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Gualberto Soĺıs-Perales, Mexico
Yihong Song, China
M. Sonis, Israel
Jian-Ping Sun, China
Stepan Tersian, Bulgaria
Gerald Teschl, Austria
Tetsuji Tokihiro, Japan
Delfim Torres, Portugal
Firdaus Udwadia, USA
Antonia Vecchio, Italy
Qiru Wang, China
Ibrahim Yalcinkaya, Turkey
Xiang Ping Yan, China
Xiaofan Yang, China
Bo Yang, USA
Her-Terng Yau, Taiwan
Jianshe Yu, China
Aacik Zafer, Turkey
Guang Zhang, China
Binggen Zhang, China
Zhengqiu Zhang, China
Lu Zhen, China
Baodong Zheng, China
Yong Zhou, China
Zhan Zhou, China
Zuo-nong Zhu, China



Contents

Theory and Applications of Periodic Solutions and Almost Periodic Solutions, Yonghui Xia
Volume 2013, Article ID 170948, 2 pages

Complex Dynamical Behaviors in a Predator-Prey System with Generalized Group Defense and
Impulsive Control Strategy, Shunyi Li
Volume 2013, Article ID 358930, 15 pages

Almost Automorphic Mild Solutions to Neutral Parabolic Nonautonomous Evolution Equations with
Nondense Domain, Zhanrong Hu and Zhen Jin
Volume 2013, Article ID 183420, 10 pages

Permanence, Extinction, and Almost Periodic Solution of a Nicholson’s Blowflies Model with Feedback
Control and Time Delay, Haihui Wu and Shengbin Yu
Volume 2013, Article ID 798961, 9 pages

Persistence Property and Asymptotic Description for DGH Equation with Strong Dissipation,
Ke-chuang Wang
Volume 2013, Article ID 163070, 8 pages

Pattern Formation in a Diffusive Ratio-Dependent Holling-Tanner Predator-Prey Model with Smith
Growth, Bo Yang
Volume 2013, Article ID 454209, 8 pages

Qualitative Analysis of a Diffusive Ratio-Dependent Holling-Tanner Predator-Prey Model with Smith
Growth, Zongmin Yue and Wenjuan Wang
Volume 2013, Article ID 267173, 9 pages

Effect of Delay on Selection Dynamics in Long-Term Sphere Culture of Cancer Stem Cells, Peng Tang,
Aijun Fan, Jianquan Li, Jun Jiang, and Kaifa Wang
Volume 2013, Article ID 606250, 5 pages

TheAtom-Bond Connectivity Index of Catacondensed Polyomino Graphs, Jinsong Chen, Jianping Liu,
and Qiaoliang Li
Volume 2013, Article ID 598517, 7 pages

Monotonicity of Eventually Positive Solutions for a Second Order Nonlinear Difference Equation,
Huiqin Chen, Zhen Jin, and Shugui Kang
Volume 2013, Article ID 635149, 5 pages

Almost Periodic Solutions for Wilson-Cowan Type Model with Time-Varying Delays, Shasha Xie and
Zhenkun Huang
Volume 2013, Article ID 683091, 7 pages

Dynamics of a Diffusive Predator-Prey Model with Allee Effect on Predator, Xiaoqin Wang, Yongli Cai,
and Huihai Ma
Volume 2013, Article ID 984960, 10 pages

Pattern Formation in a Cross-Diffusive Holling-Tanner Model, Weiming Wang, Zhengguang Guo,
R. K. Upadhyay, and Yezhi Lin
Volume 2012, Article ID 828219, 12 pages



A Lyapunov Function and Global Stability for a Class of Predator-Prey Models, Xiaoqin Wang and
Huihai Ma
Volume 2012, Article ID 218785, 8 pages

Stochastically Perturbed Epidemic Model with Time Delays, Tailei Zhang
Volume 2012, Article ID 454073, 7 pages

Qualitative Analysis for a Predator Prey System with Holling Type III Functional Response and Prey
Refuge, Xia Liu and Yepeng Xing
Volume 2012, Article ID 678957, 11 pages

Pattern Formation in a Cross-Diffusive Ratio-Dependent Predator-Prey Model, Xinze Lian,
Yanhong Yue, and Hailing Wang
Volume 2012, Article ID 814069, 13 pages



Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2013, Article ID 170948, 2 pages
http://dx.doi.org/10.1155/2013/170948

Editorial
Theory and Applications of Periodic Solutions and
Almost Periodic Solutions

Yonghui Xia

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

Correspondence should be addressed to Yonghui Xia; yhxia@zjnu.cn

Received 17 September 2013; Accepted 17 September 2013

Copyright © 2013 Yonghui Xia. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Theory of periodic solutions and almost periodic solutions
is an important and well-established branch of the modern
theory of differential equations concerned, in a broad sense,
with the study of periodic (almost periodic) phenomena
arising in applied problems in technology, natural, and social
sciences. For example, to explore the impact of environmental
factors in mathematical biology, the assumption of periodic-
ity of parameters is more realistic and important due to many
periodic factors such as seasonal effects of weather, food sup-
plies, mating habits, and harvesting. However, if the various
constituent components of the temporally nonuniform envi-
ronment are with incommensurable (nonintegral multiples)
periods, then one has to consider the environment to be
almost periodic. It is well known that existence and nonex-
istence of periodic (or almost periodic) solutions to a given
system are the classical theory of oscillation theory, which is
an intrinsic feature of many dynamical systems.

This special issue places its emphasis on the study of peri-
odic or almost periodic solutions of initial/boundary value
problems for ordinary differential equations. It includesmany
topics such as almost automorphic mild solutions, biological
systems, neural networks, oscillation criteria, delay differ-
ential equation, stochastically epidemic model, initial value
problems, Lyapunov function, complex dynamical behaviors,
stability and bifurcation, and impulsive differential equation.

All manuscript submitted to this special issue went
through a thorough peer-refereeing process. Based on the
reviewers’ reports, we collect 16 original research articles by
more than fifty active international researchers on differential
equations.

To be a more comprehensive description for all articles in
this special issue, we provide a short editorial note summer-
ing each paper.

Z. Hu and Z. Jin establish new existence and uniqueness
theorems for almost automorphic mild solutions to neutral
parabolic nonautonomous evolution equations with non-
dense domain. A unified framework is set up to investigate
the existence and uniqueness of almost automorphic mild
solutions to some classes of parabolic partial differential
equations and neutral functional differential equations.

S. Xie et al. studied almost periodic solutions for Wilson-
Cowan type model with time-varying delays. Some Su cient
conditions for the existence and delay-based exponential sta-
bility of a unique almost periodic solution are established.

S. Li showed that the system considered hasmore compli-
cated dynamics, including (1) high-order quasi-periodic and
periodic oscillation, (2) period-doubling and halving bifur-
cation, (3) nonunique dynamics (meaning that several attrac-
tors coexist), and (4) chaos and attractor crisis.

H. Wu et al. studied a Nicholson’s blowflies model with
feedback control and time delay. By applying the comparison
theorem of the differential equation and fluctuation lemma
and constructing a suitable Lyapunov functional, sufficient
conditions which guarantee the permanence, extinction, and
existence of a unique globally attractive positive almost peri-
odic solution of the system are obtained.

W. Wang et al. presented a theoretical analysis of pro-
cesses of pattern formation that involves organisms distribu-
tion and their interaction of spatially distributed population
with self- as well as cross-diffusion in a Holling-Tanner pred-
ator-prey model; the sufficient conditions for the Turing



2 Discrete Dynamics in Nature and Society

instability with zero-flux boundary conditions are obtained;
Hopf and Turing bifurcation in a spatial domain is presented,
too.

T. Zhang investigated a stochastic epidemic model with
time delays. By using Lyapunov functionals, he obtained sta-
bility conditions for the stochastic stability of endemic equi-
librium.

K.-C. Wang concerned with the Dullin-Gottwald-Holm
(DGH) equationwith strong dissipation.He established a suf-
ficient condition to guarantee global in time solutions.

Z. Yue et al. investigated the dynamics of a diffusive
ratio-dependent Holling-Tanner predator-prey model with
Smith growth subject to zero-flux boundary condition. Some
qualitative properties, including the dissipation, persistence,
and local and global stability of positive constant solution are
discussed.

B. Yang investigated the spatiotemporal dynamics of a dif-
fusive ratio-dependent Holling-Tanner predator-prey model
with Smith growth subject to zero-flux boundary condition.

H. Ma et al. constructed a new Lyapunov function for a
class of predation models.

J. Chen studied the atom-bond connectivity index of cata-
condensed polyomino graphs.

P. Tang quantitatively studied the effect of delay on selec-
tion dynamics in long-term sphere culture of cancer stem
cells (CSCs); a selection dynamic model with time delay is
proposed.

H. Chen et al. derived several sufficient conditions for
monotonicity of eventually positive solutions on a class of
second order perturbed nonlinear difference equation.

X. Liu et al. considered a predator prey system with
Holling III functional response and constant prey refuge. By
using theDulac criterion, we discuss the global stability of the
positive equilibrium of the system. By transforming the sys-
tem to a Lienard system, the conditions for the existence of
exactly one limit cycle for the system are given.

Lian et al. presented a theoretical analysis of evolutionary
process that involves organisms distribution and their inter-
action of spatial distribution of the species with self and cross-
diffusion in a Holling III ratio-dependent predator-prey
model.

X. Wang et al. are concerned with the reaction-diffusion
Holling-Tanner prey-predator model considering the Allee
effect on predator, under zero-flux boundary conditions.
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A predator-prey systemwith generalized group defense and impulsive control strategy is investigated. By using Floquet theorem and
small amplitude perturbation skills, a local asymptotically stable prey-eradication periodic solution is obtained when the impulsive
period is less than some critical value. Otherwise, the system is permanent if the impulsive period is larger than the critical value. By
using bifurcation theory, we show the existence and stability of positive periodic solution when the pest eradication lost its stability.
Numerical examples show that the system considered has more complicated dynamics, including (1) high-order quasiperiodic and
periodic oscillation, (2) period-doubling and halving bifurcation, (3) nonunique dynamics (meaning that several attractors coexist),
and (4) chaos and attractor crisis. Further, the importance of the impulsive period, the released amount of mature predators and
the degree of group defense effect are discussed. Finally, the biological implications of the results and the impulsive control strategy
are discussed.

1. Introduction

In population dynamics, a functional response of the predator
to the prey density refers to the change in the density of
prey attached per unit time per predator as the prey density
changes and it is assumed to be monotonically increasing in
most predator-prey systems. For example, Holling type I, II,
and III functional response [1]

𝑓
1
(𝑥, 𝑦) = 𝑟𝑥, 𝑓

2
(𝑥, 𝑦) =

𝑟𝑥

𝑎 + 𝑏𝑥
,

𝑓
3
(𝑥, 𝑦) =

𝑟𝑥2

𝑎 + 𝑏𝑥2
,

(1)

and the sigmoidal type response function [2]

𝑓
4
(𝑥, 𝑦) =

𝑟𝑥2

(𝑎 + 𝑥) (𝑏 + 𝑥)
, (2)

and Ivlev type response function [3]

𝑓
5
(𝑥, 𝑦) = 𝑟 (1 − 𝑒−𝑎𝑥) . (3)

The previous functional responses are prey dependent.
But, both predator and prey densities have an effect on

the response, such as Beddington-DeAngelis functional
response [4, 5]

𝑓
6
(𝑥, 𝑦) =

𝑟𝑥

𝑎 + 𝑏𝑥 + 𝑐𝑦
(4)

and modified Holling type II and type III response functions
[6]

𝑓
7
(𝑥, 𝑦) =

𝑟𝑥

(𝑎 + 𝑏𝑥) (𝑏 + 𝑦)
,

𝑓
8
(𝑥, 𝑦) =

𝑟𝑥2

(𝑎 + 𝑏𝑥2) (𝑏 + 𝑦)
.

(5)

However, some experimental and observational evidence
shown that the functional response is not always monotoni-
cally increasing, such as Holling type IV [7]

𝑓
9
(𝑥, 𝑦) =

𝑟𝑥

𝑎 + 𝑏𝑥 + 𝑐𝑥2
(6)

and 𝑓
10
(𝑥, 𝑦) = 𝛼𝑥𝑒−𝛽𝑥 [8]. Group defense is a term used to

describe the phenomenon whereby predation is decreased,
or even prevented altogether, due to the increased ability of
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the prey to better defend or disguise itself when it exists in
enough large numbers [9–11]. The buffalo group defense was
modeled using a generalized group defense in [12],

𝑓
11
(𝑥, 𝑦) =

𝛼𝑥

1 + ℎ𝑥𝛽
, (7)

where 𝛽 is a positive integer whose value determines the
degree of antipredator behavior and group defense.

Recently, it is of great interest to investigate complex
dynamics for impulsive perturbations in populations dynam-
ics. In particular, the impulsive prey-predator population
models have been investigated by many researchers. The
results of studies of the dynamics of a predator-prey model
with nonmonotonic functional response, such as Holling
type IV functional response with respect to an impulsive
control strategy, were presented in [13–24]. To the best of our
knowledge, there are few papers studying the group defense
predator-prey with impulsive effect, where the antipredator
behavior and group defense effect described by nonmono-
tonic functional response. Zhang et al. [25] considered a
predator-prey systemwith defensive ability of prey byHolling
type IV functional response and impulsive perturbations on
the predator:

𝑥(𝑡) = 𝑟𝑥 (𝑡) (1 −
𝑥 (𝑡)

𝑘
) −

𝑥 (𝑡) 𝑦 (𝑡)

𝑎
1
+ 𝑥2 (𝑡)

,

𝑦(𝑡) = 𝑦 (𝑡) (−𝑑 +
𝜇𝑥 (𝑡)

𝑎
1
+ 𝑥2 (𝑡)

) ,

𝑡 ̸= 𝑛𝑇,

𝑥 (𝑛𝑇+) = 𝑥 (𝑛𝑇) , 𝑦 (𝑛𝑇+) = 𝑦 (𝑛𝑇) + 𝜏,

𝑋 (0+) = 𝑥
0
= (𝑥0, 𝑦0)

𝑇

,

𝑡 = 𝑛𝑇.

(8)

The conditions for the local asymptotically stable prey-
eradication periodic solution and permanence of the system
are obtained; a series of complex phenomena are displayed
by numerical simulation. Furthermore, based on this work,
Pei et al. [26] investigated a one-prey multi-predator model
with defensive ability of the prey by introducing impulsive
biological control strategy:

𝑥 (𝑡) = 𝑟𝑥 (𝑡) (1 −
𝑥 (𝑡)

𝑘
) −
𝑚

∑
𝑖=1

𝑥 (𝑡) 𝑦 (𝑡)

𝑎
𝑖
+ 𝑥2 (𝑡)

,

𝑦
𝑖
(𝑡) = 𝑦

𝑖
(𝑡) (
𝑚

∑
𝑖=1

𝜇
𝑖
𝑥 (𝑡)

𝑎
𝑖
+ 𝑥2 (𝑡)

− 𝑑
𝑖
) ,

𝑡 ̸= 𝑛𝑇,

𝑥 (𝑛𝑇+) = 𝑥 (𝑛𝑇) , 𝑦
𝑖
(𝑛𝑇+) = 𝑦

𝑖
(𝑛𝑇) + 𝑝

𝑖
,

𝑋
0
= (𝑥 (0+) , 𝑦

1
(0+) , . . . , 𝑦

𝑚
(0+))
𝑇

=(𝑥
0
, 𝑦
01
, . . . , 𝑦

0𝑚
)
𝑇

,

𝑡 = 𝑛𝑇.

(9)

And it shown that the multi-predator impulsive control
strategy is more effective than the classical one andmakes the
dynamical behaviors of the systemmore complex. Recently, a
predator-prey systemwith impulsive effect and group defense

with the nonmonotone function 𝑓
10
(𝑥, 𝑦) = 𝛼𝑥𝑒−𝛽𝑥 was

studied by Li et al. [27],

𝑥 (𝑡) = 𝑥 (𝑡) (𝑎 − 𝑏𝑥 (𝑡)) − 𝛼𝑥 (𝑡) 𝑦 (𝑡) 𝑒−𝛽𝑥(𝑡),

𝑦 (𝑡) = 𝑘𝛼𝑥 (𝑡) 𝑦 (𝑡) 𝑒−𝛽𝑥(𝑡) − 𝑦 (𝑡) 𝑑,
𝑡 ̸= 𝑛𝑇,

Δ𝑥 (𝑡) = −𝑝𝑥 (𝑡) ,
Δ𝑦 (𝑡) = 𝑞,

𝑡 = 𝑛𝑇.

(10)

They proved that there exists a locally stable pest-eradication
periodic solution when the impulsive period is less than cer-
tain critical values; otherwise, the system is permanent. Some
complicated dynamics, such as quasiperiodic oscillation,
bifurcation, and attractor crisis, were shown by numerical
simulations.

In this paper, we study a predator-prey system with
impulsive effect and generalized group defense with the
nonmonotone function 𝑓

11
(𝑥, 𝑦) = 𝛼𝑥/(1 + ℎ𝑥𝛽):

𝑥 (𝑡) = 𝑥 (𝑡) (𝑎 − 𝑏𝑥 (𝑡)) −
𝛼𝑥 (𝑡)

1 + ℎ𝑥𝛽 (𝑡)
𝑦 (𝑡) ,

𝑦 (𝑡) = 𝑘
𝛼𝑥 (𝑡)

1 + ℎ𝑥𝛽 (𝑡)
𝑦 (𝑡) − 𝑑𝑦 (𝑡) ,

𝑡 ̸= 𝑛𝑇,

Δ𝑥 (𝑡) = −𝑝
1
𝑥 (𝑡) ,

Δ𝑦 (𝑡) = −𝑝
2
𝑦 (𝑡) + 𝑞,

𝑡 = 𝑛𝑇,

(11)

where 𝑥(𝑡) and 𝑦(𝑡) represent the prey and the predator
populations at time 𝑡, respectively; 𝑎, 𝑏, 𝛼, ℎ, 𝛽, and 𝑘 are
positive. 𝑎 is the intrinsic rate of increase of the prey and 𝑑
is the death rate of the predator, 𝑎/𝑏 is the carrying capacity
of the prey, 𝛽 > 1 is the degree of anti-predator behavior and
group defense, and 𝑘 (0 < 𝑘 < 1) is the rate of conversing prey
into predator. Δ𝑥(𝑡) = 𝑥(𝑡+) −𝑥(𝑡), Δ𝑦(𝑡) = 𝑦(𝑡+) −𝑦(𝑡), 𝑇 is
the periodic of the impulse for predator in order to eradicate
target pests, protect nontarget pest (or harmless insect) from
extinction and drive target pest to extinction, or control target
pest at acceptably low level to prevent an increasing pest
population from causing an economic loss. 𝑛 ∈ N

+
, N
+
=

{1, 2, . . .}, 𝑝
𝑖
> 0 (𝑖 = 1, 2) is the proportionality constant

which represents the rate of mortality due to the applied
pesticide; for example, impulsive reduction of the population
is possible by harvesting or by poisoning with chemicals used
in agriculture. 𝑞 > 0 is the number of predators released
each time, for example, by artificial breeding of the species
or release of some species.

The paper is arranged as follows. In Section 2, some
notations and Lemmas are given. In Section 3, using the
Floquet theory of impulsive equation and small amplitude
perturbation skills, we will prove the local stability of prey-
eradication periodic solution when the impulsive period
is less than some critical value and give the condition
of permanence. In Section 4, by using bifurcation theory,
the existence and stability of positive periodic solution are
studied when 𝑇 is close to the critical value 𝑇

0
. In Section 5,

the results of numerical examples are shown, and some rich
dynamic behaviors are obtained; the effects of the impul-
sive period, the released amount of mature predators and
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the coefficient of group defense effect are discussed. Finally,
the conclusions are discussed briefly in Section 6.

2. Preliminaries

In this section, we will give some definitions, notations, and
lemmas which will be useful for our main results.

Let R
+
= [0,∞), R2

+
= {𝑥 ∈ R2 | 𝑥 ≥ 0}. Denote by

𝑓 = (𝑓
1
, 𝑓
2
) the map defined by the right hand of the first

two equations of system (11), and denote by N the set of all
nonnegative integers. Let 𝑉 : R

+
× R2
+
→ R
+
, then 𝑉 is said

to belong to class 𝑉
0
if

(1) 𝑉 is continuous in (𝑡, 𝑥) ∈ (𝑛𝑇, (𝑛 + 1)𝑇] × R2
+
and

for each 𝑥 ∈ R2
+
, 𝑛 ∈ N, lim

(𝑡,𝑦)→ (𝑛𝑇
+
,𝑥)
𝑉(𝑡, 𝑦) =

𝑉(𝑛𝑇+, 𝑥) exists,
(2) 𝑉 is locally Lipschitzian in 𝑥.

Definition 1. Let 𝑉 ∈ 𝑉
0
; then for (𝑡, 𝑥) ∈ (𝑛𝑇, (𝑛 + 1)𝑇] ×

R2
+
, the upper right derivative of 𝑉(𝑡, 𝑥) with respect to the

impulsive differential system (11) is defined as

𝐷+𝑉 (𝑡, 𝑥) = lim
ℎ→0

+

sup 1
ℎ
[𝑉 (𝑡 + ℎ, 𝑥 + ℎ𝑓 (𝑡, 𝑥)) − 𝑉 (𝑡, 𝑥)] .

(12)

Definition 2. System (11) is said to be permanent if there exist
two positive constants 𝑚,𝑀 and 𝑇

0
such that each positive

solution (𝑥(𝑡), 𝑦(𝑡)) of the system (11) satisfies 𝑚 ≤ 𝑥(𝑡) ≤
𝑀, 𝑚 ≤ 𝑦(𝑡) ≤ 𝑀, for all 𝑡 > 𝑇

0
.

The solution of system (11) is a piecewise continuous
function 𝑥 : R

+
→ R2

+
, 𝑥(𝑡) is continuous on (𝑛𝑇, (𝑛 +

1)𝑇], 𝑛 ∈ N, and 𝑥(𝑛𝑇+) = lim
𝑡→𝑛𝑇

+𝑥(𝑡) exists; the
smoothness properties of 𝑓 guarantee the global existence
and uniqueness of solutions of system (11); for details see
[28, 29]. The following lemma is obvious.

Lemma3. Let𝑋(𝑡) be a solution of system (11)with𝑋(0+) ≥ 0;
then 𝑋(𝑡) ≥ 0 for all 𝑡 ≥ 0 and further 𝑋(𝑡) > 0 for all 𝑡 ≥ 0 if
𝑋(0+) > 0.

And we will use the following important comparison
theorem on impulsive differential equation [29].

Lemma 4. Suppose 𝑉 ∈ 𝑉
0
. Assume that

𝐷+𝑉 (𝑡, 𝑥) ≤ 𝑔 (𝑡, 𝑉 (𝑡, 𝑥)) , 𝑡 ̸= 𝑛𝑇,

𝑉 (𝑡, 𝑥 (𝑡+)) ≤ 𝜓
𝑛
(𝑉 (𝑡, 𝑥)) , 𝑡 = 𝑛𝑇,

(13)

where 𝑔 : R
+
×R
+
→ R is continuous in (𝑛𝑇, (𝑛 + 1)𝑇] ×R

+
,

and for 𝑢 ∈ R
+
, 𝑛 ∈ N, lim

(𝑡,𝑦)→ (𝑛𝑇
+
,𝑢)
= 𝑔(𝑛𝑇+, 𝑢) exists;

𝜓
𝑛
: R
+
→ R

+
is nondecreasing. Let 𝑟(𝑡) be the maximal

solution of the scalar impulsive differential equation

𝑢 (𝑡) = 𝑔 (𝑡, 𝑢 (𝑡)) , 𝑡 ̸= 𝑛𝑇,

𝑢 (𝑡+) = 𝜓
𝑛
(𝑢 (𝑡)) , 𝑡 = 𝑛𝑇,

𝑢 (0+) = 𝑢
0
,

(14)

existing on [0,∞). Then 𝑉(0+, 𝑥
0
) ≤ 𝑢

0
implies that

𝑉(𝑡, 𝑥(𝑡)) ≤ 𝑟(𝑡), 𝑡 ≥ 0 where 𝑋(𝑡) is any solution of system
(11).

Finally, we give some basic properties about the following
subsystem of system (11):

𝑦 (𝑡) = −𝑑𝑦 (𝑡) , 𝑡 ̸= 𝑛𝑇,

Δ𝑦 (𝑡) = −𝑝
2
𝑦 (𝑡) + 𝑞, 𝑡 = 𝑛𝑇,

𝑦 (0+) = 𝑦
0
≥ 0.

(15)

Clearly, when 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇], 𝑛 ∈ N,

𝑦∗(𝑡) =
𝑞 exp [−𝑑 (𝑡 − 𝑛𝑇)]

1 − (1 − 𝑝
2
) exp (−𝑑𝑇)

,

𝑦∗(0) =
𝑞

1 − (1 − 𝑝
2
) exp (−𝑑𝑇)

,

(16)

is a positive periodic solution of system (15). Since

𝑦 (𝑡) = (𝑦 (0
+) −

𝑞

1 − (1 − 𝑝
2
) exp (−𝑑𝑇)

)

× exp (−𝑑𝑡) + 𝑦∗(𝑡)

(17)

is the solution of system (15) with initial value 𝑦
0
≥ 0, where

𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇], 𝑛 ∈ N; then one can get the following.

Lemma 5. Let 𝑦∗(𝑡) be a positive periodic solution of system;
(15) and every solution 𝑦(𝑡) of system (15) with 𝑦

0
≥ 0, one has

|𝑦(𝑡) − 𝑦∗(𝑡)| → 0, when 𝑡 → ∞.
Therefore, one obtains the pest-eradication periodic solu-

tion

(0, 𝑦∗ (𝑡)) = (0,
𝑞 exp [−𝑑 (𝑡 − 𝑛𝑇)]

1 − (1 − 𝑝
2
) exp (−𝑑𝑇)

) (18)

for 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇].

3. Extinction and Permanence

Firstly, we study the stability of prey-eradication periodic
solution.

Theorem 6. Let 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) be any solution of system
(11); then 𝑋(𝑡) = (0, 𝑦∗(𝑡)) is locally asymptotically stable
provided that

𝑎𝑇 −
𝛼𝑞 [1 − exp (−𝑑𝑇)]

𝑑 [1 − (1 − 𝑝
2
) exp (−𝑑𝑇)]

< ln( 1

1 − 𝑝
1

) . (19)

Proof. The local stability of periodic solution 𝑋(𝑡) =
(0, 𝑦∗(𝑡))may be determined by considering the behavior of
small amplitude perturbations of the solution. Consider

𝑥 (𝑡) = 𝑢 (𝑡) , 𝑦 (𝑡) = 𝑦
∗
(𝑡) + V (𝑡) . (20)

There may be written

(
𝑢 (𝑡)
V (𝑡)

) = Φ (𝑡) (
𝑢 (0)
V (0)

) , 0 ≤ 𝑡 < 𝑇, (21)
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where Φ(𝑡) satisfies
dΦ
d𝑡

= (
𝑎 − 𝛼𝑦∗(𝑡) 0
𝑘𝛼𝑦∗(𝑡) −𝑑

)Φ (𝑡) , (22)

and Φ(0) = 𝐼, the identity matrix. The linearization of the
third and fourth equations of system (11) becomes

(
𝑢 (𝑛𝑇+)
V (𝑛𝑇+)

) = (
1 − 𝑝
1

0
0 1 − 𝑝

2

)(
𝑢 (𝑛𝑇)
V (𝑛𝑇)

) . (23)

Hence, if both eigenvalues of

𝑀 = (
1 − 𝑝
1

0
0 1 − 𝑝

2

)Φ (𝑡) (24)

have absolute values less than one, then the periodic solution
𝑋(𝑡) = (0, 𝑦∗(𝑡)) is locally stable. Since all eigenvalues of𝑀
are

𝜇
1
= (1 − 𝑝

2
) exp (−𝑑𝑇) < 1,

𝜇
2
= (1 − 𝑝

1
) exp(∫

𝑇

0

(𝑎 − 𝛼𝑦∗(𝑡)) 𝑑𝑡) ,
(25)

𝜇
2
< 1 if and only if

𝑎𝑇 −
𝛼𝑞 [1 − exp (−𝑑𝑇)]

𝑑 [1 − (1 − 𝑝
2
) exp (−𝑑𝑇)]

< ln( 1

1 − 𝑝
1

) . (26)

According to Floquet theory [28] of impulsive differential
equation, the prey-eradication solution 𝑋(𝑡) = (0, 𝑦∗(𝑡)) is
locally stable. This completes the proof.

Theorem 7. There exists a constant𝑀 > 0, such that 𝑥(𝑡) ≤
𝑀, 𝑦(𝑡) ≤ 𝑀 for each solution 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) of system
(11) with all 𝑡 being large enough.

Proof. Let 𝑉(𝑡) = 𝑘𝑥(𝑡) + 𝑦(𝑡). It is clear that 𝑉 ∈ 𝑉
0
. We

calculate the upper right derivative of𝑉(𝑡, 𝑥) along a solution
of system (11) and get the following impulsive differential
equation:

𝐷+𝑉 (𝑡) |
(11)
+ 𝐿𝑉 (𝑡)

= 𝑘𝑥 (𝑎 + 𝐿 − 𝑏𝑥) − (𝑑 − 𝐿) 𝑦, 𝑡 ̸= 𝑛𝑇,

𝑉 (𝑡+) ≤ 𝑉 (𝑡) + 𝑞, 𝑡 = 𝑛𝑇.

(27)

Let 0 < 𝐿 < 𝑑; then 𝑘𝑥(𝑎 + 𝐿 − 𝑏𝑥) − (𝑑 − 𝐿)𝑦 is bounded.
Select 𝐿

0
and𝑀

0
such that

𝐷+𝑉 (𝑡) ≤ −𝐿
0
𝑉 (𝑡) + 𝑀

0
, 𝑡 ̸= 𝑛𝑇,

𝑉 (𝑡+) ≤ 𝑉 (𝑡) + 𝑞, 𝑡 = 𝑛𝑇,
(28)

where 𝐿
0
and 𝑀

0
are two positive constants. According to

Lemma 4, we have

𝑉 (𝑡) ≤
𝑀
0

𝐿
0

+ (𝑉 (0+) −
𝑀
0

𝐿
0

)

× exp (−𝐿
0
𝑡) −

𝑞

1 − exp (−𝐿
0
𝑇)

exp (−𝐿
0
𝑡)

+
𝑞

1 − exp (−𝐿
0
𝑇)

exp (−𝐿
0
(𝑡 − 𝑛𝑇)) ,

(29)

where 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇]. Hence

lim
𝑡→∞

𝑉 (𝑡) ≤
𝑀
0

𝐿
0

+
𝑞

1 − exp (−𝐿
0
𝑇)
. (30)

Therefore, 𝑉(𝑡, 𝑥) is ultimately bounded. We obtain that
each positive solution of system (11) is uniformly ultimately
bounded. This completes the proof.

In the following, we investigate the permanence of system
(11).

Theorem 8. System (11) is permanent if

𝑎𝑇 −
𝛼𝑞 [1 − exp (−𝑑𝑇)]

𝑑 [1 − (1 − 𝑝
2
) exp (−𝑑𝑇)]

> ln( 1

1 − 𝑝
1

) . (31)

Proof. Suppose𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) is a solution of system (11)
with 𝑋

0
> 0. From Theorem 7 we may assume that 𝑥(𝑡) ≤

𝑀, 𝑦(𝑡) ≤ 𝑀, and𝑀 > 𝑎/𝑏, 𝑡 ≥ 0. Let

𝑚
2
=

𝑞 exp (−𝑑𝑇)
1 − (1 − 𝑝

2
) exp (−𝑑𝑇)

− 𝜀
2
, 𝜀
2
> 0. (32)

According to Lemmas 4 and 5, we have 𝑦(𝑡) > 𝑚
2
for all 𝑡

large enough. In the following, we want to find 𝑚
1
such that

𝑥
1
(𝑡) ≥ 𝑚

1
for all 𝑡 large enough.Wewill do it in the following

two steps for convenience.

Step 1. Since

𝑎𝑇 −
𝛼𝑞 [1 − exp (−𝑑𝑇)]

𝑑 [1 − (1 − 𝑝
2
) exp (−𝑑𝑇)]

> ln( 1

1 − 𝑝
1

) , (33)

we can select 𝑚
3
> 0, 𝜀

1
> 0 small enough such that 𝑚

3
<

𝑎/𝑏, 𝛿 = 𝑘𝛼𝑚
3
< 𝑑, and

𝜎 = (𝑎 − 𝑏𝑚
3
− 𝛼𝜀
1
) 𝑇

−
𝛼𝑞 [1 − exp ((−𝑑 + 𝛿) 𝑇)]

(𝑑 − 𝛿) [1 − (1 − 𝑝
2
) exp ((−𝑑 + 𝛿) 𝑇)]

− ln( 1

1 − 𝑝
1

) > 0.

(34)

We will prove there exists 𝑡
1
∈ (0,∞) such that 𝑥(𝑡

1
) ≥

𝑚
3
. Otherwise, according to the above assumption, we get

𝑦(𝑡) ≤ 𝑦(𝑡)(−𝑑 + 𝛿), and by Lemmas 4 and 5, we have
𝑦(𝑡) ≤ 𝑧(𝑡) and 𝑧(𝑡) ≤ 𝑧∗(𝑡), where

𝑧∗ (𝑡) =
𝑞 exp [(−𝑑 + 𝛿) (𝑡 − 𝑛𝑇)]

1 − (1 − 𝑝
2
) exp ((−𝑑 + 𝛿) 𝑇)

,

𝑡 ∈ (𝑛𝑇, (𝑛 + 1) 𝑇] ,

(35)

and 𝑧(𝑡) is the solution of the following equation:

𝑧(𝑡) = 𝑧 (𝑡) (−𝑑 + 𝛿) , 𝑡 ̸= 𝑛𝑇,

Δ𝑧 (𝑡) = −𝑝
2
𝑧 (𝑡) + 𝑞, 𝑡 = 𝑛𝑇,

𝑧 (0+) = 𝑦
0
≥ 0.

(36)



Discrete Dynamics in Nature and Society 5

Therefore, there exists a 𝑇
1
> 0 such that

𝑦 (𝑡) ≤ 𝑧 (𝑡) ≤ 𝑧
∗
(𝑡) + 𝜀

1
,

𝑥 (𝑡) ≥ 𝑥 (𝑡) (𝑎 − 𝑏𝑚
3
− (𝑧∗ (𝑡) + 𝜀

1
)) .

(37)

Let𝑁
1
∈ N and let𝑁

1
𝑇 ≥ 𝑇

1
. We can get

𝑥 (𝑡) ≥ 𝑥 (𝑡) (𝑎 − 𝑏𝑚
3
− (𝑧∗ (𝑡) + 𝜀

1
)) , 𝑡 ̸= 𝑛𝑇,

Δ𝑥 (𝑡) = −𝑝
1
𝑥 (𝑡) , 𝑡 = 𝑛𝑇.

(38)

Integrating (38) on (𝑛𝑇, (𝑛 + 1)𝑇] (𝑛 ≥ 𝑁
1
), we have

𝑥 ((𝑛 + 1) 𝑇)

≥ 𝑥 (𝑛𝑇+) exp(∫
(𝑛+1)𝑇

𝑛𝑇

(𝑎 − 𝑏𝑚
3
− 𝛼 (𝑧∗ (𝑡) + 𝜀

1
)) 𝑑𝑡)

= (1 − 𝑝
1
) 𝑥 (𝑛𝑇)

× exp[ (𝑎 − 𝑏𝑚
3
− 𝛼𝜀
1
) 𝑇

−
𝛼𝑞 [1 − exp ((−𝑑 + 𝛿) 𝑇)]

(𝑑 − 𝛿) [1 − (1 − 𝑝
2
) exp ((−𝑑 + 𝛿) 𝑇)]

]

= 𝑥 (𝑛𝑇) exp (𝜎) .
(39)

Then 𝑥((𝑁
1
+ ℎ)𝑇) ≥ 𝑥(𝑁

1
𝑇) exp(ℎ𝜎) → ∞ as ℎ → ∞,

which is a contradiction to the boundedness of 𝑥(𝑡). Hence
there exists a 𝑡

1
> 0 such that 𝑥(𝑡

1
) ≥ 𝑚

3
.

Step 2. If 𝑥(𝑡
1
) ≥ 𝑚

3
for all 𝑡 ≥ 𝑡

1
, then our aim is obtained.

Hence we only need to consider those solutions which
leave the region 𝑅 = {𝑋(𝑡) ∈ R+

2
: 𝑥(𝑡) < 𝑚

3
} and reenter

again. Let 𝑡∗ = inf
𝑡≥𝑡
1

{𝑥(𝑡) < 𝑚
3
}. Then 𝑡∗ is impulsive point

or nonimpulsive point.

Case 1. If 𝑡∗ is impulsive point, there exist a 𝑛
1
∈ N such that

𝑡∗ = 𝑛
1
𝑇. Then 𝑥(𝑡) ≥ 𝑚

3
for 𝑡 ∈ [𝑡

1
, 𝑡∗] and

(1 − 𝑝
1
)𝑚
3
≤ 𝑥 (𝑡∗+) = (1 − 𝑝

1
) 𝑥 (𝑡∗) < 𝑚

3
. (40)

Choose 𝑛
2
, 𝑛
3
∈ N such that

𝑛
2
𝑇 > 𝑇

2
=
ln (𝜀
1
/ (𝑀 + 𝑞))

(−𝑑 + 𝛿)
,

(1 − 𝑝)
𝑛
2
+1 exp ((𝑛

2
+ 1) 𝜎

1
𝑇) exp (𝑛

3
𝜎) > 1,

(41)

where 𝜎
1
= 𝑎−𝑏𝑚

3
−𝛼𝑀 < 0. Let𝑇 = (𝑛

2
+𝑛
3
)𝑇.Then, there

exists a 𝑡
2
∈ [(𝑛
1
+ 1)𝑇, (𝑛

1
+ 1)𝑇 + 𝑇] such that 𝑥(𝑡

2
) ≥ 𝑚

3
.

Otherwise 𝑥(𝑡) < 𝑚
3
, 𝑡 ∈ [(𝑛

1
+1)𝑇, (𝑛

1
+1)𝑇+𝑇]. Consider

(36) with 𝑧((𝑛
1
+ 1)𝑇+) = 𝑦((𝑛

1
+ 1)𝑇+); we have

𝑧 (𝑡) = (𝑧 (𝑛
1
+ 1) 𝑇+ −

𝑞

1 − (1 − 𝑝
2
) exp ((−𝑑 + 𝛿) 𝑇)

)

× exp [(−𝑑 + 𝛿) (𝑡 − (𝑛
1
+ 1) 𝑇)] + 𝑧∗ (𝑡) ,

(42)

where 𝑡 ∈ (𝑛𝑇, (𝑛+1)𝑇], 𝑛
1
+1 ≤ 𝑛 ≤ (𝑛

1
+1)+𝑛

2
+𝑛
3
. Then

𝑧 (𝑡) − 𝑧
∗
(𝑡)
 < (𝑀 + 𝑞) exp (− (𝑑 − 𝛿) 𝑛

2
𝑇) < 𝜀

1
,

𝑦 (𝑡) ≤ 𝑧 (𝑡) ≤ 𝑧
∗
(𝑡) + 𝜀

1

(43)

for (𝑛
1
+ 1 + 𝑛

2
)𝑇 ≤ 𝑡 ≤ (𝑛

1
+ 1)𝑇 + 𝑇, which implies (39)

holds for (𝑛
1
+ 1 + 𝑛

2
)𝑇 ≤ 𝑡 ≤ (𝑛

1
+ 1)𝑇 + 𝑇. As in step 1, we

have

𝑥 ((𝑛
1
+ 1 + 𝑛

2
+ 𝑛
3
) 𝑇) ≥ 𝑥 ((𝑛

1
+ 1 + 𝑛

2
) 𝑇) exp (𝑛

3
𝜎) .
(44)

The first and third equations of system (11) given

𝑥 (𝑡) > 𝑥 (𝑡) (𝑎 − 𝑏𝑚
3
− 𝛼𝑀) = 𝜎

1
𝑥 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝑥 (𝑡+) = (1 − 𝑝
1
) 𝑥 (𝑡) , 𝑡 = 𝑛𝑇.

(45)

Integrating the above equation on [𝑡∗, (𝑛
1
+ 1 + 𝑛

2
)𝑇], we can

get

𝑥 ((𝑛
1
+ 1 + 𝑛

2
) 𝑇)

≥ (1 − 𝑝)
𝑛
2
+1

𝑚
3
exp (𝜎

1
(𝑛
2
+ 1) 𝑇) ,

(46)

and thus

𝑥 ((𝑛
1
+ 1 + 𝑛

2
+ 𝑛
3
) 𝑇)

≥ 𝑚
3
(1 − 𝑝)

𝑛
2
+1 exp ((𝑛

2
+ 1) 𝜎

1
𝑇) exp (𝑛

3
𝜎)

> 𝑚
3
,

(47)

a contradiction.
Let 𝑡 = inf

𝑡≥𝑡
∗{𝑥(𝑡) ≥ 𝑚

3
}; then 𝑥(𝑡) ≥ 𝑚

3
. For 𝑡 ∈ [𝑡∗, 𝑡),

we have

𝑥 (𝑡) ≥ 𝑚
3
exp (𝜎

1
(1 + 𝑛

2
+ 𝑛
3
) 𝑇) (1 − 𝑝)

1+𝑛
2
+𝑛
3 ≜ 𝑚

1
.

(48)

For 𝑡 > 𝑡, the same arguments can be continued since 𝑥(𝑡) ≥
𝑚
3
.

Case 2. If 𝑡∗ is nonimpulsive point, then 𝑥(𝑡) ≥ 𝑚
3
for 𝑡 ∈

[𝑡
1
, 𝑡∗) and𝑥(𝑡∗) = 𝑚

3
; suppose 𝑡∗ ∈ (𝑛

1
𝑇, (𝑛
1
+1)𝑇), 𝑛

1
∈ N.

There are two possible cases for 𝑡 ∈ (𝑡∗, (𝑛
1
+ 1)𝑇).

Case 2.1. 𝑥(𝑡) ≤ 𝑚
3
for all 𝑡 ∈ (𝑡∗, (𝑛

1
+ 1)𝑇). As in Step 1, we

can prove that there must be a 𝑡
2
∈ [(𝑛
1
+ 1)𝑇, (𝑛

1
+ 1)𝑇 + 𝑇]

such that 𝑥(𝑡
2
) > 𝑚

3
; Let 𝑡 = inf

𝑡≥𝑡
∗{𝑥(𝑡) ≥ 𝑚

3
}, then 𝑥(𝑡) ≤

𝑚
3
and 𝑥(𝑡) = 𝑚

3
. For 𝑡 ∈ [𝑡∗, 𝑡), we have

𝑥 (𝑡) ≥ 𝑚
3
exp (𝜎

1
(1 + 𝑛

2
+ 𝑛
3
) 𝑇) (1 − 𝑝)

1+𝑛
2
+𝑛
3

≜ 𝑚
1
.

(49)

For 𝑡 > 𝑡, the same arguments can be continued since 𝑥(𝑡) ≥
𝑚
3
.

Case 2.2.There exists a 𝑡 ∈ (𝑡∗, (𝑛
1
+1)𝑇) such that 𝑥(𝑡) > 𝑚

3
.

Let ̌𝑡 = inf
𝑡>𝑡
∗{𝑥(𝑡) > 𝑚

3
}; then 𝑥(𝑡) ≤ 𝑚

3
for 𝑡 ∈ (𝑡∗, ̌𝑡) and
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𝑥( ̌𝑡) = 𝑚
3
. For 𝑡 ∈ (𝑡∗, ̌𝑡), (45) holds true; integrating (45) on

𝑡 ∈ (𝑡∗, ̌𝑡), we have

𝑥 (𝑡) ≥ 𝑥 (𝑡
∗) exp [𝜎

1
(𝑡 − 𝑡∗)] ≥ 𝑚

3
exp (𝜎

1
𝑇)

> 𝑚
1
.

(50)

Since 𝑥( ̌𝑡) ≥ 𝑚
3
for 𝑡 > ̌𝑡, the same arguments can be

continued.
Hence 𝑥(𝑡) ≥ 𝑚

1
for all 𝑡 > 𝑡

1
. The proof is completed.

Remark 9. Let

𝑓 (𝑇) = 𝑎𝑇 −
𝛼𝑞 [1 − exp (−𝑑𝑇)]

𝑑 [1 − (1 − 𝑝
2
) exp (−𝑑𝑇)]

− ln( 1

1 − 𝑝
1

) .

(51)

Since𝑓(0) = − ln(1/(1−𝑝
1
)) < 0,𝑓(𝑇) → +∞ as𝑇 → +∞,

and

𝑓 (𝑇) = (𝛼𝑞𝑝
2
𝑑 [[1 − (1 − 𝑝

2
) exp (−𝑑𝑇)] exp (−𝑑𝑇)

+2 (1 − 𝑝
2
) exp (−2𝑑𝑇)])

× ([1 − (1 − 𝑝
2
) exp (−𝑑𝑇)]3)

−1

> 0,

(52)

so 𝑓(𝑇) = 0 has a unique positive root, denoted by 𝑇max.
From Theorems 6 and 8 we know that 𝑇max is a threshold. If
𝑇 < 𝑇max, then pest-eradication periodic solution (0, 𝑦∗(𝑡))
is asymptotically stable; if 𝑇 > 𝑇max, then system (11) is
permanent.

Remark 10. If 𝑝
1
= 𝑝
2
= 0, 𝑞 = 0; that is, there are without

taking any pest-management strategy, large numbers of preys
(pest) would coexisting with predators (natural enemy). If
𝑞 = 0, 0 < 𝑝

1
, 𝑝
2
< 1, that is, there is periodic spraying

pesticide (or harvesting) only.Thus, we can easily obtain that
𝑇max = ln(1/(1 − 𝑝

1
))/𝑎 < 𝑇max is the threshold. If 𝑝

1
=

𝑝
2
= 0, 𝑞 > 0; that is, there is periodic releasing of predator

(natural enemy) only, without periodic spraying pesticide (or
harvesting). We can easily get that 𝑇max = 𝛼𝑞/(𝑎𝑑) < 𝑇max
is the threshold. Comparing with the classic methods (such
as biological control or chemical control), the integrated pest
management (IPM) is a better one, since 𝑇max > 𝑇



max and
𝑇max > 𝑇max. Some numerical examples will be given in
Section 5.

4. Bifurcation and Existence of Positive
Periodic Solution

In this section, we deal with the existence of a nontrivial
periodic solution to system (11) near the prey-eradication
periodic solution (0, 𝑦∗(𝑡)) via bifurcation.

Let 𝑥
1
(𝑡) = 𝑦(𝑡), 𝑥

2
(𝑡) = 𝑥(𝑡); system (11) becomes as

follows:

𝑥
1
(𝑡) = 𝑥

1
(𝑡) (

𝑘𝛼𝑥
2
(𝑡)

1 + ℎ𝑥
𝛽

2
(𝑡)
− 𝑑)

≜ 𝐹
1
(𝑥
1
(𝑡) , 𝑥
2
(𝑡)) ,

𝑥
2
(𝑡) = 𝑥

2
(𝑡) (𝑎 − 𝑏𝑥

2
(𝑡) −

𝛼𝑥
1
(𝑡)

1 + ℎ𝑥
𝛽

2
(𝑡)
)

≜ 𝐹
2
(𝑥
1
(𝑡) , 𝑥
2
(𝑡)) ,

𝑡 ̸= 𝑛𝑇,

𝑥
1
(𝑛𝑇+) = (1 − 𝑝

2
) 𝑥
1
(𝑛𝑇) + 𝑞

≜ Θ
1
(𝑥
1
(𝑛𝑇) , 𝑥

2
(𝑛𝑇)) ,

𝑥
2
(𝑛𝑇+) = (1 − 𝑝

1
) 𝑥
2
(𝑛𝑇)

≜ Θ
2
(𝑥
1
(𝑛𝑇) , 𝑥

2
(𝑛𝑇)) ,

𝑡 = 𝑛𝑇.

(53)

All notations used in this section are the same as those in
[30]. Let Φ be the flow associated to (53); we have 𝑥(𝑡) =
Φ(𝑡, 𝑥

0
), 0 < 𝑡 ≤ 𝑇, where 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥
2
(𝑡)), 𝑥

0
= 𝑥(0+),

𝑑
0
= 1 − (

𝜕Θ
2

𝜕𝑥
2

𝜕Φ
2

𝜕𝑥
2

) (𝑇
0
, 𝑥
0
) , (54)

where 𝑇
0
is the root of 𝑑

0
= 0,

𝑎
0
= 1 − (

𝜕Θ
1

𝜕𝑥
1

𝜕Φ
1

𝜕𝑥
1

) (𝑇
0
, 𝑥
0
) ,

𝑏
0
= −(

𝜕Θ
1

𝜕𝑥
1

𝜕Φ
1

𝜕𝑥
2

+
𝜕Θ
1

𝜕𝑥
2

𝜕Φ
2

𝜕𝑥
2

) (𝑇
0
, 𝑥
0
) ,

𝜕Φ
1
(𝑡, 𝑥
0
)

𝜕𝑥
1

= exp(∫
𝑡

0

𝜕𝐹
1
(𝜉 (𝑟))

𝜕𝑥
1

d𝑟) ,

𝜕Φ
2
(𝑡, 𝑥
0
)

𝜕𝑥
2

= exp(∫
𝑡

0

𝜕𝐹
2
(𝜉 (𝑟))

𝜕𝑥
2

d𝑟) ,

𝜕Φ
1
(𝑡, 𝑥
0
)

𝜕𝑥
2

= ∫
𝑡

0

exp(∫
𝑡

𝑢

𝜕𝐹
1
(𝜉 (𝑟))

𝜕𝑥
1

d𝑟)(𝜕𝐹1 (𝜉 (𝑢))
𝜕𝑥
2

)

× exp(∫
𝑢

0

𝜕𝐹
2
(𝜉 (𝑟))

𝜕𝑥
2

d𝑟) d𝑢,

𝜕2Φ
2
(𝑡, 𝑥
0
)

𝜕𝑥
1
𝜕𝑥
2

= ∫
𝑡

0

exp(∫
𝑡

𝑢

𝜕𝐹
2
(𝜉 (𝑟))

𝜕𝑥
2

d𝑟)(𝜕
2𝐹
1
(𝜉 (𝑢))

𝜕𝑥
1
𝜕𝑥
2

)

× exp(∫
𝑢

0

𝜕𝐹
2
(𝜉 (𝑟))

𝜕𝑥
2

d𝑟) d𝑢,
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𝜕2Φ
2
(𝑡, 𝑥
0
)

𝜕𝑥2
2

= ∫
𝑡

0

exp(∫
𝑡

𝑢

𝜕𝐹
2
(𝜉 (𝑟))

𝜕𝑥
2

d𝑟)(𝜕
2𝐹
2
(𝜉 (𝑢))

𝜕𝑥2
2

)

× exp(∫
𝑢

0

𝜕𝐹
2
(𝜉 (𝑟))

𝜕𝑥
2

d𝑟) d𝑢

+ ∫
𝑡

0

exp(∫
𝑡

𝑢

𝜕𝐹
2
(𝜉 (𝑟))

𝜕𝑥
2

d𝑟)(𝜕
2𝐹
2
(𝜉 (𝑢))

𝜕𝑥
1
𝜕𝑥
2

)

× ∫
𝑢

0

exp(∫
𝑢

𝑝

𝜕𝐹
1
(𝜉 (𝑟))

𝜕𝑥
1

d𝑟)(𝜕𝐹1 (𝜉 (𝑢))
𝜕𝑥
2

)

× exp(∫
𝑝

0

𝜕𝐹
2
(𝜉 (𝑟))

𝜕𝑥
2

d𝑟) d𝑝 d𝑢,

𝜕2Φ
2
(𝑡, 𝑥
0
)

𝜕𝑇𝜕𝑥
2

=
𝜕𝐹
2
(𝜉 (𝑡))

𝜕𝑥
2

exp(∫
𝑡

0

𝜕𝐹
2
(𝜉 (𝑟))

𝜕𝑥
2

d𝑟) ,

𝜕2Φ
1
(𝑇
0
, 𝑥
0
)

𝜕𝑇
= 𝑦 (𝑇

0
) ,

𝐵 = −
𝜕2Θ
2

𝜕𝑥
1
𝜕𝑥
2

(
𝜕Φ
1
(𝑇
0
, 𝑋
0
)

𝜕𝑇

+
𝜕Φ
1
(𝑇
0
, 𝑋
0
)

𝜕𝑥
1

1

𝑎
0

𝜕Θ
1

𝜕𝑥
1

𝜕Φ
1
(𝑇
0
, 𝑋
0
)

𝜕𝑇
)

×
𝜕Φ
2
(𝑇
0
, 𝑋
0
)

𝜕𝑥
2

−
𝜕Θ
2

𝜕𝑥
2

(
𝜕2Φ
2
(𝑡, 𝑋
0
)

𝜕𝑇𝜕𝑥
2

+
𝜕2Φ
2
(𝑡, 𝑋
0
)

𝜕𝑥
1
𝜕𝑥
2

×
1

𝑎
0

𝜕Θ
1

𝜕𝑥
1

𝜕Φ
1
(𝑇
0
, 𝑋
0
)

𝜕𝑇
),

𝐶 = − 2
𝜕2Θ
2

𝜕𝑥
1
𝜕𝑥
2

(−
𝑏
0

𝑎
0

𝜕Φ
1
(𝑇
0
, 𝑋
0
)

𝜕𝑥
1

+
𝜕Φ
1
(𝑇
0
, 𝑋
0
)

𝜕𝑥
2

)

×
𝜕Φ
2
(𝑇
0
, 𝑋
0
)

𝜕𝑥
2

−
𝜕2Θ
2

𝜕𝑥2
2

(
𝜕Φ
2
(𝑇
0
, 𝑋
0
)

𝜕𝑥
2

)

2

+ 2
𝜕Θ
2

𝜕𝑥
2

𝑏
0

𝑎
0

𝜕2Φ
2
(𝑇
0
, 𝑋
0
)

𝜕𝑥
1
𝜕𝑥
2

−
𝜕Θ
2

𝜕𝑥
2

𝜕2Φ
2
(𝑇
0
, 𝑋
0
)

𝜕𝑥2
2

,

(55)

where 𝜉(𝑡) = (𝑦∗(𝑡), 0).

Lemma 11 (see [30]). If |1 − 𝑎
0
| < 1 and 𝑑

0
= 0, then one has

the following.

(a) If𝐵𝐶 ̸= 0, then one has a bifurcation.Moreover, one has
a bifurcation of a nontrivial periodic solution of (53) if
𝐵𝐶 < 0 and a subcritical case if 𝐵𝐶 > 0.

(b) If 𝐵𝐶 = 0, then one has an undetermined case.

In order to apply Lemma 11, we compute the following:

𝑑
0
= 1 − (1 − 𝑝

1
) exp(∫

𝑇

0

(𝑎 − 𝛼𝑦∗(𝑟)) d𝑟)

= 1 − (1 − 𝑝
1
) exp[𝑎𝑇

0
−

𝛼𝑞 (1 − exp (−𝑑𝑇))
𝑑 [1 − (1 − 𝑝

2
) exp (−𝑑𝑇)]

] .

(56)

If 𝑑
0
= 0, this corresponds to 𝑇

0
satisfying

𝑎𝑇
0
=

𝛼𝑞 (1 − exp (−𝑑𝑇
0
))

𝑑 [1 − (1 − 𝑝
2
) exp (−𝑑𝑇

0
)]
+ ln( 1

1 − 𝑝
1

) . (57)

Further, we can get

𝑎
0
= 1 − exp (−𝑑𝑇

0
) > 0,

𝑏
0
= −𝑘𝛼 (1 − 𝑝

2
) exp(∫

𝑇
0

0

𝑦∗ (𝑟) d𝑟) < 0,

𝜕Φ
1
(𝑇
0
, 𝑥
0
)

𝜕𝑥
1

= exp (−𝑑𝑇
0
) > 0,

𝜕Φ
2
(𝑇
0
, 𝑥
0
)

𝜕𝑥
2

= exp[𝑎𝑇
0
−

𝛼𝑞 (1 − exp (−𝑑𝑇))
𝑑 [1 − (1 − 𝑝

2
) exp (−𝑑𝑇)]

]

=
1

1 − 𝑝
1

> 0,

𝜕Φ
1
(𝑇
0
, 𝑥
0
)

𝜕𝑥
2

= 𝑘𝛼∫
𝑇
0

0

exp (−𝑑 (𝑇
0
− 𝑢)) 𝑦∗ (𝑢)

× exp(∫
𝑢

0

(𝑎 − 𝛼𝑦∗ (𝑟)) d𝑟) d𝑢 > 0,

𝜕2Φ
2
(𝑇
0
, 𝑥
0
)

𝜕𝑇𝜕𝑥
2

= (𝑎 −
𝛼𝑞 (1 − exp (−𝑑𝑇

0
))

𝑑 [1 − (1 − 𝑝
2
) exp (−𝑑𝑇

0
)]
)

1

1 − 𝑝
1

,

𝜕2Φ
2
(𝑇
0
, 𝑥
0
)

𝜕𝑥
1
𝜕𝑥
2

= −
𝑘𝛼𝑇
0

1 − 𝑝
1

< 0,

𝜕Φ
1
(𝑇
0
, 𝑥
0
)

𝜕𝑇
= 𝑦 (𝑇

0
) = −

𝑑𝑞 exp (−𝑑𝑇
0
)

1 − (1 − 𝑝
2
) exp (−𝑑𝑇

0
)
< 0.

(58)

Note that

𝜕2𝐹
2
(𝜉 (𝑢))

𝜕𝑥2
2

= − (2𝑏 + 𝛼𝑦∗(𝑢)) < 0,

𝜕2𝐹
2
(𝜉 (𝑢))

𝜕𝑥
1
𝜕𝑥
2

= −𝛼 < 0,

𝜕𝐹
1
(𝜉 (𝑢))

𝜕𝑥
2

= 𝑘𝛼𝑦∗ (𝑢) > 0;

(59)

then

𝜕2Φ
2
(𝑇
0
, 𝑥
0
)

𝜕𝑥2
2

< 0. (60)
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Figure 1: Time series of system (11) when 𝑇 = 0.66 < 𝑇max ≈ 0.6776. (a) 𝑝1 = 0, 𝑝2 = 0, and 𝑞 = 0, without taking any pest-management
strategy; (b) 𝑝

1
= 0.85, 𝑝

2
= 0.55, and 𝑞 = 0, with spraying pesticide (or harvesting) only; (c) 𝑝

1
= 0, 𝑝

2
= 0, and 𝑞 = 0.2, with releasing of

predator (natural enemy) only; (d) 𝑝
1
= 0.85, 𝑝

2
= 0.55, and 𝑞 = 0.2, with taking integrated pest-management strategy.

Since
𝜕Θ
1

𝜕𝑥
2

=
𝜕Θ
2

𝜕𝑥
1

= 0,
𝜕Θ
1

𝜕𝑥
1

= 1 − 𝑝
2
,

𝜕Θ
2

𝜕𝑥
2

= 1 − 𝑝
1
,

(61)
it is easy to verify that 𝐶 > 0 and

𝐵 = −[𝑎 −
𝛼𝑞 exp (−𝑑𝑇

0
)

𝑑 [1 − (1 − 𝑝
2
) exp (−𝑑𝑇

0
)]

+
𝑘𝛼𝑑𝑞𝑇

0
(1 − 𝑝

2
) exp (−𝑑𝑇

0
)

[1 − (1 − 𝑝
2
) exp (−𝑑𝑇

0
)]
2
] .

(62)

In order to determine the sign of 𝐵, let

𝑓(𝑡) = 𝑎 −
𝛼𝑞 exp (−𝑑𝑡)

1 − (1 − 𝑝
2
) exp (−𝑑𝑇

0
)
. (63)

We have

𝑓 (𝑡) =
𝛼𝑞 exp (−𝑑𝑡)

𝑑 [1 − (1 − 𝑝
2
) exp (−𝑑𝑇

0
)]
> 0. (64)
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Figure 2: Time series of system (11) when 𝑇 = 0.68 > 𝑇max ≈ 0.6776; prey population 𝑥 and predator population 𝑦 coexist with periodic
oscillations.
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Figure 3: Bifurcation diagrams of system (11): (a) prey population 𝑥 and predator population 𝑦with impulsive period 𝑇 over [1, 11]; (b) prey
population 𝑥 and predator population 𝑦 with impulsive period 𝑇 over [6, 11].

Thus, we can conclude that 𝑓(𝑇
0
) > 0, since

∫
𝑇
0

0

𝑓 (𝑡) d𝑡 = 𝑎𝑇
0
−

𝛼𝑞 exp (−𝑑𝑡)
𝑑 [1 − (1 − 𝑝

2
) exp (−𝑑𝑇

0
)]

= ln( 1

1 − 𝑝
1

) ≥ 0,

(65)

and 𝑓(𝑡) is strictly increasing. Therefore, we have 𝐵 < 0. In
view of 𝑇

0
= 𝑇max and according to Lemma 11, we obtain the

following result.

Theorem 12. System (11) has a positive periodic solution if𝑇 >
𝑇
0
and 𝑇 is close to 𝑇

0
, where 𝑇

0
satisfies

𝑎𝑇
0
=

𝛼𝑞 (1 − exp (−𝑑𝑇
0
))

𝑑 [1 − (1 − 𝑝
2
) exp (−𝑑𝑇

0
)]
+ ln( 1

1 − 𝑝
1

) , (66)

and the nontrivial periodic solution is supercritical case via
bifurcation, which means that the positive periodic solution is
stable.

5. Numerical Analysis

In this section, we will study the impulsive effect on system
(11) and show that the impulsive perturbations cause com-
plicated dynamical behavior for system (11). The influence
of 𝑇, 𝑞, and 𝛽 may be documented by stroboscopically
sampling one of the variables over a range of their values.
Stroboscopic map is a special case of the Poincaré map for
periodically forced system or periodically pulsed system.
Fixing points of the stroboscopicmap correspond to periodic
solutions of system (11) having the same period as the pulsing
term; periodic points of period 𝑘 about stroboscopic map
correspond to entrained periodic solutions of system (11)
having exactly 𝑘 times the period of the pulsing; invariant
circles correspond to quasi-periodic solutions of system (11);
system (11) possibly appear chaotic (or strange) attractors.

Example 13. Let 𝑎 = 3.1, 𝑏 = 1.5, 𝛼 = 1.05, 𝑘 = 0.85, 𝑛 =
2.15, ℎ = 0.97, 𝑑 = 0.3, 𝑝

1
= 0.85, 𝑝

2
= 0.55, and 𝑞 = 0.2

with initial value𝑋(0) = (0.5, 0.5).
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Figure 4: Period doubling bifurcation leads to chaos:𝑇, 2𝑇, and 4𝑇 periodic solutions and chaos when𝑇 = 6.4, 6.6, 6.8, and 7.0, respectively.

From Remark 10, large numbers of preys (pest) could
coexist with predators (natural enemy) with periodic oscilla-
tions, if we are not taking pest-management strategy (𝑝

1
=

0, 𝑝
2

= 0, 𝑞 = 0) (Figure 1(a)). 𝑞 = 0, 𝑝
1

=
0.85, and 𝑝

2
= 0.55; that is, there are periodic spraying

pesticide (or harvesting) only, without releasing of predator
(natural enemy), large numbers of preys (pest) coexist with
periodic oscillation, but predators (natural enemy) rapidly
decrease to zero when 𝑇 = 0.66 < 𝑇max (Figure 1(b)). 𝑝1 =
0, 𝑝
2
= 0, 𝑞 = 0.2; that is, there is periodic releasing of

predator (natural enemy) only; without spraying pesticide
(or harvesting), a few of preys (pest) coexist with predators
(natural enemy) when 𝑇 = 0.66 < 𝑇max (Figure 1(c)). We
cannot make the prey population 𝑥(𝑡) eradicate when 𝑇 =
0.66. From Theorem 6, we know that the prey-eradication
periodic solution is asymptotically stable provided that 𝑇 <
𝑇max ≈ 0.6776. A typical prey-eradication periodic solution
of the system (11) is shown in Figure 1(d), where we observe
how the variable 𝑦(𝑡) oscillates in a stable cycle. In contrast,
the prey population 𝑥(𝑡) rapidly decreases to zero when
𝑇 = 0.66 < 𝑇max ≈ 0.6776. Hence, the integrated pest
management (IPM) is better than the classic methods (such
as biological control or chemical control).

According to Theorem 12, if the impulsive periodic 𝑇 >
𝑇max and is close to 𝑇max, the prey eradication solution
becomes unstable, there is a supercritical bifurcation, then the
prey and predator can coexist on a stable positive periodic
solution when 𝑇 = 0.68 > 𝑇max ≈ 0.6776 (Figure 2).
Therefore, in order to control the pest populations, we would
choose an appropriate impulsive periodic 𝑇. 𝑇 > 𝑇max and
close to 𝑇max would be a better one.

Let 𝑞 = 0.55 and fix other parameter sets of values; we
have displayed bifurcation diagrams for the pest population
𝑥 and the predator population 𝑦 for impulsive period 𝑇
over [1, 11] and [6, 11]. We find that by increasing the
impulsive period 𝑇, system (11) undergoes a process of
period-doubling cascade → chaos → crisis and high-order
periodic oscillations (Figure 3). When 𝑇 increases from 6 to
7, there is a cascade of period-doubling bifurcations leading
to chaos (Figure 4). When 𝑇 = 8.62, the chaos suddenly
disappears and a 𝑇-periodic solution appears, then the 𝑇-
periodic solution abruptly disappears and the chaos abruptly
appears again when 𝑇 = 9.08, these constituting several
types of crises (Figure 5). However, when 𝑇 = 8.62 and 𝑇 =
9.08, it appears that attractors are nonunique, coexistence
of stranger attractor with 𝑇-periodic solution (Figure 6).
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Figure 5: Crises are shown. There is a crisis that the chaos suddenly disappears when 𝑇 = 8.61, 8.62, and there is a crisis that the chaos
suddenly appears when 𝑇 = 9.07, 9.08.

Obviously, which one of the attractors is reached depends on
the initial values.

Example 14. Let 𝑎 = 3.1, 𝑏 = 1.5, 𝛼 = 1.05, 𝑘 = 0.85, 𝑛 =
2.15, ℎ = 0.97, 𝑑 = 0.3, 𝑝

1
= 0.85, 𝑝

2
= 0.55, and 𝑇 = 8

with initial value 𝑋(0) = (0.5, 0.5). We investigate the effect
of 𝑞 on the system (11). Figure 7 showed bifurcation diagrams
obtained by stroboscopically sampling the pest population
𝑥 and the predator population 𝑦 for 𝑞 over [0.1, 3.1]. The
resulting bifurcation diagrams clearly showed that system (11)
has rich dynamics, including period-doubling bifurcation,
period-halving bifurcation, and chaos. When 𝑞 increases
from 0.9 to 2.2, there is a period-halving bifurcation leading
to a 𝑇-periodic solution (Figure 8).

Example 15. Let 𝑎 = 3.1, 𝑏 = 1.5, 𝛼 = 1.05, 𝑘 = 0.85, 𝑛 =
2.15, ℎ = 0.97, 𝑑 = 0.3, 𝑝

1
= 0.85, 𝑝

2
= 0.55, 𝑞 =

1.2, and 𝑇 = 8 with initial value 𝑋(0) = (0.5, 0.5). We
consider the effect of 𝛽 on the system (11).The resulting bifur-
cation diagrams (Figure 9), the pest population 𝑥, and the
predator population𝑦 for 𝛽 over [2.0, 6.0] clearly showed that
system (11) has complex dynamics, such as period-doubling
bifurcation, high-order periodic oscillation, and chaos. In

Figure 10, the typical high-order oscillation of system (11) is
shown: 7𝑇, 12𝑇, 17𝑇, and 3𝑇 periodic solutions when 𝛽 =
2.8, 3.05, 3.4, and 5.5, respectively. Further, Figure 11 shown
the maximin and mean amount of prey population 𝑥 and
predator population 𝑦 of system (11) with 𝛽 over [2.0, 5.5].

