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Fuzzy set theory provides an intuitive and computationally
simple way to deal with uncertain and ambiguous properties.
Decisions represented in terms of fuzzy sets also offer flexi-
bility in their implementations. On the other hand, nonlinear
programming relaxes the strict assumptions and constraints
in linear programming and hence is more practicable to
handle many decision making problems, which are better
represented in the form of nonlinear programming models.
Combining fuzzy set theory with nonlinear programming
enables it to address the issue of uncertain parameters; the
resulting fuzzy nonlinear programming problem involving
fuzzy parameters can be viewed as an even more practicable
approach than the conventional nonfuzzy one. In light of
advanced computing systems, fuzzy nonlinear programming
becomes one of the most promising approaches to solve
practical application problems. The purpose of this special
issue is to provide recent advances in developing fuzzy non-
linear programming methods and their applications to prac-
ticable and flexible decision making. The target audiences
are researchers in fuzzy mathematics, operations research,
informationmanagement, and system engineering, as well as
practicing managers/engineers. After a strict review process,
ten articles from researchers around the world were finally
accepted. A brief summary of each is described below.

J. d. D. M. Silva et al. discussed the properties of p-
fuzzy dynamical systems that are variational systems of which
dynamic behaviors are regulated by a Mamdani-type fuzzy
system. They used a case study to illustrate a 1-dimensional
p-fuzzy dynamical system and presented some theorems on

the conditions of existence and uniqueness of stationary
points.

H.-R. Tsai and T. Chen proposed a fuzzy nonlinear pro-
gramming (FNLP) approach for optimizing the scheduling
performance of a four-factor fluctuation smoothing rule
in a wafer fabrication factory. The proposed methodology
considered the uncertainty in the remaining cycle time of a
job and optimized a fuzzy four-factor fluctuation-smoothing
rule to sequence the jobs in front of each machine. The fuzzy
four-factor fluctuation-smoothing rule had five adjustable
parameters, the optimization of which resulted in a FNLP
problem.

Most preferred ordered weighted average (MP-OWA)
operators are a new kind of neat OWAoperators in the aggre-
gation operator families. It considers the preferences of all
alternatives across the criteria and provides unique aggrega-
tion characteristics in decision making. X. Sang and X. Liu
established the parametric form of the MP-OWA operator
to deal with uncertain preference information, including the
most commonly used maximum, minimum, and average
aggregation operators. A special form of the parametric MP-
OWA operator with the power function was also proposed in
their study.

The Bonferroni mean (BM) operator is an important
aggregation technique which reflects the correlation of aggre-
gated arguments. J. H. Park andE. J. Park studied the desirable
properties of the fuzzy Bonferroni harmonic mean (FBHM)
operator and the fuzzy ordered Bonferroni harmonic mean
(FOBHM) operator. To consider the correlation of any three
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aggregated arguments, J. H. Park and E. J. Park developed
the generalized fuzzy weighted Bonferroni harmonic mean
(GFWBHM) operator and the generalized fuzzy ordered
weighted Bonferroni harmonic mean (GFOWBHM) oper-
ator. Based on these new operators, they proposed a new
approach to multiple-attribute group decision making and
illustrated the new approach with a practical example.

J. Gang et al. studied a multiproject resource allocation
problem in a bilevel organization. To solve the problem, a
bilevel multiproject resource allocation model with fuzzy or
random variables was established, in which the opinions of
decision makers from two levels were considered. On the
upper level, the company manager aims to allocate the com-
pany’s resources to multiple projects to minimize the total
costs. On the lower level, each project manager attempts to
schedule their resource-constrained projects, withminimiza-
tion of the project duration as the main objective. To search
for the optimal solution, a hybrid approach of adaptive par-
ticle swarm optimization, adaptive hybrid genetic algorithm,
and fuzzy random simulation was proposed.

Y.-C. Lin and T. Chen created an intelligent location-
aware service, in which a timely service was recommended to
the user without changing the user’s pace. To the user, there
were two goals to achieve: one is to reach the service location
just in time and the other is to get to the destination as soon
as possible. To optimize the two objectives at the same time
and to consider the uncertainty in the dynamic environment,
a biobjective fuzzy integer-nonlinear programming problem
was formulated and solved.

L. Wang et al. defined the correlation measures of dual
hesitant fuzzy sets (DHFSs) and discussed their properties.
A direct transfer algorithm for complex matrix synthesis was
also proposed that helps to construct an equivalent correla-
tion matrix for clustering DHFSs. L. Wang et al. also proved
that the direct transfer algorithm is equivalent to the transfer
closure algorithm, but its asymptotic time complexity and
space complexity are superior to the latter.

J. Zhang extended the concepts of preinvex and invex
to the interval-valued functions. Under the assumption of
invexity, the Karush-Kuhn-Tucker optimality of sufficient
and necessary conditions was also proved for interval-valued
nonlinear programming problems. J. Zhang also proved the
Wolfe duality theorem for invex interval-valued nonlinear
programming problems, based on the concept of having no
duality gaps in weak and strong senses.

Fuzzy measures and fuzzy integrals have been success-
fully used in many real applications. However, the determi-
nation of fuzzy measures is still a challenging task. L. Chen,
Z.-T. Gong, and G. Duan proposed a more generalized type
of fuzzy measures by means of genetic algorithm and the
Choquet integral. In this paper, they firstly defined the 𝜎-𝜆
rule then defined and characterized the Choquet integrals of
interval-valued functions and fuzzy functions based on the
𝜎-𝜆 rule.

X. Zhou and Q. Li defined an accuracy function of hesi-
tant fuzzy elements (HFEs) and developed a new method to
compare two HFEs. Then, based on Einstein operators, they
gave some new operational laws on HFEs and some desirable
properties of these operations. Several new hesitant fuzzy

aggregation operators, including the hesitant fuzzy Einstein
weighted geometric (HFEWG

𝜀
) operator and the hesitant

fuzzy Einstein ordered weighted geometric (HFEOWG
𝜀
)

operator, were also developed as the extensions of the
weighted geometric operator and the ordered weighted geo-
metric (OWG) operator with hesitant fuzzy information,
respectively.
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We first define an accuracy function of hesitant fuzzy elements (HFEs) and develop a new method to compare two HFEs. Then,
based on Einstein operators, we give some new operational laws on HFEs and some desirable properties of these operations. We
also develop several new hesitant fuzzy aggregation operators, including the hesitant fuzzy Einstein weighted geometric (HFEWG

𝜀
)

operator and the hesitant fuzzy Einstein ordered weighted geometric (HFEWG
𝜀
) operator, which are the extensions of the

weighted geometric operator and the ordered weighted geometric (OWG) operator with hesitant fuzzy information, respectively.
Furthermore, we establish the connections between the proposed and the existing hesitant fuzzy aggregation operators and discuss
various properties of the proposed operators. Finally, we apply the HFEWG

𝜀
operator to solve the hesitant fuzzy decision making

problems.

1. Introduction

Atanassov [1, 2] introduced the concept of intuitionistic fuzzy
set (IFS) characterized by a membership function and a non-
membership function. It is more suitable to deal with fuzzi-
ness and uncertainty than the ordinary fuzzy set proposed
by Zadeh [3] characterized by one membership function.
Information aggregation is an important research topic in
many applications such as fuzzy logic systems and multiat-
tribute decisionmaking as discussed byChen andHwang [4].
Research on aggregation operators with intuitionistic fuzzy
information has received increasing attention as shown in
the literature. Xu [5] developed some basic arithmetic aggre-
gation operators based on intuitionistic fuzzy values (IFVs),
such as the intuitionistic fuzzy weighted averaging operator
and intuitionistic fuzzy ordered weighted averaging operator,
while Xu and Yager [6] presented some basic geometric
aggregation operators for aggregating IFVs, including the
intuitionistic fuzzy weighted geometric operator and intu-
itionistic fuzzy ordered weighted geometric operator. Based
on these basic aggregation operators proposed in [6] and [5],

many generalized intuitionistic fuzzy aggregation operators
have been investigated [5–30]. Recently, Torra and Narukawa
[31] and Torra [32] proposed the hesitant fuzzy set (HFS),
which is another generalization form of fuzzy set. The char-
acteristic of HFS is that it allows membership degree to have
a set of possible values.Therefore, HFS is a very useful tool in
the situationswhere there are somedifficulties in determining
the membership of an element to a set. Lately, research on
aggregation methods and multiple attribute decision making
theories under hesitant fuzzy environment is very active,
and a lot of results have been obtained for hesitant fuzzy
information [33–43]. For example, Xia et al. [38] developed
some confidence induced aggregation operators for hesitant
fuzzy information. Xia et al. [37] gave several series of hesitant
fuzzy aggregation operators with the help of quasiarithmetic
means. Wei [35] explored several hesitant fuzzy prioritized
aggregation operators and applied them to hesitant fuzzy
decision making problems. Zhu et al. [43] investigated the
geometric Bonferroni mean combining the Bonferroni mean
and the geometric mean under hesitant fuzzy environment.
Xia and Xu [36] presented some hesitant fuzzy operational
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laws based on the relationship between the HFEs and the
IFVs. They also proposed a series of aggregation operators,
such as hesitant fuzzy weighted geometric (HFWG) operator
and hesitant fuzzy ordered weighted geometric (HFOWG)
operator. Furthermore, they applied the proposed aggrega-
tion operators to solve the multiple attribute decisionmaking
problems.

Note that all aggregation operators introduced previously
are based on the algebraic product and algebraic sum of IFVs
(orHFEs) to carry out the combination process. However, the
algebraic operations include algebraic product and algebraic
sum, which are not the unique operations that can be used to
perform the intersection and union.There aremany instances
of various t-norms and t-conorms families which can be
chosen tomodel the corresponding intersections and unions,
among which Einstein product and Einstein sum are good
alternatives for they typically give the same smooth approxi-
mation as algebraic product and algebraic sum, respectively.
For intuitionistic fuzzy information,Wang and Liu [10, 11, 44]
and Wei and Zhao [30] developed some new intuitionistic
fuzzy aggregation operators with the help of Einstein oper-
ations. For hesitant fuzzy information, however, it seems that
in the literature there is little investigation on aggregation
techniques using the Einstein operations to aggregate hesitant
fuzzy information. Therefore, it is necessary to develop some
hesitant fuzzy information aggregation operators based on
Einstein operations.

The remainder of this paper is structured as follows.
In Section 2, we briefly review some basic concepts and
operations related to IFS andHFS. we also define an accuracy
function of HFEs to distinguish the two HFEs having the
same score values, based on which we give the new com-
parison laws on HFEs. In Section 3, we present some new
operations for HFEs and discuss some basic properties of the
proposed operations. In Section 4, we develop some novel
hesitant fuzzy geometric aggregation operators with the help
of Einstein operations, such as theHFEWG

𝜀
operator and the

HFEOWG
𝜀
operator, and we further study various properties

of these operators. Section 5 gives an approach to solve the
multiple attribute hesitant fuzzy decision making problems
based on the HFEOWG

𝜀
operator. Finally, Section 6 con-

cludes the paper.

2. Preliminaries

In this section, we briefly introduce Einstein operations and
some notions of IFS and HFS. Meantime, we define an
accuracy function of HFEs and redefine the comparison laws
between two HFEs.

2.1. Einstein Operations. Since the appearance of fuzzy set
theory, the set theoretical operators have played an important
role and received more and more attention. It is well known
that the t-norms and t-conorms are the general concepts
including all types of the specific operators, and they satisfy
the requirements of the conjunction and disjunction opera-
tors, respectively. There are various t-norms and t-conorms
families that can be used to perform the corresponding inter-
sections and unions. Einstein sum ⊕

𝜀
and Einstein product

⊗
𝜀
are examples of t-conorms and t-norms, respectively.They

are called Einstein operations and defined as [45]

𝑥⊗
𝜀
𝑦 =

𝑥 ⋅ 𝑦

1 + (1 − 𝑥) ⋅ (1 − 𝑦)

, 𝑥⊗
𝜀
𝑦 =

𝑥 + 𝑦

1 + 𝑥 ⋅ 𝑦

,

∀𝑥, 𝑦 ∈ [0, 1] .

(1)

2.2. Intuitionistic Fuzzy Set. Atanassov [1, 2] generalized
the concept of fuzzy set [3] and defined the concept of
intuitionistic fuzzy set (IFS) as follows.

Definition 1. Let 𝑈 be fixed an IFS𝐴 on 𝑈 is given by;

𝐴 = {⟨𝑥, 𝜇
𝐴
(𝑥) , ]

𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑈} , (2)

where 𝜇
𝐴

: 𝑈 → [0, 1] and ]
𝐴

: 𝑈 → [0, 1], with the
condition 0 ≤ 𝜇

𝐴
(𝑥) + ]

𝐴
(𝑥) ≤ 1 for all 𝑥 ∈ 𝑈. Xu [5] called

𝑎 = (𝜇
𝑎
, ]
𝑎
) an IFV.

For IFVs, Wang and Liu [11] introduced some operations
as follows.

Let 𝜆 > 0, 𝑎
1
= (𝜇
𝑎
1

, ]
𝑎
1

) and 𝑎
2
= (𝜇
𝑎
2

, ]
𝑎
2

) be two IFVs;
then

(1) 𝑎
1
⊗
𝜀
𝑎
2
= (

𝜇
𝑎
1

+ 𝜇
𝑎
2

1 + 𝜇
𝑎
1

𝜇
𝑎
2

,

]
𝑎
1

]
𝑎
2

1 + (1 − ]
𝑎
1

) (1 − ]
𝑎
2

)

)

(2) 𝑎
1
⊗
𝜀
𝑎
2
= (

𝜇
𝑎
1

𝜇
𝑎
2

1 + (1 − 𝜇
𝑎
1

) (1 − 𝜇
𝑎
2

)

,

]
𝑎
1

+ ]
𝑎
2

1 + ]
𝑎
1

]
𝑎
2

)

(3) 𝑎
∧
𝜀
𝜆

1
= (

2]𝜆
𝑎
1

(2 − ]
𝑎
1

)

𝜆

+ ]𝜆
𝑎
1

,

(1 + 𝜇
𝑎
1

)

𝜆

− (1 − 𝜇
𝑎
1

)

𝜆

(1 + 𝜇
𝑎
1

)

𝜆

+ (1 − 𝜇
𝑎
1

)

𝜆

) .

(3)

2.3. Hesitant Fuzzy Set. As another generalization of fuzzy
set, HFS was first introduced by Torra and Narukawa [31, 32].

Definition 2. Let𝑋 be a reference set; anHFS on𝑋 is in terms
of a function that when applied to𝑋 returns a subset of [0, 1].

To be easily understood, Xia and Xu use the following
mathematical symbol to express the HFS:

𝐻 = {

ℎ
𝐻
(𝑥)

𝑥

| 𝑥 ∈ 𝑋} , (4)

where ℎ
𝐻
(𝑥) is a set of some values in [0, 1], denoting the

possible membership degrees of the element 𝑥 ∈ 𝑋 to the set
𝐻. For convenience, Xu and Xia [40] called ℎ

𝐻
(𝑥) a hesitant

fuzzy element (HFE).
Let ℎ be an HFE, ℎ− = min{𝛾 | 𝛾 ∈ ℎ}, and ℎ+ = max{𝛾 |

𝛾 ∈ ℎ}. Torra and Narukawa [31, 32] define the IFV 𝐴env(ℎ)
as the envelope of ℎ, where 𝐴env(ℎ) = (ℎ

−

, 1 − ℎ
+

).
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Let𝛼 > 0, ℎ
1
and ℎ
2
be twoHFEs. Xia andXu [36] defined

some operations as follows:

(4) ℎ
1
⨁ℎ
2
= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{𝛾
1
+ 𝛾
2
− 𝛾
1
𝛾
2
}

(5) ℎ
1
⨂ℎ
2
= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{𝛾
1
𝛾
2
}

(6) 𝛼ℎ = ⋃

𝛾∈ℎ

{𝛾
𝛼

}

(7) ℎ
𝛼

= ⋃

𝛾∈ℎ

{1 − (1 − 𝛾)
𝛼

} .

(5)

In [36], Xia and Xu defined the score function of an
HFE ℎ to compare the HFEs and gave the comparison laws.

Definition 3. Let ℎ be anHFE; 𝑠(ℎ) = (1/𝑛(ℎ))∑
𝛾∈ℎ

𝛾 is called
the score function of ℎ, where 𝑛(ℎ) is the number of values of
ℎ. For two HFEs ℎ

1
and ℎ

2
, if 𝑠(ℎ

1
) > 𝑠(ℎ

2
), then ℎ

1
> ℎ
2
; if

𝑠(ℎ
1
) = 𝑠(ℎ

2
), then ℎ

1
= ℎ
2
.

From Definition 3, it can be seen that all HFEs are
regarded as the same if their score values are equal. In hesitant
fuzzy decision making process, however, we usually need to
compare two HFEs for reordering or ranking. In the case
where two HFEs have the same score values, they can not
be distinguished by Definition 3. Therefore, it is necessary to
develop a new method to overcome the difficulty.

For an IFV, Hong and Choi [46] showed that the relation
between the score function and the accuracy function is sim-
ilar to the relation between mean and variance in statistics.
From Definition 3, we know that the score value of HFE ℎ is
just themean of the values in ℎ.Motivated by the idea ofHong
and Choi [46], we can define the accuracy function of HFE ℎ

by using the variance of the values in ℎ.

Definition 4. Let ℎ be an HFE; 𝑘(ℎ) = 1 −

√(1/𝑛(ℎ))∑
𝛾∈ℎ

(𝛾 − 𝑠(ℎ))
2 is called the accuracy function of

ℎ, where 𝑛(ℎ) is the number of values in ℎ and 𝑠(ℎ) is the
score function of ℎ.

It is well known that an efficient estimator is a measure
of the variance of an estimate’s sampling distribution in
statistics: the smaller the variance, the better the performance
of the estimator. Motivated by this idea, it is meaningful and
appropriate to stipulate that the higher the accuracy degree
of HFE, the better the HFE. Therefore, in the following, we
develop a new method to compare two HFEs, which is based
on the score function and the accuracy function, defined as
follows.

Definition 5. Let ℎ
1
and ℎ

2
be two HFEs and let 𝑠(⋅) and

𝑘(⋅) be the score function and accuracy function of HFEs,
respectively. Then

(1) if 𝑠(ℎ
1
) < 𝑠(ℎ

2
), then ℎ

1
is smaller than ℎ

2
, denoted by

ℎ
1
≺ ℎ
2
;

(2) if 𝑠(ℎ
1
) = 𝑠(ℎ

2
), then

(i) if 𝑘(ℎ
1
) < 𝑘(ℎ

2
), then ℎ

1
is smaller than ℎ

2
,

denoted by ℎ
1
≺ ℎ
2
;

(ii) if 𝑘(ℎ
1
) = 𝑘(ℎ

2
), then ℎ

1
and ℎ

2
represent

the same information, denoted by ℎ
1
≐ ℎ
2
. In

particular, if 𝛾
1
= 𝛾
2
for any 𝛾

1
∈ ℎ
1
and 𝛾
2
∈ ℎ
2
,

then ℎ
1
is equal to ℎ

2
, denoted by ℎ

1
= ℎ
2
.

Example 6. Let ℎ
1
= {0.5}, ℎ

2
= {0.1, 0.9}, ℎ

3
= {0.3, 0.7},

ℎ
4

= {0.1, 0.3, 0.7, 0.9}, ℎ
5

= {0.2, 0.4, 0.6, 0.8}, and ℎ
6

=

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}; then 𝑠(ℎ
1
) = 𝑠(ℎ

2
) =

𝑠(ℎ
3
) = 𝑠(ℎ

4
) = 𝑠(ℎ

5
) = 𝑠(ℎ

6
) = 0.5, 𝑘(ℎ

1
) = 1, 𝑘(ℎ

2
) = 0.6,

𝑘(ℎ
3
) = 0.8, 𝑘(ℎ

4
) = 0.6838, 𝑘(ℎ

5
) = 0.7764, and 𝑘(ℎ

6
) =

0.7418. By Definition 5, we have ℎ
1
≻ ℎ
3
≻ ℎ
5
≻ ℎ
6
≻ ℎ
4
≻ ℎ
2
.

3. Einstein Operations of Hesitant Fuzzy Sets

In this section, we will introduce the Einstein operations
on HFEs and analyze some desirable properties of these
operations.Motivated by the operational laws (1)–(3) on IFVs
and based on the interconnection between HFEs and IFVs,
we give some new operations of HFEs as follows.

Let 𝛼 > 0, ℎ, ℎ
1
, and ℎ

2
be three HFEs; then

(8) ℎ
1
⊗
𝜀
ℎ
2
= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{

𝛾
1
+ 𝛾
2

1 + 𝛾
1
𝛾
2

} ,

(9) ℎ
1
⊗
𝜀
ℎ
2
= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{

𝛾
1
𝛾
2

1 + (1 − 𝛾
1
) (1 − 𝛾

2
)

} ,

(10) ℎ
∧
𝜀
𝛼

= ⋃

𝛾∈ℎ

{

2𝛾
𝛼

(2 − 𝛾)
𝛼

+ 𝛾
𝛼

} .

(6)

Proposition 7. Let 𝛼 > 0, 𝛼
1
> 0, 𝛼

2
> 0, ℎ, ℎ

1
and ℎ
2
be three

HFEs; then

(1) ℎ
1
⊗
𝜀
ℎ
2
= ℎ
2
⊗
𝜀
ℎ
1
,

(2) (ℎ
1
⊗
𝜀
ℎ
2
)⊗
𝜀
ℎ
3
= ℎ
1
⊗
𝜀
(ℎ
2
⊗
𝜀
ℎ
3
),

(3) (ℎ
1
⊗
𝜀
ℎ
2
)
∧
𝜀
𝛼

= ℎ
∧
𝜀
𝛼

1
⊗
𝜀
ℎ
∧
𝜀
𝛼

2
,

(4) (ℎ∧𝜀𝛼1)∧𝜀𝛼2 = ℎ
∧
𝜀
(𝛼
1
𝛼
2
);

(5) 𝐴 env(ℎ
∧
𝜀
𝛼

) = (𝐴 env(ℎ))
∧
𝜀
𝛼,

(6) 𝐴 env(ℎ1⊗𝜀ℎ2) = 𝐴 env(ℎ1)⊗𝜀𝐴 env(ℎ2).

Proof. (1) It is trivial.
(2) By the operational law (9), we have

(ℎ
1
⊗
𝜀
ℎ
2
) ⊗
𝜀
ℎ
3

= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,𝛾
3
∈ℎ
3

{ ((𝛾
1
𝛾
2
/ (1 + (1 − 𝛾

1
) (1 − 𝛾

2
))) 𝛾
3
)

× (1 + (1 − (𝛾
1
𝛾
2
/ (1 + (1 − 𝛾

1
) (1 − 𝛾

2
))))

× (1 − 𝛾
3
))
−1

}
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= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,𝛾
3
∈ℎ
3

{ (𝛾
1
𝛾
2
𝛾
3
) × (1 + (1 − 𝛾

1
) (1 − 𝛾

2
)

+ (1 − 𝛾
1
) (1 − 𝛾

3
) + (1 − 𝛾

2
)

× (1 − 𝛾
3
))
−1

}

= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,𝛾
3
∈ℎ
3

{ (𝛾
1
(𝛾
2
𝛾
3
/ (1 + (1 − 𝛾

2
) (1 − 𝛾

3
))))

× (1 + (1 − 𝛾
1
)

× (1 − (𝛾
2
𝛾
3
/ (1 + (1 − 𝛾

2
) (1 − 𝛾

3
)))))
−1

}

= ℎ
1
⊗
𝜀
(ℎ
2
⊗
𝜀
ℎ
3
) .

(7)

(3) Let ℎ = ℎ
1
⊗
𝜀
ℎ
2
; then ℎ = ℎ

1
⊗
𝜀
ℎ
2

=

⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{𝛾
1
𝛾
2
/(1 + (1 − 𝛾

1
)(1 − 𝛾

2
))}

(ℎ
1
⊗
𝜀
ℎ
2
)
∧
𝜀
𝛼

= ℎ
∧
𝜀
𝛼

= ⋃

𝛾∈ℎ

{

2𝛾
𝛼

(2 − 𝛾)
𝛼

+ 𝛾
𝛼

}

= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{ (2(𝛾
1
𝛾
2
/ (1 + (1 − 𝛾

1
) (1 − 𝛾

2
)))
𝛼

)

× ((2 − (𝛾
1
𝛾
2
/ (1 + (1 − 𝛾

1
) (1 − 𝛾

2
))))
𝛼

+ (𝛾
1
𝛾
2
/ (1 + (1 − 𝛾

1
) (1 − 𝛾

2
)))
𝛼

)

−1

}

= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{

2(𝛾
1
𝛾
2
)
𝛼

(4 − 2𝛾
1
− 2𝛾
2
+ 𝛾
1
𝛾
2
)
𝛼

+ (𝛾
1
𝛾
2
)
𝛼
} ,

= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{

2(𝛾
1
𝛾
2
)
𝛼

(2 − 𝛾
1
)
𝛼

(2 − 𝛾
2
)
𝛼

+ (𝛾
1
𝛾
2
)
𝛼
} .

(8)

Since ℎ
∧
𝜀
𝛼

1
= ⋃

𝛾
1
∈ℎ
{2𝛾
𝛼

1
/((2 − 𝛾

1
)
𝛼

+ 𝛾
𝛼

1
)} and ℎ

∧
𝜀
𝛼

2
=

⋃
𝛾
2
∈ℎ
{2𝛾
𝛼

2
/((2 − 𝛾

2
)
𝛼

+ 𝛾
𝛼

2
)}, then

ℎ
∧
𝜀
𝛼

1
⊗
𝜀
ℎ
∧
𝜀
𝛼

2

= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{ ((2𝛾
𝛼

1
/ ((2 − 𝛾

1
)
𝛼

+ 𝛾
𝛼

1
))

⋅ (2𝛾
𝛼

2
/ ((2 − 𝛾

2
)
𝛼

+ 𝛾
𝛼

2
)))

× (1 + (1 − (2𝛾
𝛼

1
/ ((2 − 𝛾

1
)
𝛼

+ 𝛾
𝛼

1
)))

× (1 − (2𝛾
𝛼

2
/ ((2 − 𝛾

2
)
𝛼

+ 𝛾
𝛼

2
))))

−1

}

= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{

2(𝛾
1
𝛾
2
)
𝛼

(2 − 𝛾
1
)
𝛼

(2 − 𝛾
2
)
𝛼

+ (𝛾
1
𝛾
2
)
𝛼
} .

(9)

Thus (ℎ
1
⊗
𝜀
ℎ
2
)
∧
𝜀
𝛼

= ℎ
∧
𝜀
𝛼

1
⊗
𝜀
ℎ
∧
𝜀
𝛼

2
.

(4) Since ℎ∧𝜀𝛼1 = ⋃
𝛾∈ℎ

{2𝛾
𝛼
1
/((2 − 𝛾)

𝛼
1
+ 𝛾
𝛼
1
)}, then

(ℎ
∧
𝜀
𝛼
1
)
∧
𝜀
𝛼
2

= ⋃

𝛾∈ℎ

{ (2(2𝛾
𝛼
1
/ ((2 − 𝛾)

𝛼
1

+ 𝛾
𝛼
1
))

𝛼
2

)

× ((2 − (2𝛾
𝛼
1
/ ((2 − 𝛾)

𝛼
1

+ 𝛾
𝛼
1
)))

𝛼2

+ (2𝛾
𝛼
1
/ ((2 − 𝛾)

𝛼
1

+ 𝛾
𝛼
1
))

𝛼
2

)

−1

}

= ⋃

𝛾∈ℎ

{

2𝛾
(𝛼
1
𝛼
2
)

(2 − 𝛾)
(𝛼
1
𝛼
2
)

+ 𝛾
(𝛼
1
𝛼
2
)

}

= ℎ
∧
𝜀
(𝛼
1
𝛼
2
)

.

(10)

(5) By the definition of the envelope of an HFE and the
operation laws (3) and (10), we have

(𝐴env (ℎ))
∧
𝜀
𝛼

= (ℎ
−

, 1 − ℎ
+

)

∧
𝜀
𝛼

= (

2(ℎ
−

)
𝛼

(2 − ℎ
−
)
𝛼

+ (ℎ
−
)
𝛼
,

[1 + (1 − ℎ
+

)]
𝛼

− [1 − (1 − ℎ
+

)]

𝛼

[1 + (1 − ℎ
+
)]
𝛼

+ [1 − (1 − ℎ
+
)]
𝛼
)

= (

2(ℎ
−

)
𝛼

(2 − ℎ
−
)
𝛼

+ (ℎ
−
)
𝛼
,

(2 − ℎ
+

)
𝛼

− (ℎ
+

)
𝛼

(2 − ℎ
+
)
𝛼

+ (ℎ
+
)
𝛼
) .

𝐴env (ℎ
∧
𝜀
𝛼

)

= 𝐴env (⋃

𝛾∈ℎ

{

2𝛾
𝛼

(2 − 𝛾)
𝛼

+ 𝛾
𝛼

})

= (

2(ℎ
−

)
𝛼

(2 − ℎ
−
)
𝛼

+ (ℎ
−
)
𝛼
, 1 −

2(ℎ
+

)
𝛼

(2 − ℎ
+
)
𝛼

+ (ℎ
+
)
𝛼
)

= (

2(ℎ
−

)
𝛼

(2 − ℎ
−
)
𝛼

+ (ℎ
−
)
𝛼
,

(2 − ℎ
+

)
𝛼

− (ℎ
+

)
𝛼

(2 − ℎ
+
)
𝛼

+ (ℎ
+
)
𝛼
) .

(11)

Thus, 𝐴env(ℎ
∧
𝜀
𝛼

) = (𝐴env(ℎ))
∧
𝜀
𝛼.

(6) By the definition of the envelope of an HFE and the
operation laws (2) and (9), we have

𝐴env (ℎ1) ⊗𝜀𝐴env (ℎ2)

= (ℎ
−

1
, 1 − ℎ

+

1
) ⊗
𝜀
(ℎ
−

2
, 1 − ℎ

+

2
)

= (

ℎ
−

1
ℎ
−

2

1 + (1 − ℎ
−

1
) (1 − ℎ

−

2
)

,

(1 − ℎ
+

1
) + (1 − ℎ

+

2
)

1 + (1 − ℎ
+

1
) (1 − ℎ

+

2
)

)
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𝐴env (ℎ1⊗𝜀ℎ2)

= 𝐴env ( ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{

𝛾
1
𝛾
2

1 + (1 − 𝛾
1
) (1 − 𝛾

2
)

})

= (

ℎ
−

1
ℎ
−

2

1 + (1 − ℎ
−

1
) (1 − ℎ

−

2
)

, 1 −

ℎ
+

1
ℎ
+

2

1 + (1 − ℎ
+

1
) (1 − ℎ

+

2
)

)

= (

ℎ
−

1
ℎ
−

2

1 + (1 − ℎ
−

1
) (1 − ℎ

−

2
)

,

(1 − ℎ
+

1
) + (1 − ℎ

+

2
)

1 + (1 − ℎ
+

1
) (1 − ℎ

+

2
)

) .

(12)

Thus, 𝐴env(ℎ1⊗𝜀ℎ2) = 𝐴env(ℎ1)⊗𝜀𝐴env(ℎ2).

Remark 8. Let 𝛼
1
> 0, 𝛼

2
> 0, and ℎ be an HFE. It is worth

noting that ℎ∧𝜀𝛼1⊗
𝜀
ℎ
∧
𝜀
𝛼
2
≐ ℎ
∧
𝜀
(𝛼
1
+𝛼
2
) does not hold necessarily

in general. To illustrate that, an example is given as follows.

Example 9. Let ℎ = (0.3, 0.5), 𝛼
1

= 𝛼
2

= 1; then
ℎ
∧
𝜀
𝛼
1
⊗
𝜀
ℎ
∧
𝜀
𝛼
2

= ℎ⊗
𝜀
ℎ = ⋃

𝛾
𝑖
∈ℎ,𝛾
𝑗
∈ℎ,(𝑖,𝑗=1,2)

{𝛾
𝑖
𝛾
𝑗
/(1 + (1 −

𝛾
𝑖
)(1 − 𝛾

𝑗
))} = (0.0604, 0.1111, 0.2), and ℎ

∧
𝜀
(𝛼
1
+𝛼
2
)

=

ℎ
∧
𝜀
2

= ⋃
𝛾∈ℎ

{2𝛾
2

/((2 − 𝛾)
2

+ 𝛾
2

)} = (0.0604, 0.2). Clearly,
𝑠(ℎ
∧
𝜀
𝛼
1
⊗
𝜀
ℎ
∧
𝜀
𝛼
2
) = 0.1238 < 0.1302 = 𝑠(ℎ

∧
𝜀
(𝛼
1
+𝛼
2
)

). Thus
ℎ
∧
𝜀
𝛼
1
⊗
𝜀
ℎ
∧
𝜀
𝛼
1
≺ ℎ
∧
𝜀
(𝛼
1
+𝛼
2
).

However, if the number of the values in ℎ is only one, that
is, HFE ℎ is reduced to a fuzzy value, then the above result
holds.

Proposition 10. Let 𝛼
1
> 0, 𝛼

2
> 0, and ℎ be an HFE, in

which the number of the values is only one, that is, ℎ = {𝛾};
then ℎ∧𝜀𝛼1⊗

𝜀
ℎ
∧
𝜀
𝛼
2
= ℎ
∧
𝜀
(𝛼
1
+𝛼
2
).

Proof. Since ℎ∧𝜀𝛼1 = ⋃
𝛾∈ℎ

{2𝛾
𝛼
1
/((2 − 𝛾)

𝛼
1
+ 𝛾
𝛼
1
)} and ℎ∧𝜀𝛼2 =

⋃
𝛾∈ℎ

{2𝛾
𝛼
2
/((2 − 𝛾)

𝛼
2
+ 𝛾
𝛼
2
)}, then

ℎ
∧
𝜀
𝛼
1
⊗
𝜀
ℎ
∧
𝜀
𝛼
1

= ⋃

𝛾∈ℎ

{ ((2𝛾
𝛼
1
/ ((2 − 𝛾)

𝛼
1

+ 𝛾
𝛼
1
))

⋅ (2𝛾
𝛼
2
/ ((2 − 𝛾)

𝛼
2

+ 𝛾
𝛼
2
)))

× (1 + (1 − (2𝛾
𝛼
1
/ ((2 − 𝛾)

𝛼
1

+ 𝛾
𝛼
1
)))

× (1 − (2𝛾
𝛼
2
/ ((2 − 𝛾)

𝛼
2

+ 𝛾
𝛼
2
))))

−1

}

= ⋃

𝛾∈ℎ

{ (2𝛾
𝛼
1
⋅ 2𝛾
𝛼
2
) × ([(2 − 𝛾)

𝛼
1

+ 𝛾
𝛼
1
] ⋅ [(2 − 𝛾)

𝛼
2

+ 𝛾
𝛼
2
]

+ [(2 − 𝛾)
𝛼
1

− 𝛾
𝛼
1
]

⋅ [(2 − 𝛾)
𝛼
2

− 𝛾
𝛼
2
])

−1

}

= ⋃

𝛾∈ℎ

{

2𝛾
𝛼
1
+𝛼
2

(2 − 𝛾)
𝛼
1
+𝛼
2

+ 𝛾
𝛼
1
+𝛼
2

}

= ℎ
∧
𝜀
(𝛼
1
+𝛼
2
)

.

(13)

Proposition 10 shows that it is consistent with the result
(iii) in Theorem 2 in the literature [11].

4. Hesitant Fuzzy Einstein Geometric
Aggregation Operators

The weighted geometric operator [47] and the ordered
weighted geometric operator [48] are two of the most com-
mon and basic aggregation operators. Since their appearance,
they have received more and more attention. In this section,
we extend them to aggregate hesitant fuzzy information using
Einstein operations.

4.1. Hesitant Fuzzy Einstein Geometric Weighted Aggregation
Operator. Based on the operational laws (5) and (7) onHFEs,
Xia and Xu [36] developed some hesitant fuzzy aggregation
operators as listed below.

Let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs; then.

(1) the hesitant fuzzy weighted geometric (HFWG) oper-
ator

HFWG (ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) =

𝑛

⨂

𝑗=1

ℎ
𝑗

𝜔
𝑗

= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{

{

{

𝑛

∏

𝑗=1

𝛾
𝑗

𝜔
𝑗

}

}

}

,

(14)

where 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 is the weight vector of ℎ

𝑗
(𝑗 =

1, 2, . . . , 𝑛) with 𝜔
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝜔
𝑗
= 1.

(2) the hesitant fuzzy ordered weighted geometric
(HFOWG) operator

HFOWG (ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

=

𝑛

⨂

𝑗=1

𝑤
𝑗

ℎ
𝜎(𝑗)

= ⋃

𝛾
𝜎(1)
∈ℎ
𝜎(1)
,𝛾
𝜎(2)
∈ℎ
𝜎(2)
,...,𝛾
𝜎(𝑛)
∈ℎ
𝜎(𝑛)

{

{

{

𝑛

∏

𝑗=1

𝛾

𝑤
𝑗

𝜎(𝑗)

}

}

}

,

(15)

where 𝜎(1), 𝜎(2), . . . , 𝜎(𝑛) is a permutation of 1, 2, . . . , 𝑛,
such that ℎ

𝜎(𝑗−1)
> ℎ
𝜎(𝑗)

for all 𝑗 = 2, . . . , 𝑛 and 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is aggregation-associated vector with 𝑤

𝑗
∈

[0, 1] and ∑𝑛
𝑗=1

𝑤
𝑗
= 1.

For convenience, let𝐻 be the set of all HFEs. Based on the
proposed Einstein operations onHFEs, we develop some new
aggregation operators for HFEs and discuss their desirable
properties.
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Definition 11. Let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs.

A hesitant fuzzy Einstein weighted geometric (HFEWG
𝜀
)

operator of dimension 𝑛 is a mapping HFEWG
𝜀
: 𝐻
𝑛

→ 𝐻

defined as follows:

HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

=

𝑛

⨂
𝜀

𝑗=1

ℎ

∧
𝜀
𝜔
𝑗

𝑗

= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{

{

{

2∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)

𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗

}

}

}

,

(16)

where 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the weight vector of ℎ

𝑗
(𝑗 =

1, 2, . . . , 𝑛) and 𝑤
𝑗
> 0,∑𝑛

𝑗=1
𝑤
𝑗
= 1. In particular, when 𝑤

𝑗
=

1/𝑛, 𝑗 = 1, 2, . . . , 𝑛, the HFEWG
𝜀
operator is reduced to the

hesitant fuzzy Einstein geometric (HFEG
𝜀
) operator:

HFEG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{

{

{

2∏
𝑛

𝑗=1
𝛾
1/𝑛

𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)

1/𝑛

+∏
𝑛

𝑗=1
𝛾
1/𝑛

𝑗

}

}

}

.

(17)

From Proposition 10, we easily get the following result.

Corollary 12. If all ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) are equal and the

number of values in ℎ
𝑗
is only one, that is, ℎ

𝑗
= ℎ = {𝛾} for

all 𝑗 = 1, 2, . . . , 𝑛, then

HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) = ℎ. (18)

Note that the HFEWG
𝜀
operator is not idempotent in

general; we give the following example to illustrate this case.

Example 13. Let ℎ
1

= ℎ
2

= ℎ
3

= ℎ = (0.3, 0.7), 𝑤 =

(0.4, 0.25, 0.35)
𝑇; then HFEWG

𝜀
(ℎ
1
, ℎ
2
, ℎ
3
) = {0.3, 0.4137,

0.3782, 0.5126, 0.4323, 0.579, 0.5342, 0.7}. ByDefinition 3, we
have 𝑠(HFEWG

𝜀
(ℎ
1
, ℎ
2
, ℎ
3
)) = 0.4812 < 0.5 = 𝑠(ℎ). Hence

HFEWG
𝜀
(ℎ
1
, ℎ
2
, ℎ
3
) ≺ ℎ.

Lemma 14 (see [18, 49]). Let 𝛾
𝑗
> 0, 𝑤

𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑛,

and ∑𝑛
𝑗=1

𝑤
𝑗
= 1. Then

𝑛

∏

𝑗=1

𝛾

𝑤
𝑗

𝑗
≤

𝑛

∑

𝑗=1

𝑤
𝑗
𝛾
𝑗 (19)

with equality if and only if 𝛾
1
= 𝛾
2
= ⋅ ⋅ ⋅ = 𝛾

𝑛
.

Theorem 15. Let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs

and 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 the weight vector of ℎ

𝑗
(𝑗 =

1, 2, . . . , 𝑛) with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1. Then

HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⪰ HFWG (ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
) , (20)

where the equality holds if only if all ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) are

equal and the number of values in ℎ
𝑗
is only one.

Proof. For any 𝛾
𝑗
∈ ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛), by Lemma 14, we have

𝑛

∏

𝑗=1

(2 − 𝛾
𝑗
)

𝑤
𝑗

+

𝑛

∏

𝑗=1

𝛾

𝑤
𝑗

𝑗
≤

𝑛

∑

𝑗=1

𝑤
𝑗
(2 − 𝛾

𝑗
) +

𝑛

∑

𝑗=1

𝑤
𝑗
𝛾
𝑗
= 2. (21)

Then

2∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)

𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗

≥

𝑛

∏

𝑗=1

𝛾

𝜔
𝑗

𝑗
. (22)

It follows that 𝑠(⊗
𝜀

𝑛

𝑗=1
ℎ

∧
𝜀
𝜔
𝑗

𝑗
) ≥ 𝑠(⊗

𝜀

𝑛

𝑗=1
ℎ

𝜔
𝑗

𝑗
), which completes

the proof of Theorem 15.

Theorem 15 tells us the result that the HFEWG
𝜀
operator

shows the decision maker’s more optimistic attitude than the
HFWA operator proposed by Xia and Xu [36] (i.e., (15)) in
aggregation process. To illustrate that, we give an example
adopted from Example 1 in [36] as follows.

Example 16. Let ℎ
1
= (0.2, 0.3, 0.5), ℎ

2
= (0.4, 0.6) be two

HFEs, and let 𝑤 = (0.7, 0.3)
𝑇 be the weight vector of ℎ

𝑗
(𝑗 =

1, 2); then by Definition 11, we have

HFEWG
𝜀
(ℎ
1
, ℎ
2
) = ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{

{

{

2∏
2

𝑗=1
𝛾

𝜔
𝑗

𝑗

∏
2

𝑗=1
(2 − 𝛾

𝑗
)

𝜔
𝑗

+∏
2

𝑗=1
𝛾

𝜔
𝑗

𝑗

}

}

}

= {0.2482, 0.2856, 0.3276, 0.3744,

0.4683, 0.5288} .

(23)

However, Xia and Xu [36] used the HFWG operator to
aggregate the ℎ

𝑗
(𝑗 = 1, 2) and got

HFEG (ℎ
1
, ℎ
2
)

= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{

{

{

2

∏

𝑗=1

𝛾

𝑤
𝑗

𝑗

}

}

}

= {0.2462, 0.2781, 0.3270, 0.3693, 0.4676, 0.5281} .

(24)

It is clear that 𝑠(HFEWG
𝜀
(ℎ
1
, ℎ
2
)) = 0.3722 > 0.3694 =

𝑠(HFEG(ℎ
1
, ℎ
2
)). Thus HFEWG

𝜀
(ℎ
1
, ℎ
2
) ≻ HFEG(ℎ

1
, ℎ
2
).

Based onDefinition 11 and the proposed operational laws,
we can obtain the following properties onHFEWG

𝜀
operator.

Theorem 17. Let 𝛼 > 0, ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛), be a collection of

HFEs and 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 the weight vector of ℎ

𝑗
(𝑗 =

1, 2, . . . , 𝑛) with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑖=1
𝑤
𝑗
= 1. Then

HFEWG
𝜀
(ℎ
∧
𝜀
𝛼

1
, ℎ
∧
𝜀
𝛼

2
, . . . , ℎ

∧
𝜀
𝛼

𝑛
)

= (HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
))
∧
𝜀
𝛼

.

(25)
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Proof. Since ℎ∧𝜀𝛼
𝑗

= ⋃
𝛾∈ℎ
𝑗

{2𝛾
𝛼

𝑗
/((2 − 𝛾

𝑗
)
𝛼

+ 𝛾
𝛼

𝑗
)} for all 𝑗 =

1, 2, . . . , 𝑛, by the definition of HFEWG
𝜀
, we have

HFEWG
𝜀
(ℎ
∧
𝜀
𝛼

1
, ℎ
∧
𝜀
𝛼

2
, . . . , ℎ

∧
𝜀
𝛼

𝑛
)

= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{

{

{

(2

𝑛

∏

𝑗=1

(2𝛾
𝛼

𝑗
/ ((2 − 𝛾

𝑗
)

𝛼

+ 𝛾
𝛼

𝑗
))

𝜔
𝑗

)

× (

𝑛

∏

𝑗=1

(2 − (2𝛾
𝛼

𝑗
/ ((2 − 𝛾

𝑗
)

𝛼

+ 𝛾
𝛼

𝑗
)))

𝜔
𝑗

+

𝑛

∏

𝑗=1

(2𝛾
𝛼

𝑗
/ ((2 − 𝛾

𝑗
)

𝛼

+ 𝛾
𝛼

𝑗
))

𝜔
𝑗

)

−1

}

}

}

= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{

{

{

2∏
𝑛

𝑗=1
𝛾

𝛼𝜔
𝑗

𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)

𝛼𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾

𝛼𝜔
𝑗

𝑗

}

}

}

.

(26)

Since HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) =

⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{2∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗
/(∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)
𝜔
𝑗

+ ∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗
)},

then

(HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
))
∧
𝜀
𝛼

= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{

{

{

(2(2

𝑛

∏

𝑗=1

𝛾

𝜔
𝑗

𝑗
/(

𝑛

∏

𝑗=1

(2 − 𝛾
𝑗
)

𝜔
𝑗

+

𝑛

∏

𝑗=1

𝛾

𝜔
𝑗

𝑗
))

𝛼

)

× ((2 − (2

𝑛

∏

𝑗=1

𝛾

𝜔
𝑗

𝑗
/(

𝑛

∏

𝑗=1

(2 − 𝛾
𝑗
)

𝜔
𝑗

+

𝑛

∏

𝑗=1

𝛾

𝜔
𝑗

𝑗
)))

𝛼

+ (2

𝑛

∏

𝑗=1

𝛾

𝜔
𝑗

𝑗
/(

𝑛

∏

𝑗=1

(2 − 𝛾
𝑗
)

𝜔
𝑗

+

𝑛

∏

𝑗=1

𝛾

𝜔
𝑗

𝑗
))

𝛼

)

−1

}

}

}

= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{

{

{

2(∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗
)

𝛼

(∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)

𝜔
𝑗

)

𝛼

+ (∏
𝑛

𝑗=1
𝛾

𝛼𝜔
𝑗

𝑗
)

𝛼

}

}

}

= ⋃

𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{

{

{

2∏
𝑛

𝑗=1
𝛾

𝛼𝜔
𝑗

𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)

𝛼𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾

𝛼𝜔
𝑗

𝑗

}

}

}

.

(27)

Theorem 18. Let ℎ be an𝐻𝐹𝐸, ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) a collection

of HFEs, and 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 the weight vector of ℎ

𝑗

(𝑗 = 1, 2, . . . , 𝑛) with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑖=1
𝑤
𝑗
= 1. Then

HFEWG
𝜀
(ℎ
1
⊗
𝜀
ℎ, ℎ
2
⊗
𝜀
ℎ, . . . , ℎ

𝑛
⊗
𝜀
ℎ)

= HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⊗
𝜀
ℎ.

(28)

Proof. By the definition of HFEWG
𝜀
and Einstein product

operator of HFEs, we have

HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⊗
𝜀
ℎ

= ⋃

𝛾∈ℎ,𝛾
𝑗
∈ℎ
𝑗
,𝑗=1,...,𝑛

{

{

{

(2∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗
/ (∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)

𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗
)) ⋅ 𝛾

1 + (1 − (2∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗
/ (∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)

𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗
))) (1 − 𝛾)

}

}

}

= ⋃

𝛾∈ℎ,𝛾
𝑗
∈ℎ
𝑗
,𝑗=1,...,𝑛

{

{

{

2𝛾∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗

(2 − 𝛾)∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)

𝜔
𝑗

+ 𝛾∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗

}

}

}

.

(29)

Since ℎ
𝑗
⊗
𝜀
ℎ = ⋃

𝛾
𝑗
∈ℎ
𝑗
,𝛾∈ℎ

{𝛾
𝑗
𝛾/(1 + (1 − 𝛾

𝑗
)(1 − 𝛾))} for all 𝑗 =

1, 2, . . . , 𝑛, by the definition of HFEWG
𝜀
, we have

HFEWG
𝜀
(ℎ
1
⊗
𝜀
ℎ, ℎ
2
⊗
𝜀
ℎ, . . . , ℎ

𝑛
⊕
𝜀
ℎ)

= ⋃

𝛾∈ℎ,𝛾
𝑗
∈ℎ
𝑗
,𝑗=1,...,𝑛

{

{

{

(2

𝑛

∏

𝑗=1

(𝛾
𝑗
𝛾/ (1 + (1 − 𝛾

𝑗
) (1 − 𝛾)))

𝜔
𝑗

)

× (

𝑛

∏

𝑗=1

(2 − (𝛾
𝑗
𝛾/ (1 + (1 − 𝛾

𝑗
)

× (1 − 𝛾))))
𝜔
𝑗

+

𝑛

∏

𝑗=1

(𝛾
𝑗
𝛾/ (1 + (1 − 𝛾

𝑗
)

× (1 − 𝛾)))
𝑤
𝑗

)

−1

}

}

}

= ⋃

𝛾∈ℎ,𝛾
𝑗
∈ℎ
𝑗
,𝑗=1,...,𝑛

{

{

{

2∏
𝑛

𝑗=1
(𝛾
𝑗
𝛾)

𝜔
𝑗

∏
𝑛

𝑗=1
((2 − 𝛾

𝑗
) (2 − 𝛾))

𝜔
𝑗

+∏
𝑛

𝑗=1
(𝛾
𝑗
𝛾)

𝜔
𝑗

}

}

}
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= ⋃

𝛾∈ℎ,𝛾
𝑗
∈ℎ
𝑗
,𝑗=1,...,𝑛

{

{

{

(2

𝑛

∏

𝑗=1

𝛾
𝜔
𝑗
⋅

𝑛

∏

𝑗=1

𝛾

𝜔
𝑗

𝑗
)

× (

𝑛

∏

𝑗=1

(2 − 𝛾)
𝜔
𝑗

⋅

𝑛

∏

𝑗=1

(2 − 𝛾
𝑗
)

𝜔
𝑗

+

𝑛

∏

𝑗=1

𝛾
𝜔
𝑗

⋅

𝑛

∏

𝑗=1

𝛾

𝜔
𝑗

𝑗
)

−1

}

}

}

= ⋃

𝛾∈ℎ,𝛾
𝑗
∈ℎ
𝑗
,𝑗=1,...,𝑛

{

{

{

(2𝛾
∑
𝑛

𝑗=1
𝜔
𝑗
⋅

𝑛

∏

𝑗=1

𝛾

𝜔
𝑗

𝑗
)

× ((2 − 𝛾)
∑
𝑛

𝑗=1
𝜔
𝑗

⋅

𝑛

∏

𝑗=1

(2 − 𝛾
𝑗
)

𝜔
𝑗

+ 𝛾
∑
𝑛

𝑗=1
𝜔
𝑗
⋅

𝑛

∏

𝑗=1

𝛾

𝜔
𝑗

𝑗
)

−1

}

}

}

= ⋃

𝛾∈ℎ,𝛾
𝑗
∈ℎ
𝑗
,𝑗=1,...,𝑛

{

{

{

2𝛾∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗

(2 − 𝛾)∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)

𝜔
𝑗

+ 𝛾∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗

}

}

}

.

(30)

Based onTheorems 17 and 18, the following property can
be obtained easily.

Theorem 19. Let 𝛼 > 0, ℎ be an HFE, let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛)

be a collection of HFEs, and let 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the

weight vector of ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) with 𝑤

𝑗
∈ [0, 1] and

∑
𝑛

𝑖=1
𝑤
𝑗
= 1. Then

HFEWG
𝜀
(ℎ
∧
𝜀
𝛼

1
⊗
𝜀
ℎ, ℎ
∧
𝜀
𝛼

1
⊗
𝜀
ℎ, . . . , ℎ

∧
𝜀
𝛼

𝑛
⊗
𝜀
ℎ)

= (HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⊗
𝜀
ℎ)
∧
𝜀
𝛼

.

(31)

Theorem 20. Let ℎ
𝑗
and ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be two collections

of HFEs and𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 the weight vector of ℎ

𝑗
(𝑗 =

1, 2, . . . , 𝑛) with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑖=1
𝑤
𝑗
= 1. Then

HFEWG
𝜀
(ℎ
1
⊗
𝜀
ℎ


1
, ℎ
2
⊗
𝜀
ℎ


2
, . . . , ℎ

𝑛
⊗
𝜀
ℎ


𝑛
)

= HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⊗
𝜀
HFEWG

𝜀
(ℎ


1
, ℎ


2
, . . . , ℎ



𝑛
) .

(32)

Proof. By the definition of HFEWG
𝜀
and Einstein product

operator of HFEs, we have

HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⊗
𝜀
HFEWG

𝜀
(ℎ


1
, ℎ


2
, . . . , ℎ



𝑛
)

= ⋃

𝛾
𝑗
∈ℎ
𝑗
,𝛾


𝑗
∈ℎ


𝑗
,𝑗=1,...,𝑛

{

{

{

(2∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗
/ (∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)

𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗
)) ⋅ (2∏

𝑛

𝑗=1
𝛾


𝑗

𝜔
𝑗

/ (∏
𝑛

𝑗=1
(2 − 𝛾



𝑗
)

𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾


𝑗

𝜔
𝑗

))

1 + (1 − (2∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗
/ (∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)

𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗
))) (1 − (2∏

𝑛

𝑗=1
𝛾


𝑗

𝜔
𝑗
/ (∏
𝑛

𝑗=1
(2 − 𝛾



𝑗
)

𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾


𝑗

𝜔
𝑗
)))

}

}

}

= ⋃

𝛾
𝑗
∈ℎ
𝑗
,𝛾


𝑗
∈ℎ


𝑗
,𝑗=1,...,𝑛

{

{

{

2∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗
⋅ ∏
𝑛

𝑗=1
𝛾


𝑗

𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)

𝜔
𝑗

⋅ ∏
𝑛

𝑗=1
(2 − 𝛾



𝑗
)

𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗
⋅ ∏
𝑛

𝑗=1
𝛾


𝑗

𝜔
𝑗

}

}

}

.

(33)

Since ℎ
𝑗
⊗
𝜀
ℎ


𝑗
= ⋃
𝛾
𝑗
∈ℎ
𝑗
,𝛾


𝑗
∈ℎ


𝑗

{𝛾
𝑗
𝛾


𝑗
/(1 + (1 − 𝛾

𝑗
)(1 − 𝛾



𝑗
))} for all

𝑗 = 1, 2, . . . , 𝑛, by the definition of HFEWG
𝜀
, we have

HFEWG
𝜀
(ℎ
1
⨂

𝜀

ℎ


1
, ℎ
2
⨂

𝜀

ℎ


2
, . . . , ℎ

𝑛
⨂

𝜀

ℎ


𝑛
)

= ⋃

𝛾
𝑗
∈ℎ
𝑗
,𝛾


𝑗
∈ℎ


𝑗
,𝑗=1,...,𝑛

{

{

{

(2

𝑛

∏

𝑗=1

(𝛾
𝑗
𝛾


𝑗
/ (1 + (1 − 𝛾

𝑗
) (1 − 𝛾



𝑗
)))

𝜔
𝑗

)

× (

𝑛

∏

𝑗=1

(2 − (𝛾
𝑗
𝛾


𝑗
/ (1 + (1 − 𝛾

𝑗
)

× (1 − 𝛾


𝑗
))))

𝜔
𝑗

+

𝑛

∏

𝑗=1

(𝛾
𝑗
𝛾


𝑗
/ (1 + (1 − 𝛾

𝑗
)

× (1 − 𝛾


𝑗
)))

𝜔
𝑗

)

−1

}

}

}

= ⋃

𝛾
𝑗
∈ℎ
𝑗
,𝛾


𝑗
∈ℎ


𝑗
,𝑗=1,...,𝑛

{

{

{

(2

𝑛

∏

𝑗=1

(𝛾
𝑗
𝛾


𝑗
)

𝜔
𝑗

)

× (

𝑛

∏

𝑗=1

[(2 − 𝛾
𝑗
) (2 − 𝛾



𝑗
)]

𝜔
𝑗

+

𝑛

∏

𝑗=1

(𝛾
𝑗
𝛾


𝑗
)

𝜔
𝑗

)

−1

}

}

}

= ⋃

𝛾
𝑗
∈ℎ
𝑗
,𝛾


𝑗
∈ℎ


𝑗
,𝑗=1,...,𝑛

{

{

{

(2

𝑛

∏

𝑗=1

𝛾

𝜔
𝑗

𝑗
⋅

𝑛

∏

𝑗=1

𝛾


𝑗

𝜔
𝑗

)
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× (

𝑛

∏

𝑗=1

(2 − 𝛾
𝑗
)

𝜔
𝑗

⋅

𝑛

∏

𝑗=1

(2 − 𝛾


𝑗
)

𝜔
𝑗

+

𝑛

∏

𝑗=1

𝛾

𝜔
𝑗

𝑗
⋅

𝑛

∏

𝑗=1

𝛾


𝑗

𝜔
𝑗

)

−1

}

}

}

.

(34)

Theorem 21. Let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs,

ℎ
−

min = min
𝑗
{ℎ
−

𝑗
| ℎ
−

𝑗
= min{𝛾

𝑗
∈ ℎ
𝑗
}}, and ℎ+max = max

𝑗
{ℎ
+

𝑗
|

ℎ
+

𝑗
= max{𝛾

𝑗
∈ ℎ
𝑗
}}, and let 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the

weight vector of ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) with 𝑤

𝑗
∈ [0, 1] and

∑
𝑛

𝑖=1
𝑤
𝑗
= 1. Then

ℎ
−

min ⪯ HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⪯ ℎ
+

max, (35)

where the equality holds if only if all ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) are

equal and the number of values in ℎ
𝑗
is only one.

Proof. Let 𝑓(𝑡) = (2 − 𝑡)/𝑡, 𝑡 ∈ [0, 1]. Then 𝑓(𝑡) = −2/𝑡
2

< 0.
Hence 𝑓(𝑡) is a decreasing function. Since ℎ−min ≤ ℎ

−

𝑗
≤ 𝛾
𝑗
≤

ℎ
+

𝑗
≤ ℎ
+

max for any 𝛾𝑗 ∈ ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛), then 𝑓(ℎ

+

max) ≤

𝑓(𝛾
𝑗
) ≤ 𝑓(ℎ

−

min); that is, (2 − ℎ
+

max)/ℎ
+

max ≤ (2 − 𝛾
𝑗
)/𝛾
𝑗
≤

(2−ℎ
−

min)/ℎ
−

min. Then for any 𝛾
𝑗
∈ ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛), we have

𝑛

∏

𝑗=1

(

2 − ℎ
+

max
ℎ
+

max
)

𝑤
𝑗

≤

𝑛

∏

𝑗=1

(

2 − 𝛾
𝑗

𝛾
𝑗

)

𝑤
𝑗

≤

𝑛

∏

𝑗=1

(

1 − ℎ
−

min
1 + ℎ
−

min
)

𝑤
𝑗

⇐⇒ (

2 − ℎ
+

max
ℎ
+

max
)

∑
𝑛

𝑗=1
𝑤
𝑗

≤

𝑛

∏

𝑗=1

(

2 − 𝛾
𝑗

𝛾
𝑗

)

𝑤
𝑗

≤ (

1 − ℎ
−

min
1 + ℎ
−

min
)

∑
𝑛

𝑗=1
𝑤
𝑗

⇐⇒ (

2 − ℎ
+

max
ℎ
+

max
)

≤

𝑛

∏

𝑗=1

(

2 − 𝛾
𝑗

𝛾
𝑗

)

𝑤
𝑗

≤ (

1 − ℎ
−

min
1 + ℎ
−

min
) ⇐⇒

2

ℎ
+

max

≤

𝑛

∏

𝑗=1

(

2 − 𝛾
𝑗

𝛾
𝑗

)

𝑤
𝑗

+ 1 ≤

2

ℎ
−

min
⇐⇒

ℎ
−

min
2

≤

1

∏
𝑛

𝑗=1
((2 − 𝛾

𝑗
) /𝛾
𝑗
)

𝑤
𝑗

+ 1

≤ (

ℎ
+

max
2

) ⇐⇒ ℎ
−

min

≤

2

∏
𝑛

𝑗=1
((2 − 𝛾

𝑗
) /𝛾
𝑗
)

𝑤
𝑗

+ 1

≤ ℎ
+

max ⇐⇒ ℎ
−

min

≤

2∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)

𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑗

≤ ℎ
+

max.

(36)

It follows that ℎ−min ≤ 𝑠(HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)) ≤ ℎ

+

max.
Thus we have ℎ−min ⪯ HFEWG

𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⪯ ℎ
+

max.

Remark 22. Let ℎ
𝑗
and ℎ



𝑗
(𝑗 = 1, 2, . . . , 𝑛) be two collections

ofHFEs, and ℎ
𝑗
≺ ℎ


𝑗
for all 𝑗; thenHFEWG

𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ≺

HFEWG
𝜀
(ℎ


1
, ℎ


2
, . . . , ℎ



𝑛
) does not hold necessarily in general.

To illustrate that, an example is given as follows.

Example 23. Let ℎ
1

= (0.45, 0.6), ℎ
2

= (0.6, 0.7), ℎ
3

=

(0.5, 0.6), ℎ
1
= (0.2, 0.9), ℎ

2
= (0.45, 0.95), ℎ

3
= (0.35, 0.8),

and 𝑤 = (0.5, 0.3, 0.2)
𝑇; then HFEWG

𝜀
(ℎ
1
, ℎ
2
, ℎ
3
) = {0.5024,

0.5215, 0.5286, 0.5483, 0.5791, 0.6, 0.6077, 0.6291} and
HFEWG

𝜀
(ℎ


1
, ℎ


2
, ℎ


3
) = {0.2778, 0.3372, 0.3835, 0.4595,

0.6088, 0.7099, 0.7833, 0.8947}. By Definition 3, we have
𝑠(HFEWG

𝜀
(ℎ
1
, ℎ
2
, ℎ
3
)) = 0.5646 and 𝑠(HFEWG

𝜀
(ℎ


1
, ℎ


2
,

ℎ


3
)) = 0.5568. It follows that HFEWG

𝜀
(ℎ
1
, ℎ
2
, ℎ
3
) ≻

HFEWG
𝜀
(ℎ


1
, ℎ


2
, ℎ


3
). Clearly, ℎ

𝑗
≺ ℎ


𝑗
for 𝑗 = 1, 2, 3, but

HFEWG
𝜀
(ℎ
1
, ℎ
2
, ℎ
3
) ≻ HFEWG

𝜀
(ℎ


1
, ℎ


2
, ℎ


3
).

4.2. Hesitant Fuzzy Einstein Ordered Weighted Averaging
Operator. Similar to the HFOWG operator introduced by
Xia and Xu [36] (i.e., (15)), in what follows, we develop
an (HFEOWG

𝜀
) operator, which is an extension of OWA

operator proposed by Yager [50].

Definition 24. For a collection of the HFEs ℎ
𝑗
(𝑗 =

1, 2, . . . , 𝑛), a hesitant fuzzy Einstein ordered weighted aver-
aging (HFEOWG

𝜀
) operator is a mapping HFEWG

𝜀
: 𝐻
𝑛

→

𝐻 such that

HFEOWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

=

𝑛

⨂
𝜀

𝑗=1

ℎ

∧
𝜀
𝑤
𝑗

𝜎(𝑗)

= ⋃

𝛾
𝜎(1)
∈ℎ
𝜎(1)
,𝛾
𝜎(2)
∈ℎ
𝜎(2)
,...,𝛾
𝜎(𝑛)
∈ℎ
𝜎(𝑛)

{

{

{

(2

𝑛

∏

𝑗=1

𝛾

𝑤
𝑗

𝜎(𝑗)
)

× (

𝑛

∏

𝑗=1

(2 − 𝛾
𝜎(𝑗)

)

𝑤
𝑗

+

𝑛

∏

𝑗=1

𝛾

𝑤
𝑗

𝜎(𝑗)
)

−1

}

}

}

,

(37)

where (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a permutation of (1, 2, . . . , 𝑛),
such that ℎ

𝜎(𝑗−1)
≻ ℎ

𝜎(𝑗)
for all 𝑗 = 2, . . . , 𝑛 and

𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is aggregation-associated vector with

𝑤
𝑗

∈ [0, 1] and ∑
𝑛

𝑗=1
𝑤
𝑗

= 1. In particular, if 𝑤 =

(1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the HFEOWG

𝜀
operator is reduced

to the HFEA
𝜀
operator of dimension 𝑛 (i.e., (17)).
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Note that the HFEOWG
𝜀
weights can be obtained similar

to the OWA weights. Several methods have been introduced
to determine the OWA weights in [20, 21, 50–53].

Similar to the HFEWG
𝜀
operator, the HFEOWG

𝜀
opera-

tor has the following properties.

Theorem 25. Let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs

and 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 the weight vector of ℎ

𝑗
(𝑗 =

1, 2, . . . , 𝑛) with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1. Then

HFEOWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⪰ HFOWG (ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
) ,

(38)

where the equality holds if only if all ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) are

equal and the number of values in ℎ
𝑗
is only one.

From Theorem 25, we can conclude that the values
obtained by the HFEOWG

𝜀
operator are not less than the

ones obtained by the HFOWA operator proposed by Xia
and Xu [36]. To illustrate that, let us consider the following
example.

Example 26. Let ℎ
1

= (0.1, 0.4, 0.7), ℎ
2

= (0.3, 0.5), and
ℎ
3

= (0.2, 0.6) be three HFEs and suppose that 𝑤 =

(0.2, 0.45, 0.35)
𝑇 is the associated vector of the aggregation

operator.
By Definitions 3 and 4, we calculate the score values and

the accuracy values of ℎ
1
, ℎ
2
, and ℎ

3
as follows, respectively:

𝑠(ℎ
1
) = 𝑠(ℎ

2
) = 𝑠(ℎ

3
) = 0.5, 𝑘(ℎ

1
) = 0.7551, 𝑘(ℎ

2
) = 0.9,

𝑘(ℎ
3
) = 0.8.
According to Definition 5, we have ℎ

2
≺ ℎ
3
≺ ℎ
1
. Then

ℎ
𝜎(1)

= ℎ
2
, ℎ
𝜎(2)

= ℎ
3
, ℎ
𝜎(3)

= ℎ
1
.

By the definition of HFEOWG
𝜀
, we have

HFEOWG
𝜀
(ℎ
1
, ℎ
2
, ℎ
3
)

=

3

⨂
𝜀

𝑗=1

ℎ

∧
𝜀
𝑤
𝑗

𝜎(𝑗)

= ⋃

𝛾
𝜎(1)
∈ℎ
𝜎(1)
,𝛾
𝜎(2)
∈ℎ
𝜎(2)
,𝛾
𝜎(3)
∈ℎ
𝜎(3)

{
{

{
{

{

2∏
3

𝑗=1
𝛾

𝑤
𝑗

𝜎(𝑗)

∏
3

𝑗=1
(2 − 𝛾

𝜎(𝑗)
)

𝑤
𝑗

+∏
3

𝑗=1
𝛾

𝑤
𝑗

𝜎(𝑗)

}
}

}
}

}

= {0.1716, 0.2787, 0.3495, 0.2939, 0.4582, 0.5598, 0.1926,

0.3106, 0.3877, 0.3272, 0.5047, 0.6125} .

(39)

If we use the HFOWA operator, which was given by Xia and
Xu [36] (i.e., (15)), to aggregate the HFEs ℎ

𝑗
(𝑖 = 1, 2, 3), then

we have

HFOWG (ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

=

3

⨂

𝑗=1

ℎ

𝑤
𝑗

𝜎(𝑗)
= ⋃

𝛾
𝜎(1)
∈ℎ
𝜎(1)
,𝛾
𝜎(2)
∈ℎ
𝜎(2)
,𝛾
𝜎(3)
∈ℎ
𝜎(3)

{

{

{

3

∏

𝑗=1

𝛾

𝑤
𝑗

𝜎(𝑗)

}

}

}

= {0.1702, 0.2764, 0.3363, 0.2790, 0.4532, 0.5513,

0.1885, 0.3062, 0.3724, 0.3090, 0.5020, 0.6106} .

(40)

Clearly, 𝑠(HFEOWG
𝜀
(ℎ
1
, ℎ
2
, ℎ
3
)) = 0.3706 > 0.3629 =

𝑠(HFOWG(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)). By Definition 3, we have

HFEOWG
𝜀
(ℎ
1
, ℎ
2
, ℎ
3
) ≻ HFOWG(ℎ

1
, ℎ
2
, ℎ
3
).

Theorem 27. Let 𝛼 > 0, ℎ be an HFE, let ℎ
𝑗
and ℎ



𝑗

(𝑗 = 1, 2, . . . , 𝑛) be two collection of HFEs, and let 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be an aggregation-associated vector with

𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1. Then

(1) HFEWG
𝜀
(ℎ
∧
𝜀
𝛼

1
, ℎ
∧
𝜀
𝛼

2
, . . . , ℎ

∧
𝜀
𝛼

𝑛
) =

(HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
))
∧
𝜀
𝛼,

(2) HFEWG
𝜀
(ℎ
1
⊗
𝜀
ℎ, ℎ
2
⊗
𝜀
ℎ, . . . , ℎ

𝑛
⊗
𝜀
ℎ) = HFEWG

𝜀
(ℎ
1
,

ℎ
2
, . . . , ℎ

𝑛
)⊗
𝜀
ℎ,

(3) HFEWG
𝜀
(ℎ
∧
𝜀
𝛼

1
⊗
𝜀
ℎ, ℎ
∧
𝜀
𝛼

1
⊗
𝜀
ℎ, . . . , ℎ

∧
𝜀
𝛼

𝑛
⊗
𝜀
ℎ) =

(HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)⊗
𝜀
ℎ)
∧
𝜀
𝛼,

(4) HFEWG
𝜀
(ℎ
1
⊗
𝜀
ℎ


1
, ℎ
2
⊗
𝜀
ℎ


2
, . . . , ℎ

𝑛
⊗
𝜀
ℎ


𝑛
) =

HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)⊗
𝜀
HFEWG

𝜀
(ℎ


1
, ℎ


2
, . . . , ℎ



𝑛
).

Theorem 28. Let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs

and let 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be an aggregation-associated

vector with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1. Then

ℎ
−

min ⪯ HFEOWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⪯ ℎ
+

max, (41)

where ℎ−min = min
𝑗
{ℎ
−

𝑗
| ℎ
−

𝑗
= min{𝛾

𝑗
∈ ℎ
𝑗
}} and ℎ

+

max =

max
𝑗
{ℎ
+

𝑗
| ℎ
+

𝑗
= max{𝛾

𝑗
∈ ℎ
𝑗
}}.

Besides the above properties, we can get the following
desirable results on the HFOWG

𝜀
operator.

Theorem 29. Let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs,

and let 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be an aggregation-associated

vector with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1. Then

HFEOWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) = HFEOWG

𝜀
(ℎ


1
, ℎ


2
, . . . , ℎ



𝑛
) ,

(42)

where (ℎ
1
, ℎ


2
, . . . , ℎ



𝑛
) is any permutation of (ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
).

Proof. Let HFEOWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) = ⊗

𝜀

𝑛

𝑗=1
ℎ

∧
𝜀
𝑤
𝑗

𝜎(𝑗)

and HFEOWG
𝜀
(ℎ


1
, ℎ


2
, . . . , ℎ



𝑛
) = ⊗

𝜀

𝑛

𝑗=1
ℎ


𝜎(𝑗)

∧
𝜀
𝑤
𝑗 . Since

(ℎ


1
, ℎ


2
, . . . , ℎ



𝑛
) is any permutation of (ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
),

then we have ℎ
𝜎(𝑗)

= ℎ


𝜎(𝑗)
(𝑗 = 1, 2, . . . , 𝑛). Thus

HFEOWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) = HFEOWG

𝜀
(ℎ


1
, ℎ


2
, . . . , ℎ



𝑛
).

Theorem 30. Let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs,

and let 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be an aggregation-associated

vector with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1. Then

(1) if 𝑤 = (0, 0, . . . , 1), then HFOWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)=

min{ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
};
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(2) if 𝑤 = (1, 0, . . . , 0), then HFOWG
𝜀
(ℎ
1
, ℎ
2
, . . .,

ℎ
𝑛
)=max{ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
};

(3) if 𝑤
𝑗
= 1 and 𝑤

𝑖
= 0 (𝑖 ̸= 𝑗), then HFOWG

𝜀
(ℎ
1
, ℎ
2
, . . .,

ℎ
𝑛
) = ℎ

𝜎(𝑗)
, where ℎ

𝜎(𝑗)
is the 𝑗th largest of ℎ

𝑖
(𝑖 =

1, 2, . . . , 𝑛).

5. An Application in Hesitant
Fuzzy Decision Making

In this section, we apply the HFEWG
𝜀
and HFEOWG

𝜀

operators to multiple attribute decision making with hesitant
fuzzy information.

For hesitant fuzzy multiple attribute decision making
problems, let 𝑌 = {𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑚
} be a discrete set of

alternatives, let 𝐴 = {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
} be a collection of

attributes, and let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 be the weight vector

of 𝐴
𝑗
(𝑗 = 1, 2, . . . , 𝑛) with 𝜔

𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛, and

∑
𝑛

𝑗=1
𝜔
𝑗
= 1. If the decision makers provide several values for

the alternative 𝑌
𝑖
(𝑖 = 1, 2, . . . , 𝑚) under the attribute 𝐴

𝑗
(𝑗 =

1, 2, . . . , 𝑛)with anonymity, these values can be considered as
an HFE ℎ

𝑖𝑗
. In the case where two decision makers provide

the same value, the value emerges only once in ℎ
𝑖𝑗
. Suppose

that the decision matrix 𝐻 = (ℎ
𝑖𝑗
)
𝑚×𝑛

is the hesitant fuzzy
decision matrix, where ℎ

𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛) are

in the form of HFEs.
To get the best alternative, we can utilize the HFEWG

𝜀

operator or the HFEOWG
𝜀
operator; that is,

ℎ
𝑖
= HFEWG

𝜀
(ℎ
𝑖1
, ℎ
𝑖2
, . . . , ℎ

𝑖𝑛
)

= ⋃

𝛾
𝑖1
∈ℎ
𝑖1
,𝛾
𝑖2
∈ℎ
𝑖2
,...,𝛾
𝑖𝑛
∈ℎ
𝑖𝑛

{

{

{

2∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑖𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑖𝑗
)

𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾

𝜔
𝑗

𝑖𝑗

}

}

}

(43)

or

ℎ
𝑖
= HFEOWG

𝜀
(ℎ
𝑖1
, ℎ
𝑖2
, . . . , ℎ

𝑖𝑛
)

= ⋃

𝛾
𝑖𝜎(𝑗)
∈ℎ
𝑖𝜎(𝑗)
,𝑗=1,2,...,𝑛

{
{

{
{

{

2∏
𝑛

𝑗=1
𝛾

𝑤
𝑗

𝑖𝜎(𝑗)

∏
𝑛

𝑗=1
(2 − 𝛾

𝑖𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
𝛾

𝑤
𝑗

𝑖𝜎(𝑗)

}
}

}
}

}

(44)

to derive the overall value ℎ
𝑖
of the alternatives 𝑌

𝑖
(𝑖 =

1, 2, . . . , 𝑚), where𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the weight vector

related to the HFEOWA
𝜀
operator, such that 𝑤

𝑗
≥ 0, 𝑗 =

1, 2, . . . , 𝑛, and ∑
𝑛

𝑗=1
𝑤
𝑗
= 1, which can be obtained by the

normal distribution based method [20].
Then by Definition 3, we compute the scores 𝑠(ℎ

𝑖
) (𝑖 =

1, 2, . . . , 𝑚) of the overall values ℎ
𝑖
(𝑖 = 1, 2, . . . , 𝑚) and use

the scores 𝑠(ℎ
𝑖
) (𝑖 = 1, 2, . . . , 𝑚) to rank the alternatives

𝑌 = {𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑚
} and then select the best one (note that

if there is no difference between the two scores ℎ
𝑖
and ℎ

𝑗
,

thenwe need to compute the accuracy degrees 𝑘(ℎ
𝑖
) and 𝑘(ℎ

𝑗
)

of the overall values ℎ
𝑖
and ℎ

𝑗
by Definition 4, respectively,

and then rank the alternatives 𝑌
𝑖
and 𝑌

𝑗
in accordance with

Definition 5).
In the following, an example on multiple attribute deci-

sion making problem involving a customer buying a car,

which is adopted from Herrera and Martinez [54], is given
to illustrate the proposed method using the HFEOWG

𝜀

operator.

Example 31. Consider that a customer wants to buy a car,
which will be chosen from five types 𝑌

𝑖
(𝑖 = 1, 2, . . . , 5).

In the process of choosing one of the cars, four factors are
considered:𝐴

1
is the consumption petrol,𝐴

2
is the price,𝐴

3

is the degree of comfort, and 𝐴
4
is the safety factor. Suppose

that the characteristic information of the alternatives 𝑌
𝑖
(𝑖 =

1, 2, . . . , 5) can be represented by HFEs ℎ
𝑖𝑗
(𝑖 = 1, 2, . . . , 5; 𝑗 =

1, 2, . . . , 4), and the hesitant fuzzy decision matrix is given in
Table 1.

