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Conventional single-antenna radar is inherently limited in
meeting the rising demands of future applications. Innovative
radar technologies are thus needed to be developed.Multiple-
inputmultiple-output (MIMO) radar allows for simultaneous
transmission and reception by multiple antennas or chan-
nels. In particular, MIMO radar offers potential to gather
additional information to overcome the restrictions of single-
antenna radars in target radar cross section scintillation,
low system gain, and poor identify capability. The multiple
antennas can be placed either in a monostatic platform
or in distributed platforms. This system flexibility offers
opportunities to develop new radar technologies and appli-
cations. Although MIMO antennas in radar target detection
and estimation applications have received much attention in
recent years (see [1] and the references therein), there still are
many open questions, especially in applyingMIMO antennas
to radar imaging applications (see [2] and the references
therein).

The purpose of this special issue is to bring together
MIMO antenna signal processing and application related
investigations, stimulating the continuing efforts to under-
stand MIMO radar, develop new MIMO radar imaging
technologies, and evaluate their applications. From the man-
ifold submissions, we have selected interesting papers. These
papers concern different MIMO antennas and their applica-
tions in target detection, tracking, beam pattern synthesis,
radar imaging, and sparse recovery. To help interested readers
with a quick reference to the main themes of these papers, we
briefly introduce them as follows.

Target localization in radar has been intensively studied
in literature; however, the localization resolution is limited
by the signal bandwidth, and usage of multiple stations
is required to avoid ghost targets. On the contrary, it is
possible for MIMO radar to jointly estimate the direction-
of-departure (DOD) and direction-of-arrival (DOA) by
applying array processing at both of the transmitting and
receiving arrays. I. Pasya et al. present a joint DOD and DOA
estimation in a MIMO radar utilizing ultra wideband signals
for detecting targets with fluctuating radar cross sections.
H. Yu et al. propose a low-complexity DOA estimation and
tracking algorithm for monostatic MIMO radar. Doppler
shift is also an important issue in MIMO radar, but it is
often ignored in existing literatures. N. Wang et al. utilize the
parallel factor (PARAFAC) algorithm to estimate theDoppler
frequency and then exploit the multiple signal classification
(MUSIC) to estimate theDOA. L. Xu et al. present aDOAand
Doppler frequency joint estimator for bistaticMIMO radar in
spatial colored noise.

Different from monostatic MIMO radar, distributed
MIMO radar may provide significant performance improve-
ment for target detection and localization. However, optimal
power allocation is a challenge in distributed MIMO radar
network. C. Shi et al. propose an interesting low probability of
intercept (LPI) optimization framework for target tracking in
distributedMIMO radar network.The authors use two infor-
mation theoretic criteria, namely, Bhattacharyya distance and
𝐽-divergence, as the metrics for target detection performa-
nce.
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Waveform diversity design for MIMO radar has received
much attention [3]. A promising research direction is joint
optimization of transmitted waveforms and receiving filters
with clutter suppression. Y. Tang et al. propose a transmit
waveformoptimization for spatial frequency diversityMIMO
radar in the presence of clutter. Besides effective clutter
suppression, the proposed method also can suppress target
scintillation. Furthermore, P. Gong and Z. Shaopropose a
transmit beam pattern synthesis with constant beamwidth
and sidelobe control for wideband MIMO radar by optimal
designing of the power spectral density matrix.

This special issue focuses onMIMOradar imaging related
topics, especially MIMO synthetic aperture radar (SAR)
which places multiple antennas in moving platforms and
employs synthetic aperture technique for two-dimensional
(2D) or three-dimensional (3D) imaging.Themultiple anten-
nas in a MIMO SAR can be arranged either in elevation
direction (cross-track), in azimuth direction (along-track), or
in both dimensions [4]. Good operation flexibility and recon-
figurability can thus be obtained by exploiting the equivalent
phase centers, but optimizing the array configuration requires
further investigations [5]. H. Jiang et al. investigate several
specialmultiple-input single-output (MISO) andMIMOSAR
modes for bidirectional imaging.

J. Zhang et al. present an efficient algorithm to reconstruct
the signal of MIMO SAR using stepped frequency wave-
forms in spotlight and sliding spotlight modes. The authors
introduce a Doppler ambiguity resolving algorithm based
on subaperture division and an improved frequency-domain
bandwidth synthesis method. P. Huang et al. and Z. Yang et
al. present joint 2D ambiguity resolving for MIMO SAR and
joint multichannel motion compensation for MIMO SAR 3D
imaging, respectively. Since compressive sensing technique
plays an important role in sparse array design [6], two
papers exploiting compressive sensing technique for MIMO
radar imaging are included in this special issue. J. Li et al.
propose a sparse recovery for bistatic MIMO radar imaging
in presence of array gain uncertainties, where the imaging
is performed by compressive sensing with a consideration of
both the transmitting and receiving array gain uncertainties.
X. Ren et al. present a new strategy based on Bayesian
compressive sensing theory for down-looking MIMO SAR
imaging. The authors transform the cross-track imaging
process into a problem of sparse signal reconstruction from
noise measurements.

Another important MIMO radar topic is system imple-
mentation. The first hardware constraint is channel imbal-
ance. Existing solutions can be classified as two categories:
internal calibration and external calibration. X. Luo et al.
propose an external calibration, where the channel imbalance
errors are estimated from the peak of a corner reflector or a
strong point target in the scenario.The second hardware con-
straint is motion compensation. Such problem is discussed
by C. Luo and Z. He. Additionally, spaceborne MIMO SAR
may be degraded by ionosphere effects. F. Zhang et al. analyze
the impacts of ionosphere and troposphere refraction on
spaceborne multiband SAR imaging. The authors conclude
that the refraction effects should be compensated in low-
frequency band.

All papers appearing in this special issue have been
subject to a strict peer-reviewing process. Through this
special issue, we have provided a medium of dissemination
for valuable ideas and conclusions on MIMO antennas in
radar applications. At the same time, we hope that more
innovations can be stimulated for future advances on this
exciting subject.
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The multiple-input-multiple-output (MIMO) synthetic aperture radar (SAR) system with a linear antenna array can obtain 3D
resolution. In practice, it suffers from both the translational motion errors and the rotational motion errors. Conventional single-
channel motion compensation methods could be used to compensate the motion errors channel by channel. However, this method
might not be accurate enough for all the channels.What is more, the single-channel compensationmay break the coherence among
channels, which would cause defocusing and false targets. In this paper, both the translational motion errors and the rotational
motion errors are discussed, and a joint multichannel motion compensation method is proposed for MIMO SAR 3D imaging. It is
demonstrated through simulations that the proposed method exceeds the conventional methods in accuracy. And the final MIMO
SAR 3D imaging simulation confirms the validity of the proposed algorithm.

1. Introduction

Conventional single-channel synthetic aperture radar (SAR)
uses wideband signal and synthetic apertures to obtain high
range resolution and high azimuth resolution, respectively.
But it could not resolve along height due to the lack of
baseline in the elevation direction. The imaging results are
the projection from the scene in 3D to the range-azimuth
plane. To resolve along height, the multiple-input-multiple-
output (MIMO) SAR system [1–3] uses multichannel to form
the baseline in the third dimension. Technically, the MIMO
SAR system could place its sensor in many different layouts.
Two possible geometries ofMIMO SAR are along-track array
(for the reduction of azimuth-ambiguities, moving target
indication, superresolution, etc.) and across-track array (for
the reduction of elevation-ambiguities, interferometry, 3D
imaging, etc.) [4].

TheMIMO SAR system has two main advantages: (1) the
degrees of freedom can be greatly increased by the concept
of virtual array provided by the multiple antennas [3]; (2)
the MIMO SAR system can provide plenty of transmitting
elements and receiving elements to satisfy the cross-track
sampling [5]. Due to the second advantage, it can significantly

improve the resolution of the third dimension. Thus it is
widely used for 3D imaging. Profiting from the unique
advantages, airborne MIMO SAR 3D imaging technique has
become a field of intensive research in recent years. However,
studies about the MIMO SAR are mostly concentrated
on antenna arrangements [4, 6], waveform designs [7, 8],
and imaging algorithms [4, 9]. The motion compensation
(MOCO) has not been paid much attention. To deal with
the motion errors, the most preferable way is using a high-
precision navigation system. However, in many cases, due
to the limit of accuracy of such systems, motion errors are
unlikely to be compensated correctly. Thus MOCO methods
based on raw data are widely used. Conventional MOCO
methods [10–12] or autofocus methods [13, 14] only deal with
the translational motion errors of the carrier aircraft. This is
reasonable in single-channel SAR imaging because the sensor
is normally placed at the centroid of the plane.The rotational
motion errors only alter the beam direction and could be
compensated through beam control. Nevertheless, for the
MIMO SAR system, the rotational motion errors could no
longer be ignored because they affect the relative positions of
the sensors. Conventionally the motion errors are estimated
and compensated separately for each channel. We refer to
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Figure 1: The ideal geometry of MIMO SAR 3D imaging.

this method as single-channel MOCO (SC-MOCO)method.
Thismethodmay break the coherence among channels which
would cause defocusing and false targets. In this paper,
making use of the linear features of theMIMO system, a joint
multichannelMOCO (JMC-MOCO)method is proposed for
MIMO SAR 3D imaging. This new method can estimate
and compensate both the translational motion errors and
the rotational motion errors. Thus it is of high value for the
MIMO SAR 3D imaging.

The paper is organized as follows. In Section 2, we first
discuss the ideal geometry of MIMO SAR 3D imaging.
Then both the translational motion errors and the rotational
motion errors are analyzed in Section 3. In Section 4, the
JMC-MOCO method for the MIMO SAR 3D imaging is
introduced in detail. Simulations in Section 5 confirm that
the proposed method is of higher accuracy than that of the
conventional single-channel method.

2. Signal Mode and Imaging
Geometry of MIMO SAR

The MIMO SAR utilizes an across-track array to gain the
third dimension resolution. The transmitter and receiver
antennas are usually distributed nonuniformly along the
linear across-track array. Assume a MIMO SAR platform
flies at the altitude of 𝐻 along the 𝑋-axis with velocity V.
The MIMO array with 𝑀 transmit elements and 𝑁 receive
elements is linearly laid out along the 𝑌-axis. Signal sorting
would be operated after the collecting of data, and 𝑀𝑁

valuable signals can be saved for the imaging process during
each pulse. The ideal geometry of MIMO SAR 3D imaging is
indicated in Figure 1.

Ignoring two-way antenna characteristics and propaga-
tion attenuation, after demodulation and range compression,
the echo signal transmitted by the 𝑚th transmitter 𝑇

𝑚

reflected by a generic point target 𝑃(𝑥
0
, 𝑦
0
, 𝑧
0
) and received

by the 𝑛th receiver 𝑅
𝑛
is given by

𝑒 (𝜏, 𝑡) = 𝜌 ⋅ 𝑠 (𝜏 −
2𝑟 (𝑡)

𝑐
) exp(−𝑗4𝜋𝑟 (𝑡)

𝜆
) , (1)

where 𝑠(𝜏) is the transmitted signal, 𝜏 is the fast time, 𝑡 is the
slow time, 𝜌 is the reflectivity of 𝑃, 𝑐 is the time speed, and 𝜆
is the wavelength; 𝑟(𝑡) = (𝑟

𝑇
+ 𝑟
𝑅
)/2 [15] denotes the range

from the antenna phase center (APC) 𝐴(𝑥
𝑡
= V𝑡, 𝑦,𝐻) of 𝑇

𝑚

and 𝑅
𝑛
to 𝑃; 𝑟

𝑇
and 𝑟
𝑅
are the range from 𝑇

𝑚
and 𝑅

𝑛
to 𝑃,

respectively. Then

𝑟 (𝑡) = √(V𝑡 − 𝑥
0
)
2

+ (𝑦 − 𝑦
0
)
2

+ (𝐻 − 𝑧
0
)
2

, (2)

where 𝑦 is the across-track position of the APC.
As described in [16, 17], the image is formed in three steps,

namely, the compression in the range direction, the focusing
in the azimuth direction using the SAR principle, and the
beam forming operation to focus the data in the across-track
direction.

3. Imaging Geometry of MIMO SAR
with Motion Errors

In practice, due to the presence of atmospheric turbulence
that produces sensor track deviations from an ideal straight
track, motion errors need to be accurately compensated.
There have been numerous good methods dealing with
the translational motion errors but ignoring the rotational
motion errors [10–12].Thesemethods are adequate for single-
channel SAR, because the sensor is usually placed at the
centroid of the carrier aircraft and the rotational motion
errors can be compensated through beam control. However,
for MIMO SAR system, the rotational motion errors would
change the baseline position and decrease the quality of the
final image eventually.

Before the introduction of our method, we first discuss
the core element that causes the defocusing of SAR images,
that is, the range migration error.

As shown in Figure 2, a blue dashed arrow identifies
the offset from the ideal position of the carrier plane to
its true position. Then the translational motion error is
Δr = [Δ𝑥

𝑡
, Δ𝑦
𝑡
, Δ𝑧
𝑡
]. The subscript 𝑡 means time-variant. In

Figure 3, the rotational motion error of the carrier aircraft is
characterized by three angles [𝜃

𝑡
, 𝜑
𝑡
, 𝜙
𝑡
] with 𝜃

𝑡
denoting the

pitch angle, 𝜑
𝑡
denoting the roll angle, and 𝜙

𝑡
denoting the

yaw angle. Among them, 𝜃
𝑡
does not affect the array position.

The rotation matrixes of 𝜑
𝑡
and 𝜙

𝑡
can be written as T𝜑 =

[
1 0 0

0 cos𝜑
𝑡
− sin𝜑

𝑡

0 sin𝜑
𝑡

cos𝜑
𝑡

] and T
𝜙
= [

cos𝜙
𝑡
− sin𝜙

𝑡
0

sin𝜙
𝑡

cos𝜙
𝑡
0

0 0 1

]
,

respectively. Then,

the real position of the APC can be denoted as

A = [𝑥
𝑡
, 0,𝐻]

T
+ T𝜑T𝜙[0, 𝑦, 0]

T
+ ΔrT

= [𝑥
𝑡
− 𝑦 sin𝜙

𝑡
+ Δ𝑥
𝑡
, 𝑦 cos𝜙

𝑡
cos𝜑
𝑡
+ Δ𝑦
𝑡
,

𝐻 + 𝑦 cos𝜙
𝑡
sin𝜑
𝑡
+ Δ𝑧
𝑡
]
T
.

(3)
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The slant range from 𝐴 to the point target 𝑃 can now be
written as
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(5)

is the range error caused by the translational and rotational
motion errors and needs to be compensated. In the next
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Figure 4: The simulated rotational motion errors and the transla-
tional motion errors.

section, the JMC-MOCO method is discussed in detail to
estimate and compensate the range error.

4. Joint Multichannel MOCO
Method for MIMO SAR 3D Imaging

To compensate the motion errors, the conventional method
is used to estimate and compensate the motion errors for
each channel. However, the inevitable estimating errors of
each channel may cause the incoherence among channels
which would cause defocusing and false targets. Combining
the linear properties of the across-track array, in this section
we present a new method which can compensate both the
translational motion errors and the rotational motion errors
and preserve the coherence among different channels at the
same time.

To avoid the incoherence after motion error compensa-
tion, the motion error estimating and compensating need to
be jointed among channels. From (4) and (5) we can see that,
due to the rotational motion errors, the range error differs
along the linear across-track array. To clearly uncover the
relationship between the range error and the array, we expand
(4) according to Taylor expansion as follows:

𝑟real (𝑡) ≈ 𝑟𝐵 +
(𝑥
𝑡
− 𝑥
0
)
2

2𝑟
0

+ 𝛼
𝑡
+ 𝛽
𝑡
⋅ 𝑦 +

𝑦
2

2𝑟
0

, (6)

where 𝑟
0
= √𝑦2

0
+ (𝐻 − 𝑧

0
)
2 is the ideal zero-Doppler range

from the center APC to the point target, (𝑥
𝑡
− 𝑥
0
)
2

/2𝑟
0
is the

ideal range migration, and

𝛼
𝑡
=
Δ𝑥
𝑡
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𝑡
− 𝑥
0
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𝑦
2

/2𝑅
𝐵
is typically small and can be neglected. Then the

range error 𝛼
𝑡
+ 𝛽
𝑡
⋅ 𝑦 is linear along the across-track array.

Moreover,𝛼
𝑡
is only related to the translationalmotion errors,

and 𝛽
𝑡
is only related to the rotational motion errors.

The range error alters the Doppler rate and finally
defocuses the image. Hence, to estimate the motion error, let
us first analyze the true Doppler rates. As expressed in (1),
after range compression, the phase history of 𝑃 is

Φ (𝑡) = −
4𝜋𝑟real (𝑡)

𝜆
. (8)

Substitute (6) into (8) and derive (8) twice, and the Doppler
rate can be denoted as

𝛾 = 𝛾
0
+ 𝐴 (𝑡) + 𝐵 (𝑡) 𝑦, (9)
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is the ideal Doppler rate,
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In (11),ΔV
𝑥𝑡
is the speed error of the plane.Δ𝑎

𝑥𝑡
,Δ𝑎
𝑦𝑡
, and

Δ𝑎
𝑧𝑡
denote the translational acceleration in the track direc-

tion, the across-track direction, and the elevation direction,
respectively. 𝜔

𝜙
𝑡

and 𝜔
𝜑
𝑡

denote the angular velocity of the
yaw angle and the roll angle. 𝑎

𝜙
and 𝑎
𝜑
are the corresponding

angular acceleration.
From (9) we can see that the true Doppler rate 𝛾 contains

three parts: the ideal Doppler rate 𝛾
0
and two error terms.

Similar to the case of range, 𝐴(𝑡) is only related to the
translational motion errors, and 𝐵(𝑡) is only related to the
rotational motion errors. That means, due to the rotational
motion errors, the true Doppler rate scales linearly with the
across-track position of the APC. The SC-MOCO method
does not estimate the linear property of the motion errors;
consequently it breaks the coherence among channels after
motion compensation. This linear feature is used in the
following to design a newmotion compensationmethod that
compensates both the translational motion errors and the
rotational motion errors.

Suppose there are 𝐾 channels. Using the map drift (MD)
method [18, 19] to estimate the Doppler rate of each channel,
we have the Doppler rate array

𝛾̂ = [𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑘
, 𝛾
𝐾
]
T
, (12)

where 𝛾
𝑘
denotes theDoppler rate of the 𝑘th channel. In order

to estimate the twounknownparameters𝐴 and𝐵 in (9), a cost
function is designed as follows:

𝐽 (𝐴, 𝐵) =

𝐾

∑

𝑘=1

(𝛾
𝑘
− 𝛾
0
− 𝐴 − 𝐵𝑦

𝑘
)
2

, (13)
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Figure 6: Comparison between the estimated value and the theoretical value of (a) 𝐴 and (b) 𝐵.

where 𝑦
𝑘
is the position of the 𝑘th channel. The aim is to find

(𝐴, 𝐵) that minimizes 𝐽, that is, the stagnation point. Let the
partial derivatives of 𝐽 be equal to 0; we have
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(14)

By solving (14), 𝐴 and 𝐵 can be written as
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(15)

This method combines all the estimating results of each
channel to obtain the linear coefficient and then derives each
Doppler rate. Comparing to the conventional SC-MOCO
method, this method has three advantages: (1) the estimat-
ing accuracy is dramatically improved; (2) the influence
from occasional bad estimating values can be suppressed;
and (3) the multichannels maintain coherence after motion
estimation. This will be demonstrated in Section 5 through
simulations.
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5. Simulations

5.1. Motion Error Estimation Comparison between the Pro-
posed Method and the Conventional Method. In order to
prove that the proposed method is of higher precision than
the conventional method, a MIMO SAR system with a linear
MIMO array is simulated.The key simulation parameters are
listed in Table 1. The linear MIMO array contains 32APCs.
Nine points are set in a line along the track direction with
spacing of 2m. Common translational motion errors and
rotational motion errors shown in Figure 4 are imported
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Figure 8: The imaging results with (a) the SC-MOCOmethod and (b) the proposed JMC-MOCOmethod.
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Figure 9: The magnified imaging results with (a) the SC-MOCOmethod and (b) the proposed JMC-MOCOmethod.

Table 1: Simulation parameters.

Wavelength 0.0313m
Bandwidth 150MHz
Pulse duration 2 𝜇s
PRF 180Hz
Antenna width 2m
Flying height 6 km
Flying speed 150m/s
Incidence angle 60∘

Baseline length 8m

into the simulation. As shown in Figure 4, the yaw angle
and the roll angle vary in a range of ±10∘. The translational
motion errors in the across-track direction and the elevation
direction are within ±4m. All the motion errors mentioned
above vary frequently. The translational motion error in the
track direction is, nonetheless, quite different due to the
enormous inertia of the plane. It is hardly time-varying but

accumulative. Hence, the added translational motion error in
the track direction is around 20m and changes slowly.

After range compression and migration correction, the
echo data are processed separately by the proposed JMC-
MOCOmethod and the conventional SC-MOCOmethod.

For the center APC, the Doppler rate estimation errors
(defined as Estimation error = ((Estimated value −

Real value)/Real value) × 100%) of these two methods are
shown in Figure 6. As can be seen from Figure 5, the Doppler
rate estimation errors of the proposed method are small
and less undulate, which means that the proposed method
has significant improvement in estimation accuracy. Figure 6
shows the estimation results and the real value of the Doppler
rate coefficients 𝐴 and 𝐵. Figures 5 and 6 prove that the
proposed method is of high accuracy.

5.2. MIMO SAR 3D Imaging Simulation. Now we apply our
method to simulated MIMO SAR 3D imaging and compare
the imaging results with the conventional method. In the
simulation, a complex 3Dmodel containing 5 tall “buildings”
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is constructed with 1020 points. The structure of the model
is illustrated in Figure 7. The simulated linear MIMO array
contains 512 equivalent APCs with spacing of 𝜆/2, where 𝜆 is
the wavelength. The motion errors in Figure 4 are imported
into the simulation. The parameters in Table 1 are adopted.

After MOCO with the conventional method and the
proposed JMC-MOCO method, the 3D imaging results are
shown in Figures 8(a) and 8(b), respectively. Only the points
whose energy is stronger than −10 dB of the strongest points
are pointed in Figure 8 in different colors according to their
energy. As we can see, the 5 “buildings” in Figure 8(b)
are finely focused, while, in Figure 8(a), there are some
unexpected false points, as marked in circles. This is because
the respective estimation and compensation of each channel
break the incoherence. This problem is well fixed in the pro-
posed JMC-MOCO method. The subscene marked in a box
in Figure 8 is magnified in Figure 9 for better comparison.
As can be seen, the 3D model is better focused with the
proposed method. Hence, the proposed MOCO method can
significantly improve the imaging quality.

6. Conclusions

This paper proposed a JMC-MOCO method to estimate and
compensate both the translational motion errors and the
rotational motion errors for the MIMO SAR 3D imaging.
Instead of estimating and compensating motion errors chan-
nel by channel, the proposed MOCO method utilizes the
linear properties of the linear MIMO array, combining all
the channel data to improve the accuracy of motion error
estimation. It is demonstrated through 3D scenario imaging
simulation that this new method can significantly improve
the image quality.
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In order to resolve the range and azimuth ambiguity in MIMO-SAR imaging, this paper proposed a joint two-dimensional
ambiguity resolving method based on space-time filtering, which according to the ambiguity in different subscene is relative
to different nearest echo range, and different azimuth time is relative to different instantaneous incidence angle, to make two-
dimensional space-time steering vector for resolving ambiguity of the echo, which also can finish the imaging processing at the
same time. Simulation results validate the proposed processing approach for the MIMO-SAR system.

1. Introduction

Multiple-input and multiple-output spaceborne synthetic
aperture radar (MIMO-SAR), as a high resolution and wide
swath microwave remote sense system [1–5], is proved to be
an extremely useful surveillance tool for moving target indi-
cation, wide swath imaging, and three-dimensional imaging.

ScanSAR also can obtain wide unambiguous swath cov-
erage at the cost of a degraded azimuth resolution [6].
Multichannel line arrays can be arranged by range or azimuth
[7], for the range multichannel can obtain wide swath
coverage, utilizing digital beamforming to resolve range
ambiguity, but there is still blind zone [8, 9]. With the
emergence of techniques such as displaced phase center [10]
and multiple aperture reconstruction [11, 12], a number of
displaced azimuth subapertures are used to receive echoes
in one pulse repetition interval (PRI), thereby increasing
the effective azimuth sampling rate without changing the
pulse repetition frequency (PRF). In this way, one can lower
the requirement on PRF to achieve wider swath imaging
without impairing azimuth resolution; in other words, one
can broaden the Doppler spectrum to obtain finer azimuth
resolution without reducing the swath coverage.

To obtain wide swath coverage and high resolution, one
can utilize two-dimensional array to transmit and receive

SAR signals and then resolve the range and azimuth ambi-
guity [13]. However, this method makes range point target
downlooking angle as range steer vector in approximate treat-
ment and does not consider the changing of the downlooking
angle with the azimuth time.

In this paper, a joint two-dimensional ambiguity resolv-
ingmethod forMIMO-SAR is proposed, which uses deferent
targets relative to deferent range as steer vector which is
independent of the downlooking angle. Firstly, the azimuth
ambiguity is resolved. Then, the range ambiguity resolving
and azimuth match filtering are performed instantaneously
to get target image, which makes the imaging algorithms
simpler.

This paper is organized as follows. Section 2 reviews the
signal model of MIMO-SAR. The two-dimensional ambigu-
ity resolving algorithm is analyzed in Section 3. Section 4
gives the simulations and validates the proposed processing
approach for the MIMO-SAR system. Finally, Section 5
concludes this paper.

2. MIMO-SAR System Mode and Signal Model

Figure 1 presents the geometry of a multichannel SAR. It
supposed that the whole antenna aperture was divided into
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Figure 1: MIMO-SAR model.
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as each equivalent phase center transmitting and receiving
itself. The equivalent phase centers located at (𝑋󸀠

𝑝
, 𝑌
󸀠

𝑝
, 𝑍),

where𝑋󸀠
𝑝
= (𝑋
0
+𝑋
𝑝
)/2 and 𝑌󸀠

𝑝
= (𝑌
𝑞
+𝑌
𝑞
0

)/2. The deferent
range subapertures light the deferent subswaths from far to
nearby adjusting phaseweightings.The ellipses in Figure 1 are
the subswathes.

Assume that, during the Lth pulse period, the first range
dimension subapertures transmit signal in the same time
and make the wave beam light the Lth subswath through
controlling phase weighting. The transmitting signal can be
expressed as follows:

𝑠 (𝑡
𝑘
) =

sin (𝜋𝑄𝑑
2
(sin 𝜃
𝑙
− sin 𝜃) /2𝜆)

sin (𝜋𝑑
2
(sin 𝜃
𝑙
− sin 𝜃) /2𝜆)

× rect(
(𝑡
𝑘
− Δ𝑇)

𝑇
𝑝
𝑙

)

× exp (𝑗2𝜋𝑓
𝑐
(𝑡 − Δ𝑇

𝑙
) + 𝑗𝜋𝛾(𝑡

𝑘
− Δ𝑇
𝑙
)
2

) ,

(1)

where 𝜃
𝑙
is the downlooking angle of the center line of

lth subswath, 𝑓
𝑐
is the carrier frequency, 𝜆 = 𝑐/𝑓

𝑐
is the

wavelength, Δ𝑇
𝑙
= 𝑇
𝑝
1

+ ⋅ ⋅ ⋅ + 𝑇
𝑝
𝑙−1

is the delay time of the
lth subpulse, 𝑡 = 𝑡

𝑘
+𝑚𝑇
𝑟
is the whole time, 𝑡

𝑘
is the fast time,

𝑚 is a integer,𝑇
𝑟
is pulse repetition interval, and 𝛾 is the chirp

rate.

The baseband signal received by the pth row and the qth
column subaperture was

𝑠
𝑝𝑞
(𝑡
𝑘
, 𝑡
𝑚
) =

𝐿

∑

𝑙=1

𝐴 (𝜃
𝑙
) rect(

(𝑡
𝑘
− Δ𝑇
𝑙
− 2𝑅
𝑝𝑞,𝑙

(𝑡
𝑚
) /𝑐)

𝑇
𝑝
𝑙

)

× rect(
(𝑋
󸀠

𝑝
+ 𝑥 − 𝑥

𝑙
)

𝐿
𝑎

)

× exp(𝑗2𝜋𝑓
𝑐
(−Δ𝑇

𝑙
−
2𝑅
𝑝𝑞,𝑙

(𝑡
𝑚
)

𝑐
))

× exp(𝑗𝜋𝛾(𝑡
𝑘
− Δ𝑇
𝑙
−
2𝑅
𝑝𝑞,𝑙

(𝑡
𝑚
)

𝑐
)

2

) ,

(2)

where 𝐴(𝜃
𝑙
) = sin(𝜋𝑄𝑑

2
(sin 𝜃
𝑙
− sin 𝜃)/2𝜆)/ sin(𝜋𝑑

2
(sin 𝜃
𝑙
−

sin 𝜃)/2𝜆), 𝑡
𝑚

= 𝑘𝑇
𝑟
is slow time, 𝑘 is a integer, and

the value scope of 𝑙 is from 1 to 𝐿, corresponding to the
swath from far to near. 𝑥 = V𝑡

𝑚
, V is the flat velocity,

and 𝐿
𝑎
is the length of synthetic aperture. 𝑅

𝑝𝑞,𝑙
(𝑡
𝑚
) =

√(𝑋󸀠
𝑝
+ V𝑡
𝑚
− 𝑥
𝑙
)
2

+ (𝑌󸀠
𝑝
− 𝑦
𝑙
)
2

+ 𝐻2 is the instantaneous
slant range, (𝑥

𝑙
, 𝑦
𝑙
, 𝑧
𝑙
) is the coordinates of one scatter point

in the Lth scene, and𝐻 = 𝑍
0
−𝑧
𝑙
. Assume that scene is plane,

𝑧
𝑙
= 0.
Performing the range match filtering to (2), we can gain

𝑠
𝑝𝑞
(𝑡
𝑘
, 𝑡
𝑚
) ≈

𝐿

∑

𝑙=1

𝐴
󸀠

(𝜃
𝑙
) sin 𝑐 (𝑡

𝑘
− Δ𝑇
𝑙
−
2𝑅
𝑙
(𝑡
𝑚
)

𝑐
)

× rect(
𝑋
󸀠

𝑝
+ 𝑥 − 𝑥

𝑙

𝐿
𝑎

) exp (−𝑗4𝜋
𝜆
𝑅
𝑝𝑞,𝑙

(𝑡
𝑚
)) ,

(3)

where 𝐴
󸀠

(𝜃
𝑙
) = 𝐴(𝜃

𝑙
) exp(−𝑗2𝜋𝑓

𝑐
Δ𝑇
𝑙
), 𝑅
𝑙
(𝑡
𝑚
) =

√(𝑋
0
+ V𝑡
𝑚
− 𝑥
𝑙
)
2

+ (𝑌
0
− 𝑦
𝑙
)
2

+ 𝐻2 is the instantaneous
distance from the scatter point on the lth subswath to
(𝑋
0
, 𝑌
0
, 𝑍
0
).

As we know, theMIMO-SAR can be considered as a space
signal sampling which should satisfy the sampling equation
as follows:

𝑑 ≤
𝜆

2
, (4)

where 𝑑 denotes the position change of antenna element and
𝜆 denotes the wavelength of the signal.

So the time delay should be

𝑇
𝑑
=
𝑑

𝑐
≤
𝜆

2𝑐
=

1

2𝑓
𝑐

, (5)

where 𝑓
𝑐
denotes the carrier frequency.
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Figure 2: The relationship between cosine of cone angle and Doppler.

And the time resolution can be calculated by

𝑇
𝑟
=

1

2𝐵
, (6)

where 𝐵 denotes the bandwidth.
In a narrow band system 𝑓

𝑐
is much larger than 𝐵, so we

can get 𝑇
𝑑
much smaller than 𝑇

𝑟
, which means that the time

delay made by the position change of antenna element is very
small compared with the time resolution.

The time delay made by the position change of antenna
element can be ignored, which is reasonable because the
distance between the elements is very small.

This system uses low PRF to get wide swath, but the
low PRF can cause azimuth Doppler ambiguity; Figure 2
illuminates this.

After azimuth fast Fourier transforms (FFT), we can gain
the Doppler ambiguity signal 𝑠

𝑝𝑞
(𝑡
𝑘
, 𝑓
𝑎
):

𝑠
𝑝𝑞
(𝑡
𝑘
, 𝑓
𝑎
) =

𝐿

∑

𝑙=1

𝐾

∑

𝑘=1

𝐴
󸀠

(𝜃
𝑙
) sin 𝑐 (𝑡

𝑘
− Δ𝑇
𝑙
−
2𝑅
𝑙
(𝑓
𝑎
)

𝑐
)

× rect(
𝑓
𝑎
𝑅
𝐵1

√𝑓2
𝑎𝑚
− 𝑓2
𝑎

) exp(−𝑗
2𝜋𝑓
𝑎
𝑥
𝑙

V
)

× exp(−𝑗
2𝜋𝑅
𝐵𝑞

V
√𝑓2
𝑎𝑚
− 𝑓2
𝑎
)

× exp(𝑗
4𝜋𝑋
󸀠

𝑝
cos𝜑
𝑘
(𝑓
𝑎
)

𝜆
) ,

(7)

where𝑓
𝑎
∈ (−PRF/2,PRF/2), 𝑅

𝐵𝑞
= √(𝑌

𝑞
− 𝑦
1
)
2

+ 𝐻2 is the
vertical distance form scatter point (𝑥

1
, 𝑦
1
, 𝑧
1
) to flight track,

𝑅
𝑝𝑞,1

(𝑓
𝑎
) is the instantaneous distance of scatter point, 𝜑

𝑘
is

the angle of instantaneous slant distance and flight track, and
cos𝜑
𝑘
(𝑓
𝑎
) = 𝑓
𝑎
/𝑓
𝑎𝑚
, 𝑓
𝑎𝑚
= 2V/𝜆.

When𝑅
1
= 𝑐𝑇
𝑝
1

/2+𝑅
2
= ⋅ ⋅ ⋅ = 𝑐(𝑇

𝑝
1

+⋅ ⋅ ⋅+𝑇
𝑝
𝐿−1

)/2+𝑅
𝐿
is

satisfied, 𝐿 different scatter points on 𝐿 subswathes can make
aliasing and then cause range ambiguity. But the different
scatter points are corresponding to different downlooking
angles, as shown in Figure 3.

According to the forgoing analysis, if the scatter instanta-
neous slant distance satisfies the preceding equation, (7) can
be shown as

𝑠
𝑝𝑞
(𝑡
𝑘
, 𝑓
𝑎
) =

𝐿

∑

𝑙=1

𝐾

∑

𝑘=1

𝐴
󸀠

(𝜃
𝑙
) sin 𝑐 (𝑡

𝑘
−
2𝑅
1

𝑐
)

× rect(
𝑓
𝑎
𝑅
𝐵1

√𝑓2
𝑎𝑚
− 𝑓2
𝑎

) exp(−𝑗
2𝜋𝑓
𝑎
𝑥
𝑙

V
)

× exp(−𝑗
2𝜋𝑅
𝐵𝑞

V
√𝑓2
𝑎𝑚
− 𝑓2
𝑎
)

× exp(−𝑗
4𝜋𝑋
󸀠

𝑝
cos𝜑
𝑘
(𝑓
𝑎
)

𝜆
) ,

(8)

where exp(−𝑗(2𝜋𝑅
𝐵𝑞
/V)√𝑓2

𝑎𝑚
− 𝑓2
𝑎
) and exp(𝑗(4𝜋𝑋󸀠

𝑝
cos𝜑
𝑘

(𝑓
𝑎
)/𝜆)) are caused by the position of azimuth and range

subapertures, and they are the steer vector for resolving
ambiguity. One can know that there is the azimuth frequency
in the range steer vector, so one needs to resolve the azimuth
ambiguity firstly and then resolve the range ambiguity.
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Figure 3: The relationship between downlooking angle and instantaneous slant distance.

3. Two-Dimensional Ambiguity Resolving

3.1. Resolving Azimuth Ambiguity. Because (8) is range and
Doppler ambiguity signal, we express thematrix vector z

𝑎
(𝜑
𝑘
)

as
z
𝑎
(𝜑
𝑘
)

= [exp(
𝑗4𝜋𝑋
󸀠

1
cos𝜑
𝑘

𝜆
) , . . . , exp(

𝑗4𝜋𝑋
󸀠

𝑃
cos𝜑
𝑘

𝜆
)]

𝑇

.

(9)

In this paper, we use joint 2-dimensional method to
resolve ambiguity based on static weighting vector. It is
assumed that the vector matrix isW

𝑃×𝐾
and the 𝑛th column

weighting vector is shown as

W
𝑛
= [𝑤
1,𝑛
, . . . , 𝑤

𝑝,𝑛
, . . . , 𝑤

𝑃,𝑛
]
𝑇

. (10)

It means that the corresponding downlooking angle and
azimuth angle position is 1 and other ambiguities are zero.
Consider

W𝐻
𝑛
𝑧
𝑎
= H
𝑛
, (11)

where ()𝐻 expresses matrix conjugate transpose operator and
H
𝑛
= [ℎ
1𝑛
, . . . , ℎ

𝐾𝑛
]
𝑇, 𝑛 = 1, . . . , 𝐾, when 𝑘 = 𝑛, ℎ

𝑘𝑛
= 1.

Consider

W
𝑛
= (H
𝑛
𝑧
+

𝑎
)
𝐻

, (12)

where ()
+ denotes the pseudoinverse operation, 𝑧+

𝑎
=

pinv(𝑧
𝑎
). Consider

S = [𝑠
11
, . . . , 𝑠

𝑃1
, 𝑠
12
, . . . , 𝑠

𝑃2
, . . . , 𝑠

1𝑄
, . . . , 𝑠

𝑃𝑄
]
𝑇

= sinc(𝑡
𝑘
−
2𝑅
1

𝑐
) rect(

𝑓
𝑎
𝑅
𝐵1

√𝑓2
𝑎𝑚
− 𝑓2
𝑎

) exp(−𝑗
2𝜋𝑓
𝑎
𝑥
𝑙

V
)

× exp(−𝑗
2𝜋𝑅
𝐵𝑞
√𝑓2
𝑎𝑚
− 𝑓2
𝑎

V
)𝑧
𝑎
.

(13)

Using the weighting vector to resolve ambiguity, the
following is gained:

S󸀠 =W𝐻
𝑛
S = sinc(𝑡

𝑘
−
2𝑅
1

𝑐
)

× rect(
𝑓
𝑎
𝑅
𝐵1

√𝑓2
𝑎𝑚
− 𝑓2
𝑎

) exp(−𝑗
2𝜋𝑓
𝑎
𝑥
𝑙

V
)

× exp(−𝑗
2𝜋𝑅
𝐵𝑞
√𝑓2
𝑎𝑚
− 𝑓2
𝑎

V
)W𝐻
𝑛
𝑧
𝑎

= sinc(𝑡
𝑘
−
2𝑅
1

𝑐
) rect(

𝑓
𝑎
𝑅
𝐵1

√𝑓2
𝑎𝑚
− 𝑓2
𝑎

)

× exp(−𝑗
2𝜋𝑓
𝑎
𝑥
𝑙

V
)

× exp(−𝑗
2𝜋𝑅
𝐵𝑞
√𝑓2
𝑎𝑚
− 𝑓2
𝑎

V
)H
𝑛
.

(14)

After this, the resolving azimuth ambiguity operation is
finished.

According to array signal theory, the Doppler ambiguity
time 𝐾 must satisfy the following formula: 𝐾 ≤ 𝑃. To
the member of azimuth subaperture 𝑃, it can make one
restriction direction at most and the other 𝑃 − 1 is zero, so
only 𝑃 time’s ambiguity can be resolved on azimuth Doppler
dimension. With the same principle, only 𝑄 time ambiguity
can be resolved on azimuth Doppler dimension.

After resolving the azimuth ambiguity, the signal is
combined according to the Doppler spectrum. The range
resolving ambiguity is followed.
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3.2. Resolving Range Ambiguity. According to (8), the range
steering vector and the azimuth matching function are
concerned. We expressed matrix vector z

𝑏
(𝑅
𝑙
) as follows:

z
𝑎
(𝑅
𝑙
) =

[
[

[

exp(−𝑗
2𝜋𝑅
𝐵1
√𝑓2
𝑎𝑚
− 𝑓2
𝑎

V
), . . . ,

exp(−𝑗
2𝜋𝑅
𝐵𝑄
√𝑓2
𝑎𝑚
− 𝑓2
𝑎

V
)
]
]

]

𝑇

.

(15)

It is assumed that the vector matrix is W
𝑄×𝐿

and the 𝑚th
column weighting vector is shown as:

W
𝑚
= [𝑤
1,𝑚
, . . . , 𝑤

𝑞,𝑚
, . . . , 𝑤

𝑄,𝑚
]
𝑇

. (16)

It means that the corresponding downlooking angle and
azimuth angle position is 1 and other ambiguities are zero.
Consider

W𝐻
𝑚
𝑧
𝑏
= H
𝑚
, (17)

where ()𝐻 expresses matrix conjugate transpose operator and
H
𝑚
= [ℎ
1𝑚
, . . . , ℎ

𝐿𝑚
]
𝑇, 𝑚 = 1, . . . , 𝐿, when 𝑙 = 𝑚, ℎ

𝑙𝑚
= 1.

Consider

W
𝑚
= (H
𝑚
𝑧
+

𝑏
)
𝐻

, (18)

where ()
+ denotes the pseudoinverse operation, 𝑧+

𝑏
=

pinv(𝑧
𝑏
). Consider

S󸀠 = [𝑠
1
, . . . , 𝑠

𝑄
]
𝑇

= sinc(𝑡
𝑘
−
2𝑅
1

𝑐
) rect(

𝑓
𝑎
𝑅
𝐵1

√𝑓2
𝑎𝑚
− 𝑓2
𝑎

) exp(−𝑗
2𝜋𝑓
𝑎
𝑥
𝑙

V
)

× exp(−𝑗
2𝜋𝑅
𝐵𝑞
√𝑓2
𝑎𝑚
− 𝑓2
𝑎

V
)𝑧
𝑏
.

(19)
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Figure 4: The geometry of terrain height variance.

Utilizing theweighting vector to resolve the ambiguity, we
can gain

S󸀠󸀠 =W𝐻
𝑚
S󸀠 = sinc (𝑡

𝑘
−
2𝑅
1

𝑐
)

× rect(
𝑓
𝑎
𝑅
𝐵𝑞

√𝑓2
𝑎𝑚
− 𝑓2
𝑎

) exp(−𝑗
2𝜋𝑓
𝑎
𝑥
𝑙

V
)

× exp(−𝑗
2𝜋𝑅
𝐵𝑞
√𝑓2
𝑎𝑚
− 𝑓2
𝑎

V
)W𝐻
𝑚
𝑧
𝑏

= sinc(𝑡
𝑘
−
2𝑅
1

𝑐
) rect(

𝑓
𝑎
𝑅
𝐵𝑞

√𝑓2
𝑎𝑚
− 𝑓2
𝑎

)

× exp(−𝑗
2𝜋𝑓
𝑎
𝑥
𝑙

V
) .

(20)

At this time, the range ambiguity was resolved completely.
The azimuth was finished when range was resolved. Then
after the azimuth inverse FFT (IFFT), we can finish the
azimuth pulse compression.

For different point target slant distance 𝑅
𝑙
, the subpulse

time delay should be added. For the 𝑙th subswath, 𝑠󸀠󸀠(𝑅
𝑙
)

added the time delay Δ𝑇
𝑙
= 𝑇
𝑝
1

+ ⋅ ⋅ ⋅ + 𝑇
𝑝
𝑙−1

to the range
envelope, which make the real position of scatter point
(𝑥
𝑙
, 𝑦
𝑙
, 𝑧
𝑙
) was get. Then the whole wide swath signal was

obtained.

3.3. Impact of Terrain Height Variance. Forenamed static
weighting vector is based on the assumption that the terrain is
flat. Here we can analyze the impact of terrain height variance
on the weighting vector.
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Figure 5: The image of joint two-dimensional processing.

As shown in Figure 4, there is a point 𝐴 with the
downlooking angle 𝜃

1
and azimuth angle 𝜑

1
; we assume there

is another point 𝐴󸀠 with a height difference ℎ between 𝐴, so
the phase difference of the weighting vector pointing to𝐴 and
𝐴
󸀠 is

ΔΦ =
2𝜋𝑑
1
(cos𝜑

1
− cos𝜑

2
)

𝜆
−
2𝜋𝑑
2
(sin 𝜃
1
− sin 𝜃

2
)

𝜆
,

(21)

where 𝜃
2
, 𝜑
2
are the downlooking angle and azimuth angle

in the position of 𝐴󸀠. From the geometry configuration of
Figure 4, we can get that cos𝜑

1
= sin 𝜃

1
sin𝜙 and cos𝜑

2
=

sin 𝜃
2
sin𝜙, so the phase difference can be written as

ΔΦ =
2𝜋 (sin 𝜃

1
− sin 𝜃

2
) (𝑑
1
sin𝜙 − 𝑑

2
)

𝜆

=

2𝜋 (𝑑
1
sin𝜙 − 𝑑

2
) (√𝑅2 − (𝐻 − ℎ)

2

− √𝑅2 − 𝐻2)

𝜆𝑅
.

(22)

Table 1: Phase difference in the terrain with different height.

Height ℎ (m) Phase difference
ΔΦ (rad)

Remained
clutter (dB) Performance

352 −𝜋/32 −20.2 Effective
940 −𝜋/12 −11.7 Worse
1408 −𝜋/8 −8.2 Much worse
3735 −𝜋/3 0 Ineffective

The clutter which remained caused by the phase differ-
ence is

20 log 10 [1 − exp (𝑗ΔΦ)] . (23)

With the simulating parameter of 𝐻 = 700 km, 𝑅 =

880 km, 𝜆 = 0.03m, 𝑑
1
= 1m, and 𝑑

2
= 0.8m, we get that the

simulation result of the clutter which remained varied with
the height difference shown in Table 1.

FromTable 1 we can see that if the change of terrain height
is below 1 km, our proposed method can still be effective.
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Table 2: Simulation parameters.

Parameters Value
Height of satellite𝐻 (km) 700
Satellite velocity V (m/s) 7200
Carrier frequency 𝑓

𝑐
(GHz) 2

System PRF (Hz) 1200
Stepped-frequency signal band width 𝐵 (MHz) 100
Transmitted pulse width 𝑇

Δ
(𝜇s) 30

Azimuth subaperture length 𝑑
1
(m) 4

Elevation subaperture height 𝑑
2
(m) 0.8

Coordinates of the three scatter points (m)
(0, 42783.1, 0)
(0, 36703.5, 0)
(0, 39831.0, 0)

4. Simulation Experiment

To validate the proposed approach, a simulation experiment
on point targets is carried out. The main system parameters
are listed in Table 2. In this simulation, the whole antenna
aperture was divided into 3 × 3 subapertures.

It is supposed that these scatter points have the same
backscattering coefficient. Through calculation one can get
𝑅
1

= 𝑐𝑇
Δ
/2 + 𝑅

2
= 𝑐𝑇

Δ
+ 𝑅
3
, so the three scatter

points are range-ambiguous with each other. The Doppler
band width is 𝐵

𝑎
= 2V/𝐷 = 3600Hz and the azimuth

sample frequency is 1200Hz, which makes the azimuth
Doppler spectrum ambiguous with three times. Figure 5(a)
shows the image of an original single channel. The azimuth
and the range both have ambiguity. Range ambiguity makes
three scatter points with different range positions mixed
together, so only one point can be seen in Figure 5(a); because
the system Doppler ambiguity three times, three focused
points can be seen along azimuth. Both sides were ambiguity
points and their energy was smaller than the center point
obviously. Through the joint two-dimensional ambiguity
resolving method proposed in this paper, the unambiguity
image can be obtained as shown in Figure 5(b). After two-
dimensional ambiguity resolving, the scatter points were
located in their real positions. Figure 5(c) is azimuth profile of
the far scatter point. In the figure, the standard sinc function
was obtained after the azimuth pulse compressed, which
shows the unambiguous Doppler spectrum was recovered by
the joint two-dimensional processing. Figure 5(d) is range
profile of the three range points. From the figure, one can note
that the range ambiguity is also resolved.

5. Conclusion

In this paper, a novel joint two-dimensional ambiguity resolv-
ing method based on space-time filtering was proposed,
which can resolve the range and azimuth ambiguity of
MIMO-SAR for high-resolution and wide swath imaging.
This method does not use any approximate operation, which
can finish resolving ambiguity and two dimensions focused
instantaneously. Imaging results of the simulated point target
validate the proposed approach. Because this method does

not depend on SAR system work mode, it has certain general
use.
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This paper presents a joint direction-of-departure (DOD) and direction-of-arrival (DOA) estimation in a multiple-input multiple-
output (MIMO) radar utilizing ultra wideband (UWB) signals in detecting targets with fluctuating radar cross sections (RCS).
The UWBMIMO radar utilized a combination of two-way MUSIC and majority decision based on angle histograms of estimated
DODs and DOAs at each frequency of the UWB signal.The proposed angle estimation scheme was demonstrated to be effective in
detecting targets with fluctuating RCS, compared to conventional spectra averaging method used in subband angle estimations. It
was found that a wider bandwidth resulted in improved estimation performance. Numerical simulations along with experimental
evaluations in a radio anechoic chamber are presented.

1. Introduction

The introduction of multiple-input multiple-output (MIMO)
radar enables numerous improvements on the conventional
single input single output radar system. The MIMO radar
is typically defined as a radar system utilizing multiple
transmitting and receiving antennas that are either widely
distributed or colocated [1–4]. The former exploits indepen-
dent path of transmit-receive pairs to increase the probability
of detection [1, 2]. On the other hand, the latter uses
orthogonality of transmitting signals to obtain an increased
degree of freedom and parameter identifiability [3, 4], which
are very useful in target localization applications.

Target localization in radar has been intensively studied
in literatures since the early years of radar. In general, radar
systems estimate the target position by means of trilatera-
tion or triangulation. Trilateration can be implemented by
using a minimum of two stations; however, the localization
resolution is limited by the signal bandwidth, and usage
of multiple stations is required to avoid ambiguities (ghost

targets). On the contrary, triangulation is based on the angles
of targets observed from the radar stations, and hence it does
not suffer from the bandwidth constraint. In MIMO radar,
it is possible to jointly estimate the direction-of-departure
(DOD) and direction-of-arrival (DOA) by implementing
array processing at both of the transmitting and receiving
arrays, as depicted in Figure 1. This makes it suitable for
triangulation-based localization.

Numerous works on DOD and DOA estimation have
been reported [5–8]. Nevertheless, these studies were mainly
based on narrowband signal assumption. Target localiza-
tion using the narrowband signal, however, was unstable
due to fluctuation of target’s radar cross section (RCS). In
order to counter this problem, MIMO radars using multiple
subcarriers and orthogonal frequency division multiplexing
(OFDM) waveforms were proposed [9, 10]. Those schemes,
however, only discussed one-dimensional angle estimation
of a single target and implementation of limited number of
subbands. Utilization of wider signal bandwidth might be
useful in localizing target with significantly small or severely
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Figure 1: Overview of angle estimation in MIMO radar.
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Figure 2: The proposed UWB signal for MIMO radar angle esti-
mation.

fluctuating RCS. One of the most promising technologies
with wideband capability is ultra wideband (UWB) systems.
The usage of UWB signal for angle estimation in MIMO
radar, however, has not been given much attention, limiting
the study tomedical imaging and through-the-wall radars [11,
12]. Application of conventional angle estimation methods
(e.g., Capon, multiple signal classification (MUSIC), and
estimation of signal parameters via rotational invariance
(ESPRIT)) to a UWB signal is a challenge since those meth-
ods inherently assume narrowband signals.

The present authors proposed a joint DOD and DOA
estimation in a UWB MIMO radar using the combination
of a two-way MUSIC and angle histograms [13]. The basic
idea in the proposed scheme was to treat the UWB signal as
a summation of sinusoidal waves swept over the frequency
band, and angle estimation was done at each of the frequency
by means of two-way MUSIC [14]. The estimation results
were then combined using majority decisions formulated

using angle histograms [15]. However, the report only inves-
tigated estimation performance when detecting targets with
a constant RCS, which was unlikely in actual environments.

In this paper, we evaluate the performance of the pro-
posed algorithm in detecting targets with fluctuating RCS.
Here, it will be shown that combining the estimation at differ-
ent frequencies throughmajority decisions will overcome the
problem of poor estimation when detecting fluctuating tar-
gets. A comparison between the proposed technique and the
conventional spectrum averaging is also presented. Numeri-
cal simulations and experimental results are presented.

It is important to mention here that the RCS fluctuation
problem has been continuously studied in the radar com-
munity. Until recently, special attention has been given to
the subject in the case of MIMO radar, since the usage of
MIMO configuration offers further degrees of freedom in
the forms of spatial, frequency, and also waveform diver-
sity. For example, the works in [16–18] employed spatial
and waveform diversity in MIMO radars to increase the
probability of detection and direction finding performance
when detecting fluctuating target. The present study employs
different approach from those reports sincewe focused on the
utilization of frequency diversity. Studies regarding MIMO
radars utilizing frequency diversity in detecting fluctuating
RCS were studied, for instance, in [19, 20], where several
subbands with substantially wide frequency spacing were
used for angle estimation. This study differs from those
works from a point of view that we employ the diversity
among a large number of subbands throughout the frequency
bandwidth of a UWB system to enhance target localization
performance and specifically demonstrated the application to
MIMO radar.

The remainder of this paper is organized as follows. The
next section discusses the proposed algorithm. Section 3
describes the numerical simulations, and Section 4 explained
the results of experimental evaluations. Finally, the conclud-
ing remarks are presented in Section 5.

