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In a solar power plant, a solid phase transformer and an optimization coordinated controller are utilized to improve transient
responsiveness. Transient stability issues in a contemporary electrical power system represent one of the difcult tasks for an
electrical engineer due to the rise in uncertain renewable energy sources (RESs) as a result of the need for green energy. Te
potential for terminal voltage to be adversely impacted by this greater RES raises the possibility of electrical device damage. It is
possible to use a solid state transformer (SST) or smart transformer to address a transient response issue. Tese devices are
frequently employed to interact between RES and a power grid. SST features a variety of regulated converters to maintain the
necessary voltage levels. Tis method can therefore simultaneously lessen power fuctuations and transient responsiveness. In
order to improve the quality of RES power injections and the electrical system’s transient stability, this work provides a controller
design for a solar photovoltaic (SPV) system that is connected to the grid by SST. Te optimization of a controller model is
proposed by modifying a PI controller taken from a commercial one. With the use of IEEE 39 standard buses, the proposed
controller is tested. When evaluating the efectiveness of a suggested controller, it is important to take into account a variety of
solar radiation patterns as well as a time delay uncertainty that can range from 425ms to 525ms. According to simulation results,
the proposed controller can be employed to lessen power fuctuation brought on by unpredictable RES. Additionally, the proposed
coordinated regulation of SPV and SST can prevent catastrophic damage in the event of substantial disturbances like a circuit
breaker collapsing to expand a power line due to a fault by inhibiting signifcant voltage cycles within an electronic appliance’s
rated voltage limit. Te results indicate that a transitory stability issue in a modern power system caused by an unforeseen increase
in RES may be addressed utilizing the suggested controllers as alternatives.

1. Introduction

Owing to the fact that wind energy is one of the most
promising renewable energy sources in the world, it is
predicted that wind generation systems will ofer ample

electricity and have good grid integration [1, 2]. In order to
obtain a more stable operation of the controller and increase
system efciency, wind power production systems need
more sophisticated, unique, and robust control methodol-
ogies. Large amounts of pure, sustainable energy are
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produced when energy is extracted from water. But so far,
only 30% of this energy has been created [3–5]. In com-
parison to other renewable energy sources, hydropower and
especially hydropower facilities are more cost-efective, run
more efectively, and are environmentally friendly. Hy-
dropower plants are highly automated and cost-efective to
run. To preserve the caliber and dependability of the power
source, the major components of the power system must be
regularly monitored and safeguarded. Te data gathering,
monitoring, and protection system handles this re-
sponsibility. Turbines need to be safeguarded from abnormal
situations as well as short circuits. A failure is a long-term
disruption of a system’s capacity to fulfl the needed function
under certain operational conditions [6, 7]. A defect is an
unpermitted deviation of at least one characteristic or
characteristic attribute of the system from the accepted or
conventional state [8–10].

An enormous amount of prior data (usually more than
100,000 items) is needed to train the decision model, which
is a common challenge for machine learning algorithms.
Tis size requires the controller to have robust storage ca-
pabilities as well as strong computational capabilities. In
a real network, a variety of devices work together to de-
termine if a node is accessible.Te controller will have a very
signifcant burden if it monitors and forecasts the state of
every piece of equipment on that scale. Selecting a machine
learning technique that can train a highly accurate model
using less data is essential. At a data amount of less than
5,000, the SVM method has a high efciency and excellent
accuracy, making it ideal for use in real applications.

Since some faws might cause system failure if they occur
frequently, early fault identifcation is crucial for main-
taining system functionality for a long time.

Te two main divisions of fault detection techniques are
model-based approaches and signal processing-based
(feature-based) methods. Model-based techniques are
built on the foundations of system modeling and model
evaluation. In order to extract information about issues,
mathematical or statistical operations are carried out in
signal processing-based methods or artifcial intelligence
(AI) approaches are utilized to appropriately handle signal
features. Feature-based methods are more suited for remote
monitoring since sensor data may be sent to the processing
facility via a number of methods and give in situ
observations.

To develop a reliable fault detection algorithm using
feature-based approaches, information identifying the state
of each observed element is necessary. Tese facts are
gathered via a variety of sensor data. A few examples of the
signals that could be used are ultrasonic tests, vibrations,
torque, stress, temperatures, electrical output, lubricating oil
quality, and centralized management signals.

Research questions served as the basis for the study
that is being presented here. Tey were designed to
characterize the pertinent research in terms of publication
sources and scientifc areas while also examining the
strengths and limitations of the most recent machine
learning techniques for mechanical fault detection and
fault prognosis in manufacturing equipment. Five

academic databases were searched for relevant papers, and
after applying a set of criteria, the primary studies were
chosen.

2. Literature Review

For a 1.5MW doubly fed induction generator (DFIG) in
a grid-connected wind energy conversion system (WECS),
the authors in [11, 12] presented optimal design and tuning
of fuzzy logic controllers (FLCs) using sophisticated
methodologies like the particle swarm optimizer (PSO), the
gray wolf optimization (GWO), the moth-fame optimizer
(MFO), and the multi-verse optimizer (MVO).Te grid-side
converter, current regulator, and rotor-side converter of the
back-to-back DFIGwind turbine all have FLC scaling factors
that are optimized. It is suggested that a multi-objective
optimizationmethodology be used to reduce the steady-state
errors of these controllers in order to enhance the dynamic
performance of the DFIG wind energy system when variable
wind speed circumstances are present. Te suggested op-
timized controller and PI controller are also compared,
along with the various FLC optimization strategies
employing PSO, GWO, MFO, and MVO. Tis study’s key
contribution is its suggestion of a novel control approach for
a WECS based on DFIG. Utilizing PSO, GWO, MFO, and
MVO algorithms to regulate the d-q element of the stator
and rotor currents to manage the active and reactive power
of the DFIG will maximize MIMO-FLC transformation
matrix. In order to determine the behavior of the proposed
controller in the event of a transformation from a low to
a high gust, the proposed controller’s operation is tested in
variable wind speeds. By contrasting the various techniques,
it is discovered that the MFO-FLC controller is the best
optimized controller and exhibits excellent behavior in these
conditions. For the next generation of energy systems, we
suggest a revolutionary intelligent fault-tolerant adaptive
control methodology in [13, 14]. Based on reliable fault-
tolerant control, this design enhances local controllers
coupled to energy systems, such as renewable energy-based
power producers (FTC). For the monitoring and manage-
ment of energy systems, this local controller works in
conjunction with an area controller. A dual heuristic pro-
gramming (DHP) action-critic neural network architecture
along with a predictive identifer is created with this goal in
mind. Te area controller’s major goal is to communicate
with the local controller, supplement local controller, and
share information about the grid state in accordance with an
ideal control plan. To control reactive power management at
the common point of coupling, the controller’s efectiveness
is tested on a wind-generating system’s two-area power grid
(CPP). Simulation experiments show that the suggested
architecture is capable of enhancing the power grid’s sta-
bilization when there are renewable energy resources
present. On Pulau Ubin island, an intelligent microgrid with
a high proportion of clean and renewable energy resources
was designed and put into operation to meet current and
projected electrical demand. In the midst of heavily ur-
banized Singapore, Pulau Ubin is one of the few remaining
pockets of “village” life that captures the character of
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Singapore in its formative years.Te system design has taken
into account all potential energy sources, the efectiveness of
energy conversion, power demand, and environmental and
fnancial considerations. Electricity is produced using
doubly fed induction generators that are fueled by photo-
voltaic (PV) cells and biodiesel. In order to maximize the
utilization of renewable energy sources and to increase
battery life, an energy storage system has been suitably sized.
Smart grid technologies have been used to optimize energy
production, monitor energy usage, handle instant energy
fow, preserve electricity performance, and generate fault
notifcations. Tese technologies include smart meters,
microgrid controllers, and remote monitoring systems with
SCADA functions. Tis project also acts as a testing ground
for sophisticated grid control technologies, clean and re-
newable energy generation, and storage under an intelligent
microgrid architecture. Te use of these smart grid char-
acteristics to grid-connected microgrids has considerable
promise. If this system is implemented successfully, it can
serve as an example of sustainable development for many
regions of Asia, where almost 40% of the population lacks
access to power [15–20]. In this study, PowerFlexHouse,
a research center for investigating the technical possibilities
of active load control in a distributed power system with
a high penetration of renewable energy, is introduced. A
study of the software platform on which building controllers
can be used is followed by a description of the facility based
on a distributed power system (SYSLAB). Finally, this study
demonstrates how to create a thermal model predictive
controller for this distributed power system’s power con-
sumption estimation. Studies on how this intelligent house
responds to a hybrid power grid can be done thanks to the
PowerFlexHouse’s control. With the help of our demand
side control study, we intend to signifcantly increase grid
dependability as well as energy efciency and user power
costs [16, 21–24]. Whenever the generator malfunctions and
also the machine starts to function as a synchronous motor
linked to the electricity grid, the original power source—the
motor or turbine—is typically damaged. Te proposed
protection has been created to prevent this from happening.
It becomes necessary to immediately identify these variables
in this scenario because the generator turns into an active
load, increasing the temperature and seriously damaging the
main turbine. In order to prevent reverse power fow and
maintain the quality and dependability of supply, this study
suggests a novel controller for a neuro-fuzzy system. Te
fuzzy system network has drawn the attention of numerous
scientists and engineers. Te modifcation of the member-
ship function as a reverse mechanism derived from the fuzzy
logic controller is this work’s novel characteristic. Te smart
grid is built on a network of smart meters. In this project,
wireless sensor network-based Zigbee technology was used
to construct smart grid meters. Due to its small battery and
low power consumption, the Zigbee network of wireless
sensors has more value than other wireless communication
systems in terms of providing high-performance measure-
ments. Te OPNETsimulation is used in this study to depict
the Zigbee network. Te operating properties of the star,
tree, and mesh were understood by parameter analysis based

on performance. Tis strategy is applicable to any network
that DG manages. Te suggested intelligent protection
system intends to improve the availability of the DG units
during faults, ensure selectivity of protection, and shorten
the time it takes to eradicate problems. Using cutting-edge
sensors, a neural fuzzy system, and a Zigbee network, a new
protective mechanism is elaborated. By reducing the du-
ration of failure and solving the issue of the system’s long-
term disconnection, the intelligent algorithm ensures the
selectivity of the protection [25–29].

3. Proposed Work

Te objective function, which is expressed as the reduction
of power loss over a year, can be described as

O � MINNd ∗ 

Mt

τ�1
l(S) + 

Mt

τ�1
lP(W) + 

Mt

τ�1
lP(SP)⎡⎣ ⎤⎦, (1)

whereMt stands for the maximum number of hours in a day
and Nd stands for the number of days in each season. S, W,
and SP stand for the diferent seasons of summer, winter,
and spring. Figure 1 describes the objective function for the
proposed approach.

To produce a stable power supply with maximal voltage
stability, which is expressed in equation (1), and the power
balance is a signifcant limitation.

G(1)ap − 
n

k�1
kl − 

nbh

bh�1
lP(bh) � 0, (2)

where G(1)ap represents the grid active power and kl and
lP(bh) are the demand and power loss for the grid, re-
spectively. To ensure voltage regulation, the resistance value
at every bus is denoted as

MinV ≤Vr ≤MaxV, (3)

where MinV and MaxV represent the lower and upper
bounds of the voltage. Bounds of the voltage and also zero
phase of angle are calculated as follows:

μ1 � 0,

V1 � 1.
(4)

Distributed generation is a key tactic for tackling the
growing demand for power usage. Numerous earlier studies
focused on the ideal power fow in the scattered network, but
they did not sufciently consider the reliability of the dis-
tribution network. Te structure of demand forecasting in
control center is shown in Figure 2.

Te distributed generation should be deployed as ef-
ciently as possible, as shown in Figure 3, to reduce power
losses and the associated expenses. A variety of factors,
including location characteristics, active power loss, voltage
stability, voltage variation, load requirements, and DG ca-
pacity, impact the placement of distributed generation,
which is related to the size and placement of the distributed
generation that is appropriate. Accurate forecasting of the
load demand is required in order to choose the size and
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location of the distributed generation. One illustration of
a geographic feature is where DG is located. Other examples
include the placement of solar power plants depending on
local temperature and irradiance and wind turbines based on
local wind speed.

(i) Te objective function to improve in this article is
the position and size of the RDGs, which are de-
termined using a heuristic algorithm.

(ii) Te following is a mathematical calculation for
optimum sizing, according to solar RDG. Te fol-
lowing information is based on the anticipated
generation of electricity PS and the location of SDG.

pSDGE,i � ns,i × pSG ∨i ∈ d, (5)

where ns,i represents the number of SDGs for the ith bus, pSG
represents the expected power generation, and d is the
candidate bus. Te projected generation rate for the solar
RDG is computed as follows if the size and position are
optimized.

pSDG,i � ns,i × pSDG,R, (6)

where pSDG,R is the discrete size rate of solar RDG.

3.1.WindTurbineRDG. We can determine the ideal size and
position of the RDG wind turbines based on the anticipated
rate of power generation PWG, which is shown below.

pWDGE,i � nw,i × pWG ∨i ∈ d, (7)

Multi Objective
Load Forecasting

Stability Concerned
Load Monitoring

Bi-GRU
CAE

Historical Data

GRU

Load Demand
based on time

Weather
conditions

Critical Load Non Critical
Load

Systematic Diagram

Conceptual Diagram

Household
Load

Industrial
Load 

Commercial
Load

GRU
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where Nw,i and pWG represent, respectively, the quantity of
wind turbines and the anticipated power output of the wind
turbine. Next, the position and rated size of the WDG are
determined as follows:

PwDG,i � nw,i × PwDG,R, (8)

where PSDG,R is the discrete size rate of wind RDG. Te
suggested multi-objective golden eagle optimization
(MOGEO) algorithm comprises two phases that are
explained in the following in terms of its computational
complexity.

3.1.1. Initial Population. Te method employs Ο(Np × Nd)

time to initialize each golden eagle’s step vectors, position
vector, and as memory. Tis algorithm’s main loop accepts
Ο(Np × Nd × Ni × No × Na) as inputs. Finally, we de-
termine that the suggested MOGEO method has a total
complexity of Ο(Np × Nd × Ni × No × Na).

Te GEO, which has quick convergence and has proven
to be more efective than other meta-heuristic optimization
algorithms, performs the task of placing scattered genera-
tions in the best possible position. Also, the GEO algorithm
is used to accurately fnd the best solutions for the complex
optimization problem discussed above. Te golden eagle,
which consists of several bird species including hawks and
eagles, is the model for this method. Te following are some
examples of the main characteristics and how they function.
It has greater predisposition at the frst stage to normalize
the transition for the fnal stage by following a spiral (round)
trajectory that restores the search path for the attack. It
continues to have propensity to attack and cruise during
every fight time. It searches the prey for eagle information.

Te crowding score (CS) i, which is derived using the
crowding distance concept and is defned as follows, is used
in MOGEO to assess ftness. Te Pareto front value for this
distance was calculated between the two values that were
closest to each other throughout time using the following
formulas.

CSi �
1
n


j∈J

fi+,j − fi,j  − fi,j − fi−1,j 

f
max
j − f

min
j

, (9)

where fi−1,j, fi,j, and fi+1,,j are the three successive
members of the archive which are arranged according to the
optimization’s objective values and objective functions. Te
following method is used to calculate a new score based on
the roulette wheel procedure. Si is calculated as follows:

Si � 1 − CSi. (10)

Te following are some examples of the main charac-
teristics and how they function: It has a greater pre-
disposition at the frst stage to normalize the transition for
the fnal stage by following a spiral (round) trajectory that
restores the straight and searching path for the attack. It
continues to have a propensity to attack and cruise during
every fight time. It searches the prey for eagle information.
At the conclusion of this procedure, the total number of
solar and wind RDGs and their positions are determined.
Number of iterations, initial conditions, distance scores, and
termination criteria of the algorithm are computed. Here,
the ftness of the agent is determined while minimizing the
losses using a distance-based objective function between two
nearby sets of data. Te placements of initialized parameters
are thenmodifed. If the termination criteria are satisfed, the

Forecasting load

Wind speed

Irradiance

Temperature

Input Factor

Control Center

House

Industry

Wind turbine Utility

Solar Plant

Commercial building 
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optimal ftness values are preserved; if not, the method is
repeated until the best ftness value is reached.

4. Results and Discussion

Te word “power loss” refers to the amount of power that is
lost during transmission. Reverse power fow is the outcome
of distributed generators’ inefective grid placement, which
is the source of this. Te proposed work is done using
MATLAB tool for simulation. In terms of the quantity of
RDGs, Figure 4 compares the power loss of our proposed
GEO model with that of the existing models. With an in-
crease in RDGs, the power loss is reduced. Our suggested
model has a minimal power loss since the RDG is placed
optimally taking into account the load demand, RDG ca-
pacity, site features, and other important considerations.Te
MOGEO algorithm is used to decide the size, placement, and
number of RDGs. Te current methodologies were in-
efective at positioning the RDG optimally because they
anticipated continuous active and reactive power of the load
on the customer side. Additionally, the power fow is not
stable when just exogenous infuences are taken into
account.

Table 1 presents the numerical study of power loss for
our proposed GEO model and existing models with regard
to the number of RDGs. It is discovered that the suggested
model has an average power loss of 60.1 kW, but the existing
techniques have a power loss of up to 90.5 kW, which has an
impact on the steady power fow to the essential load.

Voltage stability is a crucial parameter for assessing how
well a method can withstand acceptable voltage. Voltage
instability results from the approach’s inability to meet load
demand. In severe load situations, voltage stability should be
attained to enable proper power supply. Figure 5 compares
the voltage stability of our suggested solution and the current
approaches in relation to the number of RDGs. Increasing
the number of RDGs improves voltage stability, but doing so
increases energy costs. As a result, it is important to fnd the
ideal number of RDGs, which can be done using MOGEO.
Te forecasting of load demand gives the suggested tech-
nique great voltage stability in challenging load scenarios.
Te right placement of RDGs in the network and the
achievement of voltage stability are made possible by the
correct information of the load. Te existing methods are
less efective in determining the ideal size and location of
RDGs because they lack prior knowledge of load demand.

Table 2 provides a numerical comparison of the voltage
stability of the proposed GEO model and the currently used
methods in relation to the number of RDGs.Te consistency
of the suggested model is 0.95 pu, whereas the stability of the
previous techniques is only 0.86 pu. Tis leads us to the
conclusion that our suggested method is more reliable at
supplying electricity to crucial loads.

Te voltage deviation is a measurement of the voltage
diference from the reference voltage that has an impact on
the functionality of the power system. Te voltage di-
vergence is caused by a dynamic variation in load demand.
Figure 6 compares the voltage deviation between our pro-
posed model and the existing techniques in relation to the

number of RDGs. Less voltage variation occurs when the
RDG count rises. Our suggested solution has less voltage
damage than other existing systems because of the dynamic
load monitoring. Utilizing the A2C-GAE, a steady power
supply is ofered based on the variation in load demand, with
the load being dynamically divided into critical and non-
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Table 1: Analysis of power loss.

Techniques # of RDGs
PSO 90.5 ± 5
ACO 77.5 ± 4
GEO 60.1 ± 2
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Figure 5: Voltage stability (critical load).

Table 2: Analysis of voltage stability (pu).

Techniques # of RDGs
PSO 0.83 ± 0.5
ACO 0.86 ± 0.3
GEO 0.95 ± 0.1
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critical categories. Te present approaches assume a con-
stant load demand, which raises voltage variances and afects
system performance.

Te voltage deviation with respect to the number of
RDGs for both the current approaches and our proposed
GEO methodology is numerically analyzed in Table 3. Te
proposed approach appears to have a voltage deviation of
about 0.006 pu, whereas the voltage deviation of the
existing methods can exceed 0.011 pu. Te increased
voltage variation of the current techniques degrades the
performance of the power system, increasing the cost of
revenue.

5. Conclusion and Future Work

Tis paper describes the design of a GEO-based controller
that will be integrated into a microgrid that is connected to
the grid and has the potential to store energy. Te con-
troller’s goals are to regulate the rate of charge and dis-
charge of the energy storage system (ESS) in order to lower
end-user operational costs by running the ESS as an ar-
bitrage device andminimizing power exchange between the
main grid and microgrid. By deducting the load, the ESS’s
charge state, and the cost of power on the market from the
available renewable energy, the suggested technique de-
termines the charge and discharge rate of the ESS on
a rolling horizon. In comparison to previous controllers
with similar objectives, the recommended controller can
reduce the energy exchange between the main grid and
microgrid and achieve lower operating expenses. Te
aforementioned initiatives can be advanced using machine
learning. A group of clever algorithms known as machine
learning is capable of learning the underlying knowledge

contained in training data. Te resulting decision model
serves as direction for more work after the inherent in-
formation has been abstracted.
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Te datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
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Te goal of this article is to use MPPTs (maximum power point trackers) to extort maximum power from best confguration or
combine renewable resources and energy storage systems that all work together in of-grid for electric vehicle charging. Te grey
wolf algorithm (GWO) searches the MPP at partial shading condition (PSC) with following two consideration one is high
oscillations around GMPPs, and other is that they are unable to track the new GMPPs after it has changed positions because the
seeking agents will be busy around the previous GMPPs captured. Hence, in this paper, the proposed research objective is to fnd
solutions to these two difculties. Te issue of oscillations around GMPPs was handled by combining GWO with ANFISs
(adaptive Neuro-Fuzzy inference system) to gently tune output produced power at GMPPs. ANFISs are distinguished by their
near-zero oscillations and precise GMPPs capturing. Te second issue called they are unable to track the new GMPPs after it has
changed positions is addressed in this work by using novel initialization by GWOs (Grey wolf Optimizations). In the MATLAB-
Simulink and experiments demonstrate the efectiveness of the suggested GWO-ANFIS MPPTs based of-grid station for EVs
(Electrical Vehicle) battery charging.

1. Introduction

With the growing environmental concerns, governments
throughout the world have established a variety of carbon
emission limits. EVs that are powered entirely by electricity have
the potential to replace gasoline and diesel vehicles. EVs enhance
energy efciency through efective fuel economy, especially
when the power is generated from renewable sources such as
solar and wind. When it comes to EVs in smart grids, that are
more than simply an electrical burden, but also a power resource
[1, 2], several proposals have been made [3–7] presented an

approach for modelling EVs as an additional load on the dis-
tribution network. Several scholars [8, 9] proposed a grid-
connected PV system for EVs charging. In most cases,
a backup battery is not required for a grid-connected system.
Tere are two confgurations for the grid-connected system.One
is that the PV system works in conjunction with the utility grid
to provide electricity to the load. As a result, the output of PV
system is frequently less than load’s power. Te other is that the
PV system is designed to provide the load with the needed
power, and the utility grid serves as a backup source during solar
power variations in this arrangement. With the ever-increasing
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demand for electric vehicles, it became imperative to expand the
number of charging stations. EVs require a high number of
charging stations. As a result, EVswill be a substantial burden on
the future distribution network system.Te phrase “of-grid” of
PV systems are not linked to main grids is known as a “stand-
alone” PV systems. Tese stand-alone PV systems are ideal for
electrifying small places in remote areas or small towns.Tey can
also be used as charging points for EVs on long-distance routes
as depicted in Figure 1. Many publications [10, 11] have dis-
cussed of-grid system design.

Due to seasonal weather conditions and the non-
linear nature of solar irradiation, solar power output
varies signifcantly, necessitating a hybrid application or
backup systems [12]. Solar irradiance is not strongly
connected across surrounding locations over short time
periods, which is a critical factor in PV power output
losses and swings [13]. MPPTs are considered signifcant
components of PV systems for increased efciency.
Because of the non-linear features of PV arrays, it is
unavoidable to design an efective maximum power point
tracking system which is not only efective and improves
the solar power system’s output power [14]. Further-
more, a variety of internal and external factors including
series/parallel resistances, Diode factors, solar irradia-
tions, PV array surfaces, internal temperatures, shadows
and dirt impact on PV system’s output efciencies. Be-
cause the dynamics of PV systems under PSCs change
over time, MPPTs for PV powered systems must track
GMPPs smoothly and steadily in a variety of situations
including shades, degraded PVs, changes in PV arrays or
PV characteristics.

A number of algorithms forMPPTs have been suggested for
enhancing PV system’s efectiveness, including hill climbing
[12], P&O (perturb and observe) [15–17], incremental con-
ductance [18], however these techniques produce oscillations at
MPPTs, resulting in power losses. IC technique [18] was de-
veloped to decrease these oscillations and increase module ef-
fciency, however it only lowered the oscillations. P&O and IC
approaches failed in time spans specifed by changing atmo-
spheric conditions. A scanning technique was presented [19–21]
to estimate panel’s maximum power-delivering potential at any
given operational condition for PV systems with rapidly
changing and PSCs and insolations.

Soft computing methods employed for MPPTs in PV sys-
tems include PSOs (Particle SwarmOptimizations) [22], GWOs
[23], CS, ACOs (Ant Colony Optimizations) [24], KHOs (Krill
Herd Optimizations), FAs (Firefy algorithms) [25], ABCs
(artifcial bee colonies), MVOs (Multi-Verse Optimizations),
ALOs (Ant Lion Optimizations), SCAs (Sine Cosine Algo-
rithms), Dragonfy Algorithms, WOAs (Whale Optimization
Algorithms), MFOs (Moth-Flame Optimizations). Several
studies [26, 27] have examined and introduced all of these
approaches. In shaded or non-shaded circumstanceswheremost
approaches could catch the GMPPs. Nonetheless, they are af-
fected by twomajor issues in PV applications.Te frst difculty
is with dynamic or time-varying GMPPs location in P-V curves,
wheremost of these techniquesmay catch the initialGMPPs and
stay around it, but not if the GMPP positions changes over
a period of time. Te second difculty is that random variables
associated with all of these soft computing techniques create
substantial power swings near steady states. To overcome these
two challenges, novel and efcientways have been applied in this
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Figure 1: Of-grid charging station for EVs.
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study where the frst issue is overcome by introducing re-
initialization methods for soft computing methodologies
while the second issue is resolved by using combination of soft
computing techniques namely GWOs and ANFISs and where
quick peak tracking and low oscillations around GMPPs dif-
ferentiate ANFISs.

2. Related Work

Controller settings were optimised and adaptively modifed
using a predictive neural networks controller by Mohamed
et al. [28]. Te scheme anticipated control parameters by
tracking grid current and dc-bus voltage mean square errors
and eliminating them in a specifed amount of time.

SMCs were proposed by Pahari and Subudhi [29] for
control discontinuity based on high frequency conversions
for driving closed loop systems to reach and stay on planned
sliding surfaces. Tis approach considerably enhanced PV
system’s tracking speeds, however the step size of modulation
depths of switching devices impacted system’s dynamic and
steady-state properties. When ∆U increased, Although
tracking speeds increased, variations in PV array’s output
powers and voltages also increased. Pahari and Subudhi
introduced Integral sliding mode controls to increase con-
troller’s steady state performances.

External voltage control, P&O, and an adaptive integral
diferential slip flms were used to design their new sliding
surface in Kihal et al. [30] and where derivative and integral
terms eliminated overshoots during quick solar irradiation
changes and reduced steady-state fuctuations.

Te study in [31] was a novel model of adaptive PID
controllers based on ANFISs proposed to address concerns
in MPPTs approaches. It aided in maximising the output of
DC pump in terms of speed. Teir proposed controller was
also used to test performances of EVs. To get the maximum
power from solar-powered pump many methods have been
tried and ANFISs have also been used to optimise perfor-
mances of these intelligent systems. However, the ap-
proaches have certain faws, necessitating the development
of a new paradigm. As a result, in this research, a technique is
developed in which a PID controller is used, and the
combination of ANFISs and PID improves the performance
of MPPTs. Moreover, this work’s proposed combinations
were tested on EVs.

Padmanaban et al. [32] presented grid-based PV systems
with MPPT control mechanisms. Teir work’s ABC method
converted ANFIS membership functions and their experi-
mental study demonstrated that PV grid integrations were
dependable and safe.

Te author of [33] recommended modifying INC (In-
cremental Conductance) to track GMPPs of PV systems with
PSCs without the application of any nature-inspired in-
telligence approaches like PSOs or other comparable algo-
rithms. Te work identifed p-v curve as a mixture of areas
and monitored global peaks by moving operating points
from one region to another. In addition, the system in-
corporated varying sample times for quicker global peak
tracking under extreme PSCs caused by unpredictable PV
module shading patterns. Teir PV module was modelled in

combination with SEPIC converters for a battery charging
applications using MATLAB/SIMULINK platform. Te
proposed technique was put to the test under various
shading patterns to see how quickly and accurately their
tracker tracked the power points. Finally, the suggested
algorithm’s idea was tested using PILs (Process-in-Loops) on
TMS320F28027 LAUNCHPAD DSP board. Teir result
comparisons with recently published work in this sector
showed that their suggested approach was more benefcial in
terms of processing times.

Hence Evolutionary algorithms have reduced steady
state oscillations and have advantage of ease in imple-
mentation and simplicity of computation.

3. Design Charging Station Converters

Te power converter is the most important technology
associated with PV systems. Maximum power from PV
module is dragged from converter and sent to the load.
Tis should be accomplished in grid-connected systems
with least harmonic content in the current and a PF value
greater than 0.9. Te output voltage in of-grid systems
should be adjusted to the necessary value. Te suggested
charging station in Figure 1 employs three DC-DC
converter topologies. Te SEPIC converter converts the
fuctuating voltage from modules to a stable voltage, while
the buck converter reduces the DC Bus voltage to voltage
of the electric vehicle battery. Te bidirectional converter
is use d to control the battery bank’s charging and dis-
charging. Te following sections detail the design of three
DC-DC converters.

3.1. DC-DC SEPIC Converter. Figure 2 depicts Single Ended
Primary Inductance Converter. [34] contains PV modules’
input source voltage (VPV), SEPIC inductor
(LSEPIC−1 andLSEPIC−2), Coupling Capacitor (CC), DC-link
capacitor (CDC), a diode (DMPPT), MOSFET (Metal-
–Oxide–Semiconductor Field- Efect Transistor) (SMPPT) as
a switch and the output voltage (VDC) (DC Bus Voltage).
Te SEPIC converter’s output voltage can reduce or enhance
the input PV voltage. Controlling or changing voltage may
be done by adjusting the MOSFET’s duty cycle.

As per the equation (34), the output voltage VDC is
proportionate to input voltage VPV.

DMPPT �
VDC

VPV + VDC

, (1)

here DMPPT is duty cycle.

CPV
VPV

VDCCDC
LSEPIC–2

LSEPIC–1
DMPPTCC

SBOOST

+ +

– –

Figure 2: Te SEPIC converter diagram.
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Equation (1) is use d to determine duty cycle of SEPIC
converter. Solar energy ranges between 0 and 1000W/m2

and temperature ranges from 25 to 75 degrees Celsius in the
simulation.

SEPIC converter duty cycle is determined for a cell
temperature of 25°C and irradiance of 1000W/m2 in non-
shaded conditions. VPV � 116V, as you may have observed.
When VDC is equal to 110V, DMPPT(MIN) at 110V is 0.48.

If the two PV panels are shaded, the SEPIC Converter
Duty Cycle is calculated at 25°C and 1000W/m2 at cell
temperature of 25°C. As observed, VPVmin � 58V and
VDC � 110V, resulting in DMPPT(Max) at 110V of 0.65. Ten
inductance for continuous current, Coupling Capacitor of
SEPIC converter is calculated below

3.1.1. Design of SEPIC Inductor. In the SEPIC converter, the
inductance for continuous current is computed as follows
[34]:

LSEPIC−1&LSEPIC−2 �
VPVmin DMPPT(Max) 

∆IoMax ∗FSW

� 1.58mH � 1.6mH.

(2)

Te switching frequency, FSW, has been set at 25 kHz.
Te ripple current ∆IoMax is computed as follows: VIN is the
converter input voltage� 58V. (taken as 13 percent of the
total current):

∆ILBoost � 0.13∗ IPV

� 0.13∗ 7.34

� 0.95.

(3)

3.1.2. Design of SEPIC Coupling Capacitor. Coupling ca-
pacitor Cc ripple voltage is:

CC �
IPV 1 − DMPPT(Max) 

∆VCC ∗FSW

�
7.35(1 − 0.65)

12∗ 25

� 8.5uF � 10uF.

(4)

3.2. DC-DC Buck Converter. Buck converter illustrated in
Figure 3 [35] is made up of DC-link voltage as an input
source (VDC), buck inductor (LBUCK), buck capacitor
(CBUCK), a diode (D), MOSFET (S) as a switch and the
output voltage (VEV) as an EVs battery voltage (350V in
Tesla S 100D cars).

Te duty ratio is calculated as follows:

DBUCK �
VEV

VDC

�
60
110

� 0.545.

(5)

3.2.1. Design of Buck Inductor and Buck Capacitor. Te buck
converter’s inductance for continuous current is computed
as follows [35]:

LBUCK �
VDC − VEV

∆ILBUCK ∗FSW

�
110 − 60

1.51∗ 10, 000

� 3.3mH,

(6)

∆ILBUCK (Te ripple current) is computed as (taken as 13%
of the charge current):

∆ILBUCK � 0.13∗ ICGB

� 0.013∗ 11.66

� 1.51A.

(7)

3.3. Te Bidirectional Converter. Te storage battery is
supplied as a backup service during energy outages to
smooth power storage produced by of-grid systems. As
a consequence of the advantages listed below, this article
recommends a bidirectional buck-boost converter, as il-
lustrated in Figure 4 [23], regulate storage and delivery of
electricity among PV system and battery bank:

VDC CDC CEV
VEV

SBUCK

LBUCK

DBUCK

+ +

– –

Figure 3: Te buck converter diagram.

SBI–BUCK

SBI – BOOST

LBI

VSSV VDCCDC

––

++

Figure 4: Te bidirectional converter diagram.
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(i) It provides the most cost-efective solution with the
fewest external components.

(ii) It accomplishes voltage step-up and step-down
using the fewest possible components.

(iii) It has a decreased duty cycle when in operation.
(iv) It has a high efciency over a wide range of input

and output voltages.
(v) It is less costly than the majority of converters.

Based on power fow direction, the bidirectional con-
verter may be confgured in two operation modes: boost and
buck [36] describes these modalities in detail.

3.3.1. Design for the Bidirectional Converter. Te inductance
(L BI) can be represented in two diferent ways:

In Buck mode:

LBI−Buck �
VDC − VSSV

∆IBI−BUCK ∗FSW

�
110 − 60

2.08∗ 10, 000

� 2.4mH,

(8)

∆IBI−Buck (ripple current) is computed as (taken as 13% of
charge current):

∆IBI−BUCK � 0.13∗ ICGS

� 0.13∗ 16

� 2.08A.

(9)

In Boost mode:

LBI−BOOST �
VDC − VSSV

∆IBI−BOOST ∗FSW ∗VDC

�
110 − 60

1.65∗ 10, 000∗ 110

� 0.02mH,

(10)

here ∆IBI (ripple current) under Boost mode is computed as
(taken as 13% of the charge current):

∆IBI−BOOST � 0.13∗ ICGS

VDC

VSSV

� 0.13∗ 6.95∗
110
60

� 1.65A,

(11)

LBI−Buck is more than LBI−BOOST to make sure that inductor
current can function during continuous conduction mode
(CCM) [36], LBI−BUCK value is selected, that is, equal to

2.4mH here DBI−BOOST is duty cycle under Boost mode and
computed as:

DBI−BOOST � 1 −
VSSV

VDC

� 1 −
60
110

� 0.455.

