/(Gy))-
(35)

Equality for equation (3) holds for r-regular graph with k
pendent paths of length [ and i =0, j = 0. O

Theorem 5. Let G be the A-regular graph. ID (A] (GL)) be the
graph with k pendent paths of length 1. Then, for
0<i<l-1,0<j<k-1:

A+GE+DjlA+i+D2m-k+j)+k@GE+1+DIR2AA+ G+ 1)) (k- j)+Ak- ]—1)+A(A+l)

ID(4](Gy)) =

Proof. Let G be the A-regular graph and k be the count of
pendent paths of length I Then, G} is the graph with
maximum degree A + 1. Then, for 0<i</-1,0<j<k-1,
equation (20) takes the form

: o k=Gep) FEY
G )) =
ID(A}(Gy))=k(i+1)+ 5

S A+(i+1)

(37)
n—k+j1 1
T L AT AYGeD G

s=1

2AA+i+1)(A+j(i+1))

(36)

After simplification, we get required result:

A+GE+Djl(A+i+D2n—-k+j)+k@GE+1+1D]2AA+ G+ 1)j)](k—-j)+A(k- ]—1)+A(A+l)

ID(4/(Gy)) =

2AA+i+1)(A+j(i+1))

(38)
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FIGURE 4: Transformation A/ effect over G}, = Cl,,: (a) transformed graph A} (Cl,,) with fixed vertex w,; (b) transformed graph A} (C,,)

with fixed vertex w,.

In Corollary 1, we determined exact values of ID for
unicyclic graphs with k pendent paths of length I under
transformation A/. Figure 4(a) depicts transformed graph
Al(C,)) for i=j=1, k=2 with fixed vertex w, and
Figure 4(b) with fixed vertex w,.

ID (4/(Gy))

_ Q+E+DHNC+DR2Mm-k+H)+kGE+I+D4Q+GE+D)N(k—H+2(k—j-1)+2(2+])

Corollary 1. Let C, be the unicyclic graph of order n. C., is
the graph with k pendent paths of length . Then, for
0<i<l-1,0<j<k-1,

Theorem 5:

43 +i)(2+j(i+1)) (39)
Proof. C, is the unicyclic graph of order n. C, is 2-regular
graph. Then, we get required result by replacing A by 2 in
B Q+E+DHG+)2m-k+)+k(+1+D]4Q+GE+ D (k-j)+2(k-j-1)+2(2+]) (40)

D (4(c1)) -

3. Conclusions

Topological indices and graph transformations play a signifi-
cant role in modern chemistry and computer networks. It is an
interesting problem to determine the bonds of the topological
index for different families of graphs [5, 6, 9, 16]. In this work,
we give graph transformations, A, B, and A/ for variable values
of i and j over pendent paths attached with the fully connected
vertices of graphs and characterized ID for these transformed
graphs. At first, we determined the effect of transformations A
and B over increase and decrease of ID individually. Then, we
established result for A/ for arbitrary values of i and j which
provides moving graphs such as animation. We also deter-
mined the exact result for A-regular graph under transfor-
mation effect. Moreover, we computed the exact formula for
the family of unicyclic graphs with pendent paths under the
action of transformation as an application of proved results.

43+i)(2+j(i+1))
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Topological indices are numerical parameters used to study the physical and chemical residences of compounds. Degree-based
topological indices have been studied extensively and can be correlated with many properties of the understudy compounds. In the
factors of degree-based topological indices, M-polynomial played an important role. In this paper, we derived closed formulas for
some well-known degree-based topological indices like first and second Zagreb indices, the modified Zagreb index, the symmetric
division index, the harmonic index, the Randi¢ index and inverse Randic¢ index, and the augmented Zagreb index using calculus.

1. Introduction

L1. Application Background. A graph that represents the
construction of a molecule and also their connectivity is
known as a molecular graph, and such a representation is
generally known as topological representations of molecule.
Molecular graphs are normally characterized by means of
exclusive topological basis for parallel of chemicals shape of
a molecule with organic, chemical, or bodily homes. Study of
graph has some programs of various topological indices in
quantitative structure-activity relationship (QSAR) and
quantitative structure-property relationship (QSPR), digital
screenings, and computational drug designing citations as
shown in [1, 2]. Thus far, several exclusive topological in-
dices have been established, and maximum of them are most
effective graph descriptors in [3, 4]; apart, some indices have
proven their parallel with organic, chemical, or physical
residences of secure molecules in [5-17].

In the field of mathematics, any graph has vertices and
edges that are represented by the atoms and chemical bonds.

Graph that represents the construction of molecules and
their connectivity is known as a molecular graph, and such
representation is usually referred as topological represen-
tation of molecules. There are some significant topological
indices like distance-based topological indices, degree-based
topological indices, and primarily based topological indices.
Among these works, distance primarily based topological
indices unit works out a crucial task in a chemical graph
started, specifically in chemistry [18,19]. Many fields have
many features that can be solved with the help of graphs. In
the physiochemical compounds or network systems, we have
a tendency to abstractly outline exclusive ideas in modeling
of mathematics. We have a tendency to refer to as the
distinctive names, such as Randi¢ index and national capital
index.

A topological index is a numerical parameter of a graph
and describes its topology. It describes the molecular shape
numerically and is applied within the advancement of
qualitative structure-activity relationships (QSARs). The
following are the 3 types of topological indices:
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(1) Degree-based.
(2) Distance-based.
(3) Spectral-based.

Degree-based topological indices were studied exten-
sively and may be correlated with many residences of the
understudy molecular compounds. There is a strong rela-
tionship among distance-based and degree-based topolog-
ical indices in [20]. Most commonly known invariants of
such kinds are degree-based topological indices. These are
actually the numerical values that correlate the structure
with various physical properties, chemical reactivities, and
biological activities. Topological indices are sincerely the
numerical values that relate the shape to one of a kind of
physical residences, artificial reactivity, and natural bio-
logical activities [21,22].

Loads of research has been executed inside the course of
M-polynomial, as in the case of Munir et al., processed
M-polynomial and related lists of triangular boron nanotubes
in [6], polyhex nanotubes in [23], nanostar dendrimers in [4],
and titania nanotubes in [5]. M-Polynomials and topological
lists of V-phenylenic nanotubes and nanotori. In this paper, the
objective is to process the M-polynomial of the crystallographic
realistic structure of the atom copper(I) oxide (Cu,O) [8,24].

1.2. Crystallographic Structure of Cu,O(m; n). Copper oxide
is a p-type semiconductor and inorganic compound. Copper
oxide is a chemical element with formula Cu,O(m; n).
Cu,O(m; n) is a certainly happening reddish coral that is
particularly used in chemical sensors and solar orientated
cells in [8, 24]. It has many advantages such as photo-
chemical effects, stability, pigment, a fungicide, nontoxicity,
and low cost. It has potential applications in new energy,
sensing, sterilization, and other fields. It has narrow band
gap and is easily excited by visible light.

Cu,O(m; n) is additionally responsible for the pink
shading in Benedict’s test and is the essential cause to select
Cu,O (see Figures 1 and 2). The promising projects of
Cu,O(m; n) are mainly on chemical sensors, sunlight-based
cells, photocatalysis, lithium particle batteries, and catalysis.
Here, we have taken into consideration a monolayer of
Cu,O(m; n) for satisfaction. To ultimate the basis for
Cu,O(m; n), we pick out the setting of this graph as Cu,O(m;
n) be the chemical graph of copper(I) oxide with (m; n) unit
cells within the aircraft.

2. Definitions and Literature Review

2.1. M-Polynomial. M-Polynomial is defined by S. Klavzar
or E. Deutsch in 2015 [3, 8]. Within the factors of degree-
based topological indices, we compete necessary role of
M-polynomial. Readers can refer to [9-17, 27-35]. It is the
foremost general progressive polynomial and an additionally
closed formula alongside 10 distance-based topological in-
dices is given by M-polynomial. It is explained as

M(G,ab)= Y m;(Ga'l, ()

d<i<j<A

Journal of Chemistry

and we have § = Min{d, |r € V(G)} and A = Max{d, |r € V
(G)}, where m;(G) is the edge E(G), where i<j.

2.2. Degree-Based Topological Indices. Any purpose on a
graph which does not build upon numbering of its vertices is
molecular descriptor. This is also called as topological index.
Topological indices are most useful in the field of isomeric
discrimination, chemical validation, QSAR, QSPR, and a
pharmaceutical drug form. Topological indices are accessed
from the system of molecule.

There are some important degree-based topological
indices defined, and the first Zagreb index was introduced by
Gutman and Trinajsti¢ as follows:

M, (G)= ) (d,+d,). )

rseE(G)

Gutman and Trinajstic proposed the second Zagreb
index in 1972, which is stated as

M,(G) = ) (d,xd,). (3)

rseE(G)

The second modified Zagreb index is defined as
1

R N IO @

rseE (G)

General 1% and 2™ multiplicative Zagreb indices are
introduced by Kulli, Stone, Wang, and Wei and are stated as

MzZIIG) = [] (d,+4d)",
r,s€E(G)

MZII(G) = [[ (d.+d)"
r,s€E(G)

(5)

The general 1°* and 2" Zagreb indices proposed by Kulli,
Stone, Wang, and Wei are stated as

Z@= Y (d+d),

r,s€E(G)

Z3G) = Y (dd)"

r,s€E(G)

(6)

In 1987, Fajtlowicz in [36] proposed the harmonic index
and stated

2
HG= ) 5 Td, (7)

rseE(G) T

The inverse sum index is defined:
d,d,

19= Y i (8)

r,s€E(G

Symmetric division index is described as
min (d,,d,) max(d,,d,)

SSD(G) = ) max(d,,d,) " min(d,.d,) (9)

r,s€E(G

SU and XU recognized general Randi¢ index or general
multiplicative Randi¢ index stated as follows (Table 1):
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(a) (b)
Figure 1: (a) Cu,O [1, 1] [25]; (b) Cu,O [2, 2] [1].
Theorem 1. Crystallographic structure of the graph of cop-
q > per(1) oxide G = Cu,0[m; n], where n; m=>1. We have
M (G;a;b) = f(a;b) = (4m + 4n — 4)ab’

+ (4mn — 4n — 4m + 4)a’b’ + 4mna’b*.

(11)
L R 4
Proof. suppose G be the crystallographic structure of Cu,0
) [I; m; n]. The edge set of Cu,O[l; m; n] has the following three
partitions by Figures 1 and 2:
J >’ E, =Eyy ={e=rs € E(G)d, = 1;d, = 2},
————

E,=Ey, ={e=rs € E(G)d, = 2;d, =2}, (12)

FiGure 2: Copper(I) oxide [4, 4] [26].
Ey=Epy ={e=rs € E(G)d, = 2;d, = 4},

R,(G) = Z d, +dsa’ such that
1,5 € E(G) (10) |E, (G)| = 4mm + 4n - 4,

RII(G) = H(G)d,+ds . |E, (G)| = 4mn — 4m — 4n + 4, (13)
7,8 € El

|E; (G)| = 4mn.

Thus, the M-polynomial of Cu,O[l; m; n] is

M(G,a,b) = ) m;(G)a't/,

i<j
M(G,a,b) = ) m,(G)ab’ + Y my (G)a’h’ + ) my, (G)a’b’,
1<2 2<2 2<4
MGab) =Y my@ab’+ Y my (@t + Y myy (Ga’b', (14)
rs€E; uveE, uveE;
M(G;a;b) =|E, (G)|ab’ +|E, (G)|a’b® +|E; (G)|a’y",
M (G;a;b) = (4m + 4n — 4)ab* + (4mn — 4n — 4m + 4)a*b* + dmna’b*.
O

Theorem 2. Crystallographic structure of the graph of cop- M (G;a;b) = f(a;b) = (4m + 4n — 4) x ab’
per(I) oxide G=Cu,0[m; n], where n; m>1. We have
M, (G) = 40mn —4m — 4n + 4.

+ (4mn — 4n — 4m + 4) x a°b* + 4mn x a*b".

(15)

Proof. suppose We have to find



Journal of Chemistry

TaBLE 1: Formulas of degree-based topological indices from M-polynomial.
Topological Indices fit, s) M(G; t, s)
First Zagreb index t+s M, (G;t,s) = (D, + DM (G; t,8) ey
Second Zagreb index Ts M, (G;t,s) = (D,D,)M(G;t, )]sy
Second modified Zagreb index 1/ts "M, (G;t,s) = (8,0,)M (G;t,s)|;—s1
General Randi¢ index, a#0 (ts)* R, (G) = (DEDYM (G;t, 8)lpegey
Inverse general Randi¢ index, a# 0 1/ (ts)* RR,(G) (87 6M (G; t,9)|y—seq
Symmetric division index (2 + $?)/ts SS D(G) = |D,d, = 6,D,|,_s,
Harmonic index 2/(t+s) H(G) =28,JM(G;t,$)],,
Inverse sum index ts/(t +s) I(G) = 6,]D,D,M (G; t,5)|,,

D, = s(0/0)M (G;t,9)|t =s = 1,D, = t (QO)M (G:t,9)|t = s = 1,6, = [, (M(G; y,5))/ydt,6, = [, M(Gst, p)/yds,] = M(G;t,1),Q, = x*M (G;t,s),a#0.

Z—£ = (4n + 4m — 4)b” + 2 (4mn — 4n — 4m + 4)ab’ + 8mnab®.

(16)
Multiply a on both sides:
D, = aaf =(4m + 4n — 4)ab2

+2(4mn — 4m — 4n + 4)a*b* + 8mna’b’.