From bifurcation diagrams in Figures 3, 7, and 9, we
can easily see that the dynamical behavior of these three
cases is very complicated, which includes (1) high-order
quasi-periodic and periodic oscillations, (2) period-doubling
bifurcation, (3) period-halving bifurcations, (4) nonunique
dynamics (meaning that several attractors coexist), and (5)
cries (the phenomenon of “crisis” in chaotic attractors can
suddenly appear or disappear, or change size discontinuously
as a parameter smoothly varies).

6. Conclusion

In this paper, we have investigated a predator-prey system
with generalized group defense and concerning impulsive
control strategy for pest control in detail. We have shown that
there exists an asymptotically stable pest-eradication periodic
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Figure 6: Different attractors’ coexistence: solution with initial value 𝑋(0) = (0.5, 2.5) will finally tend to strange attractor, solution with
𝑋(0) = (0.6, 2.5)will finally tend to 𝑇 periodic solution when 𝑇 = 8.62, solution with initial value𝑋(0) = (1.1, 2.5)will finally tend to strange
attractor, and solution with𝑋(0) = (1.2, 2.5) will finally tend to 𝑇 periodic solution when 𝑇 = 9.08, respectively.
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Figure 7: Bifurcation diagrams of system (11): prey population 𝑥 and predator population 𝑦 with 𝑞 over [0.1, 3.1].

solution if the impulsive period is less than the critical value
𝑇max. If we choose our impulsive control strategy, in order to
drive the pest to extinction, we can determine the impulsive
period 𝑇 according to the effect of the chemical pesticides on
the populations and the cost of releasing natural enemies such
that 𝑇 < 𝑇max.

But, in a real world, complete eradication of pest pop-
ulations is generally not possible, nor is it biologically or

economically desirable. A good-pest control program should
reduce pest population to levels acceptable to the public.
When 𝑇 > 𝑇max, the stability of the pest-eradication periodic
solution is lost, system (11) is permanent, and there exists
a nontrivial periodic solution when 𝑇 is close to 𝑇max. The
smaller the period, the fewer the pests. Therefore, we can
control the pest population below some economic threshold
(𝐸𝑇 is defined as the pest population level that produces
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Figure 8: Period-halving bifurcation leads to a 𝑇-periodic solution of system (11): chaos and 16𝑇, 8𝑇, 4𝑇, 2𝑇, and 𝑇 periodic solutions when
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Figure 9: Bifurcation diagrams of system (11): prey population 𝑥 and predator population 𝑦 with 𝛽 over [2.0, 6.0].

damage equal to the costs of preventing damage) by choosing
appropriate impulsive period 𝑇 and the number of mature
predator released 𝑞, according to the degree of antipredator
behavior and group defense 𝛽, making an integrated pest-
management strategy every period 𝑇. Then, the periodic
releasing of natural enemies and spraying pesticides change
the properties of the system without impulses and our results
suggest an effective approach in the pest control.

Numerical results show that system (11) can take on vari-
ous kinds of periodic fluctuations and several types of attrac-
tor coexistence and is dominated by high-order periodic
oscillations, quasi-periodic oscillations, and chaotic oscilla-
tions.These results imply that the presence of pulses destroys
equilibria, initiates multiple attractors, quasi-periodic oscil-
lations, and chaos, and makes the dynamical behaviors more
complex.
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Figure 10: High-order oscillations of system (11): 7𝑇, 12𝑇, 17𝑇, and 3𝑇 periodic solutions when 𝛽 = 2.8, 3.05, 3.4, and 5.5, respectively.
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Figure 11: The maximin and mean amount of prey population 𝑥 and predator population 𝑦 of system (11) with 𝛽 over [2.0, 5.5], respectively.
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Combining the exponential dichotomy of evolution family, composition theorems for almost automorphic functions with Banach
fixed point theorem, we establish new existence and uniqueness theorems for almost automorphic mild solutions to neutral
parabolic nonautonomous evolution equations with nondense domain. A unified framework is set up to investigate the existence
and uniqueness of almost automorphic mild solutions to some classes of parabolic partial differential equations and neutral
functional differential equations.

1. Introduction

In this paper, we are interested in the existence and unique-
ness of almost automorphic mild solutions to the following
neutral parabolic evolution equations in Banach spaceX:

𝑑

𝑑𝑡
[𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡))] = 𝐴 (𝑡) [𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡))]

+ 𝑔 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ R,

(1)

𝑑

𝑑𝑡
[𝑢 (𝑡) + 𝑓 (𝑡, 𝐵𝑢 (𝑡))] = 𝐴 (𝑡) [𝑢 (𝑡) + 𝑓 (𝑡, 𝐵𝑢 (𝑡))]

+ 𝑔 (𝑡, 𝐶𝑢 (𝑡)) , 𝑡 ∈ R,

(2)

where sectorial operators 𝐴(𝑡) : 𝐷(𝐴(𝑡)) ⊂ X → X have
a domain 𝐷(𝐴(𝑡)) not necessarily dense in X and satisfy
“Acquistapace-Terreni” conditions, 𝑓, 𝑔 : R × X → X are
almost automorphic in the first argument and Lipschitz in
the second argument, and 𝐵, 𝐶 : X → X are bounded linear
operators.

Bochner has shown in the seminal work [1] that in certain
situations it is possible to establish the almost periodicity
of an object by first establishing its almost automorphy and
then invoking auxiliary conditions which, when coupled

with almost automorphy, give almost periodicity. From then
on, automorphy has been widely investigated. Fundamental
properties of almost automorphic functions on groups and
abstract almost automorphic minimal flows were studied by
Veech [2, 3] and others. Afterwards, Zaki [4] extended the
notion of scalar-valued almost automorphy to the one of
vector-valued almost automorphic functions, paving the road
to many applications to differential equations and dynamical
systems. Among other things, Shen and Yi [5] showed that
almost automorphy is essential and fundamental in the
qualitative study of almost periodic differential equations in
the sense that almost automorphic solutions are the right
class for almost periodic systems. We refer the readers to the
monographs [6, 7] by N’Guérékata for more information on
this topic.

In the autonomous case, namely 𝐴(𝑡) = 𝐴, the existence
and uniqueness of almost automorphic mild solutions to
evolution equation (1) with 𝑓 = 0 have been successfully
investigated in [6–13] in the framework of semigroups of
bounded linear operators. In [13], N’Guérékata studied the
existence and uniqueness of almost automorphic solutions
for semilinear evolution equation

𝑑

𝑑𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑔 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ R, (3)
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where 𝐴 generates an exponentially stable semigroup on
Banach spaceX and 𝑔 : R ×X → X is almost automorphic.
The author proved that the unique bounded mild solution
𝑢 : R → X of (3) is almost automorphic. In [8],
Boulite et al. studied the existence and uniqueness of almost
automorphic solutions for evolution equation (3), assuming
that 𝐴 generates a hyperbolic semigroup on Banach space X
and 𝑔 : R × X

𝛼
→ X is almost automorphic, where X

𝛼

is an intermediate space between 𝐷(𝐴) and X. The authors
proved that the unique bounded mild solution 𝑢 : R → X

𝛼

of (3) is almost automorphic. Cieutat and Ezzinbi [9] studied
the existence of bounded and compact almost automorphic
solutions for semilinear evolution equation (3). The main
methods are through the minimizing of some subvariant
functionals. They gave sufficient conditions ensuring the
existence of an almost automorphicmild solution when there
is at least one bounded mild solution on R+.

In the nonautonomous case, almost automorphic mild
solutions to evolution equation (1) with 𝑓 = 0 have been
successfully investigated in [14–16] in the framework of
evolution family. Amongothers, Baroun et al. [14] generalized
the main results of [8] to the nonautonomous case. The
authors proved that the unique bounded mild solution 𝑢 :
R → X

𝛼
of the semilinear evolution equation
𝑑

𝑑𝑡
𝑢 (𝑡) = 𝐴 (𝑡) 𝑢 (𝑡) + 𝑔 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ R, (4)

is almost automorphic, assuming that the evolution family
{𝑈(𝑡, 𝑠)}

𝑡≥𝑠
generated by 𝐴(𝑡) has an exponential dichotomy

and 𝑔 : R × X
𝛼
→ X is almost automorphic. Ding et

al. [15] established the existence and uniqueness theorem of
almost automorphic mild solutions to the evolution equation
(4), where the evolution family {𝑈(𝑡, 𝑠)}

𝑡≥𝑠
generated by 𝐴(𝑡)

has an exponential dichotomy and 𝑔 : R × X → X is
almost automorphic. Liu and Song [16] proved the existence
and uniqueness of an almost automorphic or a weighted
pseudo almost automorphic mild solution to (4), assuming
that the evolution family {𝑈(𝑡, 𝑠)}

𝑡≥𝑠
generated by 𝐴(𝑡) is

exponentially stable and 𝑔 : R × X → X is almost
automorphic or weighted pseudo almost automorphic.

A rich source of the literature exists on almost auto-
morphic mild solutions to linear and semilinear evolution
equations. However, to the best of our knowledge, there
are few results available on the existence and uniqueness
of almost automorphic mild solutions to neutral parabolic
nonautonomous evolution equations (1) and (2), especially
in the case of not necessarily dense domain and bounded
perturbations. Nondensity occurs in many situations, from
restrictions made on the space where the equation is consid-
ered or from boundary conditions. For example, the space
𝐶2[0, 𝜋] of twice continuously differential functions with null
value on the boundary is nondense in 𝐶[0, 𝜋], the space of
continuous functions. One can refer for this to [17–19] or
Section 5 for more details. We further remark that our first
main result (Theorem 18) recovers partlyTheorem 2.2 in [15]
and Theorem 3.2 in [16] in the parabolic case. Moreover,
a unified framework is set up in the second main result
(Theorem 21) to study the existence and uniqueness of almost
automorphic mild solutions to some classes of parabolic

partial differential equations and neutral functional differen-
tial equations. As one will see, the additional neutral term
𝑓(𝑡, 𝑢(𝑡)) greatly widens the applications of the main result
since (2) is general enough to incorporate some classes of
parabolic partial differential equations and neutral functional
differential equations as special cases.

As a preparation, in Section 2 we fix our notation and
collect some basic facts on evolution family and almost auto-
morphy. Section 3 deals with the proof of the existence and
uniqueness theorem of almost automorphicmild solutions to
evolution equation (1). In Section 4, we study the existence
and uniqueness of almost automorphic mild solutions to
evolution equation (2) with bounded perturbations. Finally,
the abstract results are applied to some classes of parabolic
partial differential equations and neutral functional differen-
tial equations.

2. Preliminaries

Throughout this paper, N, Z, R, and C stand for the sets
of positive integer, integer, real, and complex numbers, and
(X, ‖ ⋅ ‖) stands for a Banach space. If (Y , ‖ ⋅ ‖Y ) is another
Banach space, the space 𝐵(X,Y ) denotes the Banach space of
all bounded linear operators fromX intoY equippedwith the
uniform operator topology. The resolvent operator 𝑅(𝜆, 𝐴) is
defined by 𝑅(𝜆, 𝐴) := (𝜆 − 𝐴)−1 for 𝜆 ∈ 𝜌(𝐴), the resolvent
set of a linear operator 𝐴.

2.1. Evolution Family and Exponential Dichotomy

Definition 1 (see [20, 21]). A family of bounded linear oper-
ators {𝑈(𝑡, 𝑠)}

𝑡≥𝑠
on a Banach space X is called an evolution

family if

(1) 𝑈(𝑡, 𝑟)𝑈(𝑟, 𝑠) = 𝑈(𝑡, 𝑠) and𝑈(𝑠, 𝑠) = 𝐼 for all 𝑡 ≥ 𝑟 ≥ 𝑠
and 𝑡, 𝑟, 𝑠 ∈ R;

(2) the map (𝑡, 𝑠) → 𝑈(𝑡, 𝑠)𝑥 is continuous for all 𝑥 ∈ X,
𝑡 > 𝑠, and 𝑡, 𝑠 ∈ R.

Definition 2 (see [20, 21]). An evolution family {𝑈(𝑡, 𝑠)}
𝑡≥𝑠

on
a Banach spaceX has an exponential dichotomy (or is called
hyperbolic) if there exist projections 𝑃(𝑡), 𝑡 ∈ R, uniformly
bounded and strongly continuous in 𝑡 and constants 𝑀 >
0, 𝛿 > 0 such that

(1) 𝑈(𝑡, 𝑠)𝑃(𝑠) = 𝑃(𝑡)𝑈(𝑡, 𝑠) for 𝑡 ≥ 𝑠 and 𝑡, 𝑠 ∈ R;
(2) the restriction𝑈

𝑄
(𝑡, 𝑠) : 𝑄(𝑠)X → 𝑄(𝑡)X of𝑈(𝑡, 𝑠) is

invertible for 𝑡 ≥ 𝑠 (and we set 𝑈
𝑄
(𝑠, 𝑡) := 𝑈

𝑄
(𝑡, 𝑠)−1);

(3) ‖𝑈(𝑡, 𝑠)𝑃(𝑠)‖
𝐵(X) ≤ 𝑀𝑒−𝛿(𝑡−𝑠), ‖𝑈

𝑄
(𝑠, 𝑡)𝑄(𝑡)‖

𝐵(X)
≤

𝑀𝑒−𝛿(𝑡−𝑠) for 𝑡 ≥ 𝑠 and 𝑡, 𝑠 ∈ R.

Here and below we set 𝑄 := 𝐼 − 𝑃.

Remark 3. Exponential dichotomy is a classical concept in
the study of the long-term behavior of evolution equations,
combining forward exponential stability on some subspaces
with backward exponential stability on their complements.
Its importance relies in particular on the robustness; that
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is, exponential dichotomy persists under small linear or
nonlinear perturbations (see, e.g., [20–24]).

Definition 4 (see [20, 21]). Given an evolution family
{𝑈(𝑡, 𝑠)}

𝑡≥𝑠
with an exponential dichotomy, one defines its

Green’s function by

Γ (𝑡, 𝑠) := {
𝑈 (𝑡, 𝑠) 𝑃 (𝑠) , 𝑡 ≥ 𝑠, 𝑡, 𝑠 ∈ R,

−𝑈
𝑄
(𝑡, 𝑠) 𝑄 (𝑠) , 𝑡 < 𝑠, 𝑡, 𝑠 ∈ R.

(5)

2.2. Almost Automorphy and Bi-Almost Automorphy. Let
𝐶(R,X) denote the collection of continuous functions from
R into X. Let 𝐵𝐶(R,X) denote the Banach space of all
bounded continuous functions fromR intoX equipped with
the sup norm ‖𝑢‖

∞
:= sup

𝑡∈R‖𝑢(𝑡)‖. Similarly, 𝐶(R × X,Y )
denotes the collection of all jointly continuous functions from
R ×X into Y , and 𝐵𝐶(R ×X,Y ) denotes the collection of all
bounded and jointly continuous functions 𝑓 : R ×X → Y .

Definition 5 (Bochner). A function 𝑓 ∈ 𝐶(R,X) is said to
be almost automorphic if for any sequence of real numbers
{𝑠
𝑛
}
𝑛∈N, there exists a subsequence {𝑠𝑛}𝑛∈N such that

lim
𝑚→∞

lim
𝑛→∞

𝑓 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
) = 𝑓 (𝑡) (6)

pointwise for each 𝑡 ∈ R. This limit means that

𝑔 (𝑡) = lim
𝑛→∞

𝑓 (𝑡 + 𝑠
𝑛
) (7)

is well defined for each 𝑡 ∈ R and

𝑓 (𝑡) = lim
𝑛→∞

𝑔 (𝑡 − 𝑠
𝑛
) (8)

for each 𝑡 ∈ R. The collection of all such functions will be
denoted by 𝐴𝐴(X).

Example 6 (Levitan). The function 𝑓(𝑡) = sin(1/(2 + cos 𝑡 +
cos𝜋𝑡)), 𝑡 ∈ R, is almost automorphic but not almost
periodic.

Remark 7. An almost automorphic function may not be
uniformly continuous, while an almost periodic function
must be uniformly continuous.

Lemma 8 (see [6, 7]). Assume that 𝑓, 𝑔 : R → X are almost
automorphic and 𝜆 is any scalar.Then the following holds true:

(1) 𝑓 + 𝑔, 𝜆𝑓 are almost automorphic;
(2) the range 𝑅

𝑓
of 𝑓 is precompact, so 𝑓 is bounded;

(3) 𝑓
𝜏
defined by 𝑓

𝜏
(𝑡) = 𝑓(𝑡 + 𝜏), 𝜏 ∈ R, is almost

automorphic.

Lemma 9 (see [6, 7]). If {𝑓
𝑛
} is a sequence of almost automor-

phic functions and 𝑓
𝑛
→ 𝑓 (𝑛 → ∞) uniformly on R, then

𝑓 is almost automorphic.

Lemma 10 (see [6]). The space 𝐴𝐴(X) equipped with sup
norm ‖𝑢‖

∞
= sup

𝑡∈R‖𝑢(𝑡)‖ is a Banach space.

Definition 11 (see [25]). A function 𝑓 ∈ 𝐶(R × X,X) is said
to be almost automorphic if 𝑓 is almost automorphic in 𝑡 ∈
R for each 𝑢 ∈ X. That is to say, for every sequence of real
numbers {𝑠

𝑛
}
𝑛∈N, there exists a subsequence {𝑠𝑛}𝑛∈N such that

lim
𝑚→∞

lim
𝑛→∞

𝑓 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑢) = 𝑓 (𝑡, 𝑢) (9)

pointwise onR for each 𝑢 ∈ X. Denote by 𝐴𝐴(R ×X,X) the
collection of all such functions.

Lemma 12 (see [6,Theorem 2.2.6]). Assume that𝑓 ∈ 𝐴𝐴(R×
X,X) and there exists a constant 𝐿

𝑓
> 0 such that for all 𝑡 ∈ R

and 𝑢, V ∈ X,
𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V)

 ≤ 𝐿𝑓 ‖𝑢 − V‖ . (10)

If 𝜙(⋅) ∈ 𝐴𝐴(X), then 𝑓(⋅, 𝜙(⋅)) ∈ 𝐴𝐴(X).

Corollary 13 (see [6, Corollary 2.1.6]). Assume that 𝑢 ∈
𝐴𝐴(X) and 𝐵 ∈ 𝐵(X). If for each 𝑡 ∈ R, V(𝑡) = 𝐵𝑢(𝑡), then
V ∈ 𝐴𝐴(X).

Definition 14 (see [26]). A function 𝑓 ∈ 𝐶(R×R,X) is called
bi-almost automorphic if for every sequence of real numbers
{𝑠
𝑛
}
𝑛∈N, one can extract a subsequence {𝑠

𝑛
}
𝑛∈N such that

𝑔 (𝑡, 𝑠) = lim
𝑛→∞

𝑓 (𝑡 + 𝑠
𝑛
, 𝑠 + 𝑠
𝑛
) (11)

is well defined for each 𝑡, 𝑠 ∈ R, and
lim
𝑛→∞

𝑔 (𝑡 − 𝑠
𝑛
, 𝑠 − 𝑠
𝑛
) = 𝑓 (𝑡, 𝑠) (12)

for each 𝑡, 𝑠 ∈ R. The collection of all such functions will be
denoted by 𝑏𝐴𝐴(R ×R,X).

In other words, a function 𝑓 ∈ 𝐶(R × R,X) is said to be
bi-almost automorphic if for any sequence of real numbers
{𝑠
𝑛
}
𝑛∈N, there exists a subsequence {𝑠𝑛}𝑛∈N such that

lim
𝑚→∞

lim
𝑛→∞

𝑓 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑠 + 𝑠
𝑛
− 𝑠
𝑚
) = 𝑓 (𝑡, 𝑠) (13)

pointwise for each 𝑡, 𝑠 ∈ R.

3. Neutral Parabolic Nonautonomous
Evolution Equation

In this section, we will establish the existence and uniqueness
theorem of almost automorphic mild solutions to neu-
tral parabolic nonautonomous evolution equation (1) under
assumptions (H1)–(H5) listed below:
(H1) there exist constants 𝜆

0
≥ 0, 𝜃 ∈ (𝜋/2, 𝜋), 𝐿

0
, 𝐾
0
≥

0, and 𝛼, 𝛽 ∈ (0, 1] with 𝛼 + 𝛽 > 1 such that

Σ
𝜃
∪ {0} ⊂ 𝜌 (𝐴 (𝑡) − 𝜆

0
) ,

𝑅 (𝜆, 𝐴 (𝑡) − 𝜆0)
𝐵(X) ≤

𝐾
0

1 + |𝜆|
,

 (𝐴 (𝑡) − 𝜆0) 𝑅 (𝜆, 𝐴 (𝑡) − 𝜆0)

× [𝑅 (𝜆
0
, 𝐴 (𝑡)) − 𝑅 (𝜆

0
, 𝐴 (𝑠))]

𝐵(X)

≤ 𝐿
0|𝑡 − 𝑠|

𝛼
|𝜆|
−𝛽

(14)

for 𝑡, 𝑠 ∈ R, 𝜆 ∈ Σ
𝜃
:= {𝜆 ∈ C \ {0} : | arg 𝜆| ≤ 𝜃},
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(H2) the evolution family {𝑈(𝑡, 𝑠)}
𝑡≥𝑠

generated by𝐴(𝑡) has
an exponential dichotomy with dichotomy constants
𝑀 > 0, 𝛿 > 0, dichotomy projections 𝑃(𝑡), 𝑡 ∈ R,
and Green’s function Γ(𝑡, 𝑠),

(H3) Γ(𝑡, 𝑠)𝑥 ∈ 𝑏𝐴𝐴(R ×R,X) for each 𝑥 ∈ X,

(H4) 𝑓 ∈ 𝐴𝐴(R×X,X), and there exists a constant 𝐿
𝑓
> 0

such that for all 𝑡 ∈ R and 𝑢, V ∈ X,

𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V)
 ≤ 𝐿𝑓 ‖𝑢 − V‖ , (15)

(H5) 𝑔 ∈ 𝐴𝐴(R×X,X), and there exists a constant 𝐿
𝑔
> 0

such that for all 𝑡 ∈ R and 𝑢, V ∈ X,

𝑔 (𝑡, 𝑢) − 𝑔 (𝑡, V)
 ≤ 𝐿𝑔 ‖𝑢 − V‖ . (16)

Remark 15. Assumption (H1) is usually called “Acquistapace-
Terreni” conditions, which was first introduced in [27] for
𝜆
0
= 0. If (H1) holds, then there exists a unique evolution

family {𝑈(𝑡, 𝑠)}
𝑡≥𝑠

on X such that (𝑡, 𝑠) → 𝑈(𝑡, 𝑠) ∈ 𝐵(X)

is strongly continuous for 𝑡 > 𝑠, 𝑈(⋅, 𝑠) ∈ 𝐶1((𝑠,∞), 𝐵(X)),
𝜕
𝑡
𝑈(𝑡, 𝑠) = 𝐴(𝑡)𝑈(𝑡, 𝑠) for 𝑡 > 𝑠. These assertions are

established inTheorem 2.3 of [28]. See also [27, 29, 30].

Definition 16. Amild solution to (1) is a continuous function
𝑢 : R → X satisfying integral equation

𝑢 (𝑡) = − 𝑓 (𝑡, 𝑢 (𝑡)) + 𝑈 (𝑡, 𝑠) [𝑢 (𝑠) + 𝑓 (𝑠, 𝑢 (𝑠))]

+ ∫
𝑡

𝑠

𝑈 (𝑡, 𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎,
(17)

for all 𝑡 ≥ 𝑠 and all 𝑠 ∈ R.

Lemma 17. Assume that (H1)–(H3) and (H5) hold. Define
nonlinear operator Λ on 𝐴𝐴(X) by

(Λ𝑢) (𝑡) = ∫
𝑡

−∞

𝑈 (𝑡, 𝑠) 𝑃 (𝑠) 𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑈
𝑄
(𝑡, 𝑠) 𝑄 (𝑠) 𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ R.

(18)

Then Λmaps 𝐴𝐴(X) into itself.

Proof. Combining the ideas from Theorem 4.28 in [22], the
technique of exponential dichotomy, composition theoremof
almost automorphic functions, and the Lebesgue dominated
convergence theorem, we strive for a more self-contained
proof. Let 𝑢 ∈ 𝐴𝐴(X). Then it follows from Lemma 12 [6,
Theorem 2.2.6] that ℎ := 𝑔(⋅, 𝑢(⋅)) ∈ 𝐴𝐴(X), in view of (H5).
Hence, (Λ𝑢)(𝑡) can be rewritten as

(Λ𝑢) (𝑡) = ∫
𝑡

−∞

𝑈 (𝑡, 𝑠) 𝑃 (𝑠) ℎ (𝑠) 𝑑𝑠

− ∫
+∞

𝑡

𝑈
𝑄
(𝑡, 𝑠) 𝑄 (𝑠) ℎ (𝑠) 𝑑𝑠, 𝑡 ∈ R.

(19)

From triangle inequality and exponential dichotomy of
{𝑈(𝑡, 𝑠)}

𝑡≥𝑠
, it follows that

‖(Λ𝑢) (𝑡)‖ ≤ 𝑀∫
𝑡

−∞

𝑒−𝛿(𝑡−𝑠) ‖ℎ (𝑠)‖ 𝑑𝑠

+𝑀∫
+∞

𝑡

𝑒−𝛿(𝑠−𝑡) ‖ℎ (𝑠)‖ 𝑑𝑠

≤ 𝑀‖ℎ‖
∞
∫
𝑡

−∞

𝑒−𝛿(𝑡−𝑠)𝑑𝑠

+𝑀‖ℎ‖∞ ∫
+∞

𝑡

𝑒−𝛿(𝑠−𝑡)𝑑𝑠

≤
2𝑀

𝛿
‖ℎ‖∞.

(20)

Hence, Λ is well defined for each 𝑡 ∈ R. To show Λ𝑢 ∈
𝐶(R,X), we will verify that

lim
Δ𝑡→0

‖(Λ𝑢) (𝑡 + Δ𝑡) − (Λ𝑢) (𝑡)‖ = 0, for each 𝑡 ∈ R.

(21)

By ℎ ∈ 𝐶(R,X) and the strong continuity of Γ(𝑡, 𝑠), we have
for each 𝑡 ∈ R, 𝑥 ∈ X, 𝜎 > 0,

lim
Δ𝑡→0

‖ℎ (𝑡 + Δ𝑡) − ℎ (𝑡)‖ = 0,

lim
Δ𝑡→0

‖𝑈 (𝑡 + Δ𝑡, 𝑡 + Δ𝑡 − 𝜎) 𝑃 (𝑡 + Δ𝑡 − 𝜎) 𝑥

−𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎) 𝑥‖ = 0,

lim
Δ𝑡→0

𝑈𝑄 (𝑡 + Δ𝑡, 𝑡 + Δ𝑡 + 𝜎)𝑄 (𝑡 + Δ𝑡 + 𝜎) 𝑥

−𝑈
𝑄
(𝑡, 𝑡 + 𝜎)𝑄 (𝑡 + 𝜎) 𝑥

 = 0.

(22)

Transforming (19) into another form, we have, for 𝜎 > 0,

(Λ𝑢) (𝑡) = ∫
+∞

0

𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎) ℎ (𝑡 − 𝜎) 𝑑𝜎

− ∫
+∞

0

𝑈
𝑄
(𝑡, 𝑡 + 𝜎)𝑄 (𝑡 + 𝜎) ℎ (𝑡 + 𝜎) 𝑑𝜎,

𝑡 ∈ R.

(23)

In view of (23), triangle inequality and exponential
dichotomy of {𝑈(𝑡, 𝑠)}

𝑡≥𝑠
, we have

‖(Λ𝑢) (𝑡 + Δ𝑡) − (Λ𝑢) (𝑡)‖

≤

∫
+∞

0

𝑈 (𝑡 + Δ𝑡, 𝑡 + Δ𝑡 − 𝜎) 𝑃 (𝑡 + Δ𝑡 − 𝜎)

× ℎ (𝑡 + Δ𝑡 − 𝜎) 𝑑𝜎

−∫
+∞

0

𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎) ℎ (𝑡 − 𝜎) 𝑑𝜎
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+

∫
+∞

0

𝑈
𝑄
(𝑡 + Δ𝑡, 𝑡 + Δ𝑡 + 𝜎)𝑄 (𝑡 + Δ𝑡 + 𝜎)

× ℎ (𝑡 + Δ𝑡 + 𝜎) 𝑑𝜎

−∫
+∞

0

𝑈
𝑄
(𝑡, 𝑡 + 𝜎)𝑄 (𝑡 + 𝜎) ℎ (𝑡 + 𝜎) 𝑑𝜎



≤

∫
+∞

0

𝑈 (𝑡 + Δ𝑡, 𝑡 + Δ𝑡 − 𝜎) 𝑃 (𝑡 + Δ𝑡 − 𝜎)

× [ℎ (𝑡 + Δ𝑡 − 𝜎) − ℎ (𝑡 − 𝜎)] 𝑑𝜎


+

∫
+∞

0

[𝑈 (𝑡 + Δ𝑡, 𝑡 + Δ𝑡 − 𝜎) 𝑃 (𝑡 + Δ𝑡 − 𝜎)

−𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎)] ℎ (𝑡 − 𝜎) 𝑑𝜎


+

∫
+∞

0

𝑈
𝑄
(𝑡 + Δ𝑡, 𝑡 + Δ𝑡 + 𝜎)𝑄 (𝑡 + Δ𝑡 + 𝜎)

× [ℎ (𝑡 + Δ𝑡 + 𝜎) − ℎ (𝑡 + 𝜎)] 𝑑𝜎


+

∫
+∞

0

[𝑈
𝑄
(𝑡 + Δ𝑡, 𝑡 + Δ𝑡 + 𝜎)𝑄 (𝑡 + Δ𝑡 + 𝜎)

−𝑈
𝑄
(𝑡, 𝑡 + 𝜎)𝑄 (𝑡 + 𝜎)] ℎ (𝑡 + 𝜎) 𝑑𝜎



≤ 𝑀∫
+∞

0

𝑒−𝛿𝜎 ‖ℎ (𝑡 + Δ𝑡 − 𝜎) − ℎ (𝑡 − 𝜎)‖ 𝑑𝜎

+ ∫
+∞

0

‖𝑈 (𝑡 + Δ𝑡, 𝑡 + Δ𝑡 − 𝜎) 𝑃 (𝑡 + Δ𝑡 − 𝜎) ℎ (𝑡 − 𝜎)

−𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎) ℎ (𝑡 − 𝜎)‖ 𝑑𝜎

+𝑀∫
+∞

0

𝑒−𝛿𝜎 ‖ℎ (𝑡 + Δ𝑡 + 𝜎) − ℎ (𝑡 + 𝜎)‖ 𝑑𝜎

+ ∫
+∞

0

𝑈𝑄 (𝑡 + Δ𝑡, 𝑡 + Δ𝑡 + 𝜎)𝑄 (𝑡 + Δ𝑡 + 𝜎) ℎ (𝑡 + 𝜎)

−𝑈
𝑄
(𝑡, 𝑡 + 𝜎)𝑄 (𝑡 + 𝜎) ℎ (𝑡 + 𝜎)

 𝑑𝜎.

(24)

Thus, in the Lebesgue dominated convergence theorem, (22)
leads to (21) and therefore to Λ𝑢 ∈ 𝐶(R,X).

To show Λ𝑢 ∈ 𝐴𝐴(X), let us take a sequence of real
numbers {𝑠

𝑛
}
𝑛∈N and show that there exists a subsequence

{𝑠
𝑛
}
𝑛∈N such that

lim
𝑚→∞

lim
𝑛→∞

(Λ𝑢) (𝑡 + 𝑠𝑛 − 𝑠𝑚) − (Λ𝑢) (𝑡)
 = 0,

for each 𝑡 ∈ R.
(25)

By ℎ ∈ 𝐴𝐴(X) and (H3), there exists a subsequence {𝑠
𝑛
}
𝑛∈N

such that for each 𝑡 ∈ R, 𝑥 ∈ X, 𝜎 > 0,

lim
𝑚→∞

lim
𝑛→∞

ℎ (𝑡 + 𝑠𝑛 − 𝑠𝑚) − ℎ (𝑡)
 = 0,

lim
𝑚→∞

lim
𝑛→∞

𝑈 (𝑡 + 𝑠𝑛 − 𝑠𝑚, 𝑡 + 𝑠𝑛 − 𝑠𝑚 − 𝜎)

× 𝑃 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎) 𝑥

−𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎) 𝑥‖ = 0,

lim
𝑚→∞

lim
𝑛→∞

𝑈𝑄 (𝑡 + 𝑠𝑛 − 𝑠𝑚, 𝑡 + 𝑠𝑛 − 𝑠𝑚 + 𝜎)

× 𝑄 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎) 𝑥

−𝑈
𝑄
(𝑡, 𝑡 + 𝜎) 𝑃 (𝑡 + 𝜎) 𝑥

 = 0.

(26)

Again, in view of (23), triangle inequality and exponential
dichotomy of {𝑈(𝑡, 𝑠)}

𝑡≥𝑠
, we obtain

(Λ𝑢) (𝑡 + 𝑠𝑛 − 𝑠𝑚) − (Λ𝑢) (𝑡)


≤

∫
+∞

0

𝑈 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎)

× 𝑃 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎) ℎ (𝑡 + 𝑠

𝑛
− 𝑠
𝑚
− 𝜎) 𝑑𝜎

−∫
+∞

0

𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎) ℎ (𝑡 − 𝜎) 𝑑𝜎


+

∫
+∞

0

𝑈
𝑄
(𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎)

× 𝑄 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎) ℎ (𝑡 + 𝑠

𝑛
− 𝑠
𝑚
+ 𝜎) 𝑑𝜎

−∫
+∞

0

𝑈
𝑄
(𝑡, 𝑡 + 𝜎)𝑄 (𝑡 + 𝜎) ℎ (𝑡 + 𝜎) 𝑑𝜎



≤

∫
+∞

0

𝑈 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎)

× 𝑃 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎)

⋅ [ℎ (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎) − ℎ (𝑡 − 𝜎)] 𝑑𝜎



+

∫
+∞

0

[𝑈 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎)

× 𝑃 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎)

− 𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎) ] ℎ (𝑡 − 𝜎) 𝑑𝜎


+

∫
+∞

0

𝑈
𝑄
(𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎)

× 𝑄 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎)

⋅ [ℎ (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎) − ℎ (𝑡 + 𝜎)] 𝑑𝜎



+

∫
+∞

0

[𝑈
𝑄
(𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎)

× 𝑄 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎)

− 𝑈
𝑄
(𝑡, 𝑡 + 𝜎)𝑄 (𝑡 + 𝜎)] ℎ (𝑡 + 𝜎) 𝑑𝜎



≤ 𝑀∫
+∞

0

𝑒−𝛿𝜎
ℎ (𝑡 + 𝑠𝑛 − 𝑠𝑚 − 𝜎) − ℎ (𝑡 − 𝜎)

 𝑑𝜎

+ ∫
+∞

0

𝑈 (𝑡 + 𝑠𝑛 − 𝑠𝑚, 𝑡 + 𝑠𝑛 − 𝑠𝑚 − 𝜎)

× 𝑃 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
− 𝜎) ℎ (𝑡 − 𝜎)

−𝑈 (𝑡, 𝑡 − 𝜎) 𝑃 (𝑡 − 𝜎) ℎ (𝑡 − 𝜎)
 𝑑𝜎
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+𝑀∫
+∞

0

𝑒−𝛿𝜎
ℎ (𝑡 + 𝑠𝑛 − 𝑠𝑚 + 𝜎) − ℎ (𝑡 + 𝜎)

 𝑑𝜎

+ ∫
+∞

0

𝑈𝑄 (𝑡 + 𝑠𝑛 − 𝑠𝑚, 𝑡 + 𝑠𝑛 − 𝑠𝑚 + 𝜎)

× 𝑄 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
+ 𝜎) ℎ (𝑡 + 𝜎)

−𝑈
𝑄
(𝑡, 𝑡 + 𝜎)𝑄 (𝑡 + 𝜎) ℎ (𝑡 + 𝜎)

 𝑑𝜎.

(27)

Thus, in the Lebesgue dominated convergence theorem, (26)
leads to (25) and therefore to Λ𝑢 ∈ 𝐴𝐴(X). Here we used
the translation invariance of almost automorphic functions,
which is collected in Lemma 8(3).The proof is complete.

Now we are in a position to state and prove the first main
result of this paper.

Theorem 18. Suppose that (H1)–(H5) hold. If Θ = 𝐿
𝑓
+

(2𝑀𝐿
𝑔
/𝛿) < 1, then there exists a unique mild solution 𝑢 ∈

𝐴𝐴(X) to (1) such that

𝑢 (𝑡) = − 𝑓 (𝑡, 𝑢 (𝑡)) + ∫
𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

− ∫
+∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎.

(28)

Proof. Firstly, define nonlinear operator Γ on 𝐴𝐴(X) by

(Γ𝑢) (𝑡) = − 𝑓 (𝑡, 𝑢 (𝑡)) + ∫
𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

− ∫
+∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎.

(29)

Let 𝑢 ∈ 𝐴𝐴(X), then it follows from Lemma 12 [6, Theorem
2.2.6] that 𝑓(⋅, 𝑢(⋅)) ∈ 𝐴𝐴(X), in view of (H4). Together with
Lemma 17, we deduce that the operator Γ is well defined and
maps 𝐴𝐴(X) into itself.

Secondly, we will prove that Γ is a strict contraction on
𝐴𝐴(X). Let V, 𝑤 ∈ 𝐴𝐴(X). By (H2), (H4), and (H5), we have

‖(ΓV) (𝑡) − (Γ𝑤) (𝑡)‖

≤ 𝐿
𝑓 ‖V (𝑡) − 𝑤 (𝑡)‖

+ 𝑀∫
𝑡

−∞

𝑒−𝛿(𝑡−𝑠)
𝑔 (𝑠, V (𝑠)) − 𝑔 (𝑠, 𝑤 (𝑠))

 𝑑𝑠

+𝑀∫
+∞

𝑡

𝑒−𝛿(𝑠−𝑡)
𝑔 (𝑠, V (𝑠)) − 𝑔 (𝑠, 𝑤 (𝑠))

 𝑑𝑠

≤ 𝐿
𝑓‖V − 𝑤‖∞ +𝑀𝐿𝑔 ∫

𝑡

−∞

𝑒−𝛿(𝑡−𝑠) ‖V (𝑠) − 𝑤 (𝑠)‖ 𝑑𝑠

+𝑀𝐿
𝑔
∫
+∞

𝑡

𝑒−𝛿(𝑠−𝑡) ‖V (𝑠) − 𝑤 (𝑠)‖ 𝑑𝑠

≤ (𝐿
𝑓
+
2𝑀𝐿
𝑔

𝛿
) ‖V − 𝑤‖∞.

(30)

Hence,

‖ΓV − Γ𝑤‖∞ ≤ (𝐿𝑓 +
2𝑀𝐿
𝑔

𝛿
) ‖V − 𝑤‖∞. (31)

If Θ = 𝐿
𝑓
+ (2𝑀𝐿

𝑔
/𝛿) < 1, then the operator Γ becomes

a strict contraction on 𝐴𝐴(X). Since the space 𝐴𝐴(X)
equipped with sup norm ‖𝑢‖

∞
= sup

𝑡∈R‖𝑢(𝑡)‖ is a Banach
space by Lemma 10, an application of Banach fixed point
theorem shows that there exists a unique 𝑢 ∈ 𝐴𝐴(X) such
that (28) holds.

Finally, to prove that 𝑢 satisfies (17) for all 𝑡 ≥ 𝑠, all 𝑠 ∈ R.
For this, we let

𝑢 (𝑠) = − 𝑓 (𝑠, 𝑢 (𝑠)) + ∫
𝑠

−∞

𝑈 (𝑠, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

− ∫
+∞

𝑠

𝑈
𝑄
(𝑠, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎.

(32)

Multiplying both sides of (32) by 𝑈(𝑡, 𝑠) for all 𝑡 ≥ 𝑠, we have

𝑈 (𝑡, 𝑠) 𝑢 (𝑠) = − 𝑈 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠))

+ ∫
𝑠

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

− ∫
+∞

𝑠

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

= − 𝑈 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠))

+ ∫
𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

− ∫
𝑡

𝑠

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

− ∫
+∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

− ∫
𝑡

𝑠

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎

= − 𝑈 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) + 𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡))

− ∫
𝑡

𝑠

𝑈 (𝑡, 𝜎) 𝑔 (𝜎, 𝑢 (𝜎)) 𝑑𝜎.

(33)

Hence, 𝑢 ∈ 𝐴𝐴(X) is a unique mild solution to (1). The proof
is complete.

4. Bounded Perturbations

In this section, we consider neutral parabolic nonau-
tonomous evolution equation (2). For this, we need assump-
tions (H1)–(H5) listed in the previous section and the
following assumption:

(H6) 𝐵, 𝐶 ∈ 𝐵(X) with max{‖𝐵‖
𝐵(X), ‖𝐶‖𝐵(X)} = 𝐾.
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Definition 19. Amild solution to (2) is a continuous function
𝑢 : R → X satisfying integral equation

𝑢 (𝑡) = − 𝑓 (𝑡, 𝐵𝑢 (𝑡)) + 𝑈 (𝑡, 𝑠) [𝑢 (𝑠) + 𝑓 (𝑠, 𝐵𝑢 (𝑠))]

+ ∫
𝑡

𝑠

𝑈 (𝑡, 𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

(34)

for all 𝑡 ≥ 𝑠 and all 𝑠 ∈ R.

Lemma 20. Let assumptions (H1)–(H3), (H5), and (H6) hold.
Define nonlinear operator Λ

1
on 𝐴𝐴(X) by

(Λ
1
𝑢) (𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝑃 (𝑠) 𝑔 (𝑠, 𝐶𝑢 (𝑠)) 𝑑𝑠

− ∫
+∞

𝑡

𝑈
𝑄
(𝑡, 𝑠) 𝑄 (𝑠) 𝑔 (𝑠, 𝐶𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ R.

(35)

Then Λ
1
maps 𝐴𝐴(X) into itself.

Proof. Let 𝑢(⋅) ∈ 𝐴𝐴(X). By (H6) andCorollary 13, we obtain
𝐶𝑢(⋅) ∈ 𝐴𝐴(X). Then it follows from Lemma 12 [6, Theorem
2.2.6] that ℎ

1
:= 𝑔(⋅, 𝐶𝑢(⋅)) ∈ 𝐴𝐴(X), in view of (H5). The

left is almost same as the proof of Lemma 17, remembering to
replace Λ, ℎ by Λ

1
, and ℎ

1
, respectively. This ends the proof.

Now we are in a position to state and prove the second
main result of this paper.

Theorem 21. Suppose that (H1)–(H6) hold. If Θ
1
= 𝐾(𝐿

𝑓
+

(2𝑀𝐿
𝑔
/𝛿)) < 1, then there exists a unique mild solution 𝑢 ∈

𝐴𝐴(X) to (2) such that

𝑢 (𝑡) = − 𝑓 (𝑡, 𝐵𝑢 (𝑡)) + ∫
𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

− ∫
+∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎.

(36)

Proof. Firstly, define nonlinear operator Γ
1
on 𝐴𝐴(X) by

(Γ
1
𝑢) (𝑡) = − 𝑓 (𝑡, 𝐵𝑢 (𝑡))

+ ∫
𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

− ∫
+∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎.

(37)

Let 𝑢 ∈ 𝐴𝐴(X). By (H6) and Corollary 13, we obtain 𝐵𝑢 ∈
𝐴𝐴(X). Hence, it follows from Lemma 12 [6, Theorem 2.2.6]
that 𝑓(⋅, 𝐵𝑢(⋅)) ∈ 𝐴𝐴(X), in view of (H4). Together with
Lemma 20, we deduce that the operator Γ

1
is well defined and

maps 𝐴𝐴(X) into itself.

Secondly, we will prove that Γ
1
is a strict contraction on

𝐴𝐴(X) and apply Banach fixed point theorem. Let V, 𝑤 ∈
𝐴𝐴(X). Then it follows from (H2), (H4), (H5), and (H6) that

(Γ1V) (𝑡) − (Γ1𝑤) (𝑡)


≤ 𝐾𝐿
𝑓 ‖V (𝑡) − 𝑤 (𝑡)‖

+ 𝑀∫
𝑡

−∞

𝑒−𝛿(𝑡−𝑠)
𝑔 (𝑠, 𝐶V (𝑠)) − 𝑔 (𝑠, 𝐶𝑤 (𝑠))

 𝑑𝑠

+𝑀∫
+∞

𝑡

𝑒−𝛿(𝑠−𝑡)
𝑔 (𝑠, 𝐶V (𝑠)) − 𝑔 (𝑠, 𝐶𝑤 (𝑠))

 𝑑𝑠

≤ 𝐾𝐿
𝑓‖V − 𝑤‖∞ +𝑀𝐾𝐿𝑔 ∫

𝑡

−∞

𝑒−𝛿(𝑡−𝑠) ‖V (𝑠) − 𝑤 (𝑠)‖ 𝑑𝑠

+𝑀𝐾𝐿
𝑔
∫
+∞

𝑡

𝑒−𝛿(𝑠−𝑡) ‖V (𝑠) − 𝑤 (𝑠)‖ 𝑑𝑠

≤ 𝐾(𝐿
𝑓
+
2𝑀𝐿
𝑔

𝛿
) ‖V − 𝑤‖∞.

(38)

Hence,

Γ1V − Γ1𝑤
∞ ≤ 𝐾(𝐿𝑓 +

2𝑀𝐿
𝑔

𝛿
) ‖V − 𝑤‖∞. (39)

If Θ
1
= 𝐾(𝐿

𝑓
+ (2𝑀𝐿

𝑔
/𝛿)) < 1, then the operator Γ

1

becomes a strict contraction on 𝐴𝐴(X). Since the space
𝐴𝐴(X) equipped with sup norm ‖𝑢‖

∞
= sup

𝑡∈R‖𝑢(𝑡)‖ is a
Banach space by Lemma 10, an application of Banach fixed
point theorem shows that there exists a unique 𝑢 ∈ 𝐴𝐴(X)
such that (36) holds.

Finally, to prove that 𝑢 satisfies (34) for all 𝑡 ≥ 𝑠, all 𝑠 ∈ R.
For this, we let

𝑢 (𝑠) = − 𝑓 (𝑠, 𝐵𝑢 (𝑠)) + ∫
𝑠

−∞

𝑈 (𝑠, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

− ∫
+∞

𝑠

𝑈
𝑄
(𝑠, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎.

(40)

Multiplying both sides of (40) by 𝑈(𝑡, 𝑠) for all 𝑡 ≥ 𝑠, then

𝑈 (𝑡, 𝑠) 𝑢 (𝑠) = − 𝑈 (𝑡, 𝑠) 𝑓 (𝑠, 𝐵𝑢 (𝑠))

+ ∫
𝑠

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

− ∫
+∞

𝑠

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

= − 𝑈 (𝑡, 𝑠) 𝑓 (𝑠, 𝐵𝑢 (𝑠))

+ ∫
𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

− ∫
𝑡

𝑠

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎
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− ∫
+∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

− ∫
𝑡

𝑠

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎

= − 𝑈 (𝑡, 𝑠) 𝑓 (𝑠, 𝐵𝑢 (𝑠)) + 𝑢 (𝑡) + 𝑓 (𝑡, 𝐵𝑢 (𝑡))

− ∫
𝑡

𝑠

𝑈 (𝑡, 𝜎) 𝑔 (𝜎, 𝐶𝑢 (𝜎)) 𝑑𝜎.

(41)

Hence, 𝑢 ∈ 𝐴𝐴(X) is a unique mild solution to (2).The proof
is complete.

5. Applications to Parabolic Partial
Differential Equations and Neutral
Functional Differential Equations

In this section, two examples are given to illustrate the effec-
tiveness and flexibility ofTheorem 21. By a mild solution to a
partial or neutral functional differential equation, we mean a
mild solution to the corresponding evolution equation.

Example 22. Consider the following parabolic partial differ-
ential equation:

𝜕

𝜕𝑡
[𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑞 (𝑥) 𝑢 (𝑡, 𝑥))]

=
𝜕2

𝜕𝑥2
[𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑞 (𝑥) 𝑢 (𝑡, 𝑥))]

+ (−3 + sin 𝑡 + sin𝜋𝑡) [𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑞 (𝑥) 𝑢 (𝑡, 𝑥))]

+ 𝑔 (𝑡, 𝑞 (𝑥) 𝑢 (𝑡, 𝑥)) , 𝑡 ∈ R, 𝑥 ∈ [0, 𝜋] ,

[𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑞 (𝑥) 𝑢 (𝑡, 𝑥))]
𝑥=0

= [𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑞 (𝑥) 𝑢 (𝑡, 𝑥))]
𝑥=𝜋 = 0, 𝑡 ∈ R,

(42)

where 𝑞 is continuous on [0, 𝜋].
LetX := 𝐶[0, 𝜋] denote the space of continuous functions

from [0, 𝜋] to R equipped with the sup norm and define the
operator 𝐴 by

𝐷(𝐴) := {𝜑 ∈ 𝐶
2
[0, 𝜋] : 𝜑 (0) = 𝜑 (𝜋) = 0} ,

𝐴𝜑 := 𝜑, 𝜑 ∈ 𝐷 (𝐴) .
(43)

It is known (see [18, Example 14.4]) that 𝐴 is sectorial, 𝐷(𝐴)
is not dense in 𝐶[0, 𝜋], and 𝐴 is the generator of an analytic
semigroup {𝑇(𝑡)}

𝑡≥0
not strongly continuous at 0. Since the

spectrum of 𝐴 consists of the sequence of eigenvalues 𝜆
𝑛
=

−𝑛2, 𝑛 ∈ N, it can be easily checked that ‖𝑇(𝑡)‖ ≤ 𝑒−𝑡 for
𝑡 ≥ 0, remembering that the spectral bound 𝑠(𝐴) = sup{Re 𝜆 :
𝜆 ∈ 𝜎(𝐴)} of 𝐴 coincides with its growth bound

𝜔
𝐴
= inf {𝛾 ∈ R : ∃𝑀 > 0 s.t. ‖𝑇 (𝑡)‖ ≤ 𝑀𝑒𝛾𝑡, 𝑡 ≥ 0} .

(44)

Define a family of linear operators 𝐴(𝑡), 𝑡 ∈ R by

𝐷(𝐴 (𝑡)) = 𝐷 (𝐴 (0)) = 𝐷 (𝐴) ,

𝐴 (𝑡) 𝜑 = (𝐴 − 3 + sin 𝑡 + sin𝜋𝑡) 𝜑, ∀𝜑 ∈ 𝐷 (𝐴) .
(45)

In the case that 𝐴(𝑡) : 𝐷(𝐴(𝑡)) ⊂ X → X have a constant
domain 𝐷(𝐴(𝑡)) ≡ 𝐷(𝐴(0)) and 𝜆

0
= 0, it is known that

[31, 32] assumption (H1) can be replaced by the following
assumption (ST).
(ST) There exist constants 𝜃 ∈ (𝜋/2, 𝜋), 𝐿

0
, 𝐾
0
≥ 0, and

𝛼 ∈ (0, 1] such that

Σ
𝜃
∪ {0} ⊂ 𝜌 (𝐴 (𝑡)) , ‖𝑅 (𝜆, 𝐴 (𝑡))‖𝐵(X) ≤

𝐾
0

1 + |𝜆|
,

(𝐴 (𝑡) − 𝐴 (𝑠)) 𝐴(𝑟)
−1𝐵(X) ≤ 𝐿0|𝑡 − 𝑠|

𝛼

(46)

for 𝑡, 𝑠, 𝑟 ∈ R, 𝜆 ∈ Σ
𝜃
:= {𝜆 ∈ C \ {0} : | arg 𝜆| ≤ 𝜃}.

Now, it is not hard to verify that𝐴(𝑡) satisfy (H1). ByTheorem
2.3 of [28], 𝐴(𝑡) generate an evolution family {𝑈(𝑡, 𝑠)}

𝑡≥𝑠
that

is strongly continuous for 𝑡 > 𝑠. Furthermore,

𝑈 (𝑡, 𝑠) 𝜑 = 𝑇 (𝑡 − 𝑠) 𝑒
∫
𝑡

𝑠
(−3+sin 𝜏+sin𝜋𝜏)𝑑𝜏𝜑. (47)

Hence,
‖𝑈 (𝑡, 𝑠)‖ ≤ 𝑒

−2(𝑡−𝑠) for 𝑡 ≥ 𝑠, (48)

and (H2) is satisfied with𝑀 = 1, 𝛿 = 2, 𝑃(𝑠) = 𝐼.
As for (H3), it is obvious that𝑈(𝑡, 𝑠)𝜑 ∈ 𝐶(R×R, 𝐶[0, 𝜋])

for each 𝜑 ∈ 𝐶[0, 𝜋].
To show that 𝑈(𝑡, 𝑠)𝜑 ∈ 𝑏𝐴𝐴(R × R, 𝐶[0, 𝜋]) for each

𝜑 ∈ 𝐶[0, 𝜋], let us take a sequence of real numbers {𝑠
𝑛
}
𝑛∈N

and show that there exists a subsequence {𝑠
𝑛
}
𝑛∈N such that

lim
𝑚→∞

lim
𝑛→∞

𝑈(𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑠 + 𝑠
𝑛
− 𝑠
𝑚
) 𝜑 = 𝑈 (𝑡, 𝑠) 𝜑 (49)

pointwise for each 𝑡, 𝑠 ∈ R.
By−3+sin 𝜏+sin𝜋𝜏 ∈ 𝐴𝐴(R), there exists a subsequence

{𝑠
𝑛
}
𝑛∈N such that pointwise for each 𝜏 ∈ R,

lim
𝑚→∞

lim
𝑛→∞

(−3 + sin (𝜏 + 𝑠
𝑛
− 𝑠
𝑚
) + sin𝜋 (𝜏 + 𝑠

𝑛
− 𝑠
𝑚
))

= −3 + sin 𝜏 + sin𝜋𝜏.
(50)

In view of (47) and (50), an application of the Lebesgue
dominated convergence theorem shows that

lim
𝑚→∞

lim
𝑛→∞

𝑈 (𝑡 + 𝑠
𝑛
− 𝑠
𝑚
, 𝑠 + 𝑠
𝑛
− 𝑠
𝑚
) 𝜑

= lim
𝑚→∞

lim
𝑛→∞

𝑇 (𝑡 − 𝑠) 𝑒
∫
𝑡+𝑠𝑛−𝑠𝑚

𝑠+𝑠𝑛−𝑠𝑚

(−3+sin 𝜏+sin𝜋𝜏)𝑑𝜏
𝜑

= 𝑇 (𝑡 − 𝑠)

× 𝑒lim𝑚→∞lim𝑛→∞ ∫
𝑡

𝑠
(−3+sin(𝜏+𝑠

𝑛
−𝑠
𝑚
)+sin𝜋(𝜏+𝑠

𝑛
−𝑠
𝑚
))𝑑𝜏𝜑

= 𝑇 (𝑡 − 𝑠)

× 𝑒∫
𝑡

𝑠
lim
𝑚→∞

lim
𝑛→∞
(−3+sin(𝜏+𝑠

𝑛
−𝑠
𝑚
)+sin𝜋(𝜏+𝑠

𝑛
−𝑠
𝑚
))𝑑𝜏𝜑

= 𝑇 (𝑡 − 𝑠) 𝑒
∫
𝑡

𝑠
(−3+sin 𝜏+sin𝜋𝜏)𝑑𝜏𝜑 = 𝑈 (𝑡, 𝑠) 𝜑

(51)

pointwise for each 𝑡, 𝑠 ∈ R. Hence, (H3) is satisfied.
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Define the operators 𝐵, 𝐶 by

𝐷(𝐵) = 𝐷 (𝐶) = 𝐶 [0, 𝜋] ,

𝐵𝜑 = 𝐶𝜑 = 𝑞 (𝜉) 𝜑, 𝜉 ∈ [0, 𝜋] , 𝜑 ∈ 𝐶 [0, 𝜋] ,
(52)

then ‖𝐵‖
𝐵(𝐶[0,𝜋])

= ‖𝐶‖
𝐵(𝐶[0,𝜋])

= ‖𝑞‖
∞
:= max

𝜉∈[0,𝜋]
{𝑞(𝜉)}.

In view of the above, (42) can be transformed into the
abstract form (2), and assumptions (H1)–(H3) and (H6) are
satisfied.

We add the following assumptions:

(H4a) 𝑓 : R × 𝐶[0, 𝜋] → 𝐶[0, 𝜋], (𝑡, 𝑢) → 𝑓(𝑡, 𝑢) is almost
automorphic, and there exists a constant 𝐿

𝑓
> 0 such

that for all 𝑡 ∈ R, 𝑢(𝑡, ⋅), V(𝑡, ⋅) ∈ 𝐶[0, 𝜋],
𝑓 (𝑡, 𝑢 (𝑡, ⋅)) − 𝑓 (𝑡, V (𝑡, ⋅))

𝐶[0,𝜋] ≤ 𝐿𝑓‖𝑢 (𝑡, ⋅) − V (𝑡, ⋅)‖
𝐶[0,𝜋]

,

(53)

(H5a) 𝑔 : R × 𝐶[0, 𝜋] → 𝐶[0, 𝜋], (𝑡, 𝑢) → 𝑔(𝑡, 𝑢) is almost
automorphic, and there exists a constant 𝐿

𝑔
> 0 such

that for all 𝑡 ∈ R, 𝑢(𝑡, ⋅), V(𝑡, ⋅) ∈ 𝐶[0, 𝜋],
𝑔 (𝑡, 𝑢 (𝑡, ⋅)) − 𝑔 (𝑡, V (𝑡, ⋅))

𝐶[0,𝜋] ≤ 𝐿𝑔‖𝑢 (𝑡, ⋅) − V (𝑡, ⋅)‖𝐶[0,𝜋].

(54)

Now, the following proposition is an immediate conse-
quence of Theorem 21.

Proposition 23. Under assumptions (H4a) and (H5a),
parabolic partial differential equation (42) admits a unique
almost automorphic mild solution if

𝑞
∞ (𝐿𝑓 + 𝐿𝑔) < 1. (55)

Furthermore, if one takes

𝑓 (𝑡, 𝑢) = 𝑢 sin 1

−3 + sin 𝑡 + sin𝜋𝑡
,

𝑡 ∈ R, 𝑢 ∈ 𝐶 [0, 𝜋] ,

𝑔 (𝑡, 𝑢) =
1

8
𝑢 (1 + sin 1

−3 + sin 𝑡 + sin𝜋𝑡
) ,

𝑡 ∈ R, 𝑢 ∈ 𝐶 [0, 𝜋] .

(56)

A simple computation shows that 𝑓, 𝑔 ∈ 𝐴𝐴(R ×
𝐶[0, 𝜋], 𝐶[0, 𝜋]), (H4a), and (H5a) are satisfied with 𝐿

𝑓
= 1,

𝐿
𝑔
= 1/4. By Proposition 23, (42) admits a unique almost

automorphic mild solution whenever ‖𝑞‖
∞
< 4/5.

Example 24. Consider neutral functional differential equa-
tion
𝜕

𝜕𝑡
[𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑢 (𝑡 − 𝜏, 𝑥))]

=
𝜕2

𝜕𝑥2
[𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑢 (𝑡 − 𝜏, 𝑥))]

+ (−3 + sin 𝑡 + sin𝜋𝑡) [𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑢 (𝑡 − 𝜏, 𝑥))]

+ 𝑔 (𝑡, 𝑢 (𝑡 − 𝜏, 𝑥)) , 𝑡 ∈ R, 𝑥 ∈ [0, 𝜋] ,

[𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑢 (𝑡 − 𝜏, 𝑥))]
𝑥=0

= [𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑢 (𝑡 − 𝜏, 𝑥))]
𝑥=𝜋 = 0, 𝑡 ∈ R,

(57)

where 𝜏 ∈ R is a fixed constant.
Take X, 𝐴, 𝐴(𝑡), 𝑡 ∈ R, (H4a), and (H5a) as in

Example 22. Define the operators 𝐵, 𝐶 by

𝐷 (𝐵) = 𝐷 (𝐶) = 𝐶 [0, 𝜋] ,

𝐵𝜑 (⋅) = 𝐶𝜑 (⋅) = 𝜑 (⋅ − 𝜏) , 𝜑 (⋅) ∈ 𝐶 [0, 𝜋] ,
(58)

then ‖𝐵‖
𝐵(𝐶[0,𝜋])

= ‖𝐶‖
𝐵(𝐶[0,𝜋])

= 1.
Now, (57) can be transformed into the abstract form (2)

and assumptions (H1)–(H3) and (H6) are satisfied. Hence,
Theorem 21 leads also to the following proposition.

Proposition 25. Under assumptions (H4a) and (H5a), neu-
tral functional differential equation (57) admits a unique
almost automorphic mild solution if

𝐿
𝑓
+ 𝐿
𝑔
< 1. (59)

Furthermore, if one takes

𝑓 (𝑡, 𝑢) =
1

2
𝑢 sin 1

−3 + sin 𝑡 + sin𝜋𝑡
,

𝑡 ∈ R, 𝑢 ∈ 𝐶 [0, 𝜋] ,

𝑔 (𝑡, 𝑢) =
1

8
𝑢 (1 + sin 1

−3 + sin 𝑡 + sin𝜋𝑡
) ,

𝑡 ∈ R, 𝑢 ∈ 𝐶 [0, 𝜋] .

(60)

A simple computation shows that 𝑓, 𝑔 ∈ 𝐴𝐴(R ×
𝐶[0, 𝜋], 𝐶[0, 𝜋]), (H4a), and (H5a) are satisfied with 𝐿

𝑓
=

1/2, 𝐿
𝑔
= 1/4. By Proposition 25, (57) admits a unique almost

automorphic mild solution.
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A Nicholson’s blowflies model with feedback control and time delay is studied. By applying the comparison theorem of the
differential equation and fluctuation lemma and constructing a suitable Lyapunov functional, sufficient conditions which guarantee
the permanence, extinction, and existence of a unique globally attractive positive almost periodic solution of the system are
obtained. It is proved that the feedback control variable and time delay have no influence on the permanence and extinction of
the system.

1. Introduction

Let 𝑓(𝑡) be any continuous bounded function defined on
[0, +∞); we set

𝑓𝑙 = inf
𝑡≥0

𝑓 (𝑡) , 𝑓𝑢 = sup
𝑡≥0

𝑓 (𝑡) . (1)

In order to describe the dynamics ofNicholson’s blowflies,
Gurney et al. [1] proposed the following mathematical model
in 1980:

𝑁(𝑡) = −𝛿𝑁 (𝑡) + 𝑃𝑁 (𝑡 − 𝜏) 𝑒
−𝑎𝑁(𝑡−𝜏), (2)

where𝑁(𝑡) is the size of the population at time 𝑡,𝑃 is themax-
imum per capita daily egg production rate, (1/𝑎) is the size at
which the population reproduces at itsmaximum rate, 𝛿 is the
per capita daily adult death rate, and 𝜏 is the generation time.
Kulenović and Ladas [2], Győri and Ladas [3], and Győri
and Trofimchuk [4] investigated the oscillatory behaviors of
the solutions of (2). For the attractivity, Kulenović et al. [5]
and So and Yu [6] have shown that, when 𝑃 > 𝛿, every
positive solution 𝑁(𝑡) of (2) tends to a positive equilibrium
𝑁∗ = (1/𝑎) ln(𝑃/𝛿) as 𝑡 → ∞ if

(𝑒𝛿𝜏 − 1) (
𝑃

𝛿
− 1) < 1. (3)

Reference [5] further showed that, for 𝑃 ≤ 𝛿, every
nonnegative solution of (2) tends to zero as 𝑡 → ∞, and
for 𝑃 > 𝛿, (2) is uniformly persistent. Furthermore, Li and
Fan [7] considered the following nonautonomous equation:

̇𝑥 (𝑡) = 𝑥 (𝑡) (−𝛿 (𝑡) + 𝑝 (𝑡) exp {−𝛼 (𝑡) 𝑥 (𝑡)}) , (4)

where 𝛼(𝑡), 𝛿(𝑡), and 𝑝(𝑡) are all positive 𝜔-periodic func-
tions. The authors show that (4) has a unique globally
attractive 𝜔-periodic positive solution if

𝑝 (𝑡) > 𝛿 (𝑡) for 𝑡 ∈ [0, 𝜔] . (5)

Their results improved the results of Saker and Agarwal [8]
who considered system (4) with 𝛼(𝑡) = 𝑎 (𝑎 is a constant).

Recently, Wang and Fan [9] proposed the following
discrete Nicholson’s blowflies model with feedback control:

𝑥 (𝑛 + 1) = 𝑥 (𝑛) exp {−𝛿 (𝑛) + 𝑝 (𝑛) exp {−𝛼 (𝑛) 𝑥 (𝑛)}

−𝑐 (𝑛) 𝜇 (𝑛)} ,

Δ𝜇 (𝑛) = −𝑎 (𝑛) 𝜇 (𝑡) + 𝑏 (𝑛) 𝑥 (𝑛 − 𝑚) .

(6)

Sufficient conditions are established for the permanence and
the extinction of the system (6). They show that the bounded
feedback terms do not have any influence on the permanence
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or extinction of (6). The authors in [9] also proposed the
following continuous model:

̇𝑥 (𝑡) = 𝑥 (𝑡) (−𝛿 (𝑡) + 𝑝 (𝑡) exp {−𝛼 (𝑡) 𝑥 (𝑡)} − 𝑐 (𝑡) 𝜇 (𝑡)) ,

̇𝜇 (𝑡) = −𝑎 (𝑡) 𝜇 (𝑡) + 𝑏 (𝑡) 𝑥 (𝑡 − 𝜏) ;

(7)

however, they did not discuss the dynamic behaviors of
the system (7). Considering that continuous models can
excellently show the dynamic behaviors of those populations
who have a long life cycle, overlapping generations, and large
quantity, sufficient conditions for the permanence, global
attractivity, and the existence of a unique, globally attractive,
strictly positive almost periodic solution of the system (7)
with 𝜏 = 0 are obtained by Yu [10]. As pointed out by
Nindjin et al. [11], time delay plays an important role in many
biological dynamical systems, being particularly relevant in
ecology and a model with time delay is a more realistic
approach to the understanding of dynamics. Hence, it is
necessary to study the model (7) which contains time delay.

In the following discussion, we always assume that
𝛿(𝑡), 𝑝(𝑡), 𝛼(𝑡), 𝑐(𝑡), 𝑎(𝑡), 𝑏(𝑡) are all continuous, positive
almost periodic functions. Also, from the viewpoint of math-
ematical biology, we consider (7) together with the following
initial conditions:

𝑥 (𝜃) = 𝜑 (𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0] 𝜑 (0) > 0,

𝜇 (𝜃) = 𝜓 (𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0] 𝜓 (0) > 0,
(8)

where 𝜑(𝑠) and 𝜓(𝑠) are continuous on [−𝜏, 0]. It is not
difficult to see that solutions of (7) and (8) are well defined
for all 𝑡 ≥ 0 and satisfy

𝑥 (𝑡) > 0, 𝜇 (𝑡) > 0, for 𝑡 ≥ 0. (9)

The aim of this paper is, by constructing a suitable
Lyapunov functional and applying the analysis technique
of Feng et al. [12], to obtain sufficient conditions for the
existence of a unique globally attractive positive almost
periodic solution of the system (7) with initial condition (8).

This paper is organized as follows. In Section 2, by
applying the analysis technique of [13, 14] and Fluctuation
lemma [15, 16], we present the permanence and the extinction
of model (7) and (8). In Section 3, by constructing a suitable
Lyapunov functional, a sufficient conditions for the existence
of a unique globally attractive positive almost periodic solu-
tion of the system (7) and (8). Examples together with their
numeric simulations are stated in Section 4. For more works
on almost periodic solutions of the ecosystem with feedback
control, one could refer to [17–23] and the references cited
therein.