(12)

4. Design of Closed Loop System

Te Grey wolf Optimizer combined with ANFISs are
implemented to track the new GMPPs after it has changed
positions are discussed follows.

4.1. Proposed Grey Wolf Optimizer Combined with ANFISs
Global Maximum Power Point Tracking Techniques. Due the
PSC the PV array generates the several peaks is generated
with various LMPPs and a single GMPPs so tracking of
maximum power location is obtain by GWO algorithm. Te
GWO enhance power quality and ensure the efciency of
PVCs (photovoltaic cells) under PSCs (partial shading
conditions) by varying the duty cycle with low iteration.
Mirjalili et al. originally proposed Grey Wolf Optimizer in
2014 [23], and it is considered one of the most recent
heuristic optimization techniques.Tis approach is based on
the way grey wolves hunt food in the wild, pursuing,
attacking, and killing them. Grey wolves prefer to live in
packs of 5 to 10 individuals. Tey follow a strict social
dominance structure with four levels of leadership. Leaders,
named as alpha (α), and subleaders, which they call beta (β),
etc, are referred to as leadership pyramids, as illustrated in
Figure 5, where wolf dominance rises from top to bottom
[37]. Te alpha wolf holds duty cycle of maximum power by
corresponding random search duty cycle set. Accordingly
the second and third maximum powers are named as beta
and delta respectively. Te rest of maximum power solution
at the duty cycle is denoted as omega. Te tracking global
maximum power behaviour of grey wolves, we suppose that
the alpha, beta and delta have the better knowledge about the

α

β

δ

ω

Figure 5: Leadership pyramid with four level (α, β, δ and ω).
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global maximum power. Terefore, we save the frst to three
best powers obtained so far iterations and oblige the next
iteration search duty cycle to update the duty cycle according
to the best maximum power. GWOs are created to replicate
grey wolves behaviour in the optimization domain. Grey
wolf leadership hierarchy is established by assuming the
leaders; wolves known as alpha (α), subleaders known as
beta (β), lower rank wolves known as delta (δ), lowest rank
wolves known as omega (ω).

Grey wolves encircle food in the hunt, as previously
stated. Te following equations are presented to analytically
model encircling behaviour [23]:

E
→

� C
→

.DP

��→
(t) − D

→
(t)



,

DP

��→
(t + 1) � DP

��→
(t) − A

→
. E
→

,

(13)

here t indicates current iteration, A, C are coefcient vectors
whose values has capability to save balance between ex-
ploration and exploitation in searching region, DP is prey’s
position vector, D represents grey wolf’s position vector.
Two coefcient vectors A and C are computed like:

A
→

� 2 a
→

.r1
→

− a
→

,

C � 2.r2
→

,
(14)

here, coefcient a is decreasing linearly beginning 2 to 0, r1,
r1 are arbitrary vectors with value [1, 0]. Grey wolves hunt by
circling their prey, and pack should follow the commands of
alpha wolf (Dα) as a high priority, and orders of the beta
wolves (Dβ) and delta wolves (Dδ) as a lesser priority. Te
following equations can be used to model this leadership
hierarchy numerically:

Eα
�→

� C1
�→

.Dα
�→

− D
→

,

Eβ
�→

� C2
�→

.Dβ
�→

− D
→

,

Eδ
�→

� C3
�→

.Dδ
�→

− D
→

,

D1
�→

� Dα
�→

− A
→

1.Eα
�→

,

D2
�→

� Dβ
�→

− A
→

2.Eβ
�→

,

D3
�→

� Dδ
�→

− A
→

3.Eδ
�→

,

DP

��→
(t + 1) �

D1
�→

+ D2
�→

+ D3
�→

3
.

(15)

Te solution’s exploration and exploitation are de-
termined by a and A values, wherein |A|≤ 1, the wolves
incline to exploitation (converge to prey) and |A|≥ 1,

wolves tend to exploration (diverge from prey as it might be
one of LMPPs). As stated in introduction, hybrid GWO-
ANFIS is suggested to combine benefts of both approaches
and monitor variant GMPPs under variation PSCs with
almost negligible oscillations around GMPPs power. To
monitor the variation GMPPs, GWOs with two re-

initialization approaches is presented. GWOs is re-
initialized to seek for GMPPs at frst. After GWOs has
caught initial GMPPs, it is ended depending on frst
condition and the role is given to ANFISs [38]. ANFISs are
employed to soften the initial GMPPs captured by GWOs
and track precise value of GMPPs with nearly minimal
fuctuation around global power. Inputs of ANFISs are VPV,
IPV and TPV [28], which create the Duty (DMPPT) output,
whereas the ANFISs output is the DC-DC converter’s
optimum duty ratio (SEPIC converter) [39, 40]. In contrast,
if the PSCs changes, ANFISs are terminated, and GWOs
must be re-initialized to search for and follow new GMPPs,
as illustrated in Figure 6.

Tis study proposes a combination of GWOs and
ANFISs for taking full advantage of both techniques while
overcoming their disadvantages.When it comes to capturing
GMPPs of PV systems, GWOs are the most efective and
have the fastest convergences, but it also has a lot of os-
cillations around GMPPs at steady states. ANFISs which are
opposite of GWOs remain at local peaks with extremely low
oscillations around GMPPs. As a result, GWOs were frst
used to quickly and efectively track GMPPs and sub-
sequently ANFISs then start to behave like MPPTs with very
low oscillations. As a result, GWOs are employed to follow
the GMPPs and avoid local peaks at the start of MPPTs.
Furthermore, at GMPPs, the drawback of major oscillations
is avoided by pausing operations and enabling ANFISs to
operate with extremely low oscillations. In order for GWOs
to be terminated and ANFISs to complete the control of
MPPTs on GMPPs that have already been captured, the
following prerequisites must be met:

Pnew − Pold


≤E1, (16)

here, Pnew is current power obtained from PV system, Pold is
pervious iteration value of simulation, E1 is permissible limit
before transferring control from GWOs to ANFISs, that is
equivalent to 2% of generated power. Condition for ter-
minating ANFISs and go back to GWOs to re-initialize the
agents to search for new GMPPs under new PSCs via fol-
lowing conditions:

Pnew − Pold


≥E2, (17)

VPV

IPV

TPV

DMPPT

ANFIS

YES
YES

NO

NO

GWO |Pnew – Pold| < E1

|Pnew – Pold| > E2

Figure 6: PV energy system with hybrid GWO-ANFIS based
MPPTs.
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here E2 is permissible limit before transferring control from
ANFISs to GWOs, that equivalent to 5% of
generated power.

Tere are two suggested initialization approaches for
re-initializing the GWOs to begin looking for a new
GMPPs. As previously stated, the goal of combining GWOs
and ANFISs is to take advantages of both approaches, with
GWOs being rapid and reliable MPPTs approach for
tracking GMPPs under PSCs while ANFISs have lowest
GMPP oscillations. GWOs will be unable to catch new
GMPPs when they alters their position since all wolves will
be looking in the prior GMPPs search zone. As a result, if
the controller detects a change in PSCs, the agents of GWOs
should be re-initialized to scan the search region for new
GMPPs. ANFISs will follow GWOs once they have iden-
tifed GMPPs until the controller detects another change in
the PSCs.

If the condition stated in equation (27) is true, the
controller will follow the PSCs modifcation. Figure 7 shows
a fowchart which summarizes processes of hybrid GWO-
ANFIS with PSCs modifcation re-initialized.

4.2. Te Charge and Discharge Control. Power is transferred
from and to the battery bank via the charging and dis-
charging controller.Te bidirectional converter in the stand-
alone PV system with the battery bank illustrated in Figure 8
has four distinct control modes depending on magnitude of
power produced by PV array, that is dependent on tem-
perature and irradiance.

Mode 1. When obtained PV power is less than power
needed by EVs battery, i.e. PPV<PDDh, and the charge
status of SOC is greater than 40%, frst control mode is used.

Start

Nw, Pold, a, C2, C1

DoWhile (t < MaxIterations)

InitGrayWolfPopulation

SendDi (i)andSensePPV (i), VPV (i), IPV (i)

i = 1 : Nw

AllWolves
Evaluated?

NO

NO

NO YES

YES

YES

EvaluateDα, DβandDδ

UpdateDα, Dβ, Dδ, D1, D – 2, D – 3, andD

Pnew = P (Dα)

DoWhile(Pnew – Pold > E1)

(Pnew – Pold > E2)

Update, A, andC

calculatePi = (i = 1, 2, ..., Nw)

Pold = Pnew; Pnew = P (D)

Pold = Pnew

PerformANFIS

UpdateAndSending

ANFISRole

t = t + δ

GWO – ANFISInitialization

Figure 7: Flowchart of GWO-ANFIS based on PSCs change.
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Te bidirectional converter enters buck mode in this mode,
where the controller sends a control signal to make switch 1
(S1) detached while also sending a control signal to make
switch 2 (S2) connect. Tis mode uses storage batteries to
ofer additional power.

Mode 2. When obtained PV power is less than power needed
by EVs battery, i.e. PPV<PDDh, and the charge status of
SOC is less than 40%, the second control mode is used. In this
mode, the controller sends a control signal to both switches 1
(S1) and 2 (S2), causing them to be disconnected.

Mode 3. When obtained PV power exceeds power needed
by EVs battery, i.e., PPV>PDDh and the charge status of
SOC is less than 90% and more than 40%, the third control
mode is used. PV array not only supplies power to EVs
battery under maximum power point enabled management
in this mode, but it also charges the battery bank with
surplus power produced by PV array. In this mode, the
controller sends a control signal to switch 1 (S1) to connect
and a control signal to switch 2 (S2) to disconnect, causing
the bidirectional converter to enter boost mode.

Mode 4. When the generated PV power exceeds the EVs
battery’s power demand, i.e., PPV> PDDh, and the storage
battery’s charge state (SOC) is greater than 90%, the fourth
control mode is used. Te PV array delivers power to EVs
battery under maximum power point enabled management
in this mode, and charge status of storage battery is
maintained at more than 90% by constant voltage charging
to prevent the battery from discharging. In this mode, the
controller sends a control signal to both switches 1 (S1) and 2
(S2), causing them to be disconnected. Te four operational
modes are depicted in Figure 8’s fowchart.

5. Simulation Result

Simulating the suggested TPC Converter for performance
assessment with the Sim Power-System Toolbox is done in
MATLAB/Simulink setting. DC-microgrid settings pro-
vided in Table 1 were used to obtain all simulation results in
MATLAB 2021.

Te solar irradiation fuctuates as per the following pattern
in the simulation, while all other parameters remain constant.
As a consequence of GWO-ANFIS MPPTs, the DC-microgrid
is at steady state at t=0 s, and the four PV at 1000wb/m2 create
the current IPV of 6.8 Amps, the PV output voltage VPV of

125.8 Volt, and the PV power PPV of 856 watts as seen in
Figure 9. Tere is no bypass diode conduct since all four PVs
are operated in equal irradiance with just one global peak, as
illustrated in Figure 10. As indicated in Figure 11, the EVs
charging powerPEV from theDCmicro grid is 700Watts, with
a nominal dc link voltageVEV of 110V and an EVs current IEV

of 6.36 Amps. Te remaining PV power PESS of 150 Watts is
stored in the ESS battery at a current IESS of −2.49A and
a voltage of 60.2 Volt, increasing the battery SOC from 40% to
60%, as illustrated in Figure 12.

Due to partial shade, the irradiation of Panels 3 and 4
drops to 300 wb/m2 at t� 0.2 s. PV output voltage VPV falls
to 59.5 Volts, PV current IPV reduces to 7.1 amps, and PV
power PPV falls to 422.5 Watts. As illustrated in Figure 10,
this global power is tracked using the GWO-ANFIS MPPTs
algorithm by removing the darkened panel at this instant
bypass diode conduction. Even when the PV lighting varies,
the DC bus voltage remains constant at 110V thanks to the
battery converter. At t� 0 s, the battery is charging, but as the
PV output power decreases, it drains. Because the DC bus
voltage remains constant at 110V, EVs power P EVs is kept
constant at 700W, as illustrated in Figure 11. Te remaining
power PESS of 277.5 Watts obtained by PV is stored in ESS
battery at a current IESS of 4.64A and a voltage of 59.7 Volt,
lowering the battery SOC from 40% as seen in Figure 12

Te PV panel and diesel generator are started with a pro-
duced power of 422.5 watts and 790 watts, respectively, as the
ESS battery discharges below 40% SOC at t� 0.4 sec, as illus-
trated in Figures 9 and 13. To keep the EVs powerPEV at 700W,
the DC bus voltage is kept constant, as illustrated in Figure 11.
He remaining power PESS of 512.5 watts charged in the ESS
battery, increasing the SOC as illustrated in the Figure 12.

Start

RcadPPV, PEV

PPV >= PEV

S1OFF
S2OFF

S1ON
S2OFF

SOC <= 40 SOC >= 90

S1OFF
S2ON

YES

YES

YES

NO NO NO

Figure 8: Four operating modes fowchart.

Table 1: Parameters used in simulation.

Sl.no Parameter Value
1 PV MPP power (PMPP) 213.15W
2 PV MPP voltage (VMPP) 29V
3 PV MPP current (IMPP) 7.35A
4 Series PV panel 4No’s
5 Parallel PV panel 1No’s
6 Storage system battery type Lead-acid
7 Storage system battery nominal voltage (VSSV) 60V
8 Storage system battery rated capacity 16Ah
9 SEPIC converter inductors (LSEPIC−1&LSEPIC−2) 1.6mH
10 SEPIC converter coupling capacitor (CC) 10 μF
11 Buck converter inductor (LBUCK) 3.3mH
12 Bidirectional converter inductor (LBI) 2.4mH
13 DC link capacitor (CDC) 60 μF
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Figure 9: Simulation results (a) PV voltage (b) PV current (c) PV power.
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Figure 10: Simulation results (a) bypass diode PV -1 (b) bypass diode PV -2 (c) bypass diode PV -3 (d) bypass diode PV -4.
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6. Experimental Results

Te proposed GWO-ANFIS tracking algorithm has been
evaluated for its performance with P&O MPP tracking

algorithms. Te evaluation tracked maximum power from
PV array system to DC using a simple boost converter.
Table 2 lists hardware parameter values of 4S confguration
in Proposed GWO-ANFIS MPPT.
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Figure 11: Simulation results (a) EVs voltage (b) EVs current (c) EVs power.
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Figure 12: Simulation results (a) ESS voltage (b) ESS current (c) ESS SOC (d) ESS power.
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To validate the efectiveness of the proposed MPPT,
experiments were carried out on real PV array for both 4S.
To create partial shading, transparent sheets of diferent
shapes were placed on PV modules.

Figures 14(a) and 14(b) shows the PV voltage, PV current
and PV power of GWO-ANFIS based MPPT control at 4S
confguration with two diferent Pattern-1 and Pattern-2 re-
spectively. Te corresponding values are denoted in Table 3.
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Figure 13: Simulation results (a) diesel generator voltage (b) diesel generator ESS current (c) diesel generator power.

Table 2: Hardware parameter values of 4S confguration.

Parameter Value
Boost inductance 4S 2.36mH
DC flter capacitor 4S 200 μF
Load resistor 4S 140 ohms

MOSFET 400V, 10A, N-channel IRF740
Schottky diode 200V, 10A MUR 10200

Maximum power PVC current (Impp) 2.90A
Maximum power PVC voltage (Vmpp) 17.5V
Maximum power PVC power (Pmpp) 50W

Open circuit PVC voltage (Voc) 21.8 V
Sort circuit PVC current (Isc) 3.20

(a) (b)

Figure 14: Experimental results for proposed GWO-ANFIS MPPT method for 4S confguration. (a) Pattern 1. (b) Pattern 2.
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Figure 15. Shows theDCVoltage, DC current andDCpower of
Proposed GWO-ANFIS MPPT algoritham for Pattern2.

7. Conclusion

Tis article successfully built and simulated a charging
station that use s a stand-alone PV system with an energy
storage system to charge an EVs battery. Te GWO-ANFIS
method has been used with the MPPT controller. Te P-V
curve has several peaks due to partial shading; one GMPPs
and many LMPPs. Heuristic approaches such as GWOs can
readily capture the GMPPs before it starts hunting. Te
results showed that GWO-ANFIS with PSCs change re-
initialization is the optimum approach for tracking the
dynamic GMPPs.Te combination of the ANFISs controller
and the GWOs method signifcantly reduced output power
oscillations. Te charge and discharge phases of the battery
energy storage were also efectively modelled and simulated
employing the bidirectional converter. A bidirectional

converter logic controller has also been created and simu-
lated. Te logic controller’s efciency with the bidirectional
controller was demonstrated by the fndings. Te suggested
station’s design and power management are discussed and
evaluated in MATLAB/Simulink using three alternative
modes of operation. Te experimental verifcation is done
for PV 4S confguration using GWO-ANFIS MPPT with
Boost converter which proves that the maximum power is
tracked in PSC at an efciency 98.65%.

Data Availability

Data sharing not applicable to this article as no datasets were
generated or analysed during the current study. No un-
derlying data was collected or produced in this study.

Ethical Approval

In our work, no animals or human are involved.

Table 3: Performance comparison of the proposed GWO-ANFIS MPPT method for 4S confguration.

Shading pattern GP in
watts VPV IPV PPV (W) Track efciency

(%)

Pattern 1 108.2W/75.5V 75.7 1.41 106.74 98.65
Pattern 2 76.33W/35.8V 35.1 2.13 74.76 97.94

(a) (b)

(c)

Figure 15: Experimental result of proposed GWO-ANFIS MPPTfor pattern 2. (a) DC link voltage. (b) DC link current. (c) DC link power.
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Vector control of an asynchronous machine is traditionally accomplished by analogizing it to a separately excited DC machine. It
provides decoupled torque and fux control that is perpendicular to each other, ensuring that neither vector interferes with the
other. So, despite their close interconnection, torque and speed control are accomplished separately. Te rotor fux is aligned with
the direct axis of the synchronously rotating reference frame to achieve this.Te PI controllers are critical in achieving the variable
frequency drive (VFD) desired topology.Te system employs three types of controllers: fux, speed, and torque.Te fux controller
is easy to tune, but the speed and torque controllers are more difcult to tune because the speed controller's output is the torque
controller’s reference signal. Furthermore, there is no well-defned method for tuning the controllers in a vector control system.
However, perfect tuning is required for the machine’s better dynamic behavior. It is clear from the above analysis that system
identifcation is critical for tuning PI controllers. However, as an asynchronous machine, obtaining a decoupled system transfer
function is extremely difcult. To solve this problem, the proposed system combines a seven-level pulse width modulation (PWM)
inverter for vector control of a three-phase asynchronous nonstandard induction machine used in critical applications in nuclear
power plants with a sliding mode control technique that eliminates the complexity of PI tuning. A second-order sliding mode
controller could be used in the future to reduce the chattering and parameter variation efects. Tis controller can be enhanced
with fuzzy logic principles to make it more robust and reliable, allowing it to be used in future drive designs for high-rating motors
with critical applications.

1. Introduction

In many ways, the induction motor outperforms a separately
excited DCmotor in terms of performance, power-to-weight
ratio, high-speed capability, low starting cost, high de-
pendability, and robustness. Te DC motor with a converter
and a simple controller is the only option for most modern
and superior industrial applications. However, DC motor
face some unique challenges, such as commuting and
maintenance. Te DC motor has a few drawbacks, including
a low torque-to-weight ratio and a lower unit capacity. AC
motors, particularly induction motors, on the other hand,

because of their simple and rugged structure, high torque-to-
weight ratio, and reliability, are well suited to mechanical
drives. Control, however, is extremely difcult due to the
combined efect of fux and the torque component of the
current. Te scalar control only shows the extent of the
control variable’s variation. To regulate the speed of an
induction motor, a variable voltage, variable frequency
power source is required. Maintaining the same terminal
voltage to frequency proportion is critical in the v/f control
procedure. Te scalar control procedure has excellent
steady-state performance but poor transient performance
[1]. Voltage/frequency control keeps the stator fux linkage
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in a steady state by preventing fux and torque from
decoupling. As a result of the coupling efect, the drive’s
transient response is poor. By changing both components
independently, the induction motor can be considered a
separately excited DC motor [2, 3]. Te vector control is
accomplished by dividing the stator current into two or-
thogonal components: one is magnetizing current or the fux
component of current, which is towards the fux linkage, and
the other is the torque component of current, which is
perpendicular to the fux linkage.Te vector control or feld-
oriented control method can be divided into two types based
on the fux acquisition method: direct and indirect.

Implementing various types of feld-oriented control
requires a variety of techniques. Te majority of the
methodologies require an exact estimate of the position of
the rotor or speed. It necessitates the use of speed sensors
such as shaft-mounted tachogenerators or digital shaft en-
coders [4, 5].Te speed sensors raise the drive’s cost and size,
reduce system reliability, and necessitate extra care when
measuring noise. Te direct feld orientation method re-
quires the rotor fux magnitude which is measured by using
hall efect sensors or search coils. Te performance and
accuracy of the drive system are degraded by the hall efect
sensors. At slower speeds, assessing rotor fux by integrating
open-loop machine voltages is complicated. Indirect feld
orientation is straightforward and recommended. Its ef-
fectiveness is strongly dependent on accurate knowledge of
machine parameters.Te above issues have been the focus of
induction motor control research. Many studies have been
published on assessing rotor fux and speed from terminal
voltages and currents rather than taking measurements. Tis
removes the fux or speed sensor, allowing for sensor-free
control [5–7].

Te major problem with terminal quantity-based fux
observers is their machine parameter’s sensitivity, particu-
larly stator resistance and rotor resistance of the voltage
model fux observer and current model fux observer, re-
spectively. To overcome this issue, diferent control strate-
gies are attempted to enhance the estimation of rotor fux.
Some of them are discussed further [8, 9]. Te Kalman flter
algorithm as well as its modifcations are reliable observers
for both linear and nonlinear systems. A modifed Kalman
flter is used to estimate the speed of induction motor drives
which uses a vector controller. Unfortunately, this method
has a number of drawbacks, including high computational
demands and difcult design and tuning procedures. Te
rotor saliency method is used for determining the rotor
position and speed using the signal injection technique.
Stator terminals are injected with high-frequency signals.
Appropriate signal processing and fltering of the high-
frequency stator current detect the saliencies that are in-
duced in the stator model of the induction motor. Tese
techniques have been demonstrated to have the ability for a
range of speeds and parameter-insensitive sensorless con-
trol, particularly at low speeds.

Te inverter switching state is selected based on the fux
position and errors in fux and torque, which are obtained in
direct self-control (DTC). Fuzzy logic and artifcial neural
networks (ANN) have recently received a lot of attention to

address the issues of nonlinearity and uncertainty of system
parameters. Te essential features of neural networks are
their way to generate good models of nonlinear systems,
their decentralized and multithreaded structure, which
renders neural-based control methods quicker, their ease of
implementation by software or hardware, and their capacity
to learn and adapt to the practices of any real process. In the
infuence of environmental disturbances or when the IFO
drive system experiences defective decoupling due to rotor
time constant variations, fuzzy controllers have been shown
to enhance measurement accuracy [10–12]. Because fuzzy
logic and neural networks have better tracking properties
than traditional controllers, they are getting popular as
estimators and controllers for a wide range of industrial
applications.

Te vector control’s primary goal is to achieve decou-
pling. Desirable decoupling will not be achieved if the rotor
parameters in use in the decoupling control law do not track
their true values. Detuning of rotor variables due to a de-
crease in torque-producing abilities and magnetic saturation
occurredby overexcitation reduces the efciency of the
motor drive. Te dynamic control properties have also
deteriorated. It is possible to achieve decoupling by adjusting
parameters in real time, but it is a very difcult and complex
process. Various online tuning methods for mitigating the
severity of rotor variable variations have been reported. Te
rotor parameter detuning problem can be solved with a
robust control technique. Apart from the aforementioned
issue, induction motor drives have a number of other issues
that demand the use of a powerful control technique. Load
torque disruptions, parameter estimation in the model used
in controller design and analysis, and the necessity to track
complex paths rather than just step changes are all examples
of these [13, 14]. A robust control method is required in
these circumstances. One such method is sliding mode
control. A sliding mode controller is appropriate for a
specifc type of nonlinear system. In the existence of
modeling errors, parameter changes, and disruptions, this
can be used if the upper bounds of their actual values are
known. Certain plant uncertainties or the use of a simplifed
depiction of system dynamics can lead to inaccuracies in
modeling. Sliding mode controller design addresses the issue
of maintaining stability and performance in the existence of
modeling errors in a structured way [15, 16].

Te tracking control of motors and robot manipulators
with a wide range of mechanical loads is best suited to the
sliding mode control. Inductionmotors, known as actuators,
should obey complex paths which are indicated for ma-
nipulator movements. When compared to adaptive con-
trollers for parameter estimation, sliding mode controllers
have the advantage of being computationally simple and
robust to parameter variations. Te disadvantage of sliding
mode control is that it causes a large and abrupt change in
control variables during the process, putting the system
under a lot of stress. It also causes the system states to
chatter. Soto, Yeung, and Utkin implemented sliding mode
control to the induction motor drive. Control methods are
applied to an indirect vector-controlled induction machine
in a sliding mode for position and speed control. For
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induction motor drives, adaptive input-output linearizing
control with a sliding mode is addressed. Te sliding mode
controller is a great pick for dealing with that sort of problem
because the amplitude and speed of the motor fux are
controlled separately by sliding mode controllers with
variable switching gains in this case.

For the speed control of induction machines, traditional
control systems such as PI control have been used. Tradi-
tional PI controllers are characterized by a large overshoot
and a long settling time. To address these issues, sliding
mode control has been used to control electrical drive
systems. A sliding mode controller (SMC) is a nonlinear,
high-speed switching, feedback control strategy for con-
trolling nonlinear plants that is both efective and reliable.
Te SMC, on the other hand, is prone to chattering due to its
discontinuous switching control [17, 18]. In this article, a
sliding mode controller is meant to control the speed of an
induction motor inputted by a three-phase voltage source
multilevel inverter using the space vector pulse width
modulation. Te proposed method is validated by simula-
tion results. Due to the widespread usage of induction
motors in torque-controlled applications, such as electric
automobiles, high-precision torque estimation and control
of induction motor drives is a crucial study area [19–21].

Te chapter describes the modeling of the induction
motor, in section 3 the feld-oriented control is presented
followed by speed estimation is given in section 5. Section 6
discusses the design of the sliding mode controller, section 7
provides the simulation results, and the work is concluded in
section 8.

2. Modelling of the Induction Machine

Even though an induction motor’s construction is simple
because of its nonlinear characteristics and interdepen-
dent behavior in the state-space model, the speed control
is very complex compared to DC Motors. Modern con-
trollers for AC motor drives have been developed in re-
sponse to rapid updates and advancements in variable
frequency inverters, as well as the application of control
theory. Fitting numerical modeling of the motor to up-
grade the controller structure is part of the design. A
suitable three-phase induction motor model is required to
investigate the entire induction motor drive system. Te
presumption that is considered for modeling induction
motor is by disseminating the stator winding to produce
MMF sinusoidally in the air gap, equal mutual induc-
tances, and by ignoring voltage and current harmonics,
magnetic circuit saturation, hysteresis losses, eddy current
losses, and skin efects.

By rotating the reference frame’s d-axis and the sta-
tionary reference frame’s q-axis, the quantities are assumed
to be balanced. Te inverter’s output voltage is

V
∗
sd � Kp + Ki

1
s

  i
∗
sd − isd(  − ωeσLsi

∗
sq,

V
∗
sq � Kp + Ki

1
s

  i
∗
sq − isd  + ωeσLsi

∗
sd + ωe

Lm

Lr

φrd.

(1)

3. The Field Oriented Control

Te fux component (d-axis component) of the stator cur-
rent, ids, is aligned in the direction of rotor fux, and the
torque component of the stator current, iqs, is aligned in the
direction perpendicular to it to achieve feld orientation
along the rotor fux. Te slip frequency necessary to acquire
indirect feld orientation is given by

ωsl � ωe − Pωr � a5.
iqs

φdr

,

where

a5 �
RrLm

Lr

.

(2)

Decoupling of torque and fux is assured in feld-ori-
ented control, and it can be controlled. Te indirect feld
orientation control, however, is extremely parameter sen-
sitive owing to the existence of the rotor time constant (Rr/
Lr) in equation (23). Erratic parameter variations, external
load disturbances, and nonlinear dynamics all have a neg-
ative impact on the drive system’s control performance.

4. Estimation of Speed

It is better to avoid using a speed sensor because of its price,
size of the drive, reliability, and immunity to noise. So,
designing and implementing shaft sensorless adjustable
speed drive have become an emerging research topic. Te
speed data required in the presented control technique are
estimated using the algorithm described in this section. Te
speed of the motor is determined by the diference between
the slip speed and the synchronous speed. Stator fux
components are being used to estimate synchronous speed
because they have greater accuracy than rotor fux
components.

Te speed of the rotor is determined by synchronous
frequency or slip frequency. Te proposed speed estimation
scheme anticipates the synchronous frequency, and it is
assumed that the slip frequency is a command.

Figure 1(a) shows the components of the rotor fux
vector in the stationary reference frame, and from this, the
electrical angle of the rotor fux vector is given by

θφr � tan− 1φβr

φar

. (3)

Te instantaneous angular frequency is given by

ωe � _θφr �
φarφβr − φβrφar

φ2
ar + φ2

βr

. (4)

Figure 1(b) shows the components of the stator fux
vector in the stationary reference frame, and from this, the
electrical angle of the stator fux vector is given by

θφs � tan− 1 φβs

φas

 . (5)
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Te instantaneous angular frequency is given by the
derivative of this rotor fux angle, which is as follows:

ωe � _θφs �
φas _φβs − φβs _φas

φ2
as + φ2

βs

. (6)

Figure 2 shows a block diagram of the speed estimation
method in conjunction with the sensorless speed control
scheme.

Te derivation helps to design modeling of the induction
motor using Matlab Simulink, and it is used for control
purposes. Te simulation-based models of induction motors
with PI control strategies are discussed. In the analytical
summary, the induction motor model is provided in an
arbitrary reference frame and analyzed in detail. Because
vector-controlled drives must be understood and designed
using a dynamic model of the machine under control, we
derive the conditions for achieving indirect vector control.
Te speed estimate algorithm is thoroughly explored to
deploy the sensorless technique in the current drive system.
A brief overview of the multilevel inverter and its type was
also discussed, as well as a brief explanation of the cascaded
H-bridge inverter and its switching patterns.

5. Design of the Sliding Mode Controller

Te derivations of sliding mode surface gain and relevant
control laws to determine the speed tracking property are
presented in this section. A variable sliding mode control
structure is primarily an adaptive nonlinear control that
provides stable performance in the face of parameter
changes and load torque disturbances. It can be used on
either a linear or nonlinear system. Te drive reaction is
forced to track or slide along a specifed trajectory or
benchmark model in sliding mode control, despite system
parameter variation and load disturbance, using a switching
control algorithm. Te control DSP identifes the actual
trajectory’s departure from the reference trajectory and
adjusts the switching strategy to restore tracking (Figure 3).

Te merits of sliding mode control are system functions
similar to a reduced-order system, which is adaptable to
parameter variations, implications, and abnormalities, and
the time required for convergence is confned. Te demerits
of sliding mode control are chattering at a high frequency.
Because of inertia, the actuator cannot always respond at
that speed, and due to irregular input, the structure’s cost is

considerable. Te design of sliding mode control is divided
into two stages.Te frst is the selection of stable hyperplanes
in the state/error space on which movement should be
governed, referred to as the switching function, and the
identifed sliding surface is then made appealing by using the
suitable control law design in the second step.

An induction motor’s mechanical equation is expressed
as

Jω∗m + Bωm + TL � Te. (7)

Here, J is the inertia constant, and B is the viscous
friction coefcient of the induction motor; TL is the external
load. ωm is the rotor mechanical speed in angular frequency,
which is proportional to the electrical speed of the rotor
ωm � 2πωp where p is the number of poles and Te is the
produced torque of an induction motor. Substituting (8) in
equation (34), the mechanical equation becomes

ω∗m + aωm + f � biqs, (8)

where

a �
B

J
,

b �
KT

J
,

f �
TL

J
.

(9)

Te mechanical equation with uncertainties is

ω∗m � − (a + Δa)ωm − (f + Δf) +(b + Δb)iqs, (10)

where Δa, Δb, and Δf indicate the uncertainties of the terms
a, b, and f, respectively, it should be emphasized that these
uncertainties are unknown, and thus determining the upper
bound with perfection is tough. Te tracking speed error is
given by

e(t) � ωm(t) − ω∗m(t). (11)

Here, ω∗m is the speed command of the rotor.
Taking the time derivative of the above equation

produced,

e
·
(t) � ω·

m − ω∗m � − ae(t) + u(t) + d(t). (12)

β

ψr

ψβr

θψr

ψαr α

(a)

β
ψs

ψβs

θψs

ψαs α

(b)

Figure 1: Phasor diagram for rotor and stator fux components.
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Here, the terms listed as follows have been gathered in
the signal u(t):

u(t) � biqs (t) − aω∗m(t) − f(t) − ω∗m(t). (13)

Te signal d (t) has been compiled with the uncertainty
terms

d(t) � − Δaωm(t) − Δf(t) + Δbiqs(t). (14)

To compensate for the system’s uncertainties, a sliding
adaptive control strategy is proposed. In sliding control
theory, the switching gain must be built in order to achieve
the sliding condition. An appropriate sliding gain needs to
be chosen to compensate for the uncertainties in order to
achieve this requirement. When choosing the sliding gain
vector, an upper bound of parameter fuctuations,
unmodeled dynamics, noise magnitudes, and other factors
should be known, but these bounds are typically unknown or
impossible to compute in practice. Setting the sliding gain to
a high enough value could be a solution, but this technique
could result in an extremely high control signal and con-
siderably more activity control is required to meet the
control aim. One technique to tackle this challenge is to
estimate the gain and update it with an adaptation law to
achieve the sliding condition.

Te sliding variable S(t) is defned with an integral
component as

S(t) � e(t) + 
t

0
(a + k)e(τ)dτ. (15)

Here, k is a constant gain and a is a previously defned
parameter in equation (36).

Te sliding surface S(t) � 0(5.10).

u(t) � − ke(t) − β(t)csgn(S). (16)

Here, β is the estimated switching gain, c is a positive
constant, S is the sliding variable defned in equation (42),
and sgn(s) is the signum function. Te switching gain β is
adjusted according to the updating law, which is as follows:
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Figure 2: Sensorless speed control scheme for induction motor drive.
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β � c|S|β(0) � 0. (17)

Te error signal is compared to the constant value and
reference gain value. With the available value, the
comparative function is created and analyzed. As per the
theory, the obtained output is compared to the suitable
control law and set to zero. Te output is made to slide to
the determined and designed slide surface when the
condition is met.

Te simulation provides the simulation-based design of
sliding mode control to the induction motor with all sup-
porting gain values. To lessen chattering, a limit layer of
width θ is presented on both sides of the sliding line. As a
result, the control gain inside the limit layer is reduced,
resulting in a smooth control sign. Ten, the control law of
the equation i∗qs � − K.sgn(S) modifes to the following
equation:

i
∗
qs � − K.sgn

S

θ
 ,

where sat
S

θ
�

S

θ
if |S|≤ θ,

sgn(S) if |S|> θ.