2. Proposed Scheme

2.1. Proposed Joint DOD and DOA Estimation Scheme. Con-
sider a MIMO radar with M transmitting and N receiving
elements, illuminating L uncorrelated targets located at the
far field of transmit and receive arrays. At the transmit
side, M orthogonal UWB signals are emitted, and each
consists of multiple sinusoidal waves swept over the UWB
bandwidth. Here, we define the complex transmit signal
waveform vector by s(𝑡) = [s

1
(𝑡), . . . , s

𝑀
(𝑡)], where each

term contains K frequency components. The orthogonality
between the transmit signals can be achieved through time
division scheme, where each transmitting antenna emits the
UWB signal in separate time slots. Figure 2 illustrates an
example of the transmitting signal which uses 3.1 to 10.6GHz
of sinusoidal waves in 1MHz intervals. The receiving signal
of the kth frequency component can be expressed by

x
𝑘
(𝑡) = [a

𝑡
(𝜙) ⊗ a

𝑟
(𝜃)] s(𝑘) (𝑡) + n (𝑡) , (1)
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Figure 3: Formulation of angle histograms from two-way MUSIC spectra at each frequency component.
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Figure 4: Block diagrams: (a) proposed and (b) conventional schemes.
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where ⊗ denotes the Kronecker product, at and ar are the
transmit and receive steering vectors, respectively, 𝜙 and 𝜃
are the corresponding transmit and receive angles, s(k)(t)
represents the kth frequency component of the transmit
signal vector s(t), and n(t)is the total additive white Gaussian
noise. The receiving signal covariance matrix of the kth
frequency component is given by

R
𝑥𝑥 𝑘

= 𝐸 [x
𝑘
(𝑡) ⋅ x
𝑘
(𝑡)
𝐻

] , (2)

where E[⋅] is the ensemble average and [⋅]H represents the
conjugate transpose operation. Here, singular value decom-
position (SVD) of the covariance matrix gives

R
𝑥𝑥 𝑘

= E(𝑘)V(𝑘)E(𝑘)
𝐻

, (3)

where V(k) is a diagonal matrix whose diagonal elements
contain the signal and noise eigenvalues for the kth frequency
and E(k) is the corresponding eigenvectors of the signal
and noise components. The two-dimensional spatial MUSIC
spectrum at the kth frequency component can be constructed
using the function

𝑃MU 𝑘 (𝜙, 𝜃) =
1

[a
𝑡
(𝜙) ⊗ a

𝑟
(𝜃)]
𝐻e(𝑘)
𝑁
e(𝑘)
𝑁

𝐻

[a
𝑡
(𝜙) a
𝑟
(𝜃)]

,

(4)

where eNeHN is the noise eigenvectors obtained from the
eigendecomposition of the receive signal covariancematrix in
(2). Here, we have the L largest peaks which correspond to the
DOD and DOA of the targets at each frequency component.
The wideband DOD and wideband DOA are decided by
taking the majority of the estimated angles among all the
estimates at each frequency. This is denoted by “majority
decision” in this study. The majority decision is formulated
by initially combining DOD and DOA estimates at the K
frequencies into a vector and arranging them in the form
of angle histograms [13], as depicted in Figure 3. The angle
histogram can be viewed as a function of angle i from −90∘ to
90∘ at intervals of, for example, 0.5∘. The normalized number
of occurrence of the peak angle is then given by

𝑟
(𝑖)

=
1

𝑧
𝑝
(𝑖)

, (5)

where p(i) is the number of occurrences of the angle i and z is
the normalized coefficient given by

𝑧 = arg max 𝑟(𝑖). (6)

The majority decision is obtained by searching the peak
of the histogram. As a benchmark, the performance of the
proposed scheme will be compared with the conventional
spectrum averaging method [21] used in existing subband
processing scheme for angle estimation. The spectrum aver-
aging method adopts an approach which takes the average of
the estimatedMUSIC spectra of allK frequency components:

𝑃MU ave (𝜙, 𝜃) =
1

𝐾

𝐾

∑

𝑘=1

𝑃MU 𝑘 (𝜙, 𝜃) . (7)

Then the wideband DOD and DOA are estimated from
the L largest peaks of 𝑃MU ave. We will demonstrate in Sec-
tion 3 that the majority decision technique performs better
than the spectrum averaging method. Figure 4 depicts the
block diagrams of the proposed and conventional schemes.

2.2. MIMO Radar Array Configuration Used in this Study.
The main advantage of a MIMO radar system is that the
degrees of freedom can be enhanced by using the concept
of virtual array [22, 23]. When orthogonal signals were
transmitted from different antennas, the back scatter returns
of each orthogonal signal will carry independent phase
information that forms a new virtual array steering vectors
at the receiver.
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Figure 6: Nonuniform array configuration used in the study (d = 15mm).

The virtual array can be characterized by convolution of
the transmitting and receiving antenna positions [22]. Given
a MIMO radar usingM transmitting and N receiving anten-
nas, it is possible to form a full virtual array with nonover-
lapping MN elements, by optimizing the antenna positions.
Larger numbers of M and N contribute to construction of
longer virtual array, which means further enhancement in
angle estimation performance.Thus, from a signal processing
point of view, it is generally important to use a larger virtual
array. However, in practical applications, it is often beneficial
to limit the number of antennas for the sake of cost and space.
In this study, we demonstrate the proposed algorithm using
a 4 × 4MIMO array and discuss the performance within that
limitation.

A fullMN virtual array can be constructed, for example,
by using transmitting antennas with spacing of Nd and
receiving antennas with 𝑑 spacing [23], where 𝑑 is the
distance equal to the half wavelength.

However, as shown in Figure 5, utilizing a two-way
MUSIC using this array configuration resulted in spurious
peaks in the MUSIC spectrum, since the receiving array’s
spacing is much larger than the distance of half wavelength.
This problem can be overcome by limiting the scan range, but
in the cost of narrower coverage area.

In this study, we employed a nonuniform array config-
uration as shown in Figure 6 to reduce the spurious peaks.
This array configuration was chosen due to the minimum
number of redundant elements that could be obtained in
the virtual MIMO array. Refer to the Appendix for further
explanation. The basic antenna spacing of 𝑑 = 15mm (cor-
responds to half wavelength of 10GHz) was used. Figure 7
depicts the resultingMUSIC spectrum using the nonuniform
array, where we could observe that the spurious peaks were
eliminated, and the resulting spectrum peak sharpness is
comparable to a full MN array with limited range scan.
The authors have previously reported in [13] that this array
configuration outperforms the conventional uniform linear
array.

2.3. Complexity Analysis. This subsection presents the analy-
sis of the computational complexity of the proposed scheme.
The computational burden of a conventional 2D-MUSIC has
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been reported in literatures, such as in [5]. For the sake of clar-
ity, we broke down the complexity analysis of the proposed
scheme in terms of SVD operation and searching algorithm
computational costs, expressed using the O notation [24].
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Table 1: Simulation parameters.

Parameters Description
Number of transmitting antennas,M 4
Number of receiving antennas, N 4
Number of targets, L 2
Signal to noise ratio, SNR 15 dB
Number of snapshots 50

Target positions (𝜙
1
, 𝜃
1
) = (10∘, −28∘)

(𝜙
2
, 𝜃
2
) = (−10∘, −10∘)

Type of targets Fixed point targets or
Weibull targets

The conventional spectrum averaging method [21] was also
analyzed for comparison.

Considering the dimensions of the covariancematrix𝑢×V
and the total K frequency components used, applying SVD
operation on the receiving covariance matrix generally costs
𝑂(𝐾{𝑢

2V + V3}). Here, from the receiving covariance matrix
formulation, 𝑢 and V are given by M2 and N2, respectively.
This is the same for both the proposed and the spectrum
averaging schemes. In terms of peak search operation, the
proposed scheme performs two-dimensional peak search on
the MUSIC spectrum, which costs 𝑂(𝑖2𝐾𝐿), where i is the
number of angle bins during search operations. In addition,
the majority decision routine costs 𝑂(2{𝑖 + 𝐾}) + 𝑂(2{𝑖𝐿}),
where the first term corresponds to the histogram formu-
lation of K total estimates, and the second term represents
the one-dimensional peak search to identify the angles of L
targets. On the other hand, the computational burden of the
spectrum averaging method is𝑂(𝐾)+𝑂(𝑖2𝐿), corresponding
to the spectrum averaging and two-dimensional peak search
of the averaged spectrum, respectively.

The computational complexity against MN antennas is
plotted in Figure 8. It was shown that the proposed scheme
marked larger computational burden than the spectral aver-
aging method, particularly when the number of antennas
is small. However, the difference of complexity is reduced
with increasing number of antennas and converges when
MN approaches 81. This is because the cost of SVD opera-
tion becomes dominant with larger dimension of receiving
covariance matrix, thus resulting in similar order of total
computational complexity in both methods.

3. Simulation Results

The proposed algorithm was simulated according to the
parameters listed in Table 1. As mentioned in the previous
sections, the UWB signal considered in the proposed scheme
contains multiple sinusoidal ranging from 3.1 to 10.6GHz
at 1MHz intervals. Here, selection of the start and stop
frequencies within the frequency range determines the total
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bandwidth of the signal used.The signal bandwidth is defined
by

Bandwidth = 𝑓
𝐻
− 𝑓
𝐿
, (8)

where 𝑓
𝐻

and 𝑓
𝐿
are the highest and lowest frequency

components, respectively. The simulations will be conducted
while varying the signal bandwidth from 10 to 1000MHz, at
different center frequencies, 𝑓

𝑐
, for example, from 3.6, 5, and

8.4 to 10GHz.
Two different scenarios were simulated, where theMIMO

radar was detecting either a fixed point target or a target
with fluctuating RCS. The fixed point target was modeled
with a constant RCS, normalized by the free space propa-
gation loss coefficient in each frequency. The targets with
fluctuating RCS were modeled by Weibull distribution, since
it was shown in literatures that measured RCS of complex
targets such as automobiles and small cars follows Weibull
distribution [25]. The measurement data also showed that
at a given observation angle, the RCS against frequency
(7GHz bandwidth) also follows similar distribution. The
targets considered in the simulation were modeled to have
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Figure 11: Angle histograms of estimated DODs and DOAs in detecting fixed point targets using a signal bandwidth of (a) 50 and (b)
1000MHz.

Weibull distributed RCS throughout the UWB frequency
range, whose cumulative distribution function is given by

𝑓 (𝑥) = {
1 − exp−(𝑥/𝑎)

𝑏

, 𝑥 ≥ 0,

0, 𝑥 < 0,
(9)

where a and b are the shape and scale parameters, respec-
tively. The values of a and b were selected so as to equal the
RCS medians of the Weibull and fixed point targets. Figure 9

plots the RCS versus frequency (expressed in signal power),
and Figure 10 depicts the corresponding cumulative distri-
bution. We demonstrate the performance of the proposed
scheme when detecting 2 targets located at (𝜙

1
, 𝜃
1
) = (10∘,

−28∘) and (𝜙
2
, 𝜃
2
) = (−10∘, −10∘). The signal to noise ratio

(SNR) was 15 dB, and the number of snapshots was 50.
Figure 11 shows the examples of angle histograms at 𝑓

𝑐
=

3.6GHz, when the MIMO radar was detecting the fixed
point targets. It can be observed that the angle histograms
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Figure 12: Angle histograms of estimated DODs andDOAs in detectingWeibull targets using a signal bandwidth of (a) 50 and (b) 1000MHz.

were more or less similar when using either 1000MHz or
50MHz of signal bandwidths. Both cases marked sharp
histogram peaks, which corresponds to the respective targets.
This deduced that, when detecting fixed point targets, the
bandwidth has minimal effects on the angle estimation per-
formance. The estimation using a 50MHz signal bandwidth,
however, yielded an error of 1∘. On the other hand, the
angle estimation of the Weibull targets marked outstanding
outliers in the angle histograms, particularly when using

a 50MHz signal bandwidth, as depicted in Figure 12(a).These
outliers were attributable to spurious peaks in the MUSIC
spectrum due to small RCS values at certain frequencies.
However, taking the majority decisions from the histograms,
the targets were successfully estimatedwithin 2∘ of estimation
error. It was also shown in Figure 12(b) that, by taking
a larger bandwidth, for example, 1 GHz, the peaks of the
outliers were suppressed compared to using a 50MHz signal
bandwidth.
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Figure 13: Estimation errors against bandwidth: (a) fixed point and (b) Weibull targets.

The performance of the proposed scheme was evaluated
in terms of estimation error, defined by

ErrorDOD =
1

𝑊

𝑊

∑

𝑤=1

󵄨󵄨󵄨󵄨𝜙 − 𝜙est
󵄨󵄨󵄨󵄨 ,

ErrorDOA =
1

𝑊

𝑊

∑

𝑤=1

󵄨󵄨󵄨󵄨𝜃 − 𝜃est
󵄨󵄨󵄨󵄨 ,

(10)

where W is the number of independent trials and 𝜙est
and 𝜃est are the estimated DOD and DOA, respectively.
The estimation error against signal bandwidth using 𝑓

𝑐
=

3.6GHz was plotted in Figure 13, comparing the perfor-
mance when detecting the fixed point and Weibull targets
with 50 independent trials and SNR = 15 dB. Comparison
with a conventional spectra averaging method [21] was also
presented. It can be observed that the proposed scheme
yielded improved estimation performancewhen taking larger
signal bandwidth. This was true when detecting both types
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Figure 14: RMSE performance of the proposed scheme: (a) DOD and (b) DOA.
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Figure 15: RMSE of the proposed scheme against MN (bandwidth
= 1000MHz, L = 2, SNR = 8 dB, and target =Weibull).

of targets; however, the improvement was more significant in
the case ofWeibull targets. On the other hand, the estimation
error increased with larger bandwidth when conventional
spectra averaging method was applied. This is attributed to
large number of outliers which significantly influenced the
averaging result. This result demonstrated the effectiveness
of the proposed method in detecting targets with severely
fluctuating RCS.

The performance of the proposed scheme in terms of
root mean square error (RMSE) against SNR is plotted in
Figure 14. Performance of the spectrum averaging method
and another conventional method by de Silva and Seow [14]
was also presented for benchmarking purposes. Simulation
was carried out assuming that all methods use a 4 × 4MIMO

nonuniform array detecting two Weibull targets. The per-
formance of the proposed and spectrum averaging schemes
was shown when they are using a 1000MHz bandwidth with
𝑓
𝑐
= 3.6GHz, while Silva’s method was presented at several

frequencies since it is a narrowband-based angle estimation.
The performance bound calculated from the Cramér-Rao
bound (CRB) when the DOD and DOA of a stationary
target are estimated individually [26, 27] was also plotted for
reference.

We could observe that the proposed scheme marked the
best performance, which was the nearest to the CRB, and
produced no estimation error when the SNR exceeds 14 dB.
It was also shown that the performance of Silva method
depended on the frequency for the targets with fluctuating
RCS.

The impact of a number of antennas on the performance
of the proposed scheme was plotted in Figure 15. The RMSE
was computed in 50 independent trials against MN, when
using a signal bandwidth of 1000MHz and SNR = 8 dB.
Specific cases of M = 𝑁 = 3, 4, 5, and 6 were simulated.
It is shown in the figure that increasing number of antennas
yielded improvement in RMSE performance, even in the low
SNR condition.

4. Experimental Results

Experiments were conducted to verify the results of the
numerical simulations. The measurements were done in a
radio anechoic chamber, using a measurement setup illus-
trated in Figure 16. The setup consists of a vector network
analyzer (VNA) and GPIB-controlled scanners which were
used to virtually construct theMIMOarrays at both transmit-
ting and receiving sides.TheVNAwas used to generate UWB
signals from 3.1 to 10.6GHz in 1MHz intervals, which were
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Figure 16: Measurement setup.

used as the transmitting signal. The VNA was adopted due
to its good calibration functions and time gating capability
to cancel out direct coupling effects between transmitting
and receiving antennas. Wideband horn antennas with aver-
age gain of 12.5 dBi were used as both transmitting and
receiving antennas. The SNR of the system is defined as the
ratio of the receiving signal average power to the thermal
noise.

The setup was used to localize two targets positioned at
(𝜙
1
, 𝜃
1
) = (10∘, −28∘) and (𝜙

2
, 𝜃
2
) = (−10∘, −10∘), similar to the

condition in previous simulations. Two types of targets were
used, which were conductive spheres and complex shaped
targets, both fabricated using polystyrenes and aluminum
foil. The conductive spheres have 20 cm of diameters which
yield RCS of approximately −10 dBm2. The complex targets
were constructed so that they yield a fluctuating RCS in
the frequency domain. An example of the complex target is
shown in Figure 17. Figure 18 shows the measured frequency-
domain data of the complex targets, where𝜓 is themonostatic
angle of observation. From the figure, we could observe
that the receive signal fluctuates severely against frequency,
compared to that of sphere targets. The complex targets

Figure 17: Example of a fabricated complex target.

marked several frequency regions with fluctuations of more
than 15 dB at different angles, compared to sphere targets
with only 5 dB of maximum fluctuations. The targets were
positioned at 2.5m from the baseline of the transmitter and
receiver. The measurement scenario is depicted in Figure 19.
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The estimation errors frommeasurement campaign were
plotted in Figure 20. In the figure, the estimation errors were
shown using signal bandwidths from 10 to 1000MHz and
𝑓
𝑐
of 3.6, 5.0 and 8.4GHz. As demonstrated in the numer-

ical simulations, the measurement results also indicated a
decreasing trend in estimation errors with increasing signal
bandwidth, especially in the case of complex targets. The
estimation errors of complex targets were worse than the
sphere targets, wheremaximumof 7∘ of estimation errors was
observed. Both cases marked poorer performance compared
to the simulations since the experimental measurement
included plane wave modeling errors and other maneuvering
factors. Furthermore, no significant difference in estimation
performance was observed when choosing different center
frequencies.

A series of experiments was conducted to evaluate the
localization performance of the proposed scheme. A single
complex target was positioned in several locations in the
radio anechoic chamber. The positions of the target are
summarized in Table 2. The target was localized using
the standard triangulation method, adopting the proposed
scheme. In addition, localization using DOA and time of

Table 2: Target positions in a radio anechoic chamber.

Target
positions Actual DOD and DOA Target distance

from radar
A (𝜙, 𝜃) = (15∘, −43∘) 1.5m
B (𝜙, 𝜃) = (−3∘, −24∘) 2.2m
C (𝜙, 𝜃) = (−17∘, −1∘) 3.0m
D (𝜙, 𝜃) = (−21∘, 5∘) 3.3m

direction-of-arrival (TDOA) was also performed for com-
parison. The DOA-TDOA proposed method uses the DOA
formulated from majority decisions of estimations at each
subfrequency, and the TDOA was obtained from the time
of arrival of the radar signal observed at Tx1-Rx1 antenna
pair. The same MIMO array configuration as in the previous
experiments was utilized, and the number of snapshots was
50. Considering the target location in an x-y plane, the
localization errors are defined as

Δ𝑅 = √(Δ𝑥2 + Δ𝑦2), (11)

where Δ𝑥 and Δ𝑦 are the ranging errors along the 𝑥 and
𝑦 axes. The results of the measurements were plotted in
Figure 21. In the case of triangulation, less than 1m of error
was obtained when using signal bandwidth of 1000MHz.
Using a 50MHz signal resulted in lower accuracy. The DOA-
TDOA method also produced good results when using a
1000MHz signal and marked poor accuracy when using a
50MHz bandwidth, due to low range resolution of TDOA.
Both localization methods showed slightly lower accuracy
when the target is further away from the radar due to decrease
in SNR.

5. Concluding Remarks

The performance of a joint DOD and DOA estimation
in a UWB MIMO radar detecting fluctuating targets was
evaluated through numerical simulations and experimental
evaluations. From the investigation, it was found that in
detecting targets with fluctuating RCS (in this case Weibull
distributed RCS against frequency), it is essential to use large
signal bandwidth to reduce the estimation error using the
proposed algorithm. When taking wider signal bandwidth,
the usage of majority decisions from the angle histograms
resulted in good estimation performance compared to the
conventional spectrum averaging method. We concluded
based on the work that the proposed scheme was a suitable
candidate to implement joint angle estimation in MIMO
radar using ultra wideband signal. Although the resolution
of target localization based on DOD and DOA estimations,
in general, does not depend on the signal bandwidth, it
was demonstrated that utilization of wider bandwidth in
the proposed scheme leads to improvement of estimation
performance, considering that the targets have fluctuating
RCS in the frequency domain. Since the proposed scheme
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Figure 20: Estimation errors against bandwidth obtained from measurements: (a) spherical and (b) complex targets.

utilizes multiple subcarriers, it is suitable to be extended to
an OFDM-based radar system.

Appendix

MIMO Radar Virtual Array Using
Nonuniform Array Configuration

The MIMO antennas could be arranged in such a way
that they produce a filled virtual array; however, the filled
virtual array tends to consist of less number of unique

virtual elements due to redundant elements. A few exam-
ples are depicted in Figure 22. Here, we illustrate the
physical transmitting and receiving antennas position using
the notation {1111}, where each entry corresponds to the
number of antennas at the particular location on the 𝜆/2
grid, and ∗ is the convolutional operator. The results of
the convolution of the transmitting and receiving antenna
positions are shown on the right side of each figure. As
depicted in Figure 22(a), the usage of uniform linear array
on both transmitting and receiving arrays resulted in vir-
tual arrays with significant number of redundant elements.
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Figure 21: Localization errors from measurements in a radio anechoic chamber.
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Figure 22: Illustration of examples of virtual arrays in MIMO radars: (a) uniform linear array, (b) truncated filled array, and (c) nonuniform
array.

Configuration in Figure 22(b) produces a larger number of
unique virtual elements. However, in order to obtain a filled
array, truncation of the elements at the edge of the virtual
array is required, thus reducing the array length. Meanwhile,
the nonuniform MIMO array used in Figure 22(c) yielded a
larger number of virtual antenna elements, since it has less
number of redundant elements.
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Widely distributed radar network architectures can provide significant performance improvement for target detection and
localization. For a fixed radar network, the achievable target detection performance may go beyond a predetermined threshold
with full transmitted power allocation, which is extremely vulnerable in modern electronic warfare. In this paper, we study the
problem of low probability of intercept (LPI) design for radar network and propose two novel LPI optimization schemes based on
information-theoretic criteria. For a predefined threshold of target detection, Schleher intercept factor is minimized by optimizing
transmission power allocation among netted radars in the network. Due to the lack of analytical closed-form expression for receiver
operation characteristics (ROC), we employ two information-theoretic criteria, namely, Bhattacharyya distance and J-divergence
as the metrics for target detection performance. The resulting nonconvex and nonlinear LPI optimization problems associated
with different information-theoretic criteria are cast under a unified framework, and the nonlinear programming based genetic
algorithm (NPGA) is used to tackle the optimization problems in the framework. Numerical simulations demonstrate that our
proposed LPI strategies are effective in enhancing the LPI performance for radar network.

1. Introduction

Radar network architecture, which is often called as dis-
tributed multiple-input multiple-output (MIMO) radar, has
been recently put forward and is becoming an inevitable
trend for future radar system design [1–3]. The perfor-
mance of radar network heavily depends on optimal power
allocation and transmission waveform design, so enhanced
improvements on target detection and information extrac-
tion would be realized by spatial and signal diversities.

Currently, system design for target detection and infor-
mation extraction performance improvement has been a
long-term research topic in the distributed radar network
literature. In [4], Fishler et al. propose the distributedMIMO
radar concept and analyze the target detection performance
for distributed MIMO radar. Yang and Blum in [5] study
the target identification and classification for MIMO radar
employing mutual information (MI) and the minimum
mean-square error (MMSE) criteria. The authors in [6]

investigate the problem of code design to improve the detec-
tion performance of multistatic radar in the presence of clut-
ter. Niu et al. propose localization and tracking approaches
for noncoherent MIMO radar, which provides significant
performance enhancement over traditional phased array
radar [7].

Power allocation problem in radar network architecture
has been attracting contentiously growing attention, and
someof the noteworthy publications include [8–14].Thework
of [8] investigates the scheduling and power allocation prob-
lem in cognitive radar network for multiple-target tracking,
in which an optimization criterion is proposed to find a
suitable subset of antennas and optimal transmitted power
allocation. Godrich et al. in [9–11] address the power alloca-
tion strategies for target localization in distributed multiple-
radar configurations and propose some performance driven
resource allocation schemes. In [12], the authors investi-
gate target threatening level based optimal power allocation
for LPI radar network, where two effective algorithms are
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proposed to enhance the LPI performance for radar network.
Furthermore, in [13, 14], several optimal power allocation
algorithms for distributed MIMO radars with heterogeneous
propagation losses are presented to enhance target detection
and information extraction performance. However, up to
now, the low probability of intercept (LPI) optimization for
radar network architecture is still an open problem, which is
playing an increasingly important role in modern electronic
warfare [1, 15–18].Therefore, it is an urgent task to investigate
the LPI optimization problem in radar network.

This paper will extend the results in [6] and propose two
novel LPI optimization algorithms based on information-
theoretic criteria for radar network architecture. Our pur-
pose is to minimize Schleher intercept factor by optimizing
transmission power allocation among netted radars for a
predefined threshold of target detection. Due to the lack
of analytical closed-form expression for receiver operation
characteristics (ROC), we employ two information-theoretic
criteria including Bhattacharyya distance and J-divergence
as the metrics for target detection performance. As demon-
strated later, the proposed algorithms can provide significant
LPI performance improvement for radar network. To the
best of the authors’ knowledge, no literature discussing
the information-theoretic criteria based LPI optimization
for radar network architecture was conducted prior to this
work.

The remainder of this paper is organized as follows.
Section 2 provides the radar network system model and
binary hypothesis test. We first derive Schleher intercept
factor for radar network in Section 3 and formulate the
problems of information-theoretic criteria based LPI opti-
mization, where the resulting nonconvex and nonlinear LPI
optimization problems associatedwith different information-
theoretic criteria are cast under a unified framework and
solved through the nonlinear programming based genetic
algorithm (NPGA). Numerical examples are provided in
Section 4. Finally, conclusion remarks are drawn in Section 5.

2. System Model and the Optimal Detector

2.1. Radar Network SNR Equation. We consider a radar
network architecture with 𝑁

𝑡
transmitters and 𝑁

𝑟
receivers,

which can be broken down into𝑁
𝑡
×𝑁
𝑟
transmitter-receiver

pairs each with a bistatic component contributing to the
entirety of the radar network signal-to-noise ratio (SNR) [1].
Depicted in Figure 1 is an example of 4 × 4 radar network.
All the radars have acquired and are tracking the target
with their directional antenna beams. The netted radars
𝑅𝑎𝑑𝑎𝑟1, 𝑅𝑎𝑑𝑎𝑟2, 𝑅𝑎𝑑𝑎𝑟3, and 𝑅𝑎𝑑𝑎𝑟4 transmit orthogonal
waveforms (as solid lines) but receive and process all these
echoes that are reflected from the target (as dotted lines) and
send the estimates to one of the radars in the network for data
fusion with data link.

For the radar network here, orthogonal polyphase codes
are employed in the system, which have a large main lobe-
to-side lobe ratio. These codes have a more complicated
signal structuremaking it more difficult to be intercepted and
detected by a hostile intercept receiver.

Target

Data link

Radar1

Radar4

Radar3

Radar2

Figure 1: Example of an LPI radar network.

It is also supposed that the network system has a common
precise knowledge of space and time.The radar network SNR
can be calculated by summing up the SNR of each transmit-
receive pair as [1] follows:

SNRnet =

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

𝑃
𝑡𝑖
𝐺
𝑡𝑖
𝐺
𝑟𝑗
𝜎
𝑡𝑖𝑗
𝜆
2

𝑖

(4𝜋)
3

𝑘𝑇
𝑜𝑖𝑗
𝐵
𝑟𝑖
𝐹
𝑟𝑗
𝑅2
𝑡𝑖
𝑅2
𝑟𝑗
𝐿
𝑖𝑗

, (1)

where the 𝑃
𝑡𝑖
is the 𝑖th transmitter power, 𝐺

𝑡𝑖
is the 𝑖th

transmitting antenna gain, 𝐺
𝑟𝑗
is the 𝑗th receiving antenna

gain, 𝜎
𝑡𝑖𝑗

is the radar cross-section (RCS) of the target for
the 𝑖th transmitter and 𝑗th receiver, 𝜆

𝑖
is the 𝑖th transmitted

wavelength, 𝑘 is Boltzmann’s constant, 𝑇
𝑜𝑖𝑗

is the receiving
system noise temperature at the 𝑗th receiver, 𝐵

𝑟𝑖
is the

bandwidth of the matched filter for the 𝑖th transmitted
waveform, 𝐹

𝑟𝑗
is the noise factor for the 𝑗th receiver, 𝐿

𝑖𝑗
is

the system loss between the 𝑖th transmitter and 𝑗th receiver,
𝑅
𝑡𝑖
is the distance from the 𝑖th transmitter to the target, and

𝑅
𝑟𝑗
is the distance from the target to the 𝑗th receiver.

2.2. Radar Network Signal Model. According to the discus-
sions in [14], the path gain contains the target reflection
coefficient 𝑔

𝑖𝑗
and the propagation loss factor 𝑝

𝑖𝑗
. Based on

the central limit theorem, 𝑔
𝑖𝑗
∼ CN(0, 𝑅

𝑔
), where 𝑔

𝑖𝑗
denotes

the target reflection gain between radar 𝑖 and radar 𝑗. The
propagation loss factor 𝑝

𝑖𝑗
is a function of radar antenna gain

and waveform propagation distance, which is expressed as
follows:

𝑝
𝑖𝑗
=

√𝐺𝑡𝑖𝐺𝑟𝑗

𝑅
𝑡𝑖
𝑅
𝑟𝑗

. (2)

It is supposed that the transmitted waveform of the 𝑖th
netted radar is √𝑃

𝑡𝑖
𝑥
𝑖
(𝑡), and then the collected signals at

the 𝑗th receiver from a single point target can be written as
follows:

𝑦
𝑗
(𝑡) =

𝑁
𝑡

∑

𝑖=1

𝑝
𝑖𝑗
𝑔
𝑖𝑗
√𝑃
𝑡𝑖
𝑥
𝑖
(𝑡 − 𝜏
𝑖𝑗
) + 𝑛
𝑗
(𝑡) , (3)
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where ∫ |𝑥
𝑗
(𝑡)|
2

𝑑𝑡 = 1, 𝜏
𝑖𝑗
represents the time delay, 𝑛

𝑗
(𝑡)

denotes the noise at receiver 𝑗, and the Doppler effect is
negligible. At the 𝑗th receiver, the received signal is matched
filtered by time response 𝑥∗

𝑘
(−𝑡), and the output signal can be

expressed as follows:

𝑦
𝑗𝑘
(𝑡) = ∫𝑦

𝑗
(𝑡) ⋅ 𝑥

∗

𝑘
(𝜏 − 𝑡) 𝑑𝜏

= 𝑝
𝑗𝑘
𝑔
𝑗𝑘
√𝑃
𝑡𝑘
∫𝑥
𝑘
(𝜏 − 𝜏

𝑘𝑗
) ⋅ 𝑥
∗

𝑘
(𝜏 − 𝑡) 𝑑𝜏 + 𝑛

𝑗𝑘
(𝑡) ,

(4)

where 𝑛
𝑗𝑘
(𝑡) = ∫ 𝑛

𝑗
(𝜏)⋅𝑥
∗

𝑘
(𝜏−𝑡)𝑑𝜏 and∫𝑥

𝑗
(𝜏)⋅𝑥
∗

𝑘
(𝜏+𝑡)𝑑𝜏 = 0

for 𝑘 ̸= 𝑗.
The discrete time signal for the 𝑗th receiver can be

rewritten as follows:

𝑟
𝑗𝑘
≜ 𝑦
𝑗𝑘
(𝜏
𝑗𝑘
) = 𝑝
𝑗𝑘
𝑔
𝑗𝑘
√𝑃
𝑡𝑘
+ 𝜃
𝑗𝑘
, (5)

where 𝑟
𝑘𝑗
is the output of the matched filter at the receiver

𝑗 sampled at 𝜏
𝑗𝑘
, 𝜃
𝑗𝑘

= 𝑛
𝑗𝑘
(𝜏
𝑗𝑘
), and 𝜃

𝑗𝑘
∼ CN(0, 𝑅

𝜃
). As

mentioned before, we assume that all the netted radars have
acquired and are tracking the target with their directional
radar beams, and they transmit orthogonal waveforms while
receiving and processing all these echoes that are reflected
from the target. In this way, we can obtain 𝜏

𝑗𝑘
.

2.3. Binary Hypothesis Test. With all the received signals, the
target detection for radar network system leads to a binary
hypothesis testing problem:

𝐻
0
: 𝑟
𝑖𝑗
= 𝜃
𝑖𝑗

𝐻
1
: 𝑟
𝑖𝑗
= 𝑝
𝑖𝑗
𝑔
𝑖𝑗
√𝑃
𝑡𝑖
+ 𝜃
𝑖𝑗
,

(6)

where 1 ≤ 𝑖 ≤ 𝑁
𝑡
, 1 ≤ 𝑗 ≤ 𝑁

𝑟
. The likelihood ratio test can be

formulated as follows:

𝐻
0
: 𝑇 ≜

𝑀

∏

𝑖=1

𝑁

∏

𝑗=1

𝑓 (𝑟
𝑖𝑗
| 𝐻
1
)

𝑓 (𝑟
𝑖𝑗
| 𝐻
0
)
< 𝛿,

𝐻
1
: 𝑇 ≜

𝑀

∏

𝑖=1

𝑁

∏

𝑗=1

𝑓 (𝑟
𝑖𝑗
| 𝐻
1
)

𝑓 (𝑟
𝑖𝑗
| 𝐻
0
)
> 𝛿.

(7)

As introduced in [14], the underlying detection problem can
be equivalently rewritten as follows:

𝐻
0
: 𝑟
𝑖𝑗
∼ CN (0, 𝑅

𝜃
) ,

𝐻
1
: 𝑟
𝑖𝑗
∼ CN (0, 𝑅

𝜃
+ 𝑃
𝑡𝑖
𝑅
𝑔
𝑝
2

𝑖𝑗
) .

(8)

Then, we have the optimal detector as follows:

𝐻
0
: 𝑇 ≜

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑟
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

2
2𝑃
𝑡𝑖
𝑝
2

𝑖𝑗

𝑅
𝜃
+ 𝑃
𝑡𝑖
𝑅
𝑔
𝑝2
𝑖𝑗

< 𝛿,

𝐻
1
: 𝑇 ≜

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑟
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

2
2𝑃
𝑡𝑖
𝑝
2

𝑖𝑗

𝑅
𝜃
+ 𝑃
𝑡𝑖
𝑅
𝑔
𝑝2
𝑖𝑗

> 𝛿,

(9)

where 𝛿 denotes the detection threshold.

3. Problem Formulation

In this section, we aim to obtain the optimal LPI performance
for radar network architecture by judiciously designing the
transmission power allocation among netted radars in the
network. We first derive Schleher intercept factor for radar
network system and then formulate the LPI optimization
problems based on information-theoretic criteria. For a
predefined threshold of target detection, Schleher intercept
factor is minimized by optimizing transmission power allo-
cation among netted radars. It is indicated in [6] that the
analytical closed-form expression for ROC does not exist.
As such, we resort to information-theoretic criteria, namely,
Bhattacharyya distance and J-divergence. In what follows,
the corresponding LPI optimization problems associated
with different information-theoretic criteria are cast under a
unified framework and can be solved conveniently through
NPGA.

3.1. Schleher Intercept Factor for Radar Network. For radar
network, it is supposed that all signals can be separately
distinguished at every netted radar node. Assuming that
every transmitter-receiver combination in the network can
be the same and 𝑅

2

net ≜ 𝑅
𝑡𝑖
⋅ 𝑅
𝑟𝑗
, in which case the radar

network SNR equation (1) can be rewritten as follows (see
Appendix A):

SNRnet = 𝐾rad𝑁𝑟
𝑃
𝑡

𝑅4net
, (10)

where

𝐾rad =
𝐺
𝑡
𝐺
𝑟
𝜎
𝑡
𝜆
2

(4𝜋)
3

𝑘𝑇
𝑜
𝐵
𝑟
𝐹
𝑟
𝐿
, (11)

𝑃
𝑡
is the total transmitting power of radar network system.
Note that, when 𝑁

𝑡
= 𝑁
𝑟

= 1, we can obtain the
monostatic case

SNRmon = 𝐾rad
𝑃
𝑡

𝑅4mon
, (12)

where 𝑅mon is the distance between the monostatic radar and
the target, while, for intercept receiver, the SNR equation is

SNRint = 𝐾int
𝑃
𝑡

𝑅2int
, (13)
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Interceptor
Target

Radar

Rint

Rrad

Figure 2: The geometry of radar, target, and interceptor.

where

𝐾int =
𝐺
𝑡
𝐺
𝑖
𝜆
2

(4𝜋)
2

𝑘𝑇
𝑜
𝐵
𝑖
𝐹
𝑖
𝐿
𝑖

, (14)

SNRint is the SNR at the interceptor signal processor input,𝐺󸀠
𝑡

is the gain of the radar’s transmitting antenna in the direction
of the intercept receiver, 𝐺

𝑖
is the gain of the intercept

receiver’s antenna, 𝐹
𝑖
is the interceptor noise factor, 𝐵

𝑖
is the

bandwidth of the interceptor, 𝑅int is the range from radar
network to the intercept receiver, and 𝐿

𝑖
refers to the losses

from the radar antenna to the receiver. For simplicity, we
assume that the intercept receiver is carried by the target.
As such, the interceptor detects the radar emission from the
main lobe; that is, 𝐺󸀠

𝑡
= 𝐺
𝑡
.

Herein, Schleher intercept factor is employed to evaluate
LPI performance for radar network. The definition of Schle-
her intercept factor can be calculated as follows:

𝛼 =
𝑅int
𝑅rad

, (15)

where 𝑅rad is the detection range of radar and 𝑅int is the
intercept range of intercept receiver, as illustrated in Figure 2.

Based on the definition of Schleher intercept factor, if
𝛼 > 1, radar can be detected by the interceptor, while if
𝛼 ≤ 1, radar can detect the target and the interceptor cannot
detect the radar. Therefore, radar can meet LPI performance
when 𝛼 ≤ 1. Moreover, minimization of Schleher intercept
factor leads to better LPI performance for radar network
architecture.

With the derivation of Schleher intercept factor in
Appendix B, it can be observed that, for a predefined target
detection performance, the closer the distance between radar
system and target is, the less power the radar system needs to
transmit on guarantee of target detection performance. For
simplicity, the maximum intercept factor 𝛼max

mon is normalized
to be 1 when the monostatic radar transmits the maximal
power 𝑃max

tot , and SNRnet = SNRmon. Therefore, when the
transmission power is 𝑃

𝑡
, the intercept factor for radar

network system can be simplified as follows:

𝛼net =
𝛼mon

𝑁
1/4

𝑟

= (
𝑃
𝑡

𝑃max
tot ⋅ 𝑁

𝑟

)

1/4

, (16)

where 𝛼mon is the Schleher intercept factor for monostatic
radar. From (16), one can see that Schleher intercept factor
𝛼net is reduced with the increase of the number of radar
receivers𝑁

𝑟
and the decrease of the total transmission power

𝑃
𝑡
in the network system.

3.2. Information-Theoretic Criteria Based LPI Optimization

3.2.1. Bhattacharyya Distance Based LPI Optimization
Scheme. It is introduced in [6] that Bhattacharyya distance
𝐵(𝑝
0
, 𝑝
1
) measures the distance between two probability

density functions (pdf) 𝑝
0

and 𝑝
1
. The Bhattacharyya

distance provides an upper bound on the probability of false
alarm 𝑃fa and at the same time yields a lower bound on the
probability of detection 𝑃

𝑑
.

Consider two multivariate Gaussian distributions 𝑃
0
and

𝑃
1
, 𝑃
0
∼ CN(0, 𝜎

0
), and 𝑃

1
∼ CN(0, 𝜎

1
); the Bhattacharyya

distance 𝐵(𝑃
0
, 𝑃
1
) can be obtained as [6]

𝐵 (𝑃
0
, 𝑃
1
) = log

{{

{{

{

det [0.5 (𝜎
0
+ 𝜎
1
)]

√det (𝜎
0
) det (𝜎

1
)

}}

}}

}

. (17)

Let 𝐵[𝑓(𝑟 | 𝐻
0
), 𝑓(𝑟 | 𝐻

1
)] represent Bhattacharyya distance

between 𝐻
0
and 𝐻

1
, where 𝑓(𝑟 | 𝐻

0
) and 𝑓(𝑟 | 𝐻

1
) are

the pdfs of r under hypotheses 𝐻
0
and 𝐻

1
. For the binary

hypothesis testing problem, we have that

𝐵net ≜ 𝐵 [𝑓 (𝑟 | 𝐻
0
) , 𝑓 (𝑟 | 𝐻

1
)]

=

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

log(
1 + 0.5𝜁

𝑖𝑗

√1 + 𝜁
𝑖𝑗

)

=

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

log[[

[

1 + 𝑃
𝑡𝑖
𝑅
𝑔
𝑝
2

𝑖𝑗
(2𝑅
𝜃
)
−1

√1 + 𝑃
𝑡𝑖
𝑅
𝑔
𝑝2
𝑖𝑗
(𝑅
𝜃
)
−1

]
]

]

=

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

log
[
[
[

[

1 + 𝑃
𝑡𝑖
𝑅
𝑔
𝐺
𝑡𝑖
𝐺
𝑟𝑗
(2𝑅
𝜃
𝑅
2

𝑡𝑖
𝑅
2

𝑟𝑗
)
−1

√1 + 𝑃
𝑡𝑖
𝑅
𝑔
𝐺
𝑡𝑖
𝐺
𝑟𝑗
(𝑅
𝜃
𝑅2
𝑡𝑖
𝑅2
𝑟𝑗
)
−1

]
]
]

]

.

(18)

Based on the discussion in [6], maximization of the Bhat-
tacharyya distance minimizes the upper bound on 𝑃fa while
it maximizes the lower bound on 𝑃

𝑑
. As expressed in (18),

the Bhattacharyya distance derived here can be applied to
evaluate the target detection performance of radar network
as a function of different parameters, such as the transmitting
power of each netted radar and the number of netted radars
in the network. Intuitively, the greater the Bhattacharyya dis-
tance between the two distributions of the binary hypothesis
testing problem, the better the capability of radar network
system to detect the target, which would make the net-
work system more vulnerable in modern electronic warfare.
Therefore, the Bhattacharyya distance can provide guidance
to the problem of LPI optimization for radar network
architecture.

Here, we focus on the LPI optimization problem for
radar network architecture, where Schleher intercept factor
is minimized by optimizing transmission power allocation
among netted radars in the network for a predetermined
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Bhattacharyya distance threshold, such that the LPI perfor-
mance is met on the guarantee of target detection perfor-
mance. Eventually, the underlying LPI optimization problem
can be formulated as follows:

min
󳨀⇀Pt

𝛼net,

s.t.: 𝐵net ≥ 𝐵
th
,

𝑁
𝑡

∑

𝑖=1

𝑃
𝑡𝑖
≤ 𝑃

max
tot ,

0 ≤ 𝑃
𝑡𝑖
≤ 𝑃

max
𝑡𝑖

(∀𝑖) ,

(19)

where 󳨀⇀Pt = [𝑃
𝑡1
, 𝑃
𝑡2
, . . . , 𝑃

𝑡𝑁
𝑡

]
𝑇 is the transmitting power of

radar network, 𝐵th is the Bhattacharyya distance threshold
for target detection, 𝑃max

tot is the maximum total transmission
power of radar network, and 𝑃max

𝑡𝑖
(for all 𝑖) is the maximum

transmission power of the corresponding netted radar node.

3.2.2. J-Divergence Based LPI Optimization Scheme. The J-
divergence 𝐽(𝑝

0
, 𝑝
1
) is anothermetric tomeasure the distance

between two pdfs 𝑝
0
and 𝑝

1
. It is defined as follows:

𝐽 (𝑝
0
, 𝑝
1
) ≜ 𝐷 (𝑝

0
‖ 𝑝
1
) + 𝐷 (𝑝

1
‖ 𝑝
0
) , (20)

where 𝐷(⋅) is the Kullback-Leibler divergence. It is shown in
[19] that, for any fixed value of 𝑃fa,

𝐷[𝑓 (𝑟 | 𝐻
0
) ‖ 𝑓 (𝑟 | 𝐻

1
)] = lim
𝑁→∞

[−
1

𝑁
log (1 − 𝑃

𝑑
)]

(21)

and, for any fixed value of 𝑃
𝑑
, we can obtain

𝐷[𝑓 (𝑟 | 𝐻
1
) ‖ 𝑓 (𝑟 | 𝐻

0
)] = lim
𝑁→∞

[−
1

𝑁
log (𝑃fa)] . (22)

From (21) and (22), we can observe that for any fixed 𝑃fa the
maximization of Kullback-Leibler divergence 𝐷[𝑓(𝑟 | 𝐻

0
) ‖

𝑓(𝑟 | 𝐻
1
)] results in an asymptotic maximization of 𝑃

𝑑
,

while for any fixed 𝑃
𝑑
the maximization of Kullback-Leibler

divergence𝐷[𝑓(𝑟 | 𝐻
1
) ‖ 𝑓(𝑟 | 𝐻

0
)] results in an asymptotic

minimization of 𝑃fa.
With the derivation in [6], we have that

𝐽net ≜ 𝐽 [𝑓 (𝑟 | 𝐻
0
) , 𝑓 (𝑟 | 𝐻

1
)]

=

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

𝜁
2

𝑖𝑗

1 + 𝜁
𝑖𝑗

=

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

[𝑃
𝑡𝑖
𝑅
𝑔
𝑝
2

𝑖𝑗
(𝑅
𝜃
)
−1

]
2

1 + 𝑃
𝑡𝑖
𝑅
𝑔
𝑝2
𝑖𝑗
(𝑅
𝜃
)
−1

=

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

[𝑃
𝑡𝑖
𝑅
𝑔
𝐺
𝑡𝑖
𝐺
𝑟𝑗
(𝑅
𝜃
𝑅
2

𝑡𝑖
𝑅
2

𝑟𝑗
)
−1

]
2

1 + 𝑃
𝑡𝑖
𝑅
𝑔
𝐺
𝑡𝑖
𝐺
𝑟𝑗
(𝑅
𝜃
𝑅2
𝑡𝑖
𝑅2
𝑟𝑗
)
−1
.

(23)

Consequently, the corresponding LPI optimization prob-
lem can be expressed as follows:

min
󳨀⇀

𝑃
𝑡

𝛼net,

s.t.: 𝐽net ≥ 𝐽
th
,

𝑁
𝑡

∑

𝑖=1

𝑃
𝑡𝑖
≤ 𝑃

max
tot ,

0 ≤ 𝑃
𝑡𝑖
≤ 𝑃

max
𝑡𝑖

(∀𝑖) ,

(24)

where 𝐽th is the J-divergence threshold for target detection.

3.3. The Unified Framework Based on NPGA. In this subsec-
tion, we cast the LPI optimization problems based on various
information-theoretic criteria investigated earlier under a
unified optimization framework. Furthermore, we formulate
the following general form of the optimization problems in
(19) and (24):

min
󳨀⇀

𝑃
𝑡

𝛼net,

s.t.: 𝛾net ≥ 𝛾
th
,

𝑁
𝑡

∑

𝑖=1

𝑃
𝑡𝑖
≤ 𝑃

max
tot ,

0 ≤ 𝑃
𝑡𝑖
≤ 𝑃

max
𝑡𝑖

(∀𝑖) ,

(25)

where 𝛾net ∈ {𝐵net, 𝐽net} and 𝛾
th is the corresponding threshold

for target detection.
In this paper, we utilize the nonlinear programming based

genetic algorithm (NPGA) to seek the optimal solutions to
the resulting nonconvex, nonlinear, and constrained problem
(25).The NPGA has a good performance on the convergence
speed, and it improves the searching performance of ordinary
genetic algorithm.

The NPGA procedure is illustrated in Figure 3, where
the population initialization module is utilized to initialize
the population according to the resulting problem, while the
calculating fitness value module is to calculate the fitness
values of individuals in the population. Selection, crossover,
and mutation are employed to seek the optimal solution,
where 𝑁 is a constant. If the evolution is 𝑁’s multiples, we
can use NP approach to accelerate the convergence speed.

So far, we have completed the derivation of Schle-
her intercept factor for radar network architecture and
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Figure 3: Flow diagram of NPGA procedure.
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Figure 4: Bhattacharyya distance versus Schleher intercept factor
for different radar network architectures.

the information-theoretic criteria based LPI optimization
schemes. In what follows, some numerical simulations are
provided to confirm the effectiveness of our presented LPI
optimization algorithms for radar network architecture.

4. Numerical Simulations

In this section, we provide several numerical simulations to
examine the performance of the proposed LPI optimization
algorithms as (19) and (24). Throughout this section, we
assume that 𝑃max

tot = ∑
𝑁
𝑡

𝑖=1
𝑃
𝑡𝑖
= 24KW, 𝐺

𝑡
= 𝐺
𝑟
= 30 dB,

𝑅
𝜃
= 10
−10, and 𝑅

𝑔
= 1. The SNR is set to be 13 dB. The

traditional monostatic radar can detect the target whose RCS
is 0.05m2 in the distance 𝑅

𝑅MAX = 106.1 km by transmitting
the maximum power 𝑃max

tot = 24KW, where the intercept
factor is normalized to be 1 for simplicity.

4.1. LPI Performance Analysis. Figures 4 and 6 show the
Bhattacharyya distance and logarithmic J-divergence ver-
sus Schleher intercept factor for different radar network
architectures, respectively, which are conducted 10

6 Monte
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Figure 5: Bhattacharyya distance versus Schleher intercept factor
for different target scattering intensity with𝑁

𝑡
= 𝑁
𝑟
= 4.

Carlo trials. We can observe in Figures 4 and 6 that as
Schleher intercept factor increases from 𝛼net = 0 to 𝛼net =
2 the achievable Bhattacharyya distance and logarithmic J-
divergence are increased. This is due to the fact that as the
intercept factor increases more transmission power would
be allocated, which makes the achievable Bhattacharyya dis-
tance and logarithmic J-divergence increase correspondingly
as theoretically proved in (18) and (23). Furthermore, it can
be seen from Figures 4 and 6 that, with the same target detec-
tion threshold, Schleher intercept factor can be significantly
reduced as the number of transmitters and receivers in the
network system increases. Therefore, increasing the number
of netted radars can effectively improve the LPI performance
for radar network.This confirms the LPI benefits of the radar
network architecture with more netted radars.

As shown in Figures 5 and 7, we illustrate the Bhat-
tacharyya distance and logarithmic J-divergence versus
Schleher intercept factor for different target scattering inten-
sity with 𝑁

𝑡
= 𝑁
𝑟
= 4, respectively. It is depicted that

as the target scattering intensity increases from 𝑅
𝑔

= 1

to 𝑅
𝑔

= 10 the achievable Bhattacharyya distance and
logarithmic J-divergence are significantly increased. This is
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because the radar network system can detect the target with
large scattering intensity easily with high 𝑃

𝑑
and low 𝑃fa.

4.2. Target Tracking with LPI Optimization. In this subsec-
tion, we consider a 4 × 4 radar network system (𝑁

𝑡
=

𝑁
𝑟
= 4) in the simulation, and it is widely deployed in

modern battlefield. The target detection threshold 𝛾
th can

be calculated in the condition that the transmission power
of each radar is 6KW in the distance 150 km between the
radar network and the target, which is the minimum value of
the basic performance requirement for target detection. As
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Figure 8: The radar network system configuration in two dimen-
sions.
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mentioned before, it is supposed that the intercept receiver
is carried by the target. It is depicted in Figure 8 that the
netted radars in the network are spatially distributed in the
surveillance area at the initial time 𝑡 = 0.

We track a single target by utilizing particle filtering (PF)
method, where 5000 particles are used to estimate the target
state. Figure 9 shows one realization of the target trajectory
for 50 s, and the tracking interval is chosen to be 1 s. With
the radar network configuration in Figure 8 and the target
tracking scenario in Figure 9, we can obtain the distances
changing curve between the netted radars and the target in
the tracking process as depicted in Figure 10. Without loss of
generality, we set𝑅𝑎𝑑𝑎𝑟1 as the distributed data fusion center
and capitalize the weighted average approach to obtain the
estimated target state.
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To obtain the optimal transmission power allocation of
radar network, we utilize NPGA to solve (19) and (24). Let
the population size be 100, let the crossover probability be
0.6, and let the mutation probability be 0.01. The population
evolves 10 generations. Figure 11 shows the transmitting
power of netted radars utilizing Bhattacharyya distance based
LPI optimization in the tracking process, while Figure 12
depicts the J-divergence based case. Before 𝑡 = 36 s, netted
radars 2, 3, and 4 are selected to track the target, which are
the ones closest to the target, while netted radar 1 is selected
instead of radar 2 after 𝑡 = 36 s, which is because netted radars
1, 2, and 3 have the best channel conditions in the network.
From Figures 11 and 12, we can see that the transmission
power allocation is determined by the locations of single
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Figure 13: The normalized Schleher intercept factor comparison in
the tracking process.

target relative to the netted radars and their propagation
losses. To be specific, in the LPI optimization process, more
transmitting power is allocated to the radar nodes that are
located closer to the target; this is due to the fact that they
suffer less propagation losses.

Figure 13 demonstrates the advantage of our proposed
optimization problems based on information-theoretic cri-
teria. The traditional monostatic radar transmits 24KW
constantly, while the ordinary radar network has a constant
sum of transmitted power 24KW and each radar node
transmits uniform power. One can see that Schleher intercept
factor for radar network employing the information-theoretic
criteria based LPI optimization strategies is strictly smaller
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than that of traditional monostatic radar and ordinary radar
network across the whole region, which further shows the
LPI enhancement by exploiting our presented LPI optimiza-
tion schemes in radar network to defend against passive
intercept receiver. Moreover, it can be seen in Figure 13 that,
in terms of the same system constraints and fundamen-
tal quantity, Bhattacharyya distance based LPI optimiza-
tion is asymptotically equivalent to the J-divergence based
case.

4.3. Discussion. According to Figures 4–13, we can deduce
the following conclusions for radar network architecture.

(1) From Figures 4 to 7, we can observe that as the
predefined threshold of target detection increases
more transmission power would be allocated for
radar network to meet the detection performance,
while the intercept factor is increased subsequently,
which is vulnerable in electronic warfare. In other
words, there exists a tradeoff between LPI and target
detection performance in radar network system, and
the LPI performance would be sacrificed with target
detection consideration.

(2) In the numerical simulations, we observe that the
proposed optimization schemes (19) and (24) can
be employed to enhance the LPI performance for
radar network. Based on the netted radars’ spatial
distributionwith respect to the target, we can improve
the LPI performance by optimizing transmission
power allocation among netted radars. As indicated
in Figures 11 and 12, netted radars with better channel
conditions are favorable over others. In addition,
it can be observed that exploiting our proposed
algorithms can effectively improve the LPI perfor-
mance of radar network to defend against intercept
receiver, and Bhattacharyya distance based LPI opti-
mization algorithm is asymptotically equivalent to
the J-divergence based case under the same system
constraints and fundamental quantity.

5. Conclusions

In this paper, we investigated the problem of LPI design
in radar network architecture, where two LPI optimization
schemes based on information-theoretic criteria have been
proposed. The NPGA was employed to tackle the highly
nonconvex and nonlinear optimization problems. Simula-
tions have demonstrated that our proposed strategies are
effective and valuable to improve the LPI performance for
radar network, and it is indicated that these two optimization
problems are asymptotically equivalent to each other under
the same system constraints. Note that only single target was
considered in this paper. Nevertheless, it is convenient to be
extended to multiple targets scenario, and the conclusions
obtained in this study suggest that similar LPI benefits would
be obtained for the multiple targets case. Future work will
look into the adaptive threshold design of target detection
performance in radar network architectures.