Similarly,
af

D, f (a,b) = b£= 2(4n + 4m — 4)ab*

+2(4mn — 4n — 4m + 4)a’b* + 16mnab’,

M, (G) =(D, +D,) f (@ b)|yeper-
(18)
Now, the first Zagreb index is
M, (G) =(D, + D, f (a;b)lyeper»
M, (G)=[(4m+4n—4) +2(4mn—4m — 4n + 4)
+ 8mn] +[2(4n + 4m — 4)]
+ 2 (4mn — 4m — 4n + 4) + 16mn),
M, (G)=[4m+4n—-4+8mn—-8m —8n+ 8+ 8mn
+8n+8m— 8+ 8mn—8m—8n+ 8+ 16mn).
(19)
After solving, the result is

M (G) = 40mn — 4m — 4n + 4. (20)

The 3D plot of first Zagreb index is given in Figure 3 (for
u=1 left, v=1 middle, and w=1 right), and we see the
dependent variables of the first Zagreb index on the involved
parameters. O

Theorem 3. Crystallographic structure of the graph of cop-
per(l) oxide G=Cu,0[m; n], where n; m>1. We have
M, (G) = 48mn —8m — 8n + 8.

Proof. suppose
M (G;a;b) = (4m +4n—4) x ab® + (4mn — 4n — 4m + 4)
x a’b® + 4mn x a’b*.
(21)
We have to find D,D,; first, we take D,:
D,=M4m+4n—-4) x ab® + (4mn — 4m — 4n + 4)’a
xaxb* +4mn*a x ax b’
D, = (4m + 4n—4) x ab”® + 2 (4mn — 4m — 4n + 4)

x a’b® + 8mn x a’b".

(22)
Now, take Dy
DD, f (a;b) = 2(4m + 4n — 4)ab
+2(4mn —4m — 4n + 4)a’ x 2b: b
+ 8mna® x 4b° x b,
(23)

D,D, f (a;b) = 2(4m + 4n — 4) x ab’
+4(dmn - 4m — 4n + 4) x a’b
+32mn x a’b*.

The second Zagreb index is
M, (G) = DD, (f (a,0)4p-1>
M,(G) =2(4m+4n—4) + 4(4mn — 4m — 4n + 4) + 32mmn,
M, (G) = 8nn+8m — 8 + 16mn — 16m — 16n + 16 + 32mn.
(24)
After solving, the result is

M, (G) = 48mn — 8m — 8n + 8. (25)

The 3D plot of second Zagreb index is given in Figure 4 (f
or u=1 left, v=1 middle, and w=1 right), and we see the
dependent variables of the second Zagreb index on the
involved parameters. O

Theorem 4. Crystallographic structure of the graph of cop-
per(I) oxide G = Cu,0[m; nj], where n; m=> 1, and we have

3
"M (G) =Jmntmtn- 1.3. (26)
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FIGURE 3: First Zagreb index plotted in 3D.

FI1GURE 4: Second Zagreb index plotted in 3D.

Proof. suppose
M (G;a;b) = (4m + 4n — 4)ab’
+ (4mn — 4m — 4n + 4)a’b* + 4mna’b*.
(27)

Now, we have to find S,S;; first, we find S,:
a
S“ = J 7]((35, b)dx,
0

X
£ (x,b) = (4n + 4m — 4)xb” + (4mn — 4m — 4n + 4)x°b°
+ dmnx’b,

f (x,b)

X

= (4m + 4n — Db* + (4mn — 4n — 4m + 4)xb*

+ dmnxb®.
(28)

Taking integration on both sides,

rmdx _ j (4m + 4 — )b dx
0 X 0

+ J (4mn — 4m — 4n + 4)xb*dx
0

a
+ 4mn J xdxb?,
0
S, = (4m + 4n — 4)ab’®

1
+ 3 (4mn — 4n — dm + 4)a’b’ + 2mna’b*.

(29)

Now, take S, and then



S.Spf (a,b) = (4m + 4n - 4)ax’

1
+ 5 (4mn — 4m — 4n + 4)a’ x> + 2mna’x*,

1
SaSpf (a,b) == (4m + 4n - 4)ab’

1 1
+ 1 (4mn — 4m — 4n + 4)a’b* + Emna2b4.

(30)
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Now, the second modified Zagreb index is

1 1 1
"M, (G) = S,S,f (a,b)| opey = 3 (4m+4n—-4) +Z (4mn —4m — 4n + 4) +5mn

1
=(2m+2n—2)+(mn—m—n+1)+§mn (31)

1
:2m—m+2n—n—2+1+mn<1+£>.

After solving, the result is
3
mMz(G)zimn+m+n—1. (32)

The 3D plot of modified second Zagreb index is given in
Figure 5 (for u =1 left, v=1 middle, and w = 1 right), and we
see the dependent variables of the modified second Zagreb
index on the involved parameters. O

Theorem 5. Crystallographic structure of the graph of cop-
per(I) oxide G = Cu,0[m; n], where n; m=> 1, and we have

Ra (G) — (2a+2 _ 22(x+2) (m - 1) +(22(x+2 + 23“+2)mn.
(33)

Proof. suppose
M (G;a;b) = (4m + 4n — 4) X ab” + (4mn — 4m — 4n + 4)
x a*b* + (4mn) x a*b*.
(34)
We have to find D,D,, first, and we find D,:

D, = (4m + 4n—4) x ab® + 2 (4mn — 4m — 4n + 4)

(35)
x a’b* + 8mn x a’b*.

Now, take Dy
D,D, = (4m + 4n— 4)a x 2b x b + 2 (4mn — 4n — 4m + 4)a’
X 2b x b+ 2 (4mn)a’ x 4b° x b.
(36)

Take « on the above equation:

DAD = 2% (4m + 4n — 4)ab” + 4° (4mn — 4m — 4n + 4)a’b’
+ 8% (4mn)a’b’,

DDj = 22+ n - 1ab® + 2% (mn - m — n + 1)a’b*

23a+2

+ mna’b*.

Now, the general Randi¢ index is
R, (G) = DD} (f (@,0)lgepers
R, (G) =2 (m+n—-1)+ 2" (mn-m—-n+1)+2"mn,
R‘x (G) = 20t+2m + 2“+2n _ 205‘*'2 + 220¢+2mn _ 221x+2m
20+2

204+2 3a+2

-2 n+2 +2 mn.

(38)
The result is
G) = (2a+2 B 221x+2) (m+n-1) +(220c+2 . 23a+2)mn.
(39)

R

(%4

The 3D plot of Randi¢ index is given in Figure 6 (f or
u=1 left, v=1 middle, and w=1 right), and we see the
dependent variables of the Randi¢ index on the involved
parameters. O

Theorem 6. Crystallographic structure of the graph of cop-
per(I) oxide G = Cu,0[m; n], where n; m=> 1, and we have

1 1 1 2
RR,(G) = [2“2 - 22a2] (m+n)+ [22a2 + 23a2] (mn)

(40)
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FIGURE 6: Randi¢ index plotted in 3D.

Proof. suppose
M(G;a;b) = (4m + 4n — 4) x ab® + (4mn — 4m — 4n + 4)
x a’*b* + (4mn) x a*b".
(41)

Now, we have to find S,S;, and first, we find S,:

Sa:(4m+4n—4)J dx.b® + (4mn — 4m — 4n + 4)
0

. J xdx.b? + Smnj xdx.b*
0

0
S, =(4m+4n - 4)ab® + 2 (mn—m - n+ 1)a’b*
+ dmna’b’.
(42)

Similarly, take Sj:

b
SaSh=4(m+n—1)a.J xdx +2(mn—n-m+1)a*
0

0

b L (P
J xdx+4mnaJ

0

3
x dx,

S;Sp=2(m+n- Dab® + (mn-m—n+ 1)a’b’

2,4
+mna’b".

Take « on the above equation:

1
S:Sg = F (m +n-— 1)ab2 +
1
+ —— mna’b’.
2

3a-2

The inverse Randic¢ is

220c— 2

(43)

(mn—m —n+ 1)a’b*

(44)



RR,(G) = (f (@, b))y = ZLZ (m+n—-1)

+W(mn—m—n+l)

2 1 1
+231x—2 mn = o2 a2 (m+n)

1 2 1 1
+ YIS + T (mn) + a2 + 2|

(45)

The 3D plot of inverse Randi¢ index is represented in
Figure 7 (for u=1left, v=1 middle, and w = 1 right), and we
see the dependent variables of the inverse Randi¢ index on
the involved parameters. (|

Theorem 7. Crystallographic structure of the graph of cop-
per(I) oxide G=Cu,0[m; n], where n; m>1, and we have
SS D(G) = 18mn+2m+2n—2.

Proof. suppose

Journal of Chemistry

b
Sp = (4n+4m—4)aJ xdx + (4mn — 4m — 4n + 4)a”
0

b b
. J xdx + 4mna’ J xdx,
0 0

Sp = % (4n + 4m — 4)ab” + % (4mn — 4m — 4n + 4)a’b’
+mna’b’.
(47)
Now, take D,:
$,D, = % (4m + 4n — 4)ab® + (4mn — 4m — 4n + 4)a’b* + 2mna’b*.
(48)
Similarly,
Sy =(4m+4n— 4)ab® + % (4mn — 4n — 4m + 4)a’b* + 2mna’b*.
(49)
Take Dy:
S,Dy (f (a,b)) = 2(4m + 4n — 4)ab’

+ (4mn — 4m — 4n + 4)a’b* + 8mna’b*.

M(G;a;b):(4m+4n—4)xab2+(4mn—4m—4n+4) (50)
x a*b* + (4mn) x ab*. Now, the symmetric division index is
(46) SS D(G) = (S,D, +S,Dyp) (f (@ b))l gepey- (51)
First, we have to find S: Put the values
1
SS D(G) = E(4m+4n—4)+(4mn—4m—4n+4)+2mn +[2(4m+4n—4) + (dmn — 4m — 4n + 4) + 8mn],
SS D(G) = (2m + 21— 2) + (4mn — 4m — 4n + 4) + (2mn + 8m + 8n — 8) + (4mn — 4m — 4n + 4) + 8mn, (52)

SSD(G)=02m—-4m+8m—4m)+ (2n—4n+8n—4n) — (2 — 4 + 8 — 8) + (4mn + 2mn + 4mn + 8mn).

After the calculation, the result is

SS D(G) = 18mn + 2m + 2n— 2. (53)

The 3D plot of symmetric division index is given in
Figure 8 (for u=1left, v=1 middle, and w = 1 right), and we
see the dependent variables of the symmetric division index
on the involved parameters. |

Theorem 8. Crystallographic structure of the graph of cop-
per(I) oxide G = Cu,0[m; n], where n; m=> 1, and we have

H(G):g(m+n—1)+§mn. (54)

Proof. suppose
M(G;a;b) = (4m + 4n — 4) x ab® + (4mn — 4m — 4n + 4)
x a’b* + (4mn) x a*b".
(55)
First, we have to find Ij{a;b):
Jf(a,b) =] f (a,a) = 4(m+n-1)a’
+4(mn-m-n+1a* + 8mna®.

(56)

Take S,:
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FIGURE 7: Inverse Randi¢ index plotted in 3D.

FIGURE 8: Symmetric division index plotted in 3D.

Sa]f(x,b)=4(m+n—l)J Hdx+4(mn-m-n+1)
0
J x3dt+8mnj x°dx,
0 0
4 3 1 4
Sa]f(a,b):g(m+n—1)a +E(mn—m—n+1)a

2 6
+-mna .
3

(57)
The harmonic index is

H(G) =2S,Jf(a,b)l,,

r4 1 2
=2l-(m+n-1)+-(mn-m-n+1)+-mn
L3 2 3

>

10 o)

5 5 7 5
H(G)=2 —m+—n+—mn——].
L6 6 6 6

(58)

Now, the result is

H(G)=§(m+n—1)+§mn. (59)

The 3D plot of harmonic index is given in Figure 9 (f or
u=1 left, v=1 middle, and w=1 right), and we see the
dependent variables of the harmonic index on the involved
parameters. O

Theorem 9. Crystallographic structure of the graph of cop-
per(I) oxide G = Cu20[m; n], where n; m> 1, and we have

44 4
S.JD,Dy(f (a,b)) =?mn—§ (m+n-1). (60)
Proof. suppose
M (G;a;b) = (4m+4n— 4) x ab® + (4mn — 4m — 4n + 4)
x a’b* + (4mn) x a*b*.
(61)

First, we have to find Dy
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FIGURE 9: Harmonic index plotted in 3D.

Figure 10: Inverse sum index plotted in 3D.

D,f(a,b) =8(m+n- Dab® + 8(mn+m+n—1)a’b’
+ 32mna’b’.
(62)
Take D,:
D,D,f(a,b) = 8(m +n—1)ab® + 16 (mn — n— m + 1)a’b’
+ 64mna’b’.
(63)
Take J{a; b):
JD,D,f (a,b) =8(m+n-— Dx’ +16(mn—m—-n+1)x*
+ 64mnx®.

(64)

Take S(a):

S,JD,D, f (a,b) = 2 (m+n-1)a

32
+4(mn-n-m+a* + =mna®.

(65)
The inverse sum index is

S.JD,Dy (f (@ b)),y = § (m+n—1)

32
+4(mn—m—n+l)+?mn
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After the calculation, the result is
44 4
S.JD,Dy(f (a,b)) =?mn—§ (m+n-1). (67)

The 3D plot of inverse sum index is given in Figure 10 (f
or u=1 left, v=1 middle, and w=1 right), and we see the
dependent variables of the inverse sum index on the in-
volved parameters. O
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Topological index (TI) is a numerical number assigned to the molecular structure that is used for correlation analysis in
pharmacology, toxicology, and theoretical and environmental chemistry. Benzene ring embedded in the P-type surface on 2 D
network has stability similar to C, and can be defined as 3 D linkage of Cg rings. This structure is the simplest possible tilling of the
periodic minimal surface P which contains one type of carbon atom. In this paper, we compute general Randi¢, general Zagreb,
general sum-connectivity, first Zagreb, second Zagreb, and ABC and GA indices of two operations (simple medial and stellation)

of 2 D network of benzene ring. Also, the exact expressions of ABC, and GA; indices of these structures are computed.

