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As a fascinating branch of the emerging network science,
the mission of the epidemic dynamics on networks is to
understand how objects spread in networks and thereby to
work out cost-effective strategy for restraining undesirable
objects or promoting desirable objects. This special issue
contains ten excellent papers about this subject.

The basic function of the epidemic dynamics is to assess
the risk of infectious diseases. J. Liu proposed an epidemic
model with curing delay and explored its Hopf bifurcation
properties. M. De la Sen et al. modeled the propagation of
Ebola disease, determining the key factors affecting the global
behavior of the model.

Another important role of the epidemic dynamics is to
estimate the destructive effect of digital viruses. Z. Zhang
et al. suggested a computer virus spreading model with two
time delays (the curing delay and the vaccinating delay)
and showed the possibility of a Hopf bifurcation. C. Gan
et al. established and studied a digital virus model with
nonlinear infection rates and external infection sources and
developed a dynamic virus-inhibiting strategy. Q. Zhu and
C. Cen presented an epidemic model in which different
hosts in a network have separate security levels. Based on
a novel individual-level virus-countermeasure interacting
model, X. Zhang and C. Gan discussed the issue of how to
optimally distribute countermeasures in a network. Based on
an individual-level disruptive virus spreading model, J. Bi et
al. developed a cost-effective dynamic strategy of restraining
disruptive viruses.

An interesting application of the epidemic dynamics is
to forecast the risk of attacks and the efficiency of security
policies. Based on a new epidemic model and aiming at max-
imizing the utility of the entire system, Q. Shi et al. designed

a cost-effective static detection strategy for defending against
internal cyberattacks.

The epidemic dynamics can also be used to explore
the way that opinions diffuse in social networks. Under an
individual-level opinion spreading model, A. Lu uncovered
the influence of the network structure on the converging time
of opinion spreading.

For any undesirable transmissible object, the spectral
radius minimization problem (SRMP) turns out to be crucial
to contain its rampancy in a network. Y. Wu et al. studied
the SRMP for a class of regular networks and obtained
some results that would be instructive in developing heuristic
algorithms for the SRMP.
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This paper mainly addresses the issue of how to effectively inhibit viral spread by means of dynamic countermeasure. To this
end, a controlled node-level model with nonlinear infection and countermeasure rates is established. On this basis, an optimal
control problem capturing the dynamic countermeasure is proposed and analyzed. Specifically, the existence of an optimal dynamic
countermeasure scheme and the corresponding optimality system are shown theoretically. Finally, some numerical examples are
given to illustrate the main results, from which it is found that (1) the proposed optimal strategy can achieve a low level of
infections at a low cost and (2) adjusting nonlinear infection and countermeasure rates and tradeoff factor can be conductive to the
containment of virus propagation with less cost.

1. Introduction

In order to study the long-term behavior of computer virus
and suppress viral spread macroscopically, a large number
of dynamical models have been proposed in the past few
decades (for the related references, see, e.g., [1–11]). From the
perspective of the division scale of computers on networks,
these models can be roughly divided into two categories:
compartment-level models and node-level models.

Compartment-level models are those models that regard
computers having the same state as an object to study. This
work can be traced back to the 1980s. The first compart-
ment-level model is proposed by Kephart andWhite [1], who
followed the suggestions recommended by Cohen [12] and
Murray [13]. Since then, multifarious propagation models
have been developed (see, e.g., [14–22]). It is worth noticing
that Zhu et al. [6] proposed the original compartment-level
SICS (susceptible-infected-countermeasured-susceptible)
model with linear static countermeasure based on the CMC
(Countermeasure Competing) strategy presented by Chen
and Carley [23]. However, compartment-level models ignore

the effect of network eigenvalue on viral spread. Conse-
quently, node-level models are considered.

Node-level models are those models that regard a single
computer as an object to investigate. The first node-level
model (i.e., SIS (susceptible-infected-susceptible) model) is
proposed by Van Mieghem et al. [7]. Since then, Sahneh and
Scoglio [8] presented the node-level SAIS (susceptible-alert-
infected-susceptible)model, andYang et al. [9, 10] considered
the node-level SLBS (susceptible-latent-breaking-suscepti-
ble) and SIRS (susceptible-infected-recovered-susceptible)
models, respectively. Very recently, Gan [11] established the
node-level SIES (susceptible-infected-external-susceptible)
model. Besides, for the other related work about this topic,
one can refer to [24–28] and the references cited therein.

Inspired by the above-mentioned work and based on
the compartment-level SICS model, this paper considers a
controlled node-level SICS model. Different from the con-
ventional node-level models, this paper mainly addresses the
issue of how to effectively distribute dynamic countermeasure
by optimal control strategy (for the related references of
optimal models, see, e.g., [29–33]). An optimal control
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Figure 1: The transfer diagram of the controlled node-level SICS model.

problem is proposed and the existence of an optimal control is
proved.The corresponding optimality system is also derived.
Finally, some numerical examples are made, from which it
can be seen that the proposed optimal strategy can achieve a
low level of infections at a low cost.

The subsequent materials of this paper are organized as
follows. Sections 2 and 3 formulate the controlled node-level
model and analyze the optimal control problem, respectively.
Numerical examples are provided in Section 4. Finally,
Section 5 closes this work.

2. The Controlled Node-Level Model

In this paper, the propagation network of computer virus
and countermeasure is represented by a graph 𝐺 = (𝑉, 𝐸)
with𝑁 nodes labelled 1, 2, . . . , 𝑁, where each node and edge
stand for a computer and a network link, respectively. Thus,
the graph 𝐺 can be described by its adjacency matrix A =[𝑎𝑖𝑗]𝑁×𝑁, where 𝑎𝑖𝑖 = 0.

As was treated in the traditional SICS model [6], at any
time all nodes in the graph 𝐺 are divided into three groups:𝑆-nodes (susceptible nodes are uninfected but have no immu-
nity), 𝐼-nodes (infected nodes), and 𝐶-nodes (countermea-
sured nodes are uninfected and have temporary immunity
due to the presence of countermeasures). Let 𝑆𝑖(𝑡), 𝐼𝑖(𝑡),
and 𝐶𝑖(𝑡) denote the probability of node 𝑖 being susceptible,
infected, and countermeasured at time 𝑡, respectively. Then
the vector

(𝑆1 (𝑡) , . . . , 𝑆𝑁 (𝑡) , 𝐼1 (𝑡) , . . . , 𝐼𝑁 (𝑡) , 𝐶1 (𝑡) , . . . , 𝐶𝑁 (𝑡))𝑇 (1)

probabilistically captures the state of the network at time 𝑡.

For convenience, two important functions, which will be
used in the sequel, are defined as follows:

𝑓𝑖 (𝑡) = ∑
𝑗

𝑎𝑖𝑗𝛽𝑗𝐼𝑗 (𝑡)
1 + 𝑚1𝐼𝑗 (𝑡) , 𝑚1 ≥ 0, 𝛽𝑗 > 0. (2)

Clearly, 𝑓𝑖(𝑡) ≤ ∑𝑗 𝑎𝑖𝑗𝛽𝑗𝐼𝑗(𝑡).
𝑔𝑖 (𝑡) = ∑

𝑗

𝑎𝑖𝑗𝛾𝑗 (𝑡) 𝐶𝑗 (𝑡)
1 + 𝑚2𝐶𝑗 (𝑡) , 𝑚2 ≥ 0, (3)

where 𝛾𝑗(𝑡) ∈ 𝐿2[0, 𝑇] is a controllable rate, 𝛾 ≤ 𝛾𝑗(𝑡) ≤ 𝛾,
0 ≤ 𝑡 ≤ 𝑇; 𝛾 and 𝛾 are positive constants, 0 < 𝛾 < 𝛾 < 1.

Now, a set of probabilistic assumptions on the state
transition of node 𝑖 are made (see also Figure 1).

(A1) An 𝑆-node 𝑖 becomes infected at rate 𝑓𝑖(𝑡).
(A2) An 𝑆- or 𝐼-node 𝑖 becomes countermeasured at rate𝑔𝑖(𝑡).
(A3) An 𝐼-node 𝑖 becomes susceptible at a constant rate𝛼𝑖 > 0.
(A4) A 𝐶-node 𝑖 loses immunity at constant rate 𝜃𝑖 > 0.
LetΔ𝑡 be a very small time interval and 𝑜(Δ𝑡) be a higher-

order infinitesimal. Assumptions (A1)–(A4) imply that the
probabilities of state transition of node 𝑖 satisfy the following
relations:

Pr (𝑖 is infected at time 𝑡
+ Δ𝑡 | 𝑖 is susceptible at time 𝑡) = 𝑓𝑖 (𝑡) Δ𝑡
+ 𝑜 (Δ𝑡) ,
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Pr (𝑖 is countermeasured at time 𝑡
+ Δ𝑡 | 𝑖 is susceptible at time 𝑡) = 𝑔𝑖 (𝑡) Δ𝑡
+ 𝑜 (Δ𝑡) ,

Pr (𝑖 is countermeasured at time 𝑡
+ Δ𝑡 | 𝑖 is infected at time 𝑡) = 𝑔𝑖 (𝑡) Δ𝑡 + 𝑜 (Δ𝑡) ,

Pr (𝑖 is susceptible at time 𝑡
+ Δ𝑡 | 𝑖 is infected at time 𝑡) = 𝛼𝑖Δ𝑡 + 𝑜 (Δ𝑡) ,

Pr (𝑖 is susceptible at time 𝑡
+ Δ𝑡 | 𝑖 is countermeasured at time 𝑡) = 𝜃𝑖Δ𝑡
+ 𝑜 (Δ𝑡) .

(4)
Invoking the total probability formulas and letting Δ𝑡 →0, the controlled node-level model (i.e., controlled node-level

SICS model) can be derived.
𝑑𝑆𝑖 (𝑡)𝑑𝑡 = 𝛼𝑖𝐼𝑖 (𝑡) + 𝜃𝑖𝐶𝑖 (𝑡) − 𝑓𝑖 (𝑡) 𝑆𝑖 (𝑡) − 𝑔𝑖 (𝑡) 𝑆𝑖 (𝑡) ,
𝑑𝐼𝑖 (𝑡)𝑑𝑡 = −𝛼𝑖𝐼𝑖 (𝑡) + 𝑓𝑖 (𝑡) 𝑆𝑖 (𝑡) − 𝑔𝑖 (𝑡) 𝐼𝑖 (𝑡) ,
𝑑𝐶𝑖 (𝑡)𝑑𝑡 = −𝜃𝑖𝐶𝑖 (𝑡) + 𝑔𝑖 (𝑡) (𝑆𝑖 (𝑡) + 𝐼𝑖 (𝑡)) ,

0 ≤ 𝑡 ≤ 𝑇, 𝑖 = 1, 2, . . . , 𝑁,

(5)

with initial condition
(𝑆1 (0) , . . . , 𝑆𝑁 (0) , 𝐼1 (0) , . . . , 𝐼𝑁 (0) , 𝐶1 (0) , . . . , 𝐶𝑁 (0))𝑇
∈ Ω̃, (6)

where
Ω̃ = {(𝑆1, . . . , 𝑆𝑁, 𝐼1, . . . , 𝐼𝑁, 𝐶1, . . . , 𝐶𝑁)𝑇 ∈ R

3𝑁
+ | 𝑆𝑖

+ 𝐼𝑖 + 𝐶𝑖 = 1, 𝑖 = 1, 2, . . . , 𝑁} .
(7)

The admissible control set is
𝑈 = {u (⋅) ∈ (𝐿2 [0, 𝑇])𝑁 | 𝛾 ≤ 𝛾𝑖 (⋅) ≤ 𝛾, 1 ≤ 𝑖 ≤ 𝑁} , (8)

where u(⋅) = (𝛾1(⋅), . . . , 𝛾𝑁(⋅))𝑇.
3. The Optimal Control Problem

As 𝑆𝑖(𝑡) + 𝐼𝑖(𝑡) + 𝐶𝑖(𝑡) ≡ 1, 1 ≤ 𝑖 ≤ 𝑁, system (5) can be
reduced to the following system:
𝑑𝐼𝑖 (𝑡)𝑑𝑡 = −𝛼𝑖𝐼𝑖 (𝑡) + 𝑓𝑖 (𝑡) (1 − 𝐼𝑖 (𝑡) − 𝐶𝑖 (𝑡))

− 𝑔𝑖 (𝑡) 𝐼𝑖 (𝑡) ,
𝑑𝐶𝑖 (𝑡)𝑑𝑡 = −𝜃𝑖𝐶𝑖 (𝑡) + 𝑔𝑖 (𝑡) (1 − 𝐶𝑖 (𝑡)) ,

0 ≤ 𝑡 ≤ 𝑇, 𝑖 = 1, 2, . . . , 𝑁,

(9)

with initial condition

(𝐼1 (0) , . . . , 𝐼𝑁 (0) , 𝐶1 (0) , . . . , 𝐶𝑁 (0))𝑇 ∈ Ω, (10)

where

Ω = {(𝐼1, . . . , 𝐼𝑁, 𝐶1, . . . , 𝐶𝑁)𝑇 ∈ R
2𝑁
+ | 𝐼𝑖 + 𝐶𝑖 ≤ 1, 𝑖

= 1, 2, . . . , 𝑁} . (11)

Then system (9) can be written in matrix notation as

𝑑x (𝑡)
𝑑𝑡 = f (x (𝑡) , u (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇, (12)

with initial condition x(0) ∈ Ω.
Now, the objective is to find a control variable u(⋅) ∈ 𝑈 so

as tominimize both the prevalence of infected computers and
the total budget for dynamic countermeasure during the time
period [0, 𝑇]. That is, the following optimal control problem
needs to be solved:

Minimize
u∈𝑈

𝐽 (u) = ∫𝑇
0
𝐿 (x (𝑡) , u (𝑡)) 𝑑𝑡 (P)

subject to system (12), where

𝐿 (x, u) = ∑
𝑖

(𝐼𝑖 (𝑡) + 12𝜀𝑖𝛾2𝑖 (𝑡)) , 𝜀𝑖 > 0, (13)

is the Lagrangian and 𝜀 = (𝜀1, . . . , 𝜀𝑁)𝑇 is a tradeoff factor
based on the control effect and control cost of dynamic
countermeasure.

3.1. Existence of an Optimal Control. First, a lemma, which
plays a critical role afterwards, is introduced.

Lemma 1 (see [34, 35]). We have an optimal control problem

Minimize
u∈𝑈

𝐽 (u) = ∫𝑇
0
𝐿 (x (𝑡) , u (𝑡)) 𝑑𝑡 (14)

subject to

𝑑x (𝑡)
𝑑𝑡 = f (x (𝑡) , u (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇, (15)

with x(0) ∈ Ω, where Ω is positively invariant for system
(15). The problem has an optimal control if the following six
conditions hold simultaneously.

(C1) There is u ∈ 𝑈 such that system (15) is solvable.
(C2) 𝑈 is convex.
(C3) 𝑈 is closed.
(C4) f(x, u) is bounded by a linear function in x.
(C5) 𝐿(x, u) is convex on 𝑈.
(C6) 𝐿(x, u) ≥ 𝑐1‖u‖𝜌2 + 𝑐2 for some 𝜌 > 1, 𝑐1 > 0, and 𝑐2.
In order to prove the existence of an optimal control,

six lemmas, one for each condition in Lemma 1, should be
proved.
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Lemma 2. There is u ∈ 𝑈 such that system (9) or (12) is
solvable.

Proof. Substituting u ≡ u fl (𝛾, . . . , 𝛾⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑁

)𝑇 into system (12), one

can get the uncontrolled system:

𝑑x (𝑡)
𝑑𝑡 = f (x (𝑡) , u) (16)

with x(0) ∈ Ω. Then the function f(x, u) is continuously
differentiable, and Ω is positively invariant for the system.
Hence, the claimed result follows from the Continuation
Theorem for differential equations [36].

Lemma 3. The admissible set 𝑈 is convex.

Proof. Let

u(1) = (𝛾(1)1 , . . . , 𝛾(1)𝑁 ) ∈ 𝑈,
u(2) = (𝛾(2)1 , . . . , 𝛾(2)𝑁 ) ∈ 𝑈,

0 < 𝜉 < 1.
(17)

As (𝐿2[0, 𝑇])𝑁 is a real vector space, one can obtain

(1 − 𝜉) u(1) + 𝜉u(2) ∈ (𝐿2 [0, 𝑇])𝑁 . (18)

Then, the convexity of 𝑈 follows by the observation that

𝛾 ≤ (1 − 𝜉) 𝛾(1)𝑖 + 𝜉𝛾(2)𝑖 ≤ 𝛾, 1 ≤ 𝑖 ≤ 𝑁. (19)

Hence, the claimed result follows.

Lemma 4. The admissible set 𝑈 is closed.

Proof. Let u = (𝛾1, . . . , 𝛾𝑁)𝑇 be a limit point of 𝑈 and

u(𝑛) = (𝛾(𝑛)1 , . . . , 𝛾(𝑛)𝑁 )𝑇 , 𝑛 = 1, 2, . . . , (20)

be a sequence of points in 𝑈 such that

󵄩󵄩󵄩󵄩󵄩u(𝑛) − u󵄩󵄩󵄩󵄩󵄩2 fl [∫𝑇
0

󵄨󵄨󵄨󵄨󵄨u(𝑛) (𝑡) − u (𝑡)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡]
1/2 < 1

𝑛 . (21)

From the completeness of (𝐿2[0, 𝑇])𝑁, one can get

lim
𝑛→∞

u(𝑛) = u ∈ (𝐿2 [0, 𝑇])𝑁 . (22)

Hence, the closeness of 𝑈 follows from the observation that

𝛾 ≤ 𝛾𝑖 = lim
𝑛→∞

𝛾(𝑛)𝑖 ≤ 𝛾, 1 ≤ 𝑖 ≤ 𝑁. (23)

Lemma 5. f(x, u) is bounded by a linear function in x.

Proof. Note that, for system (9) and for 𝑖 = 1, 2, . . . , 𝑁,

−𝛾𝑁24 − 𝛼𝑖𝐼𝑖 ≤ 𝑑𝐼𝑖𝑑𝑡 ≤ −𝛼𝑖𝐼𝑖 +∑
𝑗

𝑎𝑖𝑗𝛽𝑗𝐼𝑗,

−𝜃𝑖𝐶𝑖 ≤ 𝑑𝐶𝑖𝑑𝑡 ≤ −𝜃𝑖𝐶𝑖 + 𝛾∑
𝑗

𝑎𝑖𝑗𝐶𝑗.
(24)

Thus, the claimed result follows.

Lemma 6. 𝐿(x, u) is convex on 𝑈.
Proof. Note that the Hessian matrix of 𝐿(x, u) with respect to
u ∈ 𝑈 is as follows:

Hu (𝐿)

=

[[[[[[[[[[[[[[[[
[

𝜕2𝐿
𝜕𝛾21

𝜕2𝐿
𝜕𝛾1𝜕𝛾2 ⋅ ⋅ ⋅ 𝜕2𝐿

𝜕𝛾1𝜕𝛾𝑁−1
𝜕2𝐿

𝜕𝛾1𝜕𝛾𝑁𝜕2𝐿
𝜕𝛾2𝜕𝛾1

𝜕2𝐿
𝜕𝛾22 ⋅ ⋅ ⋅ 𝜕2𝐿

𝜕𝛾2𝜕𝛾𝑁−1
𝜕2𝐿

𝜕𝛾2𝜕𝛾𝑁... ... d
... ...

𝜕2𝐿
𝜕𝛾𝑁−1𝜕𝛾1

𝜕2𝐿
𝜕𝛾𝑁−1𝜕𝛾2 ⋅ ⋅ ⋅ 𝜕2𝐿

𝜕𝛾2𝑁−1
𝜕2𝐿

𝜕𝛾𝑁−1𝜕𝛾𝑁𝜕2𝐿
𝜕𝛾𝑁𝜕𝛾1

𝜕2𝐿
𝜕𝛾𝑁𝜕𝛾2 ⋅ ⋅ ⋅ 𝜕2𝐿

𝜕𝛾𝑁𝜕𝛾𝑁−1
𝜕2𝐿
𝜕𝛾2𝑁

]]]]]]]]]]]]]]]]
]

=
[[[[[[[[[
[

𝜀1 0 ⋅ ⋅ ⋅ 0 0
0 𝜀2 ⋅ ⋅ ⋅ 0 0
... ... d

... ...
0 0 ⋅ ⋅ ⋅ 𝜀𝑁−1 0
0 0 ⋅ ⋅ ⋅ 0 𝜀𝑁

]]]]]]]]]
]

.

(25)

For any 𝑡 ∈ [0, 𝑇],Hu(𝐿) is real symmetric and its eigenvalues
are all positive. Then, Hu(𝐿) is positive definite. Hence, the
convexity of 𝐿(x, u) follows by the result in [37].

Lemma 7. 𝐿(x, u) ≥ 𝑐1‖u‖𝜌2 + 𝑐2 for some 𝜌 > 1, 𝑐1 > 0, and𝑐2.
Proof. Let 𝜌 = 2, 𝑐1 = min𝑖{𝜀𝑖}/2, and 𝑐2 = 0. Then, 𝐿(x, u) ≥(min𝑖{𝜀𝑖}/2) × ‖u‖22. Thus, the proof is complete.

Now, it is time to examine the main result of this
subsection.

Theorem 8. The optimal control problem (P) has a solution.
Proof. Lemmas 2–7 show that the six conditions in Lemma 1
are all met. Hence, the proof is complete.

3.2. The Optimality System. In this subsection, a necessary
condition for an optimal control of problem (P) is drawn.
Theorem 9. Suppose u∗(⋅) is an optimal control for problem(P) and (𝐼∗(⋅), 𝐶∗(⋅))𝑇 is the solution to system (9) with
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u(⋅) = u∗(⋅). Then, there exist functions 𝜆∗1𝑖(𝑡) and 𝜆∗2𝑖(𝑡),0 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑁, such that

𝑑𝜆∗1𝑖 (𝑡)𝑑𝑡 = −1 + 𝜆∗1𝑖 (𝑡) [𝛼𝑖 + 𝑓∗𝑖 (𝑡) + 𝑔∗𝑖 (𝑡)]
− 𝛽𝑖
(1 + 𝑚1𝐼∗𝑖 (𝑡))2

⋅ ∑
𝑗

𝑎𝑖𝑗𝜆∗1𝑗 (𝑡) (1 − 𝐼∗𝑗 (𝑡) − 𝐶∗𝑗 (𝑡)) ,
𝑑𝜆∗2𝑖 (𝑡)𝑑𝑡 = 𝜆∗1𝑖 (𝑡) 𝑓∗𝑖 (𝑡) + 𝜆∗2𝑖 (𝑡) [𝜃𝑖 + 𝑔∗𝑖 (𝑡)]

+ 𝛾∗𝑖 (𝑡)
(1 + 𝑚2𝐶∗𝑖 (𝑡))2

⋅ ∑
𝑗

𝑎𝑖𝑗 [𝐼∗𝑗 (𝑡) 𝜆∗1𝑗 (𝑡) − (1 − 𝐶∗𝑗 (𝑡)) 𝜆∗2𝑗 (𝑡)] ,
0 ≤ 𝑡 ≤ 𝑇, 𝑖 = 1, 2, . . . , 𝑁,

(26)

with transversality conditions

𝜆∗1𝑖 (𝑇) = 𝜆∗2𝑖 (𝑇) = 0, 𝑖 = 1, 2, . . . , 𝑁. (27)

Furthermore, one can get

𝛾∗𝑖 (𝑡) = max
{{{
min

{{{
𝐶∗𝑖 (𝑡)𝜀𝑖 (1 + 𝑚2𝐶∗𝑖 (𝑡)) ∑𝑗 𝑎𝑖𝑗 [𝐼

∗
𝑗 (𝑡) 𝜆∗1𝑗 (𝑡) − (1 − 𝐶∗𝑗 (𝑡)) 𝜆∗2𝑗 (𝑡)] , 𝛾}}}

, 𝛾}}}
,
0 ≤ 𝑡 ≤ 𝑇, 𝑖 = 1, 2, . . . , 𝑁.

(28)

Proof. The corresponding Hamiltonian is

𝐻(I,C, 𝜆, u) = ∑
𝑖

(𝐼𝑖 + 12𝜀𝑖𝛾2𝑖 ) +∑
𝑖

𝜆1𝑖 𝑑𝐼𝑖𝑑𝑡
+∑
𝑖

𝜆2𝑖 𝑑𝐶𝑖𝑑𝑡 ,
(29)

where 𝜆1𝑖, 𝜆2𝑖 are undetermined, 𝜆 = (𝜆11, . . . , 𝜆1𝑁, 𝜆21, . . . ,𝜆2𝑁)𝑇.
According to the Pontryagin Minimum Principle [35],

there exist functions 𝜆∗1𝑖(𝑡) and 𝜆∗2𝑖(𝑡), 0 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑁,
such that

𝑑𝜆∗1𝑖 (𝑡)𝑑𝑡 = −𝜕𝐻 (I∗ (𝑡) ,C∗ (𝑡) , 𝜆∗ (𝑡) , u∗ (𝑡))
𝜕𝐼𝑖 ,

𝑑𝜆∗2𝑖 (𝑡)𝑑𝑡 = −𝜕𝐻 (I∗ (𝑡) ,C∗ (𝑡) , 𝜆∗ (𝑡) , u∗ (𝑡))
𝜕𝐶𝑖 ,
0 ≤ 𝑡 ≤ 𝑇, 𝑖 = 1, 2, . . . , 𝑁.

(30)

Thus, system (26) follows by direct calculations. As the
terminal cost is unspecified and the final state is free,
the transversality conditions hold. By using the optimality
condition

𝐻(I∗,C∗, 𝜆∗, u∗) = min
u∈𝑈

𝐻(I∗,C∗, 𝜆∗, u) , (31)
one can obtain that, for 0 ≤ 𝑡 ≤ 𝑇 and for 1 ≤ 𝑖 ≤ 𝑁, either

𝜕𝐻 (I∗ (𝑡) ,C∗ (𝑡) , 𝜆∗ (𝑡) , u∗ (𝑡))
𝜕𝛾𝑖 = 𝜀𝑖𝛾∗𝑖 (𝑡)

− 𝐶∗𝑖 (𝑡)1 + 𝑚2𝐶∗𝑖 (𝑡)
⋅ ∑
𝑗

𝑎𝑖𝑗 [𝐼∗𝑗 (𝑡) 𝜆∗1𝑗 (𝑡) − (1 − 𝐶∗𝑗 (𝑡)) 𝜆∗2𝑗 (𝑡)] = 0
(32)

or 𝛾∗𝑖 (𝑡) = 𝛾 or 𝛾∗𝑖 (𝑡) = 𝛾. Hence, the proof is complete.

By combining the above discussions, one can get the
optimality system for problem (P) as follows:

𝑑𝐼𝑖 (𝑡)𝑑𝑡 = −𝛼𝑖𝐼𝑖 (𝑡) + 𝑓𝑖 (𝑡) (1 − 𝐼𝑖 (𝑡) − 𝐶𝑖 (𝑡)) − 𝑔𝑖 (𝑡) 𝐼𝑖 (𝑡) ,
𝑑𝐶𝑖 (𝑡)𝑑𝑡 = −𝜃𝑖𝐶𝑖 (𝑡) + 𝑔𝑖 (𝑡) (1 − 𝐶𝑖 (𝑡)) ,
𝑑𝜆1𝑖 (𝑡)𝑑𝑡 = −1 + 𝜆1𝑖 (𝑡) [𝛼𝑖 + 𝑓𝑖 (𝑡) + 𝑔𝑖 (𝑡)] − 𝛽𝑖

(1 + 𝑚1𝐼𝑖 (𝑡))2 ∑𝑗 𝑎𝑖𝑗𝜆1𝑗 (𝑡) (1 − 𝐼𝑗 (𝑡) − 𝐶𝑗 (𝑡)) ,
𝑑𝜆2𝑖 (𝑡)𝑑𝑡 = 𝜆1𝑖 (𝑡) 𝑓𝑖 (𝑡) + 𝜆2𝑖 (𝑡) [𝜃𝑖 + 𝑔𝑖 (𝑡)] + 𝛾𝑖 (𝑡)

(1 + 𝑚2𝐶𝑖 (𝑡))2 ∑𝑗 𝑎𝑖𝑗 [𝐼𝑗 (𝑡) 𝜆1𝑗 (𝑡) − (1 − 𝐶𝑗 (𝑡)) 𝜆2𝑗 (𝑡)] ,
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Figure 2: 𝛾∗(𝑡) and 𝐼∗(𝑡) under different control strategies with𝑚1 = 𝑚2 = 2 for Example 1.
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Figure 3: 𝛾∗(𝑡) for different𝑚1 and𝑚2 for Example 1.

𝛾𝑖 (𝑡) = max
{{{
min

{{{
𝐶𝑖 (𝑡)𝜀𝑖 (1 + 𝑚2𝐶𝑖 (𝑡)) ∑𝑗 𝑎𝑖𝑗 [𝐼𝑗 (𝑡) 𝜆1𝑗 (𝑡) − (1 − 𝐶𝑗 (𝑡)) 𝜆2𝑗 (𝑡)] , 𝛾

}}}
, 𝛾}}}

,

0 ≤ 𝑡 ≤ 𝑇, 𝑖 = 1, 2, . . . , 𝑁,
(33)

with (I(0),C(0))𝑇 ∈ Ω and 𝜆(𝑇) = 0.
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Figure 4: 𝐼∗(𝑡) for different𝑚1 and𝑚2 for Example 1.
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Figure 5: The final proportion of infected nodes 𝐼∗(𝑇) and the objective function 𝐽(u∗) for different𝑚1 and𝑚2 for Example 1.

4. Numerical Examples

In this section, the effectiveness of the optimal dynamic
countermeasurewill be verified by some numerical examples.

For our purpose, three networks are considered: a syn-
thetic small-world network (WS network [38]), a synthetic
scale-free network (BA network [39]), and a partial Facebook

network [40], with 𝑁 = 150 nodes, respectively. The
parameters of system (33) are set as 𝛼𝑖 = 0.01, 𝛽𝑖 = 0.004887
(the value of 𝛽𝑖 comes from a report on some real infection
probabilities in [41]), 𝜃𝑖 = 0.02, 𝜀𝑖 = 1, 𝛾 = 0.01, 𝛾 = 0.1,
and 𝑇 = 50, 1 ≤ 𝑖 ≤ 𝑁, and the initial conditions are set
as 𝐼𝑖(0) = 0.03 and 𝐶𝑖(0) = 0.01, 1 ≤ 𝑖 ≤ 𝑁. The optimality
system (33) is solved by invoking the backward-forward Euler
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Figure 6: 𝛾∗(𝑡), 𝐼∗(𝑡), 𝐼∗(𝑇), and 𝐽(u∗) for different 𝜀 with𝑚1 = 𝑚2 = 5 for Example 1.

scheme with step size 0.01. Here we have to point out that
some parameter values are chosen hypothetically due to the
unavailability of real world data.

Suppose u∗(𝑡) is an optimal control for problem (P) and
x∗(𝑡) is a solution to the corresponding controlled system. Let𝛾∗(𝑡) and 𝐼∗(𝑡) denote the average control and the proportion
of infected nodes under u∗(𝑡), respectively, where

𝛾∗ (𝑡) = 1
𝑁 ∑
𝑖

𝛾∗𝑖 (𝑡) ,
𝐼∗ (𝑡) = 1

𝑁 ∑
𝑖

𝐼∗𝑖 (𝑡) .
(34)

Example 1. Take a WS network with 150 nodes and 150 links
as the propagation network.

Figure 2 exhibits the average control 𝛾∗(𝑡) and 𝐼∗(𝑡) under
different control strategies. Table 1 gives the final proportion
of infected nodes and the value of objective function 𝐽 under
different control strategies, where the value of static control
u = 0.08895 is an average of several real curing probabilities
reported in [42]. From Figure 2 and Table 1, one can conclude
that u∗ is indeed the optimal control strategy tominimize the
objective function 𝐽 and reduce virus prevalence to a low level
simultaneously.
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Figure 8: 𝛾∗(𝑡) for different𝑚1 and𝑚2 for Example 2.

Table 1: 𝐼∗(𝑇) and 𝐽 under different control strategies with𝑚1 = 𝑚2 = 2 for Example 1.

u = u∗ u = 0.01 u = 0.04 u = 0.08995 u = 0.1
𝐼∗(𝑇) 0.0089 0.0283 0.0231 0.0072 0.0053
𝐽(u) 172.55 218.97 211.61 181.14 177.27

Figure 3 demonstrates the average control 𝛾∗(𝑡) for
different 𝑚1 and 𝑚2. From this figure, one can see that (a)
enhancing 𝑚1 and 𝑚2 roughly reduces 𝛾∗(𝑡), (b) the smaller𝑚2 is, the longer 𝛾∗(𝑡) stays at 𝛾, and (c) 𝑚2 has a more
significant impact on 𝛾∗(𝑡) than𝑚1 does.

Figure 4 displays 𝐼∗(𝑡) for different𝑚1 and𝑚2. From this
figure, it can be seen that (a) lower𝑚1 favors virus spreading,
whereas lower 𝑚2 is conducive to the containment of virus
prevalence, (b) 𝑚2 affects 𝐼∗(𝑡) more significantly than 𝑚1
does, which implies that dynamic countermeasure plays a
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Figure 9: 𝐼∗(𝑡) for different𝑚1 and𝑚2 for Example 2.
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Figure 10: 𝐼∗(𝑇) and 𝐽(u∗) for different𝑚1 and𝑚2 for Example 2.

dominant role in the suppression of virus diffusion, and (c)
linear infection rate overestimates virus prevalence, which is
in accordance with the result in [7].

Figure 5 depicts the final proportion of infected nodes𝐼∗(𝑇) and the objective function 𝐽(u∗) for varied 𝑚1 and𝑚2. From this figure, it can be seen that 𝐽 is decreasing and
increasing with respect to 𝑚1 and 𝑚2, respectively, which
makes a suggestion that enhancing 𝑚1 and diminishing 𝑚2

are beneficial to the containment of viral spread and reduce 𝐽
to a low level simultaneously.

Figure 6 shows 𝛾∗(𝑡), 𝐼∗(𝑡), 𝐼∗(𝑇), and 𝐽(u∗) for different𝜀. From this figure, it is found that decreasing 𝜀 is effective
on the suppression of virus propagation and attains a lower𝐽(u∗) simultaneously, although it creates more control cost.
This is in good agreement with the fact that when the control
effect (i.e., to obtain a low level of infections) is given priority
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Figure 11: 𝛾∗(𝑡), 𝐼∗(𝑡), 𝐼∗(𝑇), and 𝐽(u∗) for different 𝜀 with𝑚1 = 𝑚2 = 5 for Example 2.

(i.e., with lower 𝜀), often the decision ismade to spend enough
control cost. Hence, the tradeoff factor 𝜀 plays a critical role
in the balance between control effect and control cost.

Example 2. Take a BA network with 150 nodes and 150 links
as the propagation network.

Figure 7 displays 𝛾∗(𝑡) and 𝐼∗(𝑡) under different control
strategies. Table 2 shows the values of 𝐼∗(𝑇) and 𝐽(u) under
different control strategies. Figures 8 and 9 depict 𝛾∗(𝑡)
and 𝐼∗(𝑡) for different 𝑚1 and 𝑚2, respectively. Figure 10

demonstrates 𝐼∗(𝑇) and 𝐽(u∗) for different 𝑚1 and 𝑚2.
Figure 11 exhibits 𝛾∗(𝑡), 𝐼∗(𝑡), 𝐼∗(𝑇), and 𝐽(u∗) for different𝜀. From them, one can get the same results in Example 1. So
they are omitted here for brevity.

Example 3. Take a partial Facebook network with 150 nodes
and 603 links as the propagation network.

Figure 12 shows 𝛾∗(𝑡) and 𝐼∗(𝑡) under different control
strategies. Table 3 gives the values of 𝐼∗(𝑇) and 𝐽(u) under
different control strategies. Figures 13 and 14 display 𝛾∗(𝑡)
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Figure 13: 𝛾∗(𝑡) for different𝑚1 and𝑚2 for Example 3.

Table 2: 𝐼∗(𝑇) and 𝐽 under different control strategies with𝑚1 = 𝑚2 = 2 for Example 2.

u = u∗ u = 0.01 u = 0.04 u = 0.08895 u = 0.1
𝐼∗(𝑇) 0.0132 0.0288 0.0208 0.0111 0.0097
𝐽(u) 169.84 219.58 202.91 185.27 185.65

Table 3: 𝐼∗(𝑇) and 𝐽 under different control strategies with𝑚1 = 𝑚2 = 2 for Example 3.

u = u∗ u = 0.01 u = 0.04 u = 0.08895 u = 0.1
𝐼∗(𝑇) 0.0013 0.0504 0.0035 0.0008 0.0006
𝐽(u) 61.91 373.77 112.31 83.53 86.17
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Figure 14: 𝐼∗(𝑡) for different𝑚1 and𝑚2 for Example 3.
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Figure 15: 𝐼∗(𝑇) and 𝐽(u∗) for different𝑚1 and𝑚2 for Example 3.

and 𝐼∗(𝑡) for different 𝑚1 and 𝑚2, respectively. Figure 15
demonstrates 𝐼∗(𝑇) and 𝐽(u∗) for varied𝑚1 and𝑚2. Figure 16
depicts 𝛾∗(𝑡), 𝐼∗(𝑡), 𝐼∗(𝑇), and 𝐽(u∗) for different 𝜀.

Most of the results concluded from this example are the
same as those in Example 1 except the two phenomena listed
as follows: (a) higher𝑚2 increases 𝛾∗(𝑡), which is contrary to
the results in Figures 3(b) and 8(b), and (b)𝑚1 has a negligible
impact on 𝛾∗(𝑡) and 𝐼∗(𝑡). This indicates that the network

structure, to some extent, determines the control cost and
virus diffusion.

Combining the above numerical examples, the main
results are listed below.

(a) u∗ is indeed the optimal control strategy to minimize
the objective function 𝐽 and reduce the infections to
a low level simultaneously.
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Figure 16: 𝛾∗(𝑡), 𝐼∗(𝑡), 𝐼∗(𝑇), and 𝐽(u∗) for different 𝜀 with𝑚1 = 𝑚2 = 5 for Example 3.

(b) Linear infection rate overestimates the prevalence of
virus.

(c) Enhancing𝑚1 and diminishing𝑚2 are conductive to
the containment of viral propagation and reduce 𝐽 to
a low level simultaneously.

(d) 𝑚2 hasmore significant influences on 𝛾∗(𝑡), 𝐼∗(𝑡), and𝐽(u∗) than𝑚1 does.
(e) Decreasing the tradeoff factor 𝜀 is beneficial to the

suppression of virus spread and obtains a lower 𝐽(u∗)
simultaneously, although it brings more control cost.

Additionally, the structure of network, to some extent,
determines the virus prevalence and the control cost. Thus,
we shall investigate how the network topology affects virus
spreading and control cost in the next work.

5. Concluding Remarks

This paper has studied the issue of how to work out an
optimal dynamic countermeasure for achieving a low level
of infections with a low cost. In this regard, a controlled
node-level SICS model with nonlinear infection rate has
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been established. Furthermore, an optimal control problem
has been proposed. The existence of an optimal control and
the corresponding optimality system have also been derived.
Additionally, some numerical examples have been given to
illustrate the main results. Specifically, it has been found that
the proposed optimal countermeasure scheme can achieve a
low level of infections at a low cost.

In our opinions, the next work could be made as follows.
First, the quadratic cost functions may be generalized to
some generic functions. Second, delays [43–45], pulses [46,
47], and random fluctuations [15] may be incorporated to
controlled node-level models. Last, but not least, it is worthy
to carry out research on the impact of the network topology
[9, 25, 48, 49] on the dynamic countermeasure strategy.
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We analyze the convergence time of opinion dynamics in a social network with community structure. Using matrix analysis,
we prove that the convergence time is determined by the second largest eigenvalue modulus. This modulus is close to 1 if the
social influence matrix is nearly uncoupled. Furthermore, we discuss and analyze the factors of community structure affecting the
convergence time.

1. Introduction

Community structure is ubiquitous in reality. It means that
many social networks can be divided into some groups such
that the connection within each group is dense, while con-
nection between groups is very sparse. Community structure
is always relevant to many social and biological phenomena.
Previous works have shown that community structure affects
the evolution of macroscopic phenomena taking place on
a network, such as synchronization [1, 2], the spread of
epidemics [3, 4], rumors [5], and opinion dynamics [6–8].

In opinion dynamics, various versions of the opinion
models have been proposed. First types are discrete opinion
models, among which are the Sznajd model [9], the voter
model [10, 11], the majority rule model [12], and the social
impact model [13]. Other models are continuous, using
concepts and methods based on ideas from statistical physics
or control theory. The most famous are bounded confidence
model [14, 15] and an earlier model, Degroot model [16],
including some agent-based models such as [17].

There are two interesting questions in opinion dynamics.
First, under what conditions will the opinions’ updating
processes converge to a well-defined limit? The second
question is about the convergence time or convergence rate
problem; that is, how quickly the consensus is reached if
opinions can converge ultimately. Previousworks have shown

that the convergence time is determined by the topology
of social network and the updating rule of individuals’
opinion. For example, in bounded confidence model [15],
the convergence time is determined by bounded confidence
parameter, which is expressed by a real number 𝜀, such that
an agent, with opinion 𝑥, only interacts with its peers whose
opinion lies in the range of [𝑥−𝜀, 𝑥+𝜀]. In another bounded
confidencemodel, Deffuantmodel [14], the convergence time
is only determined by convergence parameter 𝜇. In [18], the
authors studied the effects of adding shortcuts connecting
randomly chosen pairs of sites in a regular lattice on the
consensus time, using a local majority updating rule. They
showed that the consensus time dropped sensitively with the
addition of a small number of shortcuts. In [19], the author
introduced a two-state opinion dynamicsmodel where agents
evolve by majority rule, finding that consensus is reached
in a time that scales to log𝑁, where 𝑁 is the number of
agents. On finite-dimensional lattices, where a group is a
contiguous cluster, the consensus time fluctuates strongly
between realizations and grows as a dimension-dependent
power of𝑁.The upper critical dimension appears to be larger
than 4. In [20] the authors found that, for the voter model,
if the network is with an arbitrary but uncorrelated degree
distribution, the convergence time 𝑇𝑁 scales as 𝑁𝜇21/𝜇2,
where 𝜇𝑘 is the 𝑘th moment of the degree distribution and𝑁 is the size of the network. In [21], the authors found in
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a coevolving network that if the number of committed agents
added exceeds a critical value, the consensus time growth
becomes logarithmic in network size 𝑁. Slight changes in
the interaction rule can produce strikingly different results of
consensus time.

Although it is shown that interaction rules or network
topologies have an important impact on the evolution of
group opinions, the continuous opinion dynamics issue with
community structure is still not well understood. Unlike all
the research above, here we mainly discuss the impact of a
community structure on convergence time, which applies to
situations of how we control the opinion evolution in a social
network with community structure. First, through matrix
analysis method, we prove that the convergence time is deter-
mined by the second largest eigenvalue modulus of social
influence matrix. Furthermore, we prove that this modulus
is close to 1 if the social influence matrix is nearly uncoupled.
Second, in our model the influence of interpersonal is ran-
dom,which is closer to reality.Wepropose the concept, distri-
bution of interpersonal influence, which can better describe
the interaction situations. We examine this issue from three
points of view: the number of nodes connected (including
the number of nodes connected between subgroups, the
number of nodes connected within subgroups, and the con-
nection density between subgroups), the size of subgroups,
and influence distribution. We find that the number of con-
nections between subgroups and the number of subgroups
within the subgroups exert a strong influence on the con-
vergence time. In addition, the impact of distribution of
influence on the convergence time shows the following fact:
the convergence time of the group opinions in an autocratic
society is longer than that in a democratic society in average,
but various connection patterns may bring much more
uncertainty.

The remaining of this paper is organized as follows: in
Section 2, we discuss the proposed model in detail. Then in
Section 3 we analyze the impact of community structure on
the consensus time. Section 4 concludes this paper.

2. Continuous Opinion Dynamics Model

2.1. Notations, Assumptions, and the Opinion Dynamic Model.
This section introduces the notations and the assumptions
and defines the consensus time of continuous opinion
dynamics.

Mathematically, a social network with community struc-
ture can be characterized by a big graph in which the
nodes represent people, and the edges evaluate their relation
strength.

We consider a set of 𝑛 individuals in a social network.𝑉 = {1, 2, . . . , 𝑛}. A relation𝐸 ⊆ 𝑉×𝑉models the interactions
between individuals. We assume the relationship is mutual
((𝑖, 𝑗) ∈ 𝐸 if and only if (𝑗, 𝑖) ∈ 𝐸).𝑉 is the set of vertices and𝐸
is a set of edges of undirected graph𝐺 = (𝑉, 𝐸), describing the
social network of individuals. Each individual has an opinion
modeled by a real number 𝑥𝑖(𝑡) ∈ 𝑅. Initially, individual 𝑖
has an opinion 𝑥𝑖(0) independent from others.Then, at every
time step, the individuals update their opinion by taking

a weighted average of their own opinion and opinions of
others

𝑥𝑖 (𝑡 + 1) = 𝑛∑
𝑗=1

𝑎𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡) (1)

with the coefficients 𝑎𝑖𝑗(𝑡) satisfying∀𝑖, 𝑗 ∈ 𝑉, 𝑎𝑖𝑗 (𝑡) ̸= 0 ⇐⇒ 𝑗 ∈ {𝑖} ∪ {𝑁𝑖 (𝑡)} ,
𝑛∑
𝑗=1

𝑎𝑖𝑗 (𝑡) = 1, (2)

where the coefficient 𝑎𝑖𝑖 denotes the force of self-confidence
of individual 𝑖 and 𝑎𝑖𝑗 denotes to what extent individual 𝑖 is
affected by individual 𝑗. 𝑁𝑖(𝑡) denotes the neighborhood of
individual 𝑖 at time 𝑡 step.

Let 𝑋(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡))𝑇, 𝐴(𝑡) = (𝑎𝑖𝑗(𝑡))𝑛×𝑛;
thus, the group opinion dynamics can be written as follows:𝑋 (𝑡 + 1) = 𝐴 (𝑡) 𝑋 (𝑡) , (3)

where 𝐴 is a row stochastic and nonnegative matrix. In this
following, we call it social influence matrix whose entry 𝑎𝑖𝑗
represents the influence strength from individuals 𝑗 to 𝑖.

In this paper, we assume that (1) 𝐺 is static and strongly
connected; (2) the relationship and interaction between
individuals are mutual; (3) every individual has a little self-
confidence. Under these conditions, it is easy to find that 𝐴
is constant and row stochastic matrix.The diagonal entries in𝐴 are all positive, and zero-entries in 𝐴 are symmetric. Using
nonnegative matrix theories, we can get some properties as
follows.

Proposition 1. Consensus will be reached ultimately.

Proof. Under assumption (1), it can easily be seen that 𝐴 is
an irreducible, row stochastic and nonnegative matrix. The
summation of each row is equal to 1.Thus, the spectral radius
of𝐴 denoted by 𝜌(𝐴) = 1.𝛼1 = (1, 1, . . . , 1)𝑇 is an eigenvector
of 𝜆 = 1. Since all the diagonal entries are positive, using
Perron-Frobenius theory, we can get 𝐴 is primitive. The
algebraic multiplicity of 𝜆 = 1 is equal to 1. So the spectrum
of 𝐴 can be denoted by

spec (𝐴) = {𝜆𝑖 | 󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝜆𝑛−1󵄨󵄨󵄨󵄨 ≤ ⋅ ⋅ ⋅ ≤ 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 < 𝜆1 = 1} . (4)

For any initial opinion vector 𝑋(0) = (𝑥1(0), 𝑥2(0),. . . , 𝑥𝑛(0))𝑇, it can be written as a linear combination as
follows:

𝑋 (0) = 𝑛∑
𝑖=1

𝑘𝑖𝛼𝑖, (5)

where 𝛼𝑖 is eigenvector corresponding to the eigenvalue 𝜆𝑖 of𝐴.Thus, for all 𝑡 > 0,𝛼𝑡𝑖 is an eigenvector corresponding to the
eigenvalue 𝜆𝑡𝑖 of 𝐴𝑡. Since |𝜆𝑛| ≤ |𝜆𝑛−1| ≤ ⋅ ⋅ ⋅ ≤ |𝜆2| < 𝜆1 = 1,
it follows that

lim
𝑡→∞

𝑋 (𝑡) = lim
𝑡→∞

𝐴𝑡 ⋅ 𝑋 (0) = lim
𝑡→∞

𝐴𝑡 𝑛∑
𝑖=1

𝑘𝑖𝛼𝑖
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= lim
𝑡→∞

( 𝑛∑
𝑖=1

𝑘𝑖𝛼𝑖 ⋅ 𝜆𝑡𝑖) = lim
𝑡→∞

(𝑘1𝛼1 + 𝑜 (1))
= (𝑘1, 𝑘1, . . . , 𝑘1)𝑇 .

(6)

So the opinions converge to a constant vector, whose compo-
nents are all equal.That means the consensus can be reached,
and the convergence time is consensus time.

Remark. Assumption (2) is not necessary condition but
sufficient for convergence of opinions. For example, if 𝐴 =( 0 0.5 0.51 0 0
0 1 0

), we can get lim𝑡→∞𝐴𝑡 = ( 0.4 0.4 0.20.4 0.4 0.2
0.4 0.4 0.2

), so opinions
converge to a fixed vector, but the diagonal of 𝐴 is not
positive.

Proposition 2. The convergence time is determined by the
second largest eigenvalue modulus |𝜆2|.
Proof. First we introduce the definition of convergence time:𝑡∗ = inf {𝑡0 | ∀𝑡 > 𝑡0, ‖𝑋 (𝑡) − 𝑋‖ ≤ 𝛿} , (7)

where 𝛿 can be arbitrarily small, 𝑋(𝑡) represents a series of
vector, and 𝑋 is the limit of 𝑋(𝑡).‖ ⋅ ‖ represents a vector norm (1-norm, 2-norm, or ∞-
norm). If ‖𝑋(𝑡) − 𝑋‖ < 𝛿, it follows that󵄩󵄩󵄩󵄩󵄩𝑘2𝛼2 ⋅ 𝜆𝑡2 + 𝑜 (𝜆𝑡2)󵄩󵄩󵄩󵄩󵄩 ≤ 𝛿; (8)

when 𝛿 is small enough, 𝑜(𝜆𝑡2) can be omitted. So (7) can be
rewritten as ‖𝑘2𝛼2 ⋅ 𝜆𝑡2‖ ≤ 𝛿.

Thus, we can get

𝑡 ≥ −𝑐 ln 𝛿
ln (1/ 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨) = −𝑐 ln 𝛿− ln 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 (9)

satisfying (7). So the convergence time 𝑡∗ = −𝑐 ln 𝛿/ − ln |𝜆2|,
where 𝑐 is a constant determined by the initial opinion vector
and eigenvector of weighted matrix 𝐴.

From the analysis above, it is obvious that the larger|𝜆2| is, the longer the consensus time is and vice versa.
For simplicity, we analyze the convergence time only by the
second largest eigenvalue modulus |𝜆2| or − ln |𝜆2|.
Proposition 3. For a nonnegative row stochastic partitioned
matrix 𝐴 = ( 𝐵 𝐷𝐸 𝐶 )𝑛×𝑛, where 𝐵 = (𝑏𝑖𝑗)𝑛

1
×𝑛
1

, 𝐶 = (𝑐𝑖𝑗)𝑛
2
×𝑛
2

, 𝑛 =𝑛1 + 𝑛2. Let 𝜎(𝐴) be the summation of entries in 𝐷 and 𝐸; then
for any 𝜀 > 0, ∃𝛿 > 0, if |𝜎(𝐴)| < 𝛿, satisfying ||𝜆2| − 1| < 𝜀.
Proof. First, we prove that if all the entries in a matrix change
a little, the eigenvalues of the new matrix will also change.
Denote 𝐵 by

(
(

𝑏11 𝑏12 ⋅ ⋅ ⋅ 𝑏1,𝑛
1𝑏21 𝑏22 ⋅ ⋅ ⋅ 𝑏2,𝑛
1... ... ... ...𝑏𝑛

1
,1 𝑏𝑛

1
,2 ⋅ ⋅ ⋅ 𝑏𝑛

1
,𝑛
1

)
)

; (10)

step 1 𝐵 is transformed into

𝐵(1) = (
(

𝑏11 + Δ(1) 𝑏12 ⋅ ⋅ ⋅ 𝑏1,𝑛
1𝑏21 𝑏22 ⋅ ⋅ ⋅ 𝑏2,𝑛
1... ... ... ...𝑏𝑛

1
,1 𝑏𝑛

1
,2 ⋅ ⋅ ⋅ 𝑏𝑛1,𝑛

1

)
)

. (11)

Thanks to the continuity of eigenvalues, we can get that, for
any 𝜀 > 0, there exists 𝛿(1) > 0, if |Δ(1)| < 𝛿(1), satisfying|𝜆(𝐵(1)) − 𝜆(𝐵)| < 𝜀. For step 2 when 𝐵(1) is transformed into

𝐵(2) = (
(

𝑏11 + Δ(1) 𝑏12 + Δ(2) ⋅ ⋅ ⋅ 𝑏1,𝑛1𝑏21 𝑏22 ⋅ ⋅ ⋅ 𝑏2,𝑛1... ... ... ...𝑏𝑛1,1 𝑏𝑛1,2 ⋅ ⋅ ⋅ 𝑏𝑛1,𝑛1
)
)

, (12)

we can get that, ∀𝜀 > 0, ∃𝛿(2) > 0, if |Δ(2)| < 𝛿(2),|𝜆(𝐵(2)) − 𝜆(𝐵(1))| < 𝜀. Repeat this process, at the last step,∃𝛿(𝑛21) > 0, if |Δ(𝑛21)| < 𝛿(𝑛21), |𝜆(𝐵(𝑛21)) − 𝜆(𝐵(𝑛21−1))| < 𝜀, so
for any 𝜀 > 0, there exists 𝛿󸀠 = min(𝛿(1), 𝛿(2), . . . , 𝛿(𝑛21)), if|Δ(1)|, |Δ(2)|, . . . , |Δ(𝑛21)| < 𝛿󸀠, satisfying |𝜆(𝐵(𝑛21))−𝜆(𝐵)| < 𝑛21𝜀.

That is to say, if the matrix perturbation is small enough,
the eigenvalues will vary little accordingly. Secondly, let 𝐴󸀠 =( 𝐵󸀠 0
0 𝐶󸀠

)
𝑛×𝑛

. So it is reducible, and naturally the spectral of𝐴󸀠 spec(𝐴󸀠) = spec(𝐵󸀠) ∪ spec(𝐶󸀠). If 𝜎(𝐴) is small enough,
then all the entries in 𝐷 and 𝐸 are also small. When 𝜎(𝐴)
trends toward 0, the entries in 𝐵 and 𝐶 must change a little
accordingly to keep 𝐴 as a row stochastic matrix. Without
loss of generality, we can assume only one element 𝑑11 > 0 in
matrix 𝐷 (or 𝑐11 in 𝐶). For these reasons, we can obtain that,
for any 𝜀 > 0, there exists 𝛿, if 𝑑11 < 𝛿, |𝜆(𝐴) − 𝜆(𝐴󸀠)| < 𝜀,
since𝑑11 < 𝜎(𝐴); if𝜎(𝐴) < 𝛿, then,𝑑11 < 𝛿, |𝜆(𝐴)−𝜆(𝐴󸀠)| < 𝜀
or specially ||𝜆2| − 1| < 𝜀. That is to say, if 𝜎(𝐴) → 0, then the
second largest eigenvalue modulus is nearly 1. The inverse of
Proposition 3 has been proved by [22]. If second largest eigen-
value is sufficiently close to 1, then 𝐴 is nearly uncoupled.

A social network with community structure means
partitioned matrix 𝐴 with 𝜎(𝐴) is very small. According to
the above analysis, if individuals in different subgroups of a
society rarely interact with each other, then 𝜆2 will be very
close to 1. As a result, it is hard to reach a consensus.

3. The Impact of Community Structure on
Convergence Time

Althoughwehave some analytical results of the second largest
eigenvalue modulus of the social influence matrix with com-
munity structure, the exact results depend on entries of this
matrix. Different network structures or different influence
distributions will affect the second largest eigenvalue mod-
ulus, which in turn affects the convergence time of the group
opinion. Therefore, the analysis of the impact of community
structure on the convergence of time includes the following
three aspects: the number of connection nodes, the size of
subgroups, and the distribution of interpersonal influence.
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Figure 1: The relationship between the number of edges added
between two subgroups and the convergence time.
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Figure 2: The relationship between the number of edges added in
one subgroup and the convergence time.

3.1. The Number of Connection Nodes. First of all, using the
famousWSmodel [23], we build a social network containing
two subgroups, respectively. Each social network is a small
world. To ensure the whole network is linked, the nodes
between subgroups are connected sparsely and randomly.
And thenwe investigatewhether the increasing of connection
can influence the convergence time.

Figure 1 shows that the convergence rate of opinion evolu-
tion is highly dependent on the connection pattern between
subgroups. If the number of connections or connection
densities between subgroups increases, the convergence rate
of the group opinions is faster. At the beginning, when there
is only one connection between subgroups, there is almost
no connection between two subgroups, and the convergence
rate is almost zero. This is the result of the aforementioned
Proposition 3, and in this case, the social influence matrix
associated the social network is nearly uncoupled. So con-
sensus is hardly reached. However, when the number of
connections (or densities) between the groups increases, for
example, when the number of nodes increases to 10 pairs,
the second largest eigenvalue modulus |𝜆2| will reduce from
0.9972 to 0.9881. When the number of connections nodes
goes up to 100, |𝜆2| will drop to 0.9081 accordingly.

However, the convergence rate in Figure 2 declines with
the rise of the number of internal connections in one
subgroup. But the rate of weakening is much slower than
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Figure 3: Example of the frequency of interaction between different
subgroups impact on the second largest eigenvalue modulus, with𝑛1 = 100, 𝑛2 = 50, 𝑝1 = 0.2, and 𝑝2 = 0.4 (repeatedly calculating 30
times).

that in Figure 1. In Figure 2, with the ascent in the internal
connection of the subgroup (from the beginning of the
connection density 0.1 is 0.9512; the second largest eigenvalue
modulus decreases slightly to 0.9561 when the number of
connected nodes ascends to 100 pairs).

In Figure 3, we explore the impact of two subgroups
interaction frequency on the consensus time. Frequency of
interaction in the first subgroup is denoted by 𝑝1, and the
second is 𝑝2.The interaction frequency between subgroups is
denoted by 𝑝3, which is the proportion of positive entries to
all the entries in 𝐷 and 𝐸 (or the connection density between
different subgroups).

In Figure 3, it is easily to be observed that if the parameter𝑝3 goes up, the second largest eigenvaluemodulus will fall off.
Thus, the consensus time will be shorter with the increasing
frequency of interaction between subgroups.

3.2. The Size of Subgroups. In this section, we examine the
impact of the size of subgroups on the convergence time. For
a fixed size, for example, 150, of the social network, Figure 4
shows that |𝜆2| will be the largest when 𝑛1 is close to 𝑛2.
More precisely, if 𝑝1 = 𝑝2, when 𝑛1 = 𝑛2 = 75, |𝜆2| will
be the largest. That is to say, if a social network has a small
subgroup and a large subgroup simultaneously, it will always
be easy to reach a consensus. On the contrary, if the sizes of
two subgroups are about the same, it is difficult to reach a
consensus.

Simulation results show that the second largest eigenvalue
modulus is negatively correlated to the size of the correspond-
ing graph of 𝐴, as well as the density (or average degrees)
of the underling graph. For convenience, they are roughly
denoted by 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 = 𝑓 (𝑛, 𝑝) ,𝜕𝑓𝜕𝑛 < 0,

𝜕𝑓𝜕𝑝 < 0.
(13)
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Figure 4: The relationship between the size of subgroups and the second largest eigenvalue modulus. 𝑥-axis is the size of one subgroup and𝑦-axis is the second largest eigenvalue modulus. Here we assume the size of 𝐺 is 150, 𝑝3 = 0.02, in (a), 𝑝1 = 𝑝2 = 0.2; in (b), 𝑝1 = 0.2, 𝑝2 = 0.4;
in (c), 𝑝1 = 0.4, 𝑝2 = 0.2.