(18)

To reduce this chattering, the sliding mode controller
with a boundary layer as given by the following equation is

i
∗
qs �

− G − λ _e + €ωr
∗

b
  − Ksat

S

θ
 . (19)

Te outline and application of a sliding mode controller
for induction motor control are shown. Te sliding mode
control hypothesis is quickly demonstrated, and the control
law is inferred. Te controller gain and bandwidth are
dictated by several facts such as load variations, diferent
rotor resistance, and so on. To lessen the chattering impact,
the control law is altered, and the job summary is so pre-
sented (Figure 4).

6. Simulation Results and Discussion

Te induction motor is a vertical, single-stage, top suction,
free surface pump of a nonstandard machine as perIS325;
the odd rating is to mitigate the torque requirement. Te
ratings of the motor are presented in Table 1.

Te motor is mainly used in the core cooling of the
nuclear plant, where the liquid sodium is used as a coolant,
and the motor is operated at diferent speeds which are
controlled by the drive mechanism. Te design calculation
for a 7-level cascaded H-Bridge inverter involves the de-
termination of Vdc and Idc. For the cascade bridge, a seven-
level inverter is given in (Figure 5.). Te line voltage and the
line current of the inverter are Vl = 3150V and Il = 804A,
respectively. From this, the phase voltage is derived as
Vp = 607V. Te Vdc = 1206V, which is 15% more than the
phase voltage, and Idc = 1206A, which is 15 percent more
than the phase current. Te sim module shows the ar-
rangement of the IGBT cascaded H- bridge 7-level inverter

design for the drive system. Each bridge has the value of
Vdc = 909.32V and Idc = 1206A.

Te single-phase seven-level inverter output is shown in
Figure 6, and the fltered output is shown in Figure 7; the
three-phase seven-level inverter output phase voltage fed to
an induction motor is shown in Figure 8.

Figure 9 depicts the stator currents in three phases,
while Figure 10 depicts the speed variation. Te speed rises
until it reaches 590 rpm. Te voltage and current are FFT-
analyzed, and the corresponding spectrums are shown in
Figures 11 and 12, respectively. Te magnitude of the
fundamental voltage for a seven-level inverter-fed induc-
tion motor drive is 234.4 Volts, as can be seen. Total
harmonic distortion is 3.51 percent, with a fundamental
current magnitude of 91.15 Amperes. Tere is a 1.01
percent total harmonic distortion.

Te THD generated by the seven-level inverter with the
drive is found to be minimal. Te simulation results for
voltage, current, speed, and spectrum are shown. Tis drive
system can be employed in industries that demand minimal
harmonic output from variable-speed drives. Te fux and
speed control subsystem is shown in Figure 13 where PI
tuning is used to control the speed.

Te subsystem provides the control logic for park and
clack transformation of the induction motor which provides
the theta of the motor (Figure 14).

Te inference of the waveform shows the presence of
high peak current during starting of the PI tuning method,
which is a main drawback in the system and is to be rectifed.
Te current waveform is shown in Figure 15.

Tis section uses simulation examples to investigate the
performance of the adaptive sliding-mode control in the
aspect of speed regulation. Figure 16 shows the rotor speed
tracking reference. Te rotor speed tracks the reference
(1500), where it provides smooth speed control.

Te Simulink describes the SMC control for the nominal
speed of the motor (Figure 17).

Te waveform shown in Figure 18 proves that the SMC is
robust irrespective of speed variation. When the reference is
changed to the nominal speed of the motor, the rotor speed
tracks it, which provides the elimination of high peak
current while starting and smooth control.

Te characteristics of the motor show that the time taken
for the SMC control is 56 minutes which, when compared
with existing system performance, the time taken is less,
which proves that speed is smoothly controlled and, in turn,
increases the entire system performance (Figure 19). Hence,
the high peak current problem is rectifed, and the objective
of work is satisfed. Figures 20(a), 20(b) and Figure 21 show
the HMI and SCADA screen of the VFD drive panel which
gives a detailed description of the system confguration and
status of the individual system implemented. Te abnor-
malities are identifed easily from the control center. Te
faculty areas can be separated from the live supply lines. Te
equipment protection is ensured by taking a quick decision
based on the parameters displayed in the panel.

Te snapshot provides the information of the drive
system in the common control panel (CCP), which shows
that themotor is in a running state (Figure 21).Te fgure is a
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Figure 4: Sliding mode principle with the boundary layer.

Table 1: Ratings of the induction motor.

Sl.No. Parameters Values
1. Voltage 415V
2. Star/delta Star
3. Pole 10
4. Rated current 40A
5. Nominal speed 590 rpm
6. Per phase stator resistance 0.0117Ω
7. Per phase rotor resistance 0.0234Ω
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Figure 5: Cascaded H-bridge of seven-level inverter fed induction motor drive.
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complete pictorial representation of the system from supply
to drive. Te power fow at any instant can be visualized.

Te snapshot shown in Figure 22 provides information
about the voltage, power, and current values and also gives an

indication about the working of the drive system. Te func-
tioning of the drive is identifed from this screen.Te fault in the
cooling system, converter, controller, supply, and motor can be
observed clearly.
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Figure 18: Rotor speed tracking the reference (600) of the nominal speed of the motor.

Figure 19: Characteristics of the motor with PI and SMC.
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(a)

(b)

Figure 20: HMI screen of the VFD panel in the power plant.
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 . Conclusion

With progressive technology such as multilevel inverters,
problems such as high peak current during motor starting,
heating efect, and mismatch of the switching pattern of the
existing system were rectifed and improved. Te dynamic
performance of the induction motor drive with an indirect
vector controller has been improved with less settling time
and zero overshoot by implementing sliding mode control
which outperforms traditional PI control. Te resiliency of

the sliding mode control has been demonstrated during
sudden changes in load. Te proposed control technique
tracks the speed efectively though the load torque, and the
parameters are ambiguous. Te calculated speed contains
ripples due to the discrepancy between current and speed
sampling timings. However, the drive system’s speed re-
sponse is acceptable when the predicted speed is used in the
control technique. A 2nd order sliding mode controller could
be used in the future to reduce the chattering and parameter
variation efects. Tis controller can be enhanced with fuzzy

Figure 21: VFD running state screen conditions in the common control panel (CCP).

Figure 22: Drive output in SCADA.
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logic principles to make it more robust and reliable, allowing
it to be used in future drive designs for high-rating motors
with critical applications in upcoming power plant units.
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DTC: Direct self-control
ANN: Artifcial neural networks
SMC: Sliding mode controller
HMI: Human-machine interface
SCADA: Supervisory control and data acquisition
VFD: Variable frequency drive
CCP: Common control panel
THD: Total harmonic distortion
FFT: Fast fourier transform
PWM: Pulse width modulation
MLI: Multilevel inverter

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Te authors are thankful to the Deanship of Scientifc Re-
search at Najran University for funding this work under the
Research Groups Funding Program (NU/RG/SERC/11/6).

References

[1] R. Bharti, M. Kumar, and B. M. Prasad, “V/F control of three
phase induction motor,” in Proceedings of the International
Conference on Vision towards Emerging Trends in Commu-
nication and Networking (ViTECoN), Vellore, India, May
2019.

[2] J. M. Pena and E. V. Diaz, “Implementation of V/f Scalar
Control for Speed Regulation of a Tree-phase Induction
Motor,” in Proceedings of the IEEE ANDESCON, IEEE,
Arequipa, Peru, October 2016.

[3] A. R. Harsha, S. Pranupa, B.M. Kiran Kumar, S. Nagaraja Rao,
and M. S. Indira, “Arduino based V/f drive for a three phase
induction motor using single phase supply,” in Proceedings of
the 2020 International Conference on Smart Technologies in
Computing, Electrical and Electronics (ICSTCEE), IEEE,
Bengaluru, India, October 2020.

[4] B. K. Nishad and R. Sharma, “Induction motor control using
modifed indirect feld oriented control,” in Proceedings of the
2018 8th IEEE India International Conference on Power
Electronics (IICPE), IEEE, Jaipur, India, December 2018.

[5] H. Xie, F. Wang, W. Zhang, C. Garcia, J. Rodriguez, and
R. Kennel, “Predictive feld oriented control based on MRAS
current estimator for IM drives,” in Proceedings of the2020
IEEE 9th International Power Electronics and Motion Control

Conference (IPEMC2020-ECCE Asia), IEEE, Nanjing, China,
November 2020.

[6] A. Paladugu and B. H. Chowdhury, “Sensorless control of
inverter-fed induction motor drives,” Electric Power Systems
Research, vol. 77, pp. 619–629, 2007.

[7] Z. Zhang and A. M. Bazzi, “Robust sensorless scalar control of
inductionmotor drives with torque capability enhancement at
low speeds,” in Proceedings 2019 IEEE International Electric
Machines & Drives Conference (IEMDC), IEEE, San Diego,
CA, USA, May 2019.

[8] V. J. Stil, K. Miklosevic, Z. Spoljaric, and G. Kurtovic, “In-
duction motor sensorless and closed loop torque control in
frequency converters,” in Proceedings of the 2018 International
Conference on Smart Systems and Technologies (SST), IEEE,
Osijek, Croatia, October 2018.

[9] X. Cui, B. Li, Z. Kou, and Y. Qiao, “Measurement and control
system for variable-frequency speed regulating of motor based
on PLC and HMI,” in Proceedings of the IEEE 8th Joint In-
ternational Information Technology and Artifcial Intelligence
Conference (ITAIC), IEEE, Chongqing, China, May 2019.

[10] J. P. Wang, X. L. Meng, S. L. Zhang, and Y. K. Zhu, “Adaptive
sliding mode control for an unmanned mini vehicle,” in
Proceedings of the2020 5th International Conference on Me-
chanical, Control and Computer Engineering (ICMCCE),
IEEE, Harbin, China, December 2020.

[11] Z. Li, X. Li, and B. Cui, “Cloud neural algorithm based load
frequency control in interconnected power system,” in Pro-
ceedings of the2020 24th International Conference on Auto-
mation and Computing (ICAC), IEEE, Newcastle Upon Tyne,
UK, September 2018.

[12] T. Long, E. Li, Y. Hu et al., “A vibration control method for
hybrid-structured fexible manipulator based on sliding mode
control and reinforcement learning,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 32, no. 2,
pp. 841–852, 2021.

[13] S. S. Kumar Singh, Arkdev, andM. K. Sarkar, “Load frequency
control: higher order sliding mode observer based integral
higher order sliding mode controller with stochastic per-
turbation,” in Proceedings of the 2018 2nd International
Conference on Power, Energy and Environment: Towards
Smart Technology (ICEPE), IEEE, Shillong, India, June 2018.

[14] M. Yang, B. Xiaowei, T. Yue, and J. Yuanwei, “Design of
sliding mode controller for frequency control in an isolated
wind-diesel hybrid system,” in Proceedings of the 2013 25th
Chinese Control and Decision Conference (CCDC), IEEE,
Guiyang, China, May 2013.

[15] J. Robles, F. Sotelo, and J. Chavez, “Robust nonsingular
terminal sliding mode control with constant frequency for
DC/DC boost converters,” in Proceedings of the 2020 IEEE
21st Workshop on Control and Modeling for Power Electronics
(COMPEL), IEEE, Aalborg, Denmark, November 2020.

[16] R. R. Vasu, S. G. Fernandez, and K. Vijayakumar, “Enhanced
space vector modulated scalar control of induction motor,”
Indonesian Journal of Electrical Engineering and Computer
Science, vol. 21, no. 2, pp. 707–713, 2021.

[17] A. Fatima, T. Almas, M. K. A. Biabani, andM. Imran, “Sliding
mode control of induction motor used in traction,” in Pro-
ceedings of the 2016 International Conference on Electrical,
Electronics, and Optimization Techniques (ICEEOT), IEEE,
Chennai, India, March 2016.

International Transactions on Electrical Energy Systems 15



[18] P. Parida, A Sliding Mode Controller for Induction Motor
Drives” Dissertation, National Institute of Technology,
Rourkela, Orissa, 2009.

[19] R. Sreejith and B. Singh, “Sensorless predictive current control
of PMSM EV drive using DSOGI-FLL based sliding mode
observer,” IEEE Transactions on Industrial Electronics, vol. 68,
no. 7, pp. 5537–5547, 2021.

[20] H. Dan, P. Zeng, W. Xiong, M. Wen, M. Su, and M. Rivera,
“Model predictive control-based direct torque control for
matrix converter-fed induction motor with reduced torque
ripple,” CES Transactions on Electrical Machines and Systems,
vol. 5, no. 2, pp. 90–99, 2021.

[21] M. Stender, O. Wallscheid, and J. Böcker, “Accurate torque
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Te current needs of more nonlinear loads and the frequent usage of single-phase loads in three-phase system drastically create
power quality issues in the grid-connected system. As a consequence, it creates an undesirable power quality issue (PQI) in the
form of a change in the nature of voltage and current magnitude and waveforms in the power system. Te voltage-related PQI
leads to a huge disturbance in the system when compared with the current-related PQI. Te hybrid series active power flter
provides grids with the required voltage in series and suppresses the voltage-related harmonics caused by grid-connected
nonlinear loads. Te present work deals with an adaptive neurofuzzy inference system controller for the generation of a reference
voltage signal that uses a reduced active flter rating.Te simulation study was done in theMATLAB 2020b/Simulink environment
and the experimental efectiveness of the proposed ANFIS controller was compared with that of a conventional controller. In the
grid-connected system, this system prevents voltage quality problems such as voltage sag, fickering, voltage swell, neutral
currents, and reactive power. Te renewable energy sources interfaced into the DC-link minimize short and long voltage
challenges so that they improve the overall performance of the system. In accordance with IEEE standard 519-1992, a prototype
model was proved to demonstrate that the power delivery systemworks efectively under diferent conditions and reduces the total
harmonic distortion by approximately 30%, which is less than the 5% acceptable limit.

1. Introduction

Te major usage of nonlinear loads like electronic ballasts,
SMPS, rectifers, inverters, battery chargers, single-phase
diode bridge rectifers, power converter-fed drives, arc
welding, furnaces, uninterrupted power supply, adjustable-

speed drive, diode bridge rectifer, thyristor converter, and
consumer electronics is producing an unnecessary power
quality (PQ) disturbance in the grid-connected system [1–3].
In addition to fuctuations, voltage dips, oscillatory tran-
sients, momentary interruptions, harmonic resonance,
harmonics, and other issues related to PQ, these loads also
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cause signifcant power budget blowouts. Similarly, single-
phase load usage in a three-phase system generates unbal-
anced current and neutral current in the system, generating
inefcient voltage regulation, extreme neutral current, ex-
cessive reactive power, and load unbalancing [4,5] formal-
ized paraphrase. An increase in harmonics in the power
system has several negative efects, including additional
heating, amplifying harmonics due to banks of power factor
correction capacitors, reducing transmission system ef-
ciency, distribution transformers’ overheating and defective
electronic equipment, incorrect operation of circuit
breakers, creating errors in measuring equipment, and
communication and control signal interference. Poor power
quality leads to production loss in industries, life-threat-
ening consequences in hospitals, loss of critical communi-
cation in airports, and so on [6–8]. In a country, poor power
quality causes a loss in overall productivity, which will badly
afect its economy. Numerous studies have been conducted
on the solutions to PQ problems such as passive flters (PF),
active flters (AF), hybrid flters (HF), and custom power
devices. Harmonic-related problems in the electrical power
supply can be resolved simply, moderately, and reasonably
with a PF [7–10]. However, PFs have shortcomings such as
their size, complexity in flter design, resonance, and tuning
problems. When compared with passive approaches, active
fltering approaches for PQ enhancement have proven to be
more efective because of their quicker response time,
smaller size, and superior performance in recent years.
Furthermore, active fltering automatically adjusts to
changes in network characteristics, reducing the possibility
of resonance between the flter and the network impedance
[11–15]. A problem with AFs is that they produce high-
frequency noise when high currents are switched on and of
rapidly, which can cause electromagnetic interference in a
power system distribution. A hybrid power flter (HPF) is
formed by combining the operations of PFs and an active
power flter (APF), and it alleviates the problems associated
with the individual operation of active and passive fltering
[11,13,16–20].

Tere are many controllers proposed for HSAPF in the
literature, but they are limited to certain difculties. Tra-
ditional controllers have some difculties compensating for
long-term system issues [21–23]. To achieve system per-
formance improvements, neural networks and fuzzy logic
are combined as a controller. To generate harmonic com-
pensating voltage, an Adaptive Neurofuzzy Inference System
(ANFIS) implemented controller is used. Calculations of
reference current are to be carried out continuously as the
load on the system changes from moment to moment. It is
proposed to implement an ANFIS-based digital processor
that generates the gating signals for thyristors in the adaptive
shunt passive flter, as well as PWM signals for switching
devices in the SAPF [24–26]. Te modifed p-q controller is
the main controller to tune the parameters of active and
reactive power. Tis can be done through ANFIS to achieve
voltage profle improvement in the system. In order to
compensate for the harmonic and the reactive power re-
quirements of the nonlinear load, it produces the appro-
priate compensation signals for the active flter [27–31]. It

also adjusts the passive flter component values. Using tap-
changing transformers or uninterruptible power supplies as
traditional methods for suppressing voltage variations has
the disadvantage of being bulky, expensive, and slow enough
to allow voltage sag efects at the load side to be eliminated.
Due to its high controllability and reliability, the Hybrid
Series Active Power Filter (HSAPF) uses a voltage source
inverter (VSI) as an active flter in series and in parallel with
a shunt high-pass flter. Te problem of long-term inter-
ruptions or block-outs in the supply system is eliminated by
incorporating renewable energy sources (RES) into the DC-
link.Te system improves performance and lowers the THD
level below 5% as required by IEEE standard [32–36]. Te
purpose of this study is to propose an HSAPF to address
power quality issues associated with voltage in grid-con-
nected systems with the integration of renewable energy
sources (RES).Tus, in this research, the HSAPF is proposed
as a compensatory measure for power quality issues in RES
integrated grid-connected systems.

2. System Description

2.1. Confguration of SAPF. Te SAPF injects harmonic
voltages to or from the source voltage as the voltage
waveform is transmitted across the nonlinear load. During
fundamental component operation, the device presents zero
resistance. However, for harmonic component operation, it
appears as a resistance with a high impedance. LC flters
containing one or more single-tuned elements with or
without a high-pass flter make up shunt passive flters. Te
SAPF with a shunt PF called HSAPF operates as a high
impedance harmonic isolator. Tis is done by injecting a
controlled harmonic voltage source between the nonlinear
load and the source as shown in Figure 1.Te result is that all
load current harmonics except those at fundamental fre-
quency are restricted to the passive flter. Te load current
harmonics are reduced by separating the source from the
load.

Grid harmonic currents are not compensated, so instead
they act as high impedance currents for loads. Tus, the
passive flter can be located on the customer side of the
system so that harmonic currents from the power systemwill
not be consumed. In this case, there is no harmonic reso-
nance, and the supply does not have a harmonic fow.
HSAPF incorporates the features of a passive high-pass flter,
thereby bypassing all upper order harmonics, while SAPF
compensates for low order harmonics in the supply voltage.

2.2. Te Proposed System Description. It is proposed that
photovoltaic and wind energy systems use common DC-link
combined with shunt passive flters while nonlinear loads are
linked to standard voltage and current harmonic sources.
SAPFs reduce the harmonic components of voltage wave-
forms by injecting voltage components into series with the
supply voltage. It is a way to prevent voltage imbalances,
voltage sags, and swells resulting from load fuctuations.

Te two major RES are integrated into the system in two
places, namely, the main source and, secondly, a source for
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compensation of long power interruptions through the DC-
link. Boosting the low voltage output voltage of the PV
panels is achieved by connecting the solar array to a DC-DC
boost converter. Several methods for tracking maximum
power points (MPPT) have been discussed in the literature,
among which incremental conductance (IC) and pertur-
bation and observation (P&O) are commonly employed.
Here, the P&O model is used as it utilizes a simple feedback
model and fewer parameters compared to the IC, which
spends more time tracking maximum power.Tis algorithm
is used to achieve the optimal solar panel output power from
the solar energy source. A solar battery bank stores excess
power generated by the panels, and the charge controller
converts this energy into AC power.

A system that produces wind power is made up of a
multipole synchronous generator attached to an adjustable-
speed wind turbine. With the help of the rectifer, the output
of a three-phase voltage is transformed into a DC voltage.
Despite the deviation in the rectifed DC voltage, the rec-
tifer’s output is combined with a DC-DC buck-boost
converter to maintain a constant DC voltage. Te output
voltage of the rectifer is kept constant even when rectifed
DC voltage varies because its output is coupled to a DC-DC
buck-boost converter.Temaximum power of the converter
was measured successfully with an MPPT technique by
determining the ratio of efciency to turbine speed.

With a series injection transformer, SAPF injects the
compensating voltage in parallel with the voltage supply.
Figure 2 illustrates the DC-link voltage generation process
using photovoltaic (PV) and wind energy (WE) photovoltaic
systems. SAPF is an inverter that uses a VSI made up of
transistors and DC-link capacitors, and its compensation is
largely infuenced by the amount of energy available in the
DC-link. Tis allows a reference value to be set for the DC-
link capacitor voltage. A change in the load situation can
result in a change in the power balance between the load and
the source. SAPF will be able to compensate for variations in
real power by using DC-link interfaced RES.Tis is achieved
by injecting the harmonic compensating voltage through an
injection transformer in series with the power supply
voltage. Trough the integration of renewable energy
sources into the DC-link, the HSAPF can ensure consistent

supply over the long term.Te availability of RES in the DC-
link in the system causes diferent kinds of operation to
occur in the system, as shown in Table 1.

3. Design Parameters

Te inductor (Ls) power and the capacitor C supplied
current (is) accumulated in the inductor are expressed in
terms of voltage across inductor as

xVL � Ls ×
dis
dt

. (1)

Te boost converter’s inductor value is determined from
the following expression:

L �
Vin × D × T

ΔI
, (2)

whereD, VinΔI, T are the duty cycle, input voltage, inductor
ripple current, and time period, respectively.

As a result of the converter, the average output voltage
equals

Vout �
Vin

1 − D
. (3)

To maximize wind energy output, a buck-boost con-
verter is connected to PMSG throughMPPT techniques.Te
maximum output voltage of Vm in the line-line voltage of
rms value is expressed as

Vrms �

�
3

√
Vm�
2

√ . (4)

When the buck-boost converter steps up or down after
rectifcation, the voltage is expressed as

Vdc � −
D

1 − D
× Vdcrx. (5)

Te SAPF is designed to restore a certain amount of power
when the system supply sags. For a 3.120 kVA load, the fol-
lowing sizing may be recommended. Tis is in order to reduce
65% voltage sag, while simultaneously compensating the
harmonics in the source current andmaintaining power factor.

Grid Supply

Series Active
Power Filter

Series Injection
Transformer

Compensating
Voltage

Shunt
Passive
Filter

is

Vs

VAF

Vc

Vdc

PV & WE

Nonlinear
Load

iSAF

Csh

VL

iL

Lsh

Figure 1: Basic confguration of Hybrid Series Active Power Filter.
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Te SAPF should have the ability for long time voltage
compensation, so that backup supply is accordingly
designed as DCsource � 3.120 × 65% � 1875VA.

Te converter nominal voltage is expressed as VConv �

1875VA/7.825Arms � 239.6Vrms.

Table 1: Operating modes of the proposed system.

Mode Available
source Voltage condition Power Operation of energy sources in DC-link

Mode 1

PS� 1 VBS≤VBS, Min
PS≥PL and PW< PL

or PW� 0

Te SAPF utilizes solar energy to compensate for harmonics,
reactive power, and share load demand when solar power is

superior to load demand.

PW� 0 VBW≤VBW, Min
or VS� 0PBS� 0

PBW� 0

Mode 2

PS� 1 VBS≥VBS, Min
PS≥PO and PW<PL

or PW� 0

Having a fully charged battery and a solar array that can supply
power to both the DC-link and the load at once, the SAPF is able
to run at maximum efciency. During solar battery charging,
constant voltage is switched of to prevent self-discharge.

PBS� 1 VBW≤VBW, Min
or VS� 0PW� 0

PBW� 0

Mode 3

PS� 0 VBS≥VBS, Min PS<PL or PS� 0 and
PW<PL Power is supplied to the SAPF-PV load and DC-link when the

battery is fully charged.PW� 0 VBW≤VBW, Min
or VS� 0 Or PW� 0PBW� 0

PBS� 1

Mode 4

PS� 0 VBS≤VBS, Min
PS<PL or PS� 0 and

PW≥PL

SAPF-WE compensates for harmonics and reactive power when
generating wind energy exceeds load demand, as well as sharing
load demands when the solar and wind batteries are not fully

charged.

PBS� 0 VBW≤VBW, Min
or VS� 0PBW� 0

PW� 1

Mode 5

PS� 0 VBS<VBS Min
PS<PL or PS� 0 and

PW� 0

As a result of fully charging the wind battery, the SAPF-WE can
operate simultaneously on both DC-link and load power from the
wind turbine. To prevent self-discharge, continuous voltage

charging is switched of for the wind battery.

PBS� 0 VBW≥VBW, Min
or VS� 0PW� 1

PBW� 1

Mode 6

PS� 0 VBS<VBS, Min
PS<PL or PS� 0 and
PW<PL or PW� 0

Power is provided to SAPF-WE’s load and DC-link by a fully
charged wind battery.

PW� 0 VBW≥VBW, Min
or VS� 0PBS� 0

PBW� 1
Note: PS is solar power, PW is wind power, PBS is power in solar battery, PBW is power in wind battery, VBW is voltage in wind battery, VBS is voltage in solar
battery, VS is source voltage, and PL is load power.
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Figure 2: Topology of the proposed grid-integrated hybrid system.
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Te converter has the ability of transfer the rms load
current and therefore the rating of converter is expressed as
IConv � IL � 1875VA/239.6Vrms � 7.825Arms.

Te SAPF is controlled as VSC and the DC voltage is
derived as

vdc � iCaSA + iCbSB + iCcSC( /Cdc. (6)

Te value of S1 − S6 is represented as converter switches
and AC three-phase line voltages are vCa, vCb, and vCc

expressed as

ea � vdc S1 − S2( ,

eb � vdc S2 − S3( ,

ec � vdc S3 − S1( .

(7)

Te output of SAPF in volt-current equations can be
expressed as

va � rfiCa + LfpiCa + ea − rfiCb − LfpiCb, (8)

vb � rfiCb + LfpiCb + ea − rfiCc − LfpiCc, (9)

where rf and Lf are value of SAPF resistance and
inductance.

Te SAPF compensating current is expressed as iCa +

iCb + iCc � 0.
Te current derivatives of the SAPF are obtained from

the following equations:

piCa �
vb − eb(  + 2 va − ea(  − 3rfiCa 

3Lf

, (10)

piCa �
vb − eb(  + va − ea(  − 3rfiCa 

3Lf

. (11)

Te SAPF eliminates source current distortions, and
only the harmonic component of load voltage is injected.
Hence, the line-line fundamental component of voltage
(VLL) is expressed as

VLL �

�
6

√

π
 Vdc � 0.779Vdc. (12)

Here, the calculated DC-link voltage is Vdc.
Te DC-link value is approximated to 600V, P is power

of 0.76 kVA, and T is energy storing time.Terefore, the DC-
link capacitance value can be calculated as

Cdc �
P × T

(1/2) × V
2
dc

�
760 × 200 × 10− 3

(1/2) × 6002
� 1176μF ≈ 2200μF.

(13)

Tus, the DC-link capacitance value of 2200μF is con-
sidered to be appropriate for proper voltage compensation.

4. ANFIS Controller for HSAPF

HSAPF controls the inverter by computing the reference
voltage waveform for every phase, maintaining contin-
uous DC voltage and inverter signals generation. Fig-
ure 3 demonstrates the ANFIS control scheme for the
proposed HSAPF confguration. With this circuit, the
reference voltage generator creates the appropriate ref-
erence voltage for the load and compensates for reactive
power and harmonics generated by it. A constant DC
voltage is maintained across the capacitor with this
circuit.

4.1. Architecture of ANFIS Controller. ANFISs combine
fuzzy approaches with neural networks (NNs) that can adapt
to achieve the required performance. Integrating the char-
acteristics of the rules, fuzzy set topology, and control system
structure into an adaptive system is challenging. Due to the
lack of standard techniques for turning human knowledge
into rules, FLC is an essential component of the fuzzy in-
ference system (FIS). Hence, input and output membership
functions have been selected by trial and error based on the
size, type, and parameters. As well, the system is limited in its
adaptability due to the range of variables that are difcult to
adjust. Te membership functions should be tuned and the
rule base should be simplifed to the fewest essential rules as
possible. It is proposed that the ANFIS method be used to
overcome the complexity described above. NN and fuzzy
qualitative approaches are combined in this method. In
contrast to standard fuzzy logic, this system is trainable
without the need for a lot of expert knowledge.Tis results in
a reduced rule base.

Figure 3 shows a typical ANFIS structure with a circle
indicating a fxed node and a square indicating an adaptive
node. Input and output nodes are present in this structure,
along with hidden layers. Acts as models and rules are
contained within these layers. Te MATLAB/ANFIS editor
is used to generate it after the initial data from the PI
controller is obtained. Observers and moderators can easily
understand and modify such a feedforward multilayer
system, eliminating the disadvantage. In order to simplify
things, let us assume that the FIS has two inputs and one
output. Te Takagi-Sugeno model is based on two inputs (x
and y) and an output (z) and employs a fuzzy system model
in ANFIS. Tis system is further tuned using an error
propagation-based method. Te error backpropagation
learning algorithm implemented on a multilayer feedfor-
ward neural network can be trained to capture the mapping
implicitly.

Using the error backpropagation algorithm, the error
value of instantaneous real power and reactive power is
calculated by
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p � p(n) − p(n),

q � q(n) − q(n),

(14)

f1 � p1x + q1y + r1,

f2 � p2x + q2y + r2,

f3 � p3x + q3y + r3,

(15)

f �
W1f1 + W2f2 + W3f3

W1 + W2 + W3
� W1f1 + W2f2 + W3f3,

(16)

where p and q are two inputs and p and q are two outputs. It
is possible to build up fuzzy logic rules and decide input-
output membership functions using the ANFIS, a structure
that can be trained using neural learning training examples.
Expert knowledge can be integrated into the ANFIS as well.
Te IF-THEN rules of frst-order constitute the basis of the
connection structure. Normally, each rule takes an input
variable and a constant term as its output. An IF-THEN rule
set is with three fuzzy IF-THEN statements for a frst-order
Sugeno fuzzy model.

5. Reference Voltage Signal Estimation

For three-phase power systems with or without neutrals,
instantaneous values can be used to establish the p-q theory.
It covers both transient and steady state waveforms in ad-
dition to the standard voltage and current waveforms. A p-q
theory is a method for computing the current and voltage
components of a three-phase input voltage, based on an
arithmetic transformation known as Clark’s transformation,

which describes how the a-b-c coordinates translate to the
α-β-0 reference frame.

Calculating the SAPF instantaneous reference voltages
requires a modifed p-q theory. According to modifed p-q
theory, the source voltages are shifted by 90° when calcu-
lating instantaneous reactive power. Using LPFs and inverse
transformations instead of the conventional AC compo-
nents, the DC components are removed from the reference
voltage before determining the compensation reference
voltage.

As shown in Figure 4, the control is mainly aimed at
calculating a three-phase reference compensation voltage
such as v∗Ca, v∗Cb, and v∗Cc, respectively, to compensate for
distortions in the supply phase voltage such as vSa, vSb, and
vSc, respectively, at the load terminals by injecting com-
pensating voltages such as vCa, vCb, and vCc correspondingly
so as to achieve full sinusoidal at PCC.

Te preferred voltages at the load terminals are the
supply voltage plus the injected SAPF voltage. Phase-
locked loops (PLL), which synchronize with the supply
voltage, are used to compensate for the distortion of the
supply voltage. Voltage measurements on three phases are
sensed and placed into the PLL to generate unit vectors of
two quadratures (sin ωt, cos ωt). Te sensed voltages from
the supplies are being fed into the PLL, which is then
multiplied by a suitable gain value. PLLs with discrete
three-phase modes provide a frequency of 50 Hz at 50
milliseconds.

Te α-β-0 reference frame voltage and current are the
characteristics of the three phase supply voltages
va, vβ, and v0 and the three phase source currents ia, iβ, and
i0. Tis flter reclaims a portion of the real power from the
essential voltage component by removing the harmonic
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components of the voltage supply. Tis flter regains a
portion of the real power that is expressed as

v0

vα

vβ
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Te compensating voltage such as V∗Cα, V∗Cβ, and v∗C0,
respectively, in α-β-0 reference frame is expressed as
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where p and q are called essential components and pand q

are called the alternating or varying element. Multiplying the
compensating voltage V∗Cα, V∗Cβ, v∗C0 in the a − b − c refer-
ence frame with the expression is used to calculate the
reference voltages v∗Ca, v∗Cb, and v∗Cc in the reference frame as
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Source voltages are the sum of the load voltages pro-
duced by the SAPF, and compensation voltage is represented
by
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (21)

Implementation of a modifed p-q theory for a full
ANFIS-based control system supports the proposed HRES-
HSAPF system. Figure 5 showcases the entire system ar-
chitecture of the proposed controller based HRES-HSAPF.

6. Simulation Results and Discussion

An implementation of the ANFIS-based modifed PQ theory
is investigated in this section to control the HSAPF DC-links
through RES interfaces, and the efectiveness of this control
scheme is estimated under diferent cases through MAT-
LAB/Simulink. Simulation studies include three diferent
test cases: voltage and load balanced, voltage balanced and
unbalanced load, and voltage unbalanced and unbalanced
load. Table 2 summarizes the simulation parameters for the
RES-HSAPF system.
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Figure 4: ANFIS-based controller for reference voltage signal generation.
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As shown in Figure 6(a), the test Case 1 is initially
considered voltage balanced with a balanced load and is
performed for a variety of system voltage and load condi-
tions. Te proposed control structure is evaluated by ap-
plying a variety of voltage disturbances to the system. Te
voltage applied to the system has not changed over the
period of 0 to 0.04 sec. Te system is then subjected to a 25%

swell in voltage between 0.04 and 0.1 sec, followed by no
voltage from 0.14 to 0.14 sec. As shown in Figure 6(a), a
voltage sag of 75% occurs during the same time period. No
voltage injection is required from SAPF for the period from
0 to 0.04 sec. During the 0.04 to 0.1 seconds’ period, a 25%
voltage swell is detected.Te controller compensates for it by
applying a negative voltage. In other words, the SAPF injects
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Figure 5: Overall control structure of the proposed ANFIS-based system.

Table 2: Simulation parameters of the proposed system.

Component Parameter Variable Value

Source Operating voltage Vph 240V
Frequency f 50Hz

Passive flter LC value CSe, LSe 34 μF, 12.5mH

PV module

Number of cells Ncell 6×10
Nominal voltage Vnom 12V
Maximum power Pmmp 230W
Maximum voltage Vmmp 35.5V
Maximum current Immp 6.7 a

Wind generator

Rated power Pw 1.20 kW
Maximum power Pm 1.50 kW

Rated speed ωs 720 r/m
Frequency f 50Hz
Voltage Vph 240V

DC-link Voltage VDC 700V
Capacitor CDC 2200 μF

SAPF Filter LS , CS 20mH, 80 μF
Switching frequency fs 10 kHz

Series injection transformer Controlling voltage TI1 , TI2 , and TI3 100 VA and 1 :1100V

PI controller Proportional gain Kp 6
Integral gain Ki 5.5

Battery bank Nominal voltage VBat 2×12V
Capacity PB 2× 500 ah

Nonlinear load Tree-phase rectifer RL , LL 10W, 3mH
RL load R`L , LL 12W, 75mH
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25% of the actual 60V through the SIT.Te system voltage is
interrupted for 0.1 to 0.14 sec, so compensating for the
interruption requires the total nominal voltage. Te
SAPF injects 240 Vrms in series with the system at the
rated system voltage. In this instance, the voltage sag
occurs from 0.14 to 0.2 sec, only 25% of the nominal
voltage is available, and the controller detects the
remaining of 75% shortage. As a result of the switching
operation of the HC, the SAPF generates the required
voltage and supplies it to the SIT. A load voltage mea-
surement is made after SAPF has performed the com-
pensation. Te modifed p-q theory control scheme is

applied to compensate for voltage sags, swells, and in-
terruptions present in the system.