2. Permanence and Extinction

Now let us state several lemmas which will be useful in
proving the main result of this section.

Lemma 1 (see [13]). Assume that 𝑎 > 0, 𝑏(𝑡) > 0 is a
boundedness continuous function and 𝑥(0) > 0. Further
suppose that

(i)

̇𝑥 (𝑡) ≤ −𝑎𝑥 (𝑡) + 𝑏 (𝑡) (10)

then for all 𝑡 ≥ 𝑠,

𝑥 (𝑡) ≤ 𝑥 (𝑡 − 𝑠) exp {−𝑎𝑠} + ∫
𝑡

𝑡−𝑠

𝑏 (𝜏) exp {𝑎 (𝜏 − 𝑡)} 𝑑𝜏.

(11)

Particularly, if 𝑏(𝑡) is bounded above with respect to𝑀,
then

lim sup
𝑡→+∞

𝑥 (𝑡) ≤
𝑀

𝑎
. (12)

(ii) Also suppose that

̇𝑥 (𝑡) ≥ −𝑎𝑥 (𝑡) + 𝑏 (𝑡) ; (13)

then for all 𝑡 ≥ 𝑠,

𝑥 (𝑡) ≥ 𝑥 (𝑡 − 𝑠) exp {−𝑎𝑠} + ∫
𝑡

𝑡−𝑠

𝑏 (𝜏) exp {𝑎 (𝜏 − 𝑡)} 𝑑𝜏.

(14)

Particularly, if 𝑏(𝑡) is bounded above with respect to𝑚,
then

lim inf
𝑡→+∞

𝑥 (𝑡) ≥
𝑚

𝑎
. (15)

Lemma 2 (see [20]). If 𝑎 > 0, 𝑏 > 0 and ̇𝑥 ≥ 𝑥(𝑏 − 𝑎𝑥), when
𝑡 ≥ 0 and 𝑥(0) > 0, one has

lim inf
𝑡→+∞

𝑥 (𝑡) ≥
𝑏

𝑎
. (16)

If 𝑎 > 0, 𝑏 > 0, and ̇𝑥 ≤ 𝑥(𝑏 − 𝑎𝑥), when 𝑡 ≥ 0 and 𝑥(0) > 0,
one has

lim sup
𝑡→+∞

𝑥 (𝑡) ≤
𝑏

𝑎
. (17)

Lemma 3. Let (𝑥(𝑡), 𝜇(𝑡))𝑇 be any solution of system (7) with
initial condition (8); there exists positive numbers𝑀

1
and𝑀

2
,

which are independent of the solution of the system, such that

lim sup
𝑡→+∞

𝑥 (𝑡) ≤ 𝑀
1
, lim sup

𝑡→+∞

𝜇 (𝑡) ≤ 𝑀
2
. (18)

Proof. Let (𝑥(𝑡), 𝜇(𝑡))𝑇 be any solution of system (7) satisfying
initial condition (8). Since𝑥 exp{−𝛼𝑙𝑥(𝑡)} ≤ (1/𝛼𝑙𝑒) for 𝑥 > 0,
according to the positivity of solution and the first equation
of system (7), for 𝑡 ≥ 0,

̇𝑥 (𝑡) ≤ 𝑥 (𝑡) (−𝛿
𝑙 + 𝑝𝑢 exp {−𝛼𝑙𝑥 (𝑡)})

≤ −𝛿𝑙𝑥 (𝑡) +
𝑝𝑢

𝛼𝑙𝑒
,

(19)

where 𝑒 is the mathematical constant.
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By applying Lemma 1(i) to (19), we have

lim sup
𝑡→+∞

𝑥 (𝑡) ≤
𝑝𝑢

𝛿𝑙𝛼𝑙𝑒

Δ

= 𝑀
1
. (20)

Hence, there exists 𝑇
1
> 0 such that

𝑥 (𝑡) ≤ 2𝑀
1
, ∀𝑡 ≥ 𝑇

1
. (21)

Equation (21) together with the second equation of (7) leads
to

̇𝜇 (𝑡) ≤ −𝑎
𝑙𝜇 (𝑡) + 2𝑏

𝑢𝑀
1
, ∀𝑡 ≥ 𝑇

1
+ 𝜏. (22)

Using Lemma 1(i) again, one has

lim sup
𝑡→+∞

𝜇 (𝑡) ≤
2𝑏𝑢𝑀

1

𝑎𝑙
Δ

= 𝑀
2
. (23)

Obviously, 𝑀
𝑖
(𝑖 = 1, 2) are independent of the solution of

system (7). Equations (20) and (23) show that the conclusion
of Lemma 3 holds. The proof is completed.

Lemma 4. Assume that

(𝐻
1
)

𝑝 (𝑡) > 𝛿 (𝑡) , 𝑡 ≥ 0, (24)

holds. Then there exists positive constants 𝑚
1
and 𝑚

2
, which

are independent of the solution of system (7), such that

lim inf
𝑡→+∞

𝑥 (𝑡) ≥ 𝑚
1
, lim inf

𝑡→+∞

𝜇 (𝑡) ≥ 𝑚
2
. (25)

Proof. Let (𝑥(𝑡), 𝜇(𝑡))𝑇 be any solution of system (7) satisfy-
ing initial condition (8). From Lemma 3, there exists a 𝑇

2
>

𝑇
1
+ 𝜏 such that for all 𝑡 ≥ 𝑇

2
, 𝑥(𝑡) ≤ 𝑀, 𝜇(𝑡) ≤ 𝑀,

where𝑀 = 2max{𝑀
1
,𝑀
2
}. According to the first equation

of system (7) and the positivity of solution, for 𝑡 ≥ 𝑇
2
,

̇𝑥 (𝑡) = 𝑥 (𝑡) (−𝛿 (𝑡) + 𝑝 (𝑡) exp {−𝛼 (𝑡) 𝑥 (𝑡)} − 𝑐 (𝑡) 𝜇 (𝑡))

≥ 𝑥 (𝑡) (−𝛿 (𝑡) + 𝑝 (𝑡) exp {−𝛼 (𝑡)𝑀} − 𝑐 (𝑡)𝑀)

Δ

= −𝑄 (𝑡) 𝑥 (𝑡) ,

(26)

where 𝑄(𝑡) = 𝛿(𝑡) − 𝑝(𝑡) exp{−𝛼(𝑡)𝑀} + 𝑐(𝑡)𝑀.
Integrating both sides of (26) from 𝜂 (𝜂 ≤ 𝑡) to 𝑡 leads to

𝑥 (𝑡)

𝑥 (𝜂)
≥ exp{−∫

𝑡

𝜂

𝑄 (𝑠) 𝑑𝑠} , (27)

or

𝑥 (𝜂) ≤ 𝑥 (𝑡) exp{∫
𝑡

𝜂

𝑄 (𝑠) 𝑑𝑠} . (28)

Particularly, taking 𝜂 = 𝑡 − 𝜏, one can get

𝑥 (𝑡 − 𝜏) ≤ 𝑥 (𝑡) exp{∫
𝑡

𝑡−𝜏

𝑄 (𝑠) 𝑑𝑠} . (29)

Substituting (29) into the second equation of system (7) leads
to

̇𝜇 (𝑡) ≤ −𝑎
𝑙𝜇 (𝑡) + 𝑏

𝑢𝑥 (𝑡) exp{∫
𝑡

𝑡−𝜏

𝑄 (𝑠) 𝑑𝑠} . (30)

Applying Lemma 1(i) to the above differential inequality, for
0 ≤ 𝑠 ≤ 𝑡, one has

𝜇 (𝑡) ≤ 𝜇 (𝑡 − 𝑠) exp {−𝑎𝑙𝑠}

+ ∫
𝑡

𝑡−𝑠

𝑏𝑢𝑥 (𝜂) exp{∫
𝜂

𝜂−𝜏

𝑄 (𝑢) 𝑑𝑢} exp {𝑎𝑙 (𝜂 − 𝑡)} 𝑑𝜂

from (28)
≤ 𝜇 (𝑡 − 𝑠) exp {−𝑎𝑙𝑠}

+ ∫
𝑡

𝑡−𝑠

𝑏𝑢𝑥 (𝑡) exp{∫
𝑡

𝜂

𝑄 (𝑢) 𝑑𝑢} exp{∫
𝜂

𝜂−𝜏

𝑄 (𝑢) 𝑑𝑢}

× exp {𝑎𝑙 (𝜂 − 𝑡)} 𝑑𝜂

≤ 𝜇 (𝑡 − 𝑠) exp {−𝑎𝑙𝑠} + 𝑏𝑢𝑥 (𝑡) ∫
𝑡

𝑡−𝑠

exp{∫
𝑡

𝜂

𝑄 (𝑢) 𝑑𝑢}

× exp{∫
𝜂

𝜂−𝜏

𝑄 (𝑢) 𝑑𝑢}𝑑𝜂,

(31)

wherewe used the factmax
𝜂∈[𝑡−𝑠,𝑡]

exp{𝑎𝑙(𝜂−𝑡)} = exp{0} = 1.
Note that there exists a 𝐾, such that 2𝑐𝑢𝑀 exp{−𝑎𝑙𝑠} <

(𝛽/2), as 𝑠 ≥ 𝐾, where 𝛽 = inf
𝑡≥0
(𝑝(𝑡) − 𝛿(𝑡)). In fact, we can

choose 𝐾 > (1/𝑎𝑙) ln(4𝑐𝑢𝑀/𝛽). And so, fixing 𝐾, combined
with (31), we can obtain

𝜇 (𝑡) ≤ 𝑀 exp {−𝑎𝑙𝐾} + 𝑏𝑢𝑥 (𝑡) ∫
𝑡

𝑡−𝐾

exp{∫
𝑡

𝜂

𝑄 (𝑢) 𝑑𝑢}

× exp{∫
𝜂

𝜂−𝜏

𝑄 (𝑢) 𝑑𝑢} 𝑑𝜂

≤ 𝑀 exp {−𝑎𝑙𝐾} + 𝐷𝑥 (𝑡) ,
(32)

for all 𝑡 > 𝑇
2
+ 𝐾, where 𝐷 = sup

𝑡≥𝑇
3

(𝑏𝑢

∫
𝑡

𝑡−𝐾
exp{∫𝑡
𝜂
𝑄(𝑢)𝑑𝑢} exp{∫𝜂

𝜂−𝜏
𝑄(𝑢)𝑑𝑢}𝑑𝜂) > 0.

Considering that 𝑒−𝑥 ≥ 1 − 𝑥, for 𝑥 > 0, from the first
equation of system (7) and the positivity of the solution, for
𝑡 > 𝑇
2
+ 𝐾, we can get

̇𝑥 (𝑡) = 𝑥 (𝑡) (−𝛿 (𝑡) + 𝑝 (𝑡) exp {−𝛼 (𝑡) 𝑥 (𝑡)} − 𝑐 (𝑡) 𝜇 (𝑡))

≥ 𝑥 (𝑡) ( − 𝛿 (𝑡) + 𝑝 (𝑡) − 𝑝 (𝑡) 𝛼 (𝑡) 𝑥 (𝑡)

−2𝑐𝑢𝑀 exp {−𝑎𝑙𝐾} − 𝑐𝑢𝐷𝑥 (𝑡))

≥ 𝑥 (𝑡) (
𝛽

2
− (𝑝𝑢𝛼𝑢 + 𝑐𝑢𝐷)𝑥 (𝑡)) .

(33)
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By Lemma 2, we have

lim inf
𝑡→+∞

𝑥 (𝑡) ≥
𝛽

2 (𝑝𝑢𝛼𝑢 + 𝑐𝑢𝐷)

Δ

= 𝑚
1
. (34)

Thus, there exists 𝑇
3
> 𝑇
2
+ 𝐾 such that for all 𝑡 > 𝑇

3
,

𝑥 (𝑡) ≥
𝑚
1

2
. (35)

Equation (35) together with the second equation of (7) leads
to

̇𝜇 (𝑡) ≥ −𝑎
𝑢𝜇 (𝑡) + 𝑏

𝑙𝑚1
2
, ∀𝑡 > 𝑇

3
. (36)

By applying Lemma 1(ii) to the above differential inequality,
we have

lim inf
𝑡→+∞

𝜇 (𝑡) ≥
𝑏𝑙𝑚
1

2𝑎𝑢
Δ

= 𝑚
2
. (37)

Obviously, 𝑚
𝑖
(𝑖 = 1, 2) are independent of the solution of

system (7). Equations (34) and (37) show that the conclusion
of Lemma 4 holds. The proof is completed.

From Lemmas 3–4 and the definition of permanence, we
can obtain the following conclusion.

Theorem 5. Assume that (𝐻
1
) holds; then system (7) with

initial condition (8) is permanent.

As a direct corollary of Theorem 2 in [24], from
Theorem 5, we have the following.

Corollary 6. Suppose that (𝐻
1
) holds; then system

(7) admits at least one positive 𝜔-periodic solution if
𝛿(𝑡), 𝑝(𝑡), 𝛼(𝑡), 𝑐(𝑡), 𝑎(𝑡), 𝑏(𝑡) are all continuous positive
𝜔-periodic functions.

Theorem 7. Let (𝑥(𝑡), 𝜇(𝑡))𝑇 be any positive solution of the
system (7) with initial condition (8). Assume that

∫
∞

0

(𝑝 (𝑡) − 𝛿 (𝑡)) 𝑑𝑡 = −∞ or 𝑝 (𝑡) ≤ 𝛿 (𝑡) , 𝑡 ≥ 0

(38)

holds; then

lim
𝑡→+∞

𝑥 (𝑡) = 0, lim
𝑡→+∞

𝜇 (𝑡) = 0. (39)

Proof. Firstly, from the the first equation of (7),

̇𝑥 (𝑡) ≤ 𝑥 (𝑡) (𝑝 (𝑡) − 𝛿 (𝑡)) . (40)

If the former case of (38) holds, then

0 < 𝑥 (𝑡) ≤ 𝑥 (0) exp [∫
𝑡

0

(𝑝 (𝑡) − 𝛿 (𝑡)) 𝑑𝑡] → 0,

as 𝑡 → ∞,

(41)

which shows that lim
𝑡→+∞

𝑥(𝑡) = 0.

If the latter case of (38) holds, from (40) we have ̇𝑥(𝑡) < 0
or 𝑥(𝑡) is decreasing; therefore, lim

𝑡→+∞
𝑥(𝑡) = 𝑞 ∈ [0, +∞).

Hence lim sup
𝑡→+∞

= lim inf
𝑡→+∞

𝑥(𝑡) = 𝑞. We only need
to show that 𝑞 = 0. Otherwise, if 𝑞 > 0, then there exists
a 𝑇
4
> 0, such that 𝑥(𝑡) > (𝑞/2) for 𝑡 ≥ 𝑇

4
. According to

the Fluctuation lemma, there exists a sequence 𝜉
𝑛
→ ∞ as

𝑛 → ∞ such that ̇𝑥(𝜉
𝑛
) → 0, 𝑥(𝜉

𝑛
) → lim sup

𝑡→∞
= 𝑞, as

𝑛 → ∞. We can choose a large enough number𝑁 such that
𝜉
𝑛
> 𝑇
4
for 𝑛 > 𝑁; hence, 𝑥(𝜉

𝑛
) > (𝑞/2) for all 𝑛 > 𝑁.

For 𝑛 > 𝑁, 𝑝(𝑡) ≤ 𝛿(𝑡) together with the first equation of
(7) leads to

̇𝑥 (𝜉
𝑛
) ≤ 𝑥 (𝜉

𝑛
) (−𝛿 (𝜉

𝑛
) + 𝑝 (𝜉

𝑛
) exp {−𝛼 (𝜉

𝑛
) 𝑥 (𝜉
𝑛
)})

≤ 𝑥 (𝜉
𝑛
) (−𝛿 (𝜉

𝑛
) + 𝛿 (𝜉

𝑛
) exp {−𝛼 (𝜉

𝑛
)
𝑞

2
)})

≤ 𝑥 (𝜉
𝑛
) (−1 + exp {−𝛼𝑙

𝑞

2
)}) 𝛿𝑙.

(42)

Let 𝑛 → ∞; we obtain that 0 ≤ 𝑞(−1 + exp{−𝛼𝑙(𝑞/2)})𝛿𝑙 or
exp{−𝛼𝑙(𝑞/2))} > 1 which is impossible. Hence, 𝑞 = 0 or

lim
𝑡→+∞

𝑥 (𝑡) = 0. (43)

Now, we come to prove that

lim
𝑡→+∞

𝜇 (𝑡) = 0. (44)

For any 𝜖 > 0, according to (43), there exists a 𝑇
5
> 0, such

that

𝑥 (𝑡) < 𝜖 ∀𝑡 > 𝑇
5
. (45)

Then, for 𝑡 > 𝑇
5
+ 𝜏,

̇𝜇 (𝑡) ≤ −𝑎
𝑙𝜇 (𝑡) + 𝑏

𝑢𝜖. (46)

Thus, by applying Lemma 1(i) to the above differential
inequality, we have

0 < 𝜇 (𝑡) ≤
𝑏𝑢𝜖

𝑎𝑙
(47)

which implies that

lim
𝑡→+∞

𝜇 (𝑡) = 0. (48)

The proof is complete.

3. Existence of a Unique Almost
Periodic Solution

Now, we give the definition of the almost periodic function.

Definition 8 (see [25, 26]). A function 𝑓(𝑡, 𝑥), where 𝑓 is an
𝑚-vector, 𝑡 is a real scalar, and 𝑥 is an 𝑛-vector, is said to be
almost periodic in 𝑡 uniformly with respect to 𝑥 ∈ 𝑋 ⊂ 𝑅𝑛, if
𝑓(𝑡, 𝑥) is continuous in 𝑡 ∈ 𝑅 and 𝑥 ∈ 𝑋, and if for any 𝜀 > 0,
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there is a constant 𝑙(𝜀) > 0, such that in any interval of length
𝑙(𝜀), there exists 𝜏 such that the inequality

𝑓 (𝑡 + 𝜏) − 𝑓 (𝑡)
 =
𝑚

∑
𝑖=1

𝑓𝑖 (𝑡 + 𝜏, 𝑥) − 𝑓𝑖 (𝑡, 𝑥)
 < 𝜀 (49)

is satisfied for all 𝑡 ∈ (−∞, +∞), 𝑥 ∈ 𝑋. The number 𝜏 is
called an 𝜀-translation number of 𝑓(𝑡, 𝑥).

Definition 9 (see [25, 26]). A function 𝑓 : 𝑅 → 𝑅 is said to
be an asymptotically almost periodic function if there exists
an almost periodic function 𝑞(𝑡) and a continuous function
𝑟(𝑡) such that

𝑓 (𝑡) = 𝑞 (𝑡) + 𝑟 (𝑡) , 𝑡 ∈ 𝑅, 𝑟 (𝑡) → 0 as 𝑡 → ∞. (50)

We denote by 𝑆(𝐸) the set of all solutions 𝑧(𝑡) =

(𝑥(𝑡), 𝜇(𝑡))𝑇 of system (7) satisfying 𝑚
1
≤ 𝑥(𝑡) ≤ 𝑀

1
, 𝑚
2
≤

𝜇(𝑡) ≤ 𝑀
2
for all 𝑡 ∈ 𝑅.

Lemma 10. One has 𝑆(𝐸) ̸=0.

Proof. Since 𝛿(𝑡), 𝑝(𝑡), 𝛼(𝑡), 𝑐(𝑡), 𝑎(𝑡), 𝑏(𝑡) are almost
periodic functions, there exists a sequence {𝑡

𝑛
}, 𝑡
𝑛
→ ∞ as

𝑛 → ∞ such that

𝛿 (𝑡 + 𝑡
𝑛
) → 𝛿 (𝑡) , 𝑝 (𝑡 + 𝑡

𝑛
) → 𝛿 (𝑡) ,

𝛼 (𝑡 + 𝑡
𝑛
) → 𝛿 (𝑡) , 𝑐 (𝑡 + 𝑡

𝑛
) → 𝛿 (𝑡) ,

𝑎 (𝑡 + 𝑡
𝑛
) → 𝛿 (𝑡) , 𝑏 (𝑡 + 𝑡

𝑛
) → 𝛿 (𝑡) ,

(51)

as 𝑛 → ∞ uniformly on 𝑅. Suppose 𝑧(𝑡) = (𝑥(𝑡), 𝜇(𝑡))𝑇
is a solution of (7) satisfying 𝑚

1
≤ 𝑥(𝑡) ≤ 𝑀

1
, 𝑚
2
≤

𝜇(𝑡) ≤ 𝑀
2
for 𝑡 > 𝑇. Obviously, the sequence (𝑧(𝑡 + 𝑡

𝑛
))

is uniformly bounded and equicontinuous on each bounded
subset of 𝑅. Therefore, by the Ascoli-Arzela theorem, there
exists a subsequence of {𝑡

𝑛
}, which we still denote by {𝑡

𝑛
},

such that 𝑥(𝑡 + 𝑡
𝑛
) → 𝑚(𝑡), 𝜇(𝑡 + 𝑡

𝑛
) → 𝑛(𝑡), as 𝑛 → ∞

uniformly on each bounded subset of 𝑅. For any 𝑇
1
∈ 𝑅, we

may assume that 𝑡
𝑛
+ 𝑇
1
≥ 𝑇 for all 𝑛. For 𝑡 ≥ 0, we have

𝑥 (𝑡 + 𝑡
𝑛
+ 𝑇
1
) − 𝑥 (𝑡

𝑛
+ 𝑇
1
)

= ∫
𝑡+𝑇
1

𝑇
1

𝑥 (𝑠 + 𝑡
𝑛
) (−𝛿 (𝑠 + 𝑡

𝑛
) + 𝑝 (𝑠 + 𝑡

𝑛
)

× exp {−𝛼 (𝑠 + 𝑡
𝑛
) 𝑥 (𝑠 + 𝑡

𝑛
)}

−𝑐 (𝑠 + 𝑡
𝑛
) 𝜇 (𝑠)) 𝑑𝑠,

𝜇 (𝑡 + 𝑡
𝑛
+ 𝑇
1
) − 𝜇 (𝑡

𝑛
+ 𝑇
1
)

= ∫
𝑡+𝑇
1

𝑇
1

(−𝑎 (𝑠 + 𝑡
𝑛
) 𝜇 (𝑠 + 𝑡

𝑛
) + 𝑏 (𝑠 + 𝑡

𝑛
) 𝑥 (𝑠 + 𝑡

𝑛
− 𝜏)) 𝑑𝑠.

(52)

Applying Lebesgue’s dominated convergence theorem and
letting 𝑛 → ∞ in to previous equations, we obtain

𝑚(𝑡 + 𝑇
1
) − 𝑚 (𝑇

1
)

= ∫
𝑡+𝑇
1

𝑇
1

𝑚(𝑠) (−𝛿 (𝑠) + 𝑝 (𝑠)

× exp {−𝛼 (𝑠)𝑚 (𝑠)} − 𝑐 (𝑠) 𝑛 (𝑠)) 𝑑𝑠,

𝑛 (𝑡 + 𝑇
1
)−𝑛 (𝑇

1
)=∫
𝑡+𝑇
1

𝑇
1

(−𝑎 (𝑠) 𝑛 (𝑠) + 𝑏 (𝑠)𝑚 (𝑠 − 𝜏)) 𝑑𝑠,

(53)

for all 𝑡 ≥ 0. Since 𝑇
1
∈ 𝑅 is arbitrarily given, (𝑚(𝑡), 𝑛(𝑡))𝑇 is

a solution of system (7) on 𝑅. It is clear that𝑚
1
≤ 𝑚(𝑡) ≤ 𝑀

1
,

𝑚
2
≤ 𝑛(𝑡) ≤ 𝑀

2
for 𝑡 ∈ 𝑅. That is to say, (𝑚(𝑡), 𝑛(𝑡))𝑇 ∈ 𝑆(𝐸).

This completes the proof.

Lemma 11 (see [27]). Let 𝑓 be a nonnegative function defined
on [0, +∞) such that 𝑓 is integrable on [0, +∞) and is
uniformly continuous on [0, +∞). Then, lim

𝑡→+∞
𝑓(𝑡) = 0.

Theorem 12. In addition to (𝐻
1
), further suppose that

(𝐻2) there exists a ℎ > 0, such that

𝑝𝑙𝛼𝑙 exp (𝛼𝑢𝑀
1
) − 𝑏𝑢 > ℎ, 𝑎𝑙 − 𝑐𝑢 > ℎ, (54)

where 𝑀
1
is defined in (23); then system (7) with initial

conditions (8) is globally attractive. That is to say, for any two
positive solutions, one has

lim
𝑡→+∞

𝑥 (𝑡) − 𝑥
∗
(𝑡)
 = 0, lim

𝑡→+∞

𝜇 (𝑡) − 𝜇
∗
(𝑡)
 = 0.

(55)

Proof. Let (𝑥∗(𝑡), 𝜇∗(𝑡))𝑇 and (𝑥(𝑡), 𝜇(𝑡))𝑇 be any two positive
solutions of system (7)-(8). Theorem 5 implies there exist
positive constants 𝑇, 𝑚

𝑖
, and𝑀

𝑖
(𝑖 = 1, 2) such that for 𝑡 ≥ 𝑇

𝑚
1
≤ 𝑥 (𝑡) ≤ 𝑀

1
, 𝑚

1
≤ 𝑥∗ (𝑡) ≤ 𝑀

1
,

𝑚
2
≤ 𝜇 (𝑡) ≤ 𝑀

2
, 𝑚

2
≤ 𝜇∗ (𝑡) ≤ 𝑀

2
,

(56)

where 𝑚
𝑖
and 𝑀

𝑖
(𝑖 = 1, 2) are defined in Lemma 3 and

Lemma 4. Set 𝑉(𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡), where

𝑉
1
(𝑡) =

ln𝑥 (𝑡) − ln𝑥
∗
(𝑡)
 ,

𝑉
2
(𝑡) =

𝜇 (𝑡) − 𝜇
∗
(𝑡)
 + 𝑏
𝑢 ∫
𝑡

𝑡−𝜏

𝑥 (𝑢) − 𝑥
∗
(𝑢)
 𝑑𝑢.

(57)
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Calculating the upper right derivatives of 𝑉
1
(𝑡) along the

solution of (7) leads to

𝐷+𝑉
1
(𝑡)

= sgn [𝑥 (𝑡) − 𝑥∗ (𝑡)]

× (𝑝 (𝑡) (exp {−𝛼 (𝑡) 𝑥 (𝑡)} − exp {−𝛼 (𝑡) 𝑥∗ (𝑡)})

+𝑐 (𝑡) (𝜇
∗
(𝑡) − 𝜇 (𝑡)))

= sgn [𝑥 (𝑡) − 𝑥∗ (𝑡)]

× (𝑝 (𝑡) (−𝛼 (𝑡) exp {−𝜉 (𝑡)} (𝑥 (𝑡) − 𝑥∗ (𝑡)))

+𝑐 (𝑡) (𝜇
∗
(𝑡) − 𝜇 (𝑡)))

≤ −𝑝 (𝑡) 𝛼 (𝑡) (exp {−𝜉 (𝑡)} 𝑥 (𝑡) − 𝑥
∗
(𝑡)
)

+ 𝑐 (𝑡)
𝜇 (𝑡) − 𝜇

∗
(𝑡)
 ,

(58)

where we used the elementary mean value theorem of differ-
ential calculus and 𝜉(𝑡) lies between 𝛼(𝑡)𝑥(𝑡) and 𝛼(𝑡)𝑥∗(𝑡).
Then, for 𝑡 ≥ 𝑇, we have

𝛼𝑙𝑚
1
≤ 𝜉 (𝑡) ≤ 𝛼

𝑢𝑀
1
. (59)

Hence, by (58), we can have

𝐷+𝑉
1
(𝑡) ≤ −𝑝

𝑙𝛼𝑙 exp (𝛼𝑢𝑀
1
)
𝑥 (𝑡) − 𝑥

∗
(𝑡)


+ 𝑐𝑢
𝜇 (𝑡) − 𝜇

∗
(𝑡)
 .

(60)

Calculating the upper right derivatives of 𝑉
2
(𝑡) along the

solution of (7), one has

𝐷+𝑉
2
(𝑡) = sgn [𝜇 (𝑡) − 𝜇∗ (𝑡)]

× (−𝑎 (𝑡) (𝜇 (𝑡) − 𝜇
∗
(𝑡))

+𝑏 (𝑡) (𝑥 (𝑡 − 𝜏) − 𝑥
∗
(𝑡 − 𝜏)))

+ 𝑏𝑢 (
𝑥 (𝑡) − 𝑥

∗
(𝑡)
 −
𝑥 (𝑡 − 𝜏) − 𝑥

∗
(𝑡 − 𝜏)

)

≤ −𝑎𝑙
𝜇 (𝑡) − 𝜇

∗
(𝑡)
 + 𝑏
𝑢 𝑥 (𝑡) − 𝑥

∗
(𝑡)
 .

(61)

According to (58), (66), and condition (𝐻
2
), we can obtain

𝐷+𝑉 (𝑡) ≤ (𝑏
𝑢 − 𝑝𝑙𝛼𝑙 exp (𝛼𝑢𝑀

1
))
𝑥 (𝑡) − 𝑥

∗
(𝑡)


+ (𝑐𝑢 − 𝑎𝑙)
𝜇 (𝑡) − 𝜇

∗
(𝑡)


< ℎ [
𝜇 (𝑡) − 𝜇

∗
(𝑡)
 +
𝑥 (𝑡) − 𝑥

∗
(𝑡)
] .

(62)

Integrating both sides of (62) from 𝑇 to 𝑡 leads to

𝑉 (𝑡) + ℎ∫
𝑡

𝑇

[
𝜇 (𝑠) − 𝜇

∗
(𝑠)
 +
𝑥 (𝑠) − 𝑥

∗
(𝑠)
] 𝑑𝑠

< 𝑉 (𝑇) < +∞, 𝑡 ≥ 𝑇.

(63)

Then,

∫
𝑡

𝑇

[
𝜇 (𝑠) − 𝜇

∗
(𝑠)
 +
𝑥 (𝑠) − 𝑥

∗
(𝑠)
] 𝑑𝑠 <

𝑉 (𝑇)

ℎ
< +∞,

𝑡 ≥ 𝑇.

(64)

Hence, |𝜇(𝑡) − 𝜇∗(𝑡)| + |𝑥(𝑡) − 𝑥∗(𝑡)| ∈ 𝐿1([𝑇, +∞)). By
system (7) and Theorem 5, we get 𝜇(𝑡), 𝜇∗(𝑡), 𝑥(𝑡), 𝑥∗(𝑡),
and their derivatives are bounded on [𝑇, +∞), which implies
that |𝜇(𝑡) − 𝜇∗(𝑡)| + |𝑥(𝑡) − 𝑥∗(𝑡)| is uniformly continuous on
[𝑇, +∞). By Lemma 11, we obtain

lim
𝑡→+∞

𝑥 (𝑡) − 𝑥
∗
(𝑡)
 = 0, lim

𝑡→+∞

𝜇 (𝑡) − 𝜇
∗
(𝑡)
 = 0.

(65)

The proof of Theorem 12 is complete.

Theorem 13. Suppose all conditions of Theorem 12 hold; then
there exists a unique almost periodic solution of systems (7) and
(8).

Proof. According to Lemma 10, there exists a bounded posi-
tive solution𝑢(𝑡) = (𝑢

1
(𝑡), 𝑢
2
(𝑡))𝑇 of (7) with initial condition

(8).Then there exists a sequence {𝑡
𝑘
}, {𝑡
𝑘
} → ∞ as 𝑘 → ∞,

such that (𝑢
1
(𝑡 + 𝑡
𝑘
), 𝑢
2
(𝑡 + 𝑡
𝑘
))𝑇 is a solution of the following

system:

̇𝑥 (𝑡) = 𝑥 (𝑡) (−𝛿 (𝑡 + 𝑡


𝑘
) + 𝑝 (𝑡 + 𝑡

𝑘
) exp {−𝛼 (𝑡 + 𝑡

𝑘
) 𝑥 (𝑡)}

−𝑐 (𝑡 + 𝑡
𝑘
) 𝜇 (𝑡)) ,

̇𝜇 (𝑡) = −𝑎 (𝑡 + 𝑡


𝑘
) 𝜇 (𝑡) + 𝑏 (𝑡 + 𝑡



𝑘
) 𝑥 (𝑡 − 𝜏) .

(66)

According to Theorem 5 and the fact that 𝛿(𝑡), 𝑝(𝑡),
𝛼(𝑡), 𝑐(𝑡), 𝑎(𝑡), 𝑏(𝑡) are all continuous, positive almost peri-
odic functions, we know that both {𝑢

𝑖
(𝑡 + 𝑡
𝑘
)} (𝑖 = 1, 2) and

its derivative function { ̇𝑢(𝑡 + 𝑡
𝑘
)} (𝑖 = 1, 2) are uniformly

bounded; thus, {𝑢
𝑖
(𝑡 + 𝑡
𝑘
)} (𝑖 = 1, 2) are uniformly bounded

and equi-continuous. By Ascoli’s theorem, there exists a
uniformly convergent subsequence {𝑢

𝑖
(𝑡 + 𝑡
𝑘
)} ⊆ {𝑢

𝑖
(𝑡 + 𝑡
𝑘
)}

such that for any 𝜀 > 0, there exists a 𝐾(𝜀) > 0 with the
property that if𝑚, 𝑘 ≥ 𝐾(𝜀), then

𝑢𝑖 (𝑡 + 𝑡𝑚) − 𝑢𝑖 (𝑡 + 𝑡𝑘)
 < 𝜀, 𝑖 = 1, 2. (67)

That is to say, 𝑢
𝑖
(𝑡) (𝑖 = 1, 2) are asymptotically almost

periodic functions. Hence there exists two almost periodic
functions 𝑟

𝑖
(𝑡 + 𝑡
𝑘
) (𝑖 = 1, 2) and two continuous functions

𝑠
𝑖
(𝑡 + 𝑡
𝑘
) (𝑖 = 1, 2) such that

𝑢
𝑖
(𝑡 + 𝑡
𝑘
) = 𝑟
𝑖
(𝑡 + 𝑡
𝑘
) + 𝑠
𝑖
(𝑡 + 𝑡
𝑘
) , 𝑖 = 1, 2, (68)
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where
lim
𝑘→+∞

𝑟
𝑖
(𝑡 + 𝑡
𝑘
) = 𝑟
𝑖
(𝑡) , lim

𝑘→+∞

𝑠
𝑖
(𝑡 + 𝑡
𝑘
) = 0, 𝑖 = 1, 2,

(69)

𝑟
𝑖
(𝑡) (𝑖 = 1, 2) are also almost periodic functions.
Therefore,

lim
𝑘→+∞

𝑢
𝑖
(𝑡 + 𝑡
𝑘
) = 𝑟
𝑖
(𝑡) , 𝑖 = 1, 2. (70)

On the other hand,

lim
𝑘→+∞

̇𝑢
𝑖
(𝑡 + 𝑡
𝑘
) = lim
𝑘→+∞

lim
ℎ→0

𝑢
𝑖
(𝑡 + 𝑡
𝑘
+ ℎ) − 𝑢

𝑖
(𝑡 + 𝑡
𝑘
)

ℎ

= lim
ℎ→0

lim
𝑘→+∞

𝑢
𝑖
(𝑡 + 𝑡
𝑘
+ ℎ) − 𝑢

𝑖
(𝑡 + 𝑡
𝑘
)

ℎ

= lim
ℎ→0

𝑟
𝑖
(𝑡 + ℎ) − 𝑟

𝑖
(𝑡)

ℎ
.

(71)

So ̇𝑟
𝑖
(𝑡) (𝑖 = 1, 2) exist. Moreover,

̇𝑟
1
(𝑡) = lim
𝑘→+∞

̇𝑢
1
(𝑡 + 𝑡
𝑘
)

= lim
𝑘→+∞

{𝑢
1
(𝑡 + 𝑡
𝑘
)

× (−𝛿 (𝑡 + 𝑡
𝑘
) − 𝑐 (𝑡 + 𝑡

𝑘
) 𝑢
2
(𝑡 + 𝑡
𝑘
) + 𝑝 (𝑡 + 𝑡

𝑘
)

× exp {−𝛼 (𝑡 + 𝑡
𝑘
) 𝑢
1
(𝑡 + 𝑡
𝑘
)})}

= 𝑟
1
(𝑡) (−𝛿 (𝑡) + 𝑝 (𝑡) exp {−𝛼 (𝑡) 𝑟

1
(𝑡)} − 𝑐 (𝑡) 𝑟

2
(𝑡)) ,

̇𝑟
2
(𝑡) = lim
𝑘→+∞

̇𝑢
2
(𝑡 + 𝑡
𝑘
)

= lim
𝑘→+∞

{−𝑎 (𝑡 + 𝑡
𝑘
) 𝑟
2
(𝑡 + 𝑡
𝑘
)

+𝑏 (𝑡 + 𝑡
𝑘
) 𝑟
1
(𝑡 + 𝑡
𝑘
− 𝜏)}

= −𝑎 (𝑡) 𝑟
2
(𝑡) + 𝑏 (𝑡) 𝑟

1
(𝑡 − 𝜏) .

(72)

These show that (𝑟
1
(𝑡), 𝑟
2
(𝑡))𝑇 satisfied system (7). Hence,

(𝑟
1
(𝑡), 𝑟
2
(𝑡))𝑇 is a positive almost periodic solution of (7).

Then, it follows from Theorem 12 that system (7) has a
unique positive almost periodic solution. The proof is com-
pleted.

Without the feedback terms, that is 𝑎(𝑡) = 0, 𝑏(𝑡) =
0, 𝑐(𝑡) = 0, and (7) becomes the following equation:

̇𝑥 (𝑡) = 𝑥 (𝑡) (−𝛿 (𝑡) + 𝑝 (𝑡) exp {−𝛼 (𝑡) 𝑥 (𝑡)}) . (73)

Equation (73) with periodic coefficients has been studied by
Li and Fan [7] and Saker and Agarwal [8] with 𝛼(𝑡) = 𝑎. Since
the periodic case is a special case of almost periodic, hence,
as a direct corollary of Theorem 13, we have the following.

Corollary 14. Suppose 𝛿(𝑡), 𝑝(𝑡), 𝛼(𝑡), 𝑐(𝑡), 𝑎(𝑡), 𝑏(𝑡) are
all continuous positive𝜔-periodic functions and 𝑝(𝑡) > 𝛿(𝑡) for
𝑡 ∈ [0, 𝜔]; then (73) has a unique globally attractive 𝜔-periodic
positive solution.

Remark 15. Li and Fan in [7] show that (73) has a unique
globally attractive 𝜔-periodic positive solution if 𝑝(𝑡) >
𝛿(𝑡) for 𝑡 ∈ [0, 𝜔], which is the same as Corollary 14. Thus,
Theorem 13 supplements and generalizes results in [7, 8].

4. Examples and Numeric Simulations

Now we give several examples together with their numeric
simulations to show the feasibility of our main results.

Example 16. Consider the following example:

̇𝑥 (𝑡) = 𝑥 (𝑡) (−5 − sin (√5𝑡)

+ 10 exp {− (30 + cos (√11𝑡)) 𝑥 (𝑡)}

− (1 + 0.5 sin (√7𝑡)) 𝜇 (𝑡)) ,

̇𝜇 (𝑡) = − (2.5 + 0.5 cos (√7𝑡)) 𝜇 (𝑡)

+ (5.8 + 0.2 sin (√3𝑡)) 𝑥 (𝑡 − 2) .

(74)

In this case, corresponding to system (7), we have 𝛿(𝑡) =
5 + sin(√5𝑡), 𝑝(𝑡) = 10, 𝛼(𝑡) = 30 + cos(√11𝑡), 𝑎(𝑡) =
2.5 + 0.5 cos(√7𝑡), 𝑏(𝑡) = 5.8 + 0.2 sin(√3𝑡), 𝑐(𝑡) = 1 +
0.5 sin(√7𝑡), 𝜏 = 2. According to the proof of Lemmas 3 and
4, one has

𝑀
1
=
3𝑝𝑢

2𝛿𝑙𝛼𝑙𝑒
= 0.04757, 𝑀

2
=
3𝑏𝑢𝑀

1

2𝑎𝑙
= 0.214066,

𝑚
1
=
𝑝𝑙 − 𝛿𝑢 − 𝑐𝑢𝑀

2

2𝑝𝑙𝛼𝑢
= 0.005934,

𝑚
2
=
𝑏𝑙𝑚
1

2𝑎𝑢
= 0.0055384.

(75)

Hence,

𝑝 (𝑡) > 𝛿 (𝑡) , 𝑝𝑙𝛼𝑙 exp (𝛼𝑢𝑀
1
) − 𝑏𝑢 ≅ 1261.193896 > 0,

𝑎𝑙 − 𝑐𝑢 = 0.5 > 0.

(76)

Thus, all the conditions of Theorem 13 are satisfied, and so,
there exists a unique almost periodic solution of systems (74).
Figure 1 shows this property.
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Figure 1: Dynamics of the 𝑥(𝑡)) and 𝜇(𝑡) of system (74) with the
initial values (𝑥(0), 𝜇(0))𝑇 = (0.02, 0.05)𝑇, (0.03, 0.03)𝑇, (0.04,
0.08)𝑇, (0.005, 0.1)𝑇; here 𝑡 ∈ [0, 100].

Example 17. Consider the following example:

̇𝑥 (𝑡) = 𝑥 (𝑡) (−2 −
1

(𝑡 + 1)2

+ 2 exp {− (30 + cos (√11𝑡)) 𝑥 (𝑡)}

− (1 + 0.5 sin (√7𝑡)) 𝜇 (𝑡) ) ,

̇𝜇 (𝑡) = − (2.5 + 0.5 cos (√7𝑡)) 𝜇 (𝑡)

+ (5.8 + 0.2 sin (√3𝑡)) 𝑥 (𝑡 − 2) .

(77)

In this case, we have

𝑝 (𝑡) < 𝛿 (𝑡) . (78)

Hence, By Theorem 7, we know that any positive solution of
system (77) satisfies lim

𝑡→+∞
𝑥(𝑡) = 0, lim

𝑡→+∞
𝜇(𝑡) = 0.

Numerical simulation also confirms our result (see Figure 2).

5. Conclusion

In this paper, we consider a Nicholson’s blowflies model
with feedback control and time delay. It is shown that
feedback control variable and time delay have no influence
on the permanence and extinction of the system. Also, by
constructing a suitable Lyapunov functional, a set of sufficient
conditions which ensure the existence of a unique globally
attractive positive almost periodic solution of the system
is established. Moreover, compared with the main result
of the relative discrete model (see [9]), we can see that
the continuous and discrete models have similar results on
permanence and the extinction of the Nicholson’s blowflies
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Figure 2: The dynamic behavior of system (77) with initial condi-
tion (𝑥(0), 𝜇(0))𝑇 = (0.03, 0.05)𝑇, (0.02, 0.04)𝑇, (0.005, 0.01)𝑇,
(0.002, 0.003)𝑇; here 𝑡 ∈ [0, 100].

model with feedback control and time delay. At the end
of this paper, two examples together with their numerical
simulations show the verification of our main results. Our
results supplement and generalize the results in [7, 8].
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The present work is mainly concerned with the Dullin-Gottwald-Holm (DGH) equation with strong dissipation. We establish a
sufficient condition to guarantee global-in-time solutions, then present persistence property for the Cauchy problem, and describe
the asymptotic behavior of solutions for compactly supported initial data.

1. Introduction

Dullin et al. [1] derived a new equation describing the
unidirectional propagation of surface waves in a shallow
water regime:

𝑢
𝑡
− 𝛼2𝑢

𝑥𝑥𝑡
+ 𝑐
0
𝑢
𝑥
+ 3𝑢𝑢

𝑥
+ 𝛾𝑢
𝑥𝑥𝑥

= 𝛼2 (2𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

) , 𝑥 ∈ R, 𝑡 > 0,
(1)

where the constants 𝛼2 and 𝛾/𝑐
0
are squares of length scales

and the constant 𝑐
0

> 0 is the critical shallow water wave
speed for undisturbed water at rest at spatial infinity. Since
this equation is derived by Dullin, Gottwald, and Holm,
in what follows, we call this new integrable shallow water
equation (1) DGH equation.

If 𝛼 = 0, (1) becomes the well-known KdV equation,
whose solutions are global as long as the initial data is square
integrable. This is proved by Bourgain [2]. If 𝛾 = 0 and
𝛼 = 1, (1) reduces to the Camassa-Holm equation which
was derived physically by Camassa and Holm in [3] by
approximating directly the Hamiltonian for Euler’s equations
in the shallow water regime, where 𝑢(𝑥, 𝑡) represents the
free surface above a flat bottom. The properties about the
well-posedness, blow-up, global existence, and propagation
speed have already been studied in recent works [4–13],

and the generalized version of a family of dispersive equa-
tions related to Camassa-Holm equation was discussed in
[14].

It is very interesting that (1) preserves the bi-Hamiltonian
structure and has the following two conserved quantities:

𝐸 (𝑢) =
1

2
∫
R

(𝑢2 + 𝛼2𝑢2
𝑥
) 𝑑𝑥,

𝐹 (𝑢) =
1

2
∫
R

(𝑢3 + 𝛼3𝑢𝑢2
𝑥
+ 𝑐
0
𝑢2 − 𝛾𝑢2

𝑥
) 𝑑𝑥.

(2)

Recently, in [15], local well-posedness of strong solutions
to (1) was established by applying Kato’s theory [16], and
some sufficient conditionswere found to guarantee finite time
blow-up phenomenon. Moreover, Zhou [17] found the best
constants for two convolution problems on the unit circle via
variational method and applied the best constants on (1) to
give some blow-up criteria. Later, Zhou and Guo improved
the results and got some new criteria for wave breaking [18].

In general, it is quite difficult to avoid energy dissipation
mechanism in the real world. Ghidaglia [19] studied the long
time behavior of solutions to the weakly dissipative KdV
equation as a finite dimensional dynamic system. Moreover,
some results on blow-up criteria and the global existence
condition for the weakly dissipative Camassa-Holm equation
are presented in [20], and very related work can be found in
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[21, 22]. In this work, we are interested in the followingmodel,
which can be viewed as the DGH equation with dissipation

𝑢
𝑡
− 𝛼2𝑢

𝑥𝑥𝑡
+ 𝑐
0
𝑢
𝑥
+ 3𝑢𝑢

𝑥
+ 𝛾𝑢
𝑥𝑥𝑥

+ 𝜆 (1 − 𝛼2𝜕2
𝑥
) 𝑢

= 𝛼2 (2𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

) ,
(3)

where 𝑥 ∈ R, 𝑡 > 0, 𝜆(1 − 𝛼2𝜕2
𝑥
)𝑢 is the weakly dissipative

term and 𝜆 is a positive dissipation parameter. Set 𝑄 = (1 −

𝛼2𝜕2
𝑥
)1/2, then the operator 𝑄−2 can be expressed by

𝑄−2𝑓 = 𝐺 ∗ 𝑓 = ∫
R

𝐺 (𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦, (4)

for all 𝑓 ∈ 𝐿2(R) with 𝐺(𝑥) = (1/2𝛼)𝑒−|𝑥|/𝛼. With this
in hand, we can rewrite (3) as a quasilinear equation of
hyperbolic type

𝑢
𝑡
+ (𝑢 −

𝛾

𝛼2
) 𝑢
𝑥
+ 𝜕
𝑥
𝐺

∗ (𝑢2 +
𝛼2

2
𝑢2
𝑥
+ (𝑐
0
+

𝛾

𝛼2
) 𝑢) + 𝜆𝑢 = 0.

(5)

It is the dissipative term that causes the previous conserved
quantities 𝐸(𝑢) and 𝐹(𝑢) to be no longer conserved for (3),
and this model could also be regarded as a model of a
type of a certain rate-dependent continuum material called
a compressible second grade fluid [23]. Our consideration
is based on this fact. Furthermore, we will show how the
dissipation term affects the behavior of solutions in our
forthcoming paper. As a whole, the current dissipationmodel
is of great importancemathematically and physically, and it is
worthy of being considered. In what follows, we assume that
𝑐
0
+ 𝛾/𝛼2 = 0 and 𝛼 > 0 just for simplicity. Since 𝑢(𝑥, 𝑡) is

bounded by its 𝐻1-norm, a general case with 𝑐
0
+ 𝛾/𝛼2 ̸= 0

does not change our results essentially, but it would lead to
unnecessary technical complications. So the above equation
is reduced to a simpler form as follows:

𝑢
𝑡
+ (𝑢 + 𝑐

0
) 𝑢
𝑥
+ 𝜕
𝑥
𝐺 ∗ 𝐹 (𝑢) + 𝜆𝑢 = 0, 𝑥 ∈ R, 𝑡 > 0,

(6)

where

𝐹 (𝑢) = 𝑢2 +
𝛼2

2
𝑢2
𝑥
. (7)

The rest of this paper is organized as follows. In Section 2,
we list the local well-posedness theorem for (6) with initial
datum 𝑢

0
∈ 𝐻𝑠, 𝑠 > 3/2 and collect some auxiliary results.

In Section 3, we establish the condition for global existence
in view of the initial potential. Persistence properties of
the strong solutions are explored in Section 4. Finally, in
Section 5, we give a detailed description of the corresponding
solution with compactly supported initial data.

2. Preliminaries

In this section, we make some preparations for our consider-
ation. Firstly, the local well-posedness of the Cauchy problem

of (6) with initial data 𝑢
0
∈ 𝐻𝑠 with 𝑠 > 3/2 can be obtained

by applying Kato’s theorem [16]. More precisely, we have the
following local well-posedness result.

Theorem 1. Given that 𝑢
0
(𝑥) ∈ 𝐻𝑠, 𝑠 > 3/2, there exist 𝑇 =

𝑇(𝜆, ‖𝑢
0
‖
𝐻
𝑠) > 0 and a unique solution 𝑢 to (6), such that

𝑢 = 𝑢 (⋅, 𝑢
0
) ∈ 𝐶 ([0, 𝑇) ;𝐻

𝑠) ∩ 𝐶1 ([0, 𝑇) ;𝐻
𝑠−1) . (8)

Moreover, the solution depends continuously on the initial
data; that is, the mapping 𝑢

0
→ 𝑢(⋅, 𝑢

0
) : 𝐻𝑠 → 𝐶([0,

𝑇);𝐻𝑠)∩𝐶1([0, 𝑇);𝐻𝑠−1) is continuous, and themaximal time
of existence 𝑇 > 0 is independent of 𝑠.

Proof. Set 𝐴(𝑢) = (𝑢 + 𝑐
0
)𝜕
𝑥
, 𝑓(𝑢) = −𝜕

𝑥
(1 − 𝛼2𝜕2

𝑥
)
−1

𝐹(𝑢) −

𝜆𝑢, 𝑌 = 𝐻𝑠, 𝑋 = 𝐻𝑠−1, 𝑠 > 3/2, and 𝑄 = (1 − 𝛼2𝜕2
𝑥
)
1/2.

Applying Kato’s theory for abstract quasilinear evolution
equation of hyperbolic type, we can obtain the local well-
posedness of (6) in 𝐻𝑠, 𝑠 > 3/2 and 𝑢 ∈ 𝐶 ([0, 𝑇);𝐻𝑠) ∩
𝐶1([0, 𝑇);𝐻𝑠−1).

The maximal value of 𝑇 in Theorem 1 is called the
lifespan of the solution in general. If 𝑇 < ∞, that is
lim sup

𝑡→𝑇
‖𝑢(⋅, 𝑡)‖

𝐻
𝑠 = ∞, we say that the solution blows up

in finite time, otherwise, the solution exists globally in time.
Next, we show that the solution blows up if and only if its
first-order derivative blows up.

Lemma 2. Given that 𝑢
0

∈ 𝐻𝑠, 𝑠 > 3/2, the solution 𝑢 =
𝑢(⋅, 𝑢
0
) of (3) blows up in finite time 𝑇 < +∞ if and only if

lim inf
𝑡→𝑇

{inf
𝑥∈R

[𝑢
𝑥
(𝑥, 𝑡)]} = −∞. (9)

Proof. We first assume that 𝑢
0

∈ 𝐻𝑠 for some 𝑠 ∈ N, 𝑠 ≥ 4.
Equation (6) can be written into the following form in terms
of 𝑦 = (1 − 𝛼2𝜕2

𝑥
)𝑢

𝑦
𝑡
+ (𝑦𝑢)

𝑥
+

1

2
(𝑢2 − 𝛼2𝑢2

𝑥
)
𝑥
+ 𝑐
0
𝑦
𝑥
+ 𝜆𝑦 = 0,

𝑥 ∈ R, 𝑡 > 0.

(10)

Multiplying (10) by 𝑦 = (1 −𝛼2𝜕2
𝑥
)𝑢, and integrating by parts,

we have

𝑑

𝑑𝑡
∫
R

𝑦2𝑑𝑥 = 2∫
R

𝑦𝑦
𝑡
𝑑𝑥

= − 3∫
R

𝑢
𝑥
𝑦2𝑑𝑥 − 2𝜆∫

R

𝑦2𝑑𝑥.

(11)

Differentiating (10) with respect to the spatial variable 𝑥, then
multiplying by 𝑦

𝑥
= (1 − 𝛼2𝜕2

𝑥
)𝑢
𝑥
, and integrating by parts

again, we obtain

𝑑

𝑑𝑡
∫
R

𝑦2
𝑥
𝑑𝑥 = 2∫

R

𝑦
𝑥
𝑦
𝑥𝑡
𝑑𝑥 = −5∫

R

𝑢
𝑥
𝑦2
𝑥
𝑑𝑥

+
2

𝛼2
∫
R

𝑢
𝑥
𝑦2𝑑𝑥 − 2𝜆∫

R

𝑦2
𝑥
𝑑𝑥.

(12)
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Summarizing (11) and (12), we obtain

𝑑

𝑑𝑡
(∫

R

(𝑦2 + 𝑦2
𝑥
) 𝑑𝑥)

= −(3 −
2

𝛼2
)∫

R

𝑢
𝑥
𝑦2𝑑𝑥

− 5∫
R

𝑢
𝑥
𝑦2
𝑥
𝑑𝑥 − 2𝜆 (∫

R

(𝑦2 + 𝑦2
𝑥
) 𝑑𝑥) .

(13)

If 𝑢
𝑥
is bounded from below on [0, 𝑇), for example, 𝑢

𝑥
≥ −𝐶,

𝐶 is a positive constant, then we get by (13) and Gronwall’s
inequality the following:

𝑦

2

𝐻
1 ≤ exp {(𝐾𝐶 − 2𝜆) 𝑡}

𝑦0

2

𝐻
1 , (14)

where𝐾 = max {5, (3−2/𝛼2)}.Therefore, the𝐻3-norm of the
solution to (10) does not blow up in finite time. Furthermore,
similar argument shows that the 𝐻𝑘-norm with 𝑘 ≥ 4 does
not blow up either in finite time. Consequently, this theorem
can be proved byTheorem 1 and simple density argument for
all 𝑠 > 3/2.

Lemma 3. Let 𝑢
0

∈ 𝐻1
𝛼
, then as long as the solution 𝑢(𝑥, 𝑡)

given by Theorem 1 exists, for any 𝑡 ∈ [0, 𝑇), one has

‖𝑢‖
2

𝐻
1

𝛼

= exp (−2𝜆𝑡)
𝑢0


2

𝐻
1

𝛼

, (15)

where the norm is defined as

‖𝑢‖
2

𝐻
1

𝛼

= ∫
R

(𝑢2 + 𝛼2𝑢2
𝑥
) 𝑑𝑥. (16)

Proof. Multiplying both sides of (10) by 𝑢 and integrating by
parts on R, we get

∫
R

𝑢𝑦
𝑡
𝑑𝑥 + ∫

R

(𝑦𝑢)
𝑥
𝑢 𝑑𝑥 + ∫

R

1

2
(𝑢2 − 𝛼2𝑢2

𝑥
)
𝑥
𝑢 𝑑𝑥

+ ∫
R

𝑐
0
𝑦
𝑥
𝑢 𝑑𝑥 + ∫

R

𝜆𝑦𝑢 𝑑𝑥 = 0.

(17)

Note that

∫
R

(𝑦𝑢)
𝑥
𝑢 𝑑𝑥 + ∫

R

1

2
(𝑢2 − 𝛼2𝑢2

𝑥
)
𝑥
𝑢 𝑑𝑥 = 0,

∫
R

𝑐
0
𝑦
𝑥
𝑢 𝑑𝑥 = 0.

(18)

Then, we have

∫
R

𝑢 (𝑢
𝑡
− 𝛼2𝑢

𝑥𝑥𝑡
) 𝑑𝑥 + ∫

R

𝜆 (𝑢2 − 𝛼2𝑢𝑢
𝑥𝑥

) 𝑑𝑥 = 0. (19)

Hence,

∫
R

𝑢𝑢
𝑡
𝑑𝑥 − 𝛼2 ∫

R

𝑢𝑢
𝑥𝑥𝑡

𝑑𝑥 + 𝜆∫
R

𝑢2𝑑𝑥

− 𝜆𝛼2 ∫
R

𝑢𝑢
𝑥𝑥

𝑑𝑥 = 0.

(20)

Thus, we easily get

∫
R

(𝑢𝑢
𝑡
+ 𝛼2𝑢

𝑥
𝑢
𝑥𝑡
) 𝑑𝑥 + 𝜆∫

R

(𝑢2 + 𝛼2𝑢2
𝑥
) 𝑑𝑥 = 0, (21)

and, therefore,

𝑑

𝑑𝑡
‖𝑢‖
2

𝐻
1

𝛼

+ 2𝜆‖𝑢‖
2

𝐻
1

𝛼

= 0. (22)

By integration from 0 to 𝑡, we get

‖𝑢‖
2

𝐻
1

𝛼

= exp (−2𝜆𝑡)
𝑢0


2

𝐻
1

𝛼

, for any 𝑡 ∈ [0,T) . (23)

Hence, the lemma is proved.

We also need to introduce the standard particle trajectory
method for later use. Consider now the following initial value
problem as follows:

𝑞
𝑡
= 𝑢 (𝑡, 𝑞) + 𝑐

0
, 𝑡 ∈ [0, 𝑇) ,

𝑞 (0, 𝑥) = 𝑥, 𝑥 ∈ R,
(24)

where 𝑢 ∈ 𝐶1([0, 𝑇),𝐻𝑠−1) is the solution to (6) with initial
data 𝑢

0
∈ 𝐻𝑠, (𝑠 > 3/2) and 𝑇 > 0 is the maximal time of

existence. By direct computation, we have

𝑞
𝑡𝑥

(𝑡, 𝑥) = 𝑢
𝑥
(𝑡, 𝑞 (𝑡, 𝑥)) 𝑞

𝑥
(𝑡, 𝑥) . (25)

Then,

𝑞
𝑥
(𝑡, 𝑥) = exp(∫

𝑡

0

𝑢
𝑥
(𝜏, 𝑞 (𝜏, 𝑥)) 𝑑𝜏) > 0, 𝑡 > 0, 𝑥 ∈ R,

(26)

which means that 𝑞(𝑡, ⋅) : R → R is a diffeomorphism of
the line for every 𝑡 ∈ [0, 𝑇). Consequently, the 𝐿∞-norm
of any function V(𝑡, ⋅) is preserved under the family of the
diffeomorphism 𝑞(𝑡, ⋅), that is,

‖V (𝑡, ⋅)‖𝐿∞ =
V (𝑡, 𝑞 (𝑡, ⋅))

𝐿∞ , 𝑡 ∈ [0, 𝑇) . (27)

Similarly,

inf
𝑥∈R

V (𝑡, 𝑥) = inf
𝑥∈R

V (𝑡, 𝑞 (𝑡, 𝑥)) , 𝑡 ∈ [0, 𝑇) ,

sup
𝑥∈R

V (𝑡, 𝑥) = sup
𝑥∈R

V (𝑡, 𝑞 (𝑡, 𝑥)) , 𝑡 ∈ [0, 𝑇) .
(28)

Moreover, one can verify the following important identity for
the strong solution in its lifespan:

𝑑

𝑑𝑡
(𝑦 (𝑞 (𝑥, 𝑡) , 𝑡) 𝑞

2

𝑥
(𝑥, 𝑡)) = −𝜆𝑦 (𝑞 (𝑥, 𝑡) , 𝑡) 𝑞

2

𝑥
(𝑥, 𝑡) .

(29)

We get that

𝑦 (𝑞 (𝑥, 𝑡) , 𝑡) 𝑞
2

𝑥
(𝑥, 𝑡) = 𝑦

0
(𝑥) exp (−𝜆𝑡) , (30)

where𝑦(𝑥, 𝑡) is defined by 𝑦(𝑥, 𝑡) = (1−𝛼2𝜕2
𝑥
)𝑢(𝑥, 𝑡), for 𝑡 ≥ 0

in its lifespan.
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From the expression of 𝑢(𝑥, 𝑡) in terms of 𝑦(𝑥, 𝑡), for all
𝑡 ∈ [0, 𝑇), 𝑥 ∈ R, we can rewrite 𝑢(𝑥, 𝑡) and 𝑢

𝑥
(𝑥, 𝑡) as

follows:

𝑢 (𝑥, 𝑡) =
1

2𝛼
𝑒−𝑥/𝛼 ∫

𝑥

−∞

𝑒𝜉/𝛼𝑦 (𝜉, 𝑡) 𝑑𝜉

+
1

2𝛼
𝑒𝑥/𝛼 ∫

∞

𝑥

𝑒−𝜉/𝛼𝑦 (𝜉, 𝑡) 𝑑𝜉,

(31)

from which we get that

𝑢
𝑥
(𝑥, 𝑡) = −

1

2𝛼2
𝑒−𝑥/𝛼 ∫

𝑥

−∞

𝑒𝜉/𝛼𝑦 (𝜉, 𝑡) 𝑑𝜉

+
1

2𝛼2
𝑒𝑥/𝛼 ∫

∞

𝑥

𝑒−𝜉/𝛼𝑦 (𝜉, 𝑡) 𝑑𝜉.

(32)

3. Global Existence

It is shown that it is the sign of initial potential not the size of
it that can guarantee the global existence of strong solutions.

Theorem 4. Assume that 𝑢
0

∈ 𝐻𝑠, 𝑠 > 3/2, and 𝑦
0

= 𝑢
0
−

𝛼2𝑢
0𝑥𝑥

satisfies

𝑦
0
(𝑥) ≤ 0, 𝑥 ∈ (−∞, 𝑥

0
) ,

𝑦
0
(𝑥) ≥ 0, 𝑥 ∈ (𝑥

0
,∞) ,

(33)

for some point 𝑥
0

∈ R. Then, the solution 𝑢(𝑥, 𝑡) to (6) exists
globally in time.

Proof. From the hypothesis and (30), we obtain that 𝑦(𝑥, 𝑡) ≥
0, 𝑞(𝑥

0
, 𝑡) ≤ 𝑥 < ∞; 𝑦(𝑥, 𝑡) ≤ 0, −∞ < 𝑥 ≤ 𝑞(𝑥

0
, 𝑡).

According to (31) and (32), one can get that when 𝑥 > 𝑥
0
,

𝑢 (𝑞 (𝑥, 𝑡) , 𝑡) + 𝛼𝑢
𝑥
(𝑞 (𝑥, 𝑡) , 𝑡)

=
1

𝛼
𝑒𝑞(𝑥,𝑡)/𝛼 ∫

∞

𝑞(𝑥,𝑡)

𝑒−𝜉/𝛼𝑦 (𝜉, 𝑡) 𝑑𝜉 ≥ 0,
(34)

it follows that
−𝛼𝑢
𝑥
(𝑞 (𝑥, 𝑡) , 𝑡) ≤ 𝑢 (𝑞 (𝑥, 𝑡) , 𝑡) ≤ ‖𝑢‖𝐿∞

≤
exp (−𝜆𝑡)

√2𝛼

𝑢0
𝐻1
𝛼

≤
1

√2𝛼

𝑢0
𝐻1
𝛼

,
(35)

that is, 𝑢
𝑥
(𝑥, 𝑡) is bounded below. Similarly, when 𝑥 < 𝑥

0
,

𝑢 (𝑞 (𝑥, 𝑡) , 𝑡) − 𝛼𝑢
𝑥
(𝑞 (𝑥, 𝑡) , 𝑡)

=
1

𝛼
𝑒−𝑞(𝑥,𝑡)/𝛼 ∫

𝑞(𝑥,𝑡)

−∞

𝑒𝜉/𝛼𝑦 (𝜉, 𝑡) 𝑑𝜉 ≤ 0,
(36)

so −𝛼𝑢
𝑥
(𝑞(𝑥, 𝑡), 𝑡) ≤ −𝑢(𝑞(𝑥, 𝑡), 𝑡). We also get the bounded

below result as above. Therefore, the theorem is proved by
Lemma 2.

Corollary 5. Assume that 𝑢
0

∈ 𝐻𝑠, 𝑠 > 3/2, and 𝑦
0

= 𝑢
0
−

𝛼2𝑢
0𝑥𝑥

is of one sign, then the corresponding solution 𝑢(𝑥, 𝑡) to
(6) exists globally.

In fact, if 𝑥
0
is regarded as ±∞, we prove this corollary

immediately fromTheorem 4.

4. Persistence Properties

In this section, we will investigate the following property
for the strong solutions to (6) in 𝐿∞-space which behave
algebraically at infinity as their initial profiles do. The main
idea comes from the recent work of Himonas and his
collaborators [7].

Theorem 6. Assume that for some 𝑇 > 0 and 𝑠 > 3/2, 𝑢 ∈
𝐶([0, 𝑇];𝐻𝑠) is a strong solution of the initial value problem
associated to (6), and that 𝑢

0
(𝑥) = 𝑢(𝑥, 0) satisfies

𝑢0 (𝑥)
 ,

𝑢0𝑥 (𝑥)
 ∼ 𝑂 (𝑥−𝜃/𝛼) 𝑥 ↑ ∞, (37)

for some 𝜃 ∈ (0, 1) and 𝛼 ≥ 1. Then,

|𝑢 (𝑥, 𝑡)| ,
𝑢𝑥 (𝑥, 𝑡)

 ∼ 𝑂 (𝑥−𝜃/𝛼) 𝑥 ↑ ∞, (38)

uniformly in the time interval [0, 𝑇].

Proof. The proof is organized as follows. Firstly, we will
estimate ‖𝑢(𝑥, 𝑡)‖

𝐿
∞ and ‖𝑢

𝑥
(𝑥, 𝑡)‖

𝐿
∞ . Then, we apply the

weight function to obtain the desired result. In the following
proof, we denote some constants by 𝑐; they may be different
from instance to instance, changing even within the same
line.

Multiplying (6) by 𝑢2𝑛−1 with 𝑛 ∈ Z+, then integrating
both sides with respect to 𝑥 variable, we can get

∫
R

𝑢2𝑛−1𝑢
𝑡
𝑑𝑥 + ∫

R

𝑢2𝑛−1 (𝑢 + 𝑐
0
) 𝑢
𝑥
𝑑𝑥

+ ∫
R

𝑢2𝑛−1𝜕
𝑥
𝐺 ∗ 𝐹 (𝑢) 𝑑𝑥 = −𝜆∫

R

𝑢2𝑛𝑑𝑥.

(39)

The first term of the above identity is

∫
R

𝑢2𝑛−1𝑢
𝑡
𝑑𝑥 =

1

2𝑛

𝑑

𝑑𝑡
‖𝑢 (𝑡)‖

2𝑛

𝐿
2𝑛

= ‖𝑢 (𝑡)‖
2𝑛−1

𝐿
2𝑛

𝑑

𝑑𝑡
‖𝑢 (𝑡)‖𝐿2𝑛 ,

(40)

and the estimates of the second term is

∫
R

𝑢2𝑛−1𝑢𝑢
𝑥
𝑑𝑥 ≤

𝑢𝑥 (𝑡)
𝐿∞‖𝑢 (𝑡)‖

2𝑛

𝐿
2𝑛 ,

𝑐
0
∫
R

𝑢2𝑛−1𝑢
𝑥
𝑑𝑥 = 𝑐

0
∫
R

(
𝑢2𝑛

2𝑛
)
𝑥

𝑑𝑥 = 0.