Appendices

A.

Assume that every transmitter-receiver combination in the
network can be the same and 𝑅2net ≜ 𝑅

𝑡𝑖
⋅ 𝑅
𝑟𝑗
, where the radar

network SNR (1) can be written as follows:

SNRnet = 𝐾rad

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

𝑃
𝑡𝑖

𝑅4net
, (A.1)

where

𝐾rad =
𝐺
𝑡
𝐺
𝑟
𝜎
𝑡
𝜆
2

(4𝜋)
3

𝑘𝑇
𝑜
𝐵
𝑟
𝐹
𝑟
𝐿
. (A.2)

Assume that the sum of the effective radiated power (ERP)
from all the radars in the network is equivalent to that of
monostatic radar; that is,

ERP =

𝑁
𝑡

∑

𝑖=1

𝑃
𝑡𝑖
𝐺
𝑡𝑖
= 𝑃
𝑡
𝐺
𝑡
, (A.3)

where 𝑃
𝑡
and 𝐺

𝑡
are the transmitting power and transmitting

antenna gain of the monostatic radar, respectively. For 𝐺
𝑡𝑖
=

𝐺
𝑡
(for all 𝑖), we can rewrite (A.1) as follows:

SNRnet = 𝐾rad𝑁𝑡
𝑃
𝑡

𝑅4net
. (A.4)

B.

According to (15), we can derive the intercept factor for radar
network as

𝛼net =
𝑅int
𝑅net

= (
𝑃
𝑡
⋅ 𝐾
2

int ⋅ SNRnet

𝐾rad ⋅ 𝑁𝑟 ⋅ SNR2int
)

1/4

(B.1)

and the intercept factor for conventional monostatic radar as

𝛼mon =
𝑅int
𝑅mon

= (
𝑃
𝑡
⋅ 𝐾
2

int ⋅ SNRmon

𝐾rad ⋅ SNR2int
)

1/4

. (B.2)

When SNRnet = SNRmon, we can readily obtain the
relationship between the intercept factors for radar network
𝛼net and for the monostatic case 𝛼mon:

𝛼net =
𝛼mon

𝑁
1/4

𝑟

. (B.3)

Furthermore, for monostatic radar, we can assume that

SNRmon = 𝐾rad
𝑃
𝑡

𝑅4mon
= 𝐾rad

𝑃
max
tot

𝑅4
𝑅MAX

, (B.4)

where 𝑃max
tot is the maximal power of the monostatic rada-

r and 𝑅
𝑅MAX is the corresponding maximal detection range.

Then, we can obtain

𝑅mon
𝑅
𝑅MAX

= (
𝑃
𝑡

𝑃max
tot

)

1/4

. (B.5)



10 International Journal of Antennas and Propagation

Similarly, for intercept receiver, we have the following:

SNRint = 𝐾int
𝑃
𝑡

𝑅2int
= 𝐾int

𝑃
max
tot

𝑅2
𝐼𝑀𝐴𝑋

, (B.6)

𝑅int
𝑅
𝐼MAX

= (
𝑃
𝑡

𝑃max
tot

)

1/2

, (B.7)

where 𝑅
𝐼MAX is the intercept range when the transmitting

power of radar is 𝑃max
tot .

Using (15), (B.5), and (B.7), we can obtain the following
expression:

𝛼mon
𝛼max
mon

=
𝑅int/𝑅mon

𝑅
𝐼MAX/𝑅𝑅MAX

= (
𝑃
𝑡

𝑃max
tot

)

1/4

, (B.8)

where 𝛼max
mon is Schleher intercept factor corresponding to the

maximal transmitting power 𝑃max
tot .
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We consider the problem of tracking the direction of arrivals (DOA) of multiple moving targets in monostatic multiple-input
multiple-output (MIMO) radar. A low-complexity DOA tracking algorithm inmonostatic MIMO radar is proposed.The proposed
algorithm obtains DOA estimation via the difference between previous and current covariance matrix of the reduced-dimension
transformation signal, and it reduces the computational complexity and realizes automatic association in DOA tracking. Error
analysis and Cramér-Rao lower bound (CRLB) of DOA tracking are derived in the paper. The proposed algorithm not only can
be regarded as an extension of array-signal-processing DOA tracking algorithm in (Zhang et al. (2008)), but also is an improved
version of the DOA tracking algorithm in (Zhang et al. (2008)). Furthermore, the proposed algorithm has better DOA tracking
performance than the DOA tracking algorithm in (Zhang et al. (2008)). The simulation results demonstrate effectiveness of the
proposed algorithm. Our work provides the technical support for the practical application of MIMO radar.

1. Introduction

Multiple-inputmultiple-output (MIMO) radar employsmul-
tiple antennas to simultaneously transmit diverse waveforms
and utilizes multiple antennas to receive the reflected signals
[1–5]. Direction of arrival (DOA) algorithms in MIMO radar
have been recently investigated in [6–24], which contain
estimation of signal parameters via rotational invariance
technique (ESPRIT) algorithms [6–8], Capon algorithms [10,
11], multiple signal classification (MUSIC) algorithms [9, 12–
15], parallel factor (PARAFAC) analysis algorithms [16–18],
propagator method [19, 20], quaternion method [21, 22],
compressive sampling methods [23, 24], and so on. However,
the algorithmsmentioned above are, generally, used in offline
situation, and they are not applicable for tracking moving
targets. The online algorithms can be used for real-time
application of MIMO radar.

DOA tracking for array antenna has been investigated
for a long time, which contains projection approximation
and subspace tracking (PAST) algorithm [25], projection
approximation and subspace tracking of deflation (PASTd)

algorithm [26], Bi-iterative least-square method [27], Bi-
iteration single value decomposition [28], and others [29,
30]. The DOA tracking algorithms in [25–30] have a high
computational complexity. A low-complexity method was
proposed in [31, 32] to track DOA of moving sources using
the elements of the covariancematrix of the received signal in
array signal processing, and the DOA tracking algorithm can
implement automatic association, which is a key technique in
DOA tracking [33].

DOA tracking forMIMO radar is to track the DOA of the
moving targets. PARAFAC adaptive algorithms [17, 18] and
PASTd [34] were used for DOA tracking for MIMO radar,
but an extra data association is required. Kalman-PASTd was
proposed in [35] for DOA tracking for monostatic MIMO
Radar with automatic association. PARAFAC adaptive algo-
rithm, PASTd algorithm, and Kalman-PASTd algorithm have
high computational complexity. In the paper, we propose a
computationally efficient DOA tracking algorithm in mono-
static MIMO radar with automatic association.

In this paper, we reference the array-signal-processing
DOA tracking idea in [31] to propose a DOA tracking
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International Journal of Antennas and Propagation
Volume 2014, Article ID 501478, 10 pages
http://dx.doi.org/10.1155/2014/501478

http://dx.doi.org/10.1155/2014/501478


2 International Journal of Antennas and Propagation

Transmit array

Receive array· · ·

· · · · · ·

· · ·

𝜃

𝜃

Figure 1: The array structure of monostatic MIMO radar.

algorithm which is suitable for MIMO radar. Using the
reduced-dimension transformation for the received signal of
MIMO radar, we obtain the covariance matrix of reduced-
dimension transformation signal, and then we adopt an
improved version for DOA tracking. The proposed algo-
rithm can realize automatic association in DOA tracking.
Error analysis and Cramér-Rao lower bound (CRLB) are
also derived in this paper. Finally, the simulation results
demonstrate the effectiveness and robustness of the proposed
algorithm.

There are some differences between the work in [31]
and the proposed algorithm. (1) Reference [31] proposed an
effective DOA tracking algorithm in array signal processing,
while we address DOA tracking problem for MIMO radar
in the paper. (2) The DOA tracking algorithm in array
signal processing in [31] requires the direction matrix of
Vandermonde form. The direction matrix in MIMO radar is
not a Vandermondematrix, and the DOA tracking algorithm
in [31] cannot be used directly for DOA tracking in MIMO
radar. We employ the reduced-dimension transformation for
the received signal to obtain the reduced-dimension direction
matrix of Vandermonde form. (3) Our work improves the
DOA tracking algorithm in [31] to enhance theDOA tracking
performance in MIMO radar, since it fully uses the Toeplitz
matrix property to eliminate the noise. Therefore, the pro-
posed algorithm not only can be regarded as an extension
of the work in [31], but also is an improved algorithm.
Simulation results show that the proposed algorithm has
much better DOA tracking performance than the DOA
tracking algorithm in [31].

The reminder of this paper is structured as follows.
Section 2 develops the data model for monostatic MIMO
radar. Section 3 establishes our DOA tracking algorithm
based on the elements of the covariance matrix of the
reduced-dimension transformation signal. In Section 4, error
analysis andCramer-Rao lower bound (CRLB) are derived. In
Section 5, simulation results are presented to verify the effec-
tiveness of the proposed algorithm, while the conclusions are
made in Section 6.

Notation. (⋅)𝑇, (⋅)𝐻, (⋅)−1, and (⋅)+ denote transpose, con-
jugate-transpose, inverse, and pseudoinverse operations,
respectively. diag(v) stands for diagonal matrix whose diag-
onal is a vector v; I

𝐾
is a𝐾×𝐾 identity matrix; ⊗, ∘, and ⊕ are

the Kronecker product, Khatri-Rao product, and Hadamard
product, respectively. 𝐸(⋅) denotes the expectation operator.
X̂ denotes the estimated value of X.

2. Data Model

Weconsider amonostaticMIMOradar system equippedwith
both uniform linear arrays (ULAs) for the transmit/receive
array, in which 𝑀 elements and 𝑁 elements are arranged
with half-wavelength spacing between adjacent antennas,
respectively. The array structure of monostatic MIMO radar
is shown in Figure 1.We assume that there are𝐾 uncorrelated
targets. At time 𝑡, the output of the matched filters at the
receiver can be expressed as [9]

r (𝑡)=[a
𝑟
(𝜃
𝑡,1
) ⊗ a
𝑡
(𝜃
𝑡,1
) , . . . , a

𝑟
(𝜃
𝑡,𝐾
) ⊗ a
𝑡
(𝜃
𝑡,𝐾
)] s (𝑡)+n (𝑡)

= A
𝑡
s (𝑡) + n (𝑡) ,

(1)

where 𝜃
𝑡,𝑘

is the DOA of the 𝑘th target at time 𝑡. a
𝑡
(𝜃
𝑡,𝑘
) =

[1, exp(−𝑗𝜋 sin 𝜃
𝑡,𝑘
), . . . , exp(−𝑗(𝑀−1)𝜋 sin 𝜃

𝑡,𝑘
)]
𝑇

, a
𝑟
(𝜃
𝑡,𝑘
) =

[1, exp(−𝑗𝜋 sin 𝜃
𝑡,𝑘
), . . . , exp(−𝑗(𝑁 − 1)𝜋 sin 𝜃

𝑡,𝑘
)]
𝑇. s(𝑡) =

[𝑠
1
(𝑡), 𝑠
2
(𝑡), . . . , 𝑠

𝐾
(𝑡)]
𝑇, and 𝑠

𝑘
(𝑡) = 𝜌

𝑘
𝑒
𝑗2𝜋𝑓
𝑘
𝑡 with 𝑓

𝑘
being

Doppler frequency and 𝜌
𝑘
being the amplitude. We assume

that 𝑠
𝑖
(𝑡) and 𝑠

𝑗
(𝑡) are uncorrelated for the different targets.

n(𝑡) is the received additive white Gaussian noise with noise
vector of zerosmean and covariancematrix𝜎2I

𝑀𝑁
an𝑀𝑁×1

noise vector. ⊗ stands for Kronecker product. The matrix A
𝑡

is

A
𝑡
= [a
𝑟
(𝜃
𝑡,1
) ⊗ a
𝑡
(𝜃
𝑡,1
) , . . . , a

𝑟
(𝜃
𝑡,𝐾
) ⊗ a
𝑡
(𝜃
𝑡,𝐾
)] . (2)

During the interval ((𝑡 − 1)𝑇
𝑠
, 𝑡𝑇
𝑠
], 𝜃
𝑡,𝑘

is a constant and 𝐽
snapshots of sensor data are available for the signal process-
ing.

3. DOA Tracking Algorithm

The DOA tracking algorithm of array signal processing in
[31] requires the direction matrix of Vandermonde form.The
direction matrix A

𝑡
in (2) is not a Vandermonde matrix, and

the DOA tracking algorithm of array signal processing in [31]
cannot be used directly for DOA tracking in MIMO radar.
We employ the reduced-dimension transformation for the
received signal to obtain the reduced-dimension direction
matrix of Vandermonde form. In this paper, we reference the
array-signal-processing DOA tracking idea in [31] to propose
a low complexity DOA tracking algorithm which is suitable
for MIMO radar.

3.1. Reduced-Dimension Transformation. a
𝑟
(𝜃
𝑡,𝑘
) ⊗ a

𝑡
(𝜃
𝑡,𝑘
)

can be expressed by [9]

a
𝑟
(𝜃
𝑡,𝑘
) ⊗ a
𝑡
(𝜃
𝑡,𝑘
) = Gb (𝜃

𝑡,𝑘
) , (3)
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where b(𝜃
𝑡,𝑘
) = [1, exp(−𝑗𝜋 sin 𝜃

𝑡,𝑘
), . . . , exp(−𝑗𝜋(𝑀 + 𝑁 −

2) sin 𝜃
𝑡,𝑘
)]
𝑇, and

G =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

...
... d

...
... d 0

0 0 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0

}}}}

}}}}

}

𝑀

0 1 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

0 0 1 0 0 ⋅ ⋅ ⋅ 0

...
...

... d
... d 0

0 0 ⋅ ⋅ ⋅ 0 1 0 0

}}}}

}}}}

}

𝑀

...
0 ⋅ ⋅ ⋅ 0 1 0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 0

... d
...

...
... d

...
0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 1

}}}}

}}}}

}

𝑀

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

∈ C
𝑀𝑁×(𝑀+𝑁−1)

. (4)

Then we defineW ≜ G𝐻G as follows:

W=diag(1, 2, . . . ,min (𝑀,𝑁) , . . . ,min (𝑀,𝑁)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

|𝑀−𝑁|+1

, . . . , 2, 1) .

(5)

Using the reduced-dimension transformationW−1G𝐻 for the
receiver signal r(𝑡), we obtain

y (𝑡) =W−1G𝐻r (𝑡)

=W−1W [b (𝜃
𝑡,1
) , . . . , b (𝜃

𝑡,𝐾
)] s (𝑡) +W−1G𝐻n (𝑡)

= B
𝑡
s (𝑡) +W−1G𝐻n (𝑡) ,

(6)

where

B
𝑡
= [b (𝜃

𝑡,1
) , . . . , b (𝜃

𝑡,𝐾
)] ∈ C

(𝑀+𝑁−1)×𝐾

. (7)

B
𝑡
∈ C(𝑀+𝑁−1)×𝐾 is the directionmatrix of Vandermonde

form. Since the reduced-dimension matrix is sparse, its
transformation adds less computational load.

The covariance matrix of y(𝑡) in (6) is R
𝑡

∈

C(𝑀+𝑁−1)×(𝑀+𝑁−1). Consider

R
𝑡
= 𝐸 [y (𝑡) y𝐻 (𝑡)]

= B
𝑡
R
𝑠
B
𝑡

𝐻

+ R󸀠
𝑛
(𝑡) ,

(8)

where R
𝑠
=𝐸[s(𝑡)s𝐻(𝑡)] = diag (|𝜌

1
|
2

|𝜌
2
|
2

⋅ ⋅ ⋅ |𝜌
𝐾
|
2

) and
R󸀠
𝑛
(𝑡) =W−1G𝐻R

𝑛
GW−1 with R

𝑛
= 𝐸[n(𝑡)n(𝑡)𝐻].

3.2. DOA Tracking. The direction matrix in the reduced-
dimension signal in (6) is a Vandermondematrix, and we use
the improved version of the DOA tracking in [31] for DOA
tracking of MIMO radar.

We assume that 𝜃
𝑡,𝑘

is slowly varying. The DOA of the 𝐾
targets at time 𝑡 is 𝜃

𝑡
= [𝜃
𝑡,1
, 𝜃
𝑡,2
, . . . , 𝜃

𝑡,𝐾
]. Similarly, the DOA

at time 𝑡+1 is 𝜃
𝑡+1
= [𝜃
𝑡+1,1
, 𝜃
𝑡+1,2
, . . . , 𝜃

𝑡+1,𝐾
], with 𝜃

𝑡+1,𝑘
being

the DOA of the 𝑘th target at time 𝑡 + 1. We define

Δ𝜃
𝑡
= 𝜃
𝑡+1
− 𝜃
𝑡
, (9)

where Δ𝜃
𝑡
= [Δ𝜃

𝑡,1
, Δ𝜃
𝑡,2
, . . . , Δ𝜃

𝑡,𝐾
] with Δ𝜃

𝑡,𝑘
= 𝜃
𝑡+1,𝑘

− 𝜃
𝑡,𝑘
.

We define R
𝑡+1

as the covariance matrices of the signal
y(𝑡) at time 𝑡 + 1. The covariance matrix is

R
𝑡+1
= B
𝑡+1

R
𝑠
B𝐻
𝑡+1
+ R󸀠
𝑛
(𝑡 + 1) , (10)

where B
𝑡+1
= [b(𝜃

𝑡+1,1
), . . . , b(𝜃

𝑡+1,𝐾
)] is the direction matrix

at time 𝑡 + 1 and b(𝜃
𝑡+1,𝑘
) = [1, exp(−𝑗𝜋 sin 𝜃

𝑡+1,𝑘
), . . . ,

exp(−𝑗𝜋(𝑀 +𝑁 − 2) sin 𝜃
𝑡+1,𝑘
)]
𝑇. R󸀠
𝑛
(𝑡 + 1) is the covariance

matrix of the noise.
Then we can obtain [31, 36]

ΔR
𝑡
= R
𝑡+1
− R
𝑡
. (11)

ΔR
𝑡
is denoted by

ΔR
𝑡
= (B
𝑡+1

R
𝑠
B𝐻
𝑡+1
− B
𝑡
R
𝑠
B𝐻
𝑡
) + (R󸀠

𝑛
(𝑡 + 1) − R󸀠

𝑛
(𝑡)) .

(12)

We assume that the noise covariance matrix at time 𝑡 + 1
is approximately equal to that at time 𝑡, and then we have

ΔR
𝑦
≃ B
𝑡+1

R
𝑠
B𝐻
𝑡+1
− B
𝑡
R
𝑠
B𝐻
𝑡
. (13)

Using the Vandermonde characteristic of the matrices B
𝑡

and B
𝑡+1

, the noiseless ΔR
𝑡
in (13) can be denoted by [31, 32,

36]

ΔR
𝑡
=

[
[
[
[
[
[
[
[
[

[

0 𝑏
1

𝑏
2

⋅ ⋅ ⋅ 𝑏
𝑀+𝑁−2

𝑏
∗

1
0 𝑏

1
⋅ ⋅ ⋅ 𝑏
𝑀+𝑁−3

𝑏
∗

2
𝑏
∗

1
0 ⋅ ⋅ ⋅ 𝑏

𝑀+𝑁−4

...
...

... d
...

𝑏
∗

𝑀+𝑁−2
𝑏
∗

𝑀+𝑁−3
𝑏
∗

𝑀+𝑁−4
⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]
]
]

]

, (14)

where

𝑏
𝑛
=

𝐾

∑

𝑖=1

𝑠
𝑖
(𝑒
𝑗𝑛𝜋 sin(𝜃

𝑡,𝑖
+Δ𝜃
𝑡,𝑖
)

− 𝑒
𝑗𝑛𝜋 sin 𝜃

𝑡,𝑖) ,

𝑛 = 1, 2, . . . ,𝑀 + 𝑁 − 2,

(15)

where 𝑠
𝑖
is the (𝑖, 𝑖) element of the matrix R

𝑠
and 𝑠
𝑖
= |𝜌
𝑖
|
2.

𝑏
𝑛
in (15) can be expanded as 𝑏

𝑛
= ∑
𝐾

𝑖=1
𝑠
𝑖
(𝑒
𝑗𝑛𝜋[sin 𝜃

𝑡,𝑖
cosΔ𝜃

𝑡,𝑖
+

cos 𝜃
𝑡,𝑖
sinΔ𝜃

𝑡,𝑖
]

− 𝑒
𝑗𝑛𝜋 sin 𝜃

𝑡,𝑖). Considering that Δ𝜃
𝑡,𝑖
is very small,

sin (𝜃
𝑡,𝑖
+ Δ𝜃
𝑡,𝑖
) ≃ sin 𝜃

𝑡,𝑖
+ Δ𝜃
𝑡,𝑖
cos 𝜃
𝑡,𝑖
. (16)
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Then 𝑏
𝑛
in (15) can be denoted by

𝑏
𝑛
≃

𝐾

∑

𝑖=1

𝑠
𝑖
(𝑒
𝑗𝑛𝜋(sin 𝜃

𝑡,𝑖
+Δ𝜃
𝑡,𝑖
cos 𝜃
𝑡,𝑖
)

− 𝑒
𝑗𝑛𝜋 sin 𝜃

𝑡,𝑖)

=

𝐾

∑

𝑖=1

𝑠
𝑖
𝑒
𝑗𝜋𝑛 sin 𝜃

𝑡,𝑖 (𝑒
𝑗𝑛𝜋Δ𝜃

𝑡,𝑖
cos 𝜃
𝑡,𝑖 − 1) .

(17)

Considering that 𝑥 is very small, 𝑒𝑥 − 1 ≃ 𝑥. And then 𝑏
𝑛

in (17) can be rewritten as

𝑏
𝑛
≈

𝐾

∑

𝑖=1

𝑠
𝑖
𝑒
𝑛𝑗𝜋 sin 𝜃

𝑡,𝑖 (𝑗𝑛𝜋Δ𝜃
𝑡,𝑖
cos 𝜃
𝑡,𝑖
) . (18)

According to (18), we can construct the following matrix:

[
[
[
[
[
[
[
[
[

[

𝑏
1

...
𝑏
𝑀+𝑁−2

𝑏
∗

1

...
𝑏
∗

𝑀+𝑁−2

]
]
]
]
]
]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

b

=

[
[
[
[
[
[
[
[
[
[

[

𝑠
1
𝑒
𝑗𝜋 sin 𝜃

𝑡,1𝑗𝜋 cos 𝜃
𝑡,1

⋅ ⋅ ⋅ 𝑠
𝐾
𝑒
𝑗𝜋 sin 𝜃

𝑡,𝐾𝑗𝜋 cos 𝜃
𝑡,𝐾

... d
...

𝑠
1
𝑒
𝑗(𝑀+𝑁−2)𝜋 sin 𝜃

𝑡,1𝑗(𝑀 + 𝑁 − 2)𝜋 cos 𝜃
𝑡,1

⋅ ⋅ ⋅ 𝑠
𝐾
𝑒
𝑗(𝑀+𝑁−2)𝜋 sin 𝜃

𝑡,𝐾𝑗(𝑀 + 𝑁 − 2)𝜋 cos 𝜃
𝑡,𝐾

−𝑠
1
𝑒
−𝑗𝜋 sin 𝜃

𝑡,1𝑗𝜋 cos 𝜃
𝑡,1

⋅ ⋅ ⋅ −𝑠
𝐾
𝑒
−𝑗𝜋 sin 𝜃

𝑡,𝐾𝑗𝜋 cos 𝜃
𝑡,𝐾

... d
...

−𝑠
1
𝑒
−𝑗(𝑀+𝑁−2)𝜋 sin 𝜃

𝑡,1𝑗(𝑀 + 𝑁 − 2)𝜋 cos 𝜃
𝑡,1
⋅ ⋅ ⋅ −𝑠

𝐾
𝑒
−𝑗(𝑀+𝑁−2)𝜋 sin 𝜃

𝑡,𝐾𝑗(𝑀 + 𝑁 − 2)𝜋 cos 𝜃
𝑡,𝐾

]
]
]
]
]
]
]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

V
𝑡

[
[
[
[

[

Δ𝜃
𝑡,1

Δ𝜃
𝑡,2

...
Δ𝜃
𝑡,𝐾

]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Δ𝜃
𝑡

. (19)

Equation (19) can be rewritten with matrix form

V
𝑡
Δ𝜃
𝑡
= b. (20)

From (14), we find that ΔR
𝑡
is a Toeplitz matrix, whose

elements in a straight line paralleled to the principal diagonal
are equal.We take the following processing to estimate 𝑏

𝑛
and

𝑏
∗

𝑛
(𝑛 = 1, . . . ,𝑀 + 𝑁 − 2) to eliminate the noise. Consider

𝑏̂
𝑛
=

1

𝑀 +𝑁 − 1 − 𝑛

𝑀+𝑁−1−𝑛

∑

𝑖=1

ΔR
𝑡
(𝑖, 𝑛 + 𝑖)

𝑏̂
∗

𝑛
=

1

𝑀 +𝑁 − 1 − 𝑛

𝑀+𝑁−1−𝑛

∑

𝑖=1

ΔR
𝑡
(𝑛 + 𝑖, 𝑖) ,

(21)

where ΔR
𝑡
(𝑖, 𝑗) is the (𝑖, 𝑗) element of the matrix ΔR

𝑡
. In

the DOA tracking algorithm in [31], 𝑏̂
𝑛
and 𝑏̂∗
𝑛
are obtained

through 𝑏̂
𝑛
= ΔR

𝑡
(1, 𝑛 + 1) and 𝑏̂∗

𝑛
= ΔR

𝑡
(𝑛 + 1, 1),

respectively. The proposed algorithm fully uses the Toeplitz
matrix property of ΔR

𝑡
to eliminate the noise and improves

the parameter estimation performance.
Using the method of least square, we get

Δ𝜃̂
𝑡
= (V
𝑡

𝐻V
𝑡
)
−1

V𝐻
𝑡
b̂, (22)

where b̂ = [𝑏̂
1
⋅ ⋅ ⋅ 𝑏̂
𝑀+𝑁−2

𝑏̂
∗

1
⋅ ⋅ ⋅ 𝑏̂
∗

𝑀+𝑁−2
]
𝑇

.
Through the above analysis, the angles at time of 𝑡 and

𝑡+1 are automatically associated, and the proposed algorithm
avoids an extra data association.

For the finite samples, the covariance matrix in (8) is
estimated by R̂

𝑡
= ∑
𝐽

𝑙=1
y(𝑡
𝑙
)y𝐻(𝑡
𝑙
), and we also get R̂

𝑡+1
,

which is the estimate of the covariance matrix at time 𝑡 + 1.
We estimate 𝑏

𝑛
and 𝑏̂∗
𝑛
as follows:

𝑏̂
𝑛
=

1

𝑀 +𝑁 − 1 − 𝑛

𝑀+𝑁−1−𝑛

∑

𝑖=1

ΔR̂
𝑡
(𝑖, 𝑛 + 𝑖) (23a)

𝑏̂
∗

𝑛
=

1

𝑀 +𝑁 − 1 − 𝑛

𝑀+𝑁−1−𝑛

∑

𝑖=1

ΔR̂
𝑡
(𝑛 + 𝑖, 𝑖) , (23b)

where ΔR̂
𝑡
= R̂
𝑡+1
− R̂
𝑡
. We use (22) to estimate Δ𝜃

𝑡
, where

b̂ = [𝑏̂
1
⋅ ⋅ ⋅ 𝑏̂
𝑀+𝑁−2

𝑏̂
∗

1
⋅ ⋅ ⋅ 𝑏̂
∗

𝑀+𝑁−2
]
𝑇

, whose element is
estimated via (23a) and (23b).

Till now, we show the major steps of DOA tracking
algorithm for monostatic radar as follows.

Step 1. Use reduced-dimension matrix W−1G𝐻 for the
received signal r(𝑡) and estimate the covariance matrix R̂

𝑡
.

Step 2. Get covariance matrix R̂
𝑡+1

at time 𝑡 + 1, and we
calculate ΔR̂

𝑡
= R̂
𝑡+1
− R̂
𝑡
.

Step 3. We compute 𝑏̂
𝑛
and 𝑏̂∗

𝑛
via (23a) and (23b) and

construct b̂ = [𝑏̂
1
⋅ ⋅ ⋅ 𝑏̂
𝑀+𝑁−2

𝑏̂
∗

1
⋅ ⋅ ⋅ 𝑏̂
∗

𝑀+𝑁−2
]
𝑇

.

Step 4. We estimate Δ𝜃̂
𝑡
via (22), and the DOA at time 𝑡 + 1

is 𝜃̂
𝑡+1
= 𝜃̂
𝑡
+ Δ𝜃̂
𝑡
.

Step 5. Repeat Steps 1–4 to estimate DOA at next time.

Remark 1. In this paper, the number of targets in MIMO
radar is assumed to be preknown. If we have no knowledge
about it, we may use the existing source-number estimation
technique in [37] to obtain an estimate of the number of
targets.
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Table 1: Complexity comparison.

Algorithm Computational complexity
PAST [25] 𝑂((3𝑀𝑁𝐾 + 𝐾

2

)𝐽 + 3𝐾
2

𝑀(𝑁 − 1) + 𝐾
3

)

PASTd [26] 𝑂((4𝑀𝑁𝐾 + 𝐾)𝐽 + 3𝐾
2

𝑀(𝑁 − 1) + 𝐾
3

)

The proposed algorithm 𝑂((𝑀 +𝑁 − 1)
2

𝐽 + 2𝐾
2

(𝑀 + 𝑁 − 2) +

𝐾
3

+ 2𝐾(𝑀 +𝑁 − 2) + 𝐾
2

)

Remark 2. The initial angles in DOA tracking are obtained
by ESPRIT algorithm or other DOA algorithms. The initial
DOA is 𝜃̂

1
, and we get angles 𝜃̂

𝑚
= 𝜃̂
1
+ ∑
𝑚−1

𝑖=1
Δ𝜃̂
𝑖
.

Remark 3. We assume that the noise covariance matrices of
adjacent time are approximately equal. The noise component
in (12) will be eliminated no matter which type of noise. The
proposed algorithm still works well for the case of the colored
noise.

Remark 4. The proposed algorithm works well in condition
of small value of Δ𝜃

𝑡,𝑘
. When Δ𝜃

𝑡,𝑘
becomes large, the

proposed algorithm may fail to work.

3.3. Complexity Analysis and Advantages of the Proposed
Algorithm. Since the reduced-dimension matrix is sparse, its
transformation adds less computational load. The proposed
algorithm does not require eigenvalue decomposition of the
covariance matrix and avoids an extra data association. For
the proposed algorithm, the calculation of the covariance
matrix requires 𝑂((𝑀 + 𝑁 − 1)

2

𝐽), and the computation of
(V𝐻
𝑡
V
𝑡
)
−1V𝐻
𝑡
b̂ needs (2𝐾2(𝑀 + 𝑁 − 2) + 𝐾3 + 2𝐾(𝑀 + 𝑁 −

2)+𝐾
2

).Themajor computational complexity of the proposed
algorithm is𝑂((𝑀+𝑁−1)2𝐽+2𝐾2(𝑀+𝑁−2)+𝐾3+2𝐾(𝑀+
𝑁 − 2) + 𝐾

2

). Table 1 and Figure 2 show the computational
complexity comparison among the proposed algorithm and
other DOA tracking algorithms. We find that the proposed
algorithm has much lower computational load than PAST in
[25] and PASTd in [26].

The advantages of the proposed algorithm can be pre-
sented as follows.

(1) The proposed algorithm does not require eigenvalue
decomposition of the covariancematrix andhas lower
complexity than the conventionalDOA tracking algo-
rithms including PAST and PASTd.

(2) The proposed algorithm can implement automatic
association of DOA for monostatic MIMO radar.

(3) The proposed algorithm has much better DOA track-
ing performance than the DOA tracking algorithm in
[31], which will be shown in Section 5.

4. Error Analysis and CRLB

In this section, we derive the variance of DOA tracking and
CRLB. We assume that the observation noise variances are
almost the same at adjacent time. When computing Δ𝜃, we
use some approximate calculations such as 𝑒𝑥 − 1 ≈ 𝑥 and
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Figure 2: Complexity comparison with𝑀 = 8,𝑁 = 6, 𝐾 = 3, and
different 𝐽.

sin𝑥 ≈ 𝑥 when 𝑥 is smaller. This leads to a little difference
compared with the perfect value. Consider

sin𝑥 = 𝑥 − 𝑥
3

3!
+ Λ (24a)

cos𝑥 = 1 − 𝑥
2

2!
+ Λ
󸀠 (24b)

𝑒
𝑥

− 1 = 𝑥 + Λ
󸀠󸀠

, (24c)

where Λ,Λ󸀠, Λ󸀠󸀠 are the high-order expansion terms.
According to (16), (17), (18), (24a), (24b), and (24c), we

have

𝑏
𝑛
=

𝐾

∑

𝑖=1

𝑠
𝑖
(𝑒
𝑗𝑛𝜋[sin 𝜃

𝑡,𝑖
cosΔ𝜃

𝑡,𝑖
+cos 𝜃

𝑡,𝑖
sinΔ𝜃

𝑡,𝑖
]

− 𝑒
𝑗𝑛𝜋 sin 𝜃

𝑡,𝑖)

=

𝐾

∑

𝑖=1

𝑠
𝑖
(𝑒
𝑗𝑛𝜋[sin 𝜃

𝑡,𝑖
(1−(Δ𝜃

2

𝑡,𝑖
/2!)+Λ

󸀠
)+cos 𝜃

𝑡,𝑖
(Δ𝜃
𝑡,𝑖
−(Δ𝜃
3

𝑡,𝑖
/3!)+Λ)]

−𝑒
𝑗𝑛𝜋 sin 𝜃

𝑡,𝑖)

=

𝐾

∑

𝑖=1

𝑠
𝑖
(𝑒
𝑗𝑛𝜋[sin 𝜃

𝑡,𝑖
+cos 𝜃

𝑡,𝑖
Δ𝜃
𝑡,𝑖
]

× 𝑒
𝑗𝑛𝜋[sin 𝜃

𝑡,𝑖
(−(Δ𝜃

2

𝑡,𝑖
/2!)+Λ

󸀠
)+cos 𝜃

𝑡,𝑖
(−(Δ𝜃

3

𝑡,𝑖
/3!)+Λ)]

−𝑒
𝑗𝑛𝜋 sin 𝜃

𝑡,𝑖)

=

𝐾

∑

𝑖=1

𝑠
𝑖
𝑒
𝑗𝑛𝜋 sin 𝜃

𝑡,𝑖

× (𝑒
𝑗𝑛𝜋 cos 𝜃

𝑡,𝑖
Δ𝜃
𝑡,𝑖
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× 𝑒
𝑗𝑛𝜋[sin 𝜃

𝑡,𝑖
(−(Δ𝜃

2

𝑡,𝑖
/2!)+Λ

󸀠
)+cos 𝜃

𝑡,𝑖
(−(Δ𝜃

3

𝑡,𝑖
/3!)+Λ)]

−1)

=

𝐾

∑

𝑖=1

𝑠
𝑖
𝑒
𝑗𝑛𝜋 sin 𝜃

𝑡,𝑖

×(𝑗𝑛𝜋 cos 𝜃
𝑡,𝑖
Δ𝜃
𝑡,𝑖

+ 𝑗𝑛𝜋 [sin 𝜃
𝑡,𝑖
(−
Δ𝜃
2

𝑡,𝑖

2!
+ Λ
󸀠

)

+ cos 𝜃
𝑡,𝑖
(−
Δ𝜃
3

𝑡,𝑖

3!
+ Λ) + 𝑗Λ

󸀠󸀠

]

+𝑗Λ
󸀠󸀠

)

=

𝐾

∑

𝑖=1

𝑠
𝑖
𝑒
𝑗𝑛𝜋 sin 𝜃

𝑡,𝑖𝑗𝑛𝜋 cos 𝜃
𝑡,𝑖
Δ𝜃
𝑡,𝑖

+

𝐾

∑

𝑖=1

𝑠
𝑖
𝑒
𝑗𝑛𝜋 sin 𝜃

𝑡,𝑖 (𝑗𝑛𝜋[sin 𝜃
𝑡,𝑖
(−
Δ𝜃
2

𝑡,𝑖

2!
+ Λ
󸀠

)

+cos 𝜃
𝑡,𝑖
(−
Δ𝜃
3

𝑡,𝑖

3!
+ Λ)]

+𝑗Λ
󸀠󸀠

) .

(25)

𝜕𝑏
𝑛
is estimation error of 𝑏

𝑛
, and 𝜕𝑏

𝑛
can be shown as

follows:

𝜕𝑏
𝑛
=

𝐾

∑

𝑖=1

𝑠
𝑖
𝑒
𝑗𝑛𝜋 sin 𝜃

𝑡,𝑖 (𝑗𝑛𝜋[sin 𝜃
𝑡,𝑖
(−
Δ𝜃
2

𝑡,𝑖

2!
+ Λ
󸀠

)

+ cos 𝜃
𝑡,𝑖
(−
Δ𝜃
3

𝑡,𝑖

3!
+ Λ)] + 𝑗Λ

󸀠󸀠

) .

(26)

According to (26) and (22), the variance ofΔ𝑏
𝑛
is denoted

by

𝐸 [
󵄨󵄨󵄨󵄨𝜕𝑏𝑛
󵄨󵄨󵄨󵄨
2

] =
1

𝑀 +𝑁 − 1 − 𝑛

×

𝐾

∑

𝑖=1

𝑠
2

𝑖
[𝑛𝜋 sin 𝜃

𝑡,𝑖
(−
Δ𝜃
2

𝑡,𝑖

2!
+ Λ
󸀠

)

+𝑛𝜋 cos 𝜃
𝑡,𝑖
(−
Δ𝜃
3

𝑡,𝑖

3!
+ Λ) + Λ

󸀠󸀠

] .

2

(27a)

And we have

𝐸 [𝜕𝑏
𝑖
𝜕𝑏
∗

𝑗
] = 0, ∀𝑖 ̸=𝑗 (27b)

𝐸 [𝜕𝑏
2

𝑛
] = 0. (27c)

We define that 𝜕b is the estimation error of b. 𝜕b =

[𝜕𝑏
1
, . . . , 𝜕𝑏

𝑀+𝑁−2
, 𝜕𝑏
∗

1
, . . . , 𝜕𝑏

∗

𝑀+𝑁−2
]
𝑇. Then the variance of

𝜕b is

𝐸 [|𝜕b|2]=

[
[
[
[
[
[
[
[
[
[
[

[

𝐸 [
󵄨󵄨󵄨󵄨𝜕𝑏1
󵄨󵄨󵄨󵄨
2

]

...
𝐸 [
󵄨󵄨󵄨󵄨𝜕𝑏𝑀+𝑁−2

󵄨󵄨󵄨󵄨
2

]

𝐸 [
󵄨󵄨󵄨󵄨𝜕𝑏1
󵄨󵄨󵄨󵄨
2

]

...
𝐸 [
󵄨󵄨󵄨󵄨𝜕𝑏𝑀+𝑁−2

󵄨󵄨󵄨󵄨
2

]

]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

𝑀 +𝑁 − 2

𝐾

∑

𝑖=1

𝑠
2

𝑖
[𝜋 sin 𝜃

𝑡,𝑖
(−
Δ𝜃
2

𝑡,𝑖

2!
+ Λ
󸀠

) + 𝜋 cos 𝜃
𝑡,𝑖
(−
Δ𝜃
3

𝑡,𝑖

3!
+ Λ) + Λ

󸀠󸀠

]

2

...
𝐾

∑

𝑖=1

𝑠
2

𝑖
[(𝑀 +𝑁−2) 𝜋 sin 𝜃

𝑡,𝑖
(−
Δ𝜃
2

𝑡,𝑖

2!
+ Λ
󸀠

)+(𝑀 +𝑁 − 2) 𝜋 cos 𝜃
𝑡,𝑖
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Δ𝜃
3

𝑡,𝑖

3!
+ Λ) + Λ
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]

2

1

𝑀 +𝑁 − 2

𝐾
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𝑠
2

𝑖
[𝜋 sin 𝜃

𝑡,𝑖
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𝑡,𝑖

2!
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󸀠
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𝑡,𝑖
(−
Δ𝜃
3

𝑡,𝑖
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󸀠󸀠

]

2

...
𝐾
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𝑠
2

𝑖
[(𝑀 +𝑁−2) 𝜋 sin 𝜃

𝑡,𝑖
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𝑡,𝑖
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)+(𝑀 +𝑁 − 2) 𝜋 cos 𝜃
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(−
Δ𝜃
3
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3!
+ Λ) + Λ

󸀠󸀠

]

2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(28)

According to [38], we get the variance of Δ𝜃
𝑡,𝑖

var [Δ𝜃
𝑡,𝑖
] =

𝐸 [
󵄨󵄨󵄨󵄨󵄨
V+
𝑡,𝑖
𝜕b󵄨󵄨󵄨󵄨󵄨
2

] + Re (𝐸[V+
𝑡,𝑖
𝜕b]
2

)

2
,

(29)

where V+
𝑡,𝑖
denotes the 𝑖th row of V+

𝑡
and V+

𝑡
is the pseudoin-

verse of V
𝑡
. According to (27a), (27b), and (27c), we get

var [Δ𝜃
𝑡,𝑖
]

=
V+
𝑡,𝑖
diag (𝐸 [|𝜕b|2])V+𝐻

𝑡,𝑖
+Re (V+

𝑡,𝑖
𝐸 [𝜕b𝜕b𝑇]V+𝑇

𝑡,𝑖
)

2
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=
V+
𝑡,𝑖
diag (𝐸 [|𝜕b|2])V+𝐻

𝑡,𝑖

2
,

(30)

where 𝐸[|𝜕b|2] is shown in (28).
According to [39], we derive the CRLB for DOA estima-

tion in monostatic MIMO-radar at time 𝑡. Consider

CRLB (𝑡) = 𝜎
2

2𝐽
{Re [(D𝐻Π⊥A

𝑡

D) ⊕ P𝑇]}
−1

, (31)

where Π⊥A
𝑡

= I
𝑀𝑁
− A
𝑡
(A𝐻
𝑡
A
𝑡
)
−1A𝐻
𝑡
, D = [d

1
, d
2
, . . . , d

𝐾
],

d
𝑘
= 𝜕(a
𝑟
(𝜃
𝑡,𝑘
) ⊗ a
𝑡
(𝜃
𝑡,𝑘
)/𝜕𝜃
𝑡,𝑘
, and

Ρ = (1/𝐽)∑
𝐽

𝑛=1
s(𝑡
𝑛
)s𝐻(𝑡
𝑛
). ⊕ stands for Hadamard

product.
Then we can define the average CRLB as follows:

CRLB = 1
𝑇

𝑇

∑

𝑡=1

CRLB (𝑡) , (32)

where 𝑇 is the total tracking time.

5. Simulation Results

The Monte Carlo simulations are adopted to assess DOA
tracking performance of the proposed algorithm.We suppose
that there are three moving targets. We define root-mean
square error (RMSE) as

RMSE = 1
𝐾

𝐾

∑

𝑘=1

√
1

𝐹

𝐹

∑

𝑓=1

[
1

𝑇

𝑇

∑

𝑡=1

(𝜃
𝑘,𝑓,𝑡
− 𝜃
𝑘,𝑓,𝑡
)
2

], (33)

where 𝜃
𝑘,𝑓,𝑡

is the estimate of DOA 𝜃
𝑡,𝑘

of the 𝑓th Monte
Carlo trial. 𝐹 is the times of Monte Carlo trial and 𝐹 =

1000. We note that𝑀,𝑁, and 𝐾 are the number of transmit
antennas, receive antennas, and targets, respectively. During
the tracking procedure, the targets are tracked over an
interval of 100 s with 𝑇

𝑠
= 1 s. During each 1 s interval, 𝐽

snapshots of sensor data are generated and used to estimate
DOA.

Figure 3 depicts the DOA tracking result of the proposed
algorithm for𝑀 = 8, 𝑁 = 6, 𝐾 = 3, 𝐽 = 100, and SNR =
15 dB. It is shown that the proposed algorithm can track the
DOA in monostatic MIMO radar effectively.

Figures 4-5 show theDOA tracking result of the proposed
algorithm for othermoving trajectories of targets with𝑀 = 8,
𝑁 = 6, 𝐾 = 3, 𝐽 = 100, and SNR = 15 dB. From Figures 4-
5 we find that the proposed algorithm can work well, which
proves the robustness of the proposed algorithm.

Figure 6 shows the DOA tracking performance compari-
son with𝑀 = 8, 𝑁 = 6, and 𝐾 = 3, where we compare the
proposed algorithm against the DOA tracking algorithm in
[31], Kalman-PASTd algorithm in [35], and CRLB. It is shown
in Figure 6 that the proposed algorithm has better DOA
tracking performance than the DOA tracking algorithm in
[31], since the proposed algorithm fully uses the Toeplitz
matrix property of ΔR

𝑡
to eliminate the noise and improves
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Figure 3: DOA tracking results of the proposed algorithm at SNR =
15 dB (Scene 1).
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Figure 4: DOA tracking results of the proposed algorithm at SNR
= 15 dB (Scene 2).

the estimation performance.The proposed algorithm has less
DOA tracking performance than Kalman-PASTd algorithm,
which has a heavy computational complexity.

Figure 7 investigates the DOA tracking performance of
the proposed algorithm with different values of 𝐾. From
Figure 7 we find that DOA tracking performance of the
proposed algorithm improves with the decreasing of 𝐾.
When 𝐾 increases, the interference will enhance.

Figures 8-9 show DOA tracking performance with differ-
ent 𝑀/𝑁. It is clear that the DOA tracking performance of
the proposed algorithm is improved as the number of trans-
mit/receive antennas increases. Multiple transmit/receive
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Figure 5: DOA tracking results of the proposed algorithm at SNR =
15 dB (Scene 3).
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Figure 6: DOA tracking performance comparison with𝑀 = 8 and
𝑁 = 6.

antennas improve DOA tracking performance because of
diversity gain.

Figure 10 depicts the DOA tracking performance of the
proposed algorithm with 𝑀 = 8, 𝑁 = 6, 𝐾 = 3, 𝐽 = 100,
and SNR = 15 dB, and the different DOA spacing between
two consecutive observations is considered. It is shown in
Figure 10 that the angle tracking performance of the proposed
algorithm degrades with increasing of DOA spacing between
two consecutive observations.
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Figure 7: DOA tracking with different values of𝐾.
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Figure 8: DOA tracking with different values of𝑀.

6. Conclusions

In this paper we have presented the DOA tracking ofmultiple
moving targets for monostatic MIMO radar. The proposed
algorithm obtains DOA estimation of the target via the
difference in previous and current covariance matrix of the
reduced-dimension transformation signals, and the proposed
algorithm reduces the computational complexity and realizes
automatic association of DOA. Error analysis and CRLB of
DOA tracking are derived in the paper.The simulation results
demonstrate effectiveness and robustness of the proposed
algorithm. Our research provides technical support for the
practical application of MIMO radar.
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Figure 9: DOA tracking with different values of𝑁.
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Figure 10: DOA tracking performance with different angle spacing.
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Benefitting from the independent target echoes of diversity channels, diversity MIMO radar can efficiently improve system
performance, such as target detection and parameter estimation. Due to the fact that the RCS (radar cross section) of complex target
may vary with the different transmitted carrier frequencies and array geometries, many recent researches study at the background
of diversity MIMO radar equipped with widely separated array antennas or working at multiple carrier frequencies, respectively.
In this paper, a new MIMO radar system combining the spatial and frequency diversities is investigated in the presence of signal-
dependent clutter, which is called spatial-frequency diversity MIMO radar. With the prior information of target and clutter, a new
method for joint optimization of transmitted waveforms and receiving filters is proposed to enhance the target detection ability of
spatial-frequency diversity MIMO radar. Inspired by the MIMO communication system, the water-filling algorithm is introduced
into the transmitted energy allocation problem for each carrier frequency channel. Simulation results show that the proposed system
has a better performance in output signal-to-clutter-noise ratio (SCNR) compared to conventional diversity MIMO radar system.

1. Introduction

Recently, the transmitted waveforms optimization problem
of MIMO radar is a very popular issue in radar research
field [1–5]. In conventional MIMO radar, the target diversity
information of independent channels can be extracted by
matched filters. The extra degrees of freedom brought by
diversity information enable the system to obtain better
performance in target detection and parameter estimation
[6–8]. However, in the presence of clutter, the conventional
MIMO radar is unable to suppress clutter effectively for
the reason of the intrinsic correlation between the clutter
and target echoes. Consequently, the joint optimization of
transmitted waveforms and receiving filters for MIMO radar
to suppress the clutter has attracted the attention of more and
more researchers [9–11].

Because of its ability to transmit arbitrary waveforms,
MIMO radar can obtain plenty of diversity information of
target echoes. It is possible to suppress the clutters effectively
by properly utilizing the diversity information. According
to the types of diversity information, diversity MIMO radar
can be divided into two types: spatial diversity MIMO radar

[12, 13] and frequency diversity MIMO radar [14, 15]. For
spatial diversity MIMO radar, in order to observe target
from different directions, the array antennas are often widely
distributed. According to [7, 16], MIMO radar system will
obtain the different RCS of target from different directions
when the spacing between every two antennas satisfies

𝑑
𝑡
≥
𝜆𝐷

𝑑
, (1)

where 𝑑
𝑡
denotes the spacing between two antennas, 𝜆 is

the wavelength of carrier frequency, 𝐷 is the target distance
departed to array, and 𝑑 represents target size. For frequency
diversity MIMO radar, the system obtains the independent
target echoes by transmitting probing signals of different
carrier frequencies. Even though the array antennas may
be co-located distributed, the frequency diversity can be
obtained only if the working frequency difference of two
frequency channels satisfies [16, 17]

Δ𝑓 ≥
𝑐

2𝑑
, (2)

where Δ𝑓 denotes the carrier frequency difference of two
frequency channels and 𝑐 represents the speed of light.
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Figure 1: The structure of transmit array.

In this paper, spatial-frequency diversity MIMO radar
system is investigated, which combines the advantages
brought by spatial and frequency diversities. The structure of
spatial-frequency diversityMIMO radar is shown in Figures 1
and 2.The array antennas are widely distributed.The spacing
between every two antennas satisfies (1), so that the spatial
diversity information can be obtained. Meanwhile, each
antenna transmits probing signals of 𝐹 carrier frequencies.
The frequency difference of every two frequency channels
satisfies (2) to obtain the frequency diversity information.
So much diversity information provides much more extra
degrees of freedom to design transmitted waveforms, receiv-
ing filters and energy allocation of frequency channels, which
makes it possible for spatial-frequency diversityMIMO radar
to achieve better system performance than conventional
diversity MIMO radar. However, the difficulty is that the
joint optimization of transmitted waveforms and receiving
filters is not a convex optimization problem, which cannot
get the closed-form solution easily. In addition, the energy
allocation optimization of different frequency channels is
a new problem that is faced by spatial-frequency diversity
MIMO radar.

So far, the transmitted waveforms optimization tech-
niques are mostly developed for MIMO radar with widely
distributed antennas, which only take advantage of the spatial
diversity information [1, 3, 4, 12, 13, 18]. In order to improve
the performance of parameter estimation, theMMSE,NMSE,
and MI methods are investigated for spatial diversity MIMO
radar in [1] and the references therein.Themethods proposed
in [18] are also developed for spatial diversity MIMO radar to
improve the target detection performance. Unfortunately, all
thesemethods are not extended to spatial-frequency diversity
MIMO radar yet. Unlike these references, this paper proposes
a joint optimization method of transmitted waveforms and
receiving filters for spatial-frequency diversity MIMO radar
to improve the target detection performance against clutters.
A similar iteration algorithm designed for traditional radar
system is proposed in [19]. However, it cannot be directly
applied in MIMO radar especially the proposed spatial-
frequency diversity MIMO radar. In the proposed method,
the rule of maximum output SCNR is applied to optimize
the transmittedwaveforms and receiving filters jointly. Under

the premise that the target and clutter are known as priors,
an iterative algorithm is proposed to maximize the output
SCNR of system by optimizing the transmitted waveforms
and receiving filters alternatively. The output SCNR in each
step of the iterative algorithm is nondecreasing, so that
the convergence of the proposed method is guaranteed.
Meanwhile, inspired by the MIMO communication theory,
the water-filling algorithm is introduced to the optimization
problem of energy allocation for different frequency chan-
nels. Simulation results show that the water-filling algorithm
significantly improves the system performance. Combining
these methods, spatial-frequency diversity MIMO radar
achieves a greatly improved target detection performance
compared to conventional MIMO radar systems.

The paper is organized as follows. In Section 2, the
signal model of spatial-frequency diversity MIMO radar is
briefly introduced. In Section 3, the water-filling algorithm
is introduced to energy allocation problem of frequency
channels firstly. Then, an iterative algorithm is proposed
to optimize the transmitted waveforms and receiving filters
alternatively in Section 4. The simulations results that show
the advantages of spatial-frequency diversityMIMOradar are
presented in Section 5which is followed by the conclusions in
Section 6.

2. Signal Model of Spatial-Frequency Diversity
MIMO Radar

Consider the proposed spatial-frequency diversity MIMO
radar system equipped with a transmit array of𝑀 antennas
and a receive array of𝑁 antennas. Assume that the baseband
waveform transmitted by each transmit antenna is s

𝑚
(𝑚 =

1, 2, . . . ,𝑀), with the snapshots of 𝐿. The total energy of
waveforms is normalized. Each waveform s

𝑚
will be trans-

mitted by 𝐹 different carrier frequencies at the same time
(as shown in Figure 1). The energy of each carrier frequency
is represented as 𝑝

𝑓
(𝑓 = 1, . . . , 𝐹), and the total transmit

energy is set as 𝐸. As shown in Figure 2, the received signal
of each receive antenna is down-converted with 𝐹 different
carrier frequencies, respectively, and summed together in
baseband. Then the synthetic baseband data go through the
receiving filters h

𝑛
(𝑛 = 1, 2, . . . , 𝑁).
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f1 f2 fF f1 f2 fF f1 f2 fF· · · · · · · · · · · ·

h1 h2 hN
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Figure 2: The structure of receive array.