If the interaction between subgroups is very small, 𝐴 is
nearly uncoupled; using Proposition 3 we can get

spec (𝐴) ≈ spec (𝐵) ∪ spec (𝐶) ; (14)

thus, 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 (𝐴) ≈ max (󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 (𝐵) , 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 (𝐶)) ,
i.e., 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 (𝐴) ≈ max (𝑓 (𝑛1, 𝑝) , 𝑓 (𝑛 − 𝑛1, 𝑝))= 𝑓 (min (𝑛1, 𝑛 − 𝑛1) , 𝑝) . (15)

So for fixed 𝑛, if 𝑛1 = 𝑛/2,min(𝑛1, 𝑛−𝑛1) can be the largest,
accordingly |𝜆2| is the largest.
3.3. The Distribution of Interpersonal Influence. Finally, we
study three different distributions of influence strength of
individuals. In Figure 5 Case 1, power law distribution

represents an autocratic society, where minority-influential
individuals or opinion leaders exist, and the latter two both
represent a democratic society. In Case 2, the influence
of individuals follows normal distribution. In Case 3, all
individuals are affected by their neighbors with the same
influence. Repeatedly calculating 1000 times, we can get the
distribution of convergence rate as illustrated in Figure 5. It
can be seen that, in an autocratic society (Case 1), the con-
vergence of rate is slow with high probability, but sometimes
is very fast. This is due to the asymmetry and heterogeneity
of the power law distribution. If a few influential nodes
belonging to different subgroups connect with each other,
it will accelerate the convergence of groups opinions. On
the contrary, if influential nodes form links only by inner-
group, it will slightly slow down the convergence of group
opinions. Thus, to some extent, the convergence time or
convergence rate of group opinions is uncertain in this case.
In a democratic society (Case 2 and Case 3), the convergence
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Figure 5:The distribution of convergence rate of group opinion is determined by the distribution of influence. 𝑥-axis is the convergence rate− log(|𝜆2|) and 𝑦-axis is the frequency (total frequency is 1000). (a) represents autocratic society; (b) and (c) represent democratic society.

time follows a narrow-range distribution. In general, the
average convergence rate is faster than that of Case 1. In Case3, the influence matrix can be expressed as 𝐴 = (𝐷 + 𝐼)−1𝑀𝐴,
where 𝑀𝐴 is the adjacency matrix of the graph. In this case,
all the eigenvalues are real, and the second largest eigenvalue
is determined by the maximum degree of the graph.

4. Conclusions

Based on the framework of the Degroot model, this paper
studies the impact of the community structure topology
on the consensus time by introducing the second largest
eigenvalues modulus of social influence matrix. We prove
that if the interaction between subgroups is tiny, then the

consensus time will be very long. This means that opinions
profiles in a social network with community structure are
difficult to reach a consensus.

In order to study how the community structure impacts
on the convergence time (or the convergence rate), using the
second largest eigenvalue modulus, we examine this issue
from three points of view: the number of nodes connected
(including the number of subgroups connected, the number
of subgroups within the connection, and the connection den-
sity), subgroup size, and influence distribution. We find that
increasing the number of connections between subgroups
can accelerate the convergence of group opinions, while
increasing the number of subgroups within the subgroups
slows the convergence rate. The closer the subgroups’ size is,
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the longer the convergence time of the group opinions is. On
the other hand, the smaller the size of the subgroup is, the
shorter the convergence time is. Thus, the community struc-
ture depends not only on the density of the subgroups but also
on the relative size of the subgroups. In addition, the impact
of distribution of influence strength on the convergence time
shows that the convergence time of group opinions in an
autocratic society is longer than that in a democratic society
in average, but may involve more uncertainty, which depends
on the various connection pattern.

The implication of all the above is network intervene [24].
In order to accelerate the consensus, we must strengthen
the communication of individuals in different subgroups. On
the contrary, to maintain the discrepancy of group opinions,
we can strengthen the communication of individuals in the
same subgroups. Another effective way to control opinion
evolution is to vary the size of subgroups.
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Internal attack is a crucial security problem of WSN (wireless sensor network). In this paper, we focus on the internal attack
detection which is an important way to locate attacks. We propose a state transition model, based on the continuous time Markov
chain (CTMC), to study the behaviors of the sensors in aWSN under internal attack.Then we conduct the internal attack detection
model as the epidemiological model. In this model, we explore the detection rate as the rate of a compromised state transition to
a response state. By using the Bellman equation, the utility for the state transitions of a sensor can be written in standard forms
of dynamic programming. It reveals a natural way to find the optimal detection rate that is by maximizing the total utility of
the compromised state of the node (the sum of current utility and future utility). In particular, we encapsulate the current state,
survivability, availability, and energy consumption of the WSN into an information set. We conduct extensive experiments and the
results show the effectiveness of our solutions.

1. Introduction

WSN (wireless sensor network) is always vulnerable because
it is usually deployed in hostile environments [1]. The attack
behaviors inWSN aremainly divided into two types: external
attack and internal attack. For the improvement of hardware
performance, which makes the public cryptography possible,
the external attacks inWSN can be prevented effectively with
the security structure based on cryptography [2–4].Thus, the
focus of the study is about internal attack such as detection,
revocation, and tolerance of the compromised nodes and rep-
licated nodes that have been physically captured. Normally,
there are three ways to detect internal attacks: analyzing the
attack behavior [5–8], detecting the compromised nodes [9–
13], and verifying replica attack [14–17].

In aWSN, the states of a sensor are typically distinguished
into healthy, compromised, responsive, or fail state. At any
time, a sensor stays precisely at one of the four states. For the
existence of internal attacks, the sensor transits among the
states in its lifecycle. In this paper, we leverage the continuous
time Markov chain (CTMC) to model the state transition of
sensors. In addition, we built up an internal attack detection

model for WSN based on classical SIR epidemiological
model. The model described the behaviors of the sensors in a
WSN under internal attacks.

Thereafter, we can detect the internal attacks over the
models. According to our study, the detection rate can be
viewed as the rate of the transitions from a compromised state
to a responsive state. In this way, the system responds imme-
diately when a sensor changes its state to a compromised
state; that is, the node has been attacked. Traditionally, the
existing studies on internal attack detection inWSN focus on
more efficient detection methods and higher detection rates
[18–20], while the detection rate is actually not the higher the
better in practice, especially when it is constrainedwith limits
of network characteristics of a WSN such as power and com-
puting capability. In contrast, we aremore concernedwith the
trade-off between detection rate and network characteristics.

Therefore, we proposed a solution to find the optimal det-
ection rate rather than choose the highest rate. By using the
Bellman equation, the utility for the state transitions of a sen-
sor can be written in standard forms of dynamic program-
ming. In addition, we encapsulate the four parameters, that is,
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current state, survivability, availability, and energy consump-
tion, into information set.The information set is a good indi-
cator for achieving the balance between network character-
istics and security. We can find the optimal detection rate by
maximizing the total utility. Extensive experiments have been
conducted to show the effectiveness of our solutions. The
experimental results show that our solution can indeed imp-
rove the survivability of WSN and therefore guide the design
of WSN.

The rest of this paper is organized as follows. In Section 2,
we give related work and outline the perspectives and app-
roaches in the existing literatures. In Section 3, we propose
the state transition model of internal attack and internal
attack detectionmodel, based onCTMC and epidemiological
model, respectively.Thereafter, we establish dynamic progra-
mming model via the Bellman equation to find the optimal
detection rate. In Sections 4 and 5, we present the numerical
simulation study for our methods. Finally, we conclude our
study in the paper and the future work in Section 6.

2. Related Work

The epidemiological model has been widely used to ana-
lyze the spread of malware in wired networks [21–25]. In
literature [26], the impact of the network topology on the
viral prevalence was studied and author proposed a node-
based approach. In literature [27], epidemic processes were
studied in complex networks. In literature [28], a theoretical
assessment approach was proposed on the impact of patch
forwarding on the prevalence of computer virus.

In recent years, application of the epidemiological model
in WSN has become increasingly widespread [29]. The ana-
lyses based on the simulation and experiment research show
that the epidemiological model can effectively describe the
dynamic propagation of malware when the number of nodes
in the network is large enough. In literature [30], the attack
behavior ofmalwarewas studied by combining the epidemio-
logical model with a loss equation. In literature [31], the reac-
tive diffusion equation model of malware propagation was
proposed based on the theory of epidemiological diseases.

Normally the state of the sensors in a WSN is either
healthy, compromised, responsive, or failed. At any time, a
sensor stays precisely at one of the four states. The state of a
sensor will transit to other types if it suffers an internal attack.
Therefore, we use the CTMC to model the state transition
of a sensor, though the decision of the “malicious attacker”
is not random in the attacked WSN, while the attack time is
randomly distributed.The lifecycle of sensors can be regarded
as a dynamic system, so the stochastic process can be used to
establish the corresponding model. In some related papers,
the Markov chain [32] is also widely used to simulate the
spread of malware in WSN.

3. Model and Methods

3.1. State Transition Model. The various epidemic models are
actually state transition models. These states are mutually
exclusive: every sensor is in a precisely specific state at any

H C R F

H: healthy state
R: response state

C: compromised state
F: failure state

RH

RF

CF

HC

HF

Dt

Figure 1: The value of𝐷𝑡 for several planning horizons.
time.The sensor transits diversely among different states dur-
ing its lifecycle.

The state transition of a node in WSN can be modeled
with a CTMC. Figure 1 depicts the state transition diagram of
a node under an internal attack. A circled node in the diagram
stands for a state which is either healthy, compromised,
responsive, or failed, which are marked with 𝐻, 𝐶, 𝑅, or 𝐹,
respectively. Each arc in the diagram associates with a rate𝜆𝑖𝑗, 𝑖, 𝑗 ∈ {𝐻, 𝐶, 𝑅, 𝐹}, which indicates the rate of the transi-
tion from state 𝑖 to state 𝑗 when the node suffered an internal
attack.

State transition processes are as follows: a node in WSN
in𝐻 was functioning correctly at the beginning. We suppose
that the healthy sensor becomes a compromised node under
an attack; that is, the state of the sensor turns to 𝐶 from 𝐻.
When the compromised state has been detected, the state of
it will change to 𝑅; otherwise, the state of it will change to𝐹 or remain at 𝐶. If a sensor stays in 𝑅, a response action
will be carried out. If we get an acknowledgement from the
node, then it moves to 𝐻. Otherwise, it will be viewed as𝐹. The response actions include software rejuvenation and
reconfiguration as a countermeasure against attacks. Since a
WSN is usually deployed in hostile environments or areas, the
sensors could be failed for the influence of environment and
outage of power.

3.2. Internal Attack Detection Model. We explore the impact
of detection rate on sensors under internal attack andmetrics
by combining a classical epidemiological model and an
economic behavioralmodel based on a forward-looking, rep-
resentative agent. Detection efforts determine the detection
rate that will determine nodes from 𝐶 to 𝑅 by some specific
rate. It will affect the survivability and availability of nodes.
The survivability and availability of one single node will have
influence on the entire cluster and network.

There are four types of nodes in the WSN. Assume we
have𝑁 sensors in total, and let𝐻𝑡,𝐶𝑡, 𝑅𝑡, and 𝐹𝑡 be the num-
ber of healthy nodes, compromised nodes, responsive nodes,
and failed nodes, respectively. Then we have the following
differential equations:𝑑𝐻𝑡𝑑𝑡 = −𝜆𝐻𝐶𝐻𝑡𝐶𝑡 + 𝜆𝑅𝐻𝑅𝑡 − 𝜆𝐻𝐹𝐻𝑡,𝑑𝐶𝑡𝑑𝑡 = 𝜆𝐻𝐶𝐻𝑡𝐶𝑡 − 𝐷𝑡𝐶𝑡 − 𝜆𝐶𝐹𝐶𝑡,
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𝑑𝑅𝑡𝑑𝑡 = 𝐷𝑡𝐶𝑡 − 𝜆𝑅𝐻𝑅𝑡 − 𝜆𝑅𝐹𝑅𝑡,𝑑𝐹𝑡𝑑𝑡 = 𝜆𝑅𝐹𝑅𝑡 + 𝜆𝐶𝐹𝐶𝑡 + 𝜆𝐻𝐹𝐻𝑡.
(1)

Equations (1) formalize four-state transition processes
when a sensor in the WSN is under an internal attack. 𝐷𝑡 in
the equations is the detection rate, that is, the rate that nodes
detected in 𝐶 at every interval. The transition rate from 𝐶
to 𝑅 is taken as the detection rate 𝐷𝑡; that is, 𝜆𝐶𝑅 = 𝐷𝑡. In
other words, responsemeasures should be taken immediately
as long as the node is recognized as 𝐶. However, the other
types of state transition do not depend on the detection rate.

The above model (model 1) illustrates the dynamic evolu-
tion process of WSN under internal attack within a certain
period. The dynamics of internal attack detection model
cannot be analyzed thoroughly in a short period of time,
so we will focus on the process of the long-term dynamic
evolution on the WSN. With the power of WSN limited and
deployed in harsh environments, a large number of redun-
dant sensors are normally deployed in WSN for the sensors
cannot be able to be repaired once they transited to the failure
state. After the sensor fails, the redundant node will be the
suitable alternatives. We will call it “death” and “birth”; we
will put forward model 2:𝑑𝐻𝑡𝑑𝑡 = 𝑁0 − 𝜆𝐻𝐶𝐻𝑡𝐶𝑡 + 𝜆𝑅𝐻𝑅𝑡 − 𝜆𝐻𝐹𝐻𝑡,𝑑𝐶𝑡𝑑𝑡 = 𝜆𝐻𝐶𝐻𝑡𝐶𝑡 − 𝐷𝑡𝐶𝑡 − 𝜆𝐶𝐹𝐶𝑡,𝑑𝑅𝑡𝑑𝑡 = 𝐷𝑡𝐶𝑡 − 𝜆𝑅𝐻𝑅𝑡 − 𝜆𝑅𝐹𝑅𝑡.

(2)

Assume the immutability of the sumof the sensors (inclu-
ding 𝐻𝑡, 𝐶𝑡, 𝑅𝑡, and 𝐹𝑡, excluding abundant nodes), 𝑁0 is
the number of the “births”, and it is equal to the number
of “deaths,” namely the abundant nodes which replaced the
“death”. To simplify the counting process, let 𝜆𝐻𝐹 = 𝜆𝐶𝐹 =𝜆𝑅𝐹 = 𝜆.

Dynamic analysis is carried out on model 2 and both
the existence and stability of the equilibrium point will be
discussed. According to (2), we find the steady state as
follows:

(i) 𝐸0 = (1, 0, 0).
(ii) Interior equilibrium point 𝐸∗(𝐻∗𝑡 , 𝑅∗𝑡 , 𝐶∗𝑡 )

𝐻∗𝑡 = 𝜆 + 𝐷𝑡𝜆𝐻𝐶 ,𝑅∗𝑡 = 𝐷𝑡 (𝜆𝐻𝐶 − 𝜆 − 𝐷𝑡)𝜆𝐻𝐶 (𝐷𝑡 + 𝜆 + 𝜆𝑅𝐻) ,𝐶∗𝑡 = (𝜆𝐻𝐶 − 𝜆 − 𝐷𝑡) (𝜆 + 𝜆𝑅𝐻)𝜆𝐻𝐶 (𝐷𝑡 + 𝜆 + 𝜆𝑅𝐻) .
(3)

The Jacobi matrix of the model is acquired:

𝐽 = (−𝜆𝐻𝐶𝐶𝑡 − 𝜆 −𝜆𝐻𝐶𝐻𝑡 𝜆𝑅𝐻𝜆𝐻𝐶𝐶𝑡 𝜆𝐻𝐶𝐻𝑡 − 𝐷𝑡 − 𝜆 00 𝐷𝑡 −𝜆𝑅𝐻 − 𝜆) . (4)

(1) The Jacobian corresponding to 𝐸0(1, 0, 0) is that
𝐽0 = (−𝜆 −𝜆𝐻𝐶 𝜆𝑅𝐻0 𝜆𝐻𝐶 − 𝐷𝑡 − 𝜆 00 𝐷𝑡 −𝜆𝑅𝐻 − 𝜆) (5)

and, thus, the eigenvalues of the Jacobian at 𝐸0(1, 0, 0) must
have negative real parts, which are equivalent to 𝜆1 = −𝜆 < 0,𝜆2 = 𝜆𝐻𝐶 − 𝐷𝑡 − 𝜆 < 0, and 𝜆3 = −𝜆𝑅𝐻 − 𝜆 < 0.

(2) The Jacobian corresponding to 𝐸∗(𝐻∗𝑡 , 𝑅∗𝑡 , 𝐶∗𝑡 ) is that𝐽∗
=(
(

−(𝜆𝐻𝐶 − 𝜆 − 𝐷𝑡) (𝜆 + 𝜆𝑅𝐻)𝐷𝑡 + 𝜆 + 𝜆𝑅𝐻 − 𝜆 −𝜆 − 𝐷𝑡 𝜆𝑅𝐻(𝜆𝐻𝐶 − 𝜆 − 𝐷𝑡) (𝜆 + 𝜆𝑅𝐻)𝐷𝑡 + 𝜆 + 𝜆𝑅𝐻 0 00 𝐷𝑡 −𝜆𝑅𝐻 − 𝜆
)
)

. (6)

The eigenvalues of the Jacobian at 𝐸∗(𝐻∗𝑡 , 𝑅∗𝑡 , 𝐶∗𝑡 ) are
obtained 𝜆1 = −𝜆 < 0 and 𝜆2 and 𝜆3 meet (𝜆󸀠)2 + (𝜆𝑅𝐻 +𝜆+ (𝜆𝐻𝐶 −𝜆−𝐷𝑡)(𝜆 + 𝜆𝑅𝐻)/(𝐷𝑡 +𝜆+𝜆𝑅𝐻))𝜆󸀠 + ((𝜆𝐻𝐶 −𝜆−𝐷𝑡)(𝜆+𝜆𝑅𝐻)/(𝐷𝑡+𝜆+𝜆𝑅𝐻))𝐷𝑡 = 0, because 𝜆𝐻𝐶−𝜆−𝐷𝑡 > 0,
then 𝜆2𝜆3 > 0, 𝜆2 + 𝜆3 < 0, and thus 𝜆2 < 0, 𝜆3 < 0.

By using linear analysis, we can find that 𝐸∗ is always
stable.

Model 1, which is the key of the article, is the basis of the
model behind and simulation test. The dynamics analysis is
only carried out on model 2.

3.3. Dynamic Programming. We next present a dynamic
programming paradigm to find the optimal detection rate.
The method is based on an interesting observation that the
highest detection rate does not always act as the best choice.
So many factors influence the detection rate in WSN, such
as availability, survivability, and energy. Suppose we have
a healthy sensor under attack. The sensor still can provide
service even though it transits to𝐶due to the attack.However,
the service will break off if the sensor, currently staying in 𝐶,
moves to 𝑅. The service continues when the sensor restores
to a healthy state successfully. The availability of the WSN
declines when the sensor in 𝑅 is doing that recovery. The
utility of 𝐶 is greater than 𝑅 and the compromised nodes
might as well have not been detected in this case. So higher
detection rate does not always mean better utility. Moreover,
higher detection rate means more energy consumption,
which violates the efficiency rules in WSNs. Above all, we
focus on the optimal rate instead of the highest one. All the
factors we were concerned about have been abstracted to be
part of the information set.

We propose a new objective, namely, utility, measuring
the quality of the information set. The detection rate will
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maximize the expected net value of the present utility, while
influencing current utility and expected utility in future
periods. To model this dynamic maximization, we define
utility within a period and define the probability of transiting
across states. We switch to a discrete-time formulation, with
time incremented in days and transition probabilities refor-
mulated below on the basis of (1).

Suppose thatwe have complete statistics about the current
value of utility, including the negative utilities, with its
information set including knowledge about survivability,
availability, energy consumption, and𝐻𝑡, 𝐶𝑡, 𝑅𝑡, and 𝐹𝑡.

Let 𝑢𝑡(𝑆) be the current utility of a sensor at time 𝑡 in𝑆 (𝑆 ∈ {𝐻, 𝐶, 𝑅, 𝐹}). Then, the utility of the sensor in 𝐶 at
time 𝑡 is formally defined as follows:𝑢𝑡 (𝐶,𝐷𝑡) = (𝑏𝐷𝑡 − 𝐷2𝑡 )𝛾 − 𝑎. (7)

The utility function 𝑢𝑡 is a hybrid indicator measuring
the content of the information set that has been mentioned
before, which can simplify the model and enhance the
generality of it. The utility function is concave and unimodal.
The coefficients, 𝑎 and 𝑏, in (7) can be adjusted according to
the application.

According to (1), the transition probabilities between a
pair of states are written as follows:𝑃𝐻𝐶 = 1 − 𝑒(−𝜆𝐻𝐶𝐶𝑡),𝑃𝑅𝐻 = 1 − 𝑒(−𝜆𝑅𝐻),𝑃𝐻𝐹 = 1 − 𝑒(−𝜆𝐻𝐹),𝑃𝐶𝑅 = 𝐷𝑡,𝑃𝐶𝐹 = 1 − 𝑒(−𝜆𝐶𝐹),𝑃𝑅𝐹 = 1 − 𝑒(−𝜆𝑅𝐹).

(8)

The detection rate is determined by the current utility, at
time 𝑡, and the expected utility at time 𝑡 + 1, of compromised
nodes. We use the Bellman equation to calculate the optimal
detection rate and utility equations can be written as standard
forms of dynamic programming𝑉𝑡 (𝐻)= 𝑢𝑡 (𝐻)+ 𝛿 [𝑃𝐻𝐻𝑉𝑡+1 (𝐻) + 𝑃𝐻𝐶𝑉𝑡+1 (𝐶) + 𝑃𝐻𝐹𝑉𝑡+1 (𝐹)] , (9)

𝑉𝑡 (𝐶)= 𝑢𝑡 (𝐶,𝐷𝑡)+ 𝛿 [𝑃𝐶𝐶𝑉𝑡+1 (𝐶) + 𝑃𝐶𝑅𝑉𝑡+1 (𝑅) + 𝑃𝐶𝐹𝑉𝑡+1 (𝐹)] , (10)

𝑉𝑡 (𝑅)= 𝑢𝑡 (𝑅)+ 𝛿 [𝑃𝑅𝑅𝑉𝑡+1 (𝑅) + 𝑃𝑅𝐹𝑉𝑡+1 (𝐹) + 𝑃𝑅𝐻𝑉𝑡+1 (𝐻)] , (11)

𝑉𝑡 (𝐹) = 𝑢𝑡 (𝐹) + 𝛿 [𝑃𝐹𝐹𝑉𝑡+1 (𝐹)] . (12)

In the equation system,𝑉𝑡(𝑆) (𝑆 = 𝐻,𝐶, 𝑅, 𝐹) is the utility
for a sensor staying in 𝑆 at time 𝑡 and 𝛿 is the discount factor.𝑢𝑡(𝑆) is current utility. 𝑉𝑡+1(𝑆) is the expected utility and𝑃𝑖𝑗 stands for the transition probabilities between states (see
(8)). The second term of the right member in each equation
indicates that the utility of the future (𝑡 + 1) moments is
discounted to the present (𝑡) utility.

Since the utilities are written in the standard form of
dynamic programming, we can optimize the detection rate𝐷𝑡 dynamically with a planning horizon of length 𝜏. If 𝑡 = 0,
then 𝐷0 is chosen to solve the problem formalized by
(9)–(12). In period 𝑡 = 1, the system updates knowledge on
information set and uses (9)–(12) to optimize anew over the
next 𝜏 planning periods. The process continues in this way.
For example, if 𝜏 = 7, then on February 1 the horizon is
through February 8, but on February 2 the horizon extends
to February 9, and so on:𝑉𝑡 (𝐶) = max {𝑢𝑡 (𝐶,𝐷𝑡)+ 𝛿 [𝑃𝐶𝐶𝑉𝑡+1 (𝐶) + 𝑃𝐶𝑅𝑉𝑡+1 (𝑅) + 𝑃𝐶𝐹𝑉𝑡+1 (𝐹)]} . (13)

In (13), if we take the maximum value of (10), the optimal𝐷𝑡 can be obtained. So partial derivative of (13) is formalized
as 𝜕𝑢𝑡 (𝐶,𝐷𝑡)𝜕𝐷𝑡 = 𝛿 [−𝜕𝑃𝐶𝐶𝜕𝐷𝑡 𝑉𝑡+1 (𝐶) − 𝜕𝑃𝐶𝑅𝜕𝐷𝑡 𝑉𝑡+1 (𝑅)] . (14)

The left member in (14) stands for the gain of utility, at
time 𝑡, for a unit increase of the detection rate.The rightmem-
ber in (14) is the expected benefit from a unit increase of the
detection rate at time 𝑡, which comes from future discounts.

If 𝑡 = 𝜏, we have 𝑡 + 1 = 𝜏 + 1. Each utility at 𝜏 + 1 is 0,
since 𝜏 + 1 exceeds the planning horizon.

The optimal detection rate 𝐷𝑡 is determined by the
information set at time 𝑡 and its effects on the future values
of 𝐻, 𝐶, 𝑅, and 𝐹. It is reasonable to assume that the system
adapts to forecasts on the basis of the current information set.

The optimal detection rate can be reached with the
equation system (9)–(14) by using backward induction over
the planning period [0, 𝜏].
4. Experiments

In this section we present the experimental studies of our
models. In the experiments, we simulate two different WSNs
that are under internal attacks and conduct three groups of
experiments with them. The first group of experiments is
designed to find the optimal detection rate 𝐷𝑡 by using the
dynamic programming paradigm. In the second group, we
verify the models. In the third one, we present comparative
studies by varying the value of detection rate𝐷𝑡.
4.1. Experimental Setup. We simulate two different WSNs in
the experiments:

(1) For the first WSN, the number of healthy sensors is
much larger than that of compromised sensors, where𝐻𝑡 = 0.9, 𝐶𝑡 = 0.1, 𝑅𝑡 = 0, and 𝐹𝑡 = 0.
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Table 1: The parameters in models.

Parameter Description𝛿 Discount factor𝜆𝐻𝐶 Compromised rate𝜆𝐶𝑅 Responsive rate𝜆𝑅𝐻 Recovery rate𝜆𝐶𝐹 Failure from compromised rate𝜆𝐻𝐹 Failure rate𝜆𝑅𝐹 Failure from responsive rate

Table 2: The parameter value.

Parameter Value𝛾 0.25𝑎 1𝑏 0.5𝛿 0.9𝜆𝐻𝐶 0.1𝜆𝐶𝑅 𝐷𝑡, 0.3, 0.9𝜆𝑅𝐻 0.8𝜆𝐶𝐹 0.000278𝜆𝐻𝐹 0.01𝜆𝑅𝐹 0.0417

(2) In the second one, the number of healthy sensors
is almost the same as that of compromised sensors,
where𝐻𝑡 = 0.6, 𝐶𝑡 = 0.4, 𝑅𝑡 = 0, and 𝐹𝑡 = 0.

The settings of the parameters of the models are summa-
rized inTables 1 and 2. Particularly, the utilities of𝐻,𝐶,𝑅, and𝐹 fall in [0, 1]. To note is that the parameters can be changed
according to various application scenarios.

5. Experimental Results

TheOptimal Detection Rate. In the first group of experiments,
we are to find the optimal detection rate 𝐷𝑡. In this experi-
ment, the current utilities of 𝐻, 𝐹, and 𝑅 are initially set to1, 0, and 0.6, respectively. We evaluated the detection rate𝐷𝑡 for the two WSNs. As we can see from Figure 2, there is
no significant difference of the detection rates between the
two WSNs. The results show that the ratio of healthy sensors
and the compromised sensors have little influence on the
detection rate 𝐷𝑡 and the value of 𝐷𝑡 gradually converges to0.75 after 𝜏 = 5. The optimal value of 𝐷𝑡 will be obtained
when 𝜏 = 9, where the optimal values for bothWSNs fall into[0.74, 0.75].
Verifying the Models. We apply the optimal detection rate𝐷𝑡 = 0.75 in second group of experiments. Figures 3–6
plot the change in the number of sensors in 𝐻, 𝐶, 𝑅, and𝐹 for WSNs in nine days. As we can see from Figure 3, the
number of sensors in𝐻 decreases when 𝑡 is in [0, 1].After the
decline, there is a sudden increase and the number of healthy
sensors gradually converges to a constant value after 𝑡 = 4.
For example, the ratio of healthy sensors is around 0.9. Since
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Figure 2: The value of 𝐷𝑡 for several planning horizons.
we have more healthy sensors, the WSN is therefore robust.
In contrast, as shown by Figure 4, the number of sensors
in 𝐶 drops quickly to 0. The results justify the effectiveness
of our detection mechanism and the optimal detection rate
is very effective for the transition of compromised nodes
(detection rate in themodel is transition rate). From Figure 5,
we observe that the number of responsive sensors jumps
quickly to a peak at 𝑡 = 1 and then gradually decreases to 0.
When 𝑡 is in [0, 1], the number of nodes in 𝐶 is greatest
and it is the period of most numbers of nodes from 𝐶 to 𝑅.
So the number of nodes in 𝑅 increases quickly and reaches
the peak. In Figure 6, we can see that the number of failed
sensors increases monotonically as the time is elapsing. This
is because aWSN is usually deployed in hostile environments
and the sensors cannot get repaired once they failed. From
Figures 3–6, we observe that there are big deviations between
the dashed lines and solid line at beginning, but the deviation
drops off gradually to 0 as time is increasing. It means that
each of the WSNs used in our experiments converges to
a steady state regardless of the initial condition during an
observation period. Therefore, we can conclude that our
model is general enough and it is applicable to a large range of
WSNs.

Comparative Studies. In Section 3, we have made an assump-
tion that the optimal detection rate is better than the highest
one. To justify this assumption, in this group of experiments,
we census the number of sensors being in (𝐻, 𝐶, 𝑅, and 𝐹)
by varying the detection rate 𝐷𝑡. In the previous simulation,
we have got the optimal detection rate𝐷𝑡 = 0.75 and we have
also proved that our model is valid for bothWSNs. So we can
conduct the comparative experiments over only one WSN.
We use the WSN with𝐻𝑡 = 0.9, 𝐶𝑡 = 0.1, 𝑅𝑡 = 0, and 𝐹𝑡 = 0.
In the literature [33], the author chose five empirical values
at the transition rate from 𝐶 to 𝑅, and we select the highest
value 0.3 as 𝐷𝑡. In addition, we select another detection rate,
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𝐷𝑡 = 0.9, to comparewith.We plot the results in Figures 7–10,
where the blue solid line represents the results𝐷𝑡 = 0.75, the
green dashed line represents the results𝐷𝑡 = 0.3, and the red
dashed line represents the results for𝐷𝑡 = 0.9.

As shown in Figure 7, there is a drop at the beginning
for each line, but the blue solid one rises immediately when𝑡 = 1. The other two lines, 𝐷𝑡 = 0.9 and 𝐷𝑡 = 0.3, get to
rise until 𝑡 = 2. This shows that our model can make the
WSNmore robust, since it gets restored faster. Figure 8 shows
the number of compromised sensors. We observe that the
higher the detection rate𝐷𝑡 the faster the line drops. The red
dotted line and the blue solid line move gradually close to
zero after 𝑡 = 2, which means that the reliability of the WSN
is getting improved. We can also observe that the blue solid
line converges in almost the same speed with the red dashed
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Figure 5: The proportion of responsive sensors.
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Figure 6: The proportion of failed sensors.

line. In other words, our model and 𝐷𝑡 = 0.9 have the same
performances, which are much better than that of 𝐷𝑡 = 0.3.
Figure 9 plots the number of the responsive sensors. As we
can see from the figure, the blue solid line is completely below
the other red dashed line. It is clear that optimal detection rate
is better than the higher one. Although it only beats by 𝐷𝑡 =0.3 at 𝑡 = 1, it gets improved fast after that time. In addition,
we observe the blue solid line drops first, which indicates the
recovery process starts earlier than other choices. Figure 10
plots the change of the failed sensors, where the three lines
show similar trend. To note is that the WSN has more failed
nodes when the detection rate𝐷𝑡 goes larger. when𝐷𝑡 is 0.75
and𝐷𝑡 is 0.3, the number of failure nodes is similar.

We have compared our solution with other ones from the
recovery time, the recovery rate, the number of the final
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Figure 8: The proportion of compromised sensors.

failed nodes, and the energy consumption. In general, the
simulation results show that our solution outperforms the
other ones. It justifies our observation that the highest detec-
tion rate is not always servers as the best choice.

6. Conclusion

In this work, we investigated the problem of finding the
detection rate of WSN under internal attacks. Firstly, we
established a state transition model of sensors based on the
CTMC. The model described the behaviors of sensors in a
WSN under attacked nodes and the transition between states.
We are the first to observe that detection rate is irrelevant
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Figure 10: The proportion of failed sensors.

to other state transitions except the transition from 𝐶 to 𝑅.
Therefore, we take the detection rate as the transition rate
from 𝐶 to 𝑅. Secondly, we modeled the state transition pro-
cess of the sensors in a WSN under internal attacks by using
the epidemic model and make a formal description about
this model. Thirdly, by using the dynamic programming
paradigm (Bellman equation), we can easily find the optimal
detection rate for WSN under internal attacks. In addition,
we encapsulated the influencing factors into an information
set which captures the current utility and the utility in future
time. In this way, the detection rate can be optimized by
maximizing the total utility of the current and future utility
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discount in 𝐶. The experimental studies justified the validity
of our models.

In the future, we would like to quantize the influencing
factors with respect to survivability, availability, and energy
consumption in order to improve the accuracy and practica-
bility of detection rate. Moreover, it is more meaningful to set
the parameters applied in the simulation according to a real
world application. In addition, we will introduce the immune
state into the model and refer to the SIRS model [34, 35] for
further study. Therefore, it will accelerate the design of WSN
and then improve the availability and survivability of WSN.
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In reality, some computers have specific security classification. For the sake of safety and cost, the security level of computers will
be upgraded with increasing of threats in networks. Here we assume that there exists a threshold value which determines when
countermeasures should be taken to level up the security of a fraction of computers with low security level. And in some specific
realistic environments the propagation network can be regarded as fully interconnected. Inspired by these facts, this paper presents
a novel computer virus dynamics model considering the impact brought by security classification in full interconnection network.
By using the theory of dynamic stability, the existence of equilibria and stability conditions is analysed and proved. And the above
optimal threshold value is given analytically. Then, some numerical experiments are made to justify the model. Besides, some
discussions and antivirus measures are given.

1. Introduction

With the rapid development of the Internet, the spread
of computer virus has brought a lot of potential safety
problems, which not only caused huge waste to the network
resources but also harmed the interests of individuals and
the masses. The traditional way of antivirus is constantly
updating the virus library of antivirus software. But it is
a passive mechanism to prevent viruses. In this context,
the macroscopical study of computer virus propagation is
regarded as a very important approach to antivirus and has
received more and more attention from scholars.

In 1991, Kephart and White firstly used the model of
biological infectious virus to study the spread of computer
viruses [1]. Since then, a lot of dynamical models of computer
virus have been presented. These models can be simply
divided into two broad categories: homogeneous models and
heterogeneous models according to according to whether the
network is fully connected or not.

In recent years, more and more scholars have begun to
study heterogeneous models. Kjaergaard and his partners

followed the time evolution of information propagation
through communication networks by using the susceptible-
infected (SI) model with empirical data on contact sequences
[2]. Castellano and Pastor-Satorras studied the threshold of
epidemic models in quenched networks with degree distri-
bution given by a power-law for the susceptible-infected-
susceptible (SIS) model [3]. Zhu et al. investigated a new
epidemic SIS model with nonlinear infectivity, as well as
birth and death of nodes and edges [4]. Taking into account
the power-law degree distribution of the Internet, Yang et
al. proposed a novel epidemic model of computer viruses
and presented the spreading threshold for the model [5].
L.-X. Yang and X. Yang proposed an epidemic model of
computer viruses over a reduced scale-free network [6].
Yang and his partners proposed a node-based susceptible-
latent-breaking-susceptible (SLBS) model which addresses
the impact of the structure of the viral propagation network
on the viral prevalence [7]. To understand the impact of
available information in the control of malicious network
epidemics, Mishra and three others proposed a 1-𝑛-𝑛-1 type
differential epidemicmodel, where the differentiability allows
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a symptom based classification [8]. All these models assume
that the spread of viruses can only be through the topological
neighbors.

In fact, a lot of viruses can propagate without dependence
on the topology, such as Code Red (2001), Slammer (2003),
Blaster (2003), Witty (2004), and Conficker (2009). By
probing the entire IPv4 space or localized IP addresses, these
viruses can infect an arbitrary vulnerable computer. In this
condition, the propagation network can be regarded as fully
connected. Besides, there are still some fully interconnected
networks, such as virtual cluster in cloud [9–12]. So the
study of homogeneous models is also an important branch
of computer virus dynamical models. A portion of infected
external computers could enter the Internet and removable
storage media could carry viruses, based on the two facts.
Gan et al. established a series of dynamical models [13–16].
Amador and Artalejo investigated the dynamics of computer
virus spreading by considering a stochastic SIRS model
where immune computers send warning signals to reduce
the propagation of the virus among the rest of computers
in the network [17]. Liu and Zhong presented and analyzed
an SDIRS model describing the propagation of web malware
based on the assumption of homogeneity [18]. Yuan and three
others presented a nonlinear force of infection function for e-
SEIR model to study the crowding and psychological effects
in network virus prevalence [19].

In order to protect the security and stability of informa-
tion systems, the concept of information security classified
protection is proposed and has been a basic strategy of
construction of national information. But to our knowledge,
nearly all previous models describing the spread of computer
viruses ignore the impacts of security classifications. In order
to study how these factors affect the spread of computer
viruses on the Internet, this paper proposes a novel computer
virus propagation model. A thorough analysis of this model
shows that some equilibria existed and are globally asymptot-
ically stable in a specific situation. Besides, some simulation
experiments are performed to examine the conclusion got
from this model. In the end, some effective strategies for
controlling virus spreading are recommended.

The subsequent materials are organized in this fashion:
The idea of modeling is introduced in Section 2. The new
model is established in Section 3. The analysis of four
equilibria is addressed in Section 4. The local and global
stabilities of these equilibria are investigated in Sections 5 and
6, respectively. Simulation experiments and some discussions
are presented in Section 7. Finally, this work is outlined in
Section 8.

2. Idea of Modeling

In a security classification network, blindly increasing the
security level of computer will result in bothwaste of resource
and increase of cost. Therefore, reinforcing the security level
of computer must be targeted. About security classification
of computer, the influential criteria are “Trusted Computer
System Evaluation Criteria (TcsEC)” issued by United States

Detect the number
of infections

Does the number reach
the threshold?

Keep
detecting

No

Yes

Take measures for
upgrading and keep

detecting

Figure 1: Flow diagram of upgrading.

Department of Defense [20]. By using these criteria, comput-
ers in the network can be divided into four divisions. From
high to low, they are Levels A, B, C, and D, respectively.

Low Security Level: Divisions D and C. In this level, it is
reserved for those systems that have been evaluated but that
fail to meet the requirements for a higher evaluation class.
Classes in this level provide for discretionary (need-to-know)
protection and it can only provide a review of protection.

High Security Level: Divisions B and A. The security-relevant
sections of a systemarementioned throughout this document
as the TrustedComputing Base (TCB) [21]. Computers in this
level must carry the sensitivity labels with most data struc-
tures in the system and the system developer should provide
the security policy model based on TCB. By using formal
security verification methods, this level requires that each
operation in the system must have a formal documentation
and can only be made by the administrator.

Obviously, computers with low security level are more
likely to be infected by virus. This is the first breakthrough
point for modeling.

In the networkwith security classification, administrators
usually do not take any measures to upgrade the computers
with low security level if there are only few threats for the sake
of cost. With the increase of the infected computers number
in the network, the administrators will upgrade the security
level of computers ultimately. Here we assume that there
exists a threshold value. If the number of infected computers
is above the threshold value, some countermeasures will be
taken to level up the security of a fraction of computers with
low security level. Further, assume that the probability of
taking upgrading measures for one uninfected computer is
proportional to the number of infected computers. The flow
diagram in Figure 1 can briefly express these operations. How
the threshold value and the fraction of upgraded computers
affect the propagation of computer virus is the concern in this
paper.
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3. Model Formulation

According to the situation of computer virus infection and
the level of computer security, all computers in the network
are divided into three compartments.

(a) 𝑆𝑙-compartment: the set of uninfected or susceptible
computers in low security level

(b) 𝑆ℎ-compartment: the set of uninfected or susceptible
computers in high security level

(c) 𝐼-compartment: the set of infected computers

For the modeling purpose, a series of parameters are intro-
duced and some assumptions are made.

(1) One can assume that the average probabilities per
unit time of 𝑆𝑙 and 𝑆ℎ computers connecting to the
network are 𝑏𝑙 and 𝑏ℎ, respectively.

(2) Every computer in the system is got out for some
reasons with the average probability per unit time 𝜇,
where 𝜇 is positive constant.

(3) Due to possible contact with infected computers in
the network, every 𝑆𝑙 and 𝑆ℎ computer is infected
with the average probabilities 𝛽𝑙 and 𝛽ℎ per unit time,
respectively, where𝛽𝑙 and𝛽ℎ are positive constant and𝛽𝑙 > 𝛽ℎ.

(4) Assume that one 𝐼 computer becomes an 𝑆𝑙 computer
(or an 𝑆ℎ computer) with the average probability per
unit time 𝛾𝑙 (or 𝛾ℎ), where 𝛾𝑙, 𝛾ℎ are positive constants.

(5) As mentioned in Section 2, the upgrading probability
of an 𝑆𝑙 computer is denoted by a piecewise function𝑓(𝐼). The expression of 𝑓(𝐼) is as follows:

𝑓 (𝐼) = {{{
0, if 0 ⩽ 𝐼 < 𝐼max,
𝛼𝐼, if 𝐼 ⩾ 𝐼max. (1)

𝐼max denotes the threshold value and 𝛼 denotes the a
fraction of upgrading computers.

Let 𝑆𝑙(𝑡), 𝑆ℎ(𝑡), and 𝐼(𝑡) denote, at time 𝑡, the average numbers
of 𝑆𝑙-, 𝑆ℎ-, and 𝐼-compartment computers, respectively. Let𝑁(𝑡) denote the total number of all computers in the system
at time 𝑡. Unless otherwise stated in the following content,
they will be abbreviated as𝑁, 𝑆𝑙, 𝑆ℎ, and 𝐼, respectively.Then,𝑆𝑙 + 𝑆ℎ + 𝐼 = 𝑁. The collection of the above parameters and
assumptions can be schematically depicted in Figure 2, from
which the dynamical model is formulated as the following
differential system:

̇𝑆𝑙 = 𝑏𝑙 + 𝛾𝑙𝐼 − 𝑓 (𝐼) 𝑆𝑙 − 𝛽𝑙𝑆𝑙𝐼 − 𝜇𝑆𝑙,
̇𝑆ℎ = 𝑏ℎ + 𝛾ℎ𝐼 + 𝑓 (𝐼) 𝑆𝑙 − 𝛽ℎ𝑆ℎ𝐼 − 𝜇𝑆ℎ,
̇𝐼 = 𝛽𝑙𝑆𝑙𝐼 + 𝛽ℎ𝑆ℎ𝐼 − 𝛾𝑙𝐼 − 𝛾ℎ𝐼 − 𝜇𝐼.

(2)
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Figure 2: Transition diagram of the new model.

Considering that 𝑆𝑙 + 𝑆ℎ + 𝐼 = 𝑁, system (2) can be reduced
to the following system:

𝑁̇ = 𝑏𝑙 + 𝑏ℎ − 𝜇𝑁,
̇𝑆ℎ = 𝑏ℎ + 𝛾ℎ𝐼 + 𝑓 (𝐼) (𝑁 − 𝑆ℎ − 𝐼) − 𝛽ℎ𝑆ℎ𝐼 − 𝜇𝑆ℎ,
̇𝐼 = 𝛽𝑙 (𝑁 − 𝑆ℎ − 𝐼) 𝐼 + 𝛽ℎ𝑆ℎ𝐼 − 𝛾𝑙𝐼 − 𝛾ℎ𝐼 − 𝜇𝐼.

(3)

Solving the first equations of system (3), it is easy to obtain
lim𝑡→∞𝑁 = 𝑁∗ = (𝑏𝑙 + 𝑏ℎ)/𝜇. Therefore, system (3) can be
reduced to the following limiting system [22, 23]:

̇𝑆ℎ = 𝑏ℎ + 𝛾ℎ𝐼 + 𝑓 (𝐼) (𝑁∗ − 𝑆ℎ − 𝐼) − 𝛽ℎ𝑆ℎ𝐼 − 𝜇𝑆ℎ,
̇𝐼 = 𝛽𝑙 (𝑁∗ − 𝑆ℎ − 𝐼) 𝐼 + 𝛽ℎ𝑆ℎ𝐼 − 𝛾𝑙𝐼 − 𝛾ℎ𝐼 − 𝜇𝐼. (4)

The feasible region for system (4) is

Ω = {(𝑆ℎ, 𝐼) | 𝑆ℎ ⩾ 0, 𝐼 ⩾ 0, 0 ⩽ 𝑆ℎ + 𝐼 ⩽ 𝑁∗} , (5)

which is positively invariant.

4. Equilibria

In this section, all equilibria of system (4) are calculated. To
obtain all potential equilibria, system (4) can be written as

𝑏ℎ + 𝛾ℎ𝐼 − 𝛽ℎ𝑆ℎ𝐼 − 𝜇𝑆ℎ = 0,
𝛽𝑙 (𝑁∗ − 𝑆ℎ − 𝐼) 𝐼 + 𝛽ℎ𝑆ℎ𝐼 − 𝛾𝑙𝐼 − 𝛾ℎ𝐼 − 𝜇𝐼 = 0,

if 0 ⩽ 𝐼 < 𝐼max,
(6)

𝑏ℎ + 𝛾ℎ𝐼 + 𝛼𝐼 (𝑁∗ − 𝑆ℎ − 𝐼) − 𝛽ℎ𝑆ℎ𝐼 − 𝜇𝑆ℎ = 0,
𝛽𝑙 (𝑁∗ − 𝑆ℎ − 𝐼) 𝐼 + 𝛽ℎ𝑆ℎ𝐼 − 𝛾𝑙𝐼 − 𝛾ℎ𝐼 − 𝜇𝐼 = 0,

if 𝐼 ⩾ 𝐼max.
(7)

From (6) the fact that there always exists a virus-free equilib-
rium can be got:

𝐸∗0 = (𝑆∗ℎ0 = 𝑏ℎ𝜇 , 𝐼∗0 = 0) , (8)

and the basic reproduction number is

𝑅0 = 𝛽𝑙𝑏𝑙 + 𝛽ℎ𝑏ℎ𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇) . (9)
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Let

𝐶 = 𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇) − 𝛽𝑙𝑏𝑙 − 𝛽ℎ𝑏ℎ
= 𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇) (1 − 𝑅0) , (10)

𝐴1 = 𝛽𝑙𝛽ℎ,
𝐵1 = 𝛽𝑙𝛽ℎ𝑁∗ − 𝛽𝑙𝛾ℎ − 𝛽𝑙𝜇 − 𝛽ℎ𝛾𝑙 − 𝛽ℎ𝜇,
Δ 1 = 𝐵21 − 4𝐴1𝐶,

(11)

𝐴2 = 𝛽𝑙𝛽ℎ + 𝛼𝛽ℎ,
𝐵2 = (𝛽𝑙𝛽ℎ + 𝛼𝛽ℎ)𝑁∗ − 𝛽𝑙𝛾ℎ − 𝛽𝑙𝜇 − 𝛽ℎ𝛾𝑙 − 𝛽ℎ𝜇

− 𝛼 (𝛾𝑙 + 𝛾ℎ + 𝜇) ,
Δ 2 = 𝐵22 − 4𝐴2𝐶.

(12)

The quadratic equation of 𝐼 can be got from system (6) and
(7) as follows:

𝐴1𝐼2 − 𝐵1𝐼 + 𝐶 = 0 if 0 ⩽ 𝐼 < 𝐼max, (13)

𝐴2𝐼2 − 𝐵2𝐼 + 𝐶 = 0, if 𝐼 ⩾ 𝐼max. (14)

Considering that 𝐼∗1 = (𝐵1+√Δ 1)/2𝐴1, 𝐼∗2 = (𝐵1−√Δ 1)/2𝐴1
are the roots of (13) and 𝐼∗3 = (𝐵2 + √Δ 2)/2𝐴2, 𝐼∗4 = (𝐵2 −√Δ 2)/2𝐴2 are the roots of (14) (𝐼∗1 ̸= 𝐼∗3 ), the solution of (6)
and (7) can be got as follows:

𝐼∗1 = 𝐵1 + √Δ 12𝐴1 ,

𝑆∗ℎ1 = 𝑏ℎ + 𝛾ℎ𝐼
∗
1𝜇 + 𝛽ℎ𝐼∗1 ,

𝐼∗2 = 𝐵1 − √Δ 12𝐴1 ,

𝑆∗ℎ2 = 𝑏ℎ + 𝛾ℎ𝐼
∗
2𝜇 + 𝛽ℎ𝐼∗2 ,

𝐼∗3 = 𝐵2 + √Δ 22𝐴2 ,

𝑆∗ℎ3 = 𝑏ℎ + 𝛾ℎ𝐼
∗
3 + 𝛼𝐼∗3 (𝑁 − 𝐼∗3 )𝜇 + 𝛽ℎ𝐼∗3 ,

𝐼∗4 = 𝐵2 − √Δ 22𝐴2 ,

𝑆∗ℎ4 = 𝑏ℎ + 𝛾ℎ𝐼
∗
4 + 𝛼𝐼∗4 (𝑁 − 𝐼∗4 )𝜇 + 𝛽ℎ𝐼∗4 .

(15)

(13) and (14) can be deduced as follows:

𝐴1 (𝐼∗21 − 𝐼∗23 ) − 𝐵1 (𝐼∗1 − 𝐼∗3 ) − 𝛼𝛽ℎ𝐼∗23
+ (𝐵2 − 𝐵1) 𝐼∗3 = 0,

(𝐼∗1 − 𝐼∗3 ) [𝐴1 (𝐼∗1 + 𝐼∗3 ) − 𝐵1]
= 𝐼∗3 [𝛼𝛽ℎ𝐼∗3 − (𝐵2 − 𝐵1)] ,

(𝐼∗1 − 𝐼∗3 ) [𝐴1 (𝐼∗1 + 𝐼∗3 ) − 𝐵1]
= 𝐼∗3 [𝛼𝛽ℎ𝐼∗3 − 𝛼𝛽ℎ𝑁∗ + 𝛼 (𝛾𝑙 + 𝛾ℎ + 𝜇)] ,

(𝐼∗1 − 𝐼∗3 ) [𝐴1 (𝐼∗1 + 𝐼∗3 ) − 𝐵1]
= 𝛼𝐼∗3 [𝛽ℎ𝐼∗3 − 𝛽ℎ𝑁∗ + 𝛽𝑙 (𝑁∗ − 𝐼∗3 − 𝑆∗ℎ3)] ,

(𝐼∗1 − 𝐼∗3 ) [𝐴1 (𝐼∗1 + 𝐼∗3 ) − 𝐵1]
= 𝛼𝐼∗3 (𝛽𝑙 − 𝛽ℎ) (𝑁∗ − 𝐼∗3 − 𝑆∗ℎ3) ,

(16)

because of 𝛽𝑙 > 𝛽ℎ and 𝐼∗3 +𝑆∗ℎ3 ⩽ 𝑁∗, 𝛼𝐼∗3 (𝛽𝑙−𝛽ℎ)(𝑁∗−𝐼∗3 −𝑆∗ℎ3) ⩾ 0. Then

(𝐼∗1 − 𝐼∗3 ) [𝐴1 (𝐼∗1 + 𝐼∗3 ) − 𝐵1] ⩾ 0. (17)

Assuming 𝐼∗1 < 𝐼∗3 , then 𝐴1(𝐼∗1 + 𝐼∗3 ) − 𝐵1 > 2𝐴1𝐼∗1 − 𝐵1 =√Δ 1 > 0 and (𝐼∗1 −𝐼∗3 )[𝐴1(𝐼∗1 +𝐼∗3 )−𝐵1] < 0, which contradicts
with (17). So 𝐼∗1 > 𝐼∗3 . In the same way, one can get

𝐼∗2 < 𝐼∗4 < 𝐼∗3 < 𝐼∗1 . (18)

Theorem 1. There are only two viral equilibria 𝐸∗1 = (𝑆∗ℎ1,𝐼∗1 ) (or 𝐸∗3 = (𝑆∗ℎ3, 𝐼∗3 )) and 𝐸∗2 = (𝑆∗ℎ2, 𝐼∗2 ) (or 𝐸∗4 = (𝑆∗ℎ4, 𝐼∗4 ))
in this model if

(1) 𝑅0 < 1;
(2) 𝐵1 > 0, Δ 1 > 0 (or 𝐵2 > 0, Δ 2 > 0);
(3) 𝐼∗1 > 𝐼max (or 𝐼∗2 > 𝐼max).

Proof. System (13) has two real roots if Δ 1 > 0. From (10) one
can get that 𝐶 > 0 if 𝑅0 < 1; then 𝐶/𝐴1 > 0. So the fact
that 𝐼∗1 > 0, 𝐼∗2 > 0 if 𝐵1 > 0 can be got (in the same way,
the fact that 𝐼∗1 > 0, 𝐼∗2 > 0 can be got if 𝐵2 > 0, Δ 2 > 0)
and there are only two viral equilibria 𝐸∗1 , 𝐸∗2 (or 𝐸∗3 , 𝐸∗4 ) if𝐼∗1 > 𝐼max (or 𝐼∗2 > 𝐼max) from (18).

Theorem 2. System (4) has only three viral equilibria 𝐸∗2 =(𝑆∗ℎ2, 𝐼∗2 ), 𝐸∗3 = (𝑆∗ℎ3, 𝐼∗3 ), and 𝐸∗4 = (𝑆∗ℎ4, 𝐼∗4 ) if
(1) 𝑅0 < 1;
(2) 𝐵1 > 0, Δ 1 > 0;
(3) 𝐵2 > 0, Δ 2 > 0;
(4) 𝐼∗2 < 𝐼max ⩽ 𝐼∗4 .

Proof. Like the proof of Theorem 1, it does not need to be
stated.
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Theorem 3. System (4) has only one viral equilibrium 𝐸∗1 =(𝑆∗ℎ1, 𝐼∗1 ) (or 𝐸∗3 = (𝑆∗ℎ3, 𝐼∗3 )) if
(1) 𝑅0 > 1;
(2) 𝐼∗1 < 𝐼max (or 𝐼∗3 ⩾ 𝐼max).

Proof. One can get 𝐶 < 0 if 𝑅0 > 1 and Δ 1 > 0, Δ 2 >0, 𝐶/𝐴1 < 0, 𝐶/𝐴2 < 0. So 𝐼∗1 > 0, 𝐼∗2 < 0 and 𝐼∗3 >0, 𝐼∗4 < 0. Then the fact that only 𝐸∗1 (or 𝐸∗3 ) existed if𝐼∗1 < 𝐼max (or 𝐼∗3 ⩾ 𝐼max) from (18) can be got.

5. The Local Stability Analysis

To examine the local stability of the equilibria of system (4),
its Jacobian matrices should be got as follows:

𝐽1 = ( −𝛽ℎ𝐼 − 𝜇 𝛾ℎ − 𝛽ℎ𝑆ℎ
−𝛽𝑙𝐼 + 𝛽ℎ𝐼 𝛽𝑙𝑁∗ − 𝛽𝑙𝑆ℎ − 2𝛽𝑙𝐼 + 𝛽ℎ𝑆ℎ − 𝛾𝑙 − 𝛾ℎ − 𝜇) ,

if 0 ⩽ 𝐼 < 𝐼max,
𝐽2
= (−𝛽ℎ𝐼 − 𝜇 − 𝛼𝐼 𝛾ℎ − 𝛽ℎ𝑆ℎ + 𝛼 (𝑁∗ − 𝑆ℎ − 2𝐼)

−𝛽𝑙𝐼 + 𝛽ℎ𝐼 𝛽𝑙𝑁∗ − 𝛽𝑙𝑆ℎ − 2𝛽𝑙𝐼 + 𝛽ℎ𝑆ℎ − 𝛾𝑙 − 𝛾ℎ − 𝜇) ,
if 𝐼 ⩾ 𝐼max.

(19)

Theorem 4. 𝐸∗0 is locally asymptotically stable if 𝑅0 < 1.
Proof. The associated characteristic equation of𝐸∗0 can be got
from 𝐽1 as follows:

(𝜆 + 𝜇) (𝜆 + 𝛾𝑙 + 𝛾ℎ + 𝜇 − 𝛽𝑙 𝑏𝑙𝜇 − 𝛽ℎ 𝑏ℎ𝜇 ) . (20)

Then

𝜆1 = −𝜇 < 0,
𝜆2 = −𝛾𝑙 − 𝛾ℎ − 𝜇 + 𝛽𝑙 𝑏𝑙𝜇 + 𝛽ℎ 𝑏ℎ𝜇
= (𝛾𝑙 + 𝛾ℎ + 𝜇) (𝑅0 − 1) .

(21)

Based on the Lyapunov theorem [24], only if 𝑅0 < 1 are all
eigenvalues of (17) negative. At this situation, 𝐸∗0 is locally
asymptotically stable.

Theorem 5. 𝐸∗1 (or 𝐸∗3 ) is locally asymptotically stable if
system (4) follows Theorem 1 or 2 or 3.

Proof. The associated characteristic equations of 𝐸∗1 can be
got from 𝐽1 as follows:

𝜆2 + 𝑘1𝜆 + 𝑘2 = 0, (22)

where

𝑘1 = 𝛽𝑙𝐼∗1 + 𝛽ℎ𝐼∗1 + 𝜇 > 0,
𝑘2 = 𝐼∗1 [𝛽𝑙 (𝛽ℎ𝐼∗1 + 𝜇) − (𝛽𝑙 − 𝛽ℎ) (𝛽ℎ𝑆∗ℎ1 − 𝛾ℎ)]
= 𝐼∗1 [2𝛽𝑙𝛽ℎ𝐼∗1 + 𝛽𝑙𝜇 − 𝛽𝑙𝛽ℎ𝑆∗ℎ1 + 𝛽𝑙𝛾ℎ + 𝛽22𝑆∗ℎ1
− 𝛽ℎ𝛾ℎ − 𝛽𝑙𝛽ℎ𝐼∗1 + 𝛽𝑙𝛽ℎ𝑁∗ − 𝛽𝑙𝛽ℎ𝑁∗]
= 𝐼∗1 [2𝛽𝑙𝛽ℎ𝐼∗1 + 𝛽𝑙𝜇 + 𝛽𝑙𝛾ℎ − 𝛽ℎ𝛾ℎ
+ 𝛽ℎ (𝛽𝑙𝑁∗ − 𝛽𝑙𝑆∗ℎ1 − 𝛽𝑙𝐼∗1 + 𝛽ℎ𝑆∗ℎ1) − 𝛽𝑙𝛽ℎ𝑁∗]
= 𝐼∗1 [2𝛽𝑙𝛽ℎ𝐼∗1 + 𝛽𝑙𝜇 + 𝛽𝑙𝛾ℎ − 𝛽ℎ𝛾ℎ
+ 𝛽ℎ (𝛾𝑙 + 𝛾ℎ + 𝜇) − 𝛽𝑙𝛽ℎ𝑁∗] = 𝐼∗1 [2𝛽𝑙𝛽ℎ𝐼∗1 + 𝛽𝑙𝜇
+ 𝛽𝑙𝛾ℎ + 𝛽ℎ𝛾𝑙 + 𝛽ℎ𝜇 − 𝛽𝑙𝛽ℎ𝑁∗]
= 𝐼∗1 (2𝐴1𝐵1 + √Δ 12𝐴1 − 𝐵1) = 𝐼∗1√Δ 1 > 0.