To use HFEOWG
𝜀
operator, we first reorder the ℎ

𝑖𝑗
(𝑗 =

1, 2, . . . , 4) for each alternative 𝑌
𝑖
(𝑖 = 1, 2, . . . , 5). According

to Definitions 3 and 4, we compute the score values and
accuracy degrees of 𝑠(ℎ

𝑖𝑗
) (𝑖 = 1, 2, . . . , 5; 𝑗 = 1, 2, . . . , 4) as

follows:

𝑠 (ℎ
11
) = 0.45, 𝑠 (ℎ

12
) = 0.75, 𝑠 (ℎ

13
) = 0.3,

𝑠 (ℎ
14
) = 0.3, 𝑘 (ℎ

13
) = 0.9184, 𝑘 (ℎ

14
) = 0.9;

𝑠 (ℎ
21
) = 0.5, 𝑠 (ℎ

22
) = 0.7, 𝑠 (ℎ

23
) = 0.7,

𝑠 (ℎ
24
) = 0.5, 𝑘 (ℎ

21
) = 0.7551, 𝑘 (ℎ

24
) = 0.8129,

𝑘 (ℎ
22
) = 0.8367, 𝑘 (ℎ

23
) = 0.9;

𝑠 (ℎ
31
) = 0.85, 𝑠 (ℎ

32
) = 0.4, 𝑠 (ℎ

33
) = 0.35,

𝑠 (ℎ
34
) = 0.4, 𝑘 (ℎ

32
) = 0.8367, 𝑘 (ℎ

34
) = 0.7764;

𝑠 (ℎ
41
) = 0.6, 𝑠 (ℎ

42
) = 0.6, 𝑠 (ℎ

43
) = 0.3,

𝑠 (ℎ
44
) = 0.4, 𝑘 (ℎ

41
) = 0.772, 𝑘 (ℎ

42
) = 0.8367;

𝑠 (ℎ
51
) = 0.5, 𝑠 (ℎ

52
) = 0.3, 𝑠 (ℎ

53
) = 0.5,

𝑠 (ℎ
54
) = 0.35, 𝑘 (ℎ

51
) = 0.8367, 𝑘 (ℎ

53
) = 0.8129.

(45)

Then by Definition 5, we have

ℎ
1𝜎(1)

= ℎ
12
, ℎ
1𝜎(2)

= ℎ
11
, ℎ
1𝜎(3)

= ℎ
13
, ℎ
1𝜎(4)

= ℎ
14
;

ℎ
2𝜎(1)

= ℎ
23
, ℎ
2𝜎(2)

= ℎ
22
, ℎ
2𝜎(3)

= ℎ
24
, ℎ
2𝜎(4)

= ℎ
21
;

ℎ
3𝜎(1)

= ℎ
31
, ℎ
3𝜎(2)

= ℎ
32
, ℎ
3𝜎(3)

= ℎ
34
, ℎ
3𝜎(4)

= ℎ
33
;

ℎ
4𝜎(1)

= ℎ
42
, ℎ
4𝜎(2)

= ℎ
41
, ℎ
4𝜎(3)

= ℎ
44
, ℎ
4𝜎(4)

= ℎ
43
;

ℎ
5𝜎(1)

= ℎ
51
, ℎ
5𝜎(2)

= ℎ
53
, ℎ
5𝜎(3)

= ℎ
54
, ℎ
5𝜎(4)

= ℎ
52
.

(46)

Suppose that 𝑤 = (0.1835, 0.3165, 0.3165, 0.1835)
𝑇 is the

weighted vector related to the HFEOWA
𝜀
operator and it

is derived by the normal distribution based method [20].
Thenwe utilize theHFEOWA

𝜀
operator to obtain the hesitant



12 Journal of Applied Mathematics

Table 1: Hesitant fuzzy decision making matrix.

𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝑌
1

{0.4, 0.5} {0.7, 0.8} {0.2, 0.3, 0.4} {0.2, 0.4}

𝑌
2

{0.2, 0.5, 0.8} {0.5, 0.7, 0.9} {0.6, 0.8} {0.2, 0.5, 0.6, 0.7}

𝑌
3

{0.8, 0.9} {0.2, 0.4, 0.6} {0.2, 0.3, 0.4, 0.5} {0.1, 0.3, 0.5, 0.7}

𝑌
4

{0.3, 0.4, 0.6, 0.8, 0.9} {0.4, 0.6, 0.8} {0.1, 0.2, 0.4, 0.5} {0.2, 0.3, 0.5, 0.6}

𝑌
5

{0.3, 0.5, 0.7} {0.2, 0.3, 0.4} {0.2, 0.5, 0.6, 0.7} {0.1, 0.3, 0.4, 0.6}

fuzzy elements ℎ
𝑖
(𝑖 = 1, 2, 3, 4, 5) for the alternatives 𝑋

𝑖

(𝑖 = 1, 2, 3, 4, 5). Take alternative𝑋
1
for an example; we have

ℎ
1
= HFEOWG

𝜀
(ℎ
11
, ℎ
12
, . . . , ℎ

14
)

= ⋃

𝛾
1𝜎(𝑗)
∈ℎ
1𝜎(𝑗)
,𝑗=1,2,3,4
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{

{
{

{

2∏
4

𝑗=1
𝛾

𝑤
𝑗

1𝜎(𝑗)

∏
4

𝑗=1
(2 − 𝛾

1𝜎(𝑗)
)

𝑤
𝑗

+∏
4

𝑗=1
𝛾

𝑤
𝑗

1𝜎(𝑗)

}
}

}
}

}

= {0.3220, 0.3642, 0.3635, 0.4099, 0.3974, 0.4470,

0.3473, 0.3921, 0.3914, 0.4403, 0.4272, 0.4794,

0.3327, 0.3760, 0.3753, 0.4228, 0.4101, 0.4607,

0.3587, 0.4046, 0.4039, 0.4539, 0.4405, 0.4938} .

(47)

The results can be obtained similarly for the other alterna-
tives; here we will not list them for vast amounts of data. By
Definition 3, the score values 𝑠(ℎ

𝑖
) of ℎ
𝑖
(𝑖 = 1, 2, 3, 4, 5) can

be computed as follows:

𝑠 (ℎ
1
) = 0.4048, 𝑠 (ℎ

2
) = 0.5758, 𝑠 (ℎ

3
) = 0.4311,

𝑠 (ℎ
4
) = 0.4479, 𝑠 (ℎ

5
) = 0.3620.

(48)

According to the scores 𝑠(ℎ
𝑖
) of the overall hesitant fuzzy

values ℎ
𝑖
(𝑖 = 1, 2, 3, 4, 5), we can rank all the alternatives 𝑋

𝑖
:

𝑋
2
≻ 𝑋
4
≻ 𝑋
3
≻ 𝑋
1
≻ 𝑋
5
. Thus the optimal alternative is

𝑋
2
.
If we use the HFWG operator introduced by Xia and Xu

[36] to aggregate the hesitant fuzzy values, then

𝑠 (ℎ
1
) = 0.3960, 𝑠 (ℎ

2
) = 0.5630, 𝑠 (ℎ

3
) = 0.4164,

𝑠 (ℎ
4
) = 0.4344, 𝑠 (ℎ

5
) = 0.3548.

(49)

By Definition 5, we have𝑋
2
≻ 𝑋
4
≻ 𝑋
3
≻ 𝑋
1
≻ 𝑋
5
.

Note that the rankings are the same in such two cases, but
the overall values of alternatives by the HFEOWG

𝜀
operator

are not smaller than the ones by the HFOWG operator.
It shows that the attitude of the decision maker using the
proposed HFEOWG

𝜀
operator is more optimistic than the

one using the HFOWG operator introduced by Xia and
Xu [36] in aggregation process. Therefore, according to the
decision makers’ optimistic (or pessimistic) attitudes, the
different hesitant fuzzy aggregation operators can be used to
aggregate the hesitant fuzzy information in decision making
process.

6. Conclusions

The purpose of multicriteria decision making is to select the
optimal alternative from several alternatives or to get their
ranking by aggregating the performances of each alternative
under some attributes, which is the pervasive phenomenon
in modern life. Hesitancy is the most common problem
in decision making, for which hesitant fuzzy set can be
considered as a suitable means allowing several possible
degrees for an element to a set. Therefore, the hesitant fuzzy
multiple attribute decision making problems have received
more and more attention. In this paper, an accuracy function
of HFEs has been defined for distinguishing between the
two HFEs having the same score values, and a new order
relation between two HFEs has been provided. Some Ein-
stein operations on HFEs and their basic properties have
been presented. With the help of the proposed operations,
several new hesitant fuzzy aggregation operators including
the HFEWG

𝜀
operator and HFEOWG

𝜀
operator have been

developed, which are extensions of the weighted geometric
operator and the OWGoperator with hesitant fuzzy informa-
tion, respectively. Moreover, some desirable properties of the
proposed operators have been discussed and the relationships
between the proposed operators and the existing hesitant
fuzzy aggregation operators introduced by Xia and Xu [36]
have been established. Finally, based on the HFEOWG

𝜀

operator, an approach of hesitant fuzzy decision making has
been given and a practical example has been presented to
demonstrate its practicality and effectiveness.
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This paper focuses on a multiproject resource allocation problem in a bilevel organization. To solve this problem, a bilevel
multiproject resource allocation model under a fuzzy random environment is proposed. Two levels of decision makers are
considered in the model. On the upper level, the company manager aims to allocate the company’s resources to multiple projects
to achieve the lowest cost, which include resource costs and a tardiness penalty. On the lower level, each project manager attempts
to schedule their resource-constrained project, with minimization of project duration as the main objective. In contrast to prior
studies, uncertainty in resource allocation has been explicitly considered. Specifically, our research uses fuzzy random variables to
model uncertain activity durations and resource costs. To search for the optimal solution of the bilevel model, a hybrid algorithm
made up of an adaptive particle swarm optimization, an adaptive hybrid genetic algorithm, and a fuzzy random simulation
algorithm is also proposed. Finally, the efficiency of the proposedmodel and algorithm is evaluated through a practical case from an
industrial equipment installation company.The results show that the proposed model is efficient in dealing with practical resource
allocation problems in a bilevel organization.

1. Introduction

Because more and more construction companies must deal
with multiple projects at the same time, both the theory
and practice of multiproject resource allocation problems
(MPRAP) are being paid increasing attention in the con-
struction industry. In existing researches, resource allocation
has often been considered only a constraint in multiple
project scheduling problems and thusMPRAP has often been
called a resource-constrained multiple project scheduling
problem [1]. The importance and the wide-ranging appli-
cability of multiproject resource allocation methods have
been more widely accepted in recent years [2–6]. Fricke
and Shenhar [2] investigated the differences associated with
the resource allocation between multiproject management
and single project management. Ben-Zvi and Lechler [5]
tested several multiproject resource allocation strategies in
realistic environments using a heuristic simulation tool. Xu

and Zhang [6] proposed a resource-constrained scheduling
model with multiple projects and applied it to a large-scale
water conservancy and hydropower construction project.

All this research has assisted in the improvement ofmulti-
ple project resource allocation. However, it is still commonly
assumed that a singlemanager oversees all projects. In today’s
industrial climate, managers face an increasingly complicated
decision environment. As a result, a single manager has
difficulties in dealing with across project resource allocation
in addition to resource management within projects. In this
case, a bilevel organizational structure is frequently used for
project management [7]. This type of organization structure
has largely been used in the construction industry and
the software industry. In this bilevel organization, a central
authority (company manager) determines the allocation
across several projects. Once resources have been assigned
to a project, a project manager then schedules the activities
within a single project using the assigned resources. Thus,



2 Journal of Applied Mathematics

the project resource allocation in a bilevel organization is a
bilevel decision-making problem. Jennergren and Müller [8]
originally proposed a bilevel resource allocation problem, in
which they discussed a simple case made up of a headquarter
and two divisions. Yang and Sum [9] discussed a bilevel
resource allocation problem using a systematic analysis,
in which they defined the resource allocation and project
scheduling rules, the performances of which were then eval-
uated through experimentation. Yang and Sum [7] further
extended this research as they examined the performance
of due date, resource allocation, project release, and activity
scheduling rules at the same time. This research had a
positive impact onmultiproject resource allocation as several
resource allocation methods were compared. However, litter
research has focused on an optimization decision-making
problem. As a result, some managers are still confused about
planning for optimal resource allocation in a bilevel and
multiproject environment. Therefore, in this paper we will
discuss a multiproject resource allocation problem using a
bilevel optimization programming model.

In addition to the complexities of the bilevel structure,
uncertainty is also frequently considered in resource allo-
cation problems. Methods for dealing with uncertainty in
decision-making mainly include random, fuzzy, and interval
mathematical programming [10]. In resource allocation, the
uncertainty traditionally has been assumed to be random.
Golenko-Ginzburg and Gonik [11, 12] considered a resource-
constrained network project scheduling problem with a
randomactivity duration dependent on the resource amounts
assigned to that activity. Cohen et al. [13] addressed a
resource allocation problem in stochastic, finite-capacity,
multiproject systems using a cross entropy methodology.
Bidot et al. [14] summarized these stochastic methods for
dealing with uncertainty in practical project management.
Though probability theory has been successfully applied to
resource allocation problems, sometimes some uncertain
parameters cannot be modeled using random theory because
of several factors such as the lack of statistical data. In this
case, probability theory can be replaced by fuzzy set theory
as introduced by Zadeh [15]. Mjelde [16] first applied fuzzy
set theory to a resource allocation problem. Following this
research, many papers focus on resource allocation problems
under a fuzzy environment [17–19] where the duration was
oftenmodelled as a fuzzy variable. In the researchmentioned
above, fuzziness and randomness were often considered
separate aspects. But in reality, wemay face a hybrid uncertain
environment where fuzziness and randomness coexist in a
decision-making process. In a project, some activities may
be rarely performed for which the duration times can be
described by fuzzy variables, while some other activities may
have been processed many times before so duration times
can be summarized using random variables. In this case,
the fuzzy random variable, which was first proposed by
Kwakernaak [20], can be a useful tool for the optimization of
a resource assignment with mixed fuzziness and randomness
uncertainty, because it is able to deal with the two types of
uncertainty simultaneously.

Hence, this paper focuses on this type of bilevel mul-
tiproject resource allocation problem (BLMPRAP) under

a fuzzy random environment, in which we attempt to find
an optimal allocation scheme using a bilevel programming
model. In this model, the decision maker on the upper level
is the company manager whose aim is to determine an opti-
mal scheme for the allocation of company resource among
multiple projects. The objective of the company manager
is to minimize total cost which consists of resource cost
and a tardiness penalty, while at the same time considering
the lower-level decision-making. On the lower level, each
project manager attempts to schedule their project in the
most efficient way using the assigned resources. Contrary to
the company manager, the project manager’s objectives are
focused on the project duration and finishing time of the
project, rather than the cost. Therefore, the minimization
of project duration is considered the objective on the lower
level. In addition, the uncertainty associated with activity
duration and resource costs is also explicitly considered in the
model. Specifically, our research uses fuzzy random variables
to model the activity duration and resource costs. Moreover,
we also focus on a solution method for the proposed bilevel
resource allocation model and two main heuristic methods
are discussed in the algorithm section, and a solutionmethod
which integrates these two algorithms is proposed. Finally, a
representative case is used to test the model and algorithm.

The remainder of this paper is organized as follows.
In Section 2, two key problems are discussed: why the
bilevel model is used for this problem and how to model
the uncertain resource allocation environment using fuzzy
random variables. Based on this analysis, the bilevel model
for the considered multiproject resource allocation problem
with fuzzy random variables in a hierarchical organization
is detailed in Section 3. To solve the proposed model in
Section 3, a solution algorithm based on the PSO and GA
is introduced in Section 4. Then in Section 5, this proposed
model and algorithm are applied to a practical case, which
reflects the effectiveness of the proposed methodology in
dealing with practical problems. Finally, concluding remarks
and future research directions are outlined in Section 6.

2. Key Problem Statement

The problem considered in this paper is a bilevel resource
allocation problem with multiple projects under a fuzzy
random environment. In this section we explain why this
problem should be solved using a bilevel programmingmodel
and outline the procedure for modeling uncertain activity
duration and resource cost using fuzzy random variables.

2.1. Bilevel Resource Management Framework. In practice,
more and more companies are concurrently managing mul-
tiple projects with limited resources. In order to service each
project better, a hierarchical (bilevel) organizational structure
which consists of a company level and a project level is being
used by many companies such as construction companies,
software companies, and some production companies. In
these cases, the company managers need to deal with hier-
archical decision-making.

To handle these decentralized optimal planning problems
in a hierarchical (or multiple-level) organization which has
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more than one decision maker, multilevel mathematical
programming has been proposed [21]. Bilevel programming
indicates that the hierarchical organization is composed
of only two levels and is a sequence of two optimization
problems in which the constraints region of one is deter-
mined by the solution of the second [22]. There are some
common features in bilevel programming [23–25]. (1) There
are interactive decision-making units within a hierarchical
or bilevel structure in the organization. (2) The lower-level
executes its decisions after, and in consideration of, the
decisions of the upper level or leader. (3) Both the leader and
the follower independently seek to maximize or minimize
their own objectives, and often these objectives are in conflict.
(4) The mutual influence between the leader and follower
when making a decision is reflected in both the objective
function and the constraints. Therefore, to assist in resolving
the conflict between the two levels, bilevel programming is an
appropriate method for dealing with the decision-making in
a bilevel organization.

In this paper, resource allocation is considered across
multiple projects in a bilevel organization which includes
two levels of managers (i.e., company managers and project
managers). On the upper level, the company managers are
generally responsible for corporate planning and coordina-
tion between themultiple project groupswith the aimofmax-
imizing the company’s income. In the construction industry,
they generally control and manage key company resources,
such as large-scale equipment and senior engineering staff.
However, resources are generally limited and some are also
very expensive. To save costs, company managers have
to make detailed resource assignment plans over multiple
projects. Cost is dependent on the practical project schedule
as a tardiness penalty occurs if the project duration exceeds
its contracted finishing time, so companymanagersmust also
consider the projectmanagers’ decisions when planning their
resource allocation overmultiple projects. On the lower level,
projectmanagers alsomaintain a reasonable level of resources
called the “project resource.” The manager of each project
is responsible for resource allocation (including project
resources and assigned company resources) over multiple
project activities to ensure that the project is completed on
time, so they also have to develop a resource-constrained
project schedule after the company resources assignment
plan has been completed.

Usually, there are different objectives between the com-
pany’s projects and the project managers. The company
managers desire a resources assignment plan that achieves a
lower cost and a shorter duration. However, at the same time,
the achievement of these objectives is dependent on not only
the upper-level decision-making, but also the actions of the
project managers. The project managers pay more attention
to the finishing time or the cost of a single project, which
may be in contradiction to the company’s benefit. Company
managers know that the project managers make decisions
based on the assigned company resources, so to some degree
they have some influence on the project managers’ decisions
through the different resource allocation schemes.Therefore,
the considered multiproject resource allocation is a decision-
making problem in a bilevel organization with a degree of

conflict in terms of benefits. It is appropriate to solve this
problem using bilevel programming. In bilevel program-
ming, the decision maker on the upper level is the company
manager who seeks to allocate company resources tomultiple
projects at the lowest cost. On the lower level, each project
manager attempts to schedule their project with the objective
of project durationminimization under resource constraints.
The bilevel resource assignment problem is illustrated in
Figure 1.

2.2. UncertainActivityDuration andResource Cost. Thefuzzy
random environment has been studied and applied to many
areas such as inventory problem [26], vehicle routing [27],
logistics network design [28], and water resources alloca-
tion [29]. These studies show the necessity of considering
fuzzy random environment in practical problems. With this
background and evidence, there is a strong motivation for
considering a fuzzy random environment for the BLMPRAP.

In real conditions, uncertainty analysis is always an
important consideration for managers in many areas of
operations, such as the uncertainty that exists in activity
durations, resource requirements, and operating costs. In this
paper, ourmain consideration is project activity duration and
unit resource cost uncertainty.

Activity durations are always uncertain because of a
lack of knowledge and in previous studies they have often
modeled these uncertainties as random or fuzzy variables.
However, there are often circumstances where both fuzzy and
random factors exist in a complex uncertain environment.
For example, a company plans to install a boiler in a power
plant construction project in October, but they do not have
enough experience or historical data on this type of project.
In this case, fuzzy variables are used to model the activity
durations. At the same time, some known information
associated with the activity duration, such as the effects of the
weather, can be modeled as a random variable. For example,
a shower may slow down the transportation speed of some
necessary equipment or extreme temperatures may lead to
lower work efficiency. From the local statistical information,
in October, it is predicted with a probability of 0.6 to rain,
with a probability of 0.3 to be fine, and a probability of 0.1
to be cloudy. Therefore, the weather can be modelled as a
discrete random variable. In this situation, activity durations
considering both fuzzy factors and random factors can be
modelled as fuzzy random variables as shown in Figure 2.
This means that more information is modelled into the
variable, so more precise data can be obtained for solving
practical problems through the use of fuzzy random variables
rather than fuzzy variables or randomvariables, which results
in a more precise solution to the model.

The situation is similar for resource costs. For example, as
the gasoline price and the crane operators’ wages are expected
to rise, the cost of crane operationswill also go up.However, it
is very difficult to obtain a precise value because of the many
uncertainties. In this case, an interval [𝑎, 𝑏] is used to model
the changing cost. Further, based on the analysis of historical
data, the cost is most possibly at around 𝜌, which is an
expected value of a random variable which follows a normal
distribution 𝑁(𝜇, 𝜎). Then, the cost of the crane operations
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Figure 1: Flow chart for the considered bilevel resource assignment problem.
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durations.
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Figure 3: Employing a fuzzy random variable to express the unit
cost for company resources.

can be described as a fuzzy random variable ̃𝑐 = (𝑎, 𝜌, 𝑏)with
𝜌 ∼ 𝑁(𝜇, 𝜎) as Figure 3.

Considering the bilevel structure and uncertain environ-
ment simultaneously, the BLMPRAP under a fuzzy random
environment can be stated as follows. A company has con-
tracted n projects at the same time, though the company
managers are unable to fully manage these projects, so
for effective management they take charge of only some
key resources and establish project groups to manage the
projects. The problem the company managers face is how

to assign the company resources to each project group,
while the project manager has to schedule their project with
some resource constraints. To deal with this uncertainty, the
activity durations and resource costs are modeled as fuzzy
random variables. The decision-making framework for the
proposed bilevel multiproject resource assignment problem
is illustrated in Figure 4.

3. Modelling

To solve the multiproject resource allocation problem in a
bilevel organization, a bilevel programming model under a
fuzzy random environment is constructed.Themathematical
description for this problem is given as follows.

3.1. Assumptions. To model the problem more efficiently, the
following assumptions are adopted.

(1) The bilevel resource assignment problem consists of
multiple resources andmultiple projects.There are no
newprojects during the scheduled resource allocation
periods.

(2) The problem has two levels of decision makers, that
is, company managers on the upper level and project
managers on the lower level.Themanagerial objective
on the upper level is to minimize the total cost for
all projects, and the objective on the lower level is to
minimize the project duration.

(3) A single project consists of a number of activities
each with several optional execution modes. Each
mode is a combination of duration and resource
requirements [30]. Activities cannot be interrupted,
and every activity must be performed in only one
mode.

(4) Each activity needs multiple types of resources. The
unit cost for each company resource and the duration
for each activity are modelled as fuzzy random vari-
ables.
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Figure 4: Decision-making framework for the considered BLMPRAP.

(5) The company manager is responsible for resource
allocation during multiple projects. Resources
assigned to all projects do not exceed the limited
quantities in any time period.

3.2. Notations

Indices

𝑛: the project index, 𝑛 = 1, 2, . . . , 𝑁;
𝑖: the activity index, 𝑖 = 1, 2, . . . , 𝐼

𝑛
;

𝑗: the mode index, 𝑗 = 1, 2, . . . , 𝐽
𝑖
;

𝑘: the resource index, 𝑘 = 1, 2, . . . , 𝐾;
𝑡: the project time period index, 𝑡 = 1, 2, . . . , 𝑇;
𝑝: the resource assignment time period index, 𝑝 =

1, 2, . . . , 𝑃.

Parameters

𝑅
𝑘𝑝
: the total quantity of resource 𝑘 in time period 𝑝;

̃
𝑑

𝑛𝑖𝑗
: duration of activity 𝑖 executed in mode 𝑗 in

project 𝑛;
𝑃𝑟

𝑛
(𝑖): set of immediate predecessors of activity 𝑖 in

project 𝑛;
𝑟
𝑛𝑖𝑗𝑘

: amount of resource 𝑘 required to execute activity
𝑖 in mode 𝑗 in project 𝑛;

𝑇
𝑛
: the scheduled finishing time of project 𝑛;

𝑇
∗

𝑛
: the predetermined finishing time of project 𝑛;

𝑡
𝑛
𝑖
EF: the early finishing time of activity 𝑖 in project 𝑛;

𝑡
𝑛
𝑖
LF: the late finishing time of activity 𝑖 in project 𝑛;

𝐷𝑇
𝑛
: the overdue time of project 𝑛;

𝑡
𝑛𝑖𝑗
: the processing finishing time of activity 𝑖 in mode

𝑗 in project 𝑛;
̃
𝑐
𝑘𝑝
: the unit cost of resource 𝑘 in period 𝑝;

𝑐𝑝
𝑛
: the unit overdue penalty cost of project 𝑛.

Decision Variables

𝑅
𝑛𝑘𝑝

: the quantity of resource 𝑘 assigned to project 𝑛
in time period 𝑝;

𝑥
𝑛𝑖𝑗𝑡

=

{
{

{
{

{

1, if activity 𝑖 is executed in mode 𝑗 and is
scheduled to be finished in time 𝑡

0, otherwise.
(1)

3.3. Multiproject Resource Allocation. The problem the com-
pany manager on the upper level faces is how to allocate
the limited company resources over several projects in each
period (generally the period is oneweek); in otherwords, they
need to decide the quantity to be allocated to each project in
each period for each type of resource. With this in mind, the
decision variables for the upper level are 𝑅

𝑛𝑘𝑝
.
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For resource allocation problems, minimization of the
total cost or maximization of the total profit is often con-
sidered as the decision objective [5]. The cost is made up
of the resource costs and the total tardiness penalty for the
multiple projects. Resource costs occur when resources are
allocated to a project group, so the resource cost can be stated
as ∑𝑁

𝑛=1

̃
𝑐
𝑘
𝑅

𝑛𝑘𝑝
for each type of resource in every period. The

project tardiness penalty occurs when a project finishing time
exceeds its predetermined finishing time.𝐷𝑇

𝑛
represents the

overdue time of project 𝑛. It is a function on the finish time
as in

𝐷𝑇
𝑛
= {

𝑇
𝑛
− 𝑇

∗

𝑛
, if 𝑇

𝑛
≥ 𝑇

∗

𝑛

0, otherwise.
(2)

Therefore, the total tardiness penalty can be stated as
∑

𝑁

𝑛=1
𝑐𝑝

𝑛
𝐷𝑇

𝑛
, and the total cost can be described as

𝑁

∑

𝑛=1

𝑐𝑝
𝑛
𝐷𝑇

𝑛
+

𝑃

∑

𝑝=1

𝐾

∑

𝑘=1

𝑁

∑

𝑛=1

̃
𝑐
𝑘𝑝
𝑅

𝑛𝑘𝑝
. (3)

In this equation, the unit resource cost ̃𝑐
𝑘𝑝

is uncertain
because of the many changing influences such as gasoline
prices and wages. In this paper, we consider a hybrid uncer-
tain environment involving both fuzziness and randomness.
To deal with this uncertainty, ̃𝑐

𝑘𝑝
is modelled as a fuzzy

random variable which means that the total cost is also a
fuzzy random variable. Technically, it is not possible to derive
a precise minimum total cost and an optimal solution. In
a practical decision-making process, the decision makers
usually choose a satisfactory solution with a certain deviation
rather than an optimal solution. In these cases, chance-
constrained programming, which was first introduced by
Charnes and Cooper [31], is often used. It is assumed that the
goal of decision makers is to minimize the objective value on
the condition of chance level 𝛼, where 𝛼 is the predetermined
confidence level which is provided as an appropriate safety
margin by the decision maker. Generally, the value of 𝛼 is
bigger than 0.5 [32].

In order to introduce the chance-constrained program-
ming, the concept of a chance measure for the fuzzy random
variables is first explained. Let 𝜉 be a fuzzy random variable
defined on (Ω,A,Pr), and 𝑓 : R → R is a real-valued
continuous function. Then a primitive chance of a fuzzy
random event characterized by 𝑓(𝜉) ≤ 0 is a function from
(0, 1] to [0, 1], defined as in the following [33] equation:

𝐶ℎ {𝑓 (𝜉) ≤ 0} (𝛽)

= sup
𝛽∈[0,1]

{𝜔 | Pr {𝜔 ∈ Ω | Pos {𝑓 (𝜉) ≤ 0} ≥ 𝛼} ≥ 𝛽} ,

(4)

where Pos{⋅} is the possibility of the fuzzy event and Pr{⋅}
is the probability of the random event. 𝛽 is referred to
as the predetermined confidence levels associated with the
probability measure of the random event Pos{𝑓(𝜉) ≤ 0} ≥ 𝛼.
Generally, decision makers tend to take the same confidence
levels between the parameters 𝛼 and 𝛽.

From the definition of the chance measure, we can derive
the following equation:

𝐶ℎ {𝑓 (𝜉) ≤ 0} (𝛽)

≥ 𝛼 ⇐⇒ Pr {𝜔 ∈ Ω | Pos {𝑓 (𝜉) ≤ 0} ≥ 𝛼} ≥ 𝛽.
(5)

Since it is not possible to derive a precise minimum
objective, the decision makers descend to seek a minimum
objective value 𝐹

1
on the condition of possibility level 𝛼 at

probability level 𝛽. Then, the fuzzy random objective can be
transformed into the chance constraint 𝐶ℎ{∑𝑁

𝑛=1
𝑐𝑝

𝑛
𝐷𝑇

𝑛
+

∑
𝑃

𝑝=1
∑

𝐾

𝑘=1
∑

𝑁

𝑛=1

̃
𝑐
𝑘𝑝
𝑅

𝑛𝑘𝑝
≤ 𝐹

1
}(𝛽) ≥ 𝛼. That is, Pr{𝜔 |

Pos{∑𝑁

𝑛=1
𝑐𝑝

𝑛
𝐷𝑇

𝑛
+ ∑

𝑃

𝑝=1
∑

𝐾

𝑘=1
∑

𝑁

𝑛=1

̃
𝑐
𝑘𝑝
𝑅

𝑛𝑘𝑝
≤ 𝐹

1
} ≥ 𝛼} ≥

𝛽. Finally, the uncertain model is transformed to a chance-
constrained model, and the following objective function and
constraint are obtained:

min𝐹
1

(6)

subject to (s.t.)

Pr{𝜔 | Pos {
𝑁

∑

𝑛=1

𝑐𝑝
𝑛
𝐷𝑇

𝑛
+

𝑃

∑

𝑝=1

𝐾

∑

𝑘=1

𝑁

∑

𝑛=1

̃
𝑐
𝑘𝑝
𝑅

𝑛𝑘𝑝
≤ 𝐹

1
}

≥ 𝛼} ≥ 𝛽.

(7)

Resource constraints must bemet for all types of resource
allocation problems. That is, for each type of resource, the
total quantity allocated to every project cannot exceed the
ownership quantity of the company in each period. This
constraint is described as

𝑁

∑

𝑛=1

𝑅
𝑛𝑘𝑝

≤ 𝑅
𝑘𝑝
, ∀𝑘 = 1, . . . , 𝐾; 𝑝 = 1, . . . , 𝑃. (8)

Equations ((4)–(6)) make up the resource allocation
model as in (9). In this model, the project finishing time is
determined by solving the lower-level model. It can also be
seen that the decisions on the lower level have an effect on
the resource allocation on the upper level as follows:

min 𝐹
1

s.t. Pr{𝜔 | Pos{
𝑁

∑

𝑛=1

𝑐𝑝
𝑛
𝐷𝑇

𝑛
+

𝑃

∑

𝑝=1

𝐾

∑

𝑘=1

𝑁

∑

𝑛=1

̃
𝑐
𝑘𝑝
𝑅

𝑛𝑘𝑝
≤ 𝐹

1
}

≥ 𝛼} ≥ 𝛽

𝑁

∑

𝑛=1

𝑅
𝑛𝑘𝑝

≤ 𝑅
𝑘𝑝
, ∀𝑘 = 1, . . . , 𝐾; 𝑝 = 1, . . . , 𝑃

𝐷𝑇
𝑛
= {

𝑇
𝑛
− 𝑇

∗

𝑛
, if 𝑇

𝑛
≥ 𝑇

∗

𝑛

0, otherwise,

where 𝑇
𝑛
is solved in the lower-level model.

(9)



Journal of Applied Mathematics 7

3.4. Resource-Constrained Project Scheduling. When the
resources are allocated to each project, the project manager
has to consider how to make use of these resources to finish
the project more quickly. Therefore, each project manager is
faced with a resource-constrained project scheduling prob-
lem. Usually, the resources consist of company resources
and project resources. In this paper, we only consider the
company resources when scheduling the project.

For project scheduling, the minimization of project dura-
tion is often considered as the decision objective [1]. In
this paper, the finishing time of the last activity is used to
describe the project duration. This finishing time must be
located in the range between the early finishing time and
the late finishing time of the project after consideration of
the entire range of possible execution modes. This can be
stated as∑𝑚

𝐼

𝑗=𝐼
∑

𝑡
𝑛
𝐼
LF

𝑡=𝑡
𝑛
𝐼
EF 𝑡𝑥𝑛𝐼𝑗𝑡

. Here, 𝑡
𝑛
𝐼
EF and 𝑡

𝑛
𝐼
LF are the early

finishing time and the late finishing time of activity 𝐼 in
project 𝑛, respectively. Therefore, the objective function can
be described as follows:

𝑇
𝑛
=

𝑚
𝑛
𝐼

∑

𝑗=𝐼

𝑡
𝑛
𝐼
LF

∑

𝑡=𝑡
𝑛
𝐼
EF

𝑡𝑥
𝑛𝐼𝑗𝑡
. (10)

In addition, some constraints must be met. First, each
activity must be scheduled and its finish time must be in
the range of its earliest finishing time and its latest possible
finishing while ensuring that all activities are adequately
arranged and there is only one execution mode for each
activity. So we can get the following constraint:

𝑚
𝑛
𝑖

∑

𝑗=1

𝑡
𝑛
𝑖
LF

∑

𝑡=𝑡
𝑛
𝑖
EF

𝑥
𝑛𝑖𝑗𝑡

= 1, 𝑖 = 1, 2, . . . , 𝐼. (11)

In the scheduling problem, precedence is the basic
term which ensures the rationality of the arrangement.
∑

𝑚
𝑛
𝑙

𝑗=1
∑

𝑡
𝑛
𝑙
LF

𝑡=𝑡
𝑛
𝑙
EF 𝑡𝑥𝑛𝑙𝑗𝑡

is denoted as the actual finishing time of
activity 𝑙 in project 𝑛. This must be between the earliest
finishing time and the latest finishing timewhen the activity is
scheduled in a certain executedmode.∑𝑚

𝑛
𝑖

𝑗=1
∑

𝑡
𝑛
𝑖
LF

𝑡=𝑡
𝑛
𝑖
EF(𝑡−

̃
𝑑

𝑖𝑗
)𝑥

𝑖𝑗𝑡

is the starting time of the immediately following activity 𝑖
in project 𝑛. Generally, the beginning time of each activity
must be posterior to the finishing time of its immediate
predecessors. However, under a fuzzy random environment,
the duration of activity 𝑖 is a fuzzy random variable. In this
case, it is difficult to meet this constraint strictly. Decision
makers always hope to meet the constraint using an expected
value for the fuzzy random variable. From the definition of
Puri and Ralescu [34], the expected value 𝐸(𝜉) of a fuzzy
random variable 𝜉 can be calculated using the following
equation:

(𝐸 (𝜉))
𝛼
= ∫

Ω

𝜉
𝛼
𝑑𝑃

= {∫

Ω

𝑓 (𝜔) 𝑑𝑃 (𝜔) : 𝑓 ∈ 𝐿
1

𝑃, 𝑓 (𝜔) a.s. [𝑃]} ,
(12)

where ∫
Ω

𝜉
𝛼
𝑑𝑃 is the Aumann integral of 𝜉

𝛼
about 𝑃 and 𝐿1

𝑃

denote all of the integrable function 𝑓 : Ω → 𝑅 about the
probability measure 𝑃.

The fuzzy expected value reflects the center value that
the fuzzy random variable tends towards and describes
the fuzzy random variable statistical properties. After going
through the fuzzy expected operation above, all fuzzy random
durations are transformed into fuzzy durations. Then the
expected value operator of the fuzzy variables based on
a fuzzy measure [33] can be used to transform the fuzzy
duration into a crisp duration. This can be calculated using

𝐸
Me
(𝐸(

̃
𝑑)) = ∫

+∞

0

Me {𝐸(̃𝑑) ≥ 𝑟} 𝑑𝑟

− ∫

+∞

0

Me {𝐸(̃𝑑) ≤ 𝑟} 𝑑𝑟,
(13)

where Me is a type of fuzzy measure. Let 𝐴 be a fuzzy
event; then Me{𝐴} = 𝜆Pos{𝐴} + (1 − 𝜆)Nec{𝐴}. 𝜆 are the
optimistic and pessimistic indices, respectively, to determine
the combined attitude of the decision maker.

From the fuzzy random expected value operator and
the fuzzy expected value operator, the expected precedence
constraints can be obtained as

𝑚
𝑛
𝑙

∑

𝑗=1

𝑡
𝑛
𝑙
LF

∑

𝑡=𝑡
𝑛
𝑙
EF

𝑡𝑥
𝑛𝑙𝑗𝑡

≤

𝑚
𝑛
𝑖

∑

𝑗=1

𝑡
𝑛
𝑖
LF

∑

𝑡=𝑡
𝑛
𝑖
EF

(𝑡 −Me {𝐸(̃𝑑
𝑛𝑖𝑗
)})𝑥

𝑛𝑖𝑗𝑡
,

𝑙 ∈ 𝑃 (𝑖) , 𝑖 = 1, 2, . . . , 𝐼
𝑛
.

(14)

In addition to the precedence constraints, resource con-
straints must be considered as well in this problem. In
each period, the available resource quantity is 𝑅

𝑛𝑘𝑝
which is

allocated as part of the upper-level decisions. The resource
constraint is described in (15). It ensures that the amount of
resources 𝑘 used by all activities does not exceed its limited
quantity 𝑅

𝑛𝑘𝑝
in any period as follows:

𝐼
𝑛

∑

𝑖=1

𝑚
𝑛𝑖

∑

𝑗=1

𝑟
𝑛𝑖𝑗𝑘

𝑡+Me{𝐸(
̃
𝑑
𝑖𝑗
)}−1

∑

𝑠=𝑡

𝑥
𝑖𝑗𝑠
≤ 𝑅

𝑛𝑘𝑝
,

𝑘 ∈ 𝐾, 𝑡 = 1, 2, . . . , 𝑇.

(15)

The objective function and the constraints form the
resource-constrained project scheduling model as in

min 𝑇
𝑛
=

𝑚
𝑛
𝐼

∑

𝑗=𝐼

𝑡
𝑛
𝐼
LF

∑

𝑡=𝑡
𝑛
𝐼
EF

𝑡𝑥
𝑛𝐼𝑗𝑡

s.t.
𝑚
𝑛
𝑖

∑

𝑗=1

𝑡
𝑛
𝑖
LF

∑

𝑡=𝑡
𝑛
𝑖
EF

𝑥
𝑛𝑖𝑗𝑡

= 1, 𝑖 = 1, 2, . . . , 𝐼
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𝑚
𝑛
𝑙

∑

𝑗=1

𝑡
𝑛
𝑙
LF

∑

𝑡=𝑡
𝑛
𝑙
EF

𝑡𝑥
𝑛𝑙𝑗𝑡

≤

𝑚
𝑛
𝑖

∑

𝑗=1

𝑡
𝑛
𝑖
LF

∑

𝑡=𝑡
𝑛
𝑖
EF

(𝑡 −Me {𝐸(̃𝑑
𝑛𝑖𝑗
)})𝑥

𝑛𝑖𝑗𝑡
,

𝑙 ∈ 𝑃 (𝑖) , 𝑖 = 1, 2, . . . , 𝐼
𝑛

𝐼
𝑛

∑

𝑖=1

𝑚
𝑛𝑖

∑

𝑗=1

𝑟
𝑛𝑖𝑗𝑘

𝑡+Me{𝐸(
̃
𝑑
𝑖𝑗
)}−1

∑

𝑠=𝑡

𝑥
𝑖𝑗𝑠
≤ 𝑅

𝑛𝑘𝑝
,

𝑘 ∈ 𝐾, 𝑡 = 1, 2, . . . , 𝑇

𝑥
𝑛𝑖𝑗𝑡

∈ {0, 1} , ∀𝑛, 𝑖, 𝑗, 𝑡.

(16)

3.5. The Completed Bilevel Model. There are two levels of
decision makers in the considered BLMPRAP. The decision
maker on the upper level, the company manager, hopes
to allocate the company resources to multiple projects at
the lowest cost. The cost consists of resource costs and the
tardiness penalty, so the upper-level decision maker is able
to control the resource cost through appropriate allocation.
The tardiness penalty is dependent on the finishing time of all
projects, which in turn is determined by the specific project
managers through their project schedule. In this situation, the
company manager must consider the decision of the project
managers. The company manager does know that the project
managers must schedule their projects under the resource
constraints. Therefore, the company manager can influence
the decision-making of project managers on the lower-level
model using different resource allocation schemes.

On the lower level, each project manager attempts to
make a more efficient schedule under the resource con-
straints. The objective is often to minimize the finishing
time of the project, although this may conflict with the
company’s objective. This is another reason why such a
problem needs to be modeled as a bilevel programming
model. In addition, uncertainty also impacts the decision. In
this paper, the uncertain resource cost and activity duration
are described using fuzzy random variables. On the upper
level, possibility theory is used to deal with the uncertain
resource cost. On the lower level, an expected value operation
is used to cope with the uncertain activity duration. In sum,
the complete bilevel programming model can be established
based on the above discussion as in (17). In the model, the
chance constrains are nonlinear when being transformed
to crisp equations. As a result, the proposed model is a
nonlinear bilevel optimization model under a fuzzy random
environment as follows:

min
𝑅
𝑛𝑘𝑝

𝐹
1

s.t. Pr{𝜔 | Pos{
𝑁

∑

𝑛=1
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𝑛
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𝑛

+
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∑
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𝐾

∑
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∑
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̃
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𝑅
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≤ 𝐹

1
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∑
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𝑅
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= {

𝑇
𝑛
− 𝑇

∗

𝑛
, if 𝑇

𝑛
≥ 𝑇

∗

𝑛

0, otherwise,

where 𝑇
𝑛
is solved in the following model :
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𝑥
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(17)

4. Fuzzy Random Simulation-Based aPSO-hGA

The proposed model is a bilevel programming model, which
is considered as a strong NP-hard problem [35, 36]. It is
often difficult to obtain an analytical optimal solution for
such problems, and the most commonly used methods are
to obtain a numerically optimal solution or a numerically
efficient solution using an approximation or heuristic algo-
rithm. For bilevel programming model, the particle swarm
optimization algorithm (PSO) has been proposed in some
research and has had good results [37, 38]. An important
motivation for using PSO to solve bilevel programming is
that PSO is usually quicker than other algorithms, since it
often takes much more time to solve a bilevel model than a
single level one. In our model, not only the bilevel structure
of the model but also the considered multimode resource-
constrained project scheduling problems greatly increase the
computing complexity and solution speed. In the bilevel
model, the lower-level models are the constraints of the
upper-level model. If the found solution is not optimal,
then the final solution may not be feasible. This leads to a
bilevel model which cannot be solved. Therefore, unlike the
upper-level model, an algorithm with higher accuracy and
stability needs to be chosen. In this paper, the multimode



Journal of Applied Mathematics 9

resource-constrained project scheduling on the lower level
is solved using a genetic algorithm (GA). In addition, to
deal with the fuzzy random chance constraints, a fuzzy
random simulation procedure is proposed. In this case,
a hybrid algorithm of an adaptive PSO and a GA based
on fuzzy random simulation (fuzzy random simulation-
based aPSO-hGA) is proposed to solve the proposed non-
linear bilevel optimization model under a fuzzy random
environment.

4.1. Framework for the Proposed Solution Algorithm. To solve
the bilevel model, a particle swarm optimization is proposed
to search for the solution to the upper level. At the beginning
of the algorithm, some feasible solutions (particles: 𝑅

𝑛𝑘𝑝
) for

the upper level decision variables which meet the constraints
of upper level model are generated.Then the solutions are set
into the lower-levelmodel. A genetic algorithm is used to find
the optimal solution (𝑥

𝑛𝑖𝑗𝑡
) to the lower-level model. Both

the solutions to the upper level and the lower level consist
of the final feasible solutions ({𝑅

𝑛𝑘𝑝
, 𝑥

𝑛𝑖𝑗𝑡
}) of the model,

and they are evaluated and the correlative fitness values are
calculated using a fuzzy random simulation procedure. Then
the𝑝𝑏𝑒𝑠𝑡,𝑔𝑏𝑒𝑠𝑡, and 𝑙𝑏𝑒𝑠𝑡 are recorded, and new solutions are
generated through an update of the particles. This program
goes on until the stop condition is met. In addition, in
order to improve convergence speed and search efficiency, a
float coding method and a parameter adaptation method are
proposed for the PSO algorithm, respectively. The proposed
solution approach is then a hybrid of the PSO and GA, and
its overall procedure can be seen in Figure 5.

4.2. Solving the Resource Allocation Using an Improved aPSO.
To solve the bilevel model, an improved adaptive PSO is
introduced to cope with the upper-level programming. In
contrast to classical PSO, to improve the convergence speed,
a float coding method, which is capable of incorporating
various constraints in its implementation [39] and has been
used in PSO for solving bilevel programming problem [37],
is proposed to generate the initial particles for the upper-
level variables. At the same time, a parameter adaptation
regulation is applied to improve the search efficiency of the
PSO. In addition, to deal with the uncertainty on the upper
level, a fuzzy random simulation procedure is proposed to
calculate the fitness value of each particle. The procedure for
the improved adaptive PSO is as follows.

Step 1. Set the parameters for the adaptive PSO: swarm size,
iteration max, 𝑐

𝑝
, 𝑐

𝑔
, 𝑐

𝑙
, inertia weight max, and inertia

weight min.

Step 2. Initialize the velocity and the position of the
upper-level model. Each particle is represented as
𝜃 = {𝑅

111
, 𝑅

112
, . . . , 𝑅

11𝑃
, 𝑅

121
, 𝑅

122
, . . . , 𝑅

1𝐾𝑃
, . . . , 𝑅

𝑁𝐾𝑃
}.

In order to generate the random particle positions for the
upper-level variables, float coding method is adopted. Thus,
every particle represents a real dimensional position. At
the same time, the constraints ∑𝑁

𝑛=1
𝑅

𝑛𝑘𝑝
≤ 𝑅

𝑘𝑝
, for all

𝑘 = 1, . . . , 𝐾, 𝑝 = 1, . . . , 𝑃, are also incorporated into
the coding to ensure that the generated particles meet the

constraints on the upper level. That is, for any given 𝑘 and 𝑝,
𝑅

1𝑘𝑝
is generated randomly within the range [0, 𝑅

𝑘𝑝
] while

𝑅
𝑛𝑘𝑝

is generated within the range [0, 𝑅
𝑘𝑝
− ∑

𝑛−1

𝑖=1
𝑅

𝑖𝑘𝑝
].

Step 3. Solve the lower-level programming with the initial-
ization result of the upper-level variables using the pro-
posed adaptive hybrid genetic algorithm for the multimode
resource-constrained project scheduling problem.

Step 4. Calculate each fitness value using a fuzzy random
simulation procedure using the calculated results of the lower
level: 𝑥

𝑛𝑖𝑗𝑡
and 𝑇

𝑛
. Here, the objective value of the upper-level

model is considered the fitness value which is estimated using
Procedure 1.

Step 5. Update the 𝑝𝑏𝑒𝑠𝑡, 𝑔𝑏𝑒𝑠𝑡, and 𝑙𝑏𝑒𝑠𝑡.

Step 5.1. Update 𝑝𝑏𝑒𝑠𝑡: for 𝑠 = 1 ⋅ ⋅ ⋅ 𝑆, if 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝜃
𝑠
) <

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑏𝑒𝑠𝑡), 𝑝𝑏𝑒𝑠𝑡 = 𝜃
𝑠
.

Step 5.2. Update 𝑔𝑏𝑒𝑠𝑡: for 𝑠 = 1 ⋅ ⋅ ⋅ 𝑆, if 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝜃
𝑠
) <

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑔𝑏𝑒𝑠𝑡), 𝑔𝑏𝑒𝑠𝑡 = 𝜃
𝑠
.

Step 5.3. Update 𝑝𝑏𝑒𝑠𝑡: for 𝑠 = 1 ⋅ ⋅ ⋅ 𝑆, among all 𝑝𝑏𝑒𝑠𝑡 from
𝐾 neighbors of the 𝑠th particle, set the personal best which
obtains the least fitness value to be 𝑙𝑏𝑒𝑠𝑡.

Step 6. Update the inertia weight for iteration 𝜏 using the
following equations:

𝜔 =

∑
𝑆

𝑠=1
∑

𝐻

ℎ=1





𝜔

𝑠ℎ
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{
{
{

{
{
{
{
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𝑇

)𝜔
max
, 0 ≤ 𝜏 ≤

𝑇

2

,

(0.2 −

0.2𝜏

𝑇

)𝜔
max
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max if 𝑤 > 𝑤
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min
.

(18)

Step 7. Update the velocity and the position of each particle
using the following equations:

𝜔
𝑛𝑘𝑝
(𝜏 + 1) = 𝑤 (𝜏) 𝜔

𝑛𝑘𝑝
(𝜏) + 𝑐

𝑝
𝑢

𝑟
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𝑛𝑘𝑝
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(𝜏) + 𝜔

𝑛𝑘𝑝
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If 𝜃
𝑛𝑘𝑝
(𝜏 + 1) > 𝑅

𝑘𝑝
−

𝑛−1

∑

𝑖=1

𝑅
𝑖𝑘𝑝
, then set

𝜃
𝑛𝑘𝑝
(𝜏 + 1) = 𝑅

𝑘𝑝
−

𝑛−1

∑

𝑖=1

𝑅
𝑖𝑘𝑝

and 𝜔
𝑛𝑘𝑝
(𝜏 + 1) = 0
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Begin the program

Initialize the parameters (PSO: swarm size, iteration max, cp, cg , cl, inertia weight
max, inertia weight min. GA: population size, crossover rate pc, mutation rate pm ,

and maximum generation)

Initialize the particles of PSO, i.e., {R111, R112, · · · , Rnkp , · · · RNKP}

Obtain the position of each particle for the upper-level model

Calculate the fitness for each particle
using fuzzy random simulation procedure

Apply a-hGA to solve the lower-level model

Put the upper-level variables {Rnkp}

Generate the initial population P(0) using activity
priority and multistage-based encoding routine

Evaluate P(t) using priority-based decoding routine

Create C(t) from P(t) by crossover operator

Create C(t) from P(t) by mutation operator

Select new chromosomes by selection operator

Updated the parameters of GA using adaptive method

Update the pbest, gbest, and lbest according to the calculated fitness values

Update the inertia weight for each particle using adaptive update procedure, i.e.,

Update the velocity and the position for each particle according to equation (17)

equation (16)

The stopping criterion
in met?

The stopping

End the program

criterion is met?

Yes

Yes

No
No

No

No

Put out the objective value Tn of lower-level model

Let n = 1, Fn = −∞, f( kp) =
N

∑
n=1

cpnDTn +
P

∑
p=1

K

∑
k=1

N

∑
n=1

kpRnkp
≃c≃c

Generate 𝜔 from Ω according to the probability measure Pr of ckp
≃

≃

≃

≃

Generate a determined vectorf(ckp(𝜔)) uniformly from the 𝛼-cut

f(ckp(𝜔)) ≤ Fn?

Let Fn = f(ckp(𝜔)) and n = n + 1

n > N?

Set N = 𝛽N and return the Nth least element
in {F1, · · · , FN} as the fitness value

Figure 5: The overall procedure of the proposed solution algorithm.
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Step 1: Let 𝑛 = 1, 𝐹
𝑛
= −∞, 𝑓(̃𝑐

𝑘𝑝
) = ∑

𝑁

𝑛=1
𝑐𝑝

𝑛
𝐷𝑇

𝑛
+ ∑

𝑃

𝑝=1
∑

𝐾

𝑘=1
∑

𝑁

𝑛=1

̃
𝑐
𝑘𝑝
𝑅

𝑛𝑘𝑝
.

Step 2: Generate 𝜔 fromΩ according to the probability measure Pr of the fuzzy random variables ̃𝑐kp.
Step 3: Generate a determined vector 𝑓(̃𝑐

𝑘𝑝
(𝜔)) uniformly from the 𝛼-cut of fuzzy vector 𝑓(̃𝑐

𝑘𝑝
(𝜔)).

Step 4: If 𝑓(̃𝑐
𝑘𝑝
(𝜔)) ≤ 𝐹

𝑛
, then let 𝐹

𝑛
= 𝑓(

̃
𝑐
𝑘𝑝
(𝜔)). Return to step 3, and repeat𝑀 times.

Step 5: If 𝑛 = 𝑁, set𝑁

= 𝛽𝑁 and return the𝑁th least element in 𝐹
1
, 𝐹

2
,. . ., 𝐹

𝑁
as the fitness value; else go to step 2, and 𝑛 = 𝑛 + 1.

Procedure 1: Calculate fitness value using fuzzy random simulation.

Activity 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Priority 3 2 6 8 12 13 1 16 7 14 4 10 5 9 11 15

Mode 1 1 2 2 1 1 3 2 3 1 2 3 2 1 2 2 

Figure 6: An individual solution composed of priority-based and multistage-based chromosomes.

If 𝜃
𝑛𝑘𝑝
(𝜏 + 1) < 0, then set

𝜃
𝑛𝑘𝑝
(𝜏 + 1) = 0 and 𝜔

𝑛𝑘𝑝
(𝜏 + 1) = 0.

(19)
Step 8. If the stopping criterion is met, that is, 𝜏 = 𝑇, stop.
Otherwise, 𝜏 = 𝜏 + 1 and go to Step 2.

4.3. Solving the Project Scheduling Using a-hGA. In the
considered problem, the multimode resource-constrained
project scheduling problem (MRCPSP) is discussed on the
lower level. For the MRCPSP, many types of heuristic
algorithms such as simulated annealing [40], PSO [41],
and genetic algorithm [42] have been applied in previous
research. Zhang et al. [41] compared the performance of the
several types of algorithms. The results show that the genetic
algorithm has a higher percentage in finding the optimal
schedule.Hence, the adaptive hybrid genetic algorithmwhich
is proposed byKim et al. [42] is introduced to solve the lower-
level problem. Let 𝑃(𝑡) and 𝐶(𝑡) be the parents and offspring
in the current generation 𝑡. The detailed procedure of the
proposed genetic algorithm is as follows.

Step 1. Set the initial value and parameters for the genetic
algorithm: population size, crossover rate 𝑝

𝑐
, mutation rate

𝑝
𝑚
, and maximum generation 𝑔max.

Step 2. Generate the initial population 𝑝(0) using an activity
priority andmultistage-based encoding routine.The individ-
ual solution is composed of two chromosomes where the first
shows the feasible activity finish sequence and the second
consists of activity mode assignments [42]. An example with
16 activities is illustrated in Figure 6.

Step 3. Evaluate 𝑝(𝑡) using the priority-based decoding rou-
tine. The objective function is used as the fitness function.

Step 4. Create 𝐶(𝑡) from 𝑃(𝑡) by order-based crossover oper-
ator for activity finish priority. The procedure is explained
bellow and an example is illustrated in Figure 7.

Step 4.1. Select a set of positions from one parent in activity
priority at random.

Step 4.2. Produce a child by copying the cites in these
positions into the corresponding positions.

Step 4.3. Delete the cites which are already selected form the
second parent. The resulting sequence of sites contains the
sites the child needs.

Step 4.4. Place the cites into the unfixed positions of the child
from left to right according to the order of the sequence to
produce one offspring.

Step 5. Create 𝐶(𝑡) from 𝑃(𝑡) using the neighborhood search
mutation routine for activity mode.

Step 5.1. Select a set of pivot genes randomly from the current
chromosome.

Step 5.2. Pick up the genes, and search for the neighbors until
the bound of the activity mode.

Step 5.3. Evaluate the neighbors; choose the best neighbor.

Step 5.4. If the best neighbor is better than the current, replace
the current with the neighbor.

Step 6. Climb 𝐶(𝑡) using the iterative hill climbing routine
method.

Step 6.1. Select the optimum chromosome in the current
generation.
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Parent 7 9 2 1 15 16 3 8 12 10 4 6 13 14 5 11

Offspring 1 2 6 8 12 3 10 16 7 14 4 13 5 9 11 15

Parent 3 2 6 8 12 13 1 16 7 14 4 10 5 9 11 15

Figure 7: Order-based crossover for activity priority.

Step 6.2. Randomly generate as many new chromosomes as
the population size in the neighborhood of the optimal one.

Step 6.3. Select a chromosome with the optimal value of
fitness among the set of the neighborhood.

Step 6.4. Compare with the optimal one in the current
generation and the optimal one in the neighborhood; choose
the better and put it into the current generation to be the
optimum chromosome instead of the original one.

Step 7. Apply the heuristic for adaptively regulating GA
parameters. Select 𝑃(𝑡 + 1) from 𝑃(𝑡) and 𝐶(𝑡) using elitist
selection routine. The regulation is as follows:

𝑝


(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

𝑝 (𝑡) + 𝛼,

𝑓parsize (𝑡)

𝑓parsize (𝑡)
≥ 1.1

𝑝 (𝑡) − 𝛼,

𝑓parsize (𝑡)

𝑓offsize (𝑡)
≤ 0.9

𝑝 (𝑡) , 0.9 ≤

𝑓parsize (𝑡)

𝑓offsize (𝑡)
≤ 1.1.

(20)

Here, the 𝑝(𝑡) can be 𝑝
𝑐
(𝑡) or 𝑝

𝑀
(𝑡). 𝑝

(𝑡) are the new
parameters amended. And when it is 𝑝

𝑐
(𝑡), 𝛼 = 0.05;

when it is 𝑝
𝑀
(𝑡), 𝛼 = 0.015. 𝑓parsize(𝑡) and 𝑓offsize(𝑡) are the

average fitness values of parents and offspring in the current
generation 𝑡. parsize and offsize are the parent size and offspring
size satisfying constraints.

Step 8. Repeat the above stages 3 to 7 after 𝑡 + 1 → 𝑡 until
the stop condition is met, that is, 𝑡 ≥ 𝑔max.

5. Case Study

In this section, computational experiments that were carried
out on a real application are presented. Through an illus-
trative example on the data set adopted from a case study,
the proposed method is validated and the efficiency of the
algorithm is tested. The data for resource allocation, project
scheduling, and others involved in the case are from an
industrial equipment installation company (company X) and
an electric power design institute in Sichuan province, China.
The case is introduced to demonstrate the potential real world
applications of the proposed methods.

5.1. Presentation of Case Problem. Company X is a state-
owned large-scale comprehensive installation and construc-
tion company with total assets of 460 million RMB and
more than 3000 workers, which always contracts for multiple
projects at the same time. To manage these projects, many
project groups are found. These project groups can purchase
somematerials and equipment by themselves.However, some
other resources must be allocated from the company such as
large-scale equipment and professional staff.

The company has contracted for an installation engineer-
ing project at the HP power plant construction project in
Luzhou. This is made up of two projects: the installation
projects of 1 and 2 power units. At the same time, the
company has also contracted for another installation project:
an equipment installation project for a sewage treatment con-
struction engineering project in Luzhou.Hence, the company
is managing three projects at the same time. Formanagement
convenience, each project is managed by a project group who
takes charge of the project scheduling and resource allocation
within their project. However, some important resources
such as large-scale installation equipment are still controlled
by the companymanager.Theproblem the companymanager
faces is how to allocate these resources over the three projects
so as to gain maximal company income. This is a good
example of the proposed bilevel resource allocation problem.

In this case, each power plant construction engineering
installation project consists of 12 activities, while the sewage
treatment construction engineering equipment installation
project has 11 activities. The flow charts are illustrated in
Figures 8 and 9. Every activity has several optional modes,
and every activity in a certain mode has a certain duration
and some resource requirements. Each activity duration is
modelled as a discrete triangular fuzzy random variable.
The project managers traditionally use days as time units.
The corresponding data is as follows in Table 1. However,
each project has resource limitations including manpower,
materials, and equipments, with some key resources being
managed by company managers. In this paper, we consider
four resources, including cranes (CR), concreting machinery
(CM), welding outfits (WO), and electrical equipment (EE).
The total quantities and unit costs for these equipments are
shown in Table 2. In this case, all the resources are assigned to
projects at the beginning of each week. Hence, we use weeks
as the unit time for resource allocation. It is assumed that the
other resources are sufficient for all three projects.
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Figure 9: The activity precedence of installation project for sewage treatment construction engineering.

5.2. Computing Results. In order to run the program for
the proposed PSO-GA algorithm, the parameters for the
PSO algorithm were set as follows: swarm size=40, itera-
tion max=200, inertia weight max=1, weight min=0, posi-
tion acceleration constant 𝑐

𝑝
= 0.3, 𝑐

𝑔
= 0.3, and 𝑐

𝑙
=

0.1. For the GA, an order-based crossover is used as the
crossover operator at a rate of 0.4. A neighborhood search
mutation with a rate of 0.05 was used. The population
size was set as 40 and the maximum cycle number was
equal to 400. In this case, the predetermined finishing times
for the three projects were September 15, October 31, and
September 20, respectively. The unit overdue penalty costs
are 50,000 RMB/day, 30,000 RMB/day, and 40,000 RMB/day,
respectively.

The computer running environment was an intercore
2 Duo 2.26GHz clock pulse with 2048MB memory. The
programwaswritten usingMATLAB 2007. After 3.12minutes
on average, the optimal solutions for the bilevel programming
were determined.

The partial assignment scheme for these resources is
shown in Table 3 and Figure 10. The integrated project
schedules are illustrated in Figure 12. From Table 3 and
Figure 10, the following can be seen. (1) The resource should
be assigned to projects dynamically since the demanded
quantity changes over time. (2) It is not necessary to allocate
resources during the projects for each period because the
assigned quantity is the same in some continuous periods.
(3) This also reflects that the allocation period length has an
effect on the allocation results. From Figure 10, we can see

the following. (1) The finishing time and chosen modes for
project 1 and project 2 are different although they have same
resources requirements. (2) Activities which need the same
resources have been staggered because the total resource
quantity is insufficient to implement these activities at the
same time. This indicates that the scheduling is impacted by
the resource allocation over the three projects although the
company manager does not control the project scheduling
directly. Hence, the resource allocation on the upper level can
impact the decision on the lower level. Moreover, the results
show that existing company resources cannot ensure that all
three projects can finish on time. In this case, the company
managers have to allocate more resources to the first project,
which has a higher tardiness penalty. These detailed results
can assist the decision makers on both the upper and lower
levels to make the appropriate resources allocation plans.

5.3. Model Analysis. In this section, the proposed model is
analyzed through a comparison with other resource alloca-
tion methods and an analysis is given for three uncertain
models.

5.3.1. Assignment Method Comparison. Traditionally, re-
source allocation planning over multiple projects is executed
using a resource-constrained multiple project scheduling
model (RCMPS).This model is dependent on an assumption
that a single manager oversees all projects. That is, there is
only one level manager who is responsible for the overall
project resource allocation and for the resource allocation
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Table 1: The activity duration and resource consumption for the installation projects.

No. Mode Duration
Resource requirement

CR CM WO EE
16 10 30 6

A 1 {(32, 34, 36), 0.5; (35, 38, 41), 0.3; (42, 48, 54), 0.2} 6 4 8 2
2 {(28, 30, 32), 0.5; (30, 33, 35), 0.3; (35, 40, 45), 0.2} 8 5 12 2

B
1 {(20, 23, 26), 0.4; (22, 25, 28), 0.3; (25, 30, 35), 0.3} 3 2 4 2
2 {(15, 18, 21), 0.4; (18, 21, 24), 0.3; (20, 23, 26), 0.3} 4 2 6 2
3 {(12, 15, 18), 0.4; (15, 18, 21), 0.3; (20, 24, 28), 0.3} 5 4 8 2

C 1 {(20, 23, 26), 0.3; (22, 25, 28), 0.3; (25, 30, 35), 0.4} 2 3 0 0
2 {(15, 18, 21), 0.3; (18, 21, 24), 0.3; (20, 23, 26), 0.4} 3 3 0 0

D
1 {(24, 26, 28), 0.3; (26, 28, 30), 0.3; (30, 32, 34), 0.4} 2 0 4 0
2 {(20, 23, 26), 0.3; (22, 25, 28), 0.3; (25, 30, 35), 0.4} 2 0 6 0
3 {(18, 20, 22), 0.3; (20, 22, 24), 0.3; (22, 24, 26), 0.4} 3 0 8 0

E
1 {(28, 30, 32), 0.3; (30, 33, 35), 0.3; (35, 40, 45), 0.4} 2 0 3 0
2 {(24, 26, 28), 0.3; (28, 31, 34), 0.3; (30, 34, 38), 0.4} 3 0 4 0
3 {(20, 23, 26), 0.3; (22, 25, 28), 0.3; (25, 28, 31), 0.4} 4 0 5 0

F 1 {(15, 17, 19), 0.4; (17, 19, 21), 0.3; (20, 22, 24), 0.3} 2 4 0 0
2 {(10, 12, 14), 0.4; (12, 15, 18), 0.3; (15, 18, 21), 0.3} 3 6 0 0

G 1 {(15, 17, 19), 0.4; (17, 19, 21), 0.3; (20, 22, 24), 0.3} 2 0 8 1
2 {(10, 12, 14), 0.4; (12, 15, 18), 0.4; (15, 18, 21), 0.2} 3 0 10 2

H 1 {(3, 5, 7), 1.0} 0 0 0 4
2 {(5, 7, 9), 1.0} 0 0 0 6

I 1 {(32, 34, 36), 0.3; (35, 38, 41), 0.3; (42, 48, 54), 0.4} 2 2 4 0
2 {(28, 30, 32), 0.3; (30, 33, 35), 0.3; (35, 40, 45), 0.4} 4 3 6 0

J
1 {(20, 23, 26), 0.5; (22, 25, 28), 0.4; (25, 30, 35), 0.1} 2 0 0 2
2 {(15, 18, 21), 0.5; (18, 21, 24), 0.4; (20, 23, 26), 0.1} 2 0 0 2
3 {(12, 15, 18), 0.5; (15, 18, 21), 0.4; (20, 24, 28), 0.1} 3 0 0 3

K 1 {(28, 30, 32), 0.3; (30, 33, 35), 0.3; (35, 40, 45), 0.4} 1 0 3 1
2 {(22, 25, 27), 0.3; (25, 28, 31), 0.3; (30, 33, 36), 0.4} 2 0 5 2

L
1 {(15, 17, 19), 0.5; (17, 19, 21), 0.4; (20, 22, 24), 0.1} 0 0 4 2
2 {(13, 15, 17), 0.5; (15, 17, 19), 0.4; (17, 20, 23), 0.1} 0 0 6 3
3 {(12, 14, 16), 0.5; (14, 15, 16), 0.4; (16, 17, 18), 0.1} 0 0 8 4

Table 2: The total quantity and unit cost of the company resources.

Resource CR CM WO EE
Total quantity 16 10 30 6
Cost
(unit: CN/day)

(780, 𝜌, 960),
𝜌 ∼ 𝑁(850, 50)

(1020, 𝜌, 1300),
𝜌 ∼ 𝑁(1160, 80)

(500, 𝜌, 700),
𝜌 ∼ 𝑁(600, 60)

(920, 𝜌, 1240),
𝜌 ∼ 𝑁(1100, 75)

in each specific project. However, a bilevel organization
structure is frequently used to manage projects which have
two levels of managers. In this case, a bilevel optimization
assignment model (BLOAM) is proposed to allocate the
company resources over multiple projects. In this model,
the company managers are responsible for the multipro-
ject resources allocation in each period, while the project
managers are responsible for the resource allocation for each
specific project. In practice, other several assignment meth-
ods can also be used in the bilevel multiproject environment.
One of these is called the Simple Weight Allocation Method
(SWAM). The SWAM gives a weigh to each project and then

assigns resources to the projects according to the weight at
the beginning of each resource period. Another method is
the First In System First Served (FISFS) method which gives
priority to the project that has been waiting the longest when
resource conflicts occur. In addition, the MINPDD method
gives priority to the project that has the earliest project
due date and the MINPSLK method gives priority to the
project that has the smallest project slack.There is a common
characteristic in these four methods, as all of them only set
the allocation regulation before the project implementation
rather than making a detailed allocation plan for each time
period.
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Table 3: An optimal resource assignment scheme after 20 experi-
ments.

Time CR CM WO EE
𝑃

1
𝑃

2
𝑃

3
𝑃

1
𝑃

2
𝑃

3
𝑃

1
𝑃

2
𝑃

3
𝑃

1
𝑃

2
𝑃

3

1–8 8 8 0 5 5 0 12 12 0 2 2 0
9–12 4 4 8 2 2 4 6 6 10 2 2 2
13–16 6 6 4 5 5 0 8 8 12 0 0 2
17–20 7 4 4 4 4 2 19 11 0 2 2 0
21 5 4 4 0 0 4 12 8 8 0 2 2
22 4 4 4 0 0 6 9 13 6 2 2 0
23-24 5 4 4 0 0 4 10 12 8 4 2 0
25-26 5 4 6 4 4 2 4 8 8 4 0 2

0
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Figure 10: The allocation plan for Resource CR during 38 weeks.

To test these methods above, four performance measures
were used: total cost, project finishing time, actual usage,
and total resource transfers. Actual usage refers to the
proportion of the used resources compared to the total
assigned resources. In practice, in order to improve resource
usage, the assigned resource is transferred to each project
at the beginning of each time period. At the end, idle
resources should be released back into company’s resource
pool if they are not required for a project in the next time
period.This resource transfer is used to record the transferred
resource quantity between the company resource pool and
the projects.

The computation results from the fivemethods are shown
in Table 4. It is seen that, in comparison with other alloca-
tion methods, the proposed bilevel optimization allocation
method can save cost more than 11.45% (600,000 RMB).
The finishing time is also acceptable since it is shorter than
the other three methods. Moreover, it also has the best
resource usage of the fivemethods while the resource transfer
is at an intermediate level. On the contrary, the SWAM
can be seen to be unacceptable because of the high cost
and the low resource usage. The other three methods have
comparable performances with each other. However, all of
these methods show a higher cost and lower resource usage
than the proposed bilevel optimization method. Hence, the
proposed bilevel optimization allocation method is efficient

in reducing costs, shortening project duration, and improving
resource usage. It also shows that it is necessary to decide
on a resource allocation plan using the bilevel optimization
method rather than only making allocation regulation before
project implementation.

5.3.2. Uncertainty Analysis. Uncertainty is an important
consideration in this study. In particular, fuzzy random
variables which integrate fuzzy factor and random factor are
used to model the uncertain activity durations and resource
costs because of the lack of precise data. Besides the fuzzy
random variables, we can also use fuzzy variable or random
variables to deal with the uncertainty. If only fuzzy factors are
considered, then some important random information such
as the weather has to be ignored.The situation is similar when
only considering the random factors. Taking the duration of
activity 𝐴 as an example, because of the lack of precise data,
some experts are invited to estimate the duration. From the
experts, the activity duration will be in the interval [32, 54]
with a most possible value of 40. Then the duration can be
modelled as fuzzy number (32, 40, 54). This is the situation
without considering random factors. In addition, the activity
is estimated to be implemented in October. According to the
weather data, the probability of sunshine, cloud, and rain are
0.5, 0.3, and 0.2, respectively. In this case, a new estimated
value for each type of weather can be obtained. Similar to
the previous estimation, these values are also fuzzy numbers.
Hence, the estimated duration which considers the weather
can be obtained as follows:

̃
𝑑

𝐴
=

{
{

{
{

{

(32, 34, 36) , 0.5

(35, 38, 41) , 0.3

(42, 48, 54) , 0.2.

(21)

Compared with only fuzzy factors, the fuzzy random
duration has more information which can lead to a more
precise calculation. If we only consider the random factors,
then the fuzzy number in the fuzzy random number has to be
replaced using a crisp number.The crisp number is chosen in
its interval randomly. This could lead to unstable, even false
computation results.

A test was also made by solving the proposed bilevel
optimizationmodel using the three types of uncertain data. In
the comparison, the fuzzy random model and fuzzy random
found different solutions by adjusting the optimistic and
pessimistic index 𝜆, while the randommodel found different
solutions by choosing different crisp numbers randomly.
Table 5 shows the comparison of the three model types based
on the upper level model objective. It can be seen that the
proposed model with fuzzy random variables has a much
better performance than the others, not only in the average
value of the results, but also in the stability.

5.4. Algorithm Evaluation. In this paper, a hybrid algorithm
made up of an adaptive PSO, a GA, and a fuzzy random
simulation was proposed to solve a bilevel resource allocation
problem. In order to test the efficiency of the algorithm, a
comparison with other solution methods was conducted.
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Table 4: An optimal resource assignment scheme after 20 experiments.

Assign methods Total cost
(unit: T RMB)

Finishing time Actual usage Total resource
transfersProject 1 Project 2 Project 3

BLOAM 5242 September 6 November 16 September 25 96.42% 224
SWAM 6381 September 6 November 16 September 25 78.38% 136
FISFS 5768 September 6 November 24 October 15 92.13% 248
MINPDD 5966 September 6 November 24 October 15 94.35% 236
MINPSLK 5842 September 26 November 24 September 28 89.72% 198
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Figure 11: The schedules of three projects on the lower level.

Themost common solution strategy for bilevelmodel is to
transform it into a single level using the Karush-Kuhn-Tucker
(KKT) conditions. However, this is difficult when variables
only take integer values in the inner models. This also means
that it can not be solved using common commercial solvers.
Hence, it is more appropriate to solve the problem using
a heuristic algorithm. In this paper, an improved adaptive
PSO was proposed to deal with the upper level model. First,
a comparison of the improved aPSO and original PSO was
carried out. The average convergence curves are shown in
Figure 11. It is shown that the proposed improved aPSO is
faster and has an improved solution accuracy compared to
the original PSO.

In addition, in our problem, the lower-level model is also
better to be solved using a heuristic algorithm. Traditionally,
researchers have tended to use the same algorithm to solve
both the upper level and lower level. However, for a multi-
mode resource-constrained project scheduling problem, the
genetic algorithm shows a significantly higher percentage
of success in finding the optimal solution although it may
be slower. If the optimal solution to the lower-level model
cannot be found, then the final solution may not be feasible.
Hence, an adaptive genetic algorithm was proposed to deal
with the lower-level model in this paper. In order to test
the efficiency of the proposed hybrid algorithm, other bilevel
algorithms such as PSO-PSO, GA-GA, and GA-PSO were
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Figure 12: The convergence curves of the three PSO algorithms.

Table 5: Comparisons among the three types of uncertainty.

Type of uncertain Best result Worst result Average result
Fuzzy random 5240 5386 5292
Fuzzy 5259 5421 5306
Random 5204 5506 5318

Table 6: Performance of the proposed algorithms based on 50
experiments.

Performance PSO-GA PSO-PSO GA-PSO GA-GA
Best result 5,234,486 5,382,321 5,323,732 5,224,494
Average result 5,318,216 5,547,291 5,388,462 5,267,782
Computing time 3.23 2.15 5.29 14.84

also tested over 50 experiments. In the experiments, the PSO
[41] and the GA [42] were used to solve the lower-level
model. The proposed improved aPSO and the GA [43] were
used to search for the solution to the upper-level model. The
performance of these algorithms is shown in Table 6. The
results indicate that the proposed bilevel hybrid algorithm
based PSO for the upper level and GA for the lower level
is able to find better solutions than either the PSO-PSO or
GA-PSO, and it has a faster computation speed than that
of the GA-GA. Hence, the proposed algorithm is shown to
be efficient for solving the proposed bilevel multiple project
resource allocation problem.

6. Conclusion

This paper presented a bilevel optimization model for com-
pany resource allocation amongmultiple projects in a hierar-
chical organization. There are two levels of decision makers
in the model. The decision maker on the upper level is the
company manager who hopes to allocate company resource
to multiple projects at a lower cost. This cost consists of
the resource costs and the tardiness penalty. On the lower
level, each project manager attempts to schedule their project
with the objective of minimization of project duration under

resource constraints and multiple modes. In addition, the
uncertainty associated with activity duration and resource
cost has been explicitly considered in the model. Specifically,
our research used fuzzy random variables to model the
activity duration and resource costs.Then a hybrid algorithm
made up of an adaptive PSO and aGAbased on fuzzy random
simulation was also applied to search for the optimal solution
to the bilevel model. In the algorithm, an adaptive PSO
was introduced to cope with the upper level programming,
while an adaptive hybrid genetic algorithm was embedded
into the PSO to solve the lower-level model. Finally, the
efficiency of the proposedmodel and algorithmwas evaluated
using a practical case and various computing attributes. In
contrast to prior studies, the proposed model shows that
it was able to deal with a multiproject resource allocation
in a bilevel optimization such as in most of construction
companies, software companies, and some production com-
panies. The limitation of the proposed model is that it
does not allow for new projects to be added during the
scheduled resource allocation periods.This is an interest area
for our future research. In addition, in future research we also
expect to investigate additional methods for dealing with the
uncertainty in resource management such as using interval
mathematical programming, which has been successfully
applied to environmental management [10, 44].
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The concepts of preinvex and invex are extended to the interval-valued functions. Under the assumption of invexity, the Karush-
Kuhn-Tucker optimality sufficient and necessary conditions for interval-valued nonlinear programming problems are derived.
Based on the concepts of having no duality gap in weak and strong sense, the Wolfe duality theorems for the invex interval-valued
nonlinear programming problems are proposed in this paper.