(41)

In view of Hölder’s inequality, we can obtain the following
estimate for the third term in (39)


∫
R

𝑢2𝑛−1𝜕
𝑥
𝐺 ∗ 𝐹 (𝑢) 𝑑𝑥


≤ ‖𝑢 (𝑡)‖

2𝑛−1

𝐿
2𝑛

𝜕𝑥𝐺 ∗ 𝐹(𝑢)
𝐿2𝑛 .

(42)

For the last term

∫
R

𝑢2𝑛−1𝜆𝑢 𝑑𝑥

≤ 𝜆‖𝑢 (𝑡)‖

2𝑛

𝐿
2𝑛 , (43)
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putting all the inequalities above into (39) yields

𝑑

𝑑𝑡
‖𝑢 (𝑡)‖𝐿2𝑛 ≤ (

𝑢𝑥 (𝑡)
𝐿2𝑛 + 𝜆) ‖𝑢 (𝑡)‖𝐿2𝑛

+
𝜕𝑥𝐺 ∗ 𝐹 (𝑢)

𝐿2𝑛 .

(44)

Using the Sobolev embedding theorem, there exists a con-
stant

𝑀 = sup
𝑡∈[0,𝑇]

‖𝑢 (𝑥, 𝑡)‖𝐻𝑠 , (45)

such that we have by applying Gronwall’s inequality

‖𝑢 (𝑡)‖𝐿2𝑛 ≤ 𝑐𝑒𝑀𝑡 (‖𝑢 (0)‖𝐿2𝑛 + ∫
𝑡

0

𝜕𝑥𝐺 ∗ 𝐹 (𝑢)
𝐿2𝑛𝑑𝜏) .

(46)

For any 𝑓 ∈ 𝐿1(R) ∩ 𝐿∞(R), we know that

lim
𝑞↑∞

𝑓
𝐿𝑞 =

𝑓
𝐿∞ . (47)

Taking the limits in (46) (notice that 𝐺 ∈ 𝐿1 and 𝐹(𝑢) ∈ 𝐿1 ∩
𝐿∞) from (47), we get

‖𝑢 (𝑡)‖𝐿∞ ≤ 𝑐𝑒𝑀𝑡 (‖𝑢 (0)‖𝐿∞ + ∫
𝑡

0

𝜕𝑥𝐺 ∗ 𝐹 (𝑢)
𝐿∞𝑑𝜏) .

(48)

Then, differentiating (6) with respect to variable 𝑥 produces
the following equation:

𝑢
𝑥𝑡

+ 𝑢𝑢
𝑥𝑥

+ 𝑐
0
𝑢
𝑥𝑥

+ 𝑢2
𝑥
+ 𝜕2
𝑥
𝐺 ∗ 𝐹 (𝑢) + 𝜆𝑢

𝑥
= 0. (49)

Again, multiplying (49) by 𝑢2𝑛−1
𝑥

with 𝑛 ∈ Z+, integrating the
result in 𝑥 variable, and considering the second term and the
third term in the above identity with integration by parts, one
gets

∫
R

𝑢𝑢
𝑥𝑥

𝑢2𝑛−1
𝑥

𝑑𝑥 = ∫
R

𝑢(
𝑢2𝑛−1
𝑥

2𝑛
)
𝑥

𝑑𝑥

= −
1

2𝑛
∫
R

𝑢
𝑥
𝑢2𝑛
𝑥

𝑑𝑥,

𝑐
0
∫
R

𝑢
𝑥𝑥

𝑢2𝑛−1
𝑥

𝑑𝑥 = 𝑐
0
∫
R

(
𝑢2𝑛−1
𝑥

2𝑛
)
𝑥

𝑑𝑥 = 0,

(50)

so, we have

∫
R

𝑢
𝑥𝑡
𝑢2𝑛−1
𝑥

𝑑𝑥 −
1

2𝑛
∫
R

𝑢
𝑥
𝑢2𝑛
𝑥

𝑑𝑥 + ∫
R

𝑢2𝑛+1
𝑥

𝑑𝑥

= −∫
R

𝑢2𝑛−1
𝑥

𝜕2
𝑥
𝐺 ∗ 𝐹 (𝑢) 𝑑𝑥 − 𝜆∫

R

𝑢2𝑛−1
𝑥

𝑢
𝑥
𝑑𝑥.

(51)

Similarly, the following inequality holds

𝑑

𝑑𝑡

𝑢𝑥 (𝑡)
𝐿2𝑛 ≤ (2

𝑢𝑥 (𝑡)
𝐿∞ + 𝜆)

𝑢𝑥 (𝑡)
𝐿2𝑛

+
𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢) (𝑡)

𝐿2𝑛 ,

(52)

and therefore as before, we obtain

𝑢𝑥 (𝑡)
𝐿2𝑛 ≤ 𝑐𝑒2𝑀𝑡 (

𝑢𝑥 (0)
𝐿2𝑛 + ∫

𝑡

0

𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢)

𝐿2𝑛𝑑𝜏) .

(53)

Taking the limits in (53), we obtain

𝑢𝑥 (𝑡)
𝐿∞ ≤ 𝑐𝑒2𝑀𝑡 (

𝑢𝑥 (0)
𝐿∞ + ∫

𝑡

0

𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢)

𝐿∞𝑑𝜏) .

(54)

Next, we will introduce the weight function to get our
desired result. This function 𝜑

𝑁
(𝑥) with 𝑁 ∈ Z+ is

independent of 𝑡 as the following:

𝜑
𝑁

(𝑥) =
{{
{{
{

1, 𝑥 ≤ 1,

𝑥𝜃/𝛼, 𝑥 ∈ (1,𝑁) ,

𝑁𝜃/𝛼, 𝑥 ≥ 𝑁.

(55)

From (6) and (49), we get the following two equations:

𝜑
𝑁
𝑢
𝑡
+ 𝜑
𝑁
𝑢𝑢
𝑥
+ 𝜑
𝑁
𝑐
0
𝑢
𝑥
+ 𝜑
𝑁
𝜕
𝑥
𝐺 ∗ 𝐹 (𝑢) + 𝜆𝜑

𝑁
𝑢 = 0,

𝜑
𝑁
𝑢
𝑥𝑡

+ 𝜑
𝑁
𝑢𝑢
𝑥𝑥

+ 𝜑
𝑁
𝑐
0
𝑢
𝑥𝑥

+ 𝜑
𝑁
𝑢2
𝑥

+ 𝜑
𝑁
𝜕2
𝑥
𝐺 ∗ 𝐹 (𝑢) + 𝜆𝜑

𝑁
𝑢
𝑥
= 0.

(56)

Weneed some tricks to deal with the following term as in [18]:

∫
R

(𝜑
𝑁
)
2𝑛−1

𝑢2𝑛−1𝜑
𝑁
𝑢
𝑥
𝑑𝑥

= ∫
R

(𝜑
𝑁
𝑢)
2𝑛−1

[(𝑢𝜑
𝑁
)
𝑥
− 𝑢(𝜑

𝑁
)
𝑥
] 𝑑𝑥

= ∫
R

(𝜑
𝑁
𝑢)
2𝑛−1

𝑑 (𝜑
𝑁
𝑢) − ∫

R

(𝜑
𝑁
𝑢)
2𝑛−1

𝑢(𝜑
𝑁
)
𝑥
𝑑𝑥

≤ ∫
R

(𝜑
𝑁
𝑢)
2𝑛

𝑑𝑥,

(57)

where we have used the fact 0 ≤ 𝜑
𝑁
(𝑥) ≤ 𝜑

𝑁
(𝑥),

a.e. 𝑥 ∈ R. Similar technique is used for the term
∫
R
(𝜑
𝑁
)2𝑛−1𝑢2𝑛−1

𝑥
𝜑
𝑁
𝑢
𝑥𝑥

𝑑𝑥. Hence, as in the weightless case,
we get the following inequality in view of (48) and (54) as
follows:
𝑢 (𝑡) 𝜑

𝑁

𝐿∞ +
𝑢𝑥 (𝑡) 𝜑𝑁

𝐿∞

≤ 𝑐𝑒2𝑀𝑡 (
𝑢 (0) 𝜑

𝑁

𝐿∞ +
𝑢𝑥 (0) 𝜑𝑁

𝐿∞) + 𝑐𝑒2𝑀𝑡

× (∫
𝑡

0

(
𝜑𝑁𝜕𝑥𝐺 ∗ 𝐹 (𝑢)

𝐿∞ +
𝜑𝑁𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢)

𝐿∞) 𝑑𝜏) .

(58)

On the other hand, a simple calculation shows that there
exists 𝐶 > 0, depending only on 𝛼 and 𝜃 such that for any
𝑁 ∈ Z+,

𝜑
𝑁

(𝑥) ∫
R

𝑒−|𝑥−𝑦|/𝛼
1

𝜑
𝑁

(𝑦)
𝑑𝑦 ≤ 𝐶. (59)
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Therefore, for any appropriate function 𝑔, one obtains that
𝜑𝑁𝜕𝑥𝐺 ∗ 𝑔2 (𝑥)



=


1

2𝛼
𝜑
𝑁

(𝑥) ∫
R

𝑒−|𝑥−𝑦|/𝛼𝑔2 (𝑦) 𝑑𝑦


≤
1

2𝛼
𝜑
𝑁

(𝑥) ∫
R

𝑒−|𝑥−𝑦|/𝛼
1

𝜑
𝑁

(𝑦)
𝜑
𝑁

(𝑦) 𝑔 (𝑦) 𝑔 (𝑦) 𝑑𝑦

≤
1

2𝛼
(𝜑
𝑁

(𝑥) ∫
R

𝑒−|𝑥−𝑦|/𝛼
1

𝜑
𝑁

(𝑦)
𝑑𝑦)

𝑔𝜑
𝑁

𝐿∞
𝑔

𝐿∞

≤
𝐶

𝛼

𝑔𝜑
𝑁

𝐿∞
𝑔

𝐿∞ ,

(60)

and similarly, |𝜑
𝑁
𝜕2
𝑥
𝐺∗𝑔2(𝑥)| ≤ (𝐶/𝛼)‖𝑔𝜑

𝑁
‖
𝐿
∞‖𝑔‖
𝐿
∞ . Using

the same method, we can estimate the following two terms
𝜑𝑁𝐺 ∗ 𝑔 (𝑥)

 ≤
𝐶

𝛼

𝑔𝜑
𝑁

𝐿∞ ,

𝜑𝑁𝜕𝑥𝐺 ∗ 𝑔 (𝑥)
 ≤

𝐶

𝛼

𝑔𝜑
𝑁

𝐿∞ .

(61)

Therefore, it follows that there exists a constant
𝐶
1
(𝑀, 𝑇, 𝛼, 𝜆) > 0 such that
𝑢 (𝑡) 𝜑

𝑁

𝐿∞ +
𝑢𝑥 (𝑡) 𝜑𝑁

𝐿∞

≤ 𝐶
1
(
𝑢 (0) 𝜑

𝑁

𝐿∞ +
𝑢𝑥 (0) 𝜑𝑁

𝐿∞)

+ 𝐶
1
∫
𝑡

0

((‖𝑢 (𝜏)‖𝐿∞ +
𝑢𝑥 (𝜏)

𝐿∞)

⋅ (
𝜑𝑁𝑢 (𝜏)

𝐿∞ +
𝜑𝑁𝑢𝑥 (𝜏)

𝐿∞)) 𝑑𝜏

≤ 𝐶
1
(
𝑢 (0) 𝜑

𝑁

𝐿∞ +
𝑢𝑥 (0) 𝜑𝑁

𝐿∞

+∫
𝑡

0

(
𝜑𝑁𝑢 (𝜏)

𝐿∞ +
𝜑𝑁𝑢𝑥 (𝜏)

𝐿∞) 𝑑𝜏) .

(62)

Hence, the following inequality is obtained for any 𝑁 ∈ Z+

and any 𝑡 ∈ [0, 𝑇]:
𝑢 (𝑡) 𝜑

𝑁

𝐿∞ +
𝑢𝑥 (𝑡) 𝜑𝑁

𝐿∞

≤ 𝐶
1
(
𝑢 (0) 𝜑

𝑁

𝐿∞ +
𝑢𝑥 (0) 𝜑𝑁

𝐿∞)

≤ 𝐶
1
(
𝑢 (0)max (1, 𝑥𝜃/𝛼)

𝐿∞

+
𝑢𝑥 (0)max (1, 𝑥𝜃/𝛼)

𝐿∞) .

(63)

Finally, taking the limit as 𝑁 goes to infinity in the above
inequality, we can find that for any 𝑡 ∈ [0, 𝑇],

(
𝑢 (𝑥, 𝑡) 𝑥

𝜃/𝛼 +
𝑢𝑥 (𝑥, 𝑡) 𝑥

𝜃/𝛼)

≤ 𝐶
1
(
𝑢 (0)max (1, 𝑥𝜃/𝛼)

𝐿∞

+
𝑢𝑥 (0)max (1, 𝑥𝜃/𝛼)

𝐿∞) ,

(64)

which completes the proof of Theorem 6.

5. Asymptotic Description

The following result is to give a detailed description on the
corresponding strong solution 𝑢(𝑥, 𝑡) in its lifespan with
𝑢
0
(𝑥) being compactly supported.

Theorem 7. Assume that the initial datum 0 ̸≡ 𝑢
0
(𝑥) ∈

𝐻𝑠 with 𝑠 > 5/2 is compactly supported in [𝑎, 𝑐], then the
corresponding solution 𝑢(𝑥, 𝑡) ∈ 𝐶([0, 𝑇);𝐻𝑠) to (6) has the
following property: for any 𝑡 ∈ (0, 𝑇),

𝑢 (𝑥, 𝑡) = 𝐿 (𝑡) 𝑒
−𝑥/𝛼 as 𝑥 > 𝑞 (𝑐, 𝑡) ,

𝑢 (𝑥, 𝑡) = 𝑙 (𝑡) 𝑒
𝑥/𝛼 as 𝑥 < 𝑞 (𝑎, 𝑡) ,

(65)

where 𝑞(𝑥, 𝑡) is defined by (24) and 𝑇 is its lifespan. Further-
more, 𝐿(𝑡) and 𝑙(𝑡) denote continuous nonvanishing functions,
with 𝐿(𝑡) > 0 and 𝑙(𝑡) < 0 for 𝑡 ∈ (0, 𝑇). Moreover, 𝐿(𝑡) is a
strictly increasing function, while 𝑙(𝑡) is strictly decreasing.

Remark 8. This is an interesting phenomenon for our model;
it implies that the strong solution does not have compact 𝑥-
support for any 𝑡 > 0 in its lifespan anymore, although the
corresponding 𝑢

0
(𝑥) is compactly supported. No matter that

the initial profile 𝑢
0
(𝑥) is (nomatter it is positive or negative),

for any 𝑡 > 0 in its lifespan, the nontrivial solution 𝑢(𝑥; 𝑡)
is always positive at infinity and negative at negative infinity.
Moreover, we found that the dissipative coefficient does not
affect this behavior.

Proof. First, since 𝑢
0
(𝑥) has a compact support, so does

𝑦
0
(𝑥) = (1 − 𝛼2𝜕2

𝑥
)𝑢
0
(𝑥). Equation (30) tells us that 𝑦 =

(1 − 𝛼2𝜕2
𝑥
)𝑢(𝑥, 𝑡) = ((1 − 𝛼2𝜕2

𝑥
)𝑢
0
(𝑞−1(𝑥, 𝑡)) exp(−𝜆𝑡))/

(𝜕
𝑥
𝑞−1((𝑥, 𝑡), 𝑡))2 is compactly supported in [𝑞(𝑎, 𝑡), 𝑞(𝑐, 𝑡)] in

its lifespan. Hence, the following functions are well defined

𝐸 (𝑡) = ∫
R

𝑒𝜉/𝛼𝑦 (𝜉, 𝑡) 𝑑𝜉, 𝐹 (𝑡) = ∫
R

𝑒−𝜉/𝛼𝑦 (𝜉, 𝑡) 𝑑𝜉,

(66)

with

𝐸 (0) = ∫
R

𝑒𝜉/𝛼𝑦
0
(𝜉) 𝑑𝜉

= ∫
R

𝑒𝜉/𝛼𝑢
0
(𝜉) 𝑑𝜉 − 𝛼2 ∫

R

𝑒𝜉/𝛼𝑢
0𝑥𝑥

(𝜉) 𝑑𝜉 = 0.

(67)

And 𝐹(0) = 0 by integration by parts.
Then, for 𝑥 > 𝑞(𝑐, 𝑡), we have

𝑢 (𝑥, 𝑡) =
1

2𝛼
𝑒−|𝑥|/𝛼 ∗ 𝑦 (𝑥, 𝑡)

=
1

2𝛼
𝑒−𝑥/𝛼 ∫

𝑞(𝑐,𝑡)

𝑞(𝑎,𝑡)

𝑒𝜉/𝛼𝑦 (𝜉, 𝑡) 𝑑𝜉 =
1

2𝛼
𝑒−𝑥/𝛼𝐸 (𝑡) ,

(68)

where (66) is used.
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Similarly, when 𝑥 < 𝑞(𝑎, 𝑡), we get

𝑢 (𝑥, 𝑡) =
1

2𝛼
𝑒−|𝑥|/𝛼 ∗ 𝑦 (𝑥, 𝑡)

=
1

2𝛼
𝑒𝑥/𝛼 ∫

𝑞(𝑐,𝑡)

𝑞(𝑎,𝑡)

𝑒−𝜉/𝛼𝑦 (𝜉, 𝑡) 𝑑𝜉 =
1

2𝛼
𝑒𝑥/𝛼𝐹 (𝑡) .

(69)

Because 𝑦(𝑥, 𝑡) has a compact support in 𝑥 in the interval
[𝑞(𝑎, 𝑡), 𝑞(𝑐, 𝑡)] for any 𝑡 ∈ [0, 𝑇], we get 𝑦(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) −

𝛼2𝑢
𝑥𝑥

(𝑥, 𝑡) = 0, for 𝑥 > 𝑞(𝑐, 𝑡) or 𝑥 < 𝑞(𝑎, 𝑡). Hence, as
consequences of (68) and (69), we have

𝑢 (𝑥, 𝑡) = − 𝛼𝑢
𝑥
(𝑥, 𝑡) = 𝛼2𝑢

𝑥𝑥
(𝑥, 𝑡)

=
1

2𝛼
𝑒−𝑥/𝛼𝐸 (𝑡) , as 𝑥 > 𝑞 (𝑐, 𝑡) ,

𝑢 (𝑥, 𝑡) = 𝛼𝑢
𝑥
(𝑥, 𝑡) = 𝛼2𝑢

𝑥𝑥
(𝑥, 𝑡)

=
1

2𝛼
𝑒𝑥/𝛼𝐹 (𝑡) , as 𝑥 < 𝑞 (𝑎, 𝑡) .

(70)

On the other hand,

𝑑𝐸 (𝑡)

𝑑𝑡
= ∫

R

𝑒𝜉/𝛼𝑦
𝑡
(𝜉, 𝑡) 𝑑𝑥. (71)

Substituting the identity (10) into 𝑑𝐸(𝑡)/𝑑𝑡, we obtain

𝑑𝐸 (𝑡)

𝑑𝑡
= −∫

R

𝑒𝜉/𝛼 [(𝑦𝑢)
𝑥
+

1

2
(𝑢2 − 𝛼2𝑢2

𝑥
)
𝑥
+ 𝑐
0
𝑦
𝑥
+ 𝜆𝑦] 𝑑𝜉

=
1

𝛼
∫
R

𝑒𝜉/𝛼𝑦𝑢 𝑑𝜉 +
1

2𝛼
∫
R

𝑒𝜉/𝛼 (𝑢2 − 𝛼2𝑢2
𝑥
) 𝑑𝜉

+
𝑐
0

𝛼
∫
R

𝑒𝜉/𝛼𝑦𝑑𝜉 + 𝛼2 ∫
R

𝑒𝜉/𝛼𝜆𝑢
𝑥𝑥

𝑑𝜉

− ∫
R

𝑒𝜉/𝛼𝜆𝑢 𝑑𝜉 =
3

2𝛼
∫
R

𝑒𝜉/𝛼𝑢2𝑑𝜉 +
𝛼

2
∫
R

𝑒𝜉/𝛼𝑢2
𝑥
𝑑𝜉

+ ∫
R

𝑒𝜉/𝛼𝑢𝑢
𝑥
𝑑𝜉 = ∫

R

𝑒𝜉/𝛼 (
1

𝛼
𝑢2 +

𝛼

2
𝑢2
𝑥
)𝑑𝜉 > 0,

(72)

where we used (70).Therefore, in the lifespan of the solution,
we have that 𝐸(𝑡) is an increasing function with 𝐸(0) = 0;
thus, it follows that 𝐸(𝑡) > 0 for 𝑡 ∈ (0, 𝑇]; that is,

𝐸 (𝑡) = ∫
𝑡

0

∫
R

𝑒𝜉/𝛼 (
1

𝛼
𝑢2 +

𝛼

2
𝑢2
𝑥
) (𝜉, 𝜏) 𝑑𝜉 𝑑𝜏 > 0. (73)

By similar argument, one can verify that the following
identity for 𝐹(𝑡) is true:

𝐹 (𝑡) = −∫
𝑡

0

∫
R

𝑒−𝜉/𝛼 (
1

𝛼
𝑢2 +

𝛼

2
𝑢2
𝑥
) (𝜉, 𝜏) 𝑑𝜉 𝑑𝜏 < 0. (74)

In order to finish the proof, it is sufficient to let 𝐿(𝑡) =
(1/2𝛼)𝐸(𝑡), and to let 𝑙(𝑡) = (1/2𝛼)𝐹(𝑡), respectively.
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The spatiotemporal dynamics of a diffusive ratio-dependent Holling-Tanner predator-prey model with Smith growth subject to
zero-flux boundary condition are investigated analytically and numerically. The asymptotic stability of the positive equilibrium
and the existence of Hopf bifurcation around the positive equilibrium are shown; the conditions of Turing instability are obtained.
And with the help of numerical simulations, it is found that the model exhibits complex pattern replication: stripes, spots-stripes
mixtures, and spots Turing patterns.

1. Introduction

The problem of pattern formation is, perhaps, the most
challenging inmodern ecology, biology, chemistry, andmany
other fields of science [1]. Patterns generated in abioti-
cally homogeneous environments are particularly interesting
because they require an explanation based on the individual
behavior of organisms. They are commonly called “emergent
patterns,” because they emerge from interactions in spatial
scales that are much larger than the characteristic scale of
individuals [2].

Turing [3] showed how the coupling of reaction and
diffusion can induce instability and pattern formation. Tur-
ing’s revolutionary idea was that the passive diffusion could
interact with chemical reaction in such a way that even if
the reaction by itself has no symmetry-breaking capabilities,
diffusion can destabilize the symmetry so that the system
with diffusion can have them. Segel and Jackson [4] first
used reaction-diffusion system to explain pattern formation
in ecological context based upon the seminal work by
Turing [3]. Since then, a lot of studies have been devoted to
spatiotemporal patterns which were produced by reaction-
diffusion predator-prey, models with either a prey-dependent
or a ratio-dependent predator functional response, for exam-
ple, [1, 2, 5–20] and references cited therein.

Recently, there is a growing explicit biological and physi-
ological evidence [21–23] that in many situations, especially,
when the predator has to search for food (and therefore has to
share or compete for food), a more suitable general predator-
prey theory should be based on the so-called ratio-dependent
function which can be roughly stated as that the per capital
predator growth rate should be a function of the ratio of prey
to predator abundance, and so would be the so-called preda-
tor functional responses [24].This is supported by numerous
fields and laboratory experiments and observations [25, 26].
In [24], the authors investigated the effect of time delays on
the stability of the model and discussed the local asymptotic
stability and the Hopf bifurcation. Liang and Pan [27] have
studied the local and global asymptotic stability of the
coexisting equilibrium point and obtained the conditions
for Poincare-Andronov-Hopf-bifurcating periodic solution.
M. Banerjee and S. Banerjee [28] have studied the local
asymptotic stability of the equilibriumpoint and obtained the
conditions for the occurrence of Turing-Hopf instability for
reaction-diffusion model. It is shown that prey and predator
populations exhibit spatiotemporal patterns resulting from
temporal oscillation of both the population and spatial
instability.

Besides, in [29], Smith has shown that the logistic
equation is not realistic for a food-limited population under
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the effects of environmental toxicants and established a new
growth function—Smith growth function. And it has been
proposed by several authors [29–34] for the dynamics of a
population where the growth limitations are based on the
proportion of available resources not utilized. However, pat-
tern formation in the case of Holling-Tanner type predator-
prey models with ratio-dependent functional response and
Smith growth still remains an interesting area of research.

In this present work, we will focus on the ratio-dependent
Holling-Tanner model with Smith growth for predator-prey
interaction where randommovement of both species is taken
into account. The rest of the paper is organized as follows. In
Section 2, we establish the ratio-dependent Holling-Tanner
predator-prey model with Smith growth and study the local
asymptotic stability of the positive equilibrium, existence
of Hopf bifurcation around the positive equilibrium, and
the conditions for the occurrence of Turing instability. In
Section 3, we present and discuss the results of pattern
formation via numerical simulation, which is followed by the
last section, that is, conclusions and discussions.

2. The Model and the Linear Stability Analysis

2.1. The Model. In this paper, we rigorously consider the
radio-dependent Holling-Tanner predator-prey model with
Smith growth taking the form:

𝑑𝑢

𝑑𝑡
=
𝑟𝑢 (𝐾 − 𝑢)

𝐾 + 𝑐𝑢
−

𝑚𝑢V

𝑢 + 𝑎V
,

𝑑V

𝑑𝑡
= 𝑠V(1 −

ℎV

𝑢
) ,

(1)

where 𝑢(𝑡) and V(𝑡) stand for prey and predator population
(density) at any instant of time 𝑡. 𝑟, 𝐾, 𝑚, 𝑎, 𝑠, ℎ are positive
constants that stand for prey intrinsic growth rate, carrying
capacity, capturing rate, half capturing saturation constant,
predator intrinsic growth rate, conversion rate of prey into
predators biomass, respectively. And 𝑟/𝑐 is the replacement
of mass in the population at𝐾.Themodel with Smith growth
takes into account both environmental and food chain effects
of toxicant stress.

From the standpoint of biology, we are interested only in
the dynamics of model (1) in the closed first quadrant R2

+
=

{(𝑢, V) : 𝑢 ≥ 0, V ≥ 0}. Thus, we consider only the biologically
meaningful initial conditions

𝑢 (0) > 0, V (0) > 0, (2)

which are continuous functions due to their biological sense.
Straightforward computation shows that model (1) is

continuous and Lipschitzian in R2
+
if we redefine

𝑑𝑢

𝑑𝑡
=
𝑑V

𝑑𝑡
= 0, if (𝑢, V) = (0, 0) . (3)

Hence, the solution of model (1) with positive initial condi-
tions exists and is unique.

Also considering the spatial dispersal and environmental
heterogeneity, in this paper we study the diffusive Holling-
Tanner model obtained from the temporal model (1) by
incorporating diffusion terms as follows:

𝜕𝑢

𝑑𝑡
= 𝑑
1
Δ𝑢 + 𝑟𝑢

𝐾 − 𝑢

𝐾 + 𝑐𝑢
−

𝑚𝑢V

𝑢 + 𝑎V
,

𝜕V

𝑑𝑡
= 𝑑
2
ΔV + 𝑠V(1 −

ℎV

𝑢
) ,

(4)

where the nonnegative constants 𝑑
1
and 𝑑

2
are the diffusion

coefficients of 𝑢 and V, respectively. Δ = (𝜕2/𝜕𝑥2) + (𝜕2/𝜕𝑦2),
the usual Laplacian operator in two-dimensional space, is
used to describe the Brownian random motion.

Model (4) is to be analyzed under the following nonzero
initial conditions:

𝑢 (𝑥, 𝑦, 0) > 0, V (𝑥, 𝑦, 0) > 0, (𝑥, 𝑦) ∈ Ω, (5)

and zero-flux boundary conditions:

𝜕𝑢

𝜕]
=
𝜕V

𝜕]
= 0, (𝑥, 𝑦) ∈ 𝜕Ω, 𝑡 > 0, (6)

whereΩ ⊂ R2 is a bounded domain with a smooth boundary
𝜕Ω and ] is the outward unit normal vector on 𝜕Ω. The
zero-flux boundary condition indicates that predator-prey
system is self-contained with zero population flux across the
boundary.

2.2. The Stability of the Nonspatial Model (1). In this sub-
section, we restrict ourselves to the stability analysis of the
nonspatial model (1). It is easy to verify that model (1) has
a trivial equilibrium point 𝐸

0
= (𝐾, 0). Simple computation

shows that if𝑚 < 𝑟(𝑎+ℎ), model (1) possess a unique positive
equilibrium, denoted by 𝐸∗ = (𝑢∗, V∗), where

𝑢∗ =
𝐾 (𝑎𝑟 + ℎ𝑟 − 𝑚)

𝑎𝑟 + 𝑐𝑚 + ℎ𝑟
, V

∗ =
1

ℎ
𝑢∗. (7)

The Jacobian matrix at 𝐸
0
= (𝐾, 0) is

𝐽
0
= (

−
𝑟

1 + 𝑐
−𝑚

0 𝑠

) . (8)

Clearly, 𝐸
0
= (𝐾, 0) is a saddle point.

In the following, we will discuss the stability of the
positive equilibrium 𝐸∗ of model (1). The Jacobian matrix at
𝐸∗ is given by

𝐽∗ = (

𝑎
1
𝑎
2

𝑠

ℎ
−𝑠

) , (9)

where

𝑎
1
=
𝑚 (𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟) − 𝑟2(𝑎 + ℎ)2

𝑟 (1 + 𝑐) (𝑎 + ℎ)2
,

𝑎
2
= −

𝑚ℎ2

(𝑎 + ℎ)2
.

(10)
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Then we can get

det (𝐽∗)

= 𝑠 (
𝑎
2

ℎ
− 𝑎
1
)

=
𝑠 (𝑎𝑟 + ℎ𝑟 − 𝑚) (𝑎𝑟 + ℎ𝑟 + 𝑐𝑚)

𝑟 (1 + 𝑐) (𝑎 + ℎ)2
> 0,

tr (𝐽∗)

= 𝑎
1
− 𝑠

=
𝑚 (𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟) − 𝑟(𝑎 + ℎ)2 (𝑟 + 𝑠 (1 + 𝑐))

𝑟 (1 + 𝑐) (𝑎 + ℎ)2
.

(11)

Theorem 1. (i) The positive equilibrium 𝐸∗ = (𝑢∗, V∗) is
locally asymptotically stable if and only if

𝑚(𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟) < 𝑟(𝑎 + ℎ)
2
(𝑟 + 𝑠 (1 + 𝑐)) . (12)

(ii) The positive equilibrium 𝐸∗ = (𝑢∗, V∗) is unstable if
and only if

𝑚(𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟) > 𝑟(𝑎 + ℎ)
2
(𝑟 + 𝑠 (1 + 𝑐)) . (13)

(iii)Themodel enters into a Hopf-bifurcation around 𝐸∗ =
(𝑢∗, V∗) at 𝑠 = 𝑠∗, where 𝑠∗ satisfies the equality

𝑠∗ =
𝑚 (𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟) − 𝑟2(𝑎 + ℎ)2

𝑟 (1 + 𝑐) (𝑎 + ℎ)2
. (14)

Proof. (i) If 𝑚(𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟) < 𝑟(𝑎 + ℎ)2(𝑟 + 𝑠(1 +
𝑐)), then tr(𝐽∗) < 0. Thus, the equilibrium point 𝐸∗ is locally
asymptotically stable, similar to the proof of (ii).

(iii) A Hopf bifurcation occurs if and only if there exists a
𝑠 = 𝑠∗ such that

tr (𝐽∗) = 𝑎
1
− 𝑠∗ = 0,

𝑑

𝑑𝑠
Re (𝜆 (𝑠))

𝑠=𝑠
∗ ̸= 0, (15)

where 𝜆 is a root of the characteristic equation of 𝐽∗:

𝜆2 − tr (𝐽∗) 𝜆 + det (𝐽∗) = 0. (16)

The condition 𝑠∗ = 𝑎
1
gives tr(𝐽∗) = 0. Thus for 𝑠 = 𝑠∗,

both eigenvalues will be purely imaginary and there are no
other eigenvalues with negative real part. Now we verify the
transversality condition (𝑑/𝑑𝑠)Re(𝜆(𝑠))|

𝑠=𝑠
∗ ̸= 0.

Substituting 𝜆 = 𝛼 + 𝑖𝛽 into the equation 𝜆2 − tr(𝐽∗)𝜆 +
det(𝐽∗) = 0 and separating real and imaginary parts we
obtain

𝛼2 − 𝛽2 − 𝛼 tr (𝐽∗) + det (𝐽∗) = 0,

2𝛼𝛽 − 𝛽 tr (𝐽∗) = 0.
(17)

Differentiating (17) both sides with respect to 𝑠, we get

𝜑
𝑑𝛼

𝑑𝑠
− 2𝛽

𝑑𝛽

𝑑𝑠
= 𝛾,

2𝛽
𝑑𝛼

𝑑𝑠
+ 𝜑

𝑑𝛽

𝑑𝑠
= 𝜙,

(18)
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Figure 1: Phase portraits of model (1). The parameters are taken as
𝑟 = 1, 𝑚 = 1, 𝑎 = 0.4, 𝐾 = 4, ℎ = 0.7, 𝑐 = 0.8, 𝑠 = 0.55. 𝐸

0
= (𝐾, 0)

is a saddle point. 𝐸∗ = (0.21053, 0.30075) is locally asymptotically
stable. The dashed curve is the 𝑢-nullcline, and the dotted vertical
line is the V-nullcline.

where 𝜑 = 2𝛼 − tr(𝐽∗), 𝜙 = 𝛼(𝑑(tr(𝐽∗))/𝑑𝑠) − (𝑑(det
(𝐽∗))/𝑑𝑠), 𝛾 = 𝛽(𝑑(det(𝐽∗))/𝑑𝑠). Thus, we obtain

𝑑

𝑑𝑠
Re (𝜆 (𝑠))

𝑠=𝑠∗
=

𝛾𝜑 + 2𝛽𝜙

𝜑2 + 4𝛽2

𝑠=𝑠∗
̸= 0, (19)

which verify the transversality condition. Hence, the system
undergoes a Hopf bifurcation at 𝐸∗ as 𝑠 passes through the
value 𝑠∗. This ends the proof.

In Figure 1, we show the phase portraits of (1) with 𝑟 = 1,
𝑚 = 1, 𝑎 = 0.4, 𝐾 = 4, ℎ = 0.7, 𝑐 = 0.8, and 𝑠 = 0.55.
The horizontal axis is the prey population 𝑢, and the vertical
axis is the predator population V. The dashed curve is the 𝑢-
nullcline, and the dotted vertical line is the V-nullcline. It is
easy to see that the equilibrium 𝐸

0
= (4, 0) is a saddle and

𝐸∗ = (0.21053, 0.30075) is locally asymptotically stable.
Figure 2 illustrates a Hopf-bifurcation situation of the

model around 𝐸∗ = (0.21053, 0.30075) for 𝑠 = 𝑠∗ =
0.4912764003. In this case, limit cycle arising through Hopf
bifurcation is a stable limit cycle which attracts all trajectories
starting from a point in the interior of first quadrant.

2.3. The Stability of the Spatial Model (4). In this subsection,
we will focus on the effect of diffusion on the model system
about the positive equilibrium.

Now, we study the nonlinear evolution of a perturbation

𝑈 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) − 𝑢
∗, 𝑉 (𝑥, 𝑡) = V (𝑥, 𝑡) − V

∗ (20)

around 𝐸∗ = (𝑢∗, V∗). The corresponding linearized model
(4) then takes the form

𝜕𝑈

𝑑𝑡
= 𝑑
1
Δ𝑈 + 𝑎

1
𝑈 + 𝑎
2
𝑉,

𝜕𝑉

𝑑𝑡
= 𝑑
2
Δ𝑉 +

𝑠

ℎ
𝑈 − 𝑠𝑉,

(21)

where 𝑎
1
, 𝑎
2
are defined the same as (10).
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Figure 2: Phase portraits of model (1). The parameters are taken
as 𝑟 = 1, 𝑚 = 1, 𝑎 = 0.4, 𝐾 = 4, ℎ = 0.7, 𝑐 = 0.8, 𝑠 =
0.4912764003. Model (1) enters into Hopf bifurcation around 𝐸∗ =
(0.21053, 0.30075), and there is a limit cycle.The dashed curve is the
𝑢-nullcline, and the dotted vertical line is the V-nullcline.

We use [⋅, ⋅] to denote a column vector, and let

w (𝑥, 𝑡) = [𝑈 (𝑥, 𝑡) , 𝑉 (𝑥, 𝑡)] . (22)

Let q = (𝑞
1
, 𝑞
2
) ∈ Ω and

𝑒q (𝑥) =
2

∏
𝑖=1

cos (𝑞
𝑖
𝑥
𝑖
) . (23)

Then {𝑒q(𝑥)}q∈Ω forms a basis of the space of functions in
R2 that satisfy zero-flux boundary conditions. We look for a
normalmode corresponding tomodel (21) as following form:

w (𝑥, 𝑡) = rq exp (𝜆q𝑡) 𝑒q (𝑥) , (24)

where rq is a vector depending on q. Plugging (24) intomodel
(21) yields

𝜆qrq = (

−𝑑
1
𝑞2 + 𝑎

1
𝑎
2

𝑠

ℎ
−𝑑
2
𝑞2 − 𝑠

) rq, (25)

where 𝑞2 = 𝑞2
1
+𝑞2
2
. A nontrivial normalmode can be obtained

by setting

det(
𝜆q + 𝑑1𝑞

2 − 𝑎
1

−𝑎
2

−
𝑠

ℎ
𝜆q + 𝑑2𝑞

2 + 𝑠

) = 0. (26)

This leads to the following dispersion formula for 𝜆q:

𝜆2q + 𝜌1𝜆q + 𝜌2 = 0, (27)

where

𝜌
1
= (𝑑
1
+ 𝑑
2
) 𝑞2 − 𝑎

1
+ 𝑠,

𝜌
2
= 𝑑
1
𝑑
2
𝑞4 + (𝑑

1
𝑠 − 𝑑
2
𝑎
1
) 𝑞2 + 𝑠 (

𝑎
2

ℎ
− 𝑎
1
) .

(28)

Mathematically speaking, a positive equilibrium 𝐸∗ of
model (4) is Turing unstable, which means that it is an
asymptotically stable steady-state solution of the model (1)
without diffusion but is unstable with respect to the solutions
of the model (4) with diffusion.

Therefore, the Turing instability sets in when at least one
of the following conditions is violated:

𝜌
1
< 0, 𝜌

2
> 0. (29)

But it is evident that 𝜌
1
< 0 is not violated if 𝑠 − 𝑎

1
< 0. Hence

only the violation of condition 𝜌
2
> 0 gives rise to diffusion

instability. As a consequence, a necessary condition is

𝑑
1
𝑠 < 𝑑
2
𝑎
1
. (30)

Otherwise 𝜌
2
> 0 for all 𝑞 > 0. For instability we must have

𝜌
2
< 0 for some 𝑞 > 0, and we notice that 𝜌

2
achieves its

minimum:

min
𝑝∈R+

𝜌
2
= −

(𝑑
1
𝑠 − 𝑑
2
𝑎
1
)
2

4𝑑
1
𝑑
2

+ 𝑠 (
𝑎
2

ℎ
− 𝑎
1
) , (31)

at the critical value 𝑝2
𝑐
> 0 when

𝑝2
𝑐
=
𝑑
2
𝑎
1
− 𝑑
1
𝑠

2𝑑
1
𝑑
2

> 0. (32)

Summarizing the previous calculation, we conclude the
following theorem.

Theorem 2. Assume that

(A1) 𝑚(𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟) < 𝑟(𝑎 + ℎ)2(𝑟 + 𝑠 + 𝑐𝑠),
(A2) 𝑟(𝑎+ ℎ)2(𝑑

1
𝑠(1+ 𝑐)+𝑑

2
𝑟)

+ 2√𝑑
1
𝑑
2
𝑟𝑠(1+𝑐)(𝑎 + ℎ)2(𝑎𝑟+ℎ𝑟 − 𝑚)(𝑎𝑟+ℎ𝑟+𝑐𝑚)

< 𝑑
2
𝑚(𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟).

Then the positive equilibrium 𝐸∗ of model (4) is Turing
unstable.

From Theorem 2, we can know that there is Turing
instability in model (4) if conditions (A1) and (A2) hold. In
this situation, the solutions to model (4) may be unstable and
Turing patterns can emerge in the model.

3. Turing Pattern Formation

In this section, we perform extensive numerical simulations
of the spatially extendedmodel (4) in two-dimensional space,
and the qualitative results are shown here. All our numerical
simulations employ the zero-flux boundary conditions with
a system size of 100 × 100. Other parameters are set as

𝑟 = 1, 𝑚 = 1, 𝑎 = 0.4, 𝐾 = 4,

ℎ = 0.7, 𝑐 = 0.8, 𝑑
1
= 0.025, 𝑑

2
= 1.

(33)

The numerical integration of model (4) is performed by
using a finite difference approximation for the spatial deriva-
tives and an explicit Euler method for the time integration
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Figure 3: Stripes pattern formation for model (4) by taking 𝑠 = 1. Other parameters are fixed as (33). Times: (a) 0; (b) 50; (c) 250; (d) 2500.

[35] with a time step size of 1/100. The initial condition
is always a small amplitude random perturbation around
the positive constant steady-state solution 𝐸∗ = (𝑢∗, V∗).
After the initial period during which the perturbation spread,
the model either goes to a time-dependent state or to an
essentially steady-state solution (time independent).

We use the standard five-point approximation [36] for the
2D Laplacian with the zero-flux boundary conditions. More
precisely, the concentrations (𝑢𝑛+1

𝑖,𝑗
, V𝑛+1
𝑖,𝑗

) at the moment (𝑛 +
1)𝜏 at the mesh position (𝑥

𝑖
, 𝑦
𝑗
) are given by

𝑢𝑛+1
𝑖,𝑗

= 𝑢𝑛
𝑖,𝑗
+ 𝜏𝑑
1
Δ
𝑒
𝑢𝑛
𝑖,𝑗
+ 𝜏𝑓 (𝑢𝑛

𝑖,𝑗
, V𝑛
𝑖,𝑗
) ,

V
𝑛+1

𝑖,𝑗
= V
𝑛

𝑖,𝑗
+ 𝜏𝑑
2
Δ
𝑒
V
𝑛

𝑖,𝑗
+ 𝜏𝑔 (𝑢𝑛

𝑖,𝑗
, V𝑛
𝑖,𝑗
) ,

(34)

with the Laplacian defined by

Δ
𝑒
𝑢𝑛
𝑖,𝑗
=
𝑢𝑛
𝑖+1,𝑗

+ 𝑢𝑛
𝑖−1,𝑗

+ 𝑢𝑛
𝑖,𝑗+1

+ 𝑢𝑛
𝑖,𝑗−1

− 4𝑢𝑛
𝑖,𝑗

𝑒2
, (35)

where 𝑓(𝑢, V) = (𝑟𝑢(𝐾 − 𝑢)/(𝐾 + 𝑐𝑢)) − (𝑚𝑢V/(𝑢 + 𝑎V)),
𝑔(𝑢, V) = 𝑠V(1 − (ℎV/𝑢)), and the space step size 𝑒 = 1/3.

In the numerical simulations, different types of dynamics
are observed and it is found that the distributions of predator
and prey are always of the same type. Consequently, we can
restrict our analysis of pattern formation to one distribution.
In this section, we show the distribution of prey 𝑢, for
instance. We have taken some snapshots with red (blue)
corresponding to the high (low) value of prey 𝑢.

Now, we show the Turing patterns for the different values
of the control parameter 𝑠. Via numerical simulations, one
can see that the model dynamics exhibits spatiotemporal
complexity of pattern formation, including stripes, stripes-
spots mixtures, and spots Turing patterns.

In Figure 3, with 𝑠 = 1, starting with a homogeneous state
𝐸∗ = (0.21, 0.3) (cf. Figure 3(a)), the random perturbations
lead to the formation to stripes spots (cf. Figure 3(c)), and the
latter random perturbations make these spots decay, ending
with the time-independent stripes pattern (cf. Figure 3(d)).
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Figure 4: Stripes-spots mixtures pattern formation for model (4) by taking 𝑠 = 1.375. Other parameters are fixed as (33). Times: (a) 0; (b)
50; (c) 250; (d) 2500.

In Figure 4, with 𝑠 = 1.375, we show the stripes-spots
mixtures pattern for model (4).

Figure 5 shows the time process of spots pattern forma-
tion of prey 𝑢 for 𝑠 = 2.5. In this case, the pattern takes a long
time to settle down, starting with a homogeneous state 𝐸∗ =
(0.21, 0.3) (cf. Figure 5(a)), and the random perturbations
lead to the formation of stripes and spots (cf. Figure 5(b)),
endingwith spots only (cf. Figure 5(d))—the prey 𝑢 is isolated
zones with high population density, and the remainder region
is of low density.

From Figure 3 to Figure 5, we can see that, on increasing
the control parameter 𝑠 from 1 to 2.5, the pattern sequence
“stripe → stripes-spots mixtures → spots” can be observed.

4. Conclusions and Remarks

In summary, in this paper, we have investigated the spa-
tiotemporal dynamics of a diffusive predator-prey model

where the interaction between prey and predator follows
Holling-Tanner formulation with ratio-dependent functional
response and Smith growth. The value of this study is
threefold. First, it presents the conditions for the stability
of the equilibrium and the existence of Hopf bifurcation for
the nonspatial model. Second, it rigorously proves Turing
instability by linear stability analysis for the spatial model.
Third, it illustrates the Turing pattern formation via numeri-
cal simulations, which shows that the spatial model dynamics
exhibits complex pattern replication.

By a series of numerical simulations, we find that the
spatial model (4) has rich Turing pattern replications, such
as stripes, stripes-spots mixtures, and spots patterns. In the
viewpoint of population ecology, in the case of stripe pattern
(cf. Figure 3), the prey 𝑢 is the isolated “stripes-like region”
with high density, and the remainder stripes-like region is of
low density. And in the case of spots pattern (cf. Figure 5), the
prey 𝑢 is the isolated “cycle region” with high density, and the
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Figure 5: Spots pattern formation for model (4) by taking 𝑠 = 2.5. Other parameters are fixed as (33). Times: (a) 0; (b) 50; (c) 250; (d) 2500.

remainder region is of low density, which is larger than the
“spots” region.
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We investigated the dynamics of a diffusive ratio-dependent Holling-Tanner predator-prey model with Smith growth subject to
zero-flux boundary condition. Some qualitative properties, including the dissipation, persistence, and local and global stability of
positive constant solution, are discussed. Moreover, we give the refined a priori estimates of positive solutions and derive some
results for the existence and nonexistence of nonconstant positive steady state.

1. Introduction

In order to precisely describe the real ecological interactions
between species such as mite and spider mite, lynx and hare,
sparrow and sparrow hawk, and some other species [1, 2],
RobertMay developed a prey-predatormodel ofHolling-type
functional response [3, 4] to describe the predation rate and
Leslie’s formulation [5, 6] to describe predator dynamics.This
model is known as Holling-Tanner model for prey-predator
interaction, which takes the form of

𝑑𝑁

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) −

𝑚𝑁𝑃

𝑎 + 𝑁
,

𝑑𝑃

𝑑𝑡
= 𝑠𝑃(1 −

ℎ𝑃

𝑁
) ,

(1)

where 𝑁(𝑡) and 𝑃(𝑡) stand for prey and predator population
(density) at any instant of time 𝑡. 𝑟, 𝐾, 𝑚, 𝑎, 𝑠, ℎ are positive
constants that stand for prey intrinsic growth rate, carrying
capacity, capturing rate, half capturing saturation constant,
predator intrinsic growth rate, and conversion rate of prey
into predators biomass, respectively.

The dynamics of model (1) has been considered in many
articles. For example, Hsu and Huang [7] obtained some
results on the global stability of the positive equilibrium,
more precisely, under the conditions which local stability of

the positive equilibrium implies its global stability. Gasull and
coworkers [8] investigated the conditions of the asymptotic
stability of the positive equilibrium which does not imply
global stability. Sáez and González-Olivares [9] showed the
asymptotic stability of a positive equilibrium and gave a
qualitative description of the bifurcation curve.

Recently, there is a growing explicit biological and phys-
iological evidence [10–12] that in many situations, especially,
when the predator has to search for food (and therefore
has to share or compete for food), a more suitable general
predator-prey theory should be based on the so-called radio-
dependent theory which can be roughly stated as that the
per capital predator growth rate should be a function of the
ratio of prey to predator abundance, and so would be the so-
called predator functional responses [13]. This is supported
by numerous fields and laboratory experiments and obser-
vations [14, 15]. Generally, a ratio-dependent Holling-Tanner
predator-prey model takes the form of

𝑑𝑁

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) −

𝑚𝑁𝑃

𝑁 + 𝑎𝑃
,

𝑑𝑃

𝑑𝑡
= 𝑠𝑃(1 −

ℎ𝑃

𝑁
) .

(2)

For model (2), in [13], the authors investigated the effect
of time delays on the stability of the model and discussed
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the local asymptotic stability and the Hopf-bifurcation. Liang
and Pan [16] have studied the local and global asymptotic
stability of the coexisting equilibrium point and obtained
the conditions for the Poincaré-Andronov-Hopf-bifurcating
periodic solution. M. Banerjee and S. Banerjee [17] have
studied the local asymptotic stability of the equilibrium point
and obtained the conditions for the occurrence of the Turing-
Hopf instability for PDE model. It is shown that prey and
predator populations exhibit spatiotemporal chaos resulting
from temporal oscillation of both the population and spatial
instability.

On the other hand, an implicit assumption contained in
the logistic equation

𝑑𝑁

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) (3)

is that the average growth rate 𝑁(𝑡)/𝑁 is a linear function
of the density𝑁(𝑡). It has been shown that this assumption is
not realistic for a food-limited population under the effects of
environmental toxicants.The following alternativemodel has
been proposed by several authors [18–23] for the dynamics of
a populationwhere the growth limitations are based upon the
proportion of available resources not utilized:

𝑑𝑁

𝑑𝑡
= 𝑟𝑁

𝐾 − 𝑁

𝐾 + 𝑐𝑁
, (4)

where 𝑟/𝑐 is the replacement of mass in the population at 𝐾.
Equation (4) takes into account both environmental and food
chain effects of toxicant stress.

Based on the above discussions, in this paper, we rigor-
ously consider the radio-dependent Holling-Tanner model
with Smith growth that takes the form of

𝑑𝑁

𝑑𝑡
= 𝑟𝑁

𝐾 − 𝑁

𝐾 + 𝑐𝑁
−

𝑚𝑁𝑃

𝑎𝑃 + 𝑁
,

𝑑𝑃

𝑑𝑡
= 𝑠𝑃(1 −

ℎ𝑃

𝑁
) .

(5)

Also considering the spatial dispersal and environmental
heterogeneity, in this paper, we study the following general-
ized reaction-diffusion system for model (5):

𝜕𝑁

𝑑𝑡
= 𝑟𝑁

𝐾 − 𝑁

𝐾 + 𝑐𝑁
−

𝑚𝑁𝑃

𝑎𝑃 + 𝑁
+ 𝑑
1
Δ𝑁, 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑃

𝑑𝑡
= 𝑠𝑃(1 −

ℎ𝑃

𝑁
) + 𝑑
2
Δ𝑃, 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑁

𝜕]
=

𝜕𝑃

𝜕]
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

(6)

where Ω ⊂ R𝑛 (𝑛 ≥ 1) is a bounded domain with a
smooth boundary 𝜕Ω and ] is the outward unit normal
vector on 𝜕Ω. The nonnegative constants 𝑑

1
and 𝑑

2
are the

diffusion coefficients of 𝑁 and 𝑃, respectively. The zero-flux
boundary condition indicates that predator-prey system is
self-containedwith zero population flux across the boundary.
From the standpoint of biology, we are interested only in
the dynamics of model (6) in the closed first quadrant

R2
+

= {(𝑁, 𝑃) : 𝑁 ≥ 0, 𝑃 ≥ 0}. Thus, we consider only the
biologically meaningful initial conditions

𝑁(𝑥, 0) = 𝑁
0
(𝑥) > 0, 𝑃 (𝑥, 0) = 𝑃

0
(𝑥) > 0, 𝑥 ∈ Ω,

(7)

which are continuous functions due to its biological sense.
Straightforward computation shows that model (6) are con-
tinuous and Lipschizian in R2

+
if we redefine that when

𝜕𝑁

𝜕𝑡
=

𝜕𝑃

𝜕𝑡
= 0, if (𝑁, 𝑃) = (0, 0) . (8)

Hence, the solution of model (6) with positive initial condi-
tions exists and is unique.

The stationary problem of model (6), which may display
the dynamical behavior of solutions tomodel (6) as time goes
to infinity, satisfies the following elliptic system:

−𝑑
1
Δ𝑁 = 𝑟𝑁

𝐾 − 𝑁

𝐾 + 𝑐𝑁
−

𝑚𝑁𝑃

𝑁 + 𝑎𝑃
, 𝑥 ∈ Ω, 𝑡 > 0,

−𝑑
2
Δ𝑃 = 𝑠𝑃(1 −

ℎ𝑃

𝑁
) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑁

𝜕]
=

𝜕𝑃

𝜕]
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑁 (𝑥, 0) = 𝑁
0
(𝑥) > 0, 𝑃 (𝑥, 0) = 𝑃

0
(𝑥) > 0, 𝑥 ∈ Ω.

(9)

Simple computation shows that if 𝑚 < 𝑟(𝑎 + ℎ), then
model (6) and (9) possess a unique positive constant solution,
denoted by 𝐸∗ = (𝑁∗, 𝑃∗), where

𝑁∗ =
𝐾 (𝑎𝑟 + ℎ𝑟 − 𝑚)

𝑎𝑟 + 𝑐𝑚 + ℎ𝑟
, 𝑃∗ =

1

ℎ
𝑁∗. (10)

In addition, (𝐾, 0) is the second nonnegative constant steady
state of model (6) and (9).

The rest of the paper is organized as follows. In Section 2,
we investigate the lager time behavior of model (6), including
the dissipation, persistence property, and local and global
stability of positive constant solution𝐸∗. In Section 3, we first
give a priori upper and lower bounds for positive solutions of
model (9), and then we deal with existence and nonexistence
of nonconstant positive solutions of model (9), which imply
some certain conditions under which the pattern happens or
not.

2. Large Time Behavior of
Solution to Model (6)

In this section, the dissipation and persistence properties are
studied for solution of model (6). Moreover, the local and
global asymptotic stability of positive constant solution 𝐸∗ =
(𝑁∗, 𝑃∗) are investigated.
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2.1. The Properties of Dissipation and
Persistence of Solution to Model (6)

Theorem 1. All the solutions of model (6) are nonnegative and
defined for all 𝑡 > 0. Furthermore, the nonnegative solution
(𝑁, 𝑃) of model (6) satisfies

lim sup
𝑡→∞

max
Ω

𝑁(⋅, 𝑡) ≤ 𝐾, lim sup
𝑡→∞

max
Ω

𝑃 (⋅, 𝑡) ≤
𝐾

ℎ
.

(11)

Proof. The nonnegativity of the solution of model (6) is clear
since the initial value is nonnegative. We only consider the
latter of the theorem.

Note that 𝑁 satisfies
𝜕𝑁

𝜕𝑡
− 𝑑
1
Δ𝑁 ≤

𝑟𝑁 (𝐾 − 𝑁)

𝐾 + 𝑐𝑁
, 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑁

𝜕]
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑁 (𝑥, 0) = 𝑁
0
(𝑥) , 𝑥 ∈ Ω.

(12)

Let 𝑧(𝑡) be a solution of the ordinary differential equation:

̇𝑧 (𝑡) =
𝑟𝑁 (𝐾 − 𝑁)

𝐾 + 𝑐𝑁
, 𝑥 ∈ Ω, 𝑡 > 0,

𝑧 (0) = max
Ω

𝑁(𝑥, 0) > 0.
(13)

Then, lim
𝑡→∞

𝑧(𝑡) = 𝐾. From the comparison principle, one
can get 𝑁(𝑥, 𝑡) ≤ 𝑧(𝑡); hence,

lim sup
𝑡→∞

max
Ω

𝑁(𝑥, 𝑡) ≤ 𝐾. (14)

As a result, for any 𝜀 > 0, there exists 𝑡
0

> 0, such that
𝑁(𝑥, 𝑡) ≤ 𝐾 + 𝜀 for all 𝑥 ∈ Ω and 𝑡 ≥ 𝑡

0
. Hence, 𝑃(𝑥, 𝑡) is a

lower solution

𝜕𝑧

𝜕𝑡
− 𝑑
2
Δ𝑧 = 𝑠𝑧 (1 −

ℎ𝑤

𝐾 + 𝜀
) , 𝑥 ∈ Ω, 𝑡 > 𝑡

0
,

𝜕𝑧

𝜕]
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 𝑡

0
,

𝑧 (𝑥, 𝑡
0
) = 𝑃 (𝑥, 𝑡

0
) .

(15)

Let 𝑃(𝑡) be the unique positive solution of problem

𝑤 (𝑡) = 𝑠𝑤(1 −
ℎ𝑤

𝐾 + 𝜀
) , 𝑡 > 𝑡

0
,

𝑤 (𝑡
0
) = max
Ω

𝑃 (𝑥, 𝑡
0
) .

(16)

Then,𝑃(𝑡) is an upper solution of (15). As lim
𝑡→∞

𝑃(𝑡) = (𝐾+
𝜀)/ℎ, we get from the comparison principle that

lim sup
𝑡→∞

max
Ω

𝑃 (𝑥, 𝑡) ≤
𝐾 + 𝜀

ℎ
, (17)

which implies the second assertion by the arbitrariness of 𝜀 >
0. This ends the proof.

Definition 2 (see [24]). The spatial model (6) is said to have
the persistence property if for any nonnegative initial data
(𝑁
0
(𝑥), 𝑃
0
(𝑥)), there exists a positive constant 𝜀 = 𝜀(𝑁

0
, 𝑃
0
),

such that the corresponding solution (𝑁, 𝑃) of model (6)
satisfies
lim inf
𝑡→∞

min
Ω

𝑁(𝑥, 𝑡) ≥ 𝜀, lim inf
𝑡→∞

min
Ω

𝑃 (𝑥, 𝑡) ≥ 𝜀. (18)

Theorem3. If𝑚(1+𝑐) < 𝑎𝑟, thenmodel (6) has the persistence
property.

Proof. Let 𝑁(𝑥, 𝑡) be an upper solution of the following
problem:

𝜕𝑧

𝜕𝑡
− 𝑑
1
Δ𝑧 = 𝑧(

𝑟

1 + 𝑐
−

𝑚

𝑎
−

𝑟𝑧

𝐾 (1 + 𝑐)
) , 𝑥 ∈ Ω, 𝑡 > 𝑇,

𝜕𝑧

𝜕]
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 𝑇,

𝑧 (𝑥, 𝑇) = 𝑁
0
(𝑥, 𝑇) ≥ 0, 𝑥 ∈ Ω.

(19)

Let 𝑁(𝑡) be the unique positive solution to the following
problem:

𝑑𝑤

𝑑𝑡
= 𝑤(

𝑟

1 + 𝑐
−

𝑚

𝑎
−

𝑟𝑤

𝐾 (1 + 𝑐)
) , 𝑡 > 𝑇,

𝑤 (𝑇) = max
Ω

𝑁
0
(𝑥, 𝑇) ≥ 0.

(20)

Due to𝑚(1+𝑐) < 𝑎𝑟, we have that lim
𝑡→∞

𝑤(𝑡) = 𝐾(𝑎𝑟−
𝑚(1 + 𝑐))/𝑎𝑟. By comparison, it follows that

lim inf
𝑡→∞

min
Ω

𝑁(𝑥, 𝑡) ≥
𝐾 (𝑎𝑟 − 𝑚 (1 + 𝑐))

𝑎𝑟
≜ 𝜂. (21)

Hence, 𝑁(𝑥, 𝑡) > 𝜂 − 𝜀 for 𝑡 > 𝑇 and 𝑥 ∈ Ω.
Similarly, by the second equation of model (6), we have

that 𝑃(𝑥, 𝑡) is an upper solution of problem

𝜕𝑧

𝜕𝑡
− 𝑑
2
Δ𝑧 = 𝑠𝑧 (1 −

ℎ𝑧

𝜂 − 𝜀
) , 𝑥 ∈ Ω, 𝑡 > 𝑇,

𝜕𝑧

𝜕]
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 𝑇,

𝑧 (𝑥, 𝑇) = 𝑃
0
(𝑥, 𝑇) ≥ 0, 𝑥 ∈ Ω.

(22)

Let 𝑃(𝑡) be the unique positive solution to the following
problem:

𝑑𝑤

𝑑𝑡
= 𝑠𝑧 (1 −

ℎ𝑧

𝜂 − 𝜀
) , 𝑡 > 𝑇,

𝑤 (𝑇) = max
Ω

𝑃
0
(𝑥, 𝑇) ≥ 0.

(23)

Then, lim
𝑡→∞

𝑤(𝑡) = 𝜂/ℎ for the arbitrariness of 𝜀, and an
application of the comparison principle gives

lim inf
𝑡→∞

min
Ω

𝑃 (𝑥, 𝑡) ≥
𝜂

ℎ
. (24)

The proof is complete.
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2.2. The Local Stability of the Constant Steady State. In this
subsection, we shall analyze the asymptotical stability of the
positive constant solution 𝐸∗ for model (6). Before develop-
ing our argument, let us set up the following notations.

(i) Let 0 = 𝜇
0
< 𝜇
1
< 𝜇
2
< ⋅ ⋅ ⋅ → ∞ be the eigenvalues

of the operator –Δ on Ω with the zero-flux boundary
condition;

(ii) Let 𝐸(𝜇) = {𝜙 | −Δ𝜙 = 𝜇𝜙 in Ω, 𝜕] 𝜙 = 0 on 𝜕Ω}

with 𝜇 ∈ R1;
(iii) Let {𝜙

𝑖𝑗
| 𝑗 = 1, . . . , dim𝐸(𝜇

𝑖
)} be an orthonormal

basis of 𝐸(𝜇
𝑖
), and X

𝑖𝑗
= {c𝜙
𝑖𝑗

| c ∈ R2};
(iv) Let

X = {(𝑁, 𝑃) ∈ [𝐻2 (Ω)]
2

| 𝜕]𝑁 = 𝜕]𝑃 = 0 on 𝜕Ω} , (25)

then

X =
∞

⨁
𝑖=1

X
𝑖
, (26)

where X
𝑖
= ⨁

dim𝐸(𝜇
𝑖
)

𝑗=1
X
𝑖𝑗
.

Theorem 4. Assume that

𝑚(𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟) < 𝑟(𝑎 + ℎ)
2
(𝑟 + 𝑠 + 𝑐𝑠) (27)

and the first eigenvalues 𝜇
1
of the Dirichlet operator subject to

zero-flux boundary conditions satisfy

𝜇
1
> max{

𝑚 (𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟) − 𝑟2(𝑎 + ℎ)2

𝑑
1
𝑟 (1 + 𝑐) (𝑎 + ℎ)2

−
𝑠

𝑑
2

, 0} .

(28)

Then the positive constant solution 𝐸∗ of model (6) is locally
asymptotically stable.

Proof. DefineL : X → 𝐶(Ω) × 𝐶(Ω) by

L = (
𝑑
1
Δ + 𝐽
1

−
𝑚ℎ2

(𝑎 + ℎ)2

−
𝑠

ℎ
𝑑
2
Δ − 𝑠

) , (29)

where 𝐽
1
= (𝑚(𝑎𝑟+𝑐𝑚+2ℎ𝑟−𝑎𝑐𝑟)−𝑟2(𝑎+ℎ)2)/𝑟(1+𝑐)(𝑎+ℎ)2.

For each 𝑖 = 0, 1, 2, . . . ,X
𝑖
is invariant under the operator

L, and 𝜆 is an eigenvalue of this operator on X
𝑖
if and only if

it is an eigenvalue of the following matrix:

𝐴
𝑖
= (

−𝑑
1
𝜇
𝑖
+ 𝐽
1

−
𝑚ℎ2

(𝑎 + ℎ)2

−
𝑠

ℎ
−𝑑
2
𝜇
𝑖
− 𝑠

) . (30)

Moreover,

det (𝜆𝐼 − 𝐴
𝑖
) = 𝜆2 − tr (𝐴

𝑖
) 𝜆 + det (𝐴

𝑖
) , (31)

where

det (𝐴
𝑖
) = 𝑑
1
𝑑
2
𝜇2
𝑖
+ (𝑑
1
𝑠 − 𝑑
2
𝐽
1
) 𝜇
𝑖

+
𝑠 (𝑎𝑟 + ℎ𝑟 − 𝑚) (𝑎𝑟 + ℎ𝑟 + 𝑐𝑚)

𝑟 (1 + 𝑐) (𝑎 + ℎ)2
,

tr (𝐴
𝑖
) = − (𝑑

1
+ 𝑑
2
) 𝜇
𝑖
+ 𝐽
1
− 𝑠.

(32)

In view of (27) and (28), we have det(𝐴
𝑖
) > 0 > tr(𝐴

𝑖
)

for any 𝑖 ≥ 0.Therefore, the eigenvalues of the matrix𝐴
𝑖
have

negative real parts.
In the following, we prove that there exists 𝛿 > 0 such that

Re {𝜆
𝑖1
} ≤ −𝛿, Re {𝜆

𝑖2
} ≤ −𝛿. (33)

Let 𝜆 = 𝜇
𝑖
𝜉, then

�̃�
𝑖
(𝜆) ≜ 𝜇2

𝑖
𝜉2 − tr (𝐴

𝑖
) 𝜇
𝑖
𝜉 + det (𝐴

𝑖
) . (34)

Since 𝜇
𝑖
→ ∞ as 𝑖 → ∞, it follows that

lim
𝑖→∞

�̃�
𝑖
(𝜆)

𝜇2
𝑖

= 𝜉2 + (𝑑
1
+ 𝑑
2
) 𝜉 + 𝑑

1
𝑑
2
. (35)

By the Routh-Hurwitz criterion, it follows that the two
roots 𝜉

1
, 𝜉
2
of �̃�
𝑖
(𝜆) = 0 all have negative real parts. Thus,

let �̃� = min{𝑑
1
, 𝑑
2
}, we have that Re{𝜉

1
},Re{𝜉

2
} ≤ −�̃�. By

continuity, we see that there exists 𝑖
0
such that the two roots

𝜉
𝑖1
, 𝜉
𝑖2
of �̃�
𝑖
(𝜆) = 0 satisfy Re{𝜉

𝑖1
} ≤ −�̃�/2, Re{𝜉

𝑖2
} ≤ −�̃�/2,

for all 𝑖 ≥ 𝑖
0
. In turn, Re{𝜆

𝑖1
},Re{𝜆

𝑖2
} ≤ −𝜇

𝑖
�̃�/2 ≤ −�̃�/2, for

all 𝑖 ≥ 𝑖
0
.

Let −�̃� = max
1≤𝑖≤𝑖
0

{Re{𝜆
𝑖1
},Re{𝜆

𝑖2
}}, then �̃� > 0 and (33)

hold for 𝛿 = min{�̃�, �̃�/2}. Consequently, the spectrum of L
which consists of eigenvalues, lies in {Re 𝜆 ≤ −𝛿}. In the sense
of [25], we obtain that the positive constant solution 𝐸∗ =
(𝑁∗, 𝑃∗) ofmodel (6) is uniformly asymptotically stable.This
ends the proof.