(23)

The associated characteristic equations of 𝐸∗3 can be got from𝐽2 as follows:
𝜆2 + 𝑘3𝜆 + 𝑘4 = 0, (24)

where

𝑘3 = 𝛼𝐼∗3 + 𝛽𝑙𝐼∗3 + 𝛽ℎ𝐼∗3 + 𝜇 > 0,
𝑘4 = 𝐼∗3 [𝛽𝑙 (𝛼𝐼∗3 + 𝛽ℎ𝐼∗3 + 𝜇)
− (𝛽𝑙 − 𝛽ℎ) (𝛼𝑆∗ℎ3 + 2𝛼𝐼∗3 − 𝛼𝑁∗ + 𝛽ℎ𝑆∗ℎ3 − 𝛾ℎ)]
= 𝐼∗3 [2 (𝛽𝑙𝛽ℎ + 𝛽ℎ𝛼) 𝐼∗3
+ 𝛼 (𝛽𝑙𝑁∗ − 𝛽𝑙𝐼∗3 − 𝛽𝑙𝑆∗ℎ3 + 𝛽ℎ𝑆∗ℎ3)
+ 𝛽ℎ (𝛽𝑙𝑁∗ − 𝛽𝑙𝐼∗3 − 𝛽𝑙𝑆∗ℎ3 + 𝛽ℎ𝑆∗ℎ3) + 𝛽𝑙𝜇 + 𝛽𝑙𝛾ℎ
− 𝛽ℎ𝛾ℎ − 𝑁∗ (𝛽𝑙𝛽ℎ + 𝛽ℎ𝛼)] = 𝐼∗3 [2𝐴2𝐼∗3
+ 𝛼 (𝛾𝑙 + 𝛾ℎ + 𝜇) + 𝛽ℎ (𝛾𝑙 + 𝛾ℎ + 𝜇) + 𝛽𝑙𝜇 + 𝛽𝑙𝛾ℎ
− 𝛽ℎ𝛾ℎ − 𝑁∗ (𝛽𝑙𝛽ℎ + 𝛽ℎ𝛼)] = 𝐼∗3 [2𝐴2𝐼∗3 − 𝐵2]
= 𝐼∗3 [2𝐴2𝐵2 + √Δ 22𝐴2 − 𝐵2] = 𝐼∗3√Δ 2 > 0.

(25)

𝑘1 > 0, 𝑘2 > 0 (or 𝑘3 > 0, 𝑘4 > 0); the Hurwitz crite-
rion follows [24], so 𝐸∗1 (or 𝐸∗3 ) is locally asymptotically
stable.

6. The Global Stability Analysis

This sectionwill discuss the global stability of the equilibrium
of system (4). To get global stability, let us investigate the
following lemmas.

Lemma 6. For system (4), there is no periodic solution in the
interior of Ω.
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Figure 3: Trajectory figure and time plots of Example 1.

Proof. Let

𝐺 (𝑆ℎ, 𝐼) = 𝑏ℎ + 𝛾ℎ𝐼 + 𝑓 (𝐼) (𝑁∗ − 𝑆ℎ − 𝐼) − 𝛽ℎ𝑆ℎ𝐼− 𝜇𝑆ℎ,
𝐻 (𝑆ℎ, 𝐼) = 𝛽𝑙 (𝑁∗ − 𝑆ℎ − 𝐼) 𝐼 + 𝛽ℎ𝑆ℎ𝐼 − 𝛾𝑙𝐼 − 𝛾ℎ𝐼− 𝜇𝐼,
𝐵 (𝑆ℎ, 𝐼) = 1𝐼 ,

(26)

and then

𝜕 (𝐺𝐵)𝜕𝑆ℎ + 𝜕 (𝐻𝐵)𝜕𝐼 = −𝛽ℎ − 𝜇𝐼 − 𝛽𝑙 < 0,
if 0 ⩽ 𝐼 < 𝐼max,

𝜕 (𝐺𝐵)𝜕𝑆ℎ + 𝜕 (𝐻𝐵)𝜕𝐼 = −𝛽ℎ − 𝜇𝐼 − 𝛽𝑙 − 𝛼 < 0,
if 𝐼 ⩾ 𝐼max.

(27)

Thus, the claimed result follows from the Bendixson-Dulac
criterion [24].

Lemma 7. For system (4), there is no periodic solution that
passes through a point on 𝜕Ω, the boundary of Ω.
Proof. Consider an arbitrary point (𝑆ℎ, 𝐼), on the boundary ofΩ. From (5), 𝜕Ω consists of the following three possibilities:

(a) 𝑆ℎ = 0. Then ̇𝑆ℎ|(𝑆ℎ ,𝐼) = 𝑏ℎ + 𝛾ℎ𝐼 > 0, if 0 ⩽ 𝐼 < 𝐼max,
and ̇𝑆ℎ|(𝑆ℎ ,𝐼) = 𝑏ℎ + 𝛾ℎ𝐼 + 𝛼𝐼(𝑁∗ − 𝐼) > 0, if 𝐼max ⩽ 𝐼 ⩽𝑁∗.

Table 1: Related instructions.

N Not existing
E Only existing
EL Existing and locally asymptotically stable
EG Existing and globally asymptotically stable

(b) 𝐼 = 0, 0 ⩽ 𝑆ℎ ⩽ 𝑁∗. Then ̇𝐼|(𝑆ℎ,𝐼) = 0.
(c) 𝑆ℎ + 𝐼 = 𝑁∗. Then (𝑑(𝑆ℎ + 𝐼)/𝑑𝑡)|(𝑆ℎ ,𝐼) = −𝑏𝑙 − 𝛾𝑙𝐼 < 0.

In view of the orbit smoothness, combining the above
discussions can get the claimed result.

In view of Lemmas 6 and 7 and Theorems 3–5, the main
result of this section can be got as follows.

7. Numerical Examples and Discussions

In this section, some numerical examples are used to verify
the results obtained in the previous section.

Example 1. Suppose 𝛽𝑙 = 0.24, 𝛽ℎ = 0.08, 𝛾𝑙 = 0.146, 𝛾ℎ =0.003, 𝑏𝑙 = 0.0012, 𝑏ℎ = 0.0018, 𝜇 = 0.003, 𝛼 = 0.005,
and 𝐼max = 0.38. In this situation, 𝑅0 < 1, 𝐼∗1 < 𝐼max. Some
trajectories of initial points are displayed in Figure 3(a) and
the time plots about two of them are shown in Figures 3(b)
and 3(c). In Figure 3(a), the blue dashed line dividesΩ intoΩ1
(above the blue dashed line) and Ω2 (under the blue dashed
line).The initial points inΩ1 are finally stable at 𝐸∗1 and inΩ2
are finally stable at 𝐸∗0 , which complies with the third rows of
Table 2. And the abbreviation notations of Table 2 are shown
in Table 1.
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Figure 4: Trajectory figure and time plots of Example 2.

Table 2: Main result of Section 6.

Conditions 𝐸∗0 𝐸∗1 𝐸∗2 𝐸∗3 𝐸∗4𝑅0 < 1 EG N N N N

𝑅0 < 1 𝐵1 > 1, 𝐵2 > 1, Δ 1 > 0, Δ 2 > 0
𝐼∗1 < 𝐼max EL EL E N N𝐼∗3 ⩾ 𝐼max > 𝐼∗2 EL N E EL E𝐼∗2 > 𝐼max EL N N EL E

𝑅0 > 1 𝐼∗1 < 𝐼max E EG E N N𝐼∗3 ⩾ 𝐼max E N N EG E

Example 2. Suppose 𝛽𝑙 = 0.24, 𝛽ℎ = 0.08, 𝛾𝑙 = 0.146, 𝛾ℎ =0.003, 𝑏𝑙 = 0.0012, 𝑏ℎ = 0.0018, 𝜇 = 0.003, 𝛼 = 0.005,
and 𝐼max = 0.21. In this situation, 𝑅0 < 1, 𝐼∗3 > 𝐼max. Some
trajectories of initial points are displayed in Figure 4(a) and
the time plots about two of them are shown in Figures 4(b)
and 4(c). In Figure 4(a), the blue dashed line dividesΩ intoΩ1
(above the blue dashed line) and Ω2 (under the blue dashed
line). The initial points in Ω1 are finally stable at 𝐸∗3 and inΩ2 are finally stable at 𝐸∗0 , which complies with lines 4-5 of
Table 2.

Example 3. Suppose 𝛽𝑙 = 0.24, 𝛽ℎ = 0.08, 𝛾𝑙 = 0.146, 𝛾ℎ =0.043, 𝑏𝑙 = 0.0012, 𝑏ℎ = 0.0018, 𝜇 = 0.003, 𝛼 = 0.005, and𝐼max = 0.21. In this situation, 𝑅0 < 1 and there is only 𝐸∗0 in
the system. Some trajectories of initial points are displayed in
Figure 5(a) and the time plots about two of them are shown
in Figures 5(b) and 5(c).The initial points in are finally stable
at 𝐸∗0 , which complies with line 2 of Table 2.

Example 4. Suppose 𝛽𝑙 = 0.3, 𝛽ℎ = 0.09, 𝛾𝑙 = 0.056, 𝛾ℎ =0.043, 𝑏𝑙 = 0.0012, 𝑏ℎ = 0.0018, 𝜇 = 0.003, 𝛼 = 0.06,

and 𝐼max = 0.38. In this situation, 𝑅0 > 1, 𝐼∗1 < 𝐼max. Some
trajectories of initial points are displayed in Figure 6(a) and
the time plots about two of them are shown in Figures 6(b)
and 6(c). The initial points in are finally stable at 𝐸∗1 , which
complies with line 6 of Table 2.

Example 5. Suppose 𝛽𝑙 = 0.3, 𝛽ℎ = 0.09, 𝛾𝑙 = 0.056, 𝛾ℎ =0.043, 𝑏𝑙 = 0.0012, 𝑏ℎ = 0.0018, 𝜇 = 0.003, 𝛼 = 0.06,
and 𝐼max = 0.2. In this situation, 𝑅0 > 1, 𝐼∗3 > 𝐼max. Some
trajectories of initial points are displayed in Figure 7(a) and
the time plots about two of them are shown in Figures 7(b)
and 7(c). The initial points in are finally stable at 𝐸∗3 , which
complies with the last row of Table 2.

By introducing random factors and model adaptive
behavior, a series of simulations run are used to approximate
closer to actual worm propagation due to the unavailability
of real-world data. Hosts (used IP addresses) here appear
as abstractions in the simulations. Instead of modeling
various operating systems and services, each host is simply
considered to be one of the following: susceptible nodes with
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Figure 5: Trajectory figure and time plots of Example 3.
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Figure 6: Trajectory figure and time plots of Example 4.

high security level, susceptible nodes with low security level,
and infected nodes. Here a complete network with initial
10000 nodes is applied for numerical evaluation. And we
focus on how the mechanisms of security classification and
intervention affect the propagation of network viruses. So we
simulate three scenarios for the spread of viruses: (1) non-SC

non-INTVIN scenario, (2) with SC non-INTVIN scenario,
and (3) with SC and INTVIN scenario (see Figure 8), where
SC and INTVIN are short for security classification and
intervention, respectively. And the parameters 𝐼max and 𝛼
determine when to intervene and the strength of interven-
tions, respectively. For evaluation purpose, the values of the
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Figure 7: Trajectory figure and time plots of Example 5.
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Figure 8: Time evolution of the infected nodes in different scenar-
ios.

model parameters are set as follows:𝛽𝑙 = 0.3, 𝛽ℎ = 0.09, 𝛾𝑙 =0.056, 𝛾ℎ = 0.043, 𝑏𝑙 = 0.0012, 𝑏ℎ = 0.0018, 𝜇 = 0.003,
and other parameters are shown in Figure 8. In general,
simulation results show that the intervention mechanism
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Figure 9: Influence of 𝐼max and 𝛼 on 𝐼final. 𝐼max and 𝐼final are the
proportions of infected nodes in all nodes. Moreover, 𝐼final is the
average of 100 values for 𝑡 > 10000. Here all other parameters are
the same as Figure 8.

proposed in this paper can be applied to curbing the spread of
virus effectively. Moreover, a large number of simulations are
conducted to study how the combination of 𝐼max and 𝛼 affects
the propagation scale (see Figure 9). Obviously, the earlier
(the lower 𝐼max) and stronger (the higher 𝛼) the intervention
is introduced, the fewer the nodes finally get infected. We
divide the parameter subspace {(𝛼, 𝐼max): 𝛼 > 0, 𝐼max > 0}
into two parts, numbered as A and B (as shown in Figure 9).
Simulation results lead the following conclusion.
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(1) If (𝛼, 𝐼max) ∈ 𝐴, the value of 𝐼final (defined in Figure 9)
only depends on the value of 𝛼. So in Figure 8 the
number of infected nodes in scenarios with 𝐼max =500 is the same as the onewith 𝐼max = 1000, where𝛼 =0.2, and it is higher than the one with 𝐼max = 500 and𝛼 = 0.6. More precisely, the value of 𝐼final decreases as𝛼 increasing.

(2) If (𝛼, 𝐼max) ∈ 𝐵, the value of 𝐼final only depends on the
value of 𝐼max (4). So in Figure 8 the number of infected
nodes in scenarios with 𝛼 = 0.2 is the same as the
one with 𝛼 = 0.6, where 𝐼max = 2000, and it is higher
than the one with 𝐼max = 1000 and 𝛼 = 0.6. Note
that 𝐼final does not always decrease with the increase
of 𝐼max, because the intervention is never involved for
large 𝐼max (see the dark black part for 𝐼max > 0.3 in
Figure 9).

Remark 6. The simulations here do not take into account
latency issues, hop-count, bandwidth limitations, and trans-
fer times or connectivity issues. Since the scale of simulated
network is quite small compared with the real Internet, all
parameters are assumed on that scale. But the scale factor can
also make the real-world more complex.

Table 2 suggests that, to eradicate viruses from the
Internet, one should take necessary actions to control the
systemparameters so that𝑅∗0 is well below 1 andnot let system
meet the lines 3–5 of Table 2. After simple calculations, the
following can be got:

𝜕𝑅0𝜕𝛽𝑙 =
𝑏𝑙𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇) > 0,

𝜕𝑅0𝜕𝛽ℎ =
𝑏ℎ𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇) > 0,

𝜕𝑅0𝜕𝑏1 =
𝛽1𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇) > 0,

𝜕𝑅0𝜕𝑏ℎ =
𝛽ℎ𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇) > 0,

𝜕𝑅0𝜕𝜇 = − 𝛾𝑙 + 𝛾ℎ + 2𝜇𝜇2 (𝛾𝑙 + 𝛾ℎ + 𝜇)2 < 0,
𝜕𝑅0𝜕𝛾𝑙 = −

1
𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇)2 < 0,

𝜕𝑅0𝜕𝛾ℎ = −
1

𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇)2 < 0.

(28)

Thus, 𝑅0 is increasing with 𝛽𝑙, 𝛽ℎ, 𝑏𝑙, 𝑏ℎ and is decreasing with𝜇, 𝛾𝑙, 𝛾ℎ.
Based on the above discussions, an incomplete list of

effective measures for users to contain the virus prevalence
is presented below:

(1) Timely acquire the updated versions of the antivirus
software, so that the two infecting probabilities,𝛽𝑙 and

𝛽ℎ, are both reduced and the curing probabilities, 𝛾𝑙
and 𝛾ℎ, are enhanced.

(2) Do not connect computers to the Internet when
unnecessary, so that the recruitment rate, 𝜇, is low-
ered.

(3) For both cost and security, let the threshold value of
computer virus lead administrator to take measures
to upgrade the security level approaching the value of
stable infections in the stage of taking measures.

8. Conclusions

In this paper, we presented a novel intervention mechanism
to restrain the virus spreading under the framework of
security classification. The model reflects a realistic scenario
how the intervention is applied when the number of infected
nodes reaches the intervention threshold. Theoretical anal-
ysis and numerical evaluation are used to study how 𝐼max,𝛼 affect the propagation behaviors. The main results are
listed as follows: (1) The dynamic behaviors of computer
virus under security classification are different with common
circumstance. Obviously, much higher security computers
will lead to fewer infections. (2)The earlier and the stronger
the intervention is introduced, the fewer the nodes finally get
infected. (3) According to the brief parameter analysis, some
other effectivemeasures in reality are presented. Viewed from
a real-world perspective, in order to make better use of this
intervention mechanism, one of the most important things is
how to detect the exact number of infected nodes. Although
an in-depth discussion of this is outside this paper’s scope,
we are forced to point out that the measured value is below
the actual one. In this case, the actual value of intervention
threshold must be set below the theoretical one.

Our future work will be focused on studying such
intervention mechanism in heterogeneous networks, such as
small-world network and scale-free network.
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This paper is concerned with a delayed SEIS (Susceptible-Exposed-Infectious-Susceptible) epidemic model with a changing
delitescence and nonlinear incidence rate. First of all, local stability of the endemic equilibrium and the existence of a Hopf
bifurcation are studied by choosing the time delay as the bifurcation parameter. Directly afterwards, properties of the Hopf
bifurcation are determined based on the normal form theory and the center manifold theorem. At last, numerical simulations
are carried out to illustrate the obtained theoretical results.

1. Introduction

The outbreak of infectious diseases had not only caused
the loss of billions of lives but also badly damaged the
social economy in a short time, which brought much pain
to human society [1]. Thus, it has been an increasingly
urgent issue to understand how to prevent or slow down
the transmission of infectious diseases. To this end, many
mathematical models have been proposed for describing
the spread process of infectious diseases [2–10]. However,
all the epidemic models above do not consider the change
of delitescence of the infectious diseases. Considering that
the diversity of the delitescence period in each infected
individual who is infected with disease virus is mainly due
to the variation of the virus and the distinct constitution
of different people for some disease, such as H1N1 disease,
Wang proposed the following SEIS epidemic model with
a changing delitescence and a nonlinear incidence rate
[11]:

𝑑𝑆 (𝑡)𝑑𝑡 = 𝐴 − 𝑑𝑆 (𝑡) − 𝛽𝑆 (𝑡) 𝐼 (𝑡)1 + 𝛼𝐼 (𝑡) + 𝛾𝐼 (𝑡) ,𝑑𝐸 (𝑡)𝑑𝑡 = 𝜇𝛽𝑆 (𝑡) 𝐼 (𝑡)1 + 𝛼𝐼 (𝑡) − (𝑑 + 𝜀) 𝐸 (𝑡) ,

𝑑𝐼 (𝑡)𝑑𝑡 = (1 − 𝜇) 𝛽𝑆 (𝑡) 𝐼 (𝑡)1 + 𝛼𝐼 (𝑡) + 𝜀𝐸 (𝑡)− (𝑑 + 𝛾 + 𝛿) 𝐼 (𝑡) ,
(1)

where 𝑆(𝑡), 𝐸(𝑡), and 𝐼(𝑡) denote the numbers of the suscep-
tible, exposed, and infectious populations at time 𝑡, respec-
tively.𝐴 is the recruitment rate of the susceptible population;𝑑 is the natural death rate of the population; 𝛿 is the death
rate due to the disease of the infected population; 𝜀 is the
rate at which the exposed population becomes infectious; 𝛾
is the rate at which the infected population returns to the
susceptible population because of the treatment; 𝜇 is the rate
at which the infected population becomes the exposed one;
and 1−𝜇 is the rate at which the infected population becomes
infectious directly. 𝛽𝑆𝐼/(1 + 𝛼𝐼) is the nonlinear incidence
rate, where𝛽measures the infection force of the disease and𝛼
measures the inhibition effect from the behavioral change of
the susceptible population.Wang investigated global stability
of system (1).

In fact, many infectious diseases have different kinds
of delays during their spreading process in the population,
such as latent period delay [9, 12–16], immunity period delay
[17, 18], and infection period delay [19]. The time delay
may induce Hopf bifurcation and periodic solutions. The
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occurrence of a Hopf bifurcation means that the state of the
epidemic disease prevalence changes from an equilibrium
to a limit cycle. Therefore, the time delay can influence the
dynamics of infectious diseases. So it is necessary and useful
to investigate system (1) with time delay. Based on this fact
and taking the period used to cure the infectious population,
we consider the following delayed epidemic system:

𝑑𝑆 (𝑡)𝑑𝑡 = 𝐴 − 𝑑𝑆 (𝑡) − 𝛽𝑆 (𝑡) 𝐼 (𝑡)1 + 𝛼𝐼 (𝑡) + 𝛾𝐼 (𝑡 − 𝜏) ,𝑑𝐸 (𝑡)𝑑𝑡 = 𝜇𝛽𝑆 (𝑡) 𝐼 (𝑡)1 + 𝛼𝐼 (𝑡) − (𝑑 + 𝜀) 𝐸 (𝑡) ,𝑑𝐼 (𝑡)𝑑𝑡 = (1 − 𝜇) 𝛽𝑆 (𝑡) 𝐼 (𝑡)1 + 𝛼𝐼 (𝑡) + 𝜀𝐸 (𝑡) − (𝑑 + 𝛿) 𝐼 (𝑡)− 𝛾𝐼 (𝑡 − 𝜏) ,
(2)

where 𝜏 is the time delay due to the period that is used to
cure the infectious population.That is, we assume that all the
infectious populations will survive after time 𝜏. The initial
conditions for system (2) are

(𝜙1 (𝜃) , 𝜙2 (𝜃) , 𝜙3 (𝜃)) ∈ 𝐶 = 𝐶 ([−𝜏, 0] , 𝑅3+) ,𝜙1 (𝜃) > 0, 𝜙2 (𝜃) > 0, 𝜙3 (𝜃) > 0, (3)

where 𝑅3+ = (𝑆, 𝐸, 𝐼) ∈ 𝑅3+.
The outline of this paper is as follows. In the next section,

stability of the endemic equilibrium is analyzed and the
critical value of the time delay at which a Hopf bifurcation
occurs is obtained. In Section 3, direction and stability
of the Hopf bifurcation are investigated. In Section 4, the
obtained theoretical results are verified by some numerical
simulations. Finally, this work is summarized in Section 5.

2. Stability of the Endemic Equilibrium and
Existence of Hopf Bifurcation

By a direct computation, we know that if (I) 𝑏2 = 0 and 𝑏0/𝑏1 <0, (II) 𝑏21 − 4𝑏0𝑏2 > 0 and 𝑏0/𝑏2 < 0, (III) 𝑏21 − 4𝑏0𝑏2 > 0, 𝑏0 = 0
and 𝑏1/𝑏2 < 0, or (IV) 𝑏21 − 4𝑏0𝑏2 = 0 and 𝑏1/𝑏2 < 0, then
system (2) has a unique endemic equilibrium 𝑃∗(𝑆∗, 𝐸∗, 𝐼∗),
where

𝑆∗ = (𝑑 + 𝜀) (𝑑 + 𝛾 + 𝛿) (1 + 𝛼𝐼∗)𝛽 (1 − 𝜇) (𝑑 + 𝜀) + 𝜇𝛽𝜀 ,
𝐸∗ = (𝜇𝛽𝑆∗𝐼∗)((𝑑 + 𝜀) (1 + 𝛼𝐼∗)) ,

(4)

and 𝐼∗ is the unique positive root of the following equation:
𝑏2𝐼2 + 𝑏1𝐼 + 𝑏0 = 0, (5)

where

𝑏0 = 𝑑 (𝑑 + 𝜀) (𝑑 + 𝛾 + 𝜀) − 𝐴𝛽 ((1 − 𝜇) (𝑑 + 𝜀) + 𝜇𝜀) ,
𝑏1 = (𝑑 + 𝜀) (2𝑑𝛼 + 𝛽) (𝑑 + 𝛾 + 𝜀)

− 𝛽 ((1 − 𝜇) (𝑑 + 𝜀) + 𝜇𝜀) (𝐴𝛼 + 𝛾) ,
𝑏2 = 𝛼 (𝑑 + 𝜀) (𝑑𝛼 + 𝛽) (𝑑 + 𝛾 + 𝜀) .

(6)

Let 𝑢1(𝑡) = 𝑆(𝑡) − 𝑆∗, 𝑢2(𝑡) = 𝐸(𝑡) − 𝐸∗, 𝑢3(𝑡) = 𝐼(𝑡) − 𝐼∗.
We can rewrite system (2) as the following form:

𝑢̇1 (𝑡) = 𝑎11𝑢1 (𝑡) + 𝑎13𝑢3 (𝑡) + 𝑏13𝑢3 (𝑡 − 𝜏)
+ ∑
𝑖+𝑗≥2

1𝑖!𝑗!𝑓(1)𝑖𝑗 𝑢𝑖1 (𝑡) 𝑢𝑗3 (𝑡) ,
𝑢̇2 (𝑡) = 𝑎21𝑢1 (𝑡) + 𝑎22𝑢2 (𝑡) + 𝑎23𝑢3 (𝑡)

+ ∑
𝑖+𝑗≥2

1𝑖!𝑗!𝑓(2)𝑖𝑗 𝑢𝑖1 (𝑡) 𝑢𝑗3 (𝑡) ,
𝑢̇3 (𝑡) = 𝑎31𝑢1 (t) + 𝑎32𝑢2 (𝑡) + 𝑎33𝑢3 (𝑡) + 𝑏33𝑢3 (𝑡 − 𝜏)

+ ∑
𝑖+𝑗≥2

1𝑖!𝑗!𝑓(3)𝑖𝑗 𝑢𝑖1 (𝑡) 𝑢𝑗3 (𝑡) ,

(7)

where

𝑎11 = −(𝑑 + 𝛽𝐼∗1 + 𝛼𝐼∗) ,
𝑎13 = − 𝛽𝑆∗1 + 𝛼𝐼∗ ,𝑏13 = 𝛾,
𝑎21 = 𝜇𝛽𝐼∗1 + 𝛼𝐼∗ ,𝑎22 = − (𝑑 + 𝜀) ,
𝑎23 = 𝜇𝛽𝑆∗1 + 𝛼𝐼∗ ,
𝑎31 = (1 − 𝜇) 𝛽𝐼∗1 + 𝛼𝐼∗ ,
𝑎32 = 𝜀,
𝑎33 = (1 − 𝜇) 𝛽𝐼∗1 + 𝛼𝐼∗ − (𝑑 + 𝛿) ,
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𝑏33 = −𝛾,
𝑓(𝑘)𝑖𝑗 = 𝜕𝑖+𝑗𝑓(𝑘) (𝑆∗, 𝐸∗, 𝐼∗)𝜕𝑢𝑖1 (𝑡) 𝜕𝑢𝑗3 (𝑡) ,
𝑓(1) = 𝐴 − 𝑑𝑢1 (𝑡) − 𝛽𝑢1 (𝑡) 𝑢3 (𝑡)1 + 𝛼𝑢3 (𝑡) + 𝛾𝑢3 (𝑡 − 𝜏) ,
𝑓(2) = 𝜇𝛽𝑢1 (𝑡) 𝑢3 (𝑡)1 + 𝛼𝑢3 (𝑡) − (𝑑 + 𝜀) 𝑢2 (𝑡) ,
𝑓(3) = (1 − 𝜇) 𝛽𝑢1 (𝑡) 𝑢3 (𝑡)1 + 𝛼𝑢3 (𝑡) + 𝜀𝑢2 (𝑡) − (𝑑 + 𝛿) 𝑢3 (𝑡)

− 𝛾𝑢3 (𝑡 − 𝜏) .
(8)

Then we obtain the linearized system of system (2)𝑢̇1 (𝑡) = 𝑎11𝑢1 (𝑡) + 𝑎13𝑢3 (𝑡) + 𝑏13𝑢3 (𝑡 − 𝜏) ,𝑢̇2 (𝑡) = 𝑎21𝑢1 (𝑡) + 𝑎22𝑢2 (𝑡) + 𝑎23𝑢3 (𝑡) ,𝑢̇3 (𝑡) = 𝑎31𝑢1 (𝑡) + 𝑎32𝑢2 (𝑡) + 𝑎33𝑢3 (𝑡)+ 𝑏33𝑢3 (𝑡 − 𝜏) .
(9)

The characteristic equation is𝜆3 + 𝐴2𝜆2 + 𝐴1𝜆 + 𝐴0 + (𝐵2𝜆2 + 𝐵1𝜆 + 𝐵0) 𝑒−𝜆𝜏= 0, (10)

where𝐴0 = 𝑎13 (𝑎22𝑎31 − 𝑎21𝑎32) + 𝑎11 (𝑎23𝑎32 − 𝑎22𝑎33) ,𝐴1 = 𝑎11𝑎22 + 𝑎22𝑎33 + 𝑎11𝑎33𝐴2 = − (𝑎11 + 𝑎22 + 𝑎33) ,𝐵0 = 𝑏13 (𝑎22𝑎31 − 𝑎21𝑎32) − 𝑎11𝑎22𝑏33,𝐵1 = 𝑏33 (𝑎11 + 𝑎22) − 𝑎13𝑏13,𝐵2 = −𝑏33.
(11)

When 𝜏 = 0, (10) reduces to𝜆3 + (𝐴2 + 𝐵2) 𝜆2 + (𝐴1 + 𝐵1) 𝜆 + 𝐴0 + 𝐵0 = 0. (12)

Routh-Hurwitz criterion implies that 𝑃∗ is locally asymp-
totically stable without delay if condition (𝐻1) holds.

(𝐻1) 𝐴2 + 𝐵2 > 0, (𝐴2 + 𝐵2)(𝐴1 + 𝐵1) > 𝐴0 + 𝐵0 > 0.
For 𝜏 > 0, substituting 𝜆 = 𝑖𝜔 (𝜔 > 0) into (10), we obtain𝐵1𝜔 sin 𝜏𝜔 + (𝐵0 − 𝐵2𝜔2) cos 𝜏𝜔 = 𝐴2𝜔2 − 𝐴0,𝐵1𝜔 cos 𝜏𝜔 − (𝐵0 − 𝐵2𝜔2) sin 𝜏𝜔 = 𝜔3 − 𝐴1𝜔. (13)

Then 𝜔6 + 𝑎2𝜔4 + 𝑎1𝜔2 + 𝑎0 = 0, (14)

where 𝑎0 = 𝐴20 − 𝐵20,𝑎1 = 𝐴21 − 2𝐴0𝐴2 − 𝐵21 + 2𝐵0𝐵2,𝐴2 = 𝐴22 − 2𝐴1 − 𝐵22.
(15)

Let 𝜔2 = V; then

V3 + 𝑎2V2 + 𝑎1V + 𝑎0 = 0, (16)

where 𝑓(V) = V3 + 𝑎2V2 + 𝑎1V + 𝑎0. According to the analysis
about the distribution of roots of (16) in Song et al. [20], we
have the following result.

Lemma 1. For the polynomial equation (16),

(1) if 𝑎0 < 0, then (16) has at least one positive root;
(2) if 𝑎0 ≥ 0 and󳵻 = 𝑎22 −3𝑎1 ≤ 0, then (16) has no positive

roots;
(3) if 𝑎0 ≥ 0 and 󳵻 = 𝑎22 − 3𝑎1 > 0, then (16) has positive

roots if and only if V∗1 = (−𝑎2+√󳵻)/3 > 0 and 𝑓(V∗1 ) ≤0.
Next, we assume that the coefficients in (16) satisfy the following
condition.(𝐻2) (i) 𝑎0 < 0 or (ii) 𝑎0 ≥ 0, 󳵻 = 𝑎22 − 3𝑎1 > 0, V∗1 =(−𝑎2 + √󳵻)/3 > 0, and 𝑓(V∗1 ) ≤ 0.

Thus, (14) has at least one positive root such that (10) has a
pair of purely imaginary roots ±𝑖𝜔0. The corresponding critical
value 𝜏0 can be obtained from (13)

𝜏0 = 1𝜔0
⋅ arccos (𝐵1 − 𝐴2𝐵2) 𝜔40 + (𝐴2𝐵0 + 𝐴0𝐵2 − 𝐴1𝐵1) 𝜔20 − 𝐴0𝐵0𝐵21𝜔20 + (𝐵0 − 𝐵2𝜔20)2 . (17)

Taking derivative with respect to 𝜏 on both sides of (10), we
obtain

[𝑑𝜆𝑑𝜏]−1 = − 3𝜆2 + 2𝐴2𝜆 + 𝐴1𝜆 (𝜆3 + 𝐴2𝜆2 + 𝐴1𝜆 + 𝐴0)
+ 2𝐵2𝜆 + 𝐵1𝜆 (𝐵2𝜆2 + 𝐵1𝜆 + 𝐵0) − 𝜏𝜆 .

(18)

Further, we have

Re [𝑑𝜆𝑑𝜏]−1𝜏=𝜏0 = 𝑓󸀠 (𝜔20)𝐵21𝜔20 + (𝐵0 − 𝐵2𝜔20)2 . (19)

Thus, if the condition (𝐻3): 𝑓󸀠(𝜔20) ̸= 0 holds, then
Re[𝑑𝜆/𝑑𝜏]−1𝜏=𝜏0 ̸= 0. Then, based on the Hopf bifurcation
theorem in [21], we have the following.

Theorem 2. For system (2), if the conditions (𝐻1)–(𝐻3) hold,
then the endemic equilibrium 𝐸∗(𝑆∗, 𝐸∗, 𝐼∗) of system (2) is
asymptotically stable for 𝜏 ∈ [0, 𝜏0) and system (2) undergoes
a Hopf bifurcation at the endemic equilibrium 𝐸∗(𝑆∗, 𝐸∗, 𝐼∗)
when 𝜏 = 𝜏0, where 𝜏0 is defined in (17).
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3. Direction and Stability of the
Hopf Bifurcation

Let 𝜏 = 𝜏0 +𝜇, 𝜇 ∈ 𝑅; then 𝜇 = 0 is the Hopf bifurcation value
of system (2). Rescaling the time delay 𝑡 → (𝑡/𝜏), then system
(2) can be transformed into an FDE in 𝐶 = 𝐶([−1, 0], 𝑅3) as
follows: 𝑢̇ (𝑡) = 𝐿𝜇𝑢𝑡 + 𝐹 (𝜇, 𝑢𝑡) , (20)
where

𝐿𝜇𝜙 = (𝜏0 + 𝜇)(𝑎11 0 𝑎13𝑎21 𝑎22 𝑎23𝑎31 𝑎32 𝑎33)𝜙 (0)
+ (𝜏0 + 𝜇)(0 0 𝑏130 0 00 0 𝑏33)𝜙 (−1) ,

𝐹 (𝜇, 𝜙) = (𝜏0 + 𝜇) (𝐹1, 𝐹2, 𝐹3)𝑇 ,
(21)

where 𝐹1, 𝐹2, and 𝐹3 are defined by Appendix A.
By the Riesz representation theorem, there exists a 3 × 3

matrix function 𝜂(𝜃, 𝜇), 𝜃 ∈ [−1, 0], whose components are
of bounded variation, such that𝐿𝜇𝜙 = ∫0

−1
𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜙 ∈ 𝐶 ([−1, 0] , 𝑅3) . (22)

In fact, we choose

𝜂 (𝜃, 𝜇) = (𝜏0 + 𝜇)(𝑎11 0 𝑎13𝑎21 𝑎22 𝑎23𝑎31 𝑎32 𝑎33)𝜙 (0)
+ (𝜏0 + 𝜇)(0 0 𝑏130 0 00 0 𝑏33)𝜙 (−1) .

(23)

For 𝜙 ∈ 𝐶([−1, 0], 𝑅3), we define
𝐴 (𝜇) 𝜙 = {{{{{{{{{

𝑑𝜙 (𝜃)𝑑𝜃 , −1 ≤ 𝜃 < 0,
∫0
−1
𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {{{
0, −1 ≤ 𝜃 < 0,𝐹 (𝜇, 𝜙) , 𝜃 = 0.

(24)

Then system (20) is equivalent to𝑢̇ (𝑡) = 𝐴 (𝜇) 𝑢𝑡 + 𝑅 (𝜇) 𝑢𝑡. (25)

For 𝜑 ∈ 𝐶1([0, 1]), (𝑅3)∗, the adjoint operator 𝐴∗ of 𝐴 is
defined as

𝐴∗ (𝜑) = {{{{{{{{{
−𝑑𝜑 (𝑠)𝑑𝑠 , 0 < 𝑠 ≤ 1,
∫0
−1
𝑑𝜂𝑇 (𝑠, 0) 𝜑 (−𝑠) , 𝑠 = 0, (26)

and a bilinear inner product is defined by⟨𝜑 (𝑠) , 𝜙 (𝜃)⟩ = 𝜑 (0) 𝜙 (0)
− ∫0
𝜃=−1

∫𝜃
𝜉=0

𝜑 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉, (27)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
Let 𝑞(𝜃) = (1, 𝑞2, 𝑞3)𝑇𝑒𝑖𝜔0𝜏0𝜃 be the eigenvector of 𝐴(0)

belonging to +𝑖𝜔0𝜏0 and 𝑞∗(𝑠) = 𝐷(1, 𝑞∗2 , 𝑞∗3 )𝑒𝑖𝜔0𝜏0𝑠 be
the eigenvector of 𝐴∗(0) belonging to −𝑖𝜔0𝜏0. By a direct
computation, we can get

𝑞2 = 𝑎21 + 𝑎23𝑞3𝑖𝜔0 − 𝑎22 ,𝑞3 = 𝑖𝜔0 − 𝑎11𝑎13 + 𝑏13𝑒−𝑖𝜏0𝜔0 ,𝑞∗2 = − 𝑎32𝑞3𝑖𝜔0 + 𝑎22 ,
𝑞∗3 = (𝑎13 + 𝑏13𝑒𝑖𝜏0𝜔0) (𝑖𝜔0 + 𝑎22)𝑎23𝑎32 − (𝑖𝜔0 + 𝑎22) (𝑖𝜔0 + 𝑎33 + 𝑏33𝑒𝑖𝜏0𝜔0) .

(28)

From (27), we can get⟨𝑞∗ (𝑠) , 𝑞 (𝜃)⟩= 𝐷 [1 + 𝑞2𝑞∗2 + 𝑞3𝑞∗3 + 𝜏0𝑒−𝑖𝜏0𝜔0𝑞3 (𝑏13 + 𝑏33𝑞∗3 )] . (29)

Then we choose𝐷 = [1 + 𝑞2𝑞∗2 + 𝑞3𝑞∗3 + 𝜏0𝑒−𝑖𝜏0𝜔0𝑞3 (𝑏13 + 𝑏33𝑞∗3 )]−1 . (30)

such that ⟨𝑞∗, 𝑞⟩ = 1.
Next, we can obtain the coefficients 𝑔20, 𝑔11, 𝑔02, and 𝑔21

by using the method introduced in [21] and a computation
process similar to that in [22–24].The expressions of 𝑔20, 𝑔11,𝑔02, and 𝑔21 are defined by Appendix B.

Then, we can get the following coefficients which deter-
mine the properties of the Hopf bifurcation:

𝐶1 (0) = 𝑖2𝜏0𝜔0 (𝑔11𝑔20 − 2 󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑔02󵄨󵄨󵄨󵄨23 ) + 𝑔212 ,
𝜇2 = − Re {𝐶1 (0)}

Re {𝜆󸀠 (𝜏0)} ,𝛽2 = 2Re {𝐶1 (0)} ,
𝑇2 = − Im {𝐶1 (0)} + 𝜇2Im {𝜆󸀠 (𝜏0)}𝜏0𝜔0 .

(31)

In conclusion, we have the following results.

Theorem 3. For system (2), if 𝜇2 > 0 (𝜇2 < 0), then the Hopf
bifurcation is supercritical (subcritical). If 𝛽2 < 0 (𝛽2 > 0),
then the bifurcating periodic solutions are stable (unstable).
If 𝑇2 > 0 (𝑇2 < 0), then the bifurcating periodic solutions
increase (decrease).
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Figure 1: 𝑃∗ is locally asymptotically stable for 𝜏 = 4.475 < 𝜏0 = 5.1686 with initial values “27.5, 260.5, 65.”

4. Numerical Simulations

In order to verify the efficiency of the obtained results in
the paper, we carry out some numerical simulations in this
section. By extracting some values from [11] and considering
the conditions for the existence of the Hopf bifurcation, we
consider the special case of system (2) with the parameters𝐴 = 5, 𝑑 = 0.01, 𝛽 = 0.5, 𝛼 = 0.4, 𝛾 = 0.5, 𝜇 = 0.65, 𝜀 = 0.1,
and 𝛿 = 0.02, Then, system (2) becomes the following form:𝑑𝑆 (𝑡)𝑑𝑡 = 5 − 0.01𝑆 (𝑡) − 0.5𝑆 (𝑡) 𝐼 (𝑡)1 + 0.4𝐼 (𝑡) + 0.5𝐼 (𝑡 − 𝜏) ,𝑑𝐸 (𝑡)𝑑𝑡 = 0.325𝑆 (𝑡) 𝐼 (𝑡)1 + 0.4𝐼 (𝑡) − 0.11𝐸 (𝑡) ,

𝑑𝐼 (𝑡)𝑑𝑡= 0.175𝑆 (𝑡) 𝐼 (𝑡)1 + 0.4𝐼 (𝑡) + 0.1𝐸 (𝑡) − 0.03𝐼 (𝑡)
− 0.5𝐼 (𝑡 − 𝜏) ,

(32)

0.0014𝐼2 − 0.0999𝐼 − 0.2584 = 0, (33)

from which we can obtain the unique positive root 𝐼∗ =73.8562 and then we get the unique endemic equilibrium𝑃∗(34.3750, 245.5930, 73.8562). Then, we can obtain 𝜔0 =0.3950, 𝜏0 = 5.1686, and 𝜆󸀠(𝜏0) = 0.0012 − 0.0759𝑖.
Thus, based on Theorem 2, we know that the endemic
equilibrium 𝑃∗(34.3750, 245.5930, 73.8562) is locally asymp-
totically stable when 𝜏 < 𝜏0 = 5.1686, which can be
illustrated by Figures 1 and 2. In this case, the disease
can be controlled easily. Once the value of the delay

passes through the critical value 𝜏0 = 5.1686, then the
endemic equilibrium 𝑃∗(34.3750, 245.5930, 73.8562) loses its
stability and a Hopf bifurcation occurs, and a family of
periodic solutions bifurcate from the endemic equilibrium𝑃∗(34.3750, 245.5930, 73.8562). This property can be shown
as in Figures 3 and 4. In this case, the disease will be out of
control.

In addition, according to (31), we get 𝐶1(0) = −1.0027 −0.9244𝑖, 𝜇2 = 835.5833 > 0, 𝛽2 = −2.0054 < 0, and𝑇2 = 31.5171 > 0. Therefore, we can conclude that the Hopf
bifurcation is supercritical and the bifurcating periodic solu-
tions are stable and increase. Since the bifurcating periodic
solutions are stable, it can be concluded that the populations
in system (32) can coexist from the view of ecology. Based on
this fact, we can conclude that the time delay is harmful for
system (32).

5. Conclusions

We generalize a delayed SEIS (Susceptible-Exposed-Infec-
tious-Susceptible) epidemic model with a changing delites-
cence and nonlinear incidence rate in this paper by introduc-
ing the time delay due to the period that is used to cure the
infectious population into the SEIS model considered in the
literature [11]. Compared with the literature [11], we mainly
consider the effect of the time delay on the model.

The main results are given in terms of local stability
and Hopf bifurcation. Stability of the endemic equilibrium
is investigated by analyzing the corresponding characteristic
equation. By choosing the time delay as a bifurcation param-
eter, sufficient conditions have been established for local
existence of Hopf bifurcation at the endemic equilibrium.
Then, with the help of the normal form theory and the
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Figure 2: 𝑃∗ is locally asymptotically stable for 𝜏 = 4.475 < 𝜏0 = 5.1686 with initial values “22, 200, 75.”
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Figure 3: 𝑃∗ becomes unstable and a Hopf bifurcation occurs when 𝜏 = 5.485 > 𝜏0 = 5.1686 with initial values “27.5, 260.5, 65.”

center manifold theorem due to Hassard et al. [21], direction
and stability of the Hopf bifurcation are determined. Finally,
through numerical simulations, it can be concluded that
the period used to cure the infectious population plays an
important role in the disease spreading and the disease may
be controlled by shortening the period used to cure the
infectious population.

Appendix

A. The Expressions of 𝐹1, 𝐹2, and 𝐹3
𝐹1 = 𝑔1𝜙23 (0) + 𝑔2𝜙1 (0) 𝜙3 (0) + 𝑔3𝜙1 (0) 𝜙23 (0)+ 𝑔4𝜙33 (0) + ⋅ ⋅ ⋅ ,
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Figure 4: 𝑃∗ becomes unstable and a Hopf bifurcation occurs when 𝜏 = 5.485 > 𝜏0 = 5.1686 with initial values “22, 200, 75.”

𝐹2 = ℎ1𝜙23 (0) + ℎ2𝜙1 (0) 𝜙3 (0) + ℎ3𝜙1 (0) 𝜙23 (0)+ ℎ4𝜙33 (0) + ⋅ ⋅ ⋅ ,
𝐹3 = 𝑘1𝜙23 (0) + 𝑘2𝜙1 (0) 𝜙3 (0) + 𝑘3𝜙1 (0) 𝜙23 (0)+ 𝑘4𝜙33 (0) + ⋅ ⋅ ⋅ ,
𝑔1 = 𝛼𝛽𝑆∗(1 + 𝛼𝐼∗)3 ,
𝑔2 = − 𝛽(1 + 𝛼𝐼∗)2 ,
𝑔3 = 𝛼𝛽(1 + 𝛼𝐼∗)3 ,
𝑔4 = − 𝛼2𝛽𝑆∗(1 + 𝛼𝐼∗)4 ,
ℎ1 = − 𝜇𝛼𝛽𝑆∗(1 + 𝛼𝐼∗)3 ,
ℎ2 = 𝜇𝛽(1 + 𝛼𝐼∗)2 ,
ℎ3 = − 𝜇𝛼𝛽(1 + 𝛼𝐼∗)3 ,
ℎ4 = 𝜇𝛼2𝛽𝑆∗(1 + 𝛼𝐼∗)4 ,

𝑘1 = −(1 − 𝜇) 𝛼𝛽𝑆∗(1 + 𝛼𝐼∗)3 ,
𝑘2 = (1 − 𝜇) 𝛽(1 + 𝛼𝐼∗)2 ,
𝑘3 = −(1 − 𝜇) 𝛼𝛽(1 + 𝛼𝐼∗)3 ,
𝑘4 = (1 − 𝜇) 𝛼2𝛽𝑆∗(1 + 𝛼𝐼∗)4 .

(A.1)

B. The Expressions of 𝑔20, 𝑔11, 𝑔02, and 𝑔21
𝑔20 = 2𝜏0𝐷(𝑔1 (𝑞(3) (0))2 + 𝑔2𝑞(1) (0) 𝑞(3) (0)
+ 𝑞∗2 (ℎ1 (𝑞(3) (0))2 + ℎ2𝑞(1) (0) 𝑞(3) (0)) + 𝑞∗3 (𝑘1 (𝑞(3) (0))2
+ 𝑘2𝑞(1) (0) 𝑞(3) (0))) ,

𝑔11 = 𝜏0𝐷(2𝑔1𝑞(3) (0) 𝑞(3) (0) + 𝑔2 (𝑞(1) (0) 𝑞(3) (0) + 𝑞(1) (0)
⋅ 𝑞(3) (0)) + 𝑞∗2 (2ℎ1𝑞(3) (0) 𝑞(3) (0) + ℎ2 (𝑞(1) (0) 𝑞(3) (0)+ 𝑞(1) (0) 𝑞(3) (0))) + 𝑞∗3 (2𝑘1𝑞(3) (0) 𝑞(3) (0)
+ 𝑘2 (𝑞(1) (0) 𝑞(3) (0) + 𝑞(1) (0) 𝑞(3) (0)))) ,

𝑔02 = 2𝜏0𝐷(𝑔1 (𝑞(3) (0))2 + 𝑔2𝑞(1) (0) 𝑞(3) (0)
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+ 𝑞∗2 (ℎ1 (𝑞(3) (0))2 + ℎ2𝑞(1) (0) 𝑞(3) (0)) + 𝑞∗3 (𝑘1 (𝑞(3) (0))2
+ 𝑘2𝑞(1) (0) 𝑞(3) (0))) ,

𝑔21 = 2𝜏0𝐷(𝑔1 (2𝑊(3)11 (0) 𝑞(3) (0) + 𝑊(3)20 (0) 𝑞(3) (0))
+ 𝑔2 (𝑊(1)11 (0) 𝑞(3) (0) + 12𝑊(1)20 (0) 𝑞(3) (0) + 𝑊(3)11 (0) 𝑞(1) (0)+ 12𝑊(3)20 (0) 𝑞(1) (0)) + 𝑔3 (𝑞(1) (0) (𝑞(3) (0))2 + 2𝑞(1) (0)⋅ 𝑞(3) (0) 𝑞(3) (0)) + 3𝑔4 (𝑞(3) (0))2 𝑞(3) (0)
+ 𝑞∗2 (ℎ1 (2𝑊(3)11 (0) 𝑞(3) (0) + 𝑊(3)20 (0) 𝑞(3) (0))
+ ℎ2 (𝑊(1)11 (0) 𝑞(3) (0) + 12𝑊(1)20 (0) 𝑞(3) (0) + 𝑊(3)11 (0) 𝑞(1) (0)+ 12𝑊(3)20 (0) 𝑞(1) (0)) + ℎ3 (𝑞(1) (0) (𝑞(3) (0))2+ 2𝑞(1) (0) 𝑞(3) (0) 𝑞(3) (0)) + 3ℎ4 (𝑞(3) (0))2 𝑞(3) (0))
+ 𝑞∗3 (𝑘1 (2𝑊(3)11 (0) 𝑞(3) (0) + 𝑊(3)20 (0) 𝑞(3) (0))
+ 𝑘2 (𝑊(1)11 (0) 𝑞(3) (0) + 12𝑊(1)20 (0) 𝑞(3) (0) + 𝑊(3)11 (0) 𝑞(1) (0)+ 12𝑊(3)20 (0) 𝑞(1) (0)) + 𝑘3 (𝑞(1) (0) (𝑞(3) (0))2+ 2𝑞(1) (0) 𝑞(3) (0) 𝑞(3) (0)) + 3𝑘4 (𝑞(3) (0))2 𝑞(3) (0))) ,

𝑊20 (𝜃) = 𝑖𝑔20𝑞 (0)𝜏0𝜔0 𝑒𝑖𝜏0𝜔0𝜃 + 𝑖𝑔02𝑞 (0)3𝜏0𝜔0 𝑒−𝑖𝜏0𝜔0𝜃 + 𝐸1𝑒2𝑖𝜏0𝜔0𝜃,
𝑊11 (𝜃) = −𝑖𝑔11𝑞 (0)𝜏0𝜔0 𝑒𝑖𝜏0𝜔0𝜃 + 𝑖𝑔11𝑞 (0)𝜏0𝜔0 𝑒−𝑖𝜏0𝜔0𝜃 + 𝐸2,
𝐸1 = (2𝑖𝜔0 − 𝑎11 0 −𝑎13 − 𝑏13𝑒−2𝑖𝜏0𝜔0−𝑎21 2𝑖𝜔0 − 𝑎22 −𝑎23−𝑎31 −𝑎32 2𝑖𝜔0 − 𝑎33 − 𝑏33𝑒−2𝑖𝜏0𝜔0)

−1

×(𝐸(1)1𝐸(2)1𝐸(3)1 ),

𝐸2 = −(𝑎11 𝑎12 𝑎13 + 𝑏13𝑎21 𝑎22 𝑎23𝑎31 𝑎32 𝑎33 + 𝑏33)
−1 ×(𝐸(1)2𝐸(2)2𝐸(3)2 ),

𝐸(1)1 = 𝑔1 (𝑞(3) (0))2 + 𝑔2𝑞(1) (0) 𝑞(3) (0) ,𝐸(2)1 = ℎ1 (𝑞(3) (0))2 + ℎ2𝑞(1) (0) 𝑞(3) (0) ,𝐸(3)1 = 𝑘1 (𝑞(3) (0))2 + 𝑘2𝑞(1) (0) 𝑞(3) (0) ,
𝐸(1)2 = 2𝑔1𝑞(3) (0) 𝑞(3) (0) + 𝑔2 (𝑞(1) (0) 𝑞(3) (0) + 𝑞(1) (0) 𝑞(3) (0)) ,
𝐸(2)2 = 2ℎ1𝑞(3) (0) 𝑞(3) (0) + ℎ2 (𝑞(1) (0) 𝑞(3) (0) + 𝑞(1) (0) 𝑞(3) (0)) ,
𝐸(3)2 = 2𝑘1𝑞(3) (0) 𝑞(3) (0) + 𝑘2 (𝑞(1) (0) 𝑞(3) (0) + 𝑞(1) (0) 𝑞(3) (0)) .

(B.1)
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The spectral radius minimization problem (SRMP), which aims to minimize the spectral radius of a network by deleting a given
number of edges, turns out to be crucial to containing the prevalence of an undesirable object on the network. As the SRMP is
NP-hard, it is very unlikely that there is a polynomial-time algorithm for it. As a result, it is proper to focus on the development
of effective and efficient heuristic algorithms for the SRMP. For that purpose, it is appropriate to gain insight into the pattern
of an optimal solution to the SRMP by means of checking some regular networks. Hypercubes are a celebrated class of regular
networks. This paper empirically studies the SRMP for hypercubes with two/three/four missing edges. First, for each of the three
subproblems of the SRMP, a candidate for the optimal solution is presented. Second, it is shown that the candidate is optimal for
small-sized hypercubes, and it is shown that the proposed candidate is likely to be optimal for medium-sized hypercubes.The edges
in each candidate are evenly distributed over the network, which may be a common feature of all symmetric networks and hence
is instructive in designing effective heuristic algorithms for the SRMP.

1. Introduction

Theepidemicmodeling is recognized as an effective approach
to the understanding of propagation process of objects over
a network [1, 2]. For instance, epidemic models help us
understand the key factors that affect the prevalence of
malware [3–8].The speed and extent of spread of an epidemic
on a network depend largely on the structure of the network;
whether the epidemic goes viral depends on whether the
spectral radius of the network exceeds a threshold [9–14].
Therefore, reducing the spectral radius of a network by
removing a set of edges is an effective approach to the
containment of the prevalence of an undesirable epidemic
on the network. The spectral radius minimization problem
(SRMP) aims to remove a given number of edges of a network
so that the spectral radius of the resulting network attains
the minimum. As the SRMP is NP-hard [15], it is much
unlikely that there be a polynomial-time algorithm for it. As
thus, a number of heuristic algorithms for the SRMP have
been proposed [15–19]. In most situations, these heuristics

are ineffective, because they produce nonoptimal solutions
rather than optimal solutions. For the purpose of developing
effective heuristic algorithms for the SRMP, it is appropriate
to gain insight into the pattern of an optimal solution to
the SRMP by means of checking some regular networks.
Recently, Yang et al. [20] studied the SRMP for 2D tori.

Hypercubes are a class of regular networks [21]. Due
to remarkable advantages in communication [22–25], fault
tolerant communication [26–30], fault diagnosis [31–34],
and parallel computation [35, 36], hypercubes have been
widely adopted as the underlying interconnection network in
multicomputer systems [37]. To our knowledge, the SRMP for
hypercubes is still unsolved.

This paper addresses three subproblems of the SRMP,
where two/three/four edges are removed from a hypercube,
respectively. First, for each of the three subproblems of the
SRMP, a candidate optimal solution is presented. Second,
it is shown that the candidate is optimal for small-sized
hypercubes, and it is shown that the proposed candidate is
likely to be optimal for medium-sized hypercubes. The edges
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Figure 1: Three examples of𝐻
𝑛
.
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Figure 2: The proposed candidate in𝐻
𝑛
.

in each candidate are evenly distributed over the network,
which may be a common feature of all symmetric networks
and hence is instructive in designing effective heuristic
algorithms for the SRMP.

The remaining materials are organized in this fashion:
the preliminary knowledge is given in Section 2. Section 3
presents the main results of this work. Finally, Section 4
summarizes this work.
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Figure 5: The proposed candidate in𝐻
𝑛
.

2. Preliminaries

For fundamental knowledge on the spectral radius of a
network, see [38, 39]. The SRMP is formulated as follows:
given a network 𝐺 = (𝑉, 𝐸) and a positive integer 𝑘, find a
set of 𝑘 edges of 𝐺 so that the surviving network obtained
by removing the set of edges from the network achieves the
minimum spectral radius.

An 𝑛-dimensional cube (𝑛-D cube, for short), denoted
by 𝐻
𝑛
, is a network 𝐺 = (𝑉, 𝐸), where there is a one-to-one

correspondance 𝜙 from 𝑉 to the set of all 0-1 binary strings
of length 𝑛 so that node 𝑢 is adjacent to node V if and only
if 𝜙(𝑢) differs from 𝜙(V) in exactly one bit position. In what
follows, it is always assumed that the nodes of a hypercube
have been labelled with 0-1 strings in this way. See Figure 1
for three small-sized hypercubes.

An 𝑛-D cube can also be defined in a recursive way as
follows. (1) A 0-D cube is a graph on a single node. (2) For
𝑛 ≥ 1, an 𝑛-D cube is built from two copies of an (𝑛 − 1)-D
cube in this way: connect each node in one copy to the same
node in the other copy.

3. Main Results

This section considers the optimal scheme of deleting
two/three/four edges from𝐻

𝑛
, respectively.

3.1. Deleting Two Edges. Firstly, we consider a subproblem of
the SRMP, denoted by SRMP-H2, for which two edges will be
deleted from a hypercube. Let us present a candidate for the
optimal solution to the SRMP-H2 as follows, where 𝑛 denotes
the dimension of the hypercube:

𝑒
1
= {0𝑛, 0𝑛−11} ,

𝑒
2
= {1𝑛, 1𝑛−10} .

(1)

Figure 2 shows the proposed candidate in𝐻
2
,𝐻
3
,𝐻
4
, and

𝐻
5
, respectively.
For 2 ≤ 𝑛 ≤ 7, it follows by exhaustive search that the

proposed candidate is optimal. For instance, assume that the
red edge in the upper-left 3D subcube of𝐻

5
is the first deleted

edge, and each of the remaining edges is a candidate for
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Figure 6: The proposed candidate (red) versus 103 random candidates (blue).

the second deleted edge. The spectral radius of the surviving
network formed by deleting each of the candidate edges from
𝐻
5
is shown in Figure 3. It can be seen that the larger the

distance between the two edges, the smaller the spectral
radius of the surviving network. At the extreme, the proposed
candidate is optimal.

For 8 ≤ 𝑛 ≤ 11, the proposed candidate is compared
with 103 random candidates in terms of the spectral radius
of the surviving network; see Figure 4. It is concluded that
the proposed candidate is optimal among these candidates.

Therefore, we propose the following conjecture.

Conjecture 1. For all 𝑛 ≥ 2, the proposed candidate is an
optimal solution to the SRMP-H2.

3.2. Deleting Three Edges. Secondly, we consider a subprob-
lem of the SRMP problem, denoted by SRMP-H3, for which
three edges will be removed from a hypercube. Let us present
a candidate for the optimal solution to the SRMP-H3 as
follows, where 𝑛 denotes the dimension of the hypercube,
𝑐 = ⌊(𝑛 + 1)/3⌋:

𝑒
1
= {0𝑛, 0𝑛−11} ,

𝑒
2
= {0𝑛−2𝑐12𝑐, 0𝑛−2𝑐−112𝑐+1} ,

𝑒
3
= {1𝑛−𝑐−10𝑐+1, 1𝑛−𝑐0𝑐} .

(2)

Figure 5 shows the proposed candidate in𝐻
3
,𝐻
4
,𝐻
5
, and𝐻

6
,

respectively.
For 2 ≤ 𝑛 ≤ 6, it follows by exhaustive search that

the proposed candidate is optimal. For 7 ≤ 𝑛 ≤ 10, the
proposed candidate is comparedwith 103 randomcandidates;
see Figure 6. It is concluded that the proposed candidate is
optimal among these candidates. Therefore, we propose the
following conjecture.