Te test Case 2, depicted in Figure 6(b), is carried out for
various system voltage and load conditions and is considered
voltage balanced with an unbalanced load. Tests are performed
on a single-phase load connected between two phases in this case
to determine whether the load voltages are unbalanced. Te
controller sets the reference compensating voltage for the HC
using the measured voltage prior to compensation. Te voltage
and current injected through the SAPF are determined by
properly identifying voltage imbalances and phase angle jumps.
Tis is to compensate for unbalanced voltage and phase angle
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Figure 6: Diferent test cases considered for the performance analysis of the proposed controller. (a) Test Case 1. (b) Test Case 2. (c) Test
Case 3.
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jumps. A gate pulse is also generated for the SAPF via this
controller. Te SAPF produces the required compensating
voltage based on the gate signals received. It applies the com-
pensating voltage to the system through SIT.

Likewise, in Test Case 3, as shown in Figure 6(c), voltage
unbalanced with unbalanced load is performed for various
system voltage and load conditions. Under unbalanced voltages
and unbalanced loads, the system performance is evaluated in
test Case 3. It is assumed that the load and the system voltage are
unbalanced in this test case. To verify this case, the system
voltage should be generated with 5th and 7th order harmonics
and the load should be operated as a single-phase unbalanced
load. As the voltage imbalances between supply and load, ac-
curate measurements of the voltages are sent to the controller.
Te p-q model based on ANFIS calculates the required voltage
for compensation, and it is applied to the hysteresis controller to
generate the necessary gating signal.Te ANFIS-basedmodifed
p-q theory control scheme applied to SAPF eliminates voltage
sag, voltage swell, and interruption by inserting a consistent
compensating voltage in series with the supply voltage at phase
angles of 0° and 180° with the purpose of decreasing voltage sag
and swell. Te proposed controller efectively compensates
neutral currents because before compensation they have a
signifcant number of harmonics.

In Figure 7, THD levels for three-phase source currents
with the ANFIS controller before and after compensation are
shown. In this case, the THD levels for three-phase source
currents before and after compensating with the ANFIS
controller are considered. As a result of the ANFIS controller,
THD values are reduced to less than 2% after compensation.

7. Experimental Results and Discussion

A prototype of the proposed system is developed with
simulated users for the evaluation of its performance:
240Vrms, 50Hz, three-phase, and four-wire system. To

implement the control circuit, an STM32F407VGT6 is
employed, which operates at 168MHz. Te foating-point
unit also has the capability of processing all single-precision
data types and commands of an ARM processor. Te DSP
and memory protection units improve application security
by implementing a complete set of DSP instructions. At the
PCC, the analog to digital converter acquires and interfaces
voltages and source currents. Currently, the controller
program calculates reference voltage signals and then
compares them with carrier waves to produce gate pulses.

Tree voltages and three currents are obtained with the
help of six 12 bit ADC channels based on mathematical
calculations of sampled data. In order to generate PWM
voltage source inverters, you need to calculate and compare
gate pulses required for generating reference signals and
carrier waves. In order to implement the PWM VSI, six
IGBTs from ST Microelectronics are used, and the IR2130 is
used as a three-phase bridge driver. Te controller generates
six gate pulses using optical isolation before the controller
connects to the IR2130, and the VSI used had a kVA rating of
1.2 kVA with a turn ratio of 1 :1.

A set of measurements were conducted with 120mH
source inductor, 20mH flter inductor, an 80 μF flter ca-
pacitor, and a 2200 F DC-link capacitor. Te inductance and
load resistance were 75 mH and 8 Ohms, respectively. IGBT
inverters switch at 10 kHz. Load current and voltage are
measured using AC-link voltage sensors and DC-link ca-
pacitor voltage sensors. Te signal conditioning circuit of an
analog to digital converter amplifes and presents the ofset
needed to complete the conversion. An experimental setup
that tests both current and voltage harmonics generation by
the SHAPF control scheme is represented in Figure 8.

A balanced sinusoidal system voltage and a balanced
load are considered to evaluate the proposed controller
performance. At the same time, the act of varying the voltage
in the system is intended to manage voltage sags, surges, and
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Figure 7: THD level of source current before and after compensation of the proposed controller.
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interruptions. Figure 9 shows the load voltage sag and re-
quired compensation voltage of the SAPF controller gen-
erated by generating the reference signal. Figure 9 shows the
measured source current and load voltage after the com-
pensation carried out by SAPF. Results prove the efec-
tiveness of the controller's compensation in accurately
detecting the variation of the load voltage and source current
and generating the correct compensating voltages.

As shown in Figure 9, the proposed system was tested
with an unbalanced voltage as well as an unbalanced load.
Te tests should include the single-phase loads in a three-
phase system simultaneously as well as the nonlinear loads

at random. Te measured source current and voltage
before compensation have distorted and oscillatory
waveforms are depicted in Figure 9. Sensors can sense
unbalanced and oscillatory waves, which generate the
correct gate pulse in terms of compensating current and
voltage waveforms.

Te proposed controller is tested under unbalanced load
conditions, the voltage THD values of phase A of 2.53, phase
B of 2.71, and phase C of 2.63%, respectively. Furthermore,
THD current values for phase A, B, and C are 3.12, 3.23, and
3.26%, respectively, and experimental THD values for the
proposed system are shown in Figure 10.

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

Figure 9: Diferent test cases considered for the performance analysis of the proposed controller.

Figure 8: Te proposed system experimental setup.
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Simulations and experimental studies validate the
modifed p-q theory based on HRES-HSAPF and ANFIS
with various test cases. In the proposed system, voltage and
current disturbance can bemitigated to a large extent, and its
performance can be compared with that of the PI controller.
Te proposed RES-HSAPF system implemented with the
ANFIS controller signifcantly improves system perfor-
mance and shows a signifcant reduction in the THD level
from the test results presented in Table 3. In comparison to
PI controllers and without HSAPF, the newly developed
controller improves the performance of the system.

 . Conclusion

A grid-integrated renewable energy system with a hybrid
series active power flter system implemented with an ANFIS
controller connected to nonlinear or sensitive loads is
presented. In the ANFIS-based modifed p-q theory, the
ANFIS controller addressed the system parameters and
compensated for harmonics, voltage imbalances, and short-
term and long-term voltage disturbances in the system. In
order to make use of solar and wind power, the HSAPF has
been designed to interface to the grid using RES. According

Table 3: Simulation and experimental comparison of the proposed ANFIS-based controller.

Test
cases

%THD levels in
phase

Simulation results Experimental results

RES-HSAPF with PI HRES-HSAPF with
ANFIS HRES-HSAPF with PI HRES-HSAPF with

ANFIS
Voltages

(V)
Currents

(A)
Voltages

(V)
Currents

(V)
Voltages

(A)
Currents

(A)
Voltages

(V)
Currents

(A)

Case 1
A 2.95 3.32 1.12 2.52 3.85 4.32 1.72 2.82
B 2.72 3.41 1.18 2.68 3.81 4.22 1.68 2.98
C 2.87 3.62 1.14 2.74 3.82 4.71 1.80 2.98

Case 2
A 3.72 4.89 2.12 2.85 4.82 4.93 2.53 3.12
B 3.62 4.78 2.35 2.78 4.72 4.91 2.71 3.23
C 3.84 4.82 2.31 2.91 4.80 4.89 2.63 3.26

Case 3
A 4.12 5.23 3.12 3.32 5.23 6.12 3.12 3.85
B 4.31 5.11 2.89 3.12 5.45 6.11 2.89 3.79
C 4.23 5.32 2.92 3.35 5.43 6.23 2.92 3.83

(a) (b) (c)

(d) (e) (f )

Figure 10: Performance measure of THD value under balanced source voltage and unbalanced load.
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to IEEE standard 519–1992, under balanced and unbalanced
supply situations, the system compensates for system voltage
unbalance, slight and huge voltage interruptions, and har-
monics. Among the various tests, the measured THD has
always been within the acceptable limit. Te current THD
level of the system ranges from 30% to 36% without HSAPF
implementation. With HSAPF devices installed with PI
controllers, the voltage THD is reduced from 20% to 25%
and from 3.5 to 3.7%. In addition, this ofers lower current
and voltage THDs ranging from 2.5% to 2.9% and 1.3% to
1.5%, respectively. Te proposed system, in comparison to a
conventional controller, reduced the THD values from 30%
to 20%. It has been shown to be quite efective without the
use of controllers. Moreover, simulations and experiments
concluded that the system is able to efectively mitigate
voltage-based distortions, short-term and long-term voltage
interruptions, and neutral current and improve the system
power factor. Te system provided consistent active and
reactive power, which increased system reliability based on
load demand. In order to reduce the use of energy from the
utility grid, RES share their energy with the utility grid. Tis
decreases the amount of electricity used from that grid. It is
best suited for small- and medium-sized companies to re-
duce their panel tarifs and eliminate the need for UPS and
power quality conditioners.

Data Availability

Te data can be obtained from the corresponding author
upon request.
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An encouraging development is the quick expansion of renewable energy extraction. Harnessing renewable energy is eco-
nomically feasible at the current rate of technological advancement. Traditional energy sources, such as coal, petroleum, and
hydrocarbons, which have negative effects on the environment, are coming under more social and financial pressure. Companies
need more solar and wind power because this calls for a well-balanced mix of renewable resources and a higher proportion of
alternative energy sources. Sustainable energy can be captured using a variety of techniques. Massive scale and small-sized are the
two most prevalent techniques. No renewable energy source possesses an inherent property that restricts how it may be managed
or how it can be planned to produce electricity. A number of factors have contributed to a growth in the use of alternative sources,
one of which is to mitigate the effects of rising temperatures. To improve the ability to estimate renewable energy, various
modeling approaches have been created. 'is region might use an HRES to give many sources with the inclusion of different
energy sources. 'e inventiveness of solar and wind power and the brilliant ability of neural networks to handle complex time-
series data signals have both aided in the prediction of sustainable energy. 'erefore, this research will examine the numerous
information models in order to determine which proposed models can provide accurate projections of renewable energy output,
such as sunlight, wind, or pumped storage. In the fields of sustainable energy predictions, a number of machine learning methods,
such as multilayer perceptions MLP, RNN CNN, and LSTM designs, are frequently utilized. 'is form of modeling uses historical
data to predict potential values and can predict short-term patterns in solar and wind generation.

1. Introduction

It has been realized that extensive fossil fuel use would speed
up the depletion of fossil fuel supplies while harming the
ecosystem. Global warming and increased health conse-
quences will be the consequence of these effects. Adding to
the two renewable energy sources, coal power and energy
production are the speediest energy sources today. Alter-
native sources are any kind of energy that can be harvested in
nature and is renewable or nonpolluting [1–4]. It may be

found in a number of different forms, including sun’s
electricity, solar energy, electricity, geothermal heat, waves,
tide, and hydroelectricity. 'e sustainable use of renewable
has lately received significant attention, which has caused
much research to examine the subject. 'e biggest obstacle
renewable energy faces in the foreseeable future are finding
enough supplies of electricity. Renewable energy is found in
the present or future energy infrastructure by integrating
renewable resources [5]. With sustainable energy, critical
concerns such as increased supply dependability and
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addressing localized power shortages will just be available to
be addressed. 'is renewable energy production is dis-
continuous and chaotic because of the enormous unpre-
dictability and inconsistent and randomized characteristics
of renewable energy. Even yet, the accuracy of renewable
energy statistics has yet to be mastered. Improved power
efficiency is made possible by high-intensity management.
'e power development process, administration, and reg-
ulation are all heavily reliant on power forecasting tech-
nologies. 'e use of renewable energy is on the rise;
therefore, it is crucial to create systems to store green energy.
Many studies show different robot algorithms were used to
renewable energy forecasts [2]. Effective renewable energy
forecasts are offered by document models. More impor-
tantly, artificially intelligent models were developed to en-
hance renewable energy forecasting accuracy. Electricity
forecasts of varying time periods, such as milliseconds, days,
weekdays, and months, were implemented to meet different
forecasting objectives [6]. While evaluating device models’
generalization ability, prediction effectiveness is always used
to determine their overall effectiveness.

Machine learning has long been used in areas such as
those dealing with data-driven issues. 'is diverse group of
multidisciplinary tools, including analytics, arithmetic, ar-
tificial neural networks, information gathering, and opti-
mization, are artificial intelligence methods. Artificially
intelligent methods strive to discover connections amongst
incoming data and produce data by looking for relationships
that may or may not exist using mathematical formats. 'e
final machine learning algorithms are developed by using the

whole dataset, and after senior managers may feed fore-
casted input data into the trained models to get results that
are within a desired range [3]. 'e information which was
before is critical to computer science, and it may boost
machine learning’s performance by enhancing the results.
Learning algorithm, unsupervised classification, and su-
pervised learning are the primary techniques that machine
learning technology employs. Supervised leverages labeled
training data during the monitored period. Training process
is when you use data for training that has not even been
labeled to classify new data by specific criteria, which allows
the system to understand. Figure 1 indicates the integration
model.

Since groupings usually rely on grouping criteria, the
number of nodes varies. Augmentation learning refers to the
process of gaining input from the environment to create
greater anticipated rewards. Many methodologies were
highlighted and techniques were suggested by the use of
three fundamental learning concepts [6]. In addition, several
types of research are produced from renewable generation
forecasting via the use of a single AI framework [4]. Un-
fortunately, it is challenging to enhance prediction power
that used a simple device model owing to the varied datasets,
time stages, predictions ranges, parameters and measure-
ment and management [7–12]. Hence, several researchers
have created artificially intelligent algorithms or total re-
newable energy forecasting prediction techniques in order to
enhance forecasting accuracy. In the information systems
discipline, support-vector algorithms and underground
techniques have become highly common recent.
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Figure 1: Integration of energy systems with artificial intelligence.
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1.1. State-of-the-Art Models. Many existing models that
predict the amount of energy supplied in the system is
monitored where the study [10] evaluates convolution
neural networks for sustainable energy predictions. 'e
prediction techniques were classified into four classifications
profound faith network, vehicle stack, profound recurring
machine learning, and others. Furthermore, a wide range of
data pretests and postmethods were used to enhance the
accuracy of the prediction. Studies [11, 12] analyzed adaptive
intelligence power and dependability predicting systems.
Forms of energy include solar, hydroelectric, and windy in
this research. In very many instances, the advantage of
neural networks in power and dependability forecasts was
shown. [13] showed that the material on solar energy
forecasting was evaluated utilizing AI algorithms, equip-
ment, pattern recognition, and hybrid approaches, respec-
tively. 'e analysis points out that even the information on
solar photovoltaic reliance can be estimated using arith-
metical weather forecasts with features and intelligent sys-
tems to accomplish a prolonged solar energy
prognostication, great memory channels, convolutionary
neural connections, and recurring artificial neural. In [14],
installations are examined and categorization of power
generation computer methods. Authors found that hybrid
methods are better in the implementation of energy tech-
nologies than standard machine algorithms. A study [15]
researched smart home energy management model pre-
dictions, including energy dispatched, supercapacitors, cli-
mate policy and marketplaces, dependability, and optimum
reserves infrastructure constraints. 'is study was helpful
for the electricity industry by presenting current trends and
predicting advances to power distribution management and
implementation. A study [16] evaluates the applicability of
SVM in the predictions of renewable, and suggested the
predictions of the SVM, outperform the other forecasts as far
as the correctness of the predictions was concerned. 'e
scientists also showed that composite vector holder methods
may provide better prediction outcomes than a simple
support—vector system [17]. 'e research showed that
usage of artificial intelligence and support-vector generator
is effective in solar power. 'e article points out that seasons
change has led to high predictions of solar energy mistakes.
Since ultraviolet irradiance is a major solar power source.

In [18], the SVR is a version of SVR that has finally been
condensed to a nonlinear issue and it is more highly scalable
than SVR or ANN conventional. In combination with
wavelet processing, ANN can forecast wind production over
timescales of up to 24 hours. Its same SVR simplest ways can
be employed, and with a cancroids remote technique, in
order to find and choose pieces of data with similar raw
numbers for the predicted template strand. A study [19]
indicated that when this whole existent dataset contains is
entered into SVR, the significance of each component in the
ramp prediction will be evaluated to minimize the chosen
number.'emethod is known as unidirectional analysis and
has been shown to provide superior performance similar to
Pearson correlations, Gray causative link, and network-
based assessment [20]. All four methods have been used in a
Simulation. Approaches including RF can provide extremely

high accuracy in the prediction of renewable power, allowing
a simple evaluation of features significance.

1.2. Proposed Methodology. To examine the effect of ap-
plied optimization in the energy management systems of
different devices a transportation vehicle is introduced
where decisions are taken automatically with best control
practices [21]. 'e vehicle is tested with two different
energy cases, low and high, where a learning model uses
previous data set for identification cases thus a line of
energy intersection is present. Further, a home manage-
ment system using AI procedures is incorporated with a
specialized metering scheme that is operated under au-
tomated mode [22]. But if the metering scheme is in-
troduced then a local management terminal must be
designed for transmitting the information to different
consumers. Even the above-mentioned case studies are
analyzed by several researchers in Morocco where energy-
efficient operation is achieved only if AI is incorporated.
All the existing models [21–36] focuses only on different
renewable energy sources to forecast various behavior of
appliances in real-time environmental conditions. But
most of the procedures that are present in existing
methodologies are not introduced with high-end moni-
toring devices and even the analytical framework is not
framed. Moreover, several drawbacks such as high error
conditions, improper training and testing data, absence of
conventional power plants reduce the efficiency of
existing methods. But some researchers have formulated a
real-time working principle using different AI algorithms
but at the same time, the mathematical model is not
implemented in a closed loop condition for solving var-
ious forecast problems. Hence, the proposed method
identifies the gap that is present in the existing method
and provides a working methodology using an effective
energy management system.

'e projected model is incorporated to monitor the
amount of energy that is supplied to each appliance and
minimized the energy in such a way where the same working
efficiency is guaranteed. For increasing the efficiency of the
proposed technique an AI algorithm is implemented where
the presence of renewable energy sources is identified and
controlled. In addition, if the amount of energy falls below
a certain limit, then it will be identified using an error
detection procedure and it is also framed in analytical form.
Moreover, the proposed method ensures a precise energy
monitoring system that manages the energy by storing all
the monitored values in a separate cloud management
system.

2. Objectives

'e major objective of the proposed work that is used in
real-time implementations for monitoring all the com-
plexities that are present in different environmental con-
ditions is framed using the analytical model where the
minimization objective functions are as follows:
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(i) Incorporating an AI model for minimizing the
energy of appliances with proper utilization of
energy resources

(ii) To minimize the time complexity series in the
prediction of external data that provides reliable
forecast behavior

(iii) To reduce the amount of errors that are present in
prediction process using preprocessing and feature
extraction procedures

3. Evaluation Metrics: An Analytical Model

During the practice session, errors are computed from the
actual performance to the goal and the parameters are then
adjusted in all stages it until error achieves a satisfactory
limit [26]. 'e background propagating method utilizes
various cost functions to measure prediction performance
including correlations and error correction between target
and predicted value. 'e major uncertain indicators used to
evaluate the quality of the system networks are RMSE or CV-
RMSE, MBE, or NMBE, MAE or MAPE (R2). Comparing
the error variance of the average worth (yk) and the cal-
culated value (xk) with both the number of measurements N
is provided via RMSE and CV-RMSE and it can be deter-
mined as follows:

RMSE �

�������������


N
k�1 yk − xk( 

2

N



. (1)

CV − RMSE �
RMSE

x
× 100%. (2)

MBE measures the average point error that indicates the
general performance of the predicted result with respect to
the linear function of the sample. Positive figures imply bad
forecasting, whereas low signs reflect a computer judgment.
NMBE is the normalized of the MBE index to measure the
outcomes of MBE, thereby creating a global gap here be-
tween estimated worth and the relevant buffer:

MBE �
1
N
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× 100%. (4)

'e measurement of accuracy rate is indeed MAE and
MAPE, whereby MAE is the measurement of the amount of
error between its predicted values as well as the associated
observed, and the MAPE is stated as follows:

MAE �
1
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× 100%. (6)

R 2, defined as a regression line, is a mathematical
measure of the variation which is limited among 0 and 1.'e

quantity tends to be 1 and the estimates are closely linked to
the measurements obtained. 'e following is described in
R2.

R
2

� 1 −
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2


N
k�1 yi − xi( 

2. (7)

All equations that are represented in Equations (1)–(7)
represent the integration of a closed loop function where
error measurements are made. 'erefore, the combined
Equation on objective function is framed using Equation (8)
is mentioned as follows:

obji � min
n

i�1
MBE,RMSE, Ei, ti, (8)

where MBE,RMSE describes the error functions; Ei indi-
cates the energy of appliances, and ti denotes the time
complexity functions.

3.1. Integration of AI with RES. In both energy industries, AI
is much required since it works with huge amounts of
measurements and ever more sophisticated technologies.
Specifically, via improved surveillance, operation, manage-
ment, and preservation of the wind industry and timely
systems operation and management, the RE market may be
encouraged by AI [23]. 'e combination of RE with power
sources relates to the following important AI technologies
such as RE generating in light of intermittent renewable
unpredictability and supply volatility, presence of adequate
and dependability; personnel security, effective predictive
forecasting, and weather predictions. efficient macroeco-
nomic and grid storage procedures. Figure 2 illustrates the
relationships suggested by AI as well as its application.
Important uses in the RE industry include smart matching
demand-supply, intelligence caching, centralized control
network, and intelligence micronetworks. Even now the
increasing use of RE gives the existing societies a huge
chance to reduce carbon emissions and the shortage of
resources, there is a danger to the position of the RE sector’s
electricity leadership in its intermittent nature [3].

'e prospect of not deploying conventional power
stations, such as energy sources, inhabits in the AI, reliant as
to whether the RE is entirely reliant, that will provide an
accurate RE energy supply prediction to react to normal
variations, adjust operational processes as the initiatives are
not directly impacted and react appropriately to existing
customers requirements as supposed. 'e performance of
RE should be improved via the automating of procedures,
which include a significant usage of AI.'e ultimate goal for
RE grids is to maximize the volatilities and associated un-
certainties costs of feed from producing capacity [23]. AI is
used to predict energy consumption for smoother peak
adaptation. It is also essential to manage energy producers
and consumers from decentralized production environ-
ments, which will need grid electricity whenever their output
is below their requirements, and then when they create more
than they use the energy extra is returned to the grid. 'is
would require continual energy flow amongst buyers and
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producers. 'e centralized control networks AI will pro-
actively prevent power shortages by identifying early
problems and assist minimize the time required for main-
tenance. In order to be successful in these areas, it should
contain statistical alerts, report, usage of subscriber and
browser interfaces, restoration of backup’s servers in un-
foreseen situations, authenticating password security en-
abling users at various points, etc. 'e use of AI in RE is
essential because of the huge quantity of data that growing
connectivity across grids are created. Consolidated intelli-
gence functions in relation to the infrastructure required to
manage the controlled locations. 'is exponentially in-
creasing data may be managed by AI and provided tech-
niques for addressing RE variations based on experience and
predictions [23]. All of this will enable the RE successfully
connect to the electricity system and utilize the capacity
among those sources, regardless of their unpredictability.
Various properties have the varying capability for energy,
new versions, and age. In guaranteeing its performance, they
must be connected and pushed to almost the same com-
monality. 'e performance should really be confirmed by
the fluctuating market circumstances that rarely a central-
ized smart unit need to react and adapt to new circumstances
(Figure 3).

3.2. Advanced Technologies. Artificially intelligent methods
have been used in the generating and demand sectors for
effective energy administration. AI techniques may be used,
either in a hold as well as generator solar and wind power,
depending on the type of barriers and needs [33]. Figure 4
shows the areas when machine learning may be used to
prevent electricity, anticipate demand and monitor photo-
voltaic systems, and also used to increase performance. 'e
main uses of AI techniques in HRES are the prediction of
sustainable energy release.'e prediction of energy output is
a critical problem for renewable resources and machine
training plays an essential role as a method for predicting
electricity production. In this regard, using historical in-
formation, renewable power energy may be forecast. 'e
precise details of the forecast are difficult since the source of
this energy depends on the surroundings [24]. 'is research
is used to forecast renewable energy production by CNN.
Stating clearly the placement, construction, and magnitude
of sustainable plants. 'e optimum size of renewable power
plants in HRES is a difficult issue. 'e placement of the
power plant and other characteristics depends on various
weather, land, and availability, and expenditure consider-
ations. In addition, the operation of sustainable energy fa-
cilities, unlike fossil fuels, requires space [34]. 'erefore, it is
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important to determine the number and quality, for ex-
ample, meteorological information, dampness, tempera-
tures, wind velocity, radioactivity, etc. Artificial intelligence
methods are capable of supporting this judgment call.

'e new power production Smart Grid (SG) is a system
that optimizes all the grid segments from generation to
transportation and energy storage. Stakeholders want the
grid to be managed by rapidly expanding the electricity grid
and continuously improving its intelligent, economical and
productive, and successful [24]. Offering answers to energy
distribution negative issues, such as requirement balance,
failure detection, verifiable and permanent way, and gov-
ernance, grid and regulation database administration. 'e
forecast of electricity generation guarantees supply de-
pendability and thus the supply-chain management must
be bathmats. Since external actors have distinct features in
HRES, predicting electricity consumption is a challenging
job. Methods of AI can sort out the correct estimate for
electricity consumption in the country, along with
manufacturing and distribution of sustainable energy.
Reinforcement learning expands its capacity to upgrade
the finding of resources. It may be utilized to promote
various areas of forms of energy phones, battery, cata-
lyzed, and crystal findings. AI methods may thus be
utilized to create substances for sustainable energy
sources [24]. In yet another important and interesting
field also, AI is utilized, such as reverse design, in which
the characteristics of the component are accorded to the
Artificial intelligence system and the components derived
from them are found.

4. Methodology

Two components form part of the overall electricity
forecasting method. First, the data collection and inter-
pretation are discussed. Second, for data or information,
artificially intelligent methods are presented. 'e primary
aim of this research is to provide document models which
can correctly forecast wind and solar energy. 'e most
essential element of the sustainable energy forecast is the
collection and analysis of data. For the correct energy
prediction, the data should be sent through into the data
packet, including standardization, undesirable/false data
outsource, data grouping, and data inferential statistics
[24]. 'e first 2 are not used for all data instructional

strategies and are primarily popular from before the data.
Nevertheless, database clustering is needed to generate a
training data. Furthermore, empirical pearson correlation
offers insight into the delays used by the prediction
models. Various renewable energy input variables re-
garding the training modeling and evaluation of particular
predictions of renewable radiation, renewable and hy-
droelectricity [30]. Solar power prediction requires no
more than nine factors, such as altitude, latitude/length,
time (containing month by year and), median air tem-
perature, median air currents, wind velocity and mean
dampness in air.

'e forecast would be average sun radiation. Similarly,
the forecast of wind power requires wind speed/direction at
specified place and temperatures. Figure 5 summarizes the
approach that is based on the Machine Intelligence (AI)
paradigm. 'e application of AI on renewable databases to
future predicted values consists of 3 main phases:
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Age
Heterogeneity Different Size Technical Diversity Geographical

Dispersion

Centralized Control Centre

Changing Market Conditions

Figure 4: Advanced technologies in hybrid-renewable-energy system (HRES).
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Figure 5: Schematic block of the AI-based training and prediction
stages.
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(i) Collecting power sources and surroundings data.
(ii) Standardizing and preprocessing input information

to extract characteristics.
(iii) Develop the optimization technique, evaluate the

correctness of the examples for the development
and verify the was before model using patterns of
verification. 'e developed AI algorithm is then
utilized to predict energy output via testing dataset.

Neural networking methods which have the capacity to
learn, store and create connections between non-linear
information have included most outstanding data mining
algorithms [31]. 'e sensors can monitor data with pre-
dictable styles, but not equivalent to one another and. Al-
gorithms have fault resistant and better able to approximate
any linear combination. 'ey, therefore, are in a position to
handle fragmented, noisy, quadratic, and quasi-data set [23].

4.1. RNN Model. 'e RNN is a separate kind of ANN with
looped that may sense knowledge in training sets. It may
exchange characteristics between neurons in various layers
to create sequencing cycling in the networks to anticipate
better outcomes.'e looping design of RNN enables them to
anticipate the time series and to process data before the
output is produced [25]. 'us, the RNN model may have
reminiscence and utilize preliminary data that will impact its
value towards future predictions [26]. 'e feedback loops in
the networks update the model or assist to recall future
trends. It is one of the latest ANN methods that can predict
time series in power generation. As the program can store
everything information in memory, it is an appropriate and
productive method to solar or wind generation forecast,
such as time series analysis [18]. Figure 6 shows the basic
architecture of an RNN unit inside which block ‘A’ uses the
input model to produce ht as well as predicted values. 'e
chevron in block ‘A’ indicates the ongoing use of infor-
mation within the block. Once the configuration is
unwrapped, certain side effects seem to be a cause, as il-
lustrated in Figure 6. 'e deployment of the Recurrent
neural network, like with other methods, has three suc-
cessive stages, namely retraining, training, and verification.
'e hidden layer displays network effectiveness and regu-
lates time steps first from input data series to the predicted
outputs. To show the RNN unit functionality in step t time,

let x [x1, x2,., xt] be taken into account as the integration
time, ht as the hidden layer, and yt as the predicted output.
'e cable network process from raw material to finished
product is shown as follows.

'e hidden state is expressed as follows:

ht � f ht−1, xt( . (9)

Also, the repeated previous hidden ht is changed by
altering input text by adding a dimension n. Wxh to the
combination of previous state ht−1 and the weighted Whh.
By the transmission periodic function, the total of the
weightings is then engaged as follows:

ht � f Whh · ht−1 + Wxh · xt( . (10)

'eoutput is calculated by changing the previous hidden
ht by the concealed weighted to the output. 'erefore, the
equation can be written as follows:

yt � f Why, ht . (11)

'e measurement result is compared with the goal such
that error coastal areas are generated and then weighed up at
all levels until an acceptable value is achieved.

5. Results and Discussion

Best accuracy measures are described and evaluated. In all,
40 kinds of prediction accuracy measures were collected in
this research and it is simulated to verify its performance
using MATLAB under five different case studies:

Case study 1: Measurements of Forecasting Accuracy
Case study 2: Observation of MAPE Values in Energy
Prediction
Case study 3: Calculation of R2 Values in the Energy
Prediction
Case study 4: Comparison of R2 and Training Time for
the Selected Algorithms
Case study 5: Comparison of MAE and RMSE for the
Selected Algorithms

5.1. Case Study 1. Table 1 and Figure 7 include prediction
accuracy measures used in more than 8 researches.'e three
most commonly used measures are the absolute mean error

y

O/p units

Hidden
Units

I/p Units

A

h

Unfold A A

y1 yt

h1 h2

x1 xt

Figure 6: Illustration of RNN with unit performance.
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(MAE), the absolute mean percentage error (MAPE) and the
square root mean (RMSE). In varied units, renewable energy
may be expressed, and renewable energy values vary a lot for
various research. MAPE is given here to show prediction
accuracy to prevent the effects of measures and quantities of
sustainable power.

5.2. Case Study 2. A total of 36 gathered studies utilize
MAPE to evaluate predictive accuracy in Table 2 and
Figure 8. In general, in each research, several models were
presented. Table 2, therefore, displays the best results in
each research. MAPE scores below 10% indicate ex-
tremely accurate forecasts. 'e predictive accuracy of the
gathered studies is thus excellent in terms of MAPE.
Furthermore, the determination coefficient (R2) is also
another measure given for investigation in this research.
'e adjusted R2 indicates the percentage of the variation
in the dependent variable that may be explained by other
factors.

5.3. Case Study 3. Table 3 and Figure 9 show 22 research
gathered using R2 as a sustainable energy prediction mea-
sure. 'e majority of R2 values are greater than 0.8.

5.4. Case Study 4. At the conclusion of the optimization,
Table 4 and Figure 10 show the optimum parameters and
chosen values. In all, RNNoffersmore versatility than the other
differentmethods. Nonetheless, the characteristics of SVM, RT,
and RF seem more common than RNN. 'e freedom with
which parameters are selected is both good and bad.

In terms of the capacity to capture the whole phenomena
under evaluation, the best results were shown by RNN,
followed immediately by RF and SVM.

5.5. Case Study 5. Table 5 and Figure 11 explain that R2
values of SVM, RF, and RNN may seem comparable and
different viewpoints may be shown in terms of evaluating
MAE and RMSE. RNN provides an MAE 21% smaller than
RF, 36% smaller than SVM and 60% smaller than RT. If the
effectiveness is evaluated with regard to the MW of power,
the variations between both the models become apparent.
RNNs are more complicated than SVM, RT and RF, how-
ever, the accuracy of the model has priority above time and
complexity provided the needs and restrictions of the use
case are recognized.

5.5.1. Verve Robustness. 'is scenario examines the energy
characteristics that are represented in terms of robustness by
using best iteration conditions. Since the proposed method
is used for minimizing the amount of energy in the case of
different appliances, there is a possibility that the energy
devices will become robust as the AI procedure is incor-
porated. 'e above-mentioned robustness will be present in
real-time conditions as complexity in terms of time is much
higher for every home appliance and as a result, strong
optimization procedure is needed. In addition, the projected
method frames the analytical model using closed-loop
format thus reducing the robustness of energy appliances
even at large operating conditions. 'e examined charac-
teristics are simulated and compared with the existing
model, as shown in Figure 12.
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Figure 7: Accuracy of forecast. (a) Solar vs wind. (b) Hydro-power vs biomass.

Table 1: Measurements of forecasting accuracy.

Sources of energy measurement Solar Wind Hydro-power Biomass
RMSE 37 33 1 5
MAE 18 27 1 4
MAPE 13 24 0 2
R 2 7 9 1 4
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In Figure 12, it is observed that the number of appliances is
varied from 1 to 30 and for each change robustness is measured.
From the comparison, it is much clear that the proposed
method reduces the robustness of all appliances in real-time

conditions whereas the existing method increases the value of
robustness to a certain extent. 'is can be proved with 15
different appliances as the proposed method crosses the ro-
bustness line without any marginal limit but in the next case
with 16 appliances after reducing the number of renewable
sources the projected method provides low robust conditions.
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Figure 10: Comparison of R2 for the selected algorithms.

Table 4: Comparison of R2 for the selected algorithms.

Algorithms R 2

SVM 0.9738
RT 0.7814
RF 0.9648
RNN 0.9977
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Figure 9: R 2 values in the energy prediction.

Table 3: R 2 values in the energy prediction.

Sources of energy Average R2

Solar 0.9352
Wind 0.97527
Hydro-power 0.83
Biomass 0.9548
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Table 2: MAPE values in energy prediction.