As the proposed system satisfies (1) and (2) simultane-
ously, the received data of 𝑀𝑁𝐹 channels are independent.
Assume that 𝑡

𝑓𝑚𝑛
(𝑓 = 1, 2, . . . , 𝐹, 𝑚 = 1, 2, . . . ,𝑀,

𝑛 = 1, 2, . . . , 𝑁) represents target reflection and attenuation
coefficient between 𝑚th transmit antenna and 𝑛th receive
antenna at 𝑓th frequency channel. If the target reflection and
attenuation coefficients change so slowly that they can be
deemed to remain constant in the 𝐿 snapshots duration, the
received baseband target echoes at𝑓th frequency channel can
be written as

X
𝑡𝑓
= √𝑝𝑓T𝑓S, (3)

where

T
𝑓
=

[
[
[
[

[

𝑡
𝑓11
𝑡
𝑓12
⋅ ⋅ ⋅ 𝑡
𝑓1𝑀

𝑡
𝑓21
𝑡
𝑓22
⋅ ⋅ ⋅ 𝑡
𝑓2𝑀

...
... d

...
𝑡
𝑓𝑁1
𝑡
𝑓𝑁2
⋅ ⋅ ⋅ 𝑡
𝑓𝑁𝑀

]
]
]
]

]

,

S = [s
1
, s
2
, . . . , s

𝑀
]
𝑇

.

(4)

The received baseband target echoes in (3) can be vectorized
as

x
𝑡𝑓
= vec (X

𝑡𝑓
) = √𝑝𝑓 (I𝐿 ⊗ T𝑓) ⋅ vec (S) = √𝑝𝑓T̃𝑓s,

(5)

where vec(⋅) denotes vectorized operator, ⊗ denotes Kro-
necker product, and I

𝐿
is 𝐿 × 1 identity matrix. Note that

if target reflection and attenuation coefficients change so
quickly that they will vary within the 𝐿 snapshots, T̃

𝑓
should

be redefined as

T̃
𝑓
=

[
[
[
[
[

[

T
𝑓1

0 . . . 0
0 T
𝑓2
⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ T

𝑓𝐿

]
]
]
]
]

]𝑁𝐿×𝑀𝐿

. (6)

In this case, the target reflection and attenuation coefficients
T
𝑓
can be assumed as stochastic processes of 𝑀𝑁 random

variables under the 𝑓th frequency, and the 𝑀𝑁 random
variables may be assumed independent and identically dis-
tributed (i.i.d.), with distributionCN(0,RT𝑓).

Then, the sum of received baseband target echoes of all
the frequency channels can be described as

x
𝑡
=

𝐹

∑

𝑓=1

x
𝑡𝑓
=

𝐹

∑

𝑓=1

√𝑝𝑓T̃𝑓s. (7)

Defining T = ∑𝐹
𝑓=1√𝑝𝑓T̃𝑓, (7) can be rewritten as

x
𝑡
= Ts. (8)

Similarly, the clutter coefficients of𝑀𝑁 channels under
𝑓th frequency also can be assumed as stochastic processes,
with distribution (0,RC𝑓). By defining the clutter coefficients
matrix C̃

𝑓
which has the same structure as T̃

𝑓
and C =

∑
𝐹

𝑓=1√𝑝𝑓C̃𝑓, the sum of received baseband clutters of all the
frequency channels can be described as

x
𝑐
= Cs. (9)

Then, the complete received baseband data can be
expressed as

x = x
𝑡
+ x
𝑐
+ w = Ts + Cs + w, (10)

where w denotes Gaussian noise with energy of 𝜎2w. Let
the received baseband data go through the receiving filters
h
𝑛
(𝑛 = 1, 2, . . . , 𝑁). The output of the filters can be written

as
y = h𝑇x = h𝑇Ts + h𝑇Cs + w̃, (11)

where h = [h𝑇
1
, h𝑇
2
, . . . , h𝑇

𝑁
]
𝑇 with a size of𝑁𝐿 × 1.

Note that when 𝐹 is chosen as 1, the signal model
proposed above will be equal to the model in [18] which is
based on spatial diversity MIMO radar. Consequently, the
signalmodel of spatial diversityMIMO radar can be regarded
as a special case of the proposed signal model in this paper.
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3. Energy Allocation of Frequency Channels

In some clutter scenarios, such as ground clutters and sea
clutters, the clutter coefficients may vary with different
frequencies. Especially when the frequency difference Δ𝑓 is
large enough, the clutter coefficients of different frequency
channels will be particularly different [20]. As a result, con-
ventional uniform energy distribution method for frequency
channels cannot achieve the best performance of spatial-
frequency diversity MIMO radar.

Water-filling algorithm is widely applied in energy allo-
cation in multichannel wireless communications, which can
allot adaptively transmitted energy according to the channel
condition [21, 22]. Inspired by the theory in MIMO com-
munication system, we introduce the water-filling algorithm
to the energy allocation problem of frequency channels for
spatial-frequency diversity MIMO radar. According to [22],
the capacity of all the frequency channels can be described as

𝐼 =

𝐹

∑

𝑓=1

log
2
(1 +

𝑝
𝑓
𝜆
𝑓

𝜎2
𝑓

) , (12)

where 𝜆
𝑓
≜ trace(RT𝑓), 𝜎

2

𝑓
≜ trace(RC𝑓) + 𝜎

2

w, and trace(⋅)
denotes the trace of a matrix.

With the channel knowledge known, the maximum
capacity of MIMO channel can be achieved by applying
water-filling principle on the channel energy allocation. The
optimal energy allocation 𝑝

𝑓
is decided according to the

water-filling rule [23]:

𝑝
𝑓
= max(𝜇 −

𝜎
2

𝑓

𝜆
𝑓

, 0) , (13)

where 𝜇 is a constant which guarantees the energy constraint
at transmitter that

𝐹

∑

𝑓=1

𝑝
𝑓
= 𝐸. (14)

4. Joint Optimization of Transmitted
Waveforms and Receiving Filters

Spatial-frequency diversity MIMO radar provides much
more extra degrees of freedom to design transmitted wave-
forms and receiving filters. Even in clutter environment, it is
possible to improve the output SCNR of the proposed system,
as long as the transmitted waveforms and receiving filters are
designed properly. In this section, the rule of maximizing
the output SCNR is applied to optimize the transmitted
waveforms and receiving filters jointly.

Define the output SCNR of system as

SCNR =
𝐸 [
󵄨󵄨󵄨󵄨󵄨
h𝑇Ts󵄨󵄨󵄨󵄨󵄨
2

]

𝐸 [
󵄨󵄨󵄨󵄨h𝑇Cs

󵄨󵄨󵄨󵄨
2

] + 𝐸 [|w̃|2]
. (15)

As the rule of maximizing SCNR is applied, the optimization
problem can be expressed as

max
s,h

h𝑇𝐸 [Tss𝑇T𝑇] h

h𝑇𝐸 [Css𝑇C𝑇] h + 𝐸 [|w̃|2]
s.t. ‖s‖2 = 1. (16)

Obviously, the optimization is not a convex problem
and cannot get its global optimal solutions easily. However,
several local optimal solutions may be found within the
feasible solution space. In this paper, an iterative algorithm
which optimizes the transmitted waveforms s and receiving
filters h alternatively is proposed to improve the SCNR. The
numerical simulation results show that each step of the pro-
posed algorithm is nondecreasing, so that the convergence
of the proposed method is guaranteed. Although the final
results of the iteration algorithm may be just local optimum,
they will be global optimum with respect to s dimension and
h dimension, respectively. As a result, the optimized result is
the best one among the multiple local optimal solutions.

Firstly, we solve h in terms of s. In this case, the
optimization problem above can be written as

max
h

h𝑇𝐸 [Tss𝑇T𝑇] h

h𝑇𝐸 [Css𝑇C𝑇] h + h𝑇𝐸 [ww𝑇] h
. (17)

Define

RTs ≜ 𝐸 [Tss
𝑇T𝑇] ,

RCs ≜ 𝐸 [Css
𝑇C𝑇] ,

Rw ≜ 𝐸 [ww
𝑇

] .

(18)

Then, (17) can be rewritten as

max
h

h𝑇RTsh
h𝑇 (RCs + Rw) h

. (19)

It is obvious that (19) is the well-known Rayleigh quotient
problem [24] and the solution to this problem is the principal
generalized eigenvector of RTs and (RCs + Rw); that is,

h̃ = 𝜆max (RTs,RCs + Rw) , (20)

where 𝜆max(A,B) denotes the generalized eigenvector corre-
sponding to the maximum generalized eigenvalue of A and
B.

To solve s in terms of h, the optimization problem can be
rewritten as

max
s

s𝑇𝐸 [T𝑇hh𝑇T] s

s𝑇𝐸 [C𝑇hh𝑇C] s + h𝑇𝐸 [ww𝑇] h
s.t. ‖s‖2 = 1.

(21)

Similarly, define

RTh ≜ 𝐸 [T
𝑇hh𝑇T] ,

RCh ≜ 𝐸 [C
𝑇hh𝑇C] .

(22)
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Then, (21) can be rewritten as

max
s

s𝑇RThs
s𝑇RChs + h𝑇Rwh

s.t. ‖s‖2 = 1. (23)

Unfortunately, the structure of (23) is slightly different
from (19), and it is not a standard Rayleigh quotient problem.
However, noting the fact that the constraint satisfies ‖s‖2 =
s𝑇s = 1, the optimization problem (23) is equal to

max
s

s𝑇RThs
s𝑇RChs + s𝑇 (h𝑇Rwh ⋅ I𝑀𝐿) s

, (24)

where I
𝑀𝐿

denotes identity matrix with a size of 𝑀𝐿.
Equation (24) is a Rayleigh quotient problem and its solution
satisfies the constraint ‖s‖2 = 1. As a result, the optimal
solution to (23) can be computed by

s̃ = 𝜆max (RTh,RCh + h
𝑇Rwh ⋅ I𝑀𝐿) . (25)

All steps of the proposed algorithm are summarized as
follows.

(1) Compute transmitted energy allocation 𝑝
𝑓
of differ-

ent frequency channels by (13).
(2) Initialize the transmitted waveforms s (e.g., random

waveforms).
(3) Compute RTs, RCs, and Rw by (18).
(4) Compute h by (20).
(5) Compute RTh and RCh by (22).
(6) Compute s by (25).
(7) Compute the SCNR by (15), and compute the differ-

ence 𝜎 between the two adjacent iterative results of
SCNR.

(8) Repeat steps 3–7 until the difference 𝜎 is less than a
very small value (e.g., 10−4).

5. Simulation Results

In this section, some simulations are performed to show
the performance of spatial-frequency diversity MIMO radar
against clutters.Throughout our experiments, a MIMO radar
system with a transmit array of𝑀 = 4 and a receive array of
𝑁 = 4 is assumed.The configurations of arrays satisfy (1) and
(2). The number of snapshots is set as 𝐿 = 16 and the energy
of Gaussian noise is assumed as 𝜎2w = 1. In the experiments of
SCNR versus CNR (clutter-to-noise ratio), each method has
completed 200 independent runs.

Experiment 1. In this experiment, the number of carrier
frequencies are assumed as𝐹 = 3.The transmittedwaveforms
are initialized as random waveforms. The total transmitted
energy of all frequency channels are set as 𝐸 = 1. The coef-
ficients {𝑡

𝑓𝑚𝑛
} are generated as independent and identically

distributed Gaussian random variables with unity variance;
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Figure 3: The conditions and transmitted energy allocation of
frequency channels.
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Figure 4: The output SCNR versus the number of iterations.

namely, RT𝑓 = I
𝑀𝑁

. The covariance matrixes RC𝑓 of clutters
under each frequency channel are generated by

RC
𝑓

= BA𝑓B, 𝑓 = 1, 2, 3, (26)

whereA is a positive semidefinite matrix with a size of 16×16
whose maximum spectral radius is no more than 1 and B is
a unitary matrix with a size of 16 × 16. Note that (26) with
superscript𝑓 applied here is just for the aim of generating the
different clutter covariance matrixes in different frequency
channels.

By applying the water-filling algorithm, the energy allo-
cation of each frequency channel is shown in Figure 3.
According to the condition of each frequency channel, the
energy is no longer uniformly distributed.Then, the proposed
iterative algorithm (from (18) to (25)) is applied to optimize
the system output SCNR. Figure 4 shows the trends of SCNR
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Figure 5: The optimized results: (a)–(d) are transmitted waveforms and (e)–(f) are receiving filters.

versus iterative number. It can be found that the SCNR in
each step of the proposed iterative algorithm is nondecreasing
and rapid convergence of the method is guaranteed. The
optimized transmitted waveforms and receiving filters are
shown in Figure 5.

Experiment 2. In order to illustrate the effects of water-filling
algorithm and the number 𝐹 of frequency channels on the
performance of the system, we also perform the simulations
of the output SCNR versus input CNR in five cases: (i) 𝐹 =
2 with applying the water-filling algorithm; (ii) 𝐹 = 3 with
applying the water-filling algorithm; (iii) 𝐹 = 2with applying
uniform energy allocation method; (iv) 𝐹 = 3 with applying
uniform energy allocationmethod; (v) themethod for spatial
diversity MIMO radar in [18] (𝐹 = 1).

For simplicity, the target coefficients are assumed as

𝑡
𝑓𝑛𝑚
= 1, 𝑛,𝑚 = 1, . . . , 4, 𝑓 = 1, 2, 3. (27)

The clutter covariance matrixes RC𝑓 are generated similarly
to that in Experiment 1. The total transmitted energy of all
frequency channels are set as 𝐸 = 1. However, the input CNR
varies in the range [−5 dB, 30 dB]. The simulation results of
the output SCNR versus input CNR in the cases of 𝐹 = 2
and 𝐹 = 3 with applying water-filling algorithm or uniform
energy allocation method are shown in Figure 6. Obviously,
the two cases which apply the water-filling algorithm have

better performance than the other two with uniform energy
allocation. It is demonstrated that the water-filling algorithm
works very well in spatial-frequency diversity MIMO radar.
Besides, the performance in the case of 𝐹 = 3 is also much
better than that in the cases of 𝐹 = 1 and 2, which shows that
more frequency diversities will make more contributions to
the system performance. Nevertheless, we could not increase
the number of carrier frequencies without restrictions. The
reason is that the increased number of carrier frequencies will
not only result in extra hardware cost and increased usage
of electromagnetic spectrum but also lead to the increase of
computational complexity. Consequently, it is still a problem
that is worthy of further study to seek the balance among the
number of carrier frequencies, hardware cost, computational
complexity, and the increase of system performance.

Experiment 3. In [3, 4], the authors also proposed a method
to design optimal waveforms by only exploiting spatial
diversity. In their proposed algorithm,water-filling algorithm
is used to optimize the transmitted power from different
antennas, whereas similar algorithm is used to optimize the
transmitted power form different frequency channels in our
method. Besides, their method can also achieve the closed-
form optimal solution; namely, the left singular vectors of
the optimal waveform should be the eigenvectors of the
covariance matrix of colored noise and the right singular
vectors should be eigenvectors of the covariance matrix
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Figure 6: The output SCNR versus input CNR under five cases.

of target. To illustrate the superiority of our method, the
comparison in signal-dependent scenario of the twomethods
under the rule of maximizing SCNR is performed. Note that
the application scenario discussed in this paper is signal-
dependent clutter suppression, so that the comparison of
signal-independent noise suppression performance for the
two methods is not considered here.

In this experiment, the MIMO radar equipped with𝑀 =
4 widely distributed arrays is assumed. The eigenvalues of
covariance matrix of target R

𝐻
(which is defined in [4])

are set as {7, 5, 2, 1}. The clutter covariance matrixes RC𝑓
and noise are generated similarly to that in Experiment 2.
The input CNR varies in the range [−5 dB, 30 dB]. The total
transmit energy is set as 𝐸 = 100. Note that the signal-
dependent clutter and noise here are treated as the colored
noise part W (which is defined in [4]) in the simulation of
the method in [4]. In our method, the number of carrier
frequencies is set as 𝐹 = 3. The trends of SCNR versus
CNR of the two methods are shown in Figure 7. The result
of the method applying orthogonal waveforms and matched
filters is also drawn in Figure 7. It is obvious that the
performance of our proposed method is much better than
that in [4], and the performance of the method in [4] is
similar to the matched filters method with no anticlutter
measures applied. It demonstrates that the method in [4] is
unable to suppress the signal-dependent clutter effectively,
although it works well in the colored noise suppression
application (where the noise part is independent of transmit
signal). In signal-dependent clutter suppression application,
the performance of the method we proposed is much better
than conventional MIMO radar and those in [4]. However,
the computational complexity of our method will increase
linearly with the number of iterations. Compared with the
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Figure 7: The comparison of the SCNR versus CNR.

closed-form solution in [4], more computing resources are
needed in the proposed method.

Experiment 4. In this experiment, two application scenes
for the proposed method are investigated: the target reflec-
tion and attenuation coefficients slowly changed case and
quickly changed case. For the slowly changed target case,
the coefficients {𝑡

𝑓𝑚𝑛
} are deemed to remain constant in 𝐿

snapshots duration, so that the𝐹𝑀𝑁 coefficients are assumed
as independent and identically distributed Gaussian random
variables with unity variance. For the quickly changed target
case, the coefficients {𝑡

𝑓𝑚𝑛
} will vary within 𝐿 snapshots.

Similarly to Experiment 1, the 𝐿𝐹𝑀𝑁 coefficients in this
case are generated as independent and identically distributed
Gaussian random variables with unity variance too. For
both cases, the 𝐹 is set as 3. Under the same MIMO
radar system and clutter assumption in Experiment 2, the
simulation results of the output SCNR versus input CNR in
both cases are shown in Figure 8. It shows that our method
has a better performance in quickly changed target case,
for the reason that more RCS samples of quickly changed
target are obtained in time domain. It is demonstrated once
again that MIMO radar has the ability to suppress the
target scintillation effectively and the advantages of diversity
information brought by MIMO radar can effectively improve
the target detection performance.

6. Conclusions

In this paper, the spatial and frequency diversities are com-
bined in one MIMO radar system, namely, spatial-frequency
diversity MIMO radar. By taking full advantages of the extra
degrees of freedombrought by plenty of spatial and frequency
diversities, we investigate the application of spatial-frequency
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Figure 8:The output SCNR versus input CNR in slowly and quickly
changed target cases.

diversity MIMO radar in clutter scenarios. Firstly, the water-
filling algorithm is introduced to the energy allocation prob-
lem of frequency channels.The simulation result shows that it
works well to improve the system performance.Then, an iter-
ative algorithm which optimizes the transmitted waveforms
and receiving filters alternatively is proposed to maximize
the output SCNR, which will improve the target detection
performance in the presence of clutters. Simulation results
show that the methods we proposed can effectively suppress
the clutters with spatial-frequency diversity MIMO radar.
Comparedwith existingmethods, the proposedmethod has a
superior performance in the presence of clutter. In addition,
it is demonstrated once again in our simulation results that
MIMO radar can suppress the target scintillation effectively.
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Multiple-input multiple-output (MIMO) synthetic aperture radar (SAR) using stepped frequency (SF) waveforms enables a high
two-dimensional (2D) resolution with wider imaging swath at relatively low cost. However, only the stripmap mode has been
discussed for SFMIMO-SAR.This paper presents an efficient algorithm to reconstruct the signal of SFMIMO-SAR in the spotlight
and sliding spotlightmodes, which includesDoppler ambiguity resolving algorithmbased on subaperture division and an improved
frequency-domain bandwidth synthesis (FBS) method. Both simulated and constructed data are used to validate the effectiveness
of the proposed algorithm.

1. Introduction

According to theminimumantenna area constraint, high res-
olution and wide swath (HRWS) pose contradicting require-
ments on synthetic aperture radar (SAR) system design [1].
This system-inherent limitation can be overcome by single-
input multiple-output (SIMO) SAR system [2], which has
been extended to multiple SAR modes, such as spotlight
and sliding spotlight, to fulfill the different requirements
of spatial resolution and coverage in future SAR missions
[3–5]. In high-resolution SAR, wide bandwidth signals are
needed to obtain a high range resolution. However, the direct
transmission of a wide bandwidth signal may lead to a high
cost of the hardware [6–8]. A solution to this problem is
the transmission of stepped frequency (SF) waveforms in
combination with bandwidth synthesis technologies [6–8].

The SF multiple-input multiple-output (MIMO)-SAR,
which is defined as the MIMO-SAR system transmitting
and receiving a class of SF subband signals simultaneously
by multiple azimuth channels, respectively, combines the
advantages of the SIMO system and SF waveforms and
enables HRWS imaging at relatively low cost [9, 10]. However,
only the stripmap mode SF MIMO-SAR has been discussed.

In the spotlight and sliding spotlight modes, the steering
of the antenna beams leads to an increase of the azimuth
bandwidth and thus raises difficulties for both azimuth
reconstruction and bandwidth synthesis. Furthermore, the
HRWS leads to a great amount of data, which may cause high
computational burden, so an efficient signal reconstruction
algorithm is required.

In this paper, an efficient algorithm is presented to
reconstruct SF MIMO-SAR signal for the spotlight and slid-
ing spotlight modes. Firstly, a Doppler ambiguity resolving
algorithm based on the azimuth subaperture division is
presented for azimuth reconstruction of each SF subband
signal. Then, an improved frequency-domain bandwidth
synthesis method without upsampling in range is proposed
to efficiently synthesize the subband signals.

This paper is organized as follows. In Section 2, the signal
model of SF MIMO-SAR is introduced. In Section 3, the
Doppler ambiguity resolving algorithm based on subaperture
division is described. An improved FBS method without
upsampling in range is proposed and the flowchart of the
signal reconstruction algorithm is shown in Section 4. In
Section 5, simulation and real data processing results are
presented. Finally, the conclusion is presented in Section 6.
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Figure 1: Imaging geometry of SF MIMO-SAR (sliding spotlight).

2. Signal Model

Consider a SF MIMO-SAR system with 𝑁 transmit/receive
(Tx/Rx) channels in azimuth by which a class of SF subband
signals are transmitted at the same time, respectively. The
carrier frequencies of this class of subband signals increase
from subband to subband by a fixed frequency step Δ𝑓

𝑐
, and

then the center frequency of the subband 𝑛 can be represented
by

𝑓
𝑛
= 𝑓
𝑐
+ Δ𝑓
𝑐
[𝑛 −

(𝑁 + 1)

2
] = 𝑓
𝑐
+ Δ𝑓
𝑐,𝑛
, (1)

where 𝑓
𝑐
is the center frequency of the whole synthesized

bandwidth signal and Δ𝑓
𝑐,𝑛

denotes the center frequency
interval between the 𝑛th subband signal and the whole
bandwidth signal.

Figure 1 shows the imaging geometry of sliding spotlight
SF MIMO-SAR with two channels as an example. The radar
moves along the 𝑥-axis with a constant velocity V, and
the main beams of 𝑁 transmit/receive (Tx/Rx) channels in
azimuth are steered from forward to backward, respectively,
pointing to the rotation center of the corresponding mode.
The echoes are received by all the𝑁 channels simultaneously,
so 𝑁 channels data are achieved for each subband signal. If
the azimuth multichannel samples of each subband signal
do not coincide, the PRF will be improved 𝑁 times after
azimuth reconstruction, so the equivalent PRF after azimuth
reconstruction is 𝑁 ⋅ PRF. In order to ensure relative wide
range coverage, the PRF is set to ensure the equivalent
PRF after azimuth reconstruction to be lower than the
total Doppler bandwidth 𝐵azi and slightly greater than the
instantaneous Doppler bandwidth 𝐵ins [4, 5].

Suppose that𝑋
𝑛
and𝑋

𝑚
, respectively, denote the relative

positions in azimuth of the 𝑛th transmit channel (Tx𝑛)
and the 𝑚th (𝑚 = 1, 2, . . . , 𝑁) receive channel (Rx𝑚).
The multichannel data of each subband signal can be con-
verted into equivalent self-transmitting and self-receiving
data corresponding to the effective phase centers (EPCs)
by compensating the phase errors [8]. The compensating
function for the subband 𝑛 signal received by Rx𝑚 is denoted
by 𝐻
1,𝑛
(𝑚). After the compensation of the phase errors,

𝑁 EPCs signal can be achieved for subband 𝑛 signal, whose
azimuth coordinate can be given as

𝑋
󸀠

𝑛𝑚
=
(𝑋
𝑛
+ 𝑋
𝑚
)

2
. (2)

The EPC corresponding to Tx1 and Rx1 is defined as
the reference EPC, whose azimuth coordinate is set to be
zero. It is shown in (2) that, due to different positions of
transmit channels, the EPCs of different subband signals
corresponding to a same Rx channel are of different azimuth
coordinates. These geometry differences between subband
signals should be removed for the bandwidth synthesis.

After range compression, the signal of a point target
𝑃(𝑋, 𝑅

𝑏
) transmitted by Tx𝑛 and received by Rx𝑚 can be

expressed as

𝑠
1,𝑛

(𝑡, 𝑡
𝑎
, 𝑚) = 𝑤

𝑟
(𝑡 −

2

𝑐
𝑅
𝑛𝑚

(𝑡
𝑎
))

× 𝑤azi (𝑡𝑎 +
𝑋
󸀠

𝑛𝑚
− 𝑋

V
)

× exp(−𝑗
4𝜋𝑓
𝑛

𝑐
𝑅
𝑛𝑚

(𝑡
𝑎
)) ,

(3)

where 𝑅
𝑛𝑚
(𝑡
𝑎
) = √𝑅

𝑏

2

+ (V𝑡
𝑎
+ 𝑋󸀠
𝑛𝑚

− 𝑋)
2 is the slant range

from point 𝑃 to the EPC corresponding to Tx𝑛 and Rx𝑚, 𝑐 is
the speed of light, 𝑡 is the fast time, 𝑡

𝑎
is the slow time, and

𝑤
𝑟
(⋅) and 𝑤azi(⋅) denote the range window function and the

azimuth window function, respectively.

3. Doppler Ambiguity Resolving Based on
Subaperture Division

In the spotlight and sliding spotlight modes, the time-variant
squint angle inevitably leads to an extension of the azimuth
spectrum [4, 5]. The time-frequency distribution (TFD) of
the sliding spotlight mode is shown in Figure 2(a). The
azimuth reconstruction processing based on the subaperture
division for the sliding spotlight SIMO SAR [4] can be
extended to SFMIMO-SAR in the spotlight and sliding spot-
light modes to resolve Doppler ambiguity of each subband
signal. The subaperture division of subband signals should
ensure that the processed Doppler bandwidth of the whole
bandwidth signal is smaller than the equivalent PRF. Since
the whole bandwidth is very wide to obtain a high resolution,
the influence of range frequency on the processed Doppler
bandwidth should be taken into account, which is different
from the case in [4].

The beam central frequency varyingwith slow time 𝑡
𝑎
and

range frequency can be expressed as

𝑓
𝑑𝑐
(𝑓) =

2V sin [𝜃 (𝑡
𝑎
)]

𝑐
𝑓, (4)

where𝑓 ∈ [𝑓
𝑐
−𝑁Δ𝑓

𝑐
/2, 𝑓
𝑐
+𝑁Δ𝑓

𝑐
/2] is the range frequency,

which covers all the subbands and 𝜃 denotes the time-
variant azimuth squint angle. FromFigure 2(b), the processed
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Figure 2:The subaperture division. (a)TheTFDof sliding spotlight.
(b) 2D spectrum of the whole bandwidth signal.

azimuth bandwidth𝐵sub of thewhole bandwidth signal can be
approximately expressed as

𝐵sub ≈ 𝐵ins + 𝑘rot𝑇sub + 𝑓
𝑑𝑐,𝑖

(𝑓
𝑐
+
𝑁Δ𝑓
𝑐

2
)

− 𝑓
𝑑𝑐,𝑖

(𝑓
𝑐
−
𝑁Δ𝑓
𝑐

2
) ,

(5)

where 𝑘rot = 2V2𝑓
𝑐
/𝑐𝑅rot denotes the slope rate of the

variation of the beam central Doppler frequency, 𝑅rot is the
rotational distance, and 𝑓

𝑑𝑐,𝑖
denotes the Doppler center of

the 𝑖th subaperture, which varies with the range frequency.
To reconstruct theDoppler spectrumof thewhole bandwidth
signal, the duration of each slow time block 𝑇sub is chosen to
ensure that the processed bandwidth 𝐵sub in each block is less
than𝑁 ⋅ PRF.

After the subaperture division, the signal described by
(5) is multiplied by a Doppler shift function 𝐻

2,𝑛
(𝑡
𝑎
, 𝑚) =

exp(−𝑗2𝜋𝑡
𝑎
𝑓
𝑑𝑐,𝑖

(𝑓
𝑐
)) to move the Doppler spectrum to the

Doppler baseband. Then, the Doppler ambiguity can be
resolved by spatial filtering [3–5] for each subband signal.The
spatial filtering is a weighting operation of amultichannel sig-
nal for each subband in theDoppler domain. Considering the
great amount of SF MIMO-SAR data, in order to reduce the
computational burden of weight vectors of spatial filtering,
the signals aremultiplied by compensating functions tomake
the weight vectors independent of specificDoppler frequency
[5], and the compensating functions can be constructed as

𝐻
3,𝑛

(𝑓
𝑎
, 𝑚) = exp(−𝑗2𝜋

𝑋
󸀠

𝑛𝑚

V
(𝑓
𝑎
+ 𝑓
𝑑𝑐,𝑖

(𝑓
𝑐
))) , (6)

where 𝑓
𝑎
∈ (−𝑁 ⋅ PRF/2, −(𝑁 − 1) ⋅ PRF/2) is the Doppler

frequency. Then the weight vectors of the spatial filter can be
obtained by

[w
𝑛
(1) , . . . ,w

𝑛
(𝑚) , . . . ,w

𝑛
(𝑁)] = A−1

𝑛
, (7)

where

A
𝑛
= [a
𝑛
(1) , a
𝑛
(2) , . . . , a

𝑛
(𝑁)]
𝑇

, (8)

𝑎
𝑚
= [1, exp(𝑗2𝜋

𝑋
𝑚

V
PRF) , . . . ,

exp(𝑗2𝜋
𝑋
𝑚

V
(𝑁 − 1)PRF)]

𝑇

.

(9)

Then, the Doppler spectrum can be reconstructed by

𝑆
2,𝑛

(𝑡, 𝑓
𝑎
+ 𝑚 ⋅ PRF) = S

1,𝑛
w
𝑛
(𝑚) , (10)

where S
1,𝑛

= [𝑆
1,𝑛
(𝑡, 𝑓
𝑎
, 1), . . . , 𝑆

1,𝑛
(𝑡, 𝑓
𝑎
, 𝑁)] is the multi-

channel signal vector of subband 𝑛. It can be observed from
(9) that a

𝑛
(𝑚) is independent of specific Doppler bin, and

thus w
𝑛
(𝑚) does not need to be updated with azimuth

Doppler bins, which can sufficiently reduce the computation
burden.

After the Doppler ambiguity resolving, the Doppler
spectrum of subband 𝑛 signal can be expressed as

𝑆
2,𝑛

(𝑡, 𝑓
𝑑
)

= 𝑤
𝑟
(𝑡 −

2

𝑐
𝑅ref (𝑓𝑑))𝑊azi (𝑓𝑑)

× exp (−𝑗2𝜋 (𝑓
𝑑
+ 𝑓
𝑑𝑐,𝑖

(𝑓
𝑐
))

𝑋

V
)

× exp(−𝑗
2𝜋

V
𝑅
𝑏

√(
2V
𝑐
𝑓
𝑛
)

2

− (𝑓
𝑑
+ 𝑓
𝑑𝑐,𝑖

(𝑓
𝑐
))
2

) ,

(11)

where 𝑓
𝑑
∈ (−𝑁 ⋅ PRF/2,𝑁 ⋅ PRF/2) denotes the Doppler

frequency. From (11), we can see that each subband signal
is equivalent to a single channel signal, and the geometry
differences between different subband signals are removed.
Then the bandwidth synthesis can be performed in Doppler
domain.

4. Improved FBS Method in Doppler Domain

In general, there are two popular methods for the bandwidth
synthetic of SAR signal: the synthetic the time-domain
bandwidth synthesis (TBS)method and the FBSmethod.The
TBSmethod is accurate, but the long duration of the synthetic
pulse causes a high computation burden making it inefficient
[6]. The FBS method is also accurate and more efficient, so it
is widely used for bandwidth synthesis of SAR signal [7, 8].

The FBS method proposed in [7] transforms the sub-
band signals to range frequency domain and then shifts
the spectrum of subband 𝑛 signal by Δ𝑓

𝑐,𝑛
and performs

coherent summation to obtain the whole bandwidth signal.
However, considering the signals are discrete, the spectrum
can only be shifted by an integer number of frequency bins
in frequency domain. So this method is precise only if the
residual fractional part of Δ𝑓

𝑐,𝑛
is zero. A solution to this

problem is 𝑁 times upsampling and then multiplying the
signal of subband 𝑛 by a frequency shift function in time
domain to shift the spectrum by Δ𝑓

𝑐,𝑛
[8]. However, the

processing of upsampling adds an extra FFT, 𝑁 times zero-
padding in frequency domain, and an extra IFFT to the
processing of bandwidth synthesis, which is inefficient with
respect to both the use of data space and processing time.

To avoid signal upsampling in range, an improved FBS
method in Doppler domain is proposed. Firstly, a slight shift
of the range frequency spectrum is performed. The shift
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Figure 3: The spectrum shift and coherent summation (𝑁 = 2).

amount is the value of the fractional part of Δ𝑓
𝑐,𝑛
, so the

frequency shift functions can be constructed as

𝐻
4,𝑛

(𝑡) = exp [𝑗2𝜋𝑡 (Δ𝑓
𝑐,𝑛

− 𝐾
𝑛
Δ𝑓
𝑟
)] , (12)

where Δ𝑓
𝑟
denotes the frequency interval of a frequency

bin and 𝐾
𝑛
is the integer part of Δ𝑓

𝑐,𝑛
/Δ𝑓
𝑟
. Note that the

frequency shifting amount is smaller than the value of a
frequency bin, so that the range frequency spectrums do not
alias.

Then, after the spectrum shift, the signals are transformed
into range frequency domain. The center frequency distance
between subband 𝑛 signal and the whole bandwidth signal
spans over 𝐾

𝑛
frequency bins, so spectrum shift and precise

coherent summation can be performed as shown in Figure 3.
Therefore, in comparison to the FBS method used in [8],
the proposed improved FBS method can perform bandwidth
synthesis precisely without upsampling of signal and thus
lowers the computation load. After the coherent summation,
the whole bandwidth signal in 2D frequency domain is
obtained, which can be processed by conventional SAR
imaging algorithms for corresponding modes [4, 11].

Figure 4 shows the flowchart of the proposed algorithm
in the case of 𝑁 = 2. It consists of three parts: subaperture
division, Doppler ambiguity resolving, and bandwidth syn-
thesis.

Suppose 𝐿
𝑟
and 𝐿

𝑎
denote the range and azimuth sam-

pling numbers of each subband signal, respectively. Accord-
ing to the flow of the proposed algorithm, the computa-
tional load of improved FBS method can be written as
(1/2)𝑁𝐿

𝑎
log
2
𝐿
𝑟
+ 𝑁𝐿

𝑎
𝐿
𝑟
, while the computational load

of FBS method presented in [8] is (1/2)𝑁𝐿
𝑎
log
2
𝐿
𝑟
+

𝑁𝐿
𝑎
log
2
𝑁𝐿
𝑟
+ 𝑁
2

𝐿
𝑎
𝐿
𝑟
. Therefore, the proposed improved

FBS method can sufficiently lower the computational load of
bandwidth synthesis.

5. Simulation and Raw Data Results

In this section, point targets simulation and constructed data
processing results are carried out to verify the validity of the
proposed algorithm.

Table 1: Main system parameters of point target simulation.

Number of Tx/Rx 2
Pulse duration 10 𝜇s
Acquisition time 6 s
Rotational distance 800 km
PRF 1598Hz
Step frequency 250MHz
Center frequency of subband 1 9.65GHz
Azimuth baseline 2.3m
Platform velocity 7390m/s
Center distance of scene 617 km

5.1. Simulation. Themain parameters of a sliding spotlight SF
MIMO-SAR system are given in Table 1. A 3 × 3 point target
array, of which the targets are uniformly distributed in a scene
of 2 km × 2 km in azimuth and range directions, is set in the
illustrated scene.

After the subaperture division, the subband 1 signal
in the 2D frequency domain before and after the spatial
filtering is shown in Figures 5(a) and 5(b), respectively. It
can be observed that the Doppler ambiguity is resolved
by the spatial filtering, and the Doppler spectrum without
aliasing is reconstructed for each subband signal. Then the
improved FBS method is performed to combine the two
subband signals, and the whole bandwidth signal in the
2D frequency domain is shown in Figure 6(a). Figure 6(b)
shows the range images of a point target before and after
bandwidth synthesis, from which one can see that the high
range resolution is achieved after bandwidth synthesis. Then
the imaging algorithm proposed in [11] is used to process the
2D reconstructed signal and the imaging result is obtained.
The interpolated contour plots of three of the point targets
are shown in Figure 7. These three point targets are denoted
by P
1
, P
2,
and P

3
, respectively, and their 2D coordinates are

(−1 km, 616 km), (0 km, 617 km), and (1 km, 618 km). The
plots show that the point targets are well focused. The key
image quality parameters, namely, the integrated sidelobe
ratios (IRWs), the peak sidelobe ratios (PSLRs), and the
integrated sidelobe ratios (ISLRs), aremeasured and shown in
Table 2, which further verify the performance of the proposed
algorithm.

5.2. Constructed Data Experiment. Since there are no SF
MIMO-SAR data available for us, a single channel airborne
Spotlight SAR data is used to construct SF MIMO-SAR data.
The airborne Spotlight SAR data was collected on July, 2008,
the main system parameters of which are given in Table 3.

Firstly, the original data is transformed into range fre-
quency domain and the whole range bandwidth is divided
into two subbands, and then the subband 2 data is trans-
formed into Doppler domain and multiplied by a slow time
delay function to simulate an EPC difference from subband
1. Finally, the two subband data are downsampled by a
factor of two into equivalent two channel undersampled data,
respectively. Then a two-input two-output MIMO-SAR data
in spotlight mode with two subbands is obtained. The main
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Table 2: Image quality of point targets.

Target Range Azimuth
IRW (m) PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB)

P1 0.255 −13.29 −10.01 0.280 −13.39 −10.48

P2 0.254 −13.30 −10.08 0.278 −13.41 −10.60

P3 0.255 −13.30 −10.03 0.281 −13.41 −10.51
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Figure 4: Flowchart of the proposed algorithm (𝑁 = 2).

Table 3: Main system parameters of original data.

Center frequency 9.6GHz
Acquisition time 10 s
PRF 900Hz
Signal bandwidth 600MHz
Platform velocity 97m/s
Center distance of scene 20 km

parameters of the constructed SF MIMO-SAR data are given
in Table 4.

Figure 8(a) shows the focused image of subband 1 data
after Doppler ambiguity resolving, from which one can see
that no ghost exists in azimuth. The focused image of the
synthesized bandwidth signal is shown in Figure 8(b), and
the comparison between the range images of a point target
in the amplified area before and after bandwidth synthesis
is shown in Figure 8(c), from which one can see that the
range resolution is improved by the proposed improved
FBS method. Therefore, the result of constructed real data
processing also proves the effectiveness of the proposed
algorithm.

Table 4: Main system parameters of constructed data.

Center frequency 9.6GHz
Acquisition time 10 s
PRF 450Hz
Center frequency of subband 1 9.45GHz
Step frequency 300MHz
Platform velocity 97m/s
Center distance of scene 20 km
Azimuth baseline 0.22m

6. Conclusion

This paper presents an efficient algorithm to reconstruct
SF MIMO-SAR signal in the spotlight and sliding spotlight
modes. A Doppler ambiguity resolving method based on the
subaperture division is presented to reconstruct the Doppler
spectrum of each subband signal. Then, considering the
high computation load of SF MIMO-SAR signal synthesis,
an improved FBS method is proposed to avoid upsampling
of data and thus lower the computation load of bandwidth
synthesis. Results of point targets simulation and constructed
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Figure 5: 2D spectrum (a) before and (b) after spatial filtering.
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Figure 6: (a) 2D spectrum of the whole bandwidth signal. (b) Range images of a point target before and after bandwidth synthesis.
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Figure 7: Contour plots of targets.
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Figure 8: Results from an airborne spotlight SAR. (a) The image of subband 1 data after Doppler ambiguity resolving. (b) The image of the
synthesized bandwidth data. (c) The range comparison of a point target in the amplified area.

data processing have validated the effectiveness of the pro-
posed algorithm.
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The PARAFAC-MUSIC algorithm is proposed to estimate the direction-of-arrival (DOA) of the targets with Doppler frequency in
a monostatic MIMO radar system in this paper. To estimate the Doppler frequency, the PARAFAC (parallel factor) algorithm is
firstly utilized in the proposed algorithm, and after the compensation of Doppler frequency, MUSIC (multiple signal classification)
algorithm is applied to estimate the DOA. By these two steps, the DOA of moving targets can be estimated successfully. Simulation
results show that the proposed PARAFAC-MUSIC algorithm has a higher accuracy than the PARAFAC algorithm and the MUSIC
algorithm in DOA estimation.

1. Introduction

Recently, there has been a growing interest in multiple-
input multiple-output radar which utilizes multiple antennas
at both transmitter and receiver. According to the array
configuration, MIMO radar can be classified into two main
types, the first of which is called distributed MIMO radar.
It is composed of widely separated transmit antennas which
transmit the linearly independent signals. Based on the
sufficient distribution space and linearly independent signals,
the distributed MIMO radar is able to obtain rich scattering
properties of the targets and to mitigate radar cross-section
(RCS) fluctuations. The second type is called collocated
MIMO radar, in which the transmit elements are collocated.
By transmitting independent waveforms and capitalizing
on the MIMO spatial signature, the collocated MIMO can
estimate the parameters of interest via coherent processing.

On the other hand, an accurate estimation of signal
DOA has made a great sense in radar system of military
and commercial application.Many algorithmswere proposed
on DOA estimation in MIMO radar system as it provides
waveform diversity and spatial distribution of flexibility. In
[1], the Capon algorithm, proposed in 1969, is a main lobe

self-adaptive algorithm which is stable but poor at low SNR.
ESPRIT (estimation signal parameter via rotational invari-
ance techniques) algorithm in [2] exploits the invariance
property for DOA estimation in MIMO radar system. In [3],
MUSIC algorithm, one of the most popular algorithms for
DOA estimation, utilizes subspace analysis and has a good
performance.

Although these algorithms introduced above are use-
ful for DOA estimation, they are poor when the Doppler
frequency is taken into consideration. As the target always
moves, DOA estimation of moving targets is extremely
essential. In [4, 5], PARAFAC algorithm exploits the iteration
of TALS (trilinear alternating least square) to estimate the fre-
quency and DOA. PARAFAC algorithm has a better perfor-
mance than Capon, ESPRIT, and MUSIC when considering
Doppler frequency. PARAFAC-MUSIC algorithm, proposed
in this paper, utilizes the PARAFAC algorithm to estimate the
Doppler frequency and then exploits MUSIC algorithm to
estimate the DOA after the Doppler effect is eliminated. Sim-
ulation shows that PARAFAC-MUSIC algorithm is also able
to solve the problem generated from Doppler frequency and
may have a better performance than PARAFAC algorithm.
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Figure 1: Transmit and receive antennas.

2. Signal Model

Assume that there is a monostatic MIMO radar system with
𝑀 collocated transmit antennas and 𝑁 collocated receive
antennas, both of which are uniform linear arrays (ULA),
shown in Figure 1. Since the transmit array and the receive
array are assumed to be close to each other, the DOD
(direction of departure) and the DOA are approximately
equal, denoted by 𝜃. 𝑑

𝑡
and 𝑑

𝑟
are the interelement spacing

at the transmitter and receiver. The 𝑀 transmit antennas
transmit orthogonal waveforms simultaneously while the 𝑁
receive antennas receive the signals reflected from the targets.
It is supposed that there are 𝑃 targets in the far field, each of
which can be considered as a point source. And the RCS of
each target is assumed as a constant during a pulse period.

The received signal at time 𝑡 before match filters can be
expressed as

x (𝑡) =
𝑃

∑

𝑝=1

a
𝑟
(𝜃
𝑝
) × a
𝑡
(𝜃
𝑝
)
𝑇

× s
𝑝
(𝑡) + nx (𝑡) , (1)

where a
𝑟
(𝜃
𝑝
) = [1, 𝑒

−𝑗2𝜋𝑑
𝑟
sin 𝜃
𝑝
/𝜆

, . . . , 𝑒
−𝑗2𝜋(𝑁−1)𝑑

𝑟
sin 𝜃
𝑝
/𝜆

]
𝑇 is

the receive steering vector and a
𝑡
(𝜃
𝑝
) = [1, 𝑒

−𝑗2𝜋𝑑
𝑡
sin 𝜃
𝑝
/𝜆

, . . . ,

𝑒
−𝑗2𝜋(𝑀−1)𝑑

𝑡
sin 𝜃
𝑝
/𝜆

]
𝑇 is the transmit steering vector. 𝜆 denotes

the wavelength. Consider s
𝑝
(𝑡) = [𝛽

𝑝
𝑒
−𝑗2𝜋𝑓

𝑑𝑝
𝑡

𝑠
1
(𝑡), . . . ,

𝛽
𝑝
𝑒
−𝑗2𝜋𝑓

𝑑𝑝
𝑡

𝑠
𝑀
(𝑡)]
𝑇, where 𝛽

𝑝
is the reflection coefficient

depending on the RCS of the target 𝑝, 𝑓
𝑑𝑝

is Doppler
frequency of the target 𝑝, and 𝑠

𝑚
(𝑡) is the transmit signal

of each transmit antenna. nx(𝑡) is a complex Gaussian white
noise vector with zero mean and covariance matrix 𝜎2I. [⋅]𝑇
represents transpose operator.

As the transmit waveforms are orthogonal from each
other, the output of the match filters at time 𝑡 is

y (𝑡) = [A
𝑡
(𝜃) ⊙ A

𝑟
(𝜃)] 𝑐 (𝑡) + ny (𝑡) , (2)

where

A
𝑡
(𝜃) = [a

𝑡
(𝜃
1
) , . . . , a

𝑡
(𝜃
𝑃
)] ,

A
𝑟
(𝜃) = [a

𝑟
(𝜃
1
) , . . . , a

𝑟
(𝜃
𝑃
)] ,

(3)

c(𝑡) = [𝛽
1
𝑒
𝑗2𝜋𝑓
𝑑1
𝑡

, . . . , 𝛽
𝑃
𝑒
𝑗2𝜋𝑓
𝑑𝑃
𝑡

]
𝑇, and “⊙” represents the

Khatri-Rao product.
So the received signal before the match filters can be

expressed by matrix as

X =
𝑃

∑

𝑝=1

[a
𝑟
(𝜃
𝑝
) × a
𝑡
(𝜃
𝑝
)
𝑇

× S] +WX, (4)

where S = [s
1
, s
2
, s
3
, . . . , s

𝐿
] and 𝐿 denotes the number of

snapshot.WX is complex Gaussian white noise matrix.
The output at match filters can be expressed by matrix as

Y = [A
𝑡
(𝜃) ⊙ A

𝑟
(𝜃)]C𝑇 +WY, (5)

where Y = [y
1
, y
2
, y
3
, . . . , y

𝐿
] is a 𝑀𝑁 × 𝐿 matrix and

C𝑇 = [𝑐
1
, 𝑐
2
, 𝑐
3
, . . . , 𝑐

𝐿
] is a 𝑃 × 𝐿 matrix. Consider 𝑐

𝑙
=

[𝛽
1
𝑒
−𝑗2𝜋𝑓

𝑑1
𝑙𝑇

, . . . , 𝛽
𝑃
𝑒
−𝑗2𝜋𝑓

𝑑𝑃
𝑙𝑇

]
𝑇, in which 𝑇 is sampling time.

WY is complex Gaussian white noise matrix.

3. PARAFAC-MUSIC Algorithm

PARAFAC-MUSIC algorithm combines the advantages of
PARAFAC algorithm and MUSIC algorithm. It exploits
PARAFAC algorithm to estimate the Doppler frequency,
then eliminates the effect in received signal generated from
Doppler frequency, and finally utilizes MUSIC algorithm to
estimate the DOA.

As known from formula (5), the output Y at match filters
possesses the character of three-way model. Therefore, it can
be expressed as set Y

𝐿
composed of 𝐿 sections Y

⋅ 𝑙
, each of

which is a𝑀×𝑁matrix. Y
⋅ 𝑙
can be expressed as

Y
⋅ 𝑙
= A
𝑡
(𝜃) × 𝐷

𝑙
[C] × A

𝑟
(𝜃)
𝑇

+ w
⋅ 𝑙
, (6)

where 𝐷
𝑗
[⋅] represents the diagonal matrix composed of the

elements obtained from the 𝑗th row of the matrix.
In the sameway,Y can be expressed as a setY

𝑁
composed

of𝑁 sections Y
⋅⋅ 𝑛

or a set Y
𝑀
composed of𝑀 sections Y

⋅⋅⋅𝑚
. Y
⋅⋅ 𝑛

and Y
⋅⋅⋅𝑚

can be, respectively, expressed as

Y
⋅⋅ 𝑛
= C × 𝐷

𝑛
[A
𝑟
(𝜃)] × A

𝑡
(𝜃)
𝑇

+ w
⋅⋅ 𝑛
,

Y
⋅⋅⋅𝑚

= A
𝑟
(𝜃) × 𝐷

𝑚
[A
𝑡
(𝜃)] × C𝑇 + w

⋅⋅⋅𝑚
.

(7)
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So Y
𝐿
, Y
𝑁
, and Y

𝑀
can be, respectively, expressed as

Y
𝐿
=

[
[
[
[
[
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Y
⋅ 1
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...
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]
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]

=
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1
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C𝑇 +
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[
[
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[

[
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w
⋅⋅⋅ 2

...
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]
]
]

]

= [A
𝑡
(𝜃) ⊙ A

𝑟
(𝜃)]C𝑇 +W

𝑀
.

(8)

When the three-way array is obtained, it is common
to utilize TALS [5] to estimate Â

𝑡
(𝜃), Â

𝑟
(𝜃), and Ĉ. TALS

is a popular method in data detection of three-way array
model which updates one estimated matrix in each step after
obtaining the initial estimated matrixes. Least square (LS)
algorithm always works in estimatedmatrix update that takes
the estimated matrix to be updated as a variable and other
estimated matrixes as constants in each step. When all the
estimated matrixes are updated, it will carry on the next
iteration until convergence. Specific steps of TALS are stated
as follows.

Step 1. Construct the three-way array Y
𝐿
, Y
𝑁
, Y
𝑀

based on
the output at match filters.

Step 2. Initialize all the estimated matrixes Â
𝑡0
(𝜃), Â

𝑟0
(𝜃),

and Ĉ
0
.

Step 3. Substitute Â
𝑡(𝑘−1)

(𝜃), Ĉ
𝑘−1

into formula (9) to obtain
Â
𝑟𝑘
(𝜃) shown as formula (10). [⋅]

𝐹
, # represents Frobenius

norm and the pseudo inverse operation. 𝑘 represents the
iterations

Â
𝑟𝑘
(𝜃) = argmin

Â
𝑟

󵄩󵄩󵄩󵄩󵄩
Y
𝐿
− [Ĉ
𝑘−1

⊙ Â
𝑡(𝑘−1)

(𝜃)] Â𝑇
𝑟𝑘
(𝜃)
󵄩󵄩󵄩󵄩󵄩

2

𝐹

, (9)

Â
𝑟𝑘
(𝜃) = Y𝑇

𝐿
[(Ĉ
𝑘−1

⊙ Â
𝑡(𝑘−1)

(𝜃))
#
]
𝑇

. (10)

Step 4. Substitute Â
𝑟𝑘
(𝜃), Ĉ

𝑘−1
into formula (11) to obtain

Â
𝑡𝑘
(𝜃) shown as formula (12). Consider

Â
𝑡𝑘
(𝜃) = argmin

Â
𝑡

󵄩󵄩󵄩󵄩󵄩
Y
𝑁
− [Â
𝑟𝑘
(𝜃) ⊙ Ĉ

𝑘−1
] Â𝑇
𝑡𝑘
(𝜃)
󵄩󵄩󵄩󵄩󵄩

2

𝐹

, (11)

Â
𝑡𝑘
(𝜃) = Y𝑇

𝑁
[(Â
𝑟𝑘
(𝜃) ⊙ Ĉ𝑇

𝑘−1
)
#
]
𝑇

. (12)

Step 5. Substitute Â
𝑡𝑘
(𝜃), Â

𝑟𝑘
(𝜃) into formula (13) to

obtain Ĉ
𝑘
shown as formula (14). Then calculate 𝛿

𝑘
=

∑
𝐿

𝑙=1
‖Y
⋅ 𝑙
− Â
𝑡𝑘
(𝜃)𝐷
𝑙
[C]Â
𝑟𝑘
(𝜃)
𝑇

‖
2

𝐹

. If |𝛿
𝑘
− 𝛿
𝑘−1
| > 𝜀 (𝜀 is error

threshold), repeat Step 3 to Step 5; otherwise, go to Step 6.
Consider

Ĉ
𝑘
= argmin

Ĉ

󵄩󵄩󵄩󵄩󵄩
Y
𝑀
− [Â
𝑡𝑘
(𝜃) ⊙ Â

𝑟𝑘
(𝜃)] Ĉ𝑇

𝑘

󵄩󵄩󵄩󵄩󵄩

2

𝐹

, (13)

Ĉ
𝑘
= Y𝑇
𝑀
[(Â
𝑡𝑘
(𝜃) ⊙ Â

𝑟𝑘
(𝜃))

#
]
𝑇

. (14)

Step 6. Â
𝑡
(𝜃), Â

𝑟
(𝜃), and Ĉ are obtained after iteration. Then

𝑓
𝑑𝑝

can be calculated by the following formula:

𝑓
𝑑𝑝
=

1

2𝜋𝑇 (𝐿 − 1)

𝐿−1

∑

𝑖=1

angle(
𝑐
𝑖,𝑝
(𝜃)

𝑐
𝑖+1,𝑝

(𝜃)
) , (15)

where 𝑐
𝑖,𝑝
(𝜃) presents the element in Ĉ𝑇 and 𝑖 and 𝑝 are the

indexes of row and column. angle(⋅) represents phase obtain
operation.

When the Doppler frequency has been estimated, it can
be used to eliminate the Doppler effect to received signal X.
The signal after preprocessing can be expressed as

←→X = [
←→x
1
,
←→x
2
,
←→x
3
, . . . ,

←→x
𝐿
] , (16)

where ←→x
𝑙
=
←→x (𝑙𝑇), ←→x (𝑡) = ∑

𝑃

𝑝=1
[x
𝑝
(𝑡)/𝑓
𝑝
(𝑡)]. x

𝑝
(𝑡) =

a
𝑟
(𝜃
𝑝
) × a
𝑡
(𝜃
𝑝
)
𝑇

× s
𝑝
(𝑡) + n

𝑝
(𝑡), 𝑓
𝑝
(𝑡) represents the compen-

satory phase of target 𝑝 and can be expressed as

𝑓
𝑝
(𝑡) = 𝑒

−𝑗2𝜋
̂
𝑓
𝑑𝑝
𝑡

. (17)

So the output of match filters can be expressed as

X = vec(
←→X S𝐻

𝐿
) , (18)
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where [⋅]𝐻 represents Hermit operation and vec(⋅) represents
vector obtain operation.