1. Introduction

In real world applications ofmathematical programming, one
cannot ignore the possibility that a small uncertainty in the
data can make the usual optimal solution completely mean-
ingless from a practical viewpoint. So the major difficulty
we are faced with is how to seek a solution for these real
world optimization problems. There are several optimization
models to deal with these problems. If the coefficients of
optimization problem are assumed as random variables with
known distributions, the problem can be categorized as the
stochastic optimization problem. Stochastic optimization is a
widely used and a standard approach to dealwith uncertainty;
for the detail of this topic one can see the books written by
Birge and Louveaux [1], Kall and Mayer [2], and Prékopa [3].
If the coefficients of optimization problem are assumed as
fuzzy variables, the problem can be categorized as the fuzzy
optimization problem.The book written by Delgado et al. [4]
gives themain stream of this topic. However, there are several
drawbacks of stochastic optimization and fuzzy optimization
in real world applications. Firstly, the specifications of the
distributions and membership functions in the stochastic
optimization problems and fuzzy optimization problems are
very subjective. Secondly, the approach of stochastic opti-
mization (fuzzy optimization) requires the evaluation of the
solution on the whole uncertainty set in order to determine
its expected cost, which is computationally hard in general.

Finally, one cannot guarantee that the real cost matches the
expected cost in stochastic optimization, since the expected
cost is only an estimator of the possible solutions.

In recent years, some deterministic frameworks of opti-
mization methods are studied to overcome the drawbacks of
stochastic optimization and fuzzy optimization. One of these
deterministic optimization methods is robust optimization,
which is the worst case based method and does not need a
probability distribution on the uncertainty set. The earliest
date of studies on robust optimization can be back to 1973
([5]); Soyster proposed the first robust model for linear
optimization problems with uncertain data. However, the
model is very conservative in the sense that they protect
against the worst case scenario. The interest in robust for-
mulations in the optimization community was revived in
the 1990s. A number of important robust formulations and
applications were introduced by Ben-Tal et al. [6], El Ghaoui
et al. [7, 8] and Bertsimas and Sim [9], who provided a
detailed analysis of the robust optimization framework in
linear optimization and general convex programming. In
robust optimization, the considered uncertainty set plays a
crucial role, since it determines the level of protection of the
solution. The solution of robust optimization models might
be too conservative if all scenarios are considered. Another
one of these deterministic optimization methods is interval-
valued optimization, which provides an alternative choice
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for considering the uncertainty into the optimization prob-
lems. The coefficients in the interval-valued optimization
are assumed as closed intervals. The bounds of uncertain
data in interval-valued optimization are easier to be handled
than specifying the distributions and membership functions
in stochastic optimization and fuzzy optimization problems,
respectively.

Duality theory has played a fundamental role in the area
of constrained optimization and has been studied for over a
century. The duality theory for interval linear programming
problems with real-valued objective function was discussed
by Rohn [10]. Wu [11–14] has studied the duality theory
for interval-valued programming problems. In [11], Wu has
proposed the Wolfe duality for interval-valued nonlinear
programming problems.The Lagrangian duality for interval-
valued nonlinear programming problems was also studied
by Wu in [13]. Although the Wolfe and Lagrangian duality
theory obtained in [11–13] can be applied to the problems
of interval-valued linear programming, the results obtained
using this method will be complicated. Based on the con-
cept of a scalar product of closed intervals, Wu [14] has
proposed the new weak and strong duality theorems for
interval-valued linear programming problems. Zhou and
Wang [15] have established the optimality sufficient condi-
tion and a mixed dual model for interval-valued nonlinear
programming problems. However, these results were mainly
established for the interval-valued programming problems
involving the optimization of convex objective functions over
convex feasible regions. In real world applications, not all
practical problems fulfill the requirements of convexity.Then,
generalized convex functions [16–21] have been introduced
in order to weaken as much as possible the convexity
requirements for results related to optimality conditions and
duality results.

In this paper, we study the Karush-Kuhn-Tucker opti-
mality sufficient and necessary conditions for interval-valued
optimization problems under the assumption of generalized
convexity. We extend the concepts of preinvex and invex for
real-valued functions to interval-valued functions. Under the
assumption of invexity, the Karush-Kuhn-Tucker optimality
sufficient and necessary conditions for interval-valued opti-
mization problems are derived for the purpose of proving
the strong duality theorems. By using the concept of having
no duality gap in weak and strong sense, the strong duality
theorems in weak and strong sense are then proposed. The
results in this paper improve and extend the results of Wu in
[11–14] for interval-valued nonlinear optimization problems.

In Section 2 we present some basic concepts and proper-
ties for closed intervals and interval-valued functions, respec-
tively. In Section 3,TheWolfe’s primal and dual pair problems
are proposed for interval-valued optimization problems. In
Section 4, We extend the concepts of preinvex and invex for
real-valued functions to interval-valued functions. Under the
assumption of invexity, the Karush-Kuhn-Tucker optimality
sufficient and necessary conditions for interval-valued opti-
mization problems are derived. In Section 5, we discuss the
solvability for Wolfe’s primal and dual problems under the
assumption of invexity. In Section 6, the duality theorems in

weak and strong sense are established for the invex interval-
valued nonlinear optimization problems.

2. Preliminaries

Let us denote by I the class of all closed intervals in 𝑅 if
𝐴 = [𝑎

𝐿

, 𝑎
𝑈

] ∈ I denotes a closed interval, where 𝑎
𝐿 and

𝑎
𝑈 mean the lower and upper bounds of 𝐴, respectively. Let

𝐴 = [𝑎
𝐿

, 𝑎
𝑈

] and 𝐵 = [𝑏
𝐿

, 𝑏
𝑈

] be inI; we have

(i) 𝐴+𝐵 = {𝑎+𝑏 : 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵} = [𝑎
𝐿

+𝑏
𝐿

, 𝑎
𝑈

+𝑏
𝑈

];
(ii) −𝐴 = {−𝑎 : 𝑎 ∈ 𝐴} = [−𝑎

𝑈

, −𝑎
𝐿

];
(iii) 𝐴 × 𝐵 = {𝑎𝑏 : 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵} = [min

𝑎𝑏
,max
𝑎𝑏

],
where min

𝑎𝑏
= min{𝑎

𝐿

𝑏
𝐿

, 𝑎
𝐿

𝑏
𝑈

, 𝑎
𝑈

𝑏
𝐿

, 𝑎
𝑈

𝑏
𝑈

} and
max
𝑎𝑏

= max{𝑎
𝐿

𝑏
𝐿

, 𝑎
𝐿

𝑏
𝑈

, 𝑎
𝑈

𝑏
𝐿

, 𝑎
𝑈

𝑏
𝑈

}.

Then, we can see that

𝐴 − 𝐵 = 𝐴 + (−𝐵) = [𝑎
𝐿

− 𝑏
𝑈

, 𝑎
𝑈

− 𝑏
𝐿

] , (1)

𝑘𝐴 = {𝑘𝑎 : 𝑎 ∈ 𝐴}

= {

[𝑘𝑎
𝐿

, 𝑘𝑎
𝑈

] if 𝑘 ≥ 0,

|𝑘| [−𝑎
𝑈

, −𝑎
𝐿

] if 𝑘 < 0,

(2)

where 𝑘 is a real number. The real number 𝑎 ∈ 𝑅 can be
regarded as a closed interval 𝐴

𝑎
= [𝑎, 𝑎]. Let 𝐵 ∈ I be a

closed interval; we write that 𝑎 + 𝐵 will mean 𝐴
𝑎

+ 𝐵. For
more details on the topic of interval analysis, one can refer to
[22].

We say that 𝐴 and 𝐵 are comparable if and only if 𝐴 ⪯ 𝐵

or 𝐴 ⪰ 𝐵. We write that 𝐴⪯
𝐿𝑈

𝐵 if and only if 𝑎
𝐿

≤ 𝑏
𝐿 and

𝑎
𝑈

≤ 𝑏
𝑈 and that 𝐴≺

𝐿𝑈
𝐵 if and only if 𝐴⪯

𝐿𝑈
𝐵 and 𝐴 ̸= 𝐵; that

is, the following (a1) or (a2) or (a3) is satisfied:

(a1) 𝑎
𝐿

< 𝑏
𝐿 and 𝑎

𝑈

≤ 𝑏
𝑈;

(a2) 𝑎
𝐿

≤ 𝑏
𝐿 and 𝑎

𝑈

< 𝑏
𝑈;

(a3) 𝑎
𝐿

< 𝑏
𝐿 and 𝑎

𝑈

< 𝑏
𝑈.

Therefore if 𝐴 and 𝐵 are not comparable, then the
following (b1) or (b2) or (b3) or (b4) or (b5) or (b6) is satisfied:

(b1) 𝑎
𝐿

≤ 𝑏
𝐿 and 𝑎

𝑈

> 𝑏
𝑈; (b2) 𝑎

𝐿

< 𝑏
𝐿 and 𝑎

𝑈

≥ 𝑏
𝑈;

(b3) 𝑎
𝐿

< 𝑏
𝐿 and 𝑎

𝑈

> 𝑏
𝑈; (b4) 𝑎

𝐿

≥ 𝑏
𝐿 and 𝑎

𝑈

< 𝑏
𝑈;

(b5) 𝑎
𝐿

> 𝑏
𝐿 and 𝑎

𝑈

≤ 𝑏
𝑈; (b6) 𝑎

𝐿

> 𝑏
𝐿 and 𝑎

𝑈

< 𝑏
𝑈.

In other words, if𝐴 and 𝐵 are not comparable, then𝐴 ̸= 𝐵

and 𝐴 ⊇ 𝐵 or 𝐴 ⊆ 𝐵.
The function𝑓 : 𝑅

𝑛

→ I defined on the Euclidean space
𝑅
𝑛 is called interval-valued function if 𝑓(x) = 𝑓(𝑥

1
, . . . , 𝑥

𝑛
) is

a closed interval in 𝑅 for each x ∈ 𝑅
𝑛. 𝑓 can be also written

as 𝑓(x) = [𝑓
𝐿

(x), 𝑓
𝑈

(x)], where 𝑓
𝐿 and 𝑓

𝑈 are real-valued
functions defined on 𝑅

𝑛 and satisfy 𝑓
𝐿

(x) ≤ 𝑓
𝑈

(x) for every
x ∈ 𝑅
𝑛. Wu ([23]) has shown the concepts of limit, continuity,

and two kinds of differentiation of interval-valued function.

Definition 1 (see [23]). Let𝑋 be an open set in𝑅. An interval-
valued function 𝑓 : 𝑋 → I with 𝑓(𝑥) = [𝑓

𝐿

(𝑥), 𝑓
𝑈

(𝑥)] is
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called weakly differentiable at 𝑥
0
if the real-valued functions

𝑓
𝐿 and 𝑓

𝑈 are differentiable at 𝑥
0
(in the usual sense).

Let 𝐴, 𝐵 ∈ I; if there exists a 𝐶 ∈ I such that 𝐴 = 𝐵 + 𝐶,
then 𝐶 is called theHukuhara difference.One also writes 𝐶 =

𝐴 ⊖ 𝐵, when we say that the Hukuhara difference 𝐶 exists,
whichmeans that 𝑎

𝐿

−𝑏
𝐿

≤ 𝑎
𝑈

−𝑏
𝑈 and𝐶 = [𝑎

𝐿

−𝑏
𝐿

, 𝑎
𝑈

−𝑏
𝑈

].

Definition 2 (see [23]). Let𝑋 be an open set in𝑅. An interval-
valued function 𝑓 : 𝑋 → I is called H-differentiable at 𝑥

0
if

there exists a closed interval 𝐴(𝑥
0
) ∈ I such that the limits

lim
ℎ→0

+

𝑓 (𝑥
0

+ ℎ) ⊖ 𝑓 (𝑥
0
)

ℎ

,

lim
ℎ→0

+

𝑓 (𝑥
0
) ⊖ 𝑓 (𝑥

0
− ℎ)

ℎ

(3)

both exist and are equal to 𝐴(𝑥
0
). In this case, 𝐴(𝑥

0
) is called

the H-derivative of 𝑓 at 𝑥
0
.

Let 𝑓 be an interval-valued function defined on 𝑅
𝑛. One

says that 𝑓 is continuous at c ∈ 𝑅
𝑛 if

lim
x→ c

𝑓 (x) = 𝑓 (c) . (4)

Definition 3 (see [23]). Let 𝑓 be an interval-valued function
defined on 𝑋 ⊆ 𝑅

𝑛 and let x
0

= (𝑥
0

1
, . . . , 𝑥

0

𝑛
) ∈ 𝑋 be fixed.

(i) One say that 𝑓 is weakly continuously differentiable at
x
0
if the real-valued functions𝑓

𝐿 and𝑓
𝑈 are continu-

ously differentiable at x
0
(i.e., all the partial derivatives

of 𝑓
𝐿 and 𝑓

𝑈 exist on some neighborhoods of x
0
and

are continuous at x
0
).

(ii) One says that 𝑓 is continuously H-differentiable at
x
0

if all of the partial H-derivatives
((𝜕𝑓/𝜕𝑥

1
)
𝐻

, . . . , (𝜕𝑓/𝜕𝑥
𝑛
)
𝐻

) exist on some
neighborhoods of x

0
and are continuous at x

0

(in the sense of interval-valued function).

Proposition 4 (see [23]). Let𝑓 be an interval-valued function
defined on 𝑋 ⊆ 𝑅

𝑛. If 𝑓 is H-differentiable at x
0

∈ 𝑋, then 𝑓 is
weakly differentiable at x

0
; if 𝑓 is continuously H-differentiable

at x
0

∈ 𝑋, then 𝑓 is weakly continuously differentiable at x
0
.

3. The Wolfe’s Primal and Dual Problems

In this section, we introduce theWolfe’s primal and dual pair
problems for conventional nonlinear programming problem
following Wu in [12]. We consider the interval-valued opti-
mization problem as follows:

(IVP) min 𝐹 (x)

subject to 𝑔
𝑖
(x) ≤ 0, 𝑖 = 1, . . . , 𝑚,

ℎ
𝑖
(x) ≤ 0, 𝑖 = 1, . . . , 𝑚,

x ≥ 0,

(5)

where 𝐹 : 𝑅
𝑛

→ I is an interval-valued function and 𝑔
𝑖

:

𝑅
𝑛

→ 𝑅 and ℎ
𝑖
: 𝑅
𝑛

→ 𝑅, 𝑖 = 1, . . . , 𝑚, are real-valued fun-
ctions.

We denote by

𝑋 = {x ∈ 𝑅
𝑛

: x ≥ 0, 𝑔
𝑖
(x) ≤ 0, ℎ

𝑖
(x) ≤ 0, 𝑖 = 1, . . . , 𝑚}

(6)

the feasible set of primal problem (IVP). We also denote by

Obj
𝑃

(𝐹, 𝑋) = {𝐹 (x) : x ∈ 𝑋} (7)

the set of all objective values of primal problem (IVP).

Definition 5 (see [12]). Let x∗ be a feasible solution of primal
problem (IVP). One says that x∗ is a nondominated solution of
problem (IVP) if there exists no x̃ ∈ 𝑋 such that𝐹(x̃) ≺ 𝐹(x∗).
In this case, 𝐹(x∗) is called the nondominated objective value
of 𝐹.

We denote by Min(𝐹, 𝑋) = {𝐹(x∗) : x∗ is a
non-dominated solution of (IVP)} the set of all nondomi-
nated objective values of problem (IVP).

If we assume that the interval-valued function 𝐹 and the
real-valued functions 𝑔

𝑖
and ℎ
𝑖
, 𝑖 = 1, . . . , 𝑚 are differentiable

on 𝑅
𝑛

+
, the dual problem of (IVP) is formulated as follows:

(DIVP) max 𝐹 (x) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ 𝑔
𝑖
(x) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ℎ
𝑖
(x)

subject to ∇𝐹
𝐿

(x) + ∇𝐹
𝑈

(x) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x)

+

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x) = 0,

𝜇 = (𝜇
1
, . . . , 𝜇

𝑚
) ≥ 0, 𝑖 = 1, . . . , 𝑚,

𝜆 = (𝜆
1
, . . . , 𝜆

𝑚
) ≥ 0, 𝑖 = 1, . . . , 𝑚,

x ≥ 0.

(8)

We denote by 𝑌 the feasible set of dual problem (DIVP)
consisting of elements (x,𝜇,𝜆) ∈ 𝑅

𝑛

+
× 𝑅
𝑚

+
× 𝑅
𝑚

+
. We write

𝐻 (x,𝜇,𝜆) = 𝐹 (x) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ 𝑔
𝑖
(x) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ℎ
𝑖
(x) (9)

and denote by

Obj
𝐷

(𝐻, 𝑌) = {𝐻 (x,𝜇,𝜆) : (x,𝜇,𝜆) ∈ 𝑌} (10)

the set of all objective values of primal problem (DIVP).

Definition 6 (see [12]). Let (x∗,𝜇∗,𝜆∗) be a feasible solution
of primal problem (DIVP). One says that (x∗,𝜇∗,𝜆∗) is a
nondominated solution of problem (DIVP) if there exists no
(x,𝜇,𝜆) such that 𝐻(x∗,𝜇∗,𝜆∗) ≺ 𝐻(x,𝜇,𝜆). In this case,
𝐻(x∗,𝜇∗,𝜆∗) is called the nondominated objective value of
problem (DIVP).

We denote by Max(𝐻, 𝑌) = {𝐻(x∗,𝜇∗,𝜆∗) : (x∗,𝜇∗,𝜆∗)
is a nondominated solution of (DIVP)} the set of all nondom-
inated objective values of problem (DIVP).
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4. The KKT Optimality Conditions for
Interval-Valued Optimization Problems

In this section, we extend the concepts of preinvex and
invex for real-valued functions to interval-valued functions.
Under the assumption of invexity, we propose the KKT
optimality sufficient and necessary conditions for interval-
valued optimization problems.

4.1. Preinvexity and Invexity of the Interval-Valued Functions.
The concept of convexity plays an important role in the
optimization theory. In recent years, the concept of convex-
ity has been generalized in several directions using novel
and innovative techniques. An important generalization of
convex functions is the introduction of preinvex function,
which was introduced by Weir and Mond ([19]) and by
Weir and Jeyakumar ([20]). Yang et al. ([21]) has established
the characterization of prequasi-invex functions under the
condition of lower semicontinuity, upper semicontinuity, and
semistrict prequasi-invexity, respectively.

Definition 7 (see [19, 20]). A set 𝐾 ⊆ 𝑅
𝑛 is said to be invex if

there exists a vector function 𝜂 : 𝑅
𝑛

× 𝑅
𝑛

→ 𝑅
𝑛 such that

x, y ∈ 𝐾, 𝜆 ∈ [0, 1] ⇒ y + 𝜆𝜂 (x, y) ∈ 𝐾. (11)

Definition 8 (see [19, 20]). Let 𝐾 ⊆ 𝑅
𝑛 be an invex set with

respect to 𝜂 : 𝑅
𝑛

× 𝑅
𝑛

→ 𝑅
𝑛. Let 𝑓 : 𝐾 → 𝑅. One says that

𝑓 is preinvex if

𝑓 (y + 𝜆𝜂 (x, y)) ≤ 𝜆𝑓 (x) + (1 − 𝜆) 𝑓 (y) ,

∀x, y ∈ 𝐾, 𝜆 ∈ [0, 1] .

(12)

Hanson has also introduced the concept of invex function in
[17].

Definition 9 (see [17]). Let𝐾 ⊆ 𝑅
𝑛 be an invex setwith respect

to 𝜂 : 𝑅
𝑛

×𝑅
𝑛

→ 𝑅
𝑛. Let𝑓 : 𝐾 → 𝑅. One says that𝑓 is invex

if

𝑓 (x) − 𝑓 (y) ≥ 𝜂
𝑇

(x, y) ∇𝑓 (y) . (13)

Pini ([18]) has shown that, if 𝑓 is defined on an invex set
𝐾 ⊆ 𝑅

𝑛 and if it is preinvex and differentiable, then 𝑓 is also
invex with respect to 𝜂, but the converse is not true in general.
Wu has extended the concept of convexity to the interval-
valued functions in [11–14].

Now, we extend the concepts of preinvexity and invexity
to the interval-valued functions.

Definition 10. Let 𝐾 ⊆ 𝑅
𝑛 be an invex set with respect to 𝜂 :

𝐾 × 𝐾 → 𝑅
𝑛, and let 𝑓 = [𝑓

𝐿

(x), 𝑓
𝑈

(x)] be an interval-
valued function defined on𝐾. One says that𝑓 is 𝐿𝑈-preinvex
at x∗ with respect to 𝜂 if

𝑓 (x + 𝜆𝜂 (x∗, x)) ⪯
𝐿𝑈

𝜆𝑓 (x∗) + (1 − 𝜆) 𝑓 (x) (14)

for each 𝜆 ∈ (0, 1) and each x ∈ 𝐾.

Definition 11. Let 𝐾 ⊆ 𝑅
𝑛 be an invex set with respect to 𝜂 :

𝐾 × 𝐾 → 𝑅
𝑛, and let 𝑓 = [𝑓

𝐿

(x), 𝑓
𝑈

(x)] be an interval-
valued function defined on 𝐾. One says that 𝑓 is invex at x∗
if the real-valued functions 𝑓

𝐿 and 𝑓
𝑈 are invex at x∗.

It is obvious that the particular case of H-differentiable
𝐿𝑈-convex interval-valued function is obtained by choosing
𝜂(x, y) = x−y in H-differentiable invex interval-valued func-
tion, but H-differentiable invex interval-valued functionmay
not be H-differentiable 𝐿𝑈-convex interval-valued function.

Example 12. Consider that 𝑓 : 𝑅 → 𝑅, 𝑓(𝑥) = [1 − 𝑒
−𝑥
2

,
1 − 0.2𝑒

−𝑥
2

]; this interval-valued function is invex since 𝑓
𝐿

and 𝑓
𝑈 have a unique global minimizer at 𝑥

∗

= 0, where
(𝑓
𝐿

)


= (𝑓
𝑈

)


= 0 and is therefore invex. However, 𝑓 is not
𝐿𝑈-convex at 𝑥

∗ and therefore not 𝐿𝑈-preinvex. As 𝑥
∗

= 0

and 𝑓
𝐿

(𝑥
∗

) = 0, then for 𝜆 ∈ (0, 1). Consider the following:

𝜆𝑓
𝐿

(𝑥
∗

) + (1 − 𝜆) 𝑓
𝐿

(𝑦) = (1 − 𝜆) 𝑓
𝐿

(𝑦) ,

𝑓
𝐿

(𝜆𝑥
∗

+ (1 − 𝜆) 𝑦) = 𝑓
𝐿

((1 − 𝜆) 𝑦) .

(15)

Taking 𝑦 = 5, 𝜆 = 0.5, we get (1 − 𝜆)𝑓
𝐿

(𝑦) ≈ 0.5 < 𝑓
𝐿

((1 −

𝜆)𝑦) ≈ 0.998. Then, (1 − 𝜆)𝑓
𝐿

(𝑦) < 𝑓
𝐿

((1 − 𝜆)𝑦), ∀𝑦 ∈ 𝑅, so
the real-valued function 𝑓

𝐿 is not convex at 𝑥
∗

= 0 and the
interval-valued function 𝑓 is not 𝐿𝑈-convex at 𝑥

∗

= 0.

Proposition 13. Let 𝐾 ⊆ 𝑅
𝑛 be an invex set with respect to

𝜂 : 𝐾 × 𝐾 → 𝑅
𝑛, and let 𝑓 = [𝑓

𝐿

(x), 𝑓
𝑈

(x)] be an interval-
valued function defined on 𝐾. The interval-valued function 𝑓

is 𝐿𝑈-preinvex at x∗ with respect to 𝜂 if and only if the real-
valued functions 𝑓

𝐿 and 𝑓
𝑈 are preinvex at x∗ with respect to

the same 𝜂.

Proof. By Definition 10, we have

𝑓
𝐿

(x + 𝜆𝜂 (x∗, x)) ≤ [𝜆𝑓 (x∗) + (1 − 𝜆) 𝑓 (x)]
𝐿

,

𝑓
𝑈

(x + 𝜆𝜂 (x∗, x)) ≤ [𝜆𝑓 (x∗) + (1 − 𝜆) 𝑓 (x)]
𝑈

.

(16)

Since 𝜆 > 0 and 1 − 𝜆 > 0, then

𝑓
𝐿

(x + 𝜆𝜂 (x∗, x)) ≤ 𝜆𝑓
𝐿

(x∗) + (1 − 𝜆) 𝑓
𝐿

(x) ,

𝑓
𝑈

(x + 𝜆𝜂 (x∗, x)) ≤ 𝜆𝑓
𝑈

(x∗) + (1 − 𝜆) 𝑓
𝑈

(x) .

(17)

The proof is complete.

Proposition 14. Let 𝐾 ⊆ 𝑅
𝑛 be an invex set with respect to

𝜂 : 𝐾 × 𝐾 → 𝑅
𝑛, and let 𝑓 = [𝑓

𝐿

(x), 𝑓
𝑈

(x)] be an interval-
valued function defined on 𝐾. If the interval-valued function
𝑓 is 𝐿𝑈-preinvex with respect to 𝜂 and H-differentiable at x∗,
then the interval-valued functions 𝑓 is invex at x∗ with respect
to the same 𝜂.

Proof. From Definition 10 and Proposition 13, we have

𝑓
𝐿

(x∗ + 𝜆𝜂 (x∗, x)) ≤ 𝜆𝑓
𝐿

(x) + (1 − 𝜆) 𝑓
𝐿

(x∗) ,

𝑓
𝑈

(x∗ + 𝜆𝜂 (x∗, x)) ≤ 𝜆𝑓
𝑈

(x) + (1 − 𝜆) 𝑓
𝑈

(x∗) .

(18)
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We can rewrite the two above inequalities as

𝑓
𝐿

(x∗ + 𝜆𝜂 (x∗, x)) − 𝑓
𝐿

(x∗) ≤ 𝜆 [𝑓
𝐿

(x) − 𝑓
𝐿

(x∗)] ,

𝑓
𝑈

(x∗ + 𝜆𝜂 (x∗, x)) − 𝑓
𝑈

(x∗) ≤ 𝜆 [𝑓
𝑈

(x) − 𝑓
𝑈

(x∗)] .

(19)

Since 𝜆 > 0, 1 − 𝜆 > 0, and the interval-valued function
𝑓 is H-differentiable at x∗, then the real-valued functions 𝑓

𝐿

and 𝑓
𝑈 are differentiable at x∗ by Definition 3. Divide by 𝜆 to

obtain
1

𝜆

[𝑓
𝐿

(x∗ + 𝜆𝜂 (x∗, x)) − 𝑓
𝐿

(x∗)] ≤ 𝑓
𝐿

(x) − 𝑓
𝐿

(x∗) ,

1

𝜆

[𝑓
𝑈

(x∗ + 𝜆𝜂 (x∗, x)) − 𝑓
𝑈

(x∗)] ≤ 𝑓
𝑈

(x) − 𝑓
𝑈

(x∗) .

(20)

Taking the limit as 𝜆 → 0
+
, we get

𝜂
𝑇

(x∗, x) ⋅ ∇𝑓
𝐿

(x∗) ≤ 𝑓
𝐿

(x) − 𝑓
𝐿

(x∗) ,

𝜂
𝑇

(x∗, x) ⋅ ∇𝑓
𝑈

(x∗) ≤ 𝑓
𝑈

(x) − 𝑓
𝑈

(x∗) .

(21)

From the two above inequalities, we can see that 𝑓
𝐿 and

𝑓
𝑈 are invex at x∗ with respect to the same 𝜂. ByDefinition 11,

it can be shown that the interval-valued function𝑓 is invex at
x∗ with respect to the same 𝜂.

4.2. The KKT Optimality Conditions for Invex Interval-Valued
Optimization Problems. Now we consider the following two
real-valued optimization problems:

(PLU) min 𝑓 (x) = 𝐹
𝐿

(x) + 𝐹
𝑈

(x)

subject to 𝑔
𝑖
(x) ≤ 0, 𝑖 = 1, . . . , 𝑚,

ℎ
𝑖
(x) ≤ 0, 𝑖 = 1, . . . , 𝑚,

x ≥ 0,

(DLU) max 𝑓 (x,𝜇,𝜆) = 𝐻
𝐿

(x,𝜇,𝜆) + 𝐻
𝑈

(x,𝜇,𝜆)

subject to ∇𝐹
𝐿

(x) + ∇𝐹
𝑈

(x) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x)

+

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x) = 0,

𝜇 = (𝜇
1
, . . . , 𝜇

𝑚
) ≥ 0, 𝑖 = 1, . . . , 𝑚,

𝜆 = (𝜆
1
, . . . , 𝜆

𝑚
) ≥ 0, 𝑖 = 1, . . . , 𝑚,

x ≥ 0.

(22)

Wu ([12]) has proposed the following result.

Proposition 15 (see [12]). (1) If x∗ is an optimal solution of
problem (P

𝐿𝑈
), then x∗ is a nondominated solution of problem

(𝐼𝑉𝑃);

(2) If (x∗,𝜇∗,𝜆∗) is an optimal solution of problem (D
𝐿𝑈

),
then (x∗,𝜇∗,𝜆∗) is a nondominated solution of problem
(𝐷𝐼𝑉𝑃).

Now, we show that the KKT conditions are necessary and
sufficient for optimality under the assumptions of invexity
and modified Slater condition is satisfied.

Let us rename the constraint functions ℎ
𝑖
for 𝑖 = 1, . . . , 𝑚

as 𝑔
𝑚+𝑖

= ℎ
𝑖
for 𝑖 = 1, . . . , 𝑚. Let 𝐽(x∗) denote the set of active

constraints at x∗, which is defined by

𝐽 (x∗) = {𝑖 : 𝑔
𝑖
(x∗) = 0 for 𝑖 = 1, . . . , 2𝑚} . (23)

Theorem 16 (KKT necessary conditions for PLU). Suppose
that x∗ is an optimal solution of the problem of 𝑃

𝐿𝑈
and there

exists a point x̂ such that 𝑔
𝑖
(x̂) < 0 and that 𝑔

𝑖
(𝑥
∗

) = 0 for
all 𝑖 ∈ 𝐽(𝑥

∗

). Suppose, also, that 𝑓(x) and 𝑔
𝑖
are differentiable

for 𝑖 = 1, . . . , 2𝑚 at x∗ and 𝑓(x) and 𝑔
𝑖
are invex with respect

to the same vector function 𝜂(x, x∗). Then there exist 0 ≤ 𝜇
𝑖
,

𝜆
𝑖
∈ 𝑅 for 𝑖 = 1, . . . , 𝑚 such that

∇𝐹
𝐿

(x∗) + ∇𝐹
𝑈

(x∗) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗) = 0,

𝜇
𝑖
𝑔
𝑖
(x∗) = 0 = 𝜆

𝑖
ℎ
𝑖
(x∗) ∀𝑖 = 1, . . . , 𝑚.

(24)

Proof. Since 𝐽(x∗) denote the set of active constraints at x∗.
Then,

𝑔
𝑖
(x∗) = 0, ∀𝑖 ∈ 𝐽 (x∗) . (25)

If we can show that

y𝑇∇𝑔
𝑖
(x∗) ≤ 0 (∀𝑖 ∈ 𝐽 (x∗)) ⇒ y𝑇∇𝑓 (x∗) ≥ 0, (26)

the result will follow as in [16, 24] by applying Farkas’ Lemma,
where 𝑓(x) = 𝐹

𝐿

(x) + 𝐹
𝑈

(x) is a real-valued function.
Assume that (26) does not hold; then there exists y =

(𝑦
1
, . . . , 𝑦

𝑛
) ∈ 𝑅
𝑛 such that

y𝑇∇𝑔
𝑖
(x∗) ≤ 0 (∀𝑖 ∈ 𝐽 (x∗)) ⇒ y𝑇∇𝑓 (x∗) < 0. (27)

Since the Slater-type condition holds, then

𝑔
𝑖
(x̂) − 𝑔

𝑖
(x∗) < 0, 𝑖 ∈ 𝐽 (x∗) . (28)

By the invexity of 𝑔
𝑖
, we have

[𝜂 (x̂, x∗)]𝑇∇𝑔
𝑖
(x∗) < 0, 𝑖 ∈ 𝐽 (x∗) . (29)

Then

[y + 𝜌𝜂 (x̂, x∗)]𝑇∇𝑔
𝑖
(x∗) < 0, 𝑖 ∈ 𝐽 (x∗) (30)

for all 𝜌 > 0. Therefore, for some positive 𝜎 > 0 are small
enough such that

𝑔
𝑖
(x∗ + 𝜎 [y + 𝜌𝜂 (x̂, x∗)]) ≤ 𝑔

𝑖
(x∗) = 0, 𝑖 ∈ 𝐽 (x∗) ,

(31)
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which can shown that x∗+𝜎[y+𝜌𝜂(x̂, x∗)] is a feasible solution
of PLU. Since x∗ is an optimal solution of the problem of PLU,
we have

𝑓 (x∗ + 𝜎 [y + 𝜌𝜂 (x̂, x∗)]) ≥ 𝑓 (x∗) ; (32)

then

[y + 𝜌𝜂 (x̂, x∗)]𝑇∇𝑓 (x∗) ≥ 0, (33)

for all 𝜌 > 0. When 𝜌 → 0
+, we have

y𝑇∇𝑓 (x∗) ≥ 0. (34)

which contradicts to (27). Then, (26) is satisfied. By applying
Farkas’ Lemma and setting 𝑦

𝑖
= 0 for 𝑖 ∉ 𝐽(x∗), it can be

shown that there exists 0 ≤ 𝑦
∗

𝑖
∈ 𝑅, (𝑖 ∈ 𝐽(x∗)) such that

∇𝑓 (x∗) + ∑

𝑖∈𝐽(x∗)
𝑦
∗

𝑖
∇𝑔
𝑖
(x∗) = 0. (35)

From (35),𝑓(x) = 𝐹
𝐿

(x)+𝐹
𝑈

(x) and 𝑦
∗

𝑖
= 𝜇
𝑖
, 𝑖 = 1, . . . , 𝑚;

𝑦
∗

𝑖
= 𝜆
𝑖
, 𝑖 = 𝑚+1, . . . , 2𝑚;𝑔

𝑖
(x∗) = ℎ

𝑖
(x∗) if 𝑖 = 𝑚+1, . . . , 2𝑚.

Then, we get

∇𝐹
𝐿

(x∗) + ∇𝐹
𝑈

(x∗) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗) = 0,

𝜇
𝑖
𝑔
𝑖
(x∗) = 0 = 𝜆

𝑖
ℎ
𝑖
(x∗) ∀𝑖 = 1, . . . , 𝑚.

(36)

The result follows.

Theorem 17 (KKT necessary conditions for (IVP)). Suppose
that x∗ is a nondominated solution of primal problem (IVP)
and there exists a point x̂ such that 𝑔

𝑖
(x̂) < 0 and that 𝑔

𝑖
(𝑥
∗

) =

0 for all 𝑖 ∈ 𝐽(𝑥
∗

). Suppose, also, that 𝐹(x) is H-differentiable
and 𝑔

𝑖
are differentiable for 𝑖 = 1, . . . , 2𝑚 at x∗ and 𝐹(x) and

𝑔
𝑖
are invex with respect to the same vector function 𝜂(x, x∗).

Then there exist 0 ≤ 𝜇
𝑖
, 𝜆
𝑖
∈ 𝑅 for 𝑖 = 1, . . . , 𝑚 such that

∇𝐹
𝐿

(x∗) + ∇𝐹
𝑈

(x∗) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗) = 0,

𝜇
𝑖
𝑔
𝑖
(x∗) = 0 = 𝜆

𝑖
ℎ
𝑖
(x∗) ∀𝑖 = 1, . . . , 𝑚.

(37)

Proof. Since 𝐽(x∗) denote the set of active constraints at x∗.
Then,

𝑔
𝑖
(x∗) = 0, ∀𝑖 ∈ 𝐽 (x∗) . (38)

Suppose that there exists y ∈ 𝑅
𝑛 such that

y𝑇∇𝑔
𝑖
(x∗) ≤ 0 (∀𝑖 ∈ 𝐽 (x∗)) ,

y𝑇∇𝐹
𝐿

(x∗) < 0, y𝑇∇𝐹
𝑈

(x∗) < 0.

(39)

Since the Slater-type condition holds, then

𝑔
𝑖
(x̂) − 𝑔

𝑖
(x∗) < 0, 𝑖 ∈ 𝐽 (x∗) ; (40)

by the invexity of 𝑔
𝑖
, we have

[𝜂 (x̂, x∗)]𝑇∇𝑔
𝑖
(x∗) < 0, 𝑖 ∈ 𝐽 (x∗) ; (41)

then

[y + 𝜌𝜂 (x̂, x∗)]𝑇∇𝑔
𝑖
(x∗) < 0, 𝑖 ∈ 𝐽 (x∗) (42)

for all 𝜌 > 0. Therefore, for some positive 𝜎 > 0 are small
enough such that

𝑔
𝑖
(x∗ + 𝜎 [y + 𝜌𝜂 (x̂, x∗)]) ≤ 𝑔

𝑖
(x∗) = 0, 𝑖 ∈ 𝐽 (x∗) ,

(43)

which can show that x∗+𝜎[y+𝜌𝜂(x̂, x∗)] is a feasible solution
of primal problem (IVP). Since x∗ is a nondominated solution
of primal problem (IVP), there exists no feasible solution x
such that 𝐹(x) ≺ 𝐹(x∗), which means that there exists no
feasible solution 𝑥 such that the following are satisfied.

(1) 𝐹
𝐿

(x) < 𝐹
𝐿

(x∗), and 𝐹
𝑈

(x) ≤ 𝐹
𝑈

(x∗);
(2) 𝐹
𝐿

(x) ≤ 𝐹
𝐿

(x∗), and 𝐹
𝑈

(x) < 𝐹
𝑈

(x∗);
(3) 𝐹
𝐿

(x) < 𝐹
𝐿

(x∗), and 𝐹
𝑈

(x) < 𝐹
𝑈

(x∗).

That is to say, we have the following results for the feasible
solution x∗ + 𝜎[y + 𝜌𝜂(x̂, x∗)] of primal problem (IVP):

𝐹
𝐿

(x∗ + 𝜎 [y + 𝜌𝜂 (x̂, x∗)]) ≥ 𝐹
𝐿

(x∗)

or 𝐹
𝑈

(x∗ + 𝜎 [y + 𝜌𝜂 (x̂, x∗)]) ≥ 𝐹
𝑈

(x∗) ;

(44)

then

[y + 𝜌𝜂 (x̂, x∗)]𝑇∇𝐹
𝐿

(x∗) ≥ 0

or [y + 𝜌𝜂 (x̂, x∗)]𝑇∇𝐹
𝑈

(x∗) ≥ 0

(45)

for all 𝜌 > 0. When 𝜌 → 0
+, we have

y𝑇∇𝐹
𝐿

(x∗) ≥ 0 or y𝑇∇𝐹
𝑈

(x∗) ≥ 0, (46)

which contradicts to (39). Therefore, we conclude that the
system of inequalities presented in (39) has no solution.
According to Farkas’ lemma [24] and setting 𝑦

𝑖
= 0 for

𝑖 ∉ 𝐽(x∗), it can be shown that there exists 0 ≤ 𝑦
∗

𝑖
∈ 𝑅, (𝑖 ∈

𝐽(x∗)) such that

∇𝐹
𝐿

(x∗) + ∇𝐹
𝑈

(x∗) + ∑

𝑖∈𝐽(x∗)
𝑦
∗

𝑖
∇𝑔
𝑖
(x∗) = 0. (47)

From (47), 𝑦
∗

𝑖
= 𝜇
𝑖
, 𝑖 = 1, . . . , 𝑚; 𝑦

∗

𝑖
= 𝜆
𝑖
, 𝑖 = 𝑚 +

1, . . . , 2𝑚; 𝑔
𝑖
(x∗) = ℎ

𝑖
(x∗) if 𝑖 = 𝑚 + 1, , . . . , 2𝑚. Then, we

get

∇𝐹
𝐿

(x∗) + ∇𝐹
𝑈

(x∗) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗) = 0,

𝜇
𝑖
𝑔
𝑖
(x∗) = 0 = 𝜆

𝑖
ℎ
𝑖
(x∗) ∀𝑖 = 1, . . . , 𝑚.

(48)

The result follows.
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We can also show that the KKT sufficient condition holds
under the assumption of invexity.

Theorem 18 (KKT sufficient conditions). Suppose that the
interval-valued function 𝐹 is H-differentiable and 𝑔

𝑖
is differ-

entiable for 𝑖 = 1, . . . , 2𝑚 at x∗ and 𝐹, ℎ
𝑖
, and 𝑔

𝑖
are invex

with respect to the same vector function 𝜂(x, x∗). If there exist
Lagrange multipliers 0 ≤ 𝜇

𝑖
, 𝜆
𝑖
∈ 𝑅 for 𝑖 = 1, . . . , 𝑚 such that

∇𝐹 (x∗) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗) = [0, 0] , (49)

𝜇
𝑖
𝑔
𝑖
(x∗) = 0 = 𝜆

𝑖
ℎ
𝑖
(x∗) ∀𝑖 = 1, . . . , 𝑚, (50)

where [0, 0] = ([0, 0], . . . , [0, 0]) with 𝑛 components, then x∗ is
a nondominated solution of primal problem (𝐼𝑉𝑃).

Proof. Suppose the contrary that x∗ is not a nondominated
solution of (IVP). Then, there exists a feasible solution x̃ ∈

𝑋 such that 𝐹(x̃) ≺ 𝐹(x∗). From Definition 11 and the
assumptions, it can be shown that 𝐹

𝐿

, 𝐹
𝑈

, 𝑔
𝑖
, and ℎ

𝑖
are invex

at x∗ with respect to the same vector function 𝜂(x, x∗) for all
𝑖 = 1, . . . , 𝑚.

From the feasibility of x̃ ∈ 𝑋, we get

𝑔
𝑖
(x̃) ≤ 0, ℎ

𝑖
(x̃) ≤ 0 𝑖 = 1, . . . , 𝑚. (51)

From (49), we have

∇𝐹
𝐿

(x∗) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗) = 0,

∇𝐹
𝑈

(x∗) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗) = 0.

(52)

Since ℎ
𝑖
and 𝑔

𝑖
are invex at x∗ with respect to the same 𝜂,

𝜇
𝑖
≥ 0 and 𝜆

𝑖
≥ 0 for all 𝑖 = 1, . . . , 𝑚. Then

−

𝑚

∑

𝑖=1

𝜇
𝑖
∇𝑔
𝑇

𝑖
(x∗) 𝜂 (x̃, x∗) ≥

𝑚

∑

𝑖=1

𝜇
𝑖
[𝑔
𝑖
(x∗) − 𝑔

𝑖
(x̃)] ,

−

𝑚

∑

𝑖=1

𝜆
𝑖
∇ℎ
𝑇

𝑖
(x∗) 𝜂 (x̃, x∗) ≥

𝑚

∑

𝑖=1

𝜆
𝑖
[ℎ
𝑖
(x∗) − ℎ

𝑖
(x̃)] .

(53)

From (50) and (51), we have

𝑚

∑

𝑖=1

𝜇
𝑖
[𝑔
𝑖
(x∗) − 𝑔

𝑖
(x̃)] ≥

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(x∗) = 0,

𝑚

∑

𝑖=1

𝜆
𝑖
[ℎ
𝑖
(x∗) − ℎ

𝑖
(x̃)] ≥

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖
(x∗) = 0.

(54)

From (52), we get

[∇𝐹
𝐿

(x∗)]
𝑇

𝜂 (x̃, x∗) = −

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗)𝑇𝜂 (x̃, x∗)

−

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗)𝑇𝜂 (x̃, x∗) ,

(55)

[∇𝐹
𝑈

(x∗)]
𝑇

𝜂 (x̃, x∗) = −

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗)𝑇𝜂 (x̃, x∗)

−

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗)𝑇𝜂 (x̃, x∗) .

(56)

Since the interval-valued function 𝐹 is invex at x∗ with
respect to 𝜂, then 𝐹

𝐿 and 𝐹
𝑈 are invex at x∗ with respect to

the same 𝜂. We have

𝐹
𝐿

(x̃) ≥ 𝐹
𝐿

(x∗) + [∇𝐹
𝐿

(x∗)]
𝑇

𝜂 (x̃, x∗) , (57)

𝐹
𝑈

(x̃) ≥ 𝐹
𝑈

(x∗) + [∇𝐹
𝑈

(x∗)]
𝑇

𝜂 (x̃, x∗) . (58)

By (53)–(55), (57), we obtain

𝐹
𝐿

(x̃) ≥ 𝐹
𝐿

(x∗) . (59)

Similarly, from (53)–(54), (56), and (58), we have

𝐹
𝑈

(x̃) ≥ 𝐹
𝑈

(x∗) , (60)

which contradicts that 𝐹(x̃) ≺ 𝐹(x∗). The result follows.

5. Solvability

In this section, we discuss the solvability for Wolfe’s primal
and dual problems.

Lemma 19. Let 𝐹, 𝑔
𝑖
, ℎ
𝑖
, and 𝑖 = 1, . . . , 𝑚, be continuously

differentiable on 𝑅
𝑛

+
. Suppose that x̂ is a feasible solution of

primal problem (𝐼𝑉𝑃) and (x, 𝜇, 𝜆) is a feasible solution of
dual problem (𝐷𝐼𝑉𝑃). If 𝐹, 𝑔

𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚, are invex

at x with respect to the same vector function 𝜂(x̂, x), then the
following statements hold true.

(i) If 𝐹
𝑈

(x) ≥ 𝐹
𝑈

(x̂), then 𝐹
𝐿

(x̂) ≥ 𝐻
𝐿

(x, 𝜇, 𝜆).

(ii) If 𝐹
𝑈

(x) > 𝐹
𝑈

(x̂), then 𝐹
𝐿

(x̂) > 𝐻
𝐿

(x, 𝜇, 𝜆).

(iii) If 𝐹
𝐿

(x) ≥ 𝐹
𝐿

(x̂), then 𝐹
𝑈

(x̂) ≥ 𝐻
𝑈

(x, 𝜇, 𝜆).

(iv) If 𝐹
𝐿

(x) > 𝐹
𝐿

(x̂), then 𝐹
𝑈

(x̂) > 𝐻
𝑈

(x, 𝜇, 𝜆).

Proof. FromDefinitions 3 and 11, it can be shown that 𝐹
𝐿 and

𝐹
𝑈 are continuously differentiable on 𝑅

𝑛

+
and invex at x with

respect to the same 𝜂(x̂, x).
Since x̂ is a feasible solution of primal problem (IVP),

then

𝑔
𝑖
(x̂) ≤ 0, ℎ

𝑖
(x̂) ≤ 0, (61)
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for all 𝑖 = 1, . . . , 𝑚. Then we have

𝐹
𝐿

(x̂) ≥ 𝐹
𝐿

(x) + [∇𝐹
𝐿

(x)]

𝑇

𝜂 (x̂, x)

(by the invexity of 𝐹
𝐿

)

= 𝐹
𝐿

(x) − [∇𝐹
𝑈

(x)]

𝑇

𝜂 (x̂, x) −

𝑚

∑

𝑖=1

𝜇
𝑖
∇𝑔
𝑖
(x)
𝑇

𝜂 (x̂, x)

−

𝑚

∑

𝑖=1

𝜆
𝑖
∇ℎ
𝑖
(x)
𝑇

𝜂 (x̂, x)

(since (x, 𝜇, 𝜆) is a feasible solution of

dual problem (DIVP))

≥ 𝐹
𝐿

(x) + 𝐹
𝑈

(x) − 𝐹
𝑈

(x̂) +

𝑚

∑

𝑖=1

𝜇
𝑖
[𝑔
𝑖
(x) − 𝑔

𝑖
(x̂)]

+

𝑚

∑

𝑖=1

𝜆
𝑖
[ℎ
𝑖
(x) − ℎ

𝑖
(x̂)]

(by the invexity of 𝐹
𝑈

, 𝑔
𝑖
, ℎ
𝑖
, 𝜇
𝑖
, 𝜆
𝑖
≥ 0)

≥ 𝐹
𝐿

(x) + 𝐹
𝑈

(x) − 𝐹
𝑈

(x̂) +

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(x) +

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖
(x)

(by (61) , 𝜇
𝑖
, 𝜆
𝑖
≥ 0)

≥ 𝐹
𝐿

(x) +

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(x) +

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖
(x) ,

if 𝐹
𝑈

(x) − 𝐹
𝑈

(x̂) ≥ 0

= 𝐻
𝐿

(x, 𝜇, 𝜆) .

(62)

Then statement (i) holds true. If 𝐹
𝑈

(x) > 𝐹
𝑈

(x̂), then

𝐹
𝐿

(x̂) > 𝐹
𝐿

(x) +

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(x) +

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖
(x) = 𝐻

𝐿

(x, 𝜇, 𝜆) ;

(63)

it can be shown that statement (ii) holds. On the other hand,
considering the real-valued function 𝐹

𝑈, we can also obtain
statements (iii) and (iv) by using the similar arguments.

Lemma 20. Let 𝐹, 𝑔
𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚, be continuously

differentiable on 𝑅
𝑛

+
. Suppose that x̂ is a feasible solution of

primal problem (𝐼𝑉𝑃) and (x, 𝜇, 𝜆) is a feasible solution of
dual problem (𝐷𝐼𝑉𝑃). If 𝐹, 𝑔

𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚, are invex

at x with respect to the same vector function 𝜂(x̂, x), then the
following statements hold true.

(i) If 𝐹
𝐿

(x) ≤ 𝐹
𝐿

(x̂), then 𝐹
𝐿

(x̂) ≥ 𝐻
𝐿

(x, 𝜇, 𝜆).
(ii) If 𝐹

𝐿

(x) < 𝐹
𝐿

(x̂), then 𝐹
𝐿

(x̂) > 𝐻
𝐿

(x, 𝜇, 𝜆).
(iii) If 𝐹

𝑈

(x) ≤ 𝐹
𝑈

(x̂), then 𝐹
𝑈

(x̂) ≥ 𝐻
𝑈

(x, 𝜇, 𝜆).
(iv) If 𝐹

𝑈

(x) < 𝐹
𝑈

(x̂), then 𝐹
𝑈

(x̂) > 𝐻
𝑈

(x, 𝜇, 𝜆).

Proof. FromDefinitions 3 and 11, it can be shown that 𝐹
𝐿 and

𝐹
𝑈 are continuously differentiable on 𝑅

𝑛

+
and invex at x with

respect to the same 𝜂(x̂, x). Consider the following:

𝐹
𝐿

(x̂) − 𝐻
𝐿

(x, 𝜇, 𝜆)

= 𝐹
𝐿

(x̂) − 𝐹
𝐿

(x) −

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(x) −

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖
(x)

≥ [∇𝐹
𝐿

(x)]

𝑇

𝜂 (x̂, x) −

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(x) −

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖
(x)

(by the invexity of 𝐹
𝐿

)

≥ [∇𝐹
𝐿

(x)]

𝑇

𝜂 (x̂, x)

+ [−

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(x̂) +

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(x̂) −

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(x)]

+ [−

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖
(x̂) +

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖
(x̂) −

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖
(x)]

≥ [∇𝐹
𝐿

(x)]

𝑇

𝜂 (x̂, x)

+ [−

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(x̂) +

𝑚

∑

𝑖=1

𝜇
𝑖
∇𝑔
𝑖
(x)
𝑇

𝜂 (x̂, x)]

+ [−

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖
(x̂) +

𝑚

∑

𝑖=1

𝜆
𝑖
∇ℎ
𝑖
(x)
𝑇

𝜂 (x̂, x)]

(by the invexity of 𝑔
𝑖
, ℎ
𝑖
and 𝜇

𝑖
, 𝜆
𝑖
≥ 0)

= {[∇𝐹
𝐿

(x)]

𝑇

+

𝑚

∑

𝑖=1

𝜇
𝑖
∇𝑔
𝑖
(x)
𝑇

+

𝑚

∑

𝑖=1

𝜆
𝑖
∇ℎ
𝑖
(x)
𝑇

} 𝜂 (x̂, x)

−

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(x̂) −

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖
(x̂)

= −[∇𝐹
𝑈

(x)]

𝑇

𝜂 (x̂, x) −

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(x̂) −

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖
(x̂)

(since (x, 𝜇, 𝜆) is a feasible solution

of dual problem (DIVP))

≥ 𝐹
𝑈

(x) − 𝐹
𝑈

(x̂) −

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(x̂) −

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖
(x̂)

= 𝐹
𝑈

(x) − 𝐻
𝑈

(x̂, 𝜇, 𝜆)

≥ 0, if 𝐹
𝐿

(x) ≤ 𝐹
𝐿

(x̂) (using Lemma 19 (iii)) .

(64)

Then statement (i) holds true. If 𝐹
𝐿

(x) < 𝐹
𝐿

(x̂), then
statement (ii) holds true by using Lemma 19(iv). On the other
hand, we can also obtain statements (iii) and (iv) by using the
similar arguments andLemma 19(i) and (ii), respectively.
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Proposition 21. Let𝐹, 𝑔
𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚, be continuously

differentiable on 𝑅
𝑛

+
. Suppose that x̂ is a feasible solution of

primal problem (𝐼𝑉𝑃) and (x, 𝜇, 𝜆) is a feasible solution of
dual problem (𝐷𝐼𝑉𝑃). If 𝐹, 𝑔

𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚, are invex

at x with respect to the same vector function 𝜂(x̂, x), then the
following statements hold true.

(i) If 𝐹(x) and 𝐹(x̂) are comparable, then 𝐹(x̂) ⪰

𝐻(x, 𝜇, 𝜆).

(ii) If 𝐹(x) and 𝐹(x̂) are not comparable, then 𝐹
𝐿

(x̂) >

𝐻
𝐿

(x, 𝜇, 𝜆) or 𝐹
𝑈

(x̂) > 𝐻
𝑈

(x, 𝜇, 𝜆).

Proof. If 𝐹(x) ⪰ 𝐹(x̂), then 𝐹(x̂) ⪰ 𝐻(x, 𝜇, 𝜆) using
Lemma 19(i) and (iii). On the other hand, if𝐹(x) ⪯ 𝐹(x̂), then
𝐹(x̂) ⪰ 𝐻(x, 𝜇, 𝜆) using Lemma 20(i) and (iii).

If 𝐹(x) and 𝐹(x̂) are not comparable, then we have

(1) 𝐹
𝐿

(x) ≤ 𝐹
𝐿

(x̂) and 𝐹
𝑈

(x) > 𝐹
𝑈

(x̂);
(2) 𝐹
𝐿

(x) < 𝐹
𝐿

(x̂) and 𝐹
𝑈

(x) ≥ 𝐹
𝑈

(x̂);
(3) 𝐹
𝐿

(x) < 𝐹
𝐿

(x̂) and 𝐹
𝑈

(x) > 𝐹
𝑈

(x̂);
(4) 𝐹
𝐿

(x) ≥ 𝐹
𝐿

(x̂) and 𝐹
𝑈

(x) < 𝐹
𝑈

(x̂);
(5) 𝐹
𝐿

(x) > 𝐹
𝐿

(x̂) and 𝐹
𝑈

(x) ≤ 𝐹
𝑈

(x̂);
(6) 𝐹
𝐿

(x) > 𝐹
𝐿

(x̂) and 𝐹
𝑈

(x) < 𝐹
𝑈

(x̂).

By using Lemma 19 (ii) and (iv), and Lemma 20 (ii) and
(iv), it can be shown that 𝐹

𝐿

(x̂) > 𝐻
𝐿

(x, 𝜇, 𝜆) or 𝐹
𝑈

(x̂) >

𝐻
𝑈

(x, 𝜇, 𝜆).

Theorem 22 (solvability). Let 𝐹, 𝑔
𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚,

be invex with respect to the same vector function 𝜂 and
continuously differentiable on𝑅

𝑛

+
. Suppose that (x∗, 𝜇∗, 𝜆∗) is a

feasible solution of dual problem (𝐷𝐼𝑉𝑃) and 𝐻(x∗, 𝜇∗, 𝜆∗) ∈

Obj
𝑃
(𝐹, 𝑋). Then (x∗, 𝜇∗, 𝜆∗) solves dual problem (𝐷𝐼𝑉𝑃);

that is, 𝐻(x∗, 𝜇∗, 𝜆∗) ∈ Max(𝐻, 𝑌).

Proof. Suppose that (x∗, 𝜇∗, 𝜆∗) is not a nondominated
solution of dual problem (DIVP). Then there exists a fea-
sible solution (x, 𝜇, 𝜆) of dual problem (DIVP) such that
𝐻(x∗, 𝜇∗, 𝜆∗) ≺ 𝐻(x, 𝜇, 𝜆). According to the assumption of
𝐻(x∗, 𝜇∗, 𝜆∗) ∈ Obj

𝑃
(𝐹, 𝑋), there exists a feasible solution x̂

of primal problem (IVP) such that

𝐹 (x̂) = 𝐻 (x∗, 𝜇∗, 𝜆∗) ≺ 𝐻 (x, 𝜇, 𝜆) . (65)

It means that the following (a1) or (a2) or (a3) is satisfied:

(a1) 𝐹
𝐿

(x̂) < 𝐻
𝐿

(x, 𝜇, 𝜆) and 𝐹
𝑈

(x̂) ≤ 𝐻
𝑈

(x, 𝜇, 𝜆);

(a2) 𝐹
𝐿

(x̂) ≤ 𝐻
𝐿

(x, 𝜇, 𝜆) and 𝐹
𝑈

(x̂) < 𝐻
𝑈

(x, 𝜇, 𝜆);

(a3) 𝐹
𝐿

(x̂) < 𝐻
𝐿

(x, 𝜇, 𝜆) and 𝐹
𝑈

(x̂) < 𝐻
𝑈

(x, 𝜇, 𝜆).

If 𝐹(x) and 𝐹(x̂) are comparable. Then, from
Proposition 21(i), we get 𝐹(x̂) ⪰ 𝐻(x, 𝜇, 𝜆), which
contradicts (65). If 𝐹(x) and 𝐹(x̂) are not comparable,
we have 𝐹

𝐿

(x̂) > 𝐻
𝐿

(x, 𝜇, 𝜆) or 𝐹
𝑈

(x̂) > 𝐻
𝑈

(x, 𝜇, 𝜆) by using
Proposition 21(ii), which contradicts one of (a1)–(a3). We
complete the proof.

Theorem 23 (solvability). Let 𝐹, 𝑔
𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚,

be invex with respect to the same vector function 𝜂 and
continuously differentiable on 𝑅

𝑛

+
. Suppose that x∗ is a feasible

solution of primal problem (𝐼𝑉𝑃) and 𝐹(x∗) ∈ Obj
𝐷

(𝐻, 𝑌).
Then x∗ solves primal problem (𝐼𝑉𝑃); that is, 𝐹(x∗) ∈

Min(𝐹, 𝑋).

Proof. Suppose that x∗ is not a nondominated solution of
primal problem (IVP). Then there exists a feasible solution x
of primal problem (IVP) such that 𝐹(x) ≺ 𝐹(x∗). According
to the assumption of 𝐹(x∗) ∈ Obj

𝐷
(𝐻, 𝑌), there exists a

feasible solution (x̂, 𝜇,
̂
𝜆) of dual problem (DIVP) such that

𝐻 (x̂, 𝜇,
̂
𝜆) = 𝐹 (x∗) ≻ 𝐹 (x) . (66)

It means that the following (c1) or (c2) or (c3) is satisfied:

(c1) 𝐹
𝐿

(x) < 𝐻
𝐿

(x̂, 𝜇,
̂
𝜆) and 𝐹

𝑈

(x) ≤ 𝐻
𝑈

(x̂, 𝜇,
̂
𝜆);

(c2) 𝐹
𝐿

(x) ≤ 𝐻
𝐿

(x̂, 𝜇,
̂
𝜆) and 𝐹

𝑈

(x) < 𝐻
𝑈

(x̂, 𝜇,
̂
𝜆);

(c3) 𝐹
𝐿

(x) < 𝐻
𝐿

(x̂, 𝜇,
̂
𝜆) and 𝐹

𝑈

(x) < 𝐻
𝑈

(x̂, 𝜇,
̂
𝜆).

If 𝐹(x) and 𝐹(x̂) are comparable, then, from
Proposition 21(i), we get 𝐹(x) ⪰ 𝐻(x̂, 𝜇,

̂
𝜆), which

contradicts (66). If 𝐹(x) and 𝐹(x̂) are not comparable,
we have 𝐹

𝐿

(x) > 𝐻
𝐿

(x̂, 𝜇,
̂
𝜆) or 𝐹

𝑈

(x) > 𝐻
𝑈

(x̂, 𝜇,
̂
𝜆) by using

Proposition 21(ii), which contradicts one of (c1)–(c3). We
complete the proof.

Theorem 24 (solvability). Let 𝐹, 𝑔
𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚,

be invex with respect to the same vector function 𝜂 and
continuously differentiable on 𝑅

𝑛

+
. Suppose that x∗ is a feasible

solution of primal problem (𝐼𝑉𝑃) and (x̂, 𝜇,
̂
𝜆) is a feasible

solution of dual problem (𝐷𝐼𝑉𝑃). If 𝐹(x∗) = 𝐻(x̂, 𝜇,
̂
𝜆),

then x∗ solves primal problem (𝐼𝑉𝑃) and (x̂, 𝜇,
̂
𝜆) solves dual

problem (𝐷𝐼𝑉𝑃).

Proof. The proof followsTheorems 22 and 23.

6. Duality Theorems

In this section, we present the weak and strong duality
theorems under the assumption of invexity. Our results
generalize the results of duality theorems by Wu in [11, 12].

Under the assumption convexity, Wu ([11, 12]) has intro-
duced two kinds of concepts of no duality gap and studied
strong duality theorems.

Definition 25 (see [11, 12]). Two kinds of concepts of no
duality gap are presented below.

(i) We say that the primal problem (IVP) and dual
problem (DIVP) have no duality gap in weak sense
if and only if Min(𝐹, 𝑋) ⋂Max(𝐻, 𝑌) ̸=Ø.

(ii) We say that the primal problem (IVP) and dual
problem (DIVP) have no duality gap in strong sense
if and only if there exist 𝐹(x∗) ∈ Min(𝐹, 𝑋) and
𝐻(x∗,𝜇∗,𝜆∗) ∈ Max(𝐻, 𝑌) such that 𝐹(x∗) =

𝐻(x∗,𝜇∗,𝜆∗).
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Wu ([11, 12]) has shown that the primal problem (IVP)
and dual problem (DIVP) have no duality gap in strong
sense which implies that the primal problem (IVP) and dual
problem (DIVP) have no duality gap in weak sense.

Now, we establish strong duality theorems in weak and
strong sense under the assumption of invexity, respectively.

Theorem 26 (strong duality theorem in weak sense). Let 𝐹,
𝑔
𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚, be invex with respect to the same

vector function 𝜂 and continuously differentiable on 𝑅
𝑛

+
. If one

of following conditions is satisfied:

(i) there exists a feasible solution x∗ of primal problem
(IVP) such that 𝐹(x∗) ∈ Obj

𝐷
(𝐻, 𝑌),

(ii) there exists a feasible solution (x∗,𝜇∗,𝜆∗) of dual
problem (DIVP) such that𝐻(x∗,𝜇∗,𝜆∗) ∈ Obj

𝑃
(𝐹, 𝑋),

Then the primal problem (IVP) and dual problem (DIVP)
have no duality gap in weak sense.

Proof. Since the condition (i) is satisfied, from Theorem 23,
it can be shown that 𝐹(x∗) ∈ Min(𝐹, 𝑋). According to
the assumption of 𝐹(x∗) ∈ Obj

𝐷
(𝐻, 𝑌), there exists a

feasible solution (x̂, �̂�, ̂𝜆) of dual problem (DIVP) such that
𝐹(x∗) = 𝐻(x̂, �̂�, ̂𝜆). Using the similar arguments in the
proof of Theorem 22 by looking at (65), we have 𝐻(x̂, �̂�, ̂𝜆) ∈

Max(𝐻, 𝑌). Suppose that condition (ii) is satisfied; from
Theorem 22, we have 𝐻(x∗, 𝜇∗, 𝜆∗) ∈ Max(𝐻, 𝑌). Since
𝐻(x∗,𝜇∗,𝜆∗) ∈ Obj

𝑃
(𝐹, 𝑋), there exists a feasible solution

x̂ of primal problem (IVP) such that 𝐹(x̂) = 𝐻(x∗,𝜇∗,𝜆∗).
Using the similar arguments in the proof of Theorem 23 by
looking at (66), we have 𝐹(x̂) ∈ Min(𝐹, 𝑋). Then, the primal
problem (IVP) and dual problem (DIVP) have no duality gap
in weak sense.

Theorem 27 (strong duality theorem in strong sense). Let
𝐹, 𝑔
𝑖
, ℎ
𝑖
, 𝑖 = 1, . . . , 𝑚, be invex with respect to the same vector

function 𝜂 and continuously differentiable on 𝑅
𝑛

+
. Suppose that

x∗ is a solution of the problem P
𝐿𝑈

(also is a nondominated
solution of primal problem (IVP) by Proposition 15). If there
exists a point x̂ such that 𝑔

𝑖
(x̂) < 0 and that 𝑔

𝑖
(𝑥
∗

) = 0 for all
𝑖 ∈ 𝐽(𝑥

∗

), 𝑖 = 1, . . . , 2𝑚, and 𝑔
𝑖

= ℎ
𝑖
if 𝑖 = 𝑚 + 1, . . . , 2𝑚.

Then the primal problem (𝐼𝑉𝑃) and dual problem (𝐷𝐼𝑉𝑃)
have no duality gap in strong sense; that is to say, there exist
0 ≤ 𝜇

∗

, 𝜆
∗

∈ 𝑅
𝑚 such that (x∗,𝜇∗,𝜆∗) solves dual problem

(𝐷𝐼𝑉𝑃) and 𝐻(x∗,𝜇∗,𝜆∗) = 𝐹(x∗).

Proof. According to the assumptions and Theorem 16, there
exist 0 ≤ 𝜇

∗

, 𝜆
∗

∈ 𝑅
𝑚 such that

∇𝐹
𝐿

(x∗) + ∇𝐹
𝑈

(x∗) +

𝑚

∑

𝑖=1

𝜇
∗

𝑖
⋅ ∇𝑔
𝑖
(x∗)

+

𝑚

∑

𝑖=1

𝜆
∗

𝑖
⋅ ∇ℎ
𝑖
(x∗) = 0,

𝜇
∗

𝑖
𝑔
𝑖
(x∗) = 0 = 𝜆

∗

𝑖
ℎ
𝑖
(x∗) ∀𝑖 = 1, . . . , 𝑚.

(67)

It can be shown that (x∗,𝜇∗,𝜆∗) is a feasible solution of dual
problem (DIVP) and𝐻(x∗,𝜇∗,𝜆∗) = 𝐹(x∗)+∑

𝑚

𝑖=1
𝜇
∗

𝑖
⋅𝑔
𝑖
(x∗)+

∑
𝑚

𝑖=1
𝜆
∗

𝑖
⋅ ℎ
𝑖
(x∗) = 𝐹(x∗). UsingTheorem 24, we complete the

proof.

7. Conclusion

The Karush-Kuhn-Tucker optimality conditions and duality
for interval-valued nonlinear optimization problems under
the assumption of invexity are represented in this paper.
Our results generalize the results of Wu in [11, 12]. Interval-
valued optimization provides a deterministic framework for
studying mathematical programming problems in the face of
data uncertainty.The result of Karush-Kuhn-Tucker optimal-
ity conditions can be also used to obtain the nondominated
solution of interval-valued optimization problems. In the
future research, wemay extend to consider theKarush-Kuhn-
Tucker optimality conditions and duality for multiobjective
interval-valued nonlinear optimization problems under the
assumption of generalized convexity.
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Fuzzy measures and fuzzy integrals have been successfully used in many real applications. How to determine fuzzy measures is
a very difficult problem in these applications. Though there have existed some methodologies for solving this problem, such as
genetic algorithms, gradient descent algorithms, neural networks, and particle swarm algorithm, it is hard to say which one is more
appropriate and more feasible. Each method has its advantages. Most of the existed works can only deal with the data consisting
of classic numbers which may arise limitations in practical applications. It is not reasonable to assume that all data are real data
before we elicit them from practical data. Sometimes, fuzzy data may exist, such as in pharmacological, financial and sociological
applications. Thus, we make an attempt to determine a more generalized type of general fuzzy measures from fuzzy data by means
of genetic algorithms and Choquet integrals. In this paper, we make the first effort to define the 𝜎-𝜆 rules. Furthermore we define
and characterize the Choquet integrals of interval-valued functions and fuzzy-number-valued functions based on 𝜎-𝜆 rules. In
addition, we design a special genetic algorithm to determine a type of general fuzzy measures from fuzzy data.

1. Introduction

Fuzzy measures [1–4] and fuzzy integrals [5–9] have been
applied successfully in multiattributes decision-making [10,
11], classification [12, 13], information fusion [14–18], non-
linear multiregression [19], feature selection [20, 21] and
image processing. The reason of success is from the highly
nonadditive and non-linear characteristics of fuzzy measures
and fuzzy integrals. Fuzzy measure is the generalization of
classical measure by using nonadditivity instead of additivity,
which makes fuzzy measure be able to describe the impor-
tance of each individual information source (attribute or
classifier) as well as the interaction [13], among them.

The Choquet integral [22–26] with respect to fuzzy
measure is often used in information fusion and data mining
as a nonlinear aggregation tool. The nonadditivity of fuzzy
measures can effectively describe the interaction among the
contributions from each attribute toward some target. Some
works have shown successful applications of the Choquet

integral in nonlinear multiregressions, classifications, and
decisionmakings [19, 25, 27–30], where the values of fuzzy
measure are usually regarded as unknown parameter to be
elicited from training data sets.

Most of existed works can only deal with the data consist-
ing of classic numberswhichmay arise limitations in practical
applications. It is not reasonable to assume that all data are
real data before we elicit them from practical data. Some-
times, fuzzy data may exist, such as in pharmacological,
financial, and sociological applications. Genetic algorithm
(GA) is a stochastic searchmethod for optimization problems
based on the mechanics of natural selection and natural
genetics. GA has demonstrated considerable success in pro-
viding good solutions to many complex optimization prob-
lems and received more and more attentions during the past
three decades.The advantage of GA justmake it able to obtain
the global optimal solution fairly. In addition, compared
with the traditional methods, GA has the ability to avoid
getting stuck at a local optimal solution, sinceGA search from
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a single point.Thus, wemake an attempt to determine amore
generalized type of general fuzzymeasures from fuzzy data by
means of genetic algorithms and Choquet integrals.

The rest of this study is organized as follows. In Section 2,
the basic definitions of fuzzy measures based on 𝜎-𝜆 rules
are reviewed. Section 3 briefly introduces the basic concepts
on the Choquet integral of real-valued functions based on
rules and gives the operational schemes of its on discrete
sets. In Section 4, we formulate the problems to be solved.
Section 5 uses genetic algorithm optimization to determine
fuzzy measures from real-valued data. Section 6, introduces
the Choquet integral of interval-valued functions based on
rules. Consequently, we use genetic algorithm optimization
to determine fuzzy measures from interval-valued data.
Section 7 discusses the Choquet integral of fuzzy number-
valued functions based on rules, and then uses genetic
algorithm optimization to determine fuzzy measures from
fuzzy number-valued data. Finally, conclusions are made in
Section 8.

2. Fuzzy Measure Based on 𝜎-𝜆 Rules

Definition 1. Let 𝑋 be a nonempty set and A a 𝜎-algebra on
the𝑋. A set function 𝜇 is called a fuzzymeasure based on 𝜎-𝜆
rules if

𝜇(

∞

⋃

𝑖=1

𝐴
𝑖
) =

{
{
{
{

{
{
{
{

{

1

𝜆

{

∞

∏

𝑖=1

[1 + 𝜆𝜇 (𝐴
𝑖
)] − 1} , 𝜆 ̸= 0,

∞

∑

𝑖=1

𝜇 (𝐴
𝑖
) , 𝜆 = 0,

(1)

where 𝜆 ∈ (−(1/ sup 𝜇),∞)⋃{0}, {𝐴
𝑖
} ⊂ A, and 𝐴

𝑖
∩ 𝐴
𝑗
= 0

for all 𝑖, 𝑗 = 1, 2, . . . and 𝑖 ̸= 𝑗.
Particularly, if 𝜆 = 0, then 𝜎-𝜆 rule is 𝜎-additivity.

Definition 2. LetA be a𝜎-algebra on the𝑋.𝜇 is called Sugeno
measure based on 𝜎-𝜆 rules if 𝜇 satisfies 𝜎-𝜆 rules and 𝜇(𝑋) =

1. Briefly we denoted 𝑔
𝜆
.

Remark 3. In Definition 1, if 𝑛 = 2, then

𝜇 (𝐴 ∪ 𝐵) = {

𝜇 (𝐴) + 𝜇 (𝐵) + 𝜆𝜇 (𝐴) 𝜇 (𝐵) , 𝜆 ̸= 0,

𝜇 (𝐴) + 𝜇 (𝐵) , 𝜆 = 0.

(2)

Remark 4. In Definition 2, 𝑔
𝜆
is a classical probability mea-

sure if 𝜆 = 0, and it can be represented by a wide range of
nonadditive measure as long as we select proper parameters,
many scholars think that it is a very important kind of non-
additive measure [31–33].

Example 5. Three workers, 𝑥
1
, 𝑥
2
, and 𝑥

3
, are engaged in

producing the same kind of products; the efficiencies of
every people are given as follows: 𝜇(𝑥

1
) = 5, 𝜇(𝑥

2
) = 6,

and 𝜇(𝑥
3
) = 8. Then we can get the joint efficiencies by use

of 𝜎-𝜆 rules as shown in Table 1.

Remark 6. In Example 5, 𝑥
𝑖
can be viewed as a attribute,

𝑖 = 1, 2, 3, we can calculate the contribution of their joint
attributes by use of𝜎-𝜆 rules if we only know the contribution
of individual attribute 𝑔

𝜆
(𝑥
𝑖
), 𝑖 = 1, 2, 3.

Table 1: The values of set function 𝜇 in Example 5.

Set Value of 𝜇
𝐸
1
= {𝑥
1
} 5

𝐸
2
= {𝑥
2
} 6

𝐸
3
= {𝑥
1
, 𝑥
2
} 11 + 30𝜆

𝐸
4
= {𝑥
3
} 8

𝐸
5
= {𝑥
1
, 𝑥
3
} 13 + 40𝜆

𝐸
6
= {𝑥
2
, 𝑥
3
} 14 + 48𝜆

𝐸
7
= {𝑥
1
, 𝑥
2
, 𝑥
3
} 240𝜆

2

+ 118𝜆 + 19

Theorem 7. Let 𝑔
𝜆
be a Sugeno measure based on 𝜎-𝜆 rules.

If 𝜆 ≥ 0, then 𝑔
𝜆
has the monotonicity.

Proof. Let 𝐸, 𝐹 ∈ F and 𝐸 ⊂ 𝐹. Since 𝐹 = 𝐸 ∪ (𝐹 − 𝐸), this
implies that

𝑔
𝜆
(𝐹) = 𝑔

𝜆
(𝐸 ∪ (𝐹 − 𝐸)) = 𝑔

𝜆
(𝐸)

+ 𝑔
𝜆
(𝐹 − 𝐸) + 𝜆𝑔

𝜆
(𝐸) 𝑔
𝜆
(𝐹 − 𝐸) ,

(3)

𝑔
𝜆
(𝐹) ≥ 𝑔

𝜆
(𝐸) (4)

for 𝜆 ≥ 0 and 𝑔
𝜆
≥ 0.

Due to the limitation of the classical measure, Sugeno, the
Japanese scholar, presents set functions called fuzzymeasures
which use the monotonicity instead of the additivity. In prac-
tical applications, we often use regular fuzzy measure [32] on
finite sets.

Definition 8 (see [28]). Let 𝑋 be a finite set and 2
𝑋 be the

power set of 𝑋. Set function 𝜇 : 2
𝑋

→ [0, 1] is called
a regular fuzzy measure defined on let 2𝑋 if the following
conditions are satisfied:

(1) 𝜇(0) = 0, 𝜇(𝑋) = 1;
(2) if 𝐸 ∈ 2

𝑋

, 𝐺 ∈ 2
𝑋

, and 𝐸 ⊂ 𝐺, then 𝜇(𝐸) ≤ 𝜇(𝐺).

Definition 9 (see [28]). Let 𝑋 be a finite set and 2
𝑋 be the

power set, of 𝑋. A fuzzy measure 𝜇 : 2
𝑋

→ [0, 1] is called
a regular 𝜆-fuzzy measure defined on let 2𝑋 if the following
conditions are satisfied:

(1) 𝜇(0) = 0, 𝜇(𝑋) = 1;
(2) if 𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) + 𝜆𝜇(𝐴)𝜇(𝐵), where 𝐴 ⊂

𝑋, 𝐵 ⊂ 𝑋,𝐴 ∩ 𝐵 = 0 and 𝜆 ∈ (−1,∞).