Sources of energy Average MAPE (%)
Solar 9.019863
Wind 6.885576
Hydro-power 4.894
Biomass 2.6951
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But in the existing method [21] if the number of appliances is
increasing then robustness of all installed appliances increases in
such a way thus energy management is not guaranteed as
renewable sources are increased in the system.

6. Conclusions

'e problem of sustainable power is growing because of
current climatic changes and melting concerns. Accurate
estimation of renewable energy is thus essential and a lot

of associated research has been carried out. Furthermore,
the complexities of different environmental circum-
stances in systems for renewable resulting in inadequate
use of closed mathematics formats to represent systems
for bioenergy. Applications of AI have thus become
common in the forecasts of sustainable power. In current
history, this research has examined and evaluated arti-
ficial energy intelligent systems in energy forecasts from
elements of intelligent machines, renewable resources,
condition characterized methods, variable selection
procedures and forecast performance-based assessment.
Some potential future study paths in the clean energy
forecast for artificially intelligent models were listed as
follows. First of all, it can be noted that the majority of
renewable energy projections in artificial intelligence
technologies have concentrated on solar and wind energy
forecasts. 'erefore, other dispatchable projections, such
as hydropower, hydroelectric power, wave action, pres-
surized water, and geothermal, may be viable areas for
future study rather than forecasts of renewable. Fur-
thermore, artificially intelligent and hybrid approaches
may provide promising methods to predict sustainable
power. Second, data before techniques affect simulation
model forecasting accuracy in sustainable energy fore-
casts. 'is problem, however, has not yet received much
attention. 'e study of data preparation methods and ML
algorithms in sustainable energy forecasts may thus be a
different path for additional investigation. Finally, the
choice of criteria affects the effectiveness of machine
intelligence algorithms in renewable power forecasts.
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Figure 11: Comparison plot for the selected algorithms. (a) MAE. (b) RMSE.

Table 5: Comparison of MAE and RMSE for the selected algorithms.

Algorithms MAE RMSE
SVM 983.87 1387.85
RT 1679.89 2318.87
RF 708.87 1188.93
RNN 684.10 862.85
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6.1. Policy Implications. 'e energy management system can
be applied in all industries for managing different devices in
the network by building a forecast application where all
users can able to check the number of resources that are
present at a certain time interval. Even the projected method
using AI can be applied for choosing proper decision in
emergency conditions about different energies that need to
be supplied at appropriate time periods.
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'e data that support the findings of this study are
available from the corresponding author, upon reasonable
request.
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When the electrolyte is layered, excessively large and prolonged charging and exhaust currents lead to the random tendency of
reactions in different parts of the electrodes. (is was leading to mechanical stresses and the warming of the plates of the battery.
(e presence of nitric and acetic acid contaminants in the electrolyte improves the oxidation of the deeper layers of positive
electrodes. Because lead dioxide has a larger volume than lead, electrodes expand and curve. Positive electrodes are subject to war
and growth. (e negative electrode curve is mainly caused by the nearby distracted positive people. (e adjustment of the
distracted electrodes can only be carried out by removing the battery.(e lack of sulfate and fully charged electrodes are subject to
correction because they are soft and easy to adjust. (e main contribution of this proposed work is to provide an innovative
solution to resolve the battery draining issues in 5G devices with the help of an alternate routing model. (e proposed model will
provide an idea that is used to slice distracted electrodes washed with water and placed between soft, hard boards. Generally, on
the top board, a load is installed, which increases the edges of the electrodes. Electrodes are banned directly or through the
amplitude of a top or hammer to avoid the destruction of the active layer; hence, the draining of the battery was reduced.

1. Introduction

(e number of users is increasing with these smart 5G network
devices because it is easier to access modern networks like 2G,

3G, and 4G and social networking sites like Facebook and
WhatsApp. Due to this, the usage of smart 5G network devices
is increasing [1]. But there is a problem with that. (at is, most
people have complained that my 5G network devices go dry
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immediately and do not charge; we have used it ourselves [2,3].
After a few hours of continuous use, it starts beeping “battery
low,” and immediately we go to the charger. (is is a regular
occurrence. (is low battery problem occurs, if it is caused
by frequent charging or is it caused by overnight charging.
It is widely believed that the life of the battery will decrease
due to this [4,5]. Generally, users of smart 5G network
devices do not use them for more than two years. By then
they sell it to purchase new 5G network devices [6]. So, they
do not know about the battery damage. But experts say that
due to frequent charging, the lithium batteries in the 5G
network devices are damaged and thus the charge does not
hold [7]. Frequent charging like this is sure to damage
lithium-ion batteries. But it’s not because it takes too long
to charge, because smart5G network devices are designed
to handle a lot of charges [8]. (e main cause of battery
damage is that our batteries are designed to charge quickly.
(is causes the batteries to heat up and thus damage them.
Smart5G network devices should always be kept at tem-
peratures below 35 degrees Celsius [9,10]. (ere is a way to
extend the life of our smart 5G network device batteries. It
means that using some chargers that are patient charging
types will not damage the battery and increase its life. Smart
5G network devices today come with advanced features and
amenities. (e variety of applications in smart 5G network
devices makes the users very attractive [11]. But as the
applications increase, the 5G network devices’ battery life
becomes a concern. Users may want to fully utilize apps,
but at the same time, they need to worry about battery life
[12]. It is not convenient to recharge the 5G network
devices every time. So, improving the battery life of smart
5G network devices is a concern for developers, manu-
facturers, and users [13]. You may wonder why you need to
worry about battery power when you have a charger or
power bank at home. Answer: repeated charging will de-
grade your battery performance. (is will drain your
battery life. So, care needs to be taken to conserve battery
power [14].

If the distracted electrodes are not dangerous to nearby
negative electrodes, we are allowed to limit measures to prevent
a short circuit. For this, an additional splitter is placed on the
accumulated side of the distracted electrode. Such electrodes are
replaced during the next battery repair. With significant and
progressive casting, it is necessary to replace all the positive
electrodes in the battery with new ones [15]. Replace only the
distracting electrodes with new ones. (e main source of
harmful contaminants in the electrolyte during the operation is
to get water.(erefore, it should be used to get the first place to
be filtered or equal to the entry of harmful contaminants in the
electrolyte. To remove the iron, the batteries are discharged,
removed with contaminated electrolyte slag, and washed with
filtered water. After washing, the batteries are filled with
1.04–1.06g/cm 3 density and will be charged until the voltage
and density of the electrolyte are changed [16]. (e solution is
then removed from the batteries, replaced with 1.20g/cm 3
instead of the new electrolyte, and the batteries are discharged to
1.8V. At the end of the discharge, the electrolyte is checked for
iron content. With favorable analysis, the batteries are normal.
In the event of an adverse analysis, the treatment cycle is

repeated. To eliminate manganese pollution, the batteries are
discharged.(e electrolyte is new and the batteries are normally
charged. If the pollution is new, a single electrolyte change is
sufficient. Copper is not removed from batteries with electro-
lytes [17]. To remove it, the batteries must be charged. When
charging, the copper is converted to negative electrodes, which
are replaced after charging. (erefore, it is advisable to make
such an alternative if the old replacement nonnegative elec-
trodes are in the stockpile. In accumulations with opaque tanks,
you can check the number of scissors using a square made of
acid-resistant material [18]. A separator is removed from the
middle of the accumulation, lifting several separators nearby,
and reduced to the space between the electrodes until a square
has interacted. (en the angle is rotated 90° and rises to
communicate with the lower edge of the electrodes. (e dis-
tance to the lower edge of the electrodes from the slag surface is
equal to the difference in the variation of the measurements at
the upper end of the square and 10mm [19–22]. If the square
does not spin or rotate with difficulty, the slag can be com-
municated with or near electrodes.(eworking principle of the
proposed system is concentrated on identifying the electrolyte
leaks on the equipment, cleaning the electrolyte, and recycling
the remaining electrolyte.

(e main contribution of this proposed method is fo-
cused on the following:

(i) (e improvisation and utilization of the battery life
cycle and its concentration on the improvement of
electrolytes.

(ii) (e battery power and the used loader components
and their selection and utilization are monitored,
and effectiveness is calculated and measured.

(iii) Also, the proposed method concentrates on man-
aging the charging and outdoor components and
their resource utilization.

2. Literature Review

Smart 5G network devices consume more power than voice
notifications. So, turning off the vibration alert will save
battery charge. Dimming the screen display can go a long
way toward saving power. Higher brightness consumes
more power whenever we turn on our display [1]. It’s best
to use an auto-brightness setting that automatically adjusts
screen brightness while conserving battery. (e lower the
brightness, the higher the batteries’ charge. Reducing
screen time-out times can reduce power consumption [2].
Our 5G network devices lose charge in standby mode. So
once the screen is off, it will save the battery from being
used anymore. We do not always remember to lock the 5G
network devices once we use it. Reducing screen time
during that time will save battery. If you are not using the
5G network devices for a long time while attending a
meeting or any other important activity, it is useful to
switch it off. However, turning on the 5G network devices
may use more power [3].

Turning it off for a few hours will save more battery
power than sleep mode. You need to know the type of
battery used in your 5G network devices for proper charging.
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(ere are two types of batteries commonly used in smart 5G
network devices, namely lithium-ion (Li-Ion) and nickel-
based batteries (nickel-metal-hydride (NiMH) and nickel-
cadmium (NiCd)) [4]. Nickel-based batteries should only be
charged when there is no power supply. Repeated charging
reduces battery life. (ey should not be charged when there
is a good amount of electricity. Li-ion batteries have a long
cycle life. (ey have to charge frequently to maintain the
original capacity [8]. So, find your battery type for proper
charging, and then follow the proper charging strategy.
While using the 5G network devices we can open many
applications. But often we do not worry about closing them
later. So even if we are not using it, it will consume battery
power in the background, so closing unused apps actually
reduces power consumption [10].

A GPS system allows you to track your location. It
consumes a lot of battery power. When enabled, many apps
use GPS to track their location and waste battery power. So,
it is better to turn off GPS when not needed to save power.
Constantly searching for signals consumes energy [11]. So
always turn off these services when you do not need them.
Otherwise, it drains the battery’s power. A lot of energy is
spent searching for signals, especially when you are in an
area with poor network reception. (erefore, it is better to
keep the 5G network devices in airplanemode in such places.
Use these services only when necessary [12]. Too many
notifications from various apps can consume too much
power. To disable notifications for a specific app, go to app
info and uncheck the option to show notifications. It can
reduce energy consumption through applications. Smart 5G
network devices can heat up and discharge more battery
power when kept at high temperatures [13]. So, maintaining
a cool temperature will help bring out the optimum per-
formance of your battery, so avoid exposing your 5G net-
work devices to high temperatures. Keep away from direct
sunlight or any other hot places. Avoid exposing your 5G
network devices to excessive heat [14].

3. Proposed Model

When charging and recharging, gases are released from all
batteries and storage batteries, excluding gas-tightly sealed
batteries. It is the result of water electrolysis in the recharge
current.(e resulting gases are hydrogen and oxygen. When
they are released into the environment, the amount of
hydrogen concentration in the air may exceed4%. To avoid
improper charging and/or excessive gas evolution, the type
of charger, its class, and its properties must be matched to
the battery type according to the manufacturer’s instruc-
tions. If the testing gas emission is less than the installation
of this quality, the requirements for the calculation of
ventilation will not be accepted during the standard battery
test. If the test gas emission values are higher than those of
this quality, the ventilation requirements will be tightened.
Types of batteries are shown in Figure 1. A battery (sec-
ondary cell, rechargeable cell, and single cell) is a chemical
current source with the ability to restore electricity tariff after
an interruption.

(i) Leading acid battery: It’s a rechargeable battery
based on the aquatic solution of sulfuric acid, which
contains lead dioxide and negative electrodes
leading the lead.

(ii) Nickel cadmium battery: it is an alkaline electrolyte
battery that contains cadmium in nickel oxide and
negative electrodes.

(iii) Gas-tight battery: the battery is sealed and does not
discharge gas or liquid during operation under the
limited charge and temperature conditions specified
by the manufacturer. Battery protection devices can
be installed to prevent dangerous high internal
stresses

(iv) Rechargeable battery: two or more batteries are
combined together and used as an electrical source.

(v) Drag battery: A rechargeable battery designed to
supply electric vehicles with the energy saved.

(vi) Monoplock Battery: A battery with many separate
but electricity-attached chemical current sources,
each containing electrodes, an electrolyte, tracks or
connectors, and, separators.

When the charging equipment is stopped, it can be
considered that the excretion from the batteries has been
completed within 1 hour after turning off the charging
current. However, after this time, safety precautions must be
followed by the battery shock when the gas is installed in the
batteries or when the vehicle is in operation. Some gases can
be released duringmaintenance due to regeneration braking.
Battery 5G networks, plates, boxes, and boxes must have
adequate mechanical strength, resist the chemical effects of
electrolytes, and protect against the effects of leakage or
electrolyte leakage. (is proposed model is shown in the
following Figure 2:

Leading 
acid battery

Nickel 
Cadmium 

Battery

Gas Tight 
Battery

Rechargable 
Battery

Drag 
Battery

Monoplock 
Battery

Figure 1: Different types of batteries.
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(i) Precautions should be taken against electrolyte leaks
on the equipment/accessories above the battery.

(ii) Nothing should be banned from cleaning the
electrolyte or water spilled on the battery tray.

(iii) After maintenance, the remaining electrolyte should
be recycled according to local rules.

When working with any battery, its batteries are
interconnected by pipes for a gas exhaust system or water
top-up system, and precautions should be taken to reduce
the spread of eruptions between the current leak or battery
batteries. (e following security measures must be taken
from the proposed model shown in Figure 3:

(i) Reduce the risk of the current leak; for this purpose,
the pipe system must match the energy of the
circuit.

(ii) Reduce the risk of spreading current leaks and
eruptions by reducing the number of batteries in
circuits attached by a pipe system.

(iii) Maximum batteries attached to the pipe of the pipes
in a row are not greater than the size specified by the
manufacturer of the system.

A centralized gas exhaust system is used to discharge
gases from the battery. In most cases, this system is related to
the centralized water topping system.(ere are no products,
testing, or standards for batteries with centralized gas ex-
haust systems using hydrogen exhaust systems or gas col-
lecting hats and pipes. Nevertheless, it is recommended to
comply with the requirements of the grade regarding the
ventilation of a 5G network or vehicle when charging bat-
teries. With a centralized flue gas system, the cavity must be
located outside the battery box and protect the flames from

the possibility of an eruption caused by the flame sources
near the vents. When charging, if a separate windmill is
connected to a compulsory ventilation system, it releases all
the evolved gases outside the charging zone.

(i) Step 1: the batteries in the power plants are op-
erated by the power workshop, and the sub-plants
are operated by the subpower service.

(ii) Step 2: the maintenance of the battery should be
assigned to a specialist battery expert or specially
trained electrician. Accepting the battery after
installation and repair, its function and mainte-
nance must be managed by the person in charge
of the power station or network company’s
electrical equipment.

(iii) Step 3: when running battery systems, ensure the
required voltage level in DC buses in their long-
term, reliable activity and in normal and emer-
gency conditions.

(iv) Step 4: before running the newly fitted or retired
battery, the battery capacity should be verified for
10 hours of exhaust current, the quality and
density of the electrolyte, the voltage of the
batteries, and the battery’s relation to the ground
at the end of the charge and the excretion.

(v) Step 5: batteries should be constantly charged.
Charging installation should provide voltage
confirmation in battery tires with ±1-2% devia-
tion. Additional battery packs that are not con-
stantly used in the process must have a separate
charging device.

(vi) Step 6: all battery packages should be fully
charged to prevent the sulfation of the electrodes,
and the battery charges should be balanced.

Reduce the risk of the 
current leak

Reduce the risk of 
spreading current leaks 

The pipes in a row are 
not greater than the 

size 

Figure 3: Proposed model approach for draining.

Idenify the electrolyte 
leaks on the equipment 

Cleaning the 
electrolyte 

The remaining 
electrolyte should be 

recycled 

Figure 2: Proposed model approach for draining.
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(vii) Step 7: to determine the real battery capacity
(within nominal efficiency), the control dis-
charges must be carried out in accordance with
the SEC.

(viii) Step 8: after the battery emergency discharge at
the power station, the capacity of 90% of its
normality should not be carried out for more than
8 hours.

(ix) Step 9: control batteries are planned to monitor
the status of the battery. Control batteries must be
replaced annually, and their number is set by the
energy company’s chief engineer, depending on
the battery status, but not less than 10% of the
batteries in the battery.

(x) Step 10: the electrolyte density is normalized at a
temperature of 20°C. (erefore, since the density
of the electrolyte is measured at a different
temperature from 20°C, the formula must be
densely reduced to 20°C
R20 is the density of electrolyte at a temperature of
20°C, G/CM3;
where,
RT-temperature t,
electrolyte density in G/CM3;
the coefficient of the density of the electrolyte
with a temperature change of 0, 0007–1°C;
T-electrolyte temperature, °C.

(xi) Step 11: the battery of the 5G network should be
kept clean. (e ground spilled electrolyte should
be removed immediately with dry sawdust. After
that, soak the floor in the soda ash solution and
then wipe it with water.

(xii) Step 12: battery tanks, busbar insulators, insula-
tors under the tanks, wardrobe their insulators,
and wrap the shelf plastic coatings with a cloth,
first moistened with water or soda solution, and
then dry.

(xiii) Step 13: the temperature in the battery 5G net-
work should be maintained at less than +10. In
auxiliary power plants that do not have staff on
duty, temperature decrease is allowed up to 5C.
Sudden temperature changes in the battery’s 5G
network are not allowed, thereby not causing
moisture condensation, and reducing the bat-
tery’s insulation resistance.

(xiv) Step 14: it is important to monitor the status of
the acid-resistant sketch of walls, ventilation
pipes, metal structures, and shelves. All defective
places should be colored.

(xv) Step 15: technical petroleum jelly lubrication of
nonpainted compounds should be renewed from
time to time.

(xvi) Step 16: the network equipment in the battery 5G
network should be closed. In the summer, the
network equipment is allowed to be open during

the fees, if the outdoor air is not dusty, and if there
are no other 5G networks above the entrance of
the chemical plants or above the ground.

(xvii) Step 17: in the wooden pots, the top edges of the
lead lining should not touch the tank. If the
contact is found, the edges of the lining must be
bent to prevent the drops of the electrolyte from
entering the cortex by destroying the tree of the
tank.

(xviii) Step 18: to reduce the evaporation of the elec-
trolyte of open-type batteries, the cardboard
should be used to absorb the electrolyte. Care
should be taken not to stretch beyond the inner
edges of the tank.

Even at the same battery current, even at the optimal
battery charging voltage, it is not sufficient to maintain all
batteries fully charged due to the differences in the self-
exclusion of individual batteries. To bring all SK-type bat-
teries to a fully charged state and prevent the sulfation of the
electrodes, the standard-level value of the electrolyte density
in all batteries should be set at 1.2–1.21 g/cm 3. Batteries
running in standard charging mode are not used under
normal conditions. If the charging device is fails or dis-
connected, they are only discharged during emergencies or
control discharges. Controlled discharges are made to de-
termine the real capacity of the battery and are carried out in
10- or 3-hour exhaust modes. At thermal power plants, the
control of batteries should be carried out once every 1 to 2
years. In the hydroelectric stations and substations, the
required amount of discharges must be made. In cases where
the number of batteries is not adequate to provide voltage on
the tires at the end of the discharge within the specified
limits, a portion of the main batteries is allowed to be
discharged.

4. Results and Discussion

(e proposed alternate routing model (ARM) was compared
with the existing Trust-Based Co-Operative Cross-Layer
Routing (TCCR), Dynamic Energy Scheduling and Routing
(DESR), efficient routing and performance amelioration
(ERPA), and integrated structured cabling system (ISCS).
(e entire proposed simulation routing model and other
existing routing models are carried out and executed using
NS 3 simulator, and a high computing processor system has
been used in this experiment. (e percentage of accuracy
achieved in this proposed work ranges between 96% and
98% higher than other existing routing protocols and
scheduling algorithms.

4.1. Battery Life Cycle. (e battery is covered with a lid so
that electrolysis and evaporation materials are freely re-
moved from the battery in the atmosphere. (e rechargeable
battery, in which batteries are covered but there is a valve
that removes gas if the internal pressure is exceeded. (is
was shown in the following Table 1.
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4.2. ElectrolyteManagement. A liquid or solid material with
mobile ions that provide ionic conductivity. (e gas evo-
lution from water electrolysis in the battery electrolyte is
called gas emissions. (e electrolyte used in lead-acid bat-
teries is an aquatic solution of sulfuric acid. (e electrolyte
used in nickel-cadmium and nickel-metal hydride batteries
is the water solution of potassium hydroxide. To prepare the
electrolyte, use only distilled or dehydrated water. Battery
auxiliary equipment, racks, or products used for rails, and
battery components must be resistant to or protected from
the chemical effects of electrolyte. In the case of splashing
electrolyte, it is necessary to remove the fluid with an
absorbed substance, preferably one that is neutral. (is was
shown in Table 2.

4.3. Battery Power. (e process of receiving electrical energy
from a battery or rechargeable battery from the outer circuit
results in chemical changes in the battery, resulting in the
electrical energy’s chemical power. (is is shown and dis-
cussed in Table 3.

4.4. Loader Component (High Charge). Continious charging
leads to temperature increase and loss in efficiency of the
battery. When installing the temperature control system,it is
necessary to prevent any risk from flame sources, leakage
current, and electrolyte leaks. (is is shown and discussed in
Table 4.

4.5. Outdoor Battery Equipment. Equipment installed in the
battery to maintain or monitor battery function. (e cen-
tralized water filling system, the electrolyte compound
system, the battery control system, the centralized gas ex-
haust system, the battery connectors (plug connectors/
connections), and the temperature control systems are the
important components of outdoor equipment.(is is shown
and discussed in Table 5.

4.6. Charging Components. It is a closed space or area
designed for charging batteries. (e 5G network can also be
used for battery care. Designed and fitted the outer part for
charging batteries. (e bat can also be used for maintenance.
Maintenance devices such as funnels, hydrometers, and
thermometers should be isolated separately for lead-acid and
nickel-cadmium batteries and should not be used for any
other purpose. (is is shown and discussed in Table 6.

Table 1: Management of battery life cycle.

No of inputs TCCR DESR ERPA ISCS ARM
100 71.31 74.58 68.66 89.47 95.22
200 71.64 76.08 69.25 91.34 96.23
300 72.98 77.19 70.23 92.17 96.39
400 74.12 77.57 71.44 93.08 97.35
500 75.17 78.58 72.58 94.00 96.92
600 75.88 79.51 73.69 95.33 98.12
700 77.18 80.51 74.39 96.41 98.28

Table 2: Management of electrolyte.

No of inputs TCCR DESR ERPA ISCS ARM
100 69.01 72.28 72.06 82.21 94.31
200 69.34 73.78 72.65 84.08 95.35
300 70.68 74.89 73.63 84.91 95.48
400 71.82 75.27 74.84 85.82 96.44
500 72.87 76.28 75.98 86.74 96.01
600 73.58 77.21 77.09 88.07 97.25
700 74.88 78.21 77.79 88.94 97.36

Table 3: Management of battery power.

No of inputs TCCR DESR ERPA ISCS ARM
100 72.06 93.29 66.14 87.24 96.00
200 70.43 91.55 64.56 85.82 94.71
300 69.95 89.21 62.36 84.56 93.70
400 68.66 88.40 60.73 82.57 92.81
500 66.55 86.11 59.59 80.10 92.44
600 65.06 84.18 57.39 78.66 91.40
700 63.25 82.45 56.24 76.94 90.63

Table 4: Management of loader component.

No of inputs TCCR DESR ERPA ISCS ARM
100 70.27 64.54 64.50 73.77 94.05
200 71.90 66.28 66.08 75.19 95.34
300 72.38 68.62 68.28 76.45 96.35
400 73.67 69.43 69.91 78.44 97.24
500 75.78 71.72 71.05 80.91 97.61
600 77.27 73.65 73.25 82.35 98.65
700 79.08 75.38 74.40 84.07 99.42

Table 5: Management of outdoor battery equipment.

No of inputs TCCR DESR ERPA ISCS ARM
100 68.89 65.01 62.15 70.58 94.21
200 68.78 65.03 61.98 70.31 93.71
300 68.76 65.91 62.71 70.61 93.83
400 71.86 68.74 66.05 74.12 97.06
500 73.06 70.06 66.78 75.44 97.44
600 73.67 70.89 67.67 75.98 98.01
700 74.08 71.29 67.75 76.28 97.71

Table 6: Management of charging components.

No of inputs TCCR DESR ERPA ISCS ARM
100 74.85 75.89 54.98 65.40 92.07
200 76.52 77.02 57.91 66.66 94.54
300 78.47 77.37 59.45 68.55 95.34
400 80.46 79.32 61.48 69.75 96.54
500 83.04 80.09 62.38 61.31 97.18
600 85.03 80.47 64.35 73.06 98.44
700 87.05 81.60 65.82 73.99 99.44
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5. Discussion

Mainly, the overall working principle of the proposed system
is concentrated on identifying the electrolyte leaks on the
equipment, cleaning the electrolyte, and recycling the
remaining electrolyte. (e percentage of accuracy achieved
in this proposed work has been improvised over other
existing routing protocols and scheduling algorithms. (e
proposed method gives a clear idea of how we obtain a better
battery life cycle and also about the utilization and selection
of battery power and electrolyte. Also, it shows that we
achieved 98 percent accuracy in the allocation of loads and
selection of outdoor components, which is higher than other
existing routing mechanisms.

6. Conclusion

Before the start of the discharge, the exhaust date of the
electrolyte in each battery, the voltage, and the temperature
in the density and control batteries are recorded. Mea-
surement results must be compared to the results of the
measurements of the previous digits. For the most accurate
assessment of the battery status, it is necessary to carry out all
the control discharges of this battery in the same mode. (e
measurement data must be entered. If the average tem-
perature of the electrolyte varies from 20°C during the
discharge, the actual capacity obtained should be reduced to
20°C according to the formula. (e resistance of the charged
battery is measured by the insulation monitoring device in
the DC buses or with a voltmeter with an internal resistance
of at least 50 kOHM. If there are signs of a short circuit, the
batteries in the glass tank should be carefully examined by a
small translucent lamp. (e batteries in hard rubber and
wooden pots are studied from the top. In batteries running
under standard charging with increased voltage, the growth
of fluffy leading trees may develop on the negative elec-
trodes, which causes a short circuit. If the growths are found
on the upper edges of the electrodes, they should be dis-
connected with a piece of glass or other acidic materials. It is
recommended tomake small movements of the separators to
prevent and remove a growth in other parts of the electrodes.
In future enhancements by performing several deep learning
algorithms and artificial intelligence concepts the impro-
visation on the battery usage can be improved[23].

Data Availability

(e datasets used and/or analyzed during the current study
are available from the corresponding author upon reason-
able request.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

References

[1] M. Panchal, R. Upadhyay, and P. Vyavahare, “Trust-based co-
operative cross-layer routing protocol for industrial wireless

sensor networks,” https://www.ijcna.org/Manuscripts/
IJCNA-2022-O-25.pdf.

[2] G. Manoharan and A. Sumathi, “Efficient routing and per-
formance amelioration using Hybrid Diffusion Clustering
Scheme in heterogeneous wireless sensor network,” Inter-
national Journal of Communication Systems, vol. 35, no. 15,
Article ID e5281, 2022.

[3] J. Logeshwaran, M. Ramkumar, T. Kiruthiga, and
R. Sharanpravin, “(e role of integrated structured cabling
system (ISCS) for reliable bandwidth optimization in high-
speed communication network,” ICTACT Journal on Com-
munication Technology, vol. 13, no. 01, pp. 2635–2639, 2022.

[4] N. Islam, M. I. Hossain, and A. Rahman, “A comprehensive
analysis of quality of service (QoS) in ZigBee network through
mobile and fixed node,” Journal of Computer and Commu-
nications, vol. 10, no. 03, pp. 86–99, 2022.

[5] M. Alqahtania, M. J. Scottb, and M. Hub, “Dynamic energy
scheduling and routing of a large fleet of electric vehicles using
multi-agent reinforcement learning,” Computers & Industrial
Engineering, vol. 169, 2022.

[6] I. Ioannou, C. Christophorou, V. Vassiliou, and A. Pitsillides,
“A novel Distributed AI framework with ML for D2D
communication in 5G/6G networks,” Computer Networks,
vol. 211, Article ID 108987, 2022.

[7] Y. Wang, R. Xu, C. Zhou, X. Kang, and Z. Chen, “Digital twin
and cloud-side-end collaboration for intelligent battery
management system,” Journal of Manufacturing Systems,
vol. 62, pp. 124–134, 2022.

[8] H. Pourrahmani, A. Yavarinasab, R. Zahedi, A. Gharehghani,
M. H. Mohammadi, and P. Bastani, “(e applications of
Internet of (ings in the automotive industry: a review of the
batteries,” Internet of <ings, vol. 19, Article ID 100579, 2022.

[9] M. Momeni, H. Soleimani, S. Shahparvari, and B. Afshar-
Nadjafi, “Coordinated routing system for fire detection by
patrolling trucks with drones,” International Journal of Di-
saster Risk Reduction, vol. 73, Article ID 102859, 2022.

[10] J. Logeshwaran and S. Karthick, “A smart design of a multi-
dimensional antenna to enhance the maximum signal clutch
to the allowable standards in 5G communication networks,”
ICTACT Journal on Microelectronics, vol. 8, no. 1, pp. 1269–
1274, 2022, April.

[11] G. Tsaramirsis, A. Kantaros, I. Al-Darraji et al., “A modern
approach towards an industry 4.0 model: from driving
technologies to management,” Journal of Sensors, vol. 2022,
Article ID 5023011, 18 pages, 2022.

[12] P. Das, S. Ghosh, S. Chatterjee, and S. De, “A low cost outdoor
air pollution monitoring device with power controlled built-
in PM sensor,” IEEE Sensors Journal, vol. 22, no. 13,
pp. 13682–13695, 2022.

[13] S. A. H. Mohsan, M. A. Khan, F. Noor, I. Ullah, and
M. H. Alsharif, “Towards the unmanned aerial vehicles
(UAVs): a comprehensive review,”Drones, vol. 6, no. 6, p. 147,
2022.

[14] A. Gupta, A. V. H. Vardhan, S. Tanwar, N. Kumar, and
A. Singh, “Performance Analysis at different millimetre wave
frequencies for indoor shopping complex and outdoor UAV
applications towards 5G,” Microprocessors and Microsystems,
vol. 90, Article ID 104506, 2022.

[15] L. M. Alkwai, A. N. Mohammed Aledaily, S. Almansour,
S. D. Alotaibi, K. Yadav, and V. Lingamuthu, “Vampire attack
mitigation and network performance improvement using
probabilistic fuzzy chain set with authentication routing
protocol and hybrid clustering-based optimization in wireless

International Transactions on Electrical Energy Systems 7

https://www.ijcna.org/Manuscripts/IJCNA-2022-O-25.pdf
https://www.ijcna.org/Manuscripts/IJCNA-2022-O-25.pdf


sensor network,” Mathematical Problems in Engineering,
vol. 2022, Article ID 4948190, 11 pages, 2022.

[16] M. Alqahtani, M. J. Scott, and M. Hu, “Dynamic energy
scheduling and routing of a large fleet of electric vehicles using
multi-agent reinforcement learning,” Computers & Industrial
Engineering, vol. 169, Article ID 108180, 2022.

[17] A. Gupta and S. K. Gupta, “A survey on green unmanned
aerial vehicles-based fog computing: challenges and future
perspective,” Transactions on Emerging Telecommunications
Technologies, Article ID e4603.

[18] M. Sutharasan and J. Logeshwaran, “Design intelligence data
gathering and incident response model for data security using
honey pot system,” International Journal for Research &
Development in Technology, vol. 5, no. 5, pp. 310–314, 2016.

[19] N. Chandnani and C. N. Khairnar, “An analysis of archi-
tecture, framework, security and challenging aspects for data
aggregation and routing techniques in iot wsns,” <eoretical
Computer Science, vol. 929, 2022.

[20] M. Suriya andM. G. Sumithra, “Overview of spectrum sharing
and dynamic spectrum allocation schemes in cognitive radio
networks,” 8th International Conference on Advanced Com-
puting and Communication Systems (ICACCS), vol. 1,
pp. 934–937, 2022, March.

[21] H. Anandakumar and R. Arulmurugan, “A graphic model,
simulators and formal evaluation of protocols for wireless
communication,” in Proceedings of the 2019 <ird Interna-
tional Conference on I-SMAC (IoT in Social, Mobile, Analytics
and Cloud)(I-SMAC), Piscataway, NJ, USA, 2019.

[22] N. (iyagarajan and N. Shanmugasundaram, “An investi-
gation on energy consumption in wireless sensor network,”
8th International Conference on Advanced Computing and
Communication Systems (ICACCS), vol. 1, pp. 1359–1364,
2022.

[23] S. Dalal, B. Seth, V. Jaglan et al., “An adaptive traffic routing
approach toward load balancing and congestion control in
Cloud–MANET ad hoc networks,” Soft Computing, vol. 26,
no. 11, pp. 5377–5388, 2022.

8 International Transactions on Electrical Energy Systems



Research Article
Environmental Fault Diagnosis of Solar Panels Using Solar
Thermal Images in Multiple Convolutional Neural Networks

Tamilselvi Selvaraj,1 Ramasubbu Rengaraj,1 GiriRajanbabu Venkatakrishnan,1

SoundhariyaGanesan Soundararajan,1 Karuppiah Natarajan,2

PraveenKumar Balachandran ,2 PrinceWinston David,3 and Shitharth Selvarajan 4

1Department of Electrical and Electronics Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai,
Tamil Nadu 603110, India
2Department of Electrical and Electronics Engineering, Vardhaman College of Engineering, Hyderabad, Telangana 501218, India
3Department of Electrical and Electronics Engineering, Kamaraj College of Engineering and Technology, Virudhunagar,
Tamil Nadu 626001, India
4Department of Computer Science and Engineering, KebriDehar University, Kabridahar, Somali 001, Ethiopia

Correspondence should be addressed to Shitharth Selvarajan; shitharths@kdu.edu.et

Received 1 August 2022; Revised 1 September 2022; Accepted 2 September 2022; Published 22 September 2022

Academic Editor: Albert Alexander Stonier

Copyright © 2022 Tamilselvi Selvaraj et al. %is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Every year, each solar panel suffers an efficiency loss of 0.5% to 1%. %is degradation of solar panels arises due to environmental
and electrical faults. A timely and accurate diagnosis of environmental faults reduces the damage caused by faults on the panel. In
recent years, deep learning precisely convolutional neural networks have achieved wonderful results in many applications. %is
work is focused on finely tuning pretrained models of convolutional neural networks, especially AlexNet, GoogleNet, and
SqueezeNet. Based on the performance metrics, SqueezeNet is used for training thermal images of solar panels and for the
classification of environmental faults. %e results obtained show that SqueezeNet has a significant testing accuracy of 99.74% and
F1 score of 0.9818, which make the model successful in identifying environmental faults in solar panels and help users to protect
the panels.

1. Introduction

Photovoltaic systems are one of the most distinguished and
clean sources of energy which generate power by converting
solar energy from the sun into direct current electricity. In
2019, solar power delivered was 2.7% of total worldwide
electricity production. %e International Energy Agency has
stated by 2050, solar power would contribute up to 16% of
the world’s electric energy production with solar being the
largest renewable source of energy. Electric power generated
by a 1KW system of solar panels is roughly around 850KWh
per year. However, each year the solar panels suffer an ef-
ficiency loss of 0.5% to 1% resulting in reduced output power
generation. %is power loss in solar panels arises due to
environmental and electrical faults [1].