1. Introduction and Preliminaries

All the graphs in this work are finite and connected. Let #
be a graph with vertex set and edge set denoted by V' (#’) and
E (), respectively. We denote the degree of a vertex
u € V(G) by d,, and it is the number of edges incident to u.
The neighbor of a vertex b is a vertex u such that ub € E(G).
The neighborhood of a vertex u is the set of all its neighbors
and is denoted by /" (u). Let S,, be the sum of degrees of all
the vertices that are adjacent to u. In other words,

S(u)= Y d, whereN(u)={peV(%): uveE(X)}

veN (1)
(1)

For more insight on basic definitions and terminologies
of graph theory, see [1].

In this paper, we consider two operations, stellation and
simple medial of 2D network of benzene ring. The medial of
a graph #, denoted by M (%), is defined as follows: we put
a new vertex in the middle of every old edge of # and the
new vertices have an edge if they lie on the consecutive edges.

Note that the medial of a graph 7 is a 4-regular planner
graph and not necessarily simple. Sjostrand [2] introduced
the idea of transforming the graph with multiple edges and
loops in to a simple graph by finite sequence of double edge
swaps. If M () is not simple, we transform the graph into
simple graph and call it the simple medial of #, denoted by
SM (). Stellation of a graph planar 7, denoted as St (%),
is obtained by putting a vertex in every face of # and then
we join this vertex to each vertex of respective face.

In the last couple of decades, topological and graph
theoretical models have shown applications in many sci-
entific research areas such as theoretical physics, chemistry,
pharmaceutical chemistry, and toxicology. The interaction
of graph theory with chemistry has enriched both the field.
Topological index/descriptor is a numerical number at-
tached to a molecular graph which is expected to predict
certain physical or chemical properties of the underlying
molecular structure. The simplest topological descriptors
one can attach to a graph & is its order and size. The
importance of the topological indices is because of their use
in quantitative structure activity relationship (QSAR)/
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quantitative structure property relationship (QSPR). The
first topological index was introduced by Weiner in 1947,
who showed that the index is well correlated with boiling
point of alkanes. In 1975, the first degree based topological
index was proposed by Milan Randi¢ [3]. After that many
degree-based topological indices were defined which were
found to be useful in modeling the properties of organic
molecules. Few of the important degree-based topological
indices are presented in Table 1.

The Randi¢ index was first named as branching index
and is found appropriate for calculating the extent of
branching of the carbon atom skeleton of saturated hy-
drocarbons. The first and second Zagreb indices were first
introduced by Gutman and Transjistic in [8] and applied
to branching problem. The Zagreb indices and their
different variants are used to study chirality [16], mo-
lecular complexity [17, 18], ZE isomerism [19], and
heterosystems [20]. The overall Zagreb indices are used to
derive multilinear regression models. The importance of
ABC index is due to its correlation with the thermody-
namic properties of alkanes, see [21, 22]. Details on the
computation of topological indices of graphs can be seen
in [23-25].

2. Topological Indices of Simple
Medial of P[m, n]

The preparation [26] of Cg, leads to assumption about the
stability of other crystalline forms of three coordinated
carbons. In particular, Mackay and Terrones [27] raised the
interesting prospect of creating possible tricoordinated solid
carbon forms by lining the infinite periodic minimal surfaces
known as P and D. These surfaces divide the space into two
unconnected labyrinths. OKeeffe et al. [28] reported the
results of initial calculations of molecular dynamic re-
laxation in the simplest treatment, which contains only one
type of carbon atom. These structures contain six- and eight-
membered rings in ratio of 2: 3 and their primitive single
cells have only 24 atoms. The stability of this structure is
similar to Cg, and it can be defined as a three-dimensional
connection of Cg rings. This structure is the simplest possible
treatment of the periodic minimum surface P, which has
only one type of carbon atom. From now onward, we denote
the molecular structure of 2D network of benzene ring
embedded in P-type surface by P[m, n]. Figure 1 depicts the
molecular graph of P[m,n].

Note that P[m,n] contains 24mn vertices and 32mn —
2m — 2n edges. The medial of P[m, n] is obtained as follows:
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we put a new vertex in the middle of every old edge of
P[m,n] and the new vertices have an edge if they lie on the
consecutive edges. The graph of medial of P[m, n] is depicted
in Figure 2. Observe that the graph of medial of P[m,n]
contains multiple edges. It can be made simple by using the
double edge swaps defined by Sjostrand [2]. Figure 3 depicts
the graph of simple medial of P[m,n] and we denote it by
SM (P[m, n]). By a simple calculation, we can compute that
SM (P[m, n]) contains 32mn — 2m — 2n vertices and 64mn —
20m—20n+12 edges. Suppose V,;={ueV(SM(P
[m,n])): d, =i} and E ;= {uv € E(SM (P[m,n)])):

d, =i,dy = j}. Let n; and e; ; be the cardinalities of V; and

E, j, respectively.

Theorem 1. Let # be the graph of SM (P[m,n]) and « is
a real number, then we have
() M, (X) = (16m+ 16n— 12)2%+
18n+ 12)4%,
(2) R, (K) = (4m + 4n)2%* + (24m + 24n — 24)2%%+ (64
mn — 48m — 48n + 36)2%%,
(3) X, (F)=(4m+4n)22*+ (24m+24n—24)6"+ (64mn—
48m—48n+36)23°,
(4) ABC(X) = (1/+2) (28m+28n—24) + (1/2)+/(3/2)
(64mn —48m —48n+ 36),

(5) GA (K) = (4m+4n) + (V2/3) (24m + 24n - 24)+
(64mn — 48m — 48n + 36),

(6) PM, (F) = 192mn—136m—136n+108 y g24m+24n-24 o 1
(7) p]\/[2 (%) = 9256mn—112m-112n+72

(32mn — 18m-—

Proof. We can partition V(%) into three sets based on
vertex degrees. Table 2 shows this partition. By using the
values presented in Table 2, the general Zagreb index of #
can be computed as follows:

M, (H) = (d,)"

ueV ()

(16m + 16n — 12)2% + (32mn — 18m — 18n + 12)4%,
(2)

Similarly, we can partition E (%) into three sets based on
the degree of end vertices of each edge. Table 3 shows this
partition. By using the values presented in Table 3, the values
of Ry, x,»ABC,GA, PM,, and PM, indices of # can be
computed as
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TaBLE 1: Degree-based topological descriptors.

Topological descriptors

Mathematical forms

General Randi¢ index [4,5]

General sum-connectivity index [6]
First general Zagreb index [7]
Randi¢ index [3]

First Zagreb index [8]

Second Zagreb index [8]

First multiplicative Zagreb index [9]
Second multiplicative Zagreb index [10]
Hyper-Zagreb index [11]
Atom-bond connectivity index [12]
Geometric arithmetic index [13]

Fourth version of atom-bond connectivity index [14]

Fifth version of geometric arithmetic index [15]

Ra (%) = ZubeE(%’) (dudb)a
Xot(%) = ZubeE(Z’) (du + db)a
M (H) = Yuevim (d4)"
R(fuz) () = ZubeE(%’) U“/H)
M () = Y uver ) (dy +dy)
M, () = Yuver ) (dy X dy)
PM () = [Luver () (du +dy)
PM, (%) = HuheE(%’) (dydy)

HM(%) = ZubeE(?/) (du + db)z'
ABC(#) = Zu,,eE(m\/((du +d, -2)/(d,d,))
GA(T) = T wer () (N, dy )1 (d,, + )
ABC(H) = ¥ ywer )V (S(1) +S(0) = 2)/ (S (1)S(v)))
GAS (%) = ¥ uner o) (2VS(W)S(0) )/ (S (1) + S(v))

o
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FIGURE 2: Molecular graph of medial of P[m,n].
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FIGURE 3: Molecular graph SM (P [m, n]) of simple medial of P [, n].
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R (HK)= Y (d,dy)*

uveE (%)
= (4m +4n) (2 x 2)% + (24m + 24n — 24) (2 x 4)* + (64mn — 48m — 48n + 32) (4 x 4)*

= (4m + 4n)2°" + (24m + 24n — 24)2°* + (64mn — 48m — 48n + 36)2*,

Kl H) = Y (dy+dy)"

uveE (%)
= (4m+4n) (2 +2)" + (24m + 24n — 24) (2 + 4)" + (64mn — 48m — 48n + 32) (4 + 4)°

= (4m + 4n)2° + (24m + 24n — 24)6" + (64mn — 48m — 48n + 36)2°%,

d, +d, -2
ABC(%) = Zu v~
uveE (K) d,d,
2+2-2 2+4-2
= (4m + dn)\——— + (24m + 24n — 24)\|——
2x2 2x4
4+4-2
+ (64mn — 48m — 48n + 32)
X 4
L (28m + 28 24)+1\/§(64 48 48n + 36)
=—(28m n— —\|=(64mn — 48m — 48n ,
V2 2 V2
(3)
2+d,d
GA(X) = T d “d"
wneE() Fu T o
242 %2 22 x4
= (4m + 4n) + (24m + 24n — 24)
242 2+4
24 x 4

+ (64mn — 48m — 48n + 32)
4+4

2
— (4m + 4n) + g (24m + 24n — 24) + (64mn — 48m — 48n + 36),

PM,(X) = ]‘[ (d, +d,)

uveE (X)

— (2 + 2)4m+4n x (2 + 4)24m+24n7 24 % (4 + 4)64mn— 48m— 48n+32

— 2192mn— 136m-—136n+108 % 624m+24n— 24

>

PMZ ('%/) = H (dudb)
ubeE (X)

— (2 % 2)4m+4n x (2 ~ 4)24m+24n—24 > (4 x 4)64mn748m—48n+32

-9 (256mn—112m—112n+72)
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TABLE 2: Vertex partition of %.

V; 2 4
16m+ 16n—12 32mn—18m — 18n + 12

TaBLE 3: Edge partition E;; of #.

E;; E,, E,, Ey4
24m+24n—24 64mn —48m — 48n + 36

€ i 4m+4n

From Theorem 1, we can compute the values of Randic,
first Zagreb, second Zagreb, and hyper-Zagreb index of %

Corollary 1. Let F be the graph of simple medial of P[m, n],
then we have

(1) Ry (K) = ((4m +4n)/2)+  ((24m + 24n - 24)/
(2V2)+ (((64mn — 48m — 48n + 36))/4),

(2) M, (X) =512mn — 224(m + n) + 144,

(3) M, (X) = 1024mn — 560 (m + n) + 384, and

(4) HM (K) = 4096mn — 2144 (m + n) + 1440.

Next, we will compute the ABC, and GA; indices of %.
For this, we need to find the edge partition §; ; of the graph
H,whereS; ; = {ub € E(¥): S, =i,§, = j}. Let m; ; denote
the cardinality of the set S; ;. The edge partition S; ; of Z is
given in Table 4.

Theorem 2. Let K be the graph of simple medial of P[m, n],
then we have

1 /5 7 1 1 /5
(l)ABC4(%)—§\g(4m+4n)+\,%(8m+8n)+\g(4m+4n)+i\g(4m+4n—8)
2 fi 1 i3 1 i
+—\ﬁ+\ﬁ(4m+4n—8)+f —(4m+4n—8)+f\ﬁ(4m+4n—8)
5 V2 7 2 \21 2 \2

11 1 |15
+ \|—(4m + 4n — 8) + — \|— (64mn — 60m — 601 + 56),
70 8 \2 (4)

(2) GAs (K) =(4m+4n)+i\ﬁ§(8m+8n)+g\/§(4m+4n)+%\/7(4m+4n—8)+(4)

1 2 4
+§\/£(4m+4n—8)+B\/ﬁ(4m+4n—8)+;\/§(4m+4n—8)

4
+1—5x/ﬁ(4m+4n—8)+64mn—60m—60n+56.

Proof. The edge partition of % depending on the sum of
degree of end vertices is presented in Table 4. The result
follows by using the values from Table 4 in the definition of
ABC, (%) and GA; (X). O

3. Topological Indices of Stellation of P [, n]

Let & be the molecular graph of stellation of P[m,n]. It is
obtained adding a vertex in each face of P[m,n] and then
joining this vertex to each vertex of the respective face. The
graph of Z is shown in Figure 4. In Z, there are 32mn —
2n+ 1 vertices and 96mn — 22m — 22n + 12 edges. Suppose
Vi={ueV(&):d, =i} and E;;={uveE(¥):d, =
i,dy = j}. Let n; and e; ; be the cardinalities of the vertex set
V; and edge set E, ;, respectively.