The covariance of X can be expressed as

Rx x = 𝐸 [XX𝐻] . (19)

Then eigendecomposition is carried on for Rx x shown in
formula (20). Consider

Rx x = U∑U𝐻, (20)

where∑ = diag(𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑀×𝑁
) and 𝛼

𝑖𝑗
denotes eigenvalue

of Rx x.
Since the first 𝑝 eigenvalues are composed of variance

of signal and Gaussian white noise while the remaining
eigenvalues are only composed of variance of Gaussian white
noise, the first 𝑝 eigenvalues are larger than the rest at
high SNR. The first 𝑝 eigenvalues are defined as “signal
eigenvalues” and the rest are defined as “noise eigenvalues.”
So the eigenvector matrix U can be classified into two parts
in the following formula:

U = [G
𝑠
| G
𝑛
] , (21)

where G
𝑠
= [u

1
, u
2
, . . . , u

𝑝
] is composed of the signal

eigenvectors and G
𝑛
= [u
𝑝+1
, u
𝑝+2
, . . . , u

𝑀×𝑁
] is composed

of the noise eigenvectors.
So the spectrum estimation formula of MUSIC is

expressed as

𝑃MUSIC (𝜃) =
1

𝜔(𝜃)
𝐻G
𝑛
G𝐻
𝑛
𝜔 (𝜃)

, (22)

where 𝜔(𝜃) = a
𝑟
(𝜃) ⊗ a

𝑡
(𝜃). “⊗” represents the Kronecker

product.
Then the estimatedDOAcan be obtained according to the

position of the spectral peak.

4. Results and Discussion

In order to state that PARAFAC-MUSIC algorithm has a bet-
ter performance in DOA estimation with Doppler frequency,
simulation is carried on with MATLAB software to compare
PARAFAC-MUSIC algorithmwith PARAFAC algorithm and
MUSIC algorithm.

Assume that there are two targets in the far field and a
MIMO radar system with 8 collocated transmit antennas and
8 collocated receive antennas. The frequency of the transmit
signals is 4GHz. The array structure is the same as Figure 1
with 𝑑

𝑡
= 0.5𝜆×𝑀 space between adjacent transmit elements

and 𝑑
𝑟
= 0.5𝜆 space between adjacent receive elements. The

targets are at 5∘ and 15∘, respectively, relative to the MIMO
radar system with the same velocity V

𝑡
= 300m/s and the

same RCS 𝛽 = 1m2. The sampling frequency is 100KHz.The
number of snapshots is 𝐿 = 80. Additionally, results shown
below are obtained from 500 Monte Carlo experiments at
each SNR.

Figures 2 and 3 show the two targets’ mean errors of
the estimated DOAs obtained from PARAFAC algorithm,
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MUSIC algorithm, and proposed algorithm. It is apparent to
find that the mean error of target 1 obtained from MUSIC
algorithm fluctuates near 0.36∘ and converges on 0.36

∘

gradually with the increasing SNR, and the mean error of
target 2 obtained fromMUSIC algorithmfluctuates near 0.31∘
and converges on 0.31∘ gradually with the increasing SNR.
The results show that the MUSIC algorithm cannot provide
an accurate estimation because of the Doppler frequency.
Nevertheless, as far as the PARAFAC algorithm and the
proposed algorithm are concerned, the mean error of two
targets fluctuates near 0∘ and converges on 0∘ gradually with
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the increasing SNR. But the mean error of the proposed algo-
rithm in both figures is closer to 0∘ than the one of PARAFAC
algorithm which means that the proposed algorithm has a
better performance than the PARAFAC algorithm.

Figures 4 and 5 illustrate the two targets’ root mean
square errors (RMSE) of the estimated DOAs obtained
from PARAFAC algorithm,MUSIC algorithm, and proposed
algorithm. RMSE of the estimated DOAs in both figures
decreases gradually with the increasing SNR. Though the
RMSE of the estimated DOAs in both figures obtained from
the MUSIC algorithm, the PARAFAC algorithm and the
proposed algorithm tend to 0∘ with the increasing SNR;

the RMSE of the proposed algorithm is smaller than the other
two algorithmswhichmeans that the proposed algorithmhas
a smaller fluctuation in DOA estimation.

Simulation results state that MUSIC algorithm suffers
from Doppler frequency seriously and cannot provide an
accurate DOA estimation to moving target. Besides, the
PARAFAC-MUSIC is able to estimate the DOAwith a higher
accuracy than the PARAFAC algorithm to moving targets.

5. Conclusions

In this paper, some algorithms in DOA estimation are
reviewed first. Then a new algorithm named PARAFAC-
MUSIC is proposed to estimate the DOA with Doppler fre-
quency in a MIMO radar system. The proposed algorithm is
able to estimate DOAs of multiple targets. Finally simulation
results confirm that the MUSIC algorithm is not suitable for
DOA estimation with Doppler frequency while PARAFAC-
MUSIC algorithm is very popular for DOA estimation with
Doppler frequency and has a higher accuracy than the
PARAFAC algorithm and the MUSIC algorithm.
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A beampattern synthesis approach is proposed to design the power spectral density matrix (PSDM), which is chosen to achieve a
given transmit beampattern in wideband multiple-input multiple-output (MIMO) radar systems. The proposed approach focuses
on transmit beampattern synthesis with constant beamwidth and sidelobe control. Moreover, the design problem is further
converted to a convex optimization problem, which is solved efficiently via the modeling system CVX. In comparison to these
recently developed wideband MIMO beampattern synthesis methods, the proposed approach maintains a constant beamwidth
across the entire frequency band and provides a great improvement in sidelobe control. Numerical simulation results are obtained
to validate the effectiveness of this approach.

1. Introduction

Transmit beampattern synthesis is a well-studied topic in
standard phased-array radars [1–3]. Recently, several trans-
mit beampattern design approaches for narrowband MIMO
radars have been reported [4–9]. The main idea of these
approaches is to design the proper probing signals according
to the desired transmit beampattern. A relationship between
the spatial beampattern and the covariance matrix of the
transmit waveforms derived in [4, 5] shows that it is possible
to design a covariance matrix to synthesize the desired
beampattern. This work is further extended in [6, 7] to solve
the beampattern design problem by a semidefinite quadratic
programming (SQP) algorithm.

However, the discussion is limited to transmit beam-
pattern synthesis for wideband MIMO radar. Antonio and
Fuhrmann have designed the signal cross-spectral density
matrixes (CSDM) in order to approximate the desired trans-
mit beampattern in [10]. He et al. [11] also have proposed
a wideband beampattern formation via iterative techniques
(WBFIT) to synthesize wideband MIMO waveforms, which
satisfy some practical constraints such as constant-modulus
or low peak-to-average power ratio (PAPR). In WBFIT, the

beamwidth of the designed beampattern tends to shrink
as the frequency increases for one narrow mainbeam. The
method in [12] performs similarly as WBFIT, but with much
lower computational costs.

Although these methods [10–12] have discussed the
wideband beampattern synthesis problem, so little attention
has been paid to the case of the constant beamwidth and the
sidelobe attenuation. In this paper, we propose a beampattern
synthesis approach to design power spectral density matrix
(PSDM) in order to match a transmit energy distribution
in both space and frequency for wideband MIMO radar.
In our proposed approach, the mainlobe of the designed
beampattern has an almost constant beamwidth for different
frequencies and the sidelobe level of the designed beampat-
tern is strictly below a desired sidelobe value. In addition,
the proposed approach is converted to second-order cone
programming (SOCP) problem, which is easily solved by
the convex optimization toolbox CVX. Simulation results
show that the proposed approach significantly outperforms
the existing WBFIT approach in terms of both frequency
invariant property and sidelobe attenuation.

The rest of this paper is organized as follows. The prob-
lem is formulated in Section 2. In Section 3, the proposed
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approach is developed. Design examples and simulation
results are shown in Section 4 and concluded remarks are
given in Section 5.

Notation 1. We denote vectors and matrices by lowercased
and uppercased letters, respectively. (⋅)𝐻 denotes the vector
or matrix conjugate transpose operation, (⋅)𝑇 denotes the
transpose operation, (⋅)∗ denotes the conjugate operation,
diag(⋅) denotes diagonals of a matrix, | ⋅ | denotes the absolute
value operation, ‖ ⋅ ‖

2
denotes the Euclidean norm, and

rank(⋅) refers to the rank operation.

2. Problem Formulation

When a MIMO radar system employs 𝑀 transmit antennas
with the interelement spacing 𝑑, the signal transmitted by the
𝑚th antenna is given by

𝑠
𝑚
(𝑡) = 𝑥

𝑚
(𝑡) ⋅ 𝑒
𝑗2𝜋𝑓
𝑐
𝑡

, (1)

where 𝑓
𝑐
denotes the carrier frequency of the transmitted

signal and 𝑥
𝑚
(𝑡) is the baseband signal, whose time support

is [0, 𝜏].
In this case, the far-field signal at target angle 𝜃 can be

written as

𝑧
𝜃
(𝑡) =

𝑀−1

∑

𝑚=0

𝑠
𝑚
(𝑡 − 𝜏
𝑚
) , 𝑡 ∈ [0, 𝜏] , (2)

where 𝜏
𝑚
is the time needed by the signal emitted from the

𝑚th transmit antenna to the target. Substituting (1) into (2),
(2) is then modified as

𝑧
𝜃
(𝑡) =

𝑀−1

∑

𝑚=0

𝑥
𝑚
(𝑡 − 𝜏
𝑚
) ⋅ 𝑒
𝑗2𝜋𝑓
𝑐
(𝑡−𝜏
𝑚
)

, 𝑡 ∈ [0, 𝜏] . (3)

Assuming that the Fourier transform (FT) of 𝑥
𝑚
(𝑡) is

𝑦
𝑚
(𝑓), (3) can be rewritten as

𝑧
𝜃
(𝑡) = ∫

𝐵/2

−𝐵/2

𝑌 (𝜃, 𝑓) 𝑒
𝑗2𝜋(𝑓+𝑓

𝑐
)𝑡

𝑑𝑓, (4)

where

𝑌 (𝜃, 𝑓) =

𝑀−1

∑

𝑚=0

𝑦
𝑚
(𝑓) ⋅ 𝑒

−𝑗2𝜋(𝑓+𝑓
𝑐
)𝜏
𝑚 = 𝑎
𝐻

(𝜃, 𝑓) ⋅ 𝑦 (𝑓) ,

(5)

𝑎 (𝜃, 𝑓) = [1, 𝑒
𝑗2𝜋(𝑓+𝑓

𝑐
)𝜏
0 , . . . , 𝑒

𝑗2𝜋(𝑓+𝑓
𝑐
)𝜏
𝑚 , . . . , 𝑒

𝑗2𝜋(𝑓+𝑓
𝑐
)𝜏
𝑀−1]
𝑇

,

(6)

𝑦 (𝑓) = [𝑦
0
(𝑓) , 𝑦

1
(𝑓) , . . . , 𝑦

𝑚
(𝑓) , . . . , 𝑦

𝑀−1
(𝑓)]
𝑇

. (7)

Enlightened by these approaches proposed in [10, 11],
the beampattern at spatial angle 𝜃 and frequency 𝑓 + 𝑓

𝑐
is

redefined as (see [13] for details)

𝑃 (𝜃, 𝑓 + 𝑓
𝑐
) = 𝑎
𝐻

(𝜃, 𝑓) ⋅ 𝑦 (𝑓) ⋅ 𝑦
𝐻

(𝑓) ⋅ 𝑎 (𝜃, 𝑓) , (8)

where the baseband frequency 𝑓 ∈ [−𝐵/2, 𝐵/2] and the
spatial angle 𝜃 ∈ [0, 𝜋]. In the case when wideband signals
are used, the PSDM is defined as [14]

𝑆 (𝑓) = 𝑦 (𝑓) ⋅ 𝑦
𝐻

(𝑓) . (9)

Then (8) can be rewritten as

𝑃 (𝜃, 𝑓 + 𝑓
𝑐
) = 𝑎
𝐻

(𝜃, 𝑓) ⋅ 𝑆 (𝑓) ⋅ 𝑎 (𝜃, 𝑓) . (10)

In practical applications, the baseband signal and the
spatial angle need to be discretized, so that (6) and (7) can
be rewritten, respectively, as follows:

𝑎
𝑘𝑝
= 𝑎(𝜃

𝑘
,
𝑝

𝑁𝑇
𝑠

)

= [1, 𝑒
𝑗2𝜋(𝑓+𝑝/𝑁𝑇

𝑠
)𝜏
0 , . . . , 𝑒

𝑗2𝜋(𝑓+𝑝/𝑁𝑇
𝑠
)𝜏
𝑚 ,

. . . , 𝑒
𝑗2𝜋(𝑓+𝑝/𝑁𝑇

𝑠
)𝜏
𝑀−1]
𝑇

,

𝑦
𝑝
= [𝑦
0
(𝑝) , 𝑦

1
(𝑝) , . . . , 𝑦

𝑚
(𝑝) , . . . , 𝑦

𝑀−1
(𝑝)]
𝑇

,

(11)

where {𝜃
𝑘
}
𝐾

𝑘=1
is a fine grid of points that cover the spatial

angle interval [0, 𝜋]. Note that {𝑦
𝑝
}
𝑁/2−1

𝑝=−𝑁/2
represents the

discrete Fourier transform (DFT) of

𝑥 (𝑛) = [𝑥
0
(𝑛) , . . . , 𝑥

𝑚
(𝑛) , . . . , 𝑥

𝑀−1
(𝑛)]
𝑇

,

𝑛 = 0, . . . , 𝑁 − 1,

(12)

where 𝑁 denotes the number of samples and is assumed to
be even.

So, the beampattern in (8) can be expressed on the
discrete angle-frequency grid as

𝑃
𝑘𝑝
= 𝑎
𝐻

𝑘𝑝
𝑆 (𝑝) 𝑎

𝑘𝑝
, (13)

where 𝑘 ∈ [1, 𝐾], 𝑝 ∈ [−𝑁/2, . . . , 0, . . . , 𝑁/2 − 1],

𝑆 (𝑝) = 𝑦
𝑝
𝑦
𝐻

𝑝
. (14)

In this paper, when the transmit beampattern and a
desired beampattern are defined as (13) and 𝑑

𝑘𝑝
, respectively,

the goal is to choose the appropriate PSDM 𝑆(𝑝) (𝑝 ∈

[−𝑁/2, . . . , 0, . . . , 𝑁/2 − 1]), under some constraints, so that
the beampattern in (13) matches the desired one 𝑑

𝑘𝑝
.

3. The Proposed Transmit
Beampattern Design

In this section, how to synthesize wideband transmit beam-
pattern with constant beamwidth across the entire frequency
band and sidelobe control is described. Here, the beampat-
tern synthesis goal is to minimize the error between the
designed beampattern and the desired one over the mainlobe
region and to maintain the sidelobe region to be lower than
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a given threshold value. Mathematically, such beampattern
synthesis problem can be formulated as follows:

min
{𝑆(𝑝)}

{

{

{

𝑀
󸀠

∑

𝑚
󸀠
=1

𝑁/2−1

∑

𝑝=−𝑁/2

󵄨󵄨󵄨󵄨󵄨
𝛼𝑑
𝑚
󸀠
𝑝
− 𝑎
𝐻

𝑚
󸀠
𝑝
𝑆 (𝑝) 𝑎

𝑚
󸀠
𝑝

󵄨󵄨󵄨󵄨󵄨

2}

}

}

𝜃
𝑚
󸀠 ∈ Θ
𝑀
󸀠
𝐿
, 𝑚
󸀠

= 1, . . . ,𝑀
󸀠

subject to 󵄨󵄨󵄨󵄨󵄨
𝑎
𝐻

𝑠𝑝
𝑆 (𝑝) 𝑎

𝑠𝑝

󵄨󵄨󵄨󵄨󵄨
≤ 𝜎, 𝜃

𝑠
∈ Θ
𝑆𝐿
, 𝑠 = 1, . . . , 𝑆,

(15)

where 𝜃
𝑚
󸀠 ∈ Θ

𝑀
󸀠
𝐿
(𝑚
󸀠

= 1, . . . ,𝑀
󸀠

) and 𝜃
𝑠
∈ Θ
𝑆𝐿
(𝑠 =

1, . . . , 𝑆) that denote that a fine grid (uniform or nonuniform)
of points covers mainlobe region and sidelobe region of
interest, respectively. 𝑑

𝑚
󸀠
𝑝
and 𝜎 denote the mainlobe region

and the desired sidelobe value of a desired beampattern,
respectively. And 𝛼 > 0 is a variable to control the magnitude
of the desired beampattern.

In (15), the PSDM cannot be chosen freely and should
satisfy the following constraints:

𝐶
1
:

𝑁−1

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑥𝑚(𝑛)
󵄨󵄨󵄨󵄨
2

=
𝑐

𝑀
, 𝑚 = 0, . . . ,𝑀 − 1; (16a)

𝐶
2
: 𝑆 (𝑝) ≥ 0, 𝑝 ∈ [−

𝑁

2
,
𝑁

2
− 1] , (16b)

where 𝑐/𝑀 is the transmitted power from each antenna, and
𝑐 is a total transmit power for𝑀 antennas.The first constraint
𝐶
1
means that transmit power from all the antenna elements

should be the same, and the second constraint𝐶
2
ensures that

𝑆(𝑝) is a positive semidefinite matrix.
Using the Parseval equality, the first constraint 𝐶

1
on

{𝑥
𝑚
(𝑛)} imposes the following constraint on {𝑦

𝑚
(𝑝)}:

𝑁/2−1

∑

𝑝=−𝑁/2

󵄨󵄨󵄨󵄨𝑦𝑚 (𝑝)
󵄨󵄨󵄨󵄨
2

= 𝑁

𝑁−1

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑥𝑚 (𝑛)
󵄨󵄨󵄨󵄨
2

=
𝑁𝑐

𝑀
,

𝑚 = 0, . . . ,𝑀 − 1.

(17)

Therefore, 𝐶
1
in (16a) can be rewritten as

𝑁/2−1

∑

𝑝=−𝑁/2

𝑆
𝑚
(𝑝) =

𝑁𝑐

𝑀
, 𝑚 = 0, . . . ,𝑀 − 1. (18)

Combining (15) with the above PSDMconstraints in (16a)
and (16b), the beampattern design problem can be formulated
as

min
{𝑆(𝑝)}

{

{

{

𝑀
󸀠

∑

𝑚
󸀠
=1

𝑁/2−1

∑

𝑝=−𝑁/2

󵄨󵄨󵄨󵄨󵄨
𝛼𝑑
𝑚
󸀠
𝑝
− 𝑎
𝐻

𝑚
󸀠
𝑝
𝑆 (𝑝) 𝑎

𝑚
󸀠
𝑝

󵄨󵄨󵄨󵄨󵄨

2}

}

}

𝜃
𝑚
󸀠 ∈ Θ
𝑀
󸀠
𝐿
, 𝑚
󸀠

= 1, . . . ,𝑀
󸀠

subject to 󵄨󵄨󵄨󵄨󵄨
𝑎
𝐻

𝑠𝑝
𝑆 (𝑝) 𝑎

𝑠𝑝

󵄨󵄨󵄨󵄨󵄨
≤ 𝜎 𝜃

𝑠
∈ Θ
𝑆𝐿
, 𝑠 = 1, . . . , 𝑆

𝑁/2−1

∑

𝑝=−𝑁/2

𝑆
𝑚
(𝑝) =

𝑁𝑐

𝑀
, 𝑚 = 0, . . . ,𝑀 − 1

𝑆 (𝑝) ≥ 0, 𝑝 ∈ [−
𝑁

2
,
𝑁

2
− 1] .

(19)

Next, it will be shown that the optimal design problem
(19) can be converted to a second-order cone programming
(SOCP) [15] and can be efficiently solved by the well-
established interior pointmethod [16], such as public domain
software CVX toolbox [17].

Introducing new variables 𝜏
𝑝
(𝑝 ∈ [−𝑁/2,𝑁/2−1]), (19)

can be converted to the following form:

min
{𝑆(𝑝)}

𝑁/2−1

∑

𝑝=−𝑁/2

𝜏
𝑝

subject to
{

{

{

𝑀
󸀠

∑

𝑚
󸀠
=1

󵄨󵄨󵄨󵄨󵄨
𝛼𝑑
𝑚
󸀠
𝑝
− 𝑎
𝐻

𝑚
󸀠
𝑝
𝑆 (𝑝) 𝑎

𝑚
󸀠
𝑝

󵄨󵄨󵄨󵄨󵄨

2}

}

}

≤ 𝜏
𝑝
,

𝜃
𝑚
󸀠 ∈ Θ
𝑀
󸀠
𝐿
, 𝑚

󸀠

= 1, . . . ,𝑀
󸀠

󵄨󵄨󵄨󵄨󵄨
𝑎
𝐻

𝑠𝑝
𝑆 (𝑝) 𝑎

𝑠𝑝

󵄨󵄨󵄨󵄨󵄨
≤ 𝜎, 𝜃

𝑠
∈ Θ
𝑆𝐿
, 𝑠 = 1, . . . , 𝑆

𝑁/2−1

∑

𝑝=−𝑁/2

𝑆
𝑚
(𝑝) =

𝑁𝑐

𝑀
, 𝑚 = 0, . . . ,𝑀 − 1

𝑆 (𝑝) ≥ 0, 𝑝 ∈ [−
𝑁

2
,
𝑁

2
− 1] .

(20)

The first constraint and the second constraint in (20) can
be rewritten as the following compact form, respectively:

󵄩󵄩󵄩󵄩󵄩
𝛼𝑑
𝑝
− diag (𝐴

𝑝
𝑆 (𝑝)𝐴

𝐻

𝑝
)
󵄩󵄩󵄩󵄩󵄩
≤ √𝜏𝑝

󵄨󵄨󵄨󵄨󵄨󵄨
diag (𝐴

𝑝
𝑆 (𝑝)𝐴

𝐻

𝑝
)
󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜎,

(21)

where 𝐴
𝑝
= [𝑎
∗

1𝑝
, . . . , 𝑎

∗

𝑚
󸀠
𝑝
, . . . , 𝑎

∗

𝑀
󸀠
𝑝
]
𝑇 is the steering matrix

of the mainlobe region, 𝐴
𝑝
= [𝑎
∗

1𝑝
, . . . , 𝑎

∗

𝑠𝑝
, . . . , 𝑎

∗

𝑆𝑝
]
𝑇 is the

steering matrix of the sidelobe region, and 𝑑
𝑝
= [𝑑
1𝑝
, . . . ,

𝑑
𝑚
󸀠
𝑝
, . . . , 𝑑

𝑀
󸀠
𝑝
]
𝑇.

Based on (21), the beampattern design in (19) can be
expressed as the following minimization problem:

min
{𝑆(𝑝)}

𝑁/2−1

∑

𝑝=−𝑁/2

𝜏
𝑝

subject to 󵄩󵄩󵄩󵄩󵄩
𝛼𝑑
𝑝
− diag (𝐴

𝑝
𝑆 (𝑝)𝐴

𝐻

𝑝
)
󵄩󵄩󵄩󵄩󵄩
≤ √𝜏𝑝

󵄨󵄨󵄨󵄨󵄨󵄨
diag (𝐴

𝑝
𝑆 (𝑝)𝐴

𝐻

𝑝
)
󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜎

𝑁/2−1

∑

𝑝=−𝑁/2

𝑆
𝑚
(𝑝) =

𝑁𝑐

𝑀
, 𝑚 = 0, . . . ,𝑀 − 1

𝑆 (𝑝) ≥ 0, 𝑝 ∈ [−
𝑁

2
,
𝑁

2
− 1] .

(22)
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Figure 1: Comparison of the synthesized beampattern. The desired beampattern is given in (23). (a) Plot at all the 64 frequencies using the
WBFIT approach and the proposed approach. (b) Plot at center frequency.

It can be observed that, by introducing new variables, the
optimal design problem in (19) can be converted to the SOCP
problem (22), which is a convex optimization problem [15].
The second-order cone, 𝑄𝑚 = {(𝑥, 𝑦) ∈ 𝑅

𝑚

× 𝑅 | ‖𝑥‖
2
≤

𝑦}, can be solved using CVX in MATLAB with the code
given in “{𝑥, 𝑦} ⟨In⟩ complex lorentz (m).” We therefore
emphasize more on convex problem formulation (22) and
the computational complexity analysis for the solution is not
provided.

Now, if 𝑆(𝑝) is of rank one, an optimal solution to (14) can
be obtained. However, if the corresponding rank is greater
than one, we need to resort to randomization techniques to
extract a feasible solution [18].

Let 𝑆(𝑝) = ∑
𝑟

𝑖=1
𝜆
𝑖
𝑞
𝑖
𝑞
𝑇

𝑖
denote the eigenvalue decom-

position of 𝑆(𝑝), where 𝑟 = rank[𝑆(𝑝)], the eigenvalues are
𝜆
1
≥ 𝜆
2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑟
> 0, and 𝑞

1
, . . . , 𝑞

𝑟
are the respective

eigenvectors. We choose 𝑦
𝑝
= √𝜆
1
𝑞
1
as our candidate vector

to (14).

Hence the proposed approach works as follows. Firstly,
the frequency band occupied by the wideband signal is
divided into a certain number of narrowband bins. Secondly,
PSDM of the signal vectors at each frequency bin is designed
via proposed approach in (22).Then, a feasible solution to (14)
from a solution 𝑆(𝑝) is extracted.

4. Numerical Results

This section focuses on demonstrating the performances of
the proposed approach using an𝑀 = 10MIMO radar system
with uniform linear array (ULA), where the interelement
spacing 𝑑 is given by half-wavelength. The parameters for
simulations are set as follows: 𝑓

𝑐
= 1GHz, 𝐵 = 200MHz,

𝑁 = 64, 𝐾 = 180, and the total transmit power is 𝑐 = 1.
Although the design of multiple beams is not considered
in these simulations, it can be achieved via the proposed
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Figure 2: Comparison of the synthesized beampattern.The desired beampattern is given in (24). (a) Plot using theWBFIT approach and the
proposed approach. (b) Plot at center frequency.

approach. So, it is sufficient only to discuss the single beam
design.

Firstly, the desired beampattern which is synthesized
using the proposed approach denotes the following:

𝑑 (𝜃, 𝑓) = {
1, 80

∘

≤ 𝜃
𝑘
≤ 100

∘

0, others,

𝑓 ∈ [−
𝐵

2
+ 𝑓
𝑐
,
𝐵

2
+ 𝑓
𝑐
] .

(23)

Here the mainlobe region is set to Θ
𝑀
󸀠
𝐿
= [80

∘

, 100
∘

]; that
is, the beamwidth of the desired beampattern is 20∘, and the
sidelobe region is Θ

𝑆𝐿
= [1
∘

, 79
∘

] ∪ [101
∘

, 180
∘

], with 1
∘

increment between adjacent grid points.
Figure 1(a) shows the obtained beampatterns at all the

64 frequencies using the WBFIT approach of [11] and the
proposed approach in (19). In this case, the desired sidelobe
value is set to 𝜎 = −35 dB. From the plots, it can been seen
that the beampattern obtained by proposed approach shows

a clean mainlobe at 90∘ across the entire frequency range,
and the main beamwidth synthesized by proposed approach
keeps fixed for all in-band frequency. Figure 1(b) compares
the beampattern designed by the proposed approach with the
WBFIT approach at center frequency. From Figure 1(b), it
is noted that the designed beampattern using the proposed
approach has a sidelobe level of −35 dB.

Secondly, the following desired beampattern with a wider
mainlobe is considered:

𝑑 (𝜃, 𝑓) = {
1, 60

∘

≤ 𝜃
𝑘
≤ 120

∘

0, others,

𝑓 ∈ [−
𝐵

2
+ 𝑓
𝑐
,
𝐵

2
+ 𝑓
𝑐
] .

(24)

Similarly, Figure 2(a) shows the obtained beampatterns
at all the 64 frequencies using the WBFIT approach and
the proposed approach. Figure 2(b) compares the beampat-
tern designed by the proposed approach with the WBFIT



6 International Journal of Antennas and Propagation

approach at center frequency. The desired sidelobe value and
the beamwidth of the desired beampattern are set to 𝜎 =

−40 dB and 60∘, respectively.
It can be clearly seen that the designed beampattern, using

the proposed approach, maintains a constant beamwidth
across the entire frequency band from Figure 2(a), and more
importantly, the designed sidelobe level is strictly below
−40 dB from Figure 2(b).

From these simulation examples, compared with the
existing WBFIT approach, the proposed approach has
achieved significant improvement in both frequency invari-
ant property and sidelobe attenuation. Therefore, the merit
of the proposed approach is validated.

5. Conclusions

In this paper, a modified approach has been proposed to
successfully synthesize the PSDM according to the desired
transmit beampattern in wideband MIMO radar systems.
With the proposed approach, the mainlobe of the designed
beampattern has an almost constant beamwidth for different
frequencies and the sidelobe level of the designed beampat-
tern is strictly below a desired sidelobe value (e.g., −35 dB
and−40 dB).Numerical results were provided to illustrate the
effectiveness and validity of the proposed approach.
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Multi-input multioutput (MIMO) is a novel technique to achieve high-resolution as well as wide swath in synthetic aperture
radar (SAR) systems. Channel imbalance is inevitable in multichannel systems that it declines the imaging quality. Generally, the
imbalance cannot be fully compensated by simple internal calibration in aMIMO-SAR system. In this paper, a new algorithm based
on raw data is presented to remove the channel phase error. Based on the error source, this approach models the phase error as two
parts: the transmit phase error and the receive phase error. The receive phase error is removed using cost function at the azimuth
processing stage, whereas the transmit phase error is estimated with correlation. Point target simulations confirm the influence of
channel phase error and the validation of the proposed approach. Besides, the performance is also investigated.

1. Introduction

Synthetic aperture radar (SAR) is a powerful microwave
instrument for remote sensing [1]. 2D even 3D [2] image
of the terrestrial surface can be obtained independent of
weather and sunlight illumination. High-resolution as well as
wide swath (HRWS) is one of the main goals of the system
engineers [3, 4].

For the sake of high azimuth resolution, people have
developed spotlight mode [5, 6] in which the antenna points
toward the same region during the whole data acquisition.
While obtaining large imaging swath, ScanSAR mode [7] is
proposed in which the antenna directivity is fixed, swapping
between different strips. Limited by the minimum-antenna-
area constraint [1], conventional spaceborne SAR is hard to
achieve high-resolution in azimuth meanwhile wide imaging
swath. High azimuth resolution requires large Doppler band-
width, which means a high pulse repetition frequency (PRF)
to comply with the Nyquist theory, whereas, wide imaging
swath demands wide range beam width in which the PRF
must be low to guarantee the echo’s completeness. Modes
such as sliding-spotlight and TOPS [8, 9] are the trade-off
between the two demands.

In range direction, SAR transmits chirp pulse.The resolu-
tion is proportional to the signal bandwidth, which is defined
as

𝜎
𝑟
=

𝑐

2𝐵
, (1)

where 𝜎
𝑟
is the range resolution, 𝑐 is the velocity of light, and

𝐵 is the signal bandwidth. For 0.1m resolution in slant range,
1.5 GHz bandwidth is necessary. This implies at least 1.8 GHz
sampling rate (with oversampling rate 20%).The high quality,
that is, radiation hardened, A/D convertor is quite difficult to
manufacture.

Multi-input multioutput (MIMO) technique provides an
opportunity to break through these constraints [10, 11]. The
antenna being divided into several apertures, each aperture
transmits pulses at different center frequencies simultane-
ously and all apertures receive the echoes. In this way, numer-
ous effective phase centers are formed. These effective phase
centers may be overlapped in spacetime or in frequency.
Then using the signal processing technique signals with large
bandwidth (both in range and in Doppler) as well as wide
swath are obtained [12, 13].
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Channel imbalance is inevitable in multichannel system
due to the effects of the qualities of modules, the construction
of the system, and the atmosphere. The imbalance presents
in echo data in terms of amplitude error and phase error.
These errors impair the signal synthesis in which the final
SAR image will be ambiguous even unrecognized.

Channel imbalance can be removed by means of sys-
tem internal calibration [1] or analyzing through raw data.
Methods based on internal calibration are precise but cannot
calibrate the phase errors caused by the antenna, whereas
literature belonging to the latter is rare to see. In this paper,
an algorithm based on raw data to handle channel phase
imbalance in MIMO-SAR system is proposed. The method
models phase imbalance as two parts: the transmit phase
error (TXE) and the receive phase error (RXE). The transmit
phase error is estimated by correlation operation, whereas
the receive phase error is removed using cost function at the
azimuth processing stage.

This paper is organized as follows. In Section 2, the
signalmode is introduced.The proposedmethod is presented
in Section 3 with simulations and discussions in Section 4.
Section 5 will give the conclusion.

2. Signal Mode

Figure 1 is a diagram of a MIMO-SAR system with five
channels in azimuth. Antennas of each channel and the
corresponding phase-centers are marked with rectangles
and triangles, respectively. Each channel transmits pulse
simultaneously and receives the echoes transmitted by not
only itself but also the others. Suppose channel 𝑚 transmits
pulse at center frequency 𝑓

𝑐,𝑚
. By compensating a known

constant phase between channels, the received echo-signal
can be converted into the equivalent self-transmit and self-
receive signal [14]. In Figure 1(b), the effective phase-centers
are marked with circles which are located halfway in between
the transmitting and the respective receiving phase-centers.
The effective phase-centers of different center frequencies are
marked with distinct colors. Theoretically, if a MIMO-SAR
transmits pulse with 𝑀 channels and receives with 𝑁, the
total effective phase-centers is𝑀 ⋅ 𝑁.

The signal transmitted by channel𝑚 is

𝑠
𝑡,𝑚
(𝜏, 𝜂) = rect( 𝜏

𝑇
) exp {𝑗2𝜋 (𝑓

𝑐,𝑚
𝜏 +

1

2
𝐾
𝑟
𝜏
2

)} , (2)

where 𝜏 is the fast time, 𝜂 is the slow time, 𝑇 is the pulse
length, and 𝐾

𝑟
is the chirp rate. Then the signal after mixing

with center frequency 𝑓
𝑐,𝑚

received by channel 𝑛 is

𝑠
𝑟,𝑛,𝑚

(𝜏, 𝜂) = 𝜎 ⋅ rect(
𝜏 − 2𝑅

𝑛,𝑚
(𝜂) /𝑐

𝑇
)

× exp{−𝑗
4𝜋𝑅
𝑛,𝑚

(𝜂) 𝑓
𝑐,𝑚

𝑐
}

× exp{𝑗𝜋𝐾
𝑟
(𝜏 −

2𝑅
𝑛,𝑚

(𝜂)

𝑐
)

2

} ,

(3)

where 𝜎 is the backscattering coefficient of the target, 𝑐 is the
velocity of light, and 𝑅

𝑛,𝑚
(𝜂) is the slant range

𝑅
𝑛,𝑚

(𝜂) = √𝑅2
0
+ (𝑉
𝑟
𝜂 +

(𝑛 − 1) ⋅ 𝑑

2
+
(𝑚 − 1) ⋅ 𝑑

2
)

2

, (4)

where 𝑅
0
is the nearest range, 𝑉

𝑟
is the platform velocity, 𝑑 is

the antenna length in azimuth of a single channel, and𝑚 and
𝑛 ranges from 1 to𝑀. In (4), the reference channel is channel
1; that is, the reference slant range is 𝑅

1,1
(𝜂) = √𝑅2

0
+ 𝑉2
𝑟
𝜂2.

Consider the signals with a specific center frequency.
They can be treated as the azimuthmultichannel SAR signals.
Usually, all channels have the same the antenna lengths.
According to the slow time delay, after compensating the
known constant phase, the received signals have

𝑠
𝑟,𝑛,𝑚

(𝜏, 𝜂) = 𝑠
𝑟,1,𝑚

(𝜏, 𝜂 +
(𝑛 − 1) ⋅ 𝑑

2𝑉
𝑟

) . (5)

If the radar platform velocity and the PRF have a relationship

PRF = 𝑀𝑑

2𝑉
𝑟

, (6)

where 𝑀 is the number of receive channels and 𝑑 is the
antenna length of a single channel, the effective phase-centers
are distributed uniformly in azimuth. However, (6) is hard
to meet strictly in practical SAR systems because of the
timing restriction, and therefore the effective phase-centers
are nonuniform distribution as the upper part of Figure 1(b)
shows. Using the signal processing technique such as system
filters [14] or STAP [15] (the matrices are identical indeed),
the data can be reconstructed as uniformly sampled. The
lower part of Figure 2(b) is the effective phase-centers after
reconstruction where the dashed line denotes the zero delay.
It is interesting that the time delays are different for each 𝑓

𝑐,𝑚

because (4) associates with𝑚.
From Figure 1(b), it can be seen that the effective phase-

centers of different𝑓
𝑐,𝑚

are overlapped after reconstruction. If
the pulse bandwidth of all transmit channels is identical and
𝑓
𝑐,𝑚

steps following

𝑓
𝑐,𝑚

− 𝑓
𝑐,𝑚−1

≤ 𝐵, (7)

where 𝐵 is the chirp bandwidth, then a chirp signal with
large bandwidth can be obtained using the subband synthesis
technique with the overlapped samples [16]. Subband syn-
thesis can be realized either in the range time domain or in
the range frequency domain. Besides, synthesis can be before
range compression or after compression.

In summary, the MIMO-SAR processing steps followed
by this paper are

(1) samples reconstruction in azimuth;

(2) imaging each subband;

(3) subband synthesis in range.
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Figure 1: Diagram of a MIMO-SAR system. (a) System geometry. (b) Phase sequence.
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Figure 2: Flow chart of removing RXE.

3. Phase Error and the Compensation

Channel imbalance is inevitable in multichannel system, not
expecting MIMO-SAR. It presents in echo data in terms
of amplitude error and phase error. We only focus on
phase error in this paper. Denote the transmission charac-
teristic of each transmit channel as Δ𝜓

1
, Δ𝜓
2
, . . . , Δ𝜓

𝑀
and

each receive channel as Δ𝜑
1,1
, Δ𝜑
1,2
, . . . , Δ𝜑

1,𝑀
, Δ𝜑
2,1
, Δ𝜑
2,2

, . . . , Δ𝜑
2,𝑀

, . . . , Δ𝜑
𝑀,1

,Δ𝜑
𝑀,2

, . . . , Δ𝜑
𝑀,𝑀

, respectively. Here,
the substrip of Δ𝜓 indicates the transmit channel number,
and Δ𝜑

𝑛,𝑚
indicates the characteristic of channel 𝑛 receiving

the signals with center frequency 𝑓
𝑐,𝑚

. The actual signals
received are

𝑠
𝑟,𝑛,𝑚

(𝜏, 𝜂) = Δ𝜓
𝑚
⋅ Δ𝜑
𝑛,𝑚

⋅ 𝑠
𝑟,1,𝑚

(𝜏, 𝜂 +
(𝑛 − 1) ⋅ 𝑑

2𝑉
𝑟

) . (8)
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3.1. The Receive Phase Errors. Consider the signals with
center frequency 𝑓

𝑐,𝑚
and suppose channel 1 is the reference

channel. Define the phase error

Δ𝜀
𝑟,𝑛,𝑚

=
Δ𝜑
𝑛,𝑚

Δ𝜑
1,𝑚

, 𝑛 = 2, . . . ,𝑀 (9)

the receive phase error (RXE). RXE is range invariant and
if arranged along azimuth, it periodically changes over a
cycle of𝑀 samples. It can be treated as some form of phase
error introduced by motion errors in airborne SAR system;
therefore RXE brings blurring on subband imaging that the
images are ambiguous and defocused in the azimuth.

The compensation of RXE can be treated as a special
case of autofocus. There are numerous autofocus methods;
however not all are suitable for RXE removing. Because the
azimuth reconstructionwill disturb the phase error, the phase
estimated by autofocus is usually not the original one. We
resort to the method using cost function [17] in which the
phase error is trial rather than directly derived from the
imagery.

Generally, the value of cost function relates to the extent
of an image into focus.Thebroadenmainlobe of a point target
and the ghosts along azimuth are the twomain characteristics
blurred images caused by RXE exhibited [18]. Although
defocused, the ghosts share the same shape with the actual
targets. According to these two characteristics, we develop
a new cost function called image self-correlation in azimuth
(ISCA):

CFISCA (𝑘) =
𝐸
𝑚
{𝐼 (𝑝, 𝑞) ⋅ 𝐼

∗

(𝑝, 𝑞 + 𝑟)}

𝐸
𝑚
{𝐼 (𝑝, 𝑞) ⋅ 𝐼∗ (𝑝, 𝑞)}

, (10)

where 𝐼(𝑝, 𝑞) is a grey-scale SAR image, 𝑝 and 𝑞 are the range
coordinate and the azimuth one, respectively, 𝑟 is the azimuth
offset, ∗ denotes conjugation, and 𝐸

𝑚
implies average in

range. ISCA is normalized by the denominator in which the
maximum value is 1 which happens only when 𝑘 = 0.

ISCA describes the RXE in two ways. First, the ISCA
of a focused image descends faster around 𝑘 = 0 (zero
peak) than that of a defocused one; that is, the zero peak
is sharper, because the mainlobe is wider on the defocused
image. Second, besides the zero peak, the curve of self-
correlation may have other couples of peaks (nonzero peak).
When the image is fully focused, the ghosts are suppressed
that these nonzero peaks become flat.

Thus, the estimation of RXE can be described as an
optimization procedure

Δ𝜀̂
𝑟,𝑚

= arg ext
Δ𝜀
𝑟,𝑚

CFISCA, (11)

where Δ𝜀̂
𝑟,𝑚

is the optimal solution, Δ𝜀
𝑟,𝑚

=

[Δ𝜀
𝑟,2,𝑚

, Δ𝜀
𝑟,3,𝑚

, . . . , Δ𝜀
𝑟,𝑀,𝑚

], and operator ext denotes
judging via the width of the zero peak or with the height of
nonzero peaks of ISCA.

As the optimization in (11) has no closed-form solution,
an iterative method called coordinate descent algorithm [19]
is adopted in which the elements of Δ𝜀

𝑟,𝑚
are obtained in

sequence.The iterative processes as well as the computational

burden are distinctively different according to the imaging
algorithm applied.

The iteration flow, when frequency domain imaging
algorithm such as the familiar chirp scaling (CSA) [20]
is chosen, is shown on the left of Figure 2. Because some
time-consuming progresses are involved in iteration, the
time consumption of the whole iteration will be quite large
especially when the number of channels is big. This is the
inherent limitation of cost function autofocusing.

Situations will turn better when time domain imaging
algorithm such as back projection imaging algorithm (BPA)
[21] is used. Integrating along the target track precisely, BPA
can be used in almost all SAR working modes. Resembling
the idea of fast factorized BP (FFBP), the data of each single
channel are imaged first and then integrated as the right of
Figure 2 shows. As only multichannel integration is involved
in iteration, less time is required. After each single channel is
imaged for the first time, we can select some range bins with
highest contrast as a new data set for the iteration ahead.This
will speed up the iteration further.

3.2. The Transmit Phase Errors. When RXE is compensated,
we obtain 𝑀 frame focused images with different center
frequencies and (8) becomes

𝑠
󸀠

𝑟,𝑛,𝑚
(𝜏, 𝜂) = Δ𝜓

𝑚
⋅ Δ𝜑
1,𝑚

⋅ 𝑠
𝑟,1,𝑚

(𝜏, 𝜂 +
(𝑛 − 1) ⋅ 𝑑

2𝑉
𝑟

) .

(12)

Similarly, suppose channel 1 is the reference channel. Define
the phase error

Δ𝜀
𝑡,𝑚

=
Δ𝜓
𝑚
Δ𝜑
1,𝑚

Δ𝜓
1
Δ𝜑
1,𝑚

, 𝑚 = 2, . . . ,𝑀 (13)

the transmit phase error (TXE). TXE will reduce the perfor-
mance of subband synthesis in which the peak sidelobe level
ratio (PSLR) and the integrated sidelobe level ratio (ISLR) are
worsened [22].

On the focused images, the target is compressed as

𝑠
𝑐,𝑛,𝑚

(𝜏, 𝜂) = 𝐴 ⋅ Δ𝜓
𝑚
⋅ Δ𝜑
1,𝑚

⋅ 𝑝
𝑟
(𝜏 −

2𝑅
𝑛,𝑚

(𝜂)

𝑐
)𝑝
𝑎
(𝜂)

× exp{−𝑗
4𝜋𝑅
𝑛,𝑚

(𝜂) 𝑓
𝑐,𝑚

𝑐
} exp {𝑗2𝜋𝑓dc𝜂} ,

(14)

where 𝐴 is a irrespective coefficient, 𝑝
𝑟
and 𝑝

𝑎
are the

amplitude of impulse response; that is, the sinc function,𝑓dc is
the Doppler center.𝑅

𝑛,𝑚
(𝜂) is known as (4); so the estimation

of TXE is simple compared to RXE in which

Δ𝜀
𝑡,𝑚

=
𝑠
𝑐,𝑛,𝑚

(𝜏, 𝜂)

𝑠
𝑐,𝑛,1

(𝜏, 𝜂)

⋅ exp{𝑗
4𝜋 (𝑅

𝑛,𝑚
(𝜂) 𝑓
𝑐,𝑚

− 𝑅
𝑛,1
(𝜂) 𝑓
𝑐,1
)

𝑐
} .

(15)
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Figure 3: Results of azimuth reconstruction. (a) Azimuth spectrum. (b) Phase.
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To make the estimation more precisely and fast, not the
whole image but parts of the image with high signal to
cluster ratio (SCR) are used. A rectangular sliding window
of appropriate size is traveled throughout the image, with
the variance of the pixels in the window calculated, those
high SCR targets are likely to exist in the windows with high
variance [23].

4. Simulation

In this Section, point target simulations are introduced to
analyze the proposed algorithm. The simulation parameters
are listed in Table 1. The system has 6 channels in azimuth
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Figure 5: Imaging of the target point. (a) With phase errors. (b)
Without phase errors.
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Figure 7: Results of Monte Carlo simulation. (a) Results of RXE estimation. (b) Results of TXE estimation.

Table 1: Simulation parameters.

Parameter Value
Channels 6
Center frequency 9.35GHz∼9.85GHz
Chirp bandwidth 100MHz
Pulse length 20 us
Platform velocity 7000m/s
PRF 900Hz
Antenna length (full) 6m
Range 800 km

with center frequency ranged from 9.35GHz to 9.85GHz
stepped by 100MHz, in which the overlapped ratio of sub-
band in range frequency is zero. The full antenna length is
6m in azimuth which means each aperture can share one out
of six.

First, impacts of the phase error on azimuth recon-
struction as well as range matched filtering are confirmed.
Figure 3 gives the results of azimuth reconstruction. The
RXEs added are 0.030𝜋, −0.055𝜋, 0.041𝜋, −0.035𝜋, and
−0.018𝜋, respectively. It is clear that the energy is confused
across the spectrum as the existence of RXE. And the most
important influence is that the phase no longer holds the
form of quadratic which means the azimuth compression
will fail. Figure 4 gives the results of subband synthesis. The
TXEs added are 0.50𝜋, −0.55𝜋, −0.21𝜋, 0.09𝜋, and −0.47𝜋,
respectively. As mentioned in Section 3.2, the sidelobe indi-
cators are worsened that the shape is distorted and no longer
symmetrical, whereas the mainlobe remains the same; that
is, the range resolution is not declined. Comparing the order
of RXE with that of TXE, it can be found that azimuth
reconstruction is more sensitive to the phase error.

Second, the validation of the proposed algorithm is
verified. The system SNR is set to 20 dB. As only point
target is involved in the simulations, the computation cost

of frequency domain imaging algorithm is acceptable. Thus
the chirp scaling algorithm is used. Figure 5 gives the imaging
results. The ghost targets are clearly seen on Figure 5(a) and
Figure 6 in which the real target is defocused without doubt.
After the compensation, the ambiguity is suppressed; see
Figure 5(b). The estimation results are given in Table 2.

At last, the performance of the proposed algorithm is
investigated usingMonteCarlo experiment.TheTXE interval
as well as that of RXE is set to [−0.5𝜋, 0.5𝜋] with uniform
distribution. The system SNR is set from 0 dB to 30 dB with
step of 2 dB. For each SNR, the experiment is carried out 100
times.The experiment results are given by Figure 7, where the
averaged root-mean-square error (ARMSE) is defined by

ARMSE = 1

𝑀 − 1

𝑀

∑

𝑚=2

(
1

𝑁
√

𝑁

∑

𝑛=1

(𝜀
𝑚,𝑛

− 𝜀
𝑚
)
2

) , (16)

where 𝑀 is the total channels, 𝑁 is the simulation times,
𝜀 is the error set and 𝜀 is the error estimated, and substrip
𝑚 and 𝑛 indicate the channel and the sample, respectively.
From Figure 6, it is shown that ARMSE of RXE estimation
is almost independent on system SNR. This is because the
cost function is obtained from SAR image where the energy
is focused, and noise is greatly suppressed by the defined cost
function ISCA (10). However, ARMSE of TXE estimation is
dependent on system SNR which means that (16) has room
for improvement. The ARMSE order of TXE is bigger than
that of RXE because the estimation of RXE is prior to that of
TXE; that is, the estimation error propagates.

5. Conclusion

MIMO technique offers an opportunity to map wider image
swaths with improved spatial resolution in SAR system.
Aiming at the inevitable channel imbalance of multichannel
system, this paper has described a new algorithm for com-
pensating the phase errors in MIMO-SAR systems based on
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Table 2: The phase errors added and estimated.

TXE RXE
Channel 2 3 4 5 6 2 3 4 5 6
Error 0.50𝜋 −0.55𝜋 −0.21𝜋 0.09𝜋 −0.47𝜋 0.030𝜋 −0.055𝜋 0.041𝜋 −0.035𝜋 −0.018𝜋

Estimation 0.512𝜋 −0.601𝜋 −0.213𝜋 0.078𝜋 −0.455𝜋 0.0321𝜋 −0.0564𝜋 0.0440𝜋 −0.0372𝜋 −0.0203𝜋

raw data. Compared with the internal calibration, not only
the transmitter and the receiver phase imbalances but also
the antenna phase imbalances can be removed. The phase
error is classified as transmit phase error or receive phase
error which is compensated separately. Simulations confirm
the contribution of different kinds of error to image quality
decline. Meanwhile the performance with different SNR is
also investigated. Algorithm considering gain errors will be
our future research focus.
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Ionosphere has different stratification at the different height. Troposphere has different refractivity at the different height. When
microwave signals transmit through the ionosphere and the troposphere, the real propagation path is not an ideal straight line,
but a slightly curved straight line. For the synthetic aperture radar (SAR) system, the actual distance errors will result in phase
errors, which impact range section and azimuth section of SAR raw data. Consequently, the imaging precision has been decreased
by imprecise slant range history. In this paper, we simulate the propagation path between satellite and the target according to Snell’s
law and analyze how the ionospheric and tropospheric refraction impact the spaceborne SAR imaging performance at L-band and
X-band.The simulation results show that the two refraction effects should be compensated in low frequency band for better image
focusing performance.

1. Introduction

As the microwave signals transmit between SAR and targets,
the imaging results are inevitably affected by the ionosphere
and troposphere. The ionizing is at the height of 70 km
to 500 km from the ground. Low frequency signal often
suffers ionosphere influences severely, such as dispersion,
Faraday rotation, refraction, rotation of polarization caused
by irregularities, and so on [1–4]. For example, the ionized
ionosphere induces Faraday rotation (FR) that affects radar
polarization and causes signal path delays, and all of these
can be ignored at high frequencies (10GHz) [5].These effects
all have strong relationship with the TEC (total electron
content). Observations show that the electron density of the
ionosphere presents a structure of stratification.Generally, we
call the electron concentration distribution with height as the
electron density profile. In recent years, there has been an
increasing interest in the analysis of the impact of propaga-
tion link on low frequency and wide-bandwidth spaceborne
SAR imaging [5]. Chen et al. put forward an operation mode
for topside ionospheric sounding based on spaceborne high

frequency SAR (HF-SAR) [6]. Theoretical analysis indicates
that the azimuth resolution can be improved to tens of
meters. Liu et al. develop a numerical model to investigate
the SAR image degradation caused by an inhomogeneous
ionosphere [7]. Both horizontal and vertical structures of
the ionosphere are considered in this model. Although they
do not study a method to compensate for the ionospheric
effects on SAR, the numerical model they have developed is
useful for testing different mitigation techniques. And they
develop two numerical models about the ionosphere acting
on the propagation characteristics of the spaceborne SAR [8].
One of the models simulates the ray-bending effects on the
SAR system. Their results show substantial image shift due
to this effect at P-band or lower frequency band. Wang et
al. prensent the analytical study and numerical simulation
to investigate the ionospheric effects on SAR imaging with
Gaussian white noise at P-band [9]. They use the IRI 2001
model to generate the electron density profile and use the
two-parameter spectrum to generate the horizontal electron
density profile, which are also used in this paper.
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Troposphere is under the altitude of about 12 km. It is
the closest layer to the ground and a mixture of kinds of
gases (nitrogen, oxygen, carbon dioxide, and so on) andwater
vapor. The dielectric properties of the troposphere vary with
time and space. So the microwave signals transmit in the
troposphere differently from in the vacuum [10]. The effect
of troposphere on SAR imaging is usually ignored for that
the early moderate resolution imaging would not be affected
by the relative minor tropospheric path error. Consequently,
there are few thorough analysis and validation related to the
troposphere in SAR field. Currently, the spaceborne SAR
imaging resolution has reached half a meter level. So the
troposphere environmental factor has become one of the
factors that cannot be ignored on spaceborne SAR imaging
with high resolution. Sun et al. introduce the impact of
atmospheric refraction on the high resolution airborne SAR
whichmainly reflects on azimuth resolution [10].The changes
of atmosphere refractive index in troposphere with the
Hopfield refractive model are analyzed, and the calculation
of the apparent range between radar and ground targets
is given. The algorithm mentioned in paper has certain
reference value to the performance and imaging analysis
of the high resolution airborne SAR system which is level
of centimeter. The refraction effects are addressed with
assuming a horizontally nonhomogeneous troposphere [11].
The impact of the range refractivity on a terrestrial radio link
is investigated in terms of radio horizon range. By acquiring
simultaneous weather radar data over the test site, it is pos-
sible to flag affected SAR images and exclude them from the
procedure.