Theorem 10. Let 𝑔
𝜆
be a Sugeno measure based on 𝜎-𝜆 rules.

Then 𝑔
𝜆
is a regular 𝜆-fuzzy measure defined onA.

Proof. We could prove that 𝑔
𝜆
(0) = 0. Otherwise for every

𝜆 ≥ 0, 𝐴 ∈ A, we have

𝑔
𝜆
(𝐴) = 𝑔

𝜆
(𝐴 ∪ 0)

= 𝑔
𝜆
(𝐴) + 𝑔

𝜆
(0) + 𝜆𝑔

𝜆
(𝐴) 𝑔
𝜆
(0) ,

𝑔
𝜆
(0) = − 𝜆𝑔

𝜆
(𝐴) 𝑔
𝜆
(0) .

(5)
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Since 𝑔
𝜆
(0) ̸= 0, we have 𝜆𝑔

𝜆
(0) = −1; it is a contradiction.

Furthermore, we obtain 𝑔
𝜆
(𝑋) = 1, and 𝑔

𝜆
has the mono-

tonicity by Definition 2 andTheorem 7.

Denoting finite set 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, the value 𝑔

𝜆𝑖
=

𝑔
𝜆
(𝑥
𝑖
) for all 𝑖 = 1, 2, . . . , 𝑛 is called measure density.

Theorem 11. The parameter 𝜆 of a regular Sugeno measure
based on 𝜎-𝜆 rules is determined by the following equation:

𝑛

∏

𝑖=1

(1 + 𝜆𝑔
𝜆𝑖
) = 1 + 𝜆. (6)

Proof. We can prove the above theorem by Theorem 10 and
[32].

If we know the values of Sugenomeasure based on 𝜎-𝜆 on
singleton sets, we can use Theorem 11 to obtain the values of
𝜆 and then use Definition 1 to obtain the values on the other
sets. It implies that a Sugeno measure based on 𝜎-𝜆 can be
determined by measure densities.

Theorem 12 (see [28]). If one knows the measure density 𝑔
𝜆𝑖

on finite set𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, then there is only one solution

𝜆 obtained from∏
𝑛

𝑖=1
(1 + 𝜆𝑔

𝜆𝑖
) = 1 + 𝜆.

3. The Choquet Integrals of Real-Valued
Function Based on 𝜎-𝜆 Rules

Definition 13 (see [34]). A regular fuzzy number, denoted by
𝑎, is a fuzzy subset ofR with membership function𝑚 : R →

[0, 1] satisfying the following conditions.

(RFN1) there exists at least one number 𝑎
0
∈ R such

that 𝑎
0
= 1;

(RFN2) m(t) is nondecreasing on (−∞, 𝑎
0
] and non-

increasing on [𝑎
0
, +∞);

(RFN3) m(t) is upper semicontinuous; that is,
lim
𝑡→ 𝑡
+

0

= 𝑚(𝑡
0
) if 𝑡
0
< 𝑎
0
and lim

𝑡→ 𝑡
−

0

= 𝑚(𝑡
0
) if

𝑡
0
> 𝑎
0
;

(RFN4) ∫∞
−∞

𝑚(𝑡)𝑑𝑡 < ∞.

The set of all regular fuzzy numbers is denoted byN.
Let 𝑓 : 𝑋 → (−∞,∞) be a measurable function with

respect toA; that is, 𝑓 satisfies the condition that

{𝑥 | 𝑓 (𝑥) ≥ 𝛼} ∈ A (7)

for any 𝛼 ∈ R.

From now on, we suppose that all functions defined on
𝑋 appearing as an integrand of the Choquet integral in this
paper are measurable.

Definition 14 (see [22]). Let (𝑋,A) be a measurable space,
and let 𝑔

𝜆
be a Sugeno measure based on 𝜎-𝜆 rules on A.

The Choquet integral of a real-valued function 𝑓 : 𝑋 →

(−∞, +∞) is defined as

(𝑐) ∫

𝑋

𝑓𝑑𝑔
𝜆
= ∫

0

−∞

[𝑔
𝜆
(𝐹
𝛼
) − 𝑔
𝜆
(𝑋)] 𝑑𝛼

+ ∫

∞

0

𝑔
𝜆
(𝐹
𝛼
) 𝑑𝛼,

(8)

where

𝐹
𝛼
= {𝑥 | 𝑓 (𝑥) ≥ 𝛼} (9)

for 𝛼 ∈ (−∞, +∞), if both of Riemann integrals exist and at
least one of them has finite value.

Let 𝐴 ∈ A, then Choquet integral of a nonnegative real-
valued function 𝑓 : 𝑋 → (0, +∞) is defined as

(𝑐) ∫

𝐴

𝑓𝑑𝑔
𝜆
= ∫

∞

0

𝑔
𝜆
(𝐴 ∩ 𝐹

𝛼
) 𝑑𝛼. (10)

Without loss of the generality, Yang et al. [34] have pro-
posed a new scheme to calculate the value of a Choquet inte-
gral with a real-valued integrand.

When 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, for any function 𝑓 : 𝑋 →

(−∞, +∞), both [𝑔
𝜆
(𝐹
𝛼
)−𝑔
𝜆
(𝑋)] and 𝑔

𝜆
(𝐹
𝛼
) are functions of

𝛼 with bounded variance; therefore, their Riemann integrals
with respect to 𝛼 exist and are finite. So, Choquet integral
(𝑐) ∫ 𝑓𝑑𝑔

𝜆
is well defined. To calculate the value of the

Choquet integral of a given real-valued function 𝑓, usually
the values of 𝑓, that is, 𝑓(𝑥

1
), 𝑓(𝑥

2
), . . . , 𝑓(𝑥

𝑛
), should be

sorted in a nondecreasing order, so that 𝑓(𝑥
1
) ≤ 𝑓(𝑥



2
) ≤

⋅ ⋅ ⋅ ≤ 𝑓(𝑥


𝑛
), where {𝑥

1
, 𝑥


2
, . . . , 𝑥



𝑛
} is a certain permutation

of {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}. Then, the value of the Choquet integral is

obtained by

(𝑐) ∫𝑓𝑑𝑔
𝜆
=

𝑛

∑

𝑖=1

[𝑓 (𝑥


𝑖
) − 𝑓 (𝑥



𝑖−1
)]

⋅ 𝑔
𝜆
({𝑥


𝑖
, 𝑥


𝑖+1
, . . . , 𝑥



𝑛
}) ,

(11)

where 𝑓(𝑥
0
) = 0.

Example 15. Let 𝑋 = {𝑥
1
, 𝑥
2
, 𝑥
3
}, 𝑔
𝜆
(𝑥
1
) = 0.1, 𝑔

𝜆
(𝑥
2
) =

0.2, 𝑔
𝜆
(𝑥
3
) = 0.3, 𝑓(𝑥

1
) = 0.3, 𝑓(𝑥

2
) = 0.7, and 𝑓(𝑥

3
) =

0.5. We can obtain ∏
3

𝑖=1
(1 + 𝜆𝑔

𝜆
𝑖

) = 1 + 𝜆 by Theorem 11.
Furthermore we get 𝜆 = 3.1.

By Definition 1, we can get the following results:

𝑔
𝜆
({𝑥
1
, 𝑥
2
}) = 𝑔

𝜆
(𝑥
1
) + 𝑔
𝜆
(𝑥
2
) + 𝜆𝑔

𝜆
(𝑥
1
) ⋅ 𝑔
𝜆
(𝑥
2
)

= 0.1 + 0.2 + 3.1 × 0.1 × 0.2

= 0.362.

(12)

Similarly, 𝑔
𝜆
({𝑥
1
, 𝑥
3
}) = 0.493, 𝑔

𝜆
({𝑥
2
, 𝑥
3
}) = 0.593, 𝑔

𝜆
({𝑥
1
,

𝑥
2
, 𝑥
3
}) = 1.
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Table 2: Data of Example 16.

𝑖 𝑓
𝑖1

𝑓
𝑖2

𝑓
𝑖3

𝑓
𝑖4

𝑓
𝑖5

1 1 0.6 0.8 0.8 1
2 0.8 0.5 0.7 1 0.7
3 0.8 0.8 0.5 0.8 0.9
4 0.5 0.5 1 0.7 0.6
5 0.2 0.9 0.7 0.6 0.3
6 0.7 0.3 0.9 0.6 0.8
7 1 0.6 1 0.5 0.8
8 0.5 0.8 0.4 0.7 0.5
9 0.4 0.7 0.6 0.9 0.2
10 0.7 0.5 0.6 0.8 0.8

ByDefinition 14, we can get the Choquet integrals of𝑓(𝑥)
with respect to 𝑔

𝜆
as follows:

(𝑐) ∫𝑓𝑑𝑔
𝜆
= (0.3 − 0) ⋅ 1 + (0.5 − 0.3)

⋅ 𝑔
𝜆
({𝑥
3
, 𝑥
2
}) + (0.7 − 0.5)

⋅ 𝑔
𝜆
(𝑥
2
) = 0.4586.

(13)

Example 16. Let 𝑋 = {𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
}, 𝑔
𝜆
(𝑥
1
) = 0.1,

𝑔
𝜆
(𝑥
2
) = 0.2, 𝑔

𝜆
(𝑥
3
) = 0.3, 𝑔

𝜆
(𝑥
4
) = 0.15, and 𝑔

𝜆
(𝑥
5
) =

0.175 (Table 2).
By Theorem 11, we obtain that ∏5

𝑖=1
(1 + 𝜆𝑔

𝜆𝑖
) = 1 + 𝜆,

and with the aid of Mathematica software, we calculate that
𝜆 = 0.218; furthermore, we get Choquet integrals which are
shown in Table 3.

4. Questions Description: Determine
Fuzzy Measures

In this section, we formulate our problems to be solved.
If we regard fuzzy integrals as multi-input single-output

systems, we can obtain the Data through handling these
systems. Suppose that we have several information sources
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑛 ≥ 2 and a given object 𝑦. Let 𝑋 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}; we have the data with sample size𝑚 as shown

in Table 4, where 𝑓
𝑖𝑗
is the 𝑖th value of source 𝑥

𝑗
and 𝐸

𝑖
is the

𝑖th value of object.
We hope to find a Sugeno measure 𝑔

𝜆
on measurable

space (𝑋, 2
𝑋

), such that 𝐸
𝑖
= (𝑐) ∫𝑓

𝑖
𝑑𝑔
𝜆
, 𝑖 = 1, 2, . . . , 𝑚,

where function 𝑓
𝑖
is defined by 𝑓

𝑖
(𝑥
𝑗
) = 𝑓

𝑖𝑗
, 𝑗 = 1, 2, . . . , 𝑛

for 𝑖 = 1, 2, . . . , 𝑚.
If such a Sugeno measure 𝑔

𝜆
does not exist, we hope

to find the optimally approximate solution. This is just the
inverse problem of synthetic evaluation. We can also use the
least square method to transform the above problem to a
constrained optimization problem. An optimization problem
is described as follows:

min (𝑉) = √

1

𝑚

𝑚

∑

𝑖=1

(𝐸
𝑖
− (𝑐) ∫𝑓

𝑖
𝑑𝑔
𝜆
)

2

. (14)

A result of min(𝑉) = 0 also means that a precise solution
is found.

Here, we discuss this problem in three aspects. The first
one is the values of 𝑓

𝑖𝑗
, and 𝐸

𝑖
(𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛)

are a real-valued data.The second one is the values of 𝑓
𝑖𝑗
, and

𝐸
𝑖
(𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛) are an interval-valued data.

The last one is 𝑓
𝑖𝑗
, and 𝐸

𝑖
(𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛) are

a fuzzy-valued data.

5. Using Genetic Algorithm to Determine
Fuzzy Measures from Real-Valued Data

In this section, we use genetic algorithm to determine fuzzy
measures from real-valued data.

5.1. Genetic Algorithm (GA). Genetic algorithm (GA) is a
stochastic searchmethod for optimization problems based on
the mechanics of natural selection and natural genetics (i.e.,
survival of the fittest). GA has demonstrated considerable
success in providing good solutions to many complex opti-
mization problems and received more and more attentions
during the past three decades. When the objective functions
to be optimized in the optimization problems aremultimodal
or the search spaces are particularly irregular, algorithms
need to be highly robust in order to avoid getting stuck at
a local optimal solution. The advantage of GA just makes it
able to obtain the global optimal solution fairly. In addition,
GA does not require the specific mathematical analysis of
optimization problems, which makes GA easily coded by
users who are not necessarily good at mathematics and
algorithms.

5.1.1.TheDecimal Coding. Chromosome𝑉 is denoted by𝑉 =

(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
), where gene 𝑎

𝑖
∈ [0, 1] for all 𝑖 = 1, 2, . . . , 𝑛,

and 𝑎
1
= 𝑔
𝜆1
, 𝑎
2
= 𝑔
𝜆2
, . . . , and 𝑎

𝑛−1
= 𝑔
𝜆𝑛−1

, 𝑎
𝑛
= 𝜆.

5.1.2. The Decoding. Find the formula

𝑔
𝜆𝑛

=

1

𝜆

(

1 + 𝜆

∏
𝑛−1

𝑖=1
(1 + 𝜆𝑔

𝜆𝑖
)

− 1) (15)

by 𝑔
𝜆𝑖

(𝑖 = 1, 2, . . . , 𝑛 − 1), 𝜆, and Definition 1. Furthermore,
the values of 𝑔

𝜆
(𝑥
1
, 𝑥
2
, . . ., 𝑥

𝑘
) for all 𝑘 = 1, 2, . . . , 𝑛 can be

obtained by Definition 1. The encoding can guarantee to get
a feasible solution. That is, the solution satisfies Definition 1,
and it will not undermine the feasibility of the solution
no matter what kind of genetic operation (crossover or
mutation) be used to chromosome.

5.1.3.The Arithmetic Crossover. Use the crossover probability
𝑃
𝑐
to choose two parent chromosomes 𝑉1 = (𝑎

1

1
, 𝑎
1

2
, . . . , 𝑎

1

𝑛
)
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Table 3: Results of Example 16.

(𝑐) ∫ 𝑓
1
𝑑𝑔
𝜆

(𝑐) ∫ 𝑓
2
𝑑𝑔
𝜆

(𝑐) ∫ 𝑓
3
𝑑𝑔
𝜆

(𝑐) ∫ 𝑓
4
𝑑𝑔
𝜆

(𝑐) ∫ 𝑓
5
𝑑𝑔
𝜆

0.8 0.7 0.71 0.79 0.58
(𝑐) ∫ 𝑓

6
𝑑𝑔
𝜆

(𝑐) ∫ 𝑓
7
𝑑𝑔
𝜆

(𝑐) ∫ 𝑓
8
𝑑𝑔
𝜆

(𝑐) ∫ 𝑓
9
𝑑𝑔
𝜆

(𝑐) ∫ 𝑓
10
𝑑𝑔
𝜆

0.67 0.79 0.56 0.56 0.65

Table 4: Data.

𝑥
1

𝑥
2

⋅ ⋅ ⋅ 𝑥
𝑛

𝑦

𝑓
11

𝑓
12

⋅ ⋅ ⋅ 𝑓
1𝑛

𝐸
1

𝑓
21

𝑓
22

⋅ ⋅ ⋅ 𝑓
2𝑛

𝐸
2

...
...

...
...

...
𝑓
𝑚1

𝑓
𝑚2

⋅ ⋅ ⋅ 𝑓
𝑚𝑛

𝐸
𝑚

and 𝑉
2

= (𝑎
2

1
, 𝑎
2

2
, . . . , 𝑎

2

𝑛
) and use the arithmetic crossover to

get two offspring chromosomes 𝑉3 and 𝑉
4:

𝑉
3

= 𝛼𝑉
1

+ (1 − 𝛼)𝑉
2

= (𝛼𝑎
1

1
+ (1 − 𝛼) 𝑎

2

1
, 𝛼𝑎
1

2

+ (1 − 𝛼) 𝑎
2

2
, . . . , 𝛼𝑎

1

𝑛
+ (1 − 𝛼) 𝑎

2

𝑛
) ,

𝑉
4

= (1 − 𝛼)𝑉
1

+ 𝛼𝑉
2

= ((1 − 𝛼) 𝑎
1

1
+ 𝛼𝑎
2

1
, (1 − 𝛼) 𝑎

1

2

+ 𝛼𝑎
2

2
, . . . , (1 − 𝛼) 𝑎

1

𝑛
+ 𝛼𝑎
2

𝑛
) ,

(16)

where 𝛼 ∈ [0, 1].

5.1.4. The Nonuniform Mutation. Select parent chromosome
𝑉 = (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) according to the mutation probability 𝑃

𝑚

and take the mutation to 𝑎
𝑘
for the random generation of 𝑘 in

[1, 𝑛]. Let

𝑎


𝑘
= 𝑎
𝑘
+ 𝜙 (𝑡, 𝑎

𝑈

𝑘
− 𝑎
𝑘
) (17)

or

𝑎


𝑘
= 𝑎
𝑘
− 𝜙 (𝑡, 𝑎

𝑘
− 𝑎
𝐿

𝑘
) , (18)

where 𝑎𝑈
𝑘
and 𝑎𝐿
𝑘
are the upper and lower bound of 𝑎

𝑘
, respec-

tively, and 𝑡 is the number of generations. Function 𝜙(𝑡, 𝑏) is
defined as follows:

𝜙 (𝑡, 𝑏) = 𝑏 ⋅ 𝑟 ⋅ (1 −

𝑡

𝑇

)

𝑏

, (19)

where 𝑟 is a random number of [0, 1], 𝑇 is the largest
number of generations, and 𝑏 is the parameter. Obviously,
lim
𝑛→𝑇

𝜙(𝑡, 𝑏) = 0.

5.1.5.TheEvaluation Function. Evaluation function is defined
by

min (𝑉) = √

1

𝑛

𝑛

∑

𝑖=1

(𝐸
𝑖
− (𝑐) ∫𝑓

𝑖
𝑑𝑔
𝜆
)

2

, (20)

where (𝑐) ∫ 𝑓
𝑖
𝑑𝑔
𝜆
is defined by Definition 14. Use the objec-

tive function as the evaluation function of a single chromo-
some.

The genetic algorithm procedure is summarized as fol-
lows.

Step 1. Initialize pop size chromosomes randomly.

Step 2. Update the chromosomes by crossover and mutation
operations.

Step 3. Calculate the evaluation function for all chromo-
somes.

Step 4. Select the chromosomes by spinning the roulette
wheel.

Step 5. Repeat the Step 2 to Step 3 for a given number of
cycles.

Step 6. Report the best chromosome as the optimal solution.

5.2. Examples and Results

Example 17. A railway administration chooses 15 passengers
randomly to evaluate the passenger train plan in the adminis-
tration (Table 5). Customer bases its overall scores on transfer
times, in-train congestion, travel time, and ticket price, and
also they have a score for each of four aspects. Let 𝑋 =

{𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, } be the attributes of transfer times, congestion,

travel time, and ticket price, respectively. We want to know
which attribute is the most important for passengers. Here,
𝑃
𝑐
= 0.85, 𝑃

𝑚
= 0.3, and the population size is 20.

We can obtain that the transfer times are the most impor-
tant for passengers from Table 6 and the convergence rate of
Example 17 as shown in Figure 1.

6. Using Genetic Algorithm to Determine
Fuzzy Measures from Interval-Valued Data

The intervals are derived from many practical application
problems, when instead of knowing the precise values 𝑥 of
some quantity 𝑋 we know only the intervals [𝑥, 𝑥], in which
𝑋, ranges. Since the comparison of two values or quantities is
the basic and most frequently used step in optimization,
interval-valued function plays an important role in interval
computation development.

6.1. The Choquet Integrals of Interval-Valued Function Based
on 𝜎−𝜆 Rules. With the definitions of the preceding subsec-
tions and from Wu et al. [35], we assume that 𝑅+ = [0, +∞),
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Table 5: Data of Example 17 (the customer evaluation).

Customer Transfer times Congestion Travel time Ticket price Evaluation 𝐸
𝑖

1 0 0 0.3 1 0.2
2 0.3 0.8 0.5 0.6 0.5
3 0.7 0.9 1 0.7 0.8
4 0.1 0 0.4 0.3 0.15
5 0.5 0.4 0.5 0.6 0.5
6 1 0.3 0.8 0.8 0.7
7 0.3 1 0 1 0.5
8 0.9 0.6 0.5 0.7 0.7
9 0.6 0.8 0.2 0.4 0.5
10 0.4 1 0.5 0 0.4
11 0.8 0.4 1 0.3 0.6
12 1 0.8 0.7 0.5 0.75
13 0.2 0.6 1 0.7 0.5
14 0 0.3 0.2 0.9 0.2
15 0.4 0.2 0.8 0 0.3

Table 6: Results of Example 17.
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Figure 1: The convergence rate of Example 17.

𝐼(𝑅
+

) = {𝑟 : [𝑟
−

, 𝑟
+

] ⊂ 𝑅
+

} is the set of interval numbers, and
𝐹(𝑋) is the set of all interval numbers 𝑓.

Interval numbers satisfy the following basic operations:

(1) 𝑟 ∗ 𝑝 = [𝑟
−

∗ 𝑝
−

, 𝑟
+

∗ 𝑝
+

](∗ + ∨∧);

(2) 𝑘 ⋅ 𝑟 = [𝑘𝑟
−

, 𝑘𝑟
+

], (𝑘 ∈ R+);

(3) 𝑟 ≤ 𝑝 ⇔ 𝑟
−

≤ 𝑝
−

, 𝑟
+

≤ 𝑝
+;

(4) 𝑑(𝑟, 𝑝) = max{|𝑟− − 𝑝
−

|, |𝑟
+

− 𝑝
+

|};
(5) if 𝑑(𝑟

𝑛
, 𝑟) → 0, then 𝑟

𝑛
→ 𝑟.

Definition 18 (see [34]). An interval-valued function 𝑓 :

𝑋 → 𝐼(𝑅
+

) is measurable if both 𝑓
−

(𝑥) and 𝑓
+

(𝑥) are
measurable function of 𝑥, where 𝑓(𝑥) = [𝑓

−

(𝑥), 𝑓
+

(𝑥)],
𝑓
−

(𝑥) is the left end point of interval 𝑓(𝑥), and 𝑓
+

(𝑥) is the
right end point of interval 𝑓(𝑥).

Definition 19. Let (𝑋,A, 𝑔
𝜆
) be a nonadditive measure space

based on 𝜎-𝜆 rules 𝑓 : 𝑋 → 𝐼(𝑅
+

) a measurable function in
𝑋 and 𝐸 ∈ A. Then the Choquet integral of 𝑓 with respect to
𝑔
𝜆
is defined by

(𝑐) ∫

𝐸

𝑓𝑑𝑔
𝜆
=: {(𝑐) ∫

𝐸

𝑓𝑑𝑔
𝜆
| 𝑔 ∈ 𝑆

𝑓(𝑥)
} (21)

if (𝑐) ∫
𝐸

𝑓𝑑𝑔
𝜆
is a closed interval on 𝐼(𝑅

+

), where 𝑆
𝑓(𝑥)

= {𝑔 |

𝑔 : 𝑋 → 𝑅
+

} is a measurable selection on 𝑓(𝑥).

Theorem 20. Let 𝑓 : 𝑋 → 𝐼(𝑅
+

) be a measurable interval-
valued function on 𝑋, and let 𝑔

𝜆
be a Sugeno measure based

on 𝜎-𝜆 rules onA. The Choquet integral of𝑓with respect to 𝑔
𝜆

is

(𝑐) ∫𝑓𝑑𝑔
𝜆
= [(𝑐) ∫𝑓

−

𝑑𝑔
𝜆
, (𝑐) ∫𝑓

+

𝑑𝑔
𝜆
] , (22)

where 𝑓−(𝑥) is the left end point of interval 𝑓(𝑥) and 𝑓+(𝑥) is
the right end point of interval 𝑓(𝑥), for every 𝑥 ∈ 𝑋.

Proof. We can prove the above theorem by Theorem 10 and
[34].

Using the continuity and the monotonicity of the Cho-
quet integral with the nonnegativity and the monotonicity of
the fuzzy measures, we may obtain the following theorem.

Theorem 21. Let 𝑓 : 𝑋 → 𝐼(𝑅
+

) be a measurable interval-
valued function on 𝑋, let 𝑔

𝜆
be a sugeno measure based on
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𝜎-𝜆 rules on A, and 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}. Then, the value of

Choquet integral of 𝑓 with respect to 𝑔
𝜆
is obtained by

(𝑐) ∫𝑓𝑑𝑔
𝜆

= [

𝑛

∑

𝑖=1

[𝑓
−

(𝑥


𝑖
) − 𝑓
−

(𝑥


𝑖−1
)]

⋅ 𝑔
𝜆
({𝑥


𝑖
, 𝑥


𝑖+1
, . . . , 𝑥



𝑛
}) ,

𝑛

∑

𝑖=1

[𝑓
+

(𝑥


𝑖
) − 𝑓
+

(𝑥


𝑖−1
)]

⋅ 𝑔
𝜆
({𝑥


𝑖
, 𝑥


𝑖+1
, . . . , 𝑥



𝑛
}) ] ,

(23)

where𝑓−(𝑥
0
) = 0,𝑓+(𝑥

0
) = 0, the values of𝑓− and𝑓+, that is,

𝑓
−

(𝑥
1
), 𝑓
−

(𝑥
2
), . . . , 𝑓

−

(𝑥
𝑛
), and 𝑓

+

(𝑥
1
), 𝑓
+

(𝑥
2
), . . . , 𝑓

+

(𝑥
𝑛
)

should be sorted in a nondecreasing order, so that 𝑓−(𝑥
1
) ≤

𝑓
−

(𝑥


2
) ≤ ⋅ ⋅ ⋅ ≤ 𝑓

−

(𝑥


𝑛
) and𝑓+(𝑥

1
) ≤ 𝑓
+

(𝑥


2
) ≤ ⋅ ⋅ ⋅ ≤ 𝑓

+

(𝑥


𝑛
),

respectively, and {𝑥


1
, 𝑥


2
, . . . , 𝑥



𝑛
} and {𝑥



1
, 𝑥


2
, . . . , 𝑥



𝑛
} are a

certain permutation of {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, respectively.

6.2. Using Genetic Algorithm to Determine Fuzzy Measures
from Interval-Valued Data. In this subsection, we use genetic
algorithm to determine fuzzy measures from interval-valued
data.

6.2.1. Genetic Algorithm (GA). In this subsection, the all
algorithms are the same to the Section 5.1 but the evaluation
function. Here, the valuation function is defined by

Eval (𝑉) = (

1

𝑚

𝑚

∑

𝑖=1

min{((𝑐) ∫𝑓
−

𝑖
𝑑𝑔
𝜆
− 𝐸
−

𝑖
)

2

,

((𝑐) ∫𝑓
+

𝑖
𝑑𝑔
𝜆
− 𝐸
+

𝑖
)

2

})

1/2

,

(24)

where (𝑐) ∫ 𝑓
−

𝑖
𝑑𝑔
𝜆

and (𝑐) ∫ 𝑓
+

𝑖
𝑑𝑔
𝜆

are defined by
Definition 14 andTheorem 20.

6.2.2. Examples and Results

Example 22. If the evaluation information in Example 17 is
represented by the interval-valued fuzzy numbers as shown in
Table 7, then we redetermine fuzzy measures from interval-
valued data by using genetic optimization.

We can obtain that the transfer times are the most
important for passengers from Table 8 and the convergence
rate of Example 22 as shown in Figure 2.

7. Using Genetic Algorithm to Determine
Fuzzy Measures from Fuzzy-Valued Data

In many respects, fuzzy numbers depict the physical world
more realistically than single-valued numbers. suppose, for
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Figure 2: The convergence rate of Example 22.

example, service quality is an intangible asset of enterprises
that is related to customers judgments about the overall
quality of a firm. Fuzzy numbers are used in statistics,
computer programming, engineering (especially communi-
cations), and experimental science. The concept takes into
account the fact that all phenomena in the physical universe
have a degree of inherent uncertainty.

Definition 23 (see [33, 36, 37]). Let (𝑋,
̃F) be a fuzzy

measurable space, and let F∗(R) be the class of all fuzzy
subsets of R. A fuzzy-valued function ̃

𝑓 : 𝑋 → F∗(R) is
called a measurable function if for every 𝜆 ∈ (0, 1], its 𝛼-cut
𝑓
𝛼
(𝑥) is measurable, where

𝑓
𝛼
(𝑥) = (

̃
𝑓 (𝑥))

𝛼

= {𝑟 |
̃
𝑓 (𝑥) (𝑟) ≥ 𝛼} . (25)

Remark 24. A measurable fuzzy-valued function is a espe-
cially measurable fuzzy set-value function.

Let ̃
𝑓 : 𝑋 →

̃F, ∀𝜆 ∈ (0, 1], and (
̃
𝑓(𝑥))
𝛼

=

[(
̃
𝑓(𝑥))
−

𝛼
, (
̃
𝑓(𝑥))
+

𝛼
]. We will simply denote that

𝑓
−

𝛼
(𝑥) = (

̃
𝑓 (𝑥))

−

𝛼

, 𝑓
+

𝛼
(𝑥) = (

̃
𝑓 (𝑥))

+

𝛼

. (26)

Obviously, 𝑓−
𝛼
(𝑥) and 𝑓

+

𝛼
(𝑥) are real functions.

From now on, we suppose that all functions defined on
𝑋 appearing as an integrand of the Choquet integral in this
paper are measurable.

According toTheorem 10,𝑔
𝜆
is a signed fuzzymeasure on

A. Therefore, we may give the following definition referring
to [34].

Fuzzy-valued function ̃
𝑓 : 𝑋 →

̃F is said to be a
𝐶-integrally bounded, if there exists a Choquet integrable
function ℎ : 𝑋 → 𝑅

+ such that | ̇𝑥| ≤ ℎ(𝑡) for ̇𝑥 ∈ [
̃
𝑓(𝑡)]
0
.

Definition 25. Let ̃
𝑓 : 𝑋 →

̃F be a measurable fuzzy-valued
function on 𝑋, and let 𝑔

𝜆
be a Sugeno measure based on 𝜎-

𝜆 rules. Assume that ̃
𝑓 is 𝐶-integrally bounded. ̃

𝑓 is called
Choquet integrable with respect to 𝑔

𝜆
if

{[(𝑐) ∫
̃
𝑓d𝜇]
𝜆

=: {(𝑐) ∫ 𝑔d𝜇 | 𝑔 ∈ 𝑆
𝑓
𝜆

} , 0 ≤ 𝜆 ≤ 1} (27)
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Table 7: Data of Example 22 (the customer evaluation).

Customer Transfer times Congestion Travel time Ticket price Evaluation 𝐸
𝑖

1 [0.00, 0.00] [0.00, 0.00] [0.25, 0.35] [1.00, 1.00] [0.15, 0.25]

2 [0.25, 0.35] [0.15, 0.25] [0.45, 0.55] [0.55, 0.65] [0.45, 0.55]

3 [0.65, 0.75] [0.85, 0.95] [1.00, 1.00] [0.65, 0.75] [0.75, 0.85]

4 [0.05, 0.15] [0.00, 0.00] [0.35, 0.45] [0.25, 0.35] [0.10, 0.20]

5 [0.45, 0.55] [0.35, 0.45] [0.45, 0.55] [0.55, 0.65] [0.45, 0.55]

6 [1.00, 1.00] [0.25, 0.35] [0.75, 0.85] [0.75, 0.85] [0.65, 0.75]

7 [0.25, 0.35] [1.00, 1.00] [0.00, 0.00] [1.00, 1.00] [0.45, 0.55]

8 [0.85, 0.95] [0.55, 0.65] [0.45, 0.55] [0.65, 0.75] [0.65, 0.75]

9 [0.55, 0.65] [0.75, 0.85] [0.15, 0.25] [0.35, 0.45] [0.45, 0.55]

10 [0.35, 0.45] [1.00, 1.00] [0.45, 0.55] [0.00, 0.00] [0.35, 0.45]

11 [0.75, 0.85] [0.35, 0.45] [1.00, 1.00] [0.25, 0.35] [0.55, 0.65]

12 [1.00, 1.00] [0.75, 0.85] [0.65, 0.75] [0.45, 0.55] [0.70, 0.80]

13 [0.15, 0.25] [0.55, 0.65] [1.00, 1.00] [0.65, 0.75] [0.45, 0.55]

14 [0.00, 0.00] [0.25, 0.35] [0.15, 0.25] [0.85, 0.95] [0.15, 0.25]

15 [0.35, 0.45] [0.15, 0.25] [0.75, 0.85] [0.00, 0.00] [0.25, 0.35]

Table 8: Results of Example 22.

Set 𝜆 𝑔
𝜆

Error Number of
generation

{𝑥
1
}

0.937

0.3186

0.010 100{𝑥
2
} 0.1819

{𝑥
3
} 0.1407

{𝑥
4
} 0.1344

confirms a unique fuzzy number 𝑎 ∈
̃F, which is denoted

by (𝑐) ∫
̃
𝑓d𝜇 = 𝑎, where 𝑆

𝑓
𝜆

= {𝑔 : 𝑋 → 𝑅, 𝑔 ∈ 𝑓
𝜆
is a

measurable selection of 𝑓
𝜆
}.

The exact membership function of the Choquet integral
with respect to Sugeno fuzzy measure 𝑔

𝜆
for fuzzy-valued

integrand is rather difficult to be found. In a simpler but
common case where 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} is finite, according

to Definition 25, the calculation of the Choquet integral with
a fuzzy-valued function comes down to that of the Choquet
integral with an interval-valued function. Here, let us look at
examples to show how to calculate the fuzzy-valued Choquet
integral with respect to a Sugeno measure 𝑔

𝜆
.

Example 26. Let ̃
𝑓(𝑥
1
) = [0, 1, 1], ̃𝑓(𝑥

2
) = [0.5, 0.5, 1.5], and

̃
𝑓(𝑥
3
) = [0, 1, 2]. Here, a triangular fuzzy number is denoted

by [𝑎
𝑙
, 𝑎
0
, 𝑎
𝑟
], where 𝑎

𝑙
, 𝑎
0
, 𝑎
𝑟
∈ R and 𝑎

𝑙
≤ 𝑎
0
≤ 𝑎
𝑟
. Set

function 𝑔
𝜆
is a sugenomeasure based on 𝜎-𝜆 rules. Function

̃
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𝑓(𝑥
1
),
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𝑓(𝑥
2
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1
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1
)
(𝑡) = {

𝑡, 𝑡 ∈ [0, 1] ,
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(28)

𝑚
2
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𝑓(𝑥
2
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(29)

𝑚
3
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3
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{
{

{
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2 − 𝑡, 𝑡 ∈ (1, 2] ,

0, 𝑡 ∉ [0, 2] ,

(30)

respectively. They are shown in Figure 1. The 𝛼-cut of ̃
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(1) When 0 ≤ 𝛼 ≤ 0.5, we get [ ̃𝑓

𝛼
(𝑥
1
)]
𝑙
=

̃
𝑓
𝛼
(𝑥
3
)]
𝑙
≤

[
̃
𝑓
𝛼
(𝑥
2
)]
𝑙
. Using Definition 14, we can let 𝑥

1
= 𝑥
1
, 𝑥


2
=

𝑥
3
, 𝑥


3
= 𝑥
2
, and then

[(𝑐) ∫
̃
𝑓
𝛼
𝑑𝑔
𝜆
]

𝑙

= {[𝑓 (𝑥


1
)]
𝑙

− [𝑓 (𝑥


0
)]
𝑙

}

⋅ 𝑔
𝜆
(𝑥


1
, 𝑥


2
, 𝑥


3
) + {[𝑓 (𝑥



2
)]
𝑙

− [𝑓 (𝑥


1
)]
𝑙

} ,

𝑔
𝜆
(𝑥


2
, 𝑥


3
) + {[𝑓 (𝑥



3
)]
𝑙

− [𝑓 (𝑥


2
)]
𝑙

} ⋅ 𝑔
𝜆
(𝑥


3
)

= [𝛼 − 0] ⋅ 1 + [𝛼 − 𝛼] ⋅ 0.5931 + [0.5 − 𝛼] ⋅ 0.3
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0
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𝑙
= 0, [𝑓(𝑥



0
)]
𝑟
= 0.
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Table 9: Data of Example 27 (The customer evaluation).

Customer Transfer times Congestion Travel time Ticket price Evaluation 𝐸
𝑖

1 [−0.1, 0.00, 0.10] [−0.1, 0.00, 0.10] [0.20, 0.30, 0.40] [0.90, 1.00, 1.10] [0.10, 0.20, 0.30]

2 [0.20, 0.30, 0.40] [0.70, 0.80, 0.90] [0.40, 0.50, 0.60] [0.50, 0.60, 0.70] [0.40, 0.50, 0.60]

3 [0.60, 0.70, 0.80] [0.80, 0.90, 1.00] [0.90, 1.00, 1.10] [0.60, 0.70, 0.80] [0.70, 0.80, 0.90]

4 [0.00, 0.10, 0.20] [−0.1, 0.00, 0.10] [0.30, 0.40, 0.50] [0.20, 0.30, 0.40] [0.05, 0.15, 0.25]

5 [0.40, 0.50, 0.60] [0.30, 0.40, 0.50] [0.40, 0.50, 0.60] [0.50, 0.60, 0.70] [0.40, 0.50, 0.60]

Table 10: The triangular fuzzy number changed into the interval number.

Customer Transfer times Congestion Travel time
1 [0.1𝛼 − 0.1, −0.1𝛼 + 0.1] [0.1𝛼 − 0.1, −0.1𝛼 + 0.1] [0.1𝛼 + 0.2, −0.1𝛼 + 0.4]

2 [0.1𝛼 + 0.2, −0.1𝛼 + 0.4] [0.1𝛼 + 0.7, −0.1𝛼 + 0.9] [0.1𝛼 + 0.4, −0.1𝛼 + 0.6]

3 [0.1𝛼 + 0.6, −0.1𝛼 + 0.8] [0.1𝛼 + 0.8, −0.1𝛼 + 1.0] [0.1𝛼 + 0.9, −0.1𝛼 + 1.1]

4 [0.1𝛼, −0.1𝛼 + 0.2] [0.1𝛼 − 0.1, −0.1𝛼 + 0.1] [0.1𝛼 + 0.3, −0.1𝛼 + 0.5]

5 [0.1𝛼 + 0.4, −0.1𝛼 + 0.6] [0.1𝛼 + 0.3, −0.1𝛼 + 0.5] [0.1𝛼 + 0.4, −0.1𝛼 + 0.6]

Customer Ticket price Evaluation 𝐸
𝑖

1 [0.1𝛼 + 0.9, −0.1𝛼 + 1.1] [0.1𝛼 + 0.1, −0.1𝛼 + 0.3]

2 [0.1𝛼 + 0.5, −0.1𝛼 + 0.7] [0.1𝛼 + 0.4, −0.1𝛼 + 0.6]

3 [0.1𝛼 + 0.6, −0.1𝛼 + 0.8] [0.1𝛼 + 0.7, −0.1𝛼 + 0.9]

4 [0.1𝛼 + 0.2, −0.1𝛼 + 0.4] [0.1𝛼 + 0.05, −0.1𝛼 + 0.25]

5 [0.1𝛼 + 0.5, −0.1𝛼 + 0.7] [0.1𝛼 + 0.4, −0.1𝛼 + 0.6]

Table 11: Results of Example 27.
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Figure 3: The convergence rate of Example 27.
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= [1.5 − 𝛼] ⋅ 1 + [1 − (1.5 − 𝛼)]

⋅ 0.4931 + [(2 − 𝛼) − 1] ⋅ 0.3

= 1.55 − 0.8𝛼.

(35)

That is, (𝑐) ∫ ̃
𝑓
𝛼
𝑑𝑔
𝜆
= [0.493𝛼 + 0.2535, 1.55 − 0.8𝛼].

Example 27. If the evaluation information in Example 17 is
represented by the triangular fuzzy number as shown in
Table 9, then we redetermine fuzzy measures from fuzzy-
valued data by using genetic algorithm.

Fist, we use themethod as shown in Example 26 to change
the triangular fuzzy number of Table 9 into interval number
as shown in Table 10; that is, the optimization of triangular
fuzzy number comes down to that of the interval number.

We can obtain that the transfer times are the most
important for passengers from Table 11 and the convergence
rate of Example 27 as shown in Figure 3, which represents
the convergence rate of Example 27, where the solid line
represents the convergence rate of the target value about
the best optimal solution, and dotted line represents the
convergence rate of average value of the target value about
all the solutions.

8. Conclusions and Remarks

In this paper, we have considered the genetic algorithm opti-
mization for determining fuzzy measures from fuzzy data.
We have gotten joint measures by use of single measure with
the aid of 𝜎-𝜆 rules. Then we have formulated our problems
to be solved; that is, how to determine the fuzzy measures
from fixed data. Furthermore, we have introduced the Cho-
quet integral of interval-valued functions and then given

the genetic algorithm optimization to determine fuzzy mea-
sures from interval-valued data. Finally we have discussed the
Choquet integral of fuzzy number-valued functions. Conse-
quently, we have given the genetic algorithm optimization to
determine fuzzy measures from fuzzy number-valued data.
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An intelligent location-aware service is created in the present study, in which a timely service is provided to a user without changing
the user’s pace. To the user, there are two goals to achieve—one is to reach the service location just in time; the other is to get to
the destination as soon as possible. To consider the two objectives at the same time and to allow for the uncertainty in the dynamic
environment, a biobjective fuzzy integer-nonlinear programming problem is formulated and solved. To illustrate the applicability
of the proposed methodology, an experiment has been performed. According to the experimental results, the user’s waiting time
was reduced by 61% using the proposed methodology.

1. Introduction

Ambient intelligence (AmI), coined by European Commis-
sion in 2001, features an environment in which the envi-
ronment supports the people inhabiting it in an unobtrusive/
transparent, interconnected, adaptable, dynamic, embedded,
and intelligent way [1, 2]. An AmI system has the following
characteristics.

(1) Interfacing with human senses rather than focusing
on computer-based input and output devices.

(2) Sensors/detectors are embedded in everyday objects
that can communicate with each other.

(3) Environment is sensitive to a user’s needs and even
can anticipate the user’s needs or behavior.

In fact, a few basic AmI technologies and systems have
already been applied in our everyday lives, such as ther-
mostats, movement sensors that control lighting, and move-
ment sensors linked to a security alarm for detecting intrud-
ers. AmI related topics include context-aware computing,
ubiquitous computing, pervasive computing, everywhere
computing, human/artificial intelligence, machine learning,
agent-based software, and robotics.

Basically, AmI technologies can be divided into the
following categories: ubiquitous computing, context aware-
ness, intelligence, and natural user-system interaction. In the
literature, several researchers have established the procedure
for developing AmI systems. For example, in Cook et al. [2],
the procedure is composed of three steps.

(1) Sensing features of the users and their environment.

(2) Reasoning about the accumulated data.

(3) Selecting actions to take that will benefit the users in
the environment.

Garzotto and Valoriani [3] detailed the steps of develop-
ing an AmI system including requirements, specifications,
mockups, functional prototypes, and beta-systems. After
summarizing the viewpoints of these studies, a procedure of
eight steps can be proposed as motion decomposition,
motion analysis, scenario generation, law, privilege, and
data security consideration, human-system interface design,
data/message transmission, data analysis, and performance
evaluation.

In short, the existing AmI methods have the following
problems.
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(1) There is a lack of a systematic procedure for develop-
ing AmI applications.

(2) Cost-effect analyses of AmI applications have seldom
been done. That may be because most successful
AmI applications are based on massive government
support.

(3) The usefulness of some AmI technologies is being
questioned.

(4) No AmI application is successful in every respect.

The objective of this study is to create an intelligent
location-aware service (LAS), which can be regarded as an
innovative application of AmI, ubiquitous computing, and
mobile commerce. A context-aware service (CAS) system
provides relevant information and/or services to a user
through the interpretation of the user’s context [4]. A LAS is
a special CAS that utilizes the location of a user to adapt the
service accordingly [4].

Krevl and Ciglarič [5] proposed a framework for develop-
ing location-based distributed applications. The framework
comprises of three layers—the client layer, the applica-
tion/server layer, and the database layer. Allamanis et al.
[6] observed that LASs can foster the creation of online
social networks. Savage et al. [7] designed a restaurant
recommendation LAS system, which processed the user’s
location, preferences, feelings, and transportation mode with
decision trees to make a recommendation. In addition, a
discrete hidden Markov model was also built to reduce
the misclassification in the decision tree. The LAS system
developed by Zhang et al. [8] considered location features,
social features, and implicit patterns and then recommended
online social groups to users that may be interested in.

However, it is not easy for a LAS to be successful,
because of the uncertainties arising from changes in a user’s
speed, positioning inaccuracy, unstable network connections,
human-assisted service preparation, and others. To deal with
such uncertainties, fuzzy and probabilistic (stochastic) meth-
ods are two main streams; however, fuzzy methods are easier
to implement than probabilistic methods and do not rely on
strict assumptions [9–12]. In the literature, fuzzy methods
have been applied to various LASs. For example, Kotsakis and
Ketselidis [13] indicated that the uncertainties of a dynamic
environment increase the difficulty to interpret the context.
In such a circumstance, linguistic terms may be a better
choice to describe user’s subjective feelings. Mateo et al. [14]
established a set of fuzzy inference rules to help a user select
the most suitable nearby restaurant. In Anagnostopoulos and
Hadjiefthymiades [15], a user’s context is represented through
fuzzy variables assuming fuzzy values, which then become
inputs to the fuzzy inference rules. Chen et al. [16] developed
a LAS system that can inform users of the best station to park
their cars in during the peak period. Simple fuzzy inference
rules were established to make a recommendation.

In short, the existing LAS systems have the following
problems.

(1) There is considerable uncertainty in detecting a user’s
position. For example, the detection error may be up
to 20 meters using the global positioning system on

the cell phone [17]; that is large enough to mislead the
recommendation process. Such an uncertainty has
not been properly considered.

(2) There is a gap between theory and practice of LAS.
More emphasis is put on the correctness of a service
than on the timeliness of providing the service.
Some LAS systems attempt to recommend the nearest
service location to the user; however, timeliness is a
different concept that forces the LAS system to go
along with a user’s pace.

An intelligent LAS is created in this study, in which a
user sends a request to the system server through his/her
mobile phone and reaches the recommended service location
exactly as the requested service becomes available; that is
just in time (JIT). JIT is traditionally a production strategy
to reduce waste; however, it has seldom been applied to
AmI, ubiquitous computing, or LAS. In this study, the
general methodology or technology to address this problem
is fuzzy mathematical programming, which is usually used
to optimize a specific target under an uncertain environment
[18–20].

Compared with the existing methods, the proposed
methodology has the following innovative characteristics.

(1) The location and speed of a user are highly uncertain,
and therefore they are given in fuzzy numbers.

(2) Since fuzzy numbers are used to represent the loca-
tion and speed of a user, the time to go through a path,
denoted as the “path duration,” is also a fuzzy number.

(3) In addition, the service preparation time is also
given in fuzzy numbers to consider its uncertainty.
Since most of the services are subject to human
intervention, such a treatment should be reasonable.
As a result, the available time of each service location
is also a fuzzy number.

(4) Two goals are to be achieved. The first one is to
find a timely manner to reach the service location.
The other is to reach the destination as soon as
possible. That leads to a biobjective decision-making
problem. To assist decision-making, a biobjective
fuzzy integer nonlinear programming (2o-FINLP)
model is formulated and solved.

The differences between the proposed methodology and
some existing methods were summarized in Table 1.

The remaining of this paper is organized as follows. First,
the architecture and operation procedure of the intelligent
LAS are detailed in Section 2. To reach the service location
just in time and to reach the destination as soon as possible, a
2o-FINLP problem is formulated and solved in Section 3. To
illustrate the applicability of the proposed methodology, an
experiment has been performed. Finally, Section 4 concludes
this paper and lists some topics for future investigation.

2. The Intelligent LAS

The first step of developing an AmI system is to pro-
pose the scenario for usability evaluation. The scenario of
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Table 1: Differences between the proposed methodology and some existing methods.

Method General methodology
or technology Emphasis Number of objectives

Kotsakis and Ketselidis [13] Linguistic modeling Correctness of
recommendation Single

Mateo et al. [14] Fuzzy inference rules Correctness of
recommendation Single

Anagnostopoulos and
Hadjiefthymiades [15]

Linguistic modeling
and Fuzzy inference
rules

Correctness of
recommendation Single

Chen et al. [16] Fuzzy inference rules Correctness of
recommendation Single

The proposed
methodology

Fuzzy integer nonlinear
programming

Correctness and timeliness
of recommendation Biobjective

00:00 Request a service through mobile phone

00:01

00:05 Receive a message “go to shop E” Receive the order
Start preparing the service

02:10 Arrive at shop E Service is ready

∙ Determine the JIT service location
∙ Detect the user’s location and speed

Server
(database)

Client

Figure 1: The scenario.

the intelligent LAS is shown in Figure 1. While most of the
scenarios are presented in short films, Figure 1 can still clearly
express the concepts of the new system.

The system architecture of the intelligent LAS is illus-
trated in Figure 2. There are four main parts in the system:
users, the communication and request system, the system
server, and service locations. The interactions among them
refer to the data flow diagram (DFD) in Figure 3 and are
briefly described here. At first, the communication and
request system establishes a ubiquitous environment for
the users to access the system server and then the service
locations. Then, the system server, as a third-party service
provider, selectively bridges the gap between a user and the
service locations. That is, only the JIT service location will
be contacted by the system server on behalf of the user. The
system server, finally, can get a commission from the service
locations as a reward.

3. Determining the Fuzzy JIT Service
Location and Path

The variables and parameters used in the proposed method-
ology are defined as follows.

(1) i: there are n nodes in the traffic network indicated
with node i = 1 ∼ n.

(2) k: there arem service locations in the traffic network
indicated with service location k = 1 ∼m.

(3) 𝑙
𝑗𝑖
or ̃𝑙
𝑗𝑖
: the length of the path connecting nodes

i and j. i, j = 1 ∼ n; 𝑖 ̸= 𝑗. 𝑙
𝑗𝑖
= ∞ if there is no

connection between the two nodes. The start point
and destination are nodes 1 and n, respectively. In
addition, no back path is allowed; namely, 𝑙

𝑗𝑖
= ∞

if i > j.
(4) 𝑑
𝑖
or ̃𝑑
𝑖
: the distance from the start point to node i.

Obviously, 𝑑
1
= 0, and 𝑑

𝑛
= max

𝑖
𝑑
𝑖
. In addition, 𝑑

𝑖

is determined by the distances of nodes connected to
node i as follows:

𝑑
𝑖
= 𝑑
𝑗
+ 𝑙
𝑗𝑖

𝑗 < 𝑖.

(1)

(5) 𝑑
(𝑘)

or ̃𝑑
(𝑘)
: the distance from the start point to service

location k. k = 1 ∼m.
(6) 𝑑
𝑖,𝑗

or ̃
𝑑
𝑖,𝑗
: the distance from node i to node j.

Obviously, 𝑑
1,𝑗
= 𝑑
𝑗
.
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Service content, request
time, and service fee

Service content, request
time, and service fee

Service content, request
time, and service fee

Service content, request
time, and service fee

Commission and ready
time

Commission and ready
time

Commission and ready
time

Ready time, service
location, and fee

Ready time, service
location, and fee

Ready time, service
location, and fee

Service content and
request time

Service content and
request time

Service content and
request time

Service content and
request time

Communication and request system

Service system
     server

Ready time, service
location, and fee

Figure 2: The system architecture.

(7) 𝑑
𝑖,(𝑘)

or ̃
𝑑
𝑖,(𝑘)

: the distance from node i to service
location k.

(8) p or 𝑝: the service preparation time. Most of the
services are prepared manually. For this reason, the
preparation time is subject to the skills and mental
and physical conditions of the staff and, therefore,
may be highly uncertain. For these reasons, in this
study, the service preparation time is given in trian-
gular fuzzy numbers.

(9) r: the positioning accuracy.
(10) s or 𝑠: the user’s speed.
(11) 𝑡
𝑐
: the current time.

(12) V
𝑘
or Ṽ
𝑘
: the available time of service location k.

3.1. Preliminary. Triangular fuzzy numbers are used in this
study to represent uncertain variables. For this reason, some
arithmetic operations on triangular fuzzy numbers are intro-
duced [21].

Theorem 1 (arithmetic operations on triangular fuzzy num-
bers). 𝐴 = (𝐴

1
, 𝐴
2
, 𝐴
3
) and 𝐵 = (𝐵

1
, 𝐵
2
, 𝐵
3
) are two

triangular fuzzy numbers:

(1) (Fuzzy addition)

𝐴 (+) 𝐵 = (𝐴
1
+ 𝐵
1
, 𝐴
2
+ 𝐵
2
, 𝐴
3
+ 𝐵
3
) ,

(2) (Fuzzy subtraction)

𝐴 (−) 𝐵 = (𝐴
1
− 𝐵
3
, 𝐴
2
− 𝐵
2
, 𝐴
3
− 𝐵
1
) ,

(3) (Scalar multiplication)

𝑘𝐴 = (𝑘𝐴
1
, 𝑘𝐴
2
, 𝑘𝐴
3
) if 𝑘 ≥ 0,

(4) (Fuzzy multiplication)

𝐴 (×) 𝐵 ≅ (𝐴
1
𝐵
1
, 𝐴
2
𝐵
2
, 𝐴
3
𝐵
3
) if 𝐴
1
, 𝐵
1
≥ 0,

(2)

(5) (Fuzzy division)

𝐴 (/) 𝐵 ≅ (

𝐴
1

𝐵
3

,

𝐴
2

𝐵
2

,

𝐴
3

𝐵
1

) if 𝐴
1
≥ 0; 𝐵

1
> 0.

(3)



Journal of Applied Mathematics 5

Service fee

Service content and

Service content

request time

Service content, location,
speed, and request time

User

Ready time, best service
location, and fee
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System
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Figure 3: The DFD of the intelligent LAS.

Subsequently, we reviewed the ways of converting fuzzy
objective functions and constraints. For a constraint𝐴 ≤ 𝐵 in
which both 𝐴 and 𝐵 are triangular fuzzy numbers, Klir and
Yuan [22] proposed the following way to convert it:

𝐴
1
≤ 𝐵
1
,

𝐴
2
≤ 𝐵
2
,

𝐴
3
≤ 𝐵
3
.

(4)

Another common way to convert the constraint is to
defuzzify the related terms before comparison, say, using the
center of gravity (COG) function [23]:

𝐴
1
+ 𝐴
2
+ 𝐴
3

3

≤

𝐵
1
+ 𝐵
2
+ 𝐵
3

3

. (5)

The third way is to assess the possibility [24] that the
constraint is satisfied by

pos (𝐴 ≤ 𝐵) = sup
𝐴≤𝐵

min (𝜇̃
𝐴
(𝐴) , 𝜇

𝐵
(𝐵)) . (6)

Theorem 2 (possibility comparison of two triangular fuzzy
numbers). To ensure that the possibility is 100%, the following
requirement has to be met:

𝐴
2
≤ 𝐵
2
. (7)

The required proof is straightforward.

Based on these concepts and theorems, in the following
section, we describe how to calculate the fuzzy speed of a user
and the fuzzy travel time of a path.

3.2. Fuzzy Speed and Travel Time. According to the detection
results of the GPS system, the distance that the user went

through within time t is q. Then, considering the positioning
uncertainty r, the fuzzy path length is (q − 2r, q, q + 2r). The
fuzzy speed is

𝑠 = (

𝑞 − 2𝑟

𝑡

,

𝑞

𝑡

,

𝑞 + 2𝑟

𝑡

) . (8)

The fuzzy travel time of a path with length 𝑙
𝑗𝑖
is

̃
𝑙
𝑗𝑖
= 𝑙
𝑗𝑖
(/) (

𝑞 − 2𝑟

𝑡

,

𝑞

𝑡

,

𝑞 + 2𝑟

𝑡

)

= (

𝑙
𝑖𝑗
𝑡

𝑞 + 2𝑟

,

𝑙
𝑖𝑗
𝑡

𝑞

,

𝑙
𝑖𝑗
𝑡

𝑞 − 2𝑟

) ,

(9)

according to (3).

3.3. o-FINLP Model. To find the fuzzy JIT service location
and path, the waiting time is to be minimized:

Min ̃
𝑍
1
= min
𝑘

(𝑝 (−)
̃
𝑑
(𝑘)
) . (10)

In addition, the preparation of the required service
cannot start before the available time of the service location.
To consider that, the objective function is modified:

Min ̃
𝑍
1
= min
𝑘

(𝑝 (+)max (0, Ṽ
𝑘
− 𝑡
𝑐
) (−)

̃
𝑑
(𝑘)
) . (11)

On the other hand, the user also needs to reach the destina-
tion as soon as possible:

Min ̃
𝑍
2
=
̃
𝑑
𝑛
. (12)

As a result, the following 2o-FINLP problem is to be solved:

Min ̃
𝑍
1
= min
𝑘

(𝑝 (+)max (0, Ṽ
𝑘
− 𝑡
𝑐
) (−)

̃
𝑑
(𝑘)
)

Min ̃
𝑍
2
=
̃
𝑑
𝑛
,

(13)
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s.t.

𝑝 (+)max (0, Ṽ
𝑘
− 𝑡
𝑐
) ≥

̃
𝑑
(𝑘)
, (14)

̃
𝑑
𝑖
= ∑

𝑗<𝑖,𝑙
𝑗𝑖
̸=∞

𝑥
𝑗𝑖
(
̃
𝑑
𝑗
(+)

̃
𝑙
𝑗𝑖
) , 𝑖 = 1 ∼ 𝑛, (15)

∑

𝑗<𝑖,𝑙
𝑗𝑖
̸=∞

𝑥
𝑗𝑖
= 1, 𝑖 = 1 ∼ 𝑛

𝑥
𝑗𝑖
∈ {0, 1} , 𝑖 = 1 ∼ 𝑛; 𝑗 < 𝑖; 𝑙

𝑗𝑖
̸=∞.

(16)

Constraint (14) is to guarantee that the user will be in time.
The binary variable 𝑥

𝑗𝑖
is used to indicate whether the path

connecting nodes i and j has been selected or not.

3.4. The Equivalent Crisp Problem. To solve the FINLP
problem, it has to be converted into a crisp problem. First,
according to (2)∼(3),

̃
𝑍
1
= (𝑍
11
, 𝑍
12
, 𝑍
13
)

= min
𝑘

(𝑝
1
+max (0, V

𝑘1
− 𝑡
𝑐
) − 𝑑
(𝑘)3
,

𝑝
2
+max (0, V

𝑘2
− 𝑡
𝑐
) − 𝑑
(𝑘)2
,

𝑝
3
+max (0, V

𝑘3
− 𝑡
𝑐
) − 𝑑
(𝑘)1
) .

(17)

In a similar way,

̃
𝑍
2
= (𝑍
21
, 𝑍
22
, 𝑍
23
) = (𝑑

𝑛1
, 𝑑
𝑛2
, 𝑑
𝑛3
) . (18)

In the literature, Loukil et al. [25] mentioned five ways used
to deal withmultiobjective optimization problems: the simul-
taneous (or Pareto) approach, the utility (or compromise)
approach, the goal programming (or satisfying) approach,
the hierarchical approach, and the interactive approach [26].
In this study, both the hierarchical approach and the utility
approach are applied to handle the 2o-FINLP problem. First,
̃
𝑍
1
is optimized before ̃

𝑍
2
, according to the hierarchical

approach. Such a treatment is reasonable, because the user
will first encounter that decision problem to determine
the JIT service location, that is, service location 𝑘∗. After
determining the JIT service location, the path duration to the
JIT service location becomes fixed, and the second objective
reduces to the determination of the remaining path from the
JIT service location to the destination.

Subsequently, to apply the utility approach to deal with
the two objectives, we need to define the utility of a fuzzy
objective (or variable). Here, we are of the opinion that
the defuzzification result of a fuzzy variable embodies its

utility. So, in the proposed methodology, the COG function
is applied to defuzzify a fuzzy variable and derive its utility:

𝑈(
̃
𝑍
1
) =

𝑍
1
+ 𝑍
2
+ 𝑍
3

3

= min
𝑘

(

1

3

(𝑝
1
+max (0, V

𝑘1
− 𝑡
𝑐
) − 𝑑
(𝑘)3

+ 𝑝
2
+max (0, V

𝑘2
− 𝑡
𝑐
) − 𝑑
(𝑘)2

+𝑝
3
+max (0, V

𝑘3
− 𝑡
𝑐
) − 𝑑
(𝑘)1
)) ,

𝑈 (
̃
𝑍
2
) =

𝑍
21
+ 𝑍
22
+ 𝑍
23

3

=

𝑑
𝑛1
+ 𝑑
𝑛2
+ 𝑑
𝑛3

3

.

(19)

The first constraint, that is, constraint (14), is converted in the
same way:

𝑝
1
+ 𝑝
2
+ 𝑝
3

3

+max (0,
V
𝑘1
+ V
𝑘2
+ V
𝑘3

3

− 𝑡
𝑐
)

≥

𝑑
(𝑘)1

+ 𝑑
(𝑘)2

+ 𝑑
(𝑘)3

3

.

(20)

In addition, the possibility that constraint (14) is satisfied can
be measured with

pos (𝑝 (+)max (0, Ṽ
𝑘
− 𝑡
𝑐
) ≥

̃
𝑑
(𝑘)
)

= sup
𝑝+max(0,V𝑘−𝑡𝑐)≥𝑑(𝑘)

min (𝜇
𝑝
(𝑝) , 𝜇Ṽ

𝑘

(V
𝑘
) , 𝜇 ̃
𝑑
(𝑘)

(𝑑
(𝑘)
)) .

(21)

To ensure that the possibility is 100%, the following constraint
has to be satisfied:

𝑝
2
+max (0, V

𝑘2
− 𝑡
𝑐
) ≥ 𝑑
(𝑘)2
. (22)

Further, (15) is equal to

̃
𝑑
𝑖
= (𝑑
𝑖1
, 𝑑
𝑖2
, 𝑑
𝑖3
) = ( ∑

𝑗<𝑖,𝑙
𝑗𝑖
̸=∞

𝑥
𝑗𝑖
(𝑑
𝑗1
+ 𝑙
𝑗𝑖1
) ,

∑

𝑗<𝑖,𝑙
𝑗𝑖
̸=∞

𝑥
𝑗𝑖
(𝑑
𝑗2
+ 𝑙
𝑗𝑖2
)

× ∑

𝑗<𝑖,𝑙
𝑗𝑖
̸=∞

𝑥
𝑗𝑖
(𝑑
𝑗3
+ 𝑙
𝑗𝑖3
)) .

(23)

So

𝑑
𝑖1
= ∑

𝑗<𝑖,𝑙
𝑗𝑖
̸=∞

𝑥
𝑗𝑖
(𝑑
𝑗1
+ 𝑙
𝑗𝑖1
) ,

𝑑
𝑖2
= ∑

𝑗<𝑖,𝑙
𝑗𝑖
̸=∞

𝑥
𝑗𝑖
(𝑑
𝑗2
+ 𝑙
𝑗𝑖2
) ,

𝑑
𝑖3
= ∑

𝑗<𝑖,𝑙
𝑗𝑖
̸=∞

𝑥
𝑗𝑖
(𝑑
𝑗3
+ 𝑙
𝑗𝑖3
) .

(24)

Finally, the 2o-FINLP model can be transformed into a two-
step crisp model.
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Step 1.

Min 𝑈(
̃
𝑍
1
) = min
𝑘

(

1

3

(𝑝
1
+max (0, V

𝑘1
− 𝑡
𝑐
) − 𝑑
(𝑘)3

+ 𝑝
2
+max (0, V

𝑘2
− 𝑡
𝑐
) − 𝑑
(𝑘)2

+𝑝
3
+max (0, V

𝑘3
− 𝑡
𝑐
) − 𝑑
(𝑘)1
)) ,

(25)
s.t.

𝑝
2
+max (0, V

𝑘2
− 𝑡
𝑐
) ≥ 𝑑
(𝑘)2
,

𝑝
1
+ 𝑝
2
+ 𝑝
3

3

+max (0,
V
𝑘1
+ V
𝑘2
+ V
𝑘3

3

− 𝑡
𝑐
)

≥

𝑑
(𝑘)1

+ 𝑑
(𝑘)2

+ 𝑑
(𝑘)3

3

,

(26)

𝑑
𝑖1
= ∑

𝑗<𝑖,𝑙
𝑗𝑖
̸=∞

𝑥
𝑗𝑖
(𝑑
𝑗1
+ 𝑙
𝑗𝑖1
) , 𝑖 = 1 ∼ (𝑚) ,

𝑑
𝑖2
= ∑

𝑗<𝑖,𝑙
𝑗𝑖
̸=∞

𝑥
𝑗𝑖
(𝑑
𝑗2
+ 𝑙
𝑗𝑖2
) , 𝑖 = 1 ∼ (𝑚) ,

𝑑
𝑖3
= ∑

𝑗<𝑖,𝑙
𝑗𝑖
̸=∞

𝑥
𝑗𝑖
(𝑑
𝑗3
+ 𝑙
𝑗𝑖3
) , 𝑖 = 1 ∼ (𝑚) ,

(27)

∑

𝑗<𝑖,𝑙
𝑗𝑖
̸=∞

𝑥
𝑗𝑖
= 1, 𝑖 = 1 ∼ (𝑚) , (28)

𝑥
𝑗𝑖
∈ {0, 1} , 𝑖 = 1 ∼ (𝑚) ; 𝑗 < 𝑖; 𝑙

𝑗𝑖
̸=∞. (29)

Step 1 model has at most 1 objective function, 3(𝑚) + 1 real
variables, (1/2)(𝑚)((𝑚) − 1) binary variables, and 4(𝑚) + 3
constraints. The objective function (25) is to minimize the
defuzzified value of the minimum waiting time among them
service locations. Constraints (26) are to guarantee that the
user will not be late. Equations (27) are used to calculate the
fuzzy distance from the start point to each node. Among the
paths to a node, only one of them will be chosen, as required
by (28). Binary variables are defined in (29).

Step 2.

Min𝑈(̃𝑍
2
) =

𝑑
𝑛1
+ 𝑑
𝑛2
+ 𝑑
𝑛3

3

, (30)

s.t.
𝑑
𝑖1
= ∑

𝑗<𝑖,𝑙
𝑗𝑖
̸=∞

𝑥
𝑗𝑖
(𝑑
𝑗1
+ 𝑙
𝑗𝑖1
) , 𝑖 = (𝑘

∗

) ∼ 𝑛,

𝑑
𝑖2
= ∑

𝑗<𝑖,𝑙
𝑗𝑖
̸=∞

𝑥
𝑗𝑖
(𝑑
𝑗2
+ 𝑙
𝑗𝑖2
) , 𝑖 = (𝑘

∗

) ∼ 𝑛,

𝑑
𝑖3
= ∑

𝑗<𝑖,𝑙
𝑗𝑖
̸=∞

𝑥
𝑗𝑖
(𝑑
𝑗3
+ 𝑙
𝑗𝑖3
) , 𝑖 = (𝑘

∗

) ∼ 𝑛,

(31)

∑

𝑗<𝑖,𝑙
𝑗𝑖
̸=∞

𝑥
𝑗𝑖
= 1, 𝑖 = (𝑘

∗

) ∼ 𝑛, (32)

𝑥
𝑗𝑖
∈ {0, 1} , 𝑖 = (𝑘

∗

) ∼ 𝑛; 𝑗 < 𝑖; 𝑙
𝑗𝑖
̸=∞. (33)

Table 2: The available times of the three service locations.

k Node # ]̃
𝑘

1 7 (8, 10, 11)
2 8 0
3 9 (7, 9, 11)

Table 3: The fuzzy JIT paths to the service locations.

k Node # 𝑈 ∗ (
̃
𝑍
1
) Fuzzy JIT path

1 7 6.3 1 → 4 → 7

2 8 No feasible solution No feasible solution
3 9 2.3 1 → 4 → 7 → 9

Step 2 model has at most 1 objective function, 3(𝑛 − (1)) + 1
real variables, (1/2)(𝑛 − (1))(𝑛 − (1) − 1) binary variables,
and 3(𝑚) + 1 constraints. The objective function (30) is to
minimize the defuzzified value of the arrival time at the
destination. Equations (31) are used to calculate the fuzzy
distance from the start point to each node. Among the paths
to a node, only one of them will be chosen, as required by
(32). Binary variables are defined in (33).

To determine the fuzzy JIT service location and path, the
following procedure is proposed.

(1) For service location 𝑘, calculate its JIT path using the
Step 1 model. Assume the optimal objective function
value of Step 1 model is 𝑈 ∗ (̃𝑍

1
)(𝑘).

(2) Find the 𝑘∗ that minimizes 𝑈 ∗ (̃𝑍
1
)(𝑘
∗

). Node (𝑘∗)
is the JIT service location.

(3) Determine the remaining path from service location
𝑘
∗ to the destination using Step 2 model.

3.5. An Experiment. The experimental region is located in
the Seatwen District of Taichung City, Taiwan. The area of
the experimental region is about 3 square kilometers (see
Figure 4). In this figure, there are three possible service
locations at different places—nodes 7, 8, and 9 (indicated
with red pins). These service locations represent fast food
restaurants with drive-in facilities. The abstracted road map
is shown in Figure 5. The length of each path is expressed
with a triangular fuzzy number. Assume 𝑝 = (6, 8, 13); 𝑡

𝑐

= 0. The available times of the three service locations were
summarized in Table 2.

As an example, the Step 1 model for finding the fuzzy
JIT path to service location 1 (node 7) is illustrated in Box 1.
The optimal objective function value 𝑈 ∗ (

̃
𝑍
1
)(1) is 6.3.

Namely, the user only needs to wait 6.3 minutes after he/she
reaches service location 1 (node 7). The fuzzy JIT path to this
service location is 1 → 4 → 7. In the same way, the fuzzy
JIT paths to other service locations have been obtained and
were summarized in Table 3. Obviously, the fuzzy JIT service
location in this experiment is service location 3 (node 9).The
corresponding path is 1 → 4 → 7 → 9.

Subsequently, to determine the remaining path from the
fuzzy JIT service location to the destination, Step 2 model
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Table 4: Comparison of the results.

Model JIT service location JIT path Remaining path Waiting time
Fuzzy 3 (node 9) 1 → 4 → 7 → 9 9 → 13 → 14 2.3
Crisp 1 (node 7) 1 → 4 → 7 7 → 10 → 13 → 14 6

Start point

Destination

Figure 4: The experimental region.

is to be solved. For that, the Lingo code is shown in Box 2.
Theoptimal remaining path is 9 → 13 → 14, and𝑈∗(̃𝑍

2
) =

23.7.

3.6. Global Optimality of the Solution. To solve the 2o-FINLP
problem, the existing optimization packages generally use
branch-and-bound algorithms to approximate the optimal
solution, which cannot guarantee the global optimality of the
solution. Chen and Wu [27] mentioned a forced reoptimiza-
tion procedure to tackle this problem, which is considered
useful to the present study. The concept is to add another
constraint to the defuzzified models. For example, for Step 1
model,

𝑈(
̃
𝑍
1
) ≤ 𝑈 (

̃
𝑍
1
) (𝜁) + Δ, (34)

where 𝑈(̃𝑍
1
)(𝜁) is the optimal objective function value of

Step 1 model after the 𝜁-th round of optimization. Δ is
the required minimum improvement. The process stops if
no improvement can be gained after another round of re-
optimization. Similarly, for Step 2 model,

𝑈(
̃
𝑍
2
) ≤ 𝑈 (

̃
𝑍
2
) (𝜁) + Δ. (35)

In the previous experiment, we setΔ = 1. After a round of
the forced re-optimization, the solutions remain unchanged,
which means that the solution is already global optimal.

3.7. Comparison with the Crisp Case. For a comparison, we
also examined the crisp case, in which only the core values
(i.e., values with membership equal to 1) of fuzzy variables

and parameters are considered and their uncertainties are
ignored. After optimization, the JIT service location is service
location 1 (node 7) with a waiting time of 6. The JIT path and
the remaining path are 1 → 4 → 7 and 7 → 10 → 13 →

14, respectively. Obviously, the results are quite different from
the above analysis considering the uncertainty of variables
(see Table 4). If the waiting time after reaching the service
location is compared, then the fuzzy model achieves a better
performance.

4. Conclusions

This study created an intelligent LAS for a dynamic environ-
ment, in which a user requires a timely service when going
to his/her destination. Obviously, there are two objectives
to the user—one is to choose the JIT service location; the
other is to reach the destination as soon as possible. In
order to optimize these two objectives simultaneously, a 2o-
FINLP problem was to be solved. Another feature of the
proposedmethodology is the incorporation of fuzzy variables
to consider the uncertainty of dynamic factors. To solve the
2o-FINLP problem, first the two objectives are processed in a
hierarchical manner. Subsequently, the utility of either fuzzy
objective function value is defined; that serves as the basis for
comparing feasible solutions.

The proposed system is a generic framework and can
be applied to various service industries, such as the fast
food industry. In Taiwan, for example, the scale of the fast
food industry has reached NT$ 22 billion until 2011. In this
industry, the drive-in facility is universally used to provide
real-time services to consumers. However, consumers must
still wait in the driveway for the ordering, billing, and
preparation of meals. To eliminate the problem of waiting,
some meals can be prepared in advance; however, that leads
to food preservation problems.The proposed JIT LAS service
is expected to solve both of these problems.

The contribution of this study is twofold.

(1) It is the first attempt to apply the concept of JIT to
LAS.

(2) Most existing fuzzy LASs use fuzzy reference rules
that have not been optimized. In contrast, this study
optimized the selection of service location using fuzzy
mathematical programming.

To illustrate the applicability of the proposed methodol-
ogy, an experiment has been performed. According to the
experimental results,

(1) the user’s waiting time was indeed reduced by the
proposed methodology;

(2) after considering the uncertainties of various param-
eters, the recommendation results indeed became
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Figure 5: The abstracted road map.

min = 56 − 𝑑71 − 𝑑72 − 𝑑73;
18 ≥ 𝑑72;
56 ≥ 𝑑71 + 𝑑72 + 𝑑73;
𝑑11 = 0;
𝑑12 = 0;
𝑑13 = 0;
𝑑31 = 𝑑11 + 1;
𝑑32 = 𝑑12 + 2;
𝑑33 = 𝑑13 + 5;
𝑑41 = 𝑑11 + 3;
𝑑42 = 𝑑12 + 5;
𝑑43 = 𝑑13 + 8;
𝑑71 = 𝑥37 ∗ 𝑑31 + 2 ∗ 𝑥37 + 𝑥47 ∗ 𝑑41 + 6 ∗ 𝑥47;
𝑑72 = 𝑥37 ∗ 𝑑32 + 4 ∗ 𝑥37 + 𝑥47 ∗ 𝑑42 + 7 ∗ 𝑥47;
d73 = 𝑥37 ∗ 𝑑33 + 4 ∗ 𝑥37 + 𝑥47 ∗ 𝑑43 + 8 ∗ 𝑥47;
𝑥37 + 𝑥47 = 1;
@bin(𝑥37); @bin(𝑥47);

Box 1: Step 1 model for finding the fuzzy JIT path to service location 1 (node 7).

min = 𝑑141 + 𝑑142 + 𝑑143;
𝑑71 = 9;
𝑑72 = 12;
𝑑73 = 16;
𝑑101 = 𝑑71 + 3;
𝑑102 = 𝑑72 + 6;
𝑑103 = 𝑑73 + 9;
𝑑91 = 11;
𝑑92 = 16;
𝑑93 = 20;
𝑑121 = 𝑑91 + 1;
𝑑122 = 𝑑92 + 1;
𝑑123 = 𝑑93 + 5;
𝑑131 = 𝑑91 + 4;
𝑑132 = 𝑑92 + 6;
𝑑133 = 𝑑93 + 7;
𝑑141 = 𝑥1214 ∗ 𝑑121 + 5 ∗ 𝑥1214 + 𝑥1314 ∗ 𝑑131 + 1 ∗ 𝑥1314;
𝑑142 = 𝑥1214 ∗ 𝑑122 + 8 ∗ 𝑥1214 + 𝑥1314 ∗ 𝑑132 + 2 ∗ 𝑥1314;
𝑑143 = 𝑥1214 ∗ 𝑑123 + 9 ∗ 𝑥1214 + 𝑥1314 ∗ 𝑑133 + 4 ∗ 𝑥1314;
𝑥1214 + 𝑥1314 = 1;
@bin(𝑥1214); @bin(𝑥1314);

Box 2: Step 2 model for determining the remaining path.
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different. Nevertheless, such a treatment reduced the
risk of unsuitable recommendation.

However, there are some limitations that need to
be acknowledged and addressed regarding the proposed
methodology.

(1) Although the existing optimization packages can be
easily applied to solve the problem of finding the JIT
service location, the acquisition cost of the optimiza-
tion package undoubtedly will increase the budget for
establishing the system, which is unfavorable to the
promotion of the proposed methodology.

(2) In addition, if any existing optimization package is
used as the problem solver, an additional interfacewill
need to be developed to convert the data received by
the system server to themodel file of the optimization
package, which may not be easy.

(3) In theory, the JIT path problem is equivalent to
a restricted longest path problem and may not be
solved effectively when the problem scale is large.
Fortunately, in real life, the JIT path problem occurs
mostly in small areas.

(4) In addition, in practical applications, a lot of users
may send their requests to the system server simul-
taneously, which causes a great burden on the system
server.