Theorem 3. Let & be the graph of stellation of P[m, n] and «
is a real number, then we have

(1) M, (&)= (8m+8n—4)3" + (8mn — 4m — 4n + 4)
4% + (8m + 8n — 8)5" + (20mn-)12m — 12n + 8)6"
+(2mn—6m—6n)8" + 2mn—-m—n+ 1)12%

(2) R (Z) = (4m +4m)3°* + (8m + 8n — 8)15%+ (8m +
81— 4)18% + (4m + 4n)20% + (24mn — 16m — 16n +
12)24% + (24mn — 16m — 161 + 12)48% + (4m + 4n —

4)5% 1 (12m + 12n - 16)30* + (4m + 4n — 8)40%+
(4m + 4n)60% + (32mn — 26m — 26m + 20)6°* +
(16mn —12m — 12n + 8) 72°,

(3) x, (L) = (4m +4n)6" + (8m + 8n—8)8" +(12m+
12n — 4)3%* + (24mn — 16m — 16n + 12)10° + (8mn
—4m — 4n + 4)16% + (4m + 4n —4)10" + (12m+ 12n
—16)11%+ (4m + 4n — 8)13%+ (4m + 4n)17% + (32mn
—26m —26mn + 20)12% + (16mn — 12m — 12n + 8) 14“
+(16mn — 12m — 12n + 8)18%

ABC(2) = (((24V/3 +242 + 1610 +16+/2)/3) +
8)mn + ((4V14 — 163 — V42 —13+/10 — 4)/3) +
((8V10 +24/35 +6+/30 + V110 — 12+/2)/5)) (m +
n) + ((-2v/14 +12v/3 + 10V/10 + V42 + 8+/2)/3)
+((-8v2 - 830 - 2110 - 8+/10)/5)+ 4),

(5) GA(Z) = (32 + ((486)/5) + ((32v2)/3) + ((92
V3)/7))mn+ (((16+/5)/9) - ((32+/6)/5) + ((24+/30)
/11) + ((16+/10)/13) — ((8+v/2)/3) + (5015 )/17)
—((62+/3)/7)) (m + n) + (246 )/5) — ((32/30)/
11) — (32+/10/13) + (82 )/3) + ((46~/3)/7)-
2V/15),

(6) PM,(Z) = 5 (152imn=76m=76n+56) | 3 (64mn—22m—22n+28)

(4

~—

%5 (24mn—12m—12n+8) %

16) ™ 13(4m+4n—8) x 17(4m+4n)) and

7(16mn— 12m—12n+8) % 11 (12m+12n—
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TasLE 4: Edge partition S; ; of 7.
Sij Sess Se,10 Ss,10 Ss,12 Ss,14 S10,10
m; 4m+4n 8m+8n 4m+4n 4m+4n-8 4m+4n-8 4
Sij S10,14 S12,14 S12,16 Sia16 Si6,16
m;; 4m+4n-8 4m+4n-8 4m+4n-8 4m+4n-8 64mn — 60m — 60n + 56

/)
(K

Ol

XXX

X
(9/

. A\}(& /A\‘ " ‘
Vars

S

e

=
SN

2

N
/\%

NS ZAN
“1‘)&?%}%&

FIGURE 4: Molecular graph of st (P[m,n]).

(7) PM2 (g) — 2(216mn— 100m— 100n+64) %3 (144mn- 60m— 60n+
48) x 5(40m+40n— 40).

Ma(g)z z (du)a

ueV(2)

Proof. We can partition V (&) into six sets based on vertex
degrees. Table 5 shows this partition. By using the values
presented in Table 5, the general Zagreb index of Z can be
computed as

= (8m + 8n—4)3% + (8mn — 4m — 4n + 4)4" + (8m + 8n — 4)5° (5)

+(20mn - 12m — 12n + 8)6" + 2mn —m — n)8" + 2mn —m —n + 1)12°

Similarly, we can partition E (&) into three sets based on the
degree of end vertices of each edge. Table 6 shows this partition.

R(Z)= Y (d,d,)"

uveE (&)

By using the values presented in Table 6, the values of R, y,,
ABC,GA,PM,, and PM, indices of & can be computed as

=(4m +4n) (3 x 3)* + 24mn — 16m — 16n + 12) (3 x 5)* + (8m + 81 — 8) (3 x 6)°

+(Am+4n) (4 x5+ (8m +8n—8)(4x6)" + (8mn—4m — 4n + 4) (4 x 12)°

+(dm+4n—-4)(5x5+(12m+12n—16) (5 x 6)* + (4m + 4n — 8) (5 x 8)"

+ (4m + 4n) (5 x 12)* + (32mn — 26m — 26n + 20) (6 x 6)*

+(16mn—12m—12n+ 8) (6 x 8)* + (16mn — 12m — 12n + 8) (6 x 12)*

= (4m + 4n)3°* + (8m + 8n — 8)15" + (8m + 8n — 4)18% + (4m + 4n)20"

+(24mn — 16m — 16n + 12)24% + (24mn — 16m — 16n + 12)48% + (4m + 4n — 4)5°*

+(12m + 12n — 16)30" + (4m + 4n — 8)40" + (4m + 4n)60"

+(32mn — 26m — 26n + 20)6°* + (16mn — 12m — 12n + 8)72%
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WD = Y (d,rdy)

uveE (&)

= (4m +4n) (3 + 3)" (24mn — 16m — 16n + 12) (3 + 5)% + (8m + 8n - 8) (3 + 6)*
+(Am+4n)(4+5) +(8m+8n—-8)(4+6)" + (8mn—4m —4n+4) (4 + 12)°
+(Am+4n-4)5+5"+(12m+12n-16)(5+6)* + (4m + 4n—8) (5 + 8)*
+ (4m + 4n) (5 + 12)" + (32mn — 26m — 26n + 20) (6 + 6)°
+(16mn—12m—-12n+8) (6 + 8)* + (16mn — 12m — 12n + 8) (6 + 12)*

= (4m + 4n)6" + (8m + 8n — 8)8% + (12m + 12n — 4)3**
+ (24mn — 16m — 16n + 12)10% + (8mn — 4m — 4n + 4)16% + (4m + 4n — 4)10”
+(12m + 12n — 16)11% + (4m + 4n — 8)13" + (4m + 4n)17%
+(32mn — 26m — 26n + 20)12% + (16mn — 12m — 12n + 8)14*
+(16mn — 12m — 12n + 8)18".

ABC(D)= Y d+d

uveE (%)

3+5-2
=(4m+ 4n)\ + (24mn — 16m — 16n + 12)\|————

3+6 2 4+5-2

+(8m + 8n — 8)\/7+ (4m + 4n)
3x6 4x5

4+6—-2 4+ 12 -2
+(8m+ 8n—8)\|———— + (8mn —4m — 4n + 4)\|——
4x12

5+6-2
+(4m + 4n — 4) +(12m+12n—16) SETE
5+8 2 5+12-2
+(4m+4n-8) —+(4m 4n) —_—
6+8—-2
+ (32mn — 26m — 26n+20)\/ +(16mn—12m—12n+8)

6+ 12 2
+ (16mn—12m - 12n+ 8)\——

(24\/_+2\/_+16\/_+16\/_
= 8 |mn

. 4\/ﬁ—16\/’—\@—13\/1—0—4+8\/E+2\/§+6\/%+\/110—12\/5 (
m

+n)

3 5
—24/14 +12+/3 + 1010 + V42 +8\/§+—8\/’—8\/E—2\/110 —8\/E+4)

3 5
2+/d. d
GA(Z) = Chi
weE () Gu Ty
2v3x%x3 3x5
= (4m + 4n) 313 +(24mn—16m—16n+12) 375
243 x6 24 x5
+ (8m + 8n—8) + (4m + 4n)
3 4+5
2V4 X6 2vV4 %12
+(8m + 8n—28) p +(8mn—4m—4n+4)+7
5x5 2/5%x6
+(4m+4n - 4) +(12m + 12n - 16) -
\/5><8 24/5 %12
+(4m+4n - 8) +(4m + 4n) ——
5+8 e 5+12 £33
V6 x 6 X
+ (32mn — 26m — 26n + 20) +(16mn—12m - 12n + 8) 578
246 x 12
+(16mn—12m—-12n+8)———
6+ 12
48+/6 322 924/3
=({32+ + +
5 3 7
165 3246 2430 16v/10 8v2 5015 62+/3
- + + - + - (m+n)
9 5 11 13 3 17 7

24+/6 32430 32410 8v2 463
" 5_11_13+3+7_2\/1—5’
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TABLE 5: Vertex partition of Z.

V; 3 4 5
n; 8m+8n—4 8mn—4m—4n+4 8m+8n-38
V; 6 8 12
n; 20mn—12m—12n+ 8 2mn-m-n 2mn-m-n+1
TaBLE 6: Edge partition of E; ; of Z.
E;; E;; Eys Ess
e 4m + 4n 8m+8n—-38 8m+8n—4
E;; Eys Eye Eyp
e j dm +4n 24mn — 16m — 16n + 12 8mn—4m—4n+4
E;; Ess Esg Esg
€ j dm+4n—4 12m+12n-16 dm+4n-8
E;; Espn Ees Egs
€ 4m +4n 32mn — 26m — 26n + 20 lomn—12m—12n+8
E;j Ee 12
€ 16mn - 12m—12n+8
PM(2)= ] (d,+d,)
ubeE(Z)
— (3 + 3)4m+4n ~ (3 + 5)24mn— 16m—16n+12 x (3 + 6) (8m+8n-8)
% (4 + 5)4m+4n % (4 + 6)8m+8n—8 % (4 + 12)8mn—4m—4n+4
~ (5 + 5)4m+4n—4 x (5 + 6)12m+12n— 16 ~ (5 + 8)4m+4n—8
« (5 + 12)4m+4n ~ (6 + 6)32mn— 26m-—26n+20 x (6 + 8)16mn— 12m—12n+8
~ (6 + 12)16mn— 12m-12n+8
— 2(152mn— 76m—761n+56) x 3(64mn— 22m—22n+28) x 5(24mn— 12m—-12n+8) % 7(16mn— 12m—12n+8)
™ 11(12m+12n— 16) x 13(4m+4n—8) x 1,7(4m+4n),
PMy(2) = [ (dudy)
uveE (&)
— (3 % 3)4m+4n % (3 % 5)24mn— 16m— 16n+12 x (3 x 6)(8m+8n—8)
% (4 % 5)4m+4n % (4 % 6)8m+8n—8 % (4 % 12)8mn—4m—4n+4
% (5 % 5)4m+4n—4 % (5 % 6)12m+12n— 16 % (5 % 8)4m+4n—8
% (5 % 12)4m+4n % (6 % 6)32mn—26m—26n+20 % (6 % 8)16mn— 12m—12n+8
% (6 > 12)16mn— 12m-12n+8
_ 7 (216mn=100m—100n+64) 3 (144mn—60m—60n+48) £ (40m+40n-40) (6)
O
From Theorem 3, we can compute the values of Randi¢, (12/+/24) + (12/+/48) — (16/+/30) — (8/~/40)+  (8/
rst Zagreb, second Zagreb, an er-Zagreb index of Z. + §
first Zagreb d Zagreb, and hyper-Zagreb index of & V72)+ (12/5)
) (2) M, (&) = 1372mn — 432 (m + n) + 260,
ﬁ(e)r;;:fzry 2. Let & be the graph of stellation of P[m, n], then (3) My(Z) = 4032mn — 1712 (m + n) + 1068, and
(4) HM (&) = 17376mn — 7296 (m + n) + 4740.
(1) R, (&) = (V24 + (24/V/48) + (16/N/72) + (16/3))
mn + ((8/+/15) — (8/V/18) + (4/+/20) — (16//24) Next, we will compute the ABC, and GA; indices of Z.
—(16/V48) + (12/+/30) + (4/V/40) — (4/V60) ~ For this, we need to find the edge partition §; ; of the graph

(12/V72) - (11/5)) (m+n) - (8/V/15) - (4/+/18) — %, where S, ;= {uv € E(2):S, =i,5, = j}. Let m;; denote
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the cardinality of the set S; ;. The edge partition S; ; of Z'is ~ Theorem 4. Let Z be the graph of stellation of P[m, n], then
given in Table 7. we have

8482 8v2 442 4+/273 /690 8+/77 24/10 /58 3+/6
(1) ABC,(Z) = + + + + + 2 Jmn+| —— —— T+
21 3 7 21 15 21 5 15 14

4+/3458 s 2+/41538 s 4+/5 s 2+/26 . 24/14 s 24/39962 s 24/5510 s 4+/80852 . 24/19229 . 6\/130i

91 249 7 7 7 377 145 1189 287 65

2\/711_0+2\/m+12\/m+6m_3\/§5_%_4\/5_2\/2—7§_\/@_4\/ﬁ+2\/m+

41 943 161 287 7 3 7 7 10 7 899
2+/256742 +4m +4\/ﬁ _2)(m+n)+( 36 _8\/% _sm _8\/5 _4\/%

1271 31 217 7 91 483 7 7
4+/14 4+/39962 4+/5510 8+/80852 4+/19229 12+/130 4410 4+/160310 24161

7 377 145 1189 287 65 41 943 16l
12\/ﬁ+ 10\/8_2+% s 4+/42 s 10+/273 s \/690 s 1677 8160022 8256742 164/186

287 21 3 7 21 6 21 899 1271 31
16+/7378 +8\/7 +4\/ﬁ +8\/ﬁ +4\/§ +4\/% +4\/% +2\/ﬁ +2\/m . \/9030 +20\/ﬁ +2)

217 7 23 15 5 205 21 23 23 105 15 ’
( \35 128v21 64415 128442 6430 64+/14 ) (4% 4+/91

(2)GA;(Z) = 8 + + + + + +16 |mn + +—t
3 37 31 53 47 15 11 5

4m+%+8\/@+8m+8m+4m+16\/ZT7+2\/W+8\/W+8\/W=

11 3 27 55 59 35 69 7 67 87
8\/@+8\/ﬁ_8\/ﬁ_128@_64\/@_192\/@_96\/@_96\/ﬁ+8m+8m+

37 83 3 37 31 53 47 15 91 103
8+/465 +8\/ﬁ _10)(m+n)+( 8191 8483 161182 161754 16870 81189

23 26 5 11 27 55 59 35
32~/287 ~ 4+/195 ~ 16+/1066 ~ 16+/1886 ~ 16@_ 16\/m+ 8\/§+ 128\/ﬁ+ 64\/ﬁ+ 320x/E+

69 7 67 87 37 83 3 37 31 53
160\/%+ 128@_32@_32@_32@_ 16\/6—5T+ 16\/E+ 16\/ﬁ+ 16\/6—96:

47 15 91 103 23 13 13 37 53
164210 32435 324615 1670 16169 61+/161 4+/105

+ + + + + + +8V2 + 16).

29 89 101 17 35 51 11
4+/3458 s 24/41538 +% s 2\/%+ 2+/14 s 24/39962 . 24/5510 . 4+/80852 . 24/19229 . 6\/@}

91 249 7 7 7 377 145 1189 287 65
2@&%32%&@_3@_@_4\@_2@_\/@_4\/ﬁ+2\/m+

41 943 161 287 7 3 7 7 10 7 899
2m+4m+4m_2)(mn)+(_@_sm_sm_%_@_

1271 31 217 7 91 483 7 7
4+/14 4+/39962 4+/5510 8+/80852 4+/19229 12+/130 4410 4+/160310 24161

7 377 145 1189 287 65 41 943 161
12\/m+ 10\/§+% s 442 s 104273 s /690 s 1677 8160022 8256742 16/186

287 21 3 7 21 6 21 899 1271 31
16m+&+4m+@+%+4m+4m+2\/ﬁ+2m+\/m+2o\/ﬁ+2)

217 7 23 15 5 205 21 23 23 105 15

(7)
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TaBLE 7: Edge partition S; ; of &.