Through the above introduction, the index of refraction
will vary with the height both in ionosphere and troposphere
[12]. According to Snell’s law, the propagation of radio waves
in the multilayer medium will be bent and not straight as we
expected. The path error will cause many problems in SAR
imaging. Therefore, we will simulate and analyze the impact
of themultibandmicrowave propagation errors caused by the
ionosphere and troposphere on SAR imaging in the following
contents.

In this paper, we focus on the propagation path’s bending
caused by ionosphere and troposphere refraction, which are
seldom synthetically considered before. First, we discuss the
effects of ionospheric and tropospheric refraction on SAR
imaging. In Section 2, we introduce the background of the
ionospheric and tropospheric refractive model.The structure
of ionosphere can be analyzed from two aspects: vertical
profile and horizontal profile. In Section 3, we use the path
tracing method to calculate the actual distance according to
Snell’s law. In Section 4, we perform SAR imaging simulation
with the path errors and analyze the imaging performance. In
Section 5, we draw a conclusion and put forward some plans
for future research.

2. Atmosphere Structure

As Figure 1 shows, troposphere is at the height of 0 to 12 km.
The layer between 60 km and 90 km is the D region and
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Figure 1: Sketch map of ionosphere and troposphere.

from 90 km to 140 km is the E region. The F region is at
the height above 140 km. In Figure 1, curve A represents
the profile of vertical electron density; curve B represents
the profile of horizontal electron density. Because the sketch
map is just used to indicate the atmosphere structure, the
vertical and horizontal electron density profile are rough. We
can see that the electron concentration varies with different
heights and different horizontal distribution, which will
lead to the change of the ionosphere refraction. Moreover,
there are kinds of gases in the troposphere, and the tropo-
spheric index of refraction will vary with different heights
as well. So there must be path errors in the propagation of
microwaves.

2.1. Basic Structure of Ionosphere. The basic structure of
ionosphere can be discussed from two aspects: vertical TEC
profile and horizontal TEC profile.

2.1.1. Vertical TEC Profile. According to Appleton-Hatreek,
we can get the simplified formula about the refractive index
of ionosphere [13, 14]:

𝑛 = √1 −
80.6𝑁

𝑒

𝑓2
, (1)

where 𝑁
𝑒
is the electron concentration and 𝑓 is the wave

frequency in Hz.
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In this paper, we use the engineering ionospheric electron
density profile model IRI 2001 to calculate 𝑁

𝑒
[15, 16]. The

model is expressed as below [17]:
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𝑚
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2
< ℎ ≤ 1000 km,

(2)

where 𝑁
𝑚

is the largest electronic concentration of each
layer, 𝑁

𝑗
is for 𝐹

1
layer, ℎ is the height corresponding to the

largest electronic concentration of each layer, and ℎ
𝑗
is for 𝐹

1

layer. 𝑦
𝑚
is the half-thickness for each layer, 𝑓

0
is the critical

frequency for each layer, and 𝑓
𝑗
is for 𝐹

1
layer. ℎ

𝑚
𝐸 is 115 km;

𝑦
𝑚
𝐸 is 20 km [18].
The vertical electron concentration is shown in Figure 2.

2.1.2. Horizontal TEC Profile. As shown in Figure 3, the hori-
zontal TEC varies with the different latitudes and longitudes.
Since the spaceborne SAR aperture size is at least tens of
kilometers, the horizontal TEC gradient will impact the SAR
imaging performance.

In this paper, we use the two-parameter spectrum to
generate the horizontal profile of electron concentration [19,
20]. 𝑉(𝑘) can be expressed as [7]

𝑉 (𝑘) =
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,

(3)

where 𝑘
𝑏
= 2𝜋/𝐿

𝑏
, 𝑘
0
= 2𝜋/𝐿

0
, 𝑘
𝑏
is the interrupt wave

number, 𝐿
0
= 10 km, 𝐿

𝑏
= 500m, and 2V

1
= 3.5, 2V

2
= 5.5.

To generate the horizontal profile of electron concentra-
tion, a sequence of normally distributed random numbers is
used in the phase of the profile spectrum. Using the discrete
Fourier transform, the relationship between the electron
density profile and the profile spectrum is described in the
following equations:

𝑓 (𝑥) =
1

𝐿

𝑁/2−1

∑

𝑛=𝑁/2

𝐹 (𝑘
𝑛
) exp (𝑖𝑘

𝑛
𝑥) , (4)
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Figure 2: Vertical electron density profile model.
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where

𝐹 (𝑘
𝑛
)

= √2𝜋𝐿𝑉 (𝑘
𝑛
)

{{

{{

{

1

√2
[𝑁 (0, 1) + 𝑖𝑁 (0, 1)] , 𝑛 ̸= 0,

𝑁

2

𝑁 (0, 1) , 𝑛 = 0,
𝑁

2
(5)

and 𝐾
𝑛
= 2𝜋𝑛/𝐿, 𝐿 is a total length of a profile. 𝑁(0, 1)

denotes a sequence of normally distributed numbers in [0, 1]
with zero mean and unity standard deviation.The horizontal
electron concentration is shown in Figure 4.

2.2. Model for Tropospheric Refractivity. As for troposphere,
we often use the statistical model of the refractive index. In
this paper, we use the Hopfield model [12], which includes
mainly two parts.The first one is the so-calledwet part, which
is related to the concentration of water vapor. The other part
is the so-called dry part, which is related to the gaseous nature
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Figure 4: The propagation path of microwave signals.

of the lower part of the atmosphere.The dry parts and the wet
parts are in form of function of fourth power [21].

𝑁(ℎ) = 𝑁
𝑑
+ 𝑁
𝑤

(6)
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(8)

where the subscripts𝑑 and𝑤 represent dry andwet parts;𝑁
0𝑑

and𝑁
0𝑤

are the ground atmospheric refractivity;𝐻
𝑑
and𝐻

𝑤

are the height where the dry and wet section of atmospheric
refractivity decay to 0; ℎ

0
is the height of ground.

Then, we can calculate the ground atmospheric refractiv-
ity as below:

𝑁
0𝑑
= 77.6

𝑃
0

(𝑡
𝑠
+ 273.15)

𝑁
0𝑤

= 3.37 × 10
3

𝑅𝐻 × 𝑎

(𝑡
𝑠
+ 237.15)

2
exp(

𝑏𝑡
𝑠

𝑐 + 𝑡
𝑠

) .

(9)

Then, we can calculate the refractive index of troposphere
by (6).

3. Calculation of the Path Error

When the microwave signals transmit through the iono-
sphere and troposphere, the path will become bent because
of refraction as Figure 5 shows. We can calculate the actual
distance according to Snell’s law. Assuming that the radar
situated at a height of ℎ, radar’s depression angle is 𝜃

0
,

SAR

F region

E region

D region

Kinds of gases

Ionosphere

Troposphere

Ground
Target

Figure 5: Path tracing course.

the refraction index at the height of ℎ is 𝑛
0
. Then, the actual

distance of the radar and the target is

𝑅=∫

ℎ

0

𝑛
2

(𝑧)

√𝑛2 (𝑧) − 𝑛2
0
cos2𝜃
0

𝑑𝑧. (10)

In (10), 𝑛(𝑧) is the refractive index of space, including
ionosphere and troposphere. Due to the fact that different
models are used, we independently calculate the actual
distance in ionosphere and troposphere refraction. Further-
more, the ionospheric refraction includes two parts: vertical
TEC section and horizontal TEC section.

Accordingly, the horizontal distance between radar and
the target is 𝑦

0
:

𝑦
0
= ∫

ℎ

0

𝑛
0
cos 𝜃
0

√𝑛2 (𝑧) − 𝑛2
0
cos2𝜃
0

𝑑𝑧. (11)

According the equations above, we use the method of
path tracing to calculate the actual distance of radar and
the target. First, we substitute 𝑦

0
into (11) as a known

quantity; thuswe can get radar’s depression angle 𝜃
0
.Then,we

substitute the 𝜃
0
into (10), and get the actual distance of radar

and the target. The flowchart of the course of path tracing is
expressed in Figure 6.

SAR imaging geometry is shown as Figure 7. Spaceborne
SAR is at the height of ℎ and moves at a speed of V

𝑎
along the

𝑥-axis direction; the instant time is 𝑡
𝑚
. When it comes to the

synthetic aperture center, 𝑡
𝑚
= 0.The shadow is the footprint,

the horizontal width of the beam is 𝛽, and the vertical width
is 𝜑. At the 𝑡

𝑚
moment, the actual distance between SAR and

the target is 𝑅(𝑡
𝑚
).

If the ionospheric and tropospheric environment can be
ignored, the actual distance is equal to the theoretical distance
between SAR and the targets, which can be calculated as [22]

𝑅 (𝑡
𝑚
) = √ℎ2 + 𝑟2

0
+ (V
𝑎
𝑡
𝑚
)
2

. (12)

So the path error is

Δ𝑅 (𝑡
𝑚
) = 𝑅 (𝑡

𝑚
, 𝑛 (𝑧)) − 𝑅 (𝑡

𝑚
) . (13)
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The phase error caused by path error is

Δ𝜑 (𝑡
𝑚
) =

−4𝜋Δ𝑅 (𝑡
𝑚
)

𝜆
. (14)

Assuming that the total synthetic aperture time is 𝑇
𝑎
, the

time of range section is 𝜏 and the radar signal is chirp signal.
We can get the echo that the radar receives from the target as
below:

𝑠 (𝑡
𝑚
, 𝜏) = 𝜎𝑤

2
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𝑚
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𝑐
)

2

) ,

(15)

where 𝑡 is the azimuth slow time, 𝜏 is the range fast time,
𝐾 is chirp rate, 𝑤

𝑎
(𝜃) is the azimuth antenna illumination

envelop, 𝜎 is the backscatter coefficient, 𝑐 is the speed of
light, and 𝑅 is the distance from antenna phase center to the
target.

The echo signals that the radar receives from the target
are related to the actual distance between the radar and the
target. So the path error will lead to the delay and the offset
error in range section.

On the other hand, we can do quadratic Taylor expansion
on the actual distance 𝑅(𝑡

𝑚
, 𝑛(𝑧)) around 𝑡

𝑐
= 𝑟
0
/V
𝑎
:
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𝑚
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2

.

(16)

In (16), there is a quadratic term.Theremust be quadratic
phase error in azimuth section when the distance errors
are considered. Obviously, the quadratic phase error will
lead to the elevated sidelobe energy, thus affecting the SAR
image quality. In summary, the path error will lead to two
problems in SAR imaging: the offset error in range section
and quadratic phase error in azimuth section, which can be
illustrated as Figure 8.

4. Multiband Spaceborne SAR Imaging
Simulation with Refraction Path Error

To analyze the refraction effect of atmosphere on space-
borne SAR imaging, the propagation path errors should be
introduced into echo generation process in every transmitted
pulse. On the other hand, the multiband responses with
atmospheric refraction effects are also the key topic, which
can not only guide the course of spaceborne SAR system
design, but also assist the in-orbit microwave imaging and
analysis. Therefore, the multiband spaceborne SAR imaging
simulation is carried out for atmospheric refraction error
analysis and modeling.

According to classical SAR simulation process, the imag-
ing simulation with path error involves four steps, including
refractive index calculation, propagation path error calcula-
tion, raw data simulation, and imaging analysis, as shown in
Figure 9. The simulation method is as follows.

(i) According to the description of Section 2, we can
calculate the different height’s refractive index in
ionosphere and troposphere by the general engineer-
ing model. Then we change the microwave frequency
to get the different refractive index distribution along
the vertical height, which can be used in actual path
calculation.

(ii) Based on the path tracing method, the microwave
propagation path under Snell’s law is calculated with
considering the ionosphere and troposphere refrac-
tion.The specific algorithm is introduced in Section 3.
On this basis, we simulate the satellite orbit and
calculate the path error at each pulse transmitting
time and then get the error curve along the azimuth
direction. To compare the multiband characteristic,
it is assumed that the multiband simulation should
be executed with same orbit and radar parameters.
After multifrequency replacement, the multiband
path error can be simulated.

(iii) The spaceborne SAR raw data simulation includes
four steps: target deployment, orbit calculation, path
error injection, and raw data calculation. In order to
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measure the image quality, point targets are located
in the simulated scene. Moreover, the time-domain
algorithm that can easily introduce system errors is
selected for spaceborne SAR raw data calculation.
Through the simulation processing, the multiband
SAR raw data can be generated for imaging analysis.

(iv) The imaging analysis includes image processing and
image quality assessment. First, the raw data should
be processed by classical Chirp-Scaling imaging algo-
rithm. Second, the point target data should be cut
from SAR image for extracting the profile of range
direction and azimuth direction. Finally, the SAR
imaging index, such as resolution, expansion ratio,
peak sidelobe ratio, and integral sidelobe ratio, can
be calculated to analyze the multiband atmosphere
refraction effects.

5. Simulation Result and Discussion

Simulations are carried out for 𝐿-band and 𝑋-band, which
are applied for different remote sensing purpose and less
discussed. The simulation parameters are shown in Table 1
and experimental conditions are described below:

(1) point target array is placed in the middle of simulated
image;

(2) in the course of refractive index calculation, the
ionosphere height is 100∼1000 km, the troposphere
height is 0∼12 km, and the vertical divided layer scale
of ionosphere and troposphere is, respectively, 0.1 km
and 0.001 km;

(3) in horizontal electron density profile model, the aver-
age peak value is set to 1012 el/m3 and the perturbation
is set to 10%. The simulated horizontal distance
of electron density profile is 10 km with sampling
interval of 100m.

Figure 10 shows the microwave propagation path errors
of 𝐿-band and𝑋-band in a synthetic aperture time. With the
change of slant range, the path error also varies in quadratic
curve. If we do not take the horizontal TEC into considera-
tion, the curve will be smooth. However, the curve shows a
zigzag line by considering the refraction. From the results,
the path error of 𝐿-band is greater than 𝑋-band, but the
two bands have the similar fluctuation. Because ionosphere
is higher than troposphere, the ionosphere contributes the
majority of path errors for longer propagation path. It is seen
that the higher frequency band radar works with the greater
the refraction effects and worse image quality. Figure 11
depicts, respectively, the point target response profile of range
direction and azimuth direction in 𝐿-band and 𝑋-band. The
azimuth profile in 𝐿-band has a serious quadratic phase error,
which leads to the sidelobe uplift. The azimuth profile in 𝑋-
band is close to the ideal curve.Otherwise, both the two range
profiles are very standard. We can see that the path errors
will lead to the decline in image quality indicators of azimuth
section. Tables 2 and 3 provide a quantitative proof of the
conclusion.

As shown in Table 2, compared with theoretical indica-
tors, the resolution errors at 𝐿-band are 0.0246m bigger than
𝑋-band in range direction and 1.9193m more in azimuth
section. Otherwise, the expansion ratio, the peak sidelobe
ratio, and the integral sidelobe ratio are the same situations
that the effects in 𝐿-band are worse than 𝑋-band, and
the indicators in azimuth direction are worse than range
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Figure 10: The path error of 𝐿-band and 𝑋-band.

Table 1: Simulation parameters.

Parameters Value
Semimajor axis 7000 km
Eccentricity 0.0
Orbital inclination 95 degrees
RAAN 150 degrees
Argument of perigee 210 degrees
PRF 2000Hz
Band width 60MHz
Pulse width 30 us
Sampling rate 66.6MHz

Table 2: Imaging indicators errors of 𝐿-band and𝑋-band compared
to the theoretical indicators in range section.

Indicators 𝐿 𝑋

Resolution (m) 0.0327 0.0081
Expansion ratio (dB) 0.071 0.0017
Peak sidelobe ratio (dB) 0.1072 −0.0625
Integral sidelobe ratio (dB) 0.2509 −0.1326

Table 3: Imaging indicators errors of 𝐿-band to 𝑋-band compared
to the theoretical indicators in azimuth section.

Indicators 𝐿 𝑋

Resolution (m) 1.9672 0.0479
Expansion ratio (dB) 0.4837 0.0118
Peak sidelobe ratio (dB) −1.6258 −0.8447
Integral sidelobe ratio (dB) 4.6385 −0.5886

direction. As shown inTable 4, the pixel positions of the point
target at𝐿-band and𝑋-band are different from the theoretical
position. It can be seen that the lower frequency imaging is
seriously affected by the propagation.

Table 4: Position of the point target in range section.

Theoretical position 𝐿-band 𝑋-band
(2048.00, 512.00) (2031.00, 512.00) (2047.00, 512.00)

According to the analysis of Section 3, the path errors also
affect the position of point target. Therefore, we measure the
position of two band SAR images in pixel. As can be seen from
Table 4, the range direction offset is 17 pixels and 1 pixel in 𝐿-
band and 𝑋-band compared with theoretical position in the
image. The image offset is proportional to the path error.

The simulation results show that path error caused by
ionospheric and tropospheric refraction affects both range
section and azimuth section imaging indicators especially on
azimuth section, such as resolution, expansion ratio, peak
sidelobe ratio, and integral sidelobe ratio. And the lower
the frequency is, the more serious the effects are. Table 4
shows that there is offset error imaging in range section.With
the distance between the satellite and target increasing, the
imaging results will get worse. The accurate estimation of
ionosphere and troposphere model will assist the autofocus
compensation to improve spaceborne SAR image quality and
reduce the dependence on external calibrationmeasurement.

6. Conclusions

In this paper, we use the engineering practical ionospheric
electron density profile model to get the electron concentra-
tion of different heights. After that, we can get the ionospheric
refractive index of different heights. As for troposphere, we
use Hopfield model to get the tropospheric refractive index.
The actual distance is calculated by path tracing method.
Compared to the propagation path in the vacuum, the real
path must be bent. The path error can lead to phase error
which is the key to the spaceborne SAR imaging. After
researching related literatures, we find that people care a
lot about the effect of troposphere and ionosphere on SAR
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Figure 11: Point target assessment curve at 𝐿-band and 𝑋-band.
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imaging independently, but few materials considering both
of them. So the study of the effects of two kinds of refractions
on the spaceborne SAR imaging performance is essential.
Other imaging indicators like image quality analyzing still
needs to be further studied. In the future, we will analyze the
correction of refractive effects on spaceborne SAR imaging.
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A sparse recovery based transmit-receive angle imaging scheme is proposed for bistatic multiple-input multiple-output (MIMO)
radar. The redundancy of the transmit and receive angles in the same range cell is exploited to construct the sparse model.
The imaging is then performed by compressive sensing method with consideration of both the transmit and receive array gain
uncertainties. An additional constraint is imposed on the inverse of the transmit and receive array gain errors matrices to make
the optimization problem of the CS solvable. The image of the targets can be reconstructed using small number of snapshots in the
case of large array gain uncertainties. Simulation results confirm the effectiveness of the proposed scheme.

1. Introduction

Multiple-input multiple-output (MIMO) radar has multiple
transmit channels and multiple receive channels, and the
transmit channels can be separated by waveforms or time or
frequencies or polarizations at each receiver. So, the transmit
aperture can be exploited completely by processing receive
data [1–3]. Most of the advantages of the MIMO radar come
from increasing the number of channels. Two main classes
of MIMO radar have been proposed, with widely separated
antennas [1] and with colocated antennas [2]. The first class
utilizes the different scattering properties of a target from
sufficiently spaced antennas to improve the performance of
the systems. The second class allows the improvement of the
radar performances by coherent processing of the multiple
channels.

Bistatic MIMO radar scheme has been proposed in [3],
where a two-dimensional radar imaging method based on
the Caponmethod is developed. BistaticMIMO radar has the
particular advantage of being able to obtain the target angles
with respect to both the transmit and the receive arrays by
processing the receive data [3–7]. So, the range information of
the target is redundant in this case and the time synchroniza-
tion of the bistatic radar is relaxed. Nevertheless, the errors
of both the transmit array and the receive array will degrade
the performances of these techniques. Many works have been

done to estimate the array errors and correct the transmit
array and receive array simultaneously in bistatic MIMO
radar [8, 9]. However, these methods need large number of
snapshots to estimate the covariance matrix and some well-
calibrated elements.

Compressive sensing (CS) has received considerable
attention recently and has been applied to source localization
by exploiting the spatial sparsity of the sources [10]. The CS
can work even in the case of single snapshot. A CS based
multitarget detection method for bistatic MIMO radar is
presented in [11]. However, the range cell is not considered
in this paper. Furthermore, they assume that there are no
array errors in the systems. In this paper, the redundancy
of the transmit and receive angles in the same range cell is
exploited to construct the sparse model. CS based method is
presented to image transmit-receive angle image in the pres-
ence of unknown array gain errors for bistatic MIMO radar.
The image can be recoveredwell in the case of small snapshots
and large array gain uncertainties.

This paper is organized as follows. The sparse signal
model of bistatic MIMO radar with uncertain array gain is
presented in Section 2. In Section 3, CS based algorithm is
applied to estimate the transmit angle and receive angle of
targets in the presence of array gain errors. The effectiveness
of the method will be confirmed by simulations in Section 4.
Finally, Section 5 concludes the paper.
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2. Sparse Model of Bistatic MIMO Radar

The configuration of the bistatic MIMO radar used in this
paper is illustrated in Figure 1. An 𝑀-transmit/𝑁-receive
(𝑀 T/𝑁 R) antenna configuration is considered, and both
transmitter and receiver are uniform linear array (ULA).
Let the signal transmitted by 𝑀-transmitters at every pulse
period be S ∈ C𝑀×𝐿, where 𝐿 is the number of the codes in
one pulse period. Assume that the target is at angles (𝜃

𝑡
, 𝜃
𝑟
),

where 𝜃
𝑡
is the angle of the target with respect to the transmit

array (i.e., DOD) and 𝜃
𝑟
is the anglewith respect to the receive

array (DOA). 𝜆 denotes the carrier wavelength. In the case of
𝑃 pixels at location (𝜃

𝑡
, 𝜃
𝑟
), the received signal during the 𝑞th

pulse period can be expressed as

Y
𝑞
= A
𝑢𝑟
D
𝑞
A𝑇
𝑢𝑡
S + E
𝑞
, 𝑞 = 1, 2, . . . , 𝑄, (1)

where (⋅)
𝑇 denote transpose operator. A

𝑢𝑟
= Γ

𝑟
A
𝑟

and A
𝑢𝑡

= Γ
𝑡
A
𝑡

are the unknown gain steering
matrices of the receive and transmit array, respectively.
Γ
𝑡
= diag[𝜌

𝑡1
, . . . , 𝜌

𝑡𝑀
] and Γ

𝑟
= diag[𝜌

𝑟1
, . . . , 𝜌

𝑟𝑁
] are the

diagonalmatrices with array gain errors at diagonal elements.
A
𝑟
= [a
𝑟𝑝
]
𝑁×𝑃

andA
𝑡
= [a
𝑡𝑝
]
𝑀×𝑃

are the receive and transmit
steering matrices of 𝑃 targets, respectively, where a

𝑟𝑝
=

[1 𝑒
𝑗(2𝜋/𝜆)𝑑

𝑟
sin 𝜃
𝑟𝑝 𝑒
𝑗(2𝜋/𝜆)2𝑑

𝑟
sin 𝜃
𝑟𝑝 ⋅ ⋅ ⋅ 𝑒

𝑗(2𝜋/𝜆)(𝑁−1)𝑑
𝑟
sin 𝜃
𝑟𝑝]
𝑇

and a
𝑡𝑝

= [1 𝑒
𝑗(2𝜋/𝜆)𝑑

𝑡
sin 𝜃
𝑡𝑝 𝑒
𝑗(2𝜋/𝜆)2𝑑

𝑡
sin 𝜃
𝑡𝑝

⋅ ⋅ ⋅ 𝑒
𝑗(2𝜋/𝜆)(𝑁−1)𝑑

𝑡
sin 𝜃
𝑡𝑝]𝑇. 𝑑

𝑡
and 𝑑

𝑟
are the ideal interelement

space at the transmitter and receiver.D
𝑞
= diag(𝑑

1
, . . . , 𝑑

𝑃
) is

a diagonal matrix composed of target reflection coefficients
for the 𝑞th pulse period. The noise vector E

𝑞
is assumed to

be independent, zero-mean complex Gaussian distribution
with E

𝑞
∼ 𝑁
𝑐

(0, 𝜎
2

𝑛
I
𝑁
).

We divide thewhole area of interest in some discrete set of
angular positions [10]. Let the two-dimensional grid consist
of the dictionary of all potential angular position pairs Ω =

{(𝜃
𝑘
, 𝜃
𝑙
) : (𝑘, 𝑙) ∈ {1, . . . , 𝐺} × {1, . . . , 𝐺}}. Then we construct

the matrices composed of steering vectors corresponding
to each potential source location as its columns: Φ

𝑡
=

[a
𝑡
(𝜃
1
), . . . , a

𝑡
(𝜃
𝐺
)] and Φ

𝑟
= [a
𝑟
(𝜃
1
), . . . , a

𝑟
(𝜃
𝐺
)]. Let X

𝑞
∈

C𝐺×𝐺 be the matrix of reflection coefficients of the targets
at 𝐺2 possible grid point of interest during 𝑞th pulse period.
Assume that the transmit waveforms are orthogonal to each
other; that is, SS𝐻 = I. Then the receive signals in (1) after
being matched by transmit waveforms can be rewritten as

Y
𝑞
= Γ
𝑟
Φ
𝑟
X
𝑞
Φ
𝑇

𝑡
Γ
𝑇

𝑡
+ E
𝑞
, 𝑞 = 1, 2, . . . , 𝑄. (2)

X
𝑞
[𝑘, 𝑙] is nonzero only if there is pixel of the target at

(𝜃
𝑘
, 𝜃
𝑙
). Fortunately, we can recover the image range by range.

It can be observed in Figure 1 that the grid points which are
in the same range cell should be distributed on the surface
of an ellipse with the focuses on receivers and transmitters,
respectively. So, only surface of the ellipse has the pixels of
the target and any other grid points in the Ω are zeros when
we process the data of one range cell. It is clear that X

𝑞
is a

sparse matrix in this case. The pixels in the same range cell
are virtually sparse because of the redundancy of the transmit
and receive angles.This implies that we can recover the scene
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Figure 1: Bistatic MIMO radar configuration.

by sparse recovery method even though the actual scene is
not sparse.

3. CS Based Sparse Imaging with
Array Gain Uncertainties

In this section, we develop the CS based sparse imaging
method in the presence of the array gain uncertainties for
bistatic MIMO radar imaging.

3.1. Problem Formulation. The radar imaging is an inverse
scattering problem. The spatial map of reflectivity can be
reconstructed from measurements of scattered electronic
fields. To transformour problem into the standard framework
of the sparse recovery, we first rewrite (2) as

y
𝑞
= vec (Y

𝑞
) = [(Γ

𝑡
Φ
𝑡
) ⊗ (Γ

𝑟
Φ
𝑟
)] vec (X

𝑞
) + e
𝑞

= (Γ
𝑡
⊗ Γ
𝑟
) (Φ
𝑡
⊗Φ
𝑟
) x
𝑞
+ e
𝑞

= ΓΦx
𝑞
+ e
𝑞
,

(3)

where⊗denoteKroneck product;Γ = Γ
𝑡
⊗Γ
𝑟
andΦ = Φ

𝑡
⊗Φ
𝑟
;

x
𝑞
= vec(X

𝑞
) and e

𝑞
= vec(E

𝑞
).

When 𝑄 pulse periods are transmitted, (3) can be
expressed as follows:

Y = ΓΦX + E, (4)

where Y = [y
1
, . . . , y

𝑄
] and X = [x

1
, . . . , x

𝑄
]. E is the noise

matrix composed by e
𝑞
; that is, E = [𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑄
]. Here,

what we need to do is to recover matrixX from the given data
Y.

CS can be used to efficiently reconstruct a signal with
a sparse representation. For a given observation matrix Y
and a sensing matrix Φ, Y = ΦX. The recovery process is
formulated as an 𝑙

1
-optimization problem; that is,

min ‖X‖
1
,

s.t. y = ΦX. (5)
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However, the CS method in (5) cannot resolve the the
problem in model (4) directly as there is an additional
unknown array gain error matrix Γ. The optimization prob-
lem will lead to a trivial solution if we add Γ directly in (5)
without further constraint on Γ. Also, the Gaussian noise E
is not considered in the optimization problem in (5), which
will degrade the performance of the recovery. What we are
interested in is to construct an optimization problem that
considers both the array gain uncertainties Γ and the noise E.
We will achieve the imaging recovery of bistatic MIMO radar
with array gain uncertainties by the help of the idea from [12]
later.

3.2. Direct CS Method. The problem of recovering the sparse
X from themeasurement dataY is commonly known as mul-
tiple measurement vector (MMV) problem in CS [13]. Many
sparse recovery methods of this problem have considered
effect of the noise. Considering the effect of the noise, the
MMV problem can be formulated as

(X̂) = arg min(‖X‖
1
+
𝜇

2
‖Y −ΦX‖2

𝐹
) , (6)

where 𝜇 is a balance constant related to the noise.
We rewrite model (4) as

Y = ΦX + (Γ − I)ΦX + E, (7)

where (Γ−I)ΦX is the error from the array gain uncertainties
which can be combined with the noise E. So, (7) can be
expressed as

Y = ΦX + Ẽ, (8)

where Ẽ = (Γ − I)ΦX + E. The revised model (8) can be
resolved directly by using the optimization problem of CS in
(6).

As was known to all, CS methods are sensitive to the
noise. So the performance of imaging recovery will degrade
when the noise is large even though (6) considers the noise.
So, this direct CS method can only be used well with small
array gain uncertainties. We will evaluate the performance of
this method in Section 4.

3.3. CS Method with Constraint of the Array Gain Uncertain.
As the method above regards the array gain uncertainties
as noise, the performance will degrade with large array gain
errors. In fact, we can regard both the imagematrixX and the
array gain uncertain Γ as the estimated value. Considering
the CS method, it seems natural to consider the following
optimization problem:

(X̂, Γ) = arg min(‖X‖
1
+
𝜇

2
‖Y − ΓΦX‖2

𝐹
) . (9)

However, the optimization problem in (10) will lead a
trivial solution without further constraint on Γ or X [12]. In
order to construct a solvable optimization problem of the CS,
the constraint on trace of Γ should be considered.

Considering the noise reduction, we construct the follow-
ing optimization problem:

(X̂, Γ̂) = arg min(‖X‖
1
+
𝜇

2

󵄩󵄩󵄩󵄩󵄩
Γ
−1Y −ΦX󵄩󵄩󵄩󵄩󵄩

2

𝐹

)

s.t. tr (Γ−1) = 𝑀𝑁,

(10)

where 𝜇 is a balance coefficient which is selected according to
the noise level. The trace of the unknown gain matrix can be
derived as

tr (Γ−1) = tr (Γ−1
𝑡
⊗ Γ
−1

𝑟
) = tr (Γ−1

𝑡
) tr (Γ−1

𝑟
) . (11)

The estimate of X can be obtained by resolving the
optimization problem (11) and image of bistatic MIMO radar
is then reconstructed.

4. Simulation Results

In this section, we evaluate the performance of the proposed
bistatic MIMO radar sparse imaging methods and compare
them with the robust Capon beamforming method (RCB)
[14]. We consider bistatic MIMO radar with 20 transmit
elements and 20 receive elements. Both the transmit and
the receive antennas are uniform linear array with half-
wavelength space between adjacent elements. The radar will
be scanned across a transmit angular region range from 1

∘

to 10
∘ and a receive angular from 1

∘ to 10
∘. We place two

targets in the scene. Assume that two targets are located at
angles [𝜃

𝑡1
, 𝜃
𝑟1
] = [8

∘

, 3
∘

] and [𝜃
𝑡2
, 𝜃
𝑟2
] = [3

∘

, 8
∘

].The number
of snapshots is 20 for the sparse recovery methods and
500 for the RCB. The transmit array and receive array gain
uncertainties are generated by Γ

𝑡
= diag{exp[𝑁(0, 𝜎2

𝑡
)]} and

Γ
𝑟
= diag{exp[𝑁(0, 𝜎2

𝑟
)]}, where 𝜎

𝑡
and 𝜎

𝑟
are the parameter

governing the array gain. 𝑁(0, 𝜎2
𝑡
) denotes the Gaussian

distribution. We select the balance coefficients 𝜇 = 1 in both
the direct CS and the constraint CS methods.

Figure 2 shows the results of the image recovery using
the proposedmethodwith small array gain uncertainties; that
is, 𝜎
𝑡
= 𝜎
𝑟
= 0.1. It can be observed that both the proposed

methods and RCB method can recover the image. The direct
CS and constraint CS obtain almost equal performance and
the performance of RCB is better than the one of proposed
method. However, RCB needs very large amount of samples
to enable the algorithm to work. The results of the image
recovery with large array gain uncertainties are plotted in
Figure 3. It is shown that the recovery performance of con-
straint CS method is better than that of direct CS.The reason
had been discussed in Section 3.2. The performance of both
of the CS methods is better than that of RCB method even
though the RCB method uses 500 samples compared to 20
samples of the CS method. It implies that the direct CS
method is suitable to imaging recovery for bistatic MIMO
radar with large array gain errors in the case of small samples.
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Figure 2: The performance of the proposed method with small array gain uncertain (𝑀 = 𝑁 = 20, [𝜃
𝑡1
, 𝜃
𝑟1
] = [8

∘

, 3
∘

], [𝜃
𝑡1
, 𝜃
𝑟1
] = [3

∘

, 8
∘

],
𝑄 = 20, SNR = 10 dB, 𝜎

𝑡
= 𝜎
𝑟
= 0.1).

We defined the performance recovery coefficient (RPC)
𝛾 to evaluate the performance of the imaging. The RPC is
defined as

𝛾 =

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

1
𝑥
2

󵄨󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩𝑥2

󵄩󵄩󵄩󵄩2

, (12)

where 𝑥
1
represents the estimated target coefficient and

𝑥
2
represents the true target coefficient. RPC describes

the similarity of the true image and the recovering one.

Figure 4 plots the variation of the RPC of the CS with array
gain uncertain constraint, direct CS, and the RCB method
with array gain errors. It is shown that the performance of
RCB is better than that of the CS with array gain uncertain
constraint and direct CS methods in small array gain error
case. The performance of direct CS is better than that of
CS with array gain uncertain constraint in the case of small
errors. However, the performance of the CS with array gain
uncertain constraint method is stable in all of array errors.
When the array gain errors are large, the performance of
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Figure 3: The performance of the proposed method with large array gain uncertain (𝑀 = 𝑁 = 20, [𝜃
𝑡1
, 𝜃
𝑟1
] = [8

∘

, 3
∘

], [𝜃
𝑡1
, 𝜃
𝑟1
] = [3

∘

, 8
∘

],
𝑄 = 20, SNR = 10 dB, 𝜎

𝑡
= 𝜎
𝑟
= 0.8).

the error constraint CS is the best. The results confirm that
theCSwith array gain uncertain constraintmethod is suitable
to imaging recovery for bistatic MIMO radar with large array
gain errors in the case of small samples.

5. Conclusions

Sparse recovery based transmit-receive angle imaging
scheme is proposed for bistatic MIMO with array gain
uncertainties in this paper. The redundancy of the transmit

and receive angles in the same range cell is exploited to
construct the sparse model. CS based algorithm with
consideration of both transmit and receive array gain errors
is presented for image recovery. Simulation results show that
the transmit-receive angle image can be recovered well in
bistatic MIMO radar with small number of snapshots in the
case of large array gain errors by using sparse recovery based
method. Further works should be done to develop sparse
recovery based imaging method for bistatic MIMO radar
when both array gain and phase errors exist.
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Down-looking MIMO array SAR can reconstruct 3D images of the observed area in the inferior of the platform of the SAR
and has wide application prospects. In this paper, a new strategy based on Bayesian compressive sensing theory is proposed for
down-looking MIMO array SAR imaging, which transforms the cross-track imaging process of down-looking MIMO array SAR
into the problem of sparse signal reconstruction from noisy measurements. Due to account for additive noise encountered in the
measurement process, high quality image can be achieved. Simulation results indicate that the proposedmethod can provide better
resolution and lower sidelobes compared to the conventional method.

1. Introduction

Traditional synthetic aperture radar (SAR) is a microwave
sensor which can reconstruct two-dimensional (2D) images
of the observed area with weather independence and all-day
operation capabilities [1, 2]. However, traditional 2D SAR
works in side-looking mode and often meets with shading
and lay over effects in urban and mountain areas. Compared
with 2D SAR, 3D SAR has distinct advantage in estimation of
forest height, 3D digital maps, complex terrain mapping, and
so on.Multibaseline SAR tomography is an advanced 3D SAR
imaging mode, which forms an additional synthetic aperture
in the height direction. Therefore, it has resolving capability
along this dimension. Unfortunately, for the current SAR
tomography, it is almost impossible to avoid an uneven track
distribution in repeat-pass data acquisition, which is just the
main reason for the strong ambiguity in height [3, 4].

Down-looking array SAR is an innovative imaging
mode, which obtains range resolution by pulse compres-
sion, azimuth resolution by virtual aperture synthesis with
platform movement, and cross-track resolution by a linear
array antenna [5–7]. Down-looking array SAR can overcome
restrictions of shading and lay over effects in side-looking
SAR and also avoid the height ambiguity problem in SAR

tomography caused by the uneven track distribution. How-
ever, in order to avoid the grating lobe effect in the cross-track
direction, a large number of antenna elements are required,
which increase the cost and complexity of the equipment.
Therefore, multiple-input-multiple-output (MIMO) antenna
array is often used in down-looking array SAR, which can
reduce the number of real antenna elements largely for a given
size of antenna array [8–10]. The common methods used for
down-looking MIMO array SAR imaging are usually based
on matched filter, which often suffer from low resolution and
high sidelobe interference in the images [7, 8]. Moreover, the
cross-track resolution is limited by the length of linear array.
Hence, high resolution imaging algorithms are desired.

In recent years, Bayesian compressive sensing (BCS) has
caused widespread concern, showing significant advantages
to sparse signal reconstruction [11]. BCS methods provide
certain improvements compared with norm-based CS meth-
ods in low noise level, by exploiting the sparseness prior
distribution of the image scene. In addition, the Bayesian
framework takes into account the additive noise encountered
when implementing compressed sampling. Therefore, some
BCS based methods for SAR applications have been con-
cerned about recently [12, 13]. As the 3D illuminated scene
contains only a very small strong scattering centers compared
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Figure 1: Geometry of down-looking MIMO array SAR.

with the total space cells, representing strong spatial sparsity
in high frequency radar application, we propose a new 3D
imaging algorithm for down-lookingMIMOarray SARbased
on BCS.

The rest of the paper is organized as follows. Section 2
presents the geometry and principle of down-lookingMIMO
array SAR system. In Section 3, a new 3D imaging algorithm
for down-looking MIMO array SAR is described in detail.
The performance of the method is investigated in Section 4.
Finally, Section 5 gives a brief conclusion.

2. Down-Looking MIMO Array SAR

2.1. Geometrical Model. The geometry of down-looking
MIMO array SAR is shown in Figure 1. 𝑥, 𝑦, and 𝑟 denote the
azimuth, cross-track, and slant range direction, respectively.
The radar platform flies along the 𝑥-axis corresponding to
azimuth direction, with velocity V at height 𝐻. The thinned
linear antenna array, which contains𝑀 transmitting antenna
elements and 𝑁 receiving antenna elements, is mounted in
the cross-track direction along the wings. The transmitting
antenna elements are located at the tips with the distance 𝑑,
the receiving antenna elements are centered at the𝑦-axis with
spacing 𝑀𝑑/2, and the distance between the transmitting
and receiving antenna elements is 𝑑/2. The thinned linear
antenna array works in the time division mode. Each time,
only one transmitting antenna element transmits signal and
all the receiving antenna elements receive echo simultane-
ously. The transmitting antenna elements work sequentially
and an aperture synthesis period is acquired until all the
transmitting antenna elements have worked once. According
to the principle of equivalent phase center, the thinned linear
array formed by the above positions and work mode is equal
to a fully distributed virtual uniform linear array [5, 10]. The
virtual antenna array is composed of 𝑀𝑁 virtual elements
and works in self-transmitting and receiving mode. That is
to say, each virtual antenna element transmits and receives
signal by itself. These virtual antenna elements are uniform
distributed along the wings and centered at the 𝑦-axis. Each
virtual antenna element is located at the mean position of a

Delay time 
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Figure 2: Transmitting and receiving order of down-lookingMIMO
array SAR.

real single transmitting element and a real single receiving
element, and the distance between individual virtual antenna
elements is 𝑑/2. Figure 2 shows the transmitting and the
receiving order of each antenna element for a down-looking
MIMO array SAR.

2.2. Equivalent Phase Error Compensation. Consider the data
acquisition shown in Figure 1. At the slow time 𝑡

𝑚
, the

position of the 𝑖th transmitting antenna element is given by
(𝑥, 𝑦
𝑇𝑖
, 𝐻), where 𝑥 = V𝑡

𝑚
is the azimuth position, and 𝑦

𝑇𝑖

is the cross-track position of the 𝑖th transmitting antenna
element. The position of the 𝑗th receiving antenna element
is given by (𝑥, 𝑦

𝑅𝑗
, 𝐻), where 𝑦

𝑅𝑗
is the cross-track position

of the 𝑗th receiving antenna element. For a point scatterer
𝑃 positioned at (𝑥

𝑝
, 𝑦
𝑝
, 𝑧
𝑝
), the transmitting and receiving

paths 𝑅
𝑇𝑖
and 𝑅

𝑅𝑗
are given by

𝑅
𝑇𝑖

= √(𝑥 − 𝑥
𝑝
)
2

+ (𝑦
𝑇𝑖

− 𝑦
𝑝
)
2

+ (𝐻 − 𝑧
𝑝
)
2

= √(𝑦
𝑇𝑖

− 𝑦
𝑝
)
2

+ 𝑅2
𝑃
,

𝑅
𝑅𝑗

= √(𝑥 − 𝑥
𝑝
)
2

+ (𝑦
𝑅𝑗

− 𝑦
𝑝
)
2

+ (𝐻 − 𝑧
𝑝
)
2

= √(𝑦
𝑅𝑗

− 𝑦
𝑝
)
2

+ 𝑅2
𝑝
,

(1)

where

𝑅
𝑝
= √(𝑥 − 𝑥

𝑝
)
2

+ (𝐻 − 𝑧
𝑝
)
2

. (2)

Then the complete travelling path of the wave from the 𝑖th
transmitting antenna element to point scatterer 𝑃 to the 𝑗th
receiving antenna element is given by

𝑅
𝑖,𝑗

= 𝑅
𝑇𝑖

+ 𝑅
𝑅𝑗

= √(𝑦
𝑇𝑖

− 𝑦
𝑝
)
2

+ 𝑅2
𝑃
+ √(𝑦

𝑅𝑗
− 𝑦
𝑝
)
2

+ 𝑅2
𝑃
.

(3)
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From (2) we can get that the complete travelling path contains
two square roots, which will lead to complex computation for
the following imaging process. According to the principle of
equivalent phase center, the above complete travelling path
can be equal to the dual echo paths from the virtual antenna
element located at 𝑦 = (𝑦

𝑇𝑖
+ 𝑦
𝑅𝑗
)/2 to point scatterer 𝑃 [5].

And the equivalent echo path can be written as

𝑅 = √(𝑥 − 𝑥
𝑝
)
2

+ (𝑦 − 𝑦
𝑝
)
2

+ (𝐻 − 𝑧
𝑝
)
2

= √(𝑦 − 𝑦
𝑝
)
2

+ 𝑅2
𝑝
.

(4)

Then, the phase difference between the virtual antenna
element and the reality antenna element is given by

Δ𝜑 =
2𝜋

𝜆
(𝑅
𝑖,𝑗

− 2𝑅)

=
2𝜋

𝜆
(√(𝑦

𝑇𝑖
− 𝑦
𝑝
)
2

+ 𝑅2
𝑃
+ √(𝑦

𝑅𝑗
− 𝑦
𝑝
)
2

+ 𝑅2
𝑃

−2√(𝑦 − 𝑦
𝑝
)
2

+ 𝑅2
𝑝
)

≈
𝜋(𝑦
𝑇𝑖

− 𝑦
𝑅𝑗
)
2

2𝜆𝑅
𝑝

.

(5)

When the scatterers are located at the far field, the
phase difference Δ𝜑 is approximate to zero. Otherwise, the
phase compensation should be implemented before the image
processing. From (5) it can be seen that the compensated
phase varies with 𝑅

𝑝
; in practice we use the center of view

field as reference point to compensate the whole view field.
Furthermore, the down-lookingMIMO array SAR works

in the time division mode and the virtual antenna elements
obtained from different pulse repetition period are not in a
straight line with the movement of the platform. Therefore,
in order to obtain a fully distributed virtual uniform linear
array, the motion compensation should be implemented.The
compensated phase caused by the overtake or lag phases
owing to the position difference of the antenna elements is
given by

Δ𝜑
𝑙,𝑘

=
4𝜋

𝜆
(((

𝑀V
PRF

(𝑙 −
𝐿

2
) + Δ𝑥

𝑘
− 𝑥
𝑝
)

2

+ (𝑦 − 𝑦
𝑝
)
2

+ (𝐻 − 𝑧
𝑝
)
2

)

1/2

− ((
𝑀V
PRF

(𝑙 −
𝐿

2
) − 𝑥
𝑝
)

2

+(𝑦 − 𝑦
𝑝
)
2

+ (𝐻 − 𝑧
𝑝
)
2

)

1/2

) ,

𝑙 = 1, 2, . . . , 𝐿; 𝑘 = 1, 2, . . . ,𝑀,

(6)

where 𝐿 is the azimuth sample number and Δ𝑥
𝑘
is the move

spacing between the 𝑘th and the first transmitting antenna
element in the azimuth direction. V is the velocity of the
platform and PRF is the pulse repetition frequency.

After the process above, the collected data of down-
looking MIMO array SAR can be regarded as received by the
fully distributed virtual linear array.

3. Three-Dimensional Imaging Algorithm for
Down-Looking MIMO Array SAR

Based on the principle of equivalent phase center, the thinned
linear array formed by the time division mode can be
equal to a virtual linear array, and each virtual antenna
element transmits and receives signal by itself. The linear
frequency modulated pulse signal transmitted by the 𝑚th
virtual antenna element is given by

𝑠 (𝑡̂) = rect( 𝑡̂

𝑇
𝑟

) exp [𝑗2𝜋 (𝑓
𝑐
𝑡̂ +

1

2
𝛾𝑡̂
2

)] , (7)

where 𝑡̂ denotes the fast time, 𝑇
𝑟
denotes the pulse width, 𝑓

𝑐

is the carrier frequency, 𝛾 is the chirp rate, and rect(⋅) is the
unit rectangular function.

For an arbitrary point scatterer positioned at
𝑃(𝑥
𝑝
, 𝑦
𝑝
, 𝑧
𝑝
), the echo signal received by the 𝑚th virtual

antenna element can be expressed as

𝑠
1
(𝑡̂, 𝜏, 𝑦

𝑚
) = rect( 𝑡̂ − 2𝑅/𝑐

𝑇
𝑟

) rect(
𝜏 − 𝜏
𝑝

𝑇
𝑎

)

× exp [𝑗𝜋𝛾(𝑡̂ −
2𝑅

𝑐
)

2

− 𝑗
4𝜋

𝜆
𝑅] ,

(8)

where 𝜏 denotes the azimuth time, 𝜏
𝑝

= 𝑥
𝑝
/V is the azimuth

time of the point scatterer 𝑃, 𝑐 is the light velocity, 𝑇
𝑎

is the observing duration, 𝜆 is the wavelength, and 𝑅 is
the instantaneous distance between the 𝑚th virtual antenna
element and the point scatterer

𝑅 = √(V𝜏 − 𝑥
𝑝
)
2

+ (𝑦
𝑚

− 𝑦
𝑝
)
2

+ (𝐻 − 𝑧
𝑝
)
2

≈ 𝑅
𝑝
+
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𝑝
)
2

2𝑅
𝑝

+
𝑦
2

𝑚
− 2𝑦
𝑚
𝑦
𝑝

2𝑅
𝑝

,

(9)

where 𝑅
𝑝

= √(𝐻 − 𝑧
𝑝
)
2

+ 𝑦2
𝑝
and 𝑦

𝑚
is the cross-track

position of the 𝑚th virtual antenna element.

3.1. Range Compression. Transform the signal expressed in
(8) into the range frequency domain

𝑆
1
(𝑓
𝑟
, 𝜏, 𝑦
𝑚
)

= rect(
𝑓
𝑟

𝑇
𝑟
𝛾
) rect(

𝜏 − 𝜏
𝑝

𝑇
𝑎

)

× exp(−𝑗
𝜋𝑓
2

𝑟

𝛾
) exp(−𝑗

4𝜋𝑓
𝑟

𝑐
𝑅) exp (−𝑗

4𝜋

𝜆
𝑅) ,

(10)

where 𝑓
𝑟
is range frequency.
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The matched filter function for the range compression is
given by

𝐻
1
(𝑓
𝑟
) = rect(

𝑓
𝑟

𝑇
𝑟
𝛾
) exp(𝑗

𝜋𝑓
2

𝑟

𝛾
) . (11)

After the range compression, the received signal can be
written as

𝑠
2
(𝑡̂, 𝜏, 𝑦

𝑚
) = rect(

𝜏 − 𝜏
𝑝

𝑇
𝑎

) sinc [𝑇
𝑟
𝛾 (𝑡̂ −

2𝑅

𝑐
)]

× exp(−𝑗
4𝜋𝑅

𝜆
) .

(12)

3.2. Azimuth Compression. From (9) and (12) we get that the
distance between the antenna element and the scatterer varies
with the azimuth position of the radar platform, which leads
to the coupling of the envelope in the range-azimuth plane.
Therefore, the range migration in the azimuth direction
should be removed first before the azimuth compression.
And the correction function for the range migration can be
derived from (9)

𝐻
2
(𝑓
𝑟
, 𝜏) = exp(𝑗

2𝜋(V𝜏 − 𝑥
𝑝
)
2

𝑐𝑅
𝑝

𝑓
𝑟
) . (13)

Transform the signal expressed in (12) to the range
frequency domain and correct the range migration using
𝐻
2
(𝑓
𝑟
, 𝜏).Then, after the range inverse Fourier transform, the

signal becomes

𝑠
3
(𝑡̂, 𝜏, 𝑦

𝑚
) = rect(

𝜏 − 𝜏
𝑝

𝑇
𝑎

) sinc [𝑇
𝑟
𝛾 (𝑡̂ −

2𝑅
𝑐

𝑐
)]

× exp(−𝑗
4𝜋𝑅
𝑝

𝜆
) ⋅ exp[

[

−𝑗
2𝜋V2(𝜏 − 𝜏

𝑝
)
2

𝜆𝑅
𝑝

]

]

× exp[−𝑗
2𝜋 (𝑦

2

𝑚
− 2𝑦
𝑚
𝑦
𝑝
)

𝜆𝑅
𝑝

] ,

(14)

where 𝑅
𝑐
= 𝑅
𝑝
+ (𝑦
2

𝑚
− 2𝑦
𝑚
𝑦
𝑝
)/2𝑅
𝑝
.

An azimuth Fourier transform is then performed on each
range gate to transform the data into the range time-azimuth
frequency domain, and the signal becomes

𝑆
3
(𝑡̂, 𝑓
𝑎
, 𝑦
𝑚
)

= rect(
𝑓
𝑎

𝛾
𝑎
𝑇
𝑎

) sinc [𝑇
𝑟
𝛾 (𝑡̂ −

2𝑅
𝑐

𝑐
)]

× exp[−𝑗
2𝜋 (𝑦

2

𝑚
− 2𝑦
𝑚
𝑦
𝑝
)

𝜆𝑅
𝑝

] ⋅ exp(−𝑗
4𝜋𝑅
𝑝

𝜆
)

× exp[𝑗
𝜋𝑓
2

𝑎

𝛾
𝑎

] exp (−𝑗2𝜋𝜏
𝑝
𝑓
𝑎
) ,

(15)

where 𝛾
𝑎
= 2V2/𝜆𝑅

𝑝
. Then a multiplication of the signal with

the azimuth matched filter function 𝐻
3
(𝑓
𝑎
) is performed,

where

𝐻
3
(𝑓
𝑎
) = exp(−𝑗

𝜋𝑓
2

𝑎

𝛾
𝑎

) . (16)

Then, we get the azimuth compressed signal by performing
inverse Fourier transform in the azimuth direction

𝑠
4
(𝑡̂, 𝜏, 𝑦

𝑚
) = sinc [𝑇

𝑟
𝛾 (𝑡̂ −

2𝑅
𝑐

𝑐
)] sinc [𝑇

𝑎
𝛾
𝑎
(𝜏 − 𝜏

𝑝
)]

⋅ exp[−𝑗
2𝜋 (𝑦

2

𝑚
− 2𝑦
𝑚
𝑦
𝑝
)

𝜆𝑅
𝑝

] exp(−𝑗
4𝜋𝑅
𝑝

𝜆
) .

(17)

3.3. Cross-Track Compression. From (17) it can be seen that
the distance between the antenna element and the scatterer
also varies with the cross-track position of the antenna
element. Therefore, the range migration in the cross-track
direction should be removed before the cross-track compres-
sion. And the amount of the range migration to be corrected
can be given by (9)

Δ𝑅
𝑐
=

𝑦
2

𝑚
− 2𝑦
𝑚
𝑦
𝑝

2𝑅
𝑝

. (18)

Transform the signal expressed in (17) into the range
frequency domain, and correct the range migration in the
range frequency domain. Then the signal becomes

𝑠
4
(𝑡̂, 𝜏, 𝑦

𝑚
)

= sinc [𝑇
𝑟
𝛾(𝑡̂ −

2𝑅
𝑝

𝑐
)] sinc [𝑇

𝑎
𝛾
𝑎
(𝜏 − 𝜏

𝑝
)]

⋅ exp(−𝑗
2𝜋𝑦
2

𝑚

𝜆𝑅
𝑝

) exp(𝑗
4𝜋𝑦
𝑚
𝑦
𝑝

𝜆𝑅
𝑝

) exp(−𝑗
4𝜋𝑅
𝑝

𝜆
) .

(19)

The first phase term in (19) represents a quadratic distortion,
which can be compensated by

𝐻
4
(𝑦
𝑚
) = exp(𝑗

2𝜋𝑦
2

𝑚

𝜆𝑅
𝑝

) . (20)

In high frequency radar application, the interest scene
can be modeled by a limited number of strong scattering
centers reflecting impinging electromagnetic waves isotrop-
ically to all receivers, representing strong spatial sparsity [14].
Therefore, the cross-track imaging process of down-looking
MIMO array SAR can be transformed into the problem of
sparse signal reconstruction from noisy measurements. After
the 2D imaging process in the range and azimuth directions,
the signal in the range-azimuth cell corresponding to (𝑡̂ =

2𝑅
𝑝
/𝑐, 𝜏 = 𝜏

𝑝
) by neglecting the constant phase term of (19)

can be written as

𝑠
5
(𝑡̂, 𝜏, 𝑦

𝑚
) =

𝑃

∑

𝑝=1

𝜎
𝑝
(𝑡̂, 𝜏) exp (𝑗2𝜋𝑓

𝑝
𝑦
𝑚
) , (21)
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where 𝜎
𝑝
(𝑡̂, 𝜏) and 𝑓

𝑝
= 2𝑦

𝑝
/𝜆𝑅
𝑝
denote the backward

scattering coefficient and the frequency of the 𝑝th point
scatterer, respectively.