2.3.TheGlobal Stability of the Constant Solution. This subsec-
tion is devoted to the global stability of the constant solution
𝐸∗ for model (6).

Theorem 5. Assume that the following hold:

(A1) 𝑚(1 + 𝑐) < 𝑎𝑟;
(A2) ℎ(𝐾+𝑐𝑁∗)(𝑁∗+2𝑃∗)+(𝐾+𝑐𝑁∗)(𝑁∗+𝑎𝑃∗)(𝑎+ℎ) ≤

2𝜂𝑟(𝑁∗ + 𝑎𝑃∗)(𝑎 + ℎ);
(A3) ℎ𝐾𝑁∗ ≤ 𝜂(2ℎ − 1)(𝑁∗ + 𝑎𝑃∗)(𝑎 + ℎ),

where 𝜂 = 𝐾(𝑎𝑟 −𝑚(1 + 𝑐))/𝑎𝑟. Then the constant solution 𝐸∗

is globally asymptotically stable.

Proof. In order to give the proof, we need to construct a
Lyapunov function. Define

𝑉 (𝑁, 𝑃) = ∫
𝑁

𝑁
∗

𝜉 − 𝑁∗

𝜉
𝑑𝜉 + ∫

𝑃

𝑃
∗

𝜁 − 𝑃∗

𝜁
𝑑𝜁,

𝐸 (𝑡) = ∫
Ω

𝑉 (𝑁 (𝑥, 𝑡) , 𝑃 (𝑥, 𝑡)) 𝑑𝑥.

(36)
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We note that 𝐸(𝑡) is nonnegative, 𝐸(𝑡) = 0 if and only
if (𝑁(𝑥, 𝑡), 𝑃(𝑥, 𝑡)) = (𝑁∗, 𝑃∗). Furthermore, by simple
computations, it follows that

𝑑𝐸 (𝑡)

𝑑𝑡
= ∫
Ω

(𝑉
𝑁

(𝑁 (𝑥, 𝑡) , 𝑃 (𝑥, 𝑡))𝑁
𝑡

+𝑉
𝑃
(𝑁 (𝑥, 𝑡) , 𝑃 (𝑥, 𝑡)) 𝑃

𝑡
) 𝑑𝑥

= ∫
Ω

(
𝑑
1
(𝑁 − 𝑁∗)

𝑁
Δ𝑁 +

𝑑
2
(𝑃 − 𝑃∗)

𝑃
Δ𝑃)𝑑𝑥

+ ∫
Ω

((𝑁 − 𝑁∗) (
𝑟 (𝐾 − 𝑁)

𝐾 + 𝑐𝑁
−

𝑚𝑃

𝑁 + 𝑎𝑃
)

+ (𝑃 − 𝑃∗) (1 −
ℎ𝑃

𝑁
))𝑑𝑥

= − ∫
Ω

(
𝑑
1
𝑁∗

𝑁2
|∇𝑁|
2 +

𝑑
2
𝑃∗

𝑃2
|∇𝑃|
2)𝑑𝑥 + 𝐼 (𝑡) ,

(37)

where

𝐼 (𝑡) = ∫
Ω

((𝑁 − 𝑁∗)
2

(−
𝑟𝐾 (1 + 𝑐)

(𝐾 + 𝑐𝑁∗) (𝐾 + 𝑐𝑁)

+
𝑃∗

(𝑁∗ + 𝑎𝑃∗) (𝑁 + 𝑎𝑃)
))𝑑𝑥

+ ∫
Ω

( (𝑁 − 𝑁∗) (𝑃 − 𝑃∗)

× (
1

𝑁
−

𝑁∗

(𝑁∗ + 𝑎𝑃∗) (𝑁 + 𝑎𝑃)
)

−
ℎ

𝑁
(𝑃 − 𝑃∗)

2

)𝑑𝑥.

(38)

Set 𝜑 = 𝑁 − 𝑁∗, 𝜙 = 𝑃 − 𝑃∗. We have

𝐼 (𝑡) = − ∫
Ω

(
𝑟𝐾 (1 + 𝑐)

(𝐾 + 𝑐𝑁∗) (𝐾 + 𝑐𝑁)

−
𝑁∗ + 2𝑃∗

2 (𝑁∗ + 𝑎𝑃∗) (𝑁 + 𝑎𝑃)
−

1

2𝑁
)𝜑2𝑑𝑥

− ∫
Ω

(
2ℎ − 1

2𝑁
−

𝑁∗

2 (𝑁∗ + 𝑎𝑃∗) (𝑁 + 𝑎𝑃)
) 𝜙2𝑑𝑥

− ∫
Ω

(
1

2𝑁
(𝜑 − 𝜙)

2

+
𝑁∗

2 (𝑁∗ + 𝑎𝑃∗) (𝑁 + 𝑎𝑃)

× (𝜑 + 𝜙)
2

)𝑑𝑥

≤ − ∫
Ω

(
𝑟𝐾 (1 + 𝑐)

(𝐾 + 𝑐𝑁∗) (𝐾 + 𝑐𝑁)

−
𝑁∗ + 2𝑃∗

2 (𝑁∗ + 𝑎𝑃∗) (𝑁 + 𝑎𝑃)
−

1

2𝑁
)𝜑2𝑑𝑥

− ∫
Ω

(
2ℎ − 1

2𝑁
−

𝑁∗

2 (𝑁∗ + 𝑎𝑃∗) (𝑁 + 𝑎𝑃)
) 𝜙2𝑑𝑥.

(39)

By virtue of Theorems 1 and 3 and under the assumption
of Theorem, we have

𝑟𝐾 (1 + 𝑐)

(𝐾 + 𝑐𝑁∗) (𝐾 + 𝑐𝑁)
−

𝑁∗ + 2𝑃∗

2 (𝑁∗ + 𝑎𝑃∗) (𝑁 + 𝑎𝑃)
−

1

2𝑁

≥
𝑟

𝐾 + 𝑐𝑁∗
−

ℎ (𝑁∗ + 2𝑃∗)

2𝜂 (𝑁∗ + 𝑎𝑃∗) (𝑎 + ℎ)
−

1

2𝜂

= (2𝜂𝑟 (𝑁∗ + 𝑎𝑃∗) (𝑎 + ℎ)

− ℎ (𝐾 + 𝑐𝑁∗) (𝑁∗ + 2𝑃∗)

− (𝐾 + 𝑐𝑁∗) (𝑁∗ + 𝑎𝑃∗) (𝑎 + ℎ))

× (2𝜂 (𝐾 + 𝑐𝑁∗) (𝑁∗ + 𝑎𝑃∗) (𝑎 + ℎ))
−1

≥ 0,

2ℎ − 1

2𝑁
−

𝑁∗

2 (𝑁∗ + 𝑎𝑃∗) (𝑁 + 𝑎𝑃)

≥
2ℎ − 1

2𝐾
−

ℎ𝑁∗

2𝜂 (𝑁∗ + 𝑎𝑃∗) (𝑎 + ℎ)

=
𝜂 (2ℎ − 1) (𝑁∗ + 𝑎𝑃∗) (𝑎 + ℎ) − ℎ𝐾𝑁∗

2𝐾𝜂 (𝑁∗ + 𝑎𝑃∗) (𝑎 + ℎ)

≥ 0.

(40)

As a result, we have 𝐼(𝑡) ≤ 0. Thus 𝑑𝐸(𝑡)/𝑑𝑡 ≤ 0, which
implies the desired assertion. The proof is completed.

3. A Priori Estimates and Existence of
Nonconstant Positive Solution

In this section, we will deduce a priori estimates of positive
upper and lower bounds for positive solution of model (9).
Then, based on a priori estimates, we discuss the existence
of nonconstant positive solution of model (9) for certain
parameter ranges.

3.1. A Priori Estimates. In order to obtain the desired bound,
we recall the following two lemmas which are due to Lin et al.
[26] and Lou and Ni [27], respectively.
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Lemma 6 (Harnack’s inequality [26]). Assume that 𝑐 ∈ 𝐶(Ω)

and let 𝑤 ∈ 𝐶2(Ω) ∩ 𝐶1(Ω) be a positive solution to

Δ𝑤 (𝑥) + 𝑐 (𝑥)𝑤 (𝑥) = 0 𝑖𝑛 Ω,
𝜕𝑤

𝜕]
= 0 𝑜𝑛 𝜕Ω.

(41)

Then there exists a positive constant 𝐶∗ = 𝐶∗(‖𝑐‖
∞

) such that

max
Ω

𝑤 ≤ 𝐶∗min
Ω

𝑤. (42)

Lemma 7 (maximum principle [27]). Let Ω be a bounded
Lipschitz domain in R2 and 𝑔 ∈ 𝐶(Ω × R).

(a) Assume that 𝑤 ∈ 𝐶2(Ω) ∩ 𝐶1(Ω) and satisfies

Δ𝑤 (𝑥) + 𝑔 (𝑥, 𝑤 (𝑥)) ≥ 0 𝑖𝑛 Ω,
𝜕𝑤

𝜕]
≤ 0 𝑜𝑛 𝜕Ω.

(43)

If 𝑤(𝑥
0
) = max

Ω
𝑤(𝑥), then 𝑔(𝑥

0
, 𝑤(𝑥
0
)) ≥ 0.

(b) Assume that 𝑤 ∈ 𝐶2(Ω) ∩ 𝐶1(Ω) and satisfies

Δ𝑤 (𝑥) + 𝑔 (𝑥, 𝑤 (𝑥)) ≤ 0 𝑖𝑛 Ω,
𝜕𝑤

𝜕]
≥ 0 𝑜𝑛 𝜕Ω.

(44)

If 𝑤(𝑥
0
) = min

Ω
𝑤(𝑥), then 𝑔(𝑥

0
, 𝑤(𝑥
0
)) ≤ 0.

For convenience, let us denote the constants
𝑎, 𝑐, ℎ, 𝑚, 𝐾, 𝑟, 𝑠 collectively by Λ. The positive constants
𝐶, 𝐶, 𝐶, and so forth will depend only on the domain Ω and
Λ. Now, we can state the main result which will play a critical
role in Section 3.3.

Theorem 8. For any positive solution (𝑁, 𝑃) of model (9),

max
Ω

𝑁(𝑥) ≤ 𝐾, max
Ω

𝑃 (𝑥) ≤
𝐾

ℎ
. (45)

Proof. Assume that (𝑁, 𝑃) is a positive solution of model (9).
Set

𝑁(𝑥
1
) = max
Ω

𝑁(𝑥) . (46)

Then, by Lemma 7, it follows from the first equation of (9)
that

𝑟𝑁 (𝑥
1
) (𝐾 − 𝑁 (𝑥

1
))

𝐾 + 𝑐𝑁 (𝑥
1
)

≥
𝑚𝑁(𝑥

1
) 𝑃 (𝑥

1
)

𝑁 (𝑥
1
) + 𝑎𝑃 (𝑥

1
)

> 0. (47)

This clearly gives 𝑁(𝑥
1
) < 𝐾.

Since 0 < 𝑃(𝑥) ≤ (1/ℎ)‖𝑁(𝑥)‖
∞
, we have 𝑃(𝑥) ≤ 𝐾/ℎ in

Ω.

Theorem 9. Let 𝑑 be a fix positive constant. Then there exists
positive constant 𝐶 = 𝐶(Λ, 𝑑) such that if 𝑑

1
, 𝑑
2

> 𝑑, any
positive solution (𝑁, 𝑃) of model (6) satisfies

min
Ω

𝑁(𝑥) ≥ 𝐶, min
Ω

𝑃 (𝑥) ≥ 𝐶. (48)

Proof. Let

𝑁(𝑥
0
) = min
Ω

𝑁(𝑥) ,

𝑃 (𝑦
0
) = min
Ω

𝑃 (𝑥) ,

𝑃 (𝑦
1
) = max
Ω

𝑃 (𝑥) .

(49)

By Lemma 7, it is clear that

𝑟 (𝐾 − 𝑁 (𝑥
0
))

𝐾 + 𝑐𝑁 (𝑥
0
)

−
𝑚𝑃 (𝑥

0
)

𝑁 (𝑥
0
) + 𝑎𝑃 (𝑥

0
)

≤ 0,

1 −
ℎ𝑃 (𝑦
0
)

𝑁 (𝑦
0
)

≤ 0,

1 −
ℎ𝑃 (𝑦
1
)

𝑁 (𝑦
1
)

≥ 0.

(50)

So, we have
1

ℎ
𝑁 (𝑥
0
) ≤

1

ℎ
𝑁 (𝑦
0
) ≤ 𝑃 (𝑦

0
) , (51)

𝑃 (𝑦
1
) ≤

1

ℎ
𝑁 (𝑦
1
) ≤

1

ℎ
max
Ω

𝑁(𝑥) . (52)

Since 𝑚(𝐾 + 𝑐𝑁(𝑥
0
))/(𝑁(𝑥

0
) + 𝑎𝑃(𝑥

0
)) ≤ 𝐶 with 𝐶 > 0,

then, by virtue of (52), we derive

𝐾 − 𝑁(𝑥
0
) ≤

𝑚𝑃 (𝑥
0
) (𝐾 + 𝑐𝑁 (𝑥

0
))

𝑟 (𝑁 (𝑥
0
) + 𝑎𝑃 (𝑥

0
))

≤
𝐶

𝑟
𝑃 (𝑥
0
) ≤

𝐶

𝑟
𝑃 (𝑦
1
)

≤
𝐶

ℎ𝑟
max
Ω

𝑁(𝑥) ,

(53)

which implies that

𝐾 ≤ min
Ω

𝑁(𝑥) +
𝐶

ℎ𝑟
max
Ω

𝑁(𝑥) . (54)

Define 𝑐(𝑥) = 𝑑−1
1

(𝑟(𝐾 −𝑁)/(𝐾 + 𝑐𝑁) −𝑚𝑃/(𝑁+ 𝑎𝑃)), then
𝑁 satisfies

Δ𝑁 (𝑥) + 𝑐 (𝑥)𝑁 (𝑥) = 0 in Ω,
𝜕𝑁

𝜕]
= 0 on 𝜕Ω.

(55)

Therefore, we have

max
Ω

𝑁(𝑥) ≤ 𝐶∗min
Ω

𝑁(𝑥) , (56)

herein a positive constant 𝐶∗ = 𝐶∗(‖𝑐‖
∞

). Hence, we obtain

min
Ω

𝑁(𝑥) ≥
ℎ𝐾𝑟

ℎ𝑟 + 𝐶𝐶∗
. (57)

It follows from (51) that

min
Ω

𝑃 (𝑥) ≥
𝐾𝑟

ℎ𝑟 + 𝐶𝐶∗
. (58)

The proof is completed.
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3.2. Nonexistence of the Nonconstant Positive Solutions. Note
that 𝜇

1
is the smallest positive eigenvalues of the operator –Δ

inΩ subject to the zero-flux boundary condition. Now, using
the energy estimates, we can claim the following results.

Theorem 10. Let 𝐷 > 𝑠/𝜇
1
be a fixed positive constant. Then

there exists a positive constant 𝑑∗ = 𝑑∗(Λ,𝐷) such that model
(9) has no positive nonconstant solution provided that 𝑑

1
> 𝑑∗

and 𝑑
2
> 𝐷.

Proof. Let (𝑁, 𝑃) be any positive solution of model (9) and
denote 𝑔 = |Ω|−1 ∫

Ω
𝑔𝑑𝑥. Then

∫
Ω

(𝑁 − 𝑁)𝑑𝑥 = ∫
Ω

(𝑃 − 𝑃) 𝑑𝑥 = 0. (59)

Then, multiplying the first equation of model (9) by (𝑁−𝑁),
integrating over Ω, we have that

𝑑
1
∫
Ω

∇ (𝑁 − 𝑁)

2

𝑑𝑥

= ∫
Ω

𝑟𝑁 (𝐾 − 𝑁) (𝑁 − 𝑁)

𝐾 + 𝑐𝑁
𝑑𝑥

− ∫
Ω

𝑚𝑁𝑃(𝑁 − 𝑁)

𝑁 + 𝑎𝑃
𝑑𝑥

≤ ∫
Ω

𝑟𝑁(1 −
𝑁

𝐾
) (𝑁 − 𝑁)𝑑𝑥

− ∫
Ω

𝑎𝑚𝑃𝑃(𝑁 − 𝑁)
2

(𝑁 + 𝑎𝑃) (𝑁 + 𝑎𝑃)
𝑑𝑥

− ∫
Ω

𝑚𝑁𝑁(𝑁 − 𝑁) (𝑃 − 𝑃)

(𝑁 + 𝑎𝑃) (𝑁 + 𝑎𝑃)
𝑑𝑥

≤ ∫
Ω

(𝑟(𝑁 − 𝑁)
2

+ 𝑚
𝑁 − 𝑁


𝑃 − 𝑃

) 𝑑𝑥.

(60)

In a similar manner, we multiply the second equation in
model (9) by (𝑃 − 𝑃) to have

𝑑
2
∫
Ω

∇ (𝑃 − 𝑃)

2

𝑑𝑥

= ∫
Ω

𝑠𝑃 (1 −
ℎ𝑃

𝑁
) (𝑃 − 𝑃) 𝑑𝑥

= ∫
Ω

𝑠 (𝑃 − 𝑃)

× (𝑃 − 𝑃 −
ℎ (𝑃 + 𝑃) (𝑃 − 𝑃)

𝑁

+
ℎ𝑃
2

(𝑁 − 𝑁)

𝑁𝑁
)𝑑𝑥

≤ ∫
Ω

𝑠 ((𝑃 − 𝑃)
2

+
ℎ𝑃
2

𝑁𝑁

𝑁 − 𝑁

𝑃 − 𝑃

) 𝑑𝑥.

(61)

By the 𝜀-Young inequality and the Poincaré inequality, we
obtain that

∫
Ω

(𝑑
1

∇ (𝑁 − 𝑁)

2

+ 𝑑
2

∇ (𝑃 − 𝑃)

2

) 𝑑𝑥

≤ ∫
Ω

(𝑟(𝑁 − 𝑁)
2

+ 2𝑀(𝑁 − 𝑁) (𝑃 − 𝑃)

+𝑠(𝑃 − 𝑃)
2

) 𝑑𝑥

≤
1

𝜇
1

∫
Ω

(
∇ (𝑁 − 𝑁)


2

(𝑟 +
𝑀

𝜖
)

+
∇ (𝑃 − 𝑃)


2

(𝑠 + 𝜖𝑀) ) 𝑑𝑥

(62)

for some positive constant 𝑀 and an arbitrary small positive
constant 𝜖.

In view of 𝑑
2
> 𝐷 > 𝑠/𝜇

1
, we can find a sufficiently small

𝜖
0
> 0 such that 𝑑

2
𝜇
1
≥ 𝑠 + 𝜖

0
𝑀. Let 𝑑∗ = (1/𝜇

1
)(𝑟 + 𝑀/𝜖),

then

∇ (𝑁 − 𝑁) = ∇ (𝑃 − 𝑃) = 0 (63)

and (𝑁, 𝑃) must be a constant solution. This completes the
proof.

3.3. Existence of the Nonconstant Positive Solutions. In this
subsection, we shall discuss the existence of the positive
nonconstant solution of model (9).

Unless otherwise specified, in this subsection, we always
require that𝑚 < 𝑟(𝑎 + ℎ) holds, which guarantees that model
(9) has the unique positive constant solution 𝐸∗ = (𝑁∗, 𝑃∗).
From now on, we denote w = (𝑁, 𝑃)𝑇 and w

0
= 𝐸∗.

Let X be the space defined in (25) and let

X+ = {(𝑁, 𝑃) ∈ X | 𝑁, 𝑃 > 0 on 𝐶 (Ω)} . (64)

We write model (9) in the following form:

−Δw = G (w) , w ∈ X+,

𝜕]w = 0 on 𝜕Ω,
(65)

where

G (w) = (

𝑁

𝑑
1

(
𝑟 (𝐾 − 𝑁)

𝐾 + 𝑐𝑁
−

𝑚𝑃

𝑁 + 𝑎𝑃
)

𝑠𝑃

𝑑
2

(1 −
ℎ𝑃

𝑁
)

). (66)
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Then w is a positive solution of model (65) if and only if
w satisfies

F (w) = w − (I − Δ)
−1

{G (w + w)} = 0, in X+, (67)

where (I − Δ)−1 is the inverse operator of I − Δ subject to the
zero-flux boundary condition. Then

∇F (w
0
) = I − (I − Δ)

−1
(I + A) , (68)

where

A ≜ ∇G (w
0
) = (

𝐽
1

𝑑
1

−
𝑚ℎ2

𝑑
1
(𝑎 + ℎ)2

−
𝑠

𝑑
2
ℎ

−
𝑠

𝑑
2

). (69)

If ∇F(w
0
) is invertible, by Theorem 2.8.1 of [28], the

index ofF at w
0
is given by

index (F,w
0
) = (−1)

𝛾, (70)

where 𝛾 is themultiplicity of negative eigenvalues of∇F(w
0
).

On the other hand, using the decomposition (26), we have
that X

𝑖
is an invariant space under ∇F(w

0
) and 𝜉 ∈ R is an

eigenvalue of ∇F(w
0
) in X

𝑖
, if and only if, 𝜉 is an eigenvalue

of (𝜇
𝑖
+ 1)−1(𝜇

𝑖
I −A). Therefore, ∇F(w

0
) is invertible, if and

only if, for any 𝑖 ≥ 0 the matrix 𝜇
𝑖
I − A is invertible.

Let 𝑚(𝜇
𝑖
) be the multiplicity of 𝜇

𝑖
. For the sake of

convenience, we denote

𝐻(𝜇) = det (𝜇I − A) . (71)

Then, if 𝜇
𝑖
I − A is invertible for any 𝑖 ≥ 0, with the same

arguments as in [29], we can assert the following conclusion.

Lemma 11. Assume that, for all 𝑖 ≥ 0, the matrix 𝜇
𝑖
I − A is

nonsingular, then

index (F,w
0
) = (−1)

𝛾, 𝑤ℎ𝑒𝑟𝑒 𝛾 = ∑
𝑖≥0,𝐻(𝜇𝑖)<0

𝑚(𝜇
𝑖
) .

(72)

To compute index(F,w
0
), we have to consider the sign of

𝐻(𝜇). A straightforward computation yields

𝐻(𝜇) = 𝜇2 − 𝜃
1
𝜇 + 𝜃
2
, (73)

where 𝜃
1
= (𝑑
2
𝐽
1
− 𝑑
1
𝑠)/𝑑
1
𝑑
2
, 𝜃
2
= 𝑠(𝑎𝑟 + ℎ𝑟 −𝑚)(𝑎𝑟 + ℎ𝑟 +

𝑐𝑚)/𝑑
1
𝑑
2
𝑟(1 + 𝑐)(𝑎 + ℎ)2.

If 𝜃2
1
− 4𝜃
2
> 0, then 𝐻(𝜇) = 0 has two positive solutions

𝜇± given by

𝜇± =
1

2
(𝜃
1
± √𝜃2
1
− 4𝜃
2
) . (74)

Theorem 12. Assume that𝑚(𝑎𝑟+𝑐𝑚+2ℎ𝑟−𝑎𝑐𝑟) > 𝑟2(𝑎+ℎ)2

and 𝜃2
1
−4𝜃
2
> 0. If 𝜇− ∈ (𝜇

𝑖
, 𝜇
𝑖+1

) and 𝜇+ ∈ (𝜇
𝑗
, 𝜇
𝑗+1

) for some
0 ≤ 𝑖 < 𝑗, and ∑

𝑗

𝑘=𝑖+1
𝑚(𝜇
𝑘
) is odd, then model (9) has at least

one nonconstant solution.

Proof. By Theorem 10, we can fix 𝑑
1
> 𝑑
1
and 𝑑

2
> 𝑑
2
such

that model (9) with diffusion coefficients 𝑑
1
and 𝑑

2
has no

nonconstant solutions.
By virtue of Theorems 8 and 9, there exists a positive

constant 𝐶, 𝐶 such that 𝐶 < 𝑁, 𝑃 < 𝐶.
Set

M = {(𝑁, 𝑃) ∈ 𝐶 (Ω) × 𝐶 (Ω) : 𝐶 < 𝑁, 𝑃 < 𝐶 in Ω} ,

(75)

and define

Ψ : M × [0, 1] → 𝐶(Ω) × 𝐶 (Ω) (76)

by

Ψ (w, 𝑡) = (I − Δ)
−1

{G (w, 𝑡) + w} , (77)

where
G (w, 𝑡)

= (

(𝑡𝑑
1
+ (1 − 𝑡) 𝑑

1
)
−1

(
𝑟𝑁 (𝐾 − 𝑁)

𝐾 + 𝑐𝑁
−

𝑚𝑁𝑃

𝑁 + 𝑎𝑃
)

(𝑡𝑑
2
+ (1 − 𝑡) 𝑑

2
)
−1

(𝑠𝑃(1 −
ℎ𝑃

𝑁
))

).

(78)

It is clear that finding the positive solution of model
(9) becomes equivalent to finding the positive solution of
Ψ(w, 1) = 0 in M. Further, by virtue of the definition of M,
we have that Ψ(w, 𝑡) = 0 has no positive solution in 𝜕M for
all 0 ≤ 𝑡 ≤ 1.

Since Ψ(w, 𝑡) is compact, the Leray-Schauder topological
degree deg(I − Ψ(w, 𝑡),M, 0) is well defined. From the
invariance of Leray-Schauder degree at the homotopy, we
deduce

deg (I − Ψ (w, 1) ,M, 0) = deg (I − Ψ (w, 0) ,M, 0) . (79)

Clearly, I − Ψ(w, 1) = F. Thus, if model (9) has no other
solutions except the constant one w

0
, then Lemma 11 shows

that
deg (I − Ψ (w, 1) ,M, 0) = index (F,w

0
)

= (−1)
∑
𝑗

𝑘=𝑖+1
𝑚(𝜇
𝑘
) = −1.

(80)

On the contrary, by the choice of 𝑑
1
and 𝑑

2
, we have that

w
0
is the only solution of Ψ(w, 0) = 0. Furthermore, we have

deg (I − Ψ (w, 0) ,M, 0) = index (I − Ψ (w, 0) ,w
0
) = 1.

(81)

From (79)–(81), we get a contradiction, and the proof is
completed.
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To quantitatively study the effect of delay on selection dynamics in long-term sphere culture of cancer stem cells (CSCs), a selection
dynamic model with time delay is proposed.Theoretical results show that the ubiquitous time delay in cell proliferationmay be one
of the important factors to induce fluctuation, and numerical simulations indicate that the proposed selection dynamical model
with time delay can provide a better fitting effect for the experiment of a long-term sphere culture of CSCs. Thus, it is valuable to
consider the delay effect in the future study on the dynamics of nongenetic heterogeneity of clonal cell populations.

1. Introduction

In the past years research on cancer stem cells (CSCs) has
become a focus of cancer research, because CSCs have self-
renewing and multidirectional differentiation capability and
may result in tumors [1–6]. Recently, cell state dynamics due
to non-genetic heterogeneity of clonal cell populations also
has received more and more attention [7–10].

In order to expand CSCs, sphere culture is performed by
experimental cell biologists [11, 12]. However, whether long-
term sphere culture can maintain a high ratio of CSCs is
unclear. For this question, it is interesting that [13, 14] obtain
a similar quantitative result through different mathematical
model; that is, the ratio of CSCs will towards an apparent
equilibrium state in a long-term sphere culture. Concretely,
[13] proposed a kinetic model using ordinary differential
equations that considered the symmetric and asymmetric
division of CSCs, as well as the proliferation and transforma-
tion of differentiated cancer cells (DCCs). And [14] puts for-
ward a Markov model in which cells transition stochastically
between states.However, the time delay due to thematuration
of individual cells has been ignored in [13, 14].

In the present paper, based on the kinetic model in [13],
we further explore the effect of time delay on selection
dynamics in long-term sphere culture. The results show that
the ubiquitous time delay in cell proliferation may be one of
the important factors to induce fluctuation, and the proposed
selection dynamical model with time delay can provide a
better fitting effect for the experiment of a long-term sphere
culture of CSCs in [13]. The organization of the paper is as
follows. In Section 2, we formulate the selection dynamical
model with time delay in long-term sphere culture of CSCs.
Section 3 first gives the analytic analysis on our proposed
model and then presents numerical simulations to compare
the effect of time delay. Finally, some predictive conclusions
with biological implications are given in Section 4.

2. Model Description

Let 𝑥(𝑡) and 𝑦(𝑡) denote the population sizes of CSCs and
DCCs at time 𝑡 in long-term sphere culture, respectively.
Our previous work [13] proposed the followingmathematical
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model to describe the interactive growth of the CSCs and
DCCs in a long-term sphere culture:

d𝑥 (𝑡)
d𝑡
=𝑏
𝑥
(1 − 𝛽

𝑥
) 𝑥 (𝑡) + 𝑏

𝑦
𝛽
𝑦
𝑦 (𝑡) ≜ 𝑥 (𝑡) 𝑓

1
(𝑥 (𝑡) , 𝑦 (𝑡)) ,

d𝑦 (𝑡)
d𝑡
=𝑏
𝑥
𝛽
𝑥
𝑥 (𝑡) + 𝑏

𝑦
(1 − 𝛽

𝑦
) 𝑦 (𝑡) ≜ 𝑦 (𝑡) 𝑓

2
(𝑥 (𝑡) , 𝑦 (𝑡)) .

(1)

Here the constants 𝑏
𝑥
, 𝑏
𝑦
are called the net birth rate or intrin-

sic growth rate of population𝑥, 𝑦, respectively.𝛽
𝑥
denotes the

conversion rate from CSCs to DCCs in the process of CSCs
proliferation, and 𝛽

𝑦
denotes the conversion rate from DCCs

to CSCs in the process of DCCs proliferation.
Note that time delay may play an important role in many

biological models. As shown in [15], the maturation of indi-
vidual cells may need a period of time 𝜏; that is, the number
of these cells at time 𝑡 may depend on the population at a
previous time 𝑡 − 𝜏. Under the assumption of equal discrete
retarded cell proliferation, model (1) can be modified to

d𝑥 (𝑡)
d𝑡
= 𝑥 (𝑡 − 𝜏) 𝑓

1
(𝑥 (𝑡 − 𝜏) , 𝑦 (𝑡 − 𝜏)) ,

d𝑦 (𝑡)
d𝑡
= 𝑦 (𝑡 − 𝜏) 𝑓

2
(𝑥 (𝑡 − 𝜏) , 𝑦 (𝑡 − 𝜏)) .

(2)

Here 𝜏 is the time delay due to maturation time.
For (2), inspired by [16], we give the following average

fitness of the population:

𝜙 = 𝑏
𝑥
𝑥 (𝑡 − 𝜏) + 𝑏

𝑦
𝑦 (𝑡 − 𝜏) . (3)

Thus, the selection dynamics in long-term sphere culture of
CSCs can be written as

d𝑥 (𝑡)
d𝑡
= 𝑥 (𝑡 − 𝜏) (𝑓

1
(𝑥 (𝑡 − 𝜏) , 𝑦 (𝑡 − 𝜏)) − 𝜙) ,

d𝑦 (𝑡)
d𝑡
= 𝑦 (𝑡 − 𝜏) (𝑓

2
(𝑥 (𝑡 − 𝜏) , 𝑦 (𝑡 − 𝜏)) − 𝜙) .

(4)

For (4), let𝑁(𝑡) = 𝑥(𝑡) + 𝑦(𝑡). We have

d𝑁(𝑡)
d𝑡
= (1 − 𝑁 (𝑡 − 𝜏)) 𝜙. (5)

Therefore,𝑁(𝑡) → 1 as 𝑡 → ∞; that is, the total population
size remains constant. Hence 𝑥(𝑡) and 𝑦(𝑡) in (4) can be
understood as the frequency of CSCs andDCCs, respectively.
Furthermore, since 𝑦(𝑡) can be replaced by 1 − 𝑥(𝑡), system
(4) describes only a single differential equation; that is,

d𝑥 (𝑡)
d𝑡
= 𝑎
1
+ 𝑎
2
𝑥 (𝑡 − 𝜏) + 𝑎

3
𝑥2 (𝑡 − 𝜏) ≜ 𝑓 (𝑥 (𝑡 − 𝜏)) ,

(6)

in which 𝑎
1
= 𝑏
𝑦
𝛽
𝑦
, 𝑎
2
= 𝑏
𝑥
(1 − 𝛽

𝑥
) − 𝑏
𝑦
(1 + 𝛽

𝑦
), and 𝑎

3
=

𝑏
𝑦
− 𝑏
𝑥
. Note that (6) is the final selection dynamical model

with time delay in long-term sphere culture of CSCs.

3. Results

3.1. Dynamic Analysis. The objective of this subsection is to
analyze the dynamical behavior of (6). In order to explore the
effect of the delay, we split this into two cases.

3.1.1. Case of 𝜏 = 0. In this case, we focus on the dynamic
analysis if the delay is nonexistent; that is, 𝜏 = 0 in (6). We
start by studying the existence of nonnegative equilibria in
the interval [0, 1]. Let 𝑓(𝑥) = 𝑎

1
+𝑎
2
𝑥+𝑎
3
𝑥2 = 0. Clearly, the

discriminant of the quadratic equation is

Δ = 𝑎2
2
− 4𝑎
1
𝑎
3
= (𝑏
𝑦
− 𝑏
𝑥
+ 𝑏
𝑥
𝛽
𝑥
− 𝑏
𝑦
𝛽
𝑦
)
2

+ 4𝑏
𝑥
𝑏
𝑦
𝛽
𝑥
𝛽
𝑦
> 0.

(7)

Hence there are two different real roots for 𝑓(𝑥) = 0 if 𝑎
3
̸=0.

Furthermore, since

𝑓 (1) = 𝑎
1
+ 𝑎
2
+ 𝑎
3
= −𝑏
𝑥
𝛽
𝑥
< 0, (8)

we know that there is a unique positive equilibrium 𝑥∗ ∈
(0, 1) for (6) if 𝑎

3
̸=0 (see Figures 1(a) and 1(b)). When 𝑎

3
= 0

(see Figure 1(c)), it is clear that there is only one positive
equilibrium

𝑥∗ = −
𝑎
1

𝑎
2

=
𝛽
𝑥

𝛽
𝑥
+ 𝛽
𝑦

< 1. (9)

The combination of the above results and the phase
diagram (see Figure 1(d)) of system (6) yields the following
result.

Proposition 1. For system (6), when 𝜏 = 0, a unique positive
equilibrium 𝑥∗ ∈ (0, 1) always exists, and it is globally asym-
ptotically stable.

3.1.2. Case of 𝜏 > 0. In this case, we focus on the dynamic
analysis if the delay is existent; that is, 𝜏 > 0 in (6). Clearly, the
unique positive equilibrium 𝑥∗ ∈ (0, 1) still remains for (6) in
spite of the delay. To study the stability of the equilibrium 𝑥∗,
we first translate 𝑥∗ to the origin. Let

𝑥 = 𝑥 − 𝑥∗. (10)

Then (6) becomes, after replacing 𝑥 by 𝑥 again,

d𝑥 (𝑡)
d𝑡
= (𝑎
2
+ 2𝑎
3
𝑥∗) 𝑥 (𝑡 − 𝜏) + 𝑎

3
𝑥2 (𝑡 − 𝜏) . (11)

The variational system of (11) at the origin is given by

d𝑥 (𝑡)
d𝑡
= (𝑎
2
+ 2𝑎
3
𝑥∗) 𝑥 (𝑡 − 𝜏) . (12)

The characteristic equation of linear system (12) is given by

𝜆 − (𝑎
2
+ 2𝑎
3
𝑥∗) 𝑒−𝜏𝜆 = 0. (13)

If we let 𝜆 = 𝛼 + 𝑖𝛽, then (13) becomes

𝛼 − (𝑎
2
+ 2𝑎
3
𝑥∗) 𝑒−𝜏𝛼 cos𝛽𝜏 = 0,

𝛽 + (𝑎
2
+ 2𝑎
3
𝑥∗) 𝑒−𝜏𝛼 sin𝛽𝜏 = 0.

(14)
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𝑓(𝑥)

𝑥

𝑎
1

1
𝑥
∗𝑂

(a)

𝑓(𝑥)

𝑥

𝑎
1

1
𝑥
∗𝑂

(b)

𝑓(𝑥)

𝑥

𝑎
1

1
𝑥
∗𝑂
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𝑥
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𝑡

1

𝑥(𝑡)

𝑂

(d)

Figure 1: Illustrations of function image of 𝑓(𝑥) = 0 under different cases ((a), (b), and (c)), and the phase diagram (d) of system (6). Here
(a) 𝑎
3
> 0, (b) 𝑎

3
< 0, and (c) 𝑎

3
= 0.

By setting 𝛼 = 0 in (14), we have

cos𝛽𝜏 = 0,

sin𝛽𝜏 = −
𝛽

𝑎
2
+ 2𝑎
3
𝑥∗
.

(15)

Solving the first algebraic equation in (15), we have

𝛽𝜏 =
𝜋

2
+ 2𝑛𝜋, 𝑛 = 0, 1, 2, . . . . (16)

Substituting (16) into the second equation of (15), we have

𝛽 = − (𝑎
2
+ 2𝑎
3
𝑥∗) . (17)

Now, substituting (17) into (16), we have

𝜏
𝑛
= −

𝜋

2 (𝑎
2
+ 2𝑎
3
𝑥∗)
−
2𝑛𝜋

𝑎
2
+ 2𝑎
3
𝑥∗
, 𝑛 = 0, 1, 2, . . . . (18)

Next, we compute 𝛼(𝜏
𝑛
). Differentiating (13) with respect

to 𝜏, we have

d𝜆 (𝜏)
d𝜏
= −
(𝑎
2
+ 2𝑎
3
𝑥∗) 𝜆𝑒−𝜏𝜆

1 + 𝜏 (𝑎
2
+ 2𝑎
3
𝑥∗) 𝑒−𝜏𝜆

, (19)

thus,

𝛼 (𝜏
𝑛
) = Re( d𝜆 (𝜏)

d𝜏

𝜏=𝜏
𝑛

) =
𝛽2

1 + 𝜏2
𝑛
𝛽2
> 0. (20)

Therefore, similar to [17], according to the results in [18,
19] or [15, Theorem 2.2], we can obtain the following results
on (6).

Proposition 2. Suppose 𝜏 > 0. Then system (6) has a Hopf
bifurcation at

𝜏 = 𝜏
𝑛
= −

𝜋

2 (𝑎
2
+ 2𝑎
3
𝑥∗)
−
2𝑛𝜋

𝑎
2
+ 2𝑎
3
𝑥∗
, 𝑛 = 0, 1, 2, . . . .

(21)

Furthermore, according to the results in [15, 20, 21], we
have the following.

Proposition 3. Suppose 𝜏 > 0 in (6). Then the unique positive
equilibrium 𝑥∗ ∈ (0, 1) is stable if 0 < 𝜏 < 𝜏

0
and unstable if

𝜏 > 𝜏
0
.

3.2. Numerical Simulations. For model (1), we designed a
long-term sphere culture of humanbreast cancerMCF-7 stem
cells [13]. Based on the experimental data, using an adap-
tive Metropolis-Hastings (M-H) algorithm to carry out an
extensive Markov-chain Monte-Carlo (MCMC) simulation,
we obtained the estimated parameter values as follows:

𝑏
𝑥
= 2.7506 × 10−1, 𝑏

𝑦
= 3.2635 × 10−1,

𝛽
𝑥
= 1.4407 × 10−2, 𝛽

𝑦
= 2.3288 × 10−3.

(22)

When retarded cell proliferation was considered, based
on the induced selection dynamic model (6) and the experi-
mental data in [13], using extensiveMCMC simulation again,
we can obtain the estimated delay 𝜏 = 5.1401 (Figure 2).

Using the estimated values, we can plot the best-fit
solution by fitting model (1) and (6) to the experimental data,
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Figure 2:MCMCanalysis of parameter 𝜏 based on (6), (22), and the experimental data in [13]. (a) is the random series, and (b) is its histogram.
The algorithm ran for 104 iterations with a burn-in of 3000 iterations. The initial conditions were 𝜏 = 0.9.
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Figure 3: Simulations of the dynamical behaviors of the frequency
of CSCs. Experimental data are represented by open circles.The blue
dashed line denotes the best fit of model (1), and the red solid line
denotes the best fit of model (6).

respectively, (Figure 3). From Figure 3, we find that there is
a better simulation effect in model (6) than that in model
(1). In fact, the sum of squares of the deviations (SSD) in
(1) is SSD

(1)
= 7.2943, whereas SSD

(6)
= 4.6387 × 10−2

in (6). Note that SSD
(6)

is far less than SSD
(1)
. These results

quantitatively confirmed that the induced selection dynamic
model (6) with time delay can provide a better fitting effect in
long-term sphere culture of CSCs.

4. Conclusions

In order to demonstrate the interesting facts about the struc-
tural heterogeneity of cancer (the stable ratio between CSCs
and DCCs), many studies have been reported because it is
helpful for the cancer community to elucidate the controversy
about the CSC hypothesis and the clone evolution theory
of cancer [10, 13, 14] and references cited therein. In the
present paper, a selection dynamic model with time delay is

proposed, and its dynamical behavior is studied. Based on
the theoretical analysis and numerical simulations, we can
conclude the following predictive conclusions.

(i) The maturation of individual cells may produce a
significant effect on the dynamic behavior of the selection
dynamics. When the delay is nonexistent, the frequency of
CSCs will tend to a stable size because the unique positive
equilibrium is globally asymptotically stable (Proposition 1).
Conversely, if the delay is existent, the unique positive
equilibrium may not always maintain its stability and a Hopf
bifurcation may be induced (Propositions 2 and 3); that is, an
oscillated phenomenonmay be induced by the maturation of
individual cells.

(ii) Since the induced selection dynamic model (6) with
time delay can provide a better fitting effect in long-term
sphere culture of CSCs (Figure 3), it is reasonable to consider
the delay effect in the future study on the dynamics of non-
genetic heterogeneity of clonal cell populations.

Since mathematical models can be at best approximate
the behavior of real biological process, the results presented
heremay extend those studies on the structural heterogeneity
of cancer. Note that distributed delay may be more tractable
and realistic than discrete delay in the applications of biology.
Hence it is a worthwhile study in future work to better
understand these topics based on the idea of [15].
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Let𝐺 = (𝑉, 𝐸) be a graph.The atom-bond connectivity (ABC) index is defined as the sum of weights ((𝑑
𝑢
+ 𝑑
𝑣
− 2)/𝑑

𝑢
𝑑
𝑣
)1/2 over all

edges uv of G, where 𝑑
𝑢
denotes the degree of a vertex u of G. In this paper, we give the atom-bond connectivity index of the zigzag

chain polyomino graphs. Meanwhile, we obtain the sharp upper bound on the atom-bond connectivity index of catacondensed
polyomino graphs with h squares and determine the corresponding extremal graphs.

1. Introduction

One of the most active fields of research in contemporary
chemical graph theory is the study of topological indices
(graph topological invariants) that can be used for describing
and predicting physicochemical and pharmacological prop-
erties of organic compounds. In chemistry and for chemical
graphs, these invariant numbers are known as the topological
indices. There are many publications on the topological
indices, see [1–6].

Let 𝐺 = (𝑉, 𝐸) be a simple graph of order 𝑛. A few years
ago, Estrada et al. [7] introduced a further vertex-degree-
based graph invariant, known as the atom-bond connectivity
(ABC) index. It is defined as:

ABC (𝐺) = ∑
𝑢𝑣∈𝐸(𝐺)

√
𝑑
𝑢
+ 𝑑
𝑣
− 2

𝑑
𝑢
𝑑
𝑣

. (1)

TheABC index keeps the spirit of the Randić index, and it
provides a goodmodel for the stability of linear and branched
alkanes as well as the strain energy of cycloalkanes [7].
Recently, the study of the ABC index attracts some research
attention [6, 8–12].

Polyomino graphs [13], also called chessboards [14] or
square-cell configurations [15] have attracted some mathe-
maticians’ considerable attention because many interesting
combinatorial subjects are yielded from them such as domi-
nation problem andmodeling problems of surface chemistry.
A polyomino graph [16] is a connected geometric graph
obtained by arranging congruent regular squares of side
length 1 (called a cell) in a plane such that two squares are
either disjoint or have a common edge.The polyomino graph
has received considerable attentions.

Next, we introduce some graph definitions used in this
paper.

Definition 1 (see [4]). Let 𝐺 be a polyomino graph. If all
vertices of𝐺 lie on its perimeter, then𝐺 is said to be catacon-
densed polyomino graph or tree-like polyomino graph. (see
Figure 1).

Definition 2 (see [16]). Let𝐺 be a chain polyomino graphwith
ℎ squares. If the subgraph obtained from𝐺 by deleting all the
vertices of degree 2 and all the edges adjacent to the vertices is
a path, then𝐺 is said to be the zigzag chain polyomino graph,
denoted by 𝑍

ℎ
(see Figure 1).

In this paper, we give the ABC indices of the zigzag chain
polyomino graphs with ℎ squares and obtain the sharp upper
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bound on the ABC indices of catacondensed polyomino
graphs with ℎ squares and determine the corresponding
extremal graphs.

2. The ABC Indices of Catacondensed
Polyomino Graphs

Let
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1
⋃𝑆
2
.

(2)

We call √(𝑑
𝑢
+ 𝑑
𝑣
− 2)/𝑑

𝑢
𝑑
𝑣

the weight of the edge 𝑢𝑣,
denoted by𝑊

𝑢𝑣
.

Note that for any catacondensed polyomino graph 𝐻∗
with ℎ squares, it can be obtained by gluing a new square 𝑠 to
some catacondensed polyomino graph𝐻 with ℎ − 1 squares.
So, we have the following lemma.

1 2

ℎ − 1 ℎ

𝑍
ℎ

· · ·
...

Figure 1: The zigzag chain polyomino graph 𝑍
ℎ
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Lemma 3. Let 𝐻∗ be a catacondensed polyomino graph with
ℎ squares which is obtained by gluing a new square 𝑠 to some
graph 𝐻, where 𝐻 is a catacondensed polyomino graph with
ℎ − 1 squares. One has

(i) If 2 ≤ ℎ ≤ 3, then ABC(𝐻∗) − ABC(𝐻) ∈ 𝑆
1
,

(ii) if ℎ ≥ 4, then ABC(𝐻∗) − ABC(𝐻) ∈ 𝑆
2
.
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Figure 6: A catacondensed polyomino graphwith ℎ (ℎ ≤ 3) squares.

Proof. Consider the following: (i) if 2 ≤ ℎ ≤ 3, by directly
calculating, we have ABC(𝐻∗) − ABC(𝐻) ∈ 𝑆

1
,

(ii) now, let ℎ ≥ 4. Without the loss of generality, let
square 𝑠 be adjacent to the edge 𝐴𝐵 in 𝐻 (see Figure 2).
In the following, if the weights of some edges of 𝐻 have
been changed when 𝑠 is adjacent to the edge 𝐴𝐵 in 𝐻, then
we marked these edges with thick lines in 𝐻∗. Let 𝐷

𝑖
=

ABC(𝐻∗) − ABC(𝐻) (𝑖 = 1, 2, . . . , 35). Note that except the
edge 𝐴𝐵 of 𝑠, the summation of the weights of the remaining
three edges is always (3/2)√2 in 𝐻∗. There are exactly three
types of formations (see Figure 2).
Case 1. In Type I, 𝑑

𝐴
1

= 𝑑
𝐵
1

= 2 and 𝑑
𝐴
2

= 𝑑
𝐵
2

= 3 (see
Figure 3).

By the definition of ABC index, we have ABC(𝐻∗) −
ABC(𝐻) = (3/2)√2 + (𝑊

𝑢𝐴
2

− 𝑊
𝑢𝐴
1

) + (𝑊
𝐴
2
𝐵
2

− 𝑊
𝐴
1
𝐵
1

) +
(𝑊
𝑣𝐵
2

−𝑊
𝑣𝐵
1

) = 𝐷
𝑖
(𝑖 = 1, 2, 3).

If 𝑑
𝑢
= 3 and 𝑑

𝑣
= 3, then𝐷

1
= 2.

If 𝑑
𝑢
= 3 and 𝑑

𝑣
= 4 or 𝑑

𝑢
= 4 and 𝑑

𝑣
= 3, then

𝐷
2
= 4/3 + √15/6.

If 𝑑
𝑢
= 4 and 𝑑

𝑣
= 4, then𝐷

3
= 2/3 + √15/3.

Case 2. In Type II, 𝑑
𝐴
1

= 2, 𝑑
𝐵
1

= 3, 𝑑
𝐴
2

= 3, and 𝑑
𝐵
2

= 4.
(see Figure 4).

Let 𝑢 adjacent to 𝐴 and 𝑣, 𝑤 adjacent to 𝐵 (see Figure 4).
Then 𝑑

𝑢
∈ {2, 3, 4}, 𝑑

𝑣
∈ {3, 4}, and 𝑑

𝑤
∈ {2, 3, 4}. If 𝑑

𝑢
= 2,

𝑑
𝑣
= 3, and 𝑑

𝑤
= 2, which is in contradiction with ℎ ≥ 4; if

𝑑
𝑢
= 3 and 𝑑

𝑣
= 3, which is in contradiction with 𝑑

𝐵
1

= 3;
if 𝑑
𝑢
= 4 and 𝑑

𝑣
= 3, which is in contradiction with 𝑑

𝐴
1

= 2
(𝐴 ∈ 𝑉(𝐻)).

By the definition of ABC index, we have ABC(𝐻∗) −
ABC(𝐻) = (3/2)√2 + (𝑊

𝑢𝐴
2

− 𝑊
𝑢𝐴
1

) + (𝑊
𝐴
2
𝐵
2

− 𝑊
𝐴
1
𝐵
1

) +
(𝑊
𝑣𝐵
2

−𝑊
𝑣𝐵
1

) + (𝑊
𝑤𝐵
2

−𝑊
𝑤𝐵
1

) = 𝐷
𝑖
(𝑖 = 4, 5, . . . , 14).
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𝑢
= 2, 𝑑

𝑣
= 3, and 𝑑

𝑤
= 3, then 𝐷

4
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𝑢
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= 4, then𝐷

5
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𝑣
= 4, and 𝑑

𝑤
= 2, then𝐷

6
= √2 + √6/4.

If 𝑑
𝑢
= 2, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 3, then𝐷

7
= √2+√6/4+

√15/6 − 2/3.
If 𝑑
𝑢
= 2, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 4, then𝐷

8
= √2+√6/2−

√15/6.
If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 2, then 𝐷

9
= √2/2 +

√6/4 + 2/3.
If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 3, then 𝐷

10
= √2/2 +

√6/4 + √5/12.
If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 4, then 𝐷

11
= √2/2 +

√6/2 + 2/3 − √5/12.
If 𝑑
𝑢
= 4, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 2, then 𝐷

12
= √2/2 +

√6/4 + √5/12.
If 𝑑
𝑢
= 4, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 3, then 𝐷

13
= √2/2 +

√6/4 + 2√5/12 − 2/3.
If 𝑑
𝑢
= 4, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 4, then 𝐷

14
= √2/2 +

√6/2.

Case 3. In Type III, 𝑑
𝐴
1

= 𝑑
𝐵
1

= 3 and 𝑑
𝐴
2

= 𝑑
𝐵
2

= 4 (see
Figure 5).

Let 𝑢,𝑥 adjacent to𝐴 and 𝑣,𝑤 adjacent to𝐵 (see Figure 5).
Then, 𝑑

𝑢
∈ {3, 4}, 𝑑

𝑣
∈ {3, 4}, 𝑑

𝑤
∈ {2, 3, 4}, and 𝑑

𝑥
∈

{2, 3, 4}. Since the case𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 𝑦
1
, and 𝑑

𝑤
= 𝑦
2

is the same as 𝑑
𝑢
= 4, 𝑑
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= 3, 𝑑

𝑥
= 𝑦
2
, and 𝑑
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1
, where

𝑦
1
, 𝑦
2
∈ {2, 3, 4}. And note that if 𝑑

𝑢
= 𝑑
𝑣
= 3 or 𝑑

𝑢
= 𝑑
𝑣
= 4,

the vertices 𝑥 and 𝑤 are symmetric.
By the definition of 𝐴𝐵𝐶 index, we have ABC(𝐻∗) −

ABC(𝐻) = (3/2)√2 + (𝑊
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=
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If 𝑑
𝑢
= 𝑑
𝑣
= 4, 𝑑

𝑥
= 2, and 𝑑

𝑤
= 4, then 𝐷

22
=

3√2/2 + √6 − √15/2 − 2/3.
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If 𝑑
𝑢
= 𝑑
𝑣
= 4, 𝑑

𝑥
= 3, and 𝑑

𝑤
= 3, then 𝐷

23
=

3√2/2 + 3√6/4 − 2.

If 𝑑
𝑢
= 𝑑
𝑣
= 4, 𝑑

𝑥
= 3, and𝑑

𝑤
= 4, then 𝐷

24
=

3√2/2 + √6 − √15/3 − 4/3.

If 𝑑
𝑢
= 𝑑
𝑣
= 4, 𝑑

𝑥
= 4, and𝑑

𝑤
= 4, then 𝐷

25
=

3√2/2 + 5√6/4 − 2√15/3 − 2/3.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 2, and 𝑑

𝑤
= 2, then 𝐷

26
=

3√2/2 + √6/2 − 4/3.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 2, and 𝑑

𝑤
= 3, then 𝐷

27
=

3√2/2 + √6/2 + √15/6 − 2.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 2, and 𝑑

𝑤
= 4, then 𝐷

28
=

3√2/2 + 3√6/4 − √15/6 − 4/3.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 3, and 𝑑

𝑤
= 2, then 𝐷

29
=

3√2/2 + √6/2 + √15/6 − 2.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 3, and 𝑑

𝑤
= 3, then 𝐷

30
=

3√2/2 + √6/2 + √15/3 − 8/3.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 3, and 𝑑

𝑤
= 4, then 𝐷

31
=

3√2/2 + 3√6/4 − 2.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 4, and 𝑑

𝑤
= 2, then 𝐷

32
=

3√2/2 + 3√6/4 − √15/6 − 4/3.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 4, and 𝑑

𝑤
= 3, then 𝐷

33
=

3√2/2 + 3√6/4 − 2.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 4, and 𝑑

𝑤
= 4, then 𝐷

34
=

3√2/2 + √6 − √15/3 − 4/3.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 3, 𝑑

𝑥
= 2, and 𝑑

𝑤
= 2, then 𝐷

35
=

3√2/2 + √6/4 + √15/3 − 2.

By directly calculating, we have 𝐷
5
= 𝐷
7
, 𝐷
10
= 𝐷
12
,

𝐷
16
= 𝐷
27
= 𝐷
29
, 𝐷
18
= 𝐷
30
, 𝐷
19
= 𝐷
23
= 𝐷
31
= 𝐷
33
,

𝐷
21
= 𝐷
28
= 𝐷
32
, 𝐷
24
= 𝐷
34
, and 𝐷

6
= max

1≤𝑖≤35
𝐷
𝑖
, 𝐷
14
=

min
1≤𝑖≤35

𝐷
𝑖
. So ABC(𝐻∗) − ABC(𝐻) ∈ 𝑆

2
, where ℎ ≥ 4.

Therefore, ABC(𝐻∗) − ABC(𝐻) ∈ 𝑆.

By Lemma 3, we have the following theorem.

Theorem 4. Let 𝐺 be a catacondensed polyomino graph with
ℎ (ℎ ≥ 2) squares, then

ABC (𝐺) = 3√2 + 2
3
+ (√2 +

√15

3
−
2

3
) 𝑎
1

+ 2𝑎
2
+ (

4

3
+
√15

6
) 𝑎
3

+ (
2

3
+
√15

3
) 𝑎
4

+ (√2 +
√15

2
−
4

3
) 𝑎
5

+ (√2 +
√6

4
+
√15

6
−
2

3
) 𝑎
6

+ (√2 +
√6

4
) 𝑎
7

+ (√2 +
√6

2
−
√15

6
) 𝑎
8

+ (
√2

2
+
√6

4
+
2

3
) 𝑎
9

+ (
√2

2
+
√6

4
+
√15

6
) 𝑎
10

+ (
√2

2
+
√6

2
+
2

3
−
√15

6
) 𝑎
11

+ (
√2

2
+
√6

4
+
√15

3
−
2

3
) 𝑎
12

+ (
√2

2
+
√6

2
) 𝑎
13

+ (
3√2

2
+
√6

4
+
√15

2
−
8

3
) 𝑎
14

+ (
3√2

2
+
√6

2
+
√15

6
− 2) 𝑎

15

+ (
3√2

2
+
√6

4
+
2√15

3
−
10

3
) 𝑎
16

+ (
3√2

2
+
√6

2
+
√15

3
−
8

3
) 𝑎
17

+ (
3√2

2
+
3√6

4
− 2) 𝑎

18

+ (
3√2

2
+
3√6

4
−
√15

3
−
2

3
) 𝑎
19
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+ (
3√2

2
+
3√6

4
−
√15

6
−
4

3
) 𝑎
20

+ (
3√2

2
+ √6 −

√15

2
−
2

3
) 𝑎
21

+ (
3√2

2
+ √6 −

√15

3
−
4

3
) 𝑎
22

+ (
3√2

2
+
5√6

4
−
2√15

3
−
2

3
) 𝑎
23

+ (
3√2

2
+
√6

2
−
4

3
) 𝑎
24

+ (
3√2

2
+
√6

4
+
√15

3
− 2) 𝑎

25
,

(3)

where 𝑎
𝑖
is a nonnegative integer for 𝑖 = 1, 2, . . . , 25 and ℎ =

2 + ∑
25

𝑖=1
𝑎
𝑖
.

Proof. We prove Theorem 4 by the induction on ℎ. If ℎ = 2,
by directly calculating, we have ABC(𝐺) = 3√2 + 2/3, where
𝑎
𝑖
= 0 (𝑖 = 1, 2, . . . , 25). So, Theorem 4 holds for ℎ = 2.
Assume that Theorem 4 holds for all catacondensed

polyomino graphs with ℎ − 1 (ℎ − 1 ≥ 2) squares, that is,

ABC (𝐺) = 3√2 + 2
3
+ (√2 +

√15

3
−
2

3
) 𝑎
1

+ 2𝑎
2
+ (

4

3
+
√15

6
) 𝑎
3

+ (
2

3
+
√15

3
) 𝑎
4

+ (√2 +
√15

2
−
4

3
) 𝑎
5

+ (√2 +
√6

4
+
√15

6
−
2

3
) 𝑎
6

+ (√2 +
√6

4
) 𝑎
7

+ (√2 +
√6

2
−
√15

6
) 𝑎
8

+ (
√2

2
+
√6

4
+
2

3
) 𝑎
9

+ (
√2

2
+
√6

4
+
√15

6
) 𝑎
10

+ (
√2

2
+
√6

2
+
2

3
−
√15

6
) 𝑎
11

+ (
√2

2
+
√6

4
+
√15

3
−
2

3
) 𝑎
12

+ (
√2

2
+
√6

2
) 𝑎
13

+ (
3√2

2
+
√6

4
+
√15

2
−
8

3
) 𝑎
14

+ (
3√2

2
+
√6

2
+
√15

6
− 2) 𝑎

15

+ (
3√2

2
+
√6

4
+
2√15

3
−
10

3
) 𝑎
16

+ (
3√2

2
+
√6

2
+
√15

3
−
8

3
) 𝑎
17

+ (
3√2

2
+
3√6

4
− 2) 𝑎

18

+ (
3√2

2
+
3√6

4
−
√15

3
−
2

3
) 𝑎
19

+ (
3√2

2
+
3√6

4
−
√15

6
−
4

3
) 𝑎
20

+ (
3√2

2
+ √6 −

√15

2
−
2

3
) 𝑎
21

+ (
3√2

2
+ √6 −

√15

3
−
4

3
) 𝑎
22

+ (
3√2

2
+
5√6

4
−
2√15

3
−
2

3
) 𝑎
23

+ (
3√2

2
+
√6

2
−
4

3
) 𝑎
24

+ (
3√2

2
+
√6

4
+
√15

3
− 2) 𝑎

25
,

(4)

where 𝑎
𝑖
is a nonnegative integer for 𝑖 = 1, 2, . . . , 25 andℎ−1 =

2 + ∑
25

𝑖=1
𝑎
𝑖
.

We will prove thatTheorem 4 holds for ℎ in the following.
Let 𝐺∗ be a catacondensed polyomino graph with ℎ squares.
Without the loss of generality,𝐺∗ can be obtained from some
catacondensed polyomino graph 𝐺 with ℎ − 1 squares by
gluing a new square 𝑠 to 𝐺. By Lemma 3, we have ABC(𝐺∗) −
ABC(𝐺) ∈ 𝑆. It means that ABC(𝐺∗) = ABC(𝐺) + 𝑎, where
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𝑎 ∈ 𝑆. By the induction assumption and direct computation,
we have

ABC (𝐺∗) = 3√2 + 2
3
+ (√2 +

√15

3
−
2

3
) 𝑎∗
1

+ 2𝑎∗
2
+ (

4

3
+
√15

6
) 𝑎∗
3

+ (
2

3
+
√15

3
) 𝑎∗
4

+ (√2 +
√15

2
−
4

3
) 𝑎∗
5

+ (√2 +
√6

4
+
√15

6
−
2

3
) 𝑎∗
6

+ (√2 +
√6

4
) 𝑎∗
7

+ (√2 +
√6

2
−
√15

6
) 𝑎∗
8

+ (
√2

2
+
√6

4
+
2

3
) 𝑎∗
9

+ (
√2

2
+
√6

4
+
√15

6
) 𝑎∗
10

+ (
√2

2
+
√6

2
+
2

3
−
√15

6
) 𝑎∗
11

+ (
√2

2
+
√6

4
+
√15

3
−
2

3
) 𝑎∗
12

+ (
√2

2
+
√6

2
) 𝑎∗
13

+ (
3√2

2
+
√6

4
+
√15

2
−
8

3
) 𝑎∗
14

+ (
3√2

2
+
√6

2
+
√15

6
− 2) 𝑎∗

15

+ (
3√2

2
+
√6

4
+
2√15

3
−
10

3
) 𝑎∗
16

+ (
3√2

2
+
√6

2
+
√15

3
−
8

3
) 𝑎∗
17

+ (
3√2

2
+
3√6

4
− 2) 𝑎∗

18

+ (
3√2

2
+
3√6

4
−
√15

3
−
2

3
) 𝑎∗
19

+ (
3√2

2
+
3√6

4
−
√15

6
−
4

3
) 𝑎∗
20

+ (
3√2

2
+ √6 −

√15

2
−
2

3
) 𝑎∗
21

+ (
3√2

2
+ √6 −

√15

3
−
4

3
) 𝑎∗
22

+ (
3√2

2
+
5√6

4
−
2√15

3
−
2

3
) 𝑎∗
23

+ (
3√2

2
+
√6

2
−
4

3
) 𝑎∗
24

+ (
3√2

2
+
√6

4
+
√15

3
− 2) 𝑎∗

25
.

(5)

There exists some 𝑙 ∈ {1, 2, . . . , 25} such that 𝑎∗
𝑙
= 𝑎
𝑙
+ 1

and 𝑎∗
𝑗
= 𝑎
𝑗
for 𝑗 ̸= 𝑙 (𝑗 ∈ {1, 2, . . . , 25}). Obviously, 𝑎∗

𝑖
is

a nonnegative integer for 𝑖 = 1, 2, . . . , 25 and 2 + ∑25
𝑖=1
𝑎∗
𝑖
=

2 + 1 + ∑
25

𝑖=1
𝑎
𝑖
= ℎ.

Lemma 5. Let𝐻 be a catacondensed polyomino graph with ℎ
squares. If ℎ ≤ 3, there are exactly four nonisomorphism cata-
condensed polyomino graphs (see Figure 6), where ABC(𝐻

1
) =

2√2, ABC(𝐻
2
) = 3√2 + 2/3, ABC(𝐻

3
) = 3√2 + 8/3,

ABC(𝐻
4
) = 4√2 + √15/3.

Theorem 6. Let 𝑍
ℎ
be a zigzag chain polyomino graph with ℎ

squares, then

ABC (𝑍
ℎ
) =

{{{{
{{{{
{

2√2, ℎ = 1,

3√2 +
2

3
, ℎ = 2,

(ℎ + 1)√2 + (ℎ − 3) ⋅
√6

4
+
√15

3
, ℎ ≥ 3.

(6)

Proof. Obviously, 𝑍
ℎ
can be obtained by gluing a new square

𝑠
ℎ
to 𝑍
ℎ−1

. Let 𝑠
ℎ−1

be the square adjacent to 𝑠
ℎ
(see Figure 1).

We will proveTheorem 6 by the induction on ℎ.
If ℎ = 1, 2, 3, then Theorem 6 holds (by Lemma 5).

Assume that ABC(𝑍
ℎ−1
) = (ℎ−1+1)√2+(ℎ−1−3)⋅(√6/4)+

(√15/3) = ℎ√2 + (ℎ − 4) ⋅ (√6/4) + (√15/3) for ℎ − 1 ≥ 3. By
the induction assumption and the𝐷

6
in Lemma 3, we have

ABC (𝑍
ℎ
) = ABC (𝑍

ℎ−1
) + 𝐷
6

= ℎ√2 + (ℎ − 4) ⋅
√6

4
+
√15

3
+ (√2 +

√6

4
)

= (ℎ + 1)√2 + (ℎ − 3) ⋅
√6

4
+
√15

3
.

(7)

So, Theorem 6 holds.
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Note that 𝐷
6
= max

1≤𝑖≤35
𝐷
𝑖
for ℎ ≥ 4 and by Lemma 5,

we obtain the followingTheorem 7.

Theorem7. Let𝐺 be a catacondensed polyomino graph with ℎ
squares, then ABC(𝐺) ≤ (ℎ+1)√2+(ℎ−3)⋅(√6/4)+(√15/3),
with the equality if and only if 𝐺 ≅ 𝑍

ℎ
.
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We derive several sufficient conditions for monotonicity of eventually positive solutions on a class of second order perturbed
nonlinear difference equation. Furthermore, we obtain a few nonexistence criteria for eventually positive monotone solutions of
this equation. Examples are provided to illustrate our main results.

1. Introduction

The theory of difference equations and their applications
have received intensive attention. In the last few years, new
research achievements kept emerging (see [1–7]). Among
them, in [3], Saker considered the second order nonlinear
delay difference equation

Δ (𝑝
𝑛
Δ𝑥
𝑛
) + 𝑞
𝑛
𝑓 (𝑥
𝑛−𝜎
) = 0, 𝑛 ⩾ 0. (1)

Saker used the Riccati transformation technique to obtain
several sufficient conditions which guarantee that every
solution of (1) oscillates or converges to zero. In [4], Rath et
al. considered the more general second order equations

Δ (𝑟
𝑛
Δ (𝑦
𝑛
− 𝑝
𝑛
𝑦
𝑛−𝑚

)) + 𝑞
𝑛
𝐺 (𝑦
𝑛−𝑘
) = 0, 𝑛 ⩾ 0,

Δ (𝑟
𝑛
Δ (𝑦
𝑛
− 𝑝
𝑛
𝑦
𝑛−𝑚

)) + 𝑞
𝑛
𝐺 (𝑦
𝑛−𝑘
) = 𝑓
𝑛
, 𝑛 ⩾ 0.

(2)

They found necessary conditions for the solutions of the
above equations to be oscillatory or tend to zero. Following
this trend, this paper is concerned with the second order
perturbed nonlinear difference equation

Δ (𝑎
𝑛
Δ𝑥
𝑛
) + 𝑃 (𝑛, 𝑥

𝑛
, 𝑥
𝑛+1
) = 𝑄 (𝑛, 𝑥

𝑛
, Δ𝑥
𝑛
) , 𝑛 ⩾ 0,

(3)

where {𝑎
𝑛
} is a positive sequence, 𝑃,𝑄 : 𝑁 × 𝑅2 → 𝑅 are

two continuous functions, and Δ is the forward difference
operator defined as Δ𝑥

𝑛
= 𝑥
𝑛+1

− 𝑥
𝑛
.