Sij Si2,14 S1223 Si414 S1423 S1426

m 8 4 dm+4n—8 8 8m+8n—16

Sij S8 S1430 S23,28 23,30 Sa6,28

m; 4dm+4n-8 4m+4n 4 8 4dm+4n-38

Sij S6,29 S6,30 Sa6.a1 Sas.28 18,30

m ; 2m+2n-4 4m+4n-38 4m+4n-8 2m+2n—-4 8

Sij Sasa1 Ss,46 Sag,60 29,30 Sz0.41

m ; 4m+4n-8 4dm+4n-38 4 4dm+4n-8 4dm+4n-8

Sij 29,60 S2062 S30,30 S30,32 S30.42

m 8 4m+4n—-16 2m+2n 8mn—-8m—-8n+8 16mn—16m—16n+16

Sij S30,60 S3062 S30,64 Ss22 Sy

m; 20 8m+8n—32 8mn—12m—12n+20 l6mn—16m—16n+16 dm+4n-8

Sij Sa146 S41,60 Su162 Spa Su246

m; dm+4n-8 8 dm+4n—16 16mn —18m—18n+ 20 8m+8n—16

Sij Sa2a8 Sa2.60 Si262 Si2.64

m; 16mn —24m —24n + 32 8 4m+4n—16 16mn —24m — 24n + 40

Proof. The edge partition of Z depending on the sum of
degree of end vertices is presented in Table 7. The result
follows by using the values from Table 7 in the definition of
ABC,(¥) and GA; (Z). O

4. Conclusion

In this work, we have considered two transformations
(medial and stellation) on benzene ring embedded in P-type
surface on 2 D network. We have computed general Randig,
general Zagreb, general sum-connectivity, first Zagreb,
second Zagreb, first multiple Zagreb, second multiple
Zagreb, ABC, GA, ABC,, and GA; indices of these trans-
formation graphs.
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Numerous studies based on mathematical models and tools indicate that there is a strong inherent relationship between the
chemical properties of the chemical compounds and drugs with their molecular structures. In the last two decades, the graph-
theoretic techniques are frequently used to analyse the various physicochemical and structural properties of the molecular graphs
which play a vital role in chemical engineering and pharmaceutical industry. In this paper, we compute Zagreb indices of the
generalized sum graphs in the form of the different indices of their factor graphs, where generalized sum graphs are obtained
under the operations of subdivision and strong product of graphs. Moreover, the obtained results are illustrated with the help of

particular classes of graphs and analysed to find the efficient subclass with dominant indices.

1. Introduction

In many fields (chemistry, physics, computer science, and
electrical networks) various physicochemical and structural
properties such as melting point, boiling point, chemical
bonds, bond energy, solubility, surface tension, critical
temperature, connectivity, stability, density, and polariz-
ability are studied with the help of various TIs (degree-based,
distance-based, and polynomial-based). Moreover, degree-
based TIs have been used as a powerful approach to discover
many new drugs, such as anineoplastics, anticonvulsants,
antiallergics, antimalarials, and silico generation (see [1]).
Therefore, this practice has proven that the TIs and the
quantitative structure-activity (or structure-property) rela-
tionships (QSAR or QSPR) have presented a foundation
stone in chemical engineering and pharmaceutical industry
for the process of the drug design and discovery (see [2, 3]).

Let Q be a collection of (molecular) graphs in which each
graph is considered as a simple graph without multiedges
and loops. A topological index (TI) is a function

Top: QO — R that assigns a real number to each element
(graph) of Q), where R is a set of real numbers. Moreover, for
two graphs G, and G,, Top (G,) = Top(G,) if and only if G,
is isomorphic to G,. Mostly, TIs are computed for the
hydrogen-suppressed molecular graphs in which the atoms
are represented by nodes and bonds between them by edges.
In 1947, Wiener index (path number), first distance-based
TI, is utilized in the study of parafhin’s boiling point [4].
Gutman and Trinajstic [5] calculated total 7-electrons en-
ergy of the molecules through a degree-based TI called as the
first Zagreb index (FZI). They also studied the various
properties of the second Zagreb index (SZI) in the same
paper. In chemical graph theory, many more TIs are in-
troduced in [6], but degree-based TIs are prominent than
others. For more details, we refer to [7, 8].

On the other hand, operations on graphs (addition,
complement, deletion, switching, subdivision, union, in-
tersection, and product) also play a very important role in
the construction of new graphs and structures. Yan et al. [9]
introduced the four operations S;,R;,Q,, andT, on the
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subdivision of a graph and obtained the Wiener index of
these resultant graphs (S, (G),R,(G),Q,(G),T,(G)). For
®, € {S,R,Q,, T}, Taeri and Eliasi [10] defined the
®,-sum graphs (G, G,) using the Cartesian product on
graphs @, (G,) and G,, where G,andG, are connected
graphs. They also studied the Wiener index of these @, -sum
graphs. Liu et al. [11] constructed ®-sum graphs with the
help of the Cartesian product on the graphs ®(G,) and G,
and calculated the first general Zagreb index for these
graphs, i.e., M‘{‘((GHCD1 G, ) Liu et al. [12] introduced the
generalized ®-sum (®,-sum) graphs with the help of the
Cartesian product on the graphs @, (G,) and G,, where k
represents some integral value. Moreover, they calculated
the mathematical expressions of the Zagreb indices for these
graphs, i.e., Ml(( G, Gy )) and Mz(( G, Gy )) Fur-
thermore, Awais et al. [13, 14] computed the forgotten
topological and hyper-Zagreb indices of generalized F-sum
graphs based on Cartesian product in terms of its factor
graphs. Recently, Awais et al. [15] computed the first general
Zagreb index of F;-sum graphs in terms of T1s of their factor
graphs.

In the current study, we study the generalized ®-sum

graphs which are obtained under the operation of strong
product on the graphs @, (G,) and G,, where
O € {S, R Qi Ty} and k is some counting number.
Mainly, we compute the Zagreb indices of these generalized
®-sum graphs based on strong product such as
Ml(( G, Gz)) and Mz(( Giro, G2 )) Moreover, a
comparison is also organized of the generalized ®-sum
raphs (Gmsk G, )) (Glka G, ), (Glek G, ), and
%Glng Gz) with respect to both the Zagreb indices (M,
and M,). The rest of the paper is settled as follows: Section 2
covers basic notions, Section 3 predicated on main results,
and conclusively Section 4 included the application and
conclusion.”

2. Preliminaries

A graph G, is a structure consisting of two finite sets of
vertices V (G) and edges E (G) in which pairs of vertices are
connected by edges. In particular, a graph will refer to a
simple undirected graph if each edge connects two distinct
vertices and there are no parallel edges. Throughout the
paper, the order of G, is [V (G, )| = ng , and the size of a G, is
|E(Gy)| = eg,- Given two vertices p and z, if pz € G, then p
and z are said to be adjacent. The strength of edges which are
incident on any node p € V(G,) is known as its degree
dg, (p) [16]. Here, we defined few topological indices.

Definition 1. Let G, be a simple undirected graph. The first
Zagreb index (M, (G,) and second Zagreb index (M, (G,))
are:

MG)= Y [de @] = Y [de (P +ds (2],

% (Gl) pzeE (Gl)
M, (G) = Y [dg (p)xdg, (2)].
pzeE (G))

(1)
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In 1972, Trinajsti and Gutman [5] introduced these two
TIs which are used in study of structure-based properties of
(molecular) graphs (see [17-19]). In 1960, Sabidussi [6]
introduced the strong product (G,®G,) for two graphs G,
and G, with vertex set as Cartesian product V (G,RG,) =
V(G,) x V(G,) such that (p;, p,) and (z,,z,) will be ad-
jacentin G,XG, iff p; = z, and p, is adjacent to z, or p, = z,
and p, is adjacent to z; or p, is adjacent to z, and p, is
adjacent to z,. Strong product is union of tensor product and
Cartesian product.

Definition 2. The four generalized operations related to the
subdivision of graphs defined in [15] are given as follows:

(i) k-subdivision operation S; =S, (G,) can be made
by adding k new node in each uveE(G,) of Gy,
where k >1 is an integral value

(ii) k-semitotal-point graph R, = R, (G,) with node set
V(Ry) =V (G,)UKE(G,) and link set E(R}) =
E(S))UVE(G))

(iii) k-semitotal line graph Q, = Qi (G,) with node set
V(Q) =V(G)UKE(G,) and link set E(Qy) =
E(S;) UE(Ly).

(iv) k-total point graph T =T, (G;) with node set
V(T,) =V(G,)UKE(G,) and link set E(T) =

E(S)UE(L,)UE(G,) (for more details, see
Figure 1).
Definition 3. Let G;andG, be two  graphs,

@y € {Si, Rio Qg T} is an operation, and @, (H;) is ob-
tained after applying @, on G, having edge-set E (D, (G,))
and node set V(®, (G,)). The generalized ®-sum graph
(Glmk Gz) is a graph having node set:

V(GIWDk GZ) =V (0 (G))) xV(G,)
= (V(G1)UKE(G))) x V(G,),

(2)

such that two nodes (p,,z,)&(p,,z,) of V( Gigo, G, ) are
adjacent iff p, =p, € V(G,)and (z,,2,) € E(G,) or
z, =z, € V(G,)and (p,, p,) € E(D,(G,)) or
[(zy,2,) € E(G,)and (p;, p,) € E(D,(G,))], where k>1 is
a positive number. We noticed that the generalized ®-sum
graphs (qu)k G, ) contain |V (G,)| copies of graphs
@, (G,) that are labeled with the nodes of G,. For more
details, see Figures 2 and 3.

3. Main Results

Now, we will prove the key results of M 1( G®p, G, ) and
Mz( Gi®y, G, ) in terms of its factor graphs G, and G,. We
assume that G,andG, be two simple, undirected, and
connected graphs with order and size, [V (G))|=
”Gl&|E(G1)| =eg, and V(G| = ”G2&|E(G2)| =eg,
respectively.

Theorem 1. Let G, and G, be two connected graphs such that
[V(G)I=3, [V(G,)|=2. For k>1,
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FIGURE 4: (a) Graphical representation of M, (P, ®P,,), M, (P, ®P,), M, (P, ®P,),and M, (P, ®P,)by red, green, orange, and purple
colour, respectively. (b) M, (P, ®P,), M, (P, ®P,), M,(P, ®P,), and M, (P, ®P,) by purple, orange, pink, and green colour,
respectively.
(@) M,(G,8,G,) = M, (S,G,) [ng, + 2e,| + 8(2k — I)eg eq, + [ M, (G,) +4eg | [M, (G,) + 2eg,|
+ M, (G,) [4eG1 + nGI] +4 (k- 1eg, [n, + M, (G,)],
(b) M,(Gy85,G,) = [M, (G,) + 4eg | [Seq, +3M, (G,) + 2M, (G,) + 16, | + M, (Gy)[eg, + M, (G,) + M, (G,)]  (3)
+4(k - Deg [6eg, + 3M, (G,) + M, (G,) +ng, | + My(G,)] [12¢6, +n |
+8eg e, + M (G,) [146G1]'

Proof. Let d(p,z) = dg x g, (p>z) be the degree of a vertex
(p,2) in the graph G,®; G,.

Ml (GIESkGZ) = Z‘<p,z)£V (Glxssz) dz (P’ Z) = Z(Pl’zl) (P2>22)EE (Glgssz) [d (Pl’zl) + d(PZ’ ZZ)]

= Y 2 ldpz)+dpz)l+ ) Y [d(pn2) +d(py2)]

peV (G,) z,p,¢E (G,) 2eV (Gy) p1pa¢E (S (G1)) )

D) Y [d(ppz) +d(prz)] = Y14y 2+ 3

P102¢E (S (G1)) 21226V (Go)
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Consider

Yi= ) ) ldpz)+dpz)l= ) ) [2d(p)+d(z)+d(z)+d(p)(d(z) +d(z,))]

pevV (G]) zlzst(Gz) peV (G) z,z,¢E(H)
= 46G1€G2 + Ml (Gz)nGl + 2M1 (Gz)eGl.

2= ) Yo ldpry) +d(pr2)] = Y y [d(p2) +d(py2)]

26V (G,) p1pacE (8¢ (G1)) 26V (Gy) preV (Gi)op2eV (8k (G1)-Gr)

) Y A +d(pna)] = Y2 + Y 2",

zeV (Gz) PipreV (Sk (Gl)_G )

2= ) D [d(py.2) +d(py2)]

zeV (G,) p1p2eE (Sk (G1))preV (Gy)opaeV (S (G1))-V (Gy)

= ) Y [(d(py) +d(p)) +d(2) +(d(py) +d(py))d (2)].

zeV (G,) p1p2eE (Sk (G1))preV (Gy)opaeV (S (G1))-V (Gy)

Since in this case |E (S, (G))| = 2|E(G)|, we have

M, (S, (Gl))”cz +4eg eg, + 2M, (S, (G1))ecz’

Y=y Y [d(p1.2) +d(py2)]

2V (G2) p, p,eE (S, (G1)) pypreV (S, (G1))-V (G1)

[d(p1) +d(p1)d(2) +d(p,) +d(p,)d(2)].