For numerical analysis, (21) can be described by discrete
system model

s = Φ𝜎, (22)

where s = [𝑠
5
(𝑡̂, 𝜏, 𝑦

1
), 𝑠
5
(𝑡̂, 𝜏, 𝑦

2
), . . . , 𝑠

5
(𝑡̂, 𝜏, 𝑦

𝑀𝑁
)]
𝑇 is the

signal vector corresponding to the 𝑀𝑁 virtual antenna
elements, 𝜎 = [𝜎

1
(𝑡̂, 𝜏), 𝜎

2
(𝑡̂, 𝜏), . . . , 𝜎

𝑃
(𝑡̂, 𝜏)]

𝑇is the complex-
valued scatter coefficient vector in the cross-track direction,
and the matrixΦ can be constructed as

Φ = [𝜙
1
,𝜙
2
, . . . ,𝜙

𝑝
, . . . ,𝜙

𝑃
] , (23)

where

𝜙
𝑝
= [exp (𝑗2𝜋𝑓

𝑝
𝑦
1
) ,

exp (𝑗2𝜋𝑓
𝑝
𝑦
2
) , . . . , exp (𝑗2𝜋𝑓

𝑝
𝑦
𝑀𝑁

)]
𝑇

,

(24)

where (⋅)
𝑇 represents the transpose operation.

In the more realistic case some noise is added on the
measurements

s = Φ𝜎 + n (25)

with n a complex Gaussian vector with zero mean and power
𝜎
2

𝑛
.
Then, the Bayesian compressive sensing method is

employed to estimate the 𝜎. From the aspect of denoising,
Laplace distribution is often used as the sparseness prior [15].
Hence, the probability distribution function of 𝜎 can be given
by

𝑝 (𝜎 | 𝜎
𝛿
) =

𝑃

∏

𝑖=1

𝑝 (𝜎
𝑖
| 𝜎
𝛿
)

=

𝑃

∏

𝑖=1

1

√2𝜎
𝛿

exp(−
√2𝜎
𝑖

𝜎
𝛿

) ,

(26)

where 𝜎
𝛿
is the scale parameter of the Laplace distribution.

And the probability density function of Gaussian noise n
is given by

𝑝 (n | 𝜎
2

𝑛
) = (

1

2𝜋𝜎2
𝑛

)

𝑀𝑁

exp(−
‖n‖2
2

2𝜎2
𝑛

) , (27)

where ‖ ⋅ ‖
2

2
denotes the 𝑙

2
norm.

Therefore, the likelihood function of the received data s is

𝑝 (s | 𝜎, 𝜎
2

𝑛
) = (

1

2𝜋𝜎2
𝑛

)

𝑀𝑁

exp{−
‖s −Φ𝜎‖

2

2

2𝜎2
𝑛

} . (28)

Based on Bayesian theory, the maximum a posteriori
(MAP) estimator is used to estimate 𝜎 as

𝜎̂ = argmax [𝑝 (𝜎 | s)]

= argmax [𝑝 (s | 𝜎, 𝜎
2

𝑛
) ⋅ 𝑝 (𝜎 | 𝜎

𝛿
)] .

(29)

Apparently, the MAP solution of 𝜎 can be estimated by
maximizing the log posterior of 𝜎 as

𝜎̂ = arg max 𝐽 (𝜎)

= argmax [ln𝑝 (s | 𝜎, 𝜎
2

𝑛
) + ln𝑝 (𝜎 | 𝜎

𝛿
)]

= argmax[−
1

2𝜎2
𝑛

‖s −Φ𝜎‖
2

2
−

√2

𝜎
𝛿

𝑃

∑

𝑖=1

𝜎
𝑖
]

= argmin [‖s −Φ𝜎‖
2

2
+ 𝜇‖𝜎‖

1
] ,

(30)

where 𝜇 = 2√2𝜎
2

𝑛
/𝜎
𝛿
.

Then, the quasi-Newton iterative method with Hessian
update scheme is used to solve the optimization problem [16].
The gradient of the objective function 𝐽(𝜎)with respect to 𝜎
is given by

∇𝐽 (𝜎) = 𝐻̃ (𝜎)𝜎 − 2Φ
𝐻s, (31)

where

𝐻̃ (𝜎) = 2Φ
𝐻

Φ + 𝜇Λ (𝜎) ,

Λ (𝜎) = diag {(
󵄨󵄨󵄨󵄨(𝜎)𝑖

󵄨󵄨󵄨󵄨
2

+ 𝜀)
−1/2

} .

(32)

Here 𝐻̃(𝜎) is used as an approximation to the Hessian,
and 𝜎 can be obtained from the following quasi-Newton
iteration:

𝜎̂
(𝑛+1)

= 𝜎̂
(𝑛)

− 𝛾[𝐻̃ (𝜎̂
(𝑛)

)]
−1

∇𝐽 (𝜎̂
(𝑛)

) , (33)

where 𝛾 is the step size. After substituting (31) into (33), we
obtain the following iterative algorithm:

𝐻̃ (𝜎̂
(𝑛)

) 𝜎̂
(𝑛+1)

= (1 − 𝛾) 𝐻̃ (𝜎̂
(𝑛)

) 𝜎̂
(𝑛)

+ 2𝛾Φ
𝐻s. (34)

The iteration is stopped when ‖𝜎̂
(𝑛+1)

− 𝜎̂
(𝑛)

‖
2

2
< 𝜁, where 𝜁 is

a small positive constant.
Then, the 3D image of down-looking MIMO array SAR

can be obtained until all the range-azimuth cells have been
processed using the same procedure.

In conclusion, the 3D imaging processing flow of the
proposed method for down-looking MIMO array SAR can
be shown in Figure 3.

3.4. Estimation of the Parameters 𝜎2
𝑛
and 𝜎
𝛿
. It is clear that the

imaging performance of the proposed method is related to
the correct selection of the noise level 𝜎2

𝑛
.Therefore, the noise

level must be estimated accurately. Because the noise always
distributes evenly and there are many range cells containing
noise only in down-looking SAR imaging, the noise level
estimation is available by setting an energy-based threshold
to select the noise cells [17]. The threshold is given by

thres = 𝐸
𝑚

+ [

𝑃𝑄

∑

𝑖=1

(𝐸
𝑖
− 𝐸
𝑚
)
2

𝑃𝑄
]

1/2

, (35)
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Figure 3: The flowchart of proposed method for down-looking MIMO array SAR imaging.

where 𝐸
𝑖
is the energy of the 𝑖th range cell and 𝐸

𝑚
denotes

the mean energy of all range cells. If the energy of a range cell
is below the threshold, this range cell is selected as noise cell.
Then, the energy of all the selected cells can be used as the
noise level 𝜎2

𝑛
.

In addition, the maximum likelihood estimate method
is used to choose the objective statistical parameter 𝜎

𝛿
.

According to (26), the log-likelihood function for the Laplace
distribution can be written as

ℓ (𝜎
𝛿
| 𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑃
) = −𝑃 ln√2𝜎

𝛿
−

𝑃

∑

𝑖=1

√2𝜎
𝑖

𝜎
𝛿

. (36)

Maximizing the log likelihood function (36) with respect to
𝜎
𝛿
produces the following equation:

𝜎̂
𝛿
=

1

𝑃

𝑃

∑

𝑖=1

√2𝜎
𝑖
. (37)

From (37) it is clear that we can average the estimates of
all pixel values to obtain the estimation of the statistical
parameter 𝜎

𝛿
.

Table 1: Parameters used for simulation.

Parameter Value
Carrier frequency 37.5 GHz
Pulse bandwidth 300MHz
Pulse repetition frequency 1024Hz
Chirp duration 1.0 𝜇s
Radar height 500m
Radar velocity 50m/s
Number of transmitting antenna elements 4
Number of receiving antenna elements 32
Azimuth resolution 0.4m
Range resolution 0.5m
Cross-track resolution 0.4m

4. Simulation Results

In this section, point target simulation is carried out to verify
the validity of the proposed imaging algorithm. The main
parameters used for simulation are listed in Table 1.

Suppose that there are five point targets located at the
scene with the azimuth-range-cross track values equal to (0,
485, 0), (8, 495, 20), (8, 495, −20), (−8, 495, 20), and (−8,
495, −20), respectively. The distributions of the five point
targets are shown in Figure 4(a). After raw data generation
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Figure 4: Real spatial position and final 3D image.
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Figure 5: 2D image of selected sections.

and 3D imaging processing by using the proposed algorithm,
the surfaces of the final 3D image are plotted at −20 dB in
Figure 4(b). As expected, the image is reconstructed in 3D
space, and the whole space structure is very consistent with
the real situation in Figure 4(a). Figure 5 shows three selected
sections of the final 3D image of down-looking MIMO array
SAR. Figure 5(a) shows the 2D image of the selected range-
cross track section corresponding to azimuth position 8m.
Figure 5(b) shows the 2D image of the selected azimuth-
cross track section corresponding to range position 495m.

Figure 5(c) shows the 2D image of the selected azimuth-
range section corresponding to cross-track position −20m.
The below imaging results show that the point scatterers are
well focused in three directions, confirming the validity of the
proposed algorithm.

In order to analyze the performance of the proposed
method, the imaging result obtained by Fourier transform
is given for comparison. Supposed that there are two targets
located at the azimuth-range-cross track unit of (8, 0.18, 495)
and (8, −0.18, 495). Figure 6(a) shows the range-cross track
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Figure 6: Comparison of the range-cross track imaging results of down-looking MIMO array SAR.
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Figure 7: Comparison of the cross-track distribution obtained by Fourier transform and the proposed method.

reconstruction result obtained by Fourier transform, and
Figure 6(b) shows the range-cross track reconstruction result
obtained by the proposedmethod.As the cross-track distance
of the two targets is 0.36m, which is less than the cross-track
resolution of 0.4m, the two targets can not be distinguished
in the image obtained by Fourier based method. However,
the proposed method can improve the spatial resolution and
distinguish the two targets clearly.

In the following experiment, we take into account two
targets located at the same azimuth and range positions and
with the cross-track values equal to −2m and 2m, respec-
tively. Moreover, additional Gaussian distributed complex
noise is added to generate measurements with SNR of 5 dB.
Figures 7(a) and 7(b) show the cross-track distribution of the
two targets obtained by Fourier transform and the proposed
method, respectively. By comparing the imaging results, it can
be seen that the proposedmethod ismore robust to noise and

it recovers target image together with suppressing the noise
components.

5. Conclusions

Down-looking MIMO array SAR can reconstruct 3D images
of the observed area and overcome restrictions of shading
and lay over effects in side-looking SAR. Therefore, down-
looking MIMO array SAR has challenging potential for 3D
digital maps, complex terrain mapping, and so on. However,
the cross-track resolution of down-lookingMIMO array SAR
is limited by the length of linear array. In this paper, a novel
3D imaging strategy is proposed for down-looking MIMO
array SAR. Exploiting the spatial sparsity of the interest
scene, we transform the cross-track imaging process of down-
looking MIMO array SAR into the problem of sparse signal
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reconstruction fromnoisymeasurements. Raw data of down-
lookingMIMOarray SAR inKa-band is simulated and the 3D
image is achieved. The results of the simulated data confirm
the effectiveness of the proposed method.
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The problems of the “Three Crossings” motions and compensations for the moving target of the high speed moving MIMO radar
are studied. Firstly, the space model is established to describe the problems by educing the equations of delay and transmitting
pattern, which are changing with time. The echo characteristics are analyzed and the formulas of the “Three Crossings” are given.
Secondly, a compensationmethod, which uses the fractional Fourier transform (FrFT) to compensate the crossingDoppler-cell and
the preprocess to compensate the crossing range-cell and crossing-beam, is proposed. This method could compensate the “Three
Crossings” simultaneously with little complexity of calculation because the preprocess deals only with the transmitting signals.
Lastly, the phantom antenna array is employed in the simulations, the working model of “sparse transmitting dense receiving” is
applied to the simulation of crossing-beam, and the results of simulations demonstrate the validity and the practicability of the
method of combining the preprocess and the FrFT to compensate “Three Crossings.”

1. Introduction

The aircrafts are moving faster and faster as the development
of the aviation technology, some of them could attain a
velocity more than mach 10, and the maneuverability is
becoming stronger too, whichmake themoving targetsmuch
more difficult to be searched, detected, and tracked by radar.
Long time accumulation could increase the SNR output
and the performance of detection, but adding accumulation
time may cause “Three Crossings”, which means crossing
Doppler-cell, crossing range-cell, and crossing-beam. The
“Three Crossings” ruin the coherence of the echo. In order
to accumulate coherently to get the best detection ability,
the “Three Crossings” must be compensated before the
accumulation.

Some valuable studies have been proposed for the cross-
ing Doppler-cell and crossing range-cell [1–8], but most of
them could compensate only one of these crossings. The
narrow beam of the phase array (PA) radar limited the study
about the crossing-beam, for PA radar cannot compensate
the crossing-beam; so far there is no reference for this study.
The MIMO radar transmits orthogonal signals to form a low
amplitude but wide beam to cover the whole surveillance

area [9–11]. Even though the “Three Crossings” happen
simultaneously, the MIMO radar can receive all the echoes
without any energy loss. So, the MIMO radar produces the
qualification for the study of the “Three Crossings,” especially
the crossing-beam.

In this paper, the “Three Crossings” of the target detected
by a high-speed moving MIMO radar are studied. A space
model is established firstly to educe the equations about how
the delay and the transmitting pattern change with the time.
Secondly, an analysis of the echo is proposed to show the
“Three Crossings” of the target. Thirdly, the preprocessing
method [12] is employed to compensate the crossing range-
cell and the crossing-beam, while the fractional Fourier
transform (FrFT) [13] is employed to compensate the crossing
Doppler-cell. A performance brief analysis about the com-
pensation mismatching is proposed after all this, and the
simulation results are produced at last.

2. Space Model

At time 𝑡, the radar lies at point 𝑃 with the height of 𝐻 and
moves along the 𝑌-axis with a high speed V

𝑟
, while the target

Hindawi Publishing Corporation
International Journal of Antennas and Propagation
Volume 2014, Article ID 761084, 7 pages
http://dx.doi.org/10.1155/2014/761084

http://dx.doi.org/10.1155/2014/761084


2 International Journal of Antennas and Propagation

Y

Z

P

H

O

Q

X

R(t1)

�r

R0

Q󳰀

P󳰀

�t

𝜃 𝜃󳰀

𝛼

Figure 1: The space geometry relationship of the MIMO radar and
the detected target.

lies at point 𝑄 and moves with a low speed V
𝑡
, assuming that

V
𝑟
is much larger than V

𝑡
. Let the distance of the radar and the

target 𝑃𝑄 = 𝑅
0
; the angle between the direction of the radar

and 𝑃𝑄 is 𝜃. After 𝑡
1
, the transmitting signal propagates to

the point where the target lies; assume that the point is 𝑄󸀠,
the radar moves to point 𝑃󸀠, and the distance becomes 𝑅(𝑡

1
).

Because the target moves very slowly, the range 𝑄𝑄󸀠 is very
small, 𝑃𝑄 and 𝑃𝑄󸀠 are nearly the same, and angle ∠𝑃󸀠𝑃𝑄 and
angle ∠𝑃󸀠𝑃𝑄󸀠 are almost equal to each other, then we can
assume that 𝑃𝑄󸀠 = 𝑃𝑄 = 𝑅

0
and ∠𝑃󸀠𝑃𝑄󸀠 = ∠𝑃

󸀠

𝑃𝑄 = 𝜃.
The space geometry relationship of the MIMO radar and the
detected target is shown in Figure 1.

According to the cosine theorem, 𝑅(𝑡
1
) can be calculated;

after Taylor expandedness, the delay of the echo should be

𝜏 (𝑡) =
2𝑅
0

𝑐
+
−2V
𝑐 − V

(𝑡 −
𝑅
0

𝑐
) +

𝑎𝑐
2

(𝑐 − V)3
(𝑡 −

𝑅
0

𝑐
)

2

, (1)

where V is the relative velocity, 𝑐 is the velocity of light, and 𝑎
is the acceleration. Educe a further step; (2) can be gotten as
follows:

𝑡 − 𝜏 (𝑡) = 𝑡 −
2𝑅
0

𝑐
+

2V
𝑐 − V

(𝑡 −
𝑅
0

𝑐
) −

𝑎𝑐
2

(𝑐 − V)3
(𝑡 −

𝑅
0

𝑐
)

2

=
𝑐 + V
𝑐 − V

𝑡 −
𝑐 + V
𝑐 − V

2𝑅
0

𝑐 + V
−

𝑎𝑐
2

(𝑐 − V)3
𝑡
2

= 𝑘𝑡 − 𝑘𝑡
0
− 𝑝𝑡
2

,

(2)

where

𝑘 =
𝑐 + V
𝑐 − V

, 𝑡
0
=
2𝑅
0

𝑐 + V
, 𝑝 =

𝑎𝑐
2

(𝑐 − V)3
. (3)

Extracting the triangle 𝑃𝑃󸀠𝑄󸀠, in the whole surveillance
period, the changing angle from the target to the radar is
equal to 𝛼, as is shown in Figure 2.

P

R0 R(t)

𝛼
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Figure 2: The changing angle.

Assuming that 𝛼 is constant in one pulse repeat interval
(PRI) and variable between each PRI, the MIMO radar has
an𝑀 elements transmitting uniform linear array (ULA) and
an𝑁 elements receiving ULA; 𝐿 pulses are transmitted in the
accumulation period. So, the phase matrixes of the steering
vectors of the transmitting and receiving arrays are

Ψ
𝑇
= [𝜓 (𝑡

1
) ,𝜓 (𝑡

2
) , . . . ,𝜓 (𝑡

𝐿
)]
𝑇

=

[
[
[
[
[
[
[
[
[
[

[

𝜓
1
(𝑡
1
) 𝜓
1
(𝑡
2
) ⋅ ⋅ ⋅ 𝜓

1
(𝑡
𝐿
)

𝜓
2
(𝑡
1
) 𝜓
2
(𝑡
2
) ⋅ ⋅ ⋅ 𝜓

2
(𝑡
𝐿
)

...
... d

...

𝜓
𝑀
(𝑡
1
) 𝜓
𝑀
(𝑡
2
) ⋅ ⋅ ⋅ 𝜓

𝑀
(𝑡
𝐿
)

]
]
]
]
]
]
]
]
]
]

]

𝑇

,

(4)

Ψ
𝑅
= [Φ (𝑡

1
) ,Φ (𝑡

2
) , . . . ,Φ (𝑡

𝐿
)]
𝑇

=

[
[
[
[
[
[
[
[
[
[

[

𝜙
1
(𝑡
1
) 𝜙
1
(𝑡
2
) ⋅ ⋅ ⋅ 𝜙

1
(𝑡
𝐿
)

𝜙
2
(𝑡
1
) 𝜙
2
(𝑡
2
) ⋅ ⋅ ⋅ 𝜙

2
(𝑡
𝐿
)

...
... d

...

𝜙
𝑁
(𝑡
1
) 𝜙
𝑁
(𝑡
2
) ⋅ ⋅ ⋅ 𝜙

𝑁
(𝑡
𝐿
)

]
]
]
]
]
]
]
]
]
]

]

𝑇

,

(5)

where the phase of the𝑚th transmitting channel is

𝜓
𝑚
(𝑡
𝑙
) =

2𝜋 (𝑚 − 1) 𝑑
𝑡

𝜆
sin [𝛼

1
(𝑡
𝑙
)] ,

𝑚 = 1 ∼ 𝑀, 𝑙 = 1 ∼ 𝐿

(6)

and the phase of the 𝑛th receiving channel is

𝜙
𝑛
(𝑡
𝑙
) =

2𝜋 (𝑛 − 1) 𝑑
𝑟

𝜆
sin [𝛼

2
(𝑡
𝑙
)] ,

𝑛 = 1 ∼ 𝑁, 𝑙 = 1 ∼ 𝐿.

(7)
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The angles 𝛼
1
and 𝛼

2
are the 𝛼 in Figure 2. Assume that, after

𝑏 PRI, the angle changes, so 𝑡
𝑙
should be

𝑡
𝑙
= ⌈

𝑙

𝑏
⌉𝑇, 𝑙 = 1 ∼ 𝐿, (8)

where 𝑇 could be any moment in the radar period 𝑇
𝑟
.

According to the cosine theorem, the sin𝛼 can be calculated
in the triangle 𝑃𝑃󸀠𝑄󸀠; put sin𝛼 into (6); then we can get

𝜓
𝑚
(𝑡
𝑙
) = (1 +

V
𝑟

𝑅
0

⌈
𝑙

𝑏
⌉𝑇 cos 𝜃)

V
𝑟

𝑅
0

⌈
𝑙

𝑏
⌉𝑇

⋅
2𝜋 (𝑚 − 1) 𝑑 sin 𝜃

𝜆
,

𝑚 = 1 ∼ 𝑀,

𝑙 = 1 ∼ 𝐿.

(9)

If the transmitting array and the receiving array are
the same, sin[𝛼

2
(𝑡
𝑙
)] would have the same formula with

sin[𝛼
1
(𝑡
𝑙
)], so (9) can be used for 𝜙

𝑛
(𝑡
𝑙
) too.

3. Echo Analysis

The transmitting signal can be expressed as

S = [s
1
(𝑡) , . . . , s

𝐿
(𝑡)] =

[
[
[
[

[

𝑠
11
(𝑡) , . . . , 𝑠

1𝑀
(𝑡)

𝑠
21
(𝑡) , . . . , 𝑠

2𝑀
(𝑡)

...
𝑠
𝐿1
(𝑡) , . . . , 𝑠

𝐿𝑀
(𝑡)

]
]
]
]

]

𝑇

, (10)

where the signal transmitted by the 𝑚th element at the 𝑙th
period is

𝑠
𝑙𝑚
(𝑡) = rect(

𝑡 − 𝑙𝑇
𝑟

𝑇
𝑝

) 𝑠
𝑏𝑚
(𝑡 − 𝑙𝑇

𝑟
) 𝑒
𝑗2𝜋𝑓
𝑐
𝑡

, (11)

where 𝑠
𝑏𝑚
(𝑡) denotes the transmitted baseband signal. The

echo received by the 𝑛th channel after mixing should be

𝑠
𝑟 𝑙𝑛
(𝑡) =

𝑀

∑

𝑚=1

rect[
𝑡 − 𝜏 (𝑡) − 𝑙𝑇

𝑟

𝑇
𝑝

] 𝑠
𝑏𝑚
[𝑡 − 𝜏 (𝑡) − 𝑙𝑇

𝑟
]

× 𝑒
−𝑗2𝜋𝑓

𝑐
𝜏(𝑡)

𝑒
𝑗𝜓
𝑚
(𝑡
𝑙
)

⋅ 𝑒
𝑗𝜙
𝑛
(𝑡
𝑙
)

+ V
𝑛
(𝑡) .

(12)

In this paper, the clutter is ignored to focus on the “Three
Crossings” and their compensations; the clutter compression
in this case of the airborneMIMO radar, including the clutter
diffusing and agglomerating, will be discussed in another
paper, so V

𝑛
(𝑡) in (12) only stands for the noise.

Name the rectangle function in (12) as 𝑓(𝑡), so

𝑓 (𝑡) = rect[
𝑡 − 𝜏 (𝑡) − 𝑙𝑇

𝑟

𝑇
𝑝

] = rect(
𝑘𝑡 − 𝑘𝑡

0
− 𝑝𝑡
2

− 𝑙𝑇
𝑟

𝑇
𝑝

) .

(13)

Let the numerator in (13) be 0; the front edge in the fast-slow
time domain of the echo can be calculated as

𝑡̂ (𝑙) =
𝑝𝑇
2

𝑟

𝑘3
𝑙
2

+ (
1

𝑘
− 1 −

2𝑝𝑇
𝑟
𝑡
0

𝑘2
) 𝑙𝑇
𝑟
+ (2𝑘 − 1) 𝑡

0
+
𝑝𝑡
2

0

𝑘
.

(14)

The echo envelope will move in the fast-slow time domain as
the number of the pulse increases, according to (14), so the
range migration would happen in this case.

Name the baseband signal and the first exponential
function in (12) as 𝑔(𝑡), so

𝑔 (𝑡) =

𝑀

∑

𝑚=1

𝑠
𝑏𝑚
[𝑡 − 𝜏 (𝑡) − 𝑙𝑇

𝑟
] 𝑒
−𝑗2𝜋𝑓

𝑐
𝜏(𝑡)

. (15)

Here, the delay 𝜏(𝑡) is a quadric polynomial and the Doppler-
frequency of the echo 𝑓

𝑑
(𝑡) would be a function of time,

which would make the coherence of the echo be destroyed;
that is to say, the Doppler migration would happen in this
case.

Name the last two exponential functions in (12) as ℎ(𝑡), so

ℎ (𝑡) =

𝑀

∑

𝑚=1

𝑒
𝑗𝜓
𝑚
(𝑡
𝑙
)

⋅ 𝑒
𝑗𝜙
𝑛
(𝑡
𝑙
)

. (16)

According to (4)∼(9), we have

𝜓
𝑚
(𝑡
𝑙
1

) ̸=𝜓
𝑚
(𝑡
𝑙
1+𝑏

) , 𝜙
𝑛
(𝑡
𝑙
1

) ̸=𝜙
𝑛
(𝑡
𝑙
1+𝑏

) . (17)

That is to say, after 𝑏 PRI, the target moves into the next beam
and the crossing-beam would happen in this case.

4. Compensation Methods

In this paper, the preprocess method and the FrFT are
employed to compensate the “Three Crossings.” The prepro-
cess method compensates the range migration by combining
the direct digital synthesis (DDS) technology to control the
transmit signal elaborately, that is, to regulate the pulse width
of the transmitting signal to make the echo envelopes be
aligned automatically in the fast-slow time domain. The
beam-crossing is compensated by preprocessing the trans-
mitting signal too. Based on the algorithm of the preprocess,
the conjugate of the transmitting pattern is added in the
transmitting signals to make the transmitting angles be
compensated at the target.

From 𝑝 = 𝑎𝑐
2

/(𝑐 − V)3 ≈ 𝑎/𝑐, 𝑝 provides little effect on
the range migration, so 𝑓(𝑡) can be approximated as

𝑓 (𝑡) = rect(
𝑘𝑡 − 𝑘𝑡

0
− 𝑙𝑇
𝑟

𝑇
𝑃

) . (18)

So, the new transmitting signal can be written as

𝑠
𝑙𝑚
(𝑡) = rect(

𝑡/𝑘 − 𝑙𝑇
𝑟

𝑇
𝑝

) 𝑠
𝑏𝑚
(
𝑡

𝑘
− 𝑙𝑇
𝑟
) 𝑒
−𝑗𝜓
𝑚
(𝑡
𝑙
)

𝑒
𝑗2𝜋𝑓
𝑐
𝑡

,

𝑚 = 1 ∼ 𝑀.

(19)
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Then, the added signal at the target should be

𝑠
𝑇 𝑙𝑚

(𝑡) =

𝑀

∑

𝑚=1

rect[
(𝑡 − 𝑡
1
) /𝑘 − 𝑙𝑇

𝑟

𝑇
𝑝

] 𝑠
𝑏𝑚

× [
(𝑡 − 𝑡
1
)

𝑘
− 𝑙𝑇
𝑟
] 𝑒
𝑗2𝜋𝑓
𝑐
(𝑡−𝑡
1
)

,

(20)

where 𝑡
1
is the transmitting delay from radar to the target. So,

the echo after mixing should be

𝑠
𝑟 𝑙𝑛
(𝑡) =

𝑀

∑

𝑚=1

rect(
𝑡̂ − 𝑡
0

𝑇
𝑃

) 𝑠
𝑏𝑚
[
𝑡 − 𝜏 (𝑡)

𝑘
− 𝑙𝑇
𝑟
]

× 𝑒
−𝑗2𝜋𝑓

𝑐
𝜏(𝑡)

𝑒
𝑗𝜙
𝑛
(𝑡
𝑙
)

+ V
𝑛
(𝑡) .

(21)

The front edge of the echo envelopes in the fast-slow time
domain is a constant 𝑡

0
, which means the echo envelopes are

aligned, so the range-cell crossing is compensated.
After the receiving beam forming, we have

𝑠
𝑟 𝑙
(𝑡) =

𝑁

∑

𝑛=1

𝑠
𝑟 𝑙𝑛
(𝑡) 𝑒
−𝑗𝜙
𝑛
(𝑡
𝑙
)

=

𝑁

∑

𝑛=1

𝑀

∑

𝑚=1

rect(
𝑡̂ − 𝑡
0

𝑇
𝑃

) 𝑠
𝑏𝑚
[
𝑡 − 𝜏 (𝑡)

𝑘
− 𝑙𝑇
𝑟
] 𝑒
−𝑗2𝜋𝑓

𝑐
𝜏(𝑡)

+

𝑁

∑

𝑛=1

V
𝑛
(𝑡) .

(22)

In (22), the transmitting pattern is canceled by the
receiving pattern, so the beam-crossing is compensated.
Next, the FrFT is employed to compensate the Doppler-cell
crossing, which would make the phases of the echo contain
only constant and one-order polynomial; the result should be

𝑠
𝑟 𝑙
(𝑡) =

𝑁

∑

𝑛=1

𝑀

∑

𝑚=1

rect(
𝑡̂ − 𝑡
0

𝑇
𝑃

) 𝑠
𝑏𝑚
(𝜆
1
𝑡 + 𝜆
0
)

× 𝑒
−𝑗2𝜋𝑓

𝑐
(𝜉
1
𝑡+𝜉
0
)

+

𝑁

∑

𝑛=1

V
𝑛
(𝑡) ,

(23)

where 𝜆
1
and 𝜉
1
are the coefficients of the one-order polyno-

mial of 𝑡 and 𝜆
0
and 𝜉
0
are constants.

In (23), the echo envelopes are aligned in the fast-slow
time domain, the orders of the echo phases are less than 2, and
the pattern is constant, so after the processes of the preprocess
and the FrFT, the “ThreeCrossings” are corrected, echo pulses
are coherent, and the highest accumulation output can be
gotten after the matched filter and FFT.

5. Simulations

The LFM signal is employed in the simulations. The con-
ditions are as follows: the PRI is 1ms, the pulse width is

0.1ms, the original range between the radar and the target
is 100 km, the velocity of the radar platform is 1 km/s, 𝜃 =

𝜋/6, the number of the transmitting antennas is 2, the
bandwidth is 0.2MHz, the frequency interval of the channels
is 0.2MHz, the number of the pulses is 500, the sample
frequency is 1MHz, the carrier frequency is 2GHz, and the
zero intermediate frequency is 0.2MHz. After a little simple
calculation, the original relative velocity is V

𝑟
≈ 866m/s,

the acceleration is 5m/s2, during the accumulation period,
and the range between the radar and the target shifts Δ𝑅 ≈

433.6m.
The relative range shifts about 450m in Figure 3(a); it

is quite close to the number calculated by equation. The
MTD result expands in the velocity dimension because of the
Doppler shift.

After the range compensation, the peaks of theMF results
are superposition, but theMTDresult is still expanding. From
Figure 4, the range-cell crossing has been compensated, but
the Doppler-cell crossing still exists.

After the range and Doppler compensations are done, the
MF results are totally superposition and theMTD result is an
ideal thumb pin; then we can gain the highest accumulation
output (see Figure 5).

When the beam-crossing happens, three conditions are
satisfied generally; those are as follows: (1) the number of the
transmitting elements is large, (2) the relative range between
the radar and the target is not too far away, and (3) the vertical
velocity is high. So, the relative range is reset as 20 km, the
velocity of the radar is reset as 3000m/s, the number of the
transmitting elements is 10, and the PRI changes into 2ms.
The phantom element [14] is employed in the transmitting
array and the interval distance is equal to the product of
the number of the transmitting elements and the half of
the wavelength, which could expand the transmitting caliber
to 100 transmitting elements to decrease the width of the
transmitting main lobe. It can be calculated that the width of
the main lobe is about 0.731∘, the shift of the angle in one PRI
is 0.0744∘, after 100 PRI, and the target moves across 2.0362
beams.

The accumulations before and after compensating the
beam-crossing, on condition that the range-cell crossing and
the Doppler-cell crossing have been compensated, are shown
in Figure 6, and the accumulations are normalized by the
accumulation result before compensating the beam-crossing.
It is obvious to see that the peak after compensation is twice
higher than that before, which is consistent with the case that
the target moves across about 2 beams.

To prove the validity of the precompensation method,
simulations are taken under the main conditions that the
numbers of the transmitting and receiving channels are𝑀 =

𝑁 = 4, the number of the transmitting pulses is 𝐿 = 200, the
radar PRI is 𝑇

𝑟
= 1ms, the pulse width is 𝑇

𝑝
= 50 𝜇s, the

original distance of the radar and the target is 𝑅
0
= 100 km,

and the real relative velocity is V
0
= 4 km/s. Consider that it

is difficult to know the real relative velocity in practice, so in
order to check the performance of the precompensationwhen
V ̸= V
0
, four different possible relative velocities are selected as

the compensation velocities and V = 4, 5, 6, 7 km/s; for the
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Figure 3: The matched filter (MF) and MTD results without any compensation.
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Figure 4: The matched filter and MTD results after range compensation.

symmetry, the performances of these velocities should be the
same, respectively, to V = 4, 3, 2, 1 km/s.

Firstly, the accumulation results of different compensa-
tion velocities are shown in Figure 7. It is easy to see that
when the compensation velocity is more different from the
real relative velocity, the accumulation result is wider and the
peak is lower, whichmeans the compensation performance is
worse.When the compensation velocity is 7 km/s, the peak of
the accumulation is nearly 3 dB less than the accumulation of

V = 4 km/s. So, when the difference between the real relative
velocity and the compensation velocity is less than 3 km/s, the
accumulation performance is acceptable. At the same time,
one could see that there is a good velocity difference tolerance.

Secondly, the detection probabilities of the four different
compensation velocities are shown in Figure 8. Correspond-
ing to the results in Figure 7, at the same SNR value, when
the compensation velocity is more different from the real
relative velocity, the detection probability is lower. If there is
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Figure 5: The matched filter and MTD results after range and Doppler compensations.
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no compensation, the scenario is the same to the V = 8 km/s
or V = 0 km/s and the detection performance would be even
worse than the one when V = 7 km/s.

From these two groups of simulation results, one can
figure out that the precompensation can compensate the
rangemigration valid in a tolerance of the difference between
the real relative velocity and the compensation velocity. The
detection probability at 90% after compensation when V = V

0

is about 7 dB or 8 dB better than the one when these two
velocities are 3 km/s different.
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Figure 7: Accumulations of four different compensation velocities.

6. Conclusion

As the developments of the velocity and the maneuverability
of aircrafts, the “Three Crossings” are becoming bigger prob-
lems for the MTD. Traditional radars cannot compensate the
beam-crossing, so no article discussed this problem. MIMO
radar, which transmits a wide beam, provides the probability
to achieve the compensation of the beam-crossing. In this
paper, the “Three Crossings” are discussed simultaneously
based on the airborne MIMO radar system. To detect the
moving target, the characteristic of the echo is analyzed, the
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“Three Crossings” model is proposed, and then the prepro-
cessingmethod and the FrFT are employed to compensate the
“Three Crossings.”The simulation results show that these two
methods can compensate the “Three Crossings” validly; the
accumulation peak is significantly higher after the compen-
sations. Even when the compensation velocity is not exactly
the same with the real one, the compensation performance is
also acceptable within a large velocity tolerance.
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We investigate the algorithm of direction and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO)
radar in spatial colored noise. A novel method of joint estimation of direction and Doppler frequency in spatial colored noise based
on propagator method (PM) for bistatic MIMO radar is discussed. Utilizing the cross-correlation matrix which is formed by the
adjacent outputs of match filter in the time domain, the special matrix is constructed to eliminate the influence of spatial colored
noise. The proposed algorithm provides lower computational complexity and has very close parameters estimation compared to
estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm in high signal-to-noise ratio (SNR). It is
applicable even if the transmitted waveforms are not orthogonal. The estimated parameters can be paired automatically and the
Cramér-Rao Bound (CRB) is given in spatial colored noise. Simulation results confirm the effectiveness of the proposed method.

1. Introduction

Since multiple-input multiple-output (MIMO) radars use
multiple antennas to simultaneously transmit diverse wave-
forms and utilize multiple antennas to receive the reflected
signals, they have many potential advantages over conven-
tional phased-array radars [1–4]. According to the array con-
figuration, MIMO radar can be divided into two categories:
the statistical MIMO radar and collocated MIMO radar [5–
15]. The advantages of MIMO radar with collocated anten-
nas have been studied extensively, which include improved
direction performance and higher resolution [16], higher
sensitivity or detection of moving targets, and increased
degrees of freedom for transmit beamforming [17]. MIMO
radar with widely separated antennas can capture the spatial
diversity of the target’s radar cross-section (RCS) [18]. This
spatial diversity provides radar system with the ability to
improve target parameter estimation [19–22], high resolution
target localization, and tracking performance [23, 24].

Target direction estimation is a basic function of a radar
system. Many advanced direction estimation algorithms for
MIMO radar have been extensively discussed in the current

literature which include ESPRIT algorithm, Capon algo-
rithm, parallel factor (PARAFAC) algorithm, multiple signal
classification (MUSIC) algorithm, and PM algorithm [25–
33]. In [25, 29], ESPRIT algorithm exploited the invariance
property of both the transmit array and the receive array
for direction estimation in MIMO radar systems. Reference
[30] derived a reduced-dimension multiple signal classifica-
tion (MUSIC) algorithm for direction of departure (DOD)
and direction of arrival (DOA) estimation. The algorithm,
which only requires one-dimensional search, can avoid the
high computational cost of the two-dimensional MUSIC
algorithm. However, the mentioned algorithm above did not
consider the Doppler frequency estimation, and the noises
were assumed to be the Gaussian white noise. In [31], the
ESPRIT method was used for DOD-DOA and Doppler fre-
quency estimation which necessitates eigen decomposition
of the sample covariance matrix. Huge computation will be
involved where the large array size is required in applications.
Yunhe [32] proposed the DOA matrix algorithm to estimate
the DOD-DOA and Doppler frequency, but it cannot elim-
inate the influence of spatial colored noise. In this paper,
we propose a low-complexity angle and Doppler frequency
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estimation algorithmwhich can reduce computational cost. It
has very close parameters estimation performance compared
to ESRPIT and DOA matrix algorithm in high SNR. And
the proposed algorithm pairs the parameters automatically
and eliminates the influence of the spatial colored noise.
Simulation results illustrate performance of the proposed
algorithm.

The remainder of this paper is structured as follows.
Section 2 develops the data model for a bistatic MIMO radar
system, and Section 3 proposes the proposed algorithm for
angle and Doppler frequency estimation in MIMO radar. In
Section 4, simulation results are presented to verify improve-
ment for the proposed algorithm, while the conclusions are
shown in Section 5.

Notation. (⋅)∗, (⋅)𝑇, (⋅)𝐻, (⋅)−1, (⋅)†, and vec[⋅] denote com-
plex conjugation, transpose, conjugate-transpose, inverse,
Moore-Penrose inverse (pseudoinverse), and vectorization
operator, respectively. ‖ ‖F presents Frobenius norm; I

𝐾
is a

𝐾×𝐾 identitymatrix;⊗ represents Kronecker product;min(⋅)
is to get minimum elements of an array; angle(⋅) denotes the
phase of a complex; row(⋅) denotes the operator that stacks
the rows of a matrix in a column vector. 𝐷

𝑛
(⋅) is to take the

𝑛th row of the matrix to construct a diagonal matrix. 𝐸[⋅] is
expectation operator.

2. Data Model

We consider a narrowband bistatic MIMO radar system
with 𝑀-element transmit antennas and 𝑁-element receive
antennas, both of which are half-wavelength spaced uniform
linear arrays. The transmit antennas transmit 𝑀 orthogonal
coded signals. s

𝑚
= [𝑠
𝑚
(1), 𝑠
𝑚
(2), . . . , 𝑠

𝑚
(𝑃)]
𝑇

∈ C𝑃×1, 𝑚 =

1, 2, . . . ,𝑀 denotes the sampled baseband coded signal of
the 𝑚th transmit antenna with one repetition interval with
𝑃 being the length of the transmitted code sequence, so the
transmit signals can be expressed as S = [s

1
, s
2
, . . . , s

𝑀
]
𝑇. We

also assume that there are a number of 𝐾 far-field indepen-
dent targets; a

𝑟
(𝜃
𝑘
) and a

𝑡
(𝜙
𝑘
) are the receive steering vector

and transmit steering vector for 𝜃
𝑘
(DOA) and 𝜙

𝑘
(DOD) of

the 𝑘th target, so the arrival signal of the 𝑘th target is a𝑇
𝑡
(𝜙
𝑘
)S.

The received array through reflections of the target can be
expressed as

Y (𝑡) =

𝐾

∑

𝑘=1

𝛽
𝑘
𝑒
𝑗2𝜋𝑓
𝑑𝑘
(𝑡−1)/𝑓

𝑠a
𝑟
(𝜃
𝑘
) a𝑇
𝑡
(𝜙
𝑘
) S +W (𝑡) , (1)

where𝛽
𝑘
and 𝑓

𝑑𝑘
denote the radar cross-section (RCS) fading

coefficient and Doppler frequency of the 𝑘th target. 𝑓
𝑠
is the

pulse repeat frequency. Due to the steering vector of ULA,
we have a

𝑟
(𝜃
𝑘
) = [1, 𝑒

−𝑗𝜋 sin 𝜃
𝑘 , . . . , 𝑒

−𝑗𝜋(𝑁−1) sin 𝜃
𝑘]
𝑇

, a
𝑡
(𝜙
𝑘
) =

[1, 𝑒
−𝑗𝜋 sin𝜙

𝑘 , . . . , 𝑒
−𝑗𝜋(𝑀−1) sin𝜙

𝑘]
𝑇

.
w(𝑡) ∈ C𝑁×𝑃 denotes a Gaussian noise of zerosmeanwith

unknown covariance matrix Q
𝑤
. Matching the received data

with the signal (1/√𝑃)S𝐻, we obtain

x (𝑡) = A𝜂 (𝑡) + n (𝑡) , (2)

whereA = [ ̄a
1
, ̄a
2
, . . . , ̄a

𝐾
] is an𝑀𝑁×𝐾matrix composed of

the𝐾 steering vectors, and ̄a
𝑘
= a
𝑟
(𝜃
𝑘
)⊗ ̄a
𝑡
(𝜙
𝑘
) is theKroneck-

er product of the receive and the transmit steering vectors
for the 𝑘th target. ̄a

𝑡
(𝜙
𝑘
) = R𝑇

𝑠
a
𝑡
(𝜙
𝑘
), owing to R

𝑠
=

𝐸[SS𝐻/𝑃] = I
𝑀
; then ̄a

𝑡
(𝜙
𝑘
) = a

𝑡
(𝜙
𝑘
). 𝜂(𝑡) = [𝜂

1
(𝑡), 𝜂
2
(𝑡),

. . . , 𝜂
𝐾
(𝑡)]
𝑇, 𝜂
𝑘
(𝑡) = √𝑃𝛽

𝑘
𝑒
𝑗2𝜋𝑓
𝑑𝑘
(𝑡−1)/𝑓

𝑠 , 𝑘 = 1, 2, . . . , 𝐾.n(𝑡) =
vec[W(𝑡)S𝐻/√𝑃].

The covariance matrix of n(𝑡) is as follows:

𝐸 [n (𝑖)n𝐻 (𝑗)]

=
𝐸 {vec [W (𝑖) S𝐻] vec𝐻 [W (𝑗) S𝐻]}

𝑃

=
𝐸 {[S∗ ⊗ I

𝑁
] [vec (W (𝑖)) vec𝐻 (W (𝑗))] [S𝑇 ⊗ I

𝑁
]}

𝑃

= {
I
𝑀

⊗Q
𝑤
, 𝑖 = 𝑗

0, 𝑖 ̸= 𝑗.

(3)

3. Direction and Doppler Frequency
Estimation Algorithm for MIMO Radar

3.1. The Proposed Algorithm Description. We assume that
a
𝑡
(𝜙
𝑘
) and a

𝑟
(𝜃
𝑘
) are constant for 𝐿 samples and define X as

X = [x(1), x(2), . . . , x(𝐿)], and we assume that the number of
snapshots is 𝐿. Let

X
1
= [x (1) , x (2) , . . . , x (𝐿 − 1)] = A𝜂

1
+ N
1
,

X
2
= [x (2) , x (3) , . . . , x (𝐿)] = A𝜂

2
+ N
2
,

(4)

where 𝜂
1

= [𝜂(1), 𝜂(2), . . . , 𝜂(𝐿 − 1)], 𝜂
2

= [𝜂(2), 𝜂(3)

, . . . , 𝜂(L)], N
1

= [n(1),n(2), . . . ,n(𝐿 − 1)], andN
2

=

[n(2),n(3), . . . ,n(L)]. Equation (3) shows that the cross-
covariance matrix of noises is 0. This characteristic will be
utilized in this paper to improve the estimate performance.

Note that 𝐸[N
2
N𝐻
1
] = 0, 𝜂

2
= Φ𝜂

1
, Φ = diag[𝑒𝑗2𝜋𝑓𝑑1/𝑓𝑠 ,

𝑒
𝑗2𝜋𝑓
𝑑2
/𝑓
𝑠 , . . . , 𝑒

𝑗2𝜋𝑓
𝑑𝐾
/𝑓
𝑠]. This indicates that the rotation factor

Φ is generated by adjacent outputs of match filters.
The covariance matrix of X

1
and X

2
can be written as

follows:

R
𝑥
= 𝐸 [X

2
X𝐻
1
] = AΦR

𝜂
A𝐻 + 𝐸 [N

2
N𝐻
1
] = AΦR

𝜂
A𝐻, (5)

where R
𝜂
= 𝐸[𝜂

1
𝜂
𝐻

1
]. For the independent targets, R

𝜂
should

be a diagonal matrix; then we have the relationship R
𝜂
Φ
𝐻

=

Φ
𝐻R
𝜂
. Owing to 𝐸[N

2
N𝐻
1
] = 0, R

𝑥
can eliminate the influ-

ence of spatial colored noise. A new matrix R is constructed
by utilizing (5):

R = [
R𝐻
𝑥

R
𝑥

] = [
AΦ𝐻
AΦ ]R

𝜂
A𝐻 = [

AΦ−1
AΦ ]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
B

R
𝜂
A𝐻 = BR

𝜂
A𝐻.

(6)

The propagator method relies on the partition of the matrix
B [34]. B can be denoted by B = [

B
1

B
2

], where B
1

∈ C𝐾×𝐾
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is the full rank matrix; B
2
∈ C(2𝑀𝑁−𝐾)×𝐾. The propagator V

is a unique linear operator which can be written as V𝐻B
1
=

B
2
. Similarly partitioning received data matrix R into two

submatrices R
1
and R

2
with dimensions 𝐾 × 𝑀𝑁 and

(2𝑀𝑁 − 𝐾) × 𝑀𝑁, respectively. Then the unique linear
operation holds between R

1
and R

2
:

V𝐻R
1
= R
2
. (7)

An estimation matrix V can be obtained by minimizing
the cost function: 𝐽(V) = min ‖R

2
− V𝐻R

1
‖
2

𝐹
. The optimal

solution is given byV = (R
1
R𝐻
1
)
−1R
1
R𝐻
2
. Define a newmatrix

Ṽ𝐻 = [
I
𝐾

V𝐻 ], where I𝐾 is the identity matrix. Combining Ṽ
and (7), we obtain

Ṽ𝐻R
1
= [

R
1

R
2

] = [
B
1

B
2

]R
𝜂
A𝐻 = [

AΦ−1
AΦ ]R

𝜂
A𝐻 = BR

𝜂
A𝐻.

(8)

Rewrite (8) as

Ṽ𝐻 = BR
𝜂
A𝐻R†
1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

T

= BT, (9)

where R†
1
is the pseudoinverse of R

1
and T is a nonsingular

matrix. From (9), the columns in Ṽ span the same signal
subspace as the column vectors in B. So the signal subspace
can be obtained by avoiding the estimation and eigen decom-
position of the sample covariance matrix.The matrix Ṽ𝐻 can
be partitioned into two submatrices Ṽ𝐻 = [

Ṽ
1

Ṽ
2

]. According
to (9), we can get

[
Ṽ
1

Ṽ
2

] = [
AΦ−1
AΦ ]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
B

T. (10)

Notice thatΦ = Φ
−1

Φ
2; from (10) we can obtain

Φ
2

= TṼ†
1
Ṽ
2
T−1, (11)

AΦ = Ṽ
2
T−1. (12)

Equation (11) shows that the main diagonal elements of Φ2
are equal to the eigen values obtained via the eigen decompo-
sition of Ṽ†

1
Ṽ
2
with T the corresponding eigenvectors. Thus

the Doppler frequency of the 𝑘th target can be calculated as

𝑓
𝑘
=
angle (𝜑

𝑘
) 𝑓
𝑠

4𝜋
, (13)

where 𝜑
𝑘
is the 𝑘th diagonal element of Φ2. The Â can

be calculated from (12), because the Φ is the diagonal
matrix, and it cannot affect the estimation of DOD and
DOA using the least square method from the matrix Â.
We note that the pairing is automatically obtained because
the DOA-DODs and Doppler frequencies are given through

the corresponding eigenvectors. The matrix Â can be also
denoted by

Â = Â
𝑅
∘ Â
𝑇
=

[
[
[
[
[

[

Â
𝑇
𝐷
1
(Â
𝑅
)

Â
𝑇
𝐷
2
(Â
𝑅
)

...
Â
𝑇
𝐷
𝑁
(Â
𝑅
)

]
]
]
]
]

]

=

[
[
[
[
[

[

Â
𝑇

Â
𝑇
Φ̂
𝑟

...
Â
𝑇
Φ̂
𝑁−1

𝑟

]
]
]
]
]

]

, (14)

where Â
𝑇

= [â
𝑡
(𝜙
1
), â
𝑡
(𝜙
2
), . . . , â

𝑡
(𝜙
𝐾
)] and Â

𝑅
= [â
𝑟
(𝜃
1
),

â
𝑟
(𝜃
2
), . . . , â

𝑟
(𝜃
𝐾
)] are the transmit and receive direction

matrices, respectively:

Φ̂
𝑟
= diag [exp (−𝑗𝜋 sin 𝜃

1
) , exp (−𝑗𝜋 sin 𝜃

2
) , . . . ,

exp (−𝑗𝜋 sin 𝜃
𝐾
)] .

(15)

There exists an 𝑀𝑁 × 𝑀𝑁 transformation matrix C corre-
sponding to the finite number of row interchanged operations
such that

F̂ = CÂ = Â
𝑇
∘ Â
𝑅
=

[
[
[
[
[

[

Â
𝑅
𝐷
1
(Â
𝑇
)

Â
𝑅
𝐷
2
(Â
𝑇
)

...
Â
𝑅
𝐷
𝑀

(Â
𝑇
)

]
]
]
]
]

]

=

[
[
[
[
[

[

Â
𝑅

Â
𝑅
Φ̂
𝑡

...
Â
𝑅
Φ̂
𝑀−1

𝑡

]
]
]
]
]

]

, (16)

where

Φ̂
𝑡
= diag [exp (−𝑗𝜋 sin𝜙

1
) , exp (−𝑗𝜋 sin𝜙

2
) , . . . ,

exp (−𝑗𝜋 sin𝜙
𝐾
)] .

(17)

We define

P
𝑏
= [(Â

𝑇
Φ
𝑟
)
𝑇

, (Â
𝑇
Φ
2

𝑟
)
𝑇

, . . . , (Â
𝑇
Φ
𝑁−1

𝑟
)
𝑇

]
𝑇

,

P
𝑎
= [(Â

𝑇
)
𝑇

, (Â
𝑇
Φ
𝑟
)
𝑇

, . . . , (Â
𝑇
Φ
𝑁−2

𝑟
)
𝑇

]
𝑇

.

(18)

Owing to P
𝑎
Φ̂
𝑟
= P
𝑏
, Φ̂
𝑟
= P
𝑎

†P
𝑏
, then we get the estimation

of DOA:

𝜃
𝑘
= sin−1 (

angle (𝑝
𝑘
)

𝜋
) , (19)

where 𝑝
𝑘
is the 𝑘th diagonal element of the matrix Φ̂

𝑟
.

We also define

B
𝑏
= [(Â

𝑅
Φ
𝑡
)
𝑇

, (Â
𝑅
Φ
2

𝑡
)
𝑇

, . . . , (Â
𝑅
Φ
𝑁−1

𝑡
)
𝑇

]
𝑇

,

B
𝑎
= [(Â

𝑅
)
𝑇

, (Â
𝑅
Φ
𝑡
)
𝑇

, . . . , (Â
𝑅
Φ
𝑁−2

𝑡
)
𝑇

]
𝑇

,

(20)

Owing to B
𝑎
Φ̂
𝑡

= B
𝑏
, Φ̂
𝑡

= B
𝑎

†B
𝑏
, we can also get the

estimation of DOD:

𝜙
𝑘
= sin−1 (

angle (𝜆
𝑘
)

𝜋
) . (21)

where 𝜆
𝑘
is the 𝑘th diagonal element of the matrix Φ̂

𝑡
.

Now we show the major steps of the proposed algorithm
as follows.
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(1) Compute the covariance matrix of the received data
through (5).

(2) Estimate the propagator V from (7).
(3) Compute the Doppler frequency according to (10),

(11), and (13).
(4) Estimate matrix Â from (12); then use the least square

method to estimate the DOD and DOA according to
(14)∼(21).