To address these difficulties, an algorithm or heuristic can
be developed in future studies to replace the optimization
package. There are many algorithms to find the shortest or
longest path in a network that can serve as a basis for devel-
oping the algorithm/heuristic. Such an algorithm/heuristic
can be easily programmed and integrated with the other
modules on the system server. However, one drawback of
an algorithm/heuristic is that the solution obtained is not
always globally optimal. In addition, the concept of JIT can
be applied to other fields of LAS or AmI, in order to provide
more support to users in a dynamic environment.
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The dual hesitant fuzzy sets (DHFSs) were proposed by Zhu et al. (2012), which encompass fuzzy sets, intuitionistic fuzzy sets,
hesitant fuzzy sets, and fuzzy multisets as special cases. Correlation measures analysis is an important research topic. In this paper,
we define the correlation measures for dual hesitant fuzzy information and then discuss their properties in detail. One numerical
example is provided to illustrate these correlationmeasures.Thenwe present a direct transfer algorithmwith respect to the problem
of complex operation ofmatrix synthesis when reconstructing an equivalent correlationmatrix for clustering DHFSs. Furthermore,
we prove that the direct transfer algorithm is equivalent to transfer closure algorithm, but its asymptotic time complexity and space
complexity are superior to the latter. Another real world example, that is, diamond evaluation and classification, is employed to
show the effectiveness of the association coefficient and the algorithm for clustering DHFSs.

1. Introduction

Correlation indicates how well two variables move together
in a linear fashion. In other words, correlation reflects a
linear relationship between two variables. It is an important
measure in data analysis, in particular in decision making,
medical diagnosis, pattern recognition, and other real world
problems [1–7]. Zadeh [8] introduced the concept of fuzzy
sets (FSs) whose basic component is only a membership
function with the nonmembership function being one minus
the membership function. In fuzzy environments, Hung
and Wu [9] used the concept of “expected value” to define
the correlation coefficient of fuzzy numbers, which lies
in [−1, 1]. Hong [10] considered the computational aspect
of the 𝑇

𝜔
-based extension principle when the principle is

applied to a correlation coefficient of 𝐿-𝑅 fuzzy numbers
and gave the exact solution of a fuzzy correlation coefficient
without programming or the aid of computer resources.
Atanassov [11, 12] gave a generalized form of fuzzy set, called
intuitionistic fuzzy set (IFS), which is characterized by a
membership function and a non-membership function. In
intuitionistic fuzzy environments, Gerstenkorn and Mańko
[13] defined a function measuring the correlation of IFSs
and introduced a coefficient of such a correlation. Bustince
and Burillo [14] introduced the concepts of correlation and
correlation coefficient of interval-valued intuitionistic fuzzy

sets (IVIFSs) [12]. Hung [15] and Mitchell [16] derived the
correlation coefficient of intuitionistic fuzzy sets from a
statistical viewpoint by interpreting an intuitionistic fuzzy set
as an ensemble of ordinary fuzzy sets. Hung and Wu [17]
proposed a method to calculate the correlation coefficient
of intuitionistic fuzzy sets by means of “centroid.” Xu [18]
gave a detailed survey on association analysis of intuitionistic
fuzzy sets and pointed out that most existing methods
deriving association coefficients cannot guarantee that the
association coefficient of any two intuitionistic fuzzy sets
equals one if and only if these two intuitionistic fuzzy sets
are the same. Szmidt and Kacprzyk [5] discussed a concept
of correlation for data represented as intuitionistic fuzzy set
adopting the concepts from statistics and proposed a formula
for measuring the correlation coefficient (lying in [−1, 1])
of intuitionistic fuzzy sets. Robinson and Amirtharaj [19]
defined the correlation coefficient of interval vague sets lying
in the interval [0, 1] and proposed a new method for com-
puting the correlation coefficient of interval vague sets lying
in the interval [−1, 1] using a-cuts over the vague degrees
through statistical confidence intervals which is presented
by an example. Instead of using point-based membership as
in fuzzy sets, interval-based membership is used in a vague
set. In [20], Robinson and Amirtharaj presented a detailed
comparison between vague sets and intuitionistic fuzzy sets
and defined the correlation coefficient of vague sets through
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simple examples. Hesitant fuzzy sets (HFSs) were originally
introduced by Torra [21, 22]. In hesitant fuzzy environments,
Chen et al. [23] derived some correlation coefficient formulas
for HFSs and applied them to two real world examples by
using clustering analysis under hesitant fuzzy environments.
Xu and Xia [24] defined the correlationmeasures for hesitant
fuzzy information and then discussed their properties in
detail.

Recently, Dubois and Prade introduced the definition of
dual hesitant fuzzy set. Dual hesitant fuzzy set can reflect
human’s hesitance more objectively than the other classical
extensions of fuzzy set (intuitionistic fuzzy set, type-2 fuzzy
set (T-2FS) [25], hesitant fuzzy set, etc.). The motivation to
propose the DHFSs is that when people make a decision,
they are usually hesitant and irresolute for one thing or
another which makes it difficult to reach a final agreement.
They further indicated that DHFSs can better deal with
the situations that permit both the membership and the
nonmembership of an element to a given set having a few
different values, which can arise in a group decision making
problem. For example, in the organization, some decision
makers discuss the membership degree 0.6 and the non-
membership 0.3 of an alternative 𝐴 that satisfies a criterion
𝑥. Some possibly assign (0.8, 0.2), while the others assign
(0.7, 0.2). No consistency is reached among these decision
makers. Accordingly, the difficulty of establishing a common
membership degree and a non-membership degree is not
because we have a margin of error (intuitionistic fuzzy set)
or some possibility distribution values (type-2 fuzzy set), but
because we have a set of possible values (hesitant fuzzy set).
For such a case, the satisfactory degrees can be represented
by a dual hesitant fuzzy element {(0.6, 0.8, 0.7), (0.3, 0.2)},
which is obviously different from intuitionistic fuzzy number
(0.8, 0.2)or (0.7, 0.2) andhesitant fuzzy number {0.6, 0.8, 0.7}.
The aforementioned measures, however, cannot be used to
deal with the correlation measures of dual hesitant fuzzy
information. Thus, it is very necessary to develop some
theories for dual hesitant fuzzy sets. However, little has
been done about this issue. In this paper, we mainly discuss
the correlation measures of dual hesitant fuzzy information.
To do this, the remainder of the paper is organized as
follows. Section 2 presents some basic concepts related to
DHFSs, HFSs, and IFSs. In Section 3, we propose some
correlation measures of dual hesitant fuzzy elements, obtain
several important conclusions, and given an example to
illustrate the correlation measures. In Section 4, we propose
a direct transfer clustering algorithm based on DHFSs and
then use a numerical example to illustrate our algorithm.
Finally, Section 5 concludes the paper with some remarks and
presents future challenges.

2. Preliminaries

2.1. DHFSs, HFSs, and IFSs

Definition 1 (see [26]). Let𝑋 be a fixed set then a dual hesitant
fuzzy set (DHFS)𝐷 on𝑋 is described as;

𝐷 = {⟨𝑥, ℎ (𝑥) , 𝑔 (𝑥)⟩ | 𝑥 ∈ 𝑋} (1)

in which ℎ(𝑥) and 𝑔(𝑥) are two sets of some values in
[0, 1], denoting the possible membership degrees and non-
membership degrees of the element 𝑥 ∈ 𝑋 to the set 𝐷,
respectively, with the conditions

0 ≤ 𝛾, 𝜂 ≤ 1, 0 ≤ 𝛾
+

+ 𝜂
+

≤ 1, (2)

where 𝛾 ∈ ℎ(𝑥), 𝜂 ∈ 𝑔(𝑥), 𝛾+ ∈ ℎ
+

(𝑥) = ∪
𝛾∈ℎ(𝑥)

max{𝛾}, and
𝜂
+

∈ 𝑔
+

(𝑥) = ∪
𝜂∈𝑔(𝑥)

max{𝜂} for all 𝑥 ∈ 𝑋. For convenience,
the pair 𝑑

𝐸
(𝑥) = (ℎ

𝐸
(𝑥), 𝑔
𝐸
(𝑥)) is called a dual hesitant fuzzy

element (DHFE), denoted by 𝑑 = (ℎ, 𝑔), with the conditions
𝛾 ∈ ℎ(𝑥), 𝜂 ∈ 𝑔(𝑥), 𝛾+ ∈ ℎ

+

(𝑥) = ∪
𝛾∈ℎ(𝑥)

max{𝛾}, and 𝜂
+

∈

𝑔
+

(𝑥) = ∪
𝜂∈𝑔(𝑥)

max{𝜂}, 0 ≤ 𝛾, 𝜂 ≤ 1 and 0 ≤ 𝛾
+

+ 𝜂
+

≤ 1.

Definition 2 (see [21, 22]). Let𝑋 be a fixed set; a hesitant fuzzy
set (HFS) 𝐴 on𝑋 is in terms of a function that when applied
to𝑋 returns a subset of [0, 1], which can be represented as the
following mathematical symbol:

𝐴 = {⟨𝑥, ℎ
𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋} , (3)

where ℎ
𝐴
(𝑥) is a set of values in [0, 1], denoting the possible

membership degrees of the element 𝑥 ∈ 𝑋 to the set 𝐴. For
convenience, we call ℎ

𝐴
(𝑥) a hesitant fuzzy element (HFE).

We use ⟨𝑥, ℎ
𝐴
⟩ for all 𝑥 ∈ 𝑋 to represent HFSs.

Definition 3 (see [11, 12]). Let𝑋 be a fixed set, an intuitionistic
fuzzy set (IFS) 𝐴 on𝑋 is an object having the form

𝐴 = {⟨𝑥, 𝜇
𝐴
(𝑥) , ]

𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋} (4)

which is characterized by a membership function 𝜇
𝐴
and a

non-membership function ]
𝐴
, where 𝜇

𝐴
: 𝑋 → [0, 1] and

]
𝐴
: 𝑋 → [0, 1], with the condition 0 ≤ 𝜇

𝐴
(𝑥) + ]

𝐴
(𝑥) ≤ 1,

for all 𝑥 ∈ 𝑋. We use ⟨𝑥, 𝜇
𝐴
, ]
𝐴
⟩ for all 𝑥 ∈ 𝑋 to represent

IFSs considered in the rest of the paper without explicitly
mentioning it. Furthermore, 𝜋

𝐴
(𝑥) = 1 − 𝜇

𝐴
(𝑥) − ]

𝐴
(𝑥) is

called a hesitancy degree or an intuitionistic index of 𝑥 in 𝐴.
In the special case 𝜋(𝑥) = 0, that is, 𝜇

𝐴
(𝑥) + ]

𝐴
(𝑥) = 1, the

IFS 𝐴 reduces to an FS.

2.2. Correlation Coefficients of HFSs and IFSs. Many
approaches [4, 13, 17, 20, 21] have been introduced to compute
the correlation coefficients of IFSs. Let 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}

be a discrete universe of discourse, for any two 𝐴 and 𝐵 on
𝑋.

The correlation of the IFSs 𝐴 and 𝐵 is defined as [13]

𝐶IFS
1
(𝐴, 𝐵) =

𝑛

∑

𝑖=1

(𝑢
𝐴
(𝑥
𝑖
) 𝑢
𝐵
(𝑥
𝑖
) + V
𝐴
(𝑥
𝑖
) 𝑢
𝐵
(𝑥
𝑖
)) , (5)
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Then, the correlation coefficient of the IFSs𝐴 and𝐵 is defined
as

𝜌IFS
1
(𝐴, 𝐵) =

𝐶IFS
1
(𝐴, 𝐵)

(𝐶IFS
1
(𝐴, 𝐴) ⋅ 𝐶IFS

1
(𝐵, 𝐵))

1/2

= (

𝑛

∑

𝑖=1

(𝑢
𝐴
(𝑥
𝑖
) 𝑢
𝐵
(𝑥
𝑖
) + V
𝐴
(𝑥
𝑖
) 𝑢
𝐵
(𝑥
𝑖
)))

× (((

𝑛

∑

𝑖=1

(𝑢
2

𝐴
(𝑥
𝑖
) + V2
𝐴
(𝑥
𝑖
)))

⋅(

𝑛

∑

𝑖=1

(𝑢
2

𝐵
(𝑥
𝑖
) + V2
𝐵
(𝑥
𝑖
))))

1/2

)

−1

.

(6)

In [23], Chen et al. defined the correlation and correlation
coefficient for HFSs as follows, respectively:

𝐶HFS
1
(𝐴, 𝐵) =

𝑛

∑

𝑖=1

(

1

𝑙
𝑖

𝑙
𝑖

∑

𝑗=1

ℎ
𝐴
𝜎(𝑗)

(𝑥
𝑖
) ℎ
𝐵
𝜎(𝑗)

(𝑥
𝑖
)) ,

𝜌IFS
1
(𝐴, 𝐵) =

𝐶HFS
1
(𝐴, 𝐵)

(𝐶HFS
1
(𝐴, 𝐴) ⋅ 𝐶HFS

1
(𝐵, 𝐵))

1/2

= (

𝑛

∑

𝑖=1

(

1

𝑙
𝑖

𝑙
𝑖

∑

𝑗=1

ℎ
𝐴
𝜎(𝑗)

(𝑥
𝑖
) ℎ
𝐵
𝜎(𝑗)

(𝑥
𝑖
)))

×(((

𝑛

∑

𝑖=1

(

1

𝑙
𝑖

𝑙
𝑖

∑

𝑗=1

ℎ
2

𝐴
𝜎(𝑗)

(𝑥
𝑖
)))

⋅(

𝑛

∑

𝑖=1

(

1

𝑙
𝑖

𝑙
𝑖

∑

𝑗=1

ℎ
2

𝐵
𝜎(𝑗)

(𝑥
𝑖
))))

1/2

)

−1

,

(7)

where 𝑙
𝑖
= max{𝑙(ℎ

𝐴
(𝑥
𝑖
)), 𝑙(ℎ
𝐵
(𝑥
𝑖
))} for each 𝑥

𝑖
in 𝑋, and

𝑙(ℎ
𝐴
(𝑥
𝑖
)) and 𝑙(ℎ

𝐵
(𝑥
𝑖
)) represent the number of values in

ℎ
𝐴
(𝑥
𝑖
) and ℎ

𝐵
(𝑥
𝑖
), respectively. We will talk about 𝑙

𝑖
in detail

in the next section.

3. Correlation Measures of DHFEs

In this section, we first introduce the concept of correlation
and correlation coefficient for DHFSs and then propose
several correlation coefficient formulas and discuss their
properties.

We arrange the elements in 𝑑
𝐸
(𝑥) = (ℎ

𝐸
(𝑥), 𝑔
𝐸
(𝑥)) in

decreasing order and let 𝛾𝜎(𝑖)
𝐸

(𝑥) be the 𝑖th largest value
in ℎ
𝐸
(𝑥) and 𝜂

𝜎(𝑗)

𝐸
(𝑥) the 𝑗th largest value in 𝑔

𝐸
(𝑥). Let

𝑙
ℎ
(𝑑
𝐸
(𝑥
𝑖
)) the number of values in ℎ

𝐸
(𝑥
𝑖
) and 𝑙

𝑔
(𝑑
𝐸
(𝑥
𝑖
)) be

the number of values in 𝑔
𝐸
(𝑥
𝑖
). For convenience, 𝑙(𝑑(𝑥

𝑖
)) =

(𝑙
ℎ
(𝑑(𝑥
𝑖
)), 𝑙
𝑔
(𝑑(𝑥
𝑖
))). In most cases, for two DHFSs 𝐴

and 𝐵, 𝑙(𝑑
𝐴
(𝑥
𝑖
)) ̸= 𝑙(𝑑

𝐵
(𝑥
𝑖
)); that is, 𝑙

ℎ
(𝑑
𝐴
(𝑥
𝑖
)) ̸= 𝑙
ℎ
(𝑑
𝐵
(𝑥
𝑖
)),

𝑙
𝑔
(𝑑
𝐴
(𝑥
𝑖
)) ̸= 𝑙
𝑔
(𝑑
𝐵
(𝑥
𝑖
)). To operate correctly, we should

extend the shorter one until both of them have the same
length when we compare them. In [24, 27], Xu and Xia
extended the shorter one by adding different values in
hesitant fuzzy environments. Similarly, Torra [21] also applied
this ideal to derive some correlation coefficient formulas for
HFSs. In fact, we can extend the shorter one by adding any
value in it. The selection of this value mainly depends on
the decision makers’ risk preferences. Optimists anticipate
desirable outcomes and may add the maximum value, while
pessimists expect unfavorable outcomes and may add the
minimum value. The same situation can also be found in
many existing references [13, 14].

We define several correlation coefficients for DHFEs.

Definition 4. For two DHFSs 𝐴 and 𝐵 on 𝑋, the correlation
of 𝐴 and 𝐵, denoted as 𝐶DHFS

1

(𝐴, 𝐵), is defined by

𝐶DHFS
1
(𝐴, 𝐵) =

𝑛

∑

𝑖=1

(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑

𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑

𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑖
) 𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑖
)) .

(8)

Definition 5. For two DHFSs 𝐴 and 𝐵 on 𝑋, the correlation
coefficient of𝐴 and 𝐵, denoted as 𝜌DHFS

1

(𝐴, 𝐵), is defined by:

𝜌DHFS
1
(𝐴, 𝐵)

=

𝐶DHFS
1
(𝐴, 𝐵)

(𝐶DHFS
1
(𝐴, 𝐴) ⋅ 𝐶DHFS

1
(𝐵, 𝐵))

1/2

= (

𝑛

∑

𝑖=1

(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑

𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑

𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑖
) 𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑖
)))

×((

𝑛

∑

𝑖=1

(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑

𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
𝑖
) +

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑

𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
𝑖
))

⋅

𝑛

∑

𝑖=1

(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑

𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑

𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
𝑖
)))

1/2

)

−1

.

(9)
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Definition 6. For two DHFSs 𝐴 and 𝐵 on 𝑋, the correlation
coefficient of 𝐴 and 𝐵, denoted as 𝜌DHFS

2

(𝐴, 𝐵), is defined by

𝜌DHFS
2
(𝐴, 𝐵)

=

𝐶DHFS
1
(𝐴, 𝐵)

max {𝐶DHFS
1
(𝐴, 𝐴) , 𝐶DHFS

1
(𝐵, 𝐵)}

= (

𝑛

∑

𝑖=1

(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑

𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑

𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑖
) 𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑖
)))

× (max
{

{

{

𝑛

∑

𝑖=1

(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑

𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
𝑖
) +

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑

𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
𝑖
)) ,

𝑛

∑

𝑖=1

(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑

𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑

𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
𝑖
))

}

}

}

)

−1

.

(10)

Theorem 7. For two DHFSs 𝐴 and 𝐵, the correlation coeffi-
cient of 𝐴 and 𝐵, denoted as 𝜌

𝐷𝐻𝐹𝑆
𝑖

(𝐴, 𝐵) (𝑖 = 1, 2), should
satisfy the following properties:

(1) 0 ≤ 𝜌
𝐷𝐻𝐹𝑆

𝑖

(𝐴, 𝐵) ≤ 1;

(2) 𝐴 = 𝐵 ⇒ 𝜌
𝐷𝐻𝐹𝑆

𝑖

(𝐴, 𝐵) = 1;

(3) 𝜌
𝐷𝐻𝐹𝑆

𝑖

(𝐴, 𝐵) = 𝜌
𝐷𝐻𝐹𝑆

𝑖

(𝐵, 𝐴); 𝑖 = 1, 2.

Proof. (1) The inequality 0 ≤ 𝜌DHFS
1

(𝐴, 𝐵) and 0 ≤

𝜌DHFS
2

(𝐴, 𝐵) is obvious. Below let us prove that
𝜌DHFS

1

(𝐴, 𝐵) ≤ 1, 𝜌DHFS
2

(𝐴, 𝐵) ≤ 1:

𝐶DHFS
1
(𝐴, 𝐵)

=

𝑛

∑

𝑖=1

(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑

𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑

𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑖
) 𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑖
))

=

𝑛

∑

𝑖=1

(

𝑙
ℎ(𝑖)

∑

𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)

𝑙
ℎ(𝑖)

+

𝑙
𝑔(𝑖)

∑

𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑖
) 𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑖
)

𝑙
𝑔(𝑖)

)

= (

𝑙
ℎ(1)

∑

𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
1
)

√𝑙
ℎ(1)

⋅

𝛾
𝐵𝜎
(𝑗)

(𝑥
1
)

√𝑙
ℎ(1)

+

𝑙
ℎ(2)

∑

𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
2
)

√𝑙
ℎ(2)

⋅

𝛾
𝐵𝜎
(𝑗)

(𝑥
2
)

√𝑙
ℎ(2)

+ ⋅ ⋅ ⋅ +

𝑙
ℎ(𝑛)

∑

𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑛
)

√𝑙
ℎ(𝑛)

⋅

𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑛
)

√𝑙
ℎ(𝑛)

)

+(

𝑙
𝑔(1)

∑

𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
1
)

√𝑙
𝑔(1)

⋅

𝜂
𝐵𝜎
(𝑘)

(𝑥
1
)

√𝑙
𝑔(1)

+

𝑙
𝑔(2)

∑

𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
2
)

√𝑙
𝑔(2)

⋅

𝜂
𝐵𝜎
(𝑘)

(𝑥
2
)

√𝑙
𝑔(2)

+ ⋅ ⋅ ⋅ +

𝑙
𝑔(𝑛)

∑

𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑛
)

√𝑙
𝑔(𝑛)

⋅

𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑛
)

√𝑙
𝑔(𝑛)

).

(11)

Using the Cauchy-Schwarz inequality

(𝑥
1
𝑦
1
+ 𝑥
2
𝑦
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑦
𝑛
)
2

≤ (𝑥
2

1
+ 𝑥
2

2
+ ⋅ ⋅ ⋅ + 𝑥

2

𝑛
) ⋅ (𝑦
2

1
+ 𝑦
2

2
+ ⋅ ⋅ ⋅ + 𝑦

2

𝑛
) ,

(12)

where (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑅
𝑛

, (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑅
𝑛, we obtain

𝐶DHFS
1
(𝐴, 𝐵)

2

≤ (

𝑙
ℎ(1)

∑

𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
1
)

𝑙
ℎ(1)

+

𝑙
ℎ(2)

∑

𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
2
)

𝑙
ℎ(2)

+ ⋅ ⋅ ⋅ +

𝑙
ℎ(𝑛)

∑

𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
𝑛
)

𝑙
ℎ(𝑛)

+

𝑙
𝑔(1)

∑

𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
1
)

𝑙
𝑔(1)

+

𝑙
𝑔(2)

∑

𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
2
)

𝑙
𝑔(2)

+ ⋅ ⋅ ⋅ +

𝑙
𝑔(𝑛)

∑

𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
𝑛
)

𝑙
𝑔(𝑛)

)

⋅ (

𝑙
ℎ(1)

∑

𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
1
)

𝑙
ℎ(1)

+

𝑙
ℎ(2)

∑

𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
2
)

𝑙
ℎ(2)

+ ⋅ ⋅ ⋅ +

𝑙
ℎ(𝑛)

∑

𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
𝑛
)

𝑙
ℎ(𝑛)

+

𝑙
𝑔(1)

∑

𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
1
)

𝑙
𝑔(1)

+

𝑙
𝑔(2)

∑

𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
2
)

𝑙
𝑔(2)

+ ⋅ ⋅ ⋅ +

𝑙
𝑔(𝑛)

∑

𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
𝑛
)

𝑙
𝑔(𝑛)

)
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=

𝑛

∑

𝑖=1

(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑

𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
𝑖
) +

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑

𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
𝑖
))

⋅

𝑛

∑

𝑖=1

(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑

𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
𝑖
) +

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑

𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
𝑖
))

= 𝐶DHFS
1
(𝐴, 𝐴) ⋅ 𝐶DHFS

1
(𝐵, 𝐵) .

(13)

Therefore,

𝐶DHFS
1
(𝐴, 𝐵) ≤ (𝐶DHFS

1

(𝐴, 𝐴))

1/2

⋅ (𝐶DHFS
1
(𝐵, 𝐵))

1/2

.

(14)

So, 0 ≤ 𝜌DHFS
1

(𝐴, 𝐵) ≤ 1.
In fact, we have

(𝑥
2

1
+ 𝑥
2

2
+ ⋅ ⋅ ⋅ + 𝑥

2

𝑛
) ⋅ (𝑦
2

1
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2

2
+ ⋅ ⋅ ⋅ + 𝑦

2

𝑛
)
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∑
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}
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.

(15)

Then

(𝐶DHFS
1
(𝐴, 𝐴) ⋅ 𝐶DHFS

1
(𝐵, 𝐵))

1/2

≤ max {𝐶DHFS
1
(𝐴, 𝐴) , 𝐶DHFS

1
(𝐵, 𝐵)} .

(16)

We also obtain 0 ≤ 𝜌DHFS
2

(𝐴, 𝐵) ≤ 1.
(2) and (3) are straightforward.

Moreover, from the proof of Theorem 7, we have Theo-
rem 8 easily.

Theorem 8. For two DHFSs 𝐴 and 𝐵 on 𝑋, then
𝜌
𝐷𝐻𝐹𝑆

1

(𝐴, 𝐵) ≥ 𝜌
𝐷𝐻𝐹𝑆

2

(𝐴, 𝐵).

However, from Theorem 7, we notice that all the above
correlation coefficients cannot guarantee that the correlation
coefficient of any two DHFSs equals one if and only if these
two DHFSs are the same. Thus, how to derive the correlation
coefficients of the DHFSs satisfying this desirable property
is an interesting research topic. To solve this issue, in what
follows, we develop a newmethod to calculate the correlation
coefficient of the DHFSs 𝐴 and 𝐵.

Definition 9. For two DHFSs 𝐴 and 𝐵 on 𝑋, the correlation
coefficient of 𝐴 and 𝐵, denoted as 𝜌DHFS

3

(𝐴, 𝐵), is defined by

𝜌DHFS
3
(𝐴, 𝐵)

= (

1

2𝑛

𝑛

∑

𝑖=1

(

Δ𝛾
𝜆

min + Δ𝛾
𝜆

max

Δ𝛾
𝜆

𝑖
+ Δ𝛾
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max
+
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min + Δ𝜂
𝜆

max

Δ𝜂
𝜆

𝑖
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𝜆

max
))

1/𝜆

,

(17)

where

Δ𝛾
𝜆

𝑖
=

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)
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𝑗=1







𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) − 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)








𝜆

,

Δ𝛾
𝜆

min = min
𝑖

{Δ𝛾
𝜆

𝑖
} , Δ𝛾

𝜆

max = max
𝑖

{Δ𝛾
𝜆

𝑖
} ,

Δ𝜂
𝜆

𝑖
=

1

𝑙
𝑔(𝑖)

𝑙
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𝜂
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(𝑘)

(𝑥
𝑖
) − 𝜂
𝐵𝜎
(𝑘)

(𝑥
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,

Δ𝛾
𝜆
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𝑖

{Δ𝜂
𝜆

𝑖
} , Δ𝛾

𝜆

max = max
𝑖

{Δ𝜂
𝜆

𝑖
} ,

𝜆 > 0.

(18)

Equation (17) is motivated by the generalized idea
provided by Xu [18]. Obviously, the greater the value of
𝜌DHFS

3

(𝐴, 𝐵), the closer 𝐴 to 𝐵. By Definition 9, we have
Theorem 10.

Theorem 10. The correlation coefficient 𝜌
𝐷𝐻𝐹𝑆

3

(𝐴, 𝐵) satisfies
the following properties:

(1) 0 ≤ 𝜌
𝐷𝐻𝐹𝑆

3

(𝐴, 𝐵) ≤ 1;
(2) 𝐴 = 𝐵 ⇔ 𝜌

𝐷𝐻𝐹𝑆
3

(𝐴, 𝐵) = 1;
(3) 𝜌
𝐷𝐻𝐹𝑆

3

(𝐴, 𝐵) = 𝜌
𝐷𝐻𝐹𝑆

3

(𝐵, 𝐴).

Proof. (1) The inequality 0 ≤ 𝜌DHFS
3

(𝐴, 𝐵) is obvious. Below
let us prove that 𝜌DHFS

3

(𝐴, 𝐵) ≤ 1 :

Δ𝛾
𝜆
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𝜆

max
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+

Δ𝜂
𝜆

min + Δ𝜂
𝜆

max

Δ𝜂
𝜆

𝑖
+ Δ𝜂
𝜆

max
for 𝑖 = 1, 2, . . . , 𝑛

=

(Δ𝛾
𝜆

min/Δ𝛾
𝜆

max) + 1

(Δ𝛾
𝜆

𝑖
/Δ𝛾
𝜆

max) + 1

+

(Δ𝜂
𝜆

min/Δ𝜂
𝜆

max) + 1

(Δ𝜂
𝜆

𝑖
/Δ𝜂
𝜆

max) + 1

≤ 2.

(19)

We obtain

𝜌DHFS
3
(𝐴, 𝐵)

=
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max
)

≤

1

2𝑛

⋅ 2𝑛

= 1.

(20)

(2) and (3) are obvious.
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Usually, in practical applications, the weight of each
element 𝑥

𝑖
∈ 𝑋 should be taken into account, and, so,

we present the following weighted correlation coefficient.
Assume that the weight of the element 𝑥

𝑖
∈ 𝑋 is 𝑤

𝑖
(𝑖 =

1, 2, . . . , 𝑛) with 𝑤
𝑖
∈ [0, 1] and ∑𝑛

𝑖=1
𝑤
𝑖
= 1; then we extend

the correlation coefficient formulas given:
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𝜌DHFS
−𝑤2

(𝐴, 𝐵)

= (

𝑛

∑

𝑖=1

𝑤
𝑖
(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑

𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑

𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑖
) 𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑖
)))

× (max
{

{

{

𝑤
𝑖

𝑛

∑

𝑖=1

(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑

𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
𝑖
)

+

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑

𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
𝑖
)) ,

𝑛

∑

𝑖=1

𝑤
𝑖
(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑

𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑

𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
𝑖
))

}

}

}

)

−1

,

(22)

𝜌DHFS
−𝑤3

(𝐴, 𝐵)

= (

1

2

𝑛

∑

𝑖=1

𝑤
𝑖
(

Δ𝛾
𝜆

min + Δ𝛾
𝜆

max

Δ𝛾
𝜆

𝑖
+ Δ𝛾
𝜆

max
+

Δ𝜂
𝜆

min + Δ𝜂
𝜆

max

Δ𝜂
𝜆

𝑖
+ Δ𝜂
𝜆

max
))

1/𝜆

,

(23)

where

Δ𝛾
𝜆

𝑖
=

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑

𝑗=1







𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) − 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)








𝜆

,

Δ𝛾
𝜆

min = min
𝑖

{Δ𝛾
𝜆

𝑖
} , Δ𝛾

𝜆

max = max
𝑖

{Δ𝛾
𝜆

𝑖
} ,

Δ𝜂
𝜆

𝑖
=

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑

𝑘=1






𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑖
) − 𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑖
)







𝜆

,

Δ𝛾
𝜆

min = min
𝑖

{Δ𝜂
𝜆

𝑖
} , Δ𝛾

𝜆

max = max
𝑖

{Δ𝜂
𝜆

𝑖
} ,

𝜆 > 0.

(24)

Note that all these formulas satisfy the properties in
Theorem 7.

In what follows, we use a medical diagnosis problem
in [28, 29] to illustrate the developed correlation coefficient
formulas. Actually, this is also a pattern recognition problem.

Example 11. To make a proper diagnosis 𝑄 = {𝑄
1
(viral

fever), 𝑄
2
(malaria), 𝑄

3
(typhoid), 𝑄

4
(stomach problem),

and 𝑄
5
(chest problem)} for a patient with the given values

of the symptoms, 𝑆 = {𝑆
1
(temperature), 𝑆

2
(headache),

𝑆
3
(cough), 𝑆

4
(stomach pain), and 𝑆

5
(chest pain)}, Xu

[18] considered all possible diagnoses and symptoms as
HFEs. Utilizing DHFSs can take much more information
into account; the more values we obtain from patients, the
greater epistemic certainty we have. So, in this paper, we use
DHFEs to deal with such cases; each symptom is described
by a DHFE, which is described by two sets (𝛾

𝑖𝑗
) and (𝜂

𝑖𝑗
).

(𝛾
𝑖𝑗
) indicates the degree that symptoms characteristic 𝑆

𝑖

satisfies the considered diagnoses 𝐺
𝑗
and (𝜂

𝑖𝑗
) indicates the

degree that the symptoms characteristic 𝑆
𝑖
does not satisfy

the considered diagnoses 𝐺
𝑗
. The data are given in Table 1.

The set of patients is 𝑃 = {Al,Bob, Joe,Ted}. The symptoms
which can be also described by DHFEs are given in Table 2.
We need to seek a diagnosis for each patient.

We utilize the correlation coefficient 𝜌DHFS1 to derive a
diagnosis for each patient. All the results for the considered
patients are listed in Table 3. From the arguments in Table 3,
we can find that Ted suffers from viral fever, Al and Joe from
malaria, and Bob from stomach problem.

If we utilize the correlation coefficient formulas 𝜌DHFS2
and 𝜌DHFS3 to derive a diagnosis, then the results are listed
in Tables 4 and 5, respectively.

From Tables 3–5 we know that the results obtained by
different correlation coefficient formulas are different. That
is because these correlation coefficient formulas are based on
different linear relationships.

4. Clustering Method Based on Direct Transfer
Algorithm for HFSs

Based on clustering algorithms for IFSs [30, 31], and HFSs
[23], and the correlation coefficient formulas developed
previously for DHFSs, in what follows, we propose a direct
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Table 1: Symptoms characteristic of the considered diagnoses.

Temperature Headache Cough Stomach pain Chest pain

Viral fever {(0.6, 0.4, 0.3 ),
(0.2, 0.0)}

{(0.7, 0.5, 0.3, 0.2),
(0.3, 0.1)}

{(0.5, 0.3),
(0.5, 0.4, 0.2)}

{(0.5, 0.4, 0.3, 0.2, 0.1),
(0.5,0.3)}

{(0.5, 0.4, 0.2, 0.1),
(0.5, 0.4, 0.3)}

Malaria {(0.9, 0.8, 0.7),
(0.1, 0.0)}

{(0.5, 0.3, 0.2, 0.1),
(0.4, 0.3)}

{(0.2, 0.1),
(0.7, 0.6, 0.5)}

{(0.6, 0.5, 0.3, 0.2, 0.1),
(0.3, 0.2)}

{(0.4, 0.3, 0.2, 0.1),
(0.6, 0.5, 0.4)}

Typhoid {(0.6, 0.3, 0.1),
(0.3, 0.2)}

{(0.9, 0.8, 0.7, 0.6),
(0.1, 0.0)}

{(0.5, 0.3),
(0.5, 0.4, 0.3,)}

{(0.5, 0.4, 0.3, 0.2, 0.1),
(0.5, 0.4)}

{(0.6, 0.4, 0.3, 0.2),
(0.4, 0.3, 0.2)}

Stomach problem {(0.5, 0.4, 0.2),
(0.5, 0.3)}

{(0.4, 0.3, 0.2, 0.1),
(0.4, 0.3)}

{(0.4, 0.3),
(0.6, 0.5, 0.4)}

{(0.9, 0.8, 0.7, 0.6, 0.5),
(0.1, 0.0)}

{(0.5, 0.4, 0.2, 0.1),
(0.5, 0.4, 0.3)}

Chest problem {(0.3, 0.2, 0.1),
(0.7, 0.6)}

{(0.5, 0.3, 0.2, 0.1),
(0.5, 0.3)}

{(0.3, 0.2),
(0.6, 0.4, 0.3)}

{(0.7, 0.6, 0.5, 0.3, 0.2),
(0.2, 0.1)}

{(0.8, 0.7, 0.6, 0.5),
(0.2, 0.1, 0.0)}

Table 2: Symptoms characteristic of the considered patients.

Temperature Headache Cough Stomach pain Chest pain

Al {(0.9, 0.7, 0,5), (0.1, 0.0)} {(0.4, 0.3, 0.2, 0.1),
(0.5, 0.4)} {(0.4, 0.3), (0.5, 0.4, 0.2)} {(0.6, 0.5, 0.4, 0.2,

0.1), (0.3.0.2)} {(0.4, 0.3, 0.2, 0.1), (0.5, 0.4, 0.3)}

Bob {(0.5, 0.4, 0.2), (0.5, 0.3)} {(0.5, 0.4, 0.3, 0.1),
(0.4, 0.3)} {(0.2, 0.1), (0.7, 0.6, 0.5)} {(0.9, 0.8, 0.6, 0.5,

0.4), (0.1, 0.0)} {(0.5, 0.4, 0.3, 0.2), (0.5, 0.4, 0.3)}

Joe {(0.9, 0.7, 0.6), (0.1, 0.0)} {(0.7, 0.4, 0.3, 0.1),
(0.2, 0.1)} {(0.3, 0.2), (0.5, 0.4, 0.3)} {(0.6, 0.4, 0.3, 0.2,

0.1), (0.4, 0.3)} {(0.6, 0.3, 0.2, 0.1), (0.4, 0.3, 0.2)}

Ted {(0.8, 0.7, 0.5), (0.2, 0.1)} {(0.6, 0.5, 0.4, 0.2),
(0.4, 0.3)} {(0.5, 0.3), (0.5, 0.4, 0.3)} {(0.6, 0.4, 0.3, 0.2,

0.1), (0.4, 0.3)} {(0.5, 0.4, 0.2, 0.1), (0.5, 0.4, 0.3)}

Table 3: Values of 𝜌DHFS1 for each patient to the considered set of
possible diagnoses.

Viral fever Malaria Typhoid Stomach
problem

Chest
problem

Al 0.9257 0.9620 0.7957 0.8680 0.7110
Bob 0.8380 0.8791 0.8041 0.9922 0.9035
Joe 0.9427 0.9521 0.8757 0.9329 0.7026
Ted 0.9718 0.9472 0.8890 0.8790 0.7644

transfer algorithm to clustering analysis with respect to the
problem of complex operation of matrix synthesis when
reconstructing analogical relation to equivalence relation
clustering under hesitant fuzzy environments. Before doing
this, some concepts are introduced firstly.

Definition 12. Let 𝐴
𝑗
(𝑗 = 1, 2, . . . , 𝑚) be 𝑚 DHFs; then 𝐶 =

(𝜌
𝑖𝑗
)
𝑚×𝑚

is called an associationmatrix, where 𝜌
𝑖𝑗
= 𝜌(𝐴

𝑖
, 𝐴
𝑗
)

is the association coefficient of 𝐴
𝑖
and 𝐴

𝑗
, which has the

following properties:

(1) 0 ≤ 𝜌
𝑖𝑗
≤ 1, for all 𝑖, 𝑗 = 1, 2, . . . , 𝑚;

(2) 𝜌
𝑖𝑗
= 1 if and only if 𝐴

𝑖
= 𝐴
𝑗
;

(3) 𝜌
𝑖𝑗
= 𝜌
𝑗𝑖
, for all 𝑖, 𝑗 = 1, 2, . . . , 𝑚.

Definition 13 (see [23, 30]). Let𝐶 = (𝜌
𝑖𝑗
)
𝑚×𝑚

be an association
matrix; if 𝐶2 = 𝐶 ∘ 𝐶 = (𝜌

𝑖𝑗
)
𝑚×𝑚

, then 𝐶
2 is called a

composition matrix of 𝐶, where 𝜌
𝑖𝑗
= max{min{𝜌

𝑖𝑘
, 𝜌
𝑘𝑗
}}, for

all 𝑖, 𝑗 = 1, 2, . . . , 𝑚.

Based on Definition 13, we have the following theorem.

Theorem 14 (see [23, 30]). Let 𝐶 = (𝜌
𝑖𝑗
)
𝑚×𝑚

be an association
matrix; then the composition matrix 𝐶2 is also an association
matrix.

Theorem 15 (see [23, 30]). Let 𝐶 = (𝜌
𝑖𝑗
)
𝑚×𝑚

be an association
matrix; then, for any nonnegative integer 𝑘, the composition
matrix 𝐶

2
𝑘+1

derived from 𝐶
2
𝑘+1

= 𝐶
2
𝑘

∘ 𝐶
2
𝑘

is also an
association matrix.

Definition 16 (see [23, 30]). Let 𝐶 = (𝜌
𝑖𝑗
)
𝑚×𝑚

be an
association matrix, if 𝐶2 ⊆ 𝐶, that is,

max
𝑘

{min {𝜌
𝑖𝑘
, 𝜌
𝑘𝑗
}} ≤ 𝜌

𝑖𝑗
, ∀𝑖, 𝑗 = 1, 2, . . . , 𝑚, (25)

then 𝐶 is called an equivalent association matrix.

By the transitivity principle of equivalent matrix, we can
easily prove the following theorem.

Theorem 17 (see [23, 30, 32]). Let 𝐶 = (𝜌
𝑖𝑗
)
𝑚×𝑚

be an
association matrix; then, after the finite times of compositions:
𝐶 → 𝐶

2

→ 𝐶
4

→ ⋅ ⋅ ⋅ → 𝐶
2𝑘

→ ⋅ ⋅ ⋅ , there must exist
a positive integer 𝑘 such that 𝐶2

𝑘

= 𝐶
2
𝑘+1

, and 𝐶
2
𝑘

is also an
equivalent association matrix.

Definition 18 (see [23, 30, 31]). Let 𝐶 = (𝜌
𝑖𝑗
)
𝑚×𝑚

be an
equivalent correlation matrix. Then we call 𝐶

𝜆
= (
𝜆

𝜌
𝑖𝑗
)
𝑚×𝑚

the 𝜆-cutting matrix of 𝐶, where

𝜆

𝜌
𝑖𝑗
= {

0 if 𝜌
𝑖𝑗
< 𝜆,

1 if 𝜌
𝑖𝑗
≥ 𝜆,

𝑖, 𝑗 = 1, 2, . . . , 𝑚 (26)

and 𝜆 is the confidence level with 𝜆 ∈ [0, 1].
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Table 4: Values of 𝜌DHFS2 for each patient to the considered set of possible diagnoses.

Viral fever Malaria Typhoid Stomach problem Chest problem
Al 0.8718 0.8888 0.7571 0.8286 0.7591
Bob 0.7586 0.8451 0.7960 0.9852 0.8889
Joe 0.9075 0.8607 0.8152 0.8712 0.6500
Ted 0.8764 0.9140 0.8835 0.8678 0.7550

Table 5: Values of 𝜌DHFS3 for each patient to the considered set of possible diagnoses.

Viral fever Malaria Typhoid Stomach problem Chest problem
Al 0.8085 0.7739 0.7900 0.7515 0.8026
Bob 0.7480 0.7714 0.6824 0.7547 0.8006
Joe 0.7925 0.7887 0.7548 0.6878 0.8100
Ted 0.8063 0.7244 0.7516 0.7386 0.8230

Next, a traditional transfer closure algorithm is given as
follows.

Step 1. Let {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
} be a set of DHFSs in 𝑋 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}. We can calculate the correlation coefficients

of the DHFSs and then construct a correlation matrix 𝐶 =

(𝜌
𝑖𝑗
)
𝑚×𝑚

, where 𝜌
𝑖𝑗
= 𝜌(𝐴

𝑖
, 𝐴
𝑗
).

Step 2. Check whether 𝐶 = (𝜌
𝑖𝑗
)
𝑚×𝑚

is an equivalent
correlation matrix; that is, check whether it satisfies 𝐶2 ⊆

𝐶, where

𝐶
2

= 𝐶 ∘ 𝐶 = (𝜌
𝑖𝑗
)
𝑚×𝑚

, 𝜌
𝑖𝑗
= max
𝑘

{min {𝜌
𝑖𝑘
, 𝜌
𝑘𝑗
}} ,

𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(27)

If it does not hold, we construct the equivalent correlation
matrix 𝐶2

𝑘

: 𝐶 → 𝐶
2

→ 𝐶
4

→ ⋅ ⋅ ⋅ → 𝐶
2𝑘

→ ⋅ ⋅ ⋅ , until
𝐶
2
𝑘

= 𝐶
2
𝑘+1

.

Step 3. For a confidence level 𝜆, we construct a 𝜆-cutting
matrix 𝐶

𝜆
= (
𝜆

𝜌
𝑖𝑗
)
𝑚×𝑚

through Definition 18 in order to
classify the DHFSs 𝐴

𝑗
(𝑗 = 1, 2, . . . , 𝑚). If all elements of the

𝑖th line (column) are the same as the corresponding elements
of the 𝑗th line (column) in𝐶

𝜆
, then the DHFSs𝐴

𝑖
and𝐴

𝑗
are

of the same type. By means of this principle, we can classify
all these𝑚 𝐴

𝑗
(𝑗 = 1, 2, . . . , 𝑚).

By analyzing the aforementioned transfer closure algo-
rithm, this algorithm has one drawback such as complex
operation of matrix synthesis when reconstructing the equiv-
alent correlation matrix. In this paper, we have the following
theorem of the correlation coefficients in dual hesitant fuzzy
environment.

Theorem 19. For all 𝑥, 𝑦 ∈ 𝐴, for the confidence level 𝜆,
if ∃𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑝
, when 𝜌(𝑥, 𝑥

1
) ≥ 𝜆, 𝜌(𝑥

1
, 𝑥
2
) ≥ 𝜆,

𝜌(𝑥
2
, 𝑥
3
) ≥ 𝜆, . . . , 𝜌(𝑥

𝑝
, 𝑦) ≥ 𝜆, then 𝑥, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑝
and 𝑦

are of the same type.

Proof. we are motivated by the generalized idea based on
the transitivity principle of ordinary equivalent relation 𝑅:
for all 𝑥, 𝑦 ∈ 𝐴 (here, 𝐴 is an ordinary set, not a fuzzy
set), ∃𝑥

1
, 𝑥
2
, 𝑥
3
. . . , 𝑥
𝑝
, when (𝑥, 𝑥

1
) ∈ 𝑅, (𝑥

1
, 𝑥
2
) ∈

𝑅, . . . , (𝑥
𝑘
, 𝑥
𝑘+1

) ∈ 𝑅, . . . , (𝑥
𝑝
, 𝑦) ∈ 𝑅, we can have (𝑥, 𝑦) ∈ 𝑅.

And from Definition 18, we can see that the 𝜆-cutting
matrix of 𝐶 is an ordinary correlation matrix, which com-
pletes the proof of Theorem 19.

From the above theoretical analysis, we propose a direct
transfer algorithm for clustering DHFSs as follows.

Step 1. Let 𝐴 = {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
} be a set of DHFSs in 𝑋 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}. We can calculate the correlation coefficients

of the DHFSs and then construct a correlation matrix 𝐶 =

(𝜌
𝑖𝑗
)
𝑚×𝑚

, where 𝜌
𝑖𝑗
= 𝜌(𝐴

𝑖
, 𝐴
𝑗
).

Step 2. By setting the threshold to the confidence level 𝜆, we
can construct a 𝜆-cutting matrix 𝐶

𝜆
= (
𝜆

𝜌
𝑖𝑗
)
𝑚×𝑚

. If 𝜌
𝑖𝑗
= 1,

this means that the DHFSs𝐴
𝑖
and𝐴

𝑗
are of the same type. By

means of this principle, we can classify all these 𝑚 𝐴
𝑗
(𝑗 =

1, 2, . . . , 𝑚).

We can see that the transfer closure algorithm must
construct the equivalent correlation matrix 𝐶 → 𝐶

2

→

𝐶
4

→ ⋅ ⋅ ⋅ → 𝐶
2𝑘

→ ⋅ ⋅ ⋅ , until 𝐶2
𝑘

= 𝐶
2
𝑘+1

and then construct a 𝜆-cutting matrix 𝐶
𝜆

= (
𝜆

𝜌
𝑖𝑗
)
𝑚×𝑚

through Definition 18 in order to classify the DHFSs 𝐴
𝑗
(𝑗 =

1, 2, . . . , 𝑚). Simply, the transfer algorithm only constructs a
𝜆-cutting matrix 𝐶

𝜆
= (
𝜆

𝜌
𝑖𝑗
)
𝑚×𝑚

by setting the threshold to
the confidence level 𝜆 and then classifies the DHFSs 𝐴

𝑗
(𝑗 =

1, 2, . . . , 𝑚) directly. In what follows, we will talk about the
relationship between the transfer closure algorithm and the
direct transfer algorithm.

Theorem20. Theclustering results are the same by the transfer
closure algorithm and the direct transfer algorithm, at the same
confidence level.
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Proof. (1) For a confidence level 𝜆, for all 𝐴
𝑖
, 𝐴
𝑗

∈ 𝐴,
∃𝑥
1
, 𝑥
2
, 𝑥
3
. . . , 𝑥
𝑝
, if 𝜌(𝐴

𝑖
, 𝑥
1
) ≥ 𝜆, 𝜌(𝑥

1
, 𝑥
2
) ≥ 𝜆, 𝜌(𝑥

2
, 𝑥
3
) ≥

𝜆, . . . , 𝜌(𝑥
𝑝
, 𝐴
𝑗
) ≥ 𝜆, then 𝐴

𝑖
and 𝐴

𝑗
are of the same type by

the direct transfer algorithm.
Assume that we construct the equivalent correlation

matrix 𝐶2
𝑘

when we employ the transfer closure algorithm.
We must prove that 𝜌

𝐶
2
𝑘 (𝐴
𝑖
, 𝑥
𝑗
) ≥ 𝜆. Consider

𝜌
𝐶
2 (𝐴
𝑖
, 𝐴
𝑗
)

= max
𝐴
𝑞
∈𝐴

{min {𝜌
𝐶
(𝐴
𝑖
, 𝐴
𝑞
) , 𝜌
𝐶
(𝐴
𝑞
, 𝐴
𝑗
)}} ,

𝑖, 𝑗, 𝑞 = 1, 2, . . . , 𝑚

= max
𝐴
𝑞
∈𝐴,𝐴

𝑖
̸=𝐴
𝑗

{max {min {𝜌
𝐶
(𝐴
𝑖
, 𝐴
𝑞
) , 𝜌
𝐶
(𝐴
𝑞
, 𝐴
𝑗
)}} ,

𝜌
𝐶
(𝐴
𝑖
, 𝐴
𝑗
)}

≥ 𝜌
𝐶
(𝐴
𝑖
, 𝐴
𝑗
) .

(28)

So 𝐶
2

⊇ 𝐶, and, for the same reason, we have 𝐶2
𝑘

⊇

𝐶
2
𝑘−1

⊇ 𝐶
2
𝑘−2

, . . . , ⊇ 𝐶
2

⊇ 𝐶. Consider

𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑗
)

= max
𝐴
𝑞
∈𝐴

{min {𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑞
) , 𝜌
𝐶
2
𝑘 (𝐴
𝑞
, 𝐴
𝑗
)}} ,

𝑖, 𝑗, 𝑞 = 1, 2, . . . , 𝑚

= max
𝐴
𝑞
∈𝐴,𝐴

𝑞
̸=𝐴
𝑥𝑝

{max{min {𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑝
) , 𝜌
𝐶
2
𝑘 (𝐴
𝑝
, 𝐴
𝑗
)} ,

min {𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑥
𝑝

) ,

𝜌
𝐶
2
𝑘 (𝐴
𝑥
𝑝

, 𝐴
𝑗
)}}}

≥ min {𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑥
𝑝

) , 𝜌
𝐶
2
𝑘 (𝐴
𝑥
𝑝

, 𝐴
𝑗
)}

≥ min {𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑥
𝑝−1

) ,

𝜌
𝐶
2
𝑘 (𝐴
𝑥
𝑝−1

, 𝐴
𝑥
𝑝

) , 𝜌
𝐶
2
𝑘 (𝐴
𝑥
𝑝

, 𝐴
𝑗
)}

≥ min {𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑥
1

) , 𝜌
𝐶
2
𝑘 (𝐴
𝑥
1

, 𝐴
𝑥
2

)

, . . . , 𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑥
𝑝−1

) , 𝜌
𝐶
2
𝑘 (𝐴
𝑥
𝑝−1

, 𝐴
𝑥
𝑝

) ,

𝜌
𝐶
2
𝑘 (𝐴
𝑥
𝑝

, 𝐴
𝑗
)}

≥ min {𝜌
𝐶
(𝐴
𝑖
, 𝐴
𝑥
1

) , 𝜌
𝐶
(𝐴
𝑥
1

, 𝐴
𝑥
2

)

, . . . , 𝜌
𝐶
(𝐴
𝑖
, 𝐴
𝑥
𝑝−1

) ,

𝜌
𝐶
(𝐴
𝑥
𝑝−1

, 𝐴
𝑥
𝑝

) , 𝜌
𝐶
(𝐴
𝑥
𝑝

, 𝐴
𝑗
)}

≥ 𝜆.

(29)

For a confidence level 𝜆, when we get that 𝐴
𝑖
and 𝐴

𝑗
are

of the same type using the direct transfer algorithm, we can
also have the same clustering results by the transfer closure
algorithm.

(2) For a confidence level 𝜆, for all 𝐴
𝑖
, 𝐴
𝑗
∈ 𝐴, ∃ the

equivalent correlation matrix 𝐶2
𝑘

, 𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝑥
𝑗
) ≥ 𝜆, then, 𝐴

𝑖

and𝐴
𝑗
are of the same type by the transfer closure algorithm.

Let

𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑗
)

= max
𝐴
𝑞
∈𝐴

{min {𝜌
𝐶
2
𝑘−1 (𝐴

𝑖
, 𝐴
𝑞
) , 𝜌
𝐶
2
𝑘−1 (𝐴

𝑞
, 𝐴
𝑗
)}} .

(30)

Then∃𝑥
1
, 𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑗
) = min{𝜌

𝐶
2
𝑘−1 (𝐴
𝑖
, 𝐴
𝑥
1

), 𝜌
𝐶
2
𝑘−1 (𝐴
𝑥
1

,

𝐴
𝑗
)} ≥ 𝜆, 𝜌

𝐶
2
𝑘−1 (𝐴
𝑖
, 𝐴
𝑥
1

) ≥ 𝜆, 𝜌
𝐶
2
𝑘−1 (𝐴
𝑥
1

, 𝐴
𝑗
) ≥ 𝜆.

So 𝐴
𝑖
and 𝐴

𝑗
are the same type in 𝐶

2
𝑘−1

by the direct
transfer algorithm.

For the same reason, ∃𝑥
2
, 𝜌
𝐶
2
𝑘−2 (𝐴
𝑖
, 𝐴
𝑥
2

) ≥ 𝜆, 𝜌
𝐶
2
𝑘−2 (𝐴
𝑥
2

,

𝐴
𝑥
1

) ≥ 𝜆. ∃𝑥
3
, 𝜌
𝐶
2
𝑘−2 (𝐴
𝑥
1

, 𝐴
𝑥
3

) ≥ 𝜆, 𝜌
𝐶
2
𝑘−2 (𝐴
𝑥
3

, 𝐴
𝑗
) ≥ 𝜆.

𝐴
𝑖
and𝐴

𝑗
are the same type in𝐶2

𝑘−2

by the direct transfer
algorithm.

So, ∃𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

2
𝑘 , 𝜌
𝐶
(𝐴
𝑖
, 𝐴
𝑥
1

) ≥ 𝜆, 𝜌
𝐶
(𝐴
𝑥
1

, 𝐴
𝑥
2

) ≥

𝜆, 𝜌
𝐶
(𝐴
𝑥
2

, 𝐴
𝑥
3

) ≥ 𝜆, . . . , 𝜌
𝐶
(𝐴
𝑥
2𝑘 , 𝐴
𝑗
) ≥ 𝜆.

𝐴
𝑖
and 𝐴

𝑗
are the same type in 𝐶 by the direct transfer

algorithm.
For a confidence level 𝜆, when we get 𝐴

𝑖
and 𝐴

𝑗
are of

the same type using the transfer closure algorithm, we can
also have the same clustering results by the direct transfer
algorithm, which completes the proof.

We assume 𝐴 = {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
} to be a set of DHFSs,

and we construct the equivalent correlation matrix𝐶2
𝑘

: 𝐶 →

𝐶
2

→ 𝐶
4

→ ⋅ ⋅ ⋅ → 𝐶
2𝑘

→ ⋅ ⋅ ⋅ , until 𝐶2
𝑘

= 𝐶
2
𝑘+1

and
then construct a 𝜆-cutting matrix 𝐶

𝜆
= (
𝜆

𝜌
𝑖𝑗
)
𝑚×𝑚

for the
transfer closure algorithm. Consequently, the running time
of the transfer closure algorithm is 𝑇tca = 𝑂(𝑘𝑚

3

+ 𝑘𝑚
2

); by
the same arguments, the direct transfer algorithm requires
𝑇dta = 𝑂(𝑚

2

) time on the same example. And we have
established 𝑆tca = 𝑂(𝑚

2

) space bound at least for the step of
constructing the equivalent correlation matrix based on the
transfer closure algorithm, while, for the transfer algorithm,
it constructs a 𝜆-cutting matrix 𝐶

𝜆
= (
𝜆

𝜌
𝑖𝑗
)
𝑚×𝑚

by setting
the threshold to the confidence level 𝜆 and needs 𝑆tca = 𝑂(𝑚)

space bound. We can see that the computational complexity
of both two algorithms ranges depends on the number of 𝑚,
and the direct transfer algorithm exhibits better behavior.

Below, we conduct experiments in order to demonstrate
the effectiveness of the proposed clustering algorithm for
DHFSs.

Example 21. Every diamond is a miracle of time and place
and chance. Like snowflakes, no two are exactly alike. Every
consumer shopping for diamonds is faced with endless
diamond combinations. In addition to different diamond
combinations, prices are also influenced by market supply
and demand conditions, fashion trends, and so forth. While
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Table 6: Diamond data set.

“D” color “FL” clarity “3 excellent” cut “1 carat” weight
𝐴
1

{(0.5, 0.4, 0.3); (0.4, 0.2)} {(0.6, 0.5); (0.3, 0.2, 0.1)} {(0.6, 0.4, 0.3); (0.4, 0.2, 0.1)} {(0.6); (0.4)}
𝐴
2

{(0.8, 0.7, 0.6); (0.2, 0.1)} {(0.7, 0.6); (0.3, 0.2, 0.1)} {(0.7, 0.6, 0.5); (0.3, 0.2, 0.1)} {(0.7); (0.2)}
𝐴
3

{(0.9, 0.8, 0.7); (0.1, 0.0)} {(0.8, 0.7); (0.2, 0.1, 0.0)} {(0.8, 0.7, 0.6); (0.2, 0.1, 0.0)} {(0.9); (0.1)}
𝐴
4

{(0.4, 0.3, 0.1); (0.6, 0.5)} {(0.6, 0.5); (0.4, 0.2, 0.1)} {(0.6, 0.5, 0.4); (0.3, 0.2, 0.1)} {(0.3); (0.6)}
𝐴
5

{(0.6, 0.5, 0.4); (0.3, 0.2)} {(0.3, 0.2); (0.6, 0.5, 0.4)} {(0.3, 0.2, 0.1); (0.6, 0.5, 0.4)} {(0.1); (0.8)}
𝐴
6

{(0.6, 0.5, 0.4); (0.4, 0.2)} {(0.7, 0.6); (0.3, 0.2, 0.1)} {(0.2, 0.1, 0.0); (0.7, 0.2, 0.1)} {(0.8); (0.1)}
𝐴
7

{(0.8, 0.6, 0.5); (0.2, 0.1)} {(0.6, 0.5); (0.3, 0.2, 0.1)} {(0.4, 0.3, 0.2); (0.5, 0.4, 0.3)} {(0.5); (0.4)}
𝐴
8

{(0.7, 0.6, 0.5); (0.2, 0.0)} {(0.4, 0.3); (0.6, 0.5, 0.4)} {(0.6, 0.5, 0.4); (0.4, 0.3, 0.2)} {(0.8); (0.2)}
𝐴
9

{(0.4, 0.3, 0.2); (0.6, 0.5)} {(0.4, 0.3); (0.6, 0.5, 0.4)} {(0.2, 0.1, 0.0); (0.8, 0.6, 0.5)} {(0.2); (0.6)}
𝐴
10

{(0.2, 0.1, 0.0); (0.7, 0.6)} {(0.8, 0.6); (0.2, 0.1, 0.0)} {(0.6, 0.5, 0.3); (0.4, 0.2, 0.1)} {(0.7); (0.3)}

consumers’ tastes and budgets change, most seek to find a
fair price for the diamond they choose. Until the middle of
the twentieth century, there was no agreed upon standard by
which diamonds could be judged. No matter how beautiful
a diamond may look you simply cannot see its true quality.
GIA created the first and now globally accepted standard
for describing diamonds: color, clarity, cut, and carat weight.
Concerning color, the less color in the stone there is, the
more desirable and valuable it is. Grades run from “D”
to “X.” Clarity measures the amount, size, and placement
of internal “inclusions”, and external “blemishes.” Grades
run from “Flawless” to “included.” Cut does not refer to
a diamond’s shape but to the proportion and arrangement
of its facets and the quality of workmanship. Grades range
from “excellent” to “poor.” Carat refers to a diamond’s weight.
Generally speaking, the higher the carat weight, the more

expensive the stone. Two diamonds of equal carat weight,
however, can have very different quality and price when
the other three Cs are considered. We choose a “perfect”
diamond whose 4C is “D” color, “FL” clarity, “3 excellent”
cut, and “1carat” weight. For the convenience of analysis, the
weight vector of these attributes is𝑤 = (0.25, 0.25, 0.25, 0.25).
Here, there are ten diamonds. In order to better make the
assessment, several evaluation organizations are requested.
The normalized evaluation diamond data, represented by
DHFSs, are displayed in Table 6.

Now we utilize the direct transfer algorithm to cluster the
ten diamonds, which involves the following steps.

Step 1. Utilize (21) to calculate the association coefficients,
and then construct an association matrix:

𝐶 =

(
(
(
(
(
(
(
(

(

1.0000 0.9495 0.9010 0.9227 0.7571 0.8270 0.9542 0.9123 0.7778 0.9241

0.9495 1.0000 0.9853 0.8053 0.6436 0.8948 0.9457 0.9404 0.6226 0.8260

0.9010 0.9853 1.0000 0.7164 0.5146 0.8697 0.8904 0.9076 0.4867 0.7811

0.9227 0.8053 0.7164 1.0000 0.8174 0.7353 0.8490 0.7463 0.8484 0.9025

0.7571 0.6436 0.5146 0.8174 1.0000 0.6003 0.8240 0.6997 0.9316 0.5822

0.8270 0.8948 0.8697 0.7353 0.6003 1.0000 0.9048 0.8750 0.6948 0.8540

0.9542 0.9457 0.8904 0.8490 0.8240 0.9048 1.0000 0.9105 0.7993 0.8018

0.9123 0.9404 0.9076 0.7463 0.6997 0.8750 0.9105 1.0000 0.6826 0.7612

0.7778 0.6226 0.4867 0.8484 0.9316 0.6948 0.7993 0.6826 1.0000 0.7206

0.9241 0.8260 0.7811 0.9025 0.5822 0.8540 0.8018 0.7612 0.7206 1.0000

)
)
)
)
)
)
)
)

)

(31)

Step 2. We give a detailed sensitivity analysis with respect
to the confidence level, and, by (26), we get all the possible
classifications of the ten diamonds; see Table 7 and Figure 1.

From the above numerical analysis, under the group
setting, the experts’ evaluation information usually does not
reach an agreement for the objects that need to be classified.
Example 21 clearly shows that the clustering algorithm based
on DHFSs provides a proper way to resolve this issue.

In the following, a comparison is made among the
method proposed in this paper, Chen et al.’s method [23], and
Zhao et al.’s method [31] in Table 8.

Through Table 8, it is worthy of pointing out that the
clustering results of the direct transfer clustering method
proposed in this paper are exactly the same with those
of Chen et al.’s transfer clustering method and Zhao et
al.’s Boole method, but our method does not need to use
the transitive closure technique to calculate the equivalent
matrix of the association matrix and thus requires much
less computational effort than Chen et al.’s method. The
computational complexity of Chen et al.’s method and Zhao
et al.’s method has, relatively, high computational complexity,
which indeed motivates our clustering method proposed in
this paper. Furthermore, from Example 21 we can see that
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Table 7: The clustering result of 10 diamonds.

Class Confidence level Dual hesitant fuzzy clustering algorithm
10 0.9853 < 𝜆 ≤ 1 {𝐴

1
} , {𝐴
2
} , {𝐴
3
} , {𝐴
4
} , {𝐴
5
} , {𝐴
6
} , {𝐴
7
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

9 0.9542 < 𝜆 ≤ 0.9853 {𝐴
2
, 𝐴
3
} , {𝐴
1
} , {𝐴
4
} , {𝐴
5
} , {𝐴
6
} , {𝐴
7
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

8 0.9495 < 𝜆 ≤ 0.9542 {𝐴
2
, 𝐴
3
} , {𝐴
1
, 𝐴
7
} , {𝐴
4
} , {𝐴
5
} , {𝐴
6
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

7 0.9404 < 𝜆 ≤ 0.9495 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
} , {𝐴
4
} , {𝐴
5
} , {𝐴
6
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

6 0.9316 < 𝜆 ≤ 0.9404 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
} , {𝐴
4
} , {𝐴
5
} , {𝐴
6
} , {𝐴
9
} , {𝐴
10
}

5 0.9241 < 𝜆 ≤ 0.9316 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
} , {𝐴
5
, 𝐴
9
} , {𝐴
4
} , {𝐴
6
} , {𝐴
10
}

4 0.9227 < 𝜆 ≤ 0.9241 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
, 𝐴
10
} , {𝐴
5
, 𝐴
9
} , {𝐴
4
} , {𝐴
6
}

3 0.9123 < 𝜆 ≤ 0.9227 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
7
, 𝐴
8
, 𝐴
10
} , {𝐴
5
, 𝐴
9
} , {𝐴
6
}

2 0.8484 < 𝜆 ≤ 0.9123 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
6
, 𝐴
7
, 𝐴
8
, 𝐴
10
} , {𝐴
5
, 𝐴
9
}

1 0 < 𝜆 ≤ 0.8484 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
5
, 𝐴
6
, 𝐴
7
, 𝐴
8
, 𝐴
9
, 𝐴
10
}

Table 8: Comparisons of the derived results.

Classes The results derived by the direct transfer
algorithm method

The results derived by Chen et al.’s
transfer algorithm method

The results derived by Zhao et al.’s Boole
method

10 {𝐴
1
} , {𝐴
2
} , {𝐴
3
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
7
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

{𝐴
1
} , {𝐴
2
} , {𝐴
3
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
7
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

{𝐴
1
} , {𝐴
2
} , {𝐴
3
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
7
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

9 {𝐴
2
, 𝐴
3
} , {𝐴
1
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
7
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

{𝐴
2
, 𝐴
3
} , {𝐴
1
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
7
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

{𝐴
2
, 𝐴
3
} , {𝐴
1
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
7
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

8 {𝐴
2
, 𝐴
3
} , {𝐴
1
, 𝐴
7
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

{𝐴
2
, 𝐴
3
} , {𝐴
1
, 𝐴
7
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

{𝐴
2
, 𝐴
3
} , {𝐴
1
, 𝐴
7
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

7 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

{𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

{𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

6 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
},

{𝐴
4
} , {𝐴
5
} , {𝐴
6
} , {𝐴
9
} , {𝐴
10
}

{𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
},

{𝐴
4
} , {𝐴
5
} , {𝐴
6
} , {𝐴
9
} , {𝐴
10
}

{𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
9
} , {𝐴
10
}

5 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
},

{𝐴
5
, 𝐴
9
} , {𝐴
4
} , {𝐴
6
} , {𝐴
10
}

{𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
},

{𝐴
5
, 𝐴
9
} , {𝐴
4
} , {𝐴
6
} , {𝐴
10
}

{𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
},

{𝐴
5
, 𝐴
9
} , {𝐴
4
} , {𝐴
6
} , {𝐴
10
}

4 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
, 𝐴
10
},

{𝐴
5
, 𝐴
9
} , {𝐴
4
} , {𝐴
6
}

{𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
, 𝐴
10
},

{𝐴
5
, 𝐴
9
} , {𝐴
4
} , {𝐴
6
}

{𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
, 𝐴
10
},

{𝐴
5
, 𝐴
9
} , {𝐴
4
} , {𝐴
6
}

3 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
7
, 𝐴
8
, 𝐴
10
},

{𝐴
5
, 𝐴
9
} , {𝐴
6
}

{𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
7
, 𝐴
8
, 𝐴
10
},

{𝐴
5
, 𝐴
9
} , {𝐴
6
}

{𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
7
, 𝐴
8
, 𝐴
10
},

{𝐴
5
, 𝐴
9
} , {𝐴
6
}

2 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
6
, 𝐴
7
, 𝐴
8
, 𝐴
10
},

{𝐴
5
, 𝐴
9
}

{𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
6
, 𝐴
7
, 𝐴
8
, 𝐴
10
},

{𝐴
5
, 𝐴
9
}

{𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
6
, 𝐴
7
, 𝐴
8
, 𝐴
10
},

{𝐴
5
, 𝐴
9
}

1 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
5
, 𝐴
6
, 𝐴
7
, 𝐴
8
, 𝐴
9
, 𝐴
10
} {𝐴

1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
5
, 𝐴
6
, 𝐴
7
, 𝐴
8
, 𝐴
9
, 𝐴
10
} {𝐴

1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
5
, 𝐴
6
, 𝐴
7
, 𝐴
8
, 𝐴
9
, 𝐴
10
}

0.9495

0.9542

0.9854

0.9227

0.9241

0.9316

0.9404

0.8484

0.9123

𝜆 A2 A3 A1 A7 A8 A4 A6 A5 A9A10

Figure 1: The clustering result of 10 diamonds.

the clustering results have much to do with the threshold;
the smaller the confidence level is, the more detailed the
clustering will be.

5. Conclusions

Dual hesitant fuzzy set, as an extension of fuzzy set, can
describe the situation that people have hesitancy when they
make a decision more objectively than other extensions of
fuzzy set (interval-valued fuzzy set, intuitionistic fuzzy set,
type-2 fuzzy set, and fuzzy multiset). In this paper, the
correlation coefficients for DHFSs have been studied. Their
properties have been discussed, and the differences and
correlations among them have been investigated in detail.
We have made the clustering analysis under dual hesitant
fuzzy environments with one typical real world example. To
further extend the application range of the present clustering
algorithm, in particular for the case that needs to assign
weights for different experts, it will be necessary to generalize
the original definition of DHFSs.

Given that DHFSs are a suitable technique of denoting
uncertain information that is widely encountered in daily life
and the latent applications of our algorithm in the field of data
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mining, information retrieval and pattern recognition, and so
forth, may be the directions for future research.
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p-Fuzzy dynamical systems are variational systems whose dynamic is obtained by means of a Mamdani type fuzzy rule-based
system. In this paper, we will show the 1-dimensional p-fuzzy dynamical systems andwill present theorems that establish conditions
of existence and uniqueness of stationary points. Besides the obtained analytical results, we will present examples that illustrate and
confirm the obtained mathematical results.

1. Introduction

Variational equations or deterministic dynamical systems
(difference and differential equations) constitute a power-
ful tool for modeling when the state variables depend on
variations throughout time. The efficiency of a deterministic
model depends on knowledge of the relationships between
variables and their variations. In addition, in many situa-
tions such relations are only partially known; therefore, the
modeling with deterministic variational systems, or even
with stochastic ones, may not be adequate. In addition,
fuzzy systems derived from deterministic models, which
have subjectivity regarding some parameters, are not appro-
priate when we have only incomplete information of the
phenomenon being analyzed. Thus, the use of a rule-based
system can be adopted as an alternative formodeling partially
known phenomena or those carried with imprecision.

Fuzzy rule-based systems have been used with success in
some areas as control, decision taking, recognition systems,
and so forth. This success is due to its simplicity and
interrelation with humans way of reasoning. Fuzzy rule-
based systems are conceptually simple [1]. Such systems
are basically threefold: an input (fuzzifier), an inference
mechanism composed of a base of fuzzy rules together with

an inference method, and, finally, an output (defuzzifier) stage
(see Figure 1).

There are twomain types of fuzzy rule-based systems, the
Mamdani fuzzy systems and theTakagi-Sugeno fuzzy systems
[2]. The main characteristic of the Mamdani type systems
is that both the antecedent and consequent are expressed
by linguistic terms, while in the Takagi-Sugeno type systems
only the antecedent is expressed by linguistic terms and the
consequent is expressed by functions.

The Takagi-Sugeno fuzzy systems are more restrictive
than the Mamdani fuzzy systems because they require an a
priori function in the output. However, due to the existence
of theoretical methods for Takagi-Sugeno fuzzy systems
stability analysis [3–8], the latter has become more used. On
the other hand, Mamdani type systems are used as a “black
box” and are still criticized because they lack a study on its
stability [9, 10].

Fuzzy variational equations have been used in different
methods. Some attempts to contemplate subjectivity original
from aleatory processes such as Hukuhara’s derivative, differ-
ential inclusions, andZadeh’s extension [11] have been already
proposed. In thesemethods, the adopted process for studying
the variational systems is always derived from deterministic
classical systems.
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Figure 1: Architecture of a fuzzy rule-based system.

In this paper, we will present the p-fuzzy systems whose
dynamics is not based in formal concepts of variations orig-
inated from derivative or explicit differences or differential
inclusions. In the p-fuzzy dynamical systems the dynamic
(iterative process) is obtained by means of a Mamdani’s fuzzy
rule-based system. The main advantage of this method with
respect to the other ones is the simplicity of the involved
mathematics, just because the interactive method is supplied
by the Mamdani controller.

Formally, a p-fuzzy system in R𝑛 is a discrete dynamic
system:

𝑥
𝑘+1

= 𝐹 (𝑥
𝑘
) ,

𝑥
𝑜
given and 𝑥

𝑘
∈ R
𝑛

,

(1)

where the 𝐹 function is given by 𝐹(𝑥
𝑘
) = 𝑥

𝑘
+ Δ(𝑥

𝑘
) and

Δ(𝑥
𝑘
) ∈ R𝑛 is obtained by means of a fuzzy rule-based

system; that is, Δ(𝑥
𝑖
) is the defuzzification value of the rule-

based system. The architecture of a p-fuzzy system can be
visualized in Figure 2.

The name p-fuzzy dynamical systems or purely fuzzy was
chosen to differentiate it from other fuzzy systems given by
variational equations.

In this paper, we will focus on the one-dimensional p-
fuzzy systems, which are always associated with a Mamdani
fuzzy system, where the defuzzification method is the cen-
troid. We have chosen this method because it is widely used
and more general to deal with weight mean of linguistic
variables [12, pages 242, 243].

Analogous to the inhibited variational models in which
one has stationary solutions, our objective is to present results
that establish the necessary and sufficient conditions for the
existence of a stationary point.

Fuzzy rule-based 
systemxk Δ(xk)

Mathematical model
xk+1 = xk + Δ(xk)

Figure 2: Architecture of a p-fuzzy system.

1

x

AkAk−1Ai+1Ai

· · ·· · ·

A1 A2

Figure 3: Family of successive fuzzy subsets.

2. Preliminaries

In this section, we introduce the main concepts for the
development of the work presented in this paper.

2.1. Definitions

Definition 1 (support). Let 𝐴 be a fuzzy subset of 𝑋; the
support of𝐴, denoted supp(𝐴), is the crisp subset of𝑋whose
elements all have nonzero membership grades in 𝐴; that is,

supp (𝐴) = {𝑥 ∈ 𝑋;𝐴 (𝑥) > 0} . (2)

Definition 2 (𝛼-cut). An 𝛼-level set of a fuzzy subset𝐴 of𝑋 is
a crisp set denoted by [𝐴]𝛼 and defined by

(i) [𝐴]0 = supp(𝐴), (𝛼 = 0),
(ii) [𝐴]𝛼 = {𝑥 ∈ 𝑋;𝐴(𝑥) ≥ 𝛼}, if 𝛼 ∈ (0, 1].

Definition 3 (fuzzy number). A fuzzy number𝐴 is a fuzzy set
𝐴 ⊂ R satisfying the following conditions:

(i) [𝐴]𝛼 ̸=⌀, ∀𝛼 ∈ [0, 1],
(ii) [𝐴]𝛼 is a closed interval, ∀𝛼 ∈ [0, 1],
(iii) the supp(𝐴) is bounded.

Definition 4. Consider a one-dimensional p-fuzzy system
given by (1).

Consider that 𝑥∗ is a stationary point of (1) if

𝐹 (𝑥
∗

) = 𝑥
∗

+ Δ (𝑥
∗

) = 𝑥
∗

⇐⇒ Δ(𝑥
∗

) = 0. (3)

Definition 5. Let {𝐴
𝑖
}
1≤𝑖≤𝑘

be any finite family of normal fuzzy
subsets associated with the fuzzy variable 𝑥. Assume that
{𝐴
𝑖
}
1≤𝑖≤𝑘

is a family of successive fuzzy subsets (Figure 3) if,

(i) supp(𝐴
𝑖
) ∩ supp(𝐴

𝑖+1
) ̸=⌀, for each 1 ≤ 𝑖 < 𝑘;
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R
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Figure 4: Mamdani’s inference process for 𝐴∗ of the type (𝐴
𝑖
, 𝐴 i+1) → (𝐶, 𝐵).

(ii) ⋂
𝑗=𝑖,𝑖+2

supp(𝐴
𝑗
) has at maximum only one element

for each 1 ≤ 𝑖 < 𝑘 − 1; that is, supp(𝐴
𝑖
) ∩

supp(𝐴
𝑖+2
) ̸= 𝜙, if and only if, max{𝑥 ∈ supp(𝐴

𝑖
)} =

min{𝑥 ∈ supp(𝐴
𝑖+2
)};

(iii) ⋃
𝑖=1,𝑘

supp(𝐴
𝑖
) = 𝑈, where 𝑈 is the domain of the

fuzzy variable 𝑥;

(iv) given 𝑧
1
∈ supp(𝐴

𝑖
) and 𝑧

2
∈ supp(𝐴

𝑖+1
), if 𝐴

𝑖
(𝑧
1
) =

1 and 𝐴
𝑖+1
(𝑧
2
) = 1, then necessarily 𝑧

1
< 𝑧
2
for each

1 ≤ 𝑖 < 𝑘.