2eV(G2) p, py¢E (8, (G1)) py.paeV (S (G1)-V (G1)

Since in this case |E (S, (G1))| = (k — 1)|E(G1)|, we have

= Y (4(k-1Deg, +4d(2) (k- 1)eg,) = 4(k - Deg ng, + 8eg, (k- Deg,,
zeV (G2)

23 = Z Z [d(p1>21) +d(p22,)]

P1P2¢E (8 (G1)) 21226V (Gy)

[d(p1,21) +d(py2,)]
22,6V (G,) p1 p,€E (S (G1))p1eV (G ).,V (S (G1))-V (G))

+ Y > [d(p1z) +d(przy)] =) 3+ 3,
22,6V (G,) p1p,€E (Si (G1)) p1op2eV (S (G1))-V (G))

23, = Z Z [d(p1>21) +d (P2 25)]
z12,6V (Gz) P1p2eE (Sk (Gl))Plfv (Gl)’PZSV (Sk (Gl))_V (Gl)

) ) [(d(p1) +d(p2) +d(z)) +d(p1)d(z)) +d(p;)d(2,)]

z,2,eV (Gz) pievV (G] )va*‘:V (Sk (Gl ))_V (Gl)

= 2e [M, (G,) +4eg | + 2e M, (G,) + M, (G,) [ M, (G)) + 4eg, |,

23= 2 > [d(ppz1) +d (P 2,)]
z,2,6V (Gz) P1py€E (Sk (Gl))P1>P25V (sk (Gl))_v (Gl)

212,V (Gz) Pi1p2€E (Sk (Gl))P1>P25V (sk (Gl))_v (Gl)

[4+2(d(z)) +d(z,))] = 8(k— eg e, +4(k—1eg M

1(Gy)-

(5)

(6)

(7)
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Consequently, we get

MI(GIIZSsz) =M, (5,G,) [nGz + Zer] +8(2k - )eg eg, + [M1 (G,) + 4eGl] [M1 (G,y) + 2662]
+M,(G,) [4eG1 + nGl] +4(k - 1eg, [n, + M, (G,)],

M, (GEG,)= Y d(po)= D [d(p1,21)d (P2 2,)]
(P’Z)SV(G1E‘ssz) (pr21) (Pz’zz)fE(Glgskcz) (8)
Y Y [dpz)d(pz)l+ ) Y. [d(pn2)d(py2)]
peV (G,) 2,2,¢E (G,) zeV (G,) p1p2¢E (S (Gy))

+ Z Z [d(p1,21)d (P2 2,)] Zl+22+23

P1p2eE (S (G1)) 21226V (Gy)

Consider

Yi= Y Y [dpz)dpz))= Y Y [dp) +d(z)][d(p) +d(z)]

peV (G,) z,2,¢E (G,) peV (G)) z,2,¢E (G,)
T Y [0 RO e+ () + d (P () + dz) + 2 () (=) + d(2)d (2)]
peV (Gl) z,2,€E (Gz)

=M, (Gl)er +M,(G))[M,(G,) + M, (Gy)] + 2eg, (M, (Gy) +2M, (G,)] + M, (Gz)”Gl’

2= ) > [d(p1,2)d (P2 2)]

zeV (Gz) P1p2€E (Sk (Gl))plsv (Gl),pZEV (Sk (Gl)—Gl)

+ Z Z [d(p12)d(ps2)]

zeV (Gz) p1p2eE (Sk (Gl))Pl’PZSV (Sk (Gl)*Gl)
_ Z 2! + Z 211’
Y=y Y [d(p1,2)d (P, 2)]

zeV (G,) p1pa2eE (Sk (G1))p1V (Gy)pagV (Sk (Gy))-V (Gy)

Z Z [(d(p,) +d(2) +d(p,)d(2))(d(p,) +d(p,)d (2))]

zeV (G,) p1p22E (S (G1))p1eV (Gy).pa8V (S (G1))-V (Gy)

Z z [d(Pl)d(Pz) +2d(py)d(p,)d(z) +d(p,)d(y) +d(p2)d2(z)
zeV (G,) p1p2eE (S (G1))p1eV (G, ).paeV (S (G)))-V (Gy)

+d(p))d(p,)d (2)]
[M2 (G,) + 4eG1] [”G2 +4eg + M, (Gz)] +8eg e, +4eg M, (Gy),
22 =) > [d(p1,2)d (pr2)]

zeV (G,) p1p2eE (St (G1)) propagV (S (G1))-V (Gy)

[(d(py) +d(p1)d(2)(d(p,) +d(p,)d(2))]
26V (Gy) p1pagE (8¢ (G1)) p1opaeV (S (G1))-V (G1)

[4+8d(2) +4d” (2)] = 4(k - Deg [ng, +4eg, + M, (G,)],
zeV (G,) p1p2eE (S (G1))preV (Gy).p.eV (S (G)))-V (Gy)

23 = Z Z [d(p1>21)d (P2 2)]

2,2,V (G,) p1p2eE (Sk (G1)) 1€V (Gy)opaeV (S (G1))-V (Gy)

+ Z Z [d(p1>21)d (P2 25)] 23 +z3”

21226V (Gy) p1p2¢E (S (G1))prpagV (Sk (G1))-V (Gi)
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3= 2 > [d(p1:20)d (p22)]
22,6V (G,) p, p,¢E (S (G1)) 1V (G ).p2eV (Si (G1))-V (G))
= ) > (d(p1) +d(z,) +d(py)d(z,))d(p,) +d(p,)d (z,))]

22,6V (G,) p1 p,€E (S (G1)) p1V (G))op2eV (8¢ (G1))-V (G))

zeV (G,) pipaeE (S, (G1))p1eV (Gy).paeV (8¢ (G1))-V (G))
- [d(p1)d(p,) +d(p1)d(p2)d (z,) +d(p,)d(z,) +d(py)d(z,)d (z,) +d(p1)d (p,)d (z1) + d(p1)d(p,)d (z1)d (2,)]

=[M,(G,) + e | [eg, + 2M, (G,) + 2M, (G,)] + 8e¢, M, (G,) + 8e¢, M, (G,),

23"= ) Y [d(p1.21)d (P2 2,)]

2eV(G2) p, p,eE (S (G1))z,p,eV (Si (G1))-V (G1)

= ) > [(d(p1) +d(p1)d(21))(d(p,) +d(p:)d(2,))]

2eV(G2) p, p,E (S (G1)) py,paeV (Sx (G1))-V (G1)

= ) > [4+4(d(z,) +d(z,)) +4d(z,)d(2,)] = 8(k - D)eg, [eg, + M, (G,) + M, (G,)].
zeV (G,) preV (G1),p2eV (8¢ (G1))-V (G)

(9)

Therefore,

Mz(GﬂZssz) = [Mz (Gy) + 4361] [Ser +3M,(G,) +2M,(G,) + ”GZ] + M, (G,) [eG2 +M,(G,) + M, (Gz)]
+4(k - Deg [6eg, + 3M, (G,) + M, (G,) + ng | + My(G,)][12eg, +ng, | (10)

+8eg e, + M, (G,) [143G1]-

Theorem 2. Let G, and G, be two connected graphs such that
[V(GDI, [V(G,)|=4. For k>1,

(@) M, (G2, G,) = M, (G,) [ng, + 12e6, +4M, (G,)] + M, (G,) [12¢g, + 2n; | + 24eg eg,
+[M, (R, (G,)) - 2M,G,] [nGz + 2eG2] +4(k-1)eg, [nG2 +4deg + M, (GZ)],

(b) M, (G G, ) = M, (Gy)[8eg, + 12M, (G,) + 4M, (G,)| + 4M, (G,) [ng, + 6e¢, + 3M, (G,)] (11)
+[M, (R, (G))) - 4M,G, + 4 (k - )eg | [6eg, + 3M, (G,) +2M, (G,) + ng,

+ M, (G,)[ng, +2eg, | + e, [3M, (G,) + 3M, (G,) + 4eg | + e M, (G,).
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Proof. Letd(p,z) = dg », g, (P>%) be the degree of a vertex
(p,2) in the graph G;&, G,.

MI(GIIZ’RkGZ) = Z d*(x,2) = Z [d(p1>21) +d(22,2,)]
(p,z)eV(Gl\szGz) (CED) (pz,zz)sE(G]&Rsz)
Y Y ldpa)+dpa)]+ ) Y [d(pi2)+d(py2)]
peV (G,) 2,2,¢E (G,) zeV (G,) p1p2eE (R (G)))

+ Z Z [d(p1,21) +d(py2,)] = Zl+22+z3

P1P2¢E (R (G)) 21226V (G,)

Yi= Y Y [dpy)+d(p )]

% (Gl) z,2,¢E (Gz)

= Z Z [2d(p) +d(z))+2d(p)d(z,) +2d(p) +d(z,) +2d(p)d(z,)]

peV (G,) 2,2,¢E (G,)

= Y ) d(p+d(z)+d(z)+2d(p)(d(z) +d(2))]

pevV (Gl) z,2,¢E (Gz)
= SeGler + Ml (Gz)nGl + 4M1 (Gz)eGl,

2= ) Y ld(puz)+d(ppz)]= Y Y [d(py2) +d(py2)]

zeV (Gz) P1P2€E (Rk (Gl)) zeV (Gz) P1P2¢E (Rk (Gl))Pl’stv (Gl)
> ) [d(pry) +d(pna)] + Y

zeV (G,) prpagE (R (G1)) preV (G )opaeV (Re (G1)-Gi) 26V (G;) p1p2¢E (Ri (G1))propaeV (Ri (G1)-Gy)
-[d(p1,2) +d (P y)]

DI IPAED YA
22= ) > [d(p1.2) +d(pyr2))]

zeV (Gz) P1p2€E (Rk (Gl ))PJ)PZSV (Gl)

= ) Y [d(py) +d(2) +d(p)d(2) +d(p,) +d(2) + d(p,)d (2)]
zeV (Gz) P1P2€E (Rk (Gl))Pl’szv (Gl)
= > [d(p1) +d(p,) +2d(2) +d(y)(d(p) +d(p,))]

zeV (Gz) Pp1p2€E (Rk (Gl))pl’PZSV (Gl)
2ng, M, (Gy) + deg e, + 4eg M, (G,),
22" = Z Z [d(p1-2) +d(ps y)]
zeV (G,) p1p2eE (R (G1)) 1V (Gy).paeV (S (Gy))-V (Gy)
[d(py) +d(p,) +d(2) +(d(py) +d(p,))d (2)]
zeV (G,) p1p2eE (R (G1)) 1V (Gy)p2eV (S (Gy))-V (Gy)
[M, (R, (G))) - 2M, (G,)] [”G2 + 2eG2] +4eg €,

> > [d(p1,2) +d(p22)]

2eV(G2) p, p,eE (R (G1)) py.p,eV (R (G1))-V (G1)
[d(p1) +d(p,) +(d(p)) +d(p,))d(2)]
zeV (G2) P1P2eE (Rk (Gl))Pl:PZSV (Rk (Gl))—V(Gl)
=4(k - 1eg ng, +8(k - 1eg e,

23 = Z Z [d(p121) +d(pr2))] = Z Z [d(p121) +d (P2 25)]

p1p2¢E (R, (G))) 2,226V (G,) 212,6V (Gy) p192¢E (R (G1)) pipaeV (Gy)

+ Z Z [d(p1,21) +d(p22,)]

2,2,V (G,) p1p2eE (Re (Gy)) preV (G )opaeV (R (G))-V (Gy)

* Z Z [d(p1>21) +d(p2,)] 23 +Z3"+Z3

z12,EV. (Gz) Pi1p2€E (Rk (Gl))Pl*pZSV (Rk (Gl))—V (G )

>
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2= ) y [d(py21) +d (P2 2,)]

22,6V (Gz) P1p2€E (Rk (G1))P1’P25V (Gl)

[d(p1) +d(z,) +d(p1)d(z;) +d(p,) +d(2,) +d(p,)d(2,)]
z,2,€V (Gz) P1p2eE (Rk (G1))P1’P25V (Gl)

[d(py) +d(p,) +d(z,) +d(z;) +d(py)d(z,) +d(p,)d (2,)]
z12,€V (Gz) P1p2€E (Rk (Gl))Pl)PZSV (Gl)

= 4eg, M, (G)) +2M,; (Gz)ec1 +2M,(G,)M, (G,),

3= ) D [d(py2y) +d(pyr2,)]

22,6V (G,) p, p,¢E (R (G,)) 1V (G ).p,8V (R, (G)))-V (Gy)

[d(p;) +d(z;) +d(py)d(z,) +d(p,) +d(pr2,)]

22,6V (G,) p1p2¢E (R (G1))preV (G1).paeV (R (G1))-V (G))

=4deq M, (G,) +2M, (Gz)eG] +2M, (G,)M, (G,) + 8eg eq, +4eq M, (Gy)s

23,” = Z Z [d(p121) +d (P2 25)]
z12,6V (Gz) Pp1p2eE (Rk (Gl))P1>P25V (Rk (G1))*V (Gl)

[d(p1) +d(p,) +d(p1)d(z,) +d(py)d(z,)]

22,6V (G,) p1 p,€E (R (G,)) p1opaeV (R (G)))-V (Gy)

=8(k—1)eg e, +4(k—1)eg M, (G,).