Remark 1. In fact completely orthogonal signals cannot be
found in reality, if we consider the transmitted nonorthog-
onal signals; that is, ̄a

𝑡
(𝜙
𝑘
) ̸= a
𝑡
(𝜙
𝑘
), and the output signal

can be expressed as x(𝑡) = Ã𝜂(𝑡) + n(𝑡), where Ã =

[ã
1
, ã
2
, . . . , ã

𝐾
] and ã

𝑘
= a
𝑟
(𝜃
𝑘
) ⊗ ̄a

𝑡
(𝜙
𝑘
). Define Ã

𝑇
=

[ ̄a
𝑡
(𝜙
1
), ̄a
𝑡
(𝜙
2
), . . . , ̄a

𝑡
(𝜙
𝐾
)], Ã
𝑇

= R
𝑠
A
𝑇
, Ã = A

𝑅
∘

Ã
𝑇

= R̄
𝑠
[A𝑇
𝑇
, (A
𝑇
Φ
𝑟
)
𝑇

, . . . , (A
𝑇
Φ
𝑁−1

𝑟
)
𝑇

]
𝑇

, where R̄
𝑠

=

diag[R
𝑠
,R
𝑠
, . . . ,R

𝑠
]. The estimation of Ã can be denoted as

Â = ÃΠ = R̄
𝑠
AΠ, Π−1 = Π. Estimating the matrix Ã from

(12), then multiplying (R̄
𝑠
)
−1, we get Ā = AΠ, using the least

square method to estimate the DOD and DOA according to
(14)∼(21).

3.2. Complexity Analysis. In contrast to ESPRIT algorithm
[31], our algorithm has a low computational load; the main
computational cost of our algorithm is the estimation of the
matrix Ṽ𝐻, which takes𝑂(2𝑀

2

𝑁
2

𝐾+𝑀𝑁𝐾
2

+𝐾
3

); the total
computational complexity of our algorithm is 𝑂[𝑀

2

𝑁
2

(𝐿 −

1)+2𝑀
2

𝑁
2

𝐾+2𝑀𝑁𝐾
2

+2𝐾
3

+𝑀(𝑁−1)𝐾
2

+𝑁(𝑀−1)𝐾
2

],
while ESPRIT requires 𝑂(4(𝐿 − 1)𝑀

2

𝑁
2

+ 8𝑀
3

𝑁
3

+ 2𝐾
3

+

𝑀(𝑁 − 1)𝐾
2

+ 𝑁(𝑀 − 1)𝐾
2

) in the eigen decomposition of
the covariancematrices. DOAmatrix algorithm [32] requires
𝑂(2(𝐿 − 1)𝑀

2

𝑁
2

+ 2𝑀
3

𝑁
3

+𝑀(𝑁 − 1)𝐾
2

+ 𝑁(𝑀− 1)𝐾
2

).
Figure 1 shows the complexity comparison with 𝑀 = 9,
𝑁 = 9,𝐾 = 3, and different 𝐿. From Figure 1 we find that our
algorithm has much lower computational load than ESPRIT
algorithm and DOA matrix algorithm. The computational
cost (CPU time) of the proposed algorithm is 0.053029 s,
while ESPRIT algorithm and DOA matrix algorithm need
0.210587 s and 0.121686 s, respectively, at 𝑀 = 9, 𝑁 = 9,
𝐾 = 3, and 𝐿 = 100 with CPU frequency 2.20GHz.

3.3. Discussion

(1) From Figure 1 we find that our algorithm has much
lower computational load than ESPRIT algorithm
and DOA matrix algorithm. ESPRIT algorithm
employs either eigen-value decomposition (EVD)
of cross-correlation matrix or singular value. Using
the techniques, the computational complexity is
very high. Reference [34] has shown the propagator
method (PM) for array signal processing to estimate
DOA of incident signals without eigen-value decom-
position of cross-correlation matrix of the received
data. In our proposed algorithm, propagator V is a
linear operator which can easily be extracted from the
data matrix R. But the construction of matrix Ṽ leads
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Figure 1: Complexity comparison with 𝑀 = 9, 𝑁 = 9, 𝐾 = 3, and
different 𝐿.

the proposed algorithm’s performance to degrade
in low SNR. So the proposed algorithm has very
close parameters estimation to ESPRIT algorithm and
DOA matrix algorithm in high SNR.

(2) Since the DOA-DODs and Doppler frequencies are
given through the corresponding eigenvectors, it can
achieve automatically paired estimation of angles and
Doppler frequencies.

(3) The proposed algorithm can eliminate the effect of
the spatial colored noise since the new matrix is
constructed by (5) and (6).

3.4.The Cramér-Rao Bound (CRB). In this section, we derive
CRB of parameter estimation for MIMO radar and rewrite
the received data as

Z = row (X) = K (𝑓
𝑑
, 𝜙, 𝜃)𝛽 +W, (22)

where K(𝑓
𝑑
, 𝜙, 𝜃) = [K

1
,K
2
, . . . ,K

𝐾
], K
𝑘

= a
𝑓
(𝑓
𝑑𝑘
) ⊗

a
𝑘
, a
𝑓
(𝑓
𝑑𝑘
) = [1, 𝑒

𝑗2𝜋𝑓
𝑑𝑘
/𝑓
𝑠 , . . . , 𝑒

𝑗2𝜋𝑓
𝑑𝑘
(𝐿−1)/𝑓

𝑠]
𝑇, 𝛽 = [√𝑃𝛽

1
,

. . . , √𝑃𝛽
𝐾
]
𝑇, and W represents the noise vector.

The fisher information matrix (FIM) with respect to
𝜙 = [𝜙

1
, 𝜙
2
, . . . , 𝜙

𝐾
], 𝜃 = [𝜃

1
, 𝜃
2
, . . . , 𝜃

𝐾
], and 𝑓

𝑑
= [𝑓
𝑑1
, 𝑓
𝑑2

, . . . , 𝑓
𝑑𝐾

] can be calculated as follows [31, 35]:

F = [

[

F
11

F
12

F
13

F
21

F
22

F
23

F
31

F
32

F
33

]

]

, (23)
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Figure 2: Angle and Doppler frequency estimation at SNR = 10 dB.

where

F
11

= 2Re [Γ𝐻(K󸀠
𝜃
)
𝐻

Π
𝐻Q−1ΠK󸀠

𝜃
Γ] ,

F
12

= 2Re [Γ𝐻(K󸀠
𝜃
)
𝐻

Π
𝐻Q−1ΠK󸀠

𝜙
Γ] ,

F
13

= 2Re [Γ𝐻(K󸀠
𝜃
)
𝐻

Π
𝐻Q−1ΠK󸀠

𝑓
Γ] ,

F
21

= 2Re [Γ𝐻(K󸀠
𝜙
)
𝐻

Π
𝐻Q−1ΠK󸀠

𝜃
Γ] ,

F
22

= 2Re [Γ𝐻(K󸀠
𝜙
)
𝐻

Π
𝐻Q−1ΠK󸀠

𝜙
Γ] ,

F
23

= 2Re [Γ𝐻(K󸀠
𝜙
)
𝐻

Π
𝐻Q−1ΠK󸀠

𝑓
Γ] ,

F
31

= 2Re [Γ𝐻(K󸀠
𝑓
)
𝐻

Π
𝐻Q−1ΠK󸀠

𝜃
Γ] ,

F
32

= 2Re [Γ𝐻(K󸀠
𝑓
)
𝐻

Π
𝐻Q−1ΠK󸀠

𝜙
Γ] ,

F
33

= 2Re [Γ𝐻(K󸀠
𝑓
)
𝐻

Π
𝐻Q−1ΠK󸀠

𝑓
Γ] ,

(24)

and Γ = diag(𝛽) denotes the diagonal matrix constructed by
the vector 𝛽:

Q = I
𝑀𝐿

⊗Q
𝑤
, Π = I

𝑀𝑁
− K(K𝐻Q−1K)

−1

K𝐻Q−1,

K󸀠
𝜃

= [a
𝑓
(𝑓
𝑑1
) ⊗ [a

𝑡
(𝜙
1
) ⊗

𝜕a
𝑟
(𝜃
1
)

𝜕𝜃
1

] , . . . ,

a
𝑓
(𝑓
𝑑𝐾

) ⊗ [a
𝑡
(𝜙
𝐾
) ⊗

𝜕a
𝑟
(𝜃
𝐾
)

𝜕𝜃
𝐾

]] ,

K󸀠
𝜙

= [a
𝑓
(𝑓
𝑑1
) ⊗ [

𝜕a
𝑡
(𝜙
1
)

𝜕𝜙
1

⊗ a
𝑟
(𝜃
1
)] , . . . ,

a
𝑓
(𝑓
𝑑𝐾

) ⊗ [
𝜕a
𝑡
(𝜙
𝐾
)

𝜕𝜙
𝐾

⊗ a
𝑟
(𝜃
𝐾
)] ]

K󸀠
𝑓

= [
𝜕a
𝑓
(𝑓
𝑑1
)

𝜕𝑓
𝑑1

⊗ [a
𝑡
(𝜙
1
) ⊗ a
𝑟
(𝜃
1
)] , . . . ,

𝜕a
𝑓
(𝑓
𝑑𝐾

)

𝜕𝑓
𝑑𝐾

⊗ [a
𝑡
(𝜙
𝐾
) ⊗ a
𝑟
(𝜃
𝐾
)]]

(25)

Then the CRB matrix is

CRB = F−1. (26)

4. Simulation Results

We present the Monte Carlo simulations to assess the
parameter estimation performance of our algorithm.
Define root mean squared error (RMSE) as (1/

𝐾)∑
𝐾

𝑘=1

√(1/1000)∑
1000

𝑛=1
[(𝜙
𝑘,𝑛

− 𝜙
𝑘
)
2

+ (𝜃
𝑘,𝑛

− 𝜃
𝑘
)
2

], where
𝜃
𝑘,𝑛

is the estimate of DOA 𝜃
𝑘
of the 𝑛th Monte Carlo

trial and 𝜙
𝑘,𝑛

is the estimate of DOD 𝜙
𝑘

of the 𝑛th
Monte Carlo trial. Define RMSE of Doppler frequency
as (1/𝐾)∑

𝐾

𝑘=1

√(1/1000)∑
1000

𝑛=1
(𝑓
𝑘,𝑛

− 𝑓
𝑘
)
2, where 𝑓

𝑘,𝑛
is the

estimate of Doppler frequency 𝑓
𝑘
of the 𝑛th Monte Carlo

trial. Note that 𝑀, 𝑁, 𝐿, and 𝐾 are the number of transmit
antennas, the receive antennas, the snapshots of the targets,
and the number of the targets, respectively. We assume that
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Figure 4: Doppler frequency estimation comparison.

there are 𝐾 = 3 independent targets, which are located at
angles (𝜃

1
, 𝜙
1
) = (10

∘

, 15
∘

), (𝜃
2
, 𝜙
2
) = (20

∘

, 25
∘

), and
(𝜃
3
, 𝜙
3
) = (30

∘

, 35
∘

), respectively. The Doppler frequencies
of the three targets are 1000Hz, 1500Hz, and 2100Hz,
respectively, and their RCS are given by 𝛽

1
= 𝛽
2
= 𝛽
3
= 1.

The pulse repeat frequency 𝑓
𝑠
is 10 KHz for a 𝑀 = 9 and

𝑁 = 9 bistatic MIMO radar. The (𝑚, 𝑛)th element of the
unknown noise covariance matrix Q

𝑤
is 0.9
|𝑚−𝑛|

𝑒
𝑗𝜋(𝑚−𝑛)/2.

Figure 2 shows the estimation results with 100 Monte Carlo
trials at 𝐿 = 100. As seen in Figure 2, the DODs, DOAs, and
Doppler frequencies of all three targets are correctly paired
and well localised.

Figures 3 and 4 show the angle and Doppler frequency
estimation performance comparison with 𝑀 = 9, 𝑁 = 9,
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Figure 5: Angle estimation with different values of 𝐾.
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Figure 6: Doppler frequency estimation with different values of𝐾.

𝐾 = 3, and 𝐿 = 100, where we compare our algorithm
with ESPRIT algorithm [31], DOAmatrix algorithm [32], and
CRB. It is indicated in Figures 3 and 4 that our algorithm
has very close parameter estimation performance to ESPRIT
algorithm andDOAmatrix algorithm in high SNR condition.

The simulation of Figures 5 and 6 investigates the per-
formance of our proposed algorithm under different number
of targets 𝐾. The number of targets is set as 2 and 4. Our
proposed algorithm has the different performance under
different𝐾, as shown in Figures 5 and 6 where𝑀 = 9,𝑁 = 9,
and 𝐿 = 100 are considered. From Figures 5 and 6 we find
that angle estimation performance of our proposed algorithm
degrades with𝐾 increasing.
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Figure 7: Angle and Doppler frequency estimation at SNR = 12 dB.

Figure 7 presents parameter estimation performancewith
three closely spaced targets, where𝑀 = 8,𝑁 = 8, and𝐿 = 100

are considered.The closely spaced targets are located at angles
(𝜃
1
, 𝜙
1
) = (15

∘

, 18
∘

), (𝜃
2
, 𝜙
2
) = (18

∘

, 20
∘

), and (𝜃
3
, 𝜙
3
) =

(20
∘

, 25
∘

). The Doppler frequencies of the three targets are
1200Hz, 1500Hz, and 1800Hz, respectively. From Figure 7,
we find that our algorithm works well in the case of closely
spaced targets.

5. Conclusion

We have presented a low-complexity angle and Doppler fre-
quency estimation based on propagator method for MIMO
radar in spatial colored noise. The proposed algorithm
can obtain automatically paired transmit and receive angle
estimations in the MIMO radar and eliminate the influ-
ence of the spatial colored noise. Furthermore, it provides
lower computational complexity and has close parameters
estimation compared to ESPRIT algorithm and DOA matrix
algorithm in high SNR. It is applicable even if the transmitted
waveforms are not orthogonal.
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To simultaneously achieve two-dimensional high resolution and wide swath in synthetic aperture radar (SAR), azimuth MIMO
structure combined with stepped-frequency chirp signals was developed via splitting the antenna into 𝑁 subapertures. During
transmitting each subaperture transmits a chirp pulse at a different carrier frequency, while during receiving every subaperture
receives the𝑁 scattered pulses at the same time. Separating the𝑁 scattered pulses received by each subaperture and downlinking
them to the ground yield 𝑁2 different signal paths. Due to the dedicated network in the SAR system, the channel imbalance is
inevitable. To correct the channel imbalance, this paper presents an external calibration method, where the channel characteristics
are estimated from the peak value of a strong point target for each channel. Simulation and real raw data experiments are performed
to validate the proposed method.

1. Introduction

Resolution and swath width are two key specifications for
the spaceborne stripmap SAR. However, high azimuth res-
olution and wide range swath imaging pose contradicting
requirement on conventional SAR system design. In order
to overcome this inherent contradiction, the displaced phase
center antenna (DPCA) techniques [1–3] and the multiple-
input and multiple-output (MIMO) antenna techniques [4–
7] are introduced to acquire additional spatial sampled infor-
mation. On the other hand, the range resolution, determined
by the pulse bandwidth, has to be increased to match the
azimuth resolution. However, transmitting and receiving
wideband signals burden the active electronically steered
array (AESA) antenna and the echo sampled equipment
[8, 9], thus confining the range resolution. Fortunately,
a wideband chirp signal can be synthesized by a group
of narrowband subchirps centered at stepped frequencies,
which requires the synthetic bandwidth technique [8–10].

As the synthetic bandwidth technique will reduce the
number of equivalent phase centers (EPCs), the additional
sampled information in DPCA SAR is actually used to

increase the range bandwidth other than the equivalent PRF
[11]. Therefore, this paper focuses on the MIMO SAR using
stepped-frequency chirps (STFC) [4, 5], where both the
equivalent PRF and the range bandwidth can be 𝑁 times
increased. However, as this MIMO system yields𝑁2 different
signal paths, the channel imbalance is inevitable. For each
subband, the collected data is from a DPCA system, where
the channel imbalance can be regarded as the inner-band
imbalance which results in azimuth ambiguities [12]. The
imbalance among different subbands can be regarded as the
interband imbalance which leads to degradation of the range
performance after synthetic bandwidth [13].

Therefore, in order to acquire high quality images, effec-
tive correction of the channel imbalance is indispensable.
The available correction methods can be classified as two
categories: methods on internal calibration [14] and methods
on raw data [15, 16]. However, all these correction methods
only either handled the inner-band imbalance in the DPCA
systemwith single subband [15, 16] or concerned themultiple
subbands system with single subaperture [14]. In [14], Deng
et al. gave the internal calibration approach, where the imbal-
ance information is obtained from the internal calibration
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data acquired from the calibration subsystem. This method
can be extended to theMIMO system using STFC. Neverthe-
less, 𝑁2 internal calibration subsystems are required, which
dramatically increases the complexity of the SAR systems.
In addition, it cannot correct imbalance introduced by the
antennas. The subspace projection method proposed in [16]
and the azimuth cross-correlation method presented in [15]
do not require additional subsystem. However, they cannot
correct the interband imbalance, as the phase difference
caused by different carrier frequencies is range dependent
and hard to compensate.

Usually, the channel imbalance information (phase and
amplitude) does not change within a certain illumination
time [15]. Moreover, many artificial corner reflectors have
been distributed here and there for radiometric calibration
[17]. Therefore, this paper proposes an external calibration
method where the channel imbalance information is esti-
mated from the peak value of a corner reflector or a strong
point target in 𝑁

2 small complex images. Afterwards, the
estimated channel errors are used to correct the channel
imbalance when imaging for much larger data.

Succeeding sections are organized as follows. In Section 2,
the MIMO SAR using STFC is conceptually designed and
the corresponding image formation processing is briefly
summarized. In Section 3, the external correction method
is presented, followed by the simulation and real raw data
experiments in Section 4 to validate the proposed method.
Finally, the conclusion is drawn in Section 5.

2. MIMO SAR Using
Stepped-Frequency Chirps

2.1. Conceptual Design. The MIMO SAR simultaneously
transmits a set of stepped-frequency chirps, regarded as
subbands, via multiple subapertures. During receiving, every
subaperture receives all the 𝑁 subbands in one PRI. The
schematic diagram and the corresponding timeline of trans-
mitted pulses and received echoes are illustrated in Figure 1,
where the circles represent the location of the equivalent
phase centers (EPCs) of the subbands, and the number inside
the circles represents the sequence number of the subbands.

In order to separate two frequency-adjacent subbands
and absent gaps from the connection of subbands at the same
time, the subband bandwidth 𝐵

𝑠
is required to be equal to

the frequency stepΔ𝑓.The relationship of the time frequency
for the transmitted pulses is illustrated in Figure 2, where𝑓

𝑚

(𝑚 = 1, 2, . . . , 𝑁) is the carrier frequency of the𝑚 th subband.
The baseband echo of the𝑚 th subband for each subaper-

ture is acquired as follows. Demodulate the radio frequency
(RF) pulses with the carrier frequency 𝑓

𝑚
. Then filter the

demodulated signal with an analog low pass filter (LPF)
whose bandwidth is greater than 𝐵

𝑠
. Afterwards, convert

the analog signal to a digital signal via an AD convertor
with a sampling rate greater than the cutoff frequency of
the LPF. As illustrated in Figure 3, due to the imperfect
filtering and the Gibbs phenomenon of the signal spectrum,
some spectral component of one subband is leaked into the
adjacent subband, thus resulting in subband interference. In
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order to reduce the interference, a digital rectangular window
can be applied to the sampled data before imaging. Then,
the interference only results from the spectral component
outside the spectrum bandwidth, as illustrated by the blue-
shaded region in Figure 3. As stated in [13], the influence of
the subband interference under this situation can be ignored
because it results in−47 dB ambiguities in range. In fact, when
the subband bandwidth is larger, the ambiguities in range will
be reduced further. This is because the relative amplitude of
the ambiguities is determined by relating the leakage energy
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Figure 3: Separation of two frequency-adjacent subbands.

to the whole energy [13]. Moreover, the leakage energy is
inversely proportional to the bandwidth-time product.

Therefore, in this paper, for each subaperture, adjacent
subbands are assumed to be completely separated; that is, the
subband interference is not considered.

2.2. Image Formation Processing. When the uniform sam-
pling condition

1

PRF
=
𝑙
𝑎𝑧

2V
𝑠

⋅ 𝑁, (1)

with PRF the system pulse repetition frequency, 𝑙
𝑎𝑧
the length

of the subaperture, and V
𝑠
the velocity of the sensor, is not

satisfied, multichannel reconstruction [1] is required. The
reference position during the multichannel reconstruction
should be the center of the whole antenna to make the
EPCs to be synthesized coincide spatially. Afterwards, the
frequency domain bandwidth synthesis method [9, 10] is
applied to acquire a large bandwidth pulse, followed by the
conventional imaging. It should be noted that the synthesized
signal should be firstly converted to the original echo domain
if the CS imaging algorithm is adopted. The block diagram
of the image formation processing for this MIMO SAR
system is presented in Figure 4. Assume that 𝑁 = 2, and
then the variation of the distribution of EPCs introduced
by multichannel reconstruction and bandwidth synthesis is
shown in Figure 5 (ignore the first row and the dashed circles,
which will be used in Section 4).

3. Correction of the Channel Imbalance

In this section, the correction of both amplitude and phase
imbalance among channels will be presented. As this correc-
tion method is based on a focused strong point target in 𝑁2
small complex images, separating imaging for each subband
and each subaperture is required.

The base-band echo for the𝑚th subband (transmitted by
the𝑚th subaperture) received by the 𝑛th subaperture is

𝑆
𝑚,𝑛

(𝜏, 𝜂) = 𝑁
𝑚,𝑛

(𝜏, 𝜂) + 𝐴
𝑚,𝑛

⋅ exp (𝑗𝜑
𝑚,𝑛
) ⋅ rect(

𝜏 − 𝑅
𝑚,𝑛

(𝜂) /𝑐

𝑇
𝑟

)

× exp{−𝑗2𝜋𝑓
𝑚
⋅ (

𝑅
𝑚,𝑛

(𝜂)

𝑐
)}

⋅ exp{𝑗𝜋𝑘
𝑟
(𝜏 −

𝑅
𝑚,𝑛

(𝜂)

𝑐
)

2

} ,

(2)

with 𝜏 the range time, 𝜂 the azimuth time, 𝑘
𝑟
the chirp rate, 𝑐

the light velocity, 𝑇
𝑟
the pulse duration, 𝐴

𝑚,𝑛
the amplitude

characteristic, 𝜑
𝑚,𝑛

the phase characteristic, 𝑁
𝑚,𝑛
(𝜏, 𝜂) the

system noise and the echo of other targets, and 𝑅
𝑚,𝑛
(𝜂)

the instantaneous distance in propagation between the
transmitter and the receiver for the corner reflector (point
target). Applying the Taylor series expansion and ignoring
the quadratic phase termquadratic term error during the
equivalence of the two-way slant ranges, 𝑅

𝑚,𝑛
(𝜂) can be

approximated as

𝑅
𝑚,𝑛

(𝜂) = 𝑅 (𝜂 − Δ𝜂
𝑚,𝑛
) , (3)

where

Δ𝜂
𝑚,𝑛

=
(𝑚 + 𝑛 − 𝑁 − 1) 𝑙

𝑎𝑧

2V
𝑠

, (4)

is the azimuth time interval between the corresponding EPC
and the center of the whole antenna, and

𝑅 (𝜂) = 2√𝑅2
0
+ (V
𝑠
𝜂 − 𝑥
0
)
2

, (5)

represents the two-way slant range from the center of the
whole antenna to the point target. In (5), 𝑅

0
and 𝑥

0
indicate

the slant range and azimuth coordinates of the point target,
respectively.

First, the imaging for the 𝑁2 echoes is independently
performed. Due to lower PRF than Nyquist sampling rate,
strong azimuth ambiguities of the point target appear in the
𝑁
2 images. However, the ambiguities are far away from the

real point target, thus scarcely impacting the estimation. The
imaging result can be approximated as [18]

𝑆
𝑚.𝑛

(𝜏, 𝜂) = 𝑁
󸀠

𝑚,𝑛
(𝜏, 𝜂) + 𝑁

󸀠

𝑚,𝑛,amb (𝜏, 𝜂)

+ 𝐴
𝑘
⋅ exp (𝑗𝜑

𝑘
) ⋅ 𝐺 ⋅ 𝑝

𝑟
(𝜏 −

2𝑅
0

𝑐
)

⋅ exp {−𝑗2𝜋𝑓
𝑚
⋅ (
2𝑅
0

𝑐
)} ⋅ 𝑝

𝑎,𝑚,𝑛
(𝜂 −

𝑥
0

V
𝑠

)

+ 𝐴
𝑘
⋅ exp (𝑗𝜑

𝑘
) ⋅ 𝑝
𝑟
(𝜏 −

2𝑅
0

𝑐
)
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⋅ exp {−𝑗2𝜋𝑓
𝑚
⋅ (
2𝑅
0

𝑐
)}

×

𝑁−1

∑

𝑖=−𝑁+1, 𝑖 ̸= 0

𝐺amb,𝑖

⋅ 𝑝
𝑎,𝑚,𝑛

(𝜂 −
𝑥
0

V
𝑠

+ 𝑖 ⋅
PRF
𝑘
𝑎

) ,

(6)

where 𝑘
𝑎
is the azimuth chirp rate, 𝐺 and 𝐺amb,𝑖 are the

gain resulting from the imaging of the “real” part and the
ambiguous part of the point target, respectively, 𝑁󸀠

𝑚,𝑛
(𝜏, 𝜂)

and 𝑁󸀠
𝑚,𝑛,amb(𝜏, 𝜂) are the “real” and ambiguous response of

other targets and noise, and 𝑝
𝑎,𝑚,𝑛

and 𝑝
𝑟
are the amplitude

of the azimuth and range impulse responses, two sinc-like
functions [18]. According to (3), 𝑝

𝑎,𝑚,𝑛
(𝜂) can be rewritten as

𝑝
𝑎,𝑚,𝑛

(𝜂) = 𝑝
𝑎
(𝜂 − Δ𝜂

𝑚,𝑛
) , (7)

where 𝑝
𝑎
is also a sinc-like function.

Considering that the peak of the corner reflector is
generally much greater than other terms at position (𝑅

0
, 𝑥
0
),

only the “real” response of the corner reflector is taken into
account when deriving the correction method, which is

𝑆
𝑚,𝑛

(𝜏, 𝜂) = 𝐴
𝑚,𝑛

⋅ exp (𝑗𝜑
𝑚,𝑛
) ⋅ 𝐺 ⋅ 𝑝

𝑟
(𝜏 −

2𝑅
0

𝑐
)

× exp {−𝑗2𝜋𝑓
𝑚
⋅ (
2𝑅
0

𝑐
)}

⋅ 𝑝
𝑎
(𝜂 −

𝑥
0

V
𝑠

− Δ𝜂
𝑚,𝑛
) .

(8)

Second, the peak position and value of the corner reflector
are estimated from these𝑁2 small complex images. In order
to make the estimation more accurate, the 2D-interpolation
over the peak point and its surrounding points is performed.
Consequently, the peak position of the corner reflector is
acquired to be 𝜏

𝑚,𝑛
≈ 2𝑅
0
/𝑐. The amplitude of the peak is

𝐴
𝑚,𝑛

≈ 𝐴
𝑚,𝑛

, and the phase of the peak is

𝜙
𝑏,𝑚,𝑛

≈ 𝜑
𝑚,𝑛

− 2𝜋𝑓
𝑚
⋅ 𝜏
𝑚,𝑛
. (9)

In fact, in order to reduce the influence of the noise, 𝐴
𝑘

and 𝜙
𝑏,𝑘

are obtained by averaging the values of the points
within the two-dimensional 1 dB main lobe.The first channel
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(subband 1 and subaperture 1) is set as the reference channel.
Then the estimated amplitude error matrix is

AE = diag
{𝐴
1,1
, 𝐴
1,2
, . . . , 𝐴

1,𝑁
, . . . , 𝐴

𝑁,1
, 𝐴
𝑁,2
, ..., 𝐴
𝑁,𝑁

}

𝐴
1,1

.

(10)

Third, compensate the inherent phase caused by the offset
of the carrier frequencies𝑓

𝑚
from the center frequency of the

synthesized wideband signal, 𝑓
𝑐
. After this, the phase of the

peak value is changed as

𝜙
𝑚,𝑛

= 𝜙
𝑏,𝑚,𝑛

+ 2𝜋Δ𝑓
𝑚
⋅ 𝜏
𝑚,𝑛

≈ 𝜑
𝑚,𝑛

− 2𝜋𝑓
𝑐
⋅ (
2𝑅
0

𝑐
) , (11)

where

Δ𝑓
𝑚
= (𝑚 −

1 + 𝑁

2
)Δ𝑓, 𝑚 = 1, . . . , 𝑁. (12)

Therefore, the estimated phase error matrix can be expressed
as

ΦE = (diag {exp (𝑗𝜙1,1) , . . . , exp (𝑗𝜙1,𝑁) , . . . ,

exp (𝑗𝜙
𝑁,1
) , . . . , exp (𝑗𝜙

𝑁,𝑁
)})

× (exp (𝑗𝜙
1,1
))
−1

.

(13)

Finally, correct the channel imbalance according to (10)
and (13). The correction matrix is

C = (AEΦE)
−1

. (14)

Therefore, the correction is implemented as

S
𝑐
= C ⋅ [𝑆

1,1
(𝜏, 𝜂) , . . . , 𝑆

1,𝑁
(𝜏, 𝜂) , . . . ,

𝑆
𝑁,1

(𝜏, 𝜂) , . . . , 𝑆
𝑁,𝑁

(𝜏, 𝜂)]
𝑇

.

(15)

It should be noted that the data size of 𝑆
𝑚,𝑛
(𝜏, 𝜂) in

(2) can be much smaller than that in (15) to improve the
processing efficiency. After correction, the balanced data S

𝑐
is

used to form the final image with high resolution. The whole
processing is shown in Figure 6, where the image formation
processing strategy is presented in Figure 4.

4. Experimental Results

4.1. Simulation Experiment. In the simulation, the 2D imag-
ing of a plane scene containing a letter “A” and a 4-time (6 dB)
brighter point target is performed, and this point target is
inside the letter “A.” The simulation parameters are specified
in Table 1.

Table 1: System parameters.

Parameter Symbol Value
Center frequency (GHz) 𝑓

𝑐
9.685

Slant range of scene center (km) 𝑅
0

30
Sensor velocity (m/s) V

𝑠
215

Subaperture length (m) 𝑙az 2.5
System PRF (Hz) PRF 140
Transmit pulse length (us) 𝑇

𝑝
10

Number of subbands/subapertures 𝑁 2
Transmitted pulse bandwidth (MHz) 𝐵

𝑠
60

Sampling rate in range (MHz) 𝐹
𝑟

72
SNR (dB) SNR 6

The accurate amplitude and phase errors are given in the
2nd and 3rd columns of Table 2, respectively.Thefirst channel
is set as the reference channel. According to the estimation
method proposed in the last section, the amplitude and
phase errors are estimated and then presented in the 4th
and 5th columns of Table 2, respectively. The imaging results
without and with correction of the channel imbalance are
shown in Figures 7(a) and 7(b), respectively. The range
comparison of the point target and its surroundings is shown
in Figure 7(c). From Figure 7, one can observe that the
ambiguities in azimuth (caused by the inner-band imbalance)
and the raising of the side-lobes in range (stemming from
the interband imbalance) are removed by the correction of
channel imbalance.

From the simulation experiment, it is concluded that
the proposed correction (compensation) method can correct
both the inner-band and the interband imbalance for the
simulated MIMO SAR data.

4.2. Real Raw Data Experiment. For the real raw data, the
imaging scene is much more complicated than the simulated
data, thus possibly affecting the estimation accuracy. As the
real raw data collected by a MIMO SAR using STFC is
not available, in this subsection, the proposed correction
method is assessed with an X-band airborne SAR using a
single aperture and two STFCs which are transmitted in two
consecutive PRIs. In this SAR, both the subband bandwidth
and the frequency step are 30MHz, the original PRF is
1600Hz, and the sensor velocity is 215m/s. The distribution
of the original EPCs is illustrated by the first row in Figure 5.

To validate the proposed correction method on the real
raw data, the echo data for the MIMO system have to be
firstly constructed. As discussed before, in theMIMO system
using STFCs, the echo for each subband can be regarded
from a DPCA system [1]. Further, in the DPCA system, the
data of each channel is equivalent to the counterpart single
channel data processed by an azimuth time delay function
and then 𝑁 times subsampling [2]. Herein, the counterpart
single channel data is the original subband data, and the delay
function in Doppler domain for the𝑚th subband received by
the 𝑛th subaperture is set to

𝐻
𝑚,𝑛

(𝑓
𝜂
) = exp {−𝑗2𝜋𝑓

𝜂
⋅ 𝑡
𝑚,𝑛
} , (16)
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Figure 7: Simulation results for OFDM-MIMO SAR. (a) Imaging result without correction of channel imbalance. (b) Imaging result with
correction of channel imbalance. (c) Range comparison of the amplification of the point target in (a) and (b).

Table 2: Channel errors (CE).

Channel (𝑚, 𝑛) Exact CE Estimated CE for simulated data Estimated CE for constructed raw data
𝐴
𝑘

𝜑
𝑘
(∘) 𝐴

𝑘
𝜑
𝑘
(∘) 𝐴

𝑘
𝜑
𝑘
(∘)

1, 1 1 0 1 0 1 0
1, 2 1.3 25 1.296 24.308 1.253 28.201
2, 1 1.5 30 1.500 29.649 1.468 33.325
2, 2 1.4 45 1.401 44.426 1.352 42.720
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Figure 8: Real raw data results for OFDM-MIMO SAR. (a) Without correction. (b) With correction. (c) Range comparison of the
amplification of the corner reflector.

with𝑓
𝜂
theDoppler frequency, 𝑡

1,1
= 0, 𝑡
1,2
= 𝑙
𝑎𝑧
/2V
𝑠
= (3/4)⋅

(1/2PRF), 𝑡
2,1

= 𝑡
1,2
− (1/4PRF), and 𝑡

2,2
= 𝑡
1,2
+ 𝑡
2,1
. Then,

the distribution of the EPCs for the four channels can be
illustrated by the 2nd, 3rd, 4th, and 5th rows in Figure 5where
the dashed circles represent the discarded pulses to realize
a two-time subsampling. With consideration of the channel
errors specified in the 2nd and 3rd columns of Table 2, the
four echo data of the MIMO system using STFCs are well
constructed.

According to the error estimation process presented in
Figure 6, the measured channel errors are listed in the 6th
and 7th columns of Table 2.The final imaging results without
and with correction of the channel imbalance are shown in
Figures 8(a) and 8(b), respectively. The corner reflector used
for external calibration ismarked by ellipse in the two figures.
After interpolation and amplification, the range comparison
of the corner reflector in Figures 8(a) and 8(b) is shown in
Figure 8(c), where one can see that the raising of the side
lobes is eliminated by the compensation. Additionally, in

Figure 8(a) the peak amplitude of the ambiguity marked by
dashed circle is −15.89 dB while in Figure 8(b) the ambiguity
is not distinguishable from the background.

Therefore, for the constructed MIMO raw data, the
presented correctionmethod is also effective in removing the
channel imbalance.

5. Conclusion

MIMO SAR using stepped frequency chirps is of great
potential for future high-resolution wide-swath SAR mis-
sions. Channel imbalance is a key problem for this novel
SAR mode, as it relates to the imaging performance. This
paper proposed a simple and effective method to correct
this channel imbalance, which was validated by simulation
and real raw data experiments. Other problems, such as the
system design and the orbit model, are not discussed in this
paper. Nevertheless, they are also indispensable, especially
when this novel mode is applied to spaceborne missions.
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The paper proposes special multiple-input single-output synthetic aperture radar (MISO-SAR) andmultiple-input multiple-output
SAR (MIMO-SAR) for bidirectional imaging, which can simultaneously illuminate two areas from different directions in azimuth.
For the proposed MISO-SAR, two subpulses with the same carrier frequency and phase coding are transmitted with different
azimuth directions by switching the phase coefficients in the transmit modules, and echoes corresponding to the subpulses are
received by the main lobe and the first grating lobe of the whole antenna. To suppress mutual interference, the two subpulses are
transmitted with different range-frequency bands, and their echoes are demodulated and recorded in different channels in the
proposed MIMO-SAR. This paper presents the system design of these modes and analyzes their azimuth ambiguity to signal ratio
(AASR). Besides, simulation results on points are carried out to validate the proposed bidirectional imaging modes.

1. Introduction

The repeated acquisition of synthetic aperture radar (SAR)
images is very useful for multiple observation applications,
such as moving targets detection, terrain change detection,
and velocitymeasurements by along-track interferometry [1–
3]. For a SAR satellite, the time lag between two acquisitions
must be more than several hours. However, for iceberg drifts
or ship velocity measurements [4, 5], the time lag should be
less than several minutes. The single channel bidirectional
SAR imaging mode is proposed in [1] and implemented
via a phased planner antenna to generate both main lobe
and grating lobes to illuminate different areas. This imaging
mode was first achieved by TerraSAR-X satellite [6–10].
TerraSAR-X and TanDEM-X have several new modes and
finished some commissions in [7, 11–14]. Another advantage
for bidirectional SAR mode is that the simultaneous imaging
into two directions can obtain two widely separated Doppler
subbands, which can offer many different interferometry or
GMTI applications [15–19].

The major drawback of the single channel bidirectional
SAR imaging mode is the high azimuth ambiguity to signal

ratio (AASR) level caused by the grating lobes. To suppress
the highAASR level, a pulse repetition frequency (PRF) value
higher than the one in the conventional stripmap mode with
the same antenna length is required or the azimuth processed
bandwidth is reduced. Therefore, the bidirectional imaging
mode is balanced by the limited swathwidth due to the higher
PRF and/or by the impaired azimuth resolution due to the
reduced azimuth processed bandwidth.

In this paper, two special imagingmodes for bidirectional
imaging based on the phased planner antenna are proposed.
In the first mode, two subpulses are transmitted in turn
with different azimuth antenna beams by switching the phase
coefficients in the transmit modules, and echoes of the two
subpulses are simultaneously received by the main lobe and
the first grating lobe of the whole antenna and recorded in
a single channel. This imaging scheme with two transmitted
subpulses and a single receive channel is named as multiple-
input single-output SAR (MISO-SAR) for bidirectional imag-
ing. To further distinguish the echoes, two subpulses are
transmitted with different frequency bands, and then their
echoes are demodulated and recorded in two channels. As
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Figure 1: Antenna patterns of the phased array antenna.

a result, the second imaging mode is named as multiple-
input multiple-output SAR (MIMO-SAR) for bidirectional
imaging. Compared with the bidirectional imaging mode in
[1], the two proposed imaging modes are with the lower
AASR level. The system design and signal processing of the
proposed modes are given in detail. Furthermore, simulation
experiments on point targets are carried out to validate the
proposed bidirectional imaging modes.

The paper has five sections. Section 2 focuses on present-
ing two proposed imaging modes for bidirectional imaging.
The system design and AASR analysis of the two modes
are given in Section 3. The imaging approach of two modes
and simulation experiments on point targets are presented in
Section 4. The paper is concluded in Section 5.

2. Special MISO-SAR and MIMO-SAR Modes

2.1. Antenna Pattern of the Phased Array Antenna. To imple-
ment antenna beam scanning in both azimuth and elevation,
a phased two-dimension (2D) planar antenna is usually
adopted in the future spaceborne SAR missions. According
to the working principle of the phased array antenna, the
one-way antenna pattern of the phased array antenna can be
written as follows [4]:

𝐺 (𝜃) = 𝐺
𝑒
(𝜃) ⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝐾

𝐾−1

∑

𝑘=0

𝐶
𝑘,𝑇

⋅ exp(𝑗2𝜋𝑘
𝜆

𝐿ae sin 𝜃)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (1)

with

𝐺
𝑒
(𝜃) = 𝐺

0
⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
sin 𝑐 (

𝐿ae
𝜆

sin 𝜃)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, (2)

where 𝐺
𝑒
(𝜃) indicates the antenna pattern of the element

antenna, 𝐾 is the number of the transmit/receive (T/R)
modules, 𝜆 is the wavelength, and 𝐿ae is the length of the

element antenna. To avoid the grating lobes during antenna
beam steering, the length 𝐿ae should be

𝐿ae ≤
𝜆

1 +
󵄨󵄨󵄨󵄨sin 𝜃𝑠,max

󵄨󵄨󵄨󵄨

, (3)

where 𝜃
𝑠,max is the maximal steering angle. To implement

the desired antenna beam pointing direction, the phase
coefficients of the T/R modules are expressed as

𝐶
𝑘,𝑇

= 𝑎
𝑘,𝑇

⋅ exp(𝑗2𝜋𝑘
𝜆

𝐿ae sin 𝜃𝑠) , (4)

𝐶
𝑘,𝑇,𝑔

= 𝑎
𝑘,𝑇

⋅ exp(𝑗2𝜋
𝜆

⋅ ⌊
𝑘

𝑀
⌋ ⋅ 𝐿ae sin 𝜃𝑠) , (5)

where 𝑎
𝑘,𝑇

is constant, 𝜃
𝑠
indicates the desired antenna beam

pointing direction, and𝑀 is the number of the T/R modules
with the same phase coefficient. With the phase coefficient of
(2), the distance between the main lobe and the first grating
lobe is

Δ𝜃 =
𝜆

𝑀 ⋅ 𝐿ae
. (6)

Figure 1 shows antenna patterns of the phased array
antenna with phase coefficient coding of (4) and (5),
where the element antenna 𝐿ae is 0.02m, the wavelength
is 0.03125m, the number of elements is 320, and 𝑀 is 20.
Furthermore, the antenna beam pointing direction 𝜃

𝑠
in (4)

is −1.5∘, while 𝜃
𝑠
in (5) is 1∘.

2.2. Acquisition Geometry. Figure 2 shows the proposed
modified bidirectional SAR acquisition geometry with simul-
taneous fore and aft acquisitions. In the bidirectional SAR
imagingmode in [1], each pulse is transmitted to two different
areas in azimuth and its corresponding echoes are received by
the main lobe and the first grating lobe of the same azimuth
antenna pattern. However, the large transmitted radar pulse
is divided into two subpulses to be transmitted into different
azimuth areas in the proposed modified bidirectional SAR,
and the subpulses are transmitted by different azimuth
antenna patterns by steering the azimuth antenna beam as
shown in Figure 2(a). The echoes of two subpulses from two
azimuth areas are received by the main lobe and the first
grating lobe of the whole azimuth antenna, respectively.

In the first case, two subpulses are with the same carrier
frequency and phase coding, while their corresponding
echoes are simultaneously received and sampled in a single
channel. Therefore, this imaging scheme is named MISO-
SAR. To suppress the interference between echoes, two trans-
mitted subpulses could be with different carrier frequencies,
and their corresponding echoes are received and sampled
with different channels. As a result, the second imaging
scheme is named MIMO-SAR.

Figure 3 shows azimuth antenna patterns of the proposed
modified bidirectional SAR acquisition. It demonstrates that
the well-behavior transmitting antenna pattern may suppress
the power of grating lobes and side lobes of the azimuth
receiving antenna pattern. In Figure 3, 𝑀 is 10 and the
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Figure 2: Modified bidirectional SAR acquisition geometry with simultaneous fore and aft acquisitions: (a) radar pulses transmitting and (b)
radar echoes receiving.

angular interval between the main lobe and the first grating
lobe is 8.952∘. Therefore, the azimuth backward and forward
beam pointing direction is −4.476∘ and 4.476∘, respectively.
Furthermore, the main lobe and the first grating lobe share
the same antenna gain and are with 4 dB gain reduction
compared with the main lobe of the azimuth transmitting
beam pattern.

3. AASR Analysis and System Design

3.1. AASR Analysis. For the proposed MISO-SAR system,
the AASR for the backward area and the forward area are
computed as follows:

AASR
𝑏
= (∑

𝑘 ̸=0

∫

𝐵
𝑎
/2+𝑓
𝑑𝑐,𝑏
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𝑡,𝑏
(𝑓
𝑎
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+𝐺
𝑡,𝑓
(𝑓
𝑎
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⋅ 𝐺
𝑟
(𝑓
𝑎
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𝑎
)
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(7)

where 𝑓
𝑎
= 2V sin 𝜃/𝜆 is the Doppler frequency, V is the

speed of the radar, 𝜃 is the squint angle, 𝐵
𝑎
is the processed

Doppler bandwidth, 𝐺
𝑟
is the azimuth receiving antenna

pattern, 𝑘 is an integer, 𝐺
𝑡,𝑏

and 𝐺
𝑡,𝑓

indicate the azimuth
transmitting antenna patterns for the aft and fore directions,
respectively, and 𝑓

𝑑𝑐,𝑏
and 𝑓
𝑑𝑐,𝑓

are the Doppler centroids for
backward and forward imaging. For well-symmetric fore and
aft azimuth directions, the AASR is connected to the spectral
separation as the grating lobe is the strongest contribution of
the ambiguous signal energy to the main lobe as shown in
Figure 3.

Similar to the single channel bidirectional SAR system,
the cyclic behavior of divergent and coincident folding also
becomes visible by plotting the AASR versus the selected PRF
as shown in Figure 4. The simulation parameters are listed in
Table 1. As the grating lobe moves relative to the main lobe,
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Figure 3: Azimuth antenna patterns of the phased antenna. (a) Transmitting antenna pattern. (b) Receiving antenna pattern. (c) Two-way
antenna pattern for backward imaging. (d) Two-way antenna pattern for forward imaging.

Table 1: Simulation parameters.

Parameters Value
Antennal length (m) 6.4
Azimuth element antenna length (m) 0.02
Number of T/R in azimuth 320
Number of T/R modules with the same phase on receive 20
Carrier frequency in MISO-SAR (GHz) 9.6
Carrier frequencies in MIMO-SAR (GHz) 9.4, 9.8
Transmitted pulse duration (𝜇s) 10
Pulse bandwidth (MHz) 150
Sampled frequency (MHz) 180
Sensor velocity (m/s) 7500
Slant range (km) 700
Squint angles for bidirectional imaging (∘) ±4.476

the AASR oscillates between high and low values. The high
value of the AASR is about 0 dB and keeps constant, since it

reflects the coincident folding in the two-way antenna pattern
for backward imaging and forward imaging. The low value
becomes lower with increasing PRF, since Doppler spectra of
backward imaging and forward imaging areas can be better
separated by band-pass Doppler filtering. As the gain of the
main lobe and the first grating lobe is the same in Figure 3(b),
theAASR in the aft and fore images are equivalent. Compared
with theAASRof the single channel bidirectional SAR system
in [1], the AASR of the proposed MISO-SAR system is better
than the conventional bidirectional SAR system, since the
power of the grating lobes and side lobes of the azimuth
receiving antenna pattern is suppressed by the azimuth
transmitting antenna pattern as shown in Figure 2. In other
words, for the desired AASR level (e.g., about −18 dB) as
shown in Figure 4, the selected PRF should be more than
6500Hz in the single channel bidirectional SAR system,
while the selected PRF only should be more than 5100Hz
in the proposed MISO-SAR system. In this simulation, the
processed Doppler bandwidth is related to the 6 dB beam
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Figure 5: AASR of the proposedMISO-SAR versus acquisition PRF
for different processed Doppler bandwidths.

width of the two-way azimuth antenna pattern and about
1454Hz.

Similar to conventional SAR imaging modes, the AASR
level can be improved after reducing the processed Doppler
bandwidth under the same condition as shown in Figure 5
but with the impaired azimuth resolution.

From (7), the high AASR level is caused by the inter-
ference between echoes of two transmitted subpulses in
a single pulse repetition interval (PRI). To suppress the
interference in the proposed MIMO-SAR for bidirectional
imaging, two subpulses are transmitted with different range-
frequency bands and their echoes can be easily separated by
range-frequency band-pass filtering. As two subpulses have
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Figure 6: AASR of the proposed MIMO-SAR versus acquisition
PRF.
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Figure 7: Block diagram of the system design of two proposed
bidirectional SAR imaging modes.

different carrier frequencies, the AASR for the backward area
and the forward area in the proposed MIMO-SAR system is
computed as follows:

AASR
𝑏
= (∑

𝑘 ̸=0

∫

𝐵
𝑎
/2+𝑓
𝑑𝑐,𝑏

−𝐵
𝑎
/2+𝑓
𝑑𝑐,𝑏

𝐺
𝑡,𝑏
(𝑓
𝑎
+ 𝑘 ⋅ PRF)

⋅ 𝐺
𝑟
(𝑓
𝑎
+ 𝑘 ⋅ PRF) 𝑑𝑓

𝑎
)

× (∫

𝐵
𝑎
/2+𝑓
𝑑𝑐,𝑏

−𝐵
𝑎
/2+𝑓
𝑑𝑐,𝑏

𝐺
𝑡,𝑏
(𝑓
𝑎
) ⋅ 𝐺
𝑟
(𝑓
𝑎
) 𝑑𝑓
𝑎
)

−1

,
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Figure 8: Simulation results of the proposed MISO-SAR with the PRF of 5170Hz. (a) Azimuth raw data in the time and Doppler frequency
domains. (b) Doppler spectra after separation. (c) Imaging results from different azimuth directions.
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(8)

As a result, the AASR level of the proposed MIMO-
SAR system is much better than that of the MISO-SAR
system. Figure 6 shows the AASR versus the selected
PRF in the proposed MIMO-SAR system under the same
condition.

3.2. The System Design. The block diagram in Figure 7 shows
major system design steps of the two proposed bidirectional
SAR imaging modes. The starting point is the desired system
parameters of fore and aft images such as swath width,
geometric resolution, AASR, range ambiguity to signal ratio
(RASR), and noise equivalent sigma zero (NESZ), while
fore and aft images are with the squint angles 𝜃

𝑠
and −𝜃

𝑠
,

respectively. First, the transmitted pulse bandwidth 𝐵
𝑟
and

the processed Doppler bandwidth 𝐵
𝑎
related to the azimuth

antenna length are determined by the desired geomet-
ric ground resolution and azimuth resolution, respectively.
According to the squint angle 𝜃

𝑠
for bidirectional imaging,

the number of T/R modules and the azimuth beam steering
raw controlled by the phase coefficients in (4) and (5) can be
set. The PRF selection is looking for the satisfied AASR level.
Furthermore, in addition to reducing the selected PRF,we can
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Figure 9: Simulation results of the original bidirectional SAR with the PRF of 5170Hz. (a) Azimuth raw data in the time and Doppler
frequency domains. (b) Doppler spectra after separation. (c) Imaging results from different azimuth directions.

enlarge the antenna height to improve the RASR level. Finally,
the average power 𝑃av is set to obtain the desired NESZ.

The major difference between the proposed MISO-SAR
and MIMO-SAR for bidirectional imaging is that two sub-
pulses are transmitted with different range-frequency bands
to avoid mutual interference. As a result, a lower selected
PRF is required for the desired AASR level in the MIMO-
SAR system than in the MISO-SAR system under the same
condition as shown in Figures 5 and 6. However, since the
AASR oscillates between high and low values in the MISO-
SAR system, a small PRF range should be selected for a better
AASR level.

4. Raw Data Processing and Simulation

To validate the proposed MISO-SAR and MIMO-SAR for
bidirectional imaging, simulation experiments on point

targets are carried out. Simulation parameters are listed in
Table 1.

In the proposed MISO-SAR for bidirectional imaging,
a much higher PRF than in the conventional stripmap
case with the same antenna length is required according
to Figures 8 and 10 which show raw data and imaging
results of two targets from different azimuth locations by
MISO-SAR mode. Figures 9 and 11 show the results by
original bidirectional SAR mode with the same parame-
ters.

Furthermore, with the PRF of 5170Hz, spectra of two
targets with the Doppler centroids −3746Hz and 3746Hz
can be better separated via Doppler band-pass filtering
and compressed, but the two spectra cannot be well sepa-
rated and this phenomenon would introduce high azimuth
ambiguities with the PRF of 5490Hz. The weaker targets
are azimuth ambiguities as shown in Figures 8(c) and
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Figure 10: Simulation results of the proposed MISO-SAR with the PRF of 5490Hz. (a) Azimuth raw data in the time and Doppler frequency
domains. (b) Doppler spectra after separation. (c) Imaging results from different azimuth directions.

10(c). Results of Figures 8 and 10 also validate that the
AASR oscillates between high and low values versus the
PRF as shown in Figure 4. By comparing with Figures
8 and 9, it can be seen that the separation and imaging
performances by the proposed MISO-SAR are obviously
better than those in original bidirectional mode. With the
PRF of 5490Hz, it can lead to the same conclusion by
comparing with Figures 10 and 11. Therefore, the superiority
of the new MISO-SAR mode has been validated. With the
same antenna length and the number of T/R modules,
Figure 12 shows simulation results of azimuth raw data
and spectra from two azimuth directions in the proposed
MIMO-SAR for bidirectional imaging. The operated PRF is
3000Hz.

5. Conclusion

The paper has put forward two novel imaging modes named
MISO-SAR and MIMO-SAR for bidirectional imaging, and
both modes allow for single-satellite short-term repeated
SAR acquisitions in the range of seconds. In the two imaging
modes, two subpulses are transmitted to different azimuth
locations and the raw data from two directions simultane-
ously arrive at the sensor and are superimposed into the same
receiving window. In the proposed MISO-SAR, echoes from
different azimuth directions are separated by Doppler band-
pass filtering. Echoes from different azimuth directions in
MIMO-SAR are separated in the range-frequency domain
due to different carrier frequencies. Compared with the
bidirectional imaging mode in [1], the proposed MISO-SAR
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Figure 11: Simulation results of the original bidirectional SAR with the PRF of 5490Hz. (a) Azimuth raw data in the time and Doppler
frequency domains. (b) Doppler spectra after separation. (c) Imaging results from different azimuth directions.
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Figure 12: Simulation results of the proposed MIMO-SAR with the PRF of 3000Hz. (a) Azimuth data of the point target for aft imaging. (b)
Azimuth data of the point target for fore imaging.
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and MIMO-SAR modes are with the better AASR under the
same condition, especially the proposed MIMO-SAR.
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[14] P. López-Dekker, P. Prats, F. de Zan et al., “Demonstration
of SAR interferometry under crossing orbits using TerraSAR-
X and TanDEM-X,” in Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium (IGARSS ’11), pp.
3472–3475, Vancouver, Canada, July 2011.

[15] R. Romeiser, S. Suchandt, H. Runge, U. Steinbrecher, and S.
Grünler, “First analysis of TerraSAR-X along-track InSAR-
derived current fields,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 48, no. 2, pp. 820–829, 2010.

[16] R. Scheiber and A. Moreira, “Coregistration of interferometric
SAR images using spectral diversity,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 38, no. 5, pp. 2179–2191,
2000.

[17] G. Krieger, A. Moreira, H. Fiedler et al., “TanDEM-X: a
satellite formation for high-resolution SAR interferometry,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 45,
no. 11, pp. 3317–3340, 2007.

[18] R. Bamler and M. Eineder, “Accuracy of differential shift
estimation by correlation and split-bandwidth interferometry
for wideband and delta-k SAR systems,” IEEE Geoscience and
Remote Sensing Letters, vol. 2, no. 2, pp. 151–155, 2005.

[19] K. Ouchi, “On the multilook images of moving targets by
synthetic aperture radars,” IEEE Transactions on Antennas and
Propagation, vol. 33, no. 8, pp. 823–827, 1985.