In [8], Li and Cheng considered the special case of (3)

Δ (𝑝
𝑛−1
Δ𝑥
𝑛−1
) + 𝑞
𝑛
𝑓 (𝑥
𝑛
) = 0, 𝑛 ⩾ 0. (4)

They got the sufficient conditions for asymptotically mono-
tone solutions of (4). Enlightened by [8, 9], in this paper, we
derive several sufficient conditions for monotonicity of even-
tually positive solutions on (3) and obtain a few nonexistence
criteria for eventually positivemonotone solutions of (3).Our
results improve and generalize results in [8]. We also provide
examples to illustrate our main results.

For convenience, these essential conditions used in main
results are listed as follows:

(𝐻
1
) there exists a continuous function 𝑓 : 𝑅 → 𝑅 such
that 𝑥𝑓(𝑥) > 0 for all 𝑥 ̸= 0;

(𝐻
2
) 𝑓 is a derivable function and 𝑓(𝑥) ⩾ 0 for 𝑥 ̸= 0;

(𝐻
3
) there exist two sequences {𝑝

𝑛
} and {𝑞

𝑛
}, such that

𝑃(𝑛, 𝑥
𝑛
, 𝑥
𝑛+1
)/𝑓(𝑥

𝑛+1
) ⩾ 𝑝

𝑛
and 𝑄(𝑛, 𝑥

𝑛
, Δ𝑥
𝑛
)/

𝑓(𝑥
𝑛+1
) ⩽ 𝑞
𝑛
for 𝑥
𝑛
̸= 0;

(𝐻
4
) ∑
∞

𝑛=𝑛
0

1/𝑎
𝑛
= +∞, 𝑛

0
is a positive integral number,

where 𝑎
𝑛
, 𝑃(𝑛, 𝑥

𝑛
, 𝑥
𝑛+1
) and 𝑄(𝑛, 𝑥

𝑛
, Δ𝑥
𝑛+1
) are all in (3).
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2. Main Results

We first state a result which relates a positive sequence and
a positive nondecreasing function. Its proof can be found in
[8].

Lemma 1 (see [8]). Let 𝑓(𝑥) be a positive nondecreasing
function defined for 𝑥 > 0. Let {𝑥

𝑘
} be a real sequence such

that 𝑥
𝑘
> 0 for 𝑖 ⩽ 𝑘 ⩽ 𝑗 + 1. Then

𝑗

∑
𝑘=𝑖

Δ𝑥
𝑘

𝑓 (𝑥
𝑘+1
)
⩽ ∫
𝑥
𝑗+1

𝑥
𝑖

𝑑𝑢

𝑓 (𝑢)
⩽

𝑗

∑
𝑘=𝑖

Δ𝑥
𝑘

𝑓 (𝑥
𝑘
)
. (5)

Theorem 2. Suppose that conditions (𝐻
1
)–(𝐻
4
) hold, 𝑝

𝑛
and

𝑞
𝑛
satisfy the following conditions:

(𝐻
5
) ∑
∞

𝑠=𝑛
0

(𝑝
𝑠
− 𝑞
𝑠
) < +∞;

(𝐻
6
) lim inf

𝑛→∞
∑
𝑛

𝑠=𝑛
0

(𝑝
𝑠
− 𝑞
𝑠
) ⩾ 0

for all 𝑛
0
. Then eventually positive solutions of (3) are eventu-

ally monotone increasing.

Proof. Suppose that {𝑥
𝑛
} is a positive solution of (3), say 𝑥

𝑛
>

0 for 𝑛 > 𝑁 > 𝑛
0
. If conclusion cannot hold, without any loss

of generality, assume Δ𝑥
𝑁
⩽ 0, in view of (3) and conditions,

we have

Δ(
𝑎
𝑛
Δ𝑥
𝑛

𝑓 (𝑥
𝑛
)
) =

Δ (𝑎
𝑛
Δ𝑥
𝑛
)

𝑓 (𝑥
𝑛+1
)
−
𝑎
𝑛
(Δ𝑥
𝑛
)
2

𝑓 (𝑥
𝑛
+ 𝜃Δ𝑥

𝑛
)

𝑓 (𝑥
𝑛
) 𝑓 (𝑥

𝑛+1
)

⩽ 𝑞
𝑛
− 𝑝
𝑛

(0 < 𝜃 < 1) ,

(6)

by summing (6) from𝑁 to 𝑛 − 1, then

𝑎
𝑛
Δ𝑥
𝑛

𝑓 (𝑥
𝑛
)
⩽
𝑎
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁
)
−
𝑛−1

∑
𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) . (7)

Making use of condition (𝐻
6
), we know Δ𝑥

𝑛
< 0 for 𝑛 ⩾ 𝑁.

Summing (3) and using (𝐻
3
), we have

𝑎
𝑛
Δ𝑥
𝑛
⩽ 𝑎
𝑁
Δ𝑥
𝑁
−
𝑛−1

∑
𝑠=𝑁

𝑓 (𝑥
𝑠+1
) (𝑝
𝑠
− 𝑞
𝑠
)

= 𝑎
𝑁
Δ𝑥
𝑁
− 𝑓 (𝑥

𝑛+1
)
𝑛−1

∑
𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
)

+
𝑛−1

∑
𝑠=𝑁

Δ𝑓 (𝑥
𝑠
)(
𝑠−1

∑
𝑡=𝑁

(𝑝
𝑡
− 𝑞
𝑡
))

⩽ 𝑎
𝑁
Δ𝑥
𝑁
.

(8)

By summing (8), we then see that

𝑥
𝑛+1

⩽ 𝑥
𝑁
+ 𝑎
𝑁
Δ𝑥
𝑁

𝑛

∑
𝑠=𝑁

1

𝑎
𝑠

→ −∞ (as 𝑛 → ∞) ,

(9)

which contradicts the fact 𝑥
𝑛
> 0. The proof is complete.

Example 3. Consider the difference equation

Δ(
Δ𝑥
𝑛

𝑛2
) + 𝑥
𝑛+1
(𝑟 (𝑛, 𝑥

𝑛
) +

1

𝑛2 (𝑛 + 1)
−

1

(𝑛 + 1)3
)

= 𝑥
𝑛+1
𝑟 (𝑛, 𝑥

𝑛
) , 𝑛 ⩾ 0,

(10)

where 𝑟(𝑛, 𝑥
𝑛
) is any function of 𝑛 and𝑥

𝑛
. By taking𝑓(𝑥) = 𝑥,

we have
𝑃 (𝑛, 𝑥

𝑛
, 𝑥
𝑛+1
)

𝑓 (𝑥
𝑛+1
)

= 𝑟 (𝑛, 𝑥
𝑛
) +

1

𝑛2 (𝑛 + 1)
−

1

(𝑛 + 1)3
= 𝑝
𝑛
,

𝑄 (𝑛, 𝑥
𝑛
, Δ𝑥
𝑛
)

𝑓 (𝑥
𝑛+1
)

= 𝑟 (𝑛, 𝑥
𝑛
) = 𝑞
𝑛
.

(11)

So conditions of Theorem 2 hold. By Theorem 2, (10) has a
positive monotone increasing solution {𝑥

𝑛
} = {𝑛}.

Theorem 4. If conditions (𝐻
1
)–(𝐻
4
) hold, there exist𝑀 > 0

and 𝑗 > 𝑛
0
for 𝑛
0
⩾ 𝑀 such that

lim sup
𝑛→∞

𝑛

∑
𝑘=𝑗

1

𝑎
𝑘

𝑘−1

∑
𝑠=𝑛
0

(𝑝
𝑠
− 𝑞
𝑠
) > 0. (12)

Then eventually positive solutions {𝑥
𝑛
} of (3) are eventually

monotone increasing or lim inf
𝑛→∞

𝑥
𝑛
= 0.

Proof. Suppose {𝑥
𝑛
} is a positive solution of (3), there exists

𝑁 > 𝑛
0
such that 𝑥

𝑛
> 0 for 𝑛 > 𝑁. Let Δ𝑥

𝑁
⩽ 0, and

lim sup
𝑛→∞

𝑛

∑
𝑘=𝑗

1

𝑎
𝑘

𝑘−1

∑
𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) > 0, 𝑗 > 𝑁. (13)

If lim inf
𝑛→∞

𝑥
𝑛
̸= 0, then there exist 𝑇 ⩾ 𝑁 and a number

𝛼 > 0 such that 𝑥
𝑛
> 𝛼 > 0 for 𝑛 ⩾ 𝑇; in view of (7), we get

Δ𝑥
𝑛

𝑓 (𝑥
𝑛
)
⩽
𝑎
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁
)
⋅
1

𝑎
𝑛

−
1

𝑎
𝑛

𝑛−1

∑
𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) . (14)

Summing (14) and making use of Lemma 1, we know

∫
𝛼

𝑥
𝑗

𝑑𝑢

𝑓 (𝑢)
⩽ ∫
𝑥
𝑛+1

𝑥
𝑗

𝑑𝑢

𝑓 (𝑢)

⩽
𝑎
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁
)

𝑛

∑
𝑘=𝑗

1

𝑎
𝑘

−
𝑛

∑
𝑘=𝑗

1

𝑎
𝑘

𝑘−1

∑
𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) .

(15)

By (𝐻
4
), the right side of (15) tends to −∞ as 𝑛 → ∞,

whereas the left side is finite. This contradiction completes
our proof.

Example 5. Consider the difference equation

Δ(
Δ𝑥
𝑛

√𝑛
) +

𝑥
𝑛+1

√𝑛
=
√𝑛 + 2

𝑛 + 1
𝑥
𝑛+1
, 𝑛 ⩾ 0. (16)

By taking 𝑓(𝑥) = 𝑥, we have 𝑃(𝑛, 𝑥
𝑛
, 𝑥
𝑛+1
)/𝑓(𝑥

𝑛+1
) =

1/√𝑛 = 𝑝
𝑛
, 𝑄(𝑛, 𝑥

𝑛
, Δ𝑥
𝑛
)/𝑓(𝑥

𝑛+1
) = √𝑛 + 2/𝑛 + 1 = 𝑞

𝑛
.

So conditions of Theorem 4 hold. By Theorem 4, (16) has a
positive monotone increasing solution {𝑥

𝑛
} = {√𝑛}.
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Theorem 6. If conditions (𝐻
1
)–(𝐻
3
) hold, and

lim inf
𝑛→∞

1

𝑎
𝑛

𝑛−1

∑
𝑠=𝑛
0

(𝑝
𝑠
− 𝑞
𝑠
) > 0 (17)

holds for all 𝑛
0
. Then eventually positive solutions {𝑥

𝑛
} of (3)

are eventually monotone increasing or eventually monotone
decreasing and lim

𝑛→∞
𝑥
𝑛
= 0.

Proof. Suppose {𝑥
𝑛
} is a positive solution of (3), there exists

𝑁 > 𝑛
0
such that 𝑥

𝑛
> 0 for 𝑛 > 𝑁. Let Δ𝑥

𝑁
⩽ 0 and

lim inf
𝑛→∞

1/𝑎
𝑛
∑
𝑛−1

𝑠=𝑁
(𝑝
𝑠
− 𝑞
𝑠
) > 0, then there exists 𝛽 > 0

such that

1

𝑎
𝑛

𝑛−1

∑
𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) ⩾ 𝛽 > 0, 𝑛 ⩾ 𝑁. (18)

From (7), we have

Δ𝑥
𝑛
⩽ −𝑓 (𝑥

𝑛
) ⋅

1

𝑎
𝑛

𝑛−1

∑
𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) ⩽ −𝛽𝑓 (𝑥

𝑛
) < 0, 𝑛 > 𝑁.

(19)

If lim
𝑛→∞

𝑥
𝑛
̸= 0, then there exists 𝑐 > 0 such that 𝑥

𝑛
⩾ 𝑐 > 0.

There is no harm in assumption 𝑥
𝑛
⩾ 𝑐 for 𝑛 ⩾ 𝑁. Summing

(19), we obtain

𝑐 ⩽ 𝑥
𝑛+1

⩽ 𝑥
𝑁
− (𝑛 + 1 − 𝑁) 𝛽𝑓 (𝑐) → −∞ (𝑛 → ∞) ,

(20)

which is a contrary. The proof is complete.

Example 7. Consider the difference equation

Δ (𝑛2Δ𝑥
𝑛
) + 𝑥
𝑛+1
(𝑟 (𝑛, 𝑥

𝑛
) +

1

𝑛 + 2
) = 𝑥

𝑛+1
𝑟 (𝑛, 𝑥

𝑛
) ,

(21)

where 𝑟(𝑛, 𝑥
𝑛
) is any function of 𝑛 and𝑥

𝑛
. By taking𝑓(𝑥) = 𝑥,

we have

𝑃 (𝑛, 𝑥
𝑛
, 𝑥
𝑛+1
)

𝑓 (𝑥
𝑛+1
)

= 𝑟 (𝑛, 𝑥
𝑛
) +

1

𝑛 + 2
= 𝑝
𝑛
,

𝑄 (𝑛, 𝑥
𝑛
, Δ𝑥
𝑛
)

𝑓 (𝑥
𝑛+1
)

= 𝑟 (𝑛, 𝑥
𝑛
) = 𝑞
𝑛
.

(22)

So conditions of Theorem 6 hold. By Theorem 6, (21) has a
monotone decreasing positive solution {𝑥

𝑛
} = {1/𝑛}.

Theorem 8. If conditions (𝐻
1
)–(𝐻
3
) hold and

(𝐻
7
) lim sup

𝑛→∞
∑
𝑛

𝑠=𝑘
1/𝑎
𝑠
∑
𝑠−1

𝑡=𝑛
0

(𝑝
𝑡
− 𝑞
𝑡
) = +∞;

(𝐻
8
) for all 𝜀 > 0, ∫𝜀

0
𝑑𝑢/𝑓(𝑢) < +∞.

Then eventually positive solutions of (3) are eventually mono-
tone increasing.

Proof. Suppose 𝑥
𝑛
> 0 for 𝑛 > 𝑁 > 𝑛

0
, {𝑥
𝑛
} is a solution

of (3), and lim sup
𝑛→∞

∑
𝑛

𝑠=𝑘
1/𝑎
𝑠
∑
𝑠−1

𝑡=𝑁
(𝑝
𝑡
− 𝑞
𝑡
) = ∞. If the

result does not hold, without any loss of generality, assume
Δ𝑥
𝑁
⩽ 0. In view of (7), we see that

Δ𝑥
𝑛

𝑓 (𝑥
𝑛
)
⩽
𝑎
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁
)
⋅
1

𝑎
𝑛

−
1

𝑎
𝑛

𝑛−1

∑
𝑡=𝑁

(𝑝
𝑡
− 𝑞
𝑡
)

⩽ −
1

𝑎
𝑛

𝑛−1

∑
𝑡=𝑁

(𝑝
𝑡
− 𝑞
𝑡
) .

(23)

Summing (23) and using Lemma 1, we know

∫
𝑥
𝑛+1

𝑥
𝑘

𝑑𝑢

𝑓 (𝑢)
⩽
𝑛

∑
𝑠=𝑘

Δ𝑥
𝑠

𝑓 (𝑥
𝑠
)
⩽ −
𝑛

∑
𝑠=𝑘

1

𝑎
𝑠

𝑠−1

∑
𝑡=𝑁

(𝑝
𝑡
− 𝑞
𝑡
) . (24)

This is a contradiction. The proof is complete.

Remark 9. In Theorems 2 and 4, condition (𝐻
4
) is essential;

that is, the series with positive terms ∑∞
𝑛=𝑛
0

1/𝑎
𝑛
is divergent,

but it is not required inTheorems 6 and 8.

Remark 10. The eventually positive solutions in Theorems 4
and 8 are increasing it is not necessarily so in Theorem 6.

Next, we will derive several nonexistence criteria for
eventually positive monotone solutions of (3).

Theorem 11. If conditions (𝐻
1
)–(𝐻
3
) hold and

lim sup
𝑛→∞

𝑛

∑
𝑘=1

(𝑝
𝑘
− 𝑞
𝑘
) = +∞. (25)

Then, (3) cannot have any eventually positive monotone
increasing solutions.

Proof of Theorem 11 is obvious. If 𝑥
𝑛
> 0 is an eventually

positive increasing solution, by means of conditions, (7) is a
contrary.

Theorem 12. If conditions (𝐻
1
)–(𝐻
3
) hold, and there is a

nonnegative and nondegenerate sequence {𝜑
𝑛
} such that

lim sup
𝑛→∞

∑
𝑛

𝑘=𝑛
0

𝜑
𝑘+1
/𝑎
𝑘
∑
𝑘−1

𝑠=𝑛
0

(𝑝
𝑠
− 𝑞
𝑠
)

∑
𝑛

𝑘=𝑛
0

𝜑
𝑘+1
/𝑎
𝑘

= ∞ (26)

holds for all 𝑛
0
. Then, (3) cannot have any eventually positive

nondecreasing solutions.

Proof. Suppose that {𝑥
𝑛
} is a positive solution of (3), there

exists 𝑁 > 𝑛
0
such that 𝑥

𝑛
> 0 and Δ𝑥

𝑛
⩾ 0 for 𝑛 > 𝑁.

Multiplying (7) by 𝜑
𝑛+1
/𝑎
𝑛
, we have

𝜑
𝑛+1
Δ𝑥
𝑛

𝑓 (𝑥
𝑛
)
+
𝜑
𝑛+1

𝑎
𝑛

𝑛−1

∑
𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) ⩽

𝜑
𝑛+1

𝑎
𝑛

⋅
𝑎
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁
)
. (27)

So we obtain
𝑛

∑
𝑘=𝑁

𝜑
𝑘+1

𝑎
𝑘

𝑘−1

∑
𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) ⩽

𝑎
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁
)

𝑛

∑
𝑘=𝑁

𝜑
𝑘+1

𝑎
𝑘

. (28)

This is contrary to our condition. The proof is complete.
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Theorem 13. If (𝐻
1
) and (𝐻

3
) hold, {𝑎

𝑛
} is a nondecreasing

sequence, 𝑓(𝑥) is a nondecreasing function, and there is a
nonnegative sequence {𝜑

𝑛
}, where {Δ𝜑

𝑛
} is bounded, and

(𝐻
9
) lim
𝑛→∞

∑
𝑛−1

𝑠=𝑛
0

𝜑
𝑠+1
(𝑝
𝑠
− 𝑞
𝑠
)/𝑎
𝑠+1

= +∞ for all 𝑛
0
;

(𝐻
10
) 0 < ∫

+∞

𝜀
𝑑𝑢/𝑓(𝑢) < +∞, 𝜀 > 0.

Then, (3) cannot have any eventually positive monotone
increasing solutions.

Proof. Suppose that {𝑥
𝑛
} is a solution of (3), and there exists

𝑁 > 𝑛
0
such that 𝑥

𝑛
> 0 and Δ𝑥

𝑛
> 0 for 𝑛 > 𝑁. Multiplying

(3) by 𝜑
𝑛+1
/𝑎
𝑛+1
𝑓(𝑥
𝑛+1
) and summing from𝑁 to 𝑛 − 1 again,

we have
𝑛−1

∑
𝑠=𝑁

𝜑
𝑠+1

𝑎
𝑠+1
𝑓 (𝑥
𝑠+1
)
Δ (𝑎
𝑠
Δ𝑥
𝑠
) ⩽
𝑛−1

∑
𝑠=𝑁

𝜑
𝑠+1

𝑎
𝑠+1

(𝑞
𝑠
− 𝑝
𝑠
) . (29)

Namely,

𝜑
𝑛
Δ𝑥
𝑛

𝑓 (𝑥
𝑛
)
−
𝜑
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁
)
−
𝑛−1

∑
𝑠=𝑁

𝑎
𝑠
Δ𝑥
𝑠
Δ(

𝜑
𝑠

𝑎
𝑠
𝑓 (𝑥
𝑠
)
)

⩽
𝑛−1

∑
𝑠=𝑁

𝜑
𝑠+1

𝑎
𝑠+1

(𝑞
𝑠
− 𝑝
𝑠
) .

(30)

As {𝑎
𝑛
} is a nondecreasing sequence, we get

Δ(
𝜑
𝑠

𝑎
𝑠
𝑓 (𝑥
𝑠
)
) =

𝜑
𝑠+1

𝑎
𝑠+1
𝑓 (𝑥
𝑠+1
)
−

𝜑
𝑠

𝑎
𝑠
𝑓 (𝑥
𝑠
)
⩽

Δ𝜑
𝑠

𝑎
𝑠+1
𝑓 (𝑥
𝑠+1
)
.

(31)

Thus

𝑎
𝑠
Δ𝑥
𝑠
⋅ Δ(

𝜑
𝑠

𝑎
𝑠
𝑓 (𝑥
𝑠
)
) ⩽

Δ𝑥
𝑠
Δ𝜑
𝑠

𝑓 (𝑥
𝑠+1
)
. (32)

From (30), we obtain

𝜑
𝑛
Δ𝑥
𝑛

𝑓 (𝑥
𝑛
)
−
𝜑
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁
)
+
𝑛−1

∑
𝑠=𝑁

𝜑
𝑠+1

𝑎
𝑠+1

(𝑝
𝑠
− 𝑞
𝑠
) ⩽
𝑛−1

∑
𝑠=𝑁

Δ𝑥
𝑠
Δ𝜑
𝑠

𝑓 (𝑥
𝑠+1
)
,

(33)

using Lemma 1 and conditions, we have
𝑛−1

∑
𝑠=𝑁

Δ𝑥
𝑠
Δ𝜑
𝑠

𝑓 (𝑥
𝑠+1
)
⩽ 𝑀
𝑛−1

∑
𝑠=𝑁

Δ𝑥
𝑠

𝑓 (𝑥
𝑠+1
)
⩽ 𝑀∫

+∞

𝑥
𝑁

𝑑𝑢

𝑓 (𝑢)
, 𝑀 > 0.

(34)

By letting 𝑛 → ∞, we see that the left-hand side of (33) is
bounded, this is contrary to our condition (𝐻

9
). The proof is

complete.

By means of proof of Theorem 13, we get

Corollary 14. If (𝐻
1
), (𝐻
3
), and (𝐻

9
) hold, {𝑎

𝑛
} is a non-

decreasing sequence, 𝑓(𝑥) is a nondecreasing function, and
there is a nonnegative sequence {𝜑

𝑛
}, {Δ𝜑

𝑛
} is bounded, and

0 < ∫
𝜀

0
𝑑𝑢/𝑓(𝑢) < +∞ for 𝜀 > 0. Then, (3) cannot have any

eventually positive nondecreasing bounded solutions.

Corollary 15. Suppose (𝐻
1
), (𝐻
3
), and (𝐻

9
) hold, {𝑎

𝑛
} is

a nondecreasing sequence, 𝑓(𝑥) is a nondecreasing function,
and there is a nonnegative nonincreasing sequence {𝜑

𝑛
}. Then,

(3) cannot have any eventually positive monotone increasing
solutions.

Theorem 16. Suppose (𝐻
1
), (𝐻
3
), and (𝐻

5
) hold, 𝑓(𝑥) is a

nondecreasing function, and

(𝐻
11
) lim sup

𝑛→∞
∑
𝑛

𝑘=𝑛
0

1/𝑎
𝑘
∑
∞

𝑠=𝑘
(𝑝
𝑠
−𝑞
𝑠
) = +∞ for all 𝑛

0
;

(𝐻
12
) 0 < ∫

+∞

𝜀
𝑑𝑢/𝑓(𝑢) < +∞, 𝜀 > 0.

Then, (3) cannot have any eventually positive nondecreasing
solutions.

Proof. Assume to the contrary that there exists 𝑁 > 𝑛
0
such

that 𝑥
𝑛
> 0 and Δ𝑥

𝑛
> 0 for 𝑛 > 𝑁. {𝑥

𝑛
} is a solution of (3).

By means of (3) and (𝐻
3
), we get

Δ (𝑎
𝑛
Δ𝑥
𝑛
)

𝑓 (𝑥
𝑛+1
)
⩽ (𝑞
𝑛
− 𝑝
𝑛
) , (35)

by summing (35) from𝑁 to 𝑛 − 1, thus

𝑎
𝑛
Δ𝑥
𝑛

𝑓 (𝑥
𝑛+1
)
−
𝑎
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁+1

)
−
𝑛−1

∑
𝑠=𝑁

𝑎
𝑠+1
Δ𝑥
𝑠+1
Δ(

1

𝑓 (𝑥
𝑠+1
)
)

⩽
𝑛−1

∑
𝑠=𝑁

(𝑞
𝑠
− 𝑝
𝑠
) .

(36)

As 𝑓(𝑥) is a nondecreasing function, we know
Δ𝑥
𝑠+1
Δ(1/𝑓(𝑥

𝑠+1
)) ⩽ 0, so
∞

∑
𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) ⩽

𝑎
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁+1

)
. (37)

In view of Lemma 1, we see that
𝑛

∑
𝑁=𝑇

1

𝑎
𝑁

∞

∑
𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) ⩽
𝑛

∑
𝑁=𝑇

Δ𝑥
𝑁

𝑓 (𝑥
𝑁+1

)
⩽ ∫
𝑥
𝑛+1

𝑥
𝑇

𝑑𝑢

𝑓 (𝑢)
. (38)

This contradiction establishes our assertion.

Bymeans of proof ofTheorem 16, we obtain the following.

Corollary 17. Suppose (𝐻
1
), (𝐻
3
), (𝐻
5
), and (𝐻

11
) hold,

𝑓(𝑥) is a nondecreasing function. Then (3) cannot have any
eventually positive nondecreasing bounded solutions.
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Wilson-Cowan model of neuronal population with time-varying delays is considered in this paper. Some sufficient conditions
for the existence and delay-based exponential stability of a unique almost periodic solution are established. The approaches are
based on constructing Lyapunov functionals and the well-known Banach contractionmapping principle.The results are new, easily
checkable, and complement existing periodic ones.

1. Introduction

Consider a well-knownWilson-Cowan typemodel [1, 2] with
time-varying delays

𝑑𝑋
𝑃
(𝑡)

𝑑𝑡
= −𝑋
𝑃
(𝑡) + [𝑘

𝑃
− 𝑟
𝑃
𝑋
𝑃
(𝑡)]

× 𝐺 [𝑤1
𝑃
𝑋
𝑃
(𝑡 − 𝜏
𝑃
(𝑡))

−𝑤1
𝑁
𝑋
𝑁
(𝑡 − 𝜏
𝑁
(𝑡)) + 𝐼

𝑃
(𝑡)] ,

𝑑𝑋
𝑁
(𝑡)

𝑑𝑡
= −𝑋
𝑁
(𝑡) + [𝑘

𝑁
− 𝑟
𝑁
𝑋
𝑁
(𝑡)]

× 𝐺 [𝑤2
𝑃
𝑋
𝑃
(𝑡 − 𝜏
𝑃
(𝑡))

−𝑤2
𝑁
𝑋
𝑁
(𝑡 − 𝜏
𝑁
(𝑡)) + 𝐼

𝑁
(𝑡)] ,

(1)

where 𝑋
𝑃
(𝑡), 𝑋
𝑁
(𝑡) represent the proportion of excitatory

and inhibitory neurons firing per unit time at the instant
𝑡, respectively. 𝑟

𝑃
and 𝑟
𝑁
are related to the duration of the

refractory period, 𝑘
𝑃
and 𝑘

𝑁
are constants. 𝑤1

𝑃
, 𝑤1
𝑁
, 𝑤2
𝑃
, and

𝑤2
𝑁
are the strengths of connections between the populations.

𝐼
𝑃
(𝑡), 𝐼
𝑁
(𝑡) are the external inputs to the excitatory and

the inhibitory populations. 𝐺(⋅) is the response function of
neuronal activity and it is always assumed to be sigmoid type.

𝜏
𝑃
(𝑡), 𝜏
𝑁
(𝑡) correspond to the transmission time-varying

delays.
It is interesting to revisit Wilson-Cowan system on the

following points.

(i) The Wilson-Cowan model has a realistic biological
background which describes interactions between
excitatory and inhibitory populations of neurons [1–
3]. It has extensive application such as pattern analysis
and image processing [4, 5].

(ii) There exists rich dynamical behavior in Wilson-
Cowan model. Theoretical results about stable limit
cycles, equilibria, chaos, and oscillatory activity have
been reported in [2, 3, 6–9]. Recently, Decker and
Noonburg [8] reported new results about the exis-
tence of three periodic solutions when each neuron
was stimulated by periodical inputs. However, under
time-varying (periodic or almost periodic) inputs,
Wilson-Cowan model can have more complex state
space and coexistence of divergent solutions and local
stable solutions which could not be easily estimated
by its boundary. To see this, we can refer to Figure 1
for the phase portrait of solutions of the following
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Figure 1: Coexistence of divergent and local stable solutions of (2)
with almost periodic inputs.

Wilson-Cowan type model with 𝐺(𝑧) = tanh(𝑧) and
almost periodic inputs [10–12]:

𝑑𝑋
𝑃
(𝑡)

𝑑𝑡
= −𝑋
𝑃
(𝑡) + [1 − 𝑋

𝑃
(𝑡)]

× 𝐺 [𝑋
𝑃
(𝑡) − 𝑋

𝑁
(𝑡) + 5 sin√2𝑡] ,

𝑑𝑋
𝑁
(𝑡)

𝑑𝑡
= −𝑋
𝑁
(𝑡) + [1 − 𝑋

𝑁
(𝑡)]

× 𝐺 [𝑋
𝑃
(𝑡) − 𝑋

𝑁
(𝑡) + 0.5 cos 𝑡 sin 𝑡] .

(2)

(iii) Few works reported almost periodicity of Wilson-
Cowan type model in the literature. Under almost
periodic inputs, whether there exists a unique almost
periodic solution of (1) which is stable? How to esti-
mate its located boundary?Revealing these results can
give a significant insight into the complex dynamical
structure of Wilson-Cowan type model.

Throughout this paper, we always assume that 𝑘
𝑃
, 𝑘
𝑁
, 𝑟
𝑃
,

𝑟
𝑁
, 𝑤1
𝑃
, 𝑤2
𝑃
, 𝑤1
𝑁
, and 𝑤2

𝑁
are positive constants, 𝜏

𝑃
(𝑡), 𝜏
𝑁
(𝑡),

𝐼
𝑃
(𝑡), and 𝐼

𝑁
(𝑡) are almost periodic functions [12], and set

𝜏⊤
𝑃
= sup
𝑡∈R

𝜏
𝑃
(𝑡) , 𝜏⊤

𝑁
= sup
𝑡∈R

𝜏
𝑁
(𝑡) ,

𝐼⊤
𝑃
= sup
𝑡∈R

𝐼𝑃 (𝑡)
 , 𝐼⊤

𝑁
= sup
𝑡∈R

𝐼𝑁 (𝑡)
 .

(3)

Moreover, we need some basic assumptions in this paper.

(𝐻
1
) 𝐺(0) = 0, sup

𝑣∈R|𝐺(𝑣)| ⩽ 𝐵𝑠 and there exists an 𝐿 >
0 such that

|𝐺 (𝑢) − 𝐺 (𝑣)| ⩽ 𝐿 |𝑢 − 𝑣| for ∀𝑢, 𝑣 ∈ R. (4)

(𝐻
2
)The quadratic equation (𝐾 + 𝑅𝑥)(𝐼 + 𝑊𝑥) = 𝑥 has a
positive solution 𝛿, where

𝑊 = max{𝐿 (𝑤1
𝑃
+ 𝑤1
𝑁
) , 𝐿 (𝑤2

𝑃
+ 𝑤2
𝑁
)} ,

𝐾 = max{𝑘
𝑃
, 𝑘
𝑁
} , 𝑅 = max{𝑟

𝑃
, 𝑟
𝑁
} ,

𝐼 = max {𝐿𝐼⊤
𝑃
, 𝐿𝐼⊤
𝑁
} .

(5)

(𝐻
3
) 𝜏
𝑃
(𝑡), 𝜏
𝑁
(𝑡) are bounded and continuously differen-

tiable with 0 ≤ 𝜏
𝑃
(𝑡) ≤ 𝜏⊤

𝑃
,

0 ≤ 𝜏
𝑁
(𝑡) ≤ 𝜏

⊤

𝑁
, 1 − ̇𝜏

𝑃
(𝑡) > 0,

1 − ̇𝜏
𝑁
(𝑡) > 0 for 𝑡 ∈ 𝑅.

(6)

For for all 𝑢 = (𝑢
1
, 𝑢
2
) ∈ R2, we define the norm ‖𝑢‖ =

max{|𝑢
1
|, |𝑢
2
|}. Let 𝐵 := {𝜓 | 𝜓 = (𝜓

1
, 𝜓
1
)}, where 𝜓 is an

almost periodic function on R2. For all 𝜓 ∈ 𝐵, if we define
induced nodule ‖𝜓‖

𝐵
= sup

𝑡∈R‖𝜓(𝑡)‖, then 𝐵 is a Banach
space. The initial conditions of system (1) are of the form

𝑋
𝑃
(𝑠) = 𝜓

𝑃
(𝑠) , 𝑋

𝑁
(𝑠) = 𝜓

𝑁
(𝑠) , 𝑠 ∈ [−𝜏, 0] , (7)

where 𝜏 = max{𝜏⊤
𝑃
, 𝜏⊤
𝑁
} and 𝜓 = (𝜓

𝑃
, 𝜓
𝑁
) ∈ 𝐵.

Definition 1 (see [12]). Let 𝑢(𝑡) : R → R𝑛 be continuous.
𝑢(𝑡) is said to be almost periodic on R if, for any 𝜀 > 0, it
is possible to find a real number 𝑙 = 𝑙(𝜀) > 0, and for any
interval with length 𝑙(𝜀), there exists a number 𝛿 = 𝛿(𝜀) in
this interval such that |𝑢(𝑡 + 𝛿) − 𝑢(𝑡)| < 𝜀, for all 𝑡 ∈ R.

The remaining part of this paper is organized as follows.
In Section 2, we will derive sufficient conditions for checking
the existence of almost periodic solutions. In Section 3,
we present delay-based exponential stability of the unique
almost periodic solution of system (1). In Section 4, we
will give an example to illustrate our results obtained in
the preceding sections. Concluding remarks are given in
Section 5.

2. Existence of Almost Periodic Solutions

Theorem 2. Suppose that (𝐻
1
) and (𝐻

2
) hold. If𝐾𝑊+𝑅(𝐵

𝑠
+

𝛿𝑊) < 1, then there exists a unique almost periodic solution of
system (1) in the region

𝐵∗ = {𝜓 | 𝜓 ∈ 𝐵,
𝜓
𝐵 ≤ 𝛿} . (8)
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Proof. For for all 𝜓 = (𝜓
𝑃
, 𝜓
𝑁
) ∈ 𝐵∗, we consider the almost

periodic solution 𝑋𝜓(𝑡) = (𝑋𝜓
𝑃
(𝑡), 𝑋
𝜓

𝑁
(𝑡)) of the following

almost periodic differential equations:

𝑑𝑋
𝑃
(𝑡)

𝑑𝑡
= −𝑋
𝑃
(𝑡) + [𝑘

𝑃
− 𝑟
𝑃
𝜓
𝑃
(𝑡)]

× 𝐺 [𝑤1
𝑃
𝜓
𝑃
(𝑡 − 𝜏
𝑃
(𝑡))

−𝑤1
𝑁
𝜓
𝑁
(𝑡 − 𝜏
𝑁
(𝑡)) + 𝐼

𝑃
(𝑡)] ,

𝑑𝑋
𝑁
(𝑡)

𝑑𝑡
= −𝑋
𝑁
(𝑡) + [𝑘

𝑁
− 𝑟
𝑁
𝜓
𝑁
(𝑡)]

× 𝐺 [𝑤2
𝑃
𝜓
𝑃
(𝑡 − 𝜏
𝑃
(𝑡))

−𝑤2
𝑁
𝜓
𝑁
(𝑡 − 𝜏
𝑁
(𝑡)) + 𝐼

𝑁
(𝑡)] .

(9)

By almost periodicity of 𝜏
𝑃
(𝑡), 𝜏
𝑁
(𝑡), 𝐼
𝑃
(𝑡), and 𝐼

𝑁
(𝑡) and

Theorem 3.4 in [12] or [10], (9) has a unique almost periodic
solution

𝑋
𝜓

𝑃
(𝑡)

= ∫
𝑡

−∞

exp(− (𝑡 − 𝑠)) [𝑘
𝑃
− 𝑟
𝑃
𝜓
𝑃
(𝑠)]

× 𝐺 [𝑤1
𝑃
𝜓
𝑃
(𝑠 − 𝜏
𝑃
(𝑠))

−𝑤1
𝑁
𝜓
𝑁
(𝑠 − 𝜏
𝑁
(𝑠)) + 𝐼

𝑃
(𝑠)] 𝑑𝑠,

𝑋
𝜓

𝑁
(𝑡) = ∫

𝑡

−∞

exp(− (𝑡 − 𝑠)) [𝑘
𝑁
− 𝑟
𝑁
𝜓
𝑁
(𝑠)]

× 𝐺 [𝑤2
𝑃
𝜓
𝑃
(𝑠 − 𝜏
𝑃
(𝑠))

−𝑤2
𝑁
𝜓
𝑁
(𝑠 − 𝜏
𝑁
(𝑠)) + 𝐼

𝑁
(𝑠)] 𝑑𝑠.

(10)

Define a mapping 𝐹 : 𝐵∗ → 𝐵 by setting 𝐹(𝜓)(𝑡) =
(𝐹
𝑃
(𝜓)(𝑡), 𝐹

𝑁
(𝜓)(𝑡)) = 𝑋𝜓(𝑡), for all 𝜓 ∈ 𝐵∗. Now, we prove

that 𝐹 is a self-mapping from 𝐵∗ to 𝐵∗. From (10) and (𝐻
1
),

we obtain

𝐹𝑃 (𝜓) (𝑡)


≤ sup
𝑡∈R


∫
𝑡

−∞

exp (− (𝑡 − 𝑠)) [𝑘
𝑃
− 𝑟
𝑃
𝜓
𝑃
(𝑠)]

× 𝐺 [𝑤1
𝑃
𝜓
𝑃
(𝑠 − 𝜏
𝑃
(𝑠))

−𝑤1
𝑁
𝜓
𝑁
(𝑠 − 𝜏
𝑁
(𝑠)) + 𝐼

𝑃
(𝑠)] 𝑑𝑠



≤ sup
𝑡∈R

[𝑘
𝑃
+ 𝑟
𝑃

𝜓𝑃 (𝑡)
]

× 𝐺
[𝑤
1

𝑃
𝜓
𝑃
(𝑡 − 𝜏
𝑃
(𝑡))

−𝑤1
𝑁
𝜓
𝑁
(𝑡 − 𝜏
𝑁
(𝑡)) + 𝐼

𝑃
(𝑡)]


≤ (𝑘
𝑃
+ 𝑟
𝑃

𝜓
𝐵)

× 𝐿 (𝑤1
𝑃

𝜓
𝐵 + 𝑤

1

𝑁

𝜓
𝐵 + 𝐼

⊤

𝑃
)

≤ (𝑘
𝑃
+ 𝑟
𝑃

𝜓
𝐵)

× (𝐿 (𝑤1
𝑃
+ 𝑤1
𝑁
)
𝜓
𝐵 + 𝐿𝐼

⊤

𝑃
) .

(11)

By similar estimation, we can get

𝐹𝑁 (𝜓)
 ≤ (𝑘𝑁 + 𝑟𝑁

𝜓
𝐵)

× (𝐿 (𝑤2
𝑃
+ 𝑤2
𝑁
)
𝜓
𝐵 + 𝐿𝐼

⊤

𝑁
) .

(12)

Therefore, by the above estimations and (𝐻
2
), we get

𝐹 (𝜓)
𝐵 = sup
𝑡∈R

{
𝐹𝑃 (𝜓)

 ,
𝐹𝑁 (𝜓)

}

≤ (𝐾 + 𝑅
𝜓
𝐵) (𝑊

𝜓
𝐵 + 𝐼)

≤ (𝐾 + 𝑅𝛿) (𝑊𝛿 + 𝐼) = 𝛿,

(13)

which implies that 𝐹(𝜓) ∈ 𝐵∗. So, the mapping 𝐹 is self-
mapping from𝐵∗ to𝐵∗. Next, we prove that𝐹 is a contraction
mapping in the region 𝐵∗. For all 𝜓, 𝜙 ∈ 𝐵∗, by (10), we have

𝐹𝑃 (𝜓) (𝑡) − 𝐹𝑃 (𝜙) (𝑡)


≤ sup
𝑡∈R


∫
𝑡

−∞

exp (− (𝑡 − 𝑠)) [𝑘
𝑃
− 𝑟
𝑃
𝜓
𝑃
(𝑠)]

× 𝐺 [𝑤1
𝑃
𝜓
𝑃
(𝑠 − 𝜏
𝑃
(𝑠))

−𝑤1
𝑁
𝜓
𝑁
(𝑠 − 𝜏
𝑁
(𝑠)) + 𝐼

𝑃
(𝑠)] 𝑑𝑠

− ∫
𝑡

−∞

exp (− (𝑡 − 𝑠)) [𝑘
𝑃
− 𝑟
𝑃
𝜙
𝑃
(𝑠)]

× 𝐺 [𝑤1
𝑃
𝜙
𝑃
(𝑠 − 𝜏
𝑃
(𝑠))

−𝑤1
𝑁
𝜙
𝑁
(𝑠 − 𝜏
𝑁
(𝑠)) + 𝐼

𝑃
(𝑠)] 𝑑𝑠


,

(14)
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which leads to

𝐹𝑃 (𝜓) (𝑡) − 𝐹𝑃 (𝜙) (𝑡)


≤ sup
𝑡∈R

∫
𝑡

−∞

exp (− (𝑡 − 𝑠))

× [𝑘
𝑃
𝐿
𝑤
1

𝑃
𝜓
𝑃
(𝑠 − 𝜏
𝑃
(𝑠)) − 𝑤

1

𝑁
𝜓
𝑁
(𝑠 − 𝜏
𝑁
(𝑠))

−𝑤1
𝑃
𝜙
𝑃
(𝑠 − 𝜏
𝑃
(𝑠))+𝑤

1

𝑁
𝜙
𝑁
(𝑠 − 𝜏
𝑁
(𝑠))


+ 𝑟
𝑃

𝜓𝑃 (𝑠) 𝐺 [𝑤
1

𝑃
𝜓
𝑃
(𝑠 − 𝜏
𝑃
(𝑠))

− 𝑤1
𝑁
𝜓
𝑁
(𝑠 − 𝜏
𝑁
(𝑠))

+𝐼
𝑃
(𝑠)]

− 𝜙
𝑃
(𝑠) 𝐺 [𝑤

1

𝑃
𝜙
𝑃
(𝑠 − 𝜏
𝑃
(𝑠))

− 𝑤1
𝑁
𝜙
𝑁
(𝑠 − 𝜏
𝑁
(𝑠))

+𝐼
𝑃
(𝑠) ]
 ] 𝑑𝑠

≤ 𝑘
𝑃
𝐿(𝑤1
𝑃
sup
𝑡∈R

𝜓𝑃 (𝑡) − 𝜙𝑃 (𝑡)
 + 𝑤
1

𝑁
sup
𝑡∈R

𝜓𝑁 (𝑡) − 𝜙𝑁 (𝑡)
)

+ sup
𝑡∈R

∫
𝑡

−∞

exp (− (𝑡 − 𝑠)) 𝑟
𝑃

× [
𝜓𝑃 (𝑠) 𝐺 (𝑤

1

𝑃
𝜓
𝑃
(𝑠 − 𝜏
𝑃
(𝑠))

−𝑤1
𝑁
𝜓
𝑁
(𝑠 − 𝜏
𝑁
(𝑠)) + 𝐼

𝑃
(𝑠))

− 𝜓
𝑃
(𝑠) 𝐺 (𝑤

1

𝑃
𝜙
𝑃
(𝑠 − 𝜏
𝑃
(𝑠))

− 𝑤1
𝑁
𝜙
𝑁
(𝑠 − 𝜏
𝑁
(𝑠))

+𝐼
𝑃
(𝑠))


+
𝜓𝑃 (𝑠) 𝐺 (𝑤

1

𝑃
𝜙
𝑃
(𝑠 − 𝜏
𝑃
(𝑠))

− 𝑤1
𝑁
𝜙
𝑁
(𝑠 − 𝜏
𝑁
(𝑠)) + 𝐼

𝑃
(𝑠))

− 𝜙
𝑃
(𝑠) 𝐺 (𝑤

1

𝑃
𝜙
𝑃
(𝑠 − 𝜏
𝑃
(𝑠))

− 𝑤1
𝑁
𝜙
𝑁
(𝑠) + 𝐼

𝑃
(𝑠))
]|𝑑𝑠

≤ 𝑘
𝑃
𝐿 (𝑤1
𝑃
+ 𝑤1
𝑁
)
𝜓 − 𝜙

𝐵

+ 𝑟
𝑃
(𝐵
𝑠

𝜓 − 𝜙
𝐵 + 𝛿𝐿 (𝑤

1

𝑃
+ 𝑤1
𝑁
)
𝜓 − 𝜙

𝐵) .

(15)

By similar argument, we can get

𝐹𝑁 (𝜓) (𝑡) − 𝐹𝑁 (𝜓) (𝑡)


≤ 𝑘
𝑁
𝐿 (𝑤2
𝑃
+ 𝑤2
𝑁
)
𝜓 − 𝜙

𝐵

+ 𝑟
𝑁
(𝐵
𝑠

𝜓 − 𝜙
𝐵 + 𝛿𝐿 (𝑤

2

𝑃
+ 𝑤2
𝑁
)
𝜓 − 𝜙

𝐵) .

(16)

From (15) and (16), we have
𝐹 (𝜓) − 𝐹 (𝜓)

𝐵

= sup
𝑡∈R

{
𝐹𝑃 (𝜓) − 𝐹𝑃 (𝜓)

 ,
𝐹𝑁 (𝜓) − 𝐹𝑁 (𝜓)

}

≤ 𝐾𝑊
𝜓 − 𝜙



+ 𝑅 (𝐵
𝑠

𝜓 − 𝜙
 + 𝛿𝑊

𝜓 − 𝜙
)

= (𝐾𝑊 + 𝑅𝐵
𝑠
+ 𝑅𝛿𝑊)

𝜓 − 𝜙
 .

(17)

Since𝐾𝑊+𝑅𝐵
𝑠
+𝑅𝛿𝑊 ∈ (0, 1), it is clear that the mapping 𝐹

is a contraction.Therefore the mapping 𝐹 possesses a unique
fixed point 𝑋∗ ∈ 𝐵∗ such that 𝐹𝑋∗ = 𝑋∗. By (9), 𝑋∗ is
an almost periodic solution of system (1) in 𝐵∗. The proof is
complete.

Remark 3. Obviously, quadratic curveC(𝑣) := 𝑅𝑊𝑣2+(𝐾𝑊+
𝑅𝐼 − 1)𝑣 + 𝐾𝐼 satisfies with C(0) ≥ 0. So, Δ := (𝐾𝑊 + 𝑅𝐼 −
1)2 − 4𝑅𝑊𝐾𝐼 > 0 and𝐾𝑊+𝑅𝐼 < 1 guarantees the existence
of 𝛿 in (𝐻

2
) and 𝛿 lies in the following interval:

[
1 − 𝐾𝑊 − 𝑅𝐼 − √Δ

2𝑅𝑊
,
1 − 𝐾𝑊 − 𝑅𝐼 + √Δ

2𝑅𝑊
] . (18)

By Theorem 2, we know that the unique almost periodic
solution depends on 𝐾𝑊 + 𝑅(𝐵

𝑠
+ 𝛿𝑊) < 1. Choosing

𝛿 = (1 − (𝐾𝑊 + 𝑅𝐼))/2𝑅𝑊, we get a simple assumption as
follows:

(�̂�
2
) 𝐾𝑊 + 𝑅𝐼 < 1 − 2√𝐾𝑊𝑅𝐼,𝑅𝐵

𝑠
< (1 − (𝐾𝑊 − 𝑅𝐼))/2,

and hence it leads to a parameter-based result.

Corollary 4. Suppose that (𝐻
1
) and (�̂�

2
) hold. Then there

exists a unique almost periodic solution of system (1) in the
region 𝐵∗ = {𝜓 | 𝜓 ∈ 𝐵, ‖𝜓‖

𝐵
≤ (1 − (𝐾𝑊 + 𝑅𝐼))/2𝑅𝑊}.

3. Delay-Based Stability of
the Almost Periodic Solution

In this section, we establish locally exponential stability of the
unique almost periodic solution of system (1) in the region
𝐵∗, which is delay dependent.

Theorem 5. Suppose that (𝐻
1
)–(𝐻
3
) hold. If 𝐾𝑊 + 𝑅(𝐵

𝑠
+

𝛿𝑊) < 1 and there exist constants ℓ
1
> 0, ℓ
2
> 0 such that

(1 − 𝑟
𝑃
𝐵
𝑠
) ℓ
1
> sup
𝑡∈R

𝐶
𝑃

1 − ̇𝜏
𝑃
(𝜐−1
𝑃
(𝑡))
,

(1 − 𝑟
𝑁
𝐵
𝑠
) ℓ
2
> sup
𝑡∈R

𝐶
𝑁

1 − ̇𝜏
𝑁
(𝜐−1
𝑁
(𝑡))
,

(19)

where 𝐶
𝑃
:= 𝐿[(𝑘

𝑃
+ 𝑟
𝑃
𝛿)ℓ
1
𝑤1
𝑃
+ (𝑘
𝑁
+ 𝑟
𝑁
𝛿)ℓ
2
𝑤2
𝑃
] and 𝐶

𝑁
:=

𝐿[(𝑘
𝑃
+ 𝑟
𝑃
𝛿)ℓ
1
𝑤1
𝑁
+ (𝑘
𝑁
+ 𝑟
𝑁
𝛿)ℓ
2
𝑤2
𝑁
], 𝜐−1
𝑃
(𝑡) and 𝜐−1

𝑁
(𝑡) are

the inverse functions of 𝜐
𝑃
(𝑡) = 𝑡 − 𝜏

𝑃
(𝑡) and 𝜐

𝑁
(𝑡) = 𝑡 − 𝜏

𝑁
(𝑡),

then system (1) has exactly one almost periodic solution 𝑋∗(𝑡)
in the region 𝐵∗ which is locally exponentially stable.
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Proof. From Theorem 2, system (1) has a unique almost
periodic solution 𝑋∗(𝑡) ∈ 𝐵∗. Let 𝑋(𝑡) = (𝑋

𝑃
(𝑡), 𝑋
𝑁
(𝑡))

be an arbitrary solution of system (1) with initial value 𝜓 =
(𝜓
𝑃
, 𝜓
𝑁
) ∈ 𝐵∗. Set 𝑋(𝑡) = 𝑋

𝑃
(𝑡) − 𝑋∗

𝑃
(𝑡), 𝑌(𝑡) = 𝑋

𝑁
(𝑡) −

𝑋∗
𝑁
(𝑡). By system (1), we get

𝑑𝑋 (𝑡)

𝑑𝑡
= −𝑋 (𝑡)

+ [𝑘
𝑃
− 𝑟
𝑃
(𝑋 (𝑡) + 𝑋

∗

𝑃
(𝑡))]

× 𝐺 [𝑤1
𝑃
(𝑋 (𝑡 − 𝜏

𝑃
(𝑡)) + 𝑋

∗

𝑃
(𝑡 − 𝜏
𝑃
(𝑡)))

−𝑤1
𝑁
(𝑌 (𝑡 − 𝜏

𝑁
(𝑡)) + 𝑋

∗

𝑁
(𝑡 − 𝜏
𝑁
(𝑡))) 𝐼

𝑃
(𝑡)]

− [𝑘
𝑃
− 𝑟
𝑃
𝑋∗
𝑃
(𝑡)]

× 𝐺 [𝑤1
𝑃
𝑋∗
𝑃
(𝑡 − 𝜏
𝑃
(𝑡))

−𝑤1
𝑁
𝑋∗
𝑁
(𝑡 − 𝜏
𝑁
(𝑡)) + 𝐼

𝑃
(𝑡)] ,

𝑑𝑌 (𝑡)

𝑑𝑡
= −𝑌 (𝑡)

+ [𝑘
𝑁
− 𝑟
𝑁
(𝑌 (𝑡) + 𝑋

∗

𝑁
(𝑡))]

× 𝐺 [𝑤2
𝑃
(𝑋 (𝑡 − 𝜏

𝑃
(𝑡)) + 𝑋

∗

𝑃
(𝑡 − 𝜏
𝑃
(𝑡)))

−𝑤2
𝑁
(𝑌 (𝑡−𝜏

𝑁
(𝑡))+𝑋

∗

𝑁
(𝑡 − 𝜏
𝑁
(𝑡)))+𝐼

𝑁
(𝑡)]

− [𝑘
𝑁
− 𝑟
𝑁
𝑋∗
𝑁
(𝑡)]

× 𝐺 [𝑤2
𝑃
𝑋∗
𝑃
(𝑡 − 𝜏
𝑃
(𝑡))

−𝑤2
𝑁
𝑋∗
𝑁
(𝑡 − 𝜏
𝑁
(𝑡)) + 𝐼

𝑁
(𝑡)] .

(20)

Construct the auxiliary functions 𝐹
𝑃
(𝑢), 𝐹

𝑁
(𝑢) defined on

[0, +∞) as follows:

𝐹
𝑃
(𝑢) := (𝑢 − 1 + 𝑟

𝑃
𝐵
𝑠
) ℓ
1
+ sup
𝑡∈R

𝐶
𝑃
𝑒𝑢𝜏
⊤

𝑃

1 − ̇𝜏
𝑃
(𝜐−1
𝑃
(𝑡))
,

𝐹
𝑁
(𝑢) := (𝑢 − 1 + 𝑟

𝑁
𝐵
𝑠
) ℓ
2
+ sup
𝑡∈R

𝐶
𝑁
𝑒𝑢𝜏
⊤

𝑁

1 − ̇𝜏
𝑁
(𝜐−1
𝑁
(𝑡))
.

(21)

One can easily show that 𝐹
𝑃
(𝑢), 𝐹

𝑁
(𝑢) are well defined

and continuous. Assumption (19) implies that 𝐹
𝑃
(0) < 0,

𝐹
𝑃
(𝑢) → +∞ as 𝑢 → +∞ and 𝐹

𝑁
(0) < 0, 𝐹

𝑁
(𝑢) → +∞ as

𝑢 → +∞. It follows that there exists a common 𝜆 > 0 such
that 𝐹

𝑃
(𝜆) < 0 and 𝐹

𝑁
(𝜆) < 0.

Consider the Lyapunov functional

𝑉 (𝑡) = [ℓ
1 |𝑋 (𝑡)| + ℓ2 |𝑌 (𝑡)|] 𝑒

𝜆𝑡

+ ∫
𝑡

𝑡−𝜏
𝑃
(𝑡)

𝐶
𝑃

1 − ̇𝜏
𝑃
(𝜐−1
𝑃
(𝑠))
|𝑋 (𝑠)| 𝑒

𝜆(𝑠+𝜏
⊤

𝑃
)𝑑𝑠

+ ∫
𝑡

𝑡−𝜏
𝑁
(𝑡)

𝐶
𝑁

1 − ̇𝜏
𝑁
(𝜐−1
𝑁
(𝑠))
|𝑌 (𝑠)| 𝑒

𝜆(𝑠+𝜏
⊤

𝑁
)𝑑𝑠.

(22)

Calculating the upper right derivative of 𝑉(𝑡) along system
(1), one has
𝐷+𝑉 (𝑡)

≤ 𝜆 [ℓ
1 |𝑋 (𝑡)| + ℓ2 |𝑌 (𝑡)|] 𝑒

𝜆𝑡

+ 𝑒𝜆𝑡ℓ
1
[− |𝑋 (𝑡)|

+
[𝑘𝑃 − 𝑟𝑃 (𝑋 (𝑡) + 𝑋

∗

𝑃
(𝑡))]

× 𝐺 [𝑤1
𝑃
(𝑋 (𝑡 − 𝜏

𝑃
(𝑡)) + 𝑋

∗

𝑃
(𝑡 − 𝜏
𝑃
(𝑡)))

− 𝑤1
𝑁
(𝑌 (𝑡−𝜏

𝑁
(𝑡)) + 𝑋

∗

𝑁
(𝑡−𝜏
𝑁
(𝑡)))

+𝐼
𝑃
(𝑡)]

− [𝑘
𝑃
− 𝑟
𝑃
𝑋∗
𝑃
(𝑡)]

× 𝐺 [𝑤1
𝑃
𝑋∗
𝑃
(𝑡 − 𝜏
𝑃
(𝑡))

−𝑤1
𝑁
𝑋∗
𝑁
(𝑡 − 𝜏
𝑁
(𝑡)) + 𝐼

𝑃
(𝑡)]
]

+ 𝑒𝜆𝑡ℓ
2
[− |𝑌 (𝑡)|

+
 [𝑘𝑁 − 𝑟𝑁 (𝑌 (𝑡) + 𝑋

∗

𝑁
(𝑡))]

× 𝐺 [𝑤2
𝑃
(𝑋 (𝑡 − 𝜏

𝑃
(𝑡)) + 𝑋

∗

𝑃
(𝑡 − 𝜏
𝑃
(𝑡)))

− 𝑤2
𝑁
(𝑌 (𝑡 − 𝜏

𝑁
(𝑡)) + 𝑋

∗

𝑁
(𝑡 − 𝜏
𝑁
(𝑡)))

+𝐼
𝑁
(𝑡)]

− [𝑘
𝑁
− 𝑟
𝑁
𝑋∗
𝑁
(𝑡)]

× 𝐺 [𝑤2
𝑃
𝑋∗
𝑃
(𝑡 − 𝜏
𝑃
(𝑡))

−𝑤2
𝑁
𝑋∗
𝑁
(𝑡 − 𝜏
𝑁
(𝑡)) + 𝐼

𝑁
(𝑡)]
]

+
𝐶
𝑃

1 − ̇𝜏
𝑃
(𝜐−1
𝑃
(𝑡))
|𝑋 (𝑡)| 𝑒

𝜆(𝑡+𝜏
⊤

𝑃
)

− 𝐶
𝑃

𝑋 (𝑡 − 𝜏𝑃 (𝑡))
 exp [𝜆 (𝑡 − 𝜏𝑃 (𝑡) + 𝜏

⊤

𝑃
)]

+
𝐶
𝑁

1 − ̇𝜏
𝑁
(𝜐−1
𝑁
(𝑡))
|𝑌 (𝑡)| 𝑒

𝜆(𝑡+𝜏
⊤

𝑁
)

− 𝐶
𝑁

𝑌 (𝑡 − 𝜏𝑁 (𝑡))
 exp [𝜆 (𝑡 − 𝜏𝑁 (𝑡) + 𝜏

⊤

𝑁
)] ,

(23)
which leads to
𝐷+𝑉 (𝑡)

≤ [(𝜆 − 1) ℓ
1
𝑒𝜆𝑡 |𝑋 (𝑡)| + (𝜆 − 1) ℓ2𝑒

𝜆𝑡
|𝑌 (𝑡)|]

+ 𝑒𝜆𝑡ℓ
1
[𝑘
𝑃
𝐿 (𝑤1
𝑃

𝑋 (𝑡 − 𝜏𝑃 (𝑡))


+ 𝑤1
𝑁

𝑌 (𝑡 − 𝜏𝑁 (𝑡))
) + 𝑟𝑃 |𝑋 (𝑡)| 𝐵𝑠

+ 𝑟
𝑃
𝛿𝐿 (𝑤1

𝑃

𝑋 (𝑡 − 𝜏𝑃 (𝑡))


+𝑤1
𝑁

𝑌 (𝑡 − 𝜏𝑁 (𝑡))
)]



6 Discrete Dynamics in Nature and Society

+ 𝑒𝜆𝑡ℓ
2
[𝑘
𝑁
𝐿 (𝑤2
𝑃

𝑋 (𝑡 − 𝜏𝑃 (𝑡))


+ 𝑤2
𝑁

𝑌 (𝑡 − 𝜏𝑁 (𝑡))
)

+ 𝑟
𝑁 |𝑌 (𝑡)| 𝐵𝑠 + 𝑟𝑁𝛿𝐿 (𝑤

2

𝑃

𝑋 (𝑡 − 𝜏𝑃 (𝑡))


+𝑤2
𝑁

𝑌 (𝑡−𝜏𝑁 (𝑡))
)]

+
𝐶
𝑃

1 − ̇𝜏
𝑃
(𝜐−1
𝑃
(𝑡))
|𝑋 (𝑡)| 𝑒

𝜆(𝑡+𝜏
⊤

𝑃
)

− 𝐶
𝑃

𝑋 (𝑡 − 𝜏𝑃 (𝑡))
 𝑒
𝜆𝑡

+
𝐶
𝑁

1 − ̇𝜏
𝑁
(𝜐−1
𝑁
(𝑡))
|𝑌 (𝑡)| 𝑒

𝜆(𝑡+𝜏
⊤

𝑁
)

− 𝐶
𝑁

𝑌 (𝑡 − 𝜏𝑁 (𝑡))
 𝑒
𝜆𝑡

≤ [(𝜆 − 1 + 𝑟
𝑃
𝐵
𝑠
) ℓ
1
+ sup
𝑡∈R

𝐶
𝑃
𝑒𝜆𝜏
⊤

𝑃

1 − ̇𝜏
𝑃
(𝜐−1
𝑃
(𝑡))
]

× 𝑒𝜆𝑡 |𝑋 (𝑡)|

+ [(𝜆 − 1 + 𝑟
𝑁
𝐵
𝑠
) ℓ
2
+ sup
𝑡∈R

𝐶
𝑁
𝑒𝜆𝜏
⊤

𝑁

1 − ̇𝜏
𝑁
(𝜐−1
𝑁
(𝑡))
]

× 𝑒𝜆𝑡 |𝑌 (𝑡)|

≤ −𝑐
1 [|𝑋 (𝑡)| + |𝑌 (𝑡)|] 𝑒

𝜆𝑡,

(24)

where 𝑐
1
:= −(1/2)max{𝐹

𝑃
(𝜆), 𝐹
𝑁
(𝜆)} > 0. We have from the

above that 𝑉(𝑡) ≤ 𝑉(𝑡
0
) and

min {ℓ
1
, ℓ
2
} 𝑒𝜆𝑡 (|𝑋 (𝑡)| + |𝑌 (𝑡)|) ≤ 𝑉 (𝑡) ≤ 𝑉 (0) , 𝑡 ≥ 0.

(25)

Note that

𝑉 (0) = [

[

(ℓ
1
+ ℓ
2
) + 𝜏⊤
𝑃

sup
𝑠∈[−𝜏⊤

𝑃
,0]

𝐶
𝑃

1 − ̇𝜏
𝑃
(𝜐−1
𝑃
(𝑠))
𝑒𝜆𝜏
⊤

𝑃

+𝜏⊤
𝑁

sup
𝑠∈[−𝜏⊤

𝑁
,0]

𝐶
𝑁

1 − ̇𝜏
𝑁
(𝜐−1
𝑁
(𝑠))
𝑒𝜆𝜏
⊤

𝑁]

]

𝜓 − 𝜓
∗ ,

(26)

where 𝜓∗(𝑠) = 𝑋∗(𝑠), 𝑠 ∈ [−𝜏, 0]. Then there exists a positive
constant𝑀 > 1 such that

𝑋𝑃 (𝑡) − 𝑋
∗

𝑃
(𝑡)
 ≤ 𝑀

𝜓 − 𝜓
∗ 𝑒
−𝜆𝑡,

𝑋𝑁 (𝑡) − 𝑋
∗

𝑁
(𝑡)
 ≤ 𝑀

𝜓 − 𝜓
∗ 𝑒
−𝜆𝑡.

(27)

The proof is complete.

Set 𝛿 = (1−(𝐾𝑊+𝑅𝐼))/2𝑅𝑊. It follows fromCorollary 4
andTheorem 5 the following.

Corollary 6. Suppose that (𝐻
1
), (�̂�
2
), and (𝐻

3
) hold. If there

exist constants ℓ
1
> 0, ℓ
2
> 0 such that

(1 − 𝑟
𝑃
𝐵
𝑠
) ℓ
1
> sup
𝑡∈R

𝐿 (𝛼
𝑃
ℓ
1
𝑤1
𝑃
+ 𝛼
𝑁
ℓ
2
𝑤2
𝑃
)

1 − ̇𝜏
𝑃
(𝜐−1
𝑃
(𝑡))

,

(1 − 𝑟
𝑁
𝐵
𝑠
) ℓ
2
> sup
𝑡∈R

𝐿 (𝛼
𝑃
ℓ
1
𝑤1
𝑁
+ 𝛼
𝑁
ℓ
2
𝑤2
𝑁
)

1 − ̇𝜏
𝑁
(𝜐−1
𝑁
(𝑡))

,

(28)

where

𝛼
𝑃
:= 𝑘
𝑃
+ 𝑟
𝑃

1 − (𝐾𝑊 + 𝑅𝐼)

2𝑅𝑊
,

𝛼
𝑁
:= 𝑘
𝑁
+ 𝑟
𝑁

1 − (𝐾𝑊 + 𝑅𝐼)

2𝑅𝑊
,

(29)

𝜐−1
𝑃
(𝑡) and 𝜐−1

𝑁
(𝑡) are defined asTheorem 5, then system (1) has

exactly one almost periodic solution𝑋∗(𝑡) in the region

𝐵∗ = {𝜓 | 𝜓 ∈ 𝐵,
𝜓
𝐵 ≤

1 − (𝐾𝑊 + 𝑅𝐼)

2𝑅𝑊
} , (30)

which is locally exponentially stable.

4. An Example

In this section, we give an example to demonstrate the results
obtained in previous sections. Consider a Wilson-Cowan
type model with time-varying delays as follows:

𝑑𝑋
𝑃
(𝑡)

𝑑𝑡
= −𝑋
𝑃
(𝑡) + [𝑘

𝑃
− 𝑟
𝑃
𝑋
𝑃
(𝑡)]

× 𝐺 [𝑤1
𝑃
𝑋
𝑃
(𝑡 − 𝜏
𝑃
(𝑡))

−𝑤1
𝑁
𝑋
𝑁
(𝑡 − 𝜏
𝑁
(𝑡)) + 𝐼

𝑃
(𝑡)] ,

𝑑𝑋
𝑁
(𝑡)

𝑑𝑡
= −𝑋
𝑁
(𝑡) + [𝑘

𝑁
− 𝑟
𝑁
𝑋
𝑁
(𝑡)]

× 𝐺 [𝑤2
𝑃
𝑋
𝑃
(𝑡 − 𝜏
𝑃
(𝑡))

−𝑤2
𝑁
𝑋
𝑁
(𝑡 − 𝜏
𝑁
(𝑡)) + 𝐼

𝑁
(𝑡)] ,

(31)

where 𝑘
𝑃
= 𝑘
𝑁
= 1, 𝑟

𝑃
= 𝑟
𝑁
= 0.01, 𝑤1

𝑃
= 𝑤2
𝑃
= 𝑤1
𝑁
=

𝑤2
𝑁
= 0.1, 𝜏

𝑃
(𝑡) = 𝜏

𝑁
(𝑡) = 0.1𝑡 + 10, 𝐼

𝑃
(𝑡) = 7 sin√7𝑡, 𝐺(𝑣) =

tanh(𝑣), and 𝐼
𝑁
(𝑡) = 7 cos√2𝑡. It is easy to calculate that

𝐾 = 1, 𝑊 = 0.2, 𝑅 = 0.01, 𝐼 = 7,

𝜐−1
𝑃
(𝑡) = 𝜐

−1

𝑁
(𝑡) =

(𝑡 + 10)

0.9
,

𝐿 = 𝐵
𝑠
= 1, 𝛿 = 182.5.