Hence,
M,(G&y G,) = M, (G,)[ng, +12e5, +4M, (G,)] + M, (G,)[12e, + 2ng | +24eg e,
+[M, (R, (G,)) - 2M,G,] [nG2 + 2er] +4(k - 1eg, [”G2 +4eg + M, (Gz)],
(b)MZ(GlkaGZ) = Z a’ (p,2) = Z [d(p121)d (P2 22)]
(x,z)sV(GllszGz) (p1z1) (PZ)ZZ)SE(GlngGZ)
= > Y [lde=z)dpz)]+ ) Y [d(p2)d(py2)]
peV (G)) 2,2,¢E (G,) zeV (G,) pipa¢E (R (Gy))

) Y [dprz)d(prz)] =Y 1+ Y2+ Y 3,

pi1p2€E (Rk (Gl)) z,2,¢V (GZ)

(12)

(13)
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Consider

Yi= ) Y ldpz)dpzn)l= ) ) [dp+d(z)]dp) +d(z)]

% (Gl) z,2,¢E (Gz) pevV (G]) z,2,¢E (Gz)
=Y Y [E R () +d() +d (p)(A(2) +d(z)) +2d(p)d (2,)d (2,) + d (2)d (=)
peV(Gl)zlzzeE(Gz)

= Z( [4M, (G)) +4M, (G))] [d(zl) +d(z,) +d(2))d(2,)] + deg, [d(z) +d(z;) + 2d(z1)d(z2)]
z,2,¢E (G,)

+ d(zl)d(zz)(”Gl) =4M, (G,) [eG2 +M,(G,) + M, (Gz)] +4eg, [M, (G,) +2M, (G,)] + M, (Gz)”Glx

2= ) Y. [d(pr2)d(py2)]

zeV (Gz) P1P2€E (Rk (Gl))

> [d(pn2)d (p2)] + ) > [d(p1,2)d (P, 2)]

zeV (G,) p1p2eE (R (G1)) p1paeV (Gy) zeV (G,) p1p2¢E (R (G1)) p1eV (Gy).p2eV (Ri (G,)-Gy)

+ ) > [d(pr2)d(p2)] = 2"+ Y 2"+ Y 2",

zeV (Gz) Pp1pyeE (Rk (Gl))PpPzEV (Rk (Gl)*Gl)

Y= ) Y [d(pn2)d(pr2)]

2eV (Gy) p1p2¢E (R (G1))

) Y. [d(p)+d(@) +d(p)d(@)][d(p,) +d(2) +d(p)d (2)]

zeV (Gz) P1P25E(Rk (Gl))

[4d(p,)d(py) +2d(p,)d(2) +4d(p,)d(p,)d (2) +2d(p,)d (2)
zeV (G,) p1p2eE (R (Gy))

+d(2) +2d(p)d (2) + 4d (p,)d (p2)d (2) + 4 (p,)d (p,)d (2)]

=4M, (Gl)[nG2 +4eg, + M, (G,) +2M, (G)) [Ml (Gy) +2e5, + e, M, (G,),

22 =) ) [d(p1,2)d (pr2)]
zeV (G,) p1p2eE (R (G1)) p1eV (G))p2eV (R (Gy))-V (Gy)

[(d(p, +d(2) +d(p))d(2))(d(p,) +d(pr)d (2))]
zeV (G,) p1p2eE (R (G1)) p1eV (Gy).p2eV (R (Gy))-V (Gy)

2d(p)[1+d(2) +d(y) +d*(2) +2d(2) +2d° ()]
zeV (Gy) p1p22E (R (G1))pieV (G )opaeV (R (G1))-V (Gy)

=[M, (R, (G,)) - 4M, (G,) [”G2 +4eg, + M, (G,) + 8eg e, + deg M, (G,),

n

[d(p12)d(p2.2)]

™M
Il

2 zeV (G,) p1p2eE (R (G1)) p1paeV (Re (Gy))-V (Gy)

[(d(p)) +d(p1)d(2))(d(p,) +d(py)d(2))]
zeV (G,) p1p2eE (R (G1)) pipaeV (Re (G,))-V (Gy)

[4+8d(y) +4d*(2)] = 4(k — )eg, [ng, +4eg, + M, (G,)],
2V (G,) eV (G,).p,6V (R (G)))-V (G))
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23 = Z Z [d(p1>21)d (P2 25)]

2,2,€V (Gz) P1p2€E (Rk (Gl))Pl’PzeV (Gl)

+ Z Z [d(p1>21)d (P2 2)]

22,6V (G,) p1 p,¢E (R (G,))p1eV (G ).,V (R, (G)))-V (G,)

) > [d(p12)d(prz,)] =Y 3+ Y 3"+ 3",

z,2,6V (Gz) P1p2€E (Rk (Gl))Pl’PZSV (Rk (Gl))_v (Gl)

23, = Z Z [d(p1>21)d (P2 25)]
22,6V (G,) p1p2¢E (R (G))) p1-p2eV (Gy)
= ) > [4d(p1)d(p,) +2[d(p1)d(2,) +d(p,)d(z))] +d(z))d (z,)

z,2,€V (Gz) p1p€E (Rk (Gl))pl,pZEV (Gl)
+4d(py)d(p,)d(z1)d(z,) +4d(p,)d(p,y)[d(z;) +d(2,)] +2[d(p,) +d(p,)]d (z1)d(2,)]

=8M, (G )eg, + 2M, (G))M, (G,) +2M, (G, )eg, + 8M, (G,)[M, (G,) + M, (G,)] +4M, (G,)M, (G,),

23” = Z Z [d(p1>21)d (P2 2)]

22,6V (G,) p1p2¢E (R (G)))p1eV (G )op2eV (Ri (Gy))-V (G))

[(d(p1) +d(z)) +d(p1)d(21))(d(p2) +d(p2)d (2,))]

z,2,€V (Gz) p1p2eE (Rk (Gl))plsv (Gl)’PZSV (Rk (Gl))_v (Gl)

> Y [4d(p))[1+d(z,) +d(z))

2,2,V (G,) pyp2eE (Re (G)))p1eV (G)).paeV (R (G)))-V (Gy)
+d(z))d(z,)] +2[d(z)) +d(2,)d (2,)]]

= [M, (R, (Gy)) - 4M, (G,)] [2362 +2M,(G,) +2M, (Gz)] +4eg, (M, (G,) + M, (G,)],

n

Z = Z Z [d(p1>21)d (P2 2)]

3 2,206V (G,) py paeE (R (G1)) py.p,eV (Ry (G1))-V (G1)

[(d(p1) +d(p1)d(21))(d(p2) +d(p2)d(22))]

2,2,6V (G,) p1 po¢E (R (G1)) py,p2eV (Ri (G1))-V (G1)

Z Z [d(p)d (p2)[1+(d(y,) +d(21)) +d(21)d(2)]]

2,2,6V (G,) p1p2eE (R (G1))p1eV (G)).paeV (R (G)))-V (Gy)

=8 (k- 1eg, [eg, + M, (G,) + M, (G,))- (14)

Consequently, we have

Mz(GlkaGz) =M, (G)) [8662 +12M, (G,) + 4M, (Gz)] +4M, (G,) [nGz + Geg, +3M, (Gz)]
+[M;, (R, (G,)) - 4M,G, + 4 (k - Deg, | [6eg, +3M, (G,) + 2M, (G,) + g, | (15)

+M,(G,) ["Gl + 2661] +deg, [3M1 (G,) +3M,(G,) + 4eG2] +eg M, (Gy).
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Theorem 3. Let G, and G, be two connected graphs such that
[V(GDI, [V(G,)|=4. For k=1,

(@) M,(G,R(,G,) = k[M;(G,) +2M, (G,) - 2M, (G,)] [ng, + 4eq, + M, (G,)] + 8eg e,

+M,(G))[2(k-1) +3] [nG2 +4eg, + M, (Gz)] +M, (Gz)[nG1 + 4eGl],

(b) M, (Gy386,G, ) = K[ng, + e, + 3M, (G,) + 2M, (G,)] % S (dh () -di )
veV (Gl)

(16)
+ Z rdg (wdg, (v) + Z dél ) Z dg, (1) - 2M, (G))
uveV (Gl) veV (Gl) ueV (Gl)
uveE (Gl)

+M,(G,) [4€Gl + ”Gl] +2eq M, (G,) + M, (G,)[5e, + 5M, (G,) + 5M, (G,)]

+k[M;(G,) +2M, (G,)] [6eg, + 3M, (G,) + 2M, (G,) +ng |.

Proof. Let d(p,z) = dg g, g, (P>2) be the degree of a vertex
(p,2) in the graph G,®,, @2

M1<G1'ZQkG2) = Z d’ (p.z) = Z [d(p1>21) +d (P 25)]
(p,z)sV(Glesz) (p1oz1) (pz,zz)sE(Gllesz)
> 2 [dpz)+dpz)+ ) > [d(pn2)+d(py2)]
peV (G)) z,2,¢E (G,) 2eV (Gy) p1p2¢E (Qi (G1))

+ Z Z [d(p1,21) +d(py2,)] = ZI+ZZ+Z3

P1P2¢E(Qc (G1)) 21226V (Gy)

Yi= Y Y [dpz)+d(pz)]

pevV (Gl) z12,€E (Gz)

= ) ) (A +d(z)+d(pd(z,) +d(p)+d(z,) +d(p)d(z,)]

peV (G,) 2,2,¢E (G,)

= ) ) A +d(z)+d(z) +d(p)[d(z) +d(z)]]

PV (G) z,2,¢E (G,)
= 4eGIeG2 + Ml (Gz)nGl + 2M1 (Gz)eGl,

Y2= ) Y. [d(pp2) +d(py2)]

zeV (G,) p1preE (i (Gy))

= > [d(p1,2) +d(p22)]
zeV (Gz) P1P2€E (Qk (Gl))Pl*:V (Gl))PZEV (Qk (Gl)—Gl)
* Z Z [d(p1>y) +d(pa2)] 222/4'22”,

zeV (Gz) Pi1P2€E (Qk (Gl))Pl’PZSV (Qk (Gl)_Gl)
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22 = > [d(p1,2) +d(py.2)]
zeV (G,) p1p2eE(Qi (G1))p1eV (Gy).paeV (Qi (G1))-V (Gy)

> Y [d(p1) +d(2) +d(p)d(y) +d(p,) +d(p,)d(2)]
zeV (G,) p1p2cE (Qi (G1))p1eV (Gy)pagV (i (G1))-V (Gy)

= M, (G))ng, + 4eg e, +6M, (G))eg, + 2ng M, (G,),
22" = ) > [d(p1,2)d (2 2)]. (17)
zeV (G,) p1p2eE (Q (G)))
21peV (% (G))-V(G)

Now, we split this sum into two parts for the vertices, p, Q. (G,) which are in the same edges of G, and Y 2"b of
and p,, where p,p,eV(Qr(Gy)) -V (G,). Assume that Q. (Gy) in two different adjacent edges of G,.
Y2"=Y2"a+Y2"b, where Y 2"a cover the edges of

2= ) > [d(p1,2) +d(ps,2)]
zeV (Gz) P1P2¢E (Qk (G] ))PI’PZSV (Qk (Gl ))_V (G])

= Z Z [d(p)) +d(p,)d(2) +d(p,) +d(p,)d(2)]
zeV (Gz) P1P2¢E (Qk (Gl))P1>P25V (Qk (Gl))_v (Gl)

=2(k-1)ng M, (G,) + 4(k - leg M, (G,),

ECEEDY > [d(p1>y) +d (P 2)]
zeV (Gz) P1P2¢E (Qk (Gl))PpPzEV (Qk (G1))*V (Gl)
= Z Z [d(p,) +d(p,)d(2) +d(p,) +d(p,)d(2)]

2V (Gy) p1p22E (Qi (G1))piopaeV (Q (G1))-V (G)

= Z Z [dw)+d(v)+d(v)+d(w)+[d(u) +d(v)+d(v) +d(w)ld(z)]

zeV (Gz) u,v,weV (Gl)uv,vwsE (Gl)
= k[M;(G,) +2M, (G,) - 2M, (G, )] [”GZ + Zer]’

23 = Z Z [d(p1>21) +d(p225)]

P1P2eE (Qi (G1)) 21226V (Gy)

(18)

= X > [d(p1rz1) +d (pyr25)]
z,2,eV (Gz) Pp1py¢E (Qk (Gl))Plsv (Gl)>P25V (Qk (Gl))*v (Gl)
oy > [d(p1rz1) +d (pyr22)]

z12,€V (Gz) Pp1p2eE (Qk (Gl))Plvasv (Qk (Gl))_V (Gl)
— Z 3/ + Z 3//’

23= 2 > [d(p1,21) +d(p22,)]
22,6V (G,) py p,¢E (Qi (G))) p1-p2eV (Gy)

= Z Z [d(p)) +d(z)) +d(p,)d(z,) +d(p,) +d(z,) +d(p,2,)]
z,2,eV (Gz) P1P2¢E (Qk (Gl))Pl»szv (Gl)

= 6eg, M, (Gy) +2M, (Gz)eG1 +3M, (G,)M, (G,).
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Now, we split this sum into two parts for the vertices, p, Q, (G,) which are in the same edges of G; and Y 3"b of
and p,, where p,p,eV(Qc(I})) -V (). Assume that Qi (G,) in two different adjacent edges of G;.
¥3"=Y3"a+Y3"b, where Y 3"a cover the edges of

23”‘1 = Z Z [d(p1,21) +d(py22)]
22,6V (G,) p1p,€E (Q; (G1)) 16V (G)).p2eV (Qi (G1))-V (G))
= Z Z [d(py) +d(p,)d(z;) +d(p,) +d(p,)d(z,)]

z,2,6V (Gz) Pp1p2€E (Qk (Gl))PISV (Gl)’pZEV (Qk (Gl))_v (Gl)

=4(k - 1)eg, M, (Gy) +2(k-1M, (G,)M, (G,),

(19)
23”17: Z Z [d(p1-21) +d (P2 2)]
22,6V (Gy) p1p2¢E (Qi (G1))PrpaV (Qi (G1))-V (Gy)
= [d(p:) +d(p,) +d(p1)d(z,) +d(p,)d(z,)]
z,2,6V (Gz) P1P2€E (Qk (Gl))Pl’pZSV (Qk (Gl))*v (Gl)
= k[M;(G,) +2M,(G,) - 2M,G,] [2‘3G2 +M, (Gz)]~
Consequently, we have
M,(Gy8,,G,) = k[M;(G,) + 2M, (G,) - 2M, (G,)][ng, + 4eg, + M, (G,)] + 8eg e, o0
20
+ M, (G,)[2(k - 1) +3][ng, +4eg, + M, (G,)] + M, (G,) [ng, + 4eg, |-
Next,
B My(GRGGy) = Y d(p2)= > [d(p1>21)d (P 2,)]
(p,z)sV(Gngsz) (p],l)(pz,zz)sE(Gllesz)
= > Y [de=zdpn)]+ ) Y ld(pi2)d(pr2)] (21)
peV (G,) 2,2,¢E (G,) zeV (G,) p1p2¢E (Q (G)))

+ Z Z [d(p1>2,)d (P2 25)] =Zl+22+z3.