Environmental faults like shading, soiling, and snowing
tend to cause a significant power loss in PV modules. Solar
panels are expensive and require proper maintenance
throughout the year. Hence, it is necessary that faults in the solar
panels are detected and rectified in the preliminary stage [2].

%e goal of this research is to detect environmental faults in
the solar panels accurately. For this purpose, different con-
volutional neural networks (CNN), namely, AlexNet, Goo-
gleNet, and SqueezeNet are trained and their performance
metrics are obtained. Based on the results, a suitable network is
opted for training thermal images of solar panels and for the
precise determination of environmental faults in solar panels.

S.K. Firth conducted a survey and found that annually
the different faults in photovoltaic systems reduce the power
output by 19% [3]. To detect these faults, W. Chine proposed
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a feasible solution for the fault classification of photovoltaic
system using Artificial Neural Network (ANN) [4]. In this
proposed method, a simulation model is introduced for
computing a number of parameters like current, voltage, and
the number of peaks in the current-voltage (I-V) charac-
teristics of the PV cells. Two ANN architectures are
employed for environmental and electrical faults detection
in PV systems: the Multilayer Perceptron (MLP) and the
Radial basis function (RBF). For the MLP based model, the
true and false classification rates achieved are 90.3% and
9.7%, respectively, and for RBF-based model, they are 68.4%
and 31.6%, respectively.

C. Mantel developed a machine learning model where
electroluminescence images of photovoltaic panels were fed
to the model [5]. Two architectures, Support Vector Ma-
chine (SVM) and Random Forest Model (RF), were
employed. %e results obtained from SVM had an accuracy
of 0.997 and a recall of 0.274. %e RF model had an accuracy
of 0.967 and a recall of 0.193. %e results demonstrated that
SVM had an improvement of about 3% in terms of accuracy
compared to the RF model. However, the high accuracy of
both the classifiers (SVM and RF) makes them promising for
detecting faults in PV modules from electroluminescence
images.

Furthermore, Natarajan studied the above model by
using thermal images of photovoltaic systems [6]. Based on
the fundamentals of thermal image processing, an algorithm
is suggested for deriving the characteristics of the solar cells
in operation. %e images are classified by a classifier tool
called SVM, which determines whether the solar modules
are faulty or nonfaulty. %e results obtained are 97% ac-
curate with the comparison of test and training results. %is
fault classification technique is used in real time for the large
PV system with very less computation time.

Papadomanolaki on his research based on benchmark-
ing different deep learning networks for classification of
precise and sharp satellite multispectral data has trained
CNN from scratch using huge datasets comprising large
number of labeled data samples [7]. %erefore, employing a
pretrained deep learning model has been proposed and
successfully achieved in this paper.

In addition, C. Szegedy has carried out a detailed study of
different CNN architectures, namely, AlexNet, VGG Net,
and GoogleNet in the computer vision community, and their
versions are made available publicly [8].

Diverse range of works in machine learning community
have successfully manifested the generalization power of
deep learning networks where large datasets have performed
well in regards with classification of other datasets, even
from different distinct. Motivated by these results, we apply
pretrained models of AlexNet, GoogleNet, and SqueezeNet
on a large-scale image classification dataset for fault clas-
sification in PV arrays [9–11].

%e following paper comprises various sections elabo-
rating in detail about environmental fault diagnosis of solar
panels using CNN. Section 2 describes about the various
environmental faults in solar panels while the Section 3
discusses about the identification of these faults. In Section 4,
the mechanism of deep learning and different neural

networks are elaborated followed by the explanation of
confusion matrix algorithm in Section 5. Section 6 displays
the corresponding experimental results for environmental
fault diagnosis of solar panels using various CNN
architectures.

2. Environmental Faults in Solar Panels

Solar panels are operated in the open air, making them
vulnerable to environmental conditions [12]. Under these
conditions, the PVmodule may fail to operate efficiently due
to the following effects:

(i) Shading effect: shading can arise from direct
shadows or temporary shadows. Direct shadows
cause serious impact on the performance of the
solar panel. Temporary shadows are caused due to
shades of buildings, trees, snow, etc. Shading effect
is classified into two types such as partial shading
and fully shading. Partial shading leads to reduced
current and voltage and the output power is
dropped to half the nominal value while full shading
leads to no output power extraction as shading of at
least 1/36 of the cell reduces the output power by
75% [13].

(ii) Soiling effect: the aggregation of dust particles like
sand, cement, mud, and leaves etc., on solar panel’s
surface is called soiling. %e various factors causing
soiling and power loss are climatic conditions, tilt
angle, and liquid used for cleaning solar panels [14].

(iii) Snowing effect: when a thick layer of snow is de-
posited on a solar panel, solar cells find it difficult to
absorb solar radiation, and this affects the output
power very badly. %is affects more worse when the
snow remains on the panel for a longer period of
time [15].

(iv) Temperature rise: solar panels are temperature-
sensitive. A temperature rise above the optimum
temperature 35°C degrades the output power of the
solar panel and causes excess heat emission, highly
affecting the open circuit voltage of the solar panel.

3. Identification of Environmental Faults

%e following section describes about the various stages
involved in the identification of environmental faults in solar
panels such as capturing and processing the thermal images
of the solar panels, detecting hotspots in the images, and
identifying those faults.

3.1. -ermography. Environmental faults like the temper-
ature rise in solar panels and shading effects cannot be
perceived by human eyes. In such cases, the solar panel fault
can be detected by the principle of thermography. Each
object having a temperature above the absolute zero point (0
Kelvin) emanates infrared radiation, which is directly pro-
portional to its intrinsic temperature [16,17]. A thermal
imager when placed at a distance of 1m from the solar panel,
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the imager perceives the infrared radiation from the solar
panel and determines the surface temperature of the panel.
%e imager converts the infrared radiation into electrical
signals and displays these signals with varying temperature
in different colors [18,19].

3.2. -ermal Image Processing. %ermal image processing
helps to enhance the characteristics of the image data. %e
image processing method used in this research captures the
accurate hotspot area of the panel, and the contrast level of the
image is adjusted for better training of faults in neural net-
works. In Figure 1, the actual thermal image of the panel is
displayed, whereas in Figure 2, the contrast level of the panel
is adjusted high using thermal image processing software.

3.3. Hotspot Phenomenon. Hotspots are high temperature
zones affecting a particular section of a solar panel, thereby
reducing the localized efficiency and lowering the output
power of the solar panel [20]. %e hotspot phenomenon
primarily occurs due to shading and dust accumulation on
the panel. %ese preliminary damages in the solar panel can
be detected using thermal images. In Figure 3, the black box
shows the hotspot of the panel indicating the abnormal
working condition of the solar panel. %e remaining blue
portion and faded yellow-green portion indicates the normal
functioning of the solar panel.

3.4. Fault Detection and Identification. Fault detection
checks for any abnormal working condition in the solar
panel. In this research, the faults are determined based on
the location of the hotspot in the thermal image [21].

4. Convolutional Neural Network

Deep learning is a crucial fragment of machine learning
where multiple layers of nodes perform complex operations
like abstraction and representation, which perceive images,
sound, and text. Figure4 represents the functioning of deep
learning network in a flowchart.

Convolutional neural networks (CNNs) are a subset of
deep neural networks which are designed to operate on
visual imagery [22, 23]. %e properties and features of the
input images are extracted and are encoded by the CNN
architecture resulting in the reduction of parameters in large
quantities compared to normal neural networks.

4.1. Types OF CNN.
(i) AlexNet: Alex Krizhevsky designed AlexNet (AN)

in 2012. %is network consists of eight layers where
the first five layers are convolutional layers suc-
ceeded by max-pooling layers and the last three
layers are fully connected layers. For better training
performance, AN prefers ReLu activation function
over sigmoid and tanh [24].

(ii) GoogleNet: Google developed the GoogleNet (GN)
architecture. %is network consists of nine incep-
tion modules where in the twenty-two layers, four

are convolutional layers and max-pooling layers,
three layers are for average pooling followed by a
section of five fully connected layers and three
softmax layers [25].

(iii) SqueezeNet: SqueezeNet (SN) was developed by
DeepScale in 2016 and has accuracy with 50x less
parameter. %is network contains eighteen layers
which begins with a single convolution layer fol-
lowed by eight fire modules and ends with a con-
volutional layer. Different activation functions like
ReLu, tanh, and sigmoid can be used where ReLu
provides a good boost in the performance [26].

5. Parameters for Determination of the
Suitable Network

Confusion matrix is a predictive analysis method used for
describing the performance of the classification model in
deep learning [27]. %e rows in the confusion matrix depict

Figure 1: %ermal image of a solar panel with fault.

Figure 2: %ermal image of the faulty solar panel with the contrast
level adjusted high.
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the true class, whereas the columns depict the predicted
class. %e confusion matrix reports true positive, false
positive, true negative, and false negative. Furthermore, it
helps to calculate statistical measures like accuracy, speci-
ficity, sensitivity, precision, and F1 score.

True positive (TP): the output class matches with the true
class. True negative (TN): the output class is not predicted for
other classes except the true class. False positive (FP): the
output class is predicted as the true class when it is not. False

negative (FN): the output class is not predicted as the true
class when it is. Figure 5 shows the true positive, false positive,
true negative, and false negative of a confusion matrix.

5.1. Statistical Measures. Accuracy: accuracy is the ability to
detect the target class and the output class correctly, that is,
to numerate the fraction of true positive and true negative in
all the evaluated classes.

Accuracy �
(TP + TN)

(TP + TN + FP + FN)
. (1)

Specificity: specificity refers to the ability to determine
the target class correctly by the predicted class, that is, to
calculate the proportion of true positive.

Specificity �
TN

(TN + FP)
. (2)

Sensitivity: sensitivity refers to the ability to determine
the proportion of true negative, that is, the fraction of true
positive classes in all the positive assessments.

Sensitivity �
TP

(TP + FN)
. (3)

Precision: precision is defined as the fraction of positive
predictions in all the predicted positive classes.

Precision �
TP

(TP + FP)
. (4)

F1 score: F1 score is the harmonic mean of precision and
sensitivity and is a better measure than accuracy. A high
value of F1 score determines that the neural network has
better performance on positive classes.

F1score � 2∗
(Precision × Sensitivity)

(Precision + Sensitivity)
 . (5)

Compared to accuracy performance metrics, statistical
measures like precision, sensitivity, specificity, and F1 score
provide better insights into the prediction accuracy of neural
networks.

6. Experimental Results

%e following sections discusses in detail about data col-
lection and clustering of environmental faults in solar panels
and provide a comparative analysis of the trained and tested
fault images in various neural networks. Figure 6 represents
the various steps involved in the collection of fault images
from solar panels.

6.1. Data Collection and Clustering. A total of 1197 real
images of solar panels for different fault conditions were
captured. For training of various neural networks, the im-
ages were further divided in the percent ratio of 70 and 30 for
training and testing of solar panel images. Table 1 shows the
number of images for each training class of real images. %e
total numbers of images for testing and training are 313 and
884, respectively.

Figure 3: Hotspot location in the solar panel.
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Figure 4: Flowchart representation of deep learning algorithm.
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Similarly, a total of 872 thermal images for various faults
were captured from the infrared camera and divided in the
percent ratio of 70 and 30 for training and testing, re-
spectively. %is clustering of images helps in proper and
efficient training of neural networks. Table 2 shows the
number of images for each training class of thermal images.
%e total numbers of images for testing and training are 272
and 610, respectively.

6.2. Neural Network Analysis. Real images collected are
trained in Deep Network Designer application in MATLAB
software for various pretrained networks: SN, AN, and GN.

For the proper fitting of the trained model, training options
are set as shown in Table 3.

%e execution environment employed for training is
CPU. Table 4 shows the intermediate results obtained from
the training of real images in SN, AN, and GN. Figures 7–9
show the training progress of the various pretrained net-
works where the blue and red lines specify the training
accuracy and loss while the black dotted line specifies the
validation accuracy and loss of the trained model.

From the following figures, it can be seen that the dataset
is finely trained by AN as it attains a training accuracy of
99.8% and 100% at epochs 2 and 3 at a faster rate of 14min
47 s while SN takes a time of 21min 15 s to train and attains a
training accuracy of only 91.9% and 100% at corresponding
epochs 2 and 3. Compared to the other two neural networks,
GN takes a longer time of 23min 31 s to reach a training
accuracy of 92.48% and 99.15% at epochs 2 and 3, respec-
tively. Hence, AN is more suitable for training solar panels
for the fault classification of solar panels due to better
training accuracy and shorter training time followed by SN
next.

A set of 100 images are selected from the testing images.
%e confusion matrix for these samples is plotted, and
corresponding statistical measures such as accuracy, sensi-
tivity, specificity, precision, and F1 score are calculated for
SN, AN, and GN are given in the following. Figures 10–12
are the confusion matrices of SN, AN, and GN while
Figures 13–15 are the statistical measures of SN, AN, and
GN.

Figures 16–18 show the solar panel faults classified by
various neural networks along with their testing accuracy for
twenty testing images.

Table 5 shows the average of testing accuracy, specificity,
sensitivity, precision and F1 score. For the selection of an
appropriate neural network for fault to provide better acuity
in prediction accuracy, it is necessary for the various sta-
tistical parameters such as testing accuracy, specificity,
sensitivity and precision to complement each other and
provide a good F1 score. From the three neural networks

A FLIR E5-XT infrared camera of 19200 (160 x 120)
pixels is used for obtaining thermal images of solar module.

(i) Healthey solar panels
(ii) Solar panel with partial and full shading effect
(iii) Solar panel with partial and full soiling effect.
(iv) Solar panel with rise in temperature.

�e four experiments were carried out in an open area on the same day
(March 20, 2021).

�e weather during the day was sunny and humid with the tempertature
ranging over 29°C to 34°C.

�e thermal images were extracted by importing the images from the
camera to the FLIR Tool using an USB cable.

�e thermal images were extracted by importing the images from the
camera to the FLIR Tool using an USB cable.

A 150W monocrystalline solar PV panel is used in this experiment for
collecting thermal images. �e dimension of the solar panel is 6� x 4�.

Four types of solar panel images were captured in
this research for the classification of various faults using FLIR E5-XT:

Figure 6: Methodology for data collection and clustering.
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Figure 5: Confusion matrix.

Table 1: Number of real images used in each training class.

S. no. Training class Image count
1 Normal panel 156
2 Partially cement covered 157
3 Fully cement covered 120
4 Partially snow covered 144
5 Fully snow covered 163
6 Mud covered 144

Table 2: Number of thermal images used in each training class.

S. no. Training class Image count
1 Normal panel 100
2 Partially shaded 100
3 Fully shaded 108
4 Partially soil covered 102
5 Completely soil covered 100
6 Temperature rise 100
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Table 4: Intermediate results for SqueezeNet, AlexNet, and GoogleNet.

Type of network Epoch Iteration Time elapsed (hh:mm:ss) Validation accuracy Training accuracy Validation loss Training loss

SqueezeNet

1 1 00 : 00 : 26 17.3585 18.95 3.3108 3.2987
2 75 00 : 07 : 07 92.376 91.9345 0.1751 0.06371
3 155 00 :14 :10 100 100 0.0436 0.00668

3 (end) 231 00 : 20 : 44 100 100 0.0267 0.01164

AlexNet

1 1 00 : 00 :18 13.5849 12.5 3.7124 4.5314
2 75 00 : 04 :11 94.5783 99.875 0.00021 4.575e-05
3 155 00 : 09 : 35 100 100 6.9009e-05 2.644e-05

3 (end) 231 00 :14 :16 100 100 9.0214e-05 0.0008

GoogleNet

1 1 00 : 00 : 28 18.4905 19.3834 2.63963 3.1751
2 75 00 : 08 : 07 96.9811 92.4764 0.13759 0.0445
3 155 00 :14 : 50 100 99.1528 0.02365 0.005

3 (end) 231 00 : 23 : 00 100 100 0.0124 0.0026

Figure 7: Training progress of finely tuned SqueezeNet.

Table 3: Training options employed for the pretrained networks.

S. no. Training option Value
1 Solver ∗SGDM
2 Maximum epochs 3
3 Mini batch size 8
4 Max number of iterations 231
5 Base learning rate 0.0001
∗Stochastic gradient descent with momentum.
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tested, SN provides a remarkable testing accuracy of 99.815%
and a F1 score of 0.992. On the other hand, AN despite
having better training accuracy, the testing accuracy of the
network is 94.975 and F1 score is 0.9559 which is com-
paratively low compared to the other two networks as GN

itself provides a testing accuracy of 92.285% and F1 score
of 0.9832. Similarly, the order of specificity, sensitivity and
precision results were obtained higher for SN as the cor-
responding values were 0.9978, 0.9907 and 0.9936 and the
lowest values were obtained for AN as the values were

Figure 8: Training progress of finely tuned AlexNet.

Figure 9: Training progress of finely tuned GoogleNet.
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0.9897, 0.9515 and 0.9664. For GN, specificity, sensitivity
and precision results were 0.9977, 0.975 and 0.9936. It can be
seen that the specificity and precision of SN and GN are
nearly equal. However, the F1 score and sensitivity of SN has
an edge over GN.

Table 6 represents the comparative results of different
neural networks based on the number of layers, the number

of images which can be processed, and their image size.
Furthermore, SN requires a low memory size of 4.6MB with
18 layers that can process a total of 1.24 million images. GN
with a memory size of 27MB can process up to 7 million
images in 22 layers. AN can process up to 61 million images,
and it requires a memory size of 227MB and has only 8
layers.

Fully Cement covered

Fu
lly

 C
em

en
t c

ov
er

ed

Fully Snow covered

Fu
lly

 S
no

w
 co

ve
re

d

Mud Covered

M
ud

 C
ov

er
ed

Normal Panel

N
or

m
al

 P
an

el

Partiallu Cement Covered

Pa
rt

ia
llu

 C
em

en
t C

ov
er

ed

Partially Snow Covered

Target Class

Confusion Matrix

Pa
rt

ia
lly

 S
no

w
 C

ov
er

ed

O
ut

pu
t C

la
ss

Figure 10: Confusion matrix for SqueezeNet.
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Figure 11: Confusion matrix for AlexNet.
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Figure 12: Confusion matrix for GoogleNet.
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Figure 13: Statistical measures for SqueezeNet.
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Figure 14: Statistical measures for AlexNet.
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Figure 16: Fault classified by SqueezeNet with testing accuracy.

Figure 17: Fault classified by AlexNet with testing accuracy.
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Based on factors such as testing and training accuracy,
statistical measures, training time, and memory require-
ment, it can be seen that SN is efficient for the fault clas-
sification of solar PV panels with precision. Hence, a set of
thermal images were trained in SN. Figure 19 shows the
training progress of thermal images of solar panels with
faults. Table 7 indicates that the time required for training
and validating 610 images is 11min 53 s where the training
accuracy attains a training accuracy of 99.861 and 100 at the
end of epochs 2 and 3, respectively. Figures 20 and 21 present
the classification of PV faults in SN for real and thermal
images.

%e confusion matrices obtained for a sample of
hundred real and thermal images are shown in Figures 22
and 23. From the confusion matrices, it can be seen that
for real images, the desired class matches with the output
class giving 100% accuracy while the confusion matrix for
thermal images gives an accuracy of 98%. Table 8 presents
the statistical measures of thermal images trained in SN

where the neural network trained has an F1 score of
0.9818.

Table 9 depicts that the testing accuracy of thermal
images is 99.74% as the testing accuracy of each image tested
is above 0.95 while for real images the testing accuracy is
comparatively low, that is, 94.42%. However, the prediction
accuracy of real images by the pretrained SN is far better as
the accuracy is 100% while for thermal images the accuracy
is 98%. %e decrease in the prediction accuracy of thermal
images is due to the hotspots in the panels, which may arise
due to the temperature rise in addition to the actual fault in
the panel.

7. Limitations and Scope for Future Work

For efficient training of neural networks, a large number of
thermal images of solar panels are required. %is also in-
creases the training time which may extend from 1 hour to
2.5 hours and requires a better execution environment, most

Figure 18: Fault classified by GoogleNet with testing accuracy.

Table 5: Comparative measures of SN, GN, and AN.

Network type Testing accuracy of image Accuracy of prediction Specificity Sensitivity Precision F1 score
SN 99.82 0.997 0.998 0.991 0.994 0.992
AN 92.29 0.983 0.990 0.952 0.966 0.956
GN 94.98 0.993 0.998 0.98 0.994 0.983

Table 6: Parameters of various neural networks.

Network Type Memory size (MB) Image Size Image capacity (Million) Layers count
SN 4.6 227× 227 1.24 18
AN 227 227× 227 61 8
GN 27 224× 224 7 22
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Figure 20: Fault classified by SqueezeNet for real images of solar panels.

Figure 19: Training progress of SqueezeNet for fault classification of thermal images of solar panels.

Table 7: Intermediate results of thermal images trained in SN.

Epoch Iteration Time elapsed (hh:mm:ss) Validation accuracy Training accuracy Validation loss Training loss
1 1 00 : 00 :10 0 0 4.5739 5.0128
2 54 00 : 04 : 56 99.861 97.698 0.0675 0.1597
3 105 00::08 : 29 100 100 0.00236 0.0011
3 159 00 :11 :18 100 100 0.00054 0.00085
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preferably Graphical Processing Unit instead of CPU. In the
future, the average testing accuracy of SN for thermal images
can be increased by altering the number of layers in the
neural network. Also, a mobile application can be created

that executes the SN model for automatic classification of
faults in solar panels, so users with scarce or no knowledge
can employ the application to detect faults in solar panels
effectively.
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Figure 22: Confusion matrix for real images with fault in solar panels.

Figure 21: Fault classified by SN for thermal images of solar panels.
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8. Conclusion

%is research proposed a deep learning technique by
comparing CNN pretrained models and fine-tuning them
for the diagnosis of environmental faults in solar panels. %e
insight of this research focused on comparing the perfor-
mance of AlexNet, GoogleNet, and SqueezeNet with

different performance metrics and finding a suitable model
for fault classification.%e three models used in this research
were capable of classifying five faults in solar panels from the
productive class, in which the SqueezeNet model comprising
18 layers reached a testing accuracy of 99.815%. On the other
hand, AlexNet despite its significant training accuracy ob-
tained the lowest performance testing accuracy of 94.975%
compared to the other architecture. Hence, the SqueezeNet
model was used for training thermal images of solar panels
which provided a testing accuracy of 99.74% and F1 score of
0.9818. %e proposed method looks forward to make a
significant contribution to the solar industry.

Data Availability

No data were used to support this study.
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Figure 23: Confusion matrix for thermal images with fault.

Table 8: Statistics of thermal images in SN.

Class Accuracy Specificity Sensitivity Precision F1 score
Normal panel 0.98 0.971 1 0.938 0.968
Completely soil covered 1 1 1 1 1
Partially soil covered 1 1 1 1 1
Temperature rise 0.98 1 0.857 1 0.923
Fully shaded 1 1 1 1 1
Partially shaded 1 1 1 1 1
Average 0.993 0.995 0.976 0.990 0.982

Table 9: Prediction and testing accuracy of real and thermal
images.

Parameter Prediction accuracy
(%)

Testing accuracy of image
(%)

Real image 100 94.42
%ermal
image 98 99.74
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,is research study’s objective is to provide a comprehensive analysis of the efforts that have been made to improve the power
quality and thermal management of batteries that are operating at low temperatures. ,ese improvements have been made by
combining the utilization of conventional solar air energizer (SAE) ducts with the application of a variety of different con-
figurations of longitudinal fins.,ese expanded surfaces can be found on the absorber or bottom plate surface, and they are placed
in a variety of positions along the airflow channel. It does this by increasing the surface area of the typical SAH and making the
flow more turbulent, both of which contribute to the improvement in performance. Several studies have been carried out to
enhance the thermal efficiency of clear SAE ducts by making use of experimental fins. An effort has been made to establish the
Nusselt number and the friction factor by making use of the correlations that the researchers have provided. ,is was performed
so that the performance of various configurations of finned SAEs could be compared to one another.

1. Introduction

,e global expansion of industry raises the demand for
thermal energy and depletes fossil resources. Solar energy
has been identified by experts as a viable option for creating

energy from an unlimited resource. Flat plate solar air en-
ergizers (SAEs) are utilized for the drying of agricultural
(pepper, coffee, tea, grapes, Chilies, etc.) and industrial items
(curing of concrete blocks, drying of paints, etc.). ,ey are
also utilized to improve the efficiency of desalination and
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heat pump systems. In addition, they are utilized for space
heating applications and hot air requirements up to 120°C at
low temperatures [1–4]. SAEs have a basic structure, less
manufacturing, and maintenance complexity, and lower initial
investment and maintenance expenses [5]. Even though SAEs
have their ownmerits, the thermal performance of the flat plate
SAE is low (40 to 45 percent) due to the low heat transfer
coefficient produced by the thermo-physical properties of air.

To boost the thermal performance of conventional SAEs,
researchers have utilized a variety of methods to increase the
heat transfer coefficient between the air and absorber plate. ,e
formulation of the laminar sublayer is one of the major primary
factors that decrease the convection heat transfer rate. In pre-
vious research [6, 7], artificially rough wires are added to the
absorber plate to disrupt the laminar sublayer formulation. In
addition, the rate of heat transmission is increased by affixing
V-grooves [8, 9], corrugations [10, 11], turbulators, and baffles
[12, 13] to the absorber plate and generating local turbulence. In
addition, the packed bed, wire meshes, and energy storage
materials are attached to the absorber plate to increase its ef-
ficiency during periods of low sunlight [14–18].,e CFD-based
analysis of SAEs is performed to analyze and gain a deeper
understanding of heat transfer phenomena. Pashchenko
conducted a CFD-based analysis for SAE using ANSYS-
FLUENTand concluded that the optimal efficiency occurs at an
inclination angle of 60 degrees between the absorption surface
and the Earth [19]. Moreover, he discovered that using an
L-shaped fin on SAE with a pitch of 30mm and Re of 1500
improves its thermodynamic performance [20]. Using
MATLAB tools, the finned and roughened SAE designs are
examined, and the design configurations are optimized based
on energy and exergy efficiency [21, 22].

,ere are numerous published reviews on the implica-
tions of various roughness design settings on the perfor-
mance of SAEs [23, 24]. Singh andDhiman [25] analyzed the
various design configurations of double-pass SAEs and
concluded that hot air recycling improves thermal perfor-
mance. Alam et al [26] conducted a comprehensive analysis
of the application of turbulators and evaluated the perfor-
mance of SAE ducts with various forms of baffles, ribs, and
barriers. From a review of the relevant literature, it can be
determined that the attachment of fins increases the heat
transfer surface area, local turbulence, and the convective heat
transfer rate. As far as the author is aware, no systematic studies
have been conducted on this design configuration, and ad-
ditional improvisation techniques are not mentioned to heat
the batteries under low-temperature operating conditions. ,e
thermal performance of finned SAEs is compared on the basis
of the Nusselt number and friction factor [27–30] in this study,
which reviews the various configurations and designs of finned
SAEs. From the aforementioned literature survey, it can be
inferred that various review articles have been presented about
SAH thermal enhancement strategies. As far as the authors
know, no one has reviewed extended surface (fin) SAHs put
longitudinally in the duct.

1.1. 3ermal Efficiency. ,e real usefulness of SAH can be
determined by taking into account the amount of energy that

enters the collector in the form of radiation as well as the
pace at which energy is lost to the surrounding environment.
It is determined by making use of the Duffie and Beckman
relation and taking into account the fact that the entire
absorber plate is kept at an average fluid temperature of Tf
and an ambient temperature of Ta.

Qu � FRAC I(τα) − UL Tf − Ta  . (1)

,e answer to the previous equation, Tf, is given by

Tf �
Ti + To

2
. (2)

,e amount of useable energy that is gathered by the
SAH can be calculated by taking into account the enthalpy
difference that exists between the air that enters and leaves
the device.

Qu � mCp To − Ti( . (3)

From equations (1) and (3), the heat removal factor FR is
expressed as

FR �
mCp To − Ti( 

AC I(τα) − UL Tf − Ta  
. (4)

Using the Hottel-Whillier-Bliss equation and taking into
account the overall loss coefficient UL and the heat removal
factor FR, one may determine the level of thermal efficiency
that solar collectors possess. It is represented by

ηth �
Qu

IAC

� FR I(τα) − UL

Tf − Ta

I
  . (5)

,e heat removal factor FR can be evaluated using the
relation as follows:

FR �
mCp

ULAc

1 − exp
ULApF′

mCp

  . (6)

1.2. Effective 3ermal Efficiency. ,e actual performance of
the system can be determined by looking at the effective
thermal efficiency of the SAH. It evaluated everything by
taking into account the pumping power consumption that
was used to propel the air inside the channel, the efficiency of
the blower, the efficiency of the motor, the efficiency of the
transmission, and the efficiency of the power plant.

Calculating the effective thermal efficiency is possible by
applying the relation that is as follows:

ηETE �
Qu

IAC

−
Pm

IAC ηBηmηTηP( 
. (7)

2. Solar Air Energizer with Smooth and Fin
Absorber Plates

,e rate of heat transfer and SAE pipeline pressure drop are
critical factors to be considered for the selection of the
system for heating applications. Figure 1(a) shows a basic
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smooth plate SAE consisting of thin-walled bottom and
glass-covered blackened absorber plates. ,ere are longi-
tudinal fins attached to the absorber surface of the heater
shown in Figure 1(b).

3. Configurations of Fins and Flow Path
Arrangements Utilized for the
Heating Process

3.1. Longitudinal Fin-Integrated Solitary Pass Rectangular
SolarAir Energizer. Garg et al. [31], who placed longitudinal
fins on an absorber plate, were the first to observe the effect
of rectangular fins on SAE. Using their mathematical model
of steady state, they investigated the effect of fins on the
efficiency of SAE.,ey evaluated three distinct types of SAE,
including the Type-I conventional solar duct with an ab-
sorber plate as depicted in Figure 1(a). In Type-II SAEs with
expanded surfaces, Figure 1(b)shows that Type-II SAEs are
positioned across the absorber surface. ,e Type-III SAE
was equipped with a V-grooved absorber plate. All SAE
outputs and performance were analyzed using a single glass
cover. ,e effect of the number of fins (n) on the outlet air
temperature and thermal performance of a finned SAE was
investigated by using three different rates of flows (m) in
three different configurations. Garg et al. [32] analyzed three

different designs of SAEs.,ey configured the Type-I SAE as
illustrated in Figure 2(a). ,is comprises a double glass
cover, and fins are put on the absorber plate to increase the
turbulence of the flow. In addition, they adjusted the design
by repositioning the fins on the backplate and assessed the
resulting effect ((Figure 2(b)). As seen in Figures, Type-III
SAE is created by combining both designs and incorporating
fins into both SAE plates (Figure 2(c)). Following analytical
and experimental processes, a comparison is performed
between SAEs. ,en, the effects of the fin density (n), mass
flow rate (m), fin length (L), and height of the SAE duct (H)
on the SAE performance were examined and compared to
the performance of a conventional SAE under identical
operating conditions.

,e researchers Garg et al. and Karim and Hawaladar
[33, 34] investigated the configuration of the expanded
surface on the solar air energizer duct, which can be seen in
Figure 3.,ey designed an SAE in which the height of the fin
is proportional to the depth of the cavity. As a direct
consequence of this, the absorber plates and back plates are
connected by fins, which results in the formation of indi-
vidual flow cells. ,e efficiency of the SAE and the tem-
perature at its exit are investigated by making adjustments to
the mass flow rate and the number of fins. Additionally, the
impact that the SAE depth has on the organization’s overall
performance is investigated. After that, the researchers
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Figure 1: (a) Conventional smooth absorber plate solar air energizer. (b) Solar air energizer with a longitudinal fin plate absorber.
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investigated how a smooth plate and a V-groove SAE
performed in single-pass and double-pass operation modes,
respectively.

Bahrehmand et al. [35] developed an analytical model to
evaluate the thermal performance of rectangular and tri-
angular SAE fins. ,e SAE configurations are depicted in
Figures 4 and 5. During the analysis, the effect of a sus-
pended thin metal sheet on the airflow channel, the design
configuration of the fins, the Reynolds number, the depth,
and the length of the duct are examined.

At lower Reynolds numbers (4000), it is established that the
SAE without fins integrated with thin metal sheets operates

better. In addition, for higher Reynolds numbers (>4000), the
thin metal sheet solar air energizer with triangle fins is more
efficient. For practicing engineers to design the SAE, they also
report the critical values of design and operating circumstances,
such as Re of 13500, depth of 0.095m, and length of 2m.

3.2. Semicircular Fin-Integrated Solitary Pass Rectangular
Solar Air Energizer. Chabane et al [36] conducted an ex-
periment to determine the effect of semicylindrical fins
distributed longitudinally across the absorber plate, as
depicted in Figure 6. ,e analysis was conducted under
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Figure 2: (a) Fin solar air energizer with twin transparent sheets and the fin-integrated absorber surface [32]. (b) Fin solar air energizer with
solitary glass sheets (fins at both the sheets) [32]. (c) Fin solar air energizer with finned bottom and glass sheet covered finned absorber plates [32].
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actual ambient circumstances with a mass flow rate between
0.012 and 0.016 kg/s. During the experiment, the impact of
design and operating circumstances on the output air
temperature, Nusselt number, Prandtl number, and heat
removal rate is examined. In addition, the scientists deter-
mined that the highest increase in the Nusselt number was

99.03 at a mass flow rate of 0.016 kg/s and created a cor-
relation for forecasting the Nusselt number as a function of
design and operating parameters.

Chabane et al [37] conducted additional experimental
research on the finned SAE (Figure 6). According to reports,
the performance of SAE is dependent on solar intensity, inlet

Flat Absorber Plate

Rear Plate

H1

Longitudinal fins

Glass Cover

W

Figure 3: Fin solar air energizer with single glass cover investigated by the authors in [33, 34].
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Figure 4: Solar air energizer with the extended surface (Type-I with only absorber plates and Type-II with absorbers and finned bottom
plates) [35].
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Figure 5: Solar air energizer with triangular fins (Type-III without bottom plates and Type-IV with absorbers and bottom plates) in-
vestigated by the authors in [35].
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Figure 6: Semicircular fin-integrated solitary pass rectangular solar air energizer [36].
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air temperature, and the distance between the absorber plate
and the glass cover. At a mass flow rate of 0.016 kg/s, the
maximum thermal efficiency of 43.94 percent is attained,
according to the researchers.

4. Longitudinal Fin-Integrated Parallel Pass
Rectangular Solar Air Energizer

To improve the convective heat transfer coefficient, re-
searchers additionally implemented a double-pass config-
uration for SAE. Among these double pass flow systems, Yeh
et al [38] affixed rectangular fins for additional augmenta-
tion, as depicted in Figure 7. Analytically and experimen-
tally, the influence of solar radiation and the flow ratio on
mass flow rates between 38 and 78 kg/h is examined. ,e
analysis concludes that thermal efficiency has improved as
solar radiation has increased, and it reaches its optimum
value at a mass flow ratio (r) of 0.5.

Experimentally, Karim and Hawlader [39] examined the
thermal performance of conventional, finned, and
V-grooved SAEs working in both single-pass and double-
pass modes. ,e comparison outcomes are depicted in
Figure 8. ,e analysis is conducted in accordance with
ASHRAE standards, and the flow rate ranges between 0.01
and 0.06 kg/s m2. ,e results demonstrated that V-corru-
gated arrangement is more thermally efficient than finned
SAE for the range of parameters studied.