(32)

It is easy to check that (𝐻
1
) and (�̂�

2
) hold. ByCorollary 4, (31)

has a unique almost periodic solution 𝑋∗(𝑡) in region 𝐵∗ =
{𝜓 | 𝜓 ∈ 𝐵, ‖𝜓‖

𝐵
≤ 182.5}. Setting ℓ

1
= ℓ
2
= 0.5, we can

check that (𝐻
3
) and (28) hold and hence 𝑋∗(𝑡) is exponen-

tially stable in𝐵∗. Figure 2 shows the transient behavior of the
unique almost periodic solution (𝑋

𝑃
(𝑡), 𝑋
𝑁
(𝑡)) in 𝐵∗. Phase

portrait of attractivity of𝑋
𝑃
and𝑋

𝑁
is illustrated in Figure 3.



Discrete Dynamics in Nature and Society 7

0 10 20 30 40 50 60 70 80
−1

−0.5

0

0.5

1

1.5

Time (𝑡) 

 

 

(𝑡)
(𝑡)

𝑋
𝑃

𝑋
𝑁

Figure 2: Transient behavior of the almost periodic solution of (31)
located in 𝐵∗.
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Figure 3: Phase portrait of attractivity of the unique almost periodic
solution of (31) located in 𝐵∗.

5. Concluding Remarks

In this paper, we investigate Wilson-Cowan type model and
obtain the existence of a unique almost periodic solution and
its delay-based local stability in a convex subset. Our results
are new and can reduce to periodic case, hence, complement
existing periodic ones [7, 8].We point out that there will exist
multiple periodic (almost periodic) solution for system (1)
under suitable parameter configuration. However, it is diffi-
cult to analyze itsmultistability of almost periodic solution by
the existing method [10, 11, 13, 14]. We leave it for interested
readers.
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The reaction-diffusion Holling-Tanner prey-predator model considering the Allee effect on predator, under zero-flux boundary
conditions, is discussed. Someproperties of the solutions, such as dissipation and persistence, are obtained. Local and global stability
of the positive equilibrium and Turing instability are studied. With the help of the numerical simulations, the rich Turing patterns,
including holes, stripes, and spots patterns, are obtained.

1. Introduction

The Holling-Tanner prey-predator model is an important
and interesting predator-prey model in both biological and
mathematical sense [1–4]. The reaction-diffusion Holling-
Tanner prey-predator model takes the following form:

𝜕𝑢

𝜕𝑡
= 𝑟𝑢 (1 −

𝑢

𝐾
) −

𝑚
1
𝑢𝑣

𝑢 + 𝑎
1

+ 𝐷
1
Δ𝑢, 𝑥=(𝜉, 𝜂) ∈ Ω, 𝑡 > 0,

𝜕𝑣

𝜕𝑡
= 𝑠
1
𝑣 (1 −

ℎ𝑣

𝑢
) + 𝐷

2
Δ𝑣, 𝑥 = (𝜉, 𝜂) ∈ Ω, 𝑡 > 0,

(1)

where 𝑢 and 𝑣 represent population density of prey and
predator at time 𝑡, respectively. The parameters 𝑟, 𝐾, 𝑚

1
, 𝑎
1
,

𝑠
1
, and ℎ are all positive. 𝑟 stands for the intrinsic growth rate

of prey, 𝐾 is the prey carrying capacity, 𝑚
1
is the maximum

predation rate, 𝑎
1
is the self-saturation prey density, 𝑠

1
is

predator intrinsic growth rate, and ℎ is conversion rate of
prey into predator biomass. 𝐷

1
and 𝐷

2
are the diffusion

coefficients of 𝑢 and 𝑣, respectively, and we always assume
that 𝐷

1
> 0, 𝐷

2
> 0. Δ = 𝜕2/𝜕𝑥2 = 𝜕2/𝜕𝜉2 + 𝜕2/𝜕𝜂2 is the

usual Laplacian operator in 2-dimensional space.Ω ⊂ R2 is a
bounded domain with smooth boundary 𝜕Ω.

Set

(𝑢, 𝑣, 𝑡) = (𝐾�̃�, 𝐾𝑣,
�̃�

𝑟
) . (2)

For the sake of convenience, we still use variables 𝑢, 𝑣 instead
of �̃�, 𝑣. Thus, model (1) is converted into

𝜕𝑢

𝜕𝑡
= 𝑢 (1 − 𝑢) −

𝑚𝑢𝑣

𝑎 + 𝑢
+ 𝑑
1
Δ𝑢, 𝑥 = (𝜉, 𝜂) ∈ Ω, 𝑡 > 0,

𝜕𝑣

𝜕𝑡
= 𝑠𝑣 (1 −

ℎ𝑣

𝑢
) + 𝑑
2
Δ𝑣, 𝑥 = (𝜉, 𝜂) ∈ Ω, 𝑡 > 0,

(3)

where the new parameters are

𝑚 =
𝐾𝑚
1

𝑟
, 𝑎 =

𝑎
1

𝑟
, 𝑠 =

𝑠
1

𝑟
,

𝑑
1
=
𝐷
1

𝑟
, 𝑑

2
=
𝐷
2

𝑟
.

(4)

The dynamics of the reaction-diffusion Holling-Tanner
prey-predator model has proven quite interesting and
received intensive study by both ecologists and mathemati-
cians in many articles, see, for example, [5–10] and the
references therein. Peng and Wang [5, 6] analyzed the global
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stability of the unique positive constant steady state and
established the results for the existence and nonexistence of
positive nonconstant steady states; Wang et al. [7] studied
positive steady-state solutions and investigated the appear-
ance of sharp spatial patterns arising from the model. Shi
and coworkers [8] studied the global attractor and per-
sistence property, local and global asymptotic stability of
the unique positive constant equilibrium, and the existence
and nonexistence of nonconstant positive steady states; Li
et al. [9] considered the Turing and Hopf bifurcations of
the equilibrium solutions; Liu and Xue [10] found the model
exhibits the spotted, black-eye, and labyrinthine patterns.

On the other hand, in population dynamics, Allee effect
[11] is an ecological phenomenon caused by any mechanism
leading to a positive relationship between a component
of individual fitness and either the number or density of
conspecific [12–15]. In ecological studies, the understanding
of the influence of Allee effect plays a central role since the
Allee effect can greatly increase the likelihood of local and
global extinctions [16, 17]. As a result both ecologists and
mathematicians are interested in Allee effect in the predator-
prey model, and much progress has been seen in the study
of Allee effect, see [14, 18–27], and many more investigations
were done in recent years. But there have been few papers
discussing the impact of the Allee effect on predator in the
predator-prey models.

Based on the previous discussion, in the present paper we
adopt the reaction-diffusion Holling-Tanner prey-predator
model with Allee effect on predator.

If we assume that the predator population is subject
to an Allee effect, taking into account zero-flux boundary
conditions, model (3) can be rewritten as
𝜕𝑢

𝜕𝑡
= 𝑢 (1 − 𝑢) −

𝑚𝑢𝑣

𝑎 + 𝑢
+ 𝑑
1
Δ𝑢, 𝑥 = (𝜉, 𝜂) ∈ Ω, 𝑡 > 0,

𝜕𝑣

𝜕𝑡
= 𝑠𝑣 (

𝑣

𝑣 + 𝑏
−
ℎ𝑣

𝑢
) + 𝑑
2
Δ𝑣, 𝑥 = (𝜉, 𝜂) ∈ Ω, 𝑡 > 0,

𝜕𝑢

𝜕𝜈
=
𝜕𝑣

𝜕𝜈
= 0, 𝑥 = (𝜉, 𝜂) ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ≥ 0, 𝑣 (𝑥, 0) = 𝑣

0
(𝑥) ≥ 0,

𝑥 = (𝜉, 𝜂) ∈ Ω,

(5)
where 𝑣/(𝑣 + 𝑏) is the term for the Allee effect, and 𝑏 can be
defined as theAllee effect constant.The per capita growth rate
of the predator is reduced from 𝑠 to 𝑠𝑣/(𝑣 + 𝑏) due to the
Allee effect [17, 28]. 𝜈 is the outward unit normal vector on
𝜕Ω, and the zero-flux boundary conditions mean that model
(5) is self-contained and has no population flux across the
boundary 𝜕Ω [29, 30]. The initial data 𝑢

0
(𝑥) and 𝑣

0
(𝑥) are

continuous functions onΩ.
The corresponding kinetic equation to model (5) is

̇𝑢 = 𝑢 (1 − 𝑢) −
𝑚𝑢𝑣

𝑎 + 𝑢
≜ 𝑓 (𝑢, 𝑣) ,

̇𝑣 = 𝑠𝑣 (
𝑣

𝑣 + 𝑏
−
ℎ𝑣

𝑢
) ≜ 𝑔 (𝑢, 𝑣) .

(6)

The plan of the paper is as follows. Section 2 is dedicated
to furnish some properties of the solutions concerning the
mathematical model used. In Section 3, the local and global
stability of the positive equilibrium of the model is consid-
ered. Section 4 is devoted to the diffusion-driven instability
(Turing effect) and illustrates the different Turing patterns by
using the numerical simulations. Finally, in Section 5, some
conclusions and discussions are given.

2. Large Time Behavior of
Solution to Model (5)

In this section, we give some properties of the solutions, and
these results will be often used later.

2.1. Dissipation

Theorem 1. For any solution (𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) ofmodel (5)with
nonnegative initial conditions, then

lim sup
𝑡→∞

max
Ω

𝑢 (𝑥, 𝑡) ≤ 1, lim sup
𝑡→∞

max
Ω

𝑣 (𝑥, 𝑡) ≤
1

ℎ
.

(7)
Hence, for any 𝜀 > 0, the rectangle [0, 1 + 𝜀] × [0, 1/ℎ + 𝜀] is a
global attractor of model (5) in R+.

Proof. 𝑢 satisfies
𝜕𝑢

𝜕𝑡
− 𝑑
1
Δ𝑢 ≤ 𝑢 (1 − 𝑢) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑢

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ Ω.

(8)

Let 𝑧(𝑡) be a solution of the ordinary differential equation,
̇𝑧 (𝑡) = 𝑧 (1 − 𝑢) , 𝑡 ≥ 0,

𝑧 (0) = max
Ω

𝑢 (𝑥, 0) > 0.
(9)

Then, lim
𝑡→∞

𝑧(𝑡) = 1. From the comparison principle, one
can get 𝑢(𝑥, 𝑡) ≤ 𝑧(𝑡); hence,

lim sup
𝑡→∞

max
Ω

𝑢 (𝑥, 𝑡) ≤ 1. (10)

As a result, for any 𝜀 > 0, there exists a 𝑇 > 0, such that
𝑢(𝑥, 𝑡) ≤ 1 + 𝜀 for all 𝑥 ∈ Ω and 𝑡 ≥ 𝑇. Similarly, 𝑣 satisfies

𝜕𝑣

𝜕𝑡
− 𝑑
2
Δ𝑣 ≤ 𝑠𝑣 (1 −

ℎ𝑣

1 + 𝜀
) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑣

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑣 (𝑥, 0) = 𝑣
0
(𝑥) , 𝑥 ∈ Ω.

(11)

Thus, lim sup
𝑡→∞

max
Ω
𝑣(𝑥, 𝑡) ≤ (1 + 𝜀)/ℎ. From the

arbitrariness of 𝜀 > 0, we can get that

lim sup
𝑡→∞

max
Ω

𝑣 (𝑥, 𝑡) ≤
1

ℎ
. (12)

This ends the proof.
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2.2. Persistence

Definition 2 (see [31]). Model (5) is said to have the per-
sistence property if for any nonnegative initial data (𝑢

0
(𝑥),

𝑣
0
(𝑥)), there exists a positive constant 𝜀 = 𝜀(𝑢

0
, 𝑣
0
), such

that the corresponding solution (𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) of model (5)
satisfies

lim inf
𝑡→∞

min
Ω

𝑢 (𝑥, 𝑡) ≥ 𝜀, lim inf
𝑡→∞

min
Ω

𝑣 (𝑥, 𝑡) ≥ 𝜀. (13)

In the following, we will show that model (5) is persistent.
From the viewpoint of biology, this implies that the two
species of prey and predator will always coexist at any time
and any location of the inhabit domain, no matter what
their diffusion coefficients are, under certain conditions on
parameters.

Theorem 3. If 𝑚 < 𝑎ℎ and 2𝑏ℎ < 1 − 𝑎 +

√(1 − 𝑎)2 + 4(𝑎 − 𝑚ℎ−1), then model (5) has the persistence
property.

Proof. The proof is based on comparison principles. From
(12), for 0 < 𝜀 ≪ 1, it is clear that there exists a 𝑡 ≫ 1, such
that 𝑣(𝑥, 𝑡) < 1/ℎ + 𝜀 for all 𝑥 ∈ Ω and 𝑡 ≥ 𝑡

0
. Hence, 𝑢(𝑥, 𝑡)

is an upper solution of the following problem:

𝜕𝑧

𝜕𝑡
− 𝑑
1
Δ𝑧 = 𝑧

−𝑧2 + (1 − 𝑎) 𝑧 + 𝑎 − 𝑚(ℎ−1 + 𝜀)

𝑧 + 𝑎
,

𝑥 ∈ Ω, 𝑡 > 𝑡
0
,

𝜕𝑧

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 𝑡

0
,

𝑧 (𝑥, 𝑡
0
) = 𝑢
0
(𝑥, 𝑡
0
) ≥ 0, 𝑥 ∈ Ω.

(14)

Let 𝜔(𝑡) be the unique positive solution to the following
problem:

𝑑𝑤

𝑑𝑡
= 𝑤

−𝑤2 + (1 − 𝑎)𝑤 + 𝑎 − 𝑚(ℎ−1 + 𝜀)

𝑤 + 𝑎
, 𝑡 > 𝑡

0
,

𝑤 (𝑡
0
) = min
Ω

𝑢
0
(𝑥, 𝑡
0
) ≥ 0.

(15)

Since 𝑚 < 𝑎ℎ, then lim
𝑡→∞

𝑤(𝑡) = (1 − 𝑎 +

√(1 − 𝑎)2 + 4(𝑎 − 𝑚ℎ−1))/2. By comparison, it follows that

lim
𝑡→∞

𝑧(𝑥, 𝑡) = (1 − 𝑎 + √(1 − 𝑎)2 + 4(𝑎 − 𝑚ℎ−1))/2. This
implies that

lim inf
𝑡→∞

min
Ω

𝑢 (𝑥, 𝑡) ≥
1 − 𝑎 + √(1 − 𝑎)2 + 4 (𝑎 − 𝑚ℎ−1)

2
≜ 𝛼.

(16)

Hence, 𝑢(𝑥, 𝑡) > 𝛼 − 𝜀 for 𝑡 > 𝑡
0
and 𝑥 ∈ Ω.

Similarly, by the second equation in model (5), we have
that 𝑣(𝑥, 𝑡) is an upper solution of problem

𝜕𝑧

𝜕𝑡
− 𝑑
2
Δ𝑧 = 𝑠𝑧

−ℎ𝑧2 + (𝛼 − 𝜀 − 𝑏ℎ) 𝑧

(𝛼 − 𝜀) (𝑣 + 𝑏)
, 𝑥 ∈ Ω, 𝑡 > 𝑡

0
,

𝜕𝑧

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 𝑡

0
,

𝑧 (𝑥, 𝑡
0
) = 𝐼
0
(𝑥) ≥ 0, 𝑥 ∈ Ω.

(17)

Let 𝑣(𝑡) be the unique positive solution to the following
problem:

𝑑𝑤

𝑑𝑡
= 𝑠𝑤

−ℎ𝑤2 + (𝛼 − 𝜀 − 𝑏ℎ)𝑤

(𝛼 − 𝜀) (𝑤 + 𝑏)
, 𝑡 > 𝑡

0
,

𝑤 (𝑡
0
) = min
Ω

𝑣
0
(𝑥, 𝑡
0
) ≥ 0.

(18)

Since 2𝑏ℎ < 1 − 𝑎 + √(1 − 𝑎)2 + 4(𝑎 − 𝑚ℎ−1), there exists a
𝜀 > 0, such that 𝑏ℎ < 𝛼 − 𝜀. Hence, we have lim

𝑡→∞
𝑤(𝑡) =

(1−𝑎+√(1 − 𝑎)2 + 4(𝑎 − 𝑚ℎ−1)−2𝑏ℎ)/2ℎ for the arbitrariness
of 𝜀, and an application of the comparison principle gives

lim inf
𝑡→∞

min
Ω

𝑣 (𝑥, 𝑡)≥
1 − 𝑎 + √(1 − 𝑎)2 + 4 (𝑎 − 𝑚ℎ−1) − 2𝑏ℎ

2ℎ

≜ 𝛽.

(19)

The proof is complete.

3. Stability

In this section, we will devote consideration to the stability of
the positive equilibrium for model (5).

Clearly, model (5) has a unique positive equilibrium 𝐸∗ =
(𝑢∗, 𝑣∗), where 𝑢∗ = ℎ(𝑏 + 𝑣∗) and

𝑣∗ =
ℎ − 𝑚 − 𝑎ℎ − 2𝑏ℎ2

2ℎ2

+
√(ℎ − 𝑚 − 𝑎ℎ − 2𝑏ℎ2)

2

+ 4ℎ2 (𝑎 + 𝑏ℎ) (1 − 𝑏ℎ)

2ℎ2
,

(20)

with 𝑏ℎ < 1.
For the sake of simplicity, we rewrite model (5) as the

vectorial form

w
𝑡
= 𝐷Δw +H (w) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕w
𝜕𝜈

= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

w (𝑥, 0) = (𝑢
0
(𝑥) , 𝑣

0
(𝑥))
𝑇, 𝑥 ∈ Ω,

(21)
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where w = (𝑢, 𝑣)𝑇, 𝐷 = diag(𝑑
1
, 𝑑
2
), and

H (w) = (
𝑢 (1 − 𝑢) −

𝑚𝑢𝑣

𝑢 + 𝑎

𝑠𝑣 (
𝑣

𝑣 + 𝑏
−
ℎ𝑣

𝑢
)

) . (22)

Let 0 = 𝜇
0
< 𝜇
1
< 𝜇
2
< ⋅ ⋅ ⋅ be the eigenvalues of the

operatorΔ onΩwith the zero-flux boundary conditions. And
set

X = {w ∈ [𝐻2 (Ω)]
2

| 𝜕
𝜈
w = 0 on 𝜕Ω} ,

𝐸 (𝜇) = {𝜙 | −Δ𝜙 = 𝜇𝜙 in Ω, 𝜕
𝜈
𝜙 = 0 on 𝜕Ω} ,

with 𝜇 ∈ R
1,

(23)

{𝜙
𝑖𝑗
| 𝑗 = 1, . . . , dim𝐸(𝜇

𝑖
)} is an orthonormal basis of 𝐸(𝜇

𝑖
),

and X
𝑖𝑗
= {c𝜙
𝑖𝑗
| c ∈ R2}, then

X =
∞

⨁
𝑖=1

X
𝑖
, (24)

where X
𝑖
= ⨁

dim𝐸(𝜇
𝑖
)

𝑗=1
X
𝑖𝑗
.

The linearization of model (5) at the positive equilibrium
𝐸∗ = (𝑢∗, 𝑣∗) can be expressed by

w
𝑡
= £ (w) = 𝐷Δw + 𝐽w, (25)

where

𝐽 = (

−𝑢∗ +
𝑚𝑢∗𝑣∗

(𝑎 + 𝑢∗)2
−
𝑚𝑢∗

𝑎 + 𝑢∗

𝑠ℎ𝑣∗
2

𝑢∗2
−

𝑠𝑣∗
2

(𝑣∗ + 𝑏)2

) ≜ (
𝐽
11

𝐽
12

𝐽
21

𝐽
22

) . (26)

From [32], it is known that if all the eigenvalues of the
operator £ have negative real parts, then 𝐸∗ = (𝑢∗, 𝑣∗) is
asymptotically stable; if there is an eigenvalue with positive
real part, then 𝐸∗ = (𝑢∗, 𝑣∗) is unstable; if all the eigenvalues
have nonpositive real parts while some eigenvalues have zero
real part, then the stability of 𝐸∗ = (𝑢∗, 𝑣∗) cannot be
determined by the linearization.

For each 𝑖 ≥ 0, X
𝑖
is invariant under the operator £ and

𝜆 is an eigenvalue of £ if and only if 𝜆 is an eigenvalue of the
matrix 𝐴

𝑖
= −𝜇
𝑖
𝐷 + 𝐽
(𝑢,𝑣)

for some 𝑖 ≥ 0.
So, the local stability of the positive equilibrium 𝐸∗ =

(𝑢∗, 𝑣∗) can be analyzed as follows.

Theorem 4. Assume that 𝑠 > 𝑢∗(𝑣∗ + 𝑏)2(𝑚𝑣∗ − (𝑎 +
𝑢∗)2)/𝑣∗2(𝑎 + 𝑢∗)2 and the first eigenvalue 𝜇

1
subject to the

zero-flux boundary conditions satisfies

𝜇
1
> max

{
{
{

0,
𝑢∗ (𝑚𝑣∗ − (𝑎 + 𝑢∗)

2

)

𝑑
1
(𝑎 + 𝑢∗)2

−
𝑠𝑣∗2

𝑑
2
(𝑣∗ + 𝑏)2

}
}
}

.

(27)

Then, the positive equilibrium 𝐸∗ = (𝑢∗, 𝑣∗) is uniformly
asymptotically stable.

Proof. The stability of the positive equilibrium 𝐸∗ = (𝑢∗, 𝑣∗)
is reduced to consider the characteristic equation

det (𝜆𝐼 − 𝐴
𝑖
) = 𝜆2 − tr (𝐴

𝑖
) 𝜆 + det (𝐴

𝑖
) , (28)

with

tr (𝐴
𝑖
) = −𝜇

𝑖
(𝑑
1
+ 𝑑
2
) + tr (𝐽) ,

det (𝐴
𝑖
) = 𝑑
1
𝑑
2
𝜇2
𝑖
− (𝐽
11
𝑑
2
+ 𝐽
22
𝑑
1
) 𝜇
𝑖
+ det (𝐽) .

(29)

In view of 𝑠 > 𝑢∗(𝑣∗ + 𝑏)2(𝑚𝑣∗ − (𝑎 + 𝑢∗)2)/𝑣∗(𝑎 + 𝑢∗)2,
it follows that

tr (𝐽) = 𝑚𝑢∗𝑣∗

(𝑎 + 𝑢∗)2
− 𝑢∗ −

𝑠𝑣∗
2

(𝑣∗ + 𝑏)2
< 0. (30)

Remark that for any 𝑖 ≥ 0, we have tr(𝐴
𝑖
) < 0.

In view of the relation 𝑢∗ = ℎ(𝑣∗ + 𝑏), one can calculate
that

det (𝐽) = −
𝑠𝑣∗
2

(𝑣∗ + 𝑏)2
(−𝑢∗ +

𝑚𝑢∗𝑣∗

(𝑎 + 𝑢∗)2
) +

𝑚𝑢∗

𝑎 + 𝑢∗
𝑠ℎ𝑣∗
2

𝑢∗2

= (𝑠𝑣∗
2

(ℎ3𝑣∗
2

+ (2𝑎ℎ2 + 2𝑏ℎ3) 𝑣∗ + 𝑏2ℎ3

+ 2𝑎𝑏ℎ2 + 𝑎2ℎ + 𝑏ℎ𝑚 + 𝑎𝑚))

× ((𝑣∗ + 𝑏) (𝑎 + ℎ𝑣∗ + ℎ)
2

)
−1

> 0.

(31)

Recall that 𝜇
1
> max{0, 𝑢∗(𝑚𝑣∗ − (𝑎 + 𝑢∗)2)/𝑑

1
(𝑎 + 𝑢∗)2 −

𝑠𝑣∗
2
/𝑑
2
(𝑣∗ + 𝑏)2}, we conclude that

det (𝐴
𝑖
) = 𝜇
𝑖
(𝑑
1
𝑑
2
𝜇
𝑖
− (𝐽
11
𝑑
2
+ 𝐽
22
𝑑
1
)) + det (𝐽)

> 𝜇
𝑖
(𝑑
1
𝑑
2
𝜇
1
− (𝐽
11
𝑑
2
+ 𝐽
22
𝑑
1
)) + det (𝐽)

> 0

(32)

for all 𝑖 ≥ 0.
Therefore, the eigenvalues of the matrix −𝜇

𝑖
𝐷 + 𝐽 have

negative real parts. It thus follows from the Routh-Hurwitz
criterion that, for each 𝑖 ≥ 0, the two roots 𝜆

𝑖1
and 𝜆

𝑖2
of

det(𝜆𝐼 − 𝐴
𝑖
) = 0 all have negative real parts.

In the following, we prove that there exists 𝛿 > 0 such that

Re {𝜆
𝑖1
} ≤ −𝛿, Re {𝜆

𝑖2
} ≤ −𝛿. (33)

Let 𝜆 = 𝜇
𝑖
𝜉, then

𝜑
𝑖
(𝜆) ≜ 𝜇

2

𝑖
𝜉2 − tr (𝐴

𝑖
) 𝜇
𝑖
𝜉 + det (𝐴

𝑖
) . (34)

Since 𝜇
𝑖
→ ∞ as 𝑖 → ∞, it follows that

lim
𝑖→∞

𝜑
𝑖
(𝜆)

𝜇2
𝑖

= 𝜉2 + (𝑑
1
+ 𝑑
2
) 𝜉 + 𝑑

1
𝑑
2
. (35)

By the Routh-Hurwitz criterion, it follows that the two
roots 𝜉

1
, 𝜉
2
of 𝜑
𝑖
(𝜆) = 0 all have negative real parts. Thus,
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there exists a positive constant 𝑑 = min{𝑑
1
, 𝑑
2
}, such that

Re{𝜉
1
},Re{𝜉

2
} ≤ −𝑑. By continuity, we see that there exists

𝑖
0
such that the two roots 𝜉

𝑖1
, 𝜉
𝑖2
of 𝜑
𝑖
(𝜆) = 0 satisfy Re{𝜉

𝑖1
} ≤

−𝑑/2, Re{𝜉
𝑖2
} ≤ −𝑑/2, for all 𝑖 ≥ 𝑖

0
. In turn, Re{𝜆

𝑖1
},Re{𝜆

𝑖2
} ≤

−𝜇
𝑖
𝑑/2 ≤ −𝑑/2, for all 𝑖 ≥ 𝑖

0
. Let

−𝛿 = max
1≤𝑖≤𝑖
0

{Re {𝜆
𝑖1
} ,Re {𝜆

𝑖2
}} . (36)

Then 𝛿 > 0 and (33) holds for 𝛿 = min{𝛿, 𝑑/2}.
Consequently, the spectrum of £, which consists of

eigenvalues, lies in {Re 𝜆 ≤ −𝛿}. In the sense of [32], we
obtain that the positive constant steady-state solution 𝐸∗ =
(𝑢∗, 𝑢∗ + 𝑘

2
) of model (5) is uniformly asymptotically stable.

This ends the proof.

In the following, we shall prove that the positive equilib-
rium 𝐸∗ = (𝑢∗, 𝑣∗) of model (5) is globally asymptotically
stable.

Theorem 5. Suppose that 𝑏ℎ < 1, 𝑚 < 𝑎ℎ, and 2𝑏ℎ < 1 −

𝑎 + √(1 − 𝑎)2 + 4(𝑎 − 𝑚ℎ−1). The positive equilibrium 𝐸∗ =

(𝑢∗, 𝑣∗) of model (5) is globally asymptotically stable, if

(a1) 𝑚ℎ−1 < (𝑎 + 𝑢∗)(𝑎 + 𝛼),

(a2) 𝑚2 + 1/𝛼2 < (4𝑢∗/ℎ𝑣∗)(ℎ(𝑎 + 𝑢∗) − 𝑏(𝑎 + 𝑢∗)/(𝑣∗ +
𝑏)(𝛽 + 𝑏) − 𝑚/𝛼(𝑎 + 𝛼)),

where

𝛼 =
1 − 𝑎 + √(1 − 𝑎)2 + 4 (𝑎 − 𝑚ℎ−1)

2
,

𝛽 =
1 − 𝑎 + √(1 − 𝑎)2 + 4 (𝑎 − 𝑚𝑝ℎ−1) − 2𝑏ℎ

2ℎ
.

(37)

Proof. We adopt the Lyapunov function

𝑉 (𝑡) = ∫
Ω

[𝑉
1
(𝑢 (𝑥, 𝑡)) + 𝑉

2
(𝑣 (𝑥, 𝑡))] 𝑑𝑥, (38)

where 𝑉
1
(𝑢) = (𝑢∗ + 𝑎) ∫

𝑢

𝑢
∗
((𝜉 − 𝑢∗)/𝜉)𝑑𝜉, 𝑉

2
(𝑣) =

(𝑢∗/ℎ𝑠𝑣∗) ∫
𝑣

𝑣
∗
((𝜂 − 𝑣∗)/𝜂)𝑑𝜂. It can be easily verified that the

function𝑉(𝑡) is zero at the positive equilibrium𝐸∗ = (𝑢∗, 𝑣∗)
and is positive for all other positive values of 𝑢 and 𝑣.

Then,

𝑑𝑉

𝑑𝑡
= ∫
Ω

(
(𝑢∗ + 𝑎) (𝑢 − 𝑢∗)

𝑢

𝜕𝑢

𝜕𝑡
+
𝑢∗ (𝑣 − 𝑣∗)

ℎ𝑠𝑣∗𝑣

𝜕𝑣

𝜕𝑡
) 𝑑𝑥

= ∫
Ω

( (𝑢∗ + 𝑎) (𝑢 − 𝑢∗) (1 − 𝑢 −
𝑚𝑣

𝑎 + 𝑢
)

+
𝑢∗ (𝑣 − 𝑣∗)

ℎ𝑣∗
(

𝑣

𝑣 + 𝑏
−
ℎ𝑣

𝑢
))𝑑𝑥

+∫
Ω

(
𝑑
1
(𝑢∗ + 𝑎) (𝑢 − 𝑢∗)

𝑢
Δ𝑢+

𝑑
2
𝑢∗ (𝑣 − 𝑣∗)

ℎ𝑠𝑣∗𝑣
Δ𝑣)𝑑𝑥

= − ∫
Ω

(𝑎 + 𝑢∗ −
𝑚𝑣

𝑎 + 𝑢
) (𝑢 − 𝑢∗)

2

𝑑𝑥

− ∫
Ω

𝑢∗

ℎ𝑣∗
(
ℎ

𝑢
−

𝑏

(𝑣∗ + 𝑏) (𝑣 + 𝑏)
) (𝑣 − 𝑣∗)

2

𝑑𝑥

+ ∫
Ω

(
1

𝑢
− 𝑚) (𝑢 − 𝑢∗) (𝑣 − 𝑣∗) 𝑑𝑥

− ∫
Ω

(
𝑑
1
𝑢∗ (𝑎 + 𝑢∗)

𝑢2
|∇𝑢|
2 +

𝑑
2
𝑢∗

ℎ𝑠𝑣2
|∇𝑣|
2)𝑑𝑥

= 𝑀 − ∫
Ω

(
𝑑
1
𝑢∗ (𝑎 + 𝑢∗)

𝑢2
|∇𝑢|
2 +

𝑑
2
𝑢∗

ℎ𝑠𝑣2
|∇𝑣|
2)𝑑𝑥,

(39)

where

𝑀(𝑢, 𝑣) = − ∫
Ω

(𝑎 + 𝑢∗ −
𝑚𝑣

𝑎 + 𝑢
) (𝑢 − 𝑢∗)

2

𝑑𝑥

− ∫
Ω

𝑢∗

ℎ𝑣∗
(
ℎ

𝑢
−

𝑏

(𝑣∗ + 𝑏) (𝑣 + 𝑏)
) (𝑣 − 𝑣∗)

2

𝑑𝑥

+ ∫
Ω

(
1

𝑢
− 𝑚) (𝑢 − 𝑢∗) (𝑣 − 𝑣∗) 𝑑𝑥.

(40)

It is obvious that 𝑑𝑉/𝑑𝑡 < 0 if𝑀(𝑢, 𝑣) is negative definite.
𝑀(𝑢, 𝑣) can be expressed in a quadratic form −𝑋𝐵𝑋𝑇,

where

𝑋 = (𝑢 − 𝑢∗, 𝑣 − 𝑣∗) ,

𝐵 = (

𝑎 + 𝑢∗ −
𝑚𝑣

𝑎 + 𝑢

𝑚

2
−

1

2𝑢

𝑚

2
−

1

2𝑢

𝑢∗

ℎ𝑣∗
(
ℎ

𝑢
−

𝑏

(𝑣∗ + 𝑏) (𝑣 + 𝑏)
)

) .

(41)

𝑀(𝑢, 𝑣) is negative definite if the symmetric matrices 𝐵 is
positive. It can be easily shown that the symmetric matrix 𝐵
is positive definite if the following conditions are true:

(i) 𝑎 + 𝑢∗ − 𝑚𝑣/(𝑎 + 𝑢) > 0,

(ii) Φ(𝑢, 𝑣) ≜ (𝑢∗/ℎ𝑣∗)(𝑎+𝑢∗−𝑚𝑣/(𝑎+𝑢))(ℎ/𝑢−𝑏/(𝑣∗+
𝑏)(𝑣 + 𝑏)) − (1/4)(𝑚 − 1/𝑢)2 > 0.

Proof of (i). ApplyingTheorems 1 and 3, we get

𝑎 + 𝑢∗ −
𝑚𝑣

𝑎 + 𝑢
> 𝑎 + 𝑢∗ −

𝑚ℎ−1

𝑎 + 𝛼

=
(𝑎 + 𝑢∗) (𝑎 + 𝛼) − 𝑚ℎ−1

𝑎 + 𝛼
.

(42)

Therefore, if (a1) holds, then 𝑎 + 𝑢∗ − 𝑚𝑣/(𝑎 + 𝑢) > 0 for all
𝑡 ≥ 0.
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Proof of (ii). Consider

Φ (𝑢, 𝑣) =
𝑢∗

ℎ𝑣∗
(𝑎 + 𝑢∗ −

𝑚𝑣

𝑎 + 𝑢
)(

ℎ

𝑢
−

𝑏

(𝑣∗ + 𝑏) (𝑣 + 𝑏)
)

−
1

4
(𝑚 −

1

𝑢
)
2

>
𝑢∗

ℎ𝑣∗
(
ℎ (𝑎 + 𝑢∗)

𝑢
−

𝑏 (𝑎 + 𝑢∗)

(𝑣∗ + 𝑏) (𝑣 + 𝑏)
−

ℎ𝑚𝑣

𝑢 (𝑎 + 𝑢)
)

−
𝑚2

4
−

1

4𝑢2

>
𝑢∗

ℎ𝑣∗
(ℎ (𝑎 + 𝑢∗) −

𝑏 (𝑎 + 𝑢∗)

(𝑣∗ + 𝑏) (𝛽 + 𝑏)
−

𝑚

𝛼 (𝑎 + 𝛼)
)

−
𝑚2

4
−

1

4𝛼2
.

(43)

Consequently, if (a2) holds,Φ(𝑢, 𝑣) > 0.
Hence, 𝐸∗ is globally asymptotically stable for model (5)

following the well-known theorem of Lyapunov stability.

4. Diffusion-Driven Instability: Turing Effect

In this section, we will investigate Turing instability and
bifurcation for ourmodel problem.Wewill also study pattern
formation of the predator-prey solutions.

4.1. Turing Instability. Mathematically speaking, an equilib-
rium is Turing instability (diffusion-driven instability) means
that it is an asymptotically stable equilibriumofmodel (6) but
is unstablewith respect to the solutions of diffusionmodel (5).
In this subsection, we mainly focus on the emergency of the
Turing instability of the positive equilibrium 𝐸∗ = (𝑢∗, 𝑣∗).

Now, the conditions for the positive equilibrium to be
stable for the ODE are given by

det (𝐽) = 𝐽
11
𝐽
22
− 𝐽
12
𝐽
21
> 0, tr (𝐽) = 𝐽

11
+ 𝐽
22
< 0.

(44)

Hence,𝐴
𝑖
(the matrix𝐴

𝑖
= −𝜇
𝑖
𝐷+ 𝐽) has an eigenvalue with

a positive real part, then it must be a real value and the other
eigenvaluemust be a negative real one. A necessary condition
for the Turing instability of model (5) is

𝑑
2
𝐽
11
+ 𝑑
1
𝐽
22
> 0, (45)

Otherwise, det(𝐴
𝑖
) > 0 for all eigenvalues 𝜇

𝑖
of the operator

Δ since det(𝐽) > 0. For the Turing instability, we must have
det(𝐴

𝑖
) < 0 for some 𝜇

𝑖
. And we notice that det(𝐴

𝑖
) achieves

its minimum

min
𝜇
𝑖

det (𝐴
𝑖
) =

4𝑑
1
𝑑
2
det (𝐽) − (𝑑

2
𝐽
11
+ 𝑑
1
𝐽
22
)
2

4𝑑
1
𝑑
2

(46)

at the critical value 𝜇∗ > 0 when

𝜇∗ =
𝑑
2
𝐽
11
+ 𝑑
1
𝐽
22

2𝑑
1
𝑑
2

. (47)

However, the inequality min
𝜇
𝑖

det(𝐴
𝑖
) < 0 is necessary

but not sufficient for the Turing instability in the bounded
domain Ω. The possible eigenvalues 𝜇

𝑖
are discrete. In this

case, det(𝐴
𝑖
) = 0 has two positive roots 𝑘

1
and 𝑘
2

𝑘
1
=
𝑑
2
𝐽
11
+ 𝑑
1
𝐽
22
− √(𝑑

2
𝐽
11
+ 𝑑
1
𝐽
22
)
2

− 4𝑑
1
𝑑
2
det (𝐽)

2𝑑
1
𝑑
2

,

𝑘
2
=
𝑑
2
𝐽
11
+ 𝑑
1
𝐽
22
+ √(𝑑

2
𝐽
11
+ 𝑑
1
𝐽
22
)
2

− 4𝑑
1
𝑑
2
det (𝐽)

2𝑑
1
𝑑
2

,

(48)

so if we can find some 𝜇
𝑖
such that 𝑘

1
< 𝜇
𝑖
< 𝑘
2
, then

det(𝐴
𝑖
) < 0, and the positive equilibrium 𝐸∗ = (𝑢∗, 𝑣∗) of

model (5) is unstable.
Summarizing the previous analysis and calculations, we

have the following results.

Theorem 6. Assume that the positive equilibrium 𝐸∗ =
(𝑢∗, 𝑣∗) exists. If the following conditions are true:

(i) 𝐽
11
+ 𝐽
22
< 0, that is,

𝑠 >
𝑢∗(𝑣∗ + 𝑏)

2

(𝑚𝑣∗ − (𝑎 + 𝑢∗)
2

)

𝑣∗2(𝑎 + 𝑢∗)2
, (49)

(ii) 𝑑
2
𝐽
11
+ 𝑑
1
𝐽
22
> 0, that is,

𝑠 <
𝑑
2
𝑢∗(𝑣∗ + 𝑏)

2

(𝑚𝑣∗ − (𝑎 + 𝑢∗)
2

)

𝑑
1
𝑣∗2(𝑎 + 𝑢∗)2

, (50)

(iii) 𝑑
2
𝐽
11
+ 𝑑
1
𝐽
22
> 2√det(𝐷) det(𝐽), that is,

𝑑
2
𝑢∗ (𝑚𝑣∗ − (𝑎 + 𝑢∗)

2

)

(𝑎 + 𝑢∗)2
−

𝑑
1
𝑠𝑣∗
2

(𝑣∗ + 𝑏)2

> 2√𝑑
1
𝑑
2
det (𝐽),

(51)

then the positive equilibrium 𝐸∗ of model (5) is Turing
unstable if 0 < 𝑘

1
< 𝜇
𝑖
< 𝑘
2
for some 𝜇

𝑖
.

In Figure 1, we show the Turing bifurcation diagram for
model (5) with parameters 𝑚 = 0.1, 𝑎 = 0.003, ℎ =
0.066, 𝑑

1
= 0.015, and 𝑑

2
= 1 in 𝑏-𝑠 parameters plane.

The Turing bifurcation breaks spatial symmetry, leading to
the formation of patterns that are stationary in time and
oscillatory in space [33]. Below the Turing bifurcation curve,
the solution of the model is unstable, and Turing instability
emerges, that is, Turing patterns emerge. This domain is
called the “Turing space.”We will focus on the Turing pattern
formation in this domain.

4.2. Pattern Formation. In this section, we perform extensive
numerical simulations of the spatially extended model (5) in
two dimensional space, and the qualitative results are shown
here. All our numerical simulations employ the zero-flux
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Figure 1: Turing bifurcation diagram for model (5) using 𝑏 and 𝑠 as parameters. Other parameters are taken as: 𝑚 = 0.1, 𝑎 = 0.003, ℎ =
0.066, 𝑑

1
= 0.015, 𝑑

2
= 1.

boundary conditions with a system size of 100 × 100. Other
parameters are set as 𝑎 = 0.03, 𝑚 = 0.1, ℎ = 0.066, 𝑑

1
=

0.015, and 𝑑
1
= 1.

The numerical integration of model (5) is performed
by using a finite difference approximation for the spatial
derivatives and an explicit Euler method for the time inte-
gration [34, 35] with a time stepsize of 1/1000 and the space
stepsize of ℎ = 1/10. The initial condition is always a
small amplitude random perturbation around the positive
equilibrium 𝐸∗ = (𝑢∗, 𝑣∗). After the initial period during
which the perturbation spreads, either the model goes into a
time dependent state, or to an essentially steady-state solution
(time independent).

In the numerical simulations, different types of dynamics
are observed, and it is found that the distributions of predator
and prey are always of the same type. Consequently, we can
restrict our analysis of pattern formation to one distribution.
In this section, we show the distribution of prey 𝑢, for
instance. We have taken some snapshots with red (blue)
corresponding to the high (low) value of prey 𝑢.

Figure 2 shows the evolution process of the holes pattern
of prey for the parameters (𝑏, 𝑠) = (3.6, 0.9) at 0, 1×105, 2×105
and 3 × 105 iterations. In this case, one can see that for model
(5), the random perturbations lead to the formation of stripes
holes (cf. Figure 2(b)), and the later random perturbations
make these stripes decay ending with the holes pattern (cf.
Figure 2(d))—the prey are isolated zones with low population
density.

Figure 3 shows the process of spatial pattern formation of
prey for the parameters (𝑏, 𝑠) = (0.8, 2) at 0, 0.5×105, 1.5×105,
and 3 × 105 iterations. The random perturbations lead to the
formation of stripe-holes patterns (cf. Figure 3(b)), and the
later random perturbations make these holes decay, ending

with a time-independent stripe pattern (cf. Figure 3(d))—
the prey are interlaced stripes of high and low population
densities.

Figure 4 shows the process of spot pattern formation of
prey for (𝑏, 𝑠) = (0.8, 10) at 0, 2×105, 5×105, and 1×106 iter-
ations. There is a competition exhibited between stripes and
spots. The pattern takes a long time to settle down, starting
with a homogeneous state 𝐸∗(cf. Figure 4(a)), and the ran-
dom perturbations lead to the formation of stripes and spots
(cf. Figure 4(b)), ending with spots only (cf. Figure 4(d))—
the prey are isolated zones with high population density.

Ecologically speaking, spots pattern shows that the prey
population is driven by predators to a high level in those
regions, while holes pattern shows that the prey population
is driven by predators to a very low level in those regions.

5. Conclusions and Remarks

In this paper, we have studied the dynamics of a reaction-
diffusion Holling-Tanner prey-predator model where the
predator population is subject to Allee effect under the
zero-flux boundary conditions. The value of this study lies
in threefolds. First, it investigates qualitative properties of
solutions to this reaction-diffusion model. Second, it gives
local and global stability of the positive equilibrium of the
model. Third, it rigorously proves the Turing instability
and illustrates three categories of Turing patterns close to
the onset Turing bifurcation, which shows that the model
dynamics exhibits complex pattern replication.

It is seen that if Allee effect constant 𝑏 is low, then
the persistence of the model is guaranteed. It is interesting
to notice that, from the result of Theorem 5, the condition
for global stability of 𝐸∗ = (𝑢∗, 𝑣∗) is independent of the
diffusion coefficients 𝑑

𝑖
(𝑖 = 1, 2). So, it can be said that
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Figure 2: Holes pattern formation for model (5) by taking (𝑏, 𝑠) = (3.6, 0.9). Iterations: (a) 0; (b) 1 × 105; (c) 2 × 105; (d) 3 × 105.
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Figure 3: Stripes pattern formation for model (5) by taking (𝑏, 𝑠) = (0.8, 2). Iterations: (a) 0; (b) 0.5 × 105; (c) 1.5 × 105; (d) 3 × 105.
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Figure 4: Spots pattern formation for model (5) by taking (𝑏, 𝑠) = (0.8, 10). Iterations: (a) 0; (b) 2 × 105; (c) 5 × 105; (d) 1 × 106.

when the conditions on the parameters are satisfied, 𝐸∗ =
(𝑢∗, 𝑣∗) is stabilized under arbitrary spatially inhomogeneous
perturbation. A very interesting observation can be made
from the result of the numerical simulations. It indicates that
the spatial model dynamics exhibits a diffusion-controlled
formation growth not only to holes (cf. Figure 1) and stripes
(cf. Figure 2) but also to spots replication (cf. Figure 3).

Comparing Figures 1 and 3, we can conclude that the
model exhibits holes and spots Turing patterns due to Allee
effect constant 𝑏. It is believed that the observations made in
this investigation related to Allee effect on predator popula-
tion remind us of the importance of the Allee effect. There-
fore, if the prey or the predator to be protected is subject to an
Allee effect, themeasures taken should take this into account.
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We present a theoretical analysis of the processes of pattern formation that involves organisms
distribution and their interaction of spatially distributed population with self- as well as cross-
diffusion in a Holling-Tanner predator-prey model; the sufficient conditions for the Turing
instability with zero-flux boundary conditions are obtained; Hopf and Turing bifurcation in a
spatial domain is presented, too. Furthermore, we present novel numerical evidence of time
evolution of patterns controlled by self- as well as cross-diffusion in the model, and find that the
model dynamics exhibits a cross-diffusion controlled formation growth not only to spots, but also
to strips, holes, and stripes-spots replication. And the methods and results in the present paper
may be useful for the research of the pattern formation in the cross-diffusive model.

1. Introduction

A fundamental goal of theoretical ecology is to understand the interactions of individual
organisms with each other and with the environment and to determine the distribution of
populations and the structure of communities. Empirical evidence suggests that the spatial
scale and structure of environment can influence population interactions [1]. The study
of complex population dynamics is nearly as old as population ecology, starting with the
pioneering work of Lotka and Volterra, a simple model of interacting species that still bears
their joint names [2, 3].

And the predator-prey system models such a phenomenon, pursuit-evasion, predators
pursuing prey and prey escaping from the predators [4]. In other words, in nature, there is a
tendency that the preys would keep away from predators and the escape velocity of the preys
may be taken as proportional to the dispersive velocity of the predators. In the same manner,
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there is a tendency that the predators would get closer to the preys and the chase velocity
of predators may be considered to be proportional to the dispersive velocity of the preys [5].
Keeping these in view, cross-diffusion arises, which was proposed first by Kerner [6] and first
applied in competitive population system by Shigesada et al. [7]. From the pioneering work
of Turing [8], spatially continuous models formulated as reaction-diffusion equations have
been intensively used to describe spatiotemporal dynamics and to investigate mechanisms
for pattern formation [9]. And the appearance and evolution of these patterns have been a
focus of recent research activity across several disciplines [10].

In recent years, there has been considerable interest to investigate the stability behavior
of a predator-prey system by taking into account the effect of self- as well as cross-diffusion
[11–25]. Cross-diffusion expresses the population fluxes of one species due to the presence of
the other species.

Furthermore, in [23], the authors gave a numerical study of pattern formation in the
Holling-Tanner model with self- and cross-diffusion as the form

∂N

∂t
=N(1 −N) − aNP

N + b
+∇2N +D12∇2P � f(N,P) +∇2N +D12∇2P,

∂P

∂t
= rP

(
1 − P

N

)
+D21∇2N +∇2P � g(N,P) +D21∇2N +∇2P,

(1.1)

with the following nonzero initial conditions:

N
(
x, y, 0

)
> 0, P

(
x, y, 0

)
> 0,

(
x, y
) ∈ Ω = [0, Lx] × [0, Ly] (1.2)

and zero-flux boundary conditions:

∂N

∂n
=
∂P

∂n
= 0,

(
x, y
) ∈ ∂Ω, (1.3)

where N(t), P(t) represent population densities of prey and predator, respectively, r is the
intrinsic growth rate or biotic potential of the prey, a is the maximal predator per capita
consumption rate, that is, the maximum number of prey that can be eaten by a predator in
each time unit, and b is the number of preys necessary to achieve one-half of the maximum
rate a [26]. And the nonnegative constants, D12 and D21, called cross-diffusion coefficients,
express the respective population fluxes of the prey and predators resulting from the presence
of the other species, respectively. Lx and Ly give the size of the system in the directions of x
and y, respectively. In (1.3), n is the outward unit normal vector of the boundary ∂Ω, which
we will assume is smooth. The main reason for choosing such boundary conditions is that we
are interested in the self-organization of pattern; zero-flux conditions imply no external input
[11, 27].

Biologically, cross diffusion implies countertransport [11]. And the induced cross-
diffusion rate D12 in (1.1) represents the tendency of the prey N to keep away from its
predators P and D21 represents the tendency of the predator to chase its prey. The cross-
diffusion coefficients, D12 and D21, may be positive or negative. Positive cross-diffusion
coefficient denotes that one species tends to move in the direction of lower concentration of
another species while negative cross diffusion expresses the population fluxes of one species
in the direction of higher concentration of the other species [13].
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In [23], the authors found that, for the equal self-diffusion coefficients (i.e., the
coefficients of ∇2N and ∇2P in (1.1) are both equal to 1), only spots pattern could be obtained.
In addition, they indicated that cross diffusion may have an effect on the distribution of the
species, that is, it may lead the species to be isolated.

There comes a question: besides spots, does model (1.1) exhibit any other pattern
replication controlled by cross-diffusion?

In this paper, based on the results of [23], we mainly focus on the effect of self- as
well as cross-diffusion on pattern formation in the two-species Holling-Tanner predator-prey
model. In the next section, we give the sufficient conditions for the Turing instability with
zero-flux boundary conditions. And, by using the bifurcation theory, we give the Hopf and
Turing bifurcation analysis of the model. Then, we present and discuss the results of complex,
not simple, pattern formations via numerical simulations, which are followed by the last
section, that is, concluding remarks.

2. Linear Stability Analysis

In the absence of diffusion, model (1.1) has two equilibrium solutions in the positive
quadrant. One equilibrium point is given by (N0, P0) = (1, 0). In the (N,P) phase plane,
(1, 0) is a saddle [28]. Another equilibrium point E∗ = (N∗, P ∗) depends on the parameters a
and b and is given by

N∗ = P ∗ =
1 − a − b +M

2
, (2.1)

where M =
√
(1 − a − b)2 + 4b.

And in the presence of diffusion, we will introduce small perturbations U1 = N −N∗

and U2 = P − P ∗, where |U1|, |U2| � 1. The zero-flux boundary conditions (1.3) imply that no
external input is imposed from outside. To study the effect of diffusion on the model system,
we have considered the linearized form of the system as follows:

∂U1

∂t
= J11U1 + J12U2 +∇2U1 +D12∇2U2,

∂U2

∂t
= J21U1 + J22U2 +D21∇2U1 +∇2U2,

(2.2)

where

J11

=
∂f

∂N

∣∣∣∣
(N∗,P ∗)

=

(
M3+(2 − 3a + b)M2+

(
1 − 4a+3a2−b2)M−a3+(2 − b)a2+

(−1 − b2 + 2b
)
a−b−2b2− b3)

(1 − a − b +M)2
,
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J12 =
∂f

∂P

∣∣∣∣
(N∗,P ∗)

=
a(−1 + a + b −M)
(1 − a + b +M)

,

J21 =
∂g

∂N

∣∣∣∣
(N∗,P ∗)

= r, J22 =
∂g

∂P

∣∣∣∣
(N∗,P ∗)

= −r.

(2.3)

Set J =
(
J11 J12
J21 J22

)
. And defineD =

(
1 D12
D21 1

)
as the diffusion matrix, and the determinant

is det(D) = 1 −D12D21.
Following Malchow et al. [29], we can know that any solution of the system (2.2) can

be expanded into a Fourier series so that

U1(r, t) =
∞∑

n,m=0

unm(r, t) =
∞∑

n,m=0

αnm(t) sinkr,

U2(r, t) =
∞∑

n,m=0

vnm(r, t) =
∞∑

n,m=0

βnm(t) sinkr,

(2.4)

where r = (x, y) and 0 < x < Lx, 0 < y < Ly. k = (kn, km) and kn = nπ/Lx, km = mπ/Ly are
the corresponding wavenumbers.

Having substituted unm and vnm with (2.2), we obtain

dαnm
dt

=
(
J11 − k2

)
αnm +

(
J12 −D12k

2
)
βnm,

dβnm
dt

=
(
J21 −D21k

2
)
αnm +

(
J22 − k2

)
βnm,

(2.5)

where k2 = k2
n + k

2
m.

A general solution of (2.5) has the form C1 exp(λ1t) +C2 exp(λ2t), where the constants
C1 and C2 are determined by the initial conditions (1.2) and the exponents λ1 and λ2 are the
eigenvalues of the following matrix:

D̃ =

⎛
⎜⎜⎝

J11 − k2 J12 −D12k
2

J21 −D21k
2 J22 − k2

⎞
⎟⎟⎠. (2.6)

Correspondingly, λ1 and λ2 arise as the solution of the following equation:

λ2 − tr
(
D̃
)
λ + det

(
D̃
)
= 0, (2.7)
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where

tr
(
D̃
)
= J11 + J22 − 2k2,

det
(
D̃
)
= (1 −D12D21)k4 + (−J11 − J22 +D12J21 +D21J12)k2 + det(J).

(2.8)

Theorem 2.1. If 0 < D12, D21 < 1, and b ≥ a/(1 + a), then the uniform steady state E∗ of model
(1.1) is globally asymptotically stable.

Proof. For global stability of nonspatial model of (1.1), we select a Liapunov function:

V (N,P) =
∫N
N∗

ξ −N∗

ξφ(ξ)
dξ +

1
r

∫P
P ∗

η − P ∗

η
dη, (2.9)

where φ(N) = aN/(N + b). Then

dV

dt
(N,P) =

N −N∗

Nφ(N)
dN

dt
+
P − P ∗

rP

dP

dt
. (2.10)

Substituting the value of dN/dt and dP/dt from the nonspatial model of (1.1), we
obtained

dV

dt
=
N −N∗

N

(
N(1 −N)
φ(N)

− P ∗
)
− 1
N

(P − P ∗)2. (2.11)

Noting that P ∗ = (1/a)(1 −N∗)(N∗ + b), one can obtain

dV

dt
= − (N −N∗)2

aN
(N +N∗ + b − 1) − 1

N
(P − P ∗)2. (2.12)

If b ≥ a/(1 + a) holds, dV/dt ≤ 0.
Next, we select the Liapunov function for model (1.1) (two dimensional with diffusion

case):

V2(t) =
∫∫

Ω
V (N,P)dx dy, (2.13)

so

dV2

dt
=
∫∫

Ω

dV

dt
dx dy +

∫∫
Ω

(
∇2N +D12∇2P

) ∂V
∂N

dxdy +
∫∫

Ω

(
D21∇2N +∇2P

)∂V
∂P

dx dy.

(2.14)

Using Green’s first identity in the plane

∫∫
Ω
F∇2Gdxdy =

∫
∂Ω
F
∂G

∂n
ds −

∫∫
Ω
(∇F · ∇G)dx dy. (2.15)
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And considering the zero-flux boundary conditions (1.3), one can show that

∫∫
Ω

(
∇2N +D12∇2P

) ∂V
∂N

dxdy

= −
∫∫

Ω

∂2V

∂N2

[(
∂N

∂x

)2

+
(
∂N

∂y

)2

+D12

(
∂N

∂x

∂P

∂x
+
∂N

∂y

∂P

∂y

)]
dx dy,

∫∫
Ω

(
D21∇2N +∇2P

)∂V
∂P

dx dy

= −
∫∫

Ω

∂2V

∂P 2

[
D21

(
∂N

∂x

∂P

∂x
+
∂N

∂y

∂P

∂y

)
+
(
∂P

∂x

)2

+
(
∂P

∂y

)2
]
dx dy,

(2.16)

then

dV2

dt
= I1 + I2, (2.17)

where

I1 =
∫∫

Ω

dV

dt
dx dy,

I2 = −
∫∫

Ω

[
∂2V

∂N2

((
∂N

∂x

)2

+
(
∂N

∂y

)2
)

+
∂2V

∂P 2

((
∂P

∂x

)2

+
(
∂P

∂y

)2
)]

dx dy

−
∫∫

Ω

(
D12

∂2V

∂N2
+D21

∂2V

∂P 2

)(
∂N

∂x

∂P

∂x
+
∂N

∂y

∂P

∂y

)
dx dy.

(2.18)

Obviously, I1 ≤ 0 and I2 ≤ 0. The proof is complete.

And from [19], we know that the equilibrium E∗ is Turing unstable if it is an
asymptotically stable equilibrium of model (1.1) without self and cross diffusion but is
unstable with respect to solutions of model (1.1). Hence, Turing instability sets in when
the condition either tr(D̃) < 0 or det(D̃) > 0 is violated, which subject to the conditions
J11 + J22 < 0 and det(J) > 0. It is evident that the condition tr(D̃) < 0 is not violated when the
requirement J11 + J22 < 0 is met. Hence, only violation of condition det(D̃) > 0 gives rise to
Turing instability. Then the condition for Turing instability is given by

H
(
k2
)
= det

(
D̃
)
≡ (1 −D12D21)k4 + (−J11 − J22 +D12J21 +D21J12)k2 + det(J) < 0. (2.19)

Thus, a sufficient condition for Turing instability is that H(k2)min is negative.
Therefore,

H
(
k2
)

min
= det(J) − (J11 + J22 −D12J21 −D21J12)2

4(1 −D12D21)
< 0. (2.20)
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Figure 1: Modes with wavenumbers lying between the zeros, k2
1, and k2

2, of H(k2) grow in the Turing
instability. Parameters: a = 0.8, b = 0.1, r = 0.1, D12 = −0.08, D21 = 0.8, hence, k2

1 = 0.12440, k2
2 = 0.38086,

and Hmin = −0.01749.

Equation (2.20) leads to the following final criterion for Turing instability:

(J11 + J22 −D12J21 −D21J12)2 > 4 (1 −D12D21)det(J). (2.21)

That is to say, if H(k2)min is negative, then a range of modes k2
1 < k2 < k2

2 will grow Turing
instability (see Figure 1).

Summarizing the previous discussions, we can obtain the following theorem.

Theorem 2.2. The equilibrium E∗ of model (1.1) is Turing instability if J11 + J22 > D12J21 +D21J12

and J11 + J22 −D12J21 −D21J12 > 2
√
(1 −D12D21)det(J).

It is easy to see that the minimum of H(k2) occurs at k2 = k2
m, where

k2
m =

J11 + J22 −D12J21 −D21J12

2(1 −D12D21)
> 0. (2.22)

The critical wavenumber kc of the first perturbations to grow is found by evaluating km from
(2.22).

Figure 2 shows that the linear stability analysis yields the bifurcation diagram with
a = 0.8, b = 0.1, and D21 = 0.8. Turing and Hopf lines intersect at the Turing-Hopf bifurcation
point (D12, r) = (−0.00489, 0.12572) and separate the parametric space into four domains. On
domain I, located above all two bifurcation lines, the steady state is the only stable solution of
the model. Domain II is the region of pure Turing instability. In domain III, which is located
above all two bifurcation lines, both Hopf and Turing instability occur. And domain IV is the
region of pure Hopf instability.
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Hopf
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Figure 2: Bifurcation diagram for model (1.1) with parameters a = 0.8, b = 0.1, and D21 = 0.8. The Turing
bifurcation line is r

T
= (707983156D2

12 − (7436338235 + 50000A)D12 + 8189199110 − 62500A)/(109(D12 +

1)(4D2
12 − D12 − 5)), where A =

√
109(14.63 − 2.336D2

12 − 8.784D12). Hopf bifurcation line is rH = 0.12572.
Turing and Hopf lines intersect at the Turing-Hopf bifurcation point (D12, r) = (−0.00489, 0.12572) and
separate the parametric space into four domains.

3. Pattern Formation

In this section, we performed extensive numerical simulations of the spatially extended
model (1.1) in 2-dimension spaces, and the qualitative results are shown here. All our
numerical simulations employ the zero-flux boundary conditions with a system size of
Lx × Ly, with Lx = Ly = 400 discretized through x → (x0, x1, x2, . . . , xn) and y →
(y0, y1, y2, . . . , yn), with n = 200. Other parameters are fixed as a = 0.8, b = 0.1, and D21 = 0.8.
The numerical integration of (1.1) was performed by means of forward Euler integration,
with a time step of τ = 0.05 and spatial resolution h = 2 and using the standard five-point
approximation for the 2D Laplacian with the zero-flux boundary conditions [30, 31]. More
precisely, the concentrations (Nn+1

i,j , Pn+1
i,j ) at the moment (n + 1)τ at the mesh position (i, j)

are given by

Nn+1
i,j =Nn

i,j + τΔhN
n
i,j + τD12ΔhP

n
i,j + τf

(
Nn

i,j , P
n
i,j

)
,

Pn+1
i,j = Pni,j + τD21ΔhN

n
i,j + τΔhP

n
i,j + τg

(
Nn

i,j , P
n
i,j

)
,

(3.1)

with the Laplacian defined by

ΔhN
n
i,j =

Nn
i+1,j +N

n
i−1,j +N

n
i,j+1 +N

n
i,j−1 − 4Nn

i,j

h2
. (3.2)

Initially, the entire system is placed in the stationary state (N∗, P ∗) = (0.370156,
0.370156), and the propagation velocity of the initial perturbation is thus on the order of
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Figure 3: Spots pattern obtained with model (1.1) for (D12, r) = (0.12, 0.1278). Iterations: (a) 0, (b) 10000,
(c) 30000, and (d) 300000.

5 × 10−4 space units per time unit. And the system is then integrated for 100000 or 300 000
time steps and some images saved. After the initial period during which the perturbation
spreads, the system goes either into a time dependent state, or to an essentially steady state
(time independent).

In the numerical simulations, different types of dynamics are observed, and it is found
that the distributions of predator and prey are always of the same type. Consequently, we
can restrict our analysis of pattern formation to one distribution. In this section, we show the
distribution of prey N, for instance.

Firstly, we show the pattern formation for the parameters (D12, r) located in domain II
(cf. Figure 2); the region of pure Turing instability occurs while Hopf stability occurs. We have
performed a large number of simulations and found that there only exhibits spots pattern in
this domain. As an example, we show the time evolution of spots pattern of prey N at 0,
10000, 30000, and 300000 iteration for (D12, r) = (0.12, 0.1278) in Figure 3. In this case, one can
see that for model (1.1), the random initial distribution (cf. Figure 3(a)) leads to the formation
of regular spots except for apparently stable defects (cf. Figure 3(d)).

Next, we show the pattern for the parameters (D12, r) located in domain III
(cf. Figure 2), both Hopf and Turing instability occur. The model dynamics exhibits
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Figure 4: Four types of patterns obtained with model (1.1) for 100000 iterations. (a) Pattern α: (D12, r) =
(−0.04, 0.00574). (b) Pattern β: (D12, r) = (0.152, 0.0882). (c) Pattern γ : (D12, r) = (0.12, 0.03496). (d) Pattern
δ: (D12, r) = (0.2, 0.01).

spatiotemporal complexity of pattern formation. In Figure 4, we show four typical types of
patterns we obtained via numerical simulation.

Pattern α is time independent and consists primarily of stripes. Pattern β is time
independent and consists of stripes and spots. Pattern γ is time dependent: a few of the stripes
without apparent decay, but the remainder of the spots pattern remains time independent.
Pattern δ is time independent and consists of black spots on a white background, that is,
isolated zones with low-population densities. Baurmann et al. [32] called this type pattern
“cold spots” and von Hardenberg et al. [33] called it “holes.” In this paper, we adopt the
name “holes.”

4. Concluding Remarks

In summary, we have investigated a cross-diffusive Holling-Tanner predator-prey model
with equal self-diffusive coefficients. Based on the bifurcation analysis (Hopf and Turing),
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we give the spatial pattern formation via numerical simulation, that is, the evolution process
of the system near the coexistence equilibrium point (N∗, P ∗).

In contrast to the results in [23], we find that the model dynamics exhibits a cross-
diffusion controlled formation growth not only to spots (in [23], Sun et al. claimed that the
spots pattern is the only pattern of the model), but also to stripes, holes, and stripes-spots
replication. That is to say, the pattern formation of the Holling-Tanner predator-prey model
is not simple, but rich and complex.

On the other hand, in the predator-prey model, predators will tend to gravitate
toward higher concentrations of prey while prey will preferentially move toward regions
where predators are rare. Models of predator-prey systems with cross diffusion have been
extensively analyzed in the literature, though often with respect to their mathematical
properties rather than to provide insight into the kinds of patterns that can emerge [24]. And
the methods and results in the present paper may be useful for the research of the pattern
formation in the cross-diffusive predator-prey model.
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We construct a new Lyapunov function for a class of predation models. Global stability of the
positive equilibrium states of these systems can be established when the Lyapunov function is
used.

1. Introduction

The dynamics of predator-prey systems are often described by differential equations, which
represent time continuously. A common framework for such a model is [1–3]

dN

dt
=Nf(N) − Pg(N,P),

dP

dt
= h

[
g(N,P), P

]
P,

(1.1)

where N and P are prey and predator densities, respectively, f(N) is the prey growth rate,
g(N) is the functional response, for example, the prey consumption rate by an average single
predator, and h[g(N), P] the per capita growth rate of predators (also known as the “predator
numerical response”), which obviously increases with the prey consumption rate. The most
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widely accepted assumption for the numerical response with predator density restricting is
as follows:

h
[
g(N,P), P

]
= εg(N,P) − δP − β, (1.2)

where β is a per capita predator death rate, ε the conversion efficiency of food into offspring,
δ the density dependent rate [2]. And prototype of the prey growth rate f(N) is the logistic
growth

f(N) = r
(

1 − N

K

)
, (1.3)

where K > 0 is the carrying capacity of the prey.
When

g(N,P) = 1 − e−aN, (1.4)

where a is the efficiency of predator capture of prey, model (1.1) is called Ivlev-type predation
model, due originally to Ivlev [4]. And Ivlev-type functional response is classified to the prey-
dependent; that is, g is independent of predator P [2].

Both ecologists and mathematicians are interested in the Ivlev-type predator-prey
model and much progress has been seen in the study of the model [5–13]. Of them, Xiao
[8] gave global analysis of the following model:

dN

dt
= rN(1 −N) −

(
1 − e−aN

)
P,

dP

dt
= P

(
1 − e−aN − d − δP

)
.

(1.5)

But, in paper [8], the author gave complex process to prove the global asymptotical
stability of the positive equilibrium.

In this paper, we will establish a new Lyapunov function to prove the global stability
of the positive equilibrium of model (1.5).

Our paper is organized as follows. In the next section, we discuss the existence,
uniqueness of the positive equilibrium, and establish a new Lyapunov function to model
(1.5). In Section 3, we will give some examples to show the robustness of our Lyapunov
function.