P1P2¢E(Qi (G1)) 21226V (Gy)
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Consider

Yi= 3 ) ldpz)pzn)l= ) ) [dp+d()][dp) +d(z)]

pev (Gl) z,2,¢E (Gz) pevV (Gl) z,2,¢E (Gz)
=M, (Gl)er + M, (G))[M,(G,) + M, (Gy)] + 2eg, [M,(G,) +2M,(G,)] + M, (Gz)”Gl’
Y2= ) Y ldpna)d(pr2)]= ) Y [d(p1>2)d (P2, 2)]
zeV (G,) p1p2¢E (Q: (Gy)) 2V (G,) pip2eE (Q (Gy))

216V (G))p2eV (@4 (G)))-V (Gy)

+ Z Z [d(p1>2)d(ps2) ZZ+"22

zeV (Gz) pipyeE (Qk (Gl ))
P1p2eV (Qk (Gl))—V (Gl)

'Ya- ¥ > [d(p1,2)d (P2 2)]
zeV (G,) pipaeE (Q (G1))pieV (G1) pagV (Qc (G)))-V (Gy)
= > [d(p1) +d(2) +d(p1)d(2)][d(p,) +d(2) +d(p,)d(2)]
zeV (G,) p1p2eE (i (G1))p1eV (G) paeV (Qi (Gy))-V (Gy)
> [d(p))d(p,)(1+2d(2) +d*(2)) +d(p,)(d(2) + d* (2))]
zeV (G,) p1p2eE (4 (Gy))
=[M;(G,) +2M,(G,)] [”G2 +4eg, + M, (Gz)] +2M,(G,) [26G2 + M, (Gz)]’

22"= ) Y [d(p1.2)d (pyr2)].

zeV (Gy) pipacE (Qc(Gr))
p102¢V (Q (G1))-V (Gy)

(22)

Now, we split this sum into two parts for the vertices, p, Y 2"a which are in the same edges of G, and Y 2"b of
and p,, where p,p,eV(Qi(Gy)) -V (G,). Assume that Q. (G,) in two different adjacent edges of G,.

Y2la= ) y [(d(py) +d (py)d(2))(d(p,) +d(p,)d (2))]
(¢

26V (G,) pipa¢E ((% IIB,v(Gl)

p1P2EV
> > [d(py)d (p,) +2d(p,)d (py)d (2) +d (py)d (p,)d* (2)]

zeV (Gz) p1p2¢E E
P1p2eV

OO
M
25
:_)\/
i
<
=
@
£

[d(p)d (p)][1 +2d(2) + d* (2)]

I
’S(SM

zeV (Gz) p1p2€E %
P1p2eV

= (k- 1)[M;(G,) +2M (G) [, + 4eg, + M, (G,)], (23)
Yab= Y y [(@(py) +d(p)d(2) (@ (p2) + d(p2)d (2))

zeV (G,) pyp,eE ((Q 26133
P1P2€V (Qr (G _V(Gl)

=k Z [1+2d(z)+d2(z)] Z [d(p1)d(p,)]

ZfV(Gz) P1P25€2 3
P1p2¢

QO

=klng, +4ec, + M, (Gy)] > [dg, ) +dg, (] [dg, (v) +dg, (w)],

uveE (G,
vweE (G,
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where p, is the added vertex in the edge uv and p, is added
vertex in the edges vw of G;:

1
= (R)[ng, +4e6, + My (Go)] |5 X (do, W =dg, )+ ) rdg, (wdg, (v)
veV (Gl) uveV (Gl)
(24)
+| Y di ) dg (w)-2M,(Gy)|,
veV (G)) ueV (G)
L ust(Gl) ]
where r is the number of neighbors which are common
vertices of u and v in (I'y).
23 = [d(p1>21)d (P2 22)]
22,6V (G,) p1 p2¢E (Qi (G)) p1eV (G ),p2eV (Qi (Gy))-V (Gy)
+ Z z [d(p121)d (P2 22)] = Z?’I "'Z?’"’
V12,6V (Gz) p1Ps,eE (Qk (Gl))Pl’pZEV (Qk (Gl))*v (Gl)

Z3I = [d(p1>21)d (P2 2,)]

z,2,EV (Gz) pi1p2€E (Qk (Gl))P15V (Gl)’pZEV (Qk (Gl))*v (Gl)

(25)
= [(d(p)) +d(z)) +d(p1)d(2)))(d(p2) +d(p2)d(22))]
z,2,€V (Gz) P1pyeE (Qk (Gl))Plfv (Gl),pzeV (Qk (Gl))_v (Gl)
=[M;(Gy) +2M,(G,)] [ZeGZ +2M, (G,) +2M, (Gz)] +2M, (G,)[2M, (G,) + M, (G,)]

2= ) > [d(pr,2)d (p2)]

22,6V (G,) pip2eE (Qi (Gy))

Pip2eV (i (G1))-V (G1)

Now, we split this sum into two parts for the vertices, p, Y 3"a which are in the same edges of G, and Y 3"b of

and p,, where p,p,eV(Qi(G,)) -V (G,). Assume that Q. (G,) in two different adjacent edges of G,.
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Y.3a= ) D [d(p121)d (pyr2,)]

22,6V (G,) p, p,¢E (Qr (G1)) py,paeV (Qr (G1))-V (G1)

= ) > [(d(p1) +d(p1)d(21))(d(p,) +d(p2)d(22))]

2,226V (G,) p1 paeE (Qc (G1)) pypaeV ( Qi (G1))-V (G1)

= ) [1+d(z)+d(z) +d(z)d(z,)] Y [d(p,)d (p,)]
22,6V (G,) P1922E (Qi (G1))pieV (G1)paeV (Qi (G1))-V (Gy)

= (k- 1)[26G2 +2M,(G,) +2M, (Gz)] [M;(G,) +2M, (G,)],

23”[,: Z Z [d(p1>21)d (P2 25)]

22,6V (G,) p p,E (Qr (G1)) py.paeV (Qr (G1))-V (G1)

= ) > [(d(py) +d(p1)d(z1))(d(ps) +d(pr)d(2,))]
22,6V (G,) p p,¢E (Qr (G1)) py.paeV (Qr (G1))-V (G1)

= Z [1+d(z,) +d(z,) +d(z,)d(2,)] Z [d(p1)d (p,)]
22,6V (G,) P192¢E (Qu (G1))PieV (G1)paeV (Qi (G1))-V (Gy)

=k[2eq, +2M,(G,) +2M,(G,)] Y [dg, (w) +dg (V)][ds, (v) + dg, (w)],
ust(Gl)
vwsE(Gz)

where p, is the added vertex in the edge uv and p, is added
vertex in the edges vw of G;:

1

= ()[2e6, +2M, (G,) +2M, (Gy) |5 X (dg, () —dg, )+ Y rdg (wdg, (v)

veV (G1) uveV’ (Gl)

+ Y de () ) dg (W) -2M,(G)) |,

veV (G,) ueV (G,)
uveE (Gl)
where r is the number of neighbors which are common Consequently, we have

vertices of u and v in (G,).

M,(G®,,G,) = k[ng, + 6e, +3M,(G,) + 2M, (G,)] Y (dg, ) -di )

veV (Gl)

N —

+ Y rdg (wdg (N + Y dél(v) Y dg (w)—2M,(G))

uvsV(Gl) vsV(Gl) ueV (Gl)

ust(Gl)
+ M, (G,) [46G1 + ”Gl] +2e, M, (G,) + M, (Gy)[5e;, + 5M, (G,) + 5M, (G,)]

+k[M;(G)) +2M, (G,)] [6eg, + 3M, (G,) + 2M, (G,) + g |.

17

(26)

(27)

(28)
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Theorem 4. Let G, and G, be two connected graphs such that
IV(G))I, V(G| 24. For k>1,
(@) M,(G,8;,G,) = M, (G,)[8eg, +ng, + 6M, (G,)] +2(k - )M, (G,)[2¢5, + M, (G,)]
+k[M;(G)) +2M, (G,) - 2M, (G,)] [4eg, + ng, + M, (G,)] + 16¢g e,
+ M, (G)[2(11 + k)eg, +2(k + 2)ng |,

% Y (dm-dk )+ Y rdg wdg ()

(b) M,(G,8;,G,) = k[ng, + e, +3M, (G,) +2M, (G,)]
veV (Gl) uveV (Gl)

+ Z dél(v) Z dg, (u) - 2M, (G,) +M2(G1)[4nG2+24eG2+8M2(G2)+12M1(G2)]
vsV(Gl) usV(Gl)

uveE (Gl)

+k[M;(G)) +2M, (G,)][6eg, + ng, + 3M, (G,) + 2M, (G,)] + 5M, (G,)eg,

+ M, (G,)[10eg, +ng | + M, (G)[10eg, + 11M, (G,) + 10M, (G,)]-
(29)

4. Applications and Conclusion given as follows. We also find the subclass with better Zagreb
indices as presented in Tables 1 and 2 and Figure 4

In this section, we have computed the first and second
Zagreb indices of generalized ®-sum graphs based on strong

product as application of Theorem 1 to Theorem 4 for k = 1

(i) S;-sum:

(a) Ml(G1®sle) =M, (5,G,) [nG2 + 2eG2] +8eg eg, + [M1 (G)) + 4661] [M1 (G,) + 2eG2]
+ M, (G,) [4eGl + nGl], 0
(b) M,(G,8,G, ) = [M, (G,) +4eg, | [5eq, + 3M, (G,) + 2M, (G,) + ng, | + 14eq M, (G,)

+ M,(G,)] [IZeG1 + nGl] + M, (G)) [er + M, (G,) + M, (Gz)] +8eg, €G-

(ii) R,-sum:

(@) M, (G,®y G, ) = 24eg e, + M, (G,)[ng, + 126, + M, (G,)[12¢6, + 21 |
+[M, (R, (G))) - 2M,G,] g, + 2eg,

(b) M, (G, G, ) = 2M, (G, ) [4eg, + 6M, (G,) + 2M, (G,)| + 4eg, [3M, (G,) + 3M, (G,) + 4eg | (31)
+[M, (R, (G,)) - 4M,G, ] [6eG, + 3M, (G,) + 2M, (G,) + ng, | + e M, (G,)
+4M, (G,) [ng, + 6eg, + 3M, (G,)| + M, (G,) [ng, + 2eg, |-
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TasLE 1: M, (P,® P,,) for path graph.

19

(m, n] M, (P& P,,) M, (P& P,) M, (P, P,,) M, (P,®;. P,)
3,3) 336 722 472 892
(4, 4) 804 1776 1220 2204
(5, 5) 1086 3294 2296 4108
(6, 6) 1854 7040 3700 8368
7,7) 2606 9878 5432 11848

TasLe 2: M, (PR, P,,) for path graph.

(m, n] M, (P, P,) M, (P,®y P,) M, (P&, P,,) M, (P,=&y,P,)
(3, 3) 824 2384 1535 2899
(4, 4) 2262 5230 5002 9700
(5, 5) 4404 11636 9674 17818
(6, 6) 6738 17546 15818 28696
(7,7) 10740 25816 23026 40942
(iii) Q,-sum:
(@) M,(G,8,,G,) = [M;(G,) +2M, (G,) - 2M, (G,)] [ng, + 4eq, + M, (G,)] + 8eg e,
+3M,(G,)) [nG2 +4eg + M, (Gz)] + M, (G,) [nGl + 4eG1]’
1
(b) M,(G,84,G,) = [ng, + 6e, + 3M,(G,) +2M, (G,) || Y (dg, () —dg, (v)
veV (G])
(32)
Y g wdg M+ Y di (Y dg, (1) - 2M, (G,)
uveV (Gl) vsV(Gl) ueV. (Gl)
uveE (Gl)
+M,(G,) [4%1 + ”Gl] +2eq, M, (G,) + M, (G)[5e, + 5M, (G,) + 5M, (G,)]
+[M;(Gy) +2M, (G)] [63G2 +3M, (G,) +2M,(G,) + ”GZ]’
(iv) T-sum:
(@) M,(G,8;.G,) = M, (G,)[8eg, +ng, +6M,(G,)] + M, (G,)[24eg, + 61 |
+[M;(Gy) +2M, (Gy) - 2M, (Gy)] [4‘362 +ng, + M, (Gz)] +16eg,¢6,,
1
(b) M,(G,&,G,) = [ng, + 6eg, +3M, (G,) + 2M, (G,)] > Y (de, ) —dg, ()
veV (Gl)
(33)

+ Y rdg (wdg, M+ Y di () )

uveV (Gl)

veV (Gl)

ueV. (Gl)

dG1 (u) - 2M, (G,)

uveE (Gl)

+[M;(Gy) +2M,(G,)] [6662 +ng, + 3M, (Gy) +2M, (Gz)] +5M, (Gz)ec1

+ M, (G,) [10661 + nGl] + M, (G,) [10er +11M, (G,) + 10M, (Gz)]

+ M, (G,)[4ng, + 24e; +8M,(G,) + 12M, (G,)].
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Now, we close our discussion with the conclusion that
both the Zagreb indices of the generalized T-sum graph are
dominant among the Zagreb indices of all the generalized
sum graphs as shown in Figure 4. We also conclude that, in
the generalized T-sum graph, the number of vertices (atoms)
and edges (bonds) between them are more than the other
graphs of this family for each integral values of k. Thus, the
role of Zagreb indices for generalized T-sum graph remains
dominant for each integral values of k. However, the
problem is still open to find different degree- and distance-
based TIs for the generalized sum graphs obtained under the
various operations of product of graphs.
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