Definition 6. Consider a family of successive fuzzy subsets
{𝐴
𝑖
}
1≤𝑖≤𝑘

that describe the antecedent of a fuzzy system
associated with the p-fuzzy system (1). We say that 𝐴∗ is an
equilibrium viable set of (1) if 𝐴∗ contains stationary points
of (1).

If for some 1 ≤ 𝑖 < 𝑘 there are 𝑧
1
, 𝑧
2
∈ [𝐴
𝑖
∪ 𝐴
𝑖+1
]
0 such

that Δ(𝑧
1
) ⋅ Δ(𝑧

2
) < 0, then 𝐴∗ is given by 𝐴∗ = [𝐴

𝑖
∩𝐴
𝑖+1
]
0.

If for all 𝑧
1
, 𝑧
2
∈ [𝐴
𝑖
∪ 𝐴
𝑖+1
]
0, 1 ≤ 𝑖 < 𝑘, Δ(𝑧

1
) ⋅ Δ(𝑧

2
) > 0,

then 𝐴∗ = [𝐴
𝑘
]
0.

A p-fuzzy system depends on the fuzzy system associated
with it, that is, it depends on the rule-base, on the infer-
ence method and on the defuzzification method used. In
Definition 6, a sufficient condition forΔ(𝑧

1
) ⋅Δ(𝑧
2
) < 0 is that

the p-fuzzy system be associated with a fuzzy system whose
rule-base in 𝐴∗ = [𝐴

𝑖
∪ 𝐴
𝑖+1
]
0 is of the type

𝑅
1
: if 𝑥 is 𝐴

𝑖
then Δ is 𝐵,

𝑅
2
: if 𝑥 is 𝐴

𝑖+1
then Δ is 𝐶,

where supp(𝐵) ⊂ R− and supp(𝐶) ⊂ R+ or vice versa.
When supp(𝐵) ⊂ R− and supp(𝐶) ⊂ R+ we have that the
equilibrium viable set 𝐴∗ is of the type (𝐴

𝑖
, 𝐴
𝑖+1
) → (𝐶, 𝐵).

If, on the other hand, we have that supp(𝐵) ⊂ R+ and
supp(𝐶) ⊂ R− we say that 𝐴∗ is of the type (𝐴

𝑖
, 𝐴
𝑖+1
) →

(𝐵, 𝐶).
To understand the dynamics of the p-fuzzy system we

need to understand how the rule-based system works more
specifically, given 𝑥 ∈ 𝐴

∗, how is Δ(𝑥) obtained? In the
following section we will describe this process.

2.2. Output Defuzzification of the Fuzzy System. Let 𝐴∗ =
[𝐴
𝑖
∩ 𝐴
𝑖+1
]
0

= [𝑐
1
, 𝑐
2
] be an equilibrium viable set of the

p-fuzzy system. To facilitate the notation, we will indicate

by 𝑟 the membership function of 𝐴
𝑖
, by 𝑠 the membership

function of 𝐴
𝑖+1

,

𝑧
1
= min
𝑥∈supp(𝐴

𝑖
)

{𝑟 (𝑥) = 1} , 𝑧
2
= max
𝑥∈supp(𝐴

𝑖+1
)

{𝑠 (𝑥) = 1} ,

(4)

and by 𝑓 and 𝑔 the membership functions of 𝐶 and 𝐷

(Figure 4), respectively. Assume that the p-fuzzy system, in
the equilibrium viable set 𝐴∗, is of the type (𝐴

𝑖
, 𝐴
𝑖+1
) →

(𝐶, 𝐵).
For each 𝑥 ∈ 𝐴

∗, Δ(𝑥) is the R region centroid abscise,
with R limited by the membership function of the fuzzy
output, Δ̂𝑥, (see Figure 4). Thus,

Δ (𝑥) = (∫

𝑓
−1
(𝑚)

𝑏

𝑡𝑓 (𝑡) 𝑑𝑡 + ∫

0

𝑓
−1
(𝑚)

𝑚𝑡𝑑𝑡 + ∫

𝑔
−1
(𝑛)

0

𝑛𝑡 𝑑𝑡

+∫

𝑎

𝑔
−1
(𝑛)

𝑡𝑔 (𝑡) 𝑑𝑡)

× (∫

𝑛

0

𝑔
−1

(𝑡) 𝑑𝑡 − ∫

𝑚

0

𝑓
−1

(𝑡) 𝑑𝑡)

−1

,

(5)

where (𝑛,𝑚) = (𝑟(𝑥), 𝑠(𝑥)). Equation (5) can be rewritten as

Δ (𝑥) =

ℎ
1
(𝑛) + ℎ

2
(𝑚)

𝐴 (𝑚, 𝑛)

, (6)

where

ℎ
1
(𝑛) = ∫

𝑔
−1
(𝑛)

0

𝑛𝑡 𝑑𝑡 + ∫

𝑎

𝑔
−1
(𝑛)

𝑡𝑔 (𝑡) 𝑑𝑡, (7)

ℎ
2
(𝑚) = ∫

𝑓
−1
(𝑚)

𝑏

𝑡𝑓 (𝑡) 𝑑𝑡 + ∫

0

𝑓
−1
(𝑚)

𝑚𝑡𝑑𝑡, (8)

𝐴 (𝑚, 𝑛) = ∫

𝑛

0

𝑔
−1

(𝑡) 𝑑𝑡 − ∫

𝑚

0

𝑓
−1

(𝑡) 𝑑𝑡. (9)

2.3. Preliminary Results. In this section, wewill present some
important technical results for the main demonstrations of
the theorems that establish sufficient conditions for unique-
ness and existence of the stationary point of the p-fuzzy
systems. Here, the presented results are technical enough
and are important only for demonstrating the theorems in



4 Journal of Applied Mathematics

the next section. Therefore, the reader will be able, without
loss of continuity, to skip them if desired.

The following results are referred to the equilibrium
viable set of the type (𝐴

𝑖
, 𝐴
𝑖+1
) → (𝐶, 𝐵) (Figure 4). From

now on, it will be assumed that the functions 𝑟, 𝑠, 𝑓, and 𝑔
(which represent themembership functions𝜇

𝐴
𝑖

,𝜇
𝐴
𝑖+1

,𝜇
𝐵
and

𝜇
𝐶
, resp.) are continuous.

Lemma 7. The function ℎ
1
(7) is increasing, and its range is

given by, 𝐼𝑚(ℎ
1
) = [0, ∫

𝑎

0

𝑡𝑔(𝑡)𝑑𝑡].

Proof. Since 𝑔 is continuous in [0, 𝑎] (𝑔−1 is limited in [0, 𝑎]),
then the function ℎ

1
is differentiable, and

ℎ


1
(𝑛) = (∫

𝑔
−1
(𝑛)

0

𝑛𝑡 𝑑𝑡)



+ (∫

𝑎

𝑔
−1
(𝑛)

𝑡𝑔 (𝑡) 𝑑𝑡)



. (10)

Using the derivative properties,

ℎ


1
(𝑛) = ∫

𝑔
−1
(𝑛)

0

𝑡𝑑𝑡 + 𝑛(∫

𝑔
−1
(𝑛)

0

𝑡𝑑𝑡)



− (∫

𝑔
−1
(𝑛)

𝑎

𝑡𝑔 (𝑡) 𝑑𝑡)



,

(11)

and using the chain rule and the fundamental theorem of
calculus, we obtain

ℎ


1
(𝑛) = ∫

𝑔
−1
(𝑛)

0

𝑡𝑑𝑡 + 𝑛𝑔
−1

(𝑛) (𝑔
−1

)



(𝑛)

− 𝑛𝑔
−1

(𝑛) (𝑔
−1

)



(𝑛) .

(12)

Hence,

ℎ


1
(𝑛) = ∫

𝑔
−1
(𝑛)

0

𝑡𝑑𝑡 =

(𝑔
−1

(𝑛))

2

2

> 0.
(13)

Therefore, ℎ
1
is increasing.

Since,

ℎ
1
(0) = ∫

𝑔
−1
(0)

0

0𝑡𝑑𝑡 + ∫

𝑎

𝑔
−1
(0)

𝑡𝑔 (𝑡) 𝑑𝑡 = ∫

𝑎

𝑎

𝑡𝑔 (𝑡) 𝑑𝑡 = 0,

ℎ
1
(1) = ∫

𝑔
−1
(1)

0

𝑡𝑑𝑡 + ∫

𝑎

𝑔
−1
(1)

𝑡𝑔 (𝑡) 𝑑𝑡 = ∫

𝑎

0

𝑡𝑔 (𝑡) 𝑑𝑡,

(14)

then 𝐼𝑚(ℎ
1
) = [0, ∫

𝑎

0

𝑡𝑔(𝑡)𝑑𝑡].

Lemma 8. The function ℎ
2
is decreasing, and its range is given

by 𝐼𝑚(ℎ
2
) = [∫

0

𝑏

𝑡𝑓(𝑡)dt, 0].

Proof. Analogous to the demonstration of Lemma 7.

Lemma 9. Let 𝜙 : 𝐼 = [𝑑
1
, 𝑑
2
] → R be a function of the class

𝐶
2. If 𝜙(𝑧) > 0, ∀𝑧 ∈ (𝑑

1
, 𝑑
2
) and 𝜙(𝑑

1
) < 0, then 𝜙 has at

maximum one root in 𝐼.

1

k

b f−1(k) 0 −f−1(k)

g−1(k)

−b a

f g

Figure 5: System p-fuzzy output with 𝑔(𝑡) > 𝑓(−𝑡).

Proof of Lemma 9. Assume there are 𝑧
1
, 𝑧
2
∈ 𝐼 (𝑧

1
< 𝑧
2
) such

that 𝜙(𝑧
1
) = 𝜙(𝑧

2
) = 0. Since 𝜙(𝑧) > 0, we have that 𝜙 is not

constant. Hence, by Rolle’s Theorem, ∃𝑐 ∈ (𝑧
1
, 𝑧
2
) such that

𝜙


(𝑐) = 0. Hence 𝑐 is a minimum point, because 𝜙(𝑐) > 0.
But, 𝜙(𝑑

1
) < 0 ⇒ 𝜙(𝑐) > 0. Since 𝜙 is continuous ∃𝑧

𝑜
∈

(𝑧
1
, 𝑧
2
) such that 𝜙(𝑐) > 𝜙(𝑧

𝑜
) > 0, it is nonsense! Therefore

𝜙 has at maximum one root.

Lemma 10. If 𝑔(𝑡) > 𝑓(−𝑡), ∀𝑡 ∈ [0, −𝑏], then 𝑔−1(𝑘) >

−𝑓
−1

(𝑘)∀𝑘 ∈ [0, 1].

Proof. The proof is simple (see Figure 5).

Lemma 11. If 𝑔(𝑡) > 𝑓(−𝑡), ∀𝑡 ∈ [0, −𝑏] then for𝑚, 𝑛 ∈ [0, 1]
with𝑚 ≤ 𝑛 one has that

Δ (𝑥) =

ℎ
1
(𝑛) + ℎ

2
(𝑚)

𝐴 (𝑚, 𝑛)

> 0. (15)

Proof. The proof is simple.

Lemma 12. If 𝑔(𝑡) < 𝑓(−𝑡), ∀𝑡 ∈ [0, 𝑎], and𝑚, 𝑛 ∈ [0, 1] 𝑚 ≥

𝑛, then Δ(𝑥) < 0.

Proof. It is analogous to the proof of Lemma 11.

3. Stationary Point

In this section, we will enunciate and prove a theorem that
guarantees the existence of at least one stationary point for
each equilibrium viable set of the p-fuzzy system. For this,
we will use again Figure 4 tomotivate the presented results in
this section.

Theorem 13 (existence). Let 𝑆 be a p-fuzzy system and 𝐴∗ an
equilibrium viable set of 𝑆 of the type (𝐴

𝑖
, 𝐴
𝑖+1
) → (𝐶, 𝐵).

Then, there is at least one stationary point of 𝑆 in 𝐴∗. That is,
∃𝑥
∗

∈ 𝐴
∗ such that Δ(𝑥∗) = 0.
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Proof. Given 𝑥 ∈ 𝐴∗, fromDefinition 4, then 𝑥 is a stationary
point if and only if

Δ (𝑥) = 0 ⇐⇒ ℎ
1
(𝑛) + ℎ

2
(𝑚) = 0. (16)

If 𝜇
𝐴
𝑖

(𝑐
1
) = 0, then

Δ (𝑐
1
) = ℎ
1
(𝜇
𝐴
𝑖

(𝑐
1
)) + ℎ

2
(𝜇
𝐴
𝑖+1

(𝑐
1
)) = ℎ

1
(0) + ℎ

2
(0) = 0,

(17)

and, therefore 𝑐
1
is a stationary point. If 𝜇

𝐴
𝑖+1

(𝑐
2
) = 0 one has

that Δ(𝑐
2
) = 0; hence 𝑐

2
is a stationary point. Now, assume

that 𝜇
𝐴
𝑖

(𝑐
1
) > 0 and 𝜇

𝐴
𝑖+1

(𝑐
2
) > 0. Since 𝜇

𝐴
𝑖+1

(𝑐
1
) = 0,

then from Lemmas 7 and 8 one has that ℎ
1
(𝜇
𝐴
𝑖

(𝑐
1
)) > 0 and

ℎ
2
(𝜇
𝐴
𝑖+1

(𝑐
1
)) = 0. Therefore

Δ (𝑐
1
) = ℎ
1
(𝜇
𝐴
𝑖

(𝑐
1
)) + ℎ

2
(𝜇
𝐴
𝑖+1

(𝑐
1
)) = ℎ

1
(𝜇
𝐴
𝑖

(𝑐
1
)) > 0.

(18)

Thus, from Lemma 7,

Δ (𝑐
2
) = ℎ
1
(𝜇
𝐴
𝑖

(𝑐
2
)) + ℎ

2
(𝜇
𝐴
𝑖+1

(𝑐
2
)) = ℎ

2
(𝜇
𝐴
𝑖+1

(𝑐
2
)) < 0.

(19)

Since Δ is continuous, by Bolzano’s Intermediate Value
Theorem, ∃𝑥∗ ∈ [𝑐

1
, 𝑐
2
] such that Δ(𝑥∗) = 0; therefore, 𝑥∗

is a stationary point.

Remark 14. If in Theorem 13 we consider 𝐴∗ as an equilib-
rium viable set of the type (𝐴

𝑖
, 𝐴
𝑖+1
) → (𝐵, 𝐶), the result is

analogous; that is, there exists a stationary point 𝑥∗ ∈ 𝐴∗.

3.1. Local Stationary Points-Symmetrical Output. If 𝐴∗ is an
equilibrium viable set, where the membership functions of
the consequents, 𝐵 and 𝐶, are symmetrical functions, then
the stationary point in𝐴∗ is unique. Except when 𝜇

𝐴
𝑖

(𝑐
1
) = 0

or 𝜇
𝐴
𝑖+1

(𝑐
2
) = 0 possibly occurs. Then we have the following

proposition.

Proposition 15. Let 𝑆 be a p-fuzzy system and 𝐴∗ an equi-
librium viable set of 𝑆 of the type (𝐴

𝑖
, 𝐴
𝑖+1
) → (𝐶, 𝐵). If the

membership functions of 𝐵 and 𝐶, respectively, 𝜇
𝐵
and 𝜇

𝐶
, are

monotonous and symmetric, that is, 𝜇
𝐶
(𝑡) = 𝜇

𝐵
(−𝑡), then there

exists an equilibrium point in 𝐴∗:

𝑥
∗

= max
𝑥∈𝐴
∗

[min (𝜇
𝐴
𝑖
(𝑥) , 𝜇

𝐴
𝑖+1
(𝑥))] . (20)

Proof. Since 𝜇
𝐵
(𝑡) = 𝜇

𝐶
(−𝑡) then 𝜇

𝐵
(−𝑎) = 𝜇

𝐶
(𝑎) = 0 =

𝜇
𝐵
(𝑏) ⇒ 𝑏 = −𝑎, because 𝜇

𝐵
Ú is monotonous. Yet, we have

that 𝜇
𝐵
(𝑡) = 𝜇

𝐶
(−𝑡) ⇒ 𝜇

−1

𝐵
(𝜇
𝐶
(𝑡)) = −𝑡 = −𝜇

−1

𝐵
(𝜇
𝐵
(𝑡)) ⇒

𝜇
−1

𝐵
(𝑦) = −𝜇

−1

𝐶
(𝑦).

Then, Δ(𝑧
𝑜
) = 0, if and only if, ℎ

1
(𝑛) = −ℎ

2
(𝑚). Since

𝑏 = −𝑎, from (8), then we obtain

ℎ
2
(𝑚) = ∫

𝜇
−1

𝐵
(𝑚)

−𝑎

𝑡𝜇
𝐵
(𝑡) 𝑑𝑡 + ∫

0

𝜇
−1

𝐵
(𝑚)

𝑚𝑡𝑑𝑡. (21)

If we perform a change in the variable 𝑢 = −𝑡, we have

ℎ
2
(𝑚) = ∫

−𝜇
−1

𝐵
(𝑚)

a
𝑢𝜇
𝐵
(−𝑢) 𝑑𝑢 + ∫

0

−𝜇
−1

𝐵
(𝑚)

𝑚𝑢𝑑𝑢

⇒ ℎ
2
(𝑚) = ∫

𝜇
−1

𝐶
(𝑚)

𝑎

𝑢𝜇
𝐶
(𝑢) 𝑑𝑢 + ∫

0

𝜇
−1

𝐶
(𝑚)

𝑚𝑢𝑑𝑢 = −ℎ
1
(𝑚) .

(22)

That is, ℎ
2
= −ℎ

1
. Hence, ℎ

1
(𝑛) = −ℎ

2
(𝑚) ⇔ ℎ

1
(𝑛) =

ℎ
1
(𝑚) ⇔ 𝑚 = 𝑛 (because ℎ

1
is increasing: Lemma 7); that

proves the proposition.

Remark 16. If 𝜇
𝐴
𝑖

(𝑐
1
) ̸= 0, then 𝑥∗ = max

𝑥∈𝐴
∗[min(𝜇

𝐴
𝑖

(𝑥),

𝜇
𝐴
𝑖+1

(𝑥))] is the only stationary point in 𝐴∗. Besides that, if
the system 𝑆 is of the type (𝐴

𝑖
, 𝐴
𝑖+1
) → (𝐵, 𝐶), then the result

of Proposition 15 is the same.

4. Uniqueness of the Stationary Point

In this section we will enunciate and prove theorems that
establish condition for uniqueness of the stationary point of
a one-dimensional p-fuzzy system. Initially we will consider
a simpler case, when 𝐴∗ ⊂ [𝑧

1
, 𝑧
2
] (Figure 4), where

𝑧
1
= min
𝑥∈supp(𝐴𝑖)

{𝑟 (𝑥) = 1} , 𝑧
2
= max
𝑥∈supp(𝐴𝑖+1)

{𝑠 (𝑥) = 1} .

(23)

Theorem 17. Let 𝑆 be a p-fuzzy system and𝐴∗ an equilibrium
viable set of 𝑆 of the type (𝐴

𝑖
, 𝐴
𝑖+1
) → (𝐶, 𝐵). If the functions

𝜇
𝐴
𝑖

and𝜇
𝐴
𝑖+1

are piecewisemonotonous and𝐴∗ ⊂ [𝑧
1
, 𝑧
2
] then

there exists only one stationary point in 𝐴∗.

Proof. Given 𝑥 ∈ 𝐴∗ one has

Δ (𝑥) = ℎ
1
(𝑛) + ℎ

2
(𝑚) = ℎ

1
(𝜇
𝐴
𝑖
(𝑥)) + ℎ

2
(𝜇
𝐴
𝑖+1
(𝑥)) .

(24)

Using Lemmas 7 and 8 and the chain rule we find that the
derivative of Δ is

Δ


(𝑥) =

[𝜇
−1

𝐶
(𝜇
𝐴
𝑖
(𝑥))]

2

2

𝜇


𝐴
𝑖

(𝑥)

−

[𝜇
−1

𝐵
(𝜇
𝐴
𝑖+1
(𝑥))]

2

2

𝜇


𝐴
𝑖+1

(𝑥) .

(25)

Since in 𝐴∗ = [𝑐
1
, 𝑐
2
]𝜇
𝐴
𝑖

is not increasing and 𝜇
𝐴
𝑖+1

is not
decreasing, then 𝜇

𝐴
𝑖

(𝑥) ≤ 0 and 𝜇
𝐴
𝑖+1

(𝑥) ≥ 0, and, besides
that, if 𝜇

𝐴
𝑖

(𝑥) = 0, we have that 𝜇
𝐴
𝑖+1

(𝑥) ̸= 0 and if 𝜇
𝐴
𝑖+1

(𝑥) =

0 we obtain 𝜇


𝐴
𝑖

(𝑥) ̸= 0. Then, from (25), Δ(𝑥) < 0. This
shows that Δ is decreasing. From Theorem 13, there exists a
stationary point in 𝐴∗ then this point is unique.

Now, consider the more general case, when𝐴∗ ̸⊂ [𝑧
1
, 𝑧
2
],

and divide it into two theorems. Initially, consider the case
that the membership functions 𝜇

𝐶
and 𝜇

𝐵
are such that

𝜇
𝐶
(𝑡) > 𝜇

𝐵
(−𝑡); next, consider the case where 𝜇

𝐶
(𝑡) <

𝜇
𝐵
(−𝑡).
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Figure 6: Functions ℎ
1
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Figure 7: Functions 𝜉, 𝛿
1
and 𝛿

2
.

4.1. Case 1: 𝜇
𝐶
(𝑡) > 𝜇

𝐵
(−𝑡)

Theorem 18 (uniqueness). Let 𝑆 be a p-fuzzy system and
𝐴
∗ an equilibrium viable set of 𝑆 of the type (𝐴

𝑖
, 𝐴
𝑖+1
) →

(𝐶, 𝐵). If the functions 𝜇
𝐴
𝑖

, 𝜇
𝐴
𝑖+1

, 𝜇
𝐵
and 𝜇

𝐶
are continuously

differentiable, 𝜇
𝐴
𝑖

and 𝜇
𝐴
𝑖+1

are piecewise monotonous 𝜇
𝐵
and

𝜇
𝐶
are strictly monotonous, such that

(i) 𝜇
𝐶
(𝑡) > 𝜇

𝐵
(−𝑡), ∀𝑡 ∈ (0, −𝑏),

(ii) 𝜇
𝐶
(𝑞)/𝜇


𝐵
(𝑝) < (𝑝

3

/𝑞
3

) , ∀𝑝 ∈ supp(𝐵), 𝑞 ∈

supp(𝐶) and 𝜇
𝐵
(𝑝) > 𝜇

𝐶
(𝑞),

(iii) [𝜇
𝐴
𝑖+1

(𝑥)/𝜇


𝐴
𝑖

(𝑥)] ≤ 0, ∀𝑥 ∈ (𝑧
𝑜
, 𝑐
2
), 𝜇
𝐴
𝑖

(𝑥) ̸= 𝜇
𝐴
𝑖+1

(𝑥).

Then, 𝑆 has only one stationary point, 𝑥∗ in 𝐴∗, and 𝑥∗ ∈

(𝑧
𝑜
, 𝑐
2
].

Proof. For the sake of simplicity notation, we make 𝑟 = 𝜇
𝐴
𝑖

,
𝑠 = 𝜇
𝐴
𝑖+1

, 𝑓 = 𝜇
𝐵
and 𝑔 = 𝜇

𝐶
.

Initially, we see that given 𝑥 ∈ (𝑧
𝑜
, 𝑐
2
] (Figure 4), 𝑥

determines only one (𝑛,𝑚) ∈ [0, 1]
2 such that 𝑛 = 𝑟(𝑥)

and 𝑚 = 𝑠(𝑥). By monotonicity of 𝑟, we have that for each
𝑛 ∈ [0, 𝑟(𝑧

𝑜
)) there exists only one 𝑚 ∈ [0, 1] such that

𝑛 = 𝑟(𝑥) and 𝑚 = 𝑠(𝑥). That is, each (𝑛,𝑚), in this situation,
determines only one 𝑥 ∈ (𝑧

𝑜
, 𝑐
2
].

By Theorem 13, there exists a stationary point 𝑥∗ ∈

[𝑐
1
, 𝑐
2
] = [𝑐
1
, 𝑧
𝑜
] ∪ (𝑧
𝑜
, 𝑐
2
]. Given 𝑥 ∈ [𝑐

1
, 𝑧
𝑜
] ⇒ 𝑚 = 𝑠(𝑥) ≤

𝑛 = 𝑟(𝑥). Then, by Lemma 11 𝑥∗ ∉ [𝑐
1
, 𝑧
𝑜
] ⇒ 𝑥

∗

∈ (𝑧
𝑜
, 𝑐
2
].

That is equivalent to the existence of only one (𝑛∗, 𝑚∗), with
𝑛
∗

∈ [0, 𝑟(𝑧
𝑜
)) such that𝐻(𝑛∗, 𝑚∗) = 0.

Since for each 𝑛 ∈ [0, 𝑟(𝑧
𝑜
)) there exists only one 𝑚 ∈

[0, 1] such that 𝑛 = 𝑟(𝑥) and 𝑚 = 𝑠(𝑥), then we may define
a function 𝛿

2
: [0, 𝑟(𝑧

𝑜
)) → [0, 1] such that 𝑚 = 𝛿

2
(𝑛)

(Figure 7). We observe that 𝛿
2
is continuous, because 𝑟 and

𝑠 are continuous. Using the chain rule we get the derivative of
𝛿
2
to be

𝛿


2
(𝑛) =

𝑠


(𝑥)

𝑟

(𝑥)

(iii)
⇒ 𝛿


2
(𝑛) ≤ 0, ∀𝑛 ∈ 𝐷

𝛿
2

. (26)

By Lemmas 7 and 8, ℎ
1
and −ℎ

2
are increasing, and, by

condition (i), it follows that (Figure 6)

∫

𝑎

0

𝑡𝑔 (𝑡) 𝑑𝑡 > −∫

0

𝑏

𝑡𝑓 (𝑡) 𝑑𝑡 ⇐⇒ ℎ
1
(1) > −ℎ

2
(1) . (27)

Then, given 𝑛 ∈ [0, ℎ
−1

1
(−ℎ
2
(1))], there exists only one 𝑚 ∈

[0, 1] such that

ℎ
1
(𝑛) = −ℎ

2
(𝑚) ⇐⇒ ℎ

1
(𝑛) + ℎ

2
(𝑚) = 0. (28)

Therefore, we may define an injective function 𝜉, 𝑚 = 𝜉(𝑛)

(Figure 7) so that the inverse range of 0 by𝐻 is given by

𝐻
−1

(0) = {(𝑛,𝑚) ;𝑚 = 𝜉 (𝑛)} , (29)

where 𝐻 : [0, ℎ
−1

1
(−ℎ
2
(1))] × [0, 1] → R is given by

𝐻(𝑛,𝑚) = ℎ
1
(𝑛) + ℎ

2
(𝑚).

Since 𝜕𝐻/𝜕𝑛 = ℎ
1
(𝑛) = (𝑔

−1

(𝑛))

2

/2 > 0 (Lemma 7) and
𝜕𝐻/𝜕𝑚 = ℎ



2
(𝑚) = −(𝑓

−1

(𝑚))

2

/2 < 0 (Lemma 8) then, by
the Implicity Function Theorem, 𝜉 is 𝑘 times differentiable,
and, besides that,

𝜉


(𝑛) = −

𝑑ℎ
1
/𝑛

𝑑ℎ
2
/𝑚

= [

𝑔
−1

(𝑛)

𝑓
−1
(𝑚)

]

2

> 0,

∀𝑛 ∈ (0, ℎ
−1

1
(−ℎ
2
(1))) , 𝑚 ∈ (0, 1) , 𝑚 = 𝜉 (𝑛) .

(30)

Thus, 𝜉 is a strictly increasing function, and since𝐻(0, 0) = 0
and 𝐻(ℎ−1

1
(−ℎ
2
(1)), 1) = 0, then 𝐷

𝜉
= [0, ℎ

−1

1
(ℎ
2
(1))] and

𝐼𝑚
𝜉
= [0, 1].
Given 𝑚, 𝑛 ∈ (0, 1), there is only one 𝑝 ∈ (𝑏, 0) such that

𝑝 = 𝑓
−1

(𝑚), and there exists only one 𝑞 ∈ (0, 𝑎) such that 𝑞 =
𝑔
−1

(𝑛), since by assumption𝑓 and 𝑔 are strictly monotonous.
From Lemma 11 we have that 𝑚 ≤ 𝑛 ⇒ 𝐻(𝑚, 𝑛) > 0.

Hence,𝐻(𝑚, 𝑛) = 0 ⇒ 𝑚 > 𝑛. Therefore, we are interested in
the pairs (𝑚, 𝑛) such that𝑚 > 𝑛. Thus, we have

𝑚 > 𝑛 ⇐⇒ 𝑓(𝑝) > 𝑔 (𝑞) . (31)
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Figure 8: p-Fuzzy system: existence of more than one stationary point.

Since 𝑓 and 𝑔 are monotonous, by Lagrange’s Medium Value
Theorem, we obtain

𝑝 = 𝑓
−1

(𝑚) ⇐⇒ (𝑓
−1

)



(𝑚) =

1

𝑓

(𝑝)

(32)

𝑞 = 𝑔
−1

(𝑛) ⇐⇒ (𝑔
−1

)



(𝑛) =

1

𝑔

(𝑞)

. (33)

Then,

𝑚 > 𝑛

(31)

⇐⇒ 𝑓(𝑝) > 𝑔 (𝑞)

(ii)
⇒

𝑔


(𝑞)

𝑓

(𝑝)

<

𝑝
3

𝑞
3

(32)𝑒(33)

⇐⇒

(𝑓
−1

)



(𝑚)

(𝑔
−1
)


(𝑛)

<

[𝑓
−1

(𝑚)]

3

[𝑔
−1
(𝑛)]
3
.

(34)

Therefore,

𝑚 > 𝑛 ⇒ (𝑓
−1

)



(𝑚) [𝑔
−1

(𝑛)]

3

− (𝑔
−1

)



(𝑛) [𝑓
−1

(𝑚)]

3

> 0.

(35)

By differentiation of (30), we obtain

𝜉


(𝑛) =

−2𝑔
−1

(𝑛)

[𝑓
−1
(𝑚)]
5

× {(𝑓
−1

)



(𝑚) [𝑔
−1

(𝑛)]

3

− (𝑔
−1

)



(𝑛) [𝑓
−1

(𝑚)]

3

}

(36)

and since −2𝑔−1(𝑛)/[𝑓−1(𝑚)]5 > 0, ∀𝑚, 𝑛 ∈ (0, 1), from (35),
we have

𝜉


(𝑛) > 0, ∀𝑛 ∈

𝑜

𝐷
𝜉
. (37)

Now we take 𝐼 = 𝐷
𝜉
∩ 𝐷
𝛿
2

= 𝐷
𝜉
∩ [0, 𝑟(𝑧

𝑜
)), and we define

the function 𝜙 : 𝐼 → [0, 1] such that

𝜙 (𝑛) = 𝜉 (𝑛) − 𝛿
2
(𝑛) . (38)

Then, from (26) and (37) we have 𝜙(𝑛) > 0, ∀𝑛 ∈

𝑜

𝐼. Since
𝜉(0) = 0 and by condition (iii) of Theorem 18, it follows
that 𝛿

2
(0) > 0; then we have 𝜙(0) < 0. Consequently, from

Lemma 9, we have that there is only one 𝑛∗ ∈ 𝐼 such that

𝜙 (𝑛
∗

) = 0

(38)

⇐⇒ 𝜉 (𝑛
∗

) = 𝛿
2
(𝑛
∗

) .
(39)

Since 𝜉 = 𝐻−1(0), then we obtain

0 = 𝐻 (𝑛
∗

, 𝜉 (𝑛
∗

))

(39)

= 𝐻 (𝑛
∗

, 𝛿
2
(𝑛
∗

)) . (40)

So, there exists only one 𝑥∗ ∈ (𝑧
𝑜
, 𝑐
2
], 𝑛∗ = 𝑟(𝑥

∗

) and
𝑚
∗

= 𝛿
2
(𝑛
∗

) = 𝑠(𝑥
∗

) such that

Δ (𝑥
∗

) =

𝐻 (𝑛
∗

, 𝑚
∗

)

𝐴 (𝑛
∗
, 𝑚
∗
)

= 0. (41)

This finally proves the theorem.

4.2. Case 2: 𝜇
𝐶
(𝑡)<𝜇
𝐵
(−𝑡)

Theorem 19 (uniqueness). Let 𝑆 be a p-fuzzy system and
𝐴
∗ an equilibrium viable set of 𝑆 of the type (𝐴

𝑖
, 𝐴
𝑖+1
) →

(𝐶, 𝐵). If the functions 𝜇
𝐴
𝑖

, 𝜇
𝐴
𝑖+1

, 𝜇
𝐵
, and 𝜇

𝐶
are continuously

differentiable, 𝜇
𝐴
𝑖

and 𝜇
𝐴
𝑖+1

are piecewise monotonous, 𝜇
𝐵
and

𝜇
𝐶
are strictly monotonous, such that

(i) 𝜇
𝐶
(𝑡) < 𝜇

𝐵
(−𝑡), ∀𝑡 ∈ (0, 𝑎),

(ii) 𝜇
𝐶
(𝑞)/𝜇


𝐵
(𝑝) > 𝑝

3

/𝑞
3 , ∀𝑝 ∈ supp(𝐵), 𝑞 ∈ supp(𝐶)

and 𝜇
𝐵
(𝑝) < 𝜇

𝐶
(𝑞),

(iii) [𝜇
𝐴
𝑖

(𝑥)/𝜇


𝐴
𝑖+1

(𝑥)] ≤ 0, ∀𝑥 ∈ (𝑐
1
, 𝑧
𝑜
), 𝜇
𝐴
𝑖

(𝑥) ̸= 𝜇
𝐴
𝑖+1

(𝑥).

Then, 𝑆 has only one stationary point, 𝑥∗ in 𝐴∗, and 𝑥∗ ∈

[𝑐
1
, 𝑧
𝑜
).

Proof. It is analogous to the proof of Theorem 18.

4.3. Some Comments about Uniqueness Theorems. When we
do not have 𝜇

𝐶
(𝑡) > 𝜇

𝐵
(−𝑡) or 𝜇

𝐶
(𝑡) < 𝜇

𝐵
(−𝑡), it is impossible

to establish general conditions for uniqueness of stationary
points. For example, consider the p-fuzzy system in Figure 8.
This system has an equilibrium viable set, 𝐴∗ = [𝐴

1
∩ 𝐴
2
]
0.
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Figure 9: Function Δ with𝑚
1
= 𝜀 = 0.1.

The sets that describe the input variable havemembership
functions 𝜇

𝐴
1

and 𝜇
𝐴
2

:

𝜇
𝐴
1
(𝑥) =

{
{
{
{
{

{
{
{
{
{

{

1

40

𝑥, if 0 < 𝑥 ≤ 40

−1

50

𝑥 +

9

5

, if 40 < 𝑥 ≤ 90
0, otherwise,

𝜇
𝐴
2
(𝑥) =

{
{
{
{
{

{
{
{
{
{

{

1

55

𝑥 −

1

11

, if 5 < 𝑥 ≤ 60

−1

40

𝑥 +

5

2

, if 60 < 𝑥 ≤ 100
0, otherwise,

(42)

and the fuzzy sets that describe the output variable have
membership functions: 𝜇

𝐶
(𝑡) = (−1/2)𝑡 + 1 and

𝜇
𝐵
(𝑡)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

3

𝑡 + 1, if − 3 < 𝑡 ≤ 3 (𝑚
1
− 1)

𝜀

3 (𝑚
1
− 1)

𝑡 + 𝑚
1
+ 𝜀, if 3 (𝑚

1
− 1) < 𝑡

≤

3𝜀 (𝜀 + 𝑚
1
− 1) (𝑚

1
− 1)

3 (𝑚
1
− 1) + 𝜀

2

1

𝜀

𝑡 + 1, if
3𝜀 (𝜀 + 𝑚

1
− 1) (𝑚

1
− 1)

3 (𝑚
1
− 1) + 𝜀

2

< 𝑡 ≤ 0

0, otherwise.
(43)

For example, if we take in (43) 𝑚
1
= 0.1 and 𝜀 = 0.1,

the p-fuzzy systemobtained has three stationary points in𝐴∗,
which can be visualized in Figure 9, which depicts the graphic
of function Δ.

Remark 20. Note that the function 𝜇
𝐵
is not differentiable in

all points into supp(𝐵), which was a requirement made in
the previous cases. However, it can be clearly constructed a
function 𝜇

𝐵
derivable in all points of supp(𝐵). For example,

0 10 20 30 40 50 60 70 80 90

0

0.5

1

−1.5
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−0.5

Figure 10: Function Δ with 𝜀 = 0.4,𝑚
1
= 0.1.

if we substitute the second sentence of 𝜇
𝐵
by an adequate

fourth degree polynomial, obviously 𝜇
𝐵
will be derivable into

supp(𝐵).

Remark 21. If we take, for example, 𝜀 = 0.3 and 𝑚
1
=

0.3, we have that the obtained p-fuzzy system has only one
stationary point (Figure 10).This shows thatTheorems 18 and
19 establish only sufficient conditions for uniqueness of the
stationary point.

4.4. Uniqueness for Triangular and Trapezoidal Membership
Functions. In this section, we will list some important con-
sequences of Theorems 18 and 19. We will also show that
for triangular and trapezoidal membership functions, the
stationary point is only one in 𝐴∗. However, before doing so,
let us take a look at the following lemmas.

Lemma 22. If 𝜇
𝐵
(𝑝) > 𝜇

𝐶
(𝑞) then 𝑞 > −𝑝, where 𝑝 = 𝜇−1

𝐵
(𝑚)

and 𝑞 = 𝜇−1
𝐶
(𝑛).

Proof. In fact, we have that 𝜇
𝐵
(𝑝) > 𝜇

𝐶
(𝑞) ⇒ 𝑚 > 𝑛 hence

using Lemma 10 and the fact that −𝜇−1
𝐵

isincreasing, once 𝜇
𝐵

is increasing, then we have that

𝑞 = 𝜇
−1

𝐶
(𝑛) > −𝜇

−1

𝐵
(𝑛) > −𝜇

−1

𝐵
(𝑚) = −𝑝. (44)

Lemma 23. If 𝜇
𝐵
(𝑝) < 𝜇

𝐶
(𝑞), then 𝑞 < −𝑝, where 𝑝 = 𝜇−1

𝐵
(𝑚)

and 𝑞 = 𝜇−1
𝐶
(𝑛).

Proof. Analogous to previous proof.

Corollary 24. Let 𝑆 be a p-fuzzy system and 𝐴∗ an equilib-
rium viable set of 𝑆. If 𝜇

𝐴
𝑖

, 𝜇
𝐴
𝑖+1

, 𝜇
𝐵
and 𝜇
𝐶
are triangular fuzzy

numbers, then 𝑆 has only one stationary point in 𝐴∗.

Proof. We will prove the case where 𝑆 is (𝜇
𝐴
𝑖

, 𝜇
𝐴
𝑖+1

) →

(𝜇
𝐶
, 𝜇
𝐵
). If 𝑆 is (𝜇

𝐴
𝑖

, 𝜇
𝐴
𝑖+1

) → (𝜇
𝐵
, 𝜇
𝐶
), then the proof is

analogous.
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Figure 11: Population (𝑥).

If 𝑎 = 𝑏, then 𝜇
𝐴
𝑖

and 𝜇
𝐴
𝑖+1

are symmetrical and by
Proposition 15 the stationary point is only one:

𝑥
∗

= max
𝑥∈𝐴
∗

[min (𝜇
𝐴
𝑖
(𝑥) , 𝜇

𝐴
𝑖+1
(𝑥))] . (45)

Assume that 𝑎 > 𝑏; then 𝜇
𝐴
𝑖

, 𝜇
𝐴
𝑖+1

, 𝜇
𝐵
, and 𝜇

𝐶
satisfy

Theorem 18. In fact, (i) and (iii) are trivial. Since 𝜇
𝐵
(𝑡) =

−(1/𝑏)𝑡 + 1 and 𝜇
𝐶
(𝑡) = −(1/𝑎)𝑡 + 1, then 𝜇

𝐵
(𝑝) > 𝜇

𝐶
(𝑞) ⇒

𝑏/𝑎 < 𝑝/𝑞 ⇒ 𝜇


𝐶
(𝑞)/𝜇


𝐵
(𝑝) < 𝑝/𝑞. From Lemma 22, we

have that 𝑞 > −𝑝 ⇒ 𝑝/𝑞 < 𝑝
3

/𝑞
3 and, therefore, we obtain

𝜇


𝐶
(𝑞)/𝜇


𝐵
(𝑝) < 𝑝

3

/𝑞
3, which satisfies (ii).

Now, assume that 𝑎 < 𝑏; then 𝜇
𝐴
𝑖

, 𝜇
𝐴
𝑖+1

, 𝜇
𝐵
, and 𝜇

𝐶

satisfy the Theorem 19. In fact, (i) and (iii) are trivial and
𝜇
𝐵
(𝑝) < 𝜇

𝐶
(𝑞) ⇒ 𝑏/𝑎 > 𝑝/𝑞 ⇒ 𝜇



𝐶
(𝑞)/𝜇


𝐵
(𝑝) > 𝑝/𝑞. From

Lemma 23 we get 𝑞 < −𝑝 ⇒ 𝑝/𝑞 > 𝑝
3

/𝑞
3, and, therefore,

𝜇


𝐶
(𝑞)/𝜇


𝐵
(𝑝) > 𝑝

3

/𝑞
3, which satisfies (ii). This concludes the

proof.

Corollary 25. Let 𝑆 be a p-fuzzy system and 𝐴∗ an equilib-
rium viable set of 𝑆. If 𝜇

𝐴
𝑖

and 𝜇
𝐴
𝑖+1

are trapezoidal fuzzy
numbers and 𝜇

𝐵
and 𝜇

𝐶
are triangular fuzzy numbers, then

𝑆 has only one stationary point in 𝐴∗.

Proof. It is analogous to the proof of Corollary 24.

5. Examples

In this section we will present some computational exper-
iments that confirm the mathematical theory presented in
the previous sections. The experiments had been carried out
with Matlab software. For the experiments we will consider
inhibited one-dimensional p-fuzzy systems. These systems
can be used to model situations where the state variable is
increasing (resp., decreasing) with a carrying capacity (resp.
lower bound). These situations, in population dynamics, are
described by inhibited models such as Gompertz’s model,
Verhulst’s model, von Bertallanffy’s models, and Asymptotic
Exponential model.

The inhibited one-dimensional p-fuzzy systems are com-
posed of the variables “Population” (Figure 11) and “Varia-
tion” (Figure 12). The rule-base of these systems is

(1) if Population is low (𝐴
1
) thenVariation is low positive

(𝐶);
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Figure 12: Variation (Δ): 𝜇
𝐶
(𝑡) = 𝜇

𝐵
(−𝑡).

(2) if Population is medium low (𝐴
2
) then Variation is

medium positive (𝐷);
(3) if Population is medium (𝐴

3
) then Variation is high

positive (𝐸);
(4) if Population is medium high (𝐴

4
) then Variation is

medium positive (𝐷);
(5) if Population is high (𝐴

5
) then Variation is low

positive (𝐶);
(6) if Population is the highest (𝐴

6
) then Variation is low

negative (𝐵).

5.1. Example 1. In this system the membership functions of 𝐵
and 𝐶 are 𝜇

𝐵
(𝑡) = 𝑡 + 1 and 𝜇

𝐶
(𝑡) = 1 − 𝑡. These functions are

symmetric (Figure 12). Observing the rules we can identify an
equilibrium viable set,𝐴∗ = [200, 280], where𝐴∗ = 𝐴

5
∩𝐴
6
,

in which membership functions are given by size:

𝜇
𝐴
5
(𝑥) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

1

50

(𝑥 − 150) , if 150 < 𝑥 ≤ 200

1, if 200 < 𝑥 ≤ 220
−1

60

(𝑥 − 280) , if 220 < 𝑥 ≤ 270

0, otherwise,

𝜇
𝐴
6
(𝑥) =

{
{
{

{
{
{

{

1

70

(𝑥 − 200) , if 200 < 𝑥 ≤ 270

1, if 270 < 𝑥 ≤ 300
0, otherwise.

(46)

A simple calculation shows that 𝜇
𝐴
5

∩ 𝜇
𝐴
6

= 243.07,
which is the stationary point of the system, as shown in
Proposition 15. This is the same result as that obtained from
numerical experiments in Figure 13, where it is possible
to observe the solution of the p-fuzzy system with initial
condition 𝑥

𝑜
= 50 converging to the stationary point 𝑥∗ =

243.07 (dotted line curve).

5.2. Example 2 (Application). Losses caused by fungi attacks
reach up to the amazing and worrisome figure of 20% of
the total harvested fruits. Among the recognized pathogens
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Figure 13: Equilibrium of the p-fuzzy systems.
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Figure 14: Population (𝐴).

of these degenerative processes are the Colletotrichum sp.
(bitter putrefaction); Alternaria sp and Fusarium sp (carpelar
putrefaction); Alternaria alternata (black putrefaction) and
Penicillium sp. (blue mould). In general, putrefaction occurs
always after harvesting, when the apples are kept in boxes
awaiting the refrigeration process.

Let us consider a situation where an apple box filled with
approximately 3000 fruits exists and there is a rotten apple in
the center of the box that will contaminate the other apples.
The dispersion of the disease occurs through the contact of
the rotten apple with a healthy one. If we want to model
the dispersion of the disease, we can only use the intuition
because the available information we have is that after 𝑛 days
all the apples will be contaminated. We do not have in hand
a “force of infection of the disease” parameter, and we know
little about the possible contacts between the rotten apple and
a healthy one. Thus, any mathematical model or simulation
of the phenomenon only will produce an approximate result.
On the other hand, if we simply use the intuition, we can
formulate some relative rules to the dispersion process such
as the following:

“If the rotten apple population is “low” then the
variation (incidence) of rotten apples is “small”.”

Let us consider then the p-fuzzy systemwith the following
linguistic variables:
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Figure 15: Variation (Δ).
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Figure 16: Solutions: p-fuzzy system and adjust model.

(i) 𝐴: “rotten apple population” (Figure 14); L: low; Ml:
medium low; M: medium; medium high; H: high,

(ii) Δ “Variation” (incidence of the disease, Figure 15); S:
small; M: medium; G: great,

where the rule-base is:

(1) if Population (𝐴) is low (L), then Variation is small
(S);

(2) if Population (𝐴) is medium low (L), then Variation is
medium (M);

(3) if Population (𝐴) is medium (M), then Variation is
great (G);

(4) if Population (𝐴) is medium high (M), then Variation
is medium (M);

(5) if Population (𝐴) is medium (G), then Variation is
small (S).
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This p-fuzzy system can be used to adjust the parameters
of a deterministic differential equation model of the type

𝑑𝐴

𝑑𝑡

= 𝑟𝐴(1 −

𝐴

𝐾

) , (47)

for example, by the method of least squares. In Figure 16 it is
possible to observe the solution of the p-fuzzy system (dotted
line curve) and the adjust model (continuous line curve).
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TheBonferronimean (BM) operator is an important aggregation techniquewhich reflects the correlations of aggregated arguments.
Based on the BMandharmonicmean operators,H. Sun andM. Sun (2012) developed the fuzzy Bonferroni harmonicmean (FBHM)
and fuzzy ordered Bonferroni harmonic mean (FOBHM) operators. In this paper, we study desirable properties of these operators
and extend them, by considering the correlations of any three aggregated arguments instead of any two, to develop generalized
fuzzy weighted Bonferroni harmonic mean (GFWBHM) operator and generalized fuzzy ordered weighted Bonferroni harmonic
mean (GFOWBHM) operator. In particular, all these operators can be reduced to aggregate interval or real numbers. Then based
on the GFWBHM and GFOWBHM operators, we present an approach to multiple attribute group decision making and illustrate
it with a practical example.

1. Introduction

Multiple attribute group decision making (MAGDM) is the
common phenomenon in modern life, which is to select the
optimal alternative(s) from several alternatives or to get their
ranking by aggregating the performances of each alternative
under several attributes, in which the aggregation techniques
play an important role. Considering the relationships among
the aggregated arguments, we can classify the aggregation
techniques into two categories: the ones which consider the
aggregated arguments dependently and the others which
consider the aggregated arguments independently. For the
first category, the well-known ordered weighted averaging
(OWA) operator [1, 2] is the representative, on the basis of
which, a lot of generalizations have been developed, such
as the ordered weighted geometric (OWG) operator [3–5],
the ordered weighted harmonic mean (OWHM) operator
[6], the continuous ordered weighted averaging (C-OWA)
operator [7], the continuous ordered weighted geometric
(C-OWG) operator [8]. The second category can reduce to
two subcategories: the first subcategory focuses on changing
the weight vector of the aggregation operators, such as the
Choquet integral-based aggregation operators [9], in which

the correlations of the aggregated arguments are measured
subjectively by the decision makers, and the representatives
of another subcategory are the power averaging (PA) operator
[10] and the power geometric (PG) operator [11], both of
which allow the aggregated arguments to support each other
in aggregation process, on the basis of which the weighted
vector is determined. The second subcategory focuses on the
aggregated arguments such as the Bonferroni mean (BM)
operator [12]. Yager [13] provided an interpretation of BM
operator as involving a product of each argument with the
average of the other arguments, a combined averaging and
“anding” operator. Beliakov et al. [14] presented a composed
aggregation technique called the generalized Bonferroni
mean (GBM) operator, which models the average of the
conjunctive expressions and the average of remaining. In
fact, they extended the BM operator by considering the
correlations of any three aggregated arguments instead of
any two. However, both BM operator and the GBM operator
ignore some aggregation information and the weight vector
of the aggregated arguments. To overcome this drawback,
Xia et al. [15] developed the generalized weighted Bonferroni
mean (GWBM) operator as the weighted version of the
GBM operator. Based on the GBM operator and geometric
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mean operator, they also developed the generalized Bonfer-
oni geometric mean (GWBGM) operator. The fundamental
characteristic of the GWBM operator is that it focuses
on the group opinions, while the GWBGM operator gives
more importance to the individual opinions. Because of the
usefulness of the aggregation techniques, which reflect the
correlations of arguments, most of them have been extended
to fuzzy, intuitionistic fuzzy, or hesitant fuzzy environment
[16–20].

Harmonic mean is the reciprocal of arithmetic mean
of reciprocal, which is a conservative average to be used
to provide for aggregation lying between the max and min
operators, and is widely used as a tool to aggregate central
tendency data [21]. In the existing literature, the harmonic
mean is generally considered as a fusion technique of numer-
ical data information. However, in many situations, the input
arguments take the form of triangular fuzzy numbers because
of time pressure, lack of knowledge, and people’s limited
expertise related with problem domain. Therefore, “how to
aggregate fuzzy data by using the harmonic mean?” is an
interesting research topic and is worth paying attention to. So
Xu [21] developed the fuzzy harmonic mean operators such
as fuzzy weighted harmonic mean (FWHM) operator, fuzzy
ordered weighted harmonic mean (FOWHM) operator and
fuzzy hybrid harmonic mean (FHHM) operator, and applied
them toMAGDM.Wei [22] developed fuzzy induced ordered
weighted harmonic mean (FIOWHM) operator and then,
based on the FWHM and FIOWHM operators, presented
the approach to MAGDM. H. Sun and M. Sun [23] further
applied the BM operator to fuzzy environment, introduced
the fuzzy Bonferroni harmonic mean (FBHM) operator and
the fuzzy ordered Bonferroni harmonic mean (FOBHM)
operator, and applied the FOBHM operator to multiple
attribute decisionmaking. In this paper, wewill develop some
new harmonic aggregation operators, including the general-
ized fuzzy weighted Bonferroni harmonicmean (GFWBHM)
operator and generalized fuzzy ordered weighted Bonferroni
harmonic mean (GFOWBHM) operator, and apply them to
MAGDM.

In order to do this, the remainder of this paper is
arranged in following sections. Section 2 first reviews some
aggregation operators, including the BM, GBM, and GWBM
operators. Then, some basic concepts related to triangular
fuzzy numbers and some operational laws of triangular fuzzy
numbers are introduced. The desirable properties of the
FBHM and FOBHM operators are discussed. We extend
them, by considering the correlations of any three aggre-
gated arguments instead of any two, to develop generalized
fuzzy weighted Bonferroni harmonic mean (GFWBHM)
operator and generalized fuzzy ordered weighted Bonferroni
harmonic mean (GFOWBHM) operator. In particular, all
these operators can be reduced to aggregate interval or real
numbers. Section 3 presents an approach to MAGDM based
on the GFWBHM and GFOWBHM operators. Section 4
illustrates the presented approach with a practical example,
verifies and shows the advantages of the presented approach,
and makes a comparative study to the existing approaches.
Section 5 ends the paper with some concluding remarks.

2. Generalized Fuzzy Bonferroni Harmonic
Mean Operators

The Bonferroni mean operator was initially proposed by
Bonferroni [12] and was also investigated intensively by Yager
[13].

Definition 1. Let 𝑝, 𝑞 ≥ 0 and let 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑛) be a

collection of nonnegative numbers. If

BM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = (

1

𝑛 (𝑛 − 1)

𝑛

∑

𝑖,𝑗=1

𝑖 ̸= 𝑗

𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
)

1/(𝑝+𝑞)

, (1)

then BM𝑝,𝑞 is called the Bonferroni mean (BM) operator.

Beliakov et al. [14] further extended the BM operator
by considering the correlations of any three aggregated
arguments instead of any two.

Definition 2. Let 𝑝, 𝑞, 𝑟 ≥ 0 and let 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑛) be a

collection of nonnegative numbers. If

GBM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

= (

1

𝑛 (𝑛 − 1) (𝑛 − 2)

𝑛

∑

𝑖,𝑗,𝑘=1

𝑖 ̸= 𝑗 ̸= 𝑘

𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎
𝑟

𝑘
)

1/(𝑝+𝑞+𝑟)

,

(2)

then GBM𝑝,𝑞,𝑟 is called the generalized Bonferroni mean
(GBM) operator.

In particular, if 𝑟 = 0, then the GBM operator reduces to
the BM operator. However, it is noted that both BM operator
and the GBM operator do not consider the situation that
𝑖 = 𝑗 or 𝑗 = 𝑘 or 𝑖 = 𝑘, and the weight vector of the
aggregated arguments is not also considered. To overcome
this drawback, Xia et al. [15] defined the weighted version of
the GBM operator.

Definition 3. Let 𝑝, 𝑞, 𝑟 ≥ 0 and let 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑛) be

a collection of nonnegative numbers with the weight vector
𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 such that 𝑤

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛 and

∑
𝑛

𝑖=1
𝑤
𝑖
= 1. If

GWBM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

= (

𝑛

∑

𝑖,𝑗,𝑘=1

𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎
𝑟

𝑘
)

1/(𝑝+𝑞+𝑟)

,

(3)

then GWBM𝑝,𝑞,𝑟 is called the generalized weighted Bonfer-
roni mean (GWBM) operator.

Some special cases can be obtained as the change of the
parameters as follows.
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(1) If 𝑟 = 0, then the GWBM operator reduces to the
following:

GWBM𝑝,𝑞,0 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

= (

𝑛

∑

𝑖,𝑗,𝑘=1

𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
)

1/(𝑝+𝑞)

= (

𝑛

∑

𝑖=1

𝑤
𝑖
𝑤
𝑗
𝑎
𝑝

𝑖
𝑎
𝑞

𝑗

𝑛

∑

𝑘=1

𝑤
𝑘
)

1/(𝑝+𝑞)

= (

𝑛

∑

𝑖=1

𝑤
𝑖
𝑤
𝑗
𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
)

1/(𝑝+𝑞)

,

(4)

which is the weighted Bonferroni mean (WBM) operator.
(2) If 𝑞 = 0 and 𝑟 = 0, then the GWBM operator reduces

to the following:

GWBM𝑝,0,0 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

= (

𝑛

∑

𝑖,𝑗,𝑘=1

𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
𝑎
𝑝

𝑖
)

1/𝑝

= (

𝑛

∑

𝑖=1

𝑤
𝑖
𝑎
𝑝

𝑖

𝑛

∑

𝑗=1

𝑤
𝑗

𝑛

∑

𝑘=1

𝑤
𝑘
)

1/𝑝

= (

𝑛

∑

𝑖=1

𝑤
𝑖
𝑎
𝑝

𝑖
)

1/𝑝

,

(5)

which is the generalized weighted averaging operator. Fur-
thermore, in this case, let us look at the GWBM operator for
some special cases of 𝑝.

(1) If 𝑝 = 1, the GWBMoperator reduces to the weighted
averaging (WA) operator.

(2) If 𝑝 → 0, then the GWBM operator reduces to the
weighted geometric (WG) operator.

(3) If 𝑝 → +∞, then the GWBMoperator reduces to the
max operator.

The previous aggregation techniques can only deal with
the situation that the arguments are represented by the
exact numerical values, but are invalid if the aggregation
information is given in other forms, such as triangular fuzzy
number [24], which is a widely used tool to deal with
uncertainty and fuzziness, described as follows.

Definition 4 (see [24]). A triangular fuzzy number 𝑎 can be
defined by a triplet [𝑎𝐿, 𝑎𝑀, 𝑎𝑈]. The membership function
𝜇
𝑎
(𝑥) is defined as

𝜇
𝑎
(𝑥) =

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

0, 𝑥 < 𝑎
𝐿

;

𝑥 − 𝑎
𝐿

𝑎
𝑀
− 𝑎
𝐿
, 𝑎
𝐿

≤ 𝑥 ≤ 𝑎
𝑀

;

𝑥 − 𝑎
𝑈

𝑎
𝑀
− 𝑎
𝑈
, 𝑎
𝑀

≤ 𝑥 ≤ 𝑎
𝑈

;

0, 𝑥 > 𝑎
𝑈

,

(6)

where 𝑎𝑈 ≥ 𝑎𝑀 ≥ 𝑎
𝐿

≥ 0, 𝑎𝐿, and 𝑎𝑈 stand for the lower
and upper values of 𝑎, respectively, and 𝑎𝑀 stands for the
modal value [24]. In particular, if any two of 𝑎𝐿, 𝑎𝑀, and
𝑎
𝑈 are equal, then 𝑎 reduces to an interval number; if all
𝑎
𝐿

, 𝑎
𝑀, and 𝑎𝑈 are equal, then 𝑎 reduces to a real number.

For convenience, we let Ω be the set of all triangular fuzzy
numbers.

Let 𝑎 = [𝑎𝐿, 𝑎𝑀, 𝑎𝑈] and ̂𝑏 = [𝑏𝐿, 𝑏𝑀, 𝑏𝑈] be two trian-
gular fuzzy numbers, then some operational laws defined as
follows [24]:

(1) 𝑎 + ̂𝑏 = [𝑎𝐿, 𝑎𝑀, 𝑎𝑈] + [𝑏𝐿, 𝑏𝑀, 𝑏𝑈] = [𝑎𝐿 + 𝑏𝐿, 𝑎𝑀 +
𝑏
𝑀

, 𝑎
𝑈

+ 𝑏
𝑈

];
(2) 𝜆𝑎 = 𝜆[𝑎𝐿, 𝑎𝑀, 𝑎𝑈] = [𝜆𝑎𝐿, 𝜆𝑎𝑀, 𝜆𝑎𝑈];
(3) 𝑎 × ̂𝑏 = [𝑎𝐿, 𝑎𝑀, 𝑎𝑈] × [𝑏𝐿, 𝑏𝑀, 𝑏𝑈] = [𝑎𝐿𝑏𝐿, 𝑎𝑀𝑏𝑀,
𝑎
𝑈

𝑏
𝑈

];
(4) 1/𝑎 = 1/[𝑎𝐿, 𝑎𝑀, 𝑎𝑈] = [1/𝑎𝑈, 1/𝑎𝑀, 1/𝑎𝐿].

In order to compare two triangular fuzzy numbers, Xu
[21] provided the following definition.

Definition 5. Let 𝑎 = [𝑎𝐿, 𝑎𝑀, 𝑎𝑈] and let ̂𝑏 = [𝑏𝐿, 𝑏𝑀, 𝑏𝑈] be
two triangular fuzzy numbers; then the degree of possibility
of 𝑎 ≥ ̂𝑏 is defined as follows:

𝑝 (𝑎 ≥
̂
𝑏)

= 𝛿max{1 −max( 𝑏
𝑀

− 𝑎
𝐿

𝑎
𝑀
− 𝑎
𝐿
+ 𝑏
𝑀
− 𝑏
𝐿
, 0) , 0}

+ (1 − 𝛿)max{1 −max( 𝑏
𝑈

− 𝑎
𝑀

𝑎
𝑈
− 𝑎
𝑀
+ 𝑏
𝑈
− 𝑏
𝑀
, 0) , 0} ,

𝛿 ∈ [0, 1] ,

(7)

which satisfies the following properties:

0 ≤ 𝑝 (𝑎 ≥
̂
𝑏) ≤ 1, 𝑝 (𝑎 ≥ 𝑎) = 0.5,

𝑝 (𝑎 ≥
̂
𝑏) + 𝑝 (

̂
𝑏 ≥ 𝑎) = 1.

(8)

Here, 𝛿 reflects the decisionmaker’s risk-bearing attitude.
If 𝛿 > 0.5, then the decision maker is risk lover; if 𝛿 = 0.5,
then the decision maker is neutral to risk; if 𝛿 < 0.5, then the
decision maker is risk avertor.

In the following, we will give a simple procedure for
ranking of the triangular fuzzy numbers 𝑎

𝑖
(𝑖 = 1, 2, . . . , 𝑛).

First, by using (7), we compare each 𝑎
𝑖
with all the 𝑎

𝑗
(𝑗 =

1, 2, . . . , 𝑛); for simplicity, let 𝑝
𝑖𝑗
= 𝑝(𝑎

𝑖
≥ 𝑎
𝑗
), and then we

develop a possibility matrix [25, 26] as

𝑃 = (

𝑝
11
𝑝
12
⋅ ⋅ ⋅ 𝑝
1𝑛

𝑝
21
𝑝
22
⋅ ⋅ ⋅ 𝑝
2𝑛

...
𝑝
𝑛1
𝑝
𝑛2
⋅ ⋅ ⋅ 𝑝
𝑛𝑛

), (9)

where 𝑝
𝑖𝑗
≥ 0, 𝑝

𝑖𝑗
+ 𝑝
𝑗𝑖
= 1, 𝑝

𝑖𝑖
= 1/2, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.
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Summing all elements in each line of matrix 𝑃, we have
𝑝
𝑖
= ∑
𝑛

𝑗=1
𝑝
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑛. Then, in accordance with the

values of 𝑝
𝑖
(𝑖 = 1, 2, . . . , 𝑛), we rank the 𝑎

𝑖
(𝑖 = 1, 2, . . . , 𝑛) in

descending order.
To aggregate the triangular fuzzy correlated information,

based on the BM and weighted harmonic mean operators,
H. Sun and M. Sun [23] developed the fuzzy Bonferroni
harmonic mean operator. Because this operator considers
the weight vector of the aggregated arguments, we redefine
this operator as fuzzy weighted Bonferroni harmonic mean
operator.

Definition 6 (see [23]). Let 𝑎
𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛)

be a collection of triangular fuzzy numbers, let 𝑤 = (𝑤
1
,

𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the weight vector of 𝑎

𝑖
(𝑖 = 1, 2, . . . , 𝑛), where

𝑤
𝑖
indicates the importance degree of 𝑎

𝑖
, satisfying 𝑤

𝑖
> 0,

𝑖 = 1, 2, . . . , 𝑛 and ∑𝑛
𝑖=1
𝑤
𝑖
= 1. If

FWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))

1/(𝑝+𝑞)

=
[
[

[

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎
𝐿

𝑖
)
𝑝

(𝑎
𝐿

𝑗
)

𝑞

))

1/(𝑝+𝑞)

,

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎
𝑀

𝑖
)
𝑝

(𝑎
𝑀

𝑗
)

𝑞

))

1/(𝑝+𝑞)

,

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎
𝑈

𝑖
)
𝑝

(𝑎
𝑈

𝑗
)

𝑞

))

1/(𝑝+𝑞)

]
]

]

,

(10)

where 𝑝, 𝑞 ≥ 0, then FWBHM𝑝,𝑞 is called the fuzzy weighted
Bonferroni harmonic mean (FWBHM) operator.

In particular, if 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the

FWBHM operator reduces to the following:

FBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

1

((1/𝑛
2
)∑
𝑛

𝑖,𝑗=1
(1/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))

1/(𝑝+𝑞)

,

(11)

which we call the fuzzy Bonferroni harmonic mean (FBHM)
operator.

In addition, a special case can obtained as the change of
parameter. If 𝑞 = 0, then the FWBHM operator reduces to
the following:

FWBHM𝑝,0 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝑖
))

1/𝑝

=

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/𝑎
𝑝

𝑖
)∑
𝑛

𝑗=1
𝑤
𝑗
)

1/𝑝

=

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/𝑎
𝑝

𝑖
))

1/𝑝

= [

[

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/(𝑎
𝐿

𝑖
)
𝑝

))

1/𝑝

,

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/(𝑎
𝑀

𝑖
)
𝑝

))

1/𝑝

,

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/(𝑎
𝑈

𝑖
)
𝑝

))

1/𝑝

]

]

,

(12)

which we call the fuzzy weighted generalized harmonicmean
(FWGHM) operator.

On the basis of the operational laws of triangular fuzzy
numbers, the FWBHMoperator has the following properties.

Theorem 7. Let 𝑝, 𝑞 ≥ 0, and let 𝑎
𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 =

1, 2, . . . , 𝑛) be a collection of triangular fuzzy numbers, and the
following are valid.

(1) Idempotency. If all 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are equal, that is, 𝑎

𝑖
=

𝑎, for all 𝑖, then

FWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = 𝑎. (13)

(2) Boundedness. 𝑎− ≤ FWBHM𝑝,𝑞(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) ≤ 𝑎

+,
where 𝑎− = [min

𝑖
{𝑎
𝐿

𝑖
},min

𝑖
{𝑎
𝑀

𝑖
},min

𝑖
{𝑎
𝑈

𝑖
}] and 𝑎+ =

[max
𝑖
{𝑎
𝐿

𝑖
},max

𝑖
{𝑎
𝑀

𝑖
},max

𝑖
{𝑎
𝑈

𝑖
}].

(3) Commutativity. Let 𝑎
𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) be

a collection of triangular fuzzy numbers, and then

FWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

= FWBHM𝑝,𝑞 (𝑎
1
, 𝑎


2
, . . . , 𝑎



𝑛
) ,

(14)

where (𝑎
1
, 𝑎


2
, . . . , 𝑎



𝑛
) is any permutation of (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
).

Proof. Since (2) can be proven easily, we prove (1) and (3) as
follows.
(1) Since 𝑎

𝑖
= 𝑎, we have

FWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝
𝑎
𝑞
))

1/(𝑝+𝑞)

=

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝+𝑞
))

1/(𝑝+𝑞)

=

𝑎

(∑
𝑛

𝑖=1
𝑤
𝑖
∑
𝑛

𝑗=1
𝑤
𝑗
)

1/(𝑝+𝑞)

= 𝑎.

(15)
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(3) Since (𝑎
1
, 𝑎


2
, . . . , 𝑎



𝑛
) is any permutation of (𝑎

1
, 𝑎
2
,

. . . , 𝑎
𝑛
), then

FWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))

1/(𝑝+𝑞)

=

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎


𝑖
)
𝑝

(𝑎


𝑗
)

𝑞

))

1/(𝑝+𝑞)

= FWBHM𝑝,𝑞 (𝑎
1
, 𝑎


2
, . . . , 𝑎



𝑛
) .

(16)

In particular, if the triangular fuzzy numbers 𝑎
𝑖
= [𝑎
𝐿

𝑖
,

𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) reduce to the interval numbers

𝑎
𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛), then the FWBHM operator

(10) reduces to the uncertain weighted Bonferroni harmonic
mean (UWBHM) operator as follows:

UWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))

1/(𝑝+𝑞)

=
[
[

[

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎
𝐿

𝑖
)
𝑝

(𝑎
𝐿

𝑗
)

𝑞

))

1/(𝑝+𝑞)

,

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎
𝑈

𝑖
)
𝑝

(𝑎
𝑈

𝑗
)
𝑞

))

1/(𝑝+𝑞)

]

]

.

(17)

If 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the UWBHM oper-

ator reduces to the uncertain Bonferroni harmonic mean
(UBHM) operator as follows:

UBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

((1/𝑛
2
)∑
𝑛

𝑖,𝑗=1
(1/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))

1/(𝑝+𝑞)

=
[
[

[

1

((1/𝑛
2
)∑
𝑛

𝑖,𝑗=1
(1/(𝑎
𝐿

𝑖
)
𝑝

(𝑎
𝐿

𝑗
)

𝑞

))

1/(𝑝+𝑞)

,

1

((1/𝑛
2
)∑
𝑛

𝑖,𝑗=1
(1/(𝑎
𝑈

𝑖
)
𝑝

(𝑎
𝑈

𝑗
)

𝑞

))

1/(𝑝+𝑞)

]
]

]

.

(18)

If 𝑎𝐿
𝑖
= 𝑎
𝑈

𝑖
= 𝑎
𝑖
, for all 𝑖, then the UWBHM operator

(17) reduces to the weighted Bonferroni harmonic mean
(WBHM) operator as follows:

WBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))

1/(𝑝+𝑞)

.

(19)

In this case, if 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the WBHM

operator reduces to the Bonferroni harmonic mean (BHM)
operator:

BHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

1

((1/𝑛
2
)∑
𝑛

𝑖,𝑗=1
(1/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))

1/(𝑝+𝑞)

.

(20)

Example 8. Given a collection of triangular fuzzy numbers:
𝑎
1
= [2, 3, 4], 𝑎

2
= [1, 2, 4], 𝑎

3
= [2, 4, 6], 𝑎

4
= [1, 3, 5], let𝑤 =

(0.3, 0.1, 0.2, 0.4)
𝑇 be the weight vector of 𝑎

𝑖
(𝑖 = 1, 2, 3, 4);

then, by FWBHM operator (10) (let 𝑝 = 𝑞 = 2), we have

FWBHM2,2 (𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
)

=
[
[

[

1

(∑
4

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎
𝐿

𝑖
)
2

(𝑎
𝐿

𝑗
)

2

))

1/4

,

1

(∑
4

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎
𝑀

𝑖
)
2

(𝑎
𝑀

𝑗
)

2

))

1/4

,

1

(∑
4

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎
𝑈

𝑖
)
2

(𝑎
𝑈

𝑗
)

2

))

1/4

]
]

]

= [1.27, 2.95, 4.64] .

(21)

Based on the OWA and FWBHM operators and
Definition 5, we define fuzzy ordered weighted Bonferroni
harmonic mean (FOWBHM) operator as follows.

Definition 9. Let 𝑎
𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) be a

collection of triangular fuzzy numbers. For 𝑝, 𝑞 ≥ 0, a fuzzy
ordered weighted Bonferroni harmonic mean (FOWBHM)
operator of dimension 𝑛 is a mapping FOWBHM𝑝,𝑞 : Ω𝑛 →
Ω, that has an associated vector 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 such

that 𝜔
𝑖
≥ 0 and ∑𝑛

𝑖=1
𝜔
𝑖
= 1. Furthermore,

FOWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝜎(𝑖)
𝑎
𝑞

𝜎(𝑗)
))

1/(𝑝+𝑞)

=

[
[
[

[

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎
𝐿

𝜎(𝑖)
)

𝑝

(𝑎
𝐿

𝜎(𝑗)
)

𝑞

))

1/(𝑝+𝑞)

,

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎
𝑀

𝜎(𝑖)
)

𝑝

(𝑎
𝑀

𝜎(𝑗)
)

𝑞

))

1/(𝑝+𝑞)

,

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎
𝑈

𝜎(𝑖)
)

𝑝

(𝑎
𝑈

𝜎(𝑗)
)

𝑞

))

1/(𝑝+𝑞)

]
]
]

]

,

(22)
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where 𝑎
𝜎(𝑖)

= [𝑎
𝐿

𝜎(𝑖)
, 𝑎
𝑀

𝜎(𝑖)
, 𝑎
𝑈

𝜎(𝑖)
] (𝑖 = 1, 2, . . . , 𝑛), and (𝜎(1),

𝜎(2), . . . , 𝜎(𝑛)) is a permutation of (1, 2, . . . , 𝑛) such that
𝑎
𝜎(𝑖−1)

≥ 𝑎
𝜎(𝑖)

for all 𝑖.

However, if there is a tie between 𝑎
𝑖
and 𝑎

𝑗
, then we

replace each of 𝑎
𝑖
and 𝑎

𝑗
by their average (𝑎

𝑖
+ 𝑎
𝑗
)/2 in

process of aggregation. If 𝑘 items are tied, then we replace
these by 𝑘 replicas of their average. The weighting vector
𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 can be determined by using some

weights determining methods like the normal distribution
based method; see [27–29] for more details.

If 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)𝑇, then the FOWBHM operator
reduces to the FBHM operator; in addition, if 𝑞 = 0, then the
FOWBHM operator reduces to the following:

FOWBHM𝑝,0 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝜎(𝑖)
))

1/𝑝

=

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/𝑎
𝑝

𝜎(𝑖)
)∑
𝑛

𝑗=1
𝑤
𝑗
)

1/𝑝

=

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/𝑎
𝑝

𝜎(𝑖)
))

1/𝑝

=
[
[

[

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/(𝑎
𝐿

𝜎(𝑖)
)

𝑝

))

1/𝑝

,

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/(𝑎
𝑀

𝜎(𝑖)
)

𝑝

))

1/𝑝

,

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/(𝑎
𝑈

𝜎(𝑖)
)

𝑝

))

1/𝑝

]
]

]

,

(23)

which we call the fuzzy ordered weighted generalized har-
monic mean (FOWGHM) operator.

In particular, if the triangular fuzzy numbers 𝑎
𝑖
=

[𝑎
𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) reduce to the interval numbers

𝑎
𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛), then the FOWBHM operator

reduces to the uncertain ordered weighted Bonferroni har-
monic mean (UOWBHM) operator as follows:

UOWBHM𝑝,𝑞 (𝑎
𝑖
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

(∑
𝑛

𝑖,𝑗=1
(𝜔
𝑖
𝜔
𝑗
/𝑎
𝑝

𝜎(𝑖)
𝑎
𝑞

𝜎(𝑗)
))

1/(𝑝+𝑞)

=

[
[
[

[

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎
𝐿

𝜎(𝑖)
)

𝑝

(𝑎
𝐿

𝜎(𝑗)
)

𝑞

))

1/(𝑝+𝑞)

,

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎
𝑈

𝜎(𝑖)
)

𝑝

(𝑎
𝑈

𝜎(𝑗)
)

𝑞

))

1/(𝑝+𝑞)

]
]
]

]

,

(24)

where 𝑎
𝜎(𝑖)

= [𝑎
𝐿

𝜎(𝑖)
, 𝑎
𝑈

𝜎(𝑖)
], and (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a

permutation of (1, 2, . . . , 𝑛) such that 𝑎
𝜎(𝑖−1)

≥ 𝑎
𝜎(𝑖)

for all 𝑖.

If there is a tie between 𝑎
𝑖
and 𝑎
𝑗
, then we replace each of 𝑎

𝑖

and 𝑎
𝑗
by their average (𝑎

𝑖
+ 𝑎
𝑗
)/2 in process of aggregation.

If 𝑘 items are tied, then we replace these by 𝑘 replicas of their
average.

If 𝑎𝐿
𝑖
= 𝑎
𝑈

𝑖
= 𝑎
𝑖
, for all 𝑖, then the UOWBHM operator

reduces to the ordered weighted Bonferroni harmonic mean
(OWBHM) operator as follows:

OWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

1

(∑
𝑛

𝑖,𝑗=1
(𝜔
𝑖
𝜔
𝑗
/𝑏
𝑝

𝑖
𝑏
𝑞

𝑗
))

1/(𝑝+𝑞)

,

(25)

where 𝑏
𝑖
is the 𝑖th largest of 𝑎

𝑖
(𝑖 = 1, 2, . . . , 𝑛). The OWBHM

operator (25) has some special cases.

(1) If 𝜔 = (1, 0, . . . , 0)𝑇, then

OWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = max {𝑎

𝑖
} = 𝑏
1
. (26)

(2) If 𝜔 = (0, 0, . . . , 1)𝑇, then

OWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = min {𝑎

𝑖
} = 𝑏
𝑛
. (27)

(3) If 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)𝑇, then

OWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

((1/𝑛
2
)∑
𝑛

𝑖,𝑗=1
(1/𝑏
𝑝

𝑖
𝑏
𝑞

𝑗
))

1/(𝑝+𝑞)

=

1

((1/𝑛
2
)∑
𝑛

𝑖,𝑗=1
(1/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))

1/(𝑝+𝑞)

= BHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) .

(28)

Example 10. Let 𝑎
1
= [3, 4, 6], 𝑎

2
= [1, 2, 4], 𝑎

3
= [2, 4, 5],

𝑎
4
= [3, 5, 6], and 𝑎

5
= [2, 5, 7] be a collection of triangular

fuzzy numbers. To rank these triangular fuzzy numbers,
we first compare each triangular fuzzy number 𝑎

𝑖
with all

triangular fuzzy numbers 𝑎
𝑗
(𝑗 = 1, 2, 3, 4, 5) by using (7)

(without loss of generality, set 𝛿 = 0.5); let 𝑝
𝑖𝑗
= 𝑝(𝑎

𝑖
≥

𝑎
𝑗
) (𝑖, 𝑗 = 1, 2, 3, 4, 5), then we utilize these possibility degrees

to construct the following matrix 𝑃 = (𝑝
𝑖𝑗
)
5×5

:

𝑃 =(

0.500 1 0.667 0.333 0.375

0 0.500 0 0 0

0.333 1 0.500 0.125. 0.200

0.667 1 0.875 0.500 0.467

0.625 1 0.800 0.533 0.500

) . (29)

Summing all elements in each line of matrix 𝑃, we have

𝑝
1
= 2.875, 𝑝

2
= 0.500, 𝑝

3
= 2.158,

𝑝
4
= 3.509, 𝑝

5
= 3.458.