Sebaii et al [40] conducted analytical and experimental
research on double pass-double glass cover finned and
V-corrugated SAEs. ,e performance evaluation was con-
ducted under actual outdoor situations. ,en, they com-
pared the performance of the SAEs as depicted in Figures 9.
As shown in Figure 10, throughout the analysis, the mass
flow rate is kept between 0.01 and 0.06 kg/s.

Under comparable operational and climatic conditions,
they concluded that the V-corrugated SAE and finned SAE
achieve their maximum thermohydraulic performance at
0.0125 kg/s and 0.0225 kg/s, respectively. Moreover, the
thermal performance of V-corrugated SAEs is 9.3 to 11.9%,
which is greater than that of finned SAEs.

In addition, empirical work has been assessed, and rea-
sonable agreement between experimental findings has been
established. It has been determined that the V-corrugated SAE
performs better than the finned and standard plate SAEs due to
less pressure loss and the creation of more turbulence.

5. Longitudinal Fin-Integrated Counter Pass
Rectangular Solar Air Energizer

Naphon [41] performed an analytical study on the SAE with
fins parallel to the flow path on either side of the collection
plate and a double-pass airflow arrangement as depicted in
Figure 11. ,e mass flow rate, number of fins, and fin height
are modified by 0.02 to 0.1 kg/s, 45 to 55, and 5 to 8 cm,
respectively, during the analysis. Based on the findings, he
concluded that an increase in the number of fins, flow rate,
and fin height improves thermal efficiency and that these
factors have an inverse relationship with entropy generation.

Fudholi et al. [42] explored the performance of double-
pass SAEs with fins at the lower path, as depicted in
Figure 12. On the basis of the energy and exergy efficiency
data, they conducted experimental and theoretical analysis
and compared the performance with traditional double-pass
SAEs. According to the findings of the investigation, the
thermal efficiency of SAEs ranges from 54 to 79 percent, with
an outlet temperature of 36.4 to 62.9 degree Celsius. It has
been stated that the thermal efficiency improvement is in
linear relation with the sun insolation (I) for a fixed quantity
flow rate (m). Additionally, the yearly cost and yearly energy
gain of the two SAEs have been evaluated and published.

6. Longitudinal Fin-Integrated Repeated Pass
Rectangular Solar Air Energizer

Velmurugan and Kalaivanan [43] created mathematical
models of the thermal performance of various SAEs.
Figure 13(a) depicts a Type-I SAE with a single-pass, double-
glass SAE and a smooth absorber plate. In addition, they
analyzed the performance of longitudinal finned SAEs with
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Type-II, double glass double pass and Type-III, double glass
triple-pass operation, as depicted in Figures 13(b) and 13(c).

,ey created a mathematical model for SAEs and used
the MATLAB code to solve it. ,ey analyzed the impact of
the mass flow rate, inlet air temperature, and solar radiation
in the ranges of 0.01 to 0.04 kg/s, 294 to 306K, and 800 to
1000W/m2. In addition, it is concluded that the triple-pass
SAE with fins produces superior performance with a greater
value of beneficial heat gain enhancement to a power
consumption increment value of 0.1.

SAEs of four different varieties were tested in an indoor
experiment by Velmurugan and Kalaivanan [44]. It is di-
vided into four distinct types: Type-I: a single-pass flat plate;
Type-II: two passes with roughness rib on the absorber plate;

Type-III: double passes with fins on the glass cover; Type-IV:
double passes with wire mesh. Each SAE configuration was
examined to determine its first and second law efficiency
(Figure 14).

7. Wavy Form Fin-Integrated Solitary Pass
Rectangular Solar Air Energizer

A wavy finned absorber plate (SAE) has been studied by
Priyam and Chand [45], and the results are displayed in
Figure 15. ,e mass flow rate varied from 0.01 to 0.08 kg/s,
while the fin spacing varied from 1 to 5 cm. From the an-
alytical investigation, the influence of these parameters on
the thermal efficiency, collector heat removal factor, col-
lector efficiency factor, effective temperature rise, effective
efficiency, and pressure drop of the SAE is reported. Ad-
ditional research was carried out by the authors to examine
the influence of the amplitude and wavelength of wavy fins
(ranging from 3 cm to 20 cm) on energy and system effi-
ciency [46]. Based on heat transfer correlations, the model
was created [47]. Both the parameter and performance
evaluation parameters such as energy transfer first law-based
efficiency, heat removal factor at SAE, collector efficiency
factor, effective rise, and effective rise in temperature have an
inverse connection.

8. Performance Characteristic
Comparison between Finned Solar
Air Energizers

A comparison of heat transfer in terms of the Nusselt
number and the friction factor for various types of longi-
tudinal finned SAEs has been made, and the results of this
comparison are shown in Figure 16, respectively. ,is
comparison was Figure 17 made based on the correlations
that different researchers found while reading the relevant
literature. ,e values of the Nusselt number are shown to be
directly proportional to the mass flow rate in Figure 17, and
the SAE that was created by Garg et al. [33] has the greatest
value of Nu. In addition, the data shown in Figure indicate
that the friction factor has an inverse correlation with the
mass flow rate (m). According to the findings of Fudholi
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Figure 9: Double flow finned solar air energizer [40].
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et al. [42], the friction factor had the greatest value out of all
the factors that were considered.

,e solar air heaters can maintain the battery at the
required temperature while operating under low-

temperature conditions. ,e low-cost technology is very
useful for the commercialization process.

9. Conclusion

In this article, a thorough review and study of how longi-
tudinal finned SAEs are used were performed. ,e re-
searchers attached different shapes of fins to the SAE, such as
rectangular, triangular, and semicylindrical profiles and then
used analytical and experimental studies to figure out what
effect these have. From this thorough look at the finned
SAEs, the following conclusions have been drawn:

(i) When compared to the smooth plate solar air en-
ergizer, the addition of longitudinal fins increases
the solar air energizer’s thermal efficiency in
functionally equivalent settings.

(ii) Fin factors such as the number of fins, fin length,
and fin height, operating parameters such as mass
flow, and geometrical parameters such as sun in-
tensity and ambient air temperature all have a
substantial impact on the performance of SAE.

(iii) SAE fin density and thermal efficiency are both
improved, as is the pressure drop in the airflow
channel, as the fin height is increased.

(iv) Increasing the depth of the ducts has a negative
impact on SAE’s thermal efficiency, and increasing
the number of glass covers and air passes has a
positive impact on SAE’s thermal efficiency.

(v) ,e majority of the research studies that have been
performed to increase the performance of SAEs
have utilized rectangular fins as the primary method
of investigation. In addition, there is not a lot of
research that looks at how effective SAE fins that are
triangular or semicylindrical. As a consequence of
this, scientists need to direct their attention toward
the development of innovative fin designs that will
result in an increase in SAE’s overall performance. It
is possible to increase the electrical output quality of
low-temperature situations by first heating the cabins
and then using batteries in those environments.

Data Availability

,e data used to support the findings of this study are in-
cluded within the article.
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&e process of ensuring automatic operation for industrial appliances using both supervision and control techniques is a
challenging task. &erefore, this article focuses on implementing Supervisory Control and Data Acquisition (SCADA) for
controlling all industrial appliances. &e design process of implementation case is performed using an analytical framework by
examining the primary energy sources at the initial state; thus, a smart network is supported.&e designed mathematical model is
integrated with a learning technique that allocates resources at proper quantities. Further, the complex manual tuning of in-
dividual appliances is avoided in the projected method as the input variables are driven in a direct way at reduced loss state. In
addition, the data processing state of individual appliances is carried out using central data controller where all parametric values
are stored. In case any errors are observed, then SCADA network fixes the error in an automated way, reducing end-to-end delays
in all appliances. To validate the effectiveness of the proposed method, five scenarios are examined and simulated where outcomes
prove that SCADA network using learning models provides optimal results on an average of 84 percent as compared to the
existing models without learning algorithm.

1. Literature Survey

SCADA, which is used for different industrial operations, is
implemented under both large and small scale processes.
&us, it is always necessary to analyze the effect of SCADA
systems by examining existing models and procedures that
are followed to update the current security mechanisms.
&erefore, the existing models are analyzed with respect to
implementation, data gathering, and security, thus provid-
ing a clear analytical model with derivative frameworks. In
[1] multiple layers are represented using two different units
such as primary and secondary terminal units where a key
preservation is made for enhancing security of the network.

Both terminal units use satellite as one mode of commu-
nication link with SCADA at intermediate junction. It is
necessary that two terminal lines must be connected to the
central station which is not processed; thus, as a result,
individual monitoring is prepared. In addition to the ter-
minal lines, the transmission stability of SCADA plays a vital
role in all industrial operations in case of automated de-
terminations [2]. &erefore, the stability of entire SCADA is
initialized using state vectors where a specialized software
tool is implemented for gathering information at output
units. Even though hardware and software tools are com-
bined, the process of time domain is carried out, which
cannot determine complete stability of SCADA networks.
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An evaluation model is framed and determined in com-
parison with multiple methods in case of risk factor de-
terminations [3], where all protocols for managing separate
keys are provided.&e above-mentioned determinations can
be used for enhancing the security of SCADA network, but
the complete risk in a particular process cannot be avoided at
any point of time.

Some of the techniques are developed for micro grid
operations in order to manage energy much effectively in
building platform [4]. &ese kinds of application develop-
ments are made using SCADA network where high infra-
structure is needed and it is processed even with critical
loads. While processing critical loads, some control strate-
gies are designed and it is modified during the imple-
mentation stage. &e above-mentioned modifications are
not processed in real time cases if SCADA is implemented at
a particular time period. If any changes are processed after
the implementation phase, an effective connection is needed
for the transmission network [5]. &us the connection ar-
rangements are formulated using mathematical represen-
tations by converting all connections at the same amount.
However, if the same amount for different lines is used, then
the critical distance of measurement must also be observed
in coupling stage periods which is a difficult management
process. To manage complexity conditions, both real and
reactive measurements are taken for distribution systems
using scheduling operation where a greater number of
energy resources are introduced [6]. During this scheduling
process, the energy in SCADA network and the cost of
implementation are reduced, but in case of distribution level
measurements, active voltage measurements can only be
made which is observed as a major drawback. If SCADA
networks are implemented in distribution systems, then it is
essential to check reliability of parametric values using Q-
terms [7]. If the raised Q factor is lesser, then the security of
the entire SCADA network falls below a certain limit and
this measurement is processed for every appliance on an
hourly basis. Due to hour-basis measurements, the system
fails to explore disturbance time in individual appliances;
thus, as a result, more than 50 percent of SCADA units are
not handled in a perfect way[8–10].

In order to ensure a proper handling mechanism of all
appliances, a multiple variation system is established [11]
which monitors all curves if power is varied in SCADA
network. Moreover, in real time, it is possible to control
additional dissimilarities with voltage and current param-
eters; thus, multiple variations do not occur if SCADA
networks are incorporated. &e aforementioned changes in
each curve can be established only if different appliances are
installed without any external limitations. Hereafter, a
medium scale distribution system is introduced with
SCADA measurement process and this is termed as the
hybrid implementation effect on distinct systems [12]. Since
two different combinations are made, SCADA measure-
ments provide appropriate outcomes with perfect estimation
in state lines. But then again the hybrid measurement in-
creases the switching complexity of the measurement pro-
cess; thus, only small scale systems are assimilated and
tested. To increase the testing phase with large scale system,

four unique methods are followed by using reactive variable
phases [13] in all appliances. Due to reactive variables, esti-
mation of voltage scales is processed using pi-type architecture
for SCADAnetworks.On theotherhand, implementationcost
of pi-type networks is much higher as it requires curved shape
data to be represented in the system. Asmuch failure occurs in
implementation of the automated process, more steps are
taken in the initializationphase using learning algorithms [14].
&e type of learning algorithm that is present in automated
process must begin with normal characteristics, and high
security statemust be provided for proper decisionmaking.As
a result of using an appropriate decision-making mechanism,
values are created and tested in real time by enabling smart
metering systems [15]. All executive measures are carried out
in implementationof smartmetering systems, but assimilation
ofhardware andsoftware tools is notprocessed; thus, decision-
making systems are much slower than expected.

A comparative study is made with SCADA networks
using support vector machine [16–18] for removing all types
of uncertainties in the entire data handling process. In this
method, also power curves are represented to solve com-
plexities, but as indicated earlier large scale uncertainties
cannot be deciphered using individual SCADA measure-
ments. An integration process of cloud security using
SCADA is carried out for industrial application where a
greater number of remote units are installed in communi-
cation path. Since more units are installed, if any SCADA
network fails, then other networks will carry out the entire
operation with high security features [19]. However, a bigger
number of remote units increase the cost of a communi-
cation unit inside the infrastructure medium. To reduce the
number of remote units, operations are carried out using
allocation of renewable energy sources in the path between
two SCADA networks [20], and as a result, the IoT-based
operation is flexible by reducing the cost of installations. On
the other hand, the IoT operation is carried out using low
security open source tool, and this type of SCADA operation
requires modernization of the entire network. &us, after
careful comparison, SCADA networks are incorporated in
the proposed method by incapacitating the disadvantages of
the existing techniques, and a distinctive mathematical
model is formulate in Section 2.

1.1. Objectives. In the proposed method, multiple SCADA
networks are implemented and used for industrial appliances
for ensuring proper operation by identifying parametric
changes. &erefore, the primary objectives of the projected
method are framed as a minimization problem as follows.

(i) To integrate a learning technique that extends sus-
tenance to SCADA networks in terms of data seg-
ments area of installation.

(ii) To minimize the energy resource constraint of all
appliances, therefore overload capacity cases being
avoided.

(iii) To reduce the amount of loss and delay in terms of
data transmission using different state vector, thus
increasing the security of operation.
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2. SCADA for Industrial Applications: An
Analytical Model

&e process of implementing SCADA is processed by de-
signing a mathematical model that supports the generation
process when a system is located in open or closed loop
conditions. In addition, the process of SCADA operation is
carried out using a solar panel where the battery is stored for
a secondary purpose. As the battery is stored in a regular
medium, it is necessary to measure all the industrial ap-
pliances that are operated without the presence of primary
energy source. &e above-mentioned operation is designed
using

PEi � 
n

i�1

Ii ∗di

at

, (1)

where Ii indicates the disturbance time period, di represents
downcast time, and at describes the total number of op-
erating appliances.

Equation (1) indicates the time period of operation that
is separated using all appliances that are present inside
industry and in this case total impaired measurements are
observed. However, the SCADA system is highly effective
only if individual measurements are taken for separate
appliances. &us an individual determination is made using

da(i) � 
n

i�1

Is(i)∗fi

as(i)
, (2)

where Is represents distinct appliance disturbance time, fi

indicates frequency supplied to appliances, and as denotes
discrete operating appliances.

In (2) it is necessary to minimize disturbance time period
by supplying the necessary amount of frequency to all ap-
pliances. In case the disturbance period is much higher, then
the loss rate is determined using full scale capacity as follows:

lossi � min
n

i�1
la(i) + lc(i)( ∗ ei, (3)

where la, lc denotes loss of electricity due to absence of squall
and presence of full load appliance capacity and ei represents
expected appliance energy loss.

&e major objective function in SCADA is to minimize
the energy loss that is present in the entire appliance, but this
type of minimization is possible only if the critical distance
of appliance is within the boundary limits. &us the limi-
tations are formulated using

disti � min
n

i�1
CD t1 − ti(  + δi, (4)

where CD indicates critical distance of appliances, t1, ti

represents distance between first and end transmission
appliance, and δi denotes total life period of appliances.

&e second minimization objective is framed using
critical distance measurement by considering a reference
potential point at the beginning of SCADA connections
[21–23]. In addition to variations in critical distance

measurements, the schedule period of storage for all ap-
pliances provides great advantage in the entire process as
storage points can be shifted from one end to the other. &is
scheduling process is formulated using

Si � 
n

i�1
Eo(i)∗Ec(i), (5)

where Eo, Ec represent original and unoccupied energy rates.
In case of delayed SCADA measurements at the output

unit, unoccupied energy rate increases and it cannot be
controlled. &us the delay in measurements is minimized
using

dealyi � min
n

i�1
wi ∗ c(  + zi, (6)

where wi indicates the weight of appliance, c denotes the
random measurement function, andzi represents the period
of energy supplied to appliances.

If the delay period is reduced, then data measurements
phase is monitored where all changes in data pathways are
controlled using SCADA data transmission and reception
blocks. &e data control phase is formulated using

DCi � min
n

i�1

P1 · · · Pi

⋮ ⋱ ⋮
Pi · · · Pn

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ +

V1 · · · Vi

⋮ ⋱ ⋮
Vi · · · Vn

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ + Δti, (7)

where P1, Pi, Pn describes control data, V1, Vi, Vn denotes
rapidity data, and Δti indicates the change in time period
intervals.

All the analytical equations that are framed represent the
operation of SCADA in closed condition cases where the
objective can be represented in terms of analytical equations
using

obji � min
n

i�1
lossi, disti, dealyi, DCi. (8)

&e multiple objective functions in (8) are termed as the
minimization function that represents SCADA parametric
values to be much lower than values in operational cases. All
the formulated equations are derived using a basic set of
formulations from SCADA parametric real and reactive
power phase [24–27]. &us in order to increase the accuracy
of SCADA measurements in industrial systems, an opti-
mization algorithm is integrated and it is described in the
subsequent section.

3. Optimization Algorithm

One of the major problems in the implementation of
SCADA system is that security of data must be enhanced as
separate commands are implemented for each appliance.
&us it is necessary to drive SCADA system which is termed
as a large factor setup using an optimization algorithm.
Hence a learning algorithm is chosen for preprocessing all
the necessary data where the appliances in industries are
protected without any external intrusion attacks [28, 29]. In
addition, SCADA system requires the input data to start
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from the initial state, thus providing multiple solutions for
controlling a particular problem [27, 30, 31]. Since multiple
solutions are provided, optimal paths are chosen at the
output end for handling distinct alert situations, and one of
the major advantages of reinforcement learning algorithm is
that all decisions are made in a sequential manner and thus
the next state output is determined using previous case
problems. &erefore, if reinforcement learning algorithms
are applied in real time for SCADA systems, then it is not
possible to overcome current problems without solving the
existing problem conditions. Even if high complexities are
present around SCADA environs, the objective of solving all
uncertainties is always assured if behavior learning is pro-
cessed in the best mode of operation (Figure 1). &e opti-
mization process under a particular area is framed using

areai � 
n

i�1
αi + ρi ∗ωi( , (9)

where αi indicates reduced policy input, ρi denotes fre-
quency of SCADA examination, and ωi describes im-
provement input policy.

&e two procedures that are described in (9) provide
great improvement in SCADA feedback process; thus, the
entire area is examined using frequency source.

&erefore, the stability of SCADA system in industrial
application increases to a certain extent which is measured
using

σi � max
n

i�1
qi(r) − qi(  + wi, (10)

START

Initialize primary energy source with downcast time period representations with total number of appliances

Identify the disturbance time of distinct appliances

Test for loss rate with energy loss and full scale capacity in Equation (3)

Is full scale 
loss values 
minimized?

Check for delay that is defined with random measurement function using Equation (6)

Is delay 
measurement 

minimized?

Is the data 
control values 

minimized?

Evaluate the data control values of appliances using SCADA with separate policy input mechanisms

STOP

YES

YES

YES

NO

NO

NO

Monitor the output values of 
SCADA block with state vectors

Figure 1: Integration flow of the proposed method with learning technique.
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where qi(r), qi denotes quality of repeated and nonrepeated
data segments in SCADA.

&e stability margin defined in (10) must be maximized
under the expectation region of separation where the state
equation for SCADA using reinforcement learning algo-
rithm for different appliances in industry is described using

ci � 
n

i�1

τ1 · · · τi

⋮ ⋱ ⋮
τi+1 · · · τn

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦∗ z1 . . . zi , (11)

where τ1 . . . τi . . . τi+1 denotes corresponding state vectors
for separate appliances and z1 . . . zi indicates probability of
different appliances in industry.

Even though many related networks are installed in
supporting industrial applications, SCADA remains a
unique network in industrial operation of all appliances.
Even for monitoring the usage of high end applications,
SCADA network can be modernized in the existing

infrastructure networks [32–34]. &erefore, the major ad-
vantage of SCADA industrial appliance is the storage system
that is used for detecting all types of problems in connected
network. Further, the appliance downtime is much reduced
due to proper supply of energy resources which is turn
provides a better maintenance period for all operating ap-
pliances. In addition, even secondary advantages of SCADA
provide appropriate graphical status for all real time envi-
ronmental verifications.

4. Experimental Verification

&e combined model of analytical representations with
optimization algorithm is verified using real time experi-
mental cases in order to prove effective automatic operation
of several appliances. In this process, the SCADA networks
are installed in the industrial appliances with low critical
distance which is modified to produce low power drop in the

Input: Initialize the primary energy source with disturbance factor and downcast time periods PEi(PE≤ i≤ n), Ii(I≤ i≤ n) and state
representation values using matrix representation of individual appliances ai;
Output: Optimized values for automation of appliances in industrial process using learning model at reduced policy rate and good
control rate;
Step 1: At first, the objective function is constructed with the loss factor using lossi;
Step 2: Initialize the frequency of operating appliances with appliance disturbance time that must be followed by certain
improvements in policy factor as(i) with 0≤ i≤ 1, and its individual determination da(i) with the indication of full scale
capacity values;
Step 3: While (da(i)<N) do.
Provide the loss values lossi in both presence and absence of full scale appliances in a systematic way for computing the total loss in

automation process by using equation (3);
Verify the energy loss values in both previous and current state using distance vector separation disti for identifying the critical

changes;
If the critical distance changes are higher, CDi is not at (CDi <N);

Modify the transmission appliance values using life period of a particular appliance that is having different energy rates using
equations (4) and (5), Si with 1≤ i≤N into N number of unoccupied energy states;

//Delay phase
Update the delay values delayi with random measurement function ri by generating the weight function wi using supplied

energy as shown in equation (6);
//Data control phase
Select the control and rapidity scale matrix with changes in time periods Δti as defined in equation (7);
Update the control function state variables using equation (11) with probability values of corresponding state vectors followed

by the data segment values and compute the new secured data position σi as defined in equation (10);
&e improvements in policy segments in separate areas are updated by using equation (9);
areanew � areaold + 1;

End;
Step 4: If (σi < 0) then

σi←0;//Interchange the existing solution in the current loop with the new solution;
End if;

Step 5: If (σMAX [0, 1]< 1) then
Reinitialize the appliance values with new segments;
Obtain the overall best solution;

End if;
Step 6: If (Imax <N) //Existing solution is replaced with the new solution

ci � cmodified;
Imin � N;//Attain the most feasible solutions for determining the overall best solution;
Increment the count areanew by 1;
Return the best overall solution;

End;

ALGORITHM 1: Reinforcement Learning Algorithm.
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considered area. Further the full scale capacity of SCADA
networks for proposed system is taken as 500 Megawatts
supporting the entire appliances in the automated mode of
operation. &e above-mentioned full scale capacity can also
be increased to further extent in case if appliances are added
at critical points. But in the proposed method, addition of
appliances is avoided as it leads to a raise in instabilities and
even a delay in data processing increases. At the initial stage,
the process started with random SCADA data error mea-
surement where less than 1 percent of distribution values is
provided. However, as appliances are increased, the error
rate is varied to nominal phase for about 1.5; thus, the
disturbance period is much lesser in case of the proposed
method. In addition, the control process in SCADA network
provides a valuable pseudo rate using true and measurement
values. Moreover, these values are directly integrated in
software tool where outcomes are generated using MATLAB
at low uncertainty cases. To observe the adeptness of pro-
posed SCADA network in industries, five scenarios are
distributed based on analytical design as follows:

Scenario 1: measurement of primary energy
Scenario 2: minimization of loss
Scenario 3: observation of critical distance
Scenario 4: SCADA data delay
Scenario 5: data control phase

All the above-mentioned scenarios are simulated and
compared with existing models that incorporated different
data set. However, the data set used in the proposed method
is much similar to the existing cases with a variation of 2
percent with respect to the distribution base. In addition to
data base, complete state periods are measured in the system
in order to prevent initial delay in control phase of the
network. &e detailed description of all the aforementioned
scenarios is as follows.

4.1. Scenario 1. &e amount of primary energy source is a
much important measurement to be considered as the ap-
pliances operate in a perfect way if the disturbance period is
much lesser than the actual operating amount. Also the
downcast time period of appliance is considered in this design
in order to check the amount of fluctuation during the au-
tomated mode of operation. In case fluctuations are much
higher thanexpected, then the frequencyof selected appliances
will change, thus resulting in low disturbance period. &ere-
fore, a separation ismade in the design process by reproducing
disturbance,downcast, and frequencyvalues.All these changes
are observed in the system for making individual determi-
nations of each appliance, and as a result primary energy
sources are established at transmission end. Moreover, the
total number of operating appliances is converted to discrete
form, thus ensuring less changes in terms of battery operating
system. Figure 2 portrays the amount of energy sources for
various appliances with disturbance time periods.

From Figure 2, it is observed that the total number of
appliances is varied from 10 to 50 and individual disturbance
times are measured as 2.33, 2.98, 3.11, 3.36, and 3.42,

respectively. All the disturbance timeperiods aremeasured in
the average form with respect to changing appliances only.
Since more variations are not found with respect to distur-
bance time, the frequency of appliances is changed in a direct
form.&us the frequency of variations is considered as 60, 89 ,
103, 116, and 127 kHz, respectively, for a set of appliances that
are mentioned earlier. By considering the above-mentioned
specifications, energy source determinations are made and it
is observed that appliances are operated in automated mode
with lowprimary energy source in the proposedmethod.&is
can be provedwith 30 different appliances inside the industry
where 5.1 watts is allocated for individual operation [11]
whereas with same number of appliances the proposed
method operates at 50 percent of primary energy source
which is equal to 2.05 watts at high effective time periods.

4.2. Scenario 2. In case of the automated operation of ap-
pliances, it is necessary that low disturbance period must be
assured and if any failure rate occurs in this period, then
losses in SCADA network will be determined. &us this
scenario is provided to measure the amount of total loss in
the system with full scale operating capacity of appliances.
For this type of determinations, two individual values are
considered such as summation of original value and full
scale capacity which is reproduced using energy loss in the
system. Further this reproduction rate must be minimized in
such a way that it should be less than 40 percent on an
average as compared to appliances that are operated without
full scale capacity. If appliances are not operated at full scale
capacity, it will directly affect the energy rate of subcom-
ponents, thus leading to manual adjustment in the entire
process which in turn should be avoided. Figure 3 illustrates
the total loss that is calculated due to high disturbance time
periods.

From Figure 3, it is perceived that full load capacity of
appliances is varied as 100, 200, 300, 400, and 500, re-
spectively, and even the capacity can be increased to further
extent if appliances are added. As the proposed method
measures the loss rate for medium scale appliances, the
allocated full load capacity is much sufficient for operational
cases. During this simulation study, the energy loss of
particular appliance is observed to be 2.1, 2.4, 2.8, 3.2, and 3.4
and with this loss the amount of full scale capacity is
reproduced. In addition, a comparison plot is provided
where the total loss for the proposed method is much lesser
and it is lesser than 1, but the existing method provides high
variation of loss if appliances are increased. &is can be
demonstrated with full load capacity of 300 and with energy
loss of 2.8 where implementation of SCADA network
provides 0.89 as a loss factor. But with the same amount of
capacity, the existing method operates at 1.39 loss rate which
is much higher in case of individual appliances.

4.3. Scenario3. &e starting and end time periods of SCADA
network in all appliances are selected for determining the
critical distance points. Additionally, the total life period of
individual appliances is used for determining distance
measurements with summation cases. &us when a distance
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point is marked, then the difference between the first point
and the end point is termed as critical distance value. &is
type of determinations is made in such a way that end-to-
end appliances are considered without any gap between
available industrial space. Since the process is automated
using a set of SCADA networks, the critical distance must be
minimized as low as possible. In case distance is much larger,
then the total life period of appliances will be reduced at
great extent. &erefore, to avoid such circumstances, the

corresponding distance of appliance and end distance of
other appliances which are connected using same com-
munication unit must be minimized. Figure 4 deliberates the
simulation plot of critical distance measurements.

From Figure 4, it is pragmatic that difference in terms of
critical distance is set as 120, 180, 240, 280, and 360, and this
distance is not varied until new appliances are added inside
the boundary of SCADA network.&e average life time of all
appliances inside the industry is gathered from existing data
set and it cannot be varied; thus, a total appliance life period
is represented in this simulation study. &us the life period
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of appliances is set as 1000, 1300, 1600, 1900, and 2100 which
exactly matches with critical distance values. By using the
above-mentioned specifications, total distance is measured
and compared with the existing method that operates under
manual distance changing operations. Since the proposed
method using SCADA network is operated in automated
mode, total distance is minimized for average life time
separation. &is can be observed with critical distance of 280
meters and life period of 1900 days where the distance of
separation in allocation of data is equal to 172 meters,
whereas in case of existing method, it is maximized to 502
meters.

4.4. Scenario 4. &e SCADA network is incorporated in the
industrial system by combining multiple appliances; thus,
there is a need to integrate all the data that is present in the
entire network. Hence, the delay in processing data must be
minimized by considering random measurement function.
Moreover, the delay is calculated using weight functions of
all appliances that are directly reproduced with measure-
ment values. Further, the data delay phase that is reproduced
in the system is summed with total energy supply where it is
completely occupied in the SCADA network. However, the
unoccupied energy rate is not increased in proposed method
as it leads to more delay in entire process. For the input data
set, the implemented SCADA network must maintain 0.54
second of delay and this limitation factor cannot be changed
even during processing stage. &erefore, all individual ap-
pliances that are connected within the industry must reach
the control center at correct time periods. Figure 5 provides
simulation plot of delay functions with variation in energy
rates.

From Figure 5, it is detected that the weight of appliance
is varied from 10 to 50 kilograms where random mea-
surements are provided as 25, 30, 45, 60, and 75, respectively.
For each variation, the total energy of appliance is taken and
a new ingenuity energy loss is considered in a direct way.
&is type of consideration is usually processed in special case
if appliances are operated in an automatic way. Moreover,
the weight of total appliances is much higher; thus energy
loss can be used in direct cases as 2.1, 2.4, 2.8, 3.2, and 3.4
respectively. By using random measurements, comparisons
are made for the delay period calculation where it is much
reduced in case of the proposed method as compared to the
existing cases.&is can be verified in real time by considering
40 kilograms of appliances in an industry where the delay
periods are kept within defined limits of 0.4. But in the
existing method, the delay period is maximized above lim-
itations and at last phase exact boundary limit is achieved.

4.5. Scenario 5. One of the important processing units is
SCADA network data processing that is made using para-
metric matrix type. Hence in the proposed method, control
data are determined from transmission to end user appli-
ances, thus making necessary modifications in the entire
data. In addition to control data, another type of mea-
surement matrix is provided which is termed as rapidity data
matrix that is used for selecting appropriate rate. Further,
these twomatrixes are separated from pathways and finally it
is summed up and used for initial cases. Once the pathways
are separated, then change in time intervals is measured
using delta matrix values. &us total data phase variation in
individual appliances is provided and marked as separate
cases for large scale automation using SCADA networks. If
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any changes are observed in certain interval for data mea-
surements, then it must be minimized at appropriate phases.
Figure 6 illustrates the minimization plot of SCADA data
control phase.

From Figure 6 it is observed that the total number of
SCADA data is varied in step size of 50 with two second time
interval periods. During this data dissimilarity, the entire
data that are transferred to control unit must be minimized
and it is guaranteed in case of the proposed method as
compared to the existing method. For verification, if the
number of data is equal to 150 with six second break periods,
then the percentage of data control that is achieved in case of
SCADA network with the proposed method is 87 percent
whereas the existing method controls and secures the central
data around 63 percent. Furthermore, complete data control
is attained only in case of the proposed method up to 92
percent, but the controlling factor of SCADA network with
the existing system without any learning model decreases to
57 percent. Since the data phase is reduced, the proposed
method can be applied in real time to all automated in-
dustries with high security features.

4.6. Robustness of SCADA. &e robustness of SCADA de-
termines the tractability solutions when it is incorporated in
any type of medium. Usually SCADA networks operate at
different time periods, thus creating multiple delays in a
communication channel. However, in case of multiple delays,
both data and security of industrial appliances are highly
sensitive; thus, network operation must be highly robust
against distinct type of scalable parameters. In other terms,
robustness is measured using primary energy source where
operation of all appliances is started. During this energy
source operation, the distance between two different SCADA
networks causes low robustness as much better hardware
setup is installed. Figure 7 portrays robustness characteristics
of SCADA network with changing iteration values.

From Figure 7, it is observed that the best epoch is
chosen between 10 and 100 as 20, 40, 60, 80, 100,

respectively, where for all best iteration values robustness is
calculated. In the proposed method, robustness character-
istics are simulated by accumulation of primary energy
sources and critical distance in SCADA networks; thus high
values are achieved. Moreover, in the comparison case study,
the proposed method using learning technique performs
much better as compared to the existing method [11]. &is
can be substantiated with the best epoch as 80, and during
this period, the robustness of existing model in absence of
the learning-based technique is 210 whereas the projected
method provides low robustness of 96 due to much reduced
primary sources.

5. Conclusions

&e process of implementing SCADA networks for pro-
cessing automated operations in large scale appliances using
learning technique is illustrated. Whenever appliances are
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introduced in a particular system, then it is necessary to
perform automatic operations as some of the parametric
values change with immediate effect. In addition, the weight
of a particular appliance must be managed in entire industry
as all appliances are combined and operated using a com-
mon control network (SCADA). Also the resources that are
shared by supervisory blocks must be fulfilled to all appli-
ances in small, medium, and large scaling factors. &us a
primary energy source is determined in the proposed
method where all the appliances are trained and learned to
operate in innocuous mode. Since primary energy sources
are measured at initial state, all the appliances are protected
by changing the down time of the appliance using frequency
shift factors. &erefore, as a result, the difference in loss
periods is much reduced where all appliances in industries
are operated at low energy rate. &is type of minimization
process is framed using an analytical representation that
turns out as an action point for automatic operational
conditions. Moreover, several constraints provided for ap-
pliance operation are much reduced and thus high flexibility
is provided in projected SCADA network implementation
process. In case of data handling process, high security is
provided by SCADA network where data of all appliances
are transferred only to control center.&e analytical model is
framed in such a way for integrating multiple objectives such
as minimization of delay, critical distance, and energy loss
where all the objectives are tested by combining SCADA
hardware setup with realization software tool. Furthermore,
experimental verifications are carried out by examining five
scenarios, and in the comparison study it is comprehended
that SCADA network with learning models provides high
effectiveness for about 84 percent. In future, the proposed
model on SCADA network can be extended for industrial
applications using artificial intelligence and machine
learning techniques as the cost of installation will be reduced
in a suitable way.
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&e induction motor (IM) defect diagnosis has been an important field of research in recent years. &e development in control
circuits for IM has piqued the interest of industrialists and researchers.&is paper presents a method for detecting and quantifying
broken rotor bar (BRB) faults via wavelets and energy Eigen value (EEV) estimation in voltage/frequency control-fed IM.&e fast
Fourier transform (FFT) extracts the signal’s amplitude and frequency components, while the discrete wavelet transform (DWT)
decomposes it. In this paper, the energy estimation for each level of breakdown and the method to overcome the diagnose faults
are explained. &e EEV of the motor current of the signal determines the fault’s severity and provides a better method for
identifying the faults. &e usage of a single current sensor is a gain of this technology. With a fluctuating load, we can identify the
issue and the number of broken bars via online. After processing of DWT, the faulty BRB’s stator current signal is suppressed to
91% in amplitude when compared to existing techniques. Simulation and experimental results have proved that the proposed
method’s stability, durability, and resilience.