Conjecture 2. For all 𝑛 ≥ 3, the proposed candidate is an
optimal solution to the SRMP-H3.

3.3. Deleting Four Edges. Finally, consider a subproblem of
the SRMP, denoted by SRMP-H4, for which four edges will
be deleted from a hypercube. Let us present a candidate to the
optimal solution to the SRMP-H4 as follows, where 𝑛 denotes
the dimension of the hypercube, 𝑐 = ⌊(𝑛 − 1)/3⌋:

If 𝑛 ≡ 0, 2mod 3, then

𝑒
1
= {0𝑛, 0𝑛−11} ,

𝑒
2
= {0𝑛−2𝑐−212𝑐+2, 0𝑛−2𝑐−212𝑐+10} ,

𝑒
3
= {1𝑛−2𝑐−20𝑐1𝑐+10, 1𝑛−2𝑐−20𝑐1𝑐02} ,

𝑒
4
= {1𝑛−𝑐−20𝑐+11, 1𝑛−𝑐−20𝑐12} .

(3)
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Figure 7: The proposed candidate in𝐻
𝑛
.

If 𝑛 ≡ 1mod 3, then

𝑒
1
= {0𝑛, 0𝑛−11} ,

𝑒
2
= {0𝑛−2𝑐−112𝑐+1, 0𝑛−2𝑐−112𝑐0} ,

𝑒
3
= {1𝑛−2𝑐−10𝑐1𝑐+1, 1𝑛−2𝑐−10𝑐1𝑐0} ,

𝑒
4
= {1𝑛−𝑐−10𝑐+1, 1𝑛−𝑐−10𝑐1} .

(4)

Figure 7 shows the proposed candidate in𝐻
3
,𝐻
4
,𝐻
5
, and

𝐻
6
, respectively.
For 3 ≤ 𝑛 ≤ 6, it follows by exhaustive search that the

proposed candidate is an optimal solution to the SRMP-H4
problem. For 7 ≤ 𝑛 ≤ 10, the proposed candidate is compared
with 103 random candidates; see Figure 8. It is concluded that

the proposed candidate is optimal among these candidates.
Therefore, we propose the following conjecture.

Conjecture 3. For all 𝑛 ≥ 3, the proposed candidate is an
optimal solution to the SRMP-H4.

4. Summary

This paper has addressed the spectral radius minimization
problem for hypercubes. Given the number of edges to be
deleted, a candidate for the optimal solution has been pre-
sented. For small-sized hypercubes, the proposed candidate
has been shown to be optimal. Formedium-sized hypercubes,
it has been shown that the proposed candidate is likely to
be optimal. Due to the symmetry of hypercubes, there are
multiple optimal solutions for each of the subproblems. The
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Figure 8: The proposed candidate (red) versus 103 random candidates (blue).

experimental results show that, up to isomorphism, all of
the optimal solutions are identical. By observing the pattern
of the proposed candidate, it has been speculated that, for
any symmetric network, the edges in an optimal solution are
always evenly distributed.

Towards this direction, some researches are yet to be
done. First, the proposed conjectures need a proof. Second,
this work should be extended to asymmetric networks such
as the hypercube-like networks [40, 41], the small-world net-
works [42], the scale-free networks [43, 44], and the general
networks [45, 46]. Last, the effectiveness of heuristics for the
spectral radius minimization problem must be improved.
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A further generalization of an SEIQRS-V (susceptible-exposed-infectious-quarantined-recovered-susceptible with vaccination)
computer virus propagation model is the main topic of the present paper. This paper specifically analyzes effects on the asymptotic
dynamics of the computer virus propagation model when two time delays are introduced. Sufficient conditions for the asymptotic
stability and existence of theHopf bifurcation are established by regarding different combination of the two delays as the bifurcation
parameter. Moreover, explicit formulas that determine the stability, direction, and period of the bifurcating periodic solutions are
obtained with the help of the normal form theory and center manifold theorem. Finally, numerical simulations are employed for
supporting the obtained analytical results.

1. Introduction

Computer viruses, including conventional viruses and net-
work worms, can propagate among computers with no
human awareness and popularization of Internet has been
the major propagation channel of viruses [1, 2]. The past few
decades have witnessed the great financial losses caused by
computer viruses. Therefore, it is of considerable importance
to investigate the laws describing propagation of computer
viruses in order to provide some help with preventing
computer viruses. For that purpose and in view of the fact
that propagation of computer viruses among computers
resembles that of biological viruses among a population,
many dynamical models describing propagation of computer
viruses across the Internet have been established by the
scholars at home and abroad, such as conventional models
[3–8], stochastic models [9–12], and delayed models [13–18].
There are also some other computer virus models [19–21]
combined with network theory to investigate the impact of
the network topology, the patch forwarding, and the network
eigenvalue on the viral prevalence.

As is known, vaccination is regarded as one of the
most effective measures of preventing computer viruses and
the awareness that there exist many infected computers

would enhance the probability that the user of a susceptible
computer will make his computer vaccinated [22, 23]. How-
ever, the mentioned models above neglect the influence of
vaccination strategy on the propagation of computer viruses.
Recently, considering the importance of vaccination, Kumar
et al. [24] proposed the following SEIQRS-V computer virus
propagation model:𝑑𝑆 (𝑡)𝑑𝑡 = 𝐴 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝑆 (𝑡) − 𝜌𝑆 (𝑡) + 𝜃𝑅 (𝑡)+ 𝜒𝑉 (𝑡) ,𝑑𝐸 (𝑡)𝑑𝑡 = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝐸 (𝑡) − 𝛾𝐸 (𝑡) ,𝑑𝐼 (𝑡)𝑑𝑡 = 𝛾𝐸 (𝑡) − 𝑑𝐼 (𝑡) − 𝛼𝐼 (𝑡) − 𝛿𝐼 (𝑡) − 𝜂𝐼 (𝑡) ,𝑑𝑄 (𝑡)𝑑𝑡 = 𝛿𝐼 (𝑡) − 𝑑𝑄 (𝑡) − 𝛼𝑄 (𝑡) − 𝜀𝑄 (𝑡) ,𝑑𝑅 (𝑡)𝑑𝑡 = 𝜀𝑄 (𝑡) − 𝑑𝑅 (𝑡) − 𝜃𝑅 (𝑡) + 𝜂𝐼 (𝑡) ,𝑑𝑉 (𝑡)𝑑𝑡 = 𝜌𝑆 (𝑡) − 𝑑𝑉 (𝑡) − 𝜒𝑉 (𝑡) ,

(1)
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where 𝑆(𝑡),𝐸(𝑡), 𝐼(𝑡),𝑄(𝑡),𝑅(𝑡), and𝑉(𝑡) denote the numbers
of the uninfected computers, the exposed computers, the
infected computers, the quarantined computers, recovered
computers, and vaccinated computers at time 𝑡, respectively.𝐴 is the birth rate of new computers in the network; 𝑑 is
the death rate of the computers due to the reason other than
the attack of viruses; 𝛼 is the death rate of computers due to
the attack of viruses; 𝛽 is the contact rate of the uninfected
computers; 𝜌, 𝜃, 𝜒, 𝛾, 𝛿, 𝜂, and 𝜀 are the transition rates
between the states in system (1).

Obviously, system (1) neglects the delays in the procedure
of viruses’ propagation and it is investigated under the
assumption that the transition between the states is instan-
taneous. This is not reasonable with reality. For example, it
needs a period to clean the viruses in the infected and
quarantined computers for antivirus software and there is
usually a temporary immunity period for the recovered and
the vaccinated computers because of the effect of the antivirus
software. In addition, a stability switch occurs even when an
ignored delay is small for a dynamical system. Based on this,
we introduce two delays into system (1) and get the following
delayed system:𝑑𝑆 (𝑡)𝑑𝑡 = 𝐴 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝑆 (𝑡) − 𝜌𝑆 (𝑡) + 𝜃𝑅 (𝑡 − 𝜏2)+ 𝜒𝑉 (𝑡 − 𝜏2) ,𝑑𝐸 (𝑡)𝑑𝑡 = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝐸 (𝑡) − 𝛾𝐸 (𝑡) ,𝑑𝐼 (𝑡)𝑑𝑡 = 𝛾𝐸 (𝑡) − 𝑑𝐼 (𝑡) − 𝛼𝐼 (𝑡) − 𝛿𝐼 (𝑡) − 𝜂𝐼 (𝑡 − 𝜏1) ,𝑑𝑄 (𝑡)𝑑𝑡 = 𝛿𝐼 (𝑡) − 𝑑𝑄 (𝑡) − 𝛼𝑄 (𝑡) − 𝜀𝑄 (𝑡 − 𝜏1) ,𝑑𝑅 (𝑡)𝑑𝑡 = 𝜀𝑄 (𝑡 − 𝜏1) − 𝑑𝑅 (𝑡) − 𝜃𝑅 (𝑡 − 𝜏2)+ 𝜂𝐼 (𝑡 − 𝜏1) ,𝑑𝑉 (𝑡)𝑑𝑡 = 𝜌𝑆 (𝑡) − 𝑑𝑉 (𝑡) − 𝜒𝑉 (𝑡 − 𝜏2) ,

(2)

where 𝜏1 is the time delay due to the period that antivirus
software uses to clean the viruses in the infected and
quarantined computers and 𝜏2 is the time delay due to
the temporary immunity period of the recovered and the
vaccinated computers.

To the best of our knowledge, until now, there is no good
analysis on system (2). Therefore, it is meaningful to analyze
the proposed system with two delays.

The rest of this paper is organized as follows. In the
next section, we analyze the threshold of Hopf bifurcation
of system (2) by regarding different combination of the two
delays as the bifurcation parameter. In Section 3, by means
of the normal form theory and center manifold theorem,
direction and stability of the Hopf bifurcation for 𝜏1 > 0
and 𝜏2 > 0 are investigated. Simulation results of system
(2) are shown in Section 4. Finally, we finish the paper with
conclusions in Section 5.

2. Analysis of Hopf Bifurcation

By direct computation, we know that if 𝐴𝑅0(𝑑 + 𝜒) > 𝑑2 +(𝜌 + 𝜒)𝑑 and 𝛽(𝑑 + 𝜃)(𝑑 + 𝛼 + 𝜀) > 𝑅0𝜃𝜀𝛿 + 𝑅0𝜃𝜂(𝑑 +𝛼 + 𝜀), then system (2) has a unique viral equilibrium𝑃∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗, 𝑉∗), where
𝑆∗ = (𝑑 + 𝛾) (𝑑 + 𝛼 + 𝛿 + 𝜂)𝛽𝛾 = 1𝑅0 ,𝐸∗ = 𝑑 + 𝛼 + 𝛿 + 𝜂𝛾 𝐼∗,𝑅∗ = 𝜀𝛿 + 𝜂 (𝑑 + 𝛼 + 𝜀)(𝑑 + 𝜃) (𝑑 + 𝛼 + 𝜀)𝐼∗,𝑉∗ = 𝜌(𝑑 + 𝜒) 𝑅0 ,𝑄∗ = 𝛿𝑑 + 𝛼 + 𝜀𝐼∗,𝐼∗= (𝑑 + 𝜃) (𝑑 + 𝛼 + 𝜀) [𝑑2 + (𝜌 + 𝜒) 𝑑 − 𝐴𝑅0 (𝑑 + 𝜒)](𝑑 + 𝜒) [𝑅0𝜃𝜀𝛿 + (𝑑 + 𝛼 + 𝜀) (𝑅0𝜃𝜂 − 𝛽𝑑 − 𝛽𝜃)] ,
𝑅0 = 𝛽𝛾(𝑑 + 𝛾) (𝑑 + 𝛼 + 𝛿 + 𝜂) .

(3)

The linearized section of system (2) at 𝑃∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗,𝑅∗, 𝑉∗) is as follows:𝑑𝑆 (𝑡)𝑑𝑡 = 𝑎1𝑆 (𝑡) + 𝑎2𝐼 (𝑡) + 𝑐1𝑅 (𝑡 − 𝜏2) + 𝑐2𝑉 (𝑡 − 𝜏2) ,𝑑𝐸 (𝑡)𝑑𝑡 = 𝑎3𝑆 (𝑡) + 𝑎4𝐸 (𝑡) + 𝑎5𝐼 (𝑡) ,𝑑𝐼 (𝑡)𝑑𝑡 = 𝑎6𝐸 (𝑡) − 𝑎7𝐼 (𝑡) + 𝑏1𝐼 (𝑡 − 𝜏1) ,𝑑𝑄 (𝑡)𝑑𝑡 = 𝑎8𝐼 (𝑡) + 𝑎9𝑄 (𝑡) + 𝑏2𝑄 (𝑡 − 𝜏1) ,𝑑𝑅 (𝑡)𝑑𝑡 = 𝑎10𝑅 (𝑡) + 𝑏3𝐼 (𝑡 − 𝜏1) + 𝑏4𝑄 (𝑡 − 𝜏1)+ 𝑐3𝑅 (𝑡 − 𝜏2) ,𝑑𝑉 (𝑡)𝑑𝑡 = 𝑎11𝑆 (𝑡) + 𝑎12𝑉 (𝑡) + 𝑐4𝑉 (𝑡 − 𝜏2) ,

(4)

where 𝑎1 = − (𝛽𝐼∗ + 𝑑 + 𝜌) ,𝑎2 = −𝛽𝑆∗,𝑎3 = 𝛽𝐼∗,𝑎4 = − (𝑑 + 𝛾) ,



Discrete Dynamics in Nature and Society 3𝑎5 = 𝛽𝑆∗,𝑎6 = 𝛾,𝑎7 = − (𝑑 + 𝛼 + 𝛿) ,𝑎8 = 𝛿,𝑎9 = − (𝑑 + 𝛼) ,𝑎10 = −𝑑,𝑎11 = 𝜌,𝑎12 = −𝑑,𝑏1 = −𝜂,𝑏2 = −𝜀,𝑏3 = 𝜂,𝑏4 = 𝜀,𝑐1 = 𝜃,𝑐2 = 𝜒,𝑐3 = −𝜃,𝑐4 = −𝜒.
(5)

Then, the characteristic equation for system (4) can be
obtained:𝜆6 + 𝐴5𝜆5 + 𝐴4𝜆4 + 𝐴3𝜆3 + 𝐴2𝜆2 + 𝐴1𝜆 + 𝐴0+ (𝐵5𝜆5 + 𝐵4𝜆4 + 𝐵3𝜆3 + 𝐵2𝜆2 + 𝐵1𝜆 + 𝐵0) 𝑒−𝜆𝜏1+ (𝐶5𝜆5 + 𝐶4𝜆4 + 𝐶3𝜆3 + 𝐶2𝜆2 + 𝐶1𝜆 + 𝐶0) 𝑒−𝜆𝜏2+ (𝐷4𝜆4 + 𝐷3𝜆3 + 𝐷2𝜆2 + 𝐷1𝜆 + 𝐷0) 𝑒−𝜆(𝜏1+𝜏2)+ (𝐸3𝜆3 + 𝐸2𝜆2 + 𝐸1𝜆 + 𝐸0) 𝑒−𝜆(𝜏1+2𝜏2)+ (𝐹4𝜆4 + 𝐹3𝜆3 + 𝐹2𝜆2 + 𝐹1𝜆 + 𝐹0) 𝑒−2𝜆𝜏1+ (𝐺4𝜆4 + 𝐺3𝜆3 + 𝐺2𝜆2 + 𝐺1𝜆 + 𝐺0) 𝑒−2𝜆𝜏2+ (𝐻3𝜆3 + 𝐻2𝜆2 + 𝐻1𝜆 + 𝐻0) 𝑒−𝜆(2𝜏1+𝜏2)+ (𝐼2𝜆2 + 𝐼1𝜆 + 𝐼0) 𝑒−2𝜆(𝜏1+𝜏2) = 0,

(6)

with𝐴0 = 𝑎9𝑎12 (𝑎1𝑎4𝑎7𝑎10 + 𝑎2𝑎3𝑎6𝑎10 − 𝑎1𝑎5𝑎6𝑎10− 𝑎3𝑎6𝑏3𝑐1) ,

𝐴1 = 𝑎5𝑎6 (𝑎1𝑎9 (𝑎10 + 𝑎12) + 𝑎10𝑎12 (𝑎1 + 𝑎9))+ 𝑎3𝑎6𝑏3𝑐1 (𝑎9 + 𝑎12) − 𝑎2𝑎3𝑎6 (𝑎9𝑎10 + 𝑎9𝑎12+ 𝑎10𝑎12) − 𝑎1𝑎4𝑎7𝑎9 (𝑎10 + 𝑎12)− 𝑎10𝑎12 (𝑎1𝑎4 (𝑎7 + 𝑎9) + 𝑎7𝑎9 (𝑎1 + 𝑎4)) ,𝐴2 = 𝑎2𝑎3𝑎6 (𝑎9 + 𝑎10 + 𝑎12) + 𝑎1𝑎4𝑎7𝑎9 − 𝑎3𝑎6𝑏3𝑐1− 𝑎5𝑎6 (𝑎1𝑎9 + 𝑎10𝑎12 + (𝑎1 + 𝑎9) (𝑎10 + 𝑎12))+ 𝑎10𝑎12 (𝑎1𝑎4 + 𝑎7𝑎9 + (𝑎1 + 𝑎4) (𝑎7 + 𝑎9)) + (𝑎10+ 𝑎12) (𝑎1𝑎4 (𝑎7 + 𝑎9) + 𝑎7𝑎9 (𝑎1 + 𝑎4)) ,𝐴3 = 𝑎5𝑎6 (𝑎1 + 𝑎9 + 𝑎10 + 𝑎12) − 𝑎2𝑎3𝑎6 − 𝑎1𝑎4 (𝑎7+ 𝑎9) − 𝑎7𝑎9 (𝑎1 + 𝑎4) − 𝑎10𝑎12 (𝑎1 + 𝑎4 + 𝑎7 + 𝑎9)− (𝑎10 + 𝑎12) (𝑎1𝑎4 + 𝑎7𝑎9 + (𝑎1 + 𝑎4) (𝑎7 + 𝑎9)) ,𝐴4 = 𝑎1𝑎4 + 𝑎7𝑎9 + 𝑎10𝑎12 − 𝑎5𝑎6 + (𝑎1 + 𝑎4) (𝑎7 + 𝑎9)+ (𝑎10 + 𝑎12) (𝑎1 + 𝑎4 + 𝑎7 + 𝑎9) ,𝐴5 = − (𝑎1 + 𝑎4 + 𝑎7 + 𝑎9 + 𝑎10 + 𝑎12) ,𝐵0 = 𝑎1𝑎4𝑎10𝑎12 (𝑎7𝑏2 + 𝑎9𝑏1) − 𝑎6𝑎10𝑎12𝑏2 (𝑎1𝑎5+ 𝑎2𝑎3) ,𝐵1 = 𝑎5𝑎6𝑏2 (𝑎1𝑎10 + 𝑎1𝑎12 + 𝑎10𝑎12) − 𝑎2𝑎3𝑎6𝑏2 (𝑎10+ 𝑎12) − (𝑎7𝑏2 + 𝑎9𝑏1) (𝑎1𝑎4 (𝑎10 + 𝑎12)+ 𝑎10𝑎12 (𝑎1 + 𝑎4))− 𝑎1𝑎4𝑎10𝑎12 (𝑏1 + 𝑏2)𝐵2 = (𝑎7𝑏2 + 𝑎9𝑏1) (𝑎1𝑎4 + 𝑎10𝑎12+ (𝑎1 + 𝑎4) (𝑎10 + 𝑎12)) + 𝑎2𝑎3𝑎6𝑏2 + (𝑏1 + 𝑏2)⋅ (𝑎1𝑎4 (𝑎10 + 𝑎12) + 𝑎10𝑎12 (𝑎1 + 𝑎4)) ,𝐵3 = 𝑎5𝑎6𝑏2 − (𝑎7𝑏2 + 𝑎9𝑏1) (𝑎1 + 𝑎4 + 𝑎10 + 𝑎12) − (𝑏1+ 𝑏2) (𝑎1𝑎4 + 𝑎10𝑎12 + (𝑎1 + 𝑎4) (𝑎10 + 𝑎12)) ,𝐵4 = 𝑎7𝑏2 + 𝑎9𝑏1 + (𝑏1 + 𝑏2) (𝑎1 + 𝑎4 + 𝑎10 + 𝑎12) ,𝐵5 = − (𝑏1 + 𝑏2) ,𝐶0 = 𝑎1𝑎4𝑎7𝑎9 (𝑎10𝑐4 + 𝑎12𝑐3) + 𝑎9𝑎10𝑎11𝑐2 (𝑎4𝑎7− 𝑎5𝑎6) + 𝑎6𝑎9 (𝑎10𝑐4 + 𝑎12𝑐3) (𝑎2𝑎3 − 𝑎1𝑎5) ,𝐶1 = 𝑎9 (𝑐3 + 𝑐4) (𝑎1𝑎5𝑎6 − 𝑎2𝑎3𝑎6 − 𝑎1𝑎4𝑎7)+ 𝑎5𝑎6𝑎11𝑐2 (𝑎9 + 𝑎10) + 𝑎6 (𝑎1𝑎5 − 𝑎2𝑎3 + 𝑎5𝑎9)⋅ (𝑎10𝑐4 + 𝑎12𝑐3) − 𝑎11𝑐2 (𝑎4𝑎7 (𝑎9 + 𝑎10)+ 𝑎9𝑎10 (𝑎4 + 𝑎7)) ,



4 Discrete Dynamics in Nature and Society𝐶2 = (𝑐3 + 𝑐4) (𝑎1𝑎4 (𝑎7 + 𝑎9) + 𝑎7𝑎9 (𝑎1 + 𝑎4))+ (𝑎10𝑐4 + 𝑎12𝑐3) (𝑎1𝑎4 + 𝑎7𝑎9 + (𝑎1 + 𝑎4) (𝑎7 + 𝑎9))− 𝑎5𝑎6 (𝑎10𝑐4 + 𝑎12𝑐3 − 𝑎11𝑐2) + 𝑎6 (𝑐3 + 𝑐4) (𝑎2𝑎3− 𝑎1𝑎5 − 𝑎5𝑎9) + 𝑎11𝑐2 (𝑎4𝑎7 + 𝑎9𝑎10+ (𝑎4 + 𝑎7) (𝑎9 + 𝑎10)) ,𝐶3 = 𝑎5𝑎6 (𝑐3 + 𝑐4) − 𝑎11𝑐2 (𝑎4 + 𝑎7 + 𝑎9 + 𝑎10) − (𝑎10𝑐4+ 𝑎12𝑐3) (𝑎1 + 𝑎4 + 𝑎7 + 𝑎9) − (𝑐3 + 𝑐4) (𝑎1𝑎4 + 𝑎7𝑎9+ (𝑎1 + 𝑎4) (𝑎7 + 𝑎9)) ,𝐶4 = 𝑎10𝑐4 + 𝑎11𝑐2 + 𝑎12𝑐3 + (𝑐3 + 𝑐4) (𝑎1 + 𝑎4 + 𝑎7+ 𝑎9) ,𝐶5 = − (𝑐3 + 𝑐4) ,𝐷0 = 𝑎4 (𝑎1𝑎10𝑐4 + 𝑎1𝑎12𝑐3 + 𝑎10𝑎11𝑐2) (𝑎7𝑏2 + 𝑎9𝑏1)+ 𝑎6 (𝑎3𝑎8𝑎12𝑏4𝑐4 − 𝑎5𝑎10𝑎11𝑏2𝑐2) − 𝑎6𝑏2 (𝑎1𝑎5− 𝑎2𝑎3) (𝑎10𝑐4 + 𝑎12𝑐3) ,𝐷1 = (𝑐3 + 𝑐4) (𝑎5𝑏2 (𝑎1𝑎5 − 𝑎2𝑎3) − 𝑎1𝑎4 (𝑎7𝑏2 + 𝑎9𝑏1))+ 𝑎6 (𝑎5𝑎11𝑏2𝑐2 − 𝑎3𝑎8𝑏4𝑐4) + 𝑎5𝑎6𝑏2 (𝑎10𝑐4 + 𝑎12𝑐3)− 𝑎11𝑐2 (𝑎4𝑎10 (𝑏1 + 𝑏2) + (𝑎4 + 𝑎10) (𝑎7𝑏2 + 𝑎9𝑏1))− (𝑎10𝑐4 + 𝑎12𝑐3) (𝑎1𝑎4 (𝑏1 + 𝑏2)+ (𝑎1 + 𝑎4) (𝑎7𝑏2 + 𝑎9𝑏1)) ,𝐷2 = (𝑎10𝑐4 + 𝑎12𝑐3) (𝑎7𝑏2 + 𝑎9𝑏1 + (𝑏1 + 𝑏2) (𝑎1 + 𝑎4))+ (𝑐3 + 𝑐4) (𝑎1𝑎4 (𝑏1 + 𝑏2) + (𝑎1 + 𝑎4) (𝑎7𝑏2 + 𝑎9𝑏1))+ 𝑎11𝑐2 (𝑎7𝑏2 + 𝑎9𝑏1 + (𝑎4 + 𝑎10) (𝑏1 + 𝑏2))− 𝑎5𝑎6𝑏2 (𝑐3 + 𝑐4) ,𝐷3 = − (𝑐3 + 𝑐4) (𝑎7𝑏2 + 𝑎9𝑏1 + (𝑏1 + 𝑏2) (𝑎1 + 𝑎4))− (𝑏1 + 𝑏2) (𝑎10𝑐4 + 𝑎11𝑐2 + 𝑎12𝑐3) ,𝐷4 = (𝑏1 + 𝑏2) (𝑐3 + 𝑐4) ,𝐸0 = 𝑎4𝑐3 (𝑎7𝑏2 + 𝑎9𝑏1) (𝑎1𝑐4 + 𝑎11𝑐2) + 𝑎6𝑏2𝑐3𝑐4 (𝑎2𝑎3− 𝑎1𝑎5) − 𝑎6 (𝑎3𝑎9𝑏3𝑐1𝑐4 + 𝑎5𝑎11𝑏2𝑐2𝑐3) ,𝐸1 = 𝑎6𝑐4 (𝑎5𝑏2𝑐3 + 𝑎3𝑏3𝑐1) − 𝑎11𝑐2𝑐3 (𝑏1 (𝑎4 + 𝑎9)+ 𝑏2 (𝑎4 + 𝑎7)) − 𝑐3𝑐4 (𝑎1𝑎4 (𝑏1 + 𝑏2)+ (𝑎1 + 𝑎4) (𝑎7𝑏2 + 𝑎9𝑏1)) ,𝐸2 = 𝑐3𝑐4 (𝑎7𝑏2 + 𝑎9𝑏1 + (𝑎1 + 𝑎4) (𝑏1 + 𝑏2))+ 𝑎11𝑐2𝑐3 (𝑏1 + 𝑏2) ,

𝐸3 = −𝑐3𝑐4 (𝑏1 + 𝑏2) ,𝐹0 = 𝑎1𝑎4𝑎10𝑎12𝑏1𝑏2,𝐹1 = −𝑏1𝑏2 (𝑎1𝑎4 (𝑎10 + 𝑎12) + 𝑎10𝑎12 (𝑎1 + 𝑎4)) ,𝐹2 = 𝑏1𝑏2 (𝑎1𝑎4 + 𝑎10𝑎12 + (𝑎1 + 𝑎4) (𝑎10 + 𝑎12)) ,𝐹3 = −𝑏1𝑏2 (𝑎1 + 𝑎4 + 𝑎10 + 𝑎12) ,𝐹4 = 𝑏1𝑏2,𝐺0 = 𝑎9𝑐3𝑐4 (𝑎1𝑎4𝑎7 − 𝑎1𝑎5𝑎6 + 𝑎2𝑎3𝑎6)+ 𝑎4𝑎7𝑎9𝑎11𝑐2𝑐3,𝐺1 = 𝑎11𝑐2𝑐3 (𝑎4𝑎7 + 𝑎4𝑎9 + 𝑎7𝑎9) + 𝑎5𝑎6𝑐3𝑐4 (𝑎1 + 𝑎9)− 𝑐3𝑐4 (𝑎1𝑎4 (𝑎7 + 𝑎9) + 𝑎7𝑎9 (𝑎1 + 𝑎4)) ,𝐺2 = 𝑐3𝑐4 (𝑎1𝑎4 + 𝑎7𝑎9 + (𝑎1 + 𝑎4) (𝑎7 + 𝑎9))+ 𝑎11𝑐2𝑐3 (𝑎4 + 𝑎7 + 𝑎9) − 𝑎5𝑎6𝑐3𝑐4,𝐺3 = 𝑐3𝑐4 (𝑎1 + 𝑎4 + 𝑎7 + 𝑎9) + 𝑎11𝑐2𝑐3,𝐺4 = 𝑐3𝑐4,𝐻0 = 𝑎4𝑏1𝑏2 (𝑎1 (𝑎10𝑐4 + 𝑎12𝑐3) + 𝑎10𝑎11𝑐2)− 𝑎3𝑎6𝑎12𝑏2𝑏3𝑐1,𝐻1 = 𝑎3𝑎6𝑏2𝑏3𝑐1 − 𝑏1𝑏2 (𝑎1𝑎4 (𝑐3 + 𝑐4)+ 𝑎11𝑐2 (𝑎4 + 𝑎10)) − 𝑏1𝑏2 (𝑎1 + 𝑎4) (𝑎10𝑐4 + 𝑎12𝑐3) ,𝐻2 = 𝑏1𝑏2 (𝑎10𝑐4 + 𝑎11𝑐2 + 𝑎12𝑐3 + (𝑎1 + 𝑎4) (𝑐3 + 𝑐4)) ,𝐻3 = −𝑏1𝑏2 (𝑐3 + 𝑐4) ,𝐼0 = 𝑎4𝑏1𝑏2𝑐3 (𝑎11𝑐2 + 𝑎1𝑐4) − 𝑎3𝑎6𝑏2𝑏3𝑐1𝑐4,𝐼1 = 𝑏1𝑏2𝑐3𝑐4 (𝑎1 + 𝑎4) + 𝑎11𝑏1𝑏2𝑐2𝑐3,𝐼2 = 𝑏1𝑏2𝑐3𝑐4.
(7)

Case 1 (𝜏1 = 𝜏2 = 0). When 𝜏1 = 𝜏2 = 0, (6) becomes𝜆6 + 𝐴15𝜆5 + 𝐴14𝜆4 + 𝐴13𝜆3 + 𝐴12𝜆2 + 𝐴11𝜆 + 𝐴10= 0, (8)

where𝐴10 = 𝐴0 + 𝐵0 + 𝐶0 + 𝐷0 + 𝐸0 + 𝐹0 + 𝐺0 + 𝐻0 + 𝐼0,𝐴11 = 𝐴1 + 𝐵1 + 𝐶1 + 𝐷1 + 𝐸1 + 𝐹1 + 𝐺1 + 𝐻1 + 𝐼1,𝐴12 = 𝐴2 + 𝐵2 + 𝐶2 + 𝐷2 + 𝐸2 + 𝐹2 + 𝐺2 + 𝐻2 + 𝐼2,𝐴13 = 𝐴3 + 𝐵3 + 𝐶3 + 𝐷3 + 𝐸3 + 𝐹3 + 𝐺3 + 𝐻3,𝐴14 = 𝐴4 + 𝐵4 + 𝐶4 + 𝐷4 + 𝐸4 + 𝐹4 + 𝐺4, 𝐴15= 𝐴5 + 𝐵5 + 𝐶5.
(9)
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Clearly,𝐷1 = 𝐴15 = 𝛽𝐼∗+𝜌+𝛾+𝛿+𝜂+𝜀+𝜃+𝜒+2𝛼+6𝑑 >0. Thus, if condition (𝐻1) (see (10)) holds, then system (2)
without delay is locally asymptotically stable:

𝐷2 = det(𝐴15 1𝐴13 𝐴14) > 0,
𝐷3 = det(𝐴15 1 0𝐴13 𝐴14 𝐴15𝐴11 𝐴12 𝐴13) > 0,
𝐷4 = det(𝐴05 1 0 0𝐴03 𝐴14 𝐴15 1𝐴01 𝐴12 𝐴13 𝐴140 𝐴10 𝐴11 𝐴12) > 0,

𝐷5 = det((
(

𝐴15 1 0 0 0𝐴13 𝐴14 𝐴15 1 0𝐴11 𝐴12 𝐴13 𝐴14 𝐴150 𝐴10 𝐴11 𝐴12 𝐴130 0 0 𝐴10 𝐴11
))
)

> 0,
𝐷6 = 𝐴10 > 0.

(10)

Case 2 (𝜏1 > 0; 𝜏2 = 0). Equation (6) equals𝜆6 + 𝐴25𝜆5 + 𝐴24𝜆4 + 𝐴23𝜆3 + 𝐴22𝜆2 + 𝐴21𝜆 + 𝐴20+ (𝐵25𝜆5 + 𝐵24𝜆4 + 𝐵23𝜆3 + 𝐵22𝜆2 + 𝐵21𝜆 + 𝐵20)⋅ 𝑒−𝜆𝜏1 + (𝐹24𝜆4 + 𝐹23𝜆3 + 𝐹22𝜆2 + 𝐹21𝜆 + 𝐹20)⋅ 𝑒−2𝜆𝜏1 = 0,
(11)

where 𝐴20 = 𝐴0 + 𝐶0 + 𝐺0,𝐴21 = 𝐴1 + 𝐶1 + 𝐺1,𝐴22 = 𝐴2 + 𝐶2 + 𝐺2,𝐴23 = 𝐴3 + 𝐶3 + 𝐺3,𝐴24 = 𝐴4 + 𝐶4 + 𝐺4,𝐴25 = 𝐴5 + 𝐺5,𝐵20 = 𝐵0 + 𝐷0 + 𝐸0,𝐵21 = 𝐵1 + 𝐷1 + 𝐸1,𝐵22 = 𝐵2 + 𝐷2 + 𝐸2,𝐵23 = 𝐵3 + 𝐷3 + 𝐸3,𝐵24 = 𝐵4 + 𝐷4 + 𝐸4,𝐵25 = 𝐵5.

(12)

Multiplying 𝑒𝜆𝜏1 on left and right of (11), one has𝐵25𝜆5 + 𝐵24𝜆4 + 𝐵23𝜆3 + 𝐵22𝜆2 + 𝐵21𝜆 + 𝐵20 + 𝜆6+ (𝐴25𝜆5 + 𝐴24𝜆4 + 𝐴23𝜆3 + 𝐴22𝜆2 + 𝐴21𝜆+ 𝐴20) 𝑒𝜆𝜏1 + (𝐹24𝜆4 + 𝐹23𝜆3 + 𝐹22𝜆2 + 𝐹21𝜆+ 𝐹20) 𝑒−𝜆𝜏1 = 0.
(13)

Assume that 𝜆 = 𝑖𝜔1 (𝜔1 > 0) is the root of (13):𝐿21 (𝜔1) cos 𝜏1𝜔1 − 𝐿22 (𝜔1) sin 𝜏1𝜔1 = 𝐿23 (𝜔1) ,𝐿24 (𝜔1) sin 𝜏1𝜔1 + 𝐿25 (𝜔1) cos 𝜏1𝜔1 = 𝐿26 (𝜔1) , (14)

with𝐿21 (𝜔1) = (𝐴24 + 𝐹24) 𝜔41 − 𝜔61 − (𝐴22 + 𝐹22) 𝜔21+ 𝐴20 + 𝐹20,𝐿22 (𝜔1) = 𝐴25𝜔51 − (𝐴23 − 𝐹23) 𝜔31 + (𝐴21 − 𝐹21) 𝜔1,𝐿23 (𝜔1) = 𝐵22𝜔21 − 𝐵24𝜔41 − 𝐵20,𝐿24 (𝜔1) = (𝐴24 − 𝐹24) 𝜔41 − 𝜔61 − (𝐴22 − 𝐹22) 𝜔21+ 𝐴20 − 𝐹20,𝐿25 (𝜔1) = 𝐴25𝜔51 − (𝐴23 + 𝐹23) 𝜔31 + (𝐴21 + 𝐹21) 𝜔1,𝐿26 (𝜔1) = 𝐵23𝜔31 − 𝐵25𝜔51 − 𝐵21𝜔1.
(15)

Thus, one can obtain the expressions of cos 𝜏1𝜔1 and sin 𝜏1𝜔1
as follows:

cos 𝜏1𝜔1= 𝐿22 (𝜔1) × 𝐿26 (𝜔1) + 𝐿23 (𝜔1) × 𝐿24 (𝜔1)𝐿21 (𝜔1) × 𝐿24 (𝜔1) + 𝐿22 (𝜔1) × 𝐿25 (𝜔1) ,
sin 𝜏1𝜔1= 𝐿21 (𝜔1) × 𝐿26 (𝜔1) − 𝐿23 (𝜔1) × 𝐿25 (𝜔1)𝐿21 (𝜔1) × 𝐿24 (𝜔1) + 𝐿22 (𝜔1) × 𝐿25 (𝜔1) .

(16)

Then, we can get

cos2𝜏1𝜔1 + sin2𝜏1𝜔1 = 1. (17)

Suppose that (𝐻21) (see (17)) has at least one positive root.
If condition (𝐻21) holds, then there exists 𝜔10 > 0 such

that (13) has a pair of purely imaginary roots ±𝑖𝜔10. For 𝜔10,𝜏10 = 1𝜔10× arccos{𝐿22 (𝜔10) × 𝐿26 (𝜔10) + 𝐿23 (𝜔10) × 𝐿24 (𝜔10)𝐿21 (𝜔10) × 𝐿24 (𝜔10) + 𝐿22 (𝜔10) × 𝐿25 (𝜔10)} . (18)

Differentiating (13) with respect to 𝜏1, one has[ 𝑑𝜆𝑑𝜏1 ]−1 = 𝐹21 (𝜆)𝐹22 (𝜆) − 𝜏1𝜆 , (19)
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where𝐹21 (𝜆) = 5𝐵25𝜆4 + 4𝐵24𝜆4 + 3𝐵23𝜆2 + 2𝐵22𝜆 + 𝐵21+ (6𝜆5 + 5𝐴25𝜆4 + 4𝐴24𝜆3 + 3𝐴23𝜆2 + 2𝐴22𝜆+ 𝐴21) 𝑒𝜆𝜏1 + (4𝐹24𝜆3 + 3𝐹23𝜆2 + 2𝐹22𝜆 + 𝐹21)⋅ 𝑒−𝜆𝜏1 ,𝐹22 (𝜆) = (4𝐹24𝜆4 + 3𝐹23𝜆3 + 2𝐹22𝜆2 + 𝐹21𝜆) 𝑒−𝜆𝜏1− (𝜆7 + 𝐴25𝜆6 + 𝐴24𝜆5 + 𝐴23𝜆4 + 𝐴22𝜆3 + 𝐴21𝜆2+ 𝐴20𝜆) 𝑒𝜆𝜏1 .
(20)

Thus,

Re [ 𝑑𝜆𝑑𝜏1 ]−1𝜆=𝑖𝜔10 = 𝐺2𝑅 × 𝐻2𝑅 + 𝐺2𝐼 × 𝐻2𝐼𝐻22𝑅 + 𝐻22𝐼 , (21)

with𝐺2𝑅 = 5𝐵25𝜔410 − 3𝐵23𝜔210 + 𝐵21 + (5𝐴25𝜔410− 3 (𝐴23 + 𝐹23) 𝜔210 + 𝐴21 + 𝐹21) cos 𝜏10𝜔10− (6𝜔510 − 4 (𝐴24 − 𝐹24) 𝜔310 + 2 (𝐴22 − 𝐹22) 𝜔10)⋅ sin 𝜏10𝜔10,𝐺2𝐼 = 2𝐵22𝜔10 − 4𝐵24𝜔310 + (5𝐴25𝜔410− 3 (𝐴23 − 𝐹23) 𝜔210 + 𝐴21 − 𝐹21) sin 𝜏10𝜔10+ (6𝜔510 − 4 (𝐴24 + 𝐹24) 𝜔310 + 2 (𝐴22 + 𝐹22) 𝜔10)⋅ cos 𝜏10𝜔10,𝐻2𝑅 = ((𝐹21 + 𝐴20) 𝜔10 + 𝐴24𝜔510 − 𝜔710− (3𝐹23 + 𝐴22) 𝜔310) sin 𝜏10𝜔10 + ((4𝐹24 − 𝐴23) 𝜔410− (2𝐹22 − 𝐴21) 𝜔210 − 𝐴25𝜔610) cos 𝜏10𝜔10,𝐻2𝐼 = ((𝐹21 − 𝐴20) 𝜔10 − 𝐴24𝜔510 + 𝜔710− (3𝐹23 − 𝐴22) 𝜔310) cos 𝜏10𝜔10− ((4𝐹24 + 𝐴23) 𝜔410 − (2𝐹22 − 𝐴21) 𝜔210− 𝐴25𝜔610) sin 𝜏10𝜔10.

(22)

Thus, if condition (𝐻22) 𝐺2𝑅 ×𝐻2𝑅 +𝐺2𝐼 ×𝐻2𝐼 ̸= 0 holds,
then Re[𝑑𝜆/𝑑𝜏1]𝜆=𝑖𝜔10 ̸= 0. Based on the Hopf bifurcation
theorem in [25], we have the following results.

Theorem 1. Suppose that conditions (𝐻1), (𝐻21), and(𝐻22) hold for system (2). The viral equilibrium 𝑃∗(𝑆∗, 𝐸∗, 𝐼∗,𝑄∗, 𝑅∗, 𝑉∗) is locally asymptotically stable when 𝜏1 ∈ [0, 𝜏10)
and a Hopf bifurcation occurs at the viral equilibrium𝑃∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗, 𝑉∗) when 𝜏1 = 𝜏10.

Case 3 (𝜏1 = 0; 𝜏2 > 0). Equation (6) becomes𝜆6 + 𝐴35𝜆5 + 𝐴34𝜆4 + 𝐴33𝜆3 + 𝐴32𝜆2 + 𝐴31𝜆 + 𝐴30+ (𝐶35𝜆5 + 𝐶34𝜆4 + 𝐶33𝜆3 + 𝐶32𝜆2 + 𝐶31𝜆 + 𝐶30)⋅ 𝑒−𝜆𝜏2 + (𝐺34𝜆4 + 𝐺33𝜆3 + 𝐺32𝜆2 + 𝐺31𝜆 + 𝐺30)⋅ 𝑒−2𝜆𝜏2 = 0,
(23)

where 𝐴30 = 𝐴0 + 𝐵0 + 𝐹0,𝐴31 = 𝐴1 + 𝐵1 + 𝐹1,𝐴32 = 𝐴2 + 𝐵2 + 𝐹2,𝐴33 = 𝐴3 + 𝐵3 + 𝐹3,𝐴34 = 𝐴4 + 𝐵4 + 𝐹4,𝐴35 = 𝐴5 + 𝐵5,𝐶30 = 𝐶0 + 𝐷0 + 𝐻0,𝐶31 = 𝐶1 + 𝐷1 + 𝐻1,𝐶32 = 𝐶2 + 𝐷2 + 𝐻2,𝐶33 = 𝐶3 + 𝐷3 + 𝐻3,𝐶34 = 𝐶4 + 𝐷4,𝐶35 = 𝐶5,𝐺30 = 𝐸0 + 𝐺0 + 𝐼0,𝐺31 = 𝐸1 + 𝐺1 + 𝐼1,𝐺32 = 𝐸2 + 𝐺2 + 𝐼2,𝐺33 = 𝐸3 + 𝐺3,𝐺34 = 𝐺4.

(24)

Multiplying 𝑒𝜆𝜏2 on left and right of (23), one has𝐶35𝜆5 + 𝐶34𝜆4 + 𝐶33𝜆3 + 𝐶32𝜆2 + 𝐶31𝜆 + 𝐶30 + (𝜆6+ 𝐴35𝜆5 + 𝐴34𝜆4 + 𝐴33𝜆3 + 𝐴32𝜆2 + 𝐴31𝜆+ 𝐴30) 𝑒𝜆𝜏2 + (𝐺34𝜆4 + 𝐺33𝜆3 + 𝐺32𝜆2 + 𝐺31𝜆+ 𝐺30) 𝑒−𝜆𝜏2 = 0.
(25)

Let 𝜆 = 𝑖𝜔2 (𝜔2 > 0) be the root of (25):𝐿31 (𝜔2) cos 𝜏2𝜔2 − 𝐿32 (𝜔2) sin 𝜏2𝜔2 = 𝐿33 (𝜔2) ,𝐿34 (𝜔2) sin 𝜏2𝜔2 + 𝐿35 (𝜔2) cos 𝜏2𝜔2 = 𝐿36 (𝜔2) , (26)



Discrete Dynamics in Nature and Society 7

with

𝐿31 (𝜔2) = (𝐴34 + 𝐺34) 𝜔42 − 𝜔62 − (𝐴32 + 𝐺32) 𝜔22+ 𝐴30 + 𝐺30,𝐿32 (𝜔2) = 𝐴35𝜔52 − (𝐴33 − 𝐺33) 𝜔32+ (𝐴31 − 𝐺31) 𝜔2,𝐿33 (𝜔2) = 𝐶32𝜔22 − 𝐶34𝜔42 − 𝐶30,𝐿34 (𝜔2) = (𝐴34 − 𝐺34) 𝜔42 − 𝜔62 − (𝐴32 − 𝐺32) 𝜔22+ 𝐴30 − 𝐺30,𝐿35 (𝜔2) = 𝐴35𝜔52 − (𝐴33 + 𝐺33) 𝜔32+ (𝐴31 + 𝐺31) 𝜔2,𝐿36 (𝜔2) = 𝐶33𝜔32 − 𝐶35𝜔52 − 𝐶31𝜔2.

(27)

Then,

cos 𝜏2𝜔2= 𝐿32 (𝜔2) × 𝐿36 (𝜔2) + 𝐿33 (𝜔2) × 𝐿34 (𝜔2)𝐿31 (𝜔2) × 𝐿34 (𝜔2) + 𝐿32 (𝜔2) × 𝐿35 (𝜔2) ,
sin 𝜏2𝜔2= 𝐿31 (𝜔2) × 𝐿36 (𝜔2) − 𝐿33 (𝜔2) × 𝐿35 (𝜔2)𝐿31 (𝜔2) × 𝐿34 (𝜔2) + 𝐿32 (𝜔2) × 𝐿35 (𝜔2) .

(28)

And the equation following equation regarding 𝜏2 can be
obtained:

cos2𝜏2𝜔2 + sin2𝜏2𝜔2 = 1. (29)

Suppose that (𝐻31) (see (29)) has at least one positive root.
If condition (𝐻31) holds, then there exists 𝜔20 > 0 such

that (25) has a pair of purely imaginary roots ±𝑖𝜔20. For 𝜔20,
𝜏20 = 1𝜔20× arccos{𝐿32 (𝜔20) × 𝐿36 (𝜔20) + 𝐿33 (𝜔20) × 𝐿34 (𝜔20)𝐿31 (𝜔20) × 𝐿34 (𝜔20) + 𝐿32 (𝜔20) × 𝐿35 (𝜔20)} . (30)

Differentiate both sides of (25) with respect to 𝜏2. Then,

[ 𝑑𝜆𝑑𝜏2 ]−1 = 𝐹31 (𝜆)𝐹32 (𝜆) − 𝜏2𝜆 , (31)

where𝐹31 (𝜆) = 5𝐶35𝜆4 + 4𝐶34𝜆4 + 3𝐶33𝜆2 + 2𝐶32𝜆 + 𝐶31+ (6𝜆5 + 5𝐴35𝜆4 + 4𝐴34𝜆3 + 3𝐴33𝜆2 + 2𝐴32𝜆+ 𝐴31) 𝑒𝜆𝜏2 + (4𝐺34𝜆3 + 3𝐺33𝜆2 + 2𝐺32𝜆 + 𝐺31)⋅ 𝑒−𝜆𝜏2 ,𝐹32 (𝜆) = (4𝐺34𝜆4 + 3𝐺33𝜆3 + 2𝐺32𝜆2 + 𝐺31𝜆) 𝑒−𝜆𝜏2− (𝜆7 + 𝐴35𝜆6 + 𝐴34𝜆5 + 𝐴33𝜆4 + 𝐴32𝜆3 + 𝐴31𝜆2+ 𝐴30𝜆) 𝑒𝜆𝜏2 .
(32)

Thus,

Re [ 𝑑𝜆𝑑𝜏2 ]−1𝜆=𝑖𝜔20 = 𝐺3𝑅 × 𝐻3𝑅 + 𝐺3𝐼 × 𝐻3𝐼𝐻23𝑅 + 𝐻23𝐼 , (33)

with𝐺3𝑅 = 5𝐶35𝜔420 − 𝐶33𝜔220 + 𝐶31 + (5𝐴35𝜔420− 3 (𝐴33 + 𝐺33) 𝜔220 + 𝐴31 + 𝐺31) cos 𝜏20𝜔20− (6𝜔520 − 4 (𝐴34 + 𝐺34) 𝜔320 + 2 (𝐴32 + 𝐺32) 𝜔20)⋅ sin 𝜏20𝜔20,𝐺3𝐼 = 2𝐶22𝜔20 − 4𝐶24𝜔320 + (5𝐴35𝜔420− 3 (𝐴33 + 𝐺33) 𝜔220 + 𝐴31 − 𝐺31) sin 𝜏20𝜔20+ (6𝜔520 − 4 (𝐴34 + 𝐺34) 𝜔320 + 2 (𝐴32 + 𝐺32) 𝜔20)⋅ cos 𝜏20𝜔20,𝐻3𝑅 = ((𝐺31 + 𝐴30) 𝜔20 + 𝐴34𝜔520 − 𝜔720− (3𝐺33 + 𝐴32) 𝜔320) sin 𝜏20𝜔20+ ((4𝐺34 − 𝐴33) 𝜔420 − (2𝐺32 − 𝐴31) 𝜔220− 𝐴35𝜔620) cos 𝜏20𝜔20,𝐻3𝐼 = ((𝐺31 − 𝐴30) 𝜔20 − 𝐴34𝜔520 + 𝜔720− (3𝐺33 − 𝐴32) 𝜔320) cos 𝜏20𝜔20+ ((4𝐺34 + 𝐴33) 𝜔420 − (2𝐺32 + 𝐴31) 𝜔220− 𝐴35𝜔620) sin 𝜏20𝜔20.

(34)

Similar to Case 2, we know that if condition (𝐻32) 𝐺3𝑅 ×𝐻3𝑅 + 𝐺3𝐼 × 𝐻3𝐼 ̸= 0 holds, then Re [𝑑𝜆/𝑑𝜏2]𝜆=𝑖𝜔20 ̸= 0. In
conclusion, we have the following results.

Theorem 2. Suppose that conditions (𝐻1), (𝐻31), and(𝐻32) hold for system (2). The viral equilibrium 𝑃∗(𝑆∗, 𝐸∗, 𝐼∗,
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and a Hopf bifurcation occurs at the viral equilibrium𝑃∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗, 𝑉∗) when 𝜏2 = 𝜏20.
Case 4 (𝜏1 > 0; 𝜏2 ∈ (0, 𝜏20)). Regarding 𝜏1 as the bifurcation
parameter when 𝜏2 ∈ (0, 𝜏20), multiplying by 𝑒𝜆𝜏1 , (6) be-
comes

𝐵5𝜆5 + 𝐵4𝜆4 + 𝐵3𝜆3 + 𝐵2𝜆2 + 𝐵1𝜆 + 𝐵0 + (𝐷4𝜆4+ 𝐷3𝜆3 + 𝐷2𝜆2 + 𝐷1𝜆 + 𝐷0) 𝑒−𝜆𝜏2 + (𝐸3𝜆3 + 𝐸2𝜆2+ 𝐸1𝜆 + 𝐸0) 𝑒−2𝜆𝜏2 + (𝜆6 + 𝐴5𝜆5 + 𝐴4𝜆4 + 𝐴3𝜆3+ 𝐴2𝜆2 + 𝐴1𝜆 + 𝐴0) 𝑒𝜆𝜏1 + (𝐶5𝜆5 + 𝐶4𝜆4 + 𝐶3𝜆3+ 𝐶2𝜆2 + 𝐶1𝜆 + 𝐶0) 𝑒𝜆(𝜏1−𝜏2) + (𝐹4𝜆4 + 𝐹3𝜆3+ 𝐹2𝜆2 + 𝐹1𝜆 + 𝐹0) 𝑒−𝜆𝜏1 + (𝐺4𝜆4 + 𝐺3𝜆3 + 𝐺2𝜆2+ 𝐺1𝜆 + 𝐺0) 𝑒𝜆(𝜏1−2𝜏2) + (𝐻3𝜆3 + 𝐻2𝜆2 + 𝐻1𝜆+ 𝐻0) 𝑒−𝜆(𝜏1+𝜏2) + (𝐼2𝜆2 + 𝐼1𝜆 + 𝐼0) 𝑒−𝜆(𝜏1+2𝜏2).

(35)

Let 𝜆 = 𝑖𝜔∗1 (𝜔∗1 > 0) be the root of (35), and for the
convenience we still denote 𝜔∗1 as 𝜔1; then,

𝐿41 (𝜔1) cos 𝜏1𝜔1 − 𝐿42 (𝜔1) sin 𝜏1𝜔1 = 𝐿43 (𝜔1) ,𝐿44 (𝜔1) sin 𝜏1𝜔1 + 𝐿45 (𝜔1) cos 𝜏1𝜔1 = 𝐿46 (𝜔1) , (36)

where

𝐿41 (𝜔1) = (𝐴4 + 𝐹4) 𝜔41 − 𝜔61 − (𝐴2 + 𝐹2) 𝜔21 + 𝐴0+ 𝐹0 + (𝐶4𝜔41 − (𝐶2 + 𝐻2) 𝜔21 + 𝐶0 + 𝐻0) cos 𝜏2𝜔1+ (𝐶5𝜔51 − (𝐶3 + 𝐻3) 𝜔31 + (𝐶1 + 𝐻1) 𝜔1) sin 𝜏2𝜔1+ (𝐺4𝜔41 − (𝐺2 + 𝐼2) 𝜔21 + 𝐺0 + 𝐼0) cos 2𝜏2𝜔1+ ((𝐺1 + 𝐼1) 𝜔1 − 𝐺3𝜔31) sin 2𝜏2𝜔1,𝐿42 (𝜔1) = 𝐴5𝜔51 − (𝐴3 − 𝐹3) 𝜔31 + (𝐴1 − 𝐹1) 𝜔1+ (𝐶5𝜔51 − (𝐶3 − 𝐻3) 𝜔31 + (𝐶1 − 𝐻1) 𝜔1) cos 𝜏2𝜔1− (𝐶4𝜔41 − (𝐶2 − 𝐻2) 𝜔21 + 𝐶0 − 𝐻0) sin 𝜏2𝜔1+ ((𝐺1 − 𝐼1) 𝜔1 − 𝐺3𝜔31) cos 2𝜏2𝜔1− (𝐺4𝜔41 − (𝐺2 − 𝐼2) 𝜔21 + 𝐺0 − 𝐼0) sin 2𝜏2𝜔1,

𝐿43 (𝜔1) = 𝐵2𝜔21 − 𝐵4𝜔41 − 𝐵0+ (𝐷3𝜔31 − 𝐷1𝜔1) sin 𝜏2𝜔1+ (𝐷2𝜔21 − 𝐷4𝜔41 − 𝐷0) cos 𝜏2𝜔1+ (𝐸3𝜔31 − 𝐸1𝜔1) sin 𝜏2𝜔1 + (𝐸2𝜔21 − 𝐸0) cos 𝜏2𝜔1,𝐿44 (𝜔1) = (𝐴4 − 𝐹4) 𝜔41 − 𝜔61 − (𝐴2 − 𝐹2) 𝜔21 + 𝐴0− 𝐹0 + (𝐶4𝜔41 − (𝐶2 − 𝐻2) 𝜔21 + 𝐶0 − 𝐻0) cos 𝜏2𝜔1+ (𝐶5𝜔51 − (𝐶3 − 𝐻3) 𝜔31 + (𝐶1 − 𝐻1) 𝜔1) sin 𝜏2𝜔1+ (𝐺4𝜔41 − (𝐺2 − 𝐼2) 𝜔21 + 𝐺0 − 𝐼0) cos 2𝜏2𝜔1+ ((𝐺1 − 𝐼1) 𝜔1 − 𝐺3𝜔31) sin 2𝜏2𝜔1,𝐿45 (𝜔1) = 𝐴5𝜔51 − (𝐴3 + 𝐹3) 𝜔31 + (𝐴1 + 𝐹1) 𝜔1+ (𝐶5𝜔51 − (𝐶3 + 𝐻3) 𝜔31 + (𝐶1 + 𝐻1) 𝜔1) cos 𝜏2𝜔1− (𝐶4𝜔41 − (𝐶2 + 𝐻2) 𝜔21 + 𝐶0 + 𝐻0) sin 𝜏2𝜔1+ ((𝐺1 + 𝐼1) 𝜔1 − 𝐺3𝜔31) cos 2𝜏2𝜔1− (𝐺4𝜔41 − (𝐺2 + 𝐼2) 𝜔21 + 𝐺0 + 𝐼0) sin 2𝜏2𝜔1,𝐿46 (𝜔1) = 𝐵3𝜔31 − 𝐵3𝜔31 − 𝐵1𝜔1+ (𝐷3𝜔31 − 𝐷1𝜔1) cos 𝜏2𝜔1− (𝐷2𝜔21 − 𝐷4𝜔41 − 𝐷0) sin 𝜏2𝜔1+ (𝐸3𝜔31 − 𝐸1𝜔1) cos 𝜏2𝜔1 − (𝐸2𝜔21 − 𝐸0) sin 𝜏2𝜔1.
(37)

Thus,
cos 𝜏1𝜔1= 𝐿42 (𝜔1) × 𝐿46 (𝜔1) + 𝐿43 (𝜔1) × 𝐿44 (𝜔1)𝐿41 (𝜔1) × 𝐿44 (𝜔1) + 𝐿42 (𝜔1) × 𝐿45 (𝜔1) ,
sin 𝜏1𝜔1= 𝐿41 (𝜔1) × 𝐿46 (𝜔1) − 𝐿43 (𝜔1) × 𝐿45 (𝜔1)𝐿41 (𝜔1) × 𝐿44 (𝜔1) + 𝐿42 (𝜔1) × 𝐿45 (𝜔1) .

(38)

Then, we get

cos2𝜏1𝜔1 + sin2𝜏1𝜔1 = 1. (39)

Suppose that (𝐻41) (see (39)) has at least one positive root.
If (𝐻41) holds, then there exists 𝜔10 > 0 such that (35) has

a pair of purely imaginary roots ±𝑖𝜔∗10. For 𝜔∗10,𝜏∗10 = 1𝜔∗10× arccos{𝐿42 (𝜔∗10) × 𝐿46 (𝜔∗10) + 𝐿43 (𝜔∗10) × 𝐿44 (𝜔∗10)𝐿41 (𝜔∗10) × 𝐿44 (𝜔∗10) + 𝐿42 (𝜔∗10) × 𝐿45 (𝜔∗10)} . (40)
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Differentiating both sides of (25) with respect to 𝜏2,[ 𝑑𝜆𝑑𝜏1 ]−1 = 𝐹41 (𝜆)𝐹42 (𝜆) − 𝜏1𝜆 , (41)

where𝐹41 (𝜆) = 5𝐵5𝜆4 + 4𝐵4𝜆3 + 3𝐵3𝜆2 + 2𝐵2𝜆 + 𝐵1+ ((4𝐷4 − 𝜏2𝐷3) 𝜆3 − 𝜏2𝐷4𝜆4 + (3𝐷3 − 𝜏2𝐷2) 𝜆2+ (2𝐷2 − 𝐷1) 𝜆 + 𝐷1 − 𝜏2𝐷0) 𝑒−𝜆𝜏2 + (6𝜆5+ 5𝐴5𝜆4 + 4𝐴4𝜆3 + 3𝐴3𝜆2 + 2𝐴2𝜆 + 𝐴1) 𝑒𝜆𝜏1+ ((3𝐸3 − 2𝜏2𝐸2) 𝜆2 − 2𝜏2𝐸3𝜆3 + 2 (𝐸2 − 𝜏2𝐸1) 𝜆+ 𝐸1 − 2𝜏2𝐸0) 𝑒−2𝜆𝜏2 + ((5𝐶5 − 𝜏2𝐶4) 𝜆4 − 𝜏2𝐶5𝜆5+ (4𝐶4 − 𝜏2𝐶3) 𝜆3 + (3𝐶3 − 𝜏2𝐶2) 𝜆2+ (2𝐶2 − 𝜏2𝐶1) 𝜆 + 𝐶1 − 𝜏2𝐶0) 𝑒𝜆(𝜏1−𝜏2) + (4𝐹4𝜆3+ 3𝐹3𝜆2 + 2𝐹2𝜆 + 𝐹1) 𝑒−𝜆𝜏1 + ((3𝐻3 − 𝜏2𝐻2) 𝜆2− 𝜏2𝐻3𝜆3 + (2𝐻2 − 𝜏2𝐻1) 𝜆 + 𝐻1 − 𝜏2𝐻0)⋅ 𝑒−𝜆(𝜏1+𝜏2) + ((4𝐺4 − 2𝜏2𝐺3) 𝜆3 − 2𝜏2𝐺4𝜆4+ (3𝐺3 − 𝜏2𝐺2) 𝜆2 + 2 (𝐺2 − 𝜏2𝐺1) 𝜆 + 𝐺1− 2𝜏2𝐺0) 𝑒𝜆(𝜏1−2𝜏2) + (2 (𝐼2 − 𝜏2𝐼1) 𝜆 − 2𝜏2𝐼2𝜆2 + 𝐼1− 2𝜏2𝐼0) 𝑒−𝜆(𝜏1+2𝜏2),𝐹42 (𝜆) = (𝐹4𝜆5 + 𝐹3𝜆4 + 𝐹2𝜆3 + 𝐹1𝜆2 + 𝐹0𝜆) 𝑒−𝜆𝜏1+ (𝐻3𝜆4 + 𝐻2𝜆3 + 𝐻1𝜆2 + 𝐻0𝜆) 𝑒−𝜆(𝜏1+𝜏2) + (𝐼2𝜆3+ 𝐼1𝜆2 + 𝐼0𝜆) 𝑒−𝜆(𝜏1+2𝜏2) − (𝜆7 + 𝐴5𝜆6 + 𝐴4𝜆5+ 𝐴3𝜆4 + 𝐴2𝜆3 + 𝐴1𝜆2 + 𝐴0𝜆) 𝑒𝜆𝜏1 − (𝐶5𝜆6+ 𝐶4𝜆5 + 𝐶3𝜆4 + 𝐶2𝜆3 + 𝐶1𝜆2 + 𝐶0𝜆) 𝑒𝜆(𝜏1−𝜏2)− (𝐺4𝜆5 + 𝐺3𝜆4 + 𝐺2𝜆3 + 𝐺1𝜆2 + 𝐺0𝜆) 𝑒𝜆(𝜏1−2𝜏2).

(42)

Define

Re [ 𝑑𝜆𝑑𝜏1 ]−1𝜆=𝑖𝜔∗
10

= 𝐺4𝑅 × 𝐻4𝑅 + 𝐺4𝐼 × 𝐻4𝐼𝐻24𝑅 + 𝐻24𝐼 . (43)

Similar to Case 2, we know that if condition (𝐻42) 𝐺4𝑅 ×𝐻4𝑅 + 𝐺4𝐼 × 𝐻4𝐼 ̸= 0 holds, then Re[𝑑𝜆/𝑑𝜏1]𝜆=𝑖𝜔∗
10

̸= 0. Thus,
we have the following results.

Theorem3. Let 𝜏2 ∈ (0, 𝜏20) and suppose that conditions (𝐻1),(𝐻41), and (𝐻42) hold for system (2). The viral equilibrium𝑃∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗, 𝑉∗) is locally asymptotically stable when𝜏1 ∈ [0, 𝜏∗10) and a Hopf bifurcation occurs at the viral
equilibrium 𝑃∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗, 𝑉∗) when 𝜏1 = 𝜏∗10.

Case 5 (𝜏1 ∈ (0, 𝜏10); 𝜏2 > 0). Regarding 𝜏2 as the bifurcation
parameter when 𝜏1 ∈ (0, 𝜏10), multiplying by 𝑒𝜆𝜏2 , (6) be-
comes

𝐶5𝜆5 + 𝐶4𝜆4 + 𝐶3𝜆3 + 𝐶2𝜆2 + 𝐶1𝜆 + 𝐶0 + (𝐷4𝜆4+ 𝐷3𝜆3 + 𝐷2𝜆2 + 𝐷1𝜆 + 𝐷0) 𝑒−𝜆𝜏1 + (𝐻3𝜆3+ 𝐻2𝜆2 + 𝐻1𝜆 + 𝐻0) 𝑒−2𝜆𝜏1 + (𝐺4𝜆4 + 𝐺3𝜆3+ 𝐺2𝜆2 + 𝐺1𝜆 + 𝐺0) 𝑒−𝜆𝜏2 + (𝜆6 + 𝐴5𝜆5 + 𝐴4𝜆4+ 𝐴3𝜆3 + 𝐴2𝜆2 + 𝐴1𝜆 + 𝐴0) 𝑒𝜆𝜏2 + (𝐵5𝜆5 + 𝐵4𝜆4+ 𝐵3𝜆3 + 𝐵2𝜆2 + 𝐵1𝜆 + 𝐵0) 𝑒𝜆(𝜏2−𝜏1) + (𝐸3𝜆3+ 𝐸2𝜆2 + 𝐸1𝜆 + 𝐸0) 𝑒−𝜆(𝜏2+𝜏1) + (𝐹4𝜆4 + 𝐹3𝜆3+ 𝐹2𝜆2 + 𝐹1𝜆 + 𝐹0) 𝑒𝜆(𝜏2−2𝜏1) + (𝐼2𝜆2 + 𝐼1𝜆 + 𝐼0)⋅ 𝑒−𝜆(𝜏2+2𝜏1).

(44)

Let 𝜆 = 𝑖𝜔∗2 (𝜔∗2 > 0) be the root of (44), and for the
convenience we still denote 𝜔∗2 as 𝜔2; then,

𝐿51 (𝜔2) cos 𝜏2𝜔2 − 𝐿52 (𝜔1) sin 𝜏2𝜔2 = 𝐿53 (𝜔2) ,𝐿54 (𝜔2) sin 𝜏2𝜔2 + 𝐿55 (𝜔1) cos 𝜏2𝜔2 = 𝐿56 (𝜔2) , (45)

where

𝐿51 (𝜔2)= (𝐴4 + 𝐺4) 𝜔42 − 𝜔62 − (𝐴2 + 𝐺2) 𝜔22 + 𝐴0 + 𝐺0+ (𝐵4𝜔42 − (𝐵2 + 𝐸2) 𝜔22 + 𝐵0 + 𝐸0) cos 𝜏1𝜔2+ (𝐵5𝜔52 − (𝐵3 + 𝐸3) 𝜔32 + (𝐵1 − 𝐸1) 𝜔2) sin 𝜏1𝜔2+ (𝐹4𝜔42 − (𝐹2 + 𝐼2) 𝜔22 + 𝐹0 + 𝐼0) cos 2𝜏1𝜔2+ ((𝐹1 + 𝐼1) 𝜔2 − 𝐹3𝜔32) sin 2𝜏1𝜔2,𝐿52 (𝜔2)= 𝐴5𝜔52 − (𝐴3 − 𝐺3) 𝜔32 + (𝐴1 − 𝐺1) 𝜔2+ ((𝐵2 − 𝐸2) 𝜔22 − 𝐵4𝜔42 + 𝐸0 − 𝐵0) sin 𝜏1𝜔2+ (𝐵5𝜔52 − (𝐵3 − 𝐸3) 𝜔32 + (𝐵1 − 𝐸1) 𝜔2) cos 𝜏1𝜔2− (𝐹4𝜔42 − (𝐹2 − 𝐼2) 𝜔22 + 𝐹0 − 𝐼0) sin 2𝜏1𝜔2+ ((𝐹1 − 𝐼1) 𝜔2 − 𝐹3𝜔32) cos 2𝜏1𝜔2,



10 Discrete Dynamics in Nature and Society𝐿53 (𝜔2)= 𝐶2𝜔22 − 𝐶4𝜔42 − 𝐶0 + (𝐷3𝜔32 − 𝐷1𝜔2) sin 𝜏1𝜔2+ (𝐷2𝜔22 − 𝐷4𝜔42 − 𝐷0) cos 𝜏1𝜔2+ (𝐻3𝜔32 − 𝐻1𝜔2) sin 2𝜏1𝜔2+ (𝐻2𝜔22 − 𝐻0) cos 2𝜏1𝜔2,𝐿54 (𝜔2)= (𝐴4 − 𝐺4) 𝜔42 − 𝜔62 − (𝐴2 − 𝐺2) 𝜔22 + 𝐴0 − 𝐺0+ (𝐵4𝜔42 − (𝐵2 − 𝐸2) 𝜔22 + 𝐵0 − 𝐸0) cos 𝜏1𝜔2+ (𝐵5𝜔52 − (𝐵3 − 𝐸3) 𝜔32 + (𝐵1 − 𝐸1) 𝜔2) sin 𝜏1𝜔2+ (𝐹4𝜔42 − (𝐹2 − 𝐼2) 𝜔22 + 𝐹0 − 𝐼0) cos 2𝜏1𝜔2+ ((𝐹1 − 𝐼1) 𝜔2 − 𝐹3𝜔32) sin 2𝜏1𝜔2,𝐿55 (𝜔2)= 𝐴5𝜔52 − (𝐴3 + 𝐺3) 𝜔32 + (𝐴1 + 𝐺1) 𝜔2− (𝐵4𝜔42 − (𝐵2 + 𝐸2) 𝜔22 + 𝐸0 + 𝐵0) sin 𝜏1𝜔2+ (𝐵5𝜔52 − (𝐵3 + 𝐸3) 𝜔32 + (𝐵1 + 𝐸1) 𝜔2) cos 𝜏1𝜔2− (𝐹4𝜔42 − (𝐹2 + 𝐼2) 𝜔22 + 𝐹0 − 𝐼0) sin 2𝜏1𝜔2+ ((𝐹1 + 𝐼1) 𝜔2 − 𝐹3𝜔32) cos 2𝜏1𝜔2,𝐿56 (𝜔2)= 𝐶3𝜔32 − 𝐶5𝜔52 − 𝐶1𝜔2+ (𝐷3𝜔32 − 𝐷 − 1𝜔2) cos 𝜏1𝜔2− (𝐷2𝜔22 − 𝐷4𝜔42 − 𝐷0) sin 𝜏1𝜔2+ (𝐻3𝜔32 − 𝐻1𝜔2) cos 2𝜏1𝜔2− (𝐻2𝜔22 − 𝐻0) sin 2𝜏1𝜔2.
(46)

Thus,

cos 𝜏2𝜔2= 𝐿52 (𝜔2) × 𝐿56 (𝜔2) + 𝐿53 (𝜔2) × 𝐿54 (𝜔2)𝐿51 (𝜔2) × 𝐿54 (𝜔2) + 𝐿52 (𝜔2) × 𝐿55 (𝜔2) ,
sin 𝜏2𝜔2= 𝐿51 (𝜔2) × 𝐿56 (𝜔2) − 𝐿53 (𝜔2) × 𝐿55 (𝜔2)𝐿51 (𝜔2) × 𝐿54 (𝜔2) + 𝐿52 (𝜔2) × 𝐿55 (𝜔2) .

(47)

Then, we get

cos2𝜏2𝜔2 + sin2𝜏2𝜔2 = 1. (48)

If (𝐻51) holds, then there exists 𝜔∗20 > 0 such that (35) has
a pair of purely imaginary roots ±𝑖𝜔∗20. For 𝜔∗20,𝜏∗20 = 1𝜔∗20× arccos{𝐿52 (𝜔∗20) × 𝐿56 (𝜔∗20) + 𝐿53 (𝜔∗20) × 𝐿54 (𝜔∗20)𝐿51 (𝜔∗20) × 𝐿54 (𝜔∗20) + 𝐿52 (𝜔∗20) × 𝐿55 (𝜔∗20)} . (49)

Differentiating (25) with respect to 𝜏2, one can get[ 𝑑𝜆𝑑𝜏2 ]−1 = 𝐹51 (𝜆)𝐹52 (𝜆) − 𝜏2𝜆 , (50)

where𝐹51 (𝜆) = 5𝐶5𝜆4 + 4𝐶4𝜆3 + 3𝐶3𝜆2 + 2𝐶2𝜆 + 𝐶1+ ((4𝐷4 − 𝜏1𝐷3) 𝜆3 − 𝜏1𝐷4𝜆4 + (3𝐷3 − 𝜏1𝐷2) 𝜆2+ (2𝐷2 − 𝜏1𝐷1) 𝜆 + 𝐷1 − 𝜏1𝐷0) 𝑒−𝜆𝜏1+ ((3𝐻3 − 2𝜏1𝐻2) 𝜆2 − 2𝜏1𝐻3𝜆3+ 2 (𝐻2 − 𝜏1𝐻1) 𝜆 + 𝐻1 − 2𝜏1𝐻0) 𝑒−2𝜆𝜏1 + (4𝐺4𝜆3+ 3𝐺3𝜆2 + 2𝐺2𝜆 + 𝐺1) 𝑒−𝜆𝜏2 + (6𝜆5 + 5𝐴5𝜆4+ 4𝐴4𝜆3 + 3𝐴3𝜆2 + 2𝐴2𝜆 + 𝐴1) 𝑒𝜆𝜏2+ ((5𝐵5 − 𝜏1𝐵4) 𝜆4 − 𝜏1𝐵5𝜆5 + (4𝐵4 − 𝜏1𝐵3) 𝜆3+ (3𝐵3 − 𝜏1𝐵2) 𝜆2 + (2𝐵2 − 𝜏1𝐵1) 𝜆 + 𝐵1 − 𝜏1𝐵0)⋅ 𝑒𝜆(𝜏2−𝜏1) + ((3𝐸3 − 𝜏1𝐸2) 𝜆2 − 𝜏1𝐸3𝜆3+ (2𝐸2 − 𝜏1𝐸1) 𝜆 + 𝐸1 − 𝜏1𝐸0) 𝑒−𝜆(𝜏2+𝜏1)+ ((4𝐹4 − 2𝜏1𝐹3) 𝜆3 − 2𝜏1𝐹4𝜆4 + (3𝐹3 − 2𝜏1𝐹2) 𝜆2+ (2𝐹2 − 2𝜏1𝐹1) 𝜆 + 𝐹1 − 2𝜏1𝐹0) 𝑒𝜆(𝜏2−2𝜏1)+ (2 (𝐼2 − 𝜏1𝐼1) 𝜆 − 2𝜏1𝐼2𝜆2 + 𝐼1 − 2𝜏1𝐼0) 𝑒𝜆(𝜏2+2𝜏1),𝐹52 (𝜆) = (𝐺4𝜆5 + 𝐺3𝜆4 + 𝐺2𝜆3 + 𝐺1𝜆2 + 𝐺0𝜆) 𝑒−𝜆𝜏2+ (𝐸3𝜆4 + 𝐸2𝜆3 + 𝐸1𝜆2 + 𝐸0𝜆) 𝑒−𝜆(𝜏2+𝜏1) + (𝐼2𝜆3+ 𝐼1𝜆2 + 𝐼0𝜆) 𝑒−𝜆(𝜏2+2𝜏1) − (𝐹4𝜆5 + 𝐹3𝜆4 + 𝐹2𝜆3+ 𝐹1𝜆2 + 𝐹0𝜆) 𝑒𝜆(𝜏2−2𝜏1) − (𝐵5𝜆6 + 𝐵4𝜆5 + 𝐵3𝜆4+ 𝐵2𝜆3 + 𝐵1𝜆2 + 𝐵0𝜆) 𝑒𝜆(𝜏2−𝜏1) − (𝜆7 + 𝐴5𝜆6+ 𝐴4𝜆5 + 𝐴3𝜆4 + 𝐴2𝜆3 + 𝐴1𝜆2 + 𝐴0𝜆) 𝑒𝜆𝜏2 .

(51)
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Thus,

Re [ 𝑑𝜆𝑑𝜏2 ]−1𝜆=𝑖𝜔∗
20

= 𝐺3𝑅 × 𝐻3𝑅 + 𝐺3𝐼 × 𝐻3𝐼𝐻23𝑅 + 𝐻23𝐼 . (52)

Therefore, we know that if condition (𝐻52) 𝐺5𝑅 × 𝐻5𝑅 +𝐺5𝐼 × 𝐻5𝐼 ̸= 0 holds, then Re[𝑑𝜆/𝑑𝜏2]𝜆=𝑖𝜔∗
20

̸= 0. Then, we
have the following results.

Theorem4. Let 𝜏1 ∈ (0, 𝜏10) and suppose that conditions (𝐻1),(𝐻51), and (𝐻52) hold for system (2). The viral equilibrium𝑃∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗, 𝑉∗) is locally asymptotically stable when𝜏2 ∈ [0, 𝜏∗20) and a Hopf bifurcation occurs at the viral
equilibrium 𝑃∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗, 𝑉∗) when 𝜏2 = 𝜏∗20.
3. Properties of the Hopf Bifurcation

In this section, we shall investigate direction and stability of
the Hopf bifurcation under the case where 𝜏1 ∈ (0, 𝜏10) and𝜏2 > 0. Set 𝑢1(𝑡) = 𝑆(𝑡)−𝑆∗, 𝑢2(𝑡) = 𝐸(𝑡)−𝐸∗, 𝑢3(𝑡) = 𝐼(𝑡)−𝐼∗,𝑢4(𝑡) = 𝑄(𝑡)−𝑄∗,𝑢5(𝑡) = 𝑅(𝑡)−𝑅∗,𝑢6(𝑡) = 𝑉(𝑡)−𝑉∗, and 𝑡 →(𝑡/𝜏2). For convenience, we assume that 𝜏∗1 ∈ (0, 𝜏10) < 𝜏∗20
throughout this section.Then, system (2) becomes functional
differential equations in 𝐶 = 𝐶([−1, 0], 𝑅6):𝑢̇ (𝑡) = 𝐿𝜇𝑢𝑡 + 𝐹 (𝜇, 𝑢𝑡) , (53)

with𝐿𝜇𝜙 = (𝜏∗20 + 𝜇)(𝐴𝜙 (0) + 𝐵𝜙(− 𝜏∗1𝜏∗20) + 𝐶𝜙 (−1)) ,
𝐹 (𝜇, 𝜙) = (𝜏∗20 + 𝜇)(((((

(

−𝛽𝜙1 (0) 𝜙3 (0)𝛽𝜙1 (0) 𝜙3 (0)0000
)))))
)

, (54)

where

𝐴 = (((((
(

𝑎1 0 𝑎2 0 0 0𝑎3 𝑎4 𝑎5 0 0 00 𝑎6 𝑎7 0 0 00 0 𝑎8 𝑎9 0 00 0 0 0 𝑎10 0𝑎11 0 0 0 0 𝑎12
)))))
)

,

𝐵 = (((((
(

0 0 0 0 0 00 0 0 0 0 00 0 𝑏1 0 0 00 0 0 𝑏2 0 00 0 𝑏3 𝑏4 0 00 0 0 0 0 0
)))))
)

,

𝐶 = (((((
(

0 0 0 0 𝑐1 𝑐20 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 𝑐3 0 00 0 0 0 0 𝑐4
)))))
)

.
(55)

Based on the Riesz representation theorem, there exists a 6×6
function 𝜂(𝜃, 𝜇) : [−1, 0] → 𝑅6×6 such that𝐿𝜇𝜙 = ∫0

−1
𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜙 ∈ 𝐶. (56)

In fact, we choose𝜂 (𝜃, 𝜇)
=
{{{{{{{{{{{{{{{{{{{{{{{

(𝜏∗20 + 𝜇) (𝐴 + 𝐵 + 𝐵) , 𝜃 = 0,(𝜏∗20 + 𝜇) (𝐵 + 𝐶) , 𝜃 ∈ [− 𝜏∗1𝜏∗20 , 0) ,
(𝜏∗20 + 𝜇) 𝐵, 𝜃 ∈ (−1, − 𝜏∗1𝜏∗20) ,0, 𝜃 = −1.

(57)

For 𝜙 ∈ 𝐶([−1, 0], 𝑅6), we define
𝐴 (𝜇) 𝜙 = {{{{{{{

𝑑𝜙 (𝜃)𝑑𝜃 , −1 ≤ 𝜃 < 0,∫0
−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜃 = 0,
𝑅 (𝜇) 𝜙 = {{{0, −1 ≤ 𝜃 < 0,𝐹 (𝜇, 𝜙) , 𝜃 = 0.

(58)

Then, system (53) becomes𝑢̇ (𝑡) = 𝐴 (𝜇) 𝑢𝑡 + 𝑅 (𝜇) 𝑢𝑡, (59)

where 𝑢𝑡(𝜃) = 𝑢(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0].
Define 𝐴∗ as follows:

𝐴∗ (𝜑) = {{{{{{{
−𝑑𝜑 (𝑠)𝑑𝑠 , 0 < 𝑠 ≤ 1,∫0
−1

𝑑𝜂𝑇 (𝑠, 0) 𝜑 (−𝑠) , 𝑠 = 0, (60)

and a bilinear form⟨𝜑 (𝑠) , 𝜙 (𝜃)⟩ = 𝜑 (0) 𝜙 (0)− ∫0
𝜃=−1

∫𝜃
𝜉=0

𝜑 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉, (61)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
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Let 𝑞(𝜃) = (1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6)𝑇𝑒𝑖𝜔∗20𝜏∗20𝜃 be the eigen-
vector of 𝐴(0) with +𝑖𝜔∗20𝜏∗20 and let 𝑞∗(𝑠) = 𝐷(1, 𝑞∗2 , 𝑞∗3 ,𝑞∗4 , 𝑞∗5 )𝑒𝑖𝜔∗20𝜏∗20𝑠 be the eigenvector of 𝐴∗(0) with −𝑖𝜔∗20𝜏∗20.
Then, according to the definition of 𝐴(0) and 𝐴∗(0), we
obtain𝑞2 = 𝑎3 + 𝑎5𝑞3𝑖𝜔∗20 − 𝑎3 ,𝑞3 = 𝑎3𝑎6(𝑖𝜔∗20 − 𝑎3) (𝑖𝜔∗20 − 𝑎7 − 𝑏1𝑒−𝑖𝜏∗1 𝜔∗20) − 𝑎5𝑎6 ,𝑞4 = 𝑎8𝑞3𝑖𝜔−20𝑎9 − 𝑏2𝑒−𝑖𝜏∗1 𝜔∗20 ,𝑞5 = 𝑖𝜔∗20 − 𝑎1 − 𝑎2𝑞3 − 𝑐2𝑒−𝑖𝜏∗20𝜔∗20𝑐1𝑒−𝑖𝜏∗20𝜔∗20 ,

𝑞6 = 𝑖𝜔∗20 − 𝑎11𝑎12 + 𝑐4𝑒−𝑖𝜏∗20𝜔∗20 ,𝑞∗2 = −𝑖𝜔∗20 + 𝑎1𝑎3 ,
𝑞∗3 = (𝑖𝜔∗20 + 𝑎1) (𝑖𝜔∗20 + 𝑎4)𝑎3𝑎6 ,
𝑞∗4 = −(𝑖𝜔∗20 + 𝑎7 + 𝑏1𝑒𝑖𝜏∗1 𝜔∗20) 𝑞3𝑎8+ 𝑎2𝑎3 + (𝑖𝜔∗20 + 𝑎1) 𝑎5𝑎3𝑎8+ 𝑏3 (𝑖𝜔∗20 + 𝑎9 + 𝑏2𝑒𝑖𝜏∗1 𝜔∗20)𝑎8𝑏4 ,
𝑞5 = −(𝑖𝜔∗20 + 𝑎9 + 𝑏2𝑒𝑖𝜏∗1 𝜔∗20) 𝑞4𝑏4𝑒𝑖𝜏∗1 𝜔∗20 ,
𝑞∗6 = − 𝑐2𝑒𝑖𝜏∗20𝜔∗20𝑖𝜔∗20 + 𝑎12 + 𝑐4𝑒𝑖𝜏∗20𝜔∗20 .

(62)

In addition, from (61), we have⟨𝑞∗ (𝑠) , 𝑞 (𝜃)⟩ = 𝑞 (0) 𝑞 (0)− ∫0
−1

∫𝜃
𝜉=0

𝑞∗ (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝑞 (𝜉) 𝑑𝜉= 𝐷 (1, 𝑞∗2 , 𝑞∗3 , 𝑞∗4 , 𝑞∗5 , 𝑞∗6 ) (1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6)𝑇− ∫0
−1

∫𝜃
𝜉=0

𝐷(1, 𝑞∗2 , 𝑞∗3 , 𝑞∗4 , 𝑞∗5 , 𝑞∗6 )

⋅ 𝑒−𝑖𝜏∗1 𝜔∗20(𝜉−𝜃)𝑑𝜂 (𝜃) (1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6)𝑇 𝑒𝑖𝜏∗1 𝜔∗20𝜉𝑑𝜉− ∫0
−1

∫𝜃
𝜉=0

𝐷(1, 𝑞∗2 , 𝑞∗3 , 𝑞∗4 , 𝑞∗5 , 𝑞∗6 )⋅ 𝑒−𝑖𝜏∗20𝜔∗20(𝜉−𝜃)𝑑𝜂 (𝜃) (1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6)𝑇 𝑒𝑖𝜏∗20𝜔∗20𝜉𝑑𝜉= 𝐷[1 + 𝑞2𝑞∗2 + 𝑞3𝑞∗3 + 𝑞4𝑞∗4 + 𝑞5𝑞∗5 + 𝑞6𝑞∗6+ 𝜏∗1 𝑒𝑖𝜏∗1 𝜔∗20 ∫0
−1

(1, 𝑞∗2 , 𝑞∗3 , 𝑞∗4 , 𝑞∗5 , 𝑞∗6 )⋅ 𝐵 (1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6)𝑇+ 𝜏∗1 𝑒𝑖𝜏∗2 𝜔∗20 ∫0
−1

(1, 𝑞∗2 , 𝑞∗3 , 𝑞∗4 , 𝑞∗5 , 𝑞∗6 )⋅ 𝐶 (1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6)𝑇] = 𝐷 [1 + 𝑞2𝑞∗2 + 𝑞3𝑞∗3+ 𝑞4𝑞∗4 + 𝑞5𝑞∗5 + 𝑞6𝑞∗6+ 𝜏∗1 𝑒−𝑖𝜏∗1 𝜔∗20 (𝑏3 (𝑏1𝑞∗3 + 𝑏3𝑞∗5 ) + 𝑏4 (𝑏2𝑞∗4 + 𝑏4𝑞∗5 ))+ 𝜏∗20𝑒−𝑖𝜏∗20𝜔∗20 (𝑐1𝑞∗5 + 𝑐2𝑞∗6 + 𝑐3𝑞5𝑞∗5 + 𝑐4𝑞6𝑞∗6 )] .
(63)

Thus, we can choose𝐷 = [1 + 𝑞2𝑞∗2 + 𝑞3𝑞∗3 + 𝑞4𝑞∗4 + 𝑞5𝑞∗5 + 𝑞6𝑞∗6+ 𝜏∗1 𝑒−𝑖𝜏∗1 𝜔∗20 (𝑏3 (𝑏1𝑞∗3 + 𝑏3𝑞∗5 ) + 𝑏4 (𝑏2𝑞∗4 + 𝑏4𝑞∗5 ))+ 𝜏∗20𝑒−𝑖𝜏∗20𝜔∗20 (𝑐1𝑞∗5 + 𝑐2𝑞∗6 + 𝑐3𝑞5𝑞∗5 + 𝑐4𝑞6𝑞∗6 )]−1 , (64)

such that ⟨𝑞∗, 𝑞⟩ = 1, ⟨𝑞∗, 𝑞⟩ = 0.
Then, using the algorithms from Hassard et al. [25] and

the similar computation process in [26–29], we obtain𝑔20 = 2𝛽𝜏∗20𝐷𝑞3 (𝑞∗2 − 1) ,𝑔11 = 𝛽𝜏∗20𝐷Re {𝑞3} (𝑞∗2 − 1) ,𝑔02 = 2𝛽𝜏∗20𝐷𝑞3 (𝑞∗2 − 1) ,𝑔21 = 2𝛽𝜏∗20𝐷(𝑞∗2 − 1) (𝑊(1)11 (0) 𝑞3 + 12𝑊(1)20 (0) 𝑞3+ 𝑊(3)11 (0) + 12𝑊(3)20 (0)) ,
(65)

with

𝑊20 (𝜃) = 𝑖𝑔20𝑞 (0)𝜏∗20𝜔∗20 𝑒𝑖𝜏∗20𝜔∗20𝜃 + 𝑖𝑔02𝑞 (0)3𝜏∗20𝜔∗20 𝑒−𝑖𝜏∗20𝜔∗20𝜃 + 𝐸1𝑒2𝑖𝜏∗20𝜔∗20𝜃,𝑊11 (𝜃) = −𝑖𝑔11𝑞 (0)𝜏∗20𝜔∗20 𝑒𝑖𝜏∗20𝜔∗20𝜃 + 𝑖𝑔11𝑞 (0)𝜏∗20𝜔∗20 𝑒−𝑖𝜏∗20𝜔∗20𝜃 + 𝐸2,
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𝐸1 = 2((((((
(

𝑎󸀠1 0 −𝑎2 0 −𝑐1𝑒−2𝑖𝜏∗20𝜔∗20 −𝑐2𝑒−2𝑖𝜏∗20𝜔∗20−𝑎3 𝑎󸀠2 −𝑎5 0 0 00 −𝑎6 𝑎󸀠3 0 0 00 0 −𝑎8 𝑎󸀠4 0 00 0 −𝑏3𝑒−2𝑖𝜏∗1 𝜔∗20 −𝑏4𝑒−2𝑖𝜏∗1 𝜔∗20 𝑎󸀠5 0−𝑎11 0 0 0 0 𝑎󸀠6
))))))
)

−1

× (((((
(

−𝛽𝑞3𝛽𝑞30000
)))))
)

,

𝐸2 = −(((((
(

𝑎1 0 𝑎2 0 𝑐1 𝑐2𝑎3 𝑎4 𝑎5 0 0 00 𝑎6 𝑎7 + 𝑏1 0 0 00 0 𝑎8 𝑎9 + 𝑏2 0 00 0 𝑏3 𝑏4 𝑎10 + 𝑐3 0𝑎11 0 0 0 0 𝑎12 + 𝑐4
)))))
)

−1

× (((((
(

−𝛽Re {𝑞3}𝛽Re {𝑞3}0000
)))))
)

,
(66)

where 𝑎󸀠1 = 2𝑖𝜔∗20 − 𝑎1,𝑎󸀠2 = 2𝑖𝜔∗20 − 𝑎4,𝑎󸀠3 = 2𝑖𝜔∗20 − 𝑎7 − 𝑏1𝑒−2𝑖𝜏∗1 𝜔∗20 ,𝑎󸀠4 = 2𝑖𝜔∗20 − 𝑎9 − 𝑏2𝑒−2𝑖𝜏∗1 𝜔∗20 ,𝑎󸀠5 = 2𝑖𝜔∗20 − 𝑎10 − 𝑐3𝑒−2𝑖𝜏∗20𝜔∗20 ,𝑎󸀠6 = 2𝑖𝜔∗20 − 𝑎12 − 𝑐4𝑒−2𝑖𝜏∗20𝜔∗20 .
(67)

Then, we can get the following coefficients:𝐶1 (0) = 𝑖2𝜏∗20𝜔∗20 (𝑔11𝑔20 − 2 󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑔02󵄨󵄨󵄨󵄨23 )
+ 𝑔212 ,

𝜇2 = − Re {𝐶1 (0)}
Re {𝜆󸀠 (𝜏∗20)} ,𝜌2 = 2Re {𝐶1 (0)} ,𝑇2 = − Im {𝐶1 (0)} + 𝜇2 Im {𝜆󸀠 (𝜏∗20)}𝜏∗20𝜔∗20 .

(68)

Thus, we have the following results.

Theorem 5. The sign of 𝜇2 determines direction of the Hopf
bifurcation: if 𝜇2 > 0 (𝜇2 < 0), then the Hopf bifurcation is
supercritical (subcritical); the sign of 𝜌2 determines stability of
the bifurcating periodic solutions: if 𝜌2 < 0 (𝜌2 > 0), then
the bifurcating periodic solutions are stable (unstable); the sign
of 𝑇2 determines period of the bifurcating solutions: if 𝑇2 > 0

(𝑇2 < 0), then the period of the bifurcating periodic solutions
increases (decreases).

4. Numerical Simulation

In this section, we present some numerical results of system
(2) in order to validate the analytical predictions obtained in
Sections 2 and 3. We choose a set of parameters as follows:𝐴 = 100, 𝛽 = 0.009, 𝑑 = 0.05, 𝜌 = 0.65, 𝜃 = 0.05, 𝜒 = 0.55,𝛾 = 0.45, 𝛼 = 0.035, 𝛿 = 0.1, 𝜂 = 0.35, and 𝜀 = 0.07, and
consider the following special case of (2):𝑑𝑆 (𝑡)𝑑𝑡 = 100 − 0.009𝑆 (𝑡) 𝐼 (𝑡) − 0.05𝑆 (𝑡) − 0.65𝑆 (𝑡)+ 0.05𝑅 (𝑡 − 𝜏2) + 0.55𝑉 (𝑡 − 𝜏2) ,𝑑𝐸 (𝑡)𝑑𝑡 = 0.009𝑆 (𝑡) 𝐼 (𝑡) − 0.05𝐸 (𝑡) − 0.45𝐸 (𝑡) ,𝑑𝐼 (𝑡)𝑑𝑡 = 0.45𝐸 (𝑡) − 0.05𝐼 (𝑡) − 0.035𝐼 (𝑡) − 0.1𝐼 (𝑡)− 0.35𝐼 (𝑡 − 𝜏1) ,𝑑𝑄 (𝑡)𝑑𝑡 = 𝛿𝐼 (𝑡) − 0.05𝑄 (𝑡) − 0.035𝑄 (𝑡)− 0.07𝑄 (𝑡 − 𝜏1) ,𝑑𝑅 (𝑡)𝑑𝑡 = 0.07𝑄 (𝑡 − 𝜏1) − 0.05𝑅 (𝑡) − 0.05𝑅 (𝑡 − 𝜏2)+ 0.35𝐼 (𝑡 − 𝜏1) ,𝑑𝑉 (𝑡)𝑑𝑡 = 0.65𝑆 (𝑡) − 0.05𝑉 (𝑡) − 0.55𝑉 (𝑡 − 𝜏2) ,

(69)

from which we can get the unique viral equilibrium𝑃∗(66.0494, 277.7978, 233.6617, 150.7495, 923.3406, 71.7439).
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Figure 1: The projection of the phase portrait of system (69) in(𝑆, 𝐸, 𝑉)-space with 𝜏1 = 3.605.
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Figure 2: The projection of the phase portrait of system (69) in(𝐼, 𝑄, 𝑅)-space with 𝜏1 = 3.605.
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Figure 3: The projection of the phase portrait of system (69) in(𝑆, 𝐸, 𝑉)-space with 𝜏1 = 4.60.
It can be easily verified that condition (𝐻1) is satisfied when𝜏1 = 𝜏2 = 0.

By computation, we have 𝜔10 = 0.8554 and 𝜏10 =4.1056. Then, we get 𝜆󸀠(𝜏10) = 2.3686 + 𝑖1.0212. Thus, we
know that conditions (𝐻21) and (𝐻22) hold. We can
conclude that all roots that cross the imaginary axis at𝑖𝜔10 cross from left to right as 𝜏1 increases by the
theory in [22]. According to Theorem 1, 𝑃∗(66.0494,277.7978, 233.6617, 150.7495, 923.3406, 71.7439) is asymp-
totically stable when 𝜏1 ∈ (0, 𝜏10). This property can be
illustrated by Figures 1 and 2. In this case, spreading law
of the computer viruses can be predicted and the viruses
can be controlled and eliminated. However, once the
value of 𝜏1 passes through the critical value 𝜏10, 𝑃∗(66.0494,277.7978, 233.6617, 150.7495, 923.3406, 71.7439) loses its sta-
bility and a Hopf bifurcation occurs, which can be shown
in Figures 3 and 4. The occurrence of a Hopf bifurcation
means that the state of computer viruses propagation changes
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Figure 4: The projection of the phase portrait of system (69) in(𝐼, 𝑄, 𝑅)-space with 𝜏1 = 4.60.
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Figure 5: The projection of the phase portrait of system (69) in(𝑆, 𝐸, 𝑉)-space with 𝜏2 = 3.65.
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Figure 6: The projection of the phase portrait of system (69) in(𝐼, 𝑄, 𝑅)-space with 𝜏2 = 3.65.
from the viral equilibrium point to a limit cycle. This makes
spreading of the computer viruses be out of control.

Similarly, we have the following: 𝜔20 = 1.8255 and 𝜏20 =3.7424when 𝜏1 = 0 and 𝜏2 > 0;𝜔∗10 = 0.9665 and 𝜏∗10 = 3.1862
when 𝜏1 > 0 and 𝜏2 = 2.25 ∈ (0, 𝜏20); 𝜔∗20 = 2.4217 and𝜏∗20 = 3.0254 when 𝜏2 > 0 and 𝜏1 = 2.45 ∈ (0, 𝜏10). The
corresponding phase plots are shown in Figures 5–8, Figures
9–12, and Figures 13–16, respectively. In addition, for 𝜏2 > 0
and 𝜏1 = 2.45 ∈ (0, 𝜏10), we have𝐶1(0) = −17.2982+𝑖13.5056
and𝜆󸀠(𝜏∗20) = 0.3796+𝑖2.0581 by some complex computation.
Based on (68), we get 𝜇2 = 45.5692 > 0, 𝜌2 = −34.5964 < 0,
and 𝑇2 = −14.6441 < 0. Therefore, the Hopf bifurcation is
supercritical, the bifurcating periodic solutions are stable, and
the period of the bifurcating periodic solutions decreases.

According to the numerical simulation results, we know
that the time delay should remain less than the corresponding
threshold in order to control and predict the viruses’ propa-
gation by decreasing the period that antivirus software uses
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Figure 7: The projection of the phase portrait of system (69) in(𝑆, 𝐸, 𝑉)-space with 𝜏2 = 3.805.
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Figure 8: The projection of the phase portrait of system (69) in(𝐼, 𝑄, 𝑅)-space with 𝜏2 = 3.805.
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Figure 9: The projection of the phase portrait of system (69) in(𝑆, 𝐸, 𝑉)-space with 𝜏1 = 2.86 and 𝜏2 = 2.25 ∈ (0, 𝜏20).
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Figure 10: The projection of the phase portrait of system (69) in(𝐼, 𝑄, 𝑅)-space with 𝜏1 = 2.86 and 𝜏2 = 2.25 ∈ (0, 𝜏20).
to clean the computer viruses and the temporary immunity
period of the recovered and the vaccinated computers. To
this end, we can adjust the parameters of our proposed
model in real-world networks, such as timely updating the
antivirus software on computers, properly controlling the
number of computers attached to the network, and timely
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Figure 11: The projection of the phase portrait of system (69) in(𝑆, 𝐸, 𝑉)-space with 𝜏1 = 3.574 and 𝜏2 = 2.25 ∈ (0, 𝜏20).
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Figure 12: The projection of the phase portrait of system (69) in(𝐼, 𝑄, 𝑅)-space with 𝜏1 = 3.574 and 𝜏2 = 2.25 ∈ (0, 𝜏20).
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Figure 13: The projection of the phase portrait of system (69) in(𝑆, 𝐸, 𝑉)-space with 𝜏2 = 2.862 and 𝜏1 = 2.45 ∈ (0, 𝜏10).
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Figure 14: The projection of the phase portrait of system (69) in(𝐼, 𝑄, 𝑅)-space with 𝜏2 = 2.862 and 𝜏1 = 2.45 ∈ (0, 𝜏10).
disconnecting computers from the network when the con-
nections are unnecessary. Of course, in the next step, we also
need to collect large amount of relevant data and estimate
the parameters involved in our proposed model through
statistical analysis in real-world networks. Namely, we have
to adjust the parameters in the model so as to control viruses’
propagation effectively if it is necessary.
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Figure 15: The projection of the phase portrait of system (69) in(𝑆, 𝐸, 𝑉)-space with 𝜏2 = 3.225 and 𝜏1 = 2.45 ∈ (0, 𝜏10).
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Figure 16: The projection of the phase portrait of system (69) in(𝐼, 𝑄, 𝑅)-space with 𝜏2 = 3.225 and 𝜏1 = 2.45 ∈ (0, 𝜏10).
5. Conclusions

It is definitely an interesting work to consider the effect of
delays ondynamical systems, because a stability switch occurs
even when an ignored delay is small for a dynamical system.
Based on this fact, we introduce the time delay due to the
period that antivirus software uses to clean the computer
viruses in the infectious and quarantined computers (𝜏1) and
the time delay due to the temporary immunity period of
the recovered and the vaccinated computers (𝜏2) into the
SEIQRS-V computer virus propagation model considered in
[21]. We obtain some conditions for local stability and Hopf
bifurcation occurring by analyzing distribution of roots of the
associated characteristic equation.

By computation, there exists a corresponding critical
value of the time delay below which system (2) is stable and
abovewhich system (2) is unstable.When the system is stable,
the characteristics of the propagation of computer viruses
can be easily predicted and then the computer viruses can
get eliminated. Otherwise, the propagation of the computer
viruses is out of control. Therefore, stability of the computer
virus propagation system must be guaranteed in practice.
In addition, we find that the effect of 𝜏2 on system (2) is
marked compared with 𝜏1, because the critical value of 𝜏2 is
much smaller when we only consider it. At last, we have also
derived the explicit formula which can determine direction
and stability of the Hopf bifurcation under the case where𝜏1 ∈ (0, 𝜏10) and 𝜏2 > 0.
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Disruptive computer viruses have inflicted huge economic losses.This paper addresses the development of a cost-effective dynamic
control strategy of disruptive viruses. First, the development problem ismodeled as an optimal control problem. Second, a criterion
for the existence of an optimal control is given.Third, the optimality system is derived. Next, some examples of the optimal dynamic
control strategy are presented. Finally, the performance of actual dynamic control strategies is evaluated.

1. Introduction

The proliferation of computer networks has brought huge
benefits to human society. Meanwhile, it offers a shortcut to
spread computer viruses, inflicting large economic losses [1].
Consequently, containing the prevalence of digital viruses has
been one of the major concerns in the field of cybersecurity.
The spreading dynamics of computer virus has been widely
adopted as the standard method for assessing the viral
prevalence [2]. Since the seminal work by Kephart andWhite
[3, 4], a multitude of computer virus-spreading models,
ranging from the population-level models [5–12] and the
network-level models [13–17] to the node-level models [18–
22], have been proposed.

One of the central tasks in cybersecurity is to develop
control strategies of computer virus so that, subject to
limited budgets, the losses caused by computer infections
are minimized [23]. In recent years, the optimal design
problem of virus control strategies has been modeled as
static optimization problems [24–28]. The optimal static
control strategies, however, only apply to the small-timescale
situations where the network state keeps unchanged. In the
realistic situations where the network state is varying over
time, the optimal design problem of virus control strategies

can be modeled as dynamic optimal control problems [29–
33].The optimal dynamic control strategies outperform their
static counterparts, because the former not only are more
cost-effective but apply to different timescales.

A disruptive computer virus is defined as a computer
virus whose life period consists of two consecutive phases:
the latent phase and the disruptive phase. In the latent phase,
a disruptive virus staying in a host does not perform any
disruptive operations. Rather, the virus tries to infect as
many hosts as possible by sending its copies to them. In the
disruptive phase, a disruptive virus staying in a host performs
a variety of operations that disrupt the host, such as distorting
data, deleting data or files, and destroying the operating
system. To assess the prevalence of disruptive viruses, a
number of virus-spreading models, which are referred to as
the Susceptible-Latent-Bursting-Susceptible (SLBS) models,
have been suggested [34–38]. The main distinction between
the SLBS models and the traditional SEIS models lies in
that the latent hosts in the former possess strong infecting
capability, whereas the exposed individuals in the latter
possess no infecting capability at all. Recently, the basic SLBS
models have been extended towards different directions [39–
43]. At the population-level, Chen et al. [44] developed an
optimal dynamic control strategy of disruptive viruses.
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All of the above-mentioned SLBSmodels are population-
level; that is, they are based on the assumption that every
infected host in the population is equally likely to infect
any other susceptible host. These models have two striking
defects: (a) the personalized features of different hosts cannot
be taken into consideration and (b) the impact of the struc-
ture of the virus-propagating network on the viral prevalence
cannot be revealed by studying the models. To overcome
these defects, Yang et al. [45] presented a node-level SLBS
model. In our opinion, optimal dynamic control strategies of
disruptive viruses should be developed at the node-level, so
as to achieve the best cost-efficiency.

This paper is intended to develop at the node-level an
optimal dynamic control strategy of disruptive computer
viruses. First, the development problem is modeled as an
optimal control problem. Second, a criterion for the existence
of an optimal control for the optimal control problem is given.
Third, the optimality system for the optimal control problem
is presented. Next, some exemplar optimal dynamic control
strategies are given. Finally, the difference between the cost-
efficiency of an arbitrary control strategy and that of the
optimal dynamic strategy is estimated.

The subsequent materials of this work are organized as
follows. Section 2 presents the preliminary knowledge on
optimal control theory. Sections 3 and 4 formulate and study
the optimal control problem, respectively. Some numerical
examples are given in Section 5. Section 6 estimates the
aforementioned difference. Finally, Section 7 closes this work.

2. Fundamental Knowledge

For fundamental knowledge on optimal control theory, see
[46].

Consider the following optimal control problem.

Minimize
u(⋅)∈U

𝐽 (u (𝑡))
= ∫𝑇
0
𝐹 (x (𝑡) , u (𝑡)) 𝑑𝑡

subject to 𝑑x (𝑡)𝑑𝑡 = f (x (𝑡) , u (𝑡)) ,
0 ≤ 𝑡 ≤ 𝑇.

(P)

Lemma 1. Problem (P) has an optimal control if the following
five conditions hold simultaneously.

(C1) U is closed and convex.

(C2) There is u(⋅) ∈ U such that the adjunctive dynamical
system is solvable.

(C3) f(x, u) is bounded by a linear function in x.

(C4) 𝐹(x, u) is convex onU.

(C5) 𝐹(x, u) ≥ 𝑐1‖u‖𝜌 + 𝑐2 for some vector norm ‖ ⋅ ‖, 𝜌 >1, 𝑐1 > 0, and 𝑐2.

3. Formulation of the Optimal
Control Problem

Consider a population of𝑁 hosts (nodes) labelled 1, 2, . . . , 𝑁.
As with the traditional SLBS models, assume that at any time
every node in the population is in one of three possible states:
susceptible, latent, and disruptive. Susceptible nodes are those
that are not infected with any disruptive computer virus.
Latent nodes are those that are infected with some disruptive
viruses and all of them are in the latent phase. Disruptive
nodes are those that are infected with some disruptive viruses
and some of them are in the disruptive phase. Let 𝑋𝑖(𝑡) = 0,
1, and 2 denote that at time 𝑡 node 𝑖 is susceptible, latent, and
disruptive, respectively. Let

𝑆𝑖 (𝑡) = Pr {𝑋𝑖 (𝑡) = 0} ,
𝐿 𝑖 (𝑡) = Pr {𝑋𝑖 (𝑡) = 1} ,
𝐵𝑖 (𝑡) = Pr {𝑋𝑖 (𝑡) = 2} .

(1)

As 𝑆𝑖(𝑡) + 𝐿 𝑖(𝑡) + 𝐵𝑖(𝑡) ≡ 1 (1 ≤ 𝑖 ≤ 𝑁), the vector

I (𝑡)
= (𝐿1 (𝑡) , . . . , 𝐿𝑁 (𝑡) , 𝐵1 (𝑡) , . . . , 𝐵𝑁 (𝑡))𝑇 (2)

probabilistically captures the state of the population at time 𝑡.
Suppose a dynamic control strategy will be carried out

during the time frame [0, 𝑇]. Let us impose a set of statistical
hypotheses as follows.

(H1) A susceptible node 𝑖 is infected by a latent node 𝑗 at
rate 𝛽𝐿,𝑖𝑗 ≥ 0. Let A𝐿 = (𝛽𝐿,𝑖𝑗)𝑁×𝑁.

(H2) A susceptible node 𝑖 is infected by a disruptive node 𝑗
at rate 𝛽𝐵,𝑖𝑗 ≥ 0. Let A𝐵 = (𝛽𝐵,𝑖𝑗)𝑁×𝑁.

(H3) Due to the outburst of latent viruses, a latent node 𝑖
becomes disruptive at rate 𝛼𝑖 > 0. Let 𝛼 = max𝑖 𝛼𝑖.

(H4) Due to the action of new patches, at time 𝑡 a latent
node 𝑖 becomes susceptible at a controllable rate𝛾𝐿,𝑖(𝑡) ∈ 𝐿2[0, 𝑇] and 𝛾𝐿 ≤ 𝛾𝐿,𝑖(𝑡) ≤ 𝛾𝐿. Hereafter,
the symbol 𝐿2[0, 𝑇] stands for the set of all Lebesgue
square integrable functions defined on the interval[0, 𝑇]. Moreover, the cost needed to achieve the
rate at the infinitesimal time interval [𝑡, 𝑡 + 𝑑𝑡) is𝑝𝑖𝛾𝜃𝐿,𝑖(𝑡)𝑑𝑡, 𝑝𝑖 > 0, and 𝜃 > 0. This accords with the
intuition that the cost increases with 𝛾𝐿,𝑖(𝑡).

(H5) Due to the action of new patches, at time 𝑡 a disruptive
node 𝑖 becomes susceptible at a controllable rate𝛾𝐵,𝑖(𝑡) ∈ 𝐿2[0, 𝑇] and 𝛾𝐵 ≤ 𝛾𝐵,𝑖(𝑡) ≤ 𝛾𝐵. Moreover,
the cost needed to achieve the rate at the infinitesimal
time interval [𝑡, 𝑡 + 𝑑𝑡) is 𝑞𝑖𝛾𝜃𝐵,𝑖(𝑡)𝑑𝑡, 𝑞𝑖 > 0. This
conforms to the intuition that the cost increases with𝛾𝐵,𝑖(𝑡).

Figure 1 shows hypotheses (H1)–(H5) schematically.
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Figure 1: Diagram of assumptions (H1)–(H5).

Let Δ𝑡 > 0 denote a very small time interval. Hypotheses
(H1)–(H5) imply the following relations.

Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 1 | 𝑋𝑖 (𝑡) = 0}
= Δ𝑡 𝑁∑
𝑗=1

𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡) + Δ𝑡 𝑁∑
𝑗=1

𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡) + 𝑜 (Δ𝑡) ,
Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 2 | 𝑋𝑖 (𝑡) = 0} = 𝑜 (Δ𝑡) ,
Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 2 | 𝑋𝑖 (𝑡) = 1} = 𝛼𝑖Δ𝑡 + 𝑜 (Δ𝑡) ,
Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 0 | 𝑋𝑖 (𝑡) = 1} = 𝛾𝐿,𝑖 (𝑡) Δ𝑡 + 𝑜 (Δ𝑡) ,
Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 0 | 𝑋𝑖 (𝑡) = 2} = 𝛾𝐵,𝑖 (𝑡) Δ𝑡 + 𝑜 (Δ𝑡) ,
Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 1 | 𝑋𝑖 (𝑡) = 2} = 𝑜 (Δ𝑡) .

(3)

As a result, we have

Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 0 | 𝑋𝑖 (𝑡) = 0}
= 1 − Δ𝑡 𝑁∑

𝑗=1

𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡)

− Δ𝑡 𝑁∑
𝑗=1

𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡) + 𝑜 (Δ𝑡) ,
Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 1 | 𝑋𝑖 (𝑡) = 1}

= 1 − 𝛼𝑖Δ𝑡 − 𝛾𝐿,𝑖 (𝑡) Δ𝑡 + 𝑜 (Δ𝑡) ,
Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 2 | 𝑋𝑖 (𝑡) = 2}

= 1 − 𝛾𝐵,𝑖 (𝑡) Δ𝑡 + 𝑜 (Δ𝑡) .

(4)

By the total probability formula, we get

𝐿 𝑖 (𝑡 + Δ𝑡)
= 𝑆𝑖 (𝑡)Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 1 | 𝑋𝑖 (𝑡) = 0}
+ 𝐿 𝑖 (𝑡)Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 1 | 𝑋𝑖 (𝑡) = 1}
+ 𝐵𝑖 (𝑡)Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 1 | 𝑋𝑖 (𝑡) = 2}

= [1 − 𝐿 𝑖 (𝑡) − 𝐵𝑖 (𝑡)] Δ𝑡 𝑁∑
𝑗=1

[𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡)]
+ 𝐿 𝑖 (𝑡) − Δ𝑡 [𝛼𝑖 + 𝛾𝐿,𝑖 (𝑡)] 𝐿 𝑖 (𝑡) + 𝑜 (Δ𝑡) ,

𝐵𝑖 (𝑡 + Δ𝑡)
= 𝑆𝑖 (𝑡)Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 2 | 𝑋𝑖 (𝑡) = 0}
+ 𝐿 𝑖 (𝑡)Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 2 | 𝑋𝑖 (𝑡) = 1}
+ 𝐵𝑖 (𝑡)Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 2 | 𝑋𝑖 (𝑡) = 2}

= 𝛼𝑖Δ𝑡𝐿 𝑖 (𝑡) + 𝐵𝑖 (𝑡) − 𝛾𝐵,𝑖 (𝑡) Δ𝑡𝐵𝑖 (𝑡) + 𝑜 (Δ𝑡) .

(5)

Transposing the terms 𝐿 𝑖(𝑡) and 𝐵𝑖(𝑡) from the right to the
left and dividing both sides by Δ𝑡, we get
𝐿 𝑖 (𝑡 + Δ𝑡) − 𝐿 𝑖 (𝑡)Δ𝑡
= [1 − 𝐿 𝑖 (𝑡) − 𝐵𝑖 (𝑡)] 𝑁∑

𝑗=1

[𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡)]
− [𝛼𝑖 + 𝛾𝐿,𝑖 (𝑡)] 𝐿 𝑖 (𝑡) + 𝑜 (Δ𝑡)Δ𝑡 ,

𝐵𝑖 (𝑡 + Δ𝑡) − 𝐵𝑖 (𝑡)Δ𝑡 = 𝛼𝑖𝐿 𝑖 (𝑡) − 𝛾𝐵,𝑖 (𝑡) 𝐵𝑖 (𝑡) + 𝑜 (Δ𝑡)Δ𝑡 .

(6)

Letting Δ𝑡 → 0, we get the following dynamical model.

𝑑𝐿 𝑖 (𝑡)𝑑𝑡
= [1 − 𝐿 𝑖 (𝑡) − 𝐵𝑖 (𝑡)] 𝑁∑

𝑗=1

[𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡)]
− [𝛼𝑖 + 𝛾𝐿,𝑖 (𝑡)] 𝐿 𝑖 (𝑡) ,

𝑑𝐵𝑖 (𝑡)𝑑𝑡 = 𝛼𝑖𝐿 𝑖 (𝑡) − 𝛾𝐵,𝑖 (𝑡) 𝐵𝑖 (𝑡) ,

(7)
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where 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑁. We refer to the model as the
controlled SLBS model, where the control,

𝛾 (𝑡) = (𝛾𝐿,1 (𝑡) , . . . , 𝛾𝐿,𝑁 (𝑡) , 𝛾𝐵,1 (𝑡) , . . . ,
𝛾𝐵,𝑁 (𝑡))𝑇 ,

(8)

stands for a dynamic control strategy of disruptive computer
viruses. The admissible set of controls is

Γ = {𝛾 (𝑡) ∈ (𝐿2 [0, 𝑇])2𝑁 | 𝛾𝐿 ≤ 𝛾𝐿,𝑖 (𝑡)
≤ 𝛾𝐿, 𝛾𝐵 ≤ 𝛾𝐵,𝑖 (𝑡) ≤ 𝛾𝐵, 0 ≤ 𝑡 ≤ 𝑇, 1
≤ 𝑖 ≤ 𝑁} .

(9)

Model (7) can be written in matrix notation as

𝑑I (𝑡)𝑑𝑡 = f (I (𝑡) , 𝛾 (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇. (10)

Given a dynamic control strategy 𝛾(⋅). The total loss can
be measured by ∫𝑇

0
∑𝑁𝑖=1[𝐿 𝑖(𝑡) + 𝐵𝑖(𝑡)]𝑑𝑡, and the total cost

can be gauged by ∫𝑇
0
∑𝑁𝑖=1[𝑝𝑖𝛾𝜃𝐿,𝑖(𝑡) + 𝑞𝑖𝛾𝜃𝐵,𝑖(𝑡)]𝑑𝑡. As a result,

the performance of a dynamic control strategy 𝛾(⋅) can be
measured by

𝐽 (𝛾 (⋅)) = ∫𝑇
0

𝑁∑
𝑖=1

[𝐿 𝑖 (𝑡) + 𝐵𝑖 (𝑡)
+ 𝑝𝑖𝛾𝜃𝐿,𝑖 (𝑡) + 𝑞𝑖𝛾𝜃𝐵,𝑖 (𝑡)] 𝑑𝑡.

(11)

Hence, developing an optimal dynamic control strategy of
disruptive viruses can be modeled as solving the following
optimal control problem.

Minimiz
𝛾(⋅)∈Γ

e 𝐽 (𝛾 (⋅)) = ∫𝑇
0

𝑁∑
𝑖=1

[𝐿 𝑖 (𝑡) + 𝐵𝑖 (𝑡) + 𝑝𝑖𝛾𝜃𝐿,𝑖 (𝑡) + 𝑞𝑖𝛾𝜃𝐵,𝑖 (𝑡)] 𝑑𝑡
subject to 𝑑I (𝑡)𝑑𝑡 = f (I (𝑡) , 𝛾 (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇,

I (0) = I0.
(P∗)

A solution to the optimal control problem (P∗) stands for
an optimal dynamic control strategy of disruptive viruses. For
convenience, let

𝐹 (I (𝑡) , 𝛾 (𝑡)) = 𝑁∑
𝑖=1

[𝐿 𝑖 (𝑡) + 𝐵𝑖 (𝑡)
+ 𝑝𝑖𝛾𝜃𝐿,𝑖 (𝑡) + 𝑞𝑖𝛾𝜃𝐵,𝑖 (𝑡)] .

(12)

4. A Theoretical Study of the Optimal
Control Problem

In this section, we shall study the optimal control problem(P∗) presented in the previous section.

4.1. Existence of an Optimal Control. As a solution to the
optimal control problem (P∗) stands for an optimal dynamic
control strategy of disruptive viruses, it is critical to show that
there is such an optimal control. For that purpose, let us show
that the five conditions in Lemma 1 hold true simultaneously.

Lemma 2. The admissible set Γ is closed.

Proof. Let 𝛾(𝑡) = (𝛾𝐿,1(𝑡), . . . , 𝛾𝐿,𝑁(𝑡), 𝛾𝐵,1(𝑡), . . . , 𝛾𝐵,𝑁(𝑡))𝑇 be
a limit point of Γ,

𝛾(𝑛) (𝑡) = (𝛾(𝑛)𝐿,1 (𝑡) , . . . , 𝛾(𝑛)𝐿,𝑁 (𝑡) , 𝛾(𝑛)𝐵,1 (𝑡) , . . . ,
𝛾(𝑛)𝐵,𝑁 (𝑡))𝑇 , 𝑛 = 1, 2, . . . , (13)

a sequence of points in Γ such that󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝛾(𝑛) (𝑡) − 𝛾 (𝑡)󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
= [[∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛾(𝑛) (𝑡) − 𝛾 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝑡]]
1/2

< 1𝑛 .
(14)

The completeness of (𝐿2(0, 𝑇))2𝑁 implies 𝛾(𝑡) ∈ 𝐿2(0, 𝑇)2𝑁.
Hence, the claim follows from the observation that

𝛾𝐿 ≤ 𝛾𝐿,𝑖 (𝑡) = lim
𝑛→∞

𝛾(𝑛)𝐿,𝑖 (𝑡) ≤ 𝛾𝐿,
𝛾𝐵 ≤ 𝛾𝐵,𝑖 (𝑡) = lim

𝑛→∞
𝛾(𝑛)𝐵,𝑖 (𝑡) ≤ 𝛾𝐵,

1 ≤ 𝑖 ≤ 𝑁.
(15)

Lemma 3. The admissible set Γ is convex.
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Proof. Let

𝛾(1) (𝑡) = (𝛾(1)𝐿,1 (𝑡) , . . . , 𝛾(1)𝐿,𝑁 (𝑡) , 𝛾(1)𝐵,1 (𝑡) , . . . , 𝛾(1)𝐵,𝑁 (𝑡))𝑇
∈ Γ,

𝛾(2) (𝑡) = (𝛾(2)𝐿,1 (𝑡) , . . . , 𝛾(2)𝐿,𝑁 (𝑡) , 𝛾(2)𝐵,1 (𝑡) , . . . , 𝛾(2)𝐵,𝑁 (𝑡))𝑇
∈ Γ,

(16)

and 0 < 𝜅 < 1. As (𝐿2[0, 𝑇])2𝑁 is a real vector space, we get
(1 − 𝜅) 𝛾(1) (𝑡) + 𝜅𝛾(2) (𝑡)
∈ (𝐿2 [0, 𝑇])2𝑁 . (17)

So, the claim follows from the observation that

𝛾𝐿 ≤ (1 − 𝜅) 𝛾(1)𝐿,𝑖 (𝑡) + 𝜅𝛾(2)𝐿,𝑖 (𝑡) ≤ 𝛾𝐿,
𝛾𝐵 ≤ (1 − 𝜅) 𝛾(1)𝐵,𝑖 (𝑡) + 𝜅𝛾(2)𝐵,𝑖 (𝑡) ≤ 𝛾𝐵,

1 ≤ 𝑖 ≤ 𝑁.
(18)

Lemma 4. There is 𝛾 ∈ Γ such that model (7) is solvable.

Proof. Substituting 𝛾(𝑡) ≡ 𝛾 = (𝛾𝐿, . . . , 𝛾𝐿, 𝛾𝐵, . . . , 𝛾𝐵)𝑇 into
model (7), we get

𝑑I (𝑡)𝑑𝑡 = f (I (𝑡) , 𝛾) , 0 ≤ 𝑡 ≤ 𝑇. (19)

As f(I, 𝛾) is continuously differentiable, the claim follows
from the Continuation Theorem for Differential Systems
[47].

Lemma 5. f(I, 𝛾) is bounded by a linear function in I.

Proof. The claim follows from the observation that, for 𝑖 =1, 2, . . . , 𝑁,

(1 − 𝐿 𝑖 − 𝐵𝑖) 𝑁∑
𝑗=1

(𝛽𝐿,𝑖𝑗𝐿𝑗 + 𝛽𝐵,𝑖𝑗𝐵𝑗)
− (𝛼𝑖 + 𝛾𝐿,𝑖) 𝐿 𝑖 ≤ 𝑁∑

𝑗=1

𝛽𝐿,𝑖𝑗𝐿𝑗
+ 𝑁∑
𝑗=1

𝛽𝐵,𝑖𝑗𝐵𝑗 − (𝛼𝑖 + 𝛾𝐿) 𝐿 𝑖,
𝛼𝑖𝐿 𝑖 − 𝛾𝐵,𝑖𝐵𝑖 ≤ 𝛼𝑖𝐿 𝑖 − 𝛾𝐵𝐵𝑖.

(20)

Lemma 6. 𝐹(I, 𝛾) is convex on Γ if 𝜃 ≥ 1.
Proof. TheHessian of 𝐹 with respect to 𝛾,

[[[[[[[[[[[[[[[[[[[[[[

𝜕2𝐹𝜕𝛾2𝐿,1 ⋅ ⋅ ⋅ 𝜕2𝐹𝜕𝛾𝐿,1𝜕𝛾𝐿,𝑁 𝜕2𝐹𝜕𝛾𝐿,1𝜕𝛾𝐵,1 ⋅ ⋅ ⋅ 𝜕2𝐹𝜕𝛾𝐿,1𝜕𝛾𝐵,𝑁... d
... ... d

...𝜕2𝐹𝜕𝛾𝐿,𝑁𝜕𝛾𝐿,1 ⋅ ⋅ ⋅ 𝜕2𝐹𝜕𝛾2𝐿,𝑁 𝜕2𝐹𝜕𝛾𝐿,𝑁𝜕𝛾𝐵,1 ⋅ ⋅ ⋅ 𝜕2𝐹𝜕𝛾𝐿,𝑁𝜕𝛾𝐵,𝑁𝜕2𝐹𝜕𝛾𝐵,1𝜕𝛾𝐿,1 ⋅ ⋅ ⋅ 𝜕2𝐹𝜕𝛾𝐵,1𝜕𝛾𝐿,𝑁 𝜕2𝐹𝜕𝛾2𝐵,1 ⋅ ⋅ ⋅ 𝜕2𝐹𝜕𝛾𝐵,1𝜕𝛾𝐵,𝑁... d
... ... d

...
𝜕2𝐹𝜕𝛾𝐵,𝑁𝜕𝛾𝐿,1 ⋅ ⋅ ⋅ 𝜕2𝐹𝜕𝛾𝐵,𝑁𝜕𝛾𝐿,𝑁 𝜕2𝐹𝜕𝛾𝐵,𝑁𝜕𝛾𝐵,1 ⋅ ⋅ ⋅ 𝜕2𝐹𝜕𝛾2𝐵,𝑁

]]]]]]]]]]]]]]]]]]]]]]

= 𝜃 (𝜃 − 1)
[[[[[[[[[[[[[[

𝑝1𝛾𝜃−2𝐿,1 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0... d
... ... d

...0 ⋅ ⋅ ⋅ 𝑝𝑁𝛾𝜃−2𝐿,𝑁 0 ⋅ ⋅ ⋅ 00 ⋅ ⋅ ⋅ 0 𝑞1𝛾𝜃−2𝐵,1 ⋅ ⋅ ⋅ 0... d
... ... d

...0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 𝑞𝑁𝛾𝜃−2𝐵,𝑁

]]]]]]]]]]]]]]

,

(21)
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is always positive semidefinite. This implies the convexity of𝐹.
Lemma 7. 𝐹(I, 𝛾) ≥ min𝑖{𝑐𝑖, 𝑑𝑖}‖I‖𝜃𝜃, where ‖ ⋅‖𝜃 stands for the𝜃-norm of vectors.

Proof. We have

𝐹 (I, 𝛾) = 𝑁∑
𝑖=1

(𝐿 𝑖 + 𝐵𝑖 + 𝑝𝑖𝛾𝜃𝐿,𝑖 + 𝑞𝑖𝛾𝜃𝐵,𝑖)
≥ min
1≤𝑖≤𝑁

{𝑝𝑖, 𝑞𝑖} 𝑁∑
𝑖=1

(𝛾𝜃𝐿,𝑖 + 𝛾𝜃𝐵,𝑖)
= min
1≤𝑖≤𝑁

{𝑝𝑖, 𝑞𝑖} 󵄩󵄩󵄩󵄩󵄩I󵄩󵄩󵄩󵄩󵄩𝜃𝜃 .
(22)

We are ready to present themain result of this subsection.

Theorem 8. Problem (P∗) has an optimal control if 𝜃 > 1.
Proof. Lemmas 2–7 show that the five conditions in Lemma 1
are all met. Hence, the existence of an optimal control follows
from Lemma 1.

4.2. The Optimality System. As the optimality system for the
optimal control problem (P∗) offers amethod for numerically
solving the problem, it is critical to determine the optimality
system. For that purpose, consider the corresponding Hamil-
tonian

𝐻(I (𝑡) , 𝛾 (𝑡) , 𝜆 (𝑡))
= 𝑁∑
𝑖=1

[𝐿 𝑖 (𝑡) + 𝐵𝑖 (𝑡) + 𝑝𝑖𝛾𝜃𝐿,𝑖 (𝑡) + 𝑞𝑖𝛾𝜃2𝑖 (𝑡)]
+ 𝑁∑
𝑖=1

𝜆𝐿,𝑖 (𝑡)

⋅ {{{[1 − 𝐿 𝑖 (𝑡) − 𝐵𝑖 (𝑡)]
𝑁∑
𝑗=1

[𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡)]

− [𝛼𝑖 + 𝛾𝐿,𝑖 (𝑡)] 𝐿 𝑖 (𝑡)}}} + 𝑁∑
𝑖=1

𝜆𝐵,𝑖 (𝑡) [𝛼𝑖𝐿 𝑖 (𝑡)
− 𝛾𝐵,𝑖 (𝑡) 𝐵𝑖 (𝑡)] ,

(23)

where 𝜆(⋅) = (𝜆𝐿,1(⋅), . . . , 𝜆𝐿,𝑁(⋅), 𝜆𝐵,1(⋅), . . . , 𝜆𝐵,𝑁(⋅))𝑇 is the
adjoint.

Theorem 9. Suppose 𝛾∗(⋅) is an optimal control for problem(P∗) with 𝜃 > 1; I∗(⋅) is the solution to the controlled SLBS

model with 𝛾(⋅) = 𝛾∗(⋅).Then, there exists𝜆∗(⋅)with𝜆∗(𝑇) = 0
such that

𝑑𝜆∗𝐿,𝑖 (𝑡)𝑑𝑡 = −1 + 𝜆∗𝐿,𝑖 (𝑡){{{{{
𝛼𝑖 + 𝛾∗𝐿,𝑖 (𝑡)

+ 𝑁∑
𝑗=1

[𝛽𝐿,𝑖𝑗𝐿∗𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵∗𝑗 (𝑡)]}}}}}
− 𝑁∑
𝑗=1

𝛽𝐿,𝑗𝑖 [1 − 𝐿∗𝑗 (𝑡) − 𝐵∗𝑗 (𝑡)] 𝜆∗𝐿,𝑗 (𝑡)
− 𝛼𝑖𝜆∗𝐵,𝑖 (𝑡) ,

𝑑𝜆∗𝐵,𝑖 (𝑡)𝑑𝑡 = −1 + 𝛾∗𝐵,𝑖 (𝑡) 𝜆∗𝐵,𝑖 (𝑡) + 𝜆∗𝐿,𝑖 (𝑡)
⋅ 𝑁∑
𝑗=1

[𝛽𝐿,𝑖𝑗𝐿∗𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵∗𝑗 (𝑡)]
−∑
𝑗

𝛽𝐵,𝑗𝑖 [1 − 𝐿∗𝑗 (𝑡) − 𝐵∗𝑗 (𝑡)] 𝜆∗𝐿,𝑗 (𝑡) ,
𝛾∗𝐿,𝑖 (𝑡)

= max
{{{{{
min

{{{{{
[[
𝜆∗𝐿,𝑖 (𝑡) 𝐿∗𝑖 (𝑡)𝜃𝑝𝑖 ]]

1/(𝜃−1)

,

𝛾𝐿}}}}}
, 𝛾𝐿}}}}}

,
𝛾∗𝐵,𝑖 (𝑡)

= max
{{{{{
min

{{{{{
[[
𝜆∗𝐵,𝑖 (𝑡) 𝐵∗𝑖 (𝑡)𝜃𝑞𝑖 ]]

1/(𝜃−1)

,

𝛾𝐵}}}}}
, 𝛾𝐵}}}}}

,

(24)

where 0 ≤ 𝑡 ≤ 𝑇 and 1 ≤ 𝑖 ≤ 𝑁.

Proof. According to the PontryaginMinimumPrinciple [26],
there exists 𝜆∗(𝑡) such that

𝑑𝜆∗𝐿,𝑖 (𝑡)𝑑𝑡 = −𝜕𝐻 (I∗ (𝑡) , 𝛾∗ (𝑡) , 𝜆∗ (𝑡))𝜕𝐿 𝑖 ,
0 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑁,
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𝑑𝜆∗𝐵,𝑖 (𝑡)𝑑𝑡 = −𝜕𝐻 (I∗ (𝑡) , 𝛾∗ (𝑡) , 𝜆∗ (𝑡))𝜕𝐵𝑖 ,
0 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑁.

(25)

Thus, the first 2𝑁 equations in the claim follow by direct
calculations. As the terminal cost is unspecified and the final
state is free, the transversality condition 𝜆∗(𝑇) = 0 holds. By
using the optimality condition

𝛾∗ (𝑡)
= argmin
𝛾(𝑡)∈Γ

𝐻(I∗ (𝑡) , 𝛾 (𝑡) , 𝜆∗ (𝑡)) , (26)

we get (a) either

𝜕𝐻 (I∗ (𝑡) , 𝛾∗ (𝑡) , 𝜆∗ (𝑡))𝜕𝛾𝐿,𝑖
= 𝜃𝑝𝑖 (𝛾∗𝐿,𝑖 (𝑡))𝜃−1 − 𝜆∗𝐿,𝑖 (𝑡) 𝐿∗𝑖 (𝑡) = 0

(27)

or 𝛾∗𝐿,𝑖(𝑡) = 𝛾𝐿 or 𝛾∗𝐿,𝑖(𝑡) = 𝛾𝐿 and (b) either

𝜕𝐻 (I∗ (𝑡) , 𝛾∗ (𝑡) , 𝜆∗ (𝑡))𝜕𝛾𝐵,𝑖
= 𝜃𝑞𝑖 (𝛾∗𝐵,𝑖 (𝑡))𝜃−1 − 𝜆∗𝐵,𝑖 (𝑡) 𝐵∗𝑖 (𝑡) = 0

(28)

or 𝛾∗𝐵,𝑖(𝑡) = 𝛾𝐵 or 𝛾∗𝐵,𝑖(𝑡) = 𝛾𝐵. So, the last 2𝑁 equations in the
claim follow.

By combining the above discussions, we get the optimality
system for problem (P∗) with 𝜃 > 1 as follows.

𝑑𝐿 𝑖 (𝑡)𝑑𝑡 = [1 − 𝐿 𝑖 (𝑡) − 𝐵𝑖 (𝑡)]
⋅ 𝑁∑
𝑗=1

[𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡)] − [𝛼𝑖
+ 𝛾𝐿,𝑖 (𝑡)] 𝐿 𝑖 (𝑡) ,

𝑑𝐵𝑖 (𝑡)𝑑𝑡 = 𝛼𝑖𝐿 𝑖 (𝑡) − 𝛾𝐵,𝑖 (𝑡) 𝐵𝑖 (𝑡) ,
𝑑𝜆𝐿,𝑖 (𝑡)𝑑𝑡 = −1 + 𝜆𝐿,𝑖 (𝑡){{{{{

𝛼𝑖 + 𝛾𝐿,𝑖 (𝑡)

+ 𝑁∑
𝑗=1

[𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡)]}}}}}

− 𝑁∑
𝑗=1

𝛽𝐿,𝑗𝑖 [1 − 𝐿𝑗 (𝑡) − 𝐵𝑗 (𝑡)] 𝜆𝐿,𝑗 (𝑡)
− 𝛼𝑖𝜆𝐵,𝑖 (𝑡) ,

𝑑𝜆𝐵,𝑖 (𝑡)𝑑𝑡 = −1 + 𝛾𝐵,𝑖 (𝑡) 𝜆𝐵,𝑖 (𝑡) + 𝜆𝐿,𝑖 (𝑡)
⋅ 𝑁∑
𝑗=1

[𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡)]
− 𝑁∑
𝑗=1

𝛽𝐵,𝑗𝑖 [1 − 𝐿𝑗 (𝑡) − 𝐵𝑗 (𝑡)] 𝜆𝐿,𝑗 (𝑡) ,
𝛾𝐿,𝑖 (𝑡)

= max
{{{{{
min

{{{{{
[[
𝜆𝐿,𝑖 (𝑡) 𝐿 𝑖 (𝑡)𝜃𝑝𝑖 ]]

1/(𝜃−1)

,

𝛾𝐿}}}}}
, 𝛾𝐿}}}}}

,
𝛾𝐵,𝑖 (𝑡)

= max
{{{{{
min

{{{{{
[[
𝜆𝐵,𝑖 (𝑡) 𝐵𝑖 (𝑡)𝜃𝑞𝑖 ]]

1/(𝜃−1)

,

𝛾𝐵}}}}}
, 𝛾𝐵}}}}}

,
(29)

where I(0) = I0, 𝜆(𝑇) = 0, 0 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑁.
By applying the forward-backward Euler scheme to the

optimality system, we can obtain the numerical solution to
the optimal control problem (P∗), that is, an optimal dynamic
control strategy of disruptive viruses.

5. Numerical Examples

This section gives some examples of the optimal dynamic
control strategy of disruptive computer viruses. Given a
dynamic control strategy 𝛾(𝑡). Define the average control
(AC) function, the average cumulative loss (ACL) function,
the average cumulative cost (ACC) function, and the average
cumulative performance (ACP) function as follows.

AC (𝑡) = 1𝑁
𝑁∑
𝑖=1

[𝛾𝐿,𝑖 (𝑡) + 𝛾𝐵,𝑖 (𝑡)] ,
0 ≤ 𝑡 ≤ 𝑇,
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ACL (𝑡) = 1𝑁
𝑁∑
𝑖=1

∫𝑡
0
[𝐿 𝑖 (𝑠) + 𝐵𝑖 (𝑠)] 𝑑𝑠,

0 ≤ 𝑡 ≤ 𝑇,
ACC (𝑡) = 1𝑁

𝑁∑
𝑖=1

∫𝑡
0
[𝑝𝑖𝛾𝜃𝐿,𝑖 (𝑠)

+ 𝑞𝑖𝛾𝜃𝐵,𝑖 (𝑠)] 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇,
ACP (𝑡) = 1𝑁

𝑁∑
𝑖=1

∫𝑡
0
[𝐿 𝑖 (𝑠) + 𝐵𝑖 (𝑠)

+ 𝑝𝑖𝛾𝜃𝐿,𝑖 (𝑠) + 𝑞𝑖𝛾𝜃𝐵,𝑖 (𝑠)] 𝑑𝑠,
0 ≤ 𝑡 ≤ 𝑇.

(30)

These functions form an evaluation criterion of dynamic
control strategies of disruptive viruses.

5.1. Scale-Free Network. Scale-free networks are a large class
of networks havingwidespread applications. For our purpose,
generate a scale-free network𝐺with𝑁 = 100nodes using the
Barabasi-Albert method [48].

Example 10. Consider an optimal control problem (P∗) on
the virus-spreading network𝐺, where the parameters and the
initial conditions are set as follows.

(a) 𝑇 = 200, 𝜃 = 2, 𝛾𝐿 = 0, 𝛾𝐿 = 0.2, 𝛾𝐵 = 0.1, and𝛾𝐵 = 0.3.
(b) 𝛽𝐿,𝑖𝑗 = 0.005 and 𝛽𝐵,𝑖𝑗 = 0.001, (𝑖, 𝑗) ∈ 𝐸(𝐺).
(c) 𝛼𝑖 = 0.1 and 𝑝𝑖 = 𝑞𝑖 = 1, 𝑖 ∈ 𝑉(𝐺).
(d) 𝐿 𝑖(0) = 0.1 and 𝐵𝑖(0) = 0, 1 ≤ 𝑖 ≤ 𝑁.

For the optimal dynamic control strategy to the optimal
control problem and some static control strategies, the AC
functions, the ACL functions, the ACC functions, and the
ACP function are shown in Figure 2.

5.2. Small-WorldNetwork. Small-world networks are another
large class of networks having widespread applications. For
our purpose, generate a small-world network𝐺with𝑁 = 100
nodes using the Watts-Strogatz method [49].

Example 11. Consider an optimal control problem (P∗) on
the virus-spreading network𝐺, where the parameters and the
initial conditions are set as follows.

(a) 𝑇 = 200, 𝜃 = 2, 𝛾𝐿 = 0, 𝛾𝐿 = 0.2, 𝛾𝐵 = 0.1, and 𝛾𝐵 =0.3.
(b) 𝛽𝐿,𝑖𝑗 = 0.005 and 𝛽𝐵,𝑖𝑗 = 0.001, (𝑖, 𝑗) ∈ 𝐸(𝐺).
(c) 𝛼𝑖 = 0.1 and 𝑝𝑖 = 𝑞𝑖 = 1, 𝑖 ∈ 𝑉(𝐺).
(d) 𝐿 𝑖(0) = 0.1 and 𝐵𝑖(0) = 0, 1 ≤ 𝑖 ≤ 𝑁.

For the optimal dynamic control strategy to the optimal
control problem and some static control strategies, the AC
functions, the ACL functions, the ACC functions, and the
ACP function are shown in Figure 3.

5.3. Realistic Network. Consider a network 𝐺 with 𝑁 = 300
nodes cut out from the database of Stanford University [50].

Example 12. Consider an optimal control problem (P∗) on
the virus-spreading network𝐺, where the parameters and the
initial conditions are set as follows.

(a) 𝑇 = 200, 𝜃 = 2, 𝛾𝐿 = 0, 𝛾𝐿 = 0.2, 𝛾𝐵 = 0.1, and 𝛾𝐵 =0.3.
(b) 𝛽𝐿,𝑖𝑗 = 0.005 and 𝛽𝐵,𝑖𝑗 = 0.001, (𝑖, 𝑗) ∈ 𝐸(𝐺).
(c) 𝛼𝑖 = 0.1 and 𝑝𝑖 = 𝑞𝑖 = 1, 𝑖 ∈ 𝑉(𝐺).
(d) 𝐿 𝑖(0) = 0.1 and 𝐵𝑖(0) = 0, 1 ≤ 𝑖 ≤ 𝑁.

For the optimal dynamic control strategy to the optimal
control problem and some static control strategies, the AC
functions, the ACL functions, the ACC functions, and the
ACP function are shown in Figure 4.

6. Performance Evaluation

The previous discussions manifest that if the parameters in
the optimal control problem (P∗) are all available, then an
optimal dynamic control strategy can be obtained by numer-
ically solving the optimality system. In realistic scenarios,
however, some of these parameters might be unavailable. In
such situations, it is necessary to estimate the performance of
an actual dynamical control strategy in comparison with that
of the optimal dynamical control strategy. Now let us present
such an estimation.

Theorem 13. Consider the optimal control problem (P∗). Let𝛾∗(⋅) be the optimal dynamic control strategy, 𝛾(⋅) an arbitrary
dynamic control strategy. Then,

󵄨󵄨󵄨󵄨󵄨󵄨𝐽 (𝛾 (⋅)) − 𝐽 (𝛾∗ (⋅))󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2𝑁𝑐1𝑐2 (𝑒𝑐2𝑇 − 1 − 𝑐2𝑇 − 𝑐22𝑇22 )

+ 𝑁∑
𝑖=1

𝑝𝑖 ∫𝑇
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛾𝜃𝐿,𝑖 (𝑡) − 𝛾∗𝜃𝐿,𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑡
+ 𝑁∑
𝑖=1

𝑞𝑖 ∫𝑇
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛾𝜃𝐵,𝑖 (𝑡) − 𝛾∗𝜃𝐵,𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑡,

(31)
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Figure 2: (a) The AC functions, (b) the ACL functions, (c) the ACC functions, and (d) the ACP functions for the optimal dynamic control
strategies in Example 10.

where

𝑐1 = max
{{{{{{{
2max
1≤𝑖≤𝑁

{{{{{
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨𝛽𝐿,𝑖𝑗󵄨󵄨󵄨󵄨󵄨󵄨
}}}}}

+ 2max
1≤𝑖≤𝑁

{{{{{
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨𝛽𝐵,𝑖𝑗󵄨󵄨󵄨󵄨󵄨󵄨
}}}}}
+ 𝛾𝐿 − 𝛾𝐿, 𝛾𝐵

− 𝛾𝐵}}}}}}}
,

𝑐2 = 2max
1≤𝑖≤𝑁

{{{{{
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨𝛽𝐿,𝑖𝑗󵄨󵄨󵄨󵄨󵄨󵄨
}}}}}
+ 𝛼 + 𝛾𝐿

+max
{{{{{{{
2max
1≤𝑖≤𝑁

{{{{{
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨𝛽𝐵,𝑖𝑗󵄨󵄨󵄨󵄨󵄨󵄨}}}}}
, 𝛾𝐵}}}}}}}

.

(32)

Proof. Let ‖ ⋅ ‖ denote the ∞-norm. Let I∗(⋅) = (L∗(⋅)𝑇,
B∗(⋅)𝑇)𝑇 denote the solution to the SLBS model with control𝛾∗(𝑡) and I(⋅) = (L(⋅)𝑇,B(⋅)𝑇)𝑇 the solution to the SLBS
model with control 𝛾(⋅). As

L (𝑡) = L∗0 + ∫𝑡
0
diag (1 − 𝐵𝑖 (𝑠) − 𝐿 𝑖 (𝑠))

⋅ A𝐿L (𝑠) 𝑑𝑠
+ ∫𝑡
0
diag (1 − 𝐵𝑖 (𝑠) − 𝐿 𝑖 (𝑠))

⋅ A𝐵B (𝑠) 𝑑𝑠
− ∫𝑡
0
diag (𝛼𝑖 + 𝛾𝐿,𝑖 (𝑠)) L (𝑠) 𝑑𝑠,

L∗ (𝑡) = L∗0

+ ∫𝑡
0
diag (1 − 𝐵∗𝑖 (𝑠) − 𝐿∗𝑖 (𝑠))

⋅ A𝐿L∗ (𝑠) 𝑑𝑠
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Figure 3: (a) The AC functions, (b) the ACL functions, (c) the ACC functions, and (d) the ACP functions for the optimal dynamic control
strategies in Example 11.

+ ∫𝑡
0
diag (1 − 𝐵∗𝑖 (𝑠) − 𝐿∗𝑖 (𝑠))

⋅ A𝐵B∗ (𝑠) 𝑑𝑠
− ∫𝑡
0
diag (𝛼𝑖 + 𝛾∗𝐿,𝑖 (𝑠)) L∗ (𝑠) 𝑑𝑠,

(33)
we get

L (𝑡) − L∗ (𝑡) = ∫𝑡
0
diag (1 − 𝐵𝑖 (𝑠) − 𝐿 𝑖 (𝑠))

⋅ A𝐿 [L (𝑠) − L∗ (𝑠)] 𝑑𝑠
+ ∫𝑡
0
diag (1 − 𝐵𝑖 (𝑠) − 𝐿 𝑖 (𝑠))

⋅ A𝐵 [B (𝑠) − B∗ (𝑠)] 𝑑𝑠
− ∫𝑡
0
diag (𝐿 𝑖 (𝑠) − 𝐿∗𝑖 (𝑠) + 𝐵𝑖 (𝑠) − 𝐵∗𝑖 (𝑠))

⋅ A𝐿L∗ (𝑠) 𝑑𝑠

− ∫𝑡
0
diag (𝐿 𝑖 (𝑠) − 𝐿∗𝑖 (𝑠) + 𝐵𝑖 (𝑠) − 𝐵∗𝑖 (𝑠))

⋅ A𝐵B∗ (𝑠) 𝑑𝑠 − ∫𝑡
0
diag (𝛼𝑖 + 𝛾𝐿,𝑖 (𝑠))

⋅ [L (𝑠) − L∗ (𝑠)] 𝑑𝑠 − ∫𝑡
0
diag (𝛾𝐿,𝑖 (𝑠) − 𝛾∗𝐿,𝑖 (𝑠))

⋅ L∗ (𝑠) 𝑑𝑠.
(34)

So, 󵄩󵄩󵄩󵄩L (𝑡) − L∗ (𝑡)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩A𝐿󵄩󵄩󵄩󵄩 ∫𝑡
0

󵄩󵄩󵄩󵄩diag (1 − 𝐵𝑖 (𝑠) − 𝐿 𝑖 (𝑠))󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩L (𝑠) − L∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠 + 󵄩󵄩󵄩󵄩A𝐵󵄩󵄩󵄩󵄩
⋅ ∫𝑡
0

󵄩󵄩󵄩󵄩diag (1 − 𝐵𝑖 (𝑠) − 𝐿 𝑖 (𝑠))󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩B (𝑠) − B∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠 + 󵄩󵄩󵄩󵄩A𝐿󵄩󵄩󵄩󵄩
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Figure 4: (a) The AC functions, (b) the ACL functions, (c) the ACC functions, and (d) the ACP functions for the optimal dynamic control
strategies in Example 12.

⋅ ∫𝑡
0

󵄩󵄩󵄩󵄩diag (𝐿 𝑖 (𝑠) − 𝐿∗𝑖 (𝑠) + 𝐵𝑖 (𝑠) − 𝐵∗𝑖 (𝑠))󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩L∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠 + 󵄩󵄩󵄩󵄩A𝐵󵄩󵄩󵄩󵄩
⋅ ∫𝑡
0

󵄩󵄩󵄩󵄩diag (𝐿 𝑖 (𝑠) − 𝐿∗𝑖 (𝑠) + 𝐵𝑖 (𝑠) − 𝐵∗𝑖 (𝑠))󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩B∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠 + ∫𝑡

0

󵄩󵄩󵄩󵄩diag (𝛼𝑖 + 𝛾𝐿,𝑖 (𝑠))󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩L (𝑠) − L∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠
+ ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩diag (𝛾𝐿,𝑖 (𝑠) − 𝛾∗𝐿,𝑖 (𝑠))󵄩󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩L∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠
≤ (2 󵄩󵄩󵄩󵄩A𝐿󵄩󵄩󵄩󵄩 + 2 󵄩󵄩󵄩󵄩A𝐵󵄩󵄩󵄩󵄩 + 𝛾𝐿 − 𝛾𝐿) 𝑡 + (󵄩󵄩󵄩󵄩A𝐿󵄩󵄩󵄩󵄩 + 𝛼 + 𝛾𝐿)

⋅ ∫𝑡
0

󵄩󵄩󵄩󵄩L (𝑠) − L∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠 + 󵄩󵄩󵄩󵄩A𝐵󵄩󵄩󵄩󵄩
⋅ ∫𝑡
0

󵄩󵄩󵄩󵄩B (𝑠) − B∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠.
(35)

As

B (𝑡) = B∗0 + ∫𝑡
0
diag (𝛼𝑖) L (𝑠) 𝑑𝑠

− ∫𝑡
0
diag (𝛾𝐵,𝑖 (𝑠))B (𝑠) 𝑑𝑠,

B∗ (𝑡) = B∗0 + ∫𝑡
0
diag (𝛼𝑖) L∗ (𝑠) 𝑑𝑠

− ∫𝑡
0
diag (𝛾∗𝐵,𝑖 (𝑠)) ⋅ B∗ (𝑠) 𝑑𝑠,

(36)
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we get

B (𝑡) − B∗ (𝑡)
= ∫𝑡
0
diag (𝛼𝑖) [L (𝑠) − L∗ (𝑠)] 𝑑𝑠

− ∫𝑡
0
diag (𝛾𝐵,𝑖 (𝑠)) [B (𝑠) − B∗ (𝑠)] 𝑑𝑠

− ∫𝑡
0
diag (𝛾𝐵,𝑖 (𝑠) − 𝛾∗𝐵,𝑖 (𝑠))B∗ (𝑠) 𝑑𝑠.

(37)

Thus,

󵄩󵄩󵄩󵄩B (𝑡) − B∗ (𝑡)󵄩󵄩󵄩󵄩
≤ ∫𝑡
0

󵄩󵄩󵄩󵄩diag (𝛼𝑖)󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩L (𝑠) − L∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠
+ ∫𝑡
0

󵄩󵄩󵄩󵄩diag (𝛾𝐵,𝑖 (𝑠))󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩B (𝑠) − B∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠
+ ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩diag (𝛾𝐵,𝑖 (𝑠) − 𝛾∗𝐵,𝑖 (𝑠))󵄩󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩B∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠
≤ (𝛾𝐵 − 𝛾𝐵) 𝑡 + 𝛼∫𝑡

0

󵄩󵄩󵄩󵄩L (𝑠) − L∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠
+ 𝛾𝐵 ∫𝑡

0

󵄩󵄩󵄩󵄩B (𝑠) − B∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠.

(38)

As ‖I(𝑡) − I∗(𝑡)‖ = max{‖L(𝑡) −L∗(𝑡)‖, ‖B(𝑡) −B∗(𝑡)‖}, we get
󵄩󵄩󵄩󵄩󵄩󵄩I (𝑡) − I∗ (𝑡)󵄩󵄩󵄩󵄩󵄩󵄩 ≤ max {2 󵄩󵄩󵄩󵄩󵄩A𝐿󵄩󵄩󵄩󵄩󵄩 + 2 󵄩󵄩󵄩󵄩󵄩A𝐵󵄩󵄩󵄩󵄩󵄩
+ 𝛾𝐿 − 𝛾𝐿, 𝛾𝐵 − 𝛾𝐵} 𝑡 + (󵄩󵄩󵄩󵄩󵄩A𝐿󵄩󵄩󵄩󵄩󵄩 + 𝛼
+ 𝛾𝐿)∫𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩L (𝑠) − L∗ (𝑠)󵄩󵄩󵄩󵄩󵄩󵄩 𝑑𝑠
+max {󵄩󵄩󵄩󵄩󵄩A𝐵󵄩󵄩󵄩󵄩󵄩 , 𝛾𝐵}
⋅ ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩󵄩B (𝑠) − B∗ (𝑠)󵄩󵄩󵄩󵄩󵄩󵄩 𝑑𝑠 ≤ 𝑐1𝑡
+ 𝑐2 ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩󵄩I (𝑠) − I∗ (𝑠)󵄩󵄩󵄩󵄩󵄩󵄩 𝑑𝑠.

(39)

Applying the Gronwall inequality [47], we get

󵄩󵄩󵄩󵄩󵄩󵄩I (𝑡) − I∗ (𝑡)󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 𝑐1𝑡 + 𝑐1𝑐2 ∫𝑡0 𝑠𝑒𝑐2(𝑡−𝑠)𝑑𝑠
= 𝑐1𝑐2 (𝑒𝑐2𝑡 − 1 − 𝑐2𝑡) .

(40)

Hence, we deduce that󵄨󵄨󵄨󵄨𝐽 (𝛾 (⋅)) − 𝐽 (𝛾∗ (⋅))󵄨󵄨󵄨󵄨
≤ 𝑁∑
𝑖=1

∫𝑇
0

󵄨󵄨󵄨󵄨𝐿 𝑖 (𝑡) − 𝐿∗𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡
+∑
𝑖

∫𝑇
0

󵄨󵄨󵄨󵄨𝐵𝑖 (𝑡) − 𝐵∗𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡
+∑
𝑖

𝑝𝑖 ∫𝑇
0

󵄨󵄨󵄨󵄨󵄨𝛾𝜃𝐿,𝑖 (𝑡) − 𝛾∗𝜃𝐿,𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡
+ 𝑁∑
𝑖=1

𝑞𝑖 ∫𝑇
0

󵄨󵄨󵄨󵄨󵄨𝛾𝜃𝐵,𝑖 (𝑡) − 𝛾∗𝜃𝐵,𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡
≤ 2𝑁∫𝑇

0

󵄩󵄩󵄩󵄩I (𝑡) − I∗ (𝑡)󵄩󵄩󵄩󵄩 𝑑𝑡
+ 𝑁∑
𝑖=1

𝑝𝑖 ∫𝑇
0

󵄨󵄨󵄨󵄨󵄨𝛾𝜃𝐿,𝑖 (𝑡) − 𝛾∗𝜃𝐿,𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡
+ 𝑁∑
𝑖=1

𝑞𝑖 ∫𝑇
0

󵄨󵄨󵄨󵄨󵄨𝜃𝑘𝑖 (𝑡) − 𝜃∗𝑘𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡
≤ 2𝑁𝑐1𝑐2 (𝑒𝑐2𝑇 − 1 − 𝑐2𝑇 − 𝑐22𝑇22 )
+ 𝑁∑
𝑖=1

𝑝𝑖 ∫𝑇
0

󵄨󵄨󵄨󵄨󵄨𝛾𝜃𝐿,𝑖 (𝑡) − 𝛾∗𝜃𝐿,𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡
+ 𝑁∑
𝑖=1

𝑞𝑖 ∫𝑇
0

󵄨󵄨󵄨󵄨󵄨𝛾𝜃𝐵,𝑖 (𝑡) − 𝛾∗𝜃𝐵,𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡.

(41)

Although this estimation is rough, it takes the first
step towards the accurate performance evaluation of actual
dynamic control strategies of disruptive computer viruses.

7. Conclusions and Remarks

This paper has studied the problem of containing disruptive
computer viruses in a cost-effective way. The problem has
been modeled as an optimal control problem. A criterion
for the existence of an optimal control has been given, and
the optimality system has been derived. Some examples of
the optimal dynamic control strategy have been presented.
Finally, the performance of an actual control strategy of
disruptive viruses has been estimated.

Towards this direction, there are a number of problems
that are worth studying. First, the bandwidth resources
consumed in the virus control process should be measured
and incorporated in the cost. Second, the optimal dynamic
control problem should be investigated under sophisticated
epidemic models such as the impulsive epidemic models
[51, 52], the stochastic epidemic models [53–55], and the
epidemic models on time-varying networks [56–58]. Last,
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it is rewarding to apply the methodology developed in this
paper to the optimal dynamic control of rumor spreading
[59–61].
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This paper studies the nonnegativity and local and global stability properties of the solutions of a newly proposed SEIADR model
which incorporates asymptomatic and dead-infective subpopulations into the standard SEIRmodel and, in parallel, it incorporates
feedback vaccination plus a constant term on the susceptible and feedback antiviral treatment controls on the symptomatic
infectious subpopulation. A third control action of impulsive type (or “culling”) consists of the periodic retirement of all or a
fraction of the lying corpses which can become infective in certain diseases, for instance, the Ebola infection. The three controls
are allowed to be eventually time varying and contain a total of four design control gains. The local stability analysis around both
the disease-free and endemic equilibrium points is performed by the investigation of the eigenvalues of the corresponding Jacobian
matrices. The global stability is formally discussed by using tools of qualitative theory of differential equations by using Gauss-
Stokes and Bendixson theorems so that neither Lyapunov equation candidates nor the explicit solutions are used. It is proved that
stability holds as a parallel property to positivity and that disease-free and the endemic equilibrium states cannot be simultaneously
either stable or unstable. The periodic limit solution trajectories and equilibrium points are analyzed in a combined fashion in the
sense that the endemic periodic solutions become, in particular, equilibrium points if the control gains converge to constant values
and the control gain for culling the infective corpses is asymptotically zeroed.

1. Introduction

Relevant attention is being paid in the last two decades to the
study of mathematical epidemic models which are modelled
by integro-differential equations and/or difference equations.
Those models describe the evolution of the various subpop-
ulations considered as the disease under study progresses.
Typically, the models have three essential subpopulations
(namely, susceptible, infected, and recovered by immunity)
whose dynamics are mutually coupled. There are different
degrees of complexity in the statement of the models. The
simplest ones have only “susceptible” (𝑆) and “infected” (𝐼)
subpopulations and are referred to as SI-models. A second
degree of complexity adds a third one said to be the “recov-
ered by immunity” subpopulation and those models are said
to be SIR-models. A further complexity degree splits the

infected into two subpopulations (or compartments), namely,
the so-called “infected” or “exposed” (𝐸) subpopulation
(those having the disease but do not present yet external
symptoms) and the “infectious” or “infective” subpopulation
(those having external symptoms).The generic acronymused
for this last category of models is SEIR, being referred to
as SEIR epidemic models. General description of epidemic
models and some mathematical analysis on them is given
in some classical books. See, for instance, [1–3] and for
more recent models, see, for instance, [4–11] and references
therein. The positivity of the solution is investigated in a
number of works. See, for instance, [6–9, 12] and some
references therein. The use of nonlinear incidence rates in
the models is also investigated in a number of papers. See,
for instance, [13–15]. The presence of perturbations is also
investigated in many models. See, for instance, [9, 15–17]
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to give some of them. Also, certain robustness studies of
stability and positivity under deviations of the equilibrium
points due toWiener noise are performed in [9].The stability
properties and the convergence of the solutions to equilib-
rium states are a major analysis tool in most of the works.
In particular, the asymptotic solution behaviors including
associated diffusion effects have been provided in [18, 19]
and some references therein. The use of vaccination rules to
improve the infection behavior has been also proposed in the
literature. See, for instance, [6–8, 11, 20–23] and references
therein. In particular, two control actions are proposed in
[20], namely, a vaccination action of the susceptible and a
therapeutic treatment of the infectious subpopulation with
constant and nonconstant controls and impulsive controls are
proposed in [22, 23]. The stability and optimal control under
a subpopulation of infective in treatment with vaccination
is investigated in [24] and a model with delay, latent period
and saturation incidence rate and impulsive vaccination is
proposed and discussed in [25].

On the other hand, it turns out as known due to medical
experience that there are individuals who are infective but
do not have significant external symptoms, that is, the so-
called the “asymptomatic” (𝐴) subpopulation, [26]. This
occurs even in the common known influenza disease. If
such an asymptomatic subpopulation is considered in the
model, then it turns out that the exposed subpopulation
have different transitions to the symptomatic infectious
subpopulation and to the asymptomatic ones so that a part of
the exposed become subpopulation asymptomatic infectious
after a certain time while others become symptomatic infec-
tious. Finally, it is well known that in the case of Ebola disease,
the lying dead corpses are infective [27, 28] which causes
serious sanitary problems in third world tropical countries
with low or scarce sanitary means when an Ebola disease
spreads thoroughly speciallywhen it is transmitted from rural
areas to high populated urban ones. The dead corpses can be
considered in the model as a new subpopulation “𝐷.”

The paper is organized as follows. Section 2 defines the
SEIADR model with the six subpopulations (𝑆, 𝐸, 𝐼, 𝐴,𝐷, 𝑅)
under controls in terms of vaccination control on the suscep-
tible and antiviral treatment on the symptomatic infectious
subpopulation. The vaccination control possesses feedback-
independent (which can be constant, in particular) and
feedback linear terms while the antiviral treatment control
is implemented via proportional gain acting on the symp-
tomatic infectious population. There is also a third control
which consists of an impulsive control action of retirement
of corpses to reduce the risks of dead-contagion to the living
uninfected population. The three mentioned controls have
feedback information taken on line from their respective
subpopulations. The nonconstant control terms are based
on feedback information of the respective subpopulations.
Section 2 also discusses later on some nonnegativity and
stability properties of the model, under the various controls,
in a linked way in the sense that the nonnegativity of the
subpopulations, under nonzero initial conditions, and the
boundedness of the total population both together guarantee
the boundedness of all the subpopulations for all time as
a result. Section 3 deals with the disease-free and endemic

equilibrium points and the periodic limit solutions of the
controlled epidemic model as well as the associated local
stability properties. The dependence of the resulting disease-
free and endemic equilibrium states is seen to be dependent
on the limiting vaccination control gains. On the other hand,
the global stability is also investigated by using qualitative
theory of stability of differential equations by using Gauss-
Stokes and Bendixson theorems while neither Lyapunov
functions nor the explicit solutions of the differential model
are invoked at this stage. Finally, some numerical examples
are given in Section 4 with attention to oscillatory behaviors
under periodic culling action of dead infectious corpses and
some conclusions end the paper.

1.1. Notation

R+ = {𝑟 ∈ R : 𝑟 > 0}; R0+ = {𝑟 ∈ R : 𝑟 ≥ 0},
C is the complex plane,
∨ and ∧ stand, respectively, for logic “or” and “and,”

𝐶0 and 𝑃𝐶0 are, respectively, the sets of continuous
and piecewise-continuous functions of domain 𝐼 and
image 𝑋. The functions 𝑓 : 𝐼 → 𝑋 in those sets
are denoted, respectively, by 𝑓 ∈ 𝐶0(𝐼, 𝑋) and 𝑓 ∈𝑃𝐶0(𝐼, 𝑋),
card(𝐴) denotes the cardinal of the set 𝐴,
card(𝐴) = ℵ0 indicates that the cardinal of a denu-
merable set 𝐴 is infinite as opposed to card(𝐴) = ∞,
denoting the infinity cardinal of a nondenumerable
set 𝐴,
I𝑛 is 𝑛th identity matrix,
𝛿(𝑡) denotes the Dirac distribution at 𝑡 = 0,
𝑚 = {1, 2, . . . , 𝑚}.

2. The SEIADR Epidemic Model: Some
Results on Nonnegativity, Stability, and
Equilibrium Solution Trajectories

Theproposed SEIADRmodel is an extended SEIRmodelwith
the following characteristics and novelties:

(a) Apart from the classical subpopulations of “suscepti-
ble” (𝑆), “exposed” who are infected but not yet infec-
tive (𝐸), “symptomatic infectious” (𝐼), and “recov-
ered” (𝑅) subpopulation, it has two extra additional
subpopulations, namely, “asymptomatic infectious”(𝐴) and “dead-infective” (𝐷). The so-called asymp-
tomatic are a group of infective individuals (which
are modelled as a distinct group of the 𝐼-infective
subpopulation), characterized by small or null level
of infection, with acquired immunity, but who can
transmit the infective disease to others. The so-called
dead-infective subpopulation are dead individuals
(spread corpses in the distribution disease habitat)
which transmit the illness because of lack of good
sanitary performance or practice in certain infective
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illnesses (e.g., the Ebola disease) as it is a common
situation in some third world countries with scarce
technical and economic means.

(b) It incorporates three combined control actions which
can be of a feedback nature as follows: (1) the
standard vaccination control 𝑉 of the susceptible
which consists of two terms, one of them being a
nonfeedback gain and another feedback term with
a gain being proportional to the susceptible, (2)
the antiviral treatment 𝜉 of the infective subpopu-
lation with a proportional gain on the symptomatic
infectious subpopulation, and (3) the dead-infective
culling which has a feedback impulsive nature mod-
ulated by a control gain in the sense that it is not
applied at all time but at certain periods where either
voluntary or civil-servant staff can become involved
on this duty. The three controls contain together
four, eventually time varying, design control gains
which is a novel contribution of the paper related
to the background literature while another novelty is
the global stability analysis outlined from qualitative
theory of differential equations.

It has been pointed out that the coexistence of an asymp-
tomatic infectious subpopulation, often known in some well-
known diseases as influenza, and a dead-infective subpop-
ulation (e.g., in the case of the Ebola) can occur. See, for
instance, a related UK medical report [29] and see also
[27]. Recent work on the incorporation of infective corpses
and asymptomatic infectious type as new subpopulation is
discussed, for instance, in [26, 28]. The epidemic SEIADR
model with vaccination and antiviral treatment together with
infective corpses culling is as follows:

̇𝑆 (𝑡) = 𝑏1 − (𝑏2 + 𝛽𝐼 (𝑡) + 𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡)
+ 𝜂𝑅 (𝑡) − 𝑉 (𝑡) , (1)

𝐸̇ (𝑡) = − (𝑏2 + 𝛾) 𝐸 (𝑡)
+ (𝛽𝐼 (𝑡) + 𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡) , (2)

̇𝐼 (𝑡) = − (𝑏2 + 𝛼 + 𝜏0) 𝐼 (𝑡) + 𝛾𝑝𝐸 (𝑡) − 𝜉 (𝑡) , (3)

𝐴̇ (𝑡) = − (𝑏2 + 𝜏0) 𝐴 (𝑡) + 𝛾 (1 − 𝑝) 𝐸 (𝑡) , (4)

𝐷̇ (𝑡) = −𝜇𝐷 (𝑡) + 𝑏2 (𝐼 (𝑡) + 𝐴 (𝑡)) + 𝛼𝐼 (𝑡)
− 𝜌𝐷 (𝑡) 𝐷 (𝑡) ∑

𝑡𝑖∈Imp𝐷
𝛿 (𝑡 − 𝑡𝑖) , (5)

𝑅̇ (𝑡) = − (𝑏2 + 𝜂) 𝑅 (𝑡) + 𝜏0 (𝐼 (𝑡) + 𝐴 (𝑡)) + 𝜉 (𝑡)
+ 𝑉 (𝑡) , (6)

𝑉 (𝑡) = 𝑉0 (𝑡) + 𝐾𝑉 (𝑡) 𝑆 (𝑡) , (7)

𝜉 (𝑡) = 𝐾𝜉 (𝑡) 𝐼 (𝑡) ; (8)

∀𝑡 ∈ R0+ (9)

with initial conditions satisfying min(𝑆(0), 𝐸(0), 𝐼(0), 𝐴(0),𝐷(0), 𝑅(0)) ≥ 0, where Imp𝐷 = {𝑡 ∈ R0+ : 𝐷(𝑡) ̸= 𝐷(𝑡−)} =⋃𝑡∈R0+ Imp𝐷(𝑡) is the total set of impulsive (“culling”) time
instants for removal of infective corpses (note that the
notation for 𝑓(𝑡+) is simplified to 𝑓(𝑡)). The vaccination𝑉(𝑡) and (7) consist of feedback-independent term, which
can be constant, plus a linear feedback term injected on
the susceptible subpopulation while the antiviral action is a
linear feedback control applied to the symptomatic infectious
subpopulation. Besides,

Imp𝐷(𝑡−) = {𝜎 ∈ Imp𝐷 : 𝜎 < 𝑡} ,
Imp𝐷 (𝑡) = {𝜎 ∈ Imp𝐷 : 𝜎 ≤ 𝑡} = Imp𝐷(𝑡−)

if 𝑡 ∉ Imp𝐷,
Imp𝐷 (𝑡) = {𝜎 ∈ Imp𝐷 : 𝜎 ≤ 𝑡} = Imp𝐷(𝑡−) ∪ {𝑡}

if 𝑡 ∈ Imp𝐷

(10)

and the (nonnegative) parameters and controls are the fol-
lowing:

𝑏1 is the recruitment rate.
𝑏2 is the natural average death rate.
𝛽, 𝛽𝐴, 𝛽𝐷 are the various disease transmission
coefficients to the susceptible from the respective
symptomatic infectious, asymptomatic, and infective
corpses subpopulations.
𝜂 is a parameter such that 1/𝜂 is the average duration
of the immunity period reflecting a transition from
the recovered to the susceptible.
𝛾 is the transition rate from the exposed to all
(i.e., both symptomatic and asymptomatic) infectious
subpopulation.
𝛼 is the average extra mortality associated with the
symptomatic infectious subpopulation.
𝜏0 is the natural immune response rate for the whole
infectious subpopulation (i.e., 𝐴 + 𝐼), respectively;𝑝 is the fraction of the exposed which become
symptomatic infectious subpopulation.
1 − 𝑝 is the fraction of the exposed which becomes
asymptomatic infectious subpopulation.
1/𝜇 is the average period of infectiousness after death.
𝑉(𝑡) and 𝜉(𝑡) are, respectively, the vaccination and
antiviral treatment controls and 𝜌𝐷(𝑡𝑖)𝐷(𝑡𝑖) is the
impulsive action of removal of corpses (or “culling”)
for all 𝑡𝑖 ∈ Imp𝐷 with some piecewise continuous𝜌𝐷(𝑡) ∈ [0, 1]. The controls can be of different types
including constant and feedback actions. It turns out
that a well-posed epidemic model has to be positive
and with bounded solutions to be useful for potential
applications. The subsequent results are, respectively,
related to the nonnegativity under nonnegative initial
conditions and some smoothness conditions on the
controls and boundedness of the solutions of the
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model. Note that the positivity of the trajectory
solutions as well as that of the equilibrium solutions
is a crucial “a priori” basic requirement for model
validation in many different biological problems. See,
for instance, [6–9, 12, 18, 30–32].

Theorem 1. The solutions of the SEIADR model (1) to (8)
are uniquely defined and if min(𝑆(0), 𝐸(0), 𝐼(0), 𝐴(0), 𝑅(0),𝐷(0)) ≥ 0, 𝑉0(𝑡) ∈ [0, 𝑏1 + 𝜂𝑅(𝑡)], 𝜌𝐷, 𝑉, 𝐾𝑉, 𝐾𝜉 ∈ 𝑃𝐶0(R0+,
R0+) and 𝜌𝐷 : R0+ → [0, 1], then such solutions are, further-
more, nonnegative for any given nonnegative initial conditions
defined by:

𝑆 (𝑡) = 𝑒−(𝑏2𝑡+∫𝑡0 (𝐾𝑉(𝜎)+𝛽𝐼(𝜎)+𝛽𝐴𝐴(𝜎)+𝛽𝐷𝐷(𝜎))𝑑𝜎) × (𝑆 (0)
+ ∫𝑡

0
𝑒∫𝜎0 (𝑏2+𝐾𝑉(𝜃)+𝛽𝐼(𝜃)+𝛽𝐴𝐴(𝜃)+𝛽𝐷𝐷(𝜃))𝑑𝜃 (𝑏1 + 𝜂𝑅 (𝜎)

− 𝑉0 (𝜎)) 𝑑𝜎) ; ∀𝑡 ∈ R0+,
(11)

𝐸 (𝑡) = 𝑒−(𝑏2+𝛾)𝑡 (𝐸 (0) + ∫𝑡

0
𝑒(𝑏2+𝛾)𝜎 (𝛽𝐼 (𝜎) + 𝛽𝐴𝐴 (𝜎)

+ 𝛽𝐷𝐷 (𝜎)) 𝑆 (𝜎) 𝑑𝜎) ; ∀𝑡 ∈ R0+,
(12)

𝐼 (𝑡) = 𝑒−((𝑏2+𝛼+𝜏0)𝑡+∫𝑡0 𝐾𝜉(𝜎)𝑑𝜎) (𝐼 (0)
+ 𝛾𝑝∫𝑡

0
𝑒∫𝜎0 (𝑏2+𝛼+𝜏0+𝐾𝜉(𝜃))𝑑𝜃𝐸 (𝜎) 𝑑𝜎) ; ∀𝑡 ∈ R0+,

(13)

𝐴 (𝑡) = 𝑒−(𝑏2+𝜏0)𝑡 (𝐴 (0) + 𝛾 (1 − 𝑝)
⋅ ∫𝑡

0
𝑒(𝑏2+𝜏0)𝜎𝐸 (𝜎) 𝑑𝜎) ; ∀𝑡 ∈ R0+,

(14)

𝑅 (𝑡) = 𝑒−(𝑏2+𝜂)𝑡 (𝑅 (0) + ∫𝑡

0
𝑒(𝑏2+𝜂)𝜎 (𝜏0 (𝐼 (𝜎) + 𝐴 (𝜎))

+ 𝐾𝜉 (𝜎) 𝐼 (𝜎) + 𝑉0 (𝜎) + 𝐾𝑉 (𝜎) 𝑆 (𝜎)) 𝑑𝜎) ;
∀𝑡 ∈ R0+,

(15)

𝐷(𝑡) = 𝑒−𝜇(𝑡−𝑡𝑖) (𝐷 (𝑡𝑖) + ∫𝑡

𝑡𝑖
𝑒𝜇(𝜎−𝑡𝑖) [(𝑏2 + 𝛼) 𝐼 (𝜎)

+ 𝑏2𝐴 (𝜎)] 𝑑𝜎) ;
∀𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1) , ∀𝑡𝑖 ∈ Imp𝐷

(16)

with

𝐷(𝑡−𝑖+1) = 𝑒−𝜇𝑇𝑖 (𝐷 (𝑡𝑖)
+ ∫𝑡𝑖+1

𝑡𝑖
𝑒𝜇(𝜎−𝑡𝑖) [(𝑏2 + 𝛼) 𝐼 (𝜎) + 𝑏2𝐴 (𝜎)] 𝑑𝜎)

(17)

while

𝐷(𝑡𝑖+1) = 𝐷 (𝑡−𝑖+1) − ∫𝑡𝑖+1

𝑡−𝑖+1
𝜌𝐷 (𝜎)𝐷 (𝜎) 𝛿 (𝜎 − 𝑡𝑖+1) 𝑑𝜎

= (1 − 𝜌𝐷 (𝑡𝑖+1))𝐷 (𝑡−𝑖+1) = (1 − 𝜌𝐷 (𝑡𝑖+1))
⋅ 𝑒−𝜇𝑇𝑖 (𝐷 (𝑡𝑖)
+ ∫𝑡𝑖+1

𝑡𝑖
𝑒𝜇(𝜎−𝑡𝑖) [(𝑏2 + 𝛼) 𝐼 (𝜎) + 𝑏2𝐴 (𝜎)] 𝑑𝜎) ,

(18)

where 𝑇𝑖 = 𝑡𝑖+1 − 𝑡𝑖; ∀𝑡𝑖 ∈ Imp𝐷. Furthermore, 𝑆, 𝐸, 𝐼, 𝐴, 𝑅 ∈𝐶0(R0+,R0+) are everywhere differentiable in R0+ and 𝐷 ∈𝑃𝐶0(R0+,R0+) and it is time-differentiable in⋃𝑡𝑖∈Imp𝐷(𝑡𝑖, 𝑡𝑖+1).
Proof. The replacements of (7) into (1) and (8) into (3) yield

̇𝑆 (𝑡) = 𝑏1
− (𝑏2 + 𝐾𝑉 (𝑡) + 𝛽𝐼 (𝑡) + 𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡)
+ 𝜂𝑅 (𝑡) − 𝑉0 (𝑡) ,

(19)

̇𝐼 (𝑡) = − (𝑏2 + 𝛼 + 𝜏0 + 𝐾𝜉 (𝑡)) 𝐼 (𝑡) + 𝛾𝑝𝐸 (𝑡) ; (20)

∀𝑡 ∈ R0+. (21)

The solutions of (19), (2), (20), and (4)–(6) follow via direct
calculus and are unique and nonnegative resulting in (11)–
(18) for any given set of nonnegative initial conditions. Also,𝑆, 𝐸, 𝐼, 𝐴, 𝑅 ∈ 𝐶0(R0+,R0+) since their first respective time
derivatives exist everywhere in R0+ from (1)–(4) and (6).
Furthermore, note from (5) and the fact that its impulsive
(“culling”) control 𝜌𝐷 : R0+ → [0, 1] yields a unique
piecewise solution 𝐷 ∈ 𝑃𝐶0(R0+,R0+) for each given𝐷(0).

The boundedness of all the subpopulations for all time
and the asymptotic infection removal under a feedback, in
general, time-varying linear antiviral control law, is addressed
by the subsequent result.

Theorem 2. The following properties hold under the assump-
tions of Theorem 1:

(i) lim sup𝑡→∞𝐼(𝑡) ≤ 𝑏1/𝛼, sup𝑡∈R0+𝐼(𝑡) < +∞, sup𝑡∈R0+𝑁(𝑡) ≤ 𝑁(0) + 𝑏1/𝑏2 < +∞; ∀𝑡 ∈ R0+ where 𝑁(𝑡) =𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝐴(𝑡) + 𝑅(𝑡); ∀𝑡 ∈ R0+ is the total
alive population, and

max( sup
𝑡∈R0+

𝑆 (𝑡) , sup
𝑡∈R0+

𝐸 (𝑡) , sup
𝑡∈R0+

𝐼 (𝑡) , sup
𝑡∈R0+

𝐴 (𝑡) ,

sup
𝑡∈R0+

𝐷 (𝑡) , sup
𝑡∈R0+

𝑅 (𝑡)) ≤ sup
𝑡∈R0+

𝑁(𝑡)
≤ max( sup

𝑡∈R0+
𝑁(𝑡) , sup

𝑡∈R0+
𝐷 (𝑡)) < +∞,

(22)
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(ii) for any 𝑡 ∈ R0+, assume that 𝐾𝜉(𝑡) = 0 if 𝐼(𝑡) = 0, and
the antiviral control gain is chosen to be

𝐾𝜉 (𝑡) = 𝜉 (𝑡)𝐼 (𝑡) = 1𝐼 (𝑡) [(𝛼 + 𝜏0) 𝐸 (𝑡) + 𝛼𝐴 (𝑡)
+ (𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡)] + 𝛽𝑆 (𝑡) if 𝐼 (𝑡) ̸= 0.

(23)

Then, 𝐾𝜉(𝑡) = 𝑂(𝐼(𝑡)), implying also that sup𝑡∈R0+𝐾𝜉(𝑡) < +∞, and the following limits exist:

lim
𝑡→∞

(𝐸 (𝑡) + 𝐼 (𝑡) + 𝐴 (𝑡) + 𝐷 (𝑡)) = 0,
lim
𝑡→∞

(𝑆 (𝑡) + 𝑅 (𝑡)) = lim
𝑡→∞

𝑁(𝑡) = lim
𝑡→∞

𝑁(𝑡) = 𝑏1𝑏2 ,
(24)

where 𝑁(𝑡) = 𝑁(𝑡) + 𝐷(𝑡); ∀𝑡 ∈ R0+ is the total
population including infective corpses.

(iii) If, furthermore, 𝑉0(𝑡) satisfies the most stringent con-
straint lim sup𝑡→∞(𝑉0(𝑡) − 𝑏1 − 𝜂𝑅(𝑡) + 𝜀𝑉) ≤0 for any fixed 𝜀𝑉(≤ 𝑏1 − 𝜂𝑅(𝑡)) ∈ R+, then
min(lim inf 𝑡→∞𝑆(𝑡), lim inf 𝑡→∞𝑅(𝑡)) > 0.

Proof. Assume that lim sup𝑡→∞𝐼(𝑡) > 𝑏1/𝛼 and proceed by
contradiction. By summing up (1) to (4) and adding (6), one
gets 𝑁̇(𝑡) = −𝑏2𝑁(𝑡) + 𝑏1 − 𝛼𝐼(𝑡); ∀𝑡 ∈ R0+ which concludes
that

lim sup
𝑡→∞

(∫𝑡

0
𝑒−𝑏2(𝑡−𝜎) (𝛼𝐼 (𝜎) − 𝑏1) 𝑑𝜎 + 𝑁 (𝑡)) = 0. (25)

Since lim sup𝑡→∞𝐼(𝑡) > 𝑏1/𝛼 and 𝑁 ∈ 𝐶0(R0+,R0+), which
is derived from the result of Theorem 1, it follows a contra-
diction to (25) since lim sup𝑡→∞(∫𝑡0 𝑒−𝑏2(𝑡−𝜎)(𝛼𝐼(𝜎) − 𝑏1)𝑑𝜎 +𝑁(𝑡)) > 0.Therefore, lim sup𝑡→∞𝐼(𝑡) ≤ 𝑏1/𝛼 < +∞. Also, the
boundedness of𝑁(𝑡) follows directly since 𝐼(𝑡) ≥ 0; ∀𝑡 ∈ R0+
from the standard comparison theorem for 𝑁̇(𝑡) ≤ 𝑁̇0(𝑡) =−𝑏2𝑁0(𝑡)+𝑏1 leading to𝑁(𝑡) ≤ 𝑒−𝑏2𝑡𝑁(0)+(1−𝑒−𝑏2𝑡)(𝑏1/𝑏2) ≤𝑁(0)+𝑏1/𝑏2 < +∞;∀𝑡 ∈ R0+ provided that𝑁0(0) = 𝑁(0) and
lim sup𝑡→∞𝑁(𝑡) = 𝑏1/𝑏2. FromTheorem 1, all the subpopula-
tions are nonnegative for all time for any given nonnegative
initial conditions. Since the model is nonnegative for all
time then all the living subpopulations are bounded for all
time since 𝑁(𝑡) < +∞. From (17)-(18) the lying corpses
subpopulation is nonnegative and bounded for all time
since both the symptomatic and asymptomatic infectious
subpopulations are bounded for all time. As a result, the total
population is also bounded for all time as they are all the
subpopulations. Property (i) is proved. To prove Property
(ii), one gets from (2), (3), and (4) under the given antiviral
treatment control law that

𝐸̇ (𝑡) + ̇𝐼 (𝑡) + 𝐴̇ (𝑡)
= −𝑏2 (𝐸 (𝑡) + 𝐼 (𝑡) + 𝐴 (𝑡))

+ (𝛽𝐼 (𝑡) + 𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡)
− (𝛼 + 𝜏0) 𝐼 (𝑡) − 𝜉 (𝑡) − 𝜏0𝐴 (𝑡)

= − (𝑏2 + 𝜏0 + 𝛼) (𝐸 (𝑡) + 𝐼 (𝑡) + 𝐴 (𝑡))
+ (𝛽𝐼 (𝑡) + 𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡)
+ (𝛼 + 𝜏0) 𝐸 (𝑡) + 𝛼𝐴 (𝑡) − 𝐾𝜉 (𝑡) 𝐼 (𝑡)

= − (𝑏2 + 𝜏0 + 𝛼) (𝐸 (𝑡) + 𝐼 (𝑡) + 𝐴 (𝑡)) ;
∀𝑡 ∈ R0+

(26)

so that it exists the limit lim𝑡→∞(𝐸(𝑡) + 𝐼(𝑡) + 𝐴(𝑡)) =𝑒−(𝑏2+𝜏0+𝛼)𝑡(𝐸(0) + 𝐼(0) + 𝐴(0)) = 0. Thus, lim𝑡→∞𝐸(𝑡) =
lim𝑡→∞𝐼(𝑡) = lim𝑡→∞𝐴(𝑡) = 0 since the three sub-
populations are nonnegative for all time under any given
nonnegative initial conditions. This also implies as a result
that lim𝑡→∞(𝑆(𝑡) + 𝑅(𝑡)) = lim𝑡→∞𝑁(𝑡) = lim𝑡→∞𝑁(𝑡) =𝑏1/𝑏2 since from (16)–(18), lim𝑡→∞𝐷(𝑡) = 0. It remains to
prove that 𝐾𝜉(𝑡) = 𝑂(𝐼(𝑡)) = 𝑂(max(𝐼(𝑡), 𝑆(𝑡)) < +∞). First,
note that 𝐼(𝑡) is uniformly bounded since it is nonnegative
and the total population is uniformly bounded. Thus, to
prove that 𝐾𝜉(𝑡) = 𝑂(𝐼(𝑡)) = 𝑂(𝐼(𝑡), 𝑆(𝑡)), it suffices to
prove, in view of (23), that 𝐼 ≤ max(𝑜(𝐸), 𝑜(𝐴), 𝑜(𝐷)). Since
lim𝑡→∞(𝐸(𝑡)+𝐼(𝑡)+𝐴(𝑡)) = 0, then lim𝑡→∞(𝐸(𝑡)+𝐴(𝑡)) = 0.
On the other hand, note from (13) that 𝐼(𝑡) → 0 as 𝑡 → 𝑡1 for
any 𝑡1 ∈ R0+ implies ∫𝑡10 𝑒−((𝑏2+𝛼+𝜏0)(𝑡1−𝜎)+∫𝑡1𝜎 𝐾𝜉(𝜎)𝑑𝜎)𝐸(𝜎)𝑑𝜎 →0 and 𝐸(𝑡1) → 0. If, in addition 𝐼(0) > 0 then 𝑡1 → ∞.
On the other hand, from (12) if 𝐸(𝑡) → 0 as 𝑡 → ∞, then𝐼(𝑡), 𝐴(𝑡), 𝐷(𝑡) → 0 as 𝑡 → ∞. Thus, 𝐸(𝑡)/𝐼(𝑡) and 𝐴(𝑡)/𝐼(𝑡)
cannot diverge as 𝑡 → ∞ if 𝐸(𝑡) → 0 as 𝑡 → ∞. Thus,
if 𝐼(𝑡) → 0 then 𝐸(𝑡), 𝐴(𝑡), 𝐷(𝑡) → 0 and if 𝐸(𝑡) → 0 or𝐴(𝑡) → 0 (see also (14)), then 𝐼(𝑡) → 0. Then, 𝐾𝜉(𝑡) =𝑂(𝐼(𝑡)) = 𝑂(𝐼(𝑡), 𝑆(𝑡)). Property (ii) has been proved. On the
other hand, if lim inf 𝑡→∞(𝑏1 − 𝜀𝑉 + 𝜂𝑅(𝑡) − 𝑉0(𝑡)) ≥ 0 then
lim inf 𝑡→∞𝑆(𝑡) > 0 from (11) which leads to lim inf 𝑡→∞𝑅(𝑡) >0 from (15). Hence, Property (iii) is proved.

Remark 3. Note that the condition lim inf 𝑡→∞(𝑏1−𝜀𝑉+𝜂𝑅(𝑡)−𝑉0(𝑡)) ≥ 0 for 𝜀𝑉 = 0 ofTheorem 2(iii) is guaranteed if𝑉0(𝑡) ∈[0, 𝑏1); ∀𝑡 ∈ R0+.

3. Disease-Free and Endemic Equilibrium
Points, Limit Periodic Equilibrium
Trajectories, and Local and Global Stability

Define the linearized error of the trajectory solution with
respect to any equilibrium 𝑥∗ by

𝑥 (𝑡) = 𝑥 (𝑡) − 𝑥∗ (𝑡) ; ∀𝑡 ∈ R0+ \ Imp𝐷, (27)

where 𝑥(𝑡) is the linearized state-trajectory solution in
R6
0+whose six components are defined by 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡),𝐴(𝑡), 𝐷(𝑡), and 𝑅(𝑡) in this order. In particular, 𝑥∗df (𝑡) =𝑥∗df = (𝑆∗df , 0, 0, 0, 0, 𝑅∗

df )𝑇 for any 𝑡 ∈ R0+ is the disease-
free equilibrium solution, which is an equilibrium point, and𝑥∗end(𝑡) = (𝑆∗end(𝑡), 𝐸∗

end(𝑡), 𝐼∗end(𝑡), 𝐴∗
end(𝑡), 𝐷∗

end(𝑡), 𝑅∗
end(𝑡))𝑇

for any 𝑡 ∈ [0, 𝑇∗
𝐷] is an equilibrium periodic trajectory of

period 𝑇∗
𝐷 if 𝜌𝐷(𝑡) → 𝜌∗𝐷 ∈ (0, 1) and (𝑡𝑖+1 − 𝑡𝑖) → 𝑇∗

𝐷(> 0)
as 𝑡𝑖(∈ Imp𝐷) → ∞. If 𝜌∗𝐷 = 0 or card Imp𝐷 < 𝜒0
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(i.e., the cardinal of impulsive time instants is numerable
finite), then 𝑥∗end(𝑡) = 𝑥∗end; ∀𝑡 ∈ R0+ (i.e., the limit
periodic endemic solution is just an endemic equilibrium
point). The following result holds and is concerned with the
eventually periodic asymptotic behavior of the dead-infective
lying corpses subpopulation under constant limiting values
of the culling removal fraction and culling period. It is also
obtained the intuitively obvious result that if all the lying
infective corpses are removed by the culling control then
the dead corpses infective subpopulation is asymptotically
zeroed at the culling time instants.

Theorem 4. The following properties hold:
(i) Assume that (𝑡𝑖+1 − 𝑡𝑖) → 𝑇∗

𝐷(> 0), 𝑉0(𝑡) = 𝑉0; ∀𝑡 ∈
R0+, and 𝜌𝐷(𝑡𝑖) → 𝜌∗𝐷(∈ [0, 1]) as 𝑡𝑖(∈ Imp𝐷) → ∞.
Then, a periodic limit solution of period 𝑇∗

𝐷 of the form

lim
𝑛→∞

𝐷(𝑛𝑇∗
𝐷 + 𝜃) = 𝐷∗ (𝑇∗

𝐷 + 𝜃)
= 𝑒−𝜇𝜃𝜇 [(𝑏2 + 𝛼) 𝐼∗𝑎V + 𝑏2𝐴∗

𝑎V]

⋅ [(1 − 𝜌∗𝐷) (1 − 𝑒−𝜇𝜃)
(1 − (1 − 𝜌∗𝐷) 𝑒−𝜇𝜃) − 1 + 𝑒𝜇𝜃] ; ∀𝜃 ∈ [0, 𝑇∗

𝐷]
(28)

exists for the dead-infective corpses subpopulation,
where the subscript “𝑎V” stands for a mean value of the
corresponding subpopulation on the period [0, 𝑇∗

𝐷)with
existing right and left limits

𝐷∗ (𝑇∗
𝐷 + 𝜃) = lim

𝑛→∞
𝐷(𝑛𝑇∗

𝐷 + 𝜃) = lim
𝑡𝑖→∞

𝐷(𝑡𝑖 + 𝜃) ;
∀𝜃 ∈ [0, 𝑇∗

𝐷) ,
𝐷∗ (𝑇∗−

𝐷 ) = 𝐷 (0−) = lim
𝜃→0−

lim
𝑛→∞

𝐷(𝑛𝑇∗
𝐷 + 𝜃)

= lim
𝜃→0−

lim
𝑡𝑖→∞

𝐷(𝑡𝑖 − 𝜃)
(29)

possessing eventual discontinuities𝐷∗(𝑇∗
𝐷) ̸= 𝐷∗(𝑇∗−

𝐷 )
which satisfy

𝐷∗ (𝑇∗
𝐷) = (1 − 𝜌∗𝐷)𝐷∗ (𝑇∗−

𝐷 ) ;
𝐷∗ (𝑇∗−

𝐷 )
= 1 − 𝑒−𝜇𝑇∗𝐷𝜇 (1 − (1 − 𝜌∗𝐷) 𝑒−𝜇𝑇∗𝐷) [(𝑏2 + 𝛼) 𝐼∗𝑎V + 𝑏2𝐴∗

𝑎V] .
(30)

(ii) If 𝑇∗
𝐷 = +∞, or if Imp𝐷 has a finite cardinal, then

𝐷∗ (𝑇∗−
𝐷 ) = 1𝜇 [(𝑏2 + 𝛼) 𝐼∗𝑎V + 𝑏2𝐴∗

𝑎V] ;
𝐷∗ (𝑇∗

𝐷) = 1 − 𝜌∗𝐷𝜇 [(𝑏2 + 𝛼) 𝐼∗𝑎V + 𝑏2𝐴∗
𝑎V] .

(31)

If, furthermore 𝜌∗𝐷 = 1, then𝐷∗(𝑇∗
𝐷) = 0.

For the disease-free equilibrium, 𝐷∗
𝑑𝑓(𝑇∗

𝐷) = 𝐷∗
𝑑𝑓(𝑇∗−

𝐷 ) = 0 irrespective of 𝑇∗
𝐷 and 𝜌∗𝐷.

If, furthermore 𝜌∗𝐷 = 0, then the endemic equilibrium
periodic solution is an endemic equilibrium point𝐷∗

end = ((𝑏2 + 𝛼)𝐼∗end + 𝑏2𝐴∗
end)/𝜇.

(iii) The limit periodic solution 𝐷∗(𝑇∗
𝐷 + 𝜃) for 𝜃 ∈ [0, 𝑇∗

𝐷)
induces limit periodic oscillations of the susceptible and
immune which obey the relationships:

𝑆∗ (𝜃)
= 𝑏1 − 𝑉0 + 𝜂𝑅∗ (𝜃)𝑏2 + 𝐾∗

𝑉 (𝜃) + 𝛽𝐼∗ (𝜃) + 𝛽𝐴𝐴∗ (𝜃) + 𝛽𝐷𝐷∗ (𝜃) ,
𝑅∗ (𝜃) = 𝑁∗

𝑅 (𝜃)𝐷∗
𝑅 (𝜃) ,

(32)

where
𝑁∗

𝑅 (𝜃) = (𝑏2 + 𝛽𝐼∗ (𝜃) + 𝛽𝐴𝐴∗ (𝜃) + 𝛽𝐷𝐷∗ (𝜃))
⋅ ((𝜏0 + 𝐾∗

𝜉 (𝜃)) 𝐼∗ (𝜃) + 𝜏0𝐴∗ (𝜃) + 𝑉∗
0 (𝜃))

+ 𝐾∗
𝑉 (𝜃) ((𝜏0 + 𝐾∗

𝜉 (𝜃)) 𝐼∗ (𝜃) + 𝜏0𝐴∗ (𝜃) + 𝑏1) ,
𝐷∗

𝑅 (𝜃) = (𝑏2 + 𝜂)
⋅ (𝑏2 + 𝛽𝐼∗ (𝜃) + 𝛽𝐴𝐴∗ (𝜃) + 𝛽𝐷𝐷∗ (𝜃))
+ 𝑏2𝐾∗

𝑉 (𝜃) ;
∀𝜃 ∈ [0, 𝑇∗

𝐷]

(33)

provided that 𝑉0(𝑛𝑇∗
𝐷 + 𝜃) → 𝑉∗

0 (𝜃), 𝐾𝑉(𝑛𝑇∗
𝐷 + 𝜃) →𝐾∗

𝑉(𝜃), and 𝐾𝜉(𝑛𝑇∗
𝐷 + 𝜃) → 𝐾∗

𝜉 (𝜃) for any 𝜃 ∈ [0, 𝑇∗
𝐷]

as 𝑛(∈ Z+) → ∞. If 𝜌∗𝐷 = 0, 𝑉∗
0 (𝜃) = 𝑉∗

0 , 𝐾∗
𝑉(𝜃) =𝐾∗

𝑉, and 𝐾𝜉(𝜃) = 𝐾∗
𝜉 ; ∀𝜃 ∈ [0, 𝑇∗

𝐷] then the endemic
equilibrium solution is an endemic equilibrium point.

Proof. Note from (18) that if (𝑡𝑖+1 − 𝑡𝑖) → 𝑇∗
𝐷 and 𝜌𝐷(𝑡𝑖) →𝜌∗𝐷 ∈ [0, 1] as 𝑡𝑖(∈ Imp𝐷) → ∞ then the right limits 𝐷(𝑇∗

𝐷 +𝜃) = lim𝑛→∞𝐷(𝑛𝑇∗
𝐷 + 𝜃) = lim𝑡𝑖→∞𝐷(𝑡𝑖 + 𝜃) exist for 𝜃 ∈[0, 𝑇∗

𝐷) as well as the left limits𝐷(𝑇∗−
𝐷 ) = lim𝜃→0− lim𝑛→∞𝐷(𝑛𝑇∗

𝐷 + 𝜃) = lim𝜃→0− lim𝑡𝑖→∞𝐷(𝑡𝑖 − 𝜃) with eventual discontinuities 𝐷(𝑇∗
𝐷) ̸= 𝐷(𝑇∗−

𝐷 ). So,
we have in the steady state

𝐷(𝑡𝑖+1) = 𝐷 (𝑡𝑖) = 𝐷 (𝑇∗
𝐷) = (1 − 𝜌∗𝐷)𝐷 (𝑡−𝑖+1)

= (1 − 𝜌∗𝐷) 𝑒−𝜇𝑇∗𝐷𝐷(𝑇∗
𝐷) + (1 − 𝜌∗𝐷)

⋅ (∫𝑇∗𝐷

0
𝑒−𝜇(𝑇∗𝐷−𝜎) [(𝑏2 + 𝛼) 𝐼∗ (𝜎) + 𝑏2𝐴∗ (𝜎)] 𝑑𝜎)

(34)

so that, from the mean value theorem since the limit the
periodic oscillation is bounded, there is a mean value of
the symptomatic and asymptomatic infectious subpopulation
such that

[1 − (1 − 𝜌∗𝐷) 𝑒−𝜇𝑇∗𝐷]𝐷∗ (𝑇∗
𝐷) = (1 − 𝜌∗𝐷)

⋅ 1 − 𝑒−𝜇𝑇∗𝐷𝜇 [(𝑏2 + 𝛼) 𝐼∗av + 𝑏2𝐴∗
av] ,

(35)
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𝐷∗ (𝑇∗
𝐷 + 𝜃) = 𝑒−𝜇𝜃𝐷∗ (𝑇∗

𝐷) + [(𝑏2 + 𝛼) 𝐼∗av + 𝑏2𝐴∗
av]

⋅ (∫𝜃

0
𝑒−𝜇(𝜃−𝜎)𝑑𝜎) = 𝑒−𝜇𝜃𝜇 [(𝑏2 + 𝛼) 𝐼∗av + 𝑏2𝐴∗

av]

⋅ [(1 − 𝜌∗𝐷) (1 − 𝑒−𝜇𝜃)
(1 − (1 − 𝜌∗𝐷) 𝑒−𝜇𝜃) − 1 + 𝑒𝜇𝜃] ;

∀𝜃 ∈ [0, 𝑇∗
𝐷] .

(36)

If 𝜌∗𝐷 = 0, one gets from (36) that

lim
𝑡𝑖(∈Imp𝐷)→∞

𝐷(𝑡𝑖 + 𝜃) = [(𝑏2 + 𝛼) 𝐼∗av + 𝑏2𝐴∗
av]

⋅ lim
𝑡𝑖(∈Imp𝐷)→∞

(∫𝑡𝑖+𝑇
∗
𝐷

𝑡𝑖
𝑒−𝜇(𝑇∗𝐷+𝜃−𝜎)𝑑𝜎)

= 𝐷∗ (𝑇∗
𝐷 + 𝜃) = (𝑏2 + 𝛼) 𝐼∗av + 𝑏2𝐴∗

av𝜇 ;
∀𝜃 ∈ [0, 𝑇∗

𝐷)

(37)

so that 𝐷(𝑡) → 0 as 𝑡 → ∞ if the disease-free equilibrium
point is globally asymptotically attractive and𝐷(𝑡) → 𝐷∗

end =((𝑏2 + 𝛼)𝐼∗end + 𝑏2𝐴∗
end)/𝜇 if the endemic equilibrium state,

which is an equilibrium point, is globally asymptotically
attractive. The proofs of Properties (i)-(ii) are complete. To
prove Property (iii), the inspection of (1) and (6) at any
equilibrium yields that 𝑆 and 𝑅 have periodic oscillation if𝐷
is periodic. So, we can get from (1) and (6) that if 𝑉0(𝜃) =𝑉∗
0 (𝜃), 𝐾𝑉(𝜃) = 𝐾∗

𝑉(𝜃), and 𝐾𝜉(𝜃) = 𝐾∗
𝜉 (𝜃), for any 𝜃 ∈[0, 𝑇∗

𝐷], the relations

𝑆∗ (𝜃)
= 𝑏1 − 𝑉∗

0 (𝜃) + 𝜂𝑅∗ (𝜃)𝑏2 + 𝐾∗
𝑉 (𝜃) + 𝛽𝐼∗ (𝜃) + 𝛽𝐴𝐴∗ (𝜃) + 𝛽𝐷𝐷∗ (𝜃) ,

𝑅∗ (𝜃) = (𝜏0 + 𝐾∗
𝜉 (𝜃)) 𝐼∗ (𝜃) + 𝜏0𝐴∗ (𝜃) + 𝑉∗

0 (𝜃)
𝑏2 + 𝜂

+ 𝐾∗
𝑉 (𝜃)𝑏2 + 𝜂 𝑆∗ (𝜃)

= (𝜏0 + 𝐾∗
𝜉 (𝜃)) 𝐼∗ (𝜃) + 𝜏0𝐴∗ (𝜃) + 𝑉∗

0 (𝜃)
𝑏2 + 𝜂

+ 𝐾∗
𝑉 (𝜃)𝑏2 + 𝜂

⋅ 𝑏1 − 𝑉∗
0 (𝜃) + 𝜂𝑅∗ (𝜃)𝑏2 + 𝐾∗

𝑉 (𝜃) + 𝛽𝐼∗ (𝜃) + 𝛽𝐴𝐴∗ (𝜃) + 𝛽𝐷𝐷∗ (𝜃)

(38)

lead to

(1
− 𝐾∗

𝑉 (𝜃) 𝜂(𝑏2 + 𝜂) (𝑏2 + 𝐾∗
𝑉 (𝜃) + 𝛽𝐼∗ (𝜃) + 𝛽𝐴𝐴∗ (𝜃) + 𝛽𝐷𝐷∗ (𝜃)))

⋅ 𝑅∗ (𝜃) = 1𝑏2 + 𝜂 [(𝜏0 + 𝐾∗
𝜉 (𝜃)) 𝐼∗ (𝜃) + 𝜏0𝐴∗ (𝜃) + 𝑉∗

0 (𝜃)
+ 𝐾∗

𝑉 (𝜃) (𝑏1 − 𝑉∗
0 (𝜃))

(𝑏2 + 𝐾∗
𝑉 (𝜃) + 𝛽𝐼∗ (𝜃) + 𝛽𝐴𝐴∗ (𝜃) + 𝛽𝐷𝐷∗ (𝜃))]

(39)

which may be simplified as 𝑅∗(𝜃) = 𝑁∗
𝑅(𝜃)/𝐷∗

𝑅(𝜃); ∀𝜃 ∈[0, 𝑇∗
𝐷). Thus, Property (iii) follows.

On the other hand, the linearized error of the trajectory
solution with respect to an equilibrium trajectory is defined
by

̇̃𝑥 (𝑡) = A∗𝑥 (𝑡) ,
𝑥 (𝑡𝑖) = (I6 −M∗) 𝑥 (𝑡−𝑖 ) ;

∀𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1) , ∀𝑡𝑖 ∈ Imp𝐷,
(40)

where 𝑥(0−) = 𝑥0 andM∗ are R6 × R6 matrix taking account
of the impulses, where (M∗)55 = 𝜌∗𝐷 as 𝜌𝐷(𝑡) → 𝜌∗𝐷 as 𝑡 → ∞
and its remaining entries being zero. The following result,
concerning the disease-free and endemic equilibrium points,
holds if the control gains converge to constant values and𝜌∗𝐷 = 0.
Theorem 5. Assume that 𝑉0(𝑡) → 𝑉0, 𝐾𝑉(𝑡) → 𝐾∗

𝑉, 𝐾𝜉(𝑡) →𝐾∗
𝜉 and 𝜌𝐷(𝑡𝑖) → 𝜌∗𝐷 = 0, and (𝑡𝑖+1 − 𝑡𝑖) → 𝑇∗

𝐷 as 𝑡, 𝑡𝑖(∈
Imp𝐷) → ∞. Then, the following properties hold:

(i) There is a unique disease-free equilibrium point satis-
fying

𝑥∗𝑑𝑓 fl lim
𝑡→∞

𝑥 (𝑡) = (𝑆∗𝑑𝑓, 𝐸∗
𝑑𝑓, 𝐼∗𝑑𝑓, 𝐴∗

𝑑𝑓, 𝐷∗
𝑑𝑓, 𝑅∗

𝑑𝑓)𝑇
= (𝑆∗𝑑𝑓, 0, 0, 0, 0, 𝑅∗

𝑑𝑓)𝑇
(41)

with

𝑆∗𝑑𝑓 = 𝑏2 (𝑏1 − 𝑉0) + 𝜂𝑏1𝑏2 (𝑏2 + 𝜂 + 𝐾∗
𝑉) = 𝑏1 + 𝜂𝑁∗

𝑑𝑓 − 𝑉0𝑏2 + 𝜂 + 𝐾∗
𝑉

,

𝑅∗
𝑑𝑓 = 𝑏2𝑉0 + 𝐾∗

𝑉𝑏1𝑏2 (𝑏2 + 𝜂 + 𝐾∗
𝑉) = 𝐾∗

𝑉𝑁∗
𝑑𝑓 + 𝑉0𝑏2 + 𝜂 + 𝐾∗

𝑉

= 𝐾∗
𝑉𝑆∗𝑑𝑓 + 𝑉0𝑏2 + 𝜂 = 𝑁∗

𝑑𝑓 − 𝑆∗𝑑𝑓

(42)

leading to an associated limit total population

𝑁∗
𝑑𝑓 = 𝑁∗

𝑑𝑓 = 𝑆∗𝑑𝑓 + 𝑅∗
𝑑𝑓 = 𝑏1𝑏2 (43)
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under a vaccination disease-free limiting control 𝑉∗
𝑑𝑓 =𝑉0 + 𝐾∗

𝑉𝑆∗𝑑𝑓 and a zero antiviral treatment control.
(ii) There exists some large enough threshold𝛽cend such that

if 𝛽 > 𝛽cend then there is a unique endemic equilibrium
point with all its components being positive such that

𝑁∗
𝑑𝑓 > 𝑆∗end = 𝜇 (𝑏2 + 𝛾) (𝑏2 + 𝜏0) (𝑏2 + 𝛼 + 𝜏0 + 𝐾∗

𝜉 )
𝛽 (𝛾𝑝 (𝑏2 + 𝜏0) (𝜇 + 𝛽𝐷𝑟 (𝑏2 + 𝛼)) + 𝛾 (1 − 𝑝) (𝑏2 + 𝛼 + 𝜏0 + 𝐾∗

𝜉 ) (𝛽𝐴𝑟𝜇 + 𝛽𝐷𝑟𝑏2)) > 0, (44)

𝑆∗end = 𝑏2 + 𝛾𝛽 (𝐶𝐼 + 𝛽𝐴𝑟𝐶𝐴 + 𝛽𝐷𝑟𝐶𝐷) = 𝑏1 − 𝑉0 + 𝜂𝑅∗
end𝑏2 + 𝐾∗

𝑉 + 𝛽 (𝐶𝐼 + 𝛽𝐴𝑟𝐶𝐴 + 𝛽𝐷𝑟𝐶𝐷) 𝐸∗
end

, (45)

𝑅∗
end = ((𝜏0 + 𝐾∗

𝜉 ) 𝐶𝐼 + 𝜏0𝐶𝐴) 𝐸∗
end + 𝑉0 + 𝐾∗

𝑉𝑆∗end𝑏2 + 𝜂 , (46)

𝑁∗
end = (𝜏0 + 𝐾∗

𝜉 ) 𝐼∗end + 𝜏0𝐴∗
end + 𝑉0𝑏2 + 𝜂 + (1 + 𝐾∗

𝑉𝑏2 + 𝜂) 𝑆∗end + (𝐶𝐼 + 𝐶𝐴 + 𝐶𝐷 + 1) 𝐸∗
end, (47)

where 𝛽𝐴𝑟 = 𝛽𝐴/𝛽 and 𝛽𝐷𝑟 = 𝛽𝐷/𝛽 are relative dis-
ease coefficient transmission rates of the asymptomatic
infectious and lying infective corpses with respect to the
symptomatic infectious one, and

𝐶𝐼 = 𝛾𝑝𝑏2 + 𝛼 + 𝜏0 + 𝐾∗
𝜉
,

𝐶𝐴 = 𝛾 (1 − 𝑝)
𝑏2 + 𝜏0 ,

𝐶𝐷 = 1𝜇 [ (𝑏2 + 𝛼) 𝛾𝑝
𝑏2 + 𝛼 + 𝜏0 + 𝐾∗

𝜉
+ 𝑏2𝛾 (1 − 𝑝)

𝑏2 + 𝜏0 ] .
(48)

(iii) The disease-free and endemic equilibrium dynamics
matrices are, respectively, given by

A∗
𝑑𝑓 =

[[[[[[[[[[[[[[
[

− (𝑏2 + 𝐾∗
𝑉) 0 −𝛽𝑆∗𝑑𝑓 −𝛽𝐴𝑆∗𝑑𝑓 −𝛽𝐷𝑆∗𝑑𝑓 𝜂

0 − (𝑏2 + 𝛾) 𝛽𝑆∗𝑑𝑓 𝛽𝐴𝑆∗𝑑𝑓 𝛽𝐷𝑆∗𝑑𝑓 0
0 𝛾𝑝 − (𝑏2 + 𝛼 + 𝜏0 + 𝐾∗

𝜉 ) 0 0 0
0 𝛾 (1 − 𝑝) 0 − (𝑏2 + 𝜏0) 0 0
0 0 𝑏2 + 𝛼 𝑏2 −𝜇 0
𝐾∗
𝑉 0 𝜏0 + 𝐾∗

𝜉 𝜏0 0 − (𝑏2 + 𝜂)

]]]]]]]]]]]]]]
]

, (49)

A∗
end =

[[[[[[[[[[[[[[
[

− (𝑏2 + 𝛽𝐼∗end + 𝛽𝐴𝐴∗
end + 𝛽𝐷𝐷∗

end + 𝐾∗
𝑉) 0 −𝛽𝑆∗end −𝛽𝐴𝑆∗end −𝛽𝐷𝑆∗end 𝜂

𝛽𝐼∗end + 𝛽𝐴𝐴∗
end + 𝛽𝐷𝐷∗

end − (𝑏2 + 𝛾) 𝛽𝑆∗end 𝛽𝐴𝑆∗end 𝛽𝐷𝑆∗end 0
0 𝛾𝑝 − (𝑏2 + 𝛼 + 𝜏0 + 𝐾∗

𝜉 ) 0 0 0
0 𝛾 (1 − 𝑝) 0 − (𝑏2 + 𝜏0) 0 0
0 0 𝑏2 + 𝛼 𝑏2 −𝜇 0
𝐾∗
𝑉 0 𝜏0 + 𝐾∗

𝜉 𝜏0 0 − (𝑏2 + 𝜂)

]]]]]]]]]]]]]]
]

. (50)
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Note that the endemic equilibrium linearized dynamics
can also be described equivalently by

𝐴∗
end =

[[[[[[[[[[[
[

− (𝑏2 + 𝐾∗
𝑉) 0 − (𝛽 + 1) 𝑆∗end − (𝛽𝐴 + 1) 𝑆∗end − (𝛽𝐷 + 1) 𝑆∗end 𝜂

0 − (𝑏2 + 𝛾) (𝛽 + 1) 𝑆∗end (𝛽𝐴 + 1) 𝑆∗end (𝛽𝐷 + 1) 𝑆∗end 0
0 𝛾𝑝 − (𝑏2 + 𝛼 + 𝜏0 + 𝐾∗

𝜉 ) 0 0 0
0 𝛾 (1 − 𝑝) 0 − (𝑏2 + 𝜏0) 0 0
0 0 𝑏2 + 𝛼 𝑏2 −𝜇 0
𝐾∗
𝑉 0 𝜏0 + 𝐾∗

𝜉 𝜏0 0 − (𝑏2 + 𝜂)

]]]]]]]]]]]
]

. (51)

(iv) If 𝜌∗𝐷 ∈ (0, 1) then the endemic equilibrium steady
state 𝑥∗end(𝜃) for 𝜃 ∈ [0, 𝑇∗

𝐷) is periodic of period 𝑇∗
𝐷

leading to a matrix of dynamics A∗
end : [0, 𝑇∗

𝐷) →
R6×6 with A∗

end(𝑇∗
𝐷) = A∗

end(0) and A∗
end(𝑇∗−

𝐷 ) =
A∗

end(0−) ̸= A∗
end(0). Equations (45)–(47) and (50)-(51)

remain valid with the change 𝑥∗end → 𝑥∗end(𝜃) and the
corresponding changes in the two first rows of (50) and
(51) for 𝜃 ∈ [0, 𝑇∗

𝐷).
If the limit control gains 𝑉∗

0 (⋅), 𝐾∗
𝑉(⋅), and 𝐾∗

𝜉 (⋅) are periodic
functions of period 𝑇∗

𝐷 then the disease-free equilibrium state
has periodic susceptible and immune components defined as in
Property (i) with the replacements 𝐾∗

𝑉 → 𝐾∗
𝑉(𝜃) and 𝐾∗

𝜉 →𝐾∗
𝜉 (𝜃) for 𝜃 ∈ [0, 𝑇∗

𝐷) andA∗
𝑑𝑓 : [0, 𝑇∗

𝐷) → R6×6 in (49). In this
case, the endemic equilibrium state, if it exists, is also periodic
of period 𝑇∗

𝐷.

Proof. Thedisease-free equilibrium point is obtained directly
from (1) to (7) from the constraints𝐸∗

df = 𝐼∗df = 𝐴∗
df = 𝐷∗

df = 0
and it is seen to be trivially unique. The Jacobian matrix of
the linearized system at such a disease-free equilibrium point
is (49). The proof of Property (i) follows directly. To prove
the existence of an endemic equilibrium point (Property (ii))
some calculations are now performed to see the compatibility
of the model with the existence of an equilibrium with
exposed subpopulation 𝐸∗

end > 0 implying the remaining
subpopulations to be nonnegative. Direct calculations by
zeroing in (3) to (5) the time derivatives of the subpopulations
by taking into account (7)-(8) yield

𝐸∗
end > 0 ⇐⇒ 𝐼∗end = 𝐶𝐼𝐸∗

end > 0,
𝐸∗
end > 0 ⇐⇒ 𝐴∗

end = 𝐶𝐴𝐸∗
end > 0,

𝐸∗
end > 0 ⇐⇒ 𝐷∗

end = 𝐶𝐷𝐸∗
end > 0

(52)

with the above constants defined in (48). From (2), one gets
if 𝐸∗

end > 0 implying that 𝐼∗end > 0 that (44) holds since
𝐸∗
end > 0 ⇐⇒
[(𝐼∗end > 0) ∧ (𝐴∗

end > 0) ∧ (𝐷∗
end > 0)] 󳨐⇒

𝑆∗end = 𝑏2 + 𝛾𝛽 (𝐶𝐼 + 𝛽𝐴𝑟𝐶𝐴 + 𝛽𝐷𝑟𝐶𝐷) 𝐸∗
end

𝐸∗
end.

(53)

This proves the first part of Property (ii) since 𝑁∗
end < 𝑁∗

df .
Now, note from (44) that if 𝛽 ≤ 𝛽cend for a small enough
threshold 𝛽cend for some existing small enough threshold𝛽cend, then 𝑆∗end ≥ 𝑁∗

end from (44). This implies that 𝑆∗end > 0
from (44) but 𝐸∗

end ≤ 0 (then either the endemic equilibrium
point does not exist, since it has negative components, or it
coincides with the disease-free one) since (46) leads to𝐸∗

end >0 and 𝑆∗end > 0 implies 𝑅∗
end > 0 and 𝑅∗

end < 0 with 𝑆∗end > 0 if
and only if𝐸∗

end < 0.Therefore,𝐸∗
end > 0 ⇔ (𝑁∗

end > 𝑆∗end > 0)
if and only if 𝛽 > 𝛽cend. Now, summing up (1), (2), and (6), by
taking into account (7)-(8) at the endemic equilibrium point
yield (45)–(47) since

𝑏2 (𝑆∗end + 𝑅∗
end)

= 𝑏1 + [(𝜏0 + 𝐾∗
𝜉 ) 𝐶𝐼 + 𝜏0𝐶𝐴 − 𝑏2 − 𝛾] 𝐸∗

end,
𝑅∗
end − 𝐾∗

𝑉𝑆∗end + 𝑉0𝑏2 + 𝜂 = (𝜏0 + 𝐾∗
𝜉 ) 𝐼∗end + 𝜏0𝐴∗

end𝑏2 + 𝜂
= (𝜏0 + 𝐾∗

𝜉 ) 𝐶𝐼 + 𝜏0𝐶𝐴𝑏2 + 𝜂 𝐸∗
end,

𝑁∗
end = 𝑅∗

end + 𝑆∗end + (𝐼∗end + 𝐴∗
end + 𝐷∗

end + 𝐸∗
end)

= (𝜏0 + 𝐾∗
𝜉 ) 𝐼∗end + 𝜏0𝐴∗

end + 𝑉0𝑏2 + 𝜂
+ (1 + 𝐾∗

𝑉𝑏2 + 𝜂) 𝑆∗end + (𝐶𝐼 + 𝐶𝐴 + 𝐶𝐷 + 1) 𝐸∗
end

(54)

which completes the proof of Property (ii). The proof of
Property (iii) is direct by taking the respective Jacobianmatri-
ces at the disease-free equilibrium point and the endemic
equilibrium. The respective Jacobian matrices are (49) and
(50). The use of (51), replacing (50), as the matrix of
linearized dynamics around the endemic equilibrium point
is legitimated via the identity:

(𝛽𝐼∗end + 𝛽𝐴𝐴∗
end + 𝛽𝐷𝐷∗

end) 𝑆∗end
= [𝛽𝑆∗end 𝛽𝐴𝑆∗end 𝛽𝐷𝑆∗end] [[

[
𝐼∗end𝐴∗
end𝐷∗
end

]]
]
. (55)
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Property (iv) follows directly from Property (iii) and Theo-
rem 4 with the replacement 𝑥∗end → 𝑥∗end(𝜃) and 𝐶𝐼 = 𝐶𝐼(𝜃)
and 𝐶𝐷 = 𝐶𝐷(𝜃) in (48) for 𝜃 ∈ [0, 𝑇∗

𝐷) and, eventually,𝑆∗df → 𝑆∗df (𝜃) and 𝑅∗
df → 𝑅∗

df (𝜃) if the control gains converge
to periodic values of period 𝑇∗

𝐷.

Theorem 5 is useful for the study under linearization of
the solution trajectories around the disease-free equilibrium
point if 𝜌∗𝐷 = 0 under limit gains of the other controls.
However, if the above limit gain is nonzero and less than one,
then the trajectory solutions are asymptotically periodic. It
is also proved the existence and uniqueness of the endemic
equilibrium point if the coefficient transmission rates exceed
a certain minimum threshold 𝛽cend. It is also deduced from
the disease-free equilibrium expressions that the susceptible
disease-free equilibrium numbers can be decreased, and cor-
respondingly the immune equilibrium numbers increased,
by increasing the constant vaccination and/or the linear
vaccination gains.

A constraint for the endemic equilibrium solution, if it
exists, is discussed and given in the subsequent result. The
existence constraints are easy to test under the form 𝑆∗end(𝜃) <𝑏1/𝑏2 − 𝑉∗

0 (𝜃), ∀𝜃 ∈ [0, 𝑇∗
𝐷), or some equivalent constraints,

where 𝑇∗
𝐷 is the limit interculling action period.

Theorem 6. Assume that (𝑡𝑖+1 − 𝑡𝑖) → 𝑇∗
𝐷, 𝜌𝐷(𝑛𝑇∗

𝐷) → 𝜌∗𝐷 ∈[0, 1), 𝑉0(𝑛𝑇∗
𝐷 + 𝜃) → 𝑉∗

0 (𝜃), 𝐾𝑉(𝑛𝑇∗
𝐷 + 𝜃) → 𝐾∗

𝑉(𝜃) and𝐾𝜉(𝑛𝑇∗
𝐷 + 𝜃) → 𝐾∗

𝜉 (𝜃) as 𝑛 → ∞, ∀𝜃 ∈ [0, 𝑇∗
𝐷] as 𝑡 → ∞,𝑡𝑖(∈ Imp𝐷) → ∞, and 𝑛(∈ Z+) → ∞. Then, the following

properties hold:
(i) The endemic equilibrium state 𝑥∗end = 𝑥∗end(𝜃) for𝜃 ∈ [0, 𝑇∗

𝐷], being a point if 𝜌∗𝐷 = 0, equivalently if
card Imp𝐷 < ℵ0 (i.e., it is finite), and a periodic
limit oscillation if 𝜌∗𝐷 ∈ (0, 1] has the subsequent
components:

𝑆∗end (𝜃) = 𝐵𝐴𝐵𝐼 (𝜃) 𝐵𝐸𝛽𝑓 + 𝛽𝐴𝑓𝐴 (𝜃) + 𝛽𝐷𝑓𝐷 (𝜃)
= 𝑏2 + 𝛾𝛽 (𝐶𝐼 (𝜃) + 𝛽𝐴𝑟𝐶𝐴 + 𝛽𝐷𝑟𝐶𝐷 (𝜃)) ,

𝐸∗
end (𝜃) = 𝐵𝐴𝐵𝐼 (𝜃) 𝐶0 (𝜃)
⋅ (𝐵𝑅 (𝑆∗𝑑𝑓 (𝜃) − 𝑆∗end (𝜃)) + 𝐾∗

𝑉 (𝜃) 𝑆∗𝑑𝑓) ,
𝐼∗end (𝜃) = 𝐶𝐼 (𝜃) 𝐸∗

end (𝜃) = 𝑓𝐶0 (𝜃)
⋅ (𝐵𝑅 (𝑆∗𝑑𝑓 (𝜃) − 𝑆∗end (𝜃)) + 𝐾∗

𝑉 (𝜃) 𝑆∗𝑑𝑓 (𝜃)) ,
𝐴∗

end (𝜃) = 𝐶𝐴𝐸∗
end (𝜃) = 𝑓𝐶0 (𝜃)

⋅ (𝐵𝑅 (𝑆∗𝑑𝑓 (𝜃) − 𝑆∗end (𝜃)) + 𝐾∗
𝑉 (𝜃) 𝑆∗𝑑𝑓 (𝜃)) ,

𝐷∗
end (𝜃) = 𝐶𝐷 (𝜃) 𝐸∗

end (𝜃) = 𝑓𝐷 (𝜃) 𝐶0 (𝜃)
⋅ (𝐵𝑅 (𝑆∗𝑑𝑓 (𝜃) − 𝑆∗end (𝜃)) + 𝐾∗

𝑉𝑆∗𝑑𝑓 (𝜃)) ,

𝑅∗
end (𝜃) = (𝑆∗𝑑𝑓 (𝜃) − 𝑆∗end (𝜃))
+ (𝑅∗

𝑑𝑓 (𝜃) − (𝐸∗
end (𝜃) + 𝜇𝑏2𝐷∗

end (𝜃))) ;
∀𝜃 ∈ [0, 𝑇∗

𝐷] .
(56)

Being real constants if 𝜌∗𝐷 = 0, where
𝐵𝐴 = 𝑏2 + 𝜏0;

𝐵𝐼 (𝜃) = 𝑏2 + 𝜏0 + 𝛼 + 𝐾∗
𝜉 (𝜃) ,

𝐵𝑅 = 𝑏2 + 𝜂;
𝐵𝐸 = 𝑏2 + 𝛾,
𝑓 = 𝛾𝑝𝐵𝐴;

𝑓𝐴 (𝜃) = 𝛾 (1 − 𝑝) 𝐵𝐼 (𝜃) ,
𝑓𝐷 (𝜃) = 1𝜇 (𝑏2𝑓𝐴 (𝜃) + (𝑏2 + 𝛼)𝑓)

= 𝛾𝜇 (𝑏2 (1 − 𝑝) 𝐵𝐼 (𝜃) + 𝑝 (𝑏2 + 𝛼) 𝐵𝐴) ,
𝐶0 (𝜃) = 𝑏2𝑏2𝐵𝐴𝐵𝐼 (𝜃) (𝛾 + 𝐵𝑅) + 𝜂𝜇𝑓𝐷 (𝜃) ;

∀𝜃 ∈ [0, 𝑇∗
𝐷) ,

(57)

where 𝐶𝐼 = 𝐶𝐼(𝜃) and 𝐶𝐷 = 𝐶𝐷(𝜃) in (48) since𝐾∗
𝜉 = 𝐾∗

𝜉 (𝜃) for 𝜃 ∈ [0, 𝑇∗
𝐷). If 𝑆∗end(𝜃) < ((𝐵𝑅 +𝐾∗

𝑉(𝜃))/𝐵𝑅)𝑆∗𝑑𝑓(𝜃) = (1 + 𝐾∗
𝑉(𝜃)/(𝑏2 + 𝜂))𝑆∗𝑑𝑓(𝜃); ∀𝜃 ∈[0, 𝑇∗

𝐷), then the endemic equilibrium state exists, while
being distinct of the disease-free equilibrium state. This
existence condition of the endemic equilibrium state is
equivalent to 𝑆∗end(𝜃) < 𝑏1/𝑏2 − 𝑉∗

0 (𝜃); ∀𝜃 ∈ [0, 𝑇∗
𝐷).

If 𝑆∗end(𝜃) > (1 + 𝐾∗
𝑉(𝜃)/(𝑏2 + 𝜂))𝑆∗𝑑𝑓(𝜃); ∀𝜃 ∈ [0, 𝑇∗

𝐷)
then the endemic equilibrium state does not exist in
the sense that it has some negative components. On the
contrary, the opposed condition

𝑆∗end (𝜃) < (1 + 𝐾∗
𝑉 (𝜃)𝑏2 + 𝜂 ) 𝑆∗𝑑𝑓 (𝜃)

= 𝑏2 (𝑏1 − 𝑉∗
0 (𝜃)) + 𝜂𝑏1𝑏2 (𝑏2 + 𝜂) ; 𝜃 ∈ [0, 𝑇∗

𝐷)
(58)

yields the existence of such an endemic equilibrium
state. In the case when the limit control gains are
constant, the disease-free equilibrium state is an equi-
librium point. If, in addition, 𝜌∗𝐷 = 0 then the endemic
equilibrium solution, if it exists, is also an equilibrium
point.

(ii)

𝑁∗
end (𝜃) < 𝑁∗

𝑑𝑓 = 𝑏1𝑏2 (59)
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and the dependence on 𝜃 ∈ [0, 𝑇∗
𝐷) is removed in the

case that the endemic equilibrium state is an equilib-
rium point.

Proof. The values of the components of the endemic equilib-
rium state follow by direct elementary calculations form (45)
and (48) and have been verified under symbolic calculation
with the Mathematica package. Note that in the general case
when the control gains converge to periodic functions of
period 𝑇∗

𝐷 both the disease-free and endemic equilibrium
solutions are periodic with such a period [seeTheorem 5(iv)].
The endemic equilibrium exists while it is distinct from the
disease-free one if (58) holds. To prove Property (ii), note by
zeroing (1) to (4) and (6) while summing them up and the use
of (7) at the disease-free and endemic equilibrium states that

𝑁∗
end (𝜃) = 𝑆∗end (𝜃) + 𝑅∗

end (𝜃) + 𝐸∗
end (𝜃) + 𝐼∗end (𝜃)

+ 𝐴∗
end (𝜃) < 𝑁∗

df = 𝑆∗df + 𝑅∗
df;
∀𝜃 ∈ [0, 𝑇∗

𝐷)
(60)

since 𝑁̇(𝑡) = −𝑏2𝑁(𝑡) + 𝑏1 − 𝛼𝐼(𝑡); ∀𝑡 ∈ R0+. Thus, since(𝐸∗
end(𝜃) + 𝐼∗end(𝜃) + 𝐴∗

end(𝜃)) > 0; ∀𝜃 ∈ [0, 𝑇∗
𝐷) implied by𝐸∗

end(𝜃) > 0, ∀𝜃 ∈ [0, 𝑇∗
𝐷) if the endemic equilibrium state

exists then 𝑁∗
end(𝜃) < 𝑁∗

df ; ∀𝜃 ∈ [0, 𝑇∗
𝐷). Property (ii) is

proved.

Note from the components of the endemic equilibrium
expressions given inTheorem 6(i) that the equilibrium num-
ber of the endemic susceptible increases while correspond-
ingly those of all the infective subpopulations decrease as the
limit antiviral control gain𝐾∗

𝜉 increases.This is an interesting
tool to control the infection in the case that the endemic
equilibrium exists and the disease-free one is unstable so
unreachable in practice if the coefficient transmission rate is
large enough exceeding the threshold 𝛽cend of Theorem 5.

Remark 7. Note that we can write the linearized equation
around the endemic equilibrium state as

̇̃𝑥 (𝜃) = ⌈A∗
df (𝜃) + (A∗

end (𝜃) − A∗
df (𝜃))⌉ 𝑥 (𝜃)

= ⌈A∗
df (𝜃) + (A∗

end (𝜃) − A∗
df (𝜃))⌉ 𝑥 (𝜃) ;

∀𝜃 ∈ [0, 𝑇∗
𝐷)

(61)

with

𝑥 (0) = 𝑥 (𝑇∗
𝐷) = (1 − 𝜌∗𝐷) 𝑥 (𝑇∗−

𝐷 ) , (62)

where

A∗
end (𝜃) − A∗

df (𝜃)

= [[
[
0 0 −𝑎13 (𝜃) −𝑎14 (𝜃) −𝑎15 (𝜃) 0
0 0 𝑎13 (𝜃) 𝑎14 (𝜃) 𝑎15 (𝜃) 0

04×6

]]
]

(63a)

with

𝑎13 (𝜃) = (𝛽 + 1) 𝑆∗end (𝜃) − 𝛽𝑆∗df (𝜃) ,
𝑎14 (𝜃) = (𝛽𝛽𝐴𝑟 + 1) 𝑆∗end (𝜃) − 𝛽𝛽𝐴𝑟𝑆∗df (𝜃) ,
𝑎15 (𝜃) = (𝛽𝛽𝐷𝑟 + 1) 𝑆∗end (𝜃) − 𝛽𝛽𝐷𝑟𝑆∗df (𝜃) ;

∀𝜃 ∈ [0, 𝑇∗
𝐷)

(63b)

since

A∗
end (𝜃) 𝑥∗end (𝜃) = A∗

end (𝜃) 𝑥∗end (𝜃)
= [A∗

df (𝜃) + (A∗
end (𝜃) − A∗

df (𝜃))] 𝑥∗end (𝜃) ;
∀𝜃 ∈ [0, 𝑇∗

𝐷)
(64)

by using (49)–(51) and (55). If A∗
df(𝜃) is nonsingular then

A∗
end(𝜃) = A∗

df(𝜃)[I6 + A∗−1
df (𝜃)(A∗

end(𝜃) − A∗
df(𝜃))] is also

nonsingular if

󵄩󵄩󵄩󵄩󵄩A∗
end (𝜃) − A∗

df (𝜃)󵄩󵄩󵄩󵄩󵄩22 = 2 [𝑎213 (𝜃) + 𝑎213 (𝜃) + 𝑎215 (𝜃)]
< 1; ∀𝜃 ∈ [0, 𝑇∗

𝐷) .
(65)

Therefore, if A∗
df(𝜃) is a stability matrix (then, nonsingular)

and (65) holds thenA∗
end(𝜃) andA∗

end(𝜃) are stabilitymatrices.
The following results give easily testable sufficiency-type

local instability and local stability tests for the endemic
equilibrium point based on the stability properties of the
disease-free matrix of dynamics of the linearized system
about the disease-free equilibrium. The extension to the case
of oscillatory periodic endemic equilibrium solution would
follow “mutatis-mutandis.”

Theorem 8. Assume that the control limits 𝑉∗
0 , 𝐾∗

𝑉, 𝐾∗
𝜉 , and𝜌∗𝐷 = 0 exist and define the amounts

𝜗 = 12
󵄩󵄩󵄩󵄩󵄩󵄩𝐴∗−1

df
󵄩󵄩󵄩󵄩󵄩󵄩1 󵄩󵄩󵄩󵄩󵄩𝐴∗

end − 𝐴∗
df
󵄩󵄩󵄩󵄩󵄩1 ,

𝜅𝜗 = 󵄩󵄩󵄩󵄩󵄩󵄩𝐴∗−1
df

󵄩󵄩󵄩󵄩󵄩󵄩1 𝑏2 (𝑏1 − 𝑉0) + 𝜂𝑏1𝑏2 (𝑏2 + 𝜂 + 𝐾∗
𝑉) [ 𝐾∗

𝑉𝑏2 + 𝜂 (1
+ 𝛽max (1, 𝛽𝐴𝑟, 𝛽𝐷𝑟)) + 1] .

(66)

The following properties hold:

(i) The endemic equilibrium point exists and it is unstable
if 𝐴∗

df is instability nonsingular matrix (i.e., it has at
least one eigenvalue in Re 𝑠 > 0) and 𝜅𝜗 < 1/2.

(ii) The endemic equilibrium point, provided that it exists,
is locally asymptotically stable if𝐴∗

df is a stabilitymatrix
and 𝜅𝜗 < 1/2.

Proof. Elementary calculation yields 𝐴∗
end = 𝐴∗

df[I6 +𝐴∗−1
df (𝐴∗

end − 𝐴∗
df)] if 𝐴∗

df is nonsingular. If, furthermore, 𝐴∗
df

is instability matrix then 𝐴∗
end is also instability matrix if
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1 > ‖𝐴∗−1
df (𝐴∗

end−𝐴∗
df)‖1, which is equivalent to 𝜅𝜗 < 1/2, from

Banach’s Perturbation Lemma [33], since 𝐴∗
end is nonsingular

and the eigenvalues are continuous functions with respect
to any matrix entry thus 𝐴∗

end is instability matrix. In the
same way, if 𝐴∗

df is a stability matrix (then nonsingular) and𝜅𝜗 < 1/2 then 𝐴∗
end is nonsingular and then stable by similar

reasoning.
It has to be pointed out that Theorem 10, which is stated

and proved later on, establishes that both equilibrium points
cannot be simultaneously stable. As a result, one concludes
viaTheorem 8(ii) that if𝐴∗

df is a stability matrix and 𝜅𝜗 < 1/2
then the endemic equilibrium point does not exist. By linking
this observationwithTheorem6(i), one concludes aswell that𝑆∗end > (1 + 𝐾∗

𝑉/(𝑏2 + 𝜂))𝑆∗df and the only existing equilibrium
point is the disease-free one which is globally asymptotically
stable.

Theorem 8 can be reformulated for the use of ℓ∞-norms
by using the identity:

󵄩󵄩󵄩󵄩󵄩𝐴∗
end − 𝐴∗

df
󵄩󵄩󵄩󵄩󵄩∞ = 󵄨󵄨󵄨󵄨𝑆∗end + 𝛽 (𝑆∗end − 𝑆∗df)󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨𝑆∗end + 𝛽𝛽𝐴𝑟 (𝑆∗end − 𝑆∗df)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝑆∗end + 𝛽𝛽𝐷𝑟 (𝑆∗end − 𝑆∗df)󵄨󵄨󵄨󵄨

(67)

and for the use of ℓ2-norms by using the square root of the
sum of the squares of the three right-hand-side terms in
the above identity as replacement of it. A simple sufficient
condition for the local stability of the disease-free equilibrium
follows.

Theorem 9. Assume that 𝛽 is small enough according to 𝛽 <𝛽𝑐𝑑𝑓 with respect to the threshold:

𝛽𝑐𝑑𝑓 = 1 + 𝛽𝐴𝑟 + 𝛽𝐷𝑟𝑆∗df [𝑏2 +min (𝛾, 𝐾∗
𝑉 − 𝜂)]

= 𝑏2 (𝑏2 + 𝜂 + 𝐾∗
𝑉)(1 + 𝛽𝐴𝑟 + 𝛽𝐷𝑟) [𝑏2 (𝑏1 − 𝑉0) + 𝜂𝑏1] (𝑏2

+min (𝛾, 𝐾∗
𝑉 − 𝜂)) .

(68)

Thus, the disease-free equilibrium point is locally asymptoti-
cally stable provided that

𝛼 < 𝜇;
𝐾∗
𝑉 > 𝜂 − 𝑏2,

𝑏2 ∈ (max (𝜂 − 𝐾∗
𝑉, 𝐾∗

𝑉 + 2𝜏0 + 𝐾∗
𝜉 − 𝜇, 𝛾 (1 − 𝑝)

− 𝜏0, 𝛾𝑝 − 𝛼 − 𝜏0 − 𝐾∗
𝜉 , 0) , 𝜇 − 𝛼2 ) .

(69)

Proof. Note from (49) that A∗
df is a stability matrix since

diag(A∗
df) is a stability matrix and A∗

df is diagonally row
dominant if (68)-(69) hold.

Note that Theorem 9 can be combined with Theorem 5
in practical situations in the following sense. If the threshold

𝛽 < 𝛽cdf ≤ 𝛽cend then the disease-free equilibrium is locally
asymptotically stable and no endemic equilibrium point
exists. If 𝛽 ≥ 𝛽cdf ≥ 𝛽cend then the endemic equilibrium
point is locally asymptotically stable while the disease-free
one is unstable. This local result has a global stability version
as discussed in the following. The subsequent global stability
result is proved in Appendix and it is based on the qualitative
theory of differential equations in the sense that Lyapunov
equation candidates are not used. The solution explicit
formulas are not invoked to construct the proof but only the
trajectory separating properties of eventually existing stable,
semistable, or unstable limit cycles around equilibriumpoints
are addressed and used.

Theorem 10 (global uniform asymptotic stability). Assume
that 𝜌𝐷(𝑡) → 𝜌∗𝐷 = 0 as 𝑡(∈ Imp𝐷) → ∞. Thus, the following
properties hold:

(i) If the disease-free equilibrium point is locally asymptot-
ically stable while the endemic equilibrium state does
not exist then the epidemic model is globally uniformly
asymptotically stable and all the solution trajectories
converge asymptotically to the disease-free equilibrium
point.

(ii) If the disease-free equilibrium point is unstable and the
endemic equilibrium state exists then the system is glob-
ally uniformly asymptotically stable and all the solution
trajectories converge to the endemic equilibrium point.

(iii) The disease-free and the endemic equilibrium states
cannot be simultaneously either stable or unstable.

4. Numerical Simulations

It is now presented a set of numerical simulation work. The
parameters of the model are obtained from real data from
a study of Ebola disease [29]. The recruitment rate and the
natural average death rate are 𝑏1 = 𝑏2 = 1/(70×365) × days−1
while the disease transmission coefficients are 𝛽 = 0.16, 𝛽𝐴 =0.05, and 𝛽𝐷 = 0.5 (×days−1), respectively. The average dura-
tion of the immunity period reflecting a transition from the
recovered subpopulation to the susceptible subpopulation is
determined by 1/𝜂 = 1000 days, the average transition rate
from the exposed to both infectious subpopulations is 𝛾 =1/15.8 × days−1, the average extra mortality of the symp-
tomatic infectious is𝛼 = 1/13.3 × days−1, the natural immune
response is 𝜏0 = 1/12 × days−1, the fraction of the exposed
subpopulation becoming symptomatic infectious one is 𝑝 =0.9, and the average duration of infection is 1/𝜇 = 20 days.
The initial conditions are given by 𝑆(0) = 1000/1050, 𝐸(0) =10/1050, 𝐼(0) = 30/1050, 𝐴(0) = 𝐷(0) = 0, and 𝑅(0) =10/1050 so that the initial total living population is normal-
ized to unity, 𝑁(0) = 𝑆(0) + 𝐸(0) + 𝐼(0) + 𝐴(0) + 𝐷(0) +𝑅(0) = 1. Figure 1 displays the natural evolution of the disease
in the absence of any external action. It is observed that the
number of infective and infectious subpopulations increases
implying an increase of infective corpses as well. The result
of the natural evolution of the epidemics is the dead of
individuals so that the total living population decreases with



Discrete Dynamics in Nature and Society 13

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (days)

Su
bp

op
ul

at
io

ns

S
E
I
A
D
R

Figure 1: Natural evolution of the subpopulations.
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Figure 2: Natural evolution of the total alive population.

time as Figure 2 shows. After 250 days, the total living
population is only 56.47% of the initial one. Three control
mechanisms of fighting against Ebola have been considered
in the previous subsections. The effect of these control poli-
cies is now illustrated through simulation examples. Initially,
corpse culling (impulsive action on 𝐷) is considered as the
only action to modify the natural behavior of the disease.
Figures 3 and 4 show the effect of corpse culling on the system
with different culling rates. In this way, Figure 3 considers the
case when corpses are removed once daily at a rate of 𝜌𝐷 = 0.1
(i.e., 10% of corpses are removed daily) while Figure 4 shows
the behavior of the system when the daily culling rate is 𝜌𝐷 =0.8.
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Figure 3: Evolution of the subpopulations with a daily culling rate
of 𝜌𝐷 = 0.1.
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Figure 4: Evolution of the subpopulations with a daily culling rate
of 𝜌𝐷 = 0.8.

It can be deduced from Figures 3 and 4 that corpse culling
has a high impact on the evolution of the disease since all
the infected populations reduce their peak values due to the
application of culling. The direct consequence of this fact is
that the number of casualties is reduced as Figures 5 and 6
reveal for the total living population. Therefore, when the
culling rate is 𝜌𝐷 = 0.1, the total living population after 250
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Figure 5: Evolution of the total alive population with a daily culling
rate of 𝜌𝐷 = 0.1.
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Figure 6: Evolution of the total alive population with a daily culling
rate of 𝜌𝐷 = 0.8.

days is 62.10% of the initial one while when 𝜌𝐷 = 0.8 the total
living population after 250 days is 86.07% of the initial one.
On the other hand, Figures 7 and 8 show the effect of culling
when applied every other day instead of daily.

If we now compare Figures 6 and 8 it can be noticed
that the spacing of the culling action reduces the total
living population after 250 days of epidemics. Thus, from
Figures 5, 6, and 8 it is obtained the intuitive conclusion
that it is recommendable to perform culling as frequently as
possible with the highest possible rate. Hence, the proposed
mathematical model (1)–(6) captures and illustrates the effect
of culling in reality. Figures 9, 10, and 11 display the culling
effort corresponding to the cases considered in Figures 3, 4,
and 7, respectively. The culling effort is higher during the
first time instants for a higher culling rate while decreases
afterwards. Thus, a greater number of corpses are removed
initially, fact that reduces the number of deaths caused by the
infection, which in turn reduces the number of new corpses.
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Figure 7: Evolution of the subpopulations with an every other day
culling rate of 𝜌𝐷 = 0.8.
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Figure 8: Evolution of the total alive population with an every other
day culling rate of 𝜌𝐷 = 0.8.
As a consequence, the number of corpses to be removed
reduces as time goes by. On the other hand, a smaller culling
rate causes a peak in the culling effort during the evolution of
the disease, as Figure 9 shows.

Furthermore, vaccination can also be used in addition
to culling to fight against disease. In this way, Figures 12–
15 show the effect of a constant vaccination on the system
when a culling rate of 𝜌𝐷 = 0.1 is also applied. The constant
vaccination is expressed in both cases as amultiple of 𝑏1, being
of 𝑉 = 𝑉0 = 0.2𝑏1 for Figures 12 and 13 and 𝑉 = 𝑉0 = 0.8𝑏1
for Figures 14 and 15.

It can be noted from Figures 5, 13, and 15 that the
proposed constant vaccinations do not alter significantly the
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Figure 9: Culling effort 𝜌𝐷𝐷(𝑡) with a daily culling rate of 𝜌𝐷 = 0.1.
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Figure 10: Culling effort 𝜌𝐷𝐷(𝑡)with a daily culling rate of 𝜌𝐷 = 0.8.
behavior of the system where the culling action has been
applied. This result points out that it may be difficult to
tune the constant vaccination term 𝑉0 in order to obtain an
appropriate behavior of the controlled system. The proposed
feedback vaccination given by (7) in Section 2 contributes to
solving this tuning problem since it relates the vaccination
effort to the actual evolution of the system in such a way
that the amplitude of vaccination is calculated based on the
current value of susceptible. Thus, Figures 16 and 17 show
the system evolution when a feedback vaccination with a
constant of 𝐾𝑉 = 0.002 is applied along with the constant
vaccination term.

FromFigures 12 and 16we conclude that the feedback vac-
cination law calculated from the value of susceptible modifies
significantly the behavior of the system while Figures 13 and
17 reveal that the total living population is largely improved
by the action of feedback control. As a consequence, themain
recommendation related to vaccination campaign design is to
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Figure 11: Culling effort 𝜌𝐷𝐷(𝑡) with an every other culling rate of𝜌𝐷 = 0.8.
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Figure 12: Evolution of the subpopulations with daily culling rate of𝜌𝐷 = 0.1 and constant vaccination of 𝑉 = 𝑉0 = 0.2𝑏1.
dynamically calculate the amount of vaccines to be applied
by using the proposed feedback law (7). The vaccination
control action is shown in Figure 18 while the culling effort
corresponding to this case is depicted in Figure 19. It can
be observed in Figure 19 that the culling action vanishes as
a direct consequence of 𝐷(𝑡) tending to zero asymptotically.
Therefore, the combination of culling and feedback vaccina-
tion allows stopping themortality associatedwith the disease.
Finally, we can also add antivirals to fight against Ebola.
Antiviral action is given by (8)which is a feedback control law
based on the symptomatic infectious subpopulation. In this
case, we consider the constant linear value of 𝜉(𝑡) = 𝐾𝜉𝐼(𝑡) =
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Figure 13: Evolution of the total alive population with daily culling
rate of 𝜌𝐷 = 0.1 and constant vaccination of 𝑉 = 𝑉0 = 0.2𝑏1.
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Figure 14: Evolution of the subpopulations with daily culling rate of𝜌𝐷 = 0.1 and constant vaccination of 𝑉 = 𝑉0 = 0.8𝑏1.
0.01𝐼(𝑡) to show its effect on the system. Figures 20 and 21
show the combined effect of the three external actions.

From Figures 17 and 21 it is observed that the total living
population is improved thanks to the use of antivirals while
the deaths associated with the disease are stopped due to the
use of the proposed approach. Moreover, it is now worth
comparing the behavior of the natural system without any
kind of external action with the evolution of the system when
culling, vaccination, and antivirals are applied, especially
Figures 2 and 21. After 250 days of epidemics, the total living
population without any external action is of 56.47%while it is
of 98.74% when the proposed dedicated policies are applied.
These values show the great success in the application of
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Figure 15: Evolution of the total alive population with daily culling
rate of 𝜌𝐷 = 0.1 and constant vaccination of 𝑉 = 𝑉0 = 0.8𝑏1.
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Figure 16: Evolution of the subpopulations with daily culling rate of𝜌𝐷 = 0.1 and feedback vaccination of 𝑉 = 0.2𝑏1 + 0.002𝑆(𝑡).

control measurements to lessen the impact of epidemics in
society. Moreover, Figures 22, 23, and 24 show the control
efforts associated with each one of the therapies. It is shown
that the culling and antiviral actions vanish asymptotically so
that they are only applied for a limited period of time while
vaccination needs to be maintained since it converges to a
positive constant.

Figures 25–28 show the behaviors of the asymptomatic
and lying infective corpses under a culling rate of 𝜌𝐷 = 0.1.
The oscillatory nature of the solution due to the impulsive
culling action on infective corpses is better figured out in
Figure 28 which is ran on longer observation time intervals.
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Figure 17: Evolution of the total alive population with daily culling
rate of 𝜌𝐷 = 0.1 and feedback vaccination of 𝑉 = 0.2𝑏1 + 0.002𝑆(𝑡).
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Figure 18: Vaccination function 𝑉 = 0.2𝑏1 + 0.002𝑆(𝑡) when a daily
culling rate of 𝜌𝐷 = 0.1 is also applied.

5. Conclusions

A new epidemic model is proposed with six subpopulations
by incorporating the asymptomatic infectious and the dead
corpses into a basic SEIR model of four subpopulations. The
model is driven by three simultaneous controls in terms of
a vaccination control on the susceptible which is based on
linear time-varying feedback plus a constant term, an antivi-
ral treatment on the symptomatic infectious subpopulation
with infection feedback information, and a culling action of
impulsive type on the infective dead corpses.The vaccination
controls are combinations of feedback-independent (which
can be constant, in particular) and feedback time-varying
linear terms and the antiviral treatment control is of a time-
varying linear feedback nature. There is also an impulsive
time-dependent control action consisting of the retirement
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Figure 19: Culling effort 𝜌𝐷𝐷(𝑡)when a daily culling rate of𝜌𝐷 = 0.1
and vaccination law 𝑉 = 0.2𝑏1 + 0.002𝑆(𝑡) are applied.
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Figure 20: Evolution of the subpopulations with daily culling rate of𝜌𝐷 = 0.1, feedback vaccination 𝑉 = 0.2𝑏1 + 0.002𝑆(𝑡), and antiviral
treatment 𝜉(𝑡) = 𝐾𝜉𝐼(𝑡) = 0.01𝐼(𝑡).
of corpses so as to reduce the risks of dead-contagion to the
living uninfected population.

An identification and analysis of the endemic anddisease-
free equilibrium points and equilibrium oscillations are
performed in the case that the control gains are constant.
The equilibrium oscillations arise as a generalization of the
equilibriumpointswhen the dead corpses recovery action has
a periodic nature. The parameterizations of those mentioned
steady-state solutions are investigated as being dependent on
the control gains as they converge to constant values. The
local stability properties of the steady states and the global
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Figure 21: Evolution of the total alive population with daily culling
rate of 𝜌𝐷 = 0.1, feedback vaccination 𝑉 = 0.2𝑏1 + 0.002𝑆(𝑡), and
antiviral treatment 𝜉(𝑡) = 𝐾𝜉𝐼(𝑡) = 0.01𝐼(𝑡).
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Figure 22: Vaccination function 𝑉 = 0.2𝑏1 + 0.002𝑆(𝑡) when a daily
culling rate of 𝜌𝐷 = 0.1 and antiviral treatment 𝜉(𝑡) = 𝐾𝜉𝐼(𝑡) =0.01𝐼(𝑡) are applied.

stability are investigated. The main novelties of the paper
are (a) the incorporation of the asymptomatic infectious
subpopulation and dead corpses as extra subpopulations
with study of their steady states being either equilibrium
points or oscillations; (b) the design of three distinct controls
on the above proposed extended SEIADR model which
can be time varying and with feedback information on the
susceptible, symptomatic infections and dead corpses; (c)
the performance of the global stability analysis based on
qualitative theory of differential equations rather than on
the analysis of Lyapunov functionals; and (d) the emphasis,
supported within a variety of performed simulations, that
the infection evolution might be very sensitive to the corpses
culling action (impulsive control) parameters.
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Figure 23: Culling effort 𝜌𝐷𝐷(𝑡) when a daily culling rate of 𝜌𝐷 =0.1, vaccination law 𝑉 = 0.2𝑏1 + 0.002𝑆(𝑡) and antiviral treatment𝜉(𝑡) = 𝐾𝜉𝐼(𝑡) = 0.01𝐼(𝑡) are applied.
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Figure 24: Antiviral action when a daily culling rate of 𝜌𝐷 = 0.1,
vaccination law𝑉 = 0.2𝑏1 +0.002𝑆(𝑡), and antiviral treatment 𝜉(𝑡) =𝐾𝜉𝐼(𝑡) = 0.01𝐼(𝑡) are applied.

Appendix

Proof of Theorem 10. Rewrite (2) equivalently as

𝐸̇ (𝑡) − (𝛽𝐼 (𝑡) + 𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡)
= 𝐹1 (𝐸 (𝑡) , 𝐼 (𝑡) + 𝐴 (𝑡)) = 𝐹1 (𝐸 (𝑡) , 0)
fl − (𝑏2 + 𝛾) 𝐸 (𝑡)

(A.1)
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Figure 25: Evolution of the asymptomatic subpopulation with a
daily culling rate of 𝜌𝐷 = 0.1.

while one gets from (3), (4), and (8)

̇𝐼 (𝑡) + 𝐴̇ (𝑡) + (𝛼 + 𝐾∗
𝜉 + 𝐾̃𝜉 (𝑡)) 𝐼 (𝑡)

= 𝐹2 (𝐸 (𝑡) , 𝐼 (𝑡) + 𝐴 (𝑡))
fl 𝛾𝐸 (𝑡) − (𝑏2 + 𝜏0) (𝐼 (𝑡) + 𝐴 (𝑡)) ,

(A.2)

where 𝐾̃𝜉(𝑡) = 𝐾𝜉(𝑡) − 𝐾∗
𝜉 . Note from (A.1)-(A.2) that𝐹1(𝐸(𝑡), 0) and 𝐹2(𝐸(𝑡), 𝐼(𝑡) + 𝐴(𝑡)) are continuous with

continuous partial derivatives with respect to their arguments
in any simply connected region Cint of R2

𝜕𝐹1 (𝐸 (𝑡) , 0)𝜕𝐸 (𝑡) + 𝜕𝐹2 (𝐸 (𝑡) , 𝐼 (𝑡) + 𝐴 (𝑡))𝜕 (𝐼 (𝑡) + 𝐴 (𝑡))
= − (2𝑏2 + 𝛾 + 𝜏0) < 0; ∀𝑡 ∈ R0+.

(A.3)

Any such region Cint cannot contain a closed trajectory C
(limit cycle) from Gauss-Stokes theorem since then

∮
C
[𝐹1 (𝐸 (𝑡) , 0) 𝑑 (𝐼 (𝑡) + 𝐴 (𝑡)) − 𝐹2 (𝐸 (𝑡) , 𝐼 (𝑡) + 𝐴 (𝑡)) 𝑑𝐸 (𝑡)]
= ∬

CintC

(𝜕𝐹1 (𝐸 (𝑡) , 0)𝜕𝐸 (𝑡) + 𝜕𝐹2 (𝐸 (𝑡) , 𝐼 (𝑡) + 𝐴 (𝑡))𝜕 (𝐼 (𝑡) + 𝐴 (𝑡)) ) 𝑑𝐸 (𝑡) 𝑑 (𝐼 (𝑡) + 𝐴 (𝑡)) < 0; (A.4)

from (A.3) if CintC is the interior of the set defined by the
simple curve C, a contradiction, (Bendixson’s criterion of
nonexistence of limit cycles [34] or Bendixson’s first theorem,
implies that the above integral has to be null for closed
trajectories) then it should hold 𝐹̇2(𝑡)𝑑𝐹1(𝑡)−𝐹̇1(𝑡)𝑑𝐹2(𝑡) = 0
along the orbit C and this is impossible from (A.4), where

𝐹1 (𝑡)
= 𝐸 (𝑡) − 𝐸 (0)

− ∫𝑡

0
(𝛽𝐼 (𝜎) + 𝛽𝐴𝐴 (𝜎) + 𝛽𝐷𝐷 (𝜎)) 𝑆 (𝜎) 𝑑𝜎

= − (𝑏2 + 𝛾)∫𝑡

0
𝐸 (𝜎) 𝑑𝜎,

𝐹2 (𝑡)
= 𝐼 (𝑡) + 𝐴 (𝑡) − 𝐼 (0) − 𝐴 (0)

+ ∫𝑡

0
(𝛼 + 𝐾∗

𝜉 + 𝐾̃𝜉 (𝜎)) 𝐼 (𝜎) 𝑑𝜎
= ∫𝑡

0
(𝛾𝐸 (𝜎) − (𝑏2 + 𝜏0) (𝐼 (𝜎) + 𝐴 (𝜎))) 𝑑𝜎

(A.5)

from (A.1)-(A.2). Since 𝐾̃𝜉(𝑡) → 0 as 𝑡 → ∞ one has from
(A.1) and (A.2) and (A.4) that

lim
𝑡→∞

[ ̇𝐼 (𝑡) + 𝐴̇ (𝑡) + (𝛼 + 𝐾∗
𝜉 ) 𝐼 (𝑡)

− 𝐹2 (𝐸 (𝑡) , 𝐼 (𝑡) + 𝐴 (𝑡))] = 0, (A.6)

lim
𝑡→∞

[𝐸̇ (𝑡) − (𝛽𝐼 (𝑡) + 𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡)
− 𝐹1 (𝐸 (𝑡) , 0)] = 0. (A.7)

Taking Laplace transforms in (A.6) by neglecting initial
conditions and using (48), one gets from (A.6) that 𝐸(𝑠) =𝐹2(𝑠)/((𝐶𝐼 + 𝐶𝐴)𝑠 + (𝛼 + 𝐾∗

𝜉 )𝐶𝐼), where the superscript
“hat” denotes the Laplace transform in the Laplace argument
“𝑠” of 𝐹2(⋅). Since 𝐹2(𝑡) is not asymptotically periodic the
Laplace antitransform of 𝐸(𝑠), that is, 𝐸(𝑡), is not asymptot-
ically periodic from the above expression. Since 𝐸(𝑡) is not
asymptotically periodic then 𝐼(𝑡) and 𝐴(𝑡) and 𝐷(𝑡) are not
asymptotically periodic (note the assumption 𝜌∗𝐷 = 0). On
the other hand, one gets from (6) to (8) as 𝑡 → ∞, since𝐾𝑉(𝑡) → 𝐾∗

𝑉 and𝐾𝜉(𝑡) → 𝐾∗
𝜉 as 𝑡 → ∞ that

𝑅̇ (𝑡) + (𝑏2 + 𝜂) 𝑅 (𝑡) − 𝑉0 − 𝐾∗
𝑉𝑆 (𝑡)

= 𝜏0𝐴 (𝑡) + (𝜏0 + 𝐾∗
𝜉 ) 𝐼 (𝑡) (A.8)

while summing up (1) and (6) by taking into account (2) and
(48) yields

̇𝑆 (𝑡) + 𝑅̇ (𝑡) + 𝑏2 (𝑆 (𝑡) + 𝑅 (𝑡))
= −𝐸̇ (𝑡) + 𝑏1

+ (𝜏0𝐶𝐴 + (𝜏0 + 𝐾∗
𝜉 ) 𝐶𝐼 − (𝑏2 + 𝛾)) 𝐸 (𝑡) .

(A.9)
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Figure 26: Zoom on the evolution of the asymptomatic subpopula-
tion with a daily culling rate of 𝜌𝐷 = 0.1.

Subtracting (A.8) from (A.9) and rewriting (A.9) in an
equivalent form yields

̇𝑆 (𝑡) + 𝐸̇ (𝑡) + (𝑏2 + 𝛾) 𝐸 (𝑡) − 𝑏1 + 𝑉0
= 𝐹3 (𝑆 (𝑡) , 𝑅 (𝑡)) fl − (𝑏2 + 𝐾∗

𝑉) 𝑆 (𝑡) + 𝜂𝑅 (𝑡) , (A.10)

̇𝑆 (𝑡) + 𝑅̇ (𝑡) + 𝐸̇ (𝑡) − 𝑏1
+ (𝑏2 + 𝛾 − 𝜏0𝐶𝐴 − (𝜏0 + 𝐾∗

𝜉 ) 𝐶𝐼) 𝐸 (𝑡)
= 𝐹4 (𝑆 (𝑡) , 𝑅 (𝑡)) fl −𝑏2 (𝑆 (𝑡) + 𝑅 (𝑡)) ,

(A.11)

𝜕𝐹3 (𝑆 (𝑡) , 𝑅 (𝑡))𝜕𝑆 (𝑡) + 𝜕𝐹4 (𝑆 (𝑡) , 𝑅 (𝑡))𝜕𝑅 (𝑡)
= − (2𝑏2 + 𝐾∗

𝑉) < 0;
∀𝑡 ∈ R0+.

(A.12)

Since sign((𝜕𝐹3(𝑆(𝑡), 𝑅(𝑡)))/𝜕𝑆(𝑡) + (𝜕𝐹4(𝑆(𝑡), 𝑅(𝑡)))/𝜕𝑅(𝑡))
is constant along state-trajectory solutions in R2, one has
again that no closed trajectory (then no limit cycle) can exist
surrounding any region with Poincaré’s index +1. In view of
(A.11)-(A.12), the functions ̇𝑆(𝑡)+𝐸̇(𝑡)+(𝑏2+𝛾)𝐸(𝑡)−𝑏1+𝑉0 anḋ𝑆(𝑡)+𝑅̇(𝑡)+𝐸̇(𝑡)−𝑏1+(𝑏2+𝛾−𝜏0𝐶𝐴−(𝜏0+𝐾∗

𝜉 )𝐶𝐼)𝐸(𝑡) are not
asymptotically periodic. Since𝐸(𝑡) and 𝐸̇(𝑡) have been proved
to be nonasymptotically periodic then ( ̇𝑆(𝑡)+𝑅̇(𝑡)), ̇𝑆(𝑡), 𝑅̇(𝑡),
and then their time-integral solutions are not asymptotically
periodic either.

The above arguments, together with the property of
uniform boundedness of the total population and that of
the nonnegativity of the solution, conclude that if only
the disease-free equilibrium point exists while it is locally
asymptotically stable then it is globally asymptotically stable
as well since no limit cycle can exist around it in any plane
in R2

0+ associated with any two of the state variables. On
the other hand, assume that the endemic equilibrium state
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Figure 27: Evolution of the infective lying corpses with a daily
culling rate of 𝜌𝐷 = 0.1.
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Figure 28: Zoom on the evolution of the infective corpses with a
daily culling rate of 𝜌𝐷 = 0.1.
is not a stable attractor while the disease-free is unstable.
Then, an unstable limit cycle around it cannot exist from the
above discussion (which excludes both stable and instable
limit cycles) and, due to the nonnegativity of the solution and
to the uniform boundedness of the whole population, then
the trajectory converges asymptotically to it so that it is a
stable attractor.

If the disease-free equilibrium point is unstable and the
endemic equilibrium exists then the endemic equilibrium
point is a stable attractor and the system is globally asymp-
totically stable with any state-trajectory solution converging
to it.

Two other possible stability/instability combinations of
the stability of both equilibrium states are excluded as follows
leading to Property (ii):

(1) The case that both equilibrium states are simulta-
neously locally stable is excluded. Since there is no



Discrete Dynamics in Nature and Society 21

closed trajectory solution then there is no semistable
limit cycle separating the domains of attraction of
both equilibrium states within the first orthant of R6.

(2) The case that both equilibrium states are simultane-
ously unstable is excluded as well since the system is
globally stable if it is positive.
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This paper is devoted to exploring the combined impact of a generic nonlinear infection rate and infected removable storage media
on viral spread. For that purpose, a novel dynamical model with an external compartment is proposed, and the explanations of the
main model assumptions (especially the generic nonlinear infection rate) are also examined. The existence and global stability of
the unique equilibrium of the model are fully investigated, from which it can be seen that computer virus would persist. On this
basis, a next-best approach to controlling the level of infected computers is suggested, and the theoretical analysis of optimal control
of the model is also performed. Additionally, some numerical examples are given to illustrate the main results.

1. Introduction

In the wake of developments in computer and network
technologies, computer virus has become more capable of
conquering computer system. In the meantime, the study of
fighting against computer virus has in the past few decades
been paid more attention. In reality, there is no doubt that
antivirus software and firewall are the most effective pre-
vention measures. However, they are incompetent to inhibit
computer virus diffusion over the Internet [1]. To deal with
this problem, a wide variety of mathematical models have
been widely studied (for the related references, see, e.g., [2–
15]).

The infection rate is an important and essential system
parameter in computer virus propagation models. However,
the dominatingmajority of previousmodels assume a bilinear
incidence rate (for the related references, see, e.g., [16–20])
or a nonlinear increasing incidence rate (for the related
references, see, e.g., [21]). The former assumption is suitable
for the case where the proportion of infected computers
is small. The latter assumption neglects the fact that, due
to active protection measures taken during viral spread,
the infection rate would be decreasing, while the infected
computers may be increasing. In order to depict the case

where the infection rate could be decreasing with the infected
computers and inspired by the previous work (e.g., [22, 23]),
the proposedmodel of this paper adopts a nonlinear function𝜎(𝐼) = 𝛽𝐼/𝑓(𝐼), where 𝛽 > 0 and function 𝑓 ∈ 𝐶2[0, +∞)
with 𝑓󸀠 ≥ 0, 𝑓󸀠󸀠 < 0, and 𝑓(0) = 1 (see also the model
assumption (A3) in the next section).

External computers (i.e., computers outside the Internet)
and infected removable storage media play an important
role in viral spread (for the related references, see, e.g.,
[24, 25]). In [24], the impact of infected removable storage
media is considered, but the influence of external computers
is insufficient. In [25], a dynamical model, in which all
external computers are regarded as a separate compartment,
was proposed. Unfortunately, this model ignores the effects
of generic nonlinear infection rate and infected removable
storage media. Consequently, it is necessary to consider the
combined impact of a generic nonlinear infection rate and
infected removable storage media on viral spread.

In addition, optimal control theory is often applied
to control virus prevalence (for the related references, see,
e.g., [14, 26–28]). In [14, 27], a susceptible-latent-break-
ing-outside-susceptible (SLBOS) model and a susceptible-
latent-breaking-susceptible (SLBS) model were studied,
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respectively. References [26, 28] considered a susceptible-
infected-recovered-susceptible (SIRS) model in a fully
connected network and a complex network, respectively. To
our knowledge, there is no susceptible-infected-external-
susceptible (SIES) model that has been examined by applying
optimal control theory.

Combining the above discussions, a novel SIES model
with two kinds of incidence rates, which are caused by
infected computers and infected removable storage media,
is established in this paper. A systematic analysis of the
proposed model shows that the unique (viral) equilibrium
is globally asymptotically stable. This result indicates that
any effort in eradicating computer virus cannot succeed.
In this regard, theoretical analysis of a next-best approach
and optimal control of the model is performed. Numerical
analysis of the model is also included.

The remaining materials of this paper are organized as
follows: Section 2 formulates the model. Section 3 considers
the viral equilibrium and its global stability. In Section 4,
a theoretical analysis of optimal control of the model is
performed. Finally, Section 5 concludes the contributions of
this work and points out some further works that are worth
doing.

2. Model Characterization

In this paper, the proposed model consists of three compart-
ments (see (i)–(iii)), and the assumptions of it are also made
(see (A1)–(A8)):

(i) 𝑆-compartment: the set of all 𝑆-computers (suscepti-
ble internal computers, i.e., computers in the Internet)

(ii) 𝐼-compartment: the set of all 𝐼-computers (infected
internal computers)

(iii) 𝐸-compartment: the set of all 𝐸-computers (external
computers, i.e., computers outside the Internet)

(A1) Every computer is out of use with probability per unit
time 𝜇 > 0

(A2) Every 𝑆- or 𝐼-computer leaves the Internet with
probability per unit time 𝛾1 > 0

(A3) Due to possible communication with 𝐼-computers
over the Internet, every 𝑆-computer is infected with
probability per unit time 𝜎(𝐼) = 𝛽𝐼/𝑓(𝐼), where 𝛽 > 0
and function𝑓 ∈ 𝐶2[0, +∞)with𝑓󸀠 ≥ 0,𝑓󸀠󸀠 < 0, and𝑓(0) = 1

(A4) Due to possible effect of infected removable storage
media, every 𝑆-computer is infected with probability
per unit time 𝜃 ≥ 0

(A5) Due to treatment, every 𝐼-computer is cured with
probability per unit time 𝛾2 > 0

(A6) The rate of all newly accessed 𝐸-computers is 𝛿 > 0
(A7) Every 𝐸-computer is either susceptible or infected

when it enters the Internet
(A8) Every susceptible (or infected) 𝐸-computer enters the

Internet with probability per unit time 𝜂2 > 0 (or 𝜂1 >0)

S I E
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𝛾1S

𝜎(I)S

𝛾2I

𝜃S

𝜇I

𝜂2E
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𝛿

𝜇E

Figure 1: The transfer diagram of the proposed model.

For convenience, let 𝑆, 𝐼, and 𝐸 represent the average
number of computers in 𝑆-compartment, 𝐼-compartment,
and 𝐸-compartment at time 𝑡, respectively. Collecting the
foregoing hypotheses, the proposed model can be depicted
by Figure 1 or the differential system

𝑆̇ = 𝛾2𝐼 + 𝜂2𝐸 − 𝜇𝑆 − 𝜎 (𝐼) 𝑆 − 𝛾1𝑆 − 𝜃𝑆,
𝐼̇ = 𝜎 (𝐼) 𝑆 + 𝜃𝑆 − 𝜇𝐼 − 𝛾1𝐼 − 𝛾2𝐼 + 𝜂1𝐸,
𝐸̇ = 𝛿 + 𝛾1𝑆 + 𝛾1𝐼 − 𝜇𝐸 − 𝜂1𝐸 − 𝜂2𝐸,

(1)

with initial condition (𝑆(0), 𝐼(0), 𝐸(0)) ∈ 𝑅3+.
3. Model Analysis

Let𝑁 = 𝑆 + 𝐼 + 𝐸. System (1) can be rewritten as

𝑁̇ = 𝛿 − 𝜇𝑁,
𝐼̇ = 𝜎 (𝐼) (𝑁 − 𝐼 − 𝐸) + 𝜃 (𝑁 − 𝐼 − 𝐸) − 𝜇𝐼 − 𝛾1𝐼

− 𝛾2𝐼 + 𝜂1𝐸,
𝐸̇ = 𝛿 + 𝛾1𝑁 − 𝛾1𝐸 − 𝜇𝐸 − 𝜂1𝐸 − 𝜂2𝐸,

(2)

with initial condition (𝑁(0), 𝐼(0), 𝐸(0)) ∈ 𝑅3+.
Let 𝑁∗ = 𝛿/𝜇 and 𝐸∗ = 𝛿(𝜇 + 𝛾1)/𝜇(𝜇 + 𝛾1 + 𝜂1 + 𝜂2).

Solving the first and third equations of system (2), we get
lim𝑡→+∞𝑁(𝑡) = 𝑁∗ and lim𝑡→+∞𝐸(𝑡) = 𝐸∗. System (2) can
be reduced to the limiting system [29]

𝐼̇ = 𝜎 (𝐼) (𝐴 − 𝐼) − (𝜇 + 𝛾1 + 𝛾2 + 𝜃) 𝐼 + 𝐵, (3)

where 𝐴 = 𝑁∗ − 𝐸∗ = 𝛿(𝜂1 + 𝜂2)/𝜇(𝜇 + 𝛾1 + 𝜂1 + 𝜂2) > 0 and𝐵 = 𝜂1𝐸∗ + 𝜃𝐴 > 0.
Clearly, system (3) has no virus-free equilibrium. Thus,

this section mainly addresses the existence and global stabil-
ity of viral equilibrium of system (3) with respect to positively
invariant region:Ω = {𝐼 | 0 ≤ 𝐼 ≤ 𝑁∗}.
3.1. Equilibrium

Theorem 1. System (3) has a unique viral equilibrium 𝐼∗,
where 𝐼∗ is the unique root in (0,𝑁∗) of the equation

𝐹 (𝑥) = 𝜎 (𝑥) (𝐴 − 𝑥) − (𝜇 + 𝛾1 + 𝛾2 + 𝜃) 𝑥 + 𝐵 = 0. (4)
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Proof. If 𝐼∗ is a viral equilibrium of system (3), then it satisfies
(4). Now, it suffices to show that (4) has a unique root
in (0,𝑁∗). As 𝜎(𝑥) = 𝛽𝑥/𝑓(𝑥) and 𝜎󸀠(𝑥) = 𝛽((𝑓(𝑥) −𝑥𝑓󸀠(𝑥))/𝑓2(𝑥)), we proceed by treating two possibilities.

Case 1. 𝑓(𝑥) − 𝑥𝑓󸀠(𝑥) ≤ 0; namely, 𝜎󸀠(𝑥) ≤ 0. Note that
𝐹 (0) = 𝐵 > 0,
𝐹 (𝐴) = 𝐵 − (𝜇 + 𝛾1 + 𝛾2 + 𝜃)𝐴

= −𝛿 (𝜂2 (𝜇 + 𝛾1 + 𝛾2) + 𝛾2𝜂1)𝜇 (𝜇 + 𝛾1 + 𝜂1 + 𝜂2) < 0,
𝐹󸀠 (𝑥) = 𝛽(𝐴 − 2𝑥) 𝑓 (𝑥) − (𝐴 − 𝑥) 𝑥𝑓󸀠 (𝑥)𝑓2 (𝑥)

− (𝜇 + 𝛾1 + 𝛾2 + 𝜃)
= 𝛽𝐴 (𝑓 (𝑥) − 𝑥𝑓󸀠 (𝑥)) − 𝑥 [2𝑓 (𝑥) − 𝑥𝑓󸀠 (𝑥)]

𝑓2 (𝑥)
− (𝜇 + 𝛾1 + 𝛾2 + 𝜃) .

(5)

Let 𝐺(𝑥) = 2𝑓(𝑥) − 𝑥𝑓󸀠(𝑥); then 𝐺(0) = 2𝑓(0) > 0. 𝑓(𝑥) −𝑥𝑓󸀠(𝑥) ≤ 0, 𝑓󸀠 ≥ 0; 𝑓󸀠󸀠 < 0 implies that 𝐺󸀠(𝑥) = 𝑓󸀠(𝑥) −𝑥𝑓󸀠󸀠(𝑥) > 0. Hence,𝐺(𝑥) > 0; 𝐹󸀠(𝑥) < 0 implies that 𝐹(𝑥) has
a unique root in (0,𝑁∗).
Case 2. 𝑓(𝑥) − 𝑥𝑓󸀠(𝑥) > 0; namely, 𝜎󸀠(𝑥) > 0. Let

𝐹1 (𝑥) = 𝑓 (𝑥)𝑥 𝐹 (𝑥)
= 𝛽 (𝐴 − 𝑥) + 𝐵𝑓 (𝑥)𝑥 − (𝜇 + 𝛾1 + 𝛾2 + 𝜃) 𝑓 (𝑥)
= 0.

(6)

Then,

𝐹1 (0+) = lim
𝑥→0+

𝐹1 (𝑥) = +∞ > 0,
𝐹1 (𝐴) = 𝐵𝑓 (𝐴)𝐴 − (𝜇 + 𝛾1 + 𝛾2 + 𝜃) 𝑓 (𝐴) < 0,
𝐹󸀠1 (𝑥) = −𝛽 + 𝐵𝑥𝑓󸀠 (𝑥) − 𝑓 (𝑥)𝑥2

− (𝜇 + 𝛾1 + 𝛾2 + 𝜃) 𝑓󸀠 (𝑥) < 0.

(7)

Thus,𝐹(𝑥)has a unique root in (0,𝑁∗).The claimed result
follows by the above discussions.

Remark 2. It follows from the above proof that 0 < 𝐼∗ < 𝐴.
3.2. Global Stability

Theorem 3. 𝐼∗ is globally asymptotically stable with respect toΩ.

Proof. Consider the Lyapunov function

𝑉 = ∫𝐼∗
𝐼

𝑢 − 𝐼∗𝑢 𝑑𝑢. (8)

Then,

𝑉̇󵄨󵄨󵄨󵄨󵄨(3) = 𝐼 − 𝐼∗𝐼 [𝜎 (𝐼) (𝐴 − 𝐼) − (𝜇 + 𝛾1 + 𝛾2 + 𝜃) 𝐼 + 𝐵]
= 𝐼 − 𝐼∗𝐼 [𝜎 (𝐼) (𝐴 − 𝐼) − 𝜎 (𝐼∗) (𝐴 − 𝐼∗)
− (𝜇 + 𝛾1 + 𝛾2 + 𝜃) (𝐼 − 𝐼∗)]
= 𝐼 − 𝐼∗𝐼 [(𝐴 − 𝐼∗) (𝜎 (𝐼) − 𝜎 (𝐼∗)) − 𝜎 (𝐼) (𝐼 − 𝐼∗)
− (𝜇 + 𝛾1 + 𝛾2 + 𝜃) (𝐼 − 𝐼∗)]
= (𝐼 − 𝐼∗)2

𝐼 [(𝐴 − 𝐼∗) 𝜎 (𝐼) − 𝜎 (𝐼∗)
𝐼 − 𝐼∗ − 𝜎 (𝐼)

− (𝜇 + 𝛾1 + 𝛾2 + 𝜃)] .

(9)

Here, we proceed by treating two cases.

Case 1. If 𝜎󸀠(𝐼) ≤ 0, namely, 𝑓(𝐼) − 𝐼𝑓󸀠(𝐼) ≤ 0, then it
follows from the Lagrange mean value theorem that (𝜎(𝐼) −𝜎(𝐼∗))/(𝐼 − 𝐼∗) = 𝜎󸀠(𝜉) ≤ 0, 𝜉 ∈ (𝐼, 𝐼∗), or 𝜉 ∈ (𝐼∗, 𝐼). As𝐴 − 𝐼∗ = 𝑁∗ − 𝐸∗ − 𝐼∗ > 0, 𝑉̇|(3) ≤ 0 and 𝑉̇|(3) = 0 if and
only if 𝐼 = 𝐼∗. Thus, the claimed result follows from LaSalle’s
Invariance Principle [30].

Case 2. If 𝜎󸀠(𝐼) > 0, namely, 𝑓(𝐼) − 𝐼𝑓󸀠(𝐼) > 0, let
𝐻(𝐼) = (𝐴 − 𝐼∗) 𝜎 (𝐼) − 𝜎 (𝐼∗)

𝐼 − 𝐼∗ − 𝜎 (𝐼)
− (𝜇 + 𝛾1 + 𝛾2 + 𝜃) .

(10)

Then,

𝐻(0) = (𝐴 − 𝐼∗) 𝜎 (𝐼∗)
𝐼∗ − (𝜇 + 𝛾1 + 𝛾2 + 𝜃) = − 𝐵𝐼∗

< 0,
𝐻󸀠 (𝐼) = (𝐴 − 𝐼∗) 𝜎󸀠 (𝐼) (𝐼 − 𝐼∗) − [𝜎 (𝐼) − 𝜎 (𝐼∗)]

(𝐼 − 𝐼∗)2
− 𝜎󸀠 (𝐼) .

(11)

Next, we need to further distinguish two subcases.

Subcase 2.1. If 𝐼 > 𝐼∗, it follows from the Lagrangemean value
theorem that 𝜎(𝐼) − 𝜎(𝐼∗) = 𝜎󸀠(𝜁)(𝐼 − 𝐼∗), 𝜁 ∈ (𝐼∗, 𝐼). As𝑓󸀠󸀠 < 0, 𝜎󸀠󸀠 < 0. Then, for 𝜖 ∈ (𝜁, 𝐼),

𝐻󸀠 (𝐼) = (𝐴 − 𝐼∗) 𝜎󸀠 (𝐼) − 𝜎󸀠 (𝜁)𝐼 − 𝐼∗ − 𝜎󸀠 (𝐼)
= (𝐴 − 𝐼∗) 𝜎󸀠󸀠 (𝜖) (𝐼 − 𝜁)𝐼 − 𝐼∗ − 𝜎󸀠 (𝐼) < 0.

(12)
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Figure 2: Time plots of 𝑆(𝑡), 𝐼(𝑡), and 𝐸(𝑡) for system (1) given in
Example 4.

Subcase 2.2. If 𝐼 ≤ 𝐼∗, it follows from the Lagrangemean value
theorem that 𝜎(𝐼) − 𝜎(𝐼∗) = 𝜎󸀠(𝜀)(𝐼 − 𝐼∗), 𝜀 ∈ (𝐼, 𝐼∗). As𝑓󸀠󸀠 < 0, 𝜎󸀠󸀠 < 0. Then, for 𝜍 ∈ (𝐼, 𝜀),

𝐻󸀠 (𝐼) = (𝐴 − 𝐼∗) 𝜎󸀠 (𝐼) − 𝜎󸀠 (𝜀)𝐼 − 𝐼∗ − 𝜎󸀠 (𝐼)
= (𝐴 − 𝐼∗) 𝜎󸀠󸀠 (𝜍) (𝐼 − 𝜀)𝐼 − 𝐼∗ − 𝜎󸀠 (𝐼) < 0.

(13)

It follows from (12)-(13) that 𝐻(𝐼) ≤ 𝐻(0) < 0. Thus,𝑉̇|(3) ≤ 0. Furthermore, 𝑉̇|(3) = 0 if and only if 𝐼 = 𝐼∗. The
claimed result also follows fromLaSalle’s Invariance Principle
[30]. The proof is complete.

Example 4. Consider system (1) with 𝛿 = 5, 𝜇 = 0.01,𝜂1 = 0.1, 𝜂2 = 0.2, 𝛾1 = 0.08, 𝛾2 = 0.08895, 𝜃 = 0.01,
and 𝜎(𝐼) = 0.04487𝐼/(1 + √𝐼). Figure 2 displays the time
plot of this system with initial condition (𝑆(0), 𝐼(0), 𝐸(0)) =(300, 20, 180). From Figure 2, the values of 𝑆(𝑡), 𝐼(𝑡), and 𝐸(𝑡)
tend to a constant, respectively. Furthermore, 𝐼(𝑡) tends to a
positive constant. This shows that 𝐼∗ is globally asymptoti-
cally stable.

Remark 5. Theorem 3 reveals that 𝐼(𝑡) tends to a positive
constant 𝐼∗. From an epidemiological standpoint, it indicates
that computer virus would persist in network. Thus, one
can conclude that any effort in eradicating computer virus is
doomed to failure. Thus, the best achievable goal is to make
the number of infected computers below an acceptable level
(i.e., as low as possible). Note that 𝐼∗ cannot be expressed in a
specific formula, and it follows from Remark 2 that 0 < 𝐼∗ <𝐴. Then, one could keep the value of 𝐴 below an acceptable
threshold. To this end, the following result is made.

Theorem6. From Equation (3),𝐴 = 𝛿(𝜂1+𝜂2)/𝜇(𝜇+𝛾1+𝜂1+𝜂2). Then 𝜕𝐴/𝜕𝜇 < 0, 𝜕𝐴/𝜕𝛾1 < 0, 𝜕𝐴/𝜕𝛿 > 0, 𝜕𝐴/𝜕𝜂1 > 0,
and 𝜕𝐴/𝜕𝜂2 > 0.
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Figure 3: An illustration of the impact of 𝜎(𝐼) on 𝐼(𝑡) for system (1)
given in Example 8.

Proof. Since 𝐴 = 𝛿(𝜂1 + 𝜂2)/𝜇(𝜇 + 𝛾1 + 𝜂1 + 𝜂2), then
𝜕𝐴𝜕𝜇 = −𝛿 (𝜂1 + 𝜂2) (2𝜇 + 𝛾1 + 𝜂1 + 𝜂2)

𝜇2 (𝜇 + 𝛾1 + 𝜂1 + 𝜂2)2 < 0,
𝜕𝐴𝜕𝛾1 = − 𝛿 (𝜂1 + 𝜂2)

𝜇 (𝜇 + 𝛾1 + 𝜂1 + 𝜂2)2 < 0,
𝜕𝐴𝜕𝛿 = 𝜂1 + 𝜂2𝜇 (𝜇 + 𝛾1 + 𝜂1 + 𝜂2) > 0,
𝜕𝐴𝜕𝜂1 =

𝛿 (𝜇 + 𝛾1)
𝜇 (𝜇 + 𝛾1 + 𝜂1 + 𝜂2)2 > 0,

𝜕𝐴𝜕𝜂2 =
𝛿 (𝜇 + 𝛾1)

𝜇 (𝜇 + 𝛾1 + 𝜂1 + 𝜂2)2 > 0.

(14)

Thus, the proof is complete.

Remark 7. Theorem 6 implies the effects of some system
parameters on the value of 𝐴.

In addition, the following two examples exhibit the
impacts of 𝜎(𝐼) and 𝜃 on 𝐼, respectively.
Example 8. Consider system (1) with 𝛿 = 5, 𝜇 = 0.01,𝜂1 = 0.01, 𝜂2 = 0.04, 𝛾1 = 0.04, 𝛾2 = 0.08895, and 𝜃 = 0.01.
Figure 3 demonstrates the time plot of this systemwith initial
condition (𝑆(0), 𝐼(0), 𝐸(0)) = (450, 10, 40).
Example 9. Consider system (1) with 𝛿 = 5, 𝜇 = 0.01,𝜂1 = 0.04, 𝜂2 = 0.08, 𝛾1 = 0.08, 𝛾2 = 0.08895, and𝜎(𝐼) = 0.004487𝐼/(1+√𝐼). Figure 4 shows the timeplot of this
systemwith initial condition (𝑆(0), 𝐼(0), 𝐸(0)) = (450, 10, 40).
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Figure 4: An illustration of the impact of 𝜃 on 𝐼(𝑡) for system (1)
given in Example 9.

Figures 3 and 4 show the effects of different infection
rates and infected removable media on virus diffusion,
respectively.

4. Optimal Control of the Model

To make a tradeoff between control cost and control effect,
the control variable 𝑢(𝑡) meaning the control strategy is
applied in the proposed model (system (1)). Then, one can
get the controlled dynamical system

𝑆̇ = 𝛾2𝐼 + 𝜂2𝐸 − 𝜇𝑆 − 𝜎 (𝐼) 𝑆 − 𝛾1𝑆 − 𝜃𝑆,
𝐼̇ = 𝜎 (𝐼) 𝑆 + 𝜃𝑆 − 𝜇𝐼 − 𝛾1𝐼 − 𝑢 (𝑡) 𝐼 + 𝜂1𝐸,
𝐸̇ = 𝛿 + 𝛾1𝑆 + 𝛾1𝐼 − 𝜇𝐸 − 𝜂1𝐸 − 𝜂2𝐸,

(15)

with initial condition (𝑆(0), 𝐼(0), 𝐸(0))𝑇 ∈ Ω󸀠, where
Ω󸀠 = {(𝑆, 𝐼, 𝐸)𝑇 ∈ 𝑅3+ | 𝑆 + 𝐼 + 𝐸 ≤ 𝛿𝜇} . (16)

The admissible control set is

𝑈 = {𝑢 (⋅) ∈ 𝐿2 [0, 𝑇] | 𝛾2 ≤ 𝑢 (⋅) ≤ 𝛾2} , (17)

where 𝛾2 and 𝛾2 are positive constants and 0 < 𝛾2 < 𝛾2 < 1.
Let x(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝐸(𝑡))𝑇. Then system (15) can be

written in matrix notation as

𝑑x (𝑡)𝑑𝑡 = f (x (𝑡) , 𝑢 (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇, (18)

with initial condition x(0) ∈ Ω󸀠.
Now, the objective is to find a control variable 𝑢(⋅) so as

to minimize both the number of infected computers and the

total budget for treatment and vaccination during the time
period [0, 𝑇]. That is, it suffices to solve the optimal control
problem.

Minimize𝑢(⋅)∈𝑈 𝐽 (𝑢 (⋅)) = ∫𝑇
0

𝐿 (x (𝑡) , 𝑢 (𝑡)) 𝑑𝑡 (19)

subject to system (18), where

𝐿 (x, 𝑢) = 𝐼 + 𝜖𝑢22 (20)

is the Lagrangian and 𝜖 > 0 is a tradeoff factor based on the
control cost and control effect.

Theorem 10. The optimal control problem (19) has an optimal
control.

Proof. From equations (19) and (20), one can get that

(1) there exist 𝑢(⋅) ∈ 𝑈 such that system (18) is solvable,

(2) the admissible control set 𝑈 is convex and closed,

(3) the right-hand side of system (18) is bounded by a
linear function in x,

(4) 𝐿(x, 𝑢) is convex on 𝑈,
(5) there exist 𝜌 = 2, 𝑐1 = 𝜖/2, and 𝑐2 = 0 such that𝐿(x, 𝑢) ≥ (𝜖/2)‖𝑢‖22.

Thus, the claimed result follows directly from [31].

Theorem 11. Suppose 𝑢̃(⋅) is an optimal control for the optimal
control problem (19), and (𝑆̃(𝑡), 𝐼̃(𝑡), 𝐸̃(𝑡))𝑇 is the solution to
system (18) with 𝑢(⋅) = 𝑢̃(⋅). Then, there exist functions 𝜆1(𝑡),𝜆2(𝑡), and 𝜆3(𝑡), 0 ≤ 𝑡 ≤ 𝑇, such that

𝑑𝜆1 (𝑡)𝑑𝑡 = 𝜆1 (𝑡) (𝜇 + 𝛾1 + 𝜃 + 𝜎 (𝐼̃ (𝑡))) − 𝛾1𝜆3 (𝑡)
− 𝜆2 (𝑡) (𝜃 + 𝜎 (𝐼̃ (𝑡))) ,

𝑑𝜆2 (𝑡)𝑑𝑡 = −1 − 𝜆1 (𝑡) (𝜇 − 𝐶𝑆̃ (𝑡)) − 𝛾1𝜆3 (𝑡)
+ 𝜆2 (𝑡) (𝜇 + 𝛾1 + 𝑢̃ (𝑡) − 𝐶𝑆̃ (𝑡)) ,

𝑑𝜆3 (𝑡)𝑑𝑡 = −𝜂2𝜆1 (𝑡) − 𝜂1𝜆2 (𝑡) + (𝜇 + 𝜂1 + 𝜂2) 𝜆3 (𝑡) ,
0 ≤ 𝑡 ≤ 𝑇,

(21)

with transversality conditions 𝜆1(𝑇) = 𝜆2(𝑇) = 𝜆3(𝑇) = 0,
where

𝐶 = 𝛽𝑓 (𝐼̃ (𝑡)) − 𝛽𝐼̃ (𝑡) 𝑓󸀠 (𝐼̃ (𝑡))
𝑓2 (𝐼̃ (𝑡)) . (22)
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Furthermore, we have

𝑢∗ (𝑡)
= max{min{(𝜆2 (𝑡) − 𝜆1 (𝑡)) 𝐼̃ (𝑡)𝜖 , 𝛾2} , 𝛾2} ,

0 ≤ 𝑡 ≤ 𝑇.
(23)

Proof. Note that the Hamiltonian is

𝐻(𝑆, 𝐼, 𝐸, 𝜆1, 𝜆2, 𝜆3, 𝑢)
= 𝐼 + 𝜖2𝑢2 + 𝜆1 𝑑𝑆𝑑𝑡 + 𝜆2 𝑑𝐼𝑑𝑡 + 𝜆3 𝑑𝐸𝑑𝑡 ,

(24)

where 𝜆1, 𝜆2, and 𝜆3 are undetermined.
Then, applying the Pontryagin Minimum Principle [32],

there exist functions 𝜆1(𝑡), 𝜆2(𝑡), and 𝜆3(𝑡), 0 ≤ 𝑡 ≤ 𝑇, such
that

𝑑𝜆1 (𝑡)𝑑𝑡
= −𝜕𝐻(𝑆̃ (𝑡) , 𝐼̃ (𝑡) , 𝐸̃ (𝑡) , 𝜆1 (𝑡) , 𝜆2 (𝑡) , 𝜆3 (𝑡) , 𝑢̃ (𝑡))

𝜕𝑆 ,
𝑑𝜆2 (𝑡)𝑑𝑡
= −𝜕𝐻(𝑆̃ (𝑡) , 𝐼̃ (𝑡) , 𝐸̃ (𝑡) , 𝜆1 (𝑡) , 𝜆2 (𝑡) , 𝜆3 (𝑡) , 𝑢̃ (𝑡))

𝜕𝐼 ,
𝑑𝜆3 (𝑡)𝑑𝑡
= −𝜕𝐻(𝑆̃ (𝑡) , 𝐼̃ (𝑡) , 𝐸̃ (𝑡) , 𝜆1 (𝑡) , 𝜆2 (𝑡) , 𝜆3 (𝑡) , 𝑢̃ (𝑡))

𝜕𝐸 ,
0 ≤ 𝑡 ≤ 𝑇.

(25)

Hence, system (21) follows by a straightforward calculation.
As the terminal cost is unspecified and the final state is free,
the transversality conditions hold.

Note that the optimality condition 𝐻(𝑆̃(⋅), 𝐼̃(⋅), 𝐸̃(⋅),𝜆1(⋅), 𝜆2(⋅), 𝜆3(⋅), 𝑢̃(⋅)) = min𝑢(⋅)∈𝑈𝐻(𝑆̃(⋅), 𝐼̃(⋅), 𝐸̃(⋅), 𝜆1(⋅),𝜆2(⋅), 𝜆3(⋅), 𝑢(⋅)). Then, either

𝜕𝐻(𝑆̃ (𝑡) , 𝐼̃ (𝑡) , 𝐸̃ (𝑡) , 𝜆1 (𝑡) , 𝜆2 (𝑡) , 𝜆3 (𝑡) , 𝑢̃ (𝑡))
𝜕𝑢

= 𝜖𝑢̃ (𝑡) + 𝜆1 (𝑡) 𝐼̃ (𝑡) − 𝜆2 (𝑡) 𝐼̃ (𝑡) = 0
(26)

or 𝑢̃(𝑡) = 𝛾2 or 𝑢̃(𝑡) = 𝛾2. Thus, the proof is complete.

By combining the above discussions, the optimality sys-
tem for the optimal control problem (19) can be derived as
follows:

𝑑𝑆 (𝑡)𝑑𝑡
= 𝑢 (𝑡) 𝐼 (𝑡) + 𝜂2𝐸 (𝑡) − 𝜇𝑆 (𝑡) − 𝜎 (𝐼 (𝑡)) 𝑆 (𝑡)

− 𝛾1𝑆 (𝑡) − 𝜃𝑆 (𝑡) ,
𝑑𝐼 (𝑡)𝑑𝑡

= 𝜎 (𝐼 (𝑡)) 𝑆 (𝑡) + 𝜃𝑆 (𝑡) − 𝜇𝐼 (𝑡) − 𝛾1𝐼 (𝑡)
− 𝑢 (𝑡) 𝐼 (𝑡) + 𝜂1𝐸 (𝑡) ,

𝑑𝐸 (𝑡)𝑑𝑡
= 𝛿 + 𝛾1𝑆 (𝑡) + 𝛾1𝐼 (𝑡) − 𝜇𝐸 (𝑡) − 𝜂1𝐸 (𝑡) − 𝜂2𝐸 (𝑡) ,

𝑑𝜆1 (𝑡)𝑑𝑡
= 𝜆1 (𝑡) (𝜇 + 𝛾1 + 𝜃 + 𝜎 (𝐼 (𝑡)))

− 𝜆2 (𝑡) (𝜃 + 𝜎 (𝐼 (𝑡))) − 𝛾1𝜆3 (𝑡) ,
𝑑𝜆2 (𝑡)𝑑𝑡

= −1 − 𝜆1 (𝑡) (𝜇 − 𝐶𝑆 (𝑡))
+ 𝜆2 (𝑡) (𝜇 + 𝛾1 + 𝑢 (𝑡) − 𝐶𝑆 (𝑡)) − 𝛾1𝜆3 (𝑡) ,

𝑑𝜆3 (𝑡)𝑑𝑡 = −𝜂2𝜆1 (𝑡) − 𝜂1𝜆2 (𝑡) + (𝜇 + 𝜂1 + 𝜂2) 𝜆3 (𝑡) ,
𝑢 (𝑡) = max{min{(𝜆2 (𝑡) − 𝜆1 (𝑡)) 𝐼 (𝑡)𝜖 , 𝛾2} , 𝛾2} ,

0 ≤ 𝑡 ≤ 𝑇,

(27)

with (𝑆(0), 𝐼(0), 𝐸(0))𝑇 ∈ Ω󸀠, and 𝜆1(𝑇) = 𝜆2(𝑇) = 𝜆3(𝑇) =0.
Next, the effectiveness of optimal control will be exam-

ined. Here we have to point out that all parameter values are
chosen hypothetically due to the unavailability of real-world
data.

Example 12. Suppose that 𝛿 = 2, 𝜇 = 0.01, 𝜂1 = 0.012, 𝜂2 =0.021, 𝛾1 = 0.01, 𝜃 = 0.015, 𝛾2 = 0.001, 𝛾2 = 0.8, 𝜎(𝐼) =
0.005𝐼/(1 + √𝐼), 𝜖 = 15, and 𝑇 = 100. The optimality system
(18) with (𝑆(0), 𝐼(0), 𝐸(0)) = (100, 60, 40) is to be numerically
solved with the backward-forward Runge-Kutta fourth-order
scheme. Then Figures 5–7 and Table 1 are obtained.

Figures 5 and 6 exhibit the evolution of 𝑆 and 𝐼 with
different control strategies, respectively. From these two
figures, it is natural to see that the optimal control 𝑢̃ is
superior to others.
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Table 1: The values of 𝐼 and objective function 𝐽 under different control strategies 𝑢.
𝑢 = 𝑢̃ 𝑢 = 0.001 𝑢 = 0.2 𝑢 = 0.4 𝑢 = 0.6 𝑢 = 0.8

𝐼(𝑢) 5.5 104.1 19.9 9.5 6.1 4.3𝐽(𝑢) 748.1 9894.8 2637.1 1671.4 1373.1 1322.9
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Figure 5: Evolution of number of susceptible computers with
different control strategies.

Figure 7 shows the corresponding optimal control strat-
egy.

Table 1 lists the values of infected computers 𝐼 and
objective function 𝐽 under different control strategies. It is
easy to conclude that 𝑢̃ is the best choice.

5. Conclusions and Prospects

This paper has investigated an SIES model with generic
nonlinear infection rate. A thorough analysis shows that the
unique (viral) equilibrium is globally asymptotically stable.
This result implies that any effort in eradicating computer
virus is inoperative. As a result, a countermeasure, which
mainly aims to maintain the number of infected computers
at an acceptable level, and optimal control analysis of the
proposed model have been posed. Some numerical examples
are also included.

The study of this model not only implies some new
practical measures but also gives a theoretical support to the
usefulness of some existing antivirus strategies and provides
the basis to developing many other more elaborated models.

The study can be continued in several directions. First
of all, it would be interesting for complex network (e.g.,
scale-free network) because our model is a homogeneous
model. Next, delays (or pulses) could be incorporated in our
model so as to characterize the delay in the development
of new vaccine (or the emergency of new virus). Finally,
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Figure 6: Evolution of number of infected computers with different
control strategies.
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Figure 7: An optimal control function for system (18).

our model involves a relatively large number of parameters,
which are very difficult to establish with accuracy. Therefore,
it is appropriate to modify our model by considering the
parameters to be random variables.
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