(30)

and then we rank the triangular fuzzy numbers 𝑎
𝑖
(𝑖 =

1, 2, 3, 4, 5) in descending order in accordance with the values
of 𝑝
𝑖
(𝑖 = 1, 2, 3, 4, 5) as follows:

𝑎
𝜎(1)

= 𝑎
4
, 𝑎

𝜎(2)
= 𝑎
5
, 𝑎

𝜎(3)
= 𝑎
1
,

𝑎
𝜎(4)

= 𝑎
3
, 𝑎

𝜎(5)
= 𝑎
2
.

(31)
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Suppose that the weighting vector of the FOWBHMoperator
is 𝜔 = (0.1117, 0.2365, 0.3036, 0.2365, 0.1117)

𝑇 (derived by
the normal distribution basedmethod [27]), and then by (22)
(let 𝑝 = 𝑞 = 2), we get

FOWBHM2,2 (𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
)

=

[
[
[
[

[

1

(∑
5

𝑖,𝑗=1
(𝜔
𝑖
𝜔
𝑗
/(𝑎
𝐿

𝜎(𝑖)
)

2

(𝑎
𝐿

𝜎(𝑗)
)

2

))

1/4

,

1

(∑
5

𝑖,𝑗=1
(𝜔
𝑖
𝜔
𝑗
/(𝑎
𝑀

𝜎(𝑖)
)

2

(𝑎
𝑀

𝜎(𝑗)
)

2

))

1/4

,

1

(∑
5

𝑖,𝑗=1
(𝜔
𝑖
𝜔
𝑗
/(𝑎
𝑈

𝜎(𝑖)
)

2

(𝑎
𝑈

𝜎(𝑗)
)

2

))

1/4

]
]
]
]

]

.

= [1.901, 3.632, 5.509] .

(32)

Both FWBHM and FOWBHM operators, however, can
only deal with the situation in which there are correlations
between any two aggregated arguments, but not the situation
in which there exist connections among any three aggregated
arguments. To solve this issue, motivated by Definition 3, we
define the following.

Definition 11. Let 𝑎
𝑖
= [𝑎

𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) be

a collection of triangular fuzzy numbers and let 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the weight vector of 𝑎

𝑖
(𝑖 = 1, 2, . . . , 𝑛),

where 𝑤
𝑖
indicates the importance degree of 𝑎

𝑖
, satisfying

𝑤
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛 and ∑𝑛

𝑖=1
𝑤
𝑖
= 1. For 𝑝, 𝑞, 𝑟 ≥ 0, if

GFWBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎
𝑟

𝑘
))

1/(𝑝+𝑞+𝑟)

=
[
[

[

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎
𝐿

𝑖
)
𝑝

(𝑎
𝐿

𝑗
)

𝑞

(𝑎
𝐿

𝑘
)
𝑟

))

1/(𝑝+𝑞+𝑟)

,

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎
𝑀

𝑖
)
𝑝

(𝑎
𝑀

𝑗
)

𝑞

(𝑎
𝑀

𝑘
)
𝑟

))

1/(𝑝+𝑞+𝑟)

,

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎
𝑈

𝑖
)
𝑝

(𝑎
𝑈

𝑗
)

𝑞

(𝑎
𝑈

𝑘
)
𝑟

))

1/(𝑝+𝑞+𝑟)

]
]

]

,

(33)

then GFWBHM𝑝,𝑞,𝑟 is called generalized fuzzy weighted
Bonferroni harmonic mean (GFWBHM) operator.

In particular, if 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the

GFWBHM operator reduces to the following:

GFBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

((1/𝑛
3
)∑
𝑛

𝑖,𝑗,𝑘=1
(1/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎
𝑟

𝑘
))

1/(𝑝+𝑞+𝑟)

,

(34)

which we call the generalized fuzzy Bonferroni harmonic
mean (GFBHM) operator.

In addition, some special cases can be obtained as the
change of parameters.
(1) If 𝑟 = 0, then the GFWBHM operator reduces to

GFWBHM𝑝,𝑞,0 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))

1/(𝑝+𝑞)

=

1

((∑
𝑛

𝑘=1
𝑤
𝑘
)∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))

1/(𝑝+𝑞)

=

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))

1/(𝑝+𝑞)

,

(35)

which is the FWBHM operator.
(2) If 𝑞 = 0 and 𝑟 = 0, then the GFWBHM operator

reduces to

GFWBHM𝑝,0,0 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/𝑎
𝑝

𝑖
))

1/𝑝

=

1

((∑
𝑛

𝑗=1
𝑤
𝑗
) (∑
𝑛

𝑘=1
𝑤
𝑘
)∑
𝑛

𝑖=1
(𝑤
𝑖
/𝑎
𝑝

𝑖
))

1/𝑝

=

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/𝑎
𝑝

𝑖
))

1/𝑝

,

(36)

which is FWGHM operator. In this case, if 𝑝 = 1, then
FWGHM operator reduces to FWHM operator.

Similar to the FWBHMoperator, theGFWBHMoperator
has the following properties.

Theorem 12. Let 𝑝, 𝑞, 𝑟 ≥ 0, and let 𝑎
𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 =

1, 2, . . . , 𝑛) be a collection of triangular fuzzy numbers, and the
following are valid.

(1) Idempotency. If all 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are equal, that is, 𝑎

𝑖
=

𝑎, for all 𝑖, then

GFWBHM 𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = 𝑎. (37)

(2) Boundedness. 𝑎− ≤ GFWBHM 𝑝,𝑞,𝑟(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) ≤

𝑎
+, where 𝑎− = [min

𝑖
{𝑎
𝐿

𝑖
},min

𝑖
{𝑎
𝑀

𝑖
},min

𝑖
{𝑎
𝑈

𝑖
}] and 𝑎+ =

[max
𝑖
{𝑎
𝐿

𝑖
},max

𝑖
{𝑎
𝑀

𝑖
},max

𝑖
{𝑎
𝑈

𝑖
}].

𝑎
+

= [max
𝑖
{𝑎
𝐿

𝑖
} ,max

𝑖
{𝑎
𝑀

𝑖
} ,max

𝑖
{𝑎
𝑈

𝑖
}] . (38)
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(3) Commutativity. Let 𝑎
𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) be

a collection of triangular fuzzy numbers, and then

GFWBHM 𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

= GFWBHM 𝑝,𝑞,𝑟 (𝑎
1
, 𝑎


2
, . . . , 𝑎



𝑛
) ,

(39)

where (𝑎
1
, 𝑎


2
, . . . , 𝑎



𝑛
) is any permutation of (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
).

In particular, if the triangular fuzzy numbers 𝑎
𝑖
=

[𝑎
𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) reduce to the interval numbers

𝑎
𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛), then the GFWBHM operator

(24) reduces to the generalized uncertain weighted Bonfer-
roni harmonic mean (GUWBHM) operator as follows:

GUWBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎
𝑟

𝑘
))

1/(𝑝+𝑞+𝑟)

=
[
[

[

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎
𝐿

𝑖
)
𝑝

(𝑎
𝐿

𝑗
)

𝑞

(𝑎
𝐿

𝑘
)
𝑟

))

1/(𝑝+𝑞+𝑟)

,

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎
𝑈

𝑖
)
𝑝

(𝑎
𝑈

𝑗
)

𝑞

(𝑎
𝑈

𝑘
)
𝑟

))

1/(𝑝+𝑞+𝑟)

]
]

]

.

(40)

If𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)𝑇, then the GUWBHMoperator
reduces to the generalized uncertain Bonferroni harmonic
mean (GUBHM):

GUBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

((1/𝑛
3
)∑
𝑛

𝑖,𝑗,𝑘=1
(1/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎
𝑟

𝑘
))

1/(𝑝+𝑞+𝑟)

=
[
[

[

1

((1/𝑛
3
)∑
𝑛

𝑖,𝑗,𝑘=1
(1/(𝑎
𝐿

𝑖
)
𝑝

(𝑎
𝐿

𝑗
)

𝑞

(𝑎
𝐿

𝑘
)
𝑟

))

1/(𝑝+𝑞+𝑟)

,

1

((1/𝑛
3
)∑
𝑛

𝑖,𝑗,𝑘=1
(1/(𝑎
𝑈

𝑖
)
𝑝

(𝑎
𝑈

𝑗
)

𝑞

(𝑎
𝑈

𝑘
)
𝑟

))

1/(𝑝+𝑞+𝑟)

]
]

]

.

(41)

Furthermore, if 𝑎𝐿
𝑖
= 𝑎
𝑈

𝑖
= 𝑎
𝑖
, for all 𝑖, then the

GUWBHM operator reduces to the generalized weighted
Bonferroni harmonic mean (GWBHM) operator:

GWBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎
𝑟

𝑘
))

1/(𝑝+𝑞+𝑟)

.

(42)

In this case, if 𝑝 = 1 and 𝑞 = 𝑟 = 0, the GWBHM operator
reduces to the weighted harmonic mean (WHM) operator.

Example 13. Consider the four triangular fuzzy numbers 𝑎
𝑖

and their weight vector 𝑤 given in Example 8. Then by the
GFWBHM operator (33) (without of generalization, let 𝑝 =
𝑞 = 𝑟 = 3), we have

GFWBHM3,3,3 (𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
)

=
[
[

[

1

(∑
4

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎
𝐿

𝑖
)
3

(𝑎
𝐿

𝑗
)

3

(𝑎
𝐿

𝑘
)
3

))

1/9

,

1

(∑
4

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎
𝑀

𝑖
)
3

(𝑎
𝑀

𝑗
)

3

(𝑎
𝑀

𝑘
)
3

))

1/9

,

1

(∑
4

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎
𝑈

𝑖
)
3

(𝑎
𝑈

𝑗
)

3

(𝑎
𝑈

𝑘
)
3

))

1/9

]
]

]

= [1.21, 2.89, 4.59] .

(43)

Definition 14. Let 𝑎
𝑖
= [𝑎

𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) be

a collection of triangular fuzzy numbers. For 𝑝, 𝑞, 𝑟 ≥ 0,
a generalized fuzzy ordered weighted Bonferroni harmonic
mean (GFOWBHM) operator of dimension 𝑛 is a mapping
GFOWBHM𝑝,𝑞,𝑟 : Ω𝑛 → Ω, that has an associated vector
𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 such that 𝜔

𝑖
≥ 0 and ∑𝑛

𝑖=1
𝜔
𝑖
= 1.

Furthermore,

GFOWBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝜔
𝑖
𝜔
𝑗
𝜔
𝑘
/𝑎
𝑝

𝜎(𝑖)
𝑎
𝑞

𝜎(𝑗)
𝑎
𝑟

𝜎(𝑘)
))

1/(𝑝+𝑞+𝑟)

=

[
[
[

[

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝜔
𝑖
𝜔
𝑗
𝜔
𝑘
/(𝑎
𝐿

𝜎(𝑖)
)

𝑝

(𝑎
𝐿

𝜎(𝑗)
)

𝑞

(𝑎
𝐿

𝜎(𝑘)
)

𝑟

))

1/(𝑝+𝑞+𝑟)

,

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝜔
𝑖
𝜔
𝑗
𝜔
𝑘
/(𝑎
𝑀

𝜎(𝑖)
)

𝑝

(𝑎
𝑀

𝜎(𝑗)
)

𝑞

(𝑎
𝑀

𝜎(𝑘)
)

𝑟

))

1/(𝑝+𝑞+𝑟)

,

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝜔
𝑖
𝜔
𝑗
𝜔
𝑘
/(𝑎
𝑈

𝜎(𝑖)
)

𝑝

(𝑎
𝑈

𝜎(𝑗)
)

𝑞

(𝑎
𝑈

𝜎(𝑘)
)

𝑟

))

1/(𝑝+𝑞+𝑟)

]
]
]

]

,

(44)

where 𝑎
𝜎(𝑖)

= [𝑎
𝐿

𝜎(𝑖)
, 𝑎
𝑀

𝜎(𝑖)
, 𝑎
𝑈

𝜎(𝑖)
] (𝑖 = 1, 2, . . . , 𝑛), and (𝜎(1),

𝜎(2), . . . , 𝜎(𝑛)) is a permutation of (1, 2, . . . , 𝑛) such that
𝑎
𝜎(𝑖−1)

≥ 𝑎
𝜎(𝑖)

for all 𝑖.

However, if there is a tie between 𝑎
𝑖
and𝑎
𝑗
, thenwe replace

each of 𝑎
𝑖
and 𝑎

𝑗
by their average (𝑎

𝑖
+ 𝑎
𝑗
)/2 in process of

aggregation. If 𝑘 items are tied, then we replace these by 𝑘
replicas of their average.



Journal of Applied Mathematics 9

If 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the GFOWBHM

operator reduces to the GFBHM operator. Moreover, some
special cases can be obtained as the change of parameters. If
𝑟 = 0, then the GFOWBHM operator reduces to FOWBHM
operator; if 𝑟 = 0 and 𝑞 = 0, then GFOWBHM operator
reduces to FOWGHMoperator. In particular, if the triangular
fuzzy numbers 𝑎

𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) reduce

to the interval numbers 𝑎
𝑖
= [𝑎

𝐿

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛),

then the GFOWBHM operator reduces to the generalized
uncertain ordered weighted Bonferroni harmonic mean
(GUOWBHM) operator:

GUOWBHM𝑝,𝑞,𝑟 (𝑎
𝑖
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝜔
𝑖
𝜔
𝑗
𝜔
𝑘
/𝑎
𝑝

𝜎(𝑖)
𝑎
𝑞

𝜎(𝑗)
𝑎
𝑟

𝜎(𝑘)
))

1/(𝑝+𝑞+𝑟)

=

[
[
[

[

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝜔
𝑖
𝜔
𝑗
𝜔
𝑘
/(𝑎
𝐿

𝜎(𝑖)
)

𝑝

(𝑎
𝐿

𝜎(𝑗)
)

𝑞

(𝑎
𝐿

𝜎(𝑘)
)

𝑟

))

1/(𝑝+𝑞+𝑟)

,

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝜔
𝑖
𝜔
𝑗
𝜔
𝑘
/(𝑎
𝑈

𝜎(𝑖)
)

𝑝

(𝑎
𝑈

𝜎(𝑗)
)

𝑞

(𝑎
𝑈

𝜎(𝑘)
)

𝑟

))

1/(𝑝+𝑞+𝑟)

]
]
]

]

,

(45)

where 𝑎
𝜎(𝑖)

= [𝑎
𝐿

𝜎(𝑖)
, 𝑎
𝑈

𝜎(𝑖)
], and (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a

permutation of (1, 2, . . . , 𝑛) such that 𝑎
𝜎(𝑖−1)

≥ 𝑎
𝜎(𝑖)

for all 𝑖.
If 𝑎𝐿
𝑖
= 𝑎
𝑈

𝑖
= 𝑎
𝑖
, for all 𝑖 = 1, 2, . . . , 𝑛, then the

GUOWBHM operator reduces to the generalized ordered
weighted Bonferroni harmonicmean (GOWBHM) operator:

GOWBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝜔
𝑖
𝜔
𝑗
𝜔
𝑘
/𝑏
𝑝

𝑖
𝑏
𝑞

𝑗
𝑏
𝑟

𝑘
))

1/(𝑝+𝑞+𝑟)

,

(46)

where 𝑏
𝑖
is the 𝑖th largest of 𝑎

𝑖
(𝑖 = 1, 2, . . . , 𝑛). In this case, if

𝑝 = 1 and 𝑞 = 𝑟 = 0, then the GOWBHM operator reduces
to the ordered weighted harmonic mean (OWHM) operator.

The GOWBHM operator (46) has some special cases.
(1) If 𝜔 = (1, 0, . . . , 0)𝑇, then

GOWBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = max {𝑎

𝑖
} = 𝑏
1
. (47)

(2) If 𝜔 = (0, 0, . . . , 1)𝑇, then

GOWBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = min {𝑎

𝑖
} = 𝑏
𝑛
. (48)

(3) If 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)𝑇, then

GOWBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=

1

((1/𝑛
3
)∑
𝑛

𝑖,𝑗,𝑘=1
(1/𝑏
𝑝

𝑖
𝑏
𝑞

𝑗
𝑏
𝑟

𝑘
))

1/(𝑝+𝑞+𝑟)

=

1

((1/𝑛
3
)∑
𝑛

𝑖,𝑗,𝑘=1
(1/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎
𝑟

𝑘
))

1/(𝑝+𝑞+𝑟)

,

(49)

which we call the generalized Bonferroni harmonic mean
(GBHM) operator.

Example 15. Consider the four triangular fuzzy numbers 𝑎
𝑖

and their weight vector 𝑤 given in Example 10. Then by the
GFOWBHM operator (44) (let 𝑝 = 𝑞 = 𝑟 = 3), we have

GFOWBHM3,3,3 (𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
)

=

[
[
[
[

[

1

(∑
5

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎
𝐿

𝜎(𝑖)
)

3

(𝑎
𝐿

𝜎(𝑗)
)

3

(𝑎
𝐿

𝜎(𝑘)
)

3

))

1/9

,

1

(∑
5

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎
𝑀

𝜎(𝑖)
)

3

(𝑎
𝑀

𝜎(𝑗)
)

3

(𝑎
𝑀

𝜎(𝑘)
)

3

))

1/9

,

1

(∑
5

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎
𝑈

𝜎(𝑖)
)

3

(𝑎
𝑈

𝜎(𝑗)
)

3

(𝑎
𝑈

𝜎(𝑘)
)

3

))

1/9

]
]
]
]

]

= [1.751, 3.410, 5.422] .

(50)

In the following section, we will apply the developed opera-
tors to multiple attribute group decision making.

3. An Approach to Multiple Attribute
Group Decision Making with Triangular
Fuzzy Information

For a group decision making with triangular fuzzy informa-
tion, let𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a discrete set of 𝑛 alternatives,

let 𝐺 = {𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑚
} be the set of 𝑚 attributes, whose

weight vector is 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
)
𝑇 with 𝑤

𝑖
≥ 0 and

∑
𝑚

𝑖=1
𝑤
𝑖
= 1, and let𝐷 = {𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑠
} be the set of decision

makers, whose weight vector is V = (V
1
, V
2
, . . . , V

𝑠
)
𝑇, where

V
𝑘
≥ 0 and ∑𝑠

𝑘=1
V
𝑘
= 1. Suppose that 𝐴(𝑘) = (𝑎

(𝑘)

𝑖𝑗
)
𝑚×𝑛

is the decision matrix, where 𝑎(𝑘)
𝑖𝑗

= [𝑎
𝐿(𝑘)

𝑖𝑗
, 𝑎
𝑀(𝑘)

𝑖𝑗
, 𝑎
𝑈(𝑘)

𝑖𝑗
] is

an attribute value, which takes the form of triangular fuzzy
number, of the alternative 𝑥

𝑗
∈ 𝑋with respect to the attribute

𝐺
𝑖
∈ 𝐺.
In the following, we apply the GFWBHM and

GFOWBHM operators to group decision making with
triangular fuzzy information.

Step 1. Normalize each attribute value 𝑎(𝑘)
𝑖𝑗

in the matrix 𝐴(𝑘)

into a corresponding element in the matrix 𝑅(𝑘) = (𝑟(𝑘)
𝑖𝑗
)
𝑚×𝑛

(𝑟(𝑘)
𝑖𝑗
= [𝑟
𝐿(𝑘)

𝑖𝑗
, 𝑟
𝑀(𝑘)

𝑖𝑗
, 𝑟
𝑈(𝑘)

𝑖𝑗
]) using the following formulas:

𝑟
(𝑘)

𝑖𝑗
=

𝑎
(𝑘)

𝑖𝑗

∑
𝑛

𝑗=1
𝑎
(𝑘)

𝑖𝑗
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= [

[

𝑎
𝐿(𝑘)

𝑖𝑗

∑
𝑛

𝑗=1
𝑎
𝑈(𝑘)

𝑖𝑗

,

𝑎
𝑀(𝑘)

𝑖𝑗

∑
𝑛

𝑗=1
𝑎
𝑀(𝑘)

𝑖𝑗

,

𝑎
𝑈(𝑘)

𝑖𝑗

∑
𝑛

𝑗=1
𝑎
𝐿(𝑘)

𝑖𝑗

]

]

,

for benefit attribute 𝐺
𝑖
, 𝑖 = 1, 2, . . . , 𝑚,

𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑠,

𝑟
(𝑘)

𝑖𝑗
=

1/𝑎
(𝑘)

𝑖𝑗

∑
𝑛

𝑗=1
(1/𝑎
(𝑘)

𝑖𝑗
)

= [

[

1/𝑎
𝑈(𝑘)

𝑖𝑗

∑
𝑛

𝑗=1
(1/𝑎
𝐿(𝑘)

𝑖𝑗
)

,

1/𝑎
𝑀(𝑘)

𝑖𝑗

∑
𝑛

𝑗=1
(1/𝑎
𝑀(𝑘)

𝑖𝑗
)

,

1/𝑎
𝐿(𝑘)

𝑖𝑗

∑
𝑛

𝑗=1
(1/𝑎
𝑈(𝑘)

𝑖𝑗
)

]

]

,

for cost attribute 𝐺
𝑖
, 𝑖 = 1, 2, . . . , 𝑚,

𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑠.

(51)

Step 2. Utilize the GFWBHM operator (33) as follows:

𝑟
(𝑘)

𝑗
= GFWBHM𝑝,𝑞,𝑟 (𝑟(𝑘)

1𝑗
, 𝑟
(𝑘)

2𝑗
, . . . , 𝑟

(𝑘)

𝑚𝑗
)

=

1

(∑
𝑚

𝑖,ℎ,𝑙=1
(𝑤
𝑖
𝑤
ℎ
𝑤
𝑙
/(𝑟
(𝑘)

𝑖𝑗
)

𝑝

(𝑟
(𝑘)

ℎ𝑗
)

𝑞

(𝑟
(𝑘)

𝑙𝑗
)

𝑟

))

1/(𝑝+𝑞+𝑟)

=

[
[
[

[

(

𝑚

∑

𝑖,ℎ,𝑙=1

(

𝑤
𝑖
𝑤
ℎ
𝑤
𝑙

(𝑟
𝐿(𝑘)

𝑖𝑗
)

𝑝

(𝑟
𝐿(𝑘)

ℎ𝑗
)

𝑞

(𝑟
𝐿(𝑘)

𝑙𝑗
)

𝑟
))

−1/(𝑝+𝑞+𝑟)

,

(

𝑚

∑

𝑖,ℎ,𝑙=1

(

𝑤
𝑖
𝑤
ℎ
𝑤
𝑙

(𝑟
𝑀(𝑘)

𝑖𝑗
)

𝑝

(𝑟
𝑀(𝑘)

ℎ𝑗
)

𝑞

(𝑟
𝑀(𝑘)

𝑙𝑗
)

𝑟
))

−1/(𝑝+𝑞+𝑟)

,

(

𝑚

∑

𝑖,ℎ,𝑙=1

(

𝑤
𝑖
𝑤
ℎ
𝑤
𝑙

(𝑟
𝑈(𝑘)

𝑖𝑗
)

𝑝

(𝑟
𝑈(𝑘)

ℎ𝑗
)

𝑞

(𝑟
𝑈(𝑘)

𝑙𝑗
)

𝑟
))

−1/(𝑝+𝑞+𝑟)

]
]
]

]

,

(52)

to aggregate all the elements in the 𝑗th column of 𝑅(𝑘)

and get the overall attribute value 𝑟(𝑘)
𝑗

of the alternative 𝑥
𝑗

corresponding to the decision maker 𝑑
𝑘
.

Step 3. Utilize the GFOWBHM operator (44):

𝑟
𝑗
= GFOWBHM𝑝,𝑞,𝑟 (𝑟(1)

𝑗
, 𝑟
(2)

𝑗
, . . . , 𝑟

(𝑠)

𝑗
)

=

1

(∑
𝑠

𝑘,ℎ,𝑙=1
(𝜔
𝑘
𝜔
ℎ
𝜔
𝑙
/(
̇
�̂�

𝜎(𝑘)

𝑗
)

𝑝

(
̇
�̂�

𝜎(ℎ)

𝑗
)

𝑞

(
̇
�̂�

𝜎(𝑙)

𝑗
)

𝑟

))

1/(𝑝+𝑞+𝑟)

= [

[

(

𝑠

∑

𝑘,ℎ,𝑙=1

(

𝜔
𝑘
𝜔
ℎ
𝜔
𝑙

( ̇𝑟
𝐿(𝜎(𝑘))

𝑗
)

𝑝

( ̇𝑟
𝐿(𝜎(ℎ))

𝑗
)

𝑞

( ̇𝑟
𝐿(𝜎(𝑙))

𝑗
)

𝑟
))

−1/(𝑝+𝑞+𝑟)

,

(

𝑠

∑

𝑘,ℎ,𝑙=1

(

𝜔
𝑘
𝜔
ℎ
𝜔
𝑙

( ̇𝑟
𝑀(𝜎(𝑘))

𝑗
)

𝑝

( ̇𝑟
𝑀(𝜎(ℎ))

𝑗
)

𝑞

( ̇𝑟
𝑀(𝜎(𝑙))

𝑗
)

𝑟
))

−1/(𝑝+𝑞+𝑟)

,

(

𝑠

∑

𝑘,ℎ,𝑙=1

(

𝜔
𝑘
𝜔
ℎ
𝜔
𝑙

( ̇𝑟
𝑈(𝜎(𝑘))

𝑗
)

𝑝

( ̇𝑟
𝑈(𝜎(ℎ))

𝑗
)

𝑞

( ̇𝑟
𝑈(𝜎(𝑙))

𝑗
)

𝑟
))

−1/(𝑝+𝑞+𝑟)

]

]

,

(53)

to aggregate the overall attribute values 𝑟(𝑘)
𝑗
(𝑘 = 1, 2, . . . , 𝑠)

corresponding to the decision maker 𝑑
𝑘
(𝑘 = 1, 2, . . . , 𝑠) and

get the collective overall attribute value 𝑟
𝑗
, where ̇

�̂�

(𝜎(𝑘))

𝑗
=

[ ̇𝑟
𝐿(𝜎(𝑘))

𝑗
, ̇𝑟
𝑀(𝜎(𝑘))

𝑗
, ̇𝑟
𝑈(𝜎(𝑘))

𝑗
] is the 𝑘th largest of the weighted

data and ̇
�̂�

(𝑘)

𝑗
(
̇
�̂�

(𝑘)

𝑗
= 𝑠V
𝑘
𝑟
(𝑘)

𝑗
, 𝑘 = 1, 2, . . . , 𝑠), 𝜔 = (𝜔

1
, 𝜔
2
,

. . . , 𝜔
𝑠
)
𝑇 is the weighting vector of the GFOWBHM operator,

with 𝜔
𝑘
≥ 0 and ∑𝑠

𝑘=1
𝜔
𝑘
= 1.

Step 4. Compare each 𝑟
𝑗
with all 𝑟

𝑖
(𝑖 = 1, 2, . . . , 𝑛) by using

(7), and let 𝑝
𝑖𝑗
= 𝑝(𝑟
𝑖
≥ 𝑟
𝑗
), and then construct the possibility

matrix 𝑃 = (𝑝
𝑖𝑗
)
𝑛×𝑛

, where 𝑝
𝑖𝑗
≥ 0, 𝑝

𝑖𝑗
+ 𝑝
𝑗𝑖
= 1, 𝑝

𝑖𝑖
= 0.5,

𝑖, 𝑗 = 1, 2, . . . , 𝑛. Summing all elements in each line of matrix
𝑃, we have 𝑝

𝑖
= ∑
𝑛

𝑗=1
𝑝
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑛, and then reorder

𝑟
𝑗
(𝑗 = 1, 2, . . . , 𝑛) in descending order in accordance with

the values of 𝑝
𝑗
(𝑗 = 1, 2, . . . , 𝑛).

Step 5. Rank all alternatives 𝑥
𝑗
(𝑗 = 1, 2, . . . , 𝑛) by the ranking

of 𝑟
𝑗
(𝑗 = 1, 2, . . . , 𝑛), and then select the most desirable one.

Step 6. End.

4. Example Illustrations

In this section, we use a multiple attribute group deci-
sion making problem of determining what kind of air-
conditioning systems should be installed in a library (adopted
from [21, 30]) to illustrate the proposed approach.

A city is planning to build a municipal library. One of
the problems facing the city development commissioner is
to determine what kind of air-conditioning systems should
be installed in the library. The contractor offers five feasible
alternatives, whichmight be adapted to the physical structure
of the library. The alternatives 𝑥

𝑗
(𝑗 = 1, 2, 3, 4, 5) are to

be evaluated using triangular fuzzy numbers by the three
decision makers 𝑑

𝑘
(𝑘 = 1, 2, 3) (whose weight vector is

V = (0.4, 0.3, 0.3)
𝑇) under three major impacts: economic,

functional, and operational. Two monetary attributes and
six nonmonetary attributes (i.e., 𝐺

1
: owning cost ($/ft2),

𝐺
2
: operating cost ($/ft2), 𝐺

3
: performance (∗), 𝐺

4
: noise

level (Db), 𝐺
5
: maintainability (∗), 𝐺

6
: reliability (%), 𝐺

7
:

flexibility (∗), 𝐺
8
: safety (∗), where ∗ unit is from 0 to 1

scale, three attributes 𝐺
1
, 𝐺
2
, and 𝐺

4
are cost attributes, and

the other five attributes are benefit attributes, and suppose
that the weight vector of the attributes 𝐺

𝑖
(𝑖 = 1, 2, . . . , 8)

is 𝑤 = (0.05, 0.08, 0.14, 0.12, 0.18, 0.21, 0.05, 0.17)𝑇) emerged
from three impacts is Tables 1, 2, and 3.

In the following, we utilize the decision procedure to
select the best air-conditioning system.
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Table 1: Triangular fuzzy number decision matrix 𝐴(1).

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝐺
1

[3.5, 4.0, 4.7] [1.7, 2.0, 2.3] [3.5, 3.8, 4.2] [3.5, 3.8, 4.5] [3.3, 3.8, 4.0]
𝐺
2

[5.5, 6.0, 6.5] [4.8, 5.1, 5.5] [4.5, 5.2, 5.5] [4.5, 4.7, 5.0] [5.5, 5.7, 6.0]
𝐺
3

[0.7, 0.8, 0.9] [0.5, 0.56, 0.6] [0.5, 0.6, 0.7] [0.7, 0.85, 0.9] [0.6, 0.7, 0.8]
𝐺
4

[35, 40, 45] [70, 73, 75] [65, 68, 70] [40, 42, 45] [50, 55, 60]
𝐺
5

[0.4, 0.45, 0.5] [0.4, 0.44, 0.6] [0.7, 0.76, 0.8] [0.9, 0.97, 1.0] [0.5, 0.54, 0.6]
𝐺
6

[95, 98, 100] [70, 73, 75] [80, 83, 90] [90, 93, 95] [85, 90, 95]
𝐺
7

[0.3, 0.35, 0.5] [0.7, 0.75, 0.8] [0.8, 0.9, 1.0] [0.6, 0.75, 0.8] [0.4, 0.5, 0.6]
𝐺
8

[0.7, 0.74, 0.8] [0.5, 0.53, 0.6] [0.6, 0.68, 0.7] [0.7, 0.8, 0.9] [0.8, 0.85, 0.9]

Table 2: Triangular fuzzy number decision matrix 𝐴(2).

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝐺
1

[4.0, 4.3, 4.5] [2.1, 2.2, 2.4] [5.0, 5.1, 5.2] [4.3, 4.4, 4.5] [3.0, 3.3, 3.5]
𝐺
2

[6.0, 6.3, 6.5] [5.0, 5.1, 5.2] [4.5, 4.7, 5.0] [5.0, 5.1, 5.3] [7.0, 7.5, 8.0]
𝐺
3

[0.7, 0.8, 0.9] [0.4, 0.5, 0.6] [0.5, 0.55, 0.6] [0.7, 0.75, 0.8] [0.7, 0.8, 0.9]
𝐺
4

[37, 38, 39] [70, 73, 75] [65, 66, 67] [40, 42, 45] [50, 52, 55]
𝐺
5

[0.4, 0.5, 0.6] [0.5, 0.55, 0.6] [0.8, 0.85, 0.9] [0.8, 0.95, 1.0] [0.4, 0.44, 0.5]
𝐺
6

[92, 93, 95] [70, 75, 80] [83, 84, 85] [90, 91, 92] [90, 93, 95]
𝐺
7

[0.4, 0.45, 0.5] [0.8, 0.85, 0.9] [0.7, 0.73, 0.8] [0.7, 0.85, 0.9] [0.4, 0.45, 0.5]
𝐺
8

[0.6, 0.7, 0.8] [0.6, 0.65, 0.7] [0.5, 0.6, 0.7] [0.7, 0.76, 0.8] [0.7, 0.8, 0.9]

Table 3: Triangular fuzzy number decision matrix 𝐴(3).

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝐺
1

[4.3, 4.4, 4.6] [2.2, 2.4, 2.5] [4.5, 4.8, 5.0] [4.7, 4.9, 5.0] [3.1, 3.2, 3.4]
𝐺
2

[6.4, 6.7, 7.0] [5.0, 5.2, 5.5] [4.7, 4.8, 4.9] [5.5, 5.7, 6.0] [6.0, 6.5, 7.0]
𝐺
3

[0.8, 0.85, 0.9] [0.5, 0.6, 0.7] [0.6, 0.7, 0.8] [0.7, 0.8, 0.9] [0.7, 0.75, 0.8]
𝐺
4

[36, 38, 40] [72, 73, 75] [67, 68, 70] [45, 48, 50] [55, 57, 60]
𝐺
5

[0.4, 0.46, 0.5] [0.4, 0.45, 0.6] [0.8, 0.95, 1.0] [0.8, 0.85, 0.9] [0.5, 0.55, 0.6]
𝐺
6

[93, 94, 95] [77, 78, 80] [85, 87, 90] [90, 94, 95] [90, 96, 100]
𝐺
7

[0.4, 0.5, 0.6] [0.8, 0.9, 1.0] [0.8, 0.86, 0.9] [0.6, 0.7, 0.8] [0.5, 0.57, 0.6]
𝐺
8

[0.7, 0.78, 0.8] [0.5, 0.55, 0.6] [0.6, 0.68, 0.7] [0.8, 0.85, 0.9] [0.8, 0.85, 0.9]

Step 1. By using (51), we normalize each attribute value 𝑎(𝑘)
𝑖𝑗

in
the matrices𝐴(𝑘) (𝑘 = 1, 2, 3) into the corresponding element
in the matrices 𝑅(𝑘) = (𝑟

𝑖𝑗
)
8×5

(𝑘 = 1, 2, 3) (Tables 4, 5, and 6).

Step 2. Utilize theGFWBHMoperator (52) (let𝑝 = 𝑞 = 𝑟 = 3)
to aggregate all elements in the 𝑗th column 𝑅(𝑘) and get the
overall attribute value 𝑟(𝑘)

𝑗
:

𝑟
(1)

1
= [0.1390, 0.1753, 0.2187] ,

𝑟
(1)

2
= [0.1347, 0.1586, 0.1927] ,

𝑟
(1)

3
= [0.1581, 0.1852, 0.2178] ,

𝑟
(1)

4
= [0.1900, 0.2289, 0.2651] ,

𝑟
(1)

5
= [0.1565, 0.1911, 0.2311] ,

𝑟
(2)

1
= [0.1480, 0.1851, 0.2248] ,

𝑟
(2)

2
= [0.1434, 0.1706, 0.1992] ,

𝑟
(2)

3
= [0.1561, 0.1792, 0.2057] ,

𝑟
(2)

4
= [0.1927, 0.2228, 0.2477] ,

𝑟
(2)

5
= [0.1499, 0.1761, 0.2098] ,

𝑟
(3)

1
= [0.1459, 0.1811, 0.2104] ,

𝑟
(3)

2
= [0.1370, 0.1607, 0.1938] ,

𝑟
(3)

3
= [0.1679, 0.1921, 0.2173] ,

𝑟
(3)

4
= [0.1883, 0.2138, 0.2395] ,

𝑟
(3)

5
= [0.1678, 0.1922, 0.2215] .

(54)
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Table 4: Normalized triangular fuzzy number decision matrix 𝑅(1).

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝐺
1

[0.12, 0.16, 0.21] [0.25, 0.32, 0.43] [0.14, 0.17, 0.21] [0.13, 0.17, 0.21] [0.14, 0.17, 0.22]
𝐺
2

[0.15, 0.18, 0.21] [0.18, 0.21, 0.24] [0.18, 0.20, 0.25] [0.20, 0.23, 0.25] [0.16, 0.19, 0.21]
𝐺
3

[0.18, 0.23, 0.30] [0.13, 0.16, 0.20] [0.13, 0.17, 0.23] [0.18, 0.24, 0.30] [0.15, 0.20, 0.27]
𝐺
4

[0.22, 0.26, 0.32] [0.13, 0.14, 0.16] [0.14, 0.15, 0.17] [0.22, 0.25, 0.28] [0.16, 0.19, 0.23]
𝐺
5

[0.11, 0.14, 0.17] [0.11, 0.14, 0.21] [0.20, 0.24, 0.28] [0.26, 0.31, 0.34] [0.14, 0.17, 0.21]
𝐺
6

[0.21, 0.22, 0.24] [0.15, 0.17, 0.18] [0.18, 0.19, 0.21] [0.20, 0.21, 0.23] [0.19, 0.21, 0.23]
𝐺
7

[0.08, 0.11, 0.18] [0.19, 0.23, 0.29] [0.22, 0.28, 0.36] [0.16, 0.23, 0.29] [0.11, 0.15, 0.21]
𝐺
8

[0.18, 0.21, 0.24] [0.13, 0.15, 0.18] [0.15, 0.19, 0.21] [0.18, 0.22, 0.27] [0.21, 0.24, 0.27]

Table 5: Normalized triangular fuzzy number decision matrix 𝑅(2).

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝐺
1

[0.15, 0.16, 0.19] [0.28, 0.32, 0.36] [0.13, 0.14, 0.15] [0.15, 0.16, 0.17] [0.19, 0.21, 0.25]
𝐺
2

[0.17, 0.18, 0.19] [0.21, 0.22, 0.23] [0.21, 0.24, 0.26] [0.20, 0.22, 0.23] [0.13, 0.15, 0.17]
𝐺
3

[0.18, 0.24, 0.30] [0.11, 0.15, 0.20] [0.13, 0.16, 0.20] [0.18, 0.22, 0.27] [0.18, 0.24, 0.30]
𝐺
4

[0.25, 0.27, 0.29] [0.13, 0.14, 0.15] [0.15, 0.15, 0.16] [0.22, 0.24, 0.27] [0.18, 0.20, 0.21]
𝐺
5

[0.11, 0.15, 0.21] [0.14, 0.17, 0.21] [0.22, 0.26, 0.31] [0.22, 0.29, 0.34] [0.11, 0.13, 0.17]
𝐺
6

[0.21, 0.21, 0.22] [0.16, 0.17, 0.19] [0.19, 0.19, 0.20] [0.20, 0.21, 0.22] [0.20, 0.21, 0.22]
𝐺
7

[0.11, 0.14, 0.17] [0.22, 0.26, 0.30] [0.19, 0.22, 0.27] [0.19, 0.26, 0.30] [0.19, 0.14, 0.17]
𝐺
8

[0.15, 0.20, 0.26] [0.15, 0.19, 0.23] [0.13, 0.17, 0.23] [0.18, 0.22, 0.26] [0.18, 0.23, 0.29]

Table 6: Normalized triangular fuzzy number decision matrix 𝑅(3).

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝐺
1

[0.15, 0.17, 0.18] [0.28, 0.30, 0.35] [0.14, 0.15, 0.17] [0.14, 0.15, 0.16] [0.20, 0.23, 0.25]
𝐺
2

[0.16, 0.17, 0.19] [0.20, 0.22, 0.24] [0.22, 0.24, 0.25] [0.18, 0.20, 0.22] [0.16, 0.17, 0.20]
𝐺
3

[0.20, 0.23, 0.27] [0.12, 0.16, 0.21] [0.15, 0.19, 0.24] [0.17, 0.22, 0.27] [0.17, 0.20, 0.24]
𝐺
4

[0.26, 0.28, 0.31] [0.14, 0.15, 0.16] [0.15, 0.16, 0.17] [0.21, 0.22, 0.25] [0.17, 0.19, 0.20]
𝐺
5

[0.11, 0.14, 0.17] [0.11, 0.14, 0.21] [0.22, 0.29, 0.34] [0.22, 0.26, 0.31] [0.14, 0.17, 0.21]
𝐺
6

[0.20, 0.21, 0.22] [0.17, 0.17, 0.18] [0.18, 0.19, 0.21] [0.20, 0.21, 0.22] [0.20, 0.21, 0.23]
𝐺
7

[0.10, 0.14, 0.19] [0.21, 0.25, 0.32] [0.21, 0.24, 0.29] [0.15, 0.20, 0.26] [0.13, 0.16, 0.19]
𝐺
8

[0.18, 0.21, 0.24] [0.13, 0.15, 0.18] [0.15, 0.18, 0.21] [0.21, 0.23, 0.26] [0.21, 0.23, 0.26]

Step 3. Utilize the GFOWBHM operator (53) (suppose that
its weight vector is 𝜔 = (0.243, 0.514, 0.243)𝑇 determined by
using the normal distribution based method [27] (let 𝛿 = 0.5
and 𝑝 = 𝑞 = 𝑟 = 3) to aggregate the overall attribute value
𝑟
(𝑘)

𝑗
(𝑘 = 1, 2, 3), corresponding to the decision maker 𝑑

𝑘
(𝑘 =

1, 2, 3), and get the collective overall attribute value 𝑟
𝑗
:

𝑟
1
= [0.1459, 0.1816, 0.2195] ,

𝑟
2
= [0.1395, 0.1649, 0.1962] ,

𝑟
3
= [0.1592, 0.1837, 0.2111] ,

𝑟
4
= [0.1909, 0.2218, 0.2493] ,

𝑟
5
= [0.1552, 0.1830, 0.2171] .

(55)

Step 4. Compare each 𝑟
𝑗
with all 𝑟

𝑖
(𝑖 = 1, 2, 3, 4, 5) by using

(7) (without loss of generality, set 𝛿 = 0.5), and let𝑝
𝑖𝑗
= 𝑝(𝑟
𝑖
≥

𝑟
𝑗
), and then construct a possibility matrix:

𝑃 =(

0.5 0.7387 0.4598 0 0.4610

0.2613 0.5 0.1638 0 0.1921

0.5402 0.8362 0.5 0 0.5010

1 1 1 0.5 1

0.5390 0.8079 0.4990 0 0.5

) (56)

Summing all elements in each line of matrix 𝑃, we have

𝑝
1
= 2.1595, 𝑝

2
= 1.1171, 𝑝

3
= 2.3774,

𝑝
4
= 4.5, 𝑝

5
= 2.3459,

(57)

and then reorder 𝑟
𝑗
(𝑗 = 1, 2, 3, 4, 5) in descending order in

accordance with the values of 𝑝
𝑗
(𝑗 = 1, 2, 3, 4, 5):

𝑟
4
> 𝑟
3
> 𝑟
5
> 𝑟
1
> 𝑟
2
. (58)

Step 5. Rank all the alternatives 𝑥
𝑗
(𝑗 = 1, 2, 3, 4, 5) by the

ranking of 𝑟
𝑗
(𝑗 = 1, 2, 3, 4, 5):

𝑥
4
≻ 𝑥
3
≻ 𝑥
5
≻ 𝑥
1
≻ 𝑥
2
, (59)

and thus the most desirable alternative is 𝑥
4
.

From the previous analysis, the results obtained by the
proposed approach are very similar to the ones obtained Xu’s
approach [21], but our approach is more flexible than that
of Xu [21] because it can provide the decision makers more
choices as parameters are assigned different values.
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Table 7: Comparison of the proposed approach with other approaches.

Xu’s approach [21] Wei’s approach [22] Sun and Sun’s approach
[23] Proposed approach

Problem type MAGDM MAGDM MADM MAGDM

Application area Air-conditioning system
selection Investment of money EPR system selection Air-conditioning system

selection

Decision information Triangular fuzzy decision
matrix

Triangular fuzzy
decision matrix

Triangular fuzzy decision
matrix

Triangular fuzzy decision
matrix

Solution method
Aggregation stage FWHM operator FIOWHM operator GFWBHM operator
Exploitation stage FHHM operator FWHM operator FOBHM operator GFOWBHM operator
Ranking stage Complementary matrix Complementary matrix Possibility matrix Possibility matrix

Final decision Ranking of alternatives Ranking of alternatives Ranking of alternatives Ranking of alternatives

5. Comparison of the Proposed Approach
with Other Approaches

In this section, we compare the proposed approachwith other
approaches. The approaches to be compared here are the
approaches proposed by Xu [21], Wei [22], and H. Sun and
M. Sun [23], respectively.

Each of methods has its advantages and disadvantages
and none of them can always perform better than the others
in any situations. It perfectly depends on how we look at
things and not on how they are themselves. The differences
in four approaches are the following.

(1) The H. Sun and M. Sun’s approach is only suit-
able for solving multiple attribute decision making
(MADM), while the proposed approach and Xu’s and
Wei’s approaches are suitable for solving MAGDM
because the approaches provide the aggregation stage
in aggregation process.

(2) The Xu’s and Wei’s approaches have simple com-
putation process than the proposed approach and
H. Sun and M. Sun’s approach, while the proposed
approach and H. Sun andM. Sun’s approach are more
flexible than Xu’s and Wei’s approaches because these
can provide the decision makers more choices as
parameters are assigned different values.

(3) The Wei’s approach uses the weights of decision
makers as the order inducing variables in aggregation
stage, while other approaches use the weights of
decision makers to determine the order positions of
the overall attribute values in exploitation stage.

Others of relative comparisonwithXu’s,Wei’s, andH. Sun
and M. Sun’s approaches are shown in Table 7.

6. Conclusions

In this paper, we have extended the GWBM operator to
the triangular fuzzy environment and developed the fuzzy
harmonic aggregation operators including the FWBHM and
GFWBHM operators. Based on the these operators and
Yager’s OWA operator, we have developed the FOWBHM

operator and the GFOWBHMoperator, respectively, and dis-
cussed their properties and special cases. It has been pointed
out that if all the input fuzzy data reduce to the interval
or numerical data, then the GFWBHM operator reduces
to the GUWBHM operator and GWBHM operator, respec-
tively; the GFOWBHMoperator reduces to the GUOWBHM
operator and GOWBHM operator, respectively. In these
situations, the WHM (resp., OWHM) operator is the special
case of the GWBHM (resp. GOWBHM) operator. Based
on the GFWBHM and GFOWBHM operators, we have
developed an approach to multiple attribute group decision
making with triangular fuzzy information and have also
applied the proposed approach to the problemof determining
what kind of air-conditioning systems should be installed in
the library. Furthermore, the comparison of the proposed
approach with other existing approaches is presented. The
merit of the proposed approach is that it is more flexible
than the classical ones because it can provide the decision
makers more choices as parameters are assigned different
values. Apparently, the proposed aggregation techniques and
decision making method can also extended to the interval-
valued triangular fuzzy environment.
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Most preferred ordered weighted average (MP-OWA) operator is a new kind of neat (dynamic weight) OWA operator in the
aggregation operator families. It considers the preferences of all alternatives across the criteria and provides unique aggregation
characteristics in decision making. In this paper, we propose the parametric form of the MP-OWA operator to deal with the
uncertainty preference information, which includes MP-OWA operator as its special case, and it also includes the most commonly
used maximum, minimum, and average aggregation operators. A special form of parametric MP-OWA operator with power
function is proposed. Some properties of the parametric MP-OWA operator are provided and the advantages of them in decision
making problems are summarized. The new proposed parametric MP-OWA operator can grasp the subtle preference information
of the decision maker according to the application context through multiple aggregation results. They are applied to rank search
engines considering the relevance of the retrieved queries. An search engine ranking example illustrates the application of
parametric MP-OWA operator in various decision situations.

1. Introduction

The ordered weighted averaging (OWA) operator, which
was introduced by Yager [1], provides for aggregation lying
betweenmaximumandminimumoperators and has received
more andmore attention since its appearance [2, 3].TheOWA
operator has been used in a wide range of applications, such
as neural networks [4, 5], database systems [6, 7], fuzzy logic
controllers [8, 9], decision making [10–12], expert systems
[13–15], database querymanagement and datamining [16, 17],
and lossless image compression [18, 19].

Until now, according to the weight assignment methods,
the existing OWA operators can be classified into two catego-
ries: one is the static OWA operators having weights depend-
ing on the serial position, and the other is dynamic or neat
OWA operators having weights depending on the aggregated
elements. The static OWA operators include the maximum
entropy operator [20], minimum variance operator [21], the
maximumRényi entropy operator [22], least square deviation
operator and chi-square operator [23], exponential OWA
operator [24], linguistic ordered weighted averaging operator
[5, 25], and intuitionistic fuzzy ordered weighted distance
operator [26–28].

For neat OWA operator with dynamic weights, Yager
[29, 30] proposed the families of neat OWA operator called
basic defuzzification distribution (BADD) OWA operator
and parameterized and-like and or-like OWA operators.
Marimin et al. [31, 32] used neat OWA operator to aggregate
the linguistic labels for expressing fuzzy preferences in
group decision making problem. Peláez and Doña [33, 34]
introducedmajority additive OWA (MA-OWA) operator and
quantified MA-OWA (QMA-OWA) operator to model the
majority idea in group decisionmaking problem. Liu and Lou
[35] extended BADD OWA operator to additive neat OWA
(ANOWA) operator for decision making problem. Wu et al.
[36] introduced an argument-dependent approach based on
maximizing the entropy.

Recently, Emrouznejad [3] proposed a new kind of neat
OWAoperator calledmost preferredOWA (MP-OWA) oper-
ator, which considers the preferences of alternatives across
all the criteria. It has an interesting characteristic that the
aggregation combines static OWA operator with dynamic
OWAoperator together.That is, because the weights correlate
with internal aggregated elements in the way of neat OWA
operator, and the aggregated elements must be ordered
decreasingly when aggregating, which is the same as that
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of static-weight OWA operator, consequently, the MP-OWA
operator not only has the advantage of neat OWA operator
in which the weighting vector is relevant with the aggregated
elements values rather than the positions, but also utilizes
the most preferred information, which is connected with
the maximum frequency of all scales for each criteria. Some
extension researches aboutMP-OWA operator and the appli-
cation can be found in the literature [3, 4, 11, 37, 38].

In this paper, we propose parametric MP-OWA operator
families, which combine the characteristics of MP-OWA
operator with ordinary neat OWA operator together. We
also propose the family of parametric MP-OWA operator
with power function; it is quite useful as it includes the
currentMP-OWAoperator as a special case and also includes
multiple situations because of the aggregation results ranging
between the minimum and the maximum. Meanwhile, some
properties of the parametric MP-OWA operator and the
MP-OWA operator family with power function are provided
and analyzed, which can be used as the basis to apply our
new parametric MP-OWA operator in practice. Moreover,
we discuss the advantages of our new parametric MP-
OWA operator, which not only helps decision makers realize
viewing the decision making problem completely through
considering the preference relation and the parameter (𝑟),
but also offers another kind of method for decision making
problems based on preference information. We apply the
proposed method to decision making problem concentrated
on ranking search engines and get different rankings through
changing the values of parameter (𝑟), which can help decision
makers recognize the best search engines indirectly as well. It
is necessary to stress that the proposed method can develop
an amazingly wide range of decision making problems with
preference relations such as information aggregation and
group decision making.

This paper is organized as follows: Section 2 reviews some
basic concepts of neatOWAoperator andMP-OWAoperator.
Section 3 gives a general form of parametric MP-OWA oper-
ator and develops a particular member of MP-OWA operator
with power function; some properties and advantages are
also discussed. Section 4 gives an example of ranking search
engines using the proposed approach. Section 5 summarizes
the main results and draws conclusions.

2. Preliminaries

2.1. Neat OWA Operator. Yager [29] proposed neat OWA
operator, whichmeans theweighting vector not only depends
on position indexes of the aggregated elements, but also the
aggregated values.

Assume 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
is a collection of numbers; the

aggregation of neat OWA operator is indicated as follows:

𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) =

𝑛

∑

𝑖=1

𝑤
𝑖
𝑦
𝑖
, (1)

where 𝑦
𝑖
is the 𝑖th largest value of 𝑥

𝑖
and 𝑤

𝑖
is the weights to

be a function of the ordered aggregated elements 𝑦
𝑖
, which is

denoted as follows:
𝑤
𝑖

= 𝑓
𝑖
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) . (2)

The weights are required to satisfy two conditions:
(1) 𝑤
𝑖

∈ [0, 1] for each 𝑖,
(2) ∑
𝑛

𝑖=1
𝑤
𝑖

= 1.
In this case, (1) can be rewritten as follows:

𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) =

𝑛

∑

𝑖=1

𝑓
𝑖
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) 𝑦
𝑖
. (3)

If 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) are inputs, 𝑌 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) are

inputs ordered, and 𝑍 = (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) = Perm(𝑥

1
, 𝑥
2
, . . . ,

𝑥
𝑛
) is any permutation of the inputs, then the OWA operator

is neat if

𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) =

𝑛

∑

𝑖=1

𝑤
𝑖
𝑦
𝑖

(4)

is the same for the assignment 𝑍 = 𝑌.
Later, Yager and Filev [30] introduced the first family

of neat OWA operator namely BADD OWA operator. The
weighting vector is another collection of elements V

𝑖
(𝑖 =

1, 2, . . . , 𝑛), such that

V
𝑖

=

𝑥
𝛼

𝑖

∑
𝑛

𝑗=1
𝑥
𝛼

𝑗

, (5)

where 𝛼 ∈ [0, +∞). It can be easily seen that BADD OWA
operator has properties as follows:

(1) V
𝑖

∈ [0, 1] for each 𝑖,
(2) ∑
𝑛

𝑖=1
V
𝑖

= 1.
From (5), the weighting vector of BADD OWA operator

is expressed as follows:

𝑊 (𝛼) = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇

= (

𝑥
𝛼

1

∑
𝑛

𝑗=1
𝑥
𝛼

𝑗

,

𝑥
𝛼

2

∑
𝑛

𝑗=1
𝑥
𝛼

𝑗

, . . . ,

𝑥
𝛼

𝑛

∑
𝑛

𝑗=1
𝑥
𝛼

𝑗

)

𝑇

.

(6)

Accordingly, the aggregation expression is denoted as
follows:

𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) =

𝑛

∑

𝑖=1

𝑤
𝑖
𝑥
𝑖

=

∑
𝑛

𝑖=1
𝑥
𝛼+1

𝑖

∑
𝑛

𝑗=1
𝑥
𝛼

𝑗

. (7)

Liu [39] proposed a generalization BADD OWA operator
with weighted functional average, which is also called addi-
tive neat OWA (ANOWA) operator, where

𝑊
𝑓

= (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇

= (

𝑓 (𝑥
1
)

∑
𝑛

𝑗=1
𝑓 (𝑥
𝑗
)

,

𝑓 (𝑥
2
)

∑
𝑛

𝑗=1
𝑓 (𝑥
𝑗
)

, . . . ,

𝑓 (𝑥
𝑛
)

∑
𝑛

𝑗=1
𝑓 (𝑥
𝑗
)

)

𝑇

,

(8)

𝐹
𝑓

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) =

𝑛

∑

𝑖=1

𝑤
𝑖
𝑥
𝑖

=

∑
𝑛

𝑖=1
𝑓 (𝑥
𝑖
) 𝑥
𝑖

∑
𝑛

𝑗=1
𝑓 (𝑥
𝑗
)

, (9)

where 𝑓(𝑥
𝑖
) can be any form of a continuous function.When

𝑓(𝑥
𝑖
) takes the form of power function, that is 𝑓(𝑥

𝑖
) = 𝑥
𝛼

𝑖
, it

turns into BADD OWA operator.



Journal of Applied Mathematics 3

2.2. The MP-OWA Operator. The MP-OWA operator, which
was proposed by Emrouznejad [3], is based on the most
popular criteria for all alternatives and considers the pref-
erences of alternatives across all criteria. Suppose 𝑍 =

{𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑚
; 𝑚 ⩾ 2} is a set of alternatives to be ranked,

𝐶 = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
; 𝑛 ⩾ 2} is a group of criteria to rate the

alternatives, 𝑆 = {𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑟
} satisfying 𝑆

1
< 𝑆
2

< ⋅ ⋅ ⋅ < 𝑆
𝑟

is a given scale set, and 𝑆
𝑗𝑖

∈ 𝑆 is the scale value of alternative
𝐴
𝑗
for criteria 𝐶

𝑖
. Then, the matrix of preference rating given

to alternatives for each criteria is shown in Table 1.
Meanwhile, the frequency 𝑁

𝑘𝑖
(𝑘 ∈ [1, 𝑟], 𝑖 ∈ [1, 𝑛]) of

scale 𝑆
𝑘
given to criteria 𝐶

𝑖
is summarized in Table 2.

The frequency of the most popular scale for each criteria
can be written as follows:

𝑉 = (V
1
, V
2
, . . . , V

𝑛
)
𝑇

= (max {𝑁
𝑘1

: ∀𝑘} ,max {𝑁
𝑘2

: ∀𝑘} , . . . ,

max{𝑁
𝑘𝑛

: ∀𝑘})
𝑇

.

(10)

Accordingly, the weighting vector of MP-OWA operator
can be expressed as follows:

𝑊 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇

= (

V
1

∑
𝑛

𝑘=1
V
𝑘

,

V
2

∑
𝑛

𝑘=1
V
𝑘

, . . . ,

V
𝑛

∑
𝑛

𝑘=1
V
𝑘

)

𝑇

;

(11)

of course, ∑
𝑛

𝑖=1
𝑤
𝑖

= 1.
The aggregation is expressed as follows:

𝐹
𝑊

(𝑍
𝑘
) = 𝐹
𝑊

(𝑧
𝑘1

, 𝑧
𝑘2

, . . . , 𝑧
𝑘𝑛

) =

𝑛

∑

𝑖=1

𝑤
𝑖
𝑦
𝑘𝑖

, (12)

where 𝑦
𝑘𝑖
is the 𝑖th largest value of 𝑧

𝑘𝑖
.

From (11), it is clear that the weight is independent of the
ordering of set 𝑉; the more frequency of 𝑆

𝑘
given to criteria

𝐶
𝑗
is, the bigger the corresponding weight is.That is, theMP-

OWA operator overemphasizes the opinions of the majority
and ignores those of the minority.

3. Parametric MP-OWA Operator

In this section, we firstly propose the general form of
parametric MP-OWA operator, and some propositions are
proposed.Then, we develop a particular family of parametric
MP-OWA operator with power function, and some proper-
ties are also discussed.

3.1. The General Form of Parametric MP-OWA Operator.
Similar to the extensions of OWA operator to the parametric
form of BADD operator and ANOWA operator [30, 39], we
will extend the MP-OWA operator to a parametric format,
that can represent the preference information more flexibly,
and MP operator becomes a special case of it.

Table 1: Matrix of preference rating of 𝑛 criteria with 𝑚 alternatives.

Criteria
𝐶
1

⋅ ⋅ ⋅ 𝐶
𝑖

⋅ ⋅ ⋅ 𝐶
𝑛

Alternatives

𝑍
1

𝑆
11

⋅ ⋅ ⋅ 𝑆
1𝑖

⋅ ⋅ ⋅ 𝑆
1𝑛

...
...

...
...

...
...

𝑍
𝑗

𝑆
𝑗1

⋅ ⋅ ⋅ 𝑆
𝑗𝑖

⋅ ⋅ ⋅ 𝑆
𝑗𝑛

...
...

...
...

...
...

𝑍
𝑚

𝑆
𝑚1

⋅ ⋅ ⋅ 𝑆
𝑚𝑖

⋅ ⋅ ⋅ 𝑆
𝑚𝑛

Table 2: Matrix of frequency that scale gives to criteria.

Criteria
𝐶
1

⋅ ⋅ ⋅ 𝐶
𝑖

⋅ ⋅ ⋅ 𝐶
𝑛

Scales

𝑆
1

𝑁
11

⋅ ⋅ ⋅ 𝑁
1𝑖

⋅ ⋅ ⋅ 𝑁
1𝑛

...
...

...
...

...
...

𝑆
𝑘

𝑁
𝑘1

⋅ ⋅ ⋅ 𝑁
𝑘𝑖

⋅ ⋅ ⋅ 𝑁
𝑘𝑛

...
...

...
...

...
...

𝑆
𝑟

𝑁
𝑟1

⋅ ⋅ ⋅ 𝑁
𝑟𝑖

⋅ ⋅ ⋅ 𝑁
𝑟𝑛

Definition 1. For aggregated matrix 𝑍 = (𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑚
),

𝑍
𝑗

= (𝑧
𝑗1

, 𝑧
𝑗2

, . . . , 𝑧
𝑗𝑛

) (𝑗 ∈ [1, 𝑚]). V
𝑖

= max{𝑁
𝑘𝑖

, 𝑘 ∈

[1, 𝑟]} (𝑖 ∈ [1, 𝑛]), and 𝑓(V
𝑖
) ⩾ 0, where 𝑁

𝑘𝑖
is the frequency

of each scale for criteria. The vector of the maximum
frequency function can be written as follows:

𝑉
𝑓

= (𝑓 (V
1
) , 𝑓 (V

2
) , . . . , 𝑓 (V

𝑛
))
𝑇

. (13)

The weighting vector is defined as follows:

𝑊
𝑓

= (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇

= (

𝑓 (V
1
)

∑
𝑛

𝑗=1
𝑓 (V
𝑗
)

,

𝑓 (V
2
)

∑
𝑛

𝑗=1
𝑓 (V
𝑗
)

, . . . ,

𝑓 (V
𝑛
)

∑
𝑛

𝑗=1
𝑓 (V
𝑗
)

)

𝑇

.

(14)

Here, 𝑓(V
𝑖
) can be substituted for many specific functions.

It is obvious that 𝑤
𝑖
satisfies the normalization properties

of 𝑤
𝑖

⩾ 0 and ∑
𝑛

𝑖=1
𝑤
𝑖

= 1.
The parametric MP-OWA operator aggregation is

𝐹
𝑓

(𝑍) =

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

𝑤
𝑖
𝑦
𝑗𝑖

=

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

𝑓 (V
𝑖
)

∑
𝑛

𝑗=1
𝑓 (V
𝑗
)

𝑦
𝑗𝑖

, (15)

where 𝑦
𝑗𝑖
is the 𝑖th largest value of 𝑧

𝑗𝑖
.

In (14), if 𝑓(V
𝑖
) = V

𝑖
(𝑖 ∈ [1, 𝑛]), (15) is the same as

(12); that is, MP-OWA operator becomes a special case of the
parametric MP-OWA operator.

Next, we will give some properties of our new proposed
parametric MP-OWA operator.

Definition 2. Assume 𝐹
𝑓
is a parametric MP-OWA operator

with a weighting vector 𝑊
𝑓
; the degree of orness (𝑊

𝑓
) is

defined as follows:

orness (𝑊) =

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

𝑓 (V
𝑖
)

∑
𝑛

𝑗=1
𝑓 (V
𝑗
)

. (16)
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Next, some propositions of the parametric MP-OWA
operator are described as:

Proposition 3. Assume 𝐹
𝑓
is the aggregation result with par-

ametric MP-OWA operator and 𝑓(V
𝑖
) is the 𝑖th value of the

set 𝑉.
(1) Boundary. If 𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) is the aggregated

elements, then
min
1⩽𝑖⩽𝑛

{𝑓 (𝑥
𝑖
)} ⩽ 𝐹

𝑓
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ⩽ max
1⩽𝑖⩽𝑛

{𝑓 (𝑥
𝑖
)} . (17)

(2) Commutativity. If 𝑥
𝑖
and 𝑥

(𝑘)

𝑖
are the 𝑖th largest values

of the aggregated sets 𝑋 and 𝑋
𝐾, respectively, then

𝐹
𝑓

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝐹
𝑓

(𝑥
(𝑘)

1
, 𝑥
(𝑘)

2
, . . . , 𝑥

(𝑘)

𝑛
) , (18)

where (𝑥
(𝑘)

1
, 𝑥
(𝑘)

2
, . . . , 𝑥

(𝑘)

𝑛
) is any permutation of the

arguments (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
).

(3) Monotonicity. If 𝑥
𝑖
and 𝑦

𝑖
are the 𝑖th largest values of

the aggregated sets 𝑋 and 𝑌, respectively, and 𝑦
𝑖

⩽ 𝑥
𝑖
,

then
𝐹 (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ⩽ 𝐹 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) , (19)

where the vector 𝑉 is the same as both aggregated
vectors.

(4) Idempotency. If 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is the aggregated

elements, and 𝑥
𝑖

= 𝑥 (𝑖 = 1, 2, . . . , 𝑛), then
𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝑥. (20)

Apparently, if we set 𝑓(V
𝑖
) = V

𝑖
(𝑖 ∈ [1, 𝑛]), parametric

MP-OWA operator turns into MP-OWA operator, and the
conclusions of Proposition 3 are also correct.

Proposition 4. Assume 𝐹 is the MP-OWA operator aggrega-
tion result and V

𝑖
is the 𝑖th value of set 𝑉.

(1) Boundary. If 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is the aggregated

elements, then
min
1⩽𝑖⩽𝑛

{𝑥
𝑖
} ⩽ 𝐹 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ⩽ max
1⩽𝑖⩽𝑛

{𝑥
𝑖
} . (21)

(2) Commutativity. If 𝑥
𝑖
and 𝑥

(𝑘)

𝑖
are the 𝑖th largest values

of the aggregated sets 𝑋 and 𝑋
𝐾, respectively, then

𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝐹 (𝑥

(𝑘)

1
, 𝑥
(𝑘)

2
, . . . , 𝑥

(𝑘)

𝑛
) , (22)

where (𝑥
(𝑘)

1
, 𝑥
(𝑘)

2
, . . . , 𝑥

(𝑘)

𝑛
) is any permutation of the

arguments (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
).

(3) Monotonicity. If 𝑥
𝑖
and 𝑦

𝑖
are the 𝑖th largest values of

the aggregated sets 𝑋 and 𝑌, respectively, and 𝑦
𝑖

⩽ 𝑥
𝑖
,

for each 𝑖 (𝑖 = 1, 2, . . . , 𝑛), then
𝐹 (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ⩽ 𝐹 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) , (23)

where 𝑉 is the same vector as both aggregated values of
𝑦
𝑖
and 𝑥

𝑖
.

(4) Idempotency. If 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is the aggregated

elements, and 𝑥
𝑖

= 𝑥 (𝑖 = 1, 2, . . . , 𝑛), then
𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝑥. (24)

3.2. Parametric MP-OWA Operator with Power Function.
Similar to ANOWA operator (8), which takes the form of
power function and becomes BADDOWAoperator, we study
the family of parametric MP-OWA operator with power
function, and the function𝑓(V

𝑖
) is given in the following form

as:

𝑓 (V
𝑖
) = V𝑟
𝑖
, (25)

where 𝑟 is a real number.
From (14), the weighting vector of parametric MP-OWA

operator can be rewritten as follows:

𝑊
𝑓

= (

𝑓 (V
1
)

∑
𝑛

𝑗=1
𝑓 (V
𝑗
)

,

𝑓 (V
2
)

∑
𝑛

𝑗=1
𝑓 (V
𝑗
)

, . . . ,

𝑓 (V
𝑛
)

∑
𝑛

𝑗=1
𝑓 (V
𝑗
)

)

𝑇

= (

V𝑟
1

∑
𝑛

𝑗=1
V𝑟
𝑗

,

V𝑟
2

∑
𝑛

𝑗=1
V𝑟
𝑗

, . . . ,

V𝑟
𝑛

∑
𝑛

𝑗=1
V𝑟
𝑗

)

𝑇

.

(26)

Accordingly, from (15), the aggregation can be expressed
as follows:

𝐹
𝑓

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) =

𝑛

∑

𝑖=1

𝑤
𝑖
𝑦
𝑖

=

𝑛

∑

𝑖=1

V𝑟
𝑖

∑
𝑛

𝑗=1
V𝑟
𝑗

𝑦
𝑖
, (27)

where 𝑦
𝑖
is the 𝑖th largest value of 𝑥

𝑖
.

Regarding (16), the orness equation can also be described
as follows:

orness (𝑊
𝑓

) =

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

𝑤
𝑖

=

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

V𝑟
𝑖

∑
𝑛

𝑗=1
V𝑟
𝑗

, (28)

when 𝑟 = 1 in (25), parametric MP-OWA operator becomes
ordinary MP-OWA operator.

Remark 5. Generally speaking, in the parametric MP-OWA
operator (15), 𝑓(V

𝑖
) can take any function forms, such as

power function, exponential function, or other function
forms. Here, we only take the form of power function. The
reasons for this decision are as follows: (1) Power function for
parametric MP-OWA operator with 𝑓(V

𝑖
) = V𝛼

𝑖
can deduce

the ordinary MP-OWA operator very naturally with 𝛼 = 1.
But parametric MP-OWA operator with other forms cannot
do it. (2) The parameter in power function and other func-
tions does not have any common, which makes parametric
MP-OWA operator different from both in expressions and
final aggregation results, so that, they do not need to be put
together and compared with each other. (3) Because we have
extended theMP-OWAoperator to the parametric format, we
can compare the results on various parameter values. But the
comparisons of both different function formats and different
parameter values of each format will be complicated; neither
much facts, nor much help to problem understanding can be
observed.

From (13), themaximum frequency vector𝑉
𝑓
with power

function can also be denoted as follows:

𝑉
𝑓

= (𝑓 (V
1
) , 𝑓 (V

2
) , . . . , 𝑓 (V

𝑛
))
𝑇

= (V𝑟
1
, V𝑟
2
, . . . , V𝑟

𝑛
)
𝑇

.

(29)
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For parametric MP-OWA operator, 𝑓(V
𝑖
) = V𝑟
𝑖
is a mono-

tonic function with argument V
𝑖
. If parameter 𝑟 > 0, 𝑓(V

𝑖
)

increases with V
𝑖
. With the increasing of V

𝑖
, larger (smaller)

aggregated elements will be given more (less) emphasis. If
𝑟 < 0, 𝑓(V

𝑖
) decreases with V

𝑖
. With the increasing of V

𝑖
,

larger (smaller) aggregated elements will be given less (more)
emphasis.

Therefore, if the decision maker wants to put more
emphasis on large aggregated elements and less emphasis on
small aggregated elements, he or she can choose 𝑟 > 0; if he or
shewants to putmore emphasis on small aggregated elements
and less emphasis on large elements, 𝑟 < 0 can be selected.

Some properties of parametric MP-OWA operator with
power function 𝑓(V

𝑖
) = V𝑟
𝑖
are discussed in the following.

Theorem 6. Assume 𝐹
𝑓
is the parametric MP-OWA operator,

𝑓(V
𝑖
) = V𝑟
𝑖
is the 𝑖th value of set 𝑉 and 𝑥

𝑖
is the 𝑖th value of set

𝑋.
(1) For 𝑟 → −∞, the orness is (𝑛 − 𝑘)/(𝑛 − 1), and

𝐹
𝑓

(𝑋) = ((𝑛 − 𝑘)/(𝑛 − 1))𝑥
𝑘
, where 𝑘 is the index of the

min
1⩽𝑖⩽𝑛

{V
𝑖
}.

(2) For 𝑟 = 0, the orness is 1/2, and 𝐹
𝑓

(𝑋) = avg{𝑥
𝑖
}.

(3) For 𝑟 → +∞, the orness is (𝑛 − 𝑙)/(𝑛 − 1), and
𝐹
𝑓

(𝑋) = ((𝑛 − 𝑙)/(𝑛 − 1))𝑥
𝑙
, where 𝑙 is the index of

themax
1⩽𝑖⩽𝑛

{V
𝑖
}.

Proof. See Appendix A.

Remark 7. By using different values of parameter 𝑟 for para-
metricMP-OWAoperator, people can get different weighting
vectors for decision making. For example, if the decision
makers have no subjective preference for aggregated ele-
ments, they can select 𝑟 = 0 or MP-OWA operator. If
they want to underweight large aggregated elements and
overweight small aggregated elements, parameter 𝑟 < 0 is
the right choice; when the parameter 𝑟 decreases to a certain
negative number, the weights according to large aggregated
elements reach zero; that is, the decision makers would
neglect the influence of large aggregated elements and stress
the small elements to the ultimate aggregation results. On the
contrary, they can choose 𝑟 > 0.

Theorem 8. Assume 𝐹
𝑓
is the parametric MP-OWA operator,

𝑓(V
𝑖
) is the 𝑖th values of the set 𝑉, and 𝑓(V

𝑖
) = V𝑟
𝑖

(𝑖 ∈ [1, 𝑛]).
If 𝑟
1

> 𝑟
2
, then orness(𝑊

𝑟
1

) > orness(𝑊
𝑟
2

).

Proof. See Appendix B.

3.3. Advantages of the Parametric MP-OWAOperator in Deci-
sion Making. Compared with the MP-OWA operator, the
advantages of the parametricMP-OWAoperator are summa-
rized as follows:

(1) It extends the MP-OWA operator to a parametric
form, which brings about more flexibility in prac-
tice. The parametric MP-OWA operator can generate
multiple weighting vectors through changing the
values of the parameter 𝑟; people may select appro-
priate weighting vector to reflect their preferences,

which provide more flexibility for decision making.
However, the MP-OWA operator obtains merely one
weighting vector, which does not reflect any attitude
of the decision makers to the aggregated elements,
and people could not change the ultimate aggregation
result any more.

(2) It provides a power function as a specific form to
compute the weighting vector. Decision makers can
choose different values of parameter 𝑟 according to
their interest and actual application context.

(3) It offers another kind of method for problems con-
centrated on ranking search engines. Parametric MP-
OWAoperator is based on the use ofmultiple decision
making process, where a group of queries retrieved
from selected search engines are used to look for an
optimal ranking of the search engines. It can also
identify which are the best search engines at the same
time.

(4) It is necessary to stress that the proposed method can
develop an amazingly wide range of decision making
problems with preference relations, such as informa-
tion aggregation and group decision making.

4. The Application of Parametric
MP-OWA Operator in Ranking Internet
Search Engine Results

4.1. Background. Emrouznejad [3] used OWA operator to
measure the performance of search engines by factors such as
average click rate, total relevancy of the returned results, and
the variance of the clicked results. In their study, a number
of students were asked to execute the sample search queries.
They classified the results into three categories: relevant,
undecided, and irrelevant documents, whose values are 2, 1,
and 0, respectively. Each participant was asked to evaluate the
result items and the results are shown denoted as matrix 𝑍 in
Table 3.

The frequencies of all scales for each query are shown in
Table 4.

4.2. Computing Process. To further understand what the
influence of parametric MP-OWA operator on the results of
decision making will be, the weighting vectors, aggregation
results, and ranking lists are computed and compared with
the MP-OWA operator.

From (10), it is obvious that the maximum frequency of
each query in Table 4 is

𝑉 = (9, 7, 5, 8, 6, 5, 4, 7, 6, 4, 6, 6)
𝑇

. (30)

Next, we will use 𝑟 = −4, −3, −2, −1, 0, 1, 2, 3, 4 of power
function for parametricMP-OWAoperator to rank the search
engines, and the ranks are compared with those of MP-OWA
operator. Take 𝑟 = 2, for example; the computing process is
as follows.

From (25), we get

𝑓 (V
𝑖
) = V2
𝑖
, 𝑖 ∈ [1, 12] , (31)
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Table 3: Matrix of judgment for sample queries.

Queries/search engines 1 2 3 4 5 6 7 8 9 10 11 12
LookSmart 2 1 0 2 0 2 0 2 0 0 2 1
Lycos 2 1 0 2 1 1 2 2 0 1 1 2
Altavista 2 2 1 2 1 0 2 1 2 2 1 0
Msn 2 1 2 0 0 2 1 2 2 1 1 2
Yahoo 1 2 2 2 1 1 0 0 2 2 1 1
Teoma 2 2 0 1 1 2 0 2 2 2 1 0
WiseNut 2 1 2 2 1 0 1 2 2 0 0 0
MetaCrawler 1 2 0 2 2 2 0 2 0 1 2 2
ProFusion 2 2 2 0 1 1 2 2 2 0 1 2
WebFusion-Max 2 2 1 2 0 2 2 1 1 1 2 2
WebFusion-OWA 2 2 2 2 2 1 1 1 1 2 2 2

Table 4: The frequencies of all scales for each query.

Queries/scales 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 4 2 3 2 4 1 3 3 1 3
1 2 4 2 1 6 4 3 3 2 4 4 2
2 9 7 5 8 2 5 4 7 6 4 6 6

From (29), the maximum frequency vector with power
function is

𝑉
𝑓(𝑟=2)

= (V2
1
, V2
2
, . . . , V2

12
)

𝑇

= (81, 49, 25, 64, 36, 25, 16, 49, 36, 16, 36, 36)
𝑇

.

(32)

Take the result 𝑉
𝑓(𝑟=2)

into (26); obtain the corresponding
weighting vector 𝑊

𝑓
as follows:

𝑊
𝑓(𝑟=2)

= (

𝑓 (V
1
)

∑
12

𝑗=1
𝑓 (V
𝑗
)

,

𝑓 (V
2
)

∑
12

𝑗=1
𝑓 (V
𝑗
)

, . . . ,

𝑓 (V
12

)

∑
12

𝑗=1
𝑓 (V
𝑗
)

)

𝑇

= (0.17, 0.10, 0.05, 0.14, 0.08, 0.05, 0.03, 0.10,

0.08, 0.03, 0.08, 0.08)
𝑇

.