2. Main Results

First of all, it is easy to verify that model (1.5) has two trivial equilibria (belonging to the
boundary of R2

+, that is, at which one or more of populations has zero density or is extinct),
namely, E0 = (0, 0) and E1 = (1, 0). For the positive equilibrium, set

rN(1 −N) −
(

1 − e−aN
)
P = 0, P

(
1 − e−aN − δP − d

)
= 0, (2.1)
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which yields

N(1 −N) =
1
rδ

((
1 − e−aN

)(
1 − e−aN − d

))
. (2.2)

We have the following Lemma regarding the existence of the positive equilibrium.

Lemma 2.1 (see [8]). Suppose 1 − e−a > d. Model (1.5) has a unique positive equilibrium E∗ =
(N∗, P ∗) if either of the following inequalities holds:

(i) d ≥ 2(1 − 2e−a/2);

(ii) d < 2(1 − 2e−a/2), (a/rδ)(2(1 − 2e−a/2) − d))e−a/2 ≥ 1 + (2/a) ln(1/2 − d/4) and
(1/rδ)((1/2 + d/4)2 − d(1/2 + d/4)) < −(1/a) ln(1/2 + d/4) − 1/a2 .

Lemma 2.2. Let 1 − e−a > d, then Ω = {(N,P) | 0 ≤N ≤ 1, 0 ≤ P ≤ (1 − e−a − d)/δ} is a region
of attraction for all solutions of model (1.5) initiating in the interior of the positive quadrant R2

+.

Proof. Let (N(t), P(t)) be any solution of model (1.5) with positive initial conditions. Note
that dN/dt ≤N(1 −N), by a standard comparison argument, we have

lim
t→∞

supN(t) ≤ 1. (2.3)

Then,

dP

dt
= P

(
1 − e−aN − d − δP

)
≤ P(1 − e−a − d − δP). (2.4)

Similarly, since 1 − e−a > d, we have

lim
t→∞

supP(t) ≤ 1 − e−a − d
δ

. (2.5)

On the other hand, for all (N,P) ∈ Ω, we have dN/dt|N=0 = 0 and dP/dt|P=0 = 0. Hence,
Ω is a region of attraction. As a consequence, we will focus on the stability of the positive
equilibrium E∗ only in the region Ω.

In the following, we devote to the global stability of the positive equilibrium E∗ =
(N∗, P ∗) for model (1.5) by constructing a new Lyapunov function which is motivated by the
work of Hsu [3].

Theorem 2.3. If a ≤ 2, the positive equilibrium E∗ = (N∗, P ∗) of model (1.5) is globally
asymptotically stable in the region Ω.

Proof. For model (1.5), we construct a Lyapunov function of the form

V (N,P) =
∫N

N∗

1 − e−aξ − d − δP ∗

1 − e−aξ dξ +
∫P

P ∗

η − P ∗

η
dη. (2.6)
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Note that V (N,P) is non-negative, V (N,P) = 0 if and only if (N,P) = (N∗, P ∗). Furthermore,
the time derivative of V along the solutions of (1.5) is

dV

dt
=

1 − e−aN − d − δP ∗

1 − e−aN
dN

dt
+
P − P ∗

P

dP

dt
. (2.7)

Substituting the expressions of dN/dt and dP/dt defined in (1.5) into (2.7), we can obtain

dV

dt
=
(

1 − e−aN − d − δP ∗
)(rN(1 −N)

1 − e−aN − P ∗
)
− δ(P − P ∗)2

=
(

1 − e−aN − d − δP ∗
)(rN(1 −N)

1 − e−aN − rN∗(1 −N∗)
1 − e−aN∗

)
− δ(P − P ∗)2.

(2.8)

Define

φ(N) = 1 − e−aN − d − δP ∗, (2.9)

then

φ(N∗) = 0,

φ′(N) = 1 + ae−aN > 0.
(2.10)

So,

(N −N∗)
(
φ(N) − φ(N∗)

)
> 0. (2.11)

Then we can get

dV

dt
≤ 0. (2.12)

If

(
1 − e−aN − d − δP ∗

)(rN(1 −N)
1 − e−aN − rN∗(1 −N∗)

1 − e−aN∗

)
≤ 0 (2.13)

holds, which is equivalent to

(N −N∗)
(
rN(1 −N)

1 − e−aN − rN∗(1 −N∗)
1 − e−aN∗

)
≤ 0. (2.14)

Set ϕ(N) = rN(1 −N)/(1 − e−aN), we obtain ϕ(0) = 0 and

ϕ′(N) =
r
(
(1 − 2N)

(
1 − e−aN) − aN(1 −N)e−aN

)
(
1 − e−aN)2

. (2.15)
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And set ψ(N) = (1 − 2N)(1 − e−aN) − aN(1 −N)e−aN , we can get ψ(0) = 0 and

ψ ′(N) = e−aN
(
a2N(1 −N) + 2

)
− 2,

ψ ′′(N) = ae−aN
(
a2N2 − a(a + 2)N + a − 2

)
.

(2.16)

In view of a ≤ 2, it follows that ψ ′′(N) ≤ 0 and ψ ′(N) ≤ ψ ′(0) = 0 in the region
Ω. Then ψ(N) ≤ 0 is always true. It follows that ϕ′(N) ≤ 0, that is, V ′ ≤ 0. Consequently,
the function V (N,P) satisfies the asymptotic stability theorem [14]. Hence, E∗ = (N∗, P ∗) is
globally asymptotically stable. This completes the proof.

3. Applications

In this paper, we construct a new Lyapunov function for proving the global asymptotical
stability of model (1.5). The new Lyapunov function is useful not only to model (1.5), but
also to other models.

In this section, we will give some examples to show the robustness of the Lyapunov
function (2.6). The parameters of the following models are positive and have the same
ecological meanings with those of in model (1.5).

Example 3.1. Considering the following Ivlev predator-prey model incorporating prey
refuges (see [9]):

dN

dt
= rN

(
1 − N

K

)
−
(

1 − e−a(1−m)N
)
P,

dP

dt
=
(

1 − e−a(1−m)N − δP − d
)
P,

(3.1)

where m ∈ [0, 1) is a refuge protecting of the prey. We can choose a Lyapunov functional as
follows:

V (N,P) =
∫N

N∗

1 − e−a(1−m)ξ − δP ∗ − d
1 − e−a(1−m)ξ

dξ +
∫P

P ∗

η − P ∗

η
dη. (3.2)

The proof is similar to that of the Section 2.

Example 3.2. Considering the following predator-prey model with Rosenzweig functional
response (see [10]):

dN

dt
= rN

(
1 − N

K

)
− bNμP,

dP

dt
= (cNμ − δN − d)P,

(3.3)
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where μ ∈ (0, 1] is the victim’s competition constant. We can choose a Lyapunov functional
as follows:

V (N,P) =
∫N

N∗

cNξ − δP ∗ − d
bNξ

dξ +
∫P

P ∗

η − P ∗

η
dη. (3.4)

We omit the proof here.

Example 3.3. Considering the following model (1.1) with Holling-type functional response
(see [11]):

dN

dt
= rN

(
1 − N

K

)
− bg(N)P,

dP

dt
=
(
g(N) − δP − d)P,

(3.5)

where g(N) = αN/(β +N) is known as a Holling type-II function, g(N) = αN2/(β +N2) as
a Holling type-III function and g(N) = αN2/(β + ωN +N2) as a Holling type-IV function.
We choose a Lyapunov function:

V (N,P) =
∫N

N∗

g(ξ) − δP ∗ − d
bg(ξ)

dξ +
∫P

P ∗

η − P ∗

η
dη. (3.6)

For more details, we refer to [12].

Example 3.4. Considering the following diffusive Ivlev-type predator-prey model (see [13]):

∂N

dt
= rN(1 −N) −

(
1 − e−aN

)
P + d1∇2N,

∂P

dt
=
(
ε
(

1 − e−aN
)
− d

)
P + d2∇2P,

(3.7)

where the nonnegative constants d1 and d2 are the diffusion coefficients of N and P ,
respectively. ∇2 = ∂2/∂x2 + ∂2/∂y2, the usual Laplacian operator in two-dimensional space,
is used to describe the Brownian random motion.

Model (3.7) is to be analyzed under the following non-zero initial conditions

N
(
x, y, 0

) ≥ 0, P
(
x, y, 0

) ≥ 0,
(
x, y

) ∈ Ω = [0, Lx] × [
0, Ly

]
, (3.8)

and zero-flux boundary conditions:

∂N

∂n
=
∂P

∂n
= 0. (3.9)

In the above, n is the outward unit normal vector of the boundary ∂Ω.
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In order to give the proof of the global stability, we construct a Lyapunov function:

E(t) =
∫∫

Ω
V (N(t), P(t))dx dy, (3.10)

where

V (N,P) =
∫N

N∗

ε
(
1 − e−aξ) − d

1 − e−aξ dξ +
∫P

P ∗

η − P ∗

η
dη. (3.11)

Then, differentiating E(t) with respect to time t along the solutions of model (3.7), we
can obtain

dE(t)
dt

=
∫∫

Ω

dV

dt
dx dy +

∫∫
Ω

(
∂V

∂N
d1∇2N +

∂V

∂P
d2∇2P

)
dx dy. (3.12)

Using Green’s first identity in the plane, and considering the zero-flux boundary conditions
(3.9), one can show that

dE(t)
dt

=
∫∫

Ω

dV

dt
dx dy − d1∂

2V

∂N2

∫∫
Ω

[(
∂N

∂x

)2

+
(
∂P

∂y

)2
]
dx dy

− d2∂
2V

∂P 2

∫∫
Ω

[(
∂P

∂x

)2

+
(
∂P

∂y

)2
]
dx dy

≤
∫∫

Ω

dV

dt
dx dy.

(3.13)

The remaining arguments are rather similar as Theorem 2.3.
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We investigate a stochastic epidemic model with time delays. By using Liapunov functionals, we
obtain stability conditions for the stochastic stability of endemic equilibrium.

1. Introduction

In [1], Zhen et al. introduced a deterministic SIRS model

Ṡ(t) = b − μS(t) − βS(t)
∫h

0
f(s)I(t − s)ds + αR(t),

İ(t) = βS(t)
∫h

0
f(s)I(t − s)ds − (

μ + c + λ
)
I(t),

Ṙ(t) = λI(t) − (
μ + α

)
R(t),

(1.1)

where S(t) is the number of susceptible population, I(t) is the number of infective members
and R(t) is the number of recovered members. b is the rate at which population is recruited,
μ is the death rate for classes S(t), I(t), and R(t), c is the disease-induced death rate, β is
the transmission rate, λ is the recovery rate, and α is the loss of immunity rate. Equation
(1.1) represents an SIRS model with epidemics spreading via a vector, whose incubation
time period is a distributed parameter over the interval [0, h]. h ∈ R

+ is the limit superior
of incubation time periods in the vector population. The f(s) is usually nonnegative and
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continuous and is the distribution function of incubation time periods among the vectors and∫h
0 f(s)ds = 1.

To be more general, the following model is formulated:

Ṡ(t) = b − μ1S(t) − βS(t)
∫h

0
f(s)I(t − s)ds + αR(t),

İ(t) = βS(t)
∫h

0
f(s)I(t − s)ds − (

μ2 + λ
)
I(t),

Ṙ(t) = λI(t) − (
μ3 + α

)
R(t).

(1.2)

The positive constants μ1, μ2, and μ3 represent the death rates of susceptibles, infectives, and
recovered, respectively. It is natural biologically to assume that μ1 < min{μ2, μ3}. If α = 0,
model (1.2) was considered in [2–5]. For α = 0 and fixed delay, the global asymptotic stability
of (1.2) was considered in [6].

The basic reproduction number for (1.2) is

R0 =
βb

μ1
(
μ2 + λ

) . (1.3)

If R0 ≤ 1, the system (1.2) has just one disease-free equilibrium E0 = (b/μ1, 0, 0); otherwise, if
R0 > 1, the disease-free equilibrium E0 is still present, but there is also a unique positive
endemic equilibrium E∗ = (S∗, I∗, R∗), given by S∗ = (μ2 + λ)/β, I∗ = (b(μ3 + α)(R0 −
1))/(R0[μ2(μ3 + α) + μ3λ]), R∗ = (λ/(μ3 + α))I∗.

2. Stability Analysis of the Atochastic Delay Model

Since environmental fluctuations have great influence on all aspects of real life, then it is
natural to study how these fluctuations affect the epidemiological model (1.2). We assume
that stochastic perturbations are of white noise type and that they are proportional to the
distances of S, I, R from S∗, I∗, R∗, respectively. Then the system (1.2) will be reduced to the
following form:

Ṡ(t) = b − μ1S(t) − βS(t)
∫h

0
f(s)I(t − s)ds + αR(t) + σ1(S(t) − S∗)ẇ1(t),

İ(t) = βS(t)
∫h

0
f(s)I(t − s)ds − (

μ2 + λ
)
I(t) + σ2(I(t) − I∗)ẇ2(t),

Ṙ(t) = λI(t) − (
μ3 + α

)
R(t) + σ3(R(t) − R∗)ẇ3(t).

(2.1)

Here, σ1, σ2, and σ3 are constants, and w(t) = (w1(t), w2(t), w3(t)) represents a three-dimen-
sional standard Wiener processes.

This system has the same equilibria as system (1.2). We assume that R0 > 1; we discuss
the stability of the endemic equilibriumE∗ of (2.1). The stochastic system (2.1) can be centered
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at its endemic equilibrium E∗ by the changes of variables x1 = S − S∗, x2 = I − I∗, x3 = R −R∗.
By this way, we obtain

ẋ1 = − (
βI∗ + μ1

)
x1 − βx1

∫h

0
f(s)x2(t − s)ds − βS∗

∫h

0
f(s)x2(t − s)ds + αx3 + σ1x1ẇ1(t),

ẋ2 = βI∗x1 − βS∗x2 + βx1

∫h

0
f(s)x2(t − s)ds + βS∗

∫h

0
f(s)x2(t − s)ds + σ2x2ẇ2(t),

ẋ3 = λx2 −
(
μ3 + α

)
x3 + σ3x3ẇ3(t).

(2.2)

In order to investigate the stability of endemic equilibrium of system (2.1), we study
the stability of the trivial solution of system (2.2).

First, consider the stochastic functional differential equation

dy(t) = h
(
t, yt

)
dt + g

(
t, yt

)
dw(t), t ≥ 0, y0 = ϕ ∈ H. (2.3)

Let {Ω, σ, P} be the probability space, {ft, t ≥ 0} the family of σ-algebra, ft ∈ σ,H the space of
f0-adapted functions ϕ(s) ∈ Rn, s ≤ 0, ‖ϕ‖ = sups≤0|ϕ(s)|, w(t) the m-dimensional ft-adapted
Wiener process, h(t, yt) the n-dimensional vector, and g(t, yt) the n ×m-dimensional matrix,
both defined for t ≥ 0. We assume that (2.3) has a unique global solution y(t;ϕ) and that
h(t, 0) = g(t, 0) ≡ 0. Then, (2.3) has the trivial solution y(t) ≡ 0 corresponding to the initial
condition y0 = 0.

Definition 2.1. The trivial solution of (2.3) is said to be stochastically stable if, for every ε ∈
(0, 1) and r > 0, there exists a δ > 0 such that

P
{∣∣y(t;ϕ)∣∣ > r, t ≥ 0

} ≤ ε (2.4)

for any initial condition ϕ ∈ H satisfying P{‖ϕ‖ ≤ δ} = 1.

Definition 2.2. The trivial solution of (2.3) is said to be mean square stable if, for every ε > 0,
there exists a δ > 0 such that E|y(t;ϕ)|2 < ε for any t ≥ 0 provided that sups≤0E|ϕ(s)|2 < δ.

Definition 2.3. The trivial solution of (2.3) is said to be asymptotically mean square stable if it
is mean square stable and limt→∞E|y(t;ϕ)|2 = 0.

The differential operator associated to (2.3) is defined by the formula

LV
(
t, ϕ

)
= lim sup

Δ→ 0

Et,ϕV
(
t + Δ, yt+Δ

) − V (
t, ϕ

)
Δ

, (2.5)

where y(s), s ≥ t is the solution of (2.3) with initial condition yt = ϕ ∈ H, and V (t, ϕ) is a
functional defined for t ≥ 0.

If V (t, ϕ) = V (t, ϕ(0), ϕ(s)), s < 0, we can define the function Vϕ(t, y) = V (t, ϕ) =
V (t, yt) = V (t, y, y(t + s)), s < 0, ϕ = yt, y = ϕ(0) = y(t). Let us define C1,2 as a class of
function V (t, ϕ) so that for almost all t ≥ 0, the first and second derivatives with respect
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to y of Vϕ(t, y) are continuous, and the first derivative with respect to t is continuous and
bounded. Then the generating operator L of (2.3) is defined by

LV
(
t, yt

)
=
∂Vϕ

(
t, y

)
∂t

+ hT
(
t, yt

)∂Vϕ(t, y)
∂y

+
1
2

trace

[
gT

(
t, yt

)∂2Vϕ
(
t, y

)
∂y2

g
(
t, yt

)]
. (2.6)

The following theorems [7] contain conditions under which the trivial solution of (2.3)
is asymptotically mean square stable and stochastically stable.

Theorem 2.4. If there exist a functional V (t, ϕ) ∈ C1,2 such that

c1E
∣∣y(t)∣∣2 ≤ EV (

t, yt
) ≤ c2sup

s≤0
E
∣∣y(t + s)∣∣2

, ELV
(
t, yt

) ≤ −c3E
∣∣y(t)∣∣2

(2.7)

for ci > 0, i = 1, 2, 3. Then, the trivial solution of (2.3) is asymptotically mean square stable.

Theorem 2.5. Let there exist a functional V (t, ϕ) ∈ C1,2 such that

c1
∣∣y(t)∣∣2 ≤ V (

t, yt
) ≤ c2sup

s≤0

∣∣y(t + s)∣∣2
, LV

(
t, yt

) ≤ 0 (2.8)

for ci > 0, i = 1, 2 and for any ϕ ∈ H such that P{‖ϕ‖ ≤ δ} = 1, where δ > 0 is sufficiently small.
Then, the trivial solution of (2.3) is stochastically stable.

Consider the linear part of (2.2)

ẏ1 = − (
βI∗ + μ1

)
y1 − βS∗

∫h

0
f(s)y2(t − s)ds + αy3 + σ1y1ẇ1(t),

ẏ2 = βI∗y1 − βS∗y2 + βS∗
∫h

0
f(s)y2(t − s)ds + σ2y2ẇ2(t),

ẏ3 = λy2 −
(
μ3 + α

)
y3 + σ3y3ẇ3(t).

(2.9)

Theorem 2.6. Assume that R0 > 1 and the parameters of system (2.2) satisfy conditions

0 ≤ σ2
1 < 2μ1 −

α
(
1 + q

)
q

,

0 ≤ σ2
2 <

q
(
2βS∗ − α)

1 + q
=
q
[
2
(
μ2 + λ

) − α]
1 + q

,

0 ≤ σ2
3 < 2μ3 + α − λ,

√
2αq

2μ3 + α − λ − σ2
3

< min

{(
2μ1 − σ2

1

)
q − α(1 + q

)
βS∗ , p∗

}
,

(2.10)

where p∗ = (−βS∗ +
√
((βS∗)2 − 4λ[(1 + q)σ2

2 − 2qβS∗ + qα]))/2λ. Then, the trivial solution of sys-
tem (2.9) is asymptotically mean square stable.



Discrete Dynamics in Nature and Society 5

Proof. Set

V1 = py2
1 + y

2
2 + p

2y2
3 + q

(
y1 + y2

)2 (2.11)

for some p > 0 and q > 0. Let L be the generating operator of the system (2.9), then

LV1 =

[
−(βI∗ + μ1

)
y1 − βS∗

∫h

0
f(s)y2(t − s)ds + αy3

][
2py1 + 2q

(
y1 + y2

)]

+

[
βI∗y1 − βS∗y2 + βS∗

∫h

0
f(s)y2(t − s)ds

][
2y2 + 2q

(
y1 + y2

)]

+ 2p2y3
[
λy2 −

(
μ3 + α

)
y3
]
+
(
p + q

)
σ2

1y
2
1 + 2qσ1σ2y1y2 +

(
1 + q

)
σ2

2y
2
2 + p

2σ2
3y

2
3

=
[(
σ2

1 − 2μ1

)(
p + q

) − 2pβI∗
]
y2

1 +
(
1 + q

)(
σ2

2 − 2βS∗
)
y2

2

+ p2
[
σ2

3 − 2
(
μ3 + α

)]
y2

3 + 2α
(
p + q

)
y1y3 + 2

(
qα + p2λ

)
y2y3

+ 2
[(
σ1σ2 − βS∗ − μ1

)
q + βI∗

]
y1y2 + 2βS∗(y2 − py1

) ∫h

0
f(s)y2(t − s)ds.

(2.12)

Let

q =
βI∗

βS∗ + μ1 − σ1σ2
. (2.13)

Since σ1σ2 ≤ (σ2
1 +σ

2
2)/2 < μ1 +βS∗, it means that q > 0. By using the inequality 2|uv| ≤ u2

1 +u
2
2

and 2αpy1y3 ≤ αp(y2
1/p + py

2
3) = αy

2
1 + αp

2y2
3, we find that

LV1 ≤
[(
σ2

1 − 2μ1

)
q + α

(
1 + q

)
+ pβS∗

]
y2

1

+
[(

1 + q
)(
σ2

2 − 2βS∗
)
+ qα + p2λ + βS∗

]
y2

2

+
[
p2
(
σ2

3 − 2μ3 − α
)
+ 2αq + p2λ

]
y2

3

+
(
1 + p

)
βS∗

∫h

0
f(s)y2

2(t − s)ds.

(2.14)

We now choose the functional V2 to eliminate the term with delay

V2 =
(
1 + p

)
βS∗

∫h

0
f(s)

∫ t

t−s
y2

2(τ)dτds. (2.15)
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Then for functional V = V1 + V2, we obtain

LV ≤
[(
σ2

1 − 2μ1

)
q + α

(
1 + q

)
+ pβS∗

]
y2

1

+
[
p2λ + pβS∗ +

(
1 + q

)
σ2

2 − 2qβS∗ + qα
]
y2

2

+
[
p2
(
σ2

3 − 2μ3 − α + λ
)
+ 2αq

]
y2

3 .

(2.16)

If the first condition of (2.10) holds, then (σ2
1 −2μ1)q+α(1+q) < 0. Set F(p) = p2λ+pβS∗ +(1+

q)σ2
2 −2qβS∗+qα, and if the second condition of (2.10) is true, then F(0) < 0, thus F(p) = 0 has

one positive root p∗ = (−βS∗ +
√
((βS∗)2 − 4λ[(1 + q)σ2

2 − 2qβS∗ + qα]))/2λ, for any 0 < p < p∗,
F(p) < 0. From (2.10), there exists a p > 0, such that

√
2αq

2μ3 + α − λ − σ2
3

< p < min

{(
2μ1 − σ2

1

)
q − α(1 + q

)
βS∗ , p∗

}
. (2.17)

Therefore, there exists a c > 0 such that LV ≤ −c|y|2, where y = (y1, y2, y3). From Theorem 2.4,
we can conclude that the zero solution of system (2.9) is asymptotically mean square stable.
The theorem is proved.

Remark 2.7. If α = 0, then the system (2.1) becomes an SIR model, which has been discussed
in [8]. The conditions (2.10) of Theorem 2.6 reduce to

0 ≤ σ2
1 < 2μ1, 0 ≤ σ2

2 <
2q

(
μ2 + λ

)
1 + q

, 0 ≤ σ2
3 < 2μ3 − λ. (2.18)

The constant p in the proof of Theorem 2.6 is 0 < p < min{((2μ1 − σ2
1)q)/(βS

∗), p∗1} with

p∗1 = (−βS∗ +
√
((βS∗)2 − 4λ[(1 + q)σ2

2 − 2qβS∗]))/2λ. The first two conditions in (2.18) are the
same as those in Theorem 7 of [8]. Since for α > 0, we use different inequality to zoom up the
term 2(qα + p2λ)y2y3, then the third condition in (2.18) is different from that in Theorem 7 of
[8].

Theorem 2.8. Assume that R0 > 1 and that conditions (2.10) are satisfied. Then the trivial solution
of system (2.2) is stochastically stable.

The proof is omitted because of the fact that the initial system (2.2) has a nonlinearity
order more than one, then the conditions sufficient for asymptotic mean square stability of
the trivial solution of the linear part of this system are sufficient for stochastic stability of the
trivial solution of the initial system [9, 10]. Thus, if the conditions (2.10) hold, then the trivial
solution of system (2.2) is stochastically stable.

3. Conclusions

In this paper, we have extended the well-known SIRS epidemic model with time delays by
introducing a white noise term in it. We want to examine how environmental fluctuations
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affect the stability of system (1.2). By constructing Liapunov functional, we obtain sufficient
conditions for the stochastic stability of the endemic equilibrium E∗. Our main results extend
the corresponding results in paper [8], which discussed an SIR epidemic model.
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A predator prey system with Holling III functional response and constant prey refuge is
considered. By using the Dulac criterion, we discuss the global stability of the positive equilibrium
of the system. By transforming the system to a Liénard system, the conditions for the existence of
exactly one limit cycle for the system are given. Some numerical simulations are presented.

1. Introduction

Recently, the qualitative analysis of predator prey systems with Holling II or III types
functional response and prey refuge has been done by several papers, see [1–5]. Their main
objective is to discuss under what conditions the positive equilibrium of the corresponding
system is stable or unstable and the existence of exactly one limit cycles. In general, the prey
refuge has two types, one is the so-called constant proportion prey refuge: (1 − m)x, where
m ∈ (0, 1), the other type is called constant prey refuge: (x −m).

In [2], the authors considered the following system with a constant proportion prey
refuge:

dx

dt
= ax − bx2 − α(1 −m)2x2y

β2 + (1 −m)2x2
,

dy

dt
= −cy +

kα(1 −m)2x2y

β2 + (1 −m)2x2
,

(1.1)
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where x and y denote the prey and predator density, respectively, at time t, the parameters
a, b, α, β, c, k are positive constants, and their biological meanings can be seen in [2]. The main
result is that when 0 < m < (1 + 2bcβ/(a(kα − 2c)))

√
c/(kα − c) system (1.1) admits only one

limit cycle which is globally asymptotically stable.
In paper [4], the authors only gave the local stability analysis to the following system

with a constant prey refuge:

dx

dt
= ax − bx2 − α(x −m)2y

β2 + (x −m)2
,

dy

dt
= −cy +

kα(x −m)2y

β2 + (x −m)2
.

(1.2)

In this paper, we will research under what conditions that the positive equilibrium is globally
asymptotically stable and the existence of exactly one stable limit cycle of system (1.2). For
ecological reason, we only consider system (1.2) in Ω0 = {(x, y) | x > m, y > 0} or Ω0.

It easy to obtain the following lemma.

Lemma 1.1. Any solution (x(t), y(t)) of system (1.2) with initial condition x(0) > m, y(0) > 0 is
positive and bounded for all t ≥ 0.

2. Basic Results

Let x = x−m, y = αy, dt = (β2+x2)dt, then system (1.2) changes (still denote x, y, t as x, y, t)

dx

dt
= (x +m)(a − b(x +m))

(
β2 + x2

)
− x2y,

dy

dt
= −cβ2y + (kα − c)x2y.

(2.1)

Then Ω0 transforms to Ω = {(x, y) | x > 0, y > 0} and system (2.1) is bounded.
Clearly, if (H1) 0 < m < a/b holds, system (2.1) has positive boundary equilibrium

E0((a/b)−m, 0); if (H2) kα > c, 0 < m < (a− bx∗)/b, system (2.1) has a positive equilibrium
E∗(x∗, y∗), where

x∗ = β
√

c

kα − c , y∗ =
kα

c
(x∗ +m)(a − b(x∗ +m)). (2.2)

It is easy to obtain the following lemma.

Lemma 2.1. Let (H1) hold. Further assume that (H3) kα ≤ c and (H4)kα > c, m > max{0, (a −
bx∗)/b}. Then E0 is locally asymptotically stable, if any of (H3) and (H4) holds. When kα > c, 0 <
m < (a − bx∗)/b, E0 is unstable, furthermore, E0 is a saddle point.

About the properties of the positive equilibrium, we have the following theorem.
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Theorem 2.2. Assume kα > c. Then

(I) E∗ is locally asymptotically stable for 0 < m < (a − bx∗)/b if a(2c − kα) ≤ 2bcx∗ holds.

(II) E∗ is locally asymptotically stable form1 < m < (a − bx∗)/b and E∗ is locally unstable for
0 < m < m1 if a(2c − kα) > 2bcx∗ holds, where

m1 =
bx3

∗ + β
2(a − bx∗) −

√
Δ/4

2bβ2
, (2.3)

(III) system (2.1) undergoes Hopf bifurcation atm = m1 if a(2c − kα) > 2bcx∗ holds.

Proof. The Jacobian matrix of system (2.1) at E∗ is

J(E∗) =

⎛
⎝ − P

x∗
−x2

∗
2(kα − c)x∗y∗ 0

⎞
⎠, (2.4)

where P = 2bx4
∗ + (2bm − a)x3

∗ + β
2(a − 2bm)x∗ + 2mβ2(a − bm). Then tr(J(E∗)) = −P/x∗ =

R(m)/x∗, where R(m) = 2bβ2m2 +2(bβ2x∗ −bx3
∗ −aβ2)m−aβ2x∗ +ax3

∗ −2bx4
∗ , the discriminant

of R(m) = 0 is Δ = 4(b2x6
∗ + 2b2x4

∗β
2 + b2β4x2

∗ + 4a2β4) > 0. Hence, the equation R(m) = 0 has
two roots m1 and m2, where m1 = (bx3

∗ + β
2 (a − bx∗) −

√
Δ/4) /2bβ2, m2 = (bx3

∗ + β
2 (a −

bx∗) +
√
Δ/4)/2bβ2.

Note that

(
bx3

∗ + β
2(a − bx∗)

)2 − Δ
4

= 2bx∗β2
(
ax2

∗ − aβ2 − 2bx3
∗
)

= 2bx∗β2
(
aβ2 2c − kα

kα − c − 2bx3
∗

)

= 2bx∗β4a(2c − kα) − 2bcx∗
kα − c ,

(2.5)

and a(2c − kα) > (≤)2bcx∗ implies m1 > (≤)0. Consider

m2 >
a − bx∗

2b
+
β2
√
a2 + b2x2∗ − 2abx∗ + 2abx∗

2bβ2
>
a − bx∗

b
. (2.6)

Then

(I) If a(2c − kα) ≤ 2bcx∗ holds, then m1 ≤ 0, R(m) < 0 holds for m1 < m < m2.
Considering (H2) and m2 > (a − bx∗)/b, for 0 < m < (a − bx∗)/b, tr(J(E∗)) < 0,
which implies E∗ is locally asymptotically stable.

(II) If a(2c − kα) > 2bcx∗ holds, then m1 > 0, for m1 < m < m2, R(m) < 0, since
m1 − (a − bx∗)/b = (bx3

∗ − β2(a − bx∗) −
√
Δ/4)/2bβ2, by (bx3

∗ − β2(a − bx∗))
2 −

(Δ/4) = −2abβ2x∗(x2
∗ + β

2) < 0, we obtain m1 < (a − bx∗)/b. Together with (H2),
for m1 < m < (a − bx∗)/b, tr(J(E∗)) < 0, which means E∗ is locally asymptotically
stable. On the other hand, for 0 < m < m1, tr(J(E∗)) > 0, E∗ is locally unstable.
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(III) We have

det(J(E∗)) > 0, tr(J(E∗)|m1) =
R(m1)
x∗

= 0,
∂tr(J(E∗))

∂m

∣∣∣∣
m1

/= 0, (2.7)

these satisfy Liu’s Hopf bifurcation criterion (see [6], page 255); hence, the Hopf
bifurcation occurs at m = m1. This ends the proof.

3. Global Stability of the Positive Equilibrium

Denote m3 := (9a − 2
√

3βb −
√

81a2 + 12b2 β2)/18b < 0, m4 := (9a − 2
√

3βb +√
81a2 + 12b2β2)/18b > 0.

Theorem 3.1. If E∗(x∗, y∗) is locally stable. Further assume that max{0, (a − 4bβ)/2b} < m < m4,
then the positive equilibrium E∗(x∗, y∗) of system (2.1) is globally asymptotically stable.

Proof. Take the Dulac function B(x, y) = x−2y−1, for system (2.1) we have

T =
∂(BP)
∂x

+
∂(BQ)
∂y

= −φ(x)
x3y

, (3.1)

where

φ(x) = 2bx4 + (2bm − a)x3 + β2(a − 2bm)x + 2mβ2(a − bm). (3.2)

If a = 2bm, φ(x) = 2b(x4 +m2β2) > 0 for x > 0.
On the other hand, there exist

φ′(x) = 8bx3 + 3(2bm − a)x2 + β2(a − 2bm),

φ′′(x) = 24bx2 + 6(2bm − a)x.
(3.3)

The equation φ′′(x) = 0 has two roots x1 = 0, x2 = (a − 2bm)/4b.

Case 1. If a − 2bm > 0, then for 0 < x < x2, φ′′(x) < 0; for x > x2, φ′′(x) > 0. Hence, x = x2

is the least value of the function φ′(x). If β > x2, φ
′(x2) = (a − 2bm)(β − x2)(β + x2) > 0, it

has φ′(x) > 0 for all x > 0, then φ(x) is increasing for x > 0, notice that φ(0) > 0. Therefore,
φ(x) > 0 for x > 0. Since, T < 0 for x > 0, system (2.1) does not exist limit cycle.

Case 2. If bm < a < 2bm, then x2 < 0, for x > 0, φ′′(x) > 0, hence, for x > 0, φ′(x) is increasing.
Evidently, φ′(0) < 0, φ′(β/

√
3) > 0, then there exists 0 < x0 < β/

√
3 such that φ′(x0) = 0,

where φ′(x0) = 8bx3
0 + 3(2bm − a)x2

0 + β
2(a − 2bm), hence, when 0 < x < x0, φ

′(x) < 0, when
x > x0, φ

′(x) > 0. We know that φ(x) takes the least value at x = x0, that is, φ(x) > φ(x0).
According to φ′(x0) = 0, for x > 0 we obtain φ(x) > φ(x0) = (2bm − a)(x3

0 − 3β2x0 + (8mβ2(a −
bm))/(2bm − a)), where 0 < x0 < β/

√
3.
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To prove φ(x) > 0 for x > 0, it suffices to prove φ̃(x) = x3−3β2x+(8mβ2(a−bm))/(2bm−
a) > 0 for 0 < x < β/

√
3. Clearly, φ̃(x) takes the least value at x = β, and φ̃(x) is strictly

decreasing at the interval (0, β). Hence, for 0 < x < β/
√

3, φ̃(x) > φ̃(β/
√

3) holds. Since
φ̃β/

√
3 > 0 ⇔ (m(a − bm))/(2bm − a) > β/3

√
3 ⇔ −3

√
3bm2 + (3

√
3a − 2βb)m + βa > 0 ⇔

m3 < m < m4. Therefore, for 0 < x0 < β/
√

3, φ̃(x) > 0 holds if m3 < m < m4 holds, then for
x > 0, φ(x) > 0 holds.

In sum, if one of the following three conditions holds (1) m = a/2b; (2) 0 < m <
a/2b, x2 < β ⇒ max{0, (a − 4bβ)/2b} < m < a/2b; (3) a/2b < m < a/b, m3 < m < m4 ⇒
a/2b < m < m4, the function T does not change the sign for x > 0, then system (2.1) does not
exist limit cycle. It is easy to see that the conditions (1), (2), and (3) are equal to max{0, (a −
4bβ)/2b} < m < m4. The proof is completed.

4. Existence and Uniqueness of Limit Cycle

Theorem 4.1. If a(2c − kα) > 2bcx∗ holds, for 0 < m < m1 system (2.1) admits at least one limit
cycle in Ω.

Proof. We construct a Bendixson loop ̂OABCD which includes E∗ of system (2.1). Let OA be
a length of the line L1 : y = 0, AB be a length of line L2 : b(x +m) − a = 0. Define

ẋ = x2(a0 − y
)
,

ẏ =
(
−cβ2 + (kα − c)x2

)
y,

(4.1)

where a0 = maxx∗≤x≤(a/b)−m{((x + m)(a − b(x + m))(β2 + x2))/x2}. The orbit of system
(4.1) with initial value ((a/b) − m,a0) intersects with the line x = x∗ and the intersection
point C(x∗, y1), we obtain the orbit arc B̂C. Let CD be a length of line L3 : y = y1, DO

be a length of line L4 : x = 0. Because OA is a length of orbit line of system (2.1) and
(dL2/dt)|(2.1) = −b((a/b) −m)2y < 0(y > 0), (dL3/dt)|(2.1) = y1(−cβ2 + (kα − c)x2) < 0 (0 <
x < x∗), (dL4/dt)|(2.1) = mβ2(a − bm) > 0, the orbits of system (2.1) tend to the interior of
the Bendixson loop from the outer of AB, CD, and B̂C, by comparing system (2.1) to system
(4.1): dx/dt|(2.1) < dx/dt|(4.1) < 0 and dy/dt|(2.1) = dy/dt|(4.1) > 0. Then the orbits of system
(2.1) tend to the interior of the Bendixson loop from the outer of B̂C. On the other hand, under
the condition of Theorem 4.1, E∗(x∗, y∗) is unstable, by Poincaré-Bendixson Theorem, system
(2.1) admits at least one limit cycle in the region ̂OABCD ∈ Ω. This ends the proof.

Lemma 4.2 (see [7]). Let f(x), g(x) be continuously differentiable functions on the open interval
(r1, r2), and ϕ(y) be continuously differentiable functions on R in

dx

dt
= ϕ
(
y
) −
∫x
x0

f(u)du,

dy

dt
= −g(x),

(4.2)
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such that

(1) dϕ(y)/dy > 0,

(2) having a unique x0 ∈ (r1, r2), such that (x − x0)g(x − x0) > 0 for x /=x0 and g(x0) = 0,

(3) f(x0)d/dx(f(x)/g(x)) < 0 for x /=x0,

then system (4.1) has at most one limit cycle.

Theorem 4.3. If a(2c − kα) > 2bcx∗ holds, for 0 < m < min{m1, a/2b − (8
√

3 x3
∗)/(9(x

2
∗ − β2))}

system (2.1) exists exactly one limit cycle which is globally asymptotically stable in Ω.

Proof. Let u = x, v = lny, τ = −x2t, still denote u, v, τ , as x, y, t, then system (2.1) becomes

dx

dt
= ey − (x +m)(a − b(x +m))

(
β2 + x2)

x2
,

dy

dt
= − (kα − c)x2 − cβ2

x2
,

(4.3)

the positive equilibrium E∗(x∗, y∗) changes Ẽ∗(x∗, lny∗).
Let x = x − x∗, y = y − lny∗, then Ẽ∗ transform to the origin O(0, 0), still denote x, y,

as x, y yield

dx

dt
= y∗ey − y∗ −

(x + x∗ +m)(a − b(x + x∗ +m))
(
β2 + (x + x∗)2

)

(x + x∗)2
+ y∗

:= ϕ
(
y
) − F(x), (x > −x∗),

dy

dt
= − (kα − c)(x + x∗)2 − cβ2

(x + x∗)2
:= −g(x),

(4.4)

where F(x) = ((x + x∗ +m)(a − b(x + x∗ +m))(β2 + (x + x∗)
2))/(x + x∗)

2 − y∗.
Clearly, F(0) = 0. It is easy to see that the conditions (1) and (2) of Lemma 4.2 for

x0 = 0 are satisfied. Consider

f(x) = F ′(x) =
2b(x + x∗)4 + (2bm − a)(x + x∗)3 + β2(a − 2bm)(x + x∗) + 2mβ2(a − bm)

(x + x∗)3
.

(4.5)

Note that by the assumption of Theorem 4.3, E∗ is unstable equilibrium and

tr(J(E∗)) = − 1
x∗

[
2bx4

∗ + (2bm − a)x3
∗ + β

2(a − 2bm)x∗ + 2mβ2(a − bm)
]
> 0, (4.6)
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then f(0) = −x−2
∗ tr(J(E∗)) < 0. Consider

d

dx

(
f(x)
g(x)

)
=

2ψ(x)

(x + x∗)2
(
(kα − c)(x + x∗)2 − cβ2

)2
, (4.7)

where

ψ(x) = b(kα − c)(x + x∗)6 − 3bcβ2(x + x∗)4 + β2(2c − kα)(a − 2bm)(x + x∗)3

− 3mβ2(kα − c)(a − bm)(x + x∗)2 +mcβ4(a − bm)

= (kα − c)ψ̃(x),

(4.8)

where

ψ̃(x) = b(x + x∗)6 − 3bx2
∗(x + x∗)4 +

β2(2c − kα)(a − 2bm)
kα − c (x + x∗)3

− 3mβ2(a − bm)(x + x∗)2 +mβ2x2
∗(a − bm).

(4.9)

Then, we have

ψ̃ ′(x) = 6b(x + x∗)5 − 12bx2
∗(x + x∗)3 +

3β2(2c − kα)(a − 2bm)
kα − c (x + x∗)2

− 6mβ2(a − bm)(x + x∗) = (x + x∗)φ̃(x),

(4.10)

where

φ̃(x) = 6b(x + x∗)4 − 12bx2
∗(x + x∗)2

+
3β2(2c − kα)(a − 2bm)

kα − c (x + x∗) − 6mβ2(a − bm).
(4.11)

By a simple computation, we obtain

φ̃′(x) = 24b(x + x∗)3 − 24bx2
∗(x + x∗) +

3β2(2c − kα)(a − 2bm)
kα − c ,

φ̃′′(x) = 24b
(

3(x + x∗)2 − x2
∗
)
.

(4.12)

It is easy to verify that φ̃′′(−x∗) < 0 and φ̃′′(x) = 0 has two roots x1 and x2 defined by,
respectively,

x1 =

(
−1 −

√
3

3

)
x∗, x2 =

(
−1 +

√
3

3

)
x∗. (4.13)
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Obviously, x1 < −x∗ < x2. Therefore, φ̃′′(x) < 0 for −x∗ � x < x2 and φ̃′′(x) > 0 for
x > x2 which indicates that x2 is the minimum point of the function φ̃′(x) when x � −x∗.
Substituting x2 into φ̃′(x), we obtain

min
x�−x∗

φ̃′(x) = φ̃′(x2)

= − 16
√

3bx3
∗

3
+

3β2(2c − kα)(a − 2bm)
kα − c

= − 16
√

3bx3
∗

3
+ 3
(
x2
∗ − β2

)
(a − 2bm).

(4.14)

It is easy to see that if 0 < m < (a/2b) − (8
√

3 x3
∗)/(9(x

2
∗ − β2)), then φ̃′(x2) > 0, which implies

φ̃′(x) > 0 for all x � −x∗. That is, the function φ̃(x) is a strictly increasing function for x � −x∗.
Note that φ̃(−x∗) = −6mβ2(a − bm) < 0 for 0 < m < a/b and limx→+∞φ̃(x) = +∞. It

follows from (4.6) that

φ̃(0) = −3
(

2bx4
∗ + (2bm − a)x3

∗ + (a − 2bm)β2x∗ + 2mβ2(a − bm)
)
> 0. (4.15)

Hence, there exists a point −x∗ < x̂ < 0, such that φ̃(x̂) = 0, that is,

b(x̂ + x∗)
4 − 2bx2

∗(x̂ + x∗)
2 +

β2(2c − kα)(a − 2bm)
2(kα − c) (x̂ + x∗) −mβ2(a − bm) = 0. (4.16)

This, together with the monotonicity of φ̃(x) when x � −x∗, we may conclude that ψ̃ ′(x) =
(x + x∗)φ̃(x) < 0 for x ∈ (−x∗, x̂) and ψ̃ ′(x) > 0 for x ∈ (x̂,∞). Therefore, x̂ is the minimum
point of the function ψ̃(x) for −x∗ < x <∞.

Together with (4.16), we obtain

min
x�−x∗

ψ̃(x) = ψ̃(x̂) = −bx2
∗(x̂ + x∗)

4 +
β2(2c − kα)(a − 2bm)

2(kα − c) (x̂ + x∗)
3

− 2mβ2(a − 2bm)(x̂ + x∗)
2 +mβ2(a − bm)x2

∗

= − bx2
∗(x̂ + x∗)

4 +
1
2

(
x2
∗ − β2

)
(a − 2bm)(x̂ + x∗)

3

− 2mβ2(a − 2bm)(x̂ + x∗)
2 +mβ2(a − bm)x2

∗
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Figure 1: The bifurcated periodic solution is stable.

= − 2bx4
∗(x̂ + x∗)

2 +
1
2

(
x2
∗ − β2

)
(a − 2bm)(x̂ + x∗)

(
2x2

∗ + 2x̂x∗ + x̂2
)

− 2mβ2(a − 2bm)(x̂ + x∗)
2

= − 2bx4
∗(x̂ + x∗)

2 +
(
x2
∗ − β2

)
(a − 2bm)x∗(x̂ + x∗)

2

− 2mβ2(a − 2bm)(x̂ + x∗)
2 +

1
2

(
x2
∗ − β2

)
(a − 2bm)(x̂ + x∗)x̂2

= − (x̂ + x∗)
2
(

2bx4
∗ + (2bm − a)x3

∗ + β
2(a − 2bm)x∗

+2mβ2(a − 2bm)
)
+

1
2

(
x2
∗ − β2

)
(a − 2bm)(x̂ + x∗)x̂2.

(4.17)

It follows from (4.6), we have minx�−x∗ ψ̃(x) > 0. This indicates ψ̃(x) > 0 for all x > −x∗.
Then all the conditions of Lemma 4.2 are satisfied, considering Theorem 4.1, we obtain

the conclusion of this theorem. The proof is completed.

5. Numerical Simulations

Take α = 0.5, k = 0.2, β = 0.5, a = 1, b = 0.1, and c = 0.09. Then a(2c − kα) − 2bcx∗ = 0.053, and
m1 ≈ 1.986121812. One can see a Hopf bifurcation occurring at m = 1.955 and the bifurcated
periodic solution is stable in Figure 1.

When taking m = 4.5, then x∗ = 1.5, y∗ ≈ 2.666666667, a(2c − kα)− 2bcx∗ = 0.053, m1 ≈
1.986121812,(a − bx∗)/b = 8.5, (a − 4bβ)/2b = 4, a/2b = 5. Theorem 3.1 is satisfied; the
equilibrium E∗ of system (2.1) is globally asymptotically stable. See Figure 2.
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Figure 2: The positive equilibrium E∗ of system (2.1) is globally asymptotically stable.

x

0 1 2 3 4 5 6 7

2

1.8

2.2

2.4

2.6

2.8

3

y

(a)

1 2 3 4 5 6 7 8
x

0
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

y

(b)

Figure 3: The dynamical behaviors of system (2.1) when α = 0.5, k = 0.2, β = 0.5, a = 1, b = 0.1, c = 0.09,
m = 1. (a) The existence of unique limit cycle. (b) The global stability of the limit cycle.

Take m = 1, we obtain E∗(1.5, 2.083333333), a(2c − kα) − 2bcx∗ = 0.053, m1 ≈
1.986121812, (a/2b) − (8

√
3x3

∗/9(x2
∗ − β2)) ≈ 2.401923788. The conditions in Theorem 4.1 are

satisfied; hence, system (2.1) exists exactly one limit cycle which is globally asymptotically
stable. One can see Figure 3.
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This paper presents a theoretical analysis of evolutionary process that involves organisms distri-
bution and their interaction of spatial distribution of the species with self- and cross-diffusion in
a Holling-III ratio-dependent predator-prey model. The diffusion instability of the positive equi-
librium of the model with Neumann boundary conditions is discussed. Furthermore, we present
novel numerical evidence of time evolution of patterns controlled by self- and cross-diffusion in
the model and find that the model dynamics exhibits a cross-diffusion controlled formation growth
to spots, stripes, and spiral wave pattern replication, which show that reaction-diffusion model is
useful to reveal the spatial predation dynamics in the real world.

1. Introduction

Pattern formation is a topic in mathematical biology that studies how structures and patterns
in nature evolve over time [1–12]. One of the mainstream topics in pattern formation involves
the reaction-diffusion mechanisms of two chemicals, originally proposed by Turing [13] in
1952. In 1972, Segel and Jackson [14] called attention to the Turing’s ideas that would be
also applicable in population dynamics. At the same time, Gierer and Meinhardt [15] gave a
biologically justified formulation of a Turing model and studied its properties by numerical
simulations. Levin and Segel [11] suggested that the scenario of spatial pattern formation is
a possible origin of planktonic patchiness. A significant amount of work has been done using
this idea in the field of mathematical biology by Cantrell and Cosner [2], Hoyle [5], Murray
[8], Okubo and Levin [16], and others [17–19].

In recent years, many scientists have paid considerable attention to diffusive
ratio-dependent predator-prey models, especially those with Holling III functional response
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[20–23]. In [23], the author studied the spatial pattern formation of the following ratio-
dependent predator-prey model:

∂u

∂t
= ru

(
1 − u

K

)
− au2v

u2 +m2v2
+D11∇2u,

∂v

∂t
=

bvu2

u2 +m2v2
− dv +D22∇2v,

(1.1)

where u and v are prey and predator density, respectively. r represents the intrinsic growth
rate of the prey, K is the carrying capacity of the prey in the absence of predator, a is the
maximum consumption, b is the conversion efficiency of food into offspring,m is the predator
interference parameter, and d is the per capita predator death rate. ∇2 = ∂2/∂x2 + ∂2/∂y2 is
the usual Laplacian operator in two-dimensional space. D11 and D22 are the self-diffusion
coefficients that imply the movement of individuals from a higher to lower concentration
region. In addition, the author showed that spots and stripes-spots patterns could be
observed in pure Turing instability, and spiral pattern emerged in Hopf and Turing instability
[23].

On the other hand, the predator-prey system models such a phenomenon: pursuit-
evasion-predators pursuing prey and prey escaping the predators [18, 19, 24, 25]. In other
words, in nature, there is a tendency that the preys would keep away from predators and
the escape velocity of the preys may be taken as proportional to the dispersive velocity of
the predators. In the same manner, there is a tendency that the predators would get closer
to the preys, and the chase velocity of predators may be considered to be proportional to
the dispersive velocity of the preys. Keeping these in view, cross-diffusion arises, which
was proposed first by Kerner [26] and first applied in competitive population system by
Shigesada et al. [27].

There has been a considerable interest in investigating the stability behavior of a
predator-prey system by taking into account the effect of self- and cross-diffusion [17, 18, 28–
35]. Cross-diffusion expresses the population fluxes of one species due to the presence of the
other species. However, in the studies on spatiotemporal dynamics of the ratio-dependent
predator-prey system with functional response, little attention has been paid to study on the
effect of cross-diffusion.

In this paper, we mainly focus on the spatiotemporal dynamics of a cross-diffusion
ratio-dependent predator-prey model with Holling III functional response. In the next sec-
tion, we establish the cross-diffusion model and derive the sufficient conditions for Turing
instability. Then, we present and discuss the results of pattern formation via numerical simu-
lation in Section 3. Finally, some conclusions are drawn.

2. The Model and Analysis

2.1. The Model

We firstly pay attention to the spatially extended ratio-dependent predator-prey model with
self- and cross-diffusion, which is as follows:

∂u

∂t
= ru

(
1 − u

K

)
− au2v

u2 +m2v2
+D11∇2u +D12∇2v,

∂v

∂t
=

bvu2

u2 +m2v2
− dv +D21∇2u +D22∇2v,

(2.1)
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where D12 and D21 are cross-diffusion coefficients that express population fluxes of the preys
and predators resulting from the presence of the other species, respectively.

We consider the model on a square domain Ω. We also add to the reaction-diffusion
equation model positive initial conditions:

u
(
x, y, 0

)
> 0, v

(
x, y, 0

)
> 0

(
x, y
) ∈ Ω = (0, L) × (0, L). (2.2)

It is natural to assume that nothing enters this model and nothing exits this model. Thus, we
will take zero-flux boundary conditions for the flat domain:

∂u

∂ν

∣∣∣∣
∂Ω

=
∂v

∂ν

∣∣∣∣
∂Ω

= 0. (2.3)

In the above, L denotes the size of the system in square domain, and ν is the outward unit
normal vector of the boundary ∂Ω.

For simplicity, we nondimensionalize model (2.1) with the following scaling:

u −→ u

K
, v −→ mv

K
, t −→ rt. (2.4)

Then model (2.1) can be rewritten as

∂u

∂t
= u(1 − u) − αu2v

u2 + P 2
+ d11∇2u + d12∇2v,

∂v

∂t
=

βu2v

u2 + v2
− γv + d21∇2u + d22∇2v,

(2.5)

where α = a/rm, β = b/r, γ = d/r, d11 = D11/r, d12 = D12/rm, d21 = D21m/r, d22 = D22/r. In
addition, we call

D =

(
d11 d12

d21 d22

)
(2.6)

the diffusive matrix.

2.2. Summary of the Noncross Diffusion Model

We first consider the case of spatially homogeneous solutions. In this case spatial model (2.5)
is equivalent to the ordinary differential equation model

du

dt
= u(1 − u) − αu2v

u2 + v2
� f(u, v),

dv

dt
=

βu2v

u2 + v2
− γv � g(u, v).

(2.7)
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It can be seen that model (2.7) has two nonnegative real equilibria as follows.

(i) The equilibrium point E = (1, 0) corresponding to extinction of the predator is a
saddle point.

(ii) The equilibrium point E∗ = (u∗, v∗) which is corresponding to a nontrivial station-
ary state coexistence of prey and predator, where

u∗ =
β −
√
α2βγ − α2γ2

β
, v∗ =

√
α2βγ − α2γ2N∗

αγ
. (2.8)

It is easy to see that u∗ > 0 and v∗ > 0 when β − γ > 0 and β −
√
α2βγ − α2γ2 > 0 hold.

Besides, Turing instability at the coexistence equilibrium E∗ of the model (2.5) has
been analysis without cross-diffusion. Here, we only give a summary [23]. The characteristic
equation at the steady state E∗ of model (2.5) without cross-diffusion is

|Jk − λI| = 0, (2.9)

where, Jk = J − diag(d1, d2)k2, and J is given by

J =

⎛
⎜⎜⎝
∂f

∂u

∂f

∂v

∂g

∂u

∂g

∂v

⎞
⎟⎟⎠

E∗

�
(
fu fv
gu gv

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

−β2 + 2
√
−α2γ2

(
γ − β)

β2
−αγ

(
2γ − β)
β2

−2

(
γ − β)√−α2γ

(
γ − β)

αβ
2
γ
(
γ − β)
β

⎞
⎟⎟⎟⎟⎟⎟⎠
, (2.10)

and the trace and determinant of matrix J is as follows:

tr(J) = fu + fv,

det(J) = fugv − fvgu.
(2.11)

Now (2.9) can be solved, yielding the so-called characteristic polynomial of the original
model (2.5) without cross-diffusion:

λ2 − tr(Jk)λ + det(Jk) = 0, (2.12)

where

tr(Jk) = tr(J) − (d1 + d2)k2,

det(Jk) = d1d2k
4 − (d2fu + d1gv

)
k2 + det(J).

(2.13)
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The roots of (2.12) yield the dispersion relation:

λ1,2(Jk) =
1
2

(
tr(Jk) ±

√
tr (Jk)2 − 4 det(Jk)

)
. (2.14)

And an equilibrium is Turing instability means that it is an asymptotically stable
equilibrium of nonspatial model (e.g., model (2.7)) but is unstable with respect to solutions
of spatial model (e.g., model (2.5)). One can know that the stability of nonspatial model is
guaranteed if the following conditions hold

tr(J) = fu + gv < 0, (2.15)

det(J) = fugv − fvgu > 0. (2.16)

Then, the Turing instability sets in when at least one of (2.15) or (2.16) the following condi-
tions is violated. However, it is evident that the first condition tr(Jk) < 0 is not violated when
the condition fu + gv < 0 is met. Hence, only the violation of condition det(Jk) > 0 gives rise
to diffusion-driven instability. Thus, the condition for Turing instability is given by

det(Jk) = d1d2k
4 − fud2k

2 − d1gvk
2 + fugv − fvgu < 0. (2.17)

In summary, a general linear analysis shows that the necessary conditions for yielding
Turing patterns are given by

fu + gv < 0,

fugv − fvgu > 0,
(2.18)

d2fu + d1gv > 0,

(
d2fu + d1gv

)2
> 4d1d2

(
fugv − fvgu

)
.

(2.19)

In fact, condition (2.18) enssured, by the definition that the equilibrium (u∗, v∗) is stable for
model (2.5) without diffusion model (2.7). (u∗, v∗) becomes unstable for model (2.5) with
diffusion if Re(λ1,2(Jk)) bifurcate from negative value to positif one. From (2.17), simple
algebraic computations lead to (2.19).

2.3. Dynamic Analysis of the Spatial Model

To study the effect of cross-diffusion on the model system, set u = u∗ + ũ, v = v∗ + ṽ(|ũ|,
|ṽ| � 1), we consider the linearized (ũ, ṽ) form of system as follows:

∂ũ

∂t
= fuũ + fvṽ + d11∇2ũ + d12∇2ṽ,

∂ṽ

∂t
= guũ + gvṽ + d21∇2ũ + d22∇2ṽ.

(2.20)
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Following [18], the characteristic equation of the linearized system is given by

λ2 − tr
(
J̃k
)
λ + det

(
J̃k
)
= 0, (2.21)

where J̃k = J −Dk2, and

tr
(
J̃k
)
= tr(J) − k2 tr(D),

det
(
J̃k
)
= det(D)k4 − (d11gv − d12gu − d21fv + d22fu

)
k2 + det(J).

(2.22)

The Turing instability sets in when at least one of the following conditions is violated:

tr
(
J̃k
)
< 0, det

(
J̃k
)
> 0. (2.23)

The first condition tr(J̃k) = tr(Jk), which is evident that tr(Jk) is not violated when the
condition tr(J) = fu + gv < 0 is met. Hence, only the violation of condition det(J̃k) > 0 gives
rise to diffusion-driven instability. Thus, the condition for diffusion-driven instability occurs
when

det
(
J̃k
)
= det(D)k4 − (d11gv − d12gu − d21fv + d22fu

)
k2 + det(J) < 0. (2.24)

Based on the above discussions, we can get the following theorem.

Theorem 2.1. If the following conditions are true:

fu + gv < 0,

d11gv + d22fu < 0,

d11gv − d12gu − d21fv + d22fu > 0,

(
d11gv − d12gu − d21fv + d22fu

)2
> 4(d11d12 − d21d12)

(
fugv − fvgu

)
,

(2.25)

then the positive equilibrium E∗ of model (2.5) is cross-diffusion-driven instability (i.e., Turing insta-
bility).

Proof. In view of fu + gv < 0 and d11gv + d22fu < 0, it follows that

tr
(
J̃k
)
< 0, det

(
J̃k
)
> 0 (2.26)

when d12 = 0 and d21 = 0. This implies the positive equilibrium E∗ is asymptotic stable in the
absent of cross-diffusion.
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A necessary condition for cross-diffusive instability is given by

d11gv − d12gu − d21fv + d22fu > 0, (2.27)

otherwise det(J̃k) > 0 for all k > 0 since det(D) > 0 and det(J) > 0.
For the instability, we must have det(J̃k) < 0 for some k. And we notice that det(J̃k)

achieves its minimum:

min
μi

σ2 =
4 det(D)det(J) − (d11gv − d12gu − d21fv + d22fu

)2

4 det(D)
(2.28)

at the critical value k2
c > 0 when

k2
c =

d11gv − d12gu − d21fv + d22fu
2 det(D)

. (2.29)

As a consequence, if d11gv − d12gu − d21fv + d22fu > 0 and (d11gv − d12gu − d21fv + d22fu)
2 >

4(d11d12 − d21d12)(fugv − fvgu) hold, then det(J̃k) < 0 is valid. Hence E∗ is an unstable
equilibrium with respect to model (2.5). This finishes the proof.

In Figure 1, based on the results of Theorem 2.1, we show the dispersal relation of r
with α. The green, red, and blue curves represent Hopf, self-diffusion Turing, and self-cross-
diffusion Turing bifurcation curve, respectively. They separate the parametric space into five
domains. The domain below the Hopf bifurcation curve is stable, the domain above the self-
diffusion Turing bifurcation curve is unstable, and the domain above self-cross-diffusion
Turing bifurcation curve is unstable. Hence, among these domains, only the domain (IV)
satisfies conditions of Theorem 2.1, and we call domain (IV) as Turing space, where the
Turing instability occurs and the Turing patterns may be undergone.

3. Pattern Formation

In this section, we perform extensive numerical simulations of the spatially extended model
(2.5) in 2-dimensional (2D) spaces, and the qualitative results are shown here. Our numerical
simulations employ the nonzero initial (2.2) and zero-flux boundary conditions (2.3) with a
system size of 200 × 200 by using a finite-difference methods. We use the standard five-point
approximation for the 2D Laplacian with the zero-flux boundary conditions. And the time
step and the grid width used in the simulations are τ = 0.01 and Δh = 0.25, respectively. The
parameters are fixed as

α = 2.5, β = 1.1, γ = 1.05, d11 = 0.2, d22 = 0.2. (3.1)

Initially, the entire system is placed in the steady state (u∗, v∗), and the propagation
velocity of the initial perturbation is thus on the order of 5 × 10−4 space units per time unit.
And the system is then integrated for 1000 000 time steps, and the last images are saved.
After the initial period during which the perturbation spreads, either the system goes into a
time-dependent state, or to an essentially steady state (time independent).
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Figure 1: The dispersal relation of r with α. Parameters: β = 1.3, d11 = 0.2, d12 = 0.05, d21 = 0.35, d22 = 0.2.
The green, red, and blue curves represent Hopf, self-diffusion Turing, and self-cross-diffusion Turing bifur-
cation curve, respectively. They separate the parametric space into five domains, and domain (IV) is called
Turing space.

With parameters (3.1), the positive equilibrium of model (2.5) is (u∗, v∗) = (0.4793,
0.1046). Let d12 = d21 = 0, that is, we first consider Turing instability in the case of self-
diffusion model. It is easy to conclude that tr(J) < 0, det(J) > 0, and for all k, tr(Jk) < 0 and
det(Jk) > 0. Hence, in this case, there is nonexistence of Turing instability in the self-diffusion
model (2.5).

Next, we consider the effect of the cross-diffusion in model (2.5), let d21 = 0.05, d12 ∈
(0.2, 0.8), and other parameters are fixed as (3.1). It is easy to know that tr(J̃k) < 0 for all k, and
det(J̃k) < 0 for some k. That is to say, in this case, Turing instability can occur. And in Figure 2,
we show five typical Turing pattern of prey u in model (2.5) with parameters set (3.1) and d12

change from 0.4 to 0.76. From Figure 2, one can see that values for the concention u are repre-
sented in a color scale varying from blue to red. And on increasing the control cross-coefficient
d12, the sequences “spots patterns (Figure 2(a)) → spot-strips coexist patterns (Figure 2(b))
→ strip patterns (c.f., Figure 2(c)) → hole-strips coexist patterns (Figure 2(d)) → holes
patterns (Figure 2(e))” can be observed.

For the sake of learning the pattern formation in model (2.5) further, in the following,
we select a special perturbed initial condition for investigating the evolutionary process of
the infected spatial pattern, the initial condition is introduced as

u
(
x, y, 0

)
= u∗,

v
(
x, y, 0

)
=

⎧⎨
⎩

0.2, if (x − 100)2 +
(
y − 200

)2
< 200,

0, otherwise,

(3.2)
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Figure 2: Patterns obtained with model (2.5) for (a) d12 = 0.4, (b) d12 = 0.55, (c) d12 = 0.65, (d) d12 = 0.70,
(e) d12 = 0.76 and the other parameters are fixed as (3.1). Time: t = 10000.

which is a circle in (x, y) plane. The parameters are taken the same as Figure 2(a). Then, we
can observe that after the decay of target patterns, the spots pattern prevails over the whole
domain finally (c.f. Figure 3(d)).

Besides Turing patterns (c.f., Figures 2 and 3), there exhibits spiral wave pattern self-
replication in model (2.5). As an example, in Figure 4, we show spiral patterns with α = 2.5,
β = 1.3, γ = 1.1, d11 = 0.7, d12 = 0.05, d21 = 0.01, d22 = 1. In this case, the equilibrium is
(u∗, v∗) = (0.0980, 0.0418). In order to make the image more clearly, the system size is 400 ×
400 and the grid width Δh is 0.5. One can see the random initial distribution leads to the
formation of macroscopic spiral patterns (c.f., Figure 4(a)). In other words, in this case, small
random fluctuations will be strongly amplified by diffusion, leading to nonuniform popu-
lation distributions. For the sake of learning the dynamics of this case further, we show time-
series plots (c.f., Figure 4(b)). From Figure 4(b), one can see that the system gives rise to
periodic oscillations in time, which is the reason why the spiral pattern emerges.

Thanks to the insightful works of Medvinsky et al. [36] and Upadhyay et al. [37], we
have studied the spiral wave pattern for an initial condition discussed in the following equa-
tions. In this this case, we employ Δh = 0.5, and the system size is 400 × 400. The parameters
set are same as Figure 4. The initial condition is given by

u
(
x, y, 0

)
= u∗ − ε1(x − 80)(x − 320),

v
(
x, y, 0

)
= v∗ − ε2

(
y − 100

) − ε2
(
y − 300

)
,

(3.3)

where ε1 = 3 × 10−7 and ε2 = 1 × 10−4.
The initial conditions are deliberately chosen to be unsymmetrical in order to make

any influence of the corners of the domain more visible. Snapshots of the spatial distribution
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Figure 3: The process of spiral patterns of u for parameters: α = 2.2, β = 1.1, γ = 1.05, d11 = 0.2, d12 = 0.05,
d21 = 0.4, d22 = 0.2. Time: (a) t = 50, (b) t = 500, (c) t = 1000, (d) t = 2000.
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Figure 4: Dynamical behaviors of model (2.5) with the parameters: α = 2.5, β = 1.3, γ = 1.1, d11 = 0.7,
d12 = 0.05, d21 = 0.01, d22 = 1 at t = 2000. (a) Spiral pattern. (b) Time-series plots.

arising from (3.3) are shown in Figure 5 for t = 0, 100, 250, 500. Figure 5(a) shows that for the
model (2.5) with initial conditions (3.3), the formation of the irregular patchy structure can
be preceded by the evolution of a regular spiral spatial pattern. Note that the appearance of
the spirals is not induced by the initial conditions. The center of each spiral is situated in a
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Figure 5: The process of spiral patterns of N for the parameters: α = 2.5, β = 1.3, γ = 1.1, d11 = 0.7,
d12 = 0.05, d21 = 0.01, d22 = 1. Time: (a) t = 0, (b) t = 200, (c) t = 250, (d) t = 500.

critical point (xcr, ycr) are (80, 200) and (320, 200), where u(xcr, ycr) = u∗, v(xcr, ycr) = v∗.
The distribution (3.3) contains one point. After the spirals form (Figure 5(b)), they grow
slightly for a certain time, their spatial structure becoming more distinct (Figures 5(c) and
5(d)).

4. Conclusions and Discussions

In this paper, we analyzed pattern formation of a cross-diffusion ratio-dependent predator-
prey model within two-dimensional space and give the conditions of cross-diffusion-driven
driven Turing instability. Then, we use numerical simulations to verify the correctness of the
theoretical results and find that the model exhibits complex self-replication.

The results show that model (2.5) has rich spatiotemporal patterns (spots, stripes,
holes, and spiral patterns); moreover, the existence of those patterns indicates that the cross-
diffusion can induce more complex pattern formation than in the case of self-diffusion.

Compared to the paper of Lin [23], we present the condition of cross-diffusion Turing
pattern, while in the case of self-diffusion the solution of the model is stable. We also show
that the increasing speed of diffusion d12 will decrease the density of the prey. Similar, increas-
ing speed of diffusion d21 will decrease density of the predator.

Therefore, we hope that the results presented here will be useful in studying the dyna-
mic complexity of ecosystems or physical systems.
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