1. Introduction

&e greatest approach would be to replace traditional in-
ternal combustion engine (ICE) automobiles with electric
vehicles (EVs), which emit fewer pollution than current ICE
vehicles. &is is the same as reducing transportation-related
air pollution to zero. &e electric motor is a key component
of an EV’s electric powertrain (which includes the drivetrain
and the motor). According to comparative research, IM is
more suited for use as a traction motor in electric vehicles
[1, 2]. In addition, IMs are susceptible to a variety of failures
[3, 4]. &e BRB defect is one of them [5]. Overloading

working conditions, mechanical cracks, and manufacturing
problems can all contribute to it [6]. A broken bar causes a
significant rise in currents and pressures in neighboring
rotor bars, potentially leading to more damage and even
stator problems [3, 7]. As a result, detecting the broken bar
fault at an early stage is important.&e IM is designed to be a
fault-tolerant computer and a more enjoyable solution for
EV applications in today’s reality.

BRB defects are instigated through a mixture of several
loads which are imposed on the rotor by thermal, envi-
ronmental, electromagnetic, mechanical, and dynamic
variables. &e BRBs cause speed and torque oscillations, as
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well as bearing degradation that is incomplete. It can also
cause rotor shaft vibrations, bearing problems, and air gap
eccentricity. Also, a mixture of stress operating on the rotor
causes rotor deficiency. It causes more deviations, which
reduces magnitude of torque. As a result, mechanical faults
and larger variations occur, which lead to disastrous con-
sequences for the machine. BRB faults do not cause the
machine to halt. It can cause extreme mechanical stress to
insulation, as well as winding failure, which can result in
costly repairs and production losses. With the invention of
solid-state inverters, the constant V/F control became
widespread [8, 9], and this type of variable speed drive is
used by the huge majority of variable speed drives in use
today [10]. To gain the best results, IM should function with
rated stator flux. &is can be accomplished by keeping the
voltage constant. To gain the best results, IM should function
with rated stator flux [11].

Motor current signature analysis (MCSA) is most often
method for fault diagnosis of IM [12, 13]. It is indeed a
noninvasive, easy, and effective approach under specific
loads. As a consequence, it is in commonplace in industrial
settings [14]. Instantaneous power, magnetic flux, torque,
and vibrational signals are some of the other indicators used
to diagnose rotor problems [15, 16]. In addition, method-
ologies for distinguishing between broken bar defects and
moment loads have engaged a considerable number of
scholars in recent years [17, 18]. &e intricacy of the system
that has to be diagnosed is also a factor. In the diagnostic
sector, there are two types of procedures: analytical model-
based diagnostic techniques and non-analytical model-based
diagnostic methods [19]. &e references cover a wide range
of failure scenarios as well as the methods for detecting
them. According to our investigation and extensive litera-
ture evaluation, signal processing is among the most im-
portant methodologies used in fault diagnosis.

&e signal processing approach may be separated into
two halves, the first of which uses traditional techniques such
as FFT [20] and Hilbert analysis [21], and the second of
which uses novel techniques such as windowed Fourier
transforms and wavelet analysis [22]. Frequency examina-
tion of quantifiable variables is currently the important
method utilized approach for defect analysis. One of the
most significant of these approaches is the FFT.&e primary
drawback of this technology is that it can only be employed
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in a stationary state. As a result, a different approach to
resolving this issue is required. Wavelet transformations can
be divided into two types: continuous and discrete wavelets.
Mallet et al. was the first to use multi-resolution wavelet
analysis to a problem [23]. Talhaoui et al. [24] performed a
similar technique for the identification of rotor problems in
the IM. Other papers have utilized the DWT method to
discover a number of issues, such as unbalanced eccentricity
as well as stator turn short circuits [25, 26].

&e importance of automated damage detection is
growing for a variety of reasons, the much more notable of
which being the human factor’s inadequacy, as well as en-
vironmental pressures. &e major goals of this work are to
diagnose a BRB defect and to assess the severity of the issue
while the IM is in closed loop drive with constant speed. &e
V/F control approach is used to attain a constant decoupled
control [27, 28].&e speed regulator output signal and stator
phase current will be subjected to DWT investigation as a
defect identification technique. &is approach was used in
order to provide a good diagnosis despite the constant speed
variations. &e energy stored for each stage of dynamic
energy may be utilized to assess the intensity of the fault and
differentiate among defect and regular fluctuation.

For all frequencies and loading circumstances, DWT is
appropriate for a variable size window. Low-frequency

approximation signals were employed to identify BRB de-
fects with short duration time. As a result, fast defect
identification is feasible, allowing the equipment to be
protected and controlled before it becomes dangerous.
Figure 1 shows a block diagram of DWT and energy Eigen
value-based BRB fault diagnostics.

To solve many shortcomings with earlier approaches, a
solution based on EEV and wavelet packets is proposed in
this paper. &e key benefit of this system is that it only
requires one current sensor. &e proposed technique can
identify a fault of broken bars with a variable load in real
time, because it can determine the number of broken bars
irrespective of the motor’s operational mode. &e most
successful method for identifying abnormalities in steady-
state, start, and nonstationary signals is to use this method.

In [5], Authors suggest a method for detecting BRB faults
under field-oriented control using discrete wavelet coeffi-
cients. A reduced dynamic model and stator current spec-
trum-based fault diagnosis of IM is proposed in [29]. Fuzzy
logic controller was presented for examining the perfor-
mance of drive during BRB failures [30]. &is technique
reduces sensitivity to electrical parameter fluctuation at each
reference point during variable loads. &e isolation of BRB
faults under low-frequency load fluctuation using Q axis
voltage and current component spectrum was proposed in
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Figure 4: Space vector representation of VSI.

Table 1: Switching states and space vector representation of VSI.

Type Switching state On-state switch
PWM inverter voltage

Space vector
VAN VBN VCN

Active states

[1 6 2] S1, S6, S2 Vd 0 0 V
→

1 � (2/3)Vdej0

[1 3 2] S1, S3, S2 Vd Vd 0 V
→

2 � (2/3)Vdejπ/3

[4 3 2] S4, S3, S2 0 Vd 0 V
→

3 � (2/3)Vdej2π/3

[4 3 5] S4, S3, S5 0 Vd Vd V
→

4 � (2/3)Vdej3π/3

[4 6 5] S4, S6, S5 0 0 Vd V
→

5 � (2/3)Vdej4π/3

[1 6 5] S1, S6, S5 Vd 0 Vd V
→

6 � (2/3)Vdej5π/3

Zero states [1 3 5] S1, S3, S5 0 0 0 V
→

7 � 0
[4 6 2] S4, S6, S2 V

→
0 � 0
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[31]. &e load torque instability problem offers solutions to
BRB failures with the assistance of FFTs. &e main objective
of this work is to diagnosis the BRB defects using DWTand
EEV estimation. In this paper, both FFT and DWT are
proposed for the identification of V/F-fed IMD. &en, the
fault severity is calculated using EEV computation. &is
work aids in determining the machine’s healthy and mal-
functioning states and is also utilized to measure the drives’
dynamic response.

&e paper is organized as follows: the various signal
processing techniques are discussed in Section 2. Section 3
describes the modelling of a BRB failure motor.&e dynamic
analysis of V/F based IMD is covered in Section 4. Section 5
looked at DWT-based BRB fault diagnosis. &e findings and
discussion for fault analysis are shown in Section 6, and
Section 6 discusses the study’s proper conclusions.

2. Signal Processing Techniques
Used for Diagnosis

&ere are two types of defect diagnostic approaches
without the use of models. &e first is based on signal
processing from sensors that measure various electrical
and mechanical properties. Another method involves the
use of different Artificial Intelligence (AI) algorithms to
construct well-developed systems. In industry, signal
processing and spectral analysis methods are commonly
used to monitor all rotating machineries. In the current
situation, employees are maintaining the stability through
examining a range of signals of system in order to di-
agnose problems or deviations. On the other hand, the
physical evolution and spectrum of such signals, give
enough information for professionals to identify prob-
lems and which affects the machine’s appropriate oper-
ation. &e diagnosis by this method needs a proper
understanding of the defect and their signs. Hence, the
signal processing algorithms are favoured for diagnosing
BRB defects.

2.1. FFT. &e FFT algorithm is created using DFT. FFT
converts a real-time signal to a frequency signal and can also
be used to recover high frequency components. &erefore,
the estimated magnitude and frequency can be calculated by
applying the following equation after collecting a signal
through FFT [32].

Table 2: Induction motor parameters.

Symbol Parameter Values
P0 Power output 1.1 KW
Vs Supply voltage 440V
Rs Stator resistance 7.86Ω
Rr Rotor resistance 6.22Ω
Lm Mutual inductance 0.63H
Kp Gain constant 60
Ti Integral constant 180
Tl Load torque 10Nm
nb Rotor bars 28

V/F control of IMD

Monitor the slip frequency and stator
current

If any
changes

FFT Analysis

DWT Analysis

EEV Estimation

Detection and Diagnosis
of BRBs

Yes

No

Figure 5: Fault diagnosis process.
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To determine the fault defect, the frequency amounts are
eliminated together with amplitude.&e amplitude as well as
sideband frequency are altered depending on the fault under
variable load conditions. &e current signal from the ma-
chine is extracted and subjected to FFT analysis. Simulta-
neously, IM runs in a steady-state condition. &e frequency
components of the current signal are obtained using FFT. It
is also used to determine the short circuit between the IM
stator windings.

2.2.DWT. &eDWTis similar to a filter bench and it is used
to handle the sampling signals. Figure 2 depicts the DWT
decomposition process [11].

&e following formulae can be used to compute the level
1 indices:

a1 � 
l

k

L(k − 2l)Si(k),

d1 � 

l

k

H(k − 2l)Si(k).

(2)

A next deconstruction stage is created using the a1 in-
dices. &e updated factor can be written as follows:

a2 � 
l

k

L(k − 2l)a1(k), d2 � 
l

k

H(k − 2l)a1(k).
⎧⎨

⎩ (3)

Decomposition of entire upper levels is completed. &e
original data is recreated and expressed as follows:

S′ � an + dn + d(n−1) + · · · + d1. (4)

2.3.EnergyEigenValueEstimation. Calculating EEV at every
level of decomposition is an effective diagnostic technique
for determining the severity of a defect. &e EEV is com-
puted using the following equation [33]:

Ei � 
k�n

k�1
Di,k(n)



2
, (5)

where i is the decomposition level. Each wavelet packet
factor in a frequency range has a magnitude band of D; N
is the DWT time of decomposition. &e BRB diagnosis
technique involves the computation of EEVs, with specific
change numbers reflecting the severity of the problem.

3. Modelling of IM with BRB Faults
Taken into Account

&e healthy state of IM with-reference elements is modelled,
and the relevant state equations are established to confirm
IM performance [34]. Figure 3 relates the IM to the BRB
model in terms of schematic diagram.

&e rotor coordinates model of IM is represented as
follows:

x(t)
•

� A(ω) · x(t) + Bu(t),

y(t) � Cx(t),
(6)

where x � Ids Iqs ψdr ψqr 
T
, u �

Uds

Uqs
 , and

y �
Ids

Iqs
 .

A(ω) �

− Rs + Req L
−1
f ωr ReqL

−1
m L

−1
f −ω

−ω − Rs + Req L
−1
f −ωL

−1
f ReqL

−1
m L

−1
f

Req 0 ReqL
−1
m 0

0 Req 0 ReqL
−1
m
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(7)

&e corresponding rotor resistance is calculated as
follows:

Table 3: Performance of open loop V/F control of IM under dynamic state: stator current, rotor speed when step change in load torque.

Time-domain parameters
V/F control

Fixed load Full load
tr (ms) ts (ms) Mp (%) tr (ms) ts (ms) Mp (%)

Stator current 73 1031 551 77 1030 541
Rotor speed 1727 1031 75 1030 1030 101.5

6 International Transactions on Electrical Energy Systems



-30

-20

-10

Ia
bc

 (A
)

0

10

20

30
Stator Phase Current

Ia
Ib

Ic

0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (S)

0.9 10.7 0.80.60.5
4

5

6

7

(a)

0

500

Sp
ee

d 
(r

pm
)

1000

1500

2000

2500
Rotor Speed

0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (Seconds)

0.9 10.7 0.80.60.5
2150

2200

2250

2300

2350

(b)

0.10
0

10

To
rq

ue
 (N

m
)

20

30

40

50

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (S)

Step change
in load torque

(c)

Figure 7: Simulation response of V/F control of IM at defect state. (a) Motor current. (b) Speed. (c) Torque.
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4. VSI: SVM Switching

SVM is an advanced modulation system based on eight
distinct switching potential combinations of VSI that is
commonly achieved by digital signal processing (DSP) or
microcontrollers. At the top or bottom of conduction
switches, there are six active state (to) and two zero states [35].

In a d-q plane, the eight various states may be charac-
terized as fixed vectors, as shown in Figure 4. &e output
reference vector can be generated by adding two or more
vectors, with each vector’s magnitude controlled by time.
Table 1 depicts the different switching states and space vector
representations.

Faulty 
Simulator

DSO

Healthy
Motor

Faulty 
Motor

TMS320F2
812DSPCondition 

Monitoring

Figure 8: Experimental setup.

Figure 9: Experimental waveform of current, speed, and torque in V/F-fed IM under healthy state.
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5. Fault Diagnosis of IMD

&e proposed fault diagnosis method is depicted in
Figure 5 as a flow chart. &e V/F control method is

evaluated using 1.1 kW, 440 V, 28 rotor bars to verify the
established BRB model. Table 2 contains the simulation
and experimental parameters for IM. &e MATLAB
function is used to conduct the section of the diode bridge

Figure 10: Experimental waveform of current, speed, and torque in V/F-fed IM under faulty state.
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Figure 11: FFT analysis of motor current in V/F control of IM at full load condition. (a) Healthy case. (b) 2 BRBs faulty case.

Table 4: Frequency and amplitude of motor current in V/F control of IM.

Side band frequency (s� 0.045) Estimated frequency (Hz)
Healthy state Faulty state

Frequency (Hz) Amplitude (dB) Frequency (Hz) Amplitude (dB)
(1–4 s) fs 41 43 −82 44 −75
(1-2 s) fs 45.5 47 −62 48 −48
(1 + 2 s) fs 54.5 51 −61 52 −50
(1 + 4 s) fs 59 54 −81 55 −70
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rectifier. It is defined as a user-defined function. &e RMS
voltage, frequency, and time are estimated using the
parameters integrated with the function.

5.1. Healthy State of IM. &e machine may be controlled
using the V/F control system and the SVM technology. IM’s
load torque and rotor speed are 2400 rpm and 10Nm, re-
spectively. Figure 6 shows the simulation results for motor
current, rotor speed, and electromagnetic torque. When the
machine is in good working condition, it produces a high
current flow in the transient stage, which then becomes
sinusoidal. In response to a step-variation in load torque, the
machine’s rotor speed achieves the nominal value and
gradually drops.&e step change in load torque from no load
to full load is achieved between 0.5 seconds. A small decrease
in IM happens after 0.5 seconds as a result of these load
fluctuations. When the load torque varies, the performance
of the motor current and rotor speed of the IM is shown in
Table 3.

5.2. Faulty State of IM. A simplified state-space model of IM
rotor failure is used to simulate the fault state of V/F control.
&e BRB faults may be seen in the stator current and rotor
speed which are shown in Figure 7. After 0.5 seconds, the
oscillations in stator current are detected while the machine
runs at 2 BRBs failure state. &e existence of the inverse field
on the rotor (−sωs to sωs) causes BRB failure. In stator
winding, these two fields can interact with each other, and it
increases the frequency components of 2sωs. &is causes
oscillations in electromagnetic torque, rotor speed, and
stator current shape deviations.

5.3. Experimental Setup and Results. Figure 8 shows the IM
experimental setup, which includes a condition monitoring
system, a failure simulator, and a TMS320F2812 DSP pro-
cessor. Gate pulses are sent to the DSP with the code
composer studio. Several types of fault tests are performed
utilizing a fault simulator to evaluate the efficiency of IM. To
investigate the drive performance in a defective state, two
tiny holes of 6mm diameter must be bored in the rotor bars.

&e current sensor and the speed sensor send signals to the
DSP processor. &e sample is then sent to MATLAB for
wavelet coefficients.

Figure 9 depicts the healthy state IM experiment results
for current, speed, and load torque. &e motor current
(1Div.� 2A) balances respective rated current depending on
the load fluctuations. &e rotor speed (1Div.�100 rpm)
response exhibits reduced peak overshoot and the torque
(1Div.� 2Nm) approaches reference torque in fast. When
there is a variation in torque, the oscilloscope records the
variation. Figure 10 depicts an experiment V/F supplied
driving waveform for both a normal and a defect motor. &e
motor current is abruptly raised which results in minor
oscillations during the transient stage. &e speed response is
changed at the transient stage due to the influence of the BRB
fault. It can be seen that the torque does not retain excellent
dynamics.

5.4. FFTAnalysis. Figure 11 shows an FFT investigation of
motor current both in balanced and defective state. &e
FFT analysis in MATLAB/Simulink, and also the associ-
ated data, has been validated. Depending on the type of
defect, the frequency and amplitude portion of harmonic
in the motor current changes. Table 4 shows the frequency
of sideband elements and amplitude under full load
circumstances.

&e FFT results demonstrate the potential for signal
extraction to identify and localize BRB problems dis-
covered in stator current. FFT has the drawback of po-
tentially losing some time-domain information from the
signal. It is challenging to process each frequency chan-
nel’s assumption when the original signal is decomposed.
In order to solve this issue, DWT is proposed for de-
compose the signal.

Table 5 shows the frequency level band of several wavelet
coefficients. It provides a clear interpretation of the variables
induced by the BRB fault, as the formation of harmonics
during transients and steady-state condition. Figures 12 and
13 illustrate DWT analysis of stator current in healthy and
defective states, respectively. &e oscillations are the major
contributing element for the emergence of transitioning
process. &ere is no oscillation in the system when the
wavelet signal intensity is high. In the defective condition,
the stator current magnitude has high-level coefficients and
variations in coefficients as compared to a healthy condition.
&e effect of frequency bands is influenced by BRBs failure
which causes the coefficient to increase. After decomposing
process, the stator current signal is reduced up to 91% in
amplitude.

5.5. Energy Eigen Value Computation. &e DWT nonsta-
tionary analysis shows the presence of faults. &e deviation
of energy eigenvalue of stator current in each level of DWT
provides details regarding fault severity, as illustrated in
Figure 14.

&e growth in approximation and detail signals, par-
ticularly in the level corresponding to the frequency band, is
validated through the assessment of energy stored in each

Table 5: Frequency band of wavelet coefficients of V/F fed IM.

Levels Frequency band
d1 12250–25000Hz
d2 6125–12250Hz
d3 3062.5–6125Hz
d4 1531.25–3062.5Hz
d5 765.625–1531.25Hz
d6 382.81–765.625Hz
d7 191.40–382.81Hz
d8 95.70–191.40Hz
d9 47.85–95.70Hz
d10 23.926–47.85Hz
d11 11.96–23.926Hz
d12 5.98–11.96Hz
a12 2.99–5.98Hz
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decomposition level a12. In level 12, the number of devia-
tions is proportional to the EEV. &e obtained result is
considered as a good fault severity indicator in V/F control
of IM.

6. Conclusion

Identifying and diagnosing faults with speed drives is ex-
tremely challenging. Rotor bar design is an important aspect
of IMD. &e machine will get affected due to the fault that
occurs in the broken bars with varying loads. &is paper
focuses on BRB faults and the performance of the induction
motor in balanced and unbalanced state. In this paper, BRB
fault diagnosis in V/F control of IM is proposed. &e
magnitude and sideband frequencies are obtained using the
FFT method. &e magnitude and frequency values are ob-
tained from the FFT outputs. To obtain the stator current
and rotor speed, the DWTmethod is used. By calculating the
EEV, we can determine the fault severity. When DWT is
applied, the stator current signal of the defective BRB is
suppressed to 91% of its original amplitude. &e result has
proved that DWT and EEV calculation are the effective
methods for fault diagnosis, and it is easy to use in motor
control applications. In future, the BRB fault diagnosis in
vector control methods using advanced regulators will be
considered. Also, introducing various observers like sliding
model control and backstepping control will be utilized for
BRB fault diagnosis in various control methods.
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*e conventional multilevel inverter necessitates more active switching devices and high dc-link voltages. To minimalize the
employment of switching devices and dc-link voltages, a novel topology has been proposed. In this paper, a novel minimum switch
multilevel inverter is established using six switches and two dc-link voltages in the proportion of 1 : 2. In addition, the proposed
topology is proficient in making seven-level voltages by appropriate gate signals. *e PWM signals were produced using several
inverted sine carriers and a single trapezoidal reference. When compared to other existing inverters, this configuration needs
fewer components, as well as fewer gate drives. Furthermore, this module can generate a negative level without the use of a
supplementary circuit such as an H-Bridge. As a result, overall cost and complexity are greatly reduced. *e proposed minimum
switch multilevel inverter operation is validated through simulations followed by experimental results of a prototype.

1. Introduction

*e cascaded inverter, which is made up of a series of
connected strings of a full-bridge inverter, has been pre-
sented in [1]. *is structure can be functioned in both
symmetric and uneven types based on the input source
magnitude. Asymmetrical type inverter configuration re-
quired fewer cascaded bridges to achieve more output levels
[2]. In [3], a new seven-level inverter scheme is proposed
with six semiconductor switches and 3 dc capacitors.
However, the voltage balancing of the capacitor is quite
challenging. A new MLI topology with series connected dc
voltage sources has been presented in [4]. To lower the
switching losses, this structure includes a level generation
and polarity generation portion. Increasing the output
voltage, on the other hand, necessitates the use of more dc
sources. In [5], MLI topologies with a capacitor selection

circuit have been presented. However, obtaining distinct dc
sources having multiple ratios necessitates the use of a front-
end transformer. Transformers less switched capacitor in-
verter topology have been presented in [6]. However, the
determination of capacitance value is quite complex. A 7-
level configuration with a dc supply with and series of ca-
pacitors, diodes, and power semiconductor switches have
been presented in [7]. It also uses a new switching strategy to
solve voltage balancing problems in capacitors. However, the
proposed configuration has a restriction on high-voltage
applications. A medium-voltage hybrid seven-level cascaded
inverter topology is presented in [8]. However, the circuit
topology is more complicated because it requires a high
number of switching devices. A packed U cell inverter
configuration is presented in [9, 10] with a lower number of
power semiconductor switches to high-voltage applications.
However, exploiting power semiconductor switches with
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Figure 2: Continued.
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different ratings and frequencies is crucial. 7-level inverters
designed with switched capacitors are described in [11–13].
To enhance the voltage level, however, the voltage across the
dc-link capacitor should be enhanced. In addition, to
minimize overall harmonic distortion, level shifted, phase
shifted, and hybrid pulse width modulation (PWM) ap-
proaches are often used. *e key challenges with these MLI
topologies are improving efficiency by enhancing the quality
of power using appropriate control and modulation tech-
niques. Additionally, finding the exact modulation method
for any kind of multilevel converter seems to be complicated
[2, 14–16]. Drawing inspiration from early research, the
article outlines a novel 7-level inverter based on a decreased
number of parts, with a series of connected dc sources of
binary sequence to achieve maximum capacity from dc
sources by an appropriate organization of switches [17].
Symmetrical and asymmetrical MLI with lower switch count
and dc sources are presented in [18–21]. However, these
topologies need auxiliary circuits to generate negative levels.

*e proposed inverter topology has the following merits
over the inverter topology presented in recent past years.

(1) Simple structure with fewer semiconductor com-
ponents and individual DC sources for each unit has
great potential for the application of dispersed
generation.

(2) It does not require any supplementary H-bridge unit
to make negative polarity levels. *erefore, the re-
design overcomes the restriction on high-voltage
applications due to high-voltage stress on H-bridge
switches [21].

(3) Reduction in blocking voltage on switches, a di-
versity of switches, and heat sinks.

(4) Modified PWM technique uses trapezoidal reference
and inverted sine carrier waveform for the inverter,
which enhances the inverter performance by max-
imising output voltage and reducing voltage dis-
tortion [22].

Table 1: Voltage stress on switches.

Switch Voltage stress
Sa1 3VDC
Sa2 2VDC
Sa3 3VDC
Sa4 2VDC
Sb1 3VDC
Sb2 3VDC
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Figure 3: Graphic depiction of the PD-PWM scheme with inverted sine carrier and trapezoidal reference waveform.

Table 2: Comparison with recent past developed MLIs.

Parameter Ref.
no. [1]

Ref.
no. [3]

Ref.
no. [4]

Ref.
no. [5]

Ref.
no. [6]

Ref.
no. [7]

Ref.
no. [8]

Ref.
no. [9]

Ref.
no.
[10]

Ref.
no.
[11]

Ref.
no.
[12]

Ref.
no.
[13]

Ref.
no.
[14]

Proposed

NSource 1 1 3 1 1 1 2 1 2 1 1 1 4 2
Ncapacitors 3 3 0 2 3 3 2 1 2 3 3 2 0 0
NSwitch 8 8 10 6 10 7 12 6 6 8 10 8 6 6
NDriver 8 8 10 6 10 7 12 6 6 8 10 8 6 6
NDiode 4 0 0 2 0 2 4 0 0 4 0 2 2 0
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Figure 4: (a) Resultant 7-level voltage along with the current for R (100Ω) load (simulation). (b) Harmonic spectrum.
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Figure 6: (a) Resultant 7-level voltage along with the current for a series RL (100Ω and 400 mH) load (simulation). (b) Harmonic spectrum.
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Figure 8: Experimental arrangement of proposed seven-level inverter.
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Figure 9: (a) Resultant 7-level voltage along with the current for R (100Ω) load (experiments). (b) Harmonic spectrum.
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*e following is the structure of the article: the oper-
ation of the proposed configuration and PWM technique is
described in Section 2. Sections 3 and 4 discuss the com-
parative study and results. Conclusions are finally drawn in
Section 5.

2. 7-Level Inverter Configuration and
PWM Technique

2.1. Proposed Configuration of MLI. Figure 1 displays the
proposed structure of a 7-level inverter with a new device
arrangement. It is used to extract the seven-level output by
choosing the suitable switches and sources. *e configu-
ration consists of ‘two’ dc sources with distinct voltage scales
that have a two-fold geometric progression (VDC and 2VDC),
then the output voltage levels 0VDC, ±VDC, ±2VDC, and
±3VDC can be achieved by choosing the suitable path from
switches and dc sources. It consists of six semiconductor
switches (Sa1 to Sa4, Sb1, and Sb2) like IGBT and two
unequal dc sources of magnitude VDC and 2VDC. With a
proper driving pattern for six switches, it is possible to obtain
voltage levels from −3 VDC to 3 VDC.

However, the extension of further high levels is quite
complex. To avoid a short circuit, the suggested configuration

switches (Sa1, Sa2), (Sa3, Sa4), (Sa1, Sb1), and (Sa3, Sb2)
should never be switched on at the same period [23].

*e current path for each output state and cyclic
switching sequence is depicted in Figure 2(a)–2(h). Sa1, as
well as Sa3, were switched ON in accordance with the
operating modes for maintaining zero level. When Sa1 and
Sa4 are turned ON, the output voltage becomes +VDC, and
then Sa2 and Sb2 are switched ON to produce +2VDC as an
output voltage. Sa1 and Sb2 are turned ON to make output
voltage as +3VDC, then Vout becomes −VDC by turning ON
Sa2 and Sa3. To synthesize −2VDC as the output voltage, Sa4
and Sb1 are turned ON. Sa3 and Sb1 are turned ON to make
an output voltage −3VDC. Table.1 shows voltage stress on
each switch.

2.2. Proposed PWM Technique. *e control strategy uses
trapezoidal wave as a reference instead of sine wave and
inverted sine waves as a carrier instead of triangular wave.
*e trapezoidal wave is obtained from triangular wave by
limiting its magnitude, which is peak of the triangular wave.
Interaction of trapezoidal reference and inverted sine carrier
provide wider pulse area compared to conventional sinu-
soidal PWM scheme, which enhance the fundamental
components. *e operation of minimum switch multilevel
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Figure 10: (a) Resultant 7-level voltage along with the current for a series RL-load (100Ω and 240mH) (experiments). (b) Current harmonic
spectrum.
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inverter is achieved by proper switching using carrier-based
PWM technique named PD-PWM, which is depicted in
Figure 3. In this case, a trapezoidal reference wave Tref and
six inverted sine carrier C inv (1, 2, 3, ... , 6) are used.*e half
of the carrier are set above the zero reference C inv TOP (1, 2,
3, . . . , C inv/2) and remain set below the zero reference C inv
BOT (1, 2, 3, . . ., C inv/2) with same frequency, phase, and
amplitude are disposed. Each C inv∗ are compared with
reference Tref, which produces command signals (Cs1,
Cs2,. . .Cs3. . .). *e switching signals are generated by a
proper logical combination of command signals.

3. Comparative Study

Many reduced switch MLI topologies have been developed
in recent past years. To prove the effectiveness of the pro-
posed topology, several parameter (number of sources,
switches, driver circuits, capacitors, and diodes) compari-
sons have been made between the proposed MLI topology
and the recently developed topologies which are tabulated in
Table 2. Table 2 shows the comparison of different pa-
rameters. From Table 1, it is evident that the proposed
topology has the best features in the number of power
switches, driver circuits, source capacitors, and diode. Based
on the aforementioned merits, the proposed MLI requires

the least cost and installation space requirement as com-
pared to other MLI topologies.

4. Results and Discussions

4.1. Simulation Results. *e Simulink-Power system block
set has been used to simulate the desired asymmetrical
multilevel inverter. Seven-level inverters were simulated for
the modulation index value of 1 with various loads and
dynamic shifts in the loads. VDC� 100V, R load value of
100Ω, R-L load values of (R� 100Ω, L� 240mH), and
(R� 100Ω, L� 400mH) are utilized. *e carrier switching
frequency fcarrier� 2 kHz.

Figures 4(a) and 4(b) exhibit the resultant waveform of
voltage and current for the desired 7L inverter, as well as an
FFT chart for the standard resistive load. *e seven-level
output waveform has voltage magnitudes of 0, ±100V,
±200V, and ±300V. *e output voltage THD is 16.82%, and
the fundamental peak voltage is 216.4V. For the R-L load
condition (R� 100Ω, L� 240mH), Figures 5(a) and 5(b)
display the load voltage and currents, and also the output
current FFTplot. *e resultant current has a total harmonic
distortion (THD) of 5.58%, as found by a Fast Fourier
Transform (FFT) analysis. Furthermore, the testing has been
performed using a separate set of R-L load (R� 100 ohms,

(a)

DC

50

100
%

max 100.0%
min 100.0% THD 8%1

1 3 5 7 9 11 13 15 17 19 21 23 25

(b)

Figure 11: (a) Resultant 7-level voltage along with the current for a series RL-load (100Ω and 400mH) (experiments). (b) Current harmonic
spectrum.
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L� 400mH) with almost the same amplitude (100Volts) of
dc source for the same inverter configuration. Figures 6(a)
and 6(b) show the resulting voltage and current for this load
state, and also the resultant current FFT plot. *e load
current has a THD of 8.04 percent, as revealed by an FFT
analysis. *e developed inverter configuration has been
effectively investigated for the rapid phase.

Transition loads [24]: the load voltage and current for
rapid load shifts between R� 100 ohms to (R� 100 ohms,
L� 400 mH) at t� 0.04 sec, as well as the current FFT plot,
are displayed in Figures 7(a) and 7(b). *e load voltage
appears to remain steady even after a rapid transformation
in load. Furthermore, the current in the load is rehabilitated
from high to low value. *e current harmonic distortion is
found to be 12.46% using the FFT analysis.

4.2. Experimental Validation. In this study, a prototype of a
seven-level inverter was examined under various loading
conditions as well as dynamic variations in load values by
setting the modulation index to 1. *e MLI configuration
consists of two DC sources (V1� 100V, V2� 200V) and six
IGBT switches which produce 7-level output with the
maximum value of 300V. *e other parameters are con-
sidered as follows: FGA25N120 IGBT switch, TLP350 driver

circuit, R load value is 100Ω, R-L load value of (R� 100Ω,
L� 240 mH), (R� 100Ω, L� 400 mH), and the triggering
signal for the IGBT switches is produced by the real-time
controller DSpace 1104 in real time. *e carrier switching
frequency fcarrier� 2 kHz. Figure 8 depicts an experimental
arrangement of the proposed 7L inverter. Figures 9(a) and
9(b) illustrate the resultant voltage and current waveforms
for the proposed 7L inverter, as well as the FFTplot for the R
load. *e output waveform has a magnitude of 0, ±100V,
±200V, and ±300V. *e output voltage THD is 16.30%, and
the fundamental peak voltage of 213.4V. For the R-L load
(R� 100 ohm and L� 240 mH), Figures 10(a) and 10(b)
show the 7-level voltage pattern and current pattern, as
well as the current FFTplot. It can be seen that according to
an FFTmeasurement of resultant current, the percentage of
THD is 5.48%.*e 7-level inverter arrangement were further
investigate with R-L load (R� 100, L� 400mH) and 100V dc
sources. Figures 11(a) and 11(b) exhibit the resultant voltage
and current, as well as the current FFT plot. *e percentage
of THD in the resultant current is 8.04 percent, according to
an FFT measurement. *e effectiveness of the designed
inverter structure has been validated for rapid phase-
changing loading.*e resultant voltage and current for rapid
load transitions between R� 100 ohms and (R� 100 ohms,
L� 400 mH) at t� 0.04 sec, as well as the current FFT chart,
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Figure 12: (a) Resultant 7-level voltage along with the current for sudden step change R� 100Ω to (R� 100Ω, L� 400 mH) load (ex-
periments). (b) Current harmonic spectrum.
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are shown in Figures 12(a) and 12(b), respectively. It can be
witnessed that after a quick shift in load, the resultant voltage
appears to be stable. Moreover, the resultant current is
reduced from a high to a low level. *e percentage THD of
resultant current is reported to be 12.26 using the FFT.

*e aforementioned performance findings reveal that
the presented topology is capable of handling a wide range of
loads and is also suited for dynamic load changes.

5. Conclusion

In the work, a new multilevel inverter configuration is
established using six switches. *e suggested topology is a
synthesized 7-level output waveform with two uneven dc
inputs using trapezoidal reference and inverted sin-carrier-
based PD-PWM method. *e recommended multilevel
inverter performance is confirmed with a variety of loading
conditions. Furthermore, the proposed architecture uses
merely six switches and eliminates the requirement for a
distinct level generation and polarity generation arrange-
ment. Furthermore, the proposed switching approach sig-
nificantly improves the harmonic spectrum of the output
waves under unequal dc links with dynamically changing
load conditions. Moreover, the proposed switching method
can apply to all types of multilevel inverters and it can be
used in applications with higher and lower switching fre-
quencies. *e viability of recommended control technique is
evaluated experimentally. *e results validate the effec-
tiveness of the recommended multilevel inverter configu-
ration and control technique. As an outcome, we believe that
the suggested multilevel inverter structure and control
technique can provide improved dynamic performance
while also lowering overall harmonic distortion and en-
hancing voltage profile.
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