(33)

Take the result 𝑊
𝑓(𝑟=2)

into (33) and the matrix 𝑍 of
Table 3 into (27); the aggregation result is

𝐹
𝑓(𝑟=2)

= 𝑍𝑊
𝑓

= (1.17, 1.39, 1.44, 1.44, 1.39, 1.41,

1.28, 1.44, 1.48, 1.55, 1.74)
𝑇

.

(34)

It is noticed that matrix 𝑍 of Table 3 must be ordered
decreasingly in each row before information aggregation.

With the same method, we get other aggregation results
with parameter 𝑟 = −4, −3, −2, −1, 0, 1, 3, 4, which are
displayed in Table 5, the last column of which is calculated
with the MP-OWA operator by Emrouznejad [3].

Correspondingly, the aggregation results of parametric
MP-OWA operator with parameter 𝑟 = −4, −3, −2, −1, 0, 1,

2, 3, 4 and MP-OWA operator are listed in Table 6. And the
ranks given to each search engine using parametricMP-OWA
operator with power function and MP-OWA operator are
shown in Table 7.

4.3. Comparisons and Some Discussions

(1) From Table 5, it is seen that if 𝑟 > 0, the larger
(smaller) of the values 𝑟 are, the larger (smaller) of
the values 𝑓(V

𝑖
) are, and the weights of search engines

become larger (smaller) correspondingly. That is,
more (less) emphasis would be put on larger (smaller)
aggregated elements. For example, no matter 𝑟 =

4, 3, 2, or 1, V
1

= 9 has the largest weights, whereas
V
4

= V
7

= 4 has the smallest weights.
(2) When 𝑟 = 4, 𝑤

10
= 0.01; that is, there is almost

no emphasis put on the smallest aggregated element.
As the monotonicity of function 𝑓(V

𝑖
) with V

𝑖
, if 𝑟

continues to increase, there will appear more zero
weights, and the aggregation results may lose more
information.

(3) If 𝑟 ⩽ 0, the larger (smaller) of the values V
𝑖
are,

the smaller (larger) of the values 𝑓(V
𝑖
) are, and the

weights of search engines become smaller (larger)
correspondingly. That is, more (less) emphasis would
be put on smaller (bigger) aggregated elements. For
example, no matter what 𝑟 = 0, −1, −2, −3, or −4,
V
1

= 9 has the smallest weights, whereas V
4

= V
7

= 4

has the largest weights.
(4) When 𝑟 = −1, 𝑤

1
= 0; that is, there is no emphasis

put on the largest aggregated element. As the mono-
tonicity of function 𝑓(V

𝑖
) with V

𝑖
, if 𝑟 continues to
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Table 5: Weights given to search engines with different values of parameter 𝑟.

Methods/weights Parametric Mp-OWA operator parameter 𝑟 MP-OWA operator
𝑉
0

−4 −3 −2 −1 0 1 2 3 4

𝑤
1

9 0.01 0.02 0.03 0.05 0.08 0.12 0.17 0.23 0.29 0.12
𝑤
2

7 0.03 0.04 0.05 0.07 0.08 0.10 0.10 0.11 0.11 0.10
𝑤
3

5 0.10 0.11 0.10 0.10 0.08 0.07 0.05 0.04 0.03 0.07
𝑤
4

8 0.02 0.03 0.04 0.06 0.08 0.11 0.14 0.16 0.18 0.11
𝑤
5

6 0.05 0.06 0.07 0.08 0.08 0.08 0.08 0.07 0.06 0.08
𝑤
6

5 0.10 0.11 0.10 0.10 0.08 0.07 0.05 0.04 0.03 0.07
𝑤
7

4 0.25 0.21 0.16 0.12 0.08 0.05 0.03 0.02 0.01 0.05
𝑤
8

7 0.03 0.04 0.05 0.07 0.08 0.10 0.10 0.11 0.11 0.10
𝑤
9

6 0.05 0.06 0.07 0.08 0.08 0.08 0.08 0.07 0.06 0.08
𝑤
10

4 0.25 0.21 0.16 0.12 0.08 0.05 0.03 0.02 0.01 0.05
𝑤
11

6 0.05 0.06 0.07 0.08 0.08 0.08 0.08 0.07 0.06 0.08
𝑤
12

6 0.05 0.06 0.07 0.08 0.08 0.08 0.08 0.07 0.06 0.08

Table 6: Aggregation results given to search engines with different values of parameter 𝑟.

Methods/search engines Parametric Mp-OWA operator with parameter 𝑟 MP-OWA operator
−4 −3 −2 −1 0 1 2 3 4

LookSmart 0.77 0.82 0.87 0.93 1 1.08 1.17 1.27 1.38 1.08
Lycos 1.1 1.13 1.16 1.2 1.25 1.32 1.39 1.47 1.55 1.32
Altavista 1.21 1.24 1.26 1.29 1.33 1.38 1.44 1.51 1.58 1.38
MSN 1.21 1.24 1.26 1.29 1.33 1.38 1.44 1.51 1.58 1.38
Yahoo 1.1 1.13 1.16 1.2 1.25 1.32 1.39 1.47 1.55 1.32
Teoma 0.95 1.03 1.1 1.17 1.25 1.33 1.41 1.49 1.57 1.33
WiseNut 0.80 0.86 0.92 1 1.08 1.18 1.28 1.38 1.48 1.18
MetaCrawler 1.21 1.24 1.26 1.29 1.33 1.38 1.44 1.51 1.58 1.38
ProFusion 1.46 1.45 1.42 1.41 1.42 1.44 1.48 1.53 1.59 1.44
WebFusion-Max 1.51 1.51 1.5 1.49 1.5 1.52 1.55 1.6 1.65 1.52
WebFusion-OWA 1.59 1.61 1.62 1.64 1.67 1.70 1.74 1.78 1.82 1.70

decrease, there will appearmore zero weights, and the
aggregation would lose more information.

(5) When 𝑟 = 1, the weights and the aggregation results
are the same as those ofMP-OWAoperator, which are
labeled in bold in Tables 5 and 6.
It is shown that MP-OWA operator is a special
case of parametric MP-OWA operator with function
function on condition of 𝑟 = 1.

(6) Here, we only list a few values of parametricMP-OWA
operator with power function, but we have included
all the ranking with this method.
Because when 𝑟 > 0, although the weight and the
aggregation results of each search engines both
change steadily, the rank remains the same; when 𝑟 ⩽

0, the rank shows the similar regularity as well. In
other words, with different values of parameter 𝑟, we
get two kinds of aggregation results; the conditions are
𝑟 > 0 and 𝑟 ⩽ 0.

(7) It can also be seen that the ranks of most search
engines on each method keep the same, especially
the WebFusion-OWA, WebFusion-Max, ProFusion,

and LookSmart. It is noticeably that no matter what
methods we use, search engines WebFusion-OWA,
WebFusion-Max, ProFusion, and LookSmart remains
in the first, second, and third place, respectively. From
the result, we also deduce the best search engines
indirectly.

5. Conclusions

We have presented a new kind of neat OWA operator based
on MP-OWA operator in aggregation families when con-
sidering the decision maker’s preference for all alternatives
across the criteria. It is very useful for decision makers, since
it not only considers the preference of alternatives across all
the criteria, but also provides multiple aggregation results
according to their preferences and application context to
choose. We have discussed several properties and have stud-
ied particular cases such as minimum, average, and maxi-
mum aggregation results.

We have analyzed the applicability of parametric MP-
OWA operator that gets more comprehensive results than
MP-OWA operator. We have concentrated on an application
in ranking search engines based onmultiple decisionmaking
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Table 7: Comparison of ranks given to search engines with different values of parameter 𝑟.

Methods/search engines Parametric Mp-OWA operator with parameter 𝑟 MP-OWA operator
−4 −3 −2 −1 0 1 2 3 4

WebFusion-OWA 1 1 1 1 1 1 1 1 1 1
WebFusion-Max 2 2 2 2 2 2 2 2 2 2
ProFusion 3 3 3 3 3 3 3 3 3 3
Altavista 4 4 4 4 4 4 4 4 4 4
Msn 5 5 5 5 5 5 5 5 5 5
MetaCrawler 6 6 6 6 6 6 6 6 6 6
Teoma 9 9 9 9 9 7 7 7 7 7
Lycos 7 7 7 7 7 8 8 8 8 8
Yahoo 8 8 8 8 8 9 9 9 9 9
WiseNut 10 10 10 10 10 10 10 10 10 10
LookSmart 11 11 11 11 11 11 11 11 11 11

process, where a group of queries are used to look for an
optimal search engines list. And the decisionmakers can real-
ize viewing the decisionmaking problem completely through
considering the preference relation and the corresponding
parameter 𝑟. It is observed that no matter what values of the
parameter 𝑟 are, the ranking of some search engines keeps
the same. It also implies which the best search engines are.
Finally, it should be noted that the proposed method can also
be applied to a wide range of decision making problems with
preference relations, such as information aggregation and
group decision making.

In our future research, we expect to further propose
parametricMP-OWAoperator through employing other type
of preference information such as linguistic variables and
type-2 fuzzy set.Wewill develop different type of applications
not only in decision theory but also in other fields such as
engineering and economics.

Appendices

A. Proof of Theorem 6

Proof. (1) For 𝑟 → −∞, we get

lim
𝑟→−∞

V𝑟
𝑖

V𝑟
𝑗

= lim
𝑟→−∞

(

V
𝑖

V
𝑗

)

𝑟

=

{
{

{
{

{

0, if V
𝑖

> V
𝑗
,

1, if V
𝑖

= V
𝑗
,

+∞, if V
𝑖

< V
𝑗
.

(A.1)

From (A.1), it is also right that

lim
𝑟→−∞

(

V
𝑖

V
𝑗

)

−𝑟

=

{
{

{
{

{

+∞, if V
𝑖

> V
𝑗
,

1, if V
𝑖

= V
𝑗
,

0, if V
𝑖

< V
𝑗
.

(A.2)

Accordingly, from (A.2), when 𝑛 is a large integer, it is
obvious that

lim
𝑟→−∞

V𝑟
𝑖

∑
𝑛

𝑗=1
V𝑟
𝑗

= lim
𝑟→−∞

1

∑
𝑛

𝑗=1
(V
𝑖
/V
𝑗
)

−𝑟
=

{
{

{
{

{

0, if V
𝑖

> V
𝑗
,

0, if V
𝑖

= V
𝑗
,

1, if V
𝑖

< V
𝑗
.

(A.3)

When 𝑟 → −∞, combining (A.3) with (28), we obtain

orness (𝑊) = lim
𝑟→−∞

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

V𝑟
𝑖

∑
𝑛

𝑗=1
V𝑟
𝑗

= lim
𝑟→−∞

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

1

∑
𝑛

𝑗=1
(V
𝑖
/V
𝑗
)

−𝑟

=

𝑛 − 𝑗

𝑛 − 1

,

(A.4)

where 𝑗 is the index of minimum V
𝑖
.

Accordingly, combine (A.3) with (27), and the aggrega-
tion result is

𝐹
𝑓

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = min {𝑥

𝑖
} = 𝑥
𝑘
, (A.5)

where 𝑘 is the index of minimum 𝑥
𝑖
.

(2) For 𝑟 = 0, from (28), we get

orness (𝑊) =

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

1

∑
𝑛

𝑗=1
(V
𝑖
/V
𝑗
)

−𝑟

=

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

1

𝑛

=

1

2

,

(A.6)

such that from (27), the aggregation result is

𝐹
𝑓

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) =

𝑛

∑

𝑖=1

1

𝑛

𝑥
𝑖

= avg {𝑥
𝑖
} . (A.7)

(3) For 𝑟 → +∞, we obtain

lim
𝑟→+∞

V𝑟
𝑖

V𝑟
𝑗

= lim
𝑟→+∞

1

(V
𝑖
/V
𝑗
)

𝑟
=

{
{

{
{

{

+∞, if V
𝑖

> V
𝑗
,

1, if V
𝑖

= V
𝑗
,

0, if V
𝑖

< V
𝑗
.

(A.8)
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From (A.8), it is also right that

lim
𝑟→+∞

(

V
𝑖

V
𝑗

)

−𝑟

=

{
{

{
{

{

0, if V
𝑖

> V
𝑗
,

1, if V
𝑖

= V
𝑗
,

+∞, if V
𝑖

< V
𝑗
.

(A.9)

From the conclusion of (A.9), when 𝑛 is a large integer, it
is obvious that

lim
𝑟→+∞

V𝑟
𝑖

∑
𝑛

𝑗=1
V𝑟
𝑗

= lim
𝑟→+∞

1

∑
𝑛

𝑗=1
(V
𝑖
/V
𝑗
)

−𝑟
=

{
{

{
{

{

1, if V
𝑖

> V
𝑗
,

0, if V
𝑖

= V
𝑗
,

0, if V
𝑖

< V
𝑗
.

(A.10)

Combining (28) with (A.10), the orness level is

orness (𝑊) = lim
𝑟→+∞

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

V𝑟
𝑖

∑
𝑛

𝑗=1
V𝑟
𝑗

,

= lim
𝑟→+∞

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

1

∑
𝑛

𝑗=1
(V
𝑖
/V
𝑗
)

−𝑟
,

=

𝑛 − 𝑗

𝑛 − 1

,

(A.11)

where 𝑗 is the index of maximum V
𝑖
.

Accordingly, combine (27) with (A.10), and the aggrega-
tion result is

𝐹
𝑓

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = max {𝑥

𝑖
} = 𝑥
𝑙
. (A.12)

The proof of Theorem 6 is completed.

B. Proof of Theorem 8

Proof. In (29), let vector 𝑉 satisfy V
1

⩾ V
2

⩾ ⋅ ⋅ ⋅ ⩾ V
𝑛
, which

can be written as follows:

𝑊
𝜆

= (𝑤
1
, 𝑤
2
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From (B.1), the derivative of function 𝑤
𝑖
with variable 𝑟 is

as follows:
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=
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𝑖
ln V
𝑖

(∑
𝑛

𝑖=1
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𝑖
)
2

. (B.2)

Accordingly, from (28) and (B.2), the derivative of orness
𝛼 with variable 𝑟 is formed as follows:
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Since V
1

⩾ V
2

⩾ ⋅ ⋅ ⋅ ⩾ V
𝑛
, it is concluded that 𝜕𝛼/𝜕𝑟 > 0.

Namely, orness 𝛼 increases monotonically with parameter 𝑟.
So when 𝑟

1
> 𝑟
2
, orness(𝑊

𝑟
1

) > orness(𝑊
𝑟
2

).
The proof of Theorem 8 is completed.
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In theory, a scheduling problem can be formulated as a mathematical programming problem. In practice, dispatching rules are
considered to be a more practical method of scheduling. However, the combination of mathematical programming and fuzzy
dispatching rule has rarely been discussed in the literature. In this study, a fuzzy nonlinear programming (FNLP) approach is
proposed for optimizing the scheduling performance of a four-factor fluctuation smoothing rule in a wafer fabrication factory.
The proposed methodology considers the uncertainty in the remaining cycle time of a job and optimizes a fuzzy four-factor
fluctuation-smoothing rule to sequence the jobs in front of each machine. The fuzzy four-factor fluctuation-smoothing rule has
five adjustable parameters, the optimization of which results in an FNLP problem. The FNLP problem can be converted into an
equivalent nonlinear programming (NLP) problem to be solved.The performance of the proposedmethodology has been evaluated
with a series of production simulation experiments; these experiments provide sufficient evidence to support the advantages of the
proposed method over some existing scheduling methods.

1. Introduction

In complex manufacturing systems, such as wafer fabrication
factories, job scheduling is subject to many sources of uncer-
tainty or randomness [1]. Such uncertainty or randomness
is partly due to manual operations, including the loading
and unloading of jobs, the setup or repair of machines, and
visual inspections. The other two sources of uncertainty,
the unexpected releases of emergency orders and machine
breakdowns, are beyond the control of a wafer fabrication
factory. The literature provides probabilistic (stochastic) and
fuzzy methods that can consider uncertainty or randomness.
However, it is difficult to identify the probability distribution
of each parameter, which means that a probabilistic (stochas-
tic) method is not easy to use. In addition, fuzzy methods are
advantageous because subjective factors can be considered,
such as human interpretations of the scheduling performance

and the tradeoffs of different scheduling objectives. For
example, a job 3months late and a job 3 days late are both late.
However, the first job is difficult to accept, while the second is
still acceptable. In other words, there are different degrees of
acceptance, even if both jobs have been delayed. Second, to
one scheduler, one objective may be much more important
than the other, but to another scheduler, the two objectives
may be equally important. The concepts of “acceptability”
and “relative importance” can both be suitably modeled by a
fuzzymethod. For example,Murata et al. [2] used trapezoidal
fuzzy numbers (TrFNs) to represent the satisfaction levels of
due dates. In the literature, due dates, processing times, and
precedence relations have been fuzzified [2–4].

Many existing fuzzy scheduling methods take the form of
fuzzy inference rules, such as “if the release time is early and
the number of operations is large, then the job priority is high”
[5, 6]. A fuzzy scheduling system usually uses a number of
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fuzzy inference rules and can be divided into two types:Mam-
dani [7] and Takagi-Sugeno-Kang (TSK). For example, Xiong
et al. [5] scheduled a flexible manufacturing system (FMS)
using two fuzzy dispatching rules of the TSK type. Murata
et al. [2] used six fuzzy rules to move jobs between different
priority classes. Lee et al. [8] established two fuzzy inference
rules to select a combination of some existing dispatching
rules for scheduling a flexible manufacturing system. Tan
and Tang [9] applied Taguchi’s design of experiment (DOE)
techniques to improve the design of some fuzzy dispatching
rules for a test facility. In Benincasa et al. [6], up to 27 fuzzy
inference rules (each with three inputs and one output) were
established to schedule automated guided vehicles. Dong
and Liu [3] built an adaptive neurofuzzy inference system
(ANFIS) to schedule a job shop. For any two jobs, the inputs
to the ANFIS were the differences between the two jobs,
and the output from the ANFIS determined the sequence of
the two jobs. If the output was greater than zero, then the
first job was to be processed before the second job. Murata
et al. [2] considered a job shop with 10 machines and jobs
with different priorities. A fuzzy linear programming (FLP)
problem was solved to optimize the total reward. However,
the fuzziness came from the satisfaction level of the due
date rather than from the parameters. A good review of
the literature on fuzzy scheduling methods can be found in
Dubois et al. [10].

On the other hand, a scheduling problem can be formu-
lated as a mathematical programming problem. For example,
Biggs and Laughton [11] optimized a nonlinear programming
(NLP) model for electric power scheduling. A recursive
quadratic programming approach was proposed to solve the
NLP problem. In Pedro [12], the 𝐹

𝑚
|𝑝𝑟𝑚𝑢|𝐶max problem was

formulated as a mixed integer programming (MIP) model.
The optimal solution of the mathematical programming
problem gives the optimal schedule for the manufacturing
system.However, sometimes themathematical programming
problem is not easy to solve, and some soft computing meth-
ods can be applied to search for the optimal solution of the
mathematical programming problem [13–15]. For example,
Chiang and Fu [16] minimized the number of tardy jobs for a
job shop in which machines have sequence-dependent setup
times. An NLP problem with a linear objective function and
some quadratic constraints was solved by the application of
a genetic algorithm (GA). Ishibuchi and Murata [13] applied
a similar approach for multiobjective flow shop scheduling.
In the NLP model of Connors et al. [17], the inventory level
was estimatedwith a nonlinear equation and then the holding
costs were minimized. Chen and Yao applied a deterministic
fluid network [18] in order to find an optimal solution. Both
Murata et al. [2] and Ishibuchi et al. [19] built FLP models
to solve scheduling problems and maximized the satisfaction
levels of the due dates. Murata et al. applied GA to solve
the FLP problem. For the same purpose, Ishibuchi et al. [19]
applied a hybrid GA with neighborhood search. Xia and
Wu [15] combined particle swarm optimization (PSO) and
simulated annealing (SA) for flexible job shop scheduling.

A summary of existing fuzzy scheduling methods is
shown in Table 1. The existing approaches have the following
problems.

Table 1: Some fuzzy scheduling methods.

References Fuzziness Model Soft computing
method

Xiong et al. [5] Fuzzy rule MIP TSK
Lee et al. [8] Fuzzy rule MIP single-rule-based
Benincasa et al. [6] Fuzzy rule MIP Mamdani

Ishibuchi et al. [19] Fuzzified
objective FLP Hybrid GA

Tan and Tang [9] Fuzzy rule MIP Mamdani

Murata et al. [2] Fuzzified
objective FLP GA

Dong and Liu [3] Fuzzy rule MIP ANFIS

(1) Dubois et al. [10] distinguished two categories of
fuzzy scheduling methods: methods that represent
preference profiles and methods that model uncer-
tainty distributions. However, inmost studies that use
fuzzy methods, the fuzziness comes from the fuzzi-
fication of the scheduling objective (which belongs
to the first category) or from the fuzzy rules that
are subjectively chosen by the scheduler rather than
from fuzzy parameters (which belong to the second
category). In other words, processing time, due date,
and precedence relations are all free from uncertainty
in these studies.

(2) Although anNLP problem is not easy to solve, the soft
computing method applied to solve the NLP problem
may also pose a considerable challenge.

(3) The combination of NLP with fuzziness results in
a FNLP approach that considers the uncertainty of
parameters and does not need to make simplifying
assumptions, and therefore has the potential to solve
realistic scheduling problems effectively. However,
very few studies applied FNLPmethods.Most of them
are used for scheduling small manufacturing systems
[20].

To tackle these problems, an FNLP approach is pro-
posed in this study to optimize the performance of a job
dispatching rule in awafer fabrication factory. In otherwords,
this study is not going to optimize the performance of a
schedule for a wafer fabrication factory, which is known to
be an NP-hard problem but to optimize the performance
of a dispatching rule in a wafer fabrication factory. The
use of some special types of fuzzy numbers establishes the
corresponding subcategories for these FNLP models, such as
the type-2 FNLP (with type-2 fuzzy numbers), the interval-
valued FNLP (with interval fuzzy numbers), the intuitionistic
FNLP (with intuitionistic fuzzy numbers), and the interval-
valued intuitionistic FNLP [21], which has been of interest to
researchers in recent years. Fares and Kaminska [22] solved
two multiple-objective FNLP problems to find the optimal
sets of circuit parameter values for a bipolar emitter follower
circuit and an unbuffered two-stage complementary metal-
oxide semiconductor (CMOS) op-amp. Chen and Wang
[23] defined the yield competitiveness of a semiconductor
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product, which is uncertain and can be enhanced by allo-
cating more capacity to the product; this functions in a
nonlinear way. They therefore constructed an FNLP model
to optimize the effects of capacity reallocation on the yield
competitiveness of a semiconductor product, which was then
converted to an NLP problem to be solved.

In the proposed methodology, the fuzziness comes from
the uncertainty of the remaining cycle time, that is, the time
still needed to complete a job; this time is highly uncertain
[24]. In the proposed methodology, the remaining cycle time
of a job is estimated with a triangular fuzzy number (TFN).
There are various types of fuzzy numbers with different
shapes. Among them, a TFN is easily implemented and
has been used for numerous applications (e.g., [23–25]).
Subsequently, the remaining cycle time estimate is fed into
a four-factor fluctuation smoothing rule [25] to sequence
the jobs in front of a machine. The four-factor fluctuation
smoothing rule is fuzzified in this way, and the slack of
a job is also expressed by a TFN. The fuzzy fluctuation-
smoothing dispatching rule has five adjustable parameters,
the optimization of which constitutes an FNLP problem. To
convert the FNLP problem into a more tractable form, 𝛼-cut
operations are also applied.

Theunique features of the proposedmethodology include
the following.

(1) Combining fuzziness and NLP: scheduling decisions
represented in terms of fuzzy sets are flexible in their
implementations. NLP relaxes the strict assumptions
and constraints of linear programming (LP) and is
highly practicable.

(2) Considering the uncertainty in the remaining cycle
time: dispatching rules that consider dynamic infor-
mation, such as the remaining cycle time, are more
effective for highly complex manufacturing systems
[26]. To this end, an effective fuzzy back propagation
network (FBPN) approach is applied.

(3) Establishing a fuzzy dispatching rule directly from the
existing rules: a fuzzy dispatching rule is deduced by
fuzzifying the four-objective fluctuation-smoothing
dispatching rule [25] and diversifying the slack. This
rule accepts the fuzzy remaining cycle time as an input
and uses a fuzzy value to represent the slack of each
job.

(4) Diversifying the slack by solving an FNLP model: the
emergence of ties may lead to incorrect scheduling
results. In the proposed methodology, to reduce the
number of ties, the slacks of jobs are diversified by
maximizing the standard deviation [27], which leads
to a FNLP problem. The FNLP problem is not easy
to solve; therefore, this study applies 𝛼-cut operations
[28].

(5) Optimizing four objectives simultaneously: the pro-
posed fuzzy rule fuses four dispatching rules in a
nonlinear way. In contrast, most existing methods
optimize the weighted sum of multiple objectives
(e.g., [13, 15]).

Fuzzify the four-objective 
fluctuation-smoothing rule

Diversify the slack with a FNLP 
model

the FNLP

Use the fuzzy four-factor  
fluctuation smoothing rule to  

sequence jobs

Estimate the remaining cycle time 
using the effective FBPN 

approach

Feed the remaining cycle time 
estimate to the fuzzy four-factor  

fluctuation smoothing rule 

Apply 𝛼-operations to help solve

Figure 1: The flowchart of the proposed methodology.

The rest of this paper is organized as follows. Section 2
is divided into four parts: 𝛼-cut operations, effective FBPN,
fuzzified dispatching, and FNLP. First, the concepts of 𝛼 cuts
and 𝛼-cut operations are introduced. The next part explains
the effective FBPN approach that estimates the remaining
cycle time of a job with a fuzzy number. The next part shows
that the four-objective fluctuation smoothing rule is fuzzified
so that it can accept the remaining cycle time estimate as
an input. The final part of Section 2 explains the role of
the FNLP. To obtain the best values of the parameters in
the fuzzy four-objective fluctuation smoothing rule, and to
diversify the slack, an FNLPmodel is built. To solve the FNLP
problem, 𝛼-cut operations are applied. Section 3 details how
a series of production simulation experiments are carried out
to assess the advantages and disadvantages of the proposed
methodology. Finally, the conclusions of this study are made
in Section 4.

2. Methodology

The flow chart of Figure 1 illustrates the steps of the proposed
methodology.

Subsequently, the variables and parameters that will be
used in the proposed methodology are defined as follows.

(1) CT
𝑗
: the cycle time of job 𝑗.

(2) C̃TE
𝑗
: the estimated cycle time of job 𝑗; C̃TE

𝑗
=

(CTE
𝑗1
,CTE

𝑗2
,CTE

𝑗3
).

(3) DD
𝑗
: the due date of job 𝑗.
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(4) 𝑅
𝑗
: the release time of job 𝑗; 𝑗 = 1 ∼ 𝑛.

(5) RCT
𝑗𝑢
: the remaining cycle time of job 𝑗 from step 𝑢.

(6) R̃CTE
𝑗𝑢
: the estimated remaining cycle time of job

𝑗 from step 𝑢; R̃CTE
𝑗𝑢

= (RCTE
𝑗𝑢1

,RCTE
𝑗𝑢2

,

RCTE
𝑗𝑢3

).

(7) RPT
𝑗𝑢
: the remaining processing time of job 𝑗 from

step 𝑢.

(8) SCT
𝑗𝑢
: the step cycle time of job 𝑗 until step 𝑢.

(9) SK
𝑗𝑢
or S̃K
𝑗𝑢
: the slack of job 𝑗 at step 𝑢.

(10) 𝑡: the current time.

(11) TPT
𝑗
: the total processing time of job 𝑗.

(12) 𝜆: mean release rate.

(13) 𝑥
𝑗𝑝
: the inputs to the three-layer BPN of job 𝑗, 𝑝 =

1 ∼ 𝑃.

(14) ℎ
𝑙
: the output from hidden-layer node 𝑙, 𝑙 = 1 ∼ 𝐿.

(15) 𝑤
𝑜

𝑙
: the connection weight between hidden-layer

node 𝑙 and the output node.

(16) 𝑤
ℎ

𝑝𝑙
: the connection weight between input node 𝑝 and

hidden-layer node 𝑙, 𝑃 = 1 ∼ 𝑃; 𝑙 = 1 ∼ 𝐿.

(17) 𝜃
ℎ

𝑙
: the threshold on hidden-layer node 𝑙.

(18) ̃
𝜃
𝑜: the threshold on the output node; ̃𝜃𝑜 = (𝜃

𝑜

1
, 𝜃
𝑜

2
, 𝜃
𝑜

3
).

All fuzzy parameters in the proposed methodology are given
in TFNs

2.1. 𝛼 Cuts and 𝛼-Cut Operations. The 𝛼-cut operations are
applied to solve the FNLP problem. For this reason, the
concepts of 𝛼 cuts and 𝛼-cut operations are introduced as
follows.

Definition 1 (𝛼 cuts). 𝐴 is a fuzzy number. The 𝛼 cut of 𝐴 is
an interval number given by

𝐴 (𝛼) = {𝑥 | 𝑥 ∈ 𝑅, 𝜇̃
𝐴
(𝑥) ≥ 𝛼} = [𝐴

𝐿
(𝛼) , 𝐴

𝑅
(𝛼)] . (1)

Definition 2 (arithmetic of fuzzy numbers based on 𝛼-cut
operations). Given two fuzzy numbers 𝐴 and 𝐵, and their

𝛼 cuts 𝐴(𝛼) and 𝐵(𝛼), the arithmetic operations of 𝐴 and 𝐵

based on their 𝛼 cuts are as follows:

𝐴 (𝛼) (+) 𝐵 (𝛼)

= [𝐴
𝐿
(𝛼) , 𝐴

𝑅
(𝛼)] (+) [𝐵

𝐿
(𝛼) , 𝐵

𝑅
(𝛼)]

= [𝐴
𝐿
(𝛼) + 𝐵

𝐿
(𝛼) , 𝐴

𝑅
(𝛼) + 𝐵

𝑅
(𝛼)] ,

(2)

𝐴 (𝛼) (−) 𝐵 (𝛼)

= [𝐴
𝐿
(𝛼) , 𝐴

𝑅
(𝛼)] (−) [𝐵

𝐿
(𝛼) , 𝐵

𝑅
(𝛼)]

= [𝐴
𝐿
(𝛼) − 𝐵

𝑅
(𝛼) , 𝐴

𝑅
(𝛼) − 𝐵

𝐿
(𝛼)] ,

(3)

𝐴 (𝛼) (×) 𝐵 (𝛼)

= [𝐴
𝐿
(𝛼) , 𝐴

𝑅
(𝛼)] (×) [𝐵

𝐿
(𝛼) , 𝐵

𝑅
(𝛼)]

= [min (𝐴
𝐿
(𝛼) 𝐵
𝐿
(𝛼) , 𝐴

𝐿
(𝛼) 𝐵
𝑅
(𝛼) ,

𝐴
𝑅
(𝛼) 𝐵
𝐿
(𝛼) , 𝐴

𝑅
(𝛼) 𝐵
𝑅
(𝛼)) ,

max (𝐴
𝐿
(𝛼) 𝐵
𝐿
(𝛼) , 𝐴

𝐿
(𝛼) 𝐵
𝑅
(𝛼) ,

𝐴
𝑅
(𝛼) 𝐵
𝐿
(𝛼) , 𝐴

𝑅
(𝛼) 𝐵
𝑅
(𝛼))] ,

(4)

𝑘𝐴 (𝛼) = [𝑘𝐴
𝐿
(𝛼) , 𝑘𝐴

𝑅
(𝛼)] , 𝑘 ≥ 0, (5)

𝐴
2

(𝛼) =

{
{

{
{

{

[0,max (𝐴
2

𝐿
(𝛼) , 𝐴

2

𝑅
(𝛼))] , If 𝐴

𝐿
≤ 0 ≤ 𝐴

𝑅
,

[min (𝐴
2

𝐿
(𝛼) , 𝐴

2

𝑅
(𝛼)) ,

max (𝐴
2

𝐿
(𝛼) , 𝐴

2

𝑅
(𝛼))] , otherwise.

(6)

𝐴 (𝛼) (/) 𝐵 (𝛼)

= [𝐴
𝐿
(𝛼) , 𝐴

𝑅
(𝛼)] (/) [𝐵

𝐿
(𝛼) , 𝐵

𝑅
(𝛼)]

= [

𝐴
𝐿
(𝛼)

𝐵
𝑅
(𝛼)

,

𝐴
𝑅
(𝛼)

𝐵
𝐿
(𝛼)

]

𝐴
𝐿
(𝛼) ≥ 0, 𝐵

𝐿
(𝛼) > 0,

(7)

where (+), (−), (×), and (/) denote fuzzy addition, subtrac-
tion, multiplication, and division, respectively. Equation (5)
is equivalent to

𝐴
2

(𝛼) = [max (𝐴
𝐿
(𝛼) 𝐴
𝑅
(𝛼) , 0)

⋅ min(

𝐴
𝐿
(𝛼)

𝐴
𝑅
(𝛼)

,

𝐴
𝑅
(𝛼)

𝐴
𝐿
(𝛼)

) ,

max (𝐴
2

𝐿
(𝛼) , 𝐴

2

𝑅
(𝛼))]

(8)

if 𝐴
𝐿
(𝛼), 𝐴

𝑅
(𝛼) ̸= 0. The min( ) and max( ) function can be

replaced by

𝑥 = min (𝑎, 𝑏) ⇐⇒ 𝑥 ≤ 𝑎; 𝑥 ≤ 𝑏; (𝑥 − 𝑎) (𝑥 − 𝑏) = 0,

𝑥 = max (𝑎, 𝑏) ⇐⇒ 𝑥 ≥ 𝑎; 𝑥 ≥ 𝑏; (𝑥 − 𝑎) (𝑥 − 𝑏) = 0.

(9)



Journal of Applied Mathematics 5

Theorem 3 (average of fuzzy numbers based on 𝛼 cuts).
Given 𝑛 fuzzy numbers 𝐴

𝑗
= [𝐴
𝑗𝐿
(𝛼), 𝐴

𝑗𝑅
(𝛼)], 𝑗 = 1 ∼ 𝑛,

the average of these fuzzy numbers can be derived as

𝐴 (𝛼) = [𝐴
𝐿
(𝛼) , 𝐴

𝑅
(𝛼)] = [

∑
𝑛

𝑗=1
𝐴
𝑗𝐿

(𝛼)

𝑛

,

∑
𝑛

𝑗=1
𝐴
𝑗𝑅

(𝛼)

𝑛

] .

(10)

Proof. Theorem 3 can be directly derived from (2) and (5).

2.2. The Effective FBPN Approach for Estimating the Remain-
ing Cycle Time. Before any job is scheduled, the remaining
cycle time of each job needs to be estimated. In this work, the
effective FBPN approach is applied and the remaining cycle
time is estimated with a fuzzy value.

In the effective FBPN approach, jobs are classified into 𝐾

categories using fuzzy c-means (FCM). First, in order to facil-
itate the subsequent calculations and problem solving, all raw
data are normalized [29]. Then, we place the (normalized)
attributes of job𝑗 in vector x

𝑗
= [𝑥
𝑗𝑝
].

FCM classifies jobs byminimizing the following objective
function:

Min
𝐾

∑

𝑘=1

𝑛

∑

𝑗=1

𝜇
𝑚

𝑗(𝑘)
𝑒
2

𝑗(𝑘)
, (11)

where𝐾 is the required number of categories; 𝑛 is the number
of jobs; 𝜇

𝑗(𝑘)
indicates that job 𝑗 belongs to category 𝑘; 𝑒

𝑗(𝑘)

measures the distance from job 𝑗 to the centroid of category
𝑘; 𝑚 ∈ [1,∞) is a parameter to adjust the fuzziness and is
usually set to 2. The procedure of FCM is as follows

(1) Produce a preliminary clustering result: the perfor-
mance of FCM is sensitive to the initial conditions.

(2) (Iterations) calculate the centroid of each category as

𝑥
(𝑘)

= {𝑥
(𝑘)𝑝

} ; 𝑝 = 1 ∼ 𝑃,

𝑥
(𝑘)𝑝

=

∑
𝑛

𝑗=1
𝜇
𝑚

𝑗(𝑘)
𝑥
𝑗𝑝

∑
𝑛

𝑗=1
𝜇
𝑚

𝑗(𝑘)

,

𝜇
𝑗(𝑘)

=

1

∑
𝐾

𝑞=1
(𝑒
𝑗(𝑘)

/𝑒
𝑗(𝑞)

)

2/(𝑚−1)

,

𝑒
𝑗(𝑘)

=
√

∑

all 𝑝
(𝑥
𝑗𝑝

− 𝑥
(𝑘)𝑝

)

2

,

(12)

where 𝑥
(𝑘)

is the centroid of category 𝑘. 𝜇(𝑡)
𝑗(𝑘)

is the
membership function that indicates job 𝑖 belongs to
category 𝑘 after the 𝑡th iteration.

(3) Remeasure the distance from each job to the centroid
of each category, and then recalculate the correspond-
ing membership.

(4) Stop if the following condition is met. Otherwise,
return to step (2):

max
𝑘

max
𝑗






𝜇
(𝑡)

𝑗(𝑘)
− 𝜇
(𝑡−1)

𝑗(𝑘)






< 𝑑, (13)

where 𝑑 is a real number representing the threshold
for the convergence of membership.

Finally, the separate distance test (𝑆 test) proposed by
Xie and Beni [30] can be applied to determine the optimal
number of categories 𝐾:

Min 𝑆

subject to 𝐽
𝑚

=

𝐾

∑

𝑘=1

𝑛

∑

𝑗=1

𝜇
𝑚

𝑗(𝑘)
𝑒
2

𝑗(𝑘)

𝑒
2

min = min
𝑘1 ̸=𝑘2

(∑

all𝑝
(𝑥
(𝑘1)𝑝

− 𝑥
(𝑘2)𝑝

)

2

)

𝑆 =

𝐽
𝑚

𝑛 × 𝑒
2

min

𝐾 ∈ 𝑍
+

.

(14)

The𝐾 value thatminimizes 𝑆 determines the optimal number
of categories.

After clustering, a three-layer FBPN is used to estimate
the cycle times of jobs for each category. The configuration
of the three-layer FBPN is as follows. First, the inputs are
the 𝑃 parameters associated with the 𝑗th job. Subsequently,
there is only a single hidden layer; the hidden layer has
twice as many neurons as the input layer. In addition, Chen
and Wang [31] and Chen and Lin [32] have described how
an NLP model can be constructed to adjust the connection
weights and thresholds in an FBPN; this problem is not easy
to solve. In the proposed methodology, only the threshold
on the output node (̃𝜃𝑜) will be adjusted. This way is much
simpler and can also achieve good results. In other words,
only ̃

𝜃
𝑜 is fuzzy, while the other parameters are crisp. In this

way, the fuzzy remaining cycle time estimate is generated
with minimal effort. This makes the FBPN approach an
effective one. The output from the three-layer FBPN is the
(normalized) estimated remaining cycle time (𝑁(R̃CTE

𝑗𝑢
))

of the training examples, where 𝑁( ) is the normalization
function.

The procedure for determining the parameter values
is now described. First, to determine the value of each
parameter and 𝜃

𝑜

2
, the FBPN is treated as a crisp network.

Some algorithms are applicable for this purpose, such as
gradient descent algorithms, conjugate gradient algorithms,
the Levenberg-Marquardt algorithm, and others. In this
study, the Levenberg-Marquardt algorithm is applied. The
Levenberg-Marquardt algorithm was designed for training
with second-order speed without having to compute theHes-
sian matrix. It uses approximation and updates the network
parameters in a Newton-like way [33].

Subsequently, 𝜃𝑜
3
is to be determined, so that the actual

value will be less than the upper bound of the network output.
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Figure 2: The estimation results by the effective FBPN approach.

Assume that the adjustment made to the threshold on the
output node is denoted as Δ𝜃

𝑜

= 𝜃
𝑜

3
− 𝜃
𝑜

2
. The optimal value

of Δ𝜃
𝑜 should be set as follows:

Δ𝜃
𝑜∗

= min
𝑗

(ln(

1

𝑁(RCT
𝑗𝑢
)

− 1) − ln(

1

𝑜
𝑗2

− 1)) .

(15)

In a similar way, 𝜃𝑜
1
can be determined so that each actual

value will be greater than the appropriate lower bound. The
optimal value of Δ𝜃

𝑜 can be obtained as:

Δ𝜃
𝑜∗

= max
𝑗

(ln(

1

𝑁(RCT
𝑗𝑢
)

− 1) − ln(

1

𝑜
𝑗2

− 1)) .

(16)

This FBPN approach can generate a very precise interval
of the remaining cycle time for each job, thereby reducing
the risk of misscheduling. An instance has been analyzed
in Figure 2 to evaluate the performance of this method. To
provide a comparison, a statistical analysis method is also
applied to this instance, in which the relationship between
the remaining cycle time and job attributes is fitted with
a multiple regression equation. The results are shown in
Figure 3. Compared with the effective FBPN approach, the
statistical analysis method is not only inaccurate but also not
precise enough. The remaining cycle time estimated by the
statistical analysis method is therefore prone to errors, which
may result in incorrect scheduling.

2.3. The Fuzzy Four-Objective Dispatching Rule. Lu et al. [26]
proposed two fluctuation smoothing rules—the fluctuation
smoothing policy for mean cycle time (FSMCT) and the
fluctuation smoothing policy for variation of cycle time
(FSVCT). FSMCT is aimed at minimizing the mean cycle
time, while FSVCT is aimed at minimizing the variance of
cycle time:
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Figure 3:The estimation results by the statistical analysis approach.

(FSMCT)

SK
𝑗𝑢

(FSMCT) =

𝑗

𝜆

− RCTE
𝑗𝑢
, (17)

(FSVCT)

SK
𝑗𝑢

(FSVCT) = 𝑅
𝑗
− RCTE

𝑗𝑢
. (18)

Jobs with the smallest slack values are given the highest
priorities.

If the remaining cycle time is estimated with a TFN, then
we have two fuzzy fluctuation smoothing rules as

(fuzzy FSMCT)

S̃K
𝑗𝑢

(FSMCT) =

𝑗

𝜆

− R̃CTE
𝑗𝑢
, (19)

(fuzzy FSVCT)

S̃K
𝑗𝑢

(FSVCT) = 𝑅
𝑗
− R̃CTE

𝑗𝑢
. (20)

To determine the sequence of jobs, the fuzzy slacks
must be compared. To this end, various methods have been
proposed in the literature, such as a method based on the
probability measure [34], a coefficient of variance (CV) index
[35], a method that uses the area between the centroid point
and the original point [36], and a method based on the
fuzzy mean and standard deviation [37]. For a comparison
of these methods, refer to Zhu and Xu [37]. In this study, the
method based on the fuzzy mean and standard deviation is
applied because it is relatively simple and can yield reasonable
comparison results. To put this in context, the following
theorem is introduced.
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Table 2: An example (𝜆 = 1.18).

Number 𝑅
𝑗

𝑗 R̃CTE
𝑗𝑢

S̃K
𝑗𝑢
(FFSMCT) S̃K

𝑗𝑢
(FFSVCT)

1 102 159 (1200, 1399, 1458) (−1324, −1265, −1066) (−1357, −1297, −1099)
2 756 37 (976, 1127, 1176) (−1145, −1096, −945) (−421, −371, −221)
3 826 37 (1086, 1223, 1299) (−1269, −1192, −1055) (−474, −397, −261)
4 652 86 (1618, 1822, 1976) (−1904, −1750, −1546) (−1325, −1170, −967)
5 208 55 (455, 530, 557) (−511, −484, −410) (−350, −322, −248)
6 783 84 (1742, 2040, 2158) (−2088, −1969, −1671) (−1376, −1257, −960)
7 800 96 (2039, 2366, 2549) (−2468, −2285, −1959) (−1750, −1566, −1240)
8 478 52 (848, 942, 992) (−949, −898, −805) (−515, −464, −371)
9 469 65 (992, 1116, 1176) (−1122, −1061, −938) (−708, −647, −524)
10 699 32 (853, 995, 1031) (−1005, −968, −827) (−333, −296, −155)
11 836 85 (1830, 2151, 2311) (−2240, −2079, −1759) (−1476, −1315, −995)
12 497 45 (794, 883, 918) (−881, −845, −757) (−422, −386, −298)
13 596 101 (1700, 2047, 2170) (−2086, −1962, −1615) (−1575, −1451, −1105)
14 798 34 (975, 1146, 1256) (−1228, −1118, −948) (−459, −348, −178)
15 197 79 (659, 743, 800) (−734, −677, −593) (−604, −546, −463)
16 804 85 (1819, 2092, 2318) (−2247, −2020, −1748) (−1515, −1288, −1016)
17 163 78 (560, 647, 708) (−643, −581, −495) (−546, −484, −398)
18 457 44 (685, 810, 839) (−803, −773, −649) (−383, −353, −229)
19 523 100 (1547, 1851, 2042) (−1958, −1767, −1463) (−1520, −1328, −1025)

Theorem 4. The fuzzy mean and standard deviation of a
triangular fuzzy number𝐴 = (𝑥

0
−𝑎, 𝑥
0
, 𝑥
0
+𝑏) can be derived

as

𝜇̃
𝐴

= 𝑥
0
+

𝑏 − 𝑎

3

,

𝜎̃
𝐴

=
√

𝑎
2

+ 𝑎𝑏 + 𝑏
2

18

.

(21)

Proof. Refer to Zhu and Xu [37]. It is, in fact, the center-of-
gravity (COG) method.

The following definition details a method based on the
fuzzy mean and standard deviation.

Definition 5. For any two fuzzy numbers𝐴 and 𝐵 ∈ 𝐹(𝑅), the
sequence of 𝐴 and 𝐵 can be determined according to their
fuzzy means and standard deviations as follows.

(1) 𝜇̃
𝐴

> 𝜇
𝐵
if and only if 𝐴 ≻ 𝐵.

(2) 𝜇̃
𝐴

< 𝜇
𝐵
if and only if 𝐴 ≺ 𝐵.

(3) If 𝜇̃
𝐴

= 𝜇
𝐵
, then

(i) 𝜎̃
𝐴

> 𝜎
𝐵
if and only if 𝐴 ≺ 𝐵.

(ii) 𝜎̃
𝐴

< 𝜎
𝐵
if and only if 𝐴 ≻ 𝐵.

(iii) 𝜎̃
𝐴

= 𝜎
𝐵
if and only if 𝐴 = 𝐵.

Consider the example in Table 2. The sequencing results
by the two fuzzified rules are

Fuzzy FSMCT: 7 → 11 → 16 → 6 → 13 → 4 →

19 → 1 → 3 → 14 → 2 → 9 → 10 → 8 → 12 →

18 → 15 → 17 → 5.

Fuzzy FSVCT: 7 → 13 → 19 → 16 → 11 → 1 →

6 → 4 → 9 → 15 → 17 → 8 → 3 → 12 → 2 →

14 → 18 → 5 → 10.

Chen [25] combined four traditional dispatching rules—
EDD, critical ratio (CR), the fluctuation smoothing policy for
mean cycle time (FSMCT)—and the fluctuation smoothing
policy for variation of cycle time (FSVCT), and proposed
the four-objective dispatching rule. In the four-objective
dispatching rule, the slack of job 𝑗 at processing step 𝑢 is
defined as

SK
𝑗𝑢

= (

𝑗 − 1

𝑛 − 1

)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢

− min
𝑗
RCTE

𝑗𝑢

max
𝑗
RCTE

𝑗𝑢
− min

𝑗
RCTE

𝑗𝑢

)

𝜂

⋅ (

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

,

(22)

where 𝛼, 𝛽, 𝛾, and 𝜂 and are positive real numbers that satisfy
the following constraints:

If 𝛼 = 1 then 𝛽, 𝛾, 𝜗 = 0; 𝜂 = −1, and vice versa,

If 𝛽 = 1 then 𝛼 = 0; 𝛾, 𝜂, 𝜗 = −1, and vice versa,

If 𝜂 = 1 then 𝛼, 𝛽 = 0; 𝛾, 𝜗 = 1, and vice versa.
(23)
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Jobs with the smallest slack values will be given the highest
priorities. There are many possible models that can form the
combinations of 𝛼, 𝛽, 𝛾, 𝜂, and 𝜗. For example,

(Linear model) 𝛼 = 1 − 2𝛽 − 𝛾; 𝛾 = 𝜗 = 𝜂 + 𝛼,

(Nonlinear model) 𝛼 = (1 − 2𝛽 − 𝛾)
𝑢

, 𝑢 ∈ 𝑍
+

;

𝛾 = 𝜗 = (𝜂 + 𝛼)
V
, V = 1, 3, 5, . . . ,

(Logarithmic model 1) 𝛼 =

ln (2 − 2𝛽 − 𝛾)

ln 2

;

𝛾 = 𝜗 =

ln (1.5𝜂 + 𝛼 + 2.5)

ln 2

− 1.

(24)

The values of 𝛼 and 𝛽 are within [0 1].
If the remaining cycle time is estimated with a triangular

fuzzy number, then (22) becomes

S̃K
𝑗𝑢

= (

𝑗 − 1

𝑛 − 1

)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

R̃CTE
𝑗𝑢

− min
𝑗
R̃CTE

𝑗𝑢

max
𝑗
R̃CTE

𝑗𝑢
− min

𝑗
R̃CTE

𝑗𝑢

)

𝜂

⋅ (

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

.

(25)

Job 𝑗 is processed before job 𝑘 if S̃K
𝑗𝑢

< S̃K
𝑘𝑢
. In Wang et al.

[27], to diversify the slack, the standard deviation of the slack
was maximized:

𝜎SK
𝑗𝑢

=
√

∑
𝑛

𝑗=1
(SK
𝑗𝑢

− SK
𝑢
)

2

𝑛 − 1

.
(26)

When the job slack is a fuzzy value,

𝜎S̃K
𝑗𝑢

=

√
∑
𝑛

𝑗=1
(S̃K
𝑗𝑢

− S̃K
𝑢
)

2

𝑛 − 1

.

(27)

Maximizing 𝜎S̃K
𝑗𝑢

is equivalent to maximizing

∑
𝑛

𝑗=1
(S̃K
𝑗𝑢

− S̃K
𝑢
)

2

. Finally, the following FNLP problem is
to be solved:

Max ̃
𝑍
1
=

𝑛

∑

𝑗=1

(𝑆𝐾
𝑗𝑢

− S̃K
𝑢
)

2

subject to S̃K
𝑗𝑢

= (

𝑗 − 1

𝑛 − 1

)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

R̃CTE
𝑗𝑢

− min
𝑗
R̃CTE

𝑗𝑢

max
𝑗
R̃CTE

𝑗𝑢
− min

𝑗
R̃CTE

𝑗𝑢

)

𝜂

⋅ (

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

𝑗 = 1 ∼ 𝑛

𝛼 = 1 − 2𝛽 − 𝛾; 𝛾 = 𝜗 = 𝜂 + 𝛼

(or) 𝛼 = (1 − 2𝛽 − 𝛾)
𝑢

, 𝑢 ∈ 𝑍
+

;

𝛾 = 𝜗 = (𝜂 + 𝛼)
V
, V = 1, 3, 5, . . .

(or) 𝛼 =

ln (2 − 2𝛽 − 𝛾)

ln 2

;

𝛾 = 𝜗 =

ln (1.5𝜂 + 𝛼 + 2.5)

ln 2

− 1

0 ≤ 𝛼, 𝛽 ≤ 1.

(28)

The proposed FNLP problem is intractable and may need to
be converted into an equivalent NLP problem to be solved.
First, (27) can be decomposed to

S̃K
𝑗𝑢

= (SK
𝑗𝑢1

, SK
𝑗𝑢2

, SK
𝑗𝑢3

) ,
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SK
𝑗𝑢1

= (

𝑗 − 1

𝑛 − 1

)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽

,

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢1

− min
𝑗
RCTE

𝑗𝑢1

max
𝑗
RCTE

𝑗𝑢3
− min

𝑗
RCTE

𝑗𝑢1

)

𝜂

⋅ (

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

,

SK
𝑗𝑢2

= (

𝑗 − 1

𝑛 − 1

)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢2

− min
𝑗
RCTE

𝑗𝑢2

max
𝑗
RCTE

𝑗𝑢2
− min

𝑗
RCTE

𝑗𝑢2

)

𝜂

⋅ (

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

,

SK
𝑗𝑢3

= (

𝑗 − 1

𝑛 − 1

)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢3

− min
𝑗
RCTE

𝑗𝑢1

max
𝑗
RCTE

𝑗𝑢3
− min

𝑗
RCTE

𝑗𝑢1

)

𝜂

⋅ (

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

.

(29)

The 𝛼-cut of 𝑆𝐾
𝑗𝑢
is

SK
𝑗𝑢

(𝛼) = [SK
𝑗𝑢𝐿

(𝛼) , SK
𝑗𝑢𝑅

(𝛼)]

= [SK
𝑗𝑢1

+ 𝛼 (SK
𝑗𝑢2

− SK
𝑗𝑢1

) ,

SK
𝑗𝑢3

+𝛼 (SK
𝑗𝑢2

− SK
𝑗𝑢3

)] .

(30)

Subsequently, the objective function is equal to

̃
𝑍
1
=

𝑛

∑

𝑗=1

(S̃K
𝑗𝑢

− S̃K
𝑢
)

2

=

𝑛

∑

𝑗=1

(S̃K
𝑗𝑢

−

∑
𝑛

𝑘=1
S̃K
𝑘𝑢

𝑛

)

2

=

1

𝑛
2

𝑛

∑

𝑗=1

((𝑛 − 1) S̃K
𝑗𝑢

−

𝑗−1

∑

𝑘=1

S̃K
𝑘𝑢

−

𝑛

∑

𝑘=𝑗+1

S̃K
𝑘𝑢

)

2

.

(31)

The 𝛼-cut of ̃
𝑍
1
is

[𝑍
1𝐿

(𝛼) , 𝑍
1𝑅

(𝛼)]

=

1

𝑛
2

𝑛

∑

𝑗=1

[

[

(𝑛 − 1) SK
𝑗𝑢𝐿

(𝛼) −

𝑗−1

∑

𝑘=1

SK
𝑘𝑢𝑅

(𝛼)

−

𝑛

∑

𝑘=𝑗+1

SK
𝑘𝑢𝑅

(𝛼) , (𝑛 − 1) SK
𝑗𝑢𝑅

(𝛼)

−

𝑗−1

∑

𝑘=1

SK
𝑘𝑢𝐿

(𝛼) −

𝑛

∑

𝑘=𝑗+1

SK
𝑘𝑢𝐿

(𝛼)
]

]

2

.

(32)

Applying (8) to (32) gives

𝑍
1𝐿

(𝛼) =

1

𝑛
2

𝑛

∑

𝑗=1

max (𝜉 (𝛼) 𝜁 (𝛼) , 0)

⋅ min(

𝜉 (𝛼)

𝜁 (𝛼)

,

𝜁 (𝛼)

𝜉 (𝛼)

) ,

(33)

𝑍
1𝑅

(𝛼) =

1

𝑛
2

𝑛

∑

𝑗=1

max (𝜉
2

(𝛼) , 𝜁
2

(𝛼)) , (34)

where

𝜉 (𝛼) = (𝑛 − 1) SK
𝑗𝑢𝐿

(𝛼) −

𝑗−1

∑

𝑘=1

SK
𝑘𝑢𝑅

(𝛼)

−

𝑛

∑

𝑘=𝑗+1

SK
𝑘𝑢𝑅

(𝛼) ,

𝜁 (𝛼) = (𝑛 − 1) SK
𝑗𝑢𝑅

(𝛼) −

𝑗−1

∑

𝑘=1

SK
𝑘𝑢𝐿

(𝛼)

−

𝑛

∑

𝑘=𝑗+1

SK
𝑘𝑢𝐿

(𝛼) .

(35)
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Equation (33) is equivalent to

𝑍
1𝐿

(𝛼) =

1

𝑛
2

𝑛

∑

𝑗=1

Ξ (𝛼) ⋅ Θ (𝛼) ,

Ξ (𝛼) ≥= 𝜉 (𝛼) 𝜁 (𝛼) ,

Ξ (𝛼) ≥= 0,

Ξ (𝛼) (Ξ (𝛼) − (𝛼) 𝜁 (𝛼)) = 0,

Θ (𝛼) ≤

𝜉 (𝛼)

𝜁 (𝛼)

,

Θ (𝛼) ≤

𝜁 (𝛼)

𝜉 (𝛼)

,

(Θ (𝛼) −

𝜁 (𝛼)

𝜉 (𝛼)

)(Θ (𝛼) −

𝜉 (𝛼)

𝜁 (𝛼)

) = 0.

(36)

Similarly, (34) can be replaced by

𝑍
1𝑅

(𝛼) =

1

𝑛
2

𝑛

∑

𝑗=1

Υ (𝛼) ,

Υ (𝛼) ≥= 𝜉
2

(𝛼) ,

Υ (𝛼) ≥= 𝜁
2

(𝛼) ,

(Υ (𝛼) − 𝜉
2

(𝛼)) (Υ (𝛼) − 𝜁
2

(𝛼)) = 0.

(37)

In order to facilitate the solving of the problem, the usual
practice is to defuzzify the fuzzy objective function ̃

𝑍
1
, using

the center-of-gravity defuzzification [28]:

𝐷(
̃
𝑍
1
) =

∑
1

𝛼=0
𝛼𝑍
1𝐿

(𝛼) + ∑
1

𝛼=0
𝛼𝑍
1𝑅

(𝛼)

∑
1

𝛼=0
𝛼 + ∑

1

𝛼=0
𝛼

=

∑
1

𝛼=0
𝛼𝑍
1𝐿

(𝛼) + ∑
1

𝛼=0
𝛼𝑍
1𝑅

(𝛼)

11

,

(38)

where𝐷( ) is the defuzzification function. Finally, the follow-
ing NLP model is optimized instead of the original FNLP
problem:

Max 𝑍
2
=

∑
1

𝛼=0
𝛼𝑍
1𝐿

(𝛼) + ∑
1

𝛼=0
𝛼𝑍
1𝑅

(𝛼)

11

subject to 𝑍
1𝐿

(𝛼) =

1

𝑛
2

𝑛

∑

𝑗=1

Ξ (𝛼) ⋅ Θ (𝛼)

Ξ (𝛼) ≥= 𝜉 (𝛼) 𝜁 (𝛼)

Ξ (𝛼) ≥= 0

Ξ (𝛼) (Ξ (𝛼) − (𝛼) 𝜁 (𝛼)) = 0

Θ (𝛼) ≤

𝜉 (𝛼)

𝜁 (𝛼)

Θ (𝛼) ≤

𝜁 (𝛼)

𝜉 (𝛼)

(Θ (𝛼) −

𝜁 (𝛼)

𝜉 (𝛼)

)(Θ (𝛼) −

𝜉 (𝛼)

𝜁 (𝛼)

) = 0

𝑍
1𝑅

(𝛼) =

1

𝑛
2

𝑛

∑

𝑗=1

Υ (𝛼)

Υ (𝛼) ≥= 𝜉
2

(𝛼)

Υ (𝛼) ≥= 𝜁
2

(𝛼)

(Υ (𝛼) − 𝜉
2

(𝛼)) (Υ (𝛼) − 𝜁
2

(𝛼)) = 0

𝜉 (𝛼) = (𝑛 − 1) SK
𝑗𝑢𝐿

(𝛼)

−

𝑗−1

∑

𝑘=1

SK
𝑘𝑢𝑅

(𝛼) −

𝑛

∑

𝑘=𝑗+1

SK
𝑘𝑢𝑅

(𝛼)

𝜁 (𝛼) = (𝑛 − 1) SK
𝑗𝑢𝑅

(𝛼)

−

𝑗−1

∑

𝑘=1

SK
𝑘𝑢𝐿

(𝛼) −

𝑛

∑

𝑘=𝑗+1

SK
𝑘𝑢𝐿

(𝛼)

SK
𝑗𝑢𝐿

(𝛼) = SK
𝑗𝑢1

+ 𝛼 (SK
𝑗𝑢2

− SK
𝑗𝑢1

)

SK
𝑗𝑢𝑅

(𝛼) = SK
𝑗𝑢3

+ 𝛼 (SK
𝑗𝑢2

− SK
𝑗𝑢3

)

SK
𝑗𝑢1

=(

𝑗 − 1

𝑛 − 1

)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢1

− min
𝑗
RCTE

𝑗𝑢1

max
𝑗
RCTE

𝑗𝑢3
− min

𝑗
RCTE

𝑗𝑢1

)

𝜂

⋅ (

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

SK
𝑗𝑢2

=(

𝑗 − 1

𝑛 − 1

)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢2

− min
𝑗
RCTE

𝑗𝑢2

max
𝑗
RCTE

𝑗𝑢2
− min

𝑗
RCTE

𝑗𝑢2

)

𝜂

⋅(

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

SK
𝑗𝑢3

= (

𝑗 − 1

𝑛 − 1

)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽
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⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢3

− min
𝑗
RCTE

𝑗𝑢1

max
𝑗
RCTE

𝑗𝑢3
− min

𝑗
RCTE

𝑗𝑢1

)

𝜂

⋅ (

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

𝑗 = 1 ∼ 𝑛

(Linear model) 𝛼 = 1 − 2𝛽 − 𝛾;

𝛾 = 𝜗 = 𝜂 + 𝛼

0 ≤ 𝛼, 𝛽 ≤ 1

(39)

Consider the example in Table 3. Both the proposed
methodology and Wang et al.’s method are applied to this
example. In the proposedmethodology, the optimal objective
function value 𝑍

∗

2
is 187272 when the parameters 𝛼, 𝛽, 𝛾, 𝜂,

and 𝜗 are equal to 0.980, 0.560, −1.100, −1.100, and −2.082,
respectively. The slacks of the jobs are shown in Figure 4.
Please note that in this figure the 𝑥-axis is converted to
logarithmic values for clarity. In contrast to this, Wang et
al.’s method cannot consider the uncertainty in the remain-
ing cycle time, and therefore only the center value of the
remaining cycle time is considered. The slacks obtained by
using Wang et al.’s method are shown in Figure 5, in which
𝜎
∗

SK
𝑗𝑢

= 93. The optimal values of the parameters 𝛼, 𝛽, 𝛾, 𝜂,
and 𝜗 are equal to 0.938, 0.587, −1.112, −1.112, and −2.050,
respectively. Obviously, one has the following.

(1) After considering the uncertainty of the remaining
cycle time, the best values of the five parameters
changed, and the slacks of jobs became different.This
might result in different sequencing results.

(2) There were 14 ties inWang et al.’s method. Conversely,
after considering the uncertainty in the remaining
cycle time, the proposed methodology successfully
diversified the slacks of the jobs and reduced the
number of ties to 11. In this regard, the advantage
of the proposed methodology over Wang et al.’s
approach is 21%.

(3) In the method of Wang et al., if there is a long tail in
the remaining cycle time of a job on the right-hand
side, then the slack of the job will be underestimated.
Conversely, the slack will be overestimated if there is
a long tail on the left-hand side.

3. Simulation Experiment

A real wafer fabrication factory mainly used for the pro-
duction of dynamic random access memory (DRAM) was
simulated.The wafer fabrication factory is located in Taiwan’s
Taichung Science Park and has a monthly capacity of about
25,000 wafers. However, the following assumptions were
made to generate data that are less noisy than real-world data.

Table 3: An example.

Number 𝑅
𝑗

𝑗 R̃CTE
𝑗𝑢

SCT
𝑗𝑢

RPT
𝑗𝑢

1 102 159 (1200, 1399, 1458) 881 560
2 756 37 (976, 1127, 1176) 227 451
3 826 37 (1086, 1223, 1299) 157 489
4 652 86 (1618, 1822, 1976) 331 729
5 208 55 (455, 530, 557) 775 212
6 783 84 (1742, 2040, 2158) 200 816
7 800 96 (2039, 2366, 2549) 183 946
8 478 52 (848, 942, 992) 505 377
9 469 65 (992, 1116, 1176) 514 446
10 699 32 (853, 995, 1031) 284 398
11 836 85 (1830, 2151, 2311) 147 860
12 497 45 (794, 883, 918) 486 353
13 596 101 (1700, 2047, 2170) 387 819
14 798 34 (975, 1146, 1256) 185 458
15 197 79 (659, 743, 800) 786 297
16 804 85 (1819, 2092, 2318) 179 837
17 163 78 (560, 647, 708) 820 259
18 457 44 (685, 810, 839) 526 324
19 523 100 (1547, 1851, 2042) 460 740
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Figure 4: The fuzzy slacks obtained by the proposed methodology.

(1) The distributions of the times between machine
breakdowns are exponential.

(2) The distribution of the time required to repair a
machine is uniform.

(3) The percentages of jobs with different priorities
released into the wafer fabrication factory are con-
trolled.

(4) A job has equal chances to be processed on each
alternative machine or head that is available at a step.

(5) A job cannot proceed to the next step until the
processing of every wafer in the job has been finished.

(6) No preemption is allowed.

In the simulated wafer fabrication factory, there are more
than 10 types of memory products and more than 500
workstations for performing single-wafer or batch operations
using 58 nm∼110 nm technologies. Jobs released into the
fabrication factory are assigned three types of priorities, that
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Figure 5: The fuzzy slacks obtained by using Wang et al.’s method.

is, “normal,” “hot,” and “super hot.” Usually, a job will only
be “super hot” if it is part of an emergency order; “super hot”
jobs will be processed first. The large scale and the reentrant
process flows of this wafer fabrication factory exacerbate the
difficulties of job dispatching. Currently, the longest average
cycle time exceeds threemonthswith a variation ofmore than
300 hours. The managers of this wafer fabrication factory are
therefore seeking better dispatching rules to replace FIFO and
EDD, in order to shorten the average cycle times and ensure
on-time delivery to customers.

One hundred replications of the simulation were succes-
sively run. The simulation horizon of each replication was
twenty-four months. The warm-up period was the first four
months. The time required for each simulation replication
was about 45 minutes using a PC with Intel Dual E2200
2.2GHz CPUs and 1.99G RAM.

To make comparisons with some existing approaches,
eight methods were tested. FIFO, EDD, shortest remaining
processing time (SRPT), CR, FSVCT, FSMCT, the nonlinear
fluctuation smoothing rule (NFS), and the four-objective
slack-diversifying rule (4o-SDR) [25] were applied to sched-
ule the simulated wafer fabrication factory. The data of 1000
jobs were collected and separated by product types and
priorities.

For FIFO, jobs were sequenced on each machine first by
their priorities, then by their arrival times at themachine. For
EDD, jobs were also sequenced first by their priorities, then
by their due dates.The performance of EDD depends on how
jobs’ due dates are determined. In the experiment, the due
date of each job was determined as follows:

DD
𝑗
= 𝑅
𝑗
+ (Ψ − 1.5 ∗ priority) ∗ TPT

𝑗
, (40)

where Ψ indicates the cycle time multiplier.
FSVCT and FSMCT consisted of two stages. First, jobs

were scheduled based on FIFO, in which the remaining cycle
times of all jobs were recorded and averaged at each step.
Then, FSVCT/FSMCT policy was applied to schedule the
jobs based on the average remaining cycle times obtained
earlier. In other words, jobs were sequenced on eachmachine
first by their priorities, and then by their slack values, which
were determined by (17) and (18). With SRPT, the remaining
processing time of each job was calculated. Then, jobs were
sequenced first by their priorities, then by their remaining

processing times.With CR, jobs were sequenced first by their
priorities, then by their critical ratios. NFS is a nonlinear
fusion of FSMCT and FSVCT. In the simulation experiment,
a weight of 0.8 was given to FSMCT. With 4o-SDR, the
remaining cycle time of a job was estimated using the fuzzy c-
means and back propagation network (FCM-BPN) approach
[31]; it was a crisp value. The five adjustable parameters were
set to (𝛼, 𝛽, 𝛾, 𝜂, 𝜗) = (0.6, 0.2, 0, −0.6, 0) after initial scenarios
had been examined.

In the proposed methodology, the remaining cycle time
of a job was estimated using the effective FBPN approach; it
was a fuzzy value. After the fuzzy remaining cycle time esti-
mate had been fed into the fuzzy four-objective fluctuation
smoothing rule, an FNLP problem was solved to determine
the values of the five parameters in the rule, so as to optimize
the scheduling performance.

The average cycle time, cycle time standard deviation, the
number of tardy jobs, and the maximum lateness of all cases
were calculated to assess the scheduling performance. The
results are summarized in Tables 4, 5, 6, and 7.

According to the experimental results, the following
points can be made.

(1) In various respects, the proposed methodology was
obviously superior to the existing dispatching rules.
For example, the fuzzy four-objective fluctuation
smoothing rule was the best at reducing the average
cycle time for all cases. Its advantage over the current
rule FIFOwas 26% on average.The average cycle time
is one of the most important scheduling goals of a
wafer fabrication factory; such experimental results
are very valuable. Of the traditional scheduling rules,
SRPT performed well for reducing the average cycle
times but posed the risk of high cycle time variation.

(2) On-time delivery is another important scheduling
objective. The maximum lateness is often used to
assess this.The proposedmethodology can effectively
reduce the maximum lateness and so can enhance
on-time delivery. This tends to improve the firm’s
customer relationships.The performance levels of the
two traditional methods in this field, EDD and CR,
were not as good as expected.

(3) Through reduced cycle time variability, we can more
accurately estimate the cycle time and promise our
customer a more reliable due date. The fuzzy four-
objective fluctuation smoothing rule has very good
performance in this respect, with an average advan-
tage of 28% over the existing scheduling rules.

(4) The number of tardy jobs is another indicator by
which one can assess on-time delivery. The proposed
methodology outperformed the existing methods in
most cases.

In order to confirm the advantages of the proposed
methodology over the existing methods, a Wilcoxon signed-
rank test [38] was used to test the following hypotheses.

𝐻
𝑎0
: When shortening the average cycle time, the schedul-
ing performance of the proposed methodology is the
same as that of the existing approach being compared.
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Table 4: The performance levels of various approaches for average
cycle time.

Average cycle
time (hrs)

A
(normal)

A
(hot)

A
(super hot)

B
(normal)

B
(hot)

FIFO 1254 400 317 1278 426
EDD 1094 345 305 1433 438
SRPT 948 350 308 1737 457
CR 1148 355 300 1497 440
FSMCT 1313 347 293 1851 470
FSVCT 1014 382 315 1672 475
NFS 1456 407 321 1452 421
4o-SDR 1183 347 271 1160 339
The proposed
methodology 932 274 265 810 269

Table 5: The performance levels of various approaches for maxi-
mum lateness.

The
maximum
lateness (hrs)

A
(normal)

A
(hot)

A
(super hot)

B
(normal)

B
(hot)

FIFO 401 −122 164 221 172
EDD 295 −181 144 336 185
SRPT 584 −142 174 718 194
CR 302 −159 138 423 192
FSMCT 875 −165 125 856 171
FSVCT 706 −112 174 686 260
NFS 627 10 161 331 151
4o-SDR 360 −152 118 21 94
The proposed
methodology 287 −145 112 25 106

Table 6:Theperformance levels of various approaches for cycle time
standard deviation.

Cycle time
standard
deviation (hrs)

A
(normal)

A
(hot)

A
(super hot)

B
(normal)

B
(hot)

FIFO 55 24 25 87 51
EDD 129 25 22 50 63
SRPT 248 31 22 106 53
CR 69 29 18 58 53
FSMCT 419 33 16 129 104
FSVCT 280 37 27 201 77
NFS 64 40 19 37 26
4o-SDR 71 41 22 30 29
The proposed
methodology 68 20 23 27 34

𝐻
𝑎1
: When shortening the average cycle time, the schedul-
ing performance of the proposedmethodology is bet-
ter than that of the existing approach being compared.

Table 7: The performance levels of various approaches for number
of tardy jobs.

Number of
tardy jobs

A
(normal)

A
(hot)

A
(super hot)

B
(normal)

B
(hot)

FIFO 79 0 12 16 5
EDD 71 0 12 19 5
SRPT 37 0 12 19 5
CR 79 0 12 19 5
FSMCT 58 0 12 19 5
FSVCT 56 0 12 18 5
NFS 58 0 12 19 5
4o-SDR 79 0 12 19 5
The proposed
methodology 37 0 12 19 5

𝐻
𝑏0
: When reducing the maximum lateness, the schedul-
ing performance of the proposed methodology is the
same as that of the existing approach being compared.

𝐻
𝑏1
: When reducing the maximum lateness, the schedul-
ing performance of the proposedmethodology is bet-
ter than that of the existing approach being compared.

𝐻
𝑐0
: When reducing the cycle time standard deviation, the
scheduling performance of the proposed methodol-
ogy is the same as that of the existing approach being
compared.

𝐻
𝑐1
: When reducing the cycle time standard deviation, the
scheduling performance of the proposed methodol-
ogy is better than that of the existing approach being
compared.

𝐻
𝑑0
: When reducing the number of tardy jobs, the schedul-
ing performance of the proposed methodology is the
same as that of the existing approach being compared.

𝐻
𝑑1
: When reducing the number of tardy jobs, the schedul-
ing performance of the proposedmethodology is bet-
ter than that of the existing approach being compared.

The results are summarized in Table 8. The null hypothe-
sis𝐻
𝑎0
was rejected at𝛼 = 0.025, which showed that the fuzzy

slack-diversifying fluctuation-smoothing rule was superior
to seven existing approaches at reducing the average cycle
time. With regard to maximum lateness, the advantage of
the fuzzy slack-diversifying fluctuation-smoothing rule over
FIFO, SRPT, and FSVCTwas significant. Similar results could
be observed with cycle time standard deviation. However,
the advantage of the fuzzy slack-diversifying fluctuation-
smoothing rule was not statistically significant for the num-
ber of tardy jobs.

4. Conclusions and Directions for
Future Research

Multiobjective scheduling is an important task in a wafer
fabrication factory. It is also a difficult task owing to the
uncertainty and complexity of the wafer fabrication system.
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Table 8: Results of the Wilcoxon sign-rank test.

𝐻
𝑎0

(the average
cycle time)

𝐻
𝑏0

(the
maximum
lateness)

𝐻
𝑐0

(cycle time
standard
deviation)

𝐻
𝑑0

(the number
of tardy jobs)

FIFO 2.02∗∗ 2.02∗∗ 1.21 0.54
EDD 2.02∗∗ 1.21 1.75∗ 1.21
SRPT 2.02∗∗ 2.02∗∗ 1.75∗ 0.67
CR 2.02∗∗ 1.75∗ 1.48 1.21
FSMCT 2.02∗∗ 1.48 1.75∗ 1.21
FSVCT 2.02∗∗ 2.02∗∗ 2.02∗∗ 0.54
NFS 2.02∗∗ 2.02∗∗ 0.54 1.21
4o-SDR 2.02∗∗ −0.08 0.34 0.76
∗P < 0.05.
∗∗P < 0.025.
∗∗∗P < 0.01.

This study demonstrates that an FNLP approach can consider
such uncertainties and optimize the performance of multiob-
jective scheduling in a wafer fabrication factory.

The proposed methodology starts from the estimation
of the remaining cycle time for each job. To this end, an
effective FBPN approach has been proposed. The estimated
remaining cycle time from the FBPN is a fuzzy number. After
the fuzzy remaining cycle time estimate is fed to the four-
factor fluctuation smoothing rule, the rule is fuzzified, and
the slack of each job is expressed by a fuzzy number. To reduce
the number of ties, the slacks of jobs need to be diversified,
which results in an FNLPproblem. Since the FNLPproblem is
not easy to solve, some𝛼-cut operations are applied to convert
it into an equivalent NLP problem.

After a simulation study, the following points are con-
cluded

(1) The simulation experiment results showed that the
proposed method indeed enhanced the scheduling
performance of the wafer fabrication factory in four
respects—average cycle time, maximum lateness,
cycle time standard deviation, and number of tardy
jobs.

(2) Consideration of the uncertainty in the remaining
cycle time has a considerable degree of influence
on scheduling performance. The proposed FBPN
approach not only enhances the accuracy of estimat-
ing the remaining cycle time but can also generate
a precise range for the remaining cycle time. This
effectively avoids incorrect scheduling.

(3) The experimental results in this study also confirmed
that the scheduling performance of a complex pro-
duction system can be significantly improved by opti-
mizing the existing dispatching rule with an FNLP
model.

However, the proposed methodology only optimizes the
performance of a dispatching rule in a wafer fabrication
factory; this does not optimize every aspect of scheduling
for a wafer fabrication factory. Although slack diversification

optimizes the four-objective fluctuation smoothing rule,
there are other approaches that can achieve the same effect.
Further, some soft computing techniques can be applied
to solve the FNLP problem. All of these issues constitute
directions for future research.

Abbreviations

4o-SDR: Four-objective slackdiversifying
ANFIS: Adaptive neurofuzzy inference system
COG: Center of gravity
CR: Critical ratio
CV: Coefficient of variance
DOE: Design of experiment
EDD: Earliest due date
FBPN: Fuzzy back propagation network
FCM: Fuzzy c-means
FLP: Fuzzy linear programming
FMS: Flexible manufacturing system
FNLP: Fuzzy nonlinear programming
FSMCT: The fluctuation smoothing policy for mean

cycle time
FSVCT: The fluctuation smoothing policy for cycle

time variation
GA: Genetic algorithm
LP: Linear programming
MIP: Mixed integer programming
NFS: Nonlinear fluctuation smoothing
NLP: Nonlinear programming
PSO: Particle swarm optimization
SA: Simulated annealing
SRPT: Shortest remaining processing time
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