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In this paper, we investigate some properties of the Pochhammer (p, s, k)-symbol ,[{],,, . and gamma (p, s, k)-function I’ ().
We then prove several identities for newly defined symbol , [],,; ; and the function ,T's; (§). The integral representations for the
gamma (p, s, k)-function and beta (p, s, k)-function are presented. Also, we define a new Mittag-Leffler (p, s, k)-function and

study its analytic properties and its transforms.

1. Introduction

The theory of special functions comprises a major part of
mathematics. In the last three centuries, the essential of
solving the problems taking place in the fields of classical
mechanics, hydrodynamics, and control theories motivated
the development of the theory of special functions. This field
also has wide applications in both pure mathematics and
applied mathematics. The interested readers may consult the
literature [1-4].

The Mittag-Leffler function takes place naturally similar
to that of the exponential function in the solutions of
fractional integro-differential equations having the arbitrary
order. The Mittag-Leftler functions have to gain more rec-
ognition due to its wide applications in diverse fields. We
suggest the readers to review the literature [5-16] for more
details.

Throughout this article, let C, R, Z", and N be the sets
of complex numbers, positive real numbers, negative inte-
gers, and natural numbers, respectively.

2. Preliminaries

This section contains some basic definitions and mathe-
matical preliminaries. We begin with the well-known Mit-
tag-Leffler function.

In [17], Gosta Mittag-LefHler introduced the following
Mittag-Leffler function which is defined by

00 n

_ z
Ey(z) = Zm,

n=0

zeC,R(O)>0. (1)

In [18], a generalization of Mittag-Leftler function E4(2)
(1) is given by

[ee) Z}’l
E =y_= ,
09(2) ;F(0n+9)’ 29¢C, RO >0. (2

In [6], Prabhakar proposed the following three pa-
rameters of Mittag-Leftler function, which is defined by
00 zn (Q)
EQ — n
0 = 2 s g

n=0

z,9,0€C, R(O >0, (3)
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where (p), is the well-known Pochhammer’s symbol defined
as follows (see [19]). For ¢ € C,

(0),=0(0+1)(p+2)---(o+n-1), forneN

4
=1, forn=0. )

Definition 1. In [20], Gehlot introduced the two parameters
Pochhammer’s symbol and two parameters of gamma
(p, k)-function.

Let k, p>0, & € C with R (§) >0, and n € N. Then, the
Pochhammer (p, k)-symbol (&),.x is defined as

() Ze) (Leomr) @

and the gamma (p, k)-function is defined by
1 ! n+1 &k
L (6) - i M (np) (6)

oo P(irk

Definition 2. The gamma (p, k)-function is also represented
by the following forms:

pLe(®) = Jo e e lat, (7)
ik &k
L@ =(2) e -2 (Z) ®)
Also, the relationship between the Pochhammer

(p,k)-symbol, Pochhammer k-symbol, and the classical
Pochhammer’s symbol is represented by [4]

p O =(2) O - p"(,f) . ©)

The gamma ( p, k)-function Pl"k (§) satisfies the following
relation:

pl"k (5 + nk)
where
T+ k) = (Ep )mf) (11)

Definition 3. In [21], the Mittag-Leffler k-function is defined
by

_ (Q)n,kzn
k99(z) Z’)W (12)

where k € R, z, 0, 9, o € C, R(0), and R (9) >0.
Recently, Cerutti et al. [22] introduced the following
Mittag-Leffler (p, k)-function is defined as follows.

Definition 4. For

pkeR,z,60,9,0e C,R(0)>0, and R (9) >0,

Journal of Mathematics

P (Q)n kzn

B =) 1
ko9 (2) = Zprk(9n+9)n' (13)
where (g)n « is the Pochhammer (p, k)-symbol given by (5)
and Pl‘k (§) is gamma (p, k)-function given by (6).
In [23], Pochhammer (p, s, k)-symbol , [{], ;. is defined

as follows.

Definition 5. For p,k,E € R, 0<s<1,and n €N,

n-1 (14)
H[—Hp]
where
_ 4
6, =27% wEeRr (15)
1-5s

The following identities are satisfied:

1) [E+y) = [El,+s5 [y VEy e R
(2) [1];=1

(3) Eyls = Elo [y Ve y e R

(4) [0];=0

Definition 6. In [23], the gamma (p, s, k)-function in term
of s-series is given by

_ P (SP;Sp)n—l
oLk (kn) = [ELW (16)

The relationship between , [],,x; and T, (§) is given by
(23]
pr, (& +nk)

L G (17)

The beta (p, k)-function is defined by

L), Tk ()

T (Ery) R >0, R(y)>0. (18)

PBk (f) J’) =

Definition 7. The beta (p, k)-function is represented by the
following integral:

1 .
PBe(Ey) =1 Jot(w L1 = 01 gmpit gy, (19)

Definition 8. The well-known Laplace transform of piece-
wise continuous function f: R — R is defined by

21 (0) = J:O cUFOdBR()>0.  (20)
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3. Applications and Properties of the
Pochhammer (p, s, k)-Symbol (€]
Gamma (p, s, k)-Function l"sk(f)

ks and

In this section, we define gamma (p, s, k)-function ,I';; (§)
in terms of limit function and give its integral representa-
tion. Also, we define beta (p, s, k)-function sz,k(‘f y) and
its integral representation. Furthermore, we prove some
identities of the Pochhammer (p, s, k)-symbol ,[£], ;. and
the gamma (p, s, k)-function pI‘Sk(f)

Definition 9. Suppose that k, s, p>0, &€ C/kZ~ with
R (£)>0, and n € N. Then, the gamma (p,s, k)-function
pl“s’k(f) is given as

1n+1

)(f/k)fl

!
prs,k(€)=%nlim np (snp

21
—00 P&,k =

Theorem 1. Suppose that k, p,s,r,q>0, & e C/kZ" with
R (&) >0, and n € N. Then, the following identities hold:

(1)P [E]n,r,s:p[q?f] (22)
;S
() |2
@8, = (?) [ : ]q (23)
(3)P [E]n,k,s = s[f]n,k,p (24)
(). L (9 = (%)prq(%f) 25)

k &ls
s )
)f/q

(6). Ty () = ( iy (8) (27)

Proof. The properties (22), (23), and (24), respectively,
follow from definition (11) and equations (2.8), (2.9), and
(2.10) of [16]. The properties (25), (26), and (27), respec-
tively, follow by using equation (21) and (2.11), (2.12), and
(2.13) of [16]. O

Theorem 2. Letk, p,s,r>0, & € C/kZ™ with R (§) >0, and
n € N. Then, the following integral representation of gamma

(p, s, k)-function is defined by

Tor(©) = IO e 1Py, (28)

Proof. Consider the right hand side of (28). By applying ([8],
page 2) Tannery theorem and using (21), we have

n—o00 J o

- (snp)' tk n

J R T J <1——> £71de (29)
0 nsp

Let C,, (£),i = 0,1,...

(Snp)l/k tk iE_1
C.(&)= lim J (1——)t dr. (30)
: nsp

,1, be given by

n—o0 J o

After integrating by parts, we obtain

C,; (&) :%Cn’i,l(f+k), Vi=1,2,...,n (31)
Also,
&k
Cpo () = D (32)
: §
Therefore,
Cnn (5) s n|pn+1 (Snp)(f/k
k » ()i (1 + (§/kn))’
s ) n!pn+l (Sl/lp) (&/k)-1
= l C, 1
L) = fim G (6= tim =F— G
(3a
Definition 10. Let &, y € C/kZ™, k,p,s,r €e R* =0, and

R(&)>0,neN. Then, the integral representation of
»Bk (§,y) is given by

1
»Bsik (6 ) = % JO $EI=1 () _ py 0I0=1=(pI0=(s1(1=0) g,
(34)
where R (p)>0,R(s)>0,R({)>0, and R (y) > 0.

Theorem 3. The relation between three parameters, two
parameters, and the classical Pochhammer’s symbol is given

by
ol =5 @ = () O = (sp>"(§) NED)

Proof. Using (14) and (9), we get the desired result. O

Theorem 4. The relation between gamma (p, s, k)-function,
gamma (p, k)-function, gamma k-function, and classic
gamma function is given by

&lk
prs,k &= (S)E/kprk €3) :(%) T, (é) = (SP) <Ii>

(36)

Proof. Using (21) and (8), we get the desired result. O



Theorem 5. Given & e CkZ™,k,s,p € R" —{0},R () >0,
and neN, the recurrence relation for Pochhammer
(p, s, k)-symbol is given by

g]jks p[£+jk]n,k,5’
s = 1€~ Kl

[f n+j,k,s =

(37)
(ns) , [E]-1 s =

Proof. Using the definition of Pochhammer (p, s, k)-sym-
bol, we get the desired result. O

4. Definition and Convergence Condition of the
Mittag-Leffler (p, s, k)-Function pE%,a (2)

In this section, we define a new generalization of the Mittag-
Leffler (p, s, k)-function. Also, we check the convergence of
the Mittag-Leffler (p, s, k)-function.

Definition ~ 11. Suppose  that  p,keR,0,9,0€C,
R (6) >0, R (9), and R (o) > 0. Then, Mittag-Leffler
(p, s, k)-function is defined by
s [Q] k, z"
oS _ nk,s
pEroo (@) = ;71: T (G 1 O (38)

where ,[p], is Pochhammer (p,s,k)-symbol defined in
(14),and T (&) is defined in (21).The recurrence relation of
gamma (p, s, k)-function I (¢) given in [23] is

prs,k (x + k) = |:%P:|Sprs,k (f) (39)

Now, some characteristics of the Mittag-Leffler
(p, s, k)-function are presented. We show that the M-L
(p, s, k)-function is an entire function. Also, its order and
type are given.

Theorem 6. The Mittag-Leffler (p,s, k)-function, defined in
(38), is an entire function of order p and type o given by
k

P = Re(0y (10)

o= [p peRe((o/k)ln(e/k))p]— 1

Proof. Let R denotes the radius of convergence of the
Mittag-Leffler (p, s, k)-function. By considering the prop-
erties (5) and (8) and using the asymptotic expansions for
the gamma function [1] and the asymptotic Stirling’s for-
mula, we have

T(z) = 20"z e [1+0(z - 1)]

- (larg (2)| < 7; |z| — ©00).

(41)

In particular,

nl = (2mn)"*n" 7”[1+O( )](neN;n—>00), (42)

and the following quotient expansion of two gamma
functions at infinity is given as

Journal of Mathematics

I'(z+a) b . .
T(z+b) [1+0(z7")] (larg(2) + al < ;2] — o0).
(43)
Series (38) can be written in the following forms:
. [Q]nks "
EY; _\y _ ptflnks®
oEkp9(2) = ;}P T G+ O
(44)
= Z c,z"
n=0
since
R= lim sup ¢ (45)
nmee Cn+1

In view of the properties (35) and (36) and using (II1.9)
of Theorem (1) in [22], we get

| [pleluksplsx (B(n+1) +9) (n+ D!
|Cn+l| | p [Q]er,k,sprs,k (67’1 + 19)}1' |

s lels ™ L (O(n + 1) + 9) (n+ 1)

' Sn+1p [Q]n+1’k51(79n+9)/krk (6” + 9)7’[! '

6rk
0
~(n+1)s 9k (G/k) 1( ;) co.

(46)
Thus, the Mittag-Leffler (p, s, k)-function is an entire
function.

To obtain the order p and the type o, we apply the
following definitions of p and o, respectively:

nlnn

ln(1/|cn|)’

o= lim sup<n|c lp ) (48)

n—a~oo

p= lim sup

n—~o

(47)

Consider
L |p sk(Q)Prsk(0n+9)n'|
| | P s,k (9 + ?’lk) |

_ @ nsaye]pTk (@)L (B + )l
| phi(o+nk) |

(49)

By using Theorem (1) equation (IIL.12) ([22]) and
definition of p (47), we get
k

P~ Re(0) 50

Similarly, by putting the value of |c,| in the definition of
0 (48) and simplify as the same in Theorem (1) in equation
(TI1.14) ([22]), we obtain

ER((G/k)ln(O/k))p]’l. (51)

o =[ppe
O
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5. Applications and Properties of the Mittag-
Leffler (p, s, k)-Function PEi:;s (z)

Some basic properties of Mittag-Leffler (p,s, k)-function
pEi’zs (z) are presented in this section.

Theorem 7. Suppose that p,k,seN,0,9,0¢€ C with
R (0) >0, R (9) and R (p) >0, then

1)
d " 0,5 o+mk,s
iz pEk09(2) = plo)mkspEr g omso (2)- (52)
)
<i>m( g/k) Eggs( 6/k) — Z((On/k)—m-e{S/k)— 1)
dz

o+mbk,s 0/k
“p [Q]mkspEk 06m+9(z )

(53)

Proof. (1) Taking L.H.S of (42),

d " 0,8 d "X p[Q]n,k,szn
(dz) pEros (2) = (dz) <f;prs)k(ﬂn+9)n!

_ i p[g]n,k,sz B (54)

n=m prs,k On+9)(n-m)!

n
_ = p [Q]n+m,k,sz

) = Lok (B(n+m) + Nn!’

By using

P [ﬂrﬁj,k,s = p[f]j,k,s X p[€ + jk]n,k,s’ (55)

in the above equation, we get the desired result (52).
(2) Taking L.H.S of (43),

i m( S/kE@s ( e/k)) B i m ip[@]n,k,sz(en/k)+(9/k)_l
dz k69 \dz) \ & Ti(On+om

(On/k)+(9/k)—m—1

at p[e]n,k,sz
B S pLsk (Bn+9) (n—m)!

0/k) (n+m+(9/k)— m—1
OO p [Q]ner,k,sz

- Lok (000 —m) + 9)nl

n=0

(56)

By using

P [£]n+j,k,s = P[f]j,k,s X p[f + jk]n,k,s’ (57)

in the above equation, we get the desired result
(53). O

Theorem 8. Suppose that k>0 and 6,9 and ¢ € C with
R(0)>0,R(9)>0 and R(p) >0, then

J £ (-1 Ei;s(ate/k)dt :S(6n+9)/kp Ik Egs

k.6, (9+k)(“zelk)

(58)

Proof. Consider the L.H.S.

oIk \"

J £ (O7R)- Egs ( a/k)dt= Jzt(s/k)—l © p[g]n,k,s(at )
0 k6.9 0 =0 pLek O+ nl”
(59)

By changing integration and summation orders in the
above equation, we have

(0], (@)"
(97k)-1 »S 9/k p nk,s
Jot E;‘Zes( )dt:

n:opl‘s)k (6n + )n!

z
J' £ Ok HOTK)-1 4,
0

(On/k)+(9/k)

_ Z [Q]n k,s (a) Z
5 (Bn+9)/k) T (On+ !
(60)

By using the recurrence relation of ,I';; (§) and I (§)
and equation (IIL.31) in [22], we get

(6n+9)/k
(?)p (O +9) = STP s (Bn+9+K).  (61)

By using the above result in equation (60), we have

(9k)-1 0. 0/k _ (On+9)/k Ok 08
Jot JEbge(at™)de = s pz IR E

k 99+k(“26/k)-
(62|ﬁ

6. The Euler-Beta Transform of the Mittag-
Leffler (p, s, k)-Function pEi:sg,s (z)

The well-known Euler-beta transform is defined by
1
B{f (0);a;b} = I o (1-0)""f(0)d, (63)
0

where a,b € R and min{R (6), R (9)} > 0.
Next, we define the beta transform of newly defined M-L
function.

Theorem 9. Suppose that p, s, k>0 and 0,9, p,a,b € C with
R(0)>0,R(9)>0, R(p)>0,R (a)>0, and R (b) >0, then
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0 oy 9 b After interchanging the integration and summation
B( Ey es(AZ ) K k) =k, (b) Ek 0,916 (1)- (64) orders of the above equation and using the relation between
the gamma (p,s,k)-function and the classical gamma
function given by (3.4), we have
Proof.
s 9b ! - -
B( Eies()tzwk)@?%) _ Joz(sua (1 = z)-1
(65)
[Q]nksln On/k
e 8 Lo (On+ S)n'
9b plodugsd” :
0.8 ok\. V.0 nks (BrIKIHO)I=1 (1 _ o (bIR=1 4
B( Ekes()tz ) K k) n= op sk(9”+'9)”'J ‘ (1-2) ‘
~ & el T((Bn+ 9T (blk) (66
= 5 sk(9n+9)n' TL((On+9+Db)k)
Z (0], sA” T ((6n + 9)/k)T (blk)
5(9"+9)/k1" (Bn+ 9)/kn! T((Bn+9+Db)/k)

After simplification, we obtain the desired result:
B 9b
Kk

Remark 1.
(i) If s = 1, then equation (64) coincides with the result
of [22], sec (IV.2)
(ii) If s = 1 and p = k, then equation (64) coincides with
the formula (11,37) in [21]
(iii) If s = p = k = 1, then equation (64) coincides with
the formula (2.2.14) in [24]

EQS

k@s( G/k) (67)

O

Iy (b) Ek 8.9+ (A)-

7. The Laplace Transform of the Mittag-Leffler
(p, s, k)-Function Ekos(z)

Theorem 10. Let p,s,k,c>0
R(0)>0,R(I)>0, and R (o) >0. Then, the Laplace trans-
form of pEgzg’S is given by

and 0,9,0€ C with

:Z{ (9/k)- Egs

[e¢]
kes( t (cz)g/k)} = JO o525, Ol-1

FL B (2 (2] = k(spe) | 1p( 5) o
P09\ T p 1¥p s .

(68)

Proof. Applying the Laplace transform on the left hand side
of (68), the Laplace transform of the potential function (see
[1], equation (1.4.58)) and the generalized binomial formula
is given by

(1 - kw) %% = Z (Q)nkw_ (69)
We have
p[@]nks n Onlk d
e (e
n=0 p 5
_ ZP[Q]nks( :6’11):‘;))15’0”/@]- o 52 7 OOk~ 4 (70)
Ty ! 0
nks
(sps)S/k Z 4l (c/sps)en/k.
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. Now, using the relation between , [o], . and , (0) x> we
ave

g{ (97k)-1 Elgsés( i(cz)ﬂ/k)} _

c Onlk
P
S 2 (o)

(71)

Writing the series in compact form, we have

k NN
(sps )9/k<1 ps(ks) ) '
(72d

Remark 2. (a) If s = 1 in the above theorem, then the result
coincides with the formula of [22]

b)Ifp=s=k

:f{z(\‘)/k)— 1PE£:.;>S( 4 (CZ)G/k)}

=c¢ =1 in Theorem 10, then

Q{Z&IIE%}%S(ZH)} = 59(1 - 579)_9’

which coincides with formula (11.13) of [25].

(73)

8. Conclusion

In this paper, we established a new extension of the Mittag-
Leffler function and investigated some of its properties. We
concluded as follows:

(1) If s = 1, then we get the results of the Mittag-Leffler
(p, s, k)-function defined in [22]

(2) If p=1lands=1, then we get the results of the
Mittag-Leffler k-function defined in [21]

(3) If k=1,p=1, ands = 1, then we get the results of
the Mittag-Leftler defined in [6]

4)If p=1,k=1,5s=1,andp =1, then we get the re-
sults of the Mittag-Leftler defined in [18]

BG)If p=1,k=1,s=1,9=1,andp =1, then we get
the results of the Mittag-Lefler k-function defined in
(17]

6 Ifp=1k=1s=1,0=19=1, andp = 1, then we
get the exponential function

Recently, the Mittag-Leffler function is used to construct
the fractional operators with nonsingular kernels [26, 27]. In
[28, 29], the authors introduced the generalized fractional
integrals and differential operators, which contain the
Mittag-Leffler k-function in the kernels, and proved their
various properties. Recently, Samraiz et al. [30] introduced

(SPS)

k @ue [( ¢ \"sp]
(SPS)S/kZ [(sps) K|

s (p/k) (Q)n, Onlk
i) (=)

the Hilfer Prabhakar (k; s)-fractional derivative by using the
Mittag-Leffler k-function. They discussed its various prop-
erties and the generalized Laplace transform of the said
operator. They also discussed the applications of Hilfer
Prabhakar’s (k;s)-derivative in mathematical physics. In
this study, we defined further generalization of the Mittag-
Leffler and proved its various basic properties. Hence, it
would be of great interest that the Mittag-Leftler function
studied in this article will be utilized to generalize such
classes of fractional and differential operators.
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In this paper, we show that a sequence satisfying a Suzuki-type JS-rational contraction or a generalized Suzuki-type Ciri¢ JS-
contraction, under some conditions, is a Cauchy sequence. This paper presents some common fixed point theorems and an
application to resolve a system of nonlinear fractional differential equations. Some examples and consequences are

also given.

1. Introduction

The application of Banach contraction principle (BCP) [1] is
wide spread. Recently, fixed point theory is being applied to
show the existence of solutions of different mathematical
models expressed in the forms of differential, integral,
functional, fractional differential, and matrix equations
(both linear and nonlinear). There are several common fixed
point theorems, in the literature, which generalize BCP and
have been applied to show the existence of solutions of
different mathematical models involving two or more
functions (see [2-19], for details).

Suzuki [20] presented a new generalization of BCP, so
called a Suzuki-contraction, and established an existence
theorem which characterized the metric completeness.
Piri and Kumam [21, 22] investigated results in [20]
under the F-contraction structure both in metric and
b-metric spaces, respectively. Further generalizations of
Suzuki contractions have been studied by Aydi et al. [23]

who introduced a Suzuki-type multivalued contraction
to obtain fixed point theorems in the setting of weak
partial metric spaces. Abbas et al. [2] discussed gener-
alized Suzuki-type multivalued contractions under the
effect of a binary relation and obtained some fixed point
results.

On the contrary, Jleli et al. [24, 25] introduced another
generalization of BCP, known as a JS-contraction (also
known as a 0-contraction) and Li and Jiang [26] modified
the JS-contraction to JS-quasi contractions in order to obtain
more general fixed point results, as compared to [24]. Altun
et al. [27] obtained some fixed point theorems for JS-con-
traction type mappings via a binary operation. Several
honorable researchers have published their valuable inves-
tigations on JS-contractions in well ranked journals (see
[28-31]).

In this paper, we structure two common fixed point
theorems comprising four self-mappings involving gener-
alized Suzuki-type 0-rational contractions and generalized
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Suzuki-type Ciri¢ 6-contractions. The existence of the so-
lution of a mathematical model in terms of fractional dif-
ferential equations is shown through a common fixed point
theorem.

2. Advances on 0-Contractions
Let © :={6: (0,00) — (1, 00) such that 0 satisfies ©,, ®,,
©,}, where

(©,) 0 is nondecreasing.

(©,) For each sequence {?n} c (0, 00),

ifandonlyif lim £, = 0. (1)

n—~oo

lim 9(?n> -1,

n—~oo

(©3) There exist g € (0,1) and € € (0,00] such that
lim; . 0(f) =1/t =¢.

Jleli and Samet [24] introduced the following.

Definition 1. Let (y,p) be a metric space. The mapping
T: y — yx is called a 0-contraction (or a JS-contraction) if
there exist a constant k € [0,1) and 8 € ® such that

rjex, p(IrTj)#0=0(p(Tr,Ti) <0 NI
(2)

The following examples show that the set ® is not empty.

Example 1. Let ®,y: (0,00) — (1, 00) be defined by, for
all t € (0, 00),

O(t) = ew—, 3)
y(t)=e"".

Then, ® and v are in O.
Jleli and Samet [24] established the following fixed point
theorem.

Theorem 1 (see [24]). Let (y,p) be a complete metric space
andT: x — x be a O-contraction. Then, T has a unique fixed
point.

Consistent with  [28], let u: ={0: (0,00) —
(1, 00)|0 satisty (©,), (®,), (®3)}, where

(®'3) 0 is continuous on (0, 00).

Note that (@3) and (®'3) are independent of each other.
For this, see examples in [28]. The set of functions y is not
empty, as shown in the following.

Example 2 (see [28]). Let ¢,¢,y,F,G,H: (0,00) —
(1,00) be defined by, for all ¢ € (0, c0),
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o) =¢,
¢ (t) = cos ht,
y(t) = eV,
(4)
F(t)=1+In(t+1),
Gy =e,
H(t) = €.

Here, ¢, ¢, v, F,G,H € p.
Hussain et al. [29] modified the class ® of mappings as
follows:

Let¥ ={6: [0,00) —> [1,00): @satisfies(¥;) — (¥5)},
(5)
where

(¥,) 0 is non decreasing.
(¥,) 6(t) = 1if and onlyif ¢ = 0.

(¥5) For each sequence {?n} c (0,00):

ifandonlyif lim ?n =0. (6)

lim 9(?,1) =1,
(¥,) There existﬂze (0,1) and € € (0,00] such that
(¥5)0(t, +£,)<0(£,)0(t,).

The functions f(t) = eVt and g(t) = 5VF (for all
t € [0,00)) are in V. (E*): for all t,t,,t5,t, € R" with
t,-t,-ty-t, =0, there exists ke [0,1) such that
E(t),ty,tst,) = k.

Let Ay denote the set of all functions E: R** — R*
satisfying the condition (E*).

Example 3 (see [31]). If E(t,,tyts,t,) = Ae?minttutatats},
where v € R" and A € [0, 1), then E € Ap.

Example 4 (see [31]). If E(t,t,,t5,t,) =m- min
{ti,ty,t5,t4} + A, where m € R* and A € [0, 1), then E € A.

The following class of mappings was considered in [32]
to develop some fixed point theorems. We also use this class
of mappings in our investigations:

CD:{Y: IR+><IR+—>IRandY(s,t)=%s—t}. (7)

Definition 2 (see [5]). Let (y,p) be a metric space. The pair
{f, g} is said to be compatible if and only if

Aim p(f(g(rn))g(f (rn) =0, (®)
whenever {r,} is a sequence in x so that
lim f(r,)= lim g(r,) =t forsometey.  (9)
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The following lemma is important in the sequel.

Lemma 1 (see [5]). Let (y,p) be a metric space. If there exist
two sequences {r,} and {u,} such that

lim p(r,u,) =0,

(10)
lim r, =t forsomet €y,
n—~oo
then
Jim = . an

3. Generalized Suzuki-Type Contractions and
Fixed Point Results

Jleli and Samet [24, 25] have employed 6-contractions to
obtain some fixed point theorems. Suzuki [20] extended
Edelstein contraction to develop a new generalization of

et al. [33] to introduce a Suzuki-type 0-contraction. In this
section, we introduce more general forms of Suzuki-type
0-contractions involving four self-mappings. We construct
some conditions under which a sequence, whose terms
satisfy generalized Suzuki-type @-rational contractions or
generalized Suzuki-type Ciri¢ f-contractions, is a Cauchy
sequence. We obtain two common fixed point theorems,
which then are applied to show the existence of the solution
of a system of fractional differential equations. We start with
the following definition.

Definition 3. Let (y,p) be a metric space, and
£.9,5,T: y — x be four single-valued maps. These maps
form a new generalized Suzuki-type (6, E)-rational con-
traction if, for all , j € y, with p(fr, gj) >0, for some 0 € y,
EcAp and Y € O,

Y (p(fr, 57, p(Sr, T)) <0=0(p (fr, gj) < [O(A(r, ))]FCT,

12
Banach contraction called Suzuki contraction. The con- (12)
tractions developed in [20, 24] were then followed by Liu ~ where
~ = - = r,”f'+ i, Sr
p(Sr,TJ),p(fr,Sr),p(gJ,TJ),p(f ])2 Plgj ),
A(r, j) = max ,
(1+p(fr,Sr)p(gj.TJ) (13)
1+ p(Sr, f“j)
G(r,j) ={p(fr,gr),p(gj,Tv"j),p(fr,fj),p(gj,ﬁr)}'
Our first result is as follows. R,, = f(ry) = f(rmﬂ), -

Theorem 2. Let (y,p) be a complete metric space, and
£.9,5,T: x —> x be four single-valued maps. Suppose that
the mappings f,g,S, T form a new generalized Suzuki-type
(6, E)-rational contraction with f (x)<T (x) and g (x)<S (x).
If (f,S) and (g,T) are compatible pair and T and S are
continuous on (y,p), then f,g,S, and T have a unique
common fixed point in y.

Proof. Letr, € x be an arbitrary point. As f (X)QZT“ (), there
exists r, € y such that

f(ro) =T(ry). (14)

Since g(ry) € S(x), we can choose 7, € y such that
g(r;) =S(r,). In generalr,,,, and r,,,, are chosen in y such
that

f(ry,) = %("2%1)’

_ (15)
g9 (r2n+l) = S(r2n+2)'

We construct a sequence {R,,} in y such that

ER2;1+1 = g(r2n+1) = g(r'ZnJrZ)’

for n=0,1,2,.... Assume that p(f(r,,),g(ry,.;)) >0 and
since

%P(f(”Zn)’g(an)) = %p(m%’ ERZn—l) < P(m2n—1’ 9{Zn)

= p(S(ru) T (o) )
(17)
We have

Y(p(f (r2):302)):p(8(r). T () ) <0 (18)

Hence, from the contractive condition (12),

1< H(P(m%’ m2n+1)) = Q(P (f (Tzn),g(r2n+l)))
< [0(A(rp 7)) U],
(19)

For every n> 1, where



P (R Rit), P (Rt Ri)s

G(an’TZn 1) :‘[
" P(mzn’ mZH)’P(m2n+l’ ER2;171)

i

(20)
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E(G(ryn7an1)) = E(P (R Rape1)s p (Roir> Rin)s 0, p
(R Ronr)) = 2

:{P(m2n’mZn—l)’p(m%H—l’mZn)’} (21)
0,p(Raer> Rot)
Asp (R, Ry 1) p (R, Ro) - p (R, Ryyy)-0=0,
so by (E*), there exists z € [0,1) such that
P<§r2n’ Ty )’P(fan’ g”2n)’/3<£7”2n+1> ian-%—l )»
A(Ty Tope1) = Max 4 - ~ R _ |
e P(f”z;v T72n+1> + P(g”zmp San) (1 + p(fan’San))p<gr2n+l’ T72n+1)
2 ) I+ P(ngn’ ’fanJrl) ,
22
P(RZH—I’mZn)’P(mln’mZn—l)’P(m%Hl’mZn)’ (22)
= max-
P (R Row) + 2 Roi Ronct) (142 (R Ros))p (Rairs Rin)
2 1+p(Ry1, Ryy)
Rt Rore
= max{P(man’ 9{Zn)’P(9{2n+l’ 9{2;1)’ p(2+1221)}
Since 1<0(p (R, R,..))
P (Rt Roi) <P (R Rn) " P (R Ra) < [9(/) R, mn))]zz
2 B 2 2 : (28)
<max{p (Ry-1> R2n)> P (Ronirs Rap)}- <[0(p(Rp,R))]7,
23
(23) for all #n € N. Taking the limit as » — ©o0 in (28) and using
one writes the fact that 0 € y, we have
lim 0(p(R,.R,..1)) =1
A(rln’ r2n+1) = max{p (m2n—1’m2n)’p(m2n+l’ 9{ZH)}' ”E’noo (P( " " 1)) (29)
(24) By (®2), we obtain
If, for some n, A(r,,,75,,1) = (R, Ryypr)> then from lim p(R,,R,.,)=0. (30)

(19), (21), and (24), we have

0(p (R Roni1)) < [0(0 R R )7 <00 (R Riir))s

(25)
a contradiction. Therefore,
0(p (Raw Ronir)) < [0(p (R 1, R20))]" forn>1.
(26)
Thus, for all n € N, we have
0(p (R R,1) < [0(p (R, R, fornz1. (27)

It implies that

n—a~oo

Now, we will show that {R,} is a Cauchy sequence. We
suppose on the contrary that {,} is not a Cauchy sequence;
then, there exist ¢>0 and subsequences {n(k)}7, and
{m (k)}2, of natural numbers such that, for m (k) > n(k) > k,
we have 1% (mn(k), mm(k)) >E. Then, p(f){n(k), mm(k)_l) < ¢ for
all k € N. Therefore,

e<p(Ruop Rni) <P(Rntopr Rno-1) + P(Romito-12 Rimr)

<&+ P(mm(k)_l, mm(k))
(31)

By taking the upper limit as k — oo in (31) and using
(30), we obtain
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; - 1 1
Jim o (R o) = (32) P (7a0) S(rn)) = 5P (R Ronc-1)
Using the triangular inequality, we have <p ( R ) (38)
P(mn(k)’ mm(k)) SP(f"n(k)) 2Rn(km) + p(mn(k)ﬂ’ ERm(k)), ~
(33) = P(S(Vmac))) T(Vn(k)n))’
we obatin
p(R R <p(R R +p(R, 0o R . - - -
() s b )
By taking upper limit as k — oo in (33) and (34) and (39)
applying (30) and (32), Hence, from (12),
e< kEnmp(mn(k)+1, mm(k)) <e (35) e(p(mn(k)ﬂ’mm(k)ﬂ)) = G(p(f(rn(k)+1),g(rm(k)+1)))
Thus, < [G(A(rn(k)’rm(k)))]E(G(rn(k»fmw)))
i R R _ (40)
kinoop( n(k)+1> m(k)) =& (36)
where
Similarly, btai
| imilarly, we can obtain | . ) P(mn(k)H)mn(k))’P(mm(k)H’mm(k))’
klgnoop(mn(knpmm(km) = kEnmp(mn(k)’mm(k)ﬂ) = (Fugr Tmery) = (R o) (Ronron Roge) |
(37) (41)
Assume that p(f (7,41 9 (T (s+1)) > 0, and since Taking limit at kK — oo in (41), we obtain

) G( ) hm p(ZRn(k 2R, ), lim p(mm(k)+1,mm(k)), { } )

1m Tmk)) = ={0,0,¢,¢ 42
ko khlnoop(m"“)“ mm(k)) lim P(mm(k)ﬂ’mn(k))

By E*, there exists z € [0,1) such that E(0,0,¢,¢) = z. (kh—r>noo G( m(k))> “ (43)

Using the continuity of E and (41),
Also,

P<§(rn<k>+1)’ T(rm(k)ﬂ))’p(f(rn(k)ﬂ)’g(rn(k)ﬂ))’
P(g(rm(k)ﬂ)’ ’f(rm(k)ﬂ))’

A ) =39 o f(r 1 (o)) + 2(8(m901)- S o))

2

(1 (S () S(raeye)))p(9 (i) T(rmaor))
1 +P(S(rmk)ﬂ)j(rm(k)ﬂ))




= max-

P(mﬂk)’ mm(k))’p(mn(k)ﬂ’ mn(k))’
p(mm(k)H’ 2Rm(k))>

P(mn(k)H’ mm(k)) + P(mm(k +1> mn(k)) - (44)
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(1 + p(fRn(k)

+1> 2Rn(k)))P(mm(k)w 2Rm(k))

>

2

Taking k — oo and using (30), (32), (36), and (37), we
obtain

klinoo A(rn(k)’ rm(k)) <& (45)
Thus, from (®'3), (37), (40), (43), and (45), we have

0(e) = e(kli_r)noop(mn<k>+1’mm<k>+1)>

) E (lim—ooG (7t "))
[, M)
<[0(a)]" <0(e),
(46)
which is a contradiction. Thus, {RR,} is a Cauchy sequence.

Since y is a complete metric space, there exists r* € y such
that lim, |, p(R,,r*) =0 and

nl'inoo f(ry,) = an»noo T (rone) = nl'gnoo 9(r2n11)
) (47)
= nlinoos(”zmz) =r.
Now;, we shall prove that R” is a common fixed point of
f,9, S, and T. As S is continuous, so

nhgr)noog(f (an)) = §(r'*) = nhl)nmg(g(an+2))' (48)

A(7 3 Typy1) = MaxH

p(8(8(r2)) T (rauin) )£ (£(3(r2)). 53 )
pl 9 (ranr)s 7Vﬂ("zml)>>

p( ST () + (9. SE () [

Since (f,3S) is a compatible pair,

Jim p(g(T (o) T (g () ) =0, (49)
From Lemma 1, we have

lim 7(8(r,)) = 5. (50)

Put 7, =S(r,,) and r,=ry,, in (12) and if

P(g(f’*), r*) >0, we obtain

P73 33 02))) <p(S(E(2) T (1)

(51)
Hence,
Y(p(£(3(2):53(20)): p(SE (2. T (r2001) ) ) <0
(52)

and by (12), we obtain

6(p(f(§ (r2n))’ 9(”2n+1))) <[0(A(ry,» r2n+1))]E(G(r2w’2n+1))’
(53)

where

(1+p( ( an)) §( Ton ))) < r2n+1)’i:(r2n+1)>

>

2

14 p(3(3(r20)) T ) )
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p(F(5(r20))-53(ra0)). P9 T ()
G(r2n’ 72n+1) = . - N . (54)
P(f(s (an))’ T(r2n+l))’ P(g (201> S(S (an)))
Setting the upper limit in (53), we obtain Put r,=ry and r,= f(r2n+1) in (12) and if

B(p(30))) < [B(p(8 G W D] <op(S)r)), PRI e
5 () S02) (30 T(T () 59

a contradiction. Thus, p(g(r*), r*)=0 and S(r*) =r*. Therefore
Again since T is continuous, ’ ( ~ )
- = - [~ P f(an)’S(an) 4
n&an(g (ran1)) =T(r") = nli_rgoT(T(Tznn)) (56) Y _ i <0. (60)
p(36r2) T(T ()

Since (g, 'f) is a compatible pair,

lim p<g<f(r2nﬂ))f(g ("2n+1))) = 0. (57)

n—a~oo

By (12), one obtains

0P/ 72 9(T(r20)) ) ) S [0CA (ra gD,

From Lemma 1, we have

(61)
Jdim g(T(ra) ) =T (). (58)  yhere
P(Sah T(T(r2001)) )P (f (1205 (12)):
P<g<f(”2n+1)>’7V1<:F(”2n+1)>>’
At o) =maxq o £ (ra ) (T o)) )+ p(9(T (ran) . 32
’ (62)
(1 +P(f(r2n S(”zn <g( (r2n+1)> ( 7’2n+1)>>
1+P<S(”2n <1: 7’2n+1)>>
P(f("zn) S("zn < (T(”znn > 7V“<T(r2n+1 ))
G (T T2ne1) =
o(f (2 T(T ) (9T (r2000) ) S(12))
Setting the upper limit, we obtain %P<§ (r*),f(rz,m)) <P(f (r*),g(r*)). (64)
Aol 7)< ool TN <o)y
(63) p(f(r),8(7)),
a contradiction. Thus, p(r*,]v“(r*)) =0 and so r* = f(r*). Y( P(g(r*)”f(rhwl)) )< 0. (65)

Suppose p(f (r*),r*) >0, we obtain
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and by (12), we obtain where

0(p(f (r)> g (Faner))) < [O(A(F" 1apey))]F O 7200))
(66)

(3671 (ran)) (7 (1)50)),

PN T () + 29 (r20). S ()

A(r*,7y,1) = max4 P(g (72n+1)>T(7’2n+1)>’ 2

(1+p(f (r*),g(r*)))p(g(rzm),f(rz,m)) (67)
14p(8(). T (ran))

p(F(7).36))p(9 (o) T (1201))
G(I’*, 7’2n+1) =

P )T (ra0) Jop(9 (720 )

Taking the wupper limit in (66), and as a contradiction. Thus, p(r*,g(r*))=0 and r* =g(r").
r* =T (r*) =S(r*), so we obtain Therefore, r* is a common of the four mappings S, g, f and

Nk £\ E\\1Z Nk T. Next, assume that v*is another common of the four
Op(f (7)) <[0(p(f () DI <O(p(f().77)), mappings S, g, f, and T such that r* # v*, one obtains

o) Y(O, p<S(r )T (0" )>)<o. (71)

Then, by (12), we obtain

a contradiction. Thus, p(f(r*),r*) =0 and r* = f(r*).
Flnally suppose p(r*,g(r*))>0, and as r* =T(r" )—
S(r* ) = f(r"), so, we obtain o
Y (0.5 () <0 0 OGN =0 g () < [0(AG )T,
(72)
Thus, from (12)

0(p(r'g(r))) =0(p(f (). g (r" )< [6(p (", g (r"))I*
<b(p(r.g(r)),

where

(70)

p(SC )T ()56 p(9(07) T () ),

A(r*,v") = max+

p(FO)T@)) +p(g().507)) (1+p(f<r>§( )))e (g(v)T( ) [
: o) ] e

p(£().50))p(9(0) T (")),

G(r*,v") =

p(f ()T (7)) p(g(v"), ("))



Journal of Mathematics

It implies that
O(p(r" v ) < [0(p(r" v ) <b(p(r",0")),  (74)

a contradiction. Thus, r* = v*. Therefore, r* is the unique
common fixed point of S, g, f, and T. O

Corollary 1. Let (y,p) be a complete metric space, and
£,9,8,T: x — x be four single-valued maps. Suppose that

pGr,Tj),p(fr,5r),p(gj: T},

A(r, j) = max

if, forall v, j € xy with p(fr, gj) >0 for some 0 € y, z € [0,1)
and Y € @,

Y (p(fr,5r), p(Sr, Tj)) <0 = 0(p(fr, gj) < [6(A(r, )T,

with f(X)giv"(X) andvg()()QS(X). If (f,g) and (g,?v“) are
compatible pairs and T and S are continuous on (x, p), then
f>9, S, and T have a unique common fixed point in y.

(75)
where
p(fr.Tj) +p(gj.Sr)
5 ,
, (76)
(1+p(fr.Sr)p(gj» Tj)
1 +p(§r, YV‘j)
tim p(£8(r,),8f(r,)) = tim | £S(r,) = Sf (r,)|
=|f () -S| =l0-0] =0,
(82)

Example 5. Let x=[0,1] and define the function
p: x X x — [0,+00) by p(r, j) = |r — j|. Clearly, (x,p) is a
complete metric space. Let 0(t)=e¢', t>0, and
Y(s,t) = (s/2) —t, then 6 € y and Y € ®. Define the map-

pings S, g, f,T: y — x by

203
\8
g(r) = <§> »
(77)
16
=)
- 4
Fo-()
Clearly, f(X)g"F (y) and g(X)§§ (x), if {r,} is a sequence

in y such that
lim f(r,)= lim S(r,)=t, forsometey, (78)
then
Jim [ f(r,) —t] = lim [S(k,) ¢ =0, (79)

and equivalently,

r 16 r 18
lim [—] —t‘: Jim [—] —t‘zo. (80)
n—oo|l 3 n—oo|[ 3
Thus,
. 16 . 8
Jim [, ] = 3% = Jim [[r,]" = 3% =0 (s)

We conclude t"1¢ = t'/® (by uniqueness of limit); hence,
t € {0,1}. Using continuity of f and S, one obtains

for t = 0 € y. Hence, the pair (f,S) is compatible. Similarly,
the pair (g,T) is compatible. Define E: R* — R* as

E(sy,5,,53,5,) = (9/10). Next, for all r,jey with
p(fr.gj)>0,
Y (p(fr,8r), p (81, T) <0, (83)
and so
0(p(fr.gj) < [O(A(r, )T, (84)

Hence, all hypotheses of Theorem 2 are satisfied. Thus,
f,9, S, and T have a unique common fixed point, which is
r*=0.

We can easily obtain the following results by chasing the
proof of Theorem 2.

Corollary 2. Let (y,p) be a complete metric space, and
£.9.5,T: x — x be four single-valued maps. Suppose that
if, for all r, j € x, with p(fr,gj) >0, for some 0 € y, Y € O
and E: R** — R,

Y (p(fr,Sr),p(Sr, f"j)) <0=0(p(fr.gj))
< [e(max{p(fr, 51, p(gj, fj)})]mc(r,j)))
(85)

where

G, ) ={p(fr.5r)p (a1 Tihp(fr. T iop )i S0,
(86)

with f (Y<T (y) and g()<S (). If (.S) and (g,T) are
compatible pairs, and T and S are continuous on (y, p), then
f,9, S, and T have a unique common fixed point in y.
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The following corollary generalizes the result introduced
by Sehgal [34].

Corollary 3. Let (x,p) be a complete metric space, and
£.9,5,T: x —> x be four single-valued maps. Suppose that
if, for all r, j € x, with p(fr,gj) >0, for some 0 € y, ¥ € ®
and E: R* — R, Y (p(fr, Sr), p(Sr Tj)) <0 implies that

0(p(fr,gj) < [e<max{p<8r, ), p(fr 87, p (g, Tj)})]E(G("J”,
(87)

where

G(r. ) ={p (1.5, p(ai. Tp (fr.Tiop 9 0},
(88)

with f(X)CYV’(X) andg(x)cg(x) If (f,S) and (g,]v“) are
compatible pairs, and T and S are continuous on (x, p), then
f,9, S, and T have a unique common fixed point in y.

4. On Suzuki-Type Ciri¢ JS-Contractions

We start this section with the following definition.

Definition 4. Let (x,p) be a metric space and
£,9,5,T: y —> x be four single- -valued maps. These maps
form a new generalized Suzuki-type Ciri¢ JS-contraction if,
for alL rjE€x for some 0eVY, Y € @,
Y (p(fr,Sr),p(Sr,Tj)) <0 implies that

0(p(fr,gj) < [0(p(Sr, TJ)) [0 (fr, S

0 (gi TN - 10 (fr. T) + p(gji SN,
(89)

where a,b,c,d>0witha+b+c+2d<1.
Our second result is as follows.

0(p (Raw Rypin)) = 0(p (£ (r20)- 9

(T2041))) < [9(( (T2n)> T(rlnﬂ)))]a
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Theorem 3. Let (x,p) be a complete metric space and
1,95 T: X — X be four single-valued maps. Suppose that
the mappings f, g,S,T form a generalized Suzuki-type Cirié
JS-contraction with f (x)<T (y) and g(X)CS(X) If (f, S) and
(g, T) are compatible pairs and T and S are continuous on
(x-p), then f, g, S, and T have a unique common fixed point

in x.

Proof. Letr, € y be an arbitrary point. As f (X)le" (x), there
exists 1, € y such that

f(ro) = T(rl)‘ (90)

Since g(ry) eg(x), we can choose r, € y such that
g(ry) =S8(r,). In general, r,,,, and r,,,, are chosen in y
such that

f(an) = T(r2n+l)>

~ (91)
9(rani1) = S(r2me2)-
We construct a sequence {R,} in y such that
Row = f(r20) =T (r2001)> (92)

Ro1=9 (7’2n+1) = §(”2n+2)>
forn=0,1,2,....

%p(f (r2n)’ 3(1’271))

Since

1
= Ep(ERZn’ 2RZn—l) < p(mz;«z—l’ 2RZn)

= p<§ (r2)> i—'(7’2n+1)>’
(93)

we have

Y(p(f (2 S()op(S 2 T (r20)) ) <0, (98

Then, from (89),

[0 (f (2 80720))]

[6( (g(r2n+l)’T(r2n+1 ))] : [e(p(f(rZH)’T(r2n+l)) +p(g(r2n+1)’§(1’2n)))]d

=[0(p (R 1o mzn))]

By (¥s), we have, for every n € N,

0(p (Rop1> Rau) + P (R Riin)) <0(p (Ryrs R))

: 9([) (ERZW 2RZm—l))'
(96)

Hence, (95) becomes

[0(p(Ry R 1))]h
=[0(p (R 15 R )] - [0(p (Rt Ran))]*

600 (R R )] - [0(p (R R) + p (Res R 1))
[0(p (R 1, Rs) + P (R Rt
(95)
1< 9([)(9{2”, ERZ,LH)) < [e(p (m2n—1’ mzn))]ﬂ+b+d .
[0(p (R Ra))I™

It implies that

[0(/) (mzn, 912n+1))]1—c_d < [Q(P (mzn_ " mzn))]a+b+d.
(98)

Therefore,
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0(p (R Ronir)) < [0(p (R 1y Ry,))] @0,

(99)
and so
0(p(R, ) < [0(p (R, s R,))] 0D (100)
It implies that
I< e(P (mn’ 2Rnﬂ))
<[0(p(R._..R ((a+b+d)/ (1-c—d))?
<[00 (R, %) o

n
>

< [6(p (R, )] 0D

for all n e N. Taking the limit as n — co in (101) and
knowing that 0 € ¥, we have

im 0(p(R,, R,..1)) = 1. (102)
By (¥;), we obtain
Tim p(R,,R,,.1) = 0. (103)

From condition (¥,), there exist g€ (0,1) and
£ € (0,00] such that

G(P (mn’mnﬂ)) -1
[p(R, R,,1)]*

Suppose that £<oo. Let V = (£/2) >0. From the defi-
nition of the limit, there exists n, € N such that

|0(P(mn’ mn+l)) -1 _

lim

n—~oo

=0 (104)

¢\ <V, foralln>n,,. (105)
| [P(mn’ ERVHI)]q ’
This implies
0(p (R, Ryii1)) — 1
o >¢-V =V, foralln=n, (106)
[P (mw mrﬁl)]q ’
Then,

n[p (mn’ 9{rwrl)]q < Pn[e(p(mn’ mVH’l)) - 1]’ foralln2n0,

(107)

where P = (1/V). Suppose now that £ = co. Let V>0 be an
arbitrary positive number. From the definition of the limit,
there exists 1, > 1 such that

6(p(mn’ mnﬂ)) -1

>V, foralln>n,, (108)
[p(mn’ 9{n+1)]q ’
which implies
n[p(mn’ 9{n+1)]qSl)’/l[e(p(gin’9{7&1)) - 1]’ nZ”O’
(109)

where P = (1/V). Thus, in all cases, there exist P >0 and
ny =1 such that

11

Ao (R R, )] < Pr[6(p (R, R,..)) - 1],

nxn.

(110)

By using (101), we obtain
n[p (g{n, g{nﬂ)]q < Pn( [Q(P(mo, ml))] (a+b+d)/ (1~ c-d))" 1),

foralln>n,.

(111)
Setting n — o0 in inequality (111), we obtain
Jim n[p(R,,R,.,0)]" = 0. (112)
Thus, there exists n; € N such that
1
p(mn,?{ml)sm, foralln>mn;. (113)
n

To prove {RR,,} is a Cauchy sequence, we use (113) and for
m>nzny,

m—1 00 ©
p(R,R,,) < Z p(RiRip) < ZP(ERI" Ri) < Zz(l—/q)
(114)

The convergence of the series Yo 1/iV® entails
lim, ,,_p(R,,R,,) = 0.Thus, {R,} is a Cauchy sequence.
Since y is a complete metric space, there exists r* € y such
that lim,,_ . d(R,,r*) =0 and

nllnoo f (an) = nlil%O T (r2n+1) = nlgnoo g (r2n+1)
~ (115)

= nlilnoos(”zmz) =r.

Now, we shall prove that R* is a common fixed point of

f.9, S, and T. As S is continuous, so

Jlim S(f(ry,)) =8(r") = lim §(S(ry0))-  (116)
Since (f,S) is a compatible pair,
Tim p(f(S(rn)).S(f(ra))) =0, (117)
From Lemma 1, we have
lim f(S(rz)) =S(r"). (118)

n—=~oo

_Put r=8(ry,) and j=r,, in (89) and if
p(S(r*),r*) >0, we obtain

2P(F(302)5(302)) <p(3(B2)) T ()
(119)

Hence,
P(F(8(r2))-S(S(r20))):
Y IR - <0 (120)
P(S(S (an))’ T(”zn+1)>

Then, from (89), we obtain



Setting the upper limit, we obtain
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Jim T(g () =T(") = lim T(T(ra)). (123

Since (g, T)is a compatible pair,

Jim p(g(T(ra)) T(9(ra)) ) = 0. (120
From Lemma 1, we have
nhl)nmg<f(72n+1)> = 7j(”*) (125)

Put r, =r,, and r2=7v’(r2n+1) in (89) and if

p(r*, T (r*)) >0, we obtain

9(p(§(r*),r*)) < [Q(p(gr*,r*))]u %P(f (r2n),§(r2n)) <p(§(r2n),7v“<7v“(r2n+1)>>. (126)
. [8(p(§r*, r*) + p(r*,gr*))]d Therefore,
< [9(p(§r*,r*))]a+2d<9(p(§(r*),r*)), ( (720), S (1, )),
122 e i(Few) )
a contradiction. Thus, p(g(r*),r*) =0, and so S(r*) = r*.
Again, since T is continuous, and from (89), one obtains
o(p(£(r2 9(T(ra))) ) = [0( (302 T(T 1)) )] - [E0p S (2. 37)))]
|o(e{o(T (2} T(T O )))] 129
o 07T ) # () 5020)) ]
Passing to the upper limit in (128), we obtain and so
TNl {HON
<9< ( . V(f‘))) P(S(r )>T(r2n+1))
a contradiction. Thus, p(r* T(r )) =0 and hence By (89), we obtain
r* =T (r*). Suppose that p(f (r*),r*) >0, we obtain
% < (r*), T(r2 1)><p( (r*),g(r*)), foralln € N,
(130)
00 (£ () g (ranea)) < [8( (36 1T () ) )| [00e (). 86))] .

[olels e TOu0))]

Taking the wupper limit in
r* =T (r*) = S(r*), we obtain

(132) and as

J0(p(£ ) T (ran)) (9. 36))]

rI <6 (f (r).r)),

(133)

Op(f(r)r ) =[0((f (),
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a contradiction. Thus, p(f(r*),r*)=0 and hence
r* = f(rv). Finally, suppose p(r*,g(r*))>0 and as
r*=T*)=S(r*) = f(r*), we have

Y(0.p(r", (")) <0.

From (89), we deduce

0(p(r,g () = 0(p(f(r).g(r")) <B8(p(r’. g(r"))),

(135)

(134)

13

a contradiction. Thus, p(r*,g(r*)) =0 and r* = g(r*).
Therefore, r* is a common of the four mappings S, g, f>and
T. Next, assume that v* is another common of the four
mappings S, g, f, and T such that r* # v*, one obtains

Y(O, p(ﬁ(r*), T@*))) <o.
Then, by (89),

(136)

000 = 0(p(30) 7)) < [o(p(36¢).T0))] - [ee(r ¢).56)))]"

Jo(p(9)F@)))] - [o(e( £ T @) (9050 )]

It implies that
6(p(r",0")) < [6(p(r",0"))] " <0(p (", 0")),

*

(138)

a contradiction. Thus, r* =v”, that is, r* is the unique
common fixed point of S, g, f, and T. O

Example 6. Let xy = [0,00) and define the function p: y x
x — [0,+00) by p(r,j) = |r — j|. Clearly, (y,p) is a com-
plete metric space. Let 0(t) = eVt and Y(s,t) = (s/2) — ¢,

then feV¥ and Y e®. Define the mappings
9. f> T x — x by
S(ry=€" -1,
g(r) = ln<1 +g>,
(139)

f(r) = ln<1 +g>

Tv"(r) = - 1.

Clearly, f(x) = TV‘(X) =gy = S(y) if {r,} is a sequence
in y such that

nllnoof(rn) = n@mg(rn) =t, forsometey. (140)
Then,

Jim (£ (r,) —t[= lim [S(r,)—¢| =0, (141)

and equivalently,
lim ln<1 + %”) - t‘ = nllnooiem —-1-t|=0. (142)
Thus,
In(1+¢

lim |r, —(6e' - 6)| = lim |r,, - (7 )l =0. (143)

It gives that 6e' —6 = (In(1+1¢)/7) (by uniqueness of
limit); hence, t = 0. Using continuity of f and S, one obtains

i (137)

nl'gnoop(fﬁ(rn),ﬁf (r,) = lim | fS(r,) = S (r,)|
=|f () -S| =l0-0] =0,
(144)

for t = 0 € y. Hence, the pair (f,S) is compatible. Similarly,
the pair (g, T) is compatible. Next, for all r, j € y with

Y (p(fr,Sr), p(Sr, T)) <O0. (145)
So, fora=b=c=0.1 and d = 0.3, we have
0(p(fr,g) < [0(p(Sr,TiNI* - [6(p(fr,Sr)]"
[0(p(9j, TiNI° (146)

(6o (fr, Tj) +p(gjsS)I“.

Hence, all hypotheses of Theorem 3 are satisfied. Thus,
f,9, S, and T have a unique common fixed point.

5. An Application

We apply the result given by Theorem 2 to study the ex-
istence of a solution for a system of nonlinear fractional
differential equations. Let y = C([0, 1], R) be the space of all
continuous functions on [0, 1]. The metric on y is given by

r,j€X.
(147)

p(rsj) =lIr = jlloo = maxeolr (t) — j ()],

Then, y = C([0,1],R) is complete metric space.
Consider the following system of fractional differential
equations:

{CD‘” r(t) = K, (£,5(r (1)), “Dj () = K, (t, T (j(1))),

(148)
with boundary conditions
Jl r(0)=0,Ir(1)=r ,(o), (149)
j(0) =0,Qj(1) = j (0).
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Note that D% denotes the Caputo fractional derivative
of order «, defined by

t t
{ DK, (f) = F(nl— S [ (=9 ki ©)as DK, 1) - r(nl_ 5 [ (e-o ki) aso
o 1 ! a—1 .
where we consider I'K, (t) = @) Jo (t—s)" K,(s)ds, witha>0,
n—-1<a,

t

a<l, (151) QK (8) = —— [ (1= 9" 1K, (s)ds, witha>0.
n=la] +1, I'(e) JO

(152)

and I*K, and I*K, denote the Riemann-Liouville fractional

integral of order « of continuous functions K, and K,, given System (148) can be written in the following integral

by form:
1 . 2 (LS o _
r(t) = F(oc) J‘ (t—5s) 11’(1 (s,S(r(s)))ds + m jo Jo (s—u) 1K1 (u, S(r (u)))du ds,
(153)
1 t o - 2t 1 s o -
j0 =555 [, =9 K TGOS + 1 [ ]| =0 Ko 0 T (),
Define the mappings f,g: y — x by
1 A
<]f(r(t)) ) J (t - 9" 1K, (s, S(r(s)))dsr( ) j j (s = 1" K, (1, § (r{ue))dus s,
(1) = —— Jt (£ = )% 'K, (5, T (j (5))ds + —— jlj (s = )™ 'K, (1, T (j (u)))du ds (154)
g .] r(a) 2 J r( ) 2 > .] .
- - . e T(a+1) .
Theorem 4. Assume that the following conditions hold: ‘Kl (5:5(r(s))) = Ky (s, T (ji(s))) STA(”’ 7
(i) K|, K,[0,1] x R — R are continuous functions. (155)
(ii) K, (s,.), K, (s,.): — R are increasing functions.
(iii) For all rjey with f(<T(j) and where
|f (r(s)) —g(j(s)|>0, we have
I8 (s) =TGN 1f (r(s)) =S ()],
. = ~T(j i(s) -8
T — 9GS -TGE) |f (r(s)) (J(S))|2+|£7(J(S)) (r(S))I) } 156

(1+1£(r(s) =S ()DIg(i(s) =T (i (s))
1+[S(r(s) =T (j ()
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(iv) There exists r,, j, € C([0,1],R) such that, for all
t € [0, 1], we have

. - 2 (! o _
(055 )J (¢ =9 K, (5800 (9))ds 4 s | [ 5= K (080 ()t

o= )j (t— 5" 1K2<5T(Jo(5)))d5+mjlj (s = )" Ky (8. T (jo (1) s s,

(v) If there exists a sequence {r,} in x such that

lim p(f(8(r,)),S(f (r))) =0, Jim g(r,) = lim T(r,) =t
(158)
: i T - for some t € y.
nlilqoo"')(g(T(r"))’T(g (r"))> 0 Then, system (148) has a solution.

whenever

Proof. Following assumptions (iii) and (iv), we have

|f(r(8)) =g (j ()]

1

o J (t - ) 'K, (5, (r (5)))ds

t
jo (t =9 'K, (5 T (j(s))ds

r(oc) J 0 - w)* 'K, (1, S (r (u)))duds

J
r(a J Jo( — )" K (1, T (j () duds

1t ~ ~ }
SW JO (t =) K, (s,8(r(s)) = Ky (s, T (j (5)))]ds

2 1 rs ~ _ )
"T(w) J 0 J L 5= K (S0 (9) = Ky (w, T (j ()] duds

1 e T(a+1) a1
e R I (t - )" A(r, j)ds
2 e T(a+1) a1
F((x) — Joj (s—u)" "A(r, j)duds

1 e T(a+1)

~t a—1
S -A(r,])-JO(t—s) ds

lim f(r,) = lim S(r,) =t

15

(157)

(159)
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2 e T(a+1)
T 4
B (e_TI‘((x) T(a+1)

4T (a) - T(ax+ 1)

seTA(r,j)+e—

-7
> A(r, j),

where B is the beta function. From the above inequality, we
obtain that

p(f (gD <3 A )) (161)
It implies that
e VPTG ¢ N CDETAMD _ VG V/A(
_ [e A(r,j)]\/W _ em]mw»)
(162)

E(sy,$,,83,8,) = V3/4e” < 1,G(r, j) =
{80, p (a5 T (Fr Tihup 9], 511} and 01 = e

Since this inequality holds for all 7, j € y with f (r) < T 7),s0
it is true for any Y € @,

where

Y (p(fr,8r), p(Sr, Tj)) <0. (163)
Hence, we have
0(p(f (), g(iM < [O(A(r, j)FCETD, (164)

Thus, f,g,S, and T are generalized Suzuki-type
(0, E)-rational contraction mappings. Therefore, all hy-
potheses of Theorem 2 are satisfied. Hence, f, g, S,and T
have a common fixed point, that is, system (148) has at least
one solution. O
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In this paper, the authors consider a IBVP for the time-space fractional PDE with the fractional conformable derivative and the
fractional Laplace operator. A fractional conformable extremum principle is presented and proved. Based on the extremum
principle, a maximum principle for the fractional conformable Laplace system is established. Furthermore, the maximum
principle is applied to the linear space-time fractional Laplace conformable differential system to obtain a new comparison
theorem. Besides that, the uniqueness and continuous dependence of the solution of the above system are also proved.

1. Introduction

Many fractional partial differential equations were used for
modeling complex dynamic systems of engineering, physics,
biology, and many other fields [1-4]. As a significant tool,
the maximum principle plays an important role in the study
of the complex dynamic systems without certain knowledge
of the solutions [5-13]. In 2016, by using the maximum
principle, Luchko and Yamamoto [14] obtained the
uniqueness of both the strong and the weak solutions of the
IBVP for a general time-fractional distributed order diffu-
sion equation. In 2016, Jia and Li [15] applied the maximum
principle to the classical solution and weak solution of a
time-space fractional diffusion equation. Furthermore, they
also deduced the maximum principle for a full fractional
diffusion equation other than time-fractional and spatial-
integer order diffusion equations. In 2019, Wang et al. [16]
investigated the IBVP for Hadamard fractional differential
equations with fractional Laplace operator (—A)? by using
the maximum principle.

There are diverse fractional derivatives, such as the
Riemann-Liouville derivative, the Caputo fractional deriv-
ative, the left and right conformable derivatives, and other
fractional derivatives [17-40]. In 2015, Abdeljawad [34]
defined the left and right conformable derivatives.

Depending on [34], Jarad et al. [35] introduced the fractional
conformable derivatives and presented the fractional con-
formable derivative in the sense of Caputo. The extremum
principle of the Caputo fractional conformable derivative is
seldom regarded in the existing literature. In addition, the
papers which mentioned the fractional conformable deriv-
ative do not include the fractional Laplace operator.

Motivated by the above works, in this context, the au-
thors investigate the IBVP for a space-time Caputo fractional
conformable diffusion system with the fractional Laplace
operator. First, we provide a detailed proof of the Caputo
fractional conformable extremum principle. Then, the new
maximum principle is obtained by applying the extreme
principle. As some applications of the maximum principle, a
comparison principle for the space-time fractional Laplace
conformable differential system is developed, and the
properties of the solution of the system are given, such as the
uniqueness and continuous dependence on the initial and
boundary condition.

The article is organized as follows: in Section 2, the
extremum principle for the Caputo fractional conformable
derivative is established. In Section 3, the maximum prin-
ciple of the space-time fractional Laplace conformable dif-
ferential system is derived, which is used to obtain the
comparison principle for the space-time fractional Laplace
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conformable differential system, and the properties of the 2, Problem Formulation and
solution of the above system are given in Section 4. Extremum Principles

In this paper, we focus on a space-time Caputo fractional
conformable system with the fractional Laplace operator:

{ Dfu(x0) + (-0)u(x 1) —alx Du(x,1) = g(x1),  (x1) € Qx(a,bl, 0
u(x,t) =0, x e RM\Q, t>a,
where () represents an open and bounded domain in Concurrentéy, g(t) e C;)a ([a,b]), g(ty) =0, and
RN (N > 1) in which boundary T is smooth and SﬁDf‘g(t) =- aﬂDf‘f(t).
a(x,t) € Q x [a,b] is a bounded function. Here, ¢ Dy is the By calculation, we notice that
left Caputo fractional conformable derivative. For a function , " - B
f € Cj . theleft Caputo fractional conformable derivative of Cbphg (t,) = 1 J ’ ( (ty—a)" ~(r-a) >
order f3 is defined by e I(1-p) Ja «
CBa (t) = 1 Jt <(t—a)”‘_(1—a)0‘>nﬁl ZT“f(T) d (T_a)lfzxgr(_[)d
a t F(n—[j) . o (T— a)l—zx > '—(T_ a)lfa T
2) . y
1 hf(ty—a)'—(r-a)"\ " ,
with 0<B<1, 0<a<l, n=[fl+1, ,Tf(t) = (t—a) " ZIKI—E)Ja " g (ndr
f'w, rre=_T1°71%...,,T", and Chola,b] = {f:
T — _ t
» ntimes 1 (tO - a)a -(r—-a)" F ’
[a,b] — R|"T*f € I,[a,b]} (where I [a,b] is defined in = r(i-p ” g(7)]
Definition 1 of [34]). For detailed information of the Caputo a
fractional conformable derivative, see [35]. B b [ (ty—a)* — (- a)*\ p-1
When ¢ € Clléi (RN)N L?, the fractional Laplace operator “Ta J. ( 0 )
could be given by (1=P) Ja @
(x)=¢(y) (r—a)* 'g(r)dr.
-A)'¢(x)=C J ¢7d , 3
@ =Cy | oY O ©
with Cy, = (p22'T (N +2y/2)/7N"*T (1 - y)), and This is because
) , 1 (ty-a) - (r-a)*\ "
L={¢:RY R Jde<oo. @ rli‘hm-/z)( . ) 9
1+l L4
R* ’
B of . g (1)
- — 1 a a\f-1 a-1
Denote TA=B) =1 B((ty - a)* - (r- &) ' (~&) (7 - a)
H(Q) ={u(x,Dlu(xt) € C*' (@ x(a,b),u(x,t) € C(Q x|a,b])}. —o
(5) (9)
Firstly, we can state two Caputo fractional conformable Therefore, formula (9) becomes
extremum principles. ’
a\-p
CﬁDtx £) = 1 (tO - a)
Lemma 1. If f € C. , ([a,b]) reaches its maximum at a point a t"g( 0) r(1-p) ( o 9(a)
ty € [a,b], then
t _ a _ o ’ﬁ’l
Csz)f(fo)ZO, (6) _ B Jo (tO a) (r-a)
r(l - ﬁ) a o
holds.
(r-a)"'g(r)dr
Proof. First, we introduce an auxiliary function <o.

g(®) = f(t,)- f(H)=0, telab]. 7) (10)
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We can obtain C,l;Df‘f(to) <0.

The lemma is proved.

Using the same method, it is easy to obtain the following
lemma. a

Lemma?2. If f € C}m ([a, b]) reaches its minimum at a point
t, € [a,b], then

“4D; f (t) <0, (11)
holds.

3. Maximum Principle

In this section, we focus on linear space-time Caputo
fractional conformable Laplace system (1) with the initial-
boundary condition:

u(x,a)=¢(x), xeQ, (12)

u(x,t) =u(x,t), (xt)elx[ab] (13)

Theorem 1. Let a function u € H(Q) satisfy linear space-
time Caputo fractional conformable Laplace system (1), (12),
and (13). Suppose g(x,t) <0, V(x,t) € Q x (a,b]. Then, we
have

u(x,t), 0]»,

Y (x,t) € Q x[a,b].

u(x,t)< max{max ¢(x), max
xeQ)

(x.t)elxab] (14)

Proof. We first suppose that inequality (14) is false; then,
there exists a point (x,,t,) € Q x (a,b] such that

u(xy,tg) > max{m%xq)(x), max  p(x,t), 0} =M>0.
XE€

Besides, w implies

w(x,t) <u(x 1) +§, (x,1) € Q x[a,b],

w(xg, tg) > u(xg, 1) =s+M28+u(x,t)2£+w(x,t)—§

2§+w(x’ t), (x,t) € (I x[a,b]) U (Q x{a}).
(17)

The latter property implies that the maximum of w
cannot be attained on (I'x [a,b])U (Q x{a}). Let
w(x,,t;) = max(x)t)eﬁx[a)b]w(x, t); then,

w(xp,t)>u(xgty) >e+ M>eg, (18)
AV _ w(x,ty) —w(xt)
(=8)'w (%O (4,4,) = CN’VJRN . x|N+2y dx>0.
(19)
By Lemma 1, we know
aCﬁD;”w (x,1)| (xr) 20 (20)

By calculation, we can show

BrafEb-(t=a)) _ 1 e tl(t-a)-(r-a) F
“Df<z b >‘ F(l—ﬁ)sz « dr

(21)

Assuming u = (7 — a/t —a)® and substituting into for-
mula (21), we get

CB o fb_(t_a) _ 1 £ B ! _y\l-aB
“Df<2 b )‘ T(1-p)2b" Jo(t @

(1 -w)Pudu

(x,t)eTx{a,b)
1 gl Lm0
Denote € = u(x,,t;,) —M >0 and - 2bT(3-a-p)
_(t— 22
we) =un+ 27D cax(abl. (22
2 b Applying (19)-(22), it holds that
(16)
PDfu (O] () + (A U] () =@l t)u (e, t) = g(x1)
= Cfow(x,t)l(xl’tl) - Cfo<s W) + (=AY w(xt)
_a(xl’tl)<w(xl’tl)_§W>_g(xl’tl) (23)
_ a rae- b-(t, -
> (t, - a)' ’Bi 71"(3(— " T)ﬁ) - a(xl,tl)e<1 - —(2}? a))

>0.
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Equation (23) is in contradiction with (1).

The proof of the theorem is completed.

Similarly, the minimum principle can be obtained as
follows. u

Theorem 2. Let a function u € H(Q) satisfy linear space-
time Caputo fractional conformable Laplace system (1), (12),
and (13). Suppose g(x,t) >0, V(x,t) € Q x (a,b]. Then, we
have

u(x,t)> min{min ¢(x), min
xeQ) (x,t)eTx{a,b)

M(x,t),O},

V(x,t) € QxJa,bl.

(24)

4. Some Applications of the Maximum Principle

Theorem 3. Let u(x,t) € H(Q) be a solution of system (1)
with initial-boundary values (12) and (13). Then,

lu4ll (@) < maX{gle%x lp (I, (o pax lles (x, t)II}
eam G LD gy,
Pa’T(1+ aff —a)
(25)
where
M= "g”(;(ﬁx[a’b])- (26)
Proof. We first present a function
N —a-
w(x,t) =ulxt) - M(t—a)“ﬁ,
BT (1 +aff —a) (27)

(x,t) € Q x[a,b].

If u(x,t) is a solution of system (1), (12), and (13), then
w(x,t) is a solution of problem (1) with

_ B F(2+oc/3 a—p) CﬁD op
AR L e e R o

= g(x’t)_

_ ~ T(2 +af—a-p3) op
,"ll (x> t) ‘U(X, t) ﬂaﬁr(l L aﬁ 0() ( a) .
(28)

Substitute g, (x,t) and p, (x,t) for g(x,t) and p(x,t),
respectively. Owing to g, (x,t) <0, applying Theorem 1
(maximum principle), we have
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w(x,t) SmaX{max lo(xl, max |ju(x, 1)l
xeQ (x,t)eTx[a,b]
(29)
FrQ+af -« @
NLCET LT L
Pa"T(1+aff —a)
Therefore,
b -_— b bl t
u(x t)<maX{r£1€%X llo ()l o pax llp (o )II}
(30)
F(2 +af-a-p) op
ﬁ—( -a)”.
PaT (1 + aff — )
In a similar manner, we can get
u(x,t)= - maX{rjrclg llo (ol (o pax ll (=, t)ll}
(31)
oM F(2+oc,8 o - ﬁ)( _ ),

ﬁaﬁ I'(l+af-a)
Combining (30) and (31), the theorem is proved. [

Theorem 4. Let u(x,t) satisfy IBVP (1), (12), and (13).
u(x,t) is continuous depending on the data given. That is, if

||g glucmxab] ||<p(x) ?1 (x)"cm

<oy [l () = 1 (568 gy S 10
(32)
then the estimation of the classical solution of u(x,t) and
u; (x, 1),
FrQ+af-—a- [3)

af
ﬂocﬁl“(1+¢xﬁ oc) R

||u - ”lnc@x[a,b]) < max{e, &} +2
(33)

holds.
The demonstration process is similar to Theorem 3.

Theorem 5. Let u € H(Q) be a solution of IBVP (1), (12),
and (13). Assume g(x,t)<0 and a(x,t)<0,V(x,t) € Qx
(a,b]. Then, it follows that

u(x, t)<0, (x,t) € Qx[a,b], (34)

if 9(x)<0, and u(x,t)<0.

Theorem 6. Let u € H(Q) satisfy IBVP (1), (12), and (13).
Assume g(x,t)>0 and a(x,t)>0,V(x,t) € Qx (a,b].
Then, it follows that

u(x,t)=0, (xt)eQxlab], (35)

if (x)>0, and u(x,t) >0.
The conclusion of Theorem 5 and Theorem 6 is obtained by
Theorem 1.
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Remark 1. Let u € H(Q) satisfy IBVP (1), (12), and (13).
Assume g(x,t) =a(x,t) =0,Y(x,t) € Q x (a,b]. Then, it

follows that
u(x,t)=0, V(xt)eQxlab), (36)

it (x) =pu(x,t)=0.

Then, it follows that
u(x,t)=0,v(x,t)>0, (x,t) € Q x[a,b]. (38)

SﬁD'txp(x, )+ (-A)'p(x,t) —a(xt)p(x,t) +b(x,t)p(x,t) 20,

p(x,1)=0, xeRMNQ, t>aq,
p(x,a)=0, xeQ,
p(x,t)=0, (x,t) el x]a,b].

Thus, by (39) and Theorem 6, we obtain
p(x, )20, V(xt)eQxlablieu(xt)+v(xt)=0,
- (x,1) € Q x[a,b].

(40)

PDMu(x, 1) + (~A) u (x, 1) = (b(x, 1) — a(x, £))u(x, 1) 20,

ulx,t)=0, xeRMNQ, t>aq,
u(x,a)=0, xe€Q,
u(x,t)>0, (x,t) el x[a,b],

aCﬁDtav(x, )+ (=A)"v(x,t) - (b(x,t) —al(x, t)v(x,t) >0,

v(x,t) =0, xeRMNQ, t>aq,
v(x,a)=20, xe€Q,
v(x,t)>0, (x,t) €T x[a,b].

Applying Theorem 6 to (41) and (42), we can get

u(x,t)=0,v(x,t)>0, (x,t) € Q x[a,b]. (43)

Thus, the conclusion holds.

[ PDu(x,t) + (~A) u(x, 1) — a(x, t)v(x,£) — b(x, u(x, 1) >0,
EDIy (x,8) + (—A)v(x, 1) — a(x, )u(x, ) = b(x, t)v (x, 1) =0,
v(x,t) =0, x e RN\Q, t>a, (37)

1 u(x,t) =0,
u(x,a)=0, v(x,a)=0,x¢eQ,
L u(x,t)=0, v(x,t)=0, (x,t) € ' x[a,b].

Theorem 7 (comparison theorem). Suppose a(x,t) >0,
b(x,t)>0, and b(x,t)>a(x,t), V(x,t) € Qx (a,b]. As-
sume (u,v) € H(Q) x H(Q) satisfies the following linear
space-time fractional Laplace conformable differential
system:

(x,t) € Q x(a,b],
(x,t) € Q x(a,b],

Proof. Let  p(x,t) =u(x,t) +v(x,t), V(x,t) € Qx [a,b].
Then, by (37), we have

(x,t) € Q x(a,b],

(39)
Using (37) and (40), we have that
(x,t) € Q x(a,b],

(41)
(x,t) € Q x(a,b],

(42)

Similarly, the following theorem holds. O

Theorem 8. Suppose a(x,t)<0, b(x,t)<0, and b(x,t)<
a(x,t), V(x,t) € Qx (a,b]. Assume (u,v) € H(Q) x H(Q)
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satisfies the following linear space-time fractional Laplace
conformable differential system:

SﬁD‘txu(x, )+ (=A)u(x,t) —alxt)v(xt) —b(x,Hu(x,t)<0, (x,t) € Qx(a,b],

uCﬂD':v(x, )+ (=A)v(t) —alx, Hulxt) —b(xt)v(x, 1) <0, (x,t) € Qx(a,b],

u(a,t) =0,v(x,t) =0, xeRMQ, t>a, (44)
u(x,a)<0,v(x,a)<0, xeQ,

u(x,t)<0, v(x,t)<0, (x,t) €I x[a,b].

Then, it follows that Remark 2. Let (u,v) € H(Q) x H(Q) satisfy the following
u(x,1)<0,v(x,t) <0, (x,t) € Q x[a,b]. (45)  linear space-time fractional Laplace conformable differential
system:

gﬁDt‘xu (1) + (=AY u(x,t) —a(, t)v(xt) —b( Hu(x,t) =0, (x,t) € Qx(a,b],

uCﬁva(x, D+ (=A)v(x,t) —alx,Du(x,t) —b(x,t)v(xt) =0, (xt) € Qx(a,bl,
ul,t)=0,v(x,t)=0, xeRMNQ, t>a, (46)
u(x,a) = ¢, (x),v(x,a) = ¢,(x), x¢€Q,

u(x,t) = py (x, 1), v(x,t) =y, (x,t),  (x,t) € x[a,b].

Suppose a(x,t) =b(x,t) =0,V (x,t) € Q x (a,b]. Then, it @, (x) = ¢, (x) =y (x, 1) = u, (x,t) = 0.
it follows that Next, we focus on the following linear space-time

W) = 0,v(0 ) =0, V(xt) ex[abl (47) fractional Laplace conformable differential system:

i SﬁD‘txu(x, £)+ (-A)'u(x,t) —a(x, t)v(x,t) - b(x, u(x,t) = g, (x,1), (x,t) € Qx(a,b],

acﬁD?v(x, £) + (—A)'v(x,t) —a(x, u(x,t) = b(x, t)v(x,t) = g, (x,1), (x,t) € Qx(a,b],

1ulat)=0,v(xt) =0, xeRM\Q, t>aq, (48)
u(x,a) = ¢, (x),v(x,a) = ¢,(x), x€Q,

L u(x,t) = py (x, 1), v(x,t) = py (x,1),  (x,t) €' x[a,b].

u(x) t) =UuU (x’ t) —Uu, (x’ t)’ V(X, t) =" (x> t) -V, (x’ t)a
Theorem 9. Supposea(x,t)<0,b(x,t)<0,b(x,t) <a(x,t), _
91 (x,1)<0, and g,(x,t)<0, V(x,t) € QAx (a,b]; then, Y(x,t) € Qx|[a,b],
IBVP (48) has a unique solution on H(Q) x H(Q). (49)

Proof. Let (u,,v;)and (u,,v,) be two solutions of IBVP satisfies the system
(48). Denote

aCBDf‘u (6, 1) + (=AY u(x,t) —a(x, t)v(x,t) —b(x, Hu(x,t) =0, (x,t) € Qx(a,b],

aclsD'txv(x, D+ (=A)v(x,t) —alx, Du(x,t) —b(xt)v(x,t) =0, (xt) € Qx(a,bl,
1ulx,t)=0,v(x,t)=0, xeR"\Q, t>a, (50)
u(x,a)=0,v(x,a) =0, xe€Q,

| u(x,t) =0,v(x,t) =0, (x,t)elx][ab]
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Let p(x,t) =u(x,t) +v(xt), V(xt) € Qx [a,b]. By
(50), we have

SﬁDf‘p(x, )+ (-A) p(x,t) = (b(x,t) —a(x,t)p(x,t) =0,

p(x,t)=0, xeRM\Q,t>aq,
p(x,a)=0, x€Q,
p(x,t)=0, (x,t) eI x[a,b].

Applying Theorem 8, we get
u(x, 1) <0,v(x,1) <0, (x,t) € Q x[a,b]. (52)

By the same way, using Theorem 8 to —u(x,t) and
—v(x,t), we have

u(x,t)=0,v(x,t)>0, (x,t) € Q x[a,b]. (53)
Combining (52) and (53), we can get

u(x,t) =0,v(x,t) =0, V(x,t)€Qx[ab]. (54)

Thus, the conclusion holds. O
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In this present article, we establish certain new Pélya-Szego-type tempered fractional integral inequalities by considering
the generalized tempered fractional integral concerning another function ¥ in the kernel. We then prove certain new
Chebyshev-type tempered fractional integral inequalities for the said operator with the help of newly established
Pélya-Szego-type tempered fractional integral inequalities. Also, some new particular cases in the sense of classical
tempered fractional integrals are discussed. Additionally, examples of constructing bounded functions are considered.
Furthermore, one can easily form new inequalities for Katugampola fractional integrals, generalized Riemann-Liouville
fractional integral concerning another function ¥ in the kernel, and generalized fractional conformable integral by applying
different conditions.

1. Introduction

The well-known Chebyshev functional [1] is defined by

1 *2 1 *2 1 *2
T(funf) = | ri@f.00- NAG |~ r.000), 1
(fof) == | L1010 xz_xl( i@ >x2—x1< RAC ) 1)
where the functions f, and f, are integrable on [x, x,]. forany9,{ € [x,,x,],then 7 (f,, f,) = 0. Functional (1) has
If the functions f, and f, are synchronous on [x;,x,],  gained more recognition due to its diverse applications in
ie., the fields of transform theory, numerical quadrature,
(f1®) = F1D)(f209) - £2(D) 20, (2) probability, and statistical problems. Additionally, the re-

searchers have established a large number of integral
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inequalities by utilizing functional (1). The interesting
readers may consult [2-5]. In [6], Tassaddiq et al. recently
established certain inequalities via fractional conformable
integrals by considering functional (1).

In [7], Griiss introduced the following inequality:

< (M, _ml)(Nl ‘”1)’

7 ()] < =) ®)

where the functions f, and f, are integrable on [x,,x,]
such that f, and f, satisfy the inequalities m, < f, (§) <M,
and n; < f,({) <Ny, for all 9,{ € [x,,x,] and for some
constant m,n;, M, N, € R.

In [8], Pdlya-Szegd presented the following inequality:

Jiff?(e)dejiffg(e)de<l< LN, ) W>2
2 h .
(Kj fi (9)f2(9)d9> 4 mmn,  \M,N,

(4)

In [9], Dragomir and Diamond presented the following
inequality with the help of Pdélya-Szeg6 inequality:

g (M, —m)(N, -m) [*
7 o o O

. J £,(6)d6,
(5)

where the functions f, and f, are positive and integrable on
[x,,x,] such that f, and f, satisfy the inequalities
m; < f1(0)<M, and n; < f,({) <Ny, for all 6, € [x,, x,]
and for some constant m,n;, M, N; € R.

In the last few decades, the researchers have considered
that fractional integral inequalities are the most powerful
tools for the development of both applied and pure math-
ematics. In [10], the authors presented some Griiss-type
integral inequalities by considering fractional integrals.
Some new integral inequalities in sense of Riemann-Liou-
ville fractional integrals can be found in the work of Dah-
mani [11].

In [12], Sarikaya et al. gave the idea of generalized
(k, s)-fractional integrals with applications. Set et al. [13]

1

Xy —

[RACIACEE

Xy =X

where the constants %, o, €, € R and 1/4 is the sharp of

inequality (6).

8 le £,(9)d9
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investigated some Griiss-type inequalities by considering
generalized k-fractional integrals.

Very recently, the idea of fractional conformable and
proportional fractional integral operators was proposed by
Jarad et al. [14, 15]. Later on, Huang et al. [16] presented
generalized Hermite-Hadamard-type inequalities by con-
sidering generalized fractional conformable integrals. In
[17], Qi et al. established Chebyshev-type inequalities for
generalized fractional conformable integrals.

In [18], Ntouyas et al. investigated some new
Poélya-Szeg6- and Chebyshev-type inequalities by consid-
ering Riemann-Liouville fractional integrals. The tempered
fractional integral was first studied by Buschman [19], but Li
et al. [20] and Meerschaert et al. [21] have described the
associated tempered fractional calculus more explicitly.
Fernandez and Ustao@lu [22] investigated several analytic
properties of the tempered fractional integral. In [23], Fahad
et al. proposed the general form of the generalized tempered
fractional integral concerning another function. In this
paper, we investigate the said inequalities for the so-called
tempered fractional integrals containing another function in
the kernel.

The structure of the paper as follows.

In Section 2, some basic definitions are presented. Some
new Polya-Szegd-type for the so-called generalized tem-
pered fractional integral in the sense of another function is
presented in Section 3. In Section 4, we present some new
generalized Chebyshev-type tempered fractional integral
inequalities. In Section 5, certain new particular cases in
terms of classical tempered fractional integrals are discussed.
An example of constructing bounding functions is con-
sidered in Section 6. Finally, the concluding remarks are
discussed in Section 7.

2. Preliminaries

In this section, we consider some well-known definitions
and mathematical preliminaries.

Definition 1 (see [7]). Suppose that the functions
fi> fa: [x, %] — R are positive with & < f, (9) <% and
E<f,(9)<D, for all 9 € [x;,x], then the following in-
equality holds:

1

Xy =X

< (@)@ - %), )

j £>(9)d9

Definition 2 (see [24, 25]). The function f, will be in the
space L,,,]0,00[ if

s 1/p
L,,[0,c0[ = {fl: 11l 000t = (“fl @F9d9) " <oo1<p<cor> 0}. 7)
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If we apply r = 0, then (7) gives
s » 1/p
Lplo’oo[={f1: ||f1Hmem[=(J, [f1(9]7a9) <oo,1sp<oo}. (8)
K 1 6 k-1

Definition 3 (see [26]). Suppose that the function (x]‘% fl)(e) = @ J- (0-9)""f,(9)d9, x, <6.
f1 € L[0,00[ and assume that the function ¥ is positive, .
monotone, and increasing on [0, co[ and having continuous (12)
derivative ¥’ on [0, co[ with ¥ (0) = 0. Then, the Lebesgue The following results for (11) hold:
real-valued measurable function f, defined on [0, co[ is said R N
to be in the space X% (0,00), (1< p<oo) if G R RTf1(0) = RS (O). (13)

S 1/P
11l = <Jr |f1 O (9)d9> <oco,1<p<oo. (9

When p = oo, then
[£1llx = ess sup [¥'(9)f: (@] (10)

Note that, the space X4 (0,00) coincides with the space
L,[0,00[ if ¥(9) =9 for 1 < p<oo and similarly with the
space Lp,r[l,oo[ if ¥(9) =Ind for 1< p<oo.

Definition 4 (see [20-22]). The left-sided tempered frac-
tional integral of order x>0 and 7>0 with R (x) >0 and
R (1) =0 is defined by

0
(o, & f1)(0) = —— J e "N o-nf,(9)d9, x, <.

1
I'(x)
(11)

Remark 1. By setting 7=0 in (11) yields the following
Riemann-Liouville fractional integral, which is defined by

We define the following one-sided tempered fractional
integral.

Definition 5. The one-sided tempered fractional integral of
order k>0, 7>0 is defined by

6
(AL)O =)0 =5 [ 09 100
(14)

Definition 6 (see [23]). Let the function f, be an integrable
in the space X% (0,00) and assume that the function ¥ is
positive, monotone, and increasing on [0, co[, and its de-
rivative ¥’ is continuous on [0, co [ with ¥ (0) = 0. Then, the
left-sided generalized tempered fractional integral of the

function f, concerning another function ¥ in the kernel is
defined by

0
(Y 2F,)(0) = —— j e TO-YO) (y (9) _p(9)Y 1Y (0) £, (0)d9, x, <6, (15)

I'(x)

where 7> 0, x, € C with R (k) > 0, and I'(.) is the well-known
gamma function.

Remark 2. The following results can be obtained:

(i) Applying Definition 6 for ¥ () = 6, we get (11).

(ii) Applying Definition 6 for 7 = 0, then it will reduce
to the left-sided generalized Riemann-Liouville
fractional integral operator [27].

(iii) Applying Definition 6 for ¥ (6) = In 0, then it will
reduce to the following left-sided Hadamard tem-
pered integral defined by [23]

6
(Y R ) (0) = —— J exp[-7(In8-1n9)](Inf-1In 9)"‘1@&9, x, <. (16)

I'(x)

Xy



(iv) Applying Definition 6 for ¥ (6) = 8"/n, >0 and
7 =0, then it will reduce to the left-sided Katu-
gampola [24] fractional integral.

(v) Applying Definition 6 for ¥ (6) = 6 and 7 = 0, the
left Riemann-Liouville fractional integral (12) will
be obtained

(vi) Applying Definition 6 for W (0) =6 /a+s
and 7=0 (where a€ (0,1], seR and a+
s#0), then it reduces to the left-sided general-
ized fractional conformable integral given by
(28]

1

0
Y kT _ -7 (¥ (0)-¥(6) _ k- 1\g!
("5 £1) 0 = 715 | ¢ (¥ (0) - ¥ (0)" ¥ (0)f, (6)d9.

Definition 8. For 0 = x(<x; < -+ <x,<x,,; =X, we de-
fine the following subintegrals for the generalized tempered
integral

Xit1
¥ gk, - T(¥V(X)-
( t%z:xm 1) (X) - J-x. € '

1
I'(x)

i

Note that

KT & KT 1 B
(1) 0= 3, ()00 =i e

i=0

1
T'(x)

1

e sz e T HEOYO) (g (x) W (9) 1 (9) £, (9)d9
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(vii) Applying Definition 6 for ¥ (0) = (6 - x,)"/a,
a > 0, then it reduces to the fractional conformable
integral defined by Jarad et al. [14].

In this article, we consider the following one-sided GTF-
integral.

Definition 7. Let the function f, be integrable in the space
X@ (0,00) and assume that the function ¥ is positive,
monotone, and increasing on [0, 0o[, and its derivative ¥ is
continuous on [0,c0[ with ¥ (0) = 0. Then, the one-sided
generalized tempered fractional integral of the function f,
concerning another function ¥ in the kernel is defined by

(17)

YO (9 (X) = (9 (9), (9)d. (18)
T 0y (30) - w () (9)f, (9)d9

(19)

Foob—— J : e T YEOYO) (g () — W (9) 1 (9) £, (9)dY.

I'(x)

P

Remark 3. If we set ¥(X) =X and 7 =0, then (18) will
reduce to the subintegrals of Riemann-Liouville fractional
integral defined by [18].

3. Polya—Szego-Type Tempered Fractional
Integral Inequalities

In this section, we provide some new Pdlya-Szego-type
tempered fractional integral inequalities for positive and
integrable functions via tempered fractional integral (17)
containing another function ¥ in the kernel.

Lemma 1. Let the functions f, and f, be positive and in-
tegrable on [0, co) and assume that the function ¥ is positive,

monotone, and increasing on [0, 00[, and its derivative ¥ s
continuous on [0,00[ with W(0)=0. Suppose that
U\, U,V | and V', are four positive and integrable functions
on [0,00) such that
(H)0<%, (< fLD<U,(9),0<7 (9 f,(9) (20)
<7,),9¢[0,06],6>0.

Then, for k>0, >0, and 0>0, the following tempered
fractional integral inequality holds:

YRS (7,7 ) (0 R (U, Uy f) (6)
(W‘%S’T{(%l%l +75) f1 £} (9))2

<-. (21

==
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Proof. From the given hypothesis, we have Taking product of (22) and (23), we get
%,(9) f1(9)) (%(9) f1(9)><f1(9) %(9))
- >0. 22 - - >0. 24
(% ® £ 22 7.0 LONLO 7,0 24
Similarly, we have From (24), it can be written as
f19) %1(9)>>
- >0. 23
<f2 ) 7,9 2
(U, NV, () + U, NV ,(N)f1 (N f2 (2T, (DY, (9)f1 (9) + %, (9%, (9) f5 (9. (25)
Now, taking product of (25) with
e TO-YO) (g (9) — ¥ () "Y' (6)/T (k) and integrating
the resultant identity with respect to 9 over (0, 8), we have
1 (% oo -
e [ OO (e - w o) O (% (O, (9) + % (T (), (91 (9)d8
0
zﬁ J T EO-YO) (g (g) _w (9)) 1 (9)7, (97, (9) £ (9)d9 (26)
0
6
vl R IOR T AULACLACYAOR
0
With the aid of Definition 8, we can write
YR UT  + UT ) F112) 0) 2 R ( VT A1) (0) + ¥ R (%1% f3) (6). (27)
By applying AM-GM inequality, ie, x;+x,2
2./X %5, X1, %, € RY, we get
YRENUT  + U V) f1 1) (0) 22NV R (7,7, £7) (O Ry (U, %, £3) (6. (28)
It follows that (Hy)0<m, < f1(9) <M, <00,0<n, < f, (9 <N, <oo,
YRV T 1) (0) Ry (U, U f3) (6) 9¢[0,6],6>0.
(29) (30)
LR U T+ UT )1 f>) 0))
A 1o e/l ’ Then, for k>0, >0, and 0> 0, the following tempered
which gives the desired assertion (21). O Jractional integral inequality holds:

Corollary 1. Let the functions f, and f, be positive and
integrable on [0,00) and assume that the function ¥ is
positive, monotone, and increasing on [0,00(, and its de-
rivative W' is continuous on [0,00[ with ¥ (0) = 0. Suppose
that U ,,%,, 7\, and 7, are four positive and integrable
functions on [0, co0) such that

YRS\ Vo f1) O Ry (%, U f3) (6)
(YR (FLF2}O))

2
<1< [y N ’M1N1>
<3 .

VMlNl mm

(31)
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Lemma 2. Let all the conditions of Lemma 1 hold. Then, for
KA>0, 7>0, and 0>0, the following tempered fractional
integral inequality holds:

Yy (1) O A (£3) (O By (%1 2%) O A" (7,72)(0) 1 (32)
(YR (ULF) (O B (V1 £,)(0) + YR (Unf ) O RS (Vo f,) () 4

Proof. From the hypothesis (H,;) defined by (20), we have Taking product on both sides of (18) by
£, 9 71 (07, (0 f%(0), we obtain
(% © fz(c>) > G U O, OT QL+ U (D, DT (Df (0

>V (O (O f2(9) + U, (9, (9)2(0).

INOIKAC)
(fz O 7, (o) 20 (34) (36)

) Taklng product of both sides of (36) with
which follows that e T O-YO) (g (6) - ¥ ()" W' (6)/T (x) and integrating

%, ( 9) %,9)\ £, (9 f ©) %, 9%, 9 the resultant identity with respect to 9 over (0, 8), we have
( 2 ) 1 1\ % 2 (35
7,0 7.0) /,Q° £ % O%Q)

0
%I(c)fz(omj THOYOD (g () - W (9)) Y ()%, (9)f, (9)d9

+°//2(c>f2<o—j —rOYO) (g (9) - W (9)) W (9%, (9) f, (9)d9

T
(x) )
>, (O%“)WJ e TTOFO (w(9) —w(9) W (9)f3(9)d9
+ fz(C)mJ TFOYO) (g () - W (9) W (), (9%, (9)d9,
which by applying (8) becomes Agam taking product of both sides of (38) with

KT 7 e T O-Y(©O) (g (g) - ‘I’(())A W' (O/T (L) and integrating
7,0, (OW'%O (%) O+ 75(Df> (C)\P%O (%2£1)(6) the resultant identity with respect to { over (0,6) and then

27 (7O R (f1)(0) + £5( O Ry (%, %,) (6).  applying (17), we get
(38)

YRV F2) (O Ry (U 1) (0) + ¥ Ry (T,f5) (0)" By (U f 1) (6)

¥ ) W A 2 Y AT 2 ') (39)
> R (V\75) () Ry (1) (0) + 7 Re"(f3)(0)" Ry™ (%, %) (6).
By using AM-GM inequality, we get
\P%é’r (7.12) (G)W‘%g’T (%, f1)(0) + w%g,r (72f2) (9)\?*%3’1 (%, f1)(0) (40)

> 2\ R (7,72) O Ry (1) (O Ry (£3) (0 Ry (2,25) (6).
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It follows that

YRy (7, 7,) (0 Ry (f1) () By (f3) (0 Ry (%, %) ()

(AT L) O R (2, £1)(0) + Y (1) (0 Ry (%,£,)0)’

which completes the desired assertion (17). O

Corollary 2. Let the functions f, and f, be positive and
integrable on [0, 0o0) satisfying the hypothesis (H,) defined by
(16) and assume that the function ¥ is positive, monotone,
and increasing on [0, 0o, and its derivative V' is continuous
on [0,c00[ with ¥ (0) = 0. Then, for k,A>0, >0, and 0> 0,
the following tempered fractional integral inequality holds:

1

(41)

Yo T (O)y (6, 7% (0)) YR (f1) (O R;(f3)(6)
T ()T (1) (YFE" (£) (O FE™ (£2)(0))

2
<1< [ M1N1>

4 \/MINI mmny
(42)

where

0
YRE(1] = J exp[—7 (¥ (60) — ¥ (9)] (¥ (6) - ¥ (9)) ¥’ (9)d9

T'(x) Jo

¥ (6) )
_ J ¢ 2 dz, (¥(0) = 0)

- 7T (%)

_y(x,1Y(0))
T T(x)

0

and y(x,t) = I:) e "“u*du is the well-known incomplete
gamma function (see [22]).

Lemma 3. Suppose that all the conditions of Lemma 1 hold
and assume that the function ¥ is positive, monotone, and

(1) 0" (1) 0 <

Proof. From the hypothesis (H,) defined by (20), we have

0
<L J e O (w (0) - w () (9)

1 TV (6) B 3
J e “udu

(43)

increasing on [0, 00[, and its derivative Y’ is continuous on
[0, co[ with ¥ (0) = 0. Then, for k,A >0, 7>0, and 0> 0, the
following tempered fractional integral inequality holds:

0
1 J e TVO-YO) (g (g) _(9)) 1 (9) £ (9)d9

CZl2f1f2 ¥ K,T l‘172](1](2
Tl)(e) Ry (Tl>(9). (44)
(45)
U, (9
2 )f1(9)fz(9)d9»

7,09



which in view of (17) yields
Y RT(£1)(6) g“’%‘( 2f1f2> (0. (46)

Similarly, one can obtain
YAy (f3)(0) g“”@éﬁ(%ih) (0). (47)

Hence, the product of (46) and (47) yields the desired
assertion (44). O

Corollary 3. Let the functions f, and f, be positive and
integrable on [0, 0o) satisfying the hypothesis (H,) defined by
(30) and assume that the function ¥ is positive, monotone,
and increasing on [0, o[, and its derivative V' is continuous
on [0,00[ with ¥ (0) = 0. Then, for k,A>0, >0, and 0> 0,
the following tempered fractional integral inequality holds:

YA ()O R () O MN, g
YR (f1f2) OY R (f1£2)(0) ™ myny
4
Y D v (£, 1)) + LA i (£, £y (6) -

7T (k) 7T (1)
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4. Chebyshev-Type Tempered Fractional
Integral Inequalities

In this section, certain Chebyshev-type inequalities via
tempered fractional integral (20) are presented with the help
of Polya-Szego integral inequality given by Lemma 1.

Theorem 1. Let the functions f, and f, be positive and
integrable on [0,00) and assume that the function ¥ is
positive, monotone, and increasing on [0,00[, and its de-
rivative ¥' is continuous on [0, 00[ with ¥ (0) = 0. Suppose
that U ,,%,, 7\, and V', are four positive and integrable
functions on [0, 00) satisfying the hypothesis (H,) defined by
(10). Then, for x,A >0, >0, and 0> 0, the following tempered
fractional integral inequality holds:

YR (1) () R (f2)(0) - R (f2)(0) R (f1)(6)

<|Fy (f1, %0 %) 0) + By (f1. %1 %) O X|Fy (f 71, 72) (0) + Fy (1. 70, 7,) (0)] 7,

where

F, (f1>%1’%2)(6) =

v 2w (0) (YR (U, + %) f1))

47'T (V)

Fy(f1 %, %,)(0) =

YR (U\U,) (6)

v (72 (0) ("EYNU + %) f1})

(49)
YR (£ )0 RE(f,)(6), (50)
~YRE(£)(0) B (f)(6). (51)

47T (k)

Proof. By the given hypothesis, both the functions f, and f,
are positive and integrable functions on [0, co). Therefore,
for 9,{ € (0,0) with 6> 0, we define & (9, () by

97(970:(f1(9)—f1(())(f2(9)—f2(o)
=120+ f1(Qf2(D = f1Df2(D)  (52)
- £ f>, ).

Multiplying (52) by (1/T (x)I' (A))exp[-7 (¥ (6) — ‘P(S))]
exp[—7 (¥ (0) =¥ ()] (¥ (6) — ¥ (9)* ' (¥(6) —¥ ()
¥ (9)¥' ({) and double integrating the resultant identity
with respect to 9 and { over (0, 6) and then using (17), we
obtain

YRy (U Uy) (0)

1 0 (0
NN JO JO exp[-7 (¥ (0) - ¥ (9)]exp[-7 (¥ (6) - ¥ ({))]

X (¥(0) = ¥ (9" (¥ () =¥ ()" (9)¥' (O (9, )d9d¢

0)) A 0
Y(K T\P ) %/\T(f fz)( ) V( T\P( ))

W%A,T 0
r( ) T/\r(/\) 0 (flfz)( )

=Y R (1) O BT (£2)(0) =T Ry (£1) (O Ry (f5) (6).
(53)

By applying Cauchy-Schwartz inequality for double
integrals, we have
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0 6
‘m [ [ explorr(6) - (@expl-r (¥(6) - ¥ (O] x (9 (6) ¥ (9)"

0

(¥ (6) ¥ ()W ()Y (O (9,)d9dC]

1 0 0
S[r(mm)f j exp[-7(¥ (6) — ¥ (9)]exp -7 (¥ (6) — ¥ (0))]

0Jo

X (¥ (60) = ¥ (9) " (¥(0) - ¥ ()W ()Y () £2 (9)d9d¢

1 0 6
+7r(x)r(A)J J exp [T (¥ (6) = ¥ (9))]exp[-7 (¥ (6) - ¥ ()]

0Jo
X (¥(0) =¥ () (¥(6) - ¥ ()" (DY (O} ({)dd]

1 6 6
- 2m J JOGXP[—T(‘I’(H) — ¥ (9)]exp[-7 (¥ (6) - ¥ ({))]

‘ (54)

X (W (8) =¥ (9)" " (¥ () - (O "W ()Y (O, (9)f, ({)d9d¢

]1/2

1 0 0
X[ri(,{)rmj J exp[-7 (¥ () - ¥ (9))]exp [-7 (¥ (6) - ¥ ({))]

0J0

X (W(0) = W () (¥(6) = ¥ ()" (DY (O f3 (9)d9d¢

0

1 6 (6
* T (L) Jo I exp[-7 (¥ (0) - ¥ (9))]exp[-7 (¥ (0) - ¥ ({))]

X (¥ (6) =¥ (9) ' (¥(0) - ¥ (O "W ()Y () f2({)d9d¢

1 0 (0
_2F7(K)F(A)J J exp[-7 (¥ (0) — ¥ (9)]exp[-7 (¥ (6) - ¥ ({))]

0Jo

X (¥(6) =¥ () (¥(6) - ¥ (O ¥ (DY (O f,(9)f,(()dd]

]1/2
In view of (17) and (43), we get

0

0
‘m || [ explor e @ - wenespl-r v (9) - w01 x (¥(6) - ¥ (@)

(E(6) ~ ¥ (O)' W ()Y (9)/ (9, ()d9d(]

T AT O)y s T T & 5
ay (72) @ VTRl (1) 0 -2l (1)@ (1) 0

- y (, T (0))
T (k)

y (A, ¥ (6)

y(KsT\P(e))‘P AT 2 )‘P AT 2 LY AT Y AT 2
Ry (fz)(6)+ 2T Ry (fz)(e) 2R, (f2) (0" R (fL)(O)|

7T (k)
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Applying Lemma 1 for 77, (0) = 7, (0) = f,(0) = 1, we

get

y(A, 7Y (0)) W%S,T(ﬁ) 0) <

Journal of Mathematics

y v ) ("R %+ %) 1)) (56)

T

It follows that

YA 1Y (0) v
7TV

_yOrw () ("R + W) [ ))
sty YR (% %,)(6)

=R (f1) (O R (f1) ()
=F, (fl’%l’%z) (6).

(1) (0) = R (f1) (O Ry (f1)(6)

(57)

Similarly, one can get

y (1, 7Y (0)) v

7T (k) Ry (f1)(0) =" Ry (£1) (O F5" (f1)(6)

v (0) (YR + 2)11))
4T () YR (U, U,) (6)

=R (F1) (0 Ry (f1)(6)
= Fz (f1> CZ51’ %2) (0)~
(58)

Again applying Lemma 1 for %,(0)=%,(0)=

f1(0) =1, we get

/1’ ¥ 9 KT KT KT
WW%O, (f%)(g)_\y‘%o’ (f2) (O RS (f,) ()

Y02 ) (AT + 7))
T oadry YR (7,7,)(0)

=R (£2)(0) R () (6)
=F, (fz’ %1’ %2) 0),

(59)
p(x, ¥ (0)) v
7T ()
v @) ("EUT + 7 1)
47T (k) YRY(V\V,) (6)
=Y R (f2) () Ry (£,) ()
=F, (f27 CZ51’ %2) (0).

A (£2)(0) =R (f,) (O RN (£,)(6)

(60)

47T (L)

YR (U\U,) (6)

Thus, by considering (53) to (60), we arrive at the desired
assertion (49). This is the desired proof of Theorem 1. O

Theorem 2. Suppose that all the conditions of Theorem 1 are
satisfied. Then, for x>0, 7>0, and 0>0, the following
tempered fractional integral inequality holds:

y(x, 7Y (0)) v

T RE(f112)(0) =B (£) (0 R (£,)(6)

172

<|F(f1 %0 %) OF (f5, 71, 75) (0)]

(61)
where
2
(v (0) (TR, + %) S 1))
FL ) O =" vy @1, 0)
~(*&7 (1))
(62)

Proof. Applying Theorem 1 for x = A, we get the desired
result in (61). O

Remark 4. If we consider %, =m,, %, = M,, 7', = n;, and
7', = Ny, then we have

_(Ml_ml)z‘l’ KT 2 63
F(fomn M) 0 = S (1) @), (69

Ny -m)

Y kT 2
AN, (YR (f)(0)".  (64)

F(fz’mle)(e) =

Corollary 4. Let the functions f, and f, be positive and
integrable on [0, co) and satisfying the hypothesis (H,) given
by (30). Then, for k>0, 1>0, and 0> 0, the following tem-
pered fractional integral inequality holds:

y (1, 7Y () w

0 RE(ff2)(0) = YR (F1) (O RE(£,)(6)

< My =m;)(N, -ny)

Y gt Y kT
4m M n N, Ry (fl)(e) R (fz)(e)

(65)
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5. Particular Cases

The following new Pdlya-Szeg- and Chebyshev-type in-
equalities for classical tempered fractional integral (14) can
be easily established.

Lemma 4. Let the functions f and f, be positive and in-
tegrable on [0, 00). Suppose that U, U,, V', and V", are four
positive and integrable functions on [0,00) satisfying the
hypothesis (H,) defined by (20). Then, for k>0, >0, and
0>0, the following tempered fractional integral inequality
holds:

11

Re(V\T 2 f1) ORST(U U, f3) (6) 1

<-. (66)
(RN UT + U7 ) frf o} (9))2 4

Proof. Applying Lemma 1 for ¥ (6) = 6, we getLemma 4. O

Lemma 5. Let all the conditions of Lemma 4 are satisfied.
Then, for k,A>0, 720, and 0>0, the following tempered
fractional integral inequality holds:

R (1) OR(f3) OBy (U Us) (O Ry (7,7,) (6)

1
(F5° (U1 OAT (711 0) + B (U ) O (721) @) 4

Proof. Applying Lemma 2 for ¥ (0) = 0, we get Lemma
5. O

Similarly, we can derive the particular case of Lemma 3.
The following theorem represents the particular case of
Theorem 1 in terms of classical tempered fractional integral.

(67)

Theorem 3. Let the functions f, and f, be positive and
integrable on [0, 00). Suppose that U,,U,,7 |, and V", are
four positive and integrable functions on [0, 0o) satisfying the
hypothesis (H,) defined by (20). Then, for k,A >0, >0, and
0>0, the following tempered fractional integral inequality
holds:

K’ Te K,T A’ Te T KT T K, T T
YT g (£, £2) 0) + Lo egl (7, £,)(6) - 57 (£,) (ORY () (0) - FE" (1) OAL () (O
7°T (k) 7'T(1) (68)
<|Ey (F1. %0 %,) (6) + By (f1. %0 %) O X |Fy (£ 70.75) (0) + B (f1. 70, 7,) (6)]
where
yA10) (B U+ U) [} A
Fy(f1, %, %,)(6) = ,” - R5" (1) (O (f1)(0), (69)
l(fl 1 2) 4TAF(A) %0, (%1%2) (0) 0 (fl) 0 (fl)
AT 2
y (x, 70) (%0’ {(%, + %2)f1}) ot At
F U LU,)(0) = -—— - Ry (0)Z%y (0). (70)
(%, %) 47T (1) %3,7(%1%2)(6) o (f1) o (f1)
Proof. Applying Theorem 1 for W (6) = 6, then we get the Let the unit function % (6) be defined by
desired Theorem 3. O 10
> > 0)
n(0) = <l (71)
Similarly, we can derive particular result of Theorem 2. 0,6<0,
and let the Heaviside unit step function #,, (6) be defined by
6. Applications Lo
@ =1 """ (72)
In this section, we define a way for constructing four 4 0,0<a.

bounded functions and then utilize them to present certain
estimates of Chebyshev-type tempered fractional integral
inequalities of two unknown functions.

Suppose that the function %, is piecewise continuous
function on [0, X] defined by
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U, (x) = m11(h0 (x) =1y, (x)) + mlz(hx1 (x) = Py, (x)) tekmy Ry (x)

P

=my h (x) +(m12 - mll)hxl (x) +(m13 - mlz)hxz (x)+--- +<mlp+l - mlp>hxp (x)

(73)
p
= Z(mliﬂ - mli)hxi (x),
i=0
where m; =0 and 0=2x,<x;<x,<--+<x,<x,,=X.  where the constants n; = N; =M, = 0. If there exists an
Similarly, we define integrable function f; on [0, X] satlsfymg the hypothesis
» (H,), then we have m; <f,(x)<M,  for each
Uy (x) =) (M, - M, )h, (x), (74) X € (xpx],i=0,1,2,...,p.
i=0
B Proposition 1. Let the functions f, and f, be two positive
7, (x) = Z (”1. _ ”L)hx (x), (75)  and integrable on [0, X]. Assume that the functions %,, %,,
= v V', and V', are defined by (73)-(76), respectively, and
satisfying the hypothesis (H,) defined by (30). Then, for x > 0,
P the following inequality for tempered fractional integral holds:
%2 (x) = Z (Nlm - Nl[)hx[ (x), (76)

i=0

p 2/ 2
(zmmm g 1<f%><x>) (zmM@ 1<fz><x>)
i=0 i=0

(77)
1 p
<Z ;(nllem + mllim)\y X; xm (f fZ) (X).
Proof. By applying the Definition 8, we have

‘%3;(% %2f1) (X) = an Ny, \y‘%szM (f%) (X)s (78)

i=0

¥ 2 S
Aox(U 2 f2)(X) = D omy M, R (F2) (0, 79)

i=0

4 T L ‘P

‘%OZX{(%IWI +U75) 1S} (X) = Z (7”1,-+]”1,+l + M1,+1N1,.+]) XpXis (f1f2)(X). (80)

i=0

Hence, by applying Lemma 1, we get the desired as-  Proposition 2. By setting'¥ (6) = 0 in Proposition 1, then we
sertion (77). O  arrive to the following result in terms of classical tempered
fractional integral:

2

P )
<Zn1i+1N x, x, 1(f1)(X)> <Z i+1M Xi> x+l(f2) (X)>

(81)

p
Z(nliﬂNlHl + mlHlMlHl)'%ifx,‘“ (fle) (X).

i=0

<

o
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Remark 5. Throughout in the paper, if we apply ¥ (0) = 0
and 7 = 0, then all the newly presented inequalities will be
reduced to the work derived earlier by Ntouyas et al. [18].

7. Concluding Remarks

Certain new Pdlya-Szeg6- and Chebyshev-type inequalities
by utilizing tempered fractional integral are presented in this
paper. These inequalities generalized the existing in-
equalities. We can easily get the said Pdlya-Szego- and
Chebyshev-type inequalities for Katugampola, generalized
Riemann-Liouville, classical Riemann-Liouville, general-
ized conformable, and conformable fractional integrals by
applying different conditions on function ¥ given in Remark
2.
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In this paper, the authors investigated the concept of (s, m)-exponential-type convex functions and their algebraic properties. New
generalizations of Hermite-Hadamard-type inequality for the (s, )-exponential-type convex function y and for the products of two
(s, m)-exponential-type convex functions y and ¢ are proved. Many refinements of the (H-H) inequality via (s, m)-exponential-type
convex are obtained. Finally, several new bounds for special means and new error estimates for the trapezoidal and midpoint formula are
provided as well. The ideas and techniques of this paper may stimulate further research in different areas of pure and applied sciences.

1. Introduction

Theory of convexity also played a significant role in the de-
velopment of theory of inequalities. Many famously known
results in inequalities theory can be obtained using the con-
vexity property of the functions. Hermite-Hadamard’s double
inequality is one of the most intensively studied results in-
volving convex functions. This result provides us necessary and
sufficient condition for a function to be convex. It is also known
as classical equation of H-H inequality.

The Hermite-Hadamard inequality assert that if a
function y: J ¢ R — R is convex in ] for a;,a, € ] and
a, <a,, then

a, +a, 1 2 v(a) +y(ay)
o) vt

a;

Interested readers can refer to [1-29].

Definition 1 (see [30]). A function y: [0, +00) — R is said
to be s-convex in the second sense for a real number
s € (0,1] or y belongs to the class of KZ, if

y(a + (1 -pa)<xy(a) +A-v(a), ()

holds for all a,,a, € [0,+00) and x € [0,1].

A s-convex function was introduced in Breckner’s article
in [30], and a number of properties and connections with
s-convexity in the first sense are discussed in [10]. Usually,
convexity means for s-convexity when s = 1. Dragomir et al.
proved a variant of Hadamard’s inequality in [5], which
holds for s-convex functions in the second sense. In the last
decade, many mathematicians added the rich literature in
the field of mathematical inequalities involving fractional
calculus (see [8, 9, 13, 15, 22, 25, 28, 31]).

Toader introduced the class of m-convex functions in
[26].
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Definition 2 (see [26]). A function y: [0,a,] — R, a,>0,
is said to be m-convex, where m € (0,1], if

y (X6, +m(1-3)0,) <xy (6,) +m(1 -y (6;)  (3)

holds V6,,60, € [0,a,] and y € [0,1].
m-concave if (—y) is m-convex.

In a recent paper, Eftekhari [6] defined the class of
(s, m)-convex functions in the second sense as follows.

Otherwise, y is

Definition 3. A function y: [0,+00) — R is said to be
(s,m)-convex for some fixed real numbers s,m € (0, 1] if

v(xa, +m(1-ypa) <x’y(a) +m(1-°v(a) (4)

holds VY a,,a, € [0,+00) and yx € [0, 1].

Fractional integral inequalities are useful to find the
uniqueness of solutions for certain fractional partial dif-
ferential equations (see [19, 32]).

Let v € L[a,,a,]. Then, Riemann-Liouville fractional
integrals of order a >0 with a, >0 are defined as follows:

Ty = 15 )j (x— 0" 'y(pdy, x>ay,
. (5)
Jo- y(x) = I )J -y (dy, x<a,

For further details, one may see [14, 16, 18].

In [7, 17], there is given definition of k—fractional
Riemann-Liouville integrals.

Let y € L[a,,a,]. Then, k—fractional integrals of order
a, k>0 with a; >0 are defined as follows:

4y (x) = kr:( )r (x - y(dy x> ay,

alk-1

Tey(x) = (=" "y (dys

x<a,,

1
kT () J
(6)

where I'; («) is the k—gamma function defined as

oo a-1_—y*ik
I (@) = JO X e dy. (7)
We can notice that

I (a+k) =al} (a),

o0 = Ty () = ®

v (x).

By choosing k = 1, the above k—fractional integrals yield
Riemann-Liouville integrals.

Also that, the incomplete gamma function y(9,0) is
defined for 9>0 and 0>0 by integral

_ ¢ # 9-1
y(9,0) = du. )
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The gamma function I'(9) is defined for 9> 0 by integral
+00
r(9) =j e dy (10)
0

Motivated by above results and literatures, we will give
first in Section 2 the concept of (s,#)-exponential-type
convex function, and we will study some of their algebraic
properties. In Section 3, we will prove new generalizations of
Hermite-Hadamard-type inequality for the (s,m)-expo-
nential-type convex function y and for the products of two
(s, m)-exponential-type convex functions ¥ and ¢. In Sec-
tion 4, we will obtain some refinements of the (H-H) in-
equality for functions whose first derivative in absolute value
at certain power is (s,m)-exponential-type convex. In
Section 5, some new bounds for special means and error
estimates for the trapezoidal and midpoint formula will be
provided. In Section 6, a briefly conclusion will be given as
well.

2. Some Algebraic Properties of
(s, m)-Exponential-Type Convex Functions

In this section, we will introduce a new definition, called
(s, m)-exponential-type convex function, and we will study
some basic algebraic properties of it.

Definition 4. A nonnegative function y: ] — R is said
(s, m)-exponential-type convex for some fixed s,m € (0,1]
if

— )y (6,) +m(e" ™ - 1)y (6,)

(11)

¥ (¥, +m(1 - )6;) < (¢*

holds for all 8,,6, € J and y € [0, 1].

Remark 1. For m=s =1, we get exponential- type con-
vexity given by Iscan in [11].

Remark 2. (s, m)-exponential-type convex functions for
some fixed m € (0,1] and s € [In2.5,1] have the range
[0, +00).

Proof. Let 0 € ] be arbitrary for some fixed m € (0, 1] and
s € [In2.5,1]. Using the Definition 4 for y = 1, we have

y(0) < (€ = 1)y (0)= (¢ - 2)y(6) 20 ==y (6) 2 0. (12|:)|

Lemma 1. For all y € [0,1] and for some fixed m € (0, 1]
and s € [In2.5, 1], the following inequalities (e — 1) > y* and
(=05 —1)> (1 - x)° hold.

Proof. The proofis evident. m|

Proposition 1. Every nonnegative (s, m)-convex function is
(s, m)-exponential-type convex function for some fixed
m € (0,1] and s € [In2.5,1].
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Proof. By using Lemma 1, for some fixed m € (0,1] and
s € [In2.5, 1], we have

v (x0, +m(1-0,)<x’v(6,) +m(1-x)y(6,)

13
< (¢ 1)y (8) + m(eD ~ 1)y (6,). o

O

Theorem 1. Let v, ¢: [a;,a,] — R. If v and ¢ are
(s, m)-exponential-type convex functions for some fixed
s,m € (0,1], then the following holds:

(1) v+ ¢ is (s,m)-exponential-type convex function.

(2) For nonnegative real number ¢, cy is (s, m)-expo-
nential-type convex function.

Proof. By Definition 4, for some fixed s, m € (0, 1], the proof
is obvious. O

Theorem 2. Let y: [0,a,] — ] be m-convex function for
a, >0 and some fixed m € (0,1] and ¢: ] — R is nonde-
creasing and (s, m)-exponential-type convex function for
some fixed s,m € (0,1]. Then, for the same fixed numbers
s,m € (0,1], the function ¢"y: [0,a,] — R is (s, m)-ex-
ponential-type convex.

Proof. For all 6,6, € [0,a,] and y € [0,1] and for some
fixed numbers s,m € (0, 1], we have

(¢"w) (x6, + m(1 - 0)6,) = ¢ (v (x0, +m (1 -x)0,))
<o (xy(0,) +m(1-x)v(6,))
< (e =1)(¢'y) (6,) +m(e" ™ = 1) (') (6,).

(14)

Theorem 3. Let y;: [a,,a,] — R be an arbitrary family of
(s, m)-exponential-type convex functions for the same fixed
s,m € (0,1] and let y(0) = sup;y;(6). If A= {0 € [a},a,]:
v(0)< +oo}#O, then A is an interval and vy is
(s, m)-exponential-type convex function on A.

Proof. Forall9,,0, € Aand y € [0, 1] and for the same fixed
numbers s,m € (0, 1], we have
¥ (0, + m(1 - y)6,) = sup;y; (x0, +m (1 - x)6,)
< sup; [(esx - Dy, (6,) + m(e(l_X)S - 1)1//1'(92)]
< (e% = 1)sup;y; (6,) + m(e(l_x)s - l)suPiV/i(ez)
=(e*-1)y(6,) + m(e(lfx)s - 1)1//(02) < + 00.

(15)

This means simultaneously that A is an interval, and v is
(s, m)-exponential-type convex function on A. O

Theorem 4. If the function y: [a,,a,] — R is (s,m)-ex-
ponential-type convex for some fixed s,m € (0,1], then y is
bounded on [a;, ma,].

Proof. Let L = max{y(a,),y(a,/m)} and x € [a,,a,] be an
arbitrary point for some fixed m € (0, 1]. Then, there exists
x € [0,1] such that x = ya, + (1 - y)a,. Thus, since e¥* <e°
and e("¥s <¢* for some fixed s € (0,1], we have

v(x) =y (xa, + (1 -x)a,) < (" - )y(a)

+ m(e“”‘)s - 1)1//<@>

m
<(e-1)L+m(e—1)L=(m+1)L(e’ - 1) = M.
(16)

We have shown that y is bounded above from real
number M. Interested reader can also prove the fact that y is
bounded below using the same idea as in Theorem 4 in
[11]. i

3. New Generalizations of (H-H)-
Type Inequality

In this section, we will establish some new generalizations of
Hermite-Hadamard-type inequality for the (s,1)-expo-
nential-type convex function y and for the products of two
(s, m)-exponential-type convex functions y and ¢.

Theorem 5. Let y: [a,,ma,] — R be (s, m)-exponential-
type convex function for some fixed s,m € (0,1] and
a, <ma,. If y € L, ([a,,ma,]), then

a; +ma2)< 1

(es/zl_ 1) V’( 5
“m y(x)dx+m J/m w(x)dx}

() v s vl em{o( )+ vt )|

(17)

= (ma, - ay)

Proof. Let denote, respectively,
a
0, =xa, +m(l-ya,0,=(1 _X)El"')(az’ Vy € [0,1].
(18)

Using (s, m)-exponential-type convexity of v, we have

W(al +2ma2) _ w(el +2m92>

_ w( [xa, +m(1 - x)a,] +[(1 - x)a, + mxaz])

2
<(e” = 1) [y (xa, + m(1 - Ya,) + y (1 = Ya, + myay)].
(19)

Now, integrating on both sides in the last inequality with
respect to y over [0, 1], we get



1
o520 [t sy

J{o-vew)ed

(maz - 611) a a,/m

= ﬁ {JWZ y(x)dx +m Juz

u/(x)dx]»,
(20)
which completes the left-side inequality. For the right-side

inequality, using (s, m)-exponential-type convexity of v, we
obtain

faay e, vesen [y
2 1 a;

g

1

= Ll)l//()(al +m(1 - y)a,)dy + J 1//((1 —X)%’LXaz)dX

0

< J; [(esx -Dy(ay) + m(e(l_x)s - 1)‘/’(“2)]dX

v :[(6% = Dy (ay) + m(e 0 - 1)‘”(%”@(

() e s vta oo 2 ) +via )|

(21)

which gives the right-side inequality. |

Corollary 1. By taking m=s=1 in Theorem 5, we get
(Theorem 5, [11]).

Theorem 6. Assume that vy, ¢: [a;,ma,] — R are, re-
spectively, (s;,m) and (s,,m)-exponential-type convex
functions for the same fixed m € (0,1] and for some fixed
51,8, € (0,1], where s, <s, and a, <ma,. If y,¢$ are syn-
chronous functions and v, ¢, yp € L, ([a,, ma,]), then

ma,

ma,

¢(6)d6

a,

1
VO G |

ma.

"y (6)¢(6)d6 (22)

<

i |
B (ma2 - 611) ay
<A(s1,8)M,,(ay,a,) + B(sy,5,)N (a;,a,),

where
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M, (ar,a,) = y(a;)¢(a;) + m2‘l/(“2)‘/’(5‘2)>N(“1’“2)
= y(a;)¢p(ay) +v(ay)¢(ay),

s 451 s (€7 1) +5,(e" - 1)
b

$1+8, 515,

A(s),s;) =

e? e s (e” - 1) +5,(e" - 1)

$2 =5 $152

B(sy,$,) = + 1.

(23)

Proof. Let us denote 0 = ya, + m(1 — y)a, for all y € [0, 1].
Using the property of the (s;,m) and (s,,m)-exponential-
type convex functions ¥ and ¢, respectively, we have

y(xa +m(1-pa) < (€ =1y (ay) + m(e" P = 1)y (ay),

¢ (ay +m(1 = pa) < (e = 1)g (ay) + m(e™% ~ 1) (a,).
(24)

Multiplying above inequalities on both sides, we get
Y (xar +m(1=x)ay)p (xa, +m(1-y)ay)
<[ = Dy ay) + m(e % ~ 1)y (ay)]
X [(esl)‘ -1)g(ay)+ m(e(l_’f)sz - 1)¢(a2)]
= (@ =1 (e = Dy(a)p(a) (25)
b (e = 10" - 1)y(a,)ga,)
(e =) (e = 1)y ()¢ (a)]
+ mz(e(l_x)s1 - 1)(6(1_7‘)52 - 1)w(a2)</>(a2).

Applying Chebyshev integral inequality (see [23]), we
obtain

1
JO v (xa, + m(1 - x)ay)¢ (xa, + m(1 - x)a,)dy

1 1
> J v (xa, + m(1 - y)a,)dy - JO ¢ (xa, + m(1 - y)a,)dy.

0

(26)
Changing the variable of integration, we get
e ). v
-1 Jm v(O)do . — JWZ 6(6)d0,
(ma, —ay) Ja, (ma, —a;) Ja,
(27)

which completes the left-side inequality. For the right-side
inequality, integrating on both sides of the inequality (25)
with respect to y over [0, 1], we have
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1 ma, 1 ma,
J w(e)de-mj $(0)d6

(maz - 6’1) a, a

| [ -0 Darfva)p(a)

0

(], e - o (e)

([l =0t - o otagoan)]

0

+ mZ[J:(e(IX)SI - 1)(6(17)()52 - 1)dX]V/(a2)‘/’(a2)

= A(sp, )M, (a1,;) + B(s1,5,)N (a1, a,),
(28)
which give the right-side inequality. |

4. Refinements of (H-H)-Type Inequality for
k — Fractional Integral

In this section, we will obtain some refinements of the

(H-H) inequality via (s,m)-exponential-type convex
functions.
Lemma 2. Suppose O<w<1 and a mapping

y: [wa,,a,] — R is differentiable on (wa,,a,) with
0<a, <a,. Ify' € L,[wa,,a,], then the following equality for
k—fractional integral holds:

y(wa,) +alky(ay)  Ti(a+k) ko
SRl (= a5 )

() [y -
(29)

where o,k >0 and I'(-) is the Euler Gamma function.

Proof. Using the integrating by parts, we have

5
a, —wa, 1[<ﬁ ) alk ] ' 3
(Mk“ )JO P -1y (w = Yay + xa,)dy
_ (%~ Way 1(§ ) alk 1 _
_( alk +1 ){Jo k+1 Yy (W - pa, + xa,)dy
! !
- jo y (W = pa, +xaz)dx}
() 2y - pa +ya),
= —+1 lo
alk +1 k a, —wa,
1
My (w@ = p)a; +xay) & g
Jo a, —wa, IJC dX
B y(w(d - x)a; +xa5)
a, - wa, 0
=<az—wa1) <g+ 1) gyl o«
alk+1 /[\k a, -wa, k(a,-wa,)
b alk-1
Jox“ y(w@ - pa, +xaz)dxH
_y(wa)) +alky(a,)  Tila+k) ko
) alk +1 (a, - wa,) oy (o)
(30)
which completes the proof.
Lemma 3. Suppose O<w<l and a mapping

y: [wa,a,] — R is differentiable on (wa,,a,) with

0<a, <a, Ify' € L,[wa,,a,], then the following equality for

k—fractional integral holds:

y(way) +y(ay) Iy (a+k)
w+l (w+1)(a, — way)

alk

{k]Z;V’(az) + k](‘;‘;w(wal)}

_(az—wa1
w+1

1
)| D= =0y @ - 0m, + yar)d
(31)

Proof. Using the integrating by parts, we have



— 1
(%) J() [Xa/k B (1 B X)‘x/k]wl (lU(l - X)al + XaZ)dX

a, —wa Lk
=(#)“Ox My (w1 - )ay + yay)dy

w+1
! Ik
- jo (1- 0™y (L - pa, + yay)dy

(),

w+1

(32)
where

! /ku/'( (1— ) + )d
ot w a,+xa
[1 — JOX Xlartxa, )dx

My -pa, +xay),
a, - wa, 0

Ly (w(l-y)a; +xa,) & gk
_IV’( Xa Xz)p(/k Ldy

0 a, —wa,

1
Ox“’k’lw(w(l — )ay + xa)dy

_ v (ay) a J

T a,-wa, k(a,-wa,)

a T (a+k) *,
_ v (ay) _ k )a/k+1 ]a;‘l/(w“l)’

4 -wa;  (a, - wa,

(33)

1
I, = jo (1= ™y (w(1 - pa, + ya,)dy

A=y (w@ - pa, +xa,)
B a, —wa,
_le(w(l—x)aﬁxaz)g(l

0 a, — wa, k

1
lo

_ X)tx/k—l (—l)dX

v (wa,) + o (34

a,-wa, k(a,-way)

1
IO (1= 'y (w1 - Ya, + ya,)dy

v (way,) T (a+k) ko
+ T v (a,).
a,-wa; (a,- wal)“/kJrl 1‘/’( 2)

Combining equations (33) and (34) in (32) and multi-
plying by a, — wa,/w + 1, we get (31), which completes the
proof. O

Theorem 7. Suppose O0<w<1 and a mapping
v: (0,a,/mw] — R is differentiable on (0,a,/mw) with
0<a,<a, If |¥'|7 is (s,m)-exponential-type convex on
(0,ay/mw] for g>1 and g ' + p~! = 1, then for some fixed
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s,m € (0,1], then the following inequality for k—fractional
integral holds:

ly(wa) + a/ky(a;,)  Tila+k) *,

| alk +1 (a, - wal)alk ]aﬂ/(wal)

< (“2 - w“1> [U, @k p) + U, (e, k, p)]"”? (35)

alk +1
)o@
U, (a0, k, p) = J‘(l)/ [a] (a/k+1)* (1 _(g ) 1)Xa/k)pdx,

where

k 1 a4
U, (a,k,p) = ((— +
2(@k.p) Jl/ lal (akr1)* \\k

Proof. From Lemma 2, Holder’s inequality and (s, m)-ex-
ponential-type convexity of |y'|9, we have

|1//(wa1)+oc/kt//(a2)_ T (a+k) *
alk +1

Jo-v (way)

(ar - wa1)a/k -

a, —wa, lkﬁ ) alk l ) B
S(a/k+1)Jo PR Uy (w1 = pa, + ya,)|dy
1/p
a, —wa, l(g ) ok lP
S(oc/k+1><,[o PR S
1 1/q
<JO v (w1 -x)a, +xa2)|qu>
1/p
a, —wa, l(g )a/k_ lP
S(oc/k+1><,[o k+1X 1 dy

(e -0l o me - ()

q l/q
)

_ (G —way 1/p

ef—s-1 , q a2\ |1 Ve
(=) wmir el (G2
(37)
which completes the proof. m|
Theorem 8. Suppose O<w<1 and a mapping

y: (0,a,/mw] — R is differentiable on (0,a,/mw) with
0<a,<a, If |[¥'|7 is (s,m)-exponential-type convex on
(0,a,/mw] for q>1, then for some fixed s,m € (0, 1], then
the following inequality for k—fractional integral holds:
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lv(wa,) + alky(a;,)  Tpla+k) *
| alk+1 (a, - wa)"* °* oy lwm)

< <a2 N wal) 2w 1-1/q
“\ark+1 )\ k(a/k + 1)F!
2a 2 K _(« ¢ (a !
oo q{_i_,es<wmmkm>_(,+1)7 (17)
[|1// (way)| k(atk + )P s k 5“”‘y k VTa] (a/k + 1)
+(g+ 1>es(s—a/k) ﬁ+ 1 ; +l
P y(pu@(a/kﬂ)") ko VTa] (ark + 1)k s
sy GNP e G ) e i)
Vi s k(a/k + 1)t \k (—=s)* AV o] (a/k + 1)

+<ﬁ+1> L 1 )€ "
k (cy el ke \ & ST e 1F) s '

Proof. From Lemma 2, power mean inequality and
(s, m)-exponential-type convexity of |y'|?, we have

(38)

|1//(wa1) + alky (a,) T (a+k)
- J-v(wa
| afk+1 (ay - wa1)a/k ZV/( )
- wa, 1<oc ~ ‘ B
oc/k+1 ok ! |V/ (w - xa, +Xa2)|dX

1-1/q 1
P lldx> x(J 2
0

l/q
<k+1 —1“1// (w(1 - ya, +xa,)|* d)()
1-1/q9 1
a/k_ ﬁ alk
oc/k+1 lldx> X(Jo(k-”))( !

_<a2 3 wal) 2u 1-1/q
\ak+1 )\ k(a/k + 1)FeH
20 2 F) (% e [« !
| 1v' (wa q{_i__es(l‘”\/m(“/k”))_<—+1)— <—+1,—)
[|V/ ( 1)| k(ark + 1)k/oc+1 S k 5"‘/")/ k VT« (alk + l)k
+ (ﬁ+ 1>e—$ i1 S +1
k S“/kyl_\/m((lx/kﬂ)" k ’ 4/ [0(] (Oc/k + l)k S

+m’ ,(&> 2¢8 [a](a/k+1)k_ 20 —<§+1>< 1 )
Vi s k(a/k + P T \k (=s)™

Y S -
"\k " VTa] (alk + 1) k (—s)** Vsl @it i Vol (a/k+1)k) s ’

1

wal 1
oc/k+1 o

)e)”

[( (1- )|w (way)|" +m(e¥ - 1)‘1,0

O

(39)



which completes the proof. O

Theorem 9. Suppose O<w<1 and a mapping
y: (0,a,/m] — R is differentiable on (0,a,/m) with

|1//(wa1)+1//(a2)_ Iy (a+k)
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0<a,<a, If |[¥'|7 is (s,m)-exponential-type convex on
(0,a,/m] for g>1 and g ' + p~! = 1, then for some fixed
s,m € (0,1], then the following inequality for k—fractional
integral holds:

k

(w+1)(a, - wa

ef—s—-1

e {{Tvten) v

1

(40)
1/q

<2(“2_w‘11)
w+1

()

Proof. From Lemma 3, Hoélder’s inequality and (s, )-ex-
ponential-type convexity of |y'|9, we have

ap +k

N

rk ((X+ k)

(w+1)(a, - wa)

|1//(wa1) +y(ay) _

1K
0.

a, —wa, alk _( alk

IN

<
g

(az—wal
w+1

1- 0"y (w1 = y)a, + xa,)|dy

w+1

a, —wa, !

0

[/ c1 " Up s 1 .

<JOX°‘ de) (JOIV/ (w(1 - x)a, +xa2)lqu>

w+1

N——

a, —wa,

<

<(

)

w+1 0

1/
+<J1 (1 —x)“”‘"dx> ' X<Jl [(e(l_")s —1)|y’ (wa,)|" + m(e"
0 0

k
ap+k

2(a, —wa,)
w+1

_ -s-1

() 6

which completes the proof.

S

O

Theorem 10. Suppose O0<w<1 and a mapping
y: (0,a,/m] — R is differentiable on (0,a,/m) with

lx“’k"dx>up X(J;[(e“_”s =~ D)y (way)| +m (e - l)lw/ ()

Y1 Cwmlt s mfy (22

2

)

) + "J;;w(wal)}‘

Joxa/klwl (w(l _X)al +Xa2)|dX + J, (1 —X)a/k|1//, (w(l _X)al +Xa2)|dX:|

1/q 1

+<J; (1 _X)“/deX>1/P<JO [y (w(1 - y)a, +Xa2)|qd)(
q]dx)
M) ]

)]

l/q

(s

N

(41)

0<a,<a,. If |[y'|7 is (s,m)-exponential-type convex on
(0,a,/m] for q=1, then for some fixed s,m e (0,1],
then the following inequality for k—fractional integral
holds:
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I‘/’(wal)""//(az)_ I (a+k)
w+1 (w+1)(a, — wa,

B 1-1/g
: (azw +w1al)(oc ]i k)
[

(e (o) (1))

N m\y},(@) 1( (afk + Detks™ (T (a/k+1,9) -T(a/k+1) 1\
m k+a alk +1

e vt v

‘1<F(oc/k+ L—s)-T(ak+1) 1 )}”q

(- 5)¥ks alk +1

(42)

Proof. From Lemma 3, power mean inequality and
(s, m)-exponential-type convexity of |y'|?, we have

lv(wa)+y(a)  Ti(a+h o .
w+1 (w+1)(a, - wal)“/k{ ]aﬂ/’(az)ﬁL ]aglll(wal)}
4, — wa, ! alk alk]|, 1
S( w+1 >JOX _(1_X) Iw (w(l_X)a1+Xaz)ldX

< <azw +w1al> % |:J0Xa/k|wl (w(l _X)al +Xa2)|d)( + JO (1 —X)“/k|1//, (UJ(I —X)al +Xa2)ldX:|

a2 —wa 1 ” 1-1/q 1 " 1/q 1 " 1-1/q
S( w+11>|:<J ¥ dX) (J X Iw’(wﬂ—x)alwaz)lqu) +(] (1" dx)
0 0 0

1 1/q
(J (1= 0™y (w1 -y, +X“z)|qu) ]
< <612 - wa1> J'lxalkd 1-1/q9 y Jl alk [(e(l—X)s _ 1)|1//! (wa )lq n m(eSX _ 1)‘1//(@
o+l 0 X OX 1 -

]

o)

+(J; (1 _X)fx/k[(e(l—)()s _ 1)|1// (wal)lq n m(esX _ 1)‘1///<%>
()
X |:‘[|1/’, (wa1)|‘Z<r(%+ 1) - F(%+ 1,s>essﬂx/k71 B ﬁ) . m‘w'(%)

oIy wapl (o (n(en) 1)) - )

N rn‘w’@) a( (a/k + Detks “* ' (T(a/k + 1) -T(ak+1) 1\
m k+a alk +1 ’

q(F(oc/k+ 1,—s)-T(a/k+1) 1 )}”q

(—s)alks alk+1

(43)
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which completes the proof. O

5. Applications

Let consider the following two special means for different
positive-real numbers g, < a,.

(1) The arithmetic mean:

a, +a,

d(ay,a,) = 5

(44)

(2) The generalized log-mean:

I+1 I+1

1/1
a,  —aj . B
m] TeR-L0) (45)

Z(ay,a,) = [

Dragomir et al. [5] have proved that, for s € (0, 1), where
1<I<1/s, the function f(x) = x5, x>0 is s-convex func-
tion. Then, from Proposition 1, it is also s-exponential
convex function for some fixed s € [In2.5, 1).

Using Section 4, we have the following interesting
results:

Proposition 2. Let0<a, <a,, 0<w<1, and q>1 such that
pl+q ' =1. Then, for some fixed s € [In2.5,1), where
1<1<1/s, we have

Is(a, — way)

Vipl2
1/p S o 1/q
() () ot e

(46)

'M( (w“1)15>“125) - géi (way, ‘12)| <

Proof. Consider the s-exponential convex function
y(x) = x5, x>0, and using Theorem 7 for a=1=k, we
obtain the required result. m|

Proposition 3. Let 0<a, <a,, 0<w<1 and q>1. Then, for
some fixed s € [In2.5,1), where 1 <I<1/s, we get

o (10", ) = 5 )| (T2 = 000)

4(l—l/q)
y 2(s—2)ef +8e2 — s — 25— 4\ (47)
2s2
1/ Is—1 (Is-1)
o ‘1((wa1)(5 )q, azs ‘1)_
Proof. Consider the s-exponential convex function

¥ (x) = x, x>0, and using Theorem 8 for a = 1 = k, the
result is obvious.

Journal of Mathematics

Proposition 4. Let 0<a, <a,, 0<w<1 and q> 1, such that
pl+q ' =1 Then, for some fixed s € [In2.5,1), where
1<I<1/s, we obtain

2 S S S
|2 (ot () ) - 7w, )|

Is(a, — way) 1 \"Pfes—s-1\"
S\/[7q]2 w+1 8 p+1 s

ﬂl/q( (wal) (Is— l)q’ az(ls—l)q)'
(48)

Proof. Consider the s-exponential convex function
y(x) = x5, x>0, and using Theorem 9 for a =1 =k, the
result is evident. O

Proposition 5. Let 0<a, <a,, 0<w<1 and q=1. Then, for
some fixed s € [In2.5,1), where 1 <I<1/s, we have

2 Is s Is Is(a, — wa,)
lw 1 (*97( (wa,) ’az) - gzs(wal’az))l SW
y 2(s—2)e +8e2 — 2 — 25— 4\
2s?
ﬂl/q( (wal)(ls— l)q, az(lsfl)q).
(49)
Proof. Consider the s-exponential convex function

y(x) = x5, x>0, and using Theorem 10 for a = 1 = k, we
obtain the required result.

At the end, let consider some applications of the integral
inequalities obtained above, to find new bounds for the
trapezoidal and midpoint formula.

Fora,>0,let %: 0= xo<x; <, > <Xp1 <X, =y is a
partition of [0, a,].
We denote
n-1
g(%) 1//) — Z(VI(XI) +2V/(Xi+l))hi’
= (50)

JO y(0)dx = T (% y) + R (U y),

where Z (%, y) is the remainder term and h; = x;,, — x; for
i=01,2,...,n—-1

Using above notations, we are in position to prove the
following error estimations. O

Proposition 6. Suppose a mapping y: (0,a,] — R s
differentiable on (0,a,) with a, >0. If |y'|1 is s-exponential-
type convex on (0,a,] for g>1 and g~ ' + p~' =1, then for
some fixed s € (0,1], the remainder term satisfies the fol-
lowing error estimation:



Journal of Mathematics

1/p s ¢ 1/q
1 1 e —s—1
aasy(5) (557)

X’th[(|w' Gl + 1G] ™

(51)

Proof. Using Theorem 7 on subinterval [y;, x;,,] of closed
interval  [0,a,], for all i=0,1,2,...,n—1 and

w=a=k=m=1, we get
1 1 1/p
<—
2\p+1

I(w)h - JX y(x)dx
(ﬂ)w < B2 [(J' Gl +1v' Gee)I)]™.

1
2 Xi
S

(52)

Summing inequality (52) over i from 0 to n — 1 and using the
property of modulus, we obtain the desired inequality
(51). O

Proposition 7. Suppose a mapping y: (0,a,] — R s
differentiable on (0,a,) with a, > 0. If |'|1 is s-exponential-
type convex on (0, a,] for g > 1, then for some fixed s € (0,1],
the remainder term satisfies the following error estimation:

B 1/9 n-1
ef—-s-1 / ' /
iz (S5) R ol el
i=0

(53)

Proof. Apply the same technique as in Proposition 6 but
using Theorem 8.

6. Conclusion

In this article, the authors showed new generalizations of
trapezium-type inequality for the new class of functions, the
so-called (s, m)-exponential-type convex function y and for
the products of two (s, m)-exponential-type convex func-
tions y and ¢. We have obtained refinements of the (H-H)
inequality for functions using (s,m)-exponential-type
convex and founded new bounds for special means and for
the error estimates for the trapezoidal and midpoint for-
mula. We hope that current work will attract the attention of
researchers working in mathematical analysis, fractional
calculus, quantum calculus, postquantum calculus, and
other related fields.
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In a study, Carlitz introduced the degenerate exponential function and applied that function to Bernoulli and Eulerian numbers
and degenerate special functions have been studied by many researchers. In this paper, we define the fully degenerate Daechee
polynomials of the second kind which are different from other degenerate Daehee polynomials and derive some new and
interesting identities and properties of those polynomials.

1. Introduction

Let p be a fixed prime number. Throughout this paper, Z,,
Q,,and C, will denote the ring of p-adic integers, the field of
p-adic rational numbers, and the completion of algebraic
closure of Q,, respectively.

Let f(x) be a uniformly differentiable function on Z,.
Then, the p-adic invariant integral on Z,, is defined as

pN-1
I,(f) = sz(x)dyo(x)zN@mpiN ZO o, (O

(see [1-3]).
From (1), we have

n—1
I(fa) - Io(f) =) f' (), where f,(x)
1=0
(2)
df (x)

dx =t

= flern), f' (D) =
In particular, if n = 1, then

I, (f1) - I, (f) = f'(0). 3)

The Stirling numbers of the first kind are defined by
(x), = Z S (n, l)xl, (n=0), (4)
1=0

and the Stirling numbers of the second kind are given by

xn = Zsz (n’ Z) (x)l) (5)
1=0
where (x), =1 and (x),=x(x-1)---(x—n+1) (n>1)
(see [4, 5]).
From (4) and (5), we can derive the following equations:

0 1
(¢ =1)" =n Yy 8,0m, (6)
I=n :
(o] I
(log(x + 1))" =n! Y8, (Ln) 77 (n=0), 7)
I=n :
(see [4-6]).
In addition,
log(1 +1£) = Zl (1) (n — 1)!%, 8)
[4, 5].
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The Bernoulli polynomials of order r are defined by the
following generating function:

T e
n=0 °
(see [7-9]).

Carlitz’s degenerate Bernoulli polynomials of order r is
defined by the generating function to be

S 50 e L t
neo(—f
2B eI ((1+Mﬂ”—1

where A € R (see [10]). By (10), we know that

) (1 + 1)

) 1+, (10)

, t
lim Z/s“(xm—_ (W

() e - 2 oo

(11)
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and thus, we obtain

Jim £ (1) = B (x). (12
n [11], the degenerate Bernoulli polynomials are defined
as
log (1 + A1) > o
—— ] (1+At b (x) = 13
<U+Mm—l (1+10) % () (13)

which are different from Carlitz’s degenerate numbers and
polynomials.

By (13), we know that
lim b, (x) = B (x). (14)

Note that by (3),

|, o] s (). ()

P p

(15)

{M) (1+ )" = Zb(”( )—

1+ -1

P P

r

o (XEX X
- JZP...JZ”‘Z_(:)< A ))L"t"d‘uo (xl)"‘d.”o (xr) (16)

By (15) and (16), we know that

(r)(x) JZ "JZ (x+x1+"'+xr)n,Ad.“o(x1)"'d#o(xr)'

P P
The higher-order Daehee polynomials are defined by the
generating function to be

(500 oy

In particular, if r = 1, then D{V (x)
Dacehee polynomials.
By replacing ¢ as log(1 +¢) in (18), we have

(17)

= i D" (x) ;—n' (18)

n=0

(see [12-15]).
= D, (x) is called the

n

n

t
+ xr)n,)LdAuO ('xl) e d:"lO (xr) E

= 1
ZD“)(x - ZB;' (x) — (log (1+1))"

o0 & l
<Z()B(r)(x) ><n!lzsl (l,?’l)%) (19)
n=| =0 '

‘Z(iB“MSMmOf

and so, we obtain

3

D" (x) = Z B\ (x)S, (n,m). (20)

m=0

Note that by (3), we have
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(,) (log(l + t)) s

J (L + )" dpg () - - - dpg ()

N

ZJ(

and thus, we know that

Df,r)(x)=J --JZ (x+x 4+ +

P P

x,) o (%) - - dptg (%)

(22)

Carlitz introduced the degenerate Bernoulli polynomials
in [10] and the degeneration of special functions have been
studied (see [6, 16-29]).

In particular, the degenerate Stirling numbers of the
second kind with a generating function are defined as

1 m 0 "
$«Hmwh0 =Z&ﬂmmﬁ (23)

where m is a given nonnegative integer in [6, 10, 22, 30].

After introducing Daehee numbers and polynomials
[31], it plays an important role of developing various gen-
eralized polynomials, and interesting properties are obtained
(see [8, 15, 21, 22, 28, 30-35]).

In this paper, we define the new degenerate Daehee
polynomials and numbers which are called the degenerate
Daehee polynomials of the second kind and investigate
identities and properties of new polynomials.

2. Fully Degenerate Daehee Polynomials of the
Second Kind

Let us assume that A € R. By (3), we have

J (1+ Alog (1 + 1) duy (7)
Z

P

_ (1/M)log(1 + Alog(1 +1))
© (L+Alog(1+0) -1

(1+Alog(1 + 1)),

(24)

By (24), we define the degenerate Daehee polynomials of
the second kind by the generating function to be

(1/M)log (1 + Alog(1 +t))

1+ Mog(1+1)™
(L Aog(Le i —1 T8 +1)

(25)
= ZD (xl/\)—.

n=0

X+x +

3
+ X, (21)
>t"dy0 (%1) -+~ dug (x,)
tﬂ
+ ), At (1) - dpgg (x,) ar
In the special case, x =0, and D,(A) =D, (0|A) are
called the degenerate Daehee numbers of the second kind.
Note that
o t" 1/Mlog(1 +Alog(1 +¢
lim ZDn(xM)—': (1/1)log( gf/a )
A—0 = nt A—0 (1+Alog(l+1))" -1
- (1+Alog(1 + )
log(1+t
80D =Y D0
t n=0
(26)
and thus, we know that
Alino D,(x|A)=D,(x), (n=0). (27)
From (7) and (24), we have
j (1+ Mog (1 + )" duy ()
ZP
xX+y
_ i J A I og (1 + ) dug ()
1=0 ZP 1 (28)
xX+y
S ysioon] | Jao) |
n=0\ k=0 Zp I
By (25) and (28), we have
xX+y
Dy =Ys, (nl/\ll"[ U \du(y),  (n>0).
k=0 Z 1
(29)

Since
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X + y
A _ ()M (e + ) =D (x + )N =2) . (((x+ )/ -1 +1)
1t
! (30)
C(x+r ) (x+ry-Nx+y-20) ... (x+y-(-1A)
- A ’
by (29) and (30), we have sz(l +Alog (1 + ) du, (y)
D, (M) = ;)sl (n, Z)sz(x+y)udyo (5, (n20), (31) ) Jz (1 + Alog(L+ 5" () o

where (x),; = x(x-1)(x—=21)--- (x - (n-1)A).

Thus, by (29) and (30), we have the following theorem
which is Witt’s type formula about degenerate Daehee
polynomials of the second kind.

Theorem 1. For each n>0, we have
X+y

duy (y)

D, =Y 5 (n |
k=0 z
! (32)

- ZS (n, Z)J (x + y)pdu (3).

By replacing t as e’ — 1 in (25), we obtain the following:

imwmw
n=0

Z D, (xI}) Z S, (m, n)

m=n

Z(Z D,, (xIA)Sz(m,n)>;—n!.

n=0 \ m=0
(33)
On the other hand,
0 t_ 1\
n=0 : -
(34)

o0 tn
=Y B,(xI)
=0 n:

where B, (x|A) is the degenerate Bernoulli polynomials of
the second kind of order r € Z which are defined by the
generating function to be

(1/M)log (1 + At) N )
(m) (1+A1) " ’;)B()(xM)_ (35)

(see [20, 25]).

In particular, if r = 1, Br(ll) (x|A) = B, (x|A) is called the
degenerate Bernoulli polynomials of the second kind.

For positive integer d with d = 1(mod2), if we put
f(x) = (1+Alog(1+1)*, then, by (2), we obtain

P

- Z%(l + Mog (1 + ) Mog (1 + Alog (1 +1)).
1=0

By (36), we have

J (1+ Mog (1 + )™ duy (x)
VA

4

(1//\)10g(1+/110g(1+t))
(1+Alog(1 + )% -

Z (1+Alog(1+6))"

Z Y (1/M)log (1 + (M/d)d log (1 + t))
2 (1+ (Md)dlog(1 + )™ -

1 (dir) (l/d)
. (1 +Edlog(1 +t))

(37)

Note that by (6),
(1/M)log (1 + (A/d)d log(1 +¢))

1+ Wd)dlog (1 + t)) @MW
(L + Wddlog(1 + 1)) @0 O FWddlogl+1)

< (dlog(1+1)"
ZB( l ) n!

n=0

= LAYd" | & X"
:’;)Bn(alz>mn'mz_nsl(m,n)ﬁ

< & ! " t"
:n_0< _OB"‘(E ld)d S, (n, m))—'.

By (24), (37), and (38), we have

(o) tn

™M

(38)

(1+Alog (1 + 1)) du, (x)
ZP

%) n d-1 l A - tn
:Z:‘) mZOZZB( lg)d S, (n,m) 7

(39)
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Hence, by (33), (34), and (39), we obtain the following
theorem which shows the relationship between degenerate
Daehee polynomials of the second kind and degenerate
Bernoulli polynomials of the second kind.

Theorem 2. For nonnegative integer n and d € N with
d = 1(mod?2), we have

L (1) (x) = Z D, (x)S, (n,m),
(40)
n d-1
- ZzBm( 3 )dm“S( ).
m=0 [=0

By (25), we note that

t" (1/M)log(1 + Alog(1 +1))
D,(x|A —=
Z (* ) < (1+Alog(1+ )" -1 )

(1 +Mog(1 + 1))

N————— N———
e

o

2
N———

1]
/N /- VN
18
o
By
S|

(41)

By comparing the coefficients on both sides of (41), we
obtain the following theorem.

Theorem 3. For nonnegative integer n, we have

D, (x|A) = ZZ( )(x),,lsl(k,l)an(A). (42)

k=01=0

Note that if we put f(x) = (1 +2Alog(1 + £))*, then

f'(0) = 7log(1 +Alog(1l +1))

1 n+ /\n n
=X;(_1) 1;(10g(1+t))

_ Z ( 1)n+1

n'ZS @ n)

= Z(Z (G K RS DI (n,m)>

n=0 \ m=1

(43)

and thus, by (3), we have

[, £~ reodu e
A z,

P

(1/)L)log(1 +Alog(1 +1))
(1+Alog(1+£)" -1

1/A

(1+Alog(1+1))

(44)
B (1/M)log(1 + Alog(1 + 1))

(1+Alog(1+£)" -1

[ee] tn

= > (D,(11) =D, W) .

=0 n.
Moreover,

n-1
((1/Mlog(1+Alog(1+1)) Y (1 +Alog(1 +1)"

1=0

_ (1/M)log(1 + Alog(1 +1))

(1+/110g(1+t))m (1+Alog(1+1¢)"

(45)
B (1/M)]og (1 + Alog (1 + 1))
(1+Alog(1 +1))"

= YD, (1) - D, )},
r=0 .

and, by (43), we obtain



n-1
(1/M)log (1 +Alog(1+1£)) Y (1 +Alog(1 + )"
1=0

oo P . tp
:<Z D ()" m-1)S - l(p,m)ﬁ>

n-100 s s
' ( 2. DS (s, q)%) (46)

1=0 s=0g=0
o [n-1r pr-p/ft

=Z< S < )(l)q,A(—A)’“
r=0 \ =0 p=0m=1 g=0 P

. (m - 1)!81 (p, m)s1 (r- b q)) %

From (43), (44), and (46), we obtain the following
theorem which represents a recurrence relations between
degenerate Dachee polynomials of the second kind and
degenerate Daehee numbers of the second kind.

Theorem 4. For each nonnegative integer r, we have

D,(11A)-D,(A) = zr: (A" m - 1)IS, (r,m).  (47)
m=1

Moreover, for each positive integer n>2,

D, (n13) - D, () = zzzz( )a)q,ﬂ—m*

1=0 p=0 m=1g=0

- (m - 1IS; (p,m)S, (r — p, q).
(48)

3. Higher-Order Degenerate Dachee
Polynomials of the Second Kind

In this section, we consider the higher-order degenerate
Dacehee polynomials of the second kind given by the gener-
ating function as follows: for the given positive real number
r)

(1/M)log (1 +Alog (1 + )\’ L
Al
( (1+A10g(1+t))1/)»_ 1 ) (1+ Og(1+t))
(49)

(8] tn
=Y DY (x]0) =
nl

n=0

In particular, if x = 0, D,(l’) 0A) = D,(,r) (A) are called the
higher-order degenerate Daehee numbers of the second kind.
Note that

Journal of Mathematics

; (r)
t 3 00 10

n=0

((I/A)log(l +Alog(1 + t)))’
m
(1+Alog(1+1)" -

< (1+Alog(1 + 1))

:(L(i”)) (1+1)
I INE PN
—;Dn (x)
(50)
From (35), we note that
(1/M)log(1 + Alog(1 + 1)) ’ "
( (1+Alog(1+£)"™ -1 > 1+ Mog(1 +)™
< () (10g(1+t))”
’;B (x n!
(51)
N ”(xI/\)
SRS s
n=0

= Z(Z B (x| 1)S, (n, ))%

In addition, by replacing ¢ by ' — 1 in (49), we have

ZD NP

-1 {ID(x]A m
- ) Z (X| ) 'ZSZ( ,m)%

n=0 m=n

= Z( Y DY (x| 1S, (m, m)>

n=0 \ m=0
(52)

" Ml A\
e

ZD

f By (x|1)
n=0
(53)

Hence, by (51)-(53), we obtain the following theorem.

Theorem 5. For n>0, we have

D (x|N) =Y BY (x| VS, (m,m). (54)

m=0
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Moreover,

BY (x])) = Z D) (x| N)S, (n,m). (55)

m=0

In particular, if r = 1, then we know that Theorem 5 is a
generalization of Theorem 1 and Theorem 2.
Note that for each k,7 € N,

(1//1)10g(1+/110g(1+t)) r "
Al
( (1+)L10g(1+t))1/)t_ 1 ) (1+Alog(1+1))

_((I/A)log(l +log (1 + t)))k
\ (1 +Alog(1+) -1

(1/A)log (1 + Alog(1 + 1)) —k )
( (1+)L?0g(1+t)g)1/)t_ 1 ) (1+/\log(1+t)) /A

IR SN PN AR IR S "

_<;0Dn (A)n!><;)pn (xIA)n!>
s} n n n

:Z<Z< )D,SfRA)D,S”‘( |A)>,
n=0 \ m=0 \ m

It is well known that for each k € Z,

(56)

k ) n
t x-1 _ (nk+1)  \E
(7108(1 +t)) 1+t = ;Bn () (57)

By (23), (7), and (57), we have

(1/M)log (1 + Alog(1 + 1)) y
Al
< (1+)Llog(1+t))1m_ 1 ) (1+Alog(1+1))

— (I/A)log(l‘f'AlOg(l_{_t)))r Al B
( (1+Alog(1+1)" -1 (1+2Alog(1+1))

(o]
Z Br(ln+r+l) (x + 1)
n=0

_ <§B,(ln+r+l)(x+ D)(Z Sy (m, (log(l +t)) )
n=0

= Z Z B (x +1)8,, (p, n) (log(l +1))?

p=0n=0

((1+uog(1+t))“)* 1)

p

(o] 9
— Z<Z ZB:HHI (x+ 1)82,\(q—l OM] (q,p))

p=0n=0
(58)

By (56) and (58), we obtain the following theorem.

Theorem 6. For each n,q>0, we have

7
DY (x| )) = Z( ! )Df,f) WD (x| ),
m=0 \ M
q » .
DI (x]2) =) Y BY (x + 1), (g - LS, (g, p).
p=0n=0
(59)

Note that by (3),

[, ], e atogae oy () - du ()

i3 i3

(I/A)log(l+)L10g(1+t)) r »
) Al
( (1+/\log(1+t))1m_ 1 > (1+Alog(1+1))

(o)

=Y DY (x|)t)t—.
" n!
n=0
(60)

By (17) and (60), we have

J “f (1+Mog (1+ )™ Ay, (x,) -+~ dp (x,)
VA VA

P P

X+x, 4+ +x,

LS

P P n=0
n

- (log (1 +£))"du () - -+

d#o (xr)

(61)

Thus, by (60) and (61), we obtain the following theorem
which shows that higher-order degenerate Dachee poly-
nomials of the second kind are represented by linear
combination of the higher-order Carlitz’s type degenerate
Bernoulli polynomials.

Theorem 7. For each nonnegative integer n and each integer
r)

DY (x])) = Z S, (n,m)B (x). (62)
m=0

By (7) and (23), we have



(1 +Alog (1 + t))¥r=rx/t

=((1+Aog(1+6)"™ —1+1

X+x;+-+x, m
< >((1+uog(1+t))”"—1)

)x+x1+~--+x,

|
gk

m=0 m

l n
X ), Z Sy (n, 7( Og(i!+ 2

I
M8

(x+x, +

3
Ti
o

(log(1+1))"
n!

1
M8
M:

(x+x, 4+

Xy )mSZ,/X (1’1, m)

0

=
é
i

(x+x, 4+

1
M8
M:

0

<§§(Ml+

k=0 m=0

=
g
i

1S t
X )Sa (mom) —ml 38, (1)
e !

n

t
o+ %) Sy (ks m)S, (n, k)> 7

Il
M8

i
(=]

(63)
and so by (22), (60), and (63), we obtain

JZ J (1+ Mog (1 +£) ™ Xy (x,) - dpg (x,)

Il
i M8

n k
<Z > $a GemS, o0

k=0 m=0 p

(=]

n

J (x+x; +---+x,),duy () -+ dygg (x,))%

I
ipM8

n k .
<Z Y 8y, (k,m)S, (n,k)DS) (x)> %

k=0 m=0
(64)

By (60) and (64), we obtain the following theorem.

Theorem 8. For each nonnegative integer m,

n k
DY (xIN) =) Y S, (km)S, (nk)Dy (x).  (65)

k=0 m=0

Theorem 8 shows that higher-order degenerate Daehee
polynomials are related closely to Daehee polynomials of
order r.

4. Conclusion

In the past two decades, the degenerations of special
functions and their applications have been studied as a new
area of mathematics. In this paper, we considered the de-
generate Daehee numbers and polynomials by using p-adic
invariant integral on Z, which are different from Kim’s
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degenerate Daehee polynomials. We derive some new and
interesting properties of those polynomials.

Next, from the definition of the higher-order degenerate
Daehee numbers and Daehee polynomials of the second
kind, we found the relationship between the degenerate
Bernoulli polynomials, the first and second Stirling num-
bers, the Bernoulli polynomials, degenerate Stirling numbers
of the second kind, and those numbers and polynomials.
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The goal of this paper is to derive some new variants of Simpson’s inequality using the class of n-polynomial convex functions of
higher order. To obtain the main results of the paper, we first derive a new generalized fractional integral identity utilizing the
concepts of Katugampola fractional integrals. This new fractional integral identity will serve as an auxiliary result in the de-

velopment of the main results of this paper.

1. Introduction and Preliminaries

The following inequality known in the literature as Simp-
son’s inequality [1].

Jb At - b_T” [A(a) + 4A<“T+b> + A(b)] ‘ < (ng’f))4||A(4)||m,
(1)

where A: [a,b] — R is a four times continuously differ-
entiable function on (a,b) and

[A], = suprcqan|A” ] <co. @)

Simpson’s inequality plays a significant role in analysis
[2-4]. Over the years, it has been extended and generalized
in different directions using novel and innovative ap-
proaches. The survey by Dragomir et al. [5] is very infor-
mative regarding the developments of Simpson’s inequality
and its applications.

In recent years, the fractional calculus [6-10] is often
known as noninteger calculus which has become a powerful
tool in mathematics because it provides a good tool to
describe physical memory. Fractional calculus has wide

applications in real life through its help in solving different
physical problems [11-20]. The classic definition of Rie-
mann-Liouville fractional integrals is one of the most basic
concepts in fractional calculus which is defined as:

Definition 1. Let A € L[a,b]. Then Riemann-Liouville in-
tegrals /5. A and Ji_ A of order & > 0 with a > 0 are defined by

JEA(x) = . r (x -t 'A()d, x>a,

I'la) Ja
(3)
A (x) = r (- IA(d, x<b
To A =50 |, ’ ’
where
I'(a) = JOO e *x* dx, (4)
0

is a well known gamma function.

In past few decades, several successful attempts have
been made in generalizing the classical concepts of fractional
calculus. Erdelyi-Kober operator is a significant general-
ization of fractional integrals introduced and was studied by
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Arthur Erdelyi and Hermann Kober. But there is a drawback
that one cannot get the Hadamard version of the derivatives
and integrals from Erdelyi-Kober operators. Katugampola
[21] gave a well-defined concept of fractional integrals as:

Definition 2. Let [a,b] C R be a finite interval. Then the left
and right sides of Katugampola fractional integrals of order
a>0 of A € X2(a,b) are defined by

u B Ql—a x tg—l
TEAG) =2 j e A0
o ra Ql—a b o1 (5)
1A =L L A0

if the integral exists.

If we take p=1, then we can recapture Rie-
mann-Liouville fractional integrals from the Katugampola
fractional integrals. It worth to mention here that Erde-
lyi-Kober operators and Katugampola fractional integrals
are not equivalent to each other.

Sarikaya et al. [22] are the first authors to utilize the
concepts of Riemann-Liouville fractional integrals in
obtaining the fractional analogues of Hermite-Hadamard’s
inequality. This idea inspired several inequalities expert, and
resultantly huge number of articles have been written on the
fractional analogues of classical inequalities. For example,
Hu et al. [23] obtained some new fractional analogues of
integral inequalities using Katugampola fractional integrals.
Nie et al. [24] obtained k-fractional analogues of Simpson’s
inequality. Peng et al. [25] also obtained some new fractional
analogues of Simpson’s inequality. Set [26] obtained frac-
tional analogues of Ostrowski’s inequality. Wu et al. [27]
obtained fractional analogues of inequalities using k-th
order differentiable functions. Kermausuor [28] obtained
new Simpson type inequalities involving Katugampola
fractional integrals essentially using the class of Breckner
type s-convex function.

Recently, Toplu et al. [29] introduced the notion of
n-polynomial convex functions as follows.

A(tx+(1—t)y§%2 [1-(1-t)]A(x) + -

holds for every x,y € I, 0>0, and t € [0, 1].

Remark 1. Note that if 0 =0 in (7), then the class of
n-polynomial convex functions of higher order reduces to
the class of n-polynomial convex functions. If ¢ = 2, then
we have a new class of strongly n-polynomial convex
functions. If n = 1, then we have the class of higher-order
convex functions [37]. And along with n =1, if we have
0 = 2, then the class of n-polynomial convex functions of
higher order reduces to the class of strongly convex
functions [38]. From this, it is evident that the class of

Z[l - 'JA(y)

s=1
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Definition 3. Let ne N. Then a nonnegative function
A: I ¢ R — Rissaid to be a n-polynomial convex function
if the inequality

—_

Altx+(1-t)y<— Z[l—(l—t)]A(x)+ Z[l—t A(y),

sl sl
(6)

holds for every x,y € I and t € [0, 1].

Many researchers have also derived several new
Hermite-Hadamard’s like inequalities [30-36] using the
concept of n-polynomial convex functions. We would
like to point out here that the class of n-polynomial
convex functions generalize the class of convex functions
if we take n = 1, then we have the class of 1-polynomial
convex functions which is just the classical convex
functions. Also we can get other type of convexities: for
example, for n =2, we have 2-polynomial convexity.
Another point of pondering here is that every n-polynomial
convex function is an h-convex function with the function
h(t)=1/nY"  [1- (1-1)°]. So more generally, every non-
negative convex function is also an n-polynomial convex
function.

The idea behind the study of this article is to extend the
notion of n-polynomial convex functions with the intro-
duction of higher order n-polynomial convex functions. We
derive a new fractional integral identity using the concepts of
Katugampola fractional integrals. This new identity will
serve as an auxiliary result in the development of some new
fractional analogues of Simpson’s inequalities using the
concept of n-polynomial convex functions of higher order.

Before we move to our main results, we would like to
introduce the notion of n-polynomial convex functions of
higher order.

Definition 4. Let n € N. Then a nonnegative function
A: I ¢ R — R is said to be a higher order n-polynomial
convex function if the inequality

—u(Q=-0+t(1 -y - x|, (7)

n-polynomial convex functions of higher order is quite
unifying one as it relates several other unrelated classes of
convexity [39-45].

2. Main Results

In this section, we discuss our main results.

2.1. A Key Lemma. We now derive the main auxiliary result
of the paper.
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Lemma 1. Let a,0>0, and let A: [a®,b?] — R be a dif-
ferentiable function on (a®,b®), with 0<a<b such that
A € L, ([a%b0)]), then

1 . ia® + b® al +ib?
s M 6 () ) raen)

i+ D* T (a+1) [QIOt A(iag +lb9) . QIZA<a‘~’ + ib‘?)] ()

(be — a9)* @ i+1
pe—-a®) [/ 1 te N\ - i + 10 1-t° A te 1-t° j + 0
=M J T T te 1AI l,—ag+ ; bg dt—J e to IA’ ,—a9+l, bg dt .
i+1 o\i+2 i+1 i+1 i+1 o\i+2 i+1 i+1 i+1

Proof. Consider

p-a®) [ 1 e\ i + 10 1-1¢@ A e 1-t@ i + 10
o e®t-a) J L g (e L e dt—J L ey (I e T e g
i+1 i+2 i+1 i+1 i+1 o\i+2 i+1 i+1 i+1

0
9)
o(b® -a®)
I=——"I,-L]|
i+1 [1 2]
Integrating by parts I,, we have
L £ee i+ 0 1-—te
11=J' — T tQ_IA, l_+—a9+,—bg dt
o\i+2 i+1 i+1 i+1
i+1 1 toe i+t0 1-t° ! a Vool fi+10 1-—te
vl (e — A .7@9+'7b9 - J t‘xe A _7619+‘7b9 dt, (10)
o —a)\i+2 i+1 i+1 i+1 0 be—ae Jo i+1 i+1
~ A(a®) . i+1 A ia® + b° (i+1)“g“’1F(oc+1)91aA ia® + b°
o —a®)(i+2) o(i+2)(be - aP) i+1 (be — qo)**! ar i+1 /)
Similarly,
1 1 t* _ 1-1¢° | + 10
Iz:J e— tQ IA’ ,—a9+l,+—b9 dt
o\i+2 i+1 i+1 i+1
(11)

A(b9) ~ i+1 a® + ibe +(i+1)“9""11"(0c+1)9 o A a® + ibe
o(b —a®)(i+2) o(i+2)(be - ae) i+1 (be — qo)**! b i+1 )



By substituting the values of I, and I, in I, we get the
required result.
This completes the proof. O

2.2. Results and Discussions. We now derive the main results
using Lemma 1.

1
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Theorem 1. Let a,0>0 and let A: [a%, %] — R be a
differentiable function on (a®,b?), with 0<a<b such that
A € L, ([a%b0)]). If |A| is higher-order n-polynomial convex
function of order 0 >0, then

ia® + be
(i+1)(i+2)[ (a9)+A(b9)+(1+1)< < 1 >+A(

a® + ib® (i+1)* 1T (a+ 1) o [ 16° + D0
. - o I +A .
i+1 (be - a®) a i+1

o . fa+ib
+QIhA( 1 )] (12)
(b2 - a®) 1o+ @s—i+ D)+ =1, Lo 4u o ol°
S(i+1)(i+2) nsZ (i+1)°(s+1) (lA (@) +]A" (b )I) (a+1)(a+2)“b “ ” ’
Proof. By using Lemma 1 and because |A'| is higher-order
n-polynomial convex function of order ¢ >0, we have
1 ia® + b° a® + ib® (i+1)* 1T (a+ 1) ia® + b°
0 0 _ eqa
(i+1)(i+2)[ (“)+A(b)+(’+1)( < i+l )+A( i+l ))] (b0 — a0)® Sl
e 4 jbe
+QIZA(a_+1b )]I
i+1
(13)
e _ g0 ag i + 10 —_t0 1 aQ —t0 i+ 10
_Q(b a) J’| _.t |9_1A' l_+ta9+1, tbQ dt+J ;_t o1y 1' tag+1,+tb9 dt
i+1 oli+2 i+1 i+1 i+1 oli+2 i+1 i+1 i+1
(b - a)
=S W
Note that

1 %
— |t

i+2 i+1

dt

1 +t 1—1¢0
I, :J A’<’—a‘~’+ : b9>
0 +1 i+1
ljl . <z+xa@+1.—xbg>
0 oli+2 i+1 i+1 i+1
l Jl —dx JIA'<H—xag+l_—xb9)
) oli+2 i+1 0 i+1 i+1
1
([

dx

=1

§=

d)]
) (LG 0-) Je

(G+1)°(s=i)+i*

1" o o o
(1) W 00w -9 40 - d’“>)

11’!
@)+, 2,

1 & (G+1)°(1+s)—
(z+z)[<nz Gi+1) (1+s)

s=1

G+1)°(1+5s)

1/q
! 2.” o
e e

(14)
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Similarly,
aQ 1—1¢© i + 10
J £ Jpe A(—, ta@+—l.”b9>dt
oli+2 i+1 i+1 i+1
:lf ’(%‘%@ﬁ”b@)dx
0 oli + i+1 i+1
1 1 -
SlK . dx)([ A'(l,—xa 1+_be ldx)]
0 oli+2 i+1 0 i+1
1 1 11 & 1-
([R5 (1-(-(
0 oz+2 i+1 o\noH i+1

S

i)+t

1 1 & (i+1)(s—
‘g(i+z)[<as_zl (i+1)°(1+5s)

where we have used the fact that [1/i + 2 —x*/i + 1| <1/i + 2
for all x € [0, 1]. Using I, and I, in (13), we get the required
result. O

1

(b0 — a0)® +1 b

(b® - a®) 1 LGE+1) (1 +s) -
SE+DG+2) |\ n & (1+1)$(1+s)|

i+1)°(1+s)—
~  (i+1)°(1+s)

be
m [A(ag) + A(bg) + (l + 1)( <lal ++1 ) + A(
G+ 1) T (a+1) [QI;A(miQ + be) Lepe A<a9 +ib®

i+1

)) ) 0
a2l(s i‘f)lA’(b@)l-Mx"<1—x>+x<1—x>“>||b@—a@n“dx>>}
3 )]+ 3!

9 I O | PR S oY
WO o )]

Theorem 2. Let a,0>0, and let A: [a%,b°] — R be a
differentiable function on (a®,b?), with 0<a <b such that
A € L, ([a%b°)]). If |A'|? is higher-order n-polynomial convex
function of order 6> 0, where r™' +q ' =1 and q> 1, then

7o)l
)|

G+ 1)°(s—i)+iH!

1
q+zz

s=1

1/q
b2l o _ o|°
(1+1)$(1+s) ' )| (0+1)(0+2)"b a " >

LG @+1) (s=i)+
(ZS_ZI Griyas MG <

Proof. Using Lemma 1, Holder’s inequality and because
|A7]? is a higher-order n-polynomial convex function of
order 0> 0, we have

1

g 1w (@+1)P(1+s)-1
N2 G+1P(1+s) |

(i+1)* 1T (e + 1)
(be — a®)*

o[
| oli+2 i+l

_o(b®—a®)
TP+l

(L5 + L]

Note that

ia® + be
7(”1)(”2)[ (a9)+A(b9)+(z+1)( < . )+A(
0o A<i09+b9>+91a A(a9+ib9)]l
a i+1 b i+1

i+1t° 1-1
Al ——a®+—p° ||dt +
i+1 i+1

1/q
2/1 o
IAT (RO “F e _ e
KON o) |
(16)
a® + ib®
i+1
(17)
1 ap 1—¢° i+ 1°
j .——,t—t@“A’(,—ta@ +’,+—tb@) dt]
oli+2 i+1 i+1 i+1




I pe i+ 10 1—te
I3=j- D — e IAI _7619*"717@ dt
oli+2 i+1 i+1 i+1

1 1 i+x
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0 oli+2 i+1 i+1 z+1

IN

’w)“’(ﬁ
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i+2 1+1

[0k
gl

1/q
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where [1/i +2 — x*/i+ 1| <1/i + 2 for all x € [0, 1]. Using I,
and I, in (17), we get the required result. O
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Theorem 3. Let a,0>0, and let A: [a%,b°] — R be a
differentiable function on (a®,b®), with 0<a<b such that
A €L, ([a%b0)]). If |A1|? is a higher-order n-polynomial
convex function of order o >0 where q > 1, then
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Proof. Using Lemma 1, Power mean inequality, and because
[A7]7 is a higher-order n-polynomial convex function of
order ¢ >0, we have
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where we have used the fact that [1/i +2 - x%/i + 1| <1/i+2
for all x € [0, 1]. Using I and I, in (21), we get the required
result.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors contributed equally to the writing of this paper.
All authors read and approved the final manuscript.
Acknowledgments

This work was supported by the Natural Science Foundation
of China (Grant nos. 61673169, 11701176, 11626101, and
11601485).

References

[1] S. Hussain, J. Khalid, and Y. Ming Chu, “Some generalized
fractional integral Simpson’s type inequalities with applica-
tions,” AIMS Mathematics, vol. 5, no. 6, pp. 5859-5883, 2020.

[ (RC

D r e S0 e

i+1 =

G+1)°(1+s) -
(i+1)°(1+s) '

A q
n(1+2) Z (bg)l

(23)

[2] M. Adil Khan, J. Pecari¢, and Y.-M. Chu, “Refinements of
Jensen’s and McShane’s inequalities with applications,” AIMS
Mathematics, vol. 5, no. 5, pp. 4931-4945, 2020.

[3] P. Agarwal, M. Kadakal, I. Iscan, and Y.-M. Chu, “Better

approaches for n-times differentiable convex functions,”

Mathematics, vol. 8, Article ID 950, 11 pages, 2020.

M. U. Awan, N. Akhtar, A. Kashuri, M. A. Noor, and

Y.-M. Chu, “2D approximately reciprocal p—convex func-

tions and associated integral inequalities,” AIMS Mathe-

matics, vol. 5, no. 5, pp. 4662-4680, 2020.

S. S. Dragomir, R. P. Agarwal, and P. Cerone, “On Simpson’s

inequality and applications,” Journal of Inequalities and

Applications, vol. 5, no. 6, pp. 533-579, 2000.

M. U. Awan, S. Talib, Y.-M. Chu, M. A. Noor, and K. I. Noor,

“Some new refinements of Hermite-Hadamard-type in-

(4]

(5]

(6]

equalities involving ;. -Riemann-Liouville fractional integrals
and applications,” Mathematical Problems in Engineering,
vol. 2020, Article ID 3051920, 10 pages, 2020.

A. Igbal, M. Adil Khan, S. Ullah, and Y.-M. Chu, “Some new
Hermite-Hadamard-type inequalities associated with conform-
able fractional integrals and their applications,” Journal of
Function Spaces, vol. 2020, Article ID 9845407, 18 pages, 2020.
Y. Khurshid, M. Adil Khan, M. Adil Khan, and Y.-M. Chu,
“Conformable fractional integral inequalities for GG- and
GA-convex functions,” AIMS Mathematics, vol. 5, no. 5,
pp. 5012-5030, 2020.

S. Rafeeq, H. Kalsoom, S. Hussain, S. Rashid, and Y.-M. Chu,
“Delay dynamic double integral inequalities on time scales
with applications,” Advances in Difference Equations,
vol. 2020, Article ID 40, 32 pages, 2020.

(7]

[8

[9



Journal of Mathematics

[10] S.Rashid, 1. Iscan, D. Baleanu, and Y.-M. Chu, “Generation of

new fractional inequalities via n polynomials s-type con-

vexixity with applications,” Advances in Difference Equations,

vol. 2020, Article ID 264, 20 pages, 2020.

S. Rashid, F. Jarad, and Y.-M. Chu, “A note on reverse

Minkowski inequality via generalized proportional fractional

integral operator with respect to another function,” Mathe-

matical Problems in Engineering, vol. 2020, Article ID

7630260, 12 pages, 2020.

[12] S. Rashid, F. Jarad, H. Kalsoom, and Y.-M. Chu, “On Pélya-
Szego and Cebysev type inequalities via generalized k-frac-
tional integrals,” Advances in Difference Equations, vol. 2020,
Article ID 125, 18 pages, 2020.

[13] S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, and Y.-M. Chu,

“Inequalities by means of generalized proportional fractional

integral operators with respect to another function,” Math-

ematics, vol. 7, no. 12, 18 pages, Article ID 1225, 2019.

S.-S. Zhou, S. Rashid, F. Jarad, H. Kalsoom, and Y.-M. Chu,

“New estimates considering the generalized proportional

Hadamard fractional integral operators,” Advances in Dif-

ference Equations, vol. 2020, Article ID 275, 15 pages, 2020.

[15] S. Rashid, Z. Hammouch, F. Jarad, and Y.-M. Chu, “New

estimates of integral inequalities via generalized proportional

fractional integral operator with respect to another function,”

Fractals, vol. 28, no. 8, Article ID 2040027, 12 pages, 2020.

S. Rashid, Z. Hammouch, D. Baleanu, and Y.-M. Chu, “New

generalizations in the sense of the weighted non-singular

fractional integral operator,” Fractals, vol. 28, no. 7, Article ID

2040003, 11 pages, 2020.

[17] T. Abdeljawad, S. Rashid, H. Khan, and Y.-M. Chu, “On new
fractional integral inequalities for p-convexity within interval-
valued functions,” Advances in Difference Equations,
vol. 2020, Article ID 330, 17 pages, 2020.

[18] L. Xu, Y.-M. Chu, S. Rashid, A. A. El-Deeb, and K. S. Nisar,
“On new unified bounds for a family of functions with
fractional g-calculus theory,” Journal of Function Spaces,
vol. 2020, Article ID 4984612, 9 pages, 2020.

[19] S. Rashid, A. Khalid, G. Rahman, K. S. Nisar, and Y.-M. Chu,
“On new modifications governed by quantum Hahn’s integral
operator pertaining to fractional calculus,” Journal of Func-
tion Spaces, vol. 2020, Article ID 8262860, 12 pages, 2020.

[20] J.-M. Shen, S. Rashid, M. A. Noor, R. Ashraf, and Y.-M. Chu,
“Certain novel estimates within fractional calculus theory on
time scales,” AIMS Mathematics, vol. 5, no. 6, pp. 6073-6086,
2020.

[21] U. N. Katugampola, “New approach to a generalized frac-
tional integral,” Applied Mathematics and Computation,
vol. 218, no. 3, pp. 860-865, 2011.

[22] M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, “Hermite-
Hadamard’s inequalities for fractional integrals and related
fractional inequalities,” Mathematical and Computer Model-
ling, vol. 57, no. 9-10, pp. 2403-2407, 2013.

[23] G. Hu, H. Lei, and T. S. Du, “Some parameterized integral
inequalities for p-convex mappings via the right Katugampola
fractional integrals,” AIMS Mathematics, vol. 5, no. 2,
pp. 1425-1445, 2020.

[24] J. Nie, J. Liu, J. F. Zhang, and T. S. Du, “Estimation-type
results on the k-fractional Simpson-type integral inequalities
and applications,” Journal of Taibah University for Science,
vol. 13, no. 1, pp. 932-940, 2019.

[25] C. Peng, C. Zhou, and T. S. Du, “Riemann-Liouville
fractional Simpson’s inequalities through generalized
“(m, hy, h,)-preinvexity,” Italian Journal of Pure and Ap-
plied Mathematics, vol. 38, pp. 345-367, 2017.

(11

(14

(16

[26] E. Set, “New inequalities of Ostrowski type for mappings
whose derivatives are s-convex in the second sense via
fractional integrals,” Computers ¢» Mathematics with Appli-
cations, vol. 63, no. 7, pp. 1147-1154, 2012.

[27] S.-H. Wu, M. U. Awan, M. V. Mihai, M. A. Noor, and S. Talib,
“Estimates of upper bound for a kth order differentiable
functions involving Riemann-Liouville integrals via higher
order strongly h-preinvex functions,” Journal of Inequalities
and Applications, vol. 2019, Article ID 227, 20 pages, 2019.

[28] S. Kermausuor, “Simpson’s type inequalities via the Katu-
gampola fractional integrals for s-convex functions,” Kra-
gujevac Journal of Mathematics, vol. 45, no. 5, pp. 709-720,
2021.

[29] T. Toplu, M. Kadakal, and I. Iscan, “On n-polynomial con-
vexity and some related inequalities,” AIMS Mathematics,
vol. 5, no. 2, pp. 1304-1318, 2020.

[30] M. Adil Khan, A. Igbal, M. Suleman, and Y.-M. Chu,
“Hermite-Hadamard type inequalities for fractional integrals
via Green’s function,” Journal of Inequalities and Applications,
vol. 2018, Article ID 161, 15 pages, 2018.

[31] M. Adil Khan, N. Mohammad, E. R. Nwaeze, and Y.-M. Chu,
“Quantum Hermite-Hadamard inequality by means of a
Green function,” Advances in Difference Equations, vol. 2020,
Article ID 99, 20 pages, 2020.

[32] M. U. Awan, N. Akhtar, S. Iftikhar, M. A. Noor, and
Y.-M. Chu, “New Hermite-Hadamard type inequalities for
n-polynomial harmonically convex functions,” Journal of
Inequalities and Applications, vol. 2020, Article ID 125,
12 pages, 2020.

[33] Y. Khurshid, M. Adil Khan, and Y.-M. Chu, “Conformable
integral version of Hermite-Hadamard-Fejér inequalities via
n-convex functions,” AIMS Mathematics, vol. 5, no. 5,
pp. 5106-5120, 2020.

[34] M. A. Latif, S. Rashid, S. S. Dragomir, and Y.-M. Chu,
“Hermite-Hadamard type inequalities for co-ordinated con-
vex and qausi-convex functions and their applications,”
Journal of Inequalities and Applications, vol. 2019, Article ID
317, 33 pages, 2019.

[35] S. Rashid, M. A. Noor, K. L. Noor, F. Safdar, and Y.-M. Chu,
“Hermite-Hadamrad type inequalities for the class of convex
functions on time scale,” Mathematics, vol. 7, no. 10, Article
ID 956, 20 pages, 2019.

[36] H.-X. Qi, M. Yussouf, S. Mehmood, Y.-M. Chu, and G. Farid,
“Fractional integral versions of Hermite-Hadamard type in-
equality for generalized exponentially convexity,” AIMS
Mathematics, vol. 5, no. 6, pp. 630-6042, 2020.

[37] G. H. Lin and M. Fukushima, “Some exact penalty results for
nonlinear programs and mathematical programs with equi-
librium constraints,” The Journal of Optimization Theory and
Applications, vol. 118, no. 1, pp. 67-80, 2003.

[38] B. T. Poljak, “Existence theorems and convergence of mini-
mizing sequences for extremal problems with constraints,”
Doklady Akademii Nauk SSSR, vol. 166, pp. 287-290, 1966.

[39] 1. Abbas Baloch and Y.-M. Chu, “Petrovi¢-type inequalities
for harmonic h-convex functions,” Journal of Function Spaces,
vol. 2020, Article ID 3075390, 7 pages, 2020.

[40] M. Adil Khan, M. Hanif, Z. A. Khan, K. Ahmad, and
Y.-M. Chu, “Association of Jensen’s inequality for s-convex
function with Csiszar divergence,” Journal of Inequalities and
Applications, vol. 2019, Article ID 162, 14 pages, 2019.

[41] S. Rashid, R. Ashraf, M. A. Noor, K. I. Noor, and Y.-M. Chu,
“New weighted generalizations for differentiable exponen-
tially convex mapping with application,” AIMS Mathematics,
vol. 5, no. 4, pp. 3525-3546, 2020.



10

[42] M.-K. Wang, H.-H. Chu, Y.-M. Li, and Y.-M. Chu, “Answers
to three conjectures on convexity of three functions involving
complete elliptic integrals of the first kind,” Applicable

Analysis and Discrete Mathematics, vol. 14, pp. 255-271, 2020.

S. Zaheer Ullah, M. Adil Khan, and Y.-M. Chu, “A note on

generalized convex functions,” Journal of Inequalities and

Applications, vol. 2019, Article ID 291, 10 pages, 2019.

[44] T.-H. Zhao, L. Shi, and Y.-M. Chu, “Convexity and concavity
of the modified Bessel functions of the first kind with respect
to Holder means,” Revista de la Real Academia de Ciencias
Exactas, Fisicas y Naturales. Serie A. Matematicas, vol. 114,
no. 2, 14 pages, Article ID 96, 2020.

[45] H. Kalsoom, M. Idrees, D. Baleanu, and Y.-M. Chu, “New
estimates of g,q,-Ostrowski-type inequalities with a class of
n-polynomial prevexity of function,” Journal of Function
Spaces, vol. 2020, Article ID 3720798, 13 pages, 2020.

(43

Journal of Mathematics



Hindawi

Journal of Mathematics

Volume 2020, Article ID 5471715, 9 pages
https://doi.org/10.1155/2020/5471715

Research Article

Hindawi

Composition Formulae for the k-Fractional Calculus Operators
Associated with k-Wright Function

D. L. Suthar

Department of Mathematics, Wollo University, P.O. Box 1145, Dessie, Ethiopia

Correspondence should be addressed to D. L. Suthar; dlsuthar@gmail.com

Received 18 April 2020; Revised 29 May 2020; Accepted 1 June 2020; Published 21 July 2020

Academic Editor: Martin Bohner

Copyright © 2020 D. L. Suthar. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this article, the k-fractional-order integral and derivative operators including the k-hypergeometric function in the kernel are
used for the k-Wright function; the results are presented for the k-Wright function. Also, some of special cases related to fractional

calculus operators and k-Wright function are considered.

1. Introduction and Preliminaries

Fractional calculus was introduced in 1695, but in the last
two decades researchers have been able to use it properly on
the account of availability of computational resources. In
many areas of application of fractional calculus, the re-
searchers found significant applications in science and en-
gineering. In the literature, many applications of fractional
calculus are available in astrophysics, biosignal processing,
fluid dynamics, nonlinear control theory, stochastic dy-
namical system, and so on. Also, a number of researchers

applications, and various directions of extensions of Gauss
hypergeometric function of fractional integration.
Recently, in a series of research publications on gener-
alized classical fractional calculus operators, research by
Mubeen and Habibullah [11] has been published on the
integral part of the Riemann-Liouville version and its ap-
plications; an alternative definition for the k-Rie-
mann-Liouville fractional derivative was introduced by
Dorrego [12]. The left- and right-hand operators of Saigo
k-fractional integration and differentiation associated with
the k-Gauss hypergeometric function defined by Gupta and

[1-10] have studied in-depth level of properties, Parihar [13] (see also [14]) are as follows:

vl A (t/k)-1 . N . 1
(2N =" JO (x—1) 21~*Lk<(r+5,k), (=9, ); (r,k),(l —;))f(t)dt, R (1)>0,k>0, (1)
(Iii)’f) (x) = krl(T) J' (t_x)(r/k)flt(fr—ﬁ)/kzFl)k<(T+8,k), (=y, k); (1, k); <1 —%))f(t)dt; R(1r)>0,k>0, (2)

k X

where ,F,, ((7,k), (8,k); (y,k); x) is the k-Gauss hyper-
geometric function defined by [11] for x e C,|x|<]1,
R(y)>R()>0:

& ()4 (8"
Fr (1K), (8,K); (y,k); x) = Z,W

(3)
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The corresponding fractional differential operators have
their respective forms as

Journal of Mathematics

7> d —T+1, n,T+y-n
onf (x) = <a) 04k oy f)(x); R(1)>0,k>0; n=[R(1)+1]
5 (T+8)/K) (4)
o d o x ~(t/k)+n—
oflzf (x) = (a) KT, (= T+n) (x—t) (7k) IXZFl,k((—T—(S,k), (=y—T1+nk); (—T+n,k);<1——>>f(t)dt
( T:Syf (x) ( %) —T+rl 6"T+yf)(x), m(_[)>0 k>0 nz[m(‘[)+1]
(DI ) (x) = 4y OO(t—x)*“*”’”‘“t(”a)’kx F ((—T-a o), (- —Tk)'(—T+nk)'<1_f>)f (t)dt
dx ) kT (=T +n) T+1’l) 27 Lk ) Y TR »K); ; ,
(5

wherex>0,7 € C, R (1) >0,k>0,and [R (7)] is the integer
part of R (7).

Remark 1. If we set k = 1 in equations (1), (2), (4), and (5),
operators reduce to Saigo’s fractional integral and derivative
operators stated in [5], respectively.

Now, we consider the following basic results for our
study.

Lemma 1 (see [13], pp. 497, Eq. 4.2). Let 1,6,9,
(e C,R(()>max[0,R (5 - p)]; then,

[0 @1y oy - N Le(OL(E= 0+ )
Lokt ™) G = Z T (- +r+y)

n=0

(€=8)/l-1

(6)

Lemma 2 (see [13], pp. 497, Eq. 4.3). Let 1,6,9,
(eC,R(1)>0, ke R"(0,00), and R ({)>max[R (-9),
R (—y)]; then,

(Iz,fli,yt—((/k)) (x) = i & [+ (C+y)

x(—(—t?)/k.
= T O ((+7+8+7y)

(7)

Lemma 3 (see [13], pp. 500, Eq. 6.2). Let 7,8,y,{ € C, n =
RO]+1, ke R (0,00) such  that R () >max[0
R(-1-8-7)]; then,

(D27t (x) = i K'

n=0

LOL ((+8+y+71)
[ (C+ P (C+ 8+ n—nk)

(8)

Lemma 4 (see [13], pp. 500, Eq. 6.3). Let 1,9,,{ € C, and
n=[R@O]+1, keR", andR () >max[R (-7 -y), R (5-
nk + n)); then,

x ((C+6+n)/k)—n— 1.

Zk L (€= 5 n+nk) ((+1+y) L (CExdemi-n

7.8,y ,—((1k)
(DEI) O C=0+7)

(9)

Recently, Gehlot and Prajapati [15] studied the concept
of the generalized k-Wright function, which is presented in
the following definition, and its connection with other
special functions. It is the generalization of Mittag-Leffler
function and many other special functions (see also,
[16-21]). These special functions have found many impor-
tant applications in solving problems of physics, biology,
engineering, and applied sciences.

The  k-Wright  function is  defined  for
keR"x,a,b; €C,
€6 € IR(si,cj:#O;i =1,2,...,p;j=12,...,9), and (a; +
&n), (bj + c]-n) e C\kz™ as
. k_(al,el),...,(ap,ep);
P\I’ (x)= ¥ X
q Pq
| (b1,61)>- - s (bq, gq);
-k (@ 51’)1,;;5 | = i [12, T, (a; +&n)
e _(bj, cj)l,q; =10 rk(bj + Cj”) (x)"/nl,
(10)
with the convergence conditions described as
c.
Y- SR (11)
-k Sk
j=1 i=

Remark 2. When we put k=1 in (10), the k-Wright
function reduces to Wright function which is stated in [22].

The following relation of the k-Wright function in terms
of the generalized k-Mittag-Leffler function, k-Bessel
function, k-hypergeometric function, and Mittag-Leffler
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family function is defined as follows by giving the appro-
priate values of the parameters:

(1) For p=1,9=2, the generalized k-Mittag-Leffler
function from Gehlot [17] is

(9, wk);
1\1112< (x) = 1\1115 xl
(), (9,0);

- iM s »
n=0 1—‘k (8}’1 + C) n! k&6 >

(12)

Here, Diaz and Pariguan [23] introduced the
k-Pochhammer symbol and k-gamma function as
follows:

T, (S +nk)
@, =1 @
S(S+k)...(S+(n-1k), neN, JeC,

(13)

and the relation with classical Euler’s gamma function
is as follows:

n(5)=k“WT<§), (14)

where S € C, k € R, and n € N. For more infor-
mation on the k-Pochhammer symbol, k-special
functions, and fractional Fourier transforms, refer to
Romero and Cerutti’s [24] articles.

(2) For p=1,9=2, the generalized k-Mittag-Leffler
function from Dorrego and Cerutti [16] is

(9, k);
d
(6,8, (9,0);

|5 (x) =

(15)
ZOZO: D X" 9

pu—— E )
ST (ento)nl ke (x)

(3) For p =1,g9 =3, the k-Bessel function of the first
kind from Cerutti [25] is

(9,k); B
1\111;(’{) = 1\1113< ik
(c+1,e), (9,0) (k. k); 2
(16)

_ = (_l)n (S)n,k (x/z)n _ e
_Zr 2 _]k)c(x)'
= cen+c+1) (n)
(4) For p = 3,q = 3, the k-hypergeometric function with
three parameters from Mubeen et al. [26] is

, keR, S e C/{o};

(9, k), (¢, k), (5, 0); ]
X

3\11]3( (x) = 3‘P§|:
(6, k), (9,0) (¢, 0);

9
Z ( )’Eg(“;);," = 2 F 1 ((9.5), (9,505 (. K); ).

(17)

(5) Fork =1, p = 1,q = 2, the generalized Mittag-Leffler
function from Shukla and Prajapati [20] is

(9, w);
1\P; (x) = 1\P; xl
(6, €), (9,0); (18)
N 9,w
Z’ (sn + c) n' = B ()

(6) Fork =1, p = 1,q = 2, the generalized Mittag-Leffler
function from Prabhakar [19] is

(9, 1);
!
(6, ), (9,0);

_ <o ), « s
_;ﬂET5J-QAn

1\P;(x) = 1\P;

(19)

(7) For k=1,p=1,andg=2, the Mittag-Leftler
function from Wiman [21] is

(1,1);] ©
ol e

¥l (x) =¥ =) —— —
ot ! (¢ ¢); =T (en+g) n!

= E, (x).

(20)

(8) For k=1,p=1,andgq=2, the Mittag-Leffler
function from Mittag-Leftler [18] is

(1’1); } (5] 1 X"
x| =

v!(x)= ¥ =y — =
) =%, (1, ¢): —~T(en+1) nl

=E,(x).

(21)

2. Saigo k-Fractional Integration in terms of
k-Wright Function

In this section, we present the composition formulas of
k-fractional integrals (1) and (2), involving the k-Wright
function.

Theorem 1. Let 7,8,y,€ Cik € R", ¢, ¢,6; € R(g;, ¢;#
0;i=12,....,p; j=1,2,...,9), and v>0 such that R (1) >
0, R({)>max[0,R(5-v)], andER(C+y 8)>0. If con-
dition (11) is satisfied and I} be the left-sided integral
operator of the generalized k- fmctzonal integration associated
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with k-Wright function, then the following equation holds

true:
i €)1
1151/ t((/k) 1 ‘*I’k ( ! )l,p Ctv/k (x)
(bJ’cJ)lq
(22)
_ o gk [ (ar,€),... ( ) (Gv), (C+y-4,v); .
- +2 * gt .
P b6 ) s (B Gy)s (C= 8,0), (C+ Ty,
Proof. We indicate the R.H.S. of equation (22) by I, and Now applying equation (6), we get

invoking equation (10), we obtain

I _115}'<t (Crk)-1 H: lrk(a +81’l) (Ct(wk) )(x)

" S ITaTk(b+gn) !

I Cl 8 n C T(; +vn
2 Hz 1 k(( ] )) '[ V(t(( )/k) (x)

I = 1§ [T, i (a; + em)Ti (C + v (C+y = 8 +vm)
1 = (kcxv/k)” (24)
HFI Fk(bj + cjn)l“k(( -0+ ((+T+y+wn) —

Now, interpreting definition (10) on the aforementioned and R (( + 1) > max[-R (5), -R (y)], with R () #R (y). If
equation, we arrive at the desired result (22). O condition (11) is satisfied and 1" y be the right-sided integral
operator of the generalized k- fractzonal integration associated

Theorem 2. Let 7,8,y,€ C; k € R", ¢,¢,6; € R(g;,6;#0;  with k-Wright function, then the following equation holds
i=12,...,p;j=12,...,9), and v>0 such that R(1)>0  true:

<115y{t( =)k v l(az’s)lp’ Ct(_v/k)}}>(x)
Pl (),
(25)

Lk gk [ (al,sl),...,(a ,€ )(T+{+8,v), (t+(+yp,v); "
P27 g2 ’

(b1,61)s- s (q,cq) (T+6v), QT+ {+ 8 +y,v);

Proof. The finding is similar to that of Theorem 1. So, we Corollary 1. By assuming k = 1 in (22) and (25), the result
omit the details. O becomes

(ai>5i)1,p§
120t g ct’ (x)
0+ P g (b C') .

AR VAW L

-o-1 l (an,€1)- -5 (ape,), (), ((+y=8,v);
P27 g2 (b1561)s-- -5 (q,cq) ((—=08,v), ((+T+7p,v);

(26)

v
cxX |,
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and

;€)1 s

(IT’53V<|t‘T‘( ” I:( )lp
- P

! (bj’cj)l,q;

(b

3. Saigo k-Fractional Differentiation in terms of
k-Wright Function

In this section, we present the composition formulas of
k-fractional derivatives (4) and (5), involving the k-Wright

function.
as &)
pror ] @o-1 i (@)1,
0+,k P g b
( j’qj)l,q

o l (ap€)s-- -5 (ap
(

_ x(({+6)/k)71
N P27 g2
b1,61)s- - -

Proof. For simplicity, let I, denote the left side of (28). Using
definition (10), we obtain

I (
= Lo e P
J J

-

S { (al’el)""’(“p
=x 2t
( q,cq) (t+ (), QT+ {+ 5+ y,v);

(27)

£,) (T+{+8,v), (1+{+y,v);

cxX

Theorem 3. Let 7,8,y € C; k € R, c,¢;,6; € R(g;,6;#0;
i=1,2,...,p;j=12,...,9), and v>0 such that R (1) >0,
R () >max[0,R (-7 -5 -y), R({+y+8)>0. If condi-
tion (11) is satisfied and Dofk be the left-sided differential
operator of the generalized k-fractional differentiation asso-
ciated with k-Wright function, then the following equation
holds true:

-

5 (@roh)- 12 T12, T (a; + en)T (¢ + v T ((+ 8 +y + T+ vn)
H] 1rk(b +qn )Fk((+y+vn)Fk((+8+n nk + vn)n!

In accordance with (10), the required result is (28). This
completes the proof of Theorem 3. O

Theorem 4. Let 7,6,y,€ C; k € RY, c,¢;,6; € R(g;,6;#0;
i=1,2,...,p;j=12,...,9), and v>0 such that R (1) >0,
(a: 5i)1,p§

(DT‘SY t(T ()/kp\I,
10 (bj5),

_ (=040l k (@) (a
=X P*Z\Pq+2
(brci)...

(28)
&) (), ((+8+y+1,v); (e |
(b6 )s (C+1,), ((+ 8,1k +);
Now, applying equation (8), we obtain
(29)
(Cx((v+1)/k)—1)". (30)

R()>max[R(T+0)+n-R), R(r+5—y) +n#0,
where n = [R (1) + 1]. If condition (11) is satisfied and DT v
be the right-sided differential operator of the genemlzzed
k-fractional differentiation associated with k-Wright func-
tion, then thefollowing equation holds true:

ct" V/k)] ]» ) (x)

s),({—r
(b 6g)s (C=1,7), (=T =8+, v);

(31)

-8, v+k—1), ({+7y,v); xR |
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Proof. The proof is parallel to that of Theorem 3. Therefore, = Corollary 2. By letting k = 1 in (28) and (31), the equation
we omit the details. O becomes

(@ &)1, p3

.0, - k R S

<DS+Y{# 1P\1/q (b- c») ct (x)
1’1719

(32)
N ET A k (al’sl)"">(ap)ep)> ((>V): ((+8+Y+T)V); v
=X P+2‘I’q+2 cx
(B1,61)s -5 (g Gg)> (C+9,v), (C+8,v);
(ai> &)1 i
DO Lk P (x)
PR (b55),
’ (33)
bk [ (al,sl),...,(ap,sp), ((=1-8v), ((+y,v); _V]
=x cx .
b2 a2 (bl) C])’ s (bq’ Cq)) (( ) V)) (( - T- 6 + % V)7
4. Special Cases and Concluding Remarks (152t O ERe [er™ ]} ()
Being very general, the results given in (22), (25), (28), and (9, k), (,v), ({ +y - 8,v);
(31) can yield a wide number of special cases by assigning = x (BT gk kex"* |,
some appropriate values to the parameters involved. Now, as (¢ 8), (9,0), (( = &), ((+T+7y,v);
shown in the following, we are explaining a few corollaries. (34)
Corollary 3. If we put p = 1 and q = 2 in Theorems 1 and 2, ~ and
then we get the following interesting results on the right known
as k-Mittag-Leffler function:
(3O ]} o
_ ook gk O, wk), (t+{+8,v), (t++7y,v); rex 0| (35)
N N CONC)NCET SONCIER ST ROk
Corollary 4. If we put p = 1 and q = 3 in Theorems 1 and 2,
then we get the following interesting results on the right known
as k-Bessel function of the first kind:
(G2 e o
_ . 36
= (@001 K (9,4, (G, v), (C+y = 0,v); —ckzxv”‘:| (36)
= 3185 J
(¢+1,8), (9,0), ((=8,v), ((+T1+7p,v), (k k) 2
and
(T4 ) o
_ Tk gk (950, (T4 C+0,w), (74 (o v); —ckzx("/k>:| (37)
= 3%s - |
(c+ L) (9,0, (r+ L), @ra{+8+p.m, (kb 2
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Corollary 5. If we put p = 3 and q = 3 in Theorems 1 and 2,
then we get the following results on the right known as
k-hypergeomrtric function:

(L5t F (90K, (9.K); (6 k) et™)}) (%)
(9,k), (9,k), (6,0), ({,v), ((+y—6,v); kcxv/k] G

— x(((—&)/k)—l \I,k|:
(C) k)a ((P’ O)’ (‘9) O)s (( - 8’ V)s (‘: +7+ Vs V);

(It %, (9,0, (9. K); (6 R); et ™)) (x)
(- 1— - 8)lk \I’ (9,k), (¢,k), (,0), (t+{+6,v), (T+(+y,v) (_V,k)] (39)
(¢, k), (¢,0), (9,0), (t+ ¢, v), QT+ + 8+, v); '

Corollary 6. If we put p =1 and q = 2 in Theorems 3 and 4,
then we get the following results on the right known as
k-Mittag-Leffler function:

(Do e B [er™ ]} )
(8- 1 ‘I’k[ (9, wk), ({,v), ((+8+y+T1,v); G 1 (40)
(¢.€), (9,0), ((+y,v), ((+8,1-k+v);

(DT B [T G0
= (T Ok \Pk[ (9, wk), ((=7=8,v+k=1), ((+y,v); Cx((—v+1)/k)—1- (41)
(Cse): (‘9)0)3 ((_T3V)> (C_T_8+Y’V); .

Corollary 7. If we put p = 1 and q = 3 in Theorems 3 and 4,
then we get the following results on the right known as k-Bessel
function of the first kind:

(52 e e o

. 42
= (@0R-1 gk (9 k), (&), [+ +y +1,0); —clexc ((v17k)- 1] (42)
= 3 5 bl

): 2

(c+ 1,8, (9,0), ((+p,v), ((+8,1-k+v), (kk

(Dr4 e o
(- L40)/k gk (9, k), ((—1=8,v+k-1), ({+y,v); —ckx (D=1 (43)
(C+ 175)) (930)> ((_771’)7 ((—T—‘SJF%V)’ (k7k)7 2 .



Corollary 8. If we put p = 3 and q = 3 in Theorems 3 and 4,
then we get the following results on the right known as
k-hypergeomrtric function:

(D(T),&Z‘{t((/k)f
+

(0701 \I,k[

(Dt

The advantage of the generalized k-fractional calculus
operators, which are also called by many authors as the
general operator, is that they generalize Saigo’s fractional
calculus operators and classical Riemann-Liouville (R-L)
operators. For k — 1, operators (1), (2), (4), and (5) reduce
to Saigo’s [5] fractional integral and differentiation opera-
tors. If we take &6 = -7, (1), (2), (4), and (5) reduce the
operators to k-Riemann-Liouville as follows:

(Toni" ) () = (Iguaf ) (),
(I F) (0 = (I f ) (), )
(DL F) () = (D f) (),
(D7 f) (%) = (DI f) (%)

Due to the most general character of the k-Wright
function, numerous other interesting special cases from (22),
(25), (28), and (31) can be given in the form of k-Struve
function, k-Wright-type function, and many more, but due
to lack of space, they are not represented here.
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In this paper, we study a coupled system involving Hilfer fractional derivatives with nonlocal integral boundary conditions.
Existence and uniqueness results are obtained by applying Leray-Schauder alternative, Krasnoselskii’s fixed point theorem, and
Banach’s contraction mapping principle. Examples illustrating our results are also presented.

1. Introduction

The theory of fractional differential equations has been
widely used in pure mathematics and applications in the
fields of physics, biology, and engineering. There are many
interesting results for qualitative analysis and applications.
We refer the interested reader, in fractional calculus, to the
classical reference texts such as [1-7]. In the literature, there
exist several different definitions of fractional integrals and
derivatives, and the most popular of them are Rie-
mann-Liouville, Caputo, and other less-known such as
Hadamard fractional derivative and the Erdeyl-Kober
fractional derivative. A generalization of derivatives of both
Riemann-Liouville and Caputo was given by Hilfer in [8] as

Hp®by () = PP~ pr-Pimay, ), (1)

where n—1<a<n, 0<f<1,t>a>0, and D" = (d"/dt").
He named it as generalized fractional derivative of order

a and a type 8. Many authors call it the Hilfer fractional

derivative. We notice that when f§ = 0, the Hilfer fractional

derivative corresponds to the Riemann-Liouville fractional
derivative:

Hp®0y(#) = D"I™ *u(t). (2)

When f = 1, the Hilfer fractional derivative corresponds
to the Caputo fractional derivative:

Hp®lu(t) = I “D"u(t). (3)

Such derivative interpolates between the Rie-
mann-Liouville and Caputo derivative. Some properties and
applications of the Hilfer derivative are given in [9, 10] and
the references cited therein.

Initial value problems involving Hilfer fractional de-
rivatives were studied by several authors, see, for example
[11-16] and references therein. Nonlocal boundary value
problems for Hilfer fractional derivative were studied in
[17].

To the best of our knowledge, there is no work carried
out on systems of boundary value problems with Hilfer
fractional derivative in the literature. This paper come to fill
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this gap. Thus, the objective of the present work is to in-
troduce a new class of coupled systems of Hilfer-type
fractional differential equations with nonlocal integral
boundary conditions and develop the existence and
uniqueness of solutions. In precise terms, we consider the
following coupled system:

[ AD*Bx(t) = f(t,x(t), y(t)), t€ [ab],
Hpabiy(t) = g(t, x(t), y(t)), te [ab],
1 x(a)=0,x(b) =Y 6,17y (&), (4)
i=1
y(a)=0,y(b) = Y {;I%ix(z;),
. =

where D% and # D*P1 are the Hilfer fractional derivatives
of orders « and «;, 1 <a, &; <2, and parameters 8 and f3;,
respectively, 0<f,B8,<1, and I?, IYi are the Rie-
mann-Liouville fractional integrals of order ¢,>0 and

¥;>0, respectively, the points &, z;€[a,b], a>0,
f,g: [a,b] x R x R — R are continuous functions and 6,,
(jeR, i=12,...,m, j=12,...,n are given real
constants.

The paper is organized as follows. We present our main
results in Section 3, by applying Leray-Schauder alternative,
Krasnoselskii’s fixed point theorem, and Banach’s con-
traction mapping principle, while Section 2 contains some
preliminary concepts related to our problem. Examples are
constructed to illustrate the main results.

2. Preliminaries

In this section, we introduce some notations and definitions
of fractional calculus and present preliminary results needed
in our proofs later [2, 5].

Definition 1. The Riemann-Liouville fractional integral of
order a>0 of a continuous function u: [a,00) — R is
defined by

Fu) = oo )J (t— 9% u(s)ds, (5)

provided the right-hand side exists on (a, o).

Definition 2. 'The Riemann-Liouville fractional derivative of
order a >0 of a continuous function is defined by

1 d e n-a-1
71“(11 3 <a> L (t-s) u(s)ds,

(6)

RED®y () == DT “u(t) =
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where n = [a] +1, [a] denotes the integer part of real
number «, provided the right-hand side is pointwise defined
on (a,0).

Definition 3. The Caputo fractional derivative of order a >0
of a continuous function is defined by

o _ 1 ! n—a—1 d "
Du(t)—ir(n_a)L(t—s) <£>

-u(s)ds,

Du(t) = 1"

n-1l<a<n,
(7)

provided the right-hand side is pointwise defined on (a, 00).

Lemma 1 (see [18] n-1l<a<n, and

0<p<1, then

(1) I D% g (t) = g(t) S ((t=a) /T (y -k +1))
(d/dty” *10-P-a) g (q)
2) "D 1°g (£) = g (1)

The following lemma deals with a linear variant of
problem (4).

)- If g €C'la,b],

Lemma 2. Let ¢;, ¥;>0, §, z; € [a,b], a>0, 6, {; €R,
i=1,2,...,m j=12...,n l<aa<2 0<Bp <I,
y=a+2-af, y,=a,+2p;, —a,f;, hh € C([a,b],R),

and
_ (b a)Y*Yl Z (&‘ _a)Y1+‘Px
TOC(y) \& " Thh+e)

(-0 X
n z.— i
#0.
(5%%)
Then, the system
[ HD*Bx (t) = h(t), t € [a,b],
HD"‘l’ﬂly(t) =hy(t), telab],
x(a) =0,
1 x(b) =) 6.1%y (&), 9)
i=1
y(a) =
y(b) = z (jI"’/'x(z]-),
j=1

is equivalent to the following integral equations:
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x(t) =I"h(t) +

AT (y)

t-a) ' [B-ay!
T(y;)

)
(Z : Ty +9:) ><_

y(t)=I"h (¢) + AT

(Bt )8

Proof. Operating fractional integral I* on both sides of the
first equation in (9) and using Lemma 1, we obtain

2 —k 2-k
Mﬂ—Z—gl@L—(i> 1P 9% (a) = I (t).

STy -k+1\dt
(12)
Then, we have, since (1-f)(2-a)=2-1,
_(t-a)(d\ o, (t-a)2 .,
x(t) = T}’) it I x ()= +ml X (8)]s=q
+I%h(t)
— (t_a)y_lHDY—lv.B ®)_ + (t_a)y_ZIZ*Y ()|
- r(y) X t=a r(y_ l) X t=a
+I°h(¢).
(13)
Then,
_ Y- 1 CZ _ y-2 o
x(t) = (y)(t a) F(y — 1)(t a)l’  + I%h(t),
(14)
where
Hpyp-1
¢, =D Yx (),
1 . ()= (15)
¢, = I "x(D)l,_y
By a similar way, we obtain
— dl yi—1 d2 _ =2 o
y(t) = en) a) + Ty, - 1)(t a) +1%h, (2).
(16)
By setting
d :HDYFL/; .,
1 )’( )lt—a (17)

dy =17y (1)l

from the boundary conditions x(a) =0 and y(a) =0, we
obtain ¢, = 0 and d, = 0. Then, we obtain

3
i=1
(10)
2 GI k(=) = 1y <b)>}
t— ni-l b- -l . a+y; a
P (g5 o)
j=1
(11)
Z 9i1a1+¢ih1 (fz) — I‘U’l(b))]

x(t) = %}) (t=a)"' + IR (b),

) (18)
ym=rd)u—m”*+ﬂ%dm
1
. SCACRIO RN S
0.1% y (£) = d, 0.1 % h, (&),
;’ Z Ty +9) +;
i G1Yx(z;) = ¢ i M + i {IYih(z;).

j=1 j=1 I‘(y + wj) j=1
(19)
From x(b)=Y7" 6,I%y(§) and y(b)= Z;'Ll (J'I%

x(z;), we have

1 (b—a)yl_l i o +9; o

i=1

+<ie )V|+<P 1><i(j1“+%h(zj) _ Ioclhl (b))],

i l Fy1+go,)

b-a)"' (&, o
dl_A[ T'(y) (Z(I %h( ) I hl(b))

u z;—a [k m
+<Z(;( ) )(Zeilal+¢ih1(£i)—Iah(b)>:|-

j=1 (V + V’J)
(20)

Substituting the values of ¢; and d, in (18), we obtain
solutions (10) and (11). The converse follows by direct
computation. This completes the proof.

3. Main Results

Let € = C([a,b],R), a>0, denote the Banach space of all
continuous functions from [a,b] to R. The space
X = {x: x(t) € C*([a,b],R)} endowed with the norm ||x|| =
sup{l[x(¢)|, te[ab]}] is a Banach space. Let

={y: |y ()| € C*([a,b],R)} with the norm
Iyl = sup{ly (t)l, ¢t € [a,b]}.Itis obvious that the product



Journal of Mathematics

space (X xY,|(x, ¥)Il) is Banach space with the norm H, (%, ) (1)
Ces I = llxll + N1 yll. F (%, ) (t) :(% ( )(t)) (21)
In view of Lemma 2, we define two operators #: X X 25 Y
Y — X xY by where
. 3 (t — a)}’_l (b - a)YI_l S a+e; o
F ) (@)=1"f,, )+ AT { N (Zl 01 g, (&) —1"f,, (b)
< (€ - a)hﬂp ! oc+u/j o

(22)

H, (%, y)(t) =

j=1 Y+I//]

a t_ )yl ( )Yl a+ a
Ig,, )+ AT { e (JZ(I %fxy( ) I gxy(b)>

n _ V“"J
(B S n0-reo)

where

fry () = f(£x(2), y (1)),
gx,y (t) = g(ta x(t)a y(t))>

23
t € [a,b]. (23)

For computational convenience, we set

_(b-a)*
'"T(a+1)

(b_a)y—l |: (b_a)y1+(x—l
IAIT(y) [T (y)L (a+1)

(B (Sl )

(24)
(b-a)'|(b-a)" (Gi-a)™™
M, = |A|I‘(y)|: I(y,) <lzll |F(oc1+(p,+1)
N v (25)
(b a)™ —a)’tr
F((x +1) <Z| | I(y,+¢;) >:|
M- (b_a)y—l (b_a)y—l i|( | DC+V/J
AL | T \ &M (aty, +1)
(26)

(b a) a)}”"//]
“ +1 <Z| ]| )/+l{/ >:|’

_(b-a)" N (b-ay! [ (b—ay+u!
4_l“(oc1+1) [AIT (y;) [T(P)T (e +1)

(et sl

(27)

Banach’s contraction mapping principle is applied in the
first result to prove existence and uniqueness of solutions of
system (4).

Theorem 1. Suppose that f,g: [a,b] x RxR — R are
continuous functions. In addztzon we assume that
(H,) There exist constants €;,n;,i = 1,2, such that, for all
t€la,b] and x;, y; e R,i=1,2,
|f (0, 31) = f (620 yo)| <L |3y = 2] + Lo yy = )
(28)

|g(t,x1,y1) - g(tﬂcz’)’z)l S”1|x1 - x2| + ”2|}V1 - )’2'-
(29)

Then, system (4) has a unique solution on [a, b], if
(M, + M) (€, + &)+ (M, + M,)(n, +n,) < 1. (30)

Proof.  Define  supycjayp f(£,0,0) = N;<co  and
SUPyeap 9 (t:0,0) = N, <00 such that
(M, + M5)N, + (M, + M,)N,
r>

1= [(My + M;) (6, + &) + (M, + My) (ny + )]

(31)
Now, we will show that the set F#B, C B,, where

B, ={(x,y) € XxY: |(x,y)ll<r}. For any (x,y)€B,,
t € [a,b], we find that

Lf (& x(8), y (D) =1 f (&, x(8), y () = f (£,0,0) + f (2,0,0)|
<|f @& x(0), y () = f(£,0,0)[ +]f (£,0,0)|
< lxl + &yl + Ny,

lg (£, x (), y @) <ny x| + |yl + N,.

(32)
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For (x, y) € B,, we have

| (x, ) (1)

<I”

|AIL (y)

IA

(b-mylrb—mhl
L(y1)

(B ) (S

1Y

<ZI9|I“‘“‘”|gxyl )+ I )

9| ®) )}

fxy| +I"‘l

r(

- fo,0| +|f0,0|> (b) +

x <g|0i|1al+¢i(|gx,y ~ G| +|g0,o|> (&) + 1"‘(

(20 W)(ZV

+I"‘1<

Iy~ go,0|> +|dool (b)>]

(b—mrlrb—m%*
IAIT (y)

T'(y;)

- fo,o') +[fool (b)>

aﬂl/](‘fxy foo' +|f00|> )

(33)

<I(eylxll + &1yl + Ny (b) +

(b-ay! [ (b-a”!
IAIT (y)

T'(y;)

X <Z|0i|1al+¢i (mllxll + myllyll + No) (&) + 1% (8 llxll + &1Lyl + Ny (b)>

i=1

(S5 ) (B

Y5 (eyllxll + &yl + Ny )(2))

+ I ()l + myllyll + N) (b))]

<M, (& lxl + &,y + N, ) + M, (nllx]l + nyllyl + N,)

= (M8, + Myny)lx|l + (M€, + Myn,)lyl + M{N, + M,N,

<[M, (& + &)+ M,(n, +n,)]r + M|N; + M,N,.

Hence,
||%1 (x, y)|| <[M, (& + &)+ M,(n, +n,)]r + M|N,
+ M,N,.
(34)
Similarly, we have
|%2 (x,y)(t)| <M, (8 lxll + &,llyll + Ny) + M,

(35)
- (mllxll + mollyll + N),

and hence

[, (e, p)|| < [M5 (8, + €,) + My (ny + ny)]r + MsN, + M,N,.
(36)

Consequently, it follows that

I (x, Yl < [M, (€, + &,) + M, (n, + n,)]r + M{N, + M,N,
+[M; (€, + &) + M, (n, +n,)|r + MyN, + My,N, <r,
(37)
which implies #B, ¢ B,. Next, we will show that the op-

erator % is a contraction mapping. For any
(x1, ¥1)> (x5, ¥,) € X XY, we obtain



|1 (31, 31) (8) = F, (x5, y,) (1))

< I‘x - fxzv)’z (b)

b-ay [y (2
’ |AIL (y) [ T (y,) ;|6i|1 |gx1,y]—gx2,y2

(Sl

(v + 1)

(o
)

< (&% = x| + €lyy =y )T (D (®)

b-a)' [o-a!
IAIL(y) | T(n

+ 14

gxl’yl - gxb}’z

+(enflx; = 5] + &sflyr = ya] )T (D (B)

(e~ e (S0t S ) (S

JGaaZ

fxl’yl - fxz’}’z
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&) +1°

- fxz»)’z

(b)>

()

(38)

) <(n1"x1 - x2” + ”2“)’1 - )’2") Zlgi|10ﬁ+¢; (1) (fz)
i=1

" (1)(z;)

j=1

wmwrwmﬂﬂn—mmwuxwﬁ

SMl(flllxl = [, + &y ‘J’zu) +M2(”1||x1 = x|+ ma 31 ‘J’2||)

= (M, ¢, + M2”1)nx1 - x||2 +(M 6, + Mz”2)||)’1 - )’z||~

Therefore, we obtain the following inequality:
|71 (1 1) = F 1 (3 92) | < [My (64 + €) + My (1 +1y)]
(e =] + 31 = ).
(39)
In addition, we also obtain
||%2 (pr’l) - %, (x2>)’2)“ < [M3 (51 + 62) + M, (”1 + ”2)]
(e = 2+ - 7))
(40)
From (39) and (40), it yields

”‘%(xl’yl) - %(xb)’z)" < [(My + M;) (6 +¢,)
+ (M, + M) (ny +ny)]

X(ler =%l + 32 = 52l))
(41)

As (M, +M3) (€, +6,)+ (M, + M) (n, +n,) <1,
therefore, % is a contraction operator. By Banach’s fixed point
theorem, the operator % has a unique fixed point, which is the
unique solution of (4) on [a,b]. The proof is completed.

Now, we prove our second existence result via Ler-
ay-Schauder alternative.

Lemma 3 (Leray-Schauder alternative, see [19]). Let
F: E — E be a completely continuous operator. Let

E(F) ={x € E: x = AF(x)forsome, 0<A<l1}.  (42)

Then, either the set £ (F) is unbounded, or F has at least
one fixed point.

Theorem 2. Assume that there exist real constants u;,v; =0
fori=1,2 and u,y, vy >0 such that, for any x; e R (i = 1,2),
we have

|f (8 x1, 2,)| Sug + wy | x| + 1y x5 s (43)
|9 (t, %1, %,)| < vo + vi|x1| + va|x,).

If (M, +M3)u, + (M, +M,)v,<1and (M, + M;)u,+
(M, + M,)v, <1, where M,, M,, M;, and M, are given in
(24)-(27), then (4) has at least one solution on [a, b].

Proof. By continuity of the functions fandg on
[a,b] x R x R, the operator % is continuous. We will show
that the operator #: X xY — X x Y is completely con-
tinuous. Let ® ¢ X xY be bounded. Then, there exist
positive constants L; and L, such that

|f (tx I<Lys 1g(tx ) <Ly, V(x,y) €. (44)

Then, for any (x, y) € O, we have
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|, (x, y) ()| < I”

- -
IAIT(y) [ T(y)

(

(%Y ok ”a]gw'(b)]
{
(

Sioir . |6 1 )

<L,I(1) (b)

inwu‘”l*“’ (1) (&) + L I* (1) (b)

i=1

) (45)
|

(b-a)y! { (b-a~

IAIT (y) T(y)

(Bt

T(y, +¢;)

n
Ll

j=1

I (1)(2;) + LI (1)(b>>
<L,M, + L,M,,

which yields Hence, from the above inequalities, we obtain that the set
F © is uniformly bounded. Next, we are going to prove that

K1 (% )| < LMy + LM, 46 Y : gomgtop
“ 1 y)” ¥+ =M (46) the set F® is equicontinuous. For any (x,y) € ® and

Similarly, we obtain that 7,7, € [a,b] such that 7, <7,, we have

|, (x, p)|| < LyM;5 + LM, (47)

|°%1 (x, )’)(72) -F (x’)/)(Tl)l

SIoc|fx,y|(‘r2) -

AN SN o | —_gh [
+[(Tz a) (1, —a) ][(b a) (Z;|9i|1al+(pi|gx’}’|(£i)+I‘x

IAIT (y) T(y1)
+<il |(F(Y ) ><Z|C (b))}

J‘Tl (r,-9)" ' = (r,—a)"" ds + JTZ Ls)alds

fx,y

(b)>

a+w,|fxy' +Itx1

gxy

<h a T'(a) )
[(72 —a) = (1, - a)y—l] (b —ay! LN ) )
! AT () fy | L 2B W@+ LI ®)

Vi (1)(z;) + LI" <1><b)>]

(5 ) e

L 04 o o
Sl"(ocil) 2(ry - 1) + (- a)" = (1, - a)"]

@ - -a) ][(b—a)%‘ <L2§| Jlmar L(b—av)

[AIT (y) I'(y;) +@;+1) 'T(a+1)

T VAT L
(Zl e T(y, +¢;) ><LIJZ{'CJ' oc]+1//j+1 +Lzl"(oc+l) '




Therefore, we obtain
|%1 (%, ) (72) = F, (x>)’)(71)| — 0, as7y — 7,
(49)
Analogously, we can obtain the following inequality:
|%2 (%) (12) = H, (%, y) (Tl)| —0, ast — 1,
(50)
Hence, the set Z® is equicontinuous. By applying the
Arzela-Ascoli theorem, the set '@ is relative compact
which implies that the operator & is completely continuous.

Lastly, we shall show that the set
E={(x,y) e XXY: (x,9) =AF (x,y), 0<A<1} is
bounded. Let any (x, y) € &, then (x, y) = A% (x, y). For
any t € [a,b], we have
x(t) = AT (x, y) (D), (51)
y(t) = AT, (x, y) (D).

Then, we obtain
L+ (vo + villxll + vy lly M

3+ (vo +villxll + vallyl) My,

lxll < (g + uylxll + w,lly )M

Iyl < (o + wyllxll + wsllyl)M

(52)
which imply that
il +lyll < (My + M3)uy + (M, + My)v,
+[(My + M3)u, + (M, + My)v]lxll  (53)
+[(M; + M3)u, + (M, + My)v,]lIyll.
Thus, we obtain
e (M1+M3)uo+(M2+M4)vo’ (54)

M*

(t-a)!

%1,1 (xa)/) (t) = AF( )

<Z (5 —a)"te

Ty, +¢)

Hi, () ) =1f,, (1)

%2,1 (x, )’) (t) =

(t-a | (b-a)!
AT (yy) I'(y)

<Zl ot (VBZ)

H o (x,y) () = I Gy (D).
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where M* =min{l - (M, + M3)u; — (M, + M,)v,,
1- (M, +M;)u, - (M, + M,)v,}, which shows that the set
& is bounded. Therefore, by applying Lemma 3, the operator
F has at least one fixed point. Therefore, we deduce that
problem (4) has at least one solution on [a, b]. The proof is
complete.

The last existence theorem is based on Krasnoselskii’s
fixed point theorem.

Lemma 4 (Krasnoselskii’s fixed point theorem, see
[20]). Let M be a closed, bounded, convex, and nonempty
subset of a Banach space X. Let Aand B be operators such
that (i) Ax + By € M, where x, y € M, (ii) A is compact and
continuous, and (iii) B is a contraction mapping. Then, there
exists z € M such that z = Az + Bz.

Theorem 3. Assume that f,g: [a,b] x RxR — R are
continuous  functions satisfying assumption (H,) in
Theorem 1. In addition, we suppose and there exist two
positive constants P,Q such that, for all t € [a,b] and
x,y; €R,i=1,2,

|f(t xl’x2)| (55)
|9 £, X1, %) l
If
b-a)* b-a)n
% (6, +¢6,)+ ﬁ( a)l) (n, +my) <1, (56)

then problem (4) has at least one solution on [a,b].

Proof. To apply Lemma 4, we decompose the operator F#
into four operators %, |, % ,, #,,, and &, as

i=1

G-a & .
{ (Ze, g, (&) Ifx,y(b)>

N
j=1

(57)

(Z GIY frey(2)) =1 gy (b)>

j=1

D01 (&) -1 fxy(b)ﬂ

i=1
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Note that J| (x, y)(t) = F 1, (x, ) () + H 5 (x, y) (t)
and  F,(x, y)(t) = H,, (%, p) (t) + H,, (x, y) (). Also,
observe that the ball B; is a closed, bounded, and convex
subset of the Banach space . Let By ={(x,y) € Xx
Y: |I(x, )l <6} be a ball, where a constant §>max{M, P+
M,Q, M;P + M,Q}. Now, we will show that # B, c By for
satisfying condition (i) of Lemma 4. Setting x =
(x1,x,)and y = (y,, y,) € By and using condition (55),
then we have, as in Theorem 2 that

| 11 (x1522) (8) + F 15 (915 92) (D] < My P + M,Q< 6.
(58)

Similarly, we can find that

|H 01 (1, %) (8) + H oy (91 ¥2) (1) < M3P + M,Q<S.
(59)

That yields #,x + #,y € Bs. To show that the operator

(K5 H,,) is a contraction mapping satisfying condition
(iii) of Lemma 4, for (x;, y,), (x,, ¥,) € Bs, we have

|15 (e y1) | (8) = 15 (320 ,) (B)] < = | ()
<(&]x, = x| + Eoflys = p]) 17 (1) ()
(b-a)*
“tarn @+ &)l =l <l - 2l)
(60)
|(%2»2 (xl’yl) (t) - ‘%2,2 (x2’ yZ) (t)| Slal gxl’yl - gXZ’yZ (t)
b-a)
Sr((oc1 ?1) (my +m)([lx1 = 22 +]y1 = 7).
(61)

l‘%l,l (x, y) (t)|

_b- a)y1 (b- a)y11
- IAIF(Y) Ly

(S

_ a)}’l +¢i—

Ty +e)

(Bm e

It follows from (60) and (61) that
'K‘%I,Z’ %2,2) (x> y1) _('%1,2’ %2,2) (xz>)’2)“

[(b a)"

(b-a)
TR

T +1) (ny + ”2)] (62)

: (||x1 = x|+ - J’2”)>

which is a contraction by inequality in (56). Therefore,
condition (iii) of Lemma 4 is satisfied. Next, we will show
that the operator (%, %,,) satisfies condition (ii) of
Lemma 4. By applying the continuity of the functions f, g on
[a,b] x R xR, we can conclude that the operator
(K> H,,) is continuous. For each (x, y) € Bs, one has

QY [ofr " (1) (&) + P1° (1)(b)>

(e 8k

_b-a) | (b- a)“1 S
~IAIR) { <Q,Z| |

11 (1)(z )+Q1“1<1)(b>>]
(b-a)*
PF(oc + 1)>

(b-a)"
Y+ 1))]

(63)
a)‘xl'pr

1“(0(1 +¢;+1)

z —a) Vi

I1( oc+1//J+1)
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and similarly

| %51 (%, ) (1) <Q". (64)
Then, we obtain the following fact:
|K%1,1,%z,1)(x,y)||£P* +Q, (65)

|%1,1 (x, ) (7,) = F11 (%) (Tl)|
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which implies that the set (%, #,,)Bs is uniformly
bounded. In the next step, we will show that the set
(11, F,1)Bs is equicontinuous. For 7,7, € [a,b] such
that 7, <7, and for any (x, y) € B;, we can prove that

|AIT (y)

(7))

i=1

AN U PAY -1 m
[(T a)’ ' = (1, -a) ]|:(b—a)Y <Qz|9illal+¢i(1)(gi)+p[(1)(b)>

<Z| 1 (EF(_yaHP il><PZ|(

< [(Tz _“)y_l - (7 - a)y_l]

1 (1)(z )+QI“1(1)(b)>]

N IAIT (y) { T(y1)

P O

Therefore, we have |, (x,y)(1,) - F (%)
()l — 0 as 1, — 7,. Similarly, we can show that
| H 51 (%6, ) (1)) = H 5, (6, y) (T)] — 0 as 7, —> 7,

Thus, |(=%1,1) %2,1) (x, y) (1) = (%1,1> e%/2,1) (x, y) (7))
tends to zero as 7, — 7,. Therefore, the set (%, %, ,)B;
is equicontinuous. By applying the Arzela—Ascoli theorem,
the operator (%, %) is compact on B;. By application

HD(3/2) (2)

D (5/4),(2/3) (t)

;= (i/(i+2), and v, = ((2i+1)/(i+1)),

= f(tx(0),y(1), te [% =1

gtLx (), y(1), te [% 10
o5)=0 +(3)=3"(5)

1y _ 10\ _3.3p 453
y(3>_0’ y<3>_21 x(2)+307x

Here, a=3/2, a; =5/4, f=1/2, 3, =2/3, a=1/3,
b=10/3, m=n=4, 0,= (i/(i+1)), {;=(2+1)/(1+1i)),
i=1,2,3,4,
§;=(j/3), j=2,3,4,5, and z, = (r/3), r = 6,7,8,9. Then,

(66)
(b-ay! a)"*? (b-a)*
<QZ| lF(oc1+¢ +1)+PF(oc+1)>
a+1l’] Q (b—a)“‘ |
oc + 1// + 1 [(a; +1)

of Lemma 4, we have that problem (4) has at least one
solution on [a,b]. This completes the proof.

Example 1. Consider the coupled system of Hilfer fractional
differential equations with nonlocal integral boundary
conditions of the form

(67)

2. 3 35 <4> 4 53 <5>
121+ 20 (2) 4 212 y(2),
- )’( )+4 Y 3 +5 Y 3

3

7\, 54 (§) 6.9/5
<3>+4I "3 +51 x(3).

we can compute constants as y=7/4, 1y, =41/21,
A =6.371398411, M, = 12.56809051, M, = 3.253588460,
M, = 48.72536839, and M, = 22.05071608.

(i) Let the nonlinear functions f and g be defined by
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9¢ ! x% +2|x| 3 ) 2

(%) v o+
5 X, = Sin -
Y =9 3239\ 1+x| ) 3t+539 T3

(68)

3 cos®t 1
gt y) = ) o,

9 -
————tan Y| + -
10(3t + 11) 479+ 3t ) 1 +|y| 2

(69)

It is easy to check that f and g satisfy (H,) in Theorem
1 as |f (t, %0, y1) — f (£, x5, y2)| < (1/180)]x,
—x,| + (1/180)|y, — »,1 and |g(t,x;, 1) — g(t, x5,
y)l< (17 160)|x; — x,| + (1/160)|y; — ¥,|. Setting
¢, =¢, = (1/180) and n, = n, = (1/160), we have

(M, + M;) (£, + &) + (M, + M) (1, +n,) = 0.9973422390 < 1.
(70)

Therefore, by applying Theorem 1, we deduce that
problem (67) with (68)-(69) has a unique solution
(x,y) on [1/3,10/3].

(ii) Given the functions f and g by

3¢ lx|° 9 y 3
t’ N = )
flexy 5(3t+50)<1+x8 +(3t+29)2 1+|y)? "1

(71)
5 2
9% y) = 3e™ Y sin|x| 3y cos” (xy) i (72)
(19+x2)(14+3t) 4(50+3t) 7
we can check that
3 1 1
<_ - R
If(f,x,y)l_4+85 || + 100|y|’
(73)
4 1 1
Ig(t,x,y)IS;+£le+§lyl.

which satisfy conditions in Theorem 2 by u, = 3/4,
vy =4/7, u, =1/85, v, =1/95, u,=1/100, and
v, = 1/68. Hence, we find that (M, + M;)u;+
(M, + M,)v, = 0.9874606169<1 and  (M,+
My)u, + (M, + M,)v, = 0.9850567146 < 1. The
conclusion of Theorem 2 implies that problem (67)
with (71)-(72) has at least one solution (x,y) on
[1/3,10/3].

(iii) Define the functions f and g by

Flomy) =2 (Y9 G2
5 X, = Sin -
Y =320\ 1+1x] ) "o+ 138 T3

(74)

0 a2 ) ()
9B% ) = sy ™ |x|+<(3t+14)2><1+|3’|>+2.
(75)
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Observe that condition (H;) in Theorem 1 is satisfied
for nonlinear functions f and g with Lipschitz con-
stants ¢, = 1/10, ¢, = 1/15, n; = 1/20, and n, = 1/25.
Next, we can find that (M, + M;) (¢, +¢,) + (M, +
M,) (n; +ny) =12.49296389 > 1. Then, Theorem 1
cannot be used to obtain the existence criteria for the
investigated problem. However, we calculate that
|f (t,x, )| <5/6, |g(t, x, y)| < (108 + 57)/200, and

(b-a)
F(a+1)( 1 2)—I—l“(oc1+l)

= 0.9650966816 < 1.

Hence, all assumptions of Theorem 3 hold. Therefore,
by Theorem 3, problem (67) with (74)-(75) has at least
one solution (x, y) on [1/3,10/3].
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In this paper, we propose an efficient method for constructing numerical algorithms for solving the fractional initial value problem
by using the Pade approximation of fractional derivative operators. We regard the Grunwald-Letnikov fractional derivative as a
kind of Taylor series and get the approximation equation of the Taylor series by Pade approximation. Based on the approximation
equation, we construct the corresponding numerical algorithms for the fractional initial value problem. Finally, we use some

examples to illustrate the applicability and efficiency of the proposed technique.

1. Introduction

In the past decades, fractional differential equations were
successfully applied to many problems in engineering,
physics, chemistry, biology, economics, control theory,
biophysics, and so on [1-5]. It is significant to obtain the
exact or numerical solutions of fractional nonlinear equa-
tions. Since most fractional differential equations do not
have exact analytic solutions, numerical techniques and
seminumerical methods are used extensively, such as the
homotopy analysis and homotopy perturbation method
[6-8], variational iteration method [9-11], orthogonal
polynomial method [12, 13], fractional Adams method [14],
and some other methods [15].

Among all the numerical methods, the direct numerical
method [16-18] is the basic one. Due to the special property
of the fractional derivative, most of these methods have their
inbuilt deficiencies mostly due to the calculation of Adomian
polynomials, the Lagrange multiplier, divergent results, and
some other huge computational works.

In this paper, we propose an efficient method for con-
structing numerical algorithms for solving the fractional
initial value problem by using the Pade approximation of
fractional derivative operators. The advantage of the pro-
posed technique is that efficient numerical methods can be

constructed without calculation of long historical terms of
the fractional derivative.

Consider the following homogeneous fractional initial
problem:

JI D@y =f(yt), teloT]

k=0,1,...

(1)

y®(0) =0, ,m—1,

where OD("‘) is usually the Caputo derivative and m = [a].
Given the condition y®(0)=0,k=0,1,...,m~1, the
Caputo derivative is equivalent to the Grunwald-Letnikov
derivative and the Riemann-Liouville derivative, e.g.,

cp® =D @ =FLp©, (2)
For the following linear nonhomogeneous fractional
initial problem,
{oDwy=fUJL
y 90 =y

the following transform can be employed to make it be a
homogeneous one with regard to z(t):

t e [0,T],

(3)
k=0,1,...,m—-1,

m—1
y() =Yy O +z (). (4)
k=0
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Based on the G algorithm [19], we have the following
numerical scheme for problem (1):

N
—a « t
S e oo [ o

where ¢\* and N are calculated according to different al-
gorithms. Algorithm 5 is a technique which is easy to
manipulate. However, this method involves huge compu-
tational work when T > 0 because in general, these methods
need to compute many terms to get the approximation to the
fractional derivative. To some extent, the short memory
principle [20] can be used to tackle the problem, but low
accuracy will be the cost. So, it is significant to find an ef-
ficient approximant to the fractional derivative, which is of
low computation cost on the one hand and highly accurate
on the other hand. In this paper, we put forward a reliable
method for the construction of numerical algorithms for
solving the fractional differential initial value problem by
using Pade approximation to fractional derivative operators.
The rest of the paper is organized as follows. In Section 2, we
briefly list some basics of Pade approximation. In Section 3,
we get the approximant of the fractional derivative opera-
tors. In Section 4, we propose a method for constructing
algorithms for solving the fractional initial value problem by
using Pade approximation. In Section 5, we use some ex-
amples to illustrate the applicability and efficiency of the
proposed technique. Section 6 is the conclusion.

2. Some Basics for Pade Approximation

In numerical mathematics, Pade approximation [21] is
believed to be the best approximation of a function by ra-
tional functions of a given order. Under this technique, the
approximant’s power series agrees with the power series of
the function it is approximating. The Pade approximant
often gives better approximation of the function than
truncating its Taylor series, and it may still work where the
Taylor series does not converge. For these reasons, Pade
approximants are often used in many fields of computations.

Given a function f (x) and two integers m >0 and n> 1,
the Pade approximant of order [m, 1] is the rational function

Yt ajxj
1+ ZZ:O bkxk’

R(x) = (6)

which agrees with f (x) to the highest possible order, which
amounts to

£(0) =R(0), f'(0) =R'(0),

f” (0) — RH (0)’ . ,fm+n (0)
Equivalently, if R (x) is expanded in a Maclaurin series, its
first m + n terms would cancel the first m + n terms of f (x),

and as such f(x) - R(x) = O(x™"*"). The Pade approx-
imant is unique for given m and n, that is, the coeflicients

_rer), )

Journal of Mathematics

Ag> Ay - . ->a,, by, ..., b, can be uniquely determined. It is for
reasons of uniqueness that the zeroth-order term at the de-
nominator of R(x) was chosen to be 1; otherwise, the nu-
merator and denominator of R(x) would have been unique
only up to multiplication by a constant. The Pade approximant
defined above is also denoted as [, n] Fx)-

3. Pade Approximant for the Fractional
Derivative Operator

There are many definitions for the fractional derivative. The
following equation is called the reverse Grunwald-Letnikov
derivative:

00 o
D*f (x) = lim hi D (—1)*"( )f(x -mh),  (8)
m=0 m

where

*\ I'(a+1)
< >_F(m+1)1"(¢x—m+1)' ©)

m

For any given a >0, if we denote

E"f(x) = f(x+h),

L (10)
E" ()= f(x=h),

we have
D“f(x)zh“"z(—1)f<j)f(x—jh). (11)
=0

Therefore, we can denote

D*f (x)=h “(1-E")"f (x). (12)
So, we have
WD f (x) =(1-E ") f (x). (13)

Let
2 n
ay+ a1 x +a,x"+---+a,x

, 14
1+bx+byx*+---+b,x" (14)

be the [n, 1] Pade approximant to (1 — x)“; we have
ay +a;x + ayx* + -+ a,x"
1+byx+byx>+--- +b,x"

=(1-x)+0(x™"). (15

Therefore,

n

2
g+ a1 x +a,x" +---+a,x

:(1 +b1x +b2x2 + ..o+ bnx”)(l _x)‘x +O(h2n+l)_
(16)
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Replacing x in (16) with the operator E~", we have

~h ~2h —nh
ay+aE " +a,E " +---+a,E

=(1+bE" +b,E "+ 4 b, E")(1- E”“)“ + O(E”“)Z"“,
(17)
where 1 can be understood as the identical operator. So, we
get the following approximation:
h““(ao +aE " va, Bt anE_”h)

s (1 +b E b E 4t bnE_”h)(l - E_h)“h_“.

(18)
Noticing (13), we get
(1-E")" =n"D" (19)
So, we get
hia(ao +a E " va, Bt anEfnh)
(20)

~ (1 +bE b Bt bnE’”h)D“.

Then, we get the following approximation to fractional
derivative operators:

(ao +aE " va, Bt anE_"h)

—h -2 —nh (21)
:h“(l +bE" +b,E “+---+b,E" )D"‘.
Consider fractional initial value problem (1):
D*y = f(t,y), te][0,T],
{ y=rfty) [0, T] (22)
y®@)=0, k=0,1,...,m—1.
Denote
y(0) =0,
y(h) =yy,....,y(nh) =y, (23)
f (% yn) = fo
where h is the discretization step size.
From (21), we have
(ao +a E " va, B anE_"h)yn
(24)

= h“(l +b E b E bnE_"h)D"‘y

ne

Due to the linearity and commutativity of the operators
E~" and D®, we have

(ao)’n T Y1t B Yt F an)’o)

(25)
=h*D" (y, + by Yy +byy, s+ + b))
Noticing
D, = fu (26)
we get
(A0 Vn+ @11 + B Y+ +G,Y,) 27)

=h*(fo+b,fny +b3f s+ +b,fo)

Then, we get the following numerical algorithm:
AV = ~HVn-1 = BYn2 7 T )

+h (ot by frg +byfn +---+ b, f).

This is a multiple step algorithm for problem (1), where
a;s and b;s can be determined by the Pade approximation
of (1 —x)" for any given a. From the construction process,
we can see the local truncation error of this algorithm is
2n+ 1.

(28)

4. Some Implicit Multistep Algorithms for the
Fractional Initial Value Problem

Let a = 0.5; the [2,2] Pade approximant to (1 — x)* is

_ 2
1620+ 55 o0
16 — 12x + x?
and the [3,3] Pade approximant to (1 —x)*° is
_ 2 _ 7,3
64— 112x + 56x° — 7x (30)

64 — 80x + 24x2 — x3

Then, from (28), we get the following two multistep
algorithms:

16)/,, = 2Oyn—l - 5yn—2 + h045 (16fn - 12fn—l + fn—Z)’

(31)
in which
2,2 05( _3 1 )
yn_4yn—1 16yn—2+h fn 4fn—1+16fn—2
(algorithm 1), (32)

64)/” = 112yn—1 - 56yn—2 + 7)/11—3

+ hO‘S (64fn - Sofn—l + 24fn—2 - fn—?»)’
in which

7 7 7
Yn :Zyn—l _gyn—Z +ayn—3

1
+ I’lo's(fn - an—l + gfn—Z - afn—3> (algorithm 2)'

(33)

In the same way, from the following [4,4] Pade
approximant to (1 — x)%°,

1—(9/4) + (27/16)x?* — (15/32)x> + (9/256)x*

34
1 —(7/4) + (15/16)x2 — (5/32)x3 + (1/256)x%’ (34)
we get the following (algorithm (3)):
9 27 N 15 9
yn - 4yn—1 16)/11—2 32yn—3 256yn+4
0os( ¢ _7 Ly > L )
+ h <fn 4fn—1 + 16fn—2 32fn—3 + 256fn—4

(algorithm 3).
(35)



In the same way, the [2,2] Pade approximant to
(1-x)8 s

1 - (7/5)x + (21/50)x?

. 36
1 -(3/5)x + (1/50)x2 (36)
So, we get the following numerical algorithm:
A P
Yn = 5)’n71 Soyn—Z +h fn an—l + 50fn—2 (37)

(algorithm 4).

We can also get the following algorithm by using the [3,
3] Pade approximant to (1 — x)%8:

3211 6479 3287
Y1 = 168071 T 600072 " 200007
1867 3791 1943
+ h08< - + - )
S 1680f n-l 14000f n-2 420000f n-3
(algorithm 5),

(38)

and many other more complicated numerical schemes
can be constructed by using the Pade approximant for any
given «.

5. Numerical Tests

5.1. Numerical Test 1.

{D”y =(V212)(y+T-)

y(0)=0

(39)

The exact solution to this problem is y = sin (x). We use
algorithms (1) and (2) to solve this problem. Because both
algorithms (1) and (2) are implicit, we use the iterative
method

V=9 (V) (40)

to get the value of y,, where

90) = 2 - %ymz 1 f - me * %f,ﬂ),
(41)
for algorithm 1 and
7 7 7
I(Vn) = Pt~ Inat g¥ns
(42)

05 5 3 1
+h (fn _an—l +§fn—2 _@fn—?v)’

for algorithm 2, respectively. The computational errors are
listed in Table 1 (h = (pi/2)/10). We also compare algorithms
(1) and (2) with the exact solution in Figure 1.

We also make the comparison with the corresponding G
algorithm. The results are listed in Table 2. The comparison
shows that algorithms (1) and (2) are more efficient than the
corresponding Grunwald-Letnikov-based G algorithm.

Journal of Mathematics

5.2. Numerical Test 2.
D%y = ycos<2—71> +4/1 -2 sin(z—ﬂ),
5 5
(43)
y(0) =0.

The exact solution to this problem is y = sinx. We use
the following algorithm (4)

7 21 3 1
Yn = gyn—l - %yn—Z + ho's(fn - gfn—l + %fn—Z)’ (44)

and algorithm (5)

3211 6479 | 3287
Yn = 168071 T 600072 " 2000072
1867 3791 1943
(g, 8T 98
S 1680f n-l 14000f n-2 420000f n-3

(45)

to get the numerical solution. Because both algorithms (4)
and (5) are implicit schemes, we use the iterative method
¥y, = 9g(y,) to get the value of y,, where

7 21 3 1
g(yn) = gyn—l “ V2t hos(fn _gfn—l +5f‘n—2>’

50
(46)
in algorithm (4) and
( )_3211 6479 3287
9V = 1680”1 " 6000”2 " 20000 "3
1867 3791 1943
+h08< - + - )
S 1680f n-l 14000f n-2 420000f n-3
(47)

in algorithm (5). The errors of the numerical results are listed
in Table 3 (h=(pi/2)/10).

The comparison with the corresponding G algorithm is
listed in Table 4. The comparison shows that algorithms (4)
and (5) are more efficient than the corresponding G
algorithm.

5.3. Numerical Test 3.

08 L (5)

DO.S — ,
Y= Ty

(48)
y(0)=0.

The exact solution is y = x*; we use algorithm 5 to solve
this problem. The comparison between the exact and the
numerical solution can be seen in Figure 2. One can see that
the numerical solution is very accurate when T > 1, and the
result is obtained in less than 50 steps. This is much more
efficient than the G algorithm.



Journal of Mathematics 5
TaBLE 1: Computational errors for algorithms (1) and (2).
X 1h 2h 3h 4h 5h 6h 7h 8h 9h 10h
Algorithm (1) 0.000 0.000 0.0155 0.0318 0.0455 0.0575 0.0716 0.0992 0.0783 0.0069
Algorithm (2) 0.000 0.000 0.000 0.0011 0.0028 0.0043 0.0049 0.0042 0.0211 0.0263
1'2 T T T T T T T
1+ : 4 2|
a *
0.8 * 4
0.6 - -
Il
04 |
0.2 ]
0 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
» Exact solution
o Algorithm 1
Algorithm 2
Figure 1: Comparison between algorithms (1) and (2) with the exact solution.
TasLE 2: Computational error comparison with the G algorithm.
X 1h 2h 3h 4h 5h 6h 7h 8h 9h 10h
Algorithm (1) 0.000 0.000 0.0155 0.0318 0.0455 0.0575 0.0716 0.0992 0.0783 0.0069
Algorithm (2) 0.000 0.000 0.000 0.0011 0.0028 0.0043 0.0049 0.0042 0.0211 0.0263
G-algm 0.1232 0.1782 0.1642 0.2589 0.2529 0.2762 0.3856 0.3842 0.5485 0.5478
TaBLE 3: Computational errors for algorithms (3) and (4).
X 1h 2h 3h 4h 5h 6h 7h 8h 9h 10h
Algorithm (3) 0.000 0.000 0.0111 0.0123 0.0245 0.0267 0.0343 0.0355 0.0455 0.0058
Algorithm (4) 0.000 0.000 0.0000 0.0009 0.0019 0.0038 0.0037 0.0042 0.0111 0.0165
TaBLE 4: Comparison with the G algorithm.
x 1h 2h 3h 4h 5h 6h 7h 8h 9h 10h
Algorithm (1) 0.000 0.000 0.0155 0.0318 0.0455 0.0575 0.0716 0.0992 0.0783 0.0069
Algorithm (2) 0.000 0.000 0.000 0.0011 0.0028 0.0043 0.0049 0.0042 0.0211 0.0263
G-algm 0.1255 0.1351 0.1385 0.1395 0.2452 0.2522 0.3836 0.3911 0.4263 0.5485
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FIGURE 2: Comparison between algorithm (5) and the exact solution.

6. Conclusion

We can construct numerical algorithms for solving the
fractional initial value problem based on the Pade ap-
proximation of fractional derivative operators. Numerical
tests show that this method is more efficient than the cor-
responding G algorithms. Generally speaking, we can cal-
culate more terms to achieve more accuracy when
Grunwald-Letnikov-based method is employed, but that
would lead to more computational work, while the algo-
rithms derived from Pade approximation are proved to be
more efficient.
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In this paper, bounds of fractional and conformable integral operators are established in a compact form. By using exponentially
convex functions, certain bounds of these operators are derived and further used to prove their boundedness and continuity. A
modulus inequality is established for a differentiable function whose derivative in absolute value is exponentially convex. Upper
and lower bounds of these operators are obtained in the form of a Hadamard inequality. Some particular cases of main results are
also studied.

1. Introduction
f(m+(1—t)b)gtM+(1_t)f(b) 2

eaa eab ’

We start with the definition of convex function.
holds for all a,b € K , t € [0,1] and « € R. If the inequality
in (2) is reversed, then f is called exponentially concave.

If & = 0, then (2) gives inequality (1). For some recent
citations and utilization of exponentially convex functions,
one can see [5-14] and references therein. Our goal in this
paper is to prove generalized integral inequalities for ex-
ponentially convex functions by using integral operators
given in Definition 7. In the following, we give definitions of
Riemann-Liouville fractional integrals:

Definition 1 (see [1]). A function f: [a,b] — R is said to
be convex if

flUx+A-t)y)<tf(x)+(1-t)f(y), (1)

holds for all x, y € [a,b] and t € [0, 1]. If inequality (1) is
reversed, then the function f will be concave on [, b].
Convex functions are very useful in many areas of
mathematics and other subjects due to their fascinating
properties and characterizations. Their geometric and an-

alytic interpretations provide straightforward proofs of
many mathematical inequalities including Hadamard, Jen-
sen, Holder, and Minkowski [1-3]. Theoretically, convex
functions have been generalized and extended as h-convex,
m-convex, s-convex, (a,m)-convex, (h—m)-convex,
(s,m)-convex, etc. Awan et al. [4] defined the function
named exponentially convex function as follows:

Definition 2. A function f: KSR — R, where K is an
interval, is said to be an exponentially convex function if

Definition 3. Let f € L, [a, b]. Then, the left-sided and right-
sided Riemann-Liouville fractional integral operators of
order y € C(Z (u)>0) are defined by

ML f(x) = %ﬂ) r (x- " fmd, x>a,  (3)

b
MT, f (x) = %M) L (t-x)"'f(t)dt, x<b. (4)

A k-fractional analogue is given as follows:
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Definition 4 (see [15]). Let f € L, [a, b]. Then, for k >0, the
k-fractional integral operators of f of order y € C, % (u) >0
are defined by

1

S 0= 4 0

r (x-0) ¥ 1 f(ndt, x>a, (5)

bk 1 b (ulk)-1
bﬁf(x)—mjx -0 F(dr, x<b (6)

A more general definition of the Riemann-Liouville
fractional integral operators is given as follows:

Definition 5 (see [16]). Let f: [a,b] — R be an integrable
function. Also, let g be an increasing and positive function
on (a,b], having a continuous derivative g’ on (a,b). The
left-sided and right-sided fractional integrals of a function f
with respect to another function g on [a,b] of order
u € C(R (u)>0) are defined by

i@ = [ @@ -g0r g Of 0 x>a

I'(w) Ja
(7)
1 L,
;Ib_f(x) = T L (g(t) =g g () f ()dt, x<b,
(8)

where I'(.) is the gamma function.

Definition 6. Let f: [a,b] — R be an integrable function.
Also, let g be an increasing and positive function on
(a,b], having a continuous derivative g' on (a, b). The left-
sided and right-sided k-fractional integral operators, k >0,
of a function f with respect to another function g on [a, b]
of order y,k € C, % (u) >0 are defined by

1 x 1
S 0= s | @@ -g) g o x>,

(9)

b
b £ () = @ L (gt)-gxN“P g () f(Hdt, x<b,

(10)

where I' (.) is the k-gamma function.
A compact form of integral operators defined above is
given as follows:

Definition 7 (see [17]). Let f,g: [a,b] — R,0<a<b be
the functions such that f be positive and f € L,[a,b]
and g be differentiable and strictly increasing. Also, let
(¢/x) be an increasing function on [a,00). Then, for

x € [a,b], the left- and right-sided integral operators are
defined by

Journal of Mathematics
(Ff;gf) (x) = Jx K, (o, t;0) f(d(g (1), x>a, (11)

b
(Fﬁ:%‘)(x):LKg(t,x;gb)f(t)d(g(t)), x<b, (12)

where K, (x, y; ¢) = (¢(g(x) — g(¥))/ (g (x) — g ().

Integral operators defined in (11) and (12) produce
several fractional and conformable integral operators de-
fined in [16, 18-25].

Remark 1. Integral operators given in (11) and (12) produce
fractional and conformable integral operators as follows:

(i) If we consider ¢ (¢) = (t*/*/kT; (1)), then (11) and
(12) integral operators coincide with (9) and (10)
fractional integral operators.

(ii) If we consider ¢ (t) = (t*/T'(u)), >0, then (11)
and (12) integral operators coincide with (7) and
(8) fractional integral operators.

(iii) If we consider ¢(t) = (t**/kT; (1)) and g as
identity function (11) and (12), integral operators
coincide with (5 and 6) fractional integral
operators.

(iv) If we consider ¢ (t) = (t#/T'(u)), u>0, and along
with g as identity function (11) and (12), integral
operators coincide with (3 and 4) fractional inte-
gral operators.

(v) If we consider ¢(t) = (t“/k/kl"k (#)), k=1, and
g(x) = (xlp), p>0, then (11) and (12) produce
Katugampola fractional integral operators defined
by Chen and Katugampola in [18].

(vi) If we consider ¢ (t) = (t"/k/kl",< (#)), k=1, and
g(x) = (x™*/(1+5)), s>0, then (11) and (12)
produce generalized conformable integral opera-
tors defined by Khan and Khan in [22].

(vii) If we consider ¢(t) = (t“/k/ka (w)) and g(x) =
((x —a)'ls), s>0,in (11) and ¢ (t) = (t**/kT; (1))
and g(x)=-((b-x)/s), s>0, in (12), respec-
tively, then conformable (k, s)-fractional integrals
are achieved as defined by Habib et al. in [20].

(viii) If we consider ¢(t) = (t”/k/ka (@) and g(x) =
(x'**/(1 +5)), then (11) and (12) produce con-
formable fractional integrals defined by Sarikaya
et al. in [24].

(ix) If we consider ¢(t) = (t*¥/kT; (1)) and g(x) =
((x—a)’ls), s>0,in (11) and ¢ (¢) = (t*'*/kT} (W)
and g(x) = = ((b—x)°/s), s>0,in (12) with k = 1,
respectively, then conformable fractional integrals
are achieved as defined by Jarad et al. in [21].

(x) If we consider ¢ (t) = t**F X (w(t)), then (11)
and (12) produce generalizecf k-fractional integral
operators defined by Tunc et al. in [25].

(xi) If we consider ¢ (t) = (exp (—At)/u)and A = ((1 -
wlu), u>0, then following generalized fractional
integral operators with exponential kernel are
obtained [19]:
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ME f(x) = J xp<—1;—”(g(x)—g(t))>f(t)dt, x>a,

’:I'—‘

b _
“E, f (x) = J xp(—%(g(x)—g(t)))f(t)dt, x<b.

X

".:\’—‘

(13)

(xii) If we consider ¢(t) = (#/I'(4)) and g(t) = Int,
then Hadamard fractional integral operators will
be obtained [16, 23].

(xiii) If we consider ¢ () = (#*/T (u)) and g(t) = -t 1,
then Harmonic fractional integral operators given
in [16] will be obtained and given as follows:

o oy
"Ry f (x) = mj( O Td x>,
(14)
u
”Rb_f<x>=%ﬂ)j - T ecn

(xiv) If we consider ¢ (t) = t#Int, then left- and right-
sided logarithmic fractional integrals are obtained
in [19] and given as follows:

12, £ = [ (96090 (g0
—g(0)g (1),
12, 70 = [ @0 - 9@ (g
- g(1)g' (t)dt,

x>a,
(15)

x<b.

In the upcoming section, we will derive bounds of sum of
the left- and right-sided integral operators defined in (11)
and (12) for exponentially convex functions. These bounds
lead to produce results associated to several kinds of well-
known operators for exponentially convex functions, some
of the results are presented in particular cases. Further in
Section 3, bounds are presented in the form of a Hadamard
inequality; several Hadamard type inequalities are obtained.

2. Bounds of Integral Operators and
Their Consequences

Theorem 1. Let f: [a,b] — R be a positive and expo-
nentially convex function and g: [a,b] — R be a differ-
entiable and strictly increasing function. Also, let (¢/x) be an
increasing function on [a, b]. Then, for x € [a, b] the following
inequality for integral operators (11) and (12) holds

(F29 ) (x) +(FY9 f) (x)

<4(9(x) - g()(f(") f(“)) IR
~glx ))(fefjf) fff)).

Proof. For the kernel of integral operator (11), we have

K, (x,t;(/))g'(t)iKg (x,a;¢)g' (t), x € (a,b]andt € [a, x).

(17)
An exponentially convex function satisfies the following
inequality:
f(r)s("‘t)f(“)+(t‘“)f(x). (18)
x—al e* x—al e

Inequalities (17) and (18) lead to the following integral
inequality:

r K, (ot )g' (0 (t)dt

s [

=

while (19) gives
(FSf) ()< ¢(g(x) - g(a ))(

g wde o)

J ()

S (a)) (20)
eaa

Again, for the kernel of integral operator (12), we have
K, (t, x; gb)g' (1) <K, (b, x; gb)g' (t), te (x,blandx € [a,b).
(21)

An exponentially convex function satisfies the following

inequality:
f) (b-t)fx)
JOE ( x) +(b x) 22)

Inequalities (21) and (22) lead to the following integral
inequality:

b
| K, tx0g @@

<K, (b x ,¢>>(f L jx(m)g'umt (23)

b b -
A2t

while (23) gives

b
(F2F) () <9 (g (b) —g(x»(fe 9L ib)). (29)

By adding (20) and (24), (16) can be achieved.
The following remark connected the abovementioned
theorem with already known results. O

Remark 2

(1) For ¢(t) = (##/T (u)), u>0, and a = 0 in (16), Cor-
ollary 1 in [26] can be achieved.

(2) For ¢ (¢) = (/T (u)), u>0, g(x) =x, and « =0 in
(16), Corollary 1 in [27] can be achieved.



(3) For a = 0,1in (16), Theorem 1 in [28] can be achieved.

Next results indicate upper bounds of several known
fractional and conformable integral operators.

Proposition 1. Let ¢ (t) = (t*/T'(4)), u>0. Then, (11) and
(12) produce the fractional integral operators (7) and (8) as

follows:
<Fu(f;«/r(u)))9f) (x)

(Fb(itf‘/l"(ﬂ))’gf> (x) = glh,f(x)-

=41 f (%),
(25)

Further they satisfy the following bound for u>1:
(5, £) 0+ (51, f) ()

L 9&) —g @) (f(x) N f(a)>
I‘(‘u) exx exa

(g(b) - g(x))* (f(x)
+
I'(p)

(26)

eax e(xb

10)

Proposition 2. Let g(x) =1(x) =x. Then, (11) and (12)
produce integral operators defined in [29] as follows:

(B2 £) () = (o1 f) (x )—J ‘Mx f(t)dt

(27)

b _
(7 D)0 = (1) 0 = [ HED poa

Further they satisfy the following bound:
(o o) ) +(y 1) ()

<px— (f(x) f(a)) b(b- (fe(x> f(b)).

ax ax etxh

(28)

Corollary 1. If we take ¢ (t) = (t**/kI' (), then (11) and
(12) produce the fractional integral operators (9) and (10) as
follows:

(Fa(fwk/krk (M))»gf) x) = Zla*f(x

("% /KTy () (29)
G (R e}

From (16), the following bound holds for y > k:

(g(x) - ga)M* < f f(u))

(L)@ (51, ) )<= T

+(g(b)—g(x))"/k fx)  f)
krk(‘u) p0x eab :

(30)

Journal of Mathematics

Corollary 2. If we take ¢(t)= (t#/F(y)), u>0, and
g(x) =I1(x) = x, then (11) and (12) produce left- and right-
sided Riemann-Liouville fractional integral operators (3) and
(4) as follows:

(R ) 0

(Fb(,t#/r(ﬂ))’lf> (x) = /"Ib,f(x)-

=1, f(x),
(31)

From (16), the following bound holds for y>1:

(s £) ) + (T ) (%)
_x-a) [ f(x) Lf@) (- ) [ f(x) A
- F(‘L{) eox ena I‘(M) eox eab !

(32)

Corollary 3. If we take ¢(t)= (t"/k/kl"k (u)) and
g(x) =1(x) = x, then (11) and (12) produce the fractional
integral operators (5) and (6) as follows:

(RN ) ) =15 f ()
(Fb(it#/k/krk (H)),If) (x) = ”I];_ f(x).

From (16), the following bound holds for y > k:
(M5 £) () +(*Iy f) (%)

_-a™ (f) f@
- kl"k(‘u) enx exa

(33)

L b= () )
kI“k (M) eox etxb :

(34)

Corollary 4. If we take ¢(t)= (t*/T' (), u>0 and
g(x) = (xP/p), p>0, then (11) and (12) produce the frac-
tional integral operators defined in [18] as follows:

(Fa(fwr(u)),yf) (x) = (°I% f) (%)

1-

pt p_ P\ 11
F()I(x -t f (1,

(Fb(itwr(u)),gf> (x) =("I f) (%)

-y

P P PYE L
r(#)J (= xP)" P f (.

(35)
From (16), they satisfy the following bound:
(Lo )G (T f) (0

(xP —af)" (f(x)
<
~ T () (p)

f(a)>+

eDtX eO(ﬂ

oy (1), 1)
TE@E) \ e et )
(36)
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Corollary 5. If we take ¢(t)= (t*/T'(w)), u>0, and
g(x) = (x™/(n+1)), n>0, then (11) and (12) produce the
fractional integral operators defined as follows:

(Fg(fwr(y)),gf) (x) = ("I, f) (x)

1- x
_ (”;(7;))” | ey e o,

a

(Fb(itf‘/l"(ﬂ))’!if) (x) = (”I*b‘, f) (%)

= M Jb (t"” —xml)”_lt”f(t)dt.

T(w) )«
(37)
From (16), they satisfy the following bound:
(14 ) ) + ("I ) ()
< (xn+1 an+1) f x) f a)
T(w(n+ 1! \ ex = e (38)

o) (960, 10))

+
I‘(#) (1’1+ 1)P‘ ax eab
Next, we prove boundedness and continuity of integral
operators.
Theorem 2. Let the assumptions of Theorem 1 are satisfied. If

f € L, [a,bl, then integral operators defined in (11) and (12)
are continuous.

Proof. From (20), we have
1 1
(FEF) 0 <49 0) = 9@ floo( s+ ) 39)

It is given that (¢/x) is increasing on [a, b]:

$(g(x)-g(@) _¢(gb)-g(@)
g(x)-gla) = gb)-g(a)
(40)
_ $(g(b) - g(a)g(x) — g(a)
¢(g(x) —g(a) < 30 - 9@ :
Further g is increasing; therefore, we have
¢(g(x) ~g(a) <d(g(b) ~ g(a)). (41)

Therefore, (39) gives
(FS2 ) ()< 9(g(b) = g(@)ll flloo (€™ +€°).  (42)
If a>0, then e”** is decreasing on [a,b] and we get

(F22£) (x)<2¢ ¢ (g (b) - g (@)l fllr (43)

If @ <0, then e”** is increasing on [a, b] and we get from
(42)

(FS7£) (x) <2 ¢ (g (b) = g (@)l fllo- (44)

Hence, ( Fw f)(x) is bounded and it is linear, and
therefore, (F f) (x) is contlnuous

Similarly, continuity of (F 9 f)(x) can be proved.

For a differentiable functlon £, as |f'] is exponentially
convex, the following result holds: O

Theorem 3. Let f: I — R be a differentiable function. If
| f'| is exponentially convex and g: I — R is a differentiable
and strictly increasing function. Also, let (¢/x) be an in-
creasing function on I, then for a,b € I, a<b, the following
inequalities for integral operators holds:

*9) ()| <$(g(x) - gla ))(lf @) |fe§:)|>’
(45)
b !
[E29 (f * ) ()] <9 (g (0) - g (x ))(lf ol |fe£f)|>’
(46)

where
Fﬁ;ﬂ(f # g)(x) = JX Kg(x,t; ¢)g' (t)f/ (t)dt,
. (47)
b
FP9(f % g)(x) = I K, (t,x;¢)g (O f (Ddt.

Proof. An exponentially convex function |f'| satisfies the
following inequality:

e e L= Y
From which, we can write
f® << a) |fe(“a)| (x a) |feofx)| (49)

Inequalities (17) and (49) lead to the following integral
inequality:

r K, (6t ¢)g (0f (t)dt

<K, (x a¢)<lf (@) [[(E=Dgwa o

() [G)e ow)

while (50) gives

FS9(f + 9)(x) < (g () - g (a) [(—'f o] P ) eoff”)].

(51)

() e

From (48), we can write

pon-{ELel




Adopting the same method as we did for (49), the fol-
lowing integral inequality holds:

9 (f+ 9)(0)> - 9(g(0) — g(a )>(|f ) |feff)|)-

(53)

From (51) and (53), (45) can be achieved.
An exponentially convex function | f’| satisfies the fol-

lowing inequality:
(b) —t (x)
THOIE ( )'feabl (b x>|fem| (54)

From which, we can write

) | () —t\|f' (x)i
f(t)<<b ) e (b x) e

Inequalities (21) and (55) lead the following integral
inequality:

(55)

b
| Kyex0g of @ar

i b _
+ |fe§f)| J (:_—i)g' (t)dt),

while (56) gives

b !
FY9(f % 9)(x) <6 (g (b) - g(x ))('f()l |feff)|>-

(57)

From (54), we can write

fl(t)2_<<b x)|fefbb)| (b_—t>|fe(x)|) (58)

Adopting the same method as we did for (55), the fol-
lowing inequality holds:

b !
Fy? (f #9)(x)= - $(g(b) - g (x ))('f ol |fe§f)|)'

(59)
From (57) and (59), (46) can be achieved. O

3. Hadamard Type Inequalities for
Exponentially Convex Function

In this section, we prove the Hadamard type inequality for
an exponentially convex function. In order to prove this
inequality result, we need the following lemma.

Lemma 1 (see [30]). Let f: [a,b] — R be an exponentially
convex function. If f is exponentially symmetric, then the
following inequality holds:
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f(a;b)s o welabl (60)

Theorem 4. Let f: [a,b] — R be positive, exponentially
convex, and symmetric about ((a+b)/2) and g: [a,b]
— R be a differentiable and strictly increasing function.
Also, let (¢/x) be an increasing function on [a,b]. Then, for
a,b €I, a<b, the following estimations of Hadamard type
are valid.

h (a)f(“T”’)((FZf’g (1)) (a) +(F2? (1)) ()

<(F27f) @ +(F27 £) ) (61)

<26(g(b) - g(a ))(f DL Ej)),

where h(a) = e? for a<0 and h(a) = e** for a>0.

Proof. For the kernel of integral operator (11), we have

K, (x,a;gb)g'(x)SKg(b,a;gb)g' (x), x¢€(ab]. (62)

An exponentially convex function satisfies the following
inequality:

Flx)< (x_ Z) f(b) +<b x) f(a) (63)

eocb b-a aa

Inequalities (62) and (63) lead the following integral
inequality:

b
J K, (x.a; )g' (x)f (x)dx

o2

b b-— ,
=)o)

while (64) gives

a !
a)g dx  (64)

o f(a))' (65)

(FE2f)(@)<9(g(b) - gla >>( =~
On the contrary, for the kernel of integral operator (12),
we have

Kg(b,x;gb)g'(x)sKg(b, a;$)g’ (x). (66)

Inequalities (63) and (66) lead the following integral
inequality:
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b
j K, (b,x; $)g' (0 f (x)dx

ko0 [ 5

L0 i)

while the abovementioned inequality gives

(FS2F)(b)<¢(g(b) - g(a >)(f 0 fe ) (68)

ay ,
a)g (x)dx (67)

oa

From (65) and (68), the following inequality can be
obtained:

(FS2 1)) +(FP7 £) (@) <2 (g (b) - g (a >)<

eaa
(69)

Now, using Lemma 1 and multiplying (60) with
K, (x,a;$)g! (x), then integrating over [a,b], we have

J K, (x,a; ¢)f< ) (x)dx
(70)

b
< L — g(x a;$)g' (x)f (x)dx.

From which, we have

f(a;b>(F“(1))( )< T(F"gf)(a) (71)

Again using Lemma 1 and multiplying (60) with
K g(b,x; $)g! (x), then integrating over [a, b], we have

j K, (b,x; ¢)f< )g (x)dx
(72)

b
< J = g(b X; ¢)g (x) f (x)dx.
From which, we have

f(“ ; b)(F¢g<1))(b><—(F f) ®). (73)

From (71) and (73), the following inequality can be
achieved:

f(“ i b)(F;f‘g (1) (@) +(F2 (1) (b)

2
(74)
S ( ) —— (B2 ) (@) +(F22 £) (1))
From (69) and (74), (61) can be achieved. O

Remark 3. For a« =0, in (61), Theorem 3 in [28] can be
achieved.

fb) f(a)>.

Corollary 6. If we put ¢(t) = (t"/k/kl",< (), then the in-
equality (61) produces the following Hadamard type
inequality:

h( )f(

a+b

)(’;1’; (@) +415 ()

<(415 f@+41 £ ) (75)

_2(g(b) - g(a))“”‘(f(b) f(a))
- (krk (‘Ll)) eab eva

Corollary 7. If we put ¢ (t) = (t*/I' (), then the inequality
(61) produces the following Hadamard type inequality:

h(a)f(“T”’)(glb (D@ +41, ()

< (’;Ibi Fl@+t1 . f(b)) (76)
_2g®) - 9@ (fB) | f@)
- F(‘Lt) eab ena

Corollary 8. Ifweput ¢ (t) = (t*’*/kT, (1)) and g as identity
function, then the inequality (61) produces the following
Hadamard type inequality:

h(a)f<“ ; b)(u’; (1) (@) +"15 (1) (®))

<("Iy f(@) + 15 £ (B) (77)

L20-a" (f(h) f@)
- kl"k(y) eab ena

Corollary 9. If we put ¢(t) = (t*/I'(u)) and g as identity
function, then the inequality (61) produces the following
Hadamard type inequality:

h( )f( )("Ibu)(a)ﬂIm(l)(b))

a+b

< (Mzbf fla)+"I.f (b)) (78)

20b-a) (f) fla))
- 1"(‘“) eab exa

4. Concluding Remarks

We have studied an integral operator for exponentially
convex functions; this operator has direct consequences to
several fractional and conformable integral operators. We
have obtained bounds of the integral operator in different
forms. In Theorem 1, upper bounds of this operator are
studied for an exponentially convex function and several



special cases have been presented in the form of propositions
and corollaries. The boundedness is studied in Theorem 2. In
Theorem 3, we have obtained results for differentiable
function f such that | f'| is exponentially convex. A version
of the Hadamard inequality is proved in Theorem 4 which
leads to its several variants for fractional and conformable
integral operators.
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The aim of this paper is to introduce a presumably and remarkably altered integral operator involving the extended generalized
Bessel-Maitland function. Particular properties are considered for the extended generalized Bessel-Maitland function connected
with fractional integral and differential operators. The integral operator connected with operators of the fractional calculus is also
observed. We point out important links to known findings from some individual cases with our key outcomes.

1. Introduction and Preliminaries

The Bessel-Maitland function ];(.) is a generalization of
Bessel function introduced by Ed. Maitland Wright [1]
through a series representation as follows:

S —

Js(2) = Z L(cm+ 9+ 1)m!

m=0

(2,9€C,c>0). (1)

In fact, Watson’s book [2] finds the application of the
Bessel-Maitland function in the diverse field of engineering,
chemical and biological sciences, and mathematical physics.

Further, Pathak [3] defined generalization of the Bessel-
Maitland function J 3”‘; (.) in the form as follows:
S (8)y, (=)

6.0 _ ( qm

Jiq(2) = mZ:O T (m+9+ Dm!
where z € C\(-00,0];¢,9,0 € C,R(¢) =0, R (9) > -1,
R(6)=20;q € (0,1)UN, and (8)qm is known as generalized
Pochhammer symbol which is defined as

(8= 1 @ = L

(2)

(3)

Since the implementation of the Bessel-Maitland func-
tion in 1983, a number of extensions and generalizations
have been introduced and examined with different appli-
cations (see information in [4-9]).

By motivation of these investigations and applications of
the Bessel-Maitland function, Suthar et al. [7] defined the
generalized Bessel-Maitland function (2) in the following
manner:

! X RB,(8+gm,c—0)(c),, (-z)"
Gic . _ p qm
Tsq (z:0) = Z B(8,c - (cm+ 9+ m! ~

m=0

(4)
(p>0,q€N,R(c) >R (6)>0),

which is known as extended generalized Bessel-Maitland
function; here, o (s,t) is the extended beta function (see [10]).

1
B, (st =J 27N (1 - 2) e PPy,
p(s:1) . ( ) 5)

(R(p)>0,R(s)>0,R(t)>0).

For p =0, (5) reduces to beta function (see, e.g., [11],
Section 1.1).

Remark 1

(i) The particular case of equation (4), when p =0,
reduces to (2) and when p = g = 0, reduces to (1).

(ii) When g =1,9=9-1 and z = -z in (4) reduce to
the extended Mittag-Leftler function defined by
Ozarslan and Yilmaz ([12], equation (4)).
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Definition 1. The space of Lebesgue measurable of real or
complex valued function Z(a, b) for our study of the sig-
nificance of fractional calculus is defined as follows:

b
F(a,b) =(f: £l = J f(x)dx < oo). (6)

Definition 2. The Riemann-Liouville (R-L) fractional inte-
gral operators S, and G}_ are defined respectively as (see,
e.g., [13]) follows:

(S0 =1 | =N DA x>0 )

-1
(S0.1) =155 j M- F ML (x<b), ()
where f(x) € Z(a,b),¢ € C, and R (¢) > 0.

Definition 3. For f(x)e £ (a,b);£e C,R(£)>0 and
n=[R(£)] + 1, the Riemann-Liouville fractional differen-
tial operators 9; are defined by (see, e.g., [13])

(2 f) ) =(%) (S5 F) 0. 9

Also, D2 of order 0<£<1 and class 0<v<1 with
reference to x which is the generalized form of (9) (see
[13-15]) is defined as follows:

( J‘r'f) (c'v(l f)d(ic(‘sal+ v) (1- €f)>(x) (10)

On setting v = 0 in (10), it reduces 3f;+
the fractional differential operator.
We found the following baseline findings for our study.

specified in (9) to

Lemma 1 (Mathai and Haubold [16]). If¢,u,e C,R (£) >0,
R (u) >0, then

¢ u-l _ I (u) o \bru-l
(=) () = g sGe-a™ A
Lemma 2 (Srivastava and Manocha [17]). If a function f (z)
is analytic and has a power series representation
f(2) =Y a,z" in the disc |z| <R, then
u-1 I'(u) B (W
LA @ =y Z N (12)

(&) (it wim)=(32)

QB0 +gm,c

>

m=0
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Lemma 3 (Srivastava and Tomovski [18]). Let
x>a,0<€<1,0<v<1,RO)>0 and R(€)>0. Then, the
subsequent result holds true for Z°! f as follows:

r'(9) (x— )™, (13)

Zi[0- W =555

We also provided the subsequent established facts and
rules in this article.
Fubini’s theorem (Dirichlet formula) (Samko et al. [15])

b z b b
j dzJ Flzdt = J dtJ Flondz.  (14)
a a a t
We define the following integral operator in terms of
extended generalized Bessel function for §,w € C,R (¢) >0
and R (9) > 0 for our further analysis of fractional calculus,
then the integral operator

(sser) = [ e (@l - 0% p)f D,

(15)
where x > a.
If we put p = 0 to the operator, then (15) reduces
(Se2,7) 0= [ (=1 (- D) F O
(16)

If w =0, then (16) reduces the integral operator to the
R-L fractional integral operator described in (7).

2. Integral Operators with Extended
Generalized Bessel-Maitland Function in
the Kernel

In this part, we consider the composition of the fractional
integral and derivative of Riemann-Liouville and the frac-
tional derivative of Hilfer with the extended generalized
Bessel-Maitland function defined by (4).

Theorem 1. Suppose ¢, 9,8,c€C, R(¢)>0,R()> -1,

R()>R()>0,(p>0), and g,ne N, then the following
result holds true:

d ! \C —n C
(5) 208 ) == ozsim a7
Proof. Using (4), we see that

B, (8 +gm,c—9) (c)qm (—wz®)™
B(8,c—8)I'(cm+ 9+ 1)m!

(18)

m=0

~8) (g ()" [ d )"z<m+9.

B(8,c— &I (gm + 9+ lym! \dz
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Using the identity,

Im+1) .,

AN o Tlm+D) men, (19
dx "T(m-n+1) -

(&) ) -

Finally, it can be expressed by using (4) again, and we
obtain

d ! 6,05 9 n 16,0:¢ S.
(dZ) (J ((UZ P)) ]9 ng (wz ’p) (21)
O
Corollary 1. Suppose ¢, 9,6 € C, R(¢)>0,R(9)> -1,

R(8)>0,p=0,9€ (0,1)UN, and n € N, then the following
result holds true:

(dd>n( §(02)) =2 (0z). (22)

Theorem 2. If x>a(aeR, = (0,0)), 669 weC,
RWO)>-L,R®)>0,p>0,9 €N, then
[()L a) Icac(w A—a) p)]
(23)

9+ 16,65
] )

§eq(@(x =) p),

=(x—-a)

2L -0 T (0 - ) p)| )

Q B, (8+qgm,c

and after simplifying, we have

= 9) (g (-wz9” (20)

= B(8,c-0l(gm+9-n+1)m!

Proof

(i) Using (4) and (7), we have

[(A )’ 155 (@ - ) p) | ()

%J (A-a) J“”(w(A—a)C;p)(x—A)Z‘ldA

s %’P(6+mq,c—8)(c)mq(—w)m 1
B(8,c -8l (cm+ 9+ Hm! T(0)

m=0

. J (= )™ (x — V')

a

2 B, (8 +mg,c—8)(C)y, (—w)™
B0, c-0)I'(¢cm+ 9+ 1)m!

m=0

(24) (L[ -a)"]) (x).
=(x-a) e]lf,’f’gfq (w(x-a)%;p), (26)
E/V[()L— a) ]q‘sc(w(l )’ )](x) 05) By use of (11), we have
25
=(x-a)” gl‘s’f‘gfq (w(x-a); p),
50| -a' T (00 - p)| 0
QX By (6+mg,c=06)(0)yg (-0)" T(em+9+1) (= a9t
_m:() B(8,c-)TI'(gm+9+1)m! T(gm+9+€+1)
(27)
gre & B, (8 +mg,c (g (~w(x—a))"
=(x-a) Z B(,c—08) T(em+9++1) m
=(x— a)9+€]lf)’fzq (w(x—a);p).

This occupies in the (23) statement.
(ii) On using (9), we have



[u MJ“%wu—m%mkm
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Applying (17), we get

] Lol A= )% (@A - a)%; p) | (x)
_ d ¢ 6.05¢ S. ' i (30)
= (a) ( [ (/1 a) ] ((U (A a) )] ) (x)a _ (x _ a){) €]y9 , (0) (x a)q )
(28)
This completes the desired proof (24).
and using (23), this takes the following form: (iii) By using (4), we obtain
7L |- T (0 - ) p)| 0
4\ (29)
= <a> [ (x - a)s_“”];’fzn’q (w(x-a); p)]
78 a-a)' T (0 -a)s p)| 0
~ v & B, (8 +mg,c—06)(C) g (—w)™ e
‘<g%L;)me—5ﬁ@m+9+nm (*-a) 0 (31)
- B, (6 +mg,c=08) (), (= w)m{ by -
o) B(ac—<5)r(qm+9+1)ml\gfﬂm_”‘)c DS
By applying (13), we get
Za[ 0=’ @0 - p)] )
QX By (6+mgyc=08)(0)yg (-0)" T(em+9+1) (= a)meo-e
&2 B(S,c—-OI(em+9+1)m! T(m+9-e+1)
(32)
B oo & B, (8+mg,c—-0) (g (—w(x—-a))"
=(x-a) mZ:O B(8,c-98) T(cm+9-¢+1) m!

— (x _ a)9—€]c,6;c
which brings in the necessary proof. O

Corollary 2. If x>a(aeR, =(0,00)),6,69,weC,
RWO)>-1L,R@®)>0,p=0,g¢€ (0,1)UN, then Theorem 2
reduces respectively to

S [ - @) T5 (0 - a))] (%) = (x = @)™ 5, (w(x - a)),

Lo | A=a)T5 (0= a))] (x) = (x = @) T§,, (0 (x - a)),

2 A=-a)T5o (0 = a))] (x) = (x = @)” 5, (@ (x - a)°).
(33)

§0q (@A =a);p),

3. Some Propertles of the
Operator (SZ+‘9;f) (x)

In this section, we derive several continuity properties of the
generalized fractional integral operator.

Theorem 3. If §,w e C,R(¢)>0,R(I)> -1,p>0,g €N,
and R (u) >0, then
(Sestel = ]) (0 = (v - T @I, (@(x - ) p)

(34)
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Proof. From (4) and (15), we obtain

(sesla-a )0 = [ 270 - -0 p)ad

_ i .%’P (6 +mg,c—9) (c)mq (—)™
B(8,c—O)I'(¢cm+ 9+ 1)m!

(j = a)" (x - /\)9+‘md)t>

m=0
(8 +mgq,c—08)(c),, (—0)" 1
— P mq u-1 Stem
Z B(8,c — d)m! T(gm+9+1) J (G -ay™ (x-H7dr
(35)
X B, (8+mq,c—0)(c),, (—0)"
— P mq c~cm+9+1 u-1
o) B(3,c - o)m! (@ -]
i S B, (8+mg,c = 8)(€)g (—w)™ T(u) (= @)
= B(8,¢c-9) ml T(gm+9+pu+1)
= (x = @)™ T (W5, (0(x - a)s p).
This completes the desired proof. O Theorem 4. If 669w, ceCR(O)>0,R()> -1,
R()>0,p>0, and q € N, then
Corollary 3. If 8, 0w e C,R(()>0,RD)> -1,R(£) >0, W6
g e (0,1)UN, and R (u)> 0, then |sss0l, < Stol (37)
(st (-0 ]) ) = (= T @I, (@ - a)).  where
(36)
(o) B, (0 ,c—0 m _ —a)m"
§=b-a" Py p (8 +mg, = 8)| (€)1 Fetb-arl” (38)

L BOc-Ol(n+9+ D RO+ ROOm+1)  m!

Z B, (8 +mg, c = 0)] () g || (-)™|
~ B(8,c-0)I'(¢m+9+1)m!

~W;6,05¢

Proof. From (4), (6), and (15), we have ' Saron?|,

b
[sestiol, = | |(Sts0) o]ax .
: xj “ (x—A)”“<9>*”‘<<>mdx]|<pu)|da
_ J j (=D (@ (x ~ Vs p (p(/l)d)tldx al 2
@ (40)
(39)
Setting u = x — A, we obtain
By exchanging the integration order and using Dirichlet
formula (14), we have
B, (0 +mg,c—0)|(c -w)™| (b RO+R(Qm+1  b-a
[sestig] < » (84 mg,c = 8)](¢)ng| | (-0) |J [ " ] - )
a+ivg = B(6c-0I'(¢m+9+1)m! a RO+ R(Qm+1],

This can also be written as

~w;605c
San Sq¢

B, (8 +mgq,c- 5)' (©),, 'l(—w(b -a))|" b
R (9)+1 Z P q _
{ (b-a) = B(8,c =0 (gm+9+1)(R(O) +R(g)m + l)m!}'.[alq)(/\)ldl_ Slglh- “42)

This completes the desired proof. O
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Corollary 4. If 3,69, w,e C,R(¢)>0,R(9)> -1, and where
q € (0,1)UN, then

S peg) IR T (43)

| (8) 0 Fob-a) "

=(b- 44
H=(b-a) ngof(cm+9+l)(2}{(9)+9{(c)m+1) m! (44
Theorem 5 If  £6,6¢9%weCR(>0,RO)> -1, Proof. From (7) and (15), we have
R(6)>0,R(£)>0,p>0,9 €N, and x> a, for any function
f € Z(s9), then the result holds true:
(st [soster]) oo =(S8, ) 00 =S [, ]) .
(45)
w;6,0;¢ 1 x ~W;6,0,¢
(st [sestsr]) =1 | -0 [stster |
(46)
1 * ”
v | e “ -5 (@ - u)‘;p)f(u)du]cu.
By interchanging the order of integration and using (14),
we have
~t | w6 dic 1 -1 QSC G.
(s [suster]) o - J [W J (x— D (A - (@(h = ) p)dd ] x f (u)du (47)
Setting A — u = p, we obtain
&l | swisdie 1 - -1 c6c 13
(st [suster]) o= [ [m [ e o (wp ;p)dp]f(u)du- (48)
By applying (7) and (23), we get
(5 [ssier]) = [ [ormwr sy, (@ -0 )] e (49)
thus, using (15), we get To demonstrate the second part, we start from the right

(st [sesir]) oo = (seas )0 0

side of (45), and using (7) and (15), we have
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(Sastelst )@= | -5 (we- 205 p) [, 7]
- Ju[(x 1) ]““(w(x 1) p)(w) J A —uw)" 1f(u)du>]d)t (51)
_ IR -1 6.0;¢ — 1S
-[ [rw) [fa-w -0t e n ,p)f(u>du]cm
By interchanging the order of integration and using (14),
we obtain
~0;605c [l 1 -1 16,0;¢ 1
(sushelstf]) e = IW” (6= 1) (L= ) 50 (= 1) p)AA] x f (w)du (52)
Setting x — A = p, we have
<°'Z’+“§qc[5€ f]>(x) J r(le) “x P —u—p) T (wp's p)dp | f (w)du (53)
Again, by using (7) and applying (23), we get
(c*:jg HEN] ) (x) = r (e = )™ (w(x — w)s p) f (u)dlus (54)

Finally, using (15), we obtain
(sest st oo =(sesinns ). (s)

Thus, (50) and (55) complete the desired proof of

(45). O

&l | w6l _ [ xw;sd
(‘sa+ [‘sa+;9,qf:| ) (x) ( Say 9+6q

4. Concluding Remark and Discussion

The newly defined integral operators involving the extended
generalized Bessel-Maitland function is investigated here.
Various special cases of the paper’s related results may be
analyzed by taking appropriate values of the relevant pa-
rameters. For example, as given in remarks (i) and (ii), we
obtain the undeniable result due to Gauhar et al. [19, 20]. For
anumber of other special cases, we refer to [21] and leave the
findings to interested readers.
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Corollary 5. If ¢£,6,690weCR()>0,RO)> -1,
R(6)>0,R(£)>0,g€ (0,1)UN, and x>a, for any func-
tion f € £ (¢, 9), then Theorem 5 takes the form:

£) 60 =(8055, [8.4]) 0. (56)

Conflicts of Interest

The authors declare no conflicts of interest.

Authors’ Contributions

All authors contributed equally to the present investigation.
All authors read and approved the final manuscript.

References

[1] O. I. Marichev, Handbook of Integral Transform and Higher
Transcendental Functions, John Wiley and Sons, New York,
NY, USA, 1983.



[2] G. N. Watson, A Treatise on the Theory of Bessel Functions,
Cambridge University Press, Cambridge, UK, 1965.

[3] R.S. Pathak, “Certain convergence theorems and asymptotic
properties of a generalization of Lommel and Maitland
transform,” ceedings of the National Academy of Sciences,
India, Section A, vol. 36, pp. 81-86, 1966.

[4] S. D. Purohit, D. L. Suthar, and S. L. Kalla, “Marichev-Saigo-
Maeda fractional integration operators of the Bessel func-
tions,” Matematiche, vol. 67, no. 1, pp. 12-32, 2012.

[5] D.L.Suthar and H. Amsalu, “Certain integrals associated with
the generalized Bessel-Maitland function,” Applications and
Applied Mathematics, vol. 12, no. 2, pp. 1002-1016, 2017.

[6] D. L. Suthar and H. Habenom, “Integrals involving gener-
alized Bessel-Maitland function,” Journal of Science and Arts,
vol. 37, no. 4, pp. 357-362, 2016.

[7] D.L.Suthar, A. M. Khan, A. Alaria, S. D. Purohit, and J. Singh,
“Extended Bessel-Maitland function and its properties per-
taining to integral transforms and fractional calculus,” AIMS
Mathematics, vol. 5, no. 2, pp. 1400-1410, 2020.

[8] D. L. Suthar, S. D. Purohit, and R. K. Parmar, “Generalized
fractional calculus of the multiindex Bessel function,”
Mathematics in Natural Science, vol. 1, no. 1, pp. 26-32, 2017.

[9] D. L. Suthar, G. V. Reddy, and N. Abeye, “Integral formulas
involving product of Srivastava’s polynomial and generalized
Bessel Maitland functions,” International Journal of Science
and Research, vol. 11, no. 6, pp. 343-351, 2017.

[10] M. A. Chaudhry, A. Qadir, H. M. Srivastava, and R. B. Paris,
“Extended hypergeometric and confluent hypergeometric
functions,” Applied Mathematics and Computation, vol. 159,
no. 2, pp. 589-602, 2004.

[11] H. M. Srivastava and J. Choi, Zeta and Q-Zeta Functions and
Associated Series and Integrals, Elsevier Science Publishers,
Amsterdam, Netherlands, 2012.

[12] M. A. Zarslan and B. Yilmaz, “The extended Mittag-Leftler
function and its properties,” Journal of Inequalities and Ap-
plications, vol. 2014, no. 1, p. 85, 2014.

[13] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and
Applications of Fractional Differential Equations, Elsevier,
Amsterdam, Netherlands, 2006.

[14] S. B. Rao, J. C. Prajapati, A. K. Patel, and A. K. Shukla, “Some
properties of wright-type hypergeometric function via frac-
tional calculus,” Advances in Difference Equations, vol. 2014,
p.- 119, 2014.

[15] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional
Integrals and Derivatives: Theory and Applications, Gordon
and Breach Science Publishers, Yverdon, Switzerland, 1993.

[16] A.M. Mathai and H. J. Haubold, Special Functions for Applied
Scientists, Springer, Berlin, Germany, 2010.

[17] H. M. Srivastava and H. L. Manocha, A Treatise on Generating
Functions, Wiley/Ellis Horwood, New York, NY, USA, 1984.

[18] H. M. Srivastava and Z. Tomovski, “Fractional calculus with
an integral operator containing a generalized Mittag-Leffler
function in the kernel,” Applied Mathematics and Compu-
tation, vol. 211, no. 1, pp. 198-210, 2009.

[19] G. Rahman, P. Agarwal, S. Mubeen, and M. Arshad, “Frac-
tional integral operators involving extended Mittag-Leftler
function as its kernel,” Boletin de la Sociedad Matemadtica
Mexicana, vol. 24, no. 2, pp. 381-392, 2017.

[20] G. Rahman, D. Baleanu, M. Al Qurashi, S. D. Purohit,
S. Mubeen, and M. Arshad, “The extended Mittag-Leffler
function via fractional calculus,” The Journal of Nonlinear
Sciences and Applications, vol. 10, no. 8, pp. 4244-4253, 2017.

[21] T. O. Salim and A. W. Faraj, “A generalization of Mittag-
Leffler function and Integral operator associated with the

Journal of Mathematics

Fractional calculus,” Journal of Fractional Calculus and Ap-
plications, vol. 3, no. 5, pp. 1-13, 